'L‘ UNIVERSITAT PADERBORN

Die Universitit der Informationsgesellschaft

Fakultit fiir Elektrotechnik — Informatik — Mathematik
Institut fiir Informatik
Fachgebiet Softwaretechnik
Warburger Strale 100
33098 Paderborn

Modell-basierte Verifikation

von
vernetzten mechatronischen Systemen

,\ /\
/ \ = = - / \
& \ - - . \

shuttle2: Shuttle

shuttlel: Shuttle

shuttle3: Shuttle

shuttle3: Shuttle shuttle2: Shuttle shuttlel: Shuttle

Martin Hirsch

'L‘ UNIVERSITAT PADERBORN

Die Universitit der Informationsgesellschaft

Fakultit fiir Elektrotechnik — Informatik — Mathematik
Institut fiir Informatik
Fachgebiet Softwaretechnik
Warburger Strale 100
33098 Paderborn

Modell-basierte Verifikation
von

vernetzten mechatronischen Systemen

Genehmigte Dissertation
zur Erlangung des akademischen Grades
,Doktor der Naturwissenschaften®
(Dr. rer. nat.)

vorgelegt von

Dipl.-Inform. Martin Hirsch

Promotionskommission:

Vorsitzender: Prof. Dr. rer. nat. Wilhelm Schifer (Universitidt Paderborn)

Koreferat: Prof. Dr. rer. nat. Heike Wehrheim (Universitidt Paderborn)

Koreferat: Prof. Dr. rer. nat. Ingolf H. Kriiger (University of California at San Diego)
Beisitzer: Prof. Dr.-Ing. Ansgar Tréachtler (Universitit Paderborn)

Beisitzer: Prof. Dr. rer. nat. Gregor Engels (Universitit Paderborn)

Die Dissertation wurde am 15. Juli 2008 bei der Fakultit fir Elektrotechnik, Informatik
und Mathematik der Universitdt Paderborn eingereicht und am 15. September 2008 vor
der Promotionskommission verteidigt und durch die Fakultit angenommen.

Dank

An dieser Stelle mochte ich mich bei all den Menschen bedanken, die mir auf dem Weg
zur Promotion geholfen, mich ermutigt oder mir freundschaftlich zur Seite gestanden
haben.

Als erstes bedanke ich mich bei meinem Doktorvater Prof. Dr. Wilhelm Schifer. Bei
Wilhelm mochte ich mich dafiir bedanken, dass er meine Promotion mitbetreut hat und er
trotz seines mehr als randvollen Terminkalenders stets Zeit sowohl fiir wissenschaftliche
Diskussionen, als auch fiir private Gespriche fiir mich hatte. Danke, Wilhelm!

Prof. Dr. Holger Giese mochte ich danken, dass er mich 2004 zur Promotion ,,iiberredet*
hat, meine Promotion mitbetreut und zu jeder Tages- und Nachtzeit fiir wissenschaftlichen
Input gesorgt hat. Danke, Holger!

Bei Prof. Dr. Heike Wehrheim und Prof. Dr. Ingolf Kriiger bedanke ich mich, dass sie das
Koreferat meiner Dissertation iibernommen haben und fiir die Diskussionen bei der Fer-
tigstellung dieser Arbeit. Des weiteren mochte ich mich bei Ingolf fiir den Gastaufenthalt
in seiner Arbeitsgruppe an der University of California, San Diego, bedanken. Fiir die
Teilnahme an meiner Promotionskommission danke ich weiterhin Prof. Dr.-Ing. Ansgar
Tréachtler und Prof. Dr. Gregor Engels.

Ganz besonders mochte ich mich bei Stefan Henkler (und seiner Frau Sandra und seinen
beiden Kindern Gavin und Jarne, die es ,,erlaubt haben®, dass Stefan so viel Zeit fiir mich
haben durfte) bedanken! Nicht nur, weil du fiir mich ein super Biirokollege warst, son-
dern auch fiir die zahlreichen wissenschaftlichen und privaten Diskussionen, Gespriche
und ,,geselligen Stunden®, teilweise bei Kaffee, Bier, Sekt und allen méglichen anderen
Getrdnken in und auBerhalb der Uni. Ohne dich wiirde es diese Dissertation nicht geben!
Danke, Stefan!

Biirokratische Probleme sind wihrend meiner Promotionszeit in Paderborn dank Jutta
Haupt und Sarah Latsch nie aufgetreten. Jiirgen (Sammy) Maniera danke ich fiir die Hil-
fe bei technischen Problemen und fiir die Anfangszeit als Biirokollege, sowie Sabrina
Clemens, fiir das anfingliche ,,Schreibtischsharing®.

Eine Promotion kann nicht alleine und im stillen Kimmerchen geschrieben werden. An
dieser Stelle mochte ich mich bei allen anderen Kollegen und Ex-Kollegen Bjorn Axe-
nath, Dr. Sven Burmester, Dr. Matthias Gehrke, Joel Greenyer, Stefan Henkler, Prof. Dr.

11

Ekkart Kindler, Florian Klein, Ahmet Mehic, Matthias Meyer, Claudia Priesterjahn, Dr.
Vladimir Rubin, Matthias Tichy (MTT), Dr. Daniela Schilling, Oliver Sudmann, Dietrich
Travkin, Markus von Detten, Robert Wagner, Dr. Lothar Wendehals bedanken, die immer
fiir wissenschaftliche, aber auch private Gespriche zur Verfiigung standen.

Bei Ahmet bedanke ich mich fiir die vielen Ratschldge aus der ,,nicht informatischen*
Sicht. Ekkart danke ich fiir seine vielen Tipps und Hinweise, besonders auch um mal
,,uber den Tellerrand hinauszuschauen®. Claudia, MTT und Stefan danke ich fiir das Kor-
rekturlesen meiner Arbeit.

Was wire eine interdisziplindre Dissertation ohne interdisziplindre Gespriche — bei mei-
nen Kollegen Eckehard Miinch und Henner Vocking vom Lehrstuhl fiir Regelungstechnik
und Mechatronik bedanke ich mich fiir interessante Diskussionen. Henner danke ich dar-
tiber hinaus fiir seinen Crashkurs in Regelungstechnik.

Vor allem mochte ich mich ganz herzlich bei meinen Eltern bedanken, dass sie mir meine
Ausbildung ermoglicht haben, dass sie immer fiir mich da waren, mich unterstiitzt und sie
sich mit mir und fiir mich iiber Erfolge gefreut haben. Danke, Mama und Papa!

Meinem Bruder Henrik danke ich fiir zahlreiche Tipps und Hinweise wihrend meines
Studiums und meiner Promotion.

Meinem besten Freund Hansjorg und seiner Freundin Manon danke ich ganz herzlich fiir
die vielen vergniiglichen gemeinsamen Stunden, fiir viele aufmunternde Gespriche, Spa-
ziergidnge und die Ablenkung von allem, was mit meiner Dissertation zu tun hat. Danke,
Hansjorg und Manon!

v

Zusammenfassung

Beim Entwurf selbstoptimierender, mechatronischer Systeme stellt die eingebettete Soft-
ware einen groen Teil der Wertschopfung dar. Typischerweise werden Regelungen oder
Steuerungen in Software umgesetzt. Durch die starke Vernetzung selbstoptimierender
Systeme wird Software auch zur nachrichtenbasierten Kommunikation und Koordination
zwischen den einzelnen verteilten selbstoptimierenden Systemen eingesetzt. Diese Kom-
munikation geht tiber die Aufnahme von System- und Umweltdaten durch Sensorik hin-
aus. Hier werden ggf. komplexe Zustandsinformationen iiber entsprechende Protokolle
und zugrunde liegende Kommunikationskanéle ausgetauscht, die dann wieder das Ver-
halten bzw. die zugrunde liegenden Berechnungen der einzelnen Komponenten massiv
beeinflussen konnen. Diese Entwicklung fiihrt zu duflerst komplexer hybrider (diskreter
/ kontinuierlicher) Software. Des Weiteren werden selbstoptimierende, mechatronische
Systeme oftmals in sicherheitskritischen Umgebungen eingesetzt. Hierdurch miissen for-
male Verfahren zur Verifikation der Korrektheit des Systems gegeniiber sicherheitskriti-
schen Eigenschaften eingesetzt werden.

Im Rahmen dieser Dissertation werden nun Konzepte und Methoden zur Modellierung
und Verifikation mechatronischer Systeme entwickelt und formal beschrieben. Der hier
vorgestellte Ansatz baut auf dem im Sonderforschungsbereichs 614 entwickelten ME-
CHATRONIC UML Ansatz auf. Dieser unterstiitzt einen kompositionellen Verifikations-
ansatz fiir das Echtzeitverhalten von mechatronischen Systemen.

Um eine effiziente Verifikation solcher vernetzten mechatronischen Systeme zu ermdégli-
chen, werden in dieser Arbeit Techniken der Abstraktion, Dekomposition sowie der regel-
basierten Modellierung eingefiihrt. Hierbei werden diese nicht orthogonalen Techniken
geschickt miteinander kombiniert. Ziel ist es, die besonders durch die Verwendung domé-
neniibergreifender Modelle, wie sie bei der Modellierung von mechatronischen Systemen
vorkommen, entstehenden inhdrenten multi-Paradigmenwechsel modellieren zu konnen.
Der hier vorgeschlagene Ansatz zur modell-basierten Verifikation mechatronischer Sys-
teme zeichnet sich durch die Integration effizienter Verifikationstechniken, basierend auf
dem Modellwissen und einer geschickten Modellierung, aus.

vi

Inhaltsverzeichnis

1

Einleitung 1
I.1 Motivation 2
1.2 Anwendungsbeispiel oL 4
1.3 Zielund Losungsansatz 5
1.4 Aufbauder Arbeit 11
Grundlagen 13
2.1 Mechatronische Systeme L. 13
2.2 Regelungstechnik L L 15
2.2.1 AdaptiveRegler 17
2.2.2 Rekonfiguration. 18
2.2.3 Block Diagramme L. 18
2.3 Modell-basierte Softwareentwicklung 22
23.1 Automatenl 22
232 Timed Automata 23
2.3.3 Hybride Automaten. 26
234 Graphen. 28
2.3.5 Verifikationo 33
2.4 Mechatronic UML, 42
2.4.1 Echtzeitverhalten 43
2.4.2 Echtzeit-Koordinationsmuster 43
243 Komponenten e e 46
2.4.4 Einbettung hybrider Komponenten 48
2.4.5 Anpassung der Softwarestruktur 52
2.5 Zusammenfassungo 54
Verifikation eines OCM 55
3.1 Beispiel 55
3.1.1 Komponenten Struktur 58
3.1.2 Verhalten der Komponenten 59
3.1.3 Beschreibung des Interface 59
3.1.4 Einbettung 61
3.2 Verifikation der hierarchischen Rekonfiguration bedingt durch lokale
Zeitbedingungen 61

vil

Inhaltsverzeichnis

viil

321 Modularitdat 63
3.2.2 Uberpriifung der Verfeinerung 66
3.2.3 Uberpriifung der korrekten Einbettung 67
3.2.4 Grenzendes Ansatzes 69
3.3 Modellierung hierarchischer Rekonfiguration bedingt durch proaktives
Verhalten 70
3.3.1 Erweitertes Beispiel 70
3.3.2 Verhalten der Komponente 71
333 Einbettung 72
3.4 Verifikation der hierarchischen Rekonfiguration bedingt durch proaktives
Verhalten 72
3.4.1 Uberpriifung der Verfeinerung 73
3.42 Dynamische Uberpriifung der Einbettung 75
3.5 Evaluierung 77
3.6 Zusammenfassung e e e 79
Verifikation des Verhaltens eines OCM in der Umwelt 81
4.1 Grenzen des bisherigen Ansatzes 81
4.2 Modellierung 84
421 Beispielo 84
4.2.2 Zeit und Graphtransformationssysteme 85
43 Semantik 95
43.1 Clockinstanzen 95
4.3.2 Zeitbehaftete Anwendungsregeln L. 97
4.3.3 Zeitbehafteter Graph & Graphtransformationssystem 99
4.4 Erreichbarkeitsanalyse 102
4.4.1 Darstellung durch Clockzones 102
4472 Zeitbehafteter Folgegraph 104
4.4.3 Erreichbares Graphtransformationssystem 108
4.5 Evaluierung 112
4.6 Zusammenfassung Lo 114
Parametrisierte Koordinationsmuster 115
5.1 Beispiel e 116
5.2 Grenzen des bisherigen Ansatzes 117
5.3 Erweitertes Beispiel o oL 118
5.3.1 Losungsidee 119
5.3.2 Regelungstechnischer Entwurf 122
5.3.3 Softwaretechnische Umsetzung 125
5.4 Parametrisierte Koordinationsmuster 126
5.4.1 Informale Beschreibung 127

Inhaltsverzeichnis

5.4.2 Modellierung des Verhaltens eines parametrisierten Koordinati-
ONSIMUSEETS« v v v v et e e e e e e e e e e 129
5.4.3 Modellierung der dynamischen Strukturinderungen 133
54.4 Formalisierung 136
545 Verifikation 138
5.5 Zusammenfassung Lo 139
6 Verwandte Arbeiten 141
6.1 Verifikation von Echtzeitsystemen, 141
6.1.1 Generelle Ansdtze, 141
6.1.2 Techniken 143
6.1.3 Komplexe Ansédtze 144
6.2 Verifikation von hybriden Systemen 145
6.2.1 Generelle Anséitze 145
6.22 Techniken L 146
6.2.3 Stabilitat oL 148
6.2.4 Barrier certificates 149
6.3 Verifikation von Architekturen beschrieben durch hybride Modelle 150
6.4 Adaptive Systeme 151
6.5 Zusammenfassungo 151
7 Zusammenfassung & Ausblick 153
7.1 Zusammenfassungo 154
7.2 Ausblick 155
8 Literaturverzeichnis 157
A Algorithmen zu zeitbehaften Graphtransformationssystemen 175
B Regeln zum Shuttlebeispiel aus Kapitel 4 179
Abbildungsverzeichnis 185

X

Inhaltsverzeichnis

Kapitel 1

Einleitung

Intelligente mechatronische Systeme, die autonom und flexibel auf Anderungen in ihrem
Umfeld reagieren, sind in unserer Zukunft nicht mehr wegzudenken. Nicht nur in kleinen
Anwendungen wie in der intelligenten Lichtsteuerung in modernen Autos, sondern auch
in groBen Projekten wie in der Entwicklung des ,,intelligenten, selbst denkenden Hau-
ses* oder in innovativen Giiter- und Personentransportsystemen der Zukunft flieBen diese
Konzepte maBigeblich mit ein. Um solche Systeme zu realisieren, bedarf es einer engen
Verkniipfung der Konzepte und Methoden der in der Mechatronik verankerten Doménen
Maschinenbau, Elektronik und Softwaretechnik (siehe Abbildung 1.1). Im Gegensatz zu
reinen Softwareanwendungen bekommt der Sicherheitsaspekt in solchen Systemen einen
deutlich hoheren Stellenwert, da Fehler meist unmittelbar Gefahr fiir Menschenleben be-
deuten [Lev95][Her99].

Softwaretechni

Abbildung 1.1: Die Disziplin Mechatronik ergibt sich aus der Kombination der drei Dis-
ziplinen Softwaretechnik, Mechanik und Elektronik

Solche intelligenten, mechatronischen Systeme, wie sie von Schifer und Wehrheim
[SWO7] oder auch von Dawson und anderen [DSBBO00] beschrieben werden, bestehen
heutzutage aus einer Vielfalt von komplexen Einzelkomponenten, welche untereinander
verbunden sind und miteinander interagieren. Das Verhalten des Gesamtsystems ist ent-
sprechend durch die Kommunikation und Kooperation der intelligenten Systemelemente

Kapitel 1 Einleitung

charakterisiert. Aus informationstechnischer Sicht handelt es sich um verteilte Systeme
von miteinander kooperierenden Agenten.

1.1 Motivation

Beim Entwurf selbstoptimierender, mechatronischer Systeme stellt die eingebettete Soft-
ware einen groflen Teil der Wertschopfung dar. Typischerweise werden Regelungen oder
Steuerungen in Software umgesetzt. Durch die starke Vernetzung selbstoptimierender
Systeme wird Software auch zur nachrichtenbasierten Kommunikation und Koordination
zwischen den einzelnen verteilten selbstoptimierenden Systemen eingesetzt. Diese Kom-
munikation geht {iber die Aufnahme von System- und Umweltdaten durch Sensorik hin-
aus. Hier werden ggf. komplexe Zustandsinformationen iiber entsprechende Protokolle
und zugrunde liegende Kommunikationskanéle ausgetauscht, die dann wieder das Ver-
halten bzw. die zugrunde liegenden Berechnungen der einzelnen Komponenten massiv
beeinflussen konnen. Diese Entwicklung fiihrt zu duBerst komplexer hybrider (diskret /
kontinuierlicher) Software. In Abbildung 1.2 ist ein Beispiel fiir hybrides Verhalten ge-
zeigt. In dem linken Oval ist rein kontinuierliches Verhalten, im rechten Oval rein diskre-
tes Verhalten beschrieben. Das Zusammenspiel, das Umschalten zwischen verschiedenen
kontinuierlichen Verhalten, kann nun durch die Integration beider Verhalten vorgenom-
men werden. Genau dieses wird als hybrid bezeichnet.

diskret

hybrid

Abbildung 1.2: Hybrides Verhalten

Des Weiteren werden selbstoptimierende, mechatronische Systeme oftmals in sicherheits-
kritischen Umgebungen eingesetzt. Hierdurch miissen formale Verfahren zur Verifikati-
on der Korrektheit des Systems gegeniiber sicherheitskritischen Eigenschaften eingesetzt
werden.

Auf Grund der steigenden Komplexitit solcher Systeme ist es notwendig, Methoden zu
entwickeln, die auf der einen Seite eine geeignete Modellierung erlauben und auf der
anderen Seite die Validierung und Verifikation dieser Modelle in akzeptabler Zeit durch-
fiihren konnen. Das Gebiet der Softwaretechnik beschéftigt sich mit dieser Thematik.

1.1 Motivation

Softwaretechnik: Zielorientierte Bereitstellung und systematische Verwen-
dung von Prinzipien, Methoden, Konzepten, Notationen und Werkzeugen fiir
die arbeitsteilige, ingenieurméBige Entwicklung und Anwendung von um-
fangreichen Software-Systemen. (Nach Balzert [Bal98])

Um einen sicheren Betrieb eines mechatronischen Systems zu gewéhrleisten, miissen die
Sicherheitseigenschaften dieses Systems iiberpriift werden. Die Uberpriifung eines me-
chatronischen Systems durch Testen, d.h. die experimentelle Ausfithrung des Systems,
kann ein sicheres Verhalten alleine nicht ausreichend nachweisen, da durch reines Testen
nicht alle Ausfithrungspfade erreicht werden konnen. Dabei ist dann nicht auszuschlie-
Ben, dass Pfade, die durch das Testen nicht iiberpriift wurden, sicherheitskritische Eigen-
schaften aufweisen. AuBBerdem werden durch Testen erhebliche Kosten verursacht, da sie
oftmals manuell durchgefiihrt werden und unvollstindig sind [BNO3].

In der Softwaretechnik werden formale Methoden [Win90] verwendet, die mathematisch
fundierte Techniken zur Spezifikation von Systemen zur Verfiigung stellen. In [CW96]
wird ein Uberblick iiber formale Methoden und formale Verifikationstechniken gegeben.
Diese gehen von manuellen, unvollstindigen Testverfahren, iiber interaktive Theorembe-
weise, bis hin zu automatischen, vollstindigen formalen Verifikationsverfahren. Eine for-
male Verifikationstechnik ist z.B. das Model Checking. Im Gegensatz zum Testen werden
hier alle Pfade des Systems automatisch erstellt und iiberpriift. Jedoch bringt der Einsatz
von formalen Verifikationstechniken eine ganze Reihe von Problemen mit sich.

Die bendtigte Rechenzeit und der Speicherbedarf hingen z.B. beim Model Checking von
der Grofle des zu iiberpriifenden Systems ab. Daher werden beim Model Checking effi-
ziente Algorithmen eingesetzt, um moglichst grole Systeme iiberpriifen zu konnen. Die
Software eines mechatronischen Systems kann jedoch einen sehr groen oder unendlich
groBen Zustandsraum besitzen. Deshalb ist eine Uberpriifung mechatronischer Systeme
in den meisten Féllen auf Grund der GroBe des Zustandsraums durch diese Verifikations-
technik alleine nicht moglich. Deshalb miissen weitere Techniken wie z.B. Abstraktion,
Approximation und viele andere mit dem Model Checking kombiniert werden, um die
Verifikation durchfiihren zu konnen. Nicht nur die GroBe des zu verifizierenden Systems
stellt beim Model Checking ein Problem dar. Die Konstruktion des Modells, die Spezifi-
kation der zu iiberpriifenden Eigenschaften in der geeigneten temporallogischen Formel,
das Problem der Zustandsraumexplosion sowie die Interpretation der Ergebnisse sind wei-
tere Probleme beim Model Checking (siehe [CGP00, Dwy02]).

Der interdisziplinidre Sonderforschungsbreich ,,SFB 614: Selbstoptimierende Systeme des
Maschinenbaus*! an der Universitit Paderborn beschiiftigt sich unter anderem mit dem
oben beschriebenen Forschungsgebiet der effizienten Verifikation von mechatronischen
Systemen. Im Folgenden wird das Anwendungsbeispiel genau erklirt, welches im Ver-

'http://www.stb614.de

Kapitel 1 Einleitung

laufe der Arbeit als durchgiingiges Beispiel genutzt wird, um die bisherigen Probleme in
der Verifikation zu beleuchten und die neuen Konzepte vorzustellen.

1.2 Anwendungsbeispiel

Im Rahmen des Sonderforschungsbereichs 614 ,,Selbstoptimierende Systeme des Maschi-
nenbaus* werden Konzepte und Methoden zur Entwicklung von mechatronischen Syste-
men mit inhédrenter Teilintelligenz erforscht. Konkret finden die entwickelten Konzepte
im RailCab? Forschungsprojekt Anwendung. In diesem Projekt werden innovative Giiter-
und Personentransportsystemen der Zukunft, so genannte Shuttles, entwickelt. Diese wer-
den durch einen Linear-Motor angetrieben und verfiigen iiber drahtlose Netzwerke zur
Kommunikation untereinander. Die Energieiibertragung wird durch einen Streckenstator,
der einem tiiblichen Schienennetz hinzugefiigt werden kann, erreicht.

Ein Shuttle ist eine kleine, autonome, fiithrerlose Einheit (sieche Abbildung 1.3(a)). Diese
Shuttles sollen Personen und Giiter, auf Nachfrage, individuell von ihrem Ausgangspunkt
zu ihrem gewlinschten Zielort transportieren. Wihrend der Fahrt kdnnen sich einzelne
Shuttles zu einem Konvoi zusammenschlieBen (siehe Abbildung 1.3(b)). Dies spart durch
die Windschattenfahrt Energie und erhoht bei stark frequentierten Strecken die Kapazitiit,
da die Ziige nicht mehr getrennt fahren miissen. Die Shuttles bleiben wihrend der Kon-
voifahrt weiterhin autonom und treffen individuelle Entscheidungen. Durch das autonome
Verhalten treten jedoch Schwierigkeiten auf. Das Problem besteht darin, die Shuttles so zu
koordinieren, dass sie so hdaufig wie moglich Konvois bilden um den Windwiderstand und
hiermit den Energieverbrauch zu reduzieren. Zusétzlich sollte der Abstand zwischen den
Fahrzeugen so gering wie moglich sein, um den Effekt noch zu verstirken. Die Erstellung
und Auflosung eines Konvois ist ein sicherheitskritisches Mandver, bei dem eine Reihe
von Echtzeitbedingungen eingehalten werden miissen. Dabei ist das Verhalten der Be-
schleunigungsregelung jedes Shuttles je nach aktuellem Szenario verschieden. So konnte
es fiir ein fithrendes oder einem allein fahrenden Shuttle ein Ziel sein, eine moglichst
gleichmifige Geschwindigkeit zu halten. Dieses Verhalten ist innerhalb des Konvois je-
doch nicht optimal. Durch das autonome Verhalten der Shuttles kann es zu kleinen Abwei-
chungen zwischen den Geschwindigkeitseinstellungen der Regler kommen. Sobald ein
nachfolgendes Shuttle, welches in einem Abstand von 10 cm folgt, nur 0,01 kTm schneller
wire, wiirde dies nach nur 36 Sekunden mit dem vorausfahrenden Shuttle kollidieren. Fiir
diesen Fall ist also ein Konvoimodus, in dem der Abstand konstant gehalten wird, besser
als eine konstante Geschwindigkeit.

Zhttp://www-nbp.upb.de

1.3 Ziel und Lésungsansatz

(a) Shuttles im Konvoi (b) Zwei Shuttles bei der Bildung eines Konvois

Abbildung 1.3: Fallstudie ,,RailCab — Neue Bahntechnik Paderborn® (Quelle: NBP)

1.3 Ziel und Losungsansatz

Ziel dieser Dissertation ist es, Konzepte und Methoden zur Modellierung und Verifika-
tion mechatronischer Systeme zu entwickeln und formal zu beschreiben. Ziel ist es da-
bei, die besonders durch die Verwendung doméineniibergreifender Modelle, wie sie bei
der Modellierung von mechatronischen Systemen vorkommen, entstehenden inhédrenten
multi-Paradigmenwechsel [HH06] modellieren und verifizieren zu konnen. Der hier vor-
geschlagene Ansatz zur modell-basierten Entwicklung mechatronischer Systeme zeichnet
sich durch die Integration effizienter Verifikationstechniken, basierend auf dem Modell-
wissen, Abstraktionstechniken und einer geschickten Modellierung, aus.

Im Rahmen des Sonderforschungsbereichs 614 wurde die MECHATRONIC UML
[GHH™08b] entwickelt. Diese erlaubt es, Struktur und Verhalten von mechatronischen
Systemen und die Interaktion zwischen mechatronischen Systemen zu spezifizieren und
zu verifizieren. Dabei richtet sich die Struktur eines komplexen mechatronischen Systems
nach der von Liickel [LHLHOI][OHGO4][HOGO04][Ge0O5] vorgeschlagenen Struktur.
Die konkrete Umsetzung dieser Struktur findet sich im Operator-Controller-Modul
(OCM) wieder. Die Informationsverarbeitung eines mechatronischen Systems kann als
Operator-Controller-Modul (OCM) aufgefasst werden. Ein solches Modul ist in die
drei Ebenen Controller, reflektorischer Operator und kognitiver Operator unterteilt.
Wihrend der Controller direkten Zugriff auf die Aktuatoren des Systems hat, wird der
reflektorische Operator dazu verwendet, den Controller zu steuern und die Interaktion
mit anderen OCMs zu koordinieren. Die Aufgabe des kognitiven Operators besteht darin
Wissen iiber die Umwelt und das OCM selber zu sammeln und dazu zu nutzen, das
Verhalten des OCM besser an die gegebenen Anforderungen anzupassen.

Da die Software des reflektorischen Operators fiir die Steuerung des Controllers sowie
die Interaktion des OCMs mit anderen OCMs verantwortlich ist, ist sie sicherheitskri-
tisch. Deshalb besteht das Ziel dieser Arbeit in der Entwicklung eines ganzheitlichen,

Kapitel 1 Einleitung

effizienten Ansatzes zur Modellierung und Verifikation fiir die Software des OCMs sowie
fiir die Koordination zwischen OCMs.

Im Folgenden wird eine erste Idee vermittelt, wie und welche Techniken verwendet wer-
den, um die effiziente Verifikation von durch MECHATRONIC UML beschriebenen ver-
netzen mechatronischen Systemen zu erméglichen. In Abbildung 1.4 ist ein Uberblick
iiber das Zusammenspiel der in dieser Arbeit verwendeten Techniken ,,Kompositioneller
Aufbau & Verifikation®, ,,Abstraktion und Verfeinerung*, ,,Dekomposition* und ,,Regel-
basierte Modellierung* gegeben.

positioneller
Aufbau & Abstraktion &
Verifikation Verfeinerung

Regelbasierte
Modellierung

Dekomposition

Abbildung 1.4: Die einzelnen ,,Bausteine* zu einer effizienten Verifikation von mechatro-
nischen Systemen

Durch den nach innen schwiécher werdenden Farbverlauf ist kenntlich gemacht, dass die
einzelnen Techniken nicht orthogonal zueinander stehen, sondern ineinander greifen und
aufeinander aufbauen. Dies wird in den Folgenden Abschnitten deutlich.

Kompositioneller Aufbau & Verifikation. Die kompositionelle Verifikationsme-
thode ist eine effiziente Moglichkeit, um gro3e Modelle zu verifizieren [CGPO0O]. Die-
se stellen wirkungsvolle Methoden fiir die Verifikation eines nebenldufigen Systems dar,
weil hier direkt der Ursache fiir den exponentiellen Anstieg des Zustandsraums entgegen-
gewirkt wird. Im Gegensatz zur Uberpriifung einer temporallogischen Spezifikation auf
dem globalen Zustandsraum wird die kompositionelle Verifikation lediglich auf Teilzu-
standsrdumen mit lokalen temporallogischen Spezifikationen durchgefiihrt.

1.3 Ziel und Lésungsansatz

Ein Vorteil dieses Verfahrens gegeniiber Verfahren, die auf globalem Zustandsraum ar-
beiten, ist, dass dadurch, dass Komponenten unabhéngig voneinander spezifiziert und ve-
rifiziert werden konnen, Komponenten zu verschiedenen Zeitpunkten wihrend der Soft-
wareentwicklung iiberpriift werden kénnen. Durch diese unabhiingige Verifizierung der
Komponenten ldsst sich der Verifikationsprozess in den Modellierungsprozess integrieren.
Dies hat den Vorteil, dass Fehler zu einem sehr frithen Zeitpunkt in der Entwicklungspha-
se entdeckt und beseitigt werden konnen. Auch lassen sich so wiederverwendbare Module
spezifizieren und verifizieren.

In Abbildung 1.5 ist der in dieser Arbeit verfolgte Ansatz fiir einen kompositionellen
Aufbau anhand einer Komponentenarchitektur dargestellt [GTB*03][HG03][Hir04]. Das
Verhalten des Systems ist hierbei zustandsbasiert und rein zeit-kontinuierlich beschrie-
ben. Hier wird in einem ersten Schritt die Echtzeit-Koordination zwischen zwei Kompo-
nenten durch ein so genanntes Echtzeit-Koordinationsmuster modelliert (sieche Abbildung
1.5(a)), welches einzeln verifiziert werden kann. In einem néchsten Schritt wird hieraus
das Verhalten von Komponenten hergeleitet (sieche Abbildung 1.5(b)), das nun auch sepa-
rat verifiziert werden kann. Da jetzt sowohl die Kommunikation als auch das Komponen-
tenverhalten verifiziert wurden (und beide in einer bestimmten Verfeinerungsbeziehung
(siehe ndchster Abschnitt) stehen), ist es moglich, das System durch reine, korrekte syn-
taktische Anwendungen der Koordinationsmuster und Komponenten zu modellieren.

shuttle.convoy implies coordinator.convoy

. ConvoyCoordination)
U’shuttle coordinator
(a) Echtzeit-Koordinationsmuster
<<Component>> _‘shuttle coordinatorr <<Component>>
| L
shuttle2 :Shuttle shuttle1 :Shuttle

(b) Anwendung des Echtzeit-Koordinationsmusters

Abbildung 1.5: Kompositioneller Ansatz

Abstraktion & Verfeinerung. Eine Abstraktion eines Modells abstrahiert von den
internen Eigenschaften und ist das Gegenstiick von Verfeinerung. Ist ein System A eine

Kapitel 1 Einleitung

Abstraktion von B, so ist B eine Verfeinerung von A. Die Eigenschaft der Abstrakti-
on und Verfeinerung kann zur Unterstiitzung der Verifikation genutzt werden. Kann das
urspriingliche Modell aufgrund seiner Komplexitit nicht in einem angemessenen Zeitrah-
men verifiziert werden, wird das Modell mit Hilfe der Abstraktion handhabbar gemacht.
Das neu erstellte Modell, das vom Umfang her kleiner ist, beinhaltet weiterhin die fiir
eine Verifikation relevanten Eigenschaften und kann schneller verifiziert werden.

Abbildung 1.6 zeigt exemplarisch den Aufbau eines zeit-kontinuierlichen Echtzeitsystems
und eines hybriden Systems. Das Verhalten beider Systeme ist durch Echtzeitverhalten
charakterisiert. Da eine falsche Spezifikation des Echtzeitverhaltens zum Beispiel zu ei-
nem Ausfall des Systems fiithren kann, muss hier eine geeignete Verifikation durchgefiihrt
werden. Im letzten Abschnitt wurde kompositionelles Model Checking zur Verifikation
des Echtzeitverhaltens vorgestellt. Zur Verifikation des Echtzeitverhaltens eines hybriden
Systems bietet es sich ebenfalls an, dieses Verfahren zu verwenden. Dazu muss jedoch
eine Abstraktion von dem hybriden Verhalten erfolgen. Diese wird mit Hilfe der Verfei-
nerungsbeziehung zwischen den beiden Systemen erstellt.

Abbildung 1.6: Abstraktion

Wichtig ist zudem, dass der unterschiedliche Aufbau der beiden Systeme beriicksichtigt
wird. Wihrend ein Echtzeitsystem auf einer Hierarchieebene spezifiziert wird, sind hybri-
de Systeme hierarchisch aufgebaut [GBSO04]. Abbildung 1.6 verdeutlicht diesen Unter-
schied. Aufgrund des unterschiedlichen Aufbaus reicht kompositionelles Model Checking

1.3 Ziel und Lésungsansatz

allein zur Verifikation des Echtzeitverhaltens nicht aus. Neben der Spezifikation von Echt-
zeitverhalten konnen zudem Inkonsistenzen durch den hierarchischen Aufbau und die da-
durch bedingte Rekonfiguration entstehen [GHO5Sb][GHO6].

Dekomposition. In hybriden Systemen ist hédufig eine klare Trennung zwischen der
diskreten und der kontinuierlichen Komponente gegeben. Der kontinuierliche Teil dient
der moglichst exakten Abbildung mechatronischer oder physikalischer Abldufe und Zu-
sammenhinge. Die diskrete Komponente muss ihr Verhalten an die kontinuierliche Kom-
ponente koppeln, um so z.B. auf Verdnderungen der Umwelt zu reagieren.

Durch die bereits erwdhnte kompositionelle Modellierung der Echtzeitkoordination und
der Abstraktion, die Steuer- und Regelungsalgorithmen entsprechend integriert, ist es
moglich, fiir Verifikationszwecke eine abstrakte Betrachtung des relevanten kontinuier-
lichen und diskreten Verhaltens der Koordinationslogik vorzunehmen. Dabei werden ent-
sprechend benétigte Eigenschaften der unterlagerten Regelung, die mit klassischen Tech-
niken der Mathematik und der Regelungstechnik verifiziert werden konnen, als Basis fiir
weitere Betrachtungen verwendet. Darauf aufbauend lésst sich dann durch formale Veri-
fikationstechniken fiir Echtzeitsysteme eine Verifikation der bendtigten Sicherheitseigen-
schaften der Echtzeitkoordination erreichen [GHH06¢].

In Abbildung 1.7 ist die hierbei zugrunde liegende Idee der Dekomposition skizziert.
Die obere Hilfte der Abbildung zeigt die Modellierung des Komponentenverbunds ei-
nes Shuttlekonvois. Jede Komponente kommuniziert mit ihrer Nachbarkomponente. In
einer Komponente selber ist das interne, sowohl Zeit-kontinuierliche als auch Werte-
kontinuierliche Verhalten skizziert. Der untere Teil der Abbildung zeigt die Dekomposi-
tion des Modells. Der Komponentenverbund wurde in die Kommunikation und die Kom-
ponenten (siche Kompositioneller Ansatz), aufgeteilt. Weiterhin wurde auch das interne
Verhalten dekomponiert. So ist zu erkennen, dass nun das Zeit-kontinuierliche Verhal-
ten von dem Werte-kontinuierlichen Verhalten getrennt ist. Dies ermoglicht, wie schon
beschrieben, eine getrennte Verifikation der einzelnen Verhalten.

Regelbasierte Modellierung. In komplexen, vernetzten mechatronischen Systemen
stehen nur begrenzte Rechen- und Speicherkapazititen zur Verfiigung. Zusétzlich unter-
liegt das System zur Laufzeit einer Evolution abhéngig vom gegebenem Kontext. Anfor-
derungen an komplexe, mechatronische Systeme sehen deshalb Dynamik vor, d.h. Steue-
rungssoftware muss zu Laufzeit ausgetauscht werden konnen.

In Schilling [Sch06] wurde bereits beschrieben, wie Graphtransformationssysteme zur
Beschreibung von dynamischen Verdnderungen im Kontext von mechatronischen Syste-
men eingesetzt werden konnen. So wurde das in Abbildung 1.8 dargestellte Szenario auf
der Basis von Graphtransformationssystemen beschrieben. Die obere Hilfte des Bildes

Kapitel 1 Einleitung

SESASR =

shuttlke3: Shuttle shuttléZ: Shuttle shuttlel: Shuttle

__} el ‘lf S i ‘/ﬁ - .

shuttle3: Shuttle shuttle2: Shuttle shuttlel: Shuttle

Abbildung 1.7: Dekomposition der Struktur und des internen Verhaltens

zeigt einen aktuellen Systemzustand. Hier fahren zwei Shuttles hintereinander auf zwei
verschiedenen Streckenabschnitten. Die untere Hélfte des Bildes zeigt die koordinierte
Bewegung des Shuttles auf den Streckenabschnitten, modelliert durch eine graphbasierte
Regel. Hier wird beschrieben, welche Objekte existieren und wie miteinander verbunden
sind. Im vorliegenden Beispiel existiert eine Instanz des DistanceCoordinationPattern,
welches die Verhaltenskoordination zweier verbundener Shuttles realisiert.

Neben der reinen Beschreibung der Strukturdynamik eines einzelnen OCMs ist es mog-
lich, eine regelbasierte Modellierung fiir die Koordination von OCMs in gegebenen Kon-
texten, wie einem Konvoi, zu verwenden. So ist nachzuvollziehen, dass ein Konvoi, um
auch wirklich energieeffizient zu sein, aus mehr als zwei Shuttles bestehen muss. Weiter-
hin ist die Anzahl der Konvoiteilnehmer zum Zeitpunkt der Instanziierung der initialen
Konvoikoordination unbekannt. Mal muss ein und dasselbe Koordinationsprotokoll ein
Konvoi der Linge k£ und im nédchsten Moment ein Konvoi der Linge k£ + 1 koordinieren,
ohne die Stabilitéit eines Konvois zu verletzten. Abbildung 1.9 zeigt eine Graphtransfor-
mationsregel, die den Zusammenschluss zweier Shuttles zur Laufzeit in einem Konvoi
darstellt. Hier ist zu erkennen, welche Modellelemente bei der Konvoibildung erzeugt
werden.

10

1.4 Aufbau der Arbeit

Systemzustand: Track1 Track2
Regel: dc1:DistanceCoordinationPattern
A A
2 g
s1:Shuttle s2:Shuttle
S S) <IN
v 90 r@a,eAA v
t1:Track next > :Track next > Track

Abbildung 1.8: Beispiel fiir ein Graphtransformationssystem

+ Shuttle
++
+ Shuttle >5 ++ : Coordinator
++ clock:t =
. VelocityControl E :_E > Ias¥+>> P £
P clock:t clock:g p
o _ L=
: VelocityControl

Abbildung 1.9: Regelbasierte Modellierung der Koordination

1.4 Aufbau der Arbeit

Die vorliegende Arbeit gliedert sich wie folgt:

Im néchsten Kapitel 2 werden die fiir diese Arbeit notwendigen Grundlagen beschrieben.
Hier wird zuerst der Aufbau von mechatronischen Systemen beschrieben. Anschlieend
wird die Idee der modell-basierten Softwareentwicklung beschrieben. An den hier fest-
gemachten Prinzipien werden nun Konzepte, Modelle und Verifikationstechniken fiir me-

11

Kapitel 1 Einleitung

chatronische Systeme vorgestellt, welche die Grundlage fiir die MECHATRONIC UML,
die als letztes vorgestellt wird, bilden.

Im Anschluss wird in Kapitel 3 der neue Ansatz zur Verifikation eines wie in Kapitel 2
eingefiihrten OCMs beschrieben und diskutiert.

In Kapitel 4 wird darauf eingegangen, wie sich mechatronische Systeme, dessen Hardwa-
reressourcen beschrinkt sind und ihr Verhalten kontextabhingig dynamisch anpassen, mit
zeitbehafteten Graphtransformationssystemen modellieren lassen und welche Techniken
hier zur Verifikation eingesetzt werden.

Kapitel 5 bedient sich der Ansétze aus den vorherigen beiden Kapiteln 3 und 4 und be-
schreibt die Modellierung und Verifikation von parametrisierten Koordinationsmustern
mit Strukturveridnderungen in mechatronischen Systemen.

In Kapitel 6 werden verwandte Arbeiten auf dem Gebiet der Verifikation von mechatro-
nischen Systemen diskutiert.

Die vorliegende Dissertation schlieft in Kapitel 7 mit einer Zusammenfassung. Dabei
werden die Ergebnisse dieser Arbeit zusammengefasst und ein Uberblick iiber mogliche
Erweiterungen des Ansatzes wird gegeben.

12

Kapitel 2

Grundlagen

Dieses Kapitel behandelt die theoretischen Konzepte und Modelle, die als Grundlage zu
dieser Arbeit dienen. Im ersten Teil (Abschnitt 2.1) werden mechatronische Systeme, wie
sie in dieser Arbeit aufgefasst werden, beschrieben. Daran schlief3t sich ein Abschnitt
iber die Grundlagen der Regelungstechnik, wie sie fiir die Modellierung von mechatroni-
schen Systemen benotigt werden an. Dieser Abschnitt motiviert besonders die Integration
der Domine Regelungstechnik in die Doméne der Softwaretechnik. Nachfolgend schlief3t
sich ein Abschnitt iiber die Modell-basierte Softwareentwicklung mechatronischer Syste-
me an (sieche Abschnitt 2.3). In diesem Abschnitt werden Modelle zur Beschreibung von
mechatronischen Systemen sowie Verifikationsverfahren grundlegend erklért. Im Detail
werden Automatenmodelle sowie Graphmodelle vorgestellt und deren Gemeinsamkeiten
diskutiert. Weiterhin werden hierfiir Verifikationsverfahren, Model Checking und Erreich-
barkeitsanalysen beschrieben. Der MECHATRONIC UML Ansatz (siehe Abschnitt 2.4)
integriert alle bis dahin vorgestellten Modelle und Verfahren zur Modellierung und Ve-
rifikation von mechatronischen Systemen. Der MECHATRONIC UML Ansatz bildet die
Grundlage fiir alle in dieser Arbeit neuen Modellierungs- und Verifikationsverfahren. Das
Grundlagenkapitel schliet mit einer Zusammenfassung im letzten Abschnitt 2.5.

2.1 Mechatronische Systeme

Der Begriff ,,Mechatronik* (Mechanik - Elektronik) wurde 1969 von einer japanischen
Firma geprigt [STF96] und bezeichnete zunédchst nur die ganzheitliche Betrachtung me-
chanischer und elektrischer Bestandteile eines technischen Systems. Im Laufe der Zeit
wurden immer hdufiger Mikrokontroller zu technischen Systemen hinzugefiigt, so dass
die Mechatronik heute die interdisziplinidre Betrachtung mechanischer, elektrischer und
informationstechnischer Bestandteile umfasst. Die stetige Zunahme des informationstech-
nischer Anteils ermdglicht unter anderem mechatronische Systeme, die ihr Verhalten an
gednderte Bedingungen ihrer Umwelt anpassen, also eine Teilintelligenz besitzen.

13

Kapitel 2 Grundlagen

In der Entwicklung mechatronischer Systeme wird zunéchst ein Modell des Systems er-
stellt. Dieses Modell wird dann in ein reales System iiberfiihrt. Aufgrund der Komplexitit
mechatronischer Systeme hat sich in den letzten Jahren eine komponentenbasierte Mo-
dellierung bewéhrt. Hierbei wird das System als Menge von Komponenten dargestellt,
die Informationen verarbeiten. Diese Komponenten sind untereinander verbunden, sodass
sich das Verhalten des Gesamtsystems aus der Interaktion der einzelnen Komponenten er-
gibt. Jede dieser Komponenten ist durch die von ihr zur Verfiigung gestellten und benotig-
ten Informationen, deren Verarbeitung, sowie die Parameter dieser Verarbeitung eindeutig
charakterisiert.

Im Rahmen des SFB 614 wurde der in Abbildung 2.1 dargestellte hierarchische, modulare
Aufbau von mechatronischen Systemen entwickelt. Abbildung 2.1 zeigt den Aufbau eines
komplexen mechatronischen Systems nach Liickel [LHLHO1][Ge05][GHH*08b].

shuttle OCM shuttle OCM
shuttle .l | shcuct)tle shuttle .l | shcuct)tle
RO+C I RO+C |
: | D e e e > :
|
| (-
motion control OCM energy subsystem OCM
¥ , ¥ energy
; . motion & sub-
motion control energy [‘ system
control co subsystem i o0
RO‘C ROAC
- P
| | I I |
[——— i
- — hierarchical decomposition (hard real-time)
I = | — 'ﬁ:‘}. _ .)
- e — ‘1\\:‘ <+ — > peer-to-peer coordination (hard real-time)
= o linear drive OCM rack control OCM peer-to-peer coordination (soft real-time)
suspension tiit OCM safe decoupled guidance (soft real-time)

Abbildung 2.1: Hierarchische Struktur eines mechatronischen Systems nach Liickel

Die Basis bildet das mechatronische Funktionsmodul (MFM). Es ist aus einer mechani-
schen Grundstruktur, Sensoren und Aktoren und einer lokalen Informationsverarbeitung
aufgebaut. Die mechanische Grundstruktur fiihrt die Aufgaben des mechatronischen Sys-
tems in der realen Welt aus. Dazu gehort zum Beispiel das Heben einer Last oder wie in
dem in Abbildung 2.1 dargestellten Beispiel das Neigen eines Fahrzeugs (suspension tilt
OCM). Die Steuerung des Systems tibernimmt die Informationsverarbeitung. Sie kom-
muniziert iiber Sensoren und Aktoren mit der mechanischen Grundstruktur. Autonome
mechatronische Systeme (AMS) sind aus MFM aufgebaut, die informationstechnisch oder

14

2.2 Regelungstechnik

mechanisch gekoppelt sind. Die Informationsverarbeitung eines AMS iibernimmt iiberge-
ordnete Aufgaben. Dazu gehoren zum Beispiel die Uberwachung mit Fehlerdiagnose und
Instandhaltungsentscheidungen (motion control OCM). Auflerdem werden Vorgaben fiir
die lokale Informationsverarbeitung generiert. Aus den AMS werden vernetzte mechatro-
nische Systeme (VMS) gebildet. Sie entstehen durch die Verbindung von AMS iiber die
Informationsverarbeitung. Im dargestellten Beispiel entspricht das Feder-Neige-Modul
dem MFM, das Shuttle einem AMS und ein Fahrzeugverband einem VMS. In der Abbid-
lung ist zu sehen, dass jede Schicht, MFM, AMS sowie VMS durch OCMs beschrieben
wird.

Abbildung 2.2 zeigt ein Operator-Controller-Modul (OCM) [Ge05][HOGO04]. Das OCM
ist in die drei Ebenen Controller, reflektorischer Operator und kognitiver Operator auf-
geteilt. Der Controller bildet die unterste Ebene. Er arbeitet direkt mit der mechanischen
Grundstruktur, verarbeitet auf direkte Weise die Messsignale, ermittelt daraus Stellsignale
und gibt sie an die mechanische Grundstruktur weiter. Der Controller arbeitet kontinuier-
lich und unter harten Echtzeitbedingungen. Der reflektorische Operator bildet die mittlere
Ebene. Er steuert den Controller und unterliegt ebenfalls harten Echtzeitbedingungen. Er
agiert nicht direkt mit dem System, sondern beeinflusst den Controller durch Initiierung
von Parameter- und Strukturianderungen. Die oberste Ebene bildet der kognitive Operator.
Auf dieser Ebene kann das System Wissen iiber sich und die Umgebung zur Verbesserung
des eigenen Verhaltens nutzen. Der kognitive Operator unterscheidet sich von den ande-
ren beiden Ebenen vor allem dadurch, dass er weichen Echtzeitanforderungen unterliegt.

Das dargestellte System kann also in zwei Teile untergliedert werden: Ein Teil, der unter
harten Echtzeitbedingungen arbeitet und den Controller und den reflektorischen Opera-
tor umfasst und ein Teil, der unter weichen Echtzeitbedingungen arbeitet. Zum letzteren
gehort der kognitive Operator. Um zu verstehen, wie das Werte-kontinuierliche Verhalten
des Controllers spezifiziert ist, werden im Folgenden Grundlagen der Regelungstechnik
beschrieben.

2.2 Regelungstechnik

Technische Systeme lassen sich im regelungstechnischen Sinn durch Zustandsgréf3en be-
schreiben. In vielen Fillen will man diese ZustandsgroBen gezielt beeinflussen, um ge-
wiinschtes Verhalten zu erzielen. Das Ziel ist es, die Zustandsgréen an einen bestimmten
Wert zu dndern oder sie an einem Wert zu halten (z.B. die Rotationsgeschwindigkeit soll
immer 100%1 betragen).

In der Regelungstechnik liegt der Schwerpunkt nicht auf der Konstruktion eines Sys-
tems, sondern auf der Beschreibung der kontinuierlichen Zustandsgroflen durch Differen-

15

Kapitel 2 Grundlagen

Planungssebene

Weiche Echtzeit

T - Reflektorischer Operator

% s Konfigurations-
{c,</-. steuerung

Handlungsebene

Harte Echtzeit

R,

d Motorischer
Kreis

Abbildung 2.2: Operator-Controller-Modul

tialgleichungen. Hierbei wird das dynamische Verhalten der Regler durch Differential-

gleichungen beschrieben, die dafiir sorgen, dass sich das System wie gewiinscht verhilt
[Fol105].

In Abbildung 2.3 ist die generelle Struktur einer Steuerung dargestellt. Das Problem ei-
ner Steuerung kann wie folgt beschrieben werden: Gegeben sei das Ziel eines Systems.
Die Stellgrofle (control) y und die ZustandsgroBe/Ausgangsgrofie (controlled) z. Die Auf-

16

2.2 Regelungstechnik

gabe der Steuerung ist die Beeinflussung von z durch y in der Art und Weise, dass ein
gewiinschtes Verhalten trotz Einwirkung von Storgroen z (disturbance), die nicht immer
bekannt sind, erreicht wird. x und y sind Elemente eines Vektors & bzw. ¢. Da Systeme mit
mehr als einer Zustandsgrof3e und einer StellgroBe nach demselben Prinzip funktionieren,
werden im Folgenden nur Systeme mit x und y betrachtet.

disturbancel y4

control y controlled x
—_— 3

Plant

Abbildung 2.3: Generelle Struktur einer Steuerung

Grundsitzlich wird zwischen Steuerungen (Feed-Forward-Regler] und Reglern (Feed-
Back-Reglern) unterschieden. Steuerungen reagieren schneller auf a priori bekannte Sto-
rungen, allerdings nicht auf unbekannte Stérungen. Regler reagieren durch den Regelkreis
auf jede Art von Storungen, allerdings nur, wenn die Zustandsgrof3en und die Abweichun-
gen messbar sind. Das Ziel einer Regelung ist es, die Differenz zwischen einem Vorgabe-
wert und der Realitit gegen 0 zu regeln. (siehe Abbildung 2.4).

control ' disturbance| z
difference |

,control y
Control law |; >

reference
variable w

controlled x
Plant

Controller

Abbildung 2.4: Einfacher Regelkreis

Die Entscheidung fiir einen bestimmten Regler-Typ hiingt von den Zeiteigenschaften und
der Genauigkeit des Systems ab. In der Literatur wird hier zwischen drei Regler-Typen
unterschieden: Proportionalregler (P), Proportional-Integral-Regler (PI) und Proportional-
Integral-Differential-Regler (PID). Letzterer wird am meisten in der Praxis verwendet
[HPPSO03]. Je nach Eigenschaft der Strecke und der vorgegebenen Anforderungen werden
nun die Regler ausgesucht, um eine moglichst hohe Stabilitit des Systems zu erreichen
dabei Uberschwingen zu vermeiden und Reaktionszeiten zu verbessern.

2.2.1 Adaptive Regler

Einige Systemédnderungen sind nicht vorhersagbar und gewohnliche Regelsysteme kon-
nen moglicherweise nicht richtig reagieren, wenn die Eingangs- und Ausgangsrelation
sich verdndert. Manchmal konnen diese Effekte durch herkommliche Regelungstechni-
ken geregelt werden, jedoch nicht immer [IML92].

17

Kapitel 2 Grundlagen

Adaptive Regelungen konnen hier helfen, die Stabilitit sowie die Reaktionszeit zu ver-
bessern. Dieser Ansatz verindert die Regler-Algorithmen in Echtzeit, um sich an die An-
derungen der Umgebung anzupassen. Allgemein beobachtet der Regler periodisch die
System Eingabe- und Ausgaberelation und @ndert den Regler-Algorithmus. Das Ziel ist
es, dadurch den Regler so robust wie moglich zu haben, und damit das dynamische Sys-
tem so unempfindlich gegen Storungen wie moglich zu halten.

In der Literatur gibt es drei Hauptansitze, um adaptive Feed-Back Regler zu modellieren:
Der erste, triviale Ansatz legt z.B. in einer Datenbank a priori fest, wie sich der Regler
bei bestimmten Anderungen zu verhalten hat. Neben der trivialen adaptiven Regelung
gibt es noch den Model Reference Adaptive Control (MRAC) und Self-Tuning Regulators
(STRs) Ansatz. Beim MRAC Ansatz beschreibt ein Referenzmodell die Systemeigen-
schaften. Der adaptive Regler ist hier so aufgebaut, dass das System bzw. die Strecke sich
so verhilt, wie das Referenzmodell. Die Ausgaben des Modells werden mit den tatsdch-
lichen Ausgaben verglichen und die Differenz wird verwendet, um die Regler-Parameter
anzupassen. Im dritten Ansatz STRs werden selbsteinstellende Regler verwendet. Diese
nehmen ein lineares Modell an. Die Regler verwenden die zugrunde liegenden Reglerge-
setze, um ihre Koeffizienten zu veridndern.

2.2.2 Rekonfiguration

Bis jetzt wurden nur Regler betrachtet, die immer aktiv sind. Zusitzlich wurde angenom-
men, dass fiir eine Aufgabe immer ein Regler zur Verfiigung steht. Fiir das Shuttle System
wird Rekonfiguration benétigt, um die Regler-Algorithmen auszutauschen, wenn z.B. ein
Konvoi gebildet wird um die beste Strategie zu fahren. Da die Ressourcen in eingebetteten
Systemen typischerweise begrenzt sind, ist es erforderlich, diese soweit wie moglich ein-
zusparen. Hierfiir wird Rekonfiguration verwendet, um zwischen verschiedenen Rollen,
z.B. Fithrungsfahrzeug oder letztes Shuttle im Konvoi, hin und her zuschalten. Um dies
zu ermoglichen, muss eine Logik, welche die Reglerstruktur steuert, hinzugefiigt wer-
den. Durch Hybride Rekonfigurations Charts (siehe Kapitel 2.4) kann modelliert werden,
welche Regler in welcher Situation aktiv oder inaktiv sein sollen.

2.2.3 Block Diagramme

Eine giingige Technik fiir die Modellierung von Reglerstrukturen sind hierarchische Block
Diagramme. Block Diagramme bestehen aus Grund-Blocken, die das Verhalten modellie-
ren und hierarchischen Blocken, welche die Grund-Blocke oder andere hierarchische Blo-
cke beinhalten, um die visuelle Komplexitit zu reduzieren. Jeder Block besitzt Eingabe-
und Ausgabesignale. Blocke sind durch gerichtete Verbindungen untereinander verbun-

18

2.2 Regelungstechnik

den, um den Informationsfluss darzustellen. Z.B. kann das Ausgabesignal eines Blocks
als Eingabesignal eines anderes Blocks verwendet werden.

Definition 1
Ein kontinuierlicher Block M wird durch ein 7 Tupel (V* V¥ VY F, G, C, X") definiert:

o V*: Menge der Zustandsvariablen,

o V": Menge der Eingabevariablen,

VY: Menge der Ausgabevariablen,

F C EQVEYVe,VeVeJVe) mit Ve = VY (VY beschreibt den Fluss der
Zustandsvariablen,

G C EQ(VY Ve, VeJVeJV?): bestimmt die Ausgabevariablen,

C € COND(V*®): Invariante, welche die Menge der zuliissigen Zustinde bestimmt
und

o X': Menge der Anfangszustinde.

Die Menge EQ(V;, V) bezeichnet alle Gleichungen der Form v, = f*(v}, ..., v"), mit den

Funktionen f°, die n Argumente besitzen, und den Variablen v; € V, und vﬁ, Ul € Vi
Die Menge CON D(V') beinhaltet alle Bedingungen iiber die Variable V.

Ein Block M ist wohl-definiert, wenn fiir alle Differentialgleichungen des Systems F'| J G
gilt, dass es keine zyklischen Abhdingigkeiten gibt, keine doppelten Zuweisungen, alle un-
definierten Verweise auf Variablen in V" — V'Y enthalten sind und jeder Zustandsvariablen
V?® und Ausgabevariablen V'Y ein Wert zugewiesen ist.

2.2.3.1 Beispiel

Wie in Kapitel 1.2 beschrieben, wird die Konvoifahrt genutzt, um moglichst energieeffizi-
ent zu fahren. Das ist nur dann moglich, wenn die Shuttles moglichst nah hintereinander
fahren. Hierbei muss die Distanz stindig geregelt werden, um Auffahrunfille zu vermei-
den. Die Geschwindigkeit des Shuttles muss also stindig in Bezug auf die Distanz zum
Fiihrungsfahrzeug angepasst werden. Um dies zu erreichen, bendtigt das hinterherfah-
rende Shuttle zwei Regler, einen Distanzregler und einen Geschwindigkeitsregler. Das
Fiihrungsshuttle hingegen benétigt nur einen Geschwindigkeitsregler.

Als erstes wird das Modell der Strecke beschrieben. Dieses ist in Abbildung 2.5 darge-
stellt. Es gilt: mv 4+ bv = u,y = v, wobei m die Masse eines Shuttles, v die Geschwin-
digkeit, v die Ableitung der Geschwindigkeit v, bv die Reibungkraft, v die Antriebskraft
und y die Zustandsgrofie ist.

19

Kapitel 2 Grundlagen

[: — dot.
In t_’Di’iu"@

—
Sum inertia Integrator Out
damping

Abbildung 2.5: Model der Strecke

Als nichstes wird der PID Regler beschrieben. Der Unterschied zwischen dem gewiinsch-
ten Eingabewert und dem tatsidchlichen Ausgabewert wird durch den Fehler e dargestellt
(siehe Abbildung 2.4). e wird an den PID Regler weitergeleitet, der darauthin die Ablei-
tung sowie das Integral von e berechnet. Das Signal u ist nun, nachdem es zum Regler
weitergeleitet wurde, gleich dem Proportionalglied K p multipliziert mit dem Betrag des
Fehlers plus dem Integrationsglied K; multipliziert mit dem Integral des Fehlers plus
dem Differenzialglied K p multipliziert mit der Ableitung des Fehlers. Das Signal « wird
danach an die Strecke weitergegeben. Der neue Ausgabewert x wird entsprechend herge-
leitet. Der neue Ausgabewert x wird erneut zuriick an den Sensor geleitet, um den neuen
Fehler e zu bekommen. Der Regler bekommt diesen neuen Fehler und berechnet die Ab-
leitung und das Integral erneut (sieche Abbildung 2.6). Der PID Regler wurde entsprechend
am linearisierten Modell der Strecke ausgelegt.

_J__ * Lp+

=+
5 - > % > + [Qut -
te
P St Integrator ki Sunl Flant Scope

hd
=

W/t

Derivative Kd

Abbildung 2.6: PID Geschwindigkeitsregler

2.2.3.2 Rekonfiguration

Abbildung 2.7 zeigt die Logik der Abstandsregelung in einem Stateflow Diagramm. Das
Modell besteht aus drei Modi. Initial ist das Shuttle im Modus NoConvoy. Die Ereignisse
convoyFront und convoyRear erzwingen den Wechsel von NoConvoy zum Modus Con-
voyFront oder ConvoyRear. Das Ereignis breakConvoy 16st den Konvoi auf und erzwingt

20

2.2 Regelungstechnik

den Wechsel in den Modus NoConvoy. In den Modi NoConvoy und ConvoyFront ist die
Geschwindigkeitsregelung implementiert. Im Zustand ConvoyRear ist die Distanzrege-

lung implementiert.

- —— ———— ——— ———— -

/ShutlleControLogic

ConvoyFront
Entry:
Mode=2;

convoyFront

L3

NoConvoy
Entry:
Mode=1;

iy

breakConvoy

convoyRear

breakConvoy

Mode=3;

q
ConvoyRear
Entry:
.

S

Abbildung 2.7: Stateflow Diagramm der Shuttlesteuerung

In Abbildung 2.8 ist das hybride Modell einer Shuttleregelung fiir die Konvoiregelung
als Simulink Diagramm dargestellt. Es beinhaltet die Reglerlogik (oben links), die Regl-
ergesetze fiir die Distanz- und Geschwindigkeitsregelung (mitte) und die Beschreibung
des physikalischen Modells (rechts). Der Block zur Distanzkontrolle beinhaltet sowohl
den Distanzregler als auch den Geschwindigkeitsregler. Der schwarze Balken (rechts) ist
ein Umschalter. Durch die Mode/Konfigurationseingabe beider Kontroller und dem Um-
schalter ist es moglich, den gerade bendtigten Regler zu aktivieren und einen anderen zu

deaktivieren.
e i Mode—gy
s_req > Mode
“% - 5 _req al
[— | v_req
_f-_p. v
DV Caontrol
Mode
L a
Lh- v_req
v
o —>
VControl

Plant

Abbildung 2.8: Hybrides Modell der Shuttelsteuerung

21

Kapitel 2 Grundlagen

2.3 Modell-basierte Softwareentwicklung

Die Techniken der modell-basierten Softwareentwicklung wurden eingefiihrt, um die
Komplexitit eines Problems zu reduzieren und ein abstrakteres Modell zu erhalten, wel-
ches frei von Implementierungsdetails ist [Fav05]. Damit wird das Modell iibersichtlicher
und es lassen sich einfacher Operationen durchfithren. Drei wesentliche Schritte in der
modell-basierten Entwicklung sind die (1) Modellierung, (2) Verifikation und (3) Code-
synthese.

Die UML hat sich als Standardmodellierungssprache fiir die modell-basierte Software-
entwicklung durchgesetzt. Sie bietet eine grofle Palette von Diagrammen, um ein System-
modell zu erstellen und ihr Verhalten zu spezifizieren. Um allerdings komplexe, vernetz-
te mechatronische Systeme, wie sie bereits vorgestellt wurden, addquat zu modellieren,
reicht die UML nicht mehr aus. Um dem doméineniibergreifenden Charakter von mecha-
tronischen Systemen gerecht zu werden, miissen bei der modell-basierten Entwicklung
auch die entsprechenden Techniken der verschiedenen Dominen miteinander integriert
werden [BurO6][HHKSO08][GHH"08b][BGH"07]. Neben der Modellierung steht bei der
modell-basierten Entwicklung auch die Verifikation im Vordergrund. Da nun Modelle des
eigentlichen System vorliegen, ist es moglich, diese formal zu verifizieren. Jedoch wirft
die Welt der komplexen, vernetzen mechatronischen Systeme auch hier Probleme auf.
Bisherige Ansitze lassen sich nicht anwenden, da sie mit der Vielfalt der Modelle der
anderen Dominen nicht entsprechend klar kommen oder nicht skalieren [GHO6].

Im Folgenden werden nun zuerst Verhaltens- und Strukturmodelle vorgestellt, die bei der
klassischen Modellierung und Verifikation von mechatronischen Systemen bisher ver-
wendet wurden. Die Auswahl der aufeinander aufbauenden Modelle wurde getroffen,
da sie die syntaktische und semantische Grundlage fiir die spiter in der MECHATRO-
NIC UML eingefiihrten Modelle bilden.

2.3.1 Automaten

Um das Verhalten von reaktiven Systemen zu modellieren, konnen endliche Automaten
verwendet werden. Von den verschiedenen existierenden Formen von Automaten werden
hier die endlichen Automaten betrachtet, welche auch bei [CGP00] als Grundlage fiir das
dort definierte Modell eines Timed Automaton dienen. Fiir weitergehende Informationen
zu endlichen Automaten siche [HU79]. Ein endlicher Automat setzt sich zusammen aus
einzelnen Knoten, welche iiber Kanten miteinander verbunden sind. Die Knoten stellen
einzelne Zustinde und die Kanten Transitionen zwischen diesen dar.

22

2.3 Modell-basierte Softwareentwicklung

Definition 2

Ein endlicher Automat M ist ein Quadrupel M = (3,9, A, Q°), wobei ¥ ein endli-
ches Eingabealphabet, Q eine endliche Menge an Zustinden, A C Q x A x Q eine
Transitionsrelation und Q° die endliche Menge der initialen Startzustinde darstellt.

Ein endlicher Automat M besteht aus Q, einer endlichen Menge an Knoten bzw. Zustéin-
den, A der Menge an Kanten, welche die Transitionen zwischen den Zustidnden abbilden,
aus Q°, einer endlichen Menge an initialen Startzustinden sowie aus .. Y. setzt sich zu-
sammen aus einer Menge an moglichen Eingaben, bei welchen iiber die Transitionen
§ € A zwischen den Zustinden aus Q U Q° gewechselt werden kann. Ein Beispiel fiir
einen solchen Automaten zeigt die Abbildung 2.9. Der abgebildete Automat setzt sich
zusammen aus der Eingabemenge ¥ = {a, b}, den Zustinden Q = {so, s1} und dem
Startzustand Q° = {s,}. Die Menge der Ubergangstransitionen A lisst sich beschreiben
durch die Tripel (sg, a, s1) und (s1, b, so).

a
b

Abbildung 2.9: Ein endlicher Automat mit den Zustinden sg, s; und zwei Kanten, welche
mit a und b beschriftet sind.

Die in diesem Abschnitt vorgestellten Modelle eignen sich zur Beschreibung von Sys-
temen, welche durch ein diskretes Zeitmodell (siehe [CGPO00], Kapitel 16) beschrieben
werden konnen. Um Zeit-kontinuierliche Eigenschaften zu modellieren, miissen die Mo-
delle erweitert werden. Es gibt verschiedene Mdglichkeiten, um Zeit in einem Modell
abzubilden. Dies bezieht sich z.B. auf das Verhalten von Uhren (eine solche Uhr wird
nachfolgend Clock genannt), durch welche das Fortschreiten der Zeit abgebildet wird. So
wird bei [CGPOO][Kop97] unterschieden zwischen diskreter und kontinuierlicher Echt-
zeit, wobei in der vorliegenden Arbeit Modelle mit kontinuierlichem Echtzeit-Verhalten
betrachtet werden. Als Gemeinsamkeit fiir die hier verwendeten Modelle gilt weiterhin,
dass alle dort auftretenden Uhren mit der gleichen Geschwindigkeit voranschreiten und
somit synchron laufen. In [GHHO6a] wird beschrieben, weshalb diese Annahme fiir me-
chatronische Systeme, wie hier beschrieben, giiltig ist.

2.3.2 Timed Automata

Synchrone Modelle basieren meistens auf einem diskreten Zeitmodell. Ein Beispiel ist
das gleichméBige Takten einer Hardwareeinheit. Dies hat zur Folge, dass als Uhrwerte

23

Kapitel 2 Grundlagen

nur positive ganzzahlige Werte zur Verfiigung stehen und Ereignisse nur zu ganzzahli-
gen Zeitpunkten auftreten konnen. Will man nun asynchrone Modelle untersuchen, muss
man ein kontinuierliches Zeitmodell zu Grunde legen. Hier konnen z.B. Ereignisse in be-
liebig kleinen Abstinden hintereinander auftreten. Um solche Systeme zu diskretisieren,
ist es notig, kleine, a priori vorgegebene minimale Zeitintervalle, festzulegen. Abstinde
zwischen Ereignissen konnen nun als Vielfache dieser Malleinheit ausgedriickt werden.
Dieses ist jedoch schwer von Beginn an festzulegen und schréinkt zusétzlich die Genau-
igkeit eines Systems ein. Brzozowski und Seger [BS91] haben sogar gezeigt, dass das
Erreichbarkeitsproblem fiir asynchrone Schaltkreise unter der Annahme von festen Zeit-
intervallen, Zeit wird diskretisiert, nicht korrekt gelost werden kann. Hinzu kommt, dass
der Zustandsraum bei der Verwendung von sehr kleinen Intervallen, wie sie bei einer mog-
lichst exakten Modellierung eines asynchronen Systems vorkommen, schlagartig explo-
diert. Dadurch wird die Verifikation undurchfiihrbar. Obgleich viele verschiedene Ansitze
zur Modellierung von Systemen mit einem kontinuierlichen Zeitsystem gemacht wurden,
hat sich das Modell der Timed Automata von Alur, Courcoubetis und Dill [ACD90] eta-
bliert, welches im Folgenden beschrieben wird.

Ein Timed Automaton ist ein endlicher Automat, der iiber eine feste Anzahl von Clocks
verfiigt. Eine Clock kann dabei einen Wert aus den positiven reellen Zahlen annehmen,
wodurch Modelle mit kontinuierlichen Echtzeit-Bedingungen formuliert werden konnen.
Die Transitionsrelation A des Timed Automaton verfiigt zusitzlich zu den endlichen Au-
tomaten iiber zeitliche Bedingungen, welche erfiillt sein miissen, damit der jeweilige
Ubergang stattfinden kann. Diese Bedingungen werden als Guards bezeichnet. Weiter-
hin kann eine solche Transition iiber so genannte Resets verfiigen, welche beim Schalten
dafiir sorgen, dass einzelne Clocks auf den Zahlenwert 0 zuriick gesetzt werden.

Ahnlich wie die Kanten (Kanten reprisentieren die Transitionen) iiber Guards verfiigen
konnen, kann jeder Knoten ebenfalls zeitliche Bedingungen besitzen, so genannte Invari-
anten. Diese miissen erfiillt sein, damit bei dem jeweiligen Knoten verweilt werden kann.
Entsprechend ist es moglich bei einem Knoten zu verweilen, wihrend die Transitionen
zwischen den einzelnen Knoten in Null-Zeit passiert.

Im Unterschied zu den einfachen endlichen Automaten, bei denen die Zustidnde durch die
Menge Q beschrieben werden konnen, hiangt der Zustand beim Timed Automaton zusétz-
lich von den geltenden Bedingungen iiber die einzelnen Clocks ab. Somit wird hier nicht
von der Menge der Zustinde Q, sondern von so genannten Locations S gesprochen, wel-
che den Knoten des Automaten zugeordnet sind. Dabei kann es innerhalb einer Location
fiir die einzelnen Clocks nicht nur eine Belegung geben, sondern eine unendlich grofle
Menge an moglichen Belegungen. Diese Eigenschaft ergibt sich aus der Verwendung von
Ungleichungen bei den Invarianten und Guards, durch welche komplette zeitliche Er-
reichbarkeitsraume aufgebaut werden konnen. So ist es moglich innerhalb einer Location
fiir eine Zeitspanne zu verweilen. Dabei konnen die Clockvariablen Werte aus den posi-

24

2.3 Modell-basierte Softwareentwicklung

tiven reellen Zahlen annehmen. Auf diese Eigenschaft der Locations wird im Folgenden
noch genauer eingegangen.

Ein Beispiel fiir einen entsprechenden Timed Automaton zeigt die Abbildung 2.10. Der
Automat verfiigt tiber die Locations s, s1, die zwei Clock-Variablen x;, x5 sowie iiber
die Transition a, welche sy mit s; verbindet und die Transition b, welche s; mit s, verbin-
det. Der Automat startet in der Location sy und kann dort hochstens solange verweilen,
bis die Clock x5 den Wert 2 erreicht hat. Dies wird durch die Invariante zo < 2 in sq
vorgegeben. Sobald die Clockvariable o den Wert 1 erreicht oder iiberschreitet, kann
der Automat iiber die Transition a zu der Location s; wechseln. Dieser Wechsel muss
spétestens vollzogen werden, wenn die Clock x2 den Wert 2 erreicht. Diese Eigenschaft
ergibt sich durch die Kombination des entsprechenden Guards x5 > 1 an der Transition
a, zusammen mit der Invariante innerhalb der Location s,. Beim Ubergang von s, nach
s1 wird die Clock-Variable x5 durch den Reset x5 := 0 zuriick gesetzt. Ahnlich verfiigt
die Location s; uiber die Invarianten x5 < 3 und z; < 2, sowie die Transition b iiber den
Guard x; > 2 und den Clock-Reset z; := 0.

a S
So Xo>1 X2:=0 ;
Xz<2 b =
=0 X>2 =

Abbildung 2.10: Ein Timed Automaton, der iiber zwei Location, drei Invarianten und
zwei Kanten mit jeweils einem Guard und einem Clockreset verfiigt.

Formal ist ein Timed Automaton nach [CGP00] wie folgt definiert:

Definition 3

Ein Timed Automaton A ist ein 6-Tupel A := (X,8,8° X, I,T), wobei 3 ein endli-
ches Eingabealphabet, S eine endliche Menge an Locations, S° C S eine endliche Men-
ge von Start-Locations, X := (x1,..,x,) eine endliche Menge an Clock-Variablen mit
x; € RY, I eine Zuordnungsfunktion I — C(X), welche den einzelnen Locations eine
Menge an Ungleichungen zuordnet, die so genannten Invarianten, und T’ ist die Menge
der Transitionen. C(X) ist eine Menge von Bedingungen iiber die Clock-Variablen aus
X. Dabei besteht C(X) aus einer Menge an Ungleichungen der Form x; < ¢V ¢ < x;,
wobei < entweder < oder < ist und ¢ € N*. Fiir T, die Menge der Transitionen gilt
T CS8xXxC(X)x2X x 8. Eine Transition von Location s nach s' lif3t sich durch
ein 5-Tuple (s,a, @, A, s') beschreiben. Dabei ist a € X die Beschriftung der zugehdrigen
Kante, ¢ eine Bedingung, die erfiillt sein muss damit die Transition schalten kann und
A C X eine Anzahl an Clockvariablen, die beim Schalten auf 0 zuriick gesetzt werden.

25

Kapitel 2 Grundlagen

2.3.3 Hybride Automaten

Mit einem hybriden Automaten kann das Verhalten von hybriden Systemen modelliert
werden. Hybride Systeme sind dadurch gekennzeichnet, dass sie sowohl aus einem dis-
kreten wie auch einem kontinuierlichen Teil bestehen. Der hybride Automat stellt eine
Erweiterung zum endlichen Automaten und zum Timed Automaton dar, da er zusétzlich
zu einem diskreten Teil auch einen kontinuierlichen Teil besitzt.

Jeder hybride Automat besteht aus Locations und Transitionen, die einen Ubergang zwi-
schen zwei Locations ermdglichen. Wie auch beim endlichen Automaten existiert im hy-
briden Automaten eine ausgezeichnete Teilmenge der Locations, welche die Anfangslo-
cations bilden. Das Hauptmerkmal des hybriden Automaten ist, dass er es erlaubt, in je-
der Location eine Differentialgleichung, die einen kontinuierlichen Regler représentiert,
einzubetten. Der Ubergang zwischen zwei Locations erfolgt durch diskrete Uberginge.
Durch diese Einbettung und die Ubergiinge kann mit Hilfe eines hybriden Automaten
das Verhalten von hybriden Systemen modelliert werden. Des Weiteren wird durch den
Wechsel von einer Location in eine andere ein Austausch von kontinuierlichen Reglern
erreicht.

Neben der Einbettung von kontinuierlichen Reglern ermdglicht der hybride Automat wie
auch der Timed Automaton die Spezifikation von Zeitangaben. Innerhalb einer Location
konnen Zeitinvarianten in Bezug auf eine Uhr angegeben werden. Eine Zeitinvariante
driickt aus, bis wann eine Location spitestens verlassen sein muss. Ein Locationiibergang
kann nur stattfinden, wenn der spezifizierte Timeguard wahr ist und das entsprechende
Event anliegt. Wihrend des Schaltvorgangs einer Transition ist es moglich, Uhren auf
den Wert Null zu setzen. Nach [BGHO5a] ist ein hybrider Automat M wie folgt definiert:

Definition 4

Ein hybrider Automat ist durch ein 6-Tupel (L, D, 1,0, T, S°) definiert. Dabei ist L eine
endliche Menge von Locations, D eine Funktion iiber L, die jeder Location | € L ein
kontinuierliches Modell D(1) = (V=,V*, V¥ F(1),G(l),C(l), X°()) wie in Definition 1
beschrieben, zuweist, I eine endliche Menge von Eingabesignalen, O eine endliche Menge
von Ausgabesignalen, T eine endliche Menge von Transitionen und S° C {(l,z)|l €
LAz e X°1)} die Menge der Anfangslocations.

Fiir jede Transition (1, g,¢',a,l') € T istl € L die Startlocