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Abstract

Wireless sensor networks (WSN) enable a myriad of new aquics, e.g. human-embedded
sensing, habitat exploration and ocean data monitoringveltleeless, they have different require-
ments from conventional systems. Self-configuration, ggrefficient operation, collaboration and
in-network processing are examples of important requirgmeln order to achieve these require-
ments, the system software of a sensor node plays a fundalmaet it should provide useful abstrac-
tions to enable the development of the applications andeagdime time comply with the constrained
resources of the sensor nodes.

The range of possible applications in a sensor node covstiaatitasks like clock synchroniza-
tion, data acquisition, signal processing and data fusidme traditional approach in this area is to
provide operating system concepts with dramatically reddanctionality. In this work, we present
an alternative approach. Our OS provides potentially myitfunctionality that dynamically adapts
to the actual profile of requirements. The basic idea is terafervices that are distributed over a
cluster of nodes instead of having the entire system on eadd. n

Cooperation is the keyword to achieve complex tasks usiagdstricted sensor nodes. Our oper-
ating system (OS) supports this cooperation among neigithoodes using the concept of distributed
services. We are combining the typical OS functionalityhvtthte middleware one. Our system is
responsible to coordinate the migration and placementasfetiservices. For that, we develop a bio-
logically inspired heuristic responsible to drive the glaent of the services in the WSN. We develop
two version of the heuristic, with different complexity apdrformance. Both are completely dis-
tributed and based on local information and local rules. ddramunication necessary for organizing
the services is done by means of stigmergy.

Further, we present two clustering heuristics respongibldecompose the network graph into
connected sub-graphs (called clusters). Each clustehalil a complete instance of the OS and ap-
plication. With the network divided in clusters, the orgaaiion overhead is reduced, since protocols
that rely on some global information are restricted to alsictuster. This enhances the scalability of
the system.

The clustering problem is calledinimum intracommunication-cost clustering. The idea is that
a minimum amount of resources must be present in each clastethe clusters should be well
connected. The first heuristic is able to handle networks Veitv topology changes, whereas the
second can deal with moderate changes. Both heuristiconediye principle of division of labor in
social insects.

We evaluate our heuristics using the Shox wireless netwionlglator. The service distribution
heuristics were able to produce very good assignments,tadhe optimal, for most experiments.
Our clustering heuristic for systems with low topology ces outperforms an existing heuristic
(expanding ring) in term of cost for most cases. It was ablertoluce clusters that were, at most, in
average 1.43 times the optimal for all simulated scenafidsteover, the results have low standard
deviation.

Several enhancements can be done in our heuristics. In trdbatter distribute the burden im-
posed on the clusterhead, clusterhead rotation may bedieatlin the emergent clustering. Moreover,
an additional negotiation phase at the end of the heurisdigcime included to improve the performance
of the heuristic.

Moreover, we aim to combine the concept of our OS with therobstript mechanism present in
virtual machines for WSN. This will enable a straightfordaevelopment of data-centric scripts that
use the extensive functionality of our distributed sersitachieve complex goals.






Chapter 1

Introduction

Wireless sensor networks (WSN) belong to a new class of mksammposed by lightweight wireless
nodes deployed in a physical environment. Normally, theyehihe tasks of sensing it and reacting
to the sensed values. Each node is equipped with sensomscespor, some memory and a wireless
interface. A myriad of applications can be realized usinthsuetworks, e.g. human-embedded sens-
ing, habitat monitoring and ocean data exploration. Vagdagf such systems are a very high spacial
resolution when increasing the number of nodes used, nodsstue to the inherent redundancy, easy
deployment and reduced energy consumption.

Due to their specific nature, sensor networks have differirements from standard systems.
Among others, self-configuration, energy-efficient ogergtcollaboration and in-network processing
are very important requirements. All layers in a sensor asgmed to cope with those requirements
and cross-layer optimizations are very common in thoseeByst The system software of a sensor
node has a fundamental role in the sensor: at one side, itcspoovide useful abstractions and a
programming model to the applications’ programmer. At thieep side, it must comply with the
requirements of the sensor network.

A very important requirement, which limits the system seiftesfunctionality, is that a sensor OS
must have the ability to manage a very constrained hardwéwee precisely, the constrained memory
poses a big challenge. The amount of functionality that ngagresent in each node is limited. There-
fore, cooperation between nodes is needed in order to adisbngomplex tasks. Spacial correlation
among neighboring sensors represents also a motivatidodal cooperation. In our opinion, such
cooperation among nodes must be well-supported by themsysiétware of a sensor.

Due to the high cost of the communication in WSNSs, it is a betteice, for several scenarios,
to process the data locally in order to reduce its amountredfirwarding it to the access point (or
other sink). Moreover, if a higher autonomy of the networklésired, where the nodes may react
by themselves to changes in the environment, this localgssing is inevitable. Nevertheless, as
already said, each node has a constrained hardware anedifaitctionality. Hence, the work must
be distributed over multiple nodes, which cooperate tow#nd desired result. The system software
must provide abstractions that enable this cooperativé.wor

In this work, we propose the NanoOS, an operating system f@Sgnsor nodes that enables the
automatic distribution of services among the nodes of acsamstwork. The idea of NanoOS is to
unify in one system typical OS functionality with middlewapne. This means that the NanoOS is
responsible to manage the local resources of the nodes amestent appropriate abstractions for the
local processing as well as to distributed processing arttagensor nodes.

Our main abstraction is the processing thread, that desctite execution of code associated with

1



2 CHAPTER 1. INTRODUCTION

a state. The processing thread can be tasks, that are steatarticular node and aren’t mobile, and
services, whose functionality is shared among other sesvénd tasks. Mobile services are services
that may migrate among the nodes in the system. The mobilessrcan be made available by our
OS or by the applications. Such services can be used, forg®ato process the data generated in the
sensors, locally transforming it in a more high level indiiwa, that will be transported to the access
point.

With our service architecture, we are aiming to support ustt YWSN traditional applications like
data fusion, but also provide means to an efficient developwiistributed algorithms on top of the
sensor network.

As a requirement for our system, the distribution of the iseisyamong the sensor nodes should be
done in a transparent way. It is expected that the NanoOSlicztes the migration and placement of
the services in the system. In this work, we develop a bickdtyi inspired heuristic that is responsible
for controlling the migration and optimizes the initial giee placement. Both types of services, OS
and application, may be migrated automatically by our ktigri We develop two versions of the
heuristic, with different complexity and performance. Batre completely distributed and based on
local information and local rules. Furthermore, the nemgssommunication used by our heuristics is
done by means of stigmergy, i.e., cues are left in the emwrimm instead of direct messages exchange.
The main objective of the two heuristics is to minimize theoaimt of communication of the system,
i.e., modules that have intense interaction among themsealould be placed at nearby positions.

The presented migration results in a natural grouping ottremunicating modules. Instead of
leaving this weak kind of clustering, we decide to make a Isamhration of the nodes of the system
into clusters. Each cluster will hold a complete instancéhefOS and application, i.e., all services
needed by the processing threads inside a given clusterlrausstantiated in the same cluster. The
decomposition of the network in clusters brings severahathges. First, the organization overhead
is reduced, since protocols that rely on some global inftionaare restricted to a single cluster.
For example, the service discovery process and the rowdirlgs can be restricted to contain mainly
information about modules and nodes residing in the sanwerluMoreover, the clustering may be
implemented as a layer in the protocol stack and used by tdlgers. For example, the medium
access layer may use the cluster in order to increase the goitation system capacity through the
promotion of the spatial reuse of the wireless channel. Aerotxample of benefit of clustering is that
a topology control may be constructed upon it.

The creation of a hierarchy in the network was also proposetraeans of achieving scalability.
Centralized algorithms may be applied locally to one clystet compromising the scalability of the
system as a whole.

We call our clustering problem th@inimum intracommunication-cost clustering. The idea is
that a minimum amount of resources must be present in easteclun addition, it is assumed that
the nodes inside a cluster will heavily communicate, tltmmfwe desire well-connected clusters,
i.e., where nodes belonging to the same clusters have veny ks among them. Two biologi-
cally inspired heuristics are proposed in this work to depose the network in clusters. The first
was developed for clustering networks with low topologyraes and the second one can cope with
moderate changes.

The heuristics are based on the election of a subset of nbdésefpresent the clusters. Those
nodes are called clusterheads. When a clusterhead emiesgasgts to look for members. The cluster-
head election is based on the division of labor and taskatilmc in social insects. In social insects,
different tasks are performed by specialized individudisthe same way, our clusterhead election
procedure allocate the task of coordinating a cluster tomtdue that is more suitable.

The members in both heuristics are selected based on tmeissito be included in the cluster.



This fitness is composed of different parameters, like cativity to the cluster and distance to the
clusterhead. Each clusterhead tries locally to select th&t wonnected nodes to be member of the
cluster.

In order to estimate the quality of the links in the networle are also proposing a combined
link metric, that is responsible to summarize the goodnésslimk. All the heuristics presented in
the thesis are based on this metric, i.e., we measure thiéygofdhe service assignment and cluster
construction based on this metric.

The performance of the proposed approaches are evaluatepdtius Shox wireless network sim-
ulator. Shox is a discrete-event simulator developed innmrking group targeting the simulation of
ad hoc wireless networks. Results show that the proposegitsetistribution is able to produce very
good assignments, near to the optimal, for most of our exparis. This incurs a much lower energy
consumption than the initial assignment for the servis&/ttommunications.

We have also tested our clustering heuristic for staticltmpes. For comparison, a modification
of the expanding ring clustering algorithm was used. Ouribga outperforms the expanding ring
in every analysed scenario. The clustering cost produceaubypproach was near the optimal for
several cases, and the average cost was at msttlie optimal for all tested scenarios. Moreover,
our heuristic produces more predictable clusters thanxpareling ring.

Document Outline

Chapter 2 provides the state-of-art of system software fogless sensor networks. Three types of
systems are analyzed in this chapter: operating systentgleniares and virtual machines. The
advantages and shortcomings of each type of system sofasasnalyzed, and the differences to our
NanoOS are highlighted.

In Chapter 3, the architecture of our OS is described. Maeave present some applications
that would profit from our service distribution approach.abidition, our link metric is introduced in
this chapter. As already said, it is the basis for our serdistibution and clustering heuristics.

Chapter 4 presents a basic and extended heuristic to cdimérahigration of the mobile services.
First, the related work about migration of components itrilisgted systems and more specifically, in
WSN is presented. Further, the formal problem descripsdntroduced and the heuristics developed
to solve the problem are shown in details.

The related work concerning cluster construction in ad hede/arks is presented at the beginning
of Chapter 5. Moreover, we describe formally our optimizatproblem and prove that it is NP-
complete. Further, we present our two heuristics that deetalllecompose the networks to clusters.
At the same time, concepts from self-organizing and emegestems that are used in the heuristics
are also described.

The experiments realized with the corresponding resultpaasented in the Chapter 6. Moreover,
we present in this chapter how we evaluate the results. $hisade with reference approaches, and
the results are normalized against this reference. Forl sasds, we use as reference the optimal
solution calculated with integer linear programming (fbe tclustering problems) and branch-and-
bound (for service distribution). A genetic algorithm ispensible for delivering the reference cost
in large problems. At the end of the chapter, the resultswdrsé realized experiments are analysed.

Finally, Chapter 6 presents the conclusions of this thesis.
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Chapter 2

System Software for Wireless Sensor
Networks

In this chapter, the state-of-art of system software foeless sensor network is presented. By system
software, we mean software components providing applinétidependent services and managing
node resources [79]. We will survey the different kinds ateyn software for sensor networks, as
operating systems, middleware, and virtual machines.

2.1 Embedded System OS

There are several operating systems for embedded platfrofsas, for examplé/xworks WinCE,
PalImOS QNX Apertos and uLinux. Regarding their development aims, these systems spidit int
two groups:general purpose embedded @%dspecific application(-oriented) OFhe upper part of
Figure 2.2 depicts these groups and their members.

Many embedded system OS do not comply with the required piiepdor sensor nodes. In most
cases, their memory and performance requirements can enatisfied by platforms larger than
sensor nodes by one order of magnitude. This fact is depiot&iure/ 2.1. The figure shows the
design space that sensor OS are targeting. It further deratess that the footprint of sensor OS is
smaller than the footprint of PDA-class operating systegnere order of magnitude.

2.1.1 Configurable Operating Systems

Some embedded commercial operating systemsvik&orkg125] have a rather fine-grained service
architecture and permit thenfigurationof the services tailored to the hardware and the application
This modularity and configurability is also a desired chemastic in a sensor OS because it reduces
the resource requirements. Nonetheless, most OS of this hiave a too large footprint for sensor
network use. Another point, also stressed here, is thatxistirey embedded system’s OS cannot
appropriately cope with the dynamic behavior of the nodes the topology) of a sensor network.
They don't provide the support for the type of applicationaning on the sensors (e.g. data fusion,
database-like queries, data dissemination/gatherioj, et

Another group of OS goes a step further and peraijtsamic reconfiguratiorf the set of run-
ning services in order to adapt themselves to changed isitigate.g. change of the set of running
tasks). Such operating systems, like the acadéxpiertos[139], are known aseflective operating
systems A reflective operating systehmas the ability tareflect about its actual statand, based on

5



6 CHAPTER 2. SYSTEM SOFTWARE FOR WIRELESS SENSOR NETWORKS

SV Linux
100000 AL
Mgch
10000
PersonalJava
= Al AuCLinux
¥ 1000 PalmpS =
% PocketPC
S
0 100
3 MOS
8 A
§ 10 AJava 5C
o JAN
o )
[TinyOS

1 10 100 1000 10000 100000
Volatile Storage (Kb)

Figure 2.1: Design Space of Sensor OS [123].

VxWorks

General Embedded Systemm
Apertos

: uCLinux

POSEK

Creem

Specific Application

Embedded OS

Non-configurable
VxWorks

corse-grain
fine-grain _ Apertos

Re-configurable (reflective) corse-grain _ucLinux

Figure 2.2: Classification of Embedded OS

this reflection, to change the current structure in orderetbadapt to the new requirements of the
environment or the applicatiors using reconfigurationThe services in such operating systems are
implemented as objects with a correspondeeta-objectwhich analyzeshe behavior of the object
and the requirements of the applications during run-time r@aconfigures the operating system in
order to better serve the application’s requirements. Qg this is a highly desirable characteristic
in a dynamic sensor network environment, the existing refleoperating systems have the follow-
ing drawbacks (as presented above): they are not desigrakiet@n account the diverse dynamics of
sensor networks and they have a too large footprint for tetevark class in most cases. Moreover,
they are not designed to support typical WSN applications.

2.2 Sensor Network OS

A sensor operating system must have a very small footpridf anthe same time, it must provide
a limited number of common services for application devetsp These services comprise hardware
management of sensors, radios, and I/0O buses, and devideasexternal flash memory. Moreover,
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task coordination, power management, adaptation to resagnstraints, and networking are also
required services [123].

The OS should support the specific needs of the WSN. For exartipdy must support energy
management. An appropriate programming model and a cleayyto structure a protocol stack are
also necessary.

For example, in order to cope with the demands of sensor nadesies of OS were proposed/de-
veloped. Bertha can deal with some demands of WSN, whereg®©¥i, PeerOS and MANTIS OS
are specifically designed for sensor networks. A brief deon of a selection of OS for sensor nodes
will be provided further below.

We will discuss in the next section some specific aspectsastado a sensor network OS. We
divided the aspects in two groups: single node and node groniperns.

2.2.1 Single Node Concerns
2.2.1.1 Hardware Management

A main task of an OS is the management of the hardware resoaftke node [116]. The OS should
provide abstract services (e.g. sensing and data deligergighbors). As there is no memory man-
agement unit (MMU) in a typical sensor processor, this hardwnanagement can be implemented
by means of a library of functions.

The lack of an MMU leads to the consequences that there isateqgtion from erroneous hard-
ware (and memory) access.

2.2.1.2 Task Coordination

Another major problem of the sensor network OS is the taskdioation of multiple tasks [123].
The OS should allocate the processor to a certain task an@@tgrol the synchronization among the
tasks (mutual exclusion).

There are two basic approaches: to leave the coordinatitirettasks or to handle this inside the
OS. Doing that inside the OS has two drawbacks: CPU bandvaidthmemory utilization. On the
other hand, it frees the application developer from the derify of task coordination and usually
supports the development of more elaborate and compleicapphs with less effort.

Usually these two task coordination approaches are impleeden a sensor network OS using
event-based and preemptive thread multitasking paradigms

Event-based Kernels Tasks are implemented as event handlers that run until aiimpl This
provides concurrency without the need of mechanisms liketpead stacks or mutual exclusion.
The main advantage of this approach is the small memory nrament. because processes cannot
block, just a global stack is necessary, saving the scaresstirce of a sensor node. A main problem
occurring in event-driven systems is the difficulty to implent applications using state-driven pro-
gramming: the event-driven model is hard to manage by thgranomers and not all problems are
easily described as state machines. Moreover, most axigpiplications are written for preemptive
multithread environments.

Another problem is the description of concurrency, sindeemva handler is running, all others are
blocked.
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Preemptive Thread Multitasking Kernels Preemption leads to the necessity of saving the current
state of the registers in the stack. This means that one girckread is necessary, leading to a
relative high memory requirement. Moreover, the contextawoperation is rather time-consuming,
that means, for a task set composed mainly of IO bound tas&all tasks, the overhead caused by
the context switch is very high. Since sensor networks haes@urce constrained hardware, this is a
strong argument against this OS paradigm.

Nonetheless, preemptive multitasking supports the dpuedmt of more complex, elaborated dis-
tributed applications. Moreover, existing embedded apgilins can be ported more easily to such
an environment. In the NanoOS, we have a preemptive thrediitanking OS. However, we use a
special service organization in order to reduce the memamgumption of our OS.

2.2.1.3 OS Architecture

Classical operating systems running on CPU with MMU (memmianagement unit) have either
monolithic kernel, microkernel, or exokernel architeetuifhe amount of functionalities implemented
in the kernel space (which runs in supervisor mode) is ar@itesed to classify the architectures.

Monolithic Kernel: Implements all abstractions in the kernel space, includilegsystem, virtual
memory, device drivers, networking, etc.

Microkernel: The low level facilities are implemented in the kernel spadeereas the higher-level
abstractions are processes in the user space. Moreovecrakernel uses to be modular and
some of them support exchanging of modules by means of amgusgirvers (processes) in the
user space.

Exokernel: In an exokernel, nothing is implemented in the kernel sp@be.kernel just multiplexes
the hardware resource used by the user space processegiaktaedents activate stub handlers
that pass the events to user-level processes. The uskptecesses implement the policies.

A library-based OS is a set of functions that implement alosibns to facilitate the hardware
management. Nevertheless, it does not provide memorygiate Library-based OS are mainly
used in systems where the processor does not possess a nmearm@agement unit. This is usual for
sensor nodes, which have small processors without MMU.

A variation of a library-based OS is a component-based ongchEEomponent realizes some
abstraction and comprises code and state. They are cond@oJdie OS and the protocol stack are
written as a set of components connected to each other. Mameim such operating systems the
application may be written just as another component inyltem or a service interface can be used
(Figurel 2.3). With a service interface, it is possible te@tilse level of abstraction. Nevertheless, the
performance and the cross-layer optimization possiedlitire penalized [69].

Another important point about the architecture of an WSNraieg system is that often the
border between communication stack protocols, OS servaras application programs turns to be
subtle. Moreover, the standard layering method (in spesatl in the communication stack inside
the OS) is relaxed due to the use of cross-layer optimizatiethods, where the strict confinement of
the layered approaches is loosened.

2.2.1.4 Power Management

The battery inside sensor nodes after their deploymentatdrmeasily exchanged. In addition, for
several applications, a long life time of the network is i Moreover, Moore’s law does not apply
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Figure 2.3: Two possible options of interface between thaiegtion and a protocol stack: applica-
tions as ordinary components or a deliberately designedcseinterface. Source: [69].

to battery capacity. Due to these facts, mechanisms toessgood energy utilization using power
saving techniques are highly desirable.

There aren’t abstractions that remain consistent over ithergity of power management tech-
nigues. Nonetheless, several techniques for power mareagexist|[45]:

e duty-cycling - reduces the average power utilization bylingcthe power of a given subsystem

e batching - amortizes the high cost of start-up by bundlingessd operations together and exe-
cuting them in a burst

e hierarchy techniques - order the operations by their eneogggumption and invoke the low-
energy ones before the high-energy ones in a fashion sitaitae short-circuit techniques used
by several compilers for the evaluation of boolean expoesisi various languages

e redundancy reduction (or even elimination) - uses comesaggregation, or message sup-
pression

The low-power operation mode in the sensor network can beeasied in various levels. In [45],
the following levels have been recognized:

Sensing Sensing is a very important task in a sensor network. The omwstnonly used technique
to lower the energy consumption spent in this operation fig-ducling, i.e., cycling the power on and
off. In a data collection type of application, a sleep-wagkesample-compute-communicate cycle can
be used where the node sleeps most of the time [46]. For esnapevent detection applications,
rare events may pose problems if the sensing subsystem hagptawered continuously.

Communication Communication is very important in a sensor network, bgtaiso power-consuming.
Several techniques has been developed to reduce the radioraption [45]:

e Radio Management: in order to reduce the energy consumpmreral techniques may be
used. Polled operation works by sampling the channel peatid (and power down during the



10 CHAPTER 2. SYSTEM SOFTWARE FOR WIRELESS SENSOR NETWORKS

remaining time). Scheduled radio works by coordinatingduaaamce when radio may transmit
and receive. Triggered operation uses a low-power secpmddio to signal a more capable,
but also more power-demanding radio to wake up.

e Middleware/OS level - energy-aware services. For exantipéetime synchronization, routing,
and dissemination services may be implemented in a way #vassenergy. Because many
applications do not need constant time synchronizaticaxtige synchronization may be used
to save energy. In the routing level, nodes with lack of epean be preserver as other nodes
are used to route the packets [83].

Services for data dissemination may use effective and gredfigient algorithms instead of
naively flooding the network. Epidemic/gossip techniquesnvell as meta-data based tech-
nigues can be used to reduce redundant transmissions.

e Miscellaneous optimizations include conserving energh@MAC layer like in PAMAS [117]
and S-MAC [138], snooping on application-level packetshia hetwork layers, piggybacking,
and batching message transmission. Some of the technigaebearincluded in OS communi-
cation stack or services; others can be implemented in thigcapon.

Computation Often sensor applications are neither computation norbid@ad [45]. There are
many opportunities for idling the processor and periplseraizent-driven OS like TinyOS (see Section
2.2.3.1) may implement energy-saving modes of operatioor. ekample, when the task queue is
empty, the system can go to a power-save mode until the nextupt arrives.

Storage The memory hierarchy in sensor needs to cope not only wittorfedike speed and per-
sistence but also energy-efficiency issues. For exampheaily the use of RAM as cache for the
EEPROM or Flash may be more energy-efficient that directatjmsr with those memories.

Energy harvesting For sensors deployed in environments where the replaceaight battery
is not possible, the energy harvesting systems might offealtgrnative solution. In the software, a
management of these energy harvesting devices and of thamgyrand secondary storage is necessatry.

Relation with OS There is a range of mechanisms for power saving in sensorongwThe OS
can offer two types of mechanisms to perform power managenveplicit and explicit [116]. The
implicit power management is done by the OS without coomrdtom user or application tasks.
This means that the OS can power off some hardware compowéhtsut participation of the tasks.
In the explicit power management, the tasks give hints toQBeusing system calls. This is more
efficient than the implicit method since the OS has much mu@iination for its power management
decisions.

2.2.1.5 Reconfigurability Support

Normally, sensor network OS are composed of a set of modudésan be selected to fulfill the needs
of a specific application, i.e., they are configurable. I§ipbssible to exchange fine-grained modules
during execution, in order to adapt the OS to a new envirotisiaration or application requirements,
we are speaking about a reconfigurable OS. A reconfigurablad@8ally has a reflection unit with

is responsible for monitoring the current state of the systend, based on this state, parameters and
modules are changed, aiming at optimizing a desired obgfiinction.
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2.2.2 Group Concerns

In this section, we will deal with concerns related to therihstion of the application among the nodes
of a sensor network and its communication.| In [79], différ@pproaches of distribution platform are
characterized: operating system (OS), virtual machine Y\éWld middleware. The aspects presented
in this section are relevant for the tree types of platform.

We will discuss in the next sections the support of the Offairmachine/middleware to dis-
tributed applications.

2.2.2.1 Architectural Paradigms

We distinguish between tree possible architectural pgnaslito support distributed applications:
client-servey mobile codeandtuple spacg79].

Theclient-serverapproach consists of a set of services providing functiteslaccessed by the
clients. A directory service is responsible for helping li tservice discovery process. The idea
here is that the client outsources some task to be processt server. The service is called using
remote procedure calls (RPC) or, in an object-orientedrenmient, remote method invocation (RMI).
In the remote task communication, normally a stub proceduaeshals the call and the parameters,
which are unmarshaled back to the server. A similar, but meffieient and commonly used way of
communication in WSN, is the active message: it is similahtoRPC, but the sender is not blocked
and continues the processing. When the response from thargees, an event is used to notify the
caller.

In the mobile codegparadigm, instead of moving data from client to a service,dbde is moved
to the data it should process. Mobile agents carry also its state and are autonomous (e.g., they
may decide to migrate by themselves). The virtual machipecgzhes in WSN normally implements
mobile agents due to the fact that the functionality (cod®) lbe expressed in a very compact form,
being suitable for migration [52].

The concept ofuple spacanay be used for task communication and service discoverple$u
are collections of passive data values. A tuple space is kgbesbared information, where tuples are
inserted, removed, or read. Data are global and persistagheituple space and remain there until
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explicitly removed. For the communication, the partnerstmot know each other and do not need
to exist at the same time.

The three paradigms are illustrated in Figure 2.4.

In this thesis, we will mainly focus on thaient-serverparadigm.

2.2.2.2 Service Discovery

Service discovery allows devices to automatically locatevark services with their attributes and
to advertise their own capabilities to the rest of the nekwdt is a major component of modern
self-configurable sensor networks. The service discow&ignportant in the client-server model of
distributed computation. Although normally the servicecdivery is part of a middleware level, as
already argued, we believe that in WSN the OS should be mevigadniddleware functionality due
to the resource restrictions.

In a typical service discovery process, there are mainlytag&s. A client can request a service
issuing a request to the node’s lower layers and expect &sanply. The reply includes the network
address of the provider, to be used for subsequent comntiomisa This subsequent communication
is modeled by aservice invocatiorandinvocation acknowledgmeifitandshake. Naturally, more or
other data messages may be exchanged [50].

The provider node interface is simple: Applications shallable to register and unregister their
services with the service discovery layers.

Most of the service discovery protocols include the clisetver paradigm as mode of opera-
tion. In this mode, the clients reactively send out servagpest messages and servers listen to such
messages. If the requested service is supported, a repbagess generated and sent back. In an-
other method, the service users listen passively to adeengnts that are proactively generated at
the servers side. A further alternative scheme involvegicebrokers (or directory agents) residing
between clients and servers as a logical entity. Clientctihe requests to known service brokers,
whereas servers register their services with these brokbesfirst two models are known as directory-
less architectures. It has been argued that the direatsgydrchitecture is more suitable for MANETS
due to the absence of infrastructure [71] which may need #yaosintenance.

However, as we will present further in this thesis, in ourrapph, we are decomposing the net-
work in clusters. The cluster’s representative (clustedhés suitable for assuming the directory agent
role.

Tablel 2.1 shows different technologies used in local andilmetreless networks to search for
services. The classical service discovery protocols aré imstraditional wired networks. THgervice
Location Protoco[56] is used to find services that match the client query. dtlmaimplemented using
directory agents Alternatively, it uses multicasts to service providersider to find services. The
Jini Lookup Servicg94] resides on a node where client and services send asbments or requests.
When usingSalutation[31], both clients and services uses the Salutation Man&gadvertise or
request services. In a network without a Salutation Manadgeadcasts are usedlniversal Plug
and Play[36] is very similar to theService Location Protocpbut it works withoutdirectory agents
Discovery requests are sent using multicast towards servdter receiving the requests, matching
services reply to it.

The classical protocols are not suitable for WSNs due toabethat they mainly rely on central-
ized directory agents or maintain a costly multicast trearaédver, they are designed to be used in
wired networks and are heavyweight.

Several other protocols have been developed to be used iocadifeless networks. Besides the
Tuple Space and GSD, almost all other protocols are baseebmests/advertisements directed to the
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other nodes via broad/multicast or other kinds of directmggnts (network manager, SANDMAN).
Two problems can be recognized in those approaches: ehibgrhave a restricted scalability or
require intensive communication.

Client-server technologies are limited to nearby nodesdmmdot scale for large WSNs. GSD
and tuple space scale, but they require a large amount of caioation, which can be reduced by
increasing the distribution of service information [79)Wrtheless, this brings an increasing memory
cost per node.

The centralized approaches (using a service broker) magdmin restricted parts of the network
without compromising the scalability. We select this optfor our NanoOS, where the scope of the
broker is constrained inside a bounded cluster.
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Table 2.1: Different technologies implementing servicgcdivery [79, 56, 94, 31]
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2.2.2.3 Task Allocation

Task allocation is responsible for the assignment of thiestesthe nodes and for the communication
scheduler. An overview about this area for sensor netwopkasented in Chapter 4.

2.2.2.4 Code mobility

Given the fact that sensor nodes have a very limited amounteshory, the nodes cannot store all
applications in the local memory. Moreover, during the tifae of the network, applications of dif-
ferent kinds may be required in order to respond to diversepbex queries. A migration mechanism
that enables new applications to be transferred from a nodeetnext is desirable. Moreover, our
objective is the development of an OS that offers appropdistractions for supporting distributed
applications. This implies that the migration mechanisi ®ry important feature of the OS.

For online task allocation, discussed in Chapter 4 anddnized in the previous section, the code
mobility is a central mechanism to support it.

As the connections in a sensor network are constructed irddma fashion, which does not
include pre-organization, the mobility of code is also intpot to deal with the network’s dynamics.

2.2.2.5 Support of Network Dynamics

The sensor networks may exhibit a highly dynamic networlology due to node mobility, environ-
mental obstructions, or even hardware failures. This fleetd to new challenges during the develop-
ment of distributed applications.

The migration of code, as already described in the previectms, is a very important mechanism
to support node mobility. Another important point that sllooe stressed is that the OS (or middle-
ware) should also support the robust operation of the ser@rork despite the network dynamics
[106]. An important approach to support a “topology indegemt” processing is the data-centric
communication, where network nodes are addressed by usniginction or data they provide (e.g.
“please return nodes into my vicinity that can measure teaipee”).

2.2.3 Examples of OS
2.2.3.1 TinyOS

TinyOS[39] was developed by the University of California at Begkel It has a very small footprint
and provides an efficient management of hardware resources.

The execution model ofinyOSis similar to a finite state machine, but it is more easily pro-
grammed. It consists of a set of components that are inclidéue applications when necessary.
TinyOS addresses the main challenges of a sensor netwarktramed resources, concurrent opera-
tions, robustness, and application requirement suppdké dther OS, it aims at reducing the burden
of application development by providing convenient alugtoms of physical devices. An additional
goal is to provide a rich expression of concurrency by themament model.

Each TinyOS application consists of a scheduler and a gragbroponents. The components
are described by their interface and internal implemeasratiAn interface comprises synchronous
commands and asynchronous events. Therefore, TinyOS igeailgased operating system.

The concurrency model in TinyOS is a two-level schedulirgrdnichy: events preempt tasks, but
tasks don't preempt other tasks. Each task can issue consnwargut other tasks to work. The
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arbitration between tasks - multiple tasks can be triggbyedifferent events and are ready to execute
- is done by a First-In-Fist-Out (FIFO) scheduler.

Events are initiated by hardware interrupts at the lowastiée They travel from lower to higher
levels and can signal events, call commands, or post tagkam@nds cannot signal events.

Wherever a component could not accomplish the work in a bedifichit of time, it should post a
task to continue the work. This is because a non-blockingaamb is implemented in TinyOS, where
locks or synchronization variables don't exist. This metir@d components must terminate. For that
reason, the TinyOS just uses a global stack and each composea static frame. The components
are similar to re-entrant state machines.

As an event-based OS, the system waits for events occureer@e¢hen react upon that. The
event-based programming model for sensor networks igrifltes] in Figure 2.5.

As commands and events are the only interaction medium keteemponents, a large number
of commands and events add up to a large program. The intesfabe components consists of a set
of commands that the component understands and of evenisrtiay emit.

The languageesCallows the application developer to identify interfacedgpghat define com-
mands and events that belong together. Components progitircinterfaces and use them from
underlying components. An example of a timer component easelen in Figure 2.6. It receives the
commandinit for initialization, start for starting the timer, andtop for stopping the timer and
triggers the eventired when the programmed time elapses. The lower component ack, dfom
which the timer component receives perioflicre events.

Both, the TinyOS components and the application comporemetsmplemented using this pro-
gramming model. There is no support for distributed praogss
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Figure 2.7: Organization of the MANTIS OS [16].

2.2.3.2 Mantis Operating System (MOS)

The Mantis operating system (MOS) is a sensor OS designedhave similarly to UNIX and pro-
vides a larger functionality thafinyOS It is a lightweight and energy-efficient multithreaded @8 f
sensor nodes.

The design goals of MOS are:

Easy to use: In order to reduce the learning curve of the WSN platformnh&ais structured using
the model of multilayer multithreaded OS. This means thaltithteading with a preemptive
scheduling scheme is supported by the kernel. Moreovekeah®eel (and programs) is written
in C, which allows the re-use of existing code.

Flexibility : The system provides flexibility for advanced research imsee networks. Moreover,
remote debugging and dynamic programming of sensors usegdtwork are supported.

The internal organization of the Mantis OS is presented gufg 2.7 [16]. The system API
supports 1/0 and system interactions. The kernel of theatipgr system provides UNIX-like thread
(and POSIX) functionalities.

In contrast to TinyOS, the MANTIS kernel uses a priorityddghread scheduling with round-
robin semantics within one priority level. To avoid race dibions within the kernel, binary and
counting semaphores are supported. Moreover, timers aeg $linctions are provided. The OS
offers a multiprogramming model similar to that seen in @ntional OS, i.e., as already said, the OS
complies with the traditional multithread POSIX-basecdsogm.

All threads coexist in the same address space. The kerpeb#dls a block of data memory every
time when a thread is spawned. The existence of multipl&kst@me per thread) makes MOS more
resource-intensive than single-threaded OS (e.g. TinyOS)

The kernel of the Mantis OS also provides device drivers amebaork stack. The network stack
is implemented using user-level threads and focuses ofeeffigse of the limited memory. Different
layers can be implemented in different threads, or all sugan also be implemented in a single thread.
This leads to a trade-off between performance and flexibilits possible to the developers to easily
modify or replace layer modules of the network stack.

Like TinyOS, Mantis does not offer substantial support ia @S level for distributed processing.
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2.2.3.3 Yatos

Yatos [42] is an OS designed by the Federal University of MiGarais (Brazil) specifically to run
in an WSN environment and has several interesting featui&s. TinyOS, it is an event-based OS,
where events are mapped to tasks.

The structure of both OS and applications is componentebaSemplex behavior can be created
using simpler modules. The communication between layears ilie same principle as TinyOS: events
travel from lower to upper levels, whereas commands arefsamtupper layers to lower ones.

The concurrency in Yatos is achieved using tasks and evéhis.scheduler has two levels: the
high priority level (events) and the low priority level (k#3. The tasks are atomic structures that
run to completion, nevertheless they can be preempted bgvirets. Tasks can send commands and
events and schedule additional tasks. Events are geradi@tiz of the interruptions and propagate
the processing to the higher levels of the hierarchy (sendirents) or to the lower levels (through
command execution).

The events in Yatos are classified in tree types: aperiodidpgic, and oneshot events. Aperi-
odic events are generated by the hardware (without use efgdmPeriodic events are timer events.
Oneshot events are programmed and executed only once.

The work on Yatos is currently in progress. It is implementizdun on the sensor node BEAN
from the Sensor Net project.

2.2.3.4 Bertha OS

The Bertha OS was developed to manage the hardware of theiRwesimputing platform [86]. The
goal of the Pushpin Project is to create sensor networksétiabrganize in such a way that they allow
preprocessing and condensing sensor data at local semsbinédore (optionally) forwarding them to
more centralized systems. The OS, hardware, and progragranirironment follow the design points
coming from the Paintable Computing project [23].

Before starting to describe the Bertha OS in more depth, thgramming model of the Pushpin
project should be described. The main idea of the systenaissthall algorithmic process fragments
can interact with the neighborhood. Based on these interagtthey generate a complex global
algorithmic behavior.

The process fragment (call®rag) is the atomic algorithmic unit in the algorithmic self-asgbly.

It is contained and executed within a single node. Migraiopossible to neighboring nodes. Each
process fragment implemeritsstall, uninstall andupdatefunctions that are called by the BerthaOS.

Each Pushpin node has a complete instance of the OS to mar@gEs§or, memory, access to
hardware, and system services.

Up to 11 process fragments can be accommodated in one O8degtane node). The fragments
can enter into the node through the wireless interface amih#iialized using thénstall function. The
updatefunctions of the resident Pfrags are called irmand-robinfashion and run until completion.
This means that thBertha OSdoes not have preemptive task scheduling.

Abstractions provided by the OS for the communication aré&EBulletin board system) and a
Neighborhood Watch system that keeps a synopsis of thet disdghborhood BBS. The OS also
offers migration mechanism to a neighbor node. Figure A8tiates how the OS and the several
offered mechanisms and Pfrags are stored in the memory ofdtthe. Both the OS and PFrags code
are stored in a flash memory. This means that, for every nmgrahe flash RAM must be rewritten.
The extended RAM installed in the Pushpin nodes is used te #ie state of the Pfrags as well as the
Neighborhood Watch and the Bulletin Board System.
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Figure 2.8: Pushpin’s memory [86].

In addition to the abstractions already presented, the §isadiers an API that provides access to
the different hardware modules.

2.2.3.5 Contiki

TheContiki[44] operating system was developed for sensor nodes wiithit@tl amount of resources.
It provides dynamic loading and unloading of programs amdses during run-time. It supports also
dynamic downloading of code enabling the software upgrddaready deployed nodes. All this
functionality is offered at a moderate price: the systensusere memory than TinyOS but less than
the Mantis operating system.

The main idea ofContiki is to combine the advantages of event-driven and preemptivié-
threading in one system: the kernel of the system is evavidrbut applications desiring to use
multithreading facilities can simply use an optional lityranodule for that.

A Contikisystem is partitioned in core and loaded programs. Thidtiparts determined at com-
pilation time. The core comprises the kernel, program lgade time libraries, and communication
system (communication stack and drivers).

The components of @ontiki system are:

Process: A process can be an application program or a service. A seiwviplements some function-
ality used by more than one process.

Kernel: Contains the basic functionality like CPU multiplexing aagent handling.
Libraries: Extend the kernel features.

Program Loader: Responsible for loading services and programs on-the-fly.

Processes Processes are application programs or services. The paxcebhare a common address
space (i.e., there is no memory protection). The state odegss is held in the process local memory.

A process can be defined by event handler functions and aonaptpoll handler. Inter-process
communication is made by means of posting events.
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A service is a kind of shared library. It can be replaced attimne - therefore, it is dynamically
linked. Examples of services are the communication prétsiacks, device drivers, and high level
functionality like sensor data handling algorithms.

In order to find and manage the services, the OS I&erace Layerlt provides a way of binding
services based on the textual strings that describe themrvice consists of a service interface and an
implementation (that is a process). Applications use a ldtudry to communicate with the services.

As already said, a service can be replaced during run-ties(figuration ability). In order to
provide such functionality, the internal state of the seewdhould be preserved during the replacement.
For that, the kernel has a call to inform the pointer of theesiathe new service and a state description
that is generated by the old service.

Kernel The kernel mainly consists of a lightweight event schedatet a basic CPU multiplexing
module. The events can be asynchronous (deferred procealiseand synchronous with immediate
execution. The control returns to the posting process #ftetarget process has executed the event.
This provides an abstraction similar to the interprocesseguiure call.

Besides normal events, the kernel provides a polling evétht igh priority. All events can be
preempted by the interrupts. Such interrupts cannot réagwests in order to avoid race conditions.
They must set a polling flag to ask for pool events.

The Contiki kernel has no abstractions to deal with power saving isséipplications must im-
plement power saving mechanisms.

Libraries Libraries offer additional functionality besides thatesdy provided by the kernel. A
program can be linked with three types of libraries: stadi@cpart of loadable programs, and services
that implement specific libraries that can be dynamicalplaeed.

An important functionality provided by a library is the skananagement function for threads that
need a separate stack due to preemption.

The Contiki kernel just provides a single shared stack to the processes.

2.2.3.6 Peeros

The objective of the Peeros[97] is the development of a tiead-operating system that fits in the
limited memory of a sensor node while supporting low powedesand causing small overhead.

The design criteria of the OS are the following: offer pripfibased multitasking, offer real-time
guarantees to the tasks, support low-power modes, andderfieixibility. Additionally, it should fit
in the small memory of the sensor node. The authors oP#erosargue that no other WSN OS can
satisfy all those criteria.

The target hardware platform is the EYES sensor node (desdlin the context of the EYES
project).

The main abstraction of the OS is the task, which is basiealiece of code that can be executed.
If several tasks are active at the same time, an EDFI-bagedthim is responsible for scheduling this
task-set using preemption. All tasks should have a prianitg deadline, which indicates the relative
importance of one task to the other tasks in the system.

In order to accomplish both internal and external commditinaa messaging system was devel-
oped together wittPeeros It consists of three main blocks:

Internal Messaging System: Allows a task to send small data pieces to other tasks.
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Serial Messaging System:Permits the data exchange using the serial port.

Radio Messaging System:Similar to the previous component, it allows the data exgkamsing a
radio interface of the node.

In order to reduce the memory requirement of the OS, Peepposts dynamic loading of device
drivers from the EEPROM to the main memory when requireds Tireans that at a specific point of
time, not all modules must be loaded in the memory, they just@ded when necessary.

Besides the interprocess communication subsystem alneeebented, Peeros doesn’t provide
more high level abstractions for programming distributpgli@ations.

2.2.3.7 Cormos

Cormog[135] stands foCommunication-Oriented Runtime System for Sensor Neswbhle idea of
Cormosis to provide a convenient programming abstraction thagirtes processing and communi-
cation and to use simple and unified internal and externatfaxtes that makes it easy to provide new
system or application components.

The authors of th€ormosargue that the communication in a wireless sensor netwarklgdtbe
handled as the central abstraction (communication-@@mifithe OS instead of being just an extension
of the run-time system.

There are two main abstractions in the OS: events and handisganized in modules. Mod-
ules can extend either application or system functionalityorder to communicate internally and
externally, the abstraction of event paths was introdundte system.

The events trigger local and remote actions. An event igldiviin a frame which contains the
event state and an array list that comprises a set of haréigpensible for processing the event. The
events are created by the handlers to trigger certain actiéditer processing all the handlers, the
event is automatically deallocated. When events cross hodadaries, they are deallocated in one
node and allocated in the next one.

Handlers are processing functions that perform the prowgsseach node. A handler is executed
when an event that contains that handler is scheduled fomaltemotely). During execution, they
can create new events, call library functions, or accesaueogriables. Handlers are atomic and run
to completion.

The event pathsare a very important abstraction. A path is a flow of data frosoarce to
destination, specifying the modules that an event will ghssugh. Paths allow source modules to
specify events that will occur in the system.

System Structure Figure 2.9 depicts the structure of tBermossystem. It consists of:

Modules: Encapsulate operations that extend the run-time systemequaat of the user application.
They comprise events, static functions, and variables.vebnnodules are special kinds of
modules that use hardware interrupts and provide absiracto the hardware system devices.

Libraries: They are collections of code that can be used in any part cjtsiem.

Run-time system core: Composed of scheduler, memory allocator, and module rggiche sched-
uler dispatches events following an event path specificafilne memory manager maintains a
static table for allocation and deallocation of events. fitoelule registry has a table for storing
information about all active modules and their handlers.

In order to save power, the scheduler puts the CPU to sleep thikee is no pending computation.
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Figure 2.9: Structure of the Cormos system [135].

2.3 Middleware

A middleware for sensor networks is responsible for suppgrthe development, maintenance, de-
ployment, and execution of sensing-based applicationss ifbludes mechanisms for formulating
complex high-level sensing tasks, communication of thik t@ the WSN, coordination of sensor
nodes to split the task and distribute it to individual sensades, and data fusion for merging the
sensor readings into a high-level result [107].

2.3.1 Requirements

In [106] and [140], some possible requirements of a middieviar WSN are sketched:

Programming paradigm: Due to the fact that sensor networks are used to monitor amviental
phenomena, mechanisms for specification of high-levelisgriasks and combination of sen-
sory data from individual nodes to high-level results aguieed. A programming paradigm
should support the development. Moreover, a data-centeichamism may be included in the
programming paradigm.

Restricted resources: The middleware components must be lightweight, and adaptaf the re-
source consumption to the actual application needs anthhiiy of resources in the node is
desired.

Network dynamics: The middleware should adapt itself to the network topologiyashnics, that may
change due to mobility, communication failure, hardwaileifa, etc.

Scale of deployment: The middleware should support mechanisms to self-orgahezaetwork even
in the presence of thousands or millions of nodes. This méetself-configuration is neces-
sary to achieve an operational state (set up a network tgpo#ssign task to devices, collab-
oratively merge and evaluate collected data). It is deldrbuse local interactions in order to
achieve global goals.

Real-word integration: Space and time play a crucial role in sensor networks to ifgemrsal-word
events and to distinguish these events. Hence, the esialglig of a common time and space
scale (localization) may be an important service of the teiddre.

Application knowledge: Application knowledge can be used to tailor the design amdémentation
of the middleware services. A trade-off between the degrepglication-specific services and
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generality of the middleware needs to be explored. Neviesbesome services like data fusion
are present in many applications and are often supporteldeomiddleware.

Collection and processing of sensor dataThese are the core functionalities of the sensor networks.
Complex sensing tasks may require that the data of sevedasnare fused in a system-level
result. Sensor data may be processed at the local node (eaditynnodes), features extracted
and, after this, data is fused when traveling to the useraated in these data. The middleware
should support such kind of processing.

2.3.2 Relationto OS

Normally, the middleware is designed to run on top of somsetig OS, which already provides rich
abstractions such as task and memory management. For setsorks, however, the current OS are
topic of active research. Due to resource constraints,uhetibnalities of the OS are rather limited
when compared with traditional OS. [106] argues that onasiptesoption is to give up the separation
between OS and middleware and to go towards a distributechtipg system that unifies traditional
OS and middleware functionality. This is what we are aimm@c¢hieve with our NanoOS proposal.
Therefore, our operating system addresses much of theeaagmts listed in Section 2.3.1.

Due to the fact that the separation of middleware and OS in WsS8uUibtle and some OS have
also middleware functionalities, section 2.2.2 is alsdyaiiag group concerns that are implemented
either by OS, VM, or middleware. Hence, the topics preseintddat section are also valid here and
will not be repeated.

2.3.3 Examples of Middlewares

We are classifying existing middleware proposals in degapaask allocation, mobile agents, and
events.

2.3.3.1 Database-Based Middlewares

The sensor network is considered a distributed databaseev@@L-like queries are issued and the
network performs a certain task in response to the query.

The middlewares presented in this section are specializedrisor query processing - they imple-
ment algorithms to run queries over sensor networks.

TinyDB TinyDB [92, 132] runs over the TinyOS and supports a single “virtwidtabase table
sensors, Where each column of the SQL query corresponds to a spegificdf sensor. The query
language is a subset of SQL with some extensions.

The SQL query triggers the aggregation of information in W8N, and the TinyDB supports
distributed aggregation of the data. Triay Aggregatiorconsists of two phases: a distribution phase,
in which the aggregate queries are inserted and propagatie inetwork, and a collection phase,
where the aggregate values are routed from children to fsatenil arriving at the requester. The
target of the Tiny Aggregation is to organize the aggregatibresults in such a way that the number
of messages is minimized.

Cougar Cougar [21, 136] is a loosely-coupled distributed architexto support both aggregation
and more complicated in-network computation. Each nodelyagry proxy layethat is responsible
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for handling locally the distributed query. A query optimizs located on the gateway node and
generates distributed query processing plans after iageiueries from outside.

The query plan specifies the data flow (between sensors) ar@bthputation plan at each sensor.
This plan is disseminated to all relevant sensors. Aftes tlissemination phase, the query can be
started.

The Cougar query runs over the so calkshsor databaseSensor databases defined as the
combination of pre-stored data (sensor nodes list, semst# location) with the sensor sampled data.

SINA Sensorl nformationNetworking Architecture([114] is a middleware that allows sensor appli-
cations to issue queries and command tasks into the netwdrkalect the results. Differently from
the previous approach, in the SINA middleware, hierardhitizstering is used to facilitate scalable
operations. Moreover, an attribute-based naming systerseid to support data-centric queries. Itis
supposed that the nodes are aware about their location anthnment.

The network is conceptually viewed as a collection of datatt) and each datasheet contains a
collection of attributes of each sensor node. Each atwilmireferred as a cell, and the collection
of datasheets of the network represent the abstraction efSaociative spreadsheet. Initially, the
datasheet of each node contains a few predefined attritidtegg run-time, some nodes may be re-
quested to create new cells by evaluating valid cell con8tm expressions that may use information
from other cells, invoke functions, or aggregate informatirom other datasheets.

The Sensor Query and Tasking Language is the programmiagdne between sensor applica-
tions and the SINA middleware. It is a procedural scriptimgduage that can contain simple declara-
tive queries.

The Sensor Execution Environment is the part of the middiewtzat runs in each node and, upon
receiving an SQTL message, is responsible for propagatimgiessage further and execute the script
inside the message by means of an application (if the messageressed to the node).

For applications that collect sensor information, the usay choose to invoke the built-in query
interpreter instead of writing a procedural SQTL script.islduery language is an adaptation of the
Structured Query Language (SQL) to serve as primary mesimaftir querying sensor nodes.

2.3.3.2 QoS-Based Middlewares

In this class of middleware, the quality of service requieets coming from the application are used
in conjunction with the sensor and network information tstidbute the tasks among the nodes of the
sensor network.

MIiLAN  The MILAN middleware [58] stays on top of the network stackdda responsible for
linking the application requirements, described as a seaébles of interest (sensor data) and their
respective QoS, with the sensor and network architecture.

The applications in Milan are data-driven (i.e. collect andlyze data from the environment) and
state-based (i.e. the requirements with respect to thétyohlithe sampling data may change based
on previously received data).

The middleware receives the description of the applicateguirements. These requirements
specify in which variables the application is interestedemy. blood pressure in a body surveillance
application) and which degree of quality the variables shmeet. Moreover, the middleware also has
as input the sensors description by means of which qualitpedsurement each sensor can provide
for each of the variables. Based on these data, the middéegaar calculate which sets of sensors
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Figure 2.10: System that employs MILAN. Each sensor runsaéededown version of MIiLAN.
MiLAN receives information about their QoS requirementsyatem description of the interaction
among applications, and information about the network. (exgilable components and resources).
MILAN, using this information, configures the network to gapt the application. Source: [58].

satisfy all the application’s QoS requirements for eachaide. These sets define thgplication
feasible set &

Moreover, MiLAN uses a service discovery protocol to leaonf the actual network condition.
This discovery retrieves information like accessibilifitoe nodes, energy level, modes of operation,
etc. In addition, the roles that the nodes may assume in tiveorieare also observed. The subsets
of nodes that can be supported by the network define the sdcatwork feasible set\r As only
sets inFp provide the required application QoS, the sets are integddo get an overall set of feasible
sets:F = Fan k.

The MILAN middleware chooses, among the element§ pbne elementf; that represents the
best performance/cost trade-off.

Figure 2.10 presents an overview of a system employing theAMimiddleware.

