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Zusammenfassung

Die Wartung von Softwaresystemen ist heute eine zeit- und damit kosteninten-
sive Aufgabe. Die Systeme sind sténdigen Anderungen unterworfen und iiber
Jahre hinweg gewachsen. Die Dokumentation solcher Systeme wird kaum oder
gar nicht gepflegt. Bei einer Gréfie von hunderttausenden oder sogar mehreren
Millionen Zeilen Quelltext ist die schwerste Aufgabe des Softwareentwicklers,
die bestehende Software zu verstehen, bevor Anderungen daran vorgenommen
werden kénnen. Die einzige verlassliche Grundlage fiir das Verstehen der Soft-
ware bildet aber nur der Quelltext.

In der Softwareentwicklung werden weit verbreitete Losungen fiir immer
wiederkehrende Probleme als Entwurfsmuster bezeichnet. Sie sind vielfach do-
kumentiert und bilden ein gemeinsames Vokabular unter Entwicklern. Ange-
wendete Entwurfsmuster, so genannte Entwurfsmusterimplementierungen, im
Quelltext existierender Software zu identifizieren, hilft, das inhédrente Design
der Software explizit zu dokumentieren und so die Entwickler beim Verstehen
der Software zu unterstiitzen.

In den letzten Jahren wurde eine Reihe von Werkzeugen entwickelt, die Ent-
wurfsmusterimplementierungen (semi-)automatisch im Quelltext erkennen. Bis
auf einige wenige Ausnahmen basieren alle Werkzeuge auf einer rein statischen
Analyse des Quelltextes, ohne Eigenschaften der Software zur Laufzeit zu un-
tersuchen. Diese Analysen sind gut dazu geeignet, strukturelle Eigenschaften
der Entwurfsmuster zu erkennen. Allerdings werden Entwurfsmuster nicht nur
durch ihre Struktur, sondern auch durch ihr Verhalten definiert. Verhalten
kann jedoch durch statische Analysen nur sehr eingeschrankt untersucht wer-
den. Die bisher entwickelten Werkzeuge erzeugen daher sehr unprézise Ergeb-
nisse.

Dynamische Analysen bieten eine Losung fiir dieses Problem. Sie analysieren
Software zur Laufzeit, indem sie ihr Verhalten beobachten. Ausschliellich dy-
namische Analysen sind jedoch kaum praktisch durchfiithrbar, da zur Laufzeit
riesige Datenmengen anfallen, die nur sehr schwer handhabbar sind.

Diese Arbeit stellt eine struktur- und verhaltensbasierte Entwurfsmusterer-
kennung vor, die eine existierende, statische Entwurfsmustererkennung mit ei-
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ner neu entwickelten, dynamischen Entwurfsmustererkennung kombiniert. Die
statische Analyse identifiziert Kandidaten von Entwurfsmusterimplementie-
rungen auf Basis struktureller Informationen. Der Anteil der dynamisch zu un-
tersuchenden Software wird auf diese Kandidaten eingeschrénkt, die anfallende
Datenmenge wird reduziert und somit problemlos handhabbar. Zur Laufzeit
wird dann das Verhalten der Kandidaten mit vorgegebenem Verhalten vergli-
chen. Die durch die statische Analyse identifizierten und durch die dynamische
Analyse bestétigten Entwurfsmusterimplementierungen stellen schliellich ein
fundiertes und prézises Ergebnis dar.
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Kapitel 1

Einleitung

Das Jahr-2000-Problem verdeutlichte der breiten Offentlichkeit, dass sich Soft-
ware héufig nicht nur iiber Jahrzehnte hinweg im FEinsatz befindet, sondern
auch immer wieder wéihrend ihrer gesamten Lebensdauer gewartet werden
muss. Die Ursache fiir das Jahr-2000-Problem reicht bis in die 1970er Jah-
re zuriick. Jahreszahlen wurden in Algorithmen und Datenbanken nur durch
ihre letzten beiden Ziffern représentiert. Man ging davon aus, dass die Soft-
ware nicht bis zum Jahr 2000 im Einsatz sei, und interpretierte die ersten
beiden fehlenden Ziffern grundsétzlich als ,19“. So wére beim Jahreswechsel
vom Jahr 1999 auf das Jahr 2000 eine ,,00¢ nicht als Jahr 2000, sondern als
Jahr 1900 interpretiert worden. Vor der Jahrtausendwende mussten deshalb
praktisch alle so genannten Legacy-Systeme — das ist Software, deren Algo-
rithmen und Strukturen sowie zugehorige Datenbesténde iiber Jahre hinweg
gewachsen sind — auf dieses Problem hin iiberpriift und unter groflem Aufwand
korrigiert werden.

Das Jahr-2000-Problem ist zwar ein prominentes Beispiel, stellt aber bei wei-
tem keinen Einzelfall dar. Softwaresysteme sind iiber Jahre oder sogar Jahr-
zehnte hinweg im Finsatz und miissen kontinuierlich an neue Anforderungen
angepasst werden. Diese Systeme bestehen dabei nicht selten aus Software mit
einem Umfang von mehreren Millionen Zeilen Quelltext. Des Weiteren wurden
die Softwaresysteme {iblicherweise von mehreren Generationen von Entwick-
lern geschaffen, die unter Umstédnden nicht mehr zur Weiterentwicklung des
Softwaresystems zur Verfiigung stehen.

Entwickler, die mit dem Re-FEngineering, also dem Anpassen bereits beste-
hender Software an neue Anforderungen, beauftragt werden, stehen héufig un-
ter enormen Kosten- und Zeitdruck. Die neue Version der Software soll schnell
auf dem Markt verfiigbar sein und moglichst frith produktiv eingesetzt wer-
den. Anderungen an den Softwaresystemen werden daher weitestgehend nur
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im Quelltext durchgefiihrt, wobei die Dokumentation der Anderungen ver-
nachldssigt wird. Die vorhandene Dokumentation spiegelt daher meist nicht
den aktuellen Stand der Softwaresysteme wieder.

Anderungen testen
25%

Verstehen der
Quelltexte

And |
nderungen planen 50%

10%

Anderungen -
durchfiihren Anderungen
10% dokumentieren

5%

Abbildung 1.1: Kostenverteilung im Re-Engineering nach A. Frazer [Fra92]

Bevor die eigentlichen Anderungen durchgefiihrt werden kénnen, miissen die
Entwickler das Softwaresystem zunéchst jedoch verstehen. Die Grofle der Soft-
waresysteme, die Generationen von Entwicklern, die an dem Softwaresystem
gearbeitet haben, und die ungeniigende oder gar nicht vorhandene Dokumenta-
tion erschweren aber zusétzlich diese Aufgabe. Nach einer Studie aus dem Jahr
1992 von A. Frazer [Fra92| betridgt der Anteil der Kosten fiir das Verstehen
des Quelltextes 50% an den Gesamtkosten fiir das Re-Engineering (Abbildung
1.1). Es ist sogar davon auszugehen, dass sich dieser Anteil seit 1992 eher noch
erhoht hat, da die Softwaresysteme zunehmend komplexer geworden sind.

1.1 Reverse-Engineering

Eine Unterdisziplin des Re-Engineerings, das so genannte Reverse-Engineering,
befasst sich mit der Analyse und dem Verstiandnis von Softwaresystemen
[CCI0]. Ziel des Reverse-Engineerings ist es, Softwaresysteme auf ihrem ak-
tuellen Stand zu dokumentieren und zu verstehen. Es wird vor allem versucht,
die Systeme auf abstrakterem Niveau zu dokumentieren, um die Kernpunkte
der Softwaresysteme herauszustellen, unwesentliche Details auszublenden und
so das Verstandnis zu fordern.

Als Ausgangspunkt fiir das Reverse-Engineering koénnen verschiedenste
Quellen dienen. Zunéchst sind dies die bereits vorhandenen Dokumente, die
jedoch unter Umsténden nicht mehr aktuell sind. Als weitere Quelle kommen
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die fritheren Entwickler in Frage, die aber nicht immer zur Verfiigung stehen.
So bleibt als einzige verléssliche Grundlage fiir Informationen iiber das Soft-
waresystem nur der Quelltext.

Das Verstehen des Quelltextes ist wie bereits oben erwahnt sehr zeit- und
damit kostenintensiv. Eine Unterstiitzung des Menschen durch Werkzeuge, die
vom Quelltext abstrahieren, ist somit von grolem Vorteil. Zur Zeit sind bereits
viele Werkzeuge zum Reverse-Engineering am Markt erhéltlich oder werden in
aktuellen Forschungsarbeiten entwickelt.

Zur Reprisentation der Softwaresysteme auf abstrakterem Niveau werden
unterschiedlichste Arten von Visualisierungen verwendet. Sollen zum Beispiel
Schwachstellen in Softwaresystemen gefunden und entfernt werden, sind Me-
triken hilfreich [FP96]. Sie driicken bestimmte Merkmale der Software in Zah-
len aus. Aufgrund dieser Werte kénnen dann statistische Ausreifler gefunden
werden, die meist gute Hinweise auf Schwachstellen liefern. Will der Software-
entwickler dagegen Abhéngigkeiten innerhalb eines Softwaresystems verstehen,
ist zum Beispiel das Werkzeug RIGI niitzlich [MWT95, Rig|. Es stellt unter an-
derem stark zusammenhingende Komponenten oder Verwendungsbeziehungen
zwischen Klassen eines Softwaresystems in Graphen dar.

Eine sehr weit verbreitete Sprache zur Modellierung und Représentation von
Software ist die Unified Modeling Language (UML) [Obj]. Mit der UML lassen
sich unterschiedliche Sichten auf das Modell eines Softwaresystems realisieren.
So stellen Paket- und Klassendiagramme statische Informationen wie Orga-
nisation und Beziehungen von FEinzelteilen der Software dar, wéihrend zum
Beispiel Aktivitdten- und Sequenzdiagramme dynamische Anteile wie das Ver-
halten der Software zur Laufzeit beschreiben. Ein grofler Vorteil der UML ist,
dass sie im kompletten Softwarelebenszyklus eingesetzt werden kann. Sie wird
sowohl zum Forward-Engineering, also zur erstmaligen Erstellung der Modelle
und der Software, als auch zum Re-Engineering, der Weiterentwicklung beste-
hender Softwaresysteme, verwendet. Die UML ist also eine ideale Grundlage
zur Dokumentation der Ergebnisse des Reverse-Engineerings.

1.2 Entwurfsmustererkennung

» All well-structured software-intensive systems are full of patterns.®
— Grady Booch, November 2005, [Boo05]

Bei der Softwareentwicklung stoflen Software-Designer immer wieder auf
gleichartige Probleme. Im Laufe der Jahre haben sich fiir diese Probleme
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Losungen herauskristallisiert, die sich unter den Entwicklern als so genann-
te Entwurfsmuster (engl. Design Patterns) etabliert haben. Seit Mitte der
1990er Jahre werden diese Entwurfsmuster verstiarkt in Biichern und wissen-
schaftlichen Berichten festgehalten und dokumentiert. Ein Standardwerk ist
das Buch von Erich Gamma, Richard Helm, Ralph Johnson und John Vlissides
,Design Patterns—Elements of Reusable Object-Oriented Software® [GHJV95]
aus dem Jahre 1995, welches 23 weit verbreitete Entwurfsmuster vorstellt. Das
Buch ,, The Pattern Almanac 2000“ [Ris00] wiederum enthélt Referenzen auf
hunderte verschiedener Entwurfsmuster aus den unterschiedlichsten Anwen-
dungsgebieten.

Das oben genannte Zitat von Grady Booch — einer der urspriinglichen Ent-
wickler der UML — bringt zum Ausdruck, dass sich Muster eigentlich in allen
Softwaresystemen wiederfinden, sofern die Software nicht vollkommen chao-
tisch entwickelt worden ist. Entwurfsmuster wurden auch schon in der Softwa-
reentwicklung eingesetzt, bevor sie in Biichern dokumentiert wurden. Durch
ihre explizite Beschreibung wird lediglich ein gemeinsames Vokabular fiir die
Entwickler geschaffen.

Ein Entwurfsmuster besteht in der Regel aus vier Teilen. Der Name des
Entwurfsmusters bildet die Grundlage fiir das gemeinsame Vokabular und be-
schreibt in sehr wenigen Worten das Muster. Das Problem beschreibt, wann
und in welchem Kontext das Entwurfsmuster angewendet wird. Die Ldsung
des Problems wird meist nicht im Detail, sondern eher auf einem abstrakteren
Niveau vorgestellt, um die allgemeine Anwendbarkeit nicht einzuschrianken.
Dazu werden zum Beispiel UML-Diagramme verwendet, die zur Erlduterung
der Struktur und des Verhaltens des Entwurfsmusters dienen. Die Konsequen-
zen, die die Verwendung des jeweiligen Entwurfsmusters impliziert, werden
héufig anhand der Zeit- und Platzkomplexitédt oder der Erweiterbarkeit und
der Wiederverwendbarkeit der Losung diskutiert.

Werden Implementierungen der Entwurfsmuster, so genannte Entwurfsmu-
sterimplementierungen, in bestehender Software identifiziert, so lasst sich nicht
nur auf das zugrunde liegende Problem und den Kontext, in dem sie ange-
wendet wurden, schliefen, sondern auch abschétzen, wie beispielsweise Er-
weiterungen vorgenommen werden konnen. Die Identifizierung von Entwurfs-
musterimplementierungen durch eine Entwurfsmustererkennung hilft also, das
inhérente Design der Software explizit zu dokumentieren und die Entwickler
bei ihrer Arbeit zu unterstiitzen. Eine manuelle Erkennung der Entwurfsmu-
sterimplementierungen ist jedoch aus den bereits genannten Griinden Zeit und
Kosten kaum durchfiithrbar. Deshalb werden immer mehr Reverse-Engineering-
Werkzeuge entwickelt, die (semi-)automatisch nach Entwurfsmusterimplemen-
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tierungen im Quelltext suchen. Zur Dokumentation der Ergebnisse werden zum
Beispiel die im Reverse-Engineering entstehenden UML-Dokumente durch die
Kennzeichnung von Entwurfsmusterimplementierungen angereichert.

Die informelle Beschreibung der Entwurfsmuster bietet dem Entwickler
wahrend des Forward-Engineerings weitreichende Freiheiten bei ihrer Imple-
mentierung. Zum einen lésst sich das gleiche Verhalten auf unterschiedliche
Weise in Programmiersprachen umsetzen. Eine Schleife kann zum Beispiel als
for- oder als while-Schleife implementiert werden. Zum anderen lassen sich
Losungselemente auf hoherem Abstraktionsniveau — wie zum Beispiel Assozia-
tionen — auf unterschiedlichste Weise realisieren. Dadurch entstehen praktisch
unendlich viele Implementierungsvarianten eines einzelnen Entwurfsmusters.

Fiir eine automatische Erkennung der Entwurfsmuster ist die Vielfalt der
Implementierungsvarianten eines der groffiten Probleme. Diesem Problem kann
man im Wesentlichen durch zwei Strategien begegnen. Auf der einen Sei-
te konnen unterschiedliche Implementierungsvarianten durch unterschiedliche
Regeln erkannt werden. Dies fiihrt jedoch zu einer theoretisch beliebig grofien
Zahl an Regeln. Selbst eine Beschrédnkung auf einige Implementierungsvarian-
ten fiir viele verschiedene Entwurfsmuster erzeugt eine zu grofie Menge Regeln,
die zu einem Laufzeitproblem bei der Erkennung fiihrt. Beschréinkt man auf
der anderen Seite aber die Zahl der Regeln, kénnen nur wenige Implemen-
tierungsvarianten erkannt werden. Das fiihrt schliellich zu einer ungenauen
Erkennung, bei der viele existierende Entwurfsmusterimplementierungen nicht
identifiziert werden.

Durch unscharfe Regeln ldsst sich diese Situation etwas verbessern. Eine
Regel deckt dabei verschiedene Implementierungsvarianten eines Entwurfsmu-
sters ab. Als Nebeneffekt werden jedoch mehr so genannter False-Positives er-
kannt. False-Positives sind Konstrukte, die zwar als Entwurfsmusterimplemen-
tierungen identifiziert wurden, aber keine sind. Die Reduzierung des Anteils
der False-Positives am Gesamtergebnis der Entwurfsmustererkennung ist ein
entscheidender Faktor fiir die Prazision der Erkennung. False-Positives miissen
vom Reverse-Engineer manuell als solche identifiziert werden und stellen damit
einen Mehraufwand dar, der moglichst gering gehalten werden sollte.

1.3 Statische und Dynamische Analyse

In den letzten Jahren wurde eine Reihe von Werkzeugen entwickelt, die Ent-
wurfsmusterimplementierungen (semi-)automatisch im Quelltext erkennen. Bis
auf einige wenige Ausnahmen basieren alle Werkzeuge auf einer rein stati-
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schen Analyse!, bei der der Quelltext untersucht wird, ohne die Software aus-
zufithren. Diese Analysen sind sehr gut dazu geeignet, strukturelle Eigenschaf-
ten der Entwurfsmuster zu erkennen.

Entwurfsmuster werden allerdings nicht nur durch ihre Struktur, sondern
auch durch ihr Verhalten definiert. Konstrukte, die zwar in ihrer Struktur mit
Entwurfsmustern iibereinstimmen und als Implementierungen solcher erkannt
werden, sich aber zur Laufzeit anders verhalten, sind mit sehr grofler Wahr-
scheinlichkeit False-Positives. Durch rein statische Analysen kann das Verhal-
ten aber nur sehr eingeschrankt erkannt werden.

Das Verhalten von Software wird bei imperativen Programmiersprachen im
Wesentlichen durch Sequenzen von Prozedur- beziehungsweise Methodenaufru-
fen bestimmt. Statische Analysen erkennen zwar potentielle Methodenaufrufe,
ob sie jedoch tatsédchlich zur Laufzeit ausgefiihrt werden, ist nicht sicher fest-
zustellen. Objektorientierte Programmiersprachen mit Polymorphie und dy-
namischer Methodenbindung verschérfen dieses Problem sogar noch, da die
konkreten, aufzurufenden Methoden erst zur Laufzeit festgelegt werden. Die
Ermittlung konkreter Sequenzen von Methodenaufrufen durch statische Ana-
lysen ist daher sehr ungenau und fiir die prézise Erkennung von Entwurfsmu-
sterimplementierungen nicht geeignet.
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Abbildung 1.2: Die Struktur des State-Entwurfsmusters

In [GHJV95] werden einige Entwurfsmuster vorgestellt, die paarweise grofie
Ahnlichkeiten in ihrer Struktur aufweisen. Zu diesen Paaren gehdren zum Bei-
spiel Decorator und Chain of Responsibility, Strateqy und Bridge oder auch
State und Strategy. Wie in den Abbildungen 1.2 und 1.3 zu sehen, sind die
beiden Entwurfsmuster State und Strategy in ihrer Struktur sogar vollkom-
men identisch. Sie unterscheiden sich ausschlieBlich durch ihr Verhalten. Bei

Lsiehe: [KP96, AFC98, SK98, SG98, Wuy98, KSRP99, TA99, BP00, KB00, ACGJ01, AGO1,
$S03, PSRN04, TCHS05, KGHO6, SO06]
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solchen Entwurfsmustern fithren also strukturelle Ahnlichkeiten bei der stati-
schen Analyse zu nicht eindeutigen Ergebnissen.
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Abbildung 1.3: Die Struktur des Strategy-Entwurfsmusters

Dynamische Analysen bieten eine Losung sowohl fiir die Ermittlung mogli-
cher Sequenzen von Methodenaufrufen, als auch zur Unterscheidung von Ent-
wurfsmustern gleicher Struktur. Sie analysieren Software zur Laufzeit, indem
sie ihr Verhalten beobachten. Dazu wird zum Beispiel durch Instrumentierung
[SO05] der Programmcode durch zusétzliche Anweisungen angereichert, die
Methodenaufrufe protokollieren. Dadurch wird es in der automatischen Ent-
wurfsmustererkennung moglich, vorgegebenes Verhalten von Entwurfsmustern
mit tatséchlich beobachtetem Verhalten von potentiellen Entwurfsmusterim-
plementierungen zu vergleichen. Die Datenmengen, die bei solchen Analysen
anfallen, sind allerdings relativ grofl und dadurch nur sehr schwer handhabbar.

Ein weiteres Problem dynamischer Analysen ist die angemessene Auswahl
der Eingabedaten, die zur Ausfithrung der zu analysierenden Software benotigt
werden. Das in der Praxis durch dynamische Analysen beobachtete Verhal-
ten eines Softwaresystems stellt immer nur einen kleinen Teil des theoretisch
moglichen Verhaltens dar. Um also verwertbare Ergebnisse zu erhalten, sollten
die Eingabedaten moglichst représentativ fiir die in der Praxis auftretenden
Daten ausgewihlt werden. Die Ausfithrung der zu untersuchenden Software
erfolgt dann durch automatische Tests oder durch manuelle Bedienung.

Statische und dynamische Analysen wurden lange Zeit in unterschiedli-
chen, voneinander unabhéngigen Forschungsgebieten entwickelt. Deshalb wur-
den meist ausschlieBlich entweder statische oder dynamische Analysen genutzt.
Die jeweils andere Analysetechnik wurde sogar hiufig fiir den aktuellen Anwen-
dungsbereich als unpassend dargestellt. Michael Ernst geht in seinem Artikel
LStatic and dynamic analysis: synergy and duality” [Ern03] auf diese Proble-
matik ein und pladiert dafiir, die Vorteile beider Analysetechniken zu kombi-
nieren, um so bessere Analyseergebnisse zu produzieren.
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1.4 Ergebnisse der Arbeit

Die vorliegende Arbeit stellt eine struktur- und verhaltensbasierte Entwurfs-
mustererkennung vor, bei der eine bereits existierende, statische Entwurfsmu-
stererkennung um eine dynamische Entwurfsmustererkennung ergénzt wurde.
Die statische Analyse untersucht das Softwaresystem auf strukturelle Eigen-
schaften von Entwurfsmustern. Das Ergebnis dieses Analyseschrittes sind po-
tentielle Entwurfsmusterimplementierungen, so genannte Kandidaten, die in
UML-Klassendiagrammen des zu untersuchenden Softwaresystems dokumen-
tiert werden. Die strukturbasierte Entwurfsmustererkennung wurde in dieser
Arbeit um einen Algorithmus zur Bewertung der Kandidaten erweitert. Die
Bewertung eines Kandidaten gibt an, inwieweit der Kandidat mit der vorge-
gebenen Struktur des Entwurfsmusters {ibereinstimmt.

Des Weiteren dienen die Kandidaten als Eingabedaten der anschlieenden
dynamischen Analyse. Die Kandidaten schrianken den Suchraum der dynami-
schen Analyse erheblich ein und reduzieren so die zur Laufzeit anfallende und
zu analysierende Datenmenge. Zur Spezifikation des Verhaltens der Entwurfs-
muster wurde eine Sprache syntaktisch und semantisch formal definiert, die auf
UML-Sequenzdiagramme aufbaut. Aus den Spezifikationen werden Automaten
fiir die dynamische Analyse generiert, die zur Laufzeit beobachtete Sequenzen
von Methodenaufrufen mit dem spezifizierten Verhalten der Entwurfsmuster
vergleichen.

Die verhaltensbasierte Entwurfsmustererkennung wird in der Praxis mit Hil-
fe der Software-Tomographie [BOH02] durchgefiihrt. Dabei wird das zu unter-
suchende Softwaresystem wihrend der dynamischen Analyse in realen, pro-
duktiven Umgebungen eingesetzt, so dass das Problem der représentativen
Eingabedaten gelost ist. Zur dynamischen Analyse wird das System instru-
mentiert, das heiflt, es wird zusétzlicher Code in die Software eingefiihrt, der
Methodenaufrufe {iberwacht und protokolliert. Um die Performanz des Soft-
waresystems so wenig wie moglich zu beeintréchtigen, wird die dynamische
Analyse in viele unabhéngige Teilanalysen aufgeteilt. Mehrere Instanzen des
Softwaresystems werden dann jeweils fiir eine oder einige wenige Teilanalysen
instrumentiert und in einer produktiven Umgebung eingesetzt. So werden re-
prisentative Daten iiber die Software gesammelt und der dynamischen Analyse
zugefiihrt.

Als Ergebnis der dynamischen Analyse erhilt der Reverse-Engineer Sequen-
zen von Methodenaufrufen zu den Kandidaten. Die Sequenzen werden von der
dynamischen Analyse als konform beziehungsweise nicht-konform zum vorge-
geben Verhalten gekennzeichnet. So kann der Reverse-Engineer nicht nur er-
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kennen, ob der Kandidat sich wie ein Entwurfsmuster verhélt, sondern auch
feststellen, warum der Kandidat eventuell gegen das vorgegebene Verhalten
verstof3t. Das hilft beim Erkennen von Fehlern oder Design-Defekten und gibt
Hinweise auf mdégliche Korrekturen.

Das in dieser Arbeit entwickelte Verfahren wurde prototypisch in einem
Werkzeug umgesetzt und in die Entwicklungsumgebung ECLIPSE integriert.
AuBerdem wurde das Verfahren auf ein reales Softwaresystem angewendet,
zu dem Entwurfsmusterimplementierungen dokumentiert sind. Die Ergebnis-
se dieser Anwendung konnten so mit der Dokumentation verglichen und das
Verfahren beurteilt werden.

1.5 Aufbau der Arbeit

Die vorliegende Arbeit wird im zweiten Kapitel mit einigen Grundlagen, die
zum Verstédndnis der struktur- und verhaltensbasierten Entwurfsmustererken-
nung notwendig sind, fortgefiihrt. Zu den Grundlagen gehort unter anderem
die bereits existierende, strukturbasierte Entwurfsmustererkennung, auf der
das in dieser Arbeit entwickelte Verfahren aufbaut.

Um darauf aufbauen zu konnen, werden im dritten Kapitel zunéchst einige
Erweiterungen an der strukturbasierten Entwurfsmustererkennung behandelt.
Des Weiteren gibt das Kapitel einen Uberblick iiber den Prozess der kombinier-
ten, struktur- und verhaltensbasierten Entwurfsmustererkennung und fiihrt ein
Verhaltensmodell fiir Softwaresysteme ein.

Das Thema des vierten Kapitels ist die formale Spezifikation des Verhal-
tens eines Entwurfsmusters durch Verhaltensmuster. Es wird eine Spezifikati-
onssprache vorgestellt, die an UML-Sequenzdiagramme angelehnt ist und die
sowohl syntaktisch als auch semantisch formal definiert wird.

Im fiinften Kapitel wird die Verhaltensanalyse behandelt. Zunéchst wird
diskutiert, wie Sequenzen von Methodenaufrufen zur Laufzeit des zu untersu-
chenden Softwaresystems gewonnen werden konnen. Zur Erkennung von Ver-
haltensmustern in diesen Sequenzen werden Automaten verwendet, die aus den
formalen Spezifikationen der Verhaltensmuster automatisch generiert werden.

Die praktische Anwendung des Verfahrens wird im sechsten Kapitel vorge-
stellt. Es wird ein Szenario diskutiert, wie die verhaltensbasierte Entwurfsmu-
stererkennung in produktiven Umgebungen eingesetzt werden kann, um eine
praxisnahe Datenbasis zur Analyse zu erhalten. Auflerdem werden einige Er-
gebnisse des Finsatzes der Entwurfsmustererkennung auf ein reales, umfang-
reiches Softwaresystem vorgestellt.
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Im Rahmen dieser Arbeit ist ein prototypisches Werkzeug entstanden, das
das Verfahren der struktur- und verhaltensbasierten Entwurfsmustererkennung
umsetzt. Das Werkzeug wurde in die in der Industrie weit verbreitete Ent-
wicklungsumgebung ECLIPSE integriert. Die Architektur und die Benutzungs-
schnittstelle dieses Werkzeugs werden im siebten Kapitel erldutert.

Das achte Kapitel behandelt verwandte Arbeiten. Darin werden Arbeiten
anderer Wissenschaftler diskutiert, die einen starken Bezug zu der vorliegenden
Arbeit haben.

Die Arbeit schliefit im neunten Kapitel mit einer Zusammenfassung und
einem Ausblick, in dem auf mogliche Erweiterungen und weitere Anwendungen
der in dieser Arbeit entwickelten Techniken hingewiesen wird.

Im Anhang der Arbeit sind die in der Evaluation verwendeten Struktur- und
Verhaltensmuster zu finden. Des Weiteren enthélt der Anhang ein Handbuch
und die technische Dokumentation des entwickelten Werkzeugs.
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Grundlagen

Das folgende Kapitel gliedert sich in drei Teile. Der erste Teil behandelt not-
wendige Grundlagen zu Entwurfsmustern. Im zweiten Teil werden allgemeine
Anforderungen an eine automatische Entwurfsmustererkennung formuliert.

Den Schwerpunkt des Kapitels bildet der dritte Teil, in dem die strukturba-
sierte Entwurfsmustererkennung, die am Fachgebiet Softwaretechnik der Uni-
versitét Paderborn entwickelt wurde [Pal01, Wen01, Nie04], im Detail erldutert
wird. Das in der vorliegenden Arbeit vorgestellte Verfahren verwendet diese
Technik zur strukturbasierten Entwurfsmustererkennung, um sie durch eine
verhaltensbasierte Erkennung zu vervollstandigen.

2.1 Entwurfsmuster

Software-Designer stoen in ihrer tédglichen Arbeit immer wieder auf gleichar-
tige Probleme beim Design und bei der Implementierung grofler Softwaresyste-
me. Im Laufe der Zeit kristallisierten sich bewéhrte Muster zur Losung dieser
Probleme heraus. Diese Muster geben keine konkrete Losung fiir ein Problem,
sondern nur eine Losungsidee vor. Die Implementierung der Losungsidee er-
folgt dann angepasst an die jeweilige Situation. Solche Muster werden in der
Softwaretechnik Entwurfsmuster (engl. Design Patterns) genannt.

Entwurfsmuster werden zwar schon lange eingesetzt, wie zum Beispiel das
Model/View/Controller-Muster in der Smalltalk-Programmierung, wurden an-
fangs allerdings kaum dokumentiert. Des Weiteren existierte keine allgemeine
Vorgehensweise zur Dokumentation von Entwurfsmustern. Erich Gamma, Ri-
chard Helm, Ralph Johnson und John Vlissides veroffentlichten im Jahre 1995
ihr Buch ,,Design Patterns—Elements of Reusable Object-Oriented Softwa-
re“ [GHJVO95], in dem sie 23, in der objektorientierten Programmierung weit
verbreitete Entwurfsmuster vorstellen.

11
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Seit dem Erscheinen dieses Buches sind weitere Sammlungen von Entwurfs-
mustern veroffentlicht worden. Diese Sammlungen sind meist anwendungsspe-
zifisch, wie zum Beispiel die Entwurfsmuster aus [Lea97] zur Programmierung
nebenldufiger Systeme. Das Buch ,, The Pattern Almanac 2000 [Ris00] dient
als Nachschlagewerk mit Referenzen auf hunderte verschiedener Entwurfsmu-
ster aus den unterschiedlichsten Anwendungsgebieten.

Das Buch von Gamma et al. stellt heute praktisch einen Quasi-Standard zur
Dokumentation von Entwurfsmustern dar. In dem Buch werden Entwurfsmu-
ster nach zwei Kriterien klassifiziert: ihrem Zweck und ihrem Anwendungsbe-
reich. Der Zweck wird in drei Kategorien aufgeteilt: Entwurfsmuster, die zum
Erzeugen von Objekten dienen, die eine Struktur beschreiben oder die Ver-
halten beschreiben. Der Anwendungsbereich wird auf Klassen und Objekte
aufgeteilt. Die Tabelle 2.1 ist [GHJV95] entnommen und enthélt alle darin
vorgestellten Entwurfsmuster. Die Einordnung eines Entwurfsmusters in eine
Kategorie erfolgt nach der Hauptintention des Musters. Das Entwurfsmuster
State zum Beispiel beschreibt im Wesentlichen das Verhalten einer Gruppe von
Objekten. Zur Implementierung wird jedoch auch eine Struktur der an dem
Muster beteiligten Klassen vorgeschlagen.

Zweck
Erzeugend Struktur |Verhalten
Anwendungs-|Klasse |Factory Method |Adapter |Interpreter
bereich Template Method
Objekt|Abstract Factory|Adapter |Chain of Responsibility
Builder Bridge Command
Prototype Composite|Iterator
Singleton Decorator |Mediator
Facade Memento
Proxy Flyweight
Observer
State
Strategy
Visitor

Tabelle 2.1: Kategorisierung der Entwurfsmuster nach Gamma et al. [GHJV95]

Ein Entwurfsmuster nach [GHJV95] besteht aus vier Teilen: Der Name des
Entwurfsmusters bildet die Grundlage fiir ein gemeinsames Vokabular unter
den Softwareentwicklern und beschreibt in knappen Worten das Entwurfsmu-

12
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ster. Das Problem beschreibt den Kontext und mogliche Voraussetzungen zur
Anwendung des Entwurfsmusters. In der Lisung werden die Struktur sowie
Beziehungen und Verhalten der beteiligten Elemente des Entwurfsmusters vor-
gestellt. Im letzten Teil werden die Konsequenzen genannt, die die Anwendung
des Entwurfsmusters impliziert. Dazu gehtren unter anderem die Erweiterbar-
keit und Flexibilitéat, aber auch die Platz- und Zeitkomplexitéit des Entwurfs-
musters.

Die Dokumentation der Losung wird unterteilt in Anwendbarkeit, Struktur,
teilnehmende Klassen und Objekte, Verhalten sowie Implementierung und bei-
spielhafte Quelltextfragmente. Die Beschreibung dieser Punkte ist nicht formal,
sondern erfolgt zu einem groflen Teil mit Hilfe einfacher Texte. Die Struktur
eines Entwurfsmusters wird in [GHJV95] zwar durch OMT-Diagramme be-
schrieben, die Diagramme sind jedoch eher als Vorschlag zum Entwurf einer
Entwurfsmusterimplementierung zu verstehen. In neuerer Literatur werden an-
statt der OMT-Diagramme iiblicherweise UML-Klassendiagramme verwendet.
Das Verhalten wird in einigen Féllen durch Kollaborations- oder Interaktions-
diagramme, meist aber ebenfalls nur durch Text beschrieben.

Die informelle Art der Dokumentation von Entwurfsmustern ist ideal fiir
das Forward-Engineering. Der Softwareentwickler hat weit gehende Freiheiten,
die Implementierung des Entwurfsmusters an die gegebene Situation anzu-
passen. Zum einen ldsst sich das gleiche Verhalten auf unterschiedliche Weise
implementieren. Fine Wiederholung kann zum Beispiel als for- oder als while-
Schleife programmiert werden. Zum anderen lassen sich Losungselemente auf
hoherem Abstraktionsniveau, wie zum Beipsiel Assoziationen, unterschiedlich
realisieren. Dadurch entstehen praktisch unendlich viele Implementierungsva-
rianten eines einzelnen Entwurfsmusters.

2.2 Automatische Entwurfsmustererkennung

Die Identifizierung von Entwurfsmusterimplementierungen durch eine Ent-
wurfsmustererkennung hilft, das inhérente Design der Software explizit zu do-
kumentieren und die Entwickler bei ihrer Arbeit zu unterstiitzen. Entwurfsmu-
sterimplementierungen lassen nicht nur auf das zugrunde liegende Problem und
den Kontext, in dem sie angewendet wurden, schliefen. Das Wissen um Ent-
wurfsmusterimplementierungen hilft auch dabei, Erweiterungen an den Soft-
waresystemen vorzunehmen. Eine manuelle Erkennung der Entwurfsmusterim-
plementierungen ist in sehr kleinen Softwaresystemen noch moglich, in praxis-
nahen, meist sehr umfangreichen Softwaresystemen jedoch kaum durchfiihrbar.

13
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Eine automatische Entwurfsmustererkennung, die solch umfangreiche Softwa-
resysteme effizient handhaben kann, ist daher sehr wiinschenswert.

Die informelle Beschreibung der Entwurfsmuster fithrt zu einer Vielfalt von
Implementierungsvarianten, die fiir eine automatische Entwurfsmustererken-
nung das grofite Problem darstellt. Die unterschiedlichen Implementierungs-
varianten konnen zum Beispiel durch unterschiedliche Regeln erkannt werden.
Dies fithrt jedoch zu einer theoretisch beliebig grofien Zahl an Regeln, die die
Dauer der Entwurfsmustererkennung drastisch steigert. Beschréankt man aber
die Zahl der Regeln, konnen nur wenige Implementierungsvarianten erkannt
werden. Das fiihrt schliellich zu einer ungenauen Erkennung, bei der viele
existierende Entwurfsmusterimplementierungen nicht identifiziert werden.

Durch unscharfe Regeln lédsst sich diese Situation etwas verbessern. Eine
Regel deckt dabei verschiedene Implementierungsvarianten eines Entwurfsmu-
sters ab. Als Nebeneffekt werden jedoch mehr False-Positives erkannt. Das
sind Konstrukte, die zwar als Entwurfsmusterimplementierungen identifiziert
wurden, aber keine sind. Die Reduzierung des Anteils der False-Positives am
Gesamtergebnis der Entwurfsmustererkennung ist ein entscheidender Faktor
fiir die Préazision der Erkennung. False-Positives miissen vom Reverse-Engineer
manuell als solche identifiziert werden und stellen damit einen Mehraufwand
dar, der moglichst gering gehalten werden sollte. Hinweise auf die Giite der
erkannten Entwurfsmusterimplementierungen kénnen die manuelle Identifika-
tion jedoch erleichtern.

2.2.1 Anforderungen an eine Entwurfsmustererkennung

Aus diesen Uberlegungen lassen sich vier allgemeine Anforderungen an eine
automatische Entwurfsmustererkennung ableiten.

Skalierbarkeit

Softwaresysteme bestehen nicht selten aus mehreren hunderttausend bis Millio-
nen Zeilen Quelltext. Erst diese Grofle macht eine automatische Entwurfsmu-
stererkennung notwendig; kleine Systeme aus nur wenigen tausend Zeilen sind
noch manuell analysierbar. Die Skalierbarkeit des Analysealgorithmus ist da-
her das wichtigste Kriterium einer automatischen Entwurfsmustererkennung.
Die automatische Analyse grofler Softwaresysteme muss mit einem zeitlich ver-
tretbaren Aufwand moglich sein.

14
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Prazision

Eine automatische Entwurfsmustererkennung ist nur dann fiir einen Reverse-
Engineer sinnvoll einsetzbar, wenn die Ergebnisse der Analyse méglichst prézi-
se sind. Das bedeutet zum einen, dass moglichst alle in einem Softwaresy-
stem vorhandenen Entwurfsmusterimplementierungen von der automatischen
Erkennung identifiziert werden sollten. Zum anderen sollten félschlicherweise
erkannte Entwurfsmusterimplementierungen vermieden werden. Eine hundert-
prozentig korrekte Erkennung ist allerdings nicht zu erreichen.

Anpassbarkeit

Softwaresysteme werden unter den verschiedensten Bedingungen hergestellt.
Héufig gibt es spezifische Richtlinien bei den Herstellern, wie bestimmte Ar-
chitekturdetails oder Eigenschaften der Software umgesetzt werden miissen.
Dazu gehoren zum Beispiel Richtlinien, ob und wie Zugriffsmethoden fiir At-
tribute einer Klasse verwendet werden, wie Assoziationen zwischen Klassen
implementiert werden oder nach welchem Schema Klassen und Methoden be-
nannt werden. Aber auch jeder Entwickler hat einen personlichen Program-
mierstil, nach dem er gleiche Aufgaben immer wieder auf sehr dhnliche Art
und Weise umsetzt. Solche Informationen kénnen zu einer préziseren Erken-
nung von Entwurfsmusterimplementierungen beitragen. Die Spezifikation eines
Entwurfsmusters fiir die automatische Erkennung sollte deshalb leicht vom
Reverse-Engineer an solche Richtlinien und Programmierstile angepasst wer-
den koénnen.

Bewertung

Wegen der sehr vielen Implementierungsvarianten eines Entwurfsmusters ist
eine hundertprozentig sichere Aussage, ein bestimmtes Konstrukt sei ei-
ne Entwurfsmusterimplementierung, durch eine automatische Entwurfsmu-
stererkennung nicht moglich. False-Positives konnen nicht immer vermie-
den werden. Bestimmte Details eines Konstrukts kénnen auf eine tatséchli-
che Entwurfsmusterimplementierung oder auch ein False-Positive hindeu-
ten, wihrend andere Details wiederum das Gegenteil nahe legen. Wird zum
Beispiel beim State-Entwurfsmuster eine mehrwertige Referenz anstatt ei-
ner einfachen Referenz zwischen der Kontext-Klasse und der abstrakten Zu-
standsklasse verwendet, so deutet dies zunéchst einmal nicht auf eine State-
Entwurfsmusterimplementierung hin. Es kann allerdings sein, dass trotzdem
zur Laufzeit immer nur auf einen konkreten Zustand verwiesen wird. Um den

15



Kapitel 2 Grundlagen

Reverse-Engineer bei der Sichtung und Einschétzung der Ergebnisse zu un-
terstiitzen, ist es deshalb sinnvoll, die Giite der gefundenen Entwurfsmuste-
rimplementierungen zu bewerten.

2.3 Strukturbasierte Entwurfsmustererkennung in
Fujaba

Seit dem Jahr 1998 wird an dem Fachgebiet Softwaretechnik an der Univer-
sitdt Paderborn das CASE!'-Werkzeug FUJABA entwickelt [FNT98]. FUJABA
ist ein Akronym und steht fiir ,, From UML to Java And Back Again®. Ziel des
Projekts war es, ein so genanntes Round-Trip- Engineering, also die Verschmel-
zung von Forward- und Reverse-Engineering, zu ermdoglichen. Das bedeutet,
Anderungen am Modell werden in den bereits vorhandenen Quelltext eines
Softwaresystems iibernommen und Anderungen am Quelltext werden in ein
bereits vorhandenes Modell iibertragen. Dadurch ist gleichzeitiges Arbeiten
am Modell und am Quelltext eines Softwaresystems moglich.

Mittlerweile ist FUJABA zu einer allgemeinen, modellbasierten Entwick-
lungsplattform ausgebaut worden, die durch Plug-Ins beliebig erweitert wer-
den kann. Es existieren zur Zeit verschiedene Erweiterungen fiir FUJABA,
zum Beispiel zur Entwicklung mechatronischer Echtzeitsysteme, zur Meta-
Modellierung und Modelltransformation oder auch zum Re-Engineering [Fuj].

Im Zuge der Entwicklung der Re-Engineering-Techniken von FUJABA wurde
ein erster Ansatz zur Entwurfsmustererkennung 1998/1999 in einer studenti-
schen Projektgruppe erarbeitet. Die Erkennung wurde durch manuell program-
mierte Algorithmen realisiert, die auf dem abstrakten Syntaxgraphen (ASG)
des zu untersuchenden Softwaresystems strukturelle Analysen durchfiihrten.
Im Jahre 2001 wurde in einer Diplomarbeit eine formale Sprache auf Basis von
Graphgrammatiken zur Beschreibung von Erkennungsregeln fiir Entwurfsmu-
sterimplementierungen spezifiziert, aus der automatisch Erkennungsmaschinen
generiert werden kénnen [Pal01]. In einer weiteren Diplomarbeit wurde aufler-
dem ein Algorithmus zur Anwendung dieser Erkennungsmaschinen entwickelt,
der eine inkrementelle Analyse grofier Softwareysteme ermoglicht [Wen01]. Die
Spezifikationssprache und der inkrementelle Erkennungsalgorithmus werden in
[INSWT02] vorgestellt. Um der Variantenvielfalt der Entwurfsmusterimplemen-
tierungen zu begegnen, wird in [NWWO03] die Verwendung von Unschérfe in
der Beschreibung von Erkennungsregeln vorgeschlagen und eine Implementie-

!Computer Aided Software Engineering
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rung sowie Evaluation vorgestellt. Der gesamte Prozess der strukturbasierten
Entwurfsmustererkennung wird im Detail in der Dissertation von Jorg Niere
[Nie04] behandelt.

Im Folgenden wird ein Uberblick iiber die strukturbasierte Entwurfsmuste-
rerkennung in FUJABA gegeben. Darin werden die wichtigsten Grundlagen, auf
denen diese Arbeit aufbaut, vorgestellt. Zunéchst wird erlautert, wie der Quell-
text eines Softwaresystems als Vorbereitung zur strukturbasierten Entwurfs-
mustererkennung repréasentiert wird. AnschlieBend wird die Spezifikationsspra-
che zur Beschreibung der Erkennungsregeln fiir Entwurfsmusterimplementie-
rungen vorgestellt. Es folgt die Beschreibung des so genannten Regelkatalogs, in
dem die Abhéngigkeiten zwischen den Erkennungsregeln festgehalten werden
und der vom Erkennungsalgorithmus verwendet wird. Der Erkennungsprozess
und die Bewertung der gefundenen, potentiellen Entwurfsmusterimplementie-
rungen werden am Ende des Kapitels beschrieben.

2.3.1 Strukturmodell eines Softwaresystems

Die Struktur eines Softwaresystems ist spezifiziert durch seinen Quelltext. Der
Quelltext ist jedoch zur algorithmischen Analyse meist ungeeignet. Deshalb
wird ein anderes Modell fiir die Struktur eines Softwaresystems bendtigt. Im
Folgenden wird dieses Modell Strukturmodell genannt.

Um Modelle zu beschreiben, werden Modellierungssprachen eingesetzt, de-
ren Syntax durch Metamodelle definiert wird. In der Softwaretechnik hat
sich die UML [Obj] als Modellierungssprache etabliert. Strukturmodelle wer-
den durch UML-Klassendiagramme beschrieben. Das Metamodell fiir UML-
Klassendiagramme ist daher als Metamodell fiir Strukturmodelle nahe liegend.

Abbildung 2.1 stellt das in dieser Arbeit verwendete Metamodell fiir Struk-
turmodelle dar, das ein vereinfachtes Metamodell fiir UML-Klassendiagramme
ist und an das originale UML-Metamodell angelehnt ist. Dieses Metamodell
definiert die Syntax fiir Strukturmodelle. Zur besseren Ubersicht werden alle
Metamodelle und Modelle, die im Folgenden eingefiihrt werden, Paketen zu-
geordnet, die spéater referenziert werden. Das Metamodell der Strukturmodelle
gehort zum Paket ClassDiagrams.

Die Struktur eines objektorientierten Softwaresystems besteht im Wesentli-
chen aus Klassen und Vererbungen zwischen Klassen. Des Weiteren besitzen
Klassen Attribute und Methoden, die aus einer Methodensignatur und dem
Methodenrumpf zusammengesetzt sind. Es bietet sich also an, als Strukturmo-
dell fiir objektorientierte Softwaresysteme ein Modell aus Klassen, Attributen,
Methoden und Vererbungen zwischen Klassen zu verwenden.
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Abbildung 2.1: Das Metamodell fiir Strukturmodelle, Paket ClassDiagrams

In Abbildung 2.2 ist ein Ausschnitt aus dem Strukturmodell fiir Quelltexte
objektorientierter Sprachen zu sehen. Es ist in grofien Teilen identisch mit dem
Metamodell fiir Strukturmodelle aus Abbildung 2.1. Das ist insofern logisch,
da hier ein Modell fiir Klassendiagramme mit dem Metamodell fiir Klassen-
diagramme definiert wird.

Es sind jedoch auch Unterschiede zwischen dem Metamodell fiir Struktur-
modelle und dem Strukturmodell fiir objektorientierte Softwaresysteme festzu-
stellen. Zum einen kann das Strukturmodell keine Assoziationen zwischen Klas-
sen reprasentieren. Heutige, objektorientierte Programmiersprachen enthalten
keine Sprachelemente fiir Assoziationen. Assoziationen kénnen also nicht di-
rekt aus dem Quelltext eines Softwaresystems gewonnen werden. Assoziationen
stellen vielmehr bereits eine abstraktere Sicht auf das Softwaresystem dar, die
durch explizite Analysen auf der Struktur — zum Beispiel durch die Entwurfs-
mustererkennung — hergestellt werden muss.

Zum anderen miissen die Methodenriimpfe im Strukturmodell reprasentiert
werden. Methodenriimpfe werden in abstrakte Syntaxbdume (engl. Abstract
Syntax Tree (AST)) transformiert. Da das Modell des abstrakten Syntax-
baums fiir Methodenriimpfe sehr komplex ist und nicht weiter in dieser Ar-
beit bendtigt wird, ist es im Strukturmodell in Abbildung 2.2 mit der Klas-
se ASTRootNode nur ausschnittsweise dargestellt. Die Klasse ASTRootNode
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Abbildung 2.2: Ausschnitt aus dem Strukturmodell fiir Quelltexte objektori-
entierter Sprachen, Paket Structure

reprisentiert die Wurzel eines Methodenrumpfes. Alle weiteren Klassen des
abstrakten Syntaxbaums werden wegen Platzmangels nicht abgebildet. Die
Klassen des Strukturmodells gehoren zum Paket Structure.

Auf das Verhalten eines Softwaresystems kann durch seine Struktur nur indi-
rekt geschlossen werden. Dazu miissen potentielle Methodenaufrufe in den ab-
strakten Syntaxbdumen der Methodenriimpfe identifiziert werden. Tatséchlich
zur Laufzeit des Softwaresystems ausgefithrte Methodenaufrufe oder Sequen-
zen von ausgefithrten Methodenaufrufen kénnen aber der Struktur nicht ent-
nommen werden.

Beispiel

Als durchgéngiges Beispiel eines zu untersuchenden Softwaresystems wird in
dieser Arbeit ein Mediaplayer verwendet. Der Quelltext dieses Softwaresystems
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wird auf Basis des Strukturmodells aufbereitet und dem Reverse-Engineer als
Klassendiagramm présentiert (Abbildung 2.3).

Player StreamState
-streams:Set +execute(s:Stream,command:int)
+play() +run(s:Stream)
+pause() JAN
+stop() Playing

+execute(s:Stream,command:int) [

Stream +run(s:Stream)

+CMD_PLAY:int=1

+CMD_PAUSE:int = 2 Paused
+CMD_STOP:int = 3 +execute(s:Stream,command:int) [
-state:StreamState +run(s:Stream)

+setState(state: StreamState)

+execute(command:int) Stopped

+read() +execute(s:Stream,command:int) [—
+close() +run(s:Stream)

Abbildung 2.3: Klassendiagramm eines Mediaplayers

Das Beispiel stellt einen Ausschnitt eines Softwaresystems zum Abspielen
von Multimediadaten wie Liedern oder Filmen dar. Die Daten werden von
dem Programm in Form von Datenstromen verarbeitet. Der Benutzer kann
die Multimediadaten mit dem Mediaplayer abspielen, ihre Wiedergabe pausie-
ren oder auch beenden. Diese Befehle werden von der zentralen Klasse Player
entgegengenommen und an den Datenstrom (Stream) weitergereicht. Der Da-
tenstrom speichert seinen aktuellen Zustand in einem Zustandsobjekt (vom
Typ StreamState), das die Ausfithrung des Befehls durchfithrt und gegebenen-
falls den Zustand des Datenstroms édndert.

Das Klassendiagramm enthélt keine Assoziationen, da sie wie bereits
erlautert nicht direkt aus den Quelltexten extrahiert, sondern nur durch eine
erweiterte Analyse der Struktur gewonnen werden konnen. Die Beziehungen
zwischen den Klassen werden im Quelltext und somit auch in der Struktur nur
durch Attribute modelliert. Das Attribut state:StreamState der Klasse Stream
ist leicht als eine einfache Referenz von Stream auf StreamState erkennbar. Das
Attribut streams:Set der Klasse Player dagegen kann jedoch erst durch Analyse
der in der Menge gespeicherten Typen als eine mengenwertige Referenz von
Player auf Stream identifiziert werden.
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2.3.2 Spezifikation von Strukturmustern

In der strukturbasierten Entwurfsmustererkennung von FuJjABA werden Mu-
ster spezifiziert, die den strukturellen Anteil eines Entwurfsmusters beschrei-
ben. Mit Hilfe dieser Muster werden in der Struktur eines Softwaresystems
Entwurfsmusterimplementierungen identifiziert. Diese Muster werden im Fol-
genden als Strukturmuster bezeichnet.

Context

state_| AbstractState
+setState(AbstractState) 1| +handie()
+request() o

/
, T T
o
ConcreteStateA | | ConcreteStateB
state.-handle) |  [+handle() +handle()

Abbildung 2.4: Die Struktur des State Entwurfsmusters

Abbildung 2.4 zeigt die Struktur des State-Entwurfsmusters als Klassendia-
gramm. Die Klasse Context referenziert eine abstrakte Oberklasse Abstract-
State. Diese Klasse gibt eine gemeinsame Schnittstelle fiir konkrete Klassen
vor, die verschiedene Zustéinde der Klasse Context implementieren. In dieser
Abbildung sind beispielhaft zwei konkrete Zustdnde ConcreteStateA und Con-
creteStateB vorgegeben, es konnen aber prinzipiell beliebig viele verschiedene
Zustdande existieren. Zur Laufzeit hat ein Objekt der Klasse Context einen
aktuellen Zustand, an den es Anfragen — Aufrufe der Methode request() — de-
legiert. Durch Zustandswechsel kann das Context-Objekt unterschiedlich auf
diese Anfragen reagieren.

In Abbildung 2.4 ist die Struktur des State-Entwurfsmusters in konkreter
Syntax — einem Klassendiagramm — zu sehen. Strukturmuster werden dage-
gen auf Basis der abstrakten Syntax der Struktur spezifiziert und beschreiben
jeweils einen Teilgraphen innerhalb der Struktur eines Softwaresystems. Die
Struktur ist eine Instanz des Strukturmodells, sie ist also durch das Struktur-
modell typisiert. Da Strukturmuster Ausschnitte aus der Struktur beschreiben,
sind auch sie durch das Strukturmodell typisiert.

Abbildung 2.5 zeigt das State-Strukturmuster. Die Syntax der Struktur-
muster ist an UML-Objektdiagramme angelehnt. Strukturmuster sind Graph-
grammatikregeln [Roz97], die aus einer linken und einer rechten Regelseite
bestehen. Die linke Regelseite ist ein Teilgraph, der in einem Wirtsgraphen
gesucht wird. Die rechte Regelseite enthélt den gesuchten Teilgraphen und
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Sp State I «create»

State
«create» 60% «create»
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context:Class method setState:Method parampararcType— abstractState:Class
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methods ¥ l
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Abbildung 2.5: Das Strukturmuster des State-Entwurfsmusters

beschreibt die Modifikationen an diesem Teilgraphen. Modifikationen kénnen
das Erzeugen und Loschen von Knoten und Kanten oder auch das Andern von
Knotenattributen sein. Ist eine homomorphe Abbildung der Knoten der linken
Regelseite auf Knoten des Wirtsgraphen moglich, so ist der Teilgraph gefun-
den und die Graphgrammatikregel kann angewendet werden. Das bedeutet, die
Modifikationen der rechten Regelseite werden an dem gefundenen Teilgraphen
durchgefiihrt.

Strukturmuster sind eingeschrénkte Graphgrammatikregeln. In einem Struk-
turmuster werden die linke und die rechte Regelseite gemeinsam in einem Gra-
phen dargestellt. Die einzige Modifikation, die ein Strukturmuster durchfiihrt,
ist die Erzeugung eines Knotens, der so genannten Annotation?, und einiger
Kanten, die die Annotation mit Knoten des gefundenen Teilgraphen verbin-
den. Dieser Annotationsknoten und die zu erzeugenden Kanten sind mit dem
Stereotyp «create> gekennzeichnet. Die linke Regelseite besteht also aus den
Knoten und Kanten, die nicht den Stereotyp <create> tragen. Die rechte Regel-
seite besteht aus allen Knoten und Kanten des Strukturmusters. Der Prozent-
wert innerhalb des mit <create> markierten Annotationsknotens wird spéater
in Abschnitt 2.3.5 erlautert.

Durch das Anwenden von Strukturmustern auf die Struktur eines Softwa-
resystems wird die Struktur durch Annotationen angereichert. Die Annotatio-
nen markieren die Fundstellen von potentiellen Entwurfsmusterimplementie-
rungen.

2yisualisiert als Oval
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Das State-Strukturmuster beschreibt nur einige Aspekte der Struktur des
State-Entwurfsmusters. So fehlen die iiberschreibenden Methoden der konkre-
ten Zusténde und die Referenz der Klasse Context auf die Klasse AbstractState.
Diese Aspekte werden durch so genannte Hilfsmuster abgedeckt. Annotationen
kénnen in anderen Strukturmustern wiederverwendet werden. In Abbildung 2.5
sind zwei ovale Objekte mit den Namen :Delegation und :OverriddenMethod zu
finden. Das sind Annotationen, die durch andere Strukturmuster erzeugt wur-
den und Hilfsmuster représentieren.

Hilfsmuster sind Teile von Entwurfsmustern, die immer wieder in unter-
schiedlichen Entwurfsmustern vorkommen. Die Verwendung von Annotatio-
nen in den Strukturmustern erlaubt es, Strukturmuster verschiedener Hilfsmu-
ster zu kombinieren und so komplexere Strukturmuster fiir Entwurfsmuster zu
schaffen. So miissen gleiche Teile nicht mehrfach spezifiziert werden. Ein Bei-
spiel fiir ein solches Hilfsmuster ist die Delegation. Bei einer Delegation wird
ein Methodenaufruf entlang einer Referenz von einem Objekt an ein anderes
weiter gegeben, der Methodenaufruf wird delegiert.

sp Delegation ] «create»

:Delegation
«create» 70% «create»
Acalle callee A
caller:Method met{hods—| callerClass:Class | | calleeClass:Class l—metﬁod callee:Method
methodBody ¥ » referencingClass references ¢

-ASTRootNode _
{id.name==callee.name}

without(LoopNode)

| :MethodCallNode } idenifier id:Identifier

Abbildung 2.6: Das Strukturmuster des Delegation-Hilfsmusters

Abbildung 2.6 zeigt das Delegation-Strukturmuster. Es beschreibt zwei Me-
thoden, deren Klassen durch ein weiteres Hilfsmuster, eine Reference, verbun-
den sind. Innerhalb des Methodenrumpfs der Methode caller:Method existiert
ein Methodenaufruf, wobei der Name der aufgerufenen Methode mit dem Na-
men der zweiten Methode, callee:Method, iibereinstimmt. Der Methodenaufruf
darf an fast beliebiger Stelle im Rumpf der Methode stattfinden, nicht jedoch
innerhalb einer Schleife. Um dies im Strukturmuster auszudriicken, wird ein
Pfad verwendet. Wahrend bei Kanten zwischen zwei Objekten diese unmit-
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telbar miteinander verbunden sein miissen, schreiben Pfade vor, dass die zwei
iiber den Pfad verbundenen Objekte nur mittelbar {iber beliebige Kanten und
andere Objekte verbunden sind. In diesem Fall sind sogar die Typen der Ob-
jekte, die auf dem Pfad liegen, eingeschrénkt. Es darf kein Objekt des Typs
LoopNode auf dem Pfad liegen, das bedeutet, der Methodenaufruf darf sich
nicht innerhalb einer Schleife befinden.

Der Methodenaufruf wird in diesem Strukturmuster nur iiber den Namen
identifiziert. Eine Uberpriifung des Typs des Objekts, auf dem der Methoden-
aufruf stattfindet, wird nicht durchgefiihrt. In dem abstrakten Syntaxbaum des
Methodenrumpfes, der direkt aus dem Quelltext erzeugt wurde, konnen die Ty-
pen der Variablen im Methodenrumpf nur in wenigen Spezialfillen zweifelsfrei
ermittelt werden. Fiir eine eindeutige Ermittlung der Typen ist ein Uberset-
zer notwendig, der den gesamten Quelltext und alle notwendigen Bibliotheken
kennt. In der strukturbasierten Entwurfsmustererkennung in FUJABA kommt
jedoch kein Ubersetzer zum Einsatz, da nicht immer der gesamte Quelltext
analysiert werden soll oder zur Verfiigung steht. An dieser Stelle wird also nur
eine Heuristik verwendet, die zu False-Positives bei der Entwurfsmustererken-
nung fiihrt.

«reference» d tati i
Structure: Node nodes nodes annotations ,M Annotation
- 1 P 0. ——— +accuracy:Float
A JAN
r-’r:::,:::::/ /" 7"/ """ ] _"——— =
[ I
[
| «reference» «reference» :

Structure:: Type | | Structure::Method | | State | | Delegation

Abbildung 2.7: Modell der Annotationen, Paket Annotations

In Abbildung 2.7 ist das Modell der Annotationen dargestellt. Die Klassen
dieses Modells gehoren zum Paket Annotations. Annotationen, reprasentiert
durch die abstrakte Klasse Annotation, konnen mit allen Elementen der Struk-
tur verbunden werden. Die Klasse Node ist die Oberklasse aller Klassen des
Strukturmodells aus Abbildung 2.2. Von der abstrakten Oberklasse der An-
notationen erben konkrete Annotationen wie die des State- oder des Delegati-
on-Strukturmusters. Als Schliissel fiir die Referenz dienen die Namen, die an
den Kanten, die im Strukturmuster von den Annotationen ausgehen, stehen.
Eine Annotation vom Typ State referenziert zum Beispiel zwei Objekte von
Typ Class unter den Schliisseln context und abstractState.
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Abbildung 2.8: Metamodell der Strukturmuster, Paket StructuralPatterns

Das Metamodell der Strukturmuster ist in 2.8 abgebildet. Ein Struktur-
muster (StructuralPattern) besteht aus Knoten (SPAbstractObject), die durch
Kanten (Connection) verbunden sind. Die Knoten sind entweder Annotatio-
nen (SPAnnotationObject) oder normale Objekte (SPObject). Die Kanten sind
normale Verbindungen (Link) oder Pfade (Path).

Das Metamodell der Strukturmuster ist mit dem Metamodell der Struktur-
modelle aus Abbildung 2.1 verbunden, da, wie bereits erwahnt, das Struktur-
modell den Strukturmustern zur Typisierung dient. Die Klasse SPAbstractOb-
ject referenziert die Klasse Class aus dem Metamodell der Strukturmodelle. So
kann der Typ eines Strukturmusterobjekts oder einer Annotation festgelegt
werden. Die Klasse Link fiir die Verbindungen der Objekte im Strukturmuster
referenziert die Klasse Association.

