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C h a p t e r 1

Introduction

Disaster-struck areas on earth or the surface of other planets seem to be a natural
deployment environment for robots, as humans can hardly survive in the conditions
encountered there. Many examples of such applications can be shown in today’s tech-
nology: exploration of planets relies heavily on robots [Mat96], emergency crews are
using them when searching for survivors [Mur04], etc. Current state-of-the-art focuses
on employing one or few robots to perform these tasks. On the other hand, a widely
spread belief is that this tasks can be better performed by large groups of self-organizing
simple robots used in replacement for few complicated ones. A common term used in
literature to describe such groups is robot swarms; we will stick to using the term robot
team. Using robot teams has certain advantages: they are cheap, one expects the failure
of a fraction of them to be perfectly tollerable and one can expand the possibilities and
the performance of a team by scaling up the number of robots used.

The employment of massive scale robot teams also implies several problems: as in
the case of traditional parallel computational systems, coordination and communication
become extremely important for the performance of the parallel system as a whole.
This is even more important in the case of robot swarms than in parallel computational
models, both due to the large number of participants in the network and due to the slow
wireless connections expected to be used in robot swarms. Therefore, it is necessary
to employ local strategies, in which robots have only a limited knowledge of their
environment and do not necessarily know the state of the system as a whole.

This thesis works out one of the most important issues needed for self-organization
of large robotic teams. In more detail, we are investigating means for providing stable
communication for wireless networks composed of robots, dispersed scarcely in vast
terrain. Our main concern is ensuring connectivity between network parts which are
far apart. In particular, we concentrate on mechanism which actively counteract the
disconnection of the network in presence of dynamics. For that purpose we use relays,
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2 Introduction

i.e. mobile robotic devices, which can forward communication messages along certain
routes. We are aiming at providing a background communication service and therefore
do not pose any limiting assumptions on the movement of the network as such – we aim
at providing a service which keeps the network connected under any possible dynamics
of the network.

Solving the described problem is a challenging task, which we have separated in this
thesis into three separate problems. Before we go more into detail on these subproblems,
let us define the general assumptions we are taking into account.

Basic Model for Wireless Communication. In a wireless communication network
we are usually given a set of nodes equipped with wireless transceivers, which may use
one of the available transmission mediums, e.g. radio waves, infrared, to communicate
with each other. For the purpose of the algorithm design and analysis one has to abstract
from the actual physical network and develop a (mathematical) model of the wireless
network.

Usually strong simplifying assumptions are made in order to create a model which
has a complexity one can handle. There are two main types of restrictions: such that
determine the environment and thereby affect the possible positions of the nodes and
such that define the communication abilities of the nodes. For the first type, the great
majority of research models the environment of the network as a plane. If it is required by
the application in mind, one may restrict the positions the nodes can attain on this plane
by introducing obstacles. These obstacles correspond to areas on the plane which nodes
cannot enter. For the second type of restrictions, it is very often assumed that two nodes
may exchange information in a wireless network if and only if they are in some constant
distance. This is because the wireless transmission media used have a radial propagation
(ignoring the existence of directed antenna). Therefore wireless communication can be
thought of as a local broadcast in a bounded area. The communication graph of the
network is then defined to contain one node for each node of the wireless network and an
edge between two nodes if and only if the corresponding nodes in the wireless network
are within communication distance. This kind of graph is called a disc graph [CCJ90], as
nodes are able to communicate only if inside of discs around their neighbors’ positions.
The disc graph model is often argued, not without reason, to be very imprecise. Though,
as we are more concerned about high-level issues of organizing the communication and
do not want to go into technical details of communication between neighbored nodes,
the disc graph model is despite all of its deficiencies a reasonable abstraction in our
situation.

In this thesis we will think of a wireless network as of a graph embedded on a plane
either containing obstacles or not. As we will be primarily concerned with mobility of
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nodes in the wireless network, the graph will change in time. Therefore, we will say
that the graph is dynamic.

General Idea. Recall that we want to deal with sparse networks dispersed on a large
area. In such networks distances between network parts may increase above the com-
munication distance of the wireless communication mechanisms used. Then, there is no
possibility for direct communication between nodes in different parts of the network.
We propose a solution which ensures that the network remains connected even if the
described situation occurs. This solution relies on the application of mobile relays –
these relays are actively directed in the terrain so that they form communication paths
between network parts. The relays forming such a communication chain are expected to
be in a distance allowing wireless communication with their neighbors. Therefore, they
are able to route messages between network parts which would have been disconnected
otherwise. Such a chain of relays will be called communication chain throughout the rest
of this thesis.

This idea of forwarding messages along a communication chain between distant
places is not necessarily new. The humankind has already used camps on mountains
to forward messages with light or smoke signals on long distances. In this thesis we
investigate the application of this idea in a robotic setting with mobile relays.

Challenges. Consider a graph representing the network established by the robot teams
in the terrain, such that each node corresponds to a robot and an edge connects two
nodes if and only if there is a direct wireless connection between the two corresponding
robots. This network graph may have several distinct connected components and, as
already explained, our goal is to have these connected components connected.

In our scenario the mobile relays are expected to be robotic devices. The number of
such relays available at our disposal in a network will be limited. Therefore, we should
be able to use as few of the relays as possible for reaching our goal of connecting the
network graph.

We can reformulate our goal saying that we are looking for appropriate positions for
relays, such that using the formed communication chains the network graph becomes
connected, while minimizing the number of used relays. Since we do not know anything
about the future movement behavior of the robots which compose the network (or at
least have only very limited knowledge about it), we cannot predict the future layout of
the network graph. Therefore, we have to develop strategies which allow the relays to
adapt to changes in the graph on-the-fly.

While coping with the mobility of the network, we want not only to use the least
possible number of relay nodes for maintaining connectivity but also save their energy
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used for movement as far as possible. This allows a system composed of relays to
operate resource-efficient.

As we are interested in a large, wide-spread networks we aim at developing local
and distributed strategies. Thus, ideally, the relays should base their decisions on
observations of their direct environment or information communicated by relays in
their neighborhood.

Compacted robot graph. In a great part of this thesis we will not be interested in
separate robots which constitute the connected components of the network graph; rather
we want to consider only the connected components. We thereby construct the compacted
robot graph by contracting each connected component into one node.

The edges of the compacted robot graph are intended to represent possibilities for
communication chains to be set up. Therefore, an edge connects two nodes of the
compacted robot graph if there is a path in the terrain, such that we can set up a chain
of relays on this path. The weight of the edge corresponds to the length of the path and
thereby expresses how many relays are needed to construct a communication chain on
this path. We will say that a communication chain supports a path, when the relays have
been set up appropriately to form a communication chain along this path, connecting
the two network parts on the endpoints of this path.

We define the support graph to be a subgraph of the compacted robot graph, contain
all of its nodes and only those edges, which are supported by a communication chain.
We will say that the compacted robot graph is fully supported if the support graph is
connected.

The compacted robot graph is dynamic in that the edge weights may change with
time. This corresponds to robot teams in the original network graph having moved.
We assume no nodes/edges are added or removed to the compacted robot graph, which
would reflect connected components of the network graph splitting.

1.1. Scope

The definition of the compacted robot graph results in a natural separation of our general
problem into two levels. On the lower level, we have to take care that relays can organize
to a single communication chain on a path between two nodes of the compacted robot
graph. On the higher level, we have to decide which paths have to be supported by the
communication chains at all, so that the robot graph is fully supported. This separation
will guide the division of this thesis in two parts.
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In the first part we will deal with the question on how relays can organize on the
plane to form a communication chain with a length as short as possible. In the second
part we will concentrate on two questions. First, we want to know which paths to use
in a dynamically changing compacted robot graph, so that the energy used by the relays
for moving between different paths is minimized. The second question deals with the
determining of an assignment of free relays to communication chains.

In the next three paragraphs we go more deeply into describing the basic challenges
in answering each of those issues.

Organizing relays to a communication chain. The first question relates to a basic
problem, in which we want to connect two points on a plane with a communication
chain. We consider a situation with one stationary point, called the base camp and a
mobile one, the explorer. The explorer and base camp are obviously abstractions for
whole groups of robots, i.e. nodes of the compacted robot graph.

We pose no restrictions on the mobility of the explorer other than restricting its maxi-
mum speed. Therefore the relays have to maintain a communication chain without any
information about the future movement of the explorer. This can be a challenging task,
if we pose some restrictions on the abilities of the relays. In the simplest case we model
the robots functioning as relays as oblivious, possessing no memory and basing their
current action only on the positions of their neighbors. We investigate the same problem
also for extended types of robots, which have some memory and access to a GPS-like
system. Furthermore we investigate the influence of different positioning methods and
imprecise measurements on the performance of relays.

In our solutions we want to minimize the number of relays used for the chain while
we assure that the chain is always connected. Furthermore, we investigate whether and
how the behavior of the communication chain obstructs the movement freedom of the
explorer.

Minimizing number of changes in support graph. We can place communication
chains in different ways in the compacted robot graph to make it fully supported.
Since we are assuming that the number of relays available is limited, we are looking for
locations for communication chains such that the total length of the chains is minimized,
while the robot graph is still fully supported.

In a static setting, with the robot graph not changing this is quite simple – taking any
minimum spanning tree as the support graph for the compacted robot graph we have a
solution with the minimum number of relays used.

In the dynamic setting with a changing robot graph the choice of a proper minimum
spanning tree is not that easy any more. As the minimum spanning tree constituting the
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support graph is changed by our strategy, relay stations have to travel between different
paths in the terrain. This implies energy cost, which we want to minimize. It is therefore
not sufficient to recompute the minimum spanning tree every time a substantial change
in the robot graph occurs. We want our strategies to also maintain similar spanning
trees for a long period of time, decreasing the amount of energy consumed by relays for
traveling.

Managing spare relays. The third problem investigated concerns the management of
spare relays. We assume that the robot graph is held connected by relays, which support
distinguished communication paths. The number of relays necessary to support a
communication chain is proportional to the distance between the connected components
it connects, as the relays have to stand in some fixed distance to each other.

Since the compacted robot graph changes in time, communication chains change
their length. Therefore the required number of relays to support these paths changes
in time. When the length becomes smaller, some of the relays used up to now are
unnecessary. This generally yields no problems, a more problematic situation occurs
when a communication chain becomes longer and no spare relays are available next
to this communication path – then it is necessary to fetch a relay from a more distant
position to the communication chain. This introduces energy cost for the relay which
has to travel to its new destination. If caring about energy usage, one would try to use
the relay which is available in a local surrounding. On the other hand, such a greedy
strategy may have a very bad worst-case performance.

1.2. Outline of the Thesis

Part I of this thesis deals with the organization of communication chains by relays. We
investigate several strategies, described in Chapters 3, 4, and 5. In Chapter 2 we give a
general introduction to the topic handled in Part I.

In Chapter 6 of Part II we continue with the discussion on saving energy usage of
relays by minimizing the number of changes between supporting different paths in the
compacted robot graph. In Chapter 7 we discuss how to manage spare relays.

As we are dealing with essentially three different topics in this thesis, the notation is
separate for each of them. There are some similarities in notation between the chapters of
Part I, which we introduce in Chapter 2. For convenience, we will also delay introducing
formal models and state related work closely connected to the subproblems to each of
the chapters.
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1.3. General Related Work

As we have already described, this thesis basically consists of three problems. Although
the three problems integrate into one architecture, they are intrinsically different. There-
fore they are handled separately in the respective chapters together with the relevant
related work. In this general overview of related work we only refer to literature which
is relevant to this thesis as a whole.

The connectivity of wireless networks has been already considered from various points
of view. A wide range of works is concerned with the connectivity of randomly generated
networks. So, in [SB03, GK98] the authors investigate the necessary transmission ranges
to obtain connectivity in such a graph. Similarly, one can investigate the number of
neighbors to which a node should be connected in order for the whole network to be
connected [XK04].

The idea of using mobility to improve the capacity and connectivity of networks has
been already investigated in [GT01, Hor07]. In this case the movement of nodes is not
influenced directly, rather the mobility typical for the behavior of the wireless network
is used in order to improve the parameters of the network. In [SB03] the influence of
mobility on the required transmission range for random networks is also investigated.

The novelty of this thesis lies in the active usage of mobility in order to guarantee
connectivity in a scenario with adversarial and not stochastic dynamics. A similar idea
of using relays for forwarding communication in a network has been only recently
presented in [NFP+03, NPGF04] where the authors are using relays to connect a robot to
a base camp. In contrast to this thesis, their work concentrates on engineering aspects
of this problem.

1.4. Bibliography Note

Many of the results presented in this thesis have been already presented and published
in a preliminary version in conference proceedings.

The general model used in this thesis and the problem of organizing relays to chains
has been first presented in [DKLM06]. The work contains first theoretic results on
the Go-To-The-Middle strategy in the static scenario. The investigation of this strategy
has been extended in [DKMS07], which also contains the results from Chapter 5. The
remaining results presented in Chapter 3 and 4 have not been published yet.

A large part of the work on minimum spanning trees to be found in Chapter 6 has
been published in [DKK07]. The problem described in Chapter 7 has been introduced
and investigated in [BK07].
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Organizing a Communication Chain
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C h a p t e r 2

Communication Chain Problem

In the first part of the thesis we will deal with the question on how to organize a single
chain of relays connecting two points on the plane. In this chapter we will introduce
the models used afterward in the remaining chapters of this part. We furthermore give
a rough overview of the results and compare them.

In general we assume that the chain of relays has to connect two points on the plane,
one of which is stationary and the second one is mobile. For the sake of clarity we name
the stationary point the base camp while the mobile point is named explorer. The relays
are mobile and their movement can be directed freely by strategies executed by those
relays.

Up to now we have informally spoken of a chain of relays. Hereby we mean an ordered
sequence of relays, denoted by v1, . . . , vn. For technical reasons we include the explorer
and the base station into the chain, as respectively its first and last element. Thus, v0

describes the explorer and vn+1 the base station. Elements of the chain will be referred
to as stations, meaning either a relay, the explorer or the base camp. The main restriction
on the chain is that we require the distance between stations neighbored in the chain
to be limited to the transmission distance denoted by R. Thanks to this, the chain can
forward communication messages between the base camp and the explorer.

We want to design strategies for the relays, which guide their movement on the plane.
Each of the relays is assumed to execute its own copy of this strategy and is able to
sense the environment. We will go deeper into detail on the computational and sensing
abilities of the relays when describing the relay model later.

Requirements on the Chain

The movement pattern of the explorer is assumed to be unpredictable except that we
assume it has a maximum movement speed. Therefore the primary goal is to organize
the chain in such a way, that the distance between any two neighbored stations in the

11



12 Communication Chain Problem

chain does not exceed the distance R. Therefore, the strategies employed by the relays
have to ensure that their positions follow the movement of the explorer.

A secondary goal for the strategies is to minimize the number of relays used in the
chain, i.e. arrange the relays near to the direct line connecting the explorer and the base
camp.

The greatest challenge for this problem lies in the fact that we are looking for strategies
which operate locally and with very simple logic. Therefore, we have to design a solution
in which each relay computes its position on its own, where communication is not used
at all and relays even posses no memory. We are interested to see whether one can
design efficient strategies solving this problem with this simple model and what are the
parameters which hinder an efficient solution.

Terrain Model

The relays are moving on a terrain represented by a plane. Both the explorer and the
relays may move freely. In this setting, the relays should (in an ideal case) arrange on a
line segment connecting the base camp and the explorer. With relays placed on this line
segment in distance R, the chain uses the least possible number of relays to connect the
base camp and the explorer.

For technical reasons, we assume that there may be more than one relay present at
one point of the terrain.

Time Model

We assume that the execution of the strategies of all relays is synchronized. Therefore,
we can divide the time in discrete time steps. We require the execution of a strategy in
a time step to fit into the LCM-model (as in [CP04b]). In this model, the execution of
each step is divided into three operations. These operation are: Look, Compute, Move. In
the first operation of the step the relay gathers new information about its environment
by scanning it with its sensors. In the second operation, the sensoric input obtained
in the previous time step is analyzed and a decision is made about the behavior of the
robot within the current step. During the Move operation, the robot moves to a position
precomputed in the Compute operation.

As we divide the time in discrete time steps, we are assuming that the relays involved
in the chain are synchronized. That means, that a robot finishing moving earlier then
others waits until the rest is finished (this may be made explicit by inserting a Wait
operation into the definition of a step).
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Examining strategies in the LCM-model implicitly assumes that one regards a LCM-
step as an atomic time unit and determines the performance of strategies basing on
the number of such steps necessary to reach a certain condition. This implies that a
Look-operation is accounted a comparable amount of time as a Move-operation. In order
not to keep this assumption realistic, we will be restricting the maximum distance a
relay can move during one time step. On the other hand, in contrast to our intuition,
the Move operation is not necessarily that one which takes the longest time. Very often,
gathering the sensoric input is even more time-consuming, if for example laser scans of
the surrounding must be taken. An example of such a scenario can be found in [FKN06].

Relay Model

Throughout the next chapters we will investigate the problem of maintaining a chain of
relays with respect to different models of relays.

Memory. Relays possessing memory will be called stateful, while those without any
memory will be described as stateless. Stateless relays have to base in the Compute-
operation only on readings from the current Look-operation, without any knowledge on
their own historical behavior.

Local coordinate systems. We assume that each of the relays is able to construct a
view on its environment by using its sensing abilities. For all strategies presented in
the following chapters, the position of a relays’ neighbors in the chain play the most
important role. Therefore, each of the relays can be thought of as constructing its local
coordinate system with its own position and the positions of its neighbors marked. This
local coordinate system is constructed basing on sensor input which can be of different
quality. We can assume the distances and relative bearings of a relays’ neighbors be
measured with perfect accuracy, providing it with a precise local coordinate system.
If these local measurements are imprecise, we have to deal with an imprecise local
coordinate system.

Relations between local coordinate systems. Another important issue is the relation
of the local coordinate systems of different relays to each other. On one hand, we can
assume that local coordinate systems have nothing in common, i.e. two local coordinate
systems may be rotated and translated arbitrarily with respect to each other. This
corresponds to a setting where a relay can only measure the distances and relative
bearings between itself and its neighbors.

Then, the local coordinate systems may be rotationally aligned, all sharing a common
notion of X and Y axis. Once again, the rotational alignment may be precise or im-
precise, depending on whether we allow a bounded error in the alignment. This kind
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of rotational alignment of local coordinate systems may be accomplished by providing
relays with a compass.

Furthermore, the local coordinate systems may be also aligned with respect to their
origins, which can be accomplished by using a positioning scheme similar to GPS, which
provides each relay with an absolute position. This is obviously the strongest setting.

Performance Measures

The analysis of our strategies will be performed in two settings: either static or dynamic.
In the static case we will be given a fairly arbitrary chain configuration on the plane at
the beginning. While the explorer won’t be moving, we will investigate the time needed
for the relays to become arranged approximately on the line between the base camp and
explorer.

In the dynamic case, we will start with some well-defined chain configuration and
let the explorer move. We will then examine the performance of the strategy in dealing
with the explorer’s movements. In this scenario we measure the required speed for
relays in comparison to the speed of the explorer and the length of the chain maintained
by the strategy.

Although the dynamic scenario is of more importance for practical reasons, the results
from the static scenario can be used for comparing the performance between different
strategies and in order to understand the weaknesses of strategies.

Lower Bound

Any strategy which solves the communication chain problem in the static scenario
requires at least Ω(n) time steps in order to organize the chain approximately on the
line segment between the explorer and the base camp. This can be intuitively seen, as
the relays with large distance to the line segment between the base camp and explorer
either have to decrease this distance by Ω(n) or the decision to remove them must be
propagated through the chain. Both takes at least Ω(n) time steps.

In the dynamic scenario it is necessary for the relays to move with a speed at least
as large as the explorer’s maximum speed. This poses a lower bound of 1 on the ratio
between relay and explorer maximum speed.

Outline

The contents of this part are divided into three chapters. In Chapter 3 we introduce the
Go-To-The-Middle strategy. It is a very simple and natural strategy, which works with
stateless relays with precise local coordinate systems, which do not have to be aligned
in any way. As we will show that simplicity sacrifices performance. Furthermore, we
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will be able to show that the strategy does not work correctly when the local coordinate
systems are imprecise.

In Chapter 4 we present the Hopper strategy, which is optimal up to constant factors
in both the static and dynamic scenarios. The presentation of the Hopper strategy will
be preceded by the introduction of a simpler Manhattan-Hopper strategy which makes
extensive use of an alignment of stations on the plane in a grid structure to improve
performance. Manhattan-Hopper and Hopper rely on sequential execution of the strategy
in runs. For this purpose, relays have to be able to signal their neighbors that they are
ready with executing their action. This is different from the other strategies presented
in this thesis, which are executed by all relays in parallel.

Both the Go-To-The-Middle and Hopper strategies can work with local coordinate sys-
tems of relays independent of any global coordinate system. Therefore, the local view
of the relays on their environment is completely sufficient in order to derive their next
actions. In Chapter 5 we introduce the Chase-Explorer strategy, which achieves a perfor-
mance even better than that by Hopper. Nevertheless, it requires relays to memorize the
position of the base camp. In its original form, it requires local coordinate systems to be
aligned both rotationally and with respect to their origins.

As we will explain in more detail in Chapter 3, the Go-To-The-Middle strategy, in con-
trast to Manhattan-Hopper, Hopper and Chase-Explorer, requires additional mechanisms
to insert and remove relays from the chain, which is done in an easy and intuitive way
in the remaining strategies.

The following table gives a compact overview of the performance of each of the
strategies. The static column gives the time necessary for the relays to be organized
to a nearly-optimal chain in the static scenario in the worst-case. The dynamic column
describes the ratio of the required relay speed to the allowed speed for the explorer.

strategy relay
model

GPS static dynamic

Go-To-The-Middle stateless no O(n2 log n) O(1/n)
Manhattan-Hopper stateless no 4n (1 +

√
2)

Hopper stateless no 25n + 1 O(1)
Chase-Explorer stateful yes Rn 1

Related Work

A variety of problems similar to the maintenance of a communication chain have been
investigated in the area of swarm robotics. Maintaining a communication chain means
that relays are self-organizing to form a geometric figure, namely a a line, on the plane.
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Therefore, we will shortly survey previous research which deal with ordering robots to
form some geometric figures on the plane.

One of the basic problems investigated in this setting is the gathering problem [Mat92].
A dispersed group of robots, represented by points on a plane, is required to gather at
a point in the plane. This point can be chosen freely by the robots, it is only important
that all robots finally gather at one point. It turns out that in an asynchronous model,
in which the duration and the starting/ending of time steps may vary between robots,
it is impossible for deterministic robots to gather at one point in finite time [CP02].
Allowing more than 5 robots to detect whether multiple robots occupy one point allows
to gather at one point in finite time [CFPS03]. The problem may be also considered
in a setting with robot failures [AP04]. The problem turns out to be slightly easier in
the semi-synchronous model, in which the time steps are synchronized among robots
but robots may be put to sleep during any time step. Gathering is then possible with
already 3 robots in finite time [SY99]. Recently the problem has been evaluated in the
asynchronous setting with robots equipped with imprecise compasses [KTI+07].

The convergence problem is the easier variant of the gathering problem, in that we only
require all robots to converge in infinite time to one point. The gravitational algorithm
which lets are robots move toward their center of gravity converges in the synchronous
and semi-synchronous model [CP04b] and also in the asynchronous model [CP05]. The
problem can also be solved in the semi-synchronous model when the sensoric input and
the odometry of robots is imprecise [CP04a]. A different model with robots having only
limited visibility of the plane has been shown to be solvable in [AOSY99].

The problem of pattern formation is slightly more involved, as robots are required to
form a pattern on plane, rather than only moving to one point. Asynchronous robots
can form any in advance known pattern if they know the orientation of two axes, while
it can be only solved for an odd number of robots when only the orientation of one axis
is known [FPSW99]. Certain patterns can be formed even without knowing a common
orientation, depending on the starting positions of the robots [SY96]. In [DK02] and
[CMN04] algorithms for forming a circle by robots in the semi-synchronous model are
evaluated.

Notation

Generally, we will be investigating our strategies with a time step being an atomic unit
of time. Then the number of relays in the chain changes with time and is denoted by nt.
Recall that we denote stations in the chain by v0, . . . , vnt+1, where v0 denotes the explorer
and vnt+1 the base camp. By pt(i) we define the position of station vi at the beginning of
time step t. We set b := pt(nt + 1) to be the position of the base camp.
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The coordinates of a point p in a cartesian coordinate system will be denoted by
(x; y). A line segment or a line defined by two points p, q will be denoted by 〈p, q〉. The
distance of the explorer to the base station in time step t will be often described shortly
as dt = |pt(0) − b|2. The notation |x| denotes the absolute value of x, whereas p − q|2 is the
Euclidean distance between the points p and q.





C h a p t e r 3

Go-To-The-Middle Strategy

In this chapter we will introduce and analyze the Go-To-The-Middle strategy. The
Go-To-The-Middle strategy assumes a very limited model of stateless relays, each having
a separate local coordinate system not aligned with others. Throughout the whole chap-
ter we will assume that the local coordinate systems are precise, i.e. the relay is able to
measure the position of its neighbors precisely. Only in Section 3.5 we will show that
with imprecise local coordinate systems the Go-To-The-Middle strategy is not guaranteed
to work properly.

The Go-To-The-Middle strategy works as follows. In the Look-operation of a time
step t the relay vi executing the Go-To-The-Middle strategy observes the positions of its
two neighbors. Afterward it computes the position in the middle of the line segment
〈pt(i − 1), pt(i + 1)〉. During the Move-operation the strategy guides the relay to the
computed middle of the line segment between the positions of its neighbors.

pt(i)

pt(i − 1)

pt(i + 1)

pt+1(i)

Figure 3.1.: Relay vi executes the Go-To-The-Middle strategy

As the explorer moves, the distance dt may change. Therefore the number of relays
within the chain should be changed appropriately, so that the number of stations em-
ployed in the chain is neither too large nor to small. For the sake of clarity, we won’t
discuss that issue now and come back later to this topic in Section 3.4.

19
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Explorer Behavior

We bound the maximum speed of the explorer to one distance unit per time step.
Therefore we also require relays to be able to move for one distance unit per time step.

When the Go-To-The-Middle strategy is applied by relays, we require the explorer to
carefully watch the distance between its position and the position of v1. The explorer is
responsible for not exceeding a distance of R to v1 – even if that means it has to slow
down or stop moving for some period of time.

We assume the explorer to move in parallel to the relays during the Move-operation.

Correctness/Performance Criteria

In order to organize the chain properly, the Go-To-The-Middle strategy must ensure that
neighbored relays are always in distance at most R in the chain. As already noted,
the explorer is responsible for ensuring that

∣∣∣pt(0) − pt(1)
∣∣∣
2
≤ R. We will say that a

communication chain is communication-valid in time step t if
∣∣∣pt(i) − pt(i − 1)

∣∣∣
2
≤ R for all

i = 1, . . . , nt.
Furthermore, in order not to exceed the movement capabilities of the relays, we want

the Go-To-The-Middle strategy to dictate relays to move by at most unit distance per
time step, formally

∣∣∣pt(i) − pt+1(i)
∣∣∣
2
≤ 1. If the strategy fulfills this requirement we call it

movement-valid.
The performance of the Go-To-The-Middle strategy can be measured in two ways. In

the static case we will be given a communication-valid chain at the beginning. While the
explorer won’t be moving, we will investigate the time needed by the chain to organize
itself to a line connecting the explorer and the base camp. Here the convergence time
will be given in the number of steps in the LCM-model.

In the dynamic case, we will assume a moving explorer. As already outlined, the
explorer may be required to slow down if the station v1 is not able to catch up with
its position. Therefore, we will be investigating bounds on a guaranteed speed of the
explorer.

Outline

We start our investigation of the Go-To-The-Middle strategy in Section 3.1 with showing
that it organizes the chain of relays properly, i.e. that it is communication-valid and
movement-valid.

The behavior of the strategy in the static scenario is analyzed in Section 3.3 and
afterward in the dynamic scenario in Section 3.4. We quickly summarize the results
obtained for the Go-To-The-Middle strategy in these two scenarios. In the static one,
we are given any communication-valid chain with n relays and a stationary explorer.
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We show that it takes O(n2 log n) time steps to bring all relays in a constant distance to
their optimal positions on the line between the explorer and base camp (Theorem 3.10).
Complementary to the previous result, in Theorem 3.6 we can show that there exist
communication-valid chains such that the relays need at least Ω(n2) time steps to come
near to their optimal positions.

In the dynamic scenario we are dealing with a moving explorer and are investigating
how the Go-To-The-Middle strategy limits its speed. We start with a short discussion on
ways to control the number of relays in the chain when the explorer changes its distance
to the base camp. Unfortunately, the Go-To-The-Middle strategy needs certain extensions
in order to be able to insert and remove relays from the chain.

We are able to show matching lower and upper bounds ofΘ(1/d) on the average speed
of an explorer in distance d to the base camp (Theorem 3.11 and 3.15). This result shows,
that the speed with which the explorer can move is inversely proportional to its distance
to the base camp – clearly a poor result for the Go-To-The-Middle strategy. Note that this
is a worst-case guarantee – with an explorer which moves changing its direction very
often the Go-To-The-Middle strategy is expected to perform much better.

Afterward, we show in Section 3.5 that the Go-To-The-Middle is not communication-
valid if we are given an imprecise local coordinate system, where the sensor readings
are erroneous.

Eventually we deal in Section 3.6 with strategies similar to Go-To-The-Middle and
show that their performance cannot be essentially better than that achieved by Go-To-
The-Middle.

3.1. Correctness

First, we want to show that the Go-To-The-Middle strategy is correct with respect to the
criteria we have set up earlier. This requires that the chain we are given at the beginning
is communication valid and that during the first time step no relay moves by more than
1. If these basic properties are fulfilled, the Go-To-The-Middle strategy is able to behave
correctly, as shown in Theorem 3.1 and 3.2.

Theorem 3.1. Assume that the explorer ensures that
∣∣∣pt(0) − pt(1)

∣∣∣
2
≤ R for every time step

t and that the chain configuration is communication-valid at the beginning of the first time step.
Then the chain configuration is communication-valid after every time step.

Proof. We will show that the chain configuration is always communication-valid by
induction on the time step. By assumption the chain is communication-valid at the
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pt(j) = (−a; 0) pt(j + 1) = (a; 0)

(x; y)

pt(j + 2) = (2x + a; 2y)

b

α

Figure 3.2.: (x; y) is the new position of vertex (a; 0) after applying Go-To-The-Middle.

beginning of the first time step. Now assume that at the beginning of time step t it holds∣∣∣pt(i) − pt(i + 1)
∣∣∣
2
≤ R for all i = 0, . . . , nt. We will show that

∣∣∣pt+1( j) − pt+1( j + 1)
∣∣∣
2
≤ R after

Go-To-The-Middle has been applied. Note that by assumption we have
∣∣∣pt+1(0) − pt+1(1)

∣∣∣
2
≤

R so that we do not have to care for the distance between the explorer and v1.
Fix a line segment e := 〈pt( j), pt( j+ 1)〉, for any j = 1, . . . , nt. Let us lay out a coordinate

system so that e lays on the X-axis and that the origin of the coordinate system is in the
middle of edge e. Let a := |e|2 /2.

We draw a circle around the origin of the coordinate system with a radius of R/2 as
shown on Fig. 3.2. We will show that after applying Go-To-The-Middle both pt+1( j) and
pt+1( j + 1) lie within this circle. Then obviously the distance between them is at most R.

Define (x; y) to be the coordinates of pt+1( j + 1) and b := |pt( j) − pt+1( j + 1)|2 to be the
distance between the point pt( j) and pt+1( j + 1). Let α describe the angle at point pt( j)
between the lines 〈pt( j), pt+1( j + 1)〉 and 〈pt( j), pt( j + 1)〉. From an obvious geometric
property we have b =

√
(x + a)2 + y2.

Since pt( j + 1) = (a; 0) has been moved to (x; y) by Go-To-The-Middle, we know that
pt( j + 2) lies on the line connecting (−a; 0) and (x; y) in distance b from (x; y). From the
triangle similarity property we have that pt( j + 2) = (2x + a; 2y).

Now assume for the sake of showing a contradiction that (x; y) lies outside the circle.
Then x2 + y2 > (R/2)2. We now compute the distance

∣∣∣pt( j + 1) − pt( j + 2)
∣∣∣
2
. We have

∣∣∣pt( j + 1) − pt( j + 2)
∣∣∣
2
=

√
(2x + a − a)2 + (2y − 0)2 =

√
4 · (x2 + y2) . (3.1)
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Since x2 + y2 > R2/4 we are able to lower bound the distance in Eq. 3.1 and obtain∣∣∣pt( j + 1) − pt( j + 2)
∣∣∣
2
> R. This contradicts the assumption that the chain configuration

at the beginning of time step t has been communication-valid.
The same reasoning can be applied to determine the position of pt+1( j). Thus, we have

proven, that both pt+1( j) and pt+1( j + 1) lie within a circle with radius R/2, and so they
are in distance at most R.

Theorem 3.2. Assume that in the first time step no station moves by more than 1 and
that the explorer moves by at most 1 per time step. Then the Go-To-The-Middle strategy is
movement-valid.

Proof. We will prove the lemma by induction on the time step. The induction basis
holds due to the assumption of the lemma.

Assume that during time step t all relays moved by at most 1. Pick any station vi. We
will show that vi moves by at most 1 during t + 1. The position pt(i) is in the middle of
the interval e := 〈pt−1(i − 1), pt−1(i + 1)〉. Once again let us lay out a coordinate system,
so that e is on the X-axis and pt(i) is the origin (see Fig. 3.3). Let a := |e|2/2. Obviously
it holds pt−1(i − 1) = (−a, 0) and pt−1(i + 1) = (a, 0). Denote by (x−1, y−1) = pt(i − 1) and
(x+1, y+1) = pt(i+ 1) the new positions of stations vi−1 and vi+1. We want to show that pt(i)
is within distance 1 from pt−1(i).

pt−1(i − 1) = (−a; 0) pt−1(i + 1) = (a; 0)pt(i)

pt(i − 1) = (x−1; y−1)
pt(i + 1) = (x+1; y+1)

pt+1(i)

Figure 3.3.: Movement of vi in t + 1 depending on movement of vi−1 and vi+1 in t

Note that by inductive assumption the distances
∣∣∣pt−1(i − 1) − pt(i − 1)

∣∣∣
2
≤ 1 and∣∣∣pt−1(i + 1) − pt(i + 1)

∣∣∣
2
≤ 1 and therefore

(x−1 + a)2 + y2
−1 ≤ 1 (3.2)

(x+1 − a)2 + y2
+1 ≤ 1 .
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The coordinates of the point pt(i) are
(

1
2(x−1 + x+1), 1

2(y−1 + y+1)
)
. We aim now at showing

that (x−1 + x+1

2

)2

+
( y−1 + y+1

2

)2

≤ 1 ,

which gives us that pt(i) lies in a circle of radius 1 around pt−1(i). By Eq. (3.2) we obtain

(x−1 + a + x+1 − a)2 + (y−1 + y+1)2 ≤ (x−1 + a)2 + (x+1 − a)2 + 2 · (x−1 + a) · (x+1 − a)

+y2
−1 + y2

+1 + 2 · y−1 · y+1

≤ 1 + 1 + 2 · (x−1 + a) · (x+1 − a) + 2 · y−1 · y+1 .

Using the earlier bounds from Eq. (3.2) to express the latter term in terms of y−1 and y+1

we obtain

(x−1 + a) · (x+1 − a) + y−1 · y+1 ≤
√(

1 − y2
−1

)
·
(
1 − y2

+1

)
+ y−1 · y+1

≤ 1 (3.3)

A technical proof of Eq. (3.3) can be found in the appendix. Combining the results we
have that pt(i) lies in a circle of radius 1 around pt−1(i).

3.2. Potential Function

Before we are able to proceed with the analysis of the Go-To-The-Middle strategy in the
static scenario, we want to introduce a model which allows us to give a mathematical
definition of the progress made by Go-To-The-Middle per time step.

For an n-element vector w we will denote by |w| the sum of values of all of its elements,
i.e. |w| = ∑n

i=1 w[i]. Similarly ‖w‖ will denote the sum of the absolute values of all
elements, i.e. ‖w‖ = ∑n

i=1 |w[i]|.
Throughout the analysis of Go-To-The-Middle, by Lt we will denote the interval con-

necting the base camp and the explorer’s position pt(0) from the beginning of time step t.
The optimal placement of relays is a uniform distribution on the line Lt. More specifi-
cally, for station vi this is position popt

t (i) on the interval Lt in distance i · dt/(nt + 1) to the
explorer. As the distance between neighbored relays is the same for all relays, the fact
follows.

Fact 3.3. Let (x−1; y−1) = popt
t (i − 1) and (x+1; y+1) = popt

u,t (i + 1). Then

popt
t (i) =

(
1
2(x−1 + x+1); 1

2(y−1 + y+1)
)
,

for all i ∈ [1, nt].
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pt(0)

Lt

pt(i)

popt
t (i)

Xt[i]

Yt[i]

Figure 3.4.: Potential function Xt andYt

We define a family of vectors Xt and Yt, such that Xt[i] denotes the difference in the
X-coordinates of pt(i) and popt

t (i) andYt[i] is the same for the Y-coordinates (see Fig. 3.4).
More formally, let the coordinates of respectively the current position and the optimal
position of station vi be (x; y) = pt(i) and (xopt; yopt) = popt

t (i). Then

Xt[i] = x − xopt, Yt[i] = y − yopt .

As both the base camp and the explorer lie on the line Lt on their proper positions, we
have

Xt[0] = 0, Yt[0] = 0 and Xt[nt + 1] = 0, Yt[nt + 1] = 0 .

Observe, that for two stations vi and vi+1 the condition
∣∣∣pt(i) − pt(i + 1)

∣∣∣
2
≤ R implies

|Ut[i] −Ut[i + 1]| ≤ R yielding the following fact.

Similarly to Xt and Yt, by X′t and Y′t we will denote the vector of distances between
the positions of relays after the Go-To-The-Middle strategy has been applied and their
optimal positions at the beginning of time step t. Formally, let (x′; y′) = pt+1(i) and
(xopt; yopt) = popt

t (i). Then

X′t[i] = x′ − xopt, Y′t[i] = y′ − yopt .

for all i = 1, . . . , nt. For the explorer and base camp we set X′t[0] = 0,Y′t[0] = 0 and
X′t[nt + 1] = 0,Y′t[nt + 1] = 0. The measure Xt, compared to X′t, andYt compared to Y′t,
can be used to measure the progress made by the Go-To-The-Middle strategy in one time
step.

LetA be a nt × nt matrix withA[i, j] = 1
2 for all i, j such that |i− j| = 1. For all other i, j
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we haveA[i, j] = 0:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/2

1/2 1/2

1/2
. . .

1/2 1/2
. . . 1/2

1/2 1/2

1/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The following lemma describes how X′t can be computed out of Xt and Y′t from Yt.

By w[i, . . . , i + k] we will denote a vector of size k composed of the entries i, . . . , i + k of
vector w.

Lemma 3.4. Assume that the number of relays in the chain does not change in time step t.
Then it holds

X′t[i] =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if i = 0
1
2 (Xt[i − 1] +Xt[i + 1]) ∀i ∈ [1, . . . , nt]
0 if i = nt + 1 ,

and similarly

Y′t[i] =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if i = 0
1
2 (Yt[i − 1] +Yt[i + 1]) ∀i ∈ [1, . . . , nt]
0 if i = nt + 1 .

Equivalently

X′t[1, . . . , nt] = AXt[1, . . . , nt]

Y′t[1, . . . , nt] = AYt[1, . . . , nt] .

Proof. Let (x−1; y−1) = pt(i−1) and (x+1; y+1) = pt(i+1). Similarly, let (xopt
−1 ; yopt

−1 ) = popt
t (i−1)

and (xopt
+1 ; yopt

+1 ) = popt
t (i + 1). Let vi be any relay, i.e. i ∈ [1, nt]. Since Go-To-The-Middle

moves station vi exactly into the middle in between pt(i − 1) and pt(i + 1) during time
step t, it holds pt+1(i) =

(
x−1+x+1

2 ; x−1+x+1
2

)
. By the definition of Xt andYt we have

x−1 = Xt[i − 1] + xopt
−1 , y−1 = Yt[i − 1] + xopt

−1 ,

x+1 = Xt[i + 1] + xopt
+1 , y+1 = Yt[i + 1] + yopt

+1 ,
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Let (xopt; yopt) = popt
t (i). Then

pt+1(i) =

⎛⎜⎜⎜⎜⎝Xt[i − 1] +Xt[i + 1] + xopt
−1 + xopt

+1

2
;
Yt[i − 1] +Yt[i + 1] + yopt

−1 + yopt
+1

2

⎞⎟⎟⎟⎟⎠
and by Fact 3.3

pt+1(i) =
(Xt[i − 1] +Xt[i + 1] + 2x

2
;
Yt[i − 1] +Yt[i + 1] + 2y

2

)
.

This proves the lemma for i ∈ [1, nt]. The boundary conditions hold by definition of X′t
andY′t.

3.3. Performance in the Static Scenario

We are now ready to analyze the performance of the Go-To-The-Middle strategy for the
static scenario, where the explorer does not move. We are given a communication-valid
chain at the first time step. We are looking for the number of time steps for the relays to
approach their optimal position on the line between the base camp and the explorer.

During the execution of the Go-To-The-Middle strategy we do not remove any relays
from the path, and as the explorer does not move, no new relays are added. Therefore
we can write n := n1.

Note that since the explorer does not move, the line L := Lt is the same for all time
steps and therefore popt

t (i) is the same for all time steps t. Furthermore the number of
relays remains fixed and therefore X′t = Xt+1 andY′t = Yt+1 and all t.

3.3.1. Lower bound

In the following part we will construct a chain, such that the Go-To-The-Middle strategy
needs plenty of time to bring the relays near to their positions on the line L. This chain
will have all relays on one side of the line L, so that Yt[i] ≥ 0 for all relays vi if we lay
out the coordinate system appropriately. The following lemma shows how the weight
of the vector Yt decreases when Go-To-The-Middle is applied. Bounds on this decrease
will allow us to state lower bounds on the performance of Go-To-The-Middle.

Lemma 3.5. Assume that the number of relays in the chain has not changed in time step t.
Assume that all stations are on one side of the line L. Then

∥∥∥Yt

∥∥∥ − ∥∥∥Y′t∥∥∥ =
∣∣∣Yt[1]

∣∣∣ + ∣∣∣Yt[nt]
∣∣∣

2
.
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Proof. Since all stations are on the same side of the chain, we have
∣∣∣Y′t[i]∣∣∣ = Y′t[i]. Then

it holds

∥∥∥Y′t∥∥∥ = nt+1∑
i=0

Y′t[i] =
nt∑

i=1

1
2 · (Yt[i − 1] +Yt[i + 1])

=

nt−1∑
i=0

1
2 · Yt[i] +

nt∑
i=1

1
2 · Yt[i]

= 1
2 · Yt[1] +

nt−1∑
i=1

Yt[i] + 1
2 · Yt[nt] =

∥∥∥Yt

∥∥∥ − (
1
2 · Yt[1] + 1

2 · Yt[nt]
)
.

Our lower bound shows that there exist communication-valid configurations, such
that the Go-To-The-Middle strategy must execute Ω

(
n2 − ε · n)

time steps, before each
relay is in distance at most ε to its optimal position.

Theorem 3.6. There exists a communication-valid and movement-valid chain of relays such
that the Go-To-The-Middle strategy must execute Ω(n2) steps in order to obtain |Yt[i]| ≤ 1 for
all relays i = 1, . . . , n.

Proof. We construct the initial chain with p1(0) = (0; 0), p1(n+1) = (n+1; 0) and p1(i) = (i; i)
for i = 1, . . . , n/2 and p1(i) = (i; n− i) for i = n/2+1, . . . , n. Therefore we have

∥∥∥Y1

∥∥∥ = n2/4
for even n.

By Lemma 3.5 and the fact that the explorer does not move we have∥∥∥Yt

∥∥∥ − ∥∥∥Yt+1

∥∥∥ = 1
2

(∣∣∣Yt[1]
∣∣∣ + ∣∣∣Yt[n]

∣∣∣) .
As obviously

∣∣∣Yt[ j]
∣∣∣ ≤ R for both j = 1, n we have

∥∥∥Yt

∥∥∥ + R ≥ ∥∥∥Yt−1

∥∥∥. So, after k steps∥∥∥Yk

∥∥∥ ≥ ∥∥∥Y1

∥∥∥ − k · R ,

and ∣∣∣Yk[i]
∣∣∣ ≥ ∥∥∥Y1

∥∥∥ − k · R
n + 2

=
n2/4 − k · R

n + 2
.

Therefore
∣∣∣Yk[i]

∣∣∣ ≤ 1 only for k = Ω(n2).
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3.3.2. Matrices and Convergence

Before moving on toward the upper bound on the performance of Go-To-The-Middle
we have to establish some facts about the values of Ak for large k. Recall that A is a
non-negative n × n matrix. It possesses the following properties:

• it is sub-stochastic – the sum of its entries in every row and column is at most 1,

• it is symmetric – it holdsA[i, j] = A[ j, i] for every i, j ∈ [1, n],

• it is irreducible – there exists a k for each pair i, j ∈ [1, n] such thatAk[i, j] > 0.

In the following lemma we compute the eigenvalues and eigenvectors of the matrixA.

Lemma 3.7. The eigenvalues of the n × n matrixA are

λ j = cos
(
π · j
n + 1

)
, j = 1, . . .n .

The corresponding eigenvectors are

xj[i] = sin
(
π · j · i
n + 1

)
, i = 1, . . . , n, j = 1, . . . , n .

Proof. We will show that the specified eigenvalues and eigenvectors actually correspond
to the matrixA. Thus for each pair of eigenvalue λj and eigenvector xj it must hold

A xT
j = λ j xT

j . (3.4)

Let us fix some j and prove Eq. (3.4) for this pairλj, xj. The following system of equalities
must hold

1
2

sin
(

2 j · π
n + 1

)
= cos

(
j · π

n + 1

)
sin

(
j · π

n + 1

)
, (3.5)

1
2

sin
(

(i − 1) · j · π
n + 1

)
+

1
2

sin
(

(i + 1) · j · π
m + 1

)
= cos

(
j · π

n + 1

)
sin

(
i · j · π
n + 1

)
, (3.6)

1
2

sin
(

(n − 1) · j · π
n + 1

)
= cos

(
j · π

n + 1

)
sin

(
n · j · π
n + 1

)
, (3.7)

where Eq. (3.6) must hold for all i = 2, . . . , n − 1.
We use one of the basic trigonometric identities sin(2α) = 2 sinα · cosα. With its help

Eq. (3.5) follows easily. Similarly we have

sinα + sin β = 2 sin
(
α + β

2

)
· cos

(
α − β

2

)
,
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which can be used to prove Eq. (3.6) for each i = 2, . . . , n − 1.
For Eq. (3.7) we first note that sin(a · j ·π) = sin((1−a) · j ·π) for any j ∈N and 0 ≤ a < 1.

From this we have

sin
(

(n − 1) · j · π
n + 1

)
= sin

(
2 j · π
n + 1

)
,

and

sin
(
n · j · π
n + 1

)
= sin

(
j · π

n + 1

)
.

This reduces Eq. (3.7) to Eq. (3.6).

The following is a widely known fact following from the spectral theorem.

Theorem 3.8. Let P be a symmetric n× n matrix with eigenvaluesλ1, . . . , λn and eigenvectors
x1, . . . , xn. Then we can write P = NDN−1 where N =

[
xT

1 , . . . , x
T
n

]
and D[i, i] = λi, D[i, j] = 0

for i � j.

The following lemma is similar to a convergence result by Cinlar [Cin75]. We rewrite
it for sub-stochastic matrices here.

Lemma 3.9. For any irreducible, symmetric, substochastic n × n matrix P with pairwise
distinct eigenvalues and any i, j we have

Pk[i, j] ≤ n · α · βk ,

where β is the largest absolute value of eigenvalues of the matrix P and α = maxi, j,i′, j′ |xj[i] ·xj′[i′]|
with xj denoting the j-th eigenvector of matrix P.

Proof. Let λ1, . . . , λn denote the eigenvalues of matrix P, ordered descending by their
absolute value. As P has pairwise distinct eigenvalues, we can write by Fact 3.8 P =
NDN−1, N =

[
xT

1 , . . . , x
T
n

]
, and D[i, i] = λi, D[i, j] = 0 for i � j. Denoting rows of N−1 as

vectors π1, . . . , πn we can define the matrices Bk = xT
k · πk,

Bk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
xk[1]
...

xk[n]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ [πk[1], . . . , πk[n]] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
xk[1] · πk[1] . . . xk[1] · πk[n]

...
...

xk[n] · πk[1] . . . xk[n] · πk[n]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
We can write P as

P = λ1 B1 + · · · + λn Bn .
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Observe that N−1 N = I implies π j · xk = 0 for j � k and π j · xj = 1. Thus Bj Bk is equal
to 0 when j � k and Bk when j = k. The expansion of (λ1 B1 + · · · + λn Bn)k obtained by
applying the binomial theorem thereby reduces to

Pk = λk
1 B1 + λ

k
2 B2 + . . . + λ

k
n Bn .

Now we can write

|Pk[i, j]| = |λk
1 B1[i, j] + λk

2 B2[i, j] + . . . + λk
n Bn[i, j]| ,

≤ |λk
1|

∣∣∣B1[i, j] + . . . + Bn[i, j]
∣∣∣ ,

≤ |λk
1|

(∣∣∣B1[i, j]
∣∣∣ + . . . + ∣∣∣Bn[i, j]

∣∣∣) .
Each of the terms |Bk[i, j]| can be bounded by maxi, j,i′, j′ |xj[i] · π j′[i′]|. As the matrix P is

symmetric, its left-hand and right-hand eigenvectors are essentially the same (they are
only transposed). Thus we can rewrite the former term to maxi, j,i′, j′ |xj[i] · x′j(i′)|.

Finally, since the matrix P is non-negative, all its powers are also non-negative and
we can write |Pk[i, j]| = Pk[i, j].

3.3.3. Upper bound

We present an upper bound showing that the Go-To-The-Middle strategy needs at most
O(n2 log(n/ε)) time steps for each station to be in distance at most ε to its optimal position
in both the X and Y-coordinate.

Theorem 3.10. For any communication-valid chain with n relays, after t ≥ 9 · (n + 1)2 ·
log((n + 1)/ε) time steps of execution of Go-To-The-Middle it holds |Xt[i]| ≤ ε and

∣∣∣Yt[i]
∣∣∣ ≤ ε

for any ε > 0, any i ∈ [1, n].

Proof. We will show the theorem for
∣∣∣Yt[i]

∣∣∣ ≤ ε, while the proof for X is analogous. For
ease of presentation we define zt = Yt[1, . . . , n]. Therefore zt is the vector of distances of
all relays (excluding the base camp and the explorer) to their optimal positions.

Let β be the largest absolute value of the eigenvalues ofA and β = maxi, j,i′, j′
∣∣∣xj[i] · xj′[i]

∣∣∣
where xj are the eigenvectors ofA. As all entries of all eigenvectors ofA are not larger
than 1, we have β ≤ 1. Observing the eigenvalues of A we can quickly determine that
β =

∣∣∣cos π
n+1

∣∣∣. We want to have an upper bound on β which has a cleaner form then this.
Thus, let us expand cos x around x = 0 from the Taylor series. We obtain

cos x = 1 − x2

2
+

x4

24
− sin(y) · x5

5!
,
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where 0 < y < x. Setting x = π/(n + 1) for sufficiently large n we have sin(y) > 0 and
therefore

cos
(
π

n + 1

)
≤ 1 − π2

2(n + 1)2 +
π4

24(n + 1)4

≤ 1 − 1
(n + 1)2 + 5

1
(n + 1)4

.

Since 5/(n + 1)4 ≤ 1/2(n + 1)2 for sufficiently large n we have

cos
π

n + 1
≤ 1 − 1

2(n + 1)2 .

This lets us conclude that for t = 2(n + 1)2 we obtain βt ≤ 1/e and that for τ = 2(n + 1)2 ·
ln

(R·n3

ε

)
it holds βτ ≤ ε

R·n3 . Therefore for all i, j

Aτ[i, j] ≤ ε

R · n2 .

Recall that by Lemma 3.4

zt = At−1 · z1 .

Since the distance between nodes is at most R, we know that for any relay vi it holds
zt[i] ≤ R · n. On the other hand we know that entries of At are always non-negative. So

zτ[i] = z1 · Aτ[i] ≤ n2 · R · ε
R · n2 ≤ ε .

3.4. Performance in the Dynamic Scenario

In the following part we will analyze the performance of the Go-To-The-Middle strategy
in the dynamic scenario. Here we assume that at the beginning of the first time step
stations are located on their optimal positions on the line to the explorer. We then let
an adversary control the behavior of the explorer and look at the performance of the
Go-To-The-Middle strategy.

Recall that X′t andY′t is the distance between the positions of relays at the end of time
step t (i.e. pt+1(i)) and the line Lt, while Xt+1 and Yt+1 is the distance to line Lt+1. Then,
the difference between X′t,Y′t and Xt+1,Yt+1 is only dependent on the movement of the
explorer, as depicted on Fig 3.5.
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pt(0)

Lt

pt+1(i)

popt
t (i)

pt+1(0)

popt
t+1(i)Lt+1

Figure 3.5.: Movement of explorer

Number of Relays

When considering a dynamic scenario with a moving explorer we have to deal with the
issue that the number of relays in the chain may have to be changed.

Although the task of inserting and removing relays to the chain should intuitively
be the responsibility of the base camp, we assign the responsibility for controlling the
number of relays in the chain to the explorer. This is the only possibility, as with the
Go-To-The-Middle strategy the base camp cannot know of movement of the explorer and
the changed requirements on the number of relays in the chain. The explorer is thereby
maintaining the invariant nt = γ · dt/R by inserting new relays into the chain whenever
it increases its distance to the explorer and removing them in the opposite case. The
constant γ > 1 introduces a slackness by including more relays into the chain than
would be necessary. A slightly larger number of relays is necessary for the chain to
work properly. The new relays are inserted as first in the chain, causing a renumbering
of the whole chain. Similarly, it is always the first relay v1 which is removed from the
chain. Note, that this technique requires the explorer to know dt in order to control the
number of relays. This may be considered a large drawback of the Go-To-The-Middle
strategy.

The fact that relays are inserted at the explorer’s end of the chain requires the explorer
to carry a sufficiently large pool of relays. If this is not feasible and spare relays are only
available at the base camp, a different schema may be used. We assign each relay vi a
partner, which is following the movement of vi. During each Go-To-The-Middle step, a
relay and its partner perform the same movement. Afterward, the partner of vi moves
to vi−1 and becomes its partner. At the base camp, a new relay is introduced in each time
step as the partner of vn. At the explorer there are two possibilities. If the explorer has
not moved far away from v1, the partner of vn starts going back to the base camp and is
reused there. If a new relay is needed to hold up the communication with the explorer,
the partner of vn is used. This allows the explorer to have relays available whenever
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needed. On the other hand, it doubles the number of relays used and imposes a large
energy cost due to the constant movement of spare relays along the chain.

Intuition

Before providing formal lower and upper bounds on the performance of the Go-To-The-
Middle strategy in the dynamic setting, we want to give an example which shows how
the Go-To-The-Middle strategy can perform in a dynamic environment. This example
does not fit directly into our base camp-explorer model, while it provides a simplified
model we can handle more easily.

Assume that the chain of relays is spanned between two mobile explorers. Both of
these explorers will be moving on parallel lines in the same direction. Fix a coordinate
system, such that the explorers are only decreasing their Y-coordinate while moving
(i.e. they are moving upwards in the coordinate system all the time). Therefore we can
utilize the measure Yt to describe the distance of the stations to the horizontal line Lt

spanned between the two explorers.

We start with n relays forming the chain between the two explorers and assume
that no relays are removed or added to the chain. As the distance between the two
explorers remains constant, this is reasonable. We want to investigate whether there
exists some stability point, such that the explorers move by some distance e, increasing
the distance of relays to Lt, while at the same time this distance is decreased by the
Go-To-The-Middle strategy to the value prior to the movement of the explorer. In other
words, we are looking for such positions of the relays and such a movement distance
e, that the movement of the explorer is canceled out by the Go-To-The-Middle strategy in
each time step.

We assume that it holdsX1 = 0. Since the only movement of the explorer is in vertical
direction, the relays do not exhibit any horizontal movement, therefore Xt = 0 for all
time steps. As the explorer moves by e it holdsY′t[i] = Yt+1[i] − e for all 1 ≤ i ≤ n.

For the sake of compactness of notation describe by z(i) := Yt[i] and z′(i) := Y′t[i].
Note, that we are treating z as a discrete function defined on [0, n + 1] rather than a
vector. To have our balance property fulfilled we are looking for a function z defining
the positions of relays in such a way that Go-To-The-Middle decreases the distance of
relays to Lt in one time step be e, i.e. z(i) = z′(i) + e for all 1 ≤ i ≤ n. We restrict our
solution space to polynomials of second-degree, so that z(i) = a · i2+b · i+c. Summarizing
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our balance properties it must hold

z(0) = 0 ,

z(n + 1) = 0 ,

z′(i) = 1
2 · (z(i − 1) + z(i + 1)) ,

z′(i) = z(i) − e .

Using these equalities we obtain a = −e and b = −a · (n+1) for our polynomial. Therefore
a chain characterized by

z(i) = −e · i2 + e · (n + 1) · i , (3.8)

will fulfill our balance property when the explorer moves by e.
We now add another important restriction on the values of z(i): since the relays have

to stay in communication distance, we should have z(i) − z(i − 1) ≤ R and in particular
z(1) − z(0) ≤ R. Plugging our solution to z(i) from Eq. (3.8) into the latter restriction we
obtain e ≤ R/n. Therefore if z(i) is given by a second-degree polynomial the greatest
speed for the explorer which does not violate any of the necessary properties is R/n.
This results yields the intuition that the speed R/n is an important threshold for the
Go-To-The-Middle strategy. Obviously this does not constitute a formal lower bound or
upper bound. These will follow in the next sections.

3.4.1. Upper bound

We present an upper bound on the performance of the Go-To-The-Middle strategy, by
showing that on average the explorer will not be hindered to a speed lower thanΩ(1/n).
Recall that we are only dealing with movement of the explorer in the same distance to
the base camp, therefore d = dt and n = nt. We will show the following theorem.

Theorem 3.11. Let the explorer move on a circle with diameter d around the base camp. Then
its average speed isΩ(1/d).

For the purpose of proving Theorem 3.11 we have to show that the Go-To-The-Middle
strategy decreases the value of the vectors Xt andYt at least by some constant factor in
every time step.

Lemma 3.12. Assume that the number of relays in the chain has not changed in time step t.
Then it holds

‖Xt‖ −
∥∥∥X′t∥∥∥ ≥ |Xt[1]| + |Xt[n]|

2
,
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and ∥∥∥Yt

∥∥∥ − ∥∥∥Y′t∥∥∥ ≥
∣∣∣Yt[1]

∣∣∣ + ∣∣∣Yt[n]
∣∣∣

2
.

Proof. The statement of this lemma is similar to that from Lemma 3.5. The difference
is that here we do not assume the relays to lie on one side of the line Lt. The following
estimate relies on the property expressed in Lemma 3.4

∥∥∥Y′t∥∥∥ = n∑
i=0

∣∣∣Y′t[i]∣∣∣ = n∑
i=1

1
2

∣∣∣Yt[i − 1] +Yt[i + 1]
∣∣∣

≤
n−1∑
i=0

1
2 ·

∣∣∣Yt[i]
∣∣∣ + n∑

i=1

1
2 ·

∣∣∣Yt[i]
∣∣∣

= 1
2 ·

∣∣∣Yt[1]
∣∣∣ + n−1∑

i=2

∣∣∣Yt[i]
∣∣∣ + 1

2 ·
∣∣∣Yt[n]

∣∣∣
=

∥∥∥Yt

∥∥∥ − 1
2 ·

(∣∣∣Yt[1]
∣∣∣ + ∣∣∣Yt[n]

∣∣∣) .
The bound works in the same way for X′t.

Complementary to the last statement we want to show that the increase of the vectors
Xt,Yt caused by the explorer’s movement is bounded from above.

Lemma 3.13. Let the length of the explorer’s movement vector be e in time step t − 1. Then

‖Xt‖ − ‖X′t−1‖ ≤ e · n ,

and

‖Yt‖ − ‖Y′t−1‖ ≤ e · n .

Proof. Recall that the optimal position popt
t (i) of the relay vi is located on the interval Lt

in distance i · d/(n + 1) to the base camp. By assumption we have
∣∣∣pt(0) − pt+1(0)

∣∣∣
2
= e

and obviously pt(0) is located on Lt and pt+1(0) on Lt+1. Take now the point popt
t (i) on the

interval Lt and the point popt
t+1(i) located on the interval Lt+1. By a geometric argument,

we have
∣∣∣popt

t (i) − popt
t+1(i)

∣∣∣
2
≤ e for all i ∈ [1, n]. Let popt

t (i) = (x; y) and popt
t+1(i) = (x′; y′).

The bound on the euclidean distance between popt
t (i) and popt

t+1(i) implies |x − x′| ≤ e
and |y − y′| ≤ q. From this we can follow that |Xt[i]| −

∣∣∣X′t−1[i]
∣∣∣ ≤ e and similarly∣∣∣Yt[i]

∣∣∣−∣∣∣Y′t−1[i]
∣∣∣ ≤ e. Summing up over all relay we obtain the statement of the lemma.
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Take any movement sequence of the explorer on a circle with diameter d around the
base camp. The sequence can be described by a sequence of lengths of the movement
vectors of the explorer e1, . . . , em. We only care for the lengths of the vectors here,
neglecting their direction. We assume that in a step t the explorer either moves with its
maximum speed 1 (i.e. et = 1), or that its movement is restricted by the relay chain and
et < 1. Denote by T the set of all time steps t such that et < 1. For each time step out of T
the following important fact holds.

Lemma 3.14. There exists a constant ϕ > 0 such that for each time step t ∈ T it holds

|Xt[1]| +
∣∣∣Yt[1]

∣∣∣ ≥ ϕ
Proof. If the explorer is restricted in time step t, it means that

∣∣∣pt(1) − pt(0)
∣∣∣
2
> R − 2.

Otherwise the explorer could move for a distance of 1 without exceeding the distance R
to v1 at the end of time step t, no matter how v1 moved during t.

As the number of relays in the chain is given by n = γ · d/R, we have

|popt
t (1) − pt(0)|2 = d

n + 1
≤ d/n = R/γ .

By the triangle inequality∣∣∣pt(1) − pt(0)
∣∣∣
2
≤

∣∣∣pt(1) − popt
t (1)

∣∣∣
2
+

∣∣∣popt
t (1) − pt(0)

∣∣∣
2
,

and therefore ∣∣∣pt(1) − popt
t (1)

∣∣∣
2
> R − 2 − R/γ ,

and therefore ∣∣∣Yt[1]
∣∣∣ + ∣∣∣Yt[1]

∣∣∣ > R − 2 − R/γ .
Setting ϕ = R − 2 − R/γ which is greater than zero for sufficiently large R and γ we can
follow the statement of the lemma.

We can now move on to proving the upper bound on the performance of Go-To-The-
Middle.

Proof of Theorem 3.11. The average speed of the explorer during the whole execution
is given by

(∑m
i=1 ei

)
/m. We want to bound the average speed from below. By Lemma 3.13

we have

‖Xt+1‖ −
∥∥∥X′t∥∥∥ ≤ et · n ,∥∥∥Yt+1

∥∥∥ − ∥∥∥Y′t∥∥∥ ≤ et · n .
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Furthermore by Lemma 3.12 and Lemma 3.14 for all t ∈ T holds

‖Xt‖ −
∥∥∥X′t∥∥∥ + ∥∥∥Yt

∥∥∥ − ∥∥∥Y′t∥∥∥ ≥ |Xt[1]| + |Xt[n]|
2

+

∣∣∣Yt[1]
∣∣∣ + ∣∣∣Yt[n]

∣∣∣
2

≥ ϕ/2 .
Let us now introduce a potential function Φ. At the beginning we have Φ1 = ‖X1‖ +∥∥∥Y1

∥∥∥. We define recursively

Φt+1 = Φt + ‖Xt+1‖ −
∥∥∥X′t∥∥∥ − (

‖Xt‖ −
∥∥∥X′t∥∥∥) + ∥∥∥Yt+1

∥∥∥ − ∥∥∥Y′t∥∥∥ − (∥∥∥Yt

∥∥∥ − ∥∥∥Y′t∥∥∥)
= ‖Xt+1‖ +

∥∥∥Yt+1

∥∥∥ .
Therefore we have

Φm = Φ1 +

m−1∑
i=1

(
‖Xi+1‖ −

∥∥∥X′i∥∥∥ + ∣∣∣Yi+1

∥∥∥ − ∥∥∥Y′i∥∥∥)
−

m−1∑
i=1

(
‖Xi‖ −

∥∥∥X′i∥∥∥ + ∥∥∥Yi

∥∥∥ − ∥∥∥Y′i∥∥∥)
≤ Φ1 + 2n ·

m−1∑
i=1

ei − |T| · ϕ/2 .

The starting condition for our upper bound was that all relays are placed on their optimal
positions in time step 1, so that Φ1 = 0. As Φt = ‖Xt+1| +

∥∥∥Yt+1

∥∥∥ ≥ 0 it follows

m∑
i=1

ei ≥ |T| · ϕ4n
.

Since the explorer has moved by 1 in all time steps not included in T we have another
bound

∑m
i=1 ei ≥ m − |T|. Combining both bounds we obtain∑m

i=1 ei

m
≥ |T| · ϕ

8n ·m +
m − |T|

2m
.

Evaluating the two possibilities |T| ≥ m/2 and |T| < m/2 we obtain∑m
i=1 ei

m
≥ 1

16n
.

3.4.2. Lower bound

For the lower bound on the performance of the Go-To-The-Middle strategy we will show
the following theorem.
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Theorem 3.15. There exists a movement pattern for the explorer such that the Go-To-The-
Middle strategy forces the explorer to slow down to a speed of O(1/d).

For the proof of the lower bound we will introduce a measure Vt. We will show in
Lemma 3.19 that a movement of the explorer by some vector e around the base camp
increases the value ofVt by at least Ω(n · e). On the other hand, in Lemma 3.20 we will
show that the Go-To-The-Middle strategy is able to decrease the value of Vt by at most
some constant factor during one time step. The measureVt will be defined in such a way,
that its value over some specific threshold implies that the relay chain got disconnected.
As the Go-To-The-Middle strategy and a properly behaving explorer guarantee that this
does not happen, both the increase and decrease of the measure Vt must balance out
in the long run. Therefore, the explorer will be forced to slow down to an average of
O(1/d).

For the construction of the lower bound we will be moving the explorer in one direction
around the base camp. Let us fix this direction to clockwise. Let LB,t be a line orthogonal
to Lt, starting at the base camp. The line LB,t divides the plane in two half-planes. The
half-plane occupied by the explorer will be denoted Ft. The following technical lemma
shows that the relays in the beginning of the chain are always located in Ft.

Lemma 3.16. The first 
d/R� relays are in Ft.

Proof. Assume that a relay vi with i ≤ 
d/R� is on the other side of the line LB,t than the
explorer. Therefore 
d/R� relays are used to construct a chain of length at least d. This
implies that the distance between at least two relays within the chain is more than R,
leading to a contradiction.

For the sake of simplicity of notation let the set S denote the first 
d/R� relays in the
chain. ByVt[i] we denote the distance between pt(i) and the line Lt (understood in the
usual way as the length of the shortest line segment between pt(i) and Lt). The measure
V is only defined for relays in S. Let the distance be positive if the station is on the
counter-clockwise side of Lt and negative otherwise. Since all stations are in Ft, the
directions are unambiguous. We defineV′t as the distance between pt+1(i) and Lt for all
i = 1, . . . , n and V′t[0] = 0, V′t[n + 1] = 0. Define by p̃t(i) the projection of the position
pt(i) on the line Lt−1.

Observe, that for two relays vi and vi+1 the condition
∣∣∣pt(i) − pt(i + 1)

∣∣∣
2
≤ R implies

|Vt[i] −Vt[i + 1]| ≤ R. For relay vi in the chain it must holdVt[i] ≤ i · R as otherwise the
chain would be disconnected. From this, the following fact follows.
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Fact 3.17. In order for the chain part included in S to keep connected it must hold

|Vt| ≤ |S| · n · R ≤ n2 · R . (3.9)

The following lemma shows the easy fact that at least half of the relays in S are in
distance at least d/2 to the base camp.

