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1. INTRODUCTION

1.1 Motivation and Framework

Nowadays we are surrounded by many large networks of different kinds. These networks
include physical networks such as the Internet, parallel computers and embedded systems.
Also of increasing importance are wireless networks formed by mobile phones or robots.
First of all, these networks are often extremely large (e.g., the number of users of the
Internet is currently estimated to be 1.5 billion [CIA08]). Another important aspect is
that these networks dynamically evolve over time. These two reasons explain why it is
virtually impossible to control such large networks centrally and for many important tasks
local protocols have to be developed.

One fundamental and overarching problem in the context of large networks is the one
of efficient dissemination of information [HKP+04]. Various tasks such as broadcasting,
gossiping, sorting, routing, leader election, load balancing, etc. can be regarded as special
cases of information dissemination. For many of those tasks, several deterministic and ran-
domized algorithms have been proposed and analyzed [DGH+87, Lei92, MR95, HKP+04,
MU05, BGPS06]. One drawback of many deterministic algorithms is that they often re-
quire a central control for coordination. Additionally, it is difficult for them to handle
changes in the topology like removing (or adding) nodes (or edges).

Randomized algorithms (or protocols) enable the nodes to spread entities (e.g., packets
to be routed) rather uniformly to other nodes by making only local decisions. This ensures
that these algorithms are fairly robust under dynamic changes of the topology. More-
over, while an adversary is able to foil a deterministic algorithm by constructing some
special input, it may be often quite difficult to devise an input which defeats a randomized
algorithm. For some applications including Monte-Carlo simulations and cryptographic al-
gorithms [MU05], some randomized algorithms are also more efficient than the best known
deterministic ones. Furthermore, especially in a distributed environment, the randomized
approaches are much simpler and easier to implement than its deterministic counterparts.

A price one has to pay is that the result of a randomized protocol can occasionally be
of poor quality (or even incorrect). However, as the probability of failure is in many cases
rather small, the afore-mentioned advantages may well be worthwhile.

In this thesis we present results on four randomized protocols in the field of information
dissemination. All of our findings demonstrate the great use of randomization. Some of
them also show that apparently minor changes in the protocol may sometimes lead to vast
improvements.
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1.2 Outline of our Results

A widely used paradigm in the design of randomized protocols is that each decision is
made independently of all previous decisions in order to achieve maximum fault-tolerance
against crashes, resets or changes in the topology. One such protocol is the classical push
algorithm for broadcasting a rumor initially known by some node in a network. This is
done by letting each node which knows the rumor forward it to some random neighbor
in each step. In Chapter 3 we analyze the runtime of this algorithm, i.e., the number of
iterations before all nodes know the rumor, on general networks and identify the network
on which the performance is (approximately) worst. In Chapter 4 we show that the push
algorithm performs asymptotically optimal on several Cayley graphs.

The random walk [Lov93] is another process where all decisions are made independently.
To be more specific, a random walk moves in each iteration from its current location to
some random neighbor. Random walks are at the heart of many algorithms for graph
exploration, load balancing or sampling [Sin93, MR95]. For the design and analysis of
these algorithms, the following two parameters of random walks are of great importance.
The mixing time is the minimum number of steps before the distribution of the random
walk has approached the equilibrium distribution up to some deviation. Many algorithms
rely on a small mixing time to sample certain objects efficiently [Sin93, MR95, MU05].
The cover time is the expected number of steps to visit every node in a network and is
therefore relevant for graph exploration [MR95].

We study the mixing time, the cover time and their relationship to the push algorithm in
Chapter 5. One of our results is that the runtime of the push algorithm is upper bounded by
the mixing time on any regular graph. While intuitions about the relationship between ran-
domized rumor spreading and the cover time were already mentioned [FPRU90, CRR+97],
no formal results were known so far. We fill this gap by presenting a comprehensive collec-
tion of upper and lower bounds relating these processes. As our main result, we prove that
on every regular network of large degree, the cover time and runtime of the push algorithm
differ always by a factor of approximately the number of nodes n. This contrasts with
examples demonstrating a much weaker correspondence on sparse networks.

All random protocols mentioned so far are composed of sequential and independent
random decisions. However, it may sometimes be advantageous to allow dependencies
between the nodes’ decision. A classic example is the so-called power of two choices in
the balls-and-bins model [MU05], which has been intensively studied for centralized load
balancing [MU05]. In the original model, we sequentially place n balls (representing jobs)
into n bins (representing servers) by putting each ball into a randomly chosen bin. It
was found out that by allowing in each step a ball to choose among two random bins and
taking the bin with the smallest load, the maximum load drops from Θ(log n/ log log n)
to Θ(log log n) [ABKU99, MU05]. In this thesis we demonstrate a very similar effect in a
distributed environment.

We consider so-called randomized smoothing networks, which consist of balancers and
wires. Such a network receives indivisible jobs (called tokens) at w different input wires
and routes them asynchronously to servers residing at the w output wires. Wires may
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be connected by certain switches called balancers which have two input and two output
wires. Every balancer is initially directed randomly to one of its two output wires and
tokens arriving at a balancer are forwarded alternately to the output wires. This local
rule guarantees that each balancer distributes the arriving tokens as uniformly as possible.
In particular, this improves on a balancer that would forward each token to a randomly
chosen output wire. The smoothness of a network is the maximum discrepancy between
the number of tokens arriving at two different output wires.

In Chapter 7 we study randomized smoothing networks and resolve all three prob-
lems posed by Herlihy and Tirthapura in a recent work [HT06a]. First, we prove that
the smoothness of a block network (which is isomorphic to the cube-connected-cycles) is
log log w + Θ(1) with high probability. (The previously best known upper bound was of
order O(

√
log w) [HT06a] and no lower bound was known so far.) In our main result we

consider the cascade of two block networks. We prove that the smoothness is 17 with high
probability. Note that this represents a vast improvement on a network where every bal-
ancer would send each token to one of its output wires chosen uniformly at random. The
smoothness of such a network would be only Ω(log w/ log log w) (assuming that w tokens
arrive), even for the sequential cascade of two block networks. We also provide a nega-
tive result: no randomized smoothing network of reasonable size can achieve 1-smoothness.
This implies a separation between randomized and deterministic smoothing networks, since
there are small 1-smoothing networks with a global (deterministic) initialization of all bal-
ancers [KP92, Klu94].

Then we consider a scenario where random initialization is combined with adversarial
choices. We revisit the broadcast problem and propose a new model called quasirandom
rumor spreading in Chapter 6. In our new model we assume that each node has a cyclic
list of its neighbors, which may be completely specified by some adversary. Once a node
becomes informed, it starts at a random position of the list, but from then on informs
its neighbors in the order of the list. Surprisingly, irrespective of the orders of the lists,
a bound of O(log n) on the runtime can be shown for hypercubes and random graphs
with n nodes. This bound includes sparsely connected random graphs, where the classical
push algorithm needs Θ(log2 n) steps. Hence our new model achieves the same or even
better performance than the classical model despite the presence of the adversary (and
consequently, the reduced amount of randomness). However, each node must be equipped
with some memory to keep track of the current list position. With this respect, the
quasirandom model is closely related to the modified push&pull algorithm of [ES08a].
Roughly speaking, it was shown that if every vertex is able to remember the nodes chosen
in the most recent three steps, then the number of generated transmissions during the
broadcast procedure can be reduced from O(n(log log n + log n/ log(pn)) to O(n log log n)
on random graphs with edge probability p.

To summarize, most our results provide evidence for the power of randomization for
efficient information dissemination in large networks. Beyond this, the findings described
in the previous two paragraphs demonstrate that apparently minor changes in the protocols
may result in surprisingly vast improvements: from Θ(log2 n) to Θ(log n) in case of the
quasirandom push algorithm and from Θ(log w/ log log w) to 17 in case of the cascade of
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two block networks.

1.3 Publications

The results presented here are published in parts as joint work in the Proceedings of the
24th International Symposium on Theoretical Aspects of Computer Science (STACS’07)
[ES07], the Proceedings of the 18th International Symposium on Algorithms and Compu-
tation (ISAAC’07) [Sau07], the Proceedings of the 19th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’08) [DFS08], the Proceedings of the 27th Annual ACM-
SIGOPT Principles of Distributed Computing (PODC’08) [MS08] (to appear) and the
Journal of Theoretical Computer Science, 2008 [ES08a] (to appear). The paper [Sau07]
received the Best-Student-Paper-Award and was invited to a special issue of Algorithmica.

Moreover, some results have been presented at the Workshop on Algorithms’08 in Kiel,
at the Dagstuhl Seminar: Probabilistic Methods in the Design and Analysis of Algorithms,
and as invited talks at the Max Planck Institute for Computer Science in Saarbrücken and
the Algorithms & Complexity Group at the University of Liverpool.

Some results obtained while I was working to my PhD are not included in this thesis.
These have been published (or are accepted for publication) in the following proceedings:
17th International Symposium on Algorithms and Computation (ISAAC’06) [MS06], 19th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’08) [ES08a], in 22nd IEEE
International Parallel and Distributed Processing Symposium (IPDPS’08) [MMS08] and
15th International Colloquium on Structural Information and Communication Complexity
(SIROCCO’08) [SS08]. The paper [MMS08] received the Best-Algorithms-Paper-Award
and was invited to a special issue of Journal of Parallel and Distributed Computing.

1.4 Organization

We begin with a description of some probabilistic tools and graph-theoretical notation in
Chapter 2. In Chapter 3 we introduce the push algorithm and investigate its runtime on
general graphs. In Chapter 4 we analyze the performance of the push algorithm on Cayley
graphs. Chapter 5 relates the runtime of the push algorithm to the mixing time and cover
time of random walks. We propose and analyze a quasirandom rumor spreading algorithm
in Chapter 6. Finally, Chapter 7 comprises our results about randomized load balancing.



2. PROBABILISTIC PRELIMINARIES

2.1 Combinatorial Inequalities

We give a list of several combinatorial inequalities which are needed throughout this thesis.

Lemma 2.1 (cf. [MR95]).

1. For every x ∈ R, ex > x + 1.

2. For every integer n > 2 we have 1
4

6 (1− 1
n
)n 6 e−1 and e > (1 + 1

n
)n.

3. For every integer n > 1, ln n 6
∑n

k=1
1
k

6 ln n + 1.

4. For sufficiently large n, n! > (n/3)n.

5. For every integers n > 1, 1 6 k 6 n we have
(

n
k

)
6

∑k
i=0

(
n
i

)
6 ( en

k
)k.

6. For every sequence of positive numbers x1, x2, . . . , xn,
∏n

k=1(1− xk) > 1−∑n
k=1 xk.

2.2 Probability Distributions

We briefly review the most essential tools required for the probabilistic analysis in this
thesis. For a more comprehensive introduction to probability theory, we refer the reader
to [GS01].

For a random variable X, we denote by E [ X ] and Var [ X ] the expectation and vari-
ance of X, respectively. Pr [ E ] denotes the probability of some event E of a probability
space Ω.

Lemma 2.2. For any positive random variable X, E [ X ] =
∑∞

k=0 Pr [ X > k ] .

We will frequently use the binomial distribution Bin(n, p), n ∈ N, 0 < p < 1, the
Bernoulli distribution Ber(p), 0 < p < 1, the geometric distribution Geo(p), p > 0 and
the exponential distribution Exp(λ) with parameter λ > 0. If a random variable X has
one of these distributions, say exponential distribution, we write X ∼ Exp(λ). In this
case we call X also an exponential variable with parameter λ. (Recall that in this case,
Pr [ X > x ] = e−λx for any x ∈ R, x > 0). We collect three properties of the exponential
distribution Exp(λ).

Lemma 2.3 ([MU05]). Let X1, X2, . . . , Xn be independent exponential variables with pa-
rameters λ1, λ2, . . . , λn, respectively. Then, min{X1, X2, . . . , Xn} is an exponential variable
with parameter

∑n
i=1 λi.

Observation 2.4. Let X be an exponential variable with parameter λ > 0 and γ ∈ R, γ >
0. Then, Y := γ ·X is an exponential variable with parameter λ/γ.
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Lemma 2.5. Let X1, X2, . . . be an infinite sequence of independent exponential variables
with parameter λ > 0. Let Y1, Y2, . . . be an infinite sequence of independent Bernoulli vari-
ables with parameter p > 0 (and independent of X1, X2, . . .). Then, mint∈N{

∑t
k=1 Xk : Yt =

1} is an exponential variable with parameter λ/p.

Proof. Note that Nt := max{k ∈ N :
∑k

i=1 Xi 6 t} is a Poisson process [MU05] with rate

λ. Consider now N ′
t :=

∑Nt

i=1 Yi. By [MU05, Theorem 8.12], N ′
t is a Poisson process with

rate λ/p, and by [MU05, Theorem 8.10], mint∈N{
∑t

i=1 Xi : Yt = 1} is an exponential
variable with parameter λ/p.

2.3 Deviation Bounds

2.3.1 Elementary Bounds

Lemma 2.6 (Union Bound). For any finite or countably infinite sequence E1, E2, . . .,

Pr

[ ⋃
i>1

Ei

]
6

∑
i>1

Pr [ Ei ] .

Lemma 2.7 (Markov’s Inequality). Let X be a positive random variable. Then,

Pr [ X > a ] 6 E [ X ]

a
for any a > 0.

Theorem 2.8 (Central Limit Theorem). Let X1, X2, . . . be a sequence of indepen-
dent identically distributed random variables with finite expectation µ and finite non-zero
variance σ2, and let Sn :=

∑n
i=1 Xi. Then for any a ∈ R,

lim
n→∞

Pr

[
Sn − nµ√

nσ2
6 a

]
=

1√
2π

∫ a

−∞
e−

x2

2 dx.

2.3.2 Chernoff Bounds

Definition 2.9. Let X be a random variable. Then the moment-generating function of X
is defined as E

[
etX

]
for any t ∈ R such that the expectation is finite.

For the case X ∼ Exp(λ) it is known that E
[
etX

]
= λ

λ−t
for any t < λ [Ros03, p. 66].

Theorem 2.10 ([MU05]). If X and Y are independent random variables, then we have
E

[
et(X+Y )

]
= E

[
etX

] · E [
etY

]
.

To obtain a Chernoff bound for a random variable X, one applies Markov’s inequality
to etX and obtains for any t > 0 and a > 0,

Pr [ X > a ] = Pr
[
etX > eta

]
6

E
[
etX

]

eta
. (2.1)
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Similarly for any t < 0 and a > 0,

Pr [ X 6 a ] 6
E

[
etX

]

eta
.

For sums of independent Bernoulli trials (Bernoulli variables), we state the following
Chernoff bound that will be used frequently throughout this thesis.

Theorem 2.11 (Chernoff Bound for Bernoulli Trials, [MU05]). Let X1, X2, . . . , Xn

be independent Bernoulli trials such that Pr [ Xk = 1 ] = pk, Pr [ Xk = 0 ] = 1 − pk. Let
X :=

∑n
i=1 Xk and µ = E [ X ] =

∑n
k=1 pk. Then,

Pr [ X 6 (1− δ)µ ] 6 e−µδ2/2 for any 0 < δ < 1,

Pr [ X > (1 + δ)µ ] 6 e−µδ2/3 for any 0 < δ.

As it is the case for many Chernoff bounds, the theorem above gives exponentially
decreasing bounds on the tail distribution of X.

Theorem 2.12 (Hoeffding Bound, [McD98]). Let X1, X2, . . . , Xn be independent ran-
dom variables with Xk ∈ [ak, bk] for each 1 6 k 6 n. Let X :=

∑n
k=1 Xk and µ = E [ X ].

Then for any λ > 0,

Pr [ |X − µ| > λ ] 6 2 · e−2λ2/
∑n

k=1(bi−ai)
2

.

We also require Chernoff bounds for sums of unbounded random variables.

Theorem 2.13 (Chernoff Bound for Geometric Variables). Let Y1, Y2, . . . , Yn be
independent geometric variables with the same parameter 0 < p < 1. Let Y :=

∑n
k=1 Yk.

Then for any α > 0,

Pr

[
Y > 2

n

p
+ 2

ln α

p

]
6 1

α
.

Proof. The random variable Y has the so-called negative binomial distribution [GS01,
p. 61], i. e., one has to wait for n successes in an infinite sequence of independent Bernoulli
variables with success probability p. Define x := 2n

p
+ 2 ln α

p
. Let X :=

∑x
i=1 Xi be a sum

of x independent Bernoulli variables with success probability p. Then, µ := E [ X ] = x/p.
Choosing δ := 1− n

xp
we observe that 0 < δ < 1, whence it follows from Theorem 2.11 that

Pr

[
X 6

(
1−

(
1− n

xp

))
· xp

]
= Pr [ X 6 n ] 6 e−(xp(− n

xp
+1)2)/2

= e
−xp( n2

x2p2−2 n
xp

+1)/2
= e−(n2

xp
−2n+xp)/2 6 e(2n−xp)/2

= e(2n−2n−2 ln α)/2 = α−1.

But Pr[ Y > 2n
p

+ 2 ln α
p

] 6 Pr [ X 6 n ] , and the claim follows.
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Theorem 2.14 (Chernoff Bound for Exponential Variables). Let Y1, Y2, . . . , Yn be
independent exponential variables with parameters λ1, λ2, . . . , λn > 0. Let Y :=

∑n
k=1 Yk,

µ := E [ Y ] =
∑n

k=1 1/λk and λmin := minn
k=1 λk. Then for any γ > 0,

Pr [ Y > γ ] 6 2λminµ

e
λmin

2
γ
.

Proof. Recall that the moment-generating function of Yk ∼ Exp(λk) is given by E[ etYk ] =
λk

λk−t
, where t < λi. Using the general version of the Chernoff-Bound (2.1) and Theorem

2.10 we obtain for any γ > 0

Pr [ Y > γ ] 6
E

[
e

∑n
k=1 Yk

]

etγ
=

∏n
k=1 E

[
etYk

]

etγ
=

∏n
k=1

λk

λk−t

etγ

=

∏n
k=1(1− t

λk
)−1

etγ
=

∏n
k=1(1− t

λk
)
−λk

t
t

λk

etγ
,

and substituting t = λmin

2
leads for any γ > 0 to

Pr [ Y > γ ] 6
∏n

k=1 4
λmin
2λk

e
λmin

2
γ

=
4λmin

1
2
µ

e
λmin

2
γ

=
2λminµ

e
λmin

2
γ
.

Theorem 2.15 (Method of Bounded Independent Differences [McD98]). Let X =
(X1, X2, . . . , Xn) be a vector of independent random variables with Xk taking values in a
set Ak for each 1 6 k 6 n. Suppose that f is a real-valued function defined on

∏n
k=1 Ak

such that |f(x) − f(x′)| 6 ck, whenever x and x′ differ only in the k-th coordinate. Let
µ := E [ f(X) ]. Then for any λ > 0,

Pr [ |f(X)− µ| > λ ] 6 2 · e−2λ2/
∑n

k=1 c2k .

2.3.3 Martingale Bounds

Definition 2.16. A sequence of random variables Z0, Z1, . . . is a martingale with respect
to the sequence X0, X1, . . . if for all n > 0 the following conditions hold:

1. Zn is a function of X0, X1, . . . , Xn,
2. E [ |Zn| ] < ∞,
3. E [ Zn+1 | X0, X1, . . . , Xn ] = Zn.

A sequence of random variables Z0, Z1, . . . is called martingale when it is a martingale with
respect to itself.
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Lemma 2.17 (Doob Martingale [GS01]). Let X0, X1, . . . be a sequence of random
variables. Let Y be a random variable with E [ |Y | ] < ∞. Then

Zi := E [ Y | X0, X1, . . . , Xi ]

is a martingale with respect to X0, X1, . . ..

Roughly speaking, Z0, Z1, . . . represents a sequence of refined estimates of Y , gradually
using more information on Y gained by X0, X1, . . . .

Theorem 2.18 (Azuma-Hoeffding Inequality [McD98]). Let X0, X1, . . . be a mar-
tingale such that for each k > 1, |Xk −Xk−1| 6 ck. Then, for any n > 0, λ > 0,

Pr [ |Xn −X0| > λ ] 6 2 · e−λ2/(2
∑n

k=1 c2k)

We note that a certain extension of this inequality is given in Theorem 4.14. We close this
section with some results on the famous coupon collector’s problem [MR95, MU05].

Theorem 2.19 (Coupon Collector’s Problem). Consider the process where in each
iteration a coupon is drawn independently and uniformly at random from {1, . . . , n}. Let
X be the number of iterations until all coupons have been drawn.

1. [MU05, p. 275] For any (not necessarily constant) ε > 0, Pr
[
X > n · ln (

n
ε

) ]
6 ε.

2. [MR95, p. 63] For any constant c > 0,

lim
n→∞

Pr [ n · (ln n− c) 6 X 6 n · (ln n + c) ] = e−e−c − e−ec

.

3. [MR95, p. 57] n ln n 6 E [ X ] 6 n ln n + n.

The double inequality of the second line is a typical example of a high concentration
(or sharp threshold) result. Similar results will be derived at the end of Section 4.4 and in
Section 7.3.

2.4 Couplings

Definition 2.20. Let X1 and X2 be two real-valued random variables. We say that X1 is
stochastically smaller than X2, X1 ¹ X2, if Pr [ X1 > r ] 6 Pr [ X2 > r ] for every r ∈ R.

We shall write X1
D
= X2 if X1 and X2 have the same distribution.

Definition 2.21 ([GS01]). Let X1 and X2 be two random variables on Ω1 and Ω2, re-

spectively. A coupling of X1 and X2 is a random variable X̂ = (X̂1, X̂2) on Ω such that

X̂1
D
= X1 and X̂2

D
= X2.
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Theorem 2.22 ([GS01]). Let X1 and X2 be two random variables taking values in R.
Then the following two statements are equivalent.

1. X1 ¹ X2,

2. There is a coupling X̂ = (X̂1, X̂2) with X̂1
D
= X1, X̂2

D
= X2, and Pr[ X̂1 6 X̂2 ] = 1.

Using this Theorem, the following lemma is immediate (see also [Sch00]).

Lemma 2.23. Let {Xk : k ∈ N} and {Yk : k ∈ N} be any sets of independent random
variables. Then

∑n
k=1 Xk ¹

∑n
k=1 Yk and minn

k=1 Xk ¹ minn
k=1 Yk.

Lemma 2.24. Let X1 and X2 be two random variables taking values in a finite set S. Let
S ′ ⊆ S be any subset such that for every s′ ∈ S ′, Pr [ X1 = s′ ] > Pr [ X2 = s′ ]. Then there

exists a coupling X̂ = (X̂1, X̂2) of X1 and X2 such that

Pr
[
X̂2 ∈ S ′ ⇒ X̂1 = X̂2

]
= 1.

Proof. Assume for notational convenience that S = {1, . . . , n} and S ′ = {1, . . . , n′}, n > n′.
Let U be uniformly distributed on the interval [0, 1]. The coupling X̂ = (X̂1, X̂2) is a func-
tion from U to S × S defined as follows. If U ∈ [

∑i−1
k=1 Pr [ X1 = k ] ,

∑i
k=1 Pr [ X1 = k ]),

for some 1 6 i 6 n, then X̂1 = i. Clearly, X̂1 and X1 have the same distribution.
Similarly, if U ∈ [

∑i−1
k=1 Pr [ X1 = k ] ,

∑i−1
k=1 Pr [ X1 = k ] + Pr [ X2 = i ]) for some 1 6

i 6 n′, we set X̂2 = i, and otherwise X̂2 is distributed according to X2 | Pr [ X2 /∈ S ′ ]. By

construction, also X̂2 and X2 have the same distribution. Since Pr [ X2 = i ] 6 Pr [ X1 = i ]

for 1 6 i 6 n′, X̂2 ∈ S ′ implies X̂1 = X̂2 with probability 1 and the claim follows.

Lemma 2.25. Let X ∼ Geo(p) and Y ∼ Exp(p) + 1 for some 0 < p < 1. Then X ¹ Y .

Proof. Clearly, for any r ∈ R, 0 6 r 6 1, Pr [ X > r ] 6 Pr [ Y > r ], since the latter
probability is 1. Now, for any r > 1,

Pr [ X > r ] = Pr [ X > dre ] = (1− p)dre−1 6 e−p(dre−1) 6 e−p(r−1) = Pr [ Y > k ] .

Corollary 2.26 (Chernoff Bound for Non-Identical Geometric Variables). Let
Y1, Y2, . . . , Yn be independent geometric variables with parameters p1, p2, . . . , pn > 0. Let
Y :=

∑n
k=1 Yk, µ := E [ Y ] =

∑n
k=1 1/pk and pmin := minn

k=1 pk. Then for any γ > 0,

Pr [ Y > γ + n ] 6 2pminµ

e
pmin

2
γ
.

Moreover, if pmin · µ > C · log2 n holds, we have

Pr

[
Y >

(
1 +

1

C

)
· 2 ln 2 · µ + n

]
6 n−1.
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Proof. Let Z1, Z2, . . . , Zn be independent with Zi ∼ Exp(pi). By Lemma 2.25, Yi ¹ Zi + 1
for each 1 6 i 6 n and it follows from Lemma 2.23 that

∑n
i=1 Yi ¹

∑n
i=1 Zi + n, that is,

for any k ∈ R, Pr [ Y > k ] 6 Pr [ Z + n > k ] , which is equivalent to Pr [ Y > k + n ] 6
Pr [ Z > k ] . The first claim follows by applying the Chernoff bound from Theorem 2.14
to Z. To see the second claim, we estimate

Pr

[
Z >

(
1 +

1

C

)
· 2 ln 2 · µ

]
6 2pminµ

e
pmin

2
·(2 ln 2·µ)+

pmin
2
·(2·ln 2· 1

C
·µ)

6 2pminµ

2pmin·µ · 2 1
C
·pmin·µ

6 n−1.

2.5 Graph-Theoretical Notation and Preliminaries

2.5.1 Graph-Theoretical Notation

We use the following common graph-theoretical notation. Unless otherwise stated, we will
consider undirected, unweighted, simple and connected graphs G = (V, E). We denote the
number of vertices (occasionally we also refer to vertices as nodes) by n and the number
of edges by |E|. As most of our results are asymptotic bounds, we often consider families
of graphs Gd = (Vd, Ed) depending on d ∈ N, where n = nd = |Vd| tends to infinity as
d →∞. For example, the graph Kd is a complete graph with nd = n vertices and we may
also simply write Kn. Qd denotes the d-dimensional hypercube where |Vd| = 2d. The graph
Kp,q is the complete bipartite graph with two partitions of size p and q, respectively.

By N(v) we denote the set of neighbors of v, i. e., the vertices which have a common
edge with v. Similarly, for some V ′ ⊆ V , N(V ′) denotes the set of all neighbors of vertices
from V ′. The degree of some vertex v ∈ V denoted by deg(v) is the number of neighbors
of v. The maximum degree and minimum degree of G are denoted by δ(G) and ∆(G),
respectively. A graph is regular (or ∆(G)-regular), if δ(G) = ∆(G). For some v ∈ V and
subset V ′ ⊆ V we define degV ′(v) := |N(v) ∩ V ′|.

A path of length ` is a sequence of vertices (u1, u2, . . . , u`) with {ui, ui+1} ∈ E(G) for
1 6 i 6 ` − 1. A cycle of length ` is a path of length ` where additionally u1 = u` holds.
The girth of a graph G is the length of the smallest cycle in G. We define dist(u, v) to
be the distance between two vertices u, v which is the minimum length of a shortest path
between u and v. For some ∅ 6= V ′ ⊆ V , dist(u, V ′) := minv′∈V ′{dist(u, v′)} is the distance
of some vertex u to the set V ′.

A graph H is a subgraph of G, if there is a bijection ϕ : V (H) → V (G) such that
{ϕ(u), ϕ(v)} ∈ E(G) for every {u, v} ∈ E(H).

Definition 2.27. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The Cartesian
product of G1 and G2, G1 ×G2, is defined by

V (G) := V1 × V2,

E(G) :=
{
{(u1, u2), (v1, v2)} | (u1 = v1 ∧ {u2, v2} ∈ E2) ∨ ({u1, v1} ∈ E1 ∧ u2 = v2))

}
.
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Since × is an associative operation, the Cartesian product of more than two graphs can
be reduced to Definition 2.27.

We recall some useful graph-theoretical lemmas from Feige et al. [FPRU90].

Lemma 2.28 ([FPRU90]). Let (u1, u2, . . . , u`) be a shortest path from u1 to u` in G.
Then,

∑`
i=1 deg(ui) 6 3n and hence diam(G) 6 (3n)/δ.

Definition 2.29 ([FPRU90]). Let G = (V,E) be a graph. A set X ⊆ V is an α-cover of
G, if for all vertices v ∈ V a vertex x ∈ X exists such that dist(v, x) 6 α.

Lemma 2.30 (cmp. [FPRU90]). Let X ⊆ V be a subset of a regular graph G with ∆ > 2.

Then there is a subset Y ⊆ X such that |Y | > |X|
2·∆α and for all y, y′ ∈ Y : dist(y, y′) > α+1.

Proof. Consider the following iterative procedure. We start with the given set X and an
empty set Y . In each iteration we choose an arbitrary vertex x ∈ X. Then we put x into Y
and remove x together with all vertices having distance less than α to x from X. It follows
that in each iteration, Y increases by 1 while X decreases by |{v ∈ X | 0 6 dist(v, x) 6
α}| 6

∑α
i=0 ∆i 6 2 · ∆α, since ∆ > 2. Therefore |X|/(2 · ∆α) iterations are necessary to

make the set X empty and the claim follows.

Definition 2.31. Let G be a graph. A graph automorphism ϕ : V → V is a permutation
of the vertices such that {u, v} ∈ E ⇔ {ϕ(u), ϕ(v)} ∈ E. A graph G = (V, E) is called
vertex-transitive, if for every pair u, v ∈ V , there is an automorphism ϕ with ϕ(u) = v.

2.5.2 Expansion of Graphs

Definition 2.32. Let G = (V,E) be a graph with n vertices. Then, the edge-expansion
for an integer 1 6 m < n, is defined by

Φ(m) := min
X⊆V,|X|=m

{ |E(X, Xc)|
min{vol(X), vol(Xc)}

}
,

where vol(X) :=
∑

v∈X deg(v) and Xc = V \X. We define Φ := minm=1,2,...,n−1 Φ(m) as
the (global) edge expansion which is always between 0 and 1. The vertex-expansion for
some 1 6 m < n is

∂(m) := min
X⊆V,|X|=m

{ |N(X)\X|
|X|

}
.

Definition 2.33. A family of graphs Gd = (Vd, Ed) is called an α-edge-expander, if for

every d and 1 6 m 6 b |Vd|
2
c, Φd(m) > α. A family of graphs Gd = (Vd, Ed) is called a

β-vertex-expander, if for every d and 1 6 m 6 b |Vd|
2
c, ∂d(m) > β. A family of graphs

Gd = (Vd, Ed) is an edge-expander ( vertex-expander), if it is an γ-edge-expander (γ-
vertex-expander) for some constant γ > 0.

By definition, every regular β-edge-expander is also a β-vertex-expander. Conversely,
every β-vertex-expander is a (β/∆)-edge-expander. The graph (family) Kn/2×K2 provides
an example of a vertex-expander which is not an edge-expander.



3. RANDOMIZED RUMOR SPREADING:
GENERAL RESULTS

3.1 Introduction

For a survey about rumor spreading and related topics we refer the reader to [HKP+04].

3.1.1 Motivation

Rumor spreading (also known as broadcast) is a central task in the field of distributed
computing. As an example, consider the maintenance of replicated databases in name
servers in a large corporate network [DGH+87]. Updates are injected at nodes and these
updates must be disseminated to all other nodes in the network. In order to let all copies
of the database converge to the same content, efficient rumor spreading algorithms have
to be developed. In the rumor spreading problem, one node of a network initially knows
of a rumor which has to be spread to all other nodes of the graph. A common assumption
is that every node may send the rumor in each step to at most one other node.

A simple randomized rumor spreading algorithm performing this task is the so-called
push algorithm, also known as randomized broadcast [FPRU90]. At each step, every
informed node, i. e., a node knowing the rumor, chooses one of its neighbors uniformly at
random and sends the rumor to it. The question is how many steps are required until every
node becomes informed. Following [FPRU90], the major advantages of this randomized
algorithm are as follows.

• Simplicity: The algorithm is simple and local, a node does not need to remember to
whom the rumor has been sent.

• Scalability: The algorithm is independent of the size and the structure of the network.

• Robustness: Using this randomized algorithm, we expect to achieve fault-tolerance
against node or edge-failures and against dynamic changes in the network.

In contrast to that, deterministic protocols are often rather complex. Moreover, they
usually need substantially more time or can only tolerate a small number of faults [KSSV00].

From a theoretical point of view, any upper bound on the runtime of the (randomized)
push algorithm implies the existence of a deterministic broadcast protocol with the same
runtime. However, such an upper bound on the push algorithm additionally demonstrates
that, in a certain sense, a large fraction of all possible protocols achieves this runtime.
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3.1.2 Related Work

The study of randomized rumor spreading was initiated by Frieze and Grimmett [FG85]
who proved that it takes about log2 n+ln n± o(log n) steps to spread a rumor in complete
graphs formed by n vertices with high probability. This result was further improved by
Pittel [Pit87] who showed that the runtime is log2 n+ln n±o(1). Feige et al. [FPRU90] were
the first considering the push algorithm on other topologies. They proved two general upper
bounds of O(n log n) and O(∆ · (diam(G) + log n)). For random graphs and hypercubes,
an asymptotically tight upper bound of O(log n) was derived. The result for hypercubes
was extended to star graphs in [ES05].

In parallel, a lot of effort was made to find the fastest deterministic broadcast algo-
rithm on certain topologies. While for the cube-connected-cycles and the shuffle-exchange-
network the minimal broadcast time has been determined exactly, for the butterfly and
De-Bruijn-network there is still a multiplicative gap between the best known lower and
upper bound (see [HKP+04, p. 78] for an overview). It should be noted that the problem
of approximating the fastest deterministic broadcast protocol up to a factor of 3 − ε is
already NP-hard in general [EK06]. The best approximation algorithms have a polyloga-
rithmic ratio [EK06].

Related to broadcast is the so-called gossiping-problem: every node has its own rumor
which should be disseminated to all other nodes in the network. It is clear that any
broadcast protocol with runtime t can be used for the construction of a gossiping protocol
with runtime 2 · t [HKP+04]. Since we are mainly interested in asymptotic bounds, we
focus on the broadcast problem here (for more details about gossiping cf. [HKP+04]).

Besides the runtime also the number of transmissions during the execution of the rumor
spreading algorithm is an important aspect. It was observed that in complete graphs, the
push algorithm needs at least Ω(n log n) transmissions to inform all vertices with high
probability. Consider instead the so-called pull algorithm where uninformed vertices call
a neighbor uniformly at random, and if this called neighbor is informed the vertex itself
becomes informed. Here, if a constant fraction of the vertices are informed, then within
O(log log n) additional rounds all vertices of a complete graph become informed. This
implies that in such graphs at most O(n log log n) transmissions are needed provided that
the distribution of the rumor is stopped at the right time. Based on this idea, Karp et
al. [KSSV00] combined the push and pull algorithm and devised a termination mechanism
in order to bound the number of total transmissions by O(n log log n) in complete graphs.

Recently their results were extended to random graphs (A random graph is constructed
by placing an edge between each pair of vertices independently with probability 0 < p < 1).
Elsässer [Els06] proved that the algorithm of Karp et al. generates Ω(n · (log log n +
log n/ log(pn))) transmissions on random graphs. In a very recent work [ES08a], we consid-
ered a slightly different algorithm where each vertex may remember (and avoid) the vertices
chosen in the most recent three steps. Surprisingly, this minor change in the ability of the
vertices leads to a significant decrease to O(n log log n) transmissions.

A continuous-type model for the spread of a rumor is the so-called Richardson’s Growth
Model also known as first-passage-percolation. In this model every edge is assigned a weight
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according to an exponential distribution with mean 1. The weights can be viewed as
different times required for the propagation of the rumor. The parameter of interest is
the diameter of this weighted graph. Networks on which this model was considered are
again complete graphs [FG85]. Additionally, a considerable amount of research has been
concerned with the diameter for hypercubes (e.g., [FP93, BK97]).

Another rumor spreading problem that has received a lot of attention, especially in
the context of wireless networks, is the so-called radio-broadcast-problem. The crucial
difference to our model is that transmissions made by a node can be, in principal, received
by all neighbors. However, if two transmissions are sent to the same node simultaneously,
then a collision occurs and the node is not able to receive anything. In fact, coping with
these collisions is one of the major challenges in the design of efficient protocols for radio-
broadcast.

Rumor spreading is also closely related to epidemic diseases such as the spread of
viruses in networks (cf. [Het00] for a recent survey on epidemics). When question arises
as to the speed with which the disease infects the whole network, the problem reduces to
rumor spreading. However, in most of these epidemic models, the spreaders recover after a
while and are only able to spread the disease within a certain time frame. Hence the most
important question is how many infections arise and whether an epidemic outbreak occurs.
Another difference to rumor spreading is that in many of these models, the underlying
networks are complete graphs [KM27, FPRU90, Het00]. However, there are certain results
on epidemics in internet-like random graphs [New02, BBCS05] relating the rate of infection
to the probability of an epidemic outbreak.

Another important mathematical model associated to the spread of epidemic diseases
is the so-called percolation. Percolation theory deals with connectivity properties of certain
random structures. Consider for example bond percolation where each edge of some given
network fails independently with some probability p. For an infinite two-dimensional torus,
a celebrated result by Kesten [Kes80] says that the critical probability for the origin being
in an infinitely large connected component is 1/2. More precisely, for p > 1

2
the origin is in

an infinitely large connected component with some non-zero probability, while if p < 1
2

the
origin is in a finitely large component with probability 1. Some results on site percolation
[BBC+06, ABS04] on finite networks also deal with the expansion, diameter and size of
connected components. Motivated by the fact that in some networks faults hardly occur
independently, Kranakis et al. [KPP07] investigated recently a variant where the faults are
dependent to some degree.

3.1.3 Our Results

We first establish some preliminary results relating the runtime of the classical push al-
gorithm to the runtime of certain modifications of it. In particular, we prove that the
parallel (classical) push algorithm has asymptotically the same runtime as a natural se-
quential version. We note that these results are useful for at least two different reasons.
First, they demonstrate that all our bounds on the push algorithm are fairly robust under
small alterations of the broadcast scheme. Secondly, we may derive results for the paral-
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lel push algorithm by considering other broadcast algorithms such as the sequential push
algorithm, which seems to be more appropriate for a analysis like the one in Section 4.4.

Concerning the parallel push algorithm, we present the first tight upper bound of
(1+o(1)) ·n ln n holding for every graph. Our bound significantly improves on the previous
bound of 12 ·n log n by Feige et al. [FPRU90] and is easily shown to be tight up to a factor
of (1 + o(1)) by considering the graph K1,n−1. Hence our result provides an approximative
characterization of the worst-case graph. Finally, we present some simple but useful upper
bounds on the push algorithm which depend on some edge-expansion based measure.

3.2 Notations, Definitions and Preliminaries

As already mentioned before, we mainly consider the following push algorithm [DGH+87]
(also known as randomized rumor spreading [Pit87] or randomized broadcast [FPRU90]):
place at time t = 0 a piece of information (or rumor) r on one vertex s of a graph G.
In every succeeding time-step t = 1, 2, . . ., each informed vertex forwards a copy of r to a
communication partner over an incident edge selected independently and u. a. r. (uniformly
at random). Throughout this thesis, we denote by It the set of informed vertices at time-
step t. With this notation at hand, an additional description of the push algorithm can
be found in Figure 3.1. We denote this (parallel) push algorithm by PAR (We remark that
a sequential push algorithm will be defined later). Note, that the so-called pull algorithm
PULL− PAR is defined similarly with the only difference that the roles of u and v are
interchanged. Here, in each time-step every uninformed vertex calls some neighbor u. a. r.
and becomes informed if this neighbor has been already informed.

The question is how many time-steps are required by PAR to disseminate the rumor
r to the vertices of G. To formalize this question, fix some subset V ′ ⊆ V and define
PAR(s, V ′) := min{t ∈ N : V ′ ⊆ It | I0 = {s}}, i. e., the first step after every vertex in V ′

becomes informed when s is informed at step 0. For any 0 < p < 1, let PARp(s, V
′) :=

min{t ∈ N : Pr [ It ⊆ V | I0 = {s} ] > 1−p}. Most of our results will refer to the following
definition.

Definition 3.1. Given some 0 < p < 1, the runtime of the (parallel) push algorithm is
defined by

PARp(G) := max
s∈V (G)

min{t ∈ N | Pr [ It = V | I0 = {s} ] > 1− p},

i. e., the minimum t such that all vertices are informed at time-step t with probability at
least 1− p.

Occasionally we also consider the expected runtime of the push algorithm E [ PAR(G) ]
which is defined as maxs∈V (G) E [ PAR(s, V ) ]. Note that the push algorithm requires clearly
at least max{log2 n, diam(G)} time-steps to inform all n = |V (G)| vertices on any graph
[FPRU90]. Therefore we may consider a runtime of O(log n + diam(G)) on some graph
as asymptotically optimal. In our framework, the runtime of the fastest deterministic
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broadcast protocol can be defined formally by

DET(G) := max
s∈V (G)

min{t ∈ N | Pr [ It = V | I0 = {s} ] > 0}.

Clearly, DET(G) 6 PARp(G) for any p > 0.
Recall that for any u ∈ V (G), PAR(s, u) is the first time step at which u is informed.

The following observation will be useful later.

Observation 3.2. In any execution of PAR, there is for each vertex u ∈ V (G) at least one
path Pmin(s, u) from s to u in G,

s = u0
D1→ u1

D2→ . . .
Dl−1→ ul = u

with the property that for every 0 6 i 6 l−1, ui sends the rumor to ui+1 at time PAR(s, ui)+
Di = PAR(s, ui+1) and D(Pmin(s, u)) :=

∑l−1
i=1 Dk is minimized.

Though we are mainly interested in the parallel push algorithm, it turns out to be
useful to consider the following sequential push algorithm SEQ whose definition is given in
Figure 3.1. In order to make both algorithms comparable, the time axis of SEQ consists
now of subtime-steps T := {i + j

n
| i ∈ N, j ∈ {0, . . . , n− 1}}\{0} ⊆ Q, i. e., one time-step

consists of n consecutive subtime-steps. The definitions for the runtime of SEQ correspond
to the ones for PAR, we only have to replace N by T.

Parallel Push Algorithm (PAR)

1: I0 ← {s}
2: t ← 0
3: while It 6= V do
4: t ← t + 1
5: It ← It−1

6: for all vertices u ∈ V do
7: if u ∈ It−1 then
8: choose v ∈ N(u) u. a. r.
9: It ← It ∪ {v}

10: end if
11: end for
12: end while

Sequential Push Algorithm (SEQ)

1: I0 ← {s}
2: t ← 0
3: while It 6= V do
4: t ← t + 1

n

5: choose u ∈ V u. a. r.
6: if u ∈ It− 1

n
then

7: choose v ∈ N(u) u. a. r.
8: It ← It− 1

n
∪ {v}

9: else It ← It− 1
n

10: end if
11: end while

Fig. 3.1: Definition of the parallel (original) and sequential push algorithm.

Sometimes, we are also interested in the time required to inform not all, but a large
number of vertices. Given some integer 1 6 ñ 6 n, let SEQ(G, ñ) be the time required
to inform at least ñ vertices. Correspondingly, we define SEQp(G, ñ) := maxs∈V min{t ∈
N | Pr [ |It| > ñ | I0 = {s} ] > 1− p}.
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At some point we also require the sequential broadcast algorithm PUSH− PULL− SEQ
(cf. [KSSV00] for a similar parallel model) which combines the sequential push- and pull
algorithms as follows. In each subtime-step t ∈ T a vertex u ∈ V (G) is chosen uniformly
at random which then chooses a neighbor v ∈ N(u) uniformly at random. If any of the
two vertices is already informed, then both vertices become informed.

We summarize some basic relations between the expected runtime and the runtime
guaranteed with some probability p. The proofs are easy and can also be found in [Sau05,
FPRU90].

Lemma 3.3. Fix F ∈ {PAR, SEQ, PUSH− PULL− SEQ}. Let G = (V,E) be graph and
let s ∈ V and V ′ ⊆ V . Then,

E [ F(s, V ′) ] 6 1

1− p
·Fp(s, V

′),

Fp(s, V
′) 6 2 · log

(
1

p

)
· E [ F(s, V ′) ] .

3.3 Representations of the Push Algorithm

For the use of couplings, the following representations of executions (instances) of the push
algorithm are helpful. As before, we fix some vertex s which initially knows a rumor.

Let (Nt,v)t∈N,v∈V be any fixed (infinite) matrix with Nt,v ∈ N(v) for every t ∈ N, v ∈ V .
Such a matrix describes an (infinite) execution of the parallel push algorithm where v
sends the rumor to vertex Nt,v at step t+PAR(s, v), unless PAR has terminated. Then the
uniform probability space of all possible (Nt,v)t∈N,v∈V , denoted by Ω1, is the probability
space of all executions of PAR.

To describe the sequential push algorithm SEQ, we keep Ω1 as before and let Ω2 be the
probability space of all possible (St)t∈N with St ∈ V for every t ∈ N. The (infinite) sequence
(St)t∈N specifies the choices among V in line 5 of the sequential push algorithm in Figure 3.1
(unless SEQ has terminated). Hence, SEQ chooses in step t ∈ T the vertex St and if St is
informed, it sends the rumor to Nt′,St , where t′ := |{t̂ ∈ T | SEQ(s, u) < t̂ 6 t, St̂ = v}|+1.

3.4 Equivalence between Sequential and Parallel Push Algorithm

We prove two results demonstrating that the sequential and the parallel push algorithm
have asymptotically the same performance on all graphs.

For the proof of one inequality, the following result is useful. It refers to a modification
of the parallel push algorithm, denoted by PAR. The difference is that in each step t ∈ N
every vertex v fails with some probability 0 < f < 1, independent of all previous steps.
In case an informed vertex fails at step t, it does not forward the rumor to any neighbor
at that step. If it does not fail, then v sends the rumor to some random neighbor at step
t as in the unmodified push algorithm. The following theorem relates the runtime of PAR
to PAR.
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Theorem 3.4 ([ES08b]). For any graph G = (V,E) and 0 < f < 1,

PARn−1(G) = O
(

1

1− f
· PARn−1(G)

)
.

We prove the following.

Theorem 3.5. For any graph G = (V,E),

PARn−1(G) = Θ(SEQn−1(G)).

Moreover, for any vertex u ∈ V, u 6= s we have

E [ PAR(s, u) ] = Θ(E [ SEQ(s, u) ]).

Proof. We first prove that PARn−1(G) = Θ(SEQn−1(G)) and begin with the less difficult
part which shows that the sequential algorithm is asymptotically at least as fast as the
parallel model with high probability. Consider the following modification SEQ of the
sequential algorithm SEQ. An informed vertex u may only send the rumor to some neighbor
beginning at subtime-step dSEQ(s, u) + 1

n
e ∈ N; recall that SEQ(s, u) ∈ T is the first

subtime-step at which u is informed. Furthermore, every informed vertex is allowed to send
the rumor to at most one randomly chosen neighbor within every time-interval [t, t + 1),
where t ∈ N. Clearly, these modifications slow down the propagation of the rumor and
thus SEQn−1(G) 6 SEQn−1(G).

Note that some vertex u which is informed at step t ∈ N sends the rumor to some
neighbor within the time-interval [t, t + 1) with probability

1−
(

1− 1

n

)n

> 1− e−1,

independent of all other time-intervals [t′, t′ + 1), where t′ 6= t. In other words, every
informed vertex u fails in some time-interval [t, t+1), t > dSEQ(s, u)+ 1

n
e with probability

at most e−1 and makes no transmissions, whereas with probability at least 1−e−1, u sends
the rumor to exactly one neighbor selected uniformly at random. Hence, by Theorem 3.4,
we obtain for f = e−1 that

SEQn−1(G) 6 PARn−1(G) + 1 = O(PARn−1(G))

and thus SEQn−1(G) 6 SEQn−1(G) = O(PARn−1(G)), which finishes the first part of the
proof for the first claim.

For the second part of the first claim we use the representations introduced in Sec-
tion 3.3. We will consider a coupling between PAR and SEQ, where (Nt,v)t∈N,v∈V is fixed,
but (St)t∈N is chosen uniformly at random.

For the next, consider the following correspondence between bitstrings and certain
paths in an instance of SEQ. Let S = (s1s2 · · · sl) ∈ {0, 1}l denote some bitstring of
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length l, where sl = 1. Let |S|1 be the number of ones in S. Denote by s the initially
informed vertex. Informally, the corresponding path starting at vertex s is constructed
iteratively by scanning the bitstring S from its leftmost to its rightmost position. We wait
for some transmission of the current endpoint of the path and skip further time-steps at
which other vertices are selected by SEQ. If our current endpoint has been selected (in
line 5 of Figure 3.1) and the current bit is zero we go to the next bit and wait for another
transmission of the current endpoint. Otherwise, if it is one, we go to the next bit and we
move to the neighbor to which the current endpoint has sent the rumor and extend the
path by this neighbor. Before giving the formal definition, we remark that an example of
this construction is given in Figure 3.2.

The startpoint of this path is the initially informed vertex s and we set P := (s). Let
j1 = min{i > 1 | si = 1} be the position of the leftmost one in S. Then the path is
extended by P := (s = u0, u1), where u1 is the j′1-th vertex to which the rumor is sent by
s, i. e., u1 = Nj′1(u1), where j′1 = j1. Let t1 ∈ T be the subtime-step at which u1 sends the
rumor for the j′1-th time.

More generally, assume that we have constructed a path P = (s = u0, u1, . . . , uk), 1 6
k < |S|1 in that way. Let jk+1 be the position of the (k + 1)-th leftmost one in S. The
path is extended by P := (s = u0, u1, . . . , uk, uk+1), where uk+1 = Nj′k+1

(uk) for

j′k+1 := jk+1 − jk + |{t̂ ∈ T, SEQ(s, uk) < t̂ 6 tk | St̂ = uk}| ∈ N\{0}.

(The extra term added to jk+1 − jk is to take the subtime-steps into account at which uk

had already been informed before P reached uk at step tk.) Secondly, we define tk+1 as the
subtime-step at which uk sends for the j′k+1-th time. This iterative procedure constructs
a (finite) path P starting from s = u0 and ending at u|S|1 for an arbitrary given (finite)
bitstring S with sl = 1. Hence, the number of vertices on P equals |S|1 + 1.

For some path P = P(S) as constructed above, we define the weight of the path w(P)
as the length of the bitstring S. One can view the weight of such a path P as the number
of (local) transmissions we have to wait until the path has been completely traversed.
Obviously, the number of such paths having a weight of x is at most 2x since there are 2x

different bitstrings of length x. For some path P := (s = u0, . . . , u|S|1) corresponding to
S, denote by t(P) := t|S|1 ∈ T the time of the path P , i. e., the time the path requires
to reach the vertex u|S|1 in SEQ. We note that t|S|1 can be larger than SEQ(s, u|S|1). The
next lemma relates the weight to the time of some path P and basically says that every
path with a low time must also have a low weight.

Lemma 3.6. The probability that every path P = P(S) with w(P) = |S| > x satisfies
w(P) 6 200 · t(P) is at least 1− 2−x+1.

Proof. Let S = (s1s2 · · · sl) be an arbitrary bitstring with length l > x and sl = 1. First,
we have to wait for the j1-th transmission of s. After that, the path P reaches another
vertex u1 6= s and we have to wait for the next (j2 − j1)-th transmission of u1, and so on.
Note that the time period (in subtime-steps) to reach u1 from s is a sum of j1 independent
geometric variables with mean n. Summing up, the time t(P) for traversing the whole path



3.4. Equivalence between Sequential and Parallel Push Algorithm 21

t Nt,s Nt,b Nt,c Nt,d

1 b s s c
2 c s b s
3 b c s s
4 b d b b
5 c c d s
6 d s d c
7 d s s b
...

...
...

...
...

t St St informs: S k jk j′k tk P(S)

1/4 b (not informed) (s)
2/4 s b 0
3/4 s c 0
1 b s

5/4 c s
6/4 s b 1 1 3 3 6/4 (s, b)
7/4 c b
2 s b

9/4 b s 1 2 4 2 9/4 (s, b, s)
10/4 d (not informed)
11/4 s c 0

3 c s
13/4 b c
14/4 d c
15/4 s d 1 3 6 6 15/4 (s, b, s, d)

Fig. 3.2: An example of the construction of a path P(S) for the bitstring S = (001101).

P is a sum of j1 +
∑|S|1

k=2(jk+1 − jk) = j|S|1 = |S| = w(P) independent geometric variables
with mean n. The probability that some vertex is not selected within a time-interval of
length 1

100
(consisting of 1

100
n independent subtime-steps) is at least

(
1− 1

n

) 1
100

n

> 4−
1

100 .

Therefore, the probability that more than half of the w(P) waiting times are below 1
100

(in
time-steps) is bounded by

(
w(P)
w(P)

2

)(
1− 4−

1
100

)w(P)
2 6 2w(P)8−w(P) = 4−w(P),

and in this case t(P) > 1
2
· w(P) · 1

100
= 1

200
w(P). Now fix some k > x. Then the latter

holds for every path with weight w(P) = k with probability at least 1 − 2k

4k > 1 − 2−k,
having used the union bound over all possible paths of weight k. By another application
of the union bound, the probability that w(P) 6 200 · t(P) holds for every path P with
weight at least x is not less than 1−∑∞

k=x 2−k > 1− 2−x+1 and the lemma follows.

Observation 3.7. Let s be the initially informed vertex in the SEQ model. Then for any
vertex u 6= s, there exists a minimal path Pmin(s, u)

s = u0
D1→ u1

D2→ . . .
Dl→ ul = u,
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with the property that for every 0 6 i < l − 1, ui sends the rumor to ui+1 at time-step
SEQ(s, ui) + Di, and at this time-step, ui+1 becomes informed, i. e., SEQ(s, ui) + Di =
SEQ(s, ui+1). The corresponding bitstring of Pmin(s, u) is S = 0D1−110D2−11 . . . 0Dl−11
with length

∑l
i=1 Di.

We are now able to finish the proof of the first result of the theorem. Choose some
arbitrary vertex u ∈ V, u 6= s and consider the minimal path Pmin(s, u) from s to u in the
sequential model. By definition, t(Pmin(s, u)) is the minimum time-step (in the sequential
model) at which u becomes informed. Notice that w(Pmin(s, u)) =

∑l
i=1 Di is an upper

bound for the number of time-steps required in the corresponding instance of PAR to inform
u. Seeking a contradiction assume that

w(Pmin(s, u)) > max{16 log n, 201 · t(Pmin(s, u))}

with probability at least n−2.

Given that w(Pmin(s, u)) > 16 log n, we may apply Lemma 3.6 to conclude that with
probability at least 1 − n−3, t(Pmin(s, u)) > 1

200
· w(Pmin(s, u)) which contradicts the as-

sumption that w(Pmin(s, u)) > 201 · t(Pmin(s, u)) with probability at least n−2. Thus u
will be also informed by the same path Pmin(s, u) in the corresponding instance of PAR
after max{16 log n, 201 · t(Pmin(s, u))} time-steps with probability at least 1 − n−2. Fi-
nally, by the union bound over all vertices u 6= s, every vertex u becomes informed after
max{16 log n, 201 · t(Pmin(s, u))} steps with probability at least 1− n−1. As

max
u∈V,u 6=s

t(Pmin(s, u)) 6 3 · SEQn−1(G)

with probability 1− n−3,

PARn−1(G) = O(SEQn−1(G) + log n).

Since it is easy to verify that E [ SEQ(G) ] = Ω(log n) (cf. [Sau07, Proposition 1]), we
conclude that PARn−1(G) = O(SEQn−1(G). To summarize, we have shown that

PARn−1(G) = Θ(SEQn−1(G)),

which is exactly the first claim of Theorem 3.5.

We continue to prove the second claim and first show E [ SEQ(s, u) ]=O(E [ PAR(s, u) ]),
which is again the less difficult inequality. Recall that all executions of PAR can be described
by the probability space Ω1 consisting of all (Nt,v)t∈N,v∈V . Similarly, all executions of SEQ
can be described by Ω1 × Ω2, where Ω2 consists of all (St)t∈N. We consider a coupling
of PAR and SEQ with the same ω1 ∈ Ω1, but ω2 is uniformly at random from Ω2. Let
Pmin(s, u) be a minimal path (cf. Observation 3.2) from s to u in PAR according to some
fixed ω1 ∈ Ω1. Notice that the expected time (in subtime-steps) required to traverse Pmin

(w. r. t. Ω2) is a sum of PAR(s, u)(ω1) independent geometric variables with parameter n.
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Let Ak be the event that PAR(s, u)(ω1) = k. By using conditional expectations we obtain

E [ SEQ(s, u) ] =
∞∑

k=1

E [ SEQ(s, u) | Ak ] ·Pr [Ak ]

6
∞∑

k=1

1

n
· (k · n) ·Pr [Ak ] = E [ PAR(s, u) ] .

Now we proceed to prove the remaining inequality E [ PAR(s, u) ] = O(E [ SEQ(s, u) ]).
For any x > 2 let Bx be the event that every path P = P(S) with w(P) = |S| > x + 1
satisfies w(P) 6 200 · t(P). By Lemma 3.6, Pr [Bx ] > 1 − 2−x. By Markov’s inequality,
we have

Pr [ SEQ(s, u) > 2 · E [ SEQ(s, u) ] ] 6 2−1.

Hence for all integers x > 1 we get

Pr [ SEQ(s, u) > 2 · x · E [ SEQ(s, u) ] ] 6 2−x.

Moreover, we have for all integers x > 1 by using conditional probabilities

Pr [ PAR(s, u) > 400x · E [ SEQ(s, u) ] ]

6 Pr [Bx ] ·Pr [ PAR(s, u) > 400x · E [ SEQ(s, u) ] | Bx ] + Pr
[Bx

] · 1
6 Pr [ PAR(s, u) > 400x · E [ SEQ(s, u) ] | Bx ] + 2−x. (3.1)

The event PAR(s, u) > 400x · E [ SEQ(s, u) ] implies that the minimal path from s to u,
Pmin(s, u) in the instance of SEQ has a weight of at least 400x · E [ SEQ(s, u) ] > x + 1,
where the last inequality holds since with probability at least 1/4, the vertex s does not
send the rumor to any neighbor within the time interval [1/n, 1]. Recall that the time to
traverse Pmin(s, u) is exactly the weight of this path, w(Pmin(s, u)). Now if Bx holds we
know that every path P with w(P) > x + 1 satisfies w(P) 6 200 · t(P). Hence if Bx holds,

PAR(s, u) 6 w(Pmin(s, u)) 6 200 · t(Pmin(s, u)) = 200 · SEQ(s, u),

and therefore

Pr [ PAR(s, u) > 400x · E [ SEQ(s, u) ] | Bx ] =
Pr [ PAR(s, u) > 400x · E [ SEQ(s, u) ] ∧ Bx ]

Pr [Bx ]

6 Pr [ SEQ(s, u) > 2x · E [ SEQ(s, u) ] ]

1− 2−x

6 2−x

1− 2−x
6 2−x+1. (3.2)

and substituting 3.2 into 3.1 gives

Pr [ PAR(s, u) > 400x · E [ SEQ(s, u) ] ] 6 2−x+1 + 2−x 6 2−x+2. (3.3)
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Once this bound has been established, the rest of the proof is straightforward. To simplify
notation, let α := 400 · E [ SEQ(s, u) ] . Using 3.3 and Lemma 2.2 we obtain

E [ PAR(s, u) ] 6
∞∑

k=0

Pr [ PAR(s, u) > k ]

=
∞∑
i=0

α−1∑
j=0

Pr [ PAR(s, u) > i · α + j ]

6
∞∑
i=0

α−1∑
j=0

Pr [ PAR(s, u) > i · α ]

6
∞∑
i=0

α · 2−i+2 6 8 · α

and therefore E [ PAR(s, u) ] = O(E [ SEQ(s, u) ]). This completes the proof of the second
claim and the proof of this Theorem.

We note that on complete graphs, the sequential push algorithm with expected runtime
2 ln n ± o(1) (Proposition 3.13) is much faster than the parallel push algorithm whose
runtime is ln n+log2 n± o(1) with probability 1− o(1) by [Pit87]. Hence, it is not possible
to establish an equivalence of both runtimes up to some 1 + o(1)-factor.

Employing similar methods as in the proofs before, the following lemma can be shown.

Lemma 3.8 ([Sau07]). If G is a regular graph, then

SEQn−1(G) = Θ
(
PUSH− PULL− SEQn−1(G)

)
.

3.5 A Tight Upper Bound for General Graphs

Feige et al. [FPRU90] showed that PARn−1(G) 6 12n ln n for any graph G. This result
follows from the fact that the sum of the degrees on any shortest path is at most 3n
(cf. Lemma 2.28) and hence the expected time to reach the endpoint of this path is 3n.
Using Markov’s inequality and the independence between subsequent time periods of length
6n, the desired bound follows. The stronger bound which we shall prove holds with a
weaker probability, but reduces and tightens the constant from 12 to 1 + o(1). Recall that
Õ suppresses all polylogarithmic factors in n, e.g., n2 log4 n = Õ(n2).

Theorem 3.9. For any graph G = (V,E) it holds that

PARÕ(e− ln1/2 n)
(G) = (1 + o(1)) · n ln n.

Proof. Let us briefly describe the basic idea of the proof, leaving out some details. As
in [FPRU90], we consider some shortest path P between the initially informed vertex s
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and some vertex u. To improve on the bound of [FPRU90], we make use of the fact that if
two vertices v, w share more than n2/3 neighbors, the rumor reaches w in n5/6 steps, which
improves on the trivial bound of deg(v) if deg(v) >> n5/6. Using this fact we will construct
a path P ′ such that the sum of the degrees of critical vertices, i. e., large-degree vertices
which have not n2/3 common neighbors with any following vertex on P ′, is (1 + o(1))n.
This path construction along with some more careful probabilistic analysis constitutes the
main ingredients of our improvement. The formal proof follows.

Let u0 = s be initially informed and ul be an arbitrary, but fixed vertex different from
u0. Let P := (u0, u1, . . . , ul) be a shortest path from u0 to ul. Let us define

A :=
{

ui ∈ P , i 6= l | deg(ui) >
n

ln ln n

}
,

B :=
{

ui ∈ P , i 6= l | deg(ui) 6 n

ln ln n

}
.

We begin with a very obvious claim.

Claim. |A| 6 3 ln ln n.

Proof. By Lemma 2.28,
∑l

i=0 deg(ui) 6 3n. As every vertex in A has a degree of at least
n

ln ln n
, the claim follows.

We will deal with both sets of vertices separately and start with the set B, i. e., the set
of vertices with a rather small degree. For some vertex ui ∈ B, let Xui

:= mint∈N{Nt(ui) =
ui+1}−PAR(s, ui), i. e., Xui

is the number of rounds required for ui to transmit the rumor
to ui+1. It is evident that Xui

is a geometric variable with parameter 1/(deg(ui)). To upper
bound the random variable XB :=

∑
ui∈B Xui

we apply the Chernoff bound of Corollary
2.26. According to the notation of Corollary 2.26, we know that µ := E [ XB ] 6 3n,
pmin = 1

maxv∈B deg(v)
> ln ln n

n
and choose γ = 8

ln ln n
· n ln n to get

Pr

[
XB > 8

ln ln n
· n · ln n + n

]
6 2pminµ

e
pmin

2
·( 8

ln ln n
·n·ln n)

6 2pmin·3n

epmin· 2
ln ln n

·n ln n
· 1

e
ln ln n

n
·( 2

ln ln n
·n·ln n)

6 e−2 ln n = n−2,

whenever n is large enough. In the second and more complex part of this proof we consider
the vertices of the set A.

Claim. If ui and ui+1 (or ui+2) have more than n2/3 common neighbors, then the expected
time for the rumor to reach ui+1 (or ui+2) from ui is less than 2 · n5/6.

Proof. Now fix any vertex ui ∈ P . The expected time to inform n1/2 vertices of N(ui, ui+1)

(or N(ui, ui+2)) is at most
∑n1/2

k=1
deg(ui)

n2/3−k
6 3

2
n5/6. Having informed

√
n of these common

neighbors, ui+1 (or ui+2) becomes informed in one of the succeeding rounds with probability
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at least

1−
(

1− 1

n

)√
n

> 1−
(

1

e

)1/
√

n

> 1− 1

1 + 1√
n

=
1√

n + 1
,

where ex > x + 1 was used in the last inequality. Hence after further expected
√

n + 1
rounds, ui+1 (or ui+2) becomes informed.

Unfortunately, the situation where a vertex ui is connected to many neighbors of ui+1

(or ui+2) has also a drawback. When ui+1 (or ui+2) are supposed to propagate the rumor
further, this vertex may be distracted by the large set of common neighbors with ui. We
therefore require some more detailed analysis.

Let N(ui, ui+1) denote the set of common neighbors of ui and ui+1. In order to simplify
notation we write u ∼ v for two vertices u and v if |N(u, v)| > n2/3. In this case, it is
helpful to imagine the set N(u, v) as some supervertex connected to u and v by multiple
edges. We denote by S(u, v) this supervertex.

In order to benefit from the detours via supervertices, we now describe a transformation
of the original path P (which is an arbitrary, but fixed shortest path) to another path P ′
from u0 = s to ul. As P , P ′ starts with the vertex u0. Assume that we have constructed
the path P ′ = (v0 = u0, v1, . . . , vj) until some vertex vj = ui, i < l − 2 lying on P . We
distinguish now between three cases on how to extend P ′ further.

1. ui ∼ ui+2. Then we extend P ′ by the supervertex S(ui, ui+2) and ui+2, i. e. P ′ =
(v0 = u0, v1, . . . , vj, vj+1 = S(ui, ui+2), vj+2 = ui+2).

2. ui 6∼ ui+2 ∧ ui ∼ ui+1. Here we extend P ′ by the supervertex S(ui, ui+1) and ui+1,

3. ui 6∼ ui+2 ∧ ui 6∼ ui+1. In this case, we extend P ′ just by ui+1 as in P .

Note that in the case vj = ul−1, we may only choose between the second and third case.
Let us first consider the subset of vertices A′′ ⊆ A which are followed in P ′ by a

supervertex. Let XA′′ be the sum over all times it requires for the rumor to proceed from
vi ∈ A′′ via some supervertex S(vi, vi+1) to vi+1. As |A| 6 3 ln ln n, we have E [ XA′′ ] 6
6n5/6 · ln ln n. Thus, the probability that XA′′ > 12n5/6 ln ln n steps is at most 1

2
. By

repeating we can decrease the failure probability to

Pr [ XA′′ > 12n ln ln n ] 6 2−n1/6

< n−2.

It remains to consider vertices on P ′ in A whose successors on P ′ are not supervertices.
Let A′ ⊆ A be this subset of vertices and let |N ′(ui)| denote the neighbors of ui which are
only adjacent to ui on P . We will now prove the key claim of this theorem.

Claim. We have ∑

i:ui∈A′
deg(ui) 6 n +O(n2/3 log log n).
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Proof. Recall that any ui ∈ P can only have common neighbors with ui−2, ui−1, ui+1, ui+2

since P is a shortest path. By definition of A′,
∑

i:ui∈A′
deg(ui)

6
∑

i:ui∈A′
|N(ui, ui−2) ∪N(ui, ui−1) ∪N ′(ui) ∪N(ui, ui+1) ∪N(ui, ui+2)|+ 2

6
∑

i:ui∈A′
|N(ui, ui−2) ∪N(ui, ui−1)|+ |N ′(ui)|+ n2/3 + n2/3 + 2

6
∑

i:ui∈A′
(|N(ui, ui−2) ∪N(ui, ui−1)|) +

∑

i:ui∈A′
|N ′(ui)|+O(n2/3 · |A|)

6
∑

i:ui∈A′
ui−2 6∼ui,ui−1 6∼ui

(|N(ui, ui−2)|+ |N(ui, ui−1)|) +
∑

i:ui∈A′
ui−2 6∼ui,ui−1∼ui

(|N(ui, ui−2)|+ |N(ui, ui−1)|) +

∑

i:ui∈A′
ui−2∼ui,ui−1 6∼ui

(|N(ui, ui−2) ∪N(ui, ui−1)|) +
∑

i:ui∈A′
ui−2∼ui,ui−1∼ui

(|N(ui, ui−2) ∪N(ui, ui−1)|) +

∑

i:ui∈A′
|N ′(ui)|+O(n2/3 · log log n).

Consider some ui ∈ A′ with ui−1 6∼ ui. Then

n2/3 > |N(ui, ui−1)| > |N(ui, ui−2) ∩N(ui−1, ui−2)|

and so

|N(ui, ui−2) ∪N(ui, ui−1)|
6 |N(ui, ui−2)|+ |N(ui, ui−1)|
6 |N(ui, ui−2)\N(ui−1, ui−2)|+ |N(ui, ui−2) ∩N(ui−1, ui−2)|+ |N(ui, ui−1)|
6 |N(ui, ui−2)\N(ui−1, ui−2)|+ 2 · n2/3.
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Therefore we can bound the sum of the degrees in A′ as follows,

∑

i:ui∈A′
deg(ui)

6
∑

i:ui∈A′
ui−2 6∼ui,ui−1 6∼ui

(|N(ui, ui−2)|+ |N(ui, ui−1)|) +
∑

i:ui∈A′
ui−2 6∼ui,ui−1∼ui

(|N(ui, ui−2)|+ |N(ui, ui−1)|) +

∑

i:ui∈A′
ui−2∼ui,ui−1 6∼ui

(|N(ui, ui−2)\N(ui−1, ui−2)|) +
∑

i:ui∈A′
ui−2∼ui,ui−1∼ui

(|N(ui, ui−2) ∪N(ui, ui−1)|) +

∑

i:ui∈A′
|N ′(ui)| + O(n2/3 · log log n)

=
∑

i:ui∈A′
ui−2 6∼ui,ui−1∼ui

|N(ui, ui−1)|

︸ ︷︷ ︸
(2)

+
∑

i:ui∈A′
ui−2∼ui,ui−1 6∼ui

|N(ui, ui−2)\N(ui−1, ui−2)|

︸ ︷︷ ︸
(3)

+

∑

i:ui∈A′
ui−2∼ui,ui−1∼ui

|N(ui, ui−2) ∪N(ui, ui−1)|

︸ ︷︷ ︸
(4)

+
∑

i:ui∈A′
|N ′(ui)|

︸ ︷︷ ︸
(1)

+ O(n2/3 · log log n).

We claim that every vertex not lying on P ′ is counted at most once in one of the sums
(1)− (4). This will be proved by a case analysis.

1. Let x be some vertex which occurs in sum (1) for some i, i. e., x ∈ N ′(ui). By
definition of N ′, x is only adjacent to ui on P . Consequently, x is only adjacent to
one vertex of A′ and is counted once.

2. Suppose that x is a vertex which occurs in sum (2) for some i, i. e., x ∈ N(ui, ui−1).
Thus, |N(ui, ui−2)| < n2/3 but |N(ui, ui−1)| > n2/3 and consequently ui−1 /∈ A′.
Hence, the only remaining possibility for x to be counted in one of the four sums is
as a common neighbor of ui and ui+1. Consequently, x could only be counted in (3)
with index i + 1, but this is not possible as x /∈ N(ui+1, ui−1)\N(ui, ui−1) due to our
assumption x ∈ N(ui, ui−1).

3. Assume that x occurs in sum (3) for some i, i. e., x ∈ N(ui, ui−2)\N(ui−1, ui−2).
Clearly, x is counted only once in this case.

4. Finally, let x be counted in sum (4) for some i, i. e., x ∈ N(ui, ui−2) ∪ N(ui, ui−1).
If x is a common neighbor of ui−2, ui−1 and ui, x is only counted once, as ui−1 ∼ ui

implies ui−1 /∈ A′. Otherwise, x could be a common neighbor of ui−1, ui and ui+1

and x could only be counted additionally in sum (3) with summation index i + 1.
However, as x /∈ N(ui+1, ui−1)\N(ui, ui−1), x is only counted once.
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By the case analysis above we obtain as desired,

∑

i:ui∈A′
deg(ui) 6 n +O(n2/3 log log n).

Let XA′ be the number of steps required for the rumor to reach from each vertex of A′

the corresponding successor on P ′. By the previous argumentation we can express XA′ as
follows:

XA′ :=
∑

i:ui∈A′
Geo

( 1

deg(ui)

)
,

where E [ XA′ ] =
∑

i:ui∈A′ deg(ui) = n + Õ(n2/3). We note the following lemma.

Lemma 3.10. Let Y :=
∑k

i=1 Geo( 1
xi

) with xi > 2 for all i. Then for any y ∈ N, y > k,

Pr [ Y = y ] 6 (y + k − 1)k−1 · e−
y−k∑k
i=1

xi ·
k∏

i=1

( 1

xi

)
.

Proof. We have

Pr [ Y = y ] =
∑

16αi6y−k+1∑k
i=1 αi=y

k∏
i=1

((
1− 1

xi

)αi−1 1

xi

)

6
(

k∏
i=1

( 1

xi

))
·

∑
16αi6y−k+1∑k

i=1 αi=y

k∏
i=1

(1

e

)αi−1

xi

=

(
k∏

i=1

( 1

xi

))
·

∑
16αi6y−k+1∑k

i=1 αi=y

(1

e

)∑k
i=1

αi−1

xi

6
(

k∏
i=1

( 1

xi

))
·

∑
16αi6y−k+1∑k

i=1 αi=y

(1

e

)∑k
i=1(αi−1)
∑k

i=1
xi

6
(

k∏
i=1

( 1

xi

))
·

∑
06αi6y∑k
i=1 αi=y

(1

e

) y−k∑k
i=1

xi =

(
k∏

i=1

( 1

xi

))
·
(

y + k − 1

k − 1

)(1

e

) y−k∑k
i=1

xi ,

as claimed.
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Reconsidering XA′ and recalling that |A′| 6 3 ln ln n, Lemma 3.10 yields for any y ∈
N, n ln n + n(ln n)2/3 6 y 6 12n log n that

Pr [ XA′ = y ]

6 (y + |A′| − 1)|A
′|−1 · e−

y−|A′|
n+Õ(n2/3)

( n

ln ln n

)−|A′|

6
(O(1)n ln n

)|A′|−1 · exp

(
−n · (ln n + ln2/3 n)

n + Õ(n2/3)
+
O(log log n)

n + Õ(n2/3)

)
· (ln ln n)O(log log n) · n−|A′|

6 Õ(1) · n|A′|−1 · (ln n)O(log log n) · exp

(
−(ln n + ln2/3 n) +

Õ(n−1/3) · (ln n + ln2/3 n)

1 + Õ(n−1/3)

)

· (ln ln n)O(log log n) · n−|A′|

= Õ(1) · n|A′|−1 · n−|A′| · e− ln n · e− ln2/3 n · (ln n)O(log log n)

= Õ(1) · n−2 · e− ln2/3 n · eO(log log n)2

= Õ
(
n−2 · e− ln1/2 n

)
.

By the union bound we have

Pr
[
n ln n + n(ln n)2/3 6 XA′ 6 12n log n

]
= Õ(n−1e− ln1/2 n).

As E [ XA′ ] = n+ Õ(n2/3) and XA′ is a sum of geometric variables, we have (cf. [FPRU90])

Pr [ XA′ > 12n log n ] 6 n−2.

Therefore we conclude that

Pr
[
XA′ > n ln n + n(ln n)2/3

]

= Pr
[
n ln n + n(ln n)2/3 6 XA′ 6 12n log n

]
+ Pr [ XA′ > 12n log n ]

= Õ(n−1e− ln1/2 n)

and together with the previous results of this proof we obtain for X := XA′ + XA′′ + XB

Pr

[
X > n ln n + n(ln n)2/3 + 12n ln ln n +

8

ln ln n
· n ln n + n

]
= Õ(n−1e− ln1/2 n).

Since the endpoint ul of P was a fixed but arbitrary vertex, the claim of the theorem
follows by the union bound.

It is clear that the runtime of the graph K1,n−1 reduces to the famous coupon collector’s
problem (Theorem 2.19). Hence, (1 − o(1))n ln n steps are necessary to disseminate the
rumor to all vertices with probability 1− o(1) which matches the bound of the theorem.
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3.6 Use of an Edge-Expansion-Based Measure

The following kind of measure of edge-expansion properties turns out to be more ap-
propriate for bounding the rumor spreading time than the classical edge-expansion from
Definition 2.32.

Definition 3.11. For any graph G and any integer 1 6 m 6 n− 1 define

Λ(m) := min
X⊆V (G),|X|=m

{∑
v∈X

degXc(v)

deg(v)

}
.

If G is ∆-regular, then the first formula can be simplified to

Λ(m) = min
X⊆V (G),|X|=m

{
|E(X, Xc)|

∆(G)

}
.

Recall that SEQ(s, ñ) is the time to inform ñ vertices.

Proposition 3.12. Let G = (V,E) be a graph and let s be initially informed. We have
for any ñ 6 n that

E [ SEQ(s, ñ) ] 6
ñ−1∑
m=1

1

Λ(m)
.

If for each 1 6 m′ 6 ñ− 1, Λ(m′) ·
(∑ñ−1

m=1(Λ(m))−1
)

= Ω(log n), then

SEQn−1(s, ñ) = O
(

ñ−1∑
m=1

1

Λ(m)

)
.

Proof. Let Xi be the waiting time in subtime-steps until |It| increases from i to i+1. Note
that this time can be computed by the probability of first choosing a vertex u ∈ It and
then choosing a vertex v ∈ N(u) ∩ Ic

t . Therefore, the probability that It increases by 1 in
one subtime-step equals

∑
u∈It

Pr [ u chosen ] ·Pr [ v ∈ N(u) ∩ Ic
t chosen ] =

∑
u∈It

1

n
· degIc

t
(u)

deg(u)

> 1

n
· Λ(i).

Hence E [ Xi ] 6 n/Λ(i) and simply summing up over all i and translating this into time-
steps yields the first claim. The second statement follows directly from Corollary 2.26.

The next result is obtained by Proposition 3.12 and some straightforward calculations
(cf. [Sau07]); recall that E [ SEQ(G) ] = maxs∈G E [ SEQ(s, V ) ].
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Proposition 3.13. In the sequential model we have:

1. for G = Kn/2 × K2, where 2 divides n, E [ SEQ(G) ] 6 4 ln n + 1,

2. for G = Kn, (2− 2
n
) ln(n− 1) 6 E [ SEQ(G) ] 6 (2− 2

n
) ln n.

One obvious question is whether upper bounds on the edge expansion can be used for
lower bounding the broadcast time. We can only state the following trivial bound.

Observation 3.14. For any graph G = (V, E), E [ SEQ(G) ] > 1
min16m6n−1 Λ(m)

.

3.7 Conclusion

In this chapter we derived several general results on randomized rumor spreading. Our
first results were concerned with the runtime of the push algorithm and some modifications
of it. These auxiliary results will be used in Chapters 4 and 5. As our main result, we
proved a tight upper bound demonstrating that the graph K1,n−1 is (approximately) the
worst-case graph for the push algorithm. Finally, we established upper bounds on the push
algorithm by means of a certain measure based on the edge expansion of differently large
sets. One open problem is whether one can also derive non-trivial lower bounds here.



4. RANDOMIZED RUMOR SPREADING ON
CAYLEY GRAPHS

4.1 Introduction

As an introduction to randomized rumor spreading was already given in Section 3, we
confine ourselves to Cayley graphs in this section. For more details about Cayley graphs
we refer to [Alo95, Bab95].

4.1.1 Motivation

Cayley graphs were introduced as mathematical objects in 1878 by Cayley. The group-
theoretical construction of Cayley graphs for the design of interconnection networks was
initiated by Akers and Krishnamurthy [AK89]. The objective is to construct networks
with a small degree, small diameter, high connectivity and simple algorithms for routing,
broadcast etc. [AK89] presented several networks such as star graphs and pancake graphs,
and analyzed them with group-theoretical methods. Nowadays, the role of Cayley graphs
as interconnection networks seems to be less important, as real-world networks such as the
internet are far from being symmetric.

However, Cayley graphs have also received a lot of attention in mathematics, in par-
ticular in graph-theory and combinatorics where Cayley graphs are used for explicit con-
structions of certain graphs. For example, the first explicit expander constructed by Mar-
gulis [Mar73] was a Cayley graph. Later Cayley graphs were also used to construct so-called
Ramanujan graphs [LPS88], which are, roughly speaking, graphs which are extremal w. r. t.
a certain algebraic condition. Finally, some known constructions of expanders with large
girth [Mar82] are Cayley graphs, too. Nevertheless, a lot of combinatorial problems about
Cayley graphs remain open. One such intriguing question is whether every undirected Cay-
ley graph based on the group of all permutations has a polynomial diameter (cf. [BH05] for
more details and some results towards an affirmative answer). Another interesting problem
posed by Lovász is whether every Cayley graph has a Hamilton path (cf. [PR04]).

From an algorithmic perspective, Cayley graphs arise frequently when dealing with
sorting (e.g., Theorem 4.11) or card-shuffling (cf. next subsection about related work).
The reason is that these algorithms can be viewed as moving along edges of Cayley graphs.



34 4. Randomized Rumor Spreading on Cayley Graphs

4.1.2 Related Work

Feige et al. [FPRU90] proved that the push algorithm takes only O(log n) steps on the hy-
percube with n vertices. They also proved an upper bound of O(log n + diam(G)) for any
bounded-degree graph. In particular, this implies that the push algorithm has an asymp-
totically optimal runtime on any of the popular bounded-degree interconnection networks
like butterfly, cube-connected-cycles, shuffle-exchange- and De-Bruijn-network [Lei92].

GowriSankaran [Gow94] showed that there is a deterministic broadcast algorithm re-
quiring only log2 n + o(log n) steps in Cayley graphs satisfying the so-called recursively
decomposable property. He proved that pancake and star graphs satisfy this property.
Additionally, the optimal broadcast protocol for the star graph is trivially inherited to
transposition graphs, as star graphs are subgraphs of transposition graphs. Other deter-
ministic broadcast algorithms dealing with star graphs are given in [AK89, SWC96]. Also
a lot of effort has been spent on determining the best possible (deterministic) broadcast
algorithms in De-Bruijn and butterfly networks (cf. [HKP+04, p. 78] for an overview).

There is a long history of the analysis of random processes (in particular Markov chains)
on Cayley graphs. A huge body of literature is concerned with card shuffling procedures.
The main question is the mixing time, i. e., how many times must a deck of d cards be
shuffled until it is close to random. As an example, consider the shuffling where in each step
two random cards are chosen and switched. Diaconis and Shahshahani [DS81] proved that
after approximately (1/2)d ln d steps, the cards are well mixed. For the so-called random-
to-top-shuffle, Flatto et al. [FOW85] established that d ln d rounds suffice. We remark that
both card-shuffling schemes are nothing else than random walks (cf. Section 5.2) on the
transposition graph and star graph, respectively (cf. Definition 4.3). Another natural, but
slower card-shuffling scheme arises when in each step a random adjacent pair of cards is
switched. Wilson [Wil04] proved that the mixing time of this scheme is of order d3 log d.

Recently, a randomized version of the bubble sort algorithm was examined by Benjamini
et al. [BBHM05]. It was basically shown that the performance of the bubble sort algorithm
is not worsened by comparing in each step a random pair of adjacent elements. Moreover,
the result is also robust in the sense that it suffices to arrange the pair in the correct order
with some probability larger than 1/2.

One of the most well-known concentration result refers to the coupon collector’s problem
(cf. Theorem 2.19). It is known that the probability for having collected all coupons shows
a sharp concentration around the point n ln n. Before this point the probability stays
close to zero, it increases doubly exponentially fast near n ln n, while it goes exponentially
fast to one past the point n ln n. Similar concentration results are also known for several
properties of random graphs like connectivity, emergence of the giant-component, triangle-
freeness etc. [AS00].

Diaconis [Dia96] investigated the concentration phenomenon of mixing times of Markov
chains. His conclusion was that often a sharp concentration (which he called cutoff) can be
explained by a high multiplicity of the second largest eigenvalue of the transition matrix,
which is often the case for symmetric Markov chains. This also provides an explanation
of a cutoff for the afore-mentioned random-to-random and random-to-top shuffles. More
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recently, Peres [DSC06] observed that for many (families of) Markov chains a cutoff exists
if and only if the product of the spectral gap (one minus the second largest eigenvalue) and
the mixing time (first time the distance to uniformity is less than 1/2) tends to infinity.

4.1.3 Our Results

We analyze the runtime of the push algorithm from Chapter 3 on several important Cayley
graphs. In Section 4.3 we prove that for every Cayley graph satisfying four properties, the
runtime of the push algorithm is O(log n). This implies an upper bound of O(log n) for
the star graph, pancake graph and transposition graph.

Since the diameter of the bubble sort graph with d! vertices is Θ(d2), a separate analysis
is required and done in Section 4.4. It follows from the afore mentioned result on a random-
ized version of the bubble sort algorithm [BBHM05], that one fixed vertex of the bubble
sort graph becomes informed in expected time O(d2). To prove that all vertices become
informed in O(d2) time with high probability, we develop a martingale-based approach.
The whole method depends crucially on the time β required for the rumor to be spread
from one vertex to some fixed neighbor (possibly using some path via other vertices). Us-
ing the fact that on bubble sort graphs many short node-disjoint paths between adjacent
vertices exist, we derive a non-trivial upper bound on β which allows us to conclude that
all vertices become informed in O(d2) steps. As a by-product of our techniques, we obtain
concentration results (for the sequential push algorithm) on hypercubes, star graphs and
pancake graphs.

Together with the results of Feige et al. [FPRU90] for the hypercube and bounded degree
graphs, we may conclude that on any of the popular interconnection networks the push
algorithm takes Θ(log n+diam(G)) steps (cf. Figure 4.1). Note that the graph K√n×C√n

provides an example of a Cayley graph with runtime ω(log n + diam(G)) [ES05].

Graph class Broadcast time Reference

Hypercube PARn−1(G) = Θ(log n) [FPRU90]

Bounded degree graphs PARn−1(G) = Θ(log n + diam(G)) [FPRU90]

Star Graph PARn−1(G) = Θ(log n) [ES05]

Class including star graph,
pancake graph and transpo-
sition graph

PARn−1(G) = Θ(log n) Theorem 4.6

Bubble sort graph PARn−1(G) = Θ(diam(G)) = Θ( (log n)2

(log log n)2
) Theorem 4.20

Hamming graphs
(cf. Defintion 5.26)

PARn−1(G) = Θ(log n) Theorem 5.27

Fig. 4.1: Overview on the runtime of the push algorithm on different Cayley graphs.
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4.2 Notations, Definitions and Preliminaries

Definition 4.1. An (undirected) Cayley graph CG = (H, F ) is a graph with vertex set
V (CG) and edge set E(CG) defined by a group H = (H, ◦) and a subset F ⊆ H with
F−1 ⊆ F as follows:

V (CG) := H, E(CG) :=
{{h, h ◦ f} | h ∈ H, f ∈ F

}
.

We recall some basic facts about Cayley graphs.

Lemma 4.2 ([DSV03]). Let CG = (H, F ) be an undirected Cayley graph.

1. CG = (H,F ) is a simple, |F |-regular, vertex-transitive graph,
2. CG = (H,F ) has no loop iff id /∈ F with id being the neutral element of H,
3. CG = (H,F ) is connected if and only if F generates G.

We recall some basic notation of group theory. A permutation π is a bijection from [d] =
{1, 2, . . . , d} to {1, 2, . . . , d}. It is known that the symmetric group Sd of all d! permutations
of {1, 2, . . . , d} forms a group w. r. t. the concatenation (◦) of permutations (to simplify
notation, we will frequently omit ◦ between the concatenation of two permutations). We use
the following common vector representation for permutations, i. e., a permutation π ∈ Sd

is represented by (π(1), π(2), . . . , π(d)). The identity permutation id is the neutral element
of the group Sd and satisfies id(k) = k for every k ∈ [d]. A transposition (i j), i, j ∈ [d] is
the permutation π which maps i to j and vice versa, i. e., π(i) = j and π(j) = i; if i = j,
then this is just the identity permutation. An inversion of a permutation π ∈ Sd is a pair
i, j ∈ [d], i < j, such that π(i) > π(j).

We define four important examples of Cayley graphs mentioned in [AK89].

Definition 4.3. The following undirected Cayley graphs CGd = (Hd, Fd) have all vertex
set Hd = Sd. The respective generating sets Fd ⊆ Sd are defined as follows.

1. The bubble sort graph Bd is defined by

F (Bd) := {(i i + 1) | 1 6 i 6 d− 1} .

2. The pancake graph Pd is defined by

F (Pd) :=

{
(1 i)(2 i− 1) · · ·

(⌊
i + 1

2

⌋ ⌈
i + 1

2

⌉) ∣∣∣ 2 6 i 6 d

}
,

e.g., for d = 6, F (Pd) := {(1 2), (1 3), (1 4)(2 3), (1 5)(2 4), (1 6)(2 5)(3 4)}.
3. The star graph Sd is defined by

F (Sd) := {(1 i) | 2 6 i 6 d}.
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4. The transposition graph Td is defined by

F (Td) := {(i j) | i, j ∈ [d], i 6= j}.

For any sequence of distinct numbers k1, . . . , ki ∈ [1, d], we define Sd(k1, . . . , ki) :=
{π ∈ Sd | π(d− i + j) = kj, j ∈ [i]}.

4.3 A General Class of Cayley Graphs

To compare our main result, we restate the result of [Gow94].

Definition 4.4 ([Gow94]). A Cayley graph CG = (Sd, Fd) fulfills the following property
of being recursively decomposable, if:

1. CG is of degree d− 1,

2. there exists an ordering f2, f3, . . . , fd of the d− 1 generators such that

(a) for all i with 2 6 i 6 d− 1, fi(k) = k for any k, i < k 6 d,

(b) for all i with 2 6 i 6 d, fi(1) = i and fi(i) = 1.

Theorem 4.5 ([Gow94]). For any recursively decomposable Cayley graph CG = (Sd, F ),

DET(CG) = log2 n + o(log n),

i.e., there is a deterministic broadcast protocol on CG with runtime log2 n + o(log n).

Now we state a similar result for randomized broadcast.

Theorem 4.6 ([ES07]). Assume that a family of Cayley graphs CGd = (Sd, Fd) fulfills
the following properties:

1. For each d ∈ N it holds that c1d
c 6 ∆d 6 c2d

c, where c1, c2 and c are constants > 0,

2. Fd ⊆ Fd+1 for each d ∈ N,

3. for every τ ∈ Sd and k ∈ [d] it holds that dist(τ, Sd(k)) 6 c′ for some constant
c′ > 0,

4. |E(X, Xc)| = Ω(dc · |X|) for every X ⊆ V, |X| = O(dc·c′).

Then
PARn−1(CGd) = O(log n).

We will now show that the conditions of Theorem 4.6 are satisfied by families of re-
cursively decomposable Cayley graphs (including star graph and pancake graph). We also
prove that Theorem 4.6 applies to transposition graphs. To establish the required lower
bound on the edge expansion, the following basic result is helpful (Recall that the girth of
the graph is the length of a shortest cycle).
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Proposition 4.7 ([Sau05]). Let G = (V,E) be a graph with n vertices, minimum degree
δ and girth g > 2r, r > 2. Then, for every subset X ⊆ V,

|E(X,Xc)| >
(
δ − 2 · b|X| 1

r−1 c
)
· |X|.

Lemma 4.8. Every recursively decomposable Cayley graph has girth at least 6.

Proof. As every recursively decomposable Cayley graph is bipartite (cf. [Gow94]), it suffices
to show that there are no cycles of length 4. Seeking a contradiction, assume fa2◦fa1 = fb2◦
fb1 , a2 6= a1, b2 6= b1, a2 6= b2, a1 6= b1, a1, a2 > 1, b2, b1 > 1. Observe that max{a2, a1} =
max{b2, b1} and thus w. l. o. g. let a1 = b2 = max{b2, b1}. Hence fa2fa1(a1) = fa2(1) = a2,

but fb2fb1(a1)
b1<a1= fb2(a1) = 1, and the claim follows.

Proposition 4.9. Any family of recursively decomposable Cayley graphs CGd = (Hd, Fd)
with Fd ⊆ Fd+1 (including the star graph Sd and pancake graph Pd), and the transposition
graph Td satisfy all four conditions of Theorem 4.6 for d > 3, and hence for all these graphs
PARn−1(G) = O(log n).

Proof.

1. Consider a family of recursively decomposable Cayley graphs CGd with Fd ⊆ Fd+1.
As its degree is d − 1, the first condition of Theorem 4.6 holds with c = 1. By
assumption, the second condition is satisfied. For the third condition, consider an
arbitrary vertex (permutation) τ ∈ Sd and assume first that τ(j) = k for j > 1.
Then, τfjfd(d) = τfj(1) = τ(j) = k. Otherwise if τ(1) = k, then τfd(d) = τ(1) = k
and the third condition is satisfied for c′ = 2. To prove the fourth condition, recall
that by Lemma 4.8, girth(CGd) = 6. Hence for any X ⊆ V , |X| 6 1

16
(d − 1)2,

Proposition 4.7 gives

|E(X,Xc)| >
(
δ − 2 · b|X| 12 c

)
· |X|

>
(

d− 1− 2 ·
⌊

1

4
(d− 1)

⌋)
· |X| > d− 1

2
· |X|.

2. Now consider the graph Td. Here, the degree is
(

d
2

)
and the first condition is satisfied

with c = 2. The second condition F (Td) ⊆ F (Td+1) for any d > 1 is immediate.
As F (Td) contains every transposition, Condition (3) holds with c′ = 1. Since Td

is bipartite, we have girth(Td) > 4 and conclude by Proposition 4.7 that for any
X ⊆ V, |X| 6 1

64
(d(d− 1))2,

|E(X, Xc)| >
(
δ − 2 · b|X| 12 c

)
· |X|

>
(

d(d− 1)

2
− 2 ·

⌊
1

8
(d(d− 1))2

⌋)
· |X| > d(d− 1)

4
· |X|.
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4.4 Bubble-Sort Graphs

As Theorem 4.6 is not applicable to the bubble sort graph Bd, we have to do a separate
analysis.

Lemma 4.10 ([Knu98]). Consider the graph Bd and fix a permutation σ ∈ V (Bd) = Sd.
Then, dist(σ, id) equals the number of inversions in σ and therefore diam(Bd) =

(
d
2

)
.

Consider the following sorting algorithm in Figure 4.2 which is a randomized version
of the Bubble Sort algorithm. If p < 1, then there are two sources of randomness: the
chosen adjacent pair (i i + 1) and the resulting swap depending on r. Let SORT(σ)
be the number of iterations until σ ∈ Sd is sorted and define SORTq(σ) := min{t ∈
N | Pr [ SORT(σ) 6 t ] > 1− q}.

Randomized Bubble-Sort

Input: σ ∈ Sd,
1
2 < p 6 1

Output: σ = id

1: while σ 6= id do
2: choose an integer i ∈ {1, . . . , d− 1} uniformly at random
3: let r = 1 with probability p and r = 0 otherwise
4: if r = 1 then
5: if σ(i) > σ(i + 1) then swap σ(i) and σ(i + 1)
6: end if
7: if r = 0 then
8: if σ(i) < σ(i + 1) then swap σ(i) and σ(i + 1)
9: end if

10: end while

Fig. 4.2: The randomized bubble sort algorithm of [BBHM05]

Theorem 4.11 ([BBHM05]). For any constant 1
2

< p < 1 and permutation σ we have
SORTe−1(σ) = O(d2) and hence E [ SORT(σ) ] = O(d2).

Lemma 4.12. For Bd, E [ SEQ(τ, ρ) ] = O(d2) for every permutations τ, ρ ∈ Sd.

Proof. We will first prove that the time after the rumor has reached id from some σ ∈ Sd

is stochastically smaller than the time to sort σ in the randomized bubble sort algorithm
for p = 1. Consider an instance of the randomized rumor spreading algorithm. Recall
that such an instance (execution) of the parallel push algorithm is completely described by
(Nt,v)t∈N,v∈V where each Nt,v is chosen uniformly at random among N(v) (cf. Section 3.3).
Define a sequence of vertices v1, v2, . . . , vdist(σ,id) inductively as follows:

• v1 := σ and t1 := 0,
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• for any 1 < i 6 dist(σ, id),

ti := min{t ∈ N | t > ti−1, dist(Nt−PAR(σ,vi−1),vi−1
, id) < dist(vi−1, id)}

vi := Nti−PAR(σ,vi−1),vi−1
.

So, roughly speaking, we extend the path with endpoint vi−1 by the first vertex vi satisfying
the two properties that vi is closer to id and vi−1 sends the rumor to vi.

It follows that vdist(σ,id) = id and by Lemma 4.10, dist(σ, id) equals the number of
inversion in vi. Since each Nt,vi−1

is chosen independently and uniformly at random among
vi ◦ (j j + 1), 1 6 j 6 d − 1, the random variable tdist(σ,id) has the same distribution as

SORT(σ, id). Therefore, PAR(σ, id) ¹ tdist(σ,id)
D
= SORT(σ, id). Using Theorem 3.5 and

Theorem 4.11,

E [ SEQ(σ, id) ] 6 E [ PAR(σ, id) ] 6 E [ SORT(σ, id) ] = O(d2)

for an arbitrary σ ∈ Sd. To complete the proof, choose σ = τρ−1 and apply the automor-
phism π 7→ π ◦ ρ to find that E [ SEQ(τρ−1, id) ] = E [ SEQ(τ, ρ) ].

We will now introduce some further notation for the runtime analysis on Bd. For the
use of tail bounds for martingales, we think that it is more convenient to work with random
processes whose time-steps are integers. Consequently, we will consider a scaled variant
of the sequential push algorithm denoted by SCALED defined as follows. We choose at
every integral time-step first some vertex u ∈ V randomly and then some random neighbor
v ∈ N(u). In case of u being already informed, the vertex v becomes informed. Note that
SCALED does exactly the same as the sequential push algorithm SEQ when multiplying
each subtime-step t ∈ T by n.

Let s ∈ V be the initially informed vertex and consider any nonempty subset V ′ ⊆ V .
According to the notation introduced in Chapter 3, define SCALED(s, V ′) := min{t ∈
N : V ′ ⊆ It | I0 = {s}} and for any 0 < q < 1, SCALEDq(s, V

′) := min{t ∈ N :
Pr [ V ′ ⊆ It | I0 = {s} ] > 1− q}.

Define Z0 := E [ SCALED(s, V ′) ] and more generally, for any t ∈ N\{0}

Zt := E [ SCALED(s, V ′) | I0, I1, . . . , It ] .

Notice that E [ SCALED(s, V ′) | I0, I1, . . . , It ] = E [ SCALED(s, V ′) | It ] , as It+1 only de-
pends on It. The fact that Zt is a martingale follows from the so-called Doob martingale
construction (cf. Lemma 2.17). Zt estimates the expected time to inform v conditioned on
the outcomes of the first t time-steps. We list some basic properties of Zt.

Observation 4.13. For any graph G, the martingale Zt has the following properties.

1. If Zt 6 t, then V ′ ⊆ It and consequently, Zt = Zt+1 = · · · .
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2. For any A ⊆ B ⊆ V we have

E [ SCALED(s, v) | It = A ] > E [ SCALED(s, v) | It = B ] .

3. For any subset A ⊆ V and any t ∈ N,

E [ SCALED(s, v) | It−1 = A ] + 1 = E [ SCALED(s, v) | It = A ] .

One building block of our approach will be the following concentration inequality.

Theorem 4.14 ([McD98, CL07]). Let Z0, Z1, . . . be a martingale w. r. t. the sequence
I0, I1, . . . such that for all k > 1

1. |Zk − Zk−1| 6 M,

2. Var [ Zk | I0, . . . , Ik−1 ] 6 σ2
k.

Then for any i > 0 and any λ > 0

Pr [ |Zi − Z0| > λ ] 6 2 · exp

(
− λ2

2 · (∑i
k=1 σ2

k + Mλ/3)

)
.

Thus to obtain good tail estimates, we have to derive upper bounds on the differences
Zk−Zk−1 and on the conditioned variance of Zk. To do so, we make the following definition.

Definition 4.15. For any graph G define β(G) := max{u,v}∈E(G) E [ SCALED(u, v) ] .

So, β(G) provides an upper bound on the expected time required for the rumor to reach
some fixed v ∈ N(u) from some vertex u, possibly via some path of length larger than 1. A
trivial bound is β(G) 6 ∆(G) on which following the lemma improves for certain graphs.

Lemma 4.16. Let G be a ∆-regular graph with ∆ = ω(1). If for every two adjacent
vertices u, v ∈ N(u) there are Ω(∆) node-disjoint paths of length at most 1 < l = O(1),
then

β(G) = O
(
∆

l−1
l · n

)
.

Proof. In this proof we consider the parallel push algorithm PAR. Consider the set of node-
disjoint paths P1,P2, . . . ,Pc∆, 0 < c 6 1, of length l between u and v. Divide the vertices
into levels L0,L1, . . . ,Ll, where Li := {z ∈ Pj, 1 6 j 6 c∆ | dist(u, z) = i, dist(z, v) =
l− i}. By assumption, |Li| = c∆ if 1 6 i 6 l− 1, and |Li| = 1 otherwise. We first consider

the waiting time X0 until c
2
∆

l−1
l vertices of L1 become informed. Clearly,

E [ X0 ] =

c
2
∆

l−1
l∑

k=1

∆

∆− k
6 ∆ ·

c
2
∆

l−1
l∑

k=1

1
1
2
∆

6 ∆
l−1

l .
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As a result of Markov’s inequality, Pr [ X0 > 4 · E [ X0 ] ] 6 1
4
.

Assuming that there are c
2
∆

l−i
l informed vertices in Li, i < l − 1 we consider phase

i with waiting time Xi until c
2
∆

l−i−1
l vertices become informed in Li+1. The probability

that some vertex v ∈ Li+1 becomes informed within the next 4∆
l−1

l steps, given that its
neighbor u ∈ Li has been informed in phase i, is

1−
(

1− 1

∆

)4∆
l−1

l

> 1− exp(−4∆− 1
l )

> 1− 1

4∆− 1
l + 1

> 4∆− 1
l

1 + 4∆− 1
l

> 2∆− 1
l ,

where the second inequality is due to e−x 6 1
x+1

. Hence the expected number of informed

neighbors in Li+1 after 4∆
l−1

l steps is at least

c

2
∆

l−i
l · 2∆− 1

l = c∆
l−i−1

l .

Using the Chernoff bound for Bernoulli variables (Theorem 2.11), c
2
∆

l−i−1
l vertices become

informed after 4∆
l−1

l steps with probability 1 − o(1), as ∆ = ω(1). Finally, suppose that

Ll−1 contains c
2
· ∆ 1

l informed vertices. As each of these vertices informs v ∈ Ll with

probability 1
∆

in one step, v becomes informed after 2
c
∆

l−1
l steps with probability

1−
(

1− 1

∆

) c
2
∆

1
l · 2

c
∆

l−1
l

> 1−
(

1− 1

∆

)∆

> 1− 1

e
,

if ∆ > 2. Summarizing, we have shown that with probability 1− 1
4
− 1

e
−(l−2)·o(1) > 1− 2

3
,

l−1∑

k=0

Xk 6 X0 +
l−2∑

k=1

Xk + Xk−2

6 4∆
l−1

l + (l − 1) · 4∆
l−1

l +
2

c
∆

l−1
l = O

(
∆

l−1
l

)
.

Hence PAR2/3(u, v) = O(∆
l−1

l ) and thus E [ PAR(u, v) ] = O(∆
l−1

l ). By Theorem 3.5,

E [ SCALED(u, v) ] = n · E [ SEQ(u, v) ] = O
(
n · E [ PAR(u, v) ]

)
= O

(
n ·∆ l−1

l

)
,

and the claim follows.

We now apply this Lemma to three Cayley graphs.
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Corollary 4.17. For the graphs Bd, Td and Qd,

β(G) = O
(
∆

2
3 · n

)
.

Proof. We use Lemma 4.16 and prove the existence of Ω(∆(G)) node-disjoint paths of
length 3 between any pair of adjacent vertices u, v in each of the three graphs.

1. We start with Bd. W. l. o. g. consider the two vertices π = id and σ = id(i i + 1),
where 1 6 i 6 d − 1. Clearly, (j j + 1)(i i + 1)(j j + 1) = (i i + 1) for every
j ∈ {1, . . . , i− 1} ∪ {i + 2, . . . , d− 1}. Hence,

⋃

j∈{1,...,i−1}∪{i+2,...,d−1}

(
id, (j j + 1), (j j + 1)(i i + 1), (i i + 1)

)

is a set of d− 3 node-disjoint paths of length 3 from π to σ.

2. The reasoning for Td is very similar. Again, consider π = id and σ = id(r s), where
r, s ∈ [d], r < s. Clearly, (x y)(r s)(x y) = (r s), for any x, y ∈ [d], x, y /∈ {r, s} and
the claim follows.

3. Consider any u ∈ {0, 1}d and v = u(i), i. e., v is obtained by flipping bit i in v. It is
easily seen that ∪d

j=1,j 6=i(u, u(j), u(j)(i), u(j)(i)(j) = v) is a set of d− 1 node-disjoint
paths from u to v.

Lemma 4.18 ([McD98]). Let X be a random variable with E [ X ]− a 6 X 6 E [ X ] + b
for a, b > 0. Then, Var [ X ] 6 a · b.

Let us now reconsider the martingale Zk.

Lemma 4.19. For any graph G = (V, E) we have for all k ∈ N\{0}

−β(G) 6 Zk − Zk−1 6 1,

Var [ Zk | Ik−1 ] 6 β(G).

Proof. We begin by proving the first inequality. Recall that Zk−Zk−1 is a random variable
depending on Ik, while Ik−1 is fixed. Let Ik−1 = I for some arbitrary I ⊆ V . We distinguish
now between the cases Ik = I or Ik = I ∪ {v} for some v ∈ N(I) ∩ Ic.

1. Let us first consider the case Ik = I. By Observation 4.13 (3),

E [ SCALED(s, V ′) | Ik = I ] = E [ SCALED(s, V ′) | Ik−1 = I ] + 1

and hence E [ SCALED(s, V ′) | Ik = I ]− E [ SCALED(s, V ′) | Ik−1 = I ] = 1.
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2. Assume that Ik = I ∪ {v} for some v ∈ N(u) ∩ Ic, u ∈ I. Observation 4.13 yields

E [ SCALED(s, V ′) | Ik−1 = I ]

6 E [ SCALED(s, v) | Ik−1 = I ]− (k − 1) +

E [ SCALED(s, V ′) | Ik−1 = I ∪ {v} ]

6 E [ SCALED(s, v) | I0 = I ] + E [ SCALED(s, V ′) | Ik−1 = I ∪ {v} ]− 1

6 β(G) + E [ SCALED(s, V ′) | Ik = I ∪ {v} ]

and thus

E [ SCALED(s, V ′) | Ik = I ∪ {v} ]− E [ SCALED(s, V ′) | Ik−1 = I ] > −β(G).

Another application of Observation 4.13 results in

E [ SCALED(s, V ′) | Ik = I ∪ {v} ]− E [ SCALED(s, V ′) | Ik−1 = I ]

6 E [ SCALED(s, V ′) | Ik = I ]− E [ SCALED(s, V ′) | Ik−1 = I ]

= 1.

Combining the two cases, we have shown the first claim −β(G) 6 Zk − Zk−1 6 1.

We will now prove the second claim. By the first claim we know that Zk is a ran-
dom variable taking only values in the interval [Zk−1 − β(G), Zk−1 + 1]. Moreover, by
the martingale property we have E [ Zk | Ik−1 ] = Zk−1. It follows from Lemma 4.18 that
Var [ Zk ] 6 β(G) which finishes the proof of the second claim.

We now apply our machinery to show the main result of this section.

Theorem 4.20. For the bubble sort graph Bd,

SCALEDn−1(Bd) = O(d2 · n),

and therefore PARn−1(Bd) = SEQn−1(Bd) = O(d2).

Proof. Assume that τ ∈ V (Bd) is informed at the beginning. We aim at proving that an
arbitrary fixed σ ∈ V (Bd) becomes informed after O(d2 ·n) steps with probability 1−n−2,
by which the claim follows. Substituting s = τ and V ′ = {σ} into the martingale Zk we
obtain

Pr [ σ /∈ I2C·d2n ] 6 Pr
[
Z2C·d2n > 2C · d2n

]
(by Observation 4.13)

= Pr
[
Z2C·d2n − Z0 > 2C · d2n− Z0

]

6 Pr
[
Z2C·d2n − Z0 > C · d2n

]
(by Lemma 4.12),
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provided that C is a sufficiently large constant. Combining Theorem 4.14 with β(Bd) =
O(d2/3n) (by Lemma 4.16) and |Zk −Zk−1| 6 max{1, β(G)}, Var [ Zk − Zk−1 ] = O(d2/3n)
(by Lemma 4.19) yields

Pr [ σ /∈ I2C·d2n ] 6 2 · exp


− (C · d2n)2

2 ·
(∑2C·d2n

k=1 d2/3n + d2/3n·C·d2n
3

)



6 2 · exp

(
− C2d4n2

14
3
· (C · d8/3n2)

)

= 2 · exp

(
− 3

14
· C · d4/3

)
6 d−2d 6 (d!)−2,

and the claim follows by taking the union bound over all σ ∈ Sd.

With almost the same arguments, we obtain concentration results on SCALED(G) =
SCALED(s, V (G)) by choosing V ′ = V for the martingale Zk. For simplicity, we only
state them for SCALED(G), however, it is clear that by an appropriate scaling, equivalent
bounds also hold for SEQ(G).

Theorem 4.21. For SCALED the following concentration results hold.

1. For the graph Bd, we have for any α with d4/3n < α = o(Z0) = o(d2n),

Pr [ |SCALED(Bd)− Z0| > α ] 6 exp

(
−Ω

(
α2

d8/3n2

))
.

2. For any graph CGd ∈ {Sd, Pd} we have for any d5/6n < α = o(Z0) = o(d log d · n),

Pr [ |SCALED(CGd)− Z0| > α ] 6 exp

(
−Ω

(
α2

d5/3n2

))
.

3. For the graph Qd, we have for any d5/6n < α = o(Z0) = o(dn),

Pr [ |SCALED(Qd)− Z0| > α ] 6 exp

(
−Ω

(
α2

d5/3n2

))
.

Proof. We only give the proof for the first statement, as the other two are shown in the
same way. Recall that β(G) = O(d2/3n) by Lemma 4.16. Substituting s = τ and V ′ = V
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into Zi, we obtain by Observation 4.13 and Theorem 4.14,

Pr [ SCALED(τ, V ) > Z0 + α ] 6 Pr [ ZZ0+α > Z0 + α ]

= Pr [ ZZ0+α − Z0 > α ]

6 2 · exp


− α2

2 ·
(∑Z0+α

k=1 d2/3n + d2/3n·α
3

)



6 2 · exp

(
− α2

O(d2 · n + α) · d2/3n + 2d2/3n·α
3

)

= exp

(
−Ω

(
α2

d8/3n2

))
.

Finally, we remark that by connecting two complete graphs by one edge we obtain a
graph G where SCALED(G) is not highly concentrated around its mean.

4.5 Conclusion

In this chapter we derived tight bounds on the runtime of a randomized rumor spreading
algorithm on several important Cayley graphs. First, we proved that the push algorithm
takes only O(log n) steps on every graph lying in a certain subclass of Cayley graphs.
From this we concluded that the runtime is asymptotically optimal on star graphs, pancake
graphs and transposition graphs.

To obtain also a tight bound for bubble sort graphs, we combined recent results of
[BBHM05] on the runtime of a randomized version of the bubble sort algorithm with a
new martingale-based approach. Roughly, we showed that if the time required to spread
the rumor to any fixed neighbor is small, then the runtime is highly concentrated around its
expected value. As a by-product, we derived concentration results for star graphs, pancake
graphs and hypercubes.

Our results leave open some of the following questions. To begin with, can the result of
Theorem 4.6 be extended to the mixing time (cf. Chapter 5), i. e., the time until a random
walk has approached the stationary distribution up to some constant deviation? For star
graphs and transposition graphs, the mixing time is known to be Θ(d log d) (cf. Subsection
4.1.2). For the pancake graph, Fill [Fil91] mentioned an upper bound of O(d4 log d). He
conjectured that the mixing time is Θ(d log d), but to the best of our knowledge, no progress
has been made towards this conjecture.

The techniques of Section 4.4 do not work for the transposition graph, and it might be
the case that the time required to inform a fixed neighbor (β) is not significantly smaller
than the time to inform all vertices in the graph. Nevertheless, we believe that the runtime
is also concentrated on this graph class and believe that it could be proven by some other
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techniques such as a decomposition into disjoint subgraphs. However, Rabinovich [Rab07]
even conjectured that such type of concentration holds for all Cayley graphs.

Another limitation of our concentration results is the restriction to the sequential push
algorithm. It would be interesting to see if one could prove similar results for the parallel
push algorithm.
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5. RANDOMIZED RUMOR SPREADING VS.
RANDOM WALKS

5.1 Introduction

For a survey on random walks we refer the reader to [Lov93], which also deals with the cover
time and its connection to electrical networks. Another recommendable survey is [Gur00]
with an emphasis on techniques to bound the mixing time. Also the textbooks [MR95,
MU05] contain a lot of material about random walks and its application in computer
science.

5.1.1 Motivation

A random walk on a graph G = (V, E) with n vertices is the following process. Starting
from some vertex s ∈ V (G), we select a neighbor of s uniformly at random and move to
this neighbor. After that, we select a neighbor of this new vertex randomly, move to it
and so on. By repeating this procedure we obtain an infinite (random) sequence of vertices
called random walk. While here we shall only deal with discrete-time random walks on
discrete structures (graphs), there are also continuous versions of random walks arising in
mathematics and physics. The archetypal example is the Brownian Motion [GS01] which is
used as a mathematical model for random movements of molecular particles, the evolution
of stock prices etc.

The classical theory of random walks was also concerned with infinitely large networks.
A classic result of Pólya states that a random walk in a d-dimensional grid returns to the
starting point in expected finite time, if and only if d 6 2. Spurred by recent algorithmic
developments, the interest has shifted from infinite to finite networks and, correspondingly,
from qualitative to quantitative questions like the following ones. How many steps are
required until a random walk has visited all vertices? How many steps are required to get
a ”good” sample of all vertices? For this purpose we define the cover time of a random
walk on a graph G as the expected number of steps to visit all vertices on G. Closely
related to the cover time is the commute time between two vertices u and v which is the
expected time for a random walk starting from u to return to u after at least one visit to
v. The mixing time is the first time-step t after the distance between the distribution at
step t and the equilibrium distribution is smaller than some given threshold.

While parameters like the cover and mixing time are interesting in their own right, there
is a variety of results relating them to graph-theoretical parameters. Since the random walk
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is a repeated matrix-vector multiplication, it does not come as a great surprise that the
spectrum, i. e., the eigenvalues of the graph, characterize the mixing time fairly accurately.
More precisely, the reciprocal of the difference between 1 and the second largest eigenvalue
of the transition matrix, called spectral gap, captures this rate of convergence. Along with
the spectral gap comes a geometric measure called conductance, which can be viewed as
the edge expansion of the underlying graph. The conductance provides similar but slightly
weaker bounds on the mixing time than the spectral gap.

Another fruitful connection of random walks is the one to electrical networks. Viewing
the graph as an electrical network, the effective resistance between u and v is the voltage
difference when one ampere is injected into u and removed from v. It turns out that the
commute time between two vertices u and v is precisely the effective resistance between
them times twice the number of edges. Of great use for bounding the effective resistance
(and thus the commute time) are the following rules known as Rayleigh’s Short-cut Princi-
ple: the effective resistance is never increased by adding an edge or by gluing two vertices
together [CRR+97] (possibly leading to multiple edges).

An early application of the cover time in computer science was the so-called undirected
s − t-connectivity problem USTCON defined as follows. Given some graph G and two
vertices s, t ∈ V (G), the task is to decide whether s and t are connected or not. It is
clear that a depth-first search solves this problem in O(|E|) steps, however, it requires
Ω(n) space. Another solution is to take a random walk starting from s and see whether
t is visited during the first 2n3 steps. This gives the correct answer with some constant
probability and uses only 2n3 steps and O(log n) space for keeping track of the random
walk’s position. In a recent result by Reingold [Rei05] it was shown that one can also
decide USTCON deterministically by using O(log n) space and polynomial time.

An associated parameter to the cover time is the so-called blanket time (also known
as multiple cover time) [WZ96]. The blanket time is the first time-step t after which the
number of visits to any vertex differs from the expected number of visits within t steps
only by a factor of 2. It is obvious that the blanket time is bounded below by the cover
time and it is conjectured that they are the same up to some constant factor [WZ96].

For many #P-problems such as counting independent sets in a graph, counting the
number of Hamilton cycles in a graph or computing the permanent of a matrix, efficient
approximation algorithms based on random walks were developed [Sin93, MR95, MU05].
Often it is relatively easy to construct a random walk with the desired stationary distri-
bution, e.g., a distribution which assigns every independent set the same probability. The
crux however is to bound the mixing time. This explains why such a variety of techniques
to upper bound the mixing time have been developed (cf. [Lov93, Gur00]).

Moreover, random walks can be viewed as a simple diffusive load balancing scheme
when interpreting the (normalized) load distribution as a probability distribution. Also
the analysis of randomized algorithms can frequently be reduced to questions about random
walks on certain graphs (see [MR95, p. 128] for a simple example).
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5.1.2 Related Work

As most results in this chapter deal with the cover time, we correspondingly put emphasis
on the related work on the cover time. Still, there is a vast body of literature devoted to
the cover time and we can only point to some results directly related to our study. At the
end of this subsection, we briefly explain the basic connection between mixing and cover
time. For more details on the state of the art in the field of mixing time, the reader is
referred to [Lov93, MR95, Gur00, MU05].

Cover Time. The study of the cover time was initiated 1979 by Aleliunas et al. [AKL+79].
Amongst other results, it was shown that the cover time is upper bounded by the weight
of a minimum spanning tree of G, where the edges are weighted according to the commute
times between the corresponding vertices. In particular, this implies a (polynomial) upper
bound of O(n3) for any graph. This approach was refined by Feige [Fei97b] to get improved
upper bounds on the cover time, e. g., an upper bound of (2− o(1)) · n2 for regular graphs
was derived.

In [Ald83] Aldous showed that for certain Cayley graphs, the cover time is (1 +
o(1))n ln n. Broder and Karlin [BK89] proved several bounds which rely on the spec-
tral gap of the transition matrix. Their bounds imply that the cover time on any regular
edge-expander is Θ(n log n). The seminal work of Chandra et al. [CRR+97] established a
close connection between the electrical resistance of a graph and its cover time. Further-
more, several methods for bounding the resistance were introduced and applied to obtain
tight bounds for various graph classes. One of their results relates the cover time to the
vertex-expansion of the graph and can be considered as an improvement of the bound from
[BK89] based on the spectral gap.

Also a lot of effort has been made to prove Aldous’ conjecture that the cover time is
at least (1 + o(1))n ln n on every graph. Affirmative answers for special graph classes had
been given [BK89, Zuc92], until the conjecture was finally resolved by Feige [Fei95a]. In
the same year, Feige also proved an almost exact upper bound of (4/27)n3 + o(n3) for
general graphs [Fei95b]. This bound is matched by the so-called lollipop-graph, a clique of
size 2n/3 with an n/3-path attached.

Winkler and Zuckerman [WZ96] introduced the blanket time. They conjectured that
the blanket time is upper bounded by the cover time up to some constant factor, and
indeed this was shown for several important cases. In [KKLV00] Kahn et al. proved that
the blanket time is at most the cover time times an O((ln ln n)2)-factor on any graph.

More recently, research on the cover time seems to have focused on special graph classes,
e.g., random regular graphs [CF05], random geometric graphs [AE06] and planar graphs
[JS00].

Motivated by time-space tradeoffs for the USTCON problem, one has also considered
multiple random walks. A usual assumption is that these random walks move indepen-
dently and synchronously. One possibility is to start each random walk from a randomly
chosen vertex. [BKRU94] proved a general result which implies that in this case n ran-
dom walks cover any graph in O(log2 n) steps. Recently, Alon et al. [AAK+08] considered
multiple random walks starting all from the same vertex s. They investigated the tradeoff
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between adding more random walks on s and the resulted decline of the cover time on
different graph classes. Also very recently, the cover time of dynamically evolving graphs
was considered [AKL08]. It was found out that a lazy random walk could guarantee a
polynomial cover time, while the standard random walk may take an exponential time on
certain classes of evolving graphs.
Mixing Time. The best bounds on the mixing time in terms of the spectral gap are due to
Sinclair [Sin92]. Also Sinclair [Sin93] introduced the so-called conductance and related this
measure to the spectral gap. By means of this relationship, he devised the first polynomial
approximation scheme for computing the permanent of a matrix [Sin93].

The basic idea behind a reduction of the cover time to the mixing time is as follows
[Ald83, Dia88]. Assume for simplicity that G is a regular graph and divide the random
walk into subsequent periods of length mixing time. Then the first vertices of each period
are nearly independent and uniformly chosen among V . Therefore, the problem reduces to
the Coupon Collector’s Problem (cf. Theorem 2.19) and we obtain a bound of n ln n times
the mixing time. The proofs of [Ald83, CF05] rely on this simple idea, however, by a much
more involved analysis they get exact bounds such as (1 + o(1))n ln n on certain graphs.

5.1.3 Our Results

We begin by showing that the broadcast time on every graph is upper bounded by the
mixing time of a random walk and a factor of ∆/δ. The rest and the main body of this
chapter is devoted to the first comprehensive comparison of the cover time with the runtime
of randomized broadcast. All results at a glance can be found in Figure 5.1. Most of these
results provide strong evidence for the intuition already formulated in the seminal work of
Chandra et al. [CRR+97], saying that “the cover time of the graph is an appropriate metric
for the performance of certain kinds of randomized broadcast algorithms”. Note that at a
first look these processes seem not to be closely related. In fact it was pointed out by Feige
et al. [FPRU90] that randomized broadcast is a parallel process where propagation occurs
at every informed vertex, while the random walk moves only from one vertex to another.

We start by proving that the cover time of any graph G = (V,E) is at most O( |E|
δ

log n)
times the broadcast time. Along with known bounds relating the two parameters to spectral
and geometric properties of G, we obtain as a by-product a multitude of several inequalities
which might be of independent interest. As one example, it was asked in [CRR+97] whether
one can derive an upper bound on the cover time whose dependence on the vertex-expansion
is less than quadratic. We obtain the first upper bound on the cover time which depends
linearly on the edge-expansion at the cost of an additional logarithmic factor. Note that
the bound of [BK89] based on the spectral gap implies only a bound with a quadratic
dependence on the edge-expansion.

As the afore-mentioned upper bound on the cover time of O( |E|
δ

log n) times the broad-
cast time is always Ω(n log2 n), we focus on more restricted graph classes to get down to
the optimal value O(n log n). We state two upper bounds on the cover time which are
shown to be tight for some important graph classes. More importantly, we show that both
upper bounds improve on previous bounds based on the spectral gap [BK89] or even the
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Bound Comment Reference

C(u, v) 6 4 |E|
δ
· E [ PAR(u, v) ] tight for paths/cycles and com-

plete k-ary trees with k = o(1)
Thm. 5.19

COV = O( |E| log n
δ

maxu,v E [ PAR(u, v) ]) tight for k-ary trees, k = o(1) Thm. 5.19

COV = O( |E|
δ
· ∆

δ
· log3 n · Φ−1) first upper bound with lin-

ear dependence on expan-
sion/conductance

Cor. 5.21

COV = O(n · (PARn−1 + MIXe−1))
(∆-regular graphs with ∆ > 5 ln n)

improves on bounds of [BK89]
and [CRR+97] for Hamming
graphs

Cor. 5.25

maxu,v C(u, v) = O(n · √MIXe−1 · log n)
(Cayley graphs)

tight for paths and cycles
(up to log n)

Thm. 5.37

maxu,v C(u, v) = O(
n +

n·MIX
2/3

e−1 ·log n

∆1/3

)
(Cayley graphs)

tight for dense Hamming graphs Thm. 5.37

C(u, v) > 2 · dist(u, v)2 extends lower bound of [Zuc92]
from trees to general graphs

Cor. 5.41

COV = Ω(
√

n log n
∆

· PARn−1) matched by two-dimensional
torus graph up to

√
log n-factor

Prop. 5.42

COV = Ω(
√

n√
∆log2 n

· PARn−1)

(nΩ(1)-regular graphs)

establishes polynomial gap for ∆-
regular graphs whenever ∆ =
o(n)

Thm. 5.43

COV = Ω(∆2

n
· 1

log n
· E [ PAR ])

(regular graphs)

shows together with Thm. 5.19
that on dense regular graphs
cover time and broadcast time
differ by ≈ n

Cor. 5.50

COV = Ω(diam ·∆ · log n)
(regular graphs, ∆ > n1/2)

tight for n1/2 6 ∆ 6 n
(cf. next result)

Prop. 5.63

COV = O((n + n2

∆2 ) · log n)
(Harary graphs)

establishes tightness of
Prop. 5.63 for ∆ > √

n, as
diam = Θ( n

∆
)

Prop. 5.55

COV = Ω(diam ·√n log n)
(regular graphs, ∆ 6 n1/2)

log2 n-tight for 4 6 ∆ 6 n1/2

(cf. next result)
Prop. 5.63

COV = O(diam ·√n · log2 n)
(Graph of Def. 5.57)

establishes log3/2 n-tightness of
Prop. 5.63 for ∆ 6 √

n
Thm. 5.61

Fig. 5.1: Summary of all derived bounds on the cover time COV = COV(G). C(u, v)
denotes the commute time between u and v; PAR refers to runtime of the parallel
push algorithm (cf. Section 3.2).



54 5. Randomized Rumor Spreading vs. Random Walks

bound based on the vertex-expansion [CRR+97] for these graphs.
Conversely, we address the problem of lower bounding the cover time by the broadcast

time. As the cover time and broadcast time may coincide on non-regular graphs, we aim
at proving lower bounds only for regular graphs. Nevertheless, many of our results give
also reasonable bounds for graphs where ∆/δ is not too large.

By showing that the commute time between two vertices is bounded below by the
square of their distance, we conclude that for bounded-degree graphs the cover time is at
least Ω(

√
n log n) times the broadcast time. This bound is easily seen to be tight up to a

factor of (log n)3/2 by considering a two-dimensional torus graph.
On the other end of the scale, we consider dense graphs, i. e., regular graphs with a

degree of Ω(n) and establish a much larger gap. For every such graph we prove that
the cover time is at least n times the broadcast time, neglecting logarithmic factors. We
complement this bound by the construction of ∆-regular graphs, ∆ > √

n, such that the
cover time is at most O(∆ · log n) times the broadcast time. Combining this with the upper
bound on the cover time of the second paragraph of this subsection, we have shown that
the cover time is captured by the runtime of the push algorithm up to logarithmic factors
on all ∆-regular graphs if and only if ∆ = Ω(n).

For graphs with some polynomial, but sublinear degree, our lower bounds are weaker.
More precisely, there is a polynomial gap between the bounds and the examples we were
able to find. Nevertheless, we can to conclude that the cover time is always a factor of n1/5

larger than the broadcast time on any regular graph. We remark that a figure illustrating
most of our results for regular graphs can be found in Figure 5.2.

We believe that our findings are also of interest due to the variety of applied proof
techniques. These include couplings, ideas from group-theory and the use of certain flows
from the theory of electrical networks. To the best of our knowledge, couplings have
not been used for bounding the cover time before. Furthermore, Feige et al. [FPRU90]
mentioned certain difficulties in applying methods from electrical network theory for their
study of the push algorithm.

5.1.4 Road Map

We give the basic notation and some preliminary results in Section 5.2. In Section 5.3 we
relate the runtime of the push algorithm to the mixing time (and associated parameters)
of random walks. In Section 5.4 we derive upper bounds on the cover time by means of
the runtime of the push algorithm. Section 5.5 comprises our lower bounds on the cover
time. Finally, we conclude by summarizing our results and pointing at some directions for
further research in Section 5.6.

5.2 Notations, Definitions and Preliminaries

Random Walk. A random walk on a given undirected, unweighted, simple and connected
graph G = (V,E) starts at some specified vertex s ∈ V and moves in each step along some
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∆

maxG∈G∆

{
COV(G)

E[PAR(G) ]

}f(∆)

n1/4 n1/2 n3/4 n

n1/4

n3/4

n

minG∈G∆

{
COV(G)

E[PAR(G) ]

}

minG∈G∆

{
COV(G)
diam(G)

}

O(1)

n1/2

Fig. 5.2: All bounds relating the cover time to the broadcast time (or diameter) on ∆-
regular graphs at a glance. G∆ denotes the class of ∆-regular graphs. For
instance, the red polygon indicates the gap between our lower bounds on the
cover time and the examples which we were able to find for different values of
∆. For simplicity, polylogarithmic factors have been ignored.

adjacent edge chosen uniformly at random. This can be described by a transition matrix
P, where pij = 1/ deg(i) if {i, j} ∈ E(G), and pij = 0 otherwise. Then, the random walk
is an infinite sequence of vertices X0, X1, . . ., where X0 := s is the starting point of this
random walk, and Xt denotes the vertex visited by the random walk at step t. Note that
Xt is in fact a random variable with a distribution ps(t) on V (G). Denoting by ps(0) the
unit-vector (regarded as column vector) with 1 at the component corresponding to s and
0 otherwise, we obtain the iteration

ps(t + 1) = ps(t) ·P

for every step t ∈ N. It is well-known that on non-bipartite graphs, ps(t) converges for
t → ∞ towards the stationary distribution vector π satisfying π(v) = deg(v)/(2|E|). For
simplicity, we confine ourselves to non-bipartite graphs in the following. This causes no
loss of generality as for bipartite graphs, one can consider the modified transition matrix
1
2
I + 1

2
P (with I being the identity matrix) instead of P. This change of the transition

matrix slows down the mixing time and the cover time only by some constant factor [Lov93].
In addition, the broadcast time increases by at most a constant factor (cf. Theorem 3.4).
Therefore, all coming inequalities would remain the same (modulo the multiplication of
some constant factor).

Mixing Time, Spectral Gap and Conductance. We give some basic definitions and
auxiliary results.
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Definition 5.1. The mixing time of a random walk on G is defined as

MIXε(G) := max
s∈V

min{t ∈ N : ‖ps(t)− π‖1 6 ε,X0 = s}.

The so-called separation time of a random walk is defined as

SEPe−1(G) := min{t ∈ N : Pr [ Xt = u | X0 = s ] > (1− e−1) · π(u) ∀u, s ∈ V }.

Lemma 5.2 ([AF02]). For any graph G = (V,E), SEPe−1(G) = Θ(MIXe−1(G)).

Definition 5.3. The conductance of a random walk with transition matrix P is defined as

Φ = min
X⊆V,π(X)>0

∑
x∈X,y∈Xc π(x)Px,y

min{π(X), π(Xc)} ,

which is, for our choice of P, exactly the same as the edge expansion of G (cf. Defini-
tion 2.32).

Since G is connected and non-bipartite, and P is a stochastic matrix, it is known that
the eigenvalues of P are λ1 = 1 > λ2 > · · · > λn > −1.

Theorem 5.4 ([Sin93]). The second largest eigenvalue λ2 of P satisfies

1− 2Φ 6 λ2 6 1− Φ2

2
.

Theorem 5.5 ([Sin92]). Consider a random walk on G with transition matrix P. Let
λmax := max{λ2, |λn|}. Then

λmax

2 · (1− λmax)
· ln(2ε)−1 6 MIXε(G) 6 max

x∈V

{
1

1− λmax

· (ln(π(x))−1 + ln ε−1
)}

.

Commute Time, Resistance and Cover Time. For two vertices u, v ∈ V (G) let
H(u, v) := E [ min{t ∈ N\{0} : Xt = v,X0 = u} ] be the hitting time (also known as first
passage time) from u to v, i. e., the expected number of steps to reach v from u. It is
known that for any u ∈ V , H(u, u) = (1/π(u)) = 2|E|/ deg(u). The commute time C(u, v)
is defined as the expected number of steps to reach v when starting from u and then
returning back to u, thus C(u, v) := H(u, v) + H(v, u) (notice that even on regular graphs,
H(u, v) = H(v, u) may not be true [Lov93]).

We only sketch the definition of the effective resistance R(u, v) between two vertices
u and v; the justification is given in the theorem below. Consider the graph G as an
electrical network where each edge represents a unit resistance. Assume that one ampere
were injected into vertex u and removed from vertex v in the network. Then R(u, v) is the
voltage difference between u and v. For more details on electrical networks the reader is
referred to, e.g., [Lov93, MR95, CRR+97]



5.3. Conductance, Spectral Gap and Mixing Time of Random Walks 57

Theorem 5.6 ([CRR+97]). For any pair of vertices u, v ∈ V , C(u, v) = 2|E| · R(u, v).

We will mainly be concerned with the so-called cover time, which is the expected number
of steps a random walk takes to visit all vertices of G. Denote by COV(s) this time for
a random walk which starts from s. Note that if we can prove that a random walk visits
all vertices within x steps with some probability p > 0, then the bound COV(s) 6 x/p
follows by the expectation of the geometric distribution [GS01]. Usually, we are interested
in COV(G) := maxs∈V COV(s). The following well-known result relates the maximum
commute time to the cover time.

Theorem 5.7 ([MR95, CRR+97]). For any graph G = (V, E),

1

2
· max

u,v∈V
C(u, v) 6 COV(G) 6 e3 · max

u,v∈V
C(u, v) ln n + n

Consequently, also maxu,v∈V R(u, v) captures the cover time up to a factor of O(log n).
We will also frequently use the following lower bound of Feige [Fei95a].

Theorem 5.8 ([Fei95a]). For any graph G = (V, E), COV(G) > (1 + o(1)) · n ln n.

5.3 Conductance, Spectral Gap and Mixing Time of Random Walks

We use the inequality of Proposition 3.12 to get upper bounds on the broadcast time by
means of one of the three measures mentioned in the title of this section.

Corollary 5.9. Let G = (V, E) be any graph. Then

PARn−1(G) = O
(

∆

δ
· Φ−1 · log n

)

and

PARn−1(G) = O
(

∆

δ
· 1

1− λ2

· log n

)
,

where λ2 is the second largest eigenvalue of P.

Proof. In this proof we consider the sequential push algorithm SEQ. Clearly for any 1 6
m 6 n− 1,

Λ(m) = min
X⊆V,|X|=m

{∑
v∈X

degXc(v)

deg(v)

}
> min

X⊆V,|X|=m

{ |E(X, Xc)|
∆

}

= min{m, n−m} · δ

∆
· min

X⊆V,|X|=m

{ |E(X, Xc)|
min{m · δ, (n−m) · δ}

}

> min{m,n−m} · δ

∆
· min

X⊆V,|X|=m

{ |E(X, Xc)|
min{vol(X), vol(Xc)}

}

> min{m,n−m} · δ

∆
· Φ.
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By Proposition 3.12 we have

E [ SEQ(G) ] 6
n−1∑
m=1

1

Λ(m)
6

n−1∑
m=1

1

min{m,n−m} · δ
∆
· Φ 6 ∆

δ
· Φ−1 · 2 ln n.

To bound SEQn−1(G), consider X :=
∑n−1

m=1 Xm, where Xm is the number of steps required
to increase the number of informed vertices from m to m + 1. By Lemma 2.23, we may
assume that each Xm is a geometric variable with mean (min{m,n − m} δ

∆
Φ)−1. Hence

E [ Xm ] 6 ∆
δ
Φ−1 and thus Corollary 2.26 gives SEQn−1(G) = O (

∆
δ
· Φ−1 · log n

)
. The

second claim follows directly from 1−2Φ 6 λ2 ⇔ Φ−1 6 2/(1−λ2) due to Theorem 5.4.

Corollary 5.10. For any graph G = (V, E),

PARn−1(G) = O
(

∆

δ
· (MIXn−1(G) + log n)

)
.

Proof. Recall that λmax = max{λ2, |λn|}. Since we assume that G is not bipartite, λmax <
1 [Lov93]. Hence we get by Corollary 5.9 and Theorem 5.5 that

PARn−1(G) = O
(

∆

δ
· 1

1− λ2

· log n

)
= O

(
∆

δ
· 1

1− λmax

· log n

)

= O
(

∆

δ
·
(

λmax

1− λmax

· log n + log n

))

= O
(

∆

δ
· (MIXn−1(G) + log n)

)
.

To see that the factor ∆
δ

cannot be omitted in general, consider the following graph G.
Take the graph K1,n−1 and add some perfect matching to the vertices with degree 1 (this
is just to make the graph non-bipartite). For this graph one can verify that MIXn−1(G) =
O(log n) but PARn−1(G) = Ω(n log n).

An example where the mixing time is much larger than the broadcast time is given
after Theorem 5.20 in the next section.

5.4 Upper Bounds on the Cover Time

We will frequently compare our upper bounds with the following two known bounds.

Theorem 5.11 (Spectral Gap Bound, [BK89]). Let G = (V, E) be any graph. Assume
that the vertices 1, 2, . . . , n are ordered such that π(1) 6 π(2) 6 . . . 6 π(n). Then

COV(G) 6 1

1− λ2

·

(2 + ε) ln n− n ln π(1) +

∑
16i6n

( ∑
16j6i

π(j)

)−1

 · (1 + o(1)),
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where ε > 0 is an arbitrary constant. Moreover, if G is a regular graph, we have

COV(G) 6 (4 + ε) · n ln n

1− λ2

· (1 + o(1)),

where ε > 0 is an arbitrary constant.

Theorem 5.12 (Vertex-Expansion Bound, [CRR+97]). Let G be a graph with vertex-
expansion α. Then

COV(G) = O
( |E|

α2 · δ · log n

)
.

Essentially, Theorem 5.11 requires a regular graph to be an edge-expander to become
O(n log n) while for Theorem 5.12 a vertex-expander suffices. Nevertheless, the dependence
on the vertex-expansion in Theorem 5.12 is quadratic and the corresponding dependence
of 1− λ2 on the edge-expansion may not necessarily be quadratic (cmp. Theorem 5.4).

5.4.1 An Upper Bound for General Graphs

In order to establish an upper bound on the cover time for general graphs, we first prove a
general inequality between first-passage-percolation times and broadcast times and apply
then a result of Lyons et al. [LPP99] relating first-passage-percolation to the cover time.

Definition 5.13 (Undirected first-passage-percolation (cf. [LPP99, FP93])). The
undirected first-passage-percolation model UFPP is defined as follows. Each (undirected)
edge e ∈ E(G) is assigned some weight w(e) which is an independent exponential variable
with parameter 1 (and mean 1). Specify some vertex s. Then the first-passage-percolation
time from s to v is defined by

UFPP(s, v) := inf
P=(s,...,v)

∑
e∈P

w(e),

where the inf is over all possible paths from s to v in G. Note that UFPP(s, s) = 0.

Theorem 5.14. For any graph G = (V, E) and two vertices s, v we have

E [ UFPP(s, v) ] 6 1

δ
· E [ PAR(s, v) ] .

Proof. The proof will be divided into several (in-)equalities between different models. First
we introduce a directed version of UFPP, denoted by DFPP. In this model each undirected
edge {u, v} is replaced by two directed edges (u, v) and (v, u), and each directed edge
e is assigned a weight w(e), which is an exponential variable with mean 1. Denote by
DFPP(s, v) the corresponding first-passage-percolation time of this directed version. We
prove:
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Lemma 5.15. For every pair of vertices s, v,

UFPP(s, v) ¹ 2 · DFPP(s, v).

Proof. Consider the modification UFPP2(s, v) of the undirected first-passage-percolation
model UFPP(s, v) where all edges are independent exponential random variables with pa-
rameter 2. By Observation 2.4,

UFPP(s, v)
D
= 2 · UFPP2(s, v).

Consider now the directed model DFPP and a pair of edges (u, v) and (v, u). By
definition, w(u, v) and w(v, u) are independent exponential variables with parameter 1.
Hence by Lemma 2.3, w({u, v}) := min{w(u, v), w(v, u)} is an exponential variable with
parameter 2. Clearly, the random variables ∪{u,v}∈Ew({u, v}) are independent. Therefore

DFPP(s, v)
D
= inf

P=(s,...,v)

∑

e=(u,v)∈P

w((u, v))

º inf
P=(s,...,v)

∑

e=(u,v)∈P

w({u, v}) D
= UFPP2(s, v)

D
=

1

2
· UFPP(s, v).

Next consider another broadcast model denoted by SEQ. At the beginning, a vertex
s knows a rumor which should be spread to all other vertices. Once a vertex v receives
the rumor at step t, it sends the rumor at each step t + X1,v, t + X1,v + X2,v, . . . to some
randomly chosen neighbor, where the Xi,v, i > 1, are independent exponential variables
with parameter deg(v). Let SEQ(s, v) be the first time when v is informed.

Lemma 5.16. For every pair of two vertices s, v, the random variables SEQ(s, v) and
DFPP(s, v) have the same distribution.

Proof. Fix some arbitrary vertex u ∈ G and let SEQ(s, u) be the time until u becomes
informed. We shall be interested in the time until u transmits the rumor to some neighbor
u′ ∈ N(u). Recall that the sequence X1,u, X2,u, . . . are independent exponential variables
with parameter deg(u). Consider

X(u, u′) := min
t∈N

{
t∑

i=1

Xi,u

∣∣∣ Nt,u = u′
}

.

At each step SEQ(s, u) + X1,u, SEQ(s, u) + X1,u + X2,u, . . ., u transmits the rumor to some
uniformly chosen neighbor. Therefore Lemma 2.5 implies that X(u, u′) is an exponential
random variable with mean deg(u)/ deg(u) = 1. It follows that for every directed edge
(u, u′) ∈ E(G) the time until SEQ forwards the rumor along this edge is SEQ(s, u) plus
an exponential variable with mean deg(u). For every u, u′ ∈ V (G), all these increments to
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SEQ(s, u) are independent random variables. Hence, SEQ(s, v) and DFPP(s, v) have the
same distribution.

Finally, our aim is to relate SEQ and PAR. In the proof we will use the concept of
minimal path from Observation 3.2, similarly to the proof of Theorem 3.5.

Lemma 5.17. For any pair of vertices s, v ∈ V we have

E
[
SEQ(s, v)

]
6 E [ PAR(s, v) ]

δ
.

Proof. We first recall the following description of an instance of PAR from Section 3.3. A
fixed instance of PAR is described by (Nt,u)t∈N,u∈V , where Nt,u ∈ N(u) is the neighbor of u
chosen in step PAR(s, u) + t and PAR(s, u) is the time-step at which u becomes informed.
Recall that Ω1 is the set of all instances, i. e., the set of all (Nt,u)t∈N,u∈V .

In order to describe an instance of SEQ, let Ω1 be as before and let Ω2 be the probability
space which specifies the time-steps at which a vertex sends the rumor to some neighbor.
Thus Ω2 can be described by (Xt,u)t∈N,u∈V , where the Xt,u are independent exponential
variables, each of which has parameter deg(u) (mean 1/ deg(u)). Then given ω1 ∈ Ω1 and
ω2 ∈ Ω2, a vertex u ∈ V sends the rumor at time-step SEQ(s, u) +

∑t
k=1 Xk,u to neighbor

Nt,u for any t > 1.
We consider a coupling between SEQ and PAR where the same ω1 occurs, but ω2 ∈ Ω2

is chosen uniformly at random, i. e., each Xk,u is an independent exponential variable with
parameter deg(u). Let Pmin(s, v) be a minimal path from s to v in some instance ω1 ∈ Ω1

of PAR. Note that in this case the expected time (w. r. t. Ω2) to traverse Pmin(s, v) can be
bounded by the sum of D(Pmin(s, v)) independent exponential variables with parameter at
least δ (mean at most 1/δ). Hence the expected time in SEQ for traversing Pmin(s, v) is at
most D(Pmin(s, v))/δ. For some integer k, let Ak be the event that k = D(Pmin(s, v)) for
some minimal path from s to v in the instance ω1 ∈ Ω1. By using conditional expectations
we obtain

E
[
SEQ(s, v)

]
=

∞∑

k=1

E
[
SEQ(s, v) | Ak

] ·Pr [Ak ] 6
∞∑

k=1

k

δ
·Pr [Ak ] =

E [ PAR(s, v) ]

δ
,

and the lemma follows.

We are now ready to finish the proof of Theorem 5.14. For every pair of vertices s, v ∈ V,

E [ UFPP(s, v) ] 6 2 · E [ DFPP(s, v) ] = 2 · E [
SEQ(s, v)

]
6 2 · E [ PAR(s, v) ]

δ
.

Theorem 5.18 ([LPP99]). Let u, v ∈ V (G) with u 6= v. Then, R(u, v) 6 E [ UFPP(u, v) ] .

Combining the prior two theorems we arrive at the main result of this section.
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Theorem 5.19. For any graph G = (V, E) we have for every pair of vertices u 6= v,

C(u, v) 6 4 · |E|
δ
· E [ PAR(u, v) ] ,

and hence

COV(G) = O
( |E|

δ
· log n · max

u,v∈V
E [ PAR(u, v) ]

)
.

Proof. Using the identity C(u, v) = 2|E| · R(u, v) (Theorem 5.6) we have for any u 6= v

C(u, v) = 2|E| · R(u, v) 6 2|E| · E [ UFPP(u, v) ] (by Theorem 5.18)

6 4|E| · E [ PAR(u, v) ]

δ
(by Theorem 5.14),

and the first claim follows. If u = v it is known that C(u, u) = 4|E|/(deg(u)) 6 4|E|/δ and
since maxu,v E [ PAR(u, v) ] > 1 (unless |V | = 1 for which the claim is trivial), the second
claim follows immediately from Theorem 5.7.

Note that the first inequality is matched by paths, cycles (maxu,v C(u, v) = Θ(n2),
cf. [Lov93]) and complete k-ary trees, where k = O(1) (maxu,v C(u, v) = Θ(n log n) [Zuc92,
Cor. 9]). The first inequality may be even tight for some highly non-regular graphs like
lollipop graphs (a complete graph with 2n/3 vertices attached by a path of length n/3)
which have a cubic maximum commute time [Lov93, Fei95b], but a linear broadcast time.

Complete k-ary trees with k = O(1) provide an example where also the second in-
equality is tight up to a constant factor: the cover time is known to be Θ(n log2 n) [Zuc92,
Cor. 9] and furthermore, PARn−1(G) = O(diam(G) + log n) for any bounded-degree graph
[FPRU90].

Furthermore, Theorem 5.19 is matched up to logarithmic factors by graphs of an ar-
bitrary density, because every regular graph with PARn−1(G) = O(log n) matches Theo-
rem 5.19 up to a logarithmic factor. This in sharp contrast to the results we derive in
Section 5.5.

In the remainder of this subsection, we give some graph-theoretical inequalities which
can be derived from Theorem 5.19 and the following results. It was shown by Zuckerman
[Zuc92] that COV(G) >

∑n
k=2(1− λk)

−1. Combining this lower bound with Theorem 5.19,
Proposition 3.12 and the inequality

E [ PAR(G) ] = O(PARn−1(G)) = O(SEQn−1(G)) = O(E [ PAR(G) ] · log n),

we obtain the following chain of inequalities.

Theorem 5.20. For any graph G we have the following chain of inequalities (suppressing
constant factors),

n∑

k=2

1

1− λk

6 COV(G) 6 |E|
δ
· log n · E [ PAR(G) ] 6 |E|

δ
· log2 n ·

n−1∑

k=1

1

Λ(k)
. (5.1)
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In particular, we have
n∑

k=2

1

1− λk

6 |E|
δ
· log2 n ·

n−1∑

k=1

1

Λ(k)
. (5.2)

We think that these inequalities are interesting from different points of view. First, 5.1
gives a combinatorial upper bound on the cover time based on some edge expansion-based
measure. Conversely, we get a spectral lower bound on the broadcast time. Finally, in 5.2
we obtain a graph-theoretical inequality by relating all nontrivial eigenvalues of P to the
edge expansion-based measure Λ. This inequality bears some resemblance to the inequality

2

1− λ2

6 1

Φ2
(5.3)

implied by Theorem 5.4. However, the following example shows that all expressions in-
volved in 5.1 can be substantially smaller than the expressions involved in 5.3.

Consider the Cayley graph G = Kn/2×K2. Clearly, G is far from being an edge-expander
and Theorem 5.11 overestimates the cover time of G by a factor of almost n. By [Zuc92,
Theorem 13], COV(G) = Θ(log n ·∑n

k=2
1

1−λk
) for every Cayley graph. As a consequence,

the left inequality of 5.1 is tight up to a logarithmic factor. Using Proposition 3.13, the
right side of 5.1 is O(n · log3 n). Putting everything together, the rightmost and leftmost
side of 5.1 differ only by a factor of O(log3 n) for this graph.

This graph G = Kn/2 × K2 provides also an example, where the mixing time is poly-
nomial, but broadcast time and cover time are close to their optimal values O(log n) and
O(n log n), respectively.

Before concluding this section, we obtain as a simple corollary the first upper bound
on the cover time that depends linearly on the edge-expansion (however, at the cost of an
additional factor of log n in comparison with Theorem 5.12).

Corollary 5.21. For any graph G = (V, E),

COV(G) = O
( |E|

δ
· ∆

δ
· log3 n · Φ−1(G)

)
.

Proof. Follows immediately by substituting the first bound of Corollary 5.9 into the second
one of Theorem 5.19.

5.4.2 Upper Bounds depending on the Mixing Time

In this subsection we also derive upper bounds on the cover time. In contrast to the
previous subsection, these bounds depend additionally on the mixing time.

Bounds for General Graphs.

Definition 5.22 ([BKRU94]). For some integer k, consider k independent parallel ran-
dom walks on G, each starting from a uniform random vertex. Let COVk(G) be the expected
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time until all vertices have been visited by at least one of the k random walks.

Theorem 5.23 ([BKRU94]). Let G be a regular graph and let 6 log n 6 k 6 n. Then

COVk(G) = O
(

n2

k2
· log2 n

)
.

Notice that for k = o(log n) the statement of the theorem would be useless, as it is
known that COV(G) = O(n2) for every regular graph [Fei97b]. We prove the following.

Theorem 5.24. For any graph G = (V, E),

COV(G) = O(
n · (COVn(G) + MIXe−1(G))

)
.

Proof. To simplify notation, define M := MIXe−1(G). As a first step, we introduce another
model of 4n parallel random walks covering a graph. In this model the starting positions of
the 4n random walks denoted by Y 1, Y 2, . . . , Y 4n are determined as follows. Each random
walk starts from some vertex in v ∈ G with probability (1 − e−1)π(v). With probability
e−1, the random walk fails, i. e., the random walk is removed from the network and is not

able to visit any vertex. The cover time of this model is denoted by COV
4n

(G).
The key idea is to define a proper coupling between one (long) random walk X and the

4n (short) random walks Y 1, Y 2, . . . , Y 4n. This coupling will have the property that if the
4n short random walks cover V (G), then also the (coupled) random walk X covers V (G).

Consider the random walk X starting from some arbitrary vertex s until step n ·α(M+
COVn(G)), where α is a large enough constant. Let X0, X1, . . . be the sequence of vertices
visited by the random walk at step 0, 1, . . .. Note that the distribution of Xt+αM depends
on Xt, but Lemma 5.2 implies that for any v, v′ ∈ V (G) and any time-step t > 0

Pr [ Xt+αM = v | Xt = v′ ] > (1− e−1) · π(v).

From the above it follows that,

Pr
[
Y 1

0 = v
]

= (1− e−1) · π(v) 6 Pr [ XαM = v | X0 = v′ ] ,

for any vertices v, v′ ∈ V . Hence, by Lemma 2.24 there is a coupling between XαM and Y 1
0

such that Y 1
0 = v implies XαM = v. Now if Y 1

1 = v for some v ∈ V occurs, then we extend
the coupling by setting Y 1

t := Xt+αM for every step 0 6 t 6 αCOVn(G) − 1. Otherwise,
Y 1

1 fails and the first random walk is removed from G without visiting any vertex.
More generally, assume that we have coupled the first i · (αM+ αCOVn(G))− 1 steps

of X with Y 1, Y 2, . . . , Y i. As before, we have

Pr
[
Y i+1

0 = v′
]

= (1− e−1)π(v) 6 Pr
[
Xi·α(M+COVn(G))+αM = v | Xi·α(M+COVn(G)) = v′

]
,

and Lemma 2.24 implies the existence of a coupling between Xi·α(M+COVn(G))+αM and Y i
1

such that
Y i

1 = v ⇒ Xi·α(M+COVn(G))+αM = v.
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In case the i-th random walk Y i does not fail, we extend the coupling as before by Y i
t :=

Xi·α(M+COVn(G))+αM+t for 0 6 t 6 αCOVn(G) − 1. To summarize, we have defined a
coupling between the random walk X and the short random walks Y 1, Y 2, . . . , Y 4n with
the property that

⋃
16i64n:

Y i does not fail

α(M+COVn(G))−1⋃
t=0

Y i
t ⊆

4nα(M+COVn(G))⋃
t=0

Xt,

that is, every vertex visited by one of the Y i is also visited by X. In particular, if the
4n random walks Y 1, Y 2, . . . , Y 4n cover the whole graph, then also X does. It follows
from the Chernoff bound for the sum of Bernoulli variables (Theorem 2.11) that at least
2n of the random walks Y 1, Y 2, . . . , Y 4n does not fail with probability 1 − n−1. For the
remainder of the proof, we have to introduce some further notation. With a slight abuse of

notation, let COVs(G)(ω) (and correspondingly, COV
4n

(G)(ω) and COV2n(G)(ω)) be the
random variable representing the first time-step when all vertices have been visited. With
this notation at hand,

Pr [ COVs(G)(ω) > αn · (COVn(G) +M) ]

6 Pr
[
COV

4n
(G)(ω) > α · COVn(G)

]
(by the coupling)

6 Pr
[
COV2n(G)(ω) > α · COVn(G)

]
+ n−1 (by the Chernoff bound)

6 1

α
+ n−1 (by Markov’s inequality),

and the claim follows.

Our goal is now to relate COVn(G) to PARn−1(G).

Corollary 5.25. Let G = (V, E) be any ∆-regular graph with ∆ > 5 ln n. Then

COV(G) = O(
n · (PARn−1(G) + MIXe−1(G))

)
.

Proof. For the proof, we require the so-called agent-based-broadcast-model from [ELS07]
defined as follows. There are n agents performing independent and synchronous random
walks on G. If an agent visits an informed vertex, the agent becomes informed. Similarly,
if a vertex is visited by an informed agent, the vertex becomes informed. At the beginning
step 0, there is only one informed vertex, and the starting points of the n agents are chosen
independently and uniformly at random from V . Let ABR(G) be the random variable
being the first step at which all n vertices are informed. It is evident that COVn(G) 6
E [ ABR(G) ]. Moreover, in [ES08b] it was shown that for every graph G with ∆ > 5 ln n,



66 5. Randomized Rumor Spreading vs. Random Walks

ABRn−1(G) = O(PARn−1(G)). Combining these findings with Theorem 5.24 yields

COV(G) = O(
n · (COVn(G) + MIXe−1(G))

)

= O(
n · (E [ ABR(G) ] + MIXe−1(G))

)

= O(
n · (ABRn−1(G) + MIXe−1(G))

)

= O(
n · (PARn−1(G) + MIXe−1(G))

)
,

as desired.

Note that there are certain graphs (e.g., star graphs and transposition graphs [Dia88,
ES07]) for which 1−λ2 is not a constant, but MIXe−1(G) = PARn−1(G) = O(log n). Hence,
Corollary 5.25 gives the optimal bound of O(n log n) for these graphs, while Theorem 5.11
yields an asymptotically larger upper bound.

Hamming graphs and Vertex-Expanders.

We will show that for certain Hamming graphs the bound of Theorem 5.19 outperforms not
only the spectral gap-based bound (Theorem 5.11), but also the bound in Theorem 5.12
based on the vertex-expansion.

Definition 5.26. Let Hamc,d =
∏d

i=1 Kc, be the (c, d)-Hamming graph with n = cd vertices.
That is, Hamc,d is the d-wise Cartesian product of a complete graph with c vertices.

It is easily seen that Hamc,d is a regular graph with degree (c−1) ·d. Vertices of Hamc,d

are naturally represented as {1, 2, . . . , c}d = [c]d. Note that Ham2,d gives the d-dimensional
hypercube Qd. Moreover, Hamc,d is bipartite if and only if c = 2. We shall use the following
bound on the broadcast time of Hamming graphs.

Theorem 5.27 ([Sau07]). For every c > 2, d > 1, PARn−1(Hamc,d) = O(log n).

We will now extend the coupling method for bounding the mixing time on hypercubes
(cf. [MU05, p. 276]) to general Hamming graphs.

Definition 5.28 ([MU05]). A coupling of a random walk on G with transition matrix P
is a sequence Zt = (Xt, Yt) ⊆ V × V, t ∈ N ∪ {0}, such that for all x, x′, y, y′ ∈ V,

Pr [ Xt+1 = x′ | Zt = (x, y) ] = Pxx′ ,

Pr [ Yt+1 = y′ | Zt = (x, y) ] = Pyy′ .

Hence, one of the sequences Xt and Yt viewed separately behaves like the original
random walk on G. The idea behind a coupling is to define Zt such that Xt and Yt will
reach the same vertex rapidly and make identical moves from then on. The next lemma
explains why we seek such couplings.
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Lemma 5.29 (Coupling Lemma, [MU05]). Let Zt = (Xt, Yt) be a coupling for a
random walk on G. Suppose that there is a step t′ such that for every x, y ∈ V (G)

Pr [ Xt′ 6= Yt′ | X0 = x, Y0 = y ] 6 ε.

Then
MIXε(G) 6 t′.

The following result follows by a straightforward adaption of the well-known coupling
for bounding the mixing time of hypercubes [MU05, p. 276].

Proposition 5.30. For every Hamc,d with c > 3,

MIXε(Hamc,d) 6 c− 1

c− 2
· d · ln

(
d

ε

)
.

Proof. Consider two random walks Xt and Yt. Recall that Xt and Yt are infinite sequences
of vectors [c]d. For some 1 6 d′ 6 d, Xt(d

′) denotes the d′-th coordinate of the vector Xt.
We define the coupling Zt = (Xt, Yt) as follows.

In each step, choose some d′ ∈ [d] uniformly at random and c′ ∈ {1, . . . , c}\Xt(d
′)

uniformly at random and let Xt+1 be Xt with the d′-th coordinate replaced by c′. If
c′ 6= Yt(d

′), then let Yt+1 be Yt with the d′-th coordinate replaced by c. Otherwise, we
define Yt+1 as Yt with the d′-th coordinate replaced by Xt(d

′). We see that Yt and Xt do
exactly a random walk on Hamc,d induced by P. By construction, Xt(d

′) = Yt(d
′) implies

Xt+1(d
′) = Yt+1(d

′). Furthermore, we reach Xt(d
′) = Yt(d

′) for some d′ ∈ [d], if there is
some previous step t′ < t, where d′ ∈ [d] and c′ ∈ [c] were chosen with Yt′(d

′) 6= c′. In each
step t′ ∈ N, we choose this fixed d′ with probability 1/d and choose a c′ ∈ [c], c′ 6= Yt′(d) with
probability c−2

c−1
. Hence, the probability that for t′ := c−1

c−2
d log(d

ε
) steps still Xt′(d) 6= Yt′(d)

holds is at most (
1− 1

d
· c− 2

c− 1

) c−1
c−2

d ln( d
ε
)

6 ε

d
.

By the union bound we conclude that Xt′ 6= Yt′ with probability at most ε, and the claim
follows by Lemma 5.29.

Combining our previous two findings we arrive at the following result.

Corollary 5.31. Consider Hamc,d with n = cd vertices and d = o(log n/ log log n). Then

COV(Hamc,d) = O(n log n).

Proof. By an application of Theorem 5.27, PARn−1(Hamc,d) = O(log n) for every c > 3.
For d = o(log n/ log log n) (and correspondingly, c = ω(log n)), Proposition 5.30 leads to
MIXe−1(Hamc,d) = O(log n). Since deg(Hamc,d) = ω(log n) for this choice of d, Theorem
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5.24 results in

COV(Hamc,d) = O(
n · (PARn−1(Hamc,d) + MIXe−1(Hamc,d))

)
= O(n · log n).

To show that the bounds of Theorems 5.11 and 5.12 do not give a bound of O(n log n)
on Hamc,d when d ∈ [ω(1), o(log n/ log log n)], we prove that Hamc,d is not a vertex-expander
unless d is a constant.

Proposition 5.32. For d = ω(1), Hamc,d is not a vertex-expander.

Proof. To show that Hamc,d is not a vertex-expander, we prove the existence of a subset
X, |X| = n

2
with the property that |N(X)\X| = o(n). First note that for any two adjacent

vertices u = (u1, . . . , ud) and v = (v1, . . . , vd) in Hamc,d, |
∑d

i=1 ui−
∑d

i=1 vi| 6 c−1. Define

X :=
{

(u1, . . . , ud)
∣∣∣ 1 6 ui 6 c,

d∑
i=1

ui 6 c + 1

2
d
}

.

In order to bound |N(X)\X|, we apply the well-known probabilistic method (cf. [AS00]):
we shall prove that a vertex u = (u1, . . . , ud) chosen uniformly at random among V satisfies

∣∣∣
d∑

i=1

ui − c + 1

2
· d

∣∣∣ = ω(c)

with probability 1− o(1), whence it follows that either u ∈ X or u ∈ Xc\N(X), by which
the claim follows. Note that the random variable

∑d
i=1 ui is a sum of d independent Uni[c]-

distributed random variables, i.e., each such random variables takes some value of {1, . . . , c}
with the same probability. It is known that E [ Uni[c] ] = c+1

2
and Var[Uni[c]] = c2−1

12

(cf. [GS01]). Now define an auxiliary random variable

Zd :=

∑d
i=1 ui − c+1

2
· d√

c2−1
12

·
√

d
.

By the Central Limit Theorem (cf. Theorem 2.8),

lim
d→∞

Pr [ Zd 6 z ] =
1√
2π

∫ z

−∞
e−

x2

2 dx. (5.4)

By above normalization of
∑d

i=1 ui we have

Pr

[ ∣∣∣
d∑

i=1

ui − c + 1

2
d
∣∣∣ > d

1
4 c

]
⇔ Pr


 |Zd| > d

1
4 c√

c2−1
12

·
√

d


 .
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Using the limit of 5.4,

Pr
[ |Zd| > O(d−1/4)

]
>

(
1− 1√

2π

∫ O(d−1/4)

−O(d−1/4)

e−
x2

2 dx

)
− o(1) > 1− o(1).

We note that with the same method, one could also show that star graphs and trans-
position graphs are not vertex-expanders.

Now for d ∈ [ω(1), o(log n/ log log n)], Proposition 5.32 demonstrates that Hamc,d is
not a vertex-expander (and hence not an edge-expander as well). Therefore in contrast
to Corollary 5.24, the bounds of Theorem 5.12 and Theorem 5.11 are not tight up to a
constant factor.

Cayley graphs.

Using a similar coupling idea as in the proof of Theorem 5.23, we establish two upper
bounds for the cover time of Cayley graphs.

Theorem 5.33 ([Fei97a]). Let G = (V, E) be any graph. Then the expected time until
ñ 6 n distinct vertices have been visited by a random walk is bounded by

O
(

ñ + ñ2 ·min

{
∆,

min{ñ, ∆} · log n

δ

})
.

Hence for a ∆-regular graph G, the following upper bound holds:

O
(

min

{
ñ +

ñ3

∆
, ñ2

}
· log n

)
.

Definition 5.34 (cf. [Tit00]). Given a set S and a group (H, ◦), a group action of H
on S is a function ♦ from H × S to S satisfying

(h ◦ h′)♦s = h♦(h′♦s) ∀s ∈ S ∀h, h′ ∈ H

id ◦ s = s ∀s ∈ S.

A group action acts transitively on a finite set S if for all s, s′ ∈ S there is some h ∈ H
with h♦s = s′. Finally, we define F (s, s′) := {h ∈ H | h♦s = s′}.
Lemma 5.35. If ♦ is a transitive group action of H on S, then |F (s, s′)| = |H|/|S|.
Proof. We claim that for any s, s′, s′′ ∈ S, |F (s, s′)| = |F (s, s′′)| holds. Let x ∈ F (s, s′).
Since H acts transitively, there exists y ∈ H such that y♦s′ = s′′. Hence (y ◦ x)♦s =
y♦(x♦s) = y♦s′ = s′′. The translation ϕy : H → H, x 7→ y ◦ x for fixed y is a bijection and
thus |F (s, s′)| = |F (s, s′′)|. Due to ∪s′∈SF (s, s′) = H and F (s, s′) ∩ F (s, s′′) = ∅ for every
s, s′, s′′ ∈ S we obtain |F (s, s′)| = |H|/|S|, as needed.
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+++LOOK FOR A REFERENCE+++

Lemma 5.36. Let H be a group which acts transitively on a finite set S and let D be some
random variable on H such that for every h ∈ H, Pr [ D = h ] > (1− e−1)|H|−1. Then for
any two subsets A,B ⊆ S,

E [ |A ∩D♦B| ] > (1− e−1) · |A| · |B||S| .

Proof. Let A,B ⊆ S be two arbitrary subsets and for a ∈ A, b ∈ B let Xa,b = 1 if D♦b = a
and Xa,b = 0 otherwise. Observe that Xa,b is a random variable, as it depends on the
random variable D. By linearity of expectations and Lemma 5.35,

E [ |A ∩D♦B| ] = E

[ ∑

a∈A,b∈B

Xa,b

]
=

∑

a∈A,b∈B

Pr[Xa,b = 1] =
∑

a∈A,b∈B

Pr[D♦b = a]

>
∑

a∈A,b∈B

|F (b, a)|
|H|

(
1− e−1

)
=

(
1− e−1

) ∑

a∈A,b∈B

|H|
|S|
|H| =

(
1− e−1

) |A| · |B|
|S| ,

as claimed.

Recall that a Cayley graph CG = (H, F ) is defined by a group (H, ◦) being the vertices
and a generating set F corresponding to the edges (cf. Definition 4.1).

Theorem 5.37. For any Cayley graph CG = (H, F ),

max
u,v∈V

C(u, v) = O
(

min

{
n ·

√
MIXe−1(G) · log n, n +

n · (MIXe−1(G))2/3 · log n

∆1/3

})
.

Proof. We begin with the first upper bound. To simplify notation, let M := MIXe−1(G).
Note that if

√M > n, then the first bound of the theorem holds trivially, as for regular
graphs an upper bound of O(n2) is known [Fei97b]. Henceforth we will assume

√M 6 n.

Consider a random walk and let X0, X1, . . . be the sequence of visited vertices at step
0, 1, . . .. Similar to the proof of the previous theorem, we divide the random walk into
2 n√M consecutive phases, each of which lasts 2l steps, where l := C · M · log n for some
sufficiently large constant C. Each phase starts with l steps in order to ”mix” the random
walk and ends with another phase of length l during which we take care of the visited
vertices.

Observe that the transitions of a random walk on a Cayley graph are made by choosing
a generator of F uniformly at random. More precisely, if Xt is the location at step t, the
next location is specified by Xt+1 = Xt ◦ ft, where ft is the uniformly chosen generator at
step t.

Consider now some phase i, 1 6 i 6 2 n√M which begins at step (i− 1) · 2l and ends at
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step i · 2l − 1. By Lemma 5.2,

Pr
[
X(i−1)·2l+l = x | X(i−1)·2l = x′

]
> (1− e−1) · 1

|H| (5.5)

for every x, x′ ∈ H. Consider now the sequence of l vertices

X(i−1)·2l+l, X(i−1)·2l+l+1, . . . , Xi·2l−1.

Note that these vertices are known, once we know X(i−1)·2l+l and the chosen l−1 generators

f(i−1)·2l+l, f(i−1)·2l+l+1, . . . , fi·2l−2,

because for every j > 1

X(i−1)·2l+l+j = X(i−1)·2l+l+j−1 ◦ f(i−1)·2l+l+j−1 = X(i−1)·2l+l ◦
(©j

k=1f(i−1)·2l+l+k−1

)
. (5.6)

Let us define

B :=
i·2l−1⋃

t=(i−1)·2l+l

Xt =
l−1⋃
j=0

(
X(i−1)·2l+l ◦

(©j
k=1f(i−1)·2l+l+k−1

))
. (5.7)

We shall be interested in the number of distinct vertices visited between step (i− 1) · 2l + l

and i · 2l − 1, that is |B| =
∣∣∣⋃i·2l−1

t=(i−1)·2l+l Xt

∣∣∣ . Multiplying each Xt by X−1
(i−1)·2l+l from the

left side does not change |B|, as this multiplication is a bijection on H. Using this fact
along with 5.6 yields

|B| =
∣∣∣∣∣
l−1⋃
j=0

(©j
k=1f(i−1)·2l+l+k−1

)
∣∣∣∣∣ ,

demonstrating that the number of distinct visited vertices does not depend on X(i−1)·2l+l,
but only on the chosen generators in the l − 1 subsequent steps after step (i− 1)2l + l.

By Theorem 5.33, the expected number of steps after
√M distinct vertices are visited,

is bounded by O(M· log n). It follows from Markov’s inequality that after 2 ·O(M· log n)
steps,

√M distinct vertices are visited with probability at least 1/2. Hence for sufficiently
large C,

Pr
[
|B| >

√
M

]
> 1

2
. (5.8)

To apply Lemma 5.36, note that the group operation ◦ from H can also be regarded
as a group action on H. Moreover, ◦ is a transitive group action, as for any given h1 ∈ H
and h2 ∈ H, h1 ◦ (h−1

1 ◦ h2) = h2. Let u be an arbitrary but fixed vertex and set A := {u}
and D := X(i−1)·2l+l. Using Equations 5.5, 5.7 and Lemma 5.36 we obtain for any fixed

B̂ ⊆ H,

E
[
|{u} ∩D♦B̂|

]
= Pr

[
u ∈ D♦B̂

]
> |B̂|

n
· (1− e−1).
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Taking conditional probabilities and using 5.8 we conclude that

Pr [ u ∈ D♦B ] =
∑

B̂⊆V

Pr
[
B = B̂

]
·Pr

[
u ∈ D♦B | B = B̂

]

>
∑

B̂⊆V :

|B̂|>√M

Pr
[
B = B̂

]
· |B̂|

n
· (1− e−1)

>
√M

n
· (1− e−1) ·

∑

B̂⊆V :

|B̂|>√M

Pr
[
B = B̂

]
>
√M

n
· (1− e−1) · 1

2
.

Therefore, the probability that u is not visited during the 2 n√M phases is at most

(
1−

√M
n

· (1− e−1) · 1

2

)2 n√M

< 1,

having used the assumption
√M 6 n. Consequently, maxu,v∈V C(u, v) = O( n√M ·M· log n)

and the first bound follows.

The second upper bound is shown with similar arguments. Also here, we first remark
that wheneverM·∆ > n3, the second bound holds trivially, as n·M2/3

∆1/3 > n3

∆
> n2. Therefore,

we assume M ·∆ 6 n3 in what follows. Theorem 5.33 implies that the expected time to
visit ñ distinct vertices is bounded by ñ + ñ3

∆
log n. Here, we set ñ := (M ·∆)1/3 6 n and

consider 2n/ñ phases each of which lasts O(M) + ñ + ñ3

∆
log n = O(M log n + ñ) steps. In

each such a phase ñ distinct vertices are visited with probability 1/2 and since there are
n/ñ independent phases in total, after

n

ñ
· O(M log n + ñ) = O

(
n · M log n

ñ
+ n

)
= O

(
n · M2/3 log n

∆1/3
+ n

)

time-steps, an arbitrary but fixed vertex has been visited with constant probability.

The first bound on the maximum commute time is tight, as for the n-cycle MIXe−1(G) =
Θ(n2) = COV(G). The second bound implies that for Cayley graphs with MIXe−1(G) =
O(
√

∆), the maximum commute time is of order n. For instance, for Hamc,d with c =
Ω(log2 n) we can derive an upper bound of COV(G) = O(n log n) since MIXe−1(Hamc,d) =
O(log n) by Proposition 5.30.

In comparison to the bound of Aldous [Ald83], our two bounds are less precise since
the leading constant is O(1) in comparison with 1+o(1). However, our bound is somewhat
more general, as the bound of Aldous depends also on the expected number of returns to the
starting point during MIXe−1(G) many steps. Furthermore, his bound requires MIXe−1(G)
not to be polynomial in n.
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5.5 Lower Bounds on the Cover Time

In this section we present lower bounds on the cover time depending on the runtime of the
push algorithm. Since in the push algorithm propagation occurs at all informed vertices,
while in the random walk propagation occurs only from the current location, the following
observation is immediate.

Observation 5.38. For any graph G, E [ COV(G) ] > E [ PAR(G) ] .

The graph K1,n−1 provides an example where this inequality is almost tight. Indeed, a
straightforward computation based on the famous coupon collector’s problem (cf. Theorem
2.19) shows that E [ COV(K1,n−1) ] = (2 ± o(1)) · E [ PAR(K1,n−1) ]. This example demon-
strates that further assumptions on the graph class are necessary in order to establish some
considerable (e.g., polynomial) gap between the cover time and broadcast time. We first
present bounds which are designed for graphs with a small maximum degree.

5.5.1 Sparse Graphs

In this subsection we derive lower bounds on the cover time that are strongest for sparse
graphs, e.g., graphs with a bounded degree.

Definition 5.39. Given a graph G = (V, E), a set Π ⊆ E(G) is called a cutset separating
u ∈ V from v ∈ V if every path from u to v includes an edge of Π.

The next result relies on a technique which was already introduced in 1959 by Nash-
Williams [NW59]. It confirms the intuition that if there are many disjoint small cutsets
separating two vertices u, v, then the random walk requires a long time to commute between
u and v.

Theorem 5.40 ([LPW06]). If {Πi}n
i=1 are disjoint cutsets separating u from v, then

R(u, v) >
n∑

i=1

|Πi|−1.

With this theorem at hand, it is easy to prove the following fundamental result.

Corollary 5.41. Let u, v be two vertices of G. Then C(u, v) > 2 (dist(u, v))2 .

Proof. For the proof of the corollary we first observe the following claim, which is a simple
consequence of the inequality between the harmonic and arithmetic mean.

Claim. Let x1, . . . , xn be positive integers. Then
∑n

k=1 x−1
k > n2(

∑n
k=1 xk)

−1.

For each integer 0 6 i 6 dist(u, v)−1, let Πi := {{r, s} ∈ E | dist(u, r) = i∧ dist(u, r) =
i + 1}. Clearly, all Πi’s are disjoint and every path from u to v must include at least one
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edge of each Πi. Hence, by Theorem 5.40 and the claim above

R(u, v) >
dist(u,v)−1∑

i=0

1

|Πi| > (dist(u, v))2

|E| .

As C(u, v) = 2|E| · R(u, v), the corollary follows.

A related result can be found in [Zuc92, Corollary 6] showing that for two arbitrary
vertices u, v on a tree, H(u, v) > (dist(u, v))2. However, the following simple example shows
that it is not possible to replace C(u, v) by H(u, v) in the bound of Corollary 5.41 (at the
cost of some constant factor). Take a complete binary tree with n leaves and connect all
of them to a new vertex v. Let r be the root of the binary tree. By simple probabilistic
arguments, one can verify that H(r, v) = Θ(dist(u, v)) = o(dist(u, v)2).

Proposition 5.42. Let G = (V,E) be a graph. Then COV(G) = Ω
(√

n log n
∆

· PARn−1(G)
)

.

Proof. This proof is done by a simple case analysis. Suppose first that diam(G) 6
√

n log n.
By a result of [FPRU90],

PARn−1(G) = O(∆ · (diam(G) + log n)) = O(∆ ·
√

n log n).

Since COV(G) > (1 + o(1)) · n ln n (Theorem 5.8) we obtain

COV(G) > (1 + o(1)) · n ln n

= Ω
(√

n log n ·
√

n log n
)

= Ω

(√
n log n · PARn−1(G)

∆

)
.

Now assume diam(G) >
√

n log n. Then PARn−1(G) = O(∆ · diam(G)) and by Corollary
5.41 we arrive at

COV(G) > diam(G)2 > Ω

(√
n log n · PARn−1(G)

∆

)
,

which completes the proof.

As demonstrated by the two-dimensional torus graph where PARn−1(G) = Θ(
√

n) and
COV(G) = Θ(n log2 n) [Zuc92], the bound of Proposition 5.42 is tight up to a factor of
log3/2 n for bounded degree graphs.

The next result improves on Proposition 5.42 by a factor of almost
√

∆ for regular
graphs. Moreover, its proof directly relates the cover time to the broadcast time of the
given graph.

Theorem 5.43. Let G be a regular graph with ∆ = nα where α is at least some constant
> 0. Then

COV(G) = Ω

( √
n√

∆ · log2 n
· PARn−1(G)

)
.
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Proof. The basic proof idea is as follows. We first define a modification of the push al-
gorithm which performs not faster than the original push algorithm. We will show that
this modification performs slowly if and only if many disjoint cutsets between two proper
vertices exist.

The precise definition of the modified push algorithm and the construction of the dis-
joint cutsets is given in Figure 5.3.

Modified Push Algorithm

Input: Graph G = (V, E)
Output: Disjoint Cutsets {Πw}|W|

w=1

1: t ← 0, w ← 0, W ← ∅
2: It ← {s}
3: while It 6= V do
4: if |E(It, I

c
t )| > ∆1+ε then mode ← P else mode ← W

5: if mode = P then // perform like original push algorithm
6: for all vertices u ∈ It do
7: choose v ∈ N(u) u. a. r.
8: It+1 ← It+1 ∪ {v}
9: end for

10: t ← t + 1
11: It+1 ← It

12: end if
13: if mode = W then // wait until N(It) has been informed
14: I ← It

15: w ← w + 1
16: W ←W ∪ {t}
17: Πw ← E(I, Ic) // another disjoint cutset
18: while It 6= I ∩N(I) do
19: for all vertices u ∈ I do
20: choose v ∈ N(u) u. a. r.
21: It+1 ← It+1 ∪ {v}
22: end for
23: t ← t + 1
24: It+1 ← It

25: end while
26: mode ← P
27: end if
28: end while

Fig. 5.3: Definition of the modified push algorithm PAR.

Let PAR(G) denote the random variable representing the runtime of this modified push
algorithm. It is evident that this modified version is not faster and so PARn−1(G) 6
PARn−1(G). Next we prove an upper bound on PARn−1(G).
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Claim. For any graph G = (V,E), PARn−1(G) 6 |W| · 5
α
·∆ ln ∆ + 5n∆−ε.

Proof. We first distinguish between the two modes P and W .

1. Consider now some step t with |E(It, I
c
t )| > ∆1+ε and mode P . By using a Chernoff

bound [MU05] along with the fact that ∆ = nα, α > 0, the set of informed vertices
increases by at least 1

5
∆ε with probability 1−n−3, whenever ε > 0 (cf. [ELS07]). Let

P be the set of time-steps at which PAR is in mode P after the execution of line 4.
Using the union bound we conclude that |P| 6 n

5∆1+ε with probability 1− n−2.

2. On the other hand consider some time-step t when |E(It, I
c
t )| 6 ∆1+ε occurs in line 4

and the mode changes to W . We are interested in the number of time-steps until the
mode changes to P , which is the same as the required number of steps to inform every
vertex in N(It). The probability that on one edge of E(It, I

c
t ) the rumor is not sent

within (5/α) ·∆ ln(∆) steps equals
(
1− 1

∆

)(5/α)∆ ln∆ 6
(
1− 1

∆

)(5/α)∆α ln n 6 n−5. By
applying the union bound over all edges, we conclude that within (5/α)∆ ln ∆ steps
the rumor is sent along all edges of E(It, V \It) with probability 1 − n−3. Clearly,
|E(It, I

c
t )| 6 ∆1+ε in line 4 occurs at most |W| 6 n times. Hence, by the union bound

we conclude that after each execution of line 14, PAR spends at most 5/α · ∆ ln ∆
steps in the while-loop between lines 18–25 with probability 1− n−2.

Now the case study above implies that

PARn−1(G) 6 |W| · 5

α
·∆ ln ∆ + |P| 6 |W| · 5

α
·∆ ln ∆ +

n

5∆1+ε
,

which finishes the proof of the claim.

We now derive a lower bound on COV(G) by means of |W|.
Claim. For any graph G and any execution of PAR, COV(G) > 1

2
n|W|∆−ε.

Proof. Denote by l one vertex which becomes informed during the last step t of the modified
push algorithm. We first show that {Πw}|W|

w=1 are disjoint cutsets separating s from l and
then apply the inequality of Nash-Williams. Write W = {t1, t2, . . . , t|W|} in the order the

Πw are assigned in line 17. We begin by proving that {Πw}|W|
w=1 are disjoint.

To see this consider Πw and Πw′ where 1 6 w < w′ 6 |W|. Let tw and tw′ be the
respective time-steps when Πw and Π′

w are assigned in line 18. By definition of PAR,
Πw = E(Itw , Ic

tw) and Πw′ = E(Itw′ , I
c
tw′

). For the same reason, Ic
tw ∩N(Itw) ⊆ Itw+1 ⊆ Itw′

and therefore it is not possible that Πw′ contains an edge of Πw.
Next we prove that each Πw, 1 6 w 6 |W|, is a cutset separating s from l. Fix some

w and consider Πw assigned in time-step tw. Recall that the set Πw contains all edges
between Itw and Ic

tw . The set Itw is a subset of vertices containing s, while Ic
tw is a subset of

vertices containing l. Hence, every path from s to l must include at least one edge between
Itw and Ic

tw , and consequently, one edge of Πw.
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Since {Πw}|W|
w=1 are disjoint cutsets, we obtain by an application of Theorem 5.40

R(s, l) >
|W|∑
w=1

|Πw|−1 >
|W|∑
w=1

∆−1−ε = |W| ·∆−1−ε

and therefore C(s, l) = 2|E| · R(s, l) > 2 · 1
2
n∆|W|∆−1−ε = n|W |∆−ε, implying COV(G) >

1
2
n|W|∆−ε.

We are now in a position to put our bounds together. Combining the results of the two
claims above with the general lower bound COV(G) > (1 + o(1))n ln n (Theorem 5.8) we
arrive at

COV(G)

PARn−1(G)
>

max{(1 + o(1))n ln n, 1
2
n|W|∆−ε}

|W| · 5
α
∆ ln ∆ + 5n∆−ε

. (5.9)

Finally, we choose ε = 1−α
2α

> 0 and apply a case analysis on 5.9. First, let |W|· 5
α
∆ ln(∆) >

5n∆−ε. Then 5.9 is lower bounded by

1
2
n|W|∆−ε

2|W| 5
α
∆ ln(∆)

=
1

20
· n

ln n
∆−1−ε =

n

20 ln n
n(α·(−1− 1−α

2α
)) =

1

20 ln n
· n

1
2
−α

2

log n
.

Now let |W| · 5
α
∆ ln(∆) 6 5n∆−ε. In this case 5.9 is bounded below by

(1 + o(1))n ln n

10n∆−ε
=

1

10
(1+o(1)) ln n ·∆ε =

1

10
(1+o(1)) ln n ·n(α· 1−α

2α
) =

1

10
(1+o(1)) ln n ·n 1

2
−α

2 ,

and the claim follows.

5.5.2 Dense Graphs

In this section we focus on graphs with a degree of order n. First, we briefly mention
results for the case δ(G) > bn

2
c. As shown by [CRR+97], COV(G) = O(n log n), whenever

δ(G) > bn
2
c. The authors also observed that there is an abrupt change for δ(G) = bn

2
c− 1:

for the graph G consisting of two complete graphs with n/2 vertices connected by an edge,
COV(G) = Θ(n2).

We note that it is possible to proof the analogue result PARn−1(G) = O(log n) for
every graph with δ > bn

2
c. Hence, for δ(G) > bn

2
c, the gap between cover time and

broadcast time is (trivially) of order n. Instead of proving this bound, we will establish a
gap of approximately n for any regular graph of degree Ω(n). Before doing so, we have to
introduce some further notation and definitions.

Consider a random walk X0 = s,X1, . . . on G starting from s. Note that an instance of
the random walk can be described (as the parallel push algorithm) by (Nt,v)t∈N,v∈V . Here,
Nt,v represents the neighbor of v to which the random walk moves after the t-th visit of v.
Denote the number of visits to v until time t as Wt(s, v) := |{0 6 t′ 6 t : Xt′ = v, X0 = s}|.
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Definition 5.44 ([KKLV00]). Consider a graph G = (V,E) and a random walk starting
from s ∈ V . Let

BLAs := E

[
min

{
t ∈ N :

Wt(s, v) deg(v′)
Wt(s, v′) deg(v)

< 2 ∀v, v′ ∈ V
} ]

,

where x
0

:= ∞ for every x > 0. The blanket time of G is BLA(G) = maxs∈V BLAs.

Consider some step t such that the condition of the blanket time is satisfied, i. e.,
Wt(s,v) deg(v′)
Wt(s,v′) deg(v)

< 2 for all v, v′ ∈ V . Clearly, there is at least one v′ ∈ V (G) such that

Wt(s, v
′) 6 t · π(v′) = t · deg(v′)/(2|E|). Hence for every v 6= v′,

2 >
Wt(s, v) deg(v′)
Wt(s, v′) deg(v)

> Wt(s, v) · deg(v′)

t · deg(v′)
2|E| · deg(v)

=
Wt(s, v) · 2|E|

t · deg(v)
,

and so Wt(s, v) < 2 · deg(v)
2|E| · t. Using symmetrical arguments we arrive at

1

2
· deg(v)

2|E| · t 6 Wt(s, v) 6 2 · deg(v)

2|E| · t

for every vertex v ∈ V . Hence, after expected BLA(G) steps every vertex is visited as
many times as predicted by the stationary distribution, up to a factor of 2. We will use
the following upper bound on BLA(G) by Kahn et al.

Theorem 5.45 ([KKLV00]). For any graph G = (V,E),

BLA(G) = O (
COV(G) · (ln ln n)2

)
.

We observe the following simple graph-theoretical lemma (Recall that a 2-cover of G is a
subset X ⊆ V such that for all v ∈ V there is an x ∈ X with dist(x, v) 6 2).

Lemma 5.46. Let G = (V, E) be any graph with minimum degree δ. Then there is a
2-cover X of G with |X| 6 dn

δ
e.

Proof. We give the algorithm for the construction of the 2-cover in Figure 5.4. It is obvious
that this algorithm terminates and produces indeed a 2-cover of V (G). We now derive a
specific upper bound on the number of iterations, which equals the size of the returned
2-cover.

For some i ∈ N, let Yi := {v ∈ V (G) | ∀j 6 i : dist(u, uj) > 1}. Clearly, Y0 = V (G).
Let u be a vertex such that for every j 6 i, dist(u, uj) > 2. Hence, for some v ∈ N(u),
dist(v, uj) > 1 for every j 6 i. Therefore, |Yi| 6 |Yi−1| − |N(u)| 6 |Yi−1| − δ and there can
be at most dn

δ
e iterations of the while loop.

It is interesting to compare the result of the prior lemma to the known results about
the size of 1-covers, i. e., dominating sets.
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Greedy 2-Cover

Input: Graph G = (V, E)
Output: A 2-Cover ∪iui

1: i ← 0
2: while ∃u ∈ V : ∀j 6 i : dist(u, uj) > 2 do
3: Choose such an u ∈ V
4: ui ← u
5: i ← i + 1
6: end while

Fig. 5.4: A simple greedy algorithm for the construction of a 2-cover.

Theorem 5.47 ([AS00, p.4 and p.178]). Let G be a graph with δ > 1. Then G has

a 1-cover of size at most n · 1+ln(δ+1)
δ+1

and there are graphs with δ > n/2 such that every
1-cover is of size Ω(log n).

Consequently, there is an unexpected discrepancy between 1- and 2-covers in dense
graphs: for every dense graph, there are 2-covers of constant size, while there are dense
graphs for which every 1-cover is of logarithmic order.

Together with Theorem 5.19, the next theorem essentially shows that the gap between
cover time and broadcast time is approximately linear in n for dense graphs.

Theorem 5.48. Let G = (V,E) be a ∆-regular graph. Then

E [ PAR(G) ] = O
(

1

∆
· BLA(G) +

n2

∆2
· log2 n

)
.

Proof. Let us briefly describe the main idea of the proof. We first show that for every
vertex v there is a fixed, i.e., independent of the execution of the push algorithm, set of
vertices Y = Y (v) ⊆ V of size at least ∆/4 such that v informs an arbitrary fixed vertex
in Y within O((n/∆) · log2 n) steps with high probability. We then establish that if vertex
u informs v in O((n/∆) · log2 n) steps with high probability, then also v informs u in
O((n/∆) · log2 n) steps with high probability. Using this fact and Lemma 5.46 we find
that there is a partitioning of V into a constant number of partitions with the following
property: once a vertex in some partition becomes informed, the whole partition becomes
informed within O((n/∆) · log2 n) steps. Finally, we use a coupling between the random
walk and the push algorithm to show that if the random walk covers the whole graph
quickly, then the rumor will also be quickly propagated from one partition to the other
partitions.

We note that we will use the sequential push algorithm SEQ for this proof. We first
consider the edge-expansion of X ⊆ V where 1 6 |X| 6 ∆. Clearly, |E(X, Xc)| = |E(X)|−
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2·|E(X, X)| > ∆·|X|−2· |X|·(|X|−1)
2

> |X|·(∆− |X|+ 1) . Consequently for 1 6 m 6 ∆−1,

Λ(m) = min
X⊆V (G),|X|=m

{
|E(X, Xc)|

∆(G)

}

=
1

∆
min

X⊆V (G),|X|=m
|E(X,Xc)| > 1

∆
·m · (∆−m + 1) .

By Proposition 3.12,

E [ SEQ(G, ∆) ] 6
∆∑

m=1

1

Λ(m)

6 ∆ ·
∆∑

m=1

1

m · (∆−m + 1)

= ∆ ·
(

∆∑
m=1

1

(∆ + 1) ·m +
∆∑

m=1

1

(∆ + 1) · (∆ + 1−m)

)

6 2 ·
∆∑

m=1

1

m
6 3 ln n.

Since for each 1 6 m′ 6 ∆, Λ(m′) ·
(∑∆−1

m=1(Λ(m))−1
)

> 3 ln n, by Proposition 3.12

SEQn−1(G, ∆) = O
(

∆−1∑
m=1

1

Φ(m)

)
= O(log n).

To summarize the first part of the proof, we have shown that Pr [ |IC log n| > ∆ ] > 1−n−1,
where C is a sufficiently large constant. By definition of expectation, E [ |IC log n\{u}| ] >
∆/2. Define p(u, v) := Pr [ v ∈ IC log n | I0 = {u} ], Y := {v ∈ V, v 6= u | p(u, v) > ∆/(4n)} .
It follows that

∆

2
6 E [ |IC log n\{u}| ] =

∑

v∈V (G),v 6=u

p(u, v)

=
∑
v∈Y

p(u, v) +
∑

v/∈Y,v 6=u

p(u, v).

To lower bound |Y |, assume that p(u, v) = 1 for all v ∈ Y and p(u, v) = ∆/(4n) for
v /∈ Y ∪ {u}. Then,

∑
v∈Y

1 +
∑

v/∈Y,v 6=u

∆

4n
= |Y |+ (n− |Y | − 1) · ∆

4n
6 |Y |+ ∆

4
,
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and hence |Y | > ∆
4
. Consider an arbitrary but fixed vertex v ∈ Y. By definition of Y,

Pr [ v ∈ IC log n | I0 = {u} ] > ∆

4n
,

and therefore

Pr
[
v ∈ I16C n

∆
log2 n

∣∣∣ I0 = {u}
]

> 1−
(

1− ∆

4n

) 4n
∆

4 log n

> 1− n−4. (5.10)

Lemma 5.49. Let u, v ∈ V (G) be two vertices of a regular graph G. Then PARn−1(v, u) =
O(PARn−1(u, v)), whenever C is large enough.

Proof. Consider the algorithm PUSH− PULL− SEQ. Note that on regular graphs, this al-
gorithm can be described as follows. In each step t ∈ T an edge {a(t), b(t)} of E is chosen
uniformly at random after which a(t) and b(t) become informed if one of the vertices have
already been informed at step t−1. Let (a(t), b(t))∞t=1 be the sequence of vertices which oc-
cur in an instance of PUSH− PULL− SEQ, i. e., in step t the edge {a(t), b(t)} is chosen for
a push and pull transmission. By our assumption, if the algorithm PUSH− PULL− SEQ

chooses some (a(t), b(t))
16C(n/∆) log2 n
t=1 ∪ (a(t), b(t))∞

t=16C(n/∆) log2 n+1
, then the vertex v be-

comes informed within 16C(n/∆) log2 n steps with probability 1 − n−1, provided that u
is the initially informed vertex. Suppose that PUSH− PULL− SEQ chooses the sequence
(a(t), b(t))1

t=16C(n/∆) log2 n
∪ (a(t), b(t))∞

t=16Cn/∆log2 n+1
, where the order of the choices in the

first 16C(n/∆) log2 n time-steps has been reversed, with the same probability. Then u
becomes informed provided that v is initially informed. Hence,

PUSH− PULL− SEQn−1(u, v) = PUSH− PULL− SEQn−1(v, u). (5.11)

To relate this result to SEQ we write

SEQn−1(v, u) = O (PUSH− PULL− SEQn−1(v, u)) (by Lemma 3.8)

= O (PUSH− PULL− SEQn−1(u, v)) (by 5.11)

= O (SEQn−1(u, v)) ,

which completes the proof of the lemma.

Consider the auxiliary graph Ĝ = (V̂ , Ê) defined as follows: V̂ := V and {u, v} ∈ Ê iff

max{PARn−1(u, v), PARn−1(v, u)} 6 16C · n

∆
· log2 n.

Since |Y | > ∆/4, Lemma 5.46 implies the existence of a 2-cover u1, u2, . . . , uk, k 6 dn/∆e
of Ĝ. Hence the sets Ui := {v ∈ V̂ | distĜ(v, ui) 6 2}, 1 6 i 6 k form a (possibly non-

disjoint) partitioning of V̂ . Take a disjoint partitioning V1, V2, . . . , Vk such that for every
1 6 i 6 k, Vi ⊆ Ui. Consider two arbitrary vertices u and v in the same partition Vi. If a
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vertex u ∈ Vi becomes informed at step t, then Vi ⊆ It+O( n
∆

log2 n) with probability 1− n−3

by 5.10.
Consider now the directed graph G′ := (V ′, E ′) with V ′ := {V1, V2, . . . , Vk} and

E ′ :=
{

(Vi, Vj) | ∃u ∈ Vi : Nt,u ∈ Vj, 1 6 t 6 4 · BLAs(G)

n

}
.

Claim. Let s ∈ Vi. With probability 1/2, there is a path from Vi to every Vj in G′.

Proof. Recall that a random walk and an instance of the push algorithm is described by
an infinite matrix (Nt,v)t∈N,v∈V . Let A be the event that BLAs(G)(ω) > 2 · BLA(G), where
BLAs(G)(ω) is the corresponding random variable to the expected value BLAs(G). By
Markov’s inequality, Pr [A ] 6 1

2
. As an intermediate step, consider the auxiliary graph

G̃ := (Ṽ , Ẽ) with Ṽ := V and

Ẽ :=

{
(u, v) ∈ V × V | Nt,u = v, 1 6 t 6 4 · BLAs(G)

n

}
.

From now on, we condition on the event A. Then the random walk of length 2 · BLAs(G)

starting from s visits every vertex of V and no vertex more often than 4· BLAs(G)
n

times. As a

consequence, every vertex can be reached from s in the graph G̃. Since G′ is obtained from
G̃ by contracting vertices, this property must be preserved and every partition Vj ∈ V ′

can be reached from Vi. As event A occurs with probability 1/2, the proof of the claim
follows.

Reconsider now the partition V1, V2, . . . , Vk, k 6 dn/∆e of V . Let part(v) be the
function which assigns a vertex v the index of its partition. Let B be the event that

∀v ∈ V : Vpart(v) ⊆ IPAR(s,v)+O( n
∆

log2 n)

occurs. By Lemma 5.49 and the union bound over all n vertices it follows that Pr [B ] >
1 − n−2. Finally, let C be the event that every vertex u ∈ V (G) sends the rumor to
(4/n) · BLAs(G) vertices within the time-interval

[
SEQ(s, u), SEQ(s, u) +

32

n
· BLAs(G)

)
.

Using a Chernoff bound for Bernoulli variables and the union bound over all vertices
u ∈ V (G), we conclude that Pr [ C ] > 1 − n−2. We claim that if the events A,B and C
occur, the vertex s spreads the rumor to all other vertices in the graph within at most

2n

∆
·
(
O

( n

∆
log2 n

)
+ 32 · BLAs(G)

n

)

steps.
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Let Ω1 be the probability space of all possible (Nt,v)t∈N,v∈V . Recall that a random walk
can be represented by some ω1 ∈ Ω1 as described at the beginning of this subsection.
Moreover, let Ω2 be the probability space of all (St)t∈N. Then Ω1 × Ω2 is the set of all
instances of the sequential push algorithm. We use a coupling between the random walk
and the sequential push algorithm by fixing some ω1 ∈ Ω1 and regarding ω2 as a random
variable chosen uniformly from Ω2. We note the following fundamental property of this
coupling. If the random walk moves after the k-th visit of v to vertex u, then u sends the
rumor to v at step

min
{

t′ ∈ T : |{t ∈ T | SEQ(s, u) 6 t 6 t′, St = u}| > k
}

. (5.12)

Consider now an arbitrary vertex u. Recall that the event A implies the existence of a path
P = (Vpart(s), V1, V2, . . . , Vpart(u)) in G′. As G′ contains at most 2n/∆ vertices, there is such a
path P of length |P| 6 2n/∆. Starting from vertex s at step 0, event B guarantees that the
whole partition Vpart(s) becomes informed at step O((n/∆) · log2 n). As Vpart(s) and V1 are
connected in G′, there is a vertex u ∈ Vpart(s) with Nt,u ∈ V1 for some t 6 (4/n) · BLAs(G).
Since C occurs, the vertex u sends the rumor to some vertex in V1 after (32/n) · BLAs(G)
steps. With the same arguments as before, partition V1 becomes completely informed after
further O((n/∆) · log2 n) time-steps and so on. After |P| steps we reach the partition
Vpart(u) and spending another O((n/∆) · log2 n) time-steps, the vertex u becomes informed.
To summarize, we have shown that if the events A, B and C simultaneously occur, the
fixed vertex u becomes informed after

|P| ·
(
O

(BLAs(G)

n

)
+O( n

∆
· log2 n

))
= O

(
1

∆
· BLAs(G) +

n2

∆2
· log2 n

)

steps. To finish the proof, we apply the union bound to get

Pr [A ∩ B ∩ C ] > 1− 1

2
− n−2 − n−2.

So, with probability larger than 1/3, all vertices of G become informed after at most

O
(

1
∆
· BLAs(G) + n2

∆2 · log2 n
)

steps. Using the expectation of the geometric distribution,

the theorem follows.

Let us simplify the bound of Theorem 5.48.

Corollary 5.50. For any ∆-regular graph G,

COV(G) = Ω

(
∆2

n
· 1

log n
· E [ PAR(G) ]

)
.

Proof. Rearranging Theorem 5.48 yields

BLA(G) = Ω

(
∆ · E [ PAR(G) ]− n2

∆
· log2 n

)
.
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Substituting Theorem 5.45 into the inequality above gives

COV(G) = Ω

(
1

(log log n)2
·
(

∆ · E [ PAR(G) ]− n2

∆
· log2 n

))
.

If E [ PAR(G) ] > 2 · n2

∆2 · log2 n,

COV(G) = Ω

(
1

(log log n)2
·∆ · E [ PAR(G) ]

)
= Ω

(
1

(log log n)2
· ∆2

n
· PARn−1(G)

)
.

Otherwise, if E [ PAR(G) ] < 2 · n2

∆2 · log2 n, then n > ∆2

2n log n
· E [ PAR(G) ] and thus

COV(G) = Ω(n · log n) = Ω

(
∆2

n
· 1

log n
· E [ PAR(G) ]

)
,

and the claim follows.

5.5.3 Constructions

We complement the bounds of the previous subsection by some graph constructions. To
upper bound the cover time of them, we use the well-known connection between (electrical)
flows and commute times.

In the following, we shall assume that the vertices of G are numbered 1, 2, . . . , n.

Definition 5.51 (One Source-One Sink Unit-Flow Problem, [CRR+97]). Given a
graph G = (V,E) and two vertices s, t ∈ V , a function f : V × V → R is a unit-flow from
s to t if

1. f is antisymmetric, i. e., f(u, v) = −f(v, u),

2. f(u, v) = 0 if {u, v} /∈ E,

3.
∑n

i=1 f(s, i) = 1 and
∑n

i=1 f(t, i) = −1.

The cost (or power) of a flow f is defined by P (f) :=
∑

e∈E(G) f(e)2.

Theorem 5.52 (Energy-Minimization-Principle, [CRR+97]). For any unit-flow f
from s to t, R(s, t) 6 P (f). Moreover, there is a flow fmin satisfying R(s, t) = P (fmin).

In the language of electrical networks, this theorem basically says that the electric
current flow (corresponding to R(s, t)) is distributed such that the total energy consumption
in the network is minimized.

Definition 5.53. Let Har(n, k) be the graph G = (V, E) defined as

V (Har(n, k)) := {0, 1, . . . , n− 1},
E(Har(n, k)) :=

{{i, (i + j) mod n} | 0 6 i 6 n− 1, 1 6 j 6 k
}
.
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It follows immediately that Har(n, k) is a 2k-regular, vertex-transitive graph. Notice that
Har(n, k) is the same as the (n, 2k)-Harary graph [Har62]. With a slight abuse of notation,
we will call Har(n, k) Harary graph, though it does not match the definition of [Har62].
Har(n, 1) gives the n-cycle and Har(n, k)), k > n

2
yields the complete graph Kn.

Observation 5.54. For two vertices s < t ∈ V (Har(n, k)), dist(s, t) > bmin{t−s,n−(t−s)}
k

c.
In particular, the diameter of Har(n, k) is at least 1

2
bn

k
c.

Proposition 5.55. Consider a pair of vertices s < t of V (Har(n, k)). Then

C(s, t) = O
(

n +
n ·min{t− s, n− (t− s)}

k2

)
.

In particular, maxs,t C(s, t) = O
(
n + n2

k2

)
.

Proof. Let s and t be two vertices. Since Har(n, k) is vertex-transitive, we may set s = 0.
Additionally, we assume that t < n− t. Consider first the case where t 6 k. This implies
that s and t are both connected to every vertex l with 0 6 l 6 k, l /∈ {s, t}. For such an l,
we define

f(s, l) :=
1

k − 1
and f(l, t) :=

1

k − 1

and for all other pairs p, q ∈ {0, 1, . . . , n − 1}, we set f(p, q) = 0. Since f has to be anti-
symmetric, we have implicitly defined f(l, s) and f(t, l). Our claim is that f is a unit-flow
from vertex s = 0 to t. Notice that

∑
06l6n−1 f(s, l) = (k − 1) · 1

k−1
= 1. With the same

arguments,
∑

06l6n−1 f(l, t) = 1 and
∑

06l6n−1 f(l, l′) = 0 for any l′ ∈ V (Har(n, k))\{s, t}.
This shows that f is a unit-flow from s to t. The cost of the flow f is

P (f) =
∑

{i,j}∈E

f(i, j)2 =
∑

0<l<k,l 6=t

(
f(s, l)2 + f(l, t)2

)
6 (k − 1) · 2

(k − 1)2
=

2

k − 1
.

We proceed by considering the more general case t > k. Let α := dk
2
e and γ := b t−1

α
c.

We divide the vertices 0 < l < t into γ levels L1,L2, . . . ,Lγ defined by

Li :=

{
l : 1 + (i− 1) ·

⌈
k

2

⌉
6 l < 1 + i ·

⌈
k

2

⌉}
.

Hence, |Li| = α = dk
2
e. Note that by the definition of Har(n, k), every vertex in L1 is

connected to s and every vertex in Lγ is connected to t. Moreover, for each 1 6 i < γ,
every vertex in Li is connected to all vertices in Li+1, since (i+1) · dk

2
e−(1+(i−1) · dk

2
e) =

2 · dk
2
e − 1 6 k. Let us define the flow f . For two vertices p ∈ Li, 1 6 i < γ and q ∈ Li+1

we define f(p, q) := 1
α2 . For the source s and some vertex l ∈ L1 we define f(s, l) := 1

α
, and

similarly for t and some l ∈ Lγ we set f(l, t) := 1
α
. As before it follows that f is a unit-flow
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from s to t. Let us compute the cost of f ,

P (f) =
∑

{i,j}∈E

f(i, j)2

=
∑

l∈L1

f(s, l)2 +

γ−1∑
i=1

∑
p∈Li,q∈Li+1

f(p, q)2 +
∑

l∈Lγ

f(l, t)2

=
∑

l∈L1

(
1

α

)2

+

γ−1∑
i=1

α2 ·
(

1

α2

)2

+
∑

l∈Lγ

(
1

α

)2

= α ·
(

1

α

)2

+

γ−1∑
i=1

(
1

α

)2

+ α ·
(

1

α

)2

6 2

α
+

(
2t

k
− 2

)
· 4

k2
6 2

k
+

8t

k3
.

To summarize, in both cases for t we have shown that P (f) = O (
1
k

+ t
k3

)
. Combining

the former equality with Theorem 5.52 yields

C(s, t) = 2 · |E| · R(s, t) 6 2 · nk · P (f) = 2 · nk · O
(

1

k
+

t

k3

)
= O

(
n +

n · t
k2

)
.

So far, we have been working under the assumption t 6 n − t. However, the general
case follows by observing that i 7→ (−i mod n), i ∈ {0, . . . , n − 1} is an automorphism of
Har(n, k).

Corollary 5.56. For every n1/2 6 ∆ 6 n, there are ∆-regular graphs such that

COV(G) = O(∆ · log n · PARn−1(G)).

Proof. Consider the graph Har(n, ∆/2). From Proposition 5.55 it follows that

COV(Har(n, ∆/2)) = O
(

max
s,t∈V

C(s, t) · log n

)
= O

((
n +

n2

∆2

)
· log n

)
= O(n log n),

since ∆ > n1/2, and by Observation 5.54, PARn−1(Har(n, ∆/2)) > diam(Har(n, ∆/2)) =
Ω(n/∆).

We now move to the case where ∆(G) 6 n1/2 and construct the following graph.

Definition 5.57. For integers n and k such that
√

n is an integer and 2k divides
√

n, we
define a graph G(n, k) as follows. The vertex set is given by

V :=
{

(x, y, z) | 0 6 x, y 6 k − 1, 0 6 z 6 n

k2
− 1

}
,
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and the edge set is defined by

E :=

{{
{(x, y, z), (x, y, z′)}

∣∣∣ 0 6 x, y 6 k − 1, {z, z′} ∈ E
(
Har

( n

k2
,

√
n

k

))}
(5.13)

⋃{
{(x, y, z), (x, y − 1,

n

2k2
− z)}

∣∣∣ 0 6 x, y 6 k − 1, 0 6 z <

√
n

k

}
(5.14)

⋃{
{(x, y, z), (x− 1, y,

n

2k2
− z)}

∣∣∣ 0 6 x, y 6 k − 1,
3
4

n

k2
6 z <

3
4

n

k2
+
√

n

k

}}
, (5.15)

where the first two components are meant to be modulo k and the third one is meant to be
modulo n/(k2).

So, E consists of one set of edges 5.13 called Harary edges (as they are induced by
Har(n/k2,

√
n/k) and two sets of edges 5.14, 5.15 called torus edges. Moreover, by fixing

the first two coordinates we obtain a Harary subgraph Har(n/k2,
√

n/k) of G(n, k). A
sketch of the graph G(n, k) can be found in Figure 5.5 at page 90.

We remark that the graph G(n, k) is similar to, but not the same as the Cartesian prod-
uct of a two-dimensional torus Tk,k and a Har(n/k2,

√
n/k)-graph. The major differences

are revealed in the following observation.

Observation 5.58. The graph G(n, k) as defined above has the following properties,

1. G(n, k) is an n-vertex graph with minimum degree 2
√

n
k

and maximum degree 2
√

n
k

+1,

2. the diameter of G(n, k) is Ω(
√

n).

Before we upper bound the cover time of G(n, k), we give a natural extension of 5.52
to flows not necessarily being unit-flows with one sink and one source.

Definition 5.59 (Generalized Flow Problem). Given a graph G = (V, E) and a vector
b ∈ Rn with

∑n
i=1 bi = 0, a function f = fb : V × V → R is a flow if

1. f is antisymmetric, i. e., f(u, v) = −f(v, u),

2. f(u, v) = 0 if {u, v} /∈ E,

3.
∑n

j=1 f(i, j) = bi for every i ∈ {1, . . . , n}.
The cost of such a flow f is defined as in Definition 5.51 and the total flow amount

is 1
2
‖b‖1. In correspondence to Definition 5.51, a flow problem with a vector b = bs,t ∈

{−1, 0, 1}n with bs = 1, bt = −1 and zero otherwise, is called a (s, t)-unit-flow problem.
Note that vertices with bi > 0 can be viewed as sources which send some flow amount to

the network, while vertices with bi < 0 represent sinks which consume some flow amount.
The following lemma asserts that if we take the (s, t)-unit-flow problem with the highest

cost, then these cost are an upper bound for any (general) flow with a total flow amount
of 1. Moreover, the cost of a flow scale quadratically with the total flow amount.
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Lemma 5.60. Assume that C > 0 is some real value such that for any (i, j), i 6= j unit-
flow problem, there are flows fi,j satisfying P (fi,j) 6 C. Then, for any vector b ∈ Rn there
is a flow fb satisfying P (fb) 6 C · 1

4
· ‖b‖2

1.

Proof. By [DFM99], the minimal solution (w. r. t. P (f)) of the generalized flow problem is
induced by one (of the infinitely many) vectors z = zb satisfying L ·z = b as follows. Given
such a z ∈ Rn, we obtain the flow between two vertices u, v by setting f((u, v)) = zu − zv.
Note that z can be viewed as a potential since the flow f can be computed as the differences
from z. Moreover, the cost of a flow f can be computed by means of

∑

e∈E(G)

f(e)2 = ‖ATz‖2
2,

where A ∈ {−1, 0, 1}n×|E| is the node-edge-incidence matrix [DFM99] of G.

Claim. Define aij := 2|bibj|/‖b‖1 if bi > 0 ∧ bj < 0, and otherwise aij := 0. Then∑
16i,j6n aijbij = b and

∑
16i,j6n aij = ‖b‖1/2.

Proof. Consider an arbitrary 1 6 l 6 n. For some vector v, let [v]l denote the l-th
coordinate of v. Then

[ ∑
16i,j6n

aijbij

]
l
=

∑
16i,j6n

[
aijbij

]
l
=

∑
16i6n

ail

[
bil

]
l
+

∑
16j6n

alj

[
blj

]
l

=
∑

16i6n

ail · (−1) +
∑

16j6n

alj · (+1)

=
∑

16i6n: bi>0∧bl<0

−2 · |bi · bl|
‖b‖1

+
∑

16j6n: bl>0∧bj<0

2 · |bl · bj|
‖b‖1

,

and as exactly one of the two sums vanishes, [
∑

16i,j6n aijbij]l = bl, as desired.

We continue to prove the second equation:

n∑
i=1

n∑
j=1

aij =
∑

i:bi>0

∑

j:bj<0

2 · |bi · bj|
‖b‖1

=
∑

i:bi>0

|bi|
‖b‖1

∑

j:bj<0

2 · |bj| =
n∑

i:bi>0

|bi| = ‖b‖1

2
,

which establishes the second formula.

Having disposed of this technical step, we return to the proof of the lemma. For fixed
i, j, let zi,j : V → R+ be the corresponding potential of the minimal unit-flow from i to j
on G. Then zb :=

∑n
i=1 ai,jzi,j satisfies

L · zb = L

( ∑
16i,j6n

ai,jzi,j

)
=

∑
16i,j6n

ai,j · Lzi,j =
∑

16i,j6n

ai,jbi,j = b.
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So, zb is a solution for the generalized flow problem. The cost for the flow f induced by
zb can be bounded from above by

∑
e∈E

f(e)2 = ‖ATzb‖2
2 =

∥∥∥∥∥AT

( ∑
16i,j6n

ai,jzi,j

)∥∥∥∥∥

2

2

=

∥∥∥∥∥
∑

16i,j6n

ai,j ·ATzi,j

∥∥∥∥∥

2

2

6
( ∑

16i,j6n

ai,j ·
∥∥ATzi,j

∥∥
2

)2

6
( ∑

16i,j6n

ai,j ·
√

C

)2

= C ·
( ∑

16i,j6n

ai,j

)2

= C ·
(‖b‖1

2

)2

,

where we have used the second formula of the claim. Taking the flow fb induced by zb

gives the assertion of the lemma.

Theorem 5.61. For the graph G(n, k) as defined above, maxs,t C(s, t) = O(n log k).

Proof. We will now prove for every pair of vertices s, t that C(s, t) = O(n log n) by con-
structing a proper unit-flow from s to t. Basically, the flow of G(n, k) will imitate the
minimal flow on a two-dimensional torus as illustrated in Figure 5.5.

Consider two vertices s = (xs, ys, zs) (source) and t = (xt, yt, zt) (sink) in G(n, k) and
assume w. l. o. g. that zs 6= zt. Our aim is to construct a unit-flow f = fs,t from s to t with
as few costs as possible. Throughout this proof, we denote by π the projection onto the
first two coordinates, i. e., π(x, y, z) = (x, y). Let fT be a minimum unit-flow from π(s) to
π(t) in a two-dimensional torus graph T = Tk,k with k2 vertices. By [CRR+97, Theorem
6.1], this optimal flow satisfies

P (fT) = O(log k). (5.16)

For two vertices (x1, y1) and (x2, y2) in V (Tk,k) write (x1, y1) ∼ (x2, y2) if they are con-
nected. Define [(x1, y1)]∼ :=

{
(x2, y2) ∈ V (Tk,k) : (x1, y1) ∼ (x2, y2)

}
. For two vertices

(x1, y1, z1), (x2, y2, z2) ∈ V (G(n, k)), write (x1, y1, z1) ∼ (x2, y2, z2) if they are connected by
a torus edge in G(n, k). Moreover, define

[(x1, y1, z1)]∼ :=
{
(x2, y2, z2) ∈ V (G(n, k)) : (x1, y1, z1) ∼ (x2, y2, z2)

}
.

Note that [(x1, y1, z1)]∼ has cardinality one or zero. For any pair (x1, y1, z1) ∼ (x2, y2, z2)
in G(n, k) we define

f((x1, y1, z1), (x2, y2, z2)) :=
k√
n
· fT((x1, y1), (x2, y2)) (5.17)

It remains to extend the construction of f to the Harary edges (5.13) of G(n, k). We will
first describe the extension to Har(n/k2,

√
n/k)-subgraphs that neither contain s nor t.

So, let (x, y) be different from π(s) and π(t), and consider the subgraph (x, y) ×
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Fig. 5.5: A flow on a two-dimensional torus graph T on the left side and its extension to
a flow on G(n, k) on the right side. The green numbers represent the definition
of the corresponding b(x, y). The red and blue vertices represent the source and
the sink of the unit-flow-problem, respectively. For the sake of readability, the
corresponding flow is only described for torus edges on G(n, k).

Har(n/k2,
√

n/k). Define

b(x, y)z := −
∑

(x′,y′,z′)∈[(x,y,z)]∼

f((x, y, z), (x′, y′, z′), (5.18)

and recall that the sum ranges over at most one summand, as every vertex is incident to
at most one torus edge. For this reason,

∑

06z< n
k2

b(x, y)z =
∑

06z< n
k2


−

∑

(x′,y′,z′)∈[(x,y,z)]∼

f((x, y, z), (x′, y′, z′))




= −
∑

06z< n
k2

∑

(x′,y′,z′)∈[(x,y,z)]∼

k√
n
· fT((x′, y′), (x, y))

= − k√
n
·
√

n

k
·

∑

(x′,y′)∈[(x,y)]∼

fT((x′, y′), (x, y)),
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and this results in
∑

06z< n
k2

b(x, y)z = 0 due to
∑

(x′,y′)∈[(x,y)]∼ fT((x′, y′), (x, y)) = 0,

and gives
∑

06z< n
k2
|b(x, y)z| =

∑
(x′,y′)∈[(x,y)]∼ |fT((x, y), (x′, y′))|. For such an (x, y) /∈

{π(s), π(t)}, the vector b(x, y) induces a general flow problem with flow amount 1
2
·∑

(x′,y′)∈[(x,y)]∼ |fT((x, y), (x′, y′))| . By Proposition 5.55, every unit-flow-problem on the

graph Har(n, k′) has a solution f ′ with P (f ′) 6 2
k′ + 8n

k′3 . Substituting, we see that ev-
ery unit-flow-problem on the graph Har(n/k2,

√
n/k) has a solution f ′′ with

P (f ′′) 6 2k√
n

+
8n/k2

n3/2/k3
= 10

k√
n

.

Applying Lemma 5.60 on Har(n/k2,
√

n/k), we conclude that there is a solution fb(x,y)

to the general flow problem given by the vector b(x, y) such that

P (fb(x,y)) 6 10
k√
n
· ‖b(x, y)‖2

1.

It remains to specify f on the Harary subgraphs containing s or t. Begin with the
subgraph (xs, ys)× Har(n/k2,

√
n/k). We define a vector b(xs, ys) by

b(xs, ys)z :=

{
−∑

(x′,y′,z′)∈[xs,ys,z]∼ f((xs, ys, z), (x′, y′, z′)) if z 6= zs,

1−∑
(x′,y′,z′)∈[xs,ys,zs]∼ f((xs, ys, zs), (x

′, y′, z′)) otherwise.

It follows that
∑

06z<(n/k2) b(xs, ys)z = 0 since
∑

(x′,y′)∈[(xs,ys)]∼ fT((xs, ys), (x
′, y′)) = 1.

Applying Lemma 5.60 on Har(n/k2,
√

n/k), we conclude that there is a solution fb(xs,ys) to
the general flow problem given by the vector b(xs, ys) such that

P (fb(xs,ys)) 6 10
k√
n
· ‖b(xs, ys)‖2

1.

For the subgraph (xt, yt)× Har(n/k2,
√

n/k) we give the analogue definition to b(xs, ys)z.

b(xt, yt)z :=

{
−∑

(x′,y′,z′)∈[xt,yt,z]∼ f((xt, yt, z), (x′, y′, z′)) if z 6= zt,

−1−∑
(x′,y′,z′)∈[xs,ys,zs]∼ f((xt, yt, zt), (x

′, y′, z′)) otherwise.

Also here we have
∑

06z<(n/k2) b(xt, yt) = 0. Applying Lemma 5.60 on Har(n/k2,
√

n/k) we
conclude that there is a solution fb(xt,yt) to the general flow problem given by the vector
b(xt, yt) such that

P (fb(xt,yt)) 6 10
k√
n
· ‖b(xt, yt)‖2

1.

Combining these solutions for each (x, y) with the definition of f on the torus edges, we
obtain a unit-flow f from s = (xs, ys, zs) to t = (xt, yt, zt). It remains to compute the cost
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of the flow P (f) which is done by the following decomposition,

P (f) =
∑

e∈E(G(n,k))

f(e)2 =
∑

e∈E(G(n,k))
e torus edge

f(e)2

︸ ︷︷ ︸
=A

+
∑

e∈E(G(n,k))
e Harary edge

f(e)2

︸ ︷︷ ︸
=B

.

We start with A,

A =
∑

e∈E(G(n,k))
e torus edge

f(e)2 =
∑

e∈E(G(n,k))
e torus edge

(
k√
n
· fT(π(e))

)2

(by 5.17)

=
k2

n
·

∑

e∈E(G(n,k))
e torus edge

fT(π(e))2

=
k2

n

n1/2

k
·
∑

e∈T

fT(e)2

=
k√
n
· P (fT) =

k√
n
· O(log k) (by 5.16)

Before we look at expression B, we note that by the convexity of x 7→ x2, (x1 + x2 + x3 +
x4)

2 6 4x2
1 + 4x2

2 + 4x2
3 + 4x2

4 follows for every x1, x2, x3, x4 > 0. For this reason

B =
∑

e∈E(G(n,k))
e Harary edge

f(e)2 =
∑

06x,y6k

P (fb(x,y))

6
∑

06x,y6k

10
k√
n
· ‖b(x, y)‖2

1

= 10
k√
n
·

∑

06x,y6k


 ∑

(x′,y′)∈[(x,y)]∼

|fT((x, y), (x′, y′))|



2

6 10
k√
n
·

∑

06x,y6k

∑

(x′,y′)∈[(x,y)]∼

4 · fT((x, y), (x′, y′))2

6 160
k√
n
·
∑

e∈T

fT(e)2

= 160
k√
n
· O(log k) (by 5.16).

To conclude the proof, we have shown that for every pair s, t ∈ V (G(n, k)) there is a flow
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f = fs,t on G(n, k) such that

P (fs,t) 6 A + B 6 k√
n
· O(log k) + 160

k√
n
· O(log k) = O

(
k√
n

log k

)
.

Finally, we apply Theorem 5.52 to obtain

max
s,t∈V

C(s, t) = max
s,t∈V

{2 · |E| · R(s, t)} 6 max
s,t∈V

{
O

(
n ·

√
n

k

)
· P (f(s, t))

}
= O(n log k),

and the theorem follows.

Returning to the gap between cover and broadcast time, we can now show the following
result.

Corollary 5.62. For any two integers n, k such that
√

n is an integer and 2k divides
√

n,

COV(G(n, k)) = O(
PARn−1(G(n, k)) · √n · log2 n

)
.

Proof. By the previous theorem, COV(G(n, k)) = O(n log n · log k) and PARn−1(G(n, k)) >
diam(G(n, k)) = Ω(

√
n).

5.5.4 Minimum Gap between Cover Time and Diameter

We believe that the examples constructed in the preceding section are rather tight when
deg(G) ∈ [ω(1), o(n)]. Conversely, we think that the bounds are probably rather loose
in this case. The reason for this belief is that the examples are tight up to logarithmic
factors if we consider the minimum possible gap between the cover time and the diameter
(cf. Figure 5.2).

Proposition 5.63. Let G = (V,E) be a ∆-regular graph. Then

COV(G) > diam(G) ·
{√

n log n if ∆ 6 n1/2,

∆ · log n if ∆ > n1/2.

Proof. We first consider the case where ∆ 6 n1/2. Recall that COV(G) = Ω(n log n +
diam2(G)). If now diam(G) 6

√
n log n, then we obtain

COV(G) = Ω(
√

n log n ·
√

n log n) = Ω(diam(G) ·
√

n log n).

Otherwise we have diam(G) >
√

n log n which results in

COV(G) = Ω(diam2(G)) > Ω(diam(G) ·
√

n log n).
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To prove a better bound if ∆ > n1/2, recall that diam(G) 6 3n
∆

by Lemma 2.28. Hence,

COV(G) = Ω(n log n) = Ω(∆ · diam(G) · log n).

5.6 Conclusion

Inspired by the intuition of Chandra et al. [CRR+97] about the relationship between cover
time of random walks and the runtime of randomized broadcast, we proved a multitude
of new bounds relating the cover time not only to the push algorithm but also to other
parameters like conductance/expansion and the mixing time. As our main result, we
provided a tight characterization of graphs for which the cover time is an appropriate
metric for the runtime of the push algorithm. More precisely, we proved that the cover
time is captured by the runtime of the push algorithm up to logarithmic factors if G a
regular graph of degree Ω(n). On the negative side, for the class of all regular graphs with
some fixed degree O(n1−ε), ε > 0, we showed that the push algorithm does not determine
the cover time more accurately than up to a factor of nε (neglecting logarithmic factors).
Nevertheless, our results show that the relationship between both processes is rather close
and substantially closer than the relationship between one of the processes to the mixing
time. In particular, our findings provide evidence for the following (informal) hierarchy:

low mixing time ⇒ low broadcast time ⇒ low cover time,

which refines the already known

low mixing time ⇒ low cover time

relation (cf. [Ald83, Dia88] or Theorem 5.11 taken from [BK89]).
Though the majority of our bounds on the cover time is tight up to some constant or

at least to logarithmic factors, many of our results ask for improvement or extension. We
single out the following questions.

• The second inequality of Theorem 5.19 is only known to be tight up to constant
factors when G is a complete k-ary tree with k = O(1). We were not able to find
any regular graph with a larger degree matching this inequality. So, can we improve
Theorem 5.19 for these graphs?

• While the upper bound of Corollary 5.9 depends linearly on the conductance, there
is an extra log3 n-factor in the bound. We conjecture that the bound remains valid
without the log3 n-factor.

• Similarly, Theorem 5.37 provides for every Cayley graph an upper bound on the
maximum commute time based on the square root of the mixing time. Can we
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prove a similar statement for regular graphs, i. e., an upper bound on the maximum
commute time for regular graphs with a sublinear dependence on the mixing time?

• For regular graphs with ∆ ∈ [nε, n1−ε] for some constant ε > 0, the lower bounds on
the cover time are only tight up to polynomial factors. It would be nice to improve
or even to tighten these bounds. In particular, is n1/2 · PARn−1(G) a general lower
bound for the cover time on regular graphs (up to logarithmic factors)?

• We showed in the proof of Theorem 5.48 that every regular graph with degree Ω(n)
can be partitioned into a constant number of subgraphs such that the rumor is
disseminated within one subgraph after O(log2 n) steps. As a more general ques-
tion, can dense graphs be partitioned into a constant number of disjoint subgraphs
G1, G2, . . . , Gc, such that every Gi, 1 6 i 6 c, has minimum-degree Ω(n) and edge-
expansion α for some reasonably large α? Note that if this holds for constant α,
then the log2 n-factor of Theorem 5.48 could be reduced to log n, which implies that
any such dense graph with an optimal blanket time of O(n log n) would also have an
optimal broadcast time of O(log n).
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6. QUASIRANDOM RUMOR SPREADING

6.1 Introduction

As an introduction of randomized rumor spreading and broadcast was already given in
Section 3, we only mention some special aspects of quasirandomness in the following.

6.1.1 Motivation

We propose a quasirandom analogue of the randomized push algorithm. The basic setup is
as in the randomized model, that is, in each time-step each informed node tries to inform
one of its neighbors. However, the choices of these neighbors will not be independently at
random. Instead, we assume that each node has a list of its neighbors and informs the
neighbors in the order of the list.

It is easily seen that in this model without any randomness a bad choice of the lists can
lead to a bad behavior of the protocol. Consider, e. g., the complete graph on n vertices
labelled 1 to n and assume that each node informs its neighbors in increasing order. Then
it takes n− 1 time-steps to spread a rumor from node 1 to node n.

To avoid such behavior, we allow a little randomness. When a node receives the rumor
for the first time, it chooses a random position on its list. In the sequel, it informs its
neighbors starting with this position and then continuing in the order of the list. When
the end of the list is reached, it continues at the beginning of the list.

We call this model quasirandom push model, as it aims at imitating properties of the
classical push model with a much smaller degree of randomness. While the classical push
algorithm requires at least Ω(n log n log ∆) random bits on ∆-regular graphs (and even
more if the runtime is larger), our quasirandom model needs only O(n log ∆) random bits.

In our analysis, we adopt a worst-case scenario, that is, we prove bounds for the broad-
cast times independent of the particular lists. Hence in a practical application, the lists
may be chosen to suit internal technical representations of the network.

6.1.2 Related Work

Quasirandomness means that we try to imitate a particular property of a random process
deterministically, or with a reduced amount of randomness. This concept occurs in several
areas of mathematics and computer science. A prominent example are low-discrepancy
point sets and Quasi-Monte Carlo methods (cf. [Nie92]), which proved to be superior over
random sample points in numerical integration.
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An example closer related to our model is a quasirandom analogue of random walks in-
troduced by [PDDK96] and later popularized by Jim Propp. Here the vertices are equipped
with a rotor pointing to a neighbor and a cyclic permutation of the neighbors. A walk
arises from leaving the current vertex in the rotor direction and then updating the rotor to
the next neighbor according to the order given by the permutation. Some beautiful results
exist on this model, e. g., [CS06] showed that if an arbitrary large population of particles
does such a quasirandom walk on an infinite grid Zd, then (under some mild conditions)
the number of particles on a vertex at some time deviates from the expected number had
the population done a random walk instead, by only a constant cd. This constant is in-
dependent of the number of particles and their initial position. For the case d = 1, that
is, the graph being the infinite path, the constant c1 is approximately 2.29 [CDST07]. For
the two-dimensional grid the constant is c2 ≈ 7.87 [DF06]. It was also shown that for
the graph being an infinite k-ary tree (k ≥ 3), the deviation between both models can be
unbounded [CDFS08].

The quasirandomness in our broadcast model lies in the property that a vertex in
the long run contacts each of its neighbors approximately equally often, similar to what
would have happened in the random push model. In a sense, and this is typical for
quasirandomness, we do better in that the deviations are at most one, whereas in the
random push model a vertex v after k contacts would have contacted each neighbor only
k/ deg(v)±Θ(

√
k/ deg(v)) times.

Since our model aims at saving random bits, it is related to the so-called probability
amplification problem. Suppose that we are given a randomized algorithm whose outputs
are correct with some probability. The question is how to achieve a small error probability
by the repeated use of this algorithm while using a minimum possible number of random
bits. It was found out that taking (dependent) samples of a certain random walk on
constant-degree expanders comes very close to this minimum [CW89, IZ89, MR95].

6.1.3 Our Results

As in the previous work done on the random push model, we analyze how long it takes to
spread a rumor from one node of a network to all other nodes. Surprisingly, the greatly
reduced degree of randomness does not make broadcast less efficient on the following topolo-
gies. For complete graphs, hypercubes and random graphs G(n, p), p > (1 + ε)(log n)/n,
we obtain a bound of O(log n) steps. These bounds hold for all starting vertices and all
orders of the lists.

Our O(log n) bound also includes sparsely connected random graphs G ∈ G(n, p) if
p = (log(n) + f(n))/n with limn→∞ f(n) → ∞. This contrasts with the Ω(log2 n) bound
shown by Feige et al. [FPRU90] for the case that cn = 1 +O(log log n/ log n) and shows a
further superiority of our model (in addition to the reduced need of random bits).

For hypercubes and random graphs we prove upper bounds which hold with probability
1 − n−C where C > 0 is some arbitrary constant. The reason is that due to the lack of
independence, an upper bound of x holding with probability, say, 1− n−1 does not imply
an upper bound of 2 · x with probability 1− n−2.
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Graph class Broadcast times Reference

General graphs

PARn−1(G) = O(∆(diam(G) + log n)) [FPRU90]

QR0(G) 6 ∆ · diam(G) Thm. 6.2

PARn−1(G) 6 12n log n [FPRU90]

PARo(1)(G) 6 (1 + o(1))n ln n Thm. 3.9

QR0(G) 6 2n− 3 Thm. 6.2

Complete k-ary trees
PARn−1(G) = Θ(k log n) Cor. 6.3

QR0(G) = Θ(k log n/ log k) Cor. 6.3

Hypercubes
PARn−1(G) = Θ(log n) [FPRU90]

QRn−C (G) = Θ(log n) Thm. 6.5

almost all G(n, p), p = log n+f(n)
n

, PARn−1(G) = Θ(log2 n) [FPRU90]

f(n) →∞ and f(n) = O(log log n) QRn−C (G) = Θ(log n) Thm. 6.6

almost all G(n, p), p > (1+ε) log n
n

, PARn−1(G) = Θ(log n) [FPRU90]

where ε > 0 is a constant QRn−C (G) = Θ(log n) Thm. 6.6

Fig. 6.1: Broadcasting times of different graphs G in the random (PAR) and quasirandom
(QR) push model.

We also prove tight upper bounds of ∆ · diam(G) and 2n− 3 for general graphs, which
are again better than the corresponding bounds of [FPRU90] for the random model. Since
the bound of 2n− 3 holds with probability 1, we also obtain upper bounds of O(log n) on
the expected runtime on hypercubes and random graphs as a simple corollary. All bounds
at a glance are summarized in Figure 6.1.

6.2 Notations, Definitions and Preliminaries

As in the classical push model we aim at spreading a rumor in an undirected graph G =
(V, E). We denote by s the vertex who knows the rumor at the beginning time-step. In our
quasirandom push model QR, each vertex v ∈ V is associated with a cyclic permutation
πv : N(v) → N(v) of its neighbors (usually simply viewed as list of neighbors). While
above we said that a vertex when it first obtains the rumor has chosen a position on the
list uniformly at random as starting point for its broadcast campaign, in the analysis the
following equivalent model will be advantageous. We assume that initially each vertex has
a position on the list chosen uniformly at random, and that it updates this position each
time-step even if it is not informed (“ever rolling lists”). More precisely, at the start of
the protocol each vertex v chooses an initially contacted neighbor iv uniformly at random
from N(v). In each time-step t = 1, 2, . . ., the vertex v sends the rumor to vertex πt−1

v (iv),
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if it is informed, and does nothing otherwise. In the first case, πt−1
v (iv) becomes informed

(if it is was not already). A supplementary description of the quasirandom push model is
given in Figure 6.2.

Quasirandom Push Algorithm

Input: Graph G = (V, E), Cyclic Permutations πv : N(v) → N(v) for each v ∈ V (G)
1: t ← 0
2: I0 ← {s}
3: for all vertices v ∈ V do
4: choose iv ∈ N(v) uniformly at random
5: end for
6: while It 6= V do
7: t ← t + 1
8: It ← It−1

9: for all vertices v ∈ V do
10: if v ∈ It−1 then
11: It ← It ∪ πt−1

v (iv)
12: end if
13: end for
14: end while

Fig. 6.2: The definition of the quasirandom push algorithm

The focus of our investigation is how long it takes until some rumor known only by a
single vertex is broadcasted to all other vertices. We adopt a worst-case view in that we
aim at bounds that are independent of the starting vertex s and of all the lists.

Given a graph G = (V, E), the number of iterations (or time-steps) of a broadcast
procedure until the rumor reaches all the vertices of G is a random variable that depends
on the topology of G. Let QR(G) := min{t ∈ N : It = V, I0 = {s}} be the runtime of the
quasirandom model for some initially informed vertex s. Corresponding to the notation of
PARp(G), let QRp(G) := maxs∈V min{t ∈ N : Pr [ It = V | I0 = {s} ] > 1− p}. Our aim is
to bound QR(G) and to compare it with PAR(G) for different graph classes.

In the analysis of the quasirandom push model, it will occasionally be convenient to
assume that a vertex after receiving the rumor does not transfer it on for a certain number
of time-steps (delayed model). It is clear that this will only result in other vertices receiving
the rumor later. Consequently, the random variable describing the broadcast time of this
model is stochastically larger than QR(G). Of course, this also holds if several vertices
delay the propagation of the rumor.

We also require the following definition which allows us to analyze the propagation of
the rumor in the reverse order.

Definition 6.1 ([ES05]). A vertex u1 ∈ V contacts another vertex ul ∈ V within the time-
interval [a, b], a < b, if there is a path (u1, u2, . . . , ul) in G and t1 < t2 < · · · < tl−1 ∈ [t1, t2]
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such that for all j ∈ [l − 1], π
tj−1
uj (iuj

) = uj+1. We denote by Ca,b(v) the set of all vertices
which contact a vertex v within the time-interval [a, b].

By definition, if u1 contacts ul within the time-interval [a, b] and u1 is informed at step
a, then ul is also informed at step b.

6.3 General Results

In this section, we give two bounds for the broadcast time in general graphs. The cor-
responding bounds for the random model are PARn−1(G) = O(∆ · (diam(G) + log n))
[FPRU90] and PARo(1)(G) 6 (1 + o(1))n ln n (Theorem 3.9).

Theorem 6.2 ([DFS08]). For any graph G = (V, E),

1. QR0(G) 6 ∆ · diam(G),
2. QR0(G) 6 2n− 3.

The first bound is asymptotically tight for every constant-degree graph, as Ω(diam(G)+
log n) is an obvious lower bound for every graph. Moreover, a path of length n−1 matches
the second bound of Theorem 6.2 exactly.

Compared to the general bound PARn−1(G) = O(∆(diam(G) + log n)) [FPRU90], the
quasirandom model may save a small factor on graphs with diam(G) = o(log n).

Corollary 6.3. For complete k-ary trees,E [ PAR(G) ]=Θ(k log n) and QR0(G)=Θ(k log n
log k

).

Proof. The expected time after the root of a complete k-ary tree has informed all its
successors is (1± o(1))k · ln k by Theorem 2.19. Since every leaf has distance logk n to the
root, the first bound follows. The second is an immediate consequence of Theorem 6.2.

6.4 Hypercubes and Random Graphs

Theorem 6.2 gives an upper bound of QR0(Qd) = O(log2 n). The following result shows
that this is the best possible upper bound if we insist on a failure probability of 0. Hence,
we have to rely on a small amount of randomness to achieve a broadcast time of O(log n)
in our model.

Proposition 6.4. For the hypercube Qd with n = 2d vertices, QR0(Qd) = Θ(log2 n).

Proof. We prove that there are lists and initially contacted neighbors for each vertex such
that Ω(log2 n) steps are required to inform all vertices independent of the initially informed
vertex. For this proof, we drop the ever rolling list assumption from Section 6.2. More
precisely, any informed vertex sends the rumor to π

t−QR(s,v)−1
v (iv) in step t > QR(s, v).

For any vertex u ∈ {0, 1}d and i ∈ [1, d] let u(i) be the vertex obtained by flipping the
i-th bit of u. Then, for every vertex u we set the neighbor list (u(1), u(2), . . . , u(d)) with
iu = u(1). Assume that initially the vertex s = (s1, . . . , sd) owns the rumor. Due to
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the construction, an arbitrary vertex v requires k steps to send the rumor to neighbor
v(k) and by simple induction we require

∑d
k=1 k = Ω(d2) = Ω(log2 n) steps to inform

s = (1− s1, . . . , 1− sd).

For the random push model it is known that PARn−1(Qd) = Θ(log n) [FPRU90]. The
following theorem extends this result to the quasirandom model.

Theorem 6.5. For the hypercube Qd and every constant C > 0, QRn−C (Qd) = Θ(log n).

Proof. By symmetry we may assume that s = 0d knows the rumor at the beginning. Our
proof consists of three phases. In the first phase we show that after O(d) steps a large set
of informed vertices I ′ exists. In the third phase we show that a large set of uninformed
vertices C(w) must to exist in order to keep a fixed vertex w at some step O(d) uninformed.
In particular, every vertex of u ∈ I ′ will be close to some proper vertex v = v(u) ∈ C(w).
Finally, in the second phase we show that one of the informed vertices in I ′ informs one
close vertex of C(w) with high probability implying that w must also be informed after
O(d) steps. A graphical illustration of our proof can be found in Figure 6.3.

Forward Approximation: (from step 0 till step 4d) We first show that after 4d steps
we have |I4d| > 4d/7 with high probability. For some 0 6 i 6 d define Li := {x ∈
{0, 1}i : ‖x‖1 = i}. Note that after 2d steps, L0 ∪ L1 has been informed completely.

Fix some time-step t where |It∩Li| 6= ∅. We may assume that |It∩Lj| = ∅ for any j > i
and that all initially contacted neighbors of It∩Li are still to be chosen u. a. r. Notice that
the set of edges between It∩Li and Li+1 satisfies |E(It∩Li,Li+1)| =

∑
v∈Li+1

degIt∩Li
(v) =

|It ∩ Li| · (d − i). Our goal is to lower bound |It+10 ∩ Li+1| by means of |It ∩ Li|. The
probability that a vertex v ∈ Li+1 is still uninformed after 10 steps is

Pr [ v 6∈ It+10 ] 6
∏

u∈N(v)∩It∩Li

(
1− 10

d

)
=

(
1− 10

d

)degIt∩Li
(v)

.

By linearity of expectations we obtain

E [ |It+10 ∩ Li+1| ] >
∑

v∈Li+1

1−
(

1− 10

d

)degIt∩Li
(v)

>
∑

v∈Li+1

1− e−
10 degIt∩Li

(v)

d .

Let us assume in the following that i 6 d
7
. Then due to degIt∩Li

(v) 6 i + 1 and 1 + x
2

>
exp(x) for −1.5 < x < 0 we get

E [ |It+10 ∩ Li+1| ] >
∑

v∈Li+1

10 degIt∩Li
(v)

2d
= |It ∩ Li| · (d− i)10

2d
> 4.25 · |It ∩ Li|.

Let f : N(u1)×N(u2)× . . .×N(u|It∩Li|) → N describe the random variable of |It+10∩Li+1|
depending on the choices of the initially contacted neighbors of the vertices It ∩ Li. Since
some fixed vertex can obviously inform at most 10 vertices within 10 steps, we apply the
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method of independent bounded differences to f (cf. Theorem 2.15) with λ = 1
4
|It ∩ Li|

and use the fact that |It ∩ Li| > d(d−1)
2

to obtain

Pr [ f 6 4|It ∩ Li| ] 6 2 · exp

(
−

1
2
(|It ∩ Li|)2

200|It ∩ Li|
)

6 exp(−Ω(d2)) 6 2−(C+2)·d,

for every constant C > 0 whenever d is large enough.

Iterating over all levels 0 6 i 6 d/7 we require at most 2d+(d/7−2)·10 6 4d time-steps
to get with probability at least 1− d2−(C+2)d > 1− 2−(C+1)d that

|I4d ∩ Ld/7| > d(d− 1)

2
4d/7−2 > 4d/7.

By Lemma 2.30, there is a set I ′4d ⊆ I4d such that the vertices in I ′4d have distance at least
d/64 to each other and I ′4d is of size at least

4d/7

∑d/64
k=0

(
d
k

) > 4d/7

(64e)d/64
>

(11

10

)d

,

where we have used the inequality
∑k

i=0

(
n
i

)
6 ( en

k
)k.

Backward Approximation: (from step 7d till step (7+512(C+3))d) We will now analyze
the propagation of the rumor in the reverse order. Intuitively speaking, we will show that
to keep a vertex w uninformed at some time-step t′ = Θ(d), also a lot of other vertices
have to be uninformed at time-step t′ − O(d). More precisely, these vertices contact the
vertex w within the time-interval [t′ −O(d), t′].

Again due to the symmetry of H, we only consider the vertex w = 1n. Recall that
Ct,(7+512(C+3))d(w) is defined as the set of vertices which contact the vertex w within the
time-interval [t, (7 + 512(C + 3))d] for any t 6 (7 + 512(C + 3))d. We will now show
that C7d,(7+512(C+3))d(w) contains some vertex v such that dist(0d, v) 6 d/256. To this
end define X as the maximal time-step t̃ 6 (7 + 512(C + 3))d such that there is a vertex
v ∈ Ld/256 ∩ Ct̃,(7+512(C+3))d(w).

Let us assume for some time-step t that Ct,(7+512(C+3))d(w)∩Li 6= ∅ where d/256 6 i 6 d.
We shall lower bound the maximal time-step t′ 6 t such that Ct′,(7+512(C+3))d(w) ∩ Li−1 6=
∅. Let v′ ∈ Ct,(7+512(C+3))d(w) ∩ Li. By definition of the hypercube, there are exactly i
vertices in Li−1 that share an edge with v′. For every u ∈ N(v′) ∩ Li−1, let Xt,i(u) :=
t − maxt′<t{u contacts v′ in step t′} and Xt,i := maxu∈Li−1

Xt,i(u). By the ever rolling
lists assumption from Section 6.2, Xt,i(u) is a uniformly distributed integer between 1 and
d, since the position of v′ in the neighbor list of u is uniformly at random from N(v′).
Let Y be an exponential variable with parameter d (and expected value 1/d). Fix some
r ∈ {1, 2, . . . , d}. As

Pr [ Xt,i(u) > r ] =
d− r + 1

d
= 1− r − 1

d
6 e−

r−1
d = Pr [ Y > r − 1 ] ,
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1. Stage: Forward Approx. 3.: Backward Approx.2.: Coupling

v′

0 (7 + 512(C + 3))d7d4d

t

w = 1ns = 0n

1
256 d

u′ u′′

v′′

Fig. 6.3: The left side contains a sketch of the whole proof of Theorem 6.5. The black
circles represent I ′4d, and the blue triangles represent Φ(I ′4d). The right side
illustrates the analysis of the coupling phase. We find two vertices u′′ and v′′

such that every shortest path is included in a subcube of vertices whose initially
contacted neighbors are unknown (indicated by the grey color).

Xt,i(u) is stochastically smaller than the random variable Y +1. Therefore, we may replace
each Xt,i(u) by an exponential variable with parameter 1/d plus 1. Recall that the minimum
of i independent exponential variables with parameter 1/d is itself an exponential variable
with parameter i/d > 1/256 (cf. Lemma 2.3). By Lemma 2.23, we may bound each Xt,i by
an exponential random variable with parameter 1/256. Applying Theorem 2.14 we conclude
that for Z being the sum of 255/256 exponential variables with parameter 1/256,

Pr

[
X > γ +

255

256
d

]
6 Pr [ Z > γ ] 6 2λminµ

eλminγ/2
.

Choosing γ = 512(C + 3)d− 255
256

d we conclude that

Pr [ X > 512(C + 3)d ] 6 2
1

256
·256d

e
1

256
·(512(C+3)d− 255

256
d)/2

=
2d

e(C+3)d · e− 255
1024

d
6 2−(C+2)·d.

Hence, a vertex with distance d/256 from 0d is in C7d,(7+512(C+3))d(w) w. p. 1−2−(C+2)d.
With the same arguments, we conclude that for an arbitrary vertex u there is a vertex
v(u) satisfying dist(u, v(u)) 6 d/256 and v(u) ∈ C7d,(7+512(C+3))d(w) w. p. 1 − 2−(C+2)d.
It follows by the union bound that for all vertices u ∈ V (G) there is a vertex v(u) ∈
C7d,(7+512(C+3))d(w) with dist(u, v(u)) 6 d/256 w. p. 1 − 2−(C+1)d. Recall again that due
to the symmetry of H the vertex w could have been replaced by any other vertex of the
graph.

Coupling: (from step 4d till step 7d) We begin with the following claim.

Claim. For every u ∈ I ′4d there are two vertices u′ ∈ I ′4d and v′ ∈ C7d,(7+512(C+3))d(w) with
the following properties:

1. dist(u, u′) 6 d/256,
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2. dist(u′, v′) 6 d/256,
3. Either u′ = v′ or for every vertex m lying on a shortest path between u′ and v′,

m /∈ I4d ∪ C7d,(7+512(C+3))d(w).

Proof. Recall that all vertices of I ′4d have a pairwise distance of at least d/64. We have just
seen that for all vertices u ∈ V there is at least one vertex u(v) ∈ C7d,(7+512(C+3))d(w) such
that dist(u, v(u)) 6 d/256. Therefore, there is a bijection Φ: I ′4d → C7d,(7+512(C+3))d(w)
such that dist(u, Φ(u)) 6 d/256 for all u ∈ I ′4d. Observe that all vertices which lie on
some shortest path between u and Φ(u) form a subcube Qd′ = Qd′(u) of dimension d′ :=
dist(u, Φ(u)). Now choose two vertices u′ ∈ I4d ∩ Qd′ and v′ ∈ C7d,(7+512(C+3))d(w) ∩ Qd′

for which dist(u′, v′) is minimal. If u′ 6= v′, then all vertices m lying on a shortest path
between u′ and v′ are neither in I4d nor in C7d,(7+512(C+3))d(w).

It remains to show that at least one vertex u′ ∈ I ′4d will contact v′ = v′(u) within the
time interval [4d + 1, 7d] since this implies that w will be informed after (7 + 512(C + 3))d
time-steps.

We now derive the probability that a specific u′ = u′(u) ∈ I ′4d informs its respective
v′ = v′(u). Let u′′ = u′′(u) be a neighbor of u′ which is closer to v′ than u′. It follows from
u′ ∈ I4d that u′′ ∈ I5d and assume that u′′ /∈ C7d,(7+512(C+3))d(w), for if not, w becomes
informed at step (7 + 512(C + 3))d. Moreover, let v′′ = v′′(u) be a neighbor of v′ which is
closer to u′′ than v′. Again, it is clear that v′′(u) ∈ C7d−d,(7+512(C+3))d(w). As before, we may
assume that v′′ /∈ I5d. Let m be some vertex which is on a shortest path between u′′ and
v′′. By above claim, the initially contacted neighbor of m is uniformly at random. Hence
the first neighbor to which u′′ sends the rumor is u. a. r. and decreases the distance to v′′

with probability dist(u′′, v′′)/d. Iterating this process and using the fact that n! > (n/3)n

for sufficiently large integer n gives a probability of at least

d/256∏

k=1

k

d
=

(d/256)!

dd/256
> dd/256

(768d)d/256
> 768−d/256 >

(
11

12

)d

for reaching v′′ before time-step 7d.

By construction and the fact that we have only considered shortest paths between
u′′(u) and v′′(u), the corresponding events w. r. t. each u′′(u) and its respective v′′(u) are
independent from each other. Hence, the probability that no path succeeds (conditioned
on the success of the forward and backward approximation phase) is at most

(
1−

(11

12

)d)(11/10)d

6 e−( 121
120

)d 6 2−(C+2)d,

for any constant C > 0. If we condition on the success of the first and third phase, which
occurs with probability at least 1 − 2 · 2−(C+1)d, then all vertices become informed with
probability 1−2−(C+1)d, having used the union bound over all n vertices. Hence all vertices
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become informed with (unconditional) probability

1− 2 · 2−(C+1)d − 2−(C+1)d > 1− 2−Cd.

Since Ω(log n) is obviously a lower bound, as the number of informed vertices can at most
double in each step, the claim of the theorem follows.

Let G(n, p) be the probability space of random graphs with n vertices such that each
edge is present independently with probability p. (Note that the case p = 1 gives the
complete graph Kn with n vertices.) We consider the case that p = (log(n) + f(n))/n,
where limn→∞ f(n) →∞. By [ER59], such graphs are connected w. p. 1− o(1).

Theorem 6.6 ([DFS08]). Let C > 1 be some constant. Let p = (log(n)+f(n))/n, where
limn→∞ f(n) →∞. Then a random graph G ∈ G(n, p) with probability 1 − o(1) has the
property that

QRn−C (G) = Θ(log n).

6.5 Conclusion

We proposed and investigated a quasirandom analogue of the classical push algorithm for
broadcasting a rumor from one vertex to all vertices in a network.

We showed that for the network topologies of complete graphs, hypercubes and random
graphs G(n, p), where p only needs to be slightly larger than the connectivity threshold,
after Θ(log n) iterations all vertices are informed with probability 1 − n−C . Hence the
quasirandom model achieves asymptotically the same bounds as the random one, or even
better ones (for random graphs with p very close to log(n)/n). Our new model demonstrates
that by equipping the vertices with some memory, the broadcast time can be reduced, even
in the presence of some adversary.

From the methodological point of view, our results are also interesting. Our proofs show,
in particular, that the difficulties usually invoked by highly dependent random experiments
can be overcome. From the general perspective of using randomized methods in computer
science, our results indicate that choosing the right amount of randomness might be a topic
for fruitful further research.

One specific open problem is the runtime on edge-expanders. The proofs for hypercubes
and random graphs use implicitly the fact that the vertex expansion of small subsets is of
order Ω(deg(G)), a property which may not be shared by all edge-expanders.

Following the idea of probability amplification, it could be of interest to find the mini-
mum number of random bits for efficient broadcast in the presence of some adversary, who
knows the broadcast protocol but not the random bits in advance.



7. RANDOMIZED LOAD BALANCING

7.1 Introduction

For a survey on load balancing we refer the reader to [XL97].

7.1.1 Motivation

Load balancing is one of the key problems for computation-intensive applications. For this
purpose, an application must be divided in several subtasks and these subtasks must be
executed on different computing nodes of a parallel computer. The load balancing problem
aims to subdivide the computational load as evenly as possible. In the past, this problem
was mainly considered in the context of parallel computers where a central control instance
exists. However in many networks we are facing nowadays, there cannot be a central
authority responsible for the load balancing task. One way to deal with this limitation is
the use of local load balancing schemes like diffusion [DFM99, Els02], dimension exchange
schemes [Cyb89, Arn03] or the use of so-called smoothing networks [AVY94, HT06a].

A smoothing network is a distributed data structure that accepts tokens, which repre-
sent requests for services, at input wires and routes them asynchronously to output wires;
the service is provided by the server residing on the output wire the token arrives at.
The network consists of switching elements called balancers and wires. A balancer is an
asynchronous switch with two input wires and two output wires, labelled top and bottom.
All arriving tokens are alternately forwarded to the top and bottom output wire. The
smoothness of such a network is the maximum discrepancy among the number of tokens
arriving at different output wires. The smoothness depends, first, on the pattern of tokens
arriving at the input wires and, secondly, on the balancers initializations.

We consider a random initialization [AVY94] where each balancer is initially top or
bottom uniformly at random. Such a random initialization eliminates the need for global
coordination and thereby offers fault-tolerance against crashes, resets or replacement of
balancers. More importantly, we will show that random initialization achieves the same
smoothness (up to some small additive constant) attained by the best known deterministic
initializations. Such low-smoothing networks are in particular attractive for load balancing
applications where low-contention is required like producers-consumers scenarios [HS08]
and distributed numerical computations [BT97].
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7.1.2 Related Work

A typical classification of local iterative load balancing schemes is the distinction between
diffusion-based and dimension-exchange schemes. In diffusion-based load balancing every
node is able to balance its load simultaneously with all its neighbors. The other class
called dimension-exchange schemes is somewhat more restrictive since nodes may only
communicate with one neighbor in each iteration. For these schemes one has to specify
the balancing partners which can be done by means of some random matching [BGPS06,
GM96] or some predetermined round-robin-like order [Cyb89, Arn03]. Another important
classification must be made between discrete or continuous load balancing methods. In the
discrete case, tokens can not be split and nodes can only send and receive integer amounts
of load, while in the continuous case, tokens can be arbitrarily split. Finally, the results
must be distinguished according to the used norm to measure the distance to the perfectly
balanced distribution. Two popular choices are the norms `2 and `∞; the latter is also
often called discrepancy or smoothness. In the following, we mention some related work
about discrete load balancing on networks with n nodes.

Aiello et al. [AAMR93] proposed a diffusion-based load balancing algorithm which is
O(∆n/∂(G))-smoothing in O(K · log(nK)/∂(G)) time, where K is the initial imbalance,
∆(G) the maximum degree and ∂(G) is the vertex-expansion of G. That means that for
any input vector, the discrepancy of the output vector is at most O(∆n/∂(G)) after this
time. Ghosh et al. [GLM+99] considered a similar local load balancing scheme, where
in each step only one token may be sent along an edge. They proved that their algo-
rithm is O((∆2 log n)/Φ)-smoothing within O(K/Φ) steps, where Φ is the edge-expansion
of G. Rabani et al. [RSW98] introduced the so-called local divergence to measure the
difference between continuous and discrete load balancing schemes. Their results hold
both for a diffusive model and for a balancing circuit model (which corresponds to the
dimension-exchange-paradigm). Amongst other things, they proved that every network is
O(∆ log n/(1−µ2)) smoothing within O(log(Kn)/(1−µ2)) rounds, where µ2 is the second
largest eigenvalue of a certain transition matrix of G.

All load balancing schemes mentioned so far were deterministic. Elsässer et al. [EMS06]
proposed a fully distributed approach based on random walks. With λ2 denoting the second
largest eigenvalue of the transition matrix of G, they could prove that after O((log2 n +
log K)/(1− λ2)) steps, their algorithm reduces the discrepancy to O(1).

Also balls-and-bins models have been extensively studied as simple randomized, yet
centralized protocols for assigning jobs (=balls) to servers (=bins). In the most basic
model, one throws n balls sequentially into n bins uniformly at random. While in this
case the maximum load is known to be of order log n/ log log n [MU05], the following
adaption known as the ”power of two choices” [ABKU99, MU05] reduces the load to order
log log n: each ball chooses two possible destination bins randomly and is placed in the
least full bin among them. We remark that if each balancer of a block network (which is
a simple and natural smoothing network, cf. Subsection 7.2.2) would forward each token
to a randomly chosen output wire, the distribution of tokens at the output wires of the
network would be the same as if throwing w balls (tokens) into w bins (output wires of the
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network) uniformly at random, assuming that the number of tokens entering the network
is w. Interestingly, if we employ each balancer with a local ”power of two choices”, i. e., the
balancer forwards each token to its two output wires alternately, the smoothness decreases
from Θ(log w/ log log w) to log log w + Θ(1).

This fair distribution of tokens at a balancer with random initialization bears some
resemblance to the randomized rounding technique. Randomized rounding was pioneered
by Raghavan and Thompson [RT87] for finding solution of certain integer programs. The
basic idea is to solve the linear relaxation first and then to round all variables randomly.
For more details and applications we refer the reader to [MR95].

In the work most related to our investigations, Herlihy and Tirthapura [HT06a] focused
on a smoothing network called block network [DPRS89], which is a very simple network of
depth log w that has been used in more advanced constructions such as the periodic (count-
ing) network [DPRS89]. An upper bound of 2.36

√
log w (with high probability) was shown

in [HT06a]; this upper bound is trivially inherited to the bitonic network [AHS94, Bat68]
and the periodic network [AHS94, DPRS89] since they both contain the block network. The
upper bound from Herlihy and Tirthapura improved vastly over the smoothness of log w
known before for simple constructions (such as the bitonic merger [KM96] and the butterfly
[Klu94, KP92]) with global initialization and for the block network itself with local (arbi-
trary and not randomized) initialization [HT06b]. Klugerman [Klu94], and Klugerman and
Plaxton [KP92] had earlier presented an elaborate construction of a network with smooth-
ness 1; however, this network is considered to be impractical (e.g., [Knu98, AVY94, HT06a])
since it contains the AKS sorting network [AKS83] having huge constants. [AVY94] pre-
sented a randomized 2-smoothing network of depth log w+o(log w) (with high probability).
Their network contains randomized but also deterministic balancers, and consequently, re-
quires a global initialization.

A sorting network is basically the same as a smoothing network, however the balancers
are replaced by comparators. A sequence of w numbers to be sorted arrives synchronously
and each comparator forwards the higher number to the top and the lower number to
the bottom output wire, respectively. Such a network is a sorting network if the output
sequence arriving at the output of the network is sorted correctly for every possible input
sequence. [Bat68] presented a O(log2 w)-depth sorting network called bitonic network.
Later Ajtai et al. [AKS83] presented an O(log w)-depth sorting network known as AKS-
network. However, as pointed out by Knuth [Knu98], ”Batcher’s method is much better,
unless w exceeds the total memory capacity of all computers on earth!”.

7.1.3 Our Results

Herlihy and Tirthapura formulated three interesting open problems about randomized
smoothing networks in [HT06a, Section 5]:

1. Our bound for the smoothness of the block network does not make use of structure
that may be present in the input sequence. Can we obtain better bounds if the input
is already fairly smooth?
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2. Can we get better bounds on the output smoothness of the randomized periodic or
bitonic networks?

3. How tight is the O(
√

log w) upper bound for the block network? Can we get a
matching lower bound?

In this thesis, we provide answers to all these problems of Herlihy and Tirthapura [HT06a].

We first consider the block network Blockw (as a randomized smoothing network). We
prove that Blockw is (log log w+3)-smoothing with probability at least 1−4w−3 (Theorem
7.9). Our proof for the upper bound uses the elementary techniques developed by Herlihy
and Tirthapura [HT06a] for their corresponding proof of the O(

√
log w) upper bound.

However, our improvement is achieved through a partition into two group of layers and a
separate analysis for each group. This result provides half an answer to Open Problem 3
of Herlihy and Tirthapura [HT06a].

We proceed by establishing a matching lower bound (up to a small additive constant)
on the smoothness of the block network. More precisely, we prove that the block network
is a (log log w − 2)-smoothing network with probability at most 2 exp(− 4

√
w

log w
) (Theorem

7.12.) The proof uses again a partition into two group of layers. We determine a fixed
point input for the first group; we then prove that (with high probability) this input
is not smoothed better than log log w − 1 when traversing the second group. This result
completes the answer to Open Problem 3 of Herlihy and Tirthapura [HT06a]. Furthermore,
we remark that our two bounds for the block network are another example of an extremely
sharp threshold result (cf. Section 4.1.2): for certain input sequences the smoothness of
the output of one block network is always between log log w−2 and log log w +3 with high
probability.

We continue to consider the cascade of two block networks. As our main result, we prove
that this network is 17-smoothing with probability at least 1− 8 log log w−94

w
(Theorem 7.16).

The proof uses a partition of the second block network into no more than 1
2
log log w − 6

groups of layers; the number of layers per group increases as we proceed. We prove that
each group is sufficient to drop the smoothness by 2. Hence, at the end, the application of
Theorem 7.9 to the first cascaded block network implies a constant smoothness.

We remark that our result on the smoothness of the cascade of two block networks
provides an answer to Open Problem 1 of Herlihy and Tirthapura [HT06a]: When the
input to a (randomized) block network has the properties of the output of a block network
(in particular, it is (log log w + 3)-smooth), then its output is 17-smooth. Also, note
that the cascade of two block networks is a subnetwork of the periodic network [AHS94,
DPRS89] (which consists of log w such blocks); hence, the latter is also 17-smoothing.
This settles Open Problem 2 of Herlihy and Tirthapura [HT06a]. Finally, we note that this
result identifies the first (randomized) smoothing network that simultaneously (i) achieves
constant smoothness, (ii) does not use the AKS network [AKS83] and (iii) does not require
global initialization.

We conclude with an improbability result: Every randomized smoothing network of
width w and depth d is 1-smoothing with probability at most d

w−1
(Theorem 7.24). This
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Network Depth Type GI Smoothness Probability Reference

KP network Θ(log w) D X 1 = 1 [Klu94, KP92]

r-butterfly ≈ log w D/R X 2 > 1− 1
superpoly(w)

[AVY94]

Bit. merger log w D X log w = 1 [KM96]

Butterfly log w D X log w = 1 [KP92]

Block log w D X log w = 1 [HT06b, Thm. 3, 4]

Block log w R X 2.36
√

log w > 1− 4w−1 [HT06a, Thm. 10]

Block log w R X log log w + 3 > 1− 4w−3 Thm. 7.9

Block log w R X log log w − 2 6 2 exp(− 4
√

w
log w

) Thm. 7.12

Two Blocks 2 log w R X 17 > 1− 8 log log w−94
w

Thm. 7.16

any d R X 1 6 d
w−1

Thm. 7.24

Fig. 7.1: Summary of known bounds on the smoothness of smoothing networks. D and R
stand for deterministic and randomized balancers, respectively; D/R stands for
a combination of deterministic and randomized balancers. GI stands for global
initialization; the corresponding column indicates whether GI is required or not.
KP network stands for the network of Klugerman and Plaxton [Klu94, KP92]

is bad news: it implies that the output of any of the common randomized smoothing
networks of depth O(log2 w) (such as the periodic network [DPRS89] or the bitonic net-
work [Bat68, AHS94]) is 1-smooth with an extremely small probability. Furthermore, only
randomized smoothing networks of depth linear in w may guarantee 1-smoothness with
a non-vanishing probability. Since there is a deterministic 1-smoothing network (relying,
however, on the AKS network to achieve depth Θ(log w)) [Klu94, KP92], this result pro-
vides the first separation between deterministic and randomized (1-)smoothing networks.
This separation demonstrates an unexpected limitation on the power of randomization in
smoothing networks: there is some constant c between 1 and 16 such that there are ran-
domized (c + 1)-smoothing networks (of polylogarithmic depth) with high probability, but
not such randomized c-smoothing networks.

Finally, we observe that our results for one (or the cascade of two) block(s) can be used
for the analysis of a randomized dimension-exchange load balancing scheme on hypercubes.
In particular, we get an upper bound of 17 on the resulting discrepancy after 2 log n rounds.
This is a large improvement on the aforementioned bound by Rabani et al. [RSW98],
however, their results hold for an arbitrary rounding procedure.

7.2 Notations, Definitions and Preliminaries

All logarithms are to the base 2 unless otherwise indicated. For an integer i, the binary
representation of i is a binary word i1i2 . . . il with l > log i such that

∑l
k=1 2l−kik = i. For
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an integer i > 1, denote [i] = {0, . . . , i − 1}. For an integer i > 0, the odd-characteristic
function of i, denoted as Odd(i), is given by Odd(i) = 1 if i is odd, and 0 otherwise.

We denote by x a vector (x0, . . . , xw−1) of w integers. For a vector x, denote
∑

x =∑
i∈[w] xi. We say that x is γ-smooth if for every pair i, j ∈ [w], |xi − xj| 6 γ.

7.2.1 (Randomized) Smoothing Networks

General. A smoothing network [AHS94] is a special case of a balancing network [AHS94],
which is a collection of interconnected balancers. A balancer is an asynchronous switch with
two input wires and two output wires, called top and bottom. An initialization takes place
at some preprocessing phase. The initialization chooses an orientation for each balancer:
one of the two output wires, either the top or the bottom. A stream of tokens enters a
balancer via its two input wires and is directed to the two output wires as follows. Each
time a new token arrives on an input wire, it is directed to the output wire currently
labelled top and at the same time, the orientation of the balancer changes. This ensures
that the total number of tokens is (almost) evenly divided among the two output wires.

A balancing network is an acyclic network of balancers where output wires of balancers
are connected to input wires of (other) balancers. The network’s input wires 0, 1, . . . , w−1
may not be connected from any output wires; the network’s output wires may not be
connected to any input wire. When the numbers of input and output wires of the network
are the same, this number w is called the width of the network and the network is denoted
by Bw. The network’s acyclicity ensures that each balancer can be assigned a unique layer,
which is the length of the longest path from an input wire to that layer. The depth of a
network is the maximum layer and is denoted by d(Bw).

The network Prefix`(Bw) consists of the layers 1, . . . , ` of Bw; the network Suffix`(Bw)
consists of the layers d(Bw) − ` + 1, . . . , d(Bw). Finally, for an integer k > 1, Bκ

w denotes
the sequential cascade of κ copies of Bw.

If a balancer b is located in layer `, we shall write b ∈ `. Say that a balancer b ∈ `
of a balancing network Bw depends on balancer b′ ∈ `′, `′ < ` if there is a path from b′ to
b in Bw. Then, each output wire of a balancer b depends on balancer b′ as well (and also
trivially on b). The dependency set of a balancer b in layer ` is the set of all balancers
b′ ∈ `′, `′ < ` such that b depends on b′. Consider two output wires j1 and j2 of layer ` in
a balancing network Bw. Say that j1 and j2 are independent for layer `′, `′ < ` if there is
no balancer b′ ∈ `′ such that both j1 and j2 depend on b′.
Deterministic and randomized balancers. This distinction refers to the way balancers
are initialized. A deterministic balancer is one that is initialized in some deterministic way.
A deterministic balancing network consists of deterministic balancers (and wires). A pair
of a deterministic balancing network Bw and a (fixed) orientation for each of its balancers
induces a set of (asynchronous) executions in the natural way (cf. [AHS94, Section 2]).
Consider an input vector x = (x0, x1, . . . , xw−1), where xi is the number of tokens fed into
input wire i of the network Bw. A quiescent state of the network Bw on the input vector
x is reached in some execution when all input tokens

∑
x have exited the network. It

is simple to observe that all executions of network Bw (on the input vector x) reach a
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quiescent state with a common output vector y = (y0, y1, . . . , yw−1). So, identify each such
quiescent state with the vector y and denote this common vector as Bw(x). A vector x is
a fixed point for the network Bw if Bw(x) = x (cf. [HT06b]).

Definition 7.1. For some integer γ > 1, Bw is a γ-smoothing network if for each input
vector x, Bw(x) (corresponding to some local orientation of it) is γ-smooth.

A randomized balancer [AVY94, HT06a] is initialized to each of top and bottom with
probability 1

2
and independently of all other balancers. A randomized balancing network

consists of randomized balancers. Clearly, a fixed input vector x to a randomized balancing
network induces a probability distribution on the set of possible output vectors for this
input x.

Definition 7.2. For some integer γ > 1, Bw is a γ-smoothing network with probability
δ, where 0 6 δ 6 1, if for all input vectors x, Pr [ Bw(x) is γ-smooth ] > δ.

Hence, Bw is a γ-smoothing network with probability δ if for all input vectors the
probability that all output wires j and k, j, k ∈ [w], j 6= k satisfy |yj − yk| 6 γ is at least δ.

For a balancer b, denote as x1 and x2 the number of tokens arriving on the top and
bottom input wires of b, respectively. (We shall sometimes use x1(b), x2(b), y1(b), y2(b) for
x1, x2, y1 and y2, respectively, when reference to b is necessary.) Denote as y1 and y2 the
number of tokens leaving through the top and bottom output wires of b, respectively. If b
is oriented top,

y1 =

⌈
x1 + x2

2

⌉
and y2 =

⌊
x1 + x2

2

⌋

and if b is oriented bottom,

y1 =

⌊
x1 + x2

2

⌋
and y2 =

⌈
x1 + x2

2

⌉
.

Assume now that b is oriented uniformly at random. Define a random variable rb taking
values 1

2
and −1

2
with equal probability (cf. [HT06a]). (Clearly, E [ rb ] = 0.) Define

xb = Odd(x1 + x2) · rb (cf. [HT06a]). Then,

y1 =
x1 + x2

2
+ xb =

x1 + x2

2
+ Odd(x1 + x2) · rb,

y2 =
x1 + x2

2
− xb =

x1 + x2

2
− Odd(x1 + x2) · rb.

7.2.2 The Block Network (and its Relatives)

The Block network Blockw was introduced as a comparator network in [DPRS89]; it was
later investigated as balancing networks in [AHS94] (Roughly speaking, the isomorphic
balancing network to a comparator network replaces comparators with balancers.).
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Construction and Structure. We use the following definition for Blockw [MMT99]. For
any w a power of 2, the network Blockw has log w layers. For each layer `, 1 6 ` 6 log w
and for each wire u ∈ {0, 1}log w, there is a balancer b between wire u = u1u2 . . . ulog w and
wire u1 . . . u`u` . . . ulog w, i. e., the last log w − ` + 1 bits of u are flipped. The top output
wire of b is the one among u and u(`) such that u` = 0. See Figure 7.3 for an illustration.

We will use the tree structure from [HT06a, Section 2] for the Blockw network:

• The root is the set of all w
2

balancers at layer 1 of Blockw; label this node v1,1. The
leafs of the tree are the balancers in layer log w.

• For each `, 2 6 ` 6 log w, layer ` is decomposed into 2`−1 nodes, denoted as
v`,1, . . . , v`,2`−1 , each consisting of w

2` balancers. These nodes are defined inductively
(given the nodes for layer `− 1) as follows: For each integer k, where 1 6 k 6 2`−2,
the node v`,2k−1 consists of all balancers (in layer `) that the top output wires of
balancers in node v`−1,k point to. Similarly, the node v`,2k consists of all balancers
(in layer `) which the bottom output wires of balancer in node v`−1,k point to.

The tokens that exit from output wire y1 must follow the path v1,1, v2,1, . . . , vlog w,1 and
further exit on the top output wire of balancer vlog w,1. See Figure 7.2 for an illustration of
the tree structure.

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

INPUT OUTPUT
3 41 2

v1,1

v2,1

v2,2

v3,4

v3,3

v3,2

v3,1

v4,1

v4,2

v4,3

v4,4

v4,5

v4,6

v4,7

v4,8

Fig. 7.2: An example of the tree structure of [HT06a] within a Block16.

We observe a preliminary property of the network Blockw which will be used later.

Observation 7.3. In Blockw, there is at most one path from a balancer b in layer ` to a
balancer b′ in layer `′ > `.

Relatives. The block network is very similar to (but different than) the well-known merger
network of Batcher [Bat68]. In more detail, under the standard orientation (cf. [HT06a]),
there is no permutation between the input wires of the two networks that yields one from
the other while respecting the orientation of each balancer. However, if the balancers’
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orientations are ignored, such permutations exist and the networks are called isomorphic
(cf. [DPRS89, Section 2].) The Periodicw network is the cascade of log w Blockw networks.

The cube-connected-cycles network: For any w a power of 2, the network CCCw has
log w layers. In layer `, 1 6 ` 6 log w, for each wire u ∈ {0, 1}log w, there is a balancer b
between wire u and wire u(`), where u(`) = u1 . . . u`−1u`u`+1 . . . ulog w; the top output wire
of b is the one among u and u(`) such that u` = 0. See Figure 7.3 for an illustration.

2
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

INPUT OUTPUT
3 41 2

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

INPUT OUTPUT
3 41

Fig. 7.3: The Block16 and the CCC16 network.

We observe the following simple property of CCCw.

Lemma 7.4. Consider two integers l1 and l2 such that l1 + l2 < log w. Let `1 ∈ {0, 1}l1

and `2 ∈ {0, 1}l2 be arbitrary but fixed. Then, the restriction of CCCw to the layers l1 +
1, . . . , log w − l2 and wires {`1u`2 | u ∈ {0, 1}log w−l1−l2} is a network CCC2log w−l1−l2 .

Proof. Consider an arbitrary wire `1u`2 in layer `, where l1 + 1 6 ` 6 log w − l2. Map
this wire to u in layer `− l1 of CCC2log w−l1−l2 . Clearly, this defines a bijection between the
restriction of wires `1u`2, u ∈ {0, 1}log w−l1−l2 , of a CCCw to the wires of a CCC2log w−l1−l2 .
Consider now a balancer b of CCCw in layer `, l1 + 1 6 ` 6 log w − l2 connecting wires
`1u`2 and `1u`2(`). By definition, both wires are mapped to u and u(` − l1) in layer ` −
l1 of CCC2log w−l1−l2 , for which there is a balancer connecting them by definition of the
CCC2log w−l1−l2 . The claim follows.

It is simple to see that the block network is a bidelta network [KS86] (A bidelta network
is a one that is a delta network in both directions (from left to right and vice versa); roughly
speaking, a delta network is one in which there is a unique path from each input wire to ev-
ery output wire, and the path descriptors associated with paths leading to the same output
wire are identical.) The cube-connected-cycles is another example of a bidelta network. It
is known that any two bidelta networks of the same width (and degree 2, say) are isomor-
phic [KS86]. Hence, the block network is isomorphic to the cube-connected-cycles network
(assuming the balancer orientations are ignored). This offers some convenience to our
analysis since we are allowed to treat the two networks interchangeably when considering
random orientations.
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Block Network with Random Orientation. We now outline some tools for the anal-
ysis of the randomized block network developed in [HT06a, Section 2.1]. The numbers
y0, y1, . . . , yw−1 of tokens on output wires 0, 1, . . . , w − 1 are random variables (following
some distribution). Since each balancer is initialized uniformly at random, the symmetry
of the block network implies that all variables yj, 0 6 j 6 w−1 follow the same distribution
(cf. [HT06a]).

Recall now the tree structure associated with the network Blockw. Since all random
variables yj, 0 6 j 6 w− 1, follow the same distribution, we focus on the number of tokens
y1 exiting on the top output wire of node vlog w,1. To calculate y0 we need to count the
number of tokens following the path v1,1, v2,1, . . . , vlog w,1 and exiting on the top output
wire of vlog w,1. We restate the following lemmas.

Lemma 7.5 ([HT06a]). For the Blockw, y0 =
∑

x
w

+
∑log w

`=1
1

2log w−`

∑
b∈v`,1

xb.

Lemma 7.6 ([HT06a]). Consider a set of balancers B in Blockw and a constant cb for
each balancer b ∈ B. Then for any δ > 0,

Pr

[ ∑

b∈B
cbxb > δ

]
6 2 ·Pr

[ ∑

b∈B
cbrb > δ

]
.

Note that
∑

b∈B cbxb is a sum of dependent random variables, while
∑

b∈B cbrb is a
sum of independent random variables. Furthermore, note that for each set of balancers B,
linearity of expectations implies E

[ ∑
b∈B cbrb

]
= 0. The following lemma can be easily

derived by adapting the proof from [HT06a].

Lemma 7.7. For the network Blockw, Pr
[ ∣∣∣y0 −

∑
x

w

∣∣∣ > δ
]

6 4 exp(−δ2).

Proof. First, we recall the following technical claim.

Lemma 7.8 ([HT06a]). For the Blockw,
∑log w

`=1

∑
b∈v`,1

(
1

2log w−`+1 − (− 1
2log w−`+1 )

)2
= 2− 2

w
.

By Lemma 7.6, Pr
[
|∑log w

`=1
1

2log w−`

∑
b∈v`,1

xb| > δ
]
62·Pr

[
|∑log w

`=1
1

2log w−`

∑
b∈v`,1

rb| > δ
]
.

Note that for each pair of layer `, 1 6 ` 6 log w and a balancer b ∈ v`,1, the random variable
rb has range {−2− log w+`−1, 2− log w+`−1}. Hence, by Hoeffding bound (Theorem 2.12) and

Lemma 7.8, we obtain Pr
[ ∣∣∣∑log w

`=1
1

2log w−`

∑
b∈v`,1

xb

∣∣∣ > δ
]

6 2 · 2 · exp
(
−2δ2

2

)
.

7.3 One Block Network

We present both upper and lower bounds on the smoothness of the network Blockw.

Theorem 7.9. Blockw is a (log log w + 3)-smoothing network with probability at least 1−
4w−3.
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Proof. By Lemma 7.5,

y0 =

∑
x

w
+

log w∑

`=1

1

2log w−`

∑

b∈v`,1

xb

=

∑
x

w
+

log w−dlog log we∑

`=1

1

2log w−`

∑

b∈v`,1

xb

︸ ︷︷ ︸
X1

+

log w∑

`=log w−dlog log we+1

1

2log w−`

∑

b∈v`,1

xb

︸ ︷︷ ︸
X2

,

where for each layer `, |v`,1| = 2log w−`. Before we investigate X1, we observe the following
lemma.

Lemma 7.10. For Blockw,
∑log w−dlog log we

`=1

∑
b∈v`,1

(
1

2log w−`+1 − (− 1
2log w−`+1 )

)2 6 2
log w

.

Proof. Clearly,

log w−dlog log we∑

`=1

∑

b∈v`,1

(
1

2log w−`+1
− (− 1

2log w−`+1
)

)2

=

log w−dlog log we∑

`=1

2log w−`

(
1

2log w−`

)2

=

log w−dlog log we∑

`=1

1

2log w−`
=

1

w

log w−dlog log we∑

`=1

2`

6 1

w
· (2log w−log log w+1 − 1) 6 2

log w
,

as needed.

Lemma 7.11. Pr [ |X1| > 2 ] 6 4w−4

Proof. Let R1 =
∑log w−dlog log we

`=1
1

2log w−`

∑
b∈v`,1

rb. Lemma 7.6 gives Pr [ |X1| > 2 ] 6 2 ·
Pr [ |R1| > 2 ] . Note that for each pair of a layer `, 1 6 ` 6 log w − dlog log we, and a
balancer b ∈ v`,1, the random variable 1

2log w−` · rb has range {−2− log w+`−1, +2− log w+`−1}.
Using Lemma 7.10, we conclude by Hoeffding bound (Theorem 2.12) that

Pr [ |X1| > 2 ] 6 2 · 2 · exp

(
−2 · 22

2
log w

)
6 4w−4.
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To bound |X2| we use the triangle inequality to get

|X2| 6
log w∑

`=log w−dlog log we+1

1

2log w−`

∑

b∈v`,1

|xb|

6
log w∑

`=log w−dlog log we+1

1

2log w−`

∑

b∈v`,1

1

2

=

log w∑

`=log w−dlog log we+1

1

2log w−`
· 2log w−` · 1

2
=

1

2
· dlog log we.

Using the fact that each yk, 0 6 k 6 w − 1, follows the same distribution as y0 and using
the union bound over all yk, we obtain

Pr


 ∨

k∈[w]

(∣∣∣yk −
∑

x

w

∣∣∣ > 1

2
dlog log we+ 2

) 
 6 4w−3. (7.1)

The event
∧

k∈[w]

(∣∣∣yk −
∑

x
w

∣∣∣ < 1
2
dlog log we+ 2

)
implies for each pair of indices k, l ∈ [w],

|yk − yl| 6
∣∣∣yk −

∑
x

w

∣∣∣ +
∣∣∣− yl +

∑
x

w

∣∣∣ 6 1

2
dlog log we+ 1 +

1

2
dlog log we+ 1

= dlog log we+ 2 6 log log w + 3.

By 7.1 and the union bound,

Pr [y is (log log w + 3)-smooth ] > Pr


 ∧

k∈[w]

(∣∣∣∣yk −
∑

x

w

∣∣∣∣ 6 1

2
dlog log we+ 2

)


> 1− 4w−3.

