
Dissertation

Collective Graph Exploration

Mirosław Dynia

Universität Paderborn
Fakultät für Elektrotechnik, Informatik und Mathematik
Institut für Informatik & Heinz Nixdorf Institut (HNI) &

DFG-Graduiertenkolleg ”Automatic Configuration in Open Systems”
Warburgerstraße 100, D-33098 Paderborn

Paderborn, August 2007

To my dear wife Ania and our precious daughter Magdalena

Acknowledgments

I would like to thank my wife for her support and being with me during all my doctoral
studies. Also our little daughter Magdalena, for tearing apart the preliminary version
of this work (it was quite messy anyway).

Special thanks to Prof. Friedhelm Meyer auf der Heide, who gave me this great
opportunity to be a member of the research group “Algorithms and Complexity”, and
for the flexibility in choosing a research area to work on. It was an honor to work and
develop myself in such an excellent environment of great people, ideas, and possibilities.

I also would like to thank Prof. Christian Schindelhauer for his professional support,
openness and for all discussions, also those which did not end with interesting re-
sults. My great acknowledgments to my Polish friends Jaroslaw Kutylowski, Miroslaw
Korzeniowski, and Jakub Lopuszanski, always ready to discuss the current ideas and
problems, and to Bastian Degener who helped me to improve the readability of my
dissertation. It all would not be possible without your supportive attitude.

Paderborn, August 2007 Mirosław Dynia

Contents

1 Introduction 3
1.1 Motivation . 4
1.2 General related work . 7

1.2.1 Online algorithms for a single robot 8
1.2.2 Multi-agent exploration . 11

1.3 Our contribution . 12
1.4 Work overview . 13
1.5 Bibliographical notes . 14

2 Preliminary definitions 17
2.1 Communication models . 19
2.2 Offline exploration . 21
2.3 Online exploration . 23

2.3.1 Online analysis and competitive ratio 25

3 Collective offline exploration 29
3.1 The optimal cost . 30

3.1.1 A relaxed SPT and the cost of its optimal exploration 32
3.2 Efficient approximations . 33

3.2.1 An easy O(1)-approximation . 33
3.3 An optimal solution for trees . 35

3.3.1 Optimal solution using compact walks 35
3.3.2 Dynamic programming approach 37

4 Energy-aware graph exploration 43
4.1 The lower bound of 1.5 for the competitive ratio 44
4.2 Tree exploration algorithms . 46

1

2 C

4.2.1 Simple 8-competitive tree exploration algorithm 47
4.2.2 Improved (4 − 2/k)-competitive algorithm for trees 49

4.3 Exploration of spanning trees . 51
4.3.1 Exploration of city-block graphs . 53

4.4 Exploration of general graphs . 54

5 Time-efficient graph exploration 57
5.1 The competitive ratio is Ω(log k/ log log k) 58

5.1.1 A basic component – a tentacle . 58
5.1.2 Jellyfish tree . 59

5.2 Local exploration of sparse trees . 64
5.2.1 Density of a tree . 64
5.2.2 Algorithm for sparse trees . 65

6 Conclusions and Outlook 73

Bibliography 80

C       1

Introduction

Years before computers were discovered, mankind was looking for new ways to do
things faster, better, more accurate or just with less expense. Great navigators and
explorers, like Christopher Columbus, driven by the lust for knowledge or power have
built fast, robust ships which were able to cross the unbounded oceans horizon and
discover the undiscovered. No man was that reckless to conduct the expedition with
only one ship – nor was Columbus.

On the evening of August 3, 1492, he departs from Palos with three ships for his
first voyage. Certainly, he faces the problem of an appropriate strategy for the ships
under his command. If they stay together within eye-contact distance, it will make them
maybe stronger against pirates, but the ability to explore will be decreased. On the other
hand, the decision to split will increase these abilities, but unfortunately it will break
their communication capability, and therefore the ability to make common decisions will
be compromised. The time past, the technology made huge progress, but the question
regarding the most efficient methods of group exploration is still open.

Although we focus on the exploration, it is just one example among a variety of
problems, where the cooperation of team members can be observed. Always when
many entities (people, robots, processors, software) participate in the accomplishment
of some common task, we would like to observe profits from such a multiplication of
“resources”. Usually, we try to achieve an increased efficiency or a robustness, but
unfortunately the additional coordination costs need to be taken into consideration.

A sufficient effort has to be invested in designing of appropriate methods, otherwise
we will observe chaotic activities within the team, rather than a desired cooperation.
The swarm intelligence shows that even from very simple rules a global solution might
emerge, however, it can take much time for the desired properties to appear in the
doings of the chaotic swarm. Therefore we believe that by making the rules slightly
more complex, we obtain a solution with better quality and in a shorter time. Tailored

3

4 I

techniques allow to observe the team cooperation right from the beginning.
Nowadays, there are many unknown environments asking to be explored. It goes

beyond the exploration of unknown terrains, ocean floor or surface of distant planets.
The network is a classical environment asking to be explored. For instance, in case of
Internet, which changes rapidly and nobody knows its complete structure, an efficient
exploration would deliver information on its topology, allowing more effective routing
of packets. To work on a certain abstract level, we create a model which suitably
exposes the core problem, and on the other hand, is reasonable to analyze. We model
the environment by a graph – an abstract structure consisting of nodes (locations to be
visited) and edges (denoting accessibility between locations). Eventually, each node
has to be visited by a simple entity (a robot) being a member of a larger homogeneous
group of robots. We would like to observe how efficient the collective exploration can
be, assuming various variants of the main problem.

The basic robot’s ability is that it can move along edges of a graph. It cannot rapidly
change its position within the graph and in order to reach some node, a robot has to
traverse all edges along some path, between its current position and the destination. In
terrain exploration, this is quite a natural assumption, since robots are physical entities
related to their current positions. As we will later see, this physical-movement property
is the main reason disabling existing classical algorithms. To emphasize this restriction,
we call an entity a robot, however, here we do not pay too much attention to problems
directly related to robotics (like sensor inaccuracy, odometry error or image processing),
as this would unnecessarily make our problem more complicated and move the focus of
the problem toward a specific area of application. We rather tend to study the problem
on a higher abstraction level.

We are looking for robot’s movement strategies which are simple, local, distributed,
and deliver possibly minimal-cost solution. The locality of our strategies is reflected by
the fact that each robot has a very restricted view of the overall state of the environment
and the team, unless it exchanges information with other team members. As we often
discuss the scenario where robots communicate only, if they are close to each other, the
propagation of information is quite restricted. Each decision is based only on the partial
knowledge possessed by a robot at a given point of time.

1.1 Motivation

One of the most obvious motivation is an exploration of a terrain by a large group
of robots. Such a robotic swarm is deployed in an unknown terrain with the goal to
recognize it. Typically, this scenario might be a result of a rescue expedition in dangerous

1.1 M 5

terrains (like regions touched by a natural disaster), or an exploration of distant planets
or unaccessible terrains like the ocean’s floor1.

In a classical example, the team has to construct a topological map of the terrain.
Additionally, information on some environmental data (e.g. temperature or salinity)
can be collected and mapped on the topological map. Robots might also explore in
order to find some interesting “objects” hidden in the terrain. Those might be some
interesting minerals or rocks but maybe also bombs or land mines which has to be
found and disarmed, or in case of a rescue expeditions, all people asking for help.

We expect that (as there are multitude of robots) the given goal will be fulfilled much
more efficiently than in the one-robot scenario. As an additional factor a robustness of
such a multi robot system is achieved – when faults occur, or some robots crash, there
are still many team members ready to accomplish the given mission.

The usual technique for a one-robot scenario is that the human operator controlls the
robots movement, basing on the pictures sent from the robot’s camera, or on other type
of information from another type of sensors. For instance, this is the case of robots
disposing bombs, where the specially trained staff uses a control console (connected
to the robot by a wire or per wireless channel) to undertake the dangerous task by
the robot’s manipulator. The clear advantage of this solution is a safe distance to the
dangerous place. By the exploration of distant planets or the oceans floor, this solution
is much more difficult to apply. It is unpracticable to connect the control console with
the exploring robot by a wire, because of a large distance, and difficult, unpredictable
conditions on the way between them. The quality of a wireless channel is often either to
expensive or drastically weakened by the environmental conditions (poor propagation
of radio waves in water) to the level disabling its usage for our purposes.

When we cannot take care of everything, we usually decide to delegate some parts
of tasks. In this case, it is suitable to give more freedom to the robot and controll only
some basic parameters of the mission. The technology is already there2. NASA’s twin
geologists Spirit and Opportunity, the Mars Exploration Rovers, that landed on Mars
on January 4 and on January 25, 2004, are partially autonomous robots. They apply
autonomous navigation detecting interesting locations (for instance a rock) and then
drive toward them. In the first step, they use a stereo vision to construct the approximate
3D model of a terrain. After a target is selected, a traversability analysis is carried out.
By the path selection process, dimensions of the robot, obstacles, and potential dangers
are taken into account. Finally, the robot moves along the selected path toward the
selected target. In this way, the robot sees the terrain as a collection of locations (nodes)

1 NOAA Office of Ocean Exploration has 200 years history of mapping and characterizing the physical,
biological, chemical, and archaeological aspects of the ocean.

2 The goal of the RoboCup Project: “By 2050, develop a team of fully autonomous humanoid robots that can
win against the human world champion team in soccer”.

6 I

local comm.

antenna

Figure 1.1: Collective Mars exploration scenario.

and paths between them (edges) and is able to traverse edges. Scientists and engineers
on the Earth determine only the crucial mission parameters and command through a
costly link, created by international network of antennas (NASA Deep Space Network),
and shared also by many other space missions. Therefore, we might assume, that the
robots of our team will be able to move within the terrain, without crashing or hitting
against the obstacles, and they will need intervention of human controller only by some
crucial decisions.

Suppose that a large team of robots lands at some location (called a base station) on a
distant planet. The goal is to disperse in a terrain and explore everything within a 10km
radius of the base station. As we have mentioned above, there are some first techniques
enabling to model the terrain as a graph, were nodes denote interesting locations, and an
edge models the accessibility between two locations. There is no central authority which
controlls or coordinates the detailed movement of each robot separately, as it would
require many costly communication channels. Therefore, each robot is autonomous
and runs a predefined exploration algorithm designed in such a way, that the team
self-organizes and reacts on the faced conditions and the terrain complexity. The human
commander influences only some high-level mission parameters or decisions (start of
the mission, termination ect.) and awaits the complete map of an unknown terrain, as a
result of a robot exploration. We assume that there is one static communication antenna,
placed in the base station, which establishes the communication link with the Earth. All
robots, dispersed in the terrain, cannot communicate directly with the Earth as they are
equipped with short-range communication devices. Only the robots sufficiently close
to the antenna or other robot can exchange messages.

Unfortunately, the collective exploration is not well studied and neither humans nor
robots know how to extract the potential power offered by a team of robots. As robots
are autonomous, there is a need for tailored techniques which prove their efficiency
in every possible terrain. The situation, where the method works fine for some easy
terrains, but fails in a complicated one, is unacceptable. The distance, mission costs, and

1.2 G   7

unpredictability of the situation at a mission place are important factors here.
Our work delivers answers to the core questions in this setting, i.e. how to design

an exploration method in such a way, that the robots efficiently cooperate without an
intervention of a human controller. The methods should be adaptive and prove their
efficiency, also in case of highly complex terrains.

1.2 General related work

The problem of exploration of an environment is widely studied in the literature in
various contexts. We present a general overview of the results related to this problem.
Later, in Chapter 3 and Chapter 4, we also make more detailed description of some
selected publications, which are only mentioned here and are later presented from the
perspective of our setting and the contribution they make to it.

It is quite often, that an environment to be explored is modeled as a graph or as a
plane). In a simpler setting, a group of robots (agents) has to jointly visit all nodes or
traverse all edges of a graph, known in advance to the algorithm. One of the measures,
applying to this setting, is the length of the longest walk a robot makes during the
exploration, where the goal is to minimize this value (MIN-MAX objective). Finding
walks collectively visiting all nodes of a known graph and minimizing a MIN-MAX
objective is an NP-hard problem (see e.g. [FGKP06]). Bellmore and Hong show in [BH74]
reduction of multi-robot exploration problem to a classical traveling salesman problem.
Frederickson, Hecht and Kim [FHK78] give (5/2 − 1/k)-approximation for the problem
of collective visiting all nodes of a graph by k robots with a min-max objective function.
They assume that robots start and finish in the same node of the graph (k-TSP). Their
solution bases on the subdivision of a tour over all nodes (constructed by Cristofides
algorithm). Authors present also constant approximations to some related problems,
like the Chinese postman problem and stacker-crane problem for a directed graphs.

Arkin, Hassin and Levin consider in [AHL06] a variety (over 12) of vehicle routing
problems. For instance, they present 4-approximation to the collective graph exploration
(they refer to it as MIN-MAX PATH COVER) as well as methods covering a graph with
stars, trees minimizing its size.

Even et al. present in [EGK+04] how to cover a graph by a collection of trees. Each tree
defines a subgraph which has to be visited by a separate robot. They aim for minimizing
a size of the maximal tree (assuming a bounded number of trees) and provide constant
(4 + ε)-approximation to this problem.

A similar problem is studied by Guttmann-Beck and Hassin in [GBH97]. They subdi-
vide a graph into equal-sized subgraphs, minimizing the maximal length of a minimum
spanning tree of subgraphs. They prove general bounds on the running time of any

8 I

algorithm (unless P=NP) as well as an algorithm with the approximation factor and the
running time depending on the given input parameter.

Averbakh, Berman present in [AB97] a 2 − 2/(k + 1)-approximation for collective tree
exploration. Unfortunately, the running time is exponential in k. It is only slightly
improved by Namagochi, Okada in [NO04], still remaining exponential in the size of a
team of exploring robots.

Averbakh and Berman show in [AB02] how to find the optimal initial locations of
k = 2, 3 robots in a tree, without giving their routes. The same authors present in [AB96]
a heuristic for k = 2 robots, but unfortunately the worst case approximation factor turns
out to be 2, which is the worst possible result for the scenario with two robots.

1.2.1 Online algorithms for a single robot

An interesting area of research opens with the assumption that a graph is not known in
advance to the algorithm. Robot has to learn it, sequentially traversing edge by edge,
and exercising the cost of such a movement. In the worst case, the graph topology
discovered in that way might be a highly unsuitable setting for the current distribution
of robots. This could, for instance, enforce them to traverse the same edges many times
or to do a costly relocation of robots. From the robot’s perspective, the new edges appear
as they were constructed by a malicious entity, often called the adversary in the online
analysis.

The online analysis (see e.g. [ST85]) is a classical technique to measure a quality of such
algorithms, i.e. those which have to deal with an incomplete input sequence, sequen-
tially exposed to the algorithm. In our context, the sequence would be the configuration
of edges the algorithm sequentially discovers. Certainly, the robot would construct a
“better” walk (solution with a smaller cost), if it knew the graph beforehand (offline
setting). Typically, bounds on the competitive ratio between the cost of an online and an
optimal offline solution are studied. There are also different notions, like comparative
ratio, penalty ect., used in the literature, but their essential idea matches the classical
online analysis notion.

Rao et al. in [RKSI93] present an overview of one-robot algorithms navigating in
an unknown environment with obstacles. The problem of reaching a given target by
traveling through an unmapped terrain is also studied by Berman et al. in [BBF+96]. The
goal is to minimize the ratio between the distance traveled by a robot and the minimal
distance in a terrain in respect of the obstacles. They present a randomized algorithm
that achieves a competitive ratio of O(n4/9 log n), which is less than the lower bound of
Ω(
√

n) for a deterministic algorithm (see Papadimitriou et al. [PY91]). The algorithm
matching the deterministic lower bound is presented in [BRS91] by Blum, Raghavan
and Schieber.

1.2.1 O      9

Unlabeled graphs

Exploration and navigation in graphs with unlabeled nodes and edges require different
techniques and often expose much weaker efficiency results. By this class of problems
there is much effort invested in obtaining a polynomial time exploration or just any
bound on the exploration time. For instance, the classical exploration algorithms, like
breadth-first search or depth-first search, are completely infeasible in this setting, as
their run time turns out to be infinite. A robot cannot distinguish edges/nodes, and thus
cannot “remember” visited places, which seriously weakens the progress of exploration.
There are several techniques used, like homing sequences or artifacts put in the nodes,
to recognize visited nodes.

Bender and Slonim present in [BS94] an algorithm for two robots which explores an
unknown, strongly connected graph (with unlabeled nodes) in finite time (polynomial
in number of nodes) using homing sequences, and furthermore, show how to achieve
this by making the robots run the random walk. In the second solution, additional
assumptions on the graph topology are made (high conductance of a graph) to assure
the desired property of the random walk.

Bender et al. in [BFR+98] show that the graph can be explored in polynomial time
using only one robot and a certain number of artifacts (pebbles), which can be placed
or removed from a node in order to mark it. If the upper-bound on the total number of
nodes n is known, one pebble suffices, otherwise Θ(log log n) pebbles are both necessary
and suffice to completely explore the graph in a polynomial time. Comparing this
to the result from [BS94], we might observe that an additional mobile robot is worth
Θ(log log n) “static” pebbles. Fraigniaud et al. in [FIRT05] present the lower bound on
the memory size needed by a robot with one pebble to explore an arbitrary graph on n
nodes.

Even more restricted model is studied in [DFKP02], where storage capacity of a robot
is bounded, i.e. it can store up to b bits in its local memory. While b = O(log δ) bits
are sufficient to traverse all edges of an arbitrary tree given to the algorithm, there are
some trees for which an online algorithm (not knowing the tree beforehand) requires
Ω(log log log n) bits of memory. This also proves that no constant-size memory allows
to explore (online) every tree. In more precise investigations, they show that this bound
is even sharper, if we require a robot to stop after the tree is explored. It means that
a robot has to be aware of the exploration status. In this setting, it requires Ω(log n)
bits of memory for some trees, and here the authors also conclude with the O(log2 n)-bit
algorithm.

10 I

Labeled graphs

By a graph with labeled nodes, we enter another class of problems. In some settings,
labels seem to be a very natural assumption – for instance, by the planar graphs. Betke,
Rivest and Singh consider in [BRS95] an exploration of grid-like graphs populated by
rectangular, axis-parallel obstacles obtained by removing some nodes from the grid.
Each pair of obstacles cannot overlap or even touch one another. The so obtained
graphs resemble a city map in appearance and thus are called city-block graphs. The
exploring robot has to visit all edges, but it is required to return to the initial position
every certain number of steps, say, for refuel (the piecemeal exploration). In [BRS95],
authors observe regular structures (waves) the breadth-first search creates in this class of
graphs. In the first presented algorithm, the robot mimics those waves without a large
penalty for relocations. Their second algorithm is even simpler (dfs-like algorithm),
but they claim it would be less suitable for generalization for arbitrary graphs. Both
algorithms make O(|E|) edge-traversals, and thus are optimal, up to a constant factor.

Beteke et al. in [ABRS99] continue investigations in a model, where a robot is enforced
to periodical returns to its initial base station, but here in context of arbitrary, undirected
graphs. Their algorithm traverses all edges inO(|E|+|V|1.5) time or evenO(|E|+|V|o(1)) after
some improvements. Although this still does not match the trivial lower bound of Ω(|E|),
it improves a previous result ofO(|V|2). Awerbuch and Kobourov in [AK98] use recursive
framework of algorithm from [ABRS99], and use sparse neighborhood covers [ABCP93] to
obtain a recursive algorithm exploring in time O(|E| + |V| log2

|V|).
Finally, Duncan, Kobourov and Kumar in [DKK06] improve the result from [AK98],

presenting an algorithm visiting all edges in time O(|E|). This closes the open question
from [ABRS99] and [AK98] about the linear time piecemeal exploration algorithm, even
for the general graphs. Dessmak, Panaite and Pelc investigate in [PP98] and [DP02] an
exploration of edges, but without the piecemeal assumption. They show an algorithm
working in O(|V| + |E|) steps, and claim that classical algorithms do not achieve this
efficiency in the worst case.

An exploration of directed (strongly connected) graphs is studied by Deng and Pa-
padimitriou in [DP99]. They observe that the time needed to traverse all edges depends
on the number d of edges that have to be added in order to make the graph Eulerian
(deficiency). The ratio between the number of traversals done by the algorithm and the
optimal number of traversals is proved to be unbounded for an unbounded deficiency
(ratio is Ω(d/ log d)). They also consecutively show an algorithm which achieves the ra-
tio of dO(d), and which does not require d to be known in advance. Albers and Henzinger
in [AH00] improve this ratio and obtain the first sub-exponential result of |V| · dO(log d).
However, this result is improved even further by Fleischer and Trippen in [FT05] who
present an exploration that works in O(d8) steps.

1.2.2 M-  11

Exploration of a continuous plane

A graph is not the only abstraction used to describe an environment in which robots
can move. The exploration of a room bounded by rectilinear walls as a subset of a
2-dimensional plane is studied by Deng, Kameda and Papadimitriou in [DKP98] (see
also Shermer [She92]). A robot enters a room by the entry point, and has to leave it using
the exit point. The goal is to compute a gallery tour i.e. a path from which all sides of all
obstacles can be seen (assuming an unbounded range of robot’s vision). They study the
ratio of the length of such a path to the length of the optimal path computed thanks to
a map given in advance.

1.2.2 Multi-agent exploration

A cooperation of a team is studied as even more challenging than the single-robot sce-
nario. A group of robots has potentially more exploration power, which is positively
reflected in the efficiency of algorithms. As negative factors, there are additional coor-
dination costs as well as difficulties by the cooperation, coming from a very local, and
thus partial view of the current situation of each robot.

Cao, Fukanaga and Kahng in [CFK97] and Dudek et al. in [DJMW96] present a survey
as well as a framework for the multi-agent systems. This includes models of com-
munication topology, bandwidth, technological constraints as well as an overview of
some multi-agent solutions. Halpern and Moses study in [HM84] the restriction on the
propagation of local knowledge in a distributed system.

In the context of multi-agent systems, there are many classical pattern formation algo-
rithms studied in the literature, where a team, dispersed in an environment, has to either
form a circle [Kat05], polygons [SS96], gather in one point [SY96, SY99, FPSW01, KTI+07],
or form a minimum path between two points [DKMS07, DKLM06, SS96]. The main
problem here, is to break the symmetry coming from the model assumption that robots
are not distinguishable (do not have IDs). There are various additional assumptions
that can be made about the basic model. Katayama et al. [KTI+07] assume uncertain
compasses, and Suzuki and Yamashita [SY96] or Prencipe in [Pre01b, Pre01a]) study
asynchronous/semi-synchronous models.

A multi-robot graph exploration is studied by Fraigniaud et al. in [FIRT05], where
a robot is modeled as a finite automaton. They prove that there exists a graph of size
O(k · K), such that k robots (each modeled by a K-state automaton) fail to explore it. Das
et al. in [DFNS05] consider the problem of obtaining a consistent labeling of a graph by
a set of asynchronous, identical robots. The important aspect of this problem is to break
the symmetry among robots.

12 I

Hsiang et al. present in [HAB+02] an algorithm for a large number of robots entering
a graph through a selected node/nodes (a door), and filling the entire grid (populated
by obstacles). The interesting assumption there is, that only one robot can occupy a
node at a time. Also here, robots are modeled by a simple finite automate additionally
equipped with local communication devices. The authors show the optimal algorithm
for one-door case and also O(log(k + 1))-competitive algorithm for k-door case.

Fraigniaud et al. study in [FGKP06] an exploration of trees with uniform edges by a
team of k synchronous robots starting in one node, aiming at the minimization of the total
exploration time i.e. time for robots to jointly visit all nodes of a tree and return to the
initial position. They prove (by reduction to 3-partition problem) that finding optimal
walks of robots is an NP-hard problem. They make interesting observations on the
influence of the communication patterns on the efficiency of the online exploration – its
impact on the competitive ratio. They prove that if no communication granted, there is no
cooperation at all. In the worst case, the whole team explores with the same efficiency as
a single robot (competitive factor of Ω(k)). By allowing global communication (or letting
robots leave messages in the nodes), they improve the competitive factor to O(k/ log k).
Furthermore, they present the general lower bound of 2 − 1/k for the competitive factor
of every exploration algorithm using k robots.

Dobrev et al. show in [DFPS02, DFK+02, DFS04, DFPS06] how a team searches for
a malicious node (a black hole) which is a harmful host that destroys visiting robots,
living no trace of such a destruction. They minimize the number of robots needed to
fulfill this task as well as the number of edge traversals. This represents an interesting
contribution to the problem of collective cooperation of robots.

1.3 Our contribution

We study the problem of collective graph exploration, where a team of k robots, po-
sitioned in a selected node of the graph, has to jointly visit all nodes of a graph and
eventually return to its initial position. We investigate two settings – either the graph
might be known to the algorithm in advance (the offline model) or the algorithm has no
information about it and has to learn it progressively (the online model). We present algo-
rithms as well as general bounds for the efficiency measure we introduce. Our results
are new to this research area and have erected high interest in the community.

In the offline model, we observe how the optimal total exploration time is influenced
by the graph topology, and we prove that it essentially depends only on the radius and
the number of nodes in the graph. Furthermore, we present some easy approximations
as well as methods for computing the optimal solution for trees.

1.4 W  13

In the online model, we study the competitiveness of the exploration algorithm, i.e.
the ratio between the cost of the online and the optimal offline algorithm. We improve
the results of Fraigniaud, Gasieniec, Kowalski and Pelc presented in [FGKP06] for the
model minimizing the total exploration time (time model). Our significant general lower
bound for the competitive ratio of an arbitrary algorithm proves that the exploration
can be inefficient, if the graph is not given to the algorithm in advance. Furthermore, we
present the algorithm for a restricted class of trees and show its competitive ratio which
does not grow with a size of a team.

Moreover, we introduce a new cost function related to the energy used by a robot
instead of the total exploration time. For this model (we call it energy model), we show
both the general lower bound and efficient online algorithms. In case of our algorithm
for trees, the competitiveness matches the general lower bound for this model (up to a
constant factor). Finally, we introduce a framework which enables to explore arbitrary
graphs, using tree-exploration algorithms.

Although we have made much progress in this field, there are still many interesting
open questions asking to be answered. We try to state them in the concluding chapter
of this work.

1.4 Work overview

In Chapter 2, we introduce the main model and the major problem as well as the notions
and definitions used in this work. In Section 2.1 we discuss various communication
models. In Section 2.2, we specify a model in which a graph is given to the algorithm
in advance, before the exploration starts. We also introduce there two cost functions
measuring the quality of a solution obtained by such algorithms. In Section 2.3, we show
a model where the algorithm has to progressively learn the graph, as it is not given to
it in advance. Furthermore, in Section 2.3.1, we define the measure (competitive ratio)
that enables us to compare the efficiency of algorithms.

In Chapter 3, we investigate the offline model and the problem of precomputing the
collection of walks. In Section 3.1 we make some basic observations on the optimal cost
and in Section 3.1.1 we observe that an optimal exploration of graphs has a similar cost
as an optimal exploration of their relaxed shortest-path trees. As finding the optimal
solution is NP-hard, we present in Section 3.2.1 an easy 2-approximation for trees and the
problem addressed in [FGKP06]. Furthermore, we show in Section 3.3 how to construct
optimal walks for trees: in Section 3.3.1 by clustering the leafs in time O(kn+1

· n) and in
Section 3.3.2 by using a dynamic programming in time O(nk).

In Chapter 4, we introduce a new cost model, in which we are interested in the maximal
energy used by a robot rather than the total exploration time. In Section 4.1 we present

14 I

a general lower bound of 3/2 for the competitive ratio i.e. there exists no randomized
algorithm which obtains the competitive ratio smaller than 3/2 (against the adaptive
adversary). In Section 4.2 we present two algorithms collectively exploring trees: in
Section 4.2.1 an 8-competitive and in Section 4.2.2 an improved, (4 − 2/k)-competitive
algorithm. In Section 4.3 we show a framework allowing to use tree exploration algo-
rithms to explore wider classes of graphs and in Section 4.3.1 we present an example
of usage of this framework. We conclude in Section 4.4 with a simple modification of
one-robot algorithm optimally exploring all edges of the graph enabling it to work in
our multi-robot scenario.

In Chapter 5, we investigate more deeply the model where the algorithm’s cost is the
total exploration time. In Section 5.1 we significantly improve result from [FGKP06]
and show the first non-constant general lower bound of Ω(log k/ log log k) for the com-
petitive ratio of a randomized algorithm (against adaptive adversary). Furthermore, in
Section 5.2, we present an online algorithm for sparse trees, i.e. those which each subtree
contains a small number of nodes in comparison with the height. We prove that its
competitive ratio depends on the density and the height of the tree, and for instance, for
trees being a subset of a mesh we obtainO(

√
D)-competitive algorithm. The advantage of

our algorithm is that it uses strictly local communication, unlike the algorithm presented
in [FGKP06], which uses global communication or writing in the graph.

Finally, in Chapter 6, we conclude this work and present an outlook for the future
research as well as some interesting open questions.

1.5 Bibliographical notes

Most of the results presented in this thesis were published in a preliminary form as a
conference papers [DKS06, DKMS06] and [DLS07]. Moreover, this dissertation contains
results which, at the time of writing, are not yet published. A dynamic programing
technique, lower bound of 3/2 and the preliminary version of 8-competitive algorithm
published in [DKS06] are partially used in my master thesis [Dyn06] and in the improved
form described consecutively in Section 3.3.2, Section 4.1, and in Section 4.2.1. We also
show how the lower bound works for arbitrary, randomized algorithm against the
adaptive adversary.

Basing on [DLS07] we present, in Section 4.2.2, an online algorithm and its analysis
showing the competitive ratio of at most 4 − 2/k. This is an improvement over the
8-competitive algorithm presented in [DKS06].

The general lower bound of Ω(log k/ log log k) for the competitive ratio of an arbitrary
algorithm (in the time-related model) presented in Section 5.1 is published in [DLS07].

1.5 B  15

In [DKMS06], we have studied the problem of exploration of, so called, sparse trees.
Section 5.2 bases on this publication, and contains a definition of density, a improved
description of the online algorithm and its analysis showing a bound on the competitive
ratio.

The framework enabling exploration of an arbitrary graphs i.e. the online tree selection
scheme from Section 3.1.1 and observations in 4.3 as well as an example of its application
for city-block graphs from Section 4.3.1, are still unpublished results. The same holds
for the online algorithm from Section 4.4 exploring arbitrary graphs under the energy
model.

C       2

Preliminary definitions

We start with the general description of the problem studied in this work. First, we
present some basic definitions and notions, and later in Section 2.3 and 2.2, two settings
which let us derive (in Section 2.3.1) the notion of the competitive ratio – the main
efficiency measure in this thesis.

We assume that explorers are placed in an environment which can be modeled as
connected, undirected graph G = (V,E) with n + 1 uniquely labeled nodes1. We are
aware that it might be quite a challenging problem for a real robot to detect (using only
its sensors) what is a “node” or an “edge” in a terrain, especially because it has to be a
common and consistent definition over time and over all robots in a distributed team.
Fortunately, there usually exists a mechanism allowing to distinguish edges and nodes
using e.g. a stereo vision, GPS or compasses (see various compass models in [KTI+07]).

There are k > 1 autonomous robots which together form a team. Within a team each
robot can be distinguished by its unique ID being a value between 1 and k, and therefore,
we avoid many problems related to the indistinguishable robots (see e.g. [Kat05]). Each
robot has the ability to change its location by moving to neighboring nodes along
adjacent edges. Denote by pi(t) ∈ V the position of the i-th robot at time t and by N[v]
the neighborhood

N[v] := {w ∈ V : (v,w) ∈ E} ∪ {v}

of node v ∈ V in graph G. The robot can move only to a neighboring node i.e. at step
t + 1 the robot occupies node

pi(t + 1) ∈ N
[
pi(t)

]
.

The above assumptions determine that the robot is physically related to its position i.e.
it cannot “teleport” itself within the graph and it has to traverse all edges along the
path between its current position and the chosen destination. We assume that a robot

1 Ironically, the reason why it is n+1, and not just n, is that we obtain a simplified notion (in some proofs),
but also because the minimum spanning tree of G contains n edges.

17

18 P 

entering some node v, receives information on the neighborhood of v, i.e. it “sees” all
nodes connected with v by an edge and also reads unique labels of those nodes. This
enables it to address the destination of its movement.

In a round, a robot may decide to stay in its current position or traverse an arbitrary
edge attached to it. To keep the model really simple, we assume that rounds are fully
synchronous and atomic operations. Therefore, an edge traversal cannot be interrupted,
as this would result in some intermediate robot’s position on the edge2. In our work, if
a robot decides to traverse some edge, it has to traverse it completely, and it takes one
step to do that (uniform edges).

There is one distinguished node s ∈ V in graph G which serves as a base station. When
the exploration starts, all robots are positioned there (i.e. pi(0) = s for all i), and after all
nodes are jointly visited, the team has to finally return to s. To measure distances in the
graph we denote by d(v, v′) the length (number of edges) of the shortest path between
nodes v ∈ V and v′ ∈ V. For simplicity, denote by d(v) the distance to the base station
i.e. d(v) = d(s, v). Radius D of the graph is the maximal possible distance in G from the
base to the furtherest node, i.e.

D := max {d(v) : v ∈ V} .

During the exploration a robot may visit one node many times, and thus elements of
sequence (pi(0), pi(1), pi(2), . . .) do not have to be distinct.

Definition 2.1 (A walk). A walk of the i-th robot is a finite sequence

Walki :=
(
pi(0), pi(1), pi(2), . . . , pi(t − 1)

)
of length |Walki| = t of all consecutive positions of the robot, done during the exploration. We
require that pi(0) = s.

If pi(j) , pi(j + 1), then
(
pi(j), pi(j + 1)

)
∈ E, as pi(j + 1) lies within the neighborhood of

pi(j). Clearly, the walks of all robots in a team have the same length

∀i, j |Walki| = |Walk j| .

We also need the notion of Coveri for a set of nodes visited by the i-th robot, not taking
into account the order of those nodes or the number of visits of the robot to a particular
node (like in Walki).

Definition 2.2 (A coverage of a robot). A coverage of the i-th robot is a set of nodes

Coveri :=
{
pi(0), pi(1), pi(2), . . . , pi(t − 1)

}
that the robot visits during the exploration of graph G = (V,E).
2 In some publications the intermediate position on an (weighted) edge is allowed (see e.g. [AB97]).

2.1 C  19

Given a robot’s walk, the corresponding coverage is uniquely defined, but a coverage
might be a result of many different walks. Finally, we notice that |Walki| ≥ |Coveri|, and
unlike by the walks which are of the same length, it might happen that |Coveri| , |Cover j|

for some i and j.

Definition 2.3 (Collective graph exploration). We say that graph G = (V,E) with base station
s ∈ V is explored by the algorithm using k robots initially positioned in s (pi(0) = s), when⋃

1≤i≤k

Coveri = V

where pi(|Walki|) = s, and where Coveri is a coverage of the i-th robot.

We note that visiting all nodes in the setting described above is a different problem
than traversing all edges of the graph (like in e.g. [DP02]). The crucial factor here is
that the robots are aware of all labels of nodes in their neighborhood, and thus edges
connecting to the already visited nodes do not have to be traversed at all. Furthermore,
in the context of the terrain exploration, visiting nodes seems to be more appropriate
than traversing all edges. We are interested in visiting all “locations” at least once, and
not in approaching each location from any possible direction.

2.1 Communication models

Robots are autonomous entities distributed over the graph, and in order to cooperate
they have to be able to exchange information. Each robot has only a very local view of the
topology of the graph, but as it moves through the graph, it progressively learns more
about the graph’s topology. It can store information gathered in this process and use it
to adjust the appropriate current exploration strategy. The local knowledge of a robot
can be extended by explicit communication with other team members. As they might
have visited distinct regions, the information they carry might represent an important
contribution to decision making process and adaptation of a local strategy to the current
situation in the system (see [HM84] for elaboration on distributed local knowledge).

Each robot runs the same algorithm, and assuming that strategies are deterministic,
the only reason for two robots to communicate is essentially to merge their local maps. In
the case of randomized algorithms, where the random events influence local decisions,
there might be a need to send additional information.

There are many communication patterns which might be considered in our context
(see [DJMW96, CFK97] for a taxonomy of multi-agent systems), but we mention here
only a few the most interesting ones:

20 P 

• No communication. There is no communication granted, and therefore all com-
mon information possessed by robots is essentially only their algorithm which is
the same for all robots.

• Local communication. A robot can exchange information with another robot
positioned within some predefined-size neighborhood i.e. two robots positioned
respectively in v and v′ communicate only, if d(v, v′) is smaller than some fixed
constant. This model is motivated by the wireless communication devices which
have bounded communication radius. For the simplicity, we assume a zero-size
neighborhood – only robots positioned in the same node can communicate.

• Writing in graph. Robot can put some data in a node and also modify the data
which was stored there before (assume that there is a white board placed in each
node). Other robots entering a node can read the data stored in a node and in that
way extend their local information.

• Global communication. Each robot can communicate with an arbitrarily chosen
robot at no cost. It results in global knowledge shared by a team. New findings of
one robot are directly visible to a whole team.

Global communication represents a complete freedom of exchanging information,
what essentially results in a common knowledge of the system state and opens the
possibility to make a centralized computation. Given global communication, it is easy
to simulate all remaining models, and thus this specific model is the strongest in our
setting.

Writing in the graph allows to easily emulate local communication – robots placed in
the same node can write information on the common white board instead of just sending
messages. However, given local communication pattern it might be difficult to simulate
writing in the graph. This is because by local communication the presence of a robot is
required, unlike in writing in the graph, where information is just left behind without
worrying about who and when is going to read it.