Lemma 3.18. There are |S|/2 relays in S, such that for each of them
∣∣∣b − pt(i)

∣∣∣
2
≥ d/2 and∣∣∣b − p̃t(i)

∣∣∣
2
≥ d/2.

Proof. First observe that for any relay vi it holds

∣∣∣b − p̃t(i)
∣∣∣
2
≤

∣∣∣b − pt(i)
∣∣∣
2
. (3.10)

It is clear that relay vi can be in distance at most i · R from the explorer, otherwise
the chain between vi and v0 got disconnected. Formally

∣∣∣pt(i) − pt(0)
∣∣∣
2
≤ i · R. Therefore,∣∣∣pt(i) − b

∣∣∣
2
≥ d− i ·R. For all station with indices not greater than d/2R it holds

∣∣∣pt(i) − b
∣∣∣
2
≥

d − i · R ≥ d/2. Together with Eq. (3.10) this yields the claim.

In the following lemma we investigate how a movement of the explorer influences
the measureV.

Lemma 3.19. Let the length of the explorer’s movement vector be e in time step t − 1. Then

|Vt| −
∣∣∣V′t−1

∣∣∣ ≥ Ω(e · n)

Proof. Let us choose any relay vi from set S. Denote by r̃ the distance between the base
camp and the projection of pt(i) on Lt−1, i.e. r̃ = |b− p̃t(i)|2 and similarly r = |b− pt(i)|2. We
will show that Vt[i] − V′t−1[i] ≥ Ω(e), and for that purpose we have to distinguish four
cases, depending on the sign ofV′t−1[i] andVt[i].

CaseV′t−1 ≥ 0 andVt ≥ 0. For simplicity of notation let zt−1 =V′t−1[i] and zt =Vt[i]. Let
both angles α and β be rooted at b. Angle α is the angle between Lt−1 and Lt. Angle β is
spanned between the interval 〈b, pt(i)〉 and Lt−1. From obvious geometrical observations
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pt−1(0)

pt(0)

Lt−1

Lt

pt(i)

V ′
t−1[i]Vt[i]

e

β
αb

Figure 3.6.: CaseV′t−1 ≥ 0 andVt ≥ 0

we can determine the cosine and sine of both angles, so that

cos α = 1 − e2

2d2 , sinα =

√
e2

d2 −
e4

4d4

cos β =
r̃√

z2
t−1 + r̃2

, sin β =
zt−1√

z2
t−1 + r̃2

.

Therefore

sin(α + β) = sinα cos β + cos α sin β

=
e
d
·
√

1 − e2

4d2 ·
r̃√

z2
t−1 + r̃2

+

(
1 − e2

2d2

)
· zt−1√

z2
t−1 + r̃2

.

In order to bound zt − zt−1 from below we use the fact that

sin(α + β) =
zt√

z2
t−1 + r̃2

,

and hereby

zt =
√

z2
t−1 + r̃2 · sin(α + β)

= zt−1 +
r̃ · e
d
·
√

1 − e2

4d2 − zt−1 · e2

2d2 .

We can bound zt−1 ≤ n · R and then

zt−1 · e2

2d2 ≤
γ2 · e2

2n
≤ O(e/n) ,
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since d = R · n/γ and e ≤ 1. For sufficiently large d we have√
1 − e2

4d2 ≥ 1/2 .

Therefore

Vt[i] −V′t−1[i] = zt − zt−1 ≥ r̃ · e
2d
− O(e/n) . (3.11)

pt−1(0)

pt(0)

Lt−1

Lt

pt(i)

V ′
t−1[i] Vt[i]

eβ
αb

Figure 3.7.: CaseV′t−1[i] ≤ 0 andVt[i] ≤ 0

CaseV′t−1[i] ≤ 0 andVt[i] ≤ 0. Here we are dealing with a situation very similar to the
former case. Laying zt = −V′t−1[i] and zt−1 = −Vt[i] we can use Eq. (3.11) and obtain

Vt[i] −V′t−1[i] = −zt−1 + zt ≥ r̃ · e
2d
− O(e/n) .

pt−1(0)

pt(0)

Lt−1

Lt

V ′
t−1[i]

Vt[i]
e

β
αb

pt(i)

Figure 3.8.: CaseV′t−1[i] ≤ 0 andVt[i] ≥ 0

CaseV′t−1[i] ≤ 0 andVt[i] ≥ 0. In this case, pt(i) lies “in between” the intervals Lt and
Lt−1 as shown on Fig. 3.8. We will show that either max{−V′t−1[i],Vt[i]} ≥ r · e/2d. This
implies

Vt[i] −V′t−1[i] ≥ r · e
2d

.
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Let us assume without loss of generality that Vt[i] ≥ −V′t−1[i]. For simplicity of
notation let z := Vt[i]. Let α be the angle between 〈b, pt(i)〉 and Lt−1 and β between
〈b, pt(i)〉 and Lt. As Vt[i] ≥ −V′t−1[i] we have β ≥ 1

2(α + β). As e is reasonably small in
comparison to d, we have β ≤ π/2 and therefore z = r · sin β ≥ r · sin 1

2 (α + β). By one of
the common trigonometrical identities we have

z ≥ r · sin 1
2(α + β) ≥

√
1 − cos(α + β)

2
.

From the Law of Cosines it holds cos(α + β) = 1 − e2/2d2, so that eventually z ≥ r · e/2d.

CaseV′t−1[i] ≥ 0 andVt[i] ≤ 0. This is impossible to happen, since the explorer moves
in clockwise direction.

Bringing all cases together we have that for any relay i it holds

Vt[i] −V′t−1[i] ≥ e
2d
·min{r, r̃} − O(e/n) .

By Lemma 3.18 there are at least |S|/2 stations such that min{r, r̃} ≥ d/2. This implies that
for each of these stations we haveVt[i] −V′t−1[i] ≥ e · d/4− O(e/n) . Therefore summing
up over all |S|/2 such stations we obtain

|Vt| −
∣∣∣V′t−1

∣∣∣ ≥ Ω(e · n) .

In contrast to the previous lemma, we now investigate how much the measureVmay
decrease when Go-To-The-Middle is applied. The result is that it is only by a constant
factor.

Lemma 3.20. Let the Go-To-The-Middle strategy be executed in time step t. Then it holds

|Vt| −
∣∣∣V′t ∣∣∣ ≤ R

Proof. Let Dt denote the distance between the line Lt and the first station not included
in S, i.e. v|S|+1. The following link betweenV′ andV is analogical to that established in
Lemma 3.4 for the measure X andY

V′t[i] =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if i = 0
1/2 · (Vt[i − 1] +Vt[i + 1]) ∀i ∈ [1, . . . , |S| − 1]
1/2 · (Dt +Vt[|S| − 1]) if i = |S| .
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Therefore we have∣∣∣V′t ∣∣∣ = |S|∑
i=1

V′t[i] = 1
2 (Dt +Vt[|S| − 1]) +

|S|−1∑
i=1

1
2 (Vt[i − 1] +Vt[i + 1])

= 1
2 (Dt +Vt[|S| − 1]) +

|S|−2∑
i=1

1
2 · Vt[i] +

|S|∑
i=2

1
2 · Vt[i]

= 1
2 (Dt +Vt[1] +Vt[|S|]) +

|S|−1∑
i=2

Vt[i]

= |Vt| − 1
2 · (Vt[1] +Vt[S] −Dt) ≥ |Vt| − R ,

sinceVt[1] ≤ R andVt[S] −Dt ≤ R.

After introducing bounds on the change of the measureV we are ready to prove the
upper bound on the average speed of the explorer.

Proof of Theorem 3.15. We construct the input sequence by letting the explorer move
by a fixed vector e in clockwise direction around the base camp. We choose the start
configuration so that all relays are on their optimal positions, so that |V1| = 0. Note that
it holds

|Vt+1| = |Vt| + |Vt+1| −
∣∣∣V′t∣∣∣ − (|Vt| −

∣∣∣V′t ∣∣∣) .
Therefore by Lemma 3.19 and 3.20 it holds

|Vt+1| = |V1| + t ·Ω(e · n) − t · R .
As by Eq. (3.9) the value of |Vt| is upper bounded and therefore

t ·Ω(e · n) − t · R ≤ n2 · R .
Thus, for t ≥ n2 · R it holds e = O(R/n) = O(1/d).

3.5. Imprecise Sensoric Data

Up to now we have assumed that the local coordinate system of the relays is precise.
We now want to investigate how Go-To-The-Middle behaves with imprecise sensory
input. For that purpose we assume an adversarial model, where an adversary biases
the positions of neighbors in the local coordinate system of a relay. We stick to the static
scenario with an immobile explorer, so that once again n := nt.
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For the purpose of analysis we will assume a global coordinate system in which the
positions of the relays are expressed. During the execution of the Go-To-The-Middle
strategy, we assume that the adversary constructs the local coordinate system of each
relay, being allowed to change the positions of the neighbors vi−1 and vi+1 by at most ε
from their true position in the global coordinate system.

We start with all relays aligned optimally on the line segment between the explorer
and the base camp. We assume that both explorer and base camp are placed on the
X-axis of the global coordinate system. Let (x−1; y−1) = pt(i − 1) and (x+1; y+1) = pt(i + 1).
We let the adversary always change the position of the neighbors so that vi perceives
the position of vi−1 in time step at (x−1; y−1 + ε) and the position of vi+1 at (x+1; y+1 + ε).
Therefore, station vi moves in time step t to position

pt+1(i) =
(x−1 + x+1

2
;

y−1 + y+1

2
+ ε

)
.

We reuse theYt measure. We divide the execution of the Go-To-The-Middle strategy into
conceptually two steps – we assume that relays first move to the positions they would
have computed if they had precise information about the location of their neighbors.
Afterward, all relays move by ε to reach the positions defined earlier. Therefore, we have
Y′′ defined as earlier in Lemma 3.4 and account the movement by ε toYt+1[i]−Y′t[i] = ε.
Applying these errors to all relays we obtain the following corollary.

Corollary 3.21. The adversary can dictate errors in a way such that∣∣∣Yt+1

∣∣∣ − ∣∣∣Y′t ∣∣∣ ≥ n · ε .

As all relays are at the line connecting the explorer and base camp at the beginning
and we are moving them on one side of this line we may assume that Yt ≥ 0 for all t.
This allows us to apply Lemma 3.5 and state the following corollary.

Corollary 3.22. It holds ∣∣∣Yt

∣∣∣ − ∣∣∣Y′t ∣∣∣ ≤ max
i, j=1,...,n

∣∣∣Yt[i] −Yt[ j]
∣∣∣ .

Using Corollary 3.22 and Corollary 3.21 we may conclude that for any t∣∣∣Yt+1

∣∣∣ − ∣∣∣Yt

∣∣∣ = (∣∣∣Yt+1

∣∣∣ − ∣∣∣Y′t∣∣∣) − (∣∣∣Yt

∣∣∣ − ∣∣∣Y′t∣∣∣)
≥ ε · n − max

i, j=1,...,n

∣∣∣Yt[i] −Yt[ j]
∣∣∣



46 Go-To-The-Middle Strategy

Therefore the measureYt increases by at least ε/2 · n as long as

max
i, j=1,...,n

∣∣∣Yt[i] −Yt[ j]
∣∣∣ ≤ ε/2 · n

Thus, in some time step k we have

max
i, j=1,...,n

∣∣∣Yk[i] −Yk[ j]
∣∣∣ ≥ ε/2 · n ,

implying that the chain is surely disconnected. This shows, that Go-To-The-Middle can
behave unstable if the sensors are subject to errors dictated by an adversary.

3.6. Strategies Similar to Go-To-The-Middle

Using the framework introduced for the analysis of the Go-To-The-Middle strategy we
may also try to analyze similar strategies. Although we are not able to provide a general
lower bound for a class of strategies similar to Go-To-The-Middle, we may give some
intuitions why certain approaches will lead to strategies having performance similar to
those of Go-To-The-Middle.

Go-Over-Middle

The Go-Over-Middle strategy also uses the point in the middle between a relay’s neighbors
as a reference. Though, the relay applying Go-Over-Middle does not stop at this middle
point, but continues moving for a certain distance. Formally, let p′ denote the point in
the middle of the line segment 〈pt(i − 1), pt(i + 1)〉. The vector 
u has its initial point in
pt(i) and its terminal point p′. In the Go-Over-Middle strategy with factor c, the relay vi

multiplies the vector 
u with c and moves by c
u. Therefore, it moves “over the middle”.
The factor c ≥ 1 for a reasonable strategy. In the following theorem we show that the
Go-Over-Middle strategy requires Ω(n2) time to shorten the chain in the static scenario.

Theorem 3.23. There exists a communication-valid and movement-valid chain of relays such
that the Go-Over-Middle strategy with factor c must execute Ω( 1

c n2) steps in order to obtain
|Vt[i]| ≤ 1 for all relays i = 1, . . . , n.

We utilize theVt measure, introduced in Section 3.4, to describe the distance of relays
to the line Lt. Similarly as earlier, let V′t describe the distances of relays to line Lt after
Go-Over-Middle has been executed in time step t.
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Lemma 3.24. Let the Go-Over-Middle strategy with factor c by executed in time step t. Then
it holds

|Vt| −
∣∣∣V′t ∣∣∣ ≤ c · R .

Proof. Assume that we have applied the Go-To-The-Middle strategy in time step t. Let
Wt denote the distances of relays to Lt after Go-To-The-Middle has been applied. Then
by Lemma 3.20 we have

|Vt| − |Wt| ≤ R .
As the relay executing Go-Over-Middle moves c times the distance as a relay executing

Go-To-The-Middle we have

Vt[i] −V′t[i] = c(Vt[i] −Wt[i]) .

Therefore we have

|Vt| −
∣∣∣V′t∣∣∣ = n∑

i=1

(Vt[i] −V′t[i]
)
= c

⎛⎜⎜⎜⎜⎝ n∑
i=1

Vt[i] −Wt[i]

⎞⎟⎟⎟⎟⎠ = c (|Vt| − |Wt|) ≤ c · R .

By the former lemma the measureVt decreases by at most c · R per time step. Starting
with a chain with |V1| = Ω(n2) we need O( 1

c n2) time steps to reduce the measure V
to O(n). Therefore, using the same construction as in Theorem 3.6 we may prove our
Theorem 3.23.

In Chapter 4 we will show that the Go-Over-Middle strategy can perform better, if
certain side conditions are fulfilled.

Biased Go-To-The-Middle

In the Go-To-The-Middle strategy the relays always move to the middle point of the
line segment between their neighbors. We can modify this approach and define a
strategy where the relay is moved to another point on this line segment. This may seem
advantageous, as by biasing the relays to move toward the base camp in the chain we
may hope to gather unnecessary relays at the base camp.

For our analysis we assume a fixed bias coefficient c ∈ (0, 1). Formally, the target
point for relay vi in time step t lies on the line segment 〈pt(i − 1), pt(i + 1)〉 in distance
c
∣∣∣pt(i − 1) − pt(i + 1)

∣∣∣
2

from pt(i + 1).
Unfortunately, we can show that biasing does not help in achieving a better perfor-

mance than Ω(n2) time steps in the static scenario, as shown by the following theorem.
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Theorem 3.25. There exists a communication-valid and movement-valid chain of relays such
that the Go-To-The-Middle strategy with bias coefficient c must executeΩ( 1

c n2) steps in order to
obtain |Vt[i]| ≤ 1 for all relays i = 1, . . . , n.

We will once again use theVt measure for measuring the progress of the strategy.

Lemma 3.26. Let the Go-To-The-Middle strategy with bias coefficient c by executed in time
step t. Then it holds

|Vt| −
∣∣∣V′t ∣∣∣ ≤ R .

Proof. The bias in the Go-To-The-Middle strategy causes theV′t vector to depend onVt

in a slightly different way than in the usual Go-To-The-Middle strategy.

V′t[i] =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if i = 0
(1 − c) · Vt[i − 1] + c · V′t[i + 1] ∀i ∈ [1, . . . , n]
0 if i = n + 1 .

Therefore we have∣∣∣V′t ∣∣∣ = n∑
i=1

V′t[i]
n∑

i=1

(1 − c) · Vt[i − 1] + c · Vt[i + 1]

=

n−1∑
i=1

(1 − c) · Vt[i] +
n∑

i=2

c · Vt[i]

= (1 − c) · Vt[1] + c · Vt[n] +
n−1∑
i=2

Vt[i]

= |Vt| − (1 − c) · Vt[1] − c · Vt[n] ≥ |Vt| − R ,
sinceVt[1] ≤ R andVt[n] ≤ R.

By the former lemma the measureVt decreases by at most c ·R per time step. Similarly
as for the Go-Over-Middle strategy we can show that we needΩ(n2) time steps to reduce
the measureVt to O(n). This proves Theorem 3.25.
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Hopper Strategies

In this chapter we will present the Hopper strategy. For a better understanding of the
concepts underlying the Hopper strategy, we will first discuss the Manhattan-Hopper
strategy, which is very similar to Hopper but works with a slightly simplified model. In
that model we assume all stations to move on a grid and not on a continuous plane.
The relays used are stateless and work with precise local coordinate systems. Both
Manhattan-Hopper and Hopper strategies are removing relays from the chain when it
becomes shorter – as we will see, this allows for a very good performance of both
strategies and gives a real advantage in comparison to the Go-To-The-Middle strategy. In
concrete terms, we will show that in the static scenario the Manhattan-Hopper and Hopper
strategies are able to achieve an optimal chain length in time linear in the number of
relays.

The basic movement type executed by the Manhattan-Hopper and Hopper strategies
is that of the Go-Over-Middle strategy, presented in Section 3.6, with factor 2. Though
there are two significant differences between these strategies which we account to be
responsible for its improved performance. That is the removal of unnecessary relays
and the alignment of relays on grid points.

Both strategies in this chapter work in sequential runs, rather than completely in
parallel as the Go-To-The-Middle strategy. In a run the actions are executed by relays
in the chain one after another. We will see that this model of execution improves the
performance of strategies and is very convenient for our analysis.

4.1. The Manhattan-Hopper Strategy

We begin our investigations with introducing the model for the Manhattan-Hopper strat-
egy and the strategy itself.

49
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p′(i − 1)p(i)

p(i + 1)

�a

p′(i)

(a) Stations not in line, vi

moves

p′(i − 1)

p(i)

p(i + 1)

�a

(b) Stations in line, vi does
not move

Figure 4.1.: Hop-operation in Manhattan-Hopper strategy

In contrast to the Go-To-The-Middle strategy, Manhattan-Hopper is designed to work
on a grid laid upon the plane. For the strategy to operate properly, all stations have
to assume positions on the grid points. Therefore, we restrict the movement freedom
of both the relays and the explorer, by forcing them to move between grid points. The
mesh size for the grid is fixed to 1

2R.
In order to guarantee all stations positioned on the grid, we assume that in the first

time step all positions of stations are on grid points and that the explorer may only move
between grid points.

Relays are given precise local coordinate systems and precise odometry.

Strategy Description

The Manhattan-Hopper strategy is executed in runs. In each run, a relay vi executes its
action only after relay vi−1 has finished its own. We will see later that such runs can be
pipelined, so that a new run can be started every three steps. For the sake of analysis it
is sufficient and more comfortable to assume that a new run is executed only after the
previous one has finished. We will stick to that assumption for the rest of the chapter.

We say that the chain is in proper condition if each two neighbored stations in the chain
are positioned in neighbored points of the grid. For this discrete scenario it is natural to
measure the distance of the chain in terms of its manhattan length. We say that the chain
has optimal length if its length is equal to the manhattan distance between the explorer
and base camp.

Let us first describe the Manhattan-Hopper strategy for the setting of the immobile
explorer. We will extend it to accommodate explorer’s movement in Section 4.1.2. As
already mentioned, the Manhattan-Hopper strategy is executed in runs. For the sake
of our description, let us fix a specific run r. We will use a different notation for the
positions of runs than in the analysis of the Go-To-The-Middle strategy. Thus, let p(i)
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denote the position of vi at the beginning of this run, while p′(i) is its position after it has
executed the Manhattan-Hopper strategy.

In a run, the relay vi moves only after vi−1 has finished its movement and prior to
the movement of vi+1. Therefore, the positions of vi’s neighbors are p′(i − 1) and p(i + 1)
when vi decides on its action. Typically, the relay vi executes the hop-operation, defined
as follows. Let 
a be a vector such that p′(i − 1) + 
a = p(i) as shown in Fig. 4.1. Then the
hop-operation executed by relay vi moves it to position p′(i), such that p′(i) = p(i+ 1)−
a.
This implies that, if vi−1, vi, vi+1 lie in-line, then station vi does not move. This situation
is depicted in Fig. 4.1(b). The provided definition of the hop-operation is equivalent to
mirroring vi’s position w.r.t. the line through p′(i − 1) and p(i + 1).

A special case occurs when relay vi moves to a point on the grid occupied by vi+2.
Then a remove-operation is executed, i.e., vi+1 and vi+2 are removed from the chain and
the run stops. After this removal, we index the chain once again.

Thus, a run of the Manhattan-Hopper strategy either removes two relays from the
chain, or is executed by all relays. Removing relays in this way is the only way how the
Manhattan-Hopper strategy shortens the length of the chain. In particular, if vi moves to
a point already occupied by a relay vj such that j � i + 2, no relays are removed and the
execution of the run proceeds as earlier. This may sound counterproductive as the chain
part forming a loop between vi and vj might be removed. In our analysis, we assume that
such loops are not removed, because this would require information exchange among
the relays, those in the loop have to get to know that they are obsolete. It is easy to see
that the same results as we show also hold in the stronger model, where long loops may
be removed.

A reasonable performance of the Manhattan-Hopper strategy can only be attained if the
runs are not executed one after another but pipelined in a fast manner. This is possible
without problems due to the sequential nature of the runs of the Manhattan-Hopper
strategy. Run r starting execution in time step t may be followed by run r + 1 starting
execution in time step t + 3. Thus, the execution of m runs starting with a chain with n
relays takes at most n + 3m time steps.

4.1.1. Performance in the Static Scenario

We first investigate the performance of the Manhattan-Hopper strategy in the static case
and eventually show the following theorem.

Theorem 4.1. Starting with a chain in proper condition with n relays, the Manhattan-Hopper
strategy ensures that

(a) the chain remains in proper condition,
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(b) the relays move at most distance 1
2

√
2 · R per run, i.e., every third step, and

(c) after n runs, i.e., 4n steps, the chain has optimal length.

Property (b) follows directly from the definition of the strategy. Also property (a) is
easy to see: If a run does not execute a removal, then the manhattan distances between
neighbors do not change. Whenever stations vi+1 and vi+2 are removed from the chain,
relay vi is on the position of vi+2 and therefore has manhattan distance 1

2R to vi+3.

We will now show that n runs suffice to reduce the chain to optimal length. As we
can start a new run every 3 steps, this implies (c).

Let d denote the (manhattan) distance between the explorer and the base camp. Fix
some run and let p(i) and p′(i) denote the positions of the station vi before and after this
run, respectively.

We can describe the positions of the relays with respect to the explorer using the spatial
unit vectors 
e0 =

[
1
2R, 0

]
, 
e1 =

[
− 1

2R, 0
]
, 
e2 =

[
0, 1

2R
]
, 
e3 =

[
0,− 1

2R
]
. 
e0 and 
e1 are both

horizontal vectors, with opposite directions. Analogously,
e2 and 
e3 are vertical. We will
call such pairs of vectors oppositional. For our run, we can define a sequence of spatial
unit vectors C = (
u0, 
u1, . . . , 
uk) such that p(i) = p(0) + 
u0 + · · · + 
ui−1. This sequence will
be called configuration and it describes the positions of all relays in the chain in relation
to the explorer by using the unit vectors.

We want to describe the behavior of Manhattan-Hopper in terms of operations on con-
figurations. The following two lemmas describe how one run of the Manhattan-Hopper
strategy can modify the configuration.

Lemma 4.2. Let C = (
u0, 
u1, . . . , 
uk) be the configuration at the beginning of the run. Assume
the run finishes without removing any relays from the chain. Then the configuration at the
beginning of the next run is C′ = (
u1, . . . , 
uk, 
u0). Furthermore, for each j = 0, . . . , k, the vectors

u0 and 
uj are not oppositional.

Proof. We will show that the invariant p′(i) = p(i + 1) − 
u0 holds for all i = 0, . . . , k by
induction. The induction basis is clearly given, as we have by definition of vector 
u0 that
p′(0) + 
u0 = p(0) + 
u0 = p(1).

Assume now that the invariant holds for all i ≤ j. Then we have p′( j) = p( j + 1) − 
u0.
Consider the hop-operation performed by relay vj+1. As the position p′( j+1) depends on
the vector between p′( j) and p( j+ 1) and the position of vj+2 we have from the definition
of the hop-operation p′( j + 1) = p( j + 2) − 
u0. This proves the invariant.
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The positions of all relays vi for i = 1, . . . , k at the beginning of the run are, by the
definition of the configurations, given by

p(i) = p(0) + 
u0 + · · · + 
ui−1 .

After the run we have by our invariant for all relays

p′(i) = p(i + 1) − 
u0 = 
u1 + · · · + 
ui .

Obviously the base camp does not move and therefore we have p′(k+1) = p(k+1). Thus,

p′(k + 1) = p(k) + 
u0 = 
u1 + · · · + 
uk + 
u0 .

The final configuration is thus given by Cr+1 = (
u1, . . . , 
uk, 
u0).

We will proceed with proving the second statement of the lemma. Assume for the
sake of contradiction that there exists a vector 
uj which is oppositional to 
u0, i.e. 
uj = −
u0.
By our earlier observation we have p′( j − 1) = p( j) − 
u0 after the run strategy has been
executed by vj. Therefore p′( j − 1) = p( j) − 
u0 = p( j) + 
uj = p( j + 1), as by its definition
vector 
uj connects vj to vj+1. In that case, the run would remove relays vj and vj+1 from
the chain, contradicting the assumptions of our lemma.

Lemma 4.3. Let C = (
u0, 
u1, . . . , 
uk) be the configuration at the beginning of the run. The
run finishes with removing vi+1 and vi+2 from the chain if and only if the vector 
ui+1 is the first
vector in C oppositional to 
u0. The configuration at the beginning of the next run is then given
by C′ = (
u1, . . . , 
ui, 
ui+2, . . . , 
uk).

Proof. We will first show that, if vi+1 and vi+2 are removed from the chain, then 
ui+1

is oppositional to 
u0. Since all relays prior to vi execute the hop-operation without
removing any relays from the chain, the execution of the run for these relays is the same
as the execution described in Lemma 4.2. Therefore, for all j ≤ i it holds that

p′( j) = 
u1 + · · · + 
uj .

As vi+1 and vi+2 have been removed, it must hold p′(i) = p(i + 2). Therefore

p′(i) = 
u1 + · · · + 
ui = 
u0 + 
u1 + · · · + 
ui+1 = p(i + 2) ,

so that 
u0 = −
ui+1.

For the proof in the other direction assume that 
ui+1 is the first vector in C oppositional
to 
u0. By the previous argument, no relay pair vj+1, vj+2 with j < i can be removed, as
then 
uj+1 would be oppositional to 
u0. Therefore all relays vj for j ≤ i have executed the
hop-operation, so that

p′(i) = 
u1 + · · · + 
ui .
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As 
u0 = −
ui+1 it holds

p′(i) = 
u1 + · · · + 
ui = 
u0 + 
u1 + · · · + 
ui+1 = p(i + 2) ,

and vi+1 and vi+2 are removed by the Manhattan-Hopper strategy.

Assume now that vi+1 and vi+2 are removed from the chain in the current run. From
our previous reasoning we have for any j ≤ i

p′( j) = 
u1 + · · · + 
uj

and for all j ≥ i + 3

p′( j) = 
u1 + · · · + 
ui + 
ui+2 + · · · + 
uj−1 .

The configuration after the completed run is therefore given by

Cr+1 = (
u1, . . . , 
ui, 
ui+2, . . . , 
uk) .

Let C1 = (
a0, . . . , 
ak) be the configuration describing the chain at the beginning of the
first run. Each of the vectors
a0, . . . , 
ak is of the type of one of the unit vectors, nevertheless
we can keep track of each of them by assigning them unique identification numbers.
The two former lemmas show that each run of Manhattan-Hopper either removes vectors
from this configuration or the configuration is shifted cyclically. Particularly, no vector is
added to the configuration by the Manhattan-Hopper strategy. Therefore, we can describe
each configuration occurring in the future as some arrangement of a subset of the vectors

a0, . . . , 
ak.

Thus, we can follow the trace of each
aj, whose initial position in the start configuration
is j. Assume that, in run r, it has position l. Then it is either removed (by Lemma 4.3),
or its position is reduced by 1 (in case of the shift in Lemma 4.2 or in case of Lemma 4.3,
if the removed relay is vi with i > l) or its position is reduced by 2 (in case of Lemma 4.2,
if the removed relay is vi with i < l).

Now assume that, after n runs, there still exists an oppositional pair of vectors 
ui, 
uj,
with i < j. Then, by the above, at most p runs earlier, 
ui was at position 0. As also 
uj is in
this configuration, 
ui will be removed in the next run by Lemma 4.3, contradicting the
assumption that 
ui is part of the configuration after n runs.

Thus, there are no oppositional vectors in the configuration after n runs. This implies
that the length of the path after n runs is minimal, namely the manhattan distance
between the explorer and the base camp. This proves part (c) of the theorem.
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4.1.2. Performance in the Dynamic Scenario

In order to adapt Manhattan-Hopper to work in a dynamic scenario, we have to deal with
the movement of the explorer. For that purpose, we allow the explorer to move only
to a grid point adjacent to its current position at once. The Dynamic-Manhattan-Hopper
strategy groups the movement of the explorer and the execution of two runs into one
round. The first run is a follow-run in which relays execute the follow-operation. This
allows them to catch up with the movement of the explorer. Afterward a run of the
Manhattan-Hopper strategy, a so called hopper-run is executed. At this point of time we
assume that the two runs are executed one after another and the round only finishes
when the runs are ready. We will elaborate more on the pipelining of the runs later.

The follow-operation is applied by relay vi whenever vi−1 increases its distance to vi to
R. Then relay vi moves to the old position of the station vi−1, i.e. p′(i) = p(i− 1). Thereby,
the chain shifts itself in direction of the explorer by one grid point, so that finally the last
relay is in manhattan distance R to the base camp. At this point of time, the base camp
inserts a new relay at the old position p(k) of the relay vk. During the execution of the
follow-operation the maximum distance between neighbored stations isR and therefore
the chain remains connected. If the chain was in proper condition before the follow-run,
it is so afterward, too.

While the follow-run ensures that the manhattan distance between two relays is
exactly 1

2R, the hopper-run is meant to decrease the length of the chain if necessary. We
first show that these two runs between every movement of the explorer are sufficient to
maintain an optimal chain length.

Lemma 4.4. Let the chain have optimal length prior to the explorer’s movement. Then after
the explorer’s movement the follow-run and the hopper-run bring the chain to an optimal length.

Proof. Let C = (
u0, . . . , 
uk) be the configuration of the chain prior to explorer’s movement.
Let the explorer move by 
u, i.e. p′(0) = p(0) + 
u. Then, after the explorer’s movement
and the first run of the Manhattan-Hopper strategy we have C′ = (
u, 
u0, . . . , 
uk). The
manhattan length of the chain defined by C′ increases with respect to C by 1

2R.
Recall that we are assuming that the length of the chain defined by C is optimal before

the explorer’s movement. When moving the explorer by 
u increases its manhattan
distance to the base camp, then the length of the chain after applying the follow-run is
already optimal and the hopper-run is actually unnecessary.

In case the explorer’s movement decreases its manhattan distance to the base camp,
this decrease is equal to 1

2R. We have to show that the hopper-run reduces the length
of the chain by the same amount. Observe that, since the length of the chain described
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by C′ is not optimal, there must exist a pair of oppositional vectors in C′. On the other
hand, there was no such pair in C. This implies, that there exists a vector 
uj ∈ C which is
oppositional to 
u. By Lemma 4.3 the existence of a vector oppositional to the first vector
of the configuration leads to a hopper-run which reduces the manhattan length of the
chain by R.

explorer moves

follow-run started, v1 moves

hopper-run started, v1 moves

explorer moves

t

t + 1

t + 4

t + 6

t + 7 follow-run started, v1 moves

time

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

round of
Dynamic-Manhattan-Hopper

Figure 4.2.: One round of the execution of Dynamic-Manhattan-Hopper

Pipelined execution

The runs of the Dynamic-Manhattan-Hopper strategy are executed in the discrete, syn-
chronized time model. In order to pipeline them, we have to make sure that consecutive
runs do not interfere. This is guaranteed if the follow-run starts directly after the move-
ment of the explorer, but two idle steps are inserted before the hopper-run and between
the hopper run and the next movement, see Figure 4.2.

Thus the explorer may move every 6 time steps. Such a sequence of 6 time steps
starting with a movement of the explorer is called a round.

Let dr denote the distance between the explorer and the base camp at the beginning
of round r. We are now ready to show the following theorem.

Theorem 4.5. Assume we start with an optimal chain. Then, the chain maintained by the
Dynamic-Manhattan-Hopper strategy has the following properties before each round r.

(a) The chain remains connected,

(b) the explorer may move a distance of 1
2R every round, i.e. every 6th time step,
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(c) relays move at most distance 1
2

(
1 +
√

2
)
R per round, and

(d) the number of relays used in the chain is at most 2
(

4
3Rdr + 1

)
.

Property (a) follows easily from the fact that the follow-run decreases the distances
between neighbored relays to 1

2R. During a round a relay executes the follow-run,
moving for at most 1

2R and a hopper-run, moving for at most 1√
2
R. Property (c) follows.

In case the runs are pipelined the decrease of the chain length corresponding to the
movement of the explorer is delayed until the run started after the movement is finished.
In the worst case this can take as many time steps as many relays have been in the chain
at the moment the explorer moved. This can mean that the distance of the explorer to the
base camp decreases during some timespan, while the chain is still executing the various
runs which will eventually decrease its length. Therefore, we have to investigate how
large the difference between the chain length and the explorer’s distance may become.