We continue with the lower bound. To avoid the extensive use of floors and ceilings,
we confine ourselves to the case of log w being a power of 2.

Theorem 7.12. For any w such that log w is a power of 2, Blockw is a (log log w − 2)-

smoothing network with probability at most 2 · exp(− 4
√

w
log w

).

Proof. Since the networks Blockw and CCCw are isomorphic, we shall deal with the second.
We construct an input x such that the probability that y = CCCw(x) is (log log w− 2)-

smooth is at most 2 · exp(− 4
√

w
log w

). Construct x as follows. For each input wire i =

i1i2 . . . ilog w, set xi :=
∑log w

k=log w−log log w+2 ik. So, xi is the number of 1’s in the log log w − 1
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least significant bits of i1i2 . . . ilog w. We note that an illustration for this input sequence
for a CCC16 is given in Figure 7.4.
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1
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2

2
1

0
1

2
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1
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1
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1
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1

1

0

2
1
0

1

Fig. 7.4: An example of an orientation of a CCC16 for the lower bound. The number
of tokens in an input wire is the sum of 1’s in the least two significant bits.
The vertical boxes represent the number of tokens entering a wire before layers
1, 2, 3, 4 and at the output, respectively. The orientation of the first two layers
is not drawn, as the output vector of the second layer is a fixed point.

Using the recursive structure of the CCCw, we prove three elementary lemmas.

Lemma 7.13. x is a fixed point of Prefixlog w−log log w+1(CCCw).

Proof. We prove that for each layer ` 6 log w − log log w + 1, x is a fixed point of the
subnetwork of CCCw consisting of the ` leftmost layer of CCCw. The proof is by induction
on `. For the basis case, where ` = 1, consider a balancer b in layer ` connecting wires u
and u(1), where u ∈ {0, 1}log w. By construction of x, the inputs to balancer b are

x1(b) =

log w∑

k=log w−log log w+2

uk and x2(b) =

log w∑

k=log w−log log w+2

u(1)k.

By construction of the network, uk = u(1)k for all k > log w − log log w + 2 (since u and
u(1) differ only in bit 1.) Hence, x1(b) = x2(b). By definition of balancers, it follows that
y1(b) = y2(b). Consequently, x is a fixed point of the network consisting of the subnetwork
of CCCw consisting of its leftmost layer.

Assume inductively that the claim holds for layer `−1, where 1 < ` < log w−log log w+
2. Consider a balancer b in layer ` connecting wires u and u(`), where u ∈ {0, 1}log w.
By induction hypothesis, the inputs to b are x1(b) =

∑log w
k=log w−log log w+2 uk and x2(b) =∑log w

k=log w−log log w+2 u(`)k. By construction of the network, uk = u(`)k for all k > log w −
log log w + 2 (since u and u(`) differ only in bit `.) Hence, x1(b) = x2(b). By definition of
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balancers, it follows that y1(b) = y2(b). Hence, x is a fixed point of the network consisting
of the subnetwork of CCCw consisting of its leftmost ` layers. The claim follows.

We now focus on the subnetwork Suffixlog log w−1(CCCw). By the construction of the
CCCw network (cmp. Lemma 7.4), this subnetwork is the parallel cascade of 2w

log w
CCC log w

2

networks. Take any such network CCC log w
2

. Observe that the input wires of this network

are the wires u0log log w−1, . . . , u1log log w−1 for some u ∈ {0, 1}log w−log log w+1. Lemma 7.13
implies that the input to wire i = uv, where v ∈ {0, 1}log log w−1 is

∑log w
k=log w−log log w+2 ik.

Consider the wire u1log log w−1. Now we state a second lemma for this proof.

Lemma 7.14. Pr [ yu1log log w−1 = 0 ] > 2−( log w
2
−1) and Pr [ yu1log log w−1 = log log w − 1 ] >

2−( log w
2
−1).

Proof. Note that the output wire u1log log w−1 of CCCw depends on 1 +
∑log log w−2

k=1 2k =
log w

2
− 1 balancers in layers log w − log log w + 1, . . . , log w. Notice also that there are

2
log w

2
−1 orientations for these balancers, each occurring with the same probability. Hence,

it suffices to prove that each of 0 and log log w − 1 is a possible value for the number of
tokens emitting at output wire u1log log w−1.

For simplicity, set w′ = log w. The proof is by induction on w′. For the basis case,
where w′ = 4, the claim is verified directly (see also Figure 7.3 or 7.4). Assume inductively
that the output wire u1log w′ in the network CCCw′ can take the values 0 and log w′. For
the induction step, consider the network CCC2w′ . Consider the output wire 0u1log w′ . By
construction of the cube-connected-cycles network, CCC2w′ consists of a ladder network
followed by two parallel CCCw′ networks. Consider the top of these CCCw′ networks.

• Assume that all balancers in layer 1 of the network CCC2w′ are initialized bottom.
Then, the input to each of the input wires of CCCw′ equals the number of 1’s in the
corresponding input wire 0i′, where i′ ∈ {0, 1}log(2w′)−1 = {0, 1}log w′ . Clearly, this
number equals the number of 1’s in the string i′. Induction hypothesis implies that
the output wire u1log w′ can have value 0.

• Assume now that all balancers in layer 1 of the network CCC2w′ are initialized top.
Then, the input to each of the input wires of CCC′w equals the number of 1’s in the
corresponding input wire i = 1i′ where i′ ∈ {0, 1}log w′ . Clearly, this number equals 1
plus the number of 1’s in the string i′. Induction hypothesis implies that the output
wire u1log w′ may have value 1 + log w′ = log 2w′.

Consider two different subnetworks CCC log w
2

with input wires u0log log w−1, . . . u1log log w−1

and u′0log log w−1, . . . , u′1log log w−1, respectively. Correspondingly, consider the two output
wires u1log log w−1 and u′1log log w−1, respectively.

Lemma 7.15. {yu1log log w−1 | u ∈ {0, 1}log w−log log w+1} is a set of independent random
variables.
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Proof. By construction of the CCCw, each random variable yu1log log w−1 is determined by
(i) the input to the subnetwork CCC log w

2
with input wires u0log log w−1, . . . , u1log log w−1, and

(ii) the (randomly) chosen orientation of the same subnetwork CCC log w
2

. Lemma 7.13 im-

plies that the input to the subnetwork in (i) is uniquely determined. Since all subnet-
works CCC log w

2
are disjoint, there is no balancer b in layer ` > log w − log log w + 1 in

CCCw such that more than one output wires u1log log w−1 and u′1log log w−1, with u, u′ ∈
{0, 1}log w−log log w+1, depend on. The claim follows.

Using Lemma 7.15 we get

Pr


 ∧

u∈{0,1}log w−log log w+1

yu1log log w−1 6= 0


 =

∏

u∈{0,1}log w−log log w+1

(1−Pr [ yu1log log w−1 = 0 ])

6
(
1− 2−( log w

2
−1)

)2log w−log log w+1

6 exp(−2log w−log log w+1− log w
2

+1)=exp

(
− 4

√
w

log w

)
,

and Pr
[∧

u∈{0,1}log w−log log w+1(yu1log log w−1 6= log log w − 1)
]

6 exp(− 4
√

w
log w

). By the union

bound,

Pr [y is (log log w − 2)-smooth ] 6 Pr


 ∧

u∈{0,1}log w−log log w+1

(yu1log log w−1 6= 0)




+ Pr


 ∧

u∈{0,1}log w−log log w+1

(yu1log log w−1 6= log log w − 1)




6 2 · exp

(
− 4

√
w

log w

)
.

7.4 The Cascade of Two Block Networks

We consider the cascade of two networks Blockw. We prepare the reader that the analysis
of the smoothness properties of the second cascaded block will require some smoothness
properties of the first, which go beyond the one stated in Theorem 7.9.

We aim at proving that the cascade of two block networks is 17-smoothing with high
probability. Note that this is an improvement on the upper bound of Theorem 7.9 only for
extremely large values of w. Hence this upper bound of 17 is only of theoretical interest.
Therefore, we confine ourselves to special values of w, namely those for which (log log w)/2
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is an integer. It should be clear that a similar statement could be shown for any w, however,
the proof would be rather cumbersome due to the extensive use of floors and ceilings.

Theorem 7.16. Fix some w > 2212
for which (log log w)/2 is an integer. Then, Block2

w is
a 17-smoothing network with probability at least 1− 8 log log w−94

w
.

Proof. Here is an informal outline of the proof. Recall that by Theorem 7.9, the first
Blockw is (log log w + 3)-smoothing with high probability. The proof will use no more
than log log w

2
− 6 phases; in phase ρ, 1 6 ρ 6 log log w

2
− 6, we consider a distinct group of

4 log w
(log log w−1−ρ)2

+ log log w consecutive layers in the second Blockw. For each phase ρ > 1, we
prove that the smoothness of the cascade of the first Blockw and the layers considered in
the phase ρ drops by two over the corresponding smoothness for phase ρ− 1. At the end,
this will establish that the smoothness will become constant. We remark that a sketch of
the proof may be found in Figure 7.5. The formal proof follows.

Since the networks Blockw and CCCw are isomorphic, we shall deal with the cascade of
two CCCw. Consider the second cascaded CCCw. We prove the following lemma.

Lemma 7.17. Fix a layer ` with log w + 1 6 ` 6 2 log w in the network CCC2
w. Consider

the input vector x = x(`) to layer `. Then the following statement holds with probability
1− 4w−3. For every ζ, 0 6 ζ 6 log w − log log w, and for all pairs `1 ∈ {0, 1}`−1−log w and
`2 ∈ {0, 1}2 log w−`+1−log log w−ζ,

∣∣∣∣∣

∑
u∈{0,1}log log w+ζ x`1u`2

log w · 2ζ
−

∑
x

w

∣∣∣∣∣ 6 2.

Proof. For some i ∈ {0, 1}log w, let xi(`) be the input to wire i in layer log w+1 6 ` 6 2 log w
in CCC2

w. Fix `1 ∈ {0, 1}`−1−log w and `2 ∈ {0, 1}2 log w−`+1−log log w−ζ . Let u ∈ {0, 1}log log w+γ

be arbitrary, but fixed. By definition of the balancers,

x`1u`2(`) =
x`1(`−1−log w)u`2(`− 1) + x`1u`2(`− 1)

2
+ xb`−1

(`1u`2)

=
1

2
·
(

x`1(`−2−log w)(`−1−log w)u`2(`− 2)

2
+

x`1(`−2−log w)u`2(`− 2)

2
+ xb`−2

(`1u`2)

+
x`1(`−1−log w)u`2(`− 2)

2
+

x`1u`2(`− 2)

2
+ xb′`−2

(`1u`2)

)
+ xb`−1

(`1u`2),

where xb`′ (`1u`2) (and xb′
`′
(`1u`2)) denote balancers in some layer `′ < ` on which wire

`1u`2 in layer ` depends. Expanding this formula up to layer ` − log w + log log w + ζ
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wire

layer

CCC2 log w

CCC4 log w

lo
g

w

lo
g
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g

w

b1

1

x̂(b1)

x̂(b2)

x̂(b3)

lo
g

lo
g

w
+

1

lo
g
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g

w
+

2

b2

b3

CCClog w

CCClog w

CCCw

Fig. 7.5: A sketch of the proof for the cascade of two CCCw in group L1. The inputs
x̂(b1), x̂(b2), x̂(b3), . . . on a path π from the top input wire in layer log log w to
some output wire in layer lρ are all independent (for fixed input at layer 1) and
are output wires of a CCClog w, CCC2 log w, CCC4 log w, . . . , each of which gets the
”correct” number of tokens up to some additive constant. Therefore, at least
one of the balancers b1, b2, b3, . . . will drop the smoothness along π.

(cf. [HT06a]) yields

x`1u`2(`) =
1

2log w−log log w−ζ
·

∑

̂̀
1∈{0,1}`−1−log w

̂̀
2∈{0,1}2 log w−`+1−log log w−ζ

x ̂̀
1u ̂̀

2
(`− log w + log log w + ζ)

+
`−1∑

k=`−1−log w+log log w+ζ+1

2k−(`−1)
∑

bk∈k: `1u`2
depends on bk

xbk
.
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Summing over all u ∈ {0, 1}log log w+ζ and dividing by log w · 2ζ gives

∑
u∈{0,1}log log w+ζ x`1u`2

log w · 2ζ

=

∑
x

w
+

1

log w · 2ζ

∑

u∈{0,1}log log w+ζ

`−1∑

k=`−log w+log log w+ζ

2k−(`−1)
∑

bk∈k: `1u`2
depends on bk

xbk

︸ ︷︷ ︸
X

.

Corresponding to X, we define

R =
1

log w · 2ζ

∑

u∈{0,1}log log w+ζ

`−1∑

k=`−log w+log log w+ζ

2k−(`−1)
∑

bk∈k: `1u`2
depends on bk

rbk
.

By Lemma 7.6, Pr [ |X| > 2 ] 6 2 · Pr [ |R| > 2 ] . Note that for each pair of a u ∈
{0, 1}log log w+ζ and a layer k, where `− 1− log w + log log w + ζ + 1 6 k 6 `− 1, such that
`1u`2 depends on some balancer bk of layer k, the random variable 1

log w·2ζ · 2k−(`−1) · rbk
has

range {− 1
log w

2k−(`−1)−ζ · 1
2
, + 1

log w
2k−(`−1)−ζ · 1

2
} = {− 1

log w
2k−`−ζ , + 1

log w
2k−`−ζ}.

Lemma 7.18. With the notation of Lemma 7.17,

∑

u∈{0,1}log log w+ζ

`−1∑

k=`−1−log w+log log w+ζ

∑

bk∈k: `1u`2
depends on bk

(
1

log w
2k−`−ζ − (− 1

log w
2k−`−ζ)

)2

6 2

log w
.

Proof. ∑

u∈{0,1}log log w+ζ

`−1∑

k=`−1−log w+log log w+ζ+1

∑

bk∈k: `1u`2
depends on bk

(
1

log w
2k−`−ζ − (− 1

log w
2k−`−ζ)

)2

=
∑

u∈{0,1}log log w+ζ

`−1∑

k=`−log w+log log w+ζ

∑

bk∈k: `1u`2
depends on bk

1

log2 w

(
2k−`−ζ+1

)2

=
1

log2 w

∑

u∈{0,1}log log w+ζ

`−1∑

k=`−log w+log log w+ζ

2(`−1)−k · 22k−2`−2ζ+2

=
2

log2 w · 22ζ

∑

u∈{0,1}log log w+ζ

log w−log log w−ζ∑

k=1

2−k

6 2

log2 w · 22ζ
· 2log log w+ζ · 1 6 2

log w
,

as needed.
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By Hoeffding bound and Lemma 7.18, Pr [ |X| > 2 ] 6 2 ·2 ·exp(− 2·22

2
log w

) 6 4w−4. Hence,

Pr




log w−log log w∨

ζ=0

∨

`1∈{0,1}`−1−log w

`2∈{0,1}2 log w−`+1−log log w−ζ

∣∣∣∣∣

∑
u∈{0,1}log log w+ζ x`1u`2

log w · 2ζ
−

∑
x

w

∣∣∣∣∣ 6 2




6
log w−log log w∑

ζ=0

∑

`1∈{0,1}`−1−log w

`2∈{0,1}2 log w−`+1−log log w−ζ

Pr

[ ∣∣∣∣∣

∑
u∈{0,1}log log w+ζ x`1u`2

log w · 2ζ
−

∑
x

w

∣∣∣∣∣ 6 2

]

6 log w · 2`−1−log w · 22 log w−`+1−log log w−ζ · 4

w4
6 4

w3
,

and the claim follows.

In the remainder of the proof we will focus on the second cascaded CCCw. Therefore,
we denote the layers of this subnetwork by 1, 2, . . . , log w.

Consider now again the second cascaded CCCw with layers 1, 2, . . . , log w. Consider
groups of layers L1,L2, . . . ,L log log w

2
−6 in this network, defined inductively as follows:

• For the basis case, L1 consists of layers 1, 2, . . . , d 4 log w

( 1
2

log log w−2)2
e+ log log w.

• Assume inductively that we have defined group Lρ−1, where ρ > 2.

• For the induction step, group Lρ consists of the d 4 log w

( 1
2

log log w−1−ρ)2
e + log log w layers

which immediately follow group Lρ−1.

Denote as `ρ the first layer in group Lρ, so, `1 = 1. We observe:

Lemma 7.19. For any w as in the statement of Theorem 7.16, the number of layers in
groups L1,L2, . . . ,L log log w

2
−6 is at most log w.
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Proof. Clearly,

log log w
2

−6∑
ρ=1

(⌈
4 log w

(1
2
log log w − 1− ρ)2

⌉
+ log log w

)

6




log log w
2

−6∑
ρ=1

4 log w

(1
2
log log w − 1− ρ)2


 + 2(log log w)2

6 4 log w ·
∞∑

k=5

1

k2
+ 2(log log w)2

= 4 log w ·
(

π2

6
−

4∑

k=1

1

k2

)
+ 2(log log w)2

6 0.9 log w + 2(log log w)2 6 log w,

where the last inequality holds since w > 2212
implies 2(log log w)2 6 0.1 log w.

Consider a path π = (b1, b2, . . . , bk) (of balancers) in subsequent layers. For each
balancer br, 1 < r 6 k, x(br) is the input to balancer br from balancer br−1 and x̂(br)
is the other input to balancer br. (x(b1) is arbitrarily among x1(b1) and x2(b1).) We now
prove the following key lemma.

Lemma 7.20. Consider an arbitrary, fixed path π = (b1, b2, . . . , bd(Lρ)−log log w) from an
input wire in layer log log w of group Lρ to an output wire of Lρ. Then,

Pr

[ ∨

b∈π

∣∣∣∣x̂(br)−
∑

x

w

∣∣∣∣ 6 1

2
log log w + 1− ρ

]
> 1− 8 · w−3.

Proof. We first prove a technical claim we need.

Claim. Consider an arbitrary fixed input x to Lρ. Then, {x̂(b1), . . . , x̂(bd(Lρ)−log log w)} is a
set of independent random variables.

Proof. For fixed input x to Lρ, each random variable x̂(br), where 1 6 r 6 d(Lρ)−log log w
is determined by (i) the inputs to the balancers in layer 1 of Lρ on which br depends,
and (ii) the (randomly) chosen orientation of the balancers of Lρ on which br depends.
Observation 7.3 implies that the dependency sets (restricted to Lρ) of balancers br, 1 6
r 6 d(Lρ)− log log w, are all disjoint. The claim follows.

Claim. For any pair of `1 ∈ {0, 1}log w−1 and `2 ∈ {0, 1}log w−lρ−log log w−ζ+1, where ζ > 0, con-

sider an arbitrary but fixed input vector x to Lρ such that
∣∣∣
∑

u∈{0,1}log log w+ζ x`1u`2

2ζ ·log w
−

∑
x

w

∣∣∣ 6 2.
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Then, for each balancer br, 1 6 r 6 d(Lρ)− log log w,

Pr

[ ∣∣∣∣x̂(br)−
∑

x

w

∣∣∣∣ > 1

2
log log w + 1− ρ

]
6 4 · exp

(
−

(
1

2
log log w − 1− ρ

)2
)

.

Proof. Fix a balancer br, where 1 6 r 6 d(Lρ) − log log w in layer 1 6 `(r) 6 log w.

Let i = ̂̀
1(r) û(r) ̂̀2(r) and i(`) be the input wires of br, where ̂̀1(r) ∈ {0, 1}`ρ−1,

û(r) ∈ {0, 1}log log w+r and ̂̀
2(r) ∈ {0, 1}log w−`ρ−log log w−r+1. Consider the restriction of

group Lρ to layers `ρ, `ρ + 1, . . . , `ρ + log log w + r − 1 and wires ̂̀1(r)û̀2(r), where u ∈
{0, 1}log log w+r. Lemma 7.4 implies that this restriction is a network CCC2r log w with input
wires {x

`̂1(r)u`̂2(r)
| u ∈ {0, 1}log log w+r}. Hence, x̂(br) is some output wire of CCC2r log w;

notice that the input vector to this network comes from the (arbitrary but fixed) input
vector x to Lρ. Clearly, the triangle inequality and the assumption imply

Pr

[ ∣∣∣∣x̂(br)−
∑

x

w

∣∣∣∣ > 1

2
log log w + 1− ρ

]

6 Pr

[ ∣∣∣∣∣x̂(br)−
∑

u∈{0,1}log log w+rx`̂1(r)u`̂2(r)
(`ρ)

2r log w

∣∣∣∣∣ +

∣∣∣∣∣

∑
u∈{0,1}log log w+rx`̂1(r)u`̂2(r)

(`ρ)

2r log w
−

∑
x

w

∣∣∣∣∣

> 1

2
log log w+1−ρ

]

6 Pr

[ ∣∣∣∣∣x̂(br)−
∑

u∈{0,1}log log w+r x
`̂1(r)u`̂2(r)

(`ρ)

2r log w

∣∣∣∣∣ + 2 > 1

2
log log w + 1− ρ

]

= Pr

[ ∣∣∣∣∣x̂(br)−
∑

u∈{0,1}log log w+r x
`̂1(r)u`̂2(r)

(`ρ)

2r log w

∣∣∣∣∣ > 1

2
log log w − 1− ρ

]

6 4 · exp

(
−

(
1

2
log log w − 1− ρ

)2
)

,

where Lemma 7.7 was used for the last inequality.

We continue with the proof of Lemma 7.20. Denote by E the event that

∀ζ > 0, `1 ∈ {0, 1}`ρ , `2 ∈ {0, 1}log w−`ρ−log log w−ζ

∣∣∣∣∣

∑
u∈{0,1}log log w+ζ x`1u`2(`ρ)

2ζ · log w
−

∑
x

w

∣∣∣∣∣ 6 2.

So, ¬E denotes the event that ∃ζ > 0, `1 ∈ {0, 1}`ρ , `2 ∈ {0, 1}log w−`ρ−log log w−ζ :∣∣∣
∑

u∈{0,1}log log w+ζ x`1u`2
(`ρ)

2ζ ·log w
−

∑
x

w

∣∣∣ > 2. Recall that by Lemma 7.17, Pr [¬E ] 6 4
w3 and define
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α := 1
2
log log w + 1− ρ. Therefore, by the two preceding claims,

Pr

[ ∧

b∈π

∣∣∣∣x̂(br)−
∑

x

w

∣∣∣∣ > α

]

=
∑

x(`ρ): E
Pr

[ ∧

b∈π

∣∣∣∣x̂(br)−
∑

x

w

∣∣∣∣ > α
∣∣∣ x(`ρ) input

]
·Pr [x(`ρ) input ]

+
∑

x(`ρ):¬E
Pr

[ ∧

b∈π

∣∣∣∣x̂(br)−
∑

x

w

∣∣∣∣ > α
∣∣∣ x(`ρ) input

]
·Pr [x(`ρ) input ]

6
∑

x(`ρ): E




d(Lρ−log log w)∏
r=1

Pr

[ ∣∣∣∣x̂(br)−
∑

x

w

∣∣∣∣ > α
∣∣∣ x(`ρ) input

]


·Pr [x(`ρ) input ] +
∑

x(`ρ):¬E
1 ·Pr [x(`ρ) input ]

6
∑

x(`ρ): E




d(Lρ−log log w)∏
r=1

4 exp
(
−(α− 2)2

)

 ·Pr [x(`ρ) is input ] +

4

w3

6 4 · exp(−(d(Lρ)− log log w) · (α− 2)2) · 1 +
4

w3

= 4 · exp

(
− 4 log w

(α− 2)2
· (α− 2)2

)
+

4

w3
6 8

w3
,

and Lemma 7.20 follows.

Observation 7.21. For any layer 1 6 ` 6 log2 w, maxi∈[w] xi(`) > maxi∈[w] xi(` + 1) and
mini∈[w] xi(`) 6 mini∈[w] xi(` + 1).

Lemma 7.22. Consider layers ` and `′, ` < `′, with input vector x = x(`) and output

vector y = y(`′), respectively. Assume that (i) for every i ∈ [w], xi − d
∑

x
w
e 6 γ and (ii)

for every path π = (b`, b`+1, . . . , b`′) from layer ` to layer `′, there is at least one layer r,

with ` 6 r 6 `′, such that |x̂(br)−
∑

x
w
| 6 γ− 2. Then, yi−d

∑
x

w
e 6 γ− 1 for every i ∈ [w].

Proof. Seeking a contradiction, assume that there is an i ∈ [w] such that yi − d
∑

x
w
e = γ.

Let b`′ be the balancer in layer `′ with output wire yi. By Observation 7.21 and assumption
on the input vector x in layer ` 6 `′, the two inputs must satisfy x1(b`′) > d

∑
x

w
e+γ−1 and

x2(b`′) > d
∑

x
w
e + γ for an arbitrary ordering of the two input wires of b`′ . Consequently,

there is an output wire of a balancer b`′−1 in layer `′− 1 with output d
∑

x
w
e+ γ. Similarly,

the two inputs to b`′−1 must satisfy x1(b`′−1) > d
∑

x
w
e + γ − 1 and x2(b`′−1) > d

∑
x

w
e + γ

for some ordering of the input wires. By induction, there is a path π = (b`, b`+1, . . . , b`′)

such that for all ` 6 r 6 `′, x̂(br) − d
∑

x
w
e > γ − 1. This contradicts our assumption and

the claim follows.



7.4. The Cascade of Two Block Networks 129

This concludes the main technical part of the proof of Theorem 7.16. The next lemma
combines our findings and shows that the ”one-sided smoothness” drops in each group.

Lemma 7.23. For an integer ρ, where 1 6 ρ 6 log log w
2

− 6, consider the input and output
vectors x = x(ρ) and y = y(ρ) respectively, to group Lρ. Let β := 1

2
log log w+2−ρ. Then,

Pr


 ∧

k∈[w]

(
yk(ρ)−

⌈∑
x

w

⌉
6 β

) 
 > Pr


 ∧

k∈[w]

(
xk(ρ)−

⌈∑
x

w

⌉
6 β + 1

) 
− 8

w
.

Proof. Let P be the set of all paths from the first layer of Lρ to the last layer of Lρ. Clearly,
|P| 6 w · 2d(Lρ) 6 w · 2log w 6 w2. Hence, by the union bound and Lemma 7.20,

Pr

[ ∨
π∈P

(∧

b∈π

∣∣∣∣x̂(br)−
∑

x

w

∣∣∣∣ > β − 1

)]
6

∑
π∈P

Pr

[(∧

b∈π

∣∣∣∣x̂(br)−
∑

x

w

∣∣∣∣ > β − 1

)]

6 w2 · 8

w3
=

8

w
. (7.2)

By Lemma 7.22, the event


 ∧

k∈[w]

(
xk −

⌈∑
x

w

⌉
6 β + 1

)
 ∧ ( ∧

π∈P

(∨

b∈π

∣∣∣∣x̂(br)−
∑

x

w

∣∣∣∣ 6 β − 1

))

implies
∧

k∈[w]

(
yk −

⌈∑
x

w

⌉
6 β

)
. Therefore, by the union bound

Pr


 ∧

k∈[w]

(
yk −

⌈∑
x

w

⌉
6 β

) 


> Pr

[
 ∧

k∈[w]

(
xk −

⌈∑
x

w

⌉
6 β + 1

)
 ∧ ( ∧

π∈P

(∨

b∈π

∣∣∣∣x̂(br)−
∑

x

w

∣∣∣∣ 6 β − 1

))]

> 1−Pr


 ∨

k∈[w]

(
xk −

⌈∑
x

w

⌉
> β + 1

) 
−Pr

[ ∨
π∈P

(∧

b∈π

∣∣∣∣x̂(br)−
∑

x

w

∣∣∣∣ > β − 1

)]

= Pr


 ∧

k∈[w]

(
xk −

⌈∑
x

w

⌉
6 β + 1

) 
−Pr

[ ∨
π∈P

(∧

b∈π

∣∣∣∣x̂(br)−
∑

x

w

∣∣∣∣ > β − 1

)]

> Pr


 ∧

k∈[w]

(
xk −

⌈∑
x

w

⌉
6 β + 1

) 
− 8

w
,

where 7.2 was used in the last inequality.
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We are now ready to complete the proof of the theorem. For some 1 6 ρ 6 log log w
2

− 6,
let x(ρ),y(ρ) be the input vector and output vector of Lρ, respectively. We shall prove by
induction that for every 1 6 ρ 6 log log w

2
− 6,

Pr


 ∧

k∈[w]

(
yk(ρ)−

⌈∑
x

w

⌉
6 1

2
log log w + 2− ρ

) 
 > 1− 8ρ + 1

w
.

For the basis case where ρ = 1,

Pr


 ∧

k∈[w]

(
yk(1)−

⌈∑
x

w

⌉
6 1

2
log log w + 1

) 


> Pr


 ∧

k∈[w]

(
xk(1)−

⌈∑
x

w

⌉
6 1

2
log log w + 2

) 
− 8

w
(by Lemma 7.23)

>
(

1− 1

w

)
− 8

w
= 1− 9

w
(by 7.1 (in Theorem 7.9))

Assume inductively that the claim holds for ρ− 1. For the induction step, we conclude by
using Lemma 7.23 and the induction hypothesis that

Pr


 ∧

k∈[w]

(
yk(ρ)−

⌈∑
x

w

⌉
6 1

2
log log w + 2− ρ

) 


> Pr


 ∧

k∈[w]

(
xk(ρ)−

⌈∑
x

w

⌉
6 1

2
log log w + 2− ρ + 1

) 
− 8

w

>
(

1− 8(ρ− 1) + 1

w

)
− 8

w
= 1− 8ρ + 1

w
,

and the induction is complete. This implies that for ρ = 1
2
log log w − 6,

Pr


 ∧

k∈[w]

(
yk

(
log log w

2
− 6

)
−

⌈∑
x

w

⌉
6 8

) 
 > 1− 8( log log w

2
− 6) + 1

w
.

With symmetrical arguments it follows that

Pr


 ∧

k∈[w]

(
yk

(
log log w

2
− 6

)
−

⌊∑
x

w

⌋
> −8

) 
 > 1− 8( log log w

2
− 6) + 1

w
.
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Hence, the output of the second CCCw is 17-smooth with probability 1− 8 log log w−94
w

.

7.5 Improbability of 1-Smoothing

Roughly speaking, we show that no randomized smoothing network of sublinear depth is
1-smoothing.

Theorem 7.24. Every network Bw is 1-smoothing with probability at most d(Bw)
w−1

.

Proof. Fix a randomized 1-smoothing network Bw. Choose two distinct integers 0 6 i, j 6
w − 1 uniformly at random. Define the input vector

xi,j = (1, . . . , 1, 0︸︷︷︸
component i

, 1, . . . , 1, 2︸︷︷︸
component j

, 1, . . . , 1).

Notice that xi,j is a random variable. For each layer `, 1 6 ` 6 d(Bw), denote as E` the
event that there is a balancer b in layer ` such that the inputs to b are 0 and 2. Clearly,
Bw(xi,j) is 1-smooth if and only if there is a layer ` such that E` occurs. Using conditional
probabilities,

Pr [ Bw(x) is 1-smooth ] =
∑

î,̂j∈[w], î6=ĵ

Pr
[
x = xî,̂j

]
·Pr

[
Bw(x) is 1-smooth | x = xî,̂j

]

=
∑

î,̂j∈[w], î6=ĵ

1

w(w − 1)
·Pr

[
Bw(x) is 1-smooth | x = xî,̂j

]
.

Lemma 7.25. For each layer ` > 1, Pr [ E` ] 6 1
w−1

.

Proof. We first prove the following lemma.

Lemma 7.26. Consider an arbitrary pair i, j ∈ [w], i 6= j. For each layer `, 1 6 ` 6 d(Bw),
Pr [x(`) = xi,j ] 6 1

w(w−1)
.

Proof. By induction on `. For the basis case, take ` = 1. By construction of the input
vector, Pr [x(`) = xi,j ] = 1

w(w−1)
. Assume inductively that the claim holds for all layers

`′ 6 `− 1, where ` > 2. For the induction step, consider layer `. By the law of conditional
probabilities and the induction hypothesis,

Pr [x(`) = xi,j ] =
∑

î,̂j∈[w], î 6=ĵ

Pr
[
x(`− 1) = xî,̂j

]
·Pr

[
x(`) = xi,j | x(`− 1) = xî,̂j

]

6 1

w(w − 1)
·

∑

î,̂j∈[w], î6=ĵ

Pr
[
x(`) = xi,j | x(`− 1) = xî,̂j

]
.

To simplify the notation, we shall write in the following xî,̂j denoting the event x(`− 1) =
xî,̂j. We proceed by a case analysis.
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1. i is connected to some balancer bi = {i, i′} ∈ ` (that means bi has input wires
xi(`), xi′(`)) while j is not connected to any balancer located in layer `. Then,

Pr
[
x(`) = xi,j | xî,̂j

]
= 0 unless î ∈ {i, i′} and ĵ = j. Hence,

Pr [x(`) = xi,j ]

6 1

w(w − 1)
·
(
Pr [x(`) = xi,j | xi,j ] + Pr [x(`) = xi,j | xi′,j ]

)

=
1

w(w − 1)
·
(
Pr [ xi(`) = xi(`− 1) | xi,j ] ·Pr [ xj(`) = xj(`− 1) | xi,j ]

+ Pr [ xi(`) = xi′(`− 1) | xi′,j ] ·Pr [ xj(`) = xj(`− 1) | xi′,j ]
)

=
1

w(w − 1)
·
(

1

2
· 1 +

1

2
· 1

)
=

1

w(w − 1)
.

2. j is connected to some balancer bj ∈ `, while i is not. This is the same case as before.

3. i and j are connected to different balancers bi = {i, i′}, bj = {j, j′} ∈ `, respectively.
Then,

Pr [x(`) = xi,j ]

6 1

w(w − 1)
·
(
Pr [x(`) = xi,j | xi,j ] + Pr [x(`) = xi,j | xi′,j ]

+ Pr [x(`) = xi,j | xi,j′ ] + Pr [x(`) = xi,j | xi′,j′ ]
)

=
1

w(w − 1)
·
(

Pr [ xi(`) = xi(`− 1) | xi,j ] ·Pr [ xj(`) = xj(`− 1) | xi,j ]

+ Pr [ xi(`) = xi′(`− 1) | xi′,j ] ·Pr [ xj(`) = xj(`− 1) | xi′,j ]

+ Pr [ xi(`) = xi(`− 1) | xi,j′ ] ·Pr [ xj(`) = xj′(`− 1) | xi,j′ ]

+ Pr [ xi(`) = xi′(`− 1) | xi′,j′ ] ·Pr [ xj(`) = xj′(`− 1) | xi′,j′ ]

)

=
1

w(w − 1)
·
(

1

2
· 1

2
+

1

2
· 1

2
+

1

2
· 1

2
+

1

2
· 1

2

)
=

1

w(w − 1)
.

4. i and j are connected to the same balancer in layer `. Then, Pr [x(`) = xi,j ] = 0 as
a balancer cannot return 0 and 2 tokens on its two output wires.

5. i and j are not connected to a balancer in layer `. Then, by induction hypothesis
Pr [x(`) = xi,j ] = Pr [xi,j ] 6 1

w(w−1)
.
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By Lemma 7.26 and the union bound,

Pr [ E` ] = Pr

[ ∨

b∈`

({x1(b), x2(b)} = {0, 2})
]

6
∑

b∈`

(
Pr [ (x1(b) = 0 ∧ x2(b) = 2) ] + Pr [ (x1(b) = 2 ∧ x2(b) = 0) ]

)

6
∑

b∈`

(
1

w(w − 1)
+

1

w(w − 1)

)
6 w

2
· 2

w(w − 1)
=

1

w − 1
,

as needed.

Finally, by Lemma 7.25

Pr [ Bw(x) is 1-smooth ] = Pr




d(Bw)∨

`=1

E`


 6

d(Bw)∑

`=1

Pr [ E` ] 6 d(Bw) · 1

w − 1
.

Hence, there is a pair î, ĵ ∈ [w], î 6= ĵ such that Pr
[
Bw(x) is 1-smooth

∣∣ x = xî,̂j

]
6 d(Bw)

w−1
,

which is equivalent to Pr
[
Bw(xî,̂j) is 1-smooth

]
6 d(Bw)

w−1
.

7.6 Dimension-Exchange Balancing on Hypercubes

We shall prove that our results can be also used for the analysis of the following randomized
dimension-exchange algorithm for load balancing on hypercubes DEw given in Figure 7.6.
The following simple observation shows that all results for the CCCw (or Blockw) can be
directly applied to this dimension-exchange algorithm.

Lemma 7.27. Fix some input vector x. The distribution of the output vector z of DEw

with input vector x is identical to the distribution of the output vector y of a CCCw with
input vector x.

Proof. Let ỹ(i) be the load vector after the i-th iteration of DEw and recall that y(i) is the

output vector of the i-th layer of a CCCw. We shall prove by induction, that y(`)
D
= ỹ(`)

for all 1 6 ` 6 log2 w − 1. By assumption, the two input vectors y(0) = x and ỹ(0) = x̃
are identical. For the induction step, we first look at ỹ(`). Fix a wire i ∈ {0, 1}log w. By
definition, we have with probability 1/2,

yi(`) =

⌊
yi(`− 1) + yi(`)(`− 1)

2

⌋
and yi(`) =

⌈
yi(`− 1) + yi(`)(`− 1)

2

⌉
,
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Randomized Dimension-Exchange Load Balancing on hypercubes DEw

Input: Load vector x = (x0, x1, . . . , xw−1)
Output: Load vector z = (z0, z1, . . . , zw−1)
1: for k = 1 to log w do
2: for all i ∈ {0, 1}log2 w, ik = 1 do
3: ave ← xi+xi(k)

2
4: choose p ∈ {0, 1} uniformly at random
5: if p = 0 then
6: xi ← davee, xi(k) = bavec
7: end if
8: if p = 1 then
9: xi ← bavec, xi(k) = davee

10: end if
11: end for
12: end for
13: return z ← x

Fig. 7.6: Description of the Dimension-Exchange Load Balancing Algorithm

or otherwise,

yi(`) =

⌈
yi(`− 1) + yi(`)(`− 1)

2

⌉
and yi(`) =

⌊
yi(`− 1) + yi(`)(`− 1)

2

⌋
,

independently of all other wires i′ ∈ {0, 1}log w, i′ 6= i, i′ 6= i(`). Replacing each occurrence of

y by ỹ, we obtain the corresponding law for ỹ(`). Since by induction hypothesis y(`−1)
D
=

ỹ(`− 1) holds, the induction step y(`)
D
= ỹ(`) follows.

Hence, by combining this lemma to Theorem 7.9 we conclude that one execution of
the DEw-algorithm suffices for log log w + 3 smoothing with high probability. Moreover,
by Theorem 7.16 we find that only two subsequent executions of the DEw-algorithm are
sufficient for 17-smoothing with high probability.

7.7 Conclusion

In this chapter, we presented a thorough study of the impact of randomization in smoothing
networks. Specifically, we assumed that balancers are oriented independently and uniformly
at random, and we investigated the impact of this assumption on the smoothness of the
network’s output that can be achieved with high probability. We proved a tight (up to
a small additive constant) bound of log log w + Θ(1) on the smoothness of the popular
block network. As our main theoretical result, we established an upper bound of 17 on the
smoothness of the cascade of two block networks. Finally, we proved that it is impossible
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to obtain a 1-smoothing randomized network of sublinear depth. Our results reveal the
full power of randomization in smoothing networks: randomization can be employed in a
practical network to yield a constant upper bound on smoothness. Still, our results leave
open a number of interesting questions.

• Is the cascade of a small number of block networks a (randomized) 2-smoothing
network? We strongly believe that this is the case and could be shown using some
extensions of the techniques presented here. However, we conjecture that the cas-
cade of only two blocks is already a 2-smoothing network. To settle this stronger
conjecture, new methods probably have to be developed.

• Another interesting problem is to derandomize our result for the cascade of two block
networks. So, can we find deterministic (explicit) initializations for the cascade of
two (or more) block networks which make it a O(1)-smoothing network for every
input?

• Finally, our approach gives extremely good bounds for a randomized dimension-
exchange algorithm on hypercubes. Can we prove similarly strong bounds for general
networks with, say, good expansion properties?
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[ES07] R. Elsässer and T. Sauerwald. Broadcasting vs. Mixing and Information Dis-
semination on Cayley Graphs. In 24th International Symposium on Theoretical
Aspects of Computer Science (STACS’07), pages 163–174, 2007.
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