Many problems expose different complexity, when assuming different communication
patterns. For instance, Fraigniaud et al. show in [FGKP06] that the exploration without
communication leads to trivially high cost of the algorithm. A collective exploration is
highly inefficient, if robots do not communicate. Here we show the results for local and
global communication, but there is a challenging open question, if and how the selected
pattern influences the efficiency of the collective exploration or even more general team
cooperation problems.

2.2 O  21

2.2 Offline exploration

The main assumption of the offline model is that the environment is known to an exploring
algorithm in advance. The algorithm (we call it offline algorithm) receives a graph as a
fixed input, before the exploration even starts. This extra information can be used to
disperse a team in the graph more accurately, as it is known which parts of the graph
require more exploration power.

Clearly, an exploration in the offline model loses pretty much its flavor as the map
is already there, so the main exploration goal is already fulfilled. Nevertheless, in
Chapter 3 we show some applications to this problem. Moreover, basing on the offline
cost, we are able to measure the algorithm’s efficiency in a more sophisticated model,
described later in Section 2.3.

We propose a fully synchronized approach consisting of two types of rounds. Before
the exploration, at the time when all robots are positioned in the base and no robot
has moved so far, the distributed algorithm (each robot) obtains graph G = (V,E) as an
input. The goal for the team is to jointly visit all nodes of G, and therefore appropriate
walks have to be computed. All robots are positioned in the same node (base station s),
and thus all information needed by the computation can be exchanged by messages sent
within the team, so it can easily agree upon the exploration strategy. It might also happen
that one robot (a leader) computes everything centrally, and then the results are sent to
all team members. Eventually, the robots’ walks jointly covering V are constructed, and
the i-th robot stores (in a local memory) its predefined walk Walki. An interval of initial
computation and communication is called a COMPUTE round.

When the walks are precomputed, robots leave the base station, disperse in the graph
and jointly visit all nodes, according to the predefined schedule defined by Walki. In
a MOVE step, each robot reads the appropriate element of Walki and selects it as the
destination for this round. Then all robots traverse selected (uniform) edges in a syn-
chronous way, and at the end of the step all robots finally reach their destination. There
is no need for robots to communicate before or during this step, as at this time there
is no information which might influence the process of the exploration. All informa-
tion is already used in the initial COMPUTE round and taken into consideration by the
precomputation of walks.

Both rounds mentioned above are shown in Figure 2.1 presenting COMPUTE-MOVE-
MOVE model, where there is only one initial round of communication and computation
and many rounds where robots move without passing further messages or local com-
putation.

In our model, we neglect both the time needed for this computation and message
passing in COMPUTE round. Therefore, there might be an arbitrary much time invested
by the algorithm to compute the solution which is arbitrarily close to (or equal) the

22 P 

Figure 2.1: Centralized COMPUTE and distributed MOVE rounds.

optimal one. We are aware that e.g. NP-hard problems can be solved here, or exponential
time algorithms applied. However, we are more interested in observing the team general
cooperation abilities, reflected in movements of its members, than in the complexity of
the computation needed to obtain the walks.

Assume that the team running distributed, offline algorithm ALG has jointly explored
graph G. The offline exploration cost is defined as the total number of exploration
rounds

C̃ALG(G, s) := |Walk1| ,

where, we recall, all sequences Walki are of the same length. For given graph G and base
station s, term

C̃OPT(G, s)

denotes the optimal cost that is achieved by an offline exploration algorithm.

We would like to observe a cooperation of the team during the collective exploration of
G and the increase in the efficiency of algorithms in comparison to a one-robot scenario.
The main goal for the team is to fairly disperse in G, so that the work load is balanced
among the robots. Since there are many robots, there might be many edges which are
traversed in parallel. In a perfect situation, k cooperating robots working simultaneously
traverse k distinct edges, which has a positive impact on the progress of exploration.

Chapter 3 is entirely devoted to the offline model. We make the observation on the
bounds of this cost for a given graph, and also discuss the problem of computing the
optimal (or approximate) solution to the offline exploration problem.

2.3 O  23

Figure 2.2: Synchronized LOOK-COMPUTE-MOVE rounds.

2.3 Online exploration

Unlike in the offline model, in the online model the graph is not known in advance, and
therefore the robot’s walks cannot be precomputed. Each robot running the online algo-
rithm has to construct its walk progressively while learning the graph. As the exploration
begins with a team positioned in base s, robots have to spread in order to jointly visit
all nodes of the graph. There might be some parts of the graph which require different
“exploration power”, depending on the complexity of the subgraph. As each traversal
of an edge brings a unit cost, a careful dispersal of robots let avoid an unnecessary and
costly robots relocation. The selection of an appropriate communication model (see Sec-
tion 2.1) plays an important role in the propagation of knowledge in such a distributed
setting. Robots have to exchange discovered information on the graph’s complexity in
order to work efficiently and adapt exploration strategy.

In the online model, each robot follows the LOOK-COMPUTE-MOVE scheme (see
e.g. [Pre01b, SS96]). Figure 2.2 shows an example of initial rounds of a distributed
algorithm for three robots. At the beginning of round t, “sensors” of a robot are activated
(LOOK), and the i-th robot positioned at pi(t) gets information on neighborhoodN

[
pi(t)

]
in graph G. There might be some nodes which are already known to the robot, but maybe
also some which are completely new to it or even to the team. The whole information
on the graph, revealed to the online algorithm at time t, can be described as

σt =
(
N

[
p1(t)

]
,N

[
p2(t)

]
, . . .N

[
pk(t)

])
,

but, depending on the communication model (see Section 2.1), the information is differ-
ently distributed among the robots.

Denote by Ki(t) the set of nodes that the i-th robot knows at time t. Clearly, the robot
also knows the graph induced by Ki(t), and therefore we say that Ki(t) is a knowledge of

24 P 

the i-th robot at time t. If there is no communication, then the knowledge of the i-th
robot

Ki(t) =
{
N

[
pi(t′)

]
| t′ ≤ t

}
.

For local communication, we have K(i,1) = {s} for all i, and

Ki(t) = Ki(t − 1) ∪
⋃
i′∈I

(
Ki′(t − 1) ∪N

[
pi′(t)

])
,

such that I = {i′ | pi′(t) = pi(t)} is a set of all robots positioned in pi(t) at time t. The
knowledge of two robots that are positioned in the same node at time t is merged so that
each of them extends its local view.

After the information about the neighborhood is revealed and exchanged within the
team (with respect to the communication model), each robot is allowed to run local
computation (COMPUTE), basing on the knowledge Ki(t) it posses and maybe on some
random bits in case of a randomized algorithm. Basically, this results in an update of
local state of the robot and computation of the destination node into which the robot
will move. Finally, the robot moves (MOVE) toward the computed destination. Note
that it might point out its current position as a destination node, and thus decide not
to move in the current round. As mentioned before, the robot cannot jump within the
graph as it can move only to a neighboring node.

At some step, it can happen that all nodes contained in the elements of the sequence

σ = σ1, σ2, σ3, . . .

are already visited by some robot. At this point of time, all neighborhoods exposed
to the algorithm contain only visited nodes. If additionally all robots are positioned
in the base, all robots can compare their knowledge and find out that (according to
Definition 2.3) the exploration is accomplished. At this time, the complete sequence σ
defines graph G which has been explored by algorithm ALG. The walks of robots are
defined and now we can measure the efficiency of the offline exploration. The cost of the
solution can be measured in the two following models (further investigated in Chapter 5
and Chapter 4):

• energy model – the cost is the maximal “energy” used by a robot (the maximal
number of edges traversed by a robot until the end of the exploration)

EALG(G, s) := max
1≤i≤k

∣∣∣{0 < t ≤ |Walki| : pi(t − 1) , pi(t)
}∣∣∣ ,

• time model – the algorithm’s cost CALG(G, s) is the total time of the exploration
(number of MOVE rounds)

CALG(G, s) := |Walk1| .

2.3.1 O     25

Notice that CALG(G, s) ≥ EALG(G, s) for each algorithm ALG and each graph G with
selected node s. Therefore, the algorithm with a small cost in the time model has at most
the same cost in the energy model.

Finally, we can also consider the problem of constructing the walks of a robot basing
on the knowledge of graph G (see offline problem in Section 2.2). The optimal offline
algorithm OPT constructs the walks with the optimal cost of C̃OPT(G, s). Clearly, we have
C̃OPT(G, s) ≤ CALG(G, s) and C̃OPT(G, s) ≤ EALG(G, s) for every online algorithm ALG, graph
G and node s. We will later see (in Section 4.1 and Section 5.1) that for some graphs and
selected base station online and offline costs (for both energy and time model) differ
significantly.

For optimal offline algorithm OPT all three cost measures define the same function,
i.e.

C̃OPT(G, s) = COPT(G, s) = EOPT(G, s) .

The first equality holds even for an arbitrary offline algorithm, as the only difference
in the definition of those functions concerns the algorithm’s knowledge on the graph
(online/offline setting). To show the second equality, observe that the most exhausted
robot has done EOPT(G, s) moves. It takes EOPT(G, s) steps to do EOPT(G, s) moves, and
therefore the optimal total exploration time is at mostEOPT(G, s). As we haveCALG(G, s) ≥
EALG(G, s) for every algorithm, we obtain COPT(G, s) = EOPT(G, s).

2.3.1 Online analysis and competitive ratio

We decided to use a notion of the classical competitive analysis (see e.g. [BEY98, ST85]) in
the context of our online model. Typically, the online model assumes that there is some
input sequence to which the online algorithm has to react. For instance, in classical
request-answer games the sequence contains requests exposed to the algorithm, which
have to be processed before the next request can be exposed. In the collective graph
exploration problem, the configuration of edges discovered by an algorithm can be seen
as an online input sequence. However, here we do not require that all discovered nodes
have to be visited before the next “request” comes. We only say that all request have to
be processed in order to accomplish the exploration.

In our setting, the graph to be explored is exposed gradually by sequence σ, during
the execution of the online algorithm. At time t the algorithm gets element σt which
describes how the neighborhoods of current robots’ positions look like. We assume that
the sequence is controlled by a malicious authority, called the adversary, which aims at
creating the worst case setting, and thus increasing the cost of an online algorithm.

26 P 

Adversary models

We consider adversaries which demonstrate different power and model different worst-
case scenarios. We have adapted the adversary models presented in [BEY98] to a specific
characteristics of our setting. Some of the classical models do not apply to the collective
exploration scenario3, and formal definitions of other models are slightly changed.

We distinguish two adversarial models, oblivious and adaptive4 adversary, that differ
by the time at which they define the online input sequence σ. In both models the online
algorithm ALG is known to the adversary. The oblivious adversary explicitly defines graph
G to be explored, just before the exploration starts. This defines all neighborhoods,
which is the essential information contained in σt =

(
N

[
p1(t)

]
,N

[
p2(t)

]
, . . .N

[
pk(t)

])
.

Therefore, later at each time during the online exploration, the adversary can expose the
neighborhood of each node containing a robot.

Note that in a classical oblivious adversary model, the input sequence (and not the
structure which allows to construct the input sequence) is fixed beforehand. This is not
possible in our setting in the case of a randomized algorithms. For any fixed σ it might
happen that at some time t, σt exposes a neighborhood of a node which is not occupied
by any robot.

The adaptive offline adversary defines the sequence gradually, while observing the be-
havior of a (randomized) online algorithm. It constructs element σt exactly at time t,
when it knows the current distribution of robots. In the case of randomized algorithms,
this is more powerful adversary than the oblivious adversary, as it knows also random
decisions made by the algorithm up to time t. It can construct a setting that is much
difficult for current the condition of a team. Graph G, which is finally constructed,
depends on random algorithm ALG, and therefore algorithm cost as well as optimal
offline cost C̃OPT(G, s) are random variables.

By the deterministic algorithm, both models represent exactly the same power, because
even the adaptive adversary could define its online sequence before the exploration. Our
results include exclusively deterministic algorithms. However, we have also shown
interesting lower bounds for the efficiency of the randomized algorithms against the
adaptive adversary.

Competitive ratio

The competitive ratio5 reflects the ability of an online algorithm to deal with an unpre-
dictable input sequence.

3 The adaptive online adversary model is not feasible in our setting.
4 Adaptive adversary corresponds to the adaptive offline adversary in a classical theory.
5 There are also many other, but similar terms used in the literature concerning the graph exploration

(e.g. a penalty in [PP98] or an overhead in [DP02, FGKP06]).

2.3.1 O     27

Assume some adversarial model and the online algorithm ALG that have explored
graph G from base s with cost C(G, s). We have either: C(G, s) = EALG(G, s) for the
energy-model, or C(G, s) = CALG(G, s) for the time-model, depending on the cost model
we consider. Moreover, we denote by C̃OPT(G, s) the optimal offline cots on the same
graph G with base station s. We would like to compare the online algorithm’s cost and
the optimal offline cost. The following definition comes from [BEY98], but is a bit more
restricted.

Definition 2.4 (The competitive ratio). Randomized online algorithm ALG is c-competitive,
if for every graph G and base s (constructed by the adversary)

C(G, s) ≤ c · C̃OPT(G, s) ,

where C(G, s) is the cost of ALG on graph G. The parameter c is a competitive ratio of ALG.

In a classical definition, the expected value of costs is taken into the consideration.
Here, by omitting the expectations, we use even a stronger notion of competitiveness.

The competitive ratio measures how well an algorithm deals with the fact that the
graph topology is not known in advance. It might happen that the online algorithm has
a large cost, but it might still be acceptable, if the optimal offline algorithm has a large
cost too. It would just mean that the complexity of this particular graph is high, and it is
difficult to explore it anyway. On the other hand, if the offline cost appears to be much
smaller than the cost of an online algorithm, it means that the algorithm is incapable of
dealing with the exploration of an unknown environment.

Algorithms which achieve small competitive ratio are for us of a higher quality, as
they better deal with the exploration without knowing the graph. In the next chapters,
we show, that in general, the problem generates some bounds for the competitive ratio.
In Section 4.1, we present a lower bound for the competitive ratio in the energy model,
and in Section 5.1, we show even stronger lower bound for the time model.

C       3

Collective offline exploration

In the offline exploration model (introduced in Section 2.2), the graph is known to the
algorithm in advance, before the exploration starts, and when all robots are positioned
in s. Therefore, the robots’ walks can be easily computed beforehand, so that the robots
do not have to compute/modify them during the exploration (the COMPUTE-MOVE-
MOVE scheme). Then each robot follows its precomputed walk synchronously with
other team members, and the team jointly visits all nodes of the tree.

As all walks Walki constructed by the algorithm are of the same length, we define the
cost of such a solution as

C̃ALG(G, s) := |Walk1| .

The optimal offline cost C̃OPT(G, s) is a lower bound on this cost.
As we have mentioned in Section 2.2, we neglect the time spent on computation

and message passing. Therefore, the algorithm may carry out even a time consuming
computation of the optimal solution. However, we will later see that this is an NP-hard
problem to compute the optimal solution, and thus we still put much effort to show how
to make the computation efficiently (even at the expense of accuracy).

Definition 3.1 (Approximation). Algorithm ALG is an α-approximation to the collective
offline exploration problem, if for all G and s

C̃ALG(G, s)

C̃OPT(G, s)
≤ α .

The parameter α is an approximation ratio of the algorithm ALG.

We measure the quality of the solution delivered by an offline algorithm by observing
a bound on its approximation ratio C̃ALG(G, s)/C̃OPT(G, s). Clearly, the optimal solution
(approximation ratio of 1) can be found in exponential time, and we show how to do
it for trees using the dynamic programming technique. We also show that the solution

29

30 C  

can be computed more efficiently, but its cost (and thus the approximation ratio) will be
increased.

Certainly, the exploration of a known graph is not as challenging as the exploration of
an unknown graph, where the “map” has to be constructed, but still there are many inter-
esting applications for the offline case. Consider the situation where the robots’ walks
have to be frequently computed for different graphs. There are many contributions
investigating problems like e.g. mail or parcel pickup and delivery, scheduling of au-
tomated guided vehicles (vehicle routing problem, multi-vehicle scheduling problem),
or other basic logistic problems. In these settings, the problem gains a new interesting
context. Graph G is known, but there is a need for a collection of optimal walks covering
a subgraph of G. A fair decomposition of nodes into subgraphs of almost equal size has
to be found. This has to be computed efficiently, and also the solution is required to be
as close to the optimal one as possible.

Moreover, by the offline model we give a base for further online investigation in
Chapter 4 and Chapter 5. The main outcome here is information on the optimal cost
for a given graph expressed in terms of number of nodes and the radius of the graph
(see Section 3.1). This will serve us as the value to which we compare the efficiency of
online algorithms. In Section 3.2, we present a constant approximation which we will
additionally extend in Chapter 4 to obtain an online algorithm working without a graph
given in advance. We close this chapter by showing a way to find an optimal solution
for trees (see Section 3.3).

3.1 The optimal cost

Cost C̃OPT(G, s) of an optimal offline algorithm is a lower bound for the cost of online
algorithms in the energy and the time model. We find a good lower bound on the
optimal cost and use it later by estimations of the competitive ratio of online algorithms.
Two easy lower bounds are presented and then combined into a bound which (as we
will see in Section 3.2) is up to a constant factor tight.

Given graph G = (V,E) with the distinguished base s ∈ V where |V| = n + 1, denote
by D the radius of G, i.e. distance from s to the furtherest node. Assume that all robots
start from the base, and in each step each robot visits a new node – never visited by any
robot before. The whole team discovers k such nodes in a step, and even then (as there
are n nodes besides the base) the exploration takes at least dn/ke + 1 steps. Since the
team cannot jointly discover more than k new nodes per step, it results in the first lower
bound:

C̃OPT(G, s) ≥ dn/ke + 1 .

3.1 T   31

To obtain the second bound, observe that there is a node in G which lies at a distance
D from base s. One robot has to visit this node and return to s afterward. Even if it does
it directly, without any detours, it takes at least 2D steps. The exploration will not be
completed until this robot returns to s, and therefore

C̃OPT(G, s) ≥ 2D .

We combine our two simple lower bounds to obtain a general lower bound for the cost
of the optimal collective graph exploration

C̃OPT(G, s) ≥ max {2D, dn/ke + 1} .

In this work, we present algorithms exploring trees, and thus we also make here some
observations for this class of graphs. A tree T of n+1 nodes, rooted at s, contains n edges,
and D is the distance from s to the furtherest leaf. Since the exploration ends when all
robots return to the root, and as each path in the tree is unique, if a robot traverses an
edge once, it has to traverse it a second time, returning to the base. Altogether, there are
2n traversals which have to be made by k robots. It takes at least d2n/ke, and thus for
trees

C̃OPT(T, s) ≥ d2n/ke .