2.3.3.3 Event-Based Middlewares

Another approach to sensor network middleware is basedeondtion of events [106]. Applications
can specify interest in certain state changes of the real ygorcalled basic events) or certain patterns
of events (composed events). Upon detection of such an,ahergensor nodes send notifications to
the interested applications.

DSWare The data service middleware [84] has the goal of avoidingréhienplementation of the
common data service part of various applications. It resligtween the application layer and the
network layer and provides data service abstractions.

The most important services are related to event detectiba.architecture of the middleware is
described in Figure 2.11. Each component of the middlewfieesca different kind of service to the
application.

In the next paragraphs, we will describe briefly the comptsehthe middleware.

The data-centric storage is a service that provides mesimartio store information according to
its semantics. It has an efficient data look-up and is rolwmstr{ node failures). Correlated data may
be stored in geographically adjacent regions to enablelgessggregation. Queries are directed to
any of the nodes that contains it. The system tries to avdigiom and to balance the load [120].
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Figure 2.11: Framework of DSWare. Source [84].

The data caching service provides multiple copies of thetmaxpuested data. The service is
spread over the routing path in order to reduce the commiimicaverhead. It uses a simplified
feedback control scheme to decide where to place the copdstan This means that it monitors the
current use of the copies and automatically increases acesdthem in reaction to this use.

The DSWare incorporates a group management componentrthatigs localized cooperation
among sensor nodes to accomplish a more global objectiveerice responsible for managing
nearby group of nodes is important because:

e When a group of nearby nodes agree upon a measured valushdthisl receive a higher con-
fidence.

e Some tasks may require cooperation of multiple localizedeso

e When the density of nodes is higher than necessary for therage, a subset of nodes may
sleep, thus saving energy.

The groups are organized by the group management compoased lon the queries. When a
query is leached, a criteria based on the query is used tct sehéch nodes are part of the group. The
group is dissolved when the query expires or the task is aplisimed.

The event detection component is the more important commmfahe system and detects pre-
registered target events. The events are classified in pestythe atomic and the compound ones. An
atomic event refers to an event that can be determined mieaslyd on the observation of a sensor,
whereas a compound event must be inferred from detectionshef atomic or compound events.
The notion of confidence is used in order to formulate compawents based on degrees of certainty.
Events and sub-events have an absolute validity intergalcésted with them. It depicts the temporal
consistency between the environment and its observed mesasnt. This brings real-time semantics
of events.

The data subscription service is a type of data dissemmatiovice. It provides an optimized
network configuration when providing data to multiple suligrs in a publish/subscribe interaction
paradigm.

Finally, the scheduling component of the DSWare is resgbas$or scheduling all components of
the middleware. A real-time scheduling mechanism is thereelieme used.



2.3. MIDDLEWARE 27

Impala Impala [89] is a middleware and an API for sensor applicatidaptivity and updates. It is
a runtime system that acts as an event and device manageacfonbile sensor node.

An event-based programming model is used in the middlewsard, actions are performed in
response to events.

The Impala middleware is formed by three main componeagglication updaterapplication
adapter andevent filter

The application adapter is responsible for making adaptaind responds to a range of events.
Impala uses compositional adaptation. Several versiomas @pplication (protocol) are given as in-
put to the middleware. The act of adaptation means selettiegnost appropriate one, based on
the current context. The adaptation has two objectives. fif$teone is to increase the performance,
energy-efficiency, and other attributes of an applicatimmotocol) by running the most suitable ap-
plication for an existing environment. The second one isntrdase the robustness by selecting
applications (protocols) that do not relly on failing haate. Switching rules are used to change the
current running application/protocol.

The application updater is responsible for updating softvem the fly in an Impala environment.
A modular design model is required for applications. Thidolar design better supports the update
because just local changes within a module must be applibdreas when a monolithic design is
used, small changes may have global repercussions in tlee cod

The event filter captures and dispatches events to otherrsyshits and initiates chains of pro-
cessing. There are four types of events: timer, packet, dene, and device failure. The applications,
application adapter and application updater are prograhana set of event handlers that are invoked
by the event filter when events are received [120].

2.3.3.4 Data Fusion Middlewares

The middleware of this category provides support for dataofu (aggregation) applications. The
idea is to support the application’s programmer by hidingess concerns like data synchronization,
buffer management, and fusion point placement, when pnagiag data fusion applications.

Data aggregation consists of an in-network operation thatbines multiple messages coming
from different sources in to a smaller representation thaquivalent or in a suitable manner rep-
resenting the original messages in its content. It captimesedundancy among data collected by
different sensors [91]. The data aggregation is oftenzedlivhen multiple sources are sending data
to a common sink. The multiple messages are aggregated i keymodes when traveling in direc-
tion of the sink node.

DFuse The DFuse middleware [78] is an architecture for prograngnaiata fusion applications. It

supports distributed data fusion with automatic placenasat migration of the fusion points. This
migration has the goal of maximizing/minimizing some giwast function. This means that the role
assignment for each node is decided by the middleware amirsidthe given cost function.

As example, the middleware offers the following cost fuoiet: (1) minimize transmission cost
without node power considerations, (2) minimize poweramee, (3) minimize the ratio of transmis-
sion cost to power, (4) minimize transmission cost with npde&er considerations.

Using the DFuse middleware, the developer is only resp@n&ib implementing the fusion func-
tions and providing a data flow graph [120]. The distributadrthis fusion points is made automati-
cally.

Moreover, DFuse provides a Fusion API that affords the easygldpment of complex sensor
fusion applications. The API allows custom synthesis djmra on streaming data to be specified as
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a fusion function, ranging from simple to complex operagi¢rs].

The fusion operation is defined very broadly in the DFuse teigddre: it is the application of an
arbitrary transformation to a correlated set of inputsdpging a combined output. The middleware
is targeted to streaming fusion processes. The transfammiatay produce a smaller output than each
single input (called contraction), a larger output (cakblegansion), or keep thstatus quaof the data
rate flow. The identification of the kind of transformatioringportant in order to find the appropriate
placement of each fusion point.

The following capabilities are provided by the fusion AP8]7

Structure management: This category offers “plumbing” capabilities. An abstiantcalled fusion
channel is offered by DFuse to the user in order to realizdubien tasks. The programmer
provides the fusion function, and this fusion will be penfigd either on request or when input
data are available.

Correlation control: Responsible for handling specification and collection @frfelation sets” (re-
lated input items that should be supplied to the fusion fongt Fusion requires identification
of a set of correlated input items.

Computation management: Handles the specification, application, and migration sidn func-
tions.

Memory management: Handles the caching, prefetching, and buffer management.

Failure/latency handling: Responsible for the capability of fusion points to perforartial fusion,
i.e., fusion on incomplete input correlation sets. It dedth sensor failures and communication
latency.

Status and feedback handling: Responsible for the communication between fusion funstiand
data sources (e.g. sensor nodes).

2.4 Virtual Machine

The virtual machine approaches offer hardware platfornepetidence and code expressiveness for
compactness of the code. This compactness enables thdiorigrithe code among nodes with small
overhead when compared to binary code.

The main objective of the virtual machine approaches is tainldynamic re-programmability
at a reduced cost. For that, they assume that a sensor nety&tdm is composed by a common
set of services and sub-systems, combined in different wHys language interpreted by the virtual
machine allows the composition of services and sub-systerbe described concisely. This has an
advantage when compared to the transmission of raw binaly.co

Moreover, it provides a programming model powerful enougimiplement any distributed system
while, at the same time, hiding unnecessary low-level tefiam the application’s programmer [22].

Some authors [120, 106] classify virtual machines as a reidalle approach, whereas others [79]
use a special category for them. We separate the virtual imeglas a specific category of system
software for sensor network because, differently from thelomiddlewares, they do not only provide
abstractions for communication or organization of the eystbut also an execution environment
independent from the underlying processor. This is an itapordifference from the middleware
approaches. Nevertheless, much of the requirements deddior middleware approaches are also
valid for this class of system software.
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2.4.1 Examples of Virtual Machines

Maté The Maté [82] virtual machine enables a wide range of senstwark applications to be
composed based on a small set of high level primitives. Ithgta-code interpreter that runs on top
of TinyOS and has a stack-based architecture.

Maté is implemented as a single TinyOS component that irde&ssmall pieces of code called
capsulesEach capsule has 24 instructions of one byte. Larger pmgyraay be composed by several
capsules. Each capsule fits in a single network package.

There are four types of capsules: message send, messaye,réoeer, and subroutine. Every
capsule includes type and version information. The subreutapsules form parts of the program
that may be called from the other types of capsules. The messend, receive, and timer capsules
are the routines executed as response to the events sermd, packive packet, and timer, respectively.
The virtual machine has three execution contexts, for theetktypes of events. The execution of the
capsules is always triggered by some event.

In the interpreted language of Maté, there is a command td g@ncapsules to all neighbors.
Upon receiving a capsule, each node tests whether the résgioore recent than the current installed
one. If positive, the new version is automatically instlldJsing this mechanism, it is possible to
easily distribute new versions of an existing applicatismell as new applications. In the paper, the
dissemination of code is compared to a virus. It makes pleskib a user to enter a query (or other
type of application) in a single point of the network, andsthpplication will propagate itself until
“infecting” all nodes.

Therefore, the Maté virtual machine provides a flexible whprogramming a sensor network,
having a small system requirement and providing an efficieyt of WSN dynamic programming.

SensorWare SensorWare [22] is a virtual machine for distributed amtlans running on a sensor
network. Differently from Maté it targets richer platformequiring more resources than it. The
authors argue that such resource-richer platforms will Baatream in an immediate future.

The idea of Sensor Ware is to avoid the assembly-like progriaig of Maté by means of using
scripts of a high level interpreted language. The sele@aduage for the implementation wasl.

A set of function/commands was defined besides the basjut sotérpreter. This set is composed of
the following APIs: radio, timer sensor, and mobility. Thdanctions form the basic building blocks
that are combined through tHeel scripts. The scripts orchestrate the dataflow to assemiterou
protocols and signal processing stacks.

The programming model of SensorWare resembles state nescthiat are influenced by external
events (e.g. network message arrival, sensing data, &gpiraf timers). The idea is that an event
is processed by a light event handler that performs its gieg according to the actual state. This
processing possibly generates new events or/and chargesrtient state.

Figure' 2.12 presents the general sensor node architectuBensorWare. The existence of a
script in the network starts with the injection of the codedemdy some external user. After this
initial injection, migration is responsible for the codssttmination. The scripts are interpreted by the
SensorWare layer, and API function calls are redirectetigainderlying OS. Moreover, as the figure
depicts, scripts may divide the user space with other kifidgplications or services (native code).

Similarly to the Maté virtual machine, SensorWare providdkexible way of dynamic program-
ming of sensor networks, but, differently from Maté, it alothe complexity of a low-level assembly-
like language.
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Figure 2.12: The sensor node architecture with SensorWdtmlmachine. Source: [22]

MagnetOS The MagnetOS [88] is a virtual machine that provides a pnogning model where ap-
plications do not need to implement by themselves all reguinechanisms to deal with the dynamics
of ad hoc networks. The authors argue that mechanisms fosteeoommunication, naming, and
migration are very important in such environments. Moreotlee applications must be supported
in order to deal with the dynamic and resource-constrairfedtleosystem. Finally, it is important to
support facilities that enable the dynamic introductiomefv functionality and its integration with
the current running application.

In order to address the described requirements, the MagnstPports an alternative program-
ming model, where a thin distributed virtual macHimeakes the entire network appear to applications
as a single Java virtual machine.

The higher level of abstraction provided by the MagnetOSofias the development of applica-
tions and enables the automatic placement and migratiorodiufes of the application, thus saving
energy.

The MagnetOS applications are designed as a set of intezctat) mobile event handlers (imple-
mented as objects). The communication between the obgeotade using events. The distribution of
the event handlers is made automatically by the MagnetOS$tidt objective of spending the minimal
energy for communications.

The system consists of a static application partitioningise that resides on hosts capable of
injecting new code into the network, a run-time module orhagame that performs dynamic monitor-
ing and component migration, and a set of policies to guideablplacement at run-time. The static
partitioning service rewrites applications intended fairagle JVM into objects (event handlers) that
can be distributed over the network. The migration in Ma@®telies on profiling the communica-
tion pattern of objects in discrete, asynchronous epoche. NetPull and NetCenter [9] algorithms
are used to migrate the objects of the application.

2.5 Discussion

In this chapter, we presented a survey of several OS, middéevand virtual machine approaches
for sensor networks. In the layer nearest to the sensor nadbévare lays the operating system.

1in the paper they are using the term operating system (O8gthlagnetOS. However, despite the name, itisn't an OS.
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The general goal of the presented OS is to offer useful attgins and extend node’s functionality.
At the same time, they are designed to consume as few resoascgossible of the target platform
and to manage the power consumption. A key resource is merSgstems like TinyOS and Yatos
support an event programming model which considerablyaesithe memory requirement due to the
fact that just one global stack is necessary for the entiséegy. Nevertheless, this comes at a high
price: applications need to be developed as state machiittesutvpreemption. The challenge here
is how to efficiently use the power of the state machine prognang model without getting lost in
the complexity of different state machines sending messeigeach other. The event-based paradigm
is adequate for pure sensoring applications where nodaddsheact upon events occurring in the
physical environment (sense and forward paradigm).

Other OS provide a classical preemptive multi-threadiragmamming environment trying to re-
duce the footprint by means of providing just a basic subkeapabilities. An example of this class
is the MantisOS, which is a configurable OS with a programneimgronment similar to UNIX. The
dynamic re-configuration provides the functionality oflegjing and loading services, device drivers,
and application tasks during run-time, avoiding the ovadhef having the complete code in the mem-
ory all the time. Here we can highlight PeerOS which allows ttynamic reconfiguration.

There is also an attempt to combine event-driven and preeeptultitasking environments in
the Contiki OS, which is composed by a kernel and a reconfij@rset of services. The services
comprise, for example, a communication protocol stackjogedrivers, or high level functionality
and can be loaded dynamically. The main kernel of Contikvenédriven, however, optional library
modules offer preemptive multitasking functionality. $hheans that Contiki is even more flexible
than the other approaches, and, due to its high adaptatnilihe target applications, the footprint can
be reduced.

Nonetheless, all approaches have a common drawback: intordeduce the footprint, the given
functionality is also restricted. In the event-based systeghe comfort of preemptive multitasking is
given away for the benefit of small footprint. For classicathsoring applications, this makes sense,
because they can be naturally modeled as a finite state neacNievertheless, when (background)
processing or complex distributed applications are désthee paradigm has its disadvantages.

The preemptive multi-threading paradigm uses the dynaetionfiguration for handling the lack
of resources and to dynamically adapt itself to the apptioat However, at a given moment, the
amount of functionality present in the system (OS plus agfitbn) is very limited. Moreover, an
additional shortcoming of most of the OS is the lack of suppbhigh level functionality, leaving this
to the middleware level. The development of distributedssentasks or signal processing algorithms
is not supported by the OS. Even very common sensor netwskk,tike data fusion, have no high-
level support from the OS. A better distributed programmingdel is offered only by Bertha OS,
which also supports self-organization. Nonetheless, 8lif@lude some abstraction for external
communication.

A system that presents a completely new programming paredigl distributes the applications is
BerthaOS. The process fragments (PFrag) are the algodthniti of the application and may interact
with neighboring PFrag in order to generate some emergisgeatkeresult. Moreover, migration (ini-
tiated by the PFrag) is allowed. This approach has a very gecgspective. Nevertheless, it requires
a completely new programming model, and it is rather diffitmldesign distributed algorithms.

The VMs are situated in the middle between OS and middlewtrey provide rather higher
level abstractions for distributed processing than thesdypically offered by OS. Nevertheless, on
average, they offer less then a middleware. The drawbacttgedadxisting VMs for sensor networks
are, in our opinion, mainly two. First, the majority of VMsgwide an unusual programming model,
where the programmer must deal with questions like codecadjmn, migration, etc. Second, they
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don't provide the usual abstractions for development dfitlisted processing applications. They are
based on the assumption that the sensor network will be useglyrfor sensor queries. Our proposal
tries to bring again complex processing capabilities testiresor nodes. We aim at making the sensor
networks more autonomous in the sense that they may reacivimm@emental phenomena without
interaction with a base station.

The only VM that does not have the described drawbacks is Bt&fs. The user, in this case,
does not need to worry about code migration and could creagerelatively easily way complex
applications. Nevertheless, MagnetOS is a Java virtuahimacand brings a large overhead with
it. Moreover, typical sensor network applications likeadfision are not implemented in a adequate
manner within the MagnetOS framework.

The middleware solutions present myriads of different apphes for application development for
wireless sensor networks. Middlewares based on databesgsrg efficient on processing sampling
queries from the user. Based on the query input, the progessi each node is automatically deter-
mined as well as the data aggregation points. Some of théatsaniddlewares have a centralized
decision of which role each node should assume (e.g. Cqughereas other ones have distributed
decisions (TinyDB), which increase the scalability. Thamrdrawback of the database middlewares
is the lack of flexibility: they are mainly designed to prae&QL-like queries. Expressing other kinds
of applications or even more complex queries may not be plassi

QoS-based middlewares, like MiLAN, can automatically setedes that meet QoS requirements
defined by the user. It is used for collecting data applicatio The middleware, opposed to our
approach in NanoOS, has a centralized element that decidiet wodes should be queried and is
just specialized on collecting data applications. Themoisupport to distributed processing in the
network.

Another group of middlewares that is restricted to someifipagpe of applications is the group
of event-based middlewares. In such a middleware, the asesmecify a set of events that should be
notified. The Impala middleware allows dynamic updates qumdication adaptation besides the basic
event-based processing. These are very interesting ésdbut do not overcome the main limitation
of this class of middleware: the state-machine based pmogiag model and the absence of methods
for functionality distribution, like in our OS.

Finally, data fusion middlewares are designed also for & specific task in a sensor network,
without the possibility of supporting other types of inawetk processing besides data fusion. More-
over, they do not allow the dynamic re-assignment of thetfanality of the middleware/application
in response to topology/energy changes, like the featussept in our NanoOS.

Due to the fact that a focus of this thesis is the distributest@ssing in the WSN, we are pre-
senting in Table 2.5 some examples of distributed procgssiachanisms present in the different
approaches. Some task allocation mechanisms showed otathéswill be discussed in Section
4.2.2.
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System Service Task Allocation Remote Task Migration
Name Discovery Communi-
cation
OS Architectures
TinyOS Not sup- Not supported Active Not supported
ported messages
Bertha OS Not  sup- Not supported Bulletin Binary Code
ported Board
System
MOS Not sup- Not supported Not  sup- Binary code
ported ported download
Yatos Not sup- Not supported Messages Not supported
ported
VM-based Architectures
Sensorware  Not  sup-Script population Not sup- TCL script migra-
ported specification ported tion
MagnetOS  Not sup- Automatic object DVM Mobile Java ob-
ported placement jects
Mate Not sup- Not supported Not sup- Code capsule up-
ported ported date
Middleware architectures
TinyDB Not sup- Query optimizer Not  sup- Not supported
ported ported
SINA Not sup- Attribute matching Not sup- SQTL scripts
ported ported
Cougar Not  sup- Query optimizer Not  sup- Not supported
ported ported
MILAN SLP, Blue- Configuration Not sup- Not supported
tooth, SDP Adaptation ported
DFuse Not sup- Automatic fusion Not sup- Fusion point mi-
ported point placement ported gration

Table 2.2: Distribution features of selected approachearces: [79],[78]
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Chapter 3

NanoOS Architecture

In this chapter, the basic architecture of our operatingesydor sensor networks is presented. More-
over, a model that represents the link quality in wirelesh@dnetworks is also introduced.

3.1 Motivation

In the Section 2.5 of the last chapter, a discussion abouetiging OS, VM, and Middlewares
for wireless sensor networks was presented. The differapalilities, programming models, and
application scenarios of the approaches were discusseslddtelopment of the NanoOS operating
system has the intention of fulfilling the following gaps bétexisting systems:

e Lack of support for generic, complex distributed in-netkprocessing. Several approaches in
the middleware area support certain type of in-network @semg (e.g. DFuse for data fusion),
but there is almost no system with a generic programming mmetiere different kinds of
services implementing distributed processing can beyeasil systematically developed. The
NanoOS supports the development of typical WSN servicesdikta aggregation as well as
processing intensive services like distributed fouriansform or data encryption service. Even
OS abstractions like file system may be implemented as meéildces. This brings the next
drawback of the existing approaches:

e Impossibility of complex OS functionality in constraineddes. Our idea is to overcome this
limitation through distributing the application and alke 1OS functionality among the nodes of
the system. Whenever there are enough resources for thdeter@s and application on every
single node, the system can behave as a normal multi-tmg&fs and all the services may be
started in the single node. But in situations where the eafitins require more services that
can fit on the resources physically presented in a single,ibdeservices will be distributed to
external nodes and accessed remotely.

¢ Insufficient support of client-server programming modetv&al approaches present alterna-
tive programming models due to different reasons. They neasnbre suitable for the type of
application envisioned. For example, BerthaOS or the airtonachines offer a programming
environment where small code fragments can replicate, atsgiand thus disseminate them-
selves through the network. This may be a very useful progriaign model for arbitrary sensor
data queries that should be spread through the network diedto@sults. Other possible rea-
son is the hardware limitation: the event-based systemsngfOlS and Yatos are very suitable

35
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for heavily constrained nodes because they demand justlobalgtack. They are suitable
for the type of application they are envisioning. But besitlee Java-based MagnetOS, there
isn't a systematic approach to support the client-servegiamming model with automatic
distribution of modules. This allows an easy developmertistfibuted sensor applications.

e Absence of a generic, dynamic, distributed, and automatie cnigration mechanism for client-
server paradigm. Some of the present systems are able idatal@ suitable placement of
some system components (e.g. DFuse middleware has autgoetement of fusion points,
Tiny Aggregation, which selects the suitable points fomdaggregation). Nevertheless, these
placement mechanisms are developed specifically for the dfiprocessing done by the mid-
dleware. In our case, our service distribution algorithm distribute any kind of service based
on a dynamic assessment of the current traffic and netwodidgp.

Hence, our proposal is an integrated approach, where O8 hamitionality is integrated with
high-level support for distributed applications on sensatworks. The same mechanisms offered to
manage the services at the application level are also uséldeb®S services. With the support of
complex distributed processing, we aim at making a WSN mater@mous from the base station,
allowing new challenges to be mastered by sensor networkgsvimonments where there isn't con-
tinuous contact with the base station. Our programming fnbds costs: the programmer has to
design the application and partition it manually. Moreowkre to the distribution, the energy over-
head increases considerably. In addition, we need id-lbast@ebrking instead of merely data-driven
protocols for the realization of our operating system. Wgiarthat a combination of both paradigms
is the best solution in order to deal with the conventionalbpgms of distributed processing (dis-
tributed algorithms, more node-driven) with the new chajles brought by canonical problems of
WSN (data-driven problems, like queries).

3.2 System Overview

In this section, a small overview of our complete system béldescribed. This overview is necessary
to a better understanding of the details presented in th@afislg sections.

Our system is composed of three main components: the hagdthar operating system, and the
application running on top of it (see Figure 3.1).

The hardware platform consists of a set of distributed semsdes. On top of this platform, runs
theNanoOShat provides the adequate set of services to the applicaliesides the basic operating
system services like processor and memory management aodrepization, the NanoOS provides
a set of special services to support the distributed prowpss

One or more applications run on top of the operating systeschBpplications has one goal and
is composed by a set of fixed tasks and application serviceg;dare the atomic unit of the distributed
application. This means that their program code must notexkthe resource availability of one
single node. This will be in-depth discussed in further isast

For the purpose of reducing the OS footprint in each node laerdtore to enable the execution of
a rather complex OS application in hardware constraine@sidtie NanoOS uses a novel approach:
it distributes the services of the OS and application ambegibdes. This means that each node of
the system has just a small part of the kernel of the complateating system and some modules of
the distributed application; a group of nodes together foam instance of the OS with one or more
applications. The services are shared among tasks sittirtifferent nodes. At any instant of time,
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Figure 3.1: System overview

one node may connect and use a service residing in an exterg@lusing a remote method invocation
(RMI).

In order to facilitate the development of applications, @ provides a uniform service interface
where the OS and application services may be requested ftr@yiare not present at the current
node and must be accessed from remote nodes. This senécfadat must guarantee the access to
services in a dynamic topology environment.

Figure 3.1 presents an overview of the system. The tasks segarvices of the operating system
and other services made available by the applications thiges In order to reduce the resource
requirement in each node, those services are shared anffargmtiapplication tasks and it is possible
that services are executed in remote nodes.

We will discuss the OS architecture more deeply in the falhgasections.

3.2.1 Applications Scenario

Our service distribution architecture is designed to supSN scenarios where complex processing
is required. We envision WSN applications that are more thartraditional sense-send-sleep loop.
Our target are applications that need complex, in-netwoskgssing components and sophisticate OS
support. For example, distributed collaborative signatpssing and distributed compression may be
implemented as mobile services in our platform.

Besides the provision of a set of OS service and a framewatlethables the developer to design
its own services, the advantage of the architecture is tharatic management of these services.
This means that even standard WSN services like data agipre@and data compression based on
correlation among different measurements (spatial angaeat) can be provided in an standard way
by the OS and are automatically placed on the network.

Due to the possibility of increasing the OS and applicatiomplexity using distributed shared
services, new applications scenarios can be consideredex@ample, it is possible to increase the
autonomy of the sensor network and its interaction with thérenment. We can view of the net-
work as a kind of environment-embedded distributed comghtg may sense the environment, make
complex calculations and decisions about the sample dadk ifeactuators are available, react upon
detected events.
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Figure 3.2: Space exploration application using WSN. (& palling phase where the rover requests
the sampled data using a flooding mechanism. (b) Every nqule ttee request and the data is routed
back to the rover.

In the next sections, we will present two existing WSN aglams and the possibilities opened
by our operating system.

3.2.1.1 Scientific Exploration

Self-organizing sensor networks will probably play a kel ria space exploration in the future. An
example of an envisioned application of sensor networks$ierexploration of the surface of Mars is
presented in [64].

The types of data sensed by the nodes are, for example, sei@mimicals, temperature, etc. One
or more landers or rovers function as base station and pesibdcollect the measurements and relay
the aggregated sensor field results to Earth.

In the application, the region covered by the sensor nodasgs, so that multi-hop relay is used.
A poll-reply communication model is used to collect the d&tamely, each base station periodically
broadcasts a polling request and every sensor node rehemeliected data to the base station. This
fact is illustrated in Figure 3.2.

We envision, with NanoOS, a solution where the sensor né&tWeas more autonomy. In our
hypothetical scenario, several disconnected regions af Meceive a large pool of sensor nodes.
They are autonomous in the sense that the data are just tedumsthe rover (base station) in large
intervals. Just at this point the rover may send them to Edrtbtead of the intensive polling, the
sensors should process the collected data by themselvesagadhe results in some flash memory
(designed to save intermediate results). The rover in tlésaio may approach each disconnected
group of nodes at some sparsely distributed time to gatiearetbults.

The idea of saving raw data in the nodes is impracticable almeeimory restrictions. Therefore,
the data should be analyzed by the network itself and thétsg$iue detection of some environmental
characteristic, for example) should be saved in a compaatt &md sent to the rover upon request. For
that, the architecture presented in Figure 3.3 was proposed

In the figure, the sampling tasks send their read data tocesr¥hat are responsible for analyz-
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Figure 3.3: Autonomous network for space exploration.dadtof polling the area in an intensive way,
the rover just needs to approach the WSN in sporadic intetgalownload some selected compressed
data and the analyzed result. The processing and compresfsibe data is done by the services in
the sensor network.

ing the data and detect desired patterns. This signal mingeservices may be also distributed, and
are placed in the network automatically, aiming to reduegedbmmunication overhead and the en-
ergy consumption. The results are sent to a data fusionceetivat stores the results until the rover
approaches the network and polls the service.

A similar idea may be used in a scenario developed in the sobtiee EU project e-Cubes [1].
The idea is to make atmosphere assessment of Mars by mearsen$ar network that is dropped
in the atmosphere. During falling down, they should colléata. After arriving an the surface of
the planet, a rover is responsible for receiving the medsdaga and sent to Earth. In this case, the
WSN must be autonomous during the period of time it is meagurMoreover, it is important that
the nodes of the network remain alive during this phaser #ftd, the energy of the nodes is not that
important anymore. This means that our approach of exchgreiergy for processing complexity
may represent a very attractive trade-off.

3.2.1.2 Habitat Monitoring

In this section, we will present an example how our architectan be used to improve an existing
application on habitat monitoring.

In the work [127], a two-tiered sensor network is proposedfbitat monitoring. The main target
of the system is to recognize and localize specific typesrdthlls. To specify the birdcalls of interest
on the system input, the biologists typically have recordiedcall waveforms.

The idea of using a two-tiered hardware platform for habsitahitoring was inspired in the work
of Cerpa et al [27]. The smaller, less capable nodes are osexptoit spatial diversity, whereas the
more powerful nodes combine and process the micro-nodéngetsta.

The organization of the network, as presented in the worR][1@an be seen in Figure 3.4. The
macro-nodes are very powerful nodes with Pentium Il CPU oup4MB RAM, and a full spectrum
of peripheral devices. Micro-nodes are Berkeley motes WiBKB program memory, 4KB data
memory, and 512KB secondary storage. Both nodes are eglipiie acoustic sensor.

The micro-nodes are densely distributed, whereas maatesnare sparsely due to their higher
power consumption and cost. The nodes form clusters withronaades as clusterheads. GPS on
macro-nodes provides location and time reference. Lacatiamther nodes can be determined inter-
actively.

Given the network, the macro-nodes receive the wavefornhefbirds calls and convert it to
an internal format used by the recognition. Spectrograrasamplete descriptions of bio-acoustic
characteristics of birdcalls and are widely used. Macrdesohave enough computational resources
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Figure 3.4: Two-tiered sensor network for bird monitoriddacro-nodes are PC 104s. Micro-nodes
are Berkeley modes. Source: [127]. The figure also showsaledecomposition of the target bird
recognition. (1) Waveforms of target birds are sent to maxrges. A service calculates the cross-zero
rate representation for the micro-nodes. (2) The repratientis sent to the micro-nodes. (3) The task
samples the acoustic sensor and sends the data to be comithréite cross-zero representation. (4)
After being recognized by the cross-zero target detectorces this information is sent to the macro-
node where a system level decision (data fusion) will be d¢igFinally, a system decision of the
detection is sent to the gateway.

to use spectrograms internally, however, micro-nodes not.

Therefore, a simpler internal representation using cress-rates is used in the micro-nodes. The
target recognition task is divided in two steps. First, alfles independently determine whether their
acoustics signals are of the specified type of birdcall usipge-processing method with cross-zero
rate. After this, macro-nodes fuse all individual decisiamto a more reliable, system-level, decision.
The details of the decision fusion were not discussed in th#gigation. In Figure 3.4, the target
recognition task has its components depicted.

The target location task was also divided into two stepsstRivaveforms are recorded at nodes
distributed at different locations. Second, the data aceraclated on one macro-node, and beam-
forming is applied to determine the target location usimiyakrtime differences. Before sending the
data to the macro-node, each micro-node simply compreshdttarget localization task can be seen
in Figure 3.5.

The presented tiered sensor network approach for habitaitoniog has some disadvantages:

e There isn't a self-organization mechanism in the task iistion between macro-nodes and
micro-nodes.

e The deployment must be carefully executed, random deploymeot possible.
¢ If some macro-node experiences failure, there isn’'t a wagubstituting it by nearby nodes.
e The data fusion isn't done at the optimal position (regagdiommunication energy usage).

e Cross-zero rate method looses some information from thetrgggam. With noise in the en-
vironment, the distorted cross-zero rate is not enough tiectiéhe birdcall. A frequency filter
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data compression

Target Localization

Clusterhead

Bird position

Figure 3.5: Task decomposition of the target localizatiaskt (1) The task samples the acoustic
sensor and, after the recognition of the desired bird spedata are sent to the compression service.
(2) After being compressed, the data are sent to the targalization task in the macro-node. Using
beamforming estimation, the position of the target birdakglated. (3) The resulting bird position
is sent to the gateway (access point).

may help, although some target birdcalls may be discarded with filters due to environment
noise.

Using the NanoOS approach, we can design a bird monitorisigsyas following.

The target recognition task is shown in Figure 3.6. Everyiserpresent in the original architec-
ture is also present in our proposal. Nonetheless, instdagbwing a large service responsible for one
complete task, several distributed sub-services are dsedp the hardware limitations of each single
node. In our case, the waveform is divided in blocks (churke) each block is processed by one
service. For example, if the habitat monitoring would usaugl data (cameras), each service would
be responsible for extracting one type of feature of the enddhe birdcall detector sub-services are
shared among two birdcall detection services. Each suliesdnas a spectrogram of the partial wave-
form. If the services would be duplicated, this same wavefarould need to be stored in multiple
services, increasing the memory consumption.

An advantage of our architecture is the automatic placewfaht services. For example, the data
fusion (system-level detection) service may migrate torage with enough resources to execute it.
Our placement algorithm (described in the next chapterpaitrfinding the optimal position of each
service in the system. If the system is heterogeneous (wéttroanodes), a large bunch of services
will be automatically placed on those macro-nodes. Instda@refully designed, the task placement
of the system (like in the original paper) should be done ialb@ganized fashion.

The second task of the system (target localization) is shioviAigure 3.7. Here, the architecture
is similar to the original one, nevertheless the serviceg Inegplaced at appropriate positions and the
target location service uses external supporting subiessrwhen necessary.

3.3 Requirements
In this section, we will present some requirements of thed@.

Geographically distributed services The services should be distributed among the geographicall
distributed sensor nodes. Moreover, they should be shanethgthe application’s tasks and
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Figure 3.6: Target recognition task using the NanoOS aghrod) Waveform is sent to the spectro-
gram generator service. It calculates the spectrogramwflchof the original waveform with help of
sub-services. (2) Spectrogram of a part (chunk) of the maigivaveform is sent to the corresponding
detection sub-service. (3) Sampling task sends data todteetibn service. The detection is made
using sub-services for every waveform chunk. (4) Detedsogent to a data fusion service. (5) The
detection of the target bird is announced.
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Figure 3.7: Target location task using the NanoOS approg@ighWaveform is sent to the data com-
pression service. (2) After this, the compressed data aretaehe target localization service. The
target is localized using beamforming procedure and with bedistributed supporting services. (3)
The bird position is the outcome of this procedure.
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other services.

Uniform environment of execution It should be possible, for tasks and other services, to acces
service providers locally and remotely. In order to simptifie development of applications,
uniform environment of execution is desired, i.e., the saslay assume that a given set of
services is available independently from external fadikesnode position. These services are
accessed using a unified service interface.

Low local resource utilization In the situation where the resource requirements of theicgtin
and OS are larger than the availability of a single node, #meices should be distributed in
order to comply with the hardware constraints.

Ad hoc networking The communication takes place using the wireless linksemiteis the sensor
nodes. The network should be self-organizing. No globadiytalized control is desired.

Dynamic adaptation Due to the high dynamics of the system (due to topology ctanglynamic
adaptability of the OS to the current network configuratiod & the requirements of the ap-
plications is desired. This adaptability is achieved using

e Compositional dynamic adaptatioj®3]: algorithmic or structural system components
may be exchanged in order to improve the OS performance isuhrent environment.
The environment comprises task requests and network sthis.brings also the possi-
bility to tailor the services to the requirements of the &gilon, avoiding unnecessary
overhead.

e Service redistributionWe use the redistribution of the services in the networlesct to
topology changes and request pattern changes. This fledigin aims at reducing the
communication cost (reflecting reduced energy expensethidrthesis, we will concen-
trate on this topic.

Self-organization After deployment of the WSN in the target environment, thgaoization of the
OS and application should be managed without any centrdefithe system should orga-
nize itself by means of launching the appropriate softwamaponents and connecting them
appropriately. An example of mechanism used to connectdteeasters of services with the
corresponding provider is the service discovery.

Self-optimization This requirement is linked with the dynamic adaptation. \ive @ improving the
system performance during run-time, changing system peteas) exchanging components or
changing the placement of the objects in the system. We @dgli$ on this last method aiming
at reducing energy consumption.

Self-healing Several errors may happen during the system life: nodedwsae failures, software
failures, and topology changes. The connection pattepolodgy) in an ad hoc network isn't
stable. Nodes can suffer of transitory (or even permaneastpdnection. This means that we
should design the OS in a way that make it robust against aikthids. We are tackling this
challenge by means of two approaches:

¢ Designing algorithms that are robust by nature: We are usaifyorganization princi-
ples in our proposals. One motivation for that is that theyrabust against unpredicted
situation and partial failures.
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Figure 3.8: Generic sensor node architecture. Source: [69]

e Using standard fault-tolerance techniques: In order tegaeinterruption of service due
to hardware or software failures, services backups (r@plicmay be used. This is out of
scope of this thesis and requests further development.

Transparency The following types of transparency are supported in thed@8t accesse.g to a
service, whether it is local or remotddcation (the set of available services is the same at any
place),topology(topology changes mostly do not affect the execution of diskg). Thdailure
transparency should be further developed.

Scalability Our system should scale to thousands of nodes. Due to thehi@cthe application
scenario assumes large areas of sensing, it may be necéssey a huge number of nodes.
Therefore, we cannot rely on a central controller for orggugj our network.

In this thesis, we focus on some of the requirements of the@&n In fact, we are mainly tackling
the OS self-optimization requirement using our servictrithistion heuristic and the self-organization
of the network through our clustering algorithm. For thealeped algorithms, the scalability goal is
also observed.

3.4 NanoOS Approach

In this section we will present an overview of our completstegn architecture. Subsequently, we will
present with more details the organization of our sensoradipg system for distributed applications.

3.4.1 Hardware Platform

The hardware platform consists of a set of distributed gengsdes. Each node comprises a commu-
nication device, a small processing unit, small memoryssen and actuators. A generic architecture
of a sensor node is presented in Figure 3.8.

We are considering typical sensor networks with the foltaywharacteristics:

Processing unit: We are considering nodes with a microcontroler as procgssiit.

Memory: As usual, two types of memory are installed in each node.tN®lmemory (RAM) is used
to store intermediate sensor readings, packets, and gingesates. The programs are stored in
non-volatile memory and are executed there. Normally, tirevolatile memory is larger than
the volatile one. We assume that the complete OS/applicatide is stored in the non-volatile
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memory. This memory is normally a Flash. Flash memories kawg read and write access
delays and require more energy than the RAM.

Although we will not deal with different architectures irigtwork, the NanoOS could be also
adapted to other possible types of nodes: nodes where tleisdaaded to the RAM before

executing or nodes where the non-volatile memory isn’'t ghaw store the complete OS/Ap-
plication. In this case, the migration of a service (thatl Wwé described latter) demands the
transfer of both state and code.

Communication Device: We are considering, in our work, that the devices have wsset®mmuni-
cation based on radio frequency. Devices with high enetigiefcy are desired. Moreover, we
assume that the data rate of the device is chosen in ordepéoveith the communication needs
of our distributed OS plus application. We are also assurttiagjthere is no power control in
the communication devices, i.e., they use always the samergo transmit. The range of the
device is specified based on the application’s requirements

Sensor and actuators: Depends just upon application requirements. For the OSsengf sensors
or actuators may be used.

Power Supply: This is a crucial component in our system. Due to the factwetre playing, in
our approach, with the trade-off between energy consum@aticd complexity of the OS/appli-
cation, an efficient and high capacity battery is supposedrebler, due to the relatively high
energy consumption brought by the OS/Application distitiy a good energy scavenging sys-
tem may be required.

3.4.1.1 Models for Reconfiguration

For the purpose of supporting the dynamic adaptation exhithrough the heuristics presented in
the following chapters, the load of the different hardwardnies has to be exposed permanently to
the OS. Besides the load of the hardware modules, the corgation pattern is another important
variable in the introspection of the OS. The following madate necessary in order to support the
introspection process:

Hardware Load Model This model is responsible for the characterization of tlal lim the different
hardware resources. Normally, such a module capturgadltessor utilizatiorand theamount
of used (and free) memarBecause our target are tiny sensor nodesatizable energyand
actual power consumptioare important information that should be also in the harévwead
model.

This relevant information for the reconfiguration process»tracted from the current state of
the hardware and is exposed to the heuristics presented ettt chapters.

Communication has to be modeled as well. In our case this means the wirétgssthtes on the
ad hoc network. Link utilization (history of) up-time and signal strengthare examples of
important metrics of a wireless link of the network. Thosetnoe will be summarized in a
value calledvirtual distance This model will be presented in more details in Section 3.5.

A neighborhood link table containing the virtual distanoétfte vicinity nodes is the main data
structure of our communication model. This will be heaviged in our service distribution
algorithm and in the cluster construction heuristic préseim the next chapters.
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3.4.2 Software Components

Before describing in detail how the application and the GSaganized in our system, let us define
the software components (or blocks) used in their constnoict

Processing thread: A processing thread describes the execution of code agsdordth a state.
There are two subtypes of processing threads:

Task: Tasks are stored at nodes for a particular purpose. For dgathpy can process locally
sensed data or execute an application-specific functigndihey can be thought as part
of the distributed application. They do not leave the nod# @an terminate at their own
will.

(Mobile) Service: Nodes may start services at request. Services can be seartapa
distributed application that can be used by other partss Teans that the services are
offering functionality that is shared among tasks and ofswices. Services maintain
state information associated with each service requedieservice requester is some
processing thread that is using the functionality of anretieservice. It can be either
a task or a service. Services are created an request and hile edities, i.e., they may
migrate among the sensor nodes. Services can be divideaitypes:

(Mobile) OS Service: A service made available by the OS that may migrate. Normally
they are generic and do not implement any application-pdanction.

Application Service: The applications may also implement functions that areeshar
Normally, they offer more high level (and specific) funcsothan the OS services.
Those services are treated by the OS in a similar way to theddgcss, i.e., the
service distribution algorithm acts also on applicatiorviees.

Additional components are:

Local Service: A service of the OS that does not migrate and may be calledrjubke local node. It
represents a conventional OS service.

Other components of the OS that have no relation to tasksreices will be presented in the
appropriate section.
Figure 3.9 shows the relation among processing threads, tasd services.

3.4.3 Application

An application in our system is a collection of tasks and igptibn services that has a specific pur-
pose. The tasks and services are the atomic units of thébdistl application. This means that
their program code must not exceed the resource availabflibne single node. Application services
migrate using the migration policy offered by the OS (présérin the next chapter).

As already said, the tasks have a fixed placement in a gives, ndtereas services may migrate
in order to improve the system performance. The developeesponsible for the division of the
application into several cooperative tasks and servichs.idea is that one application has normally
fixed tasks placed on nodes, responsible for reading th@isdata, and mobile services, responsible
for handling the data and processing it.

An example of an application composed by a task and two ssscshown in Figure 3.10. In the
example, the task is responsible for reading the data frenmtille sensor. After this, the domain of
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Figure 3.10: Example of a task using two different services.

the temporal series of samples is changed using a userdemate that implements the Fast Fourier
transformation. Afterwards, the spectral data is encyjg an OS service and, finally, sent to the
destination (access point of the WSN).

3.4.4 NanoOS Structure
3.4.4.1 Architecture

The operating system is responsible for managing the resswuf the system, controlling peripheral
devices, and providing software abstractions to the agiitios [120]. These tasks in the NanoOS are
managed using two layers:

Local Management Layer: Device drivers, process management, and memory manageaneers-
alized at each local node. The hardware dependent part ajpheating system lies in this
layer.

Mobile Services Layer: Part of the OS functionality is implemented by means of neob#rvices
that may migrate among the nodes in the system. These mebilieas implement hardware-
independent functions that are used by several applicatiDoe to the resource restrictions of
each single node, instead of having all functions in a singlde, they are distributed among a
group of nodes.

In this section, we will present the architecture of the NaBo Figure 3.11 presents the basic
architecture of the OS. The application is also presentéaerigure.
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Figure 3.11: Architecture of local node’s OS

The functional parts of our OS are:

Hardware Access Layer Translates the abstract hardware calls from the driveirdanthe operating
system kernel to real hardware accesses.

Device Driver Like in a conventional OS, the device drivers are respoaditn abstracting the low
level interaction with the devices present on the node.

Processor ManagementLike conventional embedded OS, our system use a preemptiltetasking
approach to manage the processor. We aim at reducing as mpcissible the number of pro-
cessing threads in the system in order to avoid the overhesa/img a large number of process
states in local stacks. Each thread has its own stack.

Memory Management Also present in each node, itis responsible for managingdfaile memory
of the system.

Synchronization Responsible for offering synchronization primitives li&emaphores to the appli-
cation and services and to the OS kernel itself.

Network Stack Here the complete network protocol stack of the system essil is responsible for
the establishment of an ad-hoc communication infrastractu

Resource Monitor In a reflexive system, the existence of architecture strastaapable of holding
the current state and semantics of both the application ystére software is essential. The
models presented in Section 3.4.1.1 that capture the dttte system and also of the commu-
nication links are included in the resource monitor.
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Figure 3.12: Example of memory occupation of the NanoOSs ha simplified view, just tasks and
mobile services are considered.

Service ManagementResponsible for managing the allocation of a service to aes®gr. This
means that when a certain kind of service is required, thécgemanagement starts a service
discovery process. Moreover, it is also responsible foatang a new instances of a service (if,
for example, the searched served is not found). It also nemadable containing the currently
used services (by some requester in the sensor node).

Mobile OS Service It has been already defined in Section 3.4.2.
Mobile Application Service It has been already defined in Section 3.4.2.

Call Abstraction Layer Responsible for receiving the system calls from the usastkasks or from
the mobile services. Depending on the sort of call, it maydedled by a local OS component
or by a mobile service. In the last case, the call is redicetbethe mobile service by means
of a local call (if the service is locally present) or the dalforwarded to the node hosting the
service currently. The Call Abstraction Layer is the WSN/sxr interface.

This set of capabilities provides a basic hardware manageatethe local node as well as an
infrastructure to allow mobile services to be transparetit¢ requester. The upper functions are often
present in the middleware layer, nevertheless we decidetthade them in the NanoOS in order to
reduce the overhead of having extra layers on top of the QSS, phoviding a better integration of
the mobile services with the OS. Moreover, cross-layernagtition also benefits from this design
decision.

It is important to highlight that, with this architecturdetdistribution of mobile services in the
system is completely transparent to the application (aridganobile services besides the reconfigu-
ration module). Every service may be installed in every riadbe system. The single constraint on
the free placement of services is the amount of resourcegipirén the target node.

3.4.4.2 Memory Organization

In this section, the memory organization of the NanoOS isegmted. In Figure 3.12.

As already mentioned, we assume nodes with a large noritgataemory where the code of the
OS and application is stored (including services). The dathe services and application are stored
in the smaller volatile memory. Moreover, one stack peratiris required and stored in the volatile
memory. The different elements of the state of a service eseribed in the next section.
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Figure 3.13: Internal organization of the services

3.4.5 Dynamic Mobile Services

The dynamic mobile services are the basic units of the reguarable part of our OS. The application
services are managed by the OS in a similar manner to the Ofenselvices. Therefore, when we
refer to a service, we mean both of them.

As already said, services may be installed in any node ofythie and are shared among several
requesters. The requests may come from the local node aasvfietim remote nodes.

In the next section, we will define the basic modules of eachice

3.4.5.1 Service Architecture

In this section, the architecture of the mobile service$vélpresented in detail.

The internal architecture of a service is depicted in Figi&. The following areas are part of a
service:

Request Queue:Store the remote procedure call (RPC) requests coming fnieradrvice requesters.
Here we use a first come first served (FCFS) policy to seleatiwtd@quest should be handled
next.

Stack: Each service has just one execution thread, and, theréfistegne stack to store the process
context is necessary.

Context State area: In the context state area, the state of all currently runnovgexts of the service
are stored. Normally, we have as contexts as many indepeagelications are calling the
services. The contexts will be elucidated in Section 324.5.

Common state area: This area stores parameters and shared global variabtesréhaot dependent
on any specific running context and are shared among allxtsnti@ an encryption service, for
example, this will be the key that is used to encrypt the dataieg from all requesters.

Common working area: This area can be used by a context to store temporary values edecut-
ing some request. As just one context is active at the same (timcause just one thread is
available), at the end of the request, it must be assumethiharea may be overwritten (by the
context activated in the sequence).
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Reconfiguration subsystem: The reconfiguration subsystem is responsible for storiegdfiective
information regarding the service and determining thetmsiof the service in the wireless
network. For that, it uses its own reflective information ghmbal information stored inside the
Os.

Code area: Memory region where the code of the server is stored.

3.4.5.2 Service Instance and Contexts

The following terms are used to describe the running entéisd states of a mobile service:

Service Instance: An executed copy of a certain service, with dedicated threagh memory block
described in the last section has its memory allocated. ficelype of service (e.g. encryption
service) may have more than one instance running at a giviem pbtime in the NanoOS
system.

Service Context: Each requester (or group of requesters) using the service farticular purpose
has the illusion that the service is running just on its owindtle This defines a service context:
an independent run of the service, working on its own datéhdrobject-oriented homenclature,
it is equivalent to an “instance” of an object. To better expl an example is depicted in Figure
3.14. We have in this example three tasks. Each task is indepé¢ and is willing to use service
s. A service context is assigned to each of them. From the pbiriew of each requester (task),
they are using the service exclusively. The state assddiateach requester is stored separately.

The main reason for the introduction of the service contisttsuse the resources more efficiently.
If, for each independent requester, a service context id urstead of creating a completely new
instance of the service to manage the requests, overhead® @voided:

o Common state area. Here common parameters that are sterieibatical for all requesters.

< Common working area. Due to the fact that each request iepsed until termination (because
each service has only one thread of execution), the mematyighallocated for temporary
processing may be reused for the next request (coming peft@ap other requester).

o Stack. Just one local stack is used for all contexts. Whesehdce thread is preempted, just
one context can be active, which means that its state musotsls If several instances of the
service are started (instead of contexts), each one wiliire@ private stack.
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Figure 3.15: Cipher Block Chaining (CBC) mode encryption.

Relationship between contexts and requestersA service context may handle related requests
coming from more than one requester. These requests amdated from the point of view of the
service, i.e., they are using the same state. An example maysbrvice that compresses sensor data
using spatial and temporal correlation among the sampléseands this data to a sink. Several re-
questers are sending their sampled data to the same semwiExt; which compresses it and sends it,
at end, to a sink, which is another requester.

The example shows that the relationship of a service cottextguesters is one-to-many.

Service Replicas Another concept related to the service instance are sergjgas. A replica
maintains the same state of the principal service. It is duseehsure fault tolerance and support
self-healing. It is not addressed in this work.

3.4.5.3 Examples

In order to clarify how the services are designed and workywilegive here two examples.

Encryption Service The first example is a conventional processing service. €héce is com-
posed by an encryption algorithm (in our example the welbWkm®ES algorithm).

DES is a block cipher, i.e., it takes a fixed length string ailext bits and transforms it through
a series of complicated operations into another ciphehlitstring of the same length. We suppose
the use of DES in the cipher-block chaining (CBC) mode. Thg @feoperation is shown in Figure
3.15. In the CBC mode, each block of plaintext is combinedgisi xor operation with the previous
ciphertext block before being encrypted. In this way, thghertext is dependent on all plaintext
blocks processed up to that point.

Let us now present how the service architecture looks likee Jervice acceptsrequesters and
for each requester a context of the service will be launciibis means that up to context states are
needed in the state area. A special call initializes the kdiyevthat is stored in the common state area,
because for all instances using the service the same kepevilsed. This saves memory that would
be wasted storing a copy of the key for every instance.

In the context state area, the last encrypted block is stioredder to be processed in the CBC
mode. Upon receiving a request of block encryption, theisemyses the DES algorithm to encrypt it
using the key stored and the last ciphertext block from tepeetive context state. The result of the
encryption is sent to the requester, and, at the same tim@gtlv cipherblock is stored in the context
state. The common working area is used for storage of thenetdiate results of the 16 rounds of the
DES algorithm. Because the service is composed just by ogéesthread, upon receiving a request
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Figure 3.16: Example of data aggregation service using tr@RS architecture.

for block encryption, this request is ran to completion befihe next one be taken from the request
queue. Nevertheless, the thread may be preempted by arsathéce or by the OS. The current
execution state is then stored in the local stack of the ervi

Data Aggregation Service In this example, we show how our service architecture mayseel in
order to implement a typical sensor service, the data agtjioggservice.

Normally, data aggregation occurs in a scenario with dataces (which generate data, e.g. from
samples from sensor reading) and sinks (consumers of tag dhile traveling through the network,
an in-network processing possibility is aggregation ofdata. This means that the data coming from
different sources are summarized in a smaller representathn example may be computing the
mean or the maximum of measured values. There are also compdgations in sophisticated data
aggregation based on signal processing techniques. Tiedito@ihsuch aggregation depends on the
position of the data source, relative to the data sink [69].

A common mechanism takes advantage of the fact that the data fitom source to sink along a
tree, therefore intermediate nodes may apply aggregaboe. important question (among others) is
where the aggregation point should be placed.

We propose a data aggregation method based on our seniiteaiare. For that, the aggregation
is implemented as an OS service. Each service context manhaguesters in the data source role
and one requester in the data sink role. In Figure 3.16, w& simoexample of an aggregation service
with four sources and one sink. In (a), the tasks 1 to 4 ragiseanselves as data source. The task 5 is
the sink and will receive the aggregated data. After thaipgthase, the aggregation service receives
the data samples coming from the sources, summarize thesniakller representation, and send it to
the sink node. This is shown in Figure 3.16(b).

An example of a possible configuration of the network with élggregation service is shown in
Figure 3.17. In the NanoOS approach, we decompose the rietmolusters (see Section 3.4.9 and
chapter 5). We define for this service that all sources mugndide one cluster (therefore, locality
is observed). As we will see in next sections, in the defatiation, all requesters of a service are
located in the service’s cluster. This fit with our conceptaf the locality of sources. We make an
exception for the sink: it may be external to the cluster.

Our approach has some similarities with the LEACH proto&adl][ In LEACH, the network is
organized in terms of clusters, and the clusterhead is nss#igle for receiving the data from members,
aggregate them and forward it to the sink. Because we ar@ajanizing the network in clusters, our
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Figure 3.17: The data sources and sink and aggregatiorcesipiaced in the WSN.

aggregation service executes a similar service to theecthesad in the LEACH. Nevertheless, there is
a notable advantage: to the service distribution heuyiitie system tries to optimize the placement
of the aggregation service automatically. This is not theeda LEACH.

Therefore, our advantage, besides the structuring of alices needed in the network into a
systematic framework, is the automatic placement of theices, whose goal is the reduction of the
communication. Moreover, differently from LECH, the rdantto topology changes is automatic.

3.4.6 Service Management

The service management is responsible for two tasks: tieedisy of requested services in the WSN
and the creation, on demand, of new instances of services.

3.4.6.1 Service Discovery

The services of the OS are distributed among the nodes o¥iters. Therefore, before a task of the
application or other services can use a given type of serainede that currently hosts a service of the
required type has to be located. This process is caledice discoverand is reviewed in Chapter 2.

Due to the fact that we are organizing the network in clustees Section 3.4.9), we are using a
central service directory located in the clusterhead teigeoservice discovery. Every new service
must register itself at the clusterhead. Nodes requirimgices will send service discovery requests
to the clusterhead, which will return the current locatiooni its internal table.

In the future, a more scalable service discovery mechaniagnba used in the NanoOS.

3.4.6.2 Service Instantiation

The service discovery method described above allows a segjui find a required type of service
in the network. When the required service is not found, os nhat available (because it is already
serving the maximum number of requesters), a new servit¢anos must be created. For that, two
methods may be used:

e When a service has been discovered, a quality rr@isjaavaluated, which calculates both the

1 no instance of the service was found by the discovery, thaity is zero.
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virtual distancebetween requesting and service node and the load of theséngtance (how
many other requesters are served). If the quality is belonesiireshold, a new instance of the
service will be created.

¢ In this method, the service discovery only creates a newcgeinstance if no available service
of the requested type was found. If an available service weatéd, it will be used by the
requester.

The new instance of the service is either created in the loocdé (when there are enough re-
sources) or in the next free node (measured using our linkeheThe service distribution algorithm
described in Chapter 4 then is responsible for migratingémeice to a better network position when
necessary.

3.4.6.3 Service Termination

Each service that has no requesters associated to it arhe feridh configured period of time is consid-
ered unused. The service manager is responsible for dgkb@se services, freeing their resources.
In this case, any remaining state that eventually existsaisesl.

3.4.7 Distribution Methods

After the service discovery phase, the communication phasgeen the requesters and a given ser-
vice takes place. We now assume a situation, where many seqsalistributed in the system are
communicating with many services, which are distributesvalt. A single path routing algorithm is
responsible for finding a good route between the nodes.

The main goal of the distribution heuristic is to optimize ttosition of the services by migration,
in order to minimize some objective function. In this the#iee communication overhead minimiza-
tion is our objective function. In Chapter 4, a service disttion method following this objective is
presented.

3.4.8 OS Network Organization

In a large system with a great number of nodes, the orgaoirawverhead of the service discovery
and distribution can be excessive. For example, in the d&gmphase, it may happen that a node at
the other end of the system has to be contacted. Pheromdee {abed in the service distribution
presented in the chapter 4) will get large. These effectsdtrissbad scalability. In addition, in an open
network environment, there is no efficient way of contralimow many instances of a given service
are running on the system.

Moreover, depending on which protocols are implementetiénWSN, there may be a need for
some local coordinator, in order to avoid the overhead ohatles storing information about the
complete network. This local central coordinator alsovedldhe use of algorithms with a central
controller that are sometimes necessary. Nonethelesscehtralistic approach is enclosed just in a
certain area of the network. In addition, organizing thamoek in clusters (and therefore creating
hierarchy) may be also useful to support the topology cantro

3.4.9 Organizing the Network in Clusters

Since the goal of the distribution methods is the minim@atof communication between the re-
guesters and services, a natural grouping of these objentsagby positions in the network can be
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expected. If this weak kind of clustering happens anywaypitild be an advantage to define a hard
separation of the nodes of the system into clusters. In elashec a complete instance of the OS
will run. This brings a reduction of the organization ovextigsince the discovery process is con-
strained inside the local cluster and the pheromone tabless omly store values for services used by
requesters inside the cluster. Moreover, the clusterhisaceenbraces additional controlling functions
like storing the list of all OS service instances (servicgcdvery broker) and also a routing table to
other clusters. Each node must just know some informationtaie cluster to which it belongs to.

In Chapter 5, we investigate thoughtfully methods to solve @ustering problem, callethini-
mum intracommunication-cost clustering

The minimum intracommunication-cost clusteriqgoblem corresponds to the partition of the
nodes of the network into multi-hop groups with a guarantegsimum amount of resources (or
budget) per cluster. At the same time, it looks for the miaattion of the sum of the internal commu-
nication costs of each cluster (measured using the linkio)effhis comes from the requirement of
the existence of a certain amount of resources inside aclultis amount must be enough to host a
complete instance of the OS, application and necessarylersmiices inside each cluster. A cluster,
from the point of view of OS and distributed services, can &ned as follows:

Definition 3.4.1. A cluster is a set of nodes where all the services requirechigyagplication running
in this set are available in some member of the set.

Each cluster can havec N applications using mobile services. The idea is that a etusin
be seen as an “execution environment” where all necessaricae required by the applications are
present.

When the network has been decomposed in to clusters usimfustering algorithm presented in
Chapter 5, the clusterhead is the representative and denwbthe instance of the operating system
running on the cluster. Moreover, it hosts the central hrédeservice discovery.

A necessary task of the NanoOS in dynamic environments iontra whether all necessary
services are still inside the cluster when the topology ghancausing a re-clustering process. Instead
of a central controller polling the location of the compotseof the system repeatedly, the process of
restructuring the cluster is triggered by the moved eniig.recognize two kinds of entities that may
change the cluster affiliation:

e Services - When a service, due to topology changes, arrivdssired in another cluster, it must
be replaced in the original one.

e Application tasks - The same may happen with applicatioksta¥hey may arrive in another
cluster due to a topology change plus re-clustering proc&asce the tasks’ location is not
controlled by the OS, some mechanism should adapt the nestecho the arrived task. This
means that the state of the services that are in the old clustgt be transferred to the new one.

Mechanisms to handle these two cases are presented in thecicgan.

3.4.9.1 Constraining Services Inside the Cluster

Each service and each requester has an internal vasabligned_cluster that indicates to which
cluster it belongs to. Each time that a service receivesdtifgationnew_cluster, it checks whether
the node still belong to thessigned_cluster. When not, this means that, due to a cluster recon-
struction activity (triggered by, for example, a topologyaage), the node has to change the cluster
which it belongs to. This requires a migration of the senbeek to the corresponding cluster. For
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Figure 3.18: Inter-cluster service migration

that, the service contacts the clusterhead of the targstet/iand it assigns a node to the service. An
example of this situation is shown in Figure 3.18. In (a), aaneple of two clusters and a service-
requester in the first one is shown. In (b), the node with tmeice moves and a topology change
happens. As answer to this situation, a re-clustering ptakes place and the node now belongs
to cluster two. In (c), the service notices this situatiod aegotiates with the clusterhead of ats-
signed_cluster a new node to host it. After this migration, that can be sedn)ira valid situation

is achieved again.

3.4.9.2 Reacting upon Task’s Cluster-Membership Changes

In this subsection, a mechanism to react upon cluster meshipechanges of the hosting node of a
task is presented. Differently from services, tasks carbaatplaced by the OS. When a task arrives
in a different cluster due to some re-clustering procesapgmoach is required to prepare this new
cluster to execute the task.

Like services, tasks have an internal variadd@igned_cluster to indicate which cluster they
belong to. When the node is assigned to a new cluster, theeckends the notificatioflew_cluster
to all tasks and services. Upon receiving it, it checks wéethe current cluster has been changed.
If positive, the service contexts that include the actusk s the only requester associated with them
should be transferred to the new cluster.

For each of these contexts, a negotiation occurs betweetagkeand the clusterhead of the new
cluster, to check whether the same type of service alreadysex the new cluster. If positive, the
service context will be migrated to that service. If not, avnestance of the service is created. At
the same time, the service instance containing the corgextritacted to check whether the migration
can occur. If positive, the context related with the taskiigrated from the original cluster to the new
one.

In Figurel 3.19, we depict this situation using an examplegla)nthe tasks; andt, are using the
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services; inside the cluster 1. Each of them has its own state and mmesdependent executions
of the service context. In (b), the node hostiagchanges its physical position. As reaction, the
re-clustering process takes place and now the node is idubgec?2.

This situation is detected, and a negotiation takes placedier to migrate the context related with
t, from the services;, located in the cluster 1, to the cluster 2 (Figure 3.19 [@))e to the fact that no
service of the same type is currently instantiated in theteh2, a new instance is created and receives
the context state related to the tagkFigure 3.19 (c)). The task may now resume its execution.

It is important to remark that our proposals are best effppra@aches, i.e., there is no guarantee
that a service continues to be provided in the case of lapggdgy changes. The applications must
be programmed to cope with situations where the servicewlesg using isn't anymore accessible.

3.5 Communication Link Model

In this section, we will present the communication link miageed as base in the algorithms developed
in this thesis. It is implemented in the logical link layertbé sensor nodes.

3.5.1 Linksin a Wireless Network

A very important difference between the wired and the wagleetworks is the behavior of the net-
work links. In a wired network, the links have a relativelalsie quality. The parameter that has a
high influence on this type of link is the load of the network.

On the other hand, in ad hoc wireless networks, there areaigvarameters that influence the
link quality. First of all, the propagation of the waves in aeless medium is affected by phenomena
like attenuation, distortion, exponential path loss, éftoreover, the environment is dynamic, with
changing obstacles, temperature, and pressure that tféertensmission properties.

As already shown, the transmission over wireless chanmelsubject to several physical phe-
nomena that distort the original signal. This distortiotraduces uncertainty at the receiver about the
original signal, resulting in bit errors. The wave propagaphenomena that contributes to the distor-
tion are reflection, diffraction, scattering, and doppkdifg [69]. Moreover, noise and interference
lead also to reception errors.

Because the quality of a link is an important factor in a véissl network, our model the links is
based on dink rating provided by the logical link control layer. This rating refie the “usefulness”
or “quality” of a link. The ad hoc network being modeled by arivected grapls = (V,E), where V
is the set of wireless nodes and an edlge/} € E if and only if a communication link is established
between node € V andv € V, we define, for each link, a weighting function that assigm®sitive
weightw : E — [0, 1], where 0 means an “excellent” quality and 1 means “very pgoglity. For a
link {u,v} ¢ E, we definew(u,v) = oo,

The properties of a wireless link make the task of finding fherapriate link rating a challenge.
How the quality of a wireless link may change under a very amif environment can be seen in
the experiment reported in by [133]. In this experiment, @&y Mica Motes running TinyOS were
arranged linearly with a spacing of @ They measure the packet loss rates at different distances i
different pairs of nodes. In Figure 3.20, a scatter plot ¥ hinks vary over distance for a collection of
nodes on the ground of a tennis court is shown. Although ih smddeal environment a behavior near
to the theoretical path loss curve was expected, the ragrpist a very different reality. After a certain
distance (#), the difference on the reception success rate betweersraidbe same distance was
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Figure 3.20: Reception success rate versusRiigire 3.21: Stability of a link between two
tance of the transmiter/receiver (data soustationary nodes [133].
[133]).

Sender Node
(@)

Figure 3.22: 2-D chart demonstrating that the link qualibesl not depend only on the distance, but
also on the position of the sender and receiver. Data so[i88]

very significant. This could be verified in the regions markgdacceptable” and “poor” receptions
(in the paper the areas are calteghsitional region3.

The labels in the picture were assigned based on the averegjgtion success rate (RSR). We can
define thresholds for the inferior limit of the four definedimns, i.e. RSRexcellent RSRacceptable@nd
RSR)ad-

In Figurel 3.21, the stability of a link between nodes thatZden far from each other is shown.
Although the mean quality is relatively stable, there agaigicant variations in the instantaneous link
quality.

Figure 3.22 depicts the reception success rate in a 2-dior@ishart. We can conclude, from this
chart, that the link quality dependents not just on the distebetween the communicating partners,
but also on the node’s physical position. Small changeseénptbsition may generate considerable
changes in the reception success rate [68].

The experiments described here illustrate how challengirthe development of a trustworthy
link metric.
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Besides this, many approaches are basedlmmeadallink quality, where a link may exist or not.
Although this may often be a true assumption for wired nekspit is not a reasonable approxima-
tion for wireless networks. Algorithms based on this sisiitiassumption often choose low-capacity,
long-range links instead of high-capacity, low-error BnK his affects negatively the performance. It
happens because bad links are good enough for control pextleange, but during data transmis-
sions, much of the capacity is consumed by retransmissiothi@or corrections.

In the publications [37, 38], this effect is observed fortiog protocols. The authors try to
minimize the hop-count, bringing a prioritization of badysal strength and maximizing the loss
ration. The effects of this selection are analyzed in theegap

3.5.2 Link Quality Estimation

To estimate the link quality based on the observations ofrHesmissions that already took place is
an example of filtering problem. The following propertiee desirable from a good estimation [69]:

Precision The collected statistics should give useful predictiorcigien.

Agility When arapid change happens in a link (for example, the nodeshahe metric should react
quickly.

Stability The metric should be immune to sporadic noise/fluctuatidéits. that, the filtering theory
can be applied.

Efficiency The snoop of packets from the neighborhood and the storagédofalues in order to
improve the filtering are costly operations in a wirelessssemetwork and should be avoided
when possible.

The most important properties are agility and stabilityedllly, a network estimator should be
agile when possible, nevertheless stable when necessaspould adapt to the prevailing network
conditions [70].

There are two types of estimators. An active estimator ugesia packets to measure the link
quality, whereas, in a passive estimator, the estimationaide based on snooping the neighborhood
transmission and detecting packet loss based on sequemizring.

In the work [131], the trade-offs between stability (in teohvariance or standard deviation),
agility and history are studied. The problem observed isttiarelation between the standard devi-
ation and the number of samples is quadratic, i.e., for desediimator, a large number of samples
may be required, which leads to a less agile estimator. Meredlifferent kinds of estimators are
analyzed in the work.

The exponentially weighted moving average (EWMA) is simgitel memory efficient. Besides
that, it uses infinite history by means of a linear combimmatiball past events weighted exponentially.
It has the property of being reactive to small shifts. Thedyasnciple of this filter can be summarized
byP=a-P+(1—a)r, whereP is the estimator outcome ands the actual input from some sensor.
o is the tuning parameter.

The publication [131] makes a comparison between the EWM® ather simple estimators
like the flip-flop EWMA, moving average, time weighted moviagerage, and window mean with
EWMA. They found that EWMA performs best overall over an aggr in a time window (WMEWMA).

In the work [70], the comparison of four filters and their aiddijon to the network prevailing
conditions are shown. The filters were flip-flop EWMA, stakifilter, error-based filter, and Kalman
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filter. Although the Kalman filter, when applied to a lineastgm, isoptimal it requires a significant
knowledge of the system that is not available when estigatietwork performance. Therefore,
reasonable guesses were employed and led to good results.

They conclude in the work that the flip-flip filter brought lestresults in terms of agility and
stability.

As we will present in the next section, instead of using just parameter to obtain a link es-
timate (like here the error rate was used), we decide to mal@riination of several parameters.
Some are used in order to give the estimator a fast resporgwtges, others to improve the long
term prediction. Moreover, we decided to use, for some g®tthe basic exponentially weighted
moving average, due to its straightforward implementatiod its low memory and computational
requirement. This is an advantage for sensor networks.

3.5.3 The Combined Link Metric

In this section, we will define a link metric that summarizbe tgoodness” of a link. Each link
receives a real value that describes its quality. The dlyod developed in the next chapters of
this thesis use this link metric instead of using the bimditd model as usual for many existing
approaches.

The following variables will be used in order to estimate lthk quality. They are summarized in
our combined link metric.

1. Success Rate

2. Received Signal Strength

w

. History

N

. Energy Reserve

3.5.3.1 Success Rate

The idea is to use past samples of the success rate in ordgin@te the quality of a link. Besides the
filter analysis presented in the previous section, therenare practical approaches using the success
rate as link metric. The approach presented in [37, 38] usestac calledexpected transmission
count(ETX) to estimate the success rate. The metric predictsuh#er of transmissions (including
retransmissions) required to successfully deliver a padkeises the values afs (forward delivery
ratio) andd; (reverse delivery ratio) to calculate ETETX = ﬁ)' The forward delivery ratio is the
measured probability that a given data packet successfuilyes at the receiver. The reverse delivery
ratio is the probability that the acknowledgment packetssarccessfully received. The valuesdef
andd; are measured using dedicated beacon packets.

In the work [40], the authors use rewards associated tortrasgn and receptions events in order
to calculate the delivery ratio. Also promiscuously reeeipackets are used in the metric.

Success rate is a relatively reliable method to predict tradity of a link. Nevertheless, there
are also some drawbacks: at the beginning of the obserydtiere is no data to be used for the
prediction; moreover, it reacts slowly to changes in th@togy (a node has moved but the link rating
still indicates a good link). In addition, very old measuecesild not estimate accurately the current
situation.



3.5. COMMUNICATION LINK MODEL 63

700 | 100 L] 1

; Measured RSS! | . sls

i‘\‘ = Path loss model 80 " %%
_ 650 AN o2
< . - o=
g E3E SN 60 -. g %
& FH § Fgl u%
© Bz E E 8
5 600 TR 40 2
7] Excellent Reception ™. = B D
° o T ¥
< Acceptable Reception | S i i 8 n -
g S § o = "y
ks 3 E: ¥ ~~~~~ i, 20
550 I} i{ if # -
i i -
B L S
0
500
0 25 5 75 500 550 600 650 700

Distance (m)

Signal Strength Reading

Figure 3.23: Correlation between signal
strengh indication and distance for two
nodes. Data source [141]
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3.5.3.2 Received Signal Strength

The received signal strength indication (RSSI) as link rné$ra proposed substitute of the bimodal
links in some approaches, because most network hardwariesat.

The correlation between the received signal strength amdliftance of two nodes is rather far
from the ideal path loss curve. This can be seen by the expatiperformed by Zhao and Govindan
[141], showed in Figure 3.23. It has been measured in a offilevdy. In the picture, the deviation
of the measured RSSI from the theoretical curve can be seémoulyh the measured RSSI roughly
follows the curve, high deviations in both sides of the padsImodel can be seen. Moreover, the
larger the distance the higher the variance of the measatad d

When analyzed out of context, the figure may give the impoestiat the RSSI alone could be
a good estimator, due to the fact that the measured datalyofailow the path loss. Figure 3.24
opposes this naive assumption. It analyzes the relatipristtiveen the signal strength rate and the
packet loss (complement of the reception success ratekidiual strength readings higher than 580,
almost all packets are received. In the range from 500 to B&0Opacket loss is scattered over the
whole range of the packet loss. This fact shows a drawbackiofjuhe RSSI as the only estimator
for link quality. However, a small correlation between tlignal strength and the packet loss can be
seen even in this region.

Because the received signal strength indicator roughlpvial the path loss, we can compare
Figure 3.24 with Figure 3.20. The results from the experitheme similar: the behavior of the link
can not be clearly defined by means of the RSSI (or distance).

Cerpa et al. [28] performed similar experiments with micatesdn an indoor office, an out-
door urban, and outdoor habitat environments. They oldasmailar results. However, for outdoor
environments, the variability of the links were even higtien the results from [141]. They charac-
terized micas’ links as asymmetrical (some links have dffi€ reception rates between sending and
receiving), non-isotropic (the connectivity was not nseey the same in all the directions from the
source), and with non-monotonic distance decay (nodesgpbigally far away from the source may
get better connectivity than closer ones).

As conclusion of this section, we argue that the signal gttemay be used just as a roughly
indicator of the quality of the link. Therefore, we integrat with other indicators in our combined
metric.
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3.5.3.3 History

In the algorithms developed in this work, it is important étest trustworthy and stable links instead of
newly created ones. In Figure 3125, a situation where twagg®f nodes are placed in two different
trains moving in opposite directions is presented. The eotions between the nodes from one group
to the other on are volatile, because the connections vaklksoon. For the cluster construction or
service distribution (presented later in this thesis)gsiodes from the opposite group has drawback,
because the link will be broken soon and a high overhead tgae@e the clusters (or services) will
result.

To prevent the use of temporarily links, an additional patemnis used in the metric. It measures
how long is the existence of the link and penalizes very nelsli

It is important to say that for other applications (e.g. mgifprotocols), the use of volatile links
may bring some advantage because those links may reduddematy the route between two nodes.

3.5.3.4 Energy Reserve

In a sensor network environment, the energy is a precioasires and the pattern how energy is spent
makes a real difference concerning the complete netwoekiliie. In [69], the network lifetime is
defined by the time during which a sensor network can fulBljptirpose. Some possible definitions
for this event are:

e Time to first node death

e Network half time - 50% of the nodes ran out of energy

Time to partition
e Time to loss of coverage

Time to failure of the first event notification

More generally, it is also possible to consider the nodetiife distribution. One question could
be which percentage of the nodes are still operational agaey moment. Curves where the proba-
bility of many nodes functioning in a short term sacrificimagpdy life networks that have few nodes at
the end are a preferable situation, i.e., the energy shaufgbent in a uniform manner.

We decide to include the amount of energy of a node in the liefrimto restrict the use of
exhausted nodes, because the link metric tends to evahateworse than links among nodes plenty
of energy. This brings a more uniform consumption of enefjye energy reserve parameter in the
link metric may improve a uniform energy use, specially bytiog protocols.



3.5. COMMUNICATION LINK MODEL 65

3.5.3.5 Combined Metric

We combine the presented parameters in a link metric thatdtes the goodness of a link. The
statistic-based observation of transmission success ®d mdication of the future success rate,
nevertheless it reacts slowly to changes and at beginniagibaata to be calculated. The received
signal strength indication makes possible quick indicetjdout it is not very precise. Therefore, the
combined metric uses these two parameters. Moreover, &r todorioritize stable links, the history
is also used. Finally, the energy is also included in the tiréric to promote a uniform use of the
nodes in the sensor network. The combined metric is defined.iB.1.

Mcombined: 1- (kl ' MRSSH‘ I(2' MRSR"‘ k3 ' IVlhistory‘f‘ k4 IVlenergy"‘ 0- kS) (3-1)

whereMgssi€ [0, 1] indicates the normalized signal strength indicatidpsgre [0, 1] is the recep-
tion success ratélhistory € [0,1] returns 0 for new links and 1 for old onédenergy< [0, 1] returns 0
for depleted nodes and 1 for full nodes. The last parametiicates the cost of the hop, i.e., a fixed
cost that should be added to all links.

The terms virtual distance and link metric are synonymsiswork, i.e.,w(u,Vv) = Mcombined U, V)
whereMcombined U, V) is the combined link metric measure in the lifilk v}i. A small virtual distance
means good connection, whereas a large one means a linkigfitletvor rate.

In Figure 3.26, examples of how the link metric works are sholm (a), we have a network with
unrated links. If the node 1 wants to send a message to 2,ahetéree paths using the minimal hop
count of 2. In (b), the same network is shown, but the linkgated using the link metric described in
this section. Now a differentiation between the possiblgas from node 1 to 2 can be made, and the
route with the best metric would be selected. In (c), a newasitin is illustrated: a new node appears.
At the beginning, the links to this node are relatively pgadted, because of the lack of confidence
about the stability of the link. After some time, in (d), thetmcs have been stabilized.

The effect of an almost depleted node is shown in (e),(f)e)nthe network in its normal operation
is presented. After routing several packets, the battenyooe 3 becomes almost depleted. This
reflects in the link metric, and now another route betweendlzamot using node 3, is the preferred
one. This improves the uniformity of the energy consumpéarong nodes in the network.

Modifications of this basic link metric may be used in ordembtdter assess the quality of the
link taking in account the environment where the nodes apogied or to drive the higher level
protocols to achieve some desired property. For examplerdar to force the clustering heuristic
presented in the chapter 5 to produce a higher number of tisterk instead of deep ones (to reduce
the interference among different clusters and improve paeial correlations between sensors), a
linerization of the RSSI can be used. In the same way, othegaitiens may be included in the link
metric to achieve a desired objective.

We now will present how the sub-metrics used in the equati@raBe calculated. The value of
Mgssiis adjusted upon reception of any packet (addressed to tie ooacquired in promiscuous
mode). An average of the received values and the cule®SIwith an aging facton is calculated,
i.e.,Mrssi= a0 -Mgssr (1— o) -anmgssy whereamgssdenotes the adjusted measured signal strength.
The adjustment in the signal strength is done in order to awgplits performance by cutting out
extremes where the signal is excelleRSSdycelien) OF Very poor RSSlerypoon)-

Therefore,

1 if meagss|> RSSdxcellent

aMkss|= 0 if meagssi< RSSerypoor

meagssr—RSSlerypoor )
RS Sdxcellent—RSSlerypoor otherwise




66 CHAPTER 3. NANOOS ARCHITECTURE

0.66

R

~
~

\

0.15

o--@

— — — Unrated link

Excellent link

Acceptable Link

Poor Link

Figure 3.26: Example of link metric ratings. (a) Network lwé bimodal metric. Hop count may be
used as distance metric. (b) The same network with our caedimmetric. (c) Situation where a new
node joins the network. Because these new links have beeargated, the rating is poor. (d) After
confirming the stability of the links, the ratings got to ax¢esituation. (e) Same original network. (f)
Node 4 runs out of energy, link ratings reflect this fact. I(),(d),k; = 0.33,k, = 0.33,kz = 0.33
andks = 0. In (e),(f),ky = 0.33,k; = 0.33, k3 = 0 andks = 0.33.
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wheremeagsg;is the raw measured RSSI.

The metricMgsris just the combination of the current measured receptiooess rate with the
existing one, i.e Mrsg= 0 -Mgrsrt (1— o) -meassr The measured reception success nateggsg
is calculated based on the monitoring of packet transmmisai@ correlated acknowledgment in the
MAC layer.

The history metric Mhistory) is calculated using the number of received packets.G.ebe the
number of received packets of the link. This counter is deerged periodically (down to 0) in order
to cope with extinguishing links. We defilhstory = min(1, kacoum), wherestable link_count
is the number of packets necessary to consider a link asdatlye.

Finally, the energy reserve measures how much energy a rasjé.é Menergyreturns one when

the battery is full and zero when depleted.

3.6 Discussion

In this chapter, we presented the basic architecture ofrmoviative operating system for wireless
sensor networks. Our approach is unified in the sense th#sttb combine basic OS functionality
with rather high-level support of distributed applicaicend an infrastructure that supports the easily
development of distributed services. Differently from mesisting systems, we are not targeting
only at the classical data-driven sensor network apptioati but also distributed processing (e.g.
distributed signal processing) and diversity of services.

Our basic abstractions for the application developmentharenobile service and the task. Tasks
have static position in the system and are responsible xaomple, for reading sensing data. The mo-
bile services are responsible for transforming this sendata in a more high-level system response.
In order to overcome the resource limitations of each nddese mobile services may be installed in
any node of the system and accessed remotely.

When designed as a conventional service middleware (e.¢oad66]), one main problem that
remains in this architecture is that for each requestindjegifon, a service instance should be created
and a local stack should be used. This results in a large meraquirement for each requester. In
order to avoid that, we propose the service context conéaguth instance of the service may accept
several requesting applications, and, instead of a newriostbeing created for each of them, a
context is created and the instance of the service remalgsaith one stack. The drawback here is
that each request must be run to completion, there is no ptémmbetween different contexts inside
a service, but just between different services, tasks, éddde inside a node.

With the proposed architecture, it is possible to desigssital WSN applications (like data-
fusion) as well as background processing tasks. Moredweisystem may include at some instant of
time a large amount of different services distributed iasactluster of nodes.

Due to the facts that we are aiming at dynamic networks andimesst self-organization and self-
optimization, an algorithm that controls the migrationtud services to suitable positions is necessary
and presented in the next chapter.

Instead of supporting the overhead of keeping informatibresy distant nodes, we are also
logically joining together nearby nodes that form clustditse clusters are the space where the service
distribution takes place. Moreover, “centralized” apmftes may be used inside a cluster without
compromising the scalability of the system.

In order to measure how distant two nodes are, we decide ts fme the communication. We aim
at measuring how error-prone a certain connection betweemodes is using our combined linked
metric called virtual distance. Differently from many ukapproaches in ad hoc or sensor networks,
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we use our metric instead of the hop count to assess the coication cost between two nodes. Our
link metric is the base of all other algorithms developechim $cope of this thesis.

In the next chapter, we will provide a description of the sandistribution algorithm. It is de-
centralized and uses just local information to take itsglens, thus complying with the philosophy
of our OS presented in this chapter. Moreover, in Chaptews,different heuristics aiming at the
decompositions of the network in clusters with a guarantseel are presented. The architecture of
the NanoOS is important to calculate this amount of serdide.necessary to know the applications
that will run in each cluster, their requirements in termssefvices (and memory usage), and the
OS requirements in order to assess an adequate minimurerchist to run an OS and application
instance.

Even if a more unified way of programming is desired, whereWN is seen as an aggregate,
our OS can be used. An extension of the NanoOS can be implechemtllow the injection of new
tasks (queries) in the system and their autonomic repdicatThis replication may be to all or part
of the nodes of the WSN, like in Maté or Sensorware. Our sysi@mprovide a large set of mobile
services, where these services migrate automatically rngsad by the injected tasks. The tasks may
orchestrate with help of the local services, sensors andlesdrvices the desired complex distributed
algorithm.



Chapter 4

Service Distribution

4.1 Introduction

In this chapter we will deal with a fundamental question im eystem: where should the mobile
services be placed in the wireless sensor network. Seviffiedetht metrics may be used to evaluate
how good is a given allocation. We decide to minimize the gla@mmmunication cost measured by
means of our virtual distance metric. The idea is that themiization of the communication overhead
has a direct impact on the energy used by the system.

There are several possible approaches to control the ptatdeamd migration of modules in a
distributed system. We review them in the section 4.2. Insietion 4.3, we define formally our
specific problem. Subsequently, we present two heuristiestion 4.4) that are responsible to control
the placement and migration of our services in the systenge bEsic and extended versions of our
heuristic aim at minimization of the objective function riwally presented in the section 4.3. It was
very important in the design of the heuristics to assurethit use just local communications, impose
a small overhead on the node and network, and avoid as mudssible the use of control messages.
In addition, the cost of the new placement shouldn’t overedshbenefit in realistic conditions.

4.2 Related Work

4.2.1 Global Distributed Scheduling
4.2.1.1 Introduction

The placement and migration of components in a distribugstem is a problem that has been studied
in various application areas. In the parallel/distribusgdtems area, an extensible used approach is to
share the total processing load among the existing CPU messu

Scheduling of tasks in a system with distributed load ingsldeciding when to execute a job and
where to execute it. Normally, the two tasks are handledragglg by two components: the allocator
and the scheduler.

The allocator decides where to run a certain task. The @ecisi each local node of when to
select the task for execution is done by node’s local timeis based scheduler (this problem is
also called “local scheduling problem”). This means thahe@ode decides when to run the existing
local tasks, but the higher level decision of allocating @cpssor to a task is made by the allocator.
These scheme brings modularity and separate the loadbdt#brn concerns from the details of the
local schedule.

69
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Enumerative
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Physically Non-distributed

Figure 4.1: Scheduling Taxonomy.

The problem of deciding where some task in a system will bewee is called in the literature
process allocation problem or global scheduling problemvafety of widely differing techniques
and methodologies for scheduling processes in a distdtaystem have been proposed.

In order to classify the approaches, a taxonomy was dewvelope

4.2.1.2 Scheduling Taxonomy

In the paper [26], a hierarchical classification of the sciiad methods focusing in the global
scheduling is made. The structure of this classificatiomass in Fig./ 4.1.

At the top of the hierarchy, the scheduling methods are ifi@dsn local andglobal, as already
discussed in the introduction section. Concerning globlaédulers, a further classificationdtatic
anddynamic Thestatic global schedulers assume an initial information about ¢ked tnix of tasks
as well as the communication and the dependence among tasksy this information, a process
allocation is calculated and the tasks have a static assighto target processors.

In a dynamicscheduler, the current and previous state information efsifstem are take into
account to make dynamic decisions (on-the-fly) where tHestalsould be placed.

The staticapproaches can be optimal and sub-optimal. In the optined,drased in some objec-
tive function, the optimal assignment can be done. As thigmasgent problem is normally computa-
tionally infeasible, sub-optimal solutions may be triedhisTcan be ampproximatedsolution, where
some bound is desired and the same formal model of the digofitr the optimal solution is used.
It can be also deuristic solution, where realistic assumptions are made abquiory knowledge
concerning process and system loading characteristics.

The optimal solutions may be found searching the soluticecepusing graph theoretic ap-
proaches, mathematical programming or queuing theory.

The next classification concerniignamicschedulers regards where the decision of the allocation
takes placenon-distributed where the scheduler resides physically in a single pramedistributed
where it is physically distributed among processors.

Distributed allocation may be done usir@poperativeor non-cooperativdechniques. In theo-
operativemechanism, cooperation between the distributed compsrigntsed to take the decision
where to place a task in the system. In tim-cooperativaechnique, each node individually makes
its decision about the placement of the components. In tbparative method, all processors are
working toward a common system-wide goal, avoiding eacktyetying to maximize just its local
performance (in an egoistic way).



4.2. RELATED WORK 71

4.2.1.3 Desirable Features

The following features (among others) are desirable in bajlecheduling algorithm [118]:
e No a priory knowledge about tasks.

e Be able to deal with dynamically changing load. For thatsinecessary the existence of
migration mechanisms in order to rearrange the tasks inyters in response to a new system
load.

¢ Quick decision-making capability, in order to respond pptisnto new situations in the system.

e Balanced system performance and scheduling overheadrabsebkeduling algorithms collect
global information to make their process assignment datésiThis may impose a high burden
in the system.

e Stability. The system should not spend all the time makingration and calculating new
assignments without accomplishing any useful work.

e Scalability

From this list, we identify that a static scheduler can noetreome of them. Therefore, static
schedulers have a restricted applicability in real systeMevertheless, in our approach, we use a
static optimal scheduler that uses the current snapshtteadyistem in order to evaluate the results
coming from our dynamic assignment heuristic.

4.2.1.4 Static Scheduling

A static scheduler makes the decisions just with infornmaigailable at compilation time. Informa-
tion regarding task execution times and processing reseuscassumed to be known at compilation
time. A task is always executed on the processor to whicheisssgned [115].

There are several alternatives for the objective functiothe scheduling problem. Nevertheless,
typically, the goal is to minimize the overall execution &mf a concurrent program while minimizing
the communication delays.

Two distinct models of parallel programming have often beemsidered in the context of static
scheduling: the task interaction graph (TIG) model and &és& precedence graph (TPG) model [80].

In the task interaction graph, the vertices represent lghraocesses and edges denote the inter-
process interaction [17]. It is usually used in static sciied of loosely coupled communication
processes (because it assumes that all tasks are execugindgridependent and simultaneous form).
Normally, the objective of scheduling is to minimize pagalbrogram completion time by mapping
the tasks to the processors. For that, the balance of theutatigm load among processors while
keeping the communication costs as low as possible are tis [#9].

In the task precedence graph model, the nodes represeasiseand the directed edges represent
the execution dependencies and the amount of communicdtimainly used by tightly coupled
tasks on multiprocessors. A very good overview of the d#ifeértask models and different mapping
problems can be found in [98].

In the section 4.3, we formally present the optimizationbjgm describing our service distribu-
tion. For that, we use a modified version of the task inteoacgiraph model.

In the next paragraphs, we will review some theoreticalymislof the task assignment problem.
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Stone [124] presents a method for assignment on a two-ocsgstem based on a Max Flow/Min
Cut algorithm for sources and sinks in a weighted directeablyr This method finds the optimal
placement. Lo [90] extends the Stone model in order to irs&réhe concurrency introducing the
interference costs among tasks in addition to the Stone htloglejust takes the communication and
the processing necessity of each task in account. Moretnagrpresent a heuristic that combines the
Max Flow/Min Cut algorithm with a greedy-type algorithm tadi suboptimal assignments of tasks
to processors. Price and Salama [102] describes threestiesifor assigning precedence-constrained
tasks to a network of identical processors. Other appreaatepresented in [103, 112].

Although the presented theoretic analysis can achieve d giadic schedule, those methods do
not take in account the network topology, just the commuitnagraph and the execution time of the
tasks. In our approach, the main metric is the communicatish carried by tasks/service communi-
cation in a point to point network.

In the literature there are also approaches that take immuat the communication and computa-
tion time of the tasks together with the connection topolofjthe processors (with the bandwidth of
those connections). In [126], a graph-theoretic formafatf the problem of mapping communicat-
ing tasks to processors is presented. A heuristic algorighintroduced as well. This algorithm takes
as input a task graph where the vertices represent the tagkb@edges represent the communication
between tasks and a resource (network) graph where verépessent nodes and edges the links of
the network. The algorithm outputs the mapping from tasksrémessors. They cluster the heavy-
communicating tasks and assign these clusters to prosesaareedy heuristic that uses a similar
model of the communicating tasks and network of processopseasented in [100]. [72] presents a
heuristic that first places the highly communicative taskadjacent nodes of the processor network.
Then, the remaining tasks are placed beginning from thasedb thisbackbonefrom tasks. An-
other branch of studies on task scheduling in heterogenemisonments [48, 51] is done based on
scheduling DAGs, in which a task graph represents deperetebetween tasks. Those methods are
more appropriate for set of tasks with small intercommuivca

In our approach, we are using a dynamic distributed non@@tpe scheduling strategy, i.e.,
the current state of the system is used in order to drive tlggatdn of the services in the system.
Moreover, each service is an autonomous agent that by titédal the decisions when to migrate and
to which node. Nevertheless, in the evaluation of our hearige models introduced in the theoretic
static analysis are useful in order to formulate instanéeiseoproblem and to compare the generated
results with the optimal assignment.

4.2.1.5 Dynamic Scheduling

In this section, we will describe some details about systesisg a dynamic scheduler and also
present some approaches.

The dynamic scheduling is based on the redistribution ofgsses among the processors during
execution time (on-the-fly). This redistribution is perfard by transferring tasks from the heavily
loaded processors to the lightly loaded ones with the ailmgiroving the performance of the ap-
plication (by some metric) [115]. Common used metrics argimmizing the execution time of an
application, maximizing the system throughput or maximggzihe processors utilization.

There are basically two main approaches concerning systétmslynamic scheduling.

Dynamic Load-sharing approach: attempts to conserve the ability of the system to performkwor
by assuring that no node is idle while processes wait forgopiocessed [118]. We will call
this approach simple as load sharing.
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Dynamic Load-balancing approach: this is a stricter form of load sharing, wherein the system
strives to balance the load on all machines at all times [%8& will call this approach sim-
ple as load-balancing.

In this section we will present approaches that are from batés.
A loading sharing/balancing algorithm can be separatelddridllowing components based on the
four independent functionalities [55]:

Transfer policy: Determines whether a node is suitable for process tranifereas sender or as
receiver

Selection policy: Selects a process from the queue to migrate

Location policy: Finds a suitable partner of the migration among the potest¢iader/receiver rec-
ognized by the transfer policy.

Information policy: Responsible for gathering system state information to lee usallocation de-
cisions.

Now we will describe some approaches of dynamic scheduliaty share some characteristics
with our heuristic for service distribution. The highligidt term before each approach stress some
share characteristic with our heuristics and will be bettgrlained in the discussion section.

Autonomous Mobile Entity In [81], the authors present an approach where each prosess i

autonomous entity that determines by itself the best lonafior the placement. Every time that a
task is started, a agent in behalf of the task observes tlikitoaach machine of the system (or a
random subset) and selects the best one to place the prbtéss.paper, just the initial placement is
analyzed.

Forces Attracting Entities In [60] a decentralized dynamic load balancing mechanissedhan
forces that correspond to independent optimization geatsdoposed. The algorithm explicitly con-
siders communication and migration overhead. The algurithinspired in a physical model that
uses notion of forces in fluids: in a flat container with evetidon, different amount of non-mixable
fluids are placed at different positions. Gravity forces fthéls to run out, but frictional resistance
and cohesion forces are working against. Thinner fluids tersgiread out, where more viscous fluids
stick together. After some time, the fluid distribution wilach some stable state (balanced forces).

The correspondence to the load balancing problem is thewimi. The tasks in the parallel
computation are considered as particles of the fluid. Loadmial of each node is the gravity force
that attracts those particles. Communication relatioas@lvith their intensities are associated with
a cohesion force, with direction and magnitude. The friwioresistance is associated with the mi-
gration costs and are together, with the cohesion, workgajnst the load balancing. Using this
model, the algorithm pursues the following objectives: imimation of load unbalance, minimization
of communication costs, avoidance of unproductive migrasind stability.

Every time when the load situation changes, all neighboniodes are informed and the forces
described are calculated. A resulting force is calculated bnear combination of the components.
The higher force is elected to initiate a migration. Afteistmigration, the algorithm starts again,
what could bring a domino effect. The algorithm is a sortsitributed gradient sear¢B0] which
converges into a local minimum. The authors argue, as thistape of the objective function is
always changing, this is not a big drawback.
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Greedy Approach Furthermore, a greedy distributed load sharing algoriterproposed by [34].
The system load is used to decide where a job should be plabediecisions are made for the local
goodness of a job and the assignments are always accepted.

There are several other approaches. A broad survey onbdigtidi scheduling can be found in
[115, 30].

4.2.2 Migration of Service in WSN

In this section, the specific approaches of migration ofisesvin wireless sensor networks will be
described. Although they are comparable and some belongetaytnamic scheduling presented
in the last section, we decide to introduce them in a seghsdetion because the objective of the
distribution may deviate from the traditional dynamic shleng algorithms. There are approaches
that even the distribution objective is decided by each (askgen), and differentagentsmay have
different policies.

As already discussed, the allocator is responsible for $s@ament of the tasks to the nodes. A
range of middleware and virtual machine approaches for Wiesemt different kinds of task alloca-
tion methods. Nevertheless, at this moment, the majorigpefating systems for sensor networks do
not provide an appropriate task allocation mechanism.

Most of the task allocation mechanisms used in WSNs are@rilia they decide during run-time
where to place the software components. This means thatodhe mobility is necessary for such
approaches.

The table 4.1 shows some of the task allocation techniques insVM and middlewares. In the
Sensorware [22] virtual machine, the application congi$tscripts that are deployed on a subset of
nodes of the network. Each script looks like a state machiakis influenced by external events. The
scripts can replicate themselves, i.e, the applicatiorth@sontrol of the task allocation. This means
that each agent may have a different strategy or even thegjrenay be adapted to the current envi-
ronment. The application programmer is responsible tasat® implement the allocation strategies.
There isn't a standard migration police.

MagnetOS [9] uses the online, power-aware algorithms @¢dlletCenter and NetPull to decide
where to place a system component based on the communigeatitern. While NetPull profiles the
communication at the link level, migrating to the directiointhe highest amount of communication,
NetCenter operates at network level migrating to the hostravithe object that it communicates at
most resides. Those heuristics try to allocate tasks dysadiyiin order to reduce the communication
overhead, diminishing with that the average energy contiompf the network.

In Cougar [136], the queries are broadcasted to the nodeseohatwork and the results are
aggregated and forwarded to a given leader node. The quémipgr, located on the gateway node,
is responsible to analyze the query and generate a good execution plan, which contains the data
flow inside the node and network. A query plan contains, f@meple, which node will be the leader
and which sensor reading, aggregation and forwarding wiltdalized at each node of the sensor
network. A complex query can be composed by a large numbearainpeters and operators. This
brings to a larger space of querying processing plans, anagy @ptimizer is responsible to select
a good plan using some objective function, like energy us#@gethe actual approach of the query
optimizer relies on a centralized node that calculates tleygplans, this cannot be compared with
our distributed service distribution algorithm.

SINA [114] uses the attribute matching approach to selechtdes that will process the received
SQTL script by means of forwarding it to an running applicaton the node. Each SQTL message
has a SQTL wrapper that indicates, by means of attributegshwiodes should receive and forward
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Technology  Approach Scalability Requirements Benefits wibiacks Used by
Script popu- Specification Scalable Control in No control Expressivity Sensorware
lation speci- in migrating application required of specifica- (VM)
fication scripts scripts tion
Automatic Activating Scalable Object Reduced data Complexity, MagnetOS
object Place- and moving placement communica- overhead (VM)
ment objects new algorithm tion (1-hop
to source migration)
Query Opti- Optimizing Optimization Disseminated Only re- Network TinyDB,
mizer query routing in  gateway query plan quired subset load of query Cougar
to network node of nodes plans
activated
Attribute Matching Scalable Attributed Local late Restricted SINA
matching script at- Specifica- binding expressiv-
tributes tions ity; just
with  local suitable for
parameters query-based
systems
Automatic Distributed Initial place- Scalable Dynamic, Specific for DFuse
fusion point heuristic for ment of reduce data data fusion,
placement fusion point fusion point communica- overhead
placement (tree  struc- tion (1-hop role
ture) change)

Table 4.1: Task allocation solutions used by middlewaretdi& machines

the script to applications running on the node. When infdimnagathering is required, the front-
end node is responsible to select an appropriate methodlezicthe results of the query based on
the network state and the nature of the query. For exampleimiffused computation operation
mode, the attributes of the SQTL are not only responsiblestecs which nodes are replaying to a
given guery and which sensor values should be sampled inaithesn but also the aggregation logic
is programmed in the SQTL script. After the disseminatiorthaf script, each node knows how to
aggregate the information and route it to the frontend.

The automatic fusion point placement [78] is responsibletifi@ node role assignment in the
DFuse middleware. The role assignment in the case of the®iBuke mapping from a fusion point
in an application task graph to a network node. The existihggrin the DFuse are&nd point(source
or sink), relay (node that routes the request)fosion point(node that accomplish the fusion task).

The role assignment heuristic has two parts. In the first partnitial naive assignment is cal-
culated in order to initiate the transmission from the sesrto the sink. The second part is the
optimization phase. In this phase, every fusion point nashedecide locally if it wants to transfer the
role to any of its neighbor nodes. The decision for role ti@mis taken based on local information.
The fusion node periodically informs its neighbors abasitdie and its health. The health is an indi-
cator of how good is a given node to host the fusion role. Ugmeving the message, the neighbors
calculate their own health. If some neighbor determinesitltan play a better role than the sender,
it informs the fusion point sending its own health. The akfusion point selects from the coming
healths, the best neighbor to migrate the role.

There are several functions to calculate the heath of a gieele. Each one has a different ob-
jective. Examples areinimize the transmission coshinimize power varianganinimize ratio of
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Figure 4.2: Example of a linear optimization. In (a), two sm@s$ are generating data (nodesndb).
The data stream coming from the sources are relayed by madd data fusion occurs oh Finally,
nodeereceive the aggregated data. In (b), nodas a better health thahbecause if the fusion point
will be placed on it, thdan-in flows (in the example, two flows) will have a reduction of ongpho
whereas théan-outflow (in the example, just one flow) will increase its path bydwp. Therefore,
a so called linear optimization occurs with the transfeeeatthe fusion point frond to c, saving
500 “communication units™x 1 hop.

transmission cost to poweil he health function that aims the minimization of transiuis cost cal-
culates the future communication cost that will be generétehe role is transfered to the candidate
neighbor. This cost is measured using the traffic of the inngrflows multiplied by the distance (in
hops) traveled added to the traffic of the outcoming flows ipligtd by the distance (in hops) traveled.
Smaller health means less communication cost and it isnatgée If the transfer of the fusion role
from the actual fusion node to the neighbor (candidate) nedluce the amount of traffic (because the
neighbor has a smaller health value), it is realized.

Two types of role transfer are mainly induced by the hewristalled linear and triangular op-
timizations. They are depicted in the Figlre'4.2 and FiguBe 4n the linear optimization, all the
inputs of a fusion point are coming via a relay node. Thereata dontraction (for details, see section
2.3.3.4) at the fusion point. Therefore, the relay node imasothe new fusion point. The fusion point
is moving away from sink and coming closer to the data souoietg In the case of data expansion,
the fusion point tends to go to the direction of the sink.

In the triangular optimization, there are multiple pathsifgpouts and outputs to the fusion point,
and data contraction is being realized. The fusion pointiwilve along the input path the maximize
the savings. An example is shown in the figure 4.3.

4.2.3 Discussion

Several approaches have been studied to deal with the géohalduling problem. In the static
scheduling, the assignment of the tasks to the processimgeelts is done at compilation time. The
minimization of the program’s completion time togethersasondary objective, with the minimiza-
tion of communication delays is the most common optimizatbjective in this kind of scheduling.
This is different from our problem; we aim to minimize the aoemication overhead, which is mea-
sured by means of amount of data transported over a givaandes{link metric). The general problem
of the static task assignment is NP-complete, even wheroiimenzinication delays are not accounted
[115]. This is also true for our different formulation of theoblem, described in the section 4.3.
There are several models to describe the static assignnk@mtour work, the most important
is the task interaction graph (TIG). We use the TIG to modelsystem in a given instant of time
(system snapshot), and a problem very similar to the statigament is solved in order to calculate
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Figure 4.3: Example of a triangular optimization. In (a)ptgources are generating data (nodesd
b).Nodec is relaying the data coming from while d is resposible for the data fusion. Nodés the
sink and it receives the fused data. In (b), nodecognizes the its direct link to notbeande, having
a better health than node This triggers the so called triangular optimization ang fillsion point is
transfered to node, saving 1000 “communication unitsk 1 hop.

the optimum assignment at that point of time. This value mgared to the result of our heuristic and
it is possible to assess how good it is performing. It is gmedio test whether our heuristic, under a
given input, converges to a result that is not so far from htémal solution.

Due the fact that in the static scheduling, tasks must beuesddn the node decided by the initial
assignment and all system details should be known beforedieduling is calculated, they cannot
be used in a dynamic environment such as a sensor network.

Our heuristic is similar to a dynamic distributed non-caagpige scheduling strategy. There are
several approaches that have common concepts with ouistieudescribed later in this chapter. In
our heuristic, the services are the migrating units. Eacicedecides by itself when to migrate and
to which node it should be transferred (new placement). figssome similarities to the work of [81],
where each process is an autonomous entity that selectsdifythie best placement. Nevertheless,
the topology of the network is not observed, just the loadhefriodes.

In [60], a concept of forces is used, which has some simylavith our approach. In our heuris-
tic, the pheromone deposited by the communication traffibémodes acts as a force that attracts the
services of the system. Nevertheless, in the approach hftfg0load potential is considered as the at-
traction element. In the sensor network, the load is not thimifiactor to be analyzed. Moreover, they
are just analyzing neighboring loads, what turns such anocaph useless in our WSN environment.
In addition, there is no concern about the different natdrh@ WSN network and its applications,
which differ from conventional ones.

Our heuristic has some greedy characteristics like the wrkented in [34]. Nevertheless, again
the system load is the main parameter used to guide the migrat

As we can see, although the dynamic load balancing/shahage some characteristics with our
heuristic for service distribution, the main idea of mosttad algorithms is to share the load among
nodes and not to minimize the network communication betwaskand OS services as our method.
In addition, they are designed to be used in an infrastractatwork with traditional applications,
opposite to our approach. For example, the link quality deddynamic topology of WSN are not
considered by any of the algorithms.

Other approaches of task allocation focused in the reqeintsnof sensor network applications
are presented in the section 4/2.2. A possible classifitatidghe approaches considers whether the
location policy resides in the system software or in the iappbn.

In the Sensorware approach, the location policy is implaateby the applications. Each appli-
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cation (or part of it, a script) may decide as an autonomotityemhen to migrate or to copy itself
(replicate) to the neighbors. Each script contains therinétion of how it will populate the nodes of
the network after the initial injection at the access polritis process of populating the nodes can con-
tinue depending on events and the current state. This isaiddifferent from our approach. In our
system, the operating system controls the migration ofises\trying to optimize a given objective
function. Different from Sensorware, every service in orgtem follows the OS location policy. This
means that the user, different from Sensorware, are notoawkrd with the responsibility of writing

a location policy in each application.

The NetPull and NetCenter placement algorithms from therM#gQS, like our heuristic, promote
a transparent migration of parts of the system in order tagedhe communication overhead. Like
the NanoOS, the location policy is implemented by the systeftware. Differently from our system,
NetCenter transfers the system components directly to ade hosting the object with the highest
interaction. This may bring a non-optimal placement, d@eféttt the the sum of the communication
coming from other objects residing in different nodes masilgaxceed the communication traffic
generated by the single component with highest communitatteraction.

Differently, the NetPull algorithm moves a system compdriero the direction of the neighbor
from where the highest communication traffic comes from. Whe just allow one hop migra-
tions (parametesllowed_h = 1), the behavior of our basic heuristic has some similaritigth the
NetPull algorithm. However, instead of dividing the timedpochs and profiling the communica-
tion pattern within one epoch and deciding about the mignatiased on this epoch result, we use a
pheromone level to describe the communication patternsv édéenmunication events are changing
the pheromone on the node continuously, and the evapornaieris erasing this pheromone also in a
continuous way, reducing the importance of old measuress Brings to a smoother mode of opera-
tion, without sudden changes based on the events occurriagéry loaded epoch. Moreover, when
the service migrates to the next hop, the pheromone tralslaeady deposited in the neighboring
nodes of this new host, i.e., a completely new communicatiofiling is not necessary.

Moreover, our basic heuristic makes the exploration of @mgimumber of hops before selecting
one node that is the target of the migration (parameitewved_h = n). For that, we use a potential
pheromone concept to simulate the communication patterincibuld occur if the service migrates
to the node being analyzed at the moment. This multi-hop atimr has several advantages. First,
it avoids a large overhead of migrating the service sevarpklin sequence. Second, in NetPull, if
the neighbor selected as destination of the migrating coxepiohasn’t enough resources for it, the
migration cannot take place. A blocking situation occurs akditional point is that we analyze
also the amount of resources of the nodes in the migratidmgrad their neighbors to select a more
appropriate node. This means that not only the communitabiat also the actual resource availability
of the nodes is evaluated in order to select the destinafitmecervice.

It is not necessary to compare NetPull with our extendedisiizrbecause it encloses all char-
acteristics of the basic one. Beyond this, the extendeddiunas several additional mechanisms to
enhance the module placement that are not present in thellNafgorithm.

Another algorithm that share propreties with our develdpeuaristic is the automatic fusion point
of the DFuse middleware. Similarly to our approach, the meighood of the node containing the
fusion point is examined for its migration. The neighborhntiie highest saving potential is selected
to receive the fusion service. The best next position of trgoh point depends on the operation
realized (contraction or expansion). For contraction¢gdanear the source may save communication
and for expansion, nodes near to the sink tend to reduce thmuaaication. The two kinds of transfer
mainly induced by the heuristic were presented in the seeti@.2. The linear optimization can be
encountered in our heuristic, in the both versions. Buedght from the automatic fusion point, where
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Figure 4.4: Problem of the triangular optimization.

the flows are constant and known, and the distance from ety to the sink and source must be
known, we realize the linear optimization with variable flogmeasured by the pheromone levels)
and there is no necessity to know the distance from the neighio the requesters and providers.
Moreover, similarly to NetPull, just hop-by-hop migrat®are allowed by the automatic fusion point
placement, which brings a large overhead when the migratiodule is large.

A second kind of optimization generated by DFuse heuristtbé triangular optimization. It uses
the knowledge of links not being used at the moment for comaation. It changes the fusion point
saving one hop of communication (see figure 4.3). Althoudta# the potential to reduce the com-
munications cost, this potential is limited, in contraryatenore powerful concept introduced in our
extended heuristic. In Figure 4.4, we depict the limits @& thangular optimization. In the figure,
we present a scenario where multiple triangular optimiretiwould be stimulated. Although such
a topology has very low probability to occur in a geometriedam graph, it would be a stimulating
topology for multiple triangular optimizations. We aim taJe a chain of such optimizations. In
4.4(a), we can see that this, in fact, is not possible. Aleffirst optimization (from nodd to c, sim-
ilar to the optimization of the Figure 4.3), it is not possiltb realize another triangular optimization.
This happens because a link to the sink node (or to the reldg rexeiving the output of the fusion
from the first optimization) is necessary for further triateg optimizations. In the case of the figure,
a link from nodef to d is needed for the next optimization. Such a link cannot gkistause when it
will exist, the noded would never be part of the tree generated to deliver the daa the sources to
the sink. DFuse uses a bimodal link model. Therefore, nandin@ingular optimizations can occur in
the presented scenario.

Our concept of correlated flows, presented in the sectio2 4.4can cope with such situations in
a much better way. The two flows, coming from the source in reodedb would be recognized as
correlated by nodegandf of the figure 4.4(a). Due this correlation, they would acether to atract
the migrating module to their “direction” in the network. time figure 4.4(b), the resulting migration
if our extended heuristic would be used in the DFuse is sh@wrtan be seen in the figure, with our
concept, a much larger migration with increased savingsssiple.

Another important point is that the fusion point migratiooeg not profile the communication,
because the user must enter the data flow graph and the opg@intraction or expansion) is already
know. Not less important to remark, the automatic fusiompplacement is designed only taking in
mind data fusion applications, in contrast to our genenigise migration.

An additional important point is that both DFuse and NetBs# a bimodal link metric for routing
and distance calculations, which could yield to unfavazadituations, where bad links are used for
communication or migrations, decreasing the system pedoce.
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4.3 Problem Definition

In our approach we are optimizing the position of the sessigkthe system throughigration i.e.,
we try to find the optimal configuration where the communaatoverhead caused by the remote
requests is minimized.

For a determined system configuration, an assignment ofettvices to the sensor nodes exists,
where the total communication cost of the assignment ismiz@d. This optimal service allocation
stays only valid when there is no modification in the configiaraof the application/services (in terms
of new services being created or some being extinguisheidtieen of the communication pattern and
network topology changes). We will call this situationséable configuration phase

We developed an heuristic that dynamically re-assignsahéces in the system in order to reduce
the communication overhead. After some interaction, ifritbevork stays in atable configuration
phase the reassignment of the services will achieve a stablatsiuwith some communication cost
(the system will converge to a certain configuration). Faalesting our heuristic, we define the
problem to be solved in eachable configuration phasas an optimization problem.

The formal optimization problem is described here.

The system is represented by two graphs. The first is the nlefinesource) graph and the second
one is the processing thread (task/service) graph (simaildre task interaction graph).

The ad hoc network is modeled by an undirected gi@ph (V,E), where V is the set of wireless
nodes and a edgu, v} € E if and only if a communication link is established betweenlao € V
andv € V. The two nodes in this case are neighbors.

For each link, a weighting function attributes a positivéghe w: E — R™. This weight measures
the quality of a wireless link (for details, se#tual distanceconcept, section 3.5.3.5). We define for
each edge not in the grapfu(v} ¢ V), w(u,v) = co.

For each node, an additional weighting functiois responsible to characterize the amount of
resources available in the node.E — R*. This models the resource capacity of the node.

The processing thread (task/service) grdpk (M,C) models the communication requirements
between the diverse processing threads of the OS and appiicM is the set of tasks and services
(processing threads) running at the moment in the systenamedge{m, my} € C when there exist
a interaction (with communication) between the executahies my andm,.

For each interaction € C, a functionb attributes a positive weight that measures average ofdraffi
between the tasks/servicds. C — R™. This function defines the amount of interaction between two
modules of the system.

Moreover, the functioe: M — R™ attributes the amount of resources necessary for the éarcut
of each task/service.

Finally, the functionf : M — V defines the fixed assignment, i.e., the tasks that are fixéghass
to a determined node and should not be moved.

The service allocation in ad hoc network probleransists of allocating the tasks and services of
the task grapfl in the nodes of the netwok grag$ minimizing the amount of communication. The
amount of communication is measured by the sum of all pradatthe amount of communication
by the distance of the communicating entities. This distdaeneasured in terms of our link metric.

A schematic diagram of the input and result of the allocaisoshown in the Figure 4.5.

More formally, we describe our system as the following ojation problem:

Input: A processing threads (tasks and service) graph with wedgiddes, weighted links, and fixed
assignment functiofiT, b, e, f) and a network graph with weighted nodes and lif®sw,r)
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Figure 4.5: Example of an instance of process allocatioblpro.

Constraints: For every input instancéG,w,r, T,b, e, f),
LetS={s1,%,..,5} = {s€ M| f(s) = 0} be the set of mobile services (without a fixed assign-
ment)
The valid solution space is given by:
A (G,w,r,T,be f)=
= 1(91,92,,Gn) EV"WEV, 3 ficnjg=v} &(S) + 3 fmem|f(m=v} €M) < T(V)}
The tuple(g1, 9, ..,0n) is an assignment and has the following meaning: selyiteassigned
to nodeg;. The constraint assures that the services and tasks assigriee nodev do not
request more resource than the availability on the node.

Costs: For every assignmens,dz,..,0n) € .# (G,w,r, T,b,e, f), the cost is calculated as follows:
Let the functiong: M — V be:

f(m) if f(m)#0
gils=m otherwise

q(meM)={

COSt((g]-’ng'agn)a(GaW’ r,Tabaea f)) = z b({mlamZ})D(q(ml)aq(mZ)) (41)
{mg,mp}eC
WhereD(u,V) is the virtual distance between nodes € V.
Now, we define how the virtual distance is calculated.

Let P(u,v) = {p(lu"’), P p%“"’)} be the set of all possible paths between nagdes/ and
veVv.
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Y € Pot(E) is theh™ possible path where:
pr('|U7v> = {{U7XT}7 {XE,XE}, ) {er]—17xrk1}7 {XE,V}}1 th ev,i= 1.2, "’k’ keN

Now, we introduce the cost of a path:
k-1
PCos(p™") = w(u, ) + 3 WOe ) + WO
1=

The virtual distance betweenandv is the cost of the smallest path:

D(u,v) = PCos{p**)), wherePCost p\"") = min (PCos( pé“’w)) forb=1,2,..,j

Goal: Minimum

The problem is NP-complete (for a similar NP-complete atmmn problem, see [49]), since it
generalizes the well-known NP-complete quadratic assggnrRroblem (QAP) [110]. The QAP is
a special case of our problem when the services are in the samber as the processors and just a
single service (anyone) may be assigned to each processor.

4.4 Ant Based Service Distribution

In this section our heuristic to distribute the serviceshia sensor (or ad hoc) network will be pre-
sented.

4.4.1 Basic Heuristic

In our approach, we are optimizing the position of the s&wimn the system throughigration i.e.,
we try to find the optimal configuration where the communa@atoverhead caused by the remote
requests is minimized. In order to solve this online diseettimization problem, we decide to use
an ant inspired algorithm that is described in this sectlois relatively simple and has shown good
performance.

We assume, in our heuristic, that a initial distributiontod services in the network already exists.
This initial distribution is achieved through the serviostantiation method of the service manager
layer of the NanoOS. This is explained in the section 3.4.6.2

Given this initial distribution, the heuristic describeért is responsible to re-distribute (migrate)
the services in order to react to new demands or topologygesan

In order to describe our heuristic, some additional de@ingiare necessary.

The setP contains the types of all possible services of the systeroh Barvicesis an instance of
some typep € P. Every taska € {M — S} has no type.

Letr € M be the requester (a service or a task) of some seswc® The service statf] represents
the connection between the requestén the services (a flow of communication, generated by the
requests and responses). The set of all flows of the systenilixiv\WV.

In our system, each nodec V has a pheromone tabip = [p"g]reMﬁes, wherep‘jGr €1[0,1].

This pheromone level represents the request rate (and}nmaffide by the requesteto the service
i that is crossing the node In our approach, all nodes are responsible for the seniatakalition,
since each node’s evaluation is based ofoital view. Moreover, the needed information is constantly
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changing, due to frequent pheromone updates so that trengféhe decision to just certain nodes
would incur an high additional communication overhead wjitiestionable efficiency gain.

Using an analogy with the ant foraging behavior [19], thevisess in our approach are the equiva-
lent of the food source. The calls made by the requesterbam@gents (or ants) and the requesters are
the nests. The wireless links form the pathway used by tie &xhile the requests are being routed
to the destination service, they leave pheromone on thesnode

The pheromone tables in each node are updated according ¢gtiation:

pg (t) +dp(h)
(t+1) = —F—F—7— 4.2

where thed p(h) is the variation of the pheromone and it is a function of tlze sif the packet.

After the introduction of some basic concepts of our heigriste will present here the component
policy of our migration mechanism:

Transfer policy: In our heuristic, each service is independent and may detsielé the moment of
starting a migration. Therefore, there is no pre-selectibnodes that will start a migration.
The target of a service migration is every node that has énoegpurces to accommodate the
incoming service.

Selection policy: There isn’'t a node-wide selection of which service shouldrate in our system.
As already said, this is a individual decision of each servitis based on a threshofithat is
compared to the measure of the current communication cadrbithe service (we denote here
¥s, the communication overhead brought by the interactiowéen the requesterwith the
services). Each packet coming from the requesteo the services brings the virtual distance
traveled. Multiplying the size of the packet by the traveliistance, the communication cost of
the packet is calculate¢S’ is the sum of all communication costs fromno sin a given interval
of timety,. For a services, if 3o Yy > 0, the servicesis selected to migrate.

Location policy: The main part of the heuristic is about the location poligy,, iwhich node should
receive a migrating service. This will be described in thetisection.

Information policy: We use in our heuristic almost just passive information gatlgy. In several
load balancing algorithms, there is a active broadcasteoftinrent status of a node, for example,
informing that the node is idle. We avoid this approach ineorb save the scarced energy
resource. The gathering of information is made in the formpleromone tables in the nodes of
the network.

Now, we will describe our location policy in detail.

The general idea is to migrate the service to some node thainresome requests flow (path)
or near to it, in the direction of a requester. Each servicedeaeral flows coming from the diverse
requesters.

In order to determine which node should receive the sersji@a explorer packet will be used.
The explorer packet is just a special packet that travetaititr the nodes of the network. The next hop
is defined based on the pheromone value of the neighborhduoel fifal location of the exploration
packet will eventually be the target node for the migratibs.o
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4.4.1.1 Exploration Packet

The explorer packet has the following fields:

packet_id: The explorer packet identification

service_id: The identification of the service

source: Node actually hosting the serviesefrom where the packet originally comes.

allowed_h: The number of hops that the packet may still migrate

history: A ordered list of the visited nodes. L€ V be the last node visited by the explorer packet.

potential pheromone: Stores the potential pheromone value (will be describashlatVe will use
the termppotential to describe it.

In the initial situation, the node that actually hosts thevise s receives the explorer packpak
with allowed_h=k. Thehistory field is empty and theotential pheromone is 0.

Now we will describe the two main phases of the selection efrtew target node to the service
s through the migration of the exploration packet. The first pacalled exploration phase and the
second one settlement phase.

4.4.1.2 Exploration Phase

Upon receiving the packet, a node decrements the counteveaifits whethenllowed_h=0, which
means that the heuristic should execute the settlement pras no more new nodes exploration
is done. Ifallowed_h> 0, the next destination of the packet will be selected usiregfollowing
procedure:

Letu €V be the actual location (node) of the explorer packégh, is the set of neighbors af,
andd € Ngh, is a neighbor ofi.

D xeM pdss< it q 7& |
S — Yye(Nghy—1) ZxeM pész-i-pot_pher 43
ud pot_pher . .
otherwise

Yye(Nghu—I) xeM Py5§+ pot_pher

b; 4 represents the sum of the pheromone of all flows coming titirougled to the services
normalized over the total amount of pheromone related toasts to the servicgin the neighborhood.

It represents relatively how much of the traffic directedhe services is using the node as path
(proportional use ofi for the requests). Thkj 4, in the exploration phase, will act like a force
attracting the exploration packet to the correspondingenod

The potential pheromone field is used to store the sum of all other pheromones relatetdet
services, coming from the neighbors not selected as next hop for théoeation packepak It will
be used, during the travel of the exploration packet, tarese the level of pheromone potentially
caused by those flows if the service would migrate to the nailegbevaluated. An example can be
seen in the Figure 4.6.

The main idea is try to forecast which situation would hapipéime service would migrate to the
current exploration packet position and which would be teetmop for a possible migration. The
assumption made here is that the request flows not attenddokdyrst migration decision would
have their path size increased exactly by the pathway exédwtthe exploration packet. This means,
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Figure 4.6: Example showing the new potential path of a flowmervice would migrate to the next
hop.

although the pheromone level from these flows would not apioetihe exploration packet when far
away from the nodevj hostings, they should be considered when deciding the next exptorati
packet hop. This is shown in Figure 4.6, where the explangt@cket is in the node. It uses the real
pheromone of the nodgand, in the case of node the potential pheromone level measured by the
first migration of the exploration packet. The potential ygimeone level is the sum of all pheromone
levels related to the servisghat are in all other nodes thanbecausel was selected as target for the
first exploration packet migration. In this example, thegmtial pheromone level is exactly the same
level of the pheromone on nodte It will be formally defined later on.

The next hop of the explorer packet is selected using thetiequé.4. Let's callj the selected
node.

& = MaXgengh,) (Bl_q).d € Ngh, (4.4)

If the selected node is the last visited node (ijes |), the exploration phase ends and the set-
tlement phase (see next section) is executed. Otherwise|ltved_h field is decremented, and the
current node is inserted in théstory field. Moreover, if the exploration packet is in the same ludst
its correlated service, the fiefgbtential pheromone is updated using the equation given in|4.5.

pot_pher= P, forxe M (4.5)
{heNgh|h#j}
Finally, the packet is sent to the new destinatjpmwhere the exploration phase restarts.

4.4.1.3 Settlement Phase

After the exploration of possible candidates to host theises, this phase is responsible to find the
appropriated node with enough resources to host the service

Let’s callu the actual node of the exploration packet.

The idea of this phase is to proof whether there are enoughumess in the candidate node to
host the service. In the positive case, the service will migrate to the nodethk negative one, the
neighborhood will be checked and, according the neightmmttexctual situation, a neighbor may be
selected or the exploration packet may migrate to the lagied potential candidate (retrieved from
the history field), to search there for the final destinatibthe services.

The following procedure is executed in the settlement phase
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e The current nodel is tested whether it may host the serviceThe test consist of checking
whether nodel has enough free resources. The formalization of the tedbeaeen in eq. 4.6.

g <rw- Y em (4.6)
{meM|q(m)=u}

o If the resources are enough, the settlement phase is teadiaad the nodae sends a message
to the servicesto trigger the migration process.

e Otherwise, the same test is made in all the nodes of the disghborhood ofi. The virtual
distance is used for ordering the test process. Nodes wgthadlest virtual distance are tested
first. The process ended when a suitable node is found heendde with enough resources and
the smallest virtual distance tois selected. Let’s denote this nodefas

o If w(u, f) < w(u,last(history)), i.e., the virtual distance betweenand f is smaller than the
virtual distance betweamand the last visited node by the exploration package (beéaehing
u), the nodgg is selected definitively to be the new hostsofA message is sent ®in order to
start the migration.

e Otherwise, the exploration package is sent back tdetsighistory) node. The nodeis deleted
from thehistory field and the settlement procedure starts again.

The procedure described above repeats until an appropedtis found. In the improbable case
of not finding any new node to host the service, there are tvasipilities. The first is to cancel
the migration. The second, when swap operations are deswadist of swapping the servisavith
services hosted on the node where the exploration packetwiare the settlement phase was started.

4.4.1.4 Example

In the Figure 4.7(a), a scenario with 9 nodes is presentedhisnscenario, nodg has a requester
(r1) of the services; that is located at node. At the same time, requesters andrs ,located at
nodesb andc respectively, are accessing the same service. Let’s asthanthe pheromone related
to the connectior§?! in the nodeh is pgf} = 0.3, the pheromone of the connecti&f} in the nodes

j,ukis pfS:,‘jk 0.2 and the pheromone of the connectig is p’S{" = 0.2. After deciding to start

the mlgratlon process, the exploration packet is Iaunchedaniev According equation 4.3, force

attracting the exploration packet to the ndds b, = m 0.428 whereas the force attracting
to nodej is bj}; = 554255 = 0.571. This means that the first step of exploration phase iertd s

the packet to the node Before that happens, the virtual pheromone field re(hﬁyez 0.428.

In the nodej, the same analyses is made in order to determine the nethxbpnstead of using
the real pheromone levels on nodén the equation, the potential pheromone value carried by th
exploration package is used. Now the packet is sent to theunod

In this node, the situation is different. The force attnagtihe exploration packet to the nofiés
bil; = 53795707 — 0-428 whereas the force attracting to néaek is b}y = by = 53755755 = 0-285.
Therefore, the selected next hop of the exploration packathe nodej. As nodej has been already
visited, the heuristic goes to the settlement phase.

The settlement phase is illustrated in the Figure 4.7(b)e fliist step is to check whether there

is enough resource for the service in the actual positiom@feixploration package. In the example,
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Figure 4.7: Example of the algorithm for a scenario with 9ewd
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Figure 4.8: Instance of the problem that will result in a wgonigration decision due greedy behavior

this is not the case, because we suppose that each node nay hmasst one service and nodédnas
alreadys,. Therefore, a new candidate must be searched.

The neighborhood aofi is analyzed using the virtual distance to define the priaiyer. Better
links have priority. The nod¢ has enough resource for the sernggeBecause it is also the last node
visited, it is promptly selected for the migration. A messigsent to node; to trigger the migration
of sto nodej.

4.4.2 Extended Heuristic

In this section, an identified problem caused by the greetiyr@af the presented algorithm is de-
scribed and a improved heuristic that tries to overcome saiwersarial situations is proposed. It is
also inspired by the nature.

For the purpose of simplification, we will assume for thedoling example thahllowed_h=1,
i.e., just one hop migrations are allowed. Neverthelessptiesented shortcoming of the heuristic is
present for arbitrary values of this parameter.

The presented basic heuristic has a behavior that leadbépsonal solutions when the following
situation happens. More than one nearly located requegsershe same service, but due the used
routing algorithm, the requests are routed through diffepaths. An example of such situation is
depicted in Fig. 4.8. This situation can only occur if there more than two requesters using the
same service. It is more likely to occur when the service éated in a node-dense area of the
network.

In the Fig.[4.8, the requesters, r, andrz are acessing the servisan the nodeu. The total
communication cost can be calculated using the eq.4.1.

In order to calculate the communication cost, we assumdhbatverage bandwidth utilization is
proportional to the pheromone deposited in a node insidédivepath. Thus, the total communication
cost is 1135, calculated using the equation|4.1.

Now, we analyze the migration that would be decided by thécl@suristic. As the pheromone
value of the nodén is higher than the value deposited in nogeendk (separately), the exploration
packet is send to node Let's suppose thatllowed_h=1, the service would migrate to notie The
total communication cost of the system is in this cag21

This result shows that the heuristic, in such adverse gituaselects the wrong node to migrate
to, increasing the total communication cost of the systeinis iappens because of the lack of in-
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formation over not directly-connected parts of the netw@ch node has just thecal view of the
system, i.e., just neighbors information is available)e Timin idea of the improvement is to migrate
the service not to the neighbor with the biggest amount afiests (highest flow), like presented in
the previous section, but to the neighbor whose flow, in soaré B crossing nodes near to other
flows requesting the same service. If the defined metricu@irtistance) has (geographical) norm
properties, this will be equivalent to migrate the servicéhe geographicalirectionfrom where the
highest amount of requests is coming. Two flows related toghaesters; andr; (see Fig. 4.8) are
transversing neighboring nodes in their patls,tthus, they should attract the service insteatsof

We will define that such flows transversing neighboring noaiescalled correlated flows. The
definition follows later on.

In addition, the new migration heuristic isn't just basedtom pheromone level to drive the settle-
ment of the services, but also on a “potential goodness” df eade to receive highly loaded services
and the energy level of the nodes. The “potential goodnggsheasures how appropriate is the node
v to receive servicea, i.e., whether the node is central in the network and theigessis a highly
required one. If the complete network topology would be kndw each node, the centrality could
be measured by the sum of the distance to every other noded@hef the potential goodness is that
services with high request rates are coupled with high foitibato locations with good connections
to others. Just using this rule, it is possible to obtain g not optimal) placement of the services
in the network([19].

In the same way as the basic heuristic, the location politheextended is divided in two phases:
exploration phase, where a exploration packet is used fam@xng possible candidates for hosting
the service, and the settlement phase, where a good camdidaing the explored nodes and their
direct vicinity is selected to host the servige

In the next section, we will describe formally what are clated flows. Subsequently, the struc-
ture of the exploration packet will be presented. Followithg two phases of our extended heuristic
are described.

4.4.2.1 Correlated Flows

The concept of correlated flows is important in the extendadiktic. It will be defined here.
Let ngh(v), v €V be the set of all neighbors of node andnghnv), v € V be the set of all
neighbors of node, including nodev.

Definition 4.4.1. The flows 3,§,,...S,, coming from different requesters and requesting the same
service s (hosted in the node u), aerrelated flowsff it exist an multiset O= {vy, Vo, ..,V }, where
the ri" element of the multiset is one node selected from the paltizedaby the flow S(i.e. wis
selected from the path of the flo }S where the following holds¥g,h € O,3jy, j2,.., jm € O|j1 €

nghr(g), j2 € nghr(j1), ..., jm € Nghr(jm-1),h € nghr(jm) and u¢ ngh(g) Ungh(h).

Wherengh(v) denotes the neighbors of the nodandnghnv) denotesigh(v) Uv. In the follow-
ing items, the characteristics of the correlated flows are@yain explained:

e The correlated flows are originating from different reqeestand are requesting the same ser-
vice

e They use different pathways to achieve the service

e Two flows are direct by) correlated if they have at least one node in the pathwayidhditect
neighbor of a node in the pathway of the other flow
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e The correlations are transitive, i.e. Sf is correlated witt§, andS, is correlated witlg,, §
is also correlated witls,

4.4.2.2 Exploration Packet

The following new fields are necessary in the exploratiorkggn addition to those described in the

section 4.4.1.1):

followed requesters: A list of requesters whose flows ®are being followed by the exploration
packet (in the first round). We will call this SER C M.

correlated requesters: A list of all requesters that have correlated flows to some berof theFR
set. We will call this seCRC M.

correlated potential pheromone: List of pheromone values induced by the correlated reqrgeste
The variablePh,,r € CRreturns the correlated potential pheromone of a correlifwed

non-correlated potential pheromone: This is just a new name for thetential pheromone field
of the basic heuristic. It include all pheromone (in the fimtind) that don't contribute to
the selection of the next hop of the exploration packet. dhuation, we call this field as
nc_pot_pher. Note that differently from the previous field, this is noist bf pheromone but a
field that store the sum of all non-correlated potential phemne.

In Figure 4.9, the followed requesters, correlated regusgiand potential pheromone) can be
seen. In 4.9(a), the initial state of the system is shown.r& laee tree requesters; (r», rz) using
the services. The service decides to start the migration process andtesthe exploration packet.
The first selected node is(the next section will clarify how this decision is made). eTpacket is
sent to nodg. This situation can be seen in the Figure| 4.9(b). From thisrgte, we will describe
the meaning of the new fields. Tlelowed requesters are the requesters that cause the decision of
migration of the exploration packet to the nodé& hey are responsible for the flow that the exploration
packet is following. In the example, the requesters followed by the exploration packet. But for
that decision (going to nodg, the pheromone of the flow coming fromwas summed with the flow
§,. because it is a correlated flow (due the link between nadegic). This means that the identifier
of requestemr, should be stored in theorrelated requesters field. As it can be seen in (b), we
assume that the correlated requesters have a shortcutgerthees if the service will migrate to the
actual position of the exploration packet. Potentiallgythvill generate pheromone that increase the
tendency of migration in the direction of the followed regtees, and not back as the non-correlated
potential pheromone do.

The fields described here are initialized with zero and fillgth the real values just before the
exploration packet leave its first node (the node hostingéneices).

4.4.2.3 Pheromone and Correlated Flows Table

In addition to the already presented pheromone tBpilkat stores the rate of requests that are crossing
the nodev, there is a second tablg that stores the information about flows occurring in the heig
borhood ofv (correlated flows)R,(S) : M x S— {0, 1} return 1, iff some direct neighbor of the node
v is routing a request from the requestdo the services.
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point where rl and r2
become correlated ———

O
i (b)

Legend
@®» Requester s > Prediction flow (Potential)
Sl Service 00000 > Real existing flow
Migration force
Pheromone Value

¢ Exploration Packet

Figure 4.9: Example depicting the concepts of followed estiers, correlated requesters and potential
pheromone.
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The idea is that neighboring communications (like $ieandS, in the figure 4.8 and also in the
figure[4.9) can be recognized as being originated in the sateork “direction” and traveling to the
services.

The tableF, is filled without the necessity of any direct exchange of rages between the node
v and the neighbors (just using passive listening, snoopiagih node just hears passively the com-
munication originated in neighboring nodes to fill the talitethe Figure 4.9(a), the nodasandc are
neighbors, therefore the communication flogsandS’, are considered correlated, i.Bo(S,) = 1
andR(S) = 1.

There is a constraint when filling the table: if the nadeas a directed connection to the nade
where the servics is located, it ignores all the neighboring communicatioingdo to the service
s(i.e., forvr e M, R/(S) = 0). This avoids the problem that near the sink (sergjcell nodes can
hear each other, resulting on a false interpretation thag¢@liests are coming from a similar network
“direction”.

Each request to the services now carries the information collected in the nodes aboutivhi
requests to the servigare occurring in neighboring nodes (i.e., while being rethto the servics,
the F, information is added to a special field of the request packely ,S,) : M x M x S— {0, 1}
return 1 iffr; andry are neighboring requests (correlated flows) regardingcsesy

4.4.2.4 Exploration Phase

The exploration phase from the extended heuristic is sirtolthe basic one, nevertheless, here neigh-
boring flows are recognized as correlated and used in ordinivie the exploration packet. The first
thing that the noder must do upon receiving the exploration packet is again tdwerhether al-
lowed_h is 0. In this case, the settlement phase starts. If in songhbeiing node, a flow coming
from a requester present in therrelated requesters is found and the node receiving the exploration
packet is not a direct neighbor of the node containing theices, the exploration phase also ends
and the settlement starts. The fact of encountering a edectFlow in some direct neighbor highlight
that this position (node) is the point causing the correlation. This is showed, fanegle, in the
figure 4.9.

Otherwise, the next destination of the packet is defined.hénariginal heuristic, the “force”
attracting the exploration packet from nodéo noded (b 4, see eq. 4.3) does not take into account
the requests coming from near areas of the network. In thisareof the heuristich;, ; is calculated
taking in account the pheromone values and correlated fiskemation (eq. 4.7 and 4.8). Here also
the non-correlated potential pheromone and the correfaitehtial pheromone are used.

If we are calculating the force of a node that has not beeradyrevisited (i.e. d # I, where
| = last(history)):

flows using d correlated flows potentially correlated flows
d g d d
ans; +ZAZA > Py lpgl-F(S,S)+ Z Z (P51 -F(S.§)-Phy
S XE xeM zeM geNgh,—{d,| } xeFRyeCR
ud = normali (4.7)
izer
And the attraction force for the last visited node is given by
nc_pot_pher
b= oz (4.8)

normalizer
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where:

normalizer= (S pLk+ pg-[p&]-F(S, )1+
ye(Ng%—{l}) XEZM % x;/IZEZ/IgeNgh,Z—{dJ} % &
+ 33 (P51 -F(S.S):Phy+ ne_pot pher
xelSFyelCF

The first term of the €q 4.7 is the same of the/eq! 4.3, that mé@msum of all requests coming
to servicesthrough nodal. The second term of the numerator is the sum of the pheromemerated
by correlated flows of the flows present in the natleAs already explained, the functidn tests
whetherS andS; are correlated flows, and the ceiIirﬁg%} checks whether the connecti&) exists

in the noded (i.e. p% > 0). The denominator normaliz@ﬁd (0 < b4 <1). The third term accounts
the correlated potential pheromone already explained and shown in Figure|4.9. As already saéd, w
assume that theorrelated potential pheromone will act in the same direction of the followed flow,
i.e., should be summed to it.

In the eq. 4.8, we calculate the force in the direction badkéonode currently hosting i.e., the
force attracting the exploration packet back to the lagtadsnode (ast(history) =1). We use here
the non-correlated potential pheromone because we assume that the flows that are not correlated to
followed flows will act with a contrary force (see Figure 4.9)

Again the main idea here is to forecast the situation thamacgewill encounter if it would migrate
to the position of the exploration packet.

The next hop of the exploration packet is again selectedgus$ia equation 4.4. Let's call the
selected nodg. If the selected node is the last node visited (ije= |), the heuristic starts the
settlement phase (see next section). Otherwisealtbeed_h field is decremented, and the current
node is inserted in theistory field. Moreover, if the exploration packet is in the same fassthe
service (is the first exploration phase being executed)jdhis of the exploration packet presented in
the section 4.4.2.2 are updated:

e The fieldfollowed requesters receives all the requesters whose pheromone generatec by th
corresponding flow contribute to seleicas winning node, i.e., all requesters usgiat have
positive pheromone in the nodeFR= {me M\p’% > 0}. In the example shown in the Figure
4.9, the requester, would be added to this field.

e All correlated requesters of the flows added in the previceld fire included in theorrelated
requesters. This means th&R= {xc M[3me FR F(S,,S) = 1 and3he (Ngh,— {j}), p§ >
0}. In the example, the, is included in this field.

e For each requester in therrelated requesters (r € CR), thecorrelated potential pheromone
is updated by:
Ph = p% (4.9)

e Finally, the non-correlated potential pheromone is also update, here instead of individual
pheromone value, just a summarized value (sum) is stored.

flows that don't usg correlated flows
nc_pot_pher= Y > g — > > Y p%-F(@,@) (4.10)
{heNghy|h#j} {xeM} {keNghu|k#j} {xcFR} {yeM}

Finally, the exploration packet is forwarded to the ngdand the exploration phase starts again.
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4.4.25 Settlement Phase

Again after the exploration phase, where possible hostdidates for the serviceare appraised, the
settlement phase is responsible for selection of the de famiv host of servics. For this section,
let's call u the actual node of the exploration packet.

In the basic algorithm, the main concern of the settlemensetwas about the amount of free
resources of each candidate. In this extension, besideantioeint of free resources, a “potential
goodness” of each node to receive highly loaded servicesrendnergy level of each node are also
addressed in order to select an appropriate node to theseie “potential goodness,s measures
how appropriate is the nodeto receive servics, i.e., whether the node is central in the network and
the services is a highly required one. If the complete network would bewndy each node, the
centrality could be measured by the sum of the distance ty ®fieer node. The idea of the potential
goodness is that services with high amount of communicatiercoupled, with higher probability, to
locations with good connections to others. Just using thes it is possible to obtain good (but not
optimal) placement of the services in the network [19].

Like in the basic heuristic, each node has just local infdimna This means that the “potential
goodness” cannot rely on global knowledge. Although withglabal knowledge about the network
topology we cannot determine exactly whether a node isakntthe network, we use local informa-
tion to approximate it. We defing,s, wherev e V, se Sand 0< nys < 1:

Mus = [1— D(v.g) _]-h(s) (4.11)

geNgh, (‘Ngh/‘)

WhereNgh,,v € V the set of neighbors of and é > 1 gives the importance of the number of
neighbors.h(s) : S— [0, 1] returns the current request load (how much traffic) thatisewis cur-
rently serving. This can be measured by means of how mucloptugre concerning the servisg¢he
neighbors of the hosting node have hfh)) = 0 means that there is no pheromone in the neighboring
nodes and 1 means a maximum pheromone sum was reached).

The energy of the node is modeled By and 0< E, < 1, where 1 means full battery and 0
depleted.

Now, we calculate the so called settlement fitness of a madeeceive the service(y 2, ki = 1):

sfis=ki-Nus+ko-Ey+ka- [1—w(u,v)] (4.12)

Whereu is the node where the exploration packet is currently lataléhe third term penalizes
nodes that are away from the existing flow, as we will desaniod.

In order to gather the settlement fithess when exploring étevark, a new field is necessary in
the exploration packetest settlement fitness (or bsf). It stores the best settlement fithess found up
to the moment. For each node that the exploration packés ¥isithe exploration phase), it calculates
the settlement fitness of the node and also calculate thesfitof good connected vicinity nodes (with
the link metric are less than a given threshgjd The third term in the equation 4.12 penalizes the
links according their virtual distance, i.e., nearer \itgimodes are privileged. The node actually
visited by the exploration packet is benefited largely (beeav(u,u) = 0). Just nodes with enough
resources are consideredg) <r(U) — ¥ rmemjgm)=u} €M)). The calculated values are compared with
the existingbest settlement fitness and if it is necessary, the field is updated.

After these definitions, we will describe the procedure efskttlement phase.

The following procedure is executed:
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e The settlement fitness of the nodand the good connected neighborhodki€ Ngh,|w(u,k) <
y}) is calculated. Just nodes with enough resource are sel@eseek r (U) — 3 (mem|qm)—uy (M)
Let’s call the highest settlement fitnesssdgin.

e Thebest settlement fitness is compared t@ fyin. If sfuin > pbsf, wherep <1 is the accepted
difference, the winning node is automatically selected.this case, the settlement phase is
terminated and the nodesends a message to the sersde order to trigger the migration
process.

e Otherwise, the exploration package is sent back todks#history) node. The node is then
deleted from thehistory field and the settlement procedure, here described, idtagain.
This is repeated until an appropriate node is found. In tise cénot finding any new host, the
migration may be canceled otherwise the swap operation maxgéd as in the basic heuristic.

4.4.2.6 Example

In the Figure 4.10, an example of the service migration isveltb In (a), the initial situation, with
tree requesters{, r, andrz) and a provider (servics) is depicted. The exploration packet has been
launched and resides in the node The heuristic is in the exploration phase. Using the equati
4.7 and 4.4, the next hop is selected. The nptias been chosen, becaegandS’, are correlated
flows, therefore the pheromone of the both flows are used ierdoctake the decision. We have here
bﬁ’j =04 andbﬁ’b = 0.3. The fieldsfollowed requesters, correlated requesters, correlated potential
pheromone, non-correlated potential pheromone are updated based on the rules described in section
4.4.2.4. For this exampléollowed requesters receivesry, correlated requesters receivesrs, corre-

lated potential pheromone receives @ andnon-correlated potential pheromone 0.3. Finally, the

exploration packet is sent to noge

In (b), the next situation is described. The exploratiorkgads in the nodg, the settlement fithess
is calculated and thigest settlement fitness field is updated. The next hop of the exploration packet is
calculated using equations 4.7, 4.8 4.4. Itis impot@anemark that now two pheromone values
are accounted in the node the real pheromone generated by the fi§vand a potential correlated
pheromone. This correlated pheromone is used to forecaditiation in the node (in this cage
if the service would be placed there. It is read from the figldelated potential pheromone. In
the nodeu, the pheromone that acts is the non-correlated potentaibpimone, read from this field in
the exploration packet. Here we have agaﬁ’g =04 andbiu = 0.3. The exploration packet is sent
therefore to noda.

This next situation is depicted in Figure 4.10(c). The exgtion packet is now in the node The
settlement fithess of the nodes are calculated and compditethebest settlement fitness. Nodea
has the higher fitness and the value is updated in the exjplonaaicket. As noda has a correlated
flow in a neighboring node (node), the exploration phase is ended and the heuristic goeseto th
settlement phase.

In the settlement phase, the settlement fithess from nae from the good connected neigh-
borhood is calculated. Just nodes with enough resourceeeted (in this example, let's assume
thata andc have enough resources). The higher settlement fitness isatenhto thebest settlement
fitness. In the example, the both are the same, therefore, adslselected to host the serviseThe
servicesis informed about its new destination and the migration d¢art.s
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Figure 4.10: Example of service migration using the extdrideuristic.
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4.5 Discussion

In this chapter, we present two heuristics that aim to redbheecommunication overhead among
the tasks and mobile services in an ad hoc wireless netwoskrmsor network. Many existing load
sharing/balancing protocols have different objectivetween them we can stress the minimization
of the make span of a task set. Just in some proposals the adication delays are taken in account.
Differently from these algorithms, our main focus here igg¢duce the communication cost. This
cost is calculated using the amount of communication bedadjzed between two entities and the
distance of this communication (for this, the link metricused). Moreover, our heuristic (the basic
and extended versions) is developed to provide dynamieogdifinization during the run time of the
system. If the topology of the network changes, there is danaatic response from the service
distribution heuristic.

As already presented in the section 4.2.3, other WSN midatietvirtual machines have also
pursued this objective. Nevertheless, as presented, gquoagh is more flexible (not targeting just
one special set of applications) and produce better plactsme

In order to produce a self-organizing system, the algorithroompletely distributed and each
service can be seen as an agent with local information arad ifates to decide about the migration.
We start from the idea coming from reactive agents: intetiigoehavior (in our case, the search for
a global reduction of the communication overhead) emengas fhe interaction of simple behavior
distributed over the agents [134]. Our services (or agart)gnize the current environment state
(pheromone levels in the neighborhood) and start the disggarocess in a network direction, guided
by this local view. The communication is done by means ohséirgy: the exchanged message be-
tween the requesters and the services leave informatidmeigammunication path (the pheromone
values). Stigmergy means that the communication is domgubke environment instead direct ex-
change. Because the heuristic deals with movement of coem®m@long paths in the network, the
approach of marking paths and communication through thik nmstead of exchanging explicity
messages has an inherent advantage. The pheromone sthirestliy statistical information about
the communication patterns without the need of explicitim@mmessages.

The agents, in our system, have an egoistic behavior: eaghries to optimize its local utility
function by means of how much its communications are costiitiout taking in account the goal
of the other services in the system. We aim, with this apgrp&z find a good placement of the
services avoiding the complexity and overhead of an appredath a more global view and global
control about the system’s objective. Moreover, due toitidependence between agents, the system
is robust against failures and topology changes. Nevexdkehs usual for such sort of algorithm, we
are finding suboptimal solutions.

Another important point to be highlighted here is that alijio some similar metaphors are used
(like pheromone value, ants and stigmergy), the basic athdgd version of the heuristic developed
here are not modifications of the well known ant colony optition algorithms [43, 19]. These are
based on a distributed autocatalytic process and may betassmlve classical optimization prob-
lems. Like genetic algorithm and other meta-heuristicey thave been originally developed to run
in a centralized system (but may be distributed). Our allgors, in other hand, are running in a
distributed-fashion among the nodes of the sensor netwutlage developed just for solving the pre-
sented problem. Moreover, they do not use the autocatadffeéct in the same way as the described
in the ant colony optimization. Autocatalysis plays a caintole in our dynamic clustering approach,
which is presented in the next chapter.

In the basic and extended version of the presented heungti@re dealing with migrations of
complete services. Those migrations have advantage whevaweto control the number of copies
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of a service inside a given cluster or long distances existden the service and the providers. We
combine this long distance migration with an approach tied to better distribute the load of the ser-
vices by migrating just one context to another service. Wherservice is migrating in the direction
of a group of providers, the context belonging to other ptex$ being penalized by the migration
and placed far from the service are marked as available f®ridbal context-only migration. This
algorithm will not be presented here and can be found in [151]

The disadvantage of such context migration is that the comstate area of the service must be
the same for both source and target services. Moreoverwifssgvices are always created, a large
overhead of controlling several incomplete instances e@stime service is generated.

Another important point to remark is that the heuristic preed here is dependent of the underly-
ing routing algorithm. A single-path routing algorithm igsirable and, for a better performance, the
virtual distance should be used as metric instead of sordéitnaal approaches that use the number
of hops.

A common situation that may occur in dynamic schedulinggarols and may be also a concern
to our heuristic is an instable behavior. For example, whemmodule communicate in burst mode,
carrying a lot of communication during certain periods almicst none in other periods, unnecessary
migrations may happen. To avoid that, the intensity of pimmoe values layed by the communication
packets in the network and the evaporation of the pheromarst be correctly adjusted, in order to
trigger migrations just when a intensive communicatiordba significant period of time.

Using the heuristic presented in this chapter, NanoOS aarid® a transparent service placement
relieving the application’s designer. He can concentratthé program'’s logic and create complex
applications without concerning about the physical positf the services. This system level place-
ment results in a smaller energy utilization of the sensdwokk and adapts the system as well as
applications to the actual network topology and commuidoateeds.



Chapter 5

Self-Organizing Cluster Construction

5.1 Introduction

In general, there are two heuristic design approaches foagement of ad hoc networks at different
levels (e.g. topology control, network layer, applicajiomhe first method is to have in all nodes the
knowledge of the (entire) network and let they manage themse This circumvents the need for
more advanced organization. Nevertheless, this genettaesverhead in terms of communication
and memory at each node. Each node must, for example, nmanoiates to the other nodes in the
network. In large networks, the number of messages needsthitatain routing tables may cause
congestion in the network and depletes the energy of thesnddiimately, the need of individual
self-management will generate a huge exchange of messageserhead.

The second approach is to identify a subset of nodes witkinétwork and vest them with the ex-
tra responsibility of being a leader (clusterhead) of dem@des in their proximity. The clusterheads
are normally responsible for managing communications éebtanodes in their own neighborhood as
well as routing information to other clusterheads in otheighborhoods [4]. This creates a hierarchy
in the network. Clustering in large-scale networks was psep as a means of achieving scalabil-
ity through a hierarchical approach [123]. Some exampladustering benefits can be found at the
medium access layer, where clustering helps to increasensyspacity due to the promotion of the
spatial reuse of the wireless channel, and at the netwoss,layhere it helps to reduce the size of
routing tables. Wireless ad hoc networks benefit a greatfdwal clustering.

In this chapter, we present the state of the art of clusteriregl hoc networks, and after this, two
new heuristics to organize an ad hoc network into clusteiffefently from the previous approaches,
our proposal addresses the problem of partitioning the s1oflthe network in multi-hop groups with
a guaranteed minimum amount of resourgésr budget) in each one of them. This kind of clustering
is useful in various scenarios. In our case, the clusterggiktic is used in the development of an
efficient service distribution in our OS.

The idea is to group a complete instance of the OS and agplicsg¢rvices inside a single cluster.
This brings a reduction of the organization overhead, sihealiscovery process will be locally con-
strained (within one cluster) and the pheromone tables insth@ service distribution must only store
pheromone values for services used by the applicationdrtid cluster. Furthermore, a simple but
efficient service discovery based on a central broker pstedican be easily implemented. Moreover,
a topology control of the network can be easily realized thasethe hierarchy created by the cluster-
ing. The clustering brings additional advantage: the apfibns can implement algorithms based on
this created hierarchy that help them scale.

99
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Constraining an instance of the OS inside a cluster fatghtéhe maintenance of the consistency
of the OS, because the dependencies among the differeni@sahe constrained within the cluster’s
nodes. Moreover, in the worst case, for any distributedrélyn, a node may keep state information
about all other nodes in the cluster and not the completearkhi his is true even if a central control
paradigm is used.

5.2 State of the Art - Clustering in Ad hoc Networks

In this section, a literature overview of clustering altfums developed for ad hoc networks is pre-
sented.

The idea of clustering is to partition the nodes of a graptulrssts in a way that the union of the
subsets contains all nodes of the graph. For each subsdtigterd, some conditions should hold.

Given a graphs = (V,E) representing a communication network, where vertexeshar@ades
and edges the communication links. The clustering processtct subsets of nod¥gi =1,..,n
whereUi—1_nVi =V, such that each subs¥t induces a connected sub-graph of G. These vertex
subsets are clusters. Ideally, the size of the clusters ifalh desired range. Moreover, for several
approaches, a special vertex in each cluster is electefresent the cluster and itis called clusterhead
[32].

According to [69], the following design factors differesi the various approaches:

Clusterheads: The partition of the grapN into clusters does not require considerations about the
internal structure of clusters. However, it is common to mefa node that will assume the
leader role in the cluster.

Neighboring Clusterheads: It can be defined that clusterheads may or may not be direghbeis.
When not, the clusterhead set formsiatlependent seta subseC C V such thatvcy,c, € C:
(c1,¢2) ¢ E. Normally, the approaches try to calculate thaximum independent sethich
contains the maximum number of nodes. Thaximum independent sistalso adominating
sefl. Determining thenaximum independent detan NP complete problem.

Overlap of clusters: Clusters may overlap when it is allowed that member nodagjgate in more
than one cluster.

Maximal Diameter: Although normally clusters have diameter of two (when carcted by then-
dependent sitit is also possible to have multi-hop clusters with lardexmeters.

Hierarchy of Clusters: Either a two-level or multi-level hierarchy is used. In thaltilevel hierar-
chy, each cluster is considered a node in a recursive clostestruction method.

Rotating clusterheads: It is possible to have clusters with fixed clusterheads duttire life time of
the system or rotating clusterheads that reassign theedhgstd role to another node periodi-
cally.

Another aspect that should be considered is the communicatnong the clustersGateways
nodes that are adjacent to two clusterheads, can be usedsériltat clusterheads are separated by
more then one node, the so calldidtributed gatewaysan be used.

1A dominating sets a subset of nodeB € V where each node M either is a member db or is a direct neighbor of a
node inD.
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We divide the different approaches of obtaining a clusteretivork in three main groups: the
Maximum independent sapproaches, where the objective is to find clusters whemethbers are
at most one hop away from the clusterhead and there are nbbuoeigg clusterheads, the dom-
inance only approaches, where neighboring clusterheadslimwed, and the multihop clustering
approaches, where diverse multihop objectives are pursued

5.2.1 Maximum Independent Set Approaches

There are several clustering algorithms that aim to findM@ximum independent sé@iIS) of a
network modeled as an undirected graph. This is often coeabivith the dominance property, which
leads to the following clustering properties that shouldaiksfied:

IndependenceNo two clusterheads can be neighbors. This property asthsieshe set of cluster-
heads will be scattered, i.e., they will not be grouped in albpart of the network.

Dominance Every ordinary node has at least one clusterhead as dirigtthoe.

Several heuristics have been proposed to find clusters lmaséie maximum independent set.
The existing clustering algorithms differ on the criteridion the selection of the clusterhead [13]. For
example, the highest-ID and lowest-ID heuristics use thgunidentifier {d) to select the cluster-
head. The choice can be also the degree of the nodes (numbeigbbors), as in the node-degree
heuristic. Others combine different parameters in a métig. VDBP heuristic).

Many of the heuristics are working in a similar manner. Eaolenwith the highest (lowest)

metric in the nearby vicinity is selected locally as clusead (being included in the independent set).

This information is broadcasted and the neighborhood jthiesorming cluster. The new members
also inform their neighbors about the member status (batadyg this status). This un-locks other
nodes that have lower a metric to eventually become clusaerki.e., the new elections are restricted
to nodes that are neither members nor clusterheads).

In the next section, we will present several algorithms #ratbased on independent sets.

5.2.1.1 Identifier-based Clustering

In this section, we will present the heuristics that use alfigentifier to elect the set of clusterheads.

Highest-ID ranking In [6, 47], the authors consider the problem of organizingetacd mobile,
radio-equipped nodes into a connected network. They atgateatreliable structure should be ac-
quired and maintained in the face of arbitrary topologidenges due to motion or failure, and this
structure should be achieved without a central contrafer.that, a self-starting distributed algorithm
that maintains a connected architecture is presented. [fbgthm is based on a cluster construction
based on noda.

The two logical stages of the algorithm are the formatiorheftlusters and the linking of them.
Here we will concentrate on the formation stage.

Each node has eonnectivity matrix with binary entries(k, j) = 1 means that packets sent by
k are received by.

The algorithm is based on’EDMA scheme where the control messages have a fixed schedule.
the TDMA frames, nodétransmits information in the slét The two steps (based on two communi-
cation rounds or frames) of the algorithm are:

n
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Figure 5.1: Example showing cluster formation using thehmetdescribed in [6].

1. Each node broadcasts its own identity and the identith@fiready heard nodes.

2. Each node broadcasts the complete information aboutwitides can be reached by its broad-
casts (the row of theconnectivity matrix) plus the status of the node (undecided, cluster-
head, member).

For deciding the status, each node checks the connectiitylf there is no neighbor with higher
id number, the node becomes clusterhead. The algorithm idrébdied version of the very simple
centralized procedure: start with the highest numberee@ nealyN and declare it clusterhead. Draw
a circle around that node with radius equal to the range ofngonication. If some node is outside
the circle, then select the highieramong the nodes outside the circle and restart the procéballin
nodes are inside at least some circle [47]. Figure 5.1 shavexample of a small network clustered
using this process.

The described procedure has four keys elements: knowlddbe oeighbors of each node, a rule
to select the clusterhead from a set of candidates, knowletithe sequence in which clusters are to
be formed, and knowledge of each node’s own clusterhead.

In [7], the same authors describe the same method with mifferehces.

Lowest-ID heuristic Another approach calleHowest-ID Clusteris presented in [53]. The algo-
rithm works in a similar way. Periodically, each node braegls the list of nodes that it can hear
(including itself). A node which only hears nodes with ID Iy than itself is a “clusterhead”. The
lowest-ID node heard by a node is its clusterhead, unlesavi¢ gp its role. The other nodes are
members. The difference to the previous algorithm is thaetlction is not realized in a fixed, deter-
mined TDMA order where the nodés must be related to the transmission TDMA slot in a increasing
order. This means, it is easier to implement ltlogvest-1D Clusteiin different architectures due to its
independence on a specific MAC protocol.

It is important to highlight that both algorithms here haarailar structure: théd are exchanged
within the neighborhood. Each node decides whether it shbatome clusterhead based on those
receivedids. When a node become clusterhead, it announces that. Trsateof becoming cluster-
head is taken based on the lowigsamong the nonmember nodes.
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At receiving a clusterhead announcement, the neighboidaigs1become members of the cluster
and announce that also. This unlock lovigmodes (because the clusterhead decision is done just
among nonmembers), that can now become clusterhead.

The cluster formation resulting from the application of ttewvest-ID Clusteralgorithm has the
independence and domination properties. Moreover, thaittign is also suitable for networks where
the nodes move, causing re-election of clusterheads andchénges in the members-clusterheads
assignment.

5.2.1.2 Node’s Degree Ranking

In this section, we will present some heuristics that usentitle degree in order to rank the nodes for
the clusterhead selection.

Highest Degree Clustering In [53], an additional clustering approach is presentedtelad of se-
lecting the clusterheads based on a pre-assigned rank loiheae, the election relies on the degree
of the node in the graph. The heuristic is calldighest-Connectivity Cluster Algorithend has the
following steps:

1. Each node broadcasts the list of nodes that it can heduding itself)

2. Anode is elected clusterhead if it is the most connectel d all its “not clustered” neighbor
nodes

3. Anode which has already elected another node as its dieste gives up its role as clusterhead
and becomes a member of the cluster.

Like in the previous section, the formation resulted by tphpligation of this algorithm has the
independence and domination proprieties.

VDCA Heuristic The Variable Degree Based Clustering Algorithm [85] uséeint rules based
on the node’s degree to assign priorities to the nodes farltlsterhead selection.
The different rules proposed in the algorithm are:

Maximum degree: The algorithm is similar to the highest degree clustering.

Degree two priority: Nodes with degree two have the highest priority. Under thiis, rclusters with
three nodes will be build first.

Average Degree Priority: The average degree of the network has the highest priority.

The idea of not using the highest degree is to reduce theneariaf the clusters size and to control
the number of clusters. The authors argue that reducedneari@sults in a smaller lower bound of
the total size of the routing table. Moreover, they aim totoarthe number of clusters in order to
keep it near the optimal number for reducing the size of thiimg table.

A difference from the other algorithms is that each node &élee complete topology of its voting
area, which can be one or two hops. Messages are exchangelinaenable each node to construct
its topology map. Further, the algorithm was developed thenmultiple hierarchy levels.
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5.2.1.3 Combined Metric Clustering

In this section, the clustering algorithms that use a coetbimetric to rank the nodes in order to select
the clusterhead are presented.

VDBP Heuristic The Virtual Dynamic Backbone Protocol [73] (VDBP) is a hstid that con-
structs and maintain clusters that serve as backbone. firshphase of the algorithm, a dominating
and independent set is constructed. The difference frorottiex heuristics here presented is that the
algorithm uses mobility information in the clusterheadcétn.

The idea is the selection of relative stable nodes to be fpahnteoclusterhead set. Moreover, the
number of clusterheads should be also kept small. The chestd election is made based on the fol-
lowing information: normalized link failure frequency, miber of nonmembers in the neighborhood,
node identifier (to break the ties). The nodes are rated b@aséus information.

The normalized link failure frequency is used to estimageréiative mobility pattern of a node.
Higher link failures indicate a higher mobility. The numhErnonmembers in the neighborhood is
used to check how connected the node is. Nodes with plentymeotbers in the vicinity have higher
priority to become clusterhead.

Every node sends this information periodically in two typésnessages: the Hello message and
the Global Broadcast Messages (GBM). The first is frequesdiyt and has a reachability of 1 hop.
The GBM has a much larger inter-message period and is foeaabg the clusterheads, which put
their information inside before broadcasting.

When a node powers on, it starts sending the both messagesieAfor checking whether the
node should become clusterhead is set. At the same timdlgittsoinformation from the other nodes.
When the timer expires, the node checks whether it has tiehigte in the neighborhood. If positive,
it declares itself clusterhead. When not, it starts the ttiagain.

Upon receiving a Hello or GBM message from a direct neighbat is clusterhead, a nonmember
node becomes member of the cluster.

MOBIC Heuristic  The lowest mobility clustering algorithm (MOBIC) [14] usasnetric for rank-
ing the nodes that is exclusively based on the mobility ofrtbdes.

As usual for this class of heuristics, beacons are sent legtweighboring nodes to advertise
their presence. But different from the other heuristic, beeived power levels (RSSI) of the beacon
packets are used to calculate the relative mobility of thdend3efore sending the next beacon, each
node computes an aggregate relative mobility metric. Taligevis sent with each beacon packet.

When a node has the lowest aggregate relative mobility amabirits neighbors, it assumes the
clusterhead status. Vicinity nodes are attached to théechesad with the lowest aggregate relative
mobility.

An additional enhancement to the other approaches is thedinttion of a delay before re-
clustering the network when the topology changes. Thisigedo avoid incidental contacts between
passing clusterheads to trigger a re-clustering process.

WCA Heuristic In this section, we will present the Weighted Clustering &lthm (WCA). The
clustering scheme tries to preserve its structure as muglossble when nodes are moving or the
topology is slowly changing.

The combined metric tries to measure how appropriate a rotebe the clusterhead. It takes
into account the following parameters:
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Ideal number of membersd: It states how many members are desired in each clusterdddree-
differenceof the nodey, A, = |d, — d| returns the difference of the requested number of members
to the current number of neighbors (givendhyy= [Ngh(v)|, Ngh(v) is the set of neighbors of
V).

Battery power: The clusterheads have an extra energy consumption. It islegited that nodes
almost depleted assume the clusterhead fgjaes the cumulative time during which a nosle
acts as a clusterhead and has used extra battery power. arbimgter acts for the rotation of
clusterheads in the heuristic.

Mobility: The election of nodes that do not move very quickly is desabhe mobility is measured
by the average speed of the node up to the currentTime

My=$5 0 V(% = X%-1)2+ (% — Y-1)2

Distance to neighbors: A clusterhead can communicate better when its neighbors hasmaller
distance from it. The distance to neighbors is calculatéugu®y, = 3 cn(y) dist(v, V).

The combined weighi\, for each node is evaluated by:
W, = wWiAy + w2Dy +w3My, +waPR,

W1, Wp, W3, Wy are theweighing factors

The node with the smalle$t, is chosen as clusterhead in a very similar fashion to ther othe
algorithms. In order to cope with mobility, the clusterhedelction is invoked multiple times, however
as rarely as possible. It is not invoked if the relative diseabetween the clusterhead and the nodes
does not change significantly.

Nevertheless, due to the dynamic nature of the system, tthesrtend to move in different direc-
tions, disorganizing the stability of the network. The systhas to update itself from time to time. In
WCA, all nodes continuously monitor their signal strengtbaived from the clusterhead. If the signal
between a cluster member and the clusterhead gets weakgthbaninforms the clusterhead that it
is no longer able to attach itself to that clusterhead. THenclusterhead tries to hand over the node
to a neighboring cluster. If the node goes to a region notreavby any clusterhead, the clusterhead
selection algorithm is again invoked.

Additional characteristics of WCA are: the presence of ehoadlogy to balance the load (amount
of members) among the clusterheads and the assumptiondee have two power modes (radio) for
short and long distance communication. The short range nsodged for communication between
members and clusterheads, and the long range betweerrichssis.

DCA and DMAC Heuristics The Distributed Clustering Algorithm (DCA) and the Distitied
Mobility-Adaptive Clustering (DMAC) were proposed in [12hd presents a generalization of the
greedy dominating independent set heuristics.

A common model presented in several previous algorithmdagteedy search foraximum
Weight Independent S@IWIS) in a graph, where non-negative weights are assatiaii the nodes.
These weights are the degree of the node iHighest-Connectivity Cluster Algorithemd the node’s
id in the “lowestid first” approach.

The objective of theMaximum Weight Independent $gbblem is to find an independent set of
nodes where the sum of weights is as big as possible. The MISqm is a special case of the MWIS
problem, and as MIS, itis an NP-hard problem.
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The main idea of the generalization is that with the appetprselection of weights, theference
to have a given node as clusterhead can be expressed. Thesautbpose the centraliz&kneralized
Clustering Algorithm(GCA), that is a generalization of the previous clusterhssldction algorithms.
The procedure is showed in the Algorithm 1.

Algorithm 1 The Generalized Clustering Algorithm
{input: G = (V,E): network,w: weights; output{Ci}ic|cv:}

i<—0
while V # 0 do
i—i+1

{Pick the node with the lowest ID among those with maximumagiej
v—minfueV :w,=maxw;:zeV}}
{Neigh(v) returns the set of neighbors of node
Ci — {v}UNeighv)
V —V\G
end while

The author defined thguality of a clustering algorithm as measure of how the algorithnfiopers
compared to the theoretical optimum and showed a theoretmarivial lower bound. This lower
bound depends on global network parameters. Moreovershas/n that the greedy algorithms are
the best that can be done in polynomial time, given EhgtNP.

Two distributed heuristics are presented by the same authgil]. TheDistributed Clustering
Algorithm (DCA) is suitable for clustering “quasi-static” network$iereas th®istributed Mobility-
Adaptive ClusteringdDMAC) can deal with mobility. Both algorithms are messatyiren, i.e., except
for the initial routine, a specific procedure will be execlitsd a node depending on reception of the
corresponding message.

The fact that DCA uses a generni®ightassociated with each node to measure how desirable it is
to the clusterhead position makes DCA a generalizationeoptkvious algorithms. Theeightdrives
the clusterhead choice.

In DCA, there are two types of messag€siv), used by the node to make its neighbors aware
that it is going to be clusterhead, adék(v,u). Every node starts the execution running at the same
time the procedurénit. Only the nodes with the higher weight among their neighlbdlissend aCx
message. The other nodes will wait in order to receive thessages.

e On receiving G(u). The nodev receiving this message will check whether some other node in
the neighborhood with higher weight may sen@ramessage (in other words, no message was
already received from that neighbor, neitt@rnor Jow). The nodev will select the neighbor
with the higher weight among them. After joining the clustae Jon message will be sent.

e On receiving dn(u,t). The nodev checks whethev is a clusterhead and wants to join its
cluster { = v). When all neighbors with smaller weight have joined sonustelr, the algorithm
is ended.

As already said, DMAC is also a message-driven heuristife2int from DCA, it is not assumed
that during the clustering process the nodes of the networioti move. Instead of just reacting upon
reception of messages from other nodes, it also reacts icatbe of link failure (possibly caused by
movement) or in the presence of a new link. The algorithmrslar to DCA, nevertheless a new
clusterhead election may be activated as response téahe LinkandLink_Failure events.
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5.2.2 Dominance Only Approaches

In the literature, there are also one hop clustering algmst that do not aim at fulfilling the inde-
pendence property (nevertheless, the dominance is sdlisfidhis means that clusterheads can be
neighbors but every ordinary node has at least one clusteérag direct neighbor.

5.2.2.1 LEACH Heuristic

ThelLow-Energy Adaptive Clustering HierarcliyEACH) [57, 59] is a clustering-based protocol that
minimizes the energy dissipation in sensor networks. Itdhasndomized rotation of clusterheads.
Such kinds of approach change dynamically the clusterhieader to avoid overburden of one node.
This may happen because normally the clusterheads haweadtresponsibility in the network (e.g.
to organize the set of nodes). This means that the battetyeofltsterheads have a tendency to be
faster depleted.

In the LEACH architecture, the clusterhead has the task eodboate the sleep time of the other
nodes, to receive the sensor data from the members of tHerligsperform data fusion, and to send
the result to the base station.

The LEACH algorithm is probabilistic; sensors elect thelvese to be local clusterheads at any
given time with a certain probability. These clusterheadesobroadcast their status to the other sen-
sors in the network. Each sensor node determines to whisteclit wants to belong to by choosing
the clusterhead that requires the minimum communicati@rgen The decision of becoming clus-
terhead depends on the amount of energy left at the node e Thao extra negotiation among the
nodes.

To assure that the network, with high probability, will haateough clusterheads to cover it and
at the same time does not overestimate this number, the @ptinmber of clusters is determined a
priory.

In each round of the algorithm, a nodehooses a random numbreg [0,1]. If r < T (v), the node
becomes clusterhead, whérév) is the threshold to become clusterhead and is given by:

P .
T(n) = 1—P-(r-modi) if neG
0 otherwise

WhereP is the desired percentage of clusterheadsthe current round, an@ is the set of nodes
that have not been clusterhead in the fasounds.

5.2.2.2 GDMAC and MACA Heuristics

In [10], a generalization of the Distributed and Mobilitydaptive Clustering (DMAC, see [11]) is
presented (called GDMAC). A very similar version of the altfon, calledMobility-Adaptive Clus-
tering Algorithm(MACA) is presented in the [13]. Although the MACA algorithimas about the same
functionality as the GDMAC, the comparison with the DMAC @t mlone in this paper.

The idea of the heuristic is to overcome some limitations MAL, but keeping its desirable
properties. As in DMAC, the nodes here can move during thetefuset up and decide by them-
selves about their own role based on their current one-higihbbers. Nevertheless, the independence
property of DMAC is relaxed, and now a degree of independeacebe selected, i.e., the number of
clusterheads that are allowed to be neighbors. Moreovewaneight-based criterion that allows the
nodes to decide whether to change their role depending arutihent condition is defined.
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The heuristic runs continuously on each node of the netwanrf,the decision about the role of a
node has to obey the following constraints:

e Ordinary (members) nodes are affiliated with only one chhetad.

e For an ordinary (memben), there is no clusterheadsuch thatw, > Wgjusterheagt h, Where
clusterhead is the current clusterheaduofw is the current weight of the nodes serving as
clusterhead, ant € R is a parameter. This constraint says that no member can hiateffi
with a clusterhead whose is much f) below another neighbor that is also clusterhead.

¢ A clusterhead cannot have more thaneighboring clusterheads (degree of independence).

Like DMAC (and DCA), the heuristic is message-driven. Themefive types of messageSu(V),
used by the node to make its neighbors aware that it is going to be clusterhé&adu,v), used to
inform the neighbors that hodss joining the clusterhead Resis W), to force nodes with weight less
than w to leave the clusterhead condition (because the nuohickisterheads in the neighborhood is
greater therk), Link_failure, andNew_link

The execution of the algorithm is similar to DCA (and DMACUtH neighboring clusterheads
are tolerated before one of them has to withdraw its conditidoreover, a member just changes its
clusterhead if there is another clusterhead in the vicihitg has a considerably better weight. These
two measures result in a drastic reduction of message egehduring the maintenance phase of a
comparable DMAC algorithm.

5.2.2.3 The Zonal Clustering

The zonal clustering [33] is based on the dominating setemtgpbut employs following enhance-
ment: In order to allow an easily communication among thsteltheads, facilitating the routing of
messages among clusters, the concept of weakly-conneateith@ting set is used.

Given a graptG = (V, E), the dominating seé8C V, the subgraph weakly induced by S is denoted
by < S>u= (NghS)US EN(NegS) x S). <S> includes the vertices in S and all of their neighbors
as the vertex set. The edges are all of G that are incidentAo/&tex subset S isaeakly-connected
dominating setif S is dominating anc< S>,, is connected.

The zonal clustering algorithm, a zone size control parametontrols the size of each zone of
the graph. A zone is a connected subgraph of the input netwitihknot more than 2x vertices. Each
zone has a root vertex. The zonal construction algorithmaadevels: intrazonal and interzonal.

The intrazonal level is resposible to construct a weaklypezted dominating set inside the zone.
In the interzonal level, the root of a zone adds additiondiices to its weakly-connected dominating
set to guarantee that the union of the dominating sets fainttieidual zones is a weakly-connected
dominating set for the whole network [32].

There are other algorithms that even desire a higher comiteaif the clusterheads. The con-
nected dominating s&is a dominating set where there exists a path among any tvtice®in this
dominating set, and this path is also include®irThe idea is that this dominating set forms a back-
bone for routing the messages in the network. A survey ahait algorithms (among others) can be
find in [32].

5.2.3 Multihop Clustering

In this section, the proposed approaches go beyond thehstarthe maximum independent set of
a graph or a dominant set. Instead of just finding clusters miémbers that are one hop away from
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the respective clusterhead, the different proposals predén this section comprise finding multihop
clusters with different construction objectives.

In this section, we will first present approaches that ainréaie clusters with low diameter. They
try to decompose a graph to connected elements with a maxidiameter. Further, the Max-Min
D-Cluster Formation [4], which aims at constructing clustehere any node within the cluster is at
mostd hops away from the clusterhead, will be presented. Therdiifee here is that the diameter
is not dependent of the number of nodes in the system likegiffitst approach, where low diameter
meandO(log n). Nevertheless, big clusters may be formed.

Subsequently, other multihop cluster heuristics thatymigther objectives are introduced. For
example, theExpanding Ringand Budged Approacliry to divide the ad hoc network into a set of
clusters whose sizes are close to a given bound. BeyondastthisWpper and under bound approach
an inferior and a superior size limits are given, and the lpralis to divide the network into clusters
that match the given boundaries.

5.2.3.1 Low Diameter Network Decompositions

In [87], the problem of finding a low-diameter network decasiion was studied in algorithmic
graph theory. The decomposition of a graph= (V,E) is the partition of the vertex set into subsets
(called clusters). The idea is to decompose the networkdatmected clusters, each with a small
diameter.

A fast algorithm for low diameter network decomposition viesented in [5].The problem is
that the approach considers low diamete©@og n), and this does not bound the cluster size [76].

Because dense networks have nodes with a very high degre@ngesing such networks may
result in very large clusters. Although the algorithms prieed are very fast and could be applied
usefully in ad hoc networks, the fact that the size of theteluis dependent of the network density is
not a very good property.

5.2.3.2 Max-Min D-Cluster Formation

In [4], the issue of constructing the d-hop dominating se&rinad hoc network is addressed. The
publication presents a proof of the NP-completeness of thiel@m for unit disk graphs. In addition,
an heuristic to construct a good clustering solution ismgive

Given a desired maximum number of hogpgfrom the clusterhead), the heuristic runs fat 2
rounds of information exchange. During the execution, tways are maintained by each node: a
WINNER and a SENDER array. The WINNER array storesithef the nodes that wins some round
of the algorithm. How the winner in a round is determined Wil described later. The SENDER
array stores the node that sends the winder

The algorithm is composed of three phases. They are as fllow

Floodmax This phase consist a rounds. In a round, each node locally broadcasts its current
WINNER value to all of its 1-hop neighbors (in the first rourdch node takes its owd as
current WINNER). After all neighboring nodes have been tidesm in this single round, the
node chooses the largest value among its own WINNER valugtendhlues received. This is
the new WINNER. This new value is stored in the WINNER arrang the node that sent it is
stored in the SENDER array. This phase is used by the nodespagate the largest nods.

Floodmin: This phase also consists@founds. Itis the same &oodmax but each node selects the
smallest value as its new WINNER. The purpose of this phaselet the nodes with smaller
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ids reclaim some of their territory.

Selection of Clusterhead: In this phase, each node will locally select the clusterhaasked on the
WINNER array collected in the previous phase. For that glage tree rules:

1. Each node checks whether it has received its own node Ietisdcond phase. If it has, it
becomes clusterhead and skips the other rules.

2. The nodes look for node pairs, i.e., nads that appear both in the first phase and in the
second. From those nodes, it selects the smadldstbe its clusterhead.

3. Elect the maximum nodé in the first phase as the clusterhead for this node.

The characteristics of the heuristic are that it can find gamdtions with relative low communi-
cation ©(d)) and generalizes the dominating set problem.

5.2.3.3 ADBP Heuristic

The adaptive dynamic backbone protocol (ADBP) [67] is ateltisg algorithm used to construct a
backbone in a WSN. The idea is to have multihop clusters wiierelusterheads form a backbone to
route the packets in the network. Here, the diameter of th&tals is dynamically adjusted: instead
of a fixed distance to the clusterhead, as presented in theNi@aP-Cluster Formation, the allowed
distance to the clusterhead is adapted to the current netoditions.

In networks with low topology changes, large clusters al@edd. This comes from the assump-
tion that the cluster will stay stable. In networks with héghdynamics, the size of the cluster is
reduced in order to avoid frequent cluster reconstruction.

The clusterhead election has some similarities to thegatystem used in the maximum inde-
pendent set approaches. The node with the highest rate ewitirbe clusterhead. Nevertheless, at
the beginning, all nodes are clusterheads. The first stepagdhange beacons in order to discover
nodes in the vicinity. Among other information, the beacomstain the distance from the clusterhead,
degree of the node and the accumulated error rate (a kindlofritric) to the clusterhead.

Every node checks by itself, based on the neighboring irdition, whether its rate is higher
than the neighboring. The rate is a linear combination ofdiktance to the clusterhead, degree and
accumulated link metric (path to the clusterhead). If sorighbor has a higher rate, the node decides
to leave its position as clusterhead and assume the winpithg @s parent in a cluster tree (clusterhead
is the root). Nevertheless, there are two constraints sdlaisterhead selection: a hop limit constraint,
and a accumulated link metric constraint.

In the case of mobility, if a node detects that its parent hagau out of range, it will do the same
thing when the parent violates the constraints: try to fincdea parent with higher rate or become
again clusterhead.

5.2.3.4 Expanding Ring Algorithm

In [104], an algorithm for bounded size clustering based mmxpanding ring search is presented.
The algorithm relies on a sequence of rounds. In each roundyiable indicating the maximum
hop limit is incremented. The initiator (clusterhead) setids limit in the beginning of each round.
This message is repeated by the receivers after decremeéingéirmaximum hop until it becomes zero.
At the end of the round, the clusterhead knows the total nurabdids of the nodes added in the
last layer. After some rounds, eventually, the size bourtbeiexceeded. When this happens, the
clusterhead sends a message containing a list of arbitnasea nodes (from the last layer) that should
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be dropped from the cluster (in order to achieve the bountjs message is simply flooded inside
the cluster.

5.2.3.5 Rapid and Persistent Clustering

In[75, 77], two clustering methods aiming at producing t#us with a maximum determined size (i.e.
number of member nodes) are presented. The algorithms ameeffizient than the expanding ring.
The cluster sizes produced should be as close as possiliie gpécified bound (which we will call
hereB) in order to limit the total number of clusters. Neverthslate bound should not exceeded.

Two algorithms are presented: tRapid and thePersistentones. Both approaches rely on al-
locating growth budgets to neighbors. This significantiguees the number of messages exchanged
because it allows the cluster to grow based on local deasmther than involving the initiator at each
round.

Both of the algorithms produce clusters of bounded size. Réygid heuristic uses less messages
than thePersistenone. Nevertheless, it has a poor worst-case analyticabymeaince. Théersistent
heuristic persistently tries to produce a cluster of theciigel bound if possible. Simulations show
that this algorithm performs well on average when buildirggrgle cluster. The proposed algorithms
do not violate the cluster size bound at any time. They gdipgnanduce flat rather than deep clusters.
Flat clusters means that the format of the cluster resenabtésle, whereas deep clusters have less
connections and the shape of a line. This is advantageoasibeflat clusters lead to smaller end-to-
end delays.

The Rapid Clustering Algorithm In this algorithm, the initiator starts with a budget Bf then
it counts itself and therefore h&— 1 nodes missing to accomplish the requested cluster size. Th
initiator distributes the current budgd® { 1) among its neighbors by sending a message to each one
of them. If there are more neighbors than the budget, a siashbitrarily selected. When receiving
the message, each neighbor counts itself and redistrithigsartial budget to its neighboring nodes
(except to the respective parent). This process is repeatddhe complete budget is exhausted. An
example of the running algorithm is depicted in Figure 5.2.

In the example, the cluster bound is 8 nodes, and the resaltigster of size 6. The initiator
(node “A") allocates a budget of 3 to node “B”. As node “B” issjua leaf, it can only contribute with
1 to the cluster. Nodes that receive a message send ackmmadedi to their parents in two situations:
the budget is exhausted or they have received acknowledgnfrem all their children. When the
initiator receives messages from all neighbors that it adntdget to, the algorithm terminates. When
the acknowledgments carry extra information like hop cptimt clusterhead can compute the size
and depth of the cluster.

The PersistentClustering Algorithm  Although theRapidalgorithm has a low message complexity
per cluster (maximum 2B — 1) messages), it can construct clusters that are very smah whm-
pared to the desired size. It is possible to see this in thepleashowed in Figure 5.2. THeersistent
algorithm uses more messages, but it improves the worsthtsavior.

As in the Rapid version, thePersistentalgorithm has an initiator that distribut&— 1 (budget)
among its neighbors. All nodes receiving the message cbentgelves and distribute the remaining
budget among their neighbors (except the parent) until tllgét is exhausted. The difference of
this algorithm is that, when receiving the acknowledgmethe children, each node does not send
immediately an acknowledgment to the parent. First it coepthe size of its subtrees and compares
it to the budget allocated to it. If there is a residual budtiet node distributes it among its neighbors
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Figure 5.2: Example of execution of tHelgure 5.3: _Examp!e of execution of threr-
Rapidalgorithm [75]. sistentalgorithm [75].

that either did not receive any budget previously or met @ipusly allocated budgets. When the
budget is met or no further growing is possible, it returnaemnowledgment to its parent.

When the initiator realizes that the budget was met or nbvéurgrowth is possible (e.g., no more
nodes are connected to the cluster), the heuristic teresnain example of execution of the algorithm
is shown in Figure 5.3. As in the previous example, node “Bint allocate the requested budget.
Node “A’ then realizes that the subtree “B” has consumed Julsbm the budget and re-allocates it
among its children (nodes “C” and “E").

When possible, thBersistentalgorithm always produces the cluster with the specifiegl ai¢her-
ever this is not possible, it attempts to build the largestsjime cluster.

Network decomposition TheRapidandPersistentlgorithms can produce a single cluster of bounded
size. To perform a network decomposition in clusters of loeahsize, a systematic way of electing
the initiators (clusterheads) that will start the deconitjms process must be used.

In [77], the following method to elect the clusterheads iespnted. Each node that comes up
waits for clustering messages from the neighborhood. Whiémeout (previously configured) oc-
curs, the node becomes an initiator (or in our terminologyluaterhead) and invokes one of the two
clustering algorithms (in fact, the authors argue that tnithod can also be used in tR&panding
Ringalgorithm). This process is repeated in several (randoatgdl in the network until the complete
network is clusterized.

In order to reduce the complete network decomposition tintba the same time to shrink the
number of initiators active at the same time, the paper ptesg proposal of initialization of the
timeout in order to achieve a good trade-off between the tresgnted aspects. If the times when
the initiators become active are set too far apart, the tiote of the network decomposition will be
large. In the other hand, when several initiators are coratly active in a neighborhood locality,
some initiators will produce clusters of size smaller tHamdpecified bound.

Some problems of both algorithms are the assumption thatetveork is static and the fact that
the heuristics do not attempt to rank the links in order tecahe best connected nodes to form the
cluster. Moreover, the initiators are also randomly chpsenontrast to our two heuristics presented
in the next section, where clusterheads are carefully teeldiased on their fitness for the clusterhead
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role.

5.2.3.6 Upper and Lower Bound Approach

In [8], a clustering scheme to create a hierarchical comstroicture is presented. The exact clustering
problem is formally described in the publication . Given graphG = (V,E) and a positive integer
1 <qg< |V|, the problem is to find the clustevg, V>, ..,V with the following conditions:

1. All nodes should be included in at least one cluster {V; =V).
2. Each cluster should be connect&I\(], and the subgraph induced Wyis connected.

3. All clusters should have a minimum (callgfland a maximum size constraint@(q < |Vi| <
20).

4. Any two clusters should have small overlapV; ~ O(1)).
5. A vertex should belong to a constant number of clustgig) & O(1), S(v) = {Vi|[ve Vi }).

6. Clusters should be stable across nhode mobility.

An important remark is that in this approach, as opposed tdasic clustering problem, a small
overlap is allowed.

In their paper, the authors analyze how the allowed topetogiay influence the feasibility of the
desired properties described above. For example, for aletengraph, the condition number five can
be violated, e.g. in a star graph, for 2, the center must be included in all clusters, B&v) = O(g).

For the rest of the paper, the authors just analyze the pgiepéor graphs with a special topology,
modeled by th®isk Graphs Mode|35, 66]. A Disk Graphis a communication model that consists
of a valueR > 0 and a graplc = (V,E) embedded in an euclidean plane. The edges are defined
as follows: for each two vertices i8, iff the distance between them is less or equal tRathere
is a{u,v} in E. If R=1, the model is calledUnit Disk Graph The model considers that with
omnidirectional antenna and fixed power, transmitted pgekaan be received successfully just inside
a given circle. This is not really true in practical caseg,the Disk Graphprovides a simple model
for theoretical analysis.

With anUnit Disk Graph dense star topologies are not allowed, which avoids tHa@moexposed
in the previous paragraph. It is proven in the paper that itdnUnit Disk Graph the requirement
four could be violated for certain cases. In order to avois, tthe third constraint is altered to:

3a. Vi, V| < 2q
3b. Vi except ongV;| > q, i.e., only one cluster smaller thayis allowed.

With this new constraint, the algorithm described in the kvgrable to meet all constraints for
Disk Graphmodels.
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Figure 5.4: An example of execution of the upper lower bougdrithm.

Clustering Algorithm  The first step of the algorithm is to find a rooted spanning afethe graph
G using Breadth-First-Search tree in order to bound the diana# the tree. LeT be this tree and
T(u) be the subtree rooted by the vertexC(u) = {uy, Uy, ..,u; }, denotes the children of vertexin
the tree.

Now, a nodeu whereT (u) > gand fori = 1,2,..,1, T(u;) < qis selected. The idea is now to form
clusters from the subtrees of The algorithm selects successively subtrees until treergiachesvy,
whereq—1 < w < 29— 2. It is important to remark that, at the end, the last subtvéleose sum do
not achieve the needed size do not form a cluster.

All nodes belonging to some cluster are then deleted frontréesT and the process is started
again. In practice, the trekis created and then post-order transversed to find the m¢@iéu) > q,
i=1,2,..,I, T(y) <q). Then, subtrees are selected taking into consideratmodhnection between
theC(u), because wherever the subtrees are connected th@{ughthe nodeu does not need to be
included in the cluster. For subtrees starting at childremfu that aren’t connected, the nodenust
be included in order to assure the second constraint. Isigt@esee that the clusters will have at most
one common nodeau(in the case).

An example of execution of the algorithm is depicted in F&gr4. In this step, the nodeholds
the conditionsT (u) > q,i=1,2,..,1, T(u) < g. Then, two clusters are formed: “cluster 1” has size
1.4g+ 1 because it must include the nadesince it is not known whether the subtrees are connected.
The “cluster 2" is formed by two subtrees whose roots are eotad by a link. Therefore, the node
u is not necessary in this cluster. The “cluster 3" is not catgbecause the minimum amount of
nodesq has not being reached. Therefore, just clusters one andrevdedeted, and the algorithm
goes ahead.

5.2.4 Other Approaches

There are also other clustering approaches that do not fiiother presented category. For example,
in [74], a method that clusters are formed without clustadseis presented. Aliquein graphG =
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Figure 5.5: Example of output of the cliqgue-based clustgrin

(V,E) is a subseS of V, whose induced subgraph is complete. The clustering stgorilecomposes
the network in the maximal cliques as clusters [32]. Ovegilag clusters are allowed and nodes
that are members of more than one cluster are called boundatgs. They are responsible for
the communication among the different clusters. Figuresh&wvs an example of a clique-based
clustering.

5.2.5 Discussion

The maximum independent set and the dominating only apbesaconcern the division of the net-
work in one hop clusters. This is different from our apprgaghere multi-hop clusters are allowed.
Moreover, there are few approaches that take into accoentirtkh quality when constructing the
cluster. The WCA heuristic makes a very simple link assessmin our approach, a much more
elaborated link metric is used. The MOBIC heuristic usesngplified link metric too, but for the
purpose of mobility assessment. Stable nodes are desirddsasrheads. The used link metric just
uses the received signal streght indication. The VDBP etusd construction method uses the link
failure rate, but again, just for guessing the mobility gattof the nodes.

Another interesting aspect presented\iCAis the combined metric weighting used to select the
clusterhead. In our algorithms, we use also combined metighting. Nevertheless, differently
from this approach, we use metrics for clusterhead and mesndbection. Moreover, the links are
also rated with a much more elaborated link metric. Our rogtuise a larger number of parameters
than the ones presented here.

In the approaches based on independent and/or dominatjngesenembership selection does not
rate the possible members with a fithess metric as our appibzes.

In the state of the art, we presented also multi-hop clusdestrategies pursuing different objec-
tives. The Max-Min D-Cluster Formation aims at finding cérstwith a maximum number of hops
d from the clusterhead. There is no distinction of the linklijyavhen selecting cluster members.
Moreover, differently from our approach, the size of thestdu is uncontrolled. Dense network areas
result in bigger clusters than sparse ones. In the ADBP $tagjrivariable cluster diameters are al-
lowed. The diameter of the cluster is controlled by the nighdf the network: when small topology
changes are detected, the clusters are larger than whem tagplogy changes are observed. The
idea is that a very high cluster reconstruction overheaddégssary when the network is experiencing
extensive topology changes and the clusters are large. rilelass, our approach tries to construct
clusters with a minimum amount of resources, different fthie approach. Moreover, this approach
uses also a simplistic link metric for the clusterhead @act

A little bit more in the direction of this work are tHeapidandPersistentalgorithms. They have
an objective bound and try to produce clusters achieving this bound. Howeber,biound is just
given in number of nodes and there is no way to differentiatdes. Moreover, the clusters are always
smaller or equal to the given size (bound). In our approdtblusters have at least a specified amount
of resources (as can be seen in the next section).

In the Rapid and thePersistentalgorithms, the clusterheads are elected in a completalyora
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Figure 5.6: Example of ad hoc network model with weighteédiand nodes

fashion, which leads to the selection of nodes that are ngtsigtable for the role. In our approaches
we use the opposite approach: strongly connected nodegpleiity energy have a higher probability
to be selected as clusterheads. Another difference i®detatthe links: th&kapidand thePersistent
heuristics do not attempt to rank the member candidatesc@ming, for example the links) in order
to select the best connected nodes to form the cluster.

The upper and lower bound approach try to keep the amountddsnim the clusters inside a
specified interval. But different from our approach, oveslare allowed. Moreover, the link quality
is also not relevant to the heuristic.

Another very important difference between all existing maghes and the one presented in this
work is the fact that we try to minimize the communication iead among all nodes inside a cluster.
For that, as it will be presented in the next section, we usesthallest distance between each pair
of nodes inside the clusters for the objective function. sTdistance is calculated by means of our
combined link metric.

A final comment is also important: besides the different apphes presented in this state of
the art, there are several theoretical approaches of gtapteing and partitioning. Besides Section
5.2.3.1 that goes a little bit in this direction, we have antcated on more practical approaches in
this survey, i.e. approaches for mobile ad hoc networks.

5.3 Problem Definition

In this section, a formal definition of our exact clusterirrgljem is described. Moreover, a proof of
the NP-hardness of the problem is also given.

We call our problenminimum intracommunication-cost clustering

The ad hoc network is modeled by an undirected g@ph (V,E), where V is the set of wireless
nodes and an edde, v} € E if and only if a communication link is established betweedeo € V
andv € V. The two nodes in this case are neighbors. Each m@¢ has an unique identifiefD,).

For each link, a weighing function assigns a positive weightE — R™. This weight measures
the quality of a wireless link (for details see thigtual distanceconcept). We define for each edge
not in the graph{u,v} ¢ V), w(u,v) = co.

For each node, an additional weighing functiois responsible for characterizing the amount of
resources available in the node.E — R*. This models the resource capacity of the node.

An example of a simple network with link and node weights esponding to the link quality and
resource availability is shown in Figure 5.6.

The clustering process partitions the nodes aitsters each one with alusterheadand possibly
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someordinary nodes As presented in the related work section, there are seddfatent types of
clustering strategies pursuing different objectives.

In our problem, the objective is to get multihop clustershwénough resources for the OS and
application processing. Moreover, the minimization ofititea-cluster communication cost is desired.

This optimization problem is modeled as following:

Input: A graph with weighted nodes and link&,w,r) and a resource requiremese R*, where
the sum of all node weights in each cluster must be greategual ¢oq

Constraints: For every input instancéG,w,r,q), .# (G,w,r,q) = {C1,Cy, ..,Ck|Cx is thek!" cluster
configuratior}, where the following properties hold
Ck = {Cx1, G2, -- C(nk } is thek™™ possible cluster configuration of the graph, wHere{1,2,..,n}
(nis the number of possible configuratiom,is the number of clusters in thé& configuration,
nk= |Cl)
Ci = {v&i,vﬁi,..,vlfi"‘l e Pot(V) is theit cluster of thek" configuration, where/. is the jt!
element of the clusteg;
For each configuratio@y, k= 1,2,..,n, the following properties must hold:

1. Uiz12,. nkCi =V (cluster definition constraint)
2. Niz12.. nkCi = 0 (no overlapping constraint)
3. LetP(u,v) = {p(lu"'), P pE#’V)} be the set of all possible paths between nadasd

(uv)

V. p, € Pot(E)is theht" possible path where:
P = { XL 0408, 081 g 08 v eV, f=1.2,..g,g€ N
For each{u,v} € EAUVE G, i =1,2,...,nk, Ipi"Y € P(u,v)|X! € ¢ for f =1,2,...g.
(Connectivity constraint)
4. z'l-czki‘lr(vé) > g, for eachi = 1,2, ...,nk (minimum amount of resources per cluster)

Costs: For every cluster configuratid® = {C1,Ck2, --, Cxnk) } € -# (G, W, 1,0), the cost is given by:

nk
costCi (Gwra) =3 5 %.Dcki(u,v) (o T+ (1-a)) (5.1)

WhereD(u,V) is the virtual distance betweenv € V. D¢, (u,V) is the virtual distance between
u,Vv using just edges that are inside the clusigr Note thatvv,u € ¢, D¢, (u,v) = D(u,v) iff

the clustercy; is a convex cluster, i.e., the global shortest path betwegrvao nodes in the
clustering must use just links inside the cluster.c [0, 1] controls how much the amount of

resources influences the distance metric. drer 0, just the distances between cluster members

enter into the metricr = 1 means that nodes with times more resources have ariimes
stronger influence.
Now, we define how the virtual distance is calculated. Firgtjntroduce the cost of a path:

g-1
PCos( pﬁu’V)) = w(u, xrl‘) + Z W(X?,X?H) + W(XB,V)
=1

The virtual distance betweanandyv is the cost of the shortest path:

D(u,v) = PCos{(p{**)), wherePCost p{"") = min <PCos( pé“’v))) forb=1,2..m (5.2)
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Figure 5.7: Simple network clustering example

The virtual distance using just nodes inside the clusteefmdd by:

(uv)

De, (U,v) = PCostp{""), wherep™ € P(u,v)|X! € ¢q andPCostp{"") =
ming <PCOS( pl()uvv))) ,forb= 1,2,..,m

Goal: Minimum i.e. ming{cost(Cy, (G,w,r)), fork=1,2,..,n}

To better clarify the definitions an example is presentednsitter the graplG = (V,E) with
V = {v1,V2,v3,v4}, IDy, =d andE = {{v1,Va},{v2,v3},{va,va},{Vs,v1} }. Gis shown in Figure 5.7.
The functionw : E — R rated the links and in this case is defined as:

0.2 if e= {V]_,Vz}
0.2 if e={v3,vs}
0.9 if e= {V]_,V4}
09 if e={wn,v}

w(e) =

wheree € E.
The resource functionr ( V — R™) returns the resource availability of each node and in the
example is defined as:

2 if V=V
1 if V=V
r(v) = 2 if V=V3
1 if V=V,

wherev € V

Our objective in this example is to find the clustering witk tibjective of minimizing the intra-
cluster communication. The problem input G, w,r,q) whereq = 3, i.e. we want at least 3 resource
units in each cluster. For this problem, we wse- 0.

Theset of feasible solutiongor our input.Z (G, w,r,q) is:

M (G,w,r,q) = {C1,C,,C3} = {{{vl,v4},{v2,v3}}, {{v1,v2},{v3,va}}, {{vl,vz,v3,v4}}}

This set of solutions is depicted in Figure 5.8.
The following clusters, for example, are not part of thedalblutions:

{{{vl},{vz,v3,v4}}, {{va,va},{v2,va} }, {{v1,vo,va}, {\o,v3,va} }, } ¢ 4 (G,w,r,q)

because they violate some of the constraints, e.g.:
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Figure 5.8:Set of feasible solutions# (G,w,r,q) for the input(G,w,r,q).

. {{vl} {vz,v3,v4}} The minimum amount of resources per clugier 3 (rule 3) is violated
becausq‘cll| 'r(v},) = 2, note that\¢, = vy).

o {{v1,v3},{vo,v4}}: The same problem as above
° {{vl,vz,v3}, {vz,v3,v4}}: The rule 2 is violated, becaugei, Vv2,v3} ({V2,V3,Va} # 0

The costs of the valid solutions are:

COS(Clv (GvW’ r, Q)) Z| 1 Xu VEC; % C1i (U’V) DCll(Vl’ ) + DC12(V27V3) =18
COS(C27 (GvW’ r, Q)) Z| 1 Zu Vecz, 2 ( ) DCzl(Vlv ) + Dsz(V37V4) =04
(
)=

COS(C37 G w,r Q)) ZI 12uvecs 2 D03| (U V) D031 Vi, )+ DCsl(V17V3)+
+DC31(V17V4) + DC31(V27V3) + DC31(V2>V4) + DC31(V3>V4

Therefore, theminimum(i.e. ming{cos{Cy, (G,w,r)) for k= 1,2,..,n}) is Cy, that is showed in

Figure 5.8b.
The optimal solution for the network depicted in Figure S @iesented in Figure 5.9.

5.3.1 Problem Properties

Let us analyze some properties of our problem. When the @nshumber three is not considered, a
property of the optimal solution of the clustering problenthat, for some and some : r —]0,q], the
smallest possible cluster size is obviouglgnd the biggest possible size in the worst casajis 2,

€ > 0. This is because whenever a clugeachieves a size bigger thag, 2t can be divided in clusters
ci, andc;,, saving the cost of the paths among nodes belonging tnd nodes belonging @, .

If we consider again the constraint number three, the biggessible size in the worst case turn
to be the complete network (with cost;, ey D(u,V)). An example wherg . r(v) > qand even so
the complete network should be a cluster is shown in Figur@.5.

It is important to remark that theninimum intracommunication-cost clustering an NP-hard
problem (even for unit-disk graphs).
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Figure 5.9: The resulting clustering of the network preseérih Figure 5.6.

100

[1] 100 [1]

Figure 5.10: An example of network where fgr> 1 the optimal solution is one cluster (complete
network).
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Proof. For the proof, we will use thpartition problem

Partition ProblemGiven a multiset of positive integers| = {i1,i2,..,in}, N € N, the problem is
whether a subset of the multiset exist{ M) where, fork,| € M: ¥ k= 34l

This means it is possible to divide the multidétin two groups with the same sum. It is known
that thePartition Problems NP-complete.

We will now reduce thePartition Problento our clustering problemRartition Problem<  mini-
mum intracommunication-cost clusterjag

The first step is to change our clustering from an optimirafjooblem to a decision problem.
This is done by altering the goal:

Goal: Is there a solution with the total communication cessltham? Formally, fok=1,2,..,n,
JcostCy, (G,w,r)) < d?

For each instanc® of the Partition Problema Minimum intracommunication-cost clustering
problem instancéG, w,r, q) with the following characteristics will be constructed:

e The graplG = (V,E) is a complete graph, wheve= {vy,v»,..,v;} (V| = j) andE = {ey, &, ..,e(g)}.

V| = [M|, i.e., the number of vertices is the same of the number otipesntegers irM.

The functionw: E — R is defined asv(e € E) = 1, i.e., all edges have unitary weight.

The resource function: E — R is defined asv(vg € E) =ig € M, i.e., each vertice becomes
the weight of an element of the multidet

As minimum resource request for each cluster, we select; - Yo-1ig

And finally, we selectr = 0.

The decision question is now, fer=1,2,..,n:
JeostCy, (G,w,r)) < (é) = |E|?

If a clustering solution exists, then a partitionNhexist. The clustering solution is composed by
two clustersc; andc,, where for any € sand for anyze (M —s),y€ ¢, z€ cpandcy Nc, = 0.
]

In realistic environments, a constraint that may appeandsthe amount of resources of a node
must fall in a specific range, i.evy € V,r(v) € [Linf,Lsug, Linf,Lsup€ R",0 < Lint < Lsyp Evenin
this case, the problem is still NP-hard.

Proof. The proof here is very similar to the previous one. Reatition Problenis also used. We
will now reduce thePartition Problento our clustering problemRartitionProblem<, constrained
minimum intracommunication-cost clusteriag

For each instanc® of the Partition Problema Constrained minimum intracommunication-cost
Clustering problem instanc€G,w,r,q) with the following characteristics will be constructed:

e |V|=3h_1in, i.e., the number of vertices is the same of the sum of alttipesntegers inl.

e The resource function: E — R* is defined asv(v € E) = Lj ¢, i.€., each vertice becomes the
weight of the inferior allowed limit.
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v3 (i3=4)

v5 (i5=1)

Figure 5.11: Example of graph construction. Notice thatpbatition of M exists, the solution of the
problem will be two connected clusters with the same numbapbdes ¢ = 7 nodes) as can be seen
in Figure.

e The graphG = (V,E) whereV = {vy,V»,..,vj} (V| = j) is constructed as following:

— C={vy,V2,..,Vin} (Wheremis the number of integers in the problév) forms a clique in
the graph

— The rest of the nodes are added to the vertices accordingetuatine of the integery
1< g<m Nodeyy is connected to a chain @ — 1 nodes. An example of this graph
construction foM = {3,2,4,2,1,2} is depicted in Figure 5.11.

— The functionl : C — N returns the correspondent integer of the probMr(ig = I (vy)).

e The functionw: E — R* is defined asv({u,r}) =1ifu#r,ueCandr €C, i.e., all the edges
in the complete graph have unitary weight. For the otheiicestin the graph (vertices forming
the chainjw(v) = 0.

e As minimum resource request for each cluster, we sqlecfiT"f . zg‘zlig

e And finally,a =0

The decision question is now, far=1,2,...n:

JcostCy, (G,w,r)) < % ZCI(U) (j—=1(u))?

5.4 Division of Labor and Task Allocation in Social Insects

The cluster construction approach presented in this chapteased on a particular kind of self-
organization: the division of labor and task allocationwasms of social insects, described in detail
by Bonabeau et al. [20]. In social insects, different tasksperformed by specialized individuals. It
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Pheidole rhea

Minor Major

Figure 5.12:Minor andMajor subcastes of the workers in tRdeidole rheaspecie. Image source:
[129]

is highly probable that specialized task performance isenaficient than sequential task execution
of unspecialized individuals.

All the different types of social insects have division did&. The most basic level of division of
labor is the reproductive division: only a small part of thedcts are involved in reproduction tasks.
Nevertheless, often a further division of labor exists.

The approach of cluster construction presented in thissliebased on a sub-form of division of
labor calledwvorker polymorphismi.e., the workers have different morphologies. Each ofiifferent
morphological castes tends to perform a different taskérctiiony.

The division of labor is normally not rigid, it exhibits plasty [105]. Changes in the environment
or in the internal structure of the colony make adjustmemthié allocation of tasks necessary, which
is possible due to the plasticity of individual workers.

An experiment made by Wilson [130] in the ant species fromRheidolegenus examined the
worker polymorphism. There are two morphological subcastehe workers: the minors, which are
responsible for the quotidian tasks of the colony, and thmreamainly responsible for seed milling,
abdominal food storage, or defense, normally knownsaddiers. Figure/5.12 shows an example of
amajor and aminor of the specid’heidole rhea

In the experiment, Wilson altered the structure of colofies the Pheidolegenus. Thamajors
exhibits elasticity, i.e. the behavior repertoire couldsbtretched back and forth in a predictable man-
ner in response to perturbations. The perturbation indgdngaNilson in his experiment was to change
the ratio betweemajorsandminorsin a colony. Reducing the amount wifinors the majorsstart to
execute tasks that were almost exclusive fortieorsin the normal situation. Wilson suggested that
the colony as a whole exhibits resilience, the degree obrespto alterations was determined by the
elasticity of the individual ants. Therefore, the resitierof task allocation accomplished at colony
level is linked with the elasticity of individual workers.

The demand response behavior demonstrated by Wilson waslifgrmodeled by Bonabeau et
al.[18]. In the model, individuals have a response thratsfalevery type of task. The task-associated
stimulus controls the engagement of the individuals in &ifijpgask. When the stimulus for a certain
task rises, the probability that individuals will react bat stimulus and perform the task will increase.
This probability of task engagement depends on the thrdsbfch certain individual with respect to
the requested task.

Formally, the model used has the following components:

e Lets, be the stimulus associated with the task
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Figure 5.13: Some threshold response curves with diffareasholds § = 1,4,8, 20, 60).

e Let 6; be the threshold of an individual associated with the task determines the tendency
of an individual to respond to a stimulus such thats 6, for low response probabilities and
Sa > 6, for high response probabilities.

The selected response function that brings a similar beh&vithe one observed by Wilson is:

S
RS

T, is the probability of performing the taskas a function of the stimulus intensigy and3 > 1
determines the steepness of the threshold. Normally, imxperiments, the valug = 2 was used.
Figure 5.13 shows the different response probabilitiesrgsome thresholds to perform the taskn
this figure, the meaning & could be easily recognized: it regulates the response afdividual to
a stimulus. Whert,; = s,, the probability of performing the taskis exactly%.

Monte Carlo simulations showed that this function bringgailar behavior as the one observed
in Wilson’s experiment. In Figure 5.14 a schematic repreg@m of hypothetical response curves
for minors and majors in the polymorphic species of antsistutly Wilson are shown. The figure
represents the threshold for typical minor jobs.

(5.3)

5.5 Heuristics Basic Concepts

Our approach for cluster construction is based on sevemhpbes of task allocation coming from
nature (i.e., we developed a cluster construction basedviath of labor in social insects). We aim
at mapping these behaviors to a consistent heuristic thdg éind maintains clusters with a maximum
definedq during the runtime of an ad hoc (and sensor) network.

The possible “castes” (or roles) that a node can assume are:



5.5. HEURISTICS BASIC CONCEPTS 125

%1
[
o
2 09t -
o
c 08f }
X
g 07 -
£S06f .
22
= 051 n
T N
2 04l |
(O]
S 03 :
=
T 0.2f .
8
o 0.1 i
[a

O 11

0.01 1C

Stimulus Intensity

Figure 5.14: Hypothetical response curves for minors andmal9].

@)
@) S
o 0° o © ©
© e &
S §%®O o @ )
o ©So VO @Q@@
o S ¢ ®g®
O 9) S @ o
S 5) @
@
o)

S Clusterhead
O Member

Figure 5.15: Example of a good solution of task allocatioarnirad hoc networkg(= 4).

Clusterhead (CH): The clusterhead nodes are the representatives of therslu3iee identification
of the cluster is given by the clusterhead, moreover sptasék are assigned to the clusterhead.
Once the clusterhead is not present in a cluster anymore|ulter ends its existence.

Member (Me): The members of the cluster are the nodes that have decided wlbster they belong
to.

Ordinary Node (Not member, Nm): Nodes that do not decide to enter into a cluster neither becom
clusterhead.

A network where all nodes are already clustered is showngargi5.15.

We have developed two heuristics that implement the clugten a given ad hoc networks. The
first of them is designed for “quasi-static” networks, whére nodes do not move or move very
slowly. The second one was developed for sensor networksogitain movement patterns.
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5.5.1 General Ideas

The idea of the clustering heuristic is that each node hasapilistic tendencies to assume a deter-
mined role in the network. For example, nodes with good cotivity and plenty of energy are good
candidates to be clusterheads and their clusters will jfgldzave a small communication cost. In
the same way, poorly connected nodes with low energy lewehat good clusterhead candidates,
and should stay as cluster members. This idea is derivedtfierdivision of labor of social insects.
Instead of having just a certain number of fixed morphologgnég (like themajorsandminorsin the
Pheidolegenus), we have here the complete spectrum of nodes: froesneiy capable of assuming
the clusterhead role to nodes not suitable at all for this. tAikey all have a probability of assuming
a determined function based on their fitness to the speciécaiod the actuahecessity(stimulus)
that a determined role has in the network. The fitness to assumle is modeled a8, i.e., the
threshold to become clusterhead &, i.e., the threshold to become member of the clusterN.
The stimulus to become clusterhead is cafiggl.

5.6 Clustering “Quasi-Static” Ad hoc Networks

The heuristic presented in this section is responsible falirig a good clustering configuration in a
network with low mobility. Wherever big changes occur in tregwork topology, the heuristic should
be called again in order to re-define the network partitiomesglecting clusterheads.

5.6.1 Clusterhead Selection

The main difference between this and the next heuristicashire only the clusterheads are elected
using a response function from ordinary node to clusterhdadhe initial state, all nodes of the
network are ordinary nodes, i.e., there is no cluster siracin the network. The variablstate
describes the actual state of a nadstatg, € {CH,Me,Nm}) andg; is the set of current members of
clusteri € IN. For simplification we define that thgusterID=i. Initially, for i =0,1,..,n, ¢, = 0.
The response function of Equation 5.4 is responsible fotrtmgsition of a node € V from ordinary
(Nm) to clusterhead.

©h,

Where 8¢y, is the threshold of the nodeto become clusterhead asgh, is the stimulus ofv
to assume the clusterhead role. The parameter(0,1] is used to control the speed at which the
clusterhead selection happens. It will be explained latefar now it can be ignored.

The threshold specifies how appropriate a node is to theaadmall6c, means that the node
is very suitable to be clusterhead. The definition of thesthoéd can be seen in Equation 5.5.

. ZUENgmm(v)W(UN) ; ‘Ngb\lm(v)‘
o=k (Mg ) e E ke (omn(4GG)) e

WhereE, € (0,1) describe the energy level of nodewhere 1 means battery full and O depleted.
Let Ngh(v) be the set of nodes that are directly connected witte. u € Ngh(v) iff {u,v} € E. A
nodeu is in the seNghym(V) iff u € Ngh(v) andstate, = Nm This means thalghym(V) is the set
of neighbors of/ that currently do not belong to any cluster.
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The idea of this threshold function is that nodes with higargy level which are very connected
(vertices with high degree) are good candidates to be chesies (having a small threshold). The
energy is an important factor because clusterheads peddministrative (among other) tasks within
the cluster and have a special status in the network. Goodectiwity comes from the greedy as-
sumption that starting a cluster from well connected nodiisre@sult in a relative small clustering
cost (given by eq. 5!1).

The stimulus function is given by:

t
SoH, = kltelapsed + kz
required

<1— INghve(V)| + INgttH(V)I> (5.6)

INgh(v)|

Whereteiapsedis the elapsed time since the clustering heuristic hasestamd;equired IS the max-
imum running time of the algorithm. A nodeis in the setNghue(V) iff ue Ngh(v) andstatg, = Me.
Similarly, u € Nglcn(v) iff ue Ngh(v) andstatg, = CH. With simple wordsNghve(V) is the set of
neighbors ofv that are members of some cluster angh: (V) is the set of neighboring nodes that
are already clusterheads.

The underlying idea is that nodes that for a long time did redoiiig to any cluster and nodes
without clusters in the vicinity should have a higher stioao become clusterheads.

With the transition function given by eq. 5.4, some nodes sgibntaneously start to change the
role to clusterhead based on the stimulus function. Wherda decides to be clusterhead, it selects a
randomClusterID.

Here we analyze briefly how the behavior of the nodes witledkffit probabilities coming from the
response function evolves. As already stated, the cliesierkest is executed in a periodic way. Let's
p1, P2, ..., Pn be the probability returned by the response function froaesdl tan (py = Tocn, (schy))-

We can model this behavior with a geometric distributionisTheans, we calculate the probability
distribution of the number X oBernoulli trials needed to change the state from nonmember to clus-
terhead, supported on the 44t2,3, ...} (the trials). For example, fqu;, the probability of becoming
clusterhead afték trials (testing rounds) is:

PX=K =1-p)* Yp

In Figure 5.16, the cumulative distribution for differenbpabilities is shown. As expected, with
high clusterhead response-function probabilities, a lsmahber of rounds is enough to virtually
ensure the clusterhead role assumption. Nodes with a higheshold and/or smaller stimulus will
have smaller probabilities, and this requires (with higblgability) more time to decide to become
clusterhead. If a more suitable node is in the neighborhivawd|l (with a high probability) become
clusterhead first and capture the node as member.

Another fact that can be derived from the cumulative distidn is that nodes with a very small
role changing probability returned by the response funcfierhaps need a rather large number of
rounds to become clusterhead. For very sparse areas ofttherkethis could be a normal situation.
In order to accelerate that, we add the elapsed time in thukts function. Therefore, the probabili-
ties are increasing with the time, which reduces the eledtioe in sparse areas of the network.

A problem that arises from dense areas of the network is ttetlfiat several nodes in some
neighborhood can decide in very short time to be clusterhieefre a neighboring clusterhead has
completed its cluster.

To understand the problem better, we define here the leasttiaitarea of influence and area of
interference (extension of the sphere of influence/interfee definitions made in the work [77]).
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Figure 5.16: Cumulative of the geometric distribution foweg response function probabilities
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Figure 5.17: Least potential influence and interferencasafer a grid network.[x] near the node
means that the node hasinits of resource.
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Definition 5.6.1. A node u is in the least potential area of influence of clustachv (ue W), if a
cluster constructed by v can contain u for a cluster with asteg resources and where no extra node
is taken after reaching (or overpassing) the limit g.

In Figure 5.17, an example of the least potential area ofenfte is shown.

Definition 5.6.2. A node u is in the least potential area of interference of thsterhead v (g ®,),
if there is a node j in the network whithin the least potensieda of influence of both u and v.

An example of a least potential area of interference is diswas in Figure 5.17. The least poten-
tial area of influence is the (minimal) search space from nembf the cluster whose clusterhead is
v. Two clusterheads inside the area of interference gathen#mbers at the same time can potentially
compete for the same node. If both are inside the area of imflyehey can even block themselves to
attract potential good members for the cluster.

To reduce the probability of occurrence of this situatio® mtroduce the parametere (0, 1],
which controls how fast the emergence of clusterheads s¢see Equation 5.4). A smallprmeans
that the nodes will take more trials (rounds) to have a highebability of becoming clusterhead. In
general, biggep values bring a faster network decomposition (complete oetwelustering time),
whereas smallep values bring a slower, but better quality (with less caliis) network decomposi-
tion. The parameter also depends on the size of the area wéma (®|). As |P| is correlated with
the minimum amount of resources per clustgr With higherq, p should be smaller in order to avoid
collisions. Moreover, the worst case clustering time ig als important factor influencing an optimal
p. A longer cluster construction time brings higher prokiapibf collisions because nodes in the
neighborhood have a higher chance to select themselvesctadierhead in parallgl The topology
of the network plays also an important role since dense (vemynected) networks bring larger areas
of influence.

We present here a short analysis of the worst case prolyadfiit collision when a nodehas fired
(and becomes clusterhead). Our analysis is very pesginrastil in practical applications a much less
strict p can be used. Ldt be the worst case cluster construction time (defined laferlart T be the
time between two consecutive tests (trials) for clustedteaection. We defing; to be the number
of trials happening during the cluster construction time=¢ (tﬂ). In a very adverse scenario, we
suppose that the threshold to become clusterhead for adlsnisdipproaching zero, which means that

Lh,

the response function with a very small stimulus is alreagtyrningp because;—*— =1, i.e.,

5€HV+9(I:3H\,
Tocw, (ScH,) = P-

We will calculate the probability that no node fires during geriod where collisions may happen.
This period can be seen in Figure 5.18 and it is two equal tedignbecause whewndecides to become
clusterhead, a potential inferencing node could alreadlt éstarted befor®) or can start aftev has
initiated. We will call the number of clusterhead trials paping during this periodiers Which is
defined ainert = [2%].

As the geometric distribution is memoryless, we can staeptbbability of no other node in the

area of influence disturbing the cluster construction bgtelthead by:

Fintert|P|

P(k > (rinterf : ‘CD‘)) =1- Z (1— p)(kfl)p (5.7)
k=1

2A node test whether it should become clusterhead untilviaea call for members request from an actual member of
the cluster. If, at the end of the process, the node was niided in the cluster, it starts again to make the clusterhestd
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Figure 5.18: Disturbance prone period of time.

Now, given a cluster construction timg)( the time between two consecutive clusterhead tests
(1), and the influence area of the node, we can calculate thalpititi of collisions to a giverp . We
can also invert the equation and select a value appropriate for the desired collision probability.

In a more realistic environment, for most nodes, the thrielstmbecome clusterhead will not be
near zero for the majority of nodes, therefore a much highttian the one calculated above could be
used with only a unsubstantial penalty in the quality of thestering.

5.6.2 Member Selection
5.6.2.1 Influencing Parameters

When a node decides to become clusterhead, it must seleappitepriate members of the cluster.
The following parameters influence the suitability of a nbde became member of the cluster:

1. The distance to the closest node already in the clustaetedwith a small distance to the cluster
will bring a smaller cost than nodes with bigger distanceke Tistance of the nodeto the
clusteri is defined by:DP = min{w(b,e)|e € Ngh(b)Nci}, i.e., the smallest vertex weight that
is adjacent to nodb and to a member of the clustierlf a noded is not directly connected to a
node which is already a cluster memuaf, = co.

2. The distance to the clusterhead. This parameter is rekpero shape the cluster, constraining
its diameter. For clusters with the same amount of nodes ifiateht forms, large diameters
means higher cost (an example can be seen in Figure 5.19).

3. Connectivity to nonmembers. This parameter is importemén a lot of resources are still
missing in the cluster, i.e., the clustering process isdnnitial phase. This is due to the fact
that nodes with a good connectivity probably will have goaddidates for the next membership
selection. The connectivity of nodec V to nonmembers is given g, = ¥ ecNghum(b) (1 —
w(b,e)), i.e., the sum of the “proximity” (+ w(b, e)) of the set of the neighbors bfthat have
nonmember status. To understand the effect of this ternur&ig§.20 shows an example. Both
nodes have the same distance to the cluster. However, node & kery near nonmember
node, and node 2 has a much more distant nonmember neighloddr to assure future good
candidates, node 1 should be preferred for membership.rifleless, if the clustering process
is in the end phase, we do not need additional members, whaemsthat this parameter is not
important in this case.

4. Connectivity to members of the cluster. Selecting nodgkly connected to other nodes that
are already members of the cluster increases the prolyabiliteducing the total cost of the
cluster because there is a chance that the connectionsbcatto reduce the size of the paths
through the nodes. The connectivity of node¢o members of cluster is given byCrgb =
¥ ec{Nghb)ng } (1 — W(b, €)), whereg; is the current set of members of the clusterN.
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Figure 5.19: Diameter versus cluster cost in a cluster witiodes. (a) Diameter is 2 and the cost is
63. (b) Diameter is 6 and the cost is 112
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Figure 5.20: Example of two candidates with different neigthood.

5. The resource availability of the node. As a general rudees with higher resource availability
will potentially reduce the cost of the cluster because tieglyice the necessity of taking addi-
tional nodes. Nevertheless, to include nodes with plerdpurces at the ending phase of the
membership selection with high resource (perhaps morettiealuster needs) could increase
the total cost due to the fact that the node may be better giegbloy another cluster.

These aspects will be explicitly or implicitly observed e tMembership-Selecalgorithm pre-
sented here.

5.6.2.2 Membership-SelectAlgorithm

For the membership selection, we have agastade, variable describing the actual state of a nede
Differently from the clusterhead selection, we have heradditional state: the deciding{) state
(statg € {CH,Me,Nm Dd}).

Let Aq be the amount of resources still needed by the cluster i ¢odelfill the requiremeng.

The Membership-Selealgorithm is an incremental process, i.e., at beginningkirster has just
the clusterheadQH) node. During the clustering process, more and more nodesdted to the
existing cluster until the cluster achieves an appropsate (3 < r(v) > 0).

At the beginning of the clustering process of clustgust one node belongs to the cluster: the
clusterhead, we will call it of nodl; (h; € ¢;, statg, = CH).

When a node becomes part of the cluster (including the chisdel), immediately a message
is broadcasted to the neighboring nodes signalizing thestatus and requesting for new members
(Call_Members message). Each nonmember and deciding nddeatug € {Nm Dd}) that receives
this message changes its state to decidstgtug = Dd).

Deciding nodes are the potential new members of the cludtexertheless, not all nodes are
the best choice to be included in the cluster. In order toilpge nodes potentially contributing to
a low global cluster cost (see eg. 5.1), each nbde the decision state estimates its own fitness
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value 0< Fitness(b) < 1. This value will be defined lateFitness(b) represents how suitable is the
inclusion of nodéb € V in the clustei.

At this point, the nodé waits a delay whose duration is proportional to the Hitnesg(b) value.
When the waiting time is elapsed, the node sentissbership_Request message to the clusterhead,
informing that it is willing to be included in the cluster. Wpthe clusterhead, based on thgand the
availability of resources of the candidate, can decide ndrehe node will be accepted as member. If
accepted, the clusterhead includes the new node in a tatii@lvimembers of the cluster. A message
is sent back to the node confirming/refusing the entrancedrciuster. When receiving the response
message, the requester changes its status accordsighg (= Me, if accepted, andtatgy = Nm,
if refused). If accepted, this new status is broadcastedeidiately in a message calling for new
membersall_Members) to the neighborhood di, starting the process again.

As already said, the decision of accepting/rejecting nembes is done by the clusterhead node
based omq andr(b). If r(b) < Aq, the nodeb is promptly accepted by the clusterhead. When
r(b) > Aq, before answering to a request, the clusterhead waits fadditional period in order to
provide a chance to nodes with a not so good fithess requestdimbership. LeR C V be the set of
nodes requesting for membership during this period. Thetethead will select the nodie R, where
r(l) > Aqgand forvv e R, ((r(v) —Aq) > (r(l) —Aq)) Vr(v) < Aqg, i.e., the node that best fits to cover
the requested resources. This node will receive the accepsage while the others Bfwill receive
a reject message.

WhenAq < 0, i.e., the cluster is complete, all additional receiviaguests will be rejected.

Before introducing additional aspects of thembership-Selecalgorithm, a small example of
the process described is presented. Consider the exanmplgedein Figure 5.21. We colored the
nodes according to thetate white nodes are nonmembers, black nodes are members $tertiead,
i.e. statuse {Me,CH}) of the clusteii being formed, and gray members are deciding nodes.

In Figurel 5.21a, the initial condition is shown. The cludtas just one member: the clusterhead
(node 1), selected by the transition function presentedeicti&n 5.6.1. The clusterhead makes a
broadcast of th€all_Members message transmitting its state (5.21b). At this point, alles that
receive the message change to the deciding state. A timet [sased on the calculated fitness for
each node. In Figure 5.21c, the programmed time of node 2aady elapsed. The node now should
ask for membership. A message is sent to the clusterheadgaskbe included in the cluster. As
the total resource reques}) (is not satisfied by the current cluster size, the node 2 isidied in the
cluster. Now it also broadcastsall_Members message to the neighborhood (Figure 5.21d). When
nodes 4 and 5 receive the broadcasted message, they staet #tat is related to the computed fithess
(1—Fitnessg(4)) and 1- Fitness(5)). Due to the fact that node 4 has already a timer, just thertime
with the shortest deadline is kept. In Figure 5.21e, theparogned time of node 4 is elapsed. Similar
to node 2, it requests for the permission to enter in theetyand it is included). Because the cluster
is already complete, the node 4 does not broadcast &agl_Members message.

Finally, the waiting time for nodes 5 and 3 has ended. Thewesgto become members of the
cluster to the clusterhead, but due to the fact that theatimsts enough resources, the permission to
integrate the cluster is refused.

Now we will integrate the already presented heuristic hiség Section 5.6.2.1) that should guide
the member selection. The first point says that the heursstauld privilege nodes with a small
distance to some of the nodes inside the actual cluster.dier ¢o observe that, two aspects must be
addressed:

1. Include the distance to the next cluster member in thesfitfienction. As it will be presented
later in this section, an important parameter of the fithesstfon is the distance of a candidate
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to the next member in the cluster. The distance is measuredibgombined metric (“virtual
distance”). Nodes with good connection to the already iexjstluster have better fitness than
nodes with just bad links to the cluster.

2. Using the example showed in Figure 5.21, we can highlightrglicit behavior of the heuristic
that does not befit this metric. The nodes that are near ttstechead started the timer very
early during the members selection; nodes far away havertter started later. This means
that nodes far of the clusterhead, but at the same time witd gonnection to the cluster, are
penalized in favor of nodes that perhaps do not have a goatkection to the cluster, but are
near to the clusterhead.

This aspect should be addressed together with the point&utwbo in our influence parameters
list: the distance to the clusterhead. This point is aidedhleyimplicit behavior of algorithm. The
two aspects are important to reduce the cluster cost. Naslestm the cluster are suitable because the
connection cost is smaller, nevertheless, to keep clustighssmaller diameter also helps to reduce
the total cost.

The distance to the clusterhead is also addressed by twtspoin
1. Including the distance to the clusterhead in the fitnesstion.

2. Implicit behavior of the heuristic. To show that, we agase the example showed in Figure
5.21. The fact that nodes near to the clusterhead startaahtbeearlier implicitly helps to get
small diameter clusters.

Analyzing this two different requirements, the followingethod was created in order to penalize
the distance to the clusterhead and reward the distance tukter. We will now count the rounds
that the algorithm has already executed. Using the exampkepted in Figure 5.21, (b) represents
the first round of the algorithm and (d) the second. Each tlmat & new member was selected and
makes a broadcast to the neighborhood, the varialied,,v € V is incremented.

Now, instead of just using the fithess to calculate the waiiime, the round also plays an impor-
tant role. We define the waiting time of a node request to be included in the clusters:

1

WaltingTimg = k- (1~ Fitness(v)) -~ e

Wherev € V,k € [0,1],k € R+ and 0< Fitness(v)) < 1.
Using this equation, for bigger rounds the time that showdMaited is shortened. With the

parameter, the amount of reward given to the distance toltiséec versus penalization of distance to
clusterhead can be controlled.

Now we can present the Fitness function that takes into axtclpoints presented in Section
5.6.2.1 (fory;_okj = 1).

Fitness(v) = (5.8)
ki (1—DY) +ko- (1— min{Ruclustertheas) 11) 4 o min{—“Rm__ 134 if  r(v)<q

Max_dist X_connecy

. C
= +Ka - min{ Max_cré)bnnecv 1} + kS%)
0 if r(v) >q
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Wherek, ..,ks € [0, 1] define how each of the terms influence the fithess metric. moitant to
remark that 6< Fitness(v) < 1. For two nodes;,u € V andFitness(v) < Fitness(u) means that the
nodev is less suitable for the clustethan nodeu.

Max dist gives the minimal distance to the clusterhead that shoulcbbsidered, and the max-
imum penaltyMax_connectis the same for the connection measurements. An importamrteis
that for nodes with more resources than required, the fitiseslsvays 0 because they should form a
cluster with one member itself.

Now we will calculate the worst case construction time of astgr {;). t. parameter is used in
the analysis of possible collisions during the clusterhsaldction (Section 5.6.1). The worst case
tc happens when the members are selected in a line. For thapsog that the members have the

.. —L; .
minimum resource,s, {q '”ﬂ rounds are necessary to complete the cluster. We dgfase

Linf
Pf'—inf W
Linf 1

e = K—
¢ r; K-r+(1—k)

The expression is derived from the worst c&aitingTime where the fithess of all nodes included
in the cluster is equal to zero. Here the time of messagertrigs®ns are not taken in account. Since
they are much smaller than tki¢aitingTime they can be disconsidered in thepproximation.

5.6.3 Message Relay to Clusterhead

This is a complement of the presented algorithm. The idea ir¢ate a spanning tree with the
clusterhead as root, helping to select good paths when mermabemunicate with the clusterhead.
Inside a cluster, good routes to the clusterhead are impdstcause:

e TheMembership_Request is sent by all nodes to the clusterhead

e Often, clusterheads perform other administrative taslkesen can be used to form a backbone
for message relay (topology control)

For creating the spanning tree, each node stores the actaainkvirtual distance to the clus-
terhead P_CH) and the corresponding link that is used to achiev®kdlayNodeCH). Every time
aCall_Members message is transmitted, the current distance to the dhestdris also transmitted.
Then, every received of the message sent lwcan identify whether the current path is the shortest
one. If not, the new route is assumed.

A further point that should discussed here is the intertelusommunication. Nodes in the border
of the cluster, i.e., that have one or more links to nodesriggitg to other clusters are called gateways.
Such nodes inform the clusterhead about which clustersdfmearrive. The clusterhead may select,
for each neighboring cluster, one of these gateways (a goodected one) to relay messages to the
neighboring cluster. The spanning tree can be used to rbetenessage from the clusterhead to
selected the gateway (other routing algorithm may be aled)us

5.6.4 Enforce Phase

Using the described algorithm, at the end of the clusteriimg,tit may happen that some clusters
could not find enough nonmembers to include in the cluster.ekample, between several formed
clusters, some nodes that haven't been required by thostedunay remain. Together, they do not
have enough resource to form a autonomous complete cluster.



136 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

Such incomplete clusters are disrupted by the clusterheddh& nodes enter in the nearest com-
plete cluster using enforce membership requests. The@nfidrase guarantees that all nodes will be
included in some cluster in a finite time.

As aresult of the clustering algorithm presented in thisiseccomplete clusters have been built.
In each cluster, a spanning tree with the clusterhead athesdbeen constructed.

5.7 Clustering Dynamic Ad hoc Networks

In dynamic ad hoc networks, the link quality and the netwaskfiguration change over time. New
links are created, links are destroyed, new nodes appeahnaies can fail. In this section, a heuristic
that tries to find good clustering solutions and, at the same, taiming at maintaining these clusters
over the time, is presented.

5.7.1 General View

Like the first clustering algorithm presented, the clustads in this heuristic are elected using a
threshold response function (see Section 5.6.1). Neuesthighe other possible roles of the nodes are
also selected using threshold response functions. As ipréh@ous case, the variatdeate describes
the actual type (role) of a node(state € {Ch,Me,Nm}) andc; is set of the current members of the
clusteri € N, and, for simplification, we define thausterID=i. Initially, for i = 1,..,n, we have
¢ = 0. In the initial state, all nodes of the network are ordynaodes, i.e., there is no cluster structure
in the network.

In the dynamic approach, we have the following responsetifume driving the changing of roles
of the nodes in the system:

Clusterhead related functions:

Nonmember— Clusterhead: The response threshold function is callgg, , v € V. It returns the
probability of a nonmember to become clusterhead. Similar to the first clustering élgar
presented, this response function is responsible to mbdarmergence of clusterheads in areas
of the ad hoc network where no clustering is already takiageol

The exchange from the clusterhead status to nonmemben(##as the end of existence of a cluster)

is controlled by a deterministic mechanism described.l&®een so the exchange of the clusterheads

inside a cluster (clusterhead rotation) when the energrvesof the current clusterhead gets low.
Membership related functions:

Nonmember, Member of x— Member of y: This function (recruitment functionTg,, ) models
the entrance of a node (here calldinto the cluster withD =i. The nodev may be non-
member or a member of another cluster. When a cluster dodsaxetthe necessary resources
to cover the required, it “attracts” new nodes to join it. The response functioljoia a cluster
(Toee, ) gives the probability of node to enter in the cluster. It is possible for a cluster to
“steal” nodes from a neighboring cluster. The thresholdtifiis action (steal of nodes) is re-
duced when a node, for example, is changing the physicatipo$d some place nearby the
new cluster (therefore, leaving the cluster from which isypaeviously member).

Member — nonmember: This response functiorif,, ) models the situation when a node aban-
dons the cluster due to the fact that its connection to th&telus very weak.
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Before describing the response functions in detail, theegendea of the algorithm is described
here. Nonmembers are “clusters” with no resouiRe={ 0). As the previous “quasi-static” version,
the first task of the heuristic is to elect the clusterheadsahetwork. This is made using the response
threshold functiorig,, . A clusterhead is now an unitary cluster with some resourge=(r (v), v is
the clusterhead of clustéy. When a clusterhead is elected in some part of the netwbstaits
as consequence of the existing resource to attract new niemilevertheless, instead of using the
concept presented in the previous heuristic, here the msgpinction '(gremvi) is used to here recruit
new cluster members through a positive feedback process. '

In the case of the equatid i (attraction of new members to the cluster), the responssttiotd

recry |

and stimulus now here the following meaning:
Threshold Becr,;: Measures how connected is the node v to the cluster

Stimulus secr,;: Represents the volition of a cluster to attract new memb¢ege the positive feed-
back acts.

The idea is that a cluster incrementally grows until it agbgat least the requiremeqt A
growing cluster exercises an attraction “force” to the rotlet are in the vicinity. This attraction
force is expressed by a higher stimukis the Torecr,, FESPONSE function. This concept is presented in
Figure 5.22. '

As shown in Figure, an existing cluster exercise an attsactiorce” to the neighboring nodes,
independent of its type. For nodes that are already membidte aluster, the same force is re-
sponsible for the cohesion of a cluster. This is becauseetsigonse functioig,,, is the inverse of
Toreer, (Toeave = K1+ (1= Toreer,,))-

Returning to the attraction of the nodes, the intensity efftirce is expressed in the stimulus of
the response functiofy,, .. The intensity of the force (and consequently the stimweter into the
cluster) is regulated by the amount of resources alreadyeicluster. We use here a positive/negative
feedback mechanism typical for self-organizing systems.

5.7.2 Clusterhead Management

In this section we will describe how the clusterheads areteteand withdrawn in our cluster con-
struction heuristic.

5.7.2.1 Clusterhead Election

As in the previous heuristic, the clusterheads are elecs@tjla stimulus-response function. The
function is the same as used in the “quasi” static heurisge €d. 5.4). The definition of the stimulus
is also the same as used in the previous heuristi¢ (eg. ®6)the idea is that nodes which for a long
time are not belonging to any cluster and nodes without etash the vicinity should have a higher
stimulus to become clusterhead.

The threshold for assuming the clusterhead role is simildhé previously presented (eg. 5.5)
with modification. The maodification is the addition of a facto the formula to take in consideration
the stability of the node as part of the threshold, i.e., sogith stable neighborhood are preferred to
be clusterheads instead of nodes with constantly changingections.

The modified version of the equation is given by Equation 0y >_, kj = 1.

o, = ko <1— Lucughly (V:;“V)> k- (1- By + ks IV, (5.9)
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Figure 5.22: Example of execution of the heuristicdes 8 andvv € V,r(v) = 1.



5.7. CLUSTERING DYNAMIC AD HOC NETWORKS 139

As already described, € (0,1) is the energy level of the node Ngh(v) is the set of nodes that
are directly connected withh andNghym(Vv) is the set of neighbors afthat until now do not belong
to any cluster.

The third term AW,) measures the stability of the node, i.e., how fast the meighg of the node
is changing. For that, we measure the variation of the linigiteof the neighborhood over time.
The functionAw (v, j) returns the mean of the variation of the link betweenj} until the timet.
The definition can be seen in eg. 5.10gh (v) returns the neighbors of the noden the timet, and
W (v, u) returns the link metric of the linkv,u} in the instant of time.

B () = 5 (B (v )+ (v )~ we (v ) (5.10)

For this function (Equation 5.10), we ugg(u,v) = 1 for disconnected nodes (i.€u,v} ¢ E) on
the timet, (differently from the global definition). The reason is teep the value o\, inside the
[0,1] interval.

The initialization is done bAw;—o(V, j) = 0.

Equation 5.11 gives the mean of all the variation of the links’s recent neighborhood is in
this case the current time£ now).

1
INgh(v) UNgh-1(V)| je(Ngb(v)ONgh_1(v)

The idea of this threshold function is similar to the first histic, i.e., nodes with high energy
level, strongly connected, and additionally with stablarections are good candidates to become
clusterhead. The stability factor comes from the assumptiat nodes with less movements in the
past are good candidates for clusterhead because they Haghea probability of staying in the
cluster, not migrating to remote regions of the network.

Similarly to the first heuristic, the transition functiorvgn by eq. 5.9 stimulates the spontaneous
change of role from some nodes to clusterhead. When a nodkeddo became clusterhead, it selects
a randonClusterID.

AW, B (v, ) (5.11)

5.7.2.2 Clusterhead Withdrawal

This version of the heuristic is required to deal with dynamaétworks, where the links are constantly

changing. Moreover, other parameters may also changehe.gctual battery status of a given node.

Therefore, it is necessary to design mechanisms that dbieclynamic and react upon than by means

of cluster disruption (removing the clusterhead from thestdr) or clusterhead node exchange.
There are two types of withdrawal of the clusterhead:

Clusterhead Exchange: This happens when the energy level of the clusterhead isdarably below
the neighborhood. This means that the clusterhead roledsasaubig amount of energy of the
node due to the extra burden brought by the extra respaitisibibf the role. Therefore, when
this bypasses a certain threshold, the actual clustertedadts a neighbor with higher energy
level (and connection) to assume its role.

Cluster Disruption: This happens when a clusterhead, after a certain numbeteafiats, could not
keep the requiremertof resources per cluster. In this case, the (incompletetetwyill cease
its existence and the current members are free to join olislirey nodes.

Now we will briefly describe the both quoted mechanisms:
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Clusterhead Exchange In the cluster construction (and maintenance) round, tighbering nodes
of the clusterheast that are members of the clusigiNgh(v) N ¢;) send their connections and energy
rate. The clusterhead keeps this information in one taldeafeighboring node @ € Ngh(v) N¢; =
Nghi(v)), the connection rate is given by (fky + k, = 1):

_ ; INgh(e)| 2 ueNgh () w(u,e)
CR(e) = I(l'mm(Max_Neigbor_CIuster’ 1> the: <1_ INgh(e)] > (5.12)

WhereNgh (v) is the set of neighbors afthat belong to cluster

The energy rateHe € [0,1]) is a measure of the current amount of energy of a node, where 0
means energy depleted.

For the decision of clusterhead exchange, the clusterhedadlates the average energy and con-
nection rate among the neighbors belonging to the clustee. rieighboring average connection and
energy rates are given by:

YeeNgh(v) CR(€)

NgbCR(v) NoE@) (5.13)
_ ecNgh (v) Ee
NGbER(V) = z“\l'\g'f% (5.14)

The role of the clusterhead is transferred if the averageggrand connection of the neighboring
nodes is better by a fact@re [0,1]. This means, ICR(v) + E, < k- <NgbCR(v) + NgbE R(v)) , the
clusterhead withdraws and assigns its role to the node wtthigher sum of energy and connection
rate using a message callegichange_clusterhead

Cluster Disruption As already mentioned, the disruption is used to extinguighdxistence of
clusters without the necessary resources and without thsilplity at short time to gather those re-
sources. In Section 5.7.4.1, a mechanism responsible hemgaew nodes (or release some nodes
when the cluster is overcrowded) is presented. A round iswg®d every time when a clusterhead
notices the lack or excess of resources in the cluster. Tsterldisruption acts based on the execu-
tion of the rounds. When a lack of resource is noticed by thetethead (the mechanisms used by
the clusterhead for this are discussed later), it startsi@ssef cluster construction rounds. A round
counter found) is initialized with zero. Every round within the clusteratrachieves the minimum
requested resource)( the counter is again initialized.

The cluster disruption happens whenever the counter aahiawgiven limitround > . This
means, after several tries, it was not possible to achiewmetibnal cluster. The messagdus-
ter_disruptionis broadcasted to all current members. Upon receiving thesage, they return their
state to nonmembeN(m). Now they can be easily attracted by other clusters, orearfuture a new
clusterhead may emerge.

5.7.3 Member Selection

In order to elucidate further the member selection of ourikéa, we first introduce concepts of
self-organization in biological systems.
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5.7.3.1 Self-Organizing Systems

Organization is defined in [61] as a structure with functi®herefore a system can be caldanized
if it has certainstructureandfunctionality Structuremeans that the components are organized in a
certain order. Function means that the system fulfills onpgze.

A system isself-organizedf it is organized without any external or central dedicatedtrol [61].
The individual entities interact with each other in a dmited peer-to-peer fashion. This interaction
is normally local [101].

Self-organizing systems normally are composed by a largebeu of interacting components.
[24] presents two basic modes of interaction among the comts: positive and negative feedback.

The positive feedback generally promotes changes in ammysfn example of positive feed-
back coming from the biology is the clustering of several#g of birds. For example, herons and
blackbirds nest in large colonies because such a behaweides individuals with certain benefits,
such as better detection of predators or facilities in figdvod. This nesting is an example of self-
organization driven by a positive feedback: birds tend t&t mdnere other birds are already nesting.

The same behavior can be seen in male bluegill sunfishdmis macrochirys They follow the
same behavioral rule “I nest where others nest”. The negaitern appears in a large lake with
an initial homogeneous structure due to the amplificatioftiuctuations: if the density of bluegills is
sufficient, through a random process, several nestingaitzssionally will be close enough to provide
a sufficiently attraction that stimulates even more blugdi nest nearby. This random pattern of nest
sites now became unstable and a cluster of nest sites will. gfoprocess, like this, with positive
feedback is also called an autocatalytic process.

Now it is important to present the role of the negative feetbaDue to the amplifying nature
of positive feedback, a potential destructive explosiory i@ easily reached. The negative feedback
is responsible for controlling and shaping the system inréiqudar pattern. In the example of the
bluegill sunfish, the negative feedback plays a role to awwietcrowded colonies of fish. The fish
have some limits in their behavioral tendency to nest whéhere nest. The behavioral rule has
an autocatalytic as well as an antagonistic component: st where others nest, unless the area is
overcrowded”. The negative feedback may also come fromipalysonstraints like depletion of the
building blocks.

Characteristics
Self-organizing systems present several typical chaiiatits. The most important are:

Dynamicity: The interactions about components characterizes sedftigg systems. This interac-
tion is dynamic and the production and maintenance of sirastis dependent on this interac-
tion among the low-level components.

Emergence: Self-organizing systems usually posses emergent prepeifthis means that the system
acquires qualitatively new properties that cannot be wsided as the simple addition of their
individual contributions, i.e., system-level propertarsse unexpectedly from nonlinear inter-
actions among the system components. An example of spanutsre@mergence of patterns is
the phenomenon of Bernard convection cells. An initiallynogeneous layer of fluid becomes
organized into a regular array of hexagonal cells of movinglfl This can be considered an
attractor of the system, i.e., under a particular set of initial cadi, and for particular param-
eter values, the system converges over the time to thetattrstate. In the Bernard convection
system, when the temperature gradient is low, one attractioe random motion of fluid. When
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the gradient is increased (a parameter of the system is etdang different attractor (the con-
vention cells) appears. This is called a phase change.

Robustness: Self-organizing systems possess a high level of robustagammst failures and dam-
age. There is no single point of failure, and the system metim a stable state after certain
disruption [101].

Scalability: The system still works if the number of entities is very large

An additional important aspect of self-organizing systémghe possibility of controlling the
behavior by tunning the system’s parameters. The tuninpexfe@ parameters can trigger the sudden
emergence of novel behavior.

5.7.3.2 Aggregation Through Positive Feedback

As described above, in our clustering construction, pasittedback is used to control the stimulus
of neighboring nodes to enter a determined cluster.

Nodes that are of the tyddonmembehave a total available resource of zero. Once the node
becomes clusterhead of the clustgt has the amount of resourcBs=r(v).

The positive feedback is performed by considering theettna force (or stimulus in the response
function) proportional to the amount of resources of thetet plus some bias, i.e.:

PR)=ki+k R (5.15)

Equation 5.15 denotes the relation between the amount ofiress and the “force” (that is re-
flected in the stimulus) to attract new nodes to the clugteis the initial attraction or bias (even for
clusters with minimal resources), akg describes how fast the force increases with the amount of
resources.

There is still a problem in this positive feedback: it has mpl@sive nature, i.e., if there will not be
a negative feedback to control it, it tends to catch all naxféke network in a single cluster. A small
fluctuation in the size of a cluster gives it an advantage tchcanore nodes from the neighborhood,
fact that has as consequence even a larger force to attraetand more nodes. To avoid that, a
negative feedback is used.

5.7.3.3 Creating Structure Through Negative Feedback

The negative feedback is responsible for “controling” tkplesive nature of the positive feedback
and to shape the emergent structures in the self-organoaess. In our case, we use equation 5.16
as negative feedback.

ogR)=1- (,%)ﬁ (5.16)

In Figure 5.23, the positive and negative feedback funstizan be seen. It is important to remark
that the negative feedback in our case controls how much dkéiye take effect, i.e., the result
stimulus is given by the multiplication of the feedbacksaet that is shown in Figure 5.24.

The B exponent controls how fast is the decreasing of the forces @he cluster has enough
resources, i.e., fof = 1 the force increases with the amount of resources till tlygiirement is
fulfilled and decreases at the same speed with more resotir@asnecessary. For highgr, the
decrease curve is always faster. In Figures 5.23 and 524f& was used.

Other different functions could be used for the positive aedative feedback.
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5.7.3.4 Node Recruitment Response Function

As already presented, the recruitment of nodes is made u&gesponse functiofg,, . The
stimulus-response function for the recruitment of new sddehe cluster is given by Equation 5.17:

T Srecry
erecr i =
Y Secry,; T Brecr\,,i

Where the threshold and the stimulus have the following rimgan

(5.17)

Threshold 6recr,;: Measures how connected the nade to the cluster. This function is similar to
the the fitness function presented in the “quasi” statictelusonstruction, with some modifica-
tions.

Stimulus secr,;: Represents the volition of a cluster to attract new members.

As already said, the threshofilcr,; is similar to the fitness function, but it has an inverse megini
small values means high suitability of the node to be incaieal to (or continue to be part of) the
clusteri. The stimulus-response function reacts to smaller stimwloen the threshold is also small.

The threshold in this function is based on the fitness funat®ection 5.6.2.2) with some differ-
ences. In that function, the parameters presented in 8¢&602.1 are used to calculate the suitability
of a certain node to enter a given cluster. In the threshatdtfon here presented, a similar list of
parameters is used. In order to avoid the repetition of Bigtesented in Section 5.6.2.1, we will just
elucidate the differences:

1. The third parameter listed in the list (connectivity tom@mbers) is not used in the current
threshold function. This parameter was important when afaesources were still missing
in the cluster, i.e., the clustering process is at initighgg#h This is due to the fact that nodes
with a good connectivity probably will have good candiddteshe next membership selection.
Nevertheless, the same response function is used in oustiealuring the forming phase and
the maintenance phase (in fact, the two phases use the samiplps). Therefore, this item
should not be used in the threshold function.

2. The poorest link to the clusterhead when consideringoaiipple paths. This is a new parameter
that is necessary in order to deal with the dynamics of theorlt It tests whether bad links
must be used to reach the clusterhead. The part of the cthsterbelongs to may be almost
disconnected if in any possible path from nade the clusterhead a very bad link must be used
to reach it. This happens due to, for example, changes iraiéigns of the nodes. An example
of this situation is depicted in Figure 5.25.

3. An additional parameter to avoid oscillations (enteiimg cluster and leaving the same cluster
several times) is also included.

The threshold function is defined by Equation 5.18 (whgfe, kj = 1).

. [ D(v,Clusterheag) . cry
C— ki -DY ko - ! 1 ks - — 11
btecr, = ka- Dtk mln{ Max dist }+ 3 mm{Max_connecf *
r(v)

PM
- —_— . V . i |7V
+kq q +ks-P’'+Kks mm{Max_paSt_membl} (5.18)
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Figure 5.25: Example of cluster that has a part being disected. Should nodeenter to the discon-
necting cluster?

WhereDY, CnY, Max_dist andMax_connecthave been defined in Section 5.6/2.1, &{ds the
poorest link from the path with the better links betweeand the clusterhead of the cluster

PM, v is a counter of number of past membership of the nootethe clusteri (i.e.,v € ¢;, where
¢i is the set of nodes of clustér Each determined time period, this counter is decreme(imentder
to forget very past events). This term makes that re-inatusif previous members of the cluster are
discouraged in a short range of time, to avoid oscillations.

Returning to the poorest link from the better path betweamd the clusterhead. We will now
define formallyP".

Let PoorestLinkM etri(épf]“"’))returns the value of the poorest link in thé path between nodes
andv. This means that:

PoorestLinkMetrk(pé“’V)) = max(w({u, x*l‘}) ,W({XQ,XQ}) ,..,W({xg_l,xg}) ,W({xg,v}))

Then,P’is:
P’ =mMmim-12.m <PoorestLinkM etric(p,ﬂui ’V)))

Wherey is the clusterhead of the clustemndmis the number of possible paths between the node
v and the clusterhead.

The stimulus of a node to belong to the clustergiven by the difference between the force com-
ing from this cluster and a force coming from other neighfiprilusters. If there is no neighboring
clusters, is the only force acting upon node Equation 5.19 defines the attraction stimulus of node
v to clusteri (with k; + ko = 1).

Srecr,; = K1+ (P(R) - 9(R)) — k2 - MaXen(c;nngbvy) 20 (P(R;) - 9(Rj)) (5.19)

5.7.3.5 Node Membership Withdrawal Response Function

The membership withdrawal can be done in two ways. Eitherde i@s just died, and this will be
noticed by the clusterhead in a complete round (presentdtkinext section), or it decided to leave
the cluster using the response functiy,,, -

Every time that the cluster round takes place (next secttbe)membership withdrawal response
function is used by the cluster's members to test whethegr sheuld leave the current cluster. The
main reason for a node to leave its cluster (without beimgetitd by another one) is topology change
where the connection to the cluster gets lost.

The threshold of the response function is defined as:
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Ky - (1—w(v, parent,)) if Child, #0

eleaVQLi = { k2 . (1_ erecrv‘i) If Chlldv == 0 (5.20)

Where paren, is the current parent of the nodén the forming spanning tree (the spanning tree
formation will be explained in the next section) a@tild, is the set of children of the nodein the
spanning tree. The parameters kre= 1,k, > 1. This is because it must be rather difficult to a node
to exit an existing cluster, in order to avoid constant ibgitéees. When a node has a child in the
spanning tree, the only factor that should be consideredderdo evaluate whether the node should
leave the cluster is the connection to the parent. This iaumrother nodes are lying behind this node
in the cluster, and if it becomes easily disconnected, timeptete subtree can be disconnected from
the cluster.

The stimulus to leave the cluster is the conversely fromrargento the cluster:

Seave = (1 — Srecr,;) (5.22)

5.7.4 Cluster Construction Process

In this section, the basic skeleton of our heuristic is prest Here we will just present the cluster
construction process. In the next section, the maintenahakeeady existing clusters is described.

At the beginning, there is no cluster in the network. Evergentests periodically whether it
should become clusterhead (using the response fun€ggn. Every node also calculates its own
threshold and stimulus to become clusterhead. This palnecdigorithm is exactly the same as in the
“guasi-static” heuristic.

When the node& decides to become clusterhead, a new cluster (we call tieclys = clusterlD)
comes to existence. Initially, this cluster has the resoRre=r(v).

Now, it starts to broadcast to the neighborhood periodiciédl actual resource stat®j. The
message is calledusteringForward. The message is composed by the following fields:

clusterID: From which cluster the message belongs to.
clusterResource: Carries the actual resourcd®)(of the cluster.
mesID: An unique message ID.

parent: The parent of the sender in the spanning tree. During thdeclgenstruction process, a
spanning tree inside the cluster is formed with the clustadhas root. It is used in the exchange
of messages between the members and the clusterhead.

leaving: A boolean variable indicating whether the sender is leatliegcluster. When true, it forces
the children to leave also the cluster.

generationLTime: The logical time of the original generation of the message.

requiredResource: The amount of resources that can be included in the clustaputi consulting
the root node (clusterhead) of the tree.

acceptedNodes: Nodes that have already been accepted in the cluster byusiediead.
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completeRequest: This is a boolean field that is used to decide whether the stgsi@ complete
request or a partial one. These concepts will be explaingkimext paragraphs.

clusterheadDistance: Gives the actual distance to the clusterhead.

As already said, there are two types of requests that carsbedsy the clusterhead. Thertial
or thecompleterequests. In th@artial requests, a messagksteringBackward is generated just in
the parts of the cluster where some modification (nodesiagter leaving) is detected, whereas in the
completerequests, all nodes have to setasteringBackward messages either generating or forward-
ing messages coming from other nodes. The act of sendirigs&ringForward message, waiting
for its (re-)propagation, and receiving the responststeringBackward) is called here cluster con-
struction round. This round has the aim of propagating theshcesource availability of the cluster
and, based on this new availability, gather the new and ngamembers information to update the
membership table.

Before describing in detail the cluster construction rquhé format of theclusteringBackward
message will be explained.

clusterID: To which cluster the message belongs to.

collectedResources: Carry the total collected resources of this branch of the tre
originallD: The message ID of theusteringForward message.

mesID: The ID of the current message.

generationLTime: The logical time of the original generation of the message.
enteringNodes: List of nodes that are entering into the cluster.

leavingNodes: List of members leaving the cluster.

membershiplIntention: List of nodes that are willing to be member in the next round.

5.7.4.1 Cluster Construction Round

As already stated, a cluster construction round comprispspagation of thelusteringForward
started by the clusterhead and the return of the answerg thslusteringBackward message.

The whole process starts with the clusterhead sendingltikeringForward message to inform
about the actual availability of resources in the clusters.

When hearing this message, a nadg&ores it temporarily. It waits a small time interval to ckec
whether it will receive the same message coming from angidrin the network. The same message
can be heard multiple times due to different traveling pallescheck whether the same message have
been already received, it uses thesID field. From the received messages, it selects the one with the
smallestclusterheadDistance to process and, if possible, a message wherdethiing field is false.

The smallest distance is selected in order to reduce theo$itee generated spanning tree. If no
message with negativeaving field is received, the node will be forced to leave the clubmause
the possible parents in the spanning tree are leaving,ftinerdat should try to select a parent that
stays in the cluster. If after this selection, the same ngessaheard again, it just ignores it with one
exception: if the fielbarent has the node’s id, it stores the message in a table with tidrehi(we
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call this seChild,). This is because the message is coming from a node thatlazidedtself as child
of u.

If the message is new, the node checks whether the curracaldigne is greater than the message
time. If yes, itignores it. After checking these two fields turrent Time of the node is upgraded by
generationLTime. The message ID{esID) is stored together with the sender of the message (call it
node parent,, it is the parent of the node in the spanning tree). This is done in order to generate a
spanning tree with the clusterhead as root.

The way of responding to the incoming message varies depgodithe current status of the node
u:

Nodeu is not a member of clusteri: The first action of the node is to determine whether it should
enter in the cluster. There are two ways of being able to enter clustelrhe first is if the
node is in theacceptedNodes field of the message. This field is used by the clusterhead to
respond to thenembershiplntention request sent back to it in the previous round. If the node
uis in this list, it has been accepted to be member of the clust&€he second is to use the
response functioffy,, to evaluate whether the nodewishes to enter into the cluster. If the
test using the response function returns positive, the shdeks whether it can enter into the
cluster without sending a request through fembershiplintention list. The test simply checks
whether its resourcB;(u) is less than thesquiredResource resource. If positive, it can enter in
the cluster. In the negative case, the node ID will be adddldeimembershipintention field of
the clusteringBackward message. An important final observation is that if the pasealtready
leaving the cluster (the fieldaving is true in the received message), the node will automatically
avoid to enter into the cluster.

When a node is accepted to be a new member of the cluster,ngekats clusterID internal
variable to the ID of the forming cluster)( The node is nhow member of the cluster. The
message is then changed and forwarded (broadcasted)rfagtiiescribed in the next section.
After repeating the message, the nadéistens to the network in order to determine which
neighbors are reacting upon the received message. Theboeigtepeating the message and
with the fieldparent filled with the ID of u are the children in the forming spanning tree. The
node from whom the original request came is the parent inrd& tA timer is set by node

in order to wait forclusteringBackward messages coming from the child neighbors. The field
enteringNodes of theclusteringBackward message will be used to inform the clusterhead about
the existence of the new member.

Similarly, when a node wants to add in thiesteringBackward message its ID in thenem-
bershiplntention field, it also forwards thelusteringForward message and sets a timer to wait
for the clusteringBackward messages. When this message is returning to the clusterthead
intention to be accepted in the cluster will be communic#éitedugh themembershiplntention
field.

The forward process of the messafyesteringForward will be explained in the next section.

If the node is not aiming to become member of the cluster, ¢tierato be taken is related with

the type of round: in @ompleterequest, a messagtusteringBackward is generated by the

node and sent back to local parent in the tree. In the caseaftal request, the message is
just ignored.

Nodeu is a member of clusteri: The node will test whether it should leave the cluster ushey t
response functiofg,,, . If the test returns negative, the node just retransmitsviod) the
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messageclusteringForward using the procedure described below. In the opposite chse, t
node deletes its internal variable clusterID, repeatschineringForward message (using the
procedure described below), collects its child informatioe the forming tree, and set a timer
to wait for theclusteringBackward message. In this message, the leaving node will inform its
state in thdeavingNodes field.

Broadcasting the MessagelusteringForward As already explained, the nodes that are already
in the cluster or entering should repeat the messhgeeringForward (in the last case, just if the
field requiredResource is greater than a specified threshold). TbguiredResource field is updated
by %W? whereNghu) is the set of neighbors af . This is to divide the request for re-
source equality among the neighbors, giving then a chaneetes without asking the clusterhead for
permission using theembershiplntentions message.

In addition, the fieldclusterheadDistance is also updated. In the case of a leaving node, this
field is updated to infinity (because there is no more pathwahé clusterhead through this node).
Moreover, the fieldeaving is set to true in this case.

The message is then broadcasted (repeated) to the neighbors

Returning the clusteringBackward message There are two policies on when a node must respond
to theclusteringForward message. Which one should be chosen one depends whethequestrwas
acompleteor apartial one. In the first case, all nodes that belong to the clustet aitger generate

a clusteringBackward message or forward a message coming from its child. Thendbde must
insert its ID and resource in the returning message. Thiséatlseompleterounds are used by the
clusterhead to re-check the complete membership of théeclus

In the second cas@drtial requests), just nodes that posses some information foluk&ethead
are forced to generatdusteringBackward messages if a message of this type is not coming from the
children to be forwarded.

Before generating thelusteringBackward message by itself, a node has a timer in order to wait
for the corresponding message from the children. The naaterttakes a fusion of its own information
with the messages coming from the children nodes and seridsp@arent the message forward.

An example of a cluster construction round is shown in Figu6. In (a), goartial round has
been initiated by the clusterhead (node 1). It sendsltiseringForward message to the nodes in the
vicinity. Upon receiving the message, the neighbors usestsigonse functioig,,  to decide whether
they should leave the current cluster. In this case, all gightbors decide to stay in the current cluster
and forward the message further updatingrdagiiredResource field properly.

In figure/5.26 (b), nodes 4,5,11, and 14 receivectthgeringForward message. Node 4 is already
member of the cluster, and its action is similar to the dbscrin the previous paragraph. Nodes 5,11,
and 14 are not members of any cluster. Upon receiving theageshisteringForward, the nodes
check whether their IDs are in theceptedNodes list. Node 5 is already in this list, what means that
it may enter in the cluster immediately. It then forwards thessage further. The nodes 11 and 14
are not in theaccetpedNodes. They use then the response functiig,, to test whether they should
pursue cluster membership. Since this is true in the exgnipdenodes now test whether they can
be members without applying to the clusterhead, i.e., tisezaough budget in theusteringForward
message. For nodes 11 and 14, this is the case in the presgatagle. They now change the internal
clusterID to i and forward the message. They also start a timer, lookinghi¢lusteringBackward
answering message. This message will be used to informuktedhead about the new members and
the success of the resource recruitment. The function dfrtier is to avoid that each node generates
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Figure 5.26: Example of a clustering round
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its ownclusteringBackward message, since the message should be generated just iavbe & the

tree. Nevertheless, due to the fact that peatial round just parts of the tree where modifications are
happening generatgusteringBackward messages, and also transmission errors can occur (even in a
completeround), a correspondingusteringBackward message will eventually never be received by

a node. Therefore, the timer is important: whenever a no@s dot receive alusteringBackward
message after the timer elapses, it can generate its own Begage.

Now the nodes 6, 8, 12, 13, 15, and 16 receive the messagadfMd6(c)). Those nodes are
not yet members, and none of them is in treetpedNodes list. Therefore, they test whether they
should enter in the cluster using the response funcligp . This test returns true for all of them.
For the nodes 6, 8, 12, 13, and 15 there is enough budget, epdah thus be included in the cluster
without sending a request. Node 16 must include in the messageringBackward a request to be
member of the cluster (fielshembershiplntention). The nodes don't have any children to forward the
messagelusteringForward. Hence, they generate now a response messagieringForward. In the
case of a node not changing its status or willing to requeshipeeship, this node would not generate
this response message in the case pdirtial round.

Figurel 5.26(d) shows the route of thiesteringBackward message. Due to the tree generation,
the messages make the reverse path from the leaf to the rdlo¢ dfee incorporating information
that the intermediary nodes want to include to the clussthéduring this phase, upon receiving a
clusteringBackward, a node deletes its timer before retransmitting the medsaitgeparent node.

In the previous example, the method to evaluate whether a desires to enter in a clustewas
not presented in order to avoid excess of of details in thie féaw we will show one more example
focusing on the influence of the attracting force that is wiled by a positive/negative feedback
mechanism.

Consider the example depicted in Figure 5.27. As in the pteviexample, the figure shows the
acquisition of members by a cluster under formation. Intfa,cluster possess resources of value 1
because just the clusterhead belongs to the cluster. Thal attracting force (stimulusecr,;,given
by ki - (p(1)-g(1))) is 4.7 units (forky = 1). This is enough to attract vicinity nodes that have good
connection to the cluster (in the example, nodes 2, 3, and 4).

Now the cluster has 4 members aRd= 4. This brings to the cluster a higher potential to attract
new members, and in the next cluster construction rounchébhodes 5, 6, and 7 will be attracted. In
(c), the actual situation of the cluster is shown. The stimub attract new members is considerably
reduced. No new members will be attracted in this situation.

A main purpose of the positive/negative feedback mechaisigmcontrol the competition among
neighboring clusters. The feedback curves are designascimaway that an already formed cluster
may just loose some members till thémit is achieved, because when this limit is achieved, thsind
to attract new members is at maximum. In the same way, if #weréwo clusters under formation this
method avoids that one cluster steals members of the otlereaching the state where no cluster
has fulfilled its requirement on resource. Figure 5.28fitkigs these two situations.

Figures 5.28(a) and (b) show a cluster under formation isgg@lome members of a complete
one, but due to the positive/negative feedback, the clustéer formation with high probability can’'t
attract a number of nodes that will disrupt the completetetlusin (c) an example of two clusters
under formation are shown. Due to the positive feedbackgliister that has a small advantage due
to a marginal difference in the number of nodes can attracide of the other cluster, resulting in an
even greater advantage. In the end of the process (d), éhefdaving two incomplete clusters, the
cluster with the marginal advantage won and a completeariisthe result.

The example shows how the feedback mechanism drives thieckmnstruction in a way that
complete clusters are prioritized in detriment of incongplenes.
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Figure 5.27: Example of cluster construction from the pointiew of the positive/negative feedback
mechanism.
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Figure 5.28: (a),(b): Example of a cluster under formatiging to steal nodes from a complete one.
(c),(d): Example of two clusters under formation withoubegh resources for both.

5.7.5 Clustering Maintenance

After (at most){ cluster construction roundsolund < (), either a complete cluster has been formed
or the cluster has been disrupted due to the lack of resoimdbe area. Successfully constructed
clusters enter in the clustering maintenance phase. listsref detecting changes in the cluster and
react upon them. The reaction is also performed using trsterlgonstruction round.

The detection of changes in the cluster topology is resptmsif all members of the cluster. The
following mechanisms are used to detect changes:

Explicit Subscription/Unsubscription of members: Upon deciding to enter or leave an existing
cluster (by means of the response functions), a node mushirthis to the clusterhead. During
the cluster construction round, this is done by thateringBackward message using the fields
enteringNodes andleavingNodes. If, for any reason, a node must enter or leave the cluster
when no cluster round is occurring, special messages aggaigaform this to the clusterhead.

A reason for entering in the cluster by other means than #wgnted round appears when nodes
try to form a cluster, but due to the lack of resources, theteluformation is not successful. In
this situation, the nodes use tleterCluster message to impose their entrance to any selected
neighboring cluster. Enforced members are not considerdeiclusterResource field of the
clusteringForward message. Nevertheless, they should respond to this message

When a node notices an abnormality, that can be some progessor or lack of energy, it can
spontaneously leave the cluster using the meskageCluster to inform the clusterhead about

its decision. Upon receivingaveCluster, the clusterhead checks whether the cluster still has
enough resourceR(> q). If not, a bunch opartial cluster construction rounds are used to fill
the cluster again. Here justpartial request is necessary because only the replacement of the
leaving node is necessary, if no other modification of theteluhas been noticed.



154 CHAPTER 5. SELF-ORGANIZING CLUSTER CONSTRUCTION

Perceived link metric (topology) changes:As already explained, each node of the network has a
table with link metrics to the neighboring nodes. All packageceived by the radio are used to
update the link metric (even if the packet is not addressdatlgémbserving node). If a node
perceives significant changes (over a certain thresholit§ imeighborhood on nodes belonging
to the same cluster, it informs the clusterhead with the age®pologyChange. A significant
change means a large change in the link metric or even thppdiagance of a node of the
neighborhood. Upon receiving the message, the clustestaad a bunch afompletecluster
construction rounds in order to gather again the infornmegioout the membership of the cluster
and eventually replaces a disappearing node. In this caeenpleterequest is necessary due
to the fact that links have changed and perhaps some nodeddsta direct connection to the
cluster (or even have some failure), being impossible torinfthe cluster about this situation
using theleavingNodes field of theclusteringBackward message.

5.7.6 Integrating Reference Point Group Mobility Model

Several mobility models have been developed in order tolsiuaynamic topologies in ad hoc net-
works (for an in-depth survey, see [25] and [111, 142]). kheorto develop a protocol for dynamic ad
hoc networks, the mobility model adopted heavily influenttesresults due to the different behavior
nature of the various models. There are two major types ofiliyomodels: tracesand synthetic
models.

Tracesuse specific topology patterns observed in real-life. $ymtheticmodels aim at realisti-
cally representing the movements without the necessitiie€bstly tracing process. In this work, we
restrict our consideration teyntheticmodels.

Synthetiamodels are divided into two categoriestity mobility modelandgroup mobility mod-
els In theentity mobility modelsnodes have individual pathways without influence from otifueles.
The most common model in this category is tardom mobility modd[L43]. In this model, the speed
and direction of motion in a new time interval have no relatio their past values coming from the
previous period. Although very popular, thendom mobility models not a very realistic one. It
generates unrealistic mobile behavior such as sharp tuarisudden stopping. Several other variants
of this model have been developed (éandom Waypoinnobility model), random direction [109]
or city section mobility model [41].

In thegroup mobility modelsgroups of nodes are moved along individual pathways. Soowem
ment within the groups may exist. Thogeoup mobility modelsre based on the assumption that
for many applications the movement of a single node is cated|with the movement of some other
nodes. This is a realistic assumption.

For this reason, we consider in this thesisrference point group mobility mod@RPGM) [63].
In the RPGM, the set of nodes is partitioned in groups. Eaohpghas a logical center. The center’'s
motion defines the entire group’s motion behavior. Morepir@gide a group the nodes may have
independent random motion. This model captures severabhsos, from users moving around (in
groups) with mobile devices to groups of sensor nodes athichvehicles. It can be likely assumed,
in our point of view, that nodes engaged in cooperative fgsiog (like the system proposed in this
thesis), move along correlated paths.

In the next section we will present a small overview of therehce point group mobility model.
Afterwards, the seamless integration of this model in ouradyic clustering heuristic will be intro-
duced.
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Figure 5.29: Example of a new node position in the group nitghitodel

5.7.6.1 Reference Point Group Mobility Model

As already said, in theeference point group mobility modetach group has a logical center. The
movement of the center is controlled by the group motionarecalledG.

Each node in a group has a so called reference pBiR}, (which follows the movement of the
group. The reference point represents the center of thalairarea where a specific node can be
encountered. A node is randomly placed in the neighborhddd eference point at each step of the
group mobility model algorithm. Therefore, it allows indgglent random motion behavior for each
node, in addition to the group motion.

Figure 5.29 gives an example of how a node moves from timertickr + 1. in Figure, the target
node is highlighted. The group has the motion ve&@d. In order to calculate the new position
of node 1, the reference point of this node is first moved fRRiT) to RP(T + 1) with the group
motion vectorGM. After this, the new node position is generated adding aganthotion vector
RM to this new reference point. The vec®M has its length uniformly distributed within a certain
radio centered at the reference point, and its directiotss @niformly distributed between 0 andr2
radians.

5.7.6.2 Group Detection Algorithm

In order to improve the performance of the clustering atbamiin environments where the movement
of the nodes happens in groups, the group information shmubitided to the clustering heuristic. For
that, it is necessary that the nodes detect the current gheybelong to. The following algorithm is
responsible for this task.

In order to identify the groups, each group has an integarmID (gid € N). The set of nodes in
the group whergid =i is given byg;.

The following data structures are used by the algorithm:

Current Identifiers ( current _ids): It is an array with two positions, the primary and the seconda
gid. Each one stores a group ID. When two nodes have at least ahis tf/ogid in common,
they belong to the same group (the test to detect this condite will call group match test

Candidates (candidateg: An array withn possible candidates to be included in the group. For each
candidate, the node id and the current identifiers are sttdedeover, a counter of the number
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of meetings and the time of the last contact are also stanestdier to make the detection of the
group possible.

The current_ids are initiated with random values. At the beginning, withthigrobability, all
nodes are in different groups. A beacon messageent statusvith the current idsis sent by the
nodes periodically.

Upon receiving a beacon from a node in the vicinity, the liniality of the received message is
tested against the threshdig. When the quality is higher than the threshold, the beacprosessed
by the node. The possible actions are:

The group match testeturns positive: This means that the beacon comes from a node that is in the
same group. If the primary id of the beacon is the same or enthbhn the received primary id,
no further action is done. When not, upon receiving a higtiethie node updates its primary
identifier, copies the old primary to the secondary field, disgards the current secondary id.
This means that the group is changing its id. The rule uséthighe higher id wins, i.e., higher
identifiers are dominant.

Negative result: The node isn't yet in the same group. If the node is not indhedidatedist, it is
inserted. Otherwise, the counter for this candidate issimemted. If no message is received
during a specified period of timeiieou), the node is deleted from the list.

When the counter in the candidate list reaches a predefirlad wec N, the node should be
considered in the same group. For that, its pringid/is compared with the node’s owgid.

If the candidate’gid is greater, the node assumes this as new group identifierdatas the
secondary by the previous primary one.

After some time, the algorithm will converge, in a way thdtreddes having periodic (or perma-
nent) good links among them will have the same identifiersrabiem occurs if for some reason two
groups achieve the same identifiers (due to a “contamirfaéfiact or when a group is divided in
two, for example). In order to cope with this possibilityfesfng a consistent and robust functionality,
the following mechanism is introduced. Periodically, eacke tests whether it should propose two
new group ids (they will be the primary and secondary idsk probability of proposing the new ids
IS given by pnew gid- It should be very small in order to avoid cyclic id changeshen deciding to
update the current group id, a node calculates a new primanypdd @Qid:. 1) by gidi, 1 = gid; +r
wherer is a random integer variable distributed uniformly betwfem|. It then upgrades its primary
gid to this new value and copies the actual primgig to the secondary, overwriting it. Now, this
change will be propagated among the group members. Aftee $one, the node generates again a
new primary group id. The process repeats. After these twod® of new primary ids, two different
groups that originally have the saraarrent_idswill diverge.

In order to avoid periodic beaconing, this protocol can bintped by embedding the necessary
information in messages from other protocols running inséresor network.

A small example of functionality of the algorithm can be séeffrigure 5.30. In (a), the nodes
1,2,3,4, and 5 have already received one beacon from theb@igg nodes. Nevertheless, they have
the random initializedyid. The neighbors are in theandidatedist. In (b), each node has already
received enough beacons and recognized the neighborsaayimgl to the same group. As already
described, the higher primagid replaces the curremiid when the neighbor is recognized to belong
to the same group.
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Figure 5.30: Example of a group detection. In (a) the protselseginning, the neighbors have already
received the first beacon. In (b) the nodes have alreadyvegtei beacons, therefore the higher
primary gid's overwrite the smaller ones.
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5.7.6.3 Integrating Group Mobility in the Clustering Algor ithm

The integration of the group mobility in the dynamic clustgris based on the group detection algo-
rithm. The response functions will be altered in the cldstad and membership selection in order to
take advantage of the group information gathered by theepted algorithm.

First, it is important to detect whether the groups have terady detected in the neighbor-
hood of a noder. Let NG(v) be the set of the group identifiers of the neighbors of nedee.,
i e NG(v) iff JeeV]ee (giNNgh(v))). LetNgh (v) be the set of neighbors of nogehat are in the
group whoseyid =i (i.e.,ec Nghy (v) iff ec (Ngb(v) Ng;)). The functiongr :V — [0, 1], presented
in Equation 5.22 measures how much the neighborhood of tde w in the same group and the
neighborhood’s heterogeneity. Higher values bring a higbefidentiality that the neighborhood has
already detected the group.

L Noty, o INGW)
0 =k (s Ny ) £ INgiy | (2 et (522

Wherev € g;. The first term measures the percentage of the neighborthabdstalready in/'s
group. A node with the majority of neighbors in other groupa suppose, with high probability, that
its group has not been detected until now (or it is at the bravtla group). The second term measures
how heterogeneous is the neighborhood, i.e., to how mafgrelift groups the neighbors belong to.
Higher numbers of groups indicate that the detection of tbems haven’'t converged yet.

This group detection rating will influence how much the gramjormation will be used by the
clustering algorithm. Lower values of tige(v) point out that the group information is not very trusty
and it does not have to influence heavily the clustering m®c€onversely, highgr(v) values indi-
cate that the clustering process should use this informaticavoid unstable clusters with members
in different groups.

Let's now integrate it to the clustering heuristic. The ftioie gr should influence both clusterhead
and membership selection.

Clusterhead Selection Thegr function is introduced in the already presented equati®nBhis can
be seenin eq. 5.23 (fq‘j‘:l kj = 1). Itis possible to negatively influence the clusterheaérgence
in the network areas where the groups haven'’t been alreadygtdd.

B 2 ueNghum(V) w(u,v)

INgbm(V)]|

BgcH, = ka - <1 > +ko- (1—Ey) +ka- Wy + kg~ (1—gr(v)) (5.23)

Membership Recruitment As already presented, the membership recruitment is basttt@qua-
tion[5.18. We define in Equation 5.24 a new threshold takingcitount the group information. It is
based on the version of the threshold without groig(;, ).

Bgrecr,; = Brecr,; - (1—ar(Vv)) +max Brecr, - 9r(v) ,k- (1—|{Clusterheadng}|)-gr(v)) (5.24)

No detec. Detec. same group Detec. diverse group

The first part of the equation has its contribution to the fthaéshold controlled by the actual
group detection rating of the nodggr(v)). If no group is detected, this will be the only termthé
expression, i.e., it will act exactly as the origirtilcr,,. Nevertheless, as the neighborhood nodes are
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unifying their view about which group they belong to, theoimhation about the group is receiving a
higher importance, as can be seen in the second and thiglgiahte equation. The second is active
when the v’s group is the same of the clusterhead. If not,tilid part assigns a value> 1 to the
threshold, meaning that this node should not be preferneidtusion into the cluster.

5.8 Relation to Self-Organization Principles

In this section, we will analyze the relation of the two prase cluster construction heuristics to the
self-organization design principles.

In the paper|[101], four design paradigms for applying seffanization in networks are sug-
gested. The idea of the paper was to discuss which prindiges self-organized systems in nature
and other fields can be successfully transferred to comratioicsystems.

The presented paradigms were:

Design local behavior rules that achieve global properties Instead of introducing a central entity
responsible for coordinating the achievement of the dégreperty, the responsibility should
be divided among the individual entities, where each ondritutes to a collective behavior.
Local behavior rules must be designed in such a manner that) applied to the set of entities,
lead to the desired global property.

Do not aim for perfect coordination: exploit implicit coord ination: In conventional systems, it is
natural to avoid conflicting situations by means of usaxplicit coordination, i.e., signaling
messages are exchanged in a request-response mannerdim&t@oresources. The new idea
here is tatolerateconflicts if they can be managed in a contained manner. libpbordination
means that coordination information is not communicateaieity by messages, but inferred
from the local environment. For example, a node can obsehar aodes in the neighborhood
and, based on that observations, draw conclusions abostateeof the network.

Minimize long-lived state information: In many approaches the nodes must maintain a (global)
long term state information about the network. To achievighdr level of self-organization,
the amount of such long-term information should be minirdize

Design protocols that adapt to changesThe nodes should be capable to adapt to changes in the
network and their environment.

Now we analyze the two proposed clustering constructiomisiies based on these basic paradigms
for self-organizing systems. We start analyzing the clusééection method. Both heuristics have a
similar method for the clusterhead selection. Each nodgitsslf using a response threshold to decide
whether it should turn to a local clusterhead. This comphéh the first paradigm, i.e., each node
has strictly local behavior rules that just use local infation about the neighborhood. Moreover,
the second paradigm is also included: we tolerate conflets,(neighboring clusterheads) and, as
described in the link metric, the nodes observe the neidtdmat by listening to ongoing communica-
tions and, based on them, make conclusions about the clinlestatus. This is implicit coordination.
The long-lived state information is also minimized: eacdemust just know its own and immediate
neighborhood states. There is no need for large state iattwm Moreover, information about the
neighborhood can be obtained partially using observatibramngoing communications.

The last design paradigm is clearly encountered in theerlisad selection of the dynamic algo-
rithm: when the situation changes and not enough nodes ailalate for forming a cluster with the
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minimum resource requirement, the clusterhead withdreswslie and the cluster ceases its existence,
giving opportunity to the nodes to join an other (hopefultgmplete cluster.

In the membership selection it is also possible to find thedteynents the self-organization. In
the quasi-static clustering, the membership selectiolststzased on a local behavior rule: each node
waits a determined time before answering for the membenstpest message. This time is also
calculated using just local information, minimizing lofiged state information.

The positive and negative feedback used to evaluate tlaetbin force in the dynamic clustering
is based on local rules too. The attraction behavior is alkma interaction among neighboring
nodes. Moreover, nodes in two extremes of the cluster aractitty new members independently,
what may generate temporarily inconsistencies (e.g. aeslusuch larger than the desired size).
Nevertheless, after some interactions, the size adjsst$ ib a reasonable number of nodes.

Although in the dynamic clustering the membership seledtias several characteristics of a self-
organizing system (even using the two basic mechanism thkatequired for self-organization in a
more strict sense - positive and negative feedbacks),dtleds an aspect that is not conform to the
self-organization design principles. The propagation lmatsm of the actual amount of resources
in a cluster works in a wave-style broadcast (using ¢hesteringForwardand clusteringBackward
messages). Therefore, all nodes of the cluster receivénfoisnation. This is necessary because the
nodes do not have the information about the actual resotateaf the cluster without this exchange.

The design principles used in both heuristics make themstadgainst environment changes (in
particular topology changes in the dynamic version) anthbta (there is not a central commander,
i.e., no bottleneck) and save energy by means of localizedramication and implicit coordination.
The price for those features is the possible existence ahpdearily inconsistent cluster state in some
parts of the network (specially in the dynamic heuristic)ori¥bver, for both heuristics, there is no
guarantee about the quality of the generated solutions.



Chapter 6

Simulation and Results

6.1 Simulation Environment

In order to simulate the heuristics presented in the previchapter, we decided to use the Shox
network simulator. The Shox simulator has being developeduir working group and it targets
simulations of wireless ad hoc networks. Shox is a disaeet simulator and assumes that an event
may occur at any point in a continuous time. Each event timsestamphat indicates when it should
be processed.

This means that the lifetime of the network is discretizettd ievents. The simulation generates
series of events that the network would have stepped thradgin a specific input is given. The
execution of an event involves returning it from a sorteduguand feeding a component in the system
with it. This component will execute some logic and genered® events. The time is not absolute
but a virtual quantity kept in a variable [121].

The algorithm being tested using the simulator is prograthasea set of event handlers inside the
selected network layer. The simulator sorts the eventsathogically in a queue. An executive unit
takes the events one by one and calls the appropriate evadiehan the network layers. New events
may be insert into the global queue by event handlers.

For better introducing the Shox simulator, we divide itshitecture in two main parts. The first
is the event architecture, which shows which kind of eveméspaocessed by our simulator. The
structure of the nodes in the ad hoc simulation are presémtibe second part of this section.

The class diagram of the objects related with the eventstaeiis shown in Figure 6.1. Besides
the event architecture, the figure also presents the cattigd of the whole simulation framework:
the SimulationManager. The SimulationManager knows all global objects of the simulation (e.g.
Topology) and controls the whole flow. The event handlingalized by this class, which contains a
reference to the global event queue (priority queue).

As already said, the priority queue is responsible for nadmitg all events scheduled for execu-
tion in the system. Instead of directly putting the events the global queue, an envelope object is
used (clas€ventEnvelope). It stores further information about the event and praovidemethod to
process the event encapsulated in the envelope.E¥ée class is an abstract superclass that repre-
sents all the events in the simulation. Events can be of thmwimg types: simulation internal (like
movements), for a whole nod&¢Node), and for a node and a specific lay@olayer).

Simulation events are used internally by the simulationcamhot be issued by the protocols being
simulated. Examples of such internal events are movememt&that are responsible for changing
the physical position of a given node (and, as consequeneaetwork topology).

161
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Figure 6.1: Simplified class diagram of the Shox simulat@wshg the event architecture.
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Figure 6.2: Simplified class diagram of the Shox simulatesspnting the structure of the nodes.

ToNode events are directed to all layers of a node. An example of aughd of event isnitialize
that is responsible for the initialization of a given lay®#vhen this event is launched, all layers of a
given node receive it.

Tolayer events are dispatched to a certain layer of a given node. Diseimportant event of this
type is the packet: packets are addressed to a given laydaajet node. Logically, every layer may
communicate with the same layer of another node. Nevegbefysically, the packets must travel
through the lower layers before being sent through the physietwork. As usual for a stack network
model, a given packet contains all packets of the upper dayiéris is implemented in Shox by means
of an aggregation presented in the clBssket.

Another very importanfolLayer event is theVakeUpCall. It is used to schedule future events in
the system. For example, after sending a packet, the ldgi&dhyer, in some implementations, have
to wait for an acknowledgment. For this, a timeout is set, aWhkeUpCall event is issued when the
timeout expires.

The second part of the Shox architecture represents theigtewof the nodes. The class diagram
can be seen in Figure 6.2. The central element iNibde. A node is specified via its layers in the
network stack. The concrete protocol layers are derivetlisfabstract ayer object. The simulation
manager has the complete collection of nodes of the systash Eode of the simulation corresponds
to one instance of the cladkde and all its layers.

During the initialization phase, all necessary node instarof the system are generated by the
NodeGenerator. TheConfiguration class is responsible for readinf the configuration of theusition
(an XML file) and for controlling, among other things, the geation of the right number of node
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instances with the selected layers.

The algorithms developed in the context of this thesis wamglémented in selected layers of
this stack hierarchy. For example, for the implementatibthe link metric, a class derived from the
LogLinkLayer was used.

Some advantages of the Shox simulator against other afmm®#e.g. ns-2 [2]) are:

e Possibility of implementing new protocols in a very simptaeldast way, due to the clean object-
oriented design principles. For implementing a new prdiatds just necessary to derive the
new layer from an existing one and extend it. Differentlynfirns-2, it is not necessary to modify
any other source code in the simulator. This means that tivenmedules have low coupling
with the existing Shox code.

e Advantages of the Java language. With Shox, the protoceléngplemented in a high-level
language. This makes them less error-prone. For exampikepmemory deallocation is not
necessary due to the garbage collector present in the Jayzelge.

e Comprehensible, flexible configuration. The simulator isfigurable using human-readable
XML files. Moreover, configurations can be done using a GUI saxkd in the XML file. A
screenshot of the configuration screen is presented indf@)Gc

e Designed exclusively for wireless ad hoc networks simoreti Differently from other ap-
proaches (e.g. ns-2, OMNeT++), our simulation engine wasldped to cope only with wire-
less ad hoc networks. This means that the complexity of corifig a general discrete event
simulator to target wireless ad hoc networks can be avoibliedeover, the size and complexity
of the simulator can be kept inside manageable limits. Irtiafgl the user is confronted just
with parameters and modules that are correlated with ad éweonks simulations.

e Possibility of demanding visualizations. Our simulatos laa integrated visualization tool that
enables efficient visualization of the state of the netwarkvall as packet exchanges. When
implementing new protocols, the programmer may issue camdsé&n order to attach an at-
tribute to a given node or link. This attribute is composedafe and value. Values may be
a countable or non-countable element. All attributes ai@emrin the log file. Before starting
the visualization, the user may map the attributes to visleahents. Sequential countable ele-
ments receive distinct visual representation (for exapifeerent colors). The non-countable
attributes, when visualized, are represented by meansgoéée (for example, a link attribute
may be represented by the line thickness). An example: irclostering algorithm, thelus-
terld is a countable attribute, nodes belonging to differenttehssare represented with different
visual elements (color of the nodes). The link quality is a1eountable attribute in our simu-
lation: links vary from very good (near zero) to bad qualingdr one) in a gradual way. The
mapping of a non-countable attribute to some visual elemesptects this scale.

6.2 Reference Methods for theVlinimum Intracommunication-cost Clus-
tering

In this section, we will present the reference methods usedrtmalize the results of our experiments.
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Figure 6.3: Screenshot of Shox configuration dialog.

6.2.1 Modeling as a Integer Linear Program

In order to calculate the optimal solution for eagtnimum intracommunication-cost clusterigy
stance and to compare it to our heuristic algorithms, thblpro was modeled with Integer Program-
ming.

Given aminimum intracommunication-cost clusterimgstance(G,w,r,q), the problem is mod-
eled as:

minimize Z\/ Z w{uv})-(a-r(s)+(1—a)) x4, (6.1)
steVuv|{vu}eE)

wherex$~!, is a binary variable and/: E — R return the weights of the links¢~!, is the binary
variable that indicates whether the edgev} is being used in the direction fromto v in the path
between nodesandt. r, g, anda are defined in section 5.3. Figure 6.4 shows an example ohgrap
modeled in this way. In the figure, just the possible linksaleetn nodeg and j are shown. It is
important to remark that the direction that the link is usedlgso contained in the binary variables.

It is important to highlight that, for each par of nodes, we summing two times the cost (e.g.,
for s,t € V, we are adding the cost of the patlh andt,s). This means that the cost equation (eq! 5.1)
is multiplied by two. This is considered in the complete dkap

The idea behind this modeling is that, given a problem ircstathe solution will be the selection
of the links that are connecting each two nodes inside aerwegith the shortest path. Other links
that are not used for this purpose are simple deleted frongtiéyeh. The result is a graph where
intra-cluster communication links exists and inter-cngines are deleted.

The second binary variable of the problenmeist. It has the meaning that there is a connection
between nodesandt and both nodes are in the same cluster.

Letu,veV[{u,v} € E,v,oeV|{v,0} € Eandst, j € V. The following constraints must hold:
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Figure 6.4: Example of modeled graph with integer prograngmin the example, just the variables
corresponding to the path between nodesd j are shown.

Vst ngjtv =t (6.2)
vsty oy =& (6.3)
VstV _f\,—z L =0(v#£st) (6.4)

The first constraint (eq. 6.2) states that if the noglasdt are connected (i.ee’~! = 1 ands and
t are in the same cluster), one and at most one link must egist fine nodes to a neighboring node
that is in the path connectirgto t. In the same way, whereveandt are in the same cluster, an edge
belonging to the path connectirggandt, starting from a neighboring node frotrand adjacent to
must be present (eg. 6.3).

The equation 6.4 states that links belonging to the patht must pass trough a node or avoid
it (if the node is neithes nort). It is just possible to have an outgoing link in a node if yavé an
incoming link.

The three constraints guarantee that the solution will emess just a single path between any
two nodes in the cluster. Moreover, this path will be the sair(due to the minimization objective).
The constraints 6.2 and 6.3 enforce that when two nodes dteiname clusteref ), there must
exist a path between them.

Let’s state the next constraints.

vsit,uv XY g_e"_’t (v;ét)_ (6.5)
Vst j e t4di <1465 (6.6)

The eq. 6.5 certifies that all nodes inside the path betweemabdes in a clustesf) must be also
inside the cluster. This assures the connectivity of thetelu The eq. 6.6 assures that if nodesd
t are in the same cluster and also notlesd j, the nodes and j must belong to the same cluster
(transitivity).

vstuv X7t =x7S (6.7)

—V T NV—U
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The eq. 6.7 states the symmetric relation among two contheeteexes. If vertexesandt are
connected through the edge, v}, the inverse path must be also connected throwgh} .
Now the constraint that determines the minimum amount afuees per cluster:

VSZ rt)- et >q-r(s (6.8)

The eql 6.8 expresses the requirement that a node in a clogstrhave enough partners in the
cluster to cover the minimum required amount of resourceslpster.

6.2.2 Genetic Algorithm

Because we cannot calculate the reference cost of largamuest of thdlinimum intracommunication-
cost clusteringvith the linear integer program, we decide to constructtamttilly a genetic algorithm
(GA) for this purpose. Therefore, for small instances of pheblem, the reference solution is the
optimal one, calculated via integer linear programmingr lagge instances, we will compare our
distributed, low computational complexity heuristic witte results obtained using this GA.

6.2.3 Basic Concepts

In this section, we will briefly review the basic concepts @femetic algorithm.

A genetic algorithm is a search heuristic based on the miegiof the evolution and natural
genetics [119]. They imitate the basic principles of lifenaduction and evolution and can be advan-
tageously used for many combinatorial optimization protde They have been introduced by Holland
([62]) and are based on the Darwin’s principle of the evolutbf species [108]:

e The population of individuals of certain specie have ddfdrproperties and abilities.
e Nature creates new individuals with similar properties® ¢xisting individuals.

e Promising individuals are selected more often by the nhsgdaction than the not so promising
ones.

The proprieties and abilities of an individual in a popwatis characterized by its phenotype, that
is encoded in the genotype. There is a function that mapsehetgpe in a corresponding phenotype.

The individuals of a population do not remain the same, thegnge over generations. New
offspring are created and they inherit some proprietieb@fiarents. The creation of the offspring is
based on the recombination and mutatigreratorsapplied to the genotype of the parents.

The natural selection acts upon the reproduction - promisidividuals are more often selected
for the reproduction than low-quality solutions. Highly ifiidividuals are allowed to create more
offspring than inferior individuals. With that, the aveeafjtness of the population increases over
time.

In the next sections, we will describe the elements of a GA ahthe same time, will introduce
how those elements were designed for the purpose of solvinglostering problem.

6.2.4 Representation of the Problem (Coding)

Each possible solution of the optimization problem mustdmeasented in form of a chromosome.
Each genotype (chromosome) corresponds to a phenotypés,thavalid solution instance of our op-
timization problem. A transformation exists between theajgpe and the phenotype, i.e. to construct
a valid problem solution based on the genetic informationest in the chromosome.
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Figure 6.5: Overview of a genetic algorithm run. The valitutions of the problems are encoded in
the chromosome.

A chromosome is formed by several genes. A gene is a sequeallel@s that code one phenotype
property of an individual. The alleles are the smallestrimfation units in a chromosome. Often,
binary representation is used, i.e. an allele can havereitigevalue 0 or 1. Figure 6.5 depicts
the difference between chromosomes, genes and allelessmbdetween genotype and phenotype.
Moreover, a schematic showing the steps of a GA is also rifitesd.

In the case of our clustering problem, we decide to use agéntepresentation for the genotype.
Moreover, we are using a representation that is very stifaigtard. Due to this fact, similarly to
problems where the direct representation is used, we nesibspperators (crossover and mutation).
They are carefully designed to generate the desired pheemtyThe standard operators cannot be
applied due this near to phenotype representation (blinstitect representation).

Our solution space is encoded assequences of clustexs,cp,...,c, Where(\;¢ = 0 and
UiL1¢ = V. Moreover, we define for our tests that each node of the né&thas one unit of resource.
This means that the resource constrairffjs, r(v) > qfork=1,2..n, i.e.|c| > q.

This assumption simplifies the crossover and mutation ¢perabecause they do not need to
check for the resource constraint as it will be clear in tHi¥dng paragraph.

We decide to model the problem with a fixed number of clusters,we assume that the optimal
solution will haven = L%J clusters. Our representation of the problem instances @y ofm
integers; each integer represents a node (node ID), anarthigis divided im groups that correspond
to then clusters. Groups may have fragrto g+ ([W}) integers.

Figure 6.6 presents an example of our representation ofrmtanice of the problem. Moreover,
how this genotype is mapped to a problem instance is alsorshow

The representation was selected having in mind that theaves operator effectiveness is highly
correlated with the representation’s quality. Our repmést#®on has the characteristic of preserving
high performing partial arrangements (schemata, see.[6Phiis is because we decided to group
the information about one specific cluster into a sequeptal of the chromosome. The crossover
operator will select two random points in a chromosome amti@xge with the chromosome coming
from the other parent. Using such kind of crossover, thelikycaf the chromosome is preserved
with high probability, i.e., in our case, very good clusterdl form the so calledbuilding blocks
with fitness above the average, increasing their presentteeipopulation. The concept bfilding
blockswas introduced by Goldberg (see [54]) and can be defined ghl$hiit, short-defining-length
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Figure 6.6: Example of the possible genotypes that maps iteea ghenotype.

schemata” that “are propagated generation to generatigyiving exponentially increasing samples
to the observed best”. In [108], the building block is desed as a solution to a sub-problem that can
be expressed as a schema.

Returning to our problem, clusters with high fitness, jughviéw wrong-selected members are
exactly such kind of sub-problem solution and are increp#iir presence in the population as de-
scribed in the Goldberg work.

6.2.5 Crossover Operator

The crossover operator is responsible for recombiningetexted highly fit individuals, creating new
offspring. The operator is critical to the success of the &&.responsible for the exploration of new
parts of the solution space and, at the same time, to guar#imeexploitation of the existing highly
fit sub-solutions.

Because we use a representation that is near the problenharstandard operators cannot be
used on it, we decide to use a modified version of the swap paisaver method presented in the
work [3]. It was developed originally to the quadratic assigent problem (QAP), being suitable to
other problems with chromosomes represented by permugatio

Our clustering problem has some similarities with the QARIsThappens if we consider the
nodes as possible placement points (sites) and we havk fasitities to be located in those points. If

we considen = %J the number of desired clusters, we can creadeoups of facilities, with unitary

communication between all elements of them. The distantedam the sites (nodes) are measured
using our link metric.

If we find a solution to this QAP problem, we will find a good g to our clustering problem.
Nevertheless, some constraints of thimimum intracommunication-cost clusteriage not present in
this instance of the QAP. We use it to illustrate how the aress operator developed for the QAP can
present good results to our clustering problem. As already, ;xstead of using a standard, problem-
independent crossover operator, we are using the swap peshover that has been developed to
problems where the chromosomes represent permutations.

We will now describe the swap path crossover. Leandl, denote two individuals representing
two selected solutions with a high fithess. The crossoverabpeproduces two children from those
parents, we will denote thelg andl 4.

The first step of the swap crossover is two select two chromesuositions pstart and Peng. This
part of the chromosome will be analyzed by the crossoveratioerin a cyclic fashion, from left to
right. The first child,l3, is generated based on the chromosome of the pérenthile 14 is based
on the parent,. Let's analyze the construction &f. As already said, it is based on the pargnt
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Figure 6.7: Example of the crossover operation,gfer 3 and nodes with unitary amount of resource.

and the alleles front, inside the intervalpstart and peng Will be copied tolz. At the same time, the
copies will cause swapping operations. Each positionlélis analyzed. If the two alleles at the
inspected position are the same, we move to the next pasifidinerwise, the allele frortg will be
swapped with another allele in the same chromosome thagmsicdl with the inspected allele in the
other parentlg). For generatinds, the same mechanism is used (invertingndl,). To clarify the
presented concept, Figure 6.7 shows an example.

In the figure, we can see that some child may be exactly likgo#tnent, although in a problem
instance with bigger networks this is rare. Inserting nadasd 4 in the first cluster, coming from
in I, does not generate any change, i.e., the generated chilengddl to one parenty).

We can highlight an important characteristic of our genetgorithm. We are allowing invalid
clusters to be present in the population. For example, we hathe figure clusters where the con-
nectivity propriety does not hold. Such invalid solutiome penalized by the fitness function and we
will discuss this issue later on. The crossover operator gemerate, from valid solutions, invalid
ones and conversely. The results show, as expected, thatithieer of valid solutions increase in the
population at each new generation.

6.2.6 Mutation Operator

The mutation operator is important to bring diversity in #wtual population. It enables the optimiza-
tion process to escape from local optima with respect torthgsover operation [65]. This is achieved
by the introduction of random variation in the population.

In our program, we are transversing all alleles of a chrommesand testing whether they should
be mutated. If the mutating test returns positive, a newaandode is selected to substitute the actual
node (allele). Similarly to the crossover, the swap openais done in the mutating allele in order to
keep the integrity of the chromosome.

In Figure 6.8, an example of our mutation operator is showrihé example, each allele was se-
quentially tested whether it should mutate (given a mutgtimbability). When selected for mutation,
the allele is exchanged with a random selected node usingaag operation.
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Figure 6.8: Example of the mutation operation, doe 3 and nodes with unitary amount of resource.

6.2.7 Fitness Function

The fitness function estimates how good is a selected sol(tlromosome) and it is used in the se-
lection operator in order to select the appropriate pareapply the crossover operator. For example,
for a maximization problem the simplest way of developingtaes function is to directly take the
cost function, i.e., for a feasible solutian the fitness is exactlgost(a).

It is important to remark again that we decide to allow irdaolutions in our population. But, as
we will describe in this section, we are penalizing them. g end of the GA's run, we ensure that
the best solution found is a valid one. The penalization efitivalid solutions helps the heuristic to
drive the population towards valid ones.

Let’s consider the clustering problem instar(€ w,r,q) (see section 5.3). Every chromosome
of the population has an equivalent cluster configuraBpr= {Cx1, Ck2, --Ck(nk) }, Wherecy is theith
cluster of thek!" configuration. This mapping from chromosomes to configarais straightforward
from the representation of the problem. Our fitness functieas a modified version of the cost
function presented in the problem definition:

nk
fitness= max cost— cost,(Cy, (G, w,r,q)) = max cost— Zl Z DPyp (U, V) (6.9)
i=1U,VECk;

Wheremax cost is the highest possible cost of a solutiddP, ¢, (u,v) is a modified distance
function that penalize links outside the clustgr We will call p > 1 the penalization factor. The
definition of the distance is the same presented in the equ&tR of the section 5.3, but instead of
using the already presented link metric, the following nficdtion is applied:

w(u,V) if U,V € Ci

w(u,v)-p  otherwise (6.10)

WPD7Cki(U7V) = {
With this modification, when the cost of a given cluster isigetvaluated, all links external to the
cluster are penalized. In order to better clarify, consitierexample of Figure 6.9. In the example,
the genotype describes the cluster configuration presémtiéd phenotype. The fitness function is
composed by the cost of each of the two clusters. Like destrib the figure, when calculating
the cost of one cluster, all links not belonging to this @dusire penalized by thp factor. When a
valid solution is presented, just links inside the clusterased and no penalization takes place. The
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Cost(cluster2) = D(2,3) + D(2,5) + D (3,2) + D(3,5) + D(5,3) + D (5,2) =
(0.4+p) + (0.2+p) + (0.2+2p) = 0.8 + 4p

Fitness = 5.6 + 4p

Figure 6.9: Example of the fitness functiop> 1 describes the penalization factor for links external
to the cluster being analyzed.

first cluster of the figure is valid and the cost is not pendliZEhe second infringes the connectivity
constraint and has an increased cost.

The constantnax costis calculated using the complete graph as a cluster but plslyiag the
penalization factor to all links.

With this fitness function, the population is driven towagdi¢ solutions.

6.2.8 Selection Operator

The selection is responsible for choosing two appropriaemts to apply the crossover operator.
There are several types of selection methods, e.g. roulbibel selection, tournament selection, etc.
The individuals selected by the operator are those whosesgam inherited by the next generation.

Therefore, it is important to select highly fit individuals order to increase the selection pressure
in the direction of good (optimal) solutions. The selectimessure drives the GA to improve the

population fithess over succeeding generations [95].

The adjustment of selection pressure represents a tr&devbén the pressure is too low, the
convergence rate is slow, taking unnecessary long timedafijood (optimal) solution. On the other
hand, applying a too high pressure increases the chancenedérging to an incorrect (sub-optimal)
solution.

Because of its efficiency and flexibility, we decided to useum work the tournament selection
operator. The flexibility arises from the fact that adjugtthe tournament size automatically changes
the selection pressure. Another advantage of the tournaseéaction is its independence with regard
to the absolute values of the fithess function - for the tomeat selection, just a totally ordered set
of the current population is important, and this is obtaieadily using the described fitness function.

In the tournament selectioscompetitors are randomly selected from the current pojomas is
the tournament size. The winner is the individual with thghleist fithess among the competitors. This
procedure is repeated in order to select all parents thhbwimatched by the crossover operation.
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The average fitness calculated over the selected indigdsiaormally higher than the fitness of the
entire population.

Increasing the size of also increases the selection pressure, because the winnemflarger
group has, on average, higher fitness than the winner of degrt@lrnament [95].

6.2.9 GA Behavior

We test ourGA in order to confirm its convergence and capability of es@amhlocal optimum.
For the test, we use randomly generated instances of thieighgs problem with 13 nodes randomly
uniformly distributed in a 28 x 25m wide area. This scenario is explained in details in the next
section and it is calleeimall-sparse (see Table 6.1).

For each instance, the a integer linear program was solveddir to find the optimal solution.
For that, we use thip_solve suite.

The following parameters were analyzed in the simulations:

Selection Pressure:We use three different tournament sizes for the purpose pérementing with
different selection pressures.

Number of individuals: A trade-off between time complexity and the probability efding a very
good solution is represented by the population size. A sptulation size increases the
chance of converging to a local optimum whose fitness is éanfthe global optimum. A large
population size increase the computational power negessaxecute the GA.

Mutation rate: A large mutation rate increases the diversity of the popriatNevertheless, a too
large mutation rate may destroy very good schemata, himgiéhie heuristic’s convergence.

Figures 6.10 and 6.11 depict the results of our experimdrtis.first figure presents the average
cost of all individuals of the population whereas in the setone the best cost is picket up.

For all used parameters, the meta-heuristic has shown ageerg and fast convergence. As
expected, a higher selection pressure brought faster gmwee. However, fos = 3, the best cost
was achieved. It took a slightly larger time to converge,ibobuld better avoid local optimum.

The mutation rate had a similar impact on the convergencdgten mutation rate (in our exper-
iment, Q01 instead MO5 used in the other cases) brought a faster convergeneesahhe configura-
tion with lower mutation at the end of 100 generations haatrthe same fitness, but with slower
convergence.

Increasing the number of individuals has resulted in higioewergence and very good final solu-
tion. But it increases the computation cost.

We conclude with our experiments that the reduction of thectien pressure up to acceptable
level has presented the better final solution. Neverthebess can be seen in the figures, the vari-
ation of the different runs are not very high and good sohgicould be found in every run. This
demonstrates the robustness and appropriateness of tga désur genetic algorithm.

6.3 “Quasi-Static” Clustering Heuristic Simulation

6.3.1 Assumptions

For our simulation, the following assumptions are used:

e Each node has a transmitter with fixed power. Therefore, #pdnmal reachability is fixed.
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Figure 6.10: Average performance of the GA for differentgpaeters. The normalized mean of the
cost over all individuals is used in this diagram.
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Figure 6.11: Average performance of the GA for differentgpaeters. The best normalized cost over
all individuals are presented.
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e Links are bidirectional. In reality, this can be achievest joy ignoring unidirectional links.

e The Friis Free Space propagation model for isotropic pointree in an ideal propagation
medium is used to calculate the received signal strengibatidn (RSSI).

Every node has one unit of energy.

Every node has also one unit of resource.

The weights of the equation parameters (clusterhead andorreselection) were experimen-
tally selected.

e We usea = 0 (see eq. 5.1, Section 5.3).

6.3.2 Simulation Scenarios

Simulation scenarios are intended to mimic the real-wordlitmns as much as the simulation allows.
In the same way, the network topology of the simulation sdea@hould resemble real-work topolo-
gies. Unfortunately, the deployment topology is normalty known. For our simulation scenarios,
we decided to use randomly deployed nodes. The deploymemifiem. Such kind of deployment
can be statistically analyzed and the several charadtsrigiferred. In this section, we will present
our concrete simulation scenario and also infer some ctaistics of these scenarios.

In order to evaluate our “quasi-static” clustering helrjste decided to use two different groups
of scenarios, each one with its own problem size. In the fistg, we have a square field ofra%
25m where 13 nodes are randomly deployed with independent amifwobability. Here the desired
cluster size ig) = 3. The second group of scenarios has a square field size of 2Q00m with 120
nodes. The selected cluster size for the large scenariod®aBach node in our simulations has a
unity of resource, thereforg= m means that each cluster must have at leasbdes.

The small size scenarios were selected in order to enableatbelation of the optimal solution
using linear integer programming (see Section 6.2.1). Wighoptimal solution, we can measure how
good our heuristic is performing. In the large scenariosaveeusing the described genetic algorithm
to perform the assessment.

In each scenario inside one group, we select different reahiges in order to vary the node
density (measured by the degree of the node). An overvielweo§elected scenarios with small and
large number of nodes are shown in Table 6.1.



Scenario Name Field SizeNumber Cluster Radio Connection Node Average Average
(mP) of size () Range Probability density Degree Degree
Nodes (Theo- (Measured)
retic)
Small Scenarios
small-sparse 25x25 13 3 10 0.98 0.02 6.5 5.06
small-dense 25x25 13 3 17 ~1 0.02 18.89 10.4
Large Scenarios
large-sparse 100x100 120 10 15.24 0.98 0.012 8.76 8.59
large-medium 100x100 120 10 19.45 0.999 0.012 14.26 12.74
large-dense 100x100 120 10 2366 ~1 0.012 21.1 17.98
large-very-dense  100x100 120 10 2787 ~1 0.012 29.28 23.48

Table 6.1: Overview of the different simulation scenarios.
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For the tests, it is important to have a connected graphthere exist a multi-hop path between
any pair of nodes in the formed graph. The connection prdibabias the parameter used to select
the test scenarios. In order to calculate the connectiobgibty, two parameters are important. The
first one is thenode densityln an uniform random distribution with large number of nedewe can
define a node density = 7 whereA is the deployment area. The second important parameteg is th
radio range. As we are using omnidirectional antennas wnaéth$pace attenuation model, itis possible
to calculate theadio rangebased on the transmitted pow@p) and the sensibility of the receiver.
The received power followB(r) oc r YRy wherer is the distance to the transmitter apds the path
loss exponent, which depends on the environment. The tias®m range can be mapped to the
equivalent transmission power using a threshold for theivec sensitivity [15]. For our simulation,
the node density and the transmission range are shown ie/6ahl

The connection probability of the resulting graph can beuated by[[15]:

P(chnin > 0) = (1 efpmz)” (6.11)

for a homogeneous Poisson point process in two dimensibesk{bhd of graph formed by this
process is called geometrical random graf{dmin > 0) is the probability that the minimum degree
of the network is higher than zerg. is the node density, is the radio range andis the number of
nodes. The minimum degree of a netwakkin is the degree of the node with the smallest degree of
the complete graph.