Assume the chain has optimal length at the beginning of time step 1. The runs are
pipelined with an appropriate time separation and thus there is no difference for run
r+ 1 whether it is started 3 time steps after the start of run r or after a full completion of
run r. Therefore and by Lemma 4.4 a hopper-run started in round r works on a chain of
length at most dr.

Let us fix round r. The number of relays in the chain at the beginning of round r
is bounded from above by 2dr/R plus the number of unfinished hopper-runs times 2.
Therefore, we will look at how many hopper-runs are still unfinished at the beginning
of round r. Take a round z < r− 2dr/R−2

6 . The hopper-run started in round z will last for at
most 2dz/R + 2 time steps and thereby will will finish not later than at round z + 2dz/R+2

6 .
Obviously dr ≤ dz +

1
2R(r − z) as the explorer may only move by 1

2R per round. We can
bound

z +
2dz/R + 2

6
< r − 2dr/R − 2

6
+

2dz/R + 2
6

≤ r − 1
6

(r − z) ≤ r .

Therefore a hopper-run started in time step z is finished before round r. There are at
most 2dr/R−2

6 runs still unfinished in round r and thereby the number of relays in the chain
is at most dr/R + 2

3(dr/R + 1).

4.2. The Hopper Strategy

The Hopper strategy is an extension of the Manhattan-Hopper strategy, designed in such
a way that it does not require the stations to be positioned on a discrete grid. We still
require the relays to have precise local coordinate systems, nevertheless we do not use
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any fixed grid structure in order to organize the relays. Furthermore, we allow the
explorer to move freely, without being restricted to grid points.

As for the Manhattan-Hopper strategy, we will describe the chain at the beginning of
a run by the configuration C = (
u0, . . . , 
uk). Note that, since stations are not necessarily
aligned to grid points, the vectors 
ui are no longer restricted to unit vectors as in the
Manhattan-Hopper strategy. For two vectors 
ui and 
uj we define the angle ∠(
ui, 
uj) as the
smaller of the two angles created by anchoring 
uj at the terminal point of 
ui, as shown
on Fig. 4.3. Note that the ∠ function is symmetric, i.e. ∠(
ui, 
uj) = ∠(
uj, 
ui) and thereby
∠(
ui, 
uj) ≤ π/2.

We will say that a vector 
u has a conflict to a vector 
a if ∠(
u, 
a) ≤ π/2. A vector which
has angle larger than π/2 to all vectors from a configuration is called non-conflicting.

�ui

�uj

� (�ui, �uj)

Figure 4.3.: Angle between vectors 
ui and 
uj

The Hopper strategy is executed, exactly as Manhattan-Hopper, in sequential runs. Once
again, let us fix a run. Then p(i) and p′(i) will denote the positions of the station vi before
and after this run, respectively.

The behavior of relay vi in the run depends on whether the distance between p′(i − 1)
and p(i+ 1) is larger than R or not. If the distance is smaller or equal to R then obviously
vi is no longer necessary in the chain. In this case the relay removes itself, hereby
executing the remove-operation. Executing the remove-operation finishes the run of the
Hopper strategy.

In case the distance between p′(i − 1) and p(i + 1) is larger than 1, the action of vi

depends on the angle between the line segments 〈p′(i − 1), p(i)〉 and 〈p(i), p(i + 1)〉. The
hop-operation is invoked if the angle is larger than π/2, otherwise the shorten-operation
is used.

Hop-operation. The hop-operation is exactly the same as used previously in the
Manhattan-Hopper strategy. Let 
a be a spatial vector such that p(i − 1) + 
a = p(i). Then
the hop-operation executed by relay vi moves it to position p′(i) = p(i + 1) − 
a. This
is depicted in Fig. 4.4. After the hop-operation has been executed, the sequential run
proceeds at the next relay.
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pt(i − 1)pt(i)

pt(i + 1)

�a

pt+1(i)

Figure 4.4.: Relay vi executing the hop-operation in time step t

Shorten-operation. In the shorten-operation the relay vi moves to the middle of the
line segment between p′(i− 1) and p(i+ 1), just as it did in the Go-To-The-Middle strategy.
Executing the shorten-operation finishes the run of the Hopper strategy.

Again, we can pipeline runs, so that a new run starts in every third step.

4.2.1. Performance in the Static Scenario

We again denote by n the number of relays at the beginning of the first run and by d the
distance between the explorer and the base camp.

The analysis of the performance of the Hopper strategy will proceed in a way similar
to the analysis of the Manhattan-Hopper strategy. Unfortunately, the Hopper strategy not
only removes or moves vectors in the configuration but also adds new vectors. In the
course of the analysis we will show how these new vectors are formed. Eventually, we
will show that after a linear number of steps, all pairs of vectors in the configuration
form an angle large than π/2. Our last lemma will show that a chain described by such
a configuration is short. This yields the following theorem.

Theorem 4.6. Starting with a chain with n relays, the Hopper strategy ensures that

(a) the chain remains connected,

(b) relays move at most distance
√

2 · R per run,

(c) after 8n + 1 runs, i.e., 25n + 1 steps, the chain uses at most 2
√

2d/R + 1 relays.

The parts (a) and (b) are immediate from the strategy. The rest of this chapter is
devoted to proving the bound on the number of runs stated in part (c).

Changes in configurations. We start with showing how a run can influence the
configurations.
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Lemma 4.7. Let C = (
u0, 
u1, . . . , 
uk) be the configuration at the beginning of a run. Assume
the run finishes without executing the remove-operation or the shorten-operation. Then the
configuration after the run has completed is C′ = (
u1, . . . , 
uk, 
u0). Furthermore, for each i =
0, . . . , k, ∠(
u0, 
ui) > π/2 holds.

Proof. In the case of a run finishing without removing any relays from the chain and
without executing the shorten-operation, all relays in the chain have been executing the
hop-operation only.

The hop-operation is executed by relay vi only if the angle between 〈p′(i − 1), p(i)〉
and 〈p(i), p(i + 1)〉 is larger than π/2. As p′(i − 1) = p(i) − 
u0 when all relays prior to i
have executed the hop-operation, the angle considered is equal to ∠(
u0, 
ui). This implies
∠(
u0, 
ui) > π/2 for all i = 0, . . . , k.

Lemma 4.8. Let C = (
u0, 
u1, . . . , 
uk) be the configuration at the beginning of the run. As-
sume the run finishes with vi executing the remove-operation or the shorten-operation. Let
C′ = (
a0, 
a1, . . . , 
am) be the configuration of the chain at the beginning of the next run.
Then each vector 
ai is a positive linear combination of the vectors 
u0, . . . , 
uk. More pre-
cisely, C′ = (
u1, . . . , 
ui−1, 1

2(
u0 + 
ui), 1
2(
u0 + 
ui), 
ui+1, . . . , 
uk) in case of a shorten-operation, and

C′ = (
u1, . . . , 
ui−1, 
u0 + 
ui, 
ui+1, . . . , 
uk) in case of a remove operation.

Proof. Assume that relay vi executes the remove- or the shorten-operation. Then all
relays with indices smaller than i execute the usual hop-operation in the run. We can
adapt the invariant introduced for the analysis of the Manhattan-Hopper strategy and
state that p′( j) = p( j + 1) − 
u0 holds for all j < i.

Let us first assume that the run has ended with a shorten-operation. The configuration
of the chain prior to executing the shorten-operation by vi is (
u1, . . . , 
ui−1, 
u0, 
ui, . . . , 
uk).
The shorten-operation moves relay vi into the middle of the line segment between vi−1

and vi+1. As vi−1 and vi+1 are connected through vi, it holds p′(i − 1) + 
u0 + 
ui = p(i + 1).
Therefore the shorten-operation replaces the vectors 
u0, 
ui in the configuration by two
vectors 1

2 (
u0 + 
ui) and 1
2(
u0 + 
ui). Thus

C′ = (
u1, . . . , 
ui−1, 1
2(
u0 + 
ui), 1

2(
u0 + 
ui), 
ui+1, . . . , 
uk) .

In the case the run ends with a relay being removed, the same argument yields

C′ = (
u1, . . . , 
ui−1, 
u0 + 
ui, 
ui+1, . . . , 
uk) .
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Shorten-operations. If the run ends with removing a relay we are certainly improving
the chain by reducing its length. We want to show that executing the shorten-operation
also reduces the chain length by a significant amount, if the involved spatial vectors
have a minimum length.

Let the length of a chain C be defined by

|C| =
∑

i=0,...,k

|
ui|.

Lemma 4.9. Let C = (
u0, 
u1, . . . , 
uk) be the configuration at the beginning of the run. Assume
the run finishes with vi executing the shorten-operation, yielding configuration C′. If |
u0| ≥ 1

2R
and |
ui| ≥ 1

2R then |C′| ≤ |C| − 1
3R.

Proof. The configuration of the chain prior to executing the shorten-operation by vi is
given by (
u1, . . . , 
ui−1, 
u0, 
ui, . . . , 
uk). For the sake of concise notation denote

a :=
∣∣∣〈p(i), p′(i − 1)〉

∣∣∣ = |
u0|, b :=
∣∣∣〈p(i), p(i + 1)〉

∣∣∣ = |
ui|, c :=
∣∣∣〈p′(i − 1), p(i + 1)〉

∣∣∣ = |
u0 + 
ui| .

As vi moves to the middle of the line segment 〈p′(i − 1), p(i + 1)〉 the length of the
chain decreases with the movement of vi by a + b − c. Denote by γ the angle between
〈p(i), p′(i − 1)〉 and 〈p(i), p(i + 1)〉.

Note that by the Law of Cosines c =
√

a2 + b2 − 2ab cosγ. Therefore, for fixed a, b, the
value of c is maximized for γ = π/2. So, a + b − c ≥ a + b − √a2 + b2. Using the border
conditions 1

2R ≤ a, b ≤ R and R ≤ c ≤ √a2 + b2 the function a+ b− √a2 + b2 is minimized
for a = 1

2R, b = 1
2

√
3R, with a + b − √a2 + b2 ≥ 1

2R
(√

3 − 1
)
≥ 1

3R.

Unfortunately we cannot be sure that all vectors in the configuration have length at
least 1

2R. Therefore there are some executions of the shorten-operation which shorten
the path by an amount less than 1

3R.

Lemma 4.10. There are at most 2n + 1 executions of the shorten-operations such that one of
the participating vectors has length smaller than 1

2R.

Proof. There are at most n+1 vectors with length smaller than 1
2R at the beginning. The

only possibility that a vector of length smaller than 1
2R are created during the hopper-

strategy is by the remove-operation. As such an operation can be executed at most n
times, the lemma follows.
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Non-conflicting suffix We now introduce a technical lemma, which is helpful in es-
tablishing the fact that a vector which becomes non-conflicting remains so for the whole
future.

Lemma 4.11. Let 
u be a spatial vector and V = 
u1, . . . , 
uk a set of spatial vectors. If
∠(
u, 
ui) > π/2 for all i = 1, . . . , k, then, for any positive linear combination 
s of vectors from V,
∠(
u,
s) > π/2 holds.

Proof. Without loss of generality let 
u = (R, 0). Then for any vector 
ui, the condition
∠(
u, 
ui) > π/2 implies 
ui = (ai, bi) with ai > 0. Thus, each positive linear combination

u′ of the vectors from V is of the form 
u′ = (a′, b′) with a′ > 0. This implies that
∠(
u, 
u′) > π/2.

A non-conflicting suffix of a configuration C is a suffix of C consisting of non-conflicting
vectors. Let S be the longest non-conflicting suffix of C. Then by Lemma 4.7, a run
without remove- and shorten-operation makes S longer, because 
u0 is added to it.

Lemma 4.12. The remove-operation and the shorten-operation do not decrease the size of the
longest non-conflicting suffix.

Proof. A shorten- or remove-operation can only shorten the non-conflicting suffix S, if
it replaces 
u0 and some 
ui contained in S by 
u0 + 
ui, or two copies of 1

2 (
u0 + 
ui). We will
show that, in this situation, 
u0 + 
ui is non-conflicting in the new configuration C′.

As 
ui is included in S, it is non-conflicting in C. Furthermore, earlier in this run, a
shorten-operation would have been executed if 
u0 had a conflict with a vector 
uj with
j < i. Therefore, also 
u0 is non-conflicting in C. This implies that 
u0+ 
ui is by Lemma 4.11
non-conflicting and thus a proper replacement for 
ui in S. Thus the size of the longest
non-conflicting suffix does not decrease.

Taking together the results established so far we can describe the following possible
effects of a run

1. it removes a relay,

2. it reduces the path length by at least 1
3R,

3. it reduces the path length by less than 1
3R,

4. it makes the non-conflicting suffix longer.
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d

ab

γ

Figure 4.5.: The relay vi is inside of the square with edge length d

Case 1 can only happen at most n times, Case 2 at most 3n times. By Lemma 4.10,
Case 3 can occur only 2n + 1 times. Case 4 occurs at most n times, because the length of
the non-conflicting suffix can not exceed n, and it will never be shortened by Lemma 12.

Thus, after at most 6n + 1 runs in total, the configuration is non-conflicting.

Chain length. What is still to be shown is that a non-conflicting configuration has
small length. The following lemma proves this fact.

Lemma 4.13. Let C = (
u0, . . . , 
uk) be a non-conflicting configuration. Then

|
u0| + · · · + |
uk| ≤
√

2d .

Proof. Sort all the vectors from C ascending w.r.t. their angle to the line through the
explorer and base camp, construct a configuration C′ = (
a0, . . . , 
ak) out of this order,
and rearrange the relays so that they positions reflect the configuration C′. Obviously
|C| = |C′| although the shapes of the corresponding chains may differ significantly.

Due to the sorting of the vectors, the polygon defined by the configuration C′ and the
line segment between the explorer and the base camp is convex.

Take now 
a0 and 
ak and enlarge both of them so that they form a triangle together with
the line segment between the explorer and the base camp, as shown on Fig. 4.5. The
length of C′ is not larger than a + b as C′ is convex.

As ∠(
a0, 
ak) > π/2, the angle γ is at least π/2. Note that for a fixed d, the sum a + b,
expressed as a function of α is decreasing. Therefore, the sum a + b is maximized for
γ = π/2. Maximizing a + b with the condition

√
a2 + b2 = d we obtain a + b ≤ √2d.
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Number of relays. The former lemma shows only that the length of the chain after
8n+ 1 runs is bounded by

√
2d. We nevertheless have no bound on the number of relays

used in this chain.

Lemma 4.14. Let all k vectors be non-conflicting at the beginning of run r. Then after 2k
runs at most one vector has length smaller than 1

2R.

Proof. Since all vectors are non-conflicting, the shorten-operation is never executed after
run r. Therefore, each run either ends with a remove-operation or it shifts a vector to
the end of the configuration.

Assume now a run r′ ≥ r with Cr′ = (
u0, . . . , 
uk). If |
u0| < 1
2R and |
ui| < 1

2R and no
remove-operation has been executed by the run prior to the movement of vi+1, then we
have by our invariant p′(i) = p(i + 1) − 
u0.

By the triangle inequality the distance between p′(i) and p(i + 2) is smaller than R, as

u0 < 1

2R and 
ui < 1
2R. Then, the relay vi+1 executes the remove-operation.

On the contrary, if |
u0| ≥ 1
2R and |
ui| ≥ 1

2R, then the relay vi+1 cannot execute the
remove-operation, as by ∠(
u0, 
ui) > π/2 the distance

∣∣∣p′(i) − p(i + 2)
∣∣∣
2
> R.

Denote by Sr the longest suffix of the configuration containing only vectors with length
larger than 1

2R. Assume now that before run r the vector 
uj is the first vector in Sr and that
there is more than one vector with size smaller than 1

2R in the configuration. If |
u0| < 1
2R

then the remove-operation will be executed either by relay vi, such that |
ui−1| < 1
2R or by

an earlier relay, so that Sr is left untouched. If |
u0| ≥ 1
2R then by our earlier observation

the remove-operation cannot influence Sr as all vectors in Sr have length at least 1
2R.

Therefore, after at most k shifts, there is at most one vector with size 1
2R. As there may

be at most k remove-operations, there are k shifts in 2k runs.

Let C be the configuration after 8n+1 runs. Using the former lemma, we can conclude
that there are at most 2|C| + 1 relays in the chain after this time. With the bound on |C|
from Lemma 13, part (c) of Theorem 6 follows, concluding the proof of this theorem.

4.2.2. Performance in the Dynamic Scenario

The basic idea used for transforming the Hopper strategy into Dynamic-Hopper is very
similar to that used for the Dynamic-Manhattan-Hopper strategy. The Dynamic-Hopper
strategy is executed in rounds, such that at the beginning of the round the explorer
moves, then a follow-run and a series of α hopper-runs are executed. The constant
α will be defined later. We assume that all runs are pipelined, as shown on Fig. 4.6.
Whenever we will be talking of runs, we mean hopper-runs.
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explorer moves

follow-run started, v1 moves

hopper-run 1 started, v1 moves

t

t + 1

t + 4

t + 7

time

hopper-run 2 started, v1 moves

t + 3α + 1 hopper-run α started, v1 moves

explorer moves ⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

round of
Dynamic-Hopper

Figure 4.6.: Round of Dynamic-Hopper strategy.

We assume that each movement of the explorer has a distance of at least 1
2R and at

most 1. Furthermore, for the sake of technical simplicity we assume all vectors in the
configuration in the first time step have length at least 1

2R. Then we are able to show the
following theorem.

Theorem 4.15. There exists a constant α such that for the chain maintained by the Dynamic-
Hopper strategy the following holds.

(a) The chain remains connected,

(b) the explorer may move a distance of 1
2R every round, i.e. every 3(α + 1) time steps,

(c) relays move at most distance α
√

2 · R per round,

(d) the number of relays used in the chain is O(dr/R) at the beginning of round r.

Parts (a), (b), and (c) are obvious from the definition of the strategy. In the rest of the
chapter we will prove part (d), thereby specifying the constant α.
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Virtual length. We can define the virtual length of a spatial vector to be

‖
u‖ =
{ |
u| if |
u| ≥ 1

2R
|
u| + 1

2R otherwise

This notion has the advantage that a vector has always virtual length at least 1
2R. The

virtual length of a configuration is obviously the sum of the virtual lengths of all vectors
belonging to this configuration. In contrast, the length |
u| will be called the real length.

We want to investigate how the operations performed by the hopper-runs influence
the virtual length. For the remove-operation, note that the sum of the participating
vectors’ virtual length is at least R. On the other hand, the vector created by the
remove-operation has virtual length at most R. Therefore, the remove-operation does
not increase the virtual length of the chain.

For the shorten-operation, either both of the participating vectors have real length at
least 1

2R and then by Lemma 4.9 the operation reduces the virtual chain length by at least
1
3R. Now assume that one of the vectors 
u0 and 
u1 participating in the shorten-operation
has real length smaller than 1

2R. W.l.o.g. let it be 
u0. For the real length of the resulting
vector it holds |
u0 + 
u1| ≤ |
u0| + |
u1|. By the definition of the virtual length we have
|
u0| + |
u1| ≤ ‖
u0‖ − 1

2R + |
u1|. This implies that the shorten operation reduces the virtual
length of the chain by at least 1

2R > 1
3R.

Fact 4.16. Every shorten-operation reduces the virtual length of the chain by at least 1
3R.

As each relay has virtual length at least 1
2R, the virtual length can be used to bound

the number of relays in the chain.

Fact 4.17. Let l be the virtual length of the chain. Then the number of relays is bounded from
above by 2l.

Phases. We will divide the runtime of the Dynamic-Hopper strategy in phases. The
first phase starts in the first round. Let n denote the number of relays in the chain, l
be its virtual length and d the distance between the base camp and the explorer in the
beginning of the phase. Similarly, n′, l′ and d′ denote the same at the end of the phase.

Throughout the analysis we use three constants. By α we denote the number of
hopper-runs in a round, γn is the number of rounds in a phase. Furthermore, we
assume that at the beginning of the phase l ≤ βd holds.
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We require β ≥ 2
√

2 + 1 and the constants γ and α to fulfill

γ ≤ 1

2
√

2(10β + 14)
,

and α ≥ 8
γ + 8.

Infected vectors. At the beginning of a phase all vectors are marked as non-infected.
Every new vector introduced by the movement of the explorer to the configuration
is called infected. Every time a remove-operation or a shorten-operation removes at
least one infected vector, the vectors created by the operation are marked as infected.
Intuitively, the marking of infected vectors allows us to distinguish vectors which have
been influenced by the movement of the explorer from the current phase.

A non-infected vector is said to be non-conflicting if it has no conflict to any non-
infected vectors.

Outline of the analysis. We will first show that at the end of the phase the non-infected
vectors have real length at least 1

2R and that they have all angles larger than π/2 with
respect to each other. Afterward, we will distinguish two cases: either at the end of the
phase there are more than (3β+4)γn infected vectors or not. In the first case we will show
that so many infected vectors could have been only created by many shorten-operations
which also decreased the length of the chain significantly. In the second case we will be
able to show that thanks to the majority of vectors being non-infected the chain length
is linear in the distance dr. In both cases we will show that l′ ≤ βd′.

Lemma 4.18. At the end of a phase all non-infected vectors are non-conflicting and all but at
most one have real length at least 1

2R.

Proof. Let us follow the changes in the position of a non-infected vector in configu-
rations. For that purpose, whenever a vector is replaced by the shorten-operation we
assign its identification to the new vector created. In case of the remove-operation we
assign the new vector the identification of one of the removed vectors.

Whenever a vector is not at the first position in the configuration, it’s position can
change in the following manner

1. decrease by 1 if the run shifts a vector to the end of the configuration,

2. decrease by 1 or without changes in case of a remove-operation or shorten-
operation,
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3. increase by 1 if the explorer has moved and a new vectors has been added.

As there are at most 3(n + γn) + (n + γn) runs ending in Case 2 and at most n + γn
occurrences of Case 3, after 7(n + γn) runs each non-infected vector has been at the first
position of the configuration and has been either shifted as non-conflicting to the end,
or removed. Therefore, after 7(n + γn) runs all non-infected vectors are non-conflicting.
After at most 8(n + γn) runs each vector has been on the first position for at least two
times, and then following the argumentation from Lemma 4.14 all but one vectors have
real length at least 1

2R.
By the definition of α, we have αγn ≥ 8(n + γn) and the lemma follows.

Lemma 4.19. Let there be at least (3β + 4)γn infected vectors at the end of the phase. Then
l′ ≤ βd′/R.

Proof. The number of infected vectors in a phase generated by the movement of the
explorer is at most γn. Note that only the shorten-operation is able to generate two new
infected vectors out of one, thereby increasing the number of infected vectors in the
configuration. Therefore, in order to have (3β + 4)γn infected vectors at the end of the
phase, at least

(3β + 4)γn − γn ≥ 3(β + 1)γn

shorten-operations must have been performed during this phase.
Note that each of the shorten-operations decreases the virtual length of the chain by at

least 1
3R and the only operations enlarging the chain are the movements of the explorer.

So, we have l′ ≤ l − (β + 1)γn · R + γn · R = l − βγn · R. Since the explorer decreased its
distance to the base camp by at most γn it follows that d′ ≥ d−γn ·R. From the definition
of γ it follows γ < 1

2β which, thanks to n ≤ 2
R l ≤ 2

Rβd, implies d − γn · R > 0. We obtain

l′

d′
≤ l − βγn · R

d − γn · R ≤
l
d
≤ β .

The last inequality holds because l ≤ βd. This implies the desired bound on l′.

Lemma 4.20. Let there be at most (3β + 4)γn infected vectors at the end of the phase. Then
l′ ≤ βd′.

Proof. Sum up the non-infected vectors to a vector 
u and the infected vectors to a
vector 
a. Obviously, p′(0) + 
u + 
a = p′(k + 1) where vk+1 is the base camp. Define the
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point ρ = p′(0) + 
u. Since all non-infected vectors have angle larger to π/2 with respect
to each other, by Lemma 4.13 the actual length of the non-infected vectors is at most√

2
∣∣∣ρ − p(0)

∣∣∣
2
. Furthermore, by Lemma 4.18 all but one non-infected vectors have real

length equal to virtual length. Thus the virtual length of the non-infected vectors L′

is bounded by L′ ≤ √2
∣∣∣ρ − p(0)

∣∣∣
2
+ 1

2R. The virtual length of the chain is bounded by
l′ ≤ L′ + |
a| and since |
a| ≤ (3β + 4)γn · Rwe have L′ ≥ l′ − (3β + 4)γn · R.

Therefore,

d′ =
∣∣∣p′(0) − p′(k + 1)

∣∣∣
2
≥ |
u| − |
a| ≥ 1√

2
L′ − 1

2
√

2
R − (3β + 4)γn · R

≥ 1√
2

l′ − (5β + 7)γnR − 1
2
√

2
R . (4.1)

As used earlier we have n ≤ 2l/R ≤ 2βd/R. On the other hand d′ ≥ d − γn · R.
Combining both bounds we obtain

n ≤ d′
2β

R(1 − 2βγ)
.

Plugging in the bound on n into Eq. (4.1) and assuming d′ ≥ R we obtain

l′

d′
≤ √2

(
1 + 1

2
√

2
+

2βγ(5β + 7)
1 − 2βγ

)
≤ β ,

as γ ≤ 1
2
√

2(10β+14)
is sufficiently small.

Applying both Lemma 4.19 and Lemma 4.20, we have l ≤ βd at the beginning of
each phase. During the phase the number of vectors may increase by at most γn and
the distance between the explorer and the base camp may decrease by at most γn · R.
Denote by nt the number of relays in the chain in time step nt and the distance between
explorer and base camp by dt. Then we have

nt

dt
≤ n + nγ

d − nγ · R ≤
2β(1 + γ)
1 − 2βγ

,

as d ≥ n
2β·R . For the defined value of γ we have 2β(1+γ)

1−2βγ ≤ β2 and therefore the number of
relays in the chain at any point of time is at most β2dt/R. This concludes the proof of
part (d) of Theorem 16.





C h a p t e r 5

Chase-Explorer Strategy

As the last of the strategies used for organizing a chain of relays we introduce the
Chase-Explorer strategy. The greatest difference between the Chase-Explorer strategy and
the two methods introduced earlier is that the relays now require some information
about the position of the base camp, relatively to their current position. This implies,
that the relays have to be stateful in order to save the position of the base camp.

This model corresponds to a setting where relays are equipped with GPS-like devices
which determine their global position with a bounded error.

base station

pt−1(i − 1)

pt(i − 1)pt(i)

pt+1(i)

R

R

Figure 5.1.: The Chase-Explorer strategy

Strategy Description

In the Chase-Explorer strategy all relays work in parallel as in Go-To-The-Middle. At the
beginning of a time step t, relay vi looks at the position of its predecessor pt(i − 1). Then
it computes the coordinates of a point which is on the line segment connecting pt(i − 1)
and the base camp’s position b, and is in distance Z := R− 1 from pt(i− 1). The positions
are depicted in Fig. 5.1. Informally speaking, the relays try to keep as near to the direct
line connecting the base camp and the explorer as possible. At the same time they try
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to maintain a distance of Z to the previous station in the chain. This is different to
Go-To-The-Middle, where stations place themselves according to the positions of their
neighbors only.

In the dynamic scenario, the movement of the explorer can change its distance to the
base camp. Thus, it may be necessary to change the number of relays in the chain. The
base camp decides to insert a new relay station when the last relay vnt reaches a distance
larger than Z to the base camp at the end of time step t − 1. The new relay is inserted
on the line between the position pt(nt) and the base camp, keeping a distance of Z to the
position pt(nt). On the contrary, if the next to last relay comes too near to the base camp
rendering the last relay useless, the last one is removed.

Outline

We start our analysis of the Chase-Explorer strategy with proving its correctness. In
Section 5.2 we will show the performance of the Chase-Explorer strategy in the static
scenario and in Section 5.3

Afterward, in Section 5.4 we will analyze the behavior of the chain in presence of
imprecise localization methods, where stations only know an approximation of the
position of the base camp, with an appropriately bounded additive error.

5.1. Correctness

To ensure correctness of the Chase-Explorer strategy it is necessary to show that the relays
will be able to chase the explorer without exceeding their maximum speed and that the
distance between neighbored stations won’t exceed R.

We first investigate the correctness of the Chase-Explorer strategy assuming no local-
ization errors.

Theorem 5.1. Assuming the explorer moves with a speed of at most 1 per time step, it holds

• the speed of the relays does not exceed 1 per time step,

• the distance between neighbors in the chain never exceeds R.

Proof. First we want to show that no relay is required to move for a distance larger than
1 during one time step, providing that the explorer does not exceed its maximal speed
of 1 per time step. Assume that station vi−1 moves a distance of at most 1 every time
step. A movement of station vi−1 is depicted on Fig. 5.1 between points pt−1(i − 1) and
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pt(i − 1). The distances |pt(i) − pt−1(i − 1)|2 = |pt+1(i) − pt(i − 1)|2 are both equal to Z. By
an obvious geometric argument the distance between pt(i) and pt+1(i) traveled by station
vi in time step t is not greater than the distance between pt−1(i − 1) and pt(i − 1). So, the
movement distance of station vi is bounded by 1 if station vi−1 has moved by at most 1.

We consider the distance between a station vi and its neighbor vi−1 at the end of time
step t. Obviously the distance between pt(i) and pt−1(i − 1) is exactly Z after time step
t. Since the station vi−1 can move for a distance of at most 1 during the time step t, the
distance between pt−1(i − 1) and pt(i − 1) is at most 1. Thus, by the triangle inequality,
the distance between pt(i) and pt(i − 1) is at most Z + 1. This assures that the distance
between the relay vi and the explorer is at most Z + 1 ≤ R at the beginning of each time
step.

5.2. Performance in Static Scenario

The Chase-Explorer strategy as it has been defined earlier is naturally designed for the
dynamic scenario. In the dynamic scenario we have been maintaining the invariant that
a relay is able to move to its computed position during one time step. We won’t be
able to keep up this assumption in the static scenario, with a chain configuration given
at the beginning which is far from the optimal. Nevertheless we have to assume that
the distance between neighbored relays at the beginning of the first time step does not
exceed Z, otherwise the chain could become disconnected after the first time step.

In the modified strategy, a relay vi first computes the intersection of a circle with radius
1 around pt(i) and another circle with radius Z around pt(i − 1). Obviously, every point
in this intersection is in distance at most Z from pt(i − 1) and in distance at most 1 from
pt(i). Therefore we bound all relays to move to one of the points from this intersection.
It can be shown by a straightforward inductive argument similar to that in Theorem 5.1
that in this case the distance between neighbored relays never exceeds R and that the
movement distance does not exceed 1, assuming that the distance between relays at the
beginning of the first time step does not exceed Z.

The relays choose the point from the intersection which is nearest to the point on
the line segment between the predecessor and the base camp, which was computed in
the original Chase-Explorer strategy. For the modified strategy we are able to show the
following theorem.

Theorem 5.2. In the static scenario the Chase-Explorer strategy reduces the chain length to
optimal in 2Z · n time steps, where n is the number of relays initial chain. Finally, the chain uses
at most

⌊
d 1
R−1

⌋
relays.
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Proof. Assume that the station vi−1 remains immobile, so that relay vi does not have
to follow vi−1 but can concentrate on aligning itself properly with respect to vi−1. Let ρ
designate optimal position for the relay vi, i.e. the point on the line segment between
pt(i − 1) and the base camp, in distance Z to pt(i − 1).

As the distance between pt(i − 1) and pt(i) is at most Z, the line segment between pt(i)
and ρ is completely inside of the circle with radius Z around pt(i − 1). Therefore, the
relay vi can decrease its own distance to ρ by 1 in each time step. Thus, in at most 2Z
time steps the relay is able to reach ρ.

In the static scenario the explorer v0 obviously does not move, so that v1 is able to
reach its optimal position after 2Z time steps. Inductively we have that relay vi does not
move after 2Z · i time steps and that therefore the chain has optimal length after at most
2Z · n time steps, where n is the number of relays at the beginning.

5.3. Performance in Dynamic Scenario

Due to the nature of the Chase-Explorer strategy, the explorer is always able to move
freely with a speed of 1 per time step, without being restricted by the relays.

Theorem 5.3. The number of stations in the chain at any point of time is at most
⌊

1
R−2dt

⌋
times more than in the optimal chain.

Proof. Observe a pair of stations, vi and vi−1 at the beginning time step t with i < nt + 1.
As pt(i) is on the line segment between pt−1(i−1) and the base camp, we have

∣∣∣b − pt(i)
∣∣∣
2
=∣∣∣b − pt−1(i − 1)

∣∣∣
2
− Z. As vi−1 might have moved only by at most 1 in time step t + 1, we

have |b− pt(i)|2 ≤ |b− pt(i− 1)|2 −Z− 1. Therefore, relay vi is nearer to the base camp than
vi−1 by at least Z − 1. This yields an upper bound of

⌊
1
R−2dt

⌋
on the number of relays in

the chain.

5.4. Imprecise Base Camp Localization

In the following, we will consider the behavior of the Chase-Explorer strategy in presence
of imprecise estimates of the base camp’s position. Formally, we denote the position of
the base camp known by station vi as bt(i) at time step t, whereas b is the real base camp’s
position.
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It is not hard to imagine that the strategy is able to work with a localization scheme
with some bounded additive error ε (i.e. the GPS, so that |b−bt(i)|2 ≤ ε). We though want
to show that a weaker localization scheme is enough for Chase-Explorer to work properly
and to attain a reasonable performance (in terms of the number of relays used in the
chain). We define the hop distance of relay vi to the base camp to be γt(i) := nt − i + 1.
We aim at showing that a localization system such that |bt(i)− b|2 ≤ ε ·Z · γt(i) is enough.
This means, that stations which are further apart from the base camp are allowed to
have a larger error in their localization. Note that the localization error causes relays to
position next to the direct line between their predecessor and the base camp, increasing
the number of relays in the chain.

This weak accuracy brings some problems: since the accuracy depends on the number
γt(i) and the number γt(i) depends on the accuracy one might be worried that the chain
gets infinitely long, with the accuracy getting weaker parallely. Theorem 5.4 shows that
this behavior does not occur if ε is bounded sufficiently. Theorem 5.8 shows the contrary,
i.e. that a localization system with ε large can lead to unstable behavior.

Theorem 5.4. If |bt(i) − b|2 ≤ Z
25 · γt(i) then nt ≤ 1.5 · dt

1
Z + 1.

Proof. Let rt(i) := |b− pt(i)|2 be the distance of the station vi to the base camp in time step
t. Then we define

ut(i) := rt−1(i) − rt(i + 1)

ut(i) − 1 ≤ ũt(i) := rt(i) − rt(i + 1)

Let αt−1(i) be the angle at pt−1(i), between the line segments 〈b, pt−1(i)〉 and 〈bt(i +
1), pt−1(i)〉, as shown on Fig. 5.2. With other words αt−1(i) is the angle, measured at pt(i)
between the real position of the base camp and the approximation of the base camp’s
position known by vi+1.

Let |b − bt(i + 1)|2 ≤ εt(i+ 1) = ε ·Z · γt(i). We introduce three lemmas, which relate the
values of ut(i), αt−1(i), rt−1(i) to each other

Lemma 5.5. For every i and t such that γt(i) > 2

ut(i) ≥ Z · (cos(αt−1(i)) − sin(αt−1(i))) .

Proof. In order to simplify notation let us set r := rt(i + 1), u := ut(i), α := αt−1(i). From
the Law of Cosines we have (see Fig. 5.2)

r2 = (r + u)2 + Z2 − 2(r + u) · Z · cosα .
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pt−1(i)

pt(i + 1)

rt(i + 1) rt(i + 1)

ut(i)

αt−1(i)

b

bt(i + 1)

Figure 5.2.: Value ut(i) and αt−1(i)

pt−1(i)

bt(i + 1)

αt−1(i)

b

rt−1(i)

εt(i + 1)

x

Figure 5.3.: Imprecise localization of the base camp

Looking at the above as on a polynomial of u yields the following positive root

u = Z · cos α +
√

r2 − Z2 sin2 α − r ≥ Z · (cosα − sinα) .

The last inequality comes from the fact that
√

r2 − Z2 sin2 α−r is a non-decreasing function
of r. Since r ≥ Z · sinα for the triangle to exist, we can plug in r = Z · sinα and obtain the
requested lower bound.

Lemma 5.6. For every αt−1(i)

cos αt−1(i) ≥
√

1 − ε
2
t (i + 1)

r2
t−1(i)

,

sinαt−1(i) ≤ εt(i + 1)
rt−1(i) − εt(i + 1)

.
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Proof. Let us consider the triangle between b, bt(i + 1) and pt(i) as shown on Fig. 5.3.
Stating cos α as a function of x =

∣∣∣bt(i + 1) − pt−1(i)
∣∣∣
2

one obtains

cos α =
x2 + rt−1(i)2 − εt(i + 1)2

2x · rt−1(i)
. (5.1)

This function obtains its minimum for

x =
√

rt−1(i)2 − εt(i + 1)2 . (5.2)

Plugging in Eq. (5.2) into Eq. (5.1) yields the lower bound on cosα. Using the same
triangle one obtains the upper bound on

sinαt−1(i) =
εt(i + 1)

x
≤ εt(i + 1)

rt−1(i) − εt(i + 1)
.

Lemma 5.7. Let u ≤ ut−1(i) and u ≥ 3 for all t and i such that i ≤ nt − 2. Then for all t and i
such that i ≤ nt − 2 it holds

rt−1(i) ≥ 1
3
· γt(i + 1) · u

Proof. Observe that the distance rt−1(i) is equal to a sum of ũt−1

rt−1(i) =
nt−1∑
j=i

(
rt−1( j) − rt−1( j + 1)

)
=

nt−1∑
j=i

ũt−1( j) .

Observe that nt−1 ≥ nt − 1, since the number of relay stations in the chain can change by
at most 1 during one time step. Then we have

rt−1(i) ≥
nt−1∑
j=i

(ut−1( j) − 1)

≥ ut−1(nt−1) + (nt−1 − i) · min
j=i,...,nt−1−1

ut−1( j) − 1

≥ (nt − i − 1) · (u − 1) .

Note that we have lower bounded ut−1(nt−1) by 0, since the last relay station can be very
near to the base station. Since u ≥ 3 it follows

rt−1(i) ≥ (nt − i − 1)(u − 1) ≥ 1
3
· γt(i + 1) · u
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Take any time step t − 1. Let u = 0.7 · Z. We want to show that ut(i) ≥ u for all i such
that γt(i) ≥ 1 if u ≤ ut−1(i) and Z ≥ 5. For the station standing next to the base camp we
assume that it may be at any distance to the base camp, therefore ut(nt − 1) may be as
low as 0.

Bringing together Lemma 5.5, 5.6, and 5.7 we obtain the following lower bound

ut(i) ≥ Z ·
⎛⎜⎜⎜⎜⎝
√

1 − 9 · ε2 · Z2

u2 − ε · Z
1/3 · u − ε · Z

⎞⎟⎟⎟⎟⎠ .
To prove our claim it should hold

Z ·
⎛⎜⎜⎜⎜⎝
√

1 − 9 · ε2 · Z2

u2 − ε · Z
1/3 · u − ε · Z

⎞⎟⎟⎟⎟⎠ ≥ u .

Plugging in u = 0.7 · Z the above holds for all ε ≤ 1/25. Therefore we have ut(i) ≥ 0.7 · Z
for all i and t such that γt(i) ≥ 1.

For the sake of contradiction assume now that there is a time step such that the number
of relays used by Chase-Explorer exceeds 1.5�dt/Z
 + 1. By our previous considerations
this would mean that dt ≥ 0.7 · Z (1.5�dt/Z
 + 1) ≥ 1.05 · dt > dt, which is clearly a
contradiction.

For the next theorem we assume that the may dictate the values bt(i) as long as
|b − bt(i)| ≤ εRγt(i).

Theorem 5.8. If the adversary can dictate errors with ε ≥ 1, then the number of relays in the
chain is unbounded.

Proof. The distance of relay vi to the base camp clearly cannot exceed Z · γt(i). So, if we
have ε ≥ 1 the adversary can select a position bt(i) all around station vi. This allows the
adversary to completely control the shape of the chain. More specifically, it can create a
chain such that rt(i) ≥ rt(i − 1). This part of the chain increases its distance to the relays
instead decreasing it.
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C h a p t e r 6

Minimizing the Number of Changes in
Support Graph

In this chapter we introduce the Online Dynamic Minimum Spanning Tree (ODMST)
problem. We are looking for a minimum spanning tree (MST) in a graph, whose edge
weights change dynamically. The problem is online in that the changes in the graph
cannot be foreseen and we have to deal with them as they arrive. Therefore, we will
investigate algorithms solving the ODMST problem in terms of competitive analysis.

An online algorithm solving the ODMST problem maintains a MST throughout time.
This means, that every time the weight of an edge is changed, the online algorithm
must output a minimum spanning tree for the new graph. If possible, this spanning
tree should be the same spanning tree as computed in the previous time step. This is
not always possible, as there may be a new tree with smaller weight. In this case, the
algorithm should output a MST which is as similar to its last tree as possible. The cost
of the algorithm in a time step is equal to the number of differences in terms of edges
between the current MST and the previous one. Note, that the cost model does not take
the computational effort, which is necessary for computing a new MST into account; we
are only concerned with the number of changes in the MST here.

The MST maintained by an algorithm solving the ODMST problem can be used as
the support graph for a compacted robot graph. Thereby the support graph has the
minimum possible length among all connect support graphs. This implies that the
number of relays used for establishing the communication chains is minimal. The
greatest advantage of the support graph defined in this way is that it changes only
seldom. As each change in the support graph requires relays to move from one path in
terrain to another, we are hereby minimizing the energy used by the relays to move.

We continue now with a brief discussion on competitive analysis, followed by a
formal model of the ODMST problem. After providing the reader with basic notation
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we will be able to sketch the results presented in this chapter for the ODMST problem.
The introductory part concludes with a discussion on research related to the ODMST
problem and the deficiencies of the model presented herein.

Competitive Analysis

The ODMST problem and the problem investigated in Chapter 7 are analyzed in the
common framework of competitive analysis. This methodology allows to study algo-
rithms which work as long-running processes. As such processes, they have to act
basing on the knowledge they have obtained so far, without knowing the details of the
situations they will encounter in the future. One might imagine that this may easily
lead online algorithms to decisions, which they wouldn’t have made when knowing the
future (e.g. if you do not know the future lottery numbers, you probably won’t choose
the right ones).

From the formal point of view, online algorithms are presented an input sequence σ.
Usually one assumes that the time is divided into discrete time steps and only one item
of the input sequence is revealed to the online algorithm per time step. The online
algorithm is forced to perform an action corresponding to the item of the input sequence
right after receiving it. We will generally assume that each input sequence item is some
kind of request, which must be served by the online algorithm right after it is received.
Handling this request causes some cost to the algorithm. The cost for serving a particular
request depends very much on how the algorithm has behaved in the past. The cost of
the algorithm Alg for the whole input sequence is the sum of its costs over all time steps
and is denoted by CALG(σ).

For the purpose of competitive analysis one compares the cost of this online algorithm
to the cost of an optimal offline algorithm – this optimal offline algorithm has access
to the whole input sequence from the beginning on, and can therefore make optimal
decisions. This allows it to minimize the total cost of serving the sequence of requests.
We denote the cost of the optimal algorithm for sequence σ by COPT(σ). The central
performance measure employed in competitive analysis is the competitive ratio. We say
that the online algorithm has a competitive ratio R if

CALG(σ) ≤ R · COPT(σ) + c,

for all feasible input sequences σ ∈ Σ and a proper constant c independent of the input
sequence. The goal of the designer of an online algorithm is to minimize the ratio R.

For convenience we will often assume there is some adversary, which constructs the
input sequence σ, trying to maximize the ratio CALG(σ)/COPT(σ). For this purpose she1

1 For some reason unknown to us the adversary is traditionally found to be female in literature. For the
sake of compliance, although with a slight discomfort, we will stick to this notation.
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has to construct this sequence so that it incurs a cost as high as possible to the online
algorithm while keeping the cost of the optimal offline algorithm low. It is assumed
that the adversary knows the complete description of the online algorithm (i.e. its
source-code, machine-code). Therefore in case of a deterministic online algorithm it can
simulate the algorithm’s behavior in advance and construct an input sequence σ which
maximizes the ratio CALG(σ)/COPT(σ).

Since we want also to investigate the performance of randomized online algorithms,
we have to refine our notion of adversary. We still assume that the adversary knows
the description of the online algorithm, on the other hand it does not know the outcome
of the random experiments performed by the online algorithm. She has to prepare
the input sequence before the online algorithm is run on it. This type of adversary is
known as an oblivious adversary. We can redefine the notion of competitive ratio R to
the expected competitive ratio such that

Eφ [CALG(σ)] ≤ R · COPT(σ) + c,

where the expected value is taken with respect to the random choices φ of the online
algorithm. Constructing an input sequence very complicated for the online algorithm
is not as easy for the adversary as in the case of deterministic algorithms – she does not
know the algorithm’s random decisions and therefore does not know how exactly the
algorithm serves its requests. We will see that in this framework one is able to design
algorithms with better competitive ratios than is possible for deterministic algorithms.

Stochastic adversaries The described competitive ratio notions are worst-case no-
tions, i.e. we are maximizing over all possible input sequences. In many situations this
may appear too pessimistic as a notion of performance for algorithms. A weaker notion
of adversaries is represented by stochastic adversaries, introduced by [BKR+01, Bie05],
which create the input sequence by means of a stochastic process. The stochastic process
chooses the input sequence according to some probability distribution π. We say that a
deterministic algorithm Alg has a competitive ratio R with a probability of 1 − γ if

Pr [CALG(σ) ≤ R · COPT(σ) + c] ≥ 1 − γ ,
where the constant c does not depend on σ. The described probability is calculated with
respect to the probability distribution π over all input sequences.

Formal Model of the ODMST Problem

Let G = (V,E) be a graph with edges weighted initially by the function w0 : E→N+. We
denote m = |E|. Time is divided into discrete time steps. The input sequence σ defines
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the changes in weights of edges. In time step i we have σ(i) ∈ E × {−1,+1}, thereby only
one edge changes its weight in one time step and the change is bounded to be either +1
or −1.

Basing on the original input sequence, for convenience of notation, we denote by
δ(i, e) ∈ {−1, 0, 1} the change of weight of edge e ∈ E in the i-th time step. Formally we
have

δ(i, e) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 , if σ(i) = (e,−1)
1 , if σ(i) = (e,+1)
0 , otherwise .

Furthermore, we introduce the function w :N+ ×E→N+ which maps a time step t and
edge e to the edge weight at the beginning of time step t. This gives

wt(e) = w0(e) +
t∑

i=1

δ(i, e) .

Note that hereby wt(e) defines the weight of edge e including the change happening in
the t-th time step.

An algorithm Alg solving the Online Dynamic Minimum Spanning Tree (ODMST)
problem outputs a spanning tree, denoted by Mt

ALG, after obtaining σ(t). This tree
has to be a minimal spanning tree with respect to edge weights defined by wt(·). The
algorithm’s cost in time step t is defined as the number of edges in which Mt−1

ALG and
Mt

ALG differ, formally

Ct
ALG :=

∣∣∣∣{e ∈ E | e �Mt−1
ALG ∧ e ∈ Mt

ALG

}∣∣∣∣ .
Consequently, CALG(σ) is the cost of the algorithm on the whole sequence

CALG(σ) =
|σ|∑
i=1

Ci
ALG .

Although this does not change the complexity of the ODMST problem in any signifi-
cant way, we allow the adversary to chooseM0

ALG.
The optimal offline solution to the ODMST problem is defined by a sequence of

spanning treesM1
OPT, . . . ,M|σ|

OPT, such thatMt
OPT is a minimal spanning tree with respect

to edge weights defined by wt(·). Given this restriction the sequence minimizes the value
of COPT(σ), with COPT(σ) =

∑|σ|
i=1Ci

OPT, where

Ct
OPT :=

∣∣∣∣{e ∈ E|e �Mt−1
OPT ∧ e ∈ Mt

OPT

}∣∣∣∣ .
As commonly found in literature, we will refer to the sequence M1

OPT, . . . ,M|σ|
OPT as

computed by an optimal algorithm Opt. This algorithms works in parallel to Alg,
but has access to the complete sequence σ in advance and therefore can make optimal
decisions in each time step.
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Recall, that a deterministic algorithm Alghas a competitive ratio ofRALG if for all input
sequences σ we have CALG(σ) ≤ RALG · COPT(σ) + c or E[CALG(σ)] ≤ RALG · COPT(σ) + c for
a randomized algorithm. While the constant c does not depend on the input sequence,
it can depend on the size of the input graph G.

Restricted ODMST problem Part of our results shown in this chapter will hold for
the Restricted ODMST problem. In the case of the restricted version of this problem we
allow the adversary to only increase the weight of the edges. Formally, the set of input
sequences is limited to those fulfilling σ(i) ∈ E × {+1}.

Stochastic adversaries We introduce two notions of stochastic adversaries, described
by two stochastic processes. In the independent stochastic process defined in Section 6.6
the weight of an edge e ∈ E is increased in each time step independently from other
edges with some probability pe. Then a transformation is applied to the constructed
sequence, so that only one edge weight is increased per time step. This is necessary to
match the definition of the ODMST problem.

The stochastic adversary is parameterizable and by an appropriate choice of the
probabilities, it can be tailored to specific needs. Thereby, a wide variety of input
sequences is modeled by the stochastic processes we describe here. We will say that
a deterministic algorithm Alg solving the ODMST problem has a competitive ratio of
RALG with a probability of 1 − γ if

Prσ [CALG(σ) ≤ RALG · COPT(σ) + c] ≥ 1 − γ .

The described probability is calculated with respect to the probability distribution of
input sequences, as implicitly defined by a stochastic process generating those sequences.
As earlier, the constant c may not depend on the input sequence but only on the input
graph G.

Notation The following notation will be used throughout the whole chapter. The set of
alternative edgesA(e, t) is defined for a graph G = (V,E), a time step t, an algorithm Alg
and an edge e ∈ Mt

ALG. Removing e fromMt
ALG splits the tree into two parts. Consider

the vertex sets V1 and V2 of both parts. Then the set of edges on the cut between V1 and
V2 is denoted by

A(e, t) = {(u, v) ∈ E | u ∈ V1 ∧ v ∈ V2} .
Consequently, the set of alternatives which have a certain weight is defined as

Aw(e, t,w) = {e′ ∈ A(e, t) |wt(e′) = w} .
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Furthermore we defineAw(·) also for sets of edges, so that

Aw(U, t,w) =
⋃
e∈U
Aw(e, t,w) .

Suppose we extendMt
ALG by adding an edge e ∈ E and thus creating a cycle inMt

ALG.
Then all edges on this cycle except for e are denoted by K(e, t). Analogously to the set
Aw(·), we define a set of all edges from K(e, t) with a certain weight

Kw(e, t,w) = {e′ ∈ K(e, t) |wt(e′) = w} .
Note thatA(e, t) includes e, whereasK(e, t) does not.

Results and Outline

In this chapter we will consider the ODMST problem in three different settings: for
deterministic algorithms and randomized algorithms against a worst-case adversary
and deterministic algorithms against a stochastic adversary. In Section 6.1 we show that
any deterministic online algorithm has a competitive ratio of at least Ω(n2), both for
the ODMST and the Restricted ODMST problem. These results show, that on general
graphs and without using randomization, online algorithms are inherently very bad
against a worst-case adversary. To gain insight into the problem, in Section 6.2 we show
a deterministic algorithm which achieves a competitive ratio of n2/2.

As we will show, an improvement of the competitive ratio is possible for the Restricted
ODMST problem if randomization can be used. As shown in Section 6.3, the randomized
algorithm RandMST is able to achieve an expected competitive ratio of O(n log n) on
general graphs. Later we extend its analysis to the restricted case of planar input graphs
and show that then it has an expected competitive ratio of only O(log n). In Section 6.1
we show a lower bound for randomized algorithms and the Restricted ODMST problem
of Ω(log n), so that the RandMST algorithm on planar graphs is proven to be optimal
up to a constant factor.

Another possibility to restrict the adversary and improve the results of algorithms
solving the Restricted ODMST problem is to allow only a certain type of input se-
quence/input graph combination. Particularly, we restrict the adversary to generate
only sequences, such that the number of edges with a certain weight in a time step is
constant. We will call such input sequences weight-diversified and show in Section 6.5
that the RandMST algorithm has constant competitive ratio on such input.

At last we show that weight-diversified sequences have practical relevance, in that
a natural, highly parameterizable, stochastic adversary constructs such sequences with
high probability. This implies, that the competitive ratio of RandMST on sequences
generated by this stochastic adversary is constant, as shown in Section 6.6.
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Related work

Research on minimum spanning trees dates back to the well-known textbook algorithms
by Kruskal [Kru56] and Prim [Pri57]. In the static setting improved solutions have been
considered e.g in [CT76]. All this work assumes that the graph remains static and
considers the classical runtime complexity of algorithms. Research in this area is still
vivid, see e.g. recent results by Chazelle [Cha00] and Pettie [PR02].

Large effort has been put into constructing data structures which also allow minimum
spanning trees to be computed efficiently when changes in the structure of the graph
occur. These changes can either concern edge weights as assumed in our work (see
e.g. [Fre83]) or might encompass adding and deleting vertices ([CH78, EGIN97, HK97]).
Furthermore kinetic spanning trees have been considered in [AEGH98] to model the
changes of edge lengths in a more predictable way. This allows planning of changes
in the minimum spanning tree in advance, in comparison to a strictly online problem
where the future cannot be foreseen.

An online problem related to ours has been presented in [RSS05], as similarly MSTs
are considered in an online framework. The authors analyze the competitiveness of a
minimum spanning tree algorithm which receives the weights of edges of a random
graph as a sequence and has to decide immediately whether to include an edge into
the MST or not. For an in-depth survey of different types of subproblems in the area of
minimum spanning trees, for applications and results we refer the interested reader to
[Epp96].

Similar problems have been also studied for shortest path trees, e.g. in [NST00, NST01,
XCZ+04], where a shortest path tree is maintained under dynamics of the system. How-
ever, similarly to the case for the spanning tree maintenance, the solutions only consider
the computational effort necessary for computing new shortest path trees.

Model Restrictions

Our model assumes that only one edge weight is changed per time step. This implies,
that changes in the graph occur at a slow rate only. Such an assumption is typical also
for other problems and models the scenarios in which demands may vary, but the pace
of changes is restricted. Concrete examples are the k-server [MMS90] problem or the
page migration and replication [BS89] problem.

The model of the ODMST problem assumes that the cost of changing an edge in
the MST is unary, disregarding the distance between the removed and inserted edge.
Assuming that the edges of the MST correspond to communication chains, this does not
reflect the full energy cost, as the distance for the relay stations to travel depends on the
distance between both edges. Therefore, we have to be aware that we are dealing with
a simplification here.
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At last, the randomized algorithm RandMST works only for a restricted scenario,
where the weights of edges can only grow. In this context, it is worth mentioning
that the lower bounds presented in this chapter do not need to decrease edge weights.
This gives some indication that the real hardness of the problem does not lie within
decreasing edges, but can be also expressed by only increasing the weights of edges.

6.1. Lower bounds

In this section we show two lower bounds for the ODMST problem – one for deterministic
algorithms and one for randomized ones.

For the deterministic case, we construct an input sequence for the ODMST problem
which causes every online deterministic algorithm to have a large competitive ratio. We
assume that the input sequence is given by an adversary who examines the moves of
Alg. To construct a deterministic lower bound ofRALG we have to be able to construct an
input sequence σ for any algorithm Alg and any k such that COPT(σ) ≥ k and CALG(σ) ≥
RALG · COPT(σ). This is analogous to the formulation used in the Yao minmax principle
[CLLR97, Yao77], simplified for the deterministic case here. Obviously, the following
result holds also for algorithms solving the plain ODMST problem.

Theorem 6.1. Let Alg be a deterministic algorithm solving the Restricted ODMST problem
on graph G. Then for its competitive ratio RALG it holds RALG ≥ Ω(n2).

For the randomized case, we utilize the already mentioned Yao minmax principle.
Thereby, we have to construct a probability distribution π over all input sequences and
show that every deterministic offline algorithm knowing π has an expected competitive
ratio of at least Ω(log n), where the expectation is calculated over all input sequences
distributed according to π.

Theorem 6.2. Let Alg be a (possibly randomized) algorithm for the Restricted ODMST
problem on graph G. Then for its expected competitive ratio RALG it holds RALG ≥ Ω(log n)
when the input sequence is constructed by an oblivious adversary.

The construction of the lower bounds is, to some extent, similar. Therefore we will
first define the common basis for both lower bounds.
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Input graph. The input graph for the construction of the lower bounds is a complete
graph G = (V,E) with |V|. Partition V into two sets V1 and V2 with |V1| = |V2|. Call EC

the set of edges lying on the cut between V1 and V2. To each edge e ∈ EC we assign a
weight w0(e) = n = |V|, all other edges are assigned a weight of 1.

Obviously at least one edge from EC must be used in every spanning tree and, since
we consider minimum spanning trees, it will be the only one.

Input sequence. We construct an input sequence consisting of phases of length |EC|.
In each phase, the weight of all the edges from EC is increased by one. Therefore, at the
beginning of the p-th phase all edges from EC have weight n + p − 1. As the edges in
EC have weight far larger then the weights of edges inside V1 and V2, each MST has to
contain exactly one of the edges from EC.

Generally, we restrict the order in which the weight of edges is increased during a
phase only in one way. Let e ∈ EC be the edge whose weight has been increased in
the last time step of phase p. Obviously, at the end of phase p it holds e ∈ MALG and
e ∈ MOPT, as all edges from EC have weight larger than e. We now require the weight of
edge to be increased first in phase p + 1. This implies, that e �MOPT after the increase
and Opt has cost at least 1 during the phase. As Opt has access to the input sequence in
advance, it can determine the edge whose weight is increased last in phase p + 1 at its
beginning – and use that edge inMOPT from the beginning on. Therefore, Opt’s cost is
exactly one in all phases but the first one. Thereby for any given k we can construct an
input sequence σ by concatenating k + 1 phases, obtaining a σ such that COPT(σ) ≥ k.

In the remaining part we will specify the order in which edges are increased in
more detail. As the construction is different in order to obtain the deterministic and
randomized lower bounds, we split our analysis from this point on.

6.1.1. Deterministic lower bound

As we are dealing with a deterministic algorithm Alg, the adversary can simulate its
behavior on the input it provides, and therefore always knowsMALG. This allows her
to increase the weight of the edge from EC used inMALG in each time step, forcing the
algorithm to perform |EC| − 1 changes inMALG during a phase. This obviously incurs
a cost of |EC| − 1 during a phase. Combining with the fact, that Opt has unit cost per
phase, Theorem 6.1 follows easily.

6.1.2. Randomized lower bound

For the randomized lower bound the order in which the edges’ weights are increased is
chosen randomly. In each phase, we uniformly at random choose one of the sequences
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which increases the weight of all edges belonging to EC. Obviously, this is a permutation
of all edges from EC, chosen uniformly at random.

With this random process defined, we have to give a bound on the number of edge
changes that Alg has to perform in expectation in each phase. Fix some phase p. Let
t be a time step within phase p, such that Alg performs a change inMALG in this time
step. Denote by k the number of remaining edges with weight n + p − 1 in EC at time
step t, whereas the remaining edges have weight n + p.

In time step t the algorithm has chosen a new edge e from EC to be used inMALG. Let
t+ i be an upcoming time step within the same phase. Provided that the weight of edge
e has not been increased since time step t, the probability that e’s weight is increased in
time step t + i is exactly 1/(k − i + 1). This is, since in each time step the edge whose
weight is increased is chosen uniformly at random among those with weight n + p − 1.
Therefore, the unconditioned probability that the weight of e is increased in time step
t + i for any i = 1, . . . , k − 1 is equal to(

k − 1
k

)
·
(
k − 2
k − 1

)
· · · · ·

(
k − i

k − i + 1

)
· 1

k − i
=

1
k
.

We now define Tk to be the expected number of edge changes which Alg has to perform
in the rest of the current phase, including the edge change performed in time step t. We
can define recursively

Tk = 1 +
k−1∑
i=0

Pr[ next edge change occurs in time step t + i ] · Ti ,

and by the earlier observation

Tk = 1 +
1
k

k−1∑
i=0

Ti.

Obviously T1 = 0, since if there are no alternatives with weight n, increasing the last
edge does not force the algorithm to any changes inMALG. Adding

∑k−1
i=1 Ti to both sides

of the earlier equation we have

k∑
i=1

Ti = 1 +
k−1∑
i=1

k + 1
k
· Ti .

By dividing both sides by k + 1 we obtain

1
k + 1

k∑
i=1

Ti =
1

k + 1
+

k−1∑
i=0

1
k
· Ti .
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We apply the definitions of Tk+1 to the left side, and that of Tk to the right side and obtain

Tk+1 =
1

k + 1
+ Tk = Hk+1 = Θ(log k) .

Therefore, the expected number of changes inMALG during a whole phase is T|EC|−1 =

Θ(log |EC| − 1). As |EC| = n2/2 we can easily follow Theorem 6.2.

Planar graphs. Note, that one can apply the construction presented here even if the
underlying graph G is restricted to be planar. In that case one can construct a graph G
such that the number of edges in EC is Θ(n). Therefore the following corollary holds.

Corollary 6.3. Let Alg be a (possibly randomized) algorithm for the Restricted ODMST
problem on planar graph G. Then for its expected competitive ratio RALG it holds RALG ≥
Ω(log n) when the input sequence is constructed by an oblivious adversary.

6.2. Algorithm MSTMark

In this section we present the deterministic algorithm MSTMarkwhich achieves an op-
timal, up to a constant factor, competitive ratio for the ODMST problem, as summarized
by the following theorem.

Theorem 6.4. For the competitive ratio of algorithm MSTMark it holds RMSTMark ≤ n2/2.

Notation. The MSTMark algorithm (Algorithm 1) works on a graph G = (V,E) comput-
ing a minimum spanning treeMt

ALG in each time step t. Where clear from the context we
will writeMALG instead ofMt

ALG omitting the current time step number. Analogously
we will omit the superscript in the notationMOPT wherever convenient. We say that an
algorithm substitutes edge e with f in time step t if we haveMt+1

ALG = (Mt
ALG \ {e}) ∪ { f }.

MSTMark algorithm. The algorithm has to respond to two different kinds of events
– increases and decreases of weights of edges in G. We will be following a greedy
approach, which changes only one edge of the MST when ultimatively necessary. If the
weight of an edge e ∈ Mt−1

ALG is increased in time step t, MSTMark tries to find a suitable
alternative f ∈ Aw(e, t − 1,wt−1(e)). If a not marked edge f can be found, MSTMark
replaces e with f in Mt

ALG. By the construction of the set Aw(·) any such edge causes
MALG to remain a minimum spanning tree. If an appropriate edge cannot be found,
MSTMark setsMt

ALG =Mt−1
ALG.
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Algorithm 1 MSTMark(time step t)
1: if weight of edge e ∈ Mt−1

ALG increased andAw(e, t − 1,wt−1(e)) � ∅ then
2: ANM ← { f ∈ Aw(e, t − 1,wt−1(e))|f isn’t marked with absence}
3: ifANM � ∅ then
4: remove e fromMt

ALG and substitute it with any f ∈ ANM

5: mark e with absence
6: else
7: remove e fromMt

ALG and substitute it with f ∈ Aw(e, t − 1,wt−1(e))
8: remove all marks
9: mark e with absence

10: end if
11: end if
12: if weight of edge e �Mt−1

ALG decreased andKw(e, t − 1,wt−1(e)) � ∅ then
13: KNM ← { f ∈ Kw(e, t − 1,wt−1(e))|f isn’t marked with presence}
14: ifKNM � ∅ then
15: remove e fromMt

ALG and substitute it with any f ∈ KNM

16: mark f with presence
17: else
18: remove e fromMt

ALG and substitute it with f ∈ Aw(e, t − 1,wt−1(e))
19: remove all marks
20: mark f with presence
21: end if
22: end if
23: if e is marked with two different flags then
24: remove all marks
25: mark e with flag it obtained earlier this time step
26: end if

If the weight of an edge e � Mt−1
ALG is decreased in time step t, MSTMark checks

whether there is a not marked edge f ∈ K(e, t − 1) with a higher weight than wt(e) . If
yes, it substitutes f with e withinMALG. If no, MSTMark setsMt

ALG =Mt−1
ALG.

In all other cases MSTMark does not perform any changes in its minimum spanning
tree.

The greedy approach changing only one edge of the MST on updates of edge weight
has been already successfully applied in algorithms for updating minimum spanning
trees, e.g. in [Fre83], thus we won’t argue its correctness.
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Marking with flags. In addition to the described behavior, MSTMark marks edges of
G with two kinds of flags: presence and absence. The idea is that a flag is put on an edge
e, where MSTMark is sure that, respectively, e ∈ MOPT or e � MOPT. This information
is only guaranteed for the very time step when the mark has been set – for future time
steps it may not hold anymore.

The presence flag is set on edge e if and only if the decrease of e’s weight has caused
the MST in the graph to decrease its weight. Similarly, the absence flag is only set on
edge e, when its increase caused the MST to increase its weight. As it is easy for the
MSTMark algorithm to determine these situations, we will only have to show that at
this specific time of point we have respectively e ∈ MOPT or e �MOPT.

Outline of analysis. For the analysis of the competitive ratio of MSTMark we intro-
duce the notion of epochs. The presence and absence flags are the key to this analysis.
An epoch starts when all flags are removed from the graph and lasts until the next
removal of all flags.

The analysis of the competitive ratio of MSTMark proceeds with the following steps.
First, we formally prove the role of the flags in Lemma 6.5. Then, Corollary 6.10 shows
that Opt has at least unit cost in each epoch. Finally Lemma 6.11 establishes the fact
that an epoch can last at most O(n2) time steps. From these lemmas we will derive
Theorem 6.4.

Lemma 6.5. If an edge e has flag presence set in time step t, then there exists a time step
z ≤ t in the current epoch, such that e ∈ Mz

OPT. Analogously, if it has the flag absence set, then
there exists z ≤ t in the current epoch, s.t. e �Mz

OPT.

Proof. Assume that e has flag presence set. Then, there was some time step z in which
the weight of edge e decreased and this caused MSTMark to include e intoMz

ALG. This
means that the weight of any MST decreased between time step z − 1 and time step z.
Opt either included e ∈ Mz−1

OPT – then the weight ofMOPT decreased automatically – or
it had to include e ∈ Mz

OPT by removing another edge fromMz−1
OPT. In both cases, edge e

was eventually included inMz
OPT.

Now assume that e has flag absence set. Then, there has been a time step z in which
the weight of edge e was increased. If e had not been included in MOPT at time step
z − 1 then there is nothing to show. Since MSTMark found a suitable alternative edge
if absence was set at e, the weight ofMz

ALG was equal to that ofMz−1
ALG. Then, if e was

included inMz−1
OPT, it could not stay the same in time step z – the weight ofMz

OPT would
increase and become greater thanMz

ALG.
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Now we turn our attention to lower bounding Opt’s cost in an epoch. If an epoch
ends because of an edge marked with two different kinds of flags (line 24), then we have
an immediate proof that at least one edge changed inMOPT during the current epoch.

In Lemma 6.7 we will establish the correctness of the fact that at least one edge change
inMOPT has occurred within one epoch if it ends with line 19. Beforehand, we need to
introduce a short technical lemma.

Lemma 6.6. Consider an edge e �Mt
ALG. Then for all f ∈ K(e, t) it holds wt( f ) ≤ wt(e).

Proof. Assume there exists an edge f ∈ K(e, t) with wt( f ) > wt(e). Then we could
substitute f with e and preserve the spanning property ofMt

ALG. This would decrease
the weight ofMt

ALG which contradicts its minimum property.

Lemma 6.7. Assume that δ(t) = (e,−1), such that e �Mt−1
ALG and that this causes the weight of

minimal spanning trees to decrease. Furthermore assume that all edges withinKw(e, t−1,wt−1(e))
have flag presence set. Then there exists a time step i ≤ t in the current epoch such thatCi

OPT > 0.

Proof. According to the assumptions of the lemma the weight of edge e is decreased in
time step t. Since the weight of all MSTs has decreased, e ∈ Mt

OPT after the decrease.
Removing e fromMt

OPT causes the spanning tree of Opt to be split into two connected
components. Call them M1 = (V1,E1) and M2 = (V2,E2). Figure 6.1 illustrates this
division.

M1 M2

e

f

Figure 6.1.: Opt’s tree divided into two parts by edge e. Edge f is on the cycle created
inMALG by e and must have weight equal to that of e.
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There are two cases: either e ∈ Mt−1
OPT (before the decrease), or some other edge from

the cut between V1 and V2 was in Mt−1
OPT. If the second case occurs, then Opt has to

remove some edge from Mt−1
OPT and replace it with e, thus having cost 1 in the current

time step.
Assume that e ∈ Mt−1

OPT (before the decrease). We now turn our attention to MALG.
Obviously after the decrease e ∈ Mt

ALG, but according to the assumptions of the lemma
e �Mt−1

ALG. As e connects V1 and V2, at least one of the edges from the cycle K(e, t − 1)
lies on the cut between V1 and V2. Call it f . Since this edge is in K(e, t − 1), it holds
wt( f ) = wt−1( f ) ≤ wt−1(e) according to Lemma 6.6. Now since this edge lies on the cut
between V1 and V2 and we have assumed that e ∈ Mt−1

OPT, f cannot have weight smaller
than wt−1(e), since then it would have been used by Opt in round t − 1 inMt−1

OPT. Thus,
wt( f ) = wt−1(e) and f ∈ Kw(e, t − 1,wt−1(e)) by the definition of Kw(·).

According to the assumption of the lemma, all edges inKw(e, t−1,wt−1(e)), in particular
f , have the flag presence set. So at some time step in the current epoch f ∈ MOPT but
now f �MOPT. This leads to the conclusion that Opt has paid at least once during the
current epoch.

Analogically to the reasoning above, we can state Lemma 6.9 showing that at least
one edge change has occurred inMOPT during an epoch, if it ends in line 8 of MSTMark.
Prior to that we introduce another technical lemma.

Lemma 6.8. Consider an edge e ∈ Mt
ALG and its set of alternative edgesA(e, t). Then there

exists an edge f ∈ A(e, t) with f ∈ Mt
OPT and wt( f ) = wt(e).

Proof. Obviously there must be at least one f ∈ A(e, t) with f ∈ Mt
OPT (recall that

e ∈ A(e, t)). We have to show that it has the same weight as e. If e = f the fact follows
trivially.

Assume e � f . If wt( f ) was smaller than wt(e), then we could substitute e with f in
Mt

ALG and thus we would obtain a spanning tree with smaller weight – a contradiction
sinceMt

ALG is a minimum spanning tree.
Now assume wt( f ) is greater than wt(e). Then increase the weight of all edges in
Aw(e, t,wt(e)). This increases the weight of MALG, since the weight of e and all of its
alternatives have been increased. As none of the edges in Aw(e, t,wt(e)) belongs to
Mt

OPT, increasing their weight won’t change the weight ofMt
OPT. This is a contradiction,

since bothMt
OPT andMt

ALG are minimum spanning trees and must have the same weight
all the time.
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Lemma 6.9. Fix an edge e ∈ Mt
ALG. Assume all f ∈ Aw(e, t,wt(e)) have flag absence set.

Then Opt has incured at least unit cost during the current epoch.

Proof. According to the presented Lemma 6.8, Opt must have at least one edge in
Aw(e, t,wt(e)). Let it be f . Since f has flag absence set, Opt has changed at least one edge
inMOPT within the current epoch.

Combining both Lemma 6.7 and Lemma 6.9 the corollary follows.

Corollary 6.10. During an epoch Opt incurs at least unit cost.

In every time step in which MSTMark pays for changing its edge it also marks one
edge with presence or absence. Lemma 6.11 establishes the fact that MSTMark doesn’t
mark any edges twice and allows us to conclude that MSTMark pays only |E| ≤ n2/2
times within one epoch. Then Theorem 6.4 follows easily.

Lemma 6.11. No edge is marked more than once within one epoch.

Proof. By contradiction, assume that an edge e is marked twice with flag absence.
This would mean, that the weight of this edge was increased twice and every time it
belonged toMALG. Directly after it was marked for the first time it was removed from
MALG. Consider the first possibility which would cause e to be included inMALG again,
namely that the weight of e was decreased and this caused the weight of the minimum
spanning tree to decrease. But then e would be marked with presence and this causes
all marks to be removed (see MSTMark step 24). The other possibility is that the weight
of some edge f has been increased and then e was chosen as an alternative for f . But if
MSTMark chooses an edge with absence as an alternative it also removes all marks (see
MSTMark step 19).

A similar reasoning can be applied to flags of type presence. Assume that an edge
e has been marked twice with flag presence. This means that the weight of e has been
decreased twice and both times it wasn’t included inMALG. Thus, there was some time
step between these two in which e was removed fromMALG. The first possibility is that
the weight of e has been increased. But then e would be marked with absence and this
causes all marks to be removed (see MSTMark step 24). The other possibility is that the
weight of some other edge f has been decreased and e was on the cycle inMALG created
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by f . But if MSTMark chooses an edge from a cycle with presence set, it also removes
all marks (see MSTMark step 8).

It is clear due to line 24 of MSTMark that no edge can be first marked with one flag
type and later with the second type within one epoch.

6.3. Randomized algorithm RandMST

The randomized algorithm RandMST presented in this section achieves an expected
competitive ratio of O(n log n) on the Restricted ODMST problem for general input
graphs. It is a cut down version of the MSTMark algorithm, with the handling of flags
removed. In the considered scenario edge weights can only grow and we will see that
flags are not necessary any more.

Algorithm 2 RandMST
1: if weight of edge e ∈ Mt−1

ALG increased in time step t andAw(e, t − 1,wt−1(e)) � ∅ then
2: f ← choose uniformly at random an edge out ofAw(e, t − 1,wt−1(e))
3: remove e fromMt

ALG and substitute it with f
4: end if

Consider a time step t in which the weight of an edge e ∈ MALG is increased. If there
exist alternative edges for e with weight wt−1(e), then RandMST selects one of these edges
uniformly at random and uses it instead of e inMt

ALG. In other cases RandMST ignores
the edge weight increase.

Outline of the analysis. The idea of the analysis is to consider the behavior of
RandMST in layers separately. Intuitively, a layer w consists only of edges which have
weight w. In every layer we will divide the graph G into fixed components and edge
sets, connecting those fixed component. We will show that creating a fixed component
corresponds to some cost incurred by Opt, and that therefore the cost of Opt is at least
proportional to the number of fixed components created in all layers. We will also be
able to bound the expected cost of RandMST to O(n log n) times the number of fixed
components created. From this we will be able to conclude that the expected competitive
ratio of RandMST is at most O(n log n). Note that the layers and fixed components are
structures used purely for the analysis, RandMST’s execution does not depend on them.

Theorem 6.12. For the expected competitive ratio of algorithm RandMST it holdsRRandMST ≤
O(n log n).
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Fixed components. As already mentioned, we consider a separate layer of fixed
components for each weight w. Let X be a subgraph of G. Then V(X) denotes the set
of vertices of X and E(X) its edges. A fixed component is a subgraph of G. Prior to the
first time step there is exactly one fixed component in every layer containing the whole
graph G. For a fixed component F the part ofMALG contained in F is the subgraph with
vertex set V(F) and edge set E(F) ∪ E(MALG). A fixed component F in layer w splits if
the weight of an edge e ∈ E(F) with w(e) = w is increased, e ∈ MALG, and the size of
minimum spanning trees does not increase (i.e. RandMST must perform a change in
MALG). The edge e dividesMALG into two parts – call the sets of vertices in each of these
parts V1 and V2.

The fixed component F splits into two fixed components F1 and F2, such that V(F1) =
V1 ∪V(F) and V(F2) = V2 ∪V(F). The edge sets of both components consist of the edges
induced by their vertex sets. We say that a fixed component splits on edge e if the split
occurs due to an increase of weight of e. Note, that fixed components form a partition
of the vertex set of G, and thus there are at most n fixed components in any layer. Note
also, that it is necessary for the splitting technique to work properly that the part of
MALG contained in a fixed component prior to a split is connected. This property will
be established in Lemma 6.15.

Besides fixed components, each layer also contains edge sets. Before time step 1 there
are no edge sets in any layer. If a fixed component F splits into F1 and F2 on an edge e with
weight w, an edge set between F1 and F2 is created, denoted by ES(F1, F2). It consists of all
edges between vertices of F1 and F2 having weight w. If a fixed component F splits into
F1 and F2, edge sets connected to F also split. Consider such an edge set ES(F, F′). Then
every edge e ∈ ES(F, F′) is put either into ES(F1, F′) or ES(F2, F′) depending on whether
this edge connects F′ to F1 or F2. Note, that since there are at most n fixed components
in a layer, the number of edge sets created during one split is upper bounded by 2n.

Edges already contained in an edge set remain in an edge set after their weight has
been increased.

Pseudo-splits. We allow fixed components also to pseudo-split in another situation.
Consider a layer w and a time step t. Let e be an edge contained in a fixed component F,
such that wt−1(e) > w. The component F pseudo-splits, if the weight of edge e is increased
in time step t and the reorganization ofMALG in time step t causes the fixed component
F to contain two disconnected parts of the treeMALG. The pseudo-split is carried out
exactly as in the case of a normal split, edge-sets are also divided in the same way as
earlier.

Nevertheless, there is some crucial difference between a split and a pseudo-split.
Although the pseudo-split can also create new edge sets, the new edge sets have no
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practical relevance, as they do not contain any edges with weight w. This is formally
established by the following two lemmas.

Lemma 6.13. Let the fixed component F be divided by a pseudo-split into F1 and F2. Then
the edge set ES(F1, F2) contains no edges.

Proof. Assume that the fixed component F pseudo-splits into F1 and F2 on edge e in time
step t. By definition, for edge e we have wt−1(e) > w. Assume that after the pseudo-split,
i.e. after removing e from MALG, there exists an edge f between F1 and F2 which has
weight w. Then we could have substituted e with f prior to the pseudo-split, decreasing
the weight ofMALG. This is a contradiction.

Lemma 6.14. Let X be an edge set divided into X1 and X2 by a pseudo-split of a fixed component
F. Assume that the part ofMALG contained in F is connected prior to the pseudo-split. Then at
most one of X1 and X2 contains edges with weight w.

Proof. Let F and F′ be the fixed components connected originally by X. Let F pseudo-
split into F1 and F2 on edge e.

As F was connected and therefore an edge from ES(F1, F2) with weight at least w+ 1 is
used inMALG. For the same reason, at most one of the edges from ES(F1, F2) is used in
MALG.

Let X by split into X1 and X2 and assume that both of them contain edges with weight
w. As the part of MALG contained in F was connected prior to the pseudo-split, only
one of the edges from X with weight w could have been used inMALG. Without loss of
generality assume that this edge is contained in X1. Then, in time step t − 1 we could
have substituted edge e with an edge with weight w from X2, obtaining a connected
spanning tree with weight smaller thanMALG. This yields a contradiction.

Interaction between layers. We will now examine the interactions between distinct
layers, the fixed components, and edge sets.

We want to show that these interactions follow certain rules and that a certain property
(as expressed by Corollary 6.16) is always fulfilled in a layer.

Lemma 6.15. Let e be an edge between two fixed components from layer w. Then wt(e) ≥ w.
Furthermore, the part ofMALG contained in a fixed component F is connected.
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Proof. We will prove this property by induction on time step number in each layer.
Consider the induction basis in time step 1. By definition, there is one fixed component
in each layer and therefore the statement of the lemma is fulfilled.

For the inductive step we assume that the lemma holds time step t and those earlier.
We have now to show that it holds for time step t+1. In time step t+1 the adversary can
perform the following actions: it increases the weight of some edge with weight w, it
increases the weight of some edge with weight smaller than w or it increases the weight
of some edge with weight larger than w. We will go through all three cases.

Assume that the adversary increases the weight of some edge e in layer w. The only
change in the structure of fixed components occurs when the increase of weight of e
causes a fixed component F to split. By inductive assumption F contained exactly one
connected part ofMALG. The splitting procedure assures that both F1 and F2 created by
splitting F contain exactly one connected part ofMALG. We only have to show, that there
is no edge of weight smaller than e between F1 and F2. For the sake of contradiction
assume that there is an edge with weight smaller than w between F1 and F2 – call it f .
Then it is either used in MALG or is not. If it is used in MALG, then by our previous
reasoning in both F1 and F2 the parts ofMALG are connected. But having two edges e
and f between F1 and F2 would cause a loop. On the other hand, if f is not used in
MALG, then using f instead of e would cause the weight ofMALG to decrease – this is a
contradiction sinceMALG is a minimum spanning tree.

Now we have to turn to the case when the adversary increases the weight of some
edge e in a layer smaller than w. By the inductive assumption no edge of this weight
connects two fixed components from layer w, thus e lays inside of a fixed component F
from layer w. This operation could potentially cause the part of MALG contained in F
to become disconnected. For this to happen, an alternative edge f for e must be found
which does not lie in F and has weight smaller than w. Since f does not lie in F, it
connects F to another fixed component and thus cannot have weight smaller than w.

Let us get our focus to the third case – the weight of some edge e with weight larger
than w is increased. If the edge lies between any two fixed components in layer w
then the increase cannot affect any fixed component in layer w. Thus, assume that e is
contained within a fixed component F in layer w. Assume also that this increase would
disconnect the part of MALG contained in F into two trees M1 and M2. Therefore, all
prerequisites for pseudo-splitting F are fulfilled and the new fixed components contain
connected parts ofMALG.

The following corollary states the most important fact for the analysis of the compet-
itive ratio of RandMST.
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Corollary 6.16. The RandMST algorithm uses at most one edge of one edge set inMALG.

Splits and Opt’s cost. We want to establish a bound between the number of operations
Opt performs on some layer w and the number of fixed component splits which have
occurred on this layer. For this purpose let #Ew(G) denote the number of edges with
weight w in the input graph at the beginning of the execution.

Lemma 6.17. Let sw be the number of fixed component splits in layer w during the whole
execution of an input sequence. Then Opt has a cost of at least sw − #Ew(G) in layer w.

Proof. Let e be an edge on which a split in level w occurs in time step t. Obviously, at
the moment when the split occurred, e ∈ MALG. Let us consider when e has become
included inMALG. The first possibility is it was included in the initial MST, i.e. M0

ALG.
The second possibility is that it has been included inMALG when the weight of e was
smaller than w. Then let z be the time step when the weight of e has been increased to w.
In time step z the weight ofMALG increases, therefore it holds e ∈ MOPTz − 1. As with
the increase of e’s weight in step t the weight of the MST does not increase, Opt has to
remove e fromMOPT at t at latest. We assign this movement by Opt to the split.

By this assignment, we can assign a unit of Opt’s cost to all splits but for at most
#Ew(G). Therefore Opt’s cost on the layer w is at least sw − #Ew(G).

By the last lemma, nearly every fixed component split (except for n splits for the whole
execution) can be mapped to a time step which causes a cost of 1 to Opt. We will call a
mapping of all of RandMST’s costs to fixed component splits a cost assignment scheme.
The following corollary follows easily from Lemma 6.17.

Corollary 6.18. Let there exist a scheme assigning all RandMST’s cost to fixed component
splits, such that each split is assigned in expectation at most T cost. Then RandMST has an
expected competitive ratio of T.

Therefore, if we can assign RandMST’s costs to fixed component splits so that each
split receives at most O(n log n) cost in expectation, then we can easily conclude that the
expected competitive ratio of RandMST is O(n log n).

Cost assignment scheme. Every time a split of a fixed component F into F1 and F2

occurs, we assign all created edge sets to this split. This also includes edge sets which
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are divided in two by the split. This means that an edge set, which has previously
been assigned to some split s be assigned to the split of F now. This operation can
only decrease the number of edge sets assigned to any fixed component s. Since a fixed
component split can create at most 2n edge sets, at most 2n edge sets are assigned to a
split.

There are no edge sets assigned to pseudo-splits. Let X be an edge set divided by a
pseudo-split into X1 and X2. By Lemma 6.14 only one of X1 and X2 contains edges with
weight w. Let this be X1. Then X1 remains assigned to the split it was assigned to. The
edge set X2 becomes unassigned as it contains no edges with weight w and therefore no
further cost will be assigned to it.

We still have to bound the cost of RandMST on one edge set, i.e. bound the number
of edge increases in an edge set which causes RandMST to change an edge inMALG.

Consider the way RandMST chooses a new edge as an alternative for an edge e used
before in layer w. This new edge is chosen from the whole alternative set uniformly at
random. This alternative set is at least as large as the number of edges with weight w
in the current edge set. What is important, is that each of the edges in the current edge
set is chosen with the same probability. Thus, even if the adversary knows the code of
RandMST and the probability distribution used by it, it can have no knowledge which
particular edge is used within an edge set inMALG. On the other hand, by Corollary 6.16
we know that at most one edge out of an edge set is used inMALG.

Let pES describe the probability that an edge out of the edge set ES is used inMALG.
Let #Ew

S describe the number of edges with weight w in ES. Assume that we are now
increasing the weight of an edge in edge set ES. Then, the probability of increasing the
weight of an edge which is inMALG is exactly pES · 1/#Ew

S . We can upper bound pES ≤ 1.
Furthermore, we know that the probability of increasing the weight of an edge inMALG

is equal to the expected cost of RandMST, since RandMST’s cost is either 0 or 1.
To bound the expected cost of RandMST on an edge set ES situated in layer w, we only

look at requests in the input sequence which increase the weight of an edge set. Each
of these requests decreases the number of edges with weight w in ES by one. What is
important and follows from previous considerations, is that the number of edges with
weight w in an edge set in layer w never increases after it has been created. So, the
expected cost of RandMST on ES is then at most 1

x +
1

x−1 + · · · + 1, where x denotes the
number of edges with weight w at the moment of the creation of ES. This value is equal
to Θ(log n), since we can upper bound x ≤ n2.

This cost assignment scheme assures that every change of edges inMALG producing
cost is assigned to one edge set and, on the other hand, this edge set is assigned to a fixed
component split. From the fact, that each fixed component split is assigned at most O(n)
edge sets and that each of these edge sets receives an expected cost of O(log n) together
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with Corollary 6.18 we can easily conclude Theorem 6.12.

6.4. Planar Graphs

The described algorithm RandMST works with any graph G. In this section we want
to restrict the input to planar graphs only. We show that RandMST performs optimally,
up to a constant factor, for these input graphs. For that purpose, we will show that in
a planar graph the number of edge sets created is significantly lower than in general
graphs. Therefore, we can assign all edge sets to fixed component splits so that each
fixed component split is assigned only a constant number of edge sets.

Theorem 6.19. For the expected competitive ratio of algorithm RandMST on planar graphs
it holds RRandMST ≤ O(log n).

First we want to show a property of planar graphs crucial for the analysis. We denote
by fixed component graph a graph constructed out of a particular configuration of fixed
components and edge sets in a layer. The fixed components are vertices in the fixed
component graph and the edge sets are edges. The following theorem can be found in
[MT01].

Theorem 6.20 (Kuratowski). A graph is planar if and only if it does not contain K5 or K3,3

as a minor.

Lemma 6.21. Let G be the graph for the ODMST problem. Denote by F a fixed component
graph constructed on top of G. Then, if G is planar then F is planar too.

Proof. A graph H is a minor of G if G can be transformed to H by contracting edges,
deleting edges and deleting isolated vertices. The contraction operation, applied to an
edge (u, v), removes the edge and merges the vertices u and v into one new vertex.

Denote by F a fixed component graph and G the underlying graph for the ODMST
problem. We will prove the lemma by showing that if F is non-planar then G is non-
planar too. So, assume F is not planar. Then F contains K5 or K3,3 as a minor. We
can assume without loss of generality that K5 is F’s minor. Apply all edge and vertex
deletions to F which are necessary to convert it to K5 and call the resulting graph F′.
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In order to obtain K5 from F′, all vertices of F′ must be contracted to 5 vertices. Call
Vi (for i = 1, . . . , 5) the set of vertices of F′ which are contracted to the i-th vertex of K5.
Any Vi (for i = 1, . . . , 5) must be connected to all four Vj (for j � i), so there are at most 4
vertices in Vi which are connected via an edge to another Vj. All these vertices must be
connected by edges within Vi so that the contraction can be performed.

Now consider each of the vertices of Vi as a fixed component composed of vertices
from G. Among these vertices are those which are connected to Vj’s. Since the subgraph
of G contained in a fixed component is connected, and the fixed components within Vi

are connected we can contract these vertices to one.
Repeating this procedure for every Vi contracts G to K5. By Theorem 6.20 introduced

earlier this implies that G is not planar.

The previous lemma allows to improve the analysis of RandMST. Assuming that the
graph G is planar, we know by Lemma 6.21 that all fixed component graphs are planar.
As a consequence, the number of edges in a fixed component graph is at most three
times the number of vertices – more precisely the number of edge sets is at most 3n − 6,
with n denoting the number of fixed components. Since the number of fixed component
splits is k ≤ n − 1, the number of edge sets is at most 3k − 3.

We modify the cost assignment scheme introduced in the previous section. We assign
a new edge set to fixed component splits so that no split is assigned more than 3 edge
sets. If an edge set ES is split, one part of it remains assigned to the split it was assigned
to before and for the second part we choose a split as for a new edge set. Since the
number of edge sets is always not larger than 3k − 3, such an assignment exists.

As described in the previous section, the cost of RandMST, assigned to one edge
set, is in expectation O(log n). So, for planar graphs, we assign at most O(log n) cost of
RandMST to each fixed component split. Combining this with Corollary 6.18 we can
follow Theorem 6.19.

6.5. Weight-Diversified Input Sequences

We can improve on the result obtained for the Restricted ODMST problem on planar
graphs by investigating a special class of input graphs and input sequences. We restrict
both of them in such a way, that at each point of time the number of edges with a
particular weight is not larger than a given constant c. More formally, let E(w, t) be the
set of edges with weight w in time step t. Then in a c-weight-diversified sequence we
have |E(w, t)| ≤ c for each weight w and each time step t.

We will show that RandMST has a competitive ratio of c on c-weight-diversified
graphs.



6.6 Stochastic Adversary 105

Theorem 6.22. For the competitive ratio of algorithm RandMST on c-weight-diversified
sequences it holds RRandMST ≤ c.

Once again we reuse the construction of fixed components and edge sets introduced
in Section 6.3. Every time a fixed component split S occurs, we assign all created edge
sets to the split. Let the split occur on layer w in time step t. By our initial assumption it
holds |E(w, t)| ≤ c.

Consider an edge set ES created by the split S. Let x = |ES ∪ E(w, t)|, i.e. the number of
edges in edge set ES with weight x. The cost of RandMST incurred on this edge set in
the remaining execution will be at most x. Therefore, we can bound the cost assigned to
F by this edge set to x. Summing up over all edge sets assigned to F, we can bound the
total cost assigned to F by c.

Combining this cost assignment scheme with Corollary 6.18 we can follow Theo-
rem 6.22. Note, that for achieving the constant competitive ratio on c-weight-diversified
input sequences the randomization of RandMST is not necessary.

6.6. Stochastic Adversary

In this section we will investigate the performance of RandMST against a stochastic
adversary for the Restricted ODMST problem. In more detail, we will show that most
of the sequences generated by the parameterizable stochastic adversary are c-weight-
diversified input sequences.

We assume the following stochastic process. We start with any input graph with all
edge weights equal 0. In meta-step t, edge e ∈ E executes a bernoulli random trial with
success probability pe, independently from other edges. Edge e increases its weight
by one in meta-step t if the experiment was successful and leaves its weight as it is
otherwise. Since the ODMST problem assumes that at most one edge is increased in a
time step, we divide each meta-step into time steps, such that exactly one edge weight
is increased in each time step. This defines the input sequence σ. This division can be
performed in any way, we do not pose any restrictions on it.

The success probability pe can be different for each edge e ∈ E and we denote the
vector of probabilities π = (pe)e∈E. We only restrict for technical reasons pe ≤ 1/2. We
denote m = |E| for the input graph G = (V,E).

Theorem 6.23. For the Restricted ODMST problem and for an input sequence σ chosen
randomly by the stochastic process the competitive ratio of RandMST is constant with high
probability.
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Consider all sequences with a length tmax generated by the independent stochastic
process. We will show that only few of these sequences have maxw∈W∧t∈T |E(w, t)| > c,
with R = {ts, . . . , tmax} and W ⊆ R for an appropriate ts. We introduce Theorem 6.24 which
formally states the fact that the greatest part of most input sequences generated by the
described stochastic process has less than c edges with equal weight in every meta-step.
We define a technical constant

φ = max
{
max

e∈E
1/p8

e ,m
4,m

1+c+α
c/4−3

}
.

Theorem 6.24. For any tmax, a set of meta-rounds T ⊆ {φ, . . . , tmax}, and a set of weights
W ⊆ T it holds

Pr

⎡⎢⎢⎢⎢⎣max
w∈W
t∈R
|E(w, t)| > c

⎤⎥⎥⎥⎥⎦ ≤ 1
mα

.

We begin with the following lemma.

Lemma 6.25. Let t ≥ 1/p8
e and pe ≤ 1

2 for every e ∈ E. Furthermore, let t ≥ m
c+1+α
c/4−3 and

t ≥ m4. Then for a fixed meta-step t and a fixed weight w ≤ t it holds

Pr [|E(w, t)| > c] ≤ 1
mα−logmε t2+ε

.

Proof. Let us look at one specific edge e. The probability that the weight of e is exactly
w in meta-step t is

Pr[wt(e) = w] =
(

t
w

)
pw

e
(
1 − pe

)t−w .

Let us consider Pr[wt(e) = w] as a function of w. Considering the upper bound on the
probability distribution function of the binomial distribution shown in the technical
Lemma A.1 (see appendix) we have

max
w∈{0,...,t}

Pr
[
wt(e) = w

]
≤ 1√

t · p4
e

.

As by assumption t ≥ 1/p8
e we have

max
w∈{0,...,t}

e∈E
Pr

[
wt(e) = w

]
≤

(1
t

)1/4

. (6.1)
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Let us turn our attention to the probability Pr[|E(w, t)| = i] for a fixed meta-step t and
a fixed weight w. This probability is defined and upper bounded as follows

Pr[|E(w, t)| = i] =
∑

E′⊆E
|E′|=i

⎡⎢⎢⎢⎢⎢⎣∏
e∈E′

Pr[wt(e) = w]
∏

e∈E\E′

(
1 − Pr[wt(e) = w]

)⎤⎥⎥⎥⎥⎥⎦
≤

∑
E′⊆E
|E′|=i

[(
max

e∈E
Pr[wt(e) = w]

)i (
1 −min

e∈E Pr[wt(e) = w]
)m−i

]
=

(
m
i

) (
max

e∈E
Pr[wt(e) = w]

)i

We aim for upper bounding Pr[|E(w, t)| = c] with 1/(t3 ·m1+c+α). So,

Pr[|E(w, t)| = c] =
(
m
c

) (
max

e∈E
Pr

[
wt(e) = w

])c

≤ mc
(
maxw∈{0,...,t}

e∈E
Pr

[
wt(e) = w

])c

≤ mc ·
(1

t

)c/4

. (6.2)

From our initial assumptions we have t ≥ m
c+1+α
c/4−3 and thereby

mc+1+α ≤ tc/4−3

mc ·
(1

t

)c/4

≤ 1
t3 ·m1+α .

Therefore we have
Pr[|E(w, t)| = c] ≤ 1

t3 ·m1+α .

Now we want to upper bound the probability that the number of edges with weight
w in a meta-step t is greater than c

Pr[|E(w, t)| ≥ c] =
m∑

i=c

Pr[|E(w, t)| = i] ≤ m · max
i=c,...,m

Pr[|E(w, t)| = i]

≤ m · max
i=c,...,m

Pr[|E(w, t)| = i] (6.3)

≤ m · max
i=c,...,m

mi ·
(1

t

)i/4

. (6.4)

By assumption t ≥ m4 and therefore (1/t)1/4 ≤ 1/m. This implies mi (1/t)i/4 is largest for
i = c. Thus,

Pr[|E(w, t)| ≥ c] ≤ max
i=c,...,m

mi (1/t)i/4 ≤ mc (1/t)c/4 ≤ 1
t3 ·mα

.
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With the help of the previous lemma we will prove Theorem 6.24. Using the result from
the former lemma we can approximate the following probability, for T ⊆ {φ, . . . , tmax}
and W ⊆ T

Pr
[

max
w∈W∧t∈T

|E(w, t)| ≥ c
]
≤ Pr

⎡⎢⎢⎢⎢⎣ ⋃
w∈W∧t∈T

|E(w, t)| ≥ c

⎤⎥⎥⎥⎥⎦
≤

∑
w∈W∧t∈T∧w≤t

Pr[|E(w, t)| ≥ c]

≤
∑

w∈W∧t∈T∧w≤t

1
t3 ·mα

≤
∑
t∈T

t
1

t3 ·mα

≤ 1
mα

∑
t∈T

1
t2

≤ 1
mα

.

The last inequality holds because
∑

t∈T 1
t2 ≤ 1. This concludes the proof of Theorem 6.24.

Splitting meta-steps. The following lemma shows that the limit on |E(w, t)| established
by Theorem 6.24 can be applied to steps, created by splitting meta-steps.

Lemma 6.26. Assume that |E(w, t)| ≤ c for all t ∈ T and w ∈ W ⊆ T. Then after splitting
the set of meta-steps T into a set of steps T′ it holds |E(w, t)| ≤ 2c for all t ∈ T′ and w ∈W′ ⊆ T′.

Proof. Let tm be a meta-step and assume there exists a step t ∈ T′ created from tm and
a weight w such that |E(w, t′)| > 2c. Each edge which has weight w in time step t had
either weight w or w − 1 at the beginning of meta-step tm. As |E(w, t′)| > 2c, it must hold
|E(w, tm − 1)| > c or |E(w − 1, tm − 1)| > c, leading to a contradiction.

Competitive ratio. We divide the input sequence σ in two parts and consider the
competitive ratio of RandMST on both parts as on separate sequences. The first part σ1

reaches from the first time step toφ. The second partσ2 consists of the rest ofσ. We choose
the initial tree for the input sequence σ2 as the lastMALG computed by RandMST on σ1.
Then the execution of RandMST on the whole sequence σ is the same as the execution
of RandMST on σ1 first and σ2 afterward. Therefore, CALG(σ1) + CALG(σ2) = CALG(σ).
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Since σ1 has a length of φ it holds CALG(σ1) ≤ φ. By Theorem 6.24 and Lemma 6.26 it
holds |E(w, t)| ≤ 2c for all time steps in σ2 with high probability. If that event occurred,
then Theorem 6.22 can be applied to bound RandMST’s cost on σ2, so that

CALG(σ2) ≤ 2c · COPT(σ2) + k , (6.5)

where k is an appropriate constant independent of the input sequence and the definition
of the stochastic process. Altogether we obtain

Pr
[
CALG(σ) ≤ 2c · COPT(σ) + φ + k

]
≥ 1 − 1/mα , (6.6)

which implies Theorem 6.23.

6.7. Hardness of Approximated ODMST Problem

In the ODMST problem we have forced the online algorithm to always maintain a
minimum spanning tree. One might be tempted to relax this requirement and allow the
algorithm to maintain a c-approximation of a MST and thereby (possibly) reduce the
cost necessary to maintain the MST.

To model this scenario, we define the c-apODMST problem. Formally, in the c-
apODMST problem the online algorithm is allowed to output a c-approximation of a
MST in each round. On the other hand, we still expect from the optimal offline algorithm
that it outputs a perfect minimum spanning tree in each round. Thereby, we allow the
online algorithm more freedom in comparison to the optimum offline algorithm. We
keep the cost measures for both algorithms as in the original ODMST algorithm and
stick to the notion of competitiveness given earlier.

Unfortunately, even with this relaxation, both lower bounds shown for the original
ODMST problem hold also for c-apODMST. We briefly describe how to modify the
construction of the lower bounds to make account for the greater possibilities of the
online algorithm. For the construction we once again utilize the graph used for the
deterministic lower bound on the ODMST problem (see Section 6.1). Recall, that the
vertices of G are split thereby in two sets V1 and V2, s.t. n/2 = |V1| = |V2|. All edges
connecting vertices of one of those sets have weight 1 and all edges crossing the boundary
have initially weight n. Therefore, the weight of any MST for this graph is 2·(n/2−1)+n =
2n − 2.

In the construction of input sequences for both lower bounds we have been gradually
increasing the weight of edges from EC. Let σ be the original input sequence, used in
Section 6.1. basing on σ, we create a new sequence σap. Let t be a time step in σ, such
that the weight of edge e is increased by one. Increasing this edge weight caused the
algorithm Alg solving the ODMST problem to abandon this edge and use another one
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forMALG. In order to achieve the same for the c-apODMST problem, we have to increase
the weight of e by more than one. Up to time step t, the weight ofMALGap, the minimum
spanning tree constructed by the algorithm Algap, is equal to n−2+wt(e). Therefore, we
have to increase the weight of e to c · (n − 2 + wt(e)) − n + 3). After such an increase, the
weight of a spanning tree including e is larger than c times the weight of the minimum
spanning tree, and Algap is forced to remove e fromMALGap.

Therefore, if σ forces any algorithm for the ODMST problem to have a competitive
ratio of C, then σap does the same for the any algorithm solving the c-apODMST problem.
We can conclude, that even with this relaxation, the c-apODMST problem remains hard.
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Managing Spare Relays

In this chapter we are considering the problem of an appropriate management of relays
which are not actively used. Even if relays are not used at a given moment, they should
be on standby for being used in one of the various communication chains in the robot
graph. The key problem occurs when at a certain location in the robot graph the demand
for relays increases – the question is then which of the spare relays to use. We want to
minimize the total energy used for traveling by relays. An intuitive way to answer an
increasing demand for relays would be to use the relay which is closest to the source of
demand. Unfortunately, this is not the best way to go, sometimes it makes sense to fetch
a relay from a more distant location.

Basing on this description one can think of using this framework for handling any
resources, not necessarily relays. Therefore we formulate our problem as the k-resource
problem.

The k-resource problem is an extension of the well-known k-server problem. It is based
on a finite metric space (X, ξ). The metric space is equivalent to a graph and therefore
we will use both notations interchangeably within this chapter, depending on which is
more convenient for a specific purpose. Whenever we speak of a graph, we mean a
complete graph with nodes corresponding to points of X, and with edge weights given
by function ξ.

