
Institut für Informatik
Fachgebiet Softwaretechnik

Warburger Straße 100
33098 Paderborn

Struktur- und verhaltensbasierte
Entwurfsmustererkennung

Schriftliche Arbeit
zur Erlangung des Grades

”
Doktor der Naturwissenschaften“

vorgelegt von

Dipl.-Inform. Lothar Wendehals
Rosenstraße 42

44289 Dortmund

Paderborn, im September 2007

ii

Zusammenfassung

Die Wartung von Softwaresystemen ist heute eine zeit- und damit kosteninten-
sive Aufgabe. Die Systeme sind ständigen Änderungen unterworfen und über
Jahre hinweg gewachsen. Die Dokumentation solcher Systeme wird kaum oder
gar nicht gepflegt. Bei einer Größe von hunderttausenden oder sogar mehreren
Millionen Zeilen Quelltext ist die schwerste Aufgabe des Softwareentwicklers,
die bestehende Software zu verstehen, bevor Änderungen daran vorgenommen
werden können. Die einzige verlässliche Grundlage für das Verstehen der Soft-
ware bildet aber nur der Quelltext.

In der Softwareentwicklung werden weit verbreitete Lösungen für immer
wiederkehrende Probleme als Entwurfsmuster bezeichnet. Sie sind vielfach do-
kumentiert und bilden ein gemeinsames Vokabular unter Entwicklern. Ange-
wendete Entwurfsmuster, so genannte Entwurfsmusterimplementierungen, im
Quelltext existierender Software zu identifizieren, hilft, das inhärente Design
der Software explizit zu dokumentieren und so die Entwickler beim Verstehen
der Software zu unterstützen.

In den letzten Jahren wurde eine Reihe von Werkzeugen entwickelt, die Ent-
wurfsmusterimplementierungen (semi-)automatisch im Quelltext erkennen. Bis
auf einige wenige Ausnahmen basieren alle Werkzeuge auf einer rein statischen
Analyse des Quelltextes, ohne Eigenschaften der Software zur Laufzeit zu un-
tersuchen. Diese Analysen sind gut dazu geeignet, strukturelle Eigenschaften
der Entwurfsmuster zu erkennen. Allerdings werden Entwurfsmuster nicht nur
durch ihre Struktur, sondern auch durch ihr Verhalten definiert. Verhalten
kann jedoch durch statische Analysen nur sehr eingeschränkt untersucht wer-
den. Die bisher entwickelten Werkzeuge erzeugen daher sehr unpräzise Ergeb-
nisse.

Dynamische Analysen bieten eine Lösung für dieses Problem. Sie analysieren
Software zur Laufzeit, indem sie ihr Verhalten beobachten. Ausschließlich dy-
namische Analysen sind jedoch kaum praktisch durchführbar, da zur Laufzeit
riesige Datenmengen anfallen, die nur sehr schwer handhabbar sind.

Diese Arbeit stellt eine struktur- und verhaltensbasierte Entwurfsmusterer-
kennung vor, die eine existierende, statische Entwurfsmustererkennung mit ei-

iii

ner neu entwickelten, dynamischen Entwurfsmustererkennung kombiniert. Die
statische Analyse identifiziert Kandidaten von Entwurfsmusterimplementie-
rungen auf Basis struktureller Informationen. Der Anteil der dynamisch zu un-
tersuchenden Software wird auf diese Kandidaten eingeschränkt, die anfallende
Datenmenge wird reduziert und somit problemlos handhabbar. Zur Laufzeit
wird dann das Verhalten der Kandidaten mit vorgegebenem Verhalten vergli-
chen. Die durch die statische Analyse identifizierten und durch die dynamische
Analyse bestätigten Entwurfsmusterimplementierungen stellen schließlich ein
fundiertes und präzises Ergebnis dar.

iv

Danksagung

Eine Arbeit wie diese entsteht niemals ohne Einflüsse von außen. Durch viele
Diskussionen mit anderen Wissenschaftlern, Kollegen, Studenten und Freun-
den wurde sie zu dem, was nun vorliegt. Diesen Personen möchte ich meinen
Dank aussprechen. Besonders hervorzuheben ist Wilhelm Schäfer, der die Ar-
beit wissenschaftlich betreut hat und dessen wissenschaftlicher Mitarbeiter ich
fünf Jahre lang war. Aber auch Ekkart Kindler möchte ich danken für seine
immer wieder hilfreiche und konstruktive Kritik.

Besonderer Dank gilt meinen Kollegen Matthias Meyer und Robert Wag-
ner, mit denen ich eng zusammengearbeitet habe und die ich durch so manche
fruchtbare Diskussion und themenfremde Unterhaltung von ihren eigenen Dis-
sertationen abgehalten habe. Aber auch alle anderen Kollegen trugen mit ihrer
Kritik zu dieser Arbeit bei, dies sind: Björn Axenath, Sven Burmester, Matthi-
as Gehrke, Stefan Henkler, Martin Hirsch, Florian Klein, Jörg Niere, Vladimir
Rubin, Daniela Schilling, Matthias Tichy, Dietrich Travkin und Jörg Wadsack.

Jörg Niere, Daniela Schilling und Martin Hirsch möchte ich dafür danken,
dass sie mich jeweils eine Zeit lang als ihren Bürokollegen ausgehalten ha-
ben, bis ich schließlich mein eigenes Büro bekam. Vielen Dank auch an Jutta
Haupt, die mir geholfen hat, die bürokratischen Klippen einer Universität zu
umschiffen, und an Jürgen Maniera für die technische Unterstützung.

Danke auch an die vielen Studenten, die als studentische Hilfskräfte oder
durch ihre Diplom- oder Studienarbeiten an der Umsetzung meiner Ideen mit-
gearbeitet haben.

Im Herbst 2005 verbrachte ich drei Monate am Georgia Instistute of Tech-
nology in Atlanta, USA. Ich sammelte in dieser Zeit viele Erfahrungen und
konnte meine Ideen dort mal in einem vollkommen anderen Kontext betrach-
ten. Vielen Dank an Mary Jean Harrold und an Alessandro Orso, dass sie mir
diesen Aufenthalt ermöglicht haben.

Vor allem aber möchte ich meinen Eltern Gundi und Josef Wendehals dan-
ken, die mir meine Ausbildung erst ermöglicht haben, und meinen Geschwi-
stern Jutta, Martin und Marion, die mich immer wieder während des Studiums
und der Promotion unterstützt haben.

v

vi

Inhalt

1 Einleitung 1
1.1 Reverse-Engineering . 2
1.2 Entwurfsmustererkennung . 3
1.3 Statische und Dynamische Analyse 5
1.4 Ergebnisse der Arbeit . 8
1.5 Aufbau der Arbeit . 9

2 Grundlagen 11
2.1 Entwurfsmuster . 11
2.2 Automatische Entwurfsmustererkennung 13

2.2.1 Anforderungen an eine Entwurfsmustererkennung 14
2.3 Strukturbasierte Entwurfsmustererkennung in Fujaba 16

2.3.1 Strukturmodell eines Softwaresystems 17
2.3.2 Spezifikation von Strukturmustern 21
2.3.3 Regelkatalog . 25
2.3.4 Strukturbasierter Erkennungsprozess 27
2.3.5 Bewertung der Ergebnisse 30
2.3.6 Einsatzgebiete . 32
2.3.7 Überblick . 33

2.4 Zusammenfassung . 35

3 Erweiterung der strukturbasierten Entwurfsmustererkennung 37
3.1 Unscharfe Regeln und Bewertung 37

3.1.1 Motivation und Lösungsidee 38
3.1.2 Erweiterte Syntax der Strukturmuster 40
3.1.3 Bewertung der Ergebnisse 43

3.2 Verhaltensbasierte Entwurfsmustererkennung 44
3.2.1 Motivation und Lösungsidee 44
3.2.2 Struktur- und verhaltensbasierter Erkennungsprozess . . 48
3.2.3 Verhaltensmodell eines Softwaresystems 50

vii

Inhalt

3.2.4 Überblick . 52
3.3 Zusammenfassung . 54

4 Verhaltensspezifikation 57
4.1 Verhaltensmuster . 57

4.1.1 Formalisierung durch Sequenzdiagramme 58
4.1.2 Negative Verhaltensmuster 61
4.1.3 Verbindung zu Strukturmustern 61

4.2 Syntax . 63
4.2.1 Metamodell der Verhaltensmuster 63
4.2.2 Erweiterung des Metamodells der Strukturmuster 67
4.2.3 Verbindung zwischen Struktur- und Verhaltensmustern . 69
4.2.4 Überblick . 72

4.3 Semantik . 74
4.3.1 Mehrfache Überprüfung der Traces 74
4.3.2 Bindung der Variablen 75
4.3.3 Konformität von Methodenaufrufen 77
4.3.4 Konformität von Traces 80
4.3.5 Wertung konformer und nicht-konformer Traces 85

4.4 Erzeugung eines Automaten . 86
4.4.1 Nichtdeterministischer Automat 86
4.4.2 Deterministischer Automat 95

4.5 Zusammenfassung . 103

5 Verhaltensanalyse 105
5.1 Verhaltensbasierter Erkennungsprozess 105
5.2 Gewinnung der Traces . 107

5.2.1 Voraussetzungen . 107
5.2.2 Überwachung durch Debugging 108
5.2.3 Überwachung durch Instrumentierung 109

5.3 Verhaltenserkennung . 111
5.3.1 Erweiterter Automat . 112
5.3.2 Trigger . 115
5.3.3 Verarbeitung der beobachteten Methodenaufrufe 117
5.3.4 Konforme Methodenaufrufe und Variablenbindung 120
5.3.5 Beispiel . 126
5.3.6 Nachträgliches Verwerfen eines Traces 128

5.4 Bewertung der Ergebnisse . 130
5.5 Zusammenfassung . 133

viii

Inhalt

6 Praktische Anwendung 135
6.1 Software-Tomographie . 135
6.2 Szenario . 136
6.3 Ergebnisse . 137

6.3.1 Strukturanalyse . 138
6.3.2 Verhaltensanalyse . 140
6.3.3 Schwächen des Ansatzes 141

6.4 Zusammenfassung . 144

7 Werkzeugunterstützung 145
7.1 Entwicklungsumgebung . 145
7.2 Architektur . 146
7.3 Benutzungsschnittstelle . 149

7.3.1 Elemente der Benutzungsschittstelle 149
7.3.2 Spezifikation der Struktur- und Verhaltensmuster 150
7.3.3 Strukturbasierte Entwurfsmustererkennung 152
7.3.4 Verhaltensbasierte Entwurfsmustererkennung 154

7.4 Zusammenfassung . 160

8 Verwandte Arbeiten 161
8.1 Strukturbasierte Entwurfsmustererkennung 161
8.2 Dynamische Analysen zur Verhaltenserkennung 163
8.3 Kombinierte statische und dynamische Analysen 165

8.3.1 Ausgewählte Verfahren im Reverse-Engineering 165
8.3.2 Verfahren zur Entwurfsmustererkennung 168

8.4 Transformation von Sequenzdiagrammen 169
8.5 Zusammenfassung . 170

9 Zusammenfassung und Ausblick 173
9.1 Zusammenfassung . 173
9.2 Ausblick . 175

Literatur 179

A Struktur- und Verhaltensmuster 191
A.1 Command . 192
A.2 Observer . 193
A.3 State . 194
A.4 Strategy . 195

ix

Inhalt

A.5 Visitor . 196

B Reclipse Handbuch 197
B.1 Generierung von Struktur- und Verhaltensmusterkatalogen . . . 197
B.2 Strukturbasierte Entwurfsmustererkennung 202
B.3 Verhaltensbasierte Entwurfsmustererkennung 207

B.3.1 Software-Tomographie 207
B.3.2 Debugging . 208
B.3.3 Instrumentierung . 211
B.3.4 Verhaltenserkennung . 213

C Technische Dokumentation 217
C.1 Komponenten der Entwurfsmustererkennung 217

C.1.1 de.uni paderborn.fujaba 217
C.1.2 org.reclipse.javaast . 218
C.1.3 org.reclipse.javaparser 218
C.1.4 org.reclipse.tracing . 219
C.1.5 org.reclipse.tracer . 219
C.1.6 org.reclipse.instrumentation 220
C.1.7 org.reclipse.instrumentation.runtime 221
C.1.8 org.reclipse.patterns.structure.specification 222
C.1.9 org.reclipse.patterns.structure.inference 222
C.1.10 org.reclipse.patterns.structure.generator 223
C.1.11 org.reclipse.patterns.behavior.specification 224
C.1.12 org.reclipse.patterns.behavior.inference 225
C.1.13 org.reclipse.patterns.behavior.generator 225

C.2 Datenformate der Komponenten 226
C.2.1 Annotationen . 226
C.2.2 Trace-Definition . 228
C.2.3 Tracegraph . 231
C.2.4 Verhaltensmusterkatalog 234
C.2.5 Ergebnis der struktur- und verhaltensbasierten Ent-

wurfsmustererkennung 240

Abbildungen 245

Tabellen 249

Index 251

x

Kapitel 1

Einleitung

Das Jahr-2000-Problem verdeutlichte der breiten Öffentlichkeit, dass sich Soft-
ware häufig nicht nur über Jahrzehnte hinweg im Einsatz befindet, sondern
auch immer wieder während ihrer gesamten Lebensdauer gewartet werden
muss. Die Ursache für das Jahr-2000-Problem reicht bis in die 1970er Jah-
re zurück. Jahreszahlen wurden in Algorithmen und Datenbanken nur durch
ihre letzten beiden Ziffern repräsentiert. Man ging davon aus, dass die Soft-
ware nicht bis zum Jahr 2000 im Einsatz sei, und interpretierte die ersten
beiden fehlenden Ziffern grundsätzlich als

”
19“. So wäre beim Jahreswechsel

vom Jahr 1999 auf das Jahr 2000 eine
”
00“ nicht als Jahr 2000, sondern als

Jahr 1900 interpretiert worden. Vor der Jahrtausendwende mussten deshalb
praktisch alle so genannten Legacy-Systeme – das ist Software, deren Algo-
rithmen und Strukturen sowie zugehörige Datenbestände über Jahre hinweg
gewachsen sind – auf dieses Problem hin überprüft und unter großem Aufwand
korrigiert werden.

Das Jahr-2000-Problem ist zwar ein prominentes Beispiel, stellt aber bei wei-
tem keinen Einzelfall dar. Softwaresysteme sind über Jahre oder sogar Jahr-
zehnte hinweg im Einsatz und müssen kontinuierlich an neue Anforderungen
angepasst werden. Diese Systeme bestehen dabei nicht selten aus Software mit
einem Umfang von mehreren Millionen Zeilen Quelltext. Des Weiteren wurden
die Softwaresysteme üblicherweise von mehreren Generationen von Entwick-
lern geschaffen, die unter Umständen nicht mehr zur Weiterentwicklung des
Softwaresystems zur Verfügung stehen.

Entwickler, die mit dem Re-Engineering , also dem Anpassen bereits beste-
hender Software an neue Anforderungen, beauftragt werden, stehen häufig un-
ter enormen Kosten- und Zeitdruck. Die neue Version der Software soll schnell
auf dem Markt verfügbar sein und möglichst früh produktiv eingesetzt wer-
den. Änderungen an den Softwaresystemen werden daher weitestgehend nur

1

Kapitel 1 Einleitung

im Quelltext durchgeführt, wobei die Dokumentation der Änderungen ver-
nachlässigt wird. Die vorhandene Dokumentation spiegelt daher meist nicht
den aktuellen Stand der Softwaresysteme wieder.

Verstehen der Quelltexte 50%
Änderungen dokumentieren 5%
Änderungen durchführen 10%
Änderungen planen 10%
Änderungen testen 25%

[Fra92] A. Frazer. Reverse Engineering - hype, hope or here? In P.A.V. Hall, Hr

Änderungen
durchführen

10%

Änderungen planen
10%

Änderungen testen
25%

Verstehen der
Quelltexte

50%

Änderungen
dokumentieren

5%

Abbildung 1.1: Kostenverteilung im Re-Engineering nach A. Frazer [Fra92]

Bevor die eigentlichen Änderungen durchgeführt werden können, müssen die
Entwickler das Softwaresystem zunächst jedoch verstehen. Die Größe der Soft-
waresysteme, die Generationen von Entwicklern, die an dem Softwaresystem
gearbeitet haben, und die ungenügende oder gar nicht vorhandene Dokumenta-
tion erschweren aber zusätzlich diese Aufgabe. Nach einer Studie aus dem Jahr
1992 von A. Frazer [Fra92] beträgt der Anteil der Kosten für das Verstehen
des Quelltextes 50% an den Gesamtkosten für das Re-Engineering (Abbildung
1.1). Es ist sogar davon auszugehen, dass sich dieser Anteil seit 1992 eher noch
erhöht hat, da die Softwaresysteme zunehmend komplexer geworden sind.

1.1 Reverse-Engineering

Eine Unterdisziplin des Re-Engineerings, das so genannte Reverse-Engineering,
befasst sich mit der Analyse und dem Verständnis von Softwaresystemen
[CC90]. Ziel des Reverse-Engineerings ist es, Softwaresysteme auf ihrem ak-
tuellen Stand zu dokumentieren und zu verstehen. Es wird vor allem versucht,
die Systeme auf abstrakterem Niveau zu dokumentieren, um die Kernpunkte
der Softwaresysteme herauszustellen, unwesentliche Details auszublenden und
so das Verständnis zu fördern.

Als Ausgangspunkt für das Reverse-Engineering können verschiedenste
Quellen dienen. Zunächst sind dies die bereits vorhandenen Dokumente, die
jedoch unter Umständen nicht mehr aktuell sind. Als weitere Quelle kommen

2

1.2 Entwurfsmustererkennung

die früheren Entwickler in Frage, die aber nicht immer zur Verfügung stehen.
So bleibt als einzige verlässliche Grundlage für Informationen über das Soft-
waresystem nur der Quelltext.

Das Verstehen des Quelltextes ist wie bereits oben erwähnt sehr zeit- und
damit kostenintensiv. Eine Unterstützung des Menschen durch Werkzeuge, die
vom Quelltext abstrahieren, ist somit von großem Vorteil. Zur Zeit sind bereits
viele Werkzeuge zum Reverse-Engineering am Markt erhältlich oder werden in
aktuellen Forschungsarbeiten entwickelt.

Zur Repräsentation der Softwaresysteme auf abstrakterem Niveau werden
unterschiedlichste Arten von Visualisierungen verwendet. Sollen zum Beispiel
Schwachstellen in Softwaresystemen gefunden und entfernt werden, sind Me-
triken hilfreich [FP96]. Sie drücken bestimmte Merkmale der Software in Zah-
len aus. Aufgrund dieser Werte können dann statistische Ausreißer gefunden
werden, die meist gute Hinweise auf Schwachstellen liefern. Will der Software-
entwickler dagegen Abhängigkeiten innerhalb eines Softwaresystems verstehen,
ist zum Beispiel das Werkzeug Rigi nützlich [MWT95, Rig]. Es stellt unter an-
derem stark zusammenhängende Komponenten oder Verwendungsbeziehungen
zwischen Klassen eines Softwaresystems in Graphen dar.

Eine sehr weit verbreitete Sprache zur Modellierung und Repräsentation von
Software ist die Unified Modeling Language (UML) [Obj]. Mit der UML lassen
sich unterschiedliche Sichten auf das Modell eines Softwaresystems realisieren.
So stellen Paket- und Klassendiagramme statische Informationen wie Orga-
nisation und Beziehungen von Einzelteilen der Software dar, während zum
Beispiel Aktivitäten- und Sequenzdiagramme dynamische Anteile wie das Ver-
halten der Software zur Laufzeit beschreiben. Ein großer Vorteil der UML ist,
dass sie im kompletten Softwarelebenszyklus eingesetzt werden kann. Sie wird
sowohl zum Forward-Engineering, also zur erstmaligen Erstellung der Modelle
und der Software, als auch zum Re-Engineering, der Weiterentwicklung beste-
hender Softwaresysteme, verwendet. Die UML ist also eine ideale Grundlage
zur Dokumentation der Ergebnisse des Reverse-Engineerings.

1.2 Entwurfsmustererkennung

”
All well-structured software-intensive systems are full of patterns.“

– Grady Booch, November 2005, [Boo05]

Bei der Softwareentwicklung stoßen Software-Designer immer wieder auf
gleichartige Probleme. Im Laufe der Jahre haben sich für diese Probleme

3

Kapitel 1 Einleitung

Lösungen herauskristallisiert, die sich unter den Entwicklern als so genann-
te Entwurfsmuster (engl. Design Patterns) etabliert haben. Seit Mitte der
1990er Jahre werden diese Entwurfsmuster verstärkt in Büchern und wissen-
schaftlichen Berichten festgehalten und dokumentiert. Ein Standardwerk ist
das Buch von Erich Gamma, Richard Helm, Ralph Johnson und John Vlissides

”
Design Patterns—Elements of Reusable Object-Oriented Software“ [GHJV95]

aus dem Jahre 1995, welches 23 weit verbreitete Entwurfsmuster vorstellt. Das
Buch

”
The Pattern Almanac 2000“ [Ris00] wiederum enthält Referenzen auf

hunderte verschiedener Entwurfsmuster aus den unterschiedlichsten Anwen-
dungsgebieten.

Das oben genannte Zitat von Grady Booch – einer der ursprünglichen Ent-
wickler der UML – bringt zum Ausdruck, dass sich Muster eigentlich in allen
Softwaresystemen wiederfinden, sofern die Software nicht vollkommen chao-
tisch entwickelt worden ist. Entwurfsmuster wurden auch schon in der Softwa-
reentwicklung eingesetzt, bevor sie in Büchern dokumentiert wurden. Durch
ihre explizite Beschreibung wird lediglich ein gemeinsames Vokabular für die
Entwickler geschaffen.

Ein Entwurfsmuster besteht in der Regel aus vier Teilen. Der Name des
Entwurfsmusters bildet die Grundlage für das gemeinsame Vokabular und be-
schreibt in sehr wenigen Worten das Muster. Das Problem beschreibt, wann
und in welchem Kontext das Entwurfsmuster angewendet wird. Die Lösung
des Problems wird meist nicht im Detail, sondern eher auf einem abstrakteren
Niveau vorgestellt, um die allgemeine Anwendbarkeit nicht einzuschränken.
Dazu werden zum Beispiel UML-Diagramme verwendet, die zur Erläuterung
der Struktur und des Verhaltens des Entwurfsmusters dienen. Die Konsequen-
zen, die die Verwendung des jeweiligen Entwurfsmusters impliziert, werden
häufig anhand der Zeit- und Platzkomplexität oder der Erweiterbarkeit und
der Wiederverwendbarkeit der Lösung diskutiert.

Werden Implementierungen der Entwurfsmuster, so genannte Entwurfsmu-
sterimplementierungen, in bestehender Software identifiziert, so lässt sich nicht
nur auf das zugrunde liegende Problem und den Kontext, in dem sie ange-
wendet wurden, schließen, sondern auch abschätzen, wie beispielsweise Er-
weiterungen vorgenommen werden können. Die Identifizierung von Entwurfs-
musterimplementierungen durch eine Entwurfsmustererkennung hilft also, das
inhärente Design der Software explizit zu dokumentieren und die Entwickler
bei ihrer Arbeit zu unterstützen. Eine manuelle Erkennung der Entwurfsmu-
sterimplementierungen ist jedoch aus den bereits genannten Gründen Zeit und
Kosten kaum durchführbar. Deshalb werden immer mehr Reverse-Engineering-
Werkzeuge entwickelt, die (semi-)automatisch nach Entwurfsmusterimplemen-

4

1.3 Statische und Dynamische Analyse

tierungen im Quelltext suchen. Zur Dokumentation der Ergebnisse werden zum
Beispiel die im Reverse-Engineering entstehenden UML-Dokumente durch die
Kennzeichnung von Entwurfsmusterimplementierungen angereichert.

Die informelle Beschreibung der Entwurfsmuster bietet dem Entwickler
während des Forward-Engineerings weitreichende Freiheiten bei ihrer Imple-
mentierung. Zum einen lässt sich das gleiche Verhalten auf unterschiedliche
Weise in Programmiersprachen umsetzen. Eine Schleife kann zum Beispiel als
for- oder als while-Schleife implementiert werden. Zum anderen lassen sich
Lösungselemente auf höherem Abstraktionsniveau – wie zum Beispiel Assozia-
tionen – auf unterschiedlichste Weise realisieren. Dadurch entstehen praktisch
unendlich viele Implementierungsvarianten eines einzelnen Entwurfsmusters.

Für eine automatische Erkennung der Entwurfsmuster ist die Vielfalt der
Implementierungsvarianten eines der größten Probleme. Diesem Problem kann
man im Wesentlichen durch zwei Strategien begegnen. Auf der einen Sei-
te können unterschiedliche Implementierungsvarianten durch unterschiedliche
Regeln erkannt werden. Dies führt jedoch zu einer theoretisch beliebig großen
Zahl an Regeln. Selbst eine Beschränkung auf einige Implementierungsvarian-
ten für viele verschiedene Entwurfsmuster erzeugt eine zu große Menge Regeln,
die zu einem Laufzeitproblem bei der Erkennung führt. Beschränkt man auf
der anderen Seite aber die Zahl der Regeln, können nur wenige Implemen-
tierungsvarianten erkannt werden. Das führt schließlich zu einer ungenauen
Erkennung, bei der viele existierende Entwurfsmusterimplementierungen nicht
identifiziert werden.

Durch unscharfe Regeln lässt sich diese Situation etwas verbessern. Eine
Regel deckt dabei verschiedene Implementierungsvarianten eines Entwurfsmu-
sters ab. Als Nebeneffekt werden jedoch mehr so genannter False-Positives er-
kannt. False-Positives sind Konstrukte, die zwar als Entwurfsmusterimplemen-
tierungen identifiziert wurden, aber keine sind. Die Reduzierung des Anteils
der False-Positives am Gesamtergebnis der Entwurfsmustererkennung ist ein
entscheidender Faktor für die Präzision der Erkennung. False-Positives müssen
vom Reverse-Engineer manuell als solche identifiziert werden und stellen damit
einen Mehraufwand dar, der möglichst gering gehalten werden sollte.

1.3 Statische und Dynamische Analyse

In den letzten Jahren wurde eine Reihe von Werkzeugen entwickelt, die Ent-
wurfsmusterimplementierungen (semi-)automatisch im Quelltext erkennen. Bis
auf einige wenige Ausnahmen basieren alle Werkzeuge auf einer rein stati-

5

Kapitel 1 Einleitung

schen Analyse1, bei der der Quelltext untersucht wird, ohne die Software aus-
zuführen. Diese Analysen sind sehr gut dazu geeignet, strukturelle Eigenschaf-
ten der Entwurfsmuster zu erkennen.

Entwurfsmuster werden allerdings nicht nur durch ihre Struktur, sondern
auch durch ihr Verhalten definiert. Konstrukte, die zwar in ihrer Struktur mit
Entwurfsmustern übereinstimmen und als Implementierungen solcher erkannt
werden, sich aber zur Laufzeit anders verhalten, sind mit sehr großer Wahr-
scheinlichkeit False-Positives. Durch rein statische Analysen kann das Verhal-
ten aber nur sehr eingeschränkt erkannt werden.

Das Verhalten von Software wird bei imperativen Programmiersprachen im
Wesentlichen durch Sequenzen von Prozedur- beziehungsweise Methodenaufru-
fen bestimmt. Statische Analysen erkennen zwar potentielle Methodenaufrufe,
ob sie jedoch tatsächlich zur Laufzeit ausgeführt werden, ist nicht sicher fest-
zustellen. Objektorientierte Programmiersprachen mit Polymorphie und dy-
namischer Methodenbindung verschärfen dieses Problem sogar noch, da die
konkreten, aufzurufenden Methoden erst zur Laufzeit festgelegt werden. Die
Ermittlung konkreter Sequenzen von Methodenaufrufen durch statische Ana-
lysen ist daher sehr ungenau und für die präzise Erkennung von Entwurfsmu-
sterimplementierungen nicht geeignet.

state

1

AbstractState
+handle()

Context
+setState(AbstractState)
+request()

state.handle()
ConcreteStateA
+handle()

ConcreteStateB
+handle()

Abbildung 1.2: Die Struktur des State-Entwurfsmusters

In [GHJV95] werden einige Entwurfsmuster vorgestellt, die paarweise große
Ähnlichkeiten in ihrer Struktur aufweisen. Zu diesen Paaren gehören zum Bei-
spiel Decorator und Chain of Responsibility , Strategy und Bridge oder auch
State und Strategy. Wie in den Abbildungen 1.2 und 1.3 zu sehen, sind die
beiden Entwurfsmuster State und Strategy in ihrer Struktur sogar vollkom-
men identisch. Sie unterscheiden sich ausschließlich durch ihr Verhalten. Bei

1siehe: [KP96, AFC98, SK98, SG98, Wuy98, KSRP99, TA99, BP00, KB00, ACGJ01, AG01,
SS03, PSRN04, TCHS05, KGH06, SO06]

6

1.3 Statische und Dynamische Analyse

solchen Entwurfsmustern führen also strukturelle Ähnlichkeiten bei der stati-
schen Analyse zu nicht eindeutigen Ergebnissen.

strategy

1

Context
+setStrategy(AbstractStrategy)
+request()

strategy.algorithm()

AbstractStrategy
+algorithm()

ConcreteStrategyA
+algorithm()

ConcreteStrategyB
+algorithm()

Abbildung 1.3: Die Struktur des Strategy-Entwurfsmusters

Dynamische Analysen bieten eine Lösung sowohl für die Ermittlung mögli-
cher Sequenzen von Methodenaufrufen, als auch zur Unterscheidung von Ent-
wurfsmustern gleicher Struktur. Sie analysieren Software zur Laufzeit, indem
sie ihr Verhalten beobachten. Dazu wird zum Beispiel durch Instrumentierung
[SO05] der Programmcode durch zusätzliche Anweisungen angereichert, die
Methodenaufrufe protokollieren. Dadurch wird es in der automatischen Ent-
wurfsmustererkennung möglich, vorgegebenes Verhalten von Entwurfsmustern
mit tatsächlich beobachtetem Verhalten von potentiellen Entwurfsmusterim-
plementierungen zu vergleichen. Die Datenmengen, die bei solchen Analysen
anfallen, sind allerdings relativ groß und dadurch nur sehr schwer handhabbar.

Ein weiteres Problem dynamischer Analysen ist die angemessene Auswahl
der Eingabedaten, die zur Ausführung der zu analysierenden Software benötigt
werden. Das in der Praxis durch dynamische Analysen beobachtete Verhal-
ten eines Softwaresystems stellt immer nur einen kleinen Teil des theoretisch
möglichen Verhaltens dar. Um also verwertbare Ergebnisse zu erhalten, sollten
die Eingabedaten möglichst repräsentativ für die in der Praxis auftretenden
Daten ausgewählt werden. Die Ausführung der zu untersuchenden Software
erfolgt dann durch automatische Tests oder durch manuelle Bedienung.

Statische und dynamische Analysen wurden lange Zeit in unterschiedli-
chen, voneinander unabhängigen Forschungsgebieten entwickelt. Deshalb wur-
den meist ausschließlich entweder statische oder dynamische Analysen genutzt.
Die jeweils andere Analysetechnik wurde sogar häufig für den aktuellen Anwen-
dungsbereich als unpassend dargestellt. Michael Ernst geht in seinem Artikel

”
Static and dynamic analysis: synergy and duality“ [Ern03] auf diese Proble-

matik ein und plädiert dafür, die Vorteile beider Analysetechniken zu kombi-
nieren, um so bessere Analyseergebnisse zu produzieren.

7

Kapitel 1 Einleitung

1.4 Ergebnisse der Arbeit

Die vorliegende Arbeit stellt eine struktur- und verhaltensbasierte Entwurfs-
mustererkennung vor, bei der eine bereits existierende, statische Entwurfsmu-
stererkennung um eine dynamische Entwurfsmustererkennung ergänzt wurde.
Die statische Analyse untersucht das Softwaresystem auf strukturelle Eigen-
schaften von Entwurfsmustern. Das Ergebnis dieses Analyseschrittes sind po-
tentielle Entwurfsmusterimplementierungen, so genannte Kandidaten, die in
UML-Klassendiagrammen des zu untersuchenden Softwaresystems dokumen-
tiert werden. Die strukturbasierte Entwurfsmustererkennung wurde in dieser
Arbeit um einen Algorithmus zur Bewertung der Kandidaten erweitert. Die
Bewertung eines Kandidaten gibt an, inwieweit der Kandidat mit der vorge-
gebenen Struktur des Entwurfsmusters übereinstimmt.

Des Weiteren dienen die Kandidaten als Eingabedaten der anschließenden
dynamischen Analyse. Die Kandidaten schränken den Suchraum der dynami-
schen Analyse erheblich ein und reduzieren so die zur Laufzeit anfallende und
zu analysierende Datenmenge. Zur Spezifikation des Verhaltens der Entwurfs-
muster wurde eine Sprache syntaktisch und semantisch formal definiert, die auf
UML-Sequenzdiagramme aufbaut. Aus den Spezifikationen werden Automaten
für die dynamische Analyse generiert, die zur Laufzeit beobachtete Sequenzen
von Methodenaufrufen mit dem spezifizierten Verhalten der Entwurfsmuster
vergleichen.

Die verhaltensbasierte Entwurfsmustererkennung wird in der Praxis mit Hil-
fe der Software-Tomographie [BOH02] durchgeführt. Dabei wird das zu unter-
suchende Softwaresystem während der dynamischen Analyse in realen, pro-
duktiven Umgebungen eingesetzt, so dass das Problem der repräsentativen
Eingabedaten gelöst ist. Zur dynamischen Analyse wird das System instru-
mentiert, das heißt, es wird zusätzlicher Code in die Software eingeführt, der
Methodenaufrufe überwacht und protokolliert. Um die Performanz des Soft-
waresystems so wenig wie möglich zu beeinträchtigen, wird die dynamische
Analyse in viele unabhängige Teilanalysen aufgeteilt. Mehrere Instanzen des
Softwaresystems werden dann jeweils für eine oder einige wenige Teilanalysen
instrumentiert und in einer produktiven Umgebung eingesetzt. So werden re-
präsentative Daten über die Software gesammelt und der dynamischen Analyse
zugeführt.

Als Ergebnis der dynamischen Analyse erhält der Reverse-Engineer Sequen-
zen von Methodenaufrufen zu den Kandidaten. Die Sequenzen werden von der
dynamischen Analyse als konform beziehungsweise nicht-konform zum vorge-
geben Verhalten gekennzeichnet. So kann der Reverse-Engineer nicht nur er-

8

1.5 Aufbau der Arbeit

kennen, ob der Kandidat sich wie ein Entwurfsmuster verhält, sondern auch
feststellen, warum der Kandidat eventuell gegen das vorgegebene Verhalten
verstößt. Das hilft beim Erkennen von Fehlern oder Design-Defekten und gibt
Hinweise auf mögliche Korrekturen.

Das in dieser Arbeit entwickelte Verfahren wurde prototypisch in einem
Werkzeug umgesetzt und in die Entwicklungsumgebung Eclipse integriert.
Außerdem wurde das Verfahren auf ein reales Softwaresystem angewendet,
zu dem Entwurfsmusterimplementierungen dokumentiert sind. Die Ergebnis-
se dieser Anwendung konnten so mit der Dokumentation verglichen und das
Verfahren beurteilt werden.

1.5 Aufbau der Arbeit

Die vorliegende Arbeit wird im zweiten Kapitel mit einigen Grundlagen, die
zum Verständnis der struktur- und verhaltensbasierten Entwurfsmustererken-
nung notwendig sind, fortgeführt. Zu den Grundlagen gehört unter anderem
die bereits existierende, strukturbasierte Entwurfsmustererkennung, auf der
das in dieser Arbeit entwickelte Verfahren aufbaut.

Um darauf aufbauen zu können, werden im dritten Kapitel zunächst einige
Erweiterungen an der strukturbasierten Entwurfsmustererkennung behandelt.
Des Weiteren gibt das Kapitel einen Überblick über den Prozess der kombinier-
ten, struktur- und verhaltensbasierten Entwurfsmustererkennung und führt ein
Verhaltensmodell für Softwaresysteme ein.

Das Thema des vierten Kapitels ist die formale Spezifikation des Verhal-
tens eines Entwurfsmusters durch Verhaltensmuster. Es wird eine Spezifikati-
onssprache vorgestellt, die an UML-Sequenzdiagramme angelehnt ist und die
sowohl syntaktisch als auch semantisch formal definiert wird.

Im fünften Kapitel wird die Verhaltensanalyse behandelt. Zunächst wird
diskutiert, wie Sequenzen von Methodenaufrufen zur Laufzeit des zu untersu-
chenden Softwaresystems gewonnen werden können. Zur Erkennung von Ver-
haltensmustern in diesen Sequenzen werden Automaten verwendet, die aus den
formalen Spezifikationen der Verhaltensmuster automatisch generiert werden.

Die praktische Anwendung des Verfahrens wird im sechsten Kapitel vorge-
stellt. Es wird ein Szenario diskutiert, wie die verhaltensbasierte Entwurfsmu-
stererkennung in produktiven Umgebungen eingesetzt werden kann, um eine
praxisnahe Datenbasis zur Analyse zu erhalten. Außerdem werden einige Er-
gebnisse des Einsatzes der Entwurfsmustererkennung auf ein reales, umfang-
reiches Softwaresystem vorgestellt.

9

Kapitel 1 Einleitung

Im Rahmen dieser Arbeit ist ein prototypisches Werkzeug entstanden, das
das Verfahren der struktur- und verhaltensbasierten Entwurfsmustererkennung
umsetzt. Das Werkzeug wurde in die in der Industrie weit verbreitete Ent-
wicklungsumgebung Eclipse integriert. Die Architektur und die Benutzungs-
schnittstelle dieses Werkzeugs werden im siebten Kapitel erläutert.

Das achte Kapitel behandelt verwandte Arbeiten. Darin werden Arbeiten
anderer Wissenschaftler diskutiert, die einen starken Bezug zu der vorliegenden
Arbeit haben.

Die Arbeit schließt im neunten Kapitel mit einer Zusammenfassung und
einem Ausblick, in dem auf mögliche Erweiterungen und weitere Anwendungen
der in dieser Arbeit entwickelten Techniken hingewiesen wird.

Im Anhang der Arbeit sind die in der Evaluation verwendeten Struktur- und
Verhaltensmuster zu finden. Des Weiteren enthält der Anhang ein Handbuch
und die technische Dokumentation des entwickelten Werkzeugs.

10

Kapitel 2

Grundlagen

Das folgende Kapitel gliedert sich in drei Teile. Der erste Teil behandelt not-
wendige Grundlagen zu Entwurfsmustern. Im zweiten Teil werden allgemeine
Anforderungen an eine automatische Entwurfsmustererkennung formuliert.

Den Schwerpunkt des Kapitels bildet der dritte Teil, in dem die strukturba-
sierte Entwurfsmustererkennung, die am Fachgebiet Softwaretechnik der Uni-
versität Paderborn entwickelt wurde [Pal01, Wen01, Nie04], im Detail erläutert
wird. Das in der vorliegenden Arbeit vorgestellte Verfahren verwendet diese
Technik zur strukturbasierten Entwurfsmustererkennung, um sie durch eine
verhaltensbasierte Erkennung zu vervollständigen.

2.1 Entwurfsmuster

Software-Designer stoßen in ihrer täglichen Arbeit immer wieder auf gleichar-
tige Probleme beim Design und bei der Implementierung großer Softwaresyste-
me. Im Laufe der Zeit kristallisierten sich bewährte Muster zur Lösung dieser
Probleme heraus. Diese Muster geben keine konkrete Lösung für ein Problem,
sondern nur eine Lösungsidee vor. Die Implementierung der Lösungsidee er-
folgt dann angepasst an die jeweilige Situation. Solche Muster werden in der
Softwaretechnik Entwurfsmuster (engl. Design Patterns) genannt.

Entwurfsmuster werden zwar schon lange eingesetzt, wie zum Beispiel das
Model/View/Controller -Muster in der Smalltalk-Programmierung, wurden an-
fangs allerdings kaum dokumentiert. Des Weiteren existierte keine allgemeine
Vorgehensweise zur Dokumentation von Entwurfsmustern. Erich Gamma, Ri-
chard Helm, Ralph Johnson und John Vlissides veröffentlichten im Jahre 1995
ihr Buch

”
Design Patterns—Elements of Reusable Object-Oriented Softwa-

re“ [GHJV95], in dem sie 23, in der objektorientierten Programmierung weit
verbreitete Entwurfsmuster vorstellen.

11

Kapitel 2 Grundlagen

Seit dem Erscheinen dieses Buches sind weitere Sammlungen von Entwurfs-
mustern veröffentlicht worden. Diese Sammlungen sind meist anwendungsspe-
zifisch, wie zum Beispiel die Entwurfsmuster aus [Lea97] zur Programmierung
nebenläufiger Systeme. Das Buch

”
The Pattern Almanac 2000“ [Ris00] dient

als Nachschlagewerk mit Referenzen auf hunderte verschiedener Entwurfsmu-
ster aus den unterschiedlichsten Anwendungsgebieten.

Das Buch von Gamma et al. stellt heute praktisch einen Quasi-Standard zur
Dokumentation von Entwurfsmustern dar. In dem Buch werden Entwurfsmu-
ster nach zwei Kriterien klassifiziert: ihrem Zweck und ihrem Anwendungsbe-
reich. Der Zweck wird in drei Kategorien aufgeteilt: Entwurfsmuster, die zum
Erzeugen von Objekten dienen, die eine Struktur beschreiben oder die Ver-
halten beschreiben. Der Anwendungsbereich wird auf Klassen und Objekte
aufgeteilt. Die Tabelle 2.1 ist [GHJV95] entnommen und enthält alle darin
vorgestellten Entwurfsmuster. Die Einordnung eines Entwurfsmusters in eine
Kategorie erfolgt nach der Hauptintention des Musters. Das Entwurfsmuster
State zum Beispiel beschreibt im Wesentlichen das Verhalten einer Gruppe von
Objekten. Zur Implementierung wird jedoch auch eine Struktur der an dem
Muster beteiligten Klassen vorgeschlagen.

Zweck
Erzeugend Struktur Verhalten

Anwendungs- Klasse Factory Method Adapter Interpreter
bereich Template Method

Objekt Abstract Factory Adapter Chain of Responsibility
Builder Bridge Command
Prototype Composite Iterator
Singleton Decorator Mediator

Facade Memento
Proxy Flyweight

Observer
State
Strategy
Visitor

Tabelle 2.1: Kategorisierung der Entwurfsmuster nach Gamma et al. [GHJV95]

Ein Entwurfsmuster nach [GHJV95] besteht aus vier Teilen: Der Name des
Entwurfsmusters bildet die Grundlage für ein gemeinsames Vokabular unter
den Softwareentwicklern und beschreibt in knappen Worten das Entwurfsmu-

12

2.2 Automatische Entwurfsmustererkennung

ster. Das Problem beschreibt den Kontext und mögliche Voraussetzungen zur
Anwendung des Entwurfsmusters. In der Lösung werden die Struktur sowie
Beziehungen und Verhalten der beteiligten Elemente des Entwurfsmusters vor-
gestellt. Im letzten Teil werden die Konsequenzen genannt, die die Anwendung
des Entwurfsmusters impliziert. Dazu gehören unter anderem die Erweiterbar-
keit und Flexibilität, aber auch die Platz- und Zeitkomplexität des Entwurfs-
musters.

Die Dokumentation der Lösung wird unterteilt in Anwendbarkeit, Struktur,
teilnehmende Klassen und Objekte, Verhalten sowie Implementierung und bei-
spielhafte Quelltextfragmente. Die Beschreibung dieser Punkte ist nicht formal,
sondern erfolgt zu einem großen Teil mit Hilfe einfacher Texte. Die Struktur
eines Entwurfsmusters wird in [GHJV95] zwar durch OMT-Diagramme be-
schrieben, die Diagramme sind jedoch eher als Vorschlag zum Entwurf einer
Entwurfsmusterimplementierung zu verstehen. In neuerer Literatur werden an-
statt der OMT-Diagramme üblicherweise UML-Klassendiagramme verwendet.
Das Verhalten wird in einigen Fällen durch Kollaborations- oder Interaktions-
diagramme, meist aber ebenfalls nur durch Text beschrieben.

Die informelle Art der Dokumentation von Entwurfsmustern ist ideal für
das Forward-Engineering. Der Softwareentwickler hat weit gehende Freiheiten,
die Implementierung des Entwurfsmusters an die gegebene Situation anzu-
passen. Zum einen lässt sich das gleiche Verhalten auf unterschiedliche Weise
implementieren. Eine Wiederholung kann zum Beispiel als for- oder als while-
Schleife programmiert werden. Zum anderen lassen sich Lösungselemente auf
höherem Abstraktionsniveau, wie zum Beipsiel Assoziationen, unterschiedlich
realisieren. Dadurch entstehen praktisch unendlich viele Implementierungsva-
rianten eines einzelnen Entwurfsmusters.

2.2 Automatische Entwurfsmustererkennung

Die Identifizierung von Entwurfsmusterimplementierungen durch eine Ent-
wurfsmustererkennung hilft, das inhärente Design der Software explizit zu do-
kumentieren und die Entwickler bei ihrer Arbeit zu unterstützen. Entwurfsmu-
sterimplementierungen lassen nicht nur auf das zugrunde liegende Problem und
den Kontext, in dem sie angewendet wurden, schließen. Das Wissen um Ent-
wurfsmusterimplementierungen hilft auch dabei, Erweiterungen an den Soft-
waresystemen vorzunehmen. Eine manuelle Erkennung der Entwurfsmusterim-
plementierungen ist in sehr kleinen Softwaresystemen noch möglich, in praxis-
nahen, meist sehr umfangreichen Softwaresystemen jedoch kaum durchführbar.

13

Kapitel 2 Grundlagen

Eine automatische Entwurfsmustererkennung, die solch umfangreiche Softwa-
resysteme effizient handhaben kann, ist daher sehr wünschenswert.

Die informelle Beschreibung der Entwurfsmuster führt zu einer Vielfalt von
Implementierungsvarianten, die für eine automatische Entwurfsmustererken-
nung das größte Problem darstellt. Die unterschiedlichen Implementierungs-
varianten können zum Beispiel durch unterschiedliche Regeln erkannt werden.
Dies führt jedoch zu einer theoretisch beliebig großen Zahl an Regeln, die die
Dauer der Entwurfsmustererkennung drastisch steigert. Beschränkt man aber
die Zahl der Regeln, können nur wenige Implementierungsvarianten erkannt
werden. Das führt schließlich zu einer ungenauen Erkennung, bei der viele
existierende Entwurfsmusterimplementierungen nicht identifiziert werden.

Durch unscharfe Regeln lässt sich diese Situation etwas verbessern. Eine
Regel deckt dabei verschiedene Implementierungsvarianten eines Entwurfsmu-
sters ab. Als Nebeneffekt werden jedoch mehr False-Positives erkannt. Das
sind Konstrukte, die zwar als Entwurfsmusterimplementierungen identifiziert
wurden, aber keine sind. Die Reduzierung des Anteils der False-Positives am
Gesamtergebnis der Entwurfsmustererkennung ist ein entscheidender Faktor
für die Präzision der Erkennung. False-Positives müssen vom Reverse-Engineer
manuell als solche identifiziert werden und stellen damit einen Mehraufwand
dar, der möglichst gering gehalten werden sollte. Hinweise auf die Güte der
erkannten Entwurfsmusterimplementierungen können die manuelle Identifika-
tion jedoch erleichtern.

2.2.1 Anforderungen an eine Entwurfsmustererkennung

Aus diesen Überlegungen lassen sich vier allgemeine Anforderungen an eine
automatische Entwurfsmustererkennung ableiten.

Skalierbarkeit

Softwaresysteme bestehen nicht selten aus mehreren hunderttausend bis Millio-
nen Zeilen Quelltext. Erst diese Größe macht eine automatische Entwurfsmu-
stererkennung notwendig; kleine Systeme aus nur wenigen tausend Zeilen sind
noch manuell analysierbar. Die Skalierbarkeit des Analysealgorithmus ist da-
her das wichtigste Kriterium einer automatischen Entwurfsmustererkennung.
Die automatische Analyse großer Softwaresysteme muss mit einem zeitlich ver-
tretbaren Aufwand möglich sein.

14

2.2 Automatische Entwurfsmustererkennung

Präzision

Eine automatische Entwurfsmustererkennung ist nur dann für einen Reverse-
Engineer sinnvoll einsetzbar, wenn die Ergebnisse der Analyse möglichst präzi-
se sind. Das bedeutet zum einen, dass möglichst alle in einem Softwaresy-
stem vorhandenen Entwurfsmusterimplementierungen von der automatischen
Erkennung identifiziert werden sollten. Zum anderen sollten fälschlicherweise
erkannte Entwurfsmusterimplementierungen vermieden werden. Eine hundert-
prozentig korrekte Erkennung ist allerdings nicht zu erreichen.

Anpassbarkeit

Softwaresysteme werden unter den verschiedensten Bedingungen hergestellt.
Häufig gibt es spezifische Richtlinien bei den Herstellern, wie bestimmte Ar-
chitekturdetails oder Eigenschaften der Software umgesetzt werden müssen.
Dazu gehören zum Beispiel Richtlinien, ob und wie Zugriffsmethoden für At-
tribute einer Klasse verwendet werden, wie Assoziationen zwischen Klassen
implementiert werden oder nach welchem Schema Klassen und Methoden be-
nannt werden. Aber auch jeder Entwickler hat einen persönlichen Program-
mierstil, nach dem er gleiche Aufgaben immer wieder auf sehr ähnliche Art
und Weise umsetzt. Solche Informationen können zu einer präziseren Erken-
nung von Entwurfsmusterimplementierungen beitragen. Die Spezifikation eines
Entwurfsmusters für die automatische Erkennung sollte deshalb leicht vom
Reverse-Engineer an solche Richtlinien und Programmierstile angepasst wer-
den können.

Bewertung

Wegen der sehr vielen Implementierungsvarianten eines Entwurfsmusters ist
eine hundertprozentig sichere Aussage, ein bestimmtes Konstrukt sei ei-
ne Entwurfsmusterimplementierung, durch eine automatische Entwurfsmu-
stererkennung nicht möglich. False-Positives können nicht immer vermie-
den werden. Bestimmte Details eines Konstrukts können auf eine tatsächli-
che Entwurfsmusterimplementierung oder auch ein False-Positive hindeu-
ten, während andere Details wiederum das Gegenteil nahe legen. Wird zum
Beispiel beim State-Entwurfsmuster eine mehrwertige Referenz anstatt ei-
ner einfachen Referenz zwischen der Kontext-Klasse und der abstrakten Zu-
standsklasse verwendet, so deutet dies zunächst einmal nicht auf eine State-
Entwurfsmusterimplementierung hin. Es kann allerdings sein, dass trotzdem
zur Laufzeit immer nur auf einen konkreten Zustand verwiesen wird. Um den

15

Kapitel 2 Grundlagen

Reverse-Engineer bei der Sichtung und Einschätzung der Ergebnisse zu un-
terstützen, ist es deshalb sinnvoll, die Güte der gefundenen Entwurfsmuste-
rimplementierungen zu bewerten.

2.3 Strukturbasierte Entwurfsmustererkennung in
Fujaba

Seit dem Jahr 1998 wird an dem Fachgebiet Softwaretechnik an der Univer-
sität Paderborn das CASE1-Werkzeug Fujaba entwickelt [FNT98]. Fujaba
ist ein Akronym und steht für

”
From UML to Java And Back Again“. Ziel des

Projekts war es, ein so genanntes Round-Trip-Engineering , also die Verschmel-
zung von Forward- und Reverse-Engineering, zu ermöglichen. Das bedeutet,
Änderungen am Modell werden in den bereits vorhandenen Quelltext eines
Softwaresystems übernommen und Änderungen am Quelltext werden in ein
bereits vorhandenes Modell übertragen. Dadurch ist gleichzeitiges Arbeiten
am Modell und am Quelltext eines Softwaresystems möglich.

Mittlerweile ist Fujaba zu einer allgemeinen, modellbasierten Entwick-
lungsplattform ausgebaut worden, die durch Plug-Ins beliebig erweitert wer-
den kann. Es existieren zur Zeit verschiedene Erweiterungen für Fujaba,
zum Beispiel zur Entwicklung mechatronischer Echtzeitsysteme, zur Meta-
Modellierung und Modelltransformation oder auch zum Re-Engineering [Fuj].

Im Zuge der Entwicklung der Re-Engineering-Techniken von Fujaba wurde
ein erster Ansatz zur Entwurfsmustererkennung 1998/1999 in einer studenti-
schen Projektgruppe erarbeitet. Die Erkennung wurde durch manuell program-
mierte Algorithmen realisiert, die auf dem abstrakten Syntaxgraphen (ASG)
des zu untersuchenden Softwaresystems strukturelle Analysen durchführten.
Im Jahre 2001 wurde in einer Diplomarbeit eine formale Sprache auf Basis von
Graphgrammatiken zur Beschreibung von Erkennungsregeln für Entwurfsmu-
sterimplementierungen spezifiziert, aus der automatisch Erkennungsmaschinen
generiert werden können [Pal01]. In einer weiteren Diplomarbeit wurde außer-
dem ein Algorithmus zur Anwendung dieser Erkennungsmaschinen entwickelt,
der eine inkrementelle Analyse großer Softwareysteme ermöglicht [Wen01]. Die
Spezifikationssprache und der inkrementelle Erkennungsalgorithmus werden in
[NSW+02] vorgestellt. Um der Variantenvielfalt der Entwurfsmusterimplemen-
tierungen zu begegnen, wird in [NWW03] die Verwendung von Unschärfe in
der Beschreibung von Erkennungsregeln vorgeschlagen und eine Implementie-

1Computer Aided Software Engineering

16

2.3 Strukturbasierte Entwurfsmustererkennung in Fujaba

rung sowie Evaluation vorgestellt. Der gesamte Prozess der strukturbasierten
Entwurfsmustererkennung wird im Detail in der Dissertation von Jörg Niere
[Nie04] behandelt.

Im Folgenden wird ein Überblick über die strukturbasierte Entwurfsmuste-
rerkennung in Fujaba gegeben. Darin werden die wichtigsten Grundlagen, auf
denen diese Arbeit aufbaut, vorgestellt. Zunächst wird erläutert, wie der Quell-
text eines Softwaresystems als Vorbereitung zur strukturbasierten Entwurfs-
mustererkennung repräsentiert wird. Anschließend wird die Spezifikationsspra-
che zur Beschreibung der Erkennungsregeln für Entwurfsmusterimplementie-
rungen vorgestellt. Es folgt die Beschreibung des so genannten Regelkatalogs , in
dem die Abhängigkeiten zwischen den Erkennungsregeln festgehalten werden
und der vom Erkennungsalgorithmus verwendet wird. Der Erkennungsprozess
und die Bewertung der gefundenen, potentiellen Entwurfsmusterimplementie-
rungen werden am Ende des Kapitels beschrieben.

2.3.1 Strukturmodell eines Softwaresystems

Die Struktur eines Softwaresystems ist spezifiziert durch seinen Quelltext. Der
Quelltext ist jedoch zur algorithmischen Analyse meist ungeeignet. Deshalb
wird ein anderes Modell für die Struktur eines Softwaresystems benötigt. Im
Folgenden wird dieses Modell Strukturmodell genannt.

Um Modelle zu beschreiben, werden Modellierungssprachen eingesetzt, de-
ren Syntax durch Metamodelle definiert wird. In der Softwaretechnik hat
sich die UML [Obj] als Modellierungssprache etabliert. Strukturmodelle wer-
den durch UML-Klassendiagramme beschrieben. Das Metamodell für UML-
Klassendiagramme ist daher als Metamodell für Strukturmodelle nahe liegend.

Abbildung 2.1 stellt das in dieser Arbeit verwendete Metamodell für Struk-
turmodelle dar, das ein vereinfachtes Metamodell für UML-Klassendiagramme
ist und an das originale UML-Metamodell angelehnt ist. Dieses Metamodell
definiert die Syntax für Strukturmodelle. Zur besseren Übersicht werden alle
Metamodelle und Modelle, die im Folgenden eingeführt werden, Paketen zu-
geordnet, die später referenziert werden. Das Metamodell der Strukturmodelle
gehört zum Paket ClassDiagrams.

Die Struktur eines objektorientierten Softwaresystems besteht im Wesentli-
chen aus Klassen und Vererbungen zwischen Klassen. Des Weiteren besitzen
Klassen Attribute und Methoden, die aus einer Methodensignatur und dem
Methodenrumpf zusammengesetzt sind. Es bietet sich also an, als Strukturmo-
dell für objektorientierte Softwaresysteme ein Modell aus Klassen, Attributen,
Methoden und Vererbungen zwischen Klassen zu verwenden.

17

Kapitel 2 Grundlagen

Generalization

methods

params

type

superClass subClass
type

attrs

resultType

Array

type

type

1

type

1

methods 0..*

parent 1 1 parent

0..* attrs0..* paramDecls

arrayDecls 0..*
1 subClasssuperClass 1

0..* revSubClassesrevSuperClasses 0..*

1 resultType

resultDecls 0..*

params

0..*
{ordered}

method

1
Parameter
+name:String

Attribute
+name:String

left right

attrDecls
0..*

type 1 Association

+name:String

Role
+name:String
+cardinality:String

roles
target

1

roles

0..*

revRight 0..*revLeft 0..*

left 1 right 1

Class
+name:String
+abstract:boolean

Method
+name:String
+abstract:boolean

Type

Abbildung 2.1: Das Metamodell für Strukturmodelle, Paket ClassDiagrams

In Abbildung 2.2 ist ein Ausschnitt aus dem Strukturmodell für Quelltexte
objektorientierter Sprachen zu sehen. Es ist in großen Teilen identisch mit dem
Metamodell für Strukturmodelle aus Abbildung 2.1. Das ist insofern logisch,
da hier ein Modell für Klassendiagramme mit dem Metamodell für Klassen-
diagramme definiert wird.

Es sind jedoch auch Unterschiede zwischen dem Metamodell für Struktur-
modelle und dem Strukturmodell für objektorientierte Softwaresysteme festzu-
stellen. Zum einen kann das Strukturmodell keine Assoziationen zwischen Klas-
sen repräsentieren. Heutige, objektorientierte Programmiersprachen enthalten
keine Sprachelemente für Assoziationen. Assoziationen können also nicht di-
rekt aus dem Quelltext eines Softwaresystems gewonnen werden. Assoziationen
stellen vielmehr bereits eine abstraktere Sicht auf das Softwaresystem dar, die
durch explizite Analysen auf der Struktur – zum Beispiel durch die Entwurfs-
mustererkennung – hergestellt werden muss.

Zum anderen müssen die Methodenrümpfe im Strukturmodell repräsentiert
werden. Methodenrümpfe werden in abstrakte Syntaxbäume (engl. Abstract
Syntax Tree (AST)) transformiert. Da das Modell des abstrakten Syntax-
baums für Methodenrümpfe sehr komplex ist und nicht weiter in dieser Ar-
beit benötigt wird, ist es im Strukturmodell in Abbildung 2.2 mit der Klas-
se ASTRootNode nur ausschnittsweise dargestellt. Die Klasse ASTRootNode

18

2.3 Strukturbasierte Entwurfsmustererkennung in Fujaba

Generalization

methods

params

type

superClass subClass

type

attrs

resultType

Array

type

type 1

methods 0..*

parent 1 1 parent

0..* attrs0..* paramDecls 0..* attrDecls

arrayDecls 0..*
1 subClasssuperClass 1

0..* revSubClassesrevSuperClasses 0..*

1 resultType

resultDecls 0..*

params

0..*
{ordered}

method

1
Parameter

+name:String
Attribute

+name:String

ASTRootNode

methodBody

methodBody 0..1

method 1

Class
+name:String
+abstract:boolean

Method
+name:String
+abstract:boolean

Typetype

1

type

1

Abbildung 2.2: Ausschnitt aus dem Strukturmodell für Quelltexte objektori-
entierter Sprachen, Paket Structure

repräsentiert die Wurzel eines Methodenrumpfes. Alle weiteren Klassen des
abstrakten Syntaxbaums werden wegen Platzmangels nicht abgebildet. Die
Klassen des Strukturmodells gehören zum Paket Structure.

Auf das Verhalten eines Softwaresystems kann durch seine Struktur nur indi-
rekt geschlossen werden. Dazu müssen potentielle Methodenaufrufe in den ab-
strakten Syntaxbäumen der Methodenrümpfe identifiziert werden. Tatsächlich
zur Laufzeit des Softwaresystems ausgeführte Methodenaufrufe oder Sequen-
zen von ausgeführten Methodenaufrufen können aber der Struktur nicht ent-
nommen werden.

Beispiel

Als durchgängiges Beispiel eines zu untersuchenden Softwaresystems wird in
dieser Arbeit ein Mediaplayer verwendet. Der Quelltext dieses Softwaresystems

19

Kapitel 2 Grundlagen

wird auf Basis des Strukturmodells aufbereitet und dem Reverse-Engineer als
Klassendiagramm präsentiert (Abbildung 2.3).

Playing
+execute(s:Stream,command:int)
+run(s:Stream)

Paused
+execute(s:Stream,command:int)
+run(s:Stream)

Stopped
+execute(s:Stream,command:int)
+run(s:Stream)

StreamState
+execute(s:Stream,command:int)
+run(s:Stream)

Stream

+setState(state:StreamState)
+execute(command:int)
+read()
+close()

+CMD_PLAY:int = 1
+CMD_PAUSE:int = 2
+CMD_STOP:int = 3
-state:StreamState

Player

+play()
+pause()
+stop()

-streams:Set

Abbildung 2.3: Klassendiagramm eines Mediaplayers

Das Beispiel stellt einen Ausschnitt eines Softwaresystems zum Abspielen
von Multimediadaten wie Liedern oder Filmen dar. Die Daten werden von
dem Programm in Form von Datenströmen verarbeitet. Der Benutzer kann
die Multimediadaten mit dem Mediaplayer abspielen, ihre Wiedergabe pausie-
ren oder auch beenden. Diese Befehle werden von der zentralen Klasse Player
entgegengenommen und an den Datenstrom (Stream) weitergereicht. Der Da-
tenstrom speichert seinen aktuellen Zustand in einem Zustandsobjekt (vom
Typ StreamState), das die Ausführung des Befehls durchführt und gegebenen-
falls den Zustand des Datenstroms ändert.

Das Klassendiagramm enthält keine Assoziationen, da sie wie bereits
erläutert nicht direkt aus den Quelltexten extrahiert, sondern nur durch eine
erweiterte Analyse der Struktur gewonnen werden können. Die Beziehungen
zwischen den Klassen werden im Quelltext und somit auch in der Struktur nur
durch Attribute modelliert. Das Attribut state:StreamState der Klasse Stream
ist leicht als eine einfache Referenz von Stream auf StreamState erkennbar. Das
Attribut streams:Set der Klasse Player dagegen kann jedoch erst durch Analyse
der in der Menge gespeicherten Typen als eine mengenwertige Referenz von
Player auf Stream identifiziert werden.

20

2.3 Strukturbasierte Entwurfsmustererkennung in Fujaba

2.3.2 Spezifikation von Strukturmustern

In der strukturbasierten Entwurfsmustererkennung von Fujaba werden Mu-
ster spezifiziert, die den strukturellen Anteil eines Entwurfsmusters beschrei-
ben. Mit Hilfe dieser Muster werden in der Struktur eines Softwaresystems
Entwurfsmusterimplementierungen identifiziert. Diese Muster werden im Fol-
genden als Strukturmuster bezeichnet.

state

1

AbstractState
+handle()

Context
+setState(AbstractState)
+request()

state.handle()
ConcreteStateA
+handle()

ConcreteStateB
+handle()

Abbildung 2.4: Die Struktur des State Entwurfsmusters

Abbildung 2.4 zeigt die Struktur des State-Entwurfsmusters als Klassendia-
gramm. Die Klasse Context referenziert eine abstrakte Oberklasse Abstract-
State. Diese Klasse gibt eine gemeinsame Schnittstelle für konkrete Klassen
vor, die verschiedene Zustände der Klasse Context implementieren. In dieser
Abbildung sind beispielhaft zwei konkrete Zustände ConcreteStateA und Con-
creteStateB vorgegeben, es können aber prinzipiell beliebig viele verschiedene
Zustände existieren. Zur Laufzeit hat ein Objekt der Klasse Context einen
aktuellen Zustand, an den es Anfragen – Aufrufe der Methode request() – de-
legiert. Durch Zustandswechsel kann das Context-Objekt unterschiedlich auf
diese Anfragen reagieren.

In Abbildung 2.4 ist die Struktur des State-Entwurfsmusters in konkreter
Syntax – einem Klassendiagramm – zu sehen. Strukturmuster werden dage-
gen auf Basis der abstrakten Syntax der Struktur spezifiziert und beschreiben
jeweils einen Teilgraphen innerhalb der Struktur eines Softwaresystems. Die
Struktur ist eine Instanz des Strukturmodells, sie ist also durch das Struktur-
modell typisiert. Da Strukturmuster Ausschnitte aus der Struktur beschreiben,
sind auch sie durch das Strukturmodell typisiert.

Abbildung 2.5 zeigt das State-Strukturmuster. Die Syntax der Struktur-
muster ist an UML-Objektdiagramme angelehnt. Strukturmuster sind Graph-
grammatikregeln [Roz97], die aus einer linken und einer rechten Regelseite
bestehen. Die linke Regelseite ist ein Teilgraph, der in einem Wirtsgraphen
gesucht wird. Die rechte Regelseite enthält den gesuchten Teilgraphen und

21

Kapitel 2 Grundlagen

context abstractState

«create» «create»

context:Class

request:Method

methods
methods

:Delegationcaller

:State
60%

«create»

setState:Methodmethods params

:OverriddenMethod

overridden

callee handle:Method

:Parameter paramType abstractState:Class
abstract == true

sp State

Abbildung 2.5: Das Strukturmuster des State-Entwurfsmusters

beschreibt die Modifikationen an diesem Teilgraphen. Modifikationen können
das Erzeugen und Löschen von Knoten und Kanten oder auch das Ändern von
Knotenattributen sein. Ist eine homomorphe Abbildung der Knoten der linken
Regelseite auf Knoten des Wirtsgraphen möglich, so ist der Teilgraph gefun-
den und die Graphgrammatikregel kann angewendet werden. Das bedeutet, die
Modifikationen der rechten Regelseite werden an dem gefundenen Teilgraphen
durchgeführt.

Strukturmuster sind eingeschränkte Graphgrammatikregeln. In einem Struk-
turmuster werden die linke und die rechte Regelseite gemeinsam in einem Gra-
phen dargestellt. Die einzige Modifikation, die ein Strukturmuster durchführt,
ist die Erzeugung eines Knotens, der so genannten Annotation2, und einiger
Kanten, die die Annotation mit Knoten des gefundenen Teilgraphen verbin-
den. Dieser Annotationsknoten und die zu erzeugenden Kanten sind mit dem
Stereotyp �create� gekennzeichnet. Die linke Regelseite besteht also aus den
Knoten und Kanten, die nicht den Stereotyp �create� tragen. Die rechte Regel-
seite besteht aus allen Knoten und Kanten des Strukturmusters. Der Prozent-
wert innerhalb des mit �create� markierten Annotationsknotens wird später
in Abschnitt 2.3.5 erläutert.

Durch das Anwenden von Strukturmustern auf die Struktur eines Softwa-
resystems wird die Struktur durch Annotationen angereichert. Die Annotatio-
nen markieren die Fundstellen von potentiellen Entwurfsmusterimplementie-
rungen.

2visualisiert als Oval

22

2.3 Strukturbasierte Entwurfsmustererkennung in Fujaba

Das State-Strukturmuster beschreibt nur einige Aspekte der Struktur des
State-Entwurfsmusters. So fehlen die überschreibenden Methoden der konkre-
ten Zustände und die Referenz der Klasse Context auf die Klasse AbstractState.
Diese Aspekte werden durch so genannte Hilfsmuster abgedeckt. Annotationen
können in anderen Strukturmustern wiederverwendet werden. In Abbildung 2.5
sind zwei ovale Objekte mit den Namen :Delegation und :OverriddenMethod zu
finden. Das sind Annotationen, die durch andere Strukturmuster erzeugt wur-
den und Hilfsmuster repräsentieren.

Hilfsmuster sind Teile von Entwurfsmustern, die immer wieder in unter-
schiedlichen Entwurfsmustern vorkommen. Die Verwendung von Annotatio-
nen in den Strukturmustern erlaubt es, Strukturmuster verschiedener Hilfsmu-
ster zu kombinieren und so komplexere Strukturmuster für Entwurfsmuster zu
schaffen. So müssen gleiche Teile nicht mehrfach spezifiziert werden. Ein Bei-
spiel für ein solches Hilfsmuster ist die Delegation. Bei einer Delegation wird
ein Methodenaufruf entlang einer Referenz von einem Objekt an ein anderes
weiter gegeben, der Methodenaufruf wird delegiert.

caller callee

«create» «create»

caller:Method callerClass:Class methodsmethods

:Reference

referencingClass

:ASTRootNode

references

calleeClass:Class

:MethodCallNode

callee:Method

methodBody

without(LoopNode)

id:Identifieridentifier

sp Delegation

{id.name==callee.name}

:Delegation
70%

«create»

Abbildung 2.6: Das Strukturmuster des Delegation-Hilfsmusters

Abbildung 2.6 zeigt das Delegation-Strukturmuster. Es beschreibt zwei Me-
thoden, deren Klassen durch ein weiteres Hilfsmuster, eine Reference, verbun-
den sind. Innerhalb des Methodenrumpfs der Methode caller:Method existiert
ein Methodenaufruf, wobei der Name der aufgerufenen Methode mit dem Na-
men der zweiten Methode, callee:Method, übereinstimmt. Der Methodenaufruf
darf an fast beliebiger Stelle im Rumpf der Methode stattfinden, nicht jedoch
innerhalb einer Schleife. Um dies im Strukturmuster auszudrücken, wird ein
Pfad verwendet. Während bei Kanten zwischen zwei Objekten diese unmit-

23

Kapitel 2 Grundlagen

telbar miteinander verbunden sein müssen, schreiben Pfade vor, dass die zwei
über den Pfad verbundenen Objekte nur mittelbar über beliebige Kanten und
andere Objekte verbunden sind. In diesem Fall sind sogar die Typen der Ob-
jekte, die auf dem Pfad liegen, eingeschränkt. Es darf kein Objekt des Typs
LoopNode auf dem Pfad liegen, das bedeutet, der Methodenaufruf darf sich
nicht innerhalb einer Schleife befinden.

Der Methodenaufruf wird in diesem Strukturmuster nur über den Namen
identifiziert. Eine Überprüfung des Typs des Objekts, auf dem der Methoden-
aufruf stattfindet, wird nicht durchgeführt. In dem abstrakten Syntaxbaum des
Methodenrumpfes, der direkt aus dem Quelltext erzeugt wurde, können die Ty-
pen der Variablen im Methodenrumpf nur in wenigen Spezialfällen zweifelsfrei
ermittelt werden. Für eine eindeutige Ermittlung der Typen ist ein Überset-
zer notwendig, der den gesamten Quelltext und alle notwendigen Bibliotheken
kennt. In der strukturbasierten Entwurfsmustererkennung in Fujaba kommt
jedoch kein Übersetzer zum Einsatz, da nicht immer der gesamte Quelltext
analysiert werden soll oder zur Verfügung steht. An dieser Stelle wird also nur
eine Heuristik verwendet, die zu False-Positives bei der Entwurfsmustererken-
nung führt.

nodes
nodes

1

annotations

0..*
key:String

Annotation
+accuracy:Float

State
«reference»

Structure::Type
«reference»

Structure::Method Delegation

«reference»
Structure::Node

Abbildung 2.7: Modell der Annotationen, Paket Annotations

In Abbildung 2.7 ist das Modell der Annotationen dargestellt. Die Klassen
dieses Modells gehören zum Paket Annotations. Annotationen, repräsentiert
durch die abstrakte Klasse Annotation, können mit allen Elementen der Struk-
tur verbunden werden. Die Klasse Node ist die Oberklasse aller Klassen des
Strukturmodells aus Abbildung 2.2. Von der abstrakten Oberklasse der An-
notationen erben konkrete Annotationen wie die des State- oder des Delegati-
on-Strukturmusters. Als Schlüssel für die Referenz dienen die Namen, die an
den Kanten, die im Strukturmuster von den Annotationen ausgehen, stehen.
Eine Annotation vom Typ State referenziert zum Beispiel zwei Objekte von
Typ Class unter den Schlüsseln context und abstractState.

24

2.3 Strukturbasierte Entwurfsmustererkennung in Fujaba

SPAnnotationObject
+create:boolean

SPObject

SPAbstractObject
+name:String

Connection
source

target

revSources

0..*

revTargets

0..*

source

1

target

1

Path

nodes

nodes 1..*

pattern 1

StructuralPattern
+name:String

«reference»
ClassDiagrams::Class

1 type

«reference»
ClassDiagrams::Association

type 1

Link
+name:String
+create:boolean

Abbildung 2.8: Metamodell der Strukturmuster, Paket StructuralPatterns

Das Metamodell der Strukturmuster ist in 2.8 abgebildet. Ein Struktur-
muster (StructuralPattern) besteht aus Knoten (SPAbstractObject), die durch
Kanten (Connection) verbunden sind. Die Knoten sind entweder Annotatio-
nen (SPAnnotationObject) oder normale Objekte (SPObject). Die Kanten sind
normale Verbindungen (Link) oder Pfade (Path).

Das Metamodell der Strukturmuster ist mit dem Metamodell der Struktur-
modelle aus Abbildung 2.1 verbunden, da, wie bereits erwähnt, das Struktur-
modell den Strukturmustern zur Typisierung dient. Die Klasse SPAbstractOb-
ject referenziert die Klasse Class aus dem Metamodell der Strukturmodelle. So
kann der Typ eines Strukturmusterobjekts oder einer Annotation festgelegt
werden. Die Klasse Link für die Verbindungen der Objekte im Strukturmuster
referenziert die Klasse Association.

2.3.3 Regelkatalog

Zusammengehörige Strukturmuster werden in einem Regelkatalog organisiert.
Im Folgenden werden Strukturmuster auch synonym als Regeln bezeichnet,
da Strukturmuster wie bereits erwähnt Graphgrammatikregeln sind. Die Wie-
derverwendung von Strukturmustern durch Annotationen in anderen Struk-
turmustern erzeugt Abhängigkeiten. Im Regelkatalog sind unter anderem die-
se Abhängigkeiten zwischen den Strukturmustern festgehalten. Abbildung 2.9

25

Kapitel 2 Grundlagen

zeigt einen Regelkatalog, der auch die vorgestellten State- und Delegation-
Strukturmuster enthält.

«Axiom»
Method

«Axiom»
Array

«Axiom»
Attribute

«Axiom»
Generalization

«Rule»
ArrayReference

«Rule»
AssignmentToContainer

«Rule»
Reference

«Rule»
SingleReference

«Rule»
MultiReference

«Rule»
Generalization

«Rule»
MultiLevelGeneralization

«Rule»
Strategy

«Rule»
State

«Rule»
Delegation

«Rule»
OverriddenMethod

Abhängigkeit

Vererbung

Reference abstrakte
Regel

Abbildung 2.9: Regelkatalog

Auf unterster Ebene des Regelkatalogs liegen die Axiome. Axiome sind fest-
stehende Fakten aus der Struktur, also Klassen, Methoden, Attribute oder
andere Knoten. Über den Axiomen sind die Regeln der Hilfs- und Entwurfs-
muster angeordnet, die auf den Axiomen und anderen Regeln aufbauen.

Damit die Regeln im Erkennungsprozess in einer korrekten Reihenfolge an-
gewendet werden, wird jeder Regel des Regelkatalogs ein Rang zugeordnet.
Die Regeln, die nur von Axiomen, nicht aber von anderen Regel abhängen,
erhalten den Rang 0. Alle weiteren Regeln erhalten einen Rang gemäß ihrer
topologischen Sortierung.

Im Regelkatalog werden des Weiteren Vererbungen zwischen den Struk-
turmustern festgelegt. Es kann Hilfsmuster oder Entwurfsmuster geben, die
die gleiche Semantik haben, aber durch unterschiedliche Syntax implementiert
werden. Das Hilfsmuster Reference zum Beispiel sagt aus, dass eine Klasse eine
andere Klasse referenziert. Es kann allerdings verschiedene Implementierungen
für solche Referenzierungen geben. Zum einen kann zur Laufzeit ein Objekt
immer nur ein einzelnes Objekt referenzieren. In diesem Fall würde eine Sing-
leReference vorliegen. Zum anderen kann jedoch zur Laufzeit ein Objekt auch
mehrere Objekte gleichzeitig referenzieren, dies wäre eine MultiReference. Ei-
ne MultiReference kann aber wiederum auf unterschiedliche Art implementiert

26

2.3 Strukturbasierte Entwurfsmustererkennung in Fujaba

werden. Eine Möglichkeit wäre die Verwendung eines Container-Objekts zur
Speicherung der Referenzen, eine andere Möglichkeit die Verwendung eines
Arrays, wie im Hilfsmuster ArrayReference.

Bei Verwendung der Vererbung wird zunächst in abstrakten Regeln die ge-
meinsame Schnittstelle der von den konkreten Regeln erzeugten Annotationen
festgelegt. Im Falle der Reference wären dies zwei Klassen aus Struktur, die
unter den Schlüsseln referencingClass und references annotiert werden. Diese
Schnittstelle wurde im Strukturmuster des Delegation-Hilfsmusters in Abbil-
dung 2.6 verwendet. In den konkreten Strukturmustern SingleReference, Mul-
tiReference und ArrayReference wird dann beschrieben, welche Teilgraphen
vorliegen müssen, damit zwei Klassen, wie in der Schnittstelle vorgegeben,
annotiert werden.

Wird eine Regel angewendet, so kann für eine darin wiederverwendete An-
notation eines abstrakten Strukturmusters eine Annotation eines erbenden,
konkreten Strukturmusters polymorph eingesetzt werden. So würde im Bei-
spiel des Delegation-Hilfsmusters eine Delegation erkannt werden, egal ob die
beiden Klassen durch eine SingleReference, MultiReference oder ArrayRefe-
rence verbunden sind. Die Vererbung von Strukturmustern ist somit eine von
vielen Strategien, dem Problem der Variantenvielfalt von Entwurfsmusterim-
plementierungen in der Entwurfsmustererkennung zu begegnen.

2.3.4 Strukturbasierter Erkennungsprozess

Jedes Softwaresystem weist individuelle Besonderheiten in seiner Implemen-
tierung auf. Das ist auf individuelle Implementierungsstile der Programmierer
und unterschiedliche Firmenkulturen zurückzuführen. So entstehen viele Im-
plementierungsvarianten von Hilfsmustern und Entwurfsmustern. Die Struk-
turmuster müssen jeweils an solche Besonderheiten angepasst werden, um ein
gutes Ergebnis bei der Entwurfsmustererkennung zu erzielen. In der struk-
turbasierten Entwurfsmustererkennung in Fujaba wird daher ein iterativer
Prozess vorgeschlagen [NSW+02].

Die Eingaben des Erkennungsprozesses sind der Quelltext und der Regelka-
talog. Der Erkennungsprozess startet entweder mit einem neuen Regelkatalog,
der sukzessive durch neue Strukturmuster erweitert wird, oder mit einem be-
reits vorhandenen Regelkatalog, dessen Strukturmuster an die Besonderheiten
des zu untersuchenden Softwaresystems angepasst werden. In jedem Iterations-
schritt werden jeweils eine Analyse des Softwaresystems oder eines Teils des
Softwaresystems durchgeführt und auf Basis der dabei erzielten Ergebnisse die
Strukturmuster angepasst. Das Ergebnis der statischen Analyse sind poten-

27

Kapitel 2 Grundlagen

tielle Entwurfsmusterimplementierungen, so genannte Kandidaten. Abbildung
2.10 zeigt eine schematische Darstellung des strukturbasierten Erkennungspro-
zesses.

Quelltext
Struktur-
muster/

Regelkatalog

Kandidaten
für Entwurfsmuster-
implementierungen

Datenfluß

Interaktion

Dokument

Prozessschritt

Statische
Analyse

Anpassung der
Strukturmuster

Abbildung 2.10: Der strukturbasierte Erkennungsprozess

Die Abhängigkeiten der Strukturmuster im Regelkatalog geben eine be-
stimmte Reihenfolge vor, in der die Regeln angewendet werden müssen. Bevor
zum Beispiel die Regel des State-Entwurfsmusters angewendet werden kann,
müssen die Regeln der Delegation und der OverriddenMethod ausgeführt wor-
den sein. Üblich sind bei solchen Abhängigkeiten Algorithmen, die die Regeln
gemäß ihrer topologischen Sortierung im Regelkatalog bottom-up, also von un-
ten nach oben, anwenden.

Regeln, die Entwurfsmusterimplementierungen beschreiben, bauen typi-
scherweise auf einer Vielzahl anderer Regeln für Hilfsmuster auf. Beim bottom-
up-Algorithmus werden diese Regeln daher erst spät ausgeführt, so dass vor-
handene Entwurfsmusterimplementierungen und damit aussagekräftige Ergeb-
nisse erst nach Durchführung einer vollständigen Analyse erkannt werden. Die-
se Ansätze bieten also keine optimale Unterstützung des Reverse-Engineers, da
bei der Analyse großer Systeme jeder Iterationsschritt sehr zeitaufwändig ist
und außerdem oft eine Vielzahl von Entwurfsmustern erkannt werden, die dann
manuell ausgewertet werden müssen.

Die strukturbasierte Entwurfsmustererkennung in Fujaba verwendet da-
her einen inkrementellen Algorithmus, der möglichst frühzeitig aussagekräftige
Ergebnisse produziert und durch den Reverse-Engineer unterbrochen werden
kann. Dadurch kann der Reverse-Engineer frühzeitig und gezielt Ergebnisse
untersuchen und daraufhin den Regelkatalog anpassen.

28

2.3 Strukturbasierte Entwurfsmustererkennung in Fujaba

Die frühzeitige Produktion aussagekräftiger Ergebnisse wird durch die An-
gabe eines Kontextes, in dem eine Regel angewendet wird, unterstützt. Der
Kontext ist ein Knoten der Struktur, von dem angenommen wird, dass er
auch ein Knoten des durch das Strukturmuster beschriebenen Teilgraphen ist.
So kann ausgehend von dem Kontext der Rest des Teilgraphen gesucht werden.
Die Angabe des Kontextes ermöglicht die Ausführung einer Regel in polyno-
mieller Laufzeit.

Um frühzeitig Ergebnisse zu produzieren, wird in diesem Ansatz eine Kom-
bination aus bottom-up- und top-down-Algorithmus eingesetzt. Zu Beginn der
Analyse werden die Regeln des Ranges 0 zusammen mit Axiomen aus der
Struktur als Kontext-Regel-Paare in eine bottom-up-Prioritätswarteschlange
eingefügt. Die Warteschlange ist absteigend nach dem Rang der Regel sor-
tiert. Dadurch werden Regeln hohen Ranges, die aussagekräftige Ergebnisse
versprechen, möglichst frühzeitig ausgeführt.

Im bottom-up-Modus wird jeweils das vorderste Kontext-Regel-Paar aus der
Schlange entfernt. Es wird versucht, die Regel im Kontext anzuwenden. Dazu
wird zunächst nach dem von der Regel spezifizierten Teilgraphen gesucht. Wird
der Teilgraph gefunden, wird die Regel angewendet und eine Annotation in
der Struktur erzeugt. Sind weitere Regeln von der erfolgreich angewendeten
Regel abhängig, so werden diese zusammen mit der erzeugten Annotation als
Kontext-Regel-Paar in die Schlange einsortiert.

Kann der Teilgraph jedoch nicht gefunden werden, wird die auszuführende
Regel nicht sofort verworfen. Stattdessen wird überprüft, ob im Teilgraphen
geforderte Annotationen in der Struktur fehlen. In diesem Fall wird versucht,
zuerst die fehlenden Annotationen durch Ausführung der entsprechenden Re-
geln zu erzeugen und dann die auszuführende Regel anzuwenden. Dazu schaltet
der Algorithmus vom bottom-up- in den top-down-Modus um.

Im top-down-Modus werden zunächst das aktuelle Kontext-Regel-Paar und
rekursiv alle Regeln, von denen die aktuelle Regel abhängig ist, mit entspre-
chendem Kontext in einen anfangs leeren Stack gelegt. Dann wird ein Kontext-
Regel-Paar vom Stack entfernt und der Teilgraph der Regel gesucht. Wird der
Teilgraph gefunden, wird die Regel angewendet und eine Annotation erzeugt.
Sind andere Regeln von der gerade ausgeführten abhängig, so werden wie-
derum die abhängigen Regeln mit der Annotation als Kontext-Regel-Paare in
die Warteschlange für den bottom-up-Modus einsortiert. Der top-down-Modus
endet, wenn der Stack leer ist.

Nach beendetem top-down-Modus fährt der Algorithmus im bottom-up-
Modus fort. Der bottom-up-Modus terminiert, wenn die Schlange leer ist. Der
Reverse-Engineer kann jedoch den Algorithmus auch jederzeit unterbrechen,

29

Kapitel 2 Grundlagen

um sich erste Ergebnisse präsentieren zu lassen.
Die Skalierbarkeit des Verfahrens wurde in [NSW+02] belegt. Das Verfahren

wurde erfolgreich auf die Java-Bibliotheken Java Generic Library (JGL) mit
36.500 LOC und Java Abstract Window Toolkit (AWT) mit 114.000 LOC
angewendet. Die Gesamtdauer der Analyse bleibt mit zum Beispiel ca. 22 Mi-
nuten für die Bibliothek Java AWT in einer vertretbaren Größenordnung.

2.3.5 Bewertung der Ergebnisse

Die Bewertung der Kandidaten basiert auf einer Bewertung der Strukturmu-
ster. Bei der Spezifikation eines Strukturmusters muss der Reverse-Engineer
einen so genannten Vertrauenswert angeben. Er wird in den mit dem Stereo-
typ �create� gekennzeichneten Annotationsknoten eingetragen. Der Vertrau-
enswert drückt die Güte des Strukturmusters durch das Verhältnis der Anzahl
der durch das Strukturmuster identifizierten, tatsächlichen Entwurfsmusterim-
plementierungen zu der Anzahl aller durch das Strukturmuster identifizierten
Kandidaten aus. Der Vertrauenswert des State-Strukturmusters in Abbildung
2.5 sagt zum Beispiel aus, dass 60% aller Kandidaten tatsächliche Entwurfs-
musterimplementierungen sind, während 40% False-Positives sind. Dieser Wert
wird durch den Reverse-Engineer aufgrund seiner Erfahrung geschätzt.

Die Güte eines Kandidaten wird durch den einen Genauigkeitswert ausge-
drückt, der sich aus den Vertrauenswerten der an einer Annotation beteiligten
Strukturmuster berechnet. Die Berechnung der Genauigkeitswerte findet in ei-
nem Fuzzy-Petri-Netz (FPN) [Jah99] statt, in dem die Abhängigkeiten aller
erzeugten Annotationen festgehalten sind.

In Abbildung 2.11 ist ein FPN vor (links) und nach (rechts) der Berech-
nung zu sehen. Jede Annotation wird im FPN durch eine Stelle repräsentiert.
Abhängigkeiten zwischen Annotationen werden durch Transitionen modelliert.
In dem Beispiel ist eine Annotation :State dargestellt, die von einer Annotati-
on :Delegation und einer Annotation :OverriddenMethod abhängt, die wiederum
von weiteren Annotationen abhängen. Der Vertrauenswert eines Strukturmu-
sters wird in die Transition aus dem Vorbereich der Annotation des Struktur-
musters eingetragen. Für das State-Strukturmuster wurde zum Beispiel der
Vertrauenswert von 60% eingetragen.

In der Anfangsmarkierung des Fuzzy-Petri-Netzes erhalten die Stellen der
Annotationen, die von keinen anderen Annotationen abhängig sind, zunächst
den Vertrauenswert ihres Strukturmusters als Markierung. Die Annotation :Ge-
neralization erhält zum Beispiel die Markierung 100%. Alle anderen Stellen er-
halten die Markierung 0%. Das Fuzzy-Petri-Netz wird nun solange ausgeführt,

30

2.3 Strukturbasierte Entwurfsmustererkennung in Fujaba

70%

60%

:OverriddenMethod
0%

:SingleReference
90%

:Delegation
0%

:State
0%

100%

:Generalization
100%

70%

60%

:OverriddenMethod
100%

:SingleReference
90%

:Delegation
70%

:State
60%

min{70%, 100%, 60%}

min{90%, 70%}
100%

:Generalization
100%

min{100%, 100%}

Abbildung 2.11: Fuzzy-Petri-Netz zur Bewertung eines State-Kandidaten

bis es stabil ist. Die neue Markierung einer Stelle berechnet sich dabei aus dem
Minimum der Markierungen der Stellen aus dem Vorbereich und dem Vertrau-
enswert der Transition. Die rechte Seite in Abbildung 2.11 zeigt das stabile
FPN. Die Markierung einer Stelle wird schließlich als Genauigkeitswert ihrer
Annotationen interpretiert. Details zur Berechnung der Genauigkeitswerte sind
in [Wen01] und [Nie04] zu finden.

Die Annotationen werden zusammen mit ihren Genauigkeitswerten dem
Reverse-Engineer als Ergebnis der strukturbasierten Entwurfsmustererken-
nung in Form eines annotierten Klassendiagramms präsentiert. Abbildung 2.12
zeigt den Kandidaten einer State-Entwurfsmusterimplementierung am Beispiel
des Mediaplayers aus Abbildung 2.3, Seite 20. Die Annotation wird als Oval
mit dem Namen des Entwurfsmusters und ihrem Genauigkeitswert dargestellt.
Die annotierten Klassen der Struktur werden durch Linien mit der Annotation
verbunden. An den Linien ist jeweils der Name der Rolle verzeichnet, die die
Klasse in der Entwurfsmusterimplementierung spielt.

Die Vertrauenswerte der Strukturmuster werden bei der Spezifikation durch
den Reverse-Engineer geschätzt. Da dieser Wert nicht auf tatsächlichen Da-
ten basiert, wurde eine automatische Adaption der Vertrauenswerte entwickelt
[Rec04], die Eingaben des Reverse-Engineers verwendet. Nach der Entwurfs-
mustererkennung kann der Reverse-Engineer den Genauigkeitswert jeder An-
notation ändern. Der Vertrauenswert kann zum Beispiel auf 0% gesenkt wer-
den, wenn der entsprechende Kandidat ein False-Positive ist. Der Vertrauens-
wert kann aber auch auf einen beliebigen Wert zwischen 0% und 100% gesetzt
werden, um die vom Reverse-Engineer beurteilte Genauigkeit einer Annotati-

31

Kapitel 2 Grundlagen

sp State
60%

context

abstractState

Playing
+execute(s:Stream,command:int)
+run(s:Stream)

Paused
+execute(s:Stream,command:int)
+run(s:Stream)

Stopped
+execute(s:Stream,command:int)
+run(s:Stream)

StreamState
+execute(s:Stream,command:int)
+run(s:Stream)

Stream

+setState(state:StreamState)
+execute(command:int)
+read()
+close()

+CMD_PLAY:int = 1
+CMD_PAUSE:int = 2
+CMD_STOP:int = 3
-state:StreamState

Abbildung 2.12: Ein Kandidat einer State-Entwurfsmusterimplementierung

on auszudrücken. Die korrigierten Genauigkeitswerte aller Annotationen eines
Strukturmusters fließen bei der automatischen Adaption in die Berechnung ei-
nes neuen Vertrauenswertes des Strukturmusters ein. Der neue Vertrauenswert
wird dann bei der nächsten Entwurfsmustererkennung verwendet.

2.3.6 Einsatzgebiete

Die strukturbasierte Entwurfsmustererkennung lässt sich nicht nur zur Iden-
tifikation von Entwurfsmusterimplementierungen einsetzen. Sie wird auch zur
Suche nach Anti-Patterns [BMMM98] verwendet. Anti-Patterns sind im Ge-
gensatz zu Entwurfsmustern schlechte, ungeeignete Implementierungen für im-
mer wiederkehrende Probleme. Ihre Identifikation in Softwaresystemen lässt
auf Designschwächen oder Probleme mit der Wartbarkeit der Systeme schlie-
ßen und kann zu ihrer Verbesserung eingesetzt werden [Mey06].

Das in diesem Kapitel vorgestellte Strukturmodell ist nur zur Repräsentation
objektorientierter Softwaresysteme geeignet. Mit dem Metamodell für Struk-
turmodelle lassen sich jedoch beliebige Strukturmodelle beschreiben. Die struk-
turbasierte Entwurfsmustererkennung ist daher in ihrer Anwendungsdomäne
nicht auf objektorientierte Softwaresysteme beschränkt. Sie wird auch auf an-
dere Strukturmodelle angewendet, so zum Beispiel auf Modelle des Werkzeugs
Matlab/Simulink [GMW06].

32

2.3 Strukturbasierte Entwurfsmustererkennung in Fujaba

Matlab/Simulink ist eine Entwicklungs- und Simulationsumgebung für
Algorithmen zu numerischen Berechnungen, zur Datenanalyse und -visualisie-
rung und bietet zu diesem Zweck eine eigene Hochsprache [Mat]. In diesem Fall
wird das Strukturmodell für objektorientierte Sprachen gegen ein Strukturmo-
dell für die Hochsprache von Matlab/Simulink ausgetauscht. Die struk-
turbasierte Entwurfsmustererkennung kann dadurch zur Erkennung von Mu-
sterimplementierungen in Matlab/Simulink eingesetzt werden. In dem in
dieser Arbeit vorgestellten Verfahren wird die strukturbasierte Entwurfsmu-
stererkennung allerdings nur auf Softwaresysteme angewendet, die in einer ob-
jektorientierten Sprache geschrieben sind.

2.3.7 Überblick

Im Folgenden wird ein Überblick über die Abstraktionsschichten der struktur-
basierten Entwurfsmustererkennung gegeben. In Abbildung 2.13 werden die
Diagramme der letzten Abschnitte in ein Schema aus Metamodellen, Model-
len und Instanzen beziehungsweise Implementierungen eingeordnet. Die linke
Hälfte der Tabelle zeigt die Abstraktionsschichten der Struktur eines Softwa-
resystems, die rechte Hälfte die Abstraktionsschichten der Strukturmuster.

Das Strukturmodell in der mittleren Abstraktionsschicht der linken Hälf-
te legt fest, wie die Struktur eines Softwaresystems repräsentiert wird. Das
Strukturmodell ist je nach Anwendungsdomäne der strukturbasierten Ent-
wurfsmustererkennung austauschbar. In dieser Arbeit wird ein Strukturmodell
für Quelltexte objektorientierter Sprachen verwendet. Ein Beispiel für eine
Instanz des Strukturmodells, also die Struktur eines konkreten Softwaresy-
stems, ist in der untersten Abstraktionsschicht zu sehen. Das Metamodell für
Strukturmodelle in der obersten Abstraktionsschicht legt dagegen fest, wie die
verschiedenen Strukturmodelle zu beschreiben sind.

Auf der rechten Seite ist in der mittleren Abstraktionsschicht das Struk-
turmuster für das State-Entwurfsmuster abgebildet. In dieser Schicht lie-
gen jedoch alle Strukturmuster eines Regelkatalogs, das State-Strukturmuster
ist nur ein Repräsentant. Ein Strukturmuster beschreibt in einer Art UML-
Objektdiagramm Teilgraphen in der Struktur eines Softwaresystems. Aus die-
sem Grund verwenden die Strukturmuster das Strukturmodell als semanti-
schen Typgraphen. In der untersten Ebene ist eine konkrete Implementierung
eines State-Entwurfsmusters abgebildet, die in der Struktur der linken Seite
gefunden wurde. Das Metamodell der Strukturmuster referenziert wiederum
das Metamodell der Strukturmodelle, um so die semantische Typbeziehung
zwischen Strukturmuster und Strukturmodell herzustellen.

33

Kapitel 2 Grundlagen

State-

State-

StructuralPatternsClassDiagrams

Structure

Generalization

methods

params

type

superClass subClass

type

attrs

resultType

Array

type

type 1

methods 0..*

parent 1 1 parent

0..* attrs0..* paramDecls 0..* attrDecls

arrayDecls 0..*
1 subClasssuperClass 1

0..* revSubClassesrevSuperClasses 0..*

1 resultType

resultDecls 0..*

params

0..*
{ordered}

method

1
Parameter

+name:String
Attribute

+name:String

Class
+name:String
+abstract:boolean

Method
+name:String
+abstract:boolean

Typetype

1

type

1

Generalization

methods

params

type

superClass subClass
type

attrs

resultType

Array

type

type

1

type

1

methods 0..*

parent 1 1 parent

0..* attrs0..* paramDecls

arrayDecls 0..*
1 subClasssuperClass 1

0..* revSubClassesrevSuperClasses 0..*

1 resultType

resultDecls 0..*

params

0..*
{ordered}

method

1
Parameter
+name:String

Attribute
+name:String

left right

attrDecls
0..*

type 1 Association

+name:String

Role
+name:String
+cardinality:String

roles
target

1

roles

0..*

revRight 0..*revLeft 0..*

left 1 right 1

Class
+name:String
+abstract:boolean

Method
+name:String
+abstract:boolean

Type

context abstractState

«create» «create»

context:Class

request:Method

methodsmethods

:Delegationcaller

:State
60%

«create»

setState:Method

methods

params

:OverriddenMethod

overridden

callee

abstractState:Class

handle:Method

:Parameter

paramType

sp State

Playing
+execute(s:Stream,command:int)
+run(s:Stream)

Paused
+execute(s:Stream,command:int)
+run(s:Stream)

Stopped
+execute(s:Stream,command:int)
+run(s:Stream)

StreamState
+execute(s:Stream,command:int)
+run(s:Stream)

Stream

+setState(state:StreamState)
+execute(command:int)
+read()
+close()

+CMD_PLAY:int = 1
+CMD_PAUSE:int = 2
+CMD_STOP:int = 3
-state:StreamState

Player

+play()
+pause()
+stop()

-streams:Set
sp State

60%

context

abstractState

Playing
+execute(s:Stream,command:int)
+run(s:Stream)

Paused
+execute(s:Stream,command:int)
+run(s:Stream)

Stopped
+execute(s:Stream,command:int)
+run(s:Stream)

StreamState
+execute(s:Stream,command:int)
+run(s:Stream)

Stream

+setState(state:StreamState)
+execute(command:int)
+read()
+close()

+CMD_PLAY:int = 1
+CMD_PAUSE:int = 2
+CMD_STOP:int = 3
-state:StreamState

SPAnnotationObject
+create:boolean

SPObject

SPAbstractObject
+name:String

Connection
source

target

revSources

0..*

revTargets

0..*

source

1

target

1

Path

nodes

nodes 1..*

pattern 1

StructuralPattern
+name:String

«reference»
ClassDiagrams::Class

1 type

«reference»
ClassDiagrams::Association

type 1

Link
+name:String
+create:boolean

Abbildung 2.13: Die Abstraktionsschichten der strukturbasierten
Entwurfsmustererkennung

34

2.4 Zusammenfassung

In dieser Tabelle bestehen in der Vertikalen von oben nach unten jeweils
Modell-Instanz-Beziehungen zwischen den Diagrammen. In der Horizontalen
stehen die Diagramme dagegen in einer semantischen Beziehung zueinander,
die in der Schicht der Metamodelle explizit durch Referenzen zwischen den
Metamodellen festgelegt wurde.

2.4 Zusammenfassung

Die strukturbasierte Entwurfsmustererkennung in Fujaba bietet eine gute
Grundlage für eine Erweiterung zu einem Verfahren, das alle der in Abschnitt
2.2 genannten Anforderungen erfüllt. Die Skalierbarkeit des Verfahrens wurde
in [NSW+02] belegt. Die leichte Anpassbarkeit der Entwurfsmusterspezifikatio-
nen ist durch die UML-Objektdiagramme-ähnliche Spezifikationssprache gege-
ben. Die Spezifikationen sind durch die graphische Notation von dem Reverse-
Engineer schnell zu erfassen, da die UML in der Softwaretechnik eine sehr weit
verbreitete Sprache ist. Des Weiteren ist das Strukturmodell leicht austausch-
bar, so dass die Entwurfsmustererkennung auch auf andere Strukturmodelle
anwendbar ist [GMW06].

Die vorgestellte Bewertung der Ergebnisse ist allerdings mangelhaft. Die
Bewertung beruht nicht auf der Beurteilung der Güte einer einzelnen, potenti-
ellen Entwurfsmusterimplementierung, sondern auf der Beurteilung der Güte
des Strukturmusters. Die Bewertung einer Annotation wird über die Typen
der Annotationen, von denen sie abhängt, berechnet. Zwei Annotationen ei-
nes Strukturmusters hängen jedoch in der Regel von Annotation der gleichen
Typen ab. Sie können sich nur dann unterscheiden, wenn durch Polymorphie
eine Annotation eines Subtypen verwendet wird. Im Falle zweier Delegation-
Annotationen zum Beispiel unterscheiden sich ihre Bewertungen nicht, wenn
beide von einer SingleReference abhängen. Erst wenn zum Beispiel eine An-
notation von einer SingleReference-Annotation, und die andere von einer Mul-
tiReference-Annotation abhängt3, erhalten sie unterschiedliche Bewertungen.
Das gegebene Verfahren ist daher nicht zur Bewertung der potentiellen Ent-
wurfsmusterimplementierungen geeignet. In Kombination mit der automati-
schen Adaption kann es allerdings zur Bewertung der Strukturmuster genutzt
werden.

Die Präzision der gegebenen Entwurfsmustererkennung in Fujaba leidet

3Die SingleReference- und MultiReference-Strukturmuster erben beide vom abstrakten Re-
ference-Strukturmuster, siehe Abbildung 2.9. Das Delegation-Strukturmuster fordert nur
eine Annotation vom Typ Reference (Abbildung 2.6).

35

Kapitel 2 Grundlagen

unter der ausschließlichen Analyse der Struktur eines Softwaresystems. Die
Zahl der False-Positives ist deshalb bei der strukturbasierten Entwurfsmuste-
rerkennung hoch.

Die vorliegende Arbeit stellt aus den zuvor genannten Gründen zunächst eine
neue Bewertung der Kandidaten der Strukturanalyse vor. Des Weiteren wird
die strukturbasierte Entwurfsmustererkennung durch eine Verhaltensanalyse
ergänzt. Durch die Verhaltensanalyse können die Kandidaten der Struktur-
analyse nochmals gefiltert werden, um so die Präzision des Gesamtprozesses
zu erhöhen und verlässliche Ergebnisse zu produzieren.

36

Kapitel 3

Erweiterung der strukturbasierten
Entwurfsmustererkennung

Dieses Kapitel gibt einen Überblick über das im Zuge dieser Arbeit entwickel-
te Verfahren der struktur- und verhaltensbasierten Entwurfsmustererkennung.
Das in Abschnitt 2.3 vorgestellte Verfahren der strukturbasierten Entwurfsmu-
stererkennung in Fujaba wird erweitert, um allen in Abschnitt 2.2 genannten
Anforderungen zu entsprechen. Die konzeptionelle Umsetzung der bisher nicht
erfüllten Anforderungen wird in diesem und in den nächsten beiden Kapiteln
präsentiert.

Dazu werden im ersten Teil dieses Kapitels zunächst unscharfe Regeln und
die Bewertung der Ergebnisse in der strukturbasierten Entwurfsmustererken-
nung motiviert. Des Weiteren werden die dadurch bedingten, syntaktischen
Erweiterungen der Strukturmuster und das Verfahren zur Bewertung der Er-
gebnisse vorgestellt.

Der zweite Teil des Kapitels befasst sich mit der Ergänzung der struktur-
basierten Entwurfsmustererkennung um eine Verhaltensanalyse. Nach der Mo-
tivation zur Verhaltensanalyse gibt der Abschnitt einen Überblick über den
Prozess der kombinierten struktur- und verhaltensbasierten Entwurfsmuste-
rerkennung und erläutert das erweiterte Struktur- und Verhaltensmodell eines
Softwaresystems. Die Details zur Spezifikation und Erkennung von Verhalten
werden in den Kapiteln 4 und 5 behandelt.

3.1 Unscharfe Regeln und Bewertung

Eine Anforderung an eine automatische Entwurfsmustererkennung ist die Be-
wertung der Ergebnisse einer Entwurfsmustererkennung. Eine automatische
Entwurfsmustererkennung kann wegen der unendlich vielen Implementierungs-

37

Kapitel 3 Erweiterung der strukturbasierten Entwurfsmustererkennung

varianten eines Entwurfsmusters keine absoluten, präzisen Ergebnisse erzielen.
Um den Reverse-Engineer jedoch bei der Sichtung und Beurteilung der Ergeb-
nisse zu unterstützen, ist es sinnvoll, die Güte der Kandidaten, also der durch
die Entwurfsmustererkennung identifizierten, potentiellen Entwurfsmusterim-
plementierungen zu bewerten.

Wie bereits in Abschnitt 2.4 erläutert wurde, ist das vorhandene Verfahren
zur Bewertung der Kandidaten der Strukturanalyse ungeeignet. Es zieht zur
Berechnung der Güte nicht die individuellen Eigenschaften des Kandidaten
heran, sondern basiert auf der Beurteilung der Güte des Strukturmusters. Es
wird deshalb ein Verfahren vorgestellt, das die Kandidaten individuell bewer-
tet. Die Vertrauenswerte der Strukturmuster werden im Folgenden nicht mehr
angegeben, da sie in dem neuen Verfahren nicht mehr berücksichtigt werden.

3.1.1 Motivation und Lösungsidee

In [NWW03] wird vorgestellt, wie man dem Problem der Variantenvielfalt von
Entwurfsmusterimplementierungen begegnen kann. Dort wird vorgeschlagen,
für verschiedene Varianten einer Entwurfsmusterimplementierung die Teile zu
identifizieren, die allen Varianten gemeinsam sind. Nur dieser gemeinsame Teil
wird dann zur Spezifikation des Strukturmusters verwendet. Es konnte gezeigt
werden, dass dadurch die Präzision der Erkennung zwar verringert wird, die
Geschwindigkeit der Analyse und damit ihre Skalierbarkeit jedoch erheblich
gesteigert werden, da die Anzahl der Regeln sinkt.

state

1

Context
+setState(AbstractState)
+request()

state.handle() ConcreteStateA
+handle()

ConcreteStateB
+handle()

«interface»
StateInterface
+handle()

Abbildung 3.1: Eine Variante des State-Entwurfsmusters

Allerdings werden bei diesem Verfahren Informationen häufig nicht berück-
sichtigt, die gute Hinweise auf eine Entwurfsmusterimplementierung liefern. Im
Falle des State-Entwurfsmusters existieren unter anderem die folgenden zwei
Varianten. In der ersten Variante ist eine abstrakte Klasse die gemeinsame

38

3.1 Unscharfe Regeln und Bewertung

Oberklasse aller konkreten Zustände. Dies ist die Variante, die in den bishe-
rigen Beispielen verwendet wurde. In einer zweiten Variante nach Abbildung
3.1 wird anstatt einer abstrakten Oberklasse eine Schnittstelle vorgegeben,
die von allen konkreten Zuständen implementiert werden muss. Abbildung 3.2
zeigt das zugehörige Strukturmuster1 dieser Variante. Beide Varianten sind
gültige State-Implementierungen.

context abstractState

«create» «create»

context:Class

request:Method

methodsmethods

:Delegationcaller

:StateInterface

«create»

setState:Methodmethods params

:OverriddenMethod

overridden

callee handle:Method

:Parameter paramType stateInterface:Class

sp StateInterface :Stereotype
name == „interface“

stereotypes

Abbildung 3.2: Das Strukturmuster des StateInterface-Entwurfsmusters

Wenn nach dem Ansatz aus [NWW03] die Strukturmuster der beiden Va-
rianten zu einem gemeinsamen Strukturmuster verschmolzen werden, wird in
dem daraus entstandenen Strukturmuster weder gefordert, dass die Oberklas-
se der konkreten Zustände abstrakt sein muss, noch dass diese Oberklasse
eine Schnittstelle sein muss. Eine nicht-abstrakte Oberklasse für die konkreten
Zustände ist aber in einer tatsächlichen State-Entwurfsmusterimplementierung
eher unwahrscheinlich. Die Anzahl der mit diesem Strukturmuster erkannten
False-Positives steigt gegenüber den beiden ursprünglichen, präziseren Struk-
turmustern.

Um diesen Nachteil wieder auszugleichen, können so genannte unscharfe
Regeln verwendet und die durch diese Regeln identifizierten Kandidaten be-
wertet werden. Die Bedingung, dass zum Beispiel die Oberklasse der konkre-
ten Zustände im State-Entwurfsmuster abstrakt ist, ist ein starker, zusätzli-
cher Hinweis auf eine State-Entwurfsmusterimplementierung und sollte deshalb
berücksichtigt werden. Bedingungen in einem Strukturmuster sind unter an-
derem die Existenz von Objekten und Annotationen oder Anforderungen an

1Im Strukturmodell von Fujaba wird eine Schnittstelle ebenfalls als Class modelliert, ihr
wird jedoch zusätzlich ein Stereotyp �interface� zugeordnet.

39

Kapitel 3 Erweiterung der strukturbasierten Entwurfsmustererkennung

Attribute der Objekte.
Unscharfe Regeln enthalten zum einen die notwendigen Bedingungen, die

von allen zu erkennenden Varianten eines Entwurfsmusters erfüllt werden
müssen. Zum anderen enthalten unscharfe Regeln noch weitere, nicht notwen-
dige Bedingungen, die nicht in jedem Fall durch eine potentielle Entwurfsmu-
sterimplementierung erfüllt sein müssen, aber gute Hinweise auf eine tatsächli-
che Implementierung liefern. Erfüllt ein Kandidat solche nicht notwendigen Be-
dingungen, wird die Bewertung des Kandidaten positiv beeinflusst. Je höher
die Bewertung eines Kandidaten, desto wahrscheinlicher stellt dieser Kandidat
eine tatsächliche Entwurfsmusterimplementierung dar.

3.1.2 Erweiterte Syntax der Strukturmuster

In der strukturbasierten Entwurfsmustererkennung in Fujaba wurde im Zuge
der vorliegenden Arbeit eine Bewertung der Kandidaten für Entwurfsmuste-
rimplementierungen eingeführt, die den Grad der Übereinstimmung eines Kan-
didaten zu einem Strukturmuster beschreibt [Tra06]. Dazu wurde die Syntax
der Strukturmuster erweitert, um unscharfe Regeln spezifizieren zu können.

context abstractState

«create» «create»

context:Class

request:Method

methods
methods

:Delegationcaller

:State

«create»

setState:Methodmethods params

overridden

callee handle:Method

a:Parameter paramType abstractState:Class
abstract == true {additional}

:OverriddenMethod
SIZE≥2

:Stereotype
name == „interface“

stereotypes

c:Parameter

params

paramType

sp State

Abbildung 3.3: Das unscharfe State-Strukturmuster

Abbildung 3.3 zeigt das unscharfe State-Strukturmuster, das als Ergebnis
der Verschmelzung der beiden zuvor genannten Varianten entstanden ist. In ei-
nem Strukturmuster können unter anderem Knoten oder auch Bedingungen an
Attribute von Knoten als nicht notwendig gekennzeichnet werden. Nicht not-
wendige Knoten werden durch gestrichelte Umrandungen visualisiert. Nicht

40

3.1 Unscharfe Regeln und Bewertung

notwendige Attributbedingungen werden durch den Zusatz {additional} ge-
kennzeichnet.

Im unscharfen State-Strukturmuster wird die Attributbedingung abstract
==true des Objekts abstractState:Class als nicht notwendig gekennzeichnet.
Des Weiteren wird in das neue Strukturmuster ein nicht notwendiger Kno-
ten eingefügt, der verdeutlicht, dass es sich bei der Oberklasse der konkreten
Zustände auch um eine Schnittstelle handeln kann. So werden sowohl Imple-
mentierungen gefunden, bei denen die konkreten Zustände entweder von einer
abstrakten Oberklasse erben oder eine Schnittstelle implementieren. Allerdings
werden auch Implementierungen mit nicht-abstrakter Oberklasse als Kandida-
ten identifiziert, die mit höherer Wahrscheinlichkeit False-Positives sind.

Eine weitere Eigenschaft, die nicht alle Implementierungen des State-
Entwurfsmusters betrifft, kann nun durch die unscharfe Spezifikation model-
liert werden. In [GHJV95] wird über die Delegation zwischen dem Kontext und
dem aktuellen Zustand gesagt:

”
A context may pass itself as an argument to

the State object handling the request.“. Das bedeutet, die handle-Methode der
Zustandsklasse kann in einigen Implementierungen einen Parameter vom Typ
context haben. Das Parameter-Objekt wird also im unscharfen Strukturmuster
als nicht notwendig gekennzeichnet.

In Strukturmustern können Mengen von Objekten spezifiziert werden, so-
wohl Mengen von normalen Objekten, als auch Mengen von Annotationen.
Solche Mengenknoten werden durch einen doppelten Rahmen gekennzeichnet.
Während der Erkennung des Strukturmusters können beliebig viele Objekte
aus der Struktur des zu untersuchenden Softwaresystems an einen Mengen-
knoten gebunden werden. Da Mengen grundsätzlich auch leer sein können,
wird ein Mengenknoten ebenfalls durch eine gestrichelte Umrandung als nicht
notwendig gekennzeichnet. Ist eine bestimmte Größe für eine Menge gefor-
dert, so kann dies mit der Bedingung SIZE festgelegt werden. In dem Bei-
spiel des State-Strukturmusters aus Abbildung 3.3 wird gefordert, dass die
Methode handle:Method von mindestens zwei Methoden überschrieben wird.
Das bedeutet, es existieren mindestens zwei konkrete Zustände, die von ab-
stractState:Class erben beziehungsweise die Schnittstelle implementieren.

Die strukturbasierte Entwurfsmustererkennung wird wie in Abschnitt 2.3.6
erläutert auch zur Suche nach Implementierungen von Anti-Patterns einge-
setzt. Anti-Patterns werden häufig durch unscharfe Formulierungen wie

”
eine

Klasse mit vielen Methoden“ oder
”
eine große Klasse“ beschrieben. Um Struk-

turmuster mit solchen Eigenschaften spezifizieren zu können, wurden Metriken
in die Syntax der Strukturmuster eingeführt. Mit Hilfe der Metrik LOC (Lines
Of Code) kann zum Beispiel eine Klasse als groß definiert werden, wenn sie aus

41

Kapitel 3 Erweiterung der strukturbasierten Entwurfsmustererkennung

mehr als 500 Zeilen Quelltext besteht. Meistens sind Begriffe wie groß jedoch
nicht in Zahlen zu fassen. Um also keine absoluten Werte für solche Metriken
verwenden zu müssen, sind so genannte Fuzzy-Bedingungen eingeführt worden,
die stattdessen unscharfe Grenzen vorgeben.

largeClass
«create»

:LargeClass
«create»

largeClass:Class
fuzzy: NOA
fuzzy: NOM
fuzzy: LOC {w = 2} NOM10

1
μ

40

LOC100

1
μ

500

sp LargeClass

NOA5

1
μ

25

Abbildung 3.4: Das unscharfe Strukturmuster des Anti-Patterns Large Class

Abbildung 3.4 zeigt das unscharfe Strukturmuster des Anti-Patterns Large
Class. Eine Klasse wird als groß definiert, wenn sie viele Attribute (Number
of Attributes - NOA) und viele Methoden (Number Of Methods - NOM) hat,
sowie aus sehr vielen Zeilen Quelltext besteht. Für jede der drei Metriken
wird jeweils eine Fuzzy-Funktion definiert, die jeder ermittelten Metrik einen
Wert zwischen 0 und 1 zuordnet. Durch die Verbindung der Metrik NOM mit
einer Fuzzy-Funktion kann zum Beispiel die Bedingung

”
eine Klasse hat viele

Methoden“ spezifiziert werden. Je näher der Fuzzy-Wert an 1 liegt, desto eher
trifft die Aussage zu. Liegen die Fuzzy-Werte aller drei Metrik-Bedingungen
nahe bei 1, so kann davon ausgegangen werden, dass eine Implementierung des
Anti-Patterns Large Class vorliegt. Die ermittelten Fuzzy-Werte fließen zudem
in die Bewertung des Kandidaten ein.

Bestimmte Bedingungen in Strukturmustern sind wichtiger als andere. Um
dies bei der Bewertung eines Kandidaten zu berücksichtigen, sind Gewichte für
Bedingungen eingeführt worden. In Abbildung 3.4 ist zum Beispiel die Metrik-
Bedingung LOC mit dem Gewicht 2 (w=2) versehen. Wird das Gewicht nicht
explizit angegeben, so erhält die Bedingung das Gewicht 1.

42

3.1 Unscharfe Regeln und Bewertung

3.1.3 Bewertung der Ergebnisse

Um eine potentielle Entwurfsmusterimplementierung zu bewerten, wird der
Grad der Übereinstimmung des Kandidaten zum Strukturmuster berechnet.
Die verwendete Bewertungsfunktion lässt sich vereinfacht folgendermaßen dar-
stellen:

Bewertung(a, sp) =

∑
b∈Bedingungen(sp) Erfülltheitsgrad(b, a) · wb∑

b∈Bedingungen(sp) wb

Die Bewertung einer Annotation a, die einen Kandidaten repräsentiert, und
dem zugehörigen Strukturmuster sp errechnet sich aus dem Verhältnis der
Summe der gewichteten Erfülltheitsgrade jeder Bedingung zur Summe der Ge-
wichte wb aller Bedingungen. Der Erfülltheitsgrad ist für jedes Syntaxelement
der Strukturmuster, also jeder Art von Bedingung, separat definiert.

Der Erfülltheitsgrad einer notwendigen Bedingung wie dem Objekt con-
text:Class aus Abbildung 3.3 ist 1. Ein einfaches, nicht notwendiges Objekt
wie das Objekt :Stereotype erhält den Erfülltheitsgrad 1, wenn es in dem Kan-
didaten vorhanden ist, sonst 0. Eine nicht notwendige Attributbedingung wie
abstract==true hat ebenfalls den Erfülltheitsgrad 1, wenn sie erfüllt ist, sonst 0.
Wird eine Annotation, wie zum Beispiel :Delegation im State-Strukturmuster,
verwendet, so ist ihr Erfülltheitsgrad durch ihre Bewertung definiert. Die Be-
wertung einer Annotation wird also rekursiv über die Annotationen berechnet,
von denen sie abhängig ist.

Bei Mengenknoten ist der Erfülltheitsgrad abhängig von der Anzahl der
Objekte, die der Menge zugeordnet sind. Der Erfülltheitsgrad wird berechnet,
indem die Anzahl der Objekte auf eine streng monoton steigende, asymp-
totisch gegen 1 strebende Funktion abgebildet wird. Je mehr Objekte einer
Menge zugeordnet sind, desto höher ist der Erfülltheitsgrad und somit die
Bewertung einer Annotation. Bei Mengenknoten, die aus Annotationen beste-
hen wie :OverriddenMethod, werden zusätzlich zur Anzahl die Bewertungen der
einzelnen Annotationen berücksichtigt.

Die streng monoton steigende Funktion für Mengenknoten ist nur eine von
vielen möglichen Funktionen. Durch die separate Definition einer Funktion
für jedes Syntaxelement zur Berechnung des Erfülltheitsgrades lassen sich die
Funktionen leicht austauschen, sollten sie sich in der Praxis als nicht tauglich
erweisen. Vorstellbar wäre für Mengenknoten zum Beispiel auch die Gauß-
Funktion.

Für Fuzzy-Bedingungen wie die Metrik Number Of Methods im Beispiel
des Anti-Patterns Large Class in Abbildung 3.4 wird die zugehörige Fuzzy-

43

Kapitel 3 Erweiterung der strukturbasierten Entwurfsmustererkennung

Funktion als Erfülltheitsgrad verwendet. Auf eine detailliertere Beschreibung
der Bewertungsfunktion wird in diesem Kontext allerdings verzichtet. Für wei-
tere Informationen sei auf [Tra06] verwiesen.

Die aus der strukturbasierten Entwurfsmustererkennung resultierenden An-
notationen werden mit ihrer Bewertung in einem Klassendiagramm visuali-
siert. Annotationen, deren Bewertung einen vorgegebenen Schwellwert nicht
überschreiten, können aus dem Gesamtergebnis ausgeblendet werden, um die
Übersichtlichkeit zu erhöhen.

3.2 Verhaltensbasierte Entwurfsmustererkennung

Eine weitere, bisher nur sehr ungenügend erfüllte Anforderung an eine auto-
matische Entwurfsmustererkennung ist die Produktion möglichst präziser Er-
gebnisse. Zur Analyse sollten deshalb möglichst viele, charakteristische Eigen-
schaften der zu suchenden Entwurfsmuster heran gezogen werden. Zu diesen
Eigenschaften zählt jedoch nicht nur ihre Struktur, sondern auch ihr Verhal-
ten. Im Folgenden wird deshalb ein Verfahren skizziert, mit dem auch das
Verhalten eines Entwurfsmusters spezifiziert und die Übereinstimmung eines
Kandidaten mit dieser Spezifikation zur Laufzeit des Softwaresystems über-
prüft werden kann.

3.2.1 Motivation und Lösungsidee

Das in Abschnitt 2.3 vorgestellte Verfahren zur Entwurfsmustererkennung be-
schränkt sich auf strukturelle Informationen. Viele Entwurfsmuster definieren
sich jedoch nicht nur durch ihre Struktur, sondern in hohem Maße auch durch
ihr Verhalten. Das State-Entwurfsmuster ist ein gutes Beispiel dafür. Es erlaubt
einem Objekt, sein Verhalten abhängig von seinem Zustand zu verändern.

In Abbildung 3.5 ist die Struktur des State-Entwurfsmusters zu sehen. Das
Objekt, das zur Laufzeit sein Verhalten ändern kann, ist vom Typ Context. Die
Klasse Context assoziiert eine abstrakte Oberklasse AbstractState. Diese Klasse
gibt eine gemeinsame Schnittstelle für konkrete Klassen vor, die verschiedene
Zustände implementieren. Die hier verwendeten konkreten Zustände Concre-
teStateA und ConcreteStateB sind nur Beispiele. Das State-Entwurfsmuster ist
nicht nur auf zwei konkrete Zustände beschränkt, sondern kann prinzipiell be-
liebig viele, verschiedene Zustände verwalten.

Das Verhalten des State-Entwurfsmusters ist in [GHJV95] wie folgt beschrie-
ben:

44

3.2 Verhaltensbasierte Entwurfsmustererkennung

state

1

AbstractState
+handle()

Context
+setState(AbstractState)
+request()

state.handle()
ConcreteStateA
+handle()

ConcreteStateB
+handle()

Abbildung 3.5: Die Struktur des State-Entwurfsmusters

”
Context delegates state-specific requests to the current Concrete-

State object. [...] Clients can configure a context with State objects.
Once a context is configured, its clients don’t have to deal with
the State objects directly. Either Context or the ConcreteState sub-
classes can decide which state succeeds another and under what
circumstances.“.

Zur Laufzeit referenziert also ein Objekt vom Typ Context ein konkretes
Zustandsobjekt. Wird eine Anfrage an das Context-Objekt mit Hilfe der Me-
thode request() gestellt, so gibt es die Anfrage an sein aktuelles Zustandsobjekt
durch Aufruf der Methode handle() weiter. Die Anfrage kann so abhängig vom
Zustand des Objekts bearbeitet werden. Zustandsänderungen werden durch
Austausch des aktuellen Zustandsobjekts entweder vom Context-Objekt selber
oder von dem aktuellen Zustandsobjekt vorgenommen.

Der Vorteil dieser Struktur ist, dass sie sehr wartungsfreundlich ist. Sie kann
relativ einfach durch neue Zustände erweitert werden, ohne große Änderungen
an den anderen beteiligten Klassen durchführen zu müssen. Des Weiteren sind
die Algorithmen, die in einem bestimmten Zustand ausgeführt werden, jeweils
in einer Zustandsklasse gekapselt, was die Übersichtlichkeit erhöht und damit
auch die Wartung erleichtert.

Die Struktur des State-Entwurfsmusters ist allerdings ein Beispiel für eine in
objektorientierten Architekturen sehr häufig vorkommende Konstruktion. Die
Grundstruktur besteht aus einer Klasse, die eine abstrakte Klasse assoziiert,
von der mehrere konkrete Klassen erben. Das Implementieren oder Überschrei-
ben einer Methode aus einer abstrakten Oberklasse durch konkrete Klassen ist
eines der Hauptmerkmale objektorientierter Programmierung. Auch die Dele-
gation von Methodenaufrufen an andere referenzierte Objekte ist häufig anzu-
treffen. Die Wahrscheinlichkeit, eine solche Struktur in einer objektorientierten

45

Kapitel 3 Erweiterung der strukturbasierten Entwurfsmustererkennung

Architektur vorzufinden, ist also relativ hoch.
Sollten aber solche Konstrukte, die zwar in ihrer Struktur mit einem Ent-

wurfsmuster übereinstimmen, sich aber zur Laufzeit anders verhalten, als Im-
plementierungen dieser Entwurfsmuster erkannt werden? Ist eine potentielle
State-Implementierung, die zur Laufzeit niemals ihr mutmaßliches Zustandsob-
jekt austauscht, wirklich eine Implementierung eines State-Entwurfsmusters?
Die zentrale These, die also mit dieser Arbeit belegt werden soll, lautet:

Ein Konstrukt, welches die Struktur eines bestimmten Entwurfs-
musters hat und sich auch wie ein solches Entwurfsmuster verhält,
ist mit sehr hoher Wahrscheinlichkeit eine tatsächliche Implemen-
tierung dieses Entwurfsmusters.

Es sollte also eine Laufzeitanalyse des Verhaltens durchgeführt werden, um
so möglichst viele False-Positives , also fälschlicherweise erkannte Entwurfsmu-
sterimplementierungen, auszuschließen.

strategy

1

Context
+setStrategy(AbstractStrategy)
+request()

strategy.algorithm()

AbstractStrategy
+algorithm()

ConcreteStrategyA
+algorithm()

ConcreteStrategyB
+algorithm()

Abbildung 3.6: Die Struktur des Strategy-Entwurfsmusters

Es gibt noch einen weiteren Grund, der zeigt, dass eine Strukturanalyse
alleine nicht ausreichend ist. Es existieren Paare von Entwurfsmustern, die sich
in ihrer Struktur sehr ähnlich sind oder sogar vollständig übereinstimmen. Die
Struktur des Strategy-Entwurfsmusters (Abbildung 3.6) stimmt zum Beispiel
vollständig mit der Struktur des State-Entwurfsmusters überein. Das führt
bei der strukturbasierten Erkennung dazu, dass dasselbe Konstrukt sowohl
als State-, als auch als Strategy-Entwurfsmusterimplementierung identifiziert
wird. Das Verhalten des Strategy-Entwurfsmusters ist jedoch im Gegensatz
zum State-Entwurfsmuster in [GHJV95] beschrieben durch:

”
A context forwards requests from its clients to its strategy. Clients

usually create and pass a ConcreteStrategy object to the context;
thereafter, clients interact with the context exclusively.“.

46

3.2 Verhaltensbasierte Entwurfsmustererkennung

Auch hier kann ein Objekt zur Laufzeit Algorithmen durch unterschiedliche
Strategien ausführen lassen. Der Austausch einer Strategie wird jedoch nicht
von dem Objekt selber oder der aktuellen Strategie veranlasst, sondern von au-
ßen. Zur Laufzeit kann also durch Beobachtung des Verhaltens zwischen den
Entwurfsmustern State und Strategy unterschieden werden. Weitere Beispiele
für Paare ähnlicher Entwurfsmuster sind Decorator und Chain of Responsibi-
lity, Strategy und Bridge, State und Composite oder Composite und Chain of
Responsibility.

Das Ignorieren des Verhaltens bei der Entwurfsmustererkennung führt zu
höheren Fehlerraten, wie an dem vorangehenden Beispiel zu erkennen ist.
Zur präziseren Identifikation von Entwurfsmusterimplementierungen sollte also
auch ihr Verhalten untersucht werden.

Das Verhalten von Software wird bei imperativen Programmiersprachen
durch Variablenbelegungen und deren Änderungen sowie durch Prozedur- oder
Methodenaufrufe bestimmt. In der bisherigen Entwurfsmustererkennung in
Fujaba können auf Basis der abstrakten Syntaxbäume der Methoden sehr
rudimentäre Daten- und Kontrollflussanalysen durchgeführt oder potentielle
Methodenaufrufe identifiziert werden. Statische Analysen können jedoch nicht
feststellen, ob potentielle Methodenaufrufe tatsächlich zur Laufzeit ausgeführt
werden. Die konkreten, aufzurufenden Methoden werden in objektorientierten
Programmiersprachen mit Polymorphismus und dynamischer Methodenbin-
dung sogar erst zur Laufzeit festgelegt.

Die Überwachung von Variablenbelegungen und Methodenaufrufen zur Lauf-
zeit des zu untersuchenden Softwaresystems gestaltet sich jedoch sehr schwie-
rig aufgrund der zu großen Datenmenge2, die dabei anfällt. Entwurfsmuster
beschreiben allerdings in der Regel Kollaborationen mehrerer Objekte. Das
Verhalten eines Entwurfsmusters wird also im Wesentlichen bestimmt durch
die Art und Reihenfolge von Nachrichten in Form von Methodenaufrufen, die
zwischen diesen Objekten ausgetauscht werden. Zur Analyse des Verhaltens
eines Programms ist also eine Beschränkung auf die Methodenaufrufe zur Re-
duzierung der anfallenden Datenmenge möglich.

Der Reverse-Engineer sollte durch die automatische Erkennung auf potenti-
elle Entwurfsmusterimplementierungen hingewiesen werden. Trotzdem sollten
aber Konstrukte, deren Struktur und deren Verhalten mit dem des Entwurfs-
musters übereinstimmen, deutlich von anderen Konstrukten, die nur in ih-
rer Struktur mit dem Entwurfsmuster übereinstimmen, unterschieden werden

2Bill Lewis berichtet in seiner Arbeit, bei der sowohl Variablenbelegungen als auch Metho-
denaufrufe aufgezeichnet werden, von 100MB Daten pro Sekunde [Lew03].

47

Kapitel 3 Erweiterung der strukturbasierten Entwurfsmustererkennung

können. Rein strukturbasierte Analysen sind nicht in der Lage, solche Un-
terscheidungen durchzuführen. Um sicherere Aussagen machen zu können, ist
auch eine Analyse des Verhaltens notwendig.

Da strukturelle Eigenschaften von Entwurfsmustern mit Hilfe statischer
Analysen sehr effizient erkennbar sind, ist eine Kombination aus statischer
und dynamischer Analyse sinnvoll [Wen03]. Die bei der dynamischen Analyse
anfallende Datenmenge kann durch diesen Ansatz sogar noch weiter reduziert
werden. Eine vorher durchgeführte strukturbasierte Entwurfsmustererkennung
identifiziert potentielle Entwurfsmusterimplementierungen. In der anschließen-
den dynamischen Analyse kann dadurch die Überwachung von Methodenauf-
rufen auf Objekte der potentiellen Entwurfsmusterimplementierungen einge-
schränkt werden.

3.2.2 Struktur- und verhaltensbasierter Erkennungsprozess

Das bisherige Verfahren der Entwurfsmustererkennung in Fujaba basiert im
Wesentlichen auf der Struktur der Entwurfsmuster. Ihr Verhalten wird nur sehr
rudimentär durch Identifikation potentieller Methodenaufrufe auf den abstrak-
ten Syntaxbäumen der Methoden analysiert, wie an dem Beispiel des Delegati-
on-Hilfsmusters aus Abschnitt 2.3.2 zu sehen ist. Allerdings ist das Verfahren
sehr gut dazu geeignet, durch eine dynamische Analyse des Verhaltens ergänzt
zu werden. In Abbildung 3.7 ist der in [Wen03] vorgestellte, erweiterte Prozess
der struktur- und verhaltensbasierten Entwurfsmustererkennung zu sehen.

Quelltext

Design-
dokument

Verhaltens-
muster

TestsTests

Struktur-
muster

Ausführbares
Programm

Kandidaten
für Entwurfsmuster-
implementierungen

Dynamische
Analyse

Statische
Analyse

Datenfluß

Interaktion

Dokument

Prozessschritt

Abbildung 3.7: Der kombinierte Erkennungsprozess

48

3.2 Verhaltensbasierte Entwurfsmustererkennung

Die statische Analyse des in Abbildung 3.7 gezeigten Prozesses ist eine ver-
einfachte Darstellung des Prozesses aus Abschnitt 2.3.4. Dieser Prozess der
strukturbasierten Entwurfsmustererkennung wird unverändert als Teilprozess
übernommen. Eingaben dieses Teilprozesses sind der Quelltext des zu untersu-
chenden Softwaresystems und ein Katalog von Strukturmustern. Das Ergebnis
des Teilprozesses sind potentielle Entwurfsmusterimplementierungen, die so
genannten Kandidaten.

Diese Kandidaten können in der dynamischen Analyse dazu verwendet wer-
den, den Suchraum einzuschränken. Es müssen nur Methoden der an den
Kandidaten beteiligten Klassen zur Laufzeit des Programms überwacht wer-
den. Weitere Eingaben der dynamischen Analyse sind das zu untersuchen-
de, ausführbare Programm und so genannte Verhaltensmuster. Das Programm
wird in der dynamischen Analyse entweder durch automatische Tests oder
manuell durch einen Benutzer ausgeführt. Die beobachteten Methodenaufru-
fe der Kandidaten können entweder aufgezeichnet und nach Beendigung des
Programms mit den Verhaltensmustern verglichen werden, oder bereits zur
Laufzeit ausgewertet werden.

Der Begriff Verhaltensmuster wird im Folgenden analog zu dem Begriff des
Strukturmusters verwendet. Während Strukturmuster zur Spezifikation der
strukturellen Anteile eines Entwurfsmusters dienen, werden Verhaltensmuster
zur Spezifikation des Verhaltens eines Entwurfsmusters verwendet. In diesem
Zusammenhang sei besonders darauf hingewiesen, dass der Begriff Verhaltens-
muster nicht die Kategorie3 der Entwurfsmuster bezeichnet, die hauptsächlich
Kollaborationen und Verhalten von Objekten beschreiben und in der engli-
schen Literatur häufig mit Behavioral Design Patterns bezeichnet werden.