2.3.3 Regelkatalog

Zusammengehorige Strukturmuster werden in einem Regelkatalog organisiert.
Im Folgenden werden Strukturmuster auch synonym als Regeln bezeichnet,
da Strukturmuster wie bereits erwdhnt Graphgrammatikregeln sind. Die Wie-
derverwendung von Strukturmustern durch Annotationen in anderen Struk-
turmustern erzeugt Abhéngigkeiten. Im Regelkatalog sind unter anderem die-
se Abhéngigkeiten zwischen den Strukturmustern festgehalten. Abbildung 2.9

25



Kapitel 2 Grundlagen

zeigt einen Regelkatalog, der auch die vorgestellten State- und Delegation-
Strukturmuster enthélt.

«Rule» «Rule»
Strategy _| State
————— > Abhéangigkeit ! S~ P !
| R I
— Vsrcterbkutng v // \\ v
apstrakie «Rule» «Rule» «Rule»
Reference . . . N
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ArrayReference T MultiReference T Reference J SingleReference Generalization
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Vi Vi Vi Vi
«Axiom» «Axiom» «Axiom» «Axiom»
Array Method Attribute Generalization

Abbildung 2.9: Regelkatalog

Auf unterster Ebene des Regelkatalogs liegen die Aziome. Axiome sind fest-
stehende Fakten aus der Struktur, also Klassen, Methoden, Attribute oder
andere Knoten. Uber den Axiomen sind die Regeln der Hilfs- und Entwurfs-
muster angeordnet, die auf den Axiomen und anderen Regeln aufbauen.

Damit die Regeln im Erkennungsprozess in einer korrekten Reihenfolge an-
gewendet werden, wird jeder Regel des Regelkatalogs ein Rang zugeordnet.
Die Regeln, die nur von Axiomen, nicht aber von anderen Regel abhéngen,
erhalten den Rang 0. Alle weiteren Regeln erhalten einen Rang geméfl ihrer
topologischen Sortierung.

Im Regelkatalog werden des Weiteren Vererbungen zwischen den Struk-
turmustern festgelegt. Es kann Hilfsmuster oder Entwurfsmuster geben, die
die gleiche Semantik haben, aber durch unterschiedliche Syntax implementiert
werden. Das Hilfsmuster Reference zum Beispiel sagt aus, dass eine Klasse eine
andere Klasse referenziert. Es kann allerdings verschiedene Implementierungen
fiir solche Referenzierungen geben. Zum einen kann zur Laufzeit ein Objekt
immer nur ein einzelnes Objekt referenzieren. In diesem Fall wiirde eine Sing-
leReference vorliegen. Zum anderen kann jedoch zur Laufzeit ein Objekt auch
mehrere Objekte gleichzeitig referenzieren, dies wére eine MultiReference. Ei-
ne MultiReference kann aber wiederum auf unterschiedliche Art implementiert
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werden. Eine Moglichkeit wére die Verwendung eines Container-Objekts zur
Speicherung der Referenzen, eine andere Moglichkeit die Verwendung eines
Arrays, wie im Hilfsmuster ArrayReference.

Bei Verwendung der Vererbung wird zunéchst in abstrakten Regeln die ge-
meinsame Schnittstelle der von den konkreten Regeln erzeugten Annotationen
festgelegt. Im Falle der Reference wiren dies zwei Klassen aus Struktur, die
unter den Schliisseln referencingClass und references annotiert werden. Diese
Schnittstelle wurde im Strukturmuster des Delegation-Hilfsmusters in Abbil-
dung 2.6 verwendet. In den konkreten Strukturmustern SingleReference, Mul-
tiReference und ArrayReference wird dann beschrieben, welche Teilgraphen
vorliegen miissen, damit zwei Klassen, wie in der Schnittstelle vorgegeben,
annotiert werden.

Wird eine Regel angewendet, so kann fiir eine darin wiederverwendete An-
notation eines abstrakten Strukturmusters eine Annotation eines erbenden,
konkreten Strukturmusters polymorph eingesetzt werden. So wiirde im Bei-
spiel des Delegation-Hilfsmusters eine Delegation erkannt werden, egal ob die
beiden Klassen durch eine SingleReference, MultiReference oder ArrayRefe-
rence verbunden sind. Die Vererbung von Strukturmustern ist somit eine von
vielen Strategien, dem Problem der Variantenvielfalt von Entwurfsmusterim-
plementierungen in der Entwurfsmustererkennung zu begegnen.

2.3.4 Strukturbasierter Erkennungsprozess

Jedes Softwaresystem weist individuelle Besonderheiten in seiner Implemen-
tierung auf. Das ist auf individuelle Implementierungsstile der Programmierer
und unterschiedliche Firmenkulturen zuriickzufiihren. So entstehen viele Im-
plementierungsvarianten von Hilfsmustern und Entwurfsmustern. Die Struk-
turmuster miissen jeweils an solche Besonderheiten angepasst werden, um ein
gutes Ergebnis bei der Entwurfsmustererkennung zu erzielen. In der struk-
turbasierten Entwurfsmustererkennung in FUJABA wird daher ein iterativer
Prozess vorgeschlagen [NSW02].

Die Eingaben des Erkennungsprozesses sind der Quelltext und der Regelka-
talog. Der Erkennungsprozess startet entweder mit einem neuen Regelkatalog,
der sukzessive durch neue Strukturmuster erweitert wird, oder mit einem be-
reits vorhandenen Regelkatalog, dessen Strukturmuster an die Besonderheiten
des zu untersuchenden Softwaresystems angepasst werden. In jedem Iterations-
schritt werden jeweils eine Analyse des Softwaresystems oder eines Teils des
Softwaresystems durchgefiihrt und auf Basis der dabei erzielten Ergebnisse die
Strukturmuster angepasst. Das Ergebnis der statischen Analyse sind poten-

27



Kapitel 2 Grundlagen

tielle Entwurfsmusterimplementierungen, so genannte Kandidaten. Abbildung
2.10 zeigt eine schematische Darstellung des strukturbasierten Erkennungspro-
zesses.

Struktur- F _
Quelltext muster/ 6\-@;)\ [
Regelkatalog fﬂ_\«&\
5
&

Statische Anpassung der
Analyse Strukturmuster

D Prozessschritt
Dok
[ ookumen: Kandldaten ﬁ

@)y Datenflul fur Entwurfsmuster-
&Y Interaktion implementierungen

Abbildung 2.10: Der strukturbasierte Erkennungsprozess

Die Abhéngigkeiten der Strukturmuster im Regelkatalog geben eine be-
stimmte Reihenfolge vor, in der die Regeln angewendet werden miissen. Bevor
zum Beispiel die Regel des State-Entwurfsmusters angewendet werden kann,
miissen die Regeln der Delegation und der QuerriddenMethod ausgefiihrt wor-
den sein. Ublich sind bei solchen Abhiingigkeiten Algorithmen, die die Regeln
gemaf ihrer topologischen Sortierung im Regelkatalog bottom-up, also von un-
ten nach oben, anwenden.

Regeln, die Entwurfsmusterimplementierungen beschreiben, bauen typi-
scherweise auf einer Vielzahl anderer Regeln fiir Hilfsmuster auf. Beim bottom-
up-Algorithmus werden diese Regeln daher erst spat ausgefiihrt, so dass vor-
handene Entwurfsmusterimplementierungen und damit aussagekréftige Ergeb-
nisse erst nach Durchfithrung einer vollstdndigen Analyse erkannt werden. Die-
se Ansitze bieten also keine optimale Unterstiitzung des Reverse-Engineers, da
bei der Analyse grofler Systeme jeder Iterationsschritt sehr zeitaufwéndig ist
und auflerdem oft eine Vielzahl von Entwurfsmustern erkannt werden, die dann
manuell ausgewertet werden miissen.

Die strukturbasierte Entwurfsmustererkennung in FUJABA verwendet da-
her einen inkrementellen Algorithmus, der moglichst friithzeitig aussagekréftige
Ergebnisse produziert und durch den Reverse-Engineer unterbrochen werden
kann. Dadurch kann der Reverse-Engineer friihzeitig und gezielt Ergebnisse
untersuchen und darauthin den Regelkatalog anpassen.
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Die frithzeitige Produktion aussagekréftiger Ergebnisse wird durch die An-
gabe eines Kontextes, in dem eine Regel angewendet wird, unterstiitzt. Der
Kontext ist ein Knoten der Struktur, von dem angenommen wird, dass er
auch ein Knoten des durch das Strukturmuster beschriebenen Teilgraphen ist.
So kann ausgehend von dem Kontext der Rest des Teilgraphen gesucht werden.
Die Angabe des Kontextes ermoglicht die Ausfithrung einer Regel in polyno-
mieller Laufzeit.

Um frithzeitig Ergebnisse zu produzieren, wird in diesem Ansatz eine Kom-
bination aus bottom-up- und top-down-Algorithmus eingesetzt. Zu Beginn der
Analyse werden die Regeln des Ranges 0 zusammen mit Axiomen aus der
Struktur als Kontext-Regel-Paare in eine bottom-up-Prioritdtswarteschlange
eingefiigt. Die Warteschlange ist absteigend nach dem Rang der Regel sor-
tiert. Dadurch werden Regeln hohen Ranges, die aussagekriftige Ergebnisse
versprechen, moglichst friithzeitig ausgefiihrt.

Im bottom-up-Modus wird jeweils das vorderste Kontext-Regel-Paar aus der
Schlange entfernt. Es wird versucht, die Regel im Kontext anzuwenden. Dazu
wird zunéchst nach dem von der Regel spezifizierten Teilgraphen gesucht. Wird
der Teilgraph gefunden, wird die Regel angewendet und eine Annotation in
der Struktur erzeugt. Sind weitere Regeln von der erfolgreich angewendeten
Regel abhéngig, so werden diese zusammen mit der erzeugten Annotation als
Kontext-Regel-Paar in die Schlange einsortiert.

Kann der Teilgraph jedoch nicht gefunden werden, wird die auszufiihrende
Regel nicht sofort verworfen. Stattdessen wird iiberpriift, ob im Teilgraphen
geforderte Annotationen in der Struktur fehlen. In diesem Fall wird versucht,
zuerst die fehlenden Annotationen durch Ausfithrung der entsprechenden Re-
geln zu erzeugen und dann die auszufiithrende Regel anzuwenden. Dazu schaltet
der Algorithmus vom bottom-up- in den top-down-Modus um.

Im top-down-Modus werden zunéchst das aktuelle Kontext-Regel-Paar und
rekursiv alle Regeln, von denen die aktuelle Regel abhéngig ist, mit entspre-
chendem Kontext in einen anfangs leeren Stack gelegt. Dann wird ein Kontext-
Regel-Paar vom Stack entfernt und der Teilgraph der Regel gesucht. Wird der
Teilgraph gefunden, wird die Regel angewendet und eine Annotation erzeugt.
Sind andere Regeln von der gerade ausgefiithrten abhéngig, so werden wie-
derum die abhéngigen Regeln mit der Annotation als Kontext-Regel-Paare in
die Warteschlange fiir den bottom-up-Modus einsortiert. Der top-down-Modus
endet, wenn der Stack leer ist.

Nach beendetem top-down-Modus fihrt der Algorithmus im bottom-up-
Modus fort. Der bottom-up-Modus terminiert, wenn die Schlange leer ist. Der
Reverse-Engineer kann jedoch den Algorithmus auch jederzeit unterbrechen,
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um sich erste Ergebnisse préasentieren zu lassen.

Die Skalierbarkeit des Verfahrens wurde in [NSW*02] belegt. Das Verfahren
wurde erfolgreich auf die JAvA-Bibliotheken JAvA Generic Library (JGL) mit
36.500 LOC und JavAa Abstract Window Toolkit (AWT) mit 114.000 LOC
angewendet. Die Gesamtdauer der Analyse bleibt mit zum Beispiel ca. 22 Mi-
nuten fiir die Bibliothek JAVA AWT in einer vertretbaren Gréflenordnung.

2.3.5 Bewertung der Ergebnisse

Die Bewertung der Kandidaten basiert auf einer Bewertung der Strukturmu-
ster. Bei der Spezifikation eines Strukturmusters muss der Reverse-Engineer
einen so genannten Vertrauenswert angeben. Er wird in den mit dem Stereo-
typ <create> gekennzeichneten Annotationsknoten eingetragen. Der Vertrau-
enswert driickt die Giite des Strukturmusters durch das Verhéltnis der Anzahl
der durch das Strukturmuster identifizierten, tatséchlichen Entwurfsmusterim-
plementierungen zu der Anzahl aller durch das Strukturmuster identifizierten
Kandidaten aus. Der Vertrauenswert des State-Strukturmusters in Abbildung
2.5 sagt zum Beispiel aus, dass 60% aller Kandidaten tatsdchliche Entwurfs-
musterimplementierungen sind, wihrend 40% False-Positives sind. Dieser Wert
wird durch den Reverse-Engineer aufgrund seiner Erfahrung geschétzt.

Die Giite eines Kandidaten wird durch den einen Genauigkeitswert ausge-
driickt, der sich aus den Vertrauenswerten der an einer Annotation beteiligten
Strukturmuster berechnet. Die Berechnung der Genauigkeitswerte findet in ei-
nem Fuzzy-Petri-Netz (FPN) [Jah99] statt, in dem die Abhéngigkeiten aller
erzeugten Annotationen festgehalten sind.

In Abbildung 2.11 ist ein FPN vor (links) und nach (rechts) der Berech-
nung zu sehen. Jede Annotation wird im FPN durch eine Stelle représentiert.
Abhéngigkeiten zwischen Annotationen werden durch Transitionen modelliert.
In dem Beispiel ist eine Annotation :State dargestellt, die von einer Annotati-
on :Delegation und einer Annotation :OverriddenMethod abhéngt, die wiederum
von weiteren Annotationen abhéngen. Der Vertrauenswert eines Strukturmu-
sters wird in die Transition aus dem Vorbereich der Annotation des Struktur-
musters eingetragen. Fiir das State-Strukturmuster wurde zum Beispiel der
Vertrauenswert von 60% eingetragen.

In der Anfangsmarkierung des Fuzzy-Petri-Netzes erhalten die Stellen der
Annotationen, die von keinen anderen Annotationen abhéngig sind, zunéchst
den Vertrauenswert ihres Strukturmusters als Markierung. Die Annotation :Ge-
neralization erhélt zum Beispiel die Markierung 100%. Alle anderen Stellen er-
halten die Markierung 0%. Das Fuzzy-Petri-Netz wird nun solange ausgefiihrt,
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:Delegation :OverriddenMethod
70% 100%

min{90%, 70%} min{100%, 100%}

:SingleReference :Generalization :SingleReference :Generalization
90% 100% 90% 100%

Abbildung 2.11: Fuzzy-Petri-Netz zur Bewertung eines State-Kandidaten

:Delegation :OverriddenMethod
0% 0%

bis es stabil ist. Die neue Markierung einer Stelle berechnet sich dabei aus dem
Minimum der Markierungen der Stellen aus dem Vorbereich und dem Vertrau-
enswert der Transition. Die rechte Seite in Abbildung 2.11 zeigt das stabile
FPN. Die Markierung einer Stelle wird schliellich als Genauigkeitswert ihrer
Annotationen interpretiert. Details zur Berechnung der Genauigkeitswerte sind
in [Wen01] und [Nie04] zu finden.

Die Annotationen werden zusammen mit ihren Genauigkeitswerten dem
Reverse-Engineer als Ergebnis der strukturbasierten Entwurfsmustererken-
nung in Form eines annotierten Klassendiagramms préisentiert. Abbildung 2.12
zeigt den Kandidaten einer State-Entwurfsmusterimplementierung am Beispiel
des Mediaplayers aus Abbildung 2.3, Seite 20. Die Annotation wird als Oval
mit dem Namen des Entwurfsmusters und ihrem Genauigkeitswert dargestellt.
Die annotierten Klassen der Struktur werden durch Linien mit der Annotation
verbunden. An den Linien ist jeweils der Name der Rolle verzeichnet, die die
Klasse in der Entwurfsmusterimplementierung spielt.

Die Vertrauenswerte der Strukturmuster werden bei der Spezifikation durch
den Reverse-Engineer geschétzt. Da dieser Wert nicht auf tatséchlichen Da-
ten basiert, wurde eine automatische Adaption der Vertrauenswerte entwickelt
[Rec04], die Eingaben des Reverse-Engineers verwendet. Nach der Entwurfs-
mustererkennung kann der Reverse-Engineer den Genauigkeitswert jeder An-
notation dndern. Der Vertrauenswert kann zum Beispiel auf 0% gesenkt wer-
den, wenn der entsprechende Kandidat ein False-Positive ist. Der Vertrauens-
wert kann aber auch auf einen beliebigen Wert zwischen 0% und 100% gesetzt
werden, um die vom Reverse-Engineer beurteilte Genauigkeit einer Annotati-
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T StreamState
sp State ™, cractstat .
60% 4 rabstracistaie +execute(s:Stream,command:int)
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= Playing
: +execute(s:Stream,command:int) [
Stream +run(s:Stream)
+CMD_PLAY:int=1
+CMD_PAUSE:int = 2 Paused
+CMD_STOP:int =3 +execute(s:Stream,command:int) [ |
-state:StreamState +run(s:Stream)
+setState(state: StreamState)
+execute(command:int) Stopped
+read() +execute(s:Stream,command:int) |
+close() +run(s:Stream)

Abbildung 2.12: Ein Kandidat einer State-Entwurfsmusterimplementierung

on auszudriicken. Die korrigierten Genauigkeitswerte aller Annotationen eines
Strukturmusters flieen bei der automatischen Adaption in die Berechnung ei-
nes neuen Vertrauenswertes des Strukturmusters ein. Der neue Vertrauenswert
wird dann bei der ndchsten Entwurfsmustererkennung verwendet.

2.3.6 Einsatzgebiete

Die strukturbasierte Entwurfsmustererkennung lasst sich nicht nur zur Iden-
tifikation von Entwurfsmusterimplementierungen einsetzen. Sie wird auch zur
Suche nach Anti-Patterns [BMMMO8] verwendet. Anti-Patterns sind im Ge-
gensatz zu Entwurfsmustern schlechte, ungeeignete Implementierungen fiir im-
mer wiederkehrende Probleme. Ihre Identifikation in Softwaresystemen lasst
auf Designschwichen oder Probleme mit der Wartbarkeit der Systeme schlie-
Ben und kann zu ihrer Verbesserung eingesetzt werden [Mey06].

Das in diesem Kapitel vorgestellte Strukturmodell ist nur zur Repréasentation
objektorientierter Softwaresysteme geeignet. Mit dem Metamodell fiir Struk-
turmodelle lassen sich jedoch beliebige Strukturmodelle beschreiben. Die struk-
turbasierte Entwurfsmustererkennung ist daher in ihrer Anwendungsdoméne
nicht auf objektorientierte Softwaresysteme beschréankt. Sie wird auch auf an-
dere Strukturmodelle angewendet, so zum Beispiel auf Modelle des Werkzeugs
MATLAB/SIMULINK [GMWO06].
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MATLAB/SIMULINK ist eine Entwicklungs- und Simulationsumgebung fiir
Algorithmen zu numerischen Berechnungen, zur Datenanalyse und -visualisie-
rung und bietet zu diesem Zweck eine eigene Hochsprache [Mat]. In diesem Fall
wird das Strukturmodell fiir objektorientierte Sprachen gegen ein Strukturmo-
dell fiir die Hochsprache von MATLAB/SIMULINK ausgetauscht. Die struk-
turbasierte Entwurfsmustererkennung kann dadurch zur Erkennung von Mu-
sterimplementierungen in MATLAB/SIMULINK eingesetzt werden. In dem in
dieser Arbeit vorgestellten Verfahren wird die strukturbasierte Entwurfsmu-
stererkennung allerdings nur auf Softwaresysteme angewendet, die in einer ob-
jektorientierten Sprache geschrieben sind.

2.3.7 Uberblick

Im Folgenden wird ein Uberblick iiber die Abstraktionsschichten der struktur-
basierten Entwurfsmustererkennung gegeben. In Abbildung 2.13 werden die
Diagramme der letzten Abschnitte in ein Schema aus Metamodellen, Model-
len und Instanzen beziehungsweise Implementierungen eingeordnet. Die linke
Hilfte der Tabelle zeigt die Abstraktionsschichten der Struktur eines Softwa-
resystems, die rechte Hélfte die Abstraktionsschichten der Strukturmuster.

Das Strukturmodell in der mittleren Abstraktionsschicht der linken H&lf-
te legt fest, wie die Struktur eines Softwaresystems reprasentiert wird. Das
Strukturmodell ist je nach Anwendungsdoméne der strukturbasierten Ent-
wurfsmustererkennung austauschbar. In dieser Arbeit wird ein Strukturmodell
fiir Quelltexte objektorientierter Sprachen verwendet. Ein Beispiel fiir eine
Instanz des Strukturmodells, also die Struktur eines konkreten Softwaresy-
stems, ist in der untersten Abstraktionsschicht zu sehen. Das Metamodell fiir
Strukturmodelle in der obersten Abstraktionsschicht legt dagegen fest, wie die
verschiedenen Strukturmodelle zu beschreiben sind.

Auf der rechten Seite ist in der mittleren Abstraktionsschicht das Struk-
turmuster fiir das State-Entwurfsmuster abgebildet. In dieser Schicht lie-
gen jedoch alle Strukturmuster eines Regelkatalogs, das State-Strukturmuster
ist nur ein Représentant. Ein Strukturmuster beschreibt in einer Art UML-
Objektdiagramm Teilgraphen in der Struktur eines Softwaresystems. Aus die-
sem Grund verwenden die Strukturmuster das Strukturmodell als semanti-
schen Typgraphen. In der untersten Ebene ist eine konkrete Implementierung
eines State-Entwurfsmusters abgebildet, die in der Struktur der linken Seite
gefunden wurde. Das Metamodell der Strukturmuster referenziert wiederum
das Metamodell der Strukturmodelle, um so die semantische Typbeziehung
zwischen Strukturmuster und Strukturmodell herzustellen.
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Abbildung 2.13: Die
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2.4 Zusammenfassung

In dieser Tabelle bestehen in der Vertikalen von oben nach unten jeweils
Modell-Instanz-Beziehungen zwischen den Diagrammen. In der Horizontalen
stehen die Diagramme dagegen in einer semantischen Beziehung zueinander,
die in der Schicht der Metamodelle explizit durch Referenzen zwischen den
Metamodellen festgelegt wurde.

2.4 Zusammenfassung

Die strukturbasierte Entwurfsmustererkennung in FUJABA bietet eine gute
Grundlage fiir eine Erweiterung zu einem Verfahren, das alle der in Abschnitt
2.2 genannten Anforderungen erfiillt. Die Skalierbarkeit des Verfahrens wurde
in [NSWT02] belegt. Die leichte Anpassbarkeit der Entwurfsmusterspezifikatio-
nen ist durch die UML-Objektdiagramme-ahnliche Spezifikationssprache gege-
ben. Die Spezifikationen sind durch die graphische Notation von dem Reverse-
Engineer schnell zu erfassen, da die UML in der Softwaretechnik eine sehr weit
verbreitete Sprache ist. Des Weiteren ist das Strukturmodell leicht austausch-
bar, so dass die Entwurfsmustererkennung auch auf andere Strukturmodelle
anwendbar ist [GMWO06].

Die vorgestellte Bewertung der Ergebnisse ist allerdings mangelhaft. Die
Bewertung beruht nicht auf der Beurteilung der Giite einer einzelnen, potenti-
ellen Entwurfsmusterimplementierung, sondern auf der Beurteilung der Giite
des Strukturmusters. Die Bewertung einer Annotation wird iiber die Typen
der Annotationen, von denen sie abhingt, berechnet. Zwei Annotationen ei-
nes Strukturmusters héngen jedoch in der Regel von Annotation der gleichen
Typen ab. Sie kénnen sich nur dann unterscheiden, wenn durch Polymorphie
eine Annotation eines Subtypen verwendet wird. Im Falle zweier Delegation-
Annotationen zum Beispiel unterscheiden sich ihre Bewertungen nicht, wenn
beide von einer SingleReference abhingen. Erst wenn zum Beispiel eine An-
notation von einer SingleReference-Annotation, und die andere von einer Mul-
tiReference-Annotation abhiingt?, erhalten sie unterschiedliche Bewertungen.
Das gegebene Verfahren ist daher nicht zur Bewertung der potentiellen Ent-
wurfsmusterimplementierungen geeignet. In Kombination mit der automati-
schen Adaption kann es allerdings zur Bewertung der Strukturmuster genutzt
werden.

Die Prazision der gegebenen Entwurfsmustererkennung in FUJABA leidet

3Die SingleReference- und MultiReference-Strukturmuster erben beide vom abstrakten Re-
ference-Strukturmuster, sieche Abbildung 2.9. Das Delegation-Strukturmuster fordert nur
eine Annotation vom Typ Reference (Abbildung 2.6).
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unter der ausschliefllichen Analyse der Struktur eines Softwaresystems. Die
Zahl der False-Positives ist deshalb bei der strukturbasierten Entwurfsmuste-
rerkennung hoch.

Die vorliegende Arbeit stellt aus den zuvor genannten Griinden zunéchst eine
neue Bewertung der Kandidaten der Strukturanalyse vor. Des Weiteren wird
die strukturbasierte Entwurfsmustererkennung durch eine Verhaltensanalyse
erginzt. Durch die Verhaltensanalyse konnen die Kandidaten der Struktur-
analyse nochmals gefiltert werden, um so die Prézision des Gesamtprozesses
zu erhohen und verléssliche Ergebnisse zu produzieren.
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Erweiterung der strukturbasierten
Entwurfsmustererkennung

Dieses Kapitel gibt einen Uberblick iiber das im Zuge dieser Arbeit entwickel-
te Verfahren der struktur- und verhaltensbasierten Entwurfsmustererkennung.
Das in Abschnitt 2.3 vorgestellte Verfahren der strukturbasierten Entwurfsmu-
stererkennung in FUJABA wird erweitert, um allen in Abschnitt 2.2 genannten
Anforderungen zu entsprechen. Die konzeptionelle Umsetzung der bisher nicht
erfiillten Anforderungen wird in diesem und in den néchsten beiden Kapiteln
préasentiert.

Dazu werden im ersten Teil dieses Kapitels zunéchst unscharfe Regeln und
die Bewertung der Ergebnisse in der strukturbasierten Entwurfsmustererken-
nung motiviert. Des Weiteren werden die dadurch bedingten, syntaktischen
Erweiterungen der Strukturmuster und das Verfahren zur Bewertung der Er-
gebnisse vorgestellt.

Der zweite Teil des Kapitels befasst sich mit der Ergdnzung der struktur-
basierten Entwurfsmustererkennung um eine Verhaltensanalyse. Nach der Mo-
tivation zur Verhaltensanalyse gibt der Abschnitt einen Uberblick iiber den
Prozess der kombinierten struktur- und verhaltensbasierten Entwurfsmuste-
rerkennung und erlautert das erweiterte Struktur- und Verhaltensmodell eines
Softwaresystems. Die Details zur Spezifikation und Erkennung von Verhalten
werden in den Kapiteln 4 und 5 behandelt.

3.1 Unscharfe Regeln und Bewertung
Eine Anforderung an eine automatische Entwurfsmustererkennung ist die Be-

wertung der Ergebnisse einer Entwurfsmustererkennung. Eine automatische
Entwurfsmustererkennung kann wegen der unendlich vielen Implementierungs-
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varianten eines Entwurfsmusters keine absoluten, préazisen Ergebnisse erzielen.
Um den Reverse-Engineer jedoch bei der Sichtung und Beurteilung der Ergeb-
nisse zu unterstiitzen, ist es sinnvoll, die Giite der Kandidaten, also der durch
die Entwurfsmustererkennung identifizierten, potentiellen Entwurfsmusterim-
plementierungen zu bewerten.

Wie bereits in Abschnitt 2.4 erldutert wurde, ist das vorhandene Verfahren
zur Bewertung der Kandidaten der Strukturanalyse ungeeignet. Es zieht zur
Berechnung der Giite nicht die individuellen Eigenschaften des Kandidaten
heran, sondern basiert auf der Beurteilung der Giite des Strukturmusters. Es
wird deshalb ein Verfahren vorgestellt, das die Kandidaten individuell bewer-
tet. Die Vertrauenswerte der Strukturmuster werden im Folgenden nicht mehr
angegeben, da sie in dem neuen Verfahren nicht mehr berticksichtigt werden.

3.1.1 Motivation und Losungsidee

In [NWWO03] wird vorgestellt, wie man dem Problem der Variantenvielfalt von
Entwurfsmusterimplementierungen begegnen kann. Dort wird vorgeschlagen,
fiir verschiedene Varianten einer Entwurfsmusterimplementierung die Teile zu
identifizieren, die allen Varianten gemeinsam sind. Nur dieser gemeinsame Teil
wird dann zur Spezifikation des Strukturmusters verwendet. Es konnte gezeigt
werden, dass dadurch die Prézision der Erkennung zwar verringert wird, die
Geschwindigkeit der Analyse und damit ihre Skalierbarkeit jedoch erheblich
gesteigert werden, da die Anzahl der Regeln sinkt.

Context ot «interface»
State
+setState(AbstractState) . Statelnterface
+request() o +handle()
/ JA JA
I [ [
I B | |

ConcreteStateA | | ConcreteStateB
+handle() +handle()

state.handle() |

Abbildung 3.1: Eine Variante des State-Entwurfsmusters

Allerdings werden bei diesem Verfahren Informationen héufig nicht beriick-
sichtigt, die gute Hinweise auf eine Entwurfsmusterimplementierung liefern. Im
Falle des State-Entwurfsmusters existieren unter anderem die folgenden zwei
Varianten. In der ersten Variante ist eine abstrakte Klasse die gemeinsame
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Oberklasse aller konkreten Zustédnde. Dies ist die Variante, die in den bishe-
rigen Beispielen verwendet wurde. In einer zweiten Variante nach Abbildung
3.1 wird anstatt einer abstrakten Oberklasse eine Schnittstelle vorgegeben,
die von allen konkreten Zusténden implementiert werden muss. Abbildung 3.2
zeigt das zugehorige Strukturmuster! dieser Variante. Beide Varianten sind
giiltige State-Implementierungen.

sp Statelnterface «create» Stercotype
«create» CoStatelnterface «creates name == interface"
A context abstractState A stereotypes A
|
context:Class -methods—| setState:Method aram aramType| statelnterface:Class
(sl | St -og-{ Bttt }ovegve{ St s
methods ¥ methods ¥
request:Method calle @ gation callee handle:Method
overridden A
:OverriddenMethod

Abbildung 3.2: Das Strukturmuster des Statelnterface-Entwurfsmusters

Wenn nach dem Ansatz aus [NWWO03] die Strukturmuster der beiden Va-
rianten zu einem gemeinsamen Strukturmuster verschmolzen werden, wird in
dem daraus entstandenen Strukturmuster weder gefordert, dass die Oberklas-
se der konkreten Zusténde abstrakt sein muss, noch dass diese Oberklasse
eine Schnittstelle sein muss. Eine nicht-abstrakte Oberklasse fiir die konkreten
Zusténde ist aber in einer tatsédchlichen State-Entwurfsmusterimplementierung
eher unwahrscheinlich. Die Anzahl der mit diesem Strukturmuster erkannten
False-Positives steigt gegeniiber den beiden urspriinglichen, préziseren Struk-
turmustern.

Um diesen Nachteil wieder auszugleichen, konnen so genannte unscharfe
Regeln verwendet und die durch diese Regeln identifizierten Kandidaten be-
wertet werden. Die Bedingung, dass zum Beispiel die Oberklasse der konkre-
ten Zustdnde im State-Entwurfsmuster abstrakt ist, ist ein starker, zusétzli-
cher Hinweis auf eine State-Entwurfsmusterimplementierung und sollte deshalb
beriicksichtigt werden. Bedingungen in einem Strukturmuster sind unter an-
derem die Existenz von Objekten und Annotationen oder Anforderungen an

'Im Strukturmodell von FUJABA wird eine Schnittstelle ebenfalls als Class modelliert, ihr
wird jedoch zusétzlich ein Stereotyp <interface> zugeordnet.
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Attribute der Objekte.

Unscharfe Regeln enthalten zum einen die notwendigen Bedingungen, die
von allen zu erkennenden Varianten eines Entwurfsmusters erfiillt werden
miissen. Zum anderen enthalten unscharfe Regeln noch weitere, nicht notwen-
dige Bedingungen, die nicht in jedem Fall durch eine potentielle Entwurfsmu-
sterimplementierung erfiillt sein miissen, aber gute Hinweise auf eine tatsachli-
che Implementierung liefern. Erfiillt ein Kandidat solche nicht notwendigen Be-
dingungen, wird die Bewertung des Kandidaten positiv beeinflusst. Je hoher
die Bewertung eines Kandidaten, desto wahrscheinlicher stellt dieser Kandidat
eine tatsdchliche Entwurfsmusterimplementierung dar.

3.1.2 Erweiterte Syntax der Strukturmuster

In der strukturbasierten Entwurfsmustererkennung in FUJABA wurde im Zuge
der vorliegenden Arbeit eine Bewertung der Kandidaten fiir Entwurfsmuste-
rimplementierungen eingefiihrt, die den Grad der Ubereinstimmung eines Kan-
didaten zu einem Strukturmuster beschreibt [Tra06]. Dazu wurde die Syntax
der Strukturmuster erweitert, um unscharfe Regeln spezifizieren zu kénnen.

«create» =
sp State r :Stereotype 1|

———————— 1
«create» @ «create» I_name == interface” |

e
A context abstractState A

stereotypes A

context:Class metﬁod setState:Method paramparaEType» abstractState:Class
>

abstract == true {additional}
methods 4
methods ¥
request:Method caller :Delegation allee handle:Method
« >
params overridden A
4 =t
______ /:’—-.-_—‘s:\
paramTyp Ir c:Parameter : (:OverriddenMethod v
« T TT===== ~_ SIZE>2 _7

~ = -

Abbildung 3.3: Das unscharfe State-Strukturmuster

Abbildung 3.3 zeigt das unscharfe State-Strukturmuster, das als Ergebnis
der Verschmelzung der beiden zuvor genannten Varianten entstanden ist. In ei-
nem Strukturmuster konnen unter anderem Knoten oder auch Bedingungen an
Attribute von Knoten als nicht notwendig gekennzeichnet werden. Nicht not-
wendige Knoten werden durch gestrichelte Umrandungen visualisiert. Nicht
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notwendige Attributbedingungen werden durch den Zusatz {additional} ge-
kennzeichnet.

Im unscharfen State-Strukturmuster wird die Attributbedingung abstract
==true des Objekts abstractState:Class als nicht notwendig gekennzeichnet.
Des Weiteren wird in das neue Strukturmuster ein nicht notwendiger Kno-
ten eingefiigt, der verdeutlicht, dass es sich bei der Oberklasse der konkreten
Zusténde auch um eine Schnittstelle handeln kann. So werden sowohl Imple-
mentierungen gefunden, bei denen die konkreten Zusténde entweder von einer
abstrakten Oberklasse erben oder eine Schnittstelle implementieren. Allerdings
werden auch Implementierungen mit nicht-abstrakter Oberklasse als Kandida-
ten identifiziert, die mit hoherer Wahrscheinlichkeit False-Positives sind.

Eine weitere Eigenschaft, die nicht alle Implementierungen des State-
Entwurfsmusters betrifft, kann nun durch die unscharfe Spezifikation model-
liert werden. In [GHJV95] wird iiber die Delegation zwischen dem Kontext und
dem aktuellen Zustand gesagt: ,, A context may pass itself as an argument to
the State object handling the request.“. Das bedeutet, die handle-Methode der
Zustandsklasse kann in einigen Implementierungen einen Parameter vom Typ
context haben. Das Parameter-Objekt wird also im unscharfen Strukturmuster
als nicht notwendig gekennzeichnet.

In Strukturmustern kénnen Mengen von Objekten spezifiziert werden, so-
wohl Mengen von normalen Objekten, als auch Mengen von Annotationen.
Solche Mengenknoten werden durch einen doppelten Rahmen gekennzeichnet.
Wihrend der Erkennung des Strukturmusters konnen beliebig viele Objekte
aus der Struktur des zu untersuchenden Softwaresystems an einen Mengen-
knoten gebunden werden. Da Mengen grundsétzlich auch leer sein kénnen,
wird ein Mengenknoten ebenfalls durch eine gestrichelte Umrandung als nicht
notwendig gekennzeichnet. Ist eine bestimmte Grofle fiir eine Menge gefor-
dert, so kann dies mit der Bedingung SIZE festgelegt werden. In dem Bei-
spiel des State-Strukturmusters aus Abbildung 3.3 wird gefordert, dass die
Methode handle:Method von mindestens zwei Methoden iiberschrieben wird.
Das bedeutet, es existieren mindestens zwei konkrete Zusténde, die von ab-
stractState:Class erben beziehungsweise die Schnittstelle implementieren.

Die strukturbasierte Entwurfsmustererkennung wird wie in Abschnitt 2.3.6
erldutert auch zur Suche nach Implementierungen von Anti-Patterns einge-
setzt. Anti-Patterns werden héufig durch unscharfe Formulierungen wie , eine
Klasse mit vielen Methoden* oder ,,eine groffe Klasse“ beschrieben. Um Struk-
turmuster mit solchen Eigenschaften spezifizieren zu konnen, wurden Metriken
in die Syntax der Strukturmuster eingefithrt. Mit Hilfe der Metrik LOC (Lines
Of Code) kann zum Beispiel eine Klasse als grof§ definiert werden, wenn sie aus
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mehr als 500 Zeilen Quelltext besteht. Meistens sind Begriffe wie grof§ jedoch
nicht in Zahlen zu fassen. Um also keine absoluten Werte fiir solche Metriken
verwenden zu miissen, sind so genannte Fuzzy-Bedingungen eingefithrt worden,
die stattdessen unscharfe Grenzen vorgeben.

sp LargeClass J

«create» m AN
:LargeClass 1T ———————————
-
«create» | >
largeClass ¥ | s 25 NOA
|
| u AN
largeClass:Class | Pl S
|
fuzzy: NOA- — — — — -
fuzzy: NOM — — — — 1 —— — — >
fuzzy: LOC{w=2}— 4 — — 1 10 40 NOM
|
BE n
=
.
I M L
100 500 LOC

Abbildung 3.4: Das unscharfe Strukturmuster des Anti-Patterns Large Class

Abbildung 3.4 zeigt das unscharfe Strukturmuster des Anti-Patterns Large
Class. Eine Klasse wird als grof§ definiert, wenn sie viele Attribute (Number
of Attributes - NOA) und viele Methoden (Number Of Methods - NOM) hat,
sowie aus sehr vielen Zeilen Quelltext besteht. Fiir jede der drei Metriken
wird jeweils eine Fuzzy-Funktion definiert, die jeder ermittelten Metrik einen
Wert zwischen 0 und 1 zuordnet. Durch die Verbindung der Metrik NOM mit
einer Fuzzy-Funktion kann zum Beispiel die Bedingung ,,eine Klasse hat viele
Methoden“ spezifiziert werden. Je ndher der Fuzzy-Wert an 1 liegt, desto eher
trifft die Aussage zu. Liegen die Fuzzy-Werte aller drei Metrik-Bedingungen
nahe bei 1, so kann davon ausgegangen werden, dass eine Implementierung des
Anti-Patterns Large Class vorliegt. Die ermittelten Fuzzy-Werte flielen zudem
in die Bewertung des Kandidaten ein.

Bestimmte Bedingungen in Strukturmustern sind wichtiger als andere. Um
dies bei der Bewertung eines Kandidaten zu beriicksichtigen, sind Gewichte fiir
Bedingungen eingefiihrt worden. In Abbildung 3.4 ist zum Beispiel die Metrik-
Bedingung LOC mit dem Gewicht 2 (w=2) versehen. Wird das Gewicht nicht
explizit angegeben, so erhélt die Bedingung das Gewicht 1.

42



3.1 Unscharfe Regeln und Bewertung

3.1.3 Bewertung der Ergebnisse

Um eine potentielle Entwurfsmusterimplementierung zu bewerten, wird der
Grad der Ubereinstimmung des Kandidaten zum Strukturmuster berechnet.
Die verwendete Bewertungsfunktion lasst sich vereinfacht folgendermaflen dar-
stellen:

> _be Bedingungen(sp) Erfulltheitsgrad(b, a) - wy

ZbeBedingungen(sp) Wy

Bewertung(a, sp) =

Die Bewertung einer Annotation a, die einen Kandidaten repréasentiert, und
dem zugehorigen Strukturmuster sp errechnet sich aus dem Verhéltnis der
Summe der gewichteten Erfiilltheitsgrade jeder Bedingung zur Summe der Ge-
wichte w,, aller Bedingungen. Der Erfiilltheitsgrad ist fiir jedes Syntaxelement
der Strukturmuster, also jeder Art von Bedingung, separat definiert.

Der Erfiilltheitsgrad einer notwendigen Bedingung wie dem Objekt con-
text:Class aus Abbildung 3.3 ist 1. Ein einfaches, nicht notwendiges Objekt
wie das Objekt :Stereotype erhélt den Erfiilltheitsgrad 1, wenn es in dem Kan-
didaten vorhanden ist, sonst 0. Eine nicht notwendige Attributbedingung wie
abstract==true hat ebenfalls den Erfiilltheitsgrad 1, wenn sie erfiillt ist, sonst 0.
Wird eine Annotation, wie zum Beispiel :Delegation im State-Strukturmuster,
verwendet, so ist ihr Erfiilltheitsgrad durch ihre Bewertung definiert. Die Be-
wertung einer Annotation wird also rekursiv iiber die Annotationen berechnet,
von denen sie abhéngig ist.

Bei Mengenknoten ist der Erfiilltheitsgrad abhéngig von der Anzahl der
Objekte, die der Menge zugeordnet sind. Der Erfiilltheitsgrad wird berechnet,
indem die Anzahl der Objekte auf eine streng monoton steigende, asymp-
totisch gegen 1 strebende Funktion abgebildet wird. Je mehr Objekte einer
Menge zugeordnet sind, desto hoher ist der Erfiilltheitsgrad und somit die
Bewertung einer Annotation. Bei Mengenknoten, die aus Annotationen beste-
hen wie :OverriddenMethod, werden zusétzlich zur Anzahl die Bewertungen der
einzelnen Annotationen beriicksichtigt.

Die streng monoton steigende Funktion fiir Mengenknoten ist nur eine von
vielen moglichen Funktionen. Durch die separate Definition einer Funktion
fiir jedes Syntaxelement zur Berechnung des Erfiilltheitsgrades lassen sich die
Funktionen leicht austauschen, sollten sie sich in der Praxis als nicht tauglich
erweisen. Vorstellbar wire fiir Mengenknoten zum Beispiel auch die Gauf-
Funktion.

Fiir Fuzzy-Bedingungen wie die Metrik Number Of Methods im Beispiel
des Anti-Patterns Large Class in Abbildung 3.4 wird die zugehorige Fuzzy-

43



Kapitel 3 Erweiterung der strukturbasierten Entwurfsmustererkennung

Funktion als Erfiilltheitsgrad verwendet. Auf eine detailliertere Beschreibung
der Bewertungsfunktion wird in diesem Kontext allerdings verzichtet. Fiir wei-
tere Informationen sei auf [Tra06] verwiesen.

Die aus der strukturbasierten Entwurfsmustererkennung resultierenden An-
notationen werden mit ihrer Bewertung in einem Klassendiagramm visuali-
siert. Annotationen, deren Bewertung einen vorgegebenen Schwellwert nicht
iiberschreiten, konnen aus dem Gesamtergebnis ausgeblendet werden, um die
Ubersichtlichkeit zu erhéhen.

3.2 Verhaltensbasierte Entwurfsmustererkennung

Eine weitere, bisher nur sehr ungeniigend erfiillte Anforderung an eine auto-
matische Entwurfsmustererkennung ist die Produktion moglichst préziser Er-
gebnisse. Zur Analyse sollten deshalb moglichst viele, charakteristische Eigen-
schaften der zu suchenden Entwurfsmuster heran gezogen werden. Zu diesen
Eigenschaften z&hlt jedoch nicht nur ihre Struktur, sondern auch ihr Verhal-
ten. Im Folgenden wird deshalb ein Verfahren skizziert, mit dem auch das
Verhalten eines Entwurfsmusters spezifiziert und die Ubereinstimmung eines
Kandidaten mit dieser Spezifikation zur Laufzeit des Softwaresystems iiber-
priift werden kann.

3.2.1 Motivation und Losungsidee

Das in Abschnitt 2.3 vorgestellte Verfahren zur Entwurfsmustererkennung be-
schrankt sich auf strukturelle Informationen. Viele Entwurfsmuster definieren
sich jedoch nicht nur durch ihre Struktur, sondern in hohem Mafle auch durch
ihr Verhalten. Das State-Entwurfsmuster ist ein gutes Beispiel dafiir. Es erlaubt
einem Objekt, sein Verhalten abhéngig von seinem Zustand zu verdndern.

In Abbildung 3.5 ist die Struktur des State-Entwurfsmusters zu sehen. Das
Objekt, das zur Laufzeit sein Verhalten &ndern kann, ist vom Typ Context. Die
Klasse Context assoziiert eine abstrakte Oberklasse AbstractState. Diese Klasse
gibt eine gemeinsame Schnittstelle fiir konkrete Klassen vor, die verschiedene
Zustande implementieren. Die hier verwendeten konkreten Zusténde Concre-
teStateA und ConcreteStateB sind nur Beispiele. Das State-Entwurfsmuster ist
nicht nur auf zwei konkrete Zusténde beschrankt, sondern kann prinzipiell be-
liebig viele, verschiedene Zusténde verwalten.

Das Verhalten des State-Entwurfsmusters ist in [GHJV95] wie folgt beschrie-
ben:
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Context

state_| AbstractState
+setState(AbstractState) 1| +handie()
+request() o

/ T 1
/
I R
ConcreteStateA | | ConcreteStateB
state.-handle) |  [+handle() +handle()

Abbildung 3.5: Die Struktur des State-Entwurfsmusters

, Context delegates state-specific requests to the current Concrete-
State object. [...] Clients can configure a context with State objects.
Once a context is configured, its clients don’t have to deal with
the State objects directly. Either Context or the ConcreteState sub-
classes can decide which state succeeds another and under what
circumstances.”.

Zur Laufzeit referenziert also ein Objekt vom Typ Context ein konkretes
Zustandsobjekt. Wird eine Anfrage an das Context-Objekt mit Hilfe der Me-
thode request() gestellt, so gibt es die Anfrage an sein aktuelles Zustandsobjekt
durch Aufruf der Methode handle() weiter. Die Anfrage kann so abhéngig vom
Zustand des Objekts bearbeitet werden. Zustandsdnderungen werden durch
Austausch des aktuellen Zustandsobjekts entweder vom Context-Objekt selber
oder von dem aktuellen Zustandsobjekt vorgenommen.

Der Vorteil dieser Struktur ist, dass sie sehr wartungsfreundlich ist. Sie kann
relativ einfach durch neue Zustinde erweitert werden, ohne grofie Anderungen
an den anderen beteiligten Klassen durchfiithren zu miissen. Des Weiteren sind
die Algorithmen, die in einem bestimmten Zustand ausgefithrt werden, jeweils
in einer Zustandsklasse gekapselt, was die Ubersichtlichkeit erhéht und damit
auch die Wartung erleichtert.

Die Struktur des State-Entwurfsmusters ist allerdings ein Beispiel fiir eine in
objektorientierten Architekturen sehr héufig vorkommende Konstruktion. Die
Grundstruktur besteht aus einer Klasse, die eine abstrakte Klasse assoziiert,
von der mehrere konkrete Klassen erben. Das Implementieren oder Uberschrei-
ben einer Methode aus einer abstrakten Oberklasse durch konkrete Klassen ist
eines der Hauptmerkmale objektorientierter Programmierung. Auch die Dele-
gation von Methodenaufrufen an andere referenzierte Objekte ist haufig anzu-
treffen. Die Wahrscheinlichkeit, eine solche Struktur in einer objektorientierten
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Architektur vorzufinden, ist also relativ hoch.

Sollten aber solche Konstrukte, die zwar in ihrer Struktur mit einem Ent-
wurfsmuster iibereinstimmen, sich aber zur Laufzeit anders verhalten, als Im-
plementierungen dieser Entwurfsmuster erkannt werden? Ist eine potentielle
State-Implementierung, die zur Laufzeit niemals ihr mutmafliches Zustandsob-
jekt austauscht, wirklich eine Implementierung eines State-Entwurfsmusters?
Die zentrale These, die also mit dieser Arbeit belegt werden soll, lautet:

Ein Konstrukt, welches die Struktur eines bestimmten Entwurfs-
musters hat und sich auch wie ein solches Entwurfsmuster verhélt,
ist mit sehr hoher Wahrscheinlichkeit eine tatséchliche Implemen-
tierung dieses Entwurfsmusters.

Es sollte also eine Laufzeitanalyse des Verhaltens durchgefiihrt werden, um
so moglichst viele False-Positives, also filschlicherweise erkannte Entwurfsmu-
sterimplementierungen, auszuschlielen.

Context strategy _| AbstractStrategy
+setStrategy(AbstractStrategy) 1" [+algorithmy()

+request() ¢
| f ZF
I
|

. AN ConcreteStrategyA | | ConcreteStrategyB
strategy.algorithm() | +algorithm() +algorithm()

Abbildung 3.6: Die Struktur des Strategy-Entwurfsmusters

Es gibt noch einen weiteren Grund, der zeigt, dass eine Strukturanalyse
alleine nicht ausreichend ist. Es existieren Paare von Entwurfsmustern, die sich
in ihrer Struktur sehr dhnlich sind oder sogar vollstdndig {ibereinstimmen. Die
Struktur des Strategy-Entwurfsmusters (Abbildung 3.6) stimmt zum Beispiel
vollstéindig mit der Struktur des State-Entwurfsmusters iiberein. Das fiihrt
bei der strukturbasierten Erkennung dazu, dass dasselbe Konstrukt sowohl
als State-, als auch als Strategy-Entwurfsmusterimplementierung identifiziert
wird. Das Verhalten des Strategy-Entwurfsmusters ist jedoch im Gegensatz
zum State-Entwurfsmuster in [GHJV95] beschrieben durch:

» A context forwards requests from its clients to its strategy. Clients
usually create and pass a ConcreteStrategy object to the context;
thereafter, clients interact with the context exclusively..
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Auch hier kann ein Objekt zur Laufzeit Algorithmen durch unterschiedliche
Strategien ausfithren lassen. Der Austausch einer Strategie wird jedoch nicht
von dem Objekt selber oder der aktuellen Strategie veranlasst, sondern von au-
Ben. Zur Laufzeit kann also durch Beobachtung des Verhaltens zwischen den
Entwurfsmustern State und Strategy unterschieden werden. Weitere Beispiele
fiir Paare dhnlicher Entwurfsmuster sind Decorator und Chain of Responsibi-
lity, Strategy und Bridge, State und Composite oder Composite und Chain of
Responsibility.

Das Ignorieren des Verhaltens bei der Entwurfsmustererkennung fiihrt zu
hoheren Fehlerraten, wie an dem vorangehenden Beispiel zu erkennen ist.
Zur préziseren Identifikation von Entwurfsmusterimplementierungen sollte also
auch ihr Verhalten untersucht werden.

Das Verhalten von Software wird bei imperativen Programmiersprachen
durch Variablenbelegungen und deren Anderungen sowie durch Prozedur- oder
Methodenaufrufe bestimmt. In der bisherigen Entwurfsmustererkennung in
FujABA konnen auf Basis der abstrakten Syntaxbdume der Methoden sehr
rudimentére Daten- und Kontrollflussanalysen durchgefiihrt oder potentielle
Methodenaufrufe identifiziert werden. Statische Analysen kénnen jedoch nicht
feststellen, ob potentielle Methodenaufrufe tatsiachlich zur Laufzeit ausgefiihrt
werden. Die konkreten, aufzurufenden Methoden werden in objektorientierten
Programmiersprachen mit Polymorphismus und dynamischer Methodenbin-
dung sogar erst zur Laufzeit festgelegt.

Die Uberwachung von Variablenbelegungen und Methodenaufrufen zur Lauf-
zeit des zu untersuchenden Softwaresystems gestaltet sich jedoch sehr schwie-
rig aufgrund der zu groBen Datenmenge?, die dabei anfillt. Entwurfsmuster
beschreiben allerdings in der Regel Kollaborationen mehrerer Objekte. Das
Verhalten eines Entwurfsmusters wird also im Wesentlichen bestimmt durch
die Art und Reihenfolge von Nachrichten in Form von Methodenaufrufen, die
zwischen diesen Objekten ausgetauscht werden. Zur Analyse des Verhaltens
eines Programms ist also eine Beschrankung auf die Methodenaufrufe zur Re-
duzierung der anfallenden Datenmenge moglich.

Der Reverse-Engineer sollte durch die automatische Erkennung auf potenti-
elle Entwurfsmusterimplementierungen hingewiesen werden. Trotzdem sollten
aber Konstrukte, deren Struktur und deren Verhalten mit dem des Entwurfs-
musters iibereinstimmen, deutlich von anderen Konstrukten, die nur in ih-
rer Struktur mit dem Entwurfsmuster iibereinstimmen, unterschieden werden

2Bill Lewis berichtet in seiner Arbeit, bei der sowohl Variablenbelegungen als auch Metho-
denaufrufe aufgezeichnet werden, von 100MB Daten pro Sekunde [Lew03].
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konnen. Rein strukturbasierte Analysen sind nicht in der Lage, solche Un-
terscheidungen durchzufithren. Um sicherere Aussagen machen zu koénnen, ist
auch eine Analyse des Verhaltens notwendig.

Da strukturelle Eigenschaften von Entwurfsmustern mit Hilfe statischer
Analysen sehr effizient erkennbar sind, ist eine Kombination aus statischer
und dynamischer Analyse sinnvoll [Wen03]. Die bei der dynamischen Analyse
anfallende Datenmenge kann durch diesen Ansatz sogar noch weiter reduziert
werden. Eine vorher durchgefiihrte strukturbasierte Entwurfsmustererkennung
identifiziert potentielle Entwurfsmusterimplementierungen. In der anschlieflen-
den dynamischen Analyse kann dadurch die Uberwachung von Methodenauf-
rufen auf Objekte der potentiellen Entwurfsmusterimplementierungen einge-
schréankt werden.

3.2.2 Struktur- und verhaltensbasierter Erkennungsprozess

Das bisherige Verfahren der Entwurfsmustererkennung in FUJABA basiert im
Wesentlichen auf der Struktur der Entwurfsmuster. [hr Verhalten wird nur sehr
rudimentér durch Identifikation potentieller Methodenaufrufe auf den abstrak-
ten Syntaxbdumen der Methoden analysiert, wie an dem Beispiel des Delegati-
on-Hilfsmusters aus Abschnitt 2.3.2 zu sehen ist. Allerdings ist das Verfahren
sehr gut dazu geeignet, durch eine dynamische Analyse des Verhaltens erginzt
zu werden. In Abbildung 3.7 ist der in [Wen03] vorgestellte, erweiterte Prozess
der struktur- und verhaltensbasierten Entwurfsmustererkennung zu sehen.

Struktur- Verhaltens-] | Ausfiihrbares
muster muster Programm

¥ _
Analyse Analyse , -
y y oy Tests

D Prozessschritt JUm

Quelltext

[ ookument Kandidaten Design-
Datenflul U -

@)y Datenflu fur Entwurfsmuster dokument

&Y Interaktion |mplement|erungen

Abbildung 3.7: Der kombinierte Erkennungsprozess
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Die statische Analyse des in Abbildung 3.7 gezeigten Prozesses ist eine ver-
einfachte Darstellung des Prozesses aus Abschnitt 2.3.4. Dieser Prozess der
strukturbasierten Entwurfsmustererkennung wird unveréndert als Teilprozess
iibernommen. Eingaben dieses Teilprozesses sind der Quelltext des zu untersu-
chenden Softwaresystems und ein Katalog von Strukturmustern. Das Ergebnis
des Teilprozesses sind potentielle Entwurfsmusterimplementierungen, die so
genannten Kandidaten.

Diese Kandidaten kénnen in der dynamischen Analyse dazu verwendet wer-
den, den Suchraum einzuschrinken. Es miissen nur Methoden der an den
Kandidaten beteiligten Klassen zur Laufzeit des Programms iiberwacht wer-
den. Weitere Eingaben der dynamischen Analyse sind das zu untersuchen-
de, ausfiithrbare Programm und so genannte Verhaltensmuster. Das Programm
wird in der dynamischen Analyse entweder durch automatische Tests oder
manuell durch einen Benutzer ausgefiihrt. Die beobachteten Methodenaufru-
fe der Kandidaten konnen entweder aufgezeichnet und nach Beendigung des
Programms mit den Verhaltensmustern verglichen werden, oder bereits zur
Laufzeit ausgewertet werden.

Der Begriff Verhaltensmuster wird im Folgenden analog zu dem Begriff des
Strukturmusters verwendet. Wahrend Strukturmuster zur Spezifikation der
strukturellen Anteile eines Entwurfsmusters dienen, werden Verhaltensmuster
zur Spezifikation des Verhaltens eines Entwurfsmusters verwendet. In diesem
Zusammenhang sei besonders darauf hingewiesen, dass der Begriff Verhaltens-
muster nicht die Kategorie? der Entwurfsmuster bezeichnet, die hauptsichlich
Kollaborationen und Verhalten von Objekten beschreiben und in der engli-
schen Literatur haufig mit Behavioral Design Patterns bezeichnet werden.

Als Ergebnis des Gesamtprozesses erhélt der Reverse-Engineer ein Designdo-
kument in Form von annotierten UML-Klassendiagrammen. Die Klassendia-
gramme reprisentieren das untersuchte Softwaresystem und sind angereichert
mit Informationen iiber die gefundenen Entwurfsmusterimplementierungen. In
den Annotationen der Entwurfsmusterimplementierungen werden Bewertun-
gen angegeben, die ausdriicken, inwieweit die Entwurfsmusterimplementierung
mit dem Strukturmuster beziehungsweise dem Verhaltensmuster des Entwurfs-
musters {ibereinstimmt. Die Bewertungen stammen aus der statischen (siehe
Abschnitt 3.1.3) und der dynamischen Analyse. Hohe Bewertungen bedeu-
ten dabei eine hohe Ubereinstimmung der Entwurfsmusterimplementierung
mit dem Strukturmuster beziehungsweise dem Verhaltensmuster. Der Reverse-
Engineer kann so zum Beispiel Annotationen mit geringer Bewertung aus sei-

3siehe Tabelle 2.1, Seite 12
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ner Sicht auf das zu untersuchende Softwaresystem entfernen und sich auf die
wahrscheinlichsten Entwurfsmusterimplementierungen konzentrieren.

Die in dieser Arbeit entwickelte automatische struktur- und verhaltensba-
sierte Entwurfsmustererkennung erhebt nicht den Anspruch, absolute Aus-
sagen iiber das zu untersuchende Softwaresystem zu machen. Der Reverse-
Engineer soll durch dieses Verfahren in seinen Bemiihungen, das Softwaresy-
stem zu verstehen, deutlich unterstiitzt werden. Die letztendliche Entschei-
dung, ob eine Entwurfsmusterimplementierung tatséchlich vorliegt, kann und
soll dem Reverse-Engineer jedoch nicht abgenommen werden.

3.2.3 Verhaltensmodell eines Softwaresystems

Das in der strukturbasierten Entwurfsmustererkennung verwendete Struktur-
modell kann nicht zur Analyse des Verhaltens herangezogen werden. Aus die-
sem Grund wird analog zum Strukturmodell ein Verhaltensmodell fiir die ver-
haltensbasierte Entwurfsmustererkennung eingefiihrt.

Das Verhaltensmodell hiangt genau wie das Strukturmodell von der Anwen-
dungsdoméne der Entwurfsmustererkennung ab. Das Verhaltensmodell fiir ob-
jektorientierte Softwaresysteme beschreibt eine Sequenz von Methodenaufru-
fen, die zur Laufzeit beobachtet und aufgezeichnet wurden. Fiir andere Softwa-
resysteme, die in funktionalen oder regelbasierten Sprachen geschrieben wur-
den, konnte das Verhaltensmodell auch eine Sequenz von Funktionsaufrufen
oder Regelausfithrungen beschreiben.

Eine Sequenz von Methodenaufrufen wird auch als Trace bezeichnet. Die
Ordnung innerhalb eines Traces ist durch die Reihenfolge der Methodenaufrufe
zur Laufzeit vorgegeben. Traces miissen nicht die Gesamtheit aller zur Lauf-
zeit ausgefiihrten Methodenaufrufe umfassen. Sie kénnen beliebige Sequenzen
zwischen zweier Zeitpunkte ausgefithrte Methodenaufrufe sein. Dabei muss ein
Trace nicht einmal alle zwischen den beiden Zeitpunkten ausgefiihrten Metho-
denaufrufe enthalten, er kann auch aus einer Teilmenge bestehen. Die einzige
Voraussetzung ist, dass die Ordnung der Methodenaufrufe erhalten bleibt.

Im Gegensatz zur Struktur reprisentiert ein Trace daher nicht das gesamte
mogliche Verhalten eines Softwaresystems. Es handelt sich immer nur um eine
einzelne Sequenz aus theoretisch unendlich vielen moglichen Sequenzen. Traces
sind abhéngig von der Eingabe, mit der das Softwaresystem gestartet wird, und
von den Methoden, die beobachtet werden.

In Abbildung 3.8 ist ein Trace, der zur Laufzeit eines Softwaresystems auf-
gezeichnet wurde, als Sequenzdiagramm visualisiert. Das Beispiel zeigt einen
Ausschnitt aus der Ausfithrung des Mediaplayers aus Abbildung 2.3, Seite 20.

20



3.2 Verhaltensbasierte Entwurfsmustererkennung

p:Player s:Stream st:Stopped pl:Playing
setState(st) J :
- |
execute(CMD_P LAY)J
" lexecute(s,CMD_PLAY)

|

|
-
>

| [
| |
! [
! [
| |
| ' l
: | setState(pl) ! :
| ! run(s) ! .