In each point of X we have some demand for resource units. The demands are
arbitrary integers, but their sum is guaranteed to be at most some fixed integer k. We
investigate the k-resource problem in the framework of competitive analysis, therefore
the concept of time is necessary. Time is slotted and divided into time steps. In each
time step, the algorithm solving the k-resource problem is revealed one item of the input
sequence, which contains changes of the demand: in every time step, at exactly one place
the demand decreases or increases by 1. At the end of any time step, the algorithm has
to cover all the demands by its resource units, which means that the number of resources

111
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available at any node has to be at least the demand at this node. In order to do that,
the algorithm may move the units between the points of X, paying the sum of distances
traveled by the units.

More formally, let the resource vector Xt−1 denote the algorithm’s distribution of re-
sources to points in the metric space at the end of the time step t − 1. We assign all
movement of resources by the algorithm to a particular time step, therefore the distri-
bution of resources at the end of time step t − 1 is equal to that at the beginning of time
step t. In step t, the algorithm is given a demand vector dt, which describes the demand
for resources in all points of the metric. We allow only input sequences, for which∑n

i=1 |dt−1[i]−dt[i]| = 1 and |dt| ≤ k for all time steps t. This restricts the change of demand
between two consecutive time steps to consist of one resource unit at one point of the
metric. Furthermore, the total demand may never exceed k. We assume that at the very
beginning of the input sequence, X0 is any but fixed and |d0| = 0, meaning there is no
demand.

During the time step, an algorithm has to move resources between metric points, so
that at the end of the time step Xt ≥ dt, where Xt is the new resource vector. For each
resource unit moved from point i to j the cost of the algorithm is equal to the distance
ξ(i, j) between these two points. The total cost of the algorithm during a time step is the
sum of the cost of all movements performed in this time step.

Metrics

We have defined the k-resource problem for arbitrary metrics. We will show later
by a simple argument, that creating an algorithm with competitive ratio o(k) on any
metric for the k-resource problem is considered difficult in literature. Therefore, we will
concentrate on two special types of finite metrics.

Uniform metric space. In the uniform metric space, the distances between two differ-
ent points of the space are equal to 1. Therefore moving a resource unit between two
points in the metric always incurs unit cost to the algorithm. We will see that reasonable
algorithms for uniform metric spaces move at most one resource unit per time step and
therefore their cost for a time step is either none or 1.

Generally, one can allow for small differences between the distances of points in the
uniform metric spaces. If the ratio between the smallest and largest distance is bounded
by c, then the competitive ratio of an algorithm, designed for a true uniform metric
space, is only by the factor c worse if executed on such a metric space. Therefore, one
can define a uniform metric space so that the distances are all Θ(1), causing no change
to the competitive ratio which is usually stated in the O(·)-notation.



113

Decomposable metric spaces. A metric space (X, ξ) is decomposable if it can be parti-
tioned into a set Λ of disjoint components. The distance between components has to be
relatively large comparing to the maximal distances between points within individual
components. As we won’t consider general decomposable metric spaces in our work,
we skip a formal definition of a decomposable metric space for a moment and get back
to it in the Related Work section.

Uniformly decomposable metric spaces. A uniformly decomposable metric space
is a decomposable metric space fulfilling additional restrictions. Each of the components
from Λ has to be a uniform metric space, i.e. the distance between two points i, j ∈ λ
in the component λ ∈ Λ have to be ξ(i, j) = 1. Furthermore, the components have
to be pairwise separated by Γ, so that for any two points i ∈ λ1, j ∈ λ2 from distinct
components λ1, λ2 ∈ Λ, λ1 � λ2 it holds ξ(i, j) = Θ(Γ). The value Γ will be denoted as
the separation between components.

Uniformly decomposable metrics are a natural extension of the uniform metric, ca-
pable of capturing some aspects of locality. Intuitively, the requirement for all intra-
component distances to be equal to Γ is that we are going to treat these connections as a
uniform metric on a high-level, such that each component is considered like a point.

Exactly as for the uniform metrics we may relax the requirement on the distances to
Θ(Γ) instead of Γ.

Dynamic-Resource Problem

In order to solve the k-resource problem on uniformly decomposable metric spaces we
want to reuse algorithms which solve the same problem on uniform metric space. Un-
fortunately, a solution of the k-resource problem for uniform metric spaces is insufficient
for this purpose. Therefore, we define a slightly more general problem, the dynamic-
resource (DR) problem. An algorithm solving the DR problem on uniform metric spaces
can be later used for solving the k-resource problem on uniformly decomposable metric
spaces.

In the dynamic-resource problem the number of resources available at the beginning
of each step t may change. If it increases, the algorithm may choose where to place the
resources; if it decreases, the algorithm may choose which units are removed. We also
generalize the competitive analysis for this problem: the number of units available to
the online algorithm in step t (denoted by kt) is not necessarily equal to the number of
units at optimal offline algorithm’s disposal (kOPT

t ). Naturally, in each step |dt| ≤ kt and
|dt| ≤ kOPT

t .
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In general, the DR problem seems to be much harder than k-resource, and we do
not aim at constructing competitive algorithms for it. Instead, we construct algorithms
which perform well on some instances of DR, in particular when kt ≥ kOPT

t , kOPT
t is non-

increasing, and kt is non-decreasing. Note that the setting kt ≡ kOPT
t ≡ k corresponds to

the original k-resource problem.

Resource augmentation

Solving the k-resource problem on uniformly decomposable metric spaces will depend
on c-resource augmentation. That means that we will allow our algorithm to use (1+c) ·k
resources to solve its task, whereas the offline schedule will have to fulfill the same task
using only k resource items. Obviously the input sequence will be still limited so that
|dt| ≤ k, otherwise the offline schedule couldn’t solve the problem at all. We call this
version of the k-resource problem the c-resource augmented version.

Results and Outline

We start our investigation of the k-resource problem by presenting its relation to the
k-server problem. This yields lower bounds on the competitiveness of any algorithm
solving k-resource, as shown in Section 7.1. The main results of the paper are divided into
two parts. In Section 7.2, we consider the k-resource problem on uniform metric spaces
consisting of n points. We present a deterministic and a randomized algorithm, both
achieving asymptotically optimal competitive ratios: O(min{n, k}) andO(log(min{n, k})),
respectively. In fact, these algorithms are able to solve some instances of dynamic-
resource problem.

The results above allow us to solve the k-resource problem on uniformly decomposable
metric spaces with Γ ≥ k. The key issue for this kind of metrics is to use resources
available locally in the component and transport new ones from other components
only rarely. In Section 7.3 we give a randomized algorithm with a competitive ratio
(1 + 1/c) · O(log(min{n, k})), where n is the size of the largest component of the metric
space and c denotes the resource augmentation factor (see Theorem 7.21). By the relations
between the k-resource and k-server problems, the same result holds for k-server. The
competitiveness does not depend on the number of components in the decomposition.

Related Work

The k-server problem, introduced in [MMS90], is defined on a metric space (X, ξ), where
ξ(·, ·) is a function measuring the distance between two points of space X. An input
consists of sequence of requests to points from X. Upon seeing a request to point x ∈ X,
an algorithm has to move its servers, so that at least one server is placed at x. The costs
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of transports are defined by the distance function ξ. The goal of an algorithm solving the
k-server problem is to minimize the total distance traveled by its servers in the runtime.

The setting of the k-server problem is powerful enough to model many applications in
computer science, as well as in many other aspects of everyday life. On the other hand,
the model has also some deficiencies. The k-resource problem, a very natural extension
defined in this paper, has the advantage of dealing additionally with two of those: we
allow requests to have different durations (whereas in k-server a request is regarded
as processed after one unit time step) and we allow to request more than one server
to a point of the metric. An application example for the k-resource could be a robotic
scenario, where tasks appearing dynamically in a terrain impose certain demands (for
some periods) on the number of robots that have to be sent to handle them.

Results on k-server. The k-server problem has been prominent in the research on
online problems from the advent of competitive analysis. Currently the best algorithm
for general metrics, WFA [KP95], is (2k − 1)-competitive, which nearly matches the
lower bound of k by [MMS90]. Although this result gives a very important insight into
this and related problems, the achieved competitiveness is hardly acceptable for most
applications.

Thus, much effort was put in the search for randomized algorithms which could
perform better. The results for general metric spaces are unsatisfactory: whereas there
exists a lower bound on the competitive ratio of Ω(log k/ log log k) [BBM01, BLMN03],
currently there is no randomized algorithm better than k-competitive. There are, how-
ever, several results for specific metric spaces that break the o(k) barrier. A classical
result [FKL+91] shows a randomized O(log k)-competitive algorithm for the uniform
metric space. Recently, results on other metric spaces were obtained: the work by Csaba
and Lodha [CL06] provides an O(n2/3 log n)-competitive algorithm for n equally spaced
points placed on a line; Bartal and Mendel [BM05] generalized this work for growth-
rate bounded graphs. Seiden [Sei01] has related the k-server problem on decomposable
metric spaces to unfair metrical task systems.

Our result for k-resource on uniformly decomposable metric spaces is one of the
few, which relies on resource augmentation. Another successful applications are due
to Young [You02] for the weighted caching problem and Sleator and Tarjan [ST85] for
paging.

Decomposition theorem in k-server. We will now give a formal defin restricted
model of uniformly decomposable metric spaces.

Partition the point set X into a set of components Λ = {λ1, . . . , λk}. Let dia(λ) =
supi, j∈λ ξ(i, j) be the diameter of component λ and dia(Λ) = maxλ∈Λ dia(λ) be the maxi-
mum diameter over all components. The distance between two components is defined
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as
ξ(λ1, λ2) = max

i∈λ1 , j∈λ2

ξ(i, j) .

Then the separation of the components is equal to

Γ̃ = min
λ1,λ2∈Λ

ξ(λ1, λ2)
dia(Λ)

The results provided by Seiden [Sei01] assume only that Γ̃ is sufficiently large. This
implies, that the distances between components are large in comparison to the maximum
distances within components. There are no restrictions implying that the distances
between components are similar. The presented algorithms provide an algorithm with
expected competitive ratio of approximately O(z log2(k + z)) where z = |Λ| (for clarity of
presentation we have neglected a few lower-order terms in the competitive ratio). The
solution requires a separation of at least Γ̃ > 2k.

Note that achieving an expected competitive ratio of o(|Λ|) for the setting of decom-
posable metric spaces would solve the k-server with expected competitive ratio o(|Λ|).
Though there exists no lower bound showing this is infeasible, this is considered a very
hard task. Therefore, looking for a result with competitive ratio sublinear in z (or even
independent from z) we have restricted the metric slightly more, defining Γ in a stricter
way than Γ̃ and requiring each component to be a uniform metric space.

Model Restrictions

The described model has certain limitations. The most important is that we allow
changes in the network to happen only at a slow rate, i.e. the demand changes at only
one point and only by one per time step. A similar restriction has been already imposed
on the model of the Online Dynamic Minimum Spanning Tree problem and discussed
in Chapter 6.

7.1. Lower Bounds

It is quite straightforward that the k-resource problem is capable of modeling k-server
instances. Moreover, the ability to solve the k-resource problem implies the ability to
solve the k′-server problem, for k′ ≤ k, as stated in the lemma below.

Lemma 7.1. Fix any metric space (X, ξ) and integers k′ ≤ k. If there exists an α-competitive
(randomized) algorithm A for the k-resource problem on (X, ξ), then there exists an α-competitive
(randomized) algorithm A′ for the k′-server problem on (X, ξ).
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Proof. Consider any input σserv for k′-server problem; we show how to construct an
input σres for the k-resource problem. We choose any node v ∈ X, and at the beginning
of σres we increase the demand at v to k − k′. Then every round of the original instance
is translated into two rounds for the k-resource problem: a request at x is converted to
an increase of resource demand at x by 1 in the first round and decrease back by 1 in the
second round. The algorithm A′ runs algorithm A on σres and returns A’s movements of
units as its own solution.

Note that A has only k′ free units; the other ones are bound to v for the whole run-
time. Thus, the movements of these units correspond to a feasible solution for k′-server
problem. Moreover, the costs of these two solutions coincide: CA′(σserv) = CA(σres) − β′,
where β′ is the cost of initial movement of k − k′ units to v.

Let β be the maximum possible cost of sending k − k′ units from any points of X to
v. Note that β depends only on the structure of the metric space and not on the input
sequence. Therefore, any optimal solution for σserv yields a solution S for σres with the
cost at most β greater. Thus, COPT(σres) ≤ CS(σres) ≤ COPT(σserv) + β.

Summing up, since A is α-competitive, there exists a constant ρ, such that CA(σres) ≤
α · COPT(σres) + ρ. Therefore,

CA′(σserv) ≤ CA(σres) ≤ α · COPT(σres) + ρ ≤ α · COPT(σserv) + (α · β + ρ) ,

which proves the α-competitiveness of A′.
The result for the randomized case follows when we replace CA and CA′ with their

expected values.

By means of Lemma 7.1, we may apply known lower bounds for k-server (which
are: k for a deterministic scenario [MMS90], Ω(log k/ log log k) for a randomized one
[BBM01, BLMN03], and Hk = Θ(log k) for a randomized one in uniform spaces [FKL+91])
to achieve the bounds on k-resource problem. Since the bounds on k-server hold if k is
smaller than the number of points of the metric space, we relate the k-resource problem
to a (min{k, n − 1})-server problem, where n is the number of points in X. If X is an
infinite space, then min{k, n − 1} = k.

Corollary 7.2. Fix any space (X, ξ) consisting of n points, any integer k, and any α-
competitive algorithm A for the k-resource problem. Let f = min{k, n− 1}. If A is deterministic,
then α ≥ f ; if A is randomized, then α = Ω(log f/ log log f ). Moreover, if (X, ξ) is a uniform
metric, then for a randomized A, α ≥ H f , where Hi =

∑i
j=1 1/ j = Θ(log i), the i-th harmonic

number.
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7.2. Uniform metric spaces

In this section we investigate the k-resource and dynamic-resource problems on a uni-
form graph of n ≥ 2 nodes. First, we present some definitions and notations. Then,
we specify a very general class of phase-based algorithms and prove crucial properties
about them. It appears that any (deterministic) algorithm from this class is O(min{n, k})-
competitive. Finally, we show that by carefully using randomness, we are able to
substantially reduce this factor to O(log(min{n, k})). By Corollary 7.2, our results are
asymptotically optimal.

Preliminaries. Formally, by a vector we understand a vector of n integers. For any
vector A, let |A| = ∑n

i=1 A[i]. We say that a vector A covers B (we write A ≥ B) if
A[i] ≥ B[i] for all 1 ≤ i ≤ n. For any two vectors A and B we define the distance between
them as δ(A,B) := 1

2 ·
∑n

i=1 |A[i] − B[i]|.
Recall that at the beginning of each step t, the resource vector Xt−1 defines the dis-

tribution of resources to graph nodes. The demand vector dt must be satisfied by the
algorithm at the end of time step t, by moving resources appropriately so that Xt ≥ dt.
It is straightforward to see that for uniform metrics the algorithm has to pay at least
δ(Xt−1,Xt) for changing the resources from Xt−1 to Xt, and it is possible to schedule the
movements in such a way that the cost is equal to δ(Xt−1,Xt). In the following we omit
subscript t if it can be deduced from the context.

Division of input into phases. First, we show how to deterministically partition the
whole input sequence σ into phases; each phase consist of several time steps. The
procedure is described in Algorithm 3. In each phase we track the maximum demand
occurring at any node, and we store this information in vector Dt. Within one phase, D
is non-decreasing and since the change of d is restricted, only one entry of D can change,
and only by 1. At the beginning of the phase Pq we store the current number of units,
kt, in the variable κq. Note that a phase Pq may end because either kt < κq or |Dt| > κq.
If the former condition holds, we call such Pq unfair, otherwise Pq is fair. Note that any
k-resource instance consists only of fair phases. As a byproduct, we get that within a
phase |dt| ≤ |Dt| ≤ κq. Note that the partitioning into phases depends only on the input
sequence and can be computed online.

7.2.1. Phase-based algorithms for the DR problem

In this section we construct a class of phase-based algorithms. Although the algorithms
will always produce a feasible solution for the DR problem, we prove their competitive-
ness in fair phases only. This immediately yields their competitiveness on k-resource
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Algorithm 3 Division of the input sequence into phases
1: procedure StartPhase(q, t)
2: Pq ← {t}; κq ← kt; Dt ← dt

3: end procedure

4: q← 1; StartPhase (q, 1) � Pq = current phase
5: for t← 2 to |σ| do
6: for all node i do
7: Dt[i]← maxt′∈Pq dt′[i]
8: end for
9: if kt < κq or |Dt| > κq then

10: q← q + 1; StartPhase (q, t) � new phase starts now
11: else
12: Pq ← Pq ∪ {t}
13: end if
14: end for
15: return (P1,P2, . . . ,Pq)

instances.
The proof consists of two parts: in the first one we relate the cost of the optimal offline

algorithm in each two consecutive phases Pq−1 and Pq to the difference of the values of
D at the end of these phases; in the second one we relate the cost of our algorithm to the
same amount.

Algorithm construction. A phase-based algorithm PB bases its choices solely on the
contents of vector D, namely it always tries to maintain an invariant X ≥ D. This
simplifies the analysis, as we may assume that the adversary manipulates vector D
directly, instead of changing the demands. Moreover, in phase Pq, the algorithm uses
only κq units, and we explicitly assume it in the analysis, i.e. |X| = κq. The surplus of
units is left untouched by the algorithm and is stored in a fixed node vS. If the real
number of units decreases, the surplus decreases, and if surplus diminishes below zero,
it implies the end of the phase because of the condition kt < κq.

First, we describe the behavior of PB in the first step of a phase Pq. If the preceding
phase was fair, then κq ≥ κq−1. If this inequality is strict, then the algorithm has to
increase the number of resources it is actually using. We simply assume that at the
very beginning of Pq, the vector X increases by the surplus units, so that |X| = κq. This
introduces no additional cost to the algorithm. If the preceding phase was unfair, then
the situation is a little bit more complicated, because κq < κq−1, and the algorithm has to
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remove some units. In such case, in the first step a reorganization is performed, i.e. PB
moves all the units, so that the demand is fulfilled exactly: X[i] = d[i] for each node i but
vS, where all the remaining units are stored.

To precisely describe the behavior of PB within a phase, we divide the nodes into
three groups. A node i is called saturated when X[i] = D[i], unsaturated when X[i] > D[i],
and infringing when X[i] < D[i]. It usually makes a difference, when these conditions
are checked: before or after the algorithm’s decision in step t. In the former case, Dt is
compared with Xt−1, and in the latter with Xt.

Phase-based algorithms are lazy (as introduced earlier for the k-server problem in
[MMS90]). It means that if the invariant holds at the beginning of time step t, i.e. if
Xt−1 ≥ Dt, the algorithm does nothing (Xt = Xt−1). Otherwise, note that Xt−1 covers
Dt−1 and since D may change only at one node, say j, there is at most one infringing
node j. The algorithm may not move any of the units from saturated nodes without
further violating the invariant, and therefore it considers the set of unsaturated nodes
Ut = {i ∈ V : Xt−1[i] > Dt[i]}. Since throughout the phase |Dt| ≤ κq = |Xt| and there exists
one infringing node, Ut is non-empty. PB chooses now one node i ∈ Ut, according to
some rule called U-rule, and moves one unit from node i to j (we write that j borrows
one unit from i). Note that PB is not fully defined, as we have some freedom in choosing
theU-rule. It appears that we may show some properties of PB and the bounds on its
performance which hold for anyU-rule.

Basic observations. We start with an easy observation on the structure ofUt sets and
node saturation process.

Lemma 7.3. For any two consecutive steps t and t + 1 from one phase, Ut+1 ⊆ Ut. Addi-
tionally, at the very end of a fair phase all nodes are saturated.

Proof. For the first part of the lemma, it suffices to show that within a phase it is
impossible for a node to change its state to unsaturated. Assume the contrary, i.e. that a
node i changed its state into unsaturated. Since D is non-decreasing, it can only happen if
the number of resources at i increased, i.e. Xt+1[i] > Xt[i]. But the algorithm PB increases
the number of resources only when a node is infringing. Then, after the increase, the
node becomes saturated (and not unsaturated).

For proving the second part of the lemma, we fix any fair phase Pq. At the end of each
step t from Pq, we have Xt ≥ Dt and |Xt| = κq. Since Pq is fair, at the end of its last step
|D| = κq, and thus it holds that X = D, i.e. all nodes are saturated.
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Now fix any phase Pq. For the sake of analysis, if a reorganization of X occurs at the
end of the first step of Pq, we assume that it is performed at the very beginning of Pq,
before the demands are presented to the algorithm in the first step. This assumption
simplifies the notations below.

Let Fq be the resource vector X at the very beginning of Pq (but after the reorganization
step, if any) and let F′q be the resource vector at the very end of Pq. Obviously, it holds
that |Fq| = |F′q| = κq. If at some node we need a resource unit, we borrow it from a node
which has too many units compared to its current demand. If we always borrowed from
a “correct” node (one that will not need this unit anymore in this phase), we would pay
exactly δ(Fq, F′q).

Lower bound on the optimal algorithm. It appears that on fair phases no algorithm
which uses few resources can asymptotically beat the cost of δ(Fq, F′q), as stated in the
following lemma.

Lemma 7.4. For any two consecutive fair phases Pq−1 and Pq, any algorithm for the DR
problem, which has at most min{κq−1, κq} units in these phases, has to pay at least δ(Fq, F′q)/2.

To prove this lemma, we first introduce a new notation. For any phase Pq let τq denote
the value of vector D at the end of the phase. Note that for a fair phase Pq, |τq| = κq.
Additionally, if Pq is a fair phase, then F′q = τq; if Pq−1 is a fair phase, then Fq ≥ τq−1. It is
possible to show the following technical lemma.

Lemma 7.5. δ(τq−1, τq) ≥ δ(Fq, F′q)/2 for any two consecutive fair phases Pq−1 and Pq.

Proof. Recall that since Pq−1 and Pq are fair phases, Fq ≥ τq−1 and F′q = τq. Additionally,
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|Fq| = |F′q|. Therefore

δ(Fq, F′q) =
∑

i:F′q[i]>Fq[i]

(F′q[i] − Fq[i])

=
∑

i:τq[i]>Fq[i]

(τq[i] − Fq[i])

≤
∑

i:τq[i]>τq−1[i]

(τq[i] − τq−1[i])

≤
∑

i

|τq[i] − τq−1[i]|

= 2 · δ(τq−1, τq) .

Thus, it is sufficient to prove that any algorithm has to pay at least δ(τq−1, τq) for two
phases Pq−1 and Pq. To give the reader more insight in the structure of the lower bound,
we consider the following thought experiment. Assume for a while that we are dealing
with the k-resource problem, i.e. kt ≡ kOPT

t ≡ k. Consider the following strategy Off for
an offline algorithm: at the beginning of phase Pq, set the resource vector to τq and do
not change it throughout the whole phase. Of course, such a resource vector is valid for
all the demands occurring in the phase, and thus inside a phase Off pays nothing. A
drawback of this algorithm is that the changing between τq−1 and τq might be expensive.
The proof of lemma 7.4 that this “switching” cost is unavoidable by any algorithm,
even the optimal offline one. Moreover, this lower bound holds not only for k-resource
instances, but also for fair phases of DR instances.

Proof of Lemma 7.4. Let κ = min{κq−1, κq}. Let fi = max{τq−1[i], τq[i]}, i.e. fi is the maxi-
mum demand occurring at node i during the given two phases. Consider the following
thought experiment: we have

∑
i fi slots, at most κ slots are occupied by units at the

beginning. We want each slot to be occupied at some moment of time, as this is a
condition necessary to have fi resources at node i at some time step. To each of

∑
i fi − κ

slots, which are initially empty, we have to move a unit, and thus the total amount paid
is at least

∑
i fi − κ. It suffices to bound this term by δ(τq−1, τq). By the definition of δ, we

have

2 · δ(τq−1, τq) =
∑

i:τq−1[i]>τq[i]

(τq−1[i] − τq[i]) +
∑

i:τq[i]>τq−1[i]

(τq[i] − τq−1[i]) .
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We assume that the first sum is greater; the other case is symmetric. Then we obtain

δ(τq−1, τq) ≤
∑

i:τq−1[i]>τq[i]

(τq−1[i] − τq[i])

=
∑

i:τq−1[i]>τq[i]

(τq−1[i] − τq[i]) +
∑

i:τq−1[i]≤τq[i]

(τq[i] − τq[i])

=
∑

i

max{τq−1[i], τq[i]} −
∑

i

τq[i]

=
∑

i

fi − κq

≤
∑

i

fi − κ ,

which finishes the proof.

Note that, generally, the lemma above does not hold for unfair phases. In particular
τ vectors might be small there, and thus it might be possible for an algorithm to have
a resource vector which is “good” for both phases, i.e. does not force the algorithm to
move units.

Tokens and cost in one phase. In an online setting it is usually not possible to borrow
units in an optimal way. If — to fulfill the demand — node i borrows from some node j,
which will need this unit in the future, we only get rid of the deficiency for a while and
when the demand at node j increases appropriately, it will have to borrow from some
other node.

To analyze the performance of our algorithm we introduce a concept of tokens. One
may think of a token as a kind of currency used to pay for units sent from remote nodes.
The phase begins with no tokens in the graph; at the end of a phase all tokens are
removed. Whenever node i borrows a unit from node j it has to pay j, i.e. give j a token
in exchange. If i has no tokens, then prior to the exchange it has to produce one. In effect,
the cost paid by the algorithm in one phase is equal to the number of node changes of
all the tokens produced in this phase. We denote the number of tokens at node i at the
end of time step t by Tt[i]. On the basis of the description above, one can deduce that
only at most δ(Fq, F′q) tokens are produced during any phase Pq.

To prove this, we first formulate the relation between the D, X and T, and the bound
on the number of tokens produced.

Lemma 7.6. Fix any phase Pq. For any time step t from Pq and any node i, it holds that
Xt[i] + Tt[i] ≥ Fq[i]. Moreover, if Xt[i] > Dt[i] or Tt[i] > 0, then Xt[i] + Tt[i] = Fq[i].
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Proof. We prove the lemma by induction on the number of steps within phase Pq. At
the beginning of Pq, there are no tokens at node i and Xt[i] = Fq[i], so the induction basis
trivially holds. Assume that the conditions of the lemma hold for time step t. For the
vectors X or T to change in time step t + 1, D has to increase at some node i, so that i
becomes an infringing node and has to borrow one unit from a node j. We consider the
lemma condition separately at node i and j.

1. If there were some tokens at i in time step t, then a token was sent in exchange for
a unit, and thus Xt+1[i] + Tt+1[i] = Xt[i] + Tt[i]. If there were no tokens at i, then in
effect, there are still no tokens at i and the number of units X[i] increases. Since the
node was already saturated at t and Tt[i] = 0, the increase of X[i] does not violate
the second condition of the lemma.

2. Note that j has to be unsaturated, i.e. Xt[ j] > Dt[ j] (otherwise it would not be
chosen by our algorithm). Since a unit is exchanged for a token, Xt+1[ j] + Tt+1[ j] =
Xt[ j] + Tt[ j]. By inductive hypothesis, the latter term is equal to Fq[ j].

Lemma 7.7. The number of tokens produced within any phase Pq is at most δ(Fq, F′q). 1

Proof. Since the number of tokens does not decrease within a phase it is sufficient to
show that the total number of tokens at the end of phase Pq is at most δ(Fq, F′q). Let t be
the last time step of Pq, i.e. Xt = F′q. By Lemma 7.6, for any i it holds that Tt[i] = 0 or
Tt[i] = Fq[i] −Xt[i] = Fq[i] − F′q[i]. Therefore, |Tt| ≤ ∑

i:Fq[i]>F′q[i](Fq[i] − F′q[i]) = δ(Fq, F′q).

Bounds for one phase of PB. The following lemma shows an essential upper bound
on the cost of the PB algorithm in one phase.

Lemma 7.8. Let unfq be a binary indicator variable denoting whether phase Pq was unfair.
For any phase Pq, it holds that CPB(Pq) ≤ min{n − 1, κq} · δ(Fq, F′q) + κq · unfq−1.

Proof. If the previous phase was unfair, then the cost of the reorganization is at most
κq. By our earlier observation, the number of produced tokens is at most δ(Fq, F′q) and
therefore it is sufficient to show that each token is moved at most min{n − 1, κq} times.

1 It can be proven that the number of tokens produced is equal to δ(Fq, F′q).
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Fix any time step t. First, note that if node i borrows a unit from node j, then i � Ut

and j ∈ Ut. Therefore a token is sent from the node outside Ut to the node inside Ut.
Let y denote the size of set Ut when the first borrowing of the phase takes place. We
have y ≤ n − 1 and y ≤ κq. Since, by Lemma 7.3,Ut+1 ⊆ Ut, a token can be sent only y
times. This concludes the proof.

Sequences of fair phases. When we combine Lemmas 7.4 and 7.8, we can relate the
cost of the optimal algorithm in two consecutive fair phases Pq−1 and Pq to the cost of the
algorithm PB in Pq. It is straightforward that these bounds hold for all phases of input
sequences of the k-resource problem. Therefore the following lemma follows.

Lemma 7.9. Fix any phase-based algorithm A and any input sequence σ. Assume that for
any two consecutive fair phases Pq−1, Pq, it holds that CA(Pq) ≤ γ(κq) · δ(Fq, F′q). Then A is
O(γ(k))-competitive for the k-resource problem.

Proof. Fix any input sequence σ and let P1,P2, . . . ,Pp be its division into phases. Since
we are dealing with the k-resource problem, all these phases are fair and κq = k for
all 1 ≤ q ≤ p. By Lemma 7.4 and 7.5, we get that the inequality CA(Pq) ≤ O(γ(k)) ·[
COPT(Pq−1) + COPT(Pq)

]
holds for any phase Pq where 2 ≤ q ≤ p − 1. Therefore,

CA(σ) ≤ CA(P1) + CA(Pp) +
∑p−1

q=2
CA(Pq)

≤ 2 · O(k · γ(k)) +
∑p−1

q=2
O(γ(k)) · COPT(Pq) +

∑p−2

q=1
O(γ(k)) · COPT(Pq)

≤ 2 · O(γ(k)) · COPT(σ) + O(k · γ(k)) .

Theorem 7.10. Any (deterministic) phase-based algorithm PB is O(min{n, k})-competitive
for the k-resource problem.

7.2.2. Randomized phase-based algorithm for DR problem

In this section we show a randomized phase-based algorithm for the DR problem, which
— on k-resource instances — is O(log(min{k, n}))-competitive. We only have to specify
the U-rule: the algorithm chooses a node with the smallest number of tokens. If there
is more than one such node, it is chosen uniformly at random. We denote the resulting
algorithm by PBR.
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Distribution of tokens. Our goal is to define the whole game between the adversary
and the algorithm in terms of changes in token positions. For each time step t we
introduce the notion of setU′t = {i ∈ V : Xt[i] > Dt[i]}, i.e. the set of all nodes which are
unsaturated after the algorithm moves its unit. Similarly to the Lemma 7.3, we get that
U′t+1 ⊆ Ut+1 ⊆ U′t . Let �t denote the minimum number of tokens at a node fromU′t . We
can show that each node fromU′t has either �t or �t + 1 tokens.

Lemma 7.11. In step t the number of tokens at any node is at most �t + 1.

Proof. We prove the lemma by induction on the number of time steps. At the very
beginning of the phase, there are no tokens, �t = 0 and the lemma trivially holds.
Assume that the condition holds for time step t. Since in time step t+ 1 a new token can
appear only in setUt+1 ⊆ U′t and it can only appear at the nodes with �t tokens, the new
number of tokens at any node is at most �t + 1. The number of tokens at setU′ can only
increase, and thus this amount is at most �t+1 + 1.

There are two reasons for a node i ∈ U′ to become saturated and in effect excluded
fromU′. The first one occurs when the demand D[i] increases to the level equal to X[i].
The second one occurs when a unit from i is borrowed by some other node and in effect
X[i] decreases to the value of D[i]. Although similar, these cases substantially differ. In
the former case, the choice of node is made by the adversary; in the latter case, the node
is chosen in random fashion by the algorithm and not known precisely to the adversary.

The key to the analysis is the set At = U′t ∪ {i ∈ V : Tt[i] = �t + 1}. Informally, At

contains all the nodes which are either unsaturated or these for which the adversary
cannot be sure that they are saturated. Obviously, each node fromAt contains �t or �t+1
tokens. The following lemma redefines the whole game between the algorithm and the
adversary in terms of token shifting.

Lemma 7.12. In step t + 1, there are two possible actions concerning tokens and setA that
can be incurred by the adversary.

A. A token is moved from i � At to j ∈ At. If i had no tokens, then one token was produced at i.

B. A node i is removed from setAt. If i had �t + 1 tokens, �t tokens remain at i and one is moved
to j ∈ At.

In both actions, node j is chosen uniformly at random amongst these nodes ofAt which have �t

tokens. Additionally, as a result of Action A, setA may decrease.
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Proof. When can the distribution of tokens or the setA change? Obviously, a necessary
condition is that the vector D has to change (increase), because otherwise the algorithm
makes no action at all. Let i be the node at which the demand D increased, i.e. Dt+1[i] =
Dt[i] + 1. We consider several cases.

• i � At. Since Xt[i] = Dt[i], Xt[i] < Dt+1[i], and node i has to borrow a unit. In this
case a token is produced at i if necessary, and moved from node i to node j chosen
randomly fromUt+1. We show that in this case Action A takes place.

Let us take a closer look at the structure ofUt+1 set. We haveUt+1 ⊆ U′t ⊆ At, and
since at the beginning of step t+1 the demand increased outsideAt,Ut+1 =U′t . By
Lemma 7.11,U′t consists of nodes with either �t or �t + 1 tokens, and so doesUt+1.
Additionally, the Ut+1 nodes which have �t tokens are exactly the same nodes as
the ones fromAt with �t tokens. Therefore, j is in fact chosen uniformly at random
amongstAt nodes with �t tokens.

If after moving a token to At in step t + 1, all nodes from A have �t + 1 tokens,
�t+1 = �t + 1. In effect setA changes: all saturated nodes are removed from it.

• i ∈ At. Let Pq be the current phase. By Lemma 7.6, we get that Xt[i] + Tt[i] = Fq[i].
We first show that

Dt+1[i] ≤ Fq[i] − �t . (7.1)

It is sufficient to show that Dt[i] < Fq[i] − �t. If Tt[i] = �t + 1, then Dt[i] ≤ Xt[i] =
Fq[i] − �t − 1. Otherwise Tt[i] = �t, and thus i ∈ U′t , which implies Dt[i] < Xt[i], and
in effect Dt[i] < Fq[i] − �t.