Als Ergebnis des Gesamtprozesses erhält der Reverse-Engineer ein Designdo-
kument in Form von annotierten UML-Klassendiagrammen. Die Klassendia-
gramme repräsentieren das untersuchte Softwaresystem und sind angereichert
mit Informationen über die gefundenen Entwurfsmusterimplementierungen. In
den Annotationen der Entwurfsmusterimplementierungen werden Bewertun-
gen angegeben, die ausdrücken, inwieweit die Entwurfsmusterimplementierung
mit dem Strukturmuster beziehungsweise dem Verhaltensmuster des Entwurfs-
musters übereinstimmt. Die Bewertungen stammen aus der statischen (siehe
Abschnitt 3.1.3) und der dynamischen Analyse. Hohe Bewertungen bedeu-
ten dabei eine hohe Übereinstimmung der Entwurfsmusterimplementierung
mit dem Strukturmuster beziehungsweise dem Verhaltensmuster. Der Reverse-
Engineer kann so zum Beispiel Annotationen mit geringer Bewertung aus sei-

3siehe Tabelle 2.1, Seite 12

49

Kapitel 3 Erweiterung der strukturbasierten Entwurfsmustererkennung

ner Sicht auf das zu untersuchende Softwaresystem entfernen und sich auf die
wahrscheinlichsten Entwurfsmusterimplementierungen konzentrieren.

Die in dieser Arbeit entwickelte automatische struktur- und verhaltensba-
sierte Entwurfsmustererkennung erhebt nicht den Anspruch, absolute Aus-
sagen über das zu untersuchende Softwaresystem zu machen. Der Reverse-
Engineer soll durch dieses Verfahren in seinen Bemühungen, das Softwaresy-
stem zu verstehen, deutlich unterstützt werden. Die letztendliche Entschei-
dung, ob eine Entwurfsmusterimplementierung tatsächlich vorliegt, kann und
soll dem Reverse-Engineer jedoch nicht abgenommen werden.

3.2.3 Verhaltensmodell eines Softwaresystems

Das in der strukturbasierten Entwurfsmustererkennung verwendete Struktur-
modell kann nicht zur Analyse des Verhaltens herangezogen werden. Aus die-
sem Grund wird analog zum Strukturmodell ein Verhaltensmodell für die ver-
haltensbasierte Entwurfsmustererkennung eingeführt.

Das Verhaltensmodell hängt genau wie das Strukturmodell von der Anwen-
dungsdomäne der Entwurfsmustererkennung ab. Das Verhaltensmodell für ob-
jektorientierte Softwaresysteme beschreibt eine Sequenz von Methodenaufru-
fen, die zur Laufzeit beobachtet und aufgezeichnet wurden. Für andere Softwa-
resysteme, die in funktionalen oder regelbasierten Sprachen geschrieben wur-
den, könnte das Verhaltensmodell auch eine Sequenz von Funktionsaufrufen
oder Regelausführungen beschreiben.

Eine Sequenz von Methodenaufrufen wird auch als Trace bezeichnet. Die
Ordnung innerhalb eines Traces ist durch die Reihenfolge der Methodenaufrufe
zur Laufzeit vorgegeben. Traces müssen nicht die Gesamtheit aller zur Lauf-
zeit ausgeführten Methodenaufrufe umfassen. Sie können beliebige Sequenzen
zwischen zweier Zeitpunkte ausgeführte Methodenaufrufe sein. Dabei muss ein
Trace nicht einmal alle zwischen den beiden Zeitpunkten ausgeführten Metho-
denaufrufe enthalten, er kann auch aus einer Teilmenge bestehen. Die einzige
Voraussetzung ist, dass die Ordnung der Methodenaufrufe erhalten bleibt.

Im Gegensatz zur Struktur repräsentiert ein Trace daher nicht das gesamte
mögliche Verhalten eines Softwaresystems. Es handelt sich immer nur um eine
einzelne Sequenz aus theoretisch unendlich vielen möglichen Sequenzen. Traces
sind abhängig von der Eingabe, mit der das Softwaresystem gestartet wird, und
von den Methoden, die beobachtet werden.

In Abbildung 3.8 ist ein Trace, der zur Laufzeit eines Softwaresystems auf-
gezeichnet wurde, als Sequenzdiagramm visualisiert. Das Beispiel zeigt einen
Ausschnitt aus der Ausführung des Mediaplayers aus Abbildung 2.3, Seite 20.

50

3.2 Verhaltensbasierte Entwurfsmustererkennung

setState(st)

execute(CMD_STOP)
execute(s,CMD_STOP)

setState(st)

read()

execute(CMD_PLAY)
execute(s,CMD_PLAY)

setState(pl)

p:Player s:Stream pl:Playing

close()

st:Stopped

run(s)

run(s)

Abbildung 3.8: Trace eines Programmlaufs

Die Gesamtheit der zur Laufzeit aufgezeichneten Methodenaufrufe werden
in einem Tracegraphen zusammengefasst. Abbildung 3.9 zeigt das Modell ei-
nes Tracegraphen. Die Wurzel eines Tracegraphen ist ein Prozess, repräsentiert
durch die Klasse Process. Dieser enthält eine Sequenz von Methodenaufrufen
(MethodCall). Zu jedem Methodenaufruf gibt es eine Instanz, die den Aufruf
ausführt (caller), und eine Instanz, die den Methodenaufruf empfängt (callee).
Beide Instanzen sind vom Typ Instance. Des Weiteren können zu jedem Me-
thodenaufruf beliebig viele Argumente (Argument) gehören. Die Klassen des
Tracegraphen gehören zum Paket Behavior.

In einem Tracegraphen ist das Verhalten eines Softwaresystems während
eines konkreten Programmlaufs aufgezeichnet. Die Instanzen, die in diesem
Tracegraphen vorkommen, sind Instanzen der Klassen, die in der Struktur des
Softwaresystems beschrieben werden. Des Weiteren sind die Methodenaufrufe
des Tracegraphen Aufrufe der Methoden, die ebenfalls in der Struktur beschrie-
ben werden. Diese semantische Typbeziehung wird zwischen dem Verhaltens-
modell und dem Strukturmodell durch Referenzen ausgedrückt. Die Klassen
der Instanzen, Methodenaufrufe und Argumente des Tracegraphen besitzen je-
weils eine Referenz zu Klassen des Strukturmodells aus Abbildung 2.2 (Seite
19). So referenziert Instance die Klasse Structure::Class, MethodCall referenziert
die Klasse Structure::Method und Argument die Klasse Structure::Parameter.

51

Kapitel 3 Erweiterung der strukturbasierten Entwurfsmustererkennung

Process

MethodCall

+id:String

methodCalls 0..* {ordered}

methodCalls

process 1

Instance

+id:String

caller

callee

revCaller
0..*

revCallee
0..*

callee
1

caller
1

Argument
+value:String

arguments

type 1

arguments 0..* {ordered}

method 1

next

previous
0..1

next
0..1

«reference»
Structure::Class

object revObjects
0..*

object 0..1

«reference»
Structure::Parameter

«reference»
Structure::Method

type 1

type 1

Abbildung 3.9: Das Modell des Tracegraphen, Paket Behavior

3.2.4 Überblick

Um einen besseren Überblick über das erweiterte Struktur- und Verhaltens-
modell eines Softwaresystems zu bekommen, sind die beiden, im vorigen Ab-
schnitt eingeführten Diagramme in das Schema aus Metamodellen, Modellen
und Instanzen aus Abbildung 2.13 eingeordnet worden. Das Ergebnis ist in Ab-
bildung 3.10 dargestellt. Das Verhaltensmodell, also das Modell des Tracegra-
phen gehört zur mittleren Abstraktionsschicht, zu der auch das Strukturmodell
gehört. Die semantische Beziehung zwischen Struktur- und Verhaltensmodell
ist durch Referenzen zwischen den beiden Modellen spezifiziert.

Der Tracegraph, also das konkrete, zur Laufzeit beobachtete Verhalten,
gehört zur Instanzschicht auf unterster Ebene. Da Verhaltensmodelle genau
wie Strukturmodelle als Klassendiagramme spezifiziert werden, nutzen sie ein
gemeinsames Metamodell.

52

3.2 Verhaltensbasierte Entwurfsmustererkennung

Behavior

ClassDiagrams

Structure

Generalization

methods

params

type

superClass subClass

type

attrs

resultType

Array

type

type 1

methods 0..*

parent 1 1 parent

0..* attrs0..* paramDecls 0..* attrDecls

arrayDecls 0..*
1 subClasssuperClass 1

0..* revSubClassesrevSuperClasses 0..*

1 resultType

resultDecls 0..*

params

0..*
{ordered}

method

1
Parameter

+name:String
Attribute

+name:String

Class
+name:String
+abstract:boolean

Method
+name:String
+abstract:boolean

Typetype

1

type

1

Generalization

methods

params

type

superClass subClass
type

attrs

resultType

Array

type

type

1

type

1

methods 0..*

parent 1 1 parent

0..* attrs0..* paramDecls

arrayDecls 0..*
1 subClasssuperClass 1

0..* revSubClassesrevSuperClasses 0..*

1 resultType

resultDecls 0..*

params

0..*
{ordered}

method

1
Parameter
+name:String

Attribute
+name:String

left right

attrDecls
0..*

type 1 Association

+name:String

Role
+name:String
+cardinality:String

roles
target

1

roles

0..*

revRight 0..*revLeft 0..*

left 1 right 1

Class
+name:String
+abstract:boolean

Method
+name:String
+abstract:boolean

Type

Process

MethodCall

+id:String

methodCalls 0..* {ordered}

methodCalls

process 1

Instance

+id:String

caller

callee

revCaller
0..*

revCallee
0..*

callee
1

caller
1

Argument
+value:String

arguments

type 1

arguments 0..* {ordered}

method 1

next

previous
0..1

next
0..1

«reference»
Structure::Class

object revObjects
0..*

object 0..1

«reference»
Structure::Parameter

«reference»
Structure::Method

type 1

type 1

Playing
+execute(s:Stream,command:int)
+run(s:Stream)

Paused
+execute(s:Stream,command:int)
+run(s:Stream)

Stopped
+execute(s:Stream,command:int)
+run(s:Stream)

StreamState
+execute(s:Stream,command:int)
+run(s:Stream)

Stream

+setState(state:StreamState)
+execute(command:int)
+read()
+close()

+CMD_PLAY:int = 1
+CMD_PAUSE:int = 2
+CMD_STOP:int = 3
-state:StreamState

Player

+play()
+pause()
+stop()

-streams:Set setState(st)

execute(CMD_STOP)
execute(s,CMD_STOP)

setState(st)

read()

execute(CMD_PLAY)
execute(s,CMD_PLAY)

setState(pl)

p:Player s:Stream pl:Playing

close()

st:Stopped

run(s)

run(s)

Abbildung 3.10: Die Modellierung von Struktur und Verhalten eines
Softwaresystems

53

Kapitel 3 Erweiterung der strukturbasierten Entwurfsmustererkennung

3.3 Zusammenfassung

Die in Kapitel 2.3 vorgestellte strukturbasierte Entwurfsmustererkennung in
Fujaba erfüllt von den in Abschnitt 2.2 definierten Anforderungen bisher nur
die Skalierbarkeit und die Anpassbarkeit vollständig. In Kapitel 2 konnte dies
gezeigt werden. Die Bewertung der Ergebnisse dagegen war in der bisherigen
Umsetzung nicht praxistauglich. Auch die Präzision des Ansatzes war wegen
der fehlenden Analyse des Verhaltens der potentiellen Entwurfsmusterimple-
mentierungen gering.

In diesem Kapitel wurde eine Bewertung der Ergebnisse der strukturbasier-
ten Erkennung vorgestellt, die im Gegensatz zur bisherigen Lösung die indivi-
duellen Entwurfsmusterimplementierungen berücksichtigt. Dazu ist die Syntax
der Strukturmuster erweitert worden. Es ist nun möglich, Bedingungen in die
Strukturmuster aufzunehmen, die nicht von allen Entwurfsmusterimplemen-
tierungen erfüllt werden müssen. Sollten sie jedoch von einem Kandidaten
erfüllt werden, so liefern sie zusätzliche Hinweise darauf, dass eine tatsächli-
che Entwurfsmusterimplementierung vorliegt. Diese Hinweise resultieren in ei-
ner höheren und damit besseren Bewertung des Kandidaten. Kandidaten, die
nur die notwendigen Bedingungen erfüllen, erhalten eine niedrigere und damit
schlechtere Bewertung.

Baut ein Strukturmuster auf bereits gefundenen Annotationen auf, so fließen
die Bewertungen der verwendeten Annotationen in die Bewertung der Anno-
tation des Strukturmusters ein. Somit können Annotationen, die

”
schlechte“

Informationen verwenden, keine guten Bewertungen erhalten.
Die Bewertungen der Ergebnisse können vom Reverse-Engineer dazu verwen-

det werden, um unsichere Informationen, das heißt Annotationen mit geringer
Bewertung, aus dem Gesamtergebnis auszublenden. Der Benutzer kann sich so
leichter auf die relevanten Informationen konzentrieren.

Die Praxistauglichkeit der Bewertung wurde allerdings bisher nicht über-
prüft. Kritisch ist vor allem die Bewertung der Mengen in Abhängigkeit von
ihrer Größe. Bei Mengenknoten aus Annotationen kann es vorkommen, dass ei-
ne Menge von vielen, niedrig bewerteten Annotationen eine höhere Bewertung
erhält, als eine Menge von wenigen, aber sehr hoch bewerteten Annotationen.
Aus diesem Grund ist es notwendig, die Bewertung in einer größeren Studie
in der Praxis zu überprüfen. Das kann jedoch im Rahmen dieser Arbeit nicht
geleistet werden. Das Konzept, die Bewertungsfunktion eines Strukturmusters
auf die Bewertungsfunktionen der verschiedenen Syntaxelemente eines Struk-
turmusters zurückzuführen, erleichtert jedoch zum Beispiel einen Austausch
der Bewertungsfunktion der Mengenknoten, sollte sich diese Bewertungsfunk-

54

3.3 Zusammenfassung

tion in der Praxis als nicht tauglich erweisen.
Des Weiteren wurde in diesem Kapitel ein Konzept vorgestellt, um die Präzi-

sion des bisherigen Ansatzes zu verbessern. Entwurfsmuster werden nicht nur
durch ihre Struktur, sondern auch durch ihr Verhalten zur Laufzeit charakteri-
siert. Das Verhalten wurde bisher nicht berücksichtigt. Die Struktur sehr vieler
Entwurfsmuster basiert jedoch auf in der objektorientierten Programmierung
häufig verwendeten Konzepten, wie zum Beispiel Vererbung und dynamische
Methodenbindung sowie Delegation von Methodenaufrufen. Viele Entwurfsmu-
ster ähneln sich zudem in ihrer Struktur, was eine Unterscheidung durch eine
statische Analyse erschwert, wenn nicht sogar unmöglich macht. Somit führt
eine rein strukturbasierte Analyse zu einer hohen Zahl von False-Positives.

Das in dieser Arbeit vorgestellte Konzept besteht deshalb aus einer Kom-
bination aus strukturbasierter und verhaltensbasierter Entwurfsmustererken-
nung, um so die Vorteile beider Techniken nutzen zu können. Die Datenmen-
gen, die zur Laufzeit eines Softwaresystems anfallen und von einer verhaltens-
basierten Entwurfsmustererkennung analysiert werden müssen, sind enorm.
Eine vorangehende Strukturanalyse kann jedoch diese Datenmengen erheblich
verringern, indem die Verhaltensanalyse auf die in der Strukturanalyse iden-
tifizierten Kandidaten eingeschränkt wird. In dem kombinierten Prozess aus
Struktur- und Verhaltensanalyse wird also das Ergebnis der Strukturanalyse
durch die Verhaltensanalyse verfeinert, um so eine möglichst hohe Präzision
zu erreichen.

Das bereits vorhandene Strukturmodell eines zu untersuchenden Software-
systems ist nicht ausreichend zur struktur- und verhaltensbasierten Entwurfs-
mustererkennung. Es wird um ein Verhaltensmodell erweitert, das Sequenzen
von Methodenaufrufen repräsentiert. Sowohl das Struktur- als auch das Ver-
haltensmodell ist für die Analyse objektorientierter Software vorgesehen. Diese
Modelle können jedoch je nach Anwendungsdomäne gegen speziellere Modelle
ausgetauscht werden.

55

Kapitel 3 Erweiterung der strukturbasierten Entwurfsmustererkennung

56

Kapitel 4

Verhaltensspezifikation

Das Thema dieses Kapitels ist die formale Spezifikation des Verhaltens der Ent-
wurfsmuster. Dazu werden im ersten Teil des Kapitels zunächst informell Se-
quenzdiagramme nach UML 2.0 als Spezifikationssprache eingeführt, auf deren
Basis so genannte Verhaltensmuster definiert werden. Die formale Spezifikati-
on der Syntax der Verhaltensmuster ist Inhalt des zweiten Teils des Kapitels.
Im dritten Teil folgt eine informelle Beschreibung der Semantik der Verhaltens-
muster. Die formale Spezifikation der Semantik ist Inhalt des vierten Teils des
Kapitels. Die Semantik wird durch eine Transformation der Sequenzdiagram-
me in endliche Automaten definiert. Am Ende des Kapitels werden schließlich
die Verhaltensmuster in das bereits bekannte Schema aus Metamodellen, Mo-
dellen und Implementierungen eingeordnet.

4.1 Verhaltensmuster

Das Verhalten der Entwurfsmuster ist üblicherweise nicht formal spezifiziert.
Wie bereits in Abschnitt 3.2.1 zitiert, wird zum Beispiel zur Spezifikation des
Verhaltens des State-Entwurfsmusters in [GHJV95] einfacher Text gewählt.
Zur automatischen Erkennung durch Algorithmen ist diese Form der Spezifi-
kation jedoch nicht ausreichend. Der Reverse-Engineer muss also das Verhalten
eines Entwurfsmusters ebenso wie die Struktur formal spezifizieren. Erst dann
kann ein Algorithmus die Spezifikation verarbeiten. Analog zu den Struktur-
mustern aus 2.3.2 werden deshalb Verhaltensmuster eingeführt.

In Abschnitt 3.2.1 wurde erläutert, dass das Verhalten von Entwurfsmustern
mit Hilfe von Sequenzen von Methodenaufrufen beschrieben werden kann. In
der Softwaretechnik haben sich dazu die so genannten Sequenzdiagramme eta-
bliert. Sequenzdiagramme gibt es in verschiedenen Ausprägungen. Die beiden
gebräuchlichsten Spezifikationen sind die Message Sequence Charts (MSCs)

57

Kapitel 4 Verhaltensspezifikation

der International Telecommunication Union [Int99], und die Sequenzdiagram-
me nach UML [Obj].

Die Spezifikationssprache für Verhaltensmuster soll im Wesentlichen zwei
Kriterien genügen. Zum einen soll mit ihr das Verhalten der Entwurfsmuster
formal spezifiziert werden können, so dass die Spezifikationen algorithmisch
verarbeitet werden können. Zum anderen soll sie für den Reverse-Engineer
intuitiv zugänglich und leicht zu erlernen sein.

Sowohl MSCs, als auch Sequenzdiagramme nach UML 2.0 erfüllen bei-
de Kriterien. Die Verwendung der UML in der strukturbasierten Entwurfs-
mustererkennung spricht jedoch aus Gründen der Konsistenz für UML-
Sequenzdiagramme als Spezifikationssprache für Verhaltensmuster [Wen04].
Aus den Sequenzdiagrammen können automatisch Formalismen gewonnen wer-
den, die Verhaltensmuster präzise beschreiben und zur algorithmischen Ver-
arbeitung geeignet sind. Dazu werden die Sequenzdiagramme zum Beispiel
in endliche Automaten übersetzt. Da Sequenzdiagramme häufig im Forward
Engineering zur Quelltextgenerierung oder auch zu Dokumentationszwecken
eingesetzt werden, sind sie unter Softwareentwicklern allgemein bekannt. Ihre
graphische Form macht sie außerdem leicht zugänglich und schnell lesbar.

4.1.1 Formalisierung durch Sequenzdiagramme

Sequenzdiagramme spezifizieren Sequenzen von Nachrichten, die synchron oder
asynchron zwischen zwei Objekten versendet werden. Seit der Version 2.0
der UML stehen jedoch nicht nur einfache Sequenzen von Nachrichten zur
Verfügung, sondern auch verschiedene Kontrollstrukturen wie Wiederholun-
gen oder Alternativen, in denen wiederum Kontrollstrukturen und Sequenzen
von Nachrichten eingebettet sein können.

Verhaltensmuster sind in ihrer Syntax eingeschränkte Sequenzdiagramme.
Zum einen stehen nur synchrone Nachrichten zur Verfügung, die Methoden-
aufrufe zwischen zwei Objekten modellieren. Zum anderen können nur eini-
ge der in Sequenzdiagrammen möglichen Kontrollstrukturen in Verhaltensmu-
stern verwendet werden.

Die informelle Beschreibung des Verhaltens eines Entwurfsmusters muss vom
Reverse-Engineer in ein Verhaltensmuster umgesetzt werden. Abbildung 4.1
zeigt das Verhaltensmuster des State-Entwurfsmusters. Es wurde direkt aus
der informellen Beschreibung1 aus [GHJV95] abgeleitet. In der linken, oberen
Ecke des Verhaltensmusters steht neben der Abkürzung bp für Behavioral Pat-

1siehe Zitat in Abschnitt 3.2.1, Seite 44

58

4.1 Verhaltensmuster

a:abstractState b:abstractStateclient c:context

loop (1,*) request()
handle()

setState()

setState()alt

handle()
request()loop (1,*)

bp State

setState()opt

Abbildung 4.1: Das Verhaltensmuster des State-Entwurfsmusters

tern – die englische Bezeichnung für Verhaltensmuster – auch der Name des
Entwurfsmusters, für das das Verhaltensmuster spezifiziert wurde.

Aus der Beschreibung
”
Clients can configure a context with State objects.“ ist

die erste Kontrollstruktur des Verhaltensmusters aus Abbildung 4.1 abgeleitet.
Der Klient kann den Kontext mit Zustandsobjekten konfigurieren, das bedeu-
tet auch, dass er unter anderem den Startzustand wählen kann. Die erste Kon-
trollstruktur ist deshalb optional und enthält die Nachricht setState() des Ob-
jekts client an das Objekt c:context. Nach dieser Initialisierung werden Anfra-
gen des clients vom Objekt c:context an den aktuellen Zustand a:abstractState
delegiert, wie es durch den Satz

”
Context delegates state-specific requests to the

current ConcreteState object.“ beschrieben wird. Die Kombination aus Anfra-
ge (request()) und Delegation (handle()) findet mindestens einmal statt, kann
aber beliebig häufig wiederholt werden. Dies ist durch die Wiederholung loop
(1,*) ausgedrückt. Aus dem Satz

”
Either Context or the ConcreteState subclas-

ses can decide which state succeeds another and under what circumstances.“ ist
die folgende Alternative abgeleitet. Der Folgezustand wird entweder durch den
aktuellen Zustand a:abstractState oder durch das Objekt c:context ausgewählt.
Die weiteren Anfragen werden nun an den Zustand b:abstractState delegiert,
wiederum eingebettet in eine Schleife zur beliebig häufigen Wiederholung.

Das Verhaltensmuster des Strategy-Entwurfsmusters in Abbildung 4.2 ist
analog zum State-Verhaltensmuster aus der informellen Beschreibung2 in

2siehe Zitat in Abschnitt 3.2.1, Seite 46

59

Kapitel 4 Verhaltensspezifikation

client a:abstractStrategy b:abstractStrategy

opt

c:context

request()loop (1,*)
algorithm()

request()loop (1,*)
algorithm()

bp Strategy

setStrategy()

setStrategy()

Abbildung 4.2: Das Verhaltensmuster des Strategy-Entwurfsmusters

[GHJV95] abgeleitet worden. Im Unterschied zum State-Entwurfsmuster muss
hier vom client zunächst eine Strategie vorgegeben werden, bevor der cli-
ent Anfragen an das Objekt c:context stellen kann. Die Anfragen (request())
werden dann wiederum an die aktuelle Strategie a:abstractStrategy delegiert
(algorithm()). Ein Strategiewechsel zwischen den Anfragen ist optional vom
client durchzuführen. Sollte ein Wechsel erfolgen, so sind alle weiteren Anfra-
gen von c:context an die neue Strategie b:abstractStrategy zu delegieren.

Ein Verhaltensmuster muss nicht das gesamte mögliche Verhalten einer Ent-
wurfsmusterimplementierung zur Laufzeit beschreiben. Bei der Spezifikation
sollte ein Verhaltensmuster ähnlich wie ein Strukturmuster auf die wesentli-
chen Eigenschaften des Entwurfsmusters beschränkt werden. Die wesentlichen
Eigenschaften im Verhalten des State-Entwurfsmusters sind die Delegation
von Anfragen an den aktuellen Zustand und der Zustandswechsel, ausgelöst
durch den Kontext oder den aktuellen Zustand. Die letztgenannte Eigenschaft
ist zudem ein Unterscheidungsmerkmal zum strukturell identischen Strategy-
Entwurfsmuster. Beim Strategy-Entwurfsmuster werden zwar auch alle Anfra-
gen an die aktuelle Strategie delegiert, der Strategiewechsel wird aber vom
Klienten ausgelöst.

Da es für das State-Entwurfsmuster ausreicht, einen einzelnen Zustands-
wechsel zu modellieren, werden nur zwei Zustandsobjekte in dem Verhaltens-
muster verwendet. Zur Laufzeit können jedoch beliebig viele Zustandsobjek-
te existieren. Die Anzahl der Zustandsobjekte zur Laufzeit wird durch das
Verhaltensmuster nicht festgelegt. Das gleiche gilt für die Strategieobjekte im
Strategy-Verhaltensmuster.

60

4.1 Verhaltensmuster

4.1.2 Negative Verhaltensmuster

Bisher wurde durch Verhaltensmuster beschrieben, wie sich eine Entwurfsmu-
sterimplementierung zur Laufzeit des Programms verhalten soll. Allerdings
können Verhaltensmuster auch beschreiben, wie sich eine Entwurfsmusterim-
plementierung auf keinen Fall verhalten darf. Solche Verhaltensmuster werden
negative Verhaltensmuster genannt. Im Gegensatz dazu werden die zuvor be-
schriebenen Verhaltensmuster auch als positive Verhaltensmuster bezeichnet.
Zu einem Entwurfsmuster können ein positives und beliebig viele negative Ver-
haltensmuster spezifiziert werden.

setStrategy()

alt

a:abstractStrategyc:context

neg bp Strategy

setStrategy()

Abbildung 4.3: Ein negatives Verhaltensmuster des Strategy-Entwurfsmusters

Abbildung 4.3 zeigt ein negatives Verhaltensmuster des Strategy-Entwurfs-
musters. Es verbietet einen Strategiewechsel durch die aktuelle Strategie oder
durch den Kontext. Dieses Verhalten wird von einem State-Entwurfsmuster
erwartet, nicht jedoch von einem Strategy-Entwurfsmuster. Gekennzeichnet
werden negative Verhaltensmuster durch den Zusatz neg im Kopf des Ver-
haltensmusters.

4.1.3 Verbindung zu Strukturmustern

Soll ein Verhaltensmuster zu einem Entwurfsmuster definiert werden, muss im-
mer auch ein Strukturmuster für dieses Entwurfsmuster vorhanden sein. Wie
bereits in Abschnitt 3.2.2 erläutert, wird im neuen, struktur- und verhaltensba-
sierten Erkennungsprozess zunächst die Strukturanalyse auf dem Quelltext mit
Hilfe der Strukturmuster durchgeführt. Die verhaltensbasierte Entwurfsmuste-
rerkennung erhält dann als Eingabe unter anderem die Kandidaten, die in der
Strukturanalyse identifiziert wurden. Um die während der Verhaltensanalyse
anfallenden Datenmengen einzuschränken, werden wie bereits beschrieben nur
Methodenaufrufe der Kandidaten beobachtet. Aus diesem Grund sind die für

61

Kapitel 4 Verhaltensspezifikation

die Verhaltensmusterobjekte verwendbaren Typen und die für die Nachrichten
des Verhaltensmusters verwendbaren Methoden eingeschränkt.

context abstractState

«create» «create»

context:Class

request:Method

methods
methods

:Delegationcaller

:State

«create»

setState:Methodmethods params

overridden

callee handle:Method

a:Parameter paramType abstractState:Class
abstract == true {additional}

:OverriddenMethod
SIZE≥2

:Stereotype
name == „interface“

stereotypes

c:Parameter

params

paramType

sp State

Abbildung 4.4: Das Strukturmuster des State-Entwurfsmusters

Im Strukturmuster des State-Entwurfsmusters (Abbildung 4.4) sind Objek-
te für zwei Klassen, context:Class und abstractState:Class, sowie Objekte für
drei Methoden, setState:Method, request:Method und handle:Method, spezifi-
ziert. Diese Strukturmusterobjekte sind Variablen, die während der Struktur-
analyse gebunden werden. Wird ein Kandidat für eine Entwurfsmusterimple-
mentierung gefunden, so wird, wie bereits in Kapitel 2.3.4 beschrieben, für
diesen Kandidaten eine Annotation erzeugt, die die Strukturmusterobjekte an
konkrete Elemente aus der Struktur des zu untersuchenden Softwaresystems
bindet. Die oben genannten Objekte des Strukturmusters werden an Elemente
des ASG gebunden, die Klassen beziehungsweise Methoden repräsentieren.

Ein Verhaltensmuster beschreibt das Verhalten von Instanzen der gebun-
denen Klassen anhand von Nachrichten, die durch Methodenaufrufe zwischen
den Instanzen ausgetauscht werden. Zur Typisierung der Objekte eines Verhal-
tensmusters stehen also die Objekte des Strukturmusters zur Verfügung, die
Variablen für konkrete Klassen darstellen. Als Typnamen werden im Verhal-
tensmuster stellvertretend die Namen der Strukturmusterobjekte verwendet.
Im Falle des State-Strukturmusters stehen context und abstractState als Typ-
namen zur Verfügung, die im State-Verhaltensmuster in Abbildung 4.1 ver-
wendet werden. Bei der Verhaltensanalyse werden dann die stellvertretenden
Typnamen durch die konkreten Klassennamen der Kandidaten ersetzt.

Analog müssen die Methoden, die in den Nachrichten des Verhaltensmusters

62

4.2 Syntax

verwendet werden, im Strukturmuster spezifiziert sein. Für eine Nachricht im
Verhaltensmuster wird ebenfalls der Name des Strukturmusterobjekts verwen-
det, das die entsprechende Methode repräsentiert. Während der Verhaltens-
analyse wird dann die Variable durch die konkrete Methode ersetzt.

Die Objekte eines Verhaltensmusters müssen nicht grundsätzlich typisiert
sein. Im Falle des State-Verhaltensmusters ist zum Beispiel zu dem Objekt
client kein Typname angegeben. Das bedeutet, bei der Verhaltensanalyse ist
die Klasse dieses Verhaltensmusterobjekts nicht festgelegt. Das Verhaltensmu-
sterobjekt kann also während der Verhaltensanalyse an eine beliebige Instanz
gebunden werden.

4.2 Syntax

Die Basis zur Spezifikation der Syntax der Verhaltensmuster bildet das Meta-
modell der Verhaltensmuster. In Form eines UML-Klassendiagramms werden
zunächst die möglichen Elemente eines Verhaltensmusters und ihre Beziehun-
gen untereinander beschrieben. Die Anteile, die nicht in einem Klassendia-
gramm ausgedrückt werden können, wie Invarianten, werden durch die Object
Constraint Language (OCL), einem Teil der UML, spezifiziert [Obj]. Des Wei-
teren wird das Metamodell der Strukturmuster erweitert, um die Verbindung
zwischen Struktur- und Verhaltensmustern zu definieren.

4.2.1 Metamodell der Verhaltensmuster

Die Syntax der Verhaltensmuster ist angelehnt an die Syntax der Sequenzdia-
gramme nach UML 2.0. Allerdings gibt es gegenüber den Sequenzdiagrammen
einige Einschränkungen und spezielle Eigenschaften der Verhaltensmuster, die
im Folgenden spezifiziert werden.

Die Abbildung 4.5 zeigt das Metamodell der Verhaltensmuster. Zentraler
Bestandteil dieses Metamodells ist die Klasse BehavioralPattern, die Verhal-
tensmuster repräsentiert. Sie enthält den Namen des Verhaltensmusters und
ein boolsches Attribut, das definiert, ob es ein negatives Verhaltensmuster ist.
Des Weiteren referenziert ein Verhaltensmuster eine Menge von Verhaltens-
musterobjekten vom Typ BPAbstractObject, die Teil des Verhaltensmusters
sind. Zu jedem Verhaltensmusterobjekt gehört eine Lebenslinie vom Typ Li-
feLine. Eine Lebenslinie repräsentiert den zeitlichen Ablauf von Nachrichten
(Message), die durch das jeweilige Verhaltensmusterobjekt in einer festgeleg-
ten Reihenfolge gesendet oder von ihm empfangen werden. Die Nachrichten

63

Kapitel 4 Verhaltensspezifikation

objects

objects 1..*

pattern 1

InteractionFragment

CombinedFragment

OptionalFragment

AlternativeFragment

InteractionOperand

operands

fragments

LifeLine

lifeline

sent

received

«reference»
StructuralPatterns::StructuralPattern

structuralPattern 1

behavioralPatterns

0..*

lifeline 1

object 1

sent

{ordered} 0..*

received

{ordered} 0..*

sender

1
receiver

1

operands 1..* {ordered}

fragment 1

operand 1

BPAnyObject

«reference»
StructuralPatterns::SPObject

bpObjects 0..*

messages 0..*

BehavioralPattern
+name:String
+negative:boolean

BPAbstractObject
+name:String

BPObject
+typeName:String

fragments 1..* {ordered}

RootFragment

root
pattern

1

1

root

LoopFragment
+lowerBound:int

Message

+name:String

spObject 1

spObject

1

Abbildung 4.5: Metamodell der Verhaltensmuster, Paket BehavioralPatterns

eines Verhaltensmusters sind grundsätzlich synchron, da sie atomare Metho-
denaufrufe darstellen.

Zur Modellierung des Kontrollflusses in einem Sequenzdiagramm werden
in der UML 2.0 die so genannten kombinierten Fragmente (engl. Combined
Fragments) eingesetzt. Kombinierte Fragmente besitzen einen Operator und
enthalten mindestens einen Operanden. Operanden enthalten wiederum Inter-
aktionsfragmente (engl. Interaction Fragments). Interaktionsfragmente können
sowohl kombinierte Fragmente, als auch Nachrichten sein. Die wichtigsten, in
Sequenzdiagrammen zur Verfügung stehenden kombinierten Fragmente sind:
alternatives Fragment (Operator: alt), relevante Nachrichten (Operator: consi-
der), irrelevante Nachrichten (Operator: ignore), kritischer Bereich (Operator:
critical), Negation (Operator: neg), optionales Fragment (Operator: opt), par-
alleles Fragment (Operator: par) und Schleife (Operator: loop).

64

4.2 Syntax

Im Metamodell der Verhaltensmuster werden Interaktionsfragmente durch
die abstrakte Klasse InteractionFragment und kombinierte Fragmente durch die
abstrakte Klasse CombinedFragment repräsentiert. In Verhaltensmustern ste-
hen jedoch nicht alle kombinierten Fragmente zur Verfügung. Es können nur
alternative Fragmente (AlternativeFragment), optionale Fragmente (Optional-
Fragment) und Schleifen (LoopFragment) verwendet werden. Schleifen besitzen
in Verhaltensmustern nur eine untere Grenze, die 0 oder 1 sein kann. Bei
einer Untergrenze von 0 muss die Schleife nicht durchlaufen werden, bei ei-
ner Untergrenze von 1 muss sie mindestens einmal durchlaufen werden. Eine
Obergrenze kann nicht festgelegt werden. Eine Schleife kann grundsätzlich mit
Einschränkung der Untergrenze beliebig häufig durchlaufen werden.

Ein spezielles, kombiniertes Fragment ist das Wurzel-Fragment (Root-
Fragment), das in jedem Verhaltensmuster nur genau einmal vorkommt und
direkt vom Verhaltensmuster referenziert wird. Ein RootFragment ist die Wur-
zel aller weiteren kombinierten Fragmente und Nachrichten des Verhaltensmu-
sters. Die Klassen des Metamodells der Verhaltensmuster gehören zum Paket
BehavioralPatterns.

Als Beispiel ist in Abbildung 4.6 der abstrakte Syntaxgraph des negativen
Strategy-Verhaltensmusters aus Abbildung 4.3 (Seite 61) dargestellt. Das Ver-
haltensmuster referenziert ein Objekt vom Typ RootFragment als Wurzel der
gesamten Sequenz. Der Operand der Wurzel enthält wiederum eine Alternative
mit zwei Operanden, die untereinander geordnet sind. Im ersten Operanden
wird die Nachricht setStrategy() vom Verhaltensmusterobjekt a:abstractState
an c:context gesendet, im zweiten Operanden schickt sich das Objekt c:context
die Nachricht setStrategy() selber.

Im Folgenden werden einige Invarianten definiert, die ein syntaktisch korrek-
tes Verhaltensmuster einhalten muss und die nicht in einem Klassendiagramm
ausgedrückt werden können. Damit ein Verhaltensmuster ein sinnvolles Verhal-
ten durch Sequenzen von Nachrichten spezifizieren kann, muss es mindestens
ein Objekt vom abstrakten Typ BPAbstractObject enthalten. Jedes Objekt in
einem Verhaltensmuster muss außerdem einen Namen besitzen und über diesen
eindeutig zu identifizieren sein:

Invariante 4.1 Jedes Verhaltensmusterobjekt hat einen Namen:

package BehavioralPatterns
context BPAbstractObject inv:

self.name<>OclVoid
endpackage

65

Kapitel 4 Verhaltensspezifikation

:BehavioralPattern
name=“Strategy“
negative=true

:RootFragment

:InteractionOperand

:InteractionOperand:InteractionOperand

:AlternativeFragment

root

operands

fragments

operandsoperands

:Message
name=“setStrategy“

:Message
name=“setStrategy“

fragments fragments

:BPObject
name=“c“
typeName=“context“

:BPObject
name=“a“
typeName=“abstractStrategy“

sent

lifeline

:LifeLine

lifeline

:LifeLine

received

objects objects

sent

received
next

next

Abbildung 4.6: Abstrakter Syntaxgraph des negativen Strategy-Verhaltens-
musters

Invariante 4.2 Die Namen der Objekte eines Verhaltensmusters sind eindeu-
tig:

package BehavioralPatterns
context BehavioralPattern inv:

self.objects→forAll(b1:BPAbstractObject, b2:BPAbstractObject|
b1<>b2 implies b1.name<>b2.name)

endpackage

Für die kombinierten Fragmente gelten in einem syntaktisch korrekten Ver-
haltensmuster die folgenden Invarianten:

Invariante 4.3 Die kombinierten Fragmente Wurzel-Fragment, optionales

66

4.2 Syntax

Fragment und Schleife besitzen jeweils genau einen Operanden:

package BehavioralPatterns

context RootFragment inv:
self.operands→size()=1

context OptionalFragment inv:
self.operands→size()=1

context LoopFragment inv:
self.operands→size()=1

endpackage

Invariante 4.4 Das alternative Fragment enthält mindestens zwei, aber belie-
big viele Operanden:

package BehavioralPatterns
context AlternativeFragment inv:

self.operands→size()≥2
endpackage

4.2.2 Erweiterung des Metamodells der Strukturmuster

Um die Verbindung zwischen Verhaltens- und Strukturmustern herzustellen,
wurde das Metamodell der Strukturmuster aus Abbildung 2.8, Seite 25, erwei-
tert. In Abbildung 4.7 ist das neue, erweiterte Metamodell der Strukturmuster
dargestellt. Die referenzierten Klassen StructuralPattern und SPObject im Me-
tamodell der Verhaltensmuster aus Abbildung 4.5 verweisen auf die entspre-
chenden Klassen des erweiterten Metamodells der Strukturmuster.

Strukturmusterobjekte werden während der Strukturanalyse an konkrete
Elemente eines Kandidaten, also an Elemente der Struktur des Softwaresy-
stems, gebunden. Strukturmusterobjekte sind also Variablen, deren Typen dem
Strukturmodell entnommen sind. Die Typnamen der Verhaltensmusterobjek-
te und die Methodennamen der Nachrichten werden wiederum den Struktur-
musterobjekten entnommen. Die Strukturmusterobjekte dienen somit der Ty-
pisierung der Elemente eines Verhaltensmusters. Strukturmusterobjekte, die
Variablen für konkrete Klassen aus der Struktur darstellen, werden zur Ty-
pisierung der Verhaltensmusterobjekte verwendet. Strukturmusterobjekte, die

67

Kapitel 4 Verhaltensspezifikation

SPAbstractObject
+name:String

Connection
source

target

revSources

0..*

revTargets

0..*

source

1

target

1

Path

nodes

nodes 1..*

pattern 1

«reference»
BehavioralPatterns::BehavioralPattern

behavioralPatterns 0..*

structuralPattern

1

«reference»
BehavioralPatterns::BPObject

messages 0..*

spObject 1

«reference»
BehavioralPatterns::Message

1 spObject

0..* bpObjects

«reference»
ClassDiagrams::Class

type 1

«reference»
ClassDiagrams::Association

type 1

SPObject

+classifier:int

+NONE:int
+CLASS:int
+METHOD:int

StructuralPattern
+name:String

SPAnnotationObject
+create:boolean

methods

class

1

methods

0..*

Link
+name:String
+create:boolean

Abbildung 4.7: Erweitertes Metamodell der Strukturmuster, Paket Structural-
Patterns

Variablen für Methoden aus der Struktur sind, werden zur Typisierung von
Nachrichten in Verhaltensmustern verwendet. Dazu sind der Klasse SPObject
aus dem Metamodell der Strukturmuster Referenzen zu den Klassen Message
und BPObject aus dem Metamodell der Verhaltensmuster hinzugefügt worden.

Die Strukturmusterobjekte müssen für die Typisierung der Verhaltensmu-
sterobjekte in eine Klassifizierung aus Klassen, Methoden oder sonstigen Ob-
jekten der Struktur eingeordnet werden. Das Strukturmodell ist jedoch aus-
tauschbar. Es ist also nicht allgemein feststellbar, welche Klassen des Struk-
turmodells Klassen oder Methoden in der Struktur eines Softwaresystems re-
präsentieren. Aus diesem Grund wurde das Metamodell der Strukturmuster
um die Klassifizierung der Strukturmusterobjekte erweitert. Der Klasse SPOb-
ject für Strukturmusterobjekte sind also ein Attribut zur Klassifizierung so-
wie drei Konstanten hinzugefügt worden, die die drei Klassifizierungen Klasse

68

4.2 Syntax

(CLASS), Methode (METHOD) und sonstiges Element (NONE) repräsentieren.
Die Klassifizierung eines Strukturmusterobjekts findet bei der Spezifikation ei-
nes Strukturmusters statt.

Stellt ein Strukturmusterobjekt eine Methode aus der Struktur dar, so muss
zusätzlich angegeben werden, welches Strukturmusterobjekt die Klasse dar-
stellt, zu der die Methode gehört. Dies wird durch die Selbstassoziation me-
thods von SPObject ermöglicht. Allerdings sind die folgenden zwei Invarianten
einzuhalten:

Invariante 4.5 Einem Strukturmusterobjekt, das als METHOD klassifiziert
ist, ist über die Assoziation methods immer ein Strukturmusterobjekt der Klas-
sifizierung CLASS zugeordnet:

package StructuralPatterns
context SPObject inv:

self.classifier=SPObject.METHOD implies
(self.class<>OclVoid and self.class.classifier=SPObject.CLASS)

endpackage

Invariante 4.6 Einem Strukturmusterobjekt der Klassifizierung CLASS sind
über die Assoziation methods nur Strukturmusterobjekte der Klassifizierung
METHOD zugeordnet:

package StructuralPatterns
context SPObject inv:

self.classifier=SPObject.CLASS implies
(self.methods→forAll(m:SPObject|

m.classifier=SPObject.METHOD))
endpackage

4.2.3 Verbindung zwischen Struktur- und
Verhaltensmustern

Wie bereits in Kapitel 4.1.3 erklärt, ist jedem Verhaltensmuster ein Struktur-
muster zugeordnet. Umgekehrt kann ein Strukturmuster durch ein positives
Verhaltensmuster und beliebig viele negative Verhaltensmuster ergänzt wer-
den. Die Verbindung zwischen Verhaltens- und Strukturmuster wird in den
beiden Metamodellen durch eine Assoziation zwischen den Klassen Behavioral-
Pattern und StructuralPattern hergestellt. Spezifiziert wird die genannte Ein-
schränkung durch die folgende Invariante:

69

Kapitel 4 Verhaltensspezifikation

Invariante 4.7 Zu jedem Strukturmuster darf maximal ein positives Verhal-
tensmuster existieren:

package StructuralPatterns
context StructuralPattern inv:

self.behavioralPatterns→
collect(bp:BehavioralPatterns::BehavioralPattern|

bp.negative=false)→size()≤1
endpackage

Des Weiteren wird die Zugehörigkeit eines Verhaltensmusters zu einem
Strukturmuster durch die Namensgebung ausgedrückt. Invariante 4.8 be-
schreibt die Namensgleichheit zwischen Struktur- und Verhaltensmustern:

Invariante 4.8 Die Namen eines Strukturmusters und aller zugeordneten
Verhaltensmuster stimmen überein:

package StructuralPatterns
context StructuralPattern inv:

self.behavioralPatterns→
forAll(bp:BehavioralPatterns::BehavioralPattern|

self.name=bp.name)
endpackage

Es existieren zwei konkrete Unterklassen für Verhaltensmusterobjekte: BP-
AnyObject und BPObject. BPAnyObject repräsentiert alle untypisierten Verhal-
tensmusterobjekte, also Verhaltensmusterobjekte, deren Typ nicht spezifiziert
ist und die während der Verhaltensanalyse an beliebige Instanzen gebunden
werden können. BPObject repräsentiert dagegen die typisierten Verhaltensmu-
sterobjekte. Der Typ wird durch das dem Verhaltensmusterobjekt zugeordnete
Strukturmusterobjekt festgelegt, das wiederum eine Variable für eine Klasse
aus der Struktur eines Softwaresystems darstellt. Der Typname des Verhal-
tensmusterobjekts ist der Objektname des Strukturmusterobjekts. Diese Ein-
schränkungen sind in den beiden folgenden Invarianten definiert:

Invariante 4.9 Einem typisierten Verhaltensmusterobjekt ist immer ein
Strukturmusterobjekt mit der Klassifizierung CLASS zugeordnet:

package BehavioralPatterns
context BPObject inv:

70

4.2 Syntax

self.spObject.classifier=StructuralPatterns::SPObject.CLASS
endpackage

Invariante 4.10 Der Typname eines typisierten Verhaltensmusterobjekts
stimmt mit dem Namen des zugeordneten Strukturmusterobjekts überein:

package BehavioralPatterns
context BPObject inv:

self.typeName=self.spObject.name
endpackage

Analog zu den typisierten Verhaltensmusterobjekten ist eine Nachricht im
Verhaltensmuster immer mit einem Strukturmusterobjekt verbunden, das eine
Variable für eine Methode aus der Struktur eines Softwaresystems darstellt.
Der Name der Nachricht im Verhaltensmuster entspricht dem Objektnamen
des Strukturmusterobjekts.

Invariante 4.11 Einer Nachricht eines Verhaltensmusters ist immer ein
Strukturmusterobjekt mit der Klassifizierung METHOD zugeordnet:

package BehavioralPatterns
context Message inv:

self.spObject.classifier=StructuralPatterns::SPObject.METHOD
endpackage

Invariante 4.12 Der Name einer Nachricht im Verhaltensmuster stimmt mit
dem Namen des zugeordneten Strukturmusterobjekts überein:

package BehavioralPatterns
context Message inv:

self.name=self.spObject.name
endpackage

Die Art der Nachrichten, die an ein Verhaltensmusterobjekt gesendet werden
dürfen, sind eingeschränkt. An ein typisiertes Verhaltensmusterobjekt dürfen
nur Nachrichten gesendet werden, deren Methoden zu der entsprechenden
Klasse des Verhaltensmusterobjekts gehören. Auf untypisierten Verhaltensmu-
sterobjekten dürfen dagegen keine Methodenaufrufe erfolgen.

71

Kapitel 4 Verhaltensspezifikation

Invariante 4.13 An ein typisiertes Verhaltensmusterobjekt bpObject dürfen
nur Nachrichten gesendet werden, deren Methoden dem zugehörigen Struktur-
musterobjekt spObject zugeordnet sind:

package BehavioralPatterns
context BPObject inv:

self.lifeline.received→forAll(m:Message|
self.spObject.methods→includes(m.spObject)))

endpackage

Invariante 4.14 An ein nicht typisiertes Verhaltensmusterobjekt darf keine
Nachricht gesendet werden:

package BehavioralPatterns
context BPAnyObject inv:

self.lifeline.received→size()=0
endpackage

4.2.4 Überblick

Das in Abschnitt 2.3.7 eingeführte Schema aus Metamodell, Modell und In-
stanz beziehungsweise Implementierung wird hier wieder aufgegriffen, um die
in den vorherigen Abschnitten eingeführten Diagramme darin einzuordnen.

In Abbildung 4.8 sind die Abstraktionsschichten der Strukturmuster auf der
linken Seite denen der Verhaltensmuster auf der rechten Seite gegenüberge-
stellt. Auf der obersten Schicht der Metamodelle wurde das bisherige Metamo-
dell der Strukturmuster aus Abbildung 2.13 durch das erweiterte Metamodell
der Strukturmuster ersetzt. Das Strukturmuster des State-Entwurfsmusters
wurde durch die Variante mit der unscharfen Spezifikation ausgetauscht.

Auf der rechten Seite sind die Diagramme der Verhaltensmuster eingeord-
net. In der obersten Schicht liegt das Metamodell der Verhaltensmuster. In
der Mitte ist stellvertretend für alle möglichen Verhaltensmuster das State-
Verhaltensmuster abgebildet. In der untersten Schicht ist ein möglicher, zum
State-Verhaltensmuster konformer Trace dargestellt.

Die semantische Beziehung zwischen der linken und der rechten Seite ist
wiederum durch Referenzen zwischen den beiden Metamodellen der Struktur-
und Verhaltensmuster festgelegt.

72

4.2 Syntax

State-

State-

BehavioralPatterns

State-

State-

StructuralPatterns

a:abstractState b:abstractStateclient c:context

loop (1,*) request()
handle()

setState()

setState()alt

handle()
request()loop (1,*)

bp State

setState()optcontext abstractState

«create» «create»

context:Class

request:Method

methods
methods

:NeighborMethodCallcaller

:State

«create»

setState:Method

methods

params

overridden

callee handle:Method

a:Parameter

paramType

:OverriddenMethod
SIZE≥2

:Stereotype
name == „interface“

stereotypes

abstractState:Class
abstract == true {additional}

sp State

c:Parameter

params

paramType

bp State

client c:context a:abstractState
b:abstractState

setState(st)

execute(CMD_STOP)
execute(s,CMD_STOP)

execute(CMD_PLAY)
execute(s,CMD_PLAY)

setState(pl)

p:Player s:Stream pl:Playingst:Stopped

objects

objects 1..*

pattern 1

InteractionFragment

CombinedFragment

OptionalFragment

AlternativeFragment

InteractionOperand

operands

fragments

LifeLine

lifeline

sent

received

«reference»
StructuralPatterns::StructuralPattern

structuralPattern 1

behavioralPatterns

0..*

lifeline 1

object 1

sent

{ordered} 0..*

received

{ordered} 0..*

sender

1
receiver

1

operands 1..* {ordered}

fragment 1

operand 1

BPAnyObject

«reference»
StructuralPatterns::SPObject

bpObjects 0..*

messages 0..*

BehavioralPattern
+name:String
+negative:boolean

BPAbstractObject
+name:String

BPObject
+typeName:String

fragments 1..* {ordered}

RootFragment

root
pattern

1

1

root

LoopFragment
+lowerBound:int

Message

+name:String

spObject 1

spObject

1

sp State
60%

context

abstractState

Playing
+execute(s:Stream,command:int)
+run(s:Stream)

Paused
+execute(s:Stream,command:int)
+run(s:Stream)

Stopped
+execute(s:Stream,command:int)
+run(s:Stream)

StreamState
+execute(s:Stream,command:int)
+run(s:Stream)

Stream

+setState(state:StreamState)
+execute(command:int)
+read()
+close()

+CMD_PLAY:int = 1
+CMD_PAUSE:int = 2
+CMD_STOP:int = 3
-state:StreamState

SPAbstractObject
+name:String

Connection
source

target

revSources

0..*

revTargets

0..*

source

1

target

1

Path

nodes

nodes 1..*

pattern 1

«reference»
BehavioralPatterns::BehavioralPattern

behavioralPatterns 0..*

structuralPattern

1

«reference»
BehavioralPatterns::BPObject

messages 0..*

spObject 1

«reference»
BehavioralPatterns::Message

1 spObject

0..* bpObjects

«reference»
ClassDiagrams::Class

type 1

«reference»
ClassDiagrams::Association

type 1

SPObject

+classifier:int

+NONE:int
+CLASS:int
+METHOD:int

StructuralPattern
+name:String

SPAnnotationObject
+create:boolean

methods

class

1

methods

0..*

Link
+name:String
+create:boolean

Abbildung 4.8: Die Abstraktionsschichten der Struktur- und Verhaltensmuster

73

Kapitel 4 Verhaltensspezifikation

4.3 Semantik

In diesem Abschnitt wird die Semantik der Verhaltensmuster informell erläu-
tert. Als Beispiel dient dazu der Mediaplayer von Seite 19. In der Strukturana-
lyse wurden einige Klassen des Mediaplayers als State-Kandidat identifiziert
(Abbildung 4.9).

sp State
60%

context

abstractState

Playing
+execute(s:Stream,command:int)
+run(s:Stream)

Paused
+execute(s:Stream,command:int)
+run(s:Stream)

Stopped
+execute(s:Stream,command:int)
+run(s:Stream)

StreamState
+execute(s:Stream,command:int)
+run(s:Stream)

Stream

+setState(state:StreamState)
+execute(command:int)
+read()
+close()

+CMD_PLAY:int = 1
+CMD_PAUSE:int = 2
+CMD_STOP:int = 3
-state:StreamState

Abbildung 4.9: Der State-Kandidat des Mediaplayers

Im Folgenden wird zunächst diskutiert, warum es zur Laufzeit zu einem
Kandidaten mehrere Traces geben kann, die auf ihre Konformität zum Ver-
haltensmuster überprüft werden müssen. Dann wird das Mediaplayer-Beispiel
dazu verwendet, die Bindung der Variablen des State-Verhaltensmusters zu er-
klären. Anhand verschiedener Traces des Mediaplayers wird gezeigt, wann ein
einzelner Methodenaufruf des Traces zu einer Nachricht konform ist und wann
ein kompletter Trace zu einem Verhaltensmuster konform oder nicht konform
ist. Zum Abschluss wird die Bewertung konformer und nicht-konformer Traces
erläutert.

4.3.1 Mehrfache Überprüfung der Traces

Wie bereits in Abschnitt 4.1.1 erläutert, deckt ein Verhaltensmuster nicht das
gesamte mögliche Verhalten einer Entwurfsmusterimplementierung zur Lauf-
zeit ab. Vielmehr soll mit Verhaltensmustern lokales Verhalten einer Entwurfs-
musterimplementierung durch typische Sequenzen von Methodenaufrufen aus-

74

4.3 Semantik

gedrückt werden. Aus diesem Grund werden Traces, die nur Ausschnitte der
gesamten Sequenz beobachteter Methodenaufrufe sind, auf ihre Konformität
zu einem Verhaltensmuster untersucht.

Die Instanz einer Entwurfsmusterimplementierung kann zur Laufzeit das
durch das Verhaltensmuster beschriebene lokale Verhalten mehrfach durchlau-
fen. Das führt dazu, dass beliebig viele zu einem Verhaltensmuster konforme
Traces dieser Instanz in einem Tracegraphen identifiziert werden können.

Des Weiteren können aber auch beliebig viele Instanzen einer Entwurfsmu-
sterimplementierung zur Laufzeit existieren. Zu jeder dieser Instanzen werden
Traces beobachtet, die auf ihre Konformität zum Verhaltensmuster untersucht
werden müssen. Es ist also sehr wahrscheinlich, dass es zu einem Kandidaten
zur Laufzeit verschiedene Traces derselben oder auch unterschiedlicher Instan-
zen gibt, die konform zum Verhaltensmuster sind. Ebenso kann es aber auch
Traces von Instanzen geben, die nicht konform zum Verhaltensmuster sind.

4.3.2 Bindung der Variablen

Die Annotation, die zu einem in der Strukturanalyse identifizierten Kandidaten
erzeugt wurde, enthält eine Bindung der Variablen des Strukturmusters an die
Elemente des Kandidaten. Die Bindung der State-Annotation aus Abbildung
4.9 ist in Tabelle 4.1 aufgelistet.

Variable des Strukturmusters Element des Kandidaten
context Stream

abstractState StreamState

setState Stream::setState(StreamState)

request Stream::execute(int)

handle StreamState::execute(Stream, int)

Tabelle 4.1: Initiale Variablenbindung der State-Annotation zum Mediaplayer

Die Annotation wird ebenfalls zur Bindung der Variablen des Verhaltensmu-
sters verwendet. Die Typnamen der Verhaltensmusterobjekte und die Metho-
dennamen der Nachrichten wurden bei der Spezifikation des Verhaltensmusters
dem Strukturmuster entnommen, wie im vorherigen Abschnitt bereits erläutert
wurde. Dadurch werden die Variablen des Verhaltensmusters an dieselben Ele-
mente des Kandidaten gebunden wie die Variablen des Strukturmusters. Es
ist dadurch festgelegt, welche Typen die Verhaltensmusterobjekte haben und
welche Methoden dieser Typen im Verhaltensmuster vorkommen.

75

Kapitel 4 Verhaltensspezifikation

Die Bindung der Typnamen der Verhaltensmusterobjekte und der Metho-
dennamen der Nachrichten steht bereits zu Beginn der Verhaltensanalyse fest.
Die Verhaltensmusterobjekte werden dagegen erst während der Verhaltensana-
lyse bei der Überprüfung der Konformität von beobachteten Methodenaufru-
fen an konkrete Instanzen aus der Laufzeitumgebung des zu untersuchenden
Softwaresystems gebunden.

Zur Vereinfachung der Beschreibung der Semantik sei aber im Folgenden da-
von ausgegangen, dass bereits zu Beginn der Verhaltensanalyse alle Instanzen
aus der Laufzeitumgebung bekannt sind. Aus dieser Menge werden nichtde-
terministisch alle möglichen Tupel von Instanzen, die als eine Instanz einer
potentiellen Entwurfsmusterimplementierung kollaborieren, ausgewählt. Mit
jedem dieser Tupel wird wiederum die Variablenbindung eines Verhaltensmu-
sters initialisiert. Die Verhaltensmusterobjekte werden nichtdeterministisch an
die passenden Elemente des Tupels gebunden. Das bedeutet, für jedes dieser
Tupel existiert ein konkretes Verhaltensmuster, bei dem alle Variablen gebun-
den sind und das beschreibt, wie die Elemente des Tupels interagieren müssen,
um als eine Instanz einer tatsächlichen Entwurfsmusterimplementierung zu
gelten.

setState(st)

execute(CMD_STOP)
execute(s,CMD_STOP)

execute(CMD_PLAY)
execute(s,CMD_PLAY)

setState(pl)

p:Player s:Stream pl:Playingst:Stopped

Abbildung 4.10: Beobachteter Trace des Mediaplayers

Werden nun während der Verhaltensanalyse Traces dieser Tupel beobach-
tet, können sie mit ihrem konkreten Verhaltensmuster verglichen werden. In
Abbildung 4.10 ist ein Trace zu sehen, der für einige Instanzen von Klassen
des Mediaplayers beobachtet wurde. Diese Instanzen wurden zu Beginn der
Verhaltensanalyse nichtdeterministisch ausgewählt. Zusammen mit den Ele-
menten aus der Struktur des State-Kandidaten bilden sie nun eine Variablen-
bindung für ein konkretes State-Verhaltensmuster. Diese Variablenbindung ist
in Tabelle 4.2 aufgelistet.

Abbildung 4.11 zeigt das zu der Variablenbindung gehörige State-Verhal-

76

4.3 Semantik

Variable des Verhaltensmusters Element der Struktur/Instanz
context Stream

abstractState StreamState

setState Stream::setState(StreamState)

request Stream::execute(int)

handle StreamState::execute(Stream, int)

client p

c s

a st

b pl

Tabelle 4.2: Variablenbindung eines State-Verhaltensmusters zum Mediaplayer

tensmuster des Mediaplayer-Kandidaten, bei dem die Typnamen der Ver-
haltensmusterobjekte und die Methodennamen der Nachrichten durch die
konkreten Elemente des Kandidaten und die Verhaltensmusterobjekte durch
die Instanzen aus der Laufzeitumgebung ersetzt wurden, wie es in Tabel-
le 4.2 vorgegeben ist. Das Verhaltensmuster beschreibt, wie diese Instan-
zen des Mediaplayers sich verhalten müssen, um als tatsächliche State-
Entwurfsmusterinstanz identifiziert zu werden.

Die Typen der Verhaltensmusterobjekte stimmen teilweise nicht mit den
Typen der Instanzen aus dem Trace überein. Es sind jedoch polymorphe Typ-
bindungen erlaubt. So ist zum Beispiel die Typvariable abstractState des Ver-
haltensmusterobjekts a an den konkreten Typ StreamState gebunden. Die In-
stanz st aus dem Trace, an die das Verhaltensmusterobjekt a gebunden ist,
ist allerdings vom Typ Stopped. Sie ist aber auch vom Typ StreamState, da
der Typ Stopped von StreamState erbt. Es liegt also eine korrekte, polymorphe
Bindung vor.

4.3.3 Konformität von Methodenaufrufen

Um festzustellen, ob ein Trace wie in Abbildung 4.10 zu dem Verhaltensmuster
in Abbildung 4.11 konform ist, muss zunächst einmal festgelegt werden, wann
ein Methodenaufruf des Traces zu einer Nachricht des Verhaltensmusters kon-
form ist. Eine Nachricht besteht aus bis zu fünf verschiedenen Variablen. Diese
fünf Variablen – namentlich das aufrufende Verhaltensmusterobjekt und sein
Typ, das aufgerufene Verhaltensmusterobjekt und sein Typ sowie die aufgeru-
fene Methode – müssen mit dem Methodenaufruf verglichen werden. Passen

77

Kapitel 4 Verhaltensspezifikation

p s:Stream

opt setState(StreamState)

alt

setState(StreamState)

setState(StreamState)

bp State

execute(int)loop (1,*)
execute(Stream,int)

pl:StreamStatest:StreamState

execute(int)
execute(Stream,int)loop (1,*)

Abbildung 4.11: Ein State-Verhaltensmuster zu Instanzen des Mediaplayer-
Kandidaten

die Elemente des Methodenaufrufs zu den Elementen, an die die Variablen
gebunden sind, so ist der Methodenaufruf konform zu der Nachricht.

Wie bereits oben erwähnt, muss der Typ der an einem Methodenaufruf betei-
ligten Instanz nicht mit dem Typ des Verhaltensmusterobjekts identisch sein,
um das Verhaltensmusterobjekt an die Instanz zu binden. Es dürfen auch poly-
morphe Bindungen vorliegen. Um formal zu definieren, wann eine polymorphe
Bindung erlaubt ist, wird im Folgenden die Konformitätsfunktion über zwei
Typen eingeführt. Ein Verhaltensmusterobjekt darf an eine Instanz des Traces
gebunden werden, wenn der Typ der Instanz konform ist zu dem Typ, an den
die Typvariable des Verhaltensmusterobjekts gebunden ist.

Die Instanzen der Klasse Class des Strukturmodells repräsentieren die Typen
in der Struktur eines Softwaresystems. Die Konformitätsfunktion wird daher
als Methode der Klasse Class definiert. Eine Instanz c1 von Class ist konform zu
einer zweiten Instanz c2 von Class, wenn c1 identisch zu c2 ist oder unmittelbar
oder mittelbar von c2 erbt.

Definition 4.1 Die Konformitätsfunktion der Klasse Class des Strukturmo-
dells ist definiert durch:

package Structure
context Class::conformsTo(c:Class):Boolean
post: result = (self = c)

78

4.3 Semantik

or (self.revSubClasses→exists(g:Generalization|g.superClass=c))
or (self.revSubClasses→exists(g:Generalization|

g.superClass.conformsTo(c)))
endpackage

Auch die aufgerufene Methode muss nicht identisch sein zu der Metho-
de, die in der Nachricht spezifiziert wurde. In Entwurfsmustern wird sehr
häufig von der polymorphen Methodenbindung Gebrauch gemacht. Im State-
Entwurfsmuster wird zum Beispiel die handle-Methode durch den abstrakten
Zustands vorgegeben, und durch die konkreten Zustände implementiert. Der
Aufruf der handle-Methode geschieht aber über die Schnittstelle des abstrakten
Zustands. Die polymorphe Methodenbindung wird daher auch in Verhaltens-
mustern verwendet. Bei einem Methodenaufruf muss also nicht nur überprüft
werden, ob die aufgerufene Methode zu der Methode der Nachricht identisch
ist, sondern auch, ob eventuell die aufgerufene Methode die Methode der Nach-
richt implementiert oder überschreibt und damit polymorph gebunden wurde.
Aus diesem Grund wird auch eine Konformitätsfunktion für die Klasse Method
des Strukturmodells definiert.

Eine Instanz m2 des Typs Method ist zu einer Instanz m1 des Typs Method
konform, wenn entweder m2 identisch zu m1 ist, oder m2 die Methode m1
überschreibt oder implementiert. Im zweiten Fall muss der Typ, zu dem m2
gehört, von dem Typ, zu dem m1 gehört, erben und die Signaturen von m1
und m2 müssen identisch sein. Das bedeutet, sowohl die Namen der Metho-
den m1 und m2, als auch die Reihenfolge und Typen ihrer Parameter müssen
übereinstimmen3.

Definition 4.2 Die Konformitätsfunktion der Klasse Method des Struktur-
modells ist definiert durch:

package Structure
context Method::conformsTo(m:Method):Boolean
post: result = (self = m)

or (self.parent.conformsTo(m.parent)
and self.name = m.name

3In einigen Programmiersprachen müssen die Typen der Parameter nicht übereinstimmen,
damit eine Methode m2 eine Methode m1 überschreibt. Eine kovariante (z.B. in Eiffel)
oder kontravariante Redefinition der Parametertypen ist ebenfalls möglich. In diesen
Fällen muss also eventuell in der Konformitätsfunktion die Überprüfung der Identität
der Parametertypen durch eine Konformitätsprüfung ersetzt werden.

79

Kapitel 4 Verhaltensspezifikation

and self.params→forAll(p:Parameter|p.type =
m.params→at(self.params→indexof(p)).type))

endpackage

Im Folgenden werden nun fünf Bedingungen formuliert, die gelten müssen,
damit ein Methodenaufruf mc des Typs Behavior::MethodCall zu einer Nach-
richt eines Verhaltensmusters konform ist. Die Nachricht hat die Form
(a:A)→(b:B).m(), das bedeutet, das Verhaltensmusterobjekt a:A ruft auf dem
Verhaltensmusterobjekt b:B die Methode m auf.

1. Die Methode des Methodenaufrufs mc ist konform zu der Methode, die
an die Variable m der Nachricht gebunden wurde.

2. Der Typ der aufrufenden Instanz ist konform zu dem Typ, der an die
Variable A der Nachricht gebunden wurde.

3. Der Typ der aufgerufenen Instanz ist konform zu dem Typ, der an die
Variable B der Nachricht gebunden wurde.

4. Die Variable a der Nachricht ist an die aufrufende Instanz des Metho-
denaufrufs mc gebunden.

5. Die Variable b der Nachricht ist an die aufgerufene Instanz des Metho-
denaufrufs mc gebunden.

Hat die Nachricht dagegen die Form a→(b:B).m(), das bedeutet, ein unty-
pisiertes Verhaltensmusterobjekt a ruft die Methode auf, dann ist der Metho-
denaufruf mc zu der Nachricht konform, wenn die Bedingungen 1, 3, 4 und 5
gelten. Der Typ der aufrufenden Instanz wird also ignoriert.

4.3.4 Konformität von Traces

Um zu überprüfen, ob ein Trace konform zu einem Verhaltensmuster ist,
müssen alle Methodenaufrufe des Traces mit den Vorgaben des Verhaltens-
musters verglichen werden. Zu den Vorgaben gehören nicht nur die Art der
Nachrichten, die gesendet werden dürfen, sondern vor allem auch die Reihen-
folge, in der sie gesendet werden dürfen. Die Methodenaufrufe werden also
auf ihre Konformität zu den Nachrichten überprüft, die zum Zeitpunkt ihrer
Beobachtung erlaubt sind. Im Folgenden werden mehrere hypothetische Tra-
ces des Mediaplayers untersucht, die zur Laufzeit beobachtet werden könnten
und anhand derer zum Verhaltensmuster konforme und nicht-konforme Traces
erläutert werden.

80

4.3 Semantik

Konforme Traces

Es wird zunächst die Konformität des Traces aus Abbildung 4.10 (Seite 76)
zum konkreten State-Verhaltensmuster des Mediaplayer-Kandidaten aus Ab-
bildung 4.11 (Seite 78) gezeigt. Die Methodenaufrufe des Traces werden der
Reihe nach auf ihre Konformität zu den Nachrichten des Verhaltensmusters
geprüft.

Zu Beginn der Verhaltensanalyse darf entweder die optionale Nachricht
p→(s:Stream).setState(StreamState) oder die Nachricht p→(s:Stream).execute
(int) gesendet werden. Der erste, beobachtete Methodenaufruf des Mediaplay-
er-Traces ist setState(st) auf der Instanz s:Stream durch die Instanz p:Player.
Die Instanzen des Methodenaufrufs sind identisch mit den Instanzen, die
an die Verhaltensmusterobjekte der optionalen Nachricht p→(s:Stream).set-
State(StreamState) gebunden wurden. Der Typ der aufgerufenen Instanz
stimmt mit dem Typ des aufgerufenen Verhaltensmusterobjekts überein. Der
Typ der aufrufenden Instanz ist in der Nachricht nicht spezifiziert, er wird also
ignoriert. Die Methode des Aufrufs ist ebenfalls zu der Methode der Nachricht
identisch. Der erste Methodenaufruf des Traces ist also konform zu der ersten,
optionalen Nachricht des Verhaltensmusters.

Zum Beobachtungszeitpunkt des zweiten Methodenaufrufs darf nur die
Nachricht p→(s:Stream).execute(int) gesendet werden. Der zweite Metho-
denaufruf ist konform zu dieser Nachricht. Danach ist nur die Nachricht
(s:Stream)→(st:StreamState).execute(Stream, int) erlaubt. Der Typ Stopped der
Instanz, auf der der dritte Methodenaufruf stattfindet, gleicht zwar nicht dem
im Verhaltensmuster geforderten Typ StreamState, erbt jedoch von Stream-
State und ist deshalb erlaubt. Der dritte Methodenaufruf ist also konform zur
dritten Nachricht des Verhaltensmusters.

Zum Zeitpunkt des vierten Methodenaufrufs dürfen drei verschiedene Nach-
richten gesendet werden. Entweder kann die zuvor schon einmal durchlaufene
Schleife ein weiteres Mal durchlaufen werden. Dann müsste ein Methodenauf-
ruf erfolgen, der zur Nachricht p→(s:Stream).execute(int) konform ist. Es kann
jedoch auch ein Methodenaufruf erfolgen, der zu einer der beiden alternati-
ven Nachrichten konform ist. Der tatsächlich beobachtete Methodenaufruf des
Traces ist zu der Nachricht (st:StreamState)→(s:Stream).setState(StreamState)
der ersten Alternative konform.

Auch die verbleibenden Methodenaufrufe des Traces sind konform zu den
jeweils zu ihrem Beobachtungszeitpunkt erlaubten Nachrichten. Der gesam-
te Trace ist deshalb konform zu dem konkreten State-Verhaltensmuster des
Mediaplayer-Kandidaten.

81

Kapitel 4 Verhaltensspezifikation

Berücksichtigte und ignorierte Methodenaufrufe

In der Beschreibung eines Entwurfsmusters werden Methoden genannt, die
eine ganz bestimmte Rolle spielen, wie zum Beispiel die Methoden setState(),
request() und handle() im Entwurfsmuster State. Diese Methoden werden durch
die Strukturanalyse identifiziert und in der Verhaltensanalyse beobachtet.

Die Klassen eines Kandidaten besitzen in der Regel aber noch weitere Me-
thoden, die in dem Entwurfsmuster keine Rolle spielen. Möglicherweise nehmen
die Klassen eines Kandidaten an einer weiteren Entwurfsmusterimplementie-
rung teil, die ebenfalls analysiert werden soll. Dann müssen weitere Methoden
der Klassen beobachtet werden. Das kann dazu führen, dass Methoden des
einen Entwurfsmusters zur Laufzeit unter Umständen verschränkt mit den
Methoden eines anderen Entwurfsmusters ausgeführt und beobachtet werden.
Das bedeutet, zwischen Aufrufen der Methoden eines Entwurfsmusters finden
weitere Aufrufe anderer Methoden statt. Diese Methodenaufrufe sollen jedoch
weder bei der Spezifikation eines Verhaltensmusters, noch bei der Analyse des
Verhaltens berücksichtigt werden.

setState(st)

execute(CMD_STOP)
execute(s,CMD_STOP)

read()

execute(CMD_PLAY)
execute(s,CMD_PLAY)

setState(pl)

p:Player s:Stream pl:Playingst:Stopped

run(s)

Abbildung 4.12: Beobachteter Trace des Mediaplayers

Der Trace aus Abbildung 4.12 entspricht im Wesentlichen dem zum State-
Verhaltensmuster konformen Trace aus Abbildung 4.10 (Seite 76). Im Unter-
schied zum letzteren wurden bei diesem aber zwei zusätzliche Methodenaufrufe
zwischen den Instanzen der Entwurfsmusterimplementierung beobachtet. Die
beiden Methodenaufrufe run(s) und read() zwischen den Instanzen s und pl
werden jedoch im Verhaltensmuster nicht genannt. Trotz dieser zusätzlichen
Methodenaufrufe soll der beobachtete Trace konform zum Verhaltensmuster
sein.

82

4.3 Semantik

Aus diesem Grund werden in Traces nur solche Methodenaufrufe berück-
sichtigt, deren Methoden in Nachrichten des Verhaltensmusters verwendet
werden. Im Beispiel des State-Verhaltensmuster werden also nur Aufrufe
der Methoden Stream::setState(StreamState), Stream::execute(int) und Stream-
State::execute(Stream, int) berücksichtigt, wohingegen zum Beispiel Aufrufe
der Methoden StreamState::run(Stream) oder auch Stream::read() bei der Über-
prüfung der Konformität eines Traces ignoriert werden.

In Sequenzdiagrammen nach UML 2.0 gibt es zwei spezielle kombinierte
Fragmente namens relevante Nachrichten (Operator: consider) und irrelevan-
te Nachrichten (Operator: ignore), mit denen gezielt Nachrichten in einer
Teilsequenz berücksichtigt beziehungsweise ignoriert werden können. Mit Hil-
fe des kombinierten Fragments relevante Nachrichten werden Teilsequenzen
von Nachrichten bestimmter, vorgegebener Methoden spezifiziert. Die Metho-
den der zu berücksichtigenden, relevanten Nachrichten werden in einer Menge
hinter dem Operator consider des Fragments angegeben. Nachrichten dieser
Methoden dürfen innerhalb der Teilsequenz nur in der spezifizierten Weise ge-
sendet werden. Über Nachrichten aller anderen, nicht genannten Methoden
wird in der innerhalb des Fragments spezifizierten Teilsequenz keine Aussage
getroffen, sie werden deshalb ignoriert.

p:Player

execute(cmd)

st:StreamStates:Stream

execute(s, cmd)

consider {Stream.execute(int),
 StreamState.execute(Stream, int)}

sd Delegation to Current State

Abbildung 4.13: Sequenzdiagramm des Mediaplayers

In Abbildung 4.13 ist ein Sequenzdiagramm des Mediaplayers zu sehen, das
die Delegation eines Aufrufs von execute(int) an die Methode execute(Stream,
int) innerhalb eines consider -Fragments spezifiziert. In dem Fragment wer-
den Nachrichten genau dieser beiden Methoden berücksichtigt. Durch das
relevante-Nachrichten-Fragment wird festgelegt, dass zuerst eine Nachricht exe-
cute(int) vom Objekt p:Player an das Objekt s:Stream gesendet wird. Anschlie-
ßend muss die Nachricht execute(Stream, int) von s:Stream an st:StreamState
gesendet werden. Innerhalb dieser Teilsequenz darf kein andersartiger Aufruf

83

Kapitel 4 Verhaltensspezifikation

der beiden genannten Methoden erfolgen. Zum Beispiel darf keine Nachricht
execute(Stream, int) an das Objekt st:StreamState durch p:Player geschickt wer-
den. Nachrichten anderer, im consider -Operator nicht genannter Methoden
dürfen jedoch an beliebiger Stelle in dieser Teilsequenz erfolgen, sie werden in
dieser Spezifikation ignoriert.

Beim irrelevante-Nachrichten-Fragment sind im Gegensatz dazu explizit die
zu ignorierenden Methoden festgelegt. Die in der Teilsequenz spezifizierten
Nachrichten müssen exakt in der gegebenen Form erfolgen. Nachrichten, die
nicht explizit in der Menge des ignore-Operators genannt werden, dürfen zu
keinem Zeitpunkt innerhalb der gegebenen Teilsequenz gesendet werden. Nur
Nachrichten der explizit genannten Methoden dürfen an beliebiger Stelle ver-
sendet werden.

Die Semantik des consider -Fragments entspricht also genau der Seman-
tik, die implizit für Verhaltensmuster gilt. Die gewünschte Semantik der Ver-
haltensmuster erhielte man daher auch, wenn man die gesamte Sequenz des
Verhaltensmuster durch ein relevante-Nachrichten–Fragment umschließe. Aus
Gründen der Vereinfachung wird jedoch darauf verzichtet und die consider -
Semantik implizit auf das gesamte Verhaltensmuster angewendet.

Nicht-konforme Traces

Ein nicht-konformer Trace ist dagegen in Abbildung 4.14 dargestellt. Die ersten
drei Methodenaufrufe sind konform zu den im Verhaltensmuster geforderten
Nachrichten. Dann wird allerdings der Zustandswechsel durch die Instanz p
ausgelöst. Dieser Methodenaufruf ist zu keiner Nachricht, die zu diesem Zeit-
punkt erlaubt ist, konform. Der Trace ist deshalb nicht konform zum State-
Verhaltensmuster und steht somit im Widerspruch zum State-Entwurfsmuster.

setState(st)
execute(CMD_PLAY)

execute(s,CMD_PLAY)
setState(pl)

p:Player s:Stream pl:Playingst:Stopped

Abbildung 4.14: Zum State-Verhaltensmuster nicht-konformer Trace

Auch der in Abbildung 4.15 gezeigte Trace ist nicht konform zum State-
Verhaltensmuster. In diesem Fall wird aber der Zustandswechsel von einem

84

4.3 Semantik

setState(st)

execute(CMD_PLAY)
execute(s,CMD_PLAY)

setState(pl)

p:Player s:Streamu:Unknown st:Stopped pl:Playing

Abbildung 4.15: Unerlaubter Aufrufer der Nachricht setState

unbekannten Objekt ausgelöst, das nicht im Verhaltensmuster spezifiziert wur-
de und demnach nicht erlaubt ist.

setState(st)

execute(CMD_PLAY)
execute(s,CMD_PLAY)

p:Player s:Stream st:Stopped pl:Playing

execute(s,CMD_PLAY)

Abbildung 4.16: Unerlaubte Nachricht

Abbildung 4.16 zeigt einen Trace, bei dem die handle-Methode des State-
Verhaltensmuster zu einem Zeitpunkt aufgerufen wird, zu dem sie nicht aufge-
rufen werden darf. Der Trace ist ebenfalls nicht konform zum Verhaltensmuster.

4.3.5 Wertung konformer und nicht-konformer Traces

Ist ein Trace zu einem positiven Verhaltensmuster konform, so wird dieser
Trace als positives Indiz für den Kandidaten gewertet. Wird jedoch ein Trace
beobachtet, der nicht konform zum positiven Verhaltensmuster ist, so wird er
als negatives Indiz gewertet. Indizien sind nur Hinweise für oder gegen die Ver-
mutung, ein Kandidat sei eine tatsächliche Entwurfsmusterimplementierung.
Indizien sind keine absoluten Aussagen.

Bei einem negativen Verhaltensmuster werden nur Traces gewertet, die kon-
form zum negativen Verhaltensmuster sind. Solche Traces werden dann als
negatives Indiz angesehen. Verstößt ein Trace gegen ein negatives Verhaltens-
muster, so kann man daraus nicht schließen, dass der Kandidat sich dem Ent-

85

Kapitel 4 Verhaltensspezifikation

wurfsmuster entsprechend verhält. Daher können aus einem solchen Trace kei-
ne Rückschlüsse auf den Kandidaten gezogen werden. Ein Trace, der zu einem
negativen Verhaltensmuster nicht-konform ist, wird deshalb ignoriert.

Die Interpretation der positiven und negativen Indizien, die zu einem Kan-
didaten durch die Verhaltensanalyse gesammelt wurden, wird dem Reverse-
Engineer überlassen. Bei einem deutlichen Überwiegen der positiven Indizien
ist die Wahrscheinlichkeit, dass der Kandidat eine tatsächliche Entwurfsmus-
terimplementierung ist, sehr hoch. Überwiegen dagegen die negativen Indizien,
so ist die Wahrscheinlichkeit, dass der Kandidat ein False-Positive ist, höher.

4.4 Erzeugung eines Automaten

Die formale Definition der Semantik der Verhaltensmuster erfolgt durch die
Spezifikation einer inkrementellen Transformation eines Verhaltensmusters in
einen endlichen Automaten. Zunächst wird das Verhaltensmuster in einen
nichtdeterministischen, endlichen Automaten transformiert. Dieser Automat
wird anschließend in einen deterministischen, endlichen Automaten umgewan-
delt und um zusätzliche Transitionen erweitert. Die Erweiterung gleicht einer
Vervollständigung des endlichen Automaten, wird aber nur teilweise durch-
geführt. Das Ergebnis der Transformation ist ein deterministischer Automat,
der zur algorithmischen Erkennung des Verhaltensmusters verwendet werden
kann, indem er als Eingabe die Methodenaufrufe eines Traces erhält [WO06].
Der Automat kann nach Verarbeitung der Methodenaufrufe feststellen, ob der
Trace konform oder nicht-konform zu dem Verhaltensmuster ist, das er re-
präsentiert.

4.4.1 Nichtdeterministischer Automat

Bei der inkrementellen Transformation wird für jedes Interaktionsfragment
der Verhaltensmuster eine Transformation in Elemente eines nichtdetermi-
nistischen, endlichen Automaten (NFA) angegeben. Zur Übersetzung eines
vollständigen Verhaltensmusters in einen NFA werden alle Interaktionsfrag-
mente des Verhaltensmusters, also alle Nachrichten und kombinierten Frag-
mente, nach ihrer gegebenen Ordnung in Zustände, Transitionen und Symbole
des NFA transformiert und daraus ein vollständiger NFA erzeugt.

Ein nichtdeterministischer, endlicher Automat ist definiert durch eine end-
liche Menge Q von Zuständen, eine Menge Σ von Eingabesymbolen (auch Al-
phabet genannt), einen Startzustand q0, eine Menge F ⊆ Q von akzeptierenden

86

4.4 Erzeugung eines Automaten

Zuständen sowie durch die Transitionsfunktion δ, die einen Zustand aus Q und
ein Symbol aus Σ auf eine Teilmenge aus Q abbildet.

Interaktionsfragment

Jedes Interaktionsfragment des Verhaltensmusters wird in ein Teilkonstrukt
des letztendlich resultierenden NFA transformiert, das zwei Zustände enthält:
einen Anfangszustand s0 ∈ Q und einen Endzustand se ∈ Q.

Konkatenation der Interaktionsfragmente

Die aus den Interaktionsfragmenten entstehenden Teilkonstrukte werden an-
hand der Reihenfolge der Interaktionsfragmente im Verhaltensmuster über ε-
Transitionen konkateniert. ε ist das leere Wort . Die Transformation ist in Ab-
bildung 4.17 anschaulich dargestellt.

se,i1 s0,i2

Abbildung 4.17: Konkatenation zweier Interaktionsfragmente

Definition 4.3 Die Reihenfolge der Interaktionsfragmente innerhalb eines
Operanden ist im Metamodell der Verhaltensmuster über die geordnete As-
soziation fragments zwischen InteractionOperand und InteractionFragment defi-
niert.

Transformationsregel 4.1 Ist ein Interaktionsfragment i1 ∈ I der direkte
Vorgänger des Interaktionsfragments i2 ∈ I in einem Operanden, so wird der
Endzustand se,i1 ∈ Q von i1 durch eine ε-Transition mit dem Anfangszustand
s0,i2 ∈ Q von i2 verbunden:

s0,i2 ∈ δ(se,i1 , ε)

Nachricht

Das wichtigste Interaktionsfragment der Verhaltensmuster ist die Nachricht.
Die Nachrichten eines Verhaltensmusters definieren nicht nur maßgeblich die
Menge Σ der Eingabesymbole des NFA, sondern auch die Transitionsfunktion

87

Kapitel 4 Verhaltensspezifikation

δ. Eine Nachricht wird in zwei Zustände übersetzt, die durch eine Transiti-
on verbunden sind. Das Symbol, das von der Transition akzeptiert wird, re-
präsentiert die Nachricht. In Abbildung 4.18 ist die Transformation wiederum
anschaulich dargestellt.

s0 se

(a:A) (b:B).m()

m()

a:A b:B

Abbildung 4.18: Transformation einer Nachricht

Transformationsregel 4.2 Eine Nachricht, in der das typisierte Verhaltens-
musterobjekt a:A die Methode m auf dem typisierten Verhaltensmusterobjekt
b:B aufruft, wird in zwei Zustände s0 ∈ Q und se ∈ Q transformiert, die über
eine Transition mit dem Symbol (a : A) → (b : B).m() ∈ Σ verbunden werden:

δ(s0, (a : A) → (b : B).m()) = {se}

Das Symbol des Automaten ist also aus denselben Variablen zusammen-
gesetzt wie die Nachricht des Verhaltensmusters. Die Bindung der Variablen
des Verhaltensmusters gilt somit auch für das Symbol des Automaten. Befin-
det sich ein Automat während der Verhaltensanalyse in dem Zustand s0 und
erhält er einen Methodenaufruf mc des Typs Behavior::MethodCall als Eingabe,
so kann anhand der Bindung der Variablen geprüft werden, ob der Methoden-
aufruf konform zu dem Symbol ist. Die Konformität eines Methodenaufrufs zu
einem Symbol ist analog zu der Konformität eines Methodenaufrufs zu einer
Nachricht nach den Bedingungen 1 bis 5 aus Abschnitt 4.3.3 definiert, da das
Symbol aus denselben Variablen besteht wie die zugehörige Nachricht. Ist ein
Methodenaufruf also konform zu dem Symbol, so kann der Automat über die
zum Symbol gehörige Transition in den Zustand se wechseln.

Analog gelten diese Aussagen auch für Nachrichten, die von einem untypi-
sierten Verhaltensmusterobjekt gesendet werden. Die folgende Definition gibt
die Transformation für eine solche Nachricht an.

Transformationsregel 4.3 Eine Nachricht, in der das untypisierte Verhal-
tensmusterobjekt a die Methode m auf dem typisierten Verhaltensmusterobjekt
b:B aufruft, wird in zwei Zustände s0 ∈ Q und se ∈ Q transformiert, die über
eine Transition mit dem Symbol a → (b : B).m() ∈ Σ verbunden werden:

δ(s0, a → (b : B).m()) = {se}

88

4.4 Erzeugung eines Automaten

Operand

Jedes kombinierte Fragment eines Verhaltensmusters enthält mindestens einen
Operanden, der wiederum mindestens ein Interaktionsfragment, aber beliebig
viele, untereinander geordnete Interaktionsfragmente enthält.

Definition 4.4 Der Anfangszustand s0,o eines Operanden ist definiert als der
Anfangszustand s0,if seines ersten Interaktionsfragments if . Der Endzustand
se,o ∈ Q eines Operanden ist definiert als der Endzustand se,il ∈ Q seines
letzten Interaktionsfragments il:

s0,o=s0,if

se,o=se,il

Alternatives Fragment

Ein alternatives Fragment wird in zwei Zustände s0 und se transformiert, die
über ε-Transitionen mit den Anfangs- und Endzuständen der Operanden des
alternativen Fragments verbunden werden. Als Beispiel ist die Transformation
eines alternativen Fragments mit zwei Operanden in Abbildung 4.19 darge-
stellt. Die gestrichelten Transitionen in der Abbildung sind Platzhalter für die
Teilkonstrukte des NFA, die aus den Operanden transformiert und eingesetzt
werden.

alt

Operand o1

Operand o2

s0 se

s0,o1 se,o1

s0,o2 se,o2

Operand o1

Operand o2

Abbildung 4.19: Transformation eines alternativen Fragments mit zwei
Operanden

Definition 4.5 Die Menge der Operanden O(a) eines alternativen Fragments
a ist im Metamodell der Verhaltensmuster definiert durch die Assoziation ope-
rands zwischen CombinedFragment und InteractionOperand.

89

Kapitel 4 Verhaltensspezifikation

Transformationsregel 4.4 Sei O(a) die Menge der Operanden eines alter-
nativen Fragments a. Der Anfangszustand s0 ∈ Q des alternativen Fragments
wird jeweils über eine ε-Transition mit dem Anfangszustand s0,o ∈ Q jedes sei-
ner Operanden o ∈ O(a) verbunden. Der Endzustand se,o ∈ Q jedes Operanden
o ∈ O(a) wird ebenfalls über eine ε-Transition mit dem Endzustand se ∈ Q des
alternativen Fragments verbunden:
∀o ∈ O : s0,o ∈ δ(s0, ε), s0,o ∈ Q
∀o ∈ O : se ∈ δ(se,o, ε), se,o ∈ Q

Optionales Fragment

Aus einem optionalen Fragment werden ein Anfangs- und ein Endzustand
erzeugt, die über eine ε-Transition miteinander verbunden werden. Die ε-
Transition ermöglicht, das optionale Fragment im Automaten zu übersprin-
gen. Des Weiteren wird das durch den Operanden des optionalen Fragments
erzeugte Teilkonstrukt wie bei dem alternativen Fragment zwischen Anfangs-
und Endzustand des optionalen Fragments eingefügt. In Abbildung 4.20 ist
die gestrichelte Transition ebenfalls ein Platzhalter für das Teilkonstrukt des
Operanden.

opt

Operand o
s0 ses0,o se,o

Operand o

Abbildung 4.20: Transformation eines optionalen Fragments

Transformationsregel 4.5 Der Anfangszustand s0 ∈ Q des optionalen Frag-
ments wird über eine ε-Transition mit dem Endzustand se ∈ Q verbunden. Des
Weiteren wird der Anfangszustand s0 des optionalen Fragments über eine ε-
Transition mit dem Anfangszustand s0,o ∈ Q seines Operanden o verbunden.
Ebenso wird der Endzustand se,o ∈ Q des Operanden o über eine ε-Transition
mit dem Endzustand se des optionalen Fragments verbunden:

δ(s0, ε) = {se, s0,o}
se ∈ δ(se,o, ε)

90

4.4 Erzeugung eines Automaten

Schleife

Bei der Transformation einer Schleife werden zwei Varianten unterschieden,
Schleifen mit Untergrenze 0 und Schleifen mit Untergrenze 1. Bei Schleifen
mit Untergrenze 0 wird eine ε-Transition vom Anfangs- zum Endzustand er-
zeugt, die bei Schleifen mit Untergrenze 1 fehlt. Der Operand der Schleife wird,
wie in den beiden Abbildungen 4.21 und 4.22 dargestellt, analog zu den ande-
ren kombinierten Fragmenten zwischen Anfangs- und Endzustand der Schleife
eingefügt.

loop (1,*)

Operand o
s0 ses0,o se,o

Operand o

Abbildung 4.21: Transformation einer Schleife mit mindestens einem aber be-
liebig vielen Durchläufen

Transformationsregel 4.6 Eine Schleife wird in einen Anfangszustand s0 ∈
Q und einen Endzustand se ∈ Q transformiert. Zur Wiederholung der Schlei-
fe wird eine ε-Transition vom Endzustand zum Anfangszustand der Schleife
erzeugt. Der Anfangszustand s0 der Schleife wird über eine ε-Transition mit
dem Anfangszustand s0,o ∈ Q ihres Operanden o verbunden. Der Endzustand
se,o ∈ Q des Operanden o wird ebenfalls über eine ε-Transition mit dem End-
zustand se der Schleife verbunden:

s0 ∈ δ(se, ε)
δ(s0, ε) = {s0,o}
se ∈ δ(se,o, ε)

Transformationsregel 4.7 Bei einer Schleife mit der Untergrenze 0 wird
zusätzlich der Anfangszustand s0 der Schleife über eine ε-Transition mit dem
Endzustand se der Schleife verbunden:

se ∈ δ(s0, ε)

Startzustand und akzeptierender Zustand des NFA

Zur vollständigen Spezifikation des NFA fehlt noch die Spezifikation des Start-
zustands q0 und der Menge der akzeptierenden Zustände F ⊆ Q.

91

Kapitel 4 Verhaltensspezifikation

loop (0,*)

Operand o
s0 ses0,o se,o

Operand o

Abbildung 4.22: Transformation einer Schleife mit beliebig vielen Durchläufen

Definition 4.6 Das erste Interaktionsfragment eines Verhaltensmusters ist
definiert als das erste Interaktionsfragment des Operanden des Wurzel-Frag-
ments. Das letzte Interaktionsfragment eines Verhaltensmusters ist analog defi-
niert als das letzte Interaktionsfragment des Operanden des Wurzel-Fragments.

Transformationsregel 4.8 Der Anfangszustand s0,if ∈ Q des ersten Inter-
aktionsfragments des Verhaltensmusters wird zum Startzustand q0 des aus dem
Verhaltensmuster transformierten NFA. Der einzige akzeptierende Zustand
des NFA ist der Endzustand se,il ∈ Q des letzten Interaktionsfragments des
Verhaltensmusters:

q0 = s0,if

F = {se,il}

Transformationsalgorithmus

In Abbildung 4.23 ist der Algorithmus zur Transformation eines Verhaltensmu-
sters in einen NFA mit Hilfe einer Pseudocode-Syntax angegeben. Der Algo-
rithmus definiert, in welcher Reihenfolge die Elemente des Verhaltensmusters
anhand der Transformationsregeln 4.1 bis 4.8 in Konstrukte des NFA trans-
formiert werden.

Der Algorithmus wird auf dem Wurzel-Fragment des Verhaltensmusters gest-
artet (Zeile 2). Jedes kombinierte Fragment transformiert zunächst seine Ope-
randen (Zeilen 5 und 6), erst dann wird das kombinierte Fragment selber an-
hand seiner spezifischen Regel 4.4, 4.5, 4.6 beziehungsweise 4.7 transformiert
(Zeile 7).

Die Interaktionsfragmente werden anhand ihrer gegebenen Ordnung inner-
halb ihres Operanden transformiert (Zeile 10). Durch polymorphe Methoden-
bindung werden kombinierte Fragmente und Nachrichten unterschieden. Eine

92

4.4 Erzeugung eines Automaten

1: BehavioralPattern::constructNFA()

2: self.root.constructNFA()

3: transform initial state and accepting state by rule 4.8

4: CombinedFragment::constructNFA()

5: forEach operand:InteractionOperand in self.operands do
6: operand.constructNFA()

7: transform self by rule 4.4, 4.5, 4.6 or 4.7

8: InteractionOperand::constructNFA()

9: let previous:InteractionFragment = OCLVoid

10: forEach current:InteractionFragment in self.fragments do
11: current.constructNFA()

12: if previous<>OCLVoid then
13: concatenate previous with current by rule 4.1

14: previous = current

15: Message::constructNFA()

16: transform self by rule 4.2 or 4.3

Abbildung 4.23: Algorithmus zur Transformation eines Verhaltensmusters in
einen NFA

Nachricht wird nach den Regeln 4.2 beziehungsweise 4.3 transformiert (Zei-
le 16), ein kombiniertes Fragment wird wie oben erläutert transformiert. Die
bereits transformierten Interaktionsfragmente werden anhand ihrer Ordnung
nach Regel 4.1 konkateniert (Zeile 13).

Nach der Transformation des Wurzel-Fragments werden schließlich der Start-
zustand und der akzeptierende Zustand des Automaten nach Regel 4.8 be-
stimmt (Zeile 3). Nach Ausführung dieses Algorithmus erhält man den aus
einem Verhaltensmuster erzeugten NFA.

Beispiel

Mit Hilfe der oben genannten Transformationsregeln wurde das State-Verhal-
tensmuster aus Abbildung 4.1 in einen NFA umgewandelt. Das Ergebnis ist in
Abbildung 4.24 zu sehen.

Die Zustände 0 bis 3 wurden aus dem optionalen Fragment am Beginn des

93

Kapitel 4 Verhaltensspezifikation

11

(c:context) (c:context).setState()

(a:abstractState) (c:context).setState()

10
12

13 14
15

97

client (c:context).request() (c:context) (a:abstractState).handle()

4 5 86

0 1

client (c:context).setState()

32

19

client (c:context).request() (c:context) (b:abstractState).handle()

16 17 2018 21

Abbildung 4.24: Nichtdeterministischer, endlicher Automat für das State-Ver-
haltensmuster

Verhaltensmusters erzeugt. Die Nachricht innerhalb des optionalen Fragments
wurde in die Zustände 1 und 2 transformiert. In den Zuständen 4 bis 9 wurde
die erste Schleife mit zwei hintereinander gesendeten Nachrichten kodiert. Die
Zustände 10 bis 15 bilden das alternative Fragment mit den zwei Operanden.
Die zweite Schleife wurde in den Zuständen 16 bis 21 analog zu der ersten
Schleife kodiert.

Das optionale Fragment ist das erste Interaktionsfragment des State-Verhal-
tensmusters. Sein Anfangszustand ist der Startzustand des NFA. Das letzte In-
teraktionsfragment ist die zweite Schleife. Der Endzustand der zweiten Schleife
ist deshalb der akzeptierende Zustand des Automaten. Das Alphabet des NFA

94

4.4 Erzeugung eines Automaten

besteht aus dem leeren Wort ε und den Symbolen, die aus den Nachrichten
erzeugt wurden.

4.4.2 Deterministischer Automat

Der NFA kann wegen des Nichtdeterminismus noch nicht zur algorithmischen
Überprüfung der Verhaltensmuster verwendet werden. Er lässt sich allerdings
mit polynomiellen Aufwand in einen äquivalenten, deterministischen, endli-
chen Automaten (DFA) umwandeln.

Ein deterministischer, endlicher Automat ist wie ein NFA definiert durch
eine endliche Menge Q von Zuständen, eine Menge Σ von Eingabesymbolen,
einen Startzustand q0, eine Menge F ⊆ Q von akzeptierenden Zuständen sowie
durch die Transitionsfunktion δ, die jedoch im Gegensatz zum NFA einen Zu-
stand aus Q und ein Symbol aus Σ auf einen einzelnen Zustand aus Q abbildet.

Ein DFA, der aus einem NFA für ein Verhaltensmuster entstanden ist, ist in
der Lage, einen zu diesem Verhaltensmuster konformen Trace zu akzeptieren.
Es wird im Folgenden davon ausgegangen, dass Methodenaufrufe, die nicht in
der Menge der Eingabesymbole enthalten sind, vom DFA ignoriert werden. So
werden alle Methodenaufrufe vom DFA ignoriert, die auch von dem Verhaltens-
muster nicht berücksichtigt werden. Im Folgenden wird nun untersucht, wie ein
solcher DFA Traces verarbeitet, die nicht konform zum Verhaltensmuster sind.

0

1

3

45

2

6

client (c:context).setState()

client (c:context).request()

(c:context) (b:abstractState).handle()

(c:context) (c:context).setState()

client (c:context).request()

client (c:context).request()

(c:context) (a:abstractState).handle()

client (c:context).request()

client (c:context).request()

(a:abstractState) (c:context).setState()

Abbildung 4.25: Deterministischer Automat für das State-Verhaltensmuster

In Abbildung 4.25 ist der DFA dargestellt, der aus dem NFA aus Abbildung

95

Kapitel 4 Verhaltensspezifikation

4.24 für das State-Verhaltensmuster entstanden ist. Anhand dieses Beispiels
werden nun zwei zum State-Verhaltensmuster nicht-konforme Traces unter-
sucht.

setState(st)
execute(CMD_PLAY)

execute(s,CMD_PLAY)
setState(pl)

p:Player s:Stream pl:Playingst:Stopped

Abbildung 4.26: Zum State-Verhaltensmuster nicht-konformer Trace

Der in Abbildung 4.26 dargestellte Trace ist bereits in Abschnitt 4.3 vorge-
stellt worden. Zur Verhaltensanalyse werden zunächst die Variablen der Typ-
und Methodennamen des DFA aus Abbildung 4.25 an die Klassen und Me-
thoden des zum Trace gehörenden Kandidaten gebunden, wie in Abschnitt
4.3.2 erläutert. Zur Vereinfachung sei auch hier davon ausgegangen, dass die
Verhaltensmusterobjekte bereits zu Beginn der Verhaltensanalyse nichtdeter-
ministisch an Instanzen aus der Laufzeitumgebung gebunden werden. Bei der
tatsächlichen Verhaltensanalyse werden die Verhaltensmusterobjekte erst suk-
zessive während der Analyse gebunden. Die Bindung in diesem Beispiel ist die
gleiche, wie in Tabelle 4.2 auf Seite 77 aufgelistet.

Erhält der Automat nun die ersten drei Methodenaufrufe des Traces als Ein-
gabe, so wechselt er vom Startzustand 0 in den Zustand 3. Der vierte Metho-
denaufruf (p:Player)→(s.Stream).setState(pl) kann jedoch im Zustand 3 nicht
von dem DFA verarbeitet werden, da es in diesem Zustand keine Transition mit
einem Symbol gibt, zu dem der Methodenaufruf konform ist. Das Symbol, zu
dem der Methodenaufruf konform wäre, ist client → (c : context).setState().
Da dieses Symbol zum Alphabet des DFA gehört, verharrt der DFA aber in
diesem Fall in einem nicht akzeptierenden Zustand. Der Trace wird also nicht
vom DFA akzeptiert.

Der zweite Trace aus Abbildung 4.27 ist ebenfalls nicht konform zum State-
Verhaltensmuster. Der DFA verarbeitet, wie beim ersten Beispiel, die er-
sten drei Methodenaufrufe und befindet sich dann im Zustand 3. Für den
nun folgenden Methodenaufruf (u:Unknown)→(s:Stream).setState(pl) existiert
allerdings im Alphabet des DFA kein Symbol. Für einen Aufruf der Me-
thode Stream.setState(StreamState) existieren nur die beiden Symbole (c :

96

4.4 Erzeugung eines Automaten

setState(st)

execute(CMD_PLAY)
execute(s,CMD_PLAY)

setState(pl)

p:Player s:Streamu:Unknown st:Stopped pl:Playing

Abbildung 4.27: Alternativer, zum State-Verhaltensmuster nicht-konformer
Trace

context) → (c : context).setState() und (a : abstractState) → (c : context)
.setState(). Die aufrufenden Objekte der beiden Symbole passen jedoch nicht
zu der aufrufenden Instanz u:Unknown, da die Typen nicht konform zueinander
sind. Zu diesem Methodenaufruf existiert also kein passendes Symbol des Al-
phabets des DFA, er würde daher einfach vom DFA ignoriert. Der DFA kann
also weitere Methodenaufrufe entgegen nehmen und später den Trace eventuell
akzeptieren.

Um dies zu verhindern, müssen das Alphabet des DFA erweitert und zusätz-
liche Transitionen hinzugefügt werden, die verhindern, dass zum Verhaltens-
muster nicht-konforme Traces vom DFA akzeptiert werden.

Erweiterung des deterministischen Automaten

Zu diesem Zweck wird in den aus dem NFA entstandenen DFA ein zusätzlicher,
nicht akzeptierender Zustand eingefügt, der eine Senke innerhalb des DFA ist.
Der DFA soll diesen Zustand erreichen, wenn der von ihm untersuchte Trace
nicht konform zum Verhaltensmuster ist. Da der Zustand eine Senke ist, kann
der Automat den Zustand nicht wieder verlassen. Ein einmal verworfener Trace
kann also niemals akzeptiert werden. Im Folgenden wird diese Senke deshalb
auch als verwerfender Zustand bezeichnet4. In Abbildungen wird die Senke
mit einem R (Reject) versehen. Die folgende Regel führt die Senke ein.

Transformationsregel 4.9 Sei D ein DFA, der aus dem NFA eines Ver-
haltensmusters entstanden ist. Der DFA D wird ergänzt um einen nicht-
akzeptierenden Zustand r ∈ Q/F , der eine Senke innerhalb des DFA D ist:
∀σ ∈ Σ : δ(r, σ) = r

4In der Literatur findet man auch die Bezeichnung Fangzustand (engl. trap state).

97

Kapitel 4 Verhaltensspezifikation

Des Weiteren wird das Alphabet des DFA um zusätzliche Symbole ergänzt.
Diese Symbole haben die Form ∗ → (b : B).m() beziehungsweise ∗ /∈ C → (b :
B).m(). Ein Symbol der Form ∗ → (b : B).m() repräsentiert einen Aufruf der
Methode m() auf dem Verhaltensmusterobjekt b:B durch einen beliebigen Auf-
rufer. Demgegenüber repräsentiert ein Symbol der Form ∗ /∈ C → (b : B).m()
einen Aufruf der Methode m() auf dem Verhaltensmusterobjekt b:B durch
einen beliebigen Aufrufer, der nicht Element der Menge C ist, die Verhaltens-
musterobjekte enthält.

Dem DFA werden Transitionen hinzugefügt, die diese Symbole akzeptieren
und die nicht akzeptierende Zustände des DFA mit Ausnahme des Startzu-
stands mit dem neuen, verwerfenden Zustand r verbinden. So führen nicht er-
laubte Methodenaufrufe oder Methodenaufrufe, die durch einen nicht erlaubten
Aufrufer ausgelöst wurden, zum Verwerfen des Traces durch den Automaten.

R

* (a:abstractState).handle()

* (b:abstractState).handle()

3

42

(c:context) (c:context).setState()client (c:context).request()

(a:abstractState) (c:context).setState()

* {client} (c:context).request()

* {a:abstractState, c:context} (c:context).setState()

Abbildung 4.28: Ausschnitt aus dem um einen verwerfenden Zustand erweiter-
ten DFA

Abbildung 4.28 zeigt nur einen kleinen Ausschnitt aus dem um einen ver-
werfenden Zustand und zusätzlichen Transitionen erweiterten DFA des State-
Verhaltensmusters. Der vollständige DFA ist zu komplex, um ihn an die-
ser Stelle abzubilden. In dieser Abbildung ist zu sehen, welche Transitio-
nen, ausgehend vom Zustand 3, dem Automaten hinzugefügt wurden. In
der bisherigen Version konnte der DFA im Zustand 3 nur die drei Symbole
client → (c : context).request(), (c : context) → (c : context).setState()

98

4.4 Erzeugung eines Automaten

und (a : abstractState) → (c : context).setState() akzeptieren. Alle ande-
ren relevanten Methodenaufrufe müssen jedoch zu einem Verwerfen des Traces
führen. Aus diesem Grund werden zusätzliche Transitionen eingeführt, die den
Zustand 3 mit der Senke verbinden und die das

”
Komplement“ der drei Sym-

bole akzeptieren.

Zunächst einmal darf die Nachricht request() auf dem Verhaltensmusterob-
jekt c:context in diesem Zustand nur durch das Verhaltensmusterobjekt client
gesendet werden. Alle anderen Aufrufer sind für diese Nachricht nicht erlaubt.
Deshalb wird eine Transition vom Zustand 3 zum verwerfenden Zustand mit
dem Symbol ∗ /∈ {client} → (c : context).request() ∈ Σ hinzugefügt.

Des Weiteren dürfen nur die Verhaltensmusterobjekte a:abstractState und
c:context die Nachricht setState() an das Verhaltensmusterobjekt c:context sen-
den. Daher wird der DFA um eine Transition vom Zustand 3 zum verwerfenden
Zustand mit dem Symbol ∗ /∈ {a : abstractState, c : context} → (c : context)
.setState() ∈ Σ erweitert.

Es muss außerdem sichergestellt werden, dass Methodenaufrufe, die in die-
sem Zustand nicht erlaubt sind, zu einem Verwerfen des Traces führen. Dies
sind alle Aufrufe von Methoden, die von dem Verhaltensmuster berücksich-
tigt werden, und auf den beteiligten Verhaltensmusterobjekte aufgerufen wer-
den. Im Zustand 3 ist dies nur die Methode handle(), die auf den Verhal-
tensmusterobjekten a:abstractState und b:abstractState aufgerufen wird. Dem
DFA werden deshalb zwei weitere Transitionen vom Zustand 3 zum verwer-
fenden Zustand mit den Symbolen ∗ → (a : abstractState).handle() ∈ Σ und
∗ → (b : abstractState).handle() ∈ Σ hinzugefügt.

R

* (a:abstractState).handle()

* (b:abstractState).handle()

4 5

client (c:context).request()

* {client} (c:context).request()

* (c:context).setState()

Abbildung 4.29: Erweiterung des Zustands 4 um zusätzliche Transitionen

99

Kapitel 4 Verhaltensspezifikation

Dieses Verfahren muss für alle nicht-akzeptierenden Zustände mit Ausnahme
des Startzustands durchgeführt werden. In Abbildung 4.29 sind die zusätzli-
chen Transitionen zu sehen, die vom Zustand 4 zum verwerfenden Zustand
führen.

Im Folgenden wird dieses Verfahren im Detail erläutert. Zunächst wird ein
Algorithmus vorgestellt, der alle Nachrichten, die von den Verhaltensmuster-
objekten eines Verhaltensmusters empfangen werden können, in einer Menge
zusammen fasst. Die Menge enthält als Elemente Tupel, die aus dem Objekt-
und dem Typnamen des aufgerufenen Verhaltensmusterobjekts sowie dem Me-
thodennamen der Nachricht bestehen. Der Algorithmus ist in Abbildung 4.30
in Pseudocode-Syntax angegeben.

1: BehavioralPattern::receivedMessages():

Set(TupleType(object:String, type:String, method:String))

2: let result:Set(TupleType(object:String, type:String,

method:String))

3: forEach o:BPObject in self.objects do
4: forEach m:Message in o.lifeline.received do
5: result→add(Tuple(o.name, o.typeName, m.name))

6: return result

Abbildung 4.30: Algorithmus zur Berechnung der aufgerufenen Nachrichten ei-
nes Verhaltensmusters

Der Algorithmus liefert zum Beispiel für die Instanz state:BehavioralPattern
des State-Verhaltensmusters die folgende Menge:

state.receivedMessages() ={(a,abstractState,handle), (b,abstractState,handle),
(c,context,request), (c,context,setState)}

Ein Tupel dieser Menge repräsentiert alle Nachrichten, die als Empfänger das
im Tupel genannte Verhaltensmusterobjekt haben, und die die im Tupel ge-
nannte Methode aufrufen. Das Tupel (a,abstractState,handle) zum Beispiel re-
präsentiert alle Nachrichten, in denen die Methode handle() auf dem Verhal-
tensmusterobjekt a:abstractState aufgerufen wird.

Die nun folgenden Definitionen werden für die Transformationsregel benö-
tigt, die den DFA um Transitionen ergänzt, die in einem Zustand unerlaubte
Methodenaufrufe akzeptieren und den DFA damit in den verwerfenden Zu-
stand führen. Als erstes wird die Menge ASD(s) (Accepted Symbols) definiert,
die als Elemente alle in einem Zustand s des DFAs D akzeptierten Symbole
enthält.

100

4.4 Erzeugung eines Automaten

Definition 4.7 Die Menge ASD(s) der in einem Zustand s eines DFA D
akzeptierten Symbole ist definiert durch:
ASD(s) = {σ ∈ Σ|δ(s, σ) = s′, s ∈ Q, s′ ∈ Q/{r}},

wobei r der verwerfende Zustand des DFA D ist.

Das bedeutet, ASD(s) enthält alle Symbole, die die vom Zustand s aus-
gehenden Transitionen akzeptieren. Im DFA des State-Verhaltensmusters gilt
zum Beispiel für den Zustand 3:
ASState(3) = {(client) → (c : context).request(),

(c : context) → (c : context).setState(),
(a : abstractState) → (c : context).setState()}

Die nächste Definition ermöglicht den Zugriff auf die Variablen eines Sym-
bols.

Definition 4.8 Sei σ ∈ Σ ein Symbol eines DFA D. Dann bezeichne σcaller

den Objektnamen und σcallerType den Typnamen des aufrufenden Verhaltens-
musterobjekts des Symbols σ. Analog bezeichne σcallee den Objektnamen und
σcalleeType den Typnamen des aufgerufenen Verhaltensmusterobjekts des Sym-
bols σ. σmethod bezeichne den Methodennamen des Symbols σ.

Die Menge RMD(s) der in einem Zustand s eines DFA D empfangbaren
Nachrichten (Receivable Messages) enthält Tupel, die aus dem Objekt- und
dem Typnamen des aufgerufenen Verhaltensmusterobjekts sowie dem Metho-
dennamen des Symbols bestehen.

Definition 4.9 Die Menge RMD(s) wird definiert für einen Zustand s des
DFA D. Die Elemente der Menge sind alle Tupel aus dem Objekt- und dem
Typnamen des aufgerufenen Verhaltensmusterobjekts sowie den aufgerufenen
Methodennamen, die in einem Symbol σ ∈ ASD(s) enthalten sind:
∀σ ∈ ASD(s) : (σcallee, σcalleeType, σmethod) ∈ RMD(s)

Für den Zustand 3 des State-DFA gilt:
RMState(3) = {(c, context, request), (c, context, setState)}

Die folgende Transformationsregel fügt nun dem DFA Symbole der Form
∗ → (b : B).m() und Transitionen, die diese Symbole akzeptieren und den
DFA damit in den verwerfenden Zustand führen, hinzu.

Transformationsregel 4.10 Sei bp des Typs BehavioralPattern das zu einem
DFA D gehörende Verhaltensmuster. Jeder nicht-akzeptierende Zustand des

101

Kapitel 4 Verhaltensspezifikation

DFA D mit Ausnahme des Startzustands wird mit Transitionen zum verwer-
fenden Zustand r ∈ Q verbunden, die in dem jeweiligen Zustand unerlaubte
Methodenaufrufe akzeptieren:
∀s ∈ Q/(F ∪ {q0, r}) : ∀rm ∈ bp.receivedMessages/RM(s) :

δ(s, ∗ → (rm.object : rm.type).rm.method()) = r,
∗ → (rm.object : rm.type).rm.method() ∈ Σ

Dem Zustand 3 des State-DFA werden also die folgenden beiden Transitionen
hinzugefügt:

δ(3, ∗ → (a : abstractState).handle()) = r mit
∗ → (a : abstractState).handle() ∈ Σ

und
δ(3, ∗ → (b : abstractState).handle()) = r mit
∗ → (b : abstractState).handle() ∈ Σ

Zuletzt muss noch eine Transformationsregel definiert werden, die den DFA
um Transitionen ergänzt, die in einem Zustand Methodenaufrufe unerlaubter
Aufrufer akzeptieren und den DFA damit in den verwerfenden Zustand führen.
Dazu werden weitere Definitionen benötigt. Die nächste Definition ermöglicht
den Zugriff auf die Elemente eines Tupels der Menge RMD(s).

Definition 4.10 Sei rm ein Tupel der Menge RMD(s). Dann bezeichne
rmcallee den Objektnamen und rmcalleeType den Typnamen des aufgerufenen
Verhaltensmusterobjekts des Tupels rm. rmmethod bezeichne den Methodenna-
men des Tupels rm.

Nun muss noch die Menge CD(s, rm) definiert werden, die aus allen Verhal-
tensmusterobjekten besteht, die in einem Zustand s des DFA D die Methode
rmmethod auf dem Verhaltensmusterobjekt rmcallee:rmcalleeType aufrufen dürfen,
mit rm ∈ RMD(s).

Definition 4.11 Sei s ein Zustand des DFA D und rm ein Element der Men-
ge RMD(s). Dann ist die Menge CD(s, rm) definiert durch:
CD(s, rm) = {(σcaller : σcallerType)|δ(s, σ) 6= r∧

σcallee = rmcallee ∧ σcalleeType = rmcalleeType ∧ σmethod = rmmethod}

Für den Zustand 3 des State-DFA und rm = (c, context, setState) gilt:
CState(3, (c, context, setState)) = {(a : abstractState), (c : context)}

Die folgende Transformationsregel fügt nun dem DFA Symbole der Form
∗ /∈ C → (b : B).m() sowie Transitionen, die diese Symbole akzeptieren, hinzu.

102

4.5 Zusammenfassung

Transformationsregel 4.11 Sei bp des Typs BehavioralPattern das zu einem
DFA D gehörende Verhaltensmuster. Jeder nicht-akzeptierende Zustand des
DFA D mit Ausnahme des Startzustands wird mit Transitionen zum verwer-
fenden Zustand r ∈ Q verbunden, die Methodenaufrufe von unerlaubten Auf-
rufern akzeptieren:
∀s ∈ Q/F ∪ {q0, r} : ∀rm ∈ RMD(s) :

δ(s, ∗ /∈ CD(s, rm) → (rmcallee : rmcalleeType).rmmethod()) = r,
∗ /∈ CD(s, rm) → (rmcallee : rmcalleeType).rmmethod() ∈ Σ

Mit dieser Transformationsregel werden dem Zustand 3 des State-DFA die
folgenden beiden Transitionen hinzugefügt:

δ(3, ∗ /∈ {(a : abstractState), (c : context)} → (c : context).setState()) = r
mit
∗ /∈ {(a : abstractState), (c : context)} → (c : context).setState() ∈ Σ

und
δ(3, ∗ /∈ {(client)} → (c : context).request()) = r mit
∗ /∈ {(client)} → (c : context).request() ∈ Σ

Ein DFA, der zunächst aus einen NFA eines Verhaltensmusters entstanden
ist, und nun durch die Transformationsregeln 4.10 und 4.11 erweitert wurde,
akzeptiert alle zum Verhaltensmuster konformen Traces und verwirft alle zum
Verhaltensmuster nicht-konformen Traces. Dieser DFA kann in der Verhaltens-
analyse zur Erkennung des Verhaltensmusters eingesetzt werden.

Die vorgenommene Erweiterung gleicht einer Vervollständigung des Auto-
maten. Da das Verfahren aber nur für die nicht-akzeptierenden Zustände oh-
ne dem Startzustand angewendet wurde, fehlen einige Transitionen für einen
vollständigen Automaten.

4.5 Zusammenfassung

Dieses Kapitel hat die formale Spezifikation der Verhaltensmuster zum Inhalt.
Wie bereits in Kapitel 3.2 erläutert, lässt sich das Verhalten von Entwurfs-
muster durch Sequenzen von Methodenaufrufen spezifizieren. In der Softwa-
retechnik haben sich dafür Sequenzdiagramme nach UML 2.0 etabliert. Da
sich UML-Sequenzdiagramme auch sehr gut in den bisherigen, ebenfalls UML-
unterstützten Erkennungsprozess integrieren, wurden sie als Basis zur Spezifi-
kation von Verhaltensmustern gewählt.

Verhaltensmuster sind allerdings in ihrer Syntax gegenüber allgemeinen
UML-Sequenzdiagrammen eingeschränkt. Des Weiteren sind die Verhaltens-
muster syntaktisch eng verzahnt mit den Strukturmustern. Aus diesem Grund

103

Kapitel 4 Verhaltensspezifikation

wurde für die Verhaltensmuster auf Basis der Sequenzdiagramme nach UML
2.0 eine eigene Syntax definiert. In diesem Zusammenhang wurde auch das Me-
tamodell der Strukturmuster erweitert, um die Verbindung zwischen Struktur-
und Verhaltensmustern zu schaffen.

Die Semantik der Verhaltensmuster wurde in diesem Kapitel zunächst nur
informell anhand eines Beispiels beschrieben. Dazu wurden einige hypotheti-
sche Traces des Beispiels vorgestellt, zu denen erläutert wurde, ob sie konform
oder nicht-konform zu einem gegebenen Verhaltensmuster sind.

Formal ist die Semantik der Verhaltensmuster durch eine allgemeine Trans-
formation von Verhaltensmustern in deterministische, endliche Automaten de-
finiert worden. Dazu wurden Transformationsregeln für jedes Syntaxelement
eines Verhaltensmusters in Elemente eines nichtdeterministischen, endlichen
Automaten angegeben. Nach der Transformation erfolgt eine Umwandlung des
nichtdeterministischen in einen deterministischen, endlichen Automaten, der
jedoch nur einen Teil der durch das Verhaltensmuster beschriebenen Traces er-
kennt. Daher wurden weitere Transformationsregeln angegeben, die den deter-
ministischen Automaten so erweitern, dass er alle zu einem Verhaltensmuster
konformen Traces akzeptiert, und alle nicht-konformen verwirft. Dieser Au-
tomat wird nun im folgenden Kapitel zur Erkennung von Verhaltensmustern
verwendet.

104

Kapitel 5

Verhaltensanalyse

In diesem Kapitel wird der Prozess der Verhaltensanalyse erläutert. Der erste
Teil des Kapitels gibt einen Überblick über den Prozess. In den folgenden Ab-
schnitten werden die Teilschritte der Verhaltensanalyse vorgestellt. Zunächst
werden zwei verschiedene Verfahren zur Gewinnung der Traces diskutiert. An-
schließend wird im Detail die Erkennung von Verhaltensmustern in den Traces
mit Hilfe der im letzten Kapitel eingeführten deterministischen Automaten
erklärt. Den Abschluss des Kapitels bildet die Bewertung der Ergebnisse der
Verhaltensanalyse.

5.1 Verhaltensbasierter Erkennungsprozess

Der in Abbildung 5.1 dargestellte verhaltensbasierte Erkennungsprozess ist
ein detaillierterer Ausschnitt aus dem Gesamtprozess der struktur- und ver-
haltensbasierten Entwurfsmustererkennung aus Abbildung 3.7 auf Seite 48.
Der Prozess der verhaltensbasierten Entwurfsmustererkennung wurde bereits
in [WO06] veröffentlicht.

Eingabe der dynamischen Analyse sind unter anderem die Kandidaten
für Entwurfsmusterimplementierungen, die als Ergebnis der Strukturanaly-
se gewonnen wurden. Des Weiteren wird der Katalog der Verhaltensmuster
benötigt. Dabei hängen die zu verwendenden Verhaltensmuster von den Struk-
turmustern ab, die zuvor in der Strukturanalyse verwendet wurden. Im Gegen-
satz zur Strukturanalyse wird bei der Verhaltensanalyse nicht der Quelltext
des zu untersuchenden Softwaresystems benötigt, sondern der übersetzte Pro-
grammcode, damit das Programm ausgeführt werden kann.

Bei der Ausführung gibt es grundsätzlich zwei verschiedene Vorgehens-
weisen, um das Programm zu überwachen und Traces zu beobachten. Zum
einen kann der Programmcode in unveränderter Form ausgeführt und die

105

Kapitel 5 Verhaltensanalyse

Design-
dokument

Verhaltens-
muster

Dynamische
Analyse

Instrumen-
tierung

Kandidaten
für Entwurfsmuster-
implementierungen

TestsTests

Ausführbares
Programm

Instrumen-
tiertes

Programm

Datenfluß

Interaktion

Dokument

Prozessschritt

Abbildung 5.1: Der verhaltensbasierte Erkennungsprozess

Ausführung des Programms von außen überwacht werden, zum Beispiel durch
einen Debugger. Zum anderen kann aber auch der Programmcode manipuliert
werden. In diesem Fall wird zusätzlicher Code in den vorhandenen Programm-
code eingefügt, um Methodenaufrufe aus dem zu untersuchenden Programm
heraus zu protokollieren. Das Einfügen zusätzlichen Codes wird Instrumentie-
rung genannt. Die zu beobachtenden Methoden werden den Verhaltensmustern
in Kombination mit den Kandidaten entnommen.

In der dynamischen Analyse werden diese Eingaben verwendet, um das Pro-
gramm auszuführen und in den beobachteten Traces nach Verhaltensmustern
zu suchen. Die Suche nach Verhaltensmustern kann ebenfalls auf zwei verschie-
dene Weisen durchgeführt werden. Entweder werden die beobachteten Metho-
denaufrufe parallel zur Programmausführung analysiert, oder die Traces wer-
den zunächst gespeichert und erst im Anschluss an die Programmausführung
analysiert. Die erste Methode, die so genannte Online-Analyse, hat den Vorteil,
dass nur eine geringe Datenmenge gespeichert werden muss. Die Informationen
über die beobachteten Methodenaufrufe werden direkt verarbeitet und danach
verworfen. Übrig bleiben nur die Ergebnisse der dynamischen Analyse. Jedoch
wird unter Umständen zur Verhaltensanalyse Rechenzeit verbraucht, die dem
zu untersuchenden Programm nicht zur Verfügung steht. Die zweite Metho-
de, die so genannte Offline-Analyse, benötigt nur sehr wenig Rechenzeit, um

106

5.2 Gewinnung der Traces

die beobachteten Methodenaufrufe in einem Protokoll zu speichern. Allerdings
werden die Protokolle sehr groß, so dass sie viel Speicherplatz verbrauchen und
unter Umständen schwer zu handhaben sind.

Das zentrale Problem dynamischer Analysen ist die angemessene Auswahl
der Eingabedaten, die zur Ausführung des zu analysierenden Softwaresystems
benötigt werden. Um verwertbare Ergebnisse zu erhalten, sollten die Eingabe-
daten möglichst repräsentativ für die in der Praxis auftretenden Daten aus-
gewählt werden. Die Ausführung der zu untersuchenden Software kann entwe-
der durch automatische Tests erfolgen oder durch manuelle Bedienung durch
einen Benutzer. Im Idealfall wird das Softwaresystem in einer produktiven
Umgebung eingesetzt, bei der reale Daten als Eingabe verwendet werden.

Das Ergebnis der dynamischen Analyse stellt das Gesamtergebnis der
struktur- und verhaltensbasierten Entwurfsmustererkennung dar. Der Reverse-
Engineer erhält ein Design-Dokument in Form von UML-Klassendiagrammen,
in denen die Kandidaten annotiert sind. Die Annotationen enthalten Bewertun-
gen, die den Grad der Übereinstimmung der Entwurfsmusterimplementierung
mit dem Struktur- und den Verhaltensmustern des Entwurfsmusters angeben.

5.2 Gewinnung der Traces

Wie bereits erwähnt, gibt es zwei grundsätzliche Vorgehensweisen, um Metho-
denaufrufe in einem zu untersuchenden Softwaresystem zu überwachen. Die
erste besteht darin, das unveränderte Programm von außen zu beobachten,
die zweite darin, den Programmcode so zu verändern, dass die Methoden-
aufrufe aus dem Programmcode heraus überwacht werden. In der vorliegen-
den Arbeit wurde für beide Vorgehensweisen je eine Lösung umgesetzt. Dabei
wurde in beiden Lösungen sowohl eine Online-, als auch eine Offline-Analyse
ermöglicht. Im Folgenden werden diese beiden Lösungen vorgestellt und ihre
Vor- und Nachteile einander gegenübergestellt. Zunächst werden aber einige
Voraussetzungen für die Gewinnung der Traces erläutert.

5.2.1 Voraussetzungen

In Abschnitt 3.2.3 wird beschrieben, wie der Trace eines zu untersuchenden
Softwaresystems als Tracegraph repräsentiert wird. Die Informationen, die der
Tracegraph zu einem einzelnen Methodenaufruf enthält, sind die aufrufende
Instanz und ihr Typ, die aufgerufene Instanz und ihr Typ, sowie der Name der
Methode und die Argumente. Diese Informationen müssen bei der Überwa-

107

Kapitel 5 Verhaltensanalyse

chung des Softwaresystems gesammelt und in einem Tracegraphen aufbereitet
werden.

Bei einer Online-Analyse werden die Methodenaufrufe in Form einer Instanz
der Klasse Behavior::MethodCall aus dem Modell des Tracegraphen direkt an
die Verhaltensanalyse weitergereicht. Bei einer Offline-Analyse wird der Tra-
cegraph dagegen in einer Datei gespeichert. Der Tracegraph kann dann später
aus der Datei rekonstruiert und die Methodenaufrufe an die Verhaltensanalyse
weitergereicht werden.

In Entwurfsmustern wird sehr häufig von der polymorphen Methodenbin-
dung Gebrauch gemacht. Sie wird daher auch in den Verhaltensmustern ver-
wendet. Für die Verhaltensanalyse müssen also alle Methoden überwacht wer-
den, die polymorph für die in den Nachrichten der Verhaltensmuster verwen-
deten Methoden gebunden werden können. Die zu beobachtenden Methoden
sind also nicht nur die Methoden, die in den Nachrichten eines Verhaltensmu-
sters verwendet werden, sondern auch alle Methoden, die die Methoden der
Nachrichten überschreiben oder implementieren.

5.2.2 Überwachung durch Debugging

In der vorliegenden Arbeit wurde ein Verfahren entwickelt, bei dem der Pro-
grammcode des zu untersuchenden Softwaresystems unverändert mit Hilfe ei-
nes Debugger ausgeführt wird und Aufrufe zu beobachtender Methoden über-
wacht werden [MW05]. Dazu setzt der Debugger am Anfang des Rumpfes
einer zu beobachtenden Methode einen Breakpoint. Das bedeutet, es wird eine
Stelle im Programmcode der Methode markiert, an dem die Ausführung des
Programms unterbrochen wird. Der Debugger greift bei einer Unterbrechung
auf den Methodenaufrufstack zu und ermittelt daraus alle für die Verhaltens-
analyse relevanten Informationen dieses Methodenaufrufs. Anschließend wird
die Ausführung des Programms fortgesetzt.

Das Verfahren hat den Vorteil, dass es auf einem universellem Konzept auf-
baut. Debugger mit der Fähigkeit, Breakpoints zu setzen, existieren für nahezu
alle Programmiersprachen. Das Verfahren ist damit auf die meisten Program-
miersprachen sehr leicht übertragbar. Der Nachteil dieses Verfahrens besteht
jedoch darin, dass ein Debugger die Ausführung des zu untersuchenden Pro-
gramms zum Teil erheblich verlangsamt. Der Performanzverlust hängt dabei
nur von der Zahl der zu überwachenden Methoden ab. Je nach Programmier-
sprache und eingesetztem Debugger wird ein nicht unerheblicher Performanz-
verlust allein durch die notwendige Ausführung des Programms im Debugging-
Modus verursacht. Der Einsatz der dynamischen Analyse in einer produktiven

108

5.2 Gewinnung der Traces

Umgebung ist damit kaum möglich.
Die in der vorliegenden Arbeit umgesetzte Lösung dieses Verfahrens wurde

für die Überwachung Java-basierter Programme entwickelt [WME04, MW05,
MW05]. Die Ausführung der Programme wird durch das Debugging um den
Faktor 2,5 bis 8 je nach Zahl der zu beobachtenden Methoden verlangsamt. In
einer anderen Arbeit, in der ebenfalls über einen Debugger Methodenaufrufe
überwacht werden, wird sogar von einer Verlangsamung um einen Faktor von
bis zu 300.000 berichtet [Meh01, Meh03]. Es wurde eine künstliche Messung
durchgeführt, bei der eine Methode etwa 10.000 Mal aufgerufen wurde. Zum
Debuggen wurde jedoch eine spezielle Schnittstelle der Java-Virtual-Machine
verwendet.

5.2.3 Überwachung durch Instrumentierung

Durch Instrumentierung wird der Programmcode eines Softwaresystems ma-
nipuliert. Häufig wird Instrumentierung zur Analyse von dynamischen Eigen-
schaften der Software verwendet [SO05]. Die Techniken zur Instrumentierung
werden grundsätzlich in zwei Kategorien eingeteilt, in statische und dyna-
mische Instrumentierung. Bei der statischen Instrumentierung wird der Pro-
grammcode vor der Ausführung des Programms verändert. Hier gibt es wie-
derum zwei verschiedene Möglichkeiten, die Instrumentierung durchzuführen.
Zum einen wird der zusätzliche Programmcode dem ursprünglichen Quelltext
hinzugefügt und der Quelltext neu übersetzt, um anschließend das Programm
auszuführen. Zum anderen wird der bereits übersetzte Programmcode vor der
Ausführung verändert. Bei der dynamischen Instrumentierung wird der Pro-
grammcode dagegen erst beim Laden in den Speicher während der Ausführung
des zu untersuchenden Softwaresystems verändert.

Zur Überwachung von Methodenaufrufen für die Verhaltensanalyse wird
dem ursprünglichen Programmcode zusätzlicher Programmcode hinzugefügt.
Der eingefügte Programmcode ermittelt beim Aufruf einer zu beobachtenden
Methode alle notwendigen Informationen und protokolliert diese oder gibt sie
direkt an die Verhaltensanalyse weiter. Prinzipiell kann der zusätzliche Pro-
grammcode wie beim Debugging jeweils am Anfang des Methodenrumpfes ein-
gefügt werden. Er wird dadurch immer dann ausgeführt, wenn die zu beobach-
tende Methode aufgerufen wird.

Im Gegensatz zum Debugging führt die Instrumentierung nur zu einem ge-
ringen Performanzverlust, der nur von der Zahl der überwachten Methoden
abhängt. Die Instrumentierung ist damit zum Einsatz in produktiven Umge-
bungen durchaus geeignet. Ein Nachteil dieser Methode ist aber der höhere

109

Kapitel 5 Verhaltensanalyse

Aufwand für den Reverse-Engineer gegenüber dem Debugging. Bei der sta-
tischen Instrumentierung muss der Programmcode vor der Ausführung des
Programms erst manipuliert und unter Umständen sogar der Quelltext neu
übersetzt werden.

Wird der bereits übersetzte Programmcode verändert, so ist die Umsetzung
der Instrumentierung sehr stark abhängig von der Programmiersprache, in
der das zu untersuchende Softwaresystem geschrieben wurde. Die Quelltexte
einiger Programmiersprachen wie C++ oder Pascal werden direkt in Maschi-
nensprache übersetzt. Dieser Programmcode ist nur mit sehr hohem Aufwand
zu manipulieren, da zum Beispiel alle Sprungadressen im Programmcode neu
berechnet werden müssen. Bei Programmiersprachen wie Java, Smalltalk
oder C#, bei denen der Quelltext in eine Zwischensprache übersetzt wird, ist
die Instrumentierung dagegen einfacher. Die Zwischensprache ist ebenfalls ei-
ne Hochsprache, die zur Ausführung meist interpretiert wird. Daher müssen
zum Beispiel Sprungadressen nur lokal innerhalb eines Methodenrumpfes neu
berechnet werden. Damit ist die Technik der Instrumentierung nicht so leicht
übertragbar auf andere Programmiersprachen wie das Debugging.

In der vorliegenden Arbeit wurde ein Werkzeug entwickelt, mit dem Java-
Bytecode instrumentiert werden kann. Java-Bytecode ist in eine Zwischen-
sprache übersetzter Java-Quelltext. Allerdings kann das Prinzip, am Anfang
eines Methodenrumpfes Programmcode einzufügen, der die Aufrufe der Me-
thode überwacht, nicht auf Java-Programmcode übertragen werden. In Ja-
va-Programmcode ist es nicht möglich, innerhalb eines Methodenrumpfes auf
die Instanz zuzugreifen, die die Methode aufgerufen hat. Der Methodenauf-
rufstack, in dem diese Information enthalten ist, ist nicht abrufbar. Die für die
Verhaltensanalyse benötigten Informationen können also auf diese Weise nicht
gewonnen werden.

Stattdessen müssen die Stellen im Java-Programmcode ergänzt werden,
an denen die zu beobachtenden Methoden aufgerufen werden. Das bedeutet
aber, dass der gesamte Programmcode auf solche Methodenaufrufe untersucht
und gegebenenfalls instrumentiert werden muss. Dieses Vorgehen birgt weitere
Nachteile. Werden Teile des Softwaresystems nicht instrumentiert, können Auf-
rufe von zu beobachtenden Methoden aus diesen Teilen des Softwaresystems
nicht überwacht werden. In Java ist es zudem möglich, durch Introspektion
(Java-Reflection API) Methoden aufzurufen, ohne diesen Aufruf explizit im
Quelltext ausdrücken zu müssen. Bei solchen Methodenaufrufen ist es daher
prinzipiell nicht möglich, durch Instrumentierung die für die Verhaltensanalyse
notwendigen Informationen zu gewinnen.

110

5.3 Verhaltenserkennung

5.3 Verhaltenserkennung

Im Folgenden wird der Prozess der Verhaltenserkennung im Detail erläutert. In
Abbildung 5.2 ist das Modell der Verhaltenserkennung dargestellt. Die Klasse
BehavioralAnalysis ist der Einstiegspunkt für die Verhaltensanalyse. Als Ein-
gabe erhält die Verhaltensanalyse die Kandidaten für Entwurfsmusterimple-
mentierungen aus der Strukturanalyse. Diese werden durch die Klasse Anno-
tations::Annotation (Abbildung 2.7, Seite 24) repräsentiert. Die Klasse Beha-
vioralAnalysis bildet durch die Referenz annotations einen Schlüssel auf eine
Menge von Annotationen ab. Als Schlüssel dient der Typname der Annotatio-
nen. Der Schlüssel

”
State“ bildet zum Beispiel auf alle Annotationen des Typs

Annotations::State ab, also alle Annotationen des State-Strukturmusters.

triggers

entries

triggers

catalog

analysis

1

BehavioralPatternEntry
+name:String
+negative:boolean

triggers 1..*

analysis 1

annotations 1..*

catalog 1

entries

1..*

catalog 1
0..* activeAutomatons

triggers 1..*

pattern 1

1 automaton

BehavioralPatternsCatalog

«reference»
Automaton::DFA

«reference»
Annotations::Annotation

«thread»
BehavioralAnalysis

+run()
+enqueue(mc:MethodCall)
+terminate()
-methodCalled(mc:MethodCall)

Trigger
+methodName:String
+callerTypeName:String
+calleeTypeName:String
+methodCalled(mc:MethodCall)

key:String

Abbildung 5.2: Modell der Verhaltenserkennung, Paket BehaviorAnalysis

Des Weiteren gehört zur Eingabe ein Katalog von Verhaltensmustern, re-
präsentiert durch die Klasse BehavioralPatternsCatalog. Ein Katalog enthält
beliebig viele Einträge für Verhaltensmuster (BehavioralPatternEntry), von de-
nen jeder wiederum einen deterministischen, endlichen Automaten (Automa-
ton::DFA) zur Erkennung des Verhaltensmusters referenziert.

111

Kapitel 5 Verhaltensanalyse

Die Verhaltenserkennung wird als eigenständiger Thread gestartet. Zur
Laufzeit der Analyse werden die beobachteten Methodenaufrufe als Instanz
der Klasse Behavior::MethodCall (Abbildung 3.9, Seite 52) des Tracegraphen
einer Fifo-Queue (First In, First Out) mit der Methode BehavioralAnaly-
sis::enqueue(MethodCall) hinzugefügt. Bei einer Offline-Analyse werden die Me-
thodenaufrufe einer Datei entnommen. Bei einer Online-Analyse werden die
Methodenaufrufe durch den Debugger oder den instrumentierten Programm-
code an die Verhaltensanalyse weitergereicht. Die Verhaltensanalyse wird be-
endet, wenn alle Methodenaufrufe aus der Datei gelesen wurden respektive
wenn das zu untersuchende Softwaresystem terminiert.

Die Erkennung eines Verhaltensmusters durch einen Automaten wird durch
so genannte Trigger ausgelöst. Trigger repräsentieren besondere Methodenauf-
rufe. Jedes Verhaltensmuster hat mindestens einen, aber beliebig viele Trigger.
Die Verhaltenserkennung referenziert alle Trigger der Verhaltensmuster eines
Kataloges. Die aktiven Automaten, die durch die Trigger ausgelöst wurden,
referenziert die Verhaltenserkennung durch die Assoziation activeAutomatons.

5.3.1 Erweiterter Automat

In Abbildung 5.3 ist das Modell der deterministischen, endlichen Automaten
dargestellt, die nach dem Algorithmus in Abschnitt 4.4 erzeugt und durch die
Verhaltenserkennung verwendet werden.

Der Automat, repräsentiert durch die Klasse DFA, enthält eine Menge von
Zuständen. Zwei ausgezeichnete Zustände dieser Menge sind der Startzustand
und der verwerfende Zustand des Automaten. Die Zustände sind entweder
nicht-akzeptierend (NON ACCEPTING), akzeptierend (ACCEPTING) oder ver-
werfend (REJECTING). Die Zustandsübergänge werden durch Transitionen
(Transition) modelliert, von denen wiederum jede ein Symbol vom Typ der
abstrakten Klasse AbstractSymbol referenziert.

Symbole

Jedes Symbol hat ein Attribut für den Methodennamen und referenziert ein
Objekt (MethodCallObject), auf dem die Methode aufgerufen wird, durch die
Assoziation callee. Es gibt drei Klassen für konkrete Symbole, Permitted-
MethodCall, ProhibitedMethodCall und ProhibitedCaller.

Die Klasse PermittedMethodCall repräsentiert Symbole der Formen (a : A) →
(b : B).m() und a → (b : B).m(). Dazu referenziert sie zusätzlich ein Objekt,
das den Methodenaufruf ausführt, durch die Assoziation caller. Dabei gilt für

112

5.3 Verhaltenserkennung

symbols

states

outgoing

incoming

symbol

tokens

MethodCallObject
+name:String
+typeName:String

+accept(mc:MethodCall,
 t:Token):boolean

Transition
+accept(mc:MethodCall,
 t:Token):boolean

ProhibitedMethodCall

+accept(mc:MethodCall,
 t:Token):boolean

ProhibitedCaller
+accept(mc:MethodCall,
 t:Token):boolean

PermittedMethodCall

symbols

1..*

states 1..*

outgoing 0..*

incoming 0..*

1..* transitions

next

1

previous

1

tokens 0..*

1 annotation

startState 1

dfa 1

state 1

1..*

permittedCallers

caller

1

callee 1

DFA
+methodCalled(mc:MethodCall)

«reference»
Annotations::Annotation

State
+NON_ACCEPTING:int = 1
+ACCEPTING:int = 2
+REJECTING:int = 3
+type:int

+methodCalled(mc:MethodCall)

dfa

1

«reference»
Behavior::Instance

1 bindings

key:String

key:String

0..* possibleBindings

AbstractSymbol

+accept(mc:MethodCall,
 t:Token):boolean

+methodName:String

Token
+moved:Boolean

1 rejectingState

symbol

1

«reference»
Behavior::MethodCall

{ordered} 0..* matchedCalls

Abbildung 5.3: Modell des deterministischen Automaten, Paket Automaton

eine Instanz symbol:PermittedMethodCall und ein Symbol σ ∈ Σ der genannten
Formen:

symbol.methodName=σmethod,
symbol.caller.name=σcaller,
symbol.caller.typeName=σcallerType,
symbol.callee.name=σcallee und
symbol.callee.typeName=σcalleeType.

Die Klasse ProhibitedMethodCall repräsentiert Symbole der Form ∗ → (b :
B).m(). Dabei gilt für eine Instanz symbol:ProhibitedMethodCall und ein Sym-
bol σ ∈ Σ der genannten Form:

symbol.methodName=σmethod,
symbol.callee.name=σcallee und
symbol.callee.typeName=σcalleeType.

Die Klasse ProhibitedCaller repräsentiert Symbole der Form ∗ /∈ C → (b :
B).m(). Dazu referenziert sie eine Menge von Objekten, denen es ausschließlich
erlaubt ist, die Methode aufzurufen. Diese Menge repräsentiert C. Dabei gilt

113

Kapitel 5 Verhaltensanalyse

für eine Instanz symbol:ProhibitedCaller und ein Symbol σ ∈ Σ der genannten
Form:

symbol.methodName=σmethod,
symbol.permittedCallers→size()=|C| and
∀c ∈ C : symbol.permittedCallers→exists(mco:MethodCallObject|

mco.name=ccaller and mco.typeName=ccallerType),
symbol.callee.name=σcallee und
symbol.callee.typeName=σcalleeType.

Die Symbole und die Transitionsfunktion eines Automaten sind so konstru-
iert, dass es in jedem Zustand maximal eine ausgehende Transition gibt, zu
dessen Symbol ein beobachteter Methodenaufruf konform ist.

Tokens

Das hier verwendete Modell eines Automaten entspricht nicht der allgemei-
nen Definition von deterministischen, endlichen Automaten. Es wurde um ein
bekanntes Konzept der Petri-Netze erweitert, den so genannten Tokens .

Wie bereits in Abschnitt 4.3.1 erläutert, ist es wahrscheinlich, dass während
der Verhaltensanalyse sehr viele Traces auf Konformität zu einem Verhaltens-
muster untersucht werden müssen. Nach der klassischen Theorie müsste für
jeden dieser Traces ein eigener Automat verwendet werden. Die Variablenbin-
dungen des Automaten werden mit der Annotation eines Kandidaten initiali-
siert. Bei der Verhaltenserkennung ändert der Automat seinen Zustand durch
Konsumieren der Methodenaufrufe und endet in einem nicht-akzeptierenden,
akzeptierenden oder dem verwerfenden Zustand. Ein klassischer Automat wäre
daher nur einmal

”
verwendbar“.

Um bei der Verhaltensanalyse die Automaten wiederverwenden zu können,
werden im Modell Token durch die Klasse Token eingeführt. Ein Token re-
präsentiert den aktuellen Zustand eines Automaten, indem es einen der mögli-
chen Zustände des Automaten referenziert. Die Variablenbindungen des Auto-
maten werden durch die Referenzen annotation und bindings repräsentiert. Die
Annotation enthält die Bindung der Typ- und Methodennamen an die Elemen-
te des untersuchten Kandidaten. Die qualifizierte Referenz bindings bildet dage-
gen einen Schlüssel auf eine Instanz aus dem Verhaltensmodell ab. Als Schlüssel
wird der Name eines Verhaltensmusterobjekts benutzt. So wird die Bindung
der Verhaltensmusterobjekte an die Instanzen, die die Methoden aufrufen be-
ziehungsweise auf denen die Methoden aufgerufen werden, repräsentiert. Des
Weiteren enthält das Token eine geordnete Liste von Methodenaufrufen des
Traces, die konform zum Verhaltensmuster sind.

114

5.3 Verhaltenserkennung

Jeder Zustand eines Automaten vom Typ State kann beliebig viele Tokens
referenzieren, so dass mit einem Automaten beliebig viele Traces gleichzeitig
auf Konformität zum Verhaltensmuster untersucht werden können. Für jeden
Trace, der untersucht werden soll, wird ein Token in den Startzustand des
Automaten gelegt und mit der Annotation des Kandidaten initialisiert. Dies
wird durch die Trigger eines Verhaltensmusters durchgeführt.

5.3.2 Trigger

Die Trigger eines Verhaltensmusters repräsentieren solche Methodenaufru-
fe, die am Anfang eines zum Verhaltensmuster konformen Traces stehen
dürfen. Trigger sind also alle Nachrichten eines Verhaltensmusters, die chro-
nologisch als erstes aufgerufen werden dürfen. Im State-Verhaltensmuster
sind dies die Nachrichten client→(c:context).setState() und client→(c:con-
text).request(). Da client→(c:context).setState() eine optionale Nachricht ist,
darf auch client→(c:context).request() als erstes aufgerufen werden. Im Stra-
tegy-Verhaltensmuster gibt es dagegen nur einen Trigger, nämlich client→
(c:context).setStrategy(). Formal definiert werden die Trigger über den deter-
ministischen Automaten des Verhaltensmusters.

Definition 5.1 Die Menge T der Trigger eines Verhaltensmusters ist defi-
niert über den zugehörigen DFA D:
T = {trigger : Trigger|δ(q0, σ) ∈ Q/{r}∧

trigger.method = σmethod∧
trigger.callerTypeName = σcallerType∧
trigger.calleeTypeName = σcalleeType},

wobei q0 der Startzustand und r der verwerfende Zustand des DFA D ist.

Die Verwendung eines Triggers stellt eine Optimierung der Verhaltenserken-
nung dar. Es müssen nicht alle möglichen Traces auf Konformität überprüft
werden, sondern nur solche, die mit einem Methodenaufruf beginnen, der zu
einem Trigger konform ist. Es stellt sich jedoch die Frage, ob dadurch kon-
forme oder nicht-konforme Traces von der Verhaltenserkennung

”
übersehen“

werden?
Zu der Menge der Trigger gehört mindestens eine Nachricht, die nicht op-

tional ist. In einem konformen Trace muss also ein zu der Nachricht konfor-
mer Methodenaufruf vorhanden sein. Wird also während der Ausführung des
zu untersuchenden Softwaresystems kein entsprechender Methodenaufruf be-
obachtet und damit die Erkennung des Verhaltensmusters getriggert, so kann

115

Kapitel 5 Verhaltensanalyse

auch kein zum Verhaltensmuster konformer Trace gefunden werden. Es können
also durch Verwendung der Trigger keine konformen Traces von der Verhal-
tenserkennung

”
übersehen“ werden.

Es bleibt die Frage, ob nicht-konforme Traces, die negative Indizien für die
Existenz einer Entwurfsmusterimplementierung liefern,

”
übersehen“ werden?

Theoretisch stellen alle Traces, die zwar Methodenaufrufe der zum Verhaltens-
muster gehörenden Nachrichten enthalten, aber nicht als konforme Traces er-
kannt werden, solche negativen Indizien dar. Ein Verhaltensmuster deckt nicht
das gesamte mögliche Verhalten eines Entwurfsmusters ab, sondern spezifiziert
nur eine Schlüsselsequenz, anhand derer das Entwurfsmuster erkannt werden
kann. Somit sind alle anderen Traces, die nicht aus dieser Schlüsselsequenz
bestehen, nicht konform. Im Gegensatz zu konformen Traces kommen solche
Traces aber weit häufiger vor. Startet ein nicht-konformer Traces mit dem
Aufruf einer zum Trigger konformen Methode, so wird der Trace als nicht-
konform erkannt. Alle anderen nicht-konformen Traces werden

”
übersehen“.

Allerdings wäre das Wissen um solche Traces wegen der weit höheren Wahr-
scheinlichkeit kein echter Mehrwert für den Reverse-Engineer. Die erkannten
nicht-konformen Traces sind dagegen eher interessant, da sie eben gegen die
Schlüsselsequenz verstoßen. Trigger sind also ein legitimer Weg zur Optimie-
rung der Verhaltenserkennung.

Im Folgenden wird erläutert, wie ein Trigger anhand eines gegebenen Metho-
denaufrufs entscheidet, ob die Verhaltenserkennung eines Verhaltensmusters
durch die Erzeugung eines Tokens gestartet werden muss. Der Algorithmus ist
in Pseudocode-Syntax in Abbildung 5.4 zu sehen.

Ein Trigger wird durch eine Annotation auf eine konkrete Methode, einen
konkreten, aufrufenden Typ und einen konkreten, aufgerufenen Typ des Kan-
didaten abgebildet. Für jede Annotation (Zeile 3) muss nun der Trigger diese
Elemente des Kandidaten mit dem beobachteten Methodenaufruf vergleichen
(Zeile 4). Sowohl die Typen der am Methodenaufruf beteiligten Instanzen,
als auch die aufgerufene Methode müssen zu den konkreten Typen respektive
der konkreten Methode konform sein. Treffen diese Bedingungen zu, gehört
der Methodenaufruf zum Kandidaten und die nachfolgenden Methodenaufrufe
müssen auf ihre Konformität zum Verhaltensmuster des Kandidaten unter-
sucht werden.

Dazu prüft der Trigger zunächst, ob bereits der Automat des Verhaltensmu-
sters zu der Menge der aktiven Automaten der Verhaltensanalyse hinzugefügt
wurde (Zeile 5). Ist dies nicht der Fall, fügt der Trigger den Automaten dieser
Menge hinzu (Zeile 6). Anschließend wird ein Token erzeugt (Zeile 7), unter an-
derem mit der Annotation initialisiert (Zeilen 8 und 9) und dem Startzustand

116

5.3 Verhaltenserkennung

1: Trigger::methodCalled(mc:MethodCall)

2: let token:Token

3: forEach annotation:Annotation in
self.analysis.annotations[self.pattern.name] do

4: if (self.callerTypeName<>OCLVoid implies
mc.caller.type.conformsTo(

annotation.nodes[self.callerTypeName]))

and mc.callee.type.conformsTo(

annotation.nodes[self.calleeTypeName])

and mc.type.conformsTo(

annotation.nodes[self.methodName]) then
5: if not self.analysis.activeAutomatons→

includes(self.pattern.automaton) then
6: self.analysis.activeAutomatons→

add(self.pattern.automaton)
7: token = new Token

8: token.annotation = annotation

9: token.moved = false

10: self.pattern.automaton.startState.tokens→add(token)

Abbildung 5.4: Die Methode methodCalled der Klasse Trigger

des Automaten hinzugefügt (Zeile 10).

Ein Trigger enthält keine Verhaltensmusterobjekte, die mit den Instanzen
eines Methodenaufrufs verglichen werden müssten. In Abschnitt 4.3.2 wur-
den die Verhaltensmusterobjekte zu Beginn der Verhaltensmustererkennung
nicht-deterministisch an Instanzen aus der Laufzeitumbegung des zu unter-
suchenden Programms gebunden. Dies ist in der Verhaltensanalyse natürlich
nicht möglich. Die Verhaltensmusterobjekte werden erst während der Verhal-
tenserkennung gebunden. Da zum Zeitpunkt, zu dem der Trigger mit dem Me-
thodenaufruf verglichen wird, die Bindung der Verhaltensmusterobjekte noch
nicht feststeht, werden die Verhaltensmusterobjekte ignoriert.

5.3.3 Verarbeitung der beobachteten Methodenaufrufe

Die Methodenaufrufe werden aus einer Datei gelesen oder vom Debugger bezie-
hungsweise dem instrumentierten Programm beobachtet und der Verhaltenser-
kennung asynchron durch eine Fifo-Queue übergeben. Solange die Queue noch

117

Kapitel 5 Verhaltensanalyse

nicht leer ist und das beobachtete Programm noch nicht terminiert beziehungs-
weise die Datei nicht vollständig gelesen wurde, entnimmt die Verhaltenserken-
nung jeweils einen Methodenaufruf der Queue und verarbeitet ihn.

1: BehavioralAnalysis::methodCalled(mc:MethodCall)

2: forEach trigger:Trigger in self.triggers do
3: trigger.methodCalled(mc)

4: forEach dfa:DFA in self.activeAutomatons do
5: dfa.methodCalled(mc)

Abbildung 5.5: Die Methode methodCalled der Klasse BehavioralAnalysis

In Abbildung 5.5 ist der Algorithmus zur Verarbeitung eines Methoden-
aufrufs innerhalb der Klasse BehavioralAnalysis zu sehen. Sie beschränkt sich
darauf, den Methodenaufruf zunächst an alle Trigger (Zeilen 2 und 3) und
dann an alle aktiven Automaten (Zeilen 4 und 5) weiter zu reichen. Die Ver-
arbeitung der Methodenaufrufe durch die Trigger wurde im vorigen Abschnitt
behandelt. Sie fügen gegebenenfalls neue Automaten der Menge der aktiven
Automaten hinzu und legen ein neues Token in den Startzustand der zuständi-
gen Automaten.

1: DFA::methodCalled(mc:MethodCall)

2: forEach state:State in self.states do
3: state.methodCalled(mc)

4: self.checkBindings()

Abbildung 5.6: Die Methode methodCalled der Klasse DFA

Die weitere Verarbeitung eines Methodenaufrufs durch einen Automaten
findet nach den drei Algorithmen in den Abbildungen 5.6, 5.7 und 5.8 statt.
Ein Automat gibt einen Methodenaufruf lediglich an alle seine Zustände wei-
ter (Abbildung 5.6). Der Methodenaufruf in Zeile 4 wird in Abschnitt 5.3.6
erläutert.

Ein Zustand iteriert über alle Tokens, die in dem Zustand liegen (Abbildung
5.7, Zeile 3). Zunächst prüft der Zustand, ob das Token bereits verschoben
wurde (Zeile 4). Die Klasse Token besitzt ein boolsches Attribut moved, das
angibt, ob das Token bei der Überprüfung des aktuellen Methodenaufrufs be-
reits von einem Zustand in einen Nachfolgezustand verschoben wurde. Es ver-
hindert, dass ein Methodenaufruf mehrfach durch den klassischen Automaten,
repräsentiert durch das Token, konsumiert wird.

118

5.3 Verhaltenserkennung

1: State::methodCalled(mc:MethodCall)

2: let accepted:Boolean

3: forEach token:Token in self.tokens do
4: if not token.moved then
5: accepted = false

6: forEach transition:Transition in self.outgoing do
7: if not accepted then
8: accepted = transition.accept(mc,token)

9: forEach token:Token in self.tokens do
10: token.moved=false

Abbildung 5.7: Die Methode methodCalled der Klasse State

Wurde das Token noch nicht verschoben, das bedeutet, der Methodenauf-
ruf wurde für dieses Token noch nicht verarbeitet, so iteriert der Zustand nun
über alle Transitionen, die von ihm ausgehen, (Zeilen 5-8) und reicht den Me-
thodenaufruf und das Token über die Methode Transition::accept(MethodCall,
Token) an die Transition weiter. Diese Iteration endet, sobald eine Transition
den Methodenaufruf akzeptiert, also den boolschen Wert true zurück gibt (Zei-
len 7 und 8). Akzeptiert eine Transition den Methodenaufruf, wird das Token
vom aktuellen Zustand in den Nachfolgezustand der Transition verschoben.
Akzeptiert keine der Transitionen den Methodenaufruf, so bedeutet dies, dass
der Automat, dessen Zustand das Token repräsentiert, den gegebenen Metho-
denaufruf ignoriert und im aktuellen Zustand verbleibt.

Nachdem der Zustand die Iteration über die Tokens abgeschlossen hat, ite-
riert er ein zweites Mal über die im Zustand verbliebenen Tokens und weist
jeweils ihrem Attribut moved den boolschen Wert false zu. Dadurch werden die
Tokens für den nächsten Methodenaufruf vorbereitet.

Die Methode accept(MethodCall, Token) der Klasse Transition (Abbildung
5.8) akzeptiert einen Methodenaufruf, wenn sein zugehöriges Symbol den Me-
thodenaufruf akzeptiert (Zeile 2). In diesem Fall verschiebt die Transition das
Token vom aktuellen Zustand (Zeile 3) in den nachfolgenden Zustand (Zei-
le 4) und markiert das Token als verschoben (Zeile 5). Anschließend fügt sie
den Methodenaufruf der Liste der zum Verhaltensmuster konformen Metho-
denaufrufe hinzu (Zeile 6) und gibt den boolschen Wert true zurück (Zeile 7).
Akzeptiert die Transition den Methodenaufruf nicht, gibt sie den boolschen
Wert false zurück.

119

Kapitel 5 Verhaltensanalyse

1: Transition::accept(mc:MethodCall,token:Token):Boolean

2: if self.symbol.accept(mc,token) then
3: self.previous.tokens→remove(token)
4: self.next.tokens→add(token)
5: token.moved = true

6: token.matchedCalls→add(mc)
7: return true

8: else
9: return false

Abbildung 5.8: Die Methode accept der Klasse Transition

5.3.4 Konforme Methodenaufrufe und Variablenbindung

Im Folgenden wird die Verarbeitung des Methodenaufrufs durch ein Symbol
erklärt. Dabei wird nicht nur überprüft, ob ein Methodenaufruf konform zu
dem Symbol ist. Bei Konformität werden gegebenenfalls auch Verhaltensmu-
sterobjekte an die am Methodenaufruf beteiligten Instanzen gebunden.

Die Bindung der Typ- und Methodennamen eines Symbols ist durch die
Annotation eines Kandidaten gegeben. Die Bindung der Variablen an konkrete
Elemente des Kandidaten wird in der Klasse Annotations::Annotation durch die
qualifizierte Assoziation nodes (siehe Abbildung 2.7, Seite 24) hergestellt. Als
Schlüssel für die qualifizierte Assoziation dient der Variablenname.

Die Verhaltensmusterobjekte werden dagegen durch die Assoziation bindings
der Klasse Token an Instanzen der Laufzeitumgebung gebunden (Abbildung
5.3). Als Schlüssel für die qualifizierte Assoziation dient auch hier der Varia-
blenname der Verhaltensmusterobjekte. Die Bindung steht allerdings zu Be-
ginn der Verhaltensanalyse noch nicht fest.

Es existieren drei konkrete Klassen für Symbole, PermittedMethodCall, Prohi-
bitedMethodCall und ProhibitedCaller. Alle drei Klassen implementieren jeweils
die Methode accept(MethodCall,Token), die von ihrer abstrakten Oberklasse
AbstractSymbol deklariert wird. Für jede der drei Implementierungen dieser
Methode werden Nachbedingungen definiert. Die Nachbedingungen spezifizie-
ren nicht nur, unter welchen Bedingungen das Symbol den Methodenaufruf
akzeptiert, sondern auch, ob und gegebenenfalls wie Verhaltensmusterobjekte
an Instanzen gebunden werden.

120

5.3 Verhaltenserkennung

Symbole des Typs PermittedMethodCall

Die Klasse PermittedMethodCall repräsentiert Symbole der Formen (a : A) →
(b : B).m() und a → (b : B).m(). Für diese Symbole wurde bereits in Abschnitt
4.3.3 durch fünf Bedingungen informell erläutert, wann ein Methodenaufruf zu
der Nachricht, die durch das Symbol repräsentiert wird, konform ist. Jedoch
wurde in Abschnitt 4.3.3 vorausgesetzt, dass die Verhaltensmusterobjekte be-
reits zu Beginn der Verhaltenserkennung nichtdeterministisch gebunden wer-
den. Hier gilt diese Voraussetzung nicht, daher werden die in Abschnitt 4.3.3
genannten Bedingungen erweitert und anschließend formal definiert.

Ein Methodenaufruf mc des Typs Behavior::MethodCall wird von einem Sym-
bol der Form (a : A) → (b : B).m() akzeptiert, wenn folgende Bedingungen
gelten:

1. Die Methode des Methodenaufrufs mc ist konform zu der Methode, die
an die Variable m des Symbols gebunden wurde.

2. Der Typ der aufrufenden Instanz ist konform zu dem Typ, der an die
Variable A des Symbols gebunden wurde.

3. Der Typ der aufgerufenen Instanz ist konform zu dem Typ, der an die
Variable B des Symbols gebunden wurde.

4. Ist die Variable a des Symbols bereits gebunden, so ist sie an die aufru-
fende Instanz des Methodenaufrufs mc gebunden.

5. Ist die Variable b des Symbols bereits gebunden, so ist sie an die aufge-
rufene Instanz des Methodenaufrufs mc gebunden.

Hat das Symbol dagegen die Form a → (b : B).m(), dann akzeptiert es den
Methodenaufruf mc, wenn die Bedingungen 1, 3, 4 und 5 gelten.

Die Verhaltensmusterobjekte des Symbols werden unter folgenden Bedin-
gungen gebunden:

• Ist die Variable a des Symbols vor Aufruf der Methode accept(Method-
Call,Token) ungebunden, so wird sie an die aufrufende Instanz des Me-
thodenaufrufs mc gebunden.

• Ist die Variable b des Symbols vor Aufruf der Methode accept(MethodCall,
Token) ungebunden, so wird sie an die aufgerufene Instanz des Metho-
denaufrufs mc gebunden.

121

Kapitel 5 Verhaltensanalyse

In Definition 5.2 sind diese Bedingungen in einer OCL-Nachbedingung
formal beschrieben. Zur einfacheren Formulierung der Nachbedingung wird
zunächst die boolsche Variable conform definiert, die angibt, ob der gegebe-
ne Methodenaufruf mc konform zu dem Symbol ist. Ist der Methodenaufruf
mc konform, so gilt nach dem Aufruf der Methode accept(MethodCall,Token),
dass die Verhaltensmusterobjekte an die zugehörigen Instanzen des Me-
thodenaufrufs mc gebunden sind, falls sie vor Aufruf der Methode ac-
cept(MethodCall,Token) noch nicht gebunden waren. Des Weiteren ist der Wert
der Variable conforms das Ergebnis der Methode accept(MethodCall,Token).

Definition 5.2 Ein Symbol des Typs PermittedMethodCall akzeptiert einen
Methodenaufruf des Typs MethodCall, wenn gilt:

package Automaton
context PermittedMethodCall::accept(mc:Behavior::MethodCall,

t:Token):Boolean
post: let conform:Boolean =

mc.type.conformsTo(
t@pre.annotation.nodes[self.methodName]) and

(self.caller.typeName<>OCLVoid implies
mc.caller.type.conformsTo(

t@pre.annotation.nodes[self.caller.typeName])) and
mc.callee.type.conformsTo(

t@pre.annotation.nodes[self.callee.typeName]) and
(t@pre.bindings[self.caller.name]<>OCLVoid

implies t@pre.bindings[self.caller.name]=mc.caller) and
(t@pre.bindings[self.callee.name]<>OCLVoid

implies t@pre.bindings[self.callee.name]=mc.callee)
in

(conform and t@pre.bindings[self.caller.name]=OCLVoid
implies t.bindings[self.caller.name]=mc.caller) and

(conform and t@pre.bindings[self.callee.name]=OCLVoid
implies t.bindings[self.callee.name]=mc.callee)) and

result = conform
endpackage

Der Ausdruck t@pre beschreibt das Token t im Zustand vor dem Aufruf der
Methode accept(MethodCall,Token).

122

5.3 Verhaltenserkennung

Symbole des Typs ProhibitedMethodCall

Die Klasse ProhibitedMethodCall repräsentiert Symbole der Form ∗ → (b :
B).m(), die zum Verwerfen des Traces genutzt werden. Ein solches Symbol
akzeptiert einen Methodenaufruf mc des Typs MethodCall, wenn gilt:

1. Die Methode des Methodenaufrufs mc ist konform zu der Methode, die
an die Variable m des Symbols gebunden wurde.

2. Der Typ der aufgerufenen Instanz ist konform zu dem Typ, der an die
Variable B des Symbols gebunden wurde.

3. Die Variable b des Symbols ist an die aufgerufene Instanz des Methoden-
aufrufs mc gebunden.

Wenn Symbole des Typs ProhibitedMethodCall einen Methodenaufruf mc
akzeptieren, wird das Token in einen verwerfenden Zustand verschoben und
damit der gesamte Trace verworfen. Das ist allerdings nur korrekt, wenn zwei-
felsfrei feststeht, dass der Methodenaufruf mc zu der untersuchten Instanz des
Kandidaten gehört, für die der Automat beziehungsweise das Token erzeugt
wurde. Im Falle des ProhibitedMethodCall-Symbols kann diese Bedingung nur
dann zweifelsfrei festgestellt werden, wenn das aufgerufene Verhaltensmuster-
objekt des Symbols bereits gebunden ist. Ist es an die aufgerufene Instanz
des Methodenaufrufs mc gebunden, verstößt der Methodenaufruf mc gegen
das Verhaltensmuster und das Verwerfen des Traces ist korrekt. Ist es an ei-
ne andere Instanz gebunden, so gehört der Methodenaufruf mc nicht zu der
untersuchten Instanz des Kandidaten und wird ignoriert.

Ist das aufgerufene Verhaltensmusterobjekt dagegen noch ungebunden, kann
keine Aussage darüber getroffen werden, ob der Methodenaufruf mc zu der
Instanz des Kandidaten gehört. In diesem Fall akzeptiert das Symbol den
Methodenaufruf mc nicht, so dass er vom Automaten ignoriert wird. Aller-
dings wird die aufgerufene Instanz des Methodenaufrufs mc einer Menge von
möglichen Bindungen für das aufgerufene Verhaltensmusterobjekt hinzugefügt.
Diese Menge wird durch die Assoziation possibleBindings der Klasse Token (Ab-
bildung 5.3) repräsentiert. In Abschnitt 5.3.6 wird erläutert, was die möglichen
Bindungen bedeuten und wozu sie verwendet werden.

Definition 5.3 Ein Symbol des Typs ProhibitedMethodCall akzeptiert einen
Methodenaufruf des Typs MethodCall, wenn gilt:

package Automaton

123

Kapitel 5 Verhaltensanalyse

context ProhibitedMethodCall::accept(mc:Behavior::MethodCall,
t:Token):Boolean

post: let typeConform:Boolean =
mc.type.conformsTo(

t@pre.annotation.nodes[self.methodName]) and
mc.callee.type.conformsTo(

t@pre.annotation.nodes[self.callee.typeName])
in

((typeConform and
t@pre.bindings[self.callee.name]=OCLVoid) implies

t.possibleBindings[self.callee.name]→includes(mc.callee)) and
result = typeConform and

t@pre.bindings[self.callee.name]=mc.callee
endpackage

In Definition 5.3 sind die genannten Bedingungen in einer OCL-Nachbe-
dingung zur Methode ProhibitedMethodCall::accept(MethodCall,Token) formal
spezifiziert.

Symbole des Typs ProhibitedCaller

Die Klasse ProhibitedCaller repräsentiert Symbole der Form ∗ /∈ C → (b :
B).m(), die ebenfalls zum Verwerfen des Traces verwendet werden. Ein solches
Symbol akzeptiert einen Methodenaufruf mc des Typs MethodCall, wenn gilt:

1. Die Methode des Methodenaufrufs mc ist konform zu der Methode, die
an die Variable m des Symbols gebunden wurde.

2. Der Typ der aufgerufenen Instanz ist konform zu dem Typ, der an die
Variable B des Symbols gebunden wurde.

3. Die Variable b des Symbols ist an die aufgerufene Instanz des Methoden-
aufrufs mc gebunden.

4. Keines der Verhaltensmusterobjekte der Menge C ist an die aufrufende
Instanz des Methodenaufrufs mc gebunden. Ist ein Verhaltensmusterob-
jekt o der Menge C ungebunden, so darf der Typ der aufrufenden Instanz
nicht konform sein zu dem Typ, der an die Typvariable des Verhaltens-
musterobjekts o gebunden wurde.

124

5.3 Verhaltenserkennung

Auch bei einem Symbol des Typs ProhibitedCaller muss zweifelsfrei festste-
hen, dass der Methodenaufruf mc zur beobachteten Instanz des Kandidaten
gehört, damit das Symbol den Methodenaufruf akzeptieren darf. Das bedeu-
tet, das aufgerufene Verhaltensmusterobjekt muss an die aufgerufene Instanz
des Methodenaufrufs mc gebunden sein. Ist das aufgerufene Verhaltensmuster-
objekt nicht gebunden und sind alle anderen Bedingungen erfüllt, dann wird
wie bei Symbolen des Typs ProhibitedMethodCall die aufgerufene Instanz des
Methodenaufrufs mc der Menge von möglichen Bindungen für das aufgerufene
Verhaltensmusterobjekt hinzugefügt. Der Methodenaufruf mc wird in diesem
Fall vom Symbol nicht akzeptiert und damit vom Automaten ignoriert.

In Definition 5.4 sind die genannten Bedingungen in einer OCL-Nachbedin-
gung zur Methode ProhibitedCaller::accept(MethodCall,Token) formal spezifi-
ziert.

Definition 5.4 Ein Symbol des Typs ProhibitedCaller akzeptiert einen Metho-
denaufruf des Typs MethodCall, wenn gilt:

package Automaton
context ProhibitedCaller::accept(mc:Behavior::MethodCall,

t:Token):Boolean
post: let typeConform:Boolean =

mc.type.conformsTo(
t@pre.annotation.nodes[self.methodName]) and

mc.callee.type.conformsTo(
t@pre.annotation.nodes[self.callee.typeName]) and

self.permittedCallers→forAll(mco:MethodCallObject|
(t@pre.bindings[mco.name]=OCLVoid implies

not mc.caller.type.conformsTo(
t@pre.bindings[mco.typeName])) or

t@pre.bindings[mco.name]<>mc.callee)
in

((typeConform and
t@pre.bindings[self.callee.name]=OCLVoid) implies

t.possibleBindings[self.callee.name]→includes(mc.callee)) and
result = typeConform and

t@pre.bindings[self.callee.name]=mc.callee
endpackage

125

Kapitel 5 Verhaltensanalyse

5.3.5 Beispiel

Im Folgenden wird zur Erläuterung der Verhaltenserkennung der Trace eines
State-Kandidaten (Abbildung 4.9, Seite 74) herangezogen, der während der
Ausführung des Mediaplayers beobachtet wurde. Abbildung 5.9 zeigt diesen
Trace. Zuvor wurde der State-Kandidat in der Strukturanalyse identifiziert
und annotiert. Die Bindungen der Annotation sind in Tabelle 4.1 auf Seite 75
festgehalten.

setState(st)

execute(CMD_STOP)
execute(s,CMD_STOP)

read()

execute(CMD_PLAY)
execute(s,CMD_PLAY)

setState(pl)

p:Player s:Stream pl:Playingst:Stopped

run(s)

Abbildung 5.9: Beobachteter Trace des Mediaplayers

Der erste beobachtete Methodenaufruf des Traces triggert die Erkennung des
State-Verhaltensmusters. Es wird ein Token erzeugt und in den Startzustand
0 des Automaten zum State-Verhaltensmuster (Abbildung 5.10) gelegt. Das
Token wird mit der Annotation des State-Kandidaten initialisiert. Darin sind
nur die Bindungen der Typ- und Methodennamen an Elemente des Kandidaten
enthalten. Zu diesem Zeitpunkt ist noch keines der Verhaltensmusterobjekte
gebunden.

Der erste Methodenaufruf des Traces wird nun vom Automaten verarbeitet,
indem er an alle Zustände weitergereicht wird. Da es nur im Startzustand ein
Token gibt, reicht der Startzustand den Methodenaufruf und das Token an
die von ihm ausgehenden Transitionen weiter. Die Transition mit dem Sym-
bol client → (c : context).setState() akzeptiert schließlich den Methoden-
aufruf. Dabei werden die beiden Verhaltensmusterobjekte client und c an die
Instanzen p beziehungsweise s gebunden, der Methodenaufruf der Liste der
konformen Methodenaufrufe hinzugefügt und das Token in den nachfolgenden
Zustand verschoben. Abbildung 5.11 zeigt den Automaten, nachdem das Token
verschoben wurde. In Tabelle 5.1 ist die Bindung der Verhaltensmusterobjekte
nach dem ersten Zustandsübergang abgebildet.

126

5.3 Verhaltenserkennung

1

32

(client) (c:context).setState()

(client) (c:context).request()

(client) (c:context).request()

(c:context) (a:abstractState).handle()

(client) (c:context).request()

Abbildung 5.10: Ausschnitt aus dem Automaten des State-Verhaltensmusters
mit Token

0

32

(client) (c:context).setState()

(client) (c:context).request()

(client) (c:context).request()

(c:context) (a:abstractState).handle()

(client) (c:context).request()

Abbildung 5.11: Automat des State-Verhaltensmusters nach dem Zustands-
übergang

Die nächsten Methodenaufrufe werden ähnlich verarbeitet. Beim dritten Me-
thodenaufruf des Traces wird das Verhaltensmusterobjekt a an die Instanz st
gebunden. Der fünfte und der sechste Methodenaufruf werden ignoriert, da es
keine Transitionen mit passenden Symbolen im Automaten gibt.

Mit dem letzten Methodenaufruf des Traces endet das Token in einem akzep-
tierenden Zustand des Automaten. Damit akzeptiert der Automat den Trace
als konform zum Verhaltensmuster. In Abbildung 5.12 ist schließlich der Trace
zu sehen, der dem Verhaltensmuster entspricht. Gegenüber dem beobachteten
Trace fehlen die Methodenaufrufe, die vom Automaten ignoriert wurden. Dar-
gestellt sind nur die Methodenaufrufe, die das Token in der Liste der konformen
Methodenaufrufe gespeichert hat. Des Weiteren sind die Bindungen der Ver-
haltensmusterobjekte an die an den Methodenaufrufen beteiligten Instanzen
dargestellt.

127

Kapitel 5 Verhaltensanalyse

Verhaltensmusterobjekt Instanz
client p
c s
a -
b -

Tabelle 5.1: Variablenbindung des Tokens nach dem ersten Zustandsübergang

bp State

client c:context a:abstractState
b:abstractState

setState(st)

execute(CMD_STOP)
execute(s,CMD_STOP)

execute(CMD_PLAY)
execute(s,CMD_PLAY)

setState(pl)

p:Player s:Stream pl:Playingst:Stopped

Abbildung 5.12: Erkannte Verhaltensmusterimplementierung des State-Kandi-
daten

5.3.6 Nachträgliches Verwerfen eines Traces

Das späte Binden der Verhaltensmusterobjekte während der Verhaltenserken-
nung führt zu Situationen, in denen nicht zweifelsfrei entschieden werden kann,
ob ein beobachteter Methodenaufruf zu einer untersuchten Instanz eines Kan-
didaten gehört. Abbildung 5.13 zeigt einen Trace, der nicht konform zum State-
Verhaltensmuster ist und zu solch einer Situation führt. Der Trace stammt vom
State-Kandidaten des Mediaplayer-Beispiels (Abbildung 4.9, Seite 74).

Abbildung 5.14 zeigt einen Ausschnitt aus dem DFA des State-Verhal-
tensmusters. Es sind nur die Transitionen dargestellt, die bei der Verhaltenser-
kennung des Traces aus Abbildung 5.13 eine Rolle spielen.

Der erste Methodenaufruf des Traces triggert die Erkennung des State-
Verhaltensmusters. Es wird ein Token erzeugt und in den Startzustand 0 des
Automaten aus Abbildung 5.14 gelegt. Das Token wird mit der Annotation

128

5.3 Verhaltenserkennung

setState(st)

execute(CMD_PLAY)

execute(s,CMD_PLAY)

p:Player s:Stream st:Stopped

execute(s,CMD_PLAY)

u:Unknown

Abbildung 5.13: Zum State-Verhaltensmuster nicht-konformer Trace

0 1 32

client (c:context).setState()

client (c:context).request()

(c:context) (a:abstractState).handle()

R

* (a:abstractState).handle()

Abbildung 5.14: Ausschnitt aus dem Automaten des State-Verhaltensmusters

des State-Kandidaten initialisiert (siehe Tabelle 4.1, Seite 75).
Der erste Methodenaufruf wird nun von der Transition mit dem Symbol

client → (c : context).setState() akzeptiert, so dass das Token in den Zustand
1 verschoben wird. In diesem Zustand sind die Verhaltensmusterobjekte client
an die Instanz p und c an die Instanz s gebunden. Alle weiteren Verhaltens-
musterobjekte sind noch ungebunden.

Der zweite Methodenaufruf, der beobachtet wird, ist (u:Unknown)→(st: Stop-
ped).execute(s,CMD PLAY). Dieser Methodenaufruf ist nicht konform zum Ver-
haltensmuster, da die handle()-Methode des State-Entwurfsmusters an dieser
Stelle nicht aufgerufen werden darf. Außerdem darf sie nur vom Kontext-
Objekt aufgerufen werden. Der Trace müsste also hier verworfen werden. Die
Transition mit dem Symbol ∗ → (a : abstractState).handle(), die den Zustand
1 mit dem verwerfenden Zustand R verbindet, kann jedoch den Methodenauf-
ruf nicht akzeptieren. Die Methode und der Typ der aufgerufenen Instanz sind
zwar konform zu dem Symbol, das Verhaltensmusterobjekt a ist jedoch noch
nicht gebunden. Es kann in dieser Situation also nicht zweifelsfrei festgestellt
werden, ob der beobachtete Methodenaufruf zu der untersuchten Instanz des

129

Kapitel 5 Verhaltensanalyse

State-Kandidaten gehört. Er könnte auch zu einer anderen Instanz des State-
Kandidaten gehören. Nach Definition 5.3 darf deshalb der Methodenaufruf
von der Transition nicht akzeptiert werden. Allerdings wird die Instanz st zu
der Menge der möglichen Bindungen für das Verhaltensmusterobjekt a hin-
zugefügt. Da keine andere Transition den Methodenaufruf in diesem Zustand
akzeptiert, wird er vom Automaten ignoriert.

Der dritte Methodenaufruf des Traces wird akzeptiert, so dass das Token
in den Zustand 2 verschoben wird. Auch der vierte Methodenaufruf wird ak-
zeptiert. Das Token befindet sich nun im Zustand 3. Bei der Verarbeitung
des Methodenaufrufs wurde das Verhaltensmusterobjekt a an die aufgerufene
Instanz st des Methodenaufrufs gebunden.

Erst zu diesem Zeitpunkt steht zweifelsfrei fest, dass die Instanz st zu der
untersuchten Instanz des State-Kandidaten gehört. Es stellt sich heraus, das
der zweite Methodenaufruf nicht hätte ignoriert werden dürfen, sondern zum
Verwerfen des Traces hätte führen müssen.

Aus diesem Grund sind die möglichen Bindungen in das Modell der Auto-
maten aufgenommen worden. Mögliche Bindungen werden nur durch Symbole
hergestellt, deren Transitionen in den verwerfenden Zustand führen. Sie wer-
den hergestellt, wenn nicht festgestellt werden kann, ob eine am beobachteten
Methodenaufruf beteiligte Instanz zu der untersuchten Instanz eines Kandida-
ten gehört. Wird zu einem späteren Zeitpunkt festgestellt, dass die fragliche
Instanz dazu gehört, kann der Trace nachträglich verworfen werden.

Dieses Konzept ist auf die klassischen Automaten nur sehr schwer abzubil-
den. Es wurde daher eine pragmatische Lösung gewählt. Nach jeder Verarbei-
tung eines Methodenaufrufs wird geprüft, ob ein Verhaltensmusterobjekt an
eine Instanz gebunden wurden, die bereits in der Menge der möglichen Bin-
dungen des Verhaltensmusterobjekts enthalten ist. Wird eine solche Bindung
gefunden, wird der Trace durch das Verschieben des Tokens in den verwerfen-
den Zustand nachträglich verworfen.

Dieser Algorithmus ist in Abbildung 5.15 zu sehen. Er wird am Ende der
Methode methodCalled der Klasse DFA (Abbildung 5.6, Seite 118) aufgerufen.

5.4 Bewertung der Ergebnisse

In Abschnitt 4.3.1 wurde bereits erläutert, dass zu jedem Kandidaten zur Lauf-
zeit des zu untersuchenden Softwaresystems beliebig viele Traces beobachtet
werden können. Das liegt zum einen daran, dass die Verhaltensmuster in der
Regel nicht das globale Verhalten des Entwurfsmusters beschreiben, sondern

130

5.4 Bewertung der Ergebnisse

1: DFA::checkBindings()

2: forEach state:State in self.states do
3: forEach token:Token in state.tokens do
4: forEach key:String in token.bindings→keys() do
5: if token.possibleBindings[key]→

includes(token.bindings[key]) then
6: token.state.tokens→remove(token)
7: self.rejectingState.tokens→add(token)

Abbildung 5.15: Die Methode checkBindings der Klasse DFA

Ausschnitte typischen lokalen Verhaltens. Eine Instanz des Kandidaten kann
also dieses lokale Verhalten zur Laufzeit mehrfach durchlaufen. Des Weiteren
kann der Kandidat auch mehrfach instanziiert werden, so dass in diesem Fall
mehrere Instanzen des Kandidaten beobachtet werden.

Diese Traces werden auf Konformität zu dem positiven Verhaltensmuster,
aber auch auf Konformität zu den möglichen negativen Verhaltensmustern des
zum Kandidaten gehörenden Entwurfsmusters untersucht. Die Traces können
sowohl konform, als auch nicht konform zu den Verhaltensmustern sein. All
dies führt dazu, dass zu einem Kandidaten am Ende der Verhaltensanalyse
mehrere Traces vorliegen, aus denen sich unter Umständen widersprüchliche
Rückschlüsse auf das Verhalten des Kandidaten ziehen lassen.

Die Token, die von den Traces getriggert wurden, enthalten die Analy-
seergebnisse. Es gibt verschiedene Szenarien von Zustandsübergängen, die
ein Token während der Verhaltenserkennung durchlaufen kann. Ein Token
kann am Ende in einem nicht-akzeptierenden, einem akzeptierenden oder
dem verwerfenden Zustand liegen. Ein akzeptierender Zustand kann von ei-
nem Token mehrfach durchlaufen werden. Wie an dem Automaten des State-
Verhaltensmusters (Abbildung 4.25, Seite 95) zu sehen ist, führt eine Schleife
am Ende des Verhaltensmusters dazu, dass das Token einen akzeptierenden
Zustand wieder verlassen kann. Es ist sogar möglich, dass ein Token nach dem
Verlassen eines akzeptierenden Zustands irgendwann in den verwerfenden Zu-
stand gelangt. Das bedeutet, der beobachtete Trace war zu einem bestimmten
Zeitpunkt konform zum Verhaltensmuster. Dann folgte aber irgendwann ein
Methodenaufruf, der nicht konform war. Den verwerfenden Zustand kann ein
Token jedoch nicht mehr verlassen, da der verwerfende Zustand eine Senke ist.

Am Ende werden die Tokens aller aktiven Automaten ausgewertet. Jedes To-
ken wurde durch einen Trace getriggert und gehört deshalb zu einem bestimm-

131

Kapitel 5 Verhaltensanalyse

State Strategy

nodes
nodes

1

annotations

0..*
key:String

«reference»
Structure::Type

«reference»
Structure::Method

«reference»
Structure::Node

Annotation
+accuracy:int
+acceptedTraces:int
+rejectedTraces:int
+acceptedSubtraces:int
+notAcceptedTraces:int
+avgTraceLength:int

Abbildung 5.16: Erweitertes Modell der Annotationen, Paket Annotations

ten Kandidaten. Zu jedem Kandidaten werden fünf Messwerte festgehalten, die
aus den Token berechnet und in der Annotation des Kandidaten gespeichert
werden. Dazu wurde die abstrakte Klasse Annotation, von der alle konkreten
Annotationen der Entwurfsmuster erben, um einige Attribute ergänzt. Das
erweiterte Modell der Annotationen ist in Abbildung 5.16 dargestellt.

Die folgenden Messwerte werden für jeden Kandidaten aus seinen Token
berechnet. Die Messwerte werden jedoch nur für Token aus solchen Automaten
berechnet, die zu positiven Verhaltensmustern gehören.

• acceptedTraces: Anzahl der akzeptierten Traces. Diese Anzahl setzt sich
unter anderem aus der Anzahl aller Tokens zusammen, die in einem ak-
zeptierenden Zustand liegen. Des Weiteren werden aber auch alle Tokens
hinzu gezählt, die zwar in einem nicht-akzeptierenden oder in dem ver-
werfenden Zustand liegen, aber mindestens einmal während der Analyse
einen akzeptierenden Zustand durchlaufen haben.

• rejectedTraces: Anzahl der verworfenen Traces. Dies ist die Anzahl der
Tokens, die in dem verwerfenden Zustand liegen.

• notAcceptedTraces: Anzahl der nicht akzeptierten Traces. Dies ist die
Anzahl der Tokens, die in einem nicht-akzeptierenden Zustand liegen.

• acceptedSubtraces: Anzahl der verworfenen und nicht akzeptierten Tra-
ces, die aber einen Subtrace enthalten, der akzeptiert wurde. Die Traces
waren bis zu einem bestimmten Zeitpunkt konform zum Verhaltensmu-
ster, verließen aber den akzeptierenden Zustand wieder.

• avgTraceLength: Durchschnittliche Länge aller akzeptierten Traces.
Der Durchschnitt wird über die Anzahl der konformen Methodenauf-

132

5.5 Zusammenfassung

rufe aller akzeptierten Traces gebildet. Bei Tokens, die in einem nicht-
akzeptierenden oder in dem verwerfenden Zustand liegen und mehrfach
einen akzeptierenden Zustand durchliefen, wird für den Durchschnitt die
Anzahl der konformen Methodenaufrufe zu dem Zeitpunkt gewählt, zu
dem das Token zum letzten Mal in einem akzeptierenden Zustand lag.

Wie in Abschnitt 4.3.5 erläutert, werden bei einem negativen Verhaltens-
muster nur Traces gewertet, die konform zu dem negativen Verhaltensmuster
sind. Diese Traces gehen dann als negatives Indiz in die Gesamtbewertung des
Kandidaten ein. Deshalb wird die Anzahl der Tokens, die in einem akzeptie-
renden Zustand eines Automaten eines negativen Verhaltensmusters liegen, zu
der Anzahl der verworfenen Traces hinzu gefügt.

Diese Messwerte werden dem Reverse-Engineer zusammen mit der Bewer-
tung aus der Strukturanalyse als Gesamtergebnis der struktur- und verhal-
tensbasierten Entwurfsmustererkennung präsentiert. Auf eine Verrechnung der
Einzelwerte zu einem einzigen Wert wird bewusst verzichtet. Die Einzelwer-
te sind sehr viel aussagekräftiger als ein einzelner Wert, der als eine absolute
Aussage interpretiert werden könnte. Das in dieser Arbeit vorgestellte Ver-
fahren erhebt keinen Anspruch, absolute Aussagen über das zu untersuchende
Softwaresystem zu treffen. Die Interpretation der Ergebnisse soll vielmehr dem
Reverse-Engineer überlassen werden.

Aus den ermittelten Messwerten der Verhaltensanalyse kann der Reverse-
Engineer verschiedene Rückschlüsse auf den Kandidaten ziehen. Das Verhält-
nis der Anzahl akzeptierter Traces zu den verworfenen Traces ist sicher ein
guter Hinweis darauf, ob ein Kandidat eine tatsächliche Entwurfsmusterimple-
mentierung darstellt. Ein hoher Wert für dieses Verhältnis deutet eher auf eine
tatsächliche Entwurfsmustererkennung hin, als ein niedriger. Eine hohe durch-
schnittliche Länge der akzeptierten Traces ist ein weiterer Indikator für ei-
ne tatsächliche Entwurfsmusterimplementierung. Die Wahrscheinlichkeit, dass
kurze Traces zufällig zu einem Verhaltensmuster konform sind, ist wesentlich
höher, als bei sehr langen Traces. Basiert eine hohe durchschnittliche Länge der
Traces zudem auf sehr vielen akzeptierten Traces, ist die Wahrscheinlichkeit
für ein False Positive gering.

5.5 Zusammenfassung

In diesem Kapitel ist die Verhaltensanalyse durch die im Kapitel 4 eingeführten
Verhaltensmuster und den daraus generierten Automaten vorgestellt worden.

133

Kapitel 5 Verhaltensanalyse

Der Prozess der Verhaltensanalyse wird auf Basis des Verhaltensmusterka-
talogs, der Ergebnisse aus der Strukturanalyse und dem zu untersuchenden,
ausführbaren Programm gestartet.

Zur Gewinnung der Traces zur Laufzeit des zu untersuchenden Software-
systems wurden zwei Verfahren vorgestellt, die auf zwei grundsätzlich unter-
schiedlichen Prinzipien aufbauen. Beide Verfahren haben Vor- und Nachteile.
Das Debugging ist ohne weitere Prozessschritte direkt mit den Eingaben der
Verhaltensanalyse einsetzbar. Die im Rahmen dieser Arbeit implementierte
Lösung ermöglicht die Überwachung von Softwaresystemen, die in der Pro-
grammiersprache Java erstellt wurden. Das Verfahren ist jedoch sehr leicht
auf andere Programmiersprachen übertragbar. Allerdings ist die Performanz
des Verfahrens gering. Es ist daher in produktiven Umgebungen nur sehr be-
dingt einsetzbar.

Die Instrumentierung bietet dagegen eine sehr performante Überwachung
des Softwaresystems. Die Übertragung des Verfahrens auf andere Program-
miersprachen ist jedoch sehr aufwendig. Des Weiteren ist ein zusätzlicher Pro-
zessschritt vor der eigentlichen Verhaltenserkennung notwendig. Das Debug-
ging eignet sich somit eher für kurze Tests der Verhaltensanalyse, in denen sie
zum Beispiel iterativ eingesetzt wird, um die Eignung von Verhaltensmustern
zu überprüfen. Die Instrumentierung ist dagegen eher geeignet, um letztendlich
relevante Ergebnisse zu generieren, die eventuell sogar aus einem produktivem
Einsatz des Softwaresystems stammen.

Für die Verhaltenserkennung ist ein Modell vorgestellt worden, das auf die
im letzten Kapitel vorgestellten Automaten aufbaut. Die Automaten wurden
um so genannte Tokens erweitert, um den Speicheraufwand der Verhaltens-
analyse zu verringern. Es wurde formal definiert, wann die Erkennung eines
Verhaltensmusters ausgelöst wird und wie die beobachteten Methodenaufrufe
durch die Automaten verarbeitet werden.

Im Gegensatz zur theoretischen Betrachtung in Kapitel 4.26 ist es in der rea-
len Umsetzung der Verhaltenserkennung nicht möglich, die Verhaltensmuster-
objekte zu Beginn nichtdeterministisch zu binden. Aus diesem Grund wurde
formal definiert, wie die Verhaltensmusterobjekte während der Verhaltenser-
kennung gebunden werden.

Zum Abschluss des Kapitels wurde vorgestellt, welche Daten dem Reverse-
Engineer als Ergebnis der gesamten struktur- und verhaltensbasierten Ent-
wurfsmustererkennung präsentiert werden und wie im Besonderen die Ergeb-
nisse der Verhaltensanalyse zu interpretieren sind.

134

Kapitel 6

Praktische Anwendung

Dieses Kapitel befasst sich mit der Anwendung der struktur- und verhal-
tensbasierten Entwurfsmustererkennung auf ein praxisnahes Softwaresystem.
Zunächst werden im ersten Teil des Kapitels einige Grundlagen zur dyna-
mischen Analyse eines produktiv eingesetzten Softwaresystems erläutert. Im
zweiten Teil wird ein Szenario beschrieben, das im Rahmen dieser Arbeit für
einen Praxistest des Ansatzes herangezogen wurde. Schließlich werden die Er-
gebnisse präsentiert und diskutiert. Aus der Diskussion der Ergebnisse werden
mögliche Verbesserungen abgeleitet.

6.1 Software-Tomographie

Ein zentrales Problem dynamischer Analysen ist die angemessene Auswahl
der Eingabedaten, die zur Ausführung des zu analysierenden Softwaresystems
benötigt werden. Das in der Praxis durch dynamische Analysen beobachtete
Verhalten eines Softwaresystems stellt immer nur einen kleinen Teil des theo-
retisch möglichen Verhaltens dar. Um also verwertbare Ergebnisse zu erhalten,
sollten die Eingabedaten möglichst repräsentativ für die in der Praxis auftre-
tenden Daten ausgewählt werden.

Das Problem der repräsentativen Eingabedaten lässt sich sehr elegant lösen,
indem das zu untersuchende Softwaresystem während der dynamischen Analy-
se in einer realen, produktiven Umgebung eingesetzt wird. Das setzt allerdings
voraus, dass der Einfluss der dynamischen Analyse auf das produktive Softwa-
resystem so gering wie möglich gehalten wird.

Jim Bowring, Alessandro Orso und Mary Jean Harrold [BOH02] schla-
gen daher die Software-Tomographie vor. Software-Tomographie wird einge-
setzt, um mit minimalem Einfluss produktiv eingesetzte Software während
ihrer Ausführung zu beobachten. Voraussetzung für den Einsatz der Software-

135

Kapitel 6 Praktische Anwendung

Tomographie ist, dass die Aufgabe der dynamischen Analyse in sehr viele,
voneinander unabhängige Teilaufgaben aufgeteilt werden kann. Die Teilaufga-
ben müssen sich wiederum durch eine möglichst minimale Instrumentierung
des zu untersuchenden Softwaresystems lösen lassen.

Eine weitere Voraussetzung für Software-Tomographie ist, dass das Softwa-
resystem in der Praxis in mehreren Instanzen eingesetzt wird. In diesem Fall
kann die dynamische Analyse in viele Teilanalysen aufgeteilt werden, indem ei-
ne Instanz jeweils für eine oder einige wenige Teilaufgaben instrumentiert wird.
Die Performanz einer einzelnen Instanz wird dadurch nur sehr wenig verringert,
so dass sie in der produktiven Umgebung eingesetzt werden kann. Die weitere
Aufgabe der Software-Tomographie besteht darin, die so gewonnenen Daten
der einzelnen Teilanalysen zu sammeln und wieder zu einem Gesamtergebnis
zusammenzufassen.

In der struktur- und verhaltensbasierten Entwurfsmustererkennung ist die
Aufteilung der dynamischen Analyse in Teilanalysen bereits vorgegeben. Jeder
in der Strukturanalyse identifizierte Kandidat stellt eine Teilanalyse dar, die
unabhängig von den anderen Kandidaten ausgeführt werden kann. Die Instan-
zen des zu untersuchenden Softwaresystems werden also jeweils für einen oder
einige wenige Kandidaten instrumentiert. Auch die Ergebnisse der einzelnen
Teilanalysen sind unabhängig voneinander, so dass sie zur Auswertung nur
gesammelt werden müssen.

6.2 Szenario

Das in der vorliegenden Arbeit entwickelte Verfahren wurde auf ein praxis-
nahes Softwaresystem angewendet. Voraussetzungen für das zu untersuchende
Softwaresystem waren eine hinreichende Größe, die Verwendung von Entwurfs-
mustern bei der Entwicklung des Softwaresystems und deren Dokumentation.
Das Softwaresystem sollte zu groß sein, um von einem Reverse-Engineer noch
manuell analysiert werden zu können. Kleine Systeme enthalten außerdem ent-
sprechend weniger Entwurfsmusterimplementierungen als große. Eine automa-
tische Entwurfsmustererkennung macht also nur Sinn bei größeren Softwaresy-
stemen, die bei mehreren zehntausend, besser noch mehreren hunderttausend
Zeilen Quelltext liegen.

Wurden bei der Entwicklung des Softwaresystems Entwurfsmuster expli-
zit zum Design verwendet und dokumentiert, erleichtert dies den Praxistest
des Verfahrens. Die explizite Verwendung ist natürlich keine Voraussetzung
zur Anwendung der Entwurfsmustererkennung. Wie bereits in der Einleitung

136

6.3 Ergebnisse

erläutert, können Entwurfsmusterimplementierungen auch in Softwaresyste-
men gefunden werden, bei denen Entwurfsmuster nicht explizit im Design ver-
wendet wurden. In dem Praxistest ist die Dokumentation der Entwurfsmuster-
implementierungen allerdings sehr hilfreich zur Beurteilung der Qualität der
automatischen Entwurfsmustererkennung.

Zur Entwurfsmustererkennung bietet sich Eclipse an. Eclipse erfüllt die
zuvor genannten Voraussetzungen. Es ist ein relativ großes, in Java geschrie-
benes Softwaresystem, bei dem während der Entwicklung Entwurfsmuster ein-
gesetzt wurden. Erich Gamma und Kent Beck, die zu den Entwicklern von
Eclipse gehören, haben in ihrem Buch

”
Contributing to eclipse - Principles,

Patterns, and Plug-Ins“ einige der in Eclipse enthaltenen Entwurfsmuster-
implementierungen dokumentiert [GB04]. Eine Auswahl der dokumentierten
Entwurfsmusterimplementierungen mit Seitenreferenzen auf [GB04] ist in Ta-
belle 6.1 zu finden.

Erich Gamma und Kent Beck haben als Grundlage für ihr Buch die Version
2.1 von Eclipse verwendet. In dieser Version besteht Eclipse aus etwa 66
Plug-Ins. Die dokumentierten Entwurfsmusterimplementierungen konzentrie-
ren sich aber auf einige wenige Plug-Ins, die im Folgenden der Entwurfsmuster-
erkennung unterzogen wurden. In Tabelle 6.2 sind die untersuchten Plug-Ins
aufgelistet. Außerdem ist zu jedem Plug-In angegeben, aus wie vielen Klassen
es besteht. Insgesamt wurden also mehr als 2400 Klassen untersucht, so dass
ein praxisnahes Szenario gegeben ist.

Die Klassen der Plug-Ins aus Tabelle 6.2 wurden zunächst mit Hilfe der
strukturbasierten Entwurfsmustererkennung untersucht. Auf Grundlage der
erkannten Kandidaten wurde anschließend die verhaltensbasierte Entwurfsmu-
stererkennung durchgeführt. Dazu wurde während der Ausführung mit Eclip-
se ein kurzes Beispielprogramm implementiert. Des weiteren waren bereits zu-
vor umfangreiche Projekte in die Arbeitsumgebung von Eclipse importiert
worden, in denen unter anderem Suchen durchgeführt wurden. So entstand ein
realistisches Szenario wie in einer produktiven Umgebung. Die Traces wurden
aufgezeichnet und offline analysiert. Die Struktur- und Verhaltensmuster des
verwendeten Kataloges sind in Anhang A zu finden.

6.3 Ergebnisse

Ein Auszug der Ergebnisse des Praxistests der Struktur- und Verhaltensana-
lyse wird im Folgenden präsentiert. Im Anschluss werden einige konzeptionelle
Schwächen, die während des Praxistests erkannt wurden, erläutert. Es werden

137

Kapitel 6 Praktische Anwendung

Entwurfs- Rolle Klasse/Methode
musterimpl.
Observer 1 Subject org.eclipse.core.resources.IWorkspace
S. 303 register addResourceChangeListener()

Observer org.eclipse.core.resources.IResourceChangeListener
notify resourceChanged(IResourceChangeEvent)

Observer 2 Subject org.eclipse.swt.widgets.Button
S. 333 register addSelectionListener()

Observer org.eclipse.swt.events.SelectionListener
notify widgetSelected(SelectionEvent)

Observer 3 Subject org.eclipse.jface.action.IAction
S. 343 register addPropertyChangeListener()

Observer org.eclipse.jface.util.IPropertyChangeListener
notify propertyChange()

Strategy 1 Context org.eclipse.swt.widgets.Composite
S. 332 setStrategy setLayout()

Strategy org.eclipse.swt.widgets.Layout
algorithm layout()

Strategy 2 Context org.eclipse.jface.viewers.StructuredViewer
S. 341 setStrategy addFilter()

Strategy org.eclipse.jface.viewers.ViewerFilter
algorithm filter()

Strategy 3 Context org.eclipse.jface.viewers.StructuredViewer
S. 341 setStrategy setSorter()

Strategy org.eclipse.jface.viewers.ViewerSorter
algorithm sort()

Tabelle 6.1: Entwurfsmusterimplementierungen in Eclipse [GB04]

jedoch Ideen präsentiert, mit denen diese Schwächen behoben werden können,
die aber aus Zeitgründen in dieser Arbeit nicht mehr umgesetzt werden konn-
ten.

6.3.1 Strukturanalyse

In Tabelle 6.3 sind die Ergebnisse zu den in der Strukturanalyse erkannten
Kandidaten der oben genannten Entwurfsmusterimplementierungen zu finden.
Alle Entwurfsmusterimplementierungen wurden korrekt als Kandidaten der
jeweiligen Entwurfsmuster identifiziert. Die drei Strategy-Implementierungen
wurden jedoch aufgrund der sehr ähnlichen Strukturmuster sowohl als Stra-

138

6.3 Ergebnisse

Plug-In Anzahl Klassen
org.eclipse.core.resources 2.1.3 242
org.eclipse.jdt.core 2.1.3/model 295
org.eclipse.jdt.ui 2.1.3 690
org.eclipse.jface.text 2.1.0 145
org.eclipse.jface 2.1.3 165
org.eclipse.swt 2.1.3/common 107
org.eclipse.swt 2.1.3/win32 54
org.eclipse.ui.workbench 2.1.3 710
Summe 2408

Tabelle 6.2: Analysierte Plug-Ins von Eclipse

tegy- als auch als State-Kandidaten identifiziert. Die State-Kandidaten sind
False-Positives.

Entwurfsmusterimpl. Kandidat Bewertung
Observer 1 Observer 16,56%
Observer 2 Observer 11,48%
Observer 3 Observer 60,82%
Strategy 1 Strategy 73,27%

State 73,27%
Strategy 2 Strategy 88,88%

State 88,88%
Strategy 3 Strategy 67,29%

State 67,29%

Tabelle 6.3: Ergebnisse der Strukturanalyse

Die Bewertung der Kandidaten auf Basis ihrer Übereinstimmung mit
den Strukturmustern ist sehr unterschiedlich. Das Observer -Strukturmuster
enthält mehr nicht notwendige Anteile als die Strategy- und State-Struktur-
muster. Daher sind hier zwischen den Kandidaten größere Unterschiede in der
Bewertung zu finden. Auffällig ist, dass bei allen drei Strategy-Implementie-
rungen die erkannten Strategy- und State-Kandidaten jeweils die gleiche Be-
wertung erhalten haben. Allerdings lässt sich diese Tatsache durch die fast
identischen Strukturmuster erklären.

139

Kapitel 6 Praktische Anwendung

6.3.2 Verhaltensanalyse

In der Verhaltensanalyse konnten zwei der drei Strategy-Implementierungen
klar bestätigt werden. In Tabelle 6.4 sind die Ergebnisse zu den drei Strat-
egy-Implementierungen zu sehen. Die erste Strategy-Implementierung ist Teil
des Layout-Algorithmus der Benutzungsschnittstelle und wurde sehr häufig
ausgeführt. Das Verhältnis der akzeptierten zu den nicht-akzeptierten Traces
bestätigt mit 195 zu 14 deutlich den Strategy-Kandidaten. Dagegen wurde
beim State-Kandidaten kein einziger Trace akzeptiert, dafür aber über 1200
Traces verworfen.

Entwurfs- Kandidat akzept. verworfene nicht akzept. akzept. durchschnittl.
musterimpl. Traces Traces Traces Subtraces Tracelänge
Strategy 1 Strategy 195 14 69 7 5,6

State 0 1236 431 0 0,0
Strategy 2 Strategy 2 10 4 0 48,5

State 0 22 6 0 0,0
Strategy 3 Strategy 12 0 0 0 16,5

State 0 156 22 0 0,0

Tabelle 6.4: Ergebnisse der Verhaltensanalyse

Die dritte Strategy-Implementierung wurde nur sehr selten ausgeführt. Die
Strategie wird zur Sortierung von Elementen einer Sicht wie zum Beispiel eines
Projekt-Baumes verwendet. Allerdings ist klar zu erkennen, dass auch hier der
Strategy-Kandidat bestätigt wurde. Es wurde kein Trace verworfen und die
durchschnittliche Länge der akzeptierten Traces ist zudem relativ hoch. Der
State-Kandidat wurde auch hier klar verworfen.

Bei der zweiten Strategy-Implementierung ist das Ergebnis nicht so deutlich.
Diese Strategie wird ebenfalls in Sichten verwendet, um Elemente aus der Sicht
heraus zu filtern. Nur zwei Traces des Strategy-Kandidaten wurden akzeptiert,
wobei sie jedoch eine sehr hohe durchschnittliche Länge von 48,5 Methoden-
aufrufen aufweisen. Dagegen wurden aber zehn Traces verworfen. Bei näherer
Betrachtung des Kandidaten und der verworfenen Traces stellte sich heraus,
dass in einigen Fällen mehrere Filter gleichzeitig in einem Kontext benutzt
werden. Soll ein Element in der Sicht angezeigt werden, wird eine Anfrage an
den Kontext gestellt. Diese Anfrage wird vom Kontext an die Filter weiter ge-
geben. Dabei entscheidet zunächst der erste Filter, ob das Element angezeigt
wird. Akzeptiert der Filter, wird die Anfrage an den nächsten Filter geschickt.
Dies wird solange wiederholt, bis kein Filter mehr übrig ist, oder ein Filter

140

6.3 Ergebnisse

das Element ablehnt. Lehnt immer der erste Filter das Element ab, verhält
sich die Implementierung wie eine Strategy. Wird die Anfrage aber an mehrere
Filter geschickt, so verhält sie sich wie eine Chain of Responsibility. Bei die-
sem Entwurfsmuster wird eine Anfrage solange in einer Kette von Objekten
weitergereicht, bis sich ein Objekt für die Anfrage verantwortlich zeigt und
sie bearbeitet. Es handelt sich bei diesem Kandidaten also entweder um eine
falsch dokumentierte Entwurfsmusterimplementierung oder um eine sehr frei
interpretierte Strategy-Implementierung.

Von den Observer -Kandidaten konnte keiner durch die Verhaltensanalyse
bestätigt werden. Die Gründe hierfür werden im Folgenden erläutert.

6.3.3 Schwächen des Ansatzes

Bei der praktischen Anwendung sind einige Schwächen des Ansatzes zu Ta-
ge getreten. Die Spezifikationssprache ist leider in einigen Fällen noch nicht
ausdrucksstark genug, um das Verhalten eines Entwurfsmuster passend zu be-
schreiben.

register()
register()

notify()

update()
update()

loop (1,*)

s:subjectClass a:observerClass b:observerClass

bp Observer

Abbildung 6.1: Das Observer -Verhaltensmuster

In Abbildung 6.1 ist das im Praxistest verwendete Observer -Verhaltensmus-
ter zu sehen. Hier registrieren sich zwei Objekte des Typs observerClass bei
einem Objekt vom Typ subjectClass. Ändert sich am subjectClass-Objekt et-
was, ruft es die Methode notify() auf, die daraufhin die beiden observerClass-
Objekte durch Aufruf der Methode update() benachrichtigt. Das Problem bei
diesem Verhaltensmuster ist die feste Anzahl der observerClass-Objekte. In Se-
quenzdiagrammen nach der UML 2.0, an denen die Spezifikationssprache für
Verhaltensmuster angelehnt ist, ist immer nur eine festgelegte Anzahl von Ob-

141

Kapitel 6 Praktische Anwendung

jekten erlaubt. Es ist also nicht möglich, den Nachrichtenaustausch zwischen
einer beliebigen Anzahl von Objekten zu spezifizieren.

Zur Laufzeit eines Programms können sich jedoch beliebig viele observer-
Class-Objekte registrieren. Registrieren sich in einem konkreten Fall also zum
Beispiel drei observerClass-Objekte, so wird bei der Registrierung des dritten
Objektes der Trace abgelehnt, da ein zu diesem Zeitpunkt nicht erlaubter Me-
thodenaufruf beobachtet wird. Dieser Fall tritt immer dann auf, wenn sich nur
ein oder mehr als drei Objekte beim subjectClass-Objekt registrieren. Somit ist
die Wahrscheinlichkeit, dass ein Trace akzeptiert wird, gering.

Die Lösung dieses Problems liegt in der Erweiterung der Spezifikationsspra-
che. Abbildung 6.2 zeigt eine modifizierte Version des Observer -Verhaltens-
musters in einer erweiterten Syntax. Hier wird ein mengenwertiges Verhaltens-
musterobjekt für die Observer eingesetzt. Dem Verhaltensmusterobjekt wird
nun bei der Verhaltensanalyse nicht mehr nur eine einzige Instanz zugeordnet,
sondern eine beliebig große Anzahl.

notify()

register()

loop (1,*)

update()

set:observerClasss:subjectClass

bp Observer

Abbildung 6.2: Das Observer -Verhaltensmuster in erweiterter Syntax

Die Nachrichten register() und update() können nun so interpretiert werden,
dass es keine einzelnen Nachrichten sind, sondern eine Sequenz von Nachrich-
ten. Jede Instanz der Menge muss nun zur Laufzeit genau einmal die Methode
register() aufrufen. Genau so muss die Instanz, die dem subjectClass-Objekt
zugeordnet ist, auf jeder Instanz der Menge genau einmal die Methode upda-
te() aufrufen. Mit Hilfe eines solchen Verhaltensmusters hätten die Observer -
Kandidaten aus der Strukturanalyse bestätigt werden können.

Das State-Verhaltensmuster (Seite 59, Abbildung 4.1) weist eine ähnliche
Schwäche auf. Das State-Entwurfsmuster beschreibt den Austausch verschiede-
ner Zustände, um Anfragen an einen Kontext abhängig von dessen Zustand be-
arbeiten zu können. Die Anzahl der zur Laufzeit verwendeten Zustände ist aber

142

6.3 Ergebnisse

nicht festgelegt. Das im Praxistest verwendete Verhaltensmuster beschreibt je-
doch nur einen einzigen Zustandswechsel zwischen zwei Zuständen. Findet ein
weiterer Zustandswechsel statt, wird der Trace fälschlicherweise verworfen. Al-
lerdings wird ein Subtrace dieses Traces akzeptiert.

setState(s)

setState(s)alt

bp State

setState(s)opt

handle()
request()loop (1,*)

client c:context a:abstractState

a:=s

loop (1,*)

Abbildung 6.3: Das State-Verhaltensmuster in erweiterter Syntax

In Abbildung 6.3 ist ein weiterer Vorschlag zur Erweiterung der Syntax zu
sehen, mit dem diese Schwäche behoben werden kann. In den Nachrichten wer-
den zusätzlich Argumente spezifiziert. Hier wurde der Methode setState das
Argument s hinzugefügt. Nach dem Wechsel des Zustands in der Alternati-
ve, ausgelöst durch den Methodenaufruf setState(s) auf dem Kontextobjekt c,
wird dem Zustandsobjekt des Verhaltensmusters eine andere Instanz zugewie-
sen. Semantisch bedeutet dies, dass sich die Identität des Verhaltensmusterob-
jekts a:abstractState ändert. Wird nun die äußere Schleife wiederholt, so wird
der Methodenaufruf handle() auf einer anderen Instanz als zuvor ausgeführt.
Die Instanz wird durch das Argument des setState(s)-Aufrufs festgelegt. So
kann man beliebig viele Zustandswechsel zwischen beliebig vielen Zuständen
in einem Verhaltensmuster spezifizieren. Die Fehlinterpretation mehrfacher Zu-
standswechsel wie zuvor diskutiert würde damit korrigiert und die Präzision
der Verhaltensanalyse erhöht.

143

Kapitel 6 Praktische Anwendung

6.4 Zusammenfassung

Die Anwendung der struktur- und verhaltensbasierten Entwurfsmustererken-
nung auf ein praxisnahes Softwaresystem stößt auf einige praktische Proble-
me. Das Kapitel beschreibt diese Probleme und präsentiert zugleich Lösun-
gen. Zunächst einmal ist ganz allgemein die Auswahl der Eingabedaten für
dynamische Analysen ein zentrales Problem. Das in der Praxis beobachtete
Verhalten kann immer nur einen Bruchteil des theoretisch möglichen Verhal-
tens darstellen. Eine möglichst repräsentative Auswahl der Eingabedaten ist
durch eine Beobachtung eines produktiv eingesetzten Softwaresystems möglich.
Um aber die Beeinflussung durch die dynamische Analyse möglichst gering zu
halten, wird die Software-Tomographie nach [BOH02] für die Verhaltenserken-
nung vorgeschlagen. Dabei wird die Gesamtanalyse auf mehrere Teilanalysen
aufgeteilt. Diese werden auf verschiedenen Instanzen des zu untersuchenden
Softwaresystems durchgeführt. So bleibt der Einfluss der dynamischen Ana-
lyse auf die Laufzeit des produktiven Softwaresystems gering und man erhält
repräsentative Daten.

Für einen Praxistest der Entwurfsmustererkennung wurde ein Szenario
präsentiert, für das zunächst einige Voraussetzungen festgelegt wurden. Das
zu untersuchende System soll groß sein und zudem möglichst auf Basis von
Entwurfsmustern implementiert worden sein, die auch dokumentiert sind. So
können die Ergebnisse der Entwurfsmustererkennung mit der Realität vergli-
chen werden. Als Softwaresystem wurde Eclipse 2.1 ausgewählt.

Auf dieses System wurde die Entwurfsmustererkennung angewendet. Die
Strukturanalyse konnte einige der dokumentierten Entwurfsmusterimplemen-
tierungen korrekt identifizieren, fand jedoch auch False-Positives. Von den
in der Strukturanalyse korrekt erkannten Kandidaten konnte die Verhaltens-
analyse einige bestätigen und die False-Positives widerlegen. Andere korrekte
Kandidaten konnten jedoch aufgrund ungenügender Verhaltensmuster nicht
bestätigt werden.

Die ungenügende Spezifikation der Verhaltensmuster konnte auf eine in be-
stimmten Fällen ungenügend ausdrucksstarke Spezifikationssprache zurück-
geführt werden. Gleichzeitig wurden jedoch Ideen zu einer möglichen Erwei-
terung der Spezifikationssprache vorgestellt, mit denen die Einschränkungen
aufgehoben werden können. Aus Zeitgründen konnten diese Ideen aber nicht
mehr im Rahmen dieser Arbeit umgesetzt werden.

144

Kapitel 7

Werkzeugunterstützung

In diesem Kapitel wird die technische Umsetzung der in den vorhergehenden
Kapiteln vorgestellten Konzepte durch das Werkzeug Reclipse behandelt.
Zunächst wird im ersten Teil des Kapitels die Einbettung des Werkzeugs in
die Entwicklungsumgebung Eclipse erläutert. Im zweiten Teil des Kapitels
werden die Architektur und die wichtigsten Komponenten der Entwurfsmuste-
rerkennung beschrieben, bevor im dritten Teil die Benutzungsschnittstelle mit
Hilfe eines Beispiels vorgestellt wird.

7.1 Entwicklungsumgebung

Die im Rahmen dieser Arbeit entwickelte struktur- und verhaltensbasierte Ent-
wurfsmustererkennung baut auf der Entwicklungsumgebung Fujaba [Fuj] auf.
Fujaba wird seit 1998 am Fachgebiet Softwaretechnik der Universität Pader-
born entwickelt. Fujaba ist eine modellbasierte Entwicklungsumgebung auf
Basis von UML, Story Driven Modelling1 (SDM) und Graphtransformationen,
die von Dritten durch Plug-Ins beliebig erweitert werden kann [BGN+04]. Zu
den Grundfunktionen gehört eine Java-Codegenerierung aus den mit Fujaba
spezifizierten Modellen.

In den letzten Jahren fand das Werkzeug Eclipse [Ecl] in der Industrie eine
immer größere Verbreitung. Eclipse stellt in der Grundversion lediglich ein
durch Plug-Ins erweiterbares Framework dar. Auf Basis von Eclipse können
aber beliebige Anwendungen durch unterschiedliche Konfigurationen von Plug-
Ins geschaffen werden. Eine weit verbreitete Konfiguration von Eclipse ist die
Java-Entwicklungsumgebung JDT (Java Development Tooling).

1Story Driven Modelling ist eine besondere Form der Modellierung von Algorithmen durch
UML-Objektdiagramme und Graphtransformationen

145

Kapitel 7 Werkzeugunterstützung

Fujaba wurde als Plug-In in Eclipse integriert. Die so entstandene
Entwicklungsumgebung aus Eclipse, JDT und Fujaba wird Fujaba4-
Eclipse genannt. Das Werkzeug Fujaba4Eclipse vereint somit eine mo-
dellbasierte Entwicklung mit Java-Codegenerierung und einer Java-Entwick-
lungsumgebung.

In der vorliegenden Arbeit wurde Fujaba4Eclipse durch die struktur- und
verhaltensbasierte Entwurfsmustererkennung zu einem Reverse-Engineering-
Werkzeug erweitert. Die bereits existierende strukturbasierte Entwurfsmuste-
rerkennung [Wen01, Nie04] ist, wie in Kapitel 3 beschrieben, in dieser Arbeit
erweitert und auf Fujaba4Eclipse portiert worden. Die neu entwickelte, ver-
haltensbasierte Entwurfsmustererkennung ist ebenfalls auf Basis von Fuja-
ba4Eclipse in Form von Eclipse-Plug-Ins realisiert worden. Die Konfigura-
tion aus Fujaba4Eclipse und den Plug-Ins zur struktur- und verhaltensba-
sierten Entwurfsmustererkennung wird Reclipse genannt.

7.2 Architektur

Die struktur- und verhaltensbasierte Entwurfsmustererkennung ist modular
auf Basis verschiedener Komponenten aufgebaut. Abbildung 7.1 zeigt die wich-
tigsten Komponenten und deren Abhängigkeiten untereinander. Die Kompo-
nenten sind als Eclipse-Plug-Ins entwickelt worden. Die im Diagramm ge-
nannten Komponenten enthalten nur die Modelle und die Logik. Zu fast jeder
der Komponenten gibt es jeweils noch eine zusätzliche Komponente, die ih-
re Benutzungsschnittstelle enthält. Im Folgenden wird jede der im Diagramm
genannten Komponenten kurz erläutert. Details zu den Komponenten, wie
Abhängigkeiten, Ein- und Ausgaben sowie Versionen, können im Anhang C.1
nachgeschlagen werden.

• de.uni paderborn.fujaba: Dies ist die Hauptkomponente, in der die in-
tegrierte Entwicklungsumgebung Fujaba enthalten ist. Sie stellt unter
anderem die Pakete ClassDiagrams (Abbildung 2.1, Seite 18) zur Spezi-
fikation von Klassendiagrammen und Structure zur Repräsentation der
Struktur (Abbildung 2.2, Seite 19) zur Verfügung. Allerdings sind diese
beiden Pakete in Fujaba aus dem in Abschnitt 2.3.1 genannten Grund
identisch.

• org.reclipse.javaast: Stellt das Paket JavaAST als Modell des abstrak-
ten Syntaxbaums für Java-Methodenrümpfe zur Verfügung.

146

7.2 Architektur

«component»
org.reclipse.patterns.
structure.generator

«component»
org.reclipse.patterns.
behavior.generator

«component»
org.reclipse.patterns.
behavior.specification

«component»
org.reclipse.patterns.
behavior.inference

«component»
org.reclipse.patterns.
structure.specification

«component»
org.reclipse.patterns.
structure.inference

«component»
org.reclipse.instrumentation.runtime

«component»
org.reclipse.tracer

«component»
org.reclipse.tracing

«component»
de.uni_paderborn.fujaba

«component»
org.reclipse.javaast

«component»
org.reclipse.javaparser

«component»
org.reclipse.instrumentation

«uses»

Abbildung 7.1: Die Komponenten der struktur- und verhaltensbasierten
Entwurfsmustererkennung

• org.reclipse.javaparser: Stellt einen Parser zur Verfügung, der den Ja-
va-Quelltext des zu untersuchenden Softwaresystems in eine Struktur auf
Basis des Strukturmodells umwandelt.

• org.reclipse.tracing: Stellt das Paket Behavior (Abbildung 3.9, Seite
52) zur Repräsentation von Tracegraphen bereit. Stellt außerdem das
Paket TraceDefinition zur Spezifikation der zu überwachenden Methoden
eines Softwaresystems zur Verfügung.

• org.reclipse.tracer: Stellt ein Werkzeug zum Debugging von Java-
Programmcode zur Verfügung. Das Werkzeug erzeugt Breakpoints zur
Überwachung der Methodenaufrufe während der Ausführung des Pro-
gramms. Die beobachteten Methodenaufrufe können entweder in eine
Datei zur Offline-Analyse gespeichert werden, oder direkt in einer Online-
Analyse der Verhaltensanalyse übergeben werden.

147

Kapitel 7 Werkzeugunterstützung

• org.reclipse.instrumentation: Stellt ein Werkzeug zur Instrumentie-
rung von Java-Bytecode bereit. Das Werkzeug fügt zusätzlichen Pro-
grammcode ein, der zur Überwachung von Methodenaufrufen dient.

• org.reclipse.instrumentation.runtime: Stellt die Laufzeitumgebung
für den instrumentierten Programmcode zur Verfügung. Wird als Biblio-
thek dem instrumentierten Programmcode hinzugefügt. Die beobachte-
ten Methodenaufrufe können entweder in eine Datei zur Offline-Analyse
gespeichert werden, oder direkt in einer Online-Analyse der Verhaltens-
analyse übergeben werden.

• org.reclipse.patterns.structure.specification: Stellt zur Spezifikati-
on von Strukturmustern das Paket StructuralPatterns (Abbildung 4.7,
Seite 68) zur Verfügung.

• org.reclipse.patterns.structure.inference: Enthält den Algorithmus
zur Strukturanalyse (Abbildung 2.10, Seite 28). Dazu verwendet die
Komponente Erkennungsmaschinen für Strukturmuster, um in der Struk-
tur des zu untersuchenden Softwaresystems nach Kandidaten für Ent-
wurfsmusterimplementierungen zu suchen. Sie stellt außerdem das Paket
Annotations (Abbildung 5.16, Seite 132) zur Annotation der Kandidaten
bereit. Für die Erkennungsmaschinen wird eine Schnittstelle definiert.

• org.reclipse.patterns.structure.generator: Stellt einen Algorithmus
zur Verfügung, um aus den Strukturmustern die Erkennungsmaschinen
zu generieren.

• org.reclipse.patterns.behavior.specification: Stellt das Paket Beha-
vioralPatterns (Abbildung 4.5, Seite 64) zur Spezifikation der Verhaltens-
muster zur Verfügung.

• org.reclipse.patterns.behavior.inference: Enthält den Algorithmus
zur Verhaltensanalyse (Abbildung 5.1, Seite 106). Die Komponente ver-
wendet endliche Automaten, um im Tracegraphen nach Verhaltensmu-
stern zu suchen. Sie stellt außerdem die Pakete BehaviorAnalysis (Ab-
bildung 5.2, Seite 111) und Automaton (Abbildung 5.3, Seite 113) zur
Verfügung.

• org.reclipse.patterns.behavior.generator: Stellt den Algorithmus
aus Abschnitt 4.4 zur Verfügung, um aus den Verhaltensmustern end-
liche Automaten zu generieren. Erzeugt außerdem aus dem Ergebnis der
Strukturanalyse die Trace-Definition zur Überwachung des Programms.

148

7.3 Benutzungsschnittstelle

7.3 Benutzungsschnittstelle

Im Folgenden wird die Benutzungsschnittstelle von Reclipse vorgestellt.
Zunächst werden einige allgemeine Elemente der Benutzungsschnittstelle
erläutert. Es folgen die Benutzungsschnittstellen zur Spezifikation der Struk-
tur- und der Verhaltensmuster. Anschließend wird der Prozess der struktur-
und verhaltensbasierten Entwurfsmustererkennung anhand des Beispiels des
Mediaplayers aus Abschnitt 2.3.1 durchgeführt und daran die Benutzungs-
schnittstelle der Entwurfsmustererkennung präsentiert. Ein detailliertes Hand-
buch zu Reclipse findet sich im Anhang B.

7.3.1 Elemente der Benutzungsschittstelle

Die Oberfläche der Entwicklungsumgebung Eclipse ist aus einer Reihe von
verschiedenen Sichten und Editoren konfigurierbar, die von Plug-Ins zur
Verfügung gestellt werden. Solche Konfigurationen werden in Perspektiven zu-
sammengefasst. Die Sichten und Editoren einer Perspektive sind üblicherweise
so zusammengestellt, dass mit ihnen eine bestimmte Aufgabe durchgeführt
werden kann. Sie lassen sich aber auch beliebig anordnen, verkleinern oder
vergrößern, so dass der Benutzer die Oberfläche individuell nach seinen Bedürf-
nissen anpassen kann.

Abbildung 7.2: Die Benutzeroberfläche von Reclipse

Abbildung 7.2 zeigt die Perspektive, die von Fujaba4Eclipse zur Ver-
fügung gestellt wird. Die Oberfläche ist in verschiedene Bereiche für die Sichten

149

Kapitel 7 Werkzeugunterstützung

und Editoren aufgeteilt. Im linken, oberen Teil der Oberfläche ist der Project
Explorer zu sehen. Fujaba4Eclipse ist eine modellbasierte Entwicklungsum-
gebung, die Modelle in Modelldateien organisiert. Mit dem Project Explorer
können die Modelle einer Modelldatei durchsucht und zur Ansicht oder zum
Bearbeiten ausgewählt werden.

Der rechte, obere Teil der Oberfläche ist dem jeweiligen Editor vorbehalten,
der zum Beispiel zum Bearbeiten eines Modells oder Java-Quelltextes verwen-
det wird. Links unten ist die Outline-Sicht angeordnet, die eine Übersicht über
das aktuell bearbeite Modell oder den Quelltext bietet. Rechts unten ist der
Properties-Editor zu sehen, mit dem zum Beispiel die Eigenschaften einzelner
Modellelemente geändert werden können.

Die Funktionen von Reclipse sind in die Perspektive von Fujaba4Eclipse
integriert und lassen sich über das Menü Reclipse oder über Kontext-Menüs
des Modells aufrufen.

7.3.2 Spezifikation der Struktur- und Verhaltensmuster

Im Prozess der struktur- und verhaltensbasierten Entwurfsmustererkennung
geht der Reverse-Engineer üblicherweise von einem bereits existierenden Ka-
talog von Struktur- und Verhaltensmustern aus. Dieser Katalog wird dann an
die Eigenheiten des zu untersuchenden Softwaresystems angepasst.

Strukturmuster

Abbildung 7.3 zeigt die Entwicklungsumgebung Reclipse. Im Project Explo-
rer auf der rechten Seite sind die in der aktuell geöffneten Modelldatei vor-
handenen Strukturmuster aufgelistet. Eines dieser Strukturmuster, das State-
Strukturmuster, wird im Editor rechts oben angezeigt und bearbeitet.

Auf der rechten Seite des Editors befindet sich eine Palette – hier aus Platz-
gründen eingeklappt – die eine Reihe von Werkzeugen für den jeweiligen Edi-
tor zur Verfügung stellt. Die Palette des Strukturmuster-Editors bietet zum
Beispiel Werkzeuge zum Hinzufügen von Strukturmusterobjekten, von Anno-
tationen oder auch von Verbindungen. Mit dem Properties-Editor werden die
Eigenschaften des Strukturmusters oder einzelner Elemente des Strukturmu-
sters geändert. Links unten in der Outline-Sicht ist eine verkleinerte Ansicht
des Editors zum Überblick abgebildet.

Nach der Bearbeitung werden aus den Strukturmustern die Erkennungsma-
schinen für die Strukturanalyse generiert. Aus den Strukturmustern werden
Graphtransformationsalgorithmen erzeugt, die auf dem Strukturmodell des zu

150

7.3 Benutzungsschnittstelle

Abbildung 7.3: Die Spezifikation des State-Strukturmusters in Reclipse

untersuchenden Softwaresystems arbeiten. Die Graphtransformationsalgorith-
men werden in Java-Klassen übersetzt und stehen dann der Strukturanalyse
zur Verfügung. Details zur Generierung der Graphtransformationsalgorithmen
finden sich in [Nie04].

Verhaltensmuster

Die Spezifikationen der zu den Strukturmustern gehörigen Verhaltensmuster
befinden sich in derselben Modelldatei wie die Strukturmuster. In Abbildung
7.4 ist die Spezifikation des State-Verhaltensmusters zu sehen. Über die Pa-
lette auf der rechten Seite des Editors lassen sich neue Verhaltensmusterob-
jekte, Nachrichten oder auch kombinierte Fragmente dem Verhaltensmuster
hinzufügen. Die Eigenschaften der Elemente eines Verhaltensmusters werden
ebenfalls über den Properties-Editor geändert, der hier aber aus Platzgründen
ausgeblendet ist. Die Typnamen der Verhaltensmusterobjekte und die Metho-
dennamen der Nachrichten wurden der Spezifikation des State-Strukturmusters
aus Abbildung 7.3 entnommen.

151

Kapitel 7 Werkzeugunterstützung

Abbildung 7.4: Die Spezifikation des State-Verhaltensmusters in Reclipse

Für die Verhaltensanalyse werden aus den Verhaltensmustern, wie in Ab-
schnitt 4.4 spezifiziert, Automaten generiert, denen das Modell aus Abbildung
5.3 (Seite 113) zugrunde liegt. Die Automaten eines Kataloges werden deskrip-
tiv in einer Datei gespeichert. Die formale Definition des Dateiformats findet
sich in der technischen Dokumentation im Anhang C.2.4.

7.3.3 Strukturbasierte Entwurfsmustererkennung

Als Voraussetzung zur strukturbasierten Entwurfsmustererkennung muss zu-
nächst der Quelltext des zu untersuchenden Softwaresystems unter Reclip-
se in eine Modelldatei importiert werden. Die Struktur des Softwaresystems
steht nun den Analysen zu Verfügung. Anschließend wird die strukturbasierte
Entwurfsmustererkennung unter Angabe eines Katalogs von Strukturmustern
gestartet. In Abbildung 7.5 ist das Ergebnis der Analyse zu sehen.

Der Editor auf der rechten Seite zeigt einen Ausschnitt des Klassendia-

152

7.3 Benutzungsschnittstelle

Abbildung 7.5: Das Ergebnis der Strukturanalyse

gramms zum Mediaplayer. Im Klassendiagramm werden außerdem die An-
notationen visualisiert, die im Laufe der strukturbasierten Entwurfsmusterer-
kennung erzeugt wurden. Der besseren Übersichtlichkeit wegen sind nur die
wichtigsten beiden Annotationen eingeblendet worden. Das Gesamtergebnis
der strukturbasierten Entwurfsmustererkennung ist in der Sicht Annotations
rechts unten einzusehen. Darin sind alle Annotationen mit weiteren Informatio-
nen enthalten. Meldungen, die während des strukturbasierten Erkennungspro-
zesses ausgegeben werden, wie Angaben über Prozessschritte oder identifizierte
Strukturmuster, sind in der Sicht Structural Inference Console zu finden.

Die Annotationen werden nach der Strukturanalyse zur Vorbereitung der
verhaltensbasierten Entwurfsmustererkennung in eine Datei exportiert. Die
Spezifikation des Dateiformats ist in Anhang C.2.1 zu finden. Des Weiteren
muss eine Trace-Definition exportiert werden, die die Informationen enthält,
welche Methoden des Strukturmodells zur Laufzeit des Programms überwacht
werden müssen. Das Dateiformat ist in Anhang C.2.2 spezifiziert.

153

Kapitel 7 Werkzeugunterstützung

7.3.4 Verhaltensbasierte Entwurfsmustererkennung

Ein wesentlicher Bestandteil der verhaltensbasierten Entwurfsmustererken-
nung ist die Gewinnung der Traces. Wie in Abschnitt 5.2 erläutert, stehen dazu
zwei verschiedene Verfahren zur Verfügung, das Debugging und die Instrumen-
tierung. Im Folgenden wird die Realisierung der beiden Verfahren in Reclipse
vorgestellt. Des Weiteren wird erläutert, wie die verhaltensbasierte Entwurfs-
mustererkennung im Offline-Modus ausgeführt wird. Die Ergebnisse werden
anschließend in einer Sicht visualisiert und können vom Reverse-Engineer un-
tersucht werden.

Debugging

Zum Debugging wurde der Reclipse Tracer entwickelt [WME04, MW05].
Das zu untersuchende Softwaresystem wird durch den Reclipse Tracer ge-
startet und im Hintergrund durch den Debugger überwacht. Das zu untersu-
chende Programm wird wie gewohnt im Vordergrund ausgeführt. Die Trace-
Definition bestimmt, welche Methoden während der Ausführung überwacht
werden.

Abbildung 7.6: Der Reclipse Tracer nach dem Debuggen des Mediaplayers

154

7.3 Benutzungsschnittstelle

Abbildung 7.6 zeigt den Reclipse Tracer nach dem Debuggen des Media-
players. Der Reclipse Tracer stellt eine weitere Perspektive in Eclipse zur
Verfügung, in der die Trace-Definition angesehen und geändert werden kann
und in der die Ausgaben des Reclipse Tracers angezeigt werden. Im Edi-
tor auf der rechten Seite wird die Trace-Definition als ein Baum dargestellt,
in dem die zu überwachenden Methoden jeweils unterhalb ihrer Klasse aufge-
listet sind. Rechts unten ist die Sicht Tracer geöffnet, die Informationen über
überwachte Klassen, Methoden und den Zustand des überwachten Programms
während des Debuggens ausgibt.

Auf der linken Seite zeigt die Sicht Execution Monitor an, welche der zu
überwachenden Methoden während des Debuggens bereits ausgeführt wurden
und gegebenenfalls, wie häufig sie ausgeführt wurden. Wird das zu untersu-
chende Programm durch den Reverse-Engineer ausgeführt, kann er hier able-
sen, ob genügend Daten für die Verhaltensanalyse gesammelt wurden.

Der Reclipse Tracer kann den Trace direkt an die verhaltensbasierte Ent-
wurfsmustererkennung weiter reichen, oder in eine Datei zur späteren Analyse
protokollieren. Auch eine gleichzeitige Analyse und Protokollierung ist möglich.
Das Dateiformat des aufgezeichneten Traces ist in Anhang C.2.3 spezifiziert.

Instrumentierung

Zur Instrumentierung des zu untersuchenden Softwaresystems steht in Re-
clipse ein so genannter Wizard zur Verfügung. Ein Wizard besteht aus einer
Reihe von Dialogen, die nacheinander verschiedene Eingaben vom Benutzer
abfragen und anschließend eine Funktion auf diesen Eingabedaten ausführen.
Im Falle der Instrumentierung fragt der Wizard nach dem übersetzten Pro-
grammcode des Softwaresystems, der Trace-Definition sowie einigen weiteren
Informationen und erzeugt daraus den instrumentierten Programmcode.

In Abbildung 7.7 sind zwei der Dialoge des Instrumentierung-Wizards zu
sehen. Wie beim Debuggen kann der Reverse-Engineer auswählen, ob der
durch den instrumentierten Programmcode gewonnene Trace direkt an die
verhaltensbasierte Entwurfsmustererkennung weiter gegeben und in eine Datei
protokolliert werden soll. Die Instrumentierung fügt dann zusätzlichen Pro-
grammcode in das zu untersuchende Softwaresystem ein. Zusätzlich werden
weitere für die Protokollierung und die verhaltensbasierte Entwurfsmusterer-
kennung erforderlichen Bibliotheken dem zu untersuchenden Softwaresystem
hinzugefügt.

Die Ausführung des instrumentierten Programms erfolgt wie gewohnt.
Während der Ausführung werden je nach Konfiguration der Instrumentierung

155

Kapitel 7 Werkzeugunterstützung

Abbildung 7.7: Der Instrumentierungs-Wizard

die beobachteten Methodenaufrufe in eine Trace-Datei protokolliert und durch
die verhaltensbasierte Entwurfsmustererkennung verarbeitet.

Verhaltenserkennung

Die verhaltensbasierte Entwurfsmustererkennung wird entweder, wie in den
vorherigen Abschnitten beschrieben, in einem Online-Modus während der
Ausführung des zu untersuchenden Softwaresystems, oder im Offline-Modus
nach der Ausführung durchgeführt.

In Abbildung 7.8 ist der Dialog zum Starten der verhaltensbasierten Ent-
wurfsmustererkennung im Offline-Modus zu sehen. Der Reverse-Engineer muss
als Eingabe die Datei angeben, die die Annotationen der Strukturanalyse
enthält, also die Kandidaten. Des Weiteren wird der durch Debugging oder
Instrumentierung aufgezeichnete Trace, sowie der Katalog mit den Verhaltens-
mustern benötigt. Das Ergebnis der verhaltensbasierten Entwurfsmustererken-
nung wird in einer Datei festgehalten. Das Dateiformat ist in Anhang C.2.5
spezifiziert.

Das Ergebnis wird durch die Sicht Behavioral Analysis Result visualisiert.
Abbildung 7.9 zeigt diese Sicht mit dem Ergebnis der verhaltensbasierten Ent-
wurfsmustererkennung zum Mediaplayer-Beispiel. Am oberen Rand der Sicht

156

7.3 Benutzungsschnittstelle

Abbildung 7.8: Starten der Verhaltensanalyse im Offline-Modus

kann ein Kandidat aus der Menge aller Kandidaten ausgewählt werden. In
diesem Beispiel wurde der State-Kandidat des Mediaplayers gewählt. In der
linken oberen Hälfte wird das Ergebnis der strukturbasierten Entwurfsmuste-
rerkennung angezeigt. In einer Tabelle ist die Abbildung der Verhaltensmuster-
objekte des State-Verhaltensmusters auf die Elemente der Struktur angegeben.
In der Mitte der Sicht ist eine Zusammenfassung der Ergebnisse der verhal-
tensbasierten Entwurfsmustererkennung zu diesem Kandidaten zu sehen. Es
wird die Anzahl der insgesamt getriggerten Traces, der daraus akzeptierten,
verworfenen und nicht akzeptierten Traces angegeben. Ferner wird die Anzahl
der verworfenen und nicht akzeptierten Traces genannt, die einen akzeptierten
Subtrace enthalten, sowie die durchschnittliche Länge der akzeptierten Traces.

In diesem Fall wurde insgesamt acht Mal die Überprüfung eines Traces durch
einen Automaten ausgelöst. Ein Trace wurde akzeptiert, fünf verworfen und
zwei weitere nicht akzeptiert. Allerdings wurden in zwei der verworfenen und
nicht akzeptierten Traces Subtraces beobachtet, die akzeptiert wurden. Die
durchschnittliche Länge der akzeptierten Traces und Subtraces betrug fünf
Methodenaufrufe.

Aus den beobachteten Traces zu einem Kandidaten kann auf der rechten
Seite der Sicht ein Trace ausgewählt werden, der genauer untersucht werden
kann. Es wird zu dem ausgewählten Trace angegeben, ob er akzeptiert, verwor-
fen oder nicht akzeptiert wurde und ob ein Subtrace dieses Traces akzeptiert
wurde. Außerdem wird die Länge des akzeptierten Traces beziehungsweise Sub-

157

Kapitel 7 Werkzeugunterstützung

Abbildung 7.9: Das Ergebnis der Verhaltensanalyse

traces genannt. Die Bindung der Verhaltensmusterobjekte an die Instanzen zur
Laufzeit des untersuchten Programms wird in einer Tabelle angegeben.

In der unteren Hälfte wird der ausgewählte Trace als Sequenzdiagramm dar-
gestellt. Das Sequenzdiagramm enthält die vom Automaten konsumierten Me-
thodenaufrufe. Methodenaufrufe, die vom Automaten ignoriert wurden, wer-
den nicht dargestellt.

Analyse der Ergebnisse

In Abbildung 7.10 ist ein verworfener Trace ausgewählt worden. Die Visualisie-
rung des Traces hilft zum Beispiel festzustellen, warum er verworfen wurde. In
diesem Fall besteht der Trace nur aus zwei Methodenaufrufen. Der erste Me-
thodenaufruf löste die Überprüfung des Traces durch den Automaten für das
State-Verhaltensmuster (Abbildung 4.1, Seite 59) aus. Der zugehörige Trigger
aus dem Verhaltensmuster ist die Nachricht client→(c:context).setState(). Die-
se Nachricht geht vom untypisierten Verhaltensmusterobjekt client aus. Hier

158

7.3 Benutzungsschnittstelle

wurde die Instanz 72 vom Typ StreamPlaying an client gebunden, wie der Ta-
belle in der Mitte rechts zu entnehmen ist. Nach dem Verhaltensmuster muss
nun die nächste Nachricht, der request-Aufruf auf dem Verhaltensmusterobjekt
c:context von client ausgeführt werden. Allerdings wird hier der request-Aufruf
durch eine andere Instanz ausgeführt, was zum Verwerfen des Traces führt.

Abbildung 7.10: Ein verworfener Trace

Wenn man den Trace jedoch genauer betrachtet, stellt man fest, dass er das
State-Verhaltensmuster nicht verletzt. Es ist ein Subtrace des akzeptierten Tra-
ces aus Abbildung 7.9. Der Methodenaufruf setState(mediaplayer.StreamState)
wird aber leider durch den Automaten fälschlicherweise als die triggernde
Nachricht client→(c:context).setState() des State-Verhaltensmusters interpre-
tiert.

Dieses False-Positive ließe sich verhindern, wenn das State-Verhaltensmuster
optimiert wird. Die erste, optionale Nachricht client→(c:context).setState() ist
nicht entscheidend zum Erkennen eines State-Entwurfsmusters. Entscheidend
ist vielmehr der Zustandswechsel, der durch den aktuellen Zustand oder dem
Kontext durchgeführt werden muss. Daher kann die erste, optionale Nachricht
aus dem State-Verhaltensmuster entfernt werden. Das führt dazu, dass die
Überprüfung des Verhaltensmusters nur noch durch die eindeutige Nachricht

159

Kapitel 7 Werkzeugunterstützung

client→(c:context).request() getriggert wird und so die Zahl der False-Positives
reduziert wird.

7.4 Zusammenfassung

Die struktur- und verhaltensbasierte Entwurfsmustererkennung ist vollständig
implementiert worden. Das entstandene Werkzeug Reclipse wurde in die weit
verbreitete Entwicklungsumgebung Eclipse integriert. Der gesamte Prozess
der struktur- und verhaltensbasierten Entwurfsmustererkennung wird von Re-
clipse unterstützt, angefangen bei der graphischen Spezifikation der Struktur-
und Verhaltensmuster, über die Struktur- und Verhaltensanalyse, dem Debug-
gen und der Instrumentierung des Programmcodes, bis hin zur Visualisierung
der Ergebnisse sowohl der Struktur- als auch der Verhaltensanalyse. Im An-
hang B ist ein Handbuch zur Benutzung von Reclipse zu finden, das im De-
tail alle notwendigen Schritte erklärt, um den Prozess in Reclipse vollständig
durchzuführen.

160

Kapitel 8

Verwandte Arbeiten

In diesem Kapitel wird der aktuelle Stand der Forschung in den Bereichen der
Entwurfsmustererkennung und der dynamischen Verhaltensanalysen betrach-
tet. Aus dem Bereich der Entwurfsmustererkennung werden im ersten Teil des
Kapitels zunächst Arbeiten vorgestellt, die auf rein statischen Analysen der
Struktur eines Softwaresystems aufbauen. Die Arbeiten werden in Bezug auf
die in Abschnitt 2.2 genannten Anforderungen beurteilt. Der zweite Teil des
Kapitels behandelt verschiedene Arbeiten, die explizit das Verhalten von Soft-
waresystemen zur Laufzeit analysieren.

Kombinationen aus Struktur- und Verhaltensanalysen werden seit einiger
Zeit im Reverse-Engineering eingesetzt. Im dritten Teil werden Arbeiten dis-
kutiert, die diese Kombinationen anwenden. Im Besonderen werden solche Ar-
beiten diskutiert und mit der vorliegenden Arbeit verglichen, die aus dem
Bereich der Entwurfsmustererkennung stammen.

8.1 Strukturbasierte Entwurfsmustererkennung

Frühe Ansätze zur Suche nach allgemeinen Softwaremustern waren das System
Pat von Mehdi Harandi und Jim Ning [HN90] aus dem Jahre 1990 und die
Arbeit von Linda Wills aus dem Jahre 1992 [Wil92]. Nach dem Erscheinen
des Buches von Gamma et al. [GHJV95] im Jahre 1995 wurde dann eine Rei-
he von Werkzeugen entwickelt, die speziell Entwurfsmusterimplementierungen
(semi-)automatisch im Quelltext erkennen. Bis auf einige wenige Ausnahmen1

basieren jedoch sehr viele dieser Werkzeuge auf einer rein statischen Analy-
se2, bei der der Quelltext ausschließlich nach strukturellen Eigenschaften der

1siehe [Bro96, GZ05, HHHL03]
2siehe [KP96, AFC98, SK98, SG98, Wuy98, KSRP99, TA99, BP00, KB00, ACGJ01, AG01,

SS03, PSRN04, TCHS05, KGH06, SO06]

161

Kapitel 8 Verwandte Arbeiten

Entwurfsmuster untersucht wird, ohne die Software auszuführen.

Das Verhalten eines Softwaresystems, im Wesentlichen bestimmt durch Me-
thodenaufrufe, lässt sich jedoch durch statische Analysen nur bedingt unter-
suchen. Statische Analysen erkennen zwar potentielle Methodenaufrufe, ob je-
doch diese Methodenaufrufe zur Laufzeit tatsächlich ausgeführt werden, ist
nicht sicher festzustellen. Objektorientierte Programmiersprachen mit Poly-
morphie und dynamischer Methodenbindung verschärfen dieses Problem sogar
noch, da die konkreten, aufzurufenden Methoden erst zur Laufzeit festgelegt
werden. Die im Folgenden aufgeführten Verfahren zur strukturbasierten Ent-
wurfsmustererkennung lassen sich grob in zwei Kategorien einteilen: Verfahren,
die potentielle Methodenaufrufe untersuchen, und solche, die dies nicht tun.

Entwurfsmustererkennung ohne Analyse potentieller Methodenaufrufe

Ohne Analyse potentieller Methodenaufrufe lassen sich Konstrukte wie Delega-
tion (siehe dazu auch [GHJV95]) nicht erkennen. Bei einer Delegation wird ein
Methodenaufruf von einem Objekt an ein anderes weitergegeben, die Aufgabe
wird von einem Objekt an ein anderes Objekt delegiert. Dieses Konstrukt ist
in vielen Entwurfsmustern wie zum Beispiel State, Strategy , Visitor oder auch
Mediator ein zentraler Bestandteil. Eine präzise Erkennung dieser und ande-
rer Entwurfsmuster ist ohne die Analyse potentieller Methodenaufrufe daher
kaum möglich.

Zu der Kategorie der Entwurfsmustererkennungen ohne Analyse potentieller
Methodenaufrufe zählen die Verfahren von Christian Krämer und Lutz Pre-
chelt [KP96], von Giulio Antoniol et al. [AFC98], von Federico Bergenti und
Agostino Poggi [BP00], von Hyoseob Kim und Cornelia Boldyreff [KB00], von
Ilka Philippow et al. [PSRN04], sowie von Nija Shi und Ronald A. Olsson
[SO06].

Entwurfsmustererkennung mit Analyse potentieller Methodenaufrufe

Zu den Arbeiten, bei denen potentielle Methodenaufrufe bei der Entwurfs-
mustererkennung berücksichtigt werden, gehören das Projekt Spool von Ru-
dolf Keller und Reinhard Schauer [SK98, KSRP99], das Projekt SPQR von
Jason Smith und David Stotts [SS03], sowie die Verfahren von Roel Wuyts
[Wuy98], von Jochen Seemann und Jürgen Wolff von Gudenberg [SG98], von
Paolo Tonella und Giulio Antoniol [TA99], von Hervé Albin-Amiot und Yann-
Gaël Guéhéneuc [AG01, ACGJ01] und von Nikolas Tsantalis et al. [TCHS05].

162

8.2 Dynamische Analysen zur Verhaltenserkennung

Neben der fehlenden Präzision bei der Analyse potentieller Methodenauf-
rufe und der damit verbundenen hohen Zahl von False-Positives erfüllen die
meisten dieser Arbeiten weitere der an eine automatische Entwurfsmusterer-
kennung gestellten Anforderungen nicht. So ist die leichte Anpassbarkeit der
Entwurfsmusterspezifikationen bei den Arbeiten [SK98, KSRP99], [TA99] und
[TCHS05] nicht gegeben. Des Weiteren wurden zu den Verfahren [Wuy98],
[AG01, ACGJ01], [SS03] und [TCHS05] keine Ergebnisse einer Anwendung auf
praxisnahe Softwaresysteme veröffentlicht, wodurch sich keine Aussagen über
die Skalierbarkeit der Verfahren treffen lassen. Bei dem Verfahren von Hervé
Albin-Amiot und Yann-Gaël Guéhéneuc deutet eine neuere Veröffentlichung
[KGH06] auf eine exponentielle Laufzeit hin.

Allen genannten Verfahren ist gemeinsam, dass die Ergebnisse der Entwurfs-
mustererkennung nicht bewertet werden. Als Ergebnis der Analyse liefern die
Verfahren potentielle Entwurfsmusterimplementierungen, ohne Aussagen über
die Sicherheit dieser Kandidaten zu treffen. Unter den Kandidaten befinden
sich jedoch auch viele fälschlicherweise erkannte Entwurfsmusterimplementie-
rungen. Bei der Sichtung und Einschätzung der Kandidaten wird der Reverse-
Engineer also nicht unterstützt.

8.2 Dynamische Analysen zur
Verhaltenserkennung

In den folgenden Ansätzen wird das Verhalten von Softwaresystemen aus-
schließlich durch dynamische Analysen untersucht. Sie werden jedoch für ver-
schiedene andere Zwecke als zur Entwurfsmustererkennung eingesetzt. Trotz-
dem sind die verwendeten Techniken vergleichbar mit denen, die in dieser Ar-
beit für die verhaltensbasierte Entwurfsmustererkennung eingesetzt wurden.

Thomas Kunz und Michiel Seuren zeichnen den Nachrichtenaustausch zwi-
schen Prozessen auf, um nach Kommunikationsmustern in verteilten Anwen-
dungen zu suchen [KS97]. In verteilten Anwendungen kommunizieren meh-
rere Prozesse miteinander, indem sie durch Nachrichten Informationen aus-
tauschen, wobei relativ komplexe Kommunikationsmuster immer wieder wie-
derholt werden. Ein typisches Kommunikationsmuster ist zum Beispiel das
Versenden einer Nachricht eines Prozesses an alle anderen Prozesse. Die
Ausführung von verteilten Prozessen wird häufig durch so genannte Process-
Time-Diagramme dargestellt, die aus parallelen Sequenzen von atomaren Er-
eignissen wie dem Senden oder Empfangen einer Nachricht bestehen. Kunz

163

Kapitel 8 Verwandte Arbeiten

und Seuren repräsentieren solche Sequenzen als Zeichenketten, in denen ato-
mare Ereignisse als einzelnes Zeichen kodiert werden. Kommunikationsmu-
ster werden dagegen als reguläre Ausdrücke über diesen Zeichenketten kodiert
und durch Anwendung der regulären Ausdrücke erkannt. In Visualisierungen
können so zum Beispiel komplexe Sequenzen von Nachrichten zu abstrakteren
Einheiten zusammengefasst werden.

Tamar Richner und Stéphane Ducasse verwenden dynamische Analysen zur
Identifikation von Kollaborationen [RD02]. Beim kollaborationsbasierten Ent-
wurf von objektorientierten Softwaresystemen wird das Verhalten der Anwen-
dung durch verschiedene Kollaborationen von Objekten beschrieben. Die Rück-
gewinnung solcher Kollaborationen hilft dabei, die Funktionsweise des Softwa-
resystems zu verstehen. In dem Verfahren werden Methoden instrumentiert,
um von Methodenaufrufen zur Laufzeit die aufrufende und die aufgerufene
Instanz und ihre Typen sowie den Namen der Methode aufzuzeichnen. Ähn-
liche Sequenzen von Methodenaufrufen werden mit Hilfe von Kollaborations-
mustern gesucht. Kollaborationsmuster werden durch Sequenzen oder Mengen
von Methodenaufrufen und die beteiligten Instanzen und Typen definiert. Der
Collaboration Browser dient zur Visualisierung der aufgezeichneten Methoden-
aufrufe und der identifizierten Kollaborationen. Lei Wu et al. beschreiben ein
ähnliches Verfahren [WSV04], das jedoch in nicht-objektorientierten Sprachen
geschriebene Softwaresysteme analysiert.

Das von Giovanni Vigna und Richard Kemmerer entwickelte Werkzeug
NetSTAT erkennt mit Hilfe von Zustandsautomaten Angriffe auf Netzwerke
[VK98]. Verschiedene Angriffsszenarien werden durch Sequenzen von Nach-
richten auf einem Netzwerk beschrieben. Die Transitionen eines Zustandsau-
tomaten kodieren, welche Nachrichten Zustandsübergänge auslösen. Endet ein
Automat in einem akzeptierenden Endzustand, so wird ein Angriff auf das
Netzwerk festgestellt. Mit Hilfe so genannter Proben an bestimmten Knoten
des Netzwerks werden die Nachrichten dezentral überwacht. Statische Infor-
mationen über das Netzwerk werden dazu verwendet, die Proben im Netzwerk
zu verteilen. Jede der Proben enthält einen Teil der Angriffsszenarien. Durch
einen Filter melden die Proben nur die relevanten Nachrichten an die Auto-
maten, die sie dann verarbeiten.

Die vorgestellten Verfahren nutzen Techniken, die sich in der Verhaltenser-
kennung bewährt haben. So wird das Verhalten mit Hilfe von Sequenzen
von Methodenaufrufen oder Nachrichten beschrieben. Methodenaufrufe wer-
den durch Instrumentierung überwacht. Statische Informationen dienen dazu,
die Überwachung auf relevante Nachrichten einzuschränken. Die Erkennung
des Verhaltens geschieht durch reguläre Ausdrücke beziehungsweise durch da-

164

8.3 Kombinierte statische und dynamische Analysen

zu äquivalente, endliche Automaten. Diese Techniken wurden in der vorliegen-
den Arbeit aufgegriffen und zur verhaltensbasierten Entwurfsmustererkennung
eingesetzt.

8.3 Kombinierte statische und dynamische
Analysen

Statische und dynamische Analysen wurden lange Zeit in unterschiedlichen,
voneinander unabhängigen Forschungsgebieten entwickelt. Dadurch wurden
meist ausschließlich entweder statische oder dynamische Analysen genutzt. Die
jeweils andere Analysetechnik wurde sogar häufig für den aktuellen Anwen-
dungsbereich als unpassend dargestellt. Michael Ernst plädiert deshalb in sei-
nem Artikel

”
Static and dynamic analysis: synergy and duality“ [Ern03] dafür,

die Vorteile beider Analysetechniken zu kombinieren. Die Unzulänglichkeiten
einer Analysetechnik sollen durch die jeweils andere Analysetechnik ausgegli-
chen werden, um insgesamt bessere Analyseergebnisse zu produzieren.

Es gab in den letzten Jahren verschiedene Ansätze im Reverse-Engineering,
die Einschränkungen der statischen Analysen durch Ergänzung um dynami-
sche Analysen oder umgekehrt aufzuheben. Im Folgenden werden zunächst
exemplarisch einige Verfahren vorgestellt, die zwar im Reverse-Engineering an-
gewendet werden, aber nicht aus dem speziellen Gebiet der Entwurfsmusterer-
kennung stammen. Daraufhin folgen Verfahren, die statische und dynamische
Analysen speziell zur Entwurfsmustererkennung kombinieren.

8.3.1 Ausgewählte Verfahren im Reverse-Engineering

Tamar Richner und Stéphane Ducasse stellen in [RD99] ein Verfahren vor,
das abstrakte Sichten auf objektorientierte Softwaresysteme erzeugt. Dabei
verwenden sie sowohl statische als auch dynamische Analysen. Durch die sta-
tische Analyse werden strukturelle Informationen über das Softwaresystem ge-
wonnen. Die dynamische Analyse zeichnet Methodenaufrufe zur Laufzeit auf.
Diese Informationen werden als Prolog-Fakten repräsentiert.

Zur Analyse werden Prolog-Regeln zur Verfügung gestellt, die Fakten aus
der statischen und der dynamischen Analyse kombinieren. Durch die Regeln
können abstrakte Sichten auf das Softwaresystem erzeugt werden. Beispiele
für solche abstrakten Sichten sind Graphen, die Methodenaufrufe zwischen
Klassen oder Komponenten darstellen, oder auch Graphen, die die Erzeugung
von Objekten durch Klassen oder Komponenten visualisieren.

165

Kapitel 8 Verwandte Arbeiten

Das Verfahren dient nur zur Visualisierung. Allerdings könnte die Datenbasis
mit einer Entwurfsmustererkennung kombiniert werden, die Prolog-Regeln
verwendet. Dazu wären zum Beispiel die Ansätze [KP96], [Wuy98] oder auch
[BP00] geeignet. Die Erstellung und insbesondere auch Wartung der Prolog-
Regeln ist allerdings sehr mühselig, besonders wenn es sich um große Regelsätze
handelt, bei denen der Reverse-Engineer schnell den Überblick verliert.

Im Verfahren von Tarja Systä wird die statische Analyse durch eine dynami-
sche Analyse beeinflusst und umgekehrt [Sys99a, Sys99b]. Die statische Ana-
lyse erzeugt aus dem Java-Quelltext eines Softwaresystems Abhängigkeitsgra-
phen, die zum Beispiel Vererbungen zwischen Klassen, potentielle Aufrufe zwi-
schen Methoden oder auch Lese- und Schreibzugriffe auf Attribute beschreiben.
Visualisiert werden die Graphen durch das Werkzeug Rigi [MWT95, Rig]. Die
dynamische Analyse erzeugt so genannte Szenariodiagramme, die sehr ähnlich
zu Sequenzdiagrammen sind.

Auf Basis des Abhängigkeitsgraphen der statischen Analyse werden die in
der dynamischen Analyse zu untersuchenden Teile des Softwaresystems einge-
schränkt. Dadurch kann die in der dynamischen Analyse anfallende Datenmen-
ge drastisch reduziert werden. Die Ergebnisse der dynamischen Analyse werden
wiederum zur Verfeinerung des Abhängigkeitsgraphen eingesetzt. Die Teile des
Softwaresystems, die nicht ausgeführt wurden, können aus dem Abhängigkeits-
graphen ausgeblendet werden.

Eine zu Tarja Systäs Ansatz ähnliche Arbeit ist von Claudio Riva und Jordi
Vidal Rodriguez vorgestellt worden [RR02]. Riva und Rodriguez nutzen eben-
falls das Werkzeug Rigi zur Visualisierung von Komponenten als Ergebnis der
statischen Analyse. Die Daten der dynamischen Analyse werden durch Instru-
mentierung des Softwaresystems gewonnen und als Message Sequence Charts
(MSCs) [Int99] dargestellt. Zur besseren Übersichtlichkeit können Objekte oder
Methodenaufrufe in den MSCs zusammengefasst werden.

Alle drei vorgestellten Verfahren beschränken sich auf die Erzeugung von
abstrakten Sichten auf das zu untersuchende Softwaresystem. Der Reverse-
Engineer kann sich dadurch leichter einen Überblick über die Architektur oder
auch über die Abhängigkeiten eines Softwaresystems schaffen. Details werden
durch die Abstraktion aber ausgeblendet. Die Erkennung von Entwurfsmu-
sterimplementierungen hat dagegen weniger einen Überblick über die Soft-
ware zum Ziel, als vielmehr die Erkennung von Architekturdetails, die dem
Verständnis einzelner Teile der Software dienen.

Thomas Eisenbarth, Rainer Koschke und Daniel Simon kombinieren dynami-
sche und statische Analysen zur Identifizierung von Softwarekomponenten, die
bestimmte Eigenschaften eines Softwaresystems implementieren [EKS01]. Die

166

8.3 Kombinierte statische und dynamische Analysen

dynamische Analyse wird dazu genutzt, den Suchraum für die statische Ana-
lyse zu reduzieren. Zunächst werden Szenarien ausgesucht, die die zu lokalisie-
renden Eigenschaften des Softwaresystems ausführen. Anschließend wird eine
Konzeptanalyse dazu verwendet, um einen Zusammenhang zwischen Szenari-
en und Softwarekomponenten herzustellen. In der folgenden statischen Analyse
werden dann die Softwarekomponenten durch Slicing und manuelle Inspektion
weiterverarbeitet.

Dieser Ansatz hilft dem Reverse-Engineer bei der Identifizierung von Kom-
ponenten. Er erfährt, auf welche Komponenten die Funktionen eines Softwa-
resystems verteilt sind, nicht aber, wie sie im Detail aufgebaut sind und wie
sie funktionieren. Der Ansatz kann allerdings helfen, die relevanten Teile eines
zu untersuchenden Softwaresystems zu identifizieren und sie zur Weiterver-
arbeitung zum Beispiel einer Entwurfsmustererkennung zuzuführen. So kann
die Entwurfsmustererkennung auf die relevanten Komponenten eingeschränkt
werden und damit viel Zeit eingespart werden.

Paolo Tonella und Alessandra Potrich erzeugen sowohl aus einer statischen
und einer dynamischen Analyse Objektdiagramme [TP02]. Die durch statische
Analyse erzeugten Objektdiagramme beschreiben einen Objektfluss. Das Ob-
jektflussdiagramm enthält zum Beispiel Informationen, an welchen Stellen im
Quelltext Objekte erzeugt und diese den Feldern anderer Objekte zugewiesen
werden. Aus der dynamischen Analyse werden Objektdiagramme hergestellt,
die Objektstrukturen beschreiben. Der Reverse-Engineer kann nun beide Arten
von Diagrammen miteinander vergleichen und Rückschlüsse auf das untersuch-
te Softwaresystem ziehen.

Ein statischer Methodenaufrufgraph beschreibt potentielle Aufrufe zwischen
den Methoden eines Softwaresystems. Ein solcher Graph kann durch statische
Analysen erzeugt werden, das Ergebnis beruht dann allerdings auf einer kon-
servativen Schätzung. Atanas Rountev, Scott Kagan und Michael Gibas verfei-
nern deshalb den statischen Aufrufgraphen nach der statischen Analyse durch
eine dynamische Analyse [RKG04].

Trevor Parsons und John Murphy suchen mit ihrem Verfahren in komponen-
tenbasierten Softwaresystemen nach Anti-Patterns [PM04]. Anti-Patterns stel-
len im Gegensatz zu Entwurfsmustern schlechte Lösungen für immer wieder-
kehrende Probleme dar, die aber trotzdem häufig verwendet werden. Parsons
und Murphy suchen nach Anti-Patterns, die die Performanz einer Anwendung
reduzieren. Dazu zeichnen sie durch eine dynamische Analyse Methodenauf-
rufe zusammen mit ihren Performanzdaten auf. In der folgenden statischen
Analyse werden die Aufrufgraphen nach den Anti-Patterns durchsucht.

167

Kapitel 8 Verwandte Arbeiten

8.3.2 Verfahren zur Entwurfsmustererkennung

Im Folgenden werden drei Ansätze vorgestellt, die das Verhalten von Ent-
wurfsmusterimplementierungen zur Laufzeit zu ihrer Erkennung nutzen. Dabei
werden statische und dynamische Analysen kombiniert.

Ein sehr früher Ansatz, der sowohl statische als auch dynamische Analy-
sen zur Entwurfsmustererkennung verwendet, ist von Kyle Brown in seiner
Masterarbeit vorgestellt worden [Bro96]. Die Erkennung findet auf Smalltalk-
Quelltext statt, dessen strukturelle Eigenschaften wie Klassen, Attribute und
Vererbungen in einem statischen Modell repräsentiert werden. Ein weiteres Mo-
dell repräsentiert Methodenaufrufe zwischen Objekten. Diese Methodenaufrufe
werden zur Laufzeit des zu untersuchenden Programms durch den Smalltalk-
Interpreter aufgezeichnet und in dem dynamischen Modell aufbereitet.

Der Ansatz von Brown erkennt vier der Entwurfsmuster aus [GHJV95]:
Composite, Decorator , Template Method und Chain of Responsibility . Die Er-
kennungsalgorithmen nutzen jedoch keine direkte Kombination aus statischer
und dynamischer Analyse. Für die ersten drei genannten Entwurfsmuster wird
ausschließlich das statische Modell des Softwaresystems genutzt. Nur die Er-
kennung des Chain-of-Responsibility-Musters findet auf dem dynamischen Mo-
dell statt. Die Erkennungsalgorithmen sind manuell als Methoden der Klassen
des statischen und des dynamischen Modells implementiert worden. Die Um-
setzung der Algorithmen lässt also keine Kombination aus statischer und dy-
namischer Analyse zu. Außerdem ist die Wartung und die Erweiterung der
Erkennungsalgorithmen sehr aufwändig.

Yann-Gaël Guéhéneuc et al. stellen in [GDJ02] ein Werkzeug vor, mit dem
Ereignisse eines Java-Programms während seiner Laufzeit analysiert werden
können. Zu den beobachtbaren Ereignissen zählen unter anderem die Erzeu-
gung von Objekten, Methodenaufrufe oder auch Attributzugriffe. In [GZ05]
schlagen die Autoren vor, aus den beobachteten Ereignissen und den Daten ei-
ner zusätzlichen statischen Analyse des Quelltextes UML-Sequenzdiagramme
und Zustandsdiagramme zu synthetisieren. Diese Diagramme sollen dann für
weitere Analysen wie dem Conformance-Checking oder einer statischen Ent-
wurfsmustererkennung, die die Autoren bereits in [AG01, ACGJ01] veröffent-
licht haben, verwendet werden. Eine Umsetzung dieser Idee ist bisher jedoch
nicht vorgestellt worden.

In dem Verfahren von Welf Löwe und Dirk Heuzeroth werden die Ergeb-
nisse aus der statischen Analyse des Quelltextes mit Hilfe der dynamischen
Analyse verbessert [HHL02, HHHL03]. Die statische Analyse arbeitet auf dem
abstrakten Syntaxgraphen des Quelltextes. Die Struktur eines zu suchenden

168

8.4 Transformation von Sequenzdiagrammen

Entwurfsmusters wird als Relation über den Elementen des abstrakten Syn-
taxgraphen definiert. Das Ergebnis der statischen Analyse sind Tupel, die die
Relationen erfüllen. Diese Tupel bilden Kandidaten für Entwurfsmusterimple-
mentierungen und sind Eingabe der dynamischen Analyse. Die dynamische
Analyse beobachtet nur die Kandidaten während der Laufzeit, der Suchraum
wird also durch die statische Analyse eingeschränkt.

Das Verhalten eines Entwurfsmusters wird durch Zustände und Zustands-
übergänge spezifiziert. Zu Methoden, die in der statischen Analyse identifiziert
werden, können Vor- und Nachbedingungen angegeben werden, die vor bezie-
hungsweise nach Aufruf der Methode gelten müssen. Die Methodenaufrufe wer-
den während der Laufzeit durch einen Debugger erfasst. Bei Ausführung einer
Methode werden die Vor- und Nachbedingungen der Methode geprüft. Wird
eine Bedingung nicht eingehalten, so verletzt der Kandidat das vorgegebene
Verhalten des Entwurfsmusters. In diesem Fall wird der Kandidat verworfen.
Erfüllt der Kandidat bei allen Methodenaufrufen die Vor- und Nachbedingun-
gen, so wird er als tatsächliche Entwurfsmusterimplementierung bestätigt.

Die Relationen zur Definition der Struktur eines Entwurfsmusters sowie
die Vor- und Nachbedingungen zur Definition des Verhaltens können in zwei
unterschiedlichen Sprachen, SanD-Prolog und SanD, spezifiziert werden
[HML03]. SanD-Prolog ist eine Sammlung von Prolog-Prädikaten, die
grundlegende Relationen definiert. Diese werden zur Spezifikation weiterer
Prolog-Regeln genutzt, mit denen die Relationen für die statische Analy-
se und die Zustände und Zustandsübergänge für die dynamische Analyse eines
Entwurfsmusters spezifiziert werden. SanD nutzt dagegen eine Notation ähn-
lich der objektorientierter Programmiersprachen, bei der die Spezifikationen
der Struktur und des Verhaltens eines Entwurfsmusters ineinander integriert
sind. Aus den SanD-Spezifikationen werden Prolog-Regeln generiert.

Nach Aussage der Autoren tendieren die Spezifikationen in SanD-Prolog
dazu, kompliziert und lang zu werden, so dass sie schlecht zu warten sind.
SanD ist dagegen intuitiver und leichter zu warten. Es ist allerdings nicht so
ausdrucksstark wie SanD-Prolog. So können zum Beispiel keine Bedingung
wie

”
eine Klasse C darf keine Methode m enthalten“ formuliert werden. Des

Weiteren werden die Ergebnisse der Entwurfsmustererkennung nicht bewertet.

8.4 Transformation von Sequenzdiagrammen

Es existieren einige Arbeiten zur Transformation von Sequenzdiagrammen in
Automaten. Im Reverse-Engineering wird diese Transformation häufig einge-

169

Kapitel 8 Verwandte Arbeiten

setzt, um aus unübersichtlichen Traces, die aus der Software gewonnen werden,
in eine abstraktere und auch meist viel kompaktere Form zu bringen. Tarja
Systä zum Beispiel stellt ein Werkzeug vor, dass aus Traces Zustandsdiagram-
me generiert [Sys99a, Sys99b]. Die Traces, die zum Beispiel von Klassen gewon-
nen werden, stellen nur Ausschnitte aus dem Verhalten eines Programms dar.
Aus diesen Traces werden Zustandsdiagramme generiert, die dagegen das ge-
samte mögliche Verhalten der Klasse abbilden. So wird dem Reverse-Engineer
das Verständnis einer Klasse erheblich erleichtert.

In einigen Arbeiten werden Transformationen von Sequenzdiagrammen in
Automaten ebenfalls zur Formalisierung der Semantik der Sequenzdiagramme
verwendet. Zu diesen Arbeiten gehören unter anderem die Verfahren von Tho-
mas Firley et al. [FHD+99] sowie Jochen Klose und Hartmut Wittke [KW01].
In diesen Arbeiten werden um Zeitinformationen angereicherte UML Sequenz-
diagramme beziehungsweise Live Sequence Charts (LSCs) in Timed Automata
übersetzt. Die Timed Automata dienen wiederum als Eingaben für Model-
checker. So können Spezifikationen auf Basis von Sequenzdiagrammen formal
verifiziert werden.

Sebastian Uchitel, Jeff Kramer und Jeff Magee nutzen Labelled Transistion
Systems (LTS), eine besondere Form der Zustandsautomaten, um während der
Systementwicklung das geforderte Verhalten von Komponenten mit tatsächlich
implementierten Verhalten abzugleichen [UKM03]. Aus Sequenzdiagrammen,
die verschiedene Szenarien beschreiben und einer Reihe von Einschränkungen,
die in OCL spezifiziert sind, werden LTS generiert. Aus den LTS kann dann
Verhalten abgeleitet werden, das nicht spezifiziert worden ist, und eventuell
auch nicht gewollt ist. Unterspezifiziertes Verhaltens einer Komponente wird
somit frühzeitig im Entwicklungsprozess erkannt.

8.5 Zusammenfassung

Keines der in diesem Kapitel vorgestellten Verfahren zur Entwurfsmustererken-
nung erfüllt alle in Abschnitt 2.2 definierten Anforderungen an eine automa-
tische Entwurfsmustererkennung. Die meisten Verfahren verwenden nur eine
strukturbasierte Analyse. Das Verhalten wird bei einigen gar nicht, bei anderen
nur auf Basis der statischen Analyse potentieller Methodenaufrufe berücksich-
tigt. Dabei werden die Methodenaufrufe entweder ausschließlich aus dem Quell-
text extrahiert oder als in einem UML-Verhaltensmodell gegeben gefordert. Es
werden weder Reihenfolgen von Methodenaufrufen, noch Zustände der betei-
ligten Objekte berücksichtigt. Allen diesen Ansätzen ist gemeinsam, dass die

170

8.5 Zusammenfassung

tatsächlichen Methodenaufrufe nicht zur Laufzeit des zu untersuchenden Soft-
waresystems ermittelt werden. Somit kann keines dieser Verfahren Kandidaten
heraus filtern, die strukturell passen, sich jedoch nicht wie ein Entwurfsmuster
verhalten, oder strukturell ähnliche Entwurfsmuster anhand ihres Verhaltens
unterscheiden. Die Präzision der rein strukturbasierten Verfahren ist damit
prinzipiell bedingt sehr gering.

Die Notwendigkeit, dynamische Analysen zur Erkennung von Entwurfsmu-
stern einzusetzen, wurde schon früh in [Bro96] erkannt. Allerdings wurden in
dieser Arbeit die Vorteile einer echten Kombination aus statischer und dyna-
mischer Analyse nicht genutzt. Es existiert nur ein Verfahren von Dirk Heuze-
roth und Welf Löwe [HHL02, HHHL03], das konsequent statische und dyna-
mische Analysen zur Entwurfsmustererkennung kombiniert. Es wurde parallel
zu der vorliegenden Arbeit entwickelt. Allerdings ist die Anpassbarkeit der
Entwurfsmusterspezifikationen wegen der sehr komplexen Spezifikationsspra-
che eingeschränkt und die Ergebnisse der Entwurfsmustererkennung werden
nicht bewertet.

171

Kapitel 8 Verwandte Arbeiten

172

Kapitel 9

Zusammenfassung und Ausblick

Im letzten Kapitel werden zunächst das entwickelte Verfahren anhand der in
Abschnitt 2.2 genannten Anforderungen diskutiert und die Ergebnisse der Ar-
beit zusammengefasst. Der zweite Teil des Kapitels gibt einen Ausblick auf
mögliche Erweiterungen und andere Anwendungsgebiete der struktur- und ver-
haltensbasierten Entwurfsmustererkennung.

9.1 Zusammenfassung

In der vorliegenden Arbeit wurde eine automatische Entwurfsmustererkennung
konzipiert und realisiert, die sowohl die Struktur als auch das Verhalten der
Entwurfsmuster berücksichtigt. Im Folgenden wird diskutiert, ob das Verfah-
ren den in Abschnitt 2.2 definierten Anforderungen Skalierbarkeit, Präzision,
Anpassbarkeit und Bewertung gerecht wird.

Die wichtigste Anforderung ist die Skalierbarkeit des Algorithmus. Große,
praxisnahe Softwaresysteme müssen in einem zeitlich vertretbarem Zeitraum
analysierbar sein. Die Skalierbarkeit der strukturbasierten Entwurfsmusterer-
kennung wurde bereits in [Nie04] und [NSW+02] nachgewiesen. Dort wurden
reale Anwendungen mit einem zeitlich vertretbaren Aufwand untersucht. Bei
der verhaltensbasierten Entwurfsmustererkennung ist der zeitliche Aufwand
im Wesentlichen durch das Sammeln der Traces bestimmt. Zur Ausführung
können entweder automatische Tests herangezogen werden, oder aber die Soft-
ware wird auf Basis der Software-Tomographie in realen Umgebungen einge-
setzt. Automatische Tests sind relativ schnell durchzuführen, erzeugen aber
künstliche Daten. Der Einsatz in produktiven Bedingungen erzeugt praxis-
nahe Daten, erfordert aber auch einen größeren zeitlichen Aufwand. Aller-
dings muss die Ausführung des zu untersuchenden Softwaresystem weder bei
automatischen Tests, noch beim Einsatz in produktiven Umgebungen vom

173

Kapitel 9 Zusammenfassung und Ausblick

Reverse-Engineer überwacht werden, er kann in dieser Zeit andere Tätigkeiten
ausführen. Der Aufwand zur Instrumentierung ist dagegen sehr gering. Der
Aufwand der Offline-Verhaltensanalyse der gesammelten Daten bleibt wie die
Strukturanalyse in einem zeitlich vertretbarem Maß.

Die Präzision der bereits vorhandenen, strukturbasierten Entwurfsmusterer-
kennung konnte durch die Kombination mit einer Verhaltensanalyse erheblich
gesteigert werden. Zum einen können nun Implementierungen von strukturell
ähnlichen oder sogar identischen Entwurfsmustern anhand ihres Verhaltens
unterschieden werden. Dies konnte in der Anwendung des Verfahrens auf die
Entwicklungsumgebung Eclipse gezeigt werden (Abschnitt 6.3). Des Weiteren
wurden viele der in der strukturbasierten Entwurfsmustererkennung identifi-
zierten False-Positives mit Hilfe der Verhaltensanalyse aussortiert.

Die Anpassung bereits existierender Struktur- und Verhaltensmuster an
individuelle Eigenschaften des zu untersuchenden Softwaresystems kann die
Präzision der Entwurfsmustererkennung erheblich steigern. Das in dieser Ar-
beit vorgestellte Verfahren macht es dem Reverse-Engineer relativ leicht,
Struktur- und Verhaltensmuster an individuelle Eigenschaften anzupassen. Die
für die Struktur- und Verhaltensmuster entwickelten Spezifikationssprachen
sind an UML-Objektdiagramme beziehungsweise -Sequenzdiagramme ange-
lehnt und somit leicht und intuitiv erlernbar für Softwareentwickler. Die Spra-
chen ermöglichen relativ kompakte und schnell zu erfassende Spezifikationen.
Zudem werden die Spezifikationen automatisch in eine Form übersetzt, die
von den Erkennungsalgorithmen verarbeitet werden kann. So wird ein itera-
tiver Prozess, bei dem die Entwurfsmustererkennung zunächst wiederholt auf
einen Teil des gesamten Softwaresystems angewendet wird, um die Struktur-
und Verhaltensmuster sukzessive zu verbessern, optimal unterstützt.

Die struktur- und verhaltensbasierte Entwurfsmustererkennung erhebt nicht
den Anspruch, absolut sichere Ergebnisse zu produzieren. Daher werden die
Ergebnisse sowohl der Strukturanalyse, als auch der Verhaltensanalyse be-
wertet, um ihre Güte zu beschreiben. Um viele Implementierungsvarianten
abzudecken, beschreiben Strukturmuster zum einen notwendige Strukturen ei-
nes Entwurfsmusters. Zum anderen enthalten sie zusätzliche, zur Identifikation
einer Entwurfsmusterimplementierung nicht notwendige Strukturen, die aber
gute Hinweise auf tatsächliche Entwurfsmusterimplementierungen sind. Die
Bewertung der Strukturanalyse gibt an, inwieweit die Struktur eines Kandida-
ten mit dem Strukturmuster übereinstimmt. Je höher die Übereinstimmung ist,
desto wahrscheinlicher ist der Kandidat eine tatsächliche Entwurfsmusterim-
plementierung. In der Verhaltensanalyse werden viele Traces eines Kandidaten
mit dem Verhaltensmuster verglichen, um festzustellen, ob sie konform oder

174

9.2 Ausblick

nicht-konform zum Verhaltensmuster sind. Zudem wird zu jedem Kandidaten
die durchschnittliche Zahl der Methodenaufrufe seiner konformen Traces be-
rechnet. Der Reverse-Engineer kann aus diesen Daten relativ schnell schließen,
ob der Kandidat eine tatsächliche Entwurfsmusterimplementierung ist.

Neben der Erfüllung der zuvor genannten Anforderungen war ein weiteres
Ziel der Arbeit die formale syntaktische wie semantische Definition einer Spe-
zifikationssprache für Verhaltensmuster. Die Syntax der Sprache wurde durch
UML-Klassendiagramme und OCL-Invarianten definiert, während die Seman-
tik durch die Angabe einer Transformation der Verhaltensmuster auf deter-
ministische, endliche Automaten festgelegt wurde. Die endlichen Automaten
werden zudem von der Verhaltensanalyse verwendet, um die Konformität der
beobachteten Traces zu untersuchen.

Die struktur- und verhaltensbasierte Entwurfsmustererkennung ist prototy-
pisch in dem Werkzeug Reclipse umgesetzt worden. Dazu wurde die weit
verbreitete Entwicklungsumgebung Eclipse zusammen mit dem Werkzeug
Fujaba4Eclipse um die Algorithmen zur Struktur- und Verhaltensanaly-
se, sowie einer Visualisierung der Ergebnisse ergänzt. Eclipse bietet unter
anderem eine Java-basierte Softwareentwicklung. Fujaba4Eclipse ergänzt
Eclipse um eine modellbasierte Entwicklung auf Basis der UML und eine au-
tomatische Java-Codegenerierung. Somit umfasst das so entstandene Werk-
zeug Reclipse in erheblichem Umfang den Softwareentwicklungszyklus im
Forward-, als auch Reverse-Engineering.

Die praktische Anwendung des Werkzeugs wurde ebenfalls anhand von
Eclipse vorgeführt. Einige der in Eclipse verwendeten Entwurfsmusterim-
plementierungen sind dokumentiert. So konnten die Ergebnisse der Entwurfs-
mustererkennung mit der Dokumentation verglichen und beurteilt werden.

9.2 Ausblick

Die Entwicklung der struktur- und verhaltensbasierte Entwurfsmustererken-
nung ist mit der vorliegenden Arbeit nicht abgeschlossen. Wegen des erheb-
lichen Aufwands konnte leider keine umfangreiche Evaluation des Verfahrens
durchgeführt werden. In einer solchen Evaluation sollte besonderes Augenmerk
auf die Untersuchung der Praxistauglichkeit der Bewertungen gelegt werden. In
der Strukturanalyse kann es zum Beispiel vorkommen, dass der Bewertungsal-
gorithmus bei Mengenknoten aus Annotationen eine Menge von vielen, niedrig
bewerteten Annotationen höher bewertet, als eine Menge von wenigen, aber
sehr hoch bewerteten Annotationen. Sollte sich der Bewertungsalgorithmus

175

Kapitel 9 Zusammenfassung und Ausblick

als noch nicht ausgereift herausstellen, lässt er sich aufgrund seiner modularen
Architektur durch den Austausch einzelner Funktionen leicht korrigieren.

In der Verhaltensanalyse wurde bisher auf eine Verrechnung der Anzahl kon-
former und nicht-konformer Traces, der durchschnittlichen Länge der Traces
und der Anzahl der akzeptierten Subtraces zu einem einzigen Wert bewusst
verzichtet. Es wird davon ausgegangen, dass die Einzelwerte sehr viel aussa-
gekräftiger sind als ein einzelner Wert, der schwer zu interpretieren ist. Dies
muss allerdings erst in der Praxis überprüft werden.

In diesem Zusammenhang steht auch die Frage, wie aussagekräftig die er-
kannten nicht-konformen Traces sind. Wie bereits in Abschnitt 5.3.2 diskutiert,
kommen nicht-konforme Traces mit weit höherer Wahrscheinlichkeit vor, als
konforme. Wurden nur einige konforme, aber sehr viele nicht-konforme Tra-
ces erkannt, so bedeutet das nicht zwangsläufig, dass der Kandidat ein False-
Positive ist. Werden dagegen zu einem negativen Verhaltensmuster konforme
Traces erkannt, so sprechen diese Traces sehr viel stärker für ein False-Positive,
als nicht-konforme Traces zu einem positiven Verhaltensmuster. In einer Eva-
luation sollte also auch untersucht werden, inwieweit negative Verhaltensmu-
ster besser geeignet sind zur Erkennung von False-Positives als nicht-konforme
Traces.

Um die Präzision der Verhaltensanalyse deutlich zu erhöhen, sollte vor ei-
ner Evaluierung die Spezifikationssprache, wie in Abschnitt 6.3.3 erläutert,
erweitert werden. Aus Zeitgründen konnte diese Erweiterung leider nicht mehr
durchgeführt werden. Durch die erweiterte Syntax wird es möglich, das Verhal-
ten einer Vielzahl weiterer Entwurfsmuster zu beschreiben, was bisher wegen
der Einschränkungen nicht möglich war.

Nicht immer steht eine lauffähige Version des zu untersuchenden Softwaresy-
stems zur Verfügung. In solchen Fällen, in denen eine dynamische Analyse nicht
möglich ist, wäre es denkbar, die Verhaltensanalyse auf Basis von statischen
Analysen durchzuführen. Thomas Eisenbarth, Rainer Koschke und Gunther
Vogel stellen in [EKV02] ein Verfahren vor, um aus C-Code statisch Traces
zu extrahieren. Aufgrund der in Abschnitt 1.3 genannten Gründe können sta-
tische Analysen aber keine exakten Ergebnisse, sondern nur Schätzungen lie-
fern. Es müsste daher untersucht werden, ob die Genauigkeit einer statischen
Trace-Extrahierung für die Verhaltensanalyse der Entwurfsmustererkennung
ausreichend ist.

Die verhaltensbasierte Entwurfsmustererkennung kann auch zum Forward-
Engineering eingesetzt werden. Im Abschnitt 6.3 wurde von der Entdeckung ei-
ner Entwurfsmusterimplementierung berichtet, die als eine Strategy-Implemen-
tierung dokumentiert wurde. Allerdings stellte sich heraus, dass dieser Kandi-

176

9.2 Ausblick

dat zwar die Struktur einer Strategy aufweist, sich aber eher wie eine Chain
of Responsibility verhält. Solche Implementierungen mögen beabsichtigt sein,
möglicherweise stellen sie aber Design-Defekte dar, die später behoben werden
müssen. Im Forward-Engineering ließen sich solche Design-Defekte verhindern.
Mit Hilfe der Verhaltensmuster könnte das beabsichtigte Verhalten als Proto-
kolle festgeschrieben werden. In Regressionstests kann dann während der Ent-
wicklung die Einhaltung dieser Protokolle überprüft werden. Nicht-konforme
Traces liefern Hinweise auf Verletzung der Protokolle. Design-Defekte aufgrund
falschen Verhaltens werden so frühzeitig im Entwicklungsprozess verhindert.
Solche Spezifikationen und Überprüfungen von Protokollen durch Verhaltens-
muster ließen sich sogar auf ganze Komponenten ausweiten, mit denen andere
Komponenten in einer vorgegeben Form kommunizieren müssen. Die Verhal-
tensmuster könnten zusammen mit den Komponenten ausgeliefert werden, um
die Entwicklung darauf aufbauender Software zu unterstützen.

177

Kapitel 9 Zusammenfassung und Ausblick

178

Literatur

[ACGJ01] Albin-Amiot, Hervé; Cointe, Pierre; Guéhéneuc, Yann-Gaël;
Jussien, Narendra: Instantiating and Detecting Design Pat-
terns: Putting Bits and Pieces Together. In: Richardson, Debra
(Hrsg.); Feather, Martin (Hrsg.); Goedicke, Michael (Hrsg.):
Proc. of ASE-2001: The 16th IEEE Conference on Automated
Software Engineering. Coronado, CA, USA: IEEE Computer So-
ciety Press, November 2001, S. 166–173

[AFC98] Antoniol, G.; Fiutem, R.; Christoforetti, L.: Design Pat-
tern Recovery in Object-Oriented Software. In: Proc. of the 6th

International Workshop on Program Comprehension (IWPC). Is-
chia, Italien: IEEE Computer Society Press, Juni 1998, S. 153–160

[AG01] Albin-Amiot, Hervé; Guéhéneuc, Yann-Gaël: Design Pat-
terns: A Round-Trip. In: Ardourel, Gilles (Hrsg.); Haupt, Mi-
chael (Hrsg.); Agustin, Jose Luis H. (Hrsg.); Ruggaber, Rainer
(Hrsg.); Suscheck, Charles (Hrsg.): Proc. of the 11th ECOOP
Workshop for Ph.D. Students in Object-Oriented Systems, 2001,
S. 1–10

[BGN+04] Burmester, Sven; Giese, Holger; Niere, Jörg; Tichy, Matthi-
as; Wadsack, Jörg P.; Wagner, Robert; Wendehals, Lothar;
Zündorf, Albert: Tool Integration at the Meta-Model Level wi-
thin the FUJABA Tool Suite. In: International Journal on Soft-
ware Tools for Technology Transfer (STTT) 6 (2004), August,
Nr. 3, S. 203–218

[BMMM98] Brown, W.J.; Malveau, R.C.; McCormick, H.W.; Mom-
bray, T.J.: Anti Patterns: Refactoring Software, Architectures,
and Projects in Crisis. New York, NY, USA: John Wiley and
Sons, Inc., 1998

179

Literatur

[BOH02] Bowring, Jim; Orso, Allesandro; Harrold, Mary J.: Moni-
toring Deployed Software Using Software Tomography. In: Proc.
of the 2002 Workshop on Program Analysis for Software Tools
and Engineering (PASTE). Charleston, SC, USA: ACM Press,
November 2002, S. 2–9

[Boo05] Booch, Grady: On Creating a Handbook of Software Architec-
ture. In: Keynote of the 5th Working IEEE/IFIP Conference on
Software Architecture (WICSA). Pittsburgh, PA, USA: http://
www.booch.com/architecture/blog.jsp?archive=2005-11.html,
November 2005. – Stand: März 2006

[BP00] Bergenti, Federico; Poggi, Agostino: Improving UML Desi-
gns Using Automatic Design Pattern Detection. In: Proc.12th
International Conference on Software Engineering and Knowle-
ge Engineering (SEKE 2000). Chicago, IL, USA, Juni 2000, S.
336–343

[Bro96] Brown, Kyle: Design Reverse-Engineering and Automated De-
sign Pattern Detection in Smalltalk, North Carolina State Univer-
sity, Diplomarbeit, Juni 1996

[CC90] Chikofsky, Elliot J.; Cross II, James H.: Reverse Engineering
and Design Recovery: A Taxonomy. In: IEEE Software 7 (1990),
Januar, Nr. 1, S. 13–17

[Ecl] Eclipse Foundation Inc.: Eclipse. http://www.eclipse.org/.
– Stand: April 2007

[EKS01] Eisenbarth, Thomas; Koschke, Rainer; Simon, Daniel: Aiding
Program Comprehension by Static and Dynamic Feature Analy-
sis. In: Proc. of the International Conference on Software Main-
tenance (ICSM 2001). Florenz, Italien: IEEE Computer Society
Press, November 2001, S. 602–611

[EKV02] Eisenbarth, Thomas; Koschke, Rainer; Vogel, Gunther: Sta-
tic Trace Extraction. In: Proc. of the Ninth Working Conference
on Reverse Engineering (WCRE’02). Richmond, VA, USA: IEEE
Computer Society Press, Oktober 2002, S. 128–137

180

Literatur

[Ern03] Ernst, Michael D.: Static and dynamic analysis: synergy and
duality. In: Proc. of the ICSE Workshop on Dynamic Analysis
(WODA03). Portland, Oregon, USA, Mai 2003, S. 25–28

[FHD+99] Firley, Thomas; Huhn, Michaela; Diethers, Karsten; Gehr-
ke, Thomas; Goltz, Ursula: Timed Sequence Diagrams and
Tool-Based Analysis – A Case Study. In: The Second Interna-
tional Conference on The Unified Modeling Language, Beyond the
Standard (UML’99) Bd. 1723, Springer, Oktober 1999, S. 645–660

[FNT98] Fischer, Thorsten; Niere, Jörg; Torunski, Lars: Konzepti-
on und Realisierung einer integrierten Entwicklungsumgebung für
UML, Java und Story-Driven-Modeling, Universität Paderborn,
Paderborn, Deutschland, Diplomarbeit, Juli 1998

[FP96] Fenton, Norman E.; Pfleeger, Shari L.: Software Metrics -
A Rigorous & Practical Approach. Second Edition. International
Thompson Computer Press, 1996

[Fra92] Frazer, A.: Reverse Engineering - hype, hope or here? In: Hall,
P.A.V. (Hrsg.): Software Reuse and Reverse Engineering in Prac-
tice Bd. Jgg. 12 der UNICOM Applied Information Technology.
London, Großbritannien: Chapman & Hall, 1992, S. 209–243

[Fuj] University of Paderborn, Germany: Fujaba Tool Suite. http://
www.fujaba.de/. – Stand: April 2007

[GB04] Gamma, Erich; Beck, Kent; Gamma, Erich (Hrsg.); Nackman,
Lee (Hrsg.); Wiegand, John (Hrsg.): Contributing to eclipse -
Principles, Patterns, and Plug-Ins. Boston, MA, USA: Addison-
Wesley, 2004 (The Eclipse Series)

[GDJ02] Guéhéneuc, Yann-Gaël; Douencey, Rémi; Jussien, Narendra:
No Java without Caffeine A Tool for Dynamic Analysis of Java
Programs. In: 17th IEEE International Conference on Automa-
ted Software Engineering (ASE 2002). Edinburgh, Schottland,
Großbritannien: IEEE Computer Society Press, September 2002,
S. 117–126

[GHJV95] Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides,
John: Design Patterns: Elements of Reusable Object Oriented
Software. Reading, MA, USA: Addison-Wesley, 1995

181

Literatur

[GMW06] Giese, Holger; Meyer, Matthias; Wagner, Robert: A Proto-
type for Guideline Checking and Model Transformation in Mat-
lab/Simulink. In: Giese, Holger (Hrsg.); Westfechtel, Bern-
hard (Hrsg.): Proc. of the 4rd International Fujaba Days 2006,
Bayreuth, Deutschland Bd. tr-ri-06-275, Universität Paderborn,
September 2006

[GZ05] Guéhéneuc, Yann-Gaël; Ziadi, Tewfik: Automated Reverse-en-
gineering of UML v2.0 Dynamic Models. In: Demeyer, Serge
(Hrsg.); Mens, Kim (Hrsg.); Wuyts, Roel (Hrsg.); Ducasse,
Stéphane (Hrsg.): Proc. of the 6th ECOOP Workshop on Object-
Oriented Reengineering. Glasgow, Schottland, Großbritannien:
Springer-Verlag, Juli 2005, S. 1–5

[HHHL03] Heuzeroth, Dirk; Holl, Thomas; Högström, Gustav; Löwe,
Welf: Automatic Design Pattern Detection. In: Proc. of the 11th

International Workshop on Program Comprehension (IWPC),
Portland, USA. Portland, OR, USA: IEEE Computer Society
Press, Mai 2003, S. 94–103

[HHL02] Heuzeroth, Dirk; Holl, Thomas; Löwe, Welf: Combining Sta-
tic and Dynamic Analyses to Detect Interaction Patterns. In:
Proc. of the 6th International Conference on Integrated Design
and Process Technology. Pasadena, CA, USA, Juni 2002, S. 1–7

[HML03] Heuzeroth, Dirk; Mandel, Stefan; Löwe, Welf: Generating
Design Pattern Detectors from Pattern Specifications. In: Proc.
of the 18th IEEE International Conference on Automated Software
Engineering. Montreal, Quebec, Kanada: IEEE Computer Society
Press, Oktober 2003, S. 245–248

[HN90] Harandi, Mehdi T.; Ning, Jim Q.: Knowledge Based Program
Analysis. In: IEEE Transactions on Software Engineering 7
(1990), Januar/Februar, Nr. 1, S. 74–81

[Int99] International Telecommunication Union: Message Sequence Chart
(MSC). Series Z: Languages and General Software Aspects for
Telecommunication Systems. November 1999

[Jah99] Jahnke, Jens H.: Management of Uncertainty and Inconsisten-
cy in Database Reengineering Processes, Universität Paderborn,
Paderborn, Deutschland, Dissertation, August 1999

182

Literatur

[KB00] Kim, Hyoseob; Boldyreff, Cornelia: A Method to Recover De-
sign Patterns Using Software Product Metrics. In: Software Reuse:
Advances in Software Reusability: 6th International Conference
(ICSR-6) Bd. 1844. Wien, Österreich: Springer-Verlag, Juni 2000,
S. 318–335

[KGH06] Kaczorol, Olivier; Guéhéneuc, Yann-Gaël; Hamel, Sylvie:
Efficient Identification of Design Patterns with Bit-vector Algo-
rithm. In: di Lucca, Giuseppe A. (Hrsg.); Gold, Nicolas (Hrsg.):
Proc. of the 10th European Conference on Software Maintenance
and Reengineering. Bari, Italien: IEEE Computer Society Press,
März 2006, S. 173–182

[KP96] Krämer, Christian; Prechelt, Lutz: Design Recovery by Auto-
mated Search for Structural Design Patterns in Object-Oriented
Software. In: Proc. of the 3rd Working Conference on Reverse En-
gineering (WCRE). Monterey, CA, USA: IEEE Computer Society
Press, November 1996, S. 208–215

[KS97] Kunz, Thomas; Seuren, Michiel F.: Fast Detection of Commu-
nication Patterns in Distributed Executions. In: Proc. of the 1997
Conference of the Centre for Advanced Studies on Collaborative
Research. Toronto, Ontario, Kanada: IBM Press, 1997, S. 1–13

[KSRP99] Keller, Rudolf K.; Schauer, Reinhard; Robitaille,
Sébastien; Pagé, Patrick: Pattern-Based Reverse-Engineering
of Design Components. In: Proc. of the 21st International
Conference on Software Engineering, Los Angeles, USA, IEEE
Computer Society Press, Mai 1999, S. 226–235

[KW01] Klose, Jochen; Wittke, Hartmut: An Automata Based In-
terpretation of Live Sequence Charts. In: Margaria, Tiziana
(Hrsg.); Yi, Wang (Hrsg.): Proceedings of the 7th International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS) Bd. 2031. London, Großbritan-
nien: Springer-Verlag, April 2001, S. 512–527

[Lea97] Lea, Doug: Concurrent Programming in Java: Design Principles
and Patterns. Addison-Wesley, 1997

183

Literatur

[Lew03] Lewis, Bil: Recording Events to Analyze Programs. In: Object-
Oriented Technology. ECOOP 2003 Workshop Reader. Bd. Lec-
ture notes on computer science (LNCS 3013), Springer-Verlag,
Juli 2003, S. 1–5

[Mat] The MathWorks, Inc.: MATLAB. http://www.mathworks.com/
products/matlab/. – Stand: April 2007

[Meh01] Mehner, Katharina: LNCS 2269. Bd. 2269/2002: JaVis: A UML-
Based Visualization and Debugging Environment for Concurrent
Java Programs . Software Visualization, International Seminar.
Berlin, Deutschland: Springer-Verlag, Mai 2001, S. 163–175

[Meh03] Mehner, Katharina: Zur Performanz der Überwachung von
Methodenaufrufen mit der Java Platform Debugger Architec-
ture (JPDA). In: Java Spektrum, SIGS-DATACOM, Troisdorf,
Deutschland Nov./Dez. (2003), November, S. 1–11

[Mey06] Meyer, Matthias: Pattern-based Reengineering of Software Sy-
stems. In: Proceedings of the 13th Working Conference on Reverse
Engineering (WCRE 2006). Benevento, Italien: IEEE Computer
Society, Oktober 2006, S. 305–306

[MW05] Meyer, Matthias; Wendehals, Lothar: Selective Tracing for
Dynamic Analyses. In: Zaidman, Andy (Hrsg.); Hamou-Lhadj,
Abdelwahab (Hrsg.); Greevy, Orla (Hrsg.): Proc. of the 1st
Workshop on Program Comprehension through Dynamic Analysis
(PCODA), co-located with the 12th WCRE, Pittsburgh, Pennsyl-
vania, USA Bd. 2005-12 Universiteit Antwerpen, Belgien, 2005,
S. 33–37

[MWT95] Müller, Hausi A.; Wong, Kenny; Tilley, Scott R.: Understan-
ding Software Systems using Reverse Engineering Technologies.
In: Alagar, V. S. (Hrsg.); Missaoui, R. (Hrsg.): Object-Oriented
Technology for Database and Software Systems. Singapur: World
Scientific Publishing, Dezember 1995, S. 240–252

[Nie04] Niere, Jörg: Inkrementelle Entwurfsmustererkennung, Univer-
sität Paderborn, Paderborn, Deutschland, Dissertation, Juni 2004

184

Literatur

[NSW+02] Niere, Jörg; Schäfer, Wilhelm; Wadsack, Jörg P.; Wende-
hals, Lothar; Welsh, Jim: Towards Pattern-Based Design Re-
covery. In: Proc. of the 24th International Conference on Software
Engineering (ICSE). Orlando, FL, USA: ACM Press, Mai 2002,
S. 338–348

[NWW03] Niere, Jörg; Wadsack, Jörg P.; Wendehals, Lothar: Hand-
ling Large Search Space in Pattern-Based Reverse Engineering.
In: Proc. of the 11th International Workshop on Program Compre-
hension (IWPC). Portland, OR, USA: IEEE Computer Society
Press, Mai 2003, S. 274–279

[Obj] Object Management Group (OMG): Unified Modeling Lan-
guage (UML). http://www.uml.org/. – Stand: April 2007

[Pal01] Palasdies, Marcus: Design-Pattern Spezifikation und Erkennung
auf Basis von Story-Diagrammen, Universität Paderborn, Pader-
born, Deutschland, Diplomarbeit, Mai 2001

[PM04] Parsons, Trevor; Murphy, John: Data Mining for Performan-
ce Antipatterns in Component Based Systems Using Run-Time
and Static Analysis. In: Transactions on Automatic Control and
Computer Science 49 (63) (2004), Mai, Nr. 3, S. 113–118

[PSRN04] Philippow, Ilka; Streitferdt, Detlef; Riebisch, Matthias;
Naumann, Sebastian: An approach for reverse engineering of
design patterns. In: Software and Systems Modeling, Springer-
Verlag Heidelberg 4 (2004), April, Nr. 1, S. 55–70

[RD99] Richner, Tamar; Ducasse, Stéphane: Recovering High-Level
Views of Object-Oriented Applications from Static and Dynamic
Information. In: Proceedings of the IEEE International Confe-
rence on Software Maintenance (ICSM). Oxford, Großbritannien:
IEEE Computer Society, August 1999, S. 13–22

[RD02] Richner, Tamar; Ducasse, Stéphane: Using Dynamic Informa-
tion for the Iterative Recovery of Collaborations and Roles. In:
Proc. of the International Conference on Software Maintenance
(ICSM’02). Montreal, Quebec, Kanada: IEEE Computer Society
Press, Oktober 2002, S. 34–43

185

Literatur

[Rec04] Reckord, Carsten: Optimierung von Genauigkeitswerten un-
scharfer Regeln, Universität Paderborn, Paderborn, Deutschland,
Diplomarbeit, Mai 2004

[Rig] Rigi: A Visual Tool for Understanding Legacy Systems. http://
www.rigi.csc.uvic.ca/. – Stand: April 2007

[Ris00] Rising, Linda; Vlissides, John M. (Hrsg.): The Pattern Alma-
nac 2000. Boston, MA, USA: Addison-Wesley, 2000 (Software
Patterns Series)

[RKG04] Rountev, Atanas; Kagan, Scott; Gibas, Michael: Static and
Dynamic Analysis of Call Chains in Java. In: Proceedings of the
2004 ACM SIGSOFT International Symposium on Software Te-
sting and Analysis. Boston, Massachusetts, USA: ACM Press, Juli
2004, S. 1–11

[Roz97] Rozenberg, Grzegorz (Hrsg.): Handbook of Graph Grammars
and Computing by Graph Transformation. Bd. 1. Singapur: World
Scientific Publishing, 1997

[RR02] Riva, Claudio; Rodriguez, Jordi V.: Combining Static and Dy-
namic Views for Architecture Recovery. In: Proc. of the 6th Eu-
ropean Conference on Software Maintenance and Reengineering.
Budapest, Ungarn: IEEE Computer Society Press, März 2002, S.
47–55

[SG98] Seemann, Jochen; von Gudenberg, Jürgen W.: Pattern-Based
Design Recovery of Java Software. In: Proc. of the 6th ACM SIGS-
OFT International Symposium on Foundations of Software Engi-
neering. Lake Buena Vista, FL, USA: ACM Press, November
1998, S. 10–16

[SK98] Schauer, Reinhard; Keller, Rudolf K.: Pattern Visualization
for Software Comprehension. In: Proc. of the 6th International
Workshop on Program Comprehension (IWPC). Ischia, Italien:
IEEE Computer Society Press, Juni 1998, S. 1–9

[SO05] Seesing, Arjan; Orso, Allesandro: InsECTJ: A Generic Instru-
mentation Framework for Collecting Dynamic Information within
Eclipse. In: Proceedings of the eclipse Technology eXchange (eTX)

186

Literatur

Workshop at OOPSLA 2005. San Diego, CA, USA, Oktober 2005,
S. 49–53

[SO06] Shi, Nija; Olsson, Ronald A.: Reverse Engineering of De-
sign Patterns from Java Source Code. In: Proc. of the 21st IE-
EE/ACM International Conference on Automated Software Engi-
neering (ASE’06). Tokyo, Japan, September 2006, S. 123–134

[SS03] Smith, Jason M.; Stotts, David: SPQR: Flexible Automated
Design Pattern Extraction From Source Code. In: Proc. of the
18th IEEE International Conference on Automated Software En-
gineering (ASE’03). Montreal, Kanada: IEEE Computer Society
Press, Oktober 2003, S. 215–224

[Sys99a] Systä, Tarja: Dynamic reverse engineering of Java software. In:
Ducasse, S. (Hrsg.); Ciupke, O. (Hrsg.): Proc. of the ECOOP
Workshop on Experiences in Object-Oriented Re-Engineering. Lis-
sabon, Portugal, Juni 1999 (FZI Report 2-6-6/99), S. 1–7

[Sys99b] Systä, Tarja: On the Relationships between Static and Dyna-
mic Models in Reverse Engineering Java Software. In: Proc. of
the 6th Working Conference on Reverse Engineering (WCRE99).
Atlanta, GA, USA, Oktober 1999, S. 304–313

[TA99] Tonella, Paolo; Antoniol, Giulio: Object Oriented Design
Pattern Inference. In: Proc. of the 9th International Conference
on Software Maintenance (ICSM). Oxford, Großbritannien: IEEE
Computer Society Press, September 1999, S. 230–238

[TCHS05] Tsantalis, Nikolaos; Chatzigeorgiou, Alexander; Halkidis,
Spyros T.; Stephanides, George: A Novel Approach to Auto-
mated Design Pattern Detection. In: Proc. of the 10th Panhelle-
nic Conference on Informatics (PCI’2005). Volos, Griechenland:
Springer-Verlag, November 2005 (LNCS), S. 1–15

[TP02] Tonella, Paolo; Potrich, Alessandra: Static and Dynamic
C++ Code Analysis for the Recovery of the Object Diagram.
In: Proc. of the 18th IEEE International Conference on Softwa-
re Maintenance (ICSM’02). Montreal, Quebec, Kanada: IEEE
Computer Society Press, Oktober 2002, S. 54–63

187

Literatur

[Tra06] Travkin, Dietrich: Bewertung automatisch erkannter Instan-
zen von Software-Mustern, Universität Paderborn, Paderborn,
Deutschland, Diplomarbeit, August 2006

[UKM03] Uchitel, Sebastian; Kramer, Jeff; Magee, Jeff: Behaviour Mo-
del Elaboration using Partial Labelled Transition Systems. In:
Proc. of the 9th European Software Engineering Conference held
jointly with 11th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. Helsinki, Finnland: ACM
Press, September 2003, S. 19–27

[VK98] Vigna, Giovanni; Kemmerer, Richard A.: NetSTAT: A Net-
work-based Intrusion Detection Approach. In: Proc. of the 14th

Annual Computer Security Application Conference. Scottsdale,
AZ, USA: IEEE Computer Society Press, Dezember 1998, S. 25–
34

[Wen01] Wendehals, Lothar: Cliché- und Mustererkennung auf Basis
von Generic Fuzzy Reasoning Nets, Universität Paderborn, Pa-
derborn, Deutschland, Diplomarbeit, Oktober 2001

[Wen03] Wendehals, Lothar: Improving Design Pattern Instance Re-
cognition by Dynamic Analysis. In: Cook, Jonathan (Hrsg.);
Ernst, Michael (Hrsg.): Proc. of the ICSE 2003 Workshop on
Dynamic Analysis (WODA). Portland, OR, USA, Mai 2003, S.
29–32

[Wen04] Wendehals, Lothar: Specifying Patterns for Dynamic Pattern
Instance Recognition with UML 2.0 Sequence Diagrams. In:
Doberkat, E.-E. (Hrsg.); Kelter, U. (Hrsg.): Softwaretechnik-
Trends: Proc. of the 6th Workshop Software Reengineering (WSR)
Bd. 24/2. Bad Honnef, Deutschland, Mai 2004, S. 63–64

[Wil92] Wills, Linda M.: Automated Program Recognition by Graph Par-
sing. Cambridge, Mass., USA, Massachussets Institute of Tech-
nology, Dissertation, 1992

[WME04] Wendehals, Lothar; Meyer, Matthias; Elsner, Andreas: Se-
lective Tracing of Java Programs. In: Schürr, Andy (Hrsg.);
Zündorf, Albert (Hrsg.): Proc. of the 2nd International Fuja-
ba Days 2004, Darmstadt, Germany Bd. tr-ri-04-253, Universität
Paderborn, Paderborn, Deutschland, September 2004, S. 7–10

188

Literatur

[WO06] Wendehals, Lothar; Orso, Alessandro: Recognizing Behavioral
Patterns at Runtime using Finite Automata. In: Proc. of the 4th

ICSE 2006 Workshop on Dynamic Analysis (WODA). Schanghai,
China: ACM Press, Mai 2006, S. 33–40

[WSV04] Wu, Lei; Sahraoui, Houari; Valtchev, Petko: Program Com-
prehension with Dynamic Recovery of Code Collaboration Pat-
terns and Roles. In: Proc. of the 2004 conference of the Centre
for Advanced Studies on Collaborative research. Markham, Onta-
rio, Kanada: IBM Press, Oktober 2004, S. 56–67

[Wuy98] Wuyts, Roel: Declarative Reasoning about the Structure of
Object-Oriented Systems. In: Gil, Joseph (Hrsg.): Proc. of
TOOLS-USA’98. Santa Barbara, CA, USA: IEEE Computer So-
ciety Press, August 1998, S. 112–124

189

Literatur

190

Anhang A

Struktur- und Verhaltensmuster

Der in der praktischen Anwendung in Kapitel 6 verwendete Strukturmuster-
Katalog besteht aus 17 Strukturmustern (Abbildung A.1). Die meisten darun-
ter sind Hilfsmuster, die zur Identifikation der Entwurfsmuster benötigt wer-
den. Im Folgenden sind zu den Entwurfsmustern, zu denen auch Verhaltens-
muster existieren, jeweils die Struktur- und Verhaltensmuster aufgeführt.

Abbildung A.1: Der Strukturmuster-Katalog für Eclipse

191

Anhang A Struktur- und Verhaltensmuster

A.1 Command

invoker

command

«create»

«create»

invoker:Class

execute:Method

superClass

methods

:Delegation caller

setCommand:Method

methods

params

calleeaction:Method

:Parameter
paramType stereotypes

:Command

«create»

:Reference

:Generalization

concreteCommand:Class

subClass

referencesreferencingClass

receiver:Class

receiver

methods

:Parameter

paramType

constructor:Method

methods

resultType

params

«create»

sp Command :Stereotype
name == „interface“

abstractCommand:Class
abstract == true {additional}

:BaseType
name == BaseType.CONSTRUCTOR

Abbildung A.2: Das Command -Strukturmuster

execute()
setCommand()

constructor()

action()

r:receiveri:invoker

c:concreteCommand

client

bp Command

Abbildung A.3: Das Command -Verhaltensmuster

192

A.2 Observer

A.2 Observer

observer subject

«create»

notify:Method

methods

:Delegation caller

callee

update:Method

subjectClass:Class
abstract == true {additional}

:Stereotype
name == „interface“

stereotypes

:Observer

«create»

:MultiReference referencesreferencingClass

methods

:Parameter

paramType

register:Method

methods

params

«create»

observerClass:Class
abstract == true {additional}

:OverriddenMethod

overridden

:OverriddenMethod

overridden

sp Observer

Abbildung A.4: Das Observer -Strukturmuster

register()
register()

notify()

update()
update()

loop (1,*)

s:subjectClass a:observerClass b:observerClass

bp Observer

Abbildung A.5: Das Observer -Verhaltensmuster

193

Anhang A Struktur- und Verhaltensmuster

A.3 State

context abstractState

«create» «create»

context:Class

request:Method

methods
methods

:Delegationcaller

:State

«create»

setState:Methodmethods params

overridden

callee handle:Method

a:Parameter paramType abstractState:Class
abstract == true {additional}

:OverriddenMethod
SIZE≥2

:Stereotype
name == „interface“

stereotypes

c:Parameter

params

paramType

sp State

Abbildung A.6: Das State-Strukturmuster

a:abstractState b:abstractStateclient c:context

loop (1,*) request()
handle()

setState()

setState()alt

handle()
request()loop (1,*)

bp State

setState()opt

Abbildung A.7: Das State-Verhaltensmuster

194

A.4 Strategy

A.4 Strategy

context abstractStrategy

«create» «create»

context:Class

request:Method

methods
methods

:Delegationcaller

:Strategy

«create»

setStrategy:Methodmethods params

overridden

callee algorithm:Method

:Parameter paramType abstractStrategy:Class
abstract == true {additional}

:OverriddenMethod
SIZE≥2

:Stereotype
name == „interface“

stereotypes

sp Strategy

Abbildung A.8: Das Strategy-Strukturmuster

client a:abstractStrategy b:abstractStrategy

opt

c:context

request()loop (1,*)
algorithm()

request()loop (1,*)
algorithm()

bp Strategy

setStrategy()

setStrategy()

Abbildung A.9: Das Strategy-Verhaltensmuster

195

Anhang A Struktur- und Verhaltensmuster

A.5 Visitor

visitedElement visitor
«create» «create»

operation:Method

superClass

methods

accept:Method
methods

params :Parameter
paramType

visitorClass:Class
abstract == true {additional}

:Visitor

«create»

:Generalization

concreteModelClass:Class

subClass

methods

:ParameterparamType

visitMethod:Method

astRootNodeparams

superModelClass:Class
abstract == true {additional}

:MethodCallNode

id:IdentifierNode{id.name==operation.name}

identifier

:ASTRootNode

sp Visitor

Abbildung A.10: Das Visitor -Strukturmuster

c:concreteModelClassobjectStructure
accept()

visitMethod()

operation()

v:visitorClass

bp Visitor

Abbildung A.11: Das Visitor -Verhaltensmuster

196

Anhang B

Reclipse Handbuch

Dieses Handbuch führt anhand der Benutzungsschnittstelle durch den Prozess
der struktur- und verhaltensbasierten Entwurfsmustererkennung im Werkzeug
Reclipse. Als Beispiel wird der Mediaplayer aus Abschnitt 2.3.1 verwendet.
Es wird zunächst erklärt, wie die Spezifikationen der Struktur- und Verhaltens-
muster zur Analyse aufbereitet werden. Danach wird dargestellt, wie in Re-
clipse der Quelltext des Programms in ein Strukturmodell transformiert und
die Strukturanalyse durchgeführt wird. Anschließend wird die Benutzung des
Reclipse Tracers und des Werkzeugs zur Instrumentierung des ausführ-
baren Programmcodes erläutert. Zum Abschluss wird die Durchführung der
Verhaltensanalyse mit Reclipse behandelt.

B.1 Generierung von Struktur- und
Verhaltensmusterkatalogen

Im Folgenden wird von bereits existierenden Spezifikationen von Struktur- und
Verhaltensmustern ausgegangen. Es wird nur kurz darauf eingegangen, wie die
Struktur- und Verhaltensmuster mit Hilfe der Editoren spezifiziert werden.
Ausführlicher wird beschrieben, wie aus den vorhandenen Mustern Katalo-
ge generiert werden, die von der Struktur- und Verhaltensanalyse verwendet
werden können.

Die Struktur- und Verhaltensmuster eines Katalogs werden in einem Fu-
jaba-Modell gespeichert. Darin ist auch die Spezifikation des Strukturmo-
dells enthalten. In Reclipse werden die Fujaba-Modelle wiederum Eclip-
se-Projekten zugeordnet. Nach dem Öffnen eines Modells stehen die Spezi-
fikationen zur Bearbeitung zur Verfügung. Der Reverse-Engineer kann neue
Struktur- oder Verhaltensmuster hinzufügen, existierende ändern oder entfer-

197

Anhang B Reclipse Handbuch

nen. In Abbildung B.1 ist das State-Strukturmuster zu sehen, das im Editor
zur Bearbeitung geöffnet wurde.

Abbildung B.1: Die Spezifikation des State-Strukturmusters in Reclipse

Auf der linken Seite ist der so genannte Project Explorer zu sehen, über den
man Zugriff auf alle Projekte und die darin enthaltenen Dokumente erhält.
Das Fujaba-Modell ist geöffnet und zeigt unter anderem alle darin vorhan-
denen Strukturmuster an. Links unten ist im Outline eine Übersicht über den
Editor zu sehen. Rechts oben ist der Editor, mit dem das Modell bearbei-
tet werden kann. Die Werkzeuge zur Bearbeitung sind über die Palette am
rechten Rand des Editors zu erreichen. Dazu gehören zum Beispiel Werkzeuge
zum Hinzufügen von Annotationen, Objekten oder auch Verbindungen. Aus
Platzgründen wurde die Palette hier jedoch eingeklappt. Rechts unten befindet
sich die Properties-Sicht, mit der man bestimmte Eigenschaften der im Editor
angezeigten Elemente ändern kann, wie zum Beispiel ihre Namen. In diesem
Beispiel werden die Eigenschaften des Strukturmusters angezeigt. Man kann
den Namen, die Vererbungshierarchie oder die Beschreibung des Strukturmu-
sters ändern.

198

B.1 Generierung von Struktur- und Verhaltensmusterkatalogen

Abbildung B.2: Die Spezifikation des State-Verhaltensmusters in Reclipse

In Abbildung B.2 ist die Spezifikation des State-Verhaltensmusters zu se-
hen. Das Verhaltensmuster wurde links aus der Liste der im Modell vorhande-
nen Verhaltensmuster ausgewählt. In dieser Ansicht ist die Palette am rechten
Rand des Editors ausgeklappt. Sie enthält Werkzeuge zum Hinzufügen von
Verhaltensmusterobjekten, Nachrichten und Kombinierten Fragmenten oder
zum Selektieren von Elementen.

Die Spezifikationen der Struktur- und Verhaltensmuster können in dieser
Form nicht von Reclipse zur Analyse verwendet werden. Deshalb werden
aus den Spezifikationen Kataloge exportiert, die die Muster in einer für die
Analyse aufbereiteten Form enthalten. Dazu wird im Project Explorer aus dem
Kontext-Menü des Modells der Menüpunkt Export aufgerufen. Es wird ein so
genannter Wizard geöffnet, in dem man den Punkt Structural Patterns Catalog
im Zweig Fujaba auswählt (siehe Abbildung B.3). Ein Wizard besteht meist
aus mehreren Dialogen, die nacheinander verschiedene Informationen abfragen.
Anschließend wird eine Aufgabe anhand dieser Informationen ausgeführt.

199

Anhang B Reclipse Handbuch

Abbildung B.3: Der Export-Wizard

Der Wizard zum Export eines Strukturmuster-Katalogs besteht aus den Dia-
logen, die in Abbildung B.4 dargestellt sind. Zunächst wählt man das Fujaba-
Modell aus, aus dem der zu exportierende Strukturmuster-Katalog stammt. Im
nächsten Dialog wird der Strukturmuster-Katalog ausgewählt. Grundsätzlich
existiert immer ein Main Catalog, der alle Strukturmuster des Modells enthält.
Weitere Strukturmuster-Kataloge können vom Reverse-Engineer im Modell er-
zeugt werden und enthalten Teilmengen der vorhandenen Strukturmuster. Des
Weiteren wird in diesem Dialog angegeben, wo der generierte Strukturmuster-
Katalog als Datei abgelegt werden soll.

Aus den Strukturmustern werden Java-Klassen generiert, die von der Struk-
turanalyse zur Suche in der Struktur verwendet werden. Damit diese Java-
Klassen übersetzt werden können, müssen im folgenden Dialog die Bibliotheken
angegeben werden, die zur Übersetzung notwendig sind. Im letzten Dialog muss
der Reverse-Engineer entscheiden, ob das Modell mit den Strukturmuster-
Spezifikationen im generierten Katalog gespeichert werden soll. Das Modell
wird zur Auswertung der identifizierten Kandidaten nach der in Abschnitt
3.1 beschriebenen Methode benötigt. Außerdem können weitere Optionen aus-
gewählt werden, die zur Suche nach Fehlern während der Generierung nützlich
sind. Nach Betätigung der Finish-Schaltfläche werden die Java-Klassen gene-
riert, übersetzt und in einer Bibliothek zusammengefasst, die später von der
Strukturanalyse verwendet wird.

200

B.1 Generierung von Struktur- und Verhaltensmusterkatalogen

Abbildung B.4: Der Export eines Strukturmuster-Katalogs

Abbildung B.5: Der Export eines Verhaltensmusterkatalogs

201

Anhang B Reclipse Handbuch

Zum Export der Verhaltensmuster wird wiederum der Export-Wizard geöff-
net. Hier wählt man nun den Punkt Behavioral Patterns Catalog (Abbildung
B.3) aus. Nach Auswahl des Modells mit den Verhaltensmustern wird der Dia-
log aus Abbildung B.5 angezeigt. Darin gibt man die zu exportierenden Verhal-
tensmuster und eine Datei für den Katalog an. Die Verhaltensmuster werden
dann, wie in Abschnitt 4.4 beschrieben, in endliche Automaten transformiert
und in einer generischen Beschreibungssprache gespeichert. Die Spezifikation
der Beschreibungssprache findet sich in Anhang C.2.4.

B.2 Strukturbasierte Entwurfsmustererkennung

Zur Strukturanalyse legt man zunächst ein neues Fujaba-Modell an. In diesem
Fall wurde ein Modell mit dem Namen Parsed Mediaplayer Model erzeugt
und in das Projekt mit dem Quelltext des Mediaplayers gelegt. Dann öffnet
man den Import-Wizard über das Kontext-Menü des Modells, um den Java-
Quelltext in das Modell zu importieren. Im Wizard wählt man den Punkt
Fujaba Model from Java Source File(s) aus (Abbildung B.6).

Abbildung B.6: Der Import-Wizard

Nach Auswahl des Modells, in das der Java-Quelltext importiert werden
soll, gibt der Reverse-Engineer im nächsten Dialog des Wizards (Abbildung
B.7) die Java-Quelldateien oder auch die Verzeichnisse mit den Quelldateien
an. Verzeichnisse können rekursiv nach Java-Quelldateien durchsucht werden.
Im letzten Dialog kann man einige Optionen auswählen, unter anderem, ob für

202

B.2 Strukturbasierte Entwurfsmustererkennung

jedes Java-Paket ein eigenes Klassendiagramm erzeugt werden soll, oder ob
alle Klassen in ein einzelnes Klassendiagramm aufgenommen werden sollen.

Abbildung B.7: Der Import von Java-Quelltext in ein Fujaba-Modell

Abbildung B.8: Der Mediaplayer dargestellt im Klassendiagramm

203

Anhang B Reclipse Handbuch

Nach dem Import kann sich der Reverse-Engineer die Java-Klassen in Klas-
sendiagrammen darstellen lassen. Wie bereits in Abschnitt 2.3.1 erläutert, wer-
den keine Assoziationen zwischen den Klassen angezeigt, da diese das Ergebnis
weiter gehender Analysen sind. In Abbildung B.8 ist das Klassendiagramm des
Mediaplayers dargestellt.

Abbildung B.9: Das Reclipse-Menü

Die Strukturanalyse wird über den Menüpunkt Start Structural Patterns Re-
cognition... im Reclipse-Menü aufgerufen (Abbildung B.9). Es wird ein Wizard
geöffnet, in dem man zunächst das Modell auswählt, in dem nach Struktur-
mustern gesucht werden soll.

Abbildung B.10: Der Dialog zum Starten der Strukturanalyse

Im zweiten Dialog (Abbildung B.10) wählt man als erstes den Struktur-
muster-Katalog aus. Dies ist der Katalog, der zuvor exportiert wurde. Des
Weiteren wählt man ein Strukturmodell. Wie in Abschnitt 2.3.6 beschrieben
wurde, kann die Strukturanalyse auch auf andere Strukturmodelle wie zum

204

B.2 Strukturbasierte Entwurfsmustererkennung

Beispiel für Matlab/Simulink eingesetzt werden. Das entsprechende Struk-
turmodell wird hier bestimmt. Zur Strukturanalyse stehen verschiedene In-
ferenzalgorithmen zur Verfügung. In diesem Fall wird der in Abschnitt 2.3.4
beschriebene Algorithmus verwendet. Im unteren Bereich des Dialogs kann
angegeben werden, ob nach optionalen Elementen der Strukturmuster gesucht
werden soll und ob die Kandidaten bewertet werden sollen. Soll eine Bewertung
durchgeführt werden, muss der Strukturmuster-Katalog das Fujaba-Modell
mit den Spezifikationen der Strukturmuster enthalten. Die Strukturanalyse
wird schließlich durch Betätigung der Finish-Schaltfläche gestartet.

Abbildung B.11: Das Ergebnis der Strukturanalyse

In Abbildung B.11 ist das Ergebnis der Strukturanalyse zu sehen. Im Klas-
sendiagramm werden die Annotationen zweier Kandidaten angezeigt, eine
State- und eine Strategy-Annotation. Diese beiden Kandidaten sind jedoch
nur ein kleiner Ausschnitt aus allen gefundenen Kandidaten. Die im Klassen-
diagramm dargestellten Kandidaten können zur besseren Übersicht gefiltert
werden. Im unteren Bereich ist die Annotations-Sicht geöffnet, die dagegen

205

Anhang B Reclipse Handbuch

alle identifizierten Kandidaten, sowie ihre Bewertungen und die von ihnen
annotierten Elemente auflistet. Des Weiteren werden darin Abhängigkeiten
zwischen den Kandidaten angezeigt. Zum Beispiel baut der dargestellte Stra-
tegy-Kandidat auf einen Delegation-Kandidaten und drei OverridingMethod -
Kandidaten auf, die wiederum von weiteren Kandidaten abhängig sind.

Abbildung B.12: Der Export der Kandidaten und der Trace-Definition

In der Verhaltensanalyse werden die Kandidaten aus der Strukturanalyse
überwacht, wie in Abschnitt 3.2 erläutert wurde. Dazu benötigt die Verhal-
tensanalyse zum einen für jeden Kandidaten die Bindung der Strukturmuster-
variablen an die Elemente der Struktur und zum anderen die Methoden, die
zur Laufzeit des Softwaresystems beobachtet werden müssen. Die Bindungen
der Strukturmustervariablen sind in den Annotationen enthalten und werden
durch Export der Annotationen zur Verfügung gestellt. Dazu wählt man im
Export-Wizard den Punkt Structural Pattern Annotations aus (Abbildung B.3,
Seite 200). In Abbildung B.12 ist auf der linken Seite der Dialog des Export-
Wizards für die Annotationen zu sehen. Hier gibt man die Typen der Anno-
tationen, die exportiert werden sollen, und die Datei für die Annotationen an.
Das Datenformat für Annotations-Dateien ist im Anhang C.2.1 zu finden.

Auf der rechten Seite in Abbildung B.12 ist der Dialog zum Export der
Trace-Definition dargestellt. Er wird im Export-Wizard über den Punkt Trace
Definition aufgerufen. Die Trace-Definition enthält die Informationen, welche
Methoden zur Laufzeit überwacht werden müssen. Das Datenformat der Trace-
Definition ist im Anhang C.2.2 spezifiziert.

206

B.3 Verhaltensbasierte Entwurfsmustererkennung

B.3 Verhaltensbasierte Entwurfsmustererkennung

Im Folgenden wird beschrieben, wie zunächst die Daten der Gesamtanalyse
für die Software-Tomographie in Daten für Teilanalysen aufgetrennt werden.
Dann wird erklärt, wie das zu untersuchende Softwaresystem zur Laufzeit mit
Hilfe des Reclipse Tracers oder der Instrumentierung beobachtet wird.
Bei der Ausführung wird ein Trace aufgezeichnet, der anschließend durch die
Verhaltensanalyse untersucht wird.

B.3.1 Software-Tomographie

Zur Anwendung der Software-Tomographie muss die Gesamtanalyse in viele
kleine Teilanalysen aufgeteilt werden. Im Falle der Entwurfsmustererkennung
bedeutet das, dass die Gesamtheit der durch die Strukturanalyse identifizierten
Kandidaten in Form von Annotationen in viele kleine Gruppen von wenigen
Annotationen getrennt werden muss. Gleichzeitig muss die Trace-Definition
ebenfalls auf die jeweils zu untersuchenden Kandidaten eingeschränkt werden.
Zu diesem Zweck gibt es den Trace Definition Splitting Wizard. Er wird über
das Kontext-Menü einer Trace-Definition aufgerufen.

Abbildung B.13: Das Zertrennen der Trace Definition und der Annotationen

Abbildung B.13 zeigt die zwei Dialoge des Wizards. Im ersten Wizard werden
die ursprüngliche Trace-Definition und die Datei mit allen von der Strukturana-

207

Anhang B Reclipse Handbuch

lyse erzeugten Annotationen ausgewählt. Gleichzeitig werden die Dateinamen
der neu zu erzeugenden, aufgetrennten Trace-Definitionen und Annotationen
angegeben.

Im zweiten Dialog können nun aufgrund von drei Kriterien die Daten ge-
trennt werden. Zunächst einmal können die Annotation in Gruppen gleicher
Größe aufgeteilt werden. Die Anzahl der Annotationen jeder Teilgruppe kann
festgelegt werden. Passend zu jeder Teilgruppe von Annotationen wird jeweils
eine Trace-Definition generiert. Die Dateien werden in nummerierter Form ab-
gelegt. Die Annotationen können aber auch nach ihrem Typ und sogar nach
einzelnen Annotationen aufgetrennt werden. So können zum Beispiel alle An-
notationen des Strategy-Entwurfsmusters separiert von allen anderen zusam-
men mit einer passenden Trace-Definition gespeichert werden.

Die so entstandene Trace-Definition, die nur einen Teil der Gesamt-Trace-
Definition enthält, bildet schließlich die Eingabe zum Debugging beziehungs-
weise zur Instrumentierung. So wird nur ein Teil der Gesamtanalyse durch-
geführt und der Einfluss auf das zu untersuchende System gering gehalten.

B.3.2 Debugging

Der Reclipse Tracer wird über die Toolbar gestartet. Abbildung B.14 zeigt
das Menü des Reclipse Tracers. Es können mehrere Konfigurationen für
Programme, die zur Laufzeit beobachtet werden sollen, abgerufen werden. Zur
Erzeugung einer neuen Konfiguration wählt man Reclipse Tracer... aus.

Abbildung B.14: Das Menü zum Aufruf des Reclipse Tracers

Es wird ein Dialog geöffnet, mit dem Konfigurationen verwaltet werden
können. In den Abbildungen B.15 und B.16 wird die Konfiguration des Me-
diaplayers bearbeitet. Auf der Main-Seite werden die Hauptklasse, mögliche
Programmparameter, das Arbeitsverzeichnis und die Trace-Definition konfigu-
riert. Die Classpath-Seite wird zur Konfiguration des Klassenpfads verwendet.
Die hier nicht abgebildeten Seiten JRE und Options dienen zum Einstellen
der Java-Laufzeitumgebung beziehungsweise einiger Optionen.

208

B.3 Verhaltensbasierte Entwurfsmustererkennung

Abbildung B.15: Die Konfiguration des Reclipse Tracers für den
Mediaplayer

Abbildung B.16: Die Konfiguration des Klassenpfads und der Listener

209

Anhang B Reclipse Handbuch

Auf der Seite Listener werden die Module konfiguriert, die die vom Tra-
cer beobachteten Methodenaufrufe verarbeiten. Es stehen zwei Module zur
Verfügung. Das Modul Behavioral Patterns Inference übergibt die Metho-
denaufrufe der Verhaltensanalyse. Dazu benötigt das Modul den Verhaltens-
muster-Katalog und die Annotationen aus der Strukturanalyse. Des Weiteren
muss man angeben, in welche Datei die Ergebnisse der Verhaltensanalyse ge-
speichert werden sollen. Der Reverse-Engineer kann entscheiden, ob die Traces,
die für einen Kandidaten überprüft werden, gespeichert werden sollen. Das
Datenformat für die Ergebnisse der Verhaltensanalyse ist im Anhang C.2.5
spezifiziert. Das zweite Modul Trace File Logger dient zum Protokollieren des
Traces. Das Datenformat ist ebenfalls im Anhang unter C.2.3 zu finden.

Wird das zu untersuchende Programm durch den Reclipse Tracer gest-
artet, so werden in einer eigenen Perspektive Informationen über den Ablauf
angezeigt. Abbildung B.17 zeigt die Ausgaben bei der Ausführung des Media-
players.

Abbildung B.17: Ausführung des Mediaplayers durch den Reclipse Tracer

Auf der linken Seite der Perspektive ist der Execution Monitor. Darin sind
alle beobachteten Methoden in einem Baum unterhalb ihrer jeweiligen Klasse

210

B.3 Verhaltensbasierte Entwurfsmustererkennung

aufgelistet. Zu jeder Methode wird außerdem angegeben, ob und wie oft sie
aufgerufen wurde. In der Sicht Tracer am unteren Rand werden Meldungen des
Reclipse Tracers ausgegeben. Sollte das zu untersuchende Programm Fehler
oder sonstige Meldungen auf der Konsole ausgeben, so werden diese in der
Sicht Console angezeigt. Die Trace-Definition kann in dem Editor rechts oben
angezeigt und bearbeitet werden.

B.3.3 Instrumentierung

Zur Instrumentierung steht ebenfalls ein Wizard zur Verfügung. Er wird über
das Reclipse-Menü aufgerufen (Abbildung B.9, Seite 204). Der Instrumentie-
rungs-Wizard besteht aus sechs Dialogen, die im Folgenden erläutert werden.

Im ersten Dialog in Abbildung B.18 kann der Reverse-Engineer entscheiden,
ob er eine neue Instrumentierungs-Konfiguration erzeugen will, oder ob er eine
existierende bearbeiten oder ausführen möchte. Im zweiten Dialog gibt der
Reverse-Engineer die Java-Klassen und Bibliotheken an, die instrumentiert
werden sollen. Auch die Angabe von Verzeichnissen, die rekursiv nach Java-
Klassen durchsucht werden können, ist möglich.

Die Instrumentierung benötigt eine Trace-Definition, in der die Methoden-
aufrufe aufgelistet sind, die überwacht werden sollen. Die Trace-Definition
wird im dritten Dialog angegeben. Des Weiteren muss die Hauptklasse
des Programms angegeben werden. Die Hauptklasse wird besonders instru-
mentiert, um den Start und das Beenden des Programms überwachen zu
können. Der Reverse-Engineer kann entscheiden, ob die angegebenen Da-
teien durch die Instrumentierung überschrieben oder in ein anderes Ver-
zeichnis kopiert werden sollen. Die instrumentierten Klassen benötigen zur
Ausführung eine Bibliothek, die die Laufzeitumgebung der Instrumentierung
enthält. Diese Instrumentierungs-Bibliothek kann in eine der zu instrumentie-
renden Bibliotheken eingefügt werden oder in ein gegebenes Verzeichnis ko-
piert werden. In beiden Fällen muss der Reverse-Engineer sicherstellen, dass
die Instrumentierungs-Bibliothek zur Laufzeit des zu untersuchenden Pro-
gramms für alle Klassen im Klassenpfad zur Verfügung steht. Zusätzlich zur
Instrumentierungs-Bibliothek wird eine Konfigurationsdatei für die Laufzeit-
umgebung erzeugt, die ebenfalls entweder in die angegebene, zu instrumentie-
rende Bibliothek eingefügt oder in das gegebene Verzeichnis geschrieben wird.
Auch diese Konfigurationsdatei muss im Klassenpfad zu finden sein.

211

Anhang B Reclipse Handbuch

Abbildung B.18: Die Konfiguration der Instrumentierung

212

B.3 Verhaltensbasierte Entwurfsmustererkennung

Im vierten Dialog werden analog zum Reclipse Tracer Module konfigu-
riert, die während des Ausführung des Programms über ausgeführte Methoden-
aufrufe informiert werden. Es stehen die gleichen zwei Module zur Verfügung,
wie im Reclipse Tracer. Das Modul Behavioral Patterns Inference über-
gibt die Methodenaufrufe der Verhaltensanalyse. Das Modul Trace File Logger
dient zum Protokollieren des Traces. Dazu benötigt es die Angabe, in welche
Datei der Trace gespeichert werden soll, und einen Namen für den Trace. Da
Traces sehr groß werden können, kann die Datei komprimiert werden. Dabei
wird eine Datei im Zip-Format angelegt, in die die eigentliche Trace-Datei
eingefügt wird.

In einigen Fällen sollen bestimmte Klassen nicht instrumentiert werden. Lie-
gen diese Klassen in zu instrumentierende Bibliotheken oder Verzeichnissen,
deren restliche Klassen alle instrumentiert werden sollen, so können im vier-
ten Dialog diese Klassen angegeben werden. Dazu muss nur ihr voll qualifi-
zierter Klassenname in die Liste eingetragen werden. Im letzten Dialog hat
der Reverse-Engineer die Gelegenheit, die Instrumentierungs-Konfiguration zu
speichern, um sie bei einer späteren Gelegenheit noch einmal zu verwenden.

B.3.4 Verhaltenserkennung

Die Verhaltensanalyse kann im Online- oder Offline-Modus durchgeführt wer-
den. Für den Online-Modus muss das Modul Behavioral Patterns Inference im
Reclipse Tracer beziehungsweise in der Instrumentierung aktiviert wer-
den. Zur Offline-Analyse muss das Modul Trace File Logger aktiviert werden,
damit der Trace während der Programmausführung aufgezeichnet wird. Der
Trace kann anschließend durch die Verhaltensanalyse im Offline-Modus un-
tersucht werden. Dazu ruft man im Reclipse-Menü Start Behavioral Patterns
Recognition... auf (Abbildung B.9, Seite 204).

Abbildung B.19 zeigt den Dialog, der dadurch geöffnet wird. Hier muss man
die Datei angeben, die die Annotationen aus der Strukturanalyse enthält, die
Datei, die den Trace enthält, und die Datei, die den Verhaltensmusterkatalog
enthält. Außerdem muss der Reverse-Engineer angeben, in welche Datei die
Ergebnisse der Verhaltensanalyse geschrieben werden.

Nach der Durchführung der Verhaltensanalyse wird die Sicht Behavioral
Analysis Result geöffnet (Abbildung B.20). Darin kann der Reverse-Engineer
zu jedem Kandidaten, der ausgeführt wurde, die untersuchten Traces ansehen.
Die Kandidaten kann man in der Kombobox unter Design Pattern Candidates
auswählen. In der Mitte links ist die Variablenbindung des Strukturmusters an
die Elemente der Struktur aufgelistet. Dies ist das Ergebnis der Strukturana-

213

Anhang B Reclipse Handbuch

Abbildung B.19: Starten der Verhaltensanalyse im Offline-Modus

lyse. In der Mitte daneben sind die im Abschnitt 5.4 erklärten Messwerte der
Verhaltensanalyse zu dem ausgewählten Kandidaten zu finden. Jeder der un-
tersuchten Traces kann auch einzeln untersucht werden. Dazu wählt man rechts
einen der Traces aus. Es wird angegeben, ob der Trace akzeptiert wurde, und
die Bindung der Verhaltensmusterobjekte an die Instanzen zur Laufzeit wird
in einer Tabelle aufgelistet. Im unteren Bereich wird der ausgewählte Trace
als Sequenzdiagramm visualisiert. Bei Traces, die verworfen wurde, wird der
letzte Methodenaufruf, der zum Verwerfen geführt hat, ebenfalls im Sequenz-
diagramm visualisiert. So kann der Reverse-Engineer leicht feststellen, warum
der Trace verworfen wurde. Um die Visualisierung der Traces zu ermöglichen,
muss bei der Online-Analyse im Modul Behavioral Patterns Inference im Re-
clipse Tracer beziehungsweise bei der Instrumentierung die Eigenschaft
logTraces auf true gesetzt werden. Bei der Offline-Analyse muss im Dialog aus
Abbildung B.19 die Option Log matched traces aktiviert werden.

Das Ergebnis der Verhaltensanalyse kann auch unabhängig von der vorher-
gehenden Verhaltensanalyse betrachtet werden. Dazu kann man in der Sicht
Behavioral Analysis Result das Ergebnis aus einer Datei laden. Dazu betätigt
man die Schaltfläche mit dem geöffneten Ordner in der Toolbar der Sicht.

214

B.3 Verhaltensbasierte Entwurfsmustererkennung

Abbildung B.20: Das Ergebnis der Verhaltensanalyse

215

Anhang B Reclipse Handbuch

216

Anhang C

Technische Dokumentation

C.1 Komponenten der Entwurfsmustererkennung

In diesem Kapitel werden die Komponenten des Werkzeugs Reclipse doku-
mentiert. Zu jeder Komponente werden ihre Funktion und ihre Version ge-
nannt. Optional werden ihre Abhängigkeiten von anderen Komponenten, die
Komponente, die ihre Benutzungsschnittstelle implementiert, sowie ihre Ein-
und Ausgaben angegeben. Einige der Komponenten sind zusätzlich von Kom-
ponenten des Eclipse-Frameworks abhängig. Diese Abhängigkeiten werden
der besseren Übersichtlichkeit halber nicht genannt.

C.1.1 de.uni paderborn.fujaba

Funktion

Dies ist die Hauptkomponente, in der die integrierte Entwicklungsumgebung
Fujaba enthalten ist. Sie stellt außerdem die Pakete ClassDiagrams (Abbil-
dung 2.1, Seite 18) zur Spezifikation von Klassendiagrammen und Structure
zur Repräsentation der Struktur (Abbildung 2.2, Seite 19) bereit. Allerdings
sind diese beiden Pakete in Fujaba aus dem in Abschnitt 2.3.1 genannten
Grund identisch.

Abhängigkeiten

Benötigt die Komponenten de.uni paderborn.runtimetools (Version 1.0.1), de.
uni paderborn.appindependent (Version 1.0.2), de.uni kassel.coobra2 (Version
1.0.0), de.uni kassel.features (Version 1.0.0) und de.uni kassel.utils (Version
1.0.0).

217

Anhang C Technische Dokumentation

Benutzungsschnittstelle

Die Benutzungsschnittstelle wird von der Komponente de.uni paderborn.fu-
jaba4eclipse (Version 0.7.0) bereitgestellt.

Version

5.0.4.20070313

C.1.2 org.reclipse.javaast

Funktion

Stellt das Paket JavaAST als Modell des abstrakten Syntaxbaums für Java-
Methodenrümpfe zur Verfügung.

Version

2.0.1

C.1.3 org.reclipse.javaparser

Funktion

Stellt einen Parser zur Verfügung, der den Java-Quelltext des zu untersuchen-
den Softwaresystems in eine Struktur auf Basis des Strukturmodells umwan-
delt.

Abhängigkeiten

Verwendet das Strukturmodell des Pakets Structure aus der Komponente
de.uni paderborn.fujaba und das Modell des abstrakten Syntaxbaums aus der
Komponente org.reclipse.javaast.

Eingabe

Java-Quelltext des zu untersuchenden Softwaresystems.

Ausgabe

Strukturmodell des zu untersuchenden Softwaresystems.

218

C.1 Komponenten der Entwurfsmustererkennung

Benutzungsschnittstelle

Die Benutzungsschnittstelle wird von der Komponente org.reclipse.javaparser.ui
(Version 1.0.0) bereitgestellt.

Version

4.0.2

C.1.4 org.reclipse.tracing

Funktion

Stellt das Paket Behavior (Abbildung 3.9, Seite 52) zur Repräsentation von Tra-
cegraphen bereit. Stellt außerdem das Paket TraceDefinition zur Spezifikation
der zu überwachenden Methoden eines Softwaresystems zur Verfügung.

Abhängigkeiten

Verwendet das Paket Structure aus der Komponente de.uni paderborn.fujaba,
um die Verbindung zwischen dem Verhaltens- und dem Strukturmodell herzu-
stellen.

Version

1.0.0

C.1.5 org.reclipse.tracer

Funktion

Stellt ein Werkzeug zum Debugging von Java-Programmcode zur Verfügung.
Das Werkzeug erzeugt Breakpoints zur Überwachung der Methodenaufrufe
während der Ausführung des Programms. Die beobachteten Methodenaufrufe
können entweder in eine Datei zur Offline-Analyse gespeichert werden, oder
direkt in einer Online-Analyse der Verhaltensanalyse übergeben werden.

Abhängigkeiten

Verwendet das Paket TraceDefinition sowie das Paket Behavior aus der Kompo-
nente org.reclipse.tracing. Verwendet außerdem das Paket Annotations aus der
Komponente org.reclipse.patterns.structure.inference.

219

Anhang C Technische Dokumentation

Eingabe

Ausführbarer Programmcode des zu untersuchenden Softwaresystems, Kandi-
daten der Strukturanalyse und Spezifikation der zu überwachenden Methoden
des Softwaresystems.

Ausgabe

Tracegraph der beobachteten Methodenaufrufe.

Benutzungsschnittstelle

Die Benutzungsschnittstelle wird von der Komponente org.reclipse.tracer.ui
(Version 1.0.0) bereitgestellt.

Version

1.0.0

C.1.6 org.reclipse.instrumentation

Funktion

Stellt ein Werkzeug zur Instrumentierung von Java-Bytecode bereit. Das
Werkzeug fügt zusätzlichen Programmcode ein, der zur Überwachung von Me-
thodenaufrufen dient.

Abhängigkeiten

Verwendet das Paket TraceDefinition aus der Komponente org.reclipse.tracing.
Verwendet außerdem das Paket Annotations aus der Komponente org.re-
clipse.patterns.structure.inference. Verwendet das Paket org.objectweb.asm (Ver-
sion 3.0.0) zur Instrumentierung des Bytecodes.

Eingabe

Ausführbarer Programmcode des zu untersuchenden Softwaresystems, Kandi-
daten der Strukturanalyse und Spezifikation der zu überwachenden Methoden
des Softwaresystems.

220

C.1 Komponenten der Entwurfsmustererkennung

Ausgabe

Instrumentierter Programmcode des zu untersuchenden Softwaresystems.

Benutzungsschnittstelle

Die Benutzungsschnittstelle wird von der Komponente org.reclipse.instrumen-
tation.ui (Version 1.0.0) bereitgestellt.

Version

1.0.0

C.1.7 org.reclipse.instrumentation.runtime

Funktion

Stellt die Laufzeitumgebung für den instrumentierten Programmcode zur
Verfügung. Wird als Bibliothek dem instrumentierten Programmcode hinzu-
gefügt. Die beobachteten Methodenaufrufe können entweder in eine Datei zur
Offline-Analyse gespeichert werden, oder direkt in einer Online-Analyse der
Verhaltensanalyse übergeben werden.

Abhängigkeiten

Verwendet das Paket Behavior aus der Komponente org.reclipse.tracing.

Eingabe

Der instrumentierte Programmcode meldet Methodenaufrufe.

Ausgabe

Tracegraph der beobachteten Methodenaufrufe.

Version

1.0.0

221

Anhang C Technische Dokumentation

C.1.8 org.reclipse.patterns.structure.specification

Funktion:

Stellt das Paket StructuralPatterns (Abbildung 4.7, Seite 68) zur Spezifikation
von Strukturmustern bereit.

Abhängigkeiten

Verwendet das Paket ClassDiagrams aus der Komponente de.uni paderborn.fu-
jaba, sowie das Paket JavaAST aus der Komponente org.reclipse.javaast, um
das Metamodell der Strukturmuster mit dem Metamodell des Strukturmo-
dells zu verbinden. Verwendet außerdem das Paket BehavioralPatterns aus der
Komponente org.reclipse.patterns.behavior.specification, um das Metamodell der
Strukturmuster mit dem Metamodell der Verhaltensmuster zu verbinden.

Ausgabe

Strukturmuster, spezifiziert durch den Reverse-Engineer.

Benutzungsschnittstelle

Die Benutzungsschnittstelle wird von der Komponente org.reclipse.patterns.
structure.specification.ui (Version 2.0.0) bereitgestellt.

Version

3.0.0

C.1.9 org.reclipse.patterns.structure.inference

Funktion

Diese Komponente enthält den Algorithmus zur Strukturanalyse (Abbildung
2.10, Seite 28). Dazu verwendet sie Erkennungsmaschinen für Strukturmuster,
um in der Struktur des zu untersuchenden Softwaresystems nach Kandidaten
für Entwurfsmusterimplementierungen zu suchen. Sie stellt außerdem das Pa-
ket Annotations (Abbildung 5.16, Seite 132) zur Annotation der Kandidaten
bereit. Für die Erkennungsmaschinen wird eine Schnittstelle definiert.

222

C.1 Komponenten der Entwurfsmustererkennung

Abhängigkeiten

Verwendet das Paket Structure aus der Komponente de.uni paderborn.fujaba
und das Paket JavaAST aus der Komponente org.reclipse.javaast.

Eingabe

Das Strukturmodell und ein Katalog von Erkennungsmaschinen für Struktur-
muster.

Ausgabe

Kandidaten für Entwurfsmusterimplementierungen in Form von Annotationen.

Benutzungsschnittstelle

Die Benutzungsschnittstelle wird von der Komponente org.reclipse.patterns.
structure.inference.ui (Version 2.0.0) bereitgestellt.

Version

4.0.0

C.1.10 org.reclipse.patterns.structure.generator

Funktion

Stellt einen Algorithmus zur Verfügung, um aus den Strukturmustern Erken-
nungsmaschinen zu generieren.

Abhängigkeiten

Verwendet das Paket StructuralPatterns aus der Komponente org.reclipse.pat-
terns.structure.specification. Verwendet außerdem die Schnittstellen für die
Erkennungsmaschinen aus der Komponente org.reclipse.patterns.structure.in-
ference.

Eingabe

Strukturmuster.

223

Anhang C Technische Dokumentation

Ausgabe

Erkennungsmaschinen für Strukturmuster.

Benutzungsschnittstelle

Die Benutzungsschnittstelle wird von der Komponente org.reclipse.patterns.
structure.generator.ui (Version 1.1.1) bereitgestellt.

Version

2.1.0

C.1.11 org.reclipse.patterns.behavior.specification

Funktion

Stellt das Paket BehavioralPatterns (Abbildung 4.5, Seite 64) zur Spezifikation
der Verhaltensmuster bereit.

Abhängigkeiten

Verwendet das Paket StructuralPatterns aus der Komponente org.reclipse.pat-
terns.structure.specification, um das Metamodell der Verhaltensmuster mit
dem Metamodell der Strukturmuster zu verbinden. Benötigt außerdem die
Komponenten de.uni paderborn.fujaba.sequencediagrams (Version 1.0.0) und de.
uni paderborn.fujaba.sequencediagrams.ui (Version 1.0.0) .

Ausgabe

Verhaltensmuster, spezifiziert durch den Reverse-Engineer.

Benutzungsschnittstelle

Die Benutzungsschnittstelle wird von der Komponente org.reclipse.patterns.be-
havior.specification.ui (Version 1.0.0) bereitgestellt.

Version

1.0.0

224

C.1 Komponenten der Entwurfsmustererkennung

C.1.12 org.reclipse.patterns.behavior.inference

Funktion

Diese Komponente enthält den Algorithmus zur Verhaltensanalyse (Abbildung
5.1, Seite 106). Sie verwendet endliche Automaten, um im Tracegraphen nach
Verhaltensmustern zu suchen. Sie stellt außerdem die Pakete BehaviorAnaly-
sis (Abbildung 5.2, Seite 111) und Automaton (Abbildung 5.3, Seite 113) zur
Verfügung.

Abhängigkeiten

Verwendet die durch das Paket Behavior aus der Komponente org.reclipse.tra-
cing repräsentierten und von den Komponenten org.reclipse.tracer oder org.re-
clipse.instrumentation.runtime erzeugten Tracegraphen. Verwendet außerdem
das Paket Annotations aus der Komponente org.reclipse.patterns.structure.infe-
rence.

Eingabe

Kandidaten der Strukturanalyse, ein Tracegraph und ein Katalog von Verhal-
tensmustern.

Ausgabe

Bewertung der Konformität der Kandidaten zu den Verhaltensmustern.

Benutzungsschnittstelle

Die Benutzungsschnittstelle wird von der Komponente org.reclipse.patterns.be-
havior.inference.ui (Version 1.0.0) bereitgestellt.

Version

1.0.0

C.1.13 org.reclipse.patterns.behavior.generator

Funktion

Stellt den Algorithmus aus Abschnitt 4.4 zur Verfügung, um aus den Verhal-
tensmustern endliche Automaten zu generieren. Erzeugt außerdem aus dem

225

Anhang C Technische Dokumentation

Ergebnis der Strukturanalyse die Trace-Definition zur Überwachung des Pro-
gramms.

Abhängigkeiten

Verwendet das Paket BehavioralPatterns aus der Komponente org.reclipse.pat-
terns.behavior.specification und das Paket Automaton aus der Komponente
org.reclipse.patterns.behavior.inference.

Eingabe

Verhaltensmuster.

Ausgabe

Deterministische, endliche Automaten zur Erkennung der Verhaltensmuster.

Benutzungsschnittstelle

Die Benutzungsschnittstelle wird von der Komponente org.reclipse.patterns.be-
havior.generator.ui (Version 1.0.0) bereitgestellt.

Version

1.0.0

C.2 Datenformate der Komponenten

Im Folgenden werden die wichtigsten Datenformate der zuvor vorgestellten
Komponenten spezifiziert. Dazu werden jeweils eine Document Type Definition
und ein passendes Beispiel jeweils in XML-Syntax angegeben.

C.2.1 Annotationen

Für jeden in der Strukturanalyse identifizierten Kandidaten gibt es eine Va-
riablenbindung des Strukturmusters an Elemente der Struktur. Diese Varia-
blenbindung ist in einer Annotation festgehalten. Annotationen werden ent-
weder als einfache Textdatei mit dem Suffix .xannotations oder als kom-
primierte Datei im Zip-Format mit dem Suffix .zannotations gespeichert.

226

C.2 Datenformate der Komponenten

Die komprimierte Datei enthält einen Eintrag mit dem Namen Structu-
ralAnnotations.xannotations. Die Annotationen sind Ausgabe der Komponen-
te org.reclipse.patterns.structure.inference und Eingabe der Komponente org.re-
clipse.patterns.behavior.inference.

Document Type Definition

Die Variablenbindung ist in den Elementen des Typs BoundObject festgehalten.
Das Attribut key ist der Variablenname aus dem Strukturmuster, name der
Name des Strukturelements.

<!ELEMENT StructuralAnnotations (StructuralAnnotation*)>

<!ELEMENT StructuralAnnotation (BoundObject*)>

<!ATTLIST StructuralAnnotation name CDATA #REQUIRED

fuzzyBelief CDATA #IMPLIED>

<!ELEMENT BoundObject EMPTY>

<!ATTLIST BoundObject key CDATA #REQUIRED

name CDATA #REQUIRED>

Beispiel

In diesem Beispiel sind die Annotationen eines Observer -, eines Strategy- und
eines State-Kandidaten aus dem Mediaplayer gespeichert.

<?xml version="1.0" standalone="no"?>

<!DOCTYPE StructuralAnnotations SYSTEM "http://wwwcs.

uni-paderborn.de/cs/fujaba/DTDs/StructuralAnnotations.dtd">

<StructuralAnnotations>

<StructuralAnnotation name="Observer" fuzzyBelief="17.12">

<BoundObject key="update" name="Stream()"/>

<BoundObject key="register"

name="execute(mediaplayer.Stream, int)"/>

<BoundObject key="subject" name="mediaplayer.StreamState"/>

<BoundObject key="observerClass" name="mediaplayer.Stream"/>

<BoundObject key="getState" name="run(mediaplayer.Stream)"/>

</StructuralAnnotation>

<StructuralAnnotation name="Strategy" fuzzyBelief="62.20">

227

Anhang C Technische Dokumentation

<BoundObject key="abstractStrategy"

name="mediaplayer.StreamState"/>

<BoundObject key="algorithm"

name="execute(mediaplayer.Stream, int)"/>

<BoundObject key="request" name="execute(int)"/>

<BoundObject key="context" name="mediaplayer.Stream"/>

<BoundObject key="setStrategy"

name="setState(mediaplayer.StreamState)"/>

</StructuralAnnotation>

<StructuralAnnotation name="State" fuzzyBelief="63.31">

<BoundObject key="handle"

name="execute(mediaplayer.Stream, int)"/>

<BoundObject key="setState"

name="setState(mediaplayer.StreamState)"/>

<BoundObject key="abstractState"

name="mediaplayer.StreamState"/>

<BoundObject key="context" name="mediaplayer.Stream"/>

<BoundObject key="request" name="execute(int)"/>

</StructuralAnnotation>

</StructuralAnnotations>

C.2.2 Trace-Definition

Die Trace-Definition ist wie die Annotationen ebenfalls Ergebnis der Struk-
turanalyse. In ihr wird festgehalten, welche Methodenaufrufe welcher Klas-
sen zur Laufzeit beobachtet werden müssen. Die Trace-Definition wird ent-
weder als einfache Textdatei mit dem Suffix .xtracedefinition oder als kom-
primierte Datei im Zip-Format mit dem Suffix .ztracedefinition gespeichert.
Die komprimierte Datei enthält einen Eintrag mit dem Namen TraceDe-
finition.xtracedefinition. Die Trace-Definition ist Ausgabe der Komponente
org.reclipse.patterns.behavior.generator und Eingabe der Komponenten org.re-
clipse.tracer und org.reclipse.instrumentation.

Document Type Definition

Eine Trace-Definition besteht aus zwei Bereichen, einem CriticalTrace und ei-
nem ConsiderTrace. Im CriticalTrace werden nur Klassen genannt. Von diesen
Klassen werden alle Methodenaufrufe überwacht. Im ConsiderTrace sind da-

228

C.2 Datenformate der Komponenten

gegen Klassen aufgeführt, von denen nur die gegebenen Methoden überwacht
werden sollen.

<!ELEMENT TraceDefinition (CriticalTrace?, ConsiderTrace?)>

<!ELEMENT CriticalTrace (CriticalClass+)>

<!ELEMENT CriticalClass (CallerClass*)>

<!ATTLIST CriticalClass name CDATA #REQUIRED>

<!ELEMENT CallerClass EMPTY>

<!ATTLIST CallerClass name CDATA #REQUIRED>

<!ELEMENT ConsiderTrace (ConsiderClass+)>

<!ELEMENT ConsiderClass (ConsiderMethod+)>

<!ATTLIST ConsiderClass name CDATA #REQUIRED>

<!ELEMENT ConsiderMethod (Parameter*, CallerClass*)>

<!ATTLIST ConsiderMethod name CDATA #REQUIRED>

<!ELEMENT Parameter EMPTY>

<!ATTLIST Parameter type CDATA #REQUIRED>

Beispiel

Das Beispiel zeigt die Trace-Definition des Mediaplayers.

<?xml version="1.0" standalone="no"?>

<!DOCTYPE TraceDefinition SYSTEM "http://wwwcs.uni-paderborn.de/

cs/fujaba/DTDs/TraceDefinition.dtd">

<TraceDefinition>

<ConsiderTrace>

<ConsiderClass name="mediaplayer.Stream">

<ConsiderMethod name="Stream"/>

<ConsiderMethod name="setState">

<Parameter type="mediaplayer.StreamState"/>

</ConsiderMethod>

<ConsiderMethod name="execute">

229

Anhang C Technische Dokumentation

<Parameter type="int"/>

</ConsiderMethod>

</ConsiderClass>

<ConsiderClass name="mediaplayer.StreamPlaying">

<ConsiderMethod name="execute">

<Parameter type="mediaplayer.Stream"/>

<Parameter type="int"/>

</ConsiderMethod>

</ConsiderClass>

<ConsiderClass name="mediaplayer.StreamStopped">

<ConsiderMethod name="execute">

<Parameter type="mediaplayer.Stream"/>

<Parameter type="int"/>

</ConsiderMethod>

</ConsiderClass>

<ConsiderClass name="mediaplayer.StreamPaused">

<ConsiderMethod name="execute">

<Parameter type="mediaplayer.Stream"/>

<Parameter type="int"/>

</ConsiderMethod>

</ConsiderClass>

<ConsiderClass name="mediaplayer.StreamState">

<ConsiderMethod name="execute">

<Parameter type="mediaplayer.Stream"/>

<Parameter type="int"/>

</ConsiderMethod>

<ConsiderMethod name="run">

<Parameter type="mediaplayer.Stream"/>

</ConsiderMethod>

</ConsiderClass>

</ConsiderTrace>

</TraceDefinition>

230

C.2 Datenformate der Komponenten

C.2.3 Tracegraph

Der Tracegraph enthält alle aufgezeichneten Methodenaufrufe einer Pro-
grammausführung. Ein Tracegraph wird entweder als einfache Textdatei mit
dem Suffix .xtrace oder als komprimierte Datei im Zip-Format mit dem Suf-
fix .ztrace gespeichert. Die komprimierte Datei enthält einen Eintrag mit
dem Namen Trace.xtrace. Der Tracegraph ist Ausgabe der Komponenten
org.reclipse.tracer und org.reclipse.instrumentation und Eingabe der Komponen-
te org.reclipse.patterns.behavior.inference.

Document Type Definition

Im Tracegraph werden der Start des Programms, das Laden einer Klasse,
das Starten und Beenden eines Methodenaufrufs, sowie das Beenden des Pro-
gramms als Ereignisse festgehalten. Wird eine überwachte Klasse geladen, so
wird im Element ClassLoaded auch die Vererbungshierarchie der Klasse aufge-
zeichnet, um bei der Verhaltensanalyse polymorphe Methodenaufrufe erkennen
zu können.

<!ELEMENT Trace (ProcessStart,

(ClassLoaded|MethodEntry|MethodExit)*,

ProcessEnd)>

<!ATTLIST Trace mainclass CDATA #IMPLIED

date CDATA #IMPLIED>

<!ELEMENT ProcessStart EMPTY>

<!ATTLIST ProcessStart name CDATA #REQUIRED

time CDATA #IMPLIED>

<!ELEMENT ClassLoaded (SuperType*)>

<!ATTLIST ClassLoaded name CDATA #REQUIRED>

<!ELEMENT SuperType EMPTY>

<!ATTLIST SuperType name CDATA #REQUIRED>

<!ELEMENT MethodEntry (Caller, Callee, Argument*)>

<!ATTLIST MethodEntry id CDATA #REQUIRED

name CDATA #REQUIRED

thread CDATA #IMPLIED

time CDATA #IMPLIED>

231

Anhang C Technische Dokumentation

<!ELEMENT Caller EMPTY>

<!ATTLIST Caller id CDATA #REQUIRED

type CDATA #REQUIRED>

<!ELEMENT Callee EMPTY>

<!ATTLIST Callee id CDATA #REQUIRED

type CDATA #REQUIRED>

<!ELEMENT Argument EMPTY>

<!ATTLIST Argument value CDATA #IMPLIED

id CDATA #IMPLIED

type CDATA #REQUIRED>

<!ELEMENT MethodExit EMPTY>

<!ATTLIST MethodExit id CDATA #REQUIRED>

<!ELEMENT ProcessEnd EMPTY>

<!ATTLIST ProcessEnd time CDATA #IMPLIED>

Beispiel

Das Beispiel zeigt einen kleinen Ausschnitt aus dem Tracegraphen, der
während der Ausführung des Mediaplayers aufgezeichnet wurde.

<?xml version="1.0" standalone="no"?>

<!DOCTYPE BehavioralPatternsCatalog SYSTEM "http://wwwcs.

uni-paderborn.de/cs/fujaba/DTDs/Trace.dtd">

<Trace mainclass="mediaplayer.Player"

date="Mon Jan 29 17:14:34 CET 2007">

<ProcessStart name="main"/>

<ClassLoaded name="mediaplayer.Stream">

</ClassLoaded>

<ClassLoaded name="mediaplayer.StreamState">

</ClassLoaded>

232

C.2 Datenformate der Komponenten

<ClassLoaded name="mediaplayer.StreamStopped">

<SuperType name="mediaplayer.StreamState"/>

</ClassLoaded>

<MethodEntry id="1" name="setState" thread="main">

<Caller id="66" type="mediaplayer.Stream"/>

<Callee id="66" type="mediaplayer.Stream"/>

<Argument id="68" type="mediaplayer.StreamState"/>

</MethodEntry>

<MethodEntry id="2" name="run" thread="main">

<Caller id="66" type="mediaplayer.Stream"/>

<Callee id="68" type="mediaplayer.StreamStopped"/>

<Argument id="66" type="mediaplayer.Stream"/>

</MethodEntry>

<MethodEntry id="3" name="execute" thread="main">

<Caller id="69" type="mediaplayer.Player"/>

<Callee id="66" type="mediaplayer.Stream"/>

<Argument value="1" type="int"/>

</MethodEntry>

<MethodEntry id="4" name="execute" thread="main">

<Caller id="66" type="mediaplayer.Stream"/>

<Callee id="68" type="mediaplayer.StreamStopped"/>

<Argument id="66" type="mediaplayer.Stream"/>

<Argument value="1" type="int"/>

</MethodEntry>

...

<ProcessEnd/>

</Trace>

233

Anhang C Technische Dokumentation

C.2.4 Verhaltensmusterkatalog

Im Verhaltensmusterkatalog werden die endlichen Automaten gespeichert,
die aus den Verhaltensmustern generiert wurden. Er ist Ausgabe der Kom-
ponente org.reclipse.patterns.behavior.generator und Eingabe der Komponente
org.reclipse.patterns.behavior.inference.

Document Type Definition

Zu jedem Verhaltensmuster gibt es einen DFA und einen Trigger, also eine
Methode, deren Aufruf die Analyse eines Traces auslöst. Der DFA besteht aus
den Symbolen des Eingabealphabets, mehreren Zuständen und Transitionen
zwischen den Zuständen und einem expliziten Startzustand. Der Typ eines
Zustands ist in dem Attribut type festgehalten. Das Attribut type eines nicht-
akzeptierenden Zustands hat den Wert 0, eines akzeptierenden Zustands den
Wert 1 und eines verwerfenden Zustands den Wert 2.

<!ELEMENT BehavioralPatternsCatalog (BehavioralPatternEntry*)>

<!ELEMENT BehavioralPatternEntry (DFA, Trigger+)>

<!ATTLIST BehavioralPatternEntry name CDATA #REQUIRED

negative CDATA #IMPLIED>

<!ELEMENT DFA ((PermittedMethodCallSymbol|

ProhibitedMethodCallSymbol|

ProhibitedCallerSymbol)+, State+, Transition*,

StartState)>

<!ELEMENT PermittedMethodCallSymbol (Caller, Callee)>

<!ATTLIST PermittedMethodCallSymbol id CDATA #REQUIRED

methodName CDATA #REQUIRED>

<!ELEMENT ProhibitedMethodCallSymbol (Callee)>

<!ATTLIST ProhibitedMethodCallSymbol id CDATA #REQUIRED

methodName CDATA #REQUIRED>

<!ELEMENT ProhibitedCallerSymbol (PermittedCaller+, Callee)>

<!ATTLIST ProhibitedCallerSymbol id CDATA #REQUIRED

methodName CDATA #REQUIRED>

234

C.2 Datenformate der Komponenten

<!ELEMENT Caller EMPTY>

<!ATTLIST Caller name CDATA #REQUIRED

type CDATA #IMPLIED>

<!ELEMENT Callee EMPTY>

<!ATTLIST Callee name CDATA #REQUIRED

type CDATA #REQUIRED>

<!ELEMENT PermittedCaller EMPTY>

<!ATTLIST PermittedCaller name CDATA #REQUIRED

type CDATA #IMPLIED>

<!ELEMENT State EMPTY>

<!ATTLIST State id CDATA #REQUIRED

name CDATA #IMPLIED

type CDATA #REQUIRED>

<!ELEMENT Transition EMPTY>

<!ATTLIST Transition previousStateId CDATA #REQUIRED

nextStateId CDATA #REQUIRED

symbolId CDATA #REQUIRED>

<!ELEMENT StartState EMPTY>

<!ATTLIST StartState id CDATA #REQUIRED>

<!ELEMENT Trigger EMPTY>

<!ATTLIST Trigger callerType CDATA #IMPLIED

calleeType CDATA #REQUIRED

methodName CDATA #REQUIRED>

Beispiel

Das Beispiel ist nur ein kleiner Ausschnitt aus dem Verhaltensmusterkatalog,
der für die Analyse des Mediaplayers verwendet wurde. Es enthält lediglich die
Definition des endlichen Automaten für das State-Verhaltensmuster.

<?xml version="1.0" standalone="no"?>

<!DOCTYPE BehavioralPatternsCatalog SYSTEM "http://wwwcs.

uni-paderborn.de/cs/fujaba/DTDs/BehavioralPatternsCatalog.dtd">

235

Anhang C Technische Dokumentation

<BehavioralPatternsCatalog>

<BehavioralPatternEntry name="State" negative="false">

<DFA>

<PermittedMethodCallSymbol id="symbol19"

methodName="setState">

<Caller name="client"/>

<Callee name="c" type="context"/>

</PermittedMethodCallSymbol>

<PermittedMethodCallSymbol id="symbol20"

methodName="request">

<Caller name="client"/>

<Callee name="c" type="context"/>

</PermittedMethodCallSymbol>

<PermittedMethodCallSymbol id="symbol21"

methodName="handle">

<Caller name="c" type="context"/>

<Callee name="a" type="abstractState"/>

</PermittedMethodCallSymbol>

<PermittedMethodCallSymbol id="symbol22"

methodName="setState">

<Caller name="c" type="context"/>

<Callee name="c" type="context"/>

</PermittedMethodCallSymbol>

<PermittedMethodCallSymbol id="symbol23"

methodName="setState">

<Caller name="a" type="abstractState"/>

<Callee name="c" type="context"/>

</PermittedMethodCallSymbol>

<PermittedMethodCallSymbol id="symbol24"

methodName="handle">

<Caller name="c" type="context"/>

<Callee name="b" type="abstractState"/>

</PermittedMethodCallSymbol>

236

C.2 Datenformate der Komponenten

<ProhibitedMethodCallSymbol id="symbol25"

methodName="setState">

<Callee name="c" type="context"/>

</ProhibitedMethodCallSymbol>

<ProhibitedMethodCallSymbol id="symbol26"

methodName="handle">

<Callee name="a" type="abstractState"/>

</ProhibitedMethodCallSymbol>

<ProhibitedMethodCallSymbol id="symbol27"

methodName="handle">

<Callee name="b" type="abstractState"/>

</ProhibitedMethodCallSymbol>

<ProhibitedMethodCallSymbol id="symbol28"

methodName="request">

<Callee name="c" type="context"/>

</ProhibitedMethodCallSymbol>

<ProhibitedCallerSymbol id="symbol29"

methodName="request">

<PermittedCaller name="client"/>

<Callee name="c" type="context"/>

</ProhibitedCallerSymbol>

<ProhibitedCallerSymbol id="symbol30" methodName="handle">

<PermittedCaller name="c" type="context"/>

<Callee name="a" type="abstractState"/>

</ProhibitedCallerSymbol>

<ProhibitedCallerSymbol id="symbol31"

methodName="setState">

<PermittedCaller name="c" type="context"/>

<PermittedCaller name="a" type="abstractState"/>

<Callee name="c" type="context"/>

</ProhibitedCallerSymbol>

237

Anhang C Technische Dokumentation

<ProhibitedCallerSymbol id="symbol32" methodName="handle">

<PermittedCaller name="c" type="context"/>

<Callee name="b" type="abstractState"/>

</ProhibitedCallerSymbol>

<State id="state13" name="0,1" type="0"/>

<State id="state14" name="1" type="0"/>

<State id="state15" name="2" type="0"/>

<State id="state16" name="4,3,1" type="0"/>

<State id="state17" name="5,6" type="0"/>

<State id="state18" name="5,7" type="0"/>

<State id="state19" name="8" type="0"/>

<State id="state20" name="5,9,10" type="1"/>

<State id="state21" name="R" type="2"/>

<Transition previousStateId="state17"

nextStateId="state21" symbolId="symbol29"/>

<Transition previousStateId="state14"

nextStateId="state21" symbolId="symbol27"/>

<Transition previousStateId="state15"

nextStateId="state21" symbolId="symbol28"/>

<Transition previousStateId="state16"

nextStateId="state21" symbolId="symbol29"/>

<Transition previousStateId="state13"

nextStateId="state15" symbolId="symbol20"/>

<Transition previousStateId="state17"

nextStateId="state21" symbolId="symbol26"/>

<Transition previousStateId="state19"

nextStateId="state21" symbolId="symbol32"/>

<Transition previousStateId="state16"

nextStateId="state21" symbolId="symbol27"/>

<Transition previousStateId="state15"

nextStateId="state21" symbolId="symbol30"/>

<Transition previousStateId="state18"

nextStateId="state21" symbolId="symbol29"/>

<Transition previousStateId="state16"

nextStateId="state18" symbolId="symbol23"/>

<Transition previousStateId="state18"

nextStateId="state21" symbolId="symbol25"/>

238

C.2 Datenformate der Komponenten

<Transition previousStateId="state16"

nextStateId="state21" symbolId="symbol26"/>

<Transition previousStateId="state19"

nextStateId="state20" symbolId="symbol24"/>

<Transition previousStateId="state14"

nextStateId="state15" symbolId="symbol20"/>

<Transition previousStateId="state16"

nextStateId="state21" symbolId="symbol31"/>

<Transition previousStateId="state15"

nextStateId="state21" symbolId="symbol27"/>

<Transition previousStateId="state18"

nextStateId="state19" symbolId="symbol20"/>

<Transition previousStateId="state18"

nextStateId="state21" symbolId="symbol26"/>

<Transition previousStateId="state14"

nextStateId="state21" symbolId="symbol26"/>

<Transition previousStateId="state15"

nextStateId="state16" symbolId="symbol21"/>

<Transition previousStateId="state19"

nextStateId="state21" symbolId="symbol28"/>

<Transition previousStateId="state20"

nextStateId="state19" symbolId="symbol20"/>

<Transition previousStateId="state14"

nextStateId="state21" symbolId="symbol25"/>

<Transition previousStateId="state18"

nextStateId="state21" symbolId="symbol27"/>

<Transition previousStateId="state17"

nextStateId="state21" symbolId="symbol25"/>

<Transition previousStateId="state17"

nextStateId="state21" symbolId="symbol27"/>

<Transition previousStateId="state13"

nextStateId="state14" symbolId="symbol19"/>

<Transition previousStateId="state19"

nextStateId="state21" symbolId="symbol26"/>

<Transition previousStateId="state17"

nextStateId="state19" symbolId="symbol20"/>

<Transition previousStateId="state19"

nextStateId="state21" symbolId="symbol25"/>

<Transition previousStateId="state14"

239

Anhang C Technische Dokumentation

nextStateId="state21" symbolId="symbol29"/>

<Transition previousStateId="state16"

nextStateId="state15" symbolId="symbol20"/>

<Transition previousStateId="state15"

nextStateId="state21" symbolId="symbol25"/>

<Transition previousStateId="state16"

nextStateId="state17" symbolId="symbol22"/>

<StartState id="state13"/>

</DFA>

<Trigger calleeType="context" methodName="setState"/>

<Trigger calleeType="context" methodName="request"/>

</BehavioralPatternEntry>

...

</BehavioralPatternsCatalog>

C.2.5 Ergebnis der struktur- und verhaltensbasierten
Entwurfsmustererkennung

Das Ergebnis der struktur- und verhaltensbasierten Entwurfsmustererkennung
ist Ausgabe der Komponente org.reclipse.patterns.behavior.inference. Sie kann
nachträglich im Werkzeug Reclipse in der Sicht Behavioral Analysis Result
geladen und vom Reverse-Engineer ausgewertet werden.

Document Type Definition

Zu jedem Kandidaten, zu dem Traces analysiert wurden, gibt es ein Element
Annotation, das das Ergebnis der Strukturanalyse im Element StructuralAnno-
tation und das Ergebnis der Verhaltensanalyse im Element BehavioralAnnotati-
on enthält. Zusätzlich können in dem Ergebnis der Verhaltensanalyse auch die
untersuchten Traces enthalten sein.

<!ELEMENT BehavioralAnalysisResult (Annotation*)>

<!ATTLIST BehavioralAnalysisResult date CDATA #IMPLIED>

240

C.2 Datenformate der Komponenten

<!ELEMENT Annotation (StructuralAnnotation,

BehavioralAnnotation)>

<!ATTLIST Annotation type CDATA #REQUIRED>

<!ELEMENT StructuralAnnotation (BoundObject*)>

<!ATTLIST StructuralAnnotation fuzzyBelief CDATA #IMPLIED>

<!ELEMENT BoundObject EMPTY>

<!ATTLIST BoundObject key CDATA #REQUIRED

name CDATA #REQUIRED>

<!ELEMENT BehavioralAnnotation (Trace*)>

<!ATTLIST BehavioralAnnotation traces CDATA #REQUIRED

acceptedTraces CDATA #REQUIRED

notAcceptedTraces CDATA #REQUIRED

rejectedTraces CDATA #REQUIRED

passedAcceptingStateTraces CDATA #REQUIRED

avgLengthAcceptedTraces CDATA #REQUIRED>

<!ELEMENT Trace (BoundObject+, MethodCall+)>

<!ATTLIST Trace id CDATA #REQUIRED

result CDATA #REQUIRED

passedAcceptingState CDATA #REQUIRED

lengthOfAcceptedTrace CDATA #REQUIRED>

<!ELEMENT MethodCall (Caller, Callee, Argument*)>

<!ATTLIST MethodCall id CDATA #REQUIRED

name CDATA #REQUIRED>

<!ELEMENT Caller EMPTY>

<!ATTLIST Caller id CDATA #REQUIRED

type CDATA #REQUIRED>

<!ELEMENT Callee EMPTY>

<!ATTLIST Callee id CDATA #REQUIRED

type CDATA #REQUIRED>

<!ELEMENT Argument EMPTY>

241

Anhang C Technische Dokumentation

<!ATTLIST Argument value CDATA #IMPLIED

id CDATA #IMPLIED

type CDATA #REQUIRED>

Beispiel

Das Beispiel zeigt einen kleinen Ausschnitt aus dem Ergebnis der Analyse des
Mediaplayers.

<?xml version="1.0" standalone="no"?>

<!DOCTYPE BehavioralAnalysisResult SYSTEM "http://wwwcs.

uni-paderborn.de/cs/fujaba/DTDs/BehavioralAnalysisResult.dtd">

<BehavioralAnalysisResult date="Thu Mar 08 16:52:49 CET 2007">

<Annotation type="State">

<StructuralAnnotation fuzzyBelief="63.31360076101584">

<BoundObject key="handle"

name="execute(mediaplayer.Stream, int)"/>

<BoundObject key="abstractState"

name="mediaplayer.StreamState"/>

<BoundObject key="context" name="mediaplayer.Stream"/>

<BoundObject key="setState"

name="setState(mediaplayer.StreamState)"/>

<BoundObject key="request" name="execute(int)"/>

</StructuralAnnotation>

<BehavioralAnnotation traces="8" acceptedTraces="1"

notAcceptedTraces="2" rejectedTraces="5"

passedAcceptingStateTraces="3"

avgLengthAcceptedTraces="5.0">

<Trace id="0" result="2" passedAcceptingState="1"

lengthOfAcceptedTrace="5">

<BoundObject key="a" name="67"/>

<BoundObject key="c" name="65"/>

<BoundObject key="client" name="68"/>

242

C.2 Datenformate der Komponenten

<BoundObject key="b" name="70"/>

<MethodCall id="2" name="execute">

<Caller id="68" typeName="mediaplayer.Player"/>

<Callee id="65" typeName="mediaplayer.Stream"/>

<Argument typeName="int"/>

</MethodCall>

<MethodCall id="3" name="execute">

<Caller id="65" typeName="mediaplayer.Stream"/>

<Callee id="67" typeName="mediaplayer.StreamStopped"/>

<Argument typeName="mediaplayer.Stream"/>

<Argument typeName="int"/>

</MethodCall>

<MethodCall id="4" name="setState">

<Caller id="67" typeName="mediaplayer.StreamStopped"/>

<Callee id="65" typeName="mediaplayer.Stream"/>

<Argument typeName="mediaplayer.StreamState"/>

</MethodCall>

<MethodCall id="6" name="execute">

<Caller id="68" typeName="mediaplayer.Player"/>

<Callee id="65" typeName="mediaplayer.Stream"/>

<Argument typeName="int"/>

</MethodCall>

<MethodCall id="7" name="execute">

<Caller id="65" typeName="mediaplayer.Stream"/>

<Callee id="70" typeName="mediaplayer.StreamPlaying"/>

<Argument typeName="mediaplayer.Stream"/>

<Argument typeName="int"/>

</MethodCall>

<MethodCall id="10" name="execute">

<Caller id="68" typeName="mediaplayer.Player"/>

<Callee id="65" typeName="mediaplayer.Stream"/>

<Argument typeName="int"/>

</MethodCall>

243

Anhang C Technische Dokumentation

<MethodCall id="12" name="setState">

<Caller id="72" typeName="mediaplayer.StreamPaused"/>

<Callee id="65" typeName="mediaplayer.Stream"/>

<Argument typeName="mediaplayer.StreamState"/>

</MethodCall>

</Trace>

...

</BehavioralAnnotation>

</Annotation>

</BehavioralAnalysisResult>

244

Abbildungen

1.1 Kostenverteilung im Re-Engineering nach A. Frazer [Fra92] . . . 2
1.2 Die Struktur des State-Entwurfsmusters 6
1.3 Die Struktur des Strategy-Entwurfsmusters 7

2.1 Das Metamodell für Strukturmodelle, Paket ClassDiagrams . . . 18
2.2 Ausschnitt aus dem Strukturmodell für Quelltexte objektorien-

tierter Sprachen, Paket Structure 19
2.3 Klassendiagramm eines Mediaplayers 20
2.4 Die Struktur des State Entwurfsmusters 21
2.5 Das Strukturmuster des State-Entwurfsmusters 22
2.6 Das Strukturmuster des Delegation-Hilfsmusters 23
2.7 Modell der Annotationen, Paket Annotations 24
2.8 Metamodell der Strukturmuster, Paket StructuralPatterns 25
2.9 Regelkatalog . 26
2.10 Der strukturbasierte Erkennungsprozess 28
2.11 Fuzzy-Petri-Netz zur Bewertung eines State-Kandidaten 31
2.12 Ein Kandidat einer State-Entwurfsmusterimplementierung . . . 32
2.13 Die Abstraktionsschichten der strukturbasierten Entwurfsmu-

stererkennung . 34

3.1 Eine Variante des State-Entwurfsmusters 38
3.2 Das Strukturmuster des StateInterface-Entwurfsmusters 39
3.3 Das unscharfe State-Strukturmuster 40
3.4 Das unscharfe Strukturmuster des Anti-Patterns Large Class . . 42
3.5 Die Struktur des State-Entwurfsmusters 45
3.6 Die Struktur des Strategy-Entwurfsmusters 46
3.7 Der kombinierte Erkennungsprozess 48
3.8 Trace eines Programmlaufs . 51
3.9 Das Modell des Tracegraphen, Paket Behavior 52
3.10 Die Modellierung von Struktur und Verhalten eines Softwaresy-

stems . 53

245

Abbildungen

4.1 Das Verhaltensmuster des State-Entwurfsmusters 59
4.2 Das Verhaltensmuster des Strategy-Entwurfsmusters 60
4.3 Ein negatives Verhaltensmuster des Strategy-Entwurfsmusters . 61
4.4 Das Strukturmuster des State-Entwurfsmusters 62
4.5 Metamodell der Verhaltensmuster, Paket BehavioralPatterns . . . 64
4.6 Abstrakter Syntaxgraph des negativen Strategy-Verhaltensmus-

ters . 66
4.7 Erweitertes Metamodell der Strukturmuster, Paket Structural-

Patterns . 68
4.8 Die Abstraktionsschichten der Struktur- und Verhaltensmuster . 73
4.9 Der State-Kandidat des Mediaplayers 74
4.10 Beobachteter Trace des Mediaplayers 76
4.11 Ein State-Verhaltensmuster zu Instanzen des Mediaplayer-Kan-

didaten . 78
4.12 Beobachteter Trace des Mediaplayers 82
4.13 Sequenzdiagramm des Mediaplayers 83
4.14 Zum State-Verhaltensmuster nicht-konformer Trace 84
4.15 Unerlaubter Aufrufer der Nachricht setState 85
4.16 Unerlaubte Nachricht . 85
4.17 Konkatenation zweier Interaktionsfragmente 87
4.18 Transformation einer Nachricht 88
4.19 Transformation eines alternativen Fragments mit zwei Operanden 89
4.20 Transformation eines optionalen Fragments 90
4.21 Transformation einer Schleife mit mindestens einem aber belie-

big vielen Durchläufen . 91
4.22 Transformation einer Schleife mit beliebig vielen Durchläufen . . 92
4.23 Algorithmus zur Transformation eines Verhaltensmusters in

einen NFA . 93
4.24 Nichtdeterministischer, endlicher Automat für das State-Verhal-

tensmuster . 94
4.25 Deterministischer Automat für das State-Verhaltensmuster . . . 95
4.26 Zum State-Verhaltensmuster nicht-konformer Trace 96
4.27 Alternativer, zum State-Verhaltensmuster nicht-konformer Trace 97
4.28 Ausschnitt aus dem um einen verwerfenden Zustand erweiterten

DFA . 98
4.29 Erweiterung des Zustands 4 um zusätzliche Transitionen 99
4.30 Algorithmus zur Berechnung der aufgerufenen Nachrichten eines

Verhaltensmusters . 100

246

Abbildungen

5.1 Der verhaltensbasierte Erkennungsprozess 106
5.2 Modell der Verhaltenserkennung, Paket BehaviorAnalysis 111
5.3 Modell des deterministischen Automaten, Paket Automaton . . . 113
5.4 Die Methode methodCalled der Klasse Trigger 117
5.5 Die Methode methodCalled der Klasse BehavioralAnalysis 118
5.6 Die Methode methodCalled der Klasse DFA 118
5.7 Die Methode methodCalled der Klasse State 119
5.8 Die Methode accept der Klasse Transition 120
5.9 Beobachteter Trace des Mediaplayers 126
5.10 Ausschnitt aus dem Automaten des State-Verhaltensmusters

mit Token . 127
5.11 Automat des State-Verhaltensmusters nach dem Zustandsüber-

gang . 127
5.12 Erkannte Verhaltensmusterimplementierung des State-Kandi-

daten . 128
5.13 Zum State-Verhaltensmuster nicht-konformer Trace 129
5.14 Ausschnitt aus dem Automaten des State-Verhaltensmusters . . 129
5.15 Die Methode checkBindings der Klasse DFA 131
5.16 Erweitertes Modell der Annotationen, Paket Annotations 132

6.1 Das Observer -Verhaltensmuster 141
6.2 Das Observer -Verhaltensmuster in erweiterter Syntax 142
6.3 Das State-Verhaltensmuster in erweiterter Syntax 143

7.1 Die Komponenten der struktur- und verhaltensbasierten Ent-
wurfsmustererkennung . 147

7.2 Die Benutzeroberfläche von Reclipse 149
7.3 Die Spezifikation des State-Strukturmusters in Reclipse 151
7.4 Die Spezifikation des State-Verhaltensmusters in Reclipse . . . 152
7.5 Das Ergebnis der Strukturanalyse 153
7.6 Der Reclipse Tracer nach dem Debuggen des Mediaplayers . 154
7.7 Der Instrumentierungs-Wizard 156
7.8 Starten der Verhaltensanalyse im Offline-Modus 157
7.9 Das Ergebnis der Verhaltensanalyse 158
7.10 Ein verworfener Trace . 159

A.1 Der Strukturmuster-Katalog für Eclipse 191
A.2 Das Command -Strukturmuster 192
A.3 Das Command -Verhaltensmuster 192

247

Abbildungen

A.4 Das Observer -Strukturmuster 193
A.5 Das Observer -Verhaltensmuster 193
A.6 Das State-Strukturmuster . 194
A.7 Das State-Verhaltensmuster . 194
A.8 Das Strategy-Strukturmuster . 195
A.9 Das Strategy-Verhaltensmuster 195
A.10 Das Visitor -Strukturmuster . 196
A.11 Das Visitor -Verhaltensmuster 196

B.1 Die Spezifikation des State-Strukturmusters in Reclipse 198
B.2 Die Spezifikation des State-Verhaltensmusters in Reclipse . . . 199
B.3 Der Export-Wizard . 200
B.4 Der Export eines Strukturmuster-Katalogs 201
B.5 Der Export eines Verhaltensmusterkatalogs 201
B.6 Der Import-Wizard . 202
B.7 Der Import von Java-Quelltext in ein Fujaba-Modell 203
B.8 Der Mediaplayer dargestellt im Klassendiagramm 203
B.9 Das Reclipse-Menü . 204
B.10 Der Dialog zum Starten der Strukturanalyse 204
B.11 Das Ergebnis der Strukturanalyse 205
B.12 Der Export der Kandidaten und der Trace-Definition 206
B.13 Das Zertrennen der Trace Definition und der Annotationen . . . 207
B.14 Das Menü zum Aufruf des Reclipse Tracers 208
B.15 Die Konfiguration des Reclipse Tracers für den Mediaplayer 209
B.16 Die Konfiguration des Klassenpfads und der Listener 209
B.17 Ausführung des Mediaplayers durch den Reclipse Tracer . . 210
B.18 Die Konfiguration der Instrumentierung 212
B.19 Starten der Verhaltensanalyse im Offline-Modus 214
B.20 Das Ergebnis der Verhaltensanalyse 215

C.1 Career Services . 255
C.2 Is This Even English? . 256
C.3 May Or May Not Apply To Reality 256

248

Tabellen

2.1 Kategorisierung der Entwurfsmuster nach Gamma et al. [GHJV95] 12

4.1 Initiale Variablenbindung der State-Annotation zum Mediaplayer 75
4.2 Variablenbindung eines State-Verhaltensmusters zum Mediaplayer 77

5.1 Variablenbindung des Tokens nach dem ersten Zustandsübergang128

6.1 Entwurfsmusterimplementierungen in Eclipse [GB04] 138
6.2 Analysierte Plug-Ins von Eclipse 139
6.3 Ergebnisse der Strukturanalyse 139
6.4 Ergebnisse der Verhaltensanalyse 140

249

Tabellen

250

Index

Abstrakter Syntaxbaum, 18
Akzeptierender Zustand, 87, 91, 95
Algorithmus

bottom-up-, 28
top-down-, 29

Alphabet, 86
Alternatives Fragment, 64, 89
Analyse

dynamische, 5, 7, 48, 49, 168
statische, 5, 27, 49, 161

Annotation, 22
Anpassbarkeit, 15, 173
Anti-Patterns, 32, 41, 167
ArrayReference, 27
Assoziation, 18
Axiom, 26

Bewertung, 15, 37, 49, 173
Strukturanalyse, 30, 43
Verhaltensanalyse, 130

Breakpoint, 108
Bridge, 6

Career, 256
Chain of Responsibility, 6, 168
Combined Fragment, siehe Kombi-

niertes Fragment
Composite, 168
Conformance-Checking, 168

Debugging, 108, 147, 154, 219

Decorator, 6, 168
Delegation, 23, 162
Design Patterns, siehe Entwurfsmu-

ster
Deterministischer endlicher Auto-

mat, 95
DFA, siehe Deterministischer endli-

cher Automat
Dynamische Methodenbindung, 6,

162

Eclipse, 10, 137, 145, 149
Eingabesymbol, 86, 95
Endlicher Automat, 86

Deterministischer, 95
Nichtdeterministischer, 86

Entwurfsmuster, 4, 11
Entwurfsmustererkennung, 3

strukturbasierte, 16, 161
verhaltensbasierte, 44, 48, 50

Entwurfsmusterimplementierung, 4
Erfülltheitsgrad, 43
Erkennungsprozess

strukturbasierter, 27, 48
verhaltensbasierter, 48, 105

False-Positives, 5, 14, 46
Forward-Engineering, 3, 16, 176
FPN, siehe Fuzzy-Petri-Netz
Fujaba, 16, 145

251

Index

Fujaba4Eclipse, 146, 149
Fuzzy-Bedingung, 42
Fuzzy-Petri-Netz, 30

Güte, 16, 38
Genauigkeitswert, 30
Graphgrammatikregel, 21

Hilfsmuster, 23

Implementierungsvariante, 5
Instrumentierung, 106, 109, 148,

155
Interaction Fragment, siehe Inter-

aktionsfragment
Interaktionsfragment, 64, 86, 87
Introspektion, 110
Irrelevante Nachrichten, 64, 83

Jahr-2000-Problem, 1
Java AWT, 30
Java Generic Library, 30
JGL, siehe Java Generic Library

Kandidat, 8, 28, 49, 61, 169
Kollaborationsmuster, 164
Kombiniertes Fragment, 64, 86

Alternatives Fragment, 64
Irrelevante Nachrichten, 64, 83
Kritischer Bereich, 64
Negation, 64
Optionales Fragment, 64
Paralleles Fragment, 64
Relevante Nachrichten, 64, 83
Schleife, 64
Wurzel-Fragment, 65

Kommunikationsmuster, 163
Konformität, 77
Konkatenation, 87
Kontext, 29

Kontext-Regel-Paar, 29
Konzeptanalyse, 167
Kritischer Bereich, 64

Labelled Transition Systems, 170
Leeres Wort, 87
Legacy-System, 1
Live Sequence Charts, 170

Mediator, 162
Mengenknoten, 41
Message Sequence Charts, 57, 166
Metamodell, 17
Methodenaufrufe

potentielle, 162
Metrik, 3, 41

LOC, 41
NOA, 42
NOM, 42

Modelchecker, 170
Modellierungssprache, 17
Modus

bottom-up-, 29
top-down-, 29

MultiReference, 26

Nachricht, 87
Negation, 64
NFA, siehe Nichtdeterministischer

endlicher Automat
Nichtdeterministischer endlicher

Automat, 86

Object Constraint Language, 63
OCL, siehe Object Constraint Lan-

guage
Offline-Analyse, 106, 108, 112, 147,

148, 219, 221
Online-Analyse, 106, 108, 112, 147,

148, 219, 221

252

Index

Operand, 89
Optionales Fragment, 64, 90

Paralleles Fragment, 64
Perspektive, 149
Pfad, 23
Polymorphie, 6, 162
Präzision, 15, 38, 173
Procrastination, 255
Prolog, 165, 169

Quelltext, 2, 3, 17

Rang, 26
Re-Engineering, 1, 3, 16
Reclipse, 146, 149
Reference, 23, 26
Regelkatalog, 17, 25
Regressionstest, 177
Relevante Nachrichten, 64, 83
Reverse-Engineering, 2, 16
Richtlinien, 15
Rigi, 3, 166
Round-Trip-Engineering, 16

Schleife, 64, 91
Senke, 97
Sequenz, 6
Sequenzdiagramme, 58
SingleReference, 26
Skalierbarkeit, 14, 173
Slicing, 167
Software-Tomographie, 8, 135
Startzustand, 86, 91, 95
State, 6, 44, 162
Stelle, 30
Strategy, 6, 46, 162
Strukturmodell, 17
Strukturmuster, 21, 49, 61
Suchraum, 8, 49

Symbol, 86, 95, 112, 120

Template Method, 168
Token, 114, 118
Trace, 50
Trace-Definition, 153
Tracegraph, 51
Transformation, 86

Akzeptierender Zustand, 91
Alternatives Fragment, 89
Interaktionsfragment, 87
Konkatenation, 87
Nachricht, 87
Operand, 89
Optionales Fragment, 90
Schleife, 91
Startzustand, 91

Transformationsalgorithmus, 92
Transition, 30, 112
Transitionsfunktion, 87, 95
Trigger, 112, 115, 118

UML, siehe Unified Modeling Lan-
guage

Unified Modeling Language, 3, 17
Unscharfe Regel, 37, 39, 40
Unscharfes Strukturmuster, 40

Varianten, 38
Variantenvielfalt, 5, 14, 27, 38
Vererbung, 26
Verhaltensanalyse, 37
Verhaltensbasierte Entwurfsmuste-

rerkennung, 44
Verhaltenserkennung, 111, 163
Verhaltensmodell, 50
Verhaltensmuster, 49, 57, 58

Negatives, 61
Positives, 61, 69
Semantik, 74

253

Index

Syntax, 63
Vertrauenswert, 30
Verwerfender Zustand, 97
Visitor, 162

Wurzel-Fragment, 65

Zustand, 86, 95
akzeptierender, 87, 91, 95
verwerfender, 97

254

The Power of Procrastination

Während meines Aufenthaltes am Georgia Institute of Technology, Atlan-
ta, USA im Herbst 2005 machte mich ein Freund auf die Internetseite
www.phdcomics.com aufmerksam. Auf dieser Seite werden unter dem Motto

”
The Power of Procrastination“ in regelmäßigen Abständen die

”
Piled Higher

and Deeper“ Comics publiziert. Sie werden von Jorge Cham, einem ehemali-
gen PHD-Studenten, gezeichnet und handeln vom Alltag einiger fiktiver PHD-
Studenten1. Die Comics spiegeln jedoch in erstaunlicher Präzision Erfahrungen
und Anekdoten wider, die man in seiner Zeit als Doktorand erlebt. Während
der letzten beiden Jahre waren sie für mich immer wieder eine willkommene
Abwechslung von der Arbeit an dieser Dissertation. Ich möchte deshalb mit
einigen ausgewählten Comics, die mir besonders gefallen haben, meine Disser-
tation schließen.

Abbildung C.1: Career Services

Allen derzeitigen Doktoranden und Studenten, die eine Promotion in Infor-
matik in Betracht ziehen, kann ich aus eigener Erfahrung versichern, dass die

1Bezeichnung für Promotions-Studenten in den USA

255

The Power of Procrastination

Situation nach der Promotion nicht ganz so schlimm ist, wie in Abbildung C.1
dargestellt2. Es hat sich gelohnt.

Abbildung C.2: Is This Even English?

Abbildung C.3: May Or May Not Apply To Reality

2Abbildungen C.1, C.2 und C.3: c©”Piled Higher and Deeper“ by Jorge Cham, www.
phdcomics.com

256

	Einleitung
	Reverse-Engineering
	Entwurfsmustererkennung
	Statische und Dynamische Analyse
	Ergebnisse der Arbeit
	Aufbau der Arbeit

	Grundlagen
	Entwurfsmuster
	Automatische Entwurfsmustererkennung
	Anforderungen an eine Entwurfsmustererkennung

	Strukturbasierte Entwurfsmustererkennung in Fujaba
	Strukturmodell eines Softwaresystems
	Spezifikation von Strukturmustern
	Regelkatalog
	Strukturbasierter Erkennungsprozess
	Bewertung der Ergebnisse
	Einsatzgebiete
	Überblick

	Zusammenfassung

	Erweiterung der strukturbasierten Entwurfsmustererkennung
	Unscharfe Regeln und Bewertung
	Motivation und Lösungsidee
	Erweiterte Syntax der Strukturmuster
	Bewertung der Ergebnisse

	Verhaltensbasierte Entwurfsmustererkennung
	Motivation und Lösungsidee
	Struktur- und verhaltensbasierter Erkennungsprozess
	Verhaltensmodell eines Softwaresystems
	Überblick

	Zusammenfassung

	Verhaltensspezifikation
	Verhaltensmuster
	Formalisierung durch Sequenzdiagramme
	Negative Verhaltensmuster
	Verbindung zu Strukturmustern

	Syntax
	Metamodell der Verhaltensmuster
	Erweiterung des Metamodells der Strukturmuster
	Verbindung zwischen Struktur- und Verhaltensmustern
	Überblick

	Semantik
	Mehrfache Überprüfung der Traces
	Bindung der Variablen
	Konformität von Methodenaufrufen
	Konformität von Traces
	Wertung konformer und nicht-konformer Traces

	Erzeugung eines Automaten
	Nichtdeterministischer Automat
	Deterministischer Automat

	Zusammenfassung

	Verhaltensanalyse
	Verhaltensbasierter Erkennungsprozess
	Gewinnung der Traces
	Voraussetzungen
	Überwachung durch Debugging
	Überwachung durch Instrumentierung

	Verhaltenserkennung
	Erweiterter Automat
	Trigger
	Verarbeitung der beobachteten Methodenaufrufe
	Konforme Methodenaufrufe und Variablenbindung
	Beispiel
	Nachträgliches Verwerfen eines Traces

	Bewertung der Ergebnisse
	Zusammenfassung

	Praktische Anwendung
	Software-Tomographie
	Szenario
	Ergebnisse
	Strukturanalyse
	Verhaltensanalyse
	Schwächen des Ansatzes

	Zusammenfassung

	Werkzeugunterstützung
	Entwicklungsumgebung
	Architektur
	Benutzungsschnittstelle
	Elemente der Benutzungsschittstelle
	Spezifikation der Struktur- und Verhaltensmuster
	Strukturbasierte Entwurfsmustererkennung
	Verhaltensbasierte Entwurfsmustererkennung

	Zusammenfassung

	Verwandte Arbeiten
	Strukturbasierte Entwurfsmustererkennung
	Dynamische Analysen zur Verhaltenserkennung
	Kombinierte statische und dynamische Analysen
	Ausgewählte Verfahren im Reverse-Engineering
	Verfahren zur Entwurfsmustererkennung

	Transformation von Sequenzdiagrammen
	Zusammenfassung

	Zusammenfassung und Ausblick
	Zusammenfassung
	Ausblick

	Literatur
	Struktur- und Verhaltensmuster
	Command
	Observer
	State
	Strategy
	Visitor

	Reclipse Handbuch
	Generierung von Struktur- und Verhaltensmusterkatalogen
	Strukturbasierte Entwurfsmustererkennung
	Verhaltensbasierte Entwurfsmustererkennung
	Software-Tomographie
	Debugging
	Instrumentierung
	Verhaltenserkennung

	Technische Dokumentation
	Komponenten der Entwurfsmustererkennung
	de.uni_paderborn.fujaba
	org.reclipse.javaast
	org.reclipse.javaparser
	org.reclipse.tracing
	org.reclipse.tracer
	org.reclipse.instrumentation
	org.reclipse.instrumentation.runtime
	org.reclipse.patterns.structure.specification
	org.reclipse.patterns.structure.inference
	org.reclipse.patterns.structure.generator
	org.reclipse.patterns.behavior.specification
	org.reclipse.patterns.behavior.inference
	org.reclipse.patterns.behavior.generator

	Datenformate der Komponenten
	Annotationen
	Trace-Definition
	Tracegraph
	Verhaltensmusterkatalog
	Ergebnis der struktur- und verhaltensbasierten Entwurfsmustererkennung

	Abbildungen
	Tabellen
	Index