I T o
| I I read() |
lexecute(CMD_STOP) ™ | |
: | execute(s,CMD_STOP) !
: L : setState(st) :
| I ! |
| | run(s) s I
| | i l
! | close() | |
| ' ! l
| ! : I

Abbildung 3.8: Trace eines Programmlaufs

Die Gesamtheit der zur Laufzeit aufgezeichneten Methodenaufrufe werden
in einem Tracegraphen zusammengefasst. Abbildung 3.9 zeigt das Modell ei-
nes Tracegraphen. Die Wurzel eines Tracegraphen ist ein Prozess, repréasentiert
durch die Klasse Process. Dieser enthélt eine Sequenz von Methodenaufrufen
(MethodCall). Zu jedem Methodenaufruf gibt es eine Instanz, die den Aufruf
ausfiihrt (caller), und eine Instanz, die den Methodenaufruf empféngt (callee).
Beide Instanzen sind vom Typ Instance. Des Weiteren konnen zu jedem Me-
thodenaufruf beliebig viele Argumente (Argument) gehoren. Die Klassen des
Tracegraphen gehdren zum Paket Behavior.

In einem Tracegraphen ist das Verhalten eines Softwaresystems wéhrend
eines konkreten Programmlaufs aufgezeichnet. Die Instanzen, die in diesem
Tracegraphen vorkommen, sind Instanzen der Klassen, die in der Struktur des
Softwaresystems beschrieben werden. Des Weiteren sind die Methodenaufrufe
des Tracegraphen Aufrufe der Methoden, die ebenfalls in der Struktur beschrie-
ben werden. Diese semantische Typbeziehung wird zwischen dem Verhaltens-
modell und dem Strukturmodell durch Referenzen ausgedriickt. Die Klassen
der Instanzen, Methodenaufrufe und Argumente des Tracegraphen besitzen je-
weils eine Referenz zu Klassen des Strukturmodells aus Abbildung 2.2 (Seite
19). So referenziert Instance die Klasse Structure::Class, MethodCall referenziert
die Klasse Structure::Method und Argument die Klasse Structure::Parameter.
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Process «reference»
Structure::Method
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argumentsv
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object revObjects | Argument
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«reference» «reference»
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Abbildung 3.9: Das Modell des Tracegraphen, Paket Behavior

3.2.4 Uberblick

Um einen besseren Uberblick iiber das erweiterte Struktur- und Verhaltens-
modell eines Softwaresystems zu bekommen, sind die beiden, im vorigen Ab-
schnitt eingefiihrten Diagramme in das Schema aus Metamodellen, Modellen
und Instanzen aus Abbildung 2.13 eingeordnet worden. Das Ergebnis ist in Ab-
bildung 3.10 dargestellt. Das Verhaltensmodell, also das Modell des Tracegra-
phen gehort zur mittleren Abstraktionsschicht, zu der auch das Strukturmodell
gehort. Die semantische Beziehung zwischen Struktur- und Verhaltensmodell
ist durch Referenzen zwischen den beiden Modellen spezifiziert.

Der Tracegraph, also das konkrete, zur Laufzeit beobachtete Verhalten,
gehort zur Instanzschicht auf unterster Ebene. Da Verhaltensmodelle genau
wie Strukturmodelle als Klassendiagramme spezifiziert werden, nutzen sie ein
gemeinsames Metamodell.
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Abbildung 3.10: Die Modellierung von Struktur wund Verhalten eines
Softwaresystems
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3.3 Zusammenfassung

Die in Kapitel 2.3 vorgestellte strukturbasierte Entwurfsmustererkennung in
FuiABA erfiillt von den in Abschnitt 2.2 definierten Anforderungen bisher nur
die Skalierbarkeit und die Anpassbarkeit vollstandig. In Kapitel 2 konnte dies
gezeigt werden. Die Bewertung der Ergebnisse dagegen war in der bisherigen
Umsetzung nicht praxistauglich. Auch die Prézision des Ansatzes war wegen
der fehlenden Analyse des Verhaltens der potentiellen Entwurfsmusterimple-
mentierungen gering.

In diesem Kapitel wurde eine Bewertung der Ergebnisse der strukturbasier-
ten Erkennung vorgestellt, die im Gegensatz zur bisherigen Losung die indivi-
duellen Entwurfsmusterimplementierungen beriicksichtigt. Dazu ist die Syntax
der Strukturmuster erweitert worden. Es ist nun moglich, Bedingungen in die
Strukturmuster aufzunehmen, die nicht von allen Entwurfsmusterimplemen-
tierungen erfiillt werden miissen. Sollten sie jedoch von einem Kandidaten
erfiillt werden, so liefern sie zusétzliche Hinweise darauf, dass eine tatsichli-
che Entwurfsmusterimplementierung vorliegt. Diese Hinweise resultieren in ei-
ner héheren und damit besseren Bewertung des Kandidaten. Kandidaten, die
nur die notwendigen Bedingungen erfiillen, erhalten eine niedrigere und damit
schlechtere Bewertung.

Baut ein Strukturmuster auf bereits gefundenen Annotationen auf, so fliefen
die Bewertungen der verwendeten Annotationen in die Bewertung der Anno-
tation des Strukturmusters ein. Somit konnen Annotationen, die ,schlechte®
Informationen verwenden, keine guten Bewertungen erhalten.

Die Bewertungen der Ergebnisse konnen vom Reverse-Engineer dazu verwen-
det werden, um unsichere Informationen, das heiffit Annotationen mit geringer
Bewertung, aus dem Gesamtergebnis auszublenden. Der Benutzer kann sich so
leichter auf die relevanten Informationen konzentrieren.

Die Praxistauglichkeit der Bewertung wurde allerdings bisher nicht iiber-
priift. Kritisch ist vor allem die Bewertung der Mengen in Abhéngigkeit von
ihrer Groe. Bei Mengenknoten aus Annotationen kann es vorkommen, dass ei-
ne Menge von vielen, niedrig bewerteten Annotationen eine hohere Bewertung
erhélt, als eine Menge von wenigen, aber sehr hoch bewerteten Annotationen.
Aus diesem Grund ist es notwendig, die Bewertung in einer grofleren Studie
in der Praxis zu iiberpriifen. Das kann jedoch im Rahmen dieser Arbeit nicht
geleistet werden. Das Konzept, die Bewertungsfunktion eines Strukturmusters
auf die Bewertungsfunktionen der verschiedenen Syntaxelemente eines Struk-
turmusters zuriickzufiihren, erleichtert jedoch zum Beispiel einen Austausch
der Bewertungsfunktion der Mengenknoten, sollte sich diese Bewertungsfunk-
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tion in der Praxis als nicht tauglich erweisen.

Des Weiteren wurde in diesem Kapitel ein Konzept vorgestellt, um die Prézi-
sion des bisherigen Ansatzes zu verbessern. Entwurfsmuster werden nicht nur
durch ihre Struktur, sondern auch durch ihr Verhalten zur Laufzeit charakteri-
siert. Das Verhalten wurde bisher nicht beriicksichtigt. Die Struktur sehr vieler
Entwurfsmuster basiert jedoch auf in der objektorientierten Programmierung
haufig verwendeten Konzepten, wie zum Beispiel Vererbung und dynamische
Methodenbindung sowie Delegation von Methodenaufrufen. Viele Entwurfsmu-
ster &hneln sich zudem in ihrer Struktur, was eine Unterscheidung durch eine
statische Analyse erschwert, wenn nicht sogar unméglich macht. Somit fiihrt
eine rein strukturbasierte Analyse zu einer hohen Zahl von False-Positives.

Das in dieser Arbeit vorgestellte Konzept besteht deshalb aus einer Kom-
bination aus strukturbasierter und verhaltensbasierter Entwurfsmustererken-
nung, um so die Vorteile beider Techniken nutzen zu kénnen. Die Datenmen-
gen, die zur Laufzeit eines Softwaresystems anfallen und von einer verhaltens-
basierten Entwurfsmustererkennung analysiert werden miissen, sind enorm.
Eine vorangehende Strukturanalyse kann jedoch diese Datenmengen erheblich
verringern, indem die Verhaltensanalyse auf die in der Strukturanalyse iden-
tifizierten Kandidaten eingeschrankt wird. In dem kombinierten Prozess aus
Struktur- und Verhaltensanalyse wird also das Ergebnis der Strukturanalyse
durch die Verhaltensanalyse verfeinert, um so eine mdoglichst hohe Prézision
zu erreichen.

Das bereits vorhandene Strukturmodell eines zu untersuchenden Software-
systems ist nicht ausreichend zur struktur- und verhaltensbasierten Entwurfs-
mustererkennung. Es wird um ein Verhaltensmodell erweitert, das Sequenzen
von Methodenaufrufen repréasentiert. Sowohl das Struktur- als auch das Ver-
haltensmodell ist fiir die Analyse objektorientierter Software vorgesehen. Diese
Modelle kénnen jedoch je nach Anwendungsdoméne gegen speziellere Modelle
ausgetauscht werden.
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Kapitel 4

Verhaltensspezifikation

Das Thema dieses Kapitels ist die formale Spezifikation des Verhaltens der Ent-
wurfsmuster. Dazu werden im ersten Teil des Kapitels zunédchst informell Se-
quenzdiagramme nach UML 2.0 als Spezifikationssprache eingefiihrt, auf deren
Basis so genannte Verhaltensmuster definiert werden. Die formale Spezifikati-
on der Syntax der Verhaltensmuster ist Inhalt des zweiten Teils des Kapitels.
Im dritten Teil folgt eine informelle Beschreibung der Semantik der Verhaltens-
muster. Die formale Spezifikation der Semantik ist Inhalt des vierten Teils des
Kapitels. Die Semantik wird durch eine Transformation der Sequenzdiagram-
me in endliche Automaten definiert. Am Ende des Kapitels werden schliellich
die Verhaltensmuster in das bereits bekannte Schema aus Metamodellen, Mo-
dellen und Implementierungen eingeordnet.

4.1 Verhaltensmuster

Das Verhalten der Entwurfsmuster ist {iblicherweise nicht formal spezifiziert.
Wie bereits in Abschnitt 3.2.1 zitiert, wird zum Beispiel zur Spezifikation des
Verhaltens des State-Entwurfsmusters in [GHJV95] einfacher Text gewéhlt.
Zur automatischen Erkennung durch Algorithmen ist diese Form der Spezifi-
kation jedoch nicht ausreichend. Der Reverse-Engineer muss also das Verhalten
eines Entwurfsmusters ebenso wie die Struktur formal spezifizieren. Erst dann
kann ein Algorithmus die Spezifikation verarbeiten. Analog zu den Struktur-
mustern aus 2.3.2 werden deshalb Verhaltensmuster eingefiihrt.

In Abschnitt 3.2.1 wurde erldutert, dass das Verhalten von Entwurfsmustern
mit Hilfe von Sequenzen von Methodenaufrufen beschrieben werden kann. In
der Softwaretechnik haben sich dazu die so genannten Sequenzdiagramme eta-
bliert. Sequenzdiagramme gibt es in verschiedenen Ausprdgungen. Die beiden
gebrauchlichsten Spezifikationen sind die Message Sequence Charts (MSCs)
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der International Telecommunication Union [Int99], und die Sequenzdiagram-
me nach UML [Obj].

Die Spezifikationssprache fiir Verhaltensmuster soll im Wesentlichen zwei
Kriterien geniigen. Zum einen soll mit ihr das Verhalten der Entwurfsmuster
formal spezifiziert werden konnen, so dass die Spezifikationen algorithmisch
verarbeitet werden konnen. Zum anderen soll sie fiir den Reverse-Engineer
intuitiv zugénglich und leicht zu erlernen sein.

Sowohl MSCs, als auch Sequenzdiagramme nach UML 2.0 erfiillen bei-
de Kriterien. Die Verwendung der UML in der strukturbasierten Entwurfs-
mustererkennung spricht jedoch aus Griinden der Konsistenz fiir UML-
Sequenzdiagramme als Spezifikationssprache fiir Verhaltensmuster [Wen04].
Aus den Sequenzdiagrammen kénnen automatisch Formalismen gewonnen wer-
den, die Verhaltensmuster prézise beschreiben und zur algorithmischen Ver-
arbeitung geeignet sind. Dazu werden die Sequenzdiagramme zum Beispiel
in endliche Automaten iibersetzt. Da Sequenzdiagramme héufig im Forward
Engineering zur Quelltextgenerierung oder auch zu Dokumentationszwecken
eingesetzt werden, sind sie unter Softwareentwicklern allgemein bekannt. Thre
graphische Form macht sie auflerdem leicht zugénglich und schnell lesbar.

4.1.1 Formalisierung durch Sequenzdiagramme

Sequenzdiagramme spezifizieren Sequenzen von Nachrichten, die synchron oder
asynchron zwischen zwei Objekten versendet werden. Seit der Version 2.0
der UML stehen jedoch nicht nur einfache Sequenzen von Nachrichten zur
Verfiigung, sondern auch verschiedene Kontrollstrukturen wie Wiederholun-
gen oder Alternativen, in denen wiederum Kontrollstrukturen und Sequenzen
von Nachrichten eingebettet sein konnen.

Verhaltensmuster sind in ihrer Syntax eingeschrinkte Sequenzdiagramme.
Zum einen stehen nur synchrone Nachrichten zur Verfiigung, die Methoden-
aufrufe zwischen zwei Objekten modellieren. Zum anderen kénnen nur eini-
ge der in Sequenzdiagrammen moglichen Kontrollstrukturen in Verhaltensmu-
stern verwendet werden.

Die informelle Beschreibung des Verhaltens eines Entwurfsmusters muss vom
Reverse-Engineer in ein Verhaltensmuster umgesetzt werden. Abbildung 4.1
zeigt das Verhaltensmuster des State-Entwurfsmusters. Es wurde direkt aus
der informellen Beschreibung! aus [GHJV95] abgeleitet. In der linken, oberen
Ecke des Verhaltensmusters steht neben der Abkiirzung bp fiir Behavioral Pat-

Isiehe Zitat in Abschnitt 3.2.1, Seite 44
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| bp State J | client || c:context || a:abstractState || b:abstractState |
| I [ [
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|
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Abbildung 4.1: Das Verhaltensmuster des State-Entwurfsmusters

tern — die englische Bezeichnung fiir Verhaltensmuster — auch der Name des
Entwurfsmusters, fiir das das Verhaltensmuster spezifiziert wurde.

Aus der Beschreibung ,, Clients can configure a context with State objects.” ist
die erste Kontrollstruktur des Verhaltensmusters aus Abbildung 4.1 abgeleitet.
Der Klient kann den Kontext mit Zustandsobjekten konfigurieren, das bedeu-
tet auch, dass er unter anderem den Startzustand wéhlen kann. Die erste Kon-
trollstruktur ist deshalb optional und enthélt die Nachricht setState() des Ob-
jekts client an das Objekt c:context. Nach dieser Initialisierung werden Anfra-
gen des clients vom Objekt c:context an den aktuellen Zustand a:abstractState
delegiert, wie es durch den Satz ,, Context delegates state-specific requests to the
current ConcreteState object.“ beschrieben wird. Die Kombination aus Anfra-
ge (request()) und Delegation (handle()) findet mindestens einmal statt, kann
aber beliebig haufig wiederholt werden. Dies ist durch die Wiederholung loop
(1,*) ausgedriickt. Aus dem Satz ,, Either Context or the ConcreteState subclas-
ses can decide which state succeeds another and under what circumstances.” ist
die folgende Alternative abgeleitet. Der Folgezustand wird entweder durch den
aktuellen Zustand a:abstractState oder durch das Objekt c:context ausgewéhlt.
Die weiteren Anfragen werden nun an den Zustand b:abstractState delegiert,
wiederum eingebettet in eine Schleife zur beliebig hdufigen Wiederholung.

Das Verhaltensmuster des Strategy-Entwurfsmusters in Abbildung 4.2 ist
analog zum State-Verhaltensmuster aus der informellen Beschreibung? in

2siehe Zitat in Abschnitt 3.2.1, Seite 46
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bp Strategy J
| cllent | o context IE abstractStrateqv | | b:abstractStrateqy
l setStrategy() | : i
loop (1,%) request() : :
| algorithm() | :
opt : setStrategy() ; i i
loop (1,%) ; request() ; ;
'—>‘ ! algorithm() !
i ‘ ; ;

Abbildung 4.2: Das Verhaltensmuster des Strategy-Entwurfsmusters

[GHJV95] abgeleitet worden. Im Unterschied zum State-Entwurfsmuster muss
hier vom client zunéchst eine Strategie vorgegeben werden, bevor der cli-
ent Anfragen an das Objekt c:context stellen kann. Die Anfragen (request())
werden dann wiederum an die aktuelle Strategie a:abstractStrategy delegiert
(algorithm()). Ein Strategiewechsel zwischen den Anfragen ist optional vom
client durchzufiihren. Sollte ein Wechsel erfolgen, so sind alle weiteren Anfra-
gen von c:context an die neue Strategie b:abstractStrategy zu delegieren.

Ein Verhaltensmuster muss nicht das gesamte mogliche Verhalten einer Ent-
wurfsmusterimplementierung zur Laufzeit beschreiben. Bei der Spezifikation
sollte ein Verhaltensmuster dhnlich wie ein Strukturmuster auf die wesentli-
chen Eigenschaften des Entwurfsmusters beschrankt werden. Die wesentlichen
Eigenschaften im Verhalten des State-Entwurfsmusters sind die Delegation
von Anfragen an den aktuellen Zustand und der Zustandswechsel, ausgelost
durch den Kontext oder den aktuellen Zustand. Die letztgenannte Eigenschaft
ist zudem ein Unterscheidungsmerkmal zum strukturell identischen Strategy-
Entwurfsmuster. Beim Strategy-Entwurfsmuster werden zwar auch alle Anfra-
gen an die aktuelle Strategie delegiert, der Strategiewechsel wird aber vom
Klienten ausgelost.

Da es fiir das State-Entwurfsmuster ausreicht, einen einzelnen Zustands-
wechsel zu modellieren, werden nur zwei Zustandsobjekte in dem Verhaltens-
muster verwendet. Zur Laufzeit konnen jedoch beliebig viele Zustandsobjek-
te existieren. Die Anzahl der Zustandsobjekte zur Laufzeit wird durch das
Verhaltensmuster nicht festgelegt. Das gleiche gilt fiir die Strategieobjekte im
Strategy-Verhaltensmuster.
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4.1.2 Negative Verhaltensmuster

Bisher wurde durch Verhaltensmuster beschrieben, wie sich eine Entwurfsmu-
sterimplementierung zur Laufzeit des Programms verhalten soll. Allerdings
konnen Verhaltensmuster auch beschreiben, wie sich eine Entwurfsmusterim-
plementierung auf keinen Fall verhalten darf. Solche Verhaltensmuster werden
negative Verhaltensmuster genannt. Im Gegensatz dazu werden die zuvor be-
schriebenen Verhaltensmuster auch als positive Verhaltensmuster bezeichnet.
Zu einem Entwurfsmuster konnen ein positives und beliebig viele negative Ver-
haltensmuster spezifiziert werden.

neg bp Strategy )

| c:context | | a:abstractStrategy
| |

alt :‘ setStrategy()
J‘

::_l setStrategy()
|

|
J
|
|
|
|

Abbildung 4.3: Ein negatives Verhaltensmuster des Strategy-Entwurfsmusters

Abbildung 4.3 zeigt ein negatives Verhaltensmuster des Strategy-Entwurfs-
musters. Es verbietet einen Strategiewechsel durch die aktuelle Strategie oder
durch den Kontext. Dieses Verhalten wird von einem State-Entwurfsmuster
erwartet, nicht jedoch von einem Strategy-Entwurfsmuster. Gekennzeichnet
werden negative Verhaltensmuster durch den Zusatz neg im Kopf des Ver-
haltensmusters.

4.1.3 Verbindung zu Strukturmustern

Soll ein Verhaltensmuster zu einem Entwurfsmuster definiert werden, muss im-
mer auch ein Strukturmuster fiir dieses Entwurfsmuster vorhanden sein. Wie
bereits in Abschnitt 3.2.2 erlautert, wird im neuen, struktur- und verhaltensba-
sierten Erkennungsprozess zunéchst die Strukturanalyse auf dem Quelltext mit
Hilfe der Strukturmuster durchgefiihrt. Die verhaltensbasierte Entwurfsmuste-
rerkennung erhélt dann als Eingabe unter anderem die Kandidaten, die in der
Strukturanalyse identifiziert wurden. Um die wihrend der Verhaltensanalyse
anfallenden Datenmengen einzuschrianken, werden wie bereits beschrieben nur
Methodenaufrufe der Kandidaten beobachtet. Aus diesem Grund sind die fiir
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die Verhaltensmusterobjekte verwendbaren Typen und die fiir die Nachrichten
des Verhaltensmusters verwendbaren Methoden eingeschrénkt.

S State «create» e — = 1
M I ~.Stereotype |
«create» «create» I_name == interface” .:

A context abstractState A

stereotypes A

context:Class met&od setState:Method paramsparar:Typ& abstractState:Class
I:; >

abstract == true {additional}
methods 4 l
methods ¥
request:Method caller :Delegation callee handle:Method
« >
params overridden A
4 e
[ =S T T = -~ : ~
paramTyp | c:Parameter | “OverriddenMethod )
«  TTTT=== ~ SIZE=2 /

Abbildung 4.4: Das Strukturmuster des State-Entwurfsmusters

Im Strukturmuster des State-Entwurfsmusters (Abbildung 4.4) sind Objek-
te fiir zwei Klassen, context:Class und abstractState:Class, sowie Objekte fiir
drei Methoden, setState:Method, request:Method und handle:Method, spezifi-
ziert. Diese Strukturmusterobjekte sind Variablen, die wiahrend der Struktur-
analyse gebunden werden. Wird ein Kandidat fiir eine Entwurfsmusterimple-
mentierung gefunden, so wird, wie bereits in Kapitel 2.3.4 beschrieben, fiir
diesen Kandidaten eine Annotation erzeugt, die die Strukturmusterobjekte an
konkrete Elemente aus der Struktur des zu untersuchenden Softwaresystems
bindet. Die oben genannten Objekte des Strukturmusters werden an Elemente
des ASG gebunden, die Klassen beziehungsweise Methoden représentieren.

Ein Verhaltensmuster beschreibt das Verhalten von Instanzen der gebun-
denen Klassen anhand von Nachrichten, die durch Methodenaufrufe zwischen
den Instanzen ausgetauscht werden. Zur Typisierung der Objekte eines Verhal-
tensmusters stehen also die Objekte des Strukturmusters zur Verfiigung, die
Variablen fiir konkrete Klassen darstellen. Als Typnamen werden im Verhal-
tensmuster stellvertretend die Namen der Strukturmusterobjekte verwendet.
Im Falle des State-Strukturmusters stehen context und abstractState als Typ-
namen zur Verfiigung, die im State-Verhaltensmuster in Abbildung 4.1 ver-
wendet werden. Bei der Verhaltensanalyse werden dann die stellvertretenden
Typnamen durch die konkreten Klassennamen der Kandidaten ersetzt.

Analog miissen die Methoden, die in den Nachrichten des Verhaltensmusters
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verwendet werden, im Strukturmuster spezifiziert sein. Fiir eine Nachricht im
Verhaltensmuster wird ebenfalls der Name des Strukturmusterobjekts verwen-
det, das die entsprechende Methode reprasentiert. Wéahrend der Verhaltens-
analyse wird dann die Variable durch die konkrete Methode ersetzt.

Die Objekte eines Verhaltensmusters miissen nicht grundsétzlich typisiert
sein. Im Falle des State-Verhaltensmusters ist zum Beispiel zu dem Objekt
client kein Typname angegeben. Das bedeutet, bei der Verhaltensanalyse ist
die Klasse dieses Verhaltensmusterobjekts nicht festgelegt. Das Verhaltensmu-
sterobjekt kann also wihrend der Verhaltensanalyse an eine beliebige Instanz
gebunden werden.

4.2 Syntax

Die Basis zur Spezifikation der Syntax der Verhaltensmuster bildet das Meta-
modell der Verhaltensmuster. In Form eines UML-Klassendiagramms werden
zunéchst die moglichen Elemente eines Verhaltensmusters und ihre Beziehun-
gen untereinander beschrieben. Die Anteile, die nicht in einem Klassendia-
gramm ausgedriickt werden konnen, wie Invarianten, werden durch die Object
Constraint Language (OCL), einem Teil der UML, spezifiziert [Obj]. Des Wei-
teren wird das Metamodell der Strukturmuster erweitert, um die Verbindung
zwischen Struktur- und Verhaltensmustern zu definieren.

4.2.1 Metamodell der Verhaltensmuster

Die Syntax der Verhaltensmuster ist angelehnt an die Syntax der Sequenzdia-
gramme nach UML 2.0. Allerdings gibt es gegeniiber den Sequenzdiagrammen
einige Einschriankungen und spezielle Eigenschaften der Verhaltensmuster, die
im Folgenden spezifiziert werden.

Die Abbildung 4.5 zeigt das Metamodell der Verhaltensmuster. Zentraler
Bestandteil dieses Metamodells ist die Klasse BehavioralPattern, die Verhal-
tensmuster reprasentiert. Sie enthélt den Namen des Verhaltensmusters und
ein boolsches Attribut, das definiert, ob es ein negatives Verhaltensmuster ist.
Des Weiteren referenziert ein Verhaltensmuster eine Menge von Verhaltens-
musterobjekten vom Typ BPAbstractObject, die Teil des Verhaltensmusters
sind. Zu jedem Verhaltensmusterobjekt gehort eine Lebenslinie vom Typ Li-
feLine. Eine Lebenslinie reprisentiert den zeitlichen Ablauf von Nachrichten
(Message), die durch das jeweilige Verhaltensmusterobjekt in einer festgeleg-
ten Reihenfolge gesendet oder von ihm empfangen werden. Die Nachrichten
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Abbildung 4.5: Metamodell der Verhaltensmuster, Paket BehavioralPatterns

eines Verhaltensmusters sind grundsatzlich synchron, da sie atomare Metho-
denaufrufe darstellen.

Zur Modellierung des Kontrollflusses in einem Sequenzdiagramm werden
in der UML 2.0 die so genannten kombinierten Fragmente (engl. Combined
Fragments) eingesetzt. Kombinierte Fragmente besitzen einen Operator und
enthalten mindestens einen Operanden. Operanden enthalten wiederum Inter-
aktionsfragmente (engl. Interaction Fragments). Interaktionsfragmente kénnen
sowohl kombinierte Fragmente, als auch Nachrichten sein. Die wichtigsten, in
Sequenzdiagrammen zur Verfiigung stehenden kombinierten Fragmente sind:
alternatives Fragment (Operator: alt), relevante Nachrichten (Operator: consi-
der), irrelevante Nachrichten (Operator: ignore), kritischer Bereich (Operator:
critical), Negation (Operator: neg), optionales Fragment (Operator: opt), par-
alleles Fragment (Operator: par) und Schleife (Operator: loop).
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Im Metamodell der Verhaltensmuster werden Interaktionsfragmente durch
die abstrakte Klasse InteractionFragment und kombinierte Fragmente durch die
abstrakte Klasse CombinedFragment représentiert. In Verhaltensmustern ste-
hen jedoch nicht alle kombinierten Fragmente zur Verfiigung. Es kénnen nur
alternative Fragmente (AlternativeFragment), optionale Fragmente (Optional-
Fragment) und Schleifen (LoopFragment) verwendet werden. Schleifen besitzen
in Verhaltensmustern nur eine untere Grenze, die 0 oder 1 sein kann. Bei
einer Untergrenze von 0 muss die Schleife nicht durchlaufen werden, bei ei-
ner Untergrenze von 1 muss sie mindestens einmal durchlaufen werden. Eine
Obergrenze kann nicht festgelegt werden. Eine Schleife kann grundsétzlich mit
Einschrankung der Untergrenze beliebig hdufig durchlaufen werden.

Ein spezielles, kombiniertes Fragment ist das Wurzel-Fragment (Root-
Fragment), das in jedem Verhaltensmuster nur genau einmal vorkommt und
direkt vom Verhaltensmuster referenziert wird. Ein RootFragment ist die Wur-
zel aller weiteren kombinierten Fragmente und Nachrichten des Verhaltensmu-
sters. Die Klassen des Metamodells der Verhaltensmuster gehéren zum Paket
BehavioralPatterns.

Als Beispiel ist in Abbildung 4.6 der abstrakte Syntaxgraph des negativen
Strategy-Verhaltensmusters aus Abbildung 4.3 (Seite 61) dargestellt. Das Ver-
haltensmuster referenziert ein Objekt vom Typ RootFragment als Wurzel der
gesamten Sequenz. Der Operand der Wurzel enthélt wiederum eine Alternative
mit zwei Operanden, die untereinander geordnet sind. Im ersten Operanden
wird die Nachricht setStrategy() vom Verhaltensmusterobjekt a:abstractState
an c:context gesendet, im zweiten Operanden schickt sich das Objekt c:context
die Nachricht setStrategy() selber.

Im Folgenden werden einige Invarianten definiert, die ein syntaktisch korrek-
tes Verhaltensmuster einhalten muss und die nicht in einem Klassendiagramm
ausgedriickt werden kénnen. Damit ein Verhaltensmuster ein sinnvolles Verhal-
ten durch Sequenzen von Nachrichten spezifizieren kann, muss es mindestens
ein Objekt vom abstrakten Typ BPAbstractObject enthalten. Jedes Objekt in
einem Verhaltensmuster muss aulerdem einen Namen besitzen und iiber diesen
eindeutig zu identifizieren sein:

Invariante 4.1 Jedes Verhaltensmusterobjekt hat einen Namen:

package BehavioralPatterns
context BPAbstractObject inv:

self.name<>QOclVoid
endpackage
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Abbildung 4.6: Abstrakter Syntaxgraph des negativen Strategy-Verhaltens-
musters

Invariante 4.2 Die Namen der Objekte eines Verhaltensmusters sind eindeu-
tig:

package BehavioralPatterns
context BehavioralPattern inv:
self.objects—for All(b1:BPAbstractObject, b2:BPAbstractObject|
bl<>b2 implies bl.name<>b2.name)
endpackage

Fiir die kombinierten Fragmente gelten in einem syntaktisch korrekten Ver-
haltensmuster die folgenden Invarianten:

Invariante 4.3 Die kombinierten Fragmente Wurzel-Fragment, optionales
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Fragment und Schleife besitzen jeweils genau einen Operanden:
package BehavioralPatterns

context RootFragment inv:
self.operands—size()=1

context OptionalFragment inv:
self.operands—size()=1

context LoopFragment inv:
self.operands—size()=1

endpackage

Invariante 4.4 Das alternative Fragment enthdlt mindestens zwet, aber belie-
big viele Operanden:

package BehavioralPatterns
context AlternativeFragment inv:

self.operands—size()>2
endpackage

4.2.2 Erweiterung des Metamodells der Strukturmuster

Um die Verbindung zwischen Verhaltens- und Strukturmustern herzustellen,
wurde das Metamodell der Strukturmuster aus Abbildung 2.8, Seite 25, erwei-
tert. In Abbildung 4.7 ist das neue, erweiterte Metamodell der Strukturmuster
dargestellt. Die referenzierten Klassen StructuralPattern und SPObject im Me-
tamodell der Verhaltensmuster aus Abbildung 4.5 verweisen auf die entspre-
chenden Klassen des erweiterten Metamodells der Strukturmuster.
Strukturmusterobjekte werden wihrend der Strukturanalyse an konkrete
Elemente eines Kandidaten, also an Elemente der Struktur des Softwaresy-
stems, gebunden. Strukturmusterobjekte sind also Variablen, deren Typen dem
Strukturmodell entnommen sind. Die Typnamen der Verhaltensmusterobjek-
te und die Methodennamen der Nachrichten werden wiederum den Struktur-
musterobjekten entnommen. Die Strukturmusterobjekte dienen somit der Ty-
pisierung der Elemente eines Verhaltensmusters. Strukturmusterobjekte, die
Variablen fiir konkrete Klassen aus der Struktur darstellen, werden zur Ty-
pisierung der Verhaltensmusterobjekte verwendet. Strukturmusterobjekte, die
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Abbildung 4.7: Erweitertes Metamodell der Strukturmuster, Paket Structural-
Patterns

Variablen fiir Methoden aus der Struktur sind, werden zur Typisierung von
Nachrichten in Verhaltensmustern verwendet. Dazu sind der Klasse SPObject
aus dem Metamodell der Strukturmuster Referenzen zu den Klassen Message
und BPObject aus dem Metamodell der Verhaltensmuster hinzugefiigt worden.

Die Strukturmusterobjekte miissen fiir die Typisierung der Verhaltensmu-
sterobjekte in eine Klassifizierung aus Klassen, Methoden oder sonstigen Ob-
jekten der Struktur eingeordnet werden. Das Strukturmodell ist jedoch aus-
tauschbar. Es ist also nicht allgemein feststellbar, welche Klassen des Struk-
turmodells Klassen oder Methoden in der Struktur eines Softwaresystems re-
priasentieren. Aus diesem Grund wurde das Metamodell der Strukturmuster
um die Klassifizierung der Strukturmusterobjekte erweitert. Der Klasse SPOb-
ject fiir Strukturmusterobjekte sind also ein Attribut zur Klassifizierung so-
wie drei Konstanten hinzugefiigt worden, die die drei Klassifizierungen Klasse
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(CLASS), Methode (METHOD) und sonstiges Element (NONE) représentieren.
Die Klassifizierung eines Strukturmusterobjekts findet bei der Spezifikation ei-
nes Strukturmusters statt.

Stellt ein Strukturmusterobjekt eine Methode aus der Struktur dar, so muss
zusétzlich angegeben werden, welches Strukturmusterobjekt die Klasse dar-
stellt, zu der die Methode gehort. Dies wird durch die Selbstassoziation me-
thods von SPObject ermdoglicht. Allerdings sind die folgenden zwei Invarianten
einzuhalten:

Invariante 4.5 Einem Strukturmusterobjekt, das als METHOD Fklassifiziert
1st, ist iber die Assoziation methods immer ein Strukturmusterobjekt der Klas-
sifizierung CLASS zugeordnet:

package StructuralPatterns
context SPObject inv:
self.classifier=SPObject. METHOD implies
(self.class<>OclVoid and self.class.classifier=SPObject. CLASS)
endpackage

Invariante 4.6 FEinem Strukturmusterobjekt der Klassifizierung CLASS sind
tiber die Assoziation methods nur Strukturmusterobjekte der Klassifizierung

METHOD zugeordnet:

package StructuralPatterns
context SPObject inv:
self.classifier=SPObject.CLASS implies
(self.methods—for All(m:SPObject|
m.classifier=SPObject. METHOD))
endpackage

4.2.3 Verbindung zwischen Struktur- und
Verhaltensmustern

Wie bereits in Kapitel 4.1.3 erklart, ist jedem Verhaltensmuster ein Struktur-
muster zugeordnet. Umgekehrt kann ein Strukturmuster durch ein positives
Verhaltensmuster und beliebig viele negative Verhaltensmuster ergénzt wer-
den. Die Verbindung zwischen Verhaltens- und Strukturmuster wird in den
beiden Metamodellen durch eine Assoziation zwischen den Klassen Behavioral-
Pattern und StructuralPattern hergestellt. Spezifiziert wird die genannte Ein-
schrinkung durch die folgende Invariante:
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Invariante 4.7 Zu jedem Strukturmuster darf maximal ein positives Verhal-
tensmuster existieren:

package StructuralPatterns
context StructuralPattern inv:
self.behavioralPatterns—
collect(bp:BehavioralPatterns::BehavioralPattern|
bp.negative=false)—size()<1
endpackage

Des Weiteren wird die Zugehorigkeit eines Verhaltensmusters zu einem
Strukturmuster durch die Namensgebung ausgedriickt. Invariante 4.8 be-
schreibt die Namensgleichheit zwischen Struktur- und Verhaltensmustern:

Invariante 4.8 Die Namen eines Strukturmusters und aller zugeordneten
Verhaltensmuster stimmen tberein.:

package StructuralPatterns
context StructuralPattern inv:
self.behavioralPatterns—
for All(bp:BehavioralPatterns::BehavioralPattern|
self.name=bp.name)
endpackage

Es existieren zwei konkrete Unterklassen fiir Verhaltensmusterobjekte: BP-
AnyObject und BPObject. BPAnyObject repréasentiert alle untypisierten Verhal-
tensmusterobjekte, also Verhaltensmusterobjekte, deren Typ nicht spezifiziert
ist und die wiahrend der Verhaltensanalyse an beliebige Instanzen gebunden
werden konnen. BPObject reprisentiert dagegen die typisierten Verhaltensmu-
sterobjekte. Der Typ wird durch das dem Verhaltensmusterobjekt zugeordnete
Strukturmusterobjekt festgelegt, das wiederum eine Variable fiir eine Klasse
aus der Struktur eines Softwaresystems darstellt. Der Typname des Verhal-
tensmusterobjekts ist der Objektname des Strukturmusterobjekts. Diese Ein-
schriankungen sind in den beiden folgenden Invarianten definiert:

Invariante 4.9 FEinem typisierten Verhaltensmusterobjekt ist immer ein
Strukturmusterobjekt mit der Klassifizierung CLASS zugeordnet:

package BehavioralPatterns
context BPObject inv:
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self.spObject.classifier=StructuralPatterns::SPObject. CLASS
endpackage

Invariante 4.10 Der Typname eines typisierten Verhaltensmusterobjekts
stimmt mit dem Namen des zugeordneten Strukturmusterobjekts tiberein:

package BehavioralPatterns
context BPObject inv:

self.typeName=self.spObject.name
endpackage

Analog zu den typisierten Verhaltensmusterobjekten ist eine Nachricht im
Verhaltensmuster immer mit einem Strukturmusterobjekt verbunden, das eine
Variable fiir eine Methode aus der Struktur eines Softwaresystems darstellt.
Der Name der Nachricht im Verhaltensmuster entspricht dem Objektnamen
des Strukturmusterobjekts.

Invariante 4.11 Finer Nachricht eines Verhaltensmusters ist immer ein
Strukturmusterobjekt mit der Klassifizierung METHOD zugeordnet:

package BehavioralPatterns

context Message inv:
self.spObject.classifier=StructuralPatterns::SPObject. METHOD

endpackage

Invariante 4.12 Der Name einer Nachricht im Verhaltensmuster stimmt mait
dem Namen des zugeordneten Strukturmusterobjekts tiberein:

package BehavioralPatterns
context Message inv:

self.name=self.spObject.name
endpackage

Die Art der Nachrichten, die an ein Verhaltensmusterobjekt gesendet werden
diirfen, sind eingeschrénkt. An ein typisiertes Verhaltensmusterobjekt diirfen
nur Nachrichten gesendet werden, deren Methoden zu der entsprechenden
Klasse des Verhaltensmusterobjekts gehoren. Auf untypisierten Verhaltensmu-
sterobjekten diirfen dagegen keine Methodenaufrufe erfolgen.

71



Kapitel 4 Verhaltensspezifikation

Invariante 4.13 An ein typisiertes Verhaltensmusterobjekt bpObject diirfen
nur Nachrichten gesendet werden, deren Methoden dem zugehdorigen Struktur-
musterobjekt spObject zugeordnet sind:

package BehavioralPatterns
context BPObject inv:
self.lifeline.received—for All(m:Message|
self.spObject.methods—includes(m.spObject)))
endpackage

Invariante 4.14 An ein nicht typisiertes Verhaltensmusterobjekt darf keine
Nachricht gesendet werden:

package BehavioralPatterns
context BPAnyObject inv:

self lifeline.received—size()=0
endpackage

4.2.4 Uberblick

Das in Abschnitt 2.3.7 eingefiihrte Schema aus Metamodell, Modell und In-
stanz beziehungsweise Implementierung wird hier wieder aufgegriffen, um die
in den vorherigen Abschnitten eingefithrten Diagramme darin einzuordnen.

In Abbildung 4.8 sind die Abstraktionsschichten der Strukturmuster auf der
linken Seite denen der Verhaltensmuster auf der rechten Seite gegeniiberge-
stellt. Auf der obersten Schicht der Metamodelle wurde das bisherige Metamo-
dell der Strukturmuster aus Abbildung 2.13 durch das erweiterte Metamodell
der Strukturmuster ersetzt. Das Strukturmuster des State-Entwurfsmusters
wurde durch die Variante mit der unscharfen Spezifikation ausgetauscht.

Auf der rechten Seite sind die Diagramme der Verhaltensmuster eingeord-
net. In der obersten Schicht liegt das Metamodell der Verhaltensmuster. In
der Mitte ist stellvertretend fiir alle moglichen Verhaltensmuster das State-
Verhaltensmuster abgebildet. In der untersten Schicht ist ein moglicher, zum
State-Verhaltensmuster konformer Trace dargestellt.

Die semantische Beziehung zwischen der linken und der rechten Seite ist
wiederum durch Referenzen zwischen den beiden Metamodellen der Struktur-
und Verhaltensmuster festgelegt.
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Strukturmuster Verhaltensmuster
StructuralPattern |syucturapatiern [ BehavioralPattern | patter
+name:String 1 +name:String nehavicralPatieme >
+negative:boolean "
patier 1 behavioralPatterns |0..* po—r o -
«reference» «reference» structuralPattern | 1 fragments | 1..* {ordered}
ClassDiagrams::Class "% ¥ | BehavioralPatterns::BehavioralPattern biect «reference» fra A
L 1 L 1 Y | structuralPatterns::StructuralPattern anents
type [ 1 nodes| 1.* . °F ] operand | 1
- source revSources objects | 1.. Int tionO l
SPAbstractObject [4 < 0. | Connection || | BPAbstractObject nteractionUperan
_ +name:String target . revTargets +name:String operands | 1. {ordered)
6 ! « 0.0 object | 1 operands A
© SPObject 928 feine ¥ fragment| 1
o SPAnnotationObject 1 Link liteline |1 conder sent CombinedFragment
e methods ¥ [TrameSting | LifeLine |1 » (ueedjo| Message | A
+create:boolean i "
@© methods| | +oreate:boolean receiver received s
h~rd +classifierint 1 > ordered) 0.+ | Tname:String RootFragment
(] |
- -
2 spObject |1 1 [spObject BPAnyObject messages| 0 root
messages | 0..* e 1 —— AlternativeFragment
n |
«reference» «reference» BPObject
‘ BehavioralPatterns::Message | ‘ ClassDiagrams::Association | +typeName:String OptionalFragment
0..* | bpObjects bpObjects | 0. spObject | 1 -
‘ Behavi (I(I;efitrence?‘BPOb' . «reference» ] LoopFragment
I ehavioralPatterns:: jec | ‘StructuralPattems::SPObJecl‘ HowerBoundint
Erweitertes Strukturmuster-Metamodell Verhaltensmuster-Metamodell
Paket StructuralPatterns Paket BehavioralPatterns
sp State «createn
©erenton renion bp State ™ glient | [‘c:context | [a:absiractState | [ h:abstractState
T T T T
A context abstractState A stereotypes A m | setState()_| 1 1
— >
context:Class abstractState:Class } }
abstract == true {additional) loop (1,%)) ! request() ! ! !
= methods 4 } J T ™ handie) i
[} metims paramType . ; T i
| T T |
'8 [ setState:Method Fparﬁms—{ a:Parameter | methods ! at]l  sotstate) | !
E request:Method ca<l\er :NeighborMethodCall cale handle:Method } E] setState() } }
* |1 I I |
4 loop (1,*) ) ! request() | handie() N
paramType | b + |
« T T T T
Unscharfes State-Strukturmuster State-Verhaltensmuster
StreamState
abstractState—| +execute(s:Stream,command:int)
g) +run(s:Stream)
S context o™ eonion biabstractState
- Playing ) aabstractState .. ]
9 ‘Stream +execute(s:Stream,command:int) ‘ p:Player ‘ ‘ s:Stream ‘ st:Stopped ‘ ‘ pl:Playing
- :St
o +CMD_PLAY:int = 1 “run(e:Stream) | sefState(s) | i i
(O] +CMD_PAUSE: Paused | execute(CMD_PLAY) | : :
E *M +execute(s:Stream,command:int) ! execute(s,CMD_PLAY) ! !
) -state:StreamState +run(s:Stream) ; | setState(pl) 1 :
- execute(CMD_STOP) «
Q. +execute(command:int) Stopped T |execute(s,CMD_STOP) | |
E +read() +execute(s:Stream,command:int) ! T 1 i
—_— +close() +run(s:Stream)
State-Strukturmusterimplementierung State-Verhaltensmusterimplementierung

Abbildung 4.8: Die Abstraktionsschichten der Struktur- und Verhaltensmuster
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4.3 Semantik

In diesem Abschnitt wird die Semantik der Verhaltensmuster informell erldu-
tert. Als Beispiel dient dazu der Mediaplayer von Seite 19. In der Strukturana-
lyse wurden einige Klassen des Mediaplayers als State-Kandidat identifiziert
(Abbildung 4.9).

T StreamState
T ospState st ,
600, 4 abstractStates +execute(s:Stream,command:int)
[ +run(s:Stream)
JAN
context -
i Playing
: +execute(s:Stream,command:int) [ |
Stream +run(s:Stream)
+CMD_PLAY:int=1
+CMD_PAUSE:int = 2 Paused
+CMD_STOP:int = 3 +execute(s:Stream,command:int) [
-state:StreamState +run(s:Stream)
+setState(state:StreamState)
+execute(command:int) Stopped
+read() +execute(s:Stream,command:int)
+close() +run(s:Stream)

Abbildung 4.9: Der State-Kandidat des Mediaplayers

Im Folgenden wird zunéchst diskutiert, warum es zur Laufzeit zu einem
Kandidaten mehrere Traces geben kann, die auf ihre Konformitét zum Ver-
haltensmuster {iberpriift werden miissen. Dann wird das Mediaplayer-Beispiel
dazu verwendet, die Bindung der Variablen des State-Verhaltensmusters zu er-
klaren. Anhand verschiedener Traces des Mediaplayers wird gezeigt, wann ein
einzelner Methodenaufruf des Traces zu einer Nachricht konform ist und wann
ein kompletter Trace zu einem Verhaltensmuster konform oder nicht konform
ist. Zum Abschluss wird die Bewertung konformer und nicht-konformer Traces
erlautert.

4.3.1 Mehrfache Uberpriifung der Traces

Wie bereits in Abschnitt 4.1.1 erlautert, deckt ein Verhaltensmuster nicht das
gesamte mogliche Verhalten einer Entwurfsmusterimplementierung zur Lauf-
zeit ab. Vielmehr soll mit Verhaltensmustern lokales Verhalten einer Entwurfs-
musterimplementierung durch typische Sequenzen von Methodenaufrufen aus-
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gedriickt werden. Aus diesem Grund werden Traces, die nur Ausschnitte der
gesamten Sequenz beobachteter Methodenaufrufe sind, auf ihre Konformitét
zu einem Verhaltensmuster untersucht.

Die Instanz einer Entwurfsmusterimplementierung kann zur Laufzeit das
durch das Verhaltensmuster beschriebene lokale Verhalten mehrfach durchlau-
fen. Das fithrt dazu, dass beliebig viele zu einem Verhaltensmuster konforme
Traces dieser Instanz in einem Tracegraphen identifiziert werden koénnen.

Des Weiteren kénnen aber auch beliebig viele Instanzen einer Entwurfsmu-
sterimplementierung zur Laufzeit existieren. Zu jeder dieser Instanzen werden
Traces beobachtet, die auf ihre Konformitét zum Verhaltensmuster untersucht
werden miissen. Es ist also sehr wahrscheinlich, dass es zu einem Kandidaten
zur Laufzeit verschiedene Traces derselben oder auch unterschiedlicher Instan-
zen gibt, die konform zum Verhaltensmuster sind. Ebenso kann es aber auch
Traces von Instanzen geben, die nicht konform zum Verhaltensmuster sind.

4.3.2 Bindung der Variablen

Die Annotation, die zu einem in der Strukturanalyse identifizierten Kandidaten
erzeugt wurde, enthélt eine Bindung der Variablen des Strukturmusters an die
Elemente des Kandidaten. Die Bindung der State-Annotation aus Abbildung
4.9 ist in Tabelle 4.1 aufgelistet.

’Variable des Strukturmusters‘Element des Kandidaten ‘

context Stream

abstractState StreamState

setState Stream::setState(StreamState)
request Stream::execute(int)

handle StreamState::execute(Stream, int)

Tabelle 4.1: Initiale Variablenbindung der State-Annotation zum Mediaplayer

Die Annotation wird ebenfalls zur Bindung der Variablen des Verhaltensmu-
sters verwendet. Die Typnamen der Verhaltensmusterobjekte und die Metho-
dennamen der Nachrichten wurden bei der Spezifikation des Verhaltensmusters
dem Strukturmuster entnommen, wie im vorherigen Abschnitt bereits erlautert
wurde. Dadurch werden die Variablen des Verhaltensmusters an dieselben Ele-
mente des Kandidaten gebunden wie die Variablen des Strukturmusters. Es
ist dadurch festgelegt, welche Typen die Verhaltensmusterobjekte haben und
welche Methoden dieser Typen im Verhaltensmuster vorkommen.
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Die Bindung der Typnamen der Verhaltensmusterobjekte und der Metho-
dennamen der Nachrichten steht bereits zu Beginn der Verhaltensanalyse fest.
Die Verhaltensmusterobjekte werden dagegen erst wihrend der Verhaltensana-
lyse bei der Uberpriifung der Konformitit von beobachteten Methodenaufru-
fen an konkrete Instanzen aus der Laufzeitumgebung des zu untersuchenden
Softwaresystems gebunden.

Zur Vereinfachung der Beschreibung der Semantik sei aber im Folgenden da-
von ausgegangen, dass bereits zu Beginn der Verhaltensanalyse alle Instanzen
aus der Laufzeitumgebung bekannt sind. Aus dieser Menge werden nichtde-
terministisch alle méglichen Tupel von Instanzen, die als eine Instanz einer
potentiellen Entwurfsmusterimplementierung kollaborieren, ausgewahlt. Mit
jedem dieser Tupel wird wiederum die Variablenbindung eines Verhaltensmu-
sters initialisiert. Die Verhaltensmusterobjekte werden nichtdeterministisch an
die passenden Elemente des Tupels gebunden. Das bedeutet, fiir jedes dieser
Tupel existiert ein konkretes Verhaltensmuster, bei dem alle Variablen gebun-
den sind und das beschreibt, wie die Elemente des Tupels interagieren miissen,
um als eine Instanz einer tatsdchlichen Entwurfsmusterimplementierung zu
gelten.

p:Player s:Stream st:Stopped || pl:Playing

setState(st)
execute(CMD_PLAY)

execute(s,CMD_PLAY) |

execute(CMD_STOP) ‘i‘
| execute(s,CMD_STOP)
i

I I
T I
I I
T I
I : L}
: I setState(pl) !
L I
I I
I 1

T
|
|
|
|
|
|
|
|
o
gl
Abbildung 4.10: Beobachteter Trace des Mediaplayers

Werden nun wéhrend der Verhaltensanalyse Traces dieser Tupel beobach-
tet, konnen sie mit ihrem konkreten Verhaltensmuster verglichen werden. In
Abbildung 4.10 ist ein Trace zu sehen, der fiir einige Instanzen von Klassen
des Mediaplayers beobachtet wurde. Diese Instanzen wurden zu Beginn der
Verhaltensanalyse nichtdeterministisch ausgewihlt. Zusammen mit den Ele-
menten aus der Struktur des State-Kandidaten bilden sie nun eine Variablen-
bindung fiir ein konkretes State-Verhaltensmuster. Diese Variablenbindung ist
in Tabelle 4.2 aufgelistet.

Abbildung 4.11 zeigt das zu der Variablenbindung gehorige State-Verhal-

76



4.3 Semantik

’Variable des Verhaltensmusters‘Element der Struktur/Instanz ‘

context Stream

abstractState StreamState

setState Stream::setState(StreamState)
request Stream::execute(int)

handle StreamState::execute(Stream, int)
client p

c s

a st

b pl

Tabelle 4.2: Variablenbindung eines State-Verhaltensmusters zum Mediaplayer

tensmuster des Mediaplayer-Kandidaten, bei dem die Typnamen der Ver-
haltensmusterobjekte und die Methodennamen der Nachrichten durch die
konkreten Elemente des Kandidaten und die Verhaltensmusterobjekte durch
die Instanzen aus der Laufzeitumgebung ersetzt wurden, wie es in Tabel-
le 4.2 vorgegeben ist. Das Verhaltensmuster beschreibt, wie diese Instan-
zen des Mediaplayers sich verhalten miissen, um als tatsédchliche State-
Entwurfsmusterinstanz identifiziert zu werden.

Die Typen der Verhaltensmusterobjekte stimmen teilweise nicht mit den
Typen der Instanzen aus dem Trace {iberein. Es sind jedoch polymorphe Typ-
bindungen erlaubt. So ist zum Beispiel die Typvariable abstractState des Ver-
haltensmusterobjekts a an den konkreten Typ StreamState gebunden. Die In-
stanz st aus dem Trace, an die das Verhaltensmusterobjekt a gebunden ist,
ist allerdings vom Typ Stopped. Sie ist aber auch vom Typ StreamState, da
der Typ Stopped von StreamState erbt. Es liegt also eine korrekte, polymorphe
Bindung vor.

4.3.3 Konformitat von Methodenaufrufen

Um festzustellen, ob ein Trace wie in Abbildung 4.10 zu dem Verhaltensmuster
in Abbildung 4.11 konform ist, muss zunéchst einmal festgelegt werden, wann
ein Methodenaufruf des Traces zu einer Nachricht des Verhaltensmusters kon-
form ist. Eine Nachricht besteht aus bis zu fiinf verschiedenen Variablen. Diese
fiinf Variablen — namentlich das aufrufende Verhaltensmusterobjekt und sein
Typ, das aufgerufene Verhaltensmusterobjekt und sein Typ sowie die aufgeru-
fene Methode — miissen mit dem Methodenaufruf verglichen werden. Passen
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bp State J
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Abbildung 4.11: Ein State-Verhaltensmuster zu Instanzen des Mediaplayer-
Kandidaten

die Elemente des Methodenaufrufs zu den Elementen, an die die Variablen
gebunden sind, so ist der Methodenaufruf konform zu der Nachricht.

Wie bereits oben erwahnt, muss der Typ der an einem Methodenaufruf betei-
ligten Instanz nicht mit dem Typ des Verhaltensmusterobjekts identisch sein,
um das Verhaltensmusterobjekt an die Instanz zu binden. Es diirfen auch poly-
morphe Bindungen vorliegen. Um formal zu definieren, wann eine polymorphe
Bindung erlaubt ist, wird im Folgenden die Konformitédtsfunktion iiber zwei
Typen eingefiihrt. Ein Verhaltensmusterobjekt darf an eine Instanz des Traces
gebunden werden, wenn der Typ der Instanz konform ist zu dem Typ, an den
die Typvariable des Verhaltensmusterobjekts gebunden ist.

Die Instanzen der Klasse Class des Strukturmodells repriasentieren die Typen
in der Struktur eines Softwaresystems. Die Konformitétsfunktion wird daher
als Methode der Klasse Class definiert. Eine Instanz c1 von Class ist konform zu
einer zweiten Instanz c2 von Class, wenn c1 identisch zu c2 ist oder unmittelbar
oder mittelbar von c2 erbt.

Definition 4.1 Die Konformititsfunktion der Klasse Class des Strukturmo-
dells ist definiert durch:

package Structure
context Class::conformsTo(c:Class):Boolean
post: result = (self = ¢)
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or (self.revSubClasses—exists(g:Generalization|g.superClass=c))
or (self.revSubClasses—exists(g:Generalization|
g.superClass.conformsTo(c)))
endpackage

Auch die aufgerufene Methode muss nicht identisch sein zu der Metho-
de, die in der Nachricht spezifiziert wurde. In Entwurfsmustern wird sehr
héufig von der polymorphen Methodenbindung Gebrauch gemacht. Im State-
Entwurfsmuster wird zum Beispiel die handle-Methode durch den abstrakten
Zustands vorgegeben, und durch die konkreten Zustéinde implementiert. Der
Aufruf der handle-Methode geschieht aber iiber die Schnittstelle des abstrakten
Zustands. Die polymorphe Methodenbindung wird daher auch in Verhaltens-
mustern verwendet. Bei einem Methodenaufruf muss also nicht nur iiberpriift
werden, ob die aufgerufene Methode zu der Methode der Nachricht identisch
ist, sondern auch, ob eventuell die aufgerufene Methode die Methode der Nach-
richt implementiert oder iiberschreibt und damit polymorph gebunden wurde.
Aus diesem Grund wird auch eine Konformitétsfunktion fiir die Klasse Method
des Strukturmodells definiert.

Eine Instanz m2 des Typs Method ist zu einer Instanz m1l des Typs Method
konform, wenn entweder m2 identisch zu m1l ist, oder m2 die Methode ml
iiberschreibt oder implementiert. Im zweiten Fall muss der Typ, zu dem m2
gehort, von dem Typ, zu dem ml gehort, erben und die Signaturen von ml
und m2 miissen identisch sein. Das bedeutet, sowohl die Namen der Metho-
den ml und m2; als auch die Reihenfolge und Typen ihrer Parameter miissen

iibereinstimmen?.

Definition 4.2 Die Konformitditsfunktion der Klasse Method des Struktur-
modells ist definiert durch:

package Structure
context Method::conformsTo(m:Method):Boolean
post: result = (self = m)
or (self.parent.conformsTo(m.parent)
and self.name = m.name

3In einigen Programmiersprachen miissen die Typen der Parameter nicht iibereinstimmen,
damit eine Methode m2 eine Methode m1 iiberschreibt. Eine kovariante (z.B. in EIFFEL)
oder kontravariante Redefinition der Parametertypen ist ebenfalls moglich. In diesen
Fillen muss also eventuell in der Konformititsfunktion die Uberpriifung der Identitét
der Parametertypen durch eine Konformitédtspriifung ersetzt werden.
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and self.params—for All(p:Parameter|p.type =
m.params—at(self.params—indexof (p)).type))
endpackage

Im Folgenden werden nun fiinf Bedingungen formuliert, die gelten miissen,
damit ein Methodenaufruf mc des Typs Behavior::MethodCall zu einer Nach-
richt eines Verhaltensmusters konform ist. Die Nachricht hat die Form
(a:A)—(b:B).m(), das bedeutet, das Verhaltensmusterobjekt a:A ruft auf dem
Verhaltensmusterobjekt b:B die Methode m auf.

1. Die Methode des Methodenaufrufs mc ist konform zu der Methode, die
an die Variable m der Nachricht gebunden wurde.

2. Der Typ der aufrufenden Instanz ist konform zu dem Typ, der an die
Variable A der Nachricht gebunden wurde.

3. Der Typ der aufgerufenen Instanz ist konform zu dem Typ, der an die
Variable B der Nachricht gebunden wurde.

4. Die Variable a der Nachricht ist an die aufrufende Instanz des Metho-
denaufrufs mc gebunden.

5. Die Variable b der Nachricht ist an die aufgerufene Instanz des Metho-
denaufrufs mc gebunden.

Hat die Nachricht dagegen die Form a—(b:B).m(), das bedeutet, ein unty-
pisiertes Verhaltensmusterobjekt a ruft die Methode auf, dann ist der Metho-
denaufruf mc zu der Nachricht konform, wenn die Bedingungen 1, 3, 4 und 5
gelten. Der Typ der aufrufenden Instanz wird also ignoriert.

4.3.4 Konformitat von Traces

Um zu {iiberpriifen, ob ein Trace konform zu einem Verhaltensmuster ist,
miissen alle Methodenaufrufe des Traces mit den Vorgaben des Verhaltens-
musters verglichen werden. Zu den Vorgaben gehoren nicht nur die Art der
Nachrichten, die gesendet werden diirfen, sondern vor allem auch die Reihen-
folge, in der sie gesendet werden diirfen. Die Methodenaufrufe werden also
auf ihre Konformitdt zu den Nachrichten iiberpriift, die zum Zeitpunkt ihrer
Beobachtung erlaubt sind. Im Folgenden werden mehrere hypothetische Tra-
ces des Mediaplayers untersucht, die zur Laufzeit beobachtet werden kénnten
und anhand derer zum Verhaltensmuster konforme und nicht-konforme Traces
erlautert werden.
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Konforme Traces

Es wird zunéchst die Konformitdt des Traces aus Abbildung 4.10 (Seite 76)
zum konkreten State-Verhaltensmuster des Mediaplayer-Kandidaten aus Ab-
bildung 4.11 (Seite 78) gezeigt. Die Methodenaufrufe des Traces werden der
Reihe nach auf ihre Konformitéit zu den Nachrichten des Verhaltensmusters
gepriift.

Zu Beginn der Verhaltensanalyse darf entweder die optionale Nachricht
p—(s:Stream).setState(StreamState) oder die Nachricht p—(s:Stream).execute
(int) gesendet werden. Der erste, beobachtete Methodenaufruf des Mediaplay-
er-Traces ist setState(st) auf der Instanz s:Stream durch die Instanz p:Player.
Die Instanzen des Methodenaufrufs sind identisch mit den Instanzen, die
an die Verhaltensmusterobjekte der optionalen Nachricht p—(s:Stream).set-
State(StreamState) gebunden wurden. Der Typ der aufgerufenen Instanz
stimmt mit dem Typ des aufgerufenen Verhaltensmusterobjekts iiberein. Der
Typ der aufrufenden Instanz ist in der Nachricht nicht spezifiziert, er wird also
ignoriert. Die Methode des Aufrufs ist ebenfalls zu der Methode der Nachricht
identisch. Der erste Methodenaufruf des Traces ist also konform zu der ersten,
optionalen Nachricht des Verhaltensmusters.

Zum Beobachtungszeitpunkt des zweiten Methodenaufrufs darf nur die
Nachricht p—(s:Stream).execute(int) gesendet werden. Der zweite Metho-
denaufruf ist konform zu dieser Nachricht. Danach ist nur die Nachricht
(s:Stream)—(st:StreamState).execute(Stream, int) erlaubt. Der Typ Stopped der
Instanz, auf der der dritte Methodenaufruf stattfindet, gleicht zwar nicht dem
im Verhaltensmuster geforderten Typ StreamState, erbt jedoch von Stream-
State und ist deshalb erlaubt. Der dritte Methodenaufruf ist also konform zur
dritten Nachricht des Verhaltensmusters.

Zum Zeitpunkt des vierten Methodenaufrufs diirfen drei verschiedene Nach-
richten gesendet werden. Entweder kann die zuvor schon einmal durchlaufene
Schleife ein weiteres Mal durchlaufen werden. Dann miisste ein Methodenauf-
ruf erfolgen, der zur Nachricht p—(s:Stream).execute(int) konform ist. Es kann
jedoch auch ein Methodenaufruf erfolgen, der zu einer der beiden alternati-
ven Nachrichten konform ist. Der tatséchlich beobachtete Methodenaufruf des
Traces ist zu der Nachricht (st:StreamState)— (s:Stream).setState(StreamState)
der ersten Alternative konform.

Auch die verbleibenden Methodenaufrufe des Traces sind konform zu den
jeweils zu ihrem Beobachtungszeitpunkt erlaubten Nachrichten. Der gesam-
te Trace ist deshalb konform zu dem konkreten State-Verhaltensmuster des
Mediaplayer-Kandidaten.
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Beriicksichtigte und ignorierte Methodenaufrufe

In der Beschreibung eines Entwurfsmusters werden Methoden genannt, die
eine ganz bestimmte Rolle spielen, wie zum Beispiel die Methoden setState(),
request() und handle() im Entwurfsmuster State. Diese Methoden werden durch
die Strukturanalyse identifiziert und in der Verhaltensanalyse beobachtet.

Die Klassen eines Kandidaten besitzen in der Regel aber noch weitere Me-
thoden, die in dem Entwurfsmuster keine Rolle spielen. Moglicherweise nehmen
die Klassen eines Kandidaten an einer weiteren Entwurfsmusterimplementie-
rung teil, die ebenfalls analysiert werden soll. Dann miissen weitere Methoden
der Klassen beobachtet werden. Das kann dazu fithren, dass Methoden des
einen Entwurfsmusters zur Laufzeit unter Umsténden verschrinkt mit den
Methoden eines anderen Entwurfsmusters ausgefithrt und beobachtet werden.
Das bedeutet, zwischen Aufrufen der Methoden eines Entwurfsmusters finden
weitere Aufrufe anderer Methoden statt. Diese Methodenaufrufe sollen jedoch
weder bei der Spezifikation eines Verhaltensmusters, noch bei der Analyse des
Verhaltens beriicksichtigt werden.

p:Player s:Stream st:Stopped || pl:Playing

! T
I setState(st) I

execute(CMD_PLAY) _ |
lexecute(s,CMD_PLAY)

setState(pl)

run(s)

|
-t
|
I
|

read()

execute(CMD_STOP) e

’: execute(s,CMD_STOP)

SN I Y . S

Sy 1y ]

Abbildung 4.12: Beobachteter Trace des Mediaplayers

Der Trace aus Abbildung 4.12 entspricht im Wesentlichen dem zum State-
Verhaltensmuster konformen Trace aus Abbildung 4.10 (Seite 76). Im Unter-
schied zum letzteren wurden bei diesem aber zwei zusétzliche Methodenaufrufe
zwischen den Instanzen der Entwurfsmusterimplementierung beobachtet. Die
beiden Methodenaufrufe run(s) und read() zwischen den Instanzen s und pl
werden jedoch im Verhaltensmuster nicht genannt. Trotz dieser zusétzlichen
Methodenaufrufe soll der beobachtete Trace konform zum Verhaltensmuster
sein.
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Aus diesem Grund werden in Traces nur solche Methodenaufrufe beriick-
sichtigt, deren Methoden in Nachrichten des Verhaltensmusters verwendet
werden. Im Beispiel des State-Verhaltensmuster werden also nur Aufrufe
der Methoden Stream::setState(StreamState), Stream::execute(int) und Stream-
State::execute(Stream, int) beriicksichtigt, wohingegen zum Beispiel Aufrufe
der Methoden StreamState::run(Stream) oder auch Stream::read() bei der Uber-
priifung der Konformitét eines Traces ignoriert werden.

In Sequenzdiagrammen nach UML 2.0 gibt es zwei spezielle kombinierte
Fragmente namens relevante Nachrichten (Operator: consider) und irrelevan-
te Nachrichten (Operator: ignore), mit denen gezielt Nachrichten in einer
Teilsequenz beriicksichtigt beziehungsweise ignoriert werden kénnen. Mit Hil-
fe des kombinierten Fragments relevante Nachrichten werden Teilsequenzen
von Nachrichten bestimmter, vorgegebener Methoden spezifiziert. Die Metho-
den der zu beriicksichtigenden, relevanten Nachrichten werden in einer Menge
hinter dem Operator consider des Fragments angegeben. Nachrichten dieser
Methoden diirfen innerhalb der Teilsequenz nur in der spezifizierten Weise ge-
sendet werden. Uber Nachrichten aller anderen, nicht genannten Methoden
wird in der innerhalb des Fragments spezifizierten Teilsequenz keine Aussage
getroffen, sie werden deshalb ignoriert.

sd Delegation to Current State)

|p:Player| |s:Stream| |stStreamState
1

I
consider {Stream.execute(int), | |

StreamState.execute(Stream, int)} : :
I
I
I

I I
| execute(cmd) _ |
——
I

| I execute(s, cmd)
"

Abbildung 4.13: Sequenzdiagramm des Mediaplayers

In Abbildung 4.13 ist ein Sequenzdiagramm des Mediaplayers zu sehen, das
die Delegation eines Aufrufs von execute(int) an die Methode execute(Stream,
int) innerhalb eines consider-Fragments spezifiziert. In dem Fragment wer-
den Nachrichten genau dieser beiden Methoden beriicksichtigt. Durch das
relevante-Nachrichten-Fragment wird festgelegt, dass zuerst eine Nachricht exe-
cute(int) vom Objekt p:Player an das Objekt s:Stream gesendet wird. Anschlie-
Bend muss die Nachricht execute(Stream, int) von s:Stream an st:StreamState
gesendet werden. Innerhalb dieser Teilsequenz darf kein andersartiger Aufruf
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der beiden genannten Methoden erfolgen. Zum Beispiel darf keine Nachricht
execute(Stream, int) an das Objekt st:StreamState durch p:Player geschickt wer-
den. Nachrichten anderer, im consider-Operator nicht genannter Methoden
diirfen jedoch an beliebiger Stelle in dieser Teilsequenz erfolgen, sie werden in
dieser Spezifikation ignoriert.

Beim irrelevante-Nachrichten-Fragment sind im Gegensatz dazu explizit die
zu ignorierenden Methoden festgelegt. Die in der Teilsequenz spezifizierten
Nachrichten miissen exakt in der gegebenen Form erfolgen. Nachrichten, die
nicht explizit in der Menge des ignore-Operators genannt werden, diirfen zu
keinem Zeitpunkt innerhalb der gegebenen Teilsequenz gesendet werden. Nur
Nachrichten der explizit genannten Methoden diirfen an beliebiger Stelle ver-
sendet werden.

Die Semantik des consider-Fragments entspricht also genau der Seman-
tik, die implizit fiir Verhaltensmuster gilt. Die gewiinschte Semantik der Ver-
haltensmuster erhielte man daher auch, wenn man die gesamte Sequenz des
Verhaltensmuster durch ein relevante-Nachrichten—Fragment umschliefe. Aus
Griinden der Vereinfachung wird jedoch darauf verzichtet und die consider-
Semantik implizit auf das gesamte Verhaltensmuster angewendet.

Nicht-konforme Traces

Ein nicht-konformer Trace ist dagegen in Abbildung 4.14 dargestellt. Die ersten
drei Methodenaufrufe sind konform zu den im Verhaltensmuster geforderten
Nachrichten. Dann wird allerdings der Zustandswechsel durch die Instanz p
ausgelost. Dieser Methodenaufruf ist zu keiner Nachricht, die zu diesem Zeit-
punkt erlaubt ist, konform. Der Trace ist deshalb nicht konform zum State-
Verhaltensmuster und steht somit im Widerspruch zum State-Entwurfsmuster.

p:Player s:Stream st:Stopped || pl:Playing
T [ T I
I setState(st I I I
| (=9 ) | |
| execute(CMD_PLAY) | |
: >I execute(s,CMD_PLAY) »: :
| setState(pl) | | |
I >: I I
| | | |

Abbildung 4.14: Zum State-Verhaltensmuster nicht-konformer Trace

Auch der in Abbildung 4.15 gezeigte Trace ist nicht konform zum State-
Verhaltensmuster. In diesem Fall wird aber der Zustandswechsel von einem
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u:Unknown | | p:Player s:Stream st:Stopped pl:Playing

a

T

I setState(st)

T

| execute(CMD_PLAY)
T

>,

> execute(s,CMD_PLAY)

>

setState(pl) |

.y ]

Abbildung 4.15: Unerlaubter Aufrufer der Nachricht setState

unbekannten Objekt ausgelost, das nicht im Verhaltensmuster spezifiziert wur-
de und demnach nicht erlaubt ist.

p:Player s:Stream st:Stopped pl:Playing
I
|
|
|
I Iq’
|
|
|
|

Abbildung 4.16 zeigt einen Trace, bei dem die handle-Methode des State-
Verhaltensmuster zu einem Zeitpunkt aufgerufen wird, zu dem sie nicht aufge-
rufen werden darf. Der Trace ist ebenfalls nicht konform zum Verhaltensmuster.

T
setState(st) I

I
T
| execute(CMD_PLAY) |

: ’I execute(s,CMD_PLAY)
I

I

|

lexecute(s,CMD_PLAY)
I

Yy

Abbildung 4.16: Unerlaubte Nachricht

4.3.5 Wertung konformer und nicht-konformer Traces

Ist ein Trace zu einem positiven Verhaltensmuster konform, so wird dieser
Trace als positives Indiz fiir den Kandidaten gewertet. Wird jedoch ein Trace
beobachtet, der nicht konform zum positiven Verhaltensmuster ist, so wird er
als negatives Indiz gewertet. Indizien sind nur Hinweise fiir oder gegen die Ver-
mutung, ein Kandidat sei eine tatsdchliche Entwurfsmusterimplementierung.
Indizien sind keine absoluten Aussagen.

Bei einem negativen Verhaltensmuster werden nur Traces gewertet, die kon-
form zum negativen Verhaltensmuster sind. Solche Traces werden dann als
negatives Indiz angesehen. Verstofit ein Trace gegen ein negatives Verhaltens-
muster, so kann man daraus nicht schliefen, dass der Kandidat sich dem Ent-

85



Kapitel 4 Verhaltensspezifikation

wurfsmuster entsprechend verhélt. Daher konnen aus einem solchen Trace kei-
ne Riickschliisse auf den Kandidaten gezogen werden. Ein Trace, der zu einem
negativen Verhaltensmuster nicht-konform ist, wird deshalb ignoriert.

Die Interpretation der positiven und negativen Indizien, die zu einem Kan-
didaten durch die Verhaltensanalyse gesammelt wurden, wird dem Reverse-
Engineer iiberlassen. Bei einem deutlichen Uberwiegen der positiven Indizien
ist die Wahrscheinlichkeit, dass der Kandidat eine tatsédchliche Entwurfsmus-
terimplementierung ist, sehr hoch. Uberwiegen dagegen die negativen Indizien,
so ist die Wahrscheinlichkeit, dass der Kandidat ein False-Positive ist, hcher.

4.4 Erzeugung eines Automaten

Die formale Definition der Semantik der Verhaltensmuster erfolgt durch die
Spezifikation einer inkrementellen Transformation eines Verhaltensmusters in
einen endlichen Automaten. Zunéchst wird das Verhaltensmuster in einen
nichtdeterministischen, endlichen Automaten transformiert. Dieser Automat
wird anschliefend in einen deterministischen, endlichen Automaten umgewan-
delt und um zusétzliche Transitionen erweitert. Die Erweiterung gleicht einer
Vervollstandigung des endlichen Automaten, wird aber nur teilweise durch-
gefithrt. Das Ergebnis der Transformation ist ein deterministischer Automat,
der zur algorithmischen Erkennung des Verhaltensmusters verwendet werden
kann, indem er als Eingabe die Methodenaufrufe eines Traces erhélt [WOO06].
Der Automat kann nach Verarbeitung der Methodenaufrufe feststellen, ob der
Trace konform oder nicht-konform zu dem Verhaltensmuster ist, das er re-
préasentiert.

4.4.1 Nichtdeterministischer Automat

Bei der inkrementellen Transformation wird fiir jedes Interaktionsfragment
der Verhaltensmuster eine Transformation in Elemente eines nichtdetermi-
nistischen, endlichen Automaten (NFA) angegeben. Zur Ubersetzung eines
vollstéindigen Verhaltensmusters in einen NFA werden alle Interaktionsfrag-
mente des Verhaltensmusters, also alle Nachrichten und kombinierten Frag-
mente, nach ihrer gegebenen Ordnung in Zusténde, Transitionen und Symbole
des NFA transformiert und daraus ein vollstdandiger NFA erzeugt.

Ein nichtdeterministischer, endlicher Automat ist definiert durch eine end-
liche Menge @ von Zustinden, eine Menge ¥ von FEingabesymbolen (auch Al-
phabet genannt), einen Startzustand qo, eine Menge F' C () von akzeptierenden
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Zustdnden sowie durch die Transitionsfunktion ¢, die einen Zustand aus () und
ein Symbol aus X auf eine Teilmenge aus ) abbildet.

Interaktionsfragment

Jedes Interaktionsfragment des Verhaltensmusters wird in ein Teilkonstrukt
des letztendlich resultierenden NFA transformiert, das zwei Zustiande enthélt:
einen Anfangszustand sy € () und einen Endzustand s, € Q.

Konkatenation der Interaktionsfragmente

Die aus den Interaktionsfragmenten entstehenden Teilkonstrukte werden an-
hand der Reihenfolge der Interaktionsfragmente im Verhaltensmuster iiber e-
Transitionen konkateniert. € ist das leere Wort. Die Transformation ist in Ab-
bildung 4.17 anschaulich dargestellt.

€

Abbildung 4.17: Konkatenation zweier Interaktionsfragmente

Definition 4.3 Die Reihenfolge der Interaktionsfragmente innerhalb eines
Operanden ist im Metamodell der Verhaltensmuster tber die geordnete As-
soziation fragments zwischen InteractionOperand und InteractionFragment defi-
niert.

Transformationsregel 4.1 Ist ein Interaktionsfragment i, € I der direkte
Vorginger des Interaktionsfragments is € I in einem Operanden, so wird der
Endzustand s.;, € QQ von iy durch eine e-Transition mit dem Anfangszustand
0., € @ von iy verbunden:

S04y € 0(Seiiys€)

Nachricht

Das wichtigste Interaktionsfragment der Verhaltensmuster ist die Nachricht.
Die Nachrichten eines Verhaltensmusters definieren nicht nur mafigeblich die
Menge ¥ der Eingabesymbole des NFA, sondern auch die Transitionsfunktion
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0. Eine Nachricht wird in zwei Zusténde iibersetzt, die durch eine Transiti-
on verbunden sind. Das Symbol, das von der Transition akzeptiert wird, re-
prasentiert die Nachricht. In Abbildung 4.18 ist die Transformation wiederum
anschaulich dargestellt.

aA b'B (a:A)—(b:B).m()

S

Abbildung 4.18: Transformation einer Nachricht

Transformationsregel 4.2 FEine Nachricht, in der das typisierte Verhaltens-
musterobjekt a:A die Methode m auf dem typisierten Verhaltensmusterobjekt
b:B aufruft, wird in zwei Zustinde sy € QQ und s, € Q) transformaiert, die tiber
eine Transition mit dem Symbol (a : A) — (b: B).m() € ¥ verbunden werden:

d(sp, (a:A) — (b: B).m()) = {se}

Das Symbol des Automaten ist also aus denselben Variablen zusammen-
gesetzt wie die Nachricht des Verhaltensmusters. Die Bindung der Variablen
des Verhaltensmusters gilt somit auch fiir das Symbol des Automaten. Befin-
det sich ein Automat wahrend der Verhaltensanalyse in dem Zustand sy und
erhélt er einen Methodenaufruf mc des Typs Behavior::MethodCall als Eingabe,
so kann anhand der Bindung der Variablen gepriift werden, ob der Methoden-
aufruf konform zu dem Symbol ist. Die Konformitét eines Methodenaufrufs zu
einem Symbol ist analog zu der Konformitéit eines Methodenaufrufs zu einer
Nachricht nach den Bedingungen 1 bis 5 aus Abschnitt 4.3.3 definiert, da das
Symbol aus denselben Variablen besteht wie die zugehorige Nachricht. Ist ein
Methodenaufruf also konform zu dem Symbol, so kann der Automat iiber die
zum Symbol gehorige Transition in den Zustand s, wechseln.

Analog gelten diese Aussagen auch fiir Nachrichten, die von einem untypi-
sierten Verhaltensmusterobjekt gesendet werden. Die folgende Definition gibt
die Transformation fiir eine solche Nachricht an.

Transformationsregel 4.3 Eine Nachricht, in der das untypisierte Verhal-
tensmusterobjekt a die Methode m auf dem typisierten Verhaltensmusterobjekt
b:B aufruft, wird in zwei Zustinde so € QQ und s, € Q) transformiert, die tber
eine Transition mit dem Symbol a — (b : B).m() € X verbunden werden:

d(sg,a — (b: B).m()) = {se}
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Operand

Jedes kombinierte Fragment eines Verhaltensmusters enthélt mindestens einen
Operanden, der wiederum mindestens ein Interaktionsfragment, aber beliebig
viele, untereinander geordnete Interaktionsfragmente enthélt.

Definition 4.4 Der Anfangszustand sy, eines Operanden ist definiert als der
Anfangszustand so;, seines ersten Interaktionsfragments iy. Der Endzustand
Seo € @ eines Operanden ist definiert als der Endzustand s.; € @ seines
letzten Interaktionsfragments i;:

80,0 =50,if

Se,0 =Se,i;

Alternatives Fragment

Ein alternatives Fragment wird in zwei Zustédnde sy und s, transformiert, die
iiber e-Transitionen mit den Anfangs- und Endzusténden der Operanden des
alternativen Fragments verbunden werden. Als Beispiel ist die Transformation
eines alternativen Fragments mit zwei Operanden in Abbildung 4.19 darge-
stellt. Die gestrichelten Transitionen in der Abbildung sind Platzhalter fiir die
Teilkonstrukte des NFA, die aus den Operanden transformiert und eingesetzt
werden.

Abbildung 4.19: Transformation eines alternativen Fragments mit zwei
Operanden

Definition 4.5 Die Menge der Operanden O(a) eines alternativen Fragments
a ist im Metamodell der Verhaltensmuster definiert durch die Assoziation ope-
rands zwischen CombinedFragment und InteractionOperand.
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Transformationsregel 4.4 Sei O(a) die Menge der Operanden eines alter-
nativen Fragments a. Der Anfangszustand sy € Q) des alternativen Fragments
wird jeweils iber eine e-Transition mit dem Anfangszustand sy, € Q) jedes sei-
ner Operanden o € O(a) verbunden. Der Endzustand s., € Q jedes Operanden
o € O(a) wird ebenfalls iber eine e-Transition mit dem Endzustand s, € Q) des
alternativen Fragments verbunden:

Vo€ O 59, € 0(50,€), 50,0 € Q

Vo€ O :5e €0(Se0,€)sSe0 € Q

Optionales Fragment

Aus einem optionalen Fragment werden ein Anfangs- und ein Endzustand
erzeugt, die iiber eine e-Transition miteinander verbunden werden. Die e-
Transition ermoglicht, das optionale Fragment im Automaten zu iibersprin-
gen. Des Weiteren wird das durch den Operanden des optionalen Fragments
erzeugte Teilkonstrukt wie bei dem alternativen Fragment zwischen Anfangs-
und Endzustand des optionalen Fragments eingefiigt. In Abbildung 4.20 ist
die gestrichelte Transition ebenfalls ein Platzhalter fiir das Teilkonstrukt des
Operanden.

Abbildung 4.20: Transformation eines optionalen Fragments

Transformationsregel 4.5 Der Anfangszustand sq € Q) des optionalen Frag-
ments wird tiber eine e-Transition mit dem Endzustand s, € () verbunden. Des
Weiteren wird der Anfangszustand so des optionalen Fragments tiber eine e-
Transition mit dem Anfangszustand so, € () seines Operanden o verbunden.
Ebenso wird der Endzustand s., € () des Operanden o tber eine e-Transition
mit dem Endzustand s. des optionalen Fragments verbunden:

3(50,€) = {Ses S0.0}

Se € 0(Se0,€)
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Schleife

Bei der Transformation einer Schleife werden zwei Varianten unterschieden,
Schleifen mit Untergrenze 0 und Schleifen mit Untergrenze 1. Bei Schleifen
mit Untergrenze 0 wird eine e-Transition vom Anfangs- zum Endzustand er-
zeugt, die bei Schleifen mit Untergrenze 1 fehlt. Der Operand der Schleife wird,
wie in den beiden Abbildungen 4.21 und 4.22 dargestellt, analog zu den ande-
ren kombinierten Fragmenten zwischen Anfangs- und Endzustand der Schleife
eingefiigt.

loop (1,%)

Abbildung 4.21: Transformation einer Schleife mit mindestens einem aber be-
liebig vielen Durchlaufen

Transformationsregel 4.6 Fine Schleife wird in einen Anfangszustand sy €
@ und einen Endzustand s, € Q) transformiert. Zur Wiederholung der Schlei-
fe wird eine e-Transition vom Endzustand zum Anfangszustand der Schleife
erzeugt. Der Anfangszustand sg der Schleife wird tiber eine e-Transition mit
dem Anfangszustand s, € Q) ihres Operanden o verbunden. Der Endzustand
Seo € () des Operanden o wird ebenfalls tiber eine e-Transition mit dem End-
zustand s, der Schleife verbunden:

So € (S, €)

5(307 E) = {8070}

Se € 0(Se0,€)

Transformationsregel 4.7 Bei einer Schleife mit der Untergrenze 0 wird
zusdtzlich der Anfangszustand sg der Schleife iiber eine e-Transition mit dem
Endzustand s. der Schleife verbunden:

Se € 0(s0,€)

Startzustand und akzeptierender Zustand des NFA

Zur vollstandigen Spezifikation des NFA fehlt noch die Spezifikation des Start-
zustands ¢p und der Menge der akzeptierenden Zustdnde F' C Q).
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loop (0,*)

Abbildung 4.22: Transformation einer Schleife mit beliebig vielen Durchlaufen

Definition 4.6 Das erste Interaktionsfragment eines Verhaltensmusters ist
definiert als das erste Interaktionsfragment des Operanden des Wurzel-Frag-
ments. Das letzte Interaktionsfragment eines Verhaltensmusters ist analog defi-
niert als das letzte Interaktionsfragment des Operanden des Wurzel-Fragments.

Transformationsregel 4.8 Der Anfangszustand so;, € Q) des ersten Inter-
aktionsfragments des Verhaltensmusters wird zum Startzustand qy des aus dem
Verhaltensmuster transformierten NFA. Der einzige akzeptierende Zustand
des NFA ist der Endzustand s.; € @ des letzten Interaktionsfragments des
Verhaltensmusters:

do = S0,is

F= {Se,iz}

Transformationsalgorithmus

In Abbildung 4.23 ist der Algorithmus zur Transformation eines Verhaltensmu-
sters in einen NFA mit Hilfe einer Pseudocode-Syntax angegeben. Der Algo-
rithmus definiert, in welcher Reihenfolge die Elemente des Verhaltensmusters
anhand der Transformationsregeln 4.1 bis 4.8 in Konstrukte des NFA trans-
formiert werden.

Der Algorithmus wird auf dem Wurzel-Fragment des Verhaltensmusters gest-
artet (Zeile 2). Jedes kombinierte Fragment transformiert zunéchst seine Ope-
randen (Zeilen 5 und 6), erst dann wird das kombinierte Fragment selber an-
hand seiner spezifischen Regel 4.4, 4.5, 4.6 bezichungsweise 4.7 transformiert
(Zeile 7).

Die Interaktionsfragmente werden anhand ihrer gegebenen Ordnung inner-
halb ihres Operanden transformiert (Zeile 10). Durch polymorphe Methoden-
bindung werden kombinierte Fragmente und Nachrichten unterschieden. Eine
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1: BehavioralPattern: :constructNFA()

2: self.root.constructNFA()

3: transform initial state and accepting state by rule 4.8
4: CombinedFragment: :constructNFA()

5: forEach operand:InteractionOperand in self.operands do
6: operand. constructNFA()

T: transform self by rule 4.4, 4.5, 4.6 or 4.7

8: InteractionOperand: :constructNFA()

9: let previous:InteractionFragment = OCLVoid

10: forEach current:InteractionFragment in self.fragments do
11: current.constructNFAQ)

12: if previous<>0CLVoid then

13: concatenate previous with current by rule 4.1

14: previous = current

15: Message: :constructNFA()
16: transform self by rule 4.2 or 4.3

Abbildung 4.23: Algorithmus zur Transformation eines Verhaltensmusters in
einen NFA

Nachricht wird nach den Regeln 4.2 beziehungsweise 4.3 transformiert (Zei-
le 16), ein kombiniertes Fragment wird wie oben erldutert transformiert. Die
bereits transformierten Interaktionsfragmente werden anhand ihrer Ordnung
nach Regel 4.1 konkateniert (Zeile 13).

Nach der Transformation des Wurzel-Fragments werden schliefSlich der Start-
zustand und der akzeptierende Zustand des Automaten nach Regel 4.8 be-
stimmt (Zeile 3). Nach Ausfithrung dieses Algorithmus erhélt man den aus
einem Verhaltensmuster erzeugten NFA.

Beispiel

Mit Hilfe der oben genannten Transformationsregeln wurde das State-Verhal-
tensmuster aus Abbildung 4.1 in einen NFA umgewandelt. Das Ergebnis ist in
Abbildung 4.24 zu sehen.

Die Zusténde 0 bis 3 wurden aus dem optionalen Fragment am Beginn des
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client—(c:context).setState()

client—(c:context).request() (c:context)—(a:abstractState).handle()

Abbildung 4.24: Nichtdeterministischer, endlicher Automat fiir das State-Ver-
haltensmuster

Verhaltensmusters erzeugt. Die Nachricht innerhalb des optionalen Fragments
wurde in die Zustdnde 1 und 2 transformiert. In den Zustdnden 4 bis 9 wurde
die erste Schleife mit zwei hintereinander gesendeten Nachrichten kodiert. Die
Zustédnde 10 bis 15 bilden das alternative Fragment mit den zwei Operanden.
Die zweite Schleife wurde in den Zustdnden 16 bis 21 analog zu der ersten
Schleife kodiert.

Das optionale Fragment ist das erste Interaktionsfragment des State-Verhal-
tensmusters. Sein Anfangszustand ist der Startzustand des NFA. Das letzte In-
teraktionsfragment ist die zweite Schleife. Der Endzustand der zweiten Schleife
ist deshalb der akzeptierende Zustand des Automaten. Das Alphabet des NFA
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besteht aus dem leeren Wort € und den Symbolen, die aus den Nachrichten
erzeugt wurden.

4.4.2 Deterministischer Automat

Der NFA kann wegen des Nichtdeterminismus noch nicht zur algorithmischen
Uberpriifung der Verhaltensmuster verwendet werden. Er lisst sich allerdings
mit polynomiellen Aufwand in einen dquivalenten, deterministischen, endli-
chen Automaten (DFA) umwandeln.

Ein deterministischer, endlicher Automat ist wie ein NFA definiert durch
eine endliche Menge () von Zustinden, eine Menge Y von Eingabesymbolen,
einen Startzustand qy, eine Menge F' C () von akzeptierenden Zustinden sowie
durch die Transitionsfunktion ¢, die jedoch im Gegensatz zum NFA einen Zu-
stand aus ) und ein Symbol aus ¥ auf einen einzelnen Zustand aus () abbildet.

Ein DFA, der aus einem NFA fiir ein Verhaltensmuster entstanden ist, ist in
der Lage, einen zu diesem Verhaltensmuster konformen Trace zu akzeptieren.
Es wird im Folgenden davon ausgegangen, dass Methodenaufrufe, die nicht in
der Menge der Eingabesymbole enthalten sind, vom DFA ignoriert werden. So
werden alle Methodenaufrufe vom DFA ignoriert, die auch von dem Verhaltens-
muster nicht beriicksichtigt werden. Im Folgenden wird nun untersucht, wie ein
solcher DFA Traces verarbeitet, die nicht konform zum Verhaltensmuster sind.

(c:context)—(a:abstractState).handle()

client—(c:context).request()
client—(c:context).request()

client—(c:context).request()

client—(c:context).setState() (a:abstractState)—(c:context).setState()

(c:context)—(c:context).setState()

(c:context)—(b:abstractState).handle()

client—(c:context).request() client—(c:context).request()

Abbildung 4.25: Deterministischer Automat fiir das State-Verhaltensmuster

In Abbildung 4.25 ist der DFA dargestellt, der aus dem NFA aus Abbildung
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4.24 fir das State-Verhaltensmuster entstanden ist. Anhand dieses Beispiels
werden nun zwel zum State-Verhaltensmuster nicht-konforme Traces unter-
sucht.

p:Player s:Stream st:Stopped || pl:Playing

[ T I
I setState(st) I I I
| > | |
| execute(CMD_PLAY) | | |
| ™I execute(s,CMD_PLAY) . |
| setState(pl) | | |
| >: [ [
| | | |

Abbildung 4.26: Zum State-Verhaltensmuster nicht-konformer Trace

Der in Abbildung 4.26 dargestellte Trace ist bereits in Abschnitt 4.3 vorge-
stellt worden. Zur Verhaltensanalyse werden zunéchst die Variablen der Typ-
und Methodennamen des DFA aus Abbildung 4.25 an die Klassen und Me-
thoden des zum Trace gehorenden Kandidaten gebunden, wie in Abschnitt
4.3.2 erlautert. Zur Vereinfachung sei auch hier davon ausgegangen, dass die
Verhaltensmusterobjekte bereits zu Beginn der Verhaltensanalyse nichtdeter-
ministisch an Instanzen aus der Laufzeitumgebung gebunden werden. Bei der
tatsédchlichen Verhaltensanalyse werden die Verhaltensmusterobjekte erst suk-
zessive wiahrend der Analyse gebunden. Die Bindung in diesem Beispiel ist die
gleiche, wie in Tabelle 4.2 auf Seite 77 aufgelistet.

Erhalt der Automat nun die ersten drei Methodenaufrufe des Traces als Ein-
gabe, so wechselt er vom Startzustand 0 in den Zustand 3. Der vierte Metho-
denaufruf (p:Player)—(s.Stream).setState(pl) kann jedoch im Zustand 3 nicht
von dem DFA verarbeitet werden, da es in diesem Zustand keine Transition mit
einem Symbol gibt, zu dem der Methodenaufruf konform ist. Das Symbol, zu
dem der Methodenaufruf konform wire, ist client — (c : context).setState().
Da dieses Symbol zum Alphabet des DFA gehort, verharrt der DFA aber in
diesem Fall in einem nicht akzeptierenden Zustand. Der Trace wird also nicht
vom DFA akzeptiert.

Der zweite Trace aus Abbildung 4.27 ist ebenfalls nicht konform zum State-
Verhaltensmuster. Der DFA verarbeitet, wie beim ersten Beispiel, die er-
sten drei Methodenaufrufe und befindet sich dann im Zustand 3. Fiir den
nun folgenden Methodenaufruf (u:Unknown)—(s:Stream).setState(pl) existiert
allerdings im Alphabet des DFA kein Symbol. Fiir einen Aufruf der Me-
thode Stream.setState(StreamState) existieren nur die beiden Symbole (¢ :
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u:Unknown | | p:Player s:Stream st:Stopped pl:Playing

a

Abbildung 4.27: Alternativer, zum State-Verhaltensmuster nicht-konformer
Trace

setState(st)

I

I

>
execute(CMD_PLAY) |
I

I

[
|
[
: > execute(s,CMD_PLAY)
|
[
[

setState(pl) >

.y ]

context) — (c : context).setState() und (a : abstractState) — (c : context)
.setState(). Die aufrufenden Objekte der beiden Symbole passen jedoch nicht
zu der aufrufenden Instanz u:Unknown, da die Typen nicht konform zueinander
sind. Zu diesem Methodenaufruf existiert also kein passendes Symbol des Al-
phabets des DFA, er wiirde daher einfach vom DFA ignoriert. Der DFA kann
also weitere Methodenaufrufe entgegen nehmen und spéter den Trace eventuell
akzeptieren.

Um dies zu verhindern, miissen das Alphabet des DFA erweitert und zusétz-
liche Transitionen hinzugefiigt werden, die verhindern, dass zum Verhaltens-
muster nicht-konforme Traces vom DFA akzeptiert werden.

Erweiterung des deterministischen Automaten

Zu diesem Zweck wird in den aus dem NFA entstandenen DFA ein zusétzlicher,
nicht akzeptierender Zustand eingefiigt, der eine Senke innerhalb des DFA ist.
Der DFA soll diesen Zustand erreichen, wenn der von ihm untersuchte Trace
nicht konform zum Verhaltensmuster ist. Da der Zustand eine Senke ist, kann
der Automat den Zustand nicht wieder verlassen. Ein einmal verworfener Trace
kann also niemals akzeptiert werden. Im Folgenden wird diese Senke deshalb
auch als verwerfender Zustand bezeichnet?. In Abbildungen wird die Senke
mit einem R (Reject) versehen. Die folgende Regel fiihrt die Senke ein.

Transformationsregel 4.9 Sei D ein DFA, der aus dem NFA eines Ver-

haltensmusters entstanden ist. Der DFA D wird erginzt um einen nicht-

akzeptierenden Zustand r € Q/F, der eine Senke innerhalb des DFA D ist:
VoeX:4(r,o)=r

4In der Literatur findet man auch die Bezeichnung Fangzustand (engl. trap state).
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Des Weiteren wird das Alphabet des DFA um zusétzliche Symbole ergénzt.
Diese Symbole haben die Form x — (b : B).m() beziehungsweise * ¢ C — (b :
B).m(). Ein Symbol der Form x — (b : B).m() reprisentiert einen Aufruf der
Methode m() auf dem Verhaltensmusterobjekt b:B durch einen beliebigen Auf-
rufer. Demgegeniiber reprisentiert ein Symbol der Form % ¢ C — (b : B).m()
einen Aufruf der Methode m() auf dem Verhaltensmusterobjekt b:B durch
einen beliebigen Aufrufer, der nicht Element der Menge C ist, die Verhaltens-
musterobjekte enthélt.

Dem DFA werden Transitionen hinzugefiigt, die diese Symbole akzeptieren
und die nicht akzeptierende Zustinde des DFA mit Ausnahme des Startzu-
stands mit dem neuen, verwerfenden Zustand r verbinden. So fithren nicht er-
laubte Methodenaufrufe oder Methodenaufrufe, die durch einen nicht erlaubten
Aufrufer ausgelost wurden, zum Verwerfen des Traces durch den Automaten.

(a:abstractState)—(c:context).setState()

client—(c:context).request() (c:context)—(c:context).setState()

*¢{a:abstractState, c:context}—(c:context).setState()

*—(a:abstractState).handle()

*—(b:abstractState).handle()

*¢{client}—(c:context).request()

Abbildung 4.28: Ausschnitt aus dem um einen verwerfenden Zustand erweiter-
ten DFA

Abbildung 4.28 zeigt nur einen kleinen Ausschnitt aus dem um einen ver-
werfenden Zustand und zusétzlichen Transitionen erweiterten DFA des State-
Verhaltensmusters. Der vollstindige DFA ist zu komplex, um ihn an die-
ser Stelle abzubilden. In dieser Abbildung ist zu sehen, welche Transitio-
nen, ausgehend vom Zustand 3, dem Automaten hinzugefiigt wurden. In
der bisherigen Version konnte der DFA im Zustand 3 nur die drei Symbole
client — (¢ : context).request(), (¢ : context) — (c : context).setState()

98



4.4 Erzeugung eines Automaten

und (a : abstractState) — (c : context).setState() akzeptieren. Alle ande-
ren relevanten Methodenaufrufe miissen jedoch zu einem Verwerfen des Traces
fithren. Aus diesem Grund werden zusétzliche Transitionen eingefiihrt, die den
Zustand 3 mit der Senke verbinden und die das ,,Komplement“ der drei Sym-
bole akzeptieren.

Zunéchst einmal darf die Nachricht request() auf dem Verhaltensmusterob-
jekt c:context in diesem Zustand nur durch das Verhaltensmusterobjekt client
gesendet werden. Alle anderen Aufrufer sind fiir diese Nachricht nicht erlaubt.
Deshalb wird eine Transition vom Zustand 3 zum verwerfenden Zustand mit
dem Symbol x ¢ {client} — (c: context).request() € ¥ hinzugefiigt.

Des Weiteren diirfen nur die Verhaltensmusterobjekte a:abstractState und
c:context die Nachricht setState() an das Verhaltensmusterobjekt c:context sen-
den. Daher wird der DFA um eine Transition vom Zustand 3 zum verwerfenden
Zustand mit dem Symbol * ¢ {a : abstractState,c : context} — (c : context)
.setState() € ¥ erweitert.

Es muss auflerdem sichergestellt werden, dass Methodenaufrufe, die in die-
sem Zustand nicht erlaubt sind, zu einem Verwerfen des Traces fithren. Dies
sind alle Aufrufe von Methoden, die von dem Verhaltensmuster beriicksich-
tigt werden, und auf den beteiligten Verhaltensmusterobjekte aufgerufen wer-
den. Im Zustand 3 ist dies nur die Methode handle(), die auf den Verhal-
tensmusterobjekten a:abstractState und b:abstractState aufgerufen wird. Dem
DFA werden deshalb zwei weitere Transitionen vom Zustand 3 zum verwer-
fenden Zustand mit den Symbolen % — (a : abstractState).handle() € ¥ und
x — (b : abstractState).handle() € ¥ hinzugefiigt.

- —— = client—(c:context).request()

*—»(c:context).setState()

*—(a:abstractState).handle()

*—(b:abstractState).handle()
*¢{client}—(c:context).request()

Abbildung 4.29: Erweiterung des Zustands 4 um zusétzliche Transitionen
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Dieses Verfahren muss fiir alle nicht-akzeptierenden Zustéinde mit Ausnahme
des Startzustands durchgefiihrt werden. In Abbildung 4.29 sind die zusétzli-
chen Transitionen zu sehen, die vom Zustand 4 zum verwerfenden Zustand
fiithren.

Im Folgenden wird dieses Verfahren im Detail erldutert. Zunéchst wird ein
Algorithmus vorgestellt, der alle Nachrichten, die von den Verhaltensmuster-
objekten eines Verhaltensmusters empfangen werden konnen, in einer Menge
zusammen fasst. Die Menge enthélt als Elemente Tupel, die aus dem Objekt-
und dem Typnamen des aufgerufenen Verhaltensmusterobjekts sowie dem Me-
thodennamen der Nachricht bestehen. Der Algorithmus ist in Abbildung 4.30
in Pseudocode-Syntax angegeben.

1: BehavioralPattern: :receivedMessages():
Set (TupleType(object:String, type:String, method:String))
2: let result:Set(TupleType(object:String, type:String,
method:String))
forEach o:BPObject in self.objects do
forEach m:Message in o.lifeline.received do
result—add(Tuple(o.name, o.typeName, m.name))
return result

o Ok W

Abbildung 4.30: Algorithmus zur Berechnung der aufgerufenen Nachrichten ei-
nes Verhaltensmusters

Der Algorithmus liefert zum Beispiel fiir die Instanz state:BehavioralPattern
des State-Verhaltensmusters die folgende Menge:

state.receivedMessages() ={(a,abstractState,handle), (b,abstractState,handle),

(c,context,request), (c,context,setState)}
Ein Tupel dieser Menge représentiert alle Nachrichten, die als Empfinger das
im Tupel genannte Verhaltensmusterobjekt haben, und die die im Tupel ge-
nannte Methode aufrufen. Das Tupel (a,abstractState,handle) zum Beispiel re-
présentiert alle Nachrichten, in denen die Methode handle() auf dem Verhal-
tensmusterobjekt a:abstractState aufgerufen wird.

Die nun folgenden Definitionen werden fiir die Transformationsregel beno-
tigt, die den DFA um Transitionen ergénzt, die in einem Zustand unerlaubte
Methodenaufrufe akzeptieren und den DFA damit in den verwerfenden Zu-
stand fiithren. Als erstes wird die Menge ASp(s) (Accepted Symbols) definiert,
die als Elemente alle in einem Zustand s des DFAs D akzeptierten Symbole
enthélt.
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Definition 4.7 Die Menge ASp(s) der in einem Zustand s eines DFA D
akzeptierten Symbole ist definiert durch:

ASp(s) ={o € X|o(s,0) =5,s€Q,s € Q/{r}},
wobei r der verwerfende Zustand des DFA D ist.

Das bedeutet, ASp(s) enthilt alle Symbole, die die vom Zustand s aus-
gehenden Transitionen akzeptieren. Im DFA des State-Verhaltensmusters gilt
zum Beispiel fiir den Zustand 3:

ASsia1e(3) = {(client) — (c : context).request(),

(¢ : context) — (c: context).setState(),
(a : abstractState) — (c : context).setState()}

Die néchste Definition ermdglicht den Zugriff auf die Variablen eines Sym-
bols.

Definition 4.8 Sei 0 € X ein Symbol eines DFA D. Dann bezeichne 0eqer
den Objektnamen und Ocayierrype den Typnamen des aufrufenden Verhaltens-
musterobjekts des Symbols o. Analog bezeichne ocuyee den Objektnamen und
OcalleeType den Typnamen des aufgerufenen Verhaltensmusterobjekts des Sym-
bols 0. Tpethoq bezeichne den Methodennamen des Symbols o.

Die Menge RMp(s) der in einem Zustand s eines DFA D empfangbaren
Nachrichten (Receivable Messages) enthdlt Tupel, die aus dem Objekt- und
dem Typnamen des aufgerufenen Verhaltensmusterobjekts sowie dem Metho-
dennamen des Symbols bestehen.

Definition 4.9 Die Menge RMp(s) wird definiert fiir einen Zustand s des
DFA D. Die Elemente der Menge sind alle Tupel aus dem Objekt- und dem
Typnamen des aufgerufenen Verhaltensmusterobjekts sowie den aufgerufenen
Methodennamen, die in einem Symbol o € ASp(s) enthalten sind:

Vo € ASD(5> : (Jcallee; O calleeType Umethod) € RMD<5)

Fiir den Zustand 3 des State-DFA gilt:
RMstate(3) = {(c, context, request), (c, context, setState)}
Die folgende Transformationsregel fiigt nun dem DFA Symbole der Form
* — (b : B).m() und Transitionen, die diese Symbole akzeptieren und den
DFA damit in den verwerfenden Zustand fiihren, hinzu.

Transformationsregel 4.10 Sei bp des Typs BehavioralPattern das zu einem
DFA D gehérende Verhaltensmuster. Jeder nicht-akzeptierende Zustand des
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DFA D mit Ausnahme des Startzustands wird mit Transitionen zum verwer-
fenden Zustand r € @ verbunden, die in dem jeweiligen Zustand unerlaubte
Methodenaufrufe akzeptieren:
Vs € Q/(FU{qo,r}): Yrm € bp.receivedMessages/RM(s) :
d(s,* — (rm.object : rm.type).rm.method()) = r,
x — (rm.object : rm.type).rm.method() € ¥

Dem Zustand 3 des State-DFA werden also die folgenden beiden Transitionen
hinzugefiigt:
d(3,* — (a : abstractState).handle()) = r mit
* — (a : abstractState).handle() € ¥
und
d(3, % — (b : abstractState).handle()) = r mit
x — (b : abstractState).handle() € X
Zuletzt muss noch eine Transformationsregel definiert werden, die den DFA
um Transitionen erginzt, die in einem Zustand Methodenaufrufe unerlaubter
Aufrufer akzeptieren und den DFA damit in den verwerfenden Zustand fiihren.
Dazu werden weitere Definitionen benétigt. Die néchste Definition ermoglicht
den Zugriff auf die Elemente eines Tupels der Menge RM p(s).

Definition 4.10 Sei rm ein Tupel der Menge RMp(s). Dann bezeichne
TMeatiee den Objektnamen und rmequcerype den Typnamen des aufgerufenen
Verhaltensmusterobjekts des Tupels rm. rMpeinoa bezeichne den Methodenna-
men des Tupels rm.

Nun muss noch die Menge Cp(s,rm) definiert werden, die aus allen Verhal-
tensmusterobjekten besteht, die in einem Zustand s des DFA D die Methode
TMmethod aUf dem Verhaltensmusterobjekt rmaiee: " Meqiicerype aufrufen diirfen,

mit rm € RMp(s).

Definition 4.11 Sei s ein Zustand des DFA D und rm ein Element der Men-
ge RMp(s). Dann ist die Menge Cp(s,rm) definiert durch:
CD(Sa Tm) = {(Ocaller . UcallerType)|5<37 J) 7é rA
Ocallee = TMeallee N OcalleeType — TMcalleeType N Omethod = 7ﬁﬂ/lmethod}

Fiir den Zustand 3 des State-DFA und rm = (¢, context, setState) gilt:
Cstate(3, (¢, context, setState)) = {(a : abstractState), (¢ : context)}

Die folgende Transformationsregel fiigt nun dem DFA Symbole der Form

x ¢ C — (b: B).m() sowie Transitionen, die diese Symbole akzeptieren, hinzu.
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Transformationsregel 4.11 Sei bp des Typs BehavioralPattern das zu einem
DFA D gehérende Verhaltensmuster. Jeder nicht-akzeptierende Zustand des
DFA D mit Ausnahme des Startzustands wird mit Transitionen zum verwer-
fenden Zustand r € Q verbunden, die Methodenaufrufe von unerlaubten Auf-
rufern akzeptieren.:
Vs € Q/F U{qo,r}:Vrm € RMp(s) :
5(37 * ¢ CD<37 rm) - (rmcallee : 7AWLcalleeType)-Tﬂflmethod()) =,
* ¢ CD(S, Tm) - (Tmcallee : rmcalleeType)-rmmethodO €X

Mit dieser Transformationsregel werden dem Zustand 3 des State-DFA die
folgenden beiden Transitionen hinzugefiigt:

5(3,* ¢ {(a : abstractState), (c : context)} — (c: context).setState()) =r

mit
x & {(a : abstractState), (¢ : context)} — (c : context).setState() € X
und

d(3,* ¢ {(client)} — (c: context).request()) = r mit

x & {(client)} — (c : context).request() € ¥

Ein DFA, der zunéchst aus einen NFA eines Verhaltensmusters entstanden
ist, und nun durch die Transformationsregeln 4.10 und 4.11 erweitert wurde,
akzeptiert alle zum Verhaltensmuster konformen Traces und verwirft alle zum
Verhaltensmuster nicht-konformen Traces. Dieser DFA kann in der Verhaltens-
analyse zur Erkennung des Verhaltensmusters eingesetzt werden.

Die vorgenommene Erweiterung gleicht einer Vervollstéandigung des Auto-
maten. Da das Verfahren aber nur fiir die nicht-akzeptierenden Zustdnde oh-
ne dem Startzustand angewendet wurde, fehlen einige Transitionen fiir einen
vollsténdigen Automaten.

4.5 Zusammenfassung

Dieses Kapitel hat die formale Spezifikation der Verhaltensmuster zum Inhalt.
Wie bereits in Kapitel 3.2 erldutert, ldsst sich das Verhalten von Entwurfs-
muster durch Sequenzen von Methodenaufrufen spezifizieren. In der Softwa-
retechnik haben sich dafiir Sequenzdiagramme nach UML 2.0 etabliert. Da
sich UML-Sequenzdiagramme auch sehr gut in den bisherigen, ebenfalls UML-
unterstiitzten Erkennungsprozess integrieren, wurden sie als Basis zur Spezifi-
kation von Verhaltensmustern gewéhlt.

Verhaltensmuster sind allerdings in ihrer Syntax gegeniiber allgemeinen
UML-Sequenzdiagrammen eingeschréankt. Des Weiteren sind die Verhaltens-
muster syntaktisch eng verzahnt mit den Strukturmustern. Aus diesem Grund
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wurde fiir die Verhaltensmuster auf Basis der Sequenzdiagramme nach UML
2.0 eine eigene Syntax definiert. In diesem Zusammenhang wurde auch das Me-
tamodell der Strukturmuster erweitert, um die Verbindung zwischen Struktur-
und Verhaltensmustern zu schaffen.

Die Semantik der Verhaltensmuster wurde in diesem Kapitel zunéchst nur
informell anhand eines Beispiels beschrieben. Dazu wurden einige hypotheti-
sche Traces des Beispiels vorgestellt, zu denen erldutert wurde, ob sie konform
oder nicht-konform zu einem gegebenen Verhaltensmuster sind.

Formal ist die Semantik der Verhaltensmuster durch eine allgemeine Trans-
formation von Verhaltensmustern in deterministische, endliche Automaten de-
finiert worden. Dazu wurden Transformationsregeln fiir jedes Syntaxelement
eines Verhaltensmusters in Elemente eines nichtdeterministischen, endlichen
Automaten angegeben. Nach der Transformation erfolgt eine Umwandlung des
nichtdeterministischen in einen deterministischen, endlichen Automaten, der
jedoch nur einen Teil der durch das Verhaltensmuster beschriebenen Traces er-
kennt. Daher wurden weitere Transformationsregeln angegeben, die den deter-
ministischen Automaten so erweitern, dass er alle zu einem Verhaltensmuster
konformen Traces akzeptiert, und alle nicht-konformen verwirft. Dieser Au-
tomat wird nun im folgenden Kapitel zur Erkennung von Verhaltensmustern
verwendet.
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Verhaltensanalyse

In diesem Kapitel wird der Prozess der Verhaltensanalyse erldutert. Der erste
Teil des Kapitels gibt einen Uberblick iiber den Prozess. In den folgenden Ab-
schnitten werden die Teilschritte der Verhaltensanalyse vorgestellt. Zunéchst
werden zwei verschiedene Verfahren zur Gewinnung der Traces diskutiert. An-
schlieBend wird im Detail die Erkennung von Verhaltensmustern in den Traces
mit Hilfe der im letzten Kapitel eingefithrten deterministischen Automaten
erklart. Den Abschluss des Kapitels bildet die Bewertung der Ergebnisse der
Verhaltensanalyse.

5.1 Verhaltensbasierter Erkennungsprozess

Der in Abbildung 5.1 dargestellte verhaltensbasierte Erkennungsprozess ist
ein detaillierterer Ausschnitt aus dem Gesamtprozess der struktur- und ver-
haltensbasierten Entwurfsmustererkennung aus Abbildung 3.7 auf Seite 48.
Der Prozess der verhaltensbasierten Entwurfsmustererkennung wurde bereits
in [WOO06] veroffentlicht.

Eingabe der dynamischen Analyse sind unter anderem die Kandidaten
fiir Entwurfsmusterimplementierungen, die als Ergebnis der Strukturanaly-
se gewonnen wurden. Des Weiteren wird der Katalog der Verhaltensmuster
benotigt. Dabei hangen die zu verwendenden Verhaltensmuster von den Struk-
turmustern ab, die zuvor in der Strukturanalyse verwendet wurden. Im Gegen-
satz zur Strukturanalyse wird bei der Verhaltensanalyse nicht der Quelltext
des zu untersuchenden Softwaresystems bendtigt, sondern der iibersetzte Pro-
grammcode, damit das Programm ausgefithrt werden kann.

Bei der Ausfithrung gibt es grundsétzlich zwei verschiedene Vorgehens-
weisen, um das Programm zu iiberwachen und Traces zu beobachten. Zum
einen kann der Programmcode in unverdnderter Form ausgefiithrt und die
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Instrumen-
tierung

N Instrumen- Kandidaten
Verhaltens- Ausfiihrbares . .
tiertes fir Entwurfsmuster-
muster Programm . .
Programm implementierungen

Dynamische
Analyse

D Prozessschritt \\ P
N [
D Dokument U——% 6@%
e Datenfius Design- Tests
Q&L3PY  Interaktion dokument J‘U’m[

Abbildung 5.1: Der verhaltensbasierte Erkennungsprozess

Ausfithrung des Programms von auflen iiberwacht werden, zum Beispiel durch
einen Debugger. Zum anderen kann aber auch der Programmcode manipuliert
werden. In diesem Fall wird zusétzlicher Code in den vorhandenen Programm-
code eingefiigt, um Methodenaufrufe aus dem zu untersuchenden Programm
heraus zu protokollieren. Das Einfiigen zusétzlichen Codes wird Instrumentie-
rung genannt. Die zu beobachtenden Methoden werden den Verhaltensmustern
in Kombination mit den Kandidaten entnommen.

In der dynamischen Analyse werden diese Eingaben verwendet, um das Pro-
gramm auszufithren und in den beobachteten Traces nach Verhaltensmustern
zu suchen. Die Suche nach Verhaltensmustern kann ebenfalls auf zwei verschie-
dene Weisen durchgefiihrt werden. Entweder werden die beobachteten Metho-
denaufrufe parallel zur Programmausfithrung analysiert, oder die Traces wer-
den zunéchst gespeichert und erst im Anschluss an die Programmausfithrung
analysiert. Die erste Methode, die so genannte Online-Analyse, hat den Vorteil,
dass nur eine geringe Datenmenge gespeichert werden muss. Die Informationen
iiber die beobachteten Methodenaufrufe werden direkt verarbeitet und danach
verworfen. Ubrig bleiben nur die Ergebnisse der dynamischen Analyse. Jedoch
wird unter Umsténden zur Verhaltensanalyse Rechenzeit verbraucht, die dem
zu untersuchenden Programm nicht zur Verfiigung steht. Die zweite Metho-
de, die so genannte Offline-Analyse, benétigt nur sehr wenig Rechenzeit, um
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die beobachteten Methodenaufrufe in einem Protokoll zu speichern. Allerdings
werden die Protokolle sehr grof}; so dass sie viel Speicherplatz verbrauchen und
unter Umsténden schwer zu handhaben sind.

Das zentrale Problem dynamischer Analysen ist die angemessene Auswahl
der Eingabedaten, die zur Ausfithrung des zu analysierenden Softwaresystems
benotigt werden. Um verwertbare Ergebnisse zu erhalten, sollten die Eingabe-
daten moglichst repriasentativ fiir die in der Praxis auftretenden Daten aus-
gewihlt werden. Die Ausfithrung der zu untersuchenden Software kann entwe-
der durch automatische Tests erfolgen oder durch manuelle Bedienung durch
einen Benutzer. Im Idealfall wird das Softwaresystem in einer produktiven
Umgebung eingesetzt, bei der reale Daten als Eingabe verwendet werden.

Das FErgebnis der dynamischen Analyse stellt das Gesamtergebnis der
struktur- und verhaltensbasierten Entwurfsmustererkennung dar. Der Reverse-
Engineer erhélt ein Design-Dokument in Form von UML-Klassendiagrammen,
in denen die Kandidaten annotiert sind. Die Annotationen enthalten Bewertun-
gen, die den Grad der Ubereinstimmung der Entwurfsmusterimplementierung
mit dem Struktur- und den Verhaltensmustern des Entwurfsmusters angeben.

5.2 Gewinnung der Traces

Wie bereits erwéahnt, gibt es zwei grundsétzliche Vorgehensweisen, um Metho-
denaufrufe in einem zu untersuchenden Softwaresystem zu iiberwachen. Die
erste besteht darin, das unverdnderte Programm von auflen zu beobachten,
die zweite darin, den Programmcode so zu verdndern, dass die Methoden-
aufrufe aus dem Programmcode heraus iiberwacht werden. In der vorliegen-
den Arbeit wurde fiir beide Vorgehensweisen je eine Losung umgesetzt. Dabei
wurde in beiden Losungen sowohl eine Online-, als auch eine Offline-Analyse
ermoglicht. Im Folgenden werden diese beiden Losungen vorgestellt und ihre
Vor- und Nachteile einander gegeniibergestellt. Zundchst werden aber einige
Voraussetzungen fiir die Gewinnung der Traces erlautert.

5.2.1 Voraussetzungen

In Abschnitt 3.2.3 wird beschrieben, wie der Trace eines zu untersuchenden
Softwaresystems als Tracegraph représentiert wird. Die Informationen, die der
Tracegraph zu einem einzelnen Methodenaufruf enthilt, sind die aufrufende
Instanz und ihr Typ, die aufgerufene Instanz und ihr Typ, sowie der Name der
Methode und die Argumente. Diese Informationen miissen bei der Uberwa-
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chung des Softwaresystems gesammelt und in einem Tracegraphen aufbereitet
werden.

Bei einer Online-Analyse werden die Methodenaufrufe in Form einer Instanz
der Klasse Behavior::MethodCall aus dem Modell des Tracegraphen direkt an
die Verhaltensanalyse weitergereicht. Bei einer Offline-Analyse wird der Tra-
cegraph dagegen in einer Datei gespeichert. Der Tracegraph kann dann spéter
aus der Datei rekonstruiert und die Methodenaufrufe an die Verhaltensanalyse
weitergereicht werden.

In Entwurfsmustern wird sehr héufig von der polymorphen Methodenbin-
dung Gebrauch gemacht. Sie wird daher auch in den Verhaltensmustern ver-
wendet. Fiir die Verhaltensanalyse miissen also alle Methoden iiberwacht wer-
den, die polymorph fiir die in den Nachrichten der Verhaltensmuster verwen-
deten Methoden gebunden werden kénnen. Die zu beobachtenden Methoden
sind also nicht nur die Methoden, die in den Nachrichten eines Verhaltensmu-
sters verwendet werden, sondern auch alle Methoden, die die Methoden der
Nachrichten iiberschreiben oder implementieren.

5.2.2 Uberwachung durch Debugging

In der vorliegenden Arbeit wurde ein Verfahren entwickelt, bei dem der Pro-
grammcode des zu untersuchenden Softwaresystems unveréndert mit Hilfe ei-
nes Debugger ausgefiihrt wird und Aufrufe zu beobachtender Methoden {iber-
wacht werden [MWO05]. Dazu setzt der Debugger am Anfang des Rumpfes
einer zu beobachtenden Methode einen Breakpoint. Das bedeutet, es wird eine
Stelle im Programmcode der Methode markiert, an dem die Ausfithrung des
Programms unterbrochen wird. Der Debugger greift bei einer Unterbrechung
auf den Methodenaufrufstack zu und ermittelt daraus alle fiir die Verhaltens-
analyse relevanten Informationen dieses Methodenaufrufs. Anschliefend wird
die Ausfithrung des Programms fortgesetzt.

Das Verfahren hat den Vorteil, dass es auf einem universellem Konzept auf-
baut. Debugger mit der Fahigkeit, Breakpoints zu setzen, existieren fiir nahezu
alle Programmiersprachen. Das Verfahren ist damit auf die meisten Program-
miersprachen sehr leicht iibertragbar. Der Nachteil dieses Verfahrens besteht
jedoch darin, dass ein Debugger die Ausfithrung des zu untersuchenden Pro-
gramms zum Teil erheblich verlangsamt. Der Performanzverlust hingt dabei
nur von der Zahl der zu {iberwachenden Methoden ab. Je nach Programmier-
sprache und eingesetztem Debugger wird ein nicht unerheblicher Performanz-
verlust allein durch die notwendige Ausfithrung des Programms im Debugging-
Modus verursacht. Der Einsatz der dynamischen Analyse in einer produktiven

108



5.2 Gewinnung der Traces

Umgebung ist damit kaum méglich.

Die in der vorliegenden Arbeit umgesetzte Losung dieses Verfahrens wurde
fiir die Uberwachung JAvA-basierter Programme entwickelt [WME04, MWO05,
MWO05]. Die Ausfithrung der Programme wird durch das Debugging um den
Faktor 2,5 bis 8 je nach Zahl der zu beobachtenden Methoden verlangsamt. In
einer anderen Arbeit, in der ebenfalls iiber einen Debugger Methodenaufrufe
iiberwacht werden, wird sogar von einer Verlangsamung um einen Faktor von
bis zu 300.000 berichtet [Meh01, Meh03]. Es wurde eine kiinstliche Messung
durchgefiihrt, bei der eine Methode etwa 10.000 Mal aufgerufen wurde. Zum
Debuggen wurde jedoch eine spezielle Schnittstelle der Java-Virtual-Machine
verwendet.

5.2.3 Uberwachung durch Instrumentierung

Durch Instrumentierung wird der Programmcode eines Softwaresystems ma-
nipuliert. Haufig wird Instrumentierung zur Analyse von dynamischen Eigen-
schaften der Software verwendet [SO05]. Die Techniken zur Instrumentierung
werden grundsatzlich in zwei Kategorien eingeteilt, in statische und dyna-
mische Instrumentierung. Bei der statischen Instrumentierung wird der Pro-
grammcode vor der Ausfithrung des Programms veréndert. Hier gibt es wie-
derum zwei verschiedene Moglichkeiten, die Instrumentierung durchzufiihren.
Zum einen wird der zusétzliche Programmcode dem urspriinglichen Quelltext
hinzugefiigt und der Quelltext neu iibersetzt, um anschlieBend das Programm
auszufithren. Zum anderen wird der bereits iibersetzte Programmcode vor der
Ausfithrung verdndert. Bei der dynamischen Instrumentierung wird der Pro-
grammcode dagegen erst beim Laden in den Speicher wiahrend der Ausfithrung
des zu untersuchenden Softwaresystems verdndert.

Zur Uberwachung von Methodenaufrufen fiir die Verhaltensanalyse wird
dem urspriinglichen Programmcode zusétzlicher Programmcode hinzugefiigt.
Der eingefiigte Programmcode ermittelt beim Aufruf einer zu beobachtenden
Methode alle notwendigen Informationen und protokolliert diese oder gibt sie
direkt an die Verhaltensanalyse weiter. Prinzipiell kann der zusitzliche Pro-
grammcode wie beim Debugging jeweils am Anfang des Methodenrumpfes ein-
gefiigt werden. Er wird dadurch immer dann ausgefiihrt, wenn die zu beobach-
tende Methode aufgerufen wird.

Im Gegensatz zum Debugging fiihrt die Instrumentierung nur zu einem ge-
ringen Performanzverlust, der nur von der Zahl der {iberwachten Methoden
abhéingt. Die Instrumentierung ist damit zum Einsatz in produktiven Umge-
bungen durchaus geeignet. Ein Nachteil dieser Methode ist aber der hohere
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Aufwand fiir den Reverse-Engineer gegeniiber dem Debugging. Bei der sta-
tischen Instrumentierung muss der Programmcode vor der Ausfithrung des
Programms erst manipuliert und unter Umstdnden sogar der Quelltext neu
iibersetzt werden.

Wird der bereits iibersetzte Programmcode veréndert, so ist die Umsetzung
der Instrumentierung sehr stark abhingig von der Programmiersprache, in
der das zu untersuchende Softwaresystem geschrieben wurde. Die Quelltexte
einiger Programmiersprachen wie C4++ oder PASCAL werden direkt in Maschi-
nensprache iibersetzt. Dieser Programmcode ist nur mit sehr hohem Aufwand
zu manipulieren, da zum Beispiel alle Sprungadressen im Programmcode neu
berechnet werden miissen. Bei Programmiersprachen wie JAVA, SMALLTALK
oder C#, bei denen der Quelltext in eine Zwischensprache iibersetzt wird, ist
die Instrumentierung dagegen einfacher. Die Zwischensprache ist ebenfalls ei-
ne Hochsprache, die zur Ausfiihrung meist interpretiert wird. Daher miissen
zum Beispiel Sprungadressen nur lokal innerhalb eines Methodenrumpfes neu
berechnet werden. Damit ist die Technik der Instrumentierung nicht so leicht
iibertragbar auf andere Programmiersprachen wie das Debugging.

In der vorliegenden Arbeit wurde ein Werkzeug entwickelt, mit dem JAVA-
Bytecode instrumentiert werden kann. JAVA-Bytecode ist in eine Zwischen-
sprache tibersetzter JAVA-Quelltext. Allerdings kann das Prinzip, am Anfang
eines Methodenrumpfes Programmcode einzufiigen, der die Aufrufe der Me-
thode iiberwacht, nicht auf JAvA-Programmcode iibertragen werden. In JA-
VA-Programmcode ist es nicht moglich, innerhalb eines Methodenrumpfes auf
die Instanz zuzugreifen, die die Methode aufgerufen hat. Der Methodenauf-
rufstack, in dem diese Information enthalten ist, ist nicht abrufbar. Die fiir die
Verhaltensanalyse benotigten Informationen konnen also auf diese Weise nicht
gewonnen werden.

Stattdessen miissen die Stellen im JAVA-Programmcode ergéinzt werden,
an denen die zu beobachtenden Methoden aufgerufen werden. Das bedeutet
aber, dass der gesamte Programmcode auf solche Methodenaufrufe untersucht
und gegebenenfalls instrumentiert werden muss. Dieses Vorgehen birgt weitere
Nachteile. Werden Teile des Softwaresystems nicht instrumentiert, kénnen Auf-
rufe von zu beobachtenden Methoden aus diesen Teilen des Softwaresystems
nicht iiberwacht werden. In JAVA ist es zudem moglich, durch Introspektion
(Java-Reflection API) Methoden aufzurufen, ohne diesen Aufruf explizit im
Quelltext ausdriicken zu miissen. Bei solchen Methodenaufrufen ist es daher
prinzipiell nicht moglich, durch Instrumentierung die fiir die Verhaltensanalyse
notwendigen Informationen zu gewinnen.
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5.3 Verhaltenserkennung

Im Folgenden wird der Prozess der Verhaltenserkennung im Detail erldutert. In
Abbildung 5.2 ist das Modell der Verhaltenserkennung dargestellt. Die Klasse
BehavioralAnalysis ist der Einstiegspunkt fiir die Verhaltensanalyse. Als Ein-
gabe erhilt die Verhaltensanalyse die Kandidaten fiir Entwurfsmusterimple-
mentierungen aus der Strukturanalyse. Diese werden durch die Klasse Anno-
tations::Annotation (Abbildung 2.7, Seite 24) repriisentiert. Die Klasse Beha-
vioralAnalysis bildet durch die Referenz annotations einen Schliissel auf eine
Menge von Annotationen ab. Als Schliissel dient der Typname der Annotatio-
nen. Der Schliissel ,,State® bildet zum Beispiel auf alle Annotationen des Typs
Annotations::State ab, also alle Annotationen des State-Strukturmusters.

«thread»
BehavioralAnalysis
) . +enqueue(mc:MethodCall) 1
annotations |1.. +terminate() catalog ¥
«reference» -methodCalled(mc:MethodCall)
Annotations::Annotation | 2"aVsis 1 catalog |1
triggers W BehavioralPatternsCatalog
triggers | 1.* catalog |1
Trigger 0..*| activeAutomatons
+methodName:String_ «reference»
+ca||erTypeName:Str|_ng Automaton::DFA
+calleeTypeName:String
+methodCalled(mc:MethodCall) 1 | automaton entries ¥
triggers | 1.x
triggers A
pattern (1
BehavioralPatternEntry | s
+name:String 1+
+negative:boolean

Abbildung 5.2: Modell der Verhaltenserkennung, Paket BehaviorAnalysis

Des Weiteren gehort zur Eingabe ein Katalog von Verhaltensmustern, re-
prasentiert durch die Klasse BehavioralPatternsCatalog. Ein Katalog enthéalt
beliebig viele Eintrage fiir Verhaltensmuster (BehavioralPatternEntry), von de-
nen jeder wiederum einen deterministischen, endlichen Automaten (Automa-
ton::DFA) zur Erkennung des Verhaltensmusters referenziert.
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Die Verhaltenserkennung wird als eigenstdndiger Thread gestartet. Zur
Laufzeit der Analyse werden die beobachteten Methodenaufrufe als Instanz
der Klasse Behavior::MethodCall (Abbildung 3.9, Seite 52) des Tracegraphen
einer FIFO-Queue (First In, First Out) mit der Methode BehavioralAnaly-
sis::enqueue(MethodCall) hinzugefiigt. Bei einer Offline-Analyse werden die Me-
thodenaufrufe einer Datei entnommen. Bei einer Online-Analyse werden die
Methodenaufrufe durch den Debugger oder den instrumentierten Programm-
code an die Verhaltensanalyse weitergereicht. Die Verhaltensanalyse wird be-
endet, wenn alle Methodenaufrufe aus der Datei gelesen wurden respektive
wenn das zu untersuchende Softwaresystem terminiert.

Die Erkennung eines Verhaltensmusters durch einen Automaten wird durch
so genannte Trigger ausgelost. Trigger repriasentieren besondere Methodenauf-
rufe. Jedes Verhaltensmuster hat mindestens einen, aber beliebig viele Trigger.
Die Verhaltenserkennung referenziert alle Trigger der Verhaltensmuster eines
Kataloges. Die aktiven Automaten, die durch die Trigger ausgelost wurden,
referenziert die Verhaltenserkennung durch die Assoziation activeAutomatons.

5.3.1 Erweiterter Automat

In Abbildung 5.3 ist das Modell der deterministischen, endlichen Automaten
dargestellt, die nach dem Algorithmus in Abschnitt 4.4 erzeugt und durch die
Verhaltenserkennung verwendet werden.

Der Automat, reprasentiert durch die Klasse DFA, enthélt eine Menge von
Zustanden. Zwei ausgezeichnete Zustédnde dieser Menge sind der Startzustand
und der verwerfende Zustand des Automaten. Die Zustdnde sind entweder
nicht-akzeptierend (NON_ACCEPTING), akzeptierend (ACCEPTING) oder ver-
werfend (REJECTING). Die Zustandsiibergénge werden durch Transitionen
(Transition) modelliert, von denen wiederum jede ein Symbol vom Typ der
abstrakten Klasse AbstractSymbol referenziert.

Symbole

Jedes Symbol hat ein Attribut fiir den Methodennamen und referenziert ein
Objekt (MethodCallObject), auf dem die Methode aufgerufen wird, durch die
Assoziation callee. Es gibt drei Klassen fiir konkrete Symbole, Permitted-
MethodCall, ProhibitedMethodCall und ProhibitedCaller.

Die Klasse PermittedMethodCall reprisentiert Symbole der Formen (a : A) —
(b: B).m() und @ — (b : B).m(). Dazu referenziert sie zusétzlich ein Objekt,
das den Methodenaufruf ausfiihrt, durch die Assoziation caller. Dabei gilt fiir

112



5.3 Verhaltenserkennung

DFA dfa ol symbols [ AbstractSymbol
+methodCalled(mc:MethodCall) |1 S L.* | +methodName:String
df’=1|1 symbol | +accept(mc:MethodCall,
states ¥ 1 t:Token):boolean
| startState | 1 1| rejectingState AN AN
stares] 1.7 revious P symbol &
State | Previous outgoin
+NON ACCEPTING:int = 1 ! outgoinz—lo..* 1..*| transitions
iint = — —
+ACCEPTING Nt = 2 Transition ProhibitedMethodCall
+REJECTING:int = 3 +accept(mc:MethodCall, +accept(mc:MethodCall,
+typeint t:Token):boolean t:Token):boolean
incoming | 0..*
+methodCalled(mc:MethodCall) F"=XX—incoming
P | T 1 > ProhibitedCaller PermittedMethodCall
tokens ¥ +accept(mc:MethodCall, +accept(mc:MethodCall,
tokens |0 . t:Token):boolean t:Token):boolean
Token callee |1
key:String
+*moved:Boolean .. | MethodCallObject | _
e ermittedCaIIe.r.s +name:String 1
P +typeName:String
0..* |possibleBindings 1 | bindings 1| annotation {ordered} 0..* | matchedCalls
«reference» «reference» «reference»

Behavior::Instance Annotations::Annotation Behavior::MethodCall

Abbildung 5.3: Modell des deterministischen Automaten, Paket Automaton

eine Instanz symbol:PermittedMethodCall und ein Symbol o € ¥ der genannten
Formen:

symbol.methodName=0,, 1104,

symbol.caller.name=c ¢,

symbol.caller.typeName=0cqjierrype

symbol.callee.name=0c_,j;.. und

symbol.callee.typeName=oqjiccType-

Die Klasse ProhibitedMethodCall repriisentiert Symbole der Form * — (b :
B).m(). Dabei gilt fiir eine Instanz symbol:ProhibitedMethodCall und ein Sym-
bol ¢ € ¥ der genannten Form:

symbol.methodName=0,,cth0d,
symbol.callee.name=0c4;;.. und
symbol.callee.typeName=0cqjiccType-

Die Klasse ProhibitedCaller reprisentiert Symbole der Form « ¢ C — (b :
B).m(). Dazu referenziert sie eine Menge von Objekten, denen es ausschlieflich
erlaubt ist, die Methode aufzurufen. Diese Menge repréasentiert C. Dabei gilt

113



Kapitel 5 Verhaltensanalyse

fiir eine Instanz symbol:ProhibitedCaller und ein Symbol ¢ € ¥ der genannten
Form:

symbol.methodName=0,,¢1104d;

symbol.permittedCallers—size()=|C| and

Ve € C : symbol.permittedCallers—exists(mco:MethodCallObject|
Mco.name=c.qie; and mco.typeName=c qiierrype)
symbol.callee.name=0c4;.. und
symbol.callee.typeName=0oqjiccType-
Die Symbole und die Transitionsfunktion eines Automaten sind so konstru-

iert, dass es in jedem Zustand maximal eine ausgehende Transition gibt, zu
dessen Symbol ein beobachteter Methodenaufruf konform ist.

Tokens

Das hier verwendete Modell eines Automaten entspricht nicht der allgemei-
nen Definition von deterministischen, endlichen Automaten. Es wurde um ein
bekanntes Konzept der Petri-Netze erweitert, den so genannten Tokens.

Wie bereits in Abschnitt 4.3.1 erldutert, ist es wahrscheinlich, dass wihrend
der Verhaltensanalyse sehr viele Traces auf Konformitét zu einem Verhaltens-
muster untersucht werden miissen. Nach der klassischen Theorie miisste fiir
jeden dieser Traces ein eigener Automat verwendet werden. Die Variablenbin-
dungen des Automaten werden mit der Annotation eines Kandidaten initiali-
siert. Bei der Verhaltenserkennung dndert der Automat seinen Zustand durch
Konsumieren der Methodenaufrufe und endet in einem nicht-akzeptierenden,
akzeptierenden oder dem verwerfenden Zustand. Ein klassischer Automat wére
daher nur einmal ,,verwendbar*.

Um bei der Verhaltensanalyse die Automaten wiederverwenden zu konnen,
werden im Modell Token durch die Klasse Token eingefiihrt. Ein Token re-
prisentiert den aktuellen Zustand eines Automaten, indem es einen der mogli-
chen Zusténde des Automaten referenziert. Die Variablenbindungen des Auto-
maten werden durch die Referenzen annotation und bindings représentiert. Die
Annotation enthélt die Bindung der Typ- und Methodennamen an die Elemen-
te des untersuchten Kandidaten. Die qualifizierte Referenz bindings bildet dage-
gen einen Schliissel auf eine Instanz aus dem Verhaltensmodell ab. Als Schliissel
wird der Name eines Verhaltensmusterobjekts benutzt. So wird die Bindung
der Verhaltensmusterobjekte an die Instanzen, die die Methoden aufrufen be-
ziehungsweise auf denen die Methoden aufgerufen werden, reprisentiert. Des
Weiteren enthélt das Token eine geordnete Liste von Methodenaufrufen des
Traces, die konform zum Verhaltensmuster sind.
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Jeder Zustand eines Automaten vom Typ State kann beliebig viele Tokens
referenzieren, so dass mit einem Automaten beliebig viele Traces gleichzeitig
auf Konformitédt zum Verhaltensmuster untersucht werden kénnen. Fiir jeden
Trace, der untersucht werden soll, wird ein Token in den Startzustand des
Automaten gelegt und mit der Annotation des Kandidaten initialisiert. Dies
wird durch die Trigger eines Verhaltensmusters durchgefiihrt.

5.3.2 Trigger

Die Trigger eines Verhaltensmusters représentieren solche Methodenaufru-
fe, die am Anfang eines zum Verhaltensmuster konformen Traces stehen
diirfen. Trigger sind also alle Nachrichten eines Verhaltensmusters, die chro-
nologisch als erstes aufgerufen werden diirfen. Im State-Verhaltensmuster
sind dies die Nachrichten client—(c:context).setState() und client—(c:con-
text).request(). Da client—(c:context).setState() eine optionale Nachricht ist,
darf auch client—(c:context).request() als erstes aufgerufen werden. Im Stra-
tegy-Verhaltensmuster gibt es dagegen nur einen Trigger, ndmlich client—
(c:context).setStrategy(). Formal definiert werden die Trigger iiber den deter-
ministischen Automaten des Verhaltensmusters.

Definition 5.1 Die Menge T der Trigger eines Verhaltensmusters ist defi-
niert iber den zugehorigen DFA D:
T = {trigger : Trigger|d(qy,o) € Q/{r}A
trigger.method = O pethod/\
trigger.callerTypeName = 0O cqperrype/\
trigger.calleeTypeN ame = OcqiiceType } »
wobei qo der Startzustand und r der verwerfende Zustand des DFA D ist.

Die Verwendung eines Triggers stellt eine Optimierung der Verhaltenserken-
nung dar. Es miissen nicht alle moglichen Traces auf Konformitét iiberpriift
werden, sondern nur solche, die mit einem Methodenaufruf beginnen, der zu
einem Trigger konform ist. Es stellt sich jedoch die Frage, ob dadurch kon-
forme oder nicht-konforme Traces von der Verhaltenserkennung , iibersehen*
werden?

Zu der Menge der Trigger gehort mindestens eine Nachricht, die nicht op-
tional ist. In einem konformen Trace muss also ein zu der Nachricht konfor-
mer Methodenaufruf vorhanden sein. Wird also wiahrend der Ausfithrung des
zu untersuchenden Softwaresystems kein entsprechender Methodenaufruf be-
obachtet und damit die Erkennung des Verhaltensmusters getriggert, so kann
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auch kein zum Verhaltensmuster konformer Trace gefunden werden. Es kénnen
also durch Verwendung der Trigger keine konformen Traces von der Verhal-
tenserkennung ., iibersehen® werden.

Es bleibt die Frage, ob nicht-konforme Traces, die negative Indizien fiir die
Existenz einer Entwurfsmusterimplementierung liefern, ,iibersehen® werden?
Theoretisch stellen alle Traces, die zwar Methodenaufrufe der zum Verhaltens-
muster gehorenden Nachrichten enthalten, aber nicht als konforme Traces er-
kannt werden, solche negativen Indizien dar. Ein Verhaltensmuster deckt nicht
das gesamte mogliche Verhalten eines Entwurfsmusters ab, sondern spezifiziert
nur eine Schliisselsequenz, anhand derer das Entwurfsmuster erkannt werden
kann. Somit sind alle anderen Traces, die nicht aus dieser Schliisselsequenz
bestehen, nicht konform. Im Gegensatz zu konformen Traces kommen solche
Traces aber weit haufiger vor. Startet ein nicht-konformer Traces mit dem
Aufruf einer zum Trigger konformen Methode, so wird der Trace als nicht-
konform erkannt. Alle anderen nicht-konformen Traces werden . iibersehen®.
Allerdings wiare das Wissen um solche Traces wegen der weit hoheren Wahr-
scheinlichkeit kein echter Mehrwert fiir den Reverse-Engineer. Die erkannten
nicht-konformen Traces sind dagegen eher interessant, da sie eben gegen die
Schliisselsequenz verstoflen. Trigger sind also ein legitimer Weg zur Optimie-
rung der Verhaltenserkennung.

Im Folgenden wird erlautert, wie ein Trigger anhand eines gegebenen Metho-
denaufrufs entscheidet, ob die Verhaltenserkennung eines Verhaltensmusters
durch die Erzeugung eines Tokens gestartet werden muss. Der Algorithmus ist
in Pseudocode-Syntax in Abbildung 5.4 zu sehen.

Ein Trigger wird durch eine Annotation auf eine konkrete Methode, einen
konkreten, aufrufenden Typ und einen konkreten, aufgerufenen Typ des Kan-
didaten abgebildet. Fiir jede Annotation (Zeile 3) muss nun der Trigger diese
Elemente des Kandidaten mit dem beobachteten Methodenaufruf vergleichen
(Zeile 4). Sowohl die Typen der am Methodenaufruf beteiligten Instanzen,
als auch die aufgerufene Methode miissen zu den konkreten Typen respektive
der konkreten Methode konform sein. Treffen diese Bedingungen zu, gehort
der Methodenaufruf zum Kandidaten und die nachfolgenden Methodenaufrufe
miissen auf ihre Konformitdt zum Verhaltensmuster des Kandidaten unter-
sucht werden.

Dazu priift der Trigger zunéchst, ob bereits der Automat des Verhaltensmu-
sters zu der Menge der aktiven Automaten der Verhaltensanalyse hinzugefiigt
wurde (Zeile 5). Ist dies nicht der Fall, fiigt der Trigger den Automaten dieser
Menge hinzu (Zeile 6). Anschliefend wird ein Token erzeugt (Zeile 7), unter an-
derem mit der Annotation initialisiert (Zeilen 8 und 9) und dem Startzustand
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1: Trigger: :methodCalled (mc:MethodCall)
2: let token:Token
3: forEach annotation:Annotation in

self.analysis.annotations[self.pattern.name] do
4: if (self.callerTypeName<>0CLVoid implies
mc.caller.type.conformsTo(
annotation.nodes[self.callerTypeName]))
and mc.callee.type.conformsTo(
annotation.nodes[self.calleeTypeName])
and mc.type.conformsTo(
annotation.nodes[self.methodName]) then
5: if not self.analysis.activeAutomatons—
includes(self.pattern.automaton) then

6: self.analysis.activeAutomatons—
add (self.pattern.automaton)
7 token = new Token
8: token.annotation = annotation
9: token.moved = false
10: self.pattern.automaton.startState.tokens—add (token)

Abbildung 5.4: Die Methode methodCalled der Klasse Trigger

des Automaten hinzugefiigt (Zeile 10).

Ein Trigger enthélt keine Verhaltensmusterobjekte, die mit den Instanzen
eines Methodenaufrufs verglichen werden miissten. In Abschnitt 4.3.2 wur-
den die Verhaltensmusterobjekte zu Beginn der Verhaltensmustererkennung
nicht-deterministisch an Instanzen aus der Laufzeitumbegung des zu unter-
suchenden Programms gebunden. Dies ist in der Verhaltensanalyse natiirlich
nicht moglich. Die Verhaltensmusterobjekte werden erst wéhrend der Verhal-
tenserkennung gebunden. Da zum Zeitpunkt, zu dem der Trigger mit dem Me-
thodenaufruf verglichen wird, die Bindung der Verhaltensmusterobjekte noch
nicht feststeht, werden die Verhaltensmusterobjekte ignoriert.

5.3.3 Verarbeitung der beobachteten Methodenaufrufe

Die Methodenaufrufe werden aus einer Datei gelesen oder vom Debugger bezie-
hungsweise dem instrumentierten Programm beobachtet und der Verhaltenser-
kennung asynchron durch eine F1FO-Queue iibergeben. Solange die Queue noch
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nicht leer ist und das beobachtete Programm noch nicht terminiert beziehungs-
weise die Datei nicht vollstdndig gelesen wurde, entnimmt die Verhaltenserken-
nung jeweils einen Methodenaufruf der Queue und verarbeitet ihn.

1: BehavioralAnalysis: :methodCalled(mc:MethodCall)
2 forEach trigger:Trigger in self.triggers do
3: trigger.methodCalled (mc)

4 forEach dfa:DFA in self.activeAutomatons do
5 dfa.methodCalled (mc)

Abbildung 5.5: Die Methode methodCalled der Klasse BehavioralAnalysis

In Abbildung 5.5 ist der Algorithmus zur Verarbeitung eines Methoden-
aufrufs innerhalb der Klasse BehavioralAnalysis zu sehen. Sie beschriankt sich
darauf, den Methodenaufruf zunéchst an alle Trigger (Zeilen 2 und 3) und
dann an alle aktiven Automaten (Zeilen 4 und 5) weiter zu reichen. Die Ver-
arbeitung der Methodenaufrufe durch die Trigger wurde im vorigen Abschnitt
behandelt. Sie fiigen gegebenenfalls neue Automaten der Menge der aktiven
Automaten hinzu und legen ein neues Token in den Startzustand der zustandi-
gen Automaten.

1: DFA: :methodCalled(mc:MethodCall)

2 forEach state:State in self.states do
3: state.methodCalled (mc)

4 self.checkBindings ()

Abbildung 5.6: Die Methode methodCalled der Klasse DFA

Die weitere Verarbeitung eines Methodenaufrufs durch einen Automaten
findet nach den drei Algorithmen in den Abbildungen 5.6, 5.7 und 5.8 statt.
Ein Automat gibt einen Methodenaufruf lediglich an alle seine Zustdnde wei-
ter (Abbildung 5.6). Der Methodenaufruf in Zeile 4 wird in Abschnitt 5.3.6
erlautert.

Ein Zustand iteriert iiber alle Tokens, die in dem Zustand liegen (Abbildung
5.7, Zeile 3). Zunichst priift der Zustand, ob das Token bereits verschoben
wurde (Zeile 4). Die Klasse Token besitzt ein boolsches Attribut moved, das
angibt, ob das Token bei der Uberpriifung des aktuellen Methodenaufrufs be-
reits von einem Zustand in einen Nachfolgezustand verschoben wurde. Es ver-
hindert, dass ein Methodenaufruf mehrfach durch den klassischen Automaten,
reprasentiert durch das Token, konsumiert wird.
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: State: :methodCalled(mc:MethodCall)
let accepted:Boolean
forEach token:Token in self.tokens do
if not token.moved then
accepted = false
forEach transition:Transition in self.outgoing do
if not accepted then
accepted = transition.accept(mc,token)
forEach token:Token in self.tokens do
10: token.moved=false

O 00 NO O W N =

Abbildung 5.7: Die Methode methodCalled der Klasse State

Wurde das Token noch nicht verschoben, das bedeutet, der Methodenauf-
ruf wurde fiir dieses Token noch nicht verarbeitet, so iteriert der Zustand nun
tiber alle Transitionen, die von ihm ausgehen, (Zeilen 5-8) und reicht den Me-
thodenaufruf und das Token {iber die Methode Transition::accept(MethodCall,
Token) an die Transition weiter. Diese Iteration endet, sobald eine Transition
den Methodenaufruf akzeptiert, also den boolschen Wert true zuriick gibt (Zei-
len 7 und 8). Akzeptiert eine Transition den Methodenaufruf, wird das Token
vom aktuellen Zustand in den Nachfolgezustand der Transition verschoben.
Akzeptiert keine der Transitionen den Methodenaufruf, so bedeutet dies, dass
der Automat, dessen Zustand das Token reprasentiert, den gegebenen Metho-
denaufruf ignoriert und im aktuellen Zustand verbleibt.

Nachdem der Zustand die Iteration iiber die Tokens abgeschlossen hat, ite-
riert er ein zweites Mal iiber die im Zustand verbliebenen Tokens und weist
jeweils ihrem Attribut moved den boolschen Wert false zu. Dadurch werden die
Tokens fiir den nichsten Methodenaufruf vorbereitet.

Die Methode accept(MethodCall, Token) der Klasse Transition (Abbildung
5.8) akzeptiert einen Methodenaufruf, wenn sein zugehoriges Symbol den Me-
thodenaufruf akzeptiert (Zeile 2). In diesem Fall verschiebt die Transition das
Token vom aktuellen Zustand (Zeile 3) in den nachfolgenden Zustand (Zei-
le 4) und markiert das Token als verschoben (Zeile 5). Anschlieflend fiigt sie
den Methodenaufruf der Liste der zum Verhaltensmuster konformen Metho-
denaufrufe hinzu (Zeile 6) und gibt den boolschen Wert true zuriick (Zeile 7).
Akzeptiert die Transition den Methodenaufruf nicht, gibt sie den boolschen
Wert false zuriick.
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Transition::accept(mc:MethodCall,token:Token) :Boolean
if self.symbol.accept(mc,token) then
self.previous.tokens—remove (token)
self .next.tokens—add (token)
token.moved = true
token.matchedCalls—add (mc)
return true
else
return false

O© 0 NO O W N+~

Abbildung 5.8: Die Methode accept der Klasse Transition

5.3.4 Konforme Methodenaufrufe und Variablenbindung

Im Folgenden wird die Verarbeitung des Methodenaufrufs durch ein Symbol
erkldrt. Dabei wird nicht nur iiberpriift, ob ein Methodenaufruf konform zu
dem Symbol ist. Bei Konformitdt werden gegebenenfalls auch Verhaltensmu-
sterobjekte an die am Methodenaufruf beteiligten Instanzen gebunden.

Die Bindung der Typ- und Methodennamen eines Symbols ist durch die
Annotation eines Kandidaten gegeben. Die Bindung der Variablen an konkrete
Elemente des Kandidaten wird in der Klasse Annotations::Annotation durch die
qualifizierte Assoziation nodes (siehe Abbildung 2.7, Seite 24) hergestellt. Als
Schliissel fiir die qualifizierte Assoziation dient der Variablenname.

Die Verhaltensmusterobjekte werden dagegen durch die Assoziation bindings
der Klasse Token an Instanzen der Laufzeitumgebung gebunden (Abbildung
5.3). Als Schliissel fiir die qualifizierte Assoziation dient auch hier der Varia-
blenname der Verhaltensmusterobjekte. Die Bindung steht allerdings zu Be-
ginn der Verhaltensanalyse noch nicht fest.

Es existieren drei konkrete Klassen fiir Symbole, PermittedMethodCall, Prohi-
bitedMethodCall und ProhibitedCaller. Alle drei Klassen implementieren jeweils
die Methode accept(MethodCall, Token), die von ihrer abstrakten Oberklasse
AbstractSymbol deklariert wird. Fiir jede der drei Implementierungen dieser
Methode werden Nachbedingungen definiert. Die Nachbedingungen spezifizie-
ren nicht nur, unter welchen Bedingungen das Symbol den Methodenaufruf
akzeptiert, sondern auch, ob und gegebenenfalls wie Verhaltensmusterobjekte
an Instanzen gebunden werden.
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Symbole des Typs PermittedMethodCall

Die Klasse PermittedMethodCall reprisentiert Symbole der Formen (a : A) —
(b: B).m()und a — (b: B).m(). Fiir diese Symbole wurde bereits in Abschnitt
4.3.3 durch fiinf Bedingungen informell erldutert, wann ein Methodenaufruf zu
der Nachricht, die durch das Symbol reprasentiert wird, konform ist. Jedoch
wurde in Abschnitt 4.3.3 vorausgesetzt, dass die Verhaltensmusterobjekte be-
reits zu Beginn der Verhaltenserkennung nichtdeterministisch gebunden wer-
den. Hier gilt diese Voraussetzung nicht, daher werden die in Abschnitt 4.3.3
genannten Bedingungen erweitert und anschlieend formal definiert.

Ein Methodenaufruf mc des Typs Behavior::MethodCall wird von einem Sym-
bol der Form (a : A) — (b : B).m() akzeptiert, wenn folgende Bedingungen
gelten:

1. Die Methode des Methodenaufrufs mc ist konform zu der Methode, die
an die Variable m des Symbols gebunden wurde.

2. Der Typ der aufrufenden Instanz ist konform zu dem Typ, der an die
Variable A des Symbols gebunden wurde.

3. Der Typ der aufgerufenen Instanz ist konform zu dem Typ, der an die
Variable B des Symbols gebunden wurde.

4. Ist die Variable a des Symbols bereits gebunden, so ist sie an die aufru-
fende Instanz des Methodenaufrufs mc gebunden.

5. Ist die Variable b des Symbols bereits gebunden, so ist sie an die aufge-
rufene Instanz des Methodenaufrufs mc gebunden.

Hat das Symbol dagegen die Form a — (b : B).m(), dann akzeptiert es den
Methodenaufruf mc, wenn die Bedingungen 1, 3, 4 und 5 gelten.

Die Verhaltensmusterobjekte des Symbols werden unter folgenden Bedin-
gungen gebunden:

e Ist die Variable a des Symbols vor Aufruf der Methode accept(Method-
Call, Token) ungebunden, so wird sie an die aufrufende Instanz des Me-
thodenaufrufs mc gebunden.

e Ist die Variable b des Symbols vor Aufruf der Methode accept(MethodCall,
Token) ungebunden, so wird sie an die aufgerufene Instanz des Metho-
denaufrufs mc gebunden.
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In Definition 5.2 sind diese Bedingungen in einer OCL-Nachbedingung
formal beschrieben. Zur einfacheren Formulierung der Nachbedingung wird
zunachst die boolsche Variable conform definiert, die angibt, ob der gegebe-
ne Methodenaufruf mc konform zu dem Symbol ist. Ist der Methodenaufruf
mc konform, so gilt nach dem Aufruf der Methode accept(MethodCall, Token),
dass die Verhaltensmusterobjekte an die zugehorigen Instanzen des Me-
thodenaufrufs mc gebunden sind, falls sie vor Aufruf der Methode ac-
cept(MethodCall, Token) noch nicht gebunden waren. Des Weiteren ist der Wert
der Variable conforms das Ergebnis der Methode accept(MethodCall, Token).

Definition 5.2 FEin Symbol des Typs PermittedMethodCall akzeptiert einen
Methodenaufruf des Typs MethodCall, wenn gilt:

package Automaton
context PermittedMethodCall::accept(mc:Behavior::MethodCall,
t:Token):Boolean
post: let conform:Boolean =
mec.type.conformsTo(
t@pre.annotation.nodes[self. methodName]) and
(self.caller.typeName<>OCLVoid implies
mec.caller.type.conformsTo(
t@pre.annotation.nodes[self.caller.typeName])) and
mc.callee.type.conformsTo(
t@pre.annotation.nodes[self.callee.typeName]) and
(t@pre.bindings]self.caller.name]<>0OCLVoid
implies t@pre.bindings|self.caller.name|=mc.caller) and
(t@pre.bindings[self.callee.name|<>OCLVoid
implies t@pre.bindings|self.callee.name]=mc.callee)
in
(conform and t@pre.bindings]self.caller.name]=0CLVoid
implies t.bindings[self.caller.name]=mec.caller) and
(conform and t@pre.bindings|self.callee.name|]=0CLVoid
implies t.bindings[self.callee.name|=mc.callee)) and
result = conform
endpackage

Der Ausdruck t@pre beschreibt das Token t im Zustand vor dem Aufruf der
Methode accept(MethodCall, Token).
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Symbole des Typs ProhibitedMethodCall

Die Klasse ProhibitedMethodCall représentiert Symbole der Form % — (b :
B).m(), die zum Verwerfen des Traces genutzt werden. Ein solches Symbol
akzeptiert einen Methodenaufruf mc des Typs MethodCall, wenn gilt:

1. Die Methode des Methodenaufrufs mc ist konform zu der Methode, die
an die Variable m des Symbols gebunden wurde.

2. Der Typ der aufgerufenen Instanz ist konform zu dem Typ, der an die
Variable B des Symbols gebunden wurde.

3. Die Variable b des Symbols ist an die aufgerufene Instanz des Methoden-
aufrufs mc gebunden.

Wenn Symbole des Typs ProhibitedMethodCall einen Methodenaufruf mc
akzeptieren, wird das Token in einen verwerfenden Zustand verschoben und
damit der gesamte Trace verworfen. Das ist allerdings nur korrekt, wenn zwei-
felsfrei feststeht, dass der Methodenaufruf mc zu der untersuchten Instanz des
Kandidaten gehort, fiir die der Automat beziehungsweise das Token erzeugt
wurde. Im Falle des ProhibitedMethodCall-Symbols kann diese Bedingung nur
dann zweifelsfrei festgestellt werden, wenn das aufgerufene Verhaltensmuster-
objekt des Symbols bereits gebunden ist. Ist es an die aufgerufene Instanz
des Methodenaufrufs mc gebunden, verstofit der Methodenaufruf mc gegen
das Verhaltensmuster und das Verwerfen des Traces ist korrekt. Ist es an ei-
ne andere Instanz gebunden, so gehort der Methodenaufruf mc nicht zu der
untersuchten Instanz des Kandidaten und wird ignoriert.

Ist das aufgerufene Verhaltensmusterobjekt dagegen noch ungebunden, kann
keine Aussage dariiber getroffen werden, ob der Methodenaufruf mc zu der
Instanz des Kandidaten gehort. In diesem Fall akzeptiert das Symbol den
Methodenaufruf mc nicht, so dass er vom Automaten ignoriert wird. Aller-
dings wird die aufgerufene Instanz des Methodenaufrufs mc einer Menge von
moglichen Bindungen fiir das aufgerufene Verhaltensmusterobjekt hinzugefiigt.
Diese Menge wird durch die Assoziation possibleBindings der Klasse Token (Ab-
bildung 5.3) représentiert. In Abschnitt 5.3.6 wird erldutert, was die moglichen
Bindungen bedeuten und wozu sie verwendet werden.

Definition 5.3 FEin Symbol des Typs ProhibitedMethodCall akzeptiert einen
Methodenaufruf des Typs MethodCall, wenn gilt:

package Automaton
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context ProhibitedMethodCall::accept(me:Behavior::MethodCall,
t:Token):Boolean
post: let typeConform:Boolean =
mec.type.conformsTo(
t@pre.annotation.nodes[self. methodName]) and
mec.callee.type.conformsTo(
t@pre.annotation.nodes[self.callee.typeName])
in
((typeConform and
t@pre.bindings]self.callee.name]=0CLVoid) implies
t.possibleBindings|[self.callee.name| —includes(mec.callee)) and
result = typeConform and
t@pre.bindings|self.callee.name]=mec.callee
endpackage

In Definition 5.3 sind die genannten Bedingungen in einer OCL-Nachbe-
dingung zur Methode ProhibitedMethodCall::accept(MethodCall, Token) formal
spezifiziert.

Symbole des Typs ProhibitedCaller

Die Klasse ProhibitedCaller reprisentiert Symbole der Form x ¢ C — (b :
B).m(), die ebenfalls zum Verwerfen des Traces verwendet werden. Ein solches
Symbol akzeptiert einen Methodenaufruf mc des Typs MethodCall, wenn gilt:

1. Die Methode des Methodenaufrufs mc ist konform zu der Methode, die
an die Variable m des Symbols gebunden wurde.

2. Der Typ der aufgerufenen Instanz ist konform zu dem Typ, der an die
Variable B des Symbols gebunden wurde.

3. Die Variable b des Symbols ist an die aufgerufene Instanz des Methoden-
aufrufs mc gebunden.

4. Keines der Verhaltensmusterobjekte der Menge C ist an die aufrufende
Instanz des Methodenaufrufs mc gebunden. Ist ein Verhaltensmusterob-
jekt o der Menge C ungebunden, so darf der Typ der aufrufenden Instanz
nicht konform sein zu dem Typ, der an die Typvariable des Verhaltens-
musterobjekts o gebunden wurde.
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Auch bei einem Symbol des Typs ProhibitedCaller muss zweifelsfrei festste-
hen, dass der Methodenaufruf mc zur beobachteten Instanz des Kandidaten
gehort, damit das Symbol den Methodenaufruf akzeptieren darf. Das bedeu-
tet, das aufgerufene Verhaltensmusterobjekt muss an die aufgerufene Instanz
des Methodenaufrufs mc gebunden sein. Ist das aufgerufene Verhaltensmuster-
objekt nicht gebunden und sind alle anderen Bedingungen erfiillt, dann wird
wie bei Symbolen des Typs ProhibitedMethodCall die aufgerufene Instanz des
Methodenaufrufs mc der Menge von moglichen Bindungen fiir das aufgerufene
Verhaltensmusterobjekt hinzugefiigt. Der Methodenaufruf mc wird in diesem
Fall vom Symbol nicht akzeptiert und damit vom Automaten ignoriert.

In Definition 5.4 sind die genannten Bedingungen in einer OCL-Nachbedin-
gung zur Methode ProhibitedCaller::accept(MethodCall, Token) formal spezifi-
ziert.

Definition 5.4 FEin Symbol des Typs ProhibitedCaller akzeptiert einen Metho-
denaufruf des Typs MethodCall, wenn gilt:

package Automaton
context ProhibitedCaller::accept(mc:Behavior::MethodCall,
t:Token):Boolean
post: let typeConform:Boolean =
mec.type.conformsTo(
t@pre.annotation.nodes[self. methodName]) and
mc.callee.type.conformsTo(
t@pre.annotation.nodes[self.callee.typeName]) and
self.permittedCallers—for All(mco:MethodCallObject|
(t@pre.bindings[mco.name]=0CLVoid implies
not mc.caller.type.conformsTo(
t@pre.bindings[mco.typeName])) or
t@pre.bindings[mco.name|<>mec.callee)
in
((typeConform and
t@pre.bindings[self.callee.name|=0CLVoid) implies
t.possibleBindings|self.callee.name]—includes(mc.callee)) and
result = typeConform and
t@pre.bindings[self.callee.name|=mc.callee
endpackage
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5.3.5 Beispiel

Im Folgenden wird zur Erlauterung der Verhaltenserkennung der Trace eines
State-Kandidaten (Abbildung 4.9, Seite 74) herangezogen, der wihrend der
Ausfithrung des Mediaplayers beobachtet wurde. Abbildung 5.9 zeigt diesen
Trace. Zuvor wurde der State-Kandidat in der Strukturanalyse identifiziert
und annotiert. Die Bindungen der Annotation sind in Tabelle 4.1 auf Seite 75
festgehalten.

p:Player s:Stream st:Stopped || pl:Playing

setState(st)
execute(CMD_PLAY)

vy

I
I
I
lexecute(s,CMD_PLAY) _ |
setState(pl) !
run(s) !
T
I
T
I
I
I
I

Y

read()

I
-l
-
I
F
I
-l
execute(CMD_STOP) _ ™
7| execute(s,CMD_STOP)
i
I

\J

Abbildung 5.9: Beobachteter Trace des Mediaplayers

Der erste beobachtete Methodenaufruf des Traces triggert die Erkennung des
State-Verhaltensmusters. Es wird ein Token erzeugt und in den Startzustand
0 des Automaten zum State-Verhaltensmuster (Abbildung 5.10) gelegt. Das
Token wird mit der Annotation des State-Kandidaten initialisiert. Darin sind
nur die Bindungen der Typ- und Methodennamen an Elemente des Kandidaten
enthalten. Zu diesem Zeitpunkt ist noch keines der Verhaltensmusterobjekte
gebunden.

Der erste Methodenaufruf des Traces wird nun vom Automaten verarbeitet,
indem er an alle Zustédnde weitergereicht wird. Da es nur im Startzustand ein
Token gibt, reicht der Startzustand den Methodenaufruf und das Token an
die von ihm ausgehenden Transitionen weiter. Die Transition mit dem Sym-
bol client — (c : context).setState() akzeptiert schlieBlich den Methoden-
aufruf. Dabei werden die beiden Verhaltensmusterobjekte client und ¢ an die
Instanzen p beziehungsweise s gebunden, der Methodenaufruf der Liste der
konformen Methodenaufrufe hinzugefiigt und das Token in den nachfolgenden
Zustand verschoben. Abbildung 5.11 zeigt den Automaten, nachdem das Token
verschoben wurde. In Tabelle 5.1 ist die Bindung der Verhaltensmusterobjekte
nach dem ersten Zustandsiibergang abgebildet.
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(c:context)—(a:abstractState).handle()

(client)—(c:context).request()
(client)—(c:context).request()

(client)—(c:context).request()
(client)—(c:context).setState()

Abbildung 5.10: Ausschnitt aus dem Automaten des State-Verhaltensmusters
mit Token

(c:context)—(a:abstractState).handle()

(client)—(c:context).request()
(client)—(c:context).request()

(client)—(c:context).request()
(client)—(c:context).setState()

Abbildung 5.11: Automat des State-Verhaltensmusters nach dem Zustands-
iibergang

Die néchsten Methodenaufrufe werden @hnlich verarbeitet. Beim dritten Me-
thodenaufruf des Traces wird das Verhaltensmusterobjekt a an die Instanz st
gebunden. Der fiinfte und der sechste Methodenaufruf werden ignoriert, da es
keine Transitionen mit passenden Symbolen im Automaten gibt.

Mit dem letzten Methodenaufruf des Traces endet das Token in einem akzep-
tierenden Zustand des Automaten. Damit akzeptiert der Automat den Trace
als konform zum Verhaltensmuster. In Abbildung 5.12 ist schliellich der Trace
zu sehen, der dem Verhaltensmuster entspricht. Gegeniiber dem beobachteten
Trace fehlen die Methodenaufrufe, die vom Automaten ignoriert wurden. Dar-
gestellt sind nur die Methodenaufrufe, die das Token in der Liste der konformen
Methodenaufrufe gespeichert hat. Des Weiteren sind die Bindungen der Ver-
haltensmusterobjekte an die an den Methodenaufrufen beteiligten Instanzen
dargestellt.
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’ Verhaltensmusterobjekt ‘ Instanz ‘

client )
¢ s
a -
b -

Tabelle 5.1: Variablenbindung des Tokens nach dem ersten Zustandsiibergang

.......................

b:ébstrac_tState
a:abstractState

'.'__cllent c:context

p:Player s:Stream st:Stopped || pl:Playing

I I I
| setState(st) L [

7| |
execute(CMD_PLAY) | [

|
|

: “lexecute(s,CMD_PLAY) |
: [ setState(pl) !
|

[

[

execute(CMD_STOP) '€ !

”| execute(s,CMD_STOP) |
[ I

A /

Abbildung 5.12: Erkannte Verhaltensmusterimplementierung des State-Kandi-
daten

5.3.6 Nachtragliches Verwerfen eines Traces

Das spéte Binden der Verhaltensmusterobjekte wahrend der Verhaltenserken-
nung fiithrt zu Situationen, in denen nicht zweifelsfrei entschieden werden kann,
ob ein beobachteter Methodenaufruf zu einer untersuchten Instanz eines Kan-
didaten gehort. Abbildung 5.13 zeigt einen Trace, der nicht konform zum State-
Verhaltensmuster ist und zu solch einer Situation fiihrt. Der Trace stammt vom
State-Kandidaten des Mediaplayer-Beispiels (Abbildung 4.9, Seite 74).

Abbildung 5.14 zeigt einen Ausschnitt aus dem DFA des State-Verhal-
tensmusters. Es sind nur die Transitionen dargestellt, die bei der Verhaltenser-
kennung des Traces aus Abbildung 5.13 eine Rolle spielen.

Der erste Methodenaufruf des Traces triggert die Erkennung des State-
Verhaltensmusters. Es wird ein Token erzeugt und in den Startzustand 0 des
Automaten aus Abbildung 5.14 gelegt. Das Token wird mit der Annotation
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u:Unknown p:Player s:Stream st:Stopped
T

I : setState(st)
Abbildung 5.13: Zum State-Verhaltensmuster nicht-konformer Trace

[
execute(s,CMD_PLAY)

T
‘I
Vl
|
|

T
| execute(CMD_PLAY)_ |

: I execute(s,CMD_PLAY)
I

Y v ]

client—(c:context).request()

client—(c:context).setState() (c:context)—(a:abstractState).handle()

*—(a:abstractState).handle()

Abbildung 5.14: Ausschnitt aus dem Automaten des State-Verhaltensmusters

des State-Kandidaten initialisiert (siche Tabelle 4.1, Seite 75).

Der erste Methodenaufruf wird nun von der Transition mit dem Symbol
client — (c : context).setState() akzeptiert, so dass das Token in den Zustand
1 verschoben wird. In diesem Zustand sind die Verhaltensmusterobjekte client
an die Instanz p und ¢ an die Instanz s gebunden. Alle weiteren Verhaltens-
musterobjekte sind noch ungebunden.

Der zweite Methodenaufruf, der beobachtet wird, ist (u:Unknown)—(st: Stop-
ped).execute(s,CMD_PLAY). Dieser Methodenaufruf ist nicht konform zum Ver-
haltensmuster, da die handle()-Methode des State-Entwurfsmusters an dieser
Stelle nicht aufgerufen werden darf. Auflerdem darf sie nur vom Kontext-
Objekt aufgerufen werden. Der Trace miisste also hier verworfen werden. Die
Transition mit dem Symbol * — (a : abstractState).handle(), die den Zustand
1 mit dem verwerfenden Zustand R verbindet, kann jedoch den Methodenauf-
ruf nicht akzeptieren. Die Methode und der Typ der aufgerufenen Instanz sind
zwar konform zu dem Symbol, das Verhaltensmusterobjekt a ist jedoch noch
nicht gebunden. Es kann in dieser Situation also nicht zweifelsfrei festgestellt
werden, ob der beobachtete Methodenaufruf zu der untersuchten Instanz des
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State-Kandidaten gehort. Er konnte auch zu einer anderen Instanz des State-
Kandidaten gehoren. Nach Definition 5.3 darf deshalb der Methodenaufruf
von der Transition nicht akzeptiert werden. Allerdings wird die Instanz st zu
der Menge der moglichen Bindungen fiir das Verhaltensmusterobjekt a hin-
zugefiigt. Da keine andere Transition den Methodenaufruf in diesem Zustand
akzeptiert, wird er vom Automaten ignoriert.

Der dritte Methodenaufruf des Traces wird akzeptiert, so dass das Token
in den Zustand 2 verschoben wird. Auch der vierte Methodenaufruf wird ak-
zeptiert. Das Token befindet sich nun im Zustand 3. Bei der Verarbeitung
des Methodenaufrufs wurde das Verhaltensmusterobjekt a an die aufgerufene
Instanz st des Methodenaufrufs gebunden.

Erst zu diesem Zeitpunkt steht zweifelsfrei fest, dass die Instanz st zu der
untersuchten Instanz des State-Kandidaten gehort. Es stellt sich heraus, das
der zweite Methodenaufruf nicht hétte ignoriert werden diirfen, sondern zum
Verwerfen des Traces hétte fithren miissen.

Aus diesem Grund sind die méglichen Bindungen in das Modell der Auto-
maten aufgenommen worden. Mdégliche Bindungen werden nur durch Symbole
hergestellt, deren Transitionen in den verwerfenden Zustand fithren. Sie wer-
den hergestellt, wenn nicht festgestellt werden kann, ob eine am beobachteten
Methodenaufruf beteiligte Instanz zu der untersuchten Instanz eines Kandida-
ten gehort. Wird zu einem spéteren Zeitpunkt festgestellt, dass die fragliche
Instanz dazu gehort, kann der Trace nachtriaglich verworfen werden.

Dieses Konzept ist auf die klassischen Automaten nur sehr schwer abzubil-
den. Es wurde daher eine pragmatische Losung gewéhlt. Nach jeder Verarbei-
tung eines Methodenaufrufs wird gepriift, ob ein Verhaltensmusterobjekt an
eine Instanz gebunden wurden, die bereits in der Menge der moglichen Bin-
dungen des Verhaltensmusterobjekts enthalten ist. Wird eine solche Bindung
gefunden, wird der Trace durch das Verschieben des Tokens in den verwerfen-
den Zustand nachtréglich verworfen.

Dieser Algorithmus ist in Abbildung 5.15 zu sehen. Er wird am Ende der
Methode methodCalled der Klasse DFA (Abbildung 5.6, Seite 118) aufgerufen.

5.4 Bewertung der Ergebnisse

In Abschnitt 4.3.1 wurde bereits erlautert, dass zu jedem Kandidaten zur Lauf-
zeit des zu untersuchenden Softwaresystems beliebig viele Traces beobachtet
werden konnen. Das liegt zum einen daran, dass die Verhaltensmuster in der
Regel nicht das globale Verhalten des Entwurfsmusters beschreiben, sondern
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1: DFA: :checkBindings ()
2 forEach state:State in self.states do
3: forEach token:Token in state.tokens do
4 forEach key:String in token.bindings—keys() do
5 if token.possibleBindings[key]—
includes(token.bindings [key]) then
token.state.tokens—remove (token)
self .rejectingState.tokens—add (token)

~N O

Abbildung 5.15: Die Methode checkBindings der Klasse DFA

Ausschnitte typischen lokalen Verhaltens. Eine Instanz des Kandidaten kann
also dieses lokale Verhalten zur Laufzeit mehrfach durchlaufen. Des Weiteren
kann der Kandidat auch mehrfach instanziiert werden, so dass in diesem Fall
mehrere Instanzen des Kandidaten beobachtet werden.

Diese Traces werden auf Konformitét zu dem positiven Verhaltensmuster,
aber auch auf Konformitét zu den moglichen negativen Verhaltensmustern des
zum Kandidaten gehérenden Entwurfsmusters untersucht. Die Traces konnen
sowohl konform, als auch nicht konform zu den Verhaltensmustern sein. All
dies fithrt dazu, dass zu einem Kandidaten am Ende der Verhaltensanalyse
mehrere Traces vorliegen, aus denen sich unter Umstédnden widerspriichliche
Riickschliisse auf das Verhalten des Kandidaten ziehen lassen.

Die Token, die von den Traces getriggert wurden, enthalten die Analy-
seergebnisse. Es gibt verschiedene Szenarien von Zustandsiibergéngen, die
ein Token wéhrend der Verhaltenserkennung durchlaufen kann. Ein Token
kann am Ende in einem nicht-akzeptierenden, einem akzeptierenden oder
dem verwerfenden Zustand liegen. Ein akzeptierender Zustand kann von ei-
nem Token mehrfach durchlaufen werden. Wie an dem Automaten des State-
Verhaltensmusters (Abbildung 4.25, Seite 95) zu sehen ist, fithrt eine Schleife
am Ende des Verhaltensmusters dazu, dass das Token einen akzeptierenden
Zustand wieder verlassen kann. Es ist sogar moglich, dass ein Token nach dem
Verlassen eines akzeptierenden Zustands irgendwann in den verwerfenden Zu-
stand gelangt. Das bedeutet, der beobachtete Trace war zu einem bestimmten
Zeitpunkt konform zum Verhaltensmuster. Dann folgte aber irgendwann ein
Methodenaufruf, der nicht konform war. Den verwerfenden Zustand kann ein
Token jedoch nicht mehr verlassen, da der verwerfende Zustand eine Senke ist.

Am Ende werden die Tokens aller aktiven Automaten ausgewertet. Jedes To-
ken wurde durch einen Trace getriggert und gehort deshalb zu einem bestimm-
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Annotation
+accuracy:int
+acceptedTraces:int

«reference» i : .
Structure:Node nodes  pdes—annotalions e ing | +rejectedTraces:int
" 1 < 0. ——— +acceptedSubtraces:int

N\ +notAcceptedTraces:int
+avgTracelLength:int

«reference» «reference» !
Structure::Type | | Structure::Method State | | Strategy

Abbildung 5.16: Erweitertes Modell der Annotationen, Paket Annotations

ten Kandidaten. Zu jedem Kandidaten werden fiinf Messwerte festgehalten, die
aus den Token berechnet und in der Annotation des Kandidaten gespeichert
werden. Dazu wurde die abstrakte Klasse Annotation, von der alle konkreten
Annotationen der Entwurfsmuster erben, um einige Attribute ergédnzt. Das
erweiterte Modell der Annotationen ist in Abbildung 5.16 dargestellt.

Die folgenden Messwerte werden fiir jeden Kandidaten aus seinen Token
berechnet. Die Messwerte werden jedoch nur fiir Token aus solchen Automaten
berechnet, die zu positiven Verhaltensmustern gehoren.
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acceptedTraces: Anzahl der akzeptierten Traces. Diese Anzahl setzt sich
unter anderem aus der Anzahl aller Tokens zusammen, die in einem ak-
zeptierenden Zustand liegen. Des Weiteren werden aber auch alle Tokens
hinzu gezéhlt, die zwar in einem nicht-akzeptierenden oder in dem ver-
werfenden Zustand liegen, aber mindestens einmal wahrend der Analyse
einen akzeptierenden Zustand durchlaufen haben.

rejectedTraces: Anzahl der verworfenen Traces. Dies ist die Anzahl der
Tokens, die in dem verwerfenden Zustand liegen.

notAcceptedTraces: Anzahl der nicht akzeptierten Traces. Dies ist die
Anzahl der Tokens, die in einem nicht-akzeptierenden Zustand liegen.

acceptedSubtraces: Anzahl der verworfenen und nicht akzeptierten Tra-
ces, die aber einen Subtrace enthalten, der akzeptiert wurde. Die Traces
waren bis zu einem bestimmten Zeitpunkt konform zum Verhaltensmu-
ster, verlieBen aber den akzeptierenden Zustand wieder.

avgTracelLength: Durchschnittliche Lénge aller akzeptierten Traces.
Der Durchschnitt wird iiber die Anzahl der konformen Methodenauf-
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rufe aller akzeptierten Traces gebildet. Bei Tokens, die in einem nicht-
akzeptierenden oder in dem verwerfenden Zustand liegen und mehrfach
einen akzeptierenden Zustand durchliefen, wird fiir den Durchschnitt die
Anzahl der konformen Methodenaufrufe zu dem Zeitpunkt gewéhlt, zu
dem das Token zum letzten Mal in einem akzeptierenden Zustand lag.

Wie in Abschnitt 4.3.5 erldutert, werden bei einem negativen Verhaltens-
muster nur Traces gewertet, die konform zu dem negativen Verhaltensmuster
sind. Diese Traces gehen dann als negatives Indiz in die Gesamtbewertung des
Kandidaten ein. Deshalb wird die Anzahl der Tokens, die in einem akzeptie-
renden Zustand eines Automaten eines negativen Verhaltensmusters liegen, zu
der Anzahl der verworfenen Traces hinzu gefiigt.

Diese Messwerte werden dem Reverse-Engineer zusammen mit der Bewer-
tung aus der Strukturanalyse als Gesamtergebnis der struktur- und verhal-
tensbasierten Entwurfsmustererkennung présentiert. Auf eine Verrechnung der
Einzelwerte zu einem einzigen Wert wird bewusst verzichtet. Die Einzelwer-
te sind sehr viel aussagekriftiger als ein einzelner Wert, der als eine absolute
Aussage interpretiert werden konnte. Das in dieser Arbeit vorgestellte Ver-
fahren erhebt keinen Anspruch, absolute Aussagen iiber das zu untersuchende
Softwaresystem zu treffen. Die Interpretation der Ergebnisse soll vielmehr dem
Reverse-Engineer iiberlassen werden.

Aus den ermittelten Messwerten der Verhaltensanalyse kann der Reverse-
Engineer verschiedene Riickschliisse auf den Kandidaten ziehen. Das Verhélt-
nis der Anzahl akzeptierter Traces zu den verworfenen Traces ist sicher ein
guter Hinweis darauf, ob ein Kandidat eine tatséchliche Entwurfsmusterimple-
mentierung darstellt. Ein hoher Wert fiir dieses Verhéltnis deutet eher auf eine
tatsédchliche Entwurfsmustererkennung hin, als ein niedriger. Eine hohe durch-
schnittliche Lange der akzeptierten Traces ist ein weiterer Indikator fiir ei-
ne tatséchliche Entwurfsmusterimplementierung. Die Wahrscheinlichkeit, dass
kurze Traces zufillig zu einem Verhaltensmuster konform sind, ist wesentlich
hoher, als bei sehr langen Traces. Basiert eine hohe durchschnittliche Lénge der
Traces zudem auf sehr vielen akzeptierten Traces, ist die Wahrscheinlichkeit
fiir ein False Positive gering.

5.5 Zusammenfassung

In diesem Kapitel ist die Verhaltensanalyse durch die im Kapitel 4 eingefiihrten
Verhaltensmuster und den daraus generierten Automaten vorgestellt worden.
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Der Prozess der Verhaltensanalyse wird auf Basis des Verhaltensmusterka-
talogs, der Ergebnisse aus der Strukturanalyse und dem zu untersuchenden,
ausfithrbaren Programm gestartet.

Zur Gewinnung der Traces zur Laufzeit des zu untersuchenden Software-
systems wurden zwei Verfahren vorgestellt, die auf zwei grundsétzlich unter-
schiedlichen Prinzipien aufbauen. Beide Verfahren haben Vor- und Nachteile.
Das Debugging ist ohne weitere Prozessschritte direkt mit den Eingaben der
Verhaltensanalyse einsetzbar. Die im Rahmen dieser Arbeit implementierte
Losung ermoglicht die Uberwachung von Softwaresystemen, die in der Pro-
grammiersprache JAVA erstellt wurden. Das Verfahren ist jedoch sehr leicht
auf andere Programmiersprachen iibertragbar. Allerdings ist die Performanz
des Verfahrens gering. Es ist daher in produktiven Umgebungen nur sehr be-
dingt einsetzbar.

Die Instrumentierung bietet dagegen eine sehr performante Uberwachung
des Softwaresystems. Die Ubertragung des Verfahrens auf andere Program-
miersprachen ist jedoch sehr aufwendig. Des Weiteren ist ein zusétzlicher Pro-
zessschritt vor der eigentlichen Verhaltenserkennung notwendig. Das Debug-
ging eignet sich somit eher fiir kurze Tests der Verhaltensanalyse, in denen sie
zum Beispiel iterativ eingesetzt wird, um die Eignung von Verhaltensmustern
zu iiberpriifen. Die Instrumentierung ist dagegen eher geeignet, um letztendlich
relevante Ergebnisse zu generieren, die eventuell sogar aus einem produktivem
Einsatz des Softwaresystems stammen.

Fiir die Verhaltenserkennung ist ein Modell vorgestellt worden, das auf die
im letzten Kapitel vorgestellten Automaten aufbaut. Die Automaten wurden
um so genannte Tokens erweitert, um den Speicheraufwand der Verhaltens-
analyse zu verringern. Es wurde formal definiert, wann die Erkennung eines
Verhaltensmusters ausgelost wird und wie die beobachteten Methodenaufrufe
durch die Automaten verarbeitet werden.

Im Gegensatz zur theoretischen Betrachtung in Kapitel 4.26 ist es in der rea-
len Umsetzung der Verhaltenserkennung nicht moglich, die Verhaltensmuster-
objekte zu Beginn nichtdeterministisch zu binden. Aus diesem Grund wurde
formal definiert, wie die Verhaltensmusterobjekte wihrend der Verhaltenser-
kennung gebunden werden.

Zum Abschluss des Kapitels wurde vorgestellt, welche Daten dem Reverse-
Engineer als Ergebnis der gesamten struktur- und verhaltensbasierten Ent-
wurfsmustererkennung présentiert werden und wie im Besonderen die Ergeb-
nisse der Verhaltensanalyse zu interpretieren sind.
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Kapitel 6

Praktische Anwendung

Dieses Kapitel befasst sich mit der Anwendung der struktur- und verhal-
tensbasierten Entwurfsmustererkennung auf ein praxisnahes Softwaresystem.
Zunéchst werden im ersten Teil des Kapitels einige Grundlagen zur dyna-
mischen Analyse eines produktiv eingesetzten Softwaresystems erldutert. Im
zweiten Teil wird ein Szenario beschrieben, das im Rahmen dieser Arbeit fiir
einen Praxistest des Ansatzes herangezogen wurde. SchliefSlich werden die Er-
gebnisse présentiert und diskutiert. Aus der Diskussion der Ergebnisse werden
mogliche Verbesserungen abgeleitet.

6.1 Software-Tomographie

Ein zentrales Problem dynamischer Analysen ist die angemessene Auswahl
der Eingabedaten, die zur Ausfithrung des zu analysierenden Softwaresystems
benotigt werden. Das in der Praxis durch dynamische Analysen beobachtete
Verhalten eines Softwaresystems stellt immer nur einen kleinen Teil des theo-
retisch moglichen Verhaltens dar. Um also verwertbare Ergebnisse zu erhalten,
sollten die Eingabedaten moglichst reprasentativ fiir die in der Praxis auftre-
tenden Daten ausgewéhlt werden.

Das Problem der repréasentativen Eingabedaten lésst sich sehr elegant 16sen,
indem das zu untersuchende Softwaresystem wahrend der dynamischen Analy-
se in einer realen, produktiven Umgebung eingesetzt wird. Das setzt allerdings
voraus, dass der Einfluss der dynamischen Analyse auf das produktive Softwa-
resystem so gering wie moglich gehalten wird.

Jim Bowring, Alessandro Orso und Mary Jean Harrold [BOHO02] schla-
gen daher die Software-Tomographie vor. Software-Tomographie wird einge-
setzt, um mit minimalem Einfluss produktiv eingesetzte Software wéhrend
ihrer Ausfithrung zu beobachten. Voraussetzung fiir den Einsatz der Software-
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Tomographie ist, dass die Aufgabe der dynamischen Analyse in sehr viele,
voneinander unabhéngige Teilaufgaben aufgeteilt werden kann. Die Teilaufga-
ben miissen sich wiederum durch eine moglichst minimale Instrumentierung
des zu untersuchenden Softwaresystems losen lassen.

Eine weitere Voraussetzung fiir Software-Tomographie ist, dass das Softwa-
resystem in der Praxis in mehreren Instanzen eingesetzt wird. In diesem Fall
kann die dynamische Analyse in viele Teilanalysen aufgeteilt werden, indem ei-
ne Instanz jeweils fiir eine oder einige wenige Teilaufgaben instrumentiert wird.
Die Performanz einer einzelnen Instanz wird dadurch nur sehr wenig verringert,
so dass sie in der produktiven Umgebung eingesetzt werden kann. Die weitere
Aufgabe der Software-Tomographie besteht darin, die so gewonnenen Daten
der einzelnen Teilanalysen zu sammeln und wieder zu einem Gesamtergebnis
zusammenzufassen.