By (7.1), it suffices to consider two sub cases, depending on the demand at node i.

– Dt+1[i] ≤ Fq[i] − �t − 1. Since Xt[i] = Fq[i] − Tt[i] ≥ Fq[i] − �t − 1, the algorithm
has nothing to do. Although such a change may cause i to become saturated,
this happens only if i has �t + 1 tokens, and therefore setA does not change.

– Dt+1[i] = Fq[i]− �t. We show that this case corresponds to one Action B. If i has
�t tokens, then since Xt[i] = Fq[i]− �t, the algorithm does nothing. If i has �t+1
tokens, it has Fq[i] − �t − 1 units and has to borrow one. In effect it chooses
randomly a node j from the set Ut+1 and a token is sent from i to j. It holds
that Ut+1 = U′t \ {i}, and thus, as above, the algorithm chooses in fact node
j uniformly at random amongst these nodes of At which have �t tokens. In
both cases i becomes saturated and therefore removed from setsU′ andA.
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Note that the adversary can compute the set At, but since it is oblivious it does not
know exactly which nodes have �t tokens and which �t + 1. Let rt be the number of At

nodes with �t + 1 tokens. In the appendix, we prove that the nodes with higher number
of tokens are distributed uniformly inAt.

Lemma 7.13. The probability that a node fromAt has �t + 1 tokens is equal to rt/|At|.

Proof. We prove a stronger condition. For a set I ⊆ At, such that |I| = rt, by Et
I we

denote an event that at the end of round t, I is the set of nodes with �t + 1 tokens. We
show inductively that

Pr
[
Et
I
]
=

1(|At|
rt

) . (7.2)

Before we prove the equality above, we show how the lemma follows from it. Fix any
node x ∈ At. There are exactly

(|At |−1
rt−1

)
sets with rt elements which contain x. Since Et

I are
mutually exclusive events, the probability that that x contains �t + 1 tokens is equal to(|At|−1

rt−1

) · 1
(|At |

rt
) =

rt
|At|

At the beginning, there are no tokens in the graph, rt = 0 and (7.2) trivially holds.
Assume that in round t, (7.2) is fulfilled for all I, such that |I| = rt.

If Action A occurs, then one token is added to a node j ∈ At with Tt[ j] = �t. If after this
action all nodes have �t + 1 tokens, �t+1 = �t + 1, rt+1 = 0 and the condition (7.2) trivially
holds. Otherwise rt+1 = rt + 1. Choose any set I′ ⊆ At+1 =At, such that |I′| = rt+1. Then

Pr
[
Et+1
I′

]
= Pr

[
∃x∈I′ Et

(I′\{x}) ∧ token was added to x in round t + 1
]

= rt+1 ·
⎡⎢⎢⎢⎢⎢⎣ 1(|At|

rt

) · 1
|At| − rt

⎤⎥⎥⎥⎥⎥⎦
=

1(|At+1 |
rt+1

) .
If Action B occurs, then we can divide such action into two parts. In the first part,

a node (either with �t or with �t + 1 tokens) is removed from At. In the second part a
token is added to the reducedA set. The events of the latter type were already analyzed
above and thus it remains to consider the removal of nodes from At. Assume that the
removed node i had �t tokens. Then rt+1 = rt. Pick any set I′ ⊆ At+1, such that |I′| = rt+1.
It holds that

Pr
[
Et+1
I′

]
= Pr

[
Et
I′ | i has �t tokens

]
=

Pr
[
Et
I′ ∧ i has �t tokens

]
Pr [i has �t tokens]

,
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and since event Et
I′ implies that i has �t tokens,

Pr
[
Et+1
I′

]
=

Pr
[
Et
I′
]

Pr [i has �t tokens]
=

1/
(|At |

rt

)
|At |−rt
|At|

=
1(|At |−1
rt

) = 1(|At+1 |
rt+1

) .
Otherwise, the removed node i had �t+1 tokens. In this case we pick any set I′ ⊆ At+1,
such that |I′| = rt+1 = rt − 1. The proof is analogous, i.e. it holds that

Pr
[
Et+1
I′

]
= Pr

[
Et

(I′∪{i}) | i has �t + 1 tokens
]
=

Pr
[
Et

(I′∪{i}) ∧ i has �t + 1 tokens
]

Pr [i has �t + 1 tokens]
,

and since event Et
(I′∪{i}) implies that i has �t + 1 tokens,

Pr
[
Et+1
I′

]
=

Pr
[
Et

(I′∪{i})
]

Pr [i has �t + 1 tokens]
=

1/
(|At|

rt

)
rt
|At|

=
1(|At|−1

rt−1

) = 1(|At+1|
rt+1

) .
Thus, for either action (7.2) holds for step t + 1.

Number of token movements. In order to bound the expected number of token
movements in one phase, we construct a potential functionΦ, which relates this amount
to the current distribution of tokens.

We fix any phase Pq and any time step t ∈ Pq. Let Lt =
∑

i�At
Tt[i], the number of tokens

outside setAt. Let
Φt = |Tt| − δ(Fq, F′q) ·H|At| − Lt ,

where Hi =
∑i

j=1 1/ j. Below we show that the expected cost of PBR in one step is bounded
by the change in the potential.

Lemma 7.14. In time step t + 1, E[CPBR(t + 1)] ≤ E[Φt+1 − Φt].

Proof. By Lemma 7.12, we have to consider two types of events.
Assume that Action A occurs. If a token is produced at node i � At, both |T| and L

increase by 1, which does not change the potential. The cost of moving a token is paid
by the decrease of L by 1. Finally, set A may decrease, but this can only increase the
change in the potential.

Assume that Action B occurs. ThenAt+1 =At \ {i} and �t tokens are removed from set
A. E[CPBR(t+1)] = rt/|At| because rt/|At| is the probability of moving a token. Therefore,
the expected change in the potential is equal to

E[Φt+1 − Φt] = δ(Fq, F′q) · [H|At| −H|At+1|] − �t =
δ(Fq, F′q)

|At| − �t ≤ rt

|At| ,
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where the last inequality holds because the number of tokens in At, �t · |At| + rt, is at
most δ(Fq, F′q).

Since it always holds that |At| ≤ min{n, κq} and |Tt| ≤ δ(Fq, F′q), the absolute value of Φ
is bounded by O(log(min{n, κq})) · δ(Fq, F′q). By Lemma 7.14, the same bound holds for
the expected number of token movements in phase Pq, and thus we get the following
lemma.

Lemma 7.15. For any phase Pq, E[CPBR(Pq)] = O(log(min{n, κq})) · δ(Fq, F′q) + κq · unfq−1.

We note that the Lemma 7.9 holds analogously also for randomized algorithms. Thus,
we get the following conclusion.

Theorem 7.16. PBR is O(log(min{n, k}))-competitive for the k-resource problem.

7.3. Uniformly decomposable metric spaces

Up to this point we have been considering the k-resource problem for uniform metric
spaces. We now turn our attention to a metric space (X, d) which is uniformly decom-
posable into a set Λ of components, each being a uniform metric space. The distances
between components are denoted by Γ and z = |Λ|.

Outline of the solution. To solve the k-resource problem on a uniformly decomposable
metric space, we have to care about an appropriate resource assignment on two levels:
the available resources must be split accordingly between the components of the metric
space and they must be assigned to single points of the metric space within each of the
components.

The resource assignment in each of the components is managed by separate instances
of algorithms for the dynamic-resource problem (we use the algorithm PBR introduced
in the previous section). Note that if we look only at the higher level and we treat each
component as one point of the space, we have a usual k-resource game on a uniform
metric. However, if we solve it naively, neglecting what really happens inside of partic-
ular components, we obtain an inefficient algorithm. For example, if the whole activity
takes place in one component, but the total demand in this component is constant, the
naive algorithm on higher level does nothing and may assign much fewer resources
to this component than the optimal algorithm. Therefore, the algorithm PBR working
inside this particular component has no chance to be competitive.
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Thus, the PBR algorithms running inside the components have to give the higher
level assignment algorithm hints in which components the resource demand changes
in a significant manner. Nevertheless, even with these hints, the problem seems to
be difficult and therefore we give our algorithm a little bit more resources than to the
optimal one (i.e. we use resource augmentation). This guarantees that there will be
many phases in which PBR algorithms have at least as many resources as Opt. By the
previous section, we know that the ratio between their costs in such phases is at most
logarithmic in k and in the number of nodes in the specific component.

Upper level of DMR. We introduce an algorithm DMR. It works by using separate
instances PBRλ of the algorithm PBR in each component λ ∈ Λ. After the adversary
changes the demands in component λ, the algorithm DMR checks whether more re-
sources must be moved to component λ. If necessary, this movement is performed and
afterward algorithm PBRλ is used to handle that request with the resources available
locally in λ.

Let Fq(λ), Dt(λ), Iq(λ), and kt(λ) denote, respectively, the variables Fq, Dt, Iq, and kt for
the algorithm PBRλ (as introduced in the analysis of PBR). For any step t belonging to
phase q we define a padding gt(λ) as

gt(λ) =
∑

i:Dt(λ)[i]>Fq(λ)[i]

(Dt(λ)[i] − Fq(λ)[i]) . (7.3)

Let w[λ] denote the total demand for resources in a componentλ, i.e. wt[λ] =
∑

p∈λ dt[p].
The assignment of resources to components is performed by an algorithm which depends
on changes of the padding g. In particular, we construct the following sequence of
vectors:

Wt[λ] =

⎧⎪⎪⎨⎪⎪⎩max{Wt−1[λ] + 1/Γ,wt[λ]} if t > 2 and gt−1(λ) > gt−2(λ),

max{Wt−1[λ],wt[λ]} otherwise.

This recursive definition is still incomplete, since we have to give some start conditions.
Note that by this definition only two elements of W can increase per time step. Using
the values of W the algorithm DMR divides the input sequence σ into epochs E1,E2, . . .
The first epoch starts with the first time step. At the beginning of each epoch we set
W = w. An epoch ends at the end of a step t (after PBR executed all its actions in t) in
which |Wt| ≥ (1+ c) · k − 2. Since |W| can increase by at most 1+ 1/Γ per step, at the very
end of the epoch |W| ≤ (1+ c) · k when the epoch ends in t. For convenience we call each
increase of W due to the condition gt−1(λ) > gt−2(λ) a hit in component λ.
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Let a vector Bt denote the number of resources available in the components. Obviously
|Bt| = (1 + c) · k. In step t we assign exactly 
Wt[λ]� resources to component λ by setting
kt(λ) = 
Wt[λ]�. If there are too few resources in λ (i.e. 
Wt[λ]� > Bt−1[λ]), then a resource
item is moved from another component. This is always possible since we have (1+ c) · k
resource units available and

∑
λ∈Λ
Wt[λ]� ≤ (1+ c) · k by the way epochs are constructed.

In effect, DMR constructs a part of the input sequence for the dynamic-resource
problem solved by PBRλ by changing the number of assigned resources. In any time
step, the DMR algorithm moves resources between components prior to the algorithms
PBRλ. This assures that each PBRλ has 
Wt[λ]� ≥ wt[λ] resources available to fulfill the
demand. The PBRλ algorithm may only use the assigned resources to fulfill the demand,
and not all the resources really available in the component. Such construction implies
that not all resources are always used; this appears counterproductive at first glance,
but it keeps the division into epochs deterministic and dependent only on the input
sequence.

Fair timespans. We introduce a notion of fair timespans, which is crucial to the anal-
ysis of the DMR algorithm. By W̃t[λ] we denote the number of resources maintained
by Opt in component λ. A timespan t of an input sequence is defined as a contiguous
sequence of time steps. We call a timespan t, starting at time step s, fair for component λ
if 
Ws[λ]� ≥ W̃s[λ] and for each step t ∈ t, 
Wt[λ]� ≥ 
Ws[λ]� and W̃t[λ] ≤ W̃s[λ].

Analysis of DMR. Before we analyze the cost of DMR and Opt inside of epochs, we
want to establish the fact, that the division into epochs depends only on σ. Epochs are
determined by the values of W, and it is easily seen that the values of Wt depend only on
Wt−1 and gt−1. By an easy induction one can see that Wt does not depend on the random
choices of the algorithms PBRλ, and therefore the division into epochs is deterministic.
The following lemma shows how the values gt depend on σ.

Lemma 7.17. In the DR problem the value gt depends only on the input sequence σ (including
the values of k) up to step t and the initial resource vector X0. In particular, it does not depend
on theU-rule used.

Proof. The division into phases does not depend on the algorithm and nor does Dt.
Thus, it is sufficient to show that the values Fq also depend only on σ. We prove this
inductively on the number of phases. At the beginning, F1 = X0. Assume that the
condition holds for the first q phases. If phase Pq is fair, then at its end X = D and
then surplus nodes at vS are (possibly) added to X so that |X| = κq+1. Thus, Fq does not
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depend on PB choices. On the other hand, if Pq is unfair, then during the reorganization
the resource vector is created solely on the basis of the demand ds and ks, where s is the
first step of phase Pq+1.

Corollary 7.18. The division into epochs is deterministic, i.e. it depends only on σ.

Using Lemma 7.15 and observing that with each hit |W| increases by 1/Γ, we may
bound the cost of DMR in each epoch. A lower bound on the cost of Opt relies on the
notion of fair timespans. In such a timespan, the algorithm PBRλ has at least the same
number of resources as Opt, and therefore the phases in this timespan are fair. Since
DMR has (1 + c) · k resources available, we can guarantee that there exist fair timespans
of appropriate length during an epoch. In a fair timespan, the PBRλ algorithm is
competitive against Opt, and thus each hit implies that Opt has incurred some cost.

We denote all costs by DMR and Opt due to transferring resources between com-
ponents by CT

DMR and CT
OPT, respectively. Then it holds that CDMR(σ) = CT

DMR(σ) +∑
λ∈Λ CPBRλ(σ|λ) and COPT(σ) = CT

OPT(σ) +
∑
λ∈Λ COPTλ(σ|λ), where σ|λ denotes the part

of input relevant for component λ and with the number of assigned resources set by the
algorithm DMR.

The intuitions above are formalized in the two following lemmas.

Lemma 7.19. Let z ≤ c · Γ and Γ ≥ k. Then for any epoch Ey,

E[CDMR(Ey)] ≤ (1 + c) · k · Γ · O(log(min{n, k})) ,
where the expectation is taken w.r.t. all random choices made by the algorithms PBRλ.

Proof. The number of resource transfers between components within epoch Ey is deter-
mined by the changes in |W|. The algorithm DMR moves a resource between components
only if 
W� has increased and this can happen at most (1 + c) · k times during an epoch.
Thus,

CT
DMR(Ey) ≤ (1 + c) · k · Γ . (7.4)

Note that |W| grows by at least 1/Γ, implying that the total number of hits issued in a
phase is at most (1+ c) · k ·Γ. Consider now a specific component λ and let hλ(Ey) denote
the number of hits issued in component λ within epoch Ey. Denote by Pp, . . . ,Pp′ the
smallest set of phases by PBRλ which contain the epoch Ey. Then it holds that

p′−1∑
q=p+1

δ(Fq(λ), F′q(λ)) ≤ hλ(Ey) + 1 ,
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where the additional cost of 1 comes from the fact that an increase of g in the last time
step of Ey may contribute to a hit in Ey+1 instead of Ey. Let Iλ = ∑p′

q=p unfq−1(λ) be the
number of unfair phases in Pp−1, . . . ,Pp′−1. The expected cost of PBRλ in epoch Ey is, by
Lemma 7.15, bounded by

E[CPBRλ(Ey|λ)] ≤
p′∑

q=p

O(log(min{n, k})) · δ(Fq(λ), F′q(λ)) + k · unfq−1(λ)

≤ O(log(min{n, k})) ·
(
2 · k + hλ(Ey) + 1

)
+ k · Iλ ,

since δ(Fq(λ), F′q(λ)) ≤ k for any phase q. Note that a phase in component λ is unfair
only if at least one resource is removed from λ during that phase; we map each unfair
phase to such a transfer. All the phases Pp+1, . . . ,Pp′−1 are mapped to a transfer inside Ey;
Pp−1 and Pp are possibly mapped to a transfer outside Ey. Unfair phases from different
components are mapped to different transfers, and therefore if we sum these phases
over all the components, we get

∑
λ∈Λ Iλ ≤ (1 + c) · k + 2z. By summing up over all

components we obtain

∑
λ∈Λ

E[CPBRλ(Ey|λ)] ≤ O(log(min{n, k})) ·
⎛⎜⎜⎜⎜⎝2 · k · z +

∑
λ∈Λ

hλ(Ey) + z

⎞⎟⎟⎟⎟⎠ + k ·
∑
λ∈Λ
Iλ

≤ O(log(min{n, k})) · ((4 · k + 1) · z + 2(1 + c) · k · Γ) , (7.5)

since
∑
λ∈Λ hλ(Ey) ≤ (1 + c) · k · Γ and Γ ≥ k. Combining Eq. (7.4) and (7.5), we obtain

E[CDMR(Ey)] ≤ (1 + c) · k · Γ · O(log(min{n, k})) ,

since by assumption z ≤ c · Γ.

Lemma 7.20. Let z ≤ c · Γ/4. Then for any epoch Ey, COPT(Ey) = Ω(c · k · Γ).

Proof. Let e be the last time step of epoch Ey. We define η[λ] = We[λ], η̃[λ] =
maxt∈Ey W̃t[λ], and k̃ = |η̃|. Note that

∑
λ∈Λ η[λ] ≥ (1 + c) · k − 2. Since Opt has only

k balls available, it has moved at least k̃ − k balls during a phase, and therefore

CT
OPT(σ) ≥ (k̃ − k) · Γ . (7.6)

We now want to lower bound the cost of Optλ. Let λ be a component with η[λ] > η̃[λ].
Let s be the time step when 
Ws[λ]� ≥ η̃[λ] for the first time in epoch Ey. Since W̃t[λ] ≤
η̃[λ] for all t ∈ Ey, the timespan [s, e] is fair for λ; we denote it by tλ.
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Since Opt is able to serve the demands, wt[λ] ≤ η̃[λ], and therefore the increase of W[λ]
from η̃[λ] to η[λ] could have only happened due to hits to λ. Thus, hλ(t) ≥ (η[λ]− η̃[λ]) ·Γ,
where by hλ(s) we denote the number of hits in component λ during timespan s.

Let Pp, . . . ,Pp′ be the smallest set of phases by PBRλ which contain tλ. During any
finished phase Pq, the value of gt(λ) increases by 1 from 0 to δ(Fq(λ), F′q(λ)), and each
such increase results in a hit. Note that an increase of g(λ) results in a hit one time step
later, so that an increase in the last step of Ey−1 contributes to a hit in the epoch Ey. Thus,
hλ(Pq) = δ(Fq(λ), F′q(λ)) for all phases and therefore hλ(tλ) ≤ 1+

∑p′
q=p δ(Fq(λ), F′q(λ)). Since

δ(Fq(λ), F′q(λ)) ≤ k for any q, it holds that

p′−1∑
q=p+2

δ(Fq(λ), F′q(λ)) ≥ hλ(tλ) − 3 · k − 1 .

Since tλ is a fair timespan, all phases completely contained in tλ are fair. That is, Pq for
q ∈ {p + 1, . . . , p′ − 1} are fair. Then, by Lemma 7.4 and 7.5, it holds that

COPTλ(Ey) ≥
p′−1∑

q=p+2

δ(τq−1, τq) ≥
p′−1∑

q=p+2

1
2 · δ(Fq(λ), F′q(λ)) ≥ 1

2 · (hλ(t) − 3 · k − 1) .

Summing up over all λ ∈ Λ, we obtain

∑
λ∈Λ

2COPTλ(Ey) ≥
∑

λ:η[λ]>η̃[λ]

(hλ(tλ) − 3k − 1) ≥
⎛⎜⎜⎜⎜⎜⎜⎝ ∑
λ:η[λ]>η̃[λ]

(η[λ] − η̃[λ]) · Γ
⎞⎟⎟⎟⎟⎟⎟⎠ − (3 · k + 1) · z

≥
⎛⎜⎜⎜⎜⎝∑
λ∈Λ

η[λ] −
∑
λ∈Λ

η̃[λ]

⎞⎟⎟⎟⎟⎠ · Γ − (3 · k + 1) · z

≥ ((1 + c) · k − 2 − k̃) · Γ − (3 · k + 1) · z . (7.7)

Combining (7.6) and (7.7), and by the fact z ≤ c · Γ/4, we can show the statement of the
lemma.

The following theorem follows easily since each input sequence is deterministically
partitioned into epochs and DMR is competitive for every finished epoch by the two
former lemmas. The last potentially unfinished epoch contributes only an additive term.

Theorem 7.21. Let (X, ξ) be a uniformly decomposable metric space with component set Λ.
Then DMR isO((1+1/c) · log(min{n, k}))-competitive for the k-resource problem on (X, ξ) with
c-resource augmentation, |Λ| ≤ c · Γ/4 and Γ ≥ k.
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Corollary 7.22. Theorem 7.21 holds analogously for the k-server problem by the reduction
from Lemma 7.1.
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Summary and Outlook

In this thesis we have lied the algorithmic foundations for establishing a service which
assures connectivity in a sparse network. Surprisingly, although research on wireless
network is a very common topic, the most often found assumption is that networks are
connected. Though, everyday experience with networks commonly used is that they
are rather prone to disconnections. This makes it important to design schemes which
can handle these disconnections, either by allowing the network to gracefully degrade
performance, or as presented in this thesis to prevent disconnections. The approach
of using mobile network participants for active maintenance of a connected network
graph seems promising, although many tasks still remain challenging. We will briefly
go through the three main topics handled in this thesis and outline their importance and
deficiencies, allowing for future work.

Organizing a communication chain. The question on how to organize a communi-
cation chain with simple, local strategies is not only important due to its application
for the connectivity management scenario, central to this thesis. Rather, what we find
to be very interesting, is its contribution to the research on swarm robotics. With the
Hopper strategy we have been able to show that simple strategies for this problem are
able to achieve an optimal performance (up to constant factors). This shows that local
and distributed methods can provide very good results while contributing to simple and
maintainable systems. An important insight into the future design of similar strategies is
that the model of execution in sequential runs, employed in the Hopper strategies, brings
visible advantages in comparison to a truly parallel execution as in Go-To-The-Middle.
Furthermore, the Hopper strategies have shown that their non-converging instable be-
havior is helping to remove unnecessary relays from the chain, which has shown to be
very hard in strictly converging strategies, like Go-To-The-Middle. We even conjecture
that a lower bound of at least ω(n) in the static scenario can be shown for parallel and
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converging strategies.
Our work on strategies maintaining communication chains is restricted to a scenario

with one explorer and one base camp. Further research on this topic might encompass the
development strategies, which are able to deal with several explorers, thus maintaining
a Steiner tree instead of a chain. This implies that more than one explorer are sharing
chain parts which connect them to the base camp. This already poses a problem, as this
shared chain part must be able to supply new relays at a large speed to extend multiple
chains, when the corresponding explorers all move simultaneously. We have been also
restricting the terrain model by not allowing any obstacles to be placed on the plane.
In an extended scenario, with obstacles on the plane, local strategies are hardly able
to maintain a chain approximating the shortest distance between the explorer and base
camp, as the topology of such a chain with respect to the obstacles may change very often.
We envision the local strategies to be able to maintain a chain which is topologically
equivalent to the movement path of the explorer with a performance similar to that of
the obstacle-free case. Some preliminary results on this topic have been already shown
in [DKMS07].

Minimizing the number of changes in support graph. In order to minimize the en-
ergy usage of relays required for changing the support graph, we have been investigating
the ODMST problem. Apart from our scenario, the ODMST problem can be of interest
for any setting, where minimum spanning tree are used as a data structure and any
changes to this structure are costly. This occurs e.g. in networks where trees are used as
a routing or overlay structure. Changing such a MST means that routing or configura-
tion tables have to be broadcasted along the network and updated. Minimum spanning
trees have been used in such scenarios for a long time, some recent examples may be
found in [WCLF02, YCM+04]. It remains an open question whether the RandMST algo-
rithm can be adapted, using the marking mechanism found in MSTMark, to work in the
full ODMST setting, with increases and decreases of edge weights. We have found the
adversarial model in ODMST problem to be too powerful, leading to high competitive
ratios for online algorithms. Therefore, we look forward for results obtained by carefully
restricting the possibilities of the adversary. A promising approach lies in restricting
the graph to fulfill the triangle inequality or to be a subset of a grid. This could allow
for an improvement of the competitive ratios of online algorithms especially in the ap-
proximated ODMST problem, while still being applicable for the connectivity problem
considered in this thesis.

Managing spare relays. The k-resource problem is not only of interest for the manage-
ment of relays. As we have already outlined, it is applicable for any resource manage-
ment problem, where moving resources has some cost associated with it. Furthermore,
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the solutions on uniformly decomposable metrics contribute to the set of metrics for
which efficient results for the k-server problem are known. It remains an open problem
whether the results shown can be applied to less restrictive decompositions. A natural
extension would be to consider recursively and uniformly decomposable metrics, which
are not restricted to only two layers of decomposition as shown here. The concept of
resource augmention has shown to be especially useful for the case of decomposable
metrics to provide a significant advantage for the online algorithm over the adversary.
We believe this could be used to improve other results on decomposable metric spaces,
like those shown in [Sei01]. In our results, we have been investigating the total energy
expenditure of the relays during the execution of the input sequence. While this is an
important factor, we are also interested in the time necessary to process an input se-
quence by our online algorithms. In order to measure time rather than energy, we define
the cost of an algorithm in a time step to be themaximum over the distances by which
resources aremoved in a time step. This implies, that the algorithm may move many
resources “for free” during a time step, paying only for the movement on the largest
distance. Modeling the cost in this way introduces significant changes for the behavior
of the algorithm. Up to our knowledge, there exists no similar online problem which
has been considered under this cost measure.
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[DK02] X. Défago and A. Konagaya. Circle formation for oblivious anonymous
mobile robots with no common sense of orientation. In Proc. of the 2nd ACM
International Workshop on Principles of Mobile Computing (POMC), pages 97–
104. ACM Press, 2002.

[DKK07] M. Dynia, M. Korzeniowski, and J. Kutylowski. Competitive maintenance
of minimum spanning tree in dynamic graphs. In Proc. of the 33rd Interna-
tional Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM), volume 4362 of Lecture Notes in Computer Science, pages 260–271.
Springer-Verlag Berlin, 2007.

[DKLM06] M. Dynia, J. Kutylowski, P. Lorek, and F. Meyer auf der Heide. Maintaining
communication between an explorer and a base station. In Proc. of the 1st
IFIP Int. Conf. on Biologically Inspired Cooperative Computing (BICC), IFIP, pages
137–146. Springer-Verlag Berlin, 2006.

[DKMS07] M. Dynia, J. Kutylowski, F. Meyer auf der Heide, and J. Schrieb. Local
strategies for maintaining a chain of relay stations between an explorer and
a base station. In Proc. of the 19th ACM Symp. on Parallelism in Algorithms and
Architectures (SPAA), pages 260–269. ACM Press, 2007.

[EGIN97] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsification a
technique for speeding up dynamic graph algorithms. Journal of the ACM,
44(5):669–696, 1997.

[Epp96] D. Eppstein. Spanning trees and spanners. Technical Report ICS-TR-96-16,
University of California, 1996.



144 Bibliography

[FKL+91] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E. Young.
Competitive paging algorithms. Journal of Algorithms, 12(4):685–699, 1991.
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Appendix

Go-To-The-Middle Correctness

Proof of Eq. (3.3). Let x, y ∈ [−1, 1]. We aim at showing that√
(1 − x2)

(
1 − y2

)
+ x · y ≤ 1 .

It holds
∂
(√

(1 − x2)
(
1 − y2

)
+ x · y

)
∂x

= y − x√
1 − x2

·
√

1 − y2 .

The derivative has only one zero for x = y. One can easily verify that this is a maximum
as

y − x√
1 − x2

·
√

1 − y2 > 0 for x < y

y − x√
1 − x2

·
√

1 − y2 < 0 for x > y.

Therefore √
(1 − x2)

(
1 − y2

)
+ x · y ≤

(
1 − x2

)
+ x2 = 1 .

Upper Bounding the Binomial Distribution

In this section we will upper bound the probability distribution function of the binomial
distribution. For ease of notation, let B(k) =

(n
k

) ·pk · (1−p)n−k, i.e. B(k) is the probability of
obtaining k successes in n bernoulli trials with success probability p. We want to show
the following lemma.
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Lemma A.1. Let np ≥ 2 and p ≥ 1
2 . Then it holds

max
k=0,...,n

B(k) ≤ 1√
2np4

.

We start with providing two simple lemmas about the binomial distribution.

Lemma A.2. The function B(k) assumes its maximum for k = 
(n + 1) · p�.

Proof. Simply plugging in the definition of B(k) and reducing we obtain

B(k + 1)
B(k)

=
(1 − p) · (k + 1)

p · (n − k)
. (A.1)

We have B(k + 1) > B(k) if and only if (1−p)·(k+1)
p·(n−k) > 1. Therefore, B(k + 1) > B(k) if and only

if k + 1 < (n + 1) · p. Similarly, B(k + 1) < B(k) if and only if k + 1 > (n + 1) · p. Therefore,
there exists a single maximum at k = 
(n + 1) · p�.

Lemma A.3. Let np ≥ 2 and p ≤ 1
2 . Then it holds

min{B(
np�),B(�np
)}
p

≥ B(
(n + 1) · p�) .

Proof. Let us first show that

B(
np�) · 1
p(1 − p)

≥ B(
(n + 1) · p�) .

If 
np� = 
(n+1) ·p� then the inequality follows trivially. Otherwise 
np� = 
(n+1) ·p�−1.
Then 
(n + 1) · p� ≥ np and from Eq. (A.1) we have

B(
(n + 1) · p�)
B(
(n + 1) · p� − 1)

=
p · (n − 
(n + 1) · p� + 1)

(1 − p)(
(n + 1) · p�) ≤ p · (n − np + 1)
(1 − p) · np

.

By p ≤ 1
2 we have 1 − p ≥ p. As np ≥ 1 we have

p · (n − np + 1)
(1 − p) · np

≤ 1
1 − p

≤ 1
p
.

Now we turn to the second inequality, showing that

B(�np
) · 1
p(1 − p)

≥ B(
(n + 1) · p�) .
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If �np
 = 
(n+1) ·p� then the inequality follows trivially. Otherwise �np
 = 
(n+1) ·p�+1.
Once again using Eq. (A.1) we obtain

B(
(n + 1) · p�)
B(
(n + 1) · p� + 1)

=
(1 − p) · (
(n + 1) · p� + 1)

p · (n − 
(n + 1) · p�) ≤ (1 − p) · (np + p + 2)
p · (n − np − p)

.

The latter term is smaller than 1/p if n ≥ 2/(1 − p) which is true for np ≥ 2 and p ≤ 1 − p.

The function B(k) is defined only for integer k and k ≥ 0. Let us extend B(k) to B(k)
defined on positive real values by replacing all factorials in its definition with the Γ
function. Define

b(x) =
Γ(n + 1)

Γ(x + 1) · Γ(n − x + 1)
.

Therefore we have
B(x) = b(x) · px · (1 − p)n−x .

Obviously B(k) = B(k) for all integer k, as for all integer k it holds b(k) =
(n

k

)
. We will now

show that b(x) behaves well in a certain way.

Lemma A.4. For any x > 0 we have

b(x) ≥ min {b(
x�), b(�x
)} .

Proof. We will show that the function b(x) has at most one extremum for x > 0 and if
this extremum exists then it is a maximum. Recall that

b(x) =
Γ(n + 1)

Γ(x + 1) · Γ(n − x + 1)
.

The enumerator is obviously a constant, therefore we only have to take care that the term
Γ(x + 1) · Γ(n − x + 1) has at most one extremum, and if one exists then it is a minimum.
Differentiating we obtain

dΓ(x + 1) · Γ(n − x + 1)
dx

= Γ(x + 1) · Γ(n − x + 1) · (ψ(x + 1) − ψ(n − x + 1)) .

The latter term can become zero only due to f (x) = ψ(x + 1) − ψ(n − x + 1) = 0 as Γ(x) is
clearly positive for x > 0. We investigate the ψ(y) function, which can be defined as

ψ(y) =
∫ ∞

0

(
e−t

t
− e−yt

1 − e−t

)
dt .
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For any given t ≥ 0 and any ε > 0 we have(
e−t

t
− e−yt

1 − e−t

)
≤

(
e−t

t
− e−(y+ε)t

1 − e−t

)
,

and thereby clearly ψ(y) is a non-decreasing function. Therefore f (x) is a non-decreasing
function and can assume the zero value at most once. Assume that f (y) = 0. Then clearly
f (y − ε) < 0 and f (y + ε) > 0 and therefore Γ(x + 1) · Γ(n − x + 1) has a minimum at point
x = y.

For the sake of contradiction assume that there exists such x > 0, so that b(x) <
min (b(
x�), b(�x
)). Let the function b(y) assume its minimum value in the interval
(
x�, �x
) at point ym. Then obviously ym is a local minimum. As by our earlier observa-
tions, b(x) does not have any minima. This leads to a contradiction.

The following result is well-known as the Stirling’s Approximation for the factorial
function. We can approximate the Gamma function in a similar matter, as shown in
[Art64].

Theorem A.5. For x ≥ 0 it holds Γ(x) =
√

2π · x ·
(

x
e

)x · eκx , where 0 < κx < 1
12x .

We are now ready to provide the proof of our main lemma.

Proof of Lemma A.1. By Lemma A.2 we know that B(k) assumes its maximum at k =

(n + 1) · p�. By Lemma A.3, the definition of B(k) and Lemma A.4 we have

max
k=0,...,n

B(k) ≤ 1
p
·min{B(
np�),B(�np
)}

=
1
p
·min{B(
np�),B(�np
)} .

≤ 1
p
· B(np)

We still have to find an appropriate upper bound for B(np). Plugging in the approxi-
mation from Theorem A.5 and using n ≥ 1 and p ≤ 1 − p we obtain

B(np) ≤
exp

(
1
12n

)
√

2π · np · (1 − p)
≤ 1√

np · (1 − p)
≤ 1√

2np2
.