It is important to remark that the equation 6.11 calculatesprobability that no node will be iso-
lated. The fact that there isn’t any isolated node does natrtigat the graph is connected. Therefore,
dmin > 0 is a necessary condition for the graph to be connectedi isutdt sufficient. Nevertheless,
Penrose [99] has proved that for langethe geometric random graph becomes connected at the mo-
ment that it achieves a minimum degigg, > 0. This is valid for any graph generated in an euclidean
plane with dimension higher than one.

The probability of being connected changes very fast froro @ &s the range of the radio in-
creases. This is called “phase transition” phenomenoneimehdom graph theory.

In Figure 6.12, the connectivity probability for ard5 25m field is presented. The x axis repre-
sents the number of nodes and the z axis the radio range. d-amdll field, we select two radio ranges
based on the connectivity probability. The first is slighthpssing the border from disconnected to
connected network (10m range, 13 nodes). For the secondeegigedto select a higher range where
the connectivity probability is converging to one (17m reng3 nodes). These two scenarios are
highlighted in the figure.

Based on the Poisson distribution, we can calculate theageedegree of a node in the network
by davg=p - mr2, i.e., the average amount of nodes located in the radio draasimgle node. For
example, for the scenariasall-sparse andsmall-dense presented in Table 6.1, Figure 6.13 presents
the probability mass function for the degree of a node. liripdrtant to say that those numbers are
expected whem > 1 and very large areas are used (or when the toroidal distaetec is used).
The so calleorder effecexplains the difference between the theoretic average deglee and the
measured one. Nodes near the border may only have linksdewrze middle of the areal. Their node
degree is, on average, lower than that of nodes in the middlerefore, the theoretical value 1ofs a
lower bound for the range that is required in the simulatiovirenment. The effect gets even worse
when the relation between size of the field and radio rangeedses, that is the reason for bigger
errors in the experiments with larger ranges.

In the large scenarios, an analogous methodology was ussldglate their connectivity prob-
ability and average degree. Thage-sparse scenario has the same connection probability of the
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Figure 6.12: Connectivity probability for a &@5x 25mfield.

0,16

d:aug:5‘5 —a—
d_avg=18,9 ——
0,14 F

0,12 F
[
Probability
0,08 F
006 F

0,04

0,02

0 5 10 15 20 25 30

Murnber of neighbors

Figure 6.13: Theoretical probability mass function of thientber of neighbors of a node for the small
scenarios.
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small-sparse. In the same way, themall-dense has the same probability of tHerge-dense. Two
additional scenarios were included in this grolgpge-medium andlarge-very-dense).

6.3.3 Algorithms under Evaluation

We evaluate the described scenario using different algnst For the small scenarios, the optimum
solution was calculated using the linear integer programyniormulation presented in the section
6.2.1. For the small and big scenarios, the GA, our emerdastering heuristic and an additional

standard heuristic were simulated.

There is no other heuristic that is able to solve the clusgeproblem formulated in this thesis.
Therefore, we had to adapt an existing one to do this task.aféetsthe well-known expanding ring
heuristic and adapt it.

In the original expanding ring heuristic, the clusterheaguest for members in rounds. The first
round collects members one hop away, the second two, andcsessively until the cluster achieve
g elements. In the original heuristic, this bound should retoliercome, in our heuristic it must
be achieved and may be overcome. Moreover, instead of usgtgdmpletely random clusterhead
selection as in the original heuristic, we decide to intceour clusterhead selection based in the
division of labor in social insects in the expanding ring hstic.

An additional important comment is that, in the results, wker to our clustering heuristic as
emergent clustering.

6.3.4 Results

We realize 40 experiments for each scenario presented it 6.1. The results presented further
in this section are based on these experiments.

6.3.4.1 Clustering Optimal Cost

We will start analyzing how the node density influence thetglting cost for the reference solutions.
As already said, the reference solutions are: optimal fallsseenarios and GA for the large ones.
The Figure 6.14(a) presents the optimal cost for the clingfgroblems of the small scenarios. As we
can see, the sparse scenario has, in average, a much highérarothe dense scenarios. This can be
attributed to the fact than with larger radio ranges, eaaerts a larger number of well connected
neighbors (with small link metric). The clustering poskil@is are also much greater, which brings a
substantial reduction of the cost when compared to spaes®sdos. Furthermore, the average link
metric in the dense scenarios is smaller, fact that coneibto a smaller clustering cost.

Due to the lack of links between the nodes in the sparse soemaspecial situation that leads to
large optimum costs for the these instances is depicteceifrigure 6.15. The three adjacent nodes
with very good link metric must be split among two clusterecduse the lack of links between the
nodes in the extreme left and right sides. This poses alsablenhje to our emergent clustering
heuristic, as described later in this chapter.

The result for large scenarios is consistent with our arguation for small ones. They are shown
in the Figure 6.14(b). It is important to remark that the tesshere were not the optimal ones, but
an approximation made using the described GA. As we have rshowhe section 6.2.9 and will
emphasize in the next one, our genetic algorithm has beenatlyr designed and is able to return
very good solutions. Therefore, we can conclude that theritesl intrinsic characteristic of the
minimum intracommunication-cost clusteriigalso found in scenarios with large number of nodes.
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Nevertheless, the difference between the clustering adsiffferent densities becomes smaller
when dense scenarios are analyzed. For example, the desedide betweetarge-sparse andlarge-
medium scenarios is much higher than betwderge-dense and large-very-dense. This can be ex-
plained by a saturation of good neighbors: with a fixe0) used in the experiments, after some
density, there are always enough good-quality neighbatsttting a small clustering cost.

6.3.4.2 Experiment Results

In this section, we present the outcome of our 40 experimamtismake a first analyze. In Figure
6.16, selected results are depicted. The executions of theEGergent Clustering and Modified
Expanding Ring are normalized against the optimal costérsthall scenarios. In the large scenarios,
the results are normalized against the genetic algorithm.

We will start analyzing the small scenarios. Figure 6.18f@ws the results for thenall-sparse
scenario whereas Figure 6.16(b) shows ¢iell-dense. For both scenarios, the GA could find, in
many cases, the optimal solution. In most cases, the GA dmadetter solutions than the other two
heuristics.

Nevertheless, in themall-sparse, the GA was overcome by our Emergent Clustering and the
Modified Expanding Ring in some experiments. In general s{fggse scenario has less possibilities
and the costs may change suddenly with very small modificgtio the clusters. This affects the
behavior of the GA in a negative way, because an easy hilbitigiis not aways possible.

Although in thesmall-sparse scenario our heuristic had in average a better performadnarethe
modified expanding ring in some experiments, the emergastaring was defeated by the expanding
ring. In thesmall-large, this was not the case in the majority of the experiments h®ebhavior can
be explained again by the degree of freedom in both node tdenssparse topologies do not leave
a large choice range for different membership after thetethead has been elected. Therefore, the
careful selection of members realized by the Emergent &ingf is restricted and the advantage of
other clustering algorithms like the expanding ring is @&t This increases the role of the initial
selection of the clusterheads in the overall result of theribtic. And the modified expanding ring
uses the same method to select the clusterheads as the etradugéering. Nevertheless, even with
those restrictions, our heuristic in average beats the fieddéxpanding ring. Average and standard
deviation analysis are presented later on.

Our heuristic has relatively better performance (in corigoar to the modified expanding ring)
in the small-dense scenario. Here our membership selection mechanism colddt suitable and
well-connected members among the several available neighb

We encountered very similar results in the large scenaigsicted in Figures 6.16(c) and 6.16(d).
In the sparse scenario, the modified expanding ring coulddibdtter solution for some test cases.
The reason is the same as for #meall-sparse scenario. In fact, the results of thmall-sparse and
large-sparse were very similar.

In the dense scenario, our emergent clustering algorithatsktbe expanding ring in almost all
cases. However, the difference of performance is less thémei sparse scenario. A reason for that
will be presented later.

6.3.4.3 Heuristic’s Clustering Costs

In this subsection, the average of the achieved costs of leatistic for all scenarios will be pre-
sented. Figure 6.17 presents the achieved costs for alhisosrof Table 6.1. A confidence interval
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of 95% is also presented. For the confidence interval, weaagthat our runs ang, ..., X4q inde-
pendent samples from a normally distributed populatiorhwitanu and variances?. Further in
this work, the probability density function of the sample#l e presented in order to confirm our
assumption of a normal distribution.
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Figure 6.17: Clustering costs for the different heuristigth small and large problem size.

As we had 40 samples, we assume that the sample mean has aatStudistribution with 39

degrees of freedom. By standardizing we get a random variabt % with X = zf‘;’l(xi —X)?
and$? = -1; 319, (% — X)2. With these assumptions, the confidence interval was el As it
can be seen in Figure 6.17, with increased density, the eanfalinterval is also reduced, because
the variance of the samples is also smaller. The standardtagvof the samples will be presented in
Section 6.3.4.4.

In the same way as the optimal solution, both algorithms (fgere Clustering and Modified
Expanding Ring) deliver a better cost, in average, for denstvorks. This could be verified in both
small and large scenarios. Moreover, the Emergent Clagtestiowed a better performance than the
Modified Expanding Ring in all simulated scenarios. FiguEBGoresents a comparison of the costs
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Figure 6.18: Overview of the costs for the optimum, GA, EneatgClustering and Modified Expand-
ing Ring solutions for all scenarios.

for the different algorithms. For the small scenarios, treamcost of the GA, Emergent Clustering,
Modified Expanding Ring and optimum are presented (Fig. (&))8Because the optimal result for
the large scenarios is not known, Figure 6.18(b) does nseptst.

As it can be seen in Figure 6.18(a), the optimum and GA averagis are very close by, fact that
allows us to use the GA for comparisons in the large scenafioe difference of costs for those two
approaches are slighter higher in the sparse network. Tlaretion for this is that small differences
may bring very big cost changes in sparse environments hwdifect the performance of the GA.

In the same way, the performance of our emergent clustesiaffécted by the lack of neighboring
options in the sparse scenarios. Therefore, its perforemmhas an improvement in comparison with
the Modified Expanding Ring for dense scenarios. Neversselthis is much more visible in the
small scenarios. In the large scenarios, our heuristic tilha better performance than the expanding
ring, however, there is no effective improvement in congmarito the expanding ring in the dense
scenarios. We will describe a possible reason for this helow

At this point we need to highlight again that the cost of thestdring reduces with the network
density, but not linearly for all approaches. The reasondhat were already discussed in Section
6.3.4.1.

The Figure 6.19 presents the same achieved costs, but moethaainst the reference solution.
The average cost of our emergent clustering heuristic rmxencomes 44 times the reference solu-
tion (optimal for small and GA for large), for all experimendtscenarios. Moreover, the variation of
the relative cost over different densities was not very higtere is a small tendency of increasing the
relative cost with larger densities. This can be explaingthb fact that dense networks present much
more possibilities for the cluster construction, which explored by the linear integer programming
and GA, and, due the small computational cost requiremepupfistributed heuristic, cannot be
explored. In sparse scenarios, the solution space is smalle

The modified expanding ring, for small scenarios, presemsieh higher difference of perfor-
mance when sparse and dense scenarios are compared. Ttiafactoes not rank appropriately
the links when selecting the members makes it slightly impprdor small and dense scenarios. This
is especially important in the last round, and, in the demsmarios, sometimes just one round is
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Figure 6.20: Example of situation where the selection ofttést members by the clusterhead yields
a bad global clustering solution & 4).

necessary to select all nodes, which makes this effect biggesparse scenarios, there are fewer
possibilities for membership selection in each round, Whieduces the penalty of not ranking the
candidates. Moreover, the effect of the last round is alsallemin small and sparse scenarios. One
possible explanation for the relatively good performanté¢he expanding ring in large and dense
scenarios is the fact that, without selecting the best caels, some “bridge nodes” are left and can
be used by other isolated nodes in order to form clustersufreuristic, those isolate nodes would
not form any new cluster and will be integrated in the nexstduat the end of the heuristic.

Figure[6.20 exemplifies this situation. In (a), the clustewh (node 1) selects the best possible
members (using its local information). Nevertheless, nodes 2, 6, 7 and 8 are isolated (there is
no direct path that links node 2 with the others). Hence, tt@not build another cluster. They will
be integrated in the same cluster by the enforce phase oflibteing heuristic at the end of the
execution. In (b), the clusterhead in the expanding ringritlygm selects the new members of the
cluster without differentiating them. Therefore, somehpatleft that connects the other four nodes.
Now it is possible to form another cluster from nodes 3, 5,d &n

If we check the number of clusters generated by our heuasiitby the modified expanding ring
(Section 6.3.4.6), this expectation is confirmed. The edjpanring, in average, is able to build more
clusters than our heuristic in the big dense scenarios.Hemsrmall scenarios, due to the small cluster
size, this effect is not such important. Nevertheless, éatng able to construct more clusters than
our heuristic, the global cost of the expanding ring is lathan the cost of our emergent clustering
heuristic. This means that the clusters in the modified edipgrring are of very poor quality.

An additional point that must be highlighted is that not otilg cluster cost is increased by the
modified expanding ring. Due to the larger number of clustgnisre members of different clusters
are geographically mixed (“blend effect”), a cluster-wigordination of the MAC protocol in order
to avoid interference of transmissions is hindered. Sucbclayer optimizations are more difficult.

In order to illustrate the “blend effect”, the output of areemtion of our heuristic and the expand-
ing ring is shown in Figure 6.21. In this figure, just the b@std among nodes inside one cluster are
shown. Links among different clusters are hidden. We caweageclearly in this figure that the blend
effect is much stronger in the clusters found by the modifigghading ring. In sparse scenarios, this
is not so important.

Finally, in Figure 6.22, we summarize the normalized costsafl scenarios. Again, the effects
discussed in this section can be easily observed. An additimportant remark is that in the emergent
clustering, in dense scenarios, the last cluster has tldemey of being very costly because all good
links have been already used by faster clusters. This isesethe global cost a little bit.
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Figure 6.21: Example of cluster solution found by the Emet@#ustering and the Modified Expand-
ing Ring.
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Figure 6.23: Standard deviation for the different heursstvith small and large problem size.

6.3.4.4 Statistical Dispersion

In this section, we will present and analyse the estimataddstrd deviationg) of the outcomes of
our experiments. In real sensor network deployment, if esult has a small statistical dispersion,
we could better anticipate the performance of the cluggemigorithm. With the statistical dispersion
we can estimate how far from the average the result of a reggbg®ment can be.

Figure 6.23 presents an overview of the estimated stan@aidtibn from the mean of the absolute
and the normalized results. In Figures 6.23(a) and 6.23éctan notice that the intrinsic standard
deviation of the problem instances reduces with increadergsity of nodes (looking at the optimal
and GA results). This is an expected result, due to the fattttie means also reduces. Moreover,
the Emerging Clustering and the Modified Expanding Ring destrate the same tendency of the
reference solution. In the small scenarios (Figure 6.23(ls possible to see that the deviation of
the optimum solution and of the genetic algorithm are alnlbstsame, which again increases our
confidence of a very good GA design.

Figures 6.23(b) and 6.23(d) present the statistical dssperwhen the results were normalized
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against the reference solution. We can see that the emesigsigring yields, in average, a smaller
standard deviation than the expanding ring for the majaftgases. It is interesting to notice that,
for large networks, a higher difference among sparse anskedgrenarios has been encountered. This
can be also visualized in Figure 6.16. We conclude from @ssilt that networks with large number
of very connected nodes present a larger number of posigibifior member selection, sometimes
with redundancy (several nodes with similar quality or savpaths to catch the same node by the
clusterhead). This brings more homogeneous results, withnatant divergence from the optimal
solution. Opposite to that, in sparse networks the qualfitthe result was very connected with the
position of the clusterhead, because it does not have apageof nodes for membership selection.
Therefore, for experiments where the clusterheads oatabicemerge in a not so optimal position,
the resulting cost has a large distance to the optimal. ler@kperiments, where the clusterheads are,
by random factor, better located, the cost is nearer to thiemap In dense scenarios, an unfavorably
positioned clusterhead has the chance of building a goatlezidue to the presence of plenty of links
and nodes.

The modified expanding ring has overcome the emergent dlugti the large-dense scenario.
We presume that this has been partially caused by the “Briglgges presented in the previous sec-
tion. Moreover, being indifferent to the fithess of a memisardidate, the modified expanding ring
produces much of the same kind of cluster over the areal. i$hlgferent from building very good
clusters at the beginning and not so good at the end of thaigaecas our approach. Therefore, a
higher regularity can be expected from the modified expanding, and this reduces the variance of
the normalized cost.

Summarizing, we conclude that for dense networks our dlyarpresents a significantly lower
standard deviation of the normalized results than for gpaetworks. Moreover, the expanding ring
and our emergent clustering have shown very low and simitardard deviations.

6.3.4.5 Distribution of Results

In this section, we will present the tabulated frequencigsoantered in our experiments. The his-
tograms presented here represent density estimationschnhéstogram, the theoretic normal curve
is also presented. It is calculated using the estimatedhpeas (estimated meanand standard
deviations®)

We present here two hypotheses to be checked by our freqiésiograms. We argue that:

1. The optimal solution of theninimum intracommunication-cost clusterifigr experiments re-
alized with constant parameters and different, randomheggted geometric random graphs as
network topology follows a normal distribution.

2. When normalized against the reference solution, our BemtrClustering and the Expanding
Ring solution costs also follows a normal distribution.

The total cost of an instance of theinimum intracommunication-cost clusteritig) composed
of the sum of the individual clusters’ cost. We can considier ¢ost of each cluster as a random
variable that shares the same probability distributiortélbse one part of the geometric random graph
is similar to other parts and in its complete area). The mmbtost is given by the sum of those
random variables, which means that, when we approach aiténfimmber of clusters, the distribution
of the cost over several instances of the problem will cayed¢owards a normal distribution. If the
cost of each single cluster has expected valuas well as standard deviatiam, and we haven
clusters in the optimal solution, our population of expexints should approach a normal distribution
N(nu,no) whenn goes tow.
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Figure 6.24: Density estimation for the optimal (GA) sabus of instances of theninimum
intracommunication-cost clusteringith geometric random graphs as input.

Figure 6.24 shows the resulting density histogram for ofaremce solutions with the theoretical
normal curve. As we can see, the optimum solutions (Figi24(6) and 6.24(b)) agree very well with
the theoretically calculated normal curve, increasing @nfidence in our first hypothesis. For the
large networks, a similar result has been found, althougieszutrunners in the frequency distribution
could be verified (Figures 6.24(c) to 6.24(f)). We guess ey could be some artifact introduced by
the genetic algorithm. Moreover, for large networks, adamgumber of samples may be necessary to
improve the normal approximation.

At this point we need to concentrate on the results of the gem¢rclustering and modified ex-
panding ring heuristics. Figure 6.25 shows the distrilbutsd the normalized results for all experi-
ment scenarios. The fact that the results approximate aalatistribution can be seen very clearly
in the large scenarios (Figure 6.25(c) to 6.25(f)). In thakmnes, we suppose that the outrunners
are caused by the fact that there are fewer problems witHapmng, competing clusters than in
large ones, bringing a slightly higher frequency in gooddBroost) results. The lack of nodes re-
duces sometimes the possibility for even more reduced webéth brings a small dis-balance in the
frequencies encountered in the experiments (Figures&.2(d 6.25(b)). Nevertheless, all results
resemble, with exception of a small number of outrunneesnttrmal curve.

For the modified expanding ring heuristic, similar resulilsénbeen found. They are showed in
Figurel 6.26. It is important to remark that the confidenceridl presented in earlier sections was
based on the assumption of this section, i.e., our resuttgecge to a normal distribution. This has
been shown here.

We will now analyze the cumulative histogram of our experitseo see how much of our out-
comes have lower cost. Figure 6.27 presents the cumulagimsityt for the large scenarios. The
normalized results are used here. In the Figure 6.27(a)ethdts for the emergent clustering are
depicted, and in Figure 6.27(b) the results of the modifiqeaeging ring. For both heuristics, the
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Figure 6.27: Cumulative histogram of normalized resultddme scenarios.

slope of the cumulative histogram increases with the dgws$ihodes of the scenario. An exception
can be noticed for thiarge-dense andlarge-very-dense scenarios, where similar slopes are found.

The emergent clustering presents the majority of the ®$80%) below 18 times the reference,
for any node density. Moreover, for medium and dense netydHe result is even better. For the
expanding ring, 90% of the results were belod #imes the reference solution. Although the average
normalized cost of the sparse scenarios was smaller thatefese scenarios, the smaller variance of
the latter one constraints the results in a narrower rangps Arings about that, when we analyze
the majority of cases (90%) for the dense (and very densepsos, they are below.@3 times the
optimal solution, while for the sparse scenarios they alevbé.8 times the optimal solution.

From the exposed diagrams, we can conclude that our ematigsiering presents, for any den-
sity, a better cumulative histogram than the modified exjmndng. This means for a given cost limit
(e.g. 1.8 times the optimal), more outcomes of the emerdantering lies below the limit than the
modified expanding ring. Moreover, almost all results oféhgergent clustering were relatively near
the reference solution. This was achieved using a distibheuristic without global information and
very low computational cost.

6.3.4.6 Number of Clusters

In this subsection, we analyze the number of clusters formedtle simulated heuristics for large
scenarios. Figure 6.28 presents the achieved results.ortfielence interval is also presented.

For both heuristics, the number of clusters increases wambde density. This can be explained
by the fact that sparse scenarios present less connectgsibjities than big ones. The situation
presented in Figure 6.15, which brings a higher optimaltamiwcost, acts also in both heuristics, but
here it reduces the number of clusters and increases thefsoite figure shows, when nodes 1, 2 and
3 are included in a three-nodes cluster (supppsel), the other nodes cannot build an autonomous
cluster. In the optimal solution, this would not happen,sase the whole network would build a big
cluster. A one-cluster solution is more expensive than adlwsters one (when nodes 4, 1, 2 form
one cluster whereas the rest forms another one). Nevesthalar clusterhead selection method has
a greedy nature as well as the selection of members. Thisgtiear with high probability, nodes 1,
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Figure 6.28: Number of clusters achieved for different ndeesities.

2 and 3 would form one cluster, and, at end of the heuristie, tduhe fact that the remaining nodes
cannot form another cluster, they will be included in thig pyielding a high cost solution with less
number of clusters than desirable.

This effect has a higher probability to appear in sparse owdsvthan in dense ones. “Islands”
consisting of nodes that are not able to form a cluster mugtddeded in some existing one, which
leads to a smaller number of clusters in sparse networkghwbBults in increasing total costs. Both
algorithm are susceptible in the sparse scenario. Due tsuperior membership selection of the
emergent clustering, it has a superior performance withe@sto the number of clusters in such
scenarios.

It is important to state here that a higher number of clusteasdesirable property and means that
the clusters are nearer the given boundA higher number of clusters, in several cases, brings also
a smaller cost (as defined in our optimization problem). Kéedess, it is also possible to have a
solution with higher number of clusters and, at the same, tirigner cost than another. This happens
when we compare the emergent clustering with the modifiedrekpg ring in dense scenarios.

For dense (and very dense) experiments, both algorithnsepra much better performance con-
cerning the number of clusters. Nevertheless, the modifipdreding ring presents a slightly higher
average of the number of clusters. The fact that the emeafgstering selects the better neighbors to
belong to the cluster increases the chance of appearanaetofislands” even in the dense scenarios.
The modified expanding ring produces more “mixed” clustessere nodes enclosed by members of
a given cluster may be not included in it and can serve asdbfitbetween such islands, increasing
the number of successfully formed clusters. This is alssiithted in Figure 6.20.

Nevertheless, it is important to state here, that even avinigher number of clusters, due to the
bad quality of such clusters, the expanding ring incurs Bdrigommunication cost than the emergent
clustering solution with less clusters.

6.3.4.7 Number of Messages

In this section, we will analyze the necessary number of agEssto decompose the given network in
a set of clusters. We assume that the energy spent by thetlatgdo construct the clusters is mainly
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influenced by the number of messages used.

Forq < n, wheren is the number of nodes of the network, the worst case messagglexity of
constructing a single cluster happens when all nodes reteé/call for members messages at the last
round: m= O(gn), all nodes of the network will respond to that message (daries to then in the
complexity). Moreover, the messages must be routed thrthugh— 1 members of the cluster until
arriving the clusterhead (contributes to tipeactor in the complexity).

Figurel 6.29 shows an example of scenario where the worstnaassage complexity is verified.
The node 1 emerges as clusterhead and starts the membeiskiipa phase. In each round, just one
new member can be achieved by the call for members messagefate a single node is incorporated
in the cluster. When the cluster has- 1 nodes and it starts the last call for members message (node
3, in the example), all other nodes of the network are reaehddespond to that call. Naturally, one
node of the responding ones will be integrated in the clusterthe other ones will be refused.

The necessary number of messages in the worst case is:

q
m=2-3 @-+2(n-q-@a-1)= (" ~a)+2-(n—q)-(q—1) = O(ng) (6.12)

The worst case complexity for construction one cluster Withexpanding ring i©(n), because
when receiving all messages from all nodes of the networtkattean't in the cluster in the last round,
instead of routing individually each one to the clusterhdhdy are summarized in one single (large)
message. Due to the waiting time principle of our heuridtics is not possible. Nevertheless, we
discuss in the conclusion an alternative to reduce the wass complexity of the emergent clustering.
The proof of the worst case message complexity of the expgmihg is: in any round in which the
cluster size is less than g, the total number of messagesegeh is polynomial in g. In the worst
case, all nodes in the network may receive messages in theulasl [77]. Therefore, the worst-case
message complexity ©(n) sinceq < n.

Now, we will consider the results of our experiments.

Figure 6.30 presents the total number of messages usedriagay for each large scenario simu-
lation. From the results, we can see that a similar numberesisages was necessary in all scenarios.
Nevertheless, the sparse scenarios needs a slightly hgingber of messages than the other ones.
This can be explained by the fact that, in the sparse scenheiaegree of the nodes is below the min-
imum cluster size. This means that for the average case idvmeunecessary to search for members
within more hops than for the other cases. We can see in thaieqh.12 that a quadratic component
(q?) dominates when every round has few nodes reached. In sgegsarios, the average cluster
diameter is larger and the quadratic exponent has a higfest eh the number of messages.

This fact is confirmed by Figure 6.31. In this experiment, a& tiow the cluster size influences
the necessary number of messages. For the same scenari@ke@fsimulations for each selected
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cluster size. We select a range fram= 6 to g = 52 for minimum cluster size. We simulate the
large-sparse andlarge-dense scenarios.

As can be seen in the figure, the difference between the ragessmber of messages in the
sparse scenario and in the dense one increases with imgeasster size. This happens because
in sparse scenarios more hops are necessary to catch theenseofithe cluster. More hops means
more messages per included node, this means, sparse esdmasgia higher quadratic component in
the number of messages than dense ones (more hops are ngcedsae density means less hops,
therefore less messages per included member are necessary.

In Figure[6.30, we can see that after achieving the minimurauarinof messages in tHerge-
medium scenario, the necessary amount of messages starts tosedmramore dense ones. Since
in the medium, dense and very dense scenarios the averadenofmeighbors is higher than the
necessary number of members in the cluster, they have siahilster diameters. However, in the
dense scenarios, an additional effect can be observed: cedldor members arrives at much more
nodes than necessary for the cluster formation. This, ireseay, resembles the valmén the worst-
case complexity. As the necessary number of members hascoegpleted, several unnecessary
replies will be sent to the clusterhead by the nodes that bage requesteccéll_membersbut are
answering later than the selected members. This againasesehe number of necessary messages.

In Figures 6.32 and 6.33, the cumulative histogram and #redsird histogram of a single simula-
tion run are shown, respectively. The results show thatgelaxchange of messages happened in the
beginning of the simulation, when several clusterheadsgaderom the transition functions. More-
over, at the beginning, more nodes are free and will respomalt for members messages. Another
small peak can be found in the end of the maximum cIuster'nngl This peak is relative to the
enforce phase, at the end, to include nodes that were urmabigld a cluster in the existing ones.

1The maximum clustering time is a parameter of the algorithat has relation with the individual clustering tigeand
the collision probability described in the previous chapte



196 CHAPTER 6. SIMULATION AND RESULTS

1200

80 T T T T T T T T T

70 — -
1000

T

60 |- —

800 |~
50 — —

40 -

Number of messages

Number of messages

30 |- —
400 —

20 - —

200
10 —

L L L L L 1 1 1 1 | | | |
0 0
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Time Step Time Step

Figure 6.32: Cumulative number of messages Figure 6.33: Distribution of the messages
for a single simulation run dérge-sparse and through the simulation time for a single sim-
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6.4 Service Distribution Simulation

In this section, we will present the simulation results of basic and extended service distribution
heuristics.

6.4.1 Assumptions
For our simulation, the following assumptions are used:
e Each node has a transmitter with fixed power. Therefore, #inanmal reachability is fixed.
e Links are bidirectional. In the reality, this can be achibjgst by ignoring unidirectional links.

e The Friis Free Space propagation model for isotropic pointree in an ideal propagation
medium is used to calculate the received signal strengibatidn (RSSI).

e RSSI was the only metric used in the virtual distance.

e Every node has a unit of energy.

e Each node has enough resources for a single service anda tsisk;
e Tasks request different, randomly selected services.

e The bandwidths needed in the different communications vaardomly selected.

6.4.2 Simulation Scenarios

For the evaluation of the service distribution, we also uerent problem sizes. In the first group of
experiments, we have a field of 80 60mwhere 10 nodes are randomly deployed with independent
uniform probability. We have 8 services, with 6 tasks retjpgsservices. The small scenarios were
selected in order to enable the calculation of the optimiaitiso.
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Scenario Name Field Number Radio ConnectioNode Average Num.
Size of Range Proba- density Degree Services,
(mP) Nodes bility (Theo- Re-
retic) questers
Small Scenarios
small-sparse-sd 80x60 10 28 0.002 0.9 5.13 8,6
small-dense-sd 80x60 10 43 0.002 1 12.1 8,6
Large Scenarios
large-sparse-sd 102x77 100 13 0.013 0.9 6.7 20, 40

Table 6.2: Overview of the different simulation scenarios.

For large scenarios, it is not possible to calculate thamgit{reference) solution of our discrete
optimization problem due to its computational complexiterefore, we cannot compare the results
with a reference solution. Nevertheless, we decided to raalexample simulation of a large scenario
to show that its behavior is similar to small instances. Wearsareal of 102 x 77mwhere 100 nodes
were deployed. Moreover, 20 services are serving 40 diffesesks.

The network graph was generated using the Friis free spagagation model with a fixed max-
imal reachability. We will call it “radio range”. Any two n@s inside this range are able to commu-
nicate. In this case, a link exists.

For the generation of the task/service graph for each taskndom number of services was
selected. The tasks request those services with a randaigtin requirement (normalized). More-
over, each node has the following memory restriction: jus task and one service can be hosted by
a node. This means that e.g. two services cannot be placke same node. The overview of all
simulated scenarios can be observed in Table 6.2.

An additional important point is that we are using the Dij& shortest path algorithm to find the
route between the requesters and the services of our network

6.4.3 Algorithms under Evaluation

The presented scenarios were evaluated using differeatithigns. For the small scenario, the opti-
mum solution was calculated using a branch-and-bound itigar For all scenarios, our basic and
the extended ant-based service distribution heuristiesenulated. We allow swap operations of
services when the settlement phase does not found a nodendtiyh resources for the migration.

Moreover, we decided to calculate the cost of a completelgam assignment, i.e., the tasks and
services are randomly distributed among the nodes of tiveonlet

6.4.4 Results

We executed 40 experiments for each scenario presentedie 2. In the next sections, we will
present and analyze the results of the experiments.
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6.4.4.1 Optimal Assignment Cost

In this section, we will analyze the results achieved with diptimal cost assignment. Figure 6.34
presents the optimal service assignment cost fosriul-sparse-sd andsmall-large-sd scenariod. As
expected, denser scenarios present a smaller assignnseniTbés can be explained by the fact that
better links (lower cost) are available for the communaatietween the tasks and services, reducing
the total cost. Moreover, due to the higher amount of neighfiigher node degree), assignments that
yield a high amount of costs in sparse environments may tectite in dense environments because
of the existence of several new links.

6.4.4.2 Experiment Results

This section presents the outcome of our 40 experimenthéoptesented scenarios. In Figure 6.35,
the results for our three scenarios are depicted. For thd soenarios, each result is normalized
against the optimal assignment. For the large scenariofesept the nominal result.

As we can see in Figures 6.35(a) and 6.35(b), our heuristioddhe optimal solution in several
cases. Moreover, for the vast majority of cases, the h@uhas a much better performance than the
random initial assignment. The extended heuristic andéis&lone have also a very similar behavior,
nevertheless, for some experiments, the extended one hastabratter performance than the basic.
The reasons for these outcomes will be discussed further.

Figure 6.35(c) shows the results for a large scenario. Dtieetéact that we do not have, for large
scenarios, a reference approach, it is not possible to natarsents about the absolute performance
of the algorithms. Nevertheless, it is possible to notiee the heuristics could find a much better cost
than the initial random assignment. Moreover, the behavidhe extended and basic heuristics are
similar to the observed in the small experiments.

2For the service distributions, the terms total communicatiost (presented in the figure) and assignment cost have the
same meaning.
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6.4.4.3 Heuristics’ Assignment Costs

In this section, the mean value of the achieved costs for baahstic for all scenarios will be pre-
sented. The cost for the absolute assignment of our tesasegn shown in the Figure 6.36. The
random assignments and basic and extended heuristic assigghave the same tendency of the opti-
mum: for sparse networks, they deliver always a assignmihthigher cost. This is expected due to
the relation between the assignment cost and the link carstsfor sparse environments, the average
link cost increases.

In Figure 6.36(d), the different costs are shown togethethfe small scenarios. As it can be seen
in the picture, our basic and extended heuristics have a geddrmance, not far from the optimal
solution. The basic and extended heuristics have a veryasiperformance. We will discuss about
the reasons and the performance difference further.

In Figure| 6.36(e), the results of our large scenario areatieghi It is possible to see that they
are very similar to the small scenario, improving our confimiethat the heuristics could find good
solutions for small as well as large scenarios.

Figure 6.37 shows the normalized results for the small sa@nalhe optimal assignment is used
as reference. It is possible to notice that, for all casegra small difference could be verified for
sparse and dense scenarios. The basic heuristic has ageagest of 144 times the optimal cost for
sparse environments andXor dense ones. The extended heuristic shows a small ireprent: 141
for sparse and.43 for dense scenarios. This means that the cost of the basiistic was about 2%
higher in sparse scenarios and 5% in dense scenarios. Sbhahlavior has been found in the large
scenario.

As it could be seen in the Figures 6.35(a) and 6.35(b), thie basl extended heuristic, for several
experiments, could find solutions with very similar costsl dor some experiments, the extended
overcame the basic one. For the experiments where thegageit similar, we suppose that there
aren't flow correlations that helps the heuristic behaviBar the experiments where the extended
heuristic has a much better performance, correlationsddoglfound and a better service migration
was realized.

The question that arises from the results is why correlatiwsre not so common? We guess
that the reason was the selected routing algorithm togethiarthe influence of the Friis Free Space
Model in our link metric. Because of the exponential pattsJasodes near to each other have a
greater advantage in the signal strength than others withadl figher physical distance. The link
metric reflects very much this exponential path loss duedddht that we are, for our simulations of
service distribution, relying strongly on the signal stiimto calculate the link metric. The Dijkstra’s
shortest path algorithm always selects the shortest patteba any two nodes and does not try to
divide the load among the existing link channels. Furtheaveealso not taking into account the link
utilization (and possible congestion). Together, suclsfact in a way that effectively just a small
subset of links is used for all communications. A kind of Hamke emerges in the network. This
leaves less space for our flow correlations.

We suppose that, in real scenarios, where the link metri@haere irregular nature and routing
mechanisms that divide the transmission effort among rdifferoutes, the extended heuristic will
increase its performance in relation to the basic one.

6.4.4.4 Cumulative Distribution

Figure 6.38 shows the cumulative distribution of the noireal results for the small scenarios. Both
basic and extended heuristic have a similar behavior, ssw sglarse and dense scenarios brought
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similar results. However, small differences can be notickkds possible to see that the extended
heuristic outstands the basic one for both sparse and dearar®s. Moreover, it was possible to
notice that in sparse scenarios, more results were belbwiries the optimal value than for dense
scenarios.

From the figure it is possible to see that for a majority of sa@3%) the results were below 2
times the optimal results, for both heuristics in all sc@ar

6.4.4.5 Distance Between Requesters and Providers

In Figurel 6.39, the total distance between the requesterpmaviders, measured in hop count, nor-
malized in relation to the optimal solution is plotted. ltilgportant to highlight that we count the
hops over the path used by the communication between thestma and providers (shortest path
calculated using the link metric).

The results are similar to the cost measured by means oftctaffi link metric. Our heuristics
have a slightly higher cost than the optimal solution.

6.4.4.6 Number of Migrations

Figurel 6.40 presents the number of migrations performechéybaisic and extended heuristics, for
allowed_h=1 and 2, i.e, when single and two-hops migrations are allowd/e notice that similar
numbers of migrations were necessary for the basic and dedeheuristics. This reflects also the
similar performance of both methods. Moreover, if the sgrwiare allowed to jump a higher number
of hops in a single migration, as expected, less migratioesacessary. The experiments with
lowed_h=1 have about .28 more migrations than wheitlowed_h=2 was used. This value is far less
then the maximum theoretical value of two because the patgrtteromone (used in multi-hop mi-
grations) may lead, sometimes, to false decisions. Moreateen the final destination of a migrating
service is an odd number of hops away, turnitigwed_h=2 does not half the necessary number of
migrations used to achieve the destination.

We suppose, for bigger networks, that the performance ddiltq@rithm will increase when larger
migrations are allowed. Nevertheless, in dynamic netwaskssell as in systems where services are
using other services, multi-hop migrations may bring ataibiity to the system.
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An additional comment is that due to the fact that the netwaak slighly loaded with services,
the swap operation was used with certain frequency. Withlteeded networks, we expect a smaller
number of migrations.

6.5 Discussion

The simulation results presented in this chapter focus grakpects of our emergent clustering and
service distribution heuristics. For the purpose of insieg the relevance of these results, we use
several scenarios with different node densities and afferelnt parameters in the algorithm, as clus-
ter size and number of servers and requesters. Our staltisiaminations were used to prove the
significance of the results.

The emergent clustering heuristic has shown a very goodmeaice for scenarios with different
node densities. The average cost was at mabt fimes the reference approach for all simulated
scenarios. In addition, small standard deviations cowd &k verified. Our emergent clustering
outperforms the modified expanding ring in almost all sitedascenarios. These are very good
results that were achieved by means of local iterations dxtvthe WSN nodes.

Nevertheless, there is a cost for our algorithm: in the woaske, the necessary number of mes-
sages to build a single cluster@qn), wheren is the number of nodes in the network. The expanding
ring has a slightly smaller complexit9(n). Nevertheless, there are algorithms, like thgid, where
the message complexity to construct a single clust@(tp. This low message complexity comes
with a drawback: theapid algorithm may produce clusters very far from the given boagmaller),
because members without free available neighbors to iadluthe cluster simply do not re-allocate
their residual budget. Theersistentalgorithm does that and the worst case complexi(ig?). The
expanding ring and our emergent clustering have a worsta@asplexity of forming one cluster de-
pending om due to their broadcast nature: when searching for memblérsighboring nodes are
approached, fact that can lead to this high message complexi

However, in more realistic scenarios, much lower messagglaxity can be expected. We accept
a relatively high message complexity during the clusteistroiction because it will lead to a smaller
communication cost during the operational phase of the & d he idea is that, after the cluster is
completed, services and requesters will communicate intansive way within a cluster. The initial
set-up cost will be amortized in the operational phase. B\@g other algorithms likeapid and
persistentdo not guarantee that the boury) ill be achieved, being not appropriate for our purpose.

Our service distribution heuristics have demonstratedyageod performance when compared to
the optimal one. In all tested scenarios, the average aathiewst was at mosta times the optimal
one. This was achieved with a low computational cost. Needess, the extended heuristic has shown
just a slightly better performance than the basic one.

We suppose that this occurs due to the small subset of lirldsatte used to route almost all
packets in the network. Due to the fact that our heuristicepethdent on the underlying routing
protocol, and, as already said, we are using the optimalesipath routing Dijkstra algorithm, the
selection of the communication paths has a high correlatitimthe exponent of the Friis free space
propagation model, since the link metric reflects it strgrigl the service distribution experiments
(where the exponent two was used). The higher the exporentess diverse are the routing paths,
i.e., a “backbone” is formed in the network and all packetsrauted through it. For the extended
heuristic, this is not very favorable, since then the chaofcthe existence of correlated flows is
reduced.

Due to this fact, for a large number of real applications,ktasic heuristic yields adequate results
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and the extra computational effort necessary for the exgriteuristic may not be compensated.
However, in real environments, where the link metric doesfoitow in a regular way the Friis path
loss, and different routing mechanisms can be used, thadedeheuristic may bring better results
and it can be used with advantage.

Such a more realistic simulation where the environment issnadealized is a point for further
work. More realistic physical models, wireless devices aativork stack should be used. Further,
dynamic topologies must be tested. We aim to use the refeqgrint group mobility [63]. In addition,
how each parameter of the heuristics influences their behder the emergent clustering and for the
service distribution, should be also studied. Tuning bahristics may improve the good results
encountered in our simulations.

A further future work is to test our service distribution histics with different routing protocols.
Because our basic heuristic is sensible to instabilitiehénrouting algorithm when selecting routes
at different points in time (with the same topology), we extpe better performance of our extended
heuristic compared to the basic one for certain routingquas.

It is important to highlight that some aspects were not teBtehe experiments. For example, in
the clustering heuristic, nodes with different energy Igveay yield different clusterhead election,
which influence the behavior of our algorithm. Since the exiireg ring (among others) does not
take in account the energy in the clusterhead election phasbelieve that we can achieve a longer
clusterhead longevity with our emergent clustering. Niadess, rotating clusterhead heuristics have
an advantage in this item when compared with our. We plantodnce clusterheads rotation, similar
to the described in our clustering heuristic for dynamionmeks. Moreover, nodes with different
amount of resources should be also introduced in our sifonkat

An additional important further work is the complete sinmida and analysis of our dynamic
clustering algorithm. We have implemented it using the Stetwork simulator and a working proof
of concept already exists. Itis able to decompose a dynaetveark in a set of clusters which comply
with the minimum boundy. Moreover, it showed robustness against moderate topatbgnges.
Nevertheless, numeric results to allow comparison witheheergent clustering for “quasi-static”
networks are missing and they present a further step in thik.w
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Conclusion

Wireless sensor networks enable a wide range of new applisatThe system software of a sensor
should be flexible and powerful to enable the easy developwfetifferent kinds of WSN applica-
tions.

This thesis presents the architecture of an innovative ®Seosor nodes, which integrates local
hardware management with abstractions for enabling catiperprocessing among geographically
distributed nodes. NanoOS supports generic, complextilisdd in-network processing. Due to the
resource constrained hardware, it is not possible to peoaltinecessary functionality at the node
level, therefore, the network as a whole should offer anegged capability and functionality.

Although several middleware approaches present diffedgls of distributed processing, they
lack flexibility, being adequate for a certain type of apalion. Normally, they envision typical WSN
applications like processing queries coming from a usemagimg sensor events or coordinating
data fusion. Many of them are targeted towards data-ceafyptications or in-network processing
related to such applications (e.g. data fusion). The databdddleware hides from the programmer
the complications of distributed programming, enablingptogram the sensor network as a whole.
Nevertheless, there are only pre-defined ways to procesdattae In our approach, a much more
flexible way of programming is offered.

The virtual machines try to remedy the limited flexibilitythe expense of increasing the program-
mer’s responsibility. But different from our approach, thstribution of the distributed algorithm is
controlled also by the programmer, i.e., the replicatiomagration of an executing segment must be
explicitly done. For several applications, this programgnmodel pose a challenge to the developer.

Our OS offers support to the distributed processing in theveotional sense, i.e., distributed
algorithms can be implemented using a server-client pgnadiith automatic service instantiation,
discovery and migration. Although we are providing a clisetver paradigm, typical sensor applica-
tions like data fusion can also be easily implemented withinOS. We want to achieve a localized
processing, in order to make the sensor network more automenwithout relaying on an external
access point to gather all the data at all times. Moreoverctioperation between nodes enables the
calculation of a more abstract system level decision froaréw sensor data. Instead of sending low-
level sensing information to the gateway (or an other irstieik entity), the high-level processed data
can be sent, reducing the amount of communication necesBhaeydistributed processing by means
of the application and OS services enables a higher furaltigrin the sensor network. Nevertheless,
the cost for this is the increased amount of interaction amoadules residing at nearby nodes.

A central point of the OS is the automatic placement of theices in order to reduce the quantity
of communication of the system, saving the scarce energyres. For that, we present in this thesis

207
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a basic and an extended heuristic for controlling the migmabf the mobile services. Since the
processor assignment problem is NP-complete, our haxgriate best-effort. Nevertheless, they are
distributed and only using local interactions to achievediobal goal.

Both versions of the heuristic are based on stigmergeticnoanication: when requesters com-
municate with the services, they leave pheromone on thenet@rk path. When a service decides
to migrate, the pheromone trails guide the selection of #we service location. Therefore, just local
interaction and a very low amount of communication is neamgst choose a new service destina-
tion. This new placement aims to reduce the amount of comeation between the communicating
modules.

Additionally, we are grouping the nodes in clusters in otdgeduce the organization overhead of
the network and allow centralized algorithms to be usediaaisingle cluster without compromising
the whole scalability. All services requested by procagdimeads inside one cluster must be placed
in the same cluster. Hence, each cluster must have enouglireces for the service instances. We
present in our work two heuristics that enable this clusienftion: one targets stable topologies and
the other dynamic ones.

The clustering heuristics should decompose the networlelhe@nnected clusters, because much
of the interaction between nodes will occur inside them. Base of our heuristics is the selection
of a subset of nodes — the clusterheads — that representuitersl Each clusterhead then starts to
allocate members. For the selection of clusterheads, we aiseethod derived from the division
of labor in social insects. The membership selection, farfiost heuristic (capable of dealing with
quasi-static topology), is made based on the fitness of tierelit member’s candidates. Nodes
with higher fitness respond first and have higher priority édfcorporated into the cluster. In the
second clustering heuristic, a positive and negative f@gdmechanisms, typical for self-organizing
systems, is used to construct the clusters. The positivdb&esk is responsible for the aggregation
of each cluster, i.e., for its capability of attracting newembers. Due to the snow-ball effect of the
positive feedback, if not controlled, a network with onegsincluster will be achieved. Therefore,
the creation of structure, i.e., a cluster with controllezt sis done by means of a negative feedback.
Each time that the cluster grows more than necessary, traivedeedback starts to play a larger
role and limits the attraction, constraining the clusteesilt shapes the emergent structure in our
self-organizing process.

The performance of our proposed algorithms was evaluaied tise Shox wireless network sim-
ulator. We test the proposed heuristics with different aces where network size and node density
were adjusted. The results were normalized against a referapproach, which for small scenar-
ios provides the optimal solution and, for large ones, araénéd, computationally intensive genetic
algorithm.

The basic and extended service distribution heuristice lsdown, in average, very good results
for all node densities and network size experimented. Thesevat most b times the optimal so-
lution. Both heuristics scale with node density. Neveghs] although the higher complexity of the
extended heuristic, it has shown just a small advantagastgie basic one. We suppose that this is
due to on the small subset of links used to route almost akgiadn the network. For more realis-
tic simulations, where the link metric uses more paramdtersfollowing so regularly the path loss
curve) and other factors like congestion and energy areded in the routing algorithm, we expect
than our extended heuristic performs much better in reiatidh to the basic one. Then, the extra
effort of the extended heuristic will be compensated.

We also simulated the network decomposition heuristic tprasi-static” networks. Moreover,
an existing heuristic was modified and compared to our r®sOitir emergent clustering outperforms
the modified expanding ring in almost all simulated scermsanoterms of cost of the decomposed
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network. Moreover, the average cost was at mo$4 times the reference approach (optimum or GA
solutions) for all simulated scenario. Our clustering &irhas demonstrated a higher predictability
with lower standard deviation. Moreover, a stronger geglgicaseparation of the clusters could be
verified. This is important to support correlated in-netwprocessing and helps to avoid disturbance
among clusters (using, for example, a MAC control insidehesingle cluster). For increasing node

density, the emergent clustering showed just a slighthhdrighormalized cost. This fact shows that
our approach scales with the node density. Further, thegbaddlity of the results increases with node

density, i.e., lower variance was found in very dense siesar

Concluding, the proposed heuristics, for service distiiouas well as for network decomposition
can be used successfully in our NanoOS because their smnafiutational cost and local interaction
features. Even with those constraints, our simulationg/elddhat very good results could be achieved
for all developed heuristics. Other applications of the W&Nvireless ad-hoc network areas may
profit from our heuristics too. Automatic distribution oframunicating modules as well as cluster
formation can be used in several different applications.

Our work gave an additional evidence that emergent pragsednd self-organization existing
in nature can be successfully transferred to computer mgsteThe very nice properties of self-
organizing systems, e.g. emerging structures (globalvi@haachieved solely using local iteration
(no central control), robustness and high scalability ddad verified in the developed heuristics.

Several enhancements can be done in our heuristics. Aglaldescribed, our clustering algo-
rithm for quasi-static topologies suffers from a worst cakester complexity ofO(gn). A simple
procedure can improve this picture drastically: when thsterhead has accepted enough members
in the cluster (the cluster is complete), every member ofctbster is informed about it and then
broadcast this information to all new possible candidatexiés that are still waiting to respond).
Upon receiving this information, a candidate just candslimer and does not respond to the call for
members message.

In order to better distribute the burden imposed to the ehlhstad, some mechanism to allow
clusterhead rotation should be implemented in the hearfsti “quasi-static” topologies. Such a
mechanism is included in our second clustering heuristic.

An additional drawback of our emergent clustering for neksavith low topology changes is the
lack of a negotiation after the clustering completion. Wétlch negotiation, it could be avoided that
isolated nodes have to be simply inserted on existing akist€his happens because nodes can be
exchanged among clusters in order to link isolated nodegpenddes the chance that an additional
cluster is formed using those isolated nodes.

Moreover, a detailed simulation of our clustering heutistir networks with moderate topology
changes must be done. Further, the addition of the accuratyealism of the existing simulations,
concerning modeling better the hardware and the wireleasrahs is a future task. How different
link metrics reflect in the form and cost of the clusters is ddit#onal point to be verified. Because
flat clusters increase the spacial correlation among mesnaenodification of the clustering objetive
in order to improve the formation concerning this aspectukhbe studied.

The service distribution methods are also candidate fororgments. For example, we aim to
integrate our short-range migration method, which is tedéowards a better load balancing among
the same instance of a given service by means of migrationsihgle context, with the service
distribution described here.

We are planning to integrate a Sensorware-like migratingrobscript that allows queries to be
easily inserted in the WSN. In the Sensorware, the scrigtsised to tie the building blocks imple-
mented inside a service API in some useful application. Mbekess, the amount of functionality
that those API can provide is restricted. We target to combie idea of those migrating lightweight
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scripts with our distributed service architecture. Indtedaccessing just a restricted local API, the
mobile services of NanoOS offer to the scripts larger funlity and distributed processing. The
scripts carry a high level query that is executed by our ibistied service architecture. Scripts con-
trol their migration/replication by themselves (e.g. tyito match certain data in the sensor network)
whereas the service API migration is driven by the OS. Thiggsra better combination of data-centric
applications with our address-centric distributed serarchitecture.
An additional very important step into this work is the imaiipn of the proposed heuristics in a

real implementation of the NanoOS. This will enable the tgwment of a demonstrator where the
advantages of our approach can be tested in several realrigsen
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