This kind of exploration is a great example of a perfect group cooperation. The tasks are
fairly distributed among all members, which are able to execute them using a full power
of parallel processing. The lower bound of 2D holds also for trees where one robot has
to visit a distant node. Here no cooperation is possible, since other robots cannot help
visiting this leaf sooner. Combining these two simple bounds, we obtain a slightly better
general lower bound for trees

C̃OPT(T, s) ≥ max {2D, d2n/ke} .

In Section 3.2, we present an algorithm exploring an arbitrary graph G and obtaining
the cost of O(D + n/k), and therefore C̃OPT(G, s) = O(D + n/k), matching the lower bound
(up to the constant factor). This proves that the cost of an optimal algorithm exploring
graph G is related only to D and n, and does not significantly depend on the actual
topology of G.

Theorem 3.2. If C̃OPT(G, s) is the optimal cost of the offline exploration of graph G = (V,E) with
base s ∈ V by a group of k robots, then

C̃OPT(G, s) = θ (D + n/k) ,

where D is the maximal distance of a node from base s and n + 1 is the number of nodes in G.

32 C  

3.1.1 A relaxed SPT and the cost of its optimal exploration

Assume that we have some spanning tree of G. If robots, moving only along tree edges,
visit of all nodes of the tree, they also completely explore graph G. We show that the
offline exploration of a spanning tree with a certain property is of roughly the same
complexity as the exploration of G.

Definition 3.3 (γ-relaxed SPT). For given graph G and selected node s, a γ-relaxed shortest
path tree is a spanning tree of G rooted at s, which is at most γ · D in height, where D is the
radius of G.

The γ-relaxed SPT Tγ of G contains all nodes of G, and therefore the exploration of
Tγ leads to the exploration of G. However, the optimal offline algorithm for G might
traverse some edges which are not in Tγ. Therefore, even the optimal algorithm for Tγ
might have an increased cost. Certainly, there is

C̃OPT(G, s) ≤ C̃OPT(Tγ, s) ,

but also another, more interesting bound can be shown here.

Theorem 3.4. Let Tγ be a γ-relaxed SPT of G with base s. We have

2γ · C̃OPT(G, s) ≥ C̃OPT(Tγ, s) ,

where C̃OPT(G, s) is the cost of the optimal offline solution for graph G and base s.

Proof. In the previous section, we have observed the following lower bound for the cost
of the optimal offline algorithm:

C̃OPT(G, s) ≥ max {2D, d2n/ke} .

The maximum of two numbers is not smaller than its arithmetic mean, and thus we
obtain C̃OPT(G, s) ≥ n/k + D. In Section 3.2.1, we present the algorithm which explores
an arbitrary tree by cost 2n/k + 2D · (1 − 1/k) (see Theorem 3.5). The optimal algorithm
has no greater cost, and therefore

2n/k + 2(1 − 1/k) · γ ·D ≥ C̃OPT(Tγ, s) .

Using the two bounds presented above and γ ≥ 1, we obtain

2γ · C̃OPT(G, s) ≥ 2γ · (n/k + D) ≥ C̃OPT(Tγ, s) ,

which concludes the proof.

We have made some observations on the cost of the optimal solution, without knowing
how this solution might look like. In Section 3.3, we show how to compute the optimal
walks for k robots.

3.2 E  33

3.2 Efficient approximations

The problem of finding an optimal solution for the collective offline exploration problem
is proved to be NP-hard. In 1978, Fredericson, Hecht and Kim (see [FHK78])) showed a
reduction to k partition problem, and Fraigniaud et al. [FGKP06] proved that the problem
remains NP-hard, even if restricted to trees. In [FHK78] Frederickson et. al. present
(5/2 − 1/k)-approximation for k-traveling salesmen problem (k-TSP) on a weighted,
undirected graph. They base on the good tour for k = 1 (1.5-approximation algorithm
for 1-TSP introduced by Christofides, Edmonds and Johnson), which is later split into k
subtours.

Averbakh and Berman consider k-TSP in trees and in [AB96] they give a heuristic for
k = 2. They prove the worst case approximation factor of 2 (which is a highly inefficient
result for this setting). In [AB97] they extend their results for trees and present an
approximation for an arbitrary k, where both an initial location and k tours have to be
computed. They achieve the worst case approximation factor of (2 − 2/(k + 1)), but the
time needed for computation isO(kk−1nk−1). In [AB02] they study the special case of k = 2
and k = 3, where they find (in polynomial time) only the optimal starting location of the
robots (without computing their optimal tours).

Nagamochi and Okada improve the time needed for the computation of k-TSP tours
to O((k − 1)! · n), fulfilling the same as Averbakh and Berman approximation guarantee
of (2 − 2/(k + 1)). Please notice that both of these results need time exponential in k.

Sinha et al. in [EGK+04] cover all nodes of a weighted graph with a set of k
trees rooted in k predefined, distinct nodes. Their polynomial algorithm achieves
the worst case approximation factor of 4. Arkin, Hassin and Levin in [AHL06] also
deliver a few approximations for a weighted graph, in the context of vehicle routing
(4-approximation for node-cover with open-paths, (3+e,3+e)-approximation for star-
covers, and 4-approximation for unrooted trees).

3.2.1 An easy O(1)-approximation

In Section 3.1 we have observed the lower bound on the cost of an optimal offline algo-
rithm. To show a tight bound (up to a constant factor), we present (basing on [FHK78]
and [DKS06]) an easy, constant approximation algorithm for arbitrary graphs. Consider
undirected, connected graph G = (V,E) on n + 1 nodes with base station s. The shortest
path tree T = (V,E′) of G rooted at s can be easily computed in polynomial time, using
e.g. the Dijkstra’s algorithm (see [CLRS90]). We show how to explore this tree by a team
of k robots in O(D + n/k) parallel rounds. Once T is explored, all n + 1 nodes are visited
by at least one robot, which means that also graph G is fully explored.

34 C  

v0 = v2n = s
v1

v2

vD+2m

m

v3

vD+m

m

D + m

m

D + m

1-st robot

2-nd robot

vD+3m

v4

Figure 3.1: Dfs-sequence of a tree.

Tree T consists of n edges, and if D is the distance to the furtherest node in G, then
the furtherest leaf in T is at distance D from base s (T is the shortest path tree of G). We
construct k walks (each containing node s) that jointly cover all nodes of T and no walk
is longer than 2D · (1 − 1/k) + 2n/k.

First, we compute a dfs-sequence (see the textbook [CLRS90]) of T represented by a
sequence of nodes vi ∈ V for 0 ≤ i ≤ 2n, such that v0 = s = v2n, (vi, vi+1) ∈ E and

⋃
vi = V.

Figure 3.1 shows an example of such a sequence. There are some nodes which appear
in this sequence many times, and therefore in Figure 3.1 there are presented separately.

Let m := 2n/k − 2D/k and w0 = vD+m,w2, . . .wl = s be a simple path from vD+m to s
(l ≤ D as no node lies further than D). We define Walk1(t) of the first robot by giving
explicitly its consecutive positions p1(t) := vt for 0 ≤ t ≤ D + m and p1(t) := wt−D−m for
D + m < t ≤ D + m + l. The length of the walk created in this way is at most

D + m + D ≤ 2n/k + 2D · (1 − 1/k) .

The i-th robot (1 < i ≤ k − 1) goes directly to node vD+i·m, then continues to visit nodes
vD+i·m+1, vD+i·m+2, . . . vD+i·m+m, and finally returns to the base station using a simple path.
We have always the same bound of 2n/k + 2D · (1 − 1/k) on the length of such a walk.
The last robot does not return to the base using a simple path, but just continues the
dfs-traversal until the end of it.

There are k − 2 robots which extend the dfs-sequence at least by m steps, and thus in
total, they traverse m · (k − 2) dfs-edges. The first and the last robot extend the sequence

3.3 A     35

by D + m, and thus the team traverses

m · (k − 2) + 2 · (D + m) ≥ 2n

edges of the dfs-sequence. This means, that all nodes of the whole tree T are jointly
visited by robots and the latter finish their walks in base station s. In this way, graph G
is also explored in time which can be easily bounded by 2n/k + 2D · (1 − 1/k).

Theorem 3.5. In the offline exploration model an arbitrary graph on n + 1 nodes, and D in
height can be explored by a team of k robots in time 2n/k + 2D · (1 − 1/k).

As we have observed in Section 3.1 for trees, the optimal offline cost C̃OPT(G, s) ≥ 2D
and C̃OPT(G, s) ≥ 2n/k. Therefore, the above algorithm is (2− 1/k)-approximation for the
collective exploration problem for trees. Considering arbitrary graphs, we have slightly
weaker bounds on the cost of the optimal solution (see Section 3.1): C̃OPT(G, s) ≥ dn/ke+1
and C̃OPT(G, s) ≥ 2D. This proves the approximation factor of (3 − 1/k) for arbitrary
graphs.

Lemma 3.6. There exists a polynomial O(1)-approximation for the collective graph exploration
problem.

3.3 An optimal solution for trees

Given arbitrary tree T, we show how to compute the collection of k robots’ walks, each
starting and terminating in the root of T, jointly covering all nodes of T and minimizing
the length of the longest walk. In Section 3.3.1 we make some observations, which
enables us to compute an optimal solution in time O(kn+1

· n). However, if the number
of nodes is large, comparing to the team size, this result might become unacceptable.
Especially, when we think of the problem of constructing an optimal solution for, say,
k = 3, this method does not seem to be an efficient one. In Section 3.3.2, we show how
to obtain the optimal solution in time related to nk rather than kn.

3.3.1 Optimal solution using compact walks

First, observe that each closed walk of a robot, containing the root of T, can be represented
by a subtree T′ ⊆ T obtained by taking all nodes and edges visited or traversed by this
walk. We say that the walk is compact in this tree, if all leaves of subtree T′ are also
leaves in T. The collection of k compact walks is of size ~a = (a1, a2, . . . , ak), if the number
of distinct edges traversed by the i-th walk is ai. We say that the collection is compact, if
all its walks are compact, and for i , i′ the sets of leaves visited by the walks i and i′ are
disjoint.

36 C  

Selected leafs Si Tree generated by Si Walk generated by Si

v v v

Figure 3.2: The method of obtaining feasible walks that visit selected leaves.

Given an arbitrary subset S of leaves of T, consider tree T′′ obtained by taking all edges
that are contained in the simple paths between the root of T and nodes in S. We say that
T′′ is a tree generated by leaves S (compare Figure 3.2). A sequence of edges obtained from
a dfs-traversal of T′′ (that starts and terminates in the root) defines a feasible walk W of
a robot. We say that W is a walk generated by set of leaves S. Observe that a generated walk
is also a compact walk.

There might exist many solutions with the optimal cost, and we show in the following
lemma, that among those solutions there exists one with the properties we desire. In the
remaining part of this section, we show how to find such an optimal solution.

Lemma 3.7. There exists an optimal solution which is a compact collection of walks.

Proof. First, observe that if two robots enter the same leaf, we can easily modify the
walk of one of them in such a way that it does not enter this leaf. Certainly, it will not
increase the overall cost of the solution.

Now, let T′ be a subtree defined by a walk of some robot i. Assume that there is a leaf
s in T′ that is not a leaf in our tree T. Denote by v the father of s and by v′ any son of s in
T (there exists at least one son, as s is not a leaf in T).

The robot i enters s from v and immediately leaves s through v. This happens to be
an unnecessary movement, as node s is visited also by another robot. Indeed, as walks
belong to a feasible solution, there exists robot i′ , i that visits v′. As the graph is a tree,
there is no other way to explore v′ than by going through s. The walk of the i-th robot
can be improved so that it does not enter s at all, by removing sequence (s, v) from it.

This does not increase the solution’s cost, so the improved walks state also an optimal
solution. In this way, we assure that there exists an optimal solution with compact
walks.

3.3.2 D   37

From Lemma 3.7 we conclude that there exists an optimal solution in which each walk
can be represented as a collection of leaves visited by a given robot. In such a way, our
general problem can be reduced to the problem of clustering of the tree’s leaves. Each
cluster defines a subtree (a collection of simple paths between leaves and s) of a certain
size. The goal is to cluster leaves in such a way that the size of the maximal tree is
minimized.

Let S be the set of all leaves in T. Consider a partition of S into k disjoint sets (some of
them might be empty). We obtain sequence C = (S1,S2, . . . ,Sk) such that

⋃
i Si = S. The

compact walks Wi, defined by Si, jointly cover T, so the sequence C defines a feasible
solution to the problem.

To find an optimal solution, we check all possible partitions of S into k disjoint sets.
As |S| ≤ n (there are n + 1 nodes in the rooted tree T), we have at most kn such partitions
– each defining some sequence C. To check the cost of the solution defined by C, we
need to compute the length of each walk Wi. As each walk is of length not greater than
2n, the dfs-traversal of all walks takes at most 2n · k steps. Therefore, sequence C with
the minimal cost can be found in time O(kn+1

· n).

Lemma 3.8. The optimal solution can be computed in time O(kn+1
· n).

3.3.2 Dynamic programming approach

A tree is a graph which incite to use a dynamic programming. The algorithm presented
in this section uses information gathered about subtrees to obtain the solution for a
larger trees containing those subtrees. For each subtree Tv of T, the algorithm maintains
k-dimensional array Av of size n, which stores up to nk different walks of k robots over
this subtree. Element Av[a1, a2, . . . , ak] is sequence (S1,S2, . . . ,Sk) of sets Si ⊆ V (1 ≤ i ≤ k),
each being a subset of leaves in Tv, such that:

• leaves Si for some i are visited by a robot,

• the subtree generated by Si contains ai edges.

Therefore, each non-empty set Si defines a compact walk of length 2 · ai within Tv (the
length of a dfs-sequence over a subtree consisting of ai edges).

The recursive algorithm ComputeTraversals(v,Tv) computes array Av for node v
(which is not a leaf). The array for larger trees is constructed in a bottom-up fash-
ion, starting from the smallest subtrees of a given tree. Consider node v with non-empty
set of sons s1, s2, . . . , sd. For certain si, two cases have to be considered: either array Asi

is already computed, or si is a leaf, and an appropriate initial array has to be computed.
The algorithm constructs and extends these arrays, so that they describe walks in trees
Tsi

⋃
{(v, si)}, and then combines them to build array Av describing walks in subtree Tv.

38 C  

Algorithm 1 ComputeTraversals(v,Tv)
Require: v is not a leaf

1: Anull ← empty array (all elements equal (∅, ∅, . . . , ∅))
2: Av ← Anull

3: for (each son s of v) do

4: /* - - - - compute A′s array - - - - */
5: A′s ← Anull

6: if (s is a leaf) then
7: A′s[1, 0, 0, . . . , 0]← ({s}, ∅, ∅, . . . , ∅)
8: A′s[0, 1, 0, . . . , 0]← (∅, {s}, ∅, . . . , ∅)
9: . . .

10: A′s[0, 0, 0, . . . , 1]← (∅, ∅, ∅, . . . , {s})
11: else
12: As ← ComputeTraversals(s,Ts)
13: for ~b ∈ [1, 2, . . . ,n]k where ~b , (∅, ∅, . . . , ∅) do
14: ~c← (~b with all non-zero elements increased by one)
15: A′s[~a]← As[~b]
16: end for
17: end if

18: /* - - - - update Av by merging with A′s - - - - */

19: if (Av == Anull) then
20: A′v ← A′s
21: else
22: A′v ← Anull

23: for (each ~a,~b s.t. Av[~a] , (∅, ∅, . . . , ∅) and A′s[~b] , (∅, ∅, . . . , ∅)) do
24: ~c← ~a +~b
25: A′v[~c]← Av[~a] ∪ A′s[~b] /* element-wise sum */

26: end for
27: end if

28: Av ← A′v
29: end for
30: return Av

3.3.2 D   39

In the first case, if for some si array Asi has been computed before, then for a certain
vector ~b the element Asi[~b] is the sequence describing the walks of k robots in Tsi . There
might be some robots which do not enter subtree Tsi at all (zeros in ~b), and thus they
are omitted by constructing array Tv (where v is the father of si). On the other hand,
all robots which explore Tsi have to enter node si through node v, which introduces an
additional edge (v, si) to the subtrees describing their movements. The walks are still
described by the same collection of leaves Asi[~b], but now they have to be stored at
address ~a obtained from ~b by increasing all non-zero elements. In such a way, the new
array A′si

is obtained.
In the second case, where si is a leaf, initial array A′si

is computed. As a part of the
optimal solution, there is only a single robot which enters an edge (v, si), and thus there
are k non-empty entires in an appropriate array:

A′si
[1, 0, 0, . . . , 0]← ({si}, ∅, ∅, . . . , ∅)

A′si
[0, 1, 0, . . . , 0]← (∅, {si}, ∅, . . . , ∅)

. . .

A′si
[0, 0, 0, . . . , 1]← (∅, ∅, ∅, . . . , {si})

For all other (non-unit) vectors ~a, the element A′si
[~a] = (∅, ∅, . . . , ∅).

Given arrays A′si
for all sons of v, we can merge them to obtain array Av describing

walks of robots in subtree Tv. The integration is done sequentially for each son si.
Assume that i− 1 sons are already integrated, and that a robot, by going from v through
sons s1, s2, . . . , si−1, reaches set S of leaves. If the robot reaches set Si of leaves, going
through the son si, then after integration it visits leaves S

⋃
Si. The size of the integrated

tree is a sum of sizes of subtrees being integrated (as these subtrees are edge-disjoint).
After the last array A′si

is integrated, array Av contains the walks of the robots on tree Tv.

Lemma 3.9. The ComputeTraversals(v,Tv) algorithm terminates in time O(n2k+1).

Proof. Each edge (v,u) in T takes part only once in the integration of arrays, where each
pair of vectors is computed in time O(n2k), and only once in the process of extending
walks (timeO(nk)) over subtree Tu that is attached to this edge. Therefore, the algorithm
ComputeTraversals terminates in time O(n2k+1), as there are n edges in the tree.

In the next lemma, we prove that the array returned by the algorithm has the desired
property, which let us later conclude that the optimal solution is also stored in this array.

Lemma 3.10 (Feasibility of the array). Assume that Av is the array returned by the algorithm
ComputeTraversals(v,Tv). If there exists collection C of k compact walks of size ~a covering
tree Tv, then

(S1,S2, . . . ,Sk) := Av[~a]

40 C  

generates collection C′ of k compact walks of size ~a that also covers Tv.

Proof. We present an inductive proof of the desired properties of the array returned by
the ComputeTraversals(v,Tv) algorithm. Assume that tree Tv is 1 in height. That is, it
consists of root v and some number d of sons. Consider a list of all non-empty elements
of the initial arrays created by the algorithm for each son:

A′s1
: ({s1}, ∅, ∅, . . . , ∅), (∅, {s1}, ∅, . . . , ∅), (∅, ∅, {s1}, . . . , ∅), . . . , (∅, ∅, ∅, . . . , {s1}),

A′s2
: ({s2}, ∅, ∅, . . . , ∅), (∅, {s2}, ∅, . . . , ∅), (∅, ∅, {s2}, . . . , ∅), . . . , (∅, ∅, ∅, . . . , {s2}),

. . .

A′sd
: ({sd}, ∅, ∅, . . . , ∅), (∅, {sd}, ∅, . . . , ∅), (∅, ∅, {sd}, . . . , ∅), . . . , (∅, ∅, ∅, . . . , {sd}).

The algorithm computes element-wise sums of every combination of those sets by
taking one set per row (in a pseudo-code of the algorithm, it is done sequentially by
combining row by row). Therefore, the resulting array Av is non-empty for each vector
~a, such that

∑
i ai = d. Moreover, Av[~a] contains the collection of sets of leaves that

generates walks of size ~a, and as all leaves are visited by a robot (each row is taken into
the combination), tree Tv is jointly covered by those walks.

Assume that the algorithm returns a feasible array for every tree h ≥ 1 in height. We
show that for tree Tv which is h + 1 in height, the constructed array Av is also feasible.
Denote by d′ the number of sons of v which are not leaves and by d the number of sons
which are leaves in Tv.

Take s as a non-leaf-son of v. Collection C describes walks that also enter subtree
Ts ⊆ Tv and cover it completely. Therefore, for each s there exists collection Cs of
compact walks covering Ts ∪ (s, v), and we denote its size by ~b(s). As the trees Ts are
all of height of at most h, the computed arrays As are all feasible, and by the inductive
assumption, As[~b(s)] generates the collection of compact walks of size~b(s) jointly covering
Ts.

For (S1,S2, . . . ,Sk) := As[~b(s)], the sequence (S1,S2, . . . ,Sk) defines the compact walks
also in tree Ts ∪ (s, v), but its size is now described by vector ~c(s), obtained from vector
~b(s) by increasing its all non-zero elements by one – the cost of an additional edge (s, v).
The algorithm moves an element (S1,S2, . . . ,Sk) from address ~b(s) in array As to address
~c(s) to obtain a new array A′s defining compact walks in tree Ts ∪ (s, v). We have∑

s

c(s)
i = ai ,

as this is the sum of the edges visited by the i-th compact walk in tree Tv. For each son s
being a leaf the initial array A′s is computed as in the case of trees 1 in height.

3.3.2 D   41

Therefore, for each s being a son of v the algorithm computes array A′s, such that A′s[~c(s)]
contains a definition of a collection of k compact walks of size ~c(s) covering Ts ∪ (s, v),
and furthermore

∑
s c(s)

i = ai. As in the integration phase, all combinations of elements of
arrays corresponding to sons are considered, there are also elements corresponding to
all vectors ~c(s) summed element-wise. And thus, in resulting array Av, address ~a (where∑

s c(s)
i = ai) is occupied by the collection of k compact walks covering tree Tv.

From Lemma 3.10 we can conclude the following lemma.

Lemma 3.11. For array Av, computed by ComputeTraversals(v,Tv), there exists address ~a,
such that Av[~a] contains sequence (S1,S2, . . . ,Sk) where Si generates a walk of li in size, and
maxi{li} is the optimal cost of the collective tree exploration problem.

The algorithm ComputeOpt(s,T) (see Algorithm 2) uses the ComputeTraversals(v,Tv)
to obtain an appropriate array, and then extracts the optimal solution from the array.

Algorithm 2 ComputeOpt(s,T)

1: if (s is a leaf) then
2: return ∅
3: end if

4: A← ComputeTraversals(s,T)
5: find ~a minimizing maxi{ai} for which A[~a] , (∅, ∅, . . . , ∅)
6: (S1, . . . ,Sk)← A(a1, . . . , ak)

7: return collection of walks described by S1, . . . ,Sk

Lemma 3.12. The algorithm ComputeOpt(s,T) computes an optimal solution to the problem in
time O(n2k+1).

Proof. The first step of ComputeOpt is a call to subalgorithm ComputeTraversals, which
computes in timeO(n2k+1) array A containing all reasonable traversals of T. As A contains
O(nk) collections and therefore the optimal traversal of T can be easily found in O(nk)
time. This implies that ComputeOpt finds the optimal solution in O(n2k+1) steps, which is
polynomial in the size of the tree.

From Lemma 3.12 and Lemma 3.8 we can conclude that there exists an algorithm
which computes the optimal solution in O(min{kn+1

· n,n2k+1
}). It is sufficient to check

if kn+1
· n < n2k+1. If this is the case, we run the first algorithm. Otherwise, we use

ComputeOpt(s,T).

C       4

Energy-aware graph exploration

Autonomous robots act independently, and there is no central authority controlling
them. In this situation, it is more likely that they are not connected by any rope or wire,
which would deliver energy or e.g. fuel. Each robot carries its own source of energy, like
a fuel tank or a battery, which unfortunately is always very limited in its capacities. The
limitations might be dictated by the weight of the battery or the tank, which basically
means additional costs of storing such enormous amount of energy.

We rather tend to construct the strategies, so that the maximal energy used by a robot
is as small as possible. In our context, we assume that the energy is basically used only
for a movement of a robot. In some cases, the energy spent on communication is an
important fraction of an overall usage, however, here we neglect the energy used to send
data packets (using wireless devices) or to carry out the local computations. Certainly,
it would be an interesting extension of our model to minimize not only the energy for
movements but also the communication cost.

The number of edge traversals done by the i-th robot can be interpreted as the total
energy used by this robot until the end of the exploration. We recall the energy cost of
online algorithm ALG

EALG(G, s) := max
1≤i≤k

∣∣∣{0 < t ≤ |Walki| : pi(t − 1) , pi(t)
}∣∣∣ ,

which is the maximal energy used by a robot in the team.
The optimal offline cost C̃OPT(G, s) (the graph is known in advance) is not greater than

the energy cost EALG(G, s) of the online algorithm. Clearly, knowing the topology robots
can plan their strategy more carefully, and therefore gain some better energy-savings.
We aim at minimizing ratio EALG(G, s)/C̃OPT(G, s), so that the competitive ratio is as small
as possible. The smaller the competitive ratio, the better the algorithm copes with an
unknown topology and a lack of a map.

43

44 E-  

In Section 4.1, we show a lower bound on the competitiveness of an arbitrary online
algorithm. There exists a simple tree, such that if its topology is not known to the
algorithm in advance, the algorithm will fail to explore it by the optimal offline cost
C̃OPT(G, s). Furthermore, in Section 4.3, we show two algorithms efficiently exploring an
unknown tree.

4.1 The lower bound of 1.5 for the competitive ratio

Consider arbitrary, randomized, online algorithm ALG exploring graphs using k robots.
In this section, we present a star which is constructed by adaptive adversary, depending
on the behavior of a team during the exploration. The star is easy to explore offline
with a small cost, but it cannot be optimally explored, if its topology is not known to
ALG in advance. We show bounds on those costs and derive the general bound on the
competitive ratio.

For an arbitrary large p ∈ N consider a star, shown in Figure 4.1, where the center is
base s. The star is a union of 2k − 2 paths of length p and one path of length 2p. The
i-th short path consists of p nodes v1,i trough vp,i. Parameter q defines which path is of
an extended length consisting of 2p nodes v1,q trough v2p,q. Knowing how the algorithm
ALG explores a star, the adversary declares q in such a way that it additionally increases
the algorithm’s cost.

Star Tp,q consists of 2p · k edges, and no graph with such number of edges can be
explored by k robots with a cost smaller than (2p · k) · 2/k = 4p. However, the topology is
known beforehand, and if each but the first robot explores two short paths, and the first
one explores only the long path, it takes exactly 4p energy units per robot to explore Tp,q.

Lemma 4.1. For an arbitrary p ∈ N and 1 ≤ q ≤ 2k − 1 an optimal offline algorithm explores
Tp,q at cost of

C̃OPT(G, s) = 4p .

Algorithm ALG does not know the topology, and thus does not know which path is
extended (value q).

Assume for a while that all paths are short, and denote by t0 the first step at which
there exists a robot, say the i-th robot, positioned in vp,q′ , which has visited some vp,q′′

(q′′ , q′′) before. The adversary extends exactly the path, the i-th robot is positioned in
(we lay q = q′). At this time, the i-th robot uses at least 3p energy units, as it has also
visited vp,q′′ . If this robot explores an extended path (visits vp,q′′), it will use at least 3p
additional energy units to reach v2p,q and return to the base.

4.1 T    1.5     45

vp,q

v2p,qp

p

vp,2k−1

vp,1
vp,2

vp,3

vp,4

Figure 4.1: The star with an extended path.

We show that even if another robot, say robot i′ (where i′ , i), explores the extended
path, it will also result in the energy-cost of at least 6p. Assume that i′ has not visited
dead-end of any short path before (otherwise it would use 6p energy units). Starting in
the base, it visits an extended path and returns to the base, which takes at least 4p energy
units. Again, it will not visit any other dead-end, as it is not possible to do with the cost
smaller than 6p. If the algorithm tries to maintain the cost not greater than 6p, it needs
some robot (different than i-th robot) to explore only the long path and no other paths
at all1.

Let’s have a closer look at the situation at time t0. There are m−1 short paths explored
by m − 1 robots and one short path explored by the i-th robot (by definition of t0). Each
robot uses at least 2p energy units until t0. Beside the extended path, there are still
2k − 2 −m short paths to be explored, and neither i nor i′ can help by their exploration.
Even if m− 1 robots explore a short path each, there are 2k− 2−m− (m− 1) = 2k− 1− 2m
short paths waiting to be explored, but only k − 2 − (m − 1) = k − 1 − m robots which
can help with it. Assuming that all k − 1 −m robots are ’fresh’ (they have not traversed
any edge until now), they can explore at most 2k − 2 − 2m short paths. Then, there still
exists one short path to be explored at the moment, where all robots have used at least
4p energy units. No robot can do it with the cost smaller than 6p.

1 It might enter other paths, but cannot explore it completely, so that no other robot will have to enter it
afterward.

46 E-  

Lemma 4.2. Every online algorithm ALG using k robots to explore Tp,q, where p ∈ N and
parameter q (1 ≤ q ≤ 2k − 1) is set by the adversary, has energy cost

EALG(G, s) ≥ 6p .

Using observations made in Lemma 4.1 and Lemma 4.2, we obtain the following main
theorem of this section:

Theorem 4.3. Every randomized, online graph exploration algorithm ALG for k robots has the
competitive ratio of at least 3/2, against the adaptive adversary.

4.2 Tree exploration algorithms

Consider an exploration of a tree rooted at s, consisting of n uniform labeled edges,
where the furtherest node is D edges away from s. All k robots R1,R2, . . . ,Rk are initially
placed in s, and each can traverse one edge per step to jointly visit all nodes of a tree.
Robots can locally communicate, when they are in the same node.

In the energy model, whenever a robot traverses an edge, it uses one energy unit. We
are interested in costs of the exploration, defined as the maximal energy used by a robot.
Once again, we compare the cost of the online algorithm to the cost of the optimal offline
algorithm to obtain an competitive ratio. In the energy model, robots do not care about
an overall time of the exploration. Therefore, in some situations, halting and waiting
for new information may be more desirable for a robot than a further exploration. This
is exactly the case in our algorithms. During a round, there is only one active robot, and
all other robots are positioned in s and do not move.

Consider a dfs-traversal of a tree as a sequence of nodes {w1,w2, . . .w2n}. Nodes might
appear in the sequence many times, but their length always equals 2n. Observe that we
can easily extend the partial dfs-sequence {w1,w2, . . .wm} (where m < 2n), assuming that
w j for 1 ≤ j ≤ m is known.

In our algorithms, the active robot first goes to the last node of the known (partial)
dfs-sequence, say node v j−1, and then continues extending this sequence for a certain
number of steps until node v j. It eventually returns to s, where another active robot
is selected for exploration. Additionally, the current dfs-subsequence is broadcasted
within the team, and as all robots are positioned in the root at this moment, only a
strictly local communication is used. In the next round, the active robot goes to v j, and the
whole round is executed again in the similar way.

We present two algorithms which follow this pattern. The simple algorithm in Sec-
tion 4.2.1 is 8-competitive and bases on observations made about the offline approxima-
tion. Later, in Section 4.2.2, we improve this result to 4 − 2/k-competitive algorithm.

4.2.1 S 8-    47

4.2.1 Simple 8-competitive tree exploration algorithm

In Section 3.2, we have seen that if we split the dfs-sequence of tree T in sections
of M := 2 · max{n/k,D} edges in size, then it leads to 2-approximation of the offline
exploration problem. Here we use this observation to obtain a fully online exploration
algorithm minimizing the maximal energy used by a robot.

Notice that if M is known to the algorithm, it does not require any additional knowl-
edge to work properly, as the dfs-sequence can be constructed sequentially by extending
it by an additional edge. Denote the dfs-sequence of T by vi ∈ V for 0 ≤ i ≤ 2n, such that
v0 = s = v2n, (vi, vi+1) ∈ E and

⋃
vi = V. Giving any initial sequence v0, . . . , v j, node v j+1

can easily be determined. Moreover, the simple path from any vi to the root is known
and can be easily used to travel forth and back between base station s and node vi.

In the algorithm presented in Section 3.2 the first robot R1 extends the (empty) dfs-
sequence by M steps and then R2 goes to the place where R1 stopped and extends the
sequence for another M steps. This procedure is continued until the whole dfs-sequence
is traversed, and thus T explored. However, in our online setting, we cannot directly
define those sections, since neither n nor D, needed to compute M, is known to the
algorithm beforehand. We use a simple technique to approximate the real value M.
Algorithm 3 explores an unknown tree T, binary searching for M.

Algorithm 3
1: v0 ← s
2: emax ← 2
3: while (T is not yet explored) do
4: emax ← 2 · emax

5: vi ← ∅ for all 1 ≤ i ≤ k
6: for i = 1 to k do
7: R← Ri //the active robot
8: R travels to vr−1

9: R executes emax/2 steps of DFS but breaks if it leads deeper than emax/4 from s
10: vr ← current node the robot R is in
11: R returns to s
12: end for
13: end while

An iteration of the for-loop is a round. In each round, there is selected robot R, which
is the only one which is active (moves) in this round. As the loop runs from 1 through
k, each robot is selected exactly once per so called epoch (an iteration of the while-loop).
Therefore, there are exactly k rounds within an epoch – a round per one robot from the
team.

48 E-  

When a robot gets selected, it receives the energy supply of emax, which is used to
explore as much dfs-edges as possible. Parameter emax is defined once at the beginning
of each epoch, in the following way. Initially, emax equals 2, but its value is doubled at
the beginning of the epoch, such that the energy available for a robot increases.

In a round, the active robot R uses its available energy in the following way. First it
travels to node vr−1 where the previous active robot stopped its exploration. This node
never lies deeper than emax/4 from s (see the 9-th line of the algorithm), and therefore it
takes at most emax/4 energy to reach it. Then, robot R extends the known dfs-sequence
for emax/2 steps, and that changes its position from node vr−1 to node vr. At the end, it
takes at most emax/4 steps to return to s, using a simple path in the tree.

In an epoch, each robot extends the dfs-sequence by emax/2 steps, using at most emax

energy units. In initial epochs, the total energy k · emax/2 used to extend the dfs sequence,
might be too small to cover the complete dfs-sequence which is 2n in length. However,
we know that emax = 2M energy units per robot is sufficient for a team to jointly traverse
a complete dfs-sequence

k · emax/2 = k · 2 max{n/k,D} ≥ 2n .

Value emax is doubled each epoch, and thus eventually, there will be value 2M ≤ emax <
4M found. This will be the last epoch, after which the tree will be completely explored,
and the algorithm will terminate. Therefore, the total energy used by a robot in all
epochs is at most 8M.

Lemma 4.4. Algorithm 3 explores an unknown tree and uses at most

8 ·max{2D, 2n/k}

energy units per robot.

As we have observed in Section 3.1, the cost of the optimal offline algorithm is related
to radius D and the number of nodes in G divided by the team’s size k

C̃OPT(G, s) ≥ max {2D, d2n/ke} .

Therefore, the Algorithm 3 explores an arbitrary tree and achieves the competitive
ratio of 8. There is only a very restricted communication pattern required, as robots
exchange messages only in the root of the tree.

Lemma 4.5. The online Algorithm 3 completely explores an arbitrary, unknown tree T rooted
at s, and achieves a competitive ratio 8.

4.2.2 I (4 − 2/k)-    49

4.2.2 Improved (4 − 2/k)-competitive algorithm for trees

Here, we improve the Algorithm 3, presented above, but we follow the same scheme as
before. There is only one robot active at a time, and all remaining robots are waiting in s.
Each active robot also extends the known dfs-sequence, but now with the larger number
of “extending” steps. As we know, the lower bound on the cost of the optimal solution
grows with D. Therefore, when the active robot detects a node at a large distance, it
has a proof that the optimal solution also has a large cost. Thus, the active robot can
make larger than previously, in Algorithm 3, number of extending moves. For detailed
description of the improved algorithm see Algorithm 4.

Algorithm 4
1: v0 ← s
2: h← 1
3: r← 0 // round counter
4: while (T is not yet explored) do
5: R← robot with the least energy used // the active robot
6: R travels to vr−1

7: e← 0
8: repeat
9: R follows a dfs-step

10: e← e + 1
11: h← height of the visited subtree
12: until (e < 2h)
13: hr ← h
14: vr ← a current node robot R is in
15: R returns to vroot // this takes at most hr steps
16: r← r + 1
17: end while

We call a round one iteration of the while-loop. At the beginning of the round, the
least exhausted robot is selected as an active robot. First, the active robot travels to
node vr−1 in which the robot active in the previous round has finished its exploration.
Then, it continues extending the dfs-sequence until the height of the subtree known
to the algorithm is greater than 1/2 of the “extending” steps done (see repeat-loop in
Algorithm 4). This guarantees that the return path is not too large in length, comparing
to the work done on extending the dfs-sequence. After this, the current position of the
robot is stored in vr, and hr denotes the height of the visited subtree.

Therefore, the active robot uses at most hr−1 energy units to reach node vr−1, then it
continues traversing consecutive dfs-steps until it collects 2hr edges, and finally returns

50 E-  

to s, which certainly takes at most hr energy units. This gives us an upper bound of
hr−1 + 3hr on the energy used by a robot during round r. In the first round (r = 1), the
active robot is the first working robot ever, so it uses only 0 + 3hr energy units (we lay
h0 = 0 and also v0 = s). The last round q is perhaps shorter and takes hq−1 + w steps,
because the robot gets to the root already during the repeat-loop loop, and thus does not
have to pay any extra costs for the return to the base.

Let ei be the energy of the i-th robot Ri after completely exploring the tree, and
Etotal =

∑k
i=1 ei be the total energy used by all robots. We have

Etotal ≤ 3h1 +

q−1∑
r=2

(hr−1 + 3hr) + hq−1 + w = 4 ·
q−1∑
r=1

hr + w

as the upper bound for this energy. On the other hand, we know that the robot active in
round r ≤ q− 1 has done exactly 2hr steps of the DFS tour (the last one – exactly w steps),
which for the whole tree takes exactly 2n energy units. It must be that (

∑q−1
r=1 2hr)+w = 2n

and thus we have
Etotal ≤ 4n ≤ 2k · C̃OPT(G, s) ,

where C̃OPT(G, s) is the energy cost of the optimal offline exploration.
Let emin = min{ei : 1 ≤ i ≤ k} and emax = max{ei : 1 ≤ i ≤ k} be respectively the minimal

and the maximal energy used by robots Rmin and Rmax. Sequence hr is non-decreasing,
and so is the energy cost hr−1+3hr of the robot active in round r. After each turn (probably
but the last one) in which Rmax is active, there is one turn in which Rmin is active, so

emax − emin ≤ hq−1 + 3hq ≤ 4D ≤ 2 · C̃OPT(G, s) .

To continue our proof, we need the following observation on an arbitrary sequence of
natural numbers.

Lemma 4.6. For an arbitrary sequence ai > 0 of length k we have

amax ≤
1
k
·

k∑
i=1

ai +
(
1 −

1
k

)
· (amax − amin) ,

where amax and amin denote the minimal and the maximal value respectively.

Proof. In the sequence, there is at least one element with value amax, and certainly all
other k− 1 elements are at least amin. Therefore, the total sum of all elements is bounded
by

k∑
i=1

ai ≥ amax + (k − 1) · amin .

4.3 E    51

We easily obtain

1
k
·

k∑
i=1

ai ≥ amax −

(
1 −

1
k

)
· amax +

(
1 −

1
k

)
· amin ,

which leads to the bound stated in the lemma.

Applying Lemma 4.6 to sequence ei, we get the bound on the number of edges
traversed by the most exhausted robot

emax ≤
2k · C̃OPT(G, s)

k
+ (1 − 1/k) · 2 · C̃OPT(G, s) ,

and therefore
EALG(G, s) = emax ≤ (4 − 2/k) · C̃OPT(G, s) .

This leads to the upper bound of 4−2/k on the competitive ratio of our online exploration
algorithm.

Lemma 4.7. Algorithm 4 explores an arbitrary, unknown tree T from root s and achieves the
competitive ratio of at most 4 − 2/k.

The analysis can be slightly improved (at the cost of readability), but it can also be
proved that the competitive ratio of this algorithm asymptotically converges to 4. Note
that this still does not close the “gap”, as the general lower bound for the competitive
ratio of an algorithm in this model is 3/2.

4.3 Exploration of spanning trees

Let T be the shortest path tree of graph G = (V,E), such that T is rooted at s. Certainly,
if some algorithm jointly explores T, it also explores graph G. Furthermore, we have
observed in Section 3.2.1 that the offline cost of the exploration of G isO {D + n/k}, which
is related only to the radius and the number of nodes in G. Therefore, as those two
parameters are equal in T and in G, the exploration of T has the same (up to the constant
factor) complexity as the exploration of G.

Observe that the shortest-paths property is much more than we actually need here. It
is sufficient that T is γ-relaxed SPT Tγ rooted at s, whose height is bounded by γ ·D for
some γ (see Definition 3.3). By Theorem 3.4 the offline exploration cost of such a tree is
close to the offline cost of the optimal algorithm exploring G

2γ · C̃OPT(G, s) ≥ C̃OPT(Tγ, s) ≥ C̃OPT(G, s) .

52 E-  

The idea is that the online algorithm for trees could explore also a wider class of
graphs, if each robot perceived the graph as a tree. It simply receives some selected
edges instead of all edges in the neighborhood of its current position. Those selected
edges build a tree which is explored by the algorithm. It is required, that the tree can be
constructed in an online fashion. Recall that in the online setting graph G is not known
to the algorithm in advance, and therefore there is no possibility to construct the relaxed
shortest path tree in advance. The tree has to be constructed at certain places (dictated
by the algorithm), edge by edge, when a moving robot asks about the neighborhood
of the node it is already in. If the algorithm has the ability to chose only those nodes
belonging to Tγ, the graph exploration can be reduced to the problem of the exploration
of trees.

Let ALG be the online graph exploration algorithm which can explore trees, and whose
all robots are positioned in node s of an unknown graph G. Let E(t) be the set of edges
that the algorithm ALG knows at time t. Set Enew(t) = E(t) \ E(t − 1) is a collection of
edges that the algorithm discovers for the first time at step t.

Definition 4.8 (Online tree selection scheme). The online tree selection scheme selects at
step t subset E′(t) ⊆ Enew(t) of edges, such that the collection of selected edges

⋃
t′≤t E′(t′) form a

tree that spans nodes contained in E(t).

The online tree selection scheme enables the algorithm to percept the graph as a tree.
For algorithm ALG we are interested in such a scheme that constructs γ-relaxed SPT Tγ.
Observe that having such a scheme for an efficient tree exploration algorithm, it is easy
to obtain an efficient algorithm that explores arbitrary graphs.

Theorem 4.9. For the online tree selection scheme constructing γ-relaxed SPT Tγ and α-
competitive algorithm ALG exploring trees, there exists (2α ·γ)-competitive algorithm exploring
graphs for which the scheme is defined.

Proof. The algorithm is α-competitive, and therefore its cost EALG(Tγ, s) is bounded by

EALG(Tγ, s) ≤ α · C̃OPT(Tγ, s) .

However, the Theorem 3.4 states that

C̃OPT(Tγ, s) ≤ 2γ · C̃OPT(G, s) ,

and therefore we obtain the bound of

2α · γ · C̃OPT(G, s)

on the cost of algorithm ALG, which proves that it is (2α · γ)-competitive algorithm for
graph G.

In Section 4.3.1, we show an example of an online tree selection scheme and its usage
to obtain an online algorithm for some interesting subclass of graphs.

4.3.1 E  -  53

base s

Figure 4.2: A tree constructed by the online tree selection scheme in a city-block graph.

4.3.1 Exploration of city-block graphs

We present the online tree selection scheme for interesting class of graphs (introduced
by Betke, Rivest and Singh in [BRS95]), and the tree exploration algorithms described
in Section 4.2. The main property of these algorithms is that there is always only one
active robot which moves in the tree and, moreover, it moves along the dfs-sequence.
This property enables us to deliver an easy tree selection scheme, as at each step there
is only one node at which the outgoing edges have to be selected as a tree-edges (see
Definition 4.8). Therefore, the selection scheme is reduced to the problem of constructing
a dfs-sequence of a tree, spanning graph G, such that it is of a bounded height. We require
that the finally constructed spanning tree is γ-relaxed SPT for some small γ.

A city-block graph is a rectangular grid occupied by a rectangular, axis-parallel obstacles
(see Figure 4.2). Two obstacles cannot touch each other, i.e. there is always a path going
between them. The borders of the grid are treated as obstacles. In Figure 4.2, the direction
to the top is called a northern direction and other respectively southern, eastern and
western. Given base station s, we define monotone paths (see a four-way decomposition
in [BRS95]) that divide the graph into 4 regions (north, south, east and west). The east-
north monotone path proceeds east, until the obstacle is hit. The direction is switched to
north, and again the path is extended, until the obstacle is hit. The procedure is repeated,
until the corner of the graph is reached2. All other paths (east-south, west-north, and

2 Corners are well defined in the city-block graph.

54 E-  

west-south) are constructed analogically.
We show the scheme which bases on the ray algorithm introduced in [BRS95]. We

present only the construction for the northern region, as it works analogically for all
remaining regions. The ray always proceeds north (starting from the western part of the
north-west monotone path), until it is blocked by an obstacle. When the ray approaches
the eastern, far corner of the obstacle, it turns to the west and proceeds until the western,
far corner of an obstacle. Then the procedure constructing northern rays is repeated,
always with a one-to-the-east excursion, until the north-east monotone path is traversed.

Note that when the node is approached by a ray, it is always clear, which neighboring
edged belong to the tree being constructed. This holds also on the border of regions
defined by the monotone paths. Therefore, the scheme basing on this algorithm results
in a spanning tree of the northern region of G.

Lemma 4.10. The tree constructed by the above scheme for algorithm ALG is (3/2)-relaxed SPT
of G with base s.

Proof. Each path between base s and a leaf proceeds east only along the monotone
paths. At all other nodes, it proceeds either north or west. As there are at most edges
going east on the monotone path, D/2 levels that can be traversed going north, and D/2
levels going west, the total length of the path connecting s to any leaf is bounded by
3/2 ·D.

If we use the (4−2/k)-competitive online algorithm for trees (see Section 4.2.2) together
with the scheme described above, we obtain (by Theorem4.9) the algorithm with the
competitive factor of 2(4 − 2/k) · (3/2).

Lemma 4.11. There exists (12 − 6/k)-competitive algorithm exploring city-block graphs.

4.4 Exploration of general graphs

We show a technique to explore arbitrary graphs by a team of k robots. Suppose for a
moment that a single robot has to traverse all edges of a graph. Clearly, the efficiency
of such an exploration depends on the graph’s complexity. It is not hard to imagine a
graph where some edges have to be traversed more than once. If the graph is Eulerian,
there exists the Eulerian path that visits every edge exactly once.

If the graph is known beforehand, the optimal walk of a robot can be computed
(Eulerian path in the case of Eulerian graph), and then the exploration is optimal. The
problem gets more difficult when the algorithm does not know the graph beforehand.
Deng and Papadimitriou in [DP99], Albers and Henzinger in [AH00], and Fleischer and
Trippen in [FT05] observe that for directed, strongly connected graphs the algorithm

4.4 E    55

efficiency grows with, so called, deficiency, i.e. the number of edges that have to be
added in order to make to the graph Eulerian.

In [BRS95, ABRS99, AK98], and finally in [DKK06], the piecemeal exploration of
graphs by one robot with an additional fuel-constrain is studied, and the results consec-
utively improved. The fuel-constrain says that the robot must return to base station s
after at most 2D · (1 + β) traversals for, say, refueling, where β is a non-negative constant.
Value 2D · (1 + β) can be interpreted as the capacity of a fuel tank. The robot has to
explore efficiently before the next refueling, to compensate the high costs of frequent
base returns.

We adapt the one-robot algorithm, presented by Duncan, Kobourov and Kumar
in [DKK06], to work in our multi-robot energy model. The lemma below comes
from [DKK06] and states the main properties of the algorithm presented there.

Lemma 4.12 (see [DKK06]). Any unknown graph G = (V,E) with base node s and unknown
radius D can be explored by a fuel-constrained robot with cost

Θ(|E|/β) ,

for 0 < β < 1. The robot will never take more fuel than 2D · (1 + β) (without knowing D).

Consider the algorithm mentioned in Lemma 4.12. It uses one robot and returns to s
each 2D · (1 + β) steps (or even more frequently). Let’s use now all k robots, instead of
only one robot, in the following way. When a current robot returns to s, the execution
of the algorithm is temporarily terminated, and the robot with the smallest number
of traversed edges (a lazy robot) is selected to be an active robot. The active robot
continues the terminated algorithm. Let ALG be the algorithm using k robots and
working as described above.

We will use the same technique as in Section 4.2.2 to prove the bound on the competi-
tive ratio of ALG. We combine the bound on the total energy Etotal used by all robots and
the difference in the energy usage of the most and the least exhausted robot. Denote |E|
by m, then by Lemma 4.12, the total energy used by all robots

Etotal = O(m/β) .

On the other hand, the difference between the total number of edges emin traversed by
a lazy robot and the total number of edges emax traversed by a hard-working robot is
bounded by the length of one trip. i.e.:

emax − emin ≤ 2(1 + β) ·D ,

as ALG always selects the least exhausted robot to continue the exploration after “refu-
eling”.

56 E-  

For every sequence of positive numbers, each belonging to the interval of a bounded
size, and where the sum of all elements of the sequence is also bounded, the maximal
element cannot be too large. We use Lemma 4.6:

emax ≤
1
k
·

k∑
i=1

ei +
(
1 −

1
k

)
· (emax − emin) ,

and by substituting the bounds obtained above we get

emax = EALG(G, s) = O
(
1/β ·m/k + 2(1 + β) ·D

)
.

We have to find a relation to the number of nodes, as those (and not edges) are objects
to be explored in the model of this work. For given graph G on n nodes and m edges,
value α is the minimal number fulfilling m ≤ α · n. By applying this to the above bound,
we obtain the upper bound

EALG(G, s) = O
(
α/β · n/k + 2(1 + β) ·D

)
,

formulated using the parameter n instead of m.
We recall from Section 3.1 that D ≤ C̃OPT(G, s)/2 and n/k ≤ C̃OPT(G, s)/2, and therefore

we finally get

EALG(G, s) = O

(
α
β

+ 1 + β

)
· C̃OPT(G, s) .

As the algorithm requires that β < 1, the best bound we get is

EALG(G, s)

C̃OPT(G, s)
= O(α) ,

which is a bound on the competitive ratio of the online algorithm ALG in the energy
model.

Lemma 4.13. For an arbitrary undirected graph G = (E,V) with m = |E| edges and n = |V|
nodes, where m = α · n, our algorithm using k robots explores G from base s ∈ V and achieves
competitive factor of α.

C       5

Time-efficient graph exploration

In Chapter 4, we have studied a problem of exploration, aiming at minimizing the
maximal energy used by a robot. An energy-awareness is an important aspect, since
the abilities of each autonomous robot are restricted, as its accessible energy (stored in
batteries) is bounded. Robots move carefully, since each motion uses costly energy, and
as we have seen in Section 4.3, it is quite reasonable to move only one robot at a time
and leave all remaining robots waiting in the base. This may result in energy-savings,
but unfortunately leads to an extended exploration time.

There are scenarios, where we do care about the total exploration time. As an example,
consider a rescue mission, where wounded people are waiting for help. In such cases,
one does not care about the energy-savings. However, we will observe that in our model,
minimizing the total exploration time entails minimizing the maximal energy as well.
Minimizing time is more challenging, and we will later see, how it is reflected in the
competitiveness of algorithms. The time-cost of algorithm ALG is formally defined as

CALG(G, s) := |Walk1| ,

which is the total exploration time.
Assume that the graph is known to the algorithm beforehand, and denote by C̃OPT(G, s)

the optimal offline exploration cost. We measure the performance of an arbitrary online
algorithm ALG by comparing its cost to C̃OPT(G, s). In this model, CALG(G, s)/C̃OPT(G, s)
is competitive ratio of ALG, and we aim here at minimizing it.

Observe that, if ALG uses only one robot by the exploration, there are some graphs
for which the competitive ratio is k. For instance, consider a star consisting of k edges
outgoing from its center. Optimal algorithm needs 2 steps, and each algorithm using 1
robot needs at least k steps. Both algorithms presented in Chapter 4, use only one robot
at a time, and all remaining robots are positioned in the base. Although it was sufficient
in the energy-model to obtain a good performance, the worst-case competitive ratio of
such algorithms in the time-model is Ω(k).

57

58 T-  

In this chapter, we show a surprising lower bound for the competitive ratio in the time-
model. For each online algorithm, using even global communication, there exists a tree,
whose exploration results in Ω(log k/ log log k)-competitiveness (Section 5.1). We recall
here, that there exists O(1)-competitive algorithm for the energy-model (see Chapter 4).
Additionally, we show how to efficiently explore trees which can be embedded in multi-
dimensional grids, and therefore are not too dense (see Section 5.2). Moreover, our
methods use only very restricted, local communication. We start by presenting an
overview of the results in this research area and describing how our results contribute
to it.

5.1 The competitive ratio is Ω(log k/ log log k)

Consider an arbitrary, randomized online algorithm ALG exploring graphs using k
robots, each equipped with global communication devices. In this section, we show how
the adaptive adversary constructs a tree which ALG explores inefficiently, comparing
to the optimal offline cost – more precisely, we show lower bound of Ω(log k/ log log k)
for the competitive ratio. Since the algorithm is arbitrarily chosen, this leads to the
conclusion that in the worst case, no online algorithm can be efficient, no mater what
the communication pattern is.

On the other hand, the tree presented below can be considered as a ’non-typical’
graph1 since its degree is large. If we model a terrain by a graph, it is quite an unusual
case that the node’s maximal degree is large. The same holds for networks, where much
effort is put into avoiding such a situation where one node maintains many links.

We start our lower-bound construction by introducing an important component (a
tentacle). Then, we show how to combine components of different sizes to obtain a lower
bound tree, whose shape resembles some living creature in appearance, and thus will
be called a jellyfish tree.

5.1.1 A basic component – a tentacle

A tentacle s in size, shown in Figure 5.1 consisting of a single path t in height and s + 1
trees of degree t and 1 in height. The trees are numbered 1 through s + 1 and the i-th
tree is rooted in a leaf of the (i − 1)-th tree (this leaf is called a main node). The first tree
is rooted at the end of the single path. A whole tentacle consists of t · (s + 1) edges.
Main nodes vi (where 1 ≤ i ≤ s + 1) are defined as nodes which are visited very late by
algorithm ALG. More precisely, for d > t there is no node at distance d which is visited

1 It is actually quite usual observation about lower bound constructions.

5.1.2 J  59

v1

v2

v3

v4

vs−1

vs
vs+1

t

s

t edges

the root

Figure 5.1: A tentacle s in size with the main nodes v1, . . . , vs+1.

after main node vd−t+1 (also situated at distance d). Node vd−t+1 is the one, at distance d,
which is visited as the last one.

The configuration of the main nodes makes the exploration harder. It takes many
time steps to reach the far leaves of the tentacle, even if we consider many robots. We
observe this property of the tentacle in the following lemma.

Lemma 5.1. If vl is the furthest visited main node, and the tentacle is explored for t time steps
by k′ robots, then the main node vl+k′ is not visited.

Proof. There are k′ · t edges between nodes vl and vl+k′ . At least (k′ − 1) · (t − 1) of them
do not lead to further edges, and thus are traversed twice. Since t > k ≥ k′ ≥ 4, there is
at least

2 · (k′ − 1) · (t − 1) > k′ · t

traversals. This contradicts the fact, that a team of k′ robots carries out at most k′ · t
traversals in t parallel time steps between time step r · t and (r + 1) · t.

Observe that no node at distance d + 1 is visited before all nodes at distance d are
visited. Therefore, the algorithm does not know the tentacle’s size before completely
exploring it. We will have many tentacles of different sizes, and this crucial property
disables the algorithm to make a fair assignment of robots. The large tentacles should be
explored by a large number of robots, but unfortunately, the algorithm does not know,
which tentacles are large.

5.1.2 Jellyfish tree

To construct a lower bound tree, we use k tentacles in sizes of s1, s2, . . . , sk, defined as

si =

⌈
k

log k
·

1
i

⌉
.

60 T-  

t edges

s1 =
⌈

k
log k

⌉

tentacles

the root

Figure 5.2: The jellyfish tree consisting of k tentacles.

All sizes are values between 1 and
⌈

k
log k

⌉
, but note here that there might be more than one

tentacle of a certain size. We glue together all roots of the tentacles, and obtain jellyfish
tree J, shown in Figure 5.2.

As we have observed in Section 5.1.1, algorithm ALG does not know the size of
the tentacle it explores before completely exploring it. This enables the adversary to
rearrange the sizes of still unexplored tentacles, to make the exploration more difficult.

We split the algorithm’s runtime into intervals I0, I1, . . ., each t in length. At the
beginning of each interval, the adversary declares the sizes of the tentacles, and then,
the algorithm explores the tree for t steps. Some tentacles get completely explored, but
as we will later see, many of them remain still unexplored.

Opening the initial interval I0, the adversary declares the sizes in an arbitrary way.
During the first t steps, robots may reach only the first main nodes in the tentacles,
making an insignificant progress in the exploration. Now, consider interval Ir = [rt +

1, . . . , rt + t] and denote by f (r)
j the number of robots positioned in the j-th tentacle (but

not in the root). The adversary orders the tentacle’s sizes in the reversed order to the
sequence f (r)

j (where 1 ≤ j ≤ k). Therefore, the tentacles containing a large number of
robots are small in size, whereas the tentacles with a small number of robots (or no
robots) are large.

Each robot in the j-th tentacle can contribute only to the exploration of the main nodes
within this tentacle; all other main nodes are just too far to be reached during the current
interval. This implies that there are at most f (r)

j additional main nodes discovered
during interval Ir (see Lemma 5.1). On the other hand, the adversarial assignment
of tentacle’s sizes makes the algorithm waste its exploration power – large groups of

5.1.2 J  61

robots are positioned in small-sized tentacles, where there is not much to explore within
an interval. At the end of the interval there might be some tentacles which get fully
explored, but the size of all residual (partially explored) tentacles is still unknown, which
leaves the open space for the adversarial assignments done in the remaining intervals.

Lemma 5.2. Let d be the distance from the root to the furtherest explored node at the end of Ir,
where 0 ≤ r < 1

2 ·
log k

log log k and log k ≥ 4. For yr := t +
⌈
(2 log k)r⌉ we have d ≤ yr.

Proof. If at the end of I0 there were a visited node at distance greater than y0 = t + 1,
it would mean that some robot traversed at least t + 1 edges in t time steps. Assume
that at the end of Ir−1 (at the beginning of Ir) all nodes up to the distance yr−1 are visited.
The sequence f (r)

j describes a distribution of robots among tentacles, and the sizes of the

tentacles are in reverse order to the order of f (r)
j .

Assume that at the end of Ir there is a visited node v at distance d > yr. This means that
there were at least yr − yr−1 main nodes discovered in this interval. Node v lies within
the j-th tentacle explored by many robots during Ir. Indeed, by Lemma 5.1 there were
at least

yr − yr−1 ≥ (2 log k)r
− (2 log k)r−1

− 1 ≥ (2 log k)r−1
· (2 log k − 2)

robots exploring the j-th tentacle. All those robots at the beginning of Ir were situated
in the j-th tentacle (and not in the root), and thus

f (r)
j ≥ yr − yr−1 ≥ (2 log k)r−1

· (2 log k − 2) .

Now we prove that during the Ir, there were many tentacles containing at least k′ := f (r)
j

robots. Consider the following set

Wr =
{
i : yr−1 < t + si ≤ yr

}
describing all tentacles ending at the distance between yr−1 and yr.

Observe that for a = d(k/ log k) · 1/(2 log k)r
ewe have

t + sa ≤ t +

 k
log k

·
1

k
log k ·

1
(2 log k)r

 ≤ yr ,

and similarly, for b = b(k/ log k) · 1/(2 log k)r−1
cwe have

t + sb ≥ t +

 k
log k

·
1

k
log k ·

1
(2 log k)r

 ≥ yr−1 .

Therefore, for all a ≤ i ≤ b we have i ∈Wr (si is a decreasing function), and thus

|Wr| ≥ b − a >
k

log k · (2 log k)r−1 ·

(
1 −

1
2 log k

−
(2 log k)r

k

)
.

62 T-  

Assuming r < 1
2 ·

log k
log log k , we obtain

|Wr| >
k

log k · (2 log k)r−1 ·
(
1 − 1/ log k

)
.

All tentacles from set Wr are smaller than the j-th tentacle containing node v, and
therefore, there are at least k′ robots positioned in each such tentacle at the beginning of
Ir (an adversarial order of the tentacle’s sizes). Summing up the number of robots we
obtain

|Wr| · k′ > k ·
[
(2 log k − 2) · (1 − 1/ log k)

log k

]
> k

assuming log k ≥ 4. This contradicts the fact that the algorithm uses k robots to explore
the tree.

According to this lemma, in round R = 1/4 · log k/ log log k there is no visited node at
distance greater than yR < t + k

log k . This means that at the end of IR the largest tentacle
is still not completely explored, and since each interval takes t time steps, we obtain the
following lemma.

Lemma 5.3. Assuming log k ≥ 4, the arbitrary algorithm ALG exploring graphs using k robots
needs at least [

1
4
·

log k
log log k

]
· t

time steps to explore the jellyfish tree.

Assume now that the jellyfish tree is known to the algorithm before the exploration
starts. This means all walks can be precomputed by an offline algorithm. Knowing the
number of edges n = O(t · k) and height h = O(t), we also know that an offline algorithm
needs O(t) time steps to explore the jellyfish tree. Nevertheless, here we explicitly show,
how to explore a given jellyfish tree, using the fact that the sizes of tentacles are fixed
and known.

Lemma 5.4. An optimal algorithm needs O(t) steps to explore the jellyfish graph.

Proof. The exploration is carried out in two phases, where in each phase the algorithm
takes some part of the largest remaining tentacles and explores them completely. In the
first phase, there are only dk/ log ke − 1 largest tentacles explored, i.e. these in size of

s1, s2, . . . sdk/ log ke−1 ,

and the algorithm sends

ri =

⌈
k

log k
·

1
2i

⌉

5.1.2 J  63

robots to explore a tentacle which is si in size (where 1 ≤ i ≤ dk/ log ke − 1). This is a
feasible assignment (k robots suffices), since

dk/ log ke−1∑
i=1

ri ≤
k

2 log k

(
1 + log

k
log k

)
+

k
log k

≤ k ·
(

3
2 log k

+
1
2

)
≤ k ,

having log k ≥ 4 and using
∑m

i=1 1/i ≤ 1 + log m.
First, the robots go to the assigned tentacle, say the one si in size, until they reach the

first main node v1 (compare Figure 5.1). Then, the collective exploration starts. Each
robot from the team takes exactly one unexplored edge and explores it in two steps,
and then finally returns to the main node. Since there are t such edges, it takes exactly
2dt/rie + 1 steps to completely explore one level of a tentacle and reach the next main
node. Therefore, the complete exploration of this tentacle takes at most

t + si · (2dt/rie + 1) − 1 + si + t ≤ si · dt/rie + 4t

steps, and since

2 · si · dt/rie ≤ 2 ·
⌈

k
log k

·
1
i

⌉
·

 t
k

log k ·
1
2i

 ≤ 7t ,

the first phase takes at most 11t time steps.
In the second phase, all remaining small-sized tentacles are explored. The algorithm

assigns exactly one robot per tentacle larger than sdk/ log ke−1 in size, i.e these are k −
dk/ log ke + 1 ≤ k tentacles of sizes sdk/ log ke, . . . , sk. Observe that

sdk/ log ke ≤

⌈
k

log k
·

1
dk/ log ke

⌉
≤ 1 ,

and therefore all remaining tentacles, explored in the second phase, are 1 in size. It takes
at most 4t to explore each of them and finishes the exploration of the jellyfish tree inO(t)
time steps.

As an easy observation, combining Lemma 5.3 and Lemma 5.4, we obtain the bound
on the competitive ratio.

Theorem 5.5. Every randomized online collective graph exploration algorithm ALG has com-
petitive ratio of at least

Ω

(
log k

log log k

)
against the adaptive adversary.

64 T-  

START nodes of tree within a bounded radius

Figure 5.3: A tree embedded in 2-dimensional grid.

5.2 Local exploration of sparse trees

Consider a graph describing a geographical terrain, where nodes correspond to inter-
esting locations, and edges show accessibility between two locations. It is quite likely
that such a graph has a bounded degree, and what is more, there cannot be many nodes
within a certain distance. This means that the graph is sparse and this property holds
also for all its subgraphs.

In Figure 5.3, there is a grid which models all possible locations, and as there are some
obstacles, it makes some locations inaccessible. The tree-like graph is embedded in the
grid, and thus it is also sparse. The number of nodes within some bounded distance is
also bounded.

In this section, we study the collective exploration of a restricted group of trees, and
we present an algorithm for k robots using strictly local communication; in fact they
communicate only when they meet in a node.

5.2.1 Density of a tree

Consider a rooted tree T = (V,E) with n(T) nodes and h(T) in height. For v ∈ V we
denote by Tv a subtree of T rooted at v, and additionally, by Tv(h) a tree obtained from

5.2.2 A    65

Tv by removing all edges (and corresponding nodes) at distance greater than h from v.
Therefore, we have h(Tv(h)) ≤ h.

Definition 5.6 (p-dense tree). We say, that T = (V,E) is p-dense, if p ∈ N is the minimal
positive number, such that for all h, v ∈ V and T′ = Tv(h)

n(T′) ≤ [2h(T′) + 1]p .

Each tree embedded in a 2-dimensional grid (like in Figure 5.3) is either 1-dense or
2-dense. Indeed, here no tree can be 3-dense, since it would mean n(T′) > [2h(T′) + 1]2

for some T′ = Tv(h), which is not possible in a grid where there are only 2h2 + 2h + 1
different nodes within any distance h from v. Since the 3-dimensional grid has less than
4 · h3 nodes within a distance of h, then all embedded trees are either 1,2 or 3 dense.

5.2.2 Algorithm for sparse trees

Assume that we have p-dense tree T rooted at s. We show the SparseExplore algorithm
using k robots, which efficiently explores this tree and achieves competitive ratio of

O

(
D1−1/p

·min
{
p, log p ·D1/2p

})
,

without knowing T or any parameter (like p or D) related to the tree.

Algorithm 5 SparseExplore(pinit)

1: if (id = 1) then
2: act as referee
3: end if

4: if (1 < id ≤ k/2) then
5: BinarySE(pinit)
6: end if

7: if (id > k/2) then
8: UnarySE(pinit)
9: end if

It consists of two algorithms (see Algorithm 5): BinarySE and UnarySE, whose de-
scription and analysis is the main part of this section. Each robot in a team plays one of
3 roles: it executes the first or the second algorithm, or is a referee. More precisely, there
is only one referee, and the group of remaining k− 1 robots are split roughly in half. The
referee is positioned in s and stays there until the end of the exploration. Its only task
is to inform a sub-team when the exploration is completed by another sub-team. In this
way, the exploration stops roughly as soon as the faster algorithm finishes.

66 T-  

the base s

v

Tv(h)
h = r1/p′−1

2

D

Figure 5.4: Subtree Tv(h) of tree T.

Now we describe the algorithms BinarySE and UnarySE, where the latter is a small
modification of the former.

Algorithm BinarySE and its running time

Assume that T is a p-dense tree and consider subtree Tv(h) which is rooted at v and
consists of all nodes at distance h from v (see Figure 5.4). By taking small h, we guarantee
that the number of nodes in each subtree is bounded. If we take h := (r1/p′

− 1)/2 for
sufficiently large p′, then each such a subtree contains at most r nodes, for instance, this
happens already for p′ = p. Indeed, since T is a p-dense tree, according to the definition,
each subtree of T, which is (r1/p

− 1)/2 in height, contains at most[
2 ·

(
(r1/p
− 1)/2

)
+ 1

]p
≤ r

nodes.
In order to test whether height h guarantees that subtree Tv(h) has at most r edges, the

algorithm ExploreSubtree(v, h) tries to explore this tree using 2r steps. At first, it goes
from s to v, and then, using a dfs-rule, moves for 2r steps along the dfs-sequence of Tv(h).
If the subtree has at most r edges, then 2r steps suffice to explore this subtree. Otherwise
the dfs-traversal is broken, and the robot executing ExploreSubtree(v, h) returns to base
s. In this case, to get to v it takes at most h ≤ r. Therefore, in any case the total exploration
time of ExploreSubtree(v, h) is bounded by 5r.

5.2.2 A    67

If ExploreSubtree(v, h) fails to explore Tv(h) for certain h, then it means that the
subtree contains more than r edges, and in this case, the height has to be decreased. The
BinarySE algorithm decreases h = (r1/p′

− 1)/2 by doubling p′, and thus after at most
log p such increases, p′ approaches density p. As we have observed above, parameter
h is then small enough to guarantee the existence of at most r edges in the subtree
Tv(h) which, in this case, is completely explored by ExploreSubtree(v, h). Doubling p′

may rapidly converge to p, but also may end with an inaccuracy, since the real value p
might be over-jumped, such that 2p > p′ > p. The consequences of this observation will
negatively influence the efficiency of the algorithm presented below.

Algorithm 6 BinarySE(pinit)
1: id← robot’s id
2: r← 1
3: p′ ← pinit

4: repeat
5: Φ← Φ(r) number of nodes at distance r from s
6: v1, . . . vΦ ← all nodes at distance r from s
7: trees to explore← {vr : r = id + k · j mod φ, j ∈N}
8: h← (r1/p′

− 1)/2
9: ExploreSubtree(v, h) for each v ∈ trees to explore

10: if (for some v tree Tv(h) is unexplored) then
11: p′ ← 2 · p′

12: else
13: r′ ← r + (r1/p′

− 1)/2
14: r← argmin

{
Φ(j) : j ∈ [(r + r′)/2, r′]

}
15: end if
16: until (T is completely explored)

The algorithm BinarySE (see Algorithm 6) works in the similar way, as described
above, but uses k/2 robots to explore in parallel many subtrees attached to different
nodes in the p-dense tree T. Assume that at the beginning of the i-th epoch all nodes up
to some distance ri > 0 are visited (and known to robots positioned in s). At the end of
this epoch, all nodes up to the distance ri+1 > ri will be explored.

Assume that v1, v2, . . . vΦ are all nodes at distance r from base s at the beginning
of the epoch (Φ = Φ(r) denotes number of nodes at distance r from s). Consider
all subtrees Tv j(h) (for 1 ≤ j ≤ Φ) rooted at those nodes (see Figure 5.5). Parameter
h = (r1/p′

− 1)/2 is assigned like described above, by doubling parameter p′, which is a
variable common for all robots, initially set as 1. During the epoch k/2 robots travel to
different nodes v j, where 1 ≤ j ≤ Φ, and try to explore subtrees Tv j(h) attached there,

68 T-  

ri

(ri + r′
i)/2

r′
i

the base s

distance from s

ri+1

v1 v2 vΦ(ri)

Figure 5.5: The i-th epoch of the algorithm.

using ExploreSubtree(v, h) algorithm. If for any robot the algorithm fails, it means
that there exists a subtree, say Tw(h), that contains more than r edges. Robots which
after the execution of ExploreSubtree(v, h) are positioned in s double parameter p′ to
decrease h, and thus the number of edges in the subtrees. The i-th epoch ends when h is
small enough to guarantee that all subtrees are sufficiently small, and therefore all those
subtrees are completely explored by ExploreSubtree(v, h) algorithm. In this case, at the
end of the epoch all nodes up to the distance ri + h are explored.

Surprisingly, ri+1 is not set as ri +h. The value is determined to be the size of a “narrow”
place in the tree

ri+1 ← argmin
{
Φ(j) : j ∈

[
(ri + r′i)/2, r′i

]}
,

where r′i ← ri + (r1/p′

i − 1)/2. As ri+1 ≤ ri + h, at the end of the epoch all nodes up to the
distance ri+1 are explored and known to the team positioned in s.

Denote by pi the value of the local variable p′ at the beginning of an epoch. The
parameter p′ was doubled 1 + log(pi+1/pi) times during the i-th epoch, and each such a
change requires a test on the size of the subtrees. Each test using ExploreSubtree takes
5ri steps, and as there are k/2 robots, there are up to k/2 tests done in parallel by the
team. The following lemma states the total time of an epoch.

Lemma 5.7. The i-th epoch of BinarySE(1) algorithm takes

O

(
φ(ri)

k
· ri ·

[
1 + log(pi+1/pi)

])

5.2.2 A    69

time steps, and at the end, all nodes up to the distance ri+1 are visited. Sequences ri and pi are
defined by algorithm BinarySE(1).

By Lemma 5.7 and using pi+1

pi
≤ 2p, we sum up over all epochs to obtain∑

i≥0

1
k
φ(ri) · ri · [1 + log(pi+1/pi)] ≤

1
k

∑
i≥0

φ(ri) · ri · 2 log p

as an upper bound on the exploration time.

Lemma 5.8. The BinarySE(1) explores tree T in time

O

 log p
k

∑
i≥0

φ(ri)ri

 ,
where sequences ri and pi are defined by algorithm BinarySE(1).

Algorithm UnarySE

The algorithm UnarySE(1) is a simple modification of BinarySE(pinit), obtained by re-
placing (in Algorithm 6) the 11-th line p′ ← 2 · p′ by p′ ← 1 + p′. Therefore, UnarySE()
adjusts p′ more carefully, and we will later see that this might positively influence the
competitive ratio of this algorithm. Note here that both sequences pi and ri differ from
those defined by algorithm BinarySE(1).

Lemma 5.9. The i-th epoch of UnarySE(1) algorithm takes

O

(
φ(ri)

k
· ri ·

[
1 + pi+1 − pi

])
time steps, and at the end, all nodes up to the distance ri+1 are visited. Sequences ri and pi are
defined by algorithm UnarySE(1).

We can analogously state the similar lemma for UnarySE(1) algorithm. We have
pi+1 − pi ≤ p, and thus∑

i≥0

1
k
φ(ri) · ri · [1 + pi+1 − pi] ≤

1
k

∑
i≥0

φ(ri) · ri · 2p .

Lemma 5.10. The UnarySE(1) explores tree T in time

O

p
k

∑
i≥0

φ(ri)ri

 ,
where sequences ri and pi are defined by algorithm UnarySE(1).

70 T-  

Online analysis of SparseExplore

First, we show a lower bound for the optimal time, needed by the offline exploration
of the same tree T. It is obtained by showing that T contains many nodes (expressed
in terms of ri, Φ(ri) and pi defined by the execution of UnarySE(1) or BinarySE(1)), and
therefore using even all robots in parallel, it takes much time to visit all nodes.

Lemma 5.11. The optimal offline algorithm needs

Ω

1
k

∑
i≥0

φ(ri)ri
1/pi


time steps to explore T, where sequences ri and pi are defined either by BinarySE(1) or by
UnarySE(1).

Proof. Define the set Ii ⊂N as follows

Ii =
[
(ri + r′i)/2, r′i

]
,

and let I =
⋃

i Ii be the sum of these sets of levels. Levels Ii do not overlap, since

(ri+1 + r′i+1)/2 > r′i .

Let us count how many nodes ni there are at distances described by Ii. We know that
ri+1 ∈ Ii and that ∀ j∈Ii(φ(ri+1) ≤ φ(j)). Then, we have ni ≥ 1/2 · φ(ri+1) · ri

1/pi+1 , and given
ri ≥ ri+1/2 we get

ni = Ω
(
φ(ri+1) · ri+1

1/pi+1
)
,

so there are at least Ω
(∑

i φ(ri)ri
1/pi

)
nodes in the tree.

A group of k robots needs at least
∑

i ni/k time steps to explore a tree with
∑

i ni nodes,
which concludes our proof.

Before we prove the competitive factor of our algorithms, we need the following
observation. For any 0 < α < 1 sequence {xi}i and non-decreasing sequence {yi}i we have∑m

i=1 xiyi∑m
j=1 xiyi

α
≤ ym

1−α . (5.1)

Indeed, for all 0 ≤ i ≤ m we have y1−α
i ≤ y1−α

m , and thus

1
y1−α

m
·

∑m
i=1 xiyi∑m

i=1 xi · yαi
≤

∑m
i=1 xiyi∑m

i=1 xi · yαi y1−α
m
≤

∑m
i=1 xiyi∑m

i=1 xiyαi y1−α
i

≤ 1 .

5.2.2 A    71

Theorem 5.12. The BinarySE(1) algorithm achieves the competitive ratio of

O

(
log p ·D1/2p

·D1−1/p
)

and UnarySE(1) the ratio of
O

(
p ·D1−1/p

)
for a p-dense tree.

Proof. By Lemma 5.8 and Lemma 5.11 and using 1/pi ≥ 1/(2p), we find that the com-
petitive ratio of BinarySE(1) algorithm is bounded by

O

(
log p ·

∑
i φ(ri)ri∑

i φ(ri)ri
1/pi

)
≤ O

(
log p ·

∑
i φ(ri)ri∑

i φ(ri)ri
1/(2p)

)
.

By substituting α = 1/(2p), yi = ri and xi = φ(ri) in (5.1) we obtain∑
i φ(ri)ri∑

i φ(ri)ri
1/(2p)

≤ D1−1/(2p) ,

and thus the competitive ratio of BinarySE(1) is bounded by

O

(
log p ·D1−1/2p

)
.

Similarly, for UnarySE(1) (using Lemma 5.10 and Lemma 5.11) we obtain

O

(
p ·

∑
i φ(ri)ri∑

i φ(ri)ri
1/pi

)
≤ O

(
p ·

∑
i φ(ri)ri∑

i φ(ri)ri
1/p

)
,

having a slightly better bound 1/pi ≥ 1/p. Substituting α = 1/p, yi = ri and xi = φ(ri)
in (5.1), and bounding in the similar way we finally obtain

O

(
p ·D1−1/p

)
.

We have defined and analyzed two algorithms UnarySE(1) and BinarySE(1), whose
performance depends on the ratio between p and D. The first one is better for trees with
a small density (comparing to D), and the second is better for trees small in height.

To take advantage of these algorithms, the SparseExplore assigns one robot to act
as a referee which does not move from s and waits, until one of the subteam (which
executes either UnarySE(1) or BinarySE(1)) finishes the exploration. The SparseExplore
terminates, after one of the groups reports (in the base) a completion of the exploration,
and all robots return to s. Denote by C̃OPT(G, s) the optimal offline exploration cost. The
team executing UnarySE(1) needs at most

O

(
p ·D1−1/p

)
· C̃OPT(G, s)

72 T-  

time, and the team executing BinarySE(1) at most

O

(
log p ·D1/2p

·D1−1/p
)
· C̃OPT(G, s)

time steps. This leads to the following theorem:

Theorem 5.13. The SparseExplore achieves the competitive ratio of

O

(
D1−1/p

·min
{
p, log p ·D1/2p

})
for an arbitrary tree T, where D is the height of T and p the density.

If p is constant, then competitive factor in Theorem 5.13 can be reduced to

O

(
D1−1/p

)
.

The same happens, if a constant approximation of p is known. There is no need for a
large number of adjustments of parameter h in ExploreSubtree(v j, h), as it is initially set
to an appropriate value guarantying that Tv j contains at most r nodes.

C       6

Conclusions and Outlook

We have discussed the problem of exploration of a graph by a team of robots. One of
the properties that distinguish setting studied here from the other graph exploration
problems is the physical property of the robot’s movement. To change the position
in the graph, the robot consecutively traverses all edges along some path between its
current and target position. This disables many algorithms like e.g. a classical one-robot
breadth-first search algorithm.

Clearly, it is much more challenging to explore unknown environments. We would
probably dethrone all great explorers, if it turned out that they have used a complete
map of the regions they discovered. The true challenge the unknown offers, rouses
people to action. Led by this passion, we study the problem where a team of explorers
is positioned in a node of a graph they do not know.

There are many interesting problems which arise here. The main issue we rise in this
work is how the lack of a map influences the efficiency of collective exploration. We
define cost functions measuring the exploration efficiency, and compare the algorithm’s
cost to the cost of an optimal exploration, assuming that the map is known – competitive
ratio. The competitive ratio shows how well a team of robots copes with the lack of
a map. If it was equal 1, this would mean that the team does not need a map to
explore optimally. In fact, we show that for each algorithm there exists a graph which
is difficult to explore, if not known beforehand i.e. we show a general lower bound on
the competitive ratio. We also prove that this happens even if each team member has a
global view of the situation of a whole team (global communication).

The communication pattern is another interesting aspect to be considered in the system
of entities distributed over the graph. There are results proving that the cooperation
by the exploration of certain terrains is not possible at all, if there is no communication
granted. In this situation, the whole team explores with the same efficiency as one
robot. As our lower bounds on the competitive ratio hold for the global communication

73

74 C  O

pattern, interesting open question is whether these bound can be further improved,
assuming for instance a local communication pattern, where robots communicate only
if they are in the same node.

On the other hand, all algorithms presented in this work use a strictly local commu-
nication pattern. In fact, robots communicate only within the base station, i.e. an initial
position of all robots. As the general lower bounds for the competitive ratio are still
smaller that the competitiveness of our algorithms, it might happen, that allowing the
global communication pattern, there can be new interesting algorithms designed with
improved competitiveness.

A “gap” between the general lower bound and the competitiveness of presented
algorithms points out an interesting area of investigations. For the two proposed cost
models (the total exploration time and maximal energy used by a robot) we have shown
that the gap is significantly larger for the time-related cost. Fortunately, in the energy
model the bounds match up to a constant factor, and therefore there is not much space
for improvements.

We have observed that the exploration of graphs is almost as “easy” as the exploration
of some of their spanning trees (a relaxed SPT). Basing on this observation, we have
presented a framework which ables tree-algorithms to explore a wider class of graphs.
As an example we have presented the application of this technique by the exploration of
a city-block graphs. Applications for different classes of graphs seems to be a promising
direction for further research.

The terrain exploration is only one of the applications of our techniques. We believe
our results contribute also to other problems in robotics that require a fair distribution of
resources (robots) in an unknown terrain (clustering problems). The physical movement
property is an important restriction of our model, and we believe that it might be also
reflected in different than robotics scenarios. For instance, the exploration of networks
or other distributed environments, where a message carries a token, which does not
allow it to rapidly change its position within the environment. Moreover, in our setting,
it is not admissible that the robots create their own copies, as it is possible e.g. in the case
of software agents exploring the network. However, even in the distributed computing
there might be some additional restrictions, coming from the security or economical
aspects, that forbid to create more than a bounded number of agents. There are also
some problems where the number of resources in the system is bounded, and the goal
is to use those resources in an appropriate way (e.g. dinning philosophers problem).

The collective exploration belongs to the wider class of problems concerning the
cooperation of a group by fulfilling some task in general. The main goals that the team
has to fulfill may vary and it might include e.g. the processing of tasks found in the
terrain. However, we always desire an increase in the efficiency as a result of cooperation
of all members of the group.

Bibliography

[AB96] I. Averbakh and O. Berman. A heuristic with worst-case analysis for minimax
routing of two travelling salesmen on a tree. Discrete Applied Mathematics,
68(1-2):17–32, 1996.

[AB97] I. Averbakh and O. Berman. (p - 1)/(p + 1)-approximate algorithms for
p-traveling salesmen problems on a tree with minmax objective. Discrete
Applied Mathematics, 75(3):201–216, 1997.

[AB02] I. Averbakh and O. Berman. Minmax p-traveling salesmen location problems
on a tree. Annals of Operations Research, 110(1 - 4):55–68, 2002.

[ABCP93] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Near-linear cost sequential
and distributed constructions of sparse neighborhood covers. In Proc. 34th
IEEE Symposium Foundations of Computer Science (FOCS), pages 638–647, 1993.

[ABRS99] B. Awerbuch, M. Betke, R.L. Rivest, and M. Singh. Piecemeal graph ex-
ploration by a mobile robot. Information and Computation, 152(2):155–172,
1999.

[AH00] S. Albers and M. R. Henzinger. Exploring unknown environments. SIAM
Journal on Computing, 29(4):1164–1188, 2000.

[AHL06] E. M. Arkin, R. Hassin, and A. Levin. Approximations for minimum and
min-max vehicle routing problems. Journal of Algorithms, 59(1):1–18, 2006.

[AK98] B. Awerbuch and S. G. Kobourov. Polylogarithmic-overhead piecemeal
graph exploration. In Proc. of the 11th Annual Conference on Computational
Learning Theory (COLT), pages 280–286, 1998.

75

76 B

[BBF+96] P. Berman, A. Blum, A. Fiat, H. Karloff, A. Rosén, and M. Saks. Random-
ized robot navigation algorithms. In Proc. of the seventh annual ACM-SIAM
symposium on Discrete algorithms (SODA), pages 75–84, 1996.

[BEY98] A. Borodin and R. El-Yaniv. Online computation and competitive analysis. 1998.

[BFR+98] M. A. Bender, A. Fernández, D. Ron, A. Sahai, and S. Vadhan. The power of
a pebble: exploring and mapping directed graphs. In Proc. of the 30th Annual
ACM Symp. on Theory of Computing (STOC), pages 269–278, 1998.

[BH74] M. Bellmore and S. Hong. Transformation of multisalesman problem to the
standard traveling salesman problem. Journal of the ACM (JACM), 21(3):500–
504, 1974.

[BRS91] A. Blum, P. Raghavan, and B. Schieber. Navigating in unfamiliar geomet-
ric terrain. In Proc. of the twenty-third annual ACM symposium on Theory of
computing (STOC), pages 494–504, 1991.

[BRS95] M. Betke, R. L. Rivest, and M. Singh. Piecemeal learning of an unknown
environment. Machine Learning, 18(2-3):231 – 254, 1995.

[BS94] M. A. Bender and D. K. Slonim. The power of team exploration: two robots
can learn unlabeled directed graphs. In Proc. of the 35th Annual Symposium
on Foundations of Computer Science (FOCS), pages 75–85, 1994.

[CFK97] Y. U. Cao, A. S. Fukunaga, and A. Kahng. Cooperative mobile robotics:
Antecedents and directions. Autonomous Robots, 4(1):7 – 27, 1997.

[CLRS90] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. 1990.

[DFK+02] S. Dobrev, P. Flocchini, R. Kralovic, G. Prencipe, P. Ruzicka, and N. Santoro.
Black hole search by mobile agents in hypercubes and related networks.
In Proc. of the 6th International Conference on Principles of Distributed Systems
(OPODIS), pages 169–180, 2002.

[DFKP02] K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree exploration with little
memory. In Proc. of the 13th annual ACM-SIAM Symp. on Discrete Algorithms
(SODA), pages 588–597, 2002.

[DFNS05] S. Das, P. Flocchini, A. Nayak, and N. Santoro. Distributed exploration of
an unknown graph. In Proc. of 12th Structural Information and Communication
Complexity (SIROCCO), pages 99–114, 2005.

B 77

[DFPS02] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Searching for a black
hole in arbitrary networks: optimal mobile agent protocols. In Proc. of the
21st Annual Symposium on Principles of Distributed Computing (PODC), pages
153–162, 2002.

[DFPS06] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Searching for a black
hole in arbitrary networks: optimal mobile agents protocols. Distributed
Computing, 19(1):1–18, 2006.

[DFS04] S. Dobrev, P. Flocchini, and N. Santoro. Improved bounds for optimal black
hole search with a network map. In Proc. of 11th International Colloquium
on Structural Information and Communication Complexity (SIROCCO), volume
3104, pages 111–122, 2004.

[DJMW96] G. Dudek, M. R. M. Jenkin, E. Milios, and D. Wilkes. A taxonomy for
multi-agent robotics. Autonomous Robots, 3(4):375 – 397, 1996.

[DKK06] C. A. Duncan, S. G. Kobourov, and V. S. A. Kumar. Optimal constrained
graph exploration. ACM Transactions on Algorithms, 2(3):380–402, 2006.

[DKLM06] M. Dynia, J. Kutyłowski, P. Lorek, and F. Meyer auf der Heide. Maintain-
ing communication between an explorer and a base station. In Biologically
Inspired Cooperative Computing (BICC), pages 137–146, 2006.

[DKMS06] M. Dynia, J. Kutyłowski, F. Meyer auf der Heide, and C. Schindelhauer.
Smart robot teams exploring sparse trees. In Proc. of the 31st International
Symposium on Mathematical Foundations of Computer Science (MFCS), pages
327–338, 2006.

[DKMS07] M. Dynia, J. Kutyłowski, F. Meyer auf der Heide, and J. Schrieb. Local
strategies for maintaining a chain of relay stations between an explorer and
a base station. In Proc. of the ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 260–269, 2007.

[DKP98] X. Deng, T. Kameda, and C. H. Papadimitriou. How to learn an unknown
environment i: The rectilinear case. Journal of the ACM, 45(2):215–245, 1998.

[DKS06] M. Dynia, M. Korzeniowski, and C. Schindelhauer. Power-aware collective
tree exploration. In Proc. of the 19th International Conference on Architecture of
Computing Systems (ARCS), pages 341–351, 2006.

[DLS07] M. Dynia, J. Lopuszanski, and C. Schindelhauer. Why robots need maps.
In Proc. of the 14th Colloquium on Structural Information and Communication
Complexity (SIROCCO), pages 37– 46, 2007.

78 B

[DP99] X. Deng and C. H. Papadimitriou. Exploring an unknown graph. Journal of
Graph Theory, 32(3):265–297, 1999.

[DP02] A. Dessmark and A. Pelc. Optimal graph exploration without good maps.
In Proc. of the 10th Annual European Symposium on Algorithms (ESA), pages
374–386, 2002.

[Dyn06] M. Dynia. Grupowa eksploracja drzew. Master thesis at Faculty of Mathe-
matics and Computer Science, University of Wroclaw, 2006.

[EGK+04] G. Even, N. Garg, J. Könemann, R. Ravi, and A. Sinha. Min-max tree covers
of graphs. Operations Research Letters, 32(4):309–315, 2004.

[FGKP06] P. Fraigniaud, L. Gasieniec, D. R. Kowalski, and A. Pelc. Collective tree
exploration. Networks, 48(3):166 – 177, 2006.

[FHK78] G. Frederickson, M. Hecht, and C. Kim. Approximation algorithms for some
routing problems. SIAM Journal on Computing, 7(2):178–193, 1978.

[FIRT05] P. Fraigniaud, D. Ilcinkas, S. Rajsbaum, and S. Tixeuil. Space lower bounds
for graph exploration via reduced automata. In Proc. of 12th Colloquium
on Structural Information and Communication Complexity (SIROCCO), pages
140–154, 2005.

[FPSW01] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of asyn-
chronous oblivious robots with limited visibility. In Proc. of the 18th Annual
Symposium on Theoretical Aspects of Computer Science (STACS), pages 247 –
258, 2001.

[FT05] R. Fleischer and G. Trippen. Exploring an unknown graph efficiently. In
Proc. of the 13th Annual European Symposium on Algorithms (ESA), pages 11–
22, 2005.

[GBH97] N. Guttmann-Beck and R. Hassin. Approximation algorithms for min-max
tree partition. Journal of Algorithms, 24(2):266–286, 1997.

[HAB+02] T. Hsiang, E. Arkin, M. Bender, S. Fekete, and J. Mitchell. Algorithms
for rapidly dispersing robot swarms in unknown environments. In In 5th
International Workshop on Algorithmic Foundations of Robotics (WAFR), pages
77– 94, 2002.

[HM84] J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a dis-
tributed environment. In Proc. of the Symposium on Principles of Distributed
Computing (PODC), pages 50–61, 1984.

B 79

[Kat05] B. Katreniak. Biangular circle formation by asynchronous mobile robots. In
Structural Information and Communication Complexity, pages 185–199, 2005.

[KTI+07] Y. Katayama, Y. Tomida, H. Imazu, N. Inuzuka, and K. Wada. Dynamic
compass models and gathering algorithms for autonomous mobile robots.
In Proc of the 14th Colloquium on Structural Information and Communication
Complexity (SIROCCO), pages 274–288, 2007.

[NO04] H. Nagamochi and K. Okada. A faster 2-approximation algorithm for the
minmax p-traveling salesmen problem on a tree. Discrete Applied Mathemat-
ics, 140(1-3):103–114, 2004.

[PP98] P. Panaite and A. Pelc. Exploring unknown undirected graphs. In Proc. of the
9th annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 316–322,
1998.

[Pre01a] G. Prencipe. Corda: Distributed coordination of a set of autonomous mobile
robots. In In Proc. of European Research Seminar on Advances in Distributed
Systems (ERSADS), pages 185–190, 2001.

[Pre01b] G. Prencipe. Instantaneous actions vs. full asynchronicity: Controlling and
coordinating a set of autonomous mobile robots. In Proc. of the 7th Italian
Conference on Theoretical Computer Science (ICTCS), pages 154 – 171, 2001.

[PY91] C. H. Papadimitriou and M. Yannakakis. Shortest paths without a map.
Theoretical Computer Science, 84(1):127–150, 1991.

[RKSI93] N. Rao, S. Kareti, W. Shi, and S. Iyenagar. Robot navigation in unknown
terrains: Introductory survey of non-heuristic algorithms. Technical Report
ORNL/TM-12410, Oak Ridge National Laboratory, 1993.

[She92] T. C. Shermer. Recent results in art galleries. Proc. of the IEEE, 80:1384–1399,
1992.

[SS96] K. Sugihara and I. Suzuki. Distributed algorithms for formation of geometric
patterns with many mobile robots, 1996.

[ST85] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging
rules. Commun. ACM, 28(2):202–208, 1985.

[SY96] I. Suzuki and M. Yamashita. Distributed anonymous mobile robots—
formation and agreement problems. In Proc. of the 3rd International Collo-
quium on Structural Information and Communication Complexity (SIROCCO),
1996.

80 B

[SY99] I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: For-
mation of geometric patterns. SIAM Journal on Computing, 28(4):1347–1363,
1999.