In der struktur- und verhaltensbasierten Entwurfsmustererkennung ist die
Aufteilung der dynamischen Analyse in Teilanalysen bereits vorgegeben. Jeder
in der Strukturanalyse identifizierte Kandidat stellt eine Teilanalyse dar, die
unabhéngig von den anderen Kandidaten ausgefiihrt werden kann. Die Instan-
zen des zu untersuchenden Softwaresystems werden also jeweils fiir einen oder
einige wenige Kandidaten instrumentiert. Auch die Ergebnisse der einzelnen
Teilanalysen sind unabhéngig voneinander, so dass sie zur Auswertung nur
gesammelt werden miissen.

6.2 Szenario

Das in der vorliegenden Arbeit entwickelte Verfahren wurde auf ein praxis-
nahes Softwaresystem angewendet. Voraussetzungen fiir das zu untersuchende
Softwaresystem waren eine hinreichende Grofle, die Verwendung von Entwurfs-
mustern bei der Entwicklung des Softwaresystems und deren Dokumentation.
Das Softwaresystem sollte zu grof§ sein, um von einem Reverse-Engineer noch
manuell analysiert werden zu kénnen. Kleine Systeme enthalten auflerdem ent-
sprechend weniger Entwurfsmusterimplementierungen als grofle. Eine automa-
tische Entwurfsmustererkennung macht also nur Sinn bei grofieren Softwaresy-
stemen, die bei mehreren zehntausend, besser noch mehreren hunderttausend
Zeilen Quelltext liegen.

Wurden bei der Entwicklung des Softwaresystems Entwurfsmuster expli-
zit zum Design verwendet und dokumentiert, erleichtert dies den Praxistest
des Verfahrens. Die explizite Verwendung ist natiirlich keine Voraussetzung
zur Anwendung der Entwurfsmustererkennung. Wie bereits in der Einleitung
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erlautert, konnen Entwurfsmusterimplementierungen auch in Softwaresyste-
men gefunden werden, bei denen Entwurfsmuster nicht explizit im Design ver-
wendet wurden. In dem Praxistest ist die Dokumentation der Entwurfsmuster-
implementierungen allerdings sehr hilfreich zur Beurteilung der Qualitat der
automatischen Entwurfsmustererkennung.

Zur Entwurfsmustererkennung bietet sich ECLIPSE an. ECLIPSE erfiillt die
zuvor genannten Voraussetzungen. Es ist ein relativ grofies, in JAVA geschrie-
benes Softwaresystem, bei dem wihrend der Entwicklung Entwurfsmuster ein-
gesetzt wurden. Erich Gamma und Kent Beck, die zu den Entwicklern von
EcLipSE gehoren, haben in ihrem Buch ,,Contributing to eclipse - Principles,
Patterns, and Plug-Ins“ einige der in ECLIPSE enthaltenen Entwurfsmuster-
implementierungen dokumentiert [GB04]. Eine Auswahl der dokumentierten
Entwurfsmusterimplementierungen mit Seitenreferenzen auf [GB04] ist in Ta-
belle 6.1 zu finden.

Erich Gamma und Kent Beck haben als Grundlage fiir ihr Buch die Version
2.1 von EcLIPSE verwendet. In dieser Version besteht ECLIPSE aus etwa 66
Plug-Ins. Die dokumentierten Entwurfsmusterimplementierungen konzentrie-
ren sich aber auf einige wenige Plug-Ins, die im Folgenden der Entwurfsmuster-
erkennung unterzogen wurden. In Tabelle 6.2 sind die untersuchten Plug-Ins
aufgelistet. Aulerdem ist zu jedem Plug-In angegeben, aus wie vielen Klassen
es besteht. Insgesamt wurden also mehr als 2400 Klassen untersucht, so dass
ein praxisnahes Szenario gegeben ist.

Die Klassen der Plug-Ins aus Tabelle 6.2 wurden zunéchst mit Hilfe der
strukturbasierten Entwurfsmustererkennung untersucht. Auf Grundlage der
erkannten Kandidaten wurde anschlieend die verhaltensbasierte Entwurfsmu-
stererkennung durchgefiihrt. Dazu wurde wiahrend der Ausfithrung mit ECLIP-
SE ein kurzes Beispielprogramm implementiert. Des weiteren waren bereits zu-
vor umfangreiche Projekte in die Arbeitsumgebung von ECLIPSE importiert
worden, in denen unter anderem Suchen durchgefiihrt wurden. So entstand ein
realistisches Szenario wie in einer produktiven Umgebung. Die Traces wurden
aufgezeichnet und offline analysiert. Die Struktur- und Verhaltensmuster des
verwendeten Kataloges sind in Anhang A zu finden.

6.3 Ergebnisse
Ein Auszug der Ergebnisse des Praxistests der Struktur- und Verhaltensana-

lyse wird im Folgenden préasentiert. Im Anschluss werden einige konzeptionelle
Schwichen, die wihrend des Praxistests erkannt wurden, erlautert. Es werden
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Entwurfs- |Rolle Klasse/Methode
musterimpl.
Observer 1 |Subject org.eclipse.core.resources.IWorkspace
S. 303 register addResourceChangeListener()
Observer org.eclipse.core.resources.IResourceChangeListener
notify resourceChanged (IResourceChangeEvent)
Observer 2 |Subject org.eclipse.swt.widgets.Button
S. 333 register addSelectionListener()
Observer org.eclipse.swt.events.SelectionListener
notify widgetSelected (SelectionEvent)
Observer 3 |Subject org.eclipse.jface.action.IAction
S. 343 register addPropertyChangeListener()
Observer org.eclipse.jface.util.IPropertyChangelListener
notify propertyChange()
Strategy 1 |Context org.eclipse.swt.widgets.Composite
S. 332 setStrategy| setLayout()
Strategy org.eclipse.swt.widgets.Layout
algorithm layout()
Strategy 2 |Context org.eclipse.jface.viewers.Structured Viewer
S. 341 setStrategy| addFilter()
Strategy org.eclipse.jface.viewers. ViewerFilter
algorithm filter()
Strategy 3 |Context org.eclipse.jface.viewers.Structured Viewer
S. 341 setStrategy| setSorter()
Strategy org.eclipse.jface.viewers. ViewerSorter
algorithm sort()

Tabelle 6.1: Entwurfsmusterimplementierungen in ECLIPSE [GB04]

jedoch Ideen préasentiert, mit denen diese Schwéchen behoben werden kénnen,
die aber aus Zeitgriinden in dieser Arbeit nicht mehr umgesetzt werden konn-

ten.

6.3.1 Strukturanalyse

In Tabelle 6.3 sind die Ergebnisse zu den in der Strukturanalyse erkannten
Kandidaten der oben genannten Entwurfsmusterimplementierungen zu finden.
Alle Entwurfsmusterimplementierungen wurden korrekt als Kandidaten der
jeweiligen Entwurfsmuster identifiziert. Die drei Strategy-Implementierungen
wurden jedoch aufgrund der sehr dhnlichen Strukturmuster sowohl als Stra-
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Plug-In ‘Anzahl Klassen‘

org.eclipse.core.resources_2.1.3 242
org.eclipse.jdt.core_2.1.3 /model|295

org.eclipse.jdt.ui_2.1.3 690
org.eclipse.jface.text_2.1.0 145
org.eclipse.jface_2.1.3 165

org.eclipse.swt_2.1.3/common |107
org.eclipse.swt_2.1.3/win32 54
org.eclipse.ui.workbench_2.1.3 |710

’Summe \2408 ‘

Tabelle 6.2: Analysierte Plug-Ins von ECLIPSE

tegy- als auch als State-Kandidaten identifiziert. Die State-Kandidaten sind
False-Positives.

Entwurfsmusterimpl. | Kandidat ‘Bewertung‘

Observer 1 Observer [16,56%
Observer 2 Observer [11,48%
Observer 3 Observer [60,82%
Strategy 1 Strategy |73,27%
State 73,27%
Strategy 2 Strategy |88,88%
State 88,88%
Strategy 3 Strategy [67,29%
State 67,29%

Tabelle 6.3: Ergebnisse der Strukturanalyse

Die Bewertung der Kandidaten auf Basis ihrer Ubereinstimmung mit
den Strukturmustern ist sehr unterschiedlich. Das Observer-Strukturmuster
enthélt mehr nicht notwendige Anteile als die Strategy- und State-Struktur-
muster. Daher sind hier zwischen den Kandidaten groflere Unterschiede in der
Bewertung zu finden. Auffillig ist, dass bei allen drei Strategy-Implementie-
rungen die erkannten Strategy- und State-Kandidaten jeweils die gleiche Be-
wertung erhalten haben. Allerdings lésst sich diese Tatsache durch die fast
identischen Strukturmuster erklaren.
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6.3.2 Verhaltensanalyse

In der Verhaltensanalyse konnten zwei der drei Strategy-Implementierungen
klar bestétigt werden. In Tabelle 6.4 sind die Ergebnisse zu den drei Strat-
egy-Implementierungen zu sehen. Die erste Strategy-Implementierung ist Teil
des Layout-Algorithmus der Benutzungsschnittstelle und wurde sehr héufig
ausgefithrt. Das Verhéltnis der akzeptierten zu den nicht-akzeptierten Traces
bestatigt mit 195 zu 14 deutlich den Strategy-Kandidaten. Dagegen wurde
beim State-Kandidaten kein einziger Trace akzeptiert, dafiir aber iiber 1200
Traces verworfen.

Entwurfs- |Kandidat|akzept.|verworfene|nicht akzept.|akzept. |durchschnittl.
musterimpl. Traces |Traces Traces Subtraces| Traceldnge
Strategy 1 |Strategy |195 14 69 7 5,6

State 0 1236 431 0 0,0
Strategy 2 |Strategy |2 10 4 0 48.5

State 0 22 6 0 0,0
Strategy 3 |Strategy |12 0 0 0 16,5

State 0 156 22 0 0,0

Tabelle 6.4: Ergebnisse der Verhaltensanalyse

Die dritte Strategy-Implementierung wurde nur sehr selten ausgefiihrt. Die
Strategie wird zur Sortierung von Elementen einer Sicht wie zum Beispiel eines
Projekt-Baumes verwendet. Allerdings ist klar zu erkennen, dass auch hier der
Strategy-Kandidat bestéatigt wurde. Es wurde kein Trace verworfen und die
durchschnittliche Liange der akzeptierten Traces ist zudem relativ hoch. Der
State-Kandidat wurde auch hier klar verworfen.

Bei der zweiten Strategy-Implementierung ist das Ergebnis nicht so deutlich.
Diese Strategie wird ebenfalls in Sichten verwendet, um Elemente aus der Sicht
heraus zu filtern. Nur zwei Traces des Strategy-Kandidaten wurden akzeptiert,
wobei sie jedoch eine sehr hohe durchschnittliche Lénge von 48,5 Methoden-
aufrufen aufweisen. Dagegen wurden aber zehn Traces verworfen. Bei néherer
Betrachtung des Kandidaten und der verworfenen Traces stellte sich heraus,
dass in einigen Fillen mehrere Filter gleichzeitig in einem Kontext benutzt
werden. Soll ein Element in der Sicht angezeigt werden, wird eine Anfrage an
den Kontext gestellt. Diese Anfrage wird vom Kontext an die Filter weiter ge-
geben. Dabei entscheidet zunéchst der erste Filter, ob das Element angezeigt
wird. Akzeptiert der Filter, wird die Anfrage an den néchsten Filter geschickt.
Dies wird solange wiederholt, bis kein Filter mehr iibrig ist, oder ein Filter
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das Element ablehnt. Lehnt immer der erste Filter das Element ab, verhalt
sich die Implementierung wie eine Strategy. Wird die Anfrage aber an mehrere
Filter geschickt, so verhilt sie sich wie eine Chain of Responsibility. Bei die-
sem Entwurfsmuster wird eine Anfrage solange in einer Kette von Objekten
weitergereicht, bis sich ein Objekt fiir die Anfrage verantwortlich zeigt und
sie bearbeitet. Es handelt sich bei diesem Kandidaten also entweder um eine
falsch dokumentierte Entwurfsmusterimplementierung oder um eine sehr frei
interpretierte Strategy-Implementierung.

Von den Observer-Kandidaten konnte keiner durch die Verhaltensanalyse
bestétigt werden. Die Griinde hierfiir werden im Folgenden erldutert.

6.3.3 Schwachen des Ansatzes

Bei der praktischen Anwendung sind einige Schwéchen des Ansatzes zu Ta-
ge getreten. Die Spezifikationssprache ist leider in einigen Féllen noch nicht
ausdrucksstark genug, um das Verhalten eines Entwurfsmuster passend zu be-
schreiben.

bp Observer J

|s:subiectCIass| |a:observerCIass| |b:observerCIass
T T T

L register()

register()

Qloop (1.1 E<__| notify/()

I update()

update()

| |
1 [
| |
| |
| [l
| |
| |
| |
o ! |
= |
| :l
| |
| '

Abbildung 6.1: Das Observer-Verhaltensmuster

In Abbildung 6.1 ist das im Praxistest verwendete Observer-Verhaltensmus-
ter zu sehen. Hier registrieren sich zwei Objekte des Typs observerClass bei
einem Objekt vom Typ subjectClass. Andert sich am subjectClass-Objekt et-
was, ruft es die Methode notify() auf, die daraufhin die beiden observerClass-
Objekte durch Aufruf der Methode update() benachrichtigt. Das Problem bei
diesem Verhaltensmuster ist die feste Anzahl der observerClass-Objekte. In Se-
quenzdiagrammen nach der UML 2.0, an denen die Spezifikationssprache fiir
Verhaltensmuster angelehnt ist, ist immer nur eine festgelegte Anzahl von Ob-
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jekten erlaubt. Es ist also nicht moglich, den Nachrichtenaustausch zwischen
einer beliebigen Anzahl von Objekten zu spezifizieren.

Zur Laufzeit eines Programms konnen sich jedoch beliebig viele observer-
Class-Objekte registrieren. Registrieren sich in einem konkreten Fall also zum
Beispiel drei observerClass-Objekte, so wird bei der Registrierung des dritten
Objektes der Trace abgelehnt, da ein zu diesem Zeitpunkt nicht erlaubter Me-
thodenaufruf beobachtet wird. Dieser Fall tritt immer dann auf, wenn sich nur
ein oder mehr als drei Objekte beim subjectClass-Objekt registrieren. Somit ist
die Wahrscheinlichkeit, dass ein Trace akzeptiert wird, gering.

Die Losung dieses Problems liegt in der Erweiterung der Spezifikationsspra-
che. Abbildung 6.2 zeigt eine modifizierte Version des Observer-Verhaltens-
musters in einer erweiterten Syntax. Hier wird ein mengenwertiges Verhaltens-
musterobjekt fiir die Observer eingesetzt. Dem Verhaltensmusterobjekt wird
nun bei der Verhaltensanalyse nicht mehr nur eine einzige Instanz zugeordnet,
sondern eine beliebig grofle Anzahl.

bp Observer )

| s:subjectClass | | set.observerClass IJ
| [

I register
|« gister()

|
| 1900 @) 1 oy

' update()

LYl

Abbildung 6.2: Das Observer-Verhaltensmuster in erweiterter Syntax

Die Nachrichten register() und update() kénnen nun so interpretiert werden,
dass es keine einzelnen Nachrichten sind, sondern eine Sequenz von Nachrich-
ten. Jede Instanz der Menge muss nun zur Laufzeit genau einmal die Methode
register() aufrufen. Genau so muss die Instanz, die dem subjectClass-Objekt
zugeordnet ist, auf jeder Instanz der Menge genau einmal die Methode upda-
te() aufrufen. Mit Hilfe eines solchen Verhaltensmusters hitten die Observer-
Kandidaten aus der Strukturanalyse bestéitigt werden konnen.

Das State-Verhaltensmuster (Seite 59, Abbildung 4.1) weist eine dhnliche
Schwiiche auf. Das State-Entwurfsmuster beschreibt den Austausch verschiede-
ner Zusténde, um Anfragen an einen Kontext abhéngig von dessen Zustand be-
arbeiten zu konnen. Die Anzahl der zur Laufzeit verwendeten Zustande ist aber
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nicht festgelegt. Das im Praxistest verwendete Verhaltensmuster beschreibt je-
doch nur einen einzigen Zustandswechsel zwischen zwei Zusténden. Findet ein
weiterer Zustandswechsel statt, wird der Trace filschlicherweise verworfen. Al-
lerdings wird ein Subtrace dieses Traces akzeptiert.

M| client || c:context ||a:abstractState
I I I

I
opt ) |setState(s)

| |
sesiac), | =
I . I
| loop (1)) i :
loop (1)1 request) 1o
! e
| ’ !
AUl serstare(s) !
| ¢ %
: }:| setState(s) :
| ‘ !
| :
| ' '
I I !

Abbildung 6.3: Das State-Verhaltensmuster in erweiterter Syntax

In Abbildung 6.3 ist ein weiterer Vorschlag zur Erweiterung der Syntax zu
sehen, mit dem diese Schwéche behoben werden kann. In den Nachrichten wer-
den zusétzlich Argumente spezifiziert. Hier wurde der Methode setState das
Argument s hinzugefiigt. Nach dem Wechsel des Zustands in der Alternati-
ve, ausgelost durch den Methodenaufruf setState(s) auf dem Kontextobjekt c,
wird dem Zustandsobjekt des Verhaltensmusters eine andere Instanz zugewie-
sen. Semantisch bedeutet dies, dass sich die Identitéat des Verhaltensmusterob-
jekts a:abstractState dndert. Wird nun die d&uflere Schleife wiederholt, so wird
der Methodenaufruf handle() auf einer anderen Instanz als zuvor ausgefiihrt.
Die Instanz wird durch das Argument des setState(s)-Aufrufs festgelegt. So
kann man beliebig viele Zustandswechsel zwischen beliebig vielen Zustdnden
in einem Verhaltensmuster spezifizieren. Die Fehlinterpretation mehrfacher Zu-
standswechsel wie zuvor diskutiert wiirde damit korrigiert und die Prézision
der Verhaltensanalyse erhoht.
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6.4 Zusammenfassung

Die Anwendung der struktur- und verhaltensbasierten Entwurfsmustererken-
nung auf ein praxisnahes Softwaresystem stofit auf einige praktische Proble-
me. Das Kapitel beschreibt diese Probleme und présentiert zugleich Losun-
gen. Zunéichst einmal ist ganz allgemein die Auswahl der Eingabedaten fiir
dynamische Analysen ein zentrales Problem. Das in der Praxis beobachtete
Verhalten kann immer nur einen Bruchteil des theoretisch moglichen Verhal-
tens darstellen. Eine moglichst reprisentative Auswahl der Eingabedaten ist
durch eine Beobachtung eines produktiv eingesetzten Softwaresystems moglich.
Um aber die Beeinflussung durch die dynamische Analyse moglichst gering zu
halten, wird die Software-Tomographie nach [BOHO02] fiir die Verhaltenserken-
nung vorgeschlagen. Dabei wird die Gesamtanalyse auf mehrere Teilanalysen
aufgeteilt. Diese werden auf verschiedenen Instanzen des zu untersuchenden
Softwaresystems durchgefiihrt. So bleibt der Einfluss der dynamischen Ana-
lyse auf die Laufzeit des produktiven Softwaresystems gering und man erhélt
repréasentative Daten.

Fiir einen Praxistest der Entwurfsmustererkennung wurde ein Szenario
préasentiert, fiir das zunéchst einige Voraussetzungen festgelegt wurden. Das
zu untersuchende System soll grofl sein und zudem moglichst auf Basis von
Entwurfsmustern implementiert worden sein, die auch dokumentiert sind. So
kénnen die Ergebnisse der Entwurfsmustererkennung mit der Realitdt vergli-
chen werden. Als Softwaresystem wurde ECLIPSE 2.1 ausgewéhlt.

Auf dieses System wurde die Entwurfsmustererkennung angewendet. Die
Strukturanalyse konnte einige der dokumentierten Entwurfsmusterimplemen-
tierungen korrekt identifizieren, fand jedoch auch False-Positives. Von den
in der Strukturanalyse korrekt erkannten Kandidaten konnte die Verhaltens-
analyse einige bestétigen und die False-Positives widerlegen. Andere korrekte
Kandidaten konnten jedoch aufgrund ungeniigender Verhaltensmuster nicht
bestétigt werden.

Die ungeniigende Spezifikation der Verhaltensmuster konnte auf eine in be-
stimmten Féllen ungeniigend ausdrucksstarke Spezifikationssprache zuriick-
gefithrt werden. Gleichzeitig wurden jedoch Ideen zu einer moglichen Erwei-
terung der Spezifikationssprache vorgestellt, mit denen die Einschrinkungen
aufgehoben werden kénnen. Aus Zeitgriinden konnten diese Ideen aber nicht
mehr im Rahmen dieser Arbeit umgesetzt werden.
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Werkzeugunterstiitzung

In diesem Kapitel wird die technische Umsetzung der in den vorhergehenden
Kapiteln vorgestellten Konzepte durch das Werkzeug RECLIPSE behandelt.
Zunachst wird im ersten Teil des Kapitels die Einbettung des Werkzeugs in
die Entwicklungsumgebung ECLIPSE erldutert. Im zweiten Teil des Kapitels
werden die Architektur und die wichtigsten Komponenten der Entwurfsmuste-
rerkennung beschrieben, bevor im dritten Teil die Benutzungsschnittstelle mit
Hilfe eines Beispiels vorgestellt wird.

7.1 Entwicklungsumgebung

Die im Rahmen dieser Arbeit entwickelte struktur- und verhaltensbasierte Ent-
wurfsmustererkennung baut auf der Entwicklungsumgebung FujABA [Fuj| auf.
FuiABA wird seit 1998 am Fachgebiet Softwaretechnik der Universitit Pader-
born entwickelt. FUJABA ist eine modellbasierte Entwicklungsumgebung auf
Basis von UML, Story Driven Modelling! (SDM) und Graphtransformationen,
die von Dritten durch Plug-Ins beliebig erweitert werden kann [BGNT04]. Zu
den Grundfunktionen gehort eine JAVA-Codegenerierung aus den mit FUJABA
spezifizierten Modellen.

In den letzten Jahren fand das Werkzeug ECLIPSE [Ecl] in der Industrie eine
immer grofere Verbreitung. ECLIPSE stellt in der Grundversion lediglich ein
durch Plug-Ins erweiterbares Framework dar. Auf Basis von ECLIPSE kénnen
aber beliebige Anwendungen durch unterschiedliche Konfigurationen von Plug-
Ins geschaffen werden. Eine weit verbreitete Konfiguration von ECLIPSE ist die
JAava-Entwicklungsumgebung JDT (Java Development Tooling).

1Story Driven Modelling ist eine besondere Form der Modellierung von Algorithmen durch
UML-Objektdiagramme und Graphtransformationen
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FusaBA wurde als Plug-In in ECLIPSE integriert. Die so entstandene
Entwicklungsumgebung aus EcCLIPSE, JDT und FujABA wird FuJjABA4-
EcrLipsE genannt. Das Werkzeug FUJABA4ECLIPSE vereint somit eine mo-
dellbasierte Entwicklung mit JAvVA-Codegenerierung und einer JAvVA-Entwick-
lungsumgebung.

In der vorliegenden Arbeit wurde FusaABA4ECLIPSE durch die struktur- und
verhaltensbasierte Entwurfsmustererkennung zu einem Reverse-Engineering-
Werkzeug erweitert. Die bereits existierende strukturbasierte Entwurfsmuste-
rerkennung [Wen01, Nie04] ist, wie in Kapitel 3 beschrieben, in dieser Arbeit
erweitert und auf FUJABA4ECLIPSE portiert worden. Die neu entwickelte, ver-
haltensbasierte Entwurfsmustererkennung ist ebenfalls auf Basis von FuJa-
BA4ECLIPSE in Form von ECLIPSE-Plug-Ins realisiert worden. Die Konfigura-
tion aus FUJABA4ECLIPSE und den Plug-Ins zur struktur- und verhaltensba-
sierten Entwurfsmustererkennung wird RECLIPSE genannt.

7.2 Architektur

Die struktur- und verhaltensbasierte Entwurfsmustererkennung ist modular
auf Basis verschiedener Komponenten aufgebaut. Abbildung 7.1 zeigt die wich-
tigsten Komponenten und deren Abhéngigkeiten untereinander. Die Kompo-
nenten sind als ECLIPSE-Plug-Ins entwickelt worden. Die im Diagramm ge-
nannten Komponenten enthalten nur die Modelle und die Logik. Zu fast jeder
der Komponenten gibt es jeweils noch eine zusétzliche Komponente, die ih-
re Benutzungsschnittstelle enthilt. Im Folgenden wird jede der im Diagramm
genannten Komponenten kurz erlautert. Details zu den Komponenten, wie
Abhéngigkeiten, Ein- und Ausgaben sowie Versionen, kénnen im Anhang C.1
nachgeschlagen werden.

e de.uni_paderborn.fujaba: Dies ist die Hauptkomponente, in der die in-
tegrierte Entwicklungsumgebung FUJABA enthalten ist. Sie stellt unter
anderem die Pakete ClassDiagrams (Abbildung 2.1, Seite 18) zur Spezi-
fikation von Klassendiagrammen und Structure zur Représentation der
Struktur (Abbildung 2.2, Seite 19) zur Verfiigung. Allerdings sind diese
beiden Pakete in FUJABA aus dem in Abschnitt 2.3.1 genannten Grund
identisch.

e org.reclipse.javaast: Stellt das Paket JavaAST als Modell des abstrak-
ten Syntaxbaums fiir JAVA-Methodenriimpfe zur Verfiigung.

146



7.2 Architektur
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Abbildung 7.1: Die Komponenten der struktur- und verhaltensbasierten

Entwurfsmustererkennung

e org.reclipse.javaparser: Stellt einen Parser zur Verfiigung, der den JA-

VA-Quelltext des zu untersuchenden Softwaresystems in eine Struktur auf
Basis des Strukturmodells umwandelt.

org.reclipse.tracing: Stellt das Paket Behavior (Abbildung 3.9, Seite
52) zur Reprisentation von Tracegraphen bereit. Stellt aulerdem das
Paket TraceDefinition zur Spezifikation der zu iiberwachenden Methoden
eines Softwaresystems zur Verfiigung.

org.reclipse.tracer: Stellt ein Werkzeug zum Debugging von JAVA-
Programmcode zur Verfiigung. Das Werkzeug erzeugt Breakpoints zur
Uberwachung der Methodenaufrufe wihrend der Ausfithrung des Pro-
gramms. Die beobachteten Methodenaufrufe kéonnen entweder in eine
Datei zur Offline-Analyse gespeichert werden, oder direkt in einer Online-
Analyse der Verhaltensanalyse iibergeben werden.
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org.reclipse.instrumentation: Stellt ein Werkzeug zur Instrumentie-
rung von JAVA-Bytecode bereit. Das Werkzeug fiigt zusitzlichen Pro-
grammecode ein, der zur Uberwachung von Methodenaufrufen dient.

org.reclipse.instrumentation.runtime: Stellt die Laufzeitumgebung
fiir den instrumentierten Programmcode zur Verfiigung. Wird als Biblio-
thek dem instrumentierten Programmcode hinzugefiigt. Die beobachte-
ten Methodenaufrufe kénnen entweder in eine Datei zur Offline-Analyse
gespeichert werden, oder direkt in einer Online-Analyse der Verhaltens-
analyse iibergeben werden.

org.reclipse.patterns.structure.specification: Stellt zur Spezifikati-
on von Strukturmustern das Paket StructuralPatterns (Abbildung 4.7,
Seite 68) zur Verfligung.

org.reclipse.patterns.structure.inference: Enthélt den Algorithmus
zur Strukturanalyse (Abbildung 2.10, Seite 28). Dazu verwendet die
Komponente Erkennungsmaschinen fiir Strukturmuster, um in der Struk-
tur des zu untersuchenden Softwaresystems nach Kandidaten fiir Ent-
wurfsmusterimplementierungen zu suchen. Sie stellt auflerdem das Paket
Annotations (Abbildung 5.16, Seite 132) zur Annotation der Kandidaten
bereit. Fiir die Erkennungsmaschinen wird eine Schnittstelle definiert.

org.reclipse.patterns.structure.generator: Stellt einen Algorithmus
zur Verfiigung, um aus den Strukturmustern die Erkennungsmaschinen
ZUu generieren.

org.reclipse.patterns.behavior.specification: Stellt das Paket Beha-
vioralPatterns (Abbildung 4.5, Seite 64) zur Spezifikation der Verhaltens-
muster zur Verfiigung.

org.reclipse.patterns.behavior.inference: Enthélt den Algorithmus
zur Verhaltensanalyse (Abbildung 5.1, Seite 106). Die Komponente ver-
wendet endliche Automaten, um im Tracegraphen nach Verhaltensmu-
stern zu suchen. Sie stellt auflerdem die Pakete BehaviorAnalysis (Ab-
bildung 5.2, Seite 111) und Automaton (Abbildung 5.3, Seite 113) zur
Verfiigung.

org.reclipse.patterns.behavior.generator: Stellt den Algorithmus
aus Abschnitt 4.4 zur Verfiigung, um aus den Verhaltensmustern end-
liche Automaten zu generieren. Erzeugt auflerdem aus dem Ergebnis der
Strukturanalyse die Trace-Definition zur Uberwachung des Programms.



7.3 Benutzungsschnittstelle

7.3 Benutzungsschnittstelle

Im Folgenden wird die Benutzungsschnittstelle von RECLIPSE vorgestellt.
Zundchst werden einige allgemeine Elemente der Benutzungsschnittstelle
erlautert. Es folgen die Benutzungsschnittstellen zur Spezifikation der Struk-
tur- und der Verhaltensmuster. Anschliefend wird der Prozess der struktur-
und verhaltensbasierten Entwurfsmustererkennung anhand des Beispiels des
Mediaplayers aus Abschnitt 2.3.1 durchgefithrt und daran die Benutzungs-
schnittstelle der Entwurfsmustererkennung préasentiert. Ein detailliertes Hand-
buch zu RECLIPSE findet sich im Anhang B.

7.3.1 Elemente der Benutzungsschittstelle

Die Oberflache der Entwicklungsumgebung ECLIPSE ist aus einer Reihe von
verschiedenen Sichten und Editoren konfigurierbar, die von Plug-Ins zur
Verfiigung gestellt werden. Solche Konfigurationen werden in Perspektiven zu-
sammengefasst. Die Sichten und Editoren einer Perspektive sind iiblicherweise
so zusammengestellt, dass mit ihnen eine bestimmte Aufgabe durchgefiihrt
werden kann. Sie lassen sich aber auch beliebig anordnen, verkleinern oder
vergroflern, so dass der Benutzer die Oberflache individuell nach seinen Bediirf-
nissen anpassen kann.

= Fujaba4Eclipse - Eclipse SDK =JoJ&d
File Edit Mavigate Search Project Run Reclpse Window Help
i il = P Oy ¥ 3 &= = 55| % FuishatEdipse | & Java
L Project Explarer 23 =0 =0
=
= <)==D
= 12 MediaPlayer |
= src
+B, JRE System Library [jrel.5.0_06]
+3f ParsedModel.fpr.ge
=I1=F PatternSpecification
#--3f PatternsCatalog.fpr.gz
EE Outline 23 = O || = properties 23 ¥ =0
An outline is not available, "
Advanced MediaPlayer
Property Value ’\
= Info
derived false |
editable true )
ov 1= MediaPlayer

Abbildung 7.2: Die Benutzeroberfliche von RECLIPSE

Abbildung 7.2 zeigt die Perspektive, die von FUJABA4ECLIPSE zur Ver-
fiigung gestellt wird. Die Oberflache ist in verschiedene Bereiche fiir die Sichten
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und Editoren aufgeteilt. Im linken, oberen Teil der Oberflache ist der Project
Explorer zu sehen. FUIABA4ECLIPSE ist eine modellbasierte Entwicklungsum-
gebung, die Modelle in Modelldateien organisiert. Mit dem Project Explorer
kénnen die Modelle einer Modelldatei durchsucht und zur Ansicht oder zum
Bearbeiten ausgewéhlt werden.

Der rechte, obere Teil der Oberflidche ist dem jeweiligen Editor vorbehalten,
der zum Beispiel zum Bearbeiten eines Modells oder JAVA-Quelltextes verwen-
det wird. Links unten ist die Qutline-Sicht angeordnet, die eine Ubersicht iiber
das aktuell bearbeite Modell oder den Quelltext bietet. Rechts unten ist der
Properties-Editor zu sehen, mit dem zum Beispiel die Eigenschaften einzelner
Modellelemente gedndert werden konnen.

Die Funktionen von RECLIPSE sind in die Perspektive von FUJABA4ECLIPSE
integriert und lassen sich iiber das Menii Reclipse oder iiber Kontext-Meniis
des Modells aufrufen.

7.3.2 Spezifikation der Struktur- und Verhaltensmuster

Im Prozess der struktur- und verhaltensbasierten Entwurfsmustererkennung
geht der Reverse-Engineer iiblicherweise von einem bereits existierenden Ka-
talog von Struktur- und Verhaltensmustern aus. Dieser Katalog wird dann an
die Eigenheiten des zu untersuchenden Softwaresystems angepasst.

Strukturmuster

Abbildung 7.3 zeigt die Entwicklungsumgebung RECLIPSE. Im Project Explo-
rer auf der rechten Seite sind die in der aktuell gedffneten Modelldatei vor-
handenen Strukturmuster aufgelistet. Eines dieser Strukturmuster, das State-
Strukturmuster, wird im Editor rechts oben angezeigt und bearbeitet.

Auf der rechten Seite des Editors befindet sich eine Palette — hier aus Platz-
griinden eingeklappt — die eine Reihe von Werkzeugen fiir den jeweiligen Edi-
tor zur Verfiigung stellt. Die Palette des Strukturmuster-Editors bietet zum
Beispiel Werkzeuge zum Hinzufiigen von Strukturmusterobjekten, von Anno-
tationen oder auch von Verbindungen. Mit dem Properties-Editor werden die
Eigenschaften des Strukturmusters oder einzelner Elemente des Strukturmu-
sters gedndert. Links unten in der Outline-Sicht ist eine verkleinerte Ansicht
des Editors zum Uberblick abgebildet.

Nach der Bearbeitung werden aus den Strukturmustern die Erkennungsma-
schinen fiir die Strukturanalyse generiert. Aus den Strukturmustern werden
Graphtransformationsalgorithmen erzeugt, die auf dem Strukturmodell des zu
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Abbildung 7.3: Die Spezifikation des State-Strukturmusters in RECLIPSE

untersuchenden Softwaresystems arbeiten. Die Graphtransformationsalgorith-
men werden in JAvA-Klassen iibersetzt und stehen dann der Strukturanalyse

zur Verfiigung. Details zur Generierung der Graphtransformationsalgorithmen
finden sich in [Nie04].

Verhaltensmuster

Die Spezifikationen der zu den Strukturmustern gehdrigen Verhaltensmuster
befinden sich in derselben Modelldatei wie die Strukturmuster. In Abbildung
7.4 ist die Spezifikation des State-Verhaltensmusters zu sehen. Uber die Pa-
lette auf der rechten Seite des Editors lassen sich neue Verhaltensmusterob-
jekte, Nachrichten oder auch kombinierte Fragmente dem Verhaltensmuster
hinzufiigen. Die Eigenschaften der Elemente eines Verhaltensmusters werden
ebenfalls iiber den Properties-Editor gedndert, der hier aber aus Platzgriinden
ausgeblendet ist. Die Typnamen der Verhaltensmusterobjekte und die Metho-
dennamen der Nachrichten wurden der Spezifikation des State-Strukturmusters
aus Abbildung 7.3 entnommen.
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Abbildung 7.4: Die Spezifikation des State-Verhaltensmusters in RECLIPSE

Fiir die Verhaltensanalyse werden aus den Verhaltensmustern, wie in Ab-
schnitt 4.4 spezifiziert, Automaten generiert, denen das Modell aus Abbildung
5.3 (Seite 113) zugrunde liegt. Die Automaten eines Kataloges werden deskrip-
tiv in einer Datei gespeichert. Die formale Definition des Dateiformats findet
sich in der technischen Dokumentation im Anhang C.2.4.

7.3.3 Strukturbasierte Entwurfsmustererkennung

Als Voraussetzung zur strukturbasierten Entwurfsmustererkennung muss zu-
néchst der Quelltext des zu untersuchenden Softwaresystems unter RECLIP-
SE in eine Modelldatei importiert werden. Die Struktur des Softwaresystems
steht nun den Analysen zu Verfiigung. Anschlieend wird die strukturbasierte
Entwurfsmustererkennung unter Angabe eines Katalogs von Strukturmustern
gestartet. In Abbildung 7.5 ist das Ergebnis der Analyse zu sehen.

Der Editor auf der rechten Seite zeigt einen Ausschnitt des Klassendia-
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Abbildung 7.5: Das Ergebnis der Strukturanalyse

gramms zum Mediaplayer. Im Klassendiagramm werden auflerdem die An-
notationen visualisiert, die im Laufe der strukturbasierten Entwurfsmusterer-
kennung erzeugt wurden. Der besseren Ubersichtlichkeit wegen sind nur die
wichtigsten beiden Annotationen eingeblendet worden. Das Gesamtergebnis
der strukturbasierten Entwurfsmustererkennung ist in der Sicht Annotations
rechts unten einzusehen. Darin sind alle Annotationen mit weiteren Informatio-
nen enthalten. Meldungen, die wihrend des strukturbasierten Erkennungspro-
zesses ausgegeben werden, wie Angaben iiber Prozessschritte oder identifizierte
Strukturmuster, sind in der Sicht Structural Inference Console zu finden.

Die Annotationen werden nach der Strukturanalyse zur Vorbereitung der
verhaltensbasierten Entwurfsmustererkennung in eine Datei exportiert. Die
Spezifikation des Dateiformats ist in Anhang C.2.1 zu finden. Des Weiteren
muss eine Trace-Definition exportiert werden, die die Informationen enthélt,
welche Methoden des Strukturmodells zur Laufzeit des Programms iiberwacht
werden miissen. Das Dateiformat ist in Anhang C.2.2 spezifiziert.
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7.3.4 Verhaltensbasierte Entwurfsmustererkennung

Ein wesentlicher Bestandteil der verhaltensbasierten Entwurfsmustererken-
nung ist die Gewinnung der Traces. Wie in Abschnitt 5.2 erlautert, stehen dazu
zwei verschiedene Verfahren zur Verfiigung, das Debugging und die Instrumen-
tierung. Im Folgenden wird die Realisierung der beiden Verfahren in RECLIPSE
vorgestellt. Des Weiteren wird erlautert, wie die verhaltensbasierte Entwurfs-
mustererkennung im Offline-Modus ausgefiihrt wird. Die Ergebnisse werden
anschliefend in einer Sicht visualisiert und konnen vom Reverse-Engineer un-
tersucht werden.

Debugging

Zum Debugging wurde der RECLIPSE TRACER entwickelt [WME04, MWO05].
Das zu untersuchende Softwaresystem wird durch den RECLIPSE TRACER ge-
startet und im Hintergrund durch den Debugger {iberwacht. Das zu untersu-
chende Programm wird wie gewohnt im Vordergrund ausgefiihrt. Die Trace-
Definition bestimmt, welche Methoden wéahrend der Ausfithrung iiberwacht
werden.

-

= Reclipse Tracer - TraceDefinition. xtracedefinition - Eclipse SDK E]@
Eile Edit Mavigate Search Project Run  Redipse ‘window Help
B AL MR )= R N (=R [ - FujabadEcipse | 0% Recipse Tracer | & Java
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SRC] = E Consider Trace
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@ mediaplayer, Streamstate +- @ setStateimediaplayer. Streamstate)
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| run{mediaplayer.Stream): £ executions. +- @ execute{mediaplayer. Stream, int)
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@ StreamPlayingt)
=-@ mediaplayer StreamPaused
@ execute(mediaplayer. Stream, int)
@ StreamPaused()
Trace Definiton | Source:

2 Tracer 2 _Console 5

@ Method 'mediaplayer . StreamPlaying. run{mediaplayer . Stream)' is monitored. ~
@ Class 'mediaplayer.StreamPlaying loaded.

@ Method 'mediaplayer,StreamPaused.executeimediaplayer, Stream, int)' is monitored,

@ Method 'mediaplayer . StreamPaused.run{mediaplayer . Stream)' is monitored.

@ Class 'mediaplayer. StreamPaused loaded,

&1 virtual Machine stopped, ~

PR

Abbildung 7.6: Der RECLIPSE TRACER nach dem Debuggen des Mediaplayers
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Abbildung 7.6 zeigt den RECLIPSE TRACER nach dem Debuggen des Media-
players. Der RECLIPSE TRACER stellt eine weitere Perspektive in ECLIPSE zur
Verfiigung, in der die Trace-Definition angesehen und gedndert werden kann
und in der die Ausgaben des RECLIPSE TRACERS angezeigt werden. Im Edi-
tor auf der rechten Seite wird die Trace-Definition als ein Baum dargestellt,
in dem die zu iiberwachenden Methoden jeweils unterhalb ihrer Klasse aufge-
listet sind. Rechts unten ist die Sicht Tracer geoffnet, die Informationen iiber
iiberwachte Klassen, Methoden und den Zustand des iiberwachten Programms
wahrend des Debuggens ausgibt.

Auf der linken Seite zeigt die Sicht Ezecution Monitor an, welche der zu
iiberwachenden Methoden wihrend des Debuggens bereits ausgefithrt wurden
und gegebenenfalls, wie hiufig sie ausgefiihrt wurden. Wird das zu untersu-
chende Programm durch den Reverse-Engineer ausgefiihrt, kann er hier able-
sen, ob geniigend Daten fiir die Verhaltensanalyse gesammelt wurden.

Der RECLIPSE TRACER kann den Trace direkt an die verhaltensbasierte Ent-
wurfsmustererkennung weiter reichen, oder in eine Datei zur spéiteren Analyse
protokollieren. Auch eine gleichzeitige Analyse und Protokollierung ist moglich.
Das Dateiformat des aufgezeichneten Traces ist in Anhang C.2.3 spezifiziert.

Instrumentierung

Zur Instrumentierung des zu untersuchenden Softwaresystems steht in RE-
CLIPSE ein so genannter Wizard zur Verfiigung. Ein Wizard besteht aus einer
Reihe von Dialogen, die nacheinander verschiedene Eingaben vom Benutzer
abfragen und anschliefend eine Funktion auf diesen Eingabedaten ausfiihren.
Im Falle der Instrumentierung fragt der Wizard nach dem {iibersetzten Pro-
grammcode des Softwaresystems, der Trace-Definition sowie einigen weiteren
Informationen und erzeugt daraus den instrumentierten Programmcode.

In Abbildung 7.7 sind zwei der Dialoge des Instrumentierung-Wizards zu
sehen. Wie beim Debuggen kann der Reverse-Engineer auswihlen, ob der
durch den instrumentierten Programmcode gewonnene Trace direkt an die
verhaltensbasierte Entwurfsmustererkennung weiter gegeben und in eine Datei
protokolliert werden soll. Die Instrumentierung fiigt dann zusétzlichen Pro-
grammcode in das zu untersuchende Softwaresystem ein. Zusétzlich werden
weitere fiir die Protokollierung und die verhaltensbasierte Entwurfsmusterer-
kennung erforderlichen Bibliotheken dem zu untersuchenden Softwaresystem
hinzugefiigt.

Die Ausfiihrung des instrumentierten Programms erfolgt wie gewohnt.
Wihrend der Ausfithrung werden je nach Konfiguration der Instrumentierung
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= Instrument Java byte code = Instrument Java byte code
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Abbildung 7.7: Der Instrumentierungs-Wizard

die beobachteten Methodenaufrufe in eine Trace-Datei protokolliert und durch
die verhaltensbasierte Entwurfsmustererkennung verarbeitet.

Verhaltenserkennung

Die verhaltensbasierte Entwurfsmustererkennung wird entweder, wie in den
vorherigen Abschnitten beschrieben, in einem Online-Modus wéhrend der
Ausfithrung des zu untersuchenden Softwaresystems, oder im Offline-Modus
nach der Ausfithrung durchgefiihrt.

In Abbildung 7.8 ist der Dialog zum Starten der verhaltensbasierten Ent-
wurfsmustererkennung im Offline-Modus zu sehen. Der Reverse-Engineer muss
als Eingabe die Datei angeben, die die Annotationen der Strukturanalyse
enthilt, also die Kandidaten. Des Weiteren wird der durch Debugging oder
Instrumentierung aufgezeichnete Trace, sowie der Katalog mit den Verhaltens-
mustern benotigt. Das Ergebnis der verhaltensbasierten Entwurfsmustererken-
nung wird in einer Datei festgehalten. Das Dateiformat ist in Anhang C.2.5
spezifiziert.

Das Ergebnis wird durch die Sicht Behavioral Analysis Result visualisiert.
Abbildung 7.9 zeigt diese Sicht mit dem Ergebnis der verhaltensbasierten Ent-
wurfsmustererkennung zum Mediaplayer-Beispiel. Am oberen Rand der Sicht
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X

= Start behavioral patterns recognition

Configure the behavioral patterns recognition

Select the trace graph file, the annotations fils, the behavioral
patterns file, and the output file.

Choose a structural annotations file:

CiiEvaluationiResulksiStructur aldnnotations, zannotations

Choose a trace file:

CHiEvaluationiResulksi Trace, ztrace M

Choose a behavioral patterns catalog file:

C:\Evaluation|Catalogs|EehavioralP atkernsCatalog. xml

Choose a result file:
CHiEvaluationiResulksiBehavioralanalysisResult, xml

Log matched traces

@

Abbildung 7.8: Starten der Verhaltensanalyse im Offline-Modus

kann ein Kandidat aus der Menge aller Kandidaten ausgew&hlt werden. In
diesem Beispiel wurde der State-Kandidat des Mediaplayers gewéhlt. In der
linken oberen Hilfte wird das Ergebnis der strukturbasierten Entwurfsmuste-
rerkennung angezeigt. In einer Tabelle ist die Abbildung der Verhaltensmuster-
objekte des State-Verhaltensmusters auf die Elemente der Struktur angegeben.
In der Mitte der Sicht ist eine Zusammenfassung der Ergebnisse der verhal-
tensbasierten Entwurfsmustererkennung zu diesem Kandidaten zu sehen. Es
wird die Anzahl der insgesamt getriggerten Traces, der daraus akzeptierten,
verworfenen und nicht akzeptierten Traces angegeben. Ferner wird die Anzahl
der verworfenen und nicht akzeptierten Traces genannt, die einen akzeptierten
Subtrace enthalten, sowie die durchschnittliche Lange der akzeptierten Traces.

In diesem Fall wurde insgesamt acht Mal die Uberpriifung eines Traces durch
einen Automaten ausgeltst. Ein Trace wurde akzeptiert, fiinf verworfen und
zwei weitere nicht akzeptiert. Allerdings wurden in zwei der verworfenen und
nicht akzeptierten Traces Subtraces beobachtet, die akzeptiert wurden. Die
durchschnittliche Linge der akzeptierten Traces und Subtraces betrug fiinf
Methodenaufrufe.

Aus den beobachteten Traces zu einem Kandidaten kann auf der rechten
Seite der Sicht ein Trace ausgewéhlt werden, der genauer untersucht werden
kann. Es wird zu dem ausgewéhlten Trace angegeben, ob er akzeptiert, verwor-
fen oder nicht akzeptiert wurde und ob ein Subtrace dieses Traces akzeptiert
wurde. Auflerdem wird die Lénge des akzeptierten Traces beziehungsweise Sub-
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Abbildung 7.9: Das Ergebnis der Verhaltensanalyse

traces genannt. Die Bindung der Verhaltensmusterobjekte an die Instanzen zur
Laufzeit des untersuchten Programms wird in einer Tabelle angegeben.

In der unteren Hélfte wird der ausgewéhlte Trace als Sequenzdiagramm dar-
gestellt. Das Sequenzdiagramm enthélt die vom Automaten konsumierten Me-
thodenaufrufe. Methodenaufrufe, die vom Automaten ignoriert wurden, wer-
den nicht dargestellt.

Analyse der Ergebnisse

In Abbildung 7.10 ist ein verworfener Trace ausgewahlt worden. Die Visualisie-
rung des Traces hilft zum Beispiel festzustellen, warum er verworfen wurde. In
diesem Fall besteht der Trace nur aus zwei Methodenaufrufen. Der erste Me-
thodenaufruf 1oste die Uberpriifung des Traces durch den Automaten fiir das
State-Verhaltensmuster (Abbildung 4.1, Seite 59) aus. Der zugehorige Trigger
aus dem Verhaltensmuster ist die Nachricht client—(c:context).setState(). Die-
se Nachricht geht vom untypisierten Verhaltensmusterobjekt client aus. Hier
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wurde die Instanz 72 vom Typ StreamPlaying an client gebunden, wie der Ta-
belle in der Mitte rechts zu entnehmen ist. Nach dem Verhaltensmuster muss
nun die néchste Nachricht, der request-Aufruf auf dem Verhaltensmusterobjekt
c:context von client ausgefiihrt werden. Allerdings wird hier der request-Aufruf
durch eine andere Instanz ausgefiihrt, was zum Verwerfen des Traces fiihrt.

= FujabadEclipse - Eclipse SDK =Jol&d
File Edit Mavigate Search Project RBun Reclipse Window Help

e FrRENL* MR b= R v i 5 &) Java | % Fujabatidipse |03 Reclipse Tracer
Annatations | Structural Inference Cansole | [55 Behavioral Analysis Result &3 = =7

Design Pattern Candidates

State 63,31% (handle=execute(mediaplayer. Stream, int}; abstractState=mediaplayer StreamState; context=mediaplayer.Stream; setState=setState{mediaplayer Strear |+ |

Struckural Analysis Results Eiehavioral Analysis Resulks
Fuzzy Belief: 63,31% Traces: & Trace 17 v

Structural Pattern Varisble | Structural Madel Element v accepted: 1 . Tivee s i)

handle execute{mediaplayer. Stream, int) W rejected: 5

abstractState mediaplayer, Streamstate Behavioral Pattern Object | Instance

?  not accepted: z

conkext mediaplayer, Stream c 65

setState setStateimediaplaver Streamsta. .. accepted subtraces: 2 client 7z

request executeling) werage length of

accepted (sub-Jtraces: 5.0
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sd Trace 17)

‘ T2:mediaplayer.StreamPaused | 65:mediaplayer.Stream 68:mediaplayer.Player

setStatelmediaplayer, StreamState)

execubelint)

|
&

Abbildung 7.10: Ein verworfener Trace

Wenn man den Trace jedoch genauer betrachtet, stellt man fest, dass er das
State-Verhaltensmuster nicht verletzt. Es ist ein Subtrace des akzeptierten Tra-
ces aus Abbildung 7.9. Der Methodenaufruf setState(mediaplayer.StreamState)
wird aber leider durch den Automaten filschlicherweise als die triggernde
Nachricht client—(c:context).setState() des State-Verhaltensmusters interpre-
tiert.

Dieses False-Positive liele sich verhindern, wenn das State-Verhaltensmuster
optimiert wird. Die erste, optionale Nachricht client—(c:context).setState() ist
nicht entscheidend zum Erkennen eines State-Entwurfsmusters. Entscheidend
ist vielmehr der Zustandswechsel, der durch den aktuellen Zustand oder dem
Kontext durchgefiihrt werden muss. Daher kann die erste, optionale Nachricht
aus dem State-Verhaltensmuster entfernt werden. Das fithrt dazu, dass die
Uberpriifung des Verhaltensmusters nur noch durch die eindeutige Nachricht
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client—(c:context).request() getriggert wird und so die Zahl der False-Positives
reduziert wird.

7.4 Zusammenfassung

Die struktur- und verhaltensbasierte Entwurfsmustererkennung ist vollsténdig
implementiert worden. Das entstandene Werkzeug RECLIPSE wurde in die weit
verbreitete Entwicklungsumgebung ECLIPSE integriert. Der gesamte Prozess
der struktur- und verhaltensbasierten Entwurfsmustererkennung wird von RE-
CLIPSE unterstiitzt, angefangen bei der graphischen Spezifikation der Struktur-
und Verhaltensmuster, iiber die Struktur- und Verhaltensanalyse, dem Debug-
gen und der Instrumentierung des Programmecodes, bis hin zur Visualisierung
der Ergebnisse sowohl der Struktur- als auch der Verhaltensanalyse. Im An-
hang B ist ein Handbuch zur Benutzung von RECLIPSE zu finden, das im De-
tail alle notwendigen Schritte erklart, um den Prozess in RECLIPSE vollsténdig
durchzufiihren.
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Verwandte Arbeiten

In diesem Kapitel wird der aktuelle Stand der Forschung in den Bereichen der
Entwurfsmustererkennung und der dynamischen Verhaltensanalysen betrach-
tet. Aus dem Bereich der Entwurfsmustererkennung werden im ersten Teil des
Kapitels zunéchst Arbeiten vorgestellt, die auf rein statischen Analysen der
Struktur eines Softwaresystems aufbauen. Die Arbeiten werden in Bezug auf
die in Abschnitt 2.2 genannten Anforderungen beurteilt. Der zweite Teil des
Kapitels behandelt verschiedene Arbeiten, die explizit das Verhalten von Soft-
waresystemen zur Laufzeit analysieren.

Kombinationen aus Struktur- und Verhaltensanalysen werden seit einiger
Zeit im Reverse-Engineering eingesetzt. Im dritten Teil werden Arbeiten dis-
kutiert, die diese Kombinationen anwenden. Im Besonderen werden solche Ar-
beiten diskutiert und mit der vorliegenden Arbeit verglichen, die aus dem
Bereich der Entwurfsmustererkennung stammen.

8.1 Strukturbasierte Entwurfsmustererkennung

Frithe Ansétze zur Suche nach allgemeinen Softwaremustern waren das System
PAT von Mehdi Harandi und Jim Ning [HN90] aus dem Jahre 1990 und die
Arbeit von Linda Wills aus dem Jahre 1992 [Wil92]. Nach dem Erscheinen
des Buches von Gamma et al. [GHJV95] im Jahre 1995 wurde dann eine Rei-
he von Werkzeugen entwickelt, die speziell Entwurfsmusterimplementierungen
(semi-)automatisch im Quelltext erkennen. Bis auf einige wenige Ausnahmen®
basieren jedoch sehr viele dieser Werkzeuge auf einer rein statischen Analy-
se?, bei der der Quelltext ausschlieBlich nach strukturellen Eigenschaften der

lsiehe [Bro96, GZ05, HHHLO3]
Zsiehe [KP96, AFC98, SK98, SG98, Wuy98, KSRP99, TA99, BP00, KB00, ACGJO01, AGO1,
SS03, PSRN04, TCHS05, KGHO6, SO06]
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Entwurfsmuster untersucht wird, ohne die Software auszufiihren.

Das Verhalten eines Softwaresystems, im Wesentlichen bestimmt durch Me-
thodenaufrufe, ldsst sich jedoch durch statische Analysen nur bedingt unter-
suchen. Statische Analysen erkennen zwar potentielle Methodenaufrufe, ob je-
doch diese Methodenaufrufe zur Laufzeit tatséchlich ausgefiihrt werden, ist
nicht sicher festzustellen. Objektorientierte Programmiersprachen mit Poly-
morphie und dynamischer Methodenbindung verschérfen dieses Problem sogar
noch, da die konkreten, aufzurufenden Methoden erst zur Laufzeit festgelegt
werden. Die im Folgenden aufgefiihrten Verfahren zur strukturbasierten Ent-
wurfsmustererkennung lassen sich grob in zwei Kategorien einteilen: Verfahren,
die potentielle Methodenaufrufe untersuchen, und solche, die dies nicht tun.

Entwurfsmustererkennung ohne Analyse potentieller Methodenaufrufe

Ohne Analyse potentieller Methodenaufrufe lassen sich Konstrukte wie Delega-
tion (siche dazu auch [GHJV95]) nicht erkennen. Bei einer Delegation wird ein
Methodenaufruf von einem Objekt an ein anderes weitergegeben, die Aufgabe
wird von einem Objekt an ein anderes Objekt delegiert. Dieses Konstrukt ist
in vielen Entwurfsmustern wie zum Beispiel State, Strategy, Visitor oder auch
Mediator ein zentraler Bestandteil. Eine prézise Erkennung dieser und ande-
rer Entwurfsmuster ist ohne die Analyse potentieller Methodenaufrufe daher
kaum moglich.

Zu der Kategorie der Entwurfsmustererkennungen ohne Analyse potentieller
Methodenaufrufe zdahlen die Verfahren von Christian Kramer und Lutz Pre-
chelt [KP96], von Giulio Antoniol et al. [AFC98], von Federico Bergenti und
Agostino Poggi [BP00], von Hyoseob Kim und Cornelia Boldyreff [KB00], von
Ilka Philippow et al. [PSRNO04], sowie von Nija Shi und Ronald A. Olsson
[SO06].

Entwurfsmustererkennung mit Analyse potentieller Methodenaufrufe

Zu den Arbeiten, bei denen potentielle Methodenaufrufe bei der Entwurfs-
mustererkennung berticksichtigt werden, gehoren das Projekt SPOOL von Ru-
dolf Keller und Reinhard Schauer [SK98, KSRP99], das Projekt SPQR von
Jason Smith und David Stotts [SS03], sowie die Verfahren von Roel Wuyts
[Wuy98], von Jochen Seemann und Jiirgen Wolff von Gudenberg [SG98], von
Paolo Tonella und Giulio Antoniol [TA99], von Hervé Albin-Amiot und Yann-
Gaél Guéhéneuc [AGO1, ACGJ01] und von Nikolas Tsantalis et al. [TCHS05].
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Neben der fehlenden Prézision bei der Analyse potentieller Methodenauf-
rufe und der damit verbundenen hohen Zahl von False-Positives erfiillen die
meisten dieser Arbeiten weitere der an eine automatische Entwurfsmusterer-
kennung gestellten Anforderungen nicht. So ist die leichte Anpassbarkeit der
Entwurfsmusterspezifikationen bei den Arbeiten [SK98, KSRP99], [TA99] und
[TCHSO05] nicht gegeben. Des Weiteren wurden zu den Verfahren [Wuy98|,
[AGO1, ACGJO01], [SS03] und [TCHSO05] keine Ergebnisse einer Anwendung auf
praxisnahe Softwaresysteme verdffentlicht, wodurch sich keine Aussagen iiber
die Skalierbarkeit der Verfahren treffen lassen. Bei dem Verfahren von Hervé
Albin-Amiot und Yann-Gaél Guéhéneuc deutet eine neuere Verdffentlichung
[KGHO6] auf eine exponentielle Laufzeit hin.

Allen genannten Verfahren ist gemeinsam, dass die Ergebnisse der Entwurfs-
mustererkennung nicht bewertet werden. Als Ergebnis der Analyse liefern die
Verfahren potentielle Entwurfsmusterimplementierungen, ohne Aussagen iiber
die Sicherheit dieser Kandidaten zu treffen. Unter den Kandidaten befinden
sich jedoch auch viele félschlicherweise erkannte Entwurfsmusterimplementie-
rungen. Bei der Sichtung und Einschéatzung der Kandidaten wird der Reverse-
Engineer also nicht unterstiitzt.

8.2 Dynamische Analysen zur
Verhaltenserkennung

In den folgenden Ansitzen wird das Verhalten von Softwaresystemen aus-
schliellich durch dynamische Analysen untersucht. Sie werden jedoch fiir ver-
schiedene andere Zwecke als zur Entwurfsmustererkennung eingesetzt. Trotz-
dem sind die verwendeten Techniken vergleichbar mit denen, die in dieser Ar-
beit fiir die verhaltensbasierte Entwurfsmustererkennung eingesetzt wurden.
Thomas Kunz und Michiel Seuren zeichnen den Nachrichtenaustausch zwi-
schen Prozessen auf, um nach Kommunikationsmustern in verteilten Anwen-
dungen zu suchen [KS97]. In verteilten Anwendungen kommunizieren meh-
rere Prozesse miteinander, indem sie durch Nachrichten Informationen aus-
tauschen, wobei relativ komplexe Kommunikationsmuster immer wieder wie-
derholt werden. Ein typisches Kommunikationsmuster ist zum Beispiel das
Versenden einer Nachricht eines Prozesses an alle anderen Prozesse. Die
Ausfiihrung von verteilten Prozessen wird héufig durch so genannte Process-
Time-Diagramme dargestellt, die aus parallelen Sequenzen von atomaren Er-
eignissen wie dem Senden oder Empfangen einer Nachricht bestehen. Kunz
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und Seuren repréisentieren solche Sequenzen als Zeichenketten, in denen ato-
mare Ereignisse als einzelnes Zeichen kodiert werden. Kommunikationsmu-
ster werden dagegen als regulére Ausdriicke iiber diesen Zeichenketten kodiert
und durch Anwendung der reguldren Ausdriicke erkannt. In Visualisierungen
kénnen so zum Beispiel komplexe Sequenzen von Nachrichten zu abstrakteren
Einheiten zusammengefasst werden.

Tamar Richner und Stéphane Ducasse verwenden dynamische Analysen zur
Identifikation von Kollaborationen [RD02]. Beim kollaborationsbasierten Ent-
wurf von objektorientierten Softwaresystemen wird das Verhalten der Anwen-
dung durch verschiedene Kollaborationen von Objekten beschrieben. Die Riick-
gewinnung solcher Kollaborationen hilft dabei, die Funktionsweise des Softwa-
resystems zu verstehen. In dem Verfahren werden Methoden instrumentiert,
um von Methodenaufrufen zur Laufzeit die aufrufende und die aufgerufene
Instanz und ihre Typen sowie den Namen der Methode aufzuzeichnen. Ahn-
liche Sequenzen von Methodenaufrufen werden mit Hilfe von Kollaborations-
mustern gesucht. Kollaborationsmuster werden durch Sequenzen oder Mengen
von Methodenaufrufen und die beteiligten Instanzen und Typen definiert. Der
Collaboration Browser dient zur Visualisierung der aufgezeichneten Methoden-
aufrufe und der identifizierten Kollaborationen. Lei Wu et al. beschreiben ein
dhnliches Verfahren [WSV04], das jedoch in nicht-objektorientierten Sprachen
geschriebene Softwaresysteme analysiert.

Das von Giovanni Vigna und Richard Kemmerer entwickelte Werkzeug
NETSTAT erkennt mit Hilfe von Zustandsautomaten Angriffe auf Netzwerke
[VKO98]. Verschiedene Angriffsszenarien werden durch Sequenzen von Nach-
richten auf einem Netzwerk beschrieben. Die Transitionen eines Zustandsau-
tomaten kodieren, welche Nachrichten Zustandsiibergéinge auslosen. Endet ein
Automat in einem akzeptierenden Endzustand, so wird ein Angriff auf das
Netzwerk festgestellt. Mit Hilfe so genannter Proben an bestimmten Knoten
des Netzwerks werden die Nachrichten dezentral iiberwacht. Statische Infor-
mationen iiber das Netzwerk werden dazu verwendet, die Proben im Netzwerk
zu verteilen. Jede der Proben enthilt einen Teil der Angriffsszenarien. Durch
einen Filter melden die Proben nur die relevanten Nachrichten an die Auto-
maten, die sie dann verarbeiten.

Die vorgestellten Verfahren nutzen Techniken, die sich in der Verhaltenser-
kennung bewéhrt haben. So wird das Verhalten mit Hilfe von Sequenzen
von Methodenaufrufen oder Nachrichten beschrieben. Methodenaufrufe wer-
den durch Instrumentierung iiberwacht. Statische Informationen dienen dazu,
die Uberwachung auf relevante Nachrichten einzuschrénken. Die Erkennung
des Verhaltens geschieht durch regulére Ausdriicke beziehungsweise durch da-
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zu dquivalente, endliche Automaten. Diese Techniken wurden in der vorliegen-
den Arbeit aufgegriffen und zur verhaltensbasierten Entwurfsmustererkennung
eingesetzt.

8.3 Kombinierte statische und dynamische
Analysen

Statische und dynamische Analysen wurden lange Zeit in unterschiedlichen,
voneinander unabhéngigen Forschungsgebieten entwickelt. Dadurch wurden
meist ausschliellich entweder statische oder dynamische Analysen genutzt. Die
jeweils andere Analysetechnik wurde sogar haufig fiir den aktuellen Anwen-
dungsbereich als unpassend dargestellt. Michael Ernst pladiert deshalb in sei-
nem Artikel , Static and dynamic analysis: synergy and duality“ [Ern03] dafiir,
die Vorteile beider Analysetechniken zu kombinieren. Die Unzulénglichkeiten
einer Analysetechnik sollen durch die jeweils andere Analysetechnik ausgegli-
chen werden, um insgesamt bessere Analyseergebnisse zu produzieren.

Es gab in den letzten Jahren verschiedene Ansétze im Reverse-Engineering,
die Einschrankungen der statischen Analysen durch Ergénzung um dynami-
sche Analysen oder umgekehrt aufzuheben. Im Folgenden werden zunéchst
exemplarisch einige Verfahren vorgestellt, die zwar im Reverse-Engineering an-
gewendet werden, aber nicht aus dem speziellen Gebiet der Entwurfsmusterer-
kennung stammen. Darauthin folgen Verfahren, die statische und dynamische
Analysen speziell zur Entwurfsmustererkennung kombinieren.

8.3.1 Ausgewahlte Verfahren im Reverse-Engineering

Tamar Richner und Stéphane Ducasse stellen in [RD99] ein Verfahren vor,
das abstrakte Sichten auf objektorientierte Softwaresysteme erzeugt. Dabei
verwenden sie sowohl statische als auch dynamische Analysen. Durch die sta-
tische Analyse werden strukturelle Informationen iiber das Softwaresystem ge-
wonnen. Die dynamische Analyse zeichnet Methodenaufrufe zur Laufzeit auf.
Diese Informationen werden als PROLOG-Fakten repréisentiert.

Zur Analyse werden PROLOG-Regeln zur Verfiigung gestellt, die Fakten aus
der statischen und der dynamischen Analyse kombinieren. Durch die Regeln
kénnen abstrakte Sichten auf das Softwaresystem erzeugt werden. Beispiele
fiir solche abstrakten Sichten sind Graphen, die Methodenaufrufe zwischen
Klassen oder Komponenten darstellen, oder auch Graphen, die die Erzeugung
von Objekten durch Klassen oder Komponenten visualisieren.
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Das Verfahren dient nur zur Visualisierung. Allerdings konnte die Datenbasis
mit einer Entwurfsmustererkennung kombiniert werden, die PROLOG-Regeln
verwendet. Dazu wéren zum Beispiel die Ansétze [KP96], [Wuy98] oder auch
[BP0O] geeignet. Die Erstellung und insbesondere auch Wartung der PROLOG-
Regeln ist allerdings sehr miihselig, besonders wenn es sich um grofle Regelsétze
handelt, bei denen der Reverse-Engineer schnell den Uberblick verliert.

Im Verfahren von Tarja Systé wird die statische Analyse durch eine dynami-
sche Analyse beeinflusst und umgekehrt [Sys99a, Sys99b]. Die statische Ana-
lyse erzeugt aus dem JAvVA-Quelltext eines Softwaresystems Abhéngigkeitsgra-
phen, die zum Beispiel Vererbungen zwischen Klassen, potentielle Aufrufe zwi-
schen Methoden oder auch Lese- und Schreibzugriffe auf Attribute beschreiben.
Visualisiert werden die Graphen durch das Werkzeug Rict [MWT95, Rig]. Die
dynamische Analyse erzeugt so genannte Szenariodiagramme, die sehr &hnlich
zu Sequenzdiagrammen sind.

Auf Basis des Abhéngigkeitsgraphen der statischen Analyse werden die in
der dynamischen Analyse zu untersuchenden Teile des Softwaresystems einge-
schrinkt. Dadurch kann die in der dynamischen Analyse anfallende Datenmen-
ge drastisch reduziert werden. Die Ergebnisse der dynamischen Analyse werden
wiederum zur Verfeinerung des Abhéngigkeitsgraphen eingesetzt. Die Teile des
Softwaresystems, die nicht ausgefithrt wurden, kénnen aus dem Abhéngigkeits-
graphen ausgeblendet werden.

Eine zu Tarja Systéds Ansatz dhnliche Arbeit ist von Claudio Riva und Jordi
Vidal Rodriguez vorgestellt worden [RR02]. Riva und Rodriguez nutzen eben-
falls das Werkzeug RIGI zur Visualisierung von Komponenten als Ergebnis der
statischen Analyse. Die Daten der dynamischen Analyse werden durch Instru-
mentierung des Softwaresystems gewonnen und als Message Sequence Charts
(MSCs) [Int99] dargestellt. Zur besseren Ubersichtlichkeit kénnen Objekte oder
Methodenaufrufe in den MSCs zusammengefasst werden.

Alle drei vorgestellten Verfahren beschrianken sich auf die Erzeugung von
abstrakten Sichten auf das zu untersuchende Softwaresystem. Der Reverse-
Engineer kann sich dadurch leichter einen Uberblick iiber die Architektur oder
auch iiber die Abhéingigkeiten eines Softwaresystems schaffen. Details werden
durch die Abstraktion aber ausgeblendet. Die Erkennung von Entwurfsmu-
sterimplementierungen hat dagegen weniger einen Uberblick iiber die Soft-
ware zum Ziel, als vielmehr die Erkennung von Architekturdetails, die dem
Verstandnis einzelner Teile der Software dienen.

Thomas Eisenbarth, Rainer Koschke und Daniel Simon kombinieren dynami-
sche und statische Analysen zur Identifizierung von Softwarekomponenten, die
bestimmte Eigenschaften eines Softwaresystems implementieren [EKS01]. Die
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dynamische Analyse wird dazu genutzt, den Suchraum fiir die statische Ana-
lyse zu reduzieren. Zunéchst werden Szenarien ausgesucht, die die zu lokalisie-
renden Eigenschaften des Softwaresystems ausfithren. Anschliefend wird eine
Konzeptanalyse dazu verwendet, um einen Zusammenhang zwischen Szenari-
en und Softwarekomponenten herzustellen. In der folgenden statischen Analyse
werden dann die Softwarekomponenten durch Slicing und manuelle Inspektion
weiterverarbeitet.

Dieser Ansatz hilft dem Reverse-Engineer bei der Identifizierung von Kom-
ponenten. Er erfiahrt, auf welche Komponenten die Funktionen eines Softwa-
resystems verteilt sind, nicht aber, wie sie im Detail aufgebaut sind und wie
sie funktionieren. Der Ansatz kann allerdings helfen, die relevanten Teile eines
zu untersuchenden Softwaresystems zu identifizieren und sie zur Weiterver-
arbeitung zum Beispiel einer Entwurfsmustererkennung zuzufiihren. So kann
die Entwurfsmustererkennung auf die relevanten Komponenten eingeschrankt
werden und damit viel Zeit eingespart werden.

Paolo Tonella und Alessandra Potrich erzeugen sowohl aus einer statischen
und einer dynamischen Analyse Objektdiagramme [TP02]. Die durch statische
Analyse erzeugten Objektdiagramme beschreiben einen Objektfluss. Das Ob-
jektflussdiagramm enthélt zum Beispiel Informationen, an welchen Stellen im
Quelltext Objekte erzeugt und diese den Feldern anderer Objekte zugewiesen
werden. Aus der dynamischen Analyse werden Objektdiagramme hergestellt,
die Objektstrukturen beschreiben. Der Reverse-Engineer kann nun beide Arten
von Diagrammen miteinander vergleichen und Riickschliisse auf das untersuch-
te Softwaresystem ziehen.

Ein statischer Methodenaufrufgraph beschreibt potentielle Aufrufe zwischen
den Methoden eines Softwaresystems. Fin solcher Graph kann durch statische
Analysen erzeugt werden, das Ergebnis beruht dann allerdings auf einer kon-
servativen Schitzung. Atanas Rountev, Scott Kagan und Michael Gibas verfei-
nern deshalb den statischen Aufrufgraphen nach der statischen Analyse durch
eine dynamische Analyse [RKGO04].

Trevor Parsons und John Murphy suchen mit ihrem Verfahren in komponen-
tenbasierten Softwaresystemen nach Anti-Patterns [PMO04]. Anti-Patterns stel-
len im Gegensatz zu Entwurfsmustern schlechte Losungen fiir immer wieder-
kehrende Probleme dar, die aber trotzdem héufig verwendet werden. Parsons
und Murphy suchen nach Anti-Patterns, die die Performanz einer Anwendung
reduzieren. Dazu zeichnen sie durch eine dynamische Analyse Methodenauf-
rufe zusammen mit ihren Performanzdaten auf. In der folgenden statischen
Analyse werden die Aufrufgraphen nach den Anti-Patterns durchsucht.
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8.3.2 Verfahren zur Entwurfsmustererkennung

Im Folgenden werden drei Ansétze vorgestellt, die das Verhalten von Ent-
wurfsmusterimplementierungen zur Laufzeit zu ihrer Erkennung nutzen. Dabei
werden statische und dynamische Analysen kombiniert.

Ein sehr frither Ansatz, der sowohl statische als auch dynamische Analy-
sen zur Entwurfsmustererkennung verwendet, ist von Kyle Brown in seiner
Masterarbeit vorgestellt worden [Bro96]. Die Erkennung findet auf Smalltalk-
Quelltext statt, dessen strukturelle Eigenschaften wie Klassen, Attribute und
Vererbungen in einem statischen Modell reprasentiert werden. Ein weiteres Mo-
dell reprasentiert Methodenaufrufe zwischen Objekten. Diese Methodenaufrufe
werden zur Laufzeit des zu untersuchenden Programms durch den Smalltalk-
Interpreter aufgezeichnet und in dem dynamischen Modell aufbereitet.

Der Ansatz von Brown erkennt vier der Entwurfsmuster aus [GHJV95]:
Composite, Decorator, Template Method und Chain of Responsibility. Die Er-
kennungsalgorithmen nutzen jedoch keine direkte Kombination aus statischer
und dynamischer Analyse. Fiir die ersten drei genannten Entwurfsmuster wird
ausschliellich das statische Modell des Softwaresystems genutzt. Nur die Er-
kennung des Chain-of-Responsibility-Musters findet auf dem dynamischen Mo-
dell statt. Die Erkennungsalgorithmen sind manuell als Methoden der Klassen
des statischen und des dynamischen Modells implementiert worden. Die Um-
setzung der Algorithmen ldsst also keine Kombination aus statischer und dy-
namischer Analyse zu. Aulerdem ist die Wartung und die Erweiterung der
Erkennungsalgorithmen sehr aufwéndig.

Yann-Gaél Guéhéneuc et al. stellen in [GDJ02] ein Werkzeug vor, mit dem
Ereignisse eines JAVA-Programms wéhrend seiner Laufzeit analysiert werden
konnen. Zu den beobachtbaren Ereignissen zéhlen unter anderem die Erzeu-
gung von Objekten, Methodenaufrufe oder auch Attributzugriffe. In [GZ05]
schlagen die Autoren vor, aus den beobachteten Ereignissen und den Daten ei-
ner zusétzlichen statischen Analyse des Quelltextes UML-Sequenzdiagramme
und Zustandsdiagramme zu synthetisieren. Diese Diagramme sollen dann fiir
weitere Analysen wie dem Conformance-Checking oder einer statischen Ent-
wurfsmustererkennung, die die Autoren bereits in [AG01, ACGJ01] veroffent-
licht haben, verwendet werden. Eine Umsetzung dieser Idee ist bisher jedoch
nicht vorgestellt worden.

In dem Verfahren von Welf Lowe und Dirk Heuzeroth werden die Ergeb-
nisse aus der statischen Analyse des Quelltextes mit Hilfe der dynamischen
Analyse verbessert [HHL02, HHHLO03]. Die statische Analyse arbeitet auf dem
abstrakten Syntaxgraphen des Quelltextes. Die Struktur eines zu suchenden
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Entwurfsmusters wird als Relation {iber den Elementen des abstrakten Syn-
taxgraphen definiert. Das Ergebnis der statischen Analyse sind Tupel, die die
Relationen erfiillen. Diese Tupel bilden Kandidaten fiir Entwurfsmusterimple-
mentierungen und sind Eingabe der dynamischen Analyse. Die dynamische
Analyse beobachtet nur die Kandidaten wéhrend der Laufzeit, der Suchraum
wird also durch die statische Analyse eingeschrankt.

Das Verhalten eines Entwurfsmusters wird durch Zusténde und Zustands-
iibergénge spezifiziert. Zu Methoden, die in der statischen Analyse identifiziert
werden, konnen Vor- und Nachbedingungen angegeben werden, die vor bezie-
hungsweise nach Aufruf der Methode gelten miissen. Die Methodenaufrufe wer-
den wéahrend der Laufzeit durch einen Debugger erfasst. Bei Ausfithrung einer
Methode werden die Vor- und Nachbedingungen der Methode gepriift. Wird
eine Bedingung nicht eingehalten, so verletzt der Kandidat das vorgegebene
Verhalten des Entwurfsmusters. In diesem Fall wird der Kandidat verworfen.
Erfiillt der Kandidat bei allen Methodenaufrufen die Vor- und Nachbedingun-
gen, so wird er als tatséchliche Entwurfsmusterimplementierung bestétigt.

Die Relationen zur Definition der Struktur eines Entwurfsmusters sowie
die Vor- und Nachbedingungen zur Definition des Verhaltens kénnen in zwei
unterschiedlichen Sprachen, SAND-PROLOG und SAND, spezifiziert werden
[HMLO03]. SAND-PROLOG ist eine Sammlung von PROLOG-Pridikaten, die
grundlegende Relationen definiert. Diese werden zur Spezifikation weiterer
ProLOG-Regeln genutzt, mit denen die Relationen fiir die statische Analy-
se und die Zustdnde und Zustandsiibergénge fiir die dynamische Analyse eines
Entwurfsmusters spezifiziert werden. SAND nutzt dagegen eine Notation dhn-
lich der objektorientierter Programmiersprachen, bei der die Spezifikationen
der Struktur und des Verhaltens eines Entwurfsmusters ineinander integriert
sind. Aus den SAND-Spezifikationen werden PROLOG-Regeln generiert.

Nach Aussage der Autoren tendieren die Spezifikationen in SAND-PROLOG
dazu, kompliziert und lang zu werden, so dass sie schlecht zu warten sind.
SAND ist dagegen intuitiver und leichter zu warten. Es ist allerdings nicht so
ausdrucksstark wie SAND-PROLOG. So kénnen zum Beispiel keine Bedingung
wie ,eine Klasse C' darf keine Methode m enthalten“ formuliert werden. Des
Weiteren werden die Ergebnisse der Entwurfsmustererkennung nicht bewertet.

8.4 Transformation von Sequenzdiagrammen

Es existieren einige Arbeiten zur Transformation von Sequenzdiagrammen in
Automaten. Im Reverse-Engineering wird diese Transformation héufig einge-

169



Kapitel 8 Verwandte Arbeiten

setzt, um aus uniibersichtlichen Traces, die aus der Software gewonnen werden,
in eine abstraktere und auch meist viel kompaktere Form zu bringen. Tarja
Systd zum Beispiel stellt ein Werkzeug vor, dass aus Traces Zustandsdiagram-
me generiert [Sys99a, Sys99b|. Die Traces, die zum Beispiel von Klassen gewon-
nen werden, stellen nur Ausschnitte aus dem Verhalten eines Programms dar.
Aus diesen Traces werden Zustandsdiagramme generiert, die dagegen das ge-
samte mogliche Verhalten der Klasse abbilden. So wird dem Reverse-Engineer
das Verstéandnis einer Klasse erheblich erleichtert.

In einigen Arbeiten werden Transformationen von Sequenzdiagrammen in
Automaten ebenfalls zur Formalisierung der Semantik der Sequenzdiagramme
verwendet. Zu diesen Arbeiten gehoren unter anderem die Verfahren von Tho-
mas Firley et al. [FHD99] sowie Jochen Klose und Hartmut Wittke [KWO1].
In diesen Arbeiten werden um Zeitinformationen angereicherte UML Sequenz-
diagramme beziehungsweise Live Sequence Charts (LSCs) in Timed Automata
iibersetzt. Die Timed Automata dienen wiederum als Eingaben fiir Model-
checker. So kénnen Sperzifikationen auf Basis von Sequenzdiagrammen formal
verifiziert werden.

Sebastian Uchitel, Jeff Kramer und Jeff Magee nutzen Labelled Transistion
Systems (LTS), eine besondere Form der Zustandsautomaten, um wéhrend der
Systementwicklung das geforderte Verhalten von Komponenten mit tatsichlich
implementierten Verhalten abzugleichen [UKMO03]. Aus Sequenzdiagrammen,
die verschiedene Szenarien beschreiben und einer Reihe von Einschriankungen,
die in OCL spezifiziert sind, werden LTS generiert. Aus den LTS kann dann
Verhalten abgeleitet werden, das nicht spezifiziert worden ist, und eventuell
auch nicht gewollt ist. Unterspezifiziertes Verhaltens einer Komponente wird
somit frithzeitig im Entwicklungsprozess erkannt.

8.5 Zusammenfassung

Keines der in diesem Kapitel vorgestellten Verfahren zur Entwurfsmustererken-
nung erfiillt alle in Abschnitt 2.2 definierten Anforderungen an eine automa-
tische Entwurfsmustererkennung. Die meisten Verfahren verwenden nur eine
strukturbasierte Analyse. Das Verhalten wird bei einigen gar nicht, bei anderen
nur auf Basis der statischen Analyse potentieller Methodenaufrufe beriicksich-
tigt. Dabei werden die Methodenaufrufe entweder ausschliefSlich aus dem Quell-
text extrahiert oder als in einem UML-Verhaltensmodell gegeben gefordert. Es
werden weder Reihenfolgen von Methodenaufrufen, noch Zustdnde der betei-
ligten Objekte beriicksichtigt. Allen diesen Ansétzen ist gemeinsam, dass die
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tatsdchlichen Methodenaufrufe nicht zur Laufzeit des zu untersuchenden Soft-
waresystems ermittelt werden. Somit kann keines dieser Verfahren Kandidaten
heraus filtern, die strukturell passen, sich jedoch nicht wie ein Entwurfsmuster
verhalten, oder strukturell &hnliche Entwurfsmuster anhand ihres Verhaltens
unterscheiden. Die Prézision der rein strukturbasierten Verfahren ist damit
prinzipiell bedingt sehr gering.

Die Notwendigkeit, dynamische Analysen zur Erkennung von Entwurfsmu-
stern einzusetzen, wurde schon friih in [Bro96| erkannt. Allerdings wurden in
dieser Arbeit die Vorteile einer echten Kombination aus statischer und dyna-
mischer Analyse nicht genutzt. Es existiert nur ein Verfahren von Dirk Heuze-
roth und Welf Lowe [HHL02, HHHLO3], das konsequent statische und dyna-
mische Analysen zur Entwurfsmustererkennung kombiniert. Es wurde parallel
zu der vorliegenden Arbeit entwickelt. Allerdings ist die Anpassbarkeit der
Entwurfsmusterspezifikationen wegen der sehr komplexen Spezifikationsspra-
che eingeschrankt und die Ergebnisse der Entwurfsmustererkennung werden
nicht bewertet.
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Kapitel 9

Zusammenfassung und Ausblick

Im letzten Kapitel werden zunéchst das entwickelte Verfahren anhand der in
Abschnitt 2.2 genannten Anforderungen diskutiert und die Ergebnisse der Ar-
beit zusammengefasst. Der zweite Teil des Kapitels gibt einen Ausblick auf
mogliche Erweiterungen und andere Anwendungsgebiete der struktur- und ver-
haltensbasierten Entwurfsmustererkennung.

9.1 Zusammenfassung

In der vorliegenden Arbeit wurde eine automatische Entwurfsmustererkennung
konzipiert und realisiert, die sowohl die Struktur als auch das Verhalten der
Entwurfsmuster beriicksichtigt. Im Folgenden wird diskutiert, ob das Verfah-
ren den in Abschnitt 2.2 definierten Anforderungen Skalierbarkeit, Préazision,
Anpassbarkeit und Bewertung gerecht wird.

Die wichtigste Anforderung ist die Skalierbarkeit des Algorithmus. Grofle,
praxisnahe Softwaresysteme miissen in einem zeitlich vertretbarem Zeitraum
analysierbar sein. Die Skalierbarkeit der strukturbasierten Entwurfsmusterer-
kennung wurde bereits in [Nie04] und [NSW*02] nachgewiesen. Dort wurden
reale Anwendungen mit einem zeitlich vertretbaren Aufwand untersucht. Bei
der verhaltensbasierten Entwurfsmustererkennung ist der zeitliche Aufwand
im Wesentlichen durch das Sammeln der Traces bestimmt. Zur Ausfiihrung
konnen entweder automatische Tests herangezogen werden, oder aber die Soft-
ware wird auf Basis der Software-Tomographie in realen Umgebungen einge-
setzt. Automatische Tests sind relativ schnell durchzufithren, erzeugen aber
kiinstliche Daten. Der Einsatz in produktiven Bedingungen erzeugt praxis-
nahe Daten, erfordert aber auch einen gréfleren zeitlichen Aufwand. Aller-
dings muss die Ausfithrung des zu untersuchenden Softwaresystem weder bei
automatischen Tests, noch beim Einsatz in produktiven Umgebungen vom
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Reverse-Engineer iiberwacht werden, er kann in dieser Zeit andere Tétigkeiten
ausfithren. Der Aufwand zur Instrumentierung ist dagegen sehr gering. Der
Aufwand der Offline-Verhaltensanalyse der gesammelten Daten bleibt wie die
Strukturanalyse in einem zeitlich vertretbarem Maf.

Die Prézision der bereits vorhandenen, strukturbasierten Entwurfsmusterer-
kennung konnte durch die Kombination mit einer Verhaltensanalyse erheblich
gesteigert werden. Zum einen kénnen nun Implementierungen von strukturell
ahnlichen oder sogar identischen Entwurfsmustern anhand ihres Verhaltens
unterschieden werden. Dies konnte in der Anwendung des Verfahrens auf die
Entwicklungsumgebung ECLIPSE gezeigt werden (Abschnitt 6.3). Des Weiteren
wurden viele der in der strukturbasierten Entwurfsmustererkennung identifi-
zierten False-Positives mit Hilfe der Verhaltensanalyse aussortiert.

Die Anpassung bereits existierender Struktur- und Verhaltensmuster an
individuelle Eigenschaften des zu untersuchenden Softwaresystems kann die
Prézision der Entwurfsmustererkennung erheblich steigern. Das in dieser Ar-
beit vorgestellte Verfahren macht es dem Reverse-Engineer relativ leicht,
Struktur- und Verhaltensmuster an individuelle Eigenschaften anzupassen. Die
fiir die Struktur- und Verhaltensmuster entwickelten Spezifikationssprachen
sind an UML-Objektdiagramme beziehungsweise -Sequenzdiagramme ange-
lehnt und somit leicht und intuitiv erlernbar fiir Softwareentwickler. Die Spra-
chen ermoglichen relativ kompakte und schnell zu erfassende Spezifikationen.
Zudem werden die Spezifikationen automatisch in eine Form iibersetzt, die
von den Erkennungsalgorithmen verarbeitet werden kann. So wird ein itera-
tiver Prozess, bei dem die Entwurfsmustererkennung zunéchst wiederholt auf
einen Teil des gesamten Softwaresystems angewendet wird, um die Struktur-
und Verhaltensmuster sukzessive zu verbessern, optimal unterstiitzt.

Die struktur- und verhaltensbasierte Entwurfsmustererkennung erhebt nicht
den Anspruch, absolut sichere Ergebnisse zu produzieren. Daher werden die
Ergebnisse sowohl der Strukturanalyse, als auch der Verhaltensanalyse be-
wertet, um ihre Giite zu beschreiben. Um viele Implementierungsvarianten
abzudecken, beschreiben Strukturmuster zum einen notwendige Strukturen ei-
nes Entwurfsmusters. Zum anderen enthalten sie zusétzliche, zur Identifikation
einer Entwurfsmusterimplementierung nicht notwendige Strukturen, die aber
gute Hinweise auf tatséchliche Entwurfsmusterimplementierungen sind. Die
Bewertung der Strukturanalyse gibt an, inwieweit die Struktur eines Kandida-
ten mit dem Strukturmuster iibereinstimmst. Je hoher die Ubereinstimmung ist,
desto wahrscheinlicher ist der Kandidat eine tatséchliche Entwurfsmusterim-
plementierung. In der Verhaltensanalyse werden viele Traces eines Kandidaten
mit dem Verhaltensmuster verglichen, um festzustellen, ob sie konform oder
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nicht-konform zum Verhaltensmuster sind. Zudem wird zu jedem Kandidaten
die durchschnittliche Zahl der Methodenaufrufe seiner konformen Traces be-
rechnet. Der Reverse-Engineer kann aus diesen Daten relativ schnell schliefen,
ob der Kandidat eine tatsidchliche Entwurfsmusterimplementierung ist.

Neben der Erfiilllung der zuvor genannten Anforderungen war ein weiteres
Ziel der Arbeit die formale syntaktische wie semantische Definition einer Spe-
zifikationssprache fiir Verhaltensmuster. Die Syntax der Sprache wurde durch
UML-Klassendiagramme und OCL-Invarianten definiert, wédhrend die Seman-
tik durch die Angabe einer Transformation der Verhaltensmuster auf deter-
ministische, endliche Automaten festgelegt wurde. Die endlichen Automaten
werden zudem von der Verhaltensanalyse verwendet, um die Konformitét der
beobachteten Traces zu untersuchen.

Die struktur- und verhaltensbasierte Entwurfsmustererkennung ist prototy-
pisch in dem Werkzeug RECLIPSE umgesetzt worden. Dazu wurde die weit
verbreitete Entwicklungsumgebung ECLIPSE zusammen mit dem Werkzeug
FuijaBa4EcCLIPSE um die Algorithmen zur Struktur- und Verhaltensanaly-
se, sowie einer Visualisierung der Ergebnisse ergénzt. ECLIPSE bietet unter
anderem eine JAVA-basierte Softwareentwicklung. FUJABA4ECLIPSE erginzt
Eclipse um eine modellbasierte Entwicklung auf Basis der UML und eine au-
tomatische JAVA-Codegenerierung. Somit umfasst das so entstandene Werk-
zeug RECLIPSE in erheblichem Umfang den Softwareentwicklungszyklus im
Forward-, als auch Reverse-Engineering.

Die praktische Anwendung des Werkzeugs wurde ebenfalls anhand von
EcLipPSE vorgefiihrt. Einige der in ECLIPSE verwendeten Entwurfsmusterim-
plementierungen sind dokumentiert. So konnten die Ergebnisse der Entwurfs-
mustererkennung mit der Dokumentation verglichen und beurteilt werden.

9.2 Ausblick

Die Entwicklung der struktur- und verhaltensbasierte Entwurfsmustererken-
nung ist mit der vorliegenden Arbeit nicht abgeschlossen. Wegen des erheb-
lichen Aufwands konnte leider keine umfangreiche Evaluation des Verfahrens
durchgefiihrt werden. In einer solchen Evaluation sollte besonderes Augenmerk
auf die Untersuchung der Praxistauglichkeit der Bewertungen gelegt werden. In
der Strukturanalyse kann es zum Beispiel vorkommen, dass der Bewertungsal-
gorithmus bei Mengenknoten aus Annotationen eine Menge von vielen, niedrig
bewerteten Annotationen hoher bewertet, als eine Menge von wenigen, aber
sehr hoch bewerteten Annotationen. Sollte sich der Bewertungsalgorithmus
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als noch nicht ausgereift herausstellen, lasst er sich aufgrund seiner modularen
Architektur durch den Austausch einzelner Funktionen leicht korrigieren.

In der Verhaltensanalyse wurde bisher auf eine Verrechnung der Anzahl kon-
former und nicht-konformer Traces, der durchschnittlichen Lénge der Traces
und der Anzahl der akzeptierten Subtraces zu einem einzigen Wert bewusst
verzichtet. Es wird davon ausgegangen, dass die Einzelwerte sehr viel aussa-
gekriftiger sind als ein einzelner Wert, der schwer zu interpretieren ist. Dies
muss allerdings erst in der Praxis iiberpriift werden.

In diesem Zusammenhang steht auch die Frage, wie aussagekriftig die er-
kannten nicht-konformen Traces sind. Wie bereits in Abschnitt 5.3.2 diskutiert,
kommen nicht-konforme Traces mit weit hoherer Wahrscheinlichkeit vor, als
konforme. Wurden nur einige konforme, aber sehr viele nicht-konforme Tra-
ces erkannt, so bedeutet das nicht zwangsldufig, dass der Kandidat ein False-
Positive ist. Werden dagegen zu einem negativen Verhaltensmuster konforme
Traces erkannt, so sprechen diese Traces sehr viel stéirker fiir ein False-Positive,
als nicht-konforme Traces zu einem positiven Verhaltensmuster. In einer Eva-
luation sollte also auch untersucht werden, inwieweit negative Verhaltensmu-
ster besser geeignet sind zur Erkennung von False-Positives als nicht-konforme
Traces.

Um die Prézision der Verhaltensanalyse deutlich zu erhohen, sollte vor ei-
ner Evaluierung die Spezifikationssprache, wie in Abschnitt 6.3.3 erlautert,
erweitert werden. Aus Zeitgriinden konnte diese Erweiterung leider nicht mehr
durchgefiihrt werden. Durch die erweiterte Syntax wird es moglich, das Verhal-
ten einer Vielzahl weiterer Entwurfsmuster zu beschreiben, was bisher wegen
der Einschrinkungen nicht moglich war.

Nicht immer steht eine lauffahige Version des zu untersuchenden Softwaresy-
stems zur Verfiigung. In solchen Féllen, in denen eine dynamische Analyse nicht
moglich ist, wére es denkbar, die Verhaltensanalyse auf Basis von statischen
Analysen durchzufithren. Thomas Eisenbarth, Rainer Koschke und Gunther
Vogel stellen in [EKV02] ein Verfahren vor, um aus C-Code statisch Traces
zu extrahieren. Aufgrund der in Abschnitt 1.3 genannten Griinde kénnen sta-
tische Analysen aber keine exakten Ergebnisse, sondern nur Schitzungen lie-
fern. Es miisste daher untersucht werden, ob die Genauigkeit einer statischen
Trace-Extrahierung fiir die Verhaltensanalyse der Entwurfsmustererkennung
ausreichend ist.

Die verhaltensbasierte Entwurfsmustererkennung kann auch zum Forward-
Engineering eingesetzt werden. Im Abschnitt 6.3 wurde von der Entdeckung ei-
ner Entwurfsmusterimplementierung berichtet, die als eine Strategy-Implemen-
tierung dokumentiert wurde. Allerdings stellte sich heraus, dass dieser Kandi-
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dat zwar die Struktur einer Strategy aufweist, sich aber eher wie eine Chain
of Responsibility verhélt. Solche Implementierungen mogen beabsichtigt sein,
moglicherweise stellen sie aber Design-Defekte dar, die spéter behoben werden
miissen. Im Forward-Engineering lieflen sich solche Design-Defekte verhindern.
Mit Hilfe der Verhaltensmuster konnte das beabsichtigte Verhalten als Proto-
kolle festgeschrieben werden. In Regressionstests kann dann wéhrend der Ent-
wicklung die Einhaltung dieser Protokolle iiberpriift werden. Nicht-konforme
Traces liefern Hinweise auf Verletzung der Protokolle. Design-Defekte aufgrund
falschen Verhaltens werden so frithzeitig im Entwicklungsprozess verhindert.
Solche Spezifikationen und Uberpriifungen von Protokollen durch Verhaltens-
muster lieBen sich sogar auf ganze Komponenten ausweiten, mit denen andere
Komponenten in einer vorgegeben Form kommunizieren miissen. Die Verhal-
tensmuster kénnten zusammen mit den Komponenten ausgeliefert werden, um
die Entwicklung darauf aufbauender Software zu unterstiitzen.
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Anhang A

Struktur- und Verhaltensmuster

Der in der praktischen Anwendung in Kapitel 6 verwendete Strukturmuster-
Katalog besteht aus 17 Strukturmustern (Abbildung A.1). Die meisten darun-
ter sind Hilfsmuster, die zur Identifikation der Entwurfsmuster benétigt wer-
den. Im Folgenden sind zu den Entwurfsmustern, zu denen auch Verhaltens-
muster existieren, jeweils die Struktur- und Verhaltensmuster aufgefiihrt.

= Fujabad4Ectipse - Eclipse Patterns Catalog - Eclipse SDK E]@

File Edit Mavigate Search Project Run  Redipse ‘Window Help

il S Q- Q- 4 - Fe=ls 1 & 100% |% Y | 6 FujahadEclipse
=g

% Eclipse Patterns Catalog &5
pc Eclipse Catalog iy
Yisitor Observer |_ Strateq State Command

-
" : = =
o
\ ‘ / ®
. o

~ 4

«Patterns «Patherns

«Pattern
ArrayMultiReference
OverridingMethod | Delegation

%
SingleReference MultiReference
«Patterrs
SetMethod sPattetns
J GetMethod
£

«Patterns < ContainerAccess Reference

AttributeAccess

«Patterns
MultiLevelGeneralization

K
Generalization

afiane “AXiom: «fxioms aliomes |
UMLGenetalization UMLClass UMLMethod UMLAELF

Project aﬁEc\ipse Catalog 17

Lk

Abbildung A.1: Der Strukturmuster-Katalog fiir ECLIPSE
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A.1 Command

sp Command) r Sieieatpe |

| setCommand:Method I—pasms I_Eaﬁ‘e_:f f_m_erff‘f‘j
metr|10ds v paran{rype stere(?types A
referencingCIass—\/ /:R’eferenc\e\/\—referencw w
< SN __ -~ 4 abstract == true {additional}
in\eker «create» superICIassA

«create»
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«create» «create»
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4 b |
receiver:Class | concreteCommand:Class |
methods 4 » methods
A paramType methods¥
action:Method caﬂe :Delegation caler execute:Method
:Parameter pagmg I constructor:Method
[
resultTypeV
|
:BaseType

name == BaseType.CONSTRUCTOR

Abbildung A.2: Das Command-Strukturmuster

bp Command J

client | i:invoker | | r:receiver
I
| constructor() | c:concreteCommand |

setCommand()
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action()
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|
|
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Abbildung A.3: Das Command-Verhaltensmuster
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A.2 Observer

sp Observer «create» ™~ Stereotype |

. F==== - 1
coreater S IODSEVEL)  coreares | name == interface” |
observer subject stereotypes A
4 _ A T 1
observerClass:Class - = subjectClass:Class

abstract == true {additional} | € = T~—_____ = abstract == true {additional}
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Abbildung A.4: Das Observer-Strukturmuster

bp Observer J

|s:subiectCIass| |a:observerCIass| |b:observerCIass
T T T

L register()

I I
L | register() :

- I I

loop (1,%) . I I
E<__| notify() : :

I update() o I
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Abbildung A.5: Das Observer-Verhaltensmuster
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A.3 State

sp State

A context

methods 4

request:Method

caller

«create»
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:Stereotype |
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methods ¥

handle:Method
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Abbildung A.6: Das State-Strukturmuster

opt J: setState() :
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bp State | client || c.context ||a:abstractState || b:abstractState
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loop (1,%) ]! request()
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handle()
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Abbildung A.7: Das State-Verhaltensmuster
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A.4 Strategy

A.4 Strategy

Sp Strategy I «create» E :Etél’%(zt : é : 1|
| Name == sinterface” ]
e

A context abstractStrategy A stereotypes A

context:Class |-methods—| setStrategy:Method |—paramparamTprr abstractStrategy:Class
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~QverriddenMethod
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Abbildung A.8: Das Strategy-Strukturmuster

bp Strategy
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Abbildung A.9: Das Strategy-Verhaltensmuster
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A.5 Visitor

sp Visitor |
accept:Method parﬁmo :Parameter

methods A paramType' V¥
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abstract == true {additional} « » abstract == true {additional}
T I
superClass A methods¥
|

| visitMethod:Method |

astRootNode ¥
subClass¥ pareﬂns
| :ASTRootNode
| concreteModelClass:Class l—parazTyp

| :MethodCallNode |

methods ¥ I
identifier ¥
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Abbildung A.10: Das Visitor-Strukturmuster

bp Visitor J

|obiectStructure| | c:concreteModelClass | |v:visitorCIass
T
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visitMethod()

operation()

|
|
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Abbildung A.11: Das Visitor-Verhaltensmuster
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Anhang B
Reclipse Handbuch

Dieses Handbuch fiihrt anhand der Benutzungsschnittstelle durch den Prozess
der struktur- und verhaltensbasierten Entwurfsmustererkennung im Werkzeug
RECLIPSE. Als Beispiel wird der Mediaplayer aus Abschnitt 2.3.1 verwendet.
Es wird zunéchst erklért, wie die Spezifikationen der Struktur- und Verhaltens-
muster zur Analyse aufbereitet werden. Danach wird dargestellt, wie in RE-
CcLIPSE der Quelltext des Programms in ein Strukturmodell transformiert und
die Strukturanalyse durchgefiithrt wird. Anschlieend wird die Benutzung des
RECLIPSE TRACERS und des Werkzeugs zur Instrumentierung des ausfiihr-
baren Programmcodes erldutert. Zum Abschluss wird die Durchfithrung der
Verhaltensanalyse mit RECLIPSE behandelt.

B.1 Generierung von Struktur- und
Verhaltensmusterkatalogen

Im Folgenden wird von bereits existierenden Spezifikationen von Struktur- und
Verhaltensmustern ausgegangen. Es wird nur kurz darauf eingegangen, wie die
Struktur- und Verhaltensmuster mit Hilfe der Editoren spezifiziert werden.
Ausfiihrlicher wird beschrieben, wie aus den vorhandenen Mustern Katalo-
ge generiert werden, die von der Struktur- und Verhaltensanalyse verwendet
werden kénnen.

Die Struktur- und Verhaltensmuster eines Katalogs werden in einem FU-
JABA-Modell gespeichert. Darin ist auch die Spezifikation des Strukturmo-
dells enthalten. In RECLIPSE werden die FUuJABA-Modelle wiederum EcLIiP-
SE-Projekten zugeordnet. Nach dem Offnen eines Modells stehen die Spezi-
fikationen zur Bearbeitung zur Verfiigung. Der Reverse-Engineer kann neue
Struktur- oder Verhaltensmuster hinzufiigen, existierende &ndern oder entfer-
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nen. In Abbildung B.1 ist das State-Strukturmuster zu sehen, das im Editor
zur Bearbeitung gedffnet wurde.

= FujabadEctipse - Patterns Catalog - Eclipse SDK E]@
File Edit Mavigaste Search Project Run Redipse window Help
M wil =N = T 00% (s Q- - 4 - &~ 7| % FujsbatEcipse |8 Java
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=% F‘.attarns Catalog R state s o
#- [ Diagrams - sterectypes il
- - =
(5 Model eIl | | abstractState:UMLClass | z
=] context: ASS
= F'.atterns | Eoolean abstract = true {additional} |
#-[= Behavioral Patterns methads
. paramType
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= mEthods -
= S/E?ructural Patterns < s methods | T
L ArrayMultiReference ‘ setstate:UMLMethod |—| a:UMLParam |
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] Association caller - callee | handle:UMLMethod |
T attributedceess request:UMLMethod :Delegation =
5 - - | Boalean abstract = true {additional} |
] Bridge
71 Command (e
|:\{ﬁ Composite ~
7] Containerfccess rs
paramTyne
T Delegation e
7] Generalization pwa i3
- (B4} =
< > Project | 77 State 52
EE Qutline &3 = B || = properties &2 ¥ =0
- Pattern Rule =~
Element _—
Details name: State
Tt extends: none |
Advanced
description: P
=

Abbildung B.1: Die Spezifikation des State-Strukturmusters in RECLIPSE

Auf der linken Seite ist der so genannte Project Explorer zu sehen, iiber den
man Zugriff auf alle Projekte und die darin enthaltenen Dokumente erhélt.
Das FuijaBA-Modell ist gedffnet und zeigt unter anderem alle darin vorhan-
denen Strukturmuster an. Links unten ist im Qutline eine Ubersicht iiber den
Editor zu sehen. Rechts oben ist der Editor, mit dem das Modell bearbei-
tet werden kann. Die Werkzeuge zur Bearbeitung sind iiber die Palette am
rechten Rand des Editors zu erreichen. Dazu gehoren zum Beispiel Werkzeuge
zum Hinzufiigen von Annotationen, Objekten oder auch Verbindungen. Aus
Platzgriinden wurde die Palette hier jedoch eingeklappt. Rechts unten befindet
sich die Properties-Sicht, mit der man bestimmte Eigenschaften der im Editor
angezeigten Elemente dndern kann, wie zum Beispiel ihre Namen. In diesem
Beispiel werden die Eigenschaften des Strukturmusters angezeigt. Man kann

den Namen, die Vererbungshierarchie oder die Beschreibung des Strukturmu-
sters dndern.
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B.1 Generierung von Struktur- und Verhaltensmusterkatalogen

= Fujabad4Ectipse - Patterns Catalog - Eclipse SDK E]@
File Edit Mavigate Search Project Run  Redipse ‘Window Help
B S @ 100% |w| @ G- @~ 47 ¢ - o | % Fujsbateclpse | & Java
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I Mediapl [ Selert
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1= Patternspecification —
=1k PatternsCatalog.fpr.gz [Pattern |.= Behavioral,., #
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o T
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B
[ ] T o L L
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Abbildung B.2: Die Spezifikation des State-Verhaltensmusters in RECLIPSE

In Abbildung B.2 ist die Spezifikation des State-Verhaltensmusters zu se-
hen. Das Verhaltensmuster wurde links aus der Liste der im Modell vorhande-
nen Verhaltensmuster ausgewéhlt. In dieser Ansicht ist die Palette am rechten
Rand des Editors ausgeklappt. Sie enthélt Werkzeuge zum Hinzufiigen von
Verhaltensmusterobjekten, Nachrichten und Kombinierten Fragmenten oder
zum Selektieren von Elementen.

Die Spezifikationen der Struktur- und Verhaltensmuster konnen in dieser
Form nicht von RECLIPSE zur Analyse verwendet werden. Deshalb werden
aus den Spezifikationen Kataloge exportiert, die die Muster in einer fiir die
Analyse aufbereiteten Form enthalten. Dazu wird im Project Ezplorer aus dem
Kontext-Menii des Modells der Meniipunkt Ezport aufgerufen. Es wird ein so
genannter Wizard geoffnet, in dem man den Punkt Structural Patterns Catalog
im Zweig Fujaba auswahlt (sieche Abbildung B.3). Ein Wizard besteht meist
aus mehreren Dialogen, die nacheinander verschiedene Informationen abfragen.
Anschlieflend wird eine Aufgabe anhand dieser Informationen ausgefiihrt.
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= Export
Select A
Export a Structural Patterns Catalog E / 5
=8 PatternsCatalog.fpr.gz [Patterns Catalog] e
5% PRcaaty " N Select an export destination:
- Diagrams e type filter bext
+ t’? Madel A, Open Element (= General
#- [ Patterns
#- [ structure o Puiabs
[ Behavioral Patterns Catalog
L Java Source Code
£ Impart...
2 Expart...
7 Refresh
#(Z= Plug-in Development
Propetties -G Team

Abbildung B.3: Der Export-Wizard

Der Wizard zum Export eines Strukturmuster-Katalogs besteht aus den Dia-
logen, die in Abbildung B.4 dargestellt sind. Zunéchst wahlt man das FUJABA-
Modell aus, aus dem der zu exportierende Strukturmuster-Katalog stammt. Im
néchsten Dialog wird der Strukturmuster-Katalog ausgewihlt. Grundsétzlich
existiert immer ein Main Catalog, der alle Strukturmuster des Modells enthélt.
Weitere Strukturmuster-Kataloge konnen vom Reverse-Engineer im Modell er-
zeugt werden und enthalten Teilmengen der vorhandenen Strukturmuster. Des
Weiteren wird in diesem Dialog angegeben, wo der generierte Strukturmuster-
Katalog als Datei abgelegt werden soll.

Aus den Strukturmustern werden JAvA-Klassen generiert, die von der Struk-
turanalyse zur Suche in der Struktur verwendet werden. Damit diese JAVA-
Klassen iibersetzt werden konnen, miissen im folgenden Dialog die Bibliotheken
angegeben werden, die zur Ubersetzung notwendig sind. Im letzten Dialog muss
der Reverse-Engineer entscheiden, ob das Modell mit den Strukturmuster-
Spezifikationen im generierten Katalog gespeichert werden soll. Das Modell
wird zur Auswertung der identifizierten Kandidaten nach der in Abschnitt
3.1 beschriebenen Methode benétigt. AuBlerdem konnen weitere Optionen aus-
gewahlt werden, die zur Suche nach Fehlern wiahrend der Generierung niitzlich
sind. Nach Betétigung der Finish-Schaltfliche werden die JAvA-Klassen gene-
riert, iibersetzt und in einer Bibliothek zusammengefasst, die spéater von der
Strukturanalyse verwendet wird.
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= Structural Patterns Catalog Export = Structural Patterns Catalog Export
Fujaba Model Selection

specify the Structural Patterns Catalog

Chooge the structural patterns catalog to be exported
and a file name to save the structural patterns catalog.
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Abbildung B.4: Der Export eines Strukturmuster-Katalogs

=~ Behavioral Patterns Catalog Export

Specify the Behavioral Patterns Catalog

(Chaose the behavioral patterns to be expaorted and a file name to save the
behavioral patterns catalog,

Select the behavioral patterns:

Mame Meqgative
Command  False
Observer false

State False
Strategy False
Visitor False

Choose a behavioral patterns catalog fils:

1\Evaluation\C atalogs)BehavioralPatternsCatalog. soml

< Back Finish Cancel

Abbildung B.5: Der Export eines Verhaltensmusterkatalogs
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Zum Export der Verhaltensmuster wird wiederum der Export-Wizard geoff-
net. Hier wiahlt man nun den Punkt Behavioral Patterns Catalog (Abbildung
B.3) aus. Nach Auswahl des Modells mit den Verhaltensmustern wird der Dia-
log aus Abbildung B.5 angezeigt. Darin gibt man die zu exportierenden Verhal-
tensmuster und eine Datei fiir den Katalog an. Die Verhaltensmuster werden
dann, wie in Abschnitt 4.4 beschrieben, in endliche Automaten transformiert
und in einer generischen Beschreibungssprache gespeichert. Die Spezifikation
der Beschreibungssprache findet sich in Anhang C.2.4.

B.2 Strukturbasierte Entwurfsmustererkennung

Zur Strukturanalyse legt man zunéchst ein neues FujABA-Modell an. In diesem
Fall wurde ein Modell mit dem Namen Parsed Mediaplayer Model erzeugt
und in das Projekt mit dem Quelltext des Mediaplayers gelegt. Dann &ffnet
man den Import-Wizard iiber das Kontext-Menii des Modells, um den JAVA-
Quelltext in das Modell zu importieren. Im Wizard wahlt man den Punkt
Fugaba Model from Java Source File(s) aus (Abbildung B.6).

= Import
Select

\
Import & Fujaba model from java source code (parse the E - 5
source code).

=-% ParsedModel.Fpr.gz [Parsed Mediaplayer Model]
< Parsed Mediaplayer Model
#-[= Patternspecification Hew
Select an import source:
L, Open Element
type filter text
#-[= General
Hol= OYS
== Fujaba
B Fujaba Model from Java Source File(s)

#-[= Plug-in Development
ék' Refrash - Tean

=5 Import. .,
£y Expart...

Properties

Cancel

Abbildung B.6: Der Import-Wizard

Nach Auswahl des Modells, in das der JAvA-Quelltext importiert werden
soll, gibt der Reverse-Engineer im néchsten Dialog des Wizards (Abbildung
B.7) die JAvA-Quelldateien oder auch die Verzeichnisse mit den Quelldateien
an. Verzeichnisse konnen rekursiv nach JAvA-Quelldateien durchsucht werden.
Im letzten Dialog kann man einige Optionen auswéhlen, unter anderem, ob fiir
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jedes JAVA-Paket ein eigenes Klassendiagramm erzeugt werden soll, oder ob
alle Klassen in ein einzelnes Klassendiagramm aufgenommen werden sollen.

= Import Fujaba Model

X

= Import Fujaba Model

Select the Java Source Files

Select the Java source file(s) that should be parsed into a
Fujaba model.

Location
= MediaPlayer

harme
(= sre

Parse directories recursively

@
1

Add FilesjDirectories. ..

Add External Files..

Add External Direckory,..

Remove

Choose Parsing Options

Set the options For parsing.

Diagram Creation
(%) Create a class diagram for each package
() Create a single class diagram
Class diagram name:
Parsing Mode

Parse the method bodies on demand {incremental parsing)
[[]create an activity diagram For each method.

|| et = |[ Finiish ][ Cancel

= Back |

Abbildung B.7: Der Import von JAVA-Quelltext in ein FujaBa-Modell

= Fujaba4Ectipse - Parsed Mediaplayer Model - Eclipse SDK

M][=1% ]

<

= b‘J MediaPlayer
2 sre
*-®& IRE System Library [JRE 1.5]
=1tk ParsedModel fpr.gz [Parsed Mediaplaye
=3 Parsed Mediaplayer Model
=~ Diagrams

#-1= PatternSpecification

EE Outline &3

File Edit Mavigate Search Project Run Redipse ‘Window Help
C-Hel @ & % |v| i G- @~
[T Project Explorer 52 = 5 ¥ = 0| & *Parsed Mediaplayer Model &3

[ | % Fujsbadcipse |8 Java

=0

cd mediaplaver

Player

o

o

streams:HashSet

currentStream:Stream

main { args:Stringl1)
Flayer { )iconstructor
pause ()

play i)

stop ()

00O @®

#-[ Structure

Stream

CMD PALISE:Integer=2
CMD PLAY:Integer=1
CMD_STOP:Integer=3

skate:StreamState

i
oo o o0

==

Skream i Jrconstructor

sefState ( state;StreamSl

read(}

(-3 2 )

close ()

execute { command:Integer )

tate )

StreamState
@ execute('s:Stream , cmd:Integer }

-

Palette

@ sun('siStream }
StreamPlaying

StreamPaused

o singleton:StreamPlaying o singleton: StreamPaused

@ StreamPlaying { )iconstructor

@ get{ J:StreamPlaving

@ execute (s:Stream, cmd:Inkeger )
@ runis:Skream )

@ get{ kStreamPaused

@ runis:Stream )

B StreamPaused { Jiconstructor

@ execute ( s:5tream, crd:Integer )

StreamStopped
o singleton: StreamStopped
@ StreamsStopped § )iconstructor
@ geti k:StreamStopped
@ execute( s:Stream, cradi Integer )
@ run(s:Stream)

Project | 75" mediaplayer 52

Abbildung B.8: Der Mediaplayer dargestellt im Klassendiagramm
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Nach dem Import kann sich der Reverse-Engineer die JAVA-Klassen in Klas-
sendiagrammen darstellen lassen. Wie bereits in Abschnitt 2.3.1 erldutert, wer-
den keine Assoziationen zwischen den Klassen angezeigt, da diese das Ergebnis
weiter gehender Analysen sind. In Abbildung B.8 ist das Klassendiagramm des
Mediaplayers dargestellt.

Reclipse  Window Help

f@ Instrumentation...
2% Run Reclipse Tracer... 4

"‘[ Skart Metrics Calculation,
l'@ Start Behavioral Patterns Recognition, ..
5? Stark Structural Patterns Recognition...

Abbildung B.9: Das Reclipse-Menii

Die Strukturanalyse wird iiber den Meniipunkt Start Structural Patterns Re-
cognition... im Reclipse-Menii aufgerufen (Abbildung B.9). Es wird ein Wizard
geOffnet, in dem man zunéchst das Modell auswéhlt, in dem nach Struktur-
mustern gesucht werden soll.

= Start Structural Patterns Recognition

Configuration of the Structural Patterns Recognition

Choose a struckural patterns catalog and configure the structural
patterns recognition.

Structural patterns catalog:

CilEvaluationiCatalogsiStructuralPatternsC atalog, jar
Struckure model:
UML and JavadST &nalysis ™

Inference strateqgy:

Iterative Inference v

Search for optional pattern elements
Evaluate annotations
Annotations evaluator:

Similarity Evaluator v

Cancel

Abbildung B.10: Der Dialog zum Starten der Strukturanalyse

Im zweiten Dialog (Abbildung B.10) w#hlt man als erstes den Struktur-
muster-Katalog aus. Dies ist der Katalog, der zuvor exportiert wurde. Des
Weiteren wéhlt man ein Strukturmodell. Wie in Abschnitt 2.3.6 beschrieben
wurde, kann die Strukturanalyse auch auf andere Strukturmodelle wie zum
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Beispiel fiir MATLAB/SIMULINK eingesetzt werden. Das entsprechende Struk-
turmodell wird hier bestimmt. Zur Strukturanalyse stehen verschiedene In-
ferenzalgorithmen zur Verfiigung. In diesem Fall wird der in Abschnitt 2.3.4
beschriebene Algorithmus verwendet. Im unteren Bereich des Dialogs kann
angegeben werden, ob nach optionalen Elementen der Strukturmuster gesucht
werden soll und ob die Kandidaten bewertet werden sollen. Soll eine Bewertung
durchgefiihrt werden, muss der Strukturmuster-Katalog das FujaBa-Modell
mit den Spezifikationen der Strukturmuster enthalten. Die Strukturanalyse
wird schliellich durch Betétigung der Finish-Schaltfliche gestartet.

= Fujaba4Eclipse - Parsed Mediaplayer Model - Eclipse SDK E]@
File Edit Mavigate Search Project Run Redipse  ‘Window Help
- HE W@ [ el Q- @ P P o B | % Puisbatecipse | & Javs
I Project Explorer &3 = <)==g> = = O & *Parsed Medizplaver Model 53 =0
= -
= !\gd\aP\ayar cd mediaplayer StreamState
[+ src -t ot .
- - --{ @ e s 5h d: Ik
=Bk JRE System Library [JRE 1.5] | @ execctefsiSteam, nckinteger ) o
=11k ParsadModel fpr.gz [Parsed Mediaplaye I L@ unfsiStrean ] E
=3 Parsed Mediaplayer Model s i /7 &
= Diagrams conbext -88120%. . StreamPlaying StreamPaused
= Class Dlagrams 1 cnn!‘:axt B singleton:StreamPlaying 8 singleton: StreamPaused
=75 mediaplayer I i @ StreamPlaying { ):constructar B StresmPaused {J:constructor
#-(2 stream Stream @ get{ kStreamPlaying @ geti)StreamPaused
#(O streamPaused © CMD PALSE:Intener=2 @ execute (s:Stream , cmd:Inkeger ) @ executel siStream, cmd:Integer )
. iInbeger= _ . - X
SR C] StreamPlaying © CMD PLAY:Inteqer=1 @ run(s:Stream ) @ runisiStream)
5D Streamstate © CMD STOP:Integer=3
3 @ StreamStopped o state:StreamState StreamStopped
+- = Model @ Stream { ):constructor o singleton: SkreamStopped
+-[2 structure @ setState ([ state:StreamState ) m StreamStopped { ):constructor
#-1= Patternspecification @ sxecute [ command:Integer } @ get {):StreamStopped
@ read() @ execute ( s:Stream , cd:Integer )
@ dose() @ runis:Stream )
< 5| Project | 75" mediaplaver 53
EE Outline &3 = O |[structural Inference Conscle | £ Annctations 2 % t| % = =0
+ i
Annokation Accuracy Yalue | Annotated Elements ~
= . Strategy 62,20% conkexk=Stream, strategy="5Streamstate
= <" Delegation §9,90% callee=execute, calleeClass=5treamsState, callerClass=5Stream, calle...
=l “7 SingleReference 62,96% referencingClass=Stream, Field=stake, references=StreamsState
-7 SetMethod 100,00% field=state, method=setState
= # <7 OverridingMethod 100,00% overridden=execute, overriding=execute
# C27 OwerridingMethod 100,00% overtidden=execute, overriding=execute
# <7 OverridingMethod 100,00% overridden=sexecute, overriding=execute o
=

Abbildung B.11: Das Ergebnis der Strukturanalyse

In Abbildung B.11 ist das Ergebnis der Strukturanalyse zu sehen. Im Klas-
sendiagramm werden die Annotationen zweier Kandidaten angezeigt, eine
State- und eine Strategy-Annotation. Diese beiden Kandidaten sind jedoch
nur ein kleiner Ausschnitt aus allen gefundenen Kandidaten. Die im Klassen-
diagramm dargestellten Kandidaten konnen zur besseren Ubersicht gefiltert
werden. Im unteren Bereich ist die Annotations-Sicht geoffnet, die dagegen
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alle identifizierten Kandidaten, sowie ihre Bewertungen und die von ihnen
annotierten Elemente auflistet. Des Weiteren werden darin Abhéngigkeiten
zwischen den Kandidaten angezeigt. Zum Beispiel baut der dargestellte Stra-
tegy-Kandidat auf einen Delegation-Kandidaten und drei OverridingMethod-
Kandidaten auf, die wiederum von weiteren Kandidaten abhéngig sind.

= Structural Pattern Annotations Export = Trace Definition Export
Specify the Structural Pattern Annotations to be Exported Specify a File for the Trace Definition
Choose the structural annotations ko be exported and a file name ko save Choose a file name to save the trace definition,
them,
Select annotation bypes to be saved: Trace definition file:
Observer ‘\ Select all C:{EvaluationiResults\TraceDefinition. ztracedefirition
OneToManyAssociakion
[1 owerridingMethod Deselect Al
[] setmethod
[ singlereference
State
Strategy J
Visitor ]
Structural annotations file name:
\Evaluation\Results\Structuralnnotations. zannot ations
o) Lo ] | | © )

Abbildung B.12: Der Export der Kandidaten und der Trace-Definition

In der Verhaltensanalyse werden die Kandidaten aus der Strukturanalyse
iitberwacht, wie in Abschnitt 3.2 erlautert wurde. Dazu benétigt die Verhal-
tensanalyse zum einen fiir jeden Kandidaten die Bindung der Strukturmuster-
variablen an die Elemente der Struktur und zum anderen die Methoden, die
zur Laufzeit des Softwaresystems beobachtet werden miissen. Die Bindungen
der Strukturmustervariablen sind in den Annotationen enthalten und werden
durch Export der Annotationen zur Verfiigung gestellt. Dazu wéhlt man im
Export-Wizard den Punkt Structural Pattern Annotations aus (Abbildung B.3,
Seite 200). In Abbildung B.12 ist auf der linken Seite der Dialog des Export-
Wizards fiir die Annotationen zu sehen. Hier gibt man die Typen der Anno-
tationen, die exportiert werden sollen, und die Datei fiir die Annotationen an.
Das Datenformat fiir Annotations-Dateien ist im Anhang C.2.1 zu finden.

Auf der rechten Seite in Abbildung B.12 ist der Dialog zum Export der
Trace-Definition dargestellt. Er wird im Export-Wizard {iber den Punkt Trace
Definition aufgerufen. Die Trace-Definition enthélt die Informationen, welche
Methoden zur Laufzeit {iberwacht werden miissen. Das Datenformat der Trace-
Definition ist im Anhang C.2.2 spezifiziert.
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B.3 Verhaltensbasierte Entwurfsmustererkennung

Im Folgenden wird beschrieben, wie zunéchst die Daten der Gesamtanalyse
fiir die Software-Tomographie in Daten fiir Teilanalysen aufgetrennt werden.
Dann wird erklért, wie das zu untersuchende Softwaresystem zur Laufzeit mit
Hilfe des RECLIPSE TRACERS oder der Instrumentierung beobachtet wird.
Bei der Ausfithrung wird ein Trace aufgezeichnet, der anschliefend durch die
Verhaltensanalyse untersucht wird.

B.3.1 Software-Tomographie

Zur Anwendung der Software-Tomographie muss die Gesamtanalyse in viele
kleine Teilanalysen aufgeteilt werden. Im Falle der Entwurfsmustererkennung
bedeutet das, dass die Gesamtheit der durch die Strukturanalyse identifizierten
Kandidaten in Form von Annotationen in viele kleine Gruppen von wenigen
Annotationen getrennt werden muss. Gleichzeitig muss die Trace-Definition
ebenfalls auf die jeweils zu untersuchenden Kandidaten eingeschrinkt werden.
Zu diesem Zweck gibt es den Trace Definition Splitting Wizard. Er wird {iber
das Kontext-Menii einer Trace-Definition aufgerufen.

= Trace Definition Splitting Wizard @ = Trace Definition Splitting Wizard @
Files for Splitting Specify Trace Definition Splitting
Provide the source and target files For splitting, Specify how to split the trace definition
Source trace definition:
C:\Evaluationiorg.eclipse. analysisisetup|DPEclipse. xtracedefinition
Source struckural annotations: Split by annokation type
CHiEvaluationiorg,eclipse, analysisiresults\ DPEclipse, xannotations [ observer Select Al
State
Target trace definition: [] strategy Deselect All
CiEvaluationtorg,.eclipse, analysisisetupiStrategy TraceDefinition

[#] Cempress tracs definition file

Target struckural annotations:
Save splitted structural annatations

:\Evaluation\org. eclipse. analysis\results StrategyPatterns e
Compress structural annotations File B4

Abbildung B.13: Das Zertrennen der Trace Definition und der Annotationen

Abbildung B.13 zeigt die zwei Dialoge des Wizards. Im ersten Wizard werden
die urspriingliche Trace-Definition und die Datei mit allen von der Strukturana-
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lyse erzeugten Annotationen ausgewahlt. Gleichzeitig werden die Dateinamen
der neu zu erzeugenden, aufgetrennten Trace-Definitionen und Annotationen
angegeben.

Im zweiten Dialog kénnen nun aufgrund von drei Kriterien die Daten ge-
trennt werden. Zunéchst einmal konnen die Annotation in Gruppen gleicher
Grofle aufgeteilt werden. Die Anzahl der Annotationen jeder Teilgruppe kann
festgelegt werden. Passend zu jeder Teilgruppe von Annotationen wird jeweils
eine Trace-Definition generiert. Die Dateien werden in nummerierter Form ab-
gelegt. Die Annotationen kénnen aber auch nach ihrem Typ und sogar nach
einzelnen Annotationen aufgetrennt werden. So kénnen zum Beispiel alle An-
notationen des Strategy-Entwurfsmusters separiert von allen anderen zusam-
men mit einer passenden Trace-Definition gespeichert werden.

Die so entstandene Trace-Definition, die nur einen Teil der Gesamt-Trace-
Definition enthélt, bildet schliefllich die Eingabe zum Debugging beziehungs-
weise zur Instrumentierung. So wird nur ein Teil der Gesamtanalyse durch-
gefithrt und der Einfluss auf das zu untersuchende System gering gehalten.

B.3.2 Debugging

Der RECLIPSE TRACER wird iiber die Toolbar gestartet. Abbildung B.14 zeigt
das Menii des RECLIPSE TRACERS. Es konnen mehrere Konfigurationen fiir
Programme, die zur Laufzeit beobachtet werden sollen, abgerufen werden. Zur
Erzeugung einer neuen Konfiguration wéhlt man Reclipse Tracer... aus.

G- Q-

[# 1 Mediaplayer

[ zEclipse 2.1.3

Run As 4
‘36 Reclipse Tracer, .
©rganize Favorites. ..

Abbildung B.14: Das Menii zum Aufruf des RECLIPSE TRACERS

Es wird ein Dialog gedffnet, mit dem Konfigurationen verwaltet werden
kénnen. In den Abbildungen B.15 und B.16 wird die Konfiguration des Me-
diaplayers bearbeitet. Auf der Main-Seite werden die Hauptklasse, mogliche
Programmparameter, das Arbeitsverzeichnis und die Trace-Definition konfigu-
riert. Die Classpath-Seite wird zur Konfiguration des Klassenpfads verwendet.
Die hier nicht abgebildeten Seiten JRE und Options dienen zum Einstellen
der JAvA-Laufzeitumgebung beziehungsweise einiger Optionen.
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= Reclipse Tracer

Create, manage, and run configurations ; I\il

&
|}

® B -

Mame: | Mediaplayer

type filker texk
& Main % Classpath| =i JRE| & Options| & Listeners| 1 Comman

Main dlass:

=] Reclipse Tracer application
Eclpse 2.1.3
Mediaplayer

mediaplayer.Player

Program arguments:
WM arguments:

Working direckory:
C:\Evaluation|Mediaplayer

Browse File System, .,

Trace definition Fils:

Ci\Evaluation|Resultsi TraceDefinition ztracedefinition

Erowse File Systam,. .

Apply Rewert

Abbildung B.15: Die Konfiguration des RECLIPSE TRACERS fiir den
Mediaplayer

3 Main | % Classpath =) JRE| 8= Optiﬂns| &5 L\steners| E Common

Classpath:
C:\Evaluation\MediaplayeriMediaplayer.jar Up
Dawin
Remove

® Main ‘ e C\asspath| =i, JRE ‘ B~ Optians (@ Listeners . ] gommon|

Available Tracer Listeners:

Behavioral Patterns Inference
Trace File Logger

Properties of Behavioral Patterns Inference:

Key Valug

logTraces (Boolean) true

catalogFileMame (String) C:\Evaluation\Catalogs\BehavioralPatternsCatalog. xml
annotationsFileMame (String)  C:\Evaluation\Results Structuraldnnotations . zannotations
resultsFilehlame {String) C:\Evaluation\ResultsiBehavioralinalysisresult. xml

Abbildung B.16: Die Konfiguration des Klassenpfads und der Listener
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Auf der Seite Listener werden die Module konfiguriert, die die vom Tra-
cer beobachteten Methodenaufrufe verarbeiten. Es stehen zwei Module zur
Verfiigung. Das Modul Behavioral Patterns Inference iibergibt die Metho-
denaufrufe der Verhaltensanalyse. Dazu benotigt das Modul den Verhaltens-
muster-Katalog und die Annotationen aus der Strukturanalyse. Des Weiteren
muss man angeben, in welche Datei die Ergebnisse der Verhaltensanalyse ge-
speichert werden sollen. Der Reverse-Engineer kann entscheiden, ob die Traces,
die fiir einen Kandidaten iiberpriift werden, gespeichert werden sollen. Das
Datenformat fiir die Ergebnisse der Verhaltensanalyse ist im Anhang C.2.5
spezifiziert. Das zweite Modul Trace File Logger dient zum Protokollieren des
Traces. Das Datenformat ist ebenfalls im Anhang unter C.2.3 zu finden.

Wird das zu untersuchende Programm durch den RECLIPSE TRACER gest-
artet, so werden in einer eigenen Perspektive Informationen iiber den Ablauf
angezeigt. Abbildung B.17 zeigt die Ausgaben bei der Ausfithrung des Media-
players.

-

= Reclipse Tracer - TraceDefinition.xtrace definition - Eclipse SDK E]@
File Edit Mavigake Search Project Run  Redipse window Help
- @ Q - - HI < = = E=T [ F Fujaba4Ecipse |3 Reclipse Tracer 33’ Java
[ Execution Manitor 23 Navigatar F F T 0 ajTraceDeFinitinn.xtracedefinitinn = =0
= © imediaplayer, Stream. = % Consider Trace
ediaplayer, Streamstate): 5 executions. =-@ mediaplayer . Stream
V| execute(intl: 4 executions. @ Stream()
@ mediaplayer, StreamsState *- @ setState(mediaplayer, Streamstate)
=-@ mediaplayer, StreamsStopped +- @ executelint)
v| execute(mediaplayer.Stream, int): 1 execution, =N C] mediaplayer.StreamStapped
| run{mediaplayer . Stream): 2 executions, +- @ execute{mediaplayer. Stream, int)
=@ mediaplayer. StreamPlaying @ StreamStopped)
v executelmediaplayer,Stream, ink): 2 executions, = G mediaplayer StreamState
| run{mediaplayer.Stream): 2 executions, #- @ sxecute(mediaplayer, Stream, int)
=@ mediaplayer. StreamPaused #-® run{mediaplayer. Stream)
| executelmediaplayer,Skream, ink): 1 execution, = G mediaplayer StreamPlaying
| run{mediaplayer.Stream): 1 execution, #- @ sxecute(mediaplayer, Stream, int)

@ StreamPlaying()
=-@ mediaplayer StreamPaused
+- @ execute(mediaplayer. Stream, int)
@ StreamPaused()
Trace Definiton | Source

0 Tracer 52 Console 3

@ Method mediaplayer StreamPlaying, run{mediaplayer .Stream)’ is monitored, (i
@ class 'mediaplayer. StreamPlaying' loaded.

@ Method 'mediaplayer StreamPaused.executeimediaplayer, Stream, ink) is monitared,

@ Method 'mediaplayer,StreamPaused.run{mediaplayer, Stream)’ is monitored,

@ class 'mediaplayer. StreamPaused' lnaded.

&1 Virtual Machine stopped, v

Doma

Abbildung B.17: Ausfithrung des Mediaplayers durch den RECLIPSE TRACER

Auf der linken Seite der Perspektive ist der Ezecution Monitor. Darin sind
alle beobachteten Methoden in einem Baum unterhalb ihrer jeweiligen Klasse
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aufgelistet. Zu jeder Methode wird auflerdem angegeben, ob und wie oft sie
aufgerufen wurde. In der Sicht Tracer am unteren Rand werden Meldungen des
Reclipse Tracers ausgegeben. Sollte das zu untersuchende Programm Fehler
oder sonstige Meldungen auf der Konsole ausgeben, so werden diese in der
Sicht Console angezeigt. Die Trace-Definition kann in dem Editor rechts oben
angezeigt und bearbeitet werden.

B.3.3 Instrumentierung

Zur Instrumentierung steht ebenfalls ein Wizard zur Verfiigung. Er wird iiber
das Reclipse-Menii aufgerufen (Abbildung B.9, Seite 204). Der Instrumentie-
rungs-Wizard besteht aus sechs Dialogen, die im Folgenden erldutert werden.

Im ersten Dialog in Abbildung B.18 kann der Reverse-Engineer entscheiden,
ob er eine neue Instrumentierungs-Konfiguration erzeugen will, oder ob er eine
existierende bearbeiten oder ausfithren mdochte. Im zweiten Dialog gibt der
Reverse-Engineer die JAava-Klassen und Bibliotheken an, die instrumentiert
werden sollen. Auch die Angabe von Verzeichnissen, die rekursiv nach JAVA-
Klassen durchsucht werden kénnen, ist moglich.

Die Instrumentierung benotigt eine Trace-Definition, in der die Methoden-
aufrufe aufgelistet sind, die iiberwacht werden sollen. Die Trace-Definition
wird im dritten Dialog angegeben. Des Weiteren muss die Hauptklasse
des Programms angegeben werden. Die Hauptklasse wird besonders instru-
mentiert, um den Start und das Beenden des Programms iiberwachen zu
konnen. Der Reverse-Engineer kann entscheiden, ob die angegebenen Da-
teien durch die Instrumentierung iiberschrieben oder in ein anderes Ver-
zeichnis kopiert werden sollen. Die instrumentierten Klassen bendtigen zur
Ausfithrung eine Bibliothek, die die Laufzeitumgebung der Instrumentierung
enthélt. Diese Instrumentierungs-Bibliothek kann in eine der zu instrumentie-
renden Bibliotheken eingefiigt werden oder in ein gegebenes Verzeichnis ko-
piert werden. In beiden Féllen muss der Reverse-Engineer sicherstellen, dass
die Instrumentierungs-Bibliothek zur Laufzeit des zu untersuchenden Pro-
gramms fiir alle Klassen im Klassenpfad zur Verfiigung steht. Zusétzlich zur
Instrumentierungs-Bibliothek wird eine Konfigurationsdatei fiir die Laufzeit-
umgebung erzeugt, die ebenfalls entweder in die angegebene, zu instrumentie-
rende Bibliothek eingefiigt oder in das gegebene Verzeichnis geschrieben wird.
Auch diese Konfigurationsdatei muss im Klassenpfad zu finden sein.
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= Instrument Java byte code = Instrument Java byte code
Create or Load Instrumentation Configuration J\\V Select Class and Jar Files J
Choose ko create a new o load an existing instrumentation 01 Select the class and jar files to be instrumented, 0

configuration,

Inskrumentation Configuration Marme Location add Files...
O ¢reate a configuration m Mediaplayer.jar Z:\Evalustiom\Mediaplayer -
y . Add Direckary. ..
(&) Load a configuration:
Remove

Ci\EvaluatiomInstrumentediInstrumentationConfiguration. xml

[Jinclude class files in subdireckories

':':’:' | Mext = | [ Finish ] [ Cancel ] ‘:':’:' [ < Back H Mext = Finish ] [ Cancel ]
= Instrument Java byte code = Instrument Java byte code
Configure the Instrumentation J\\% Configure Method Call Listeners J (/
Select a trace definition file, the output mode and the main class, [ Add method call listeners ko instrumentation and set their property 0
walues,

Awailable Method Call Listeners:

Trace Definition
C\Evaluation|Results\ TraceDefinition, ztracedefinition Bromse. .. [[] Behaviaral Patterns Inference
Trace File Logger

Main Class

mediaplayer Player Propetties of Trace File Logger:

Instrumented Files key alle

. outputFileMame (String) \Evaluation\Results\ Trace. ztrace

() Overwrite ariginal files compressed (Boolean) true

(%) WWrite to output Folder: traceMame (String) Mediaplayer Trace

:\Evaluation\Instrumented
Inskrumentation Runtime Library
(%) Add to jar File:
|C:\EvaIuat\onlMediaDIayer\MBdiaplayer.jar [v]
() Copy ko Folder:
@ [ < Back. || et > | [ FEinish ] [ Cancel ] @ [ < Back. H Mext = | [ Einish ] [ Cancel ]

= Instrument Java byte code = Instrument Java byte code

Classes to be Skipped by Instrumentation Save Instrumentation Configuration

Add classes that must nat be instrumented, Choose to save the instrumentation configuration,

2dd Class Instrumentation Configuration

Save the instrumentation configuration:

\EvaluationInstrumentedi InstrumentationConfiguration. xml

7 [ < Back H Mext > |[ Finish ][ Cancel ] ‘:':’:' Finish .

Abbildung B.18: Die Konfiguration der Instrumentierung
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Im vierten Dialog werden analog zum RECLIPSE TRACER Module konfigu-
riert, die wihrend des Ausfithrung des Programms iiber ausgefiihrte Methoden-
aufrufe informiert werden. Es stehen die gleichen zwei Module zur Verfiigung,
wie im RECLIPSE TRACER. Das Modul Behavioral Patterns Inference iiber-
gibt die Methodenaufrufe der Verhaltensanalyse. Das Modul Trace File Logger
dient zum Protokollieren des Traces. Dazu bendétigt es die Angabe, in welche
Datei der Trace gespeichert werden soll, und einen Namen fiir den Trace. Da
Traces sehr grofl werden kénnen, kann die Datei komprimiert werden. Dabei
wird eine Datei im Zip-Format angelegt, in die die eigentliche Trace-Datei
eingefiigt wird.

In einigen Fillen sollen bestimmte Klassen nicht instrumentiert werden. Lie-
gen diese Klassen in zu instrumentierende Bibliotheken oder Verzeichnissen,
deren restliche Klassen alle instrumentiert werden sollen, so konnen im vier-
ten Dialog diese Klassen angegeben werden. Dazu muss nur ihr voll qualifi-
zierter Klassenname in die Liste eingetragen werden. Im letzten Dialog hat
der Reverse-Engineer die Gelegenheit, die Instrumentierungs-Konfiguration zu
speichern, um sie bei einer spéateren Gelegenheit noch einmal zu verwenden.

B.3.4 Verhaltenserkennung

Die Verhaltensanalyse kann im Online- oder Offline-Modus durchgefiihrt wer-
den. Fiir den Online-Modus muss das Modul Behavioral Patterns Inference im
RECLIPSE TRACER beziehungsweise in der Instrumentierung aktiviert wer-
den. Zur Offline-Analyse muss das Modul Trace File Logger aktiviert werden,
damit der Trace wéahrend der Programmausfithrung aufgezeichnet wird. Der
Trace kann anschlieBend durch die Verhaltensanalyse im Offline-Modus un-
tersucht werden. Dazu ruft man im Reclipse-Menii Start Behavioral Patterns
Recognition... auf (Abbildung B.9, Seite 204).

Abbildung B.19 zeigt den Dialog, der dadurch geoffnet wird. Hier muss man
die Datei angeben, die die Annotationen aus der Strukturanalyse enthélt, die
Datei, die den Trace enthélt, und die Datei, die den Verhaltensmusterkatalog
enthélt. AuBerdem muss der Reverse-Engineer angeben, in welche Datei die
Ergebnisse der Verhaltensanalyse geschrieben werden.

Nach der Durchfiihrung der Verhaltensanalyse wird die Sicht Behavioral
Analysis Result geoffnet (Abbildung B.20). Darin kann der Reverse-Engineer
zu jedem Kandidaten, der ausgefiihrt wurde, die untersuchten Traces ansehen.
Die Kandidaten kann man in der Kombobox unter Design Pattern Candidates
auswahlen. In der Mitte links ist die Variablenbindung des Strukturmusters an
die Elemente der Struktur aufgelistet. Dies ist das Ergebnis der Strukturana-
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X

= Start behavioral patterns recognition

Configure the behavioral patterns recognition

Select the trace graph file, the annotations file, the behavioral
patterns file, and the output file.

Choose a structural annotations file:
CiiEvaluation|Resulkst Structur aldnnotations . 2zannotations Browse. .,
Choose a trace file:
CHiEvaluation|Resulksi Trace, ztrace Birowse. ..
Choose a behavioral patterns catalog file:

C:\Evaluation|Catalogs|\BehavioralPatternsCatalog. xml EBrowse...

Choose a result file:

C:iEvaluation|ResulksiBehavioralanalysisResult, xml Birowse. ..

Log matched traces

Abbildung B.19: Starten der Verhaltensanalyse im Offline-Modus

lyse. In der Mitte daneben sind die im Abschnitt 5.4 erklarten Messwerte der
Verhaltensanalyse zu dem ausgewéhlten Kandidaten zu finden. Jeder der un-
tersuchten Traces kann auch einzeln untersucht werden. Dazu wéhlt man rechts
einen der Traces aus. Es wird angegeben, ob der Trace akzeptiert wurde, und
die Bindung der Verhaltensmusterobjekte an die Instanzen zur Laufzeit wird
in einer Tabelle aufgelistet. Im unteren Bereich wird der ausgewéhlte Trace
als Sequenzdiagramm visualisiert. Bei Traces, die verworfen wurde, wird der
letzte Methodenaufruf, der zum Verwerfen gefiihrt hat, ebenfalls im Sequenz-
diagramm visualisiert. So kann der Reverse-Engineer leicht feststellen, warum
der Trace verworfen wurde. Um die Visualisierung der Traces zu ermoglichen,
muss bei der Online-Analyse im Modul Behavioral Patterns Inference im RE-
CLIPSE TRACER beziehungsweise bei der Instrumentierung die Eigenschaft
logTraces auf true gesetzt werden. Bei der Offline-Analyse muss im Dialog aus
Abbildung B.19 die Option Log matched traces aktiviert werden.

Das Ergebnis der Verhaltensanalyse kann auch unabhéngig von der vorher-
gehenden Verhaltensanalyse betrachtet werden. Dazu kann man in der Sicht
Behavioral Analysis Result das Ergebnis aus einer Datei laden. Dazu betétigt
man die Schaltfliche mit dem gedffneten Ordner in der Toolbar der Sicht.
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2 FujabadEclipse - Eclipse SDK H=<]
File Edit Mavigate Search Project Run  Reclipse Window Help
i m Q- - ¥ | < 04 & dava | % FujabatEdipse |03 Reclipse Tracer
Annatations | Structural Inference Cansole | 55 Behavioral Analysis Result &5 = =
Diesign Pattern Candidates
State 63,31% (handle=execute(mediaplayer. Stream, int); abstractState=mediaplayer, Streamstate; context=mediaplaver.Stream; setState=setState(mediaplayer.Streani v
Struckural Analysis Results Eiehavioral Analysis Resulks
Fuzzy Belief: &3,31% Traces: & Trace 12 v
Structural Pattern Warisble | Structural Model Element W accepted: L B N e —
handle execute{mediaplayer. Stream... W rejected: 5
abstrackState mediaplayer, StreamState Behavioral Pattern Object | Instance
- 7 not accepted: z
conkext mediaplayer, Stream a 72
setState setStatefmediaplayer Stream. .. accepted subtraces: 2 c 65
request execute(int) average length of clignk ?g
accepted (sub-Jtraces: 5.0
Trace Sequence Diagranm
sd Trace 12
| 68:mediaplayer.Player | | 65:mediaplayer.Stream | | #Z:mediaplayer.StreamPaused | | F0:mediaplayer.StreamPlaying
executelink)
execute{mediaplayer Stream, int) o
r
sekState(mediaplayer, Streamstate)
executelint) |
-
execute(medipflayer. Stream, int) o
I
T T T T
B

Abbildung B.20: Das Ergebnis der Verhaltensanalyse
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Anhang C

Technische Dokumentation

C.1 Komponenten der Entwurfsmustererkennung

In diesem Kapitel werden die Komponenten des Werkzeugs RECLIPSE doku-
mentiert. Zu jeder Komponente werden ihre Funktion und ihre Version ge-
nannt. Optional werden ihre Abhéngigkeiten von anderen Komponenten, die
Komponente, die ihre Benutzungsschnittstelle implementiert, sowie ihre Ein-
und Ausgaben angegeben. Einige der Komponenten sind zusétzlich von Kom-
ponenten des ECLIPSE-Frameworks abhéingig. Diese Abhéngigkeiten werden
der besseren Ubersichtlichkeit halber nicht genannt.

C.1.1 de.uni_paderborn.fujaba
Funktion

Dies ist die Hauptkomponente, in der die integrierte Entwicklungsumgebung
FuJABA enthalten ist. Sie stellt auflerdem die Pakete ClassDiagrams (Abbil-
dung 2.1, Seite 18) zur Spezifikation von Klassendiagrammen und Structure
zur Repréasentation der Struktur (Abbildung 2.2, Seite 19) bereit. Allerdings
sind diese beiden Pakete in FUJABA aus dem in Abschnitt 2.3.1 genannten
Grund identisch.

Abhdngigkeiten

Benotigt die Komponenten de.uni_paderborn.runtimetools (Version 1.0.1), de.
uni_paderborn.appindependent (Version 1.0.2), de.uni_kassel.coobra2 (Version
1.0.0), de.uni_kassel.features (Version 1.0.0) und de.uni_kassel.utils (Version
1.0.0).
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Benutzungsschnittstelle

Die Benutzungsschnittstelle wird von der Komponente de.uni_paderborn.fu-
jabadeclipse (Version 0.7.0) bereitgestellt.

Version

5.0.4.20070313

C.1.2 org.reclipse.javaast

Funktion

Stellt das Paket JavaAST als Modell des abstrakten Syntaxbaums fiir JAVA-
Methodenriimpfe zur Verfiigung.

Version

2.0.1

C.1.3 org.reclipse.javaparser
Funktion

Stellt einen Parser zur Verfiigung, der den JAvA-Quelltext des zu untersuchen-
den Softwaresystems in eine Struktur auf Basis des Strukturmodells umwan-
delt.

Abhangigkeiten

Verwendet das Strukturmodell des Pakets Structure aus der Komponente
de.uni_paderborn.fujaba und das Modell des abstrakten Syntaxbaums aus der
Komponente org.reclipse.javaast.

Eingabe

JAVA-Quelltext des zu untersuchenden Softwaresystems.

Ausgabe

Strukturmodell des zu untersuchenden Softwaresystems.
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Benutzungsschnittstelle

Die Benutzungsschnittstelle wird von der Komponente org.reclipse.javaparser.ui
(Version 1.0.0) bereitgestellt.

Version

4.0.2

C.1.4 org.reclipse.tracing
Funktion

Stellt das Paket Behavior (Abbildung 3.9, Seite 52) zur Reprasentation von Tra-
cegraphen bereit. Stellt aulerdem das Paket TraceDefinition zur Spezifikation
der zu iiberwachenden Methoden eines Softwaresystems zur Verfiigung.

Abhdngigkeiten

Verwendet das Paket Structure aus der Komponente de.uni_paderborn.fujaba,
um die Verbindung zwischen dem Verhaltens- und dem Strukturmodell herzu-
stellen.

Version

1.0.0

C.1.5 org.reclipse.tracer
Funktion

Stellt ein Werkzeug zum Debugging von JAvA-Programmcode zur Verfiigung.
Das Werkzeug erzeugt Breakpoints zur Uberwachung der Methodenaufrufe
wéihrend der Ausfithrung des Programms. Die beobachteten Methodenaufrufe
kénnen entweder in eine Datei zur Offline-Analyse gespeichert werden, oder
direkt in einer Online-Analyse der Verhaltensanalyse iibergeben werden.

Abhangigkeiten

Verwendet das Paket TraceDefinition sowie das Paket Behavior aus der Kompo-
nente org.reclipse.tracing. Verwendet aulerdem das Paket Annotations aus der
Komponente org.reclipse.patterns.structure.inference.
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Eingabe

Ausfithrbarer Programmcode des zu untersuchenden Softwaresystems, Kandi-
daten der Strukturanalyse und Spezifikation der zu {iberwachenden Methoden
des Softwaresystems.

Ausgabe

Tracegraph der beobachteten Methodenaufrufe.

Benutzungsschnittstelle

Die Benutzungsschnittstelle wird von der Komponente org.reclipse.tracer.ui
(Version 1.0.0) bereitgestellt.

Version

1.0.0

C.1.6 org.reclipse.instrumentation
Funktion

Stellt ein Werkzeug zur Instrumentierung von JAvVA-Bytecode bereit. Das
Werkzeug fiigt zusédtzlichen Programmecode ein, der zur Uberwachung von Me-
thodenaufrufen dient.

Abhangigkeiten

Verwendet das Paket TraceDefinition aus der Komponente org.reclipse.tracing.
Verwendet auflerdem das Paket Annotations aus der Komponente org.re-
clipse.patterns.structure.inference. Verwendet das Paket org.objectweb.asm (Ver-
sion 3.0.0) zur Instrumentierung des Bytecodes.

Eingabe

Ausfiihrbarer Programmecode des zu untersuchenden Softwaresystems, Kandi-
daten der Strukturanalyse und Spezifikation der zu iiberwachenden Methoden
des Softwaresystems.
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Ausgabe

Instrumentierter Programmcode des zu untersuchenden Softwaresystems.

Benutzungsschnittstelle

Die Benutzungsschnittstelle wird von der Komponente org.reclipse.instrumen-
tation.ui (Version 1.0.0) bereitgestellt.

Version

1.0.0

C.1.7 org.reclipse.instrumentation.runtime
Funktion

Stellt die Laufzeitumgebung fiir den instrumentierten Programmcode zur
Verfiigung. Wird als Bibliothek dem instrumentierten Programmcode hinzu-
gefiigt. Die beobachteten Methodenaufrufe konnen entweder in eine Datei zur
Offline-Analyse gespeichert werden, oder direkt in einer Online-Analyse der
Verhaltensanalyse iibergeben werden.

Abhdngigkeiten

Verwendet das Paket Behavior aus der Komponente org.reclipse.tracing.

Eingabe

Der instrumentierte Programmcode meldet Methodenaufrufe.

Ausgabe

Tracegraph der beobachteten Methodenaufrufe.

Version

1.0.0
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C.1.8 org.reclipse.patterns.structure.specification
Funktion:

Stellt das Paket StructuralPatterns (Abbildung 4.7, Seite 68) zur Spezifikation
von Strukturmustern bereit.

Abhdngigkeiten

Verwendet das Paket ClassDiagrams aus der Komponente de.uni_paderborn.fu-
jaba, sowie das Paket JavaAST aus der Komponente org.reclipse.javaast, um
das Metamodell der Strukturmuster mit dem Metamodell des Strukturmo-
dells zu verbinden. Verwendet auflerdem das Paket BehavioralPatterns aus der
Komponente org.reclipse.patterns.behavior.specification, um das Metamodell der
Strukturmuster mit dem Metamodell der Verhaltensmuster zu verbinden.

Ausgabe

Strukturmuster, spezifiziert durch den Reverse-Engineer.

Benutzungsschnittstelle

Die Benutzungsschnittstelle wird von der Komponente org.reclipse.patterns.
structure.specification.ui (Version 2.0.0) bereitgestellt.

Version

3.0.0

C.1.9 org.reclipse.patterns.structure.inference
Funktion

Diese Komponente enthilt den Algorithmus zur Strukturanalyse (Abbildung
2.10, Seite 28). Dazu verwendet sie Erkennungsmaschinen fiir Strukturmuster,
um in der Struktur des zu untersuchenden Softwaresystems nach Kandidaten
fiir Entwurfsmusterimplementierungen zu suchen. Sie stellt aulerdem das Pa-
ket Annotations (Abbildung 5.16, Seite 132) zur Annotation der Kandidaten
bereit. Fiir die Erkennungsmaschinen wird eine Schnittstelle definiert.
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Abhdngigkeiten

Verwendet das Paket Structure aus der Komponente de.uni_paderborn.fujaba
und das Paket JavaAST aus der Komponente org.reclipse.javaast.

Eingabe

Das Strukturmodell und ein Katalog von Erkennungsmaschinen fiir Struktur-
muster.

Ausgabe

Kandidaten fiir Entwurfsmusterimplementierungen in Form von Annotationen.

Benutzungsschnittstelle

Die Benutzungsschnittstelle wird von der Komponente org.reclipse.patterns.
structure.inference.ui (Version 2.0.0) bereitgestellt.

Version

4.0.0

C.1.10 org.reclipse.patterns.structure.generator
Funktion

Stellt einen Algorithmus zur Verfiigung, um aus den Strukturmustern Erken-
nungsmaschinen zu generieren.

Abhangigkeiten

Verwendet das Paket StructuralPatterns aus der Komponente org.reclipse.pat-
terns.structure.specification. Verwendet auflerdem die Schnittstellen fiir die
Erkennungsmaschinen aus der Komponente org.reclipse.patterns.structure.in-
ference.

Eingabe

Strukturmuster.
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Ausgabe

Erkennungsmaschinen fiir Strukturmuster.

Benutzungsschnittstelle

Die Benutzungsschnittstelle wird von der Komponente org.reclipse.patterns.
structure.generator.ui (Version 1.1.1) bereitgestellt.

Version

2.1.0

C.1.11 org.reclipse.patterns.behavior.specification
Funktion

Stellt das Paket BehavioralPatterns (Abbildung 4.5, Seite 64) zur Spezifikation
der Verhaltensmuster bereit.

Abhadngigkeiten

Verwendet das Paket StructuralPatterns aus der Komponente org.reclipse.pat-
terns.structure.specification, um das Metamodell der Verhaltensmuster mit
dem Metamodell der Strukturmuster zu verbinden. Bendtigt auflerdem die
Komponenten de.uni_paderborn.fujaba.sequencediagrams (Version 1.0.0) und de.
uni_paderborn.fujaba.sequencediagrams.ui (Version 1.0.0) .

Ausgabe

Verhaltensmuster, spezifiziert durch den Reverse-Engineer.

Benutzungsschnittstelle

Die Benutzungsschnittstelle wird von der Komponente org.reclipse.patterns.be-
havior.specification.ui (Version 1.0.0) bereitgestellt.

Version

1.0.0
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C.1.12 org.reclipse.patterns.behavior.inference
Funktion

Diese Komponente enthélt den Algorithmus zur Verhaltensanalyse (Abbildung
5.1, Seite 106). Sie verwendet endliche Automaten, um im Tracegraphen nach
Verhaltensmustern zu suchen. Sie stellt auflerdem die Pakete BehaviorAnaly-
sis (Abbildung 5.2, Seite 111) und Automaton (Abbildung 5.3, Seite 113) zur
Verfiigung.

Abhangigkeiten

Verwendet die durch das Paket Behavior aus der Komponente org.reclipse.tra-
cing repréasentierten und von den Komponenten org.reclipse.tracer oder org.re-
clipse.instrumentation.runtime erzeugten Tracegraphen. Verwendet auflerdem
das Paket Annotations aus der Komponente org.reclipse.patterns.structure.infe-
rence.

Eingabe

Kandidaten der Strukturanalyse, ein Tracegraph und ein Katalog von Verhal-
tensmustern.

Ausgabe

Bewertung der Konformitéit der Kandidaten zu den Verhaltensmustern.

Benutzungsschnittstelle

Die Benutzungsschnittstelle wird von der Komponente org.reclipse.patterns.be-
havior.inference.ui (Version 1.0.0) bereitgestellt.

Version

1.0.0

C.1.13 org.reclipse.patterns.behavior.generator
Funktion

Stellt den Algorithmus aus Abschnitt 4.4 zur Verfiigung, um aus den Verhal-
tensmustern endliche Automaten zu generieren. Erzeugt auflerdem aus dem
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Ergebnis der Strukturanalyse die Trace-Definition zur Uberwachung des Pro-
gramms.

Abhangigkeiten

Verwendet das Paket BehavioralPatterns aus der Komponente org.reclipse.pat-
terns.behavior.specification und das Paket Automaton aus der Komponente
org.reclipse.patterns.behavior.inference.

Eingabe

Verhaltensmuster.

Ausgabe

Deterministische, endliche Automaten zur Erkennung der Verhaltensmuster.

Benutzungsschnittstelle

Die Benutzungsschnittstelle wird von der Komponente org.reclipse.patterns.be-
havior.generator.ui (Version 1.0.0) bereitgestellt.

Version

1.0.0

C.2 Datenformate der Komponenten

Im Folgenden werden die wichtigsten Datenformate der zuvor vorgestellten
Komponenten spezifiziert. Dazu werden jeweils eine Document Type Definition
und ein passendes Beispiel jeweils in XML-Syntax angegeben.

C.2.1 Annotationen

Fiir jeden in der Strukturanalyse identifizierten Kandidaten gibt es eine Va-
riablenbindung des Strukturmusters an Elemente der Struktur. Diese Varia-
blenbindung ist in einer Annotation festgehalten. Annotationen werden ent-
weder als einfache Textdatei mit dem Suffix .zannotations oder als kom-
primierte Datei im ZiP-Format mit dem Suffix .zannotations gespeichert.
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Die komprimierte Datei enthélt einen Eintrag mit dem Namen Structu-
ralAnnotations.zannotations. Die Annotationen sind Ausgabe der Komponen-
te org.reclipse.patterns.structure.inference und Eingabe der Komponente org.re-
clipse.patterns.behavior.inference.

Document Type Definition

Die Variablenbindung ist in den Elementen des Typs BoundObject festgehalten.
Das Attribut key ist der Variablenname aus dem Strukturmuster, name der
Name des Strukturelements.

<IELEMENT StructuralAnnotations (StructuralAnnotationx)>

<!ELEMENT StructuralAnnotation (BoundObject*)>
<IATTLIST StructuralAnnotation name CDATA #REQUIRED
fuzzyBelief CDATA #IMPLIED>

<!ELEMENT BoundObject EMPTY>
<IATTLIST BoundObject key CDATA #REQUIRED
name CDATA #REQUIRED>

Beispiel

In diesem Beispiel sind die Annotationen eines Observer-, eines Strategy- und
eines State-Kandidaten aus dem Mediaplayer gespeichert.

<?xml version="1.0" standalone="no"7>
<IDOCTYPE StructuralAnnotations SYSTEM "http://wwwcs.
uni-paderborn.de/cs/fujaba/DTDs/StructuralAnnotations.dtd">
<StructuralAnnotations>
<StructuralAnnotation name="Observer" fuzzyBelief="17.12">
<BoundObject key="update" name="Stream()"/>
<BoundObject key="register"
name="execute(mediaplayer.Stream, int)"/>
<BoundObject key="subject" name="mediaplayer.StreamState"/>
<BoundObject key="observerClass" name="mediaplayer.Stream"/>
<BoundObject key="getState" name="run(mediaplayer.Stream)"/>
</StructuralAnnotation>

<StructuralAnnotation name="Strategy" fuzzyBelief="62.20">
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<BoundObject key="abstractStrategy"
name="mediaplayer.StreamState"/>
<BoundObject key="algorithm"
name="execute(mediaplayer.Stream, int)"/>
<BoundObject key="request" name="execute(int)"/>
<BoundObject key="context" name="mediaplayer.Stream"/>
<BoundObject key='"setStrategy"
name="setState(mediaplayer.StreamState)"/>
</StructuralAnnotation>

<StructuralAnnotation name="State" fuzzyBelief="63.31">
<BoundObject key="handle"
name="execute(mediaplayer.Stream, int)"/>
<BoundObject key="setState"
name="setState(mediaplayer.StreamState)"/>
<BoundObject key="abstractState"
name="mediaplayer.StreamState"/>
<BoundObject key="context" name="mediaplayer.Stream"/>
<BoundObject key="request" name="execute(int)"/>
</StructuralAnnotation>
</StructuralAnnotations>

C.2.2 Trace-Definition

Die Trace-Definition ist wie die Annotationen ebenfalls Ergebnis der Struk-
turanalyse. In ihr wird festgehalten, welche Methodenaufrufe welcher Klas-
sen zur Laufzeit beobachtet werden miissen. Die Trace-Definition wird ent-
weder als einfache Textdatei mit dem Suffix .ztracedefinition oder als kom-
primierte Datei im ZipP-Format mit dem Suffix .ztracedefinition gespeichert.
Die komprimierte Datei enthélt einen Eintrag mit dem Namen TraceDe-
finition.xtracedefinition. Die Trace-Definition ist Ausgabe der Komponente
org.reclipse.patterns.behavior.generator und Eingabe der Komponenten org.re-
clipse.tracer und org.reclipse.instrumentation.

Document Type Definition

Eine Trace-Definition besteht aus zwei Bereichen, einem CriticalTrace und ei-
nem ConsiderTrace. Im CriticalTrace werden nur Klassen genannt. Von diesen
Klassen werden alle Methodenaufrufe iiberwacht. Im ConsiderTrace sind da-

228



C.2 Datenformate der Komponenten

gegen Klassen aufgefiihrt, von denen nur die gegebenen Methoden iiberwacht
werden sollen.

<IELEMENT
<!ELEMENT

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<IELEMENT

<!ELEMENT
<IATTLIST

<IELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

Beispiel

TraceDefinition (CriticalTrace?, ConsiderTrace?)>
CriticalTrace (CriticalClass+)>

CriticalClass (CallerClassx*)>
CriticalClass name CDATA #REQUIRED>

CallerClass EMPTY>
CallerClass name CDATA #REQUIRED>

ConsiderTrace (ConsiderClass+)>

ConsiderClass (ConsiderMethod+)>
ConsiderClass name CDATA #REQUIRED>

ConsiderMethod (Parameter*, CallerClassx*)>
ConsiderMethod name CDATA #REQUIRED>

Parameter EMPTY>
Parameter type CDATA #REQUIRED>

Das Beispiel zeigt die Trace-Definition des Mediaplayers.

<?xml version="1.0"

standalone="no" 7>

<!DOCTYPE TraceDefinition SYSTEM "http://wwwcs.uni-paderborn.de/
cs/fujaba/DTDs/TraceDefinition.dtd">
<TraceDefinition>
<ConsiderTrace>

<ConsiderClass name="mediaplayer.Stream">
<ConsiderMethod name="Stream"/>
<ConsiderMethod name="setState'">
<Parameter type="mediaplayer.StreamState"/>
</ConsiderMethod>
<ConsiderMethod name="execute">
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<Parameter type="int"/>
</ConsiderMethod>
</ConsiderClass>

<ConsiderClass name="mediaplayer.StreamPlaying">
<ConsiderMethod name="execute'">
<Parameter type="mediaplayer.Stream"/>
<Parameter type="int"/>
</ConsiderMethod>
</ConsiderClass>

<ConsiderClass name="mediaplayer.StreamStopped">
<ConsiderMethod name="execute">
<Parameter type="mediaplayer.Stream"/>
<Parameter type="int"/>
</ConsiderMethod>
</ConsiderClass>

<ConsiderClass name="mediaplayer.StreamPaused">
<ConsiderMethod name="execute">
<Parameter type='"mediaplayer.Stream"/>
<Parameter type="int"/>
</ConsiderMethod>
</ConsiderClass>

<ConsiderClass name="mediaplayer.StreamState">
<ConsiderMethod name="execute'">
<Parameter type="mediaplayer.Stream"/>
<Parameter type="int"/>
</ConsiderMethod>
<ConsiderMethod name="run">
<Parameter type="mediaplayer.Stream"/>
</ConsiderMethod>
</ConsiderClass>
</ConsiderTrace>
</TraceDefinition>
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C.2.3 Tracegraph

Der Tracegraph enthélt alle aufgezeichneten Methodenaufrufe einer Pro-
grammausfithrung. Ein Tracegraph wird entweder als einfache Textdatei mit
dem Suffix .xtrace oder als komprimierte Datei im ZipP-Format mit dem Suf-
fix .ztrace gespeichert. Die komprimierte Datei enthélt einen Eintrag mit
dem Namen Trace.xtrace. Der Tracegraph ist Ausgabe der Komponenten
org.reclipse.tracer und org.reclipse.instrumentation und Eingabe der Komponen-
te org.reclipse.patterns.behavior.inference.

Document Type Definition

Im Tracegraph werden der Start des Programms, das Laden einer Klasse,
das Starten und Beenden eines Methodenaufrufs, sowie das Beenden des Pro-
gramms als Ereignisse festgehalten. Wird eine iiberwachte Klasse geladen, so
wird im Element ClassLoaded auch die Vererbungshierarchie der Klasse aufge-
zeichnet, um bei der Verhaltensanalyse polymorphe Methodenaufrufe erkennen
zu konnen.

<1ELEMENT Trace (ProcessStart,
(ClassLoaded|MethodEntry|MethodExit)*,
ProcessEnd)>
<IATTLIST Trace mainclass CDATA #IMPLIED
date CDATA #IMPLIED>

<!ELEMENT ProcessStart EMPTY>
<IATTLIST ProcessStart name CDATA #REQUIRED
time CDATA #IMPLIED>

<!ELEMENT ClassLoaded (SuperTypex)>
<IATTLIST ClassLoaded name CDATA #REQUIRED>

<!ELEMENT SuperType EMPTY>
<IATTLIST SuperType name CDATA #REQUIRED>

<!ELEMENT MethodEntry (Caller, Callee, Argumentx)>
<IATTLIST MethodEntry id CDATA #REQUIRED
name CDATA #REQUIRED
thread CDATA #IMPLIED
time CDATA #IMPLIED>
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<IELEMENT Caller EMPTY>
<IATTLIST Caller id  CDATA #REQUIRED
type CDATA #REQUIRED>

<IELEMENT Callee EMPTY>
<IATTLIST Callee id  CDATA #REQUIRED
type CDATA #REQUIRED>

<!ELEMENT Argument EMPTY>

<IATTLIST Argument value CDATA #IMPLIED
id CDATA #IMPLIED
type CDATA #REQUIRED>

<IELEMENT MethodExit EMPTY>
<IATTLIST MethodExit id CDATA #REQUIRED>

<IELEMENT ProcessEnd EMPTY>
<IATTLIST ProcessEnd time CDATA #IMPLIED>

Beispiel

Das Beispiel zeigt einen kleinen Ausschnitt aus dem Tracegraphen, der
wihrend der Ausfithrung des Mediaplayers aufgezeichnet wurde.

<?xml version="1.0" standalone="no"7>
<!DOCTYPE BehavioralPatternsCatalog SYSTEM "http://wwwcs.
uni-paderborn.de/cs/fujaba/DTDs/Trace.dtd">

<Trace mainclass="mediaplayer.Player"
date="Mon Jan 29 17:14:34 CET 2007">

<ProcessStart name="main"/>

<ClassLoaded name="mediaplayer.Stream">
</ClassLoaded>

<ClassLoaded name="mediaplayer.StreamState">
</ClassLoaded>
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<ClassLoaded name="mediaplayer.StreamStopped">
<SuperType name="mediaplayer.StreamState"/>
</ClassLoaded>

<MethodEntry id="1" name="setState" thread="main">
<Caller id="66" type="mediaplayer.Stream"/>
<Callee id="66" type="mediaplayer.Stream"/>
<Argument id="68" type="mediaplayer.StreamState"/>
</MethodEntry>

<MethodEntry id="2" name="run" thread="main">
<Caller id="66" type="mediaplayer.Stream"/>
<Callee id="68" type="mediaplayer.StreamStopped"/>
<Argument id="66" type="mediaplayer.Stream"/>
</MethodEntry>

<MethodEntry id="3" name="execute" thread="main">
<Caller id="69" type="mediaplayer.Player"/>
<Callee id="66" type="mediaplayer.Stream"/>
<Argument value="1" type="int"/>

</MethodEntry>

<MethodEntry id="4" name="execute" thread="main">
<Caller id="66" type="mediaplayer.Stream"/>
<Callee id="68" type="mediaplayer.StreamStopped"/>
<Argument id="66" type="mediaplayer.Stream"/>
<Argument value="1" type="int"/>

</MethodEntry>

<ProcessEnd/>

</Trace>
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C.2.4 Verhaltensmusterkatalog

Im Verhaltensmusterkatalog werden die endlichen Automaten gespeichert,
die aus den Verhaltensmustern generiert wurden. Er ist Ausgabe der Kom-
ponente org.reclipse.patterns.behavior.generator und Eingabe der Komponente
org.reclipse.patterns.behavior.inference.

Document Type Definition

Zu jedem Verhaltensmuster gibt es einen DFA und einen Trigger, also eine
Methode, deren Aufruf die Analyse eines Traces auslost. Der DFA besteht aus
den Symbolen des Eingabealphabets, mehreren Zustinden und Transitionen
zwischen den Zustédnden und einem expliziten Startzustand. Der Typ eines
Zustands ist in dem Attribut type festgehalten. Das Attribut type eines nicht-
akzeptierenden Zustands hat den Wert 0, eines akzeptierenden Zustands den
Wert 1 und eines verwerfenden Zustands den Wert 2.

<!ELEMENT BehavioralPatternsCatalog (BehavioralPatternEntryx*)>

<!ELEMENT BehavioralPatternEntry (DFA, Trigger+)>
<IATTLIST BehavioralPatternEntry name CDATA #REQUIRED
negative CDATA #IMPLIED>

<!ELEMENT DFA ((PermittedMethodCallSymbol |
ProhibitedMethodCallSymbol |
ProhibitedCallerSymbol)+, State+, Transitionx,
StartState)>

<!ELEMENT PermittedMethodCallSymbol (Caller, Callee)>
<IATTLIST PermittedMethodCallSymbol id CDATA #REQUIRED
methodName CDATA #REQUIRED>

<!ELEMENT ProhibitedMethodCallSymbol (Callee)>
<!ATTLIST ProhibitedMethodCallSymbol id CDATA #REQUIRED
methodName CDATA #REQUIRED>

<!ELEMENT ProhibitedCallerSymbol (PermittedCaller+, Callee)>

<IATTLIST ProhibitedCallerSymbol id CDATA #REQUIRED
methodName CDATA #REQUIRED>
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<!ELEMENT
<IATTLIST

<IELEMENT
<IATTLIST

<IELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<IELEMENT
<IATTLIST

Beispiel

Caller EMPTY>
Caller name CDATA #REQUIRED
type CDATA #IMPLIED>

Callee EMPTY>
Callee name CDATA #REQUIRED
type CDATA #REQUIRED>

PermittedCaller EMPTY>
PermittedCaller name CDATA #REQUIRED

type CDATA #IMPLIED>

State EMPTY>

State id
name

type

Transition
Transition

StartState
StartState

CDATA #REQUIRED
CDATA #IMPLIED
CDATA #REQUIRED>

EMPTY>

previousStateld CDATA #REQUIRED
nextStateld CDATA #REQUIRED
symbolId CDATA #REQUIRED>

EMPTY>
id  CDATA #REQUIRED>

Trigger EMPTY>

Trigger callerType CDATA #IMPLIED
calleeType CDATA #REQUIRED
methodName CDATA #REQUIRED>

Das Beispiel ist nur ein kleiner Ausschnitt aus dem Verhaltensmusterkatalog,
der fiir die Analyse des Mediaplayers verwendet wurde. Es enthilt lediglich die

Definition des endlichen Automaten fiir das State-Verhaltensmuster.
<?xml version="1.0" standalone="no"?>

<!DOCTYPE BehavioralPatternsCatalog SYSTEM "http://wwwcs.
uni-paderborn.de/cs/fujaba/DTDs/BehavioralPatternsCatalog.dtd">
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<BehavioralPatternsCatalog>
<BehavioralPatternEntry name="State" negative="false">
<DFA>
<PermittedMethodCallSymbol id="symboll9"
methodName="setState">
<Caller name="client"/>
<Callee name="c" type="context"/>
</PermittedMethodCallSymbol>

<PermittedMethodCallSymbol id="symbol20"
methodName="request">
<Caller name="client"/>
<Callee name="c" type="context"/>
</PermittedMethodCallSymbol>

<PermittedMethodCallSymbol id="symbol21"
methodName="handle">
<Caller name="c" type="context"/>
<Callee name="a" type="abstractState"/>
</PermittedMethodCallSymbol>

<PermittedMethodCallSymbol id="symbol22"
methodName="setState">
<Caller name="c" type="context"/>
<Callee name="c" type="context"/>
</PermittedMethodCallSymbol>

<PermittedMethodCallSymbol id="symbol23"
methodName="setState">
<Caller name="a" type="abstractState"/>
<Callee name="c" type="context"/>
</PermittedMethodCallSymbol>

<PermittedMethodCallSymbol id="symbol24"
methodName="handle">
<Caller name="c" type="context"/>
<Callee name="b" type="abstractState"/>
</PermittedMethodCallSymbol>
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<ProhibitedMethodCallSymbol id="symbol25"
methodName="setState">
<Callee name="c" type="context"/>
</ProhibitedMethodCallSymbol>

<ProhibitedMethodCallSymbol id="symbol26"
methodName="handle">
<Callee name="a" type="abstractState"/>
</ProhibitedMethodCallSymbol>

<ProhibitedMethodCallSymbol id="symbol27"
methodName="handle">
<Callee name="b" type="abstractState"/>
</ProhibitedMethodCallSymbol>

<ProhibitedMethodCallSymbol id="symbol28"
methodName="request">

<Callee name="c" type="context"/>
</ProhibitedMethodCallSymbol>

<ProhibitedCallerSymbol id="symbol29"
methodName="request">
<PermittedCaller name="client"/>
<Callee name="c" type="context"/>
</ProhibitedCallerSymbol>

<ProhibitedCallerSymbol id="symbol30" methodName="handle">
<PermittedCaller name="c" type="context"/>
<Callee name="a" type="abstractState"/>
</ProhibitedCallerSymbol>

<ProhibitedCallerSymbol id="symbol31"
methodName="setState">
<PermittedCaller name="c" type="context"/>
<PermittedCaller name="a" type="abstractState"/>
<Callee name="c" type="context"/>
</ProhibitedCallerSymbol>
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<ProhibitedCallerSymbol id="symbol32" methodName="handle">
<PermittedCaller name="c" type="context"/>
<Callee name="b" type="abstractState"/>
</ProhibitedCallerSymbol>

<State id="statel3" name="0,1" type="0"/>
<State id="statel4" name="1" type="0"/>
<State id="statel5" name="2" type="0"/>
<State id="statel6" name="4,3,1" type="0"/>
<State id="statel7" name="5,6" type="0"/>
<State id="statel8" name="5,7" type="0"/>
<State id="statel9" name="8" type="0"/>
<State id="state20" name="5,9,10" type="1"/>
<State id="state2l1" name="R" type="2"/>

<Transition previousStateld="statel7"
nextStateld="state21" symbolId="symbol29"/>
<Transition previousStateld="statel4"
nextStateld="state21" symbolIld="symbol27"/>
<Transition previousStateld="statelb"
nextStateld="state21" symbolIld="symbol28"/>
<Transition previousStateld="statel6"
nextStateld="state21" symbolId="symbol29"/>
<Transition previousStatelId="statel3"
nextStateld="statelb" symbolIld="symbol20"/>
<Transition previousStateld="statel7"
nextStateld="state21" symbolId="symbol26"/>
<Transition previousStatelId="statel9"
nextStateld="state21" symbolIld="symbol32"/>
<Transition previousStateld="statel6"
nextStateld="state21" symbolIld="symbol27"/>
<Transition previousStateld="statelb5"
nextStateld="state21" symbolId="symbol30"/>
<Transition previousStateld="statel8"
nextStateld="state21" symbolIld="symbol29"/>
<Transition previousStateld="statel6"
nextStateld="statel8" symbolIld="symbol23"/>
<Transition previousStateld="statel8"
nextStateld="state21" symbolIld="symbol25"/>
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<Transition

<Transition

<Transition

<Transition

<Transition

<Transition

<Transition

<Transition

<Transition

<Transition

<Transition

<Transition

<Transition

<Transition

<Transition

<Transition

<Transition

<Transition

<Transition

<Transition

previousStateld="statel6"
nextStateId="state21" symbolId="symbol26"/>
previousStateld="statel9"
nextStateld="state20" symbolId="symbol24"/>
previousStateld="statel4"
nextStateld="statelb5" symbolId="symbol20"/>
previousStateld="statel6"
nextStateld="state21" symbolId="symbol31"/>
previousStateId="statelb"
nextStateld="state21" symbolId="symbol27"/>
previousStateld="statel8"
nextStateld="statel9" symbolId="symbol20"/>
previousStateld="statel8"
nextStateld="state21" symbolId="symbol26"/>
previousStateld="statel4"
nextStateld="state21" symbolId="symbol26"/>
previousStateld="statelb"
nextStateld="statel6" symbolId="symbol21"/>
previousStateld="statel9"
nextStateld="state21" symbolId="symbol28"/>
previousStateld="state20"
nextStateld="statel9" symbolId="symbol20"/>
previousStateId="statel4"
nextStateld="state21" symbolId="symbol25"/>
previousStateld="statel8"
nextStateld="state21" symbolId="symbol27"/>
previousStateld="statel7"
nextStateId="state21" symbolId="symbol25"/>
previousStateld="statel7"
nextStateld="state21" symbolId="symbol27"/>
previousStateld="statel3"
nextStateld="statel4" symbolId="symboll9"/>
previousStateld="statel9"
nextStateld="state21" symbolId="symbol26"/>
previousStateld="statel7"
nextStateld="statel9" symbolId="symbol20"/>
previousStateld="statel9"
nextStateId="state21" symbolld="symbol25"/>
previousStateld="statel4"
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<Transition

<Transition

<Transition

<StartState

</DFA>

nextStateld="state21" symbolIld="symbol29"/>
previousStateld="statel6"
nextStateld="statelb" symbolIld="symbol20"/>
previousStateld="statelb"
nextStateld="state21" symbolId="symbol25"/>
previousStateld="statel6"
nextStateld="statel7" symbolIld="symbol22"/>

id="statel3"/>

<Trigger calleeType="context" methodName="setState"/>
<Trigger calleeType="context" methodName="request"/>

</BehavioralPatternEntry>

</BehavioralPatternsCatalog>

C.2.5 Ergebnis der struktur- und verhaltensbasierten
Entwurfsmustererkennung

Das Ergebnis der struktur- und verhaltensbasierten Entwurfsmustererkennung
ist Ausgabe der Komponente org.reclipse.patterns.behavior.inference. Sie kann
nachtraglich im Werkzeug RECLIPSE in der Sicht Behavioral Analysis Result

geladen und vom Reverse-Engineer ausgewertet werden.

Document Type Definition

Zu jedem Kandidaten, zu dem Traces analysiert wurden, gibt es ein Element
Annotation, das das Ergebnis der Strukturanalyse im Element StructuralAnno-
tation und das Ergebnis der Verhaltensanalyse im Element BehavioralAnnotati-
on enthalt. Zuséatzlich konnen in dem Ergebnis der Verhaltensanalyse auch die

untersuchten Traces enthalten sein.

<!ELEMENT BehavioralAnalysisResult (Annotationx)>
<!ATTLIST BehavioralAnalysisResult date CDATA #IMPLIED>
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<!ELEMENT

<IATTLIST

<!ELEMENT
<IATTLIST

<IELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<IELEMENT
<IATTLIST

<!ELEMENT

<IATTLIST

<IELEMENT
<IATTLIST

<IELEMENT
<IATTLIST

<!ELEMENT

Annotation (StructuralAnnotation,
BehavioralAnnotation)>
Annotation type CDATA #REQUIRED>

StructuralAnnotation (BoundObjectx*)>
StructuralAnnotation fuzzyBelief CDATA #IMPLIED>

BoundObject EMPTY>
BoundObject key CDATA #REQUIRED
name CDATA #REQUIRED>

BehavioralAnnotation (Tracex)>

BehavioralAnnotation traces CDATA #REQUIRED
acceptedTraces CDATA #REQUIRED
notAcceptedTraces CDATA #REQUIRED
rejectedTraces CDATA #REQUIRED
passedAcceptingStateTraces CDATA #REQUIRED
avglengthAcceptedTraces CDATA #REQUIRED>

Trace (BoundObject+, MethodCall+)>

Trace id CDATA #REQUIRED
result CDATA #REQUIRED
passedAcceptingState CDATA #REQUIRED
lengthOfAcceptedTrace CDATA #REQUIRED>

MethodCall (Caller, Callee, Argument*)>

MethodCall id CDATA #REQUIRED
name  CDATA #REQUIRED>

Caller EMPTY>
Caller id  CDATA #REQUIRED

type CDATA #REQUIRED>
Callee EMPTY>
Callee id  CDATA #REQUIRED

type CDATA #REQUIRED>
Argument EMPTY>
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<IATTLIST Argument value CDATA #IMPLIED
id  CDATA #IMPLIED
type CDATA #REQUIRED>

Beispiel

Das Beispiel zeigt einen kleinen Ausschnitt aus dem Ergebnis der Analyse des
Mediaplayers.

<?xml version="1.0" standalone="no"7>
<!DOCTYPE BehavioralAnalysisResult SYSTEM "http://wwwcs.
uni-paderborn.de/cs/fujaba/DTDs/BehavioralAnalysisResult.dtd">

<BehavioralAnalysisResult date="Thu Mar 08 16:52:49 CET 2007">
<Annotation type="State">

<StructuralAnnotation fuzzyBelief="63.31360076101584">
<BoundObject key="handle"
name="execute(mediaplayer.Stream, int)"/>
<BoundObject key="abstractState"
name="mediaplayer.StreamState"/>
<BoundObject key="context" name="mediaplayer.Stream"/>
<BoundObject key="setState"
name="setState(mediaplayer.StreamState)"/>
<BoundObject key="request" name="execute(int)"/>
</StructuralAnnotation>

<BehavioralAnnotation traces="8" acceptedTraces="1"
notAcceptedTraces="2" rejectedTraces="5"
passedAcceptingStateTraces="3"
avglengthAcceptedTraces="5.0">

<Trace i1d="0" result="2" passedAcceptingState="1"
lengthOfAcceptedTrace="5">

<BoundObject key="a" name="67"/>

<BoundObject key="c" name="65"/>
<BoundObject key="client" name="68"/>
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<BoundObject key="b" name="70"/>

<MethodCall id="2" name="execute">
<Caller id="68" typeName="mediaplayer.Player"/>
<Callee id="65" typeName="mediaplayer.Stream"/>
<Argument typeName="int"/>

</MethodCall>

<MethodCall id="3" name="execute">
<Caller id="65" typeName="mediaplayer.Stream"/>
<Callee id="67" typeName="mediaplayer.StreamStopped"/>
<Argument typeName="mediaplayer.Stream"/>
<Argument typeName="int"/>

</MethodCall>

<MethodCall id="4" name="setState">
<Caller id="67" typeName="mediaplayer.StreamStopped"/>
<Callee id="65" typeName="mediaplayer.Stream"/>
<Argument typeName="mediaplayer.StreamState"/>
</MethodCall>

<MethodCall id="6" name="execute">
<Caller id="68" typeName="mediaplayer.Player"/>
<Callee id="65" typeName="mediaplayer.Stream"/>
<Argument typeName="int"/>

</MethodCall>

<MethodCall id="7" name="execute">
<Caller id="65" typeName="mediaplayer.Stream"/>
<Callee id="70" typeName="mediaplayer.StreamPlaying"/>
<Argument typeName="mediaplayer.Stream"/>
<Argument typeName="int"/>

</MethodCall>

<MethodCall id="10" name="execute">
<Caller id="68" typeName="mediaplayer.Player"/>
<Callee id="65" typeName="mediaplayer.Stream"/>
<Argument typeName="int"/>

</MethodCall>
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<MethodCall id="12" name="setState">
<Caller id="72" typeName="mediaplayer.StreamPaused"/>
<Callee id="65" typeName="mediaplayer.Stream"/>
<Argument typeName="mediaplayer.StreamState"/>
</MethodCall>

</Trace>

</BehavioralAnnotation>
</Annotation>

</BehavioralAnalysisResult>
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The Power of Procrastination

Wihrend meines Aufenthaltes am Georgia Institute of Technology, Atlan-
ta, USA im Herbst 2005 machte mich ein Freund auf die Internetseite
www.phdcomics.com aufmerksam. Auf dieser Seite werden unter dem Motto
, The Power of Procrastination® in regelméafligen Absténden die , Piled Higher
and Deeper Comics publiziert. Sie werden von Jorge Cham, einem ehemali-
gen PHD-Studenten, gezeichnet und handeln vom Alltag einiger fiktiver PHD-
Studenten!. Die Comics spiegeln jedoch in erstaunlicher Prizision Erfahrungen
und Anekdoten wider, die man in seiner Zeit als Doktorand erlebt. Wéhrend
der letzten beiden Jahre waren sie fiir mich immer wieder eine willkommene
Abwechslung von der Arbeit an dieser Dissertation. Ich moéchte deshalb mit
einigen ausgewéhlten Comics, die mir besonders gefallen haben, meine Disser-
tation schlieflen.

WE UAVE HUNDREDS
oF JoB oPPORTUNMES
AVAILABLE, PEOPLE
ARE LITERALLY
THROWIHNG THEMSELVES
TO WRE GRADUATES
OF THIS UNIVERSITY. ..

WWW, PHDCOMICS. COM

Abbildung C.1: Career Services

Allen derzeitigen Doktoranden und Studenten, die eine Promotion in Infor-
matik in Betracht ziehen, kann ich aus eigener Erfahrung versichern, dass die

!Bezeichnung fiir Promotions-Studenten in den USA
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The Power of Procrastination

Situation nach der Promotion nicht ganz so schlimm ist, wie in Abbildung C.1
dargestellt?. Es hat sich gelohnt.

ﬁ.;L&LRE You WoRKED
=0 UAED OM IT FOR <0
MANY YEARS, THE
LERST | CAN DO 15 TRY
To UWDERSTAND WHAT
IT 1S THAT You DID.

WwWW, PHDCOMICS, COM

Abbildung C.2: Is This Even English?

BUT HoW YOUR
SOLUTIoN KINDA
solves m..

..BUT oty utDER
CERTAIN CONDIMONS
AND ASSUMPTIONS
THAT MAY OR MAY NOT |
APPLY TO REALITY.

o, | THINK |
FINALLY UNDER-

WWW. PHRCOMICS. COM

Abbildung C.3: May Or May Not Apply To Reality

2Abbildungen C.1, C.2 und C.3: ©,Piled Higher and Deeper“ by Jorge Cham, www.
phdcomics.com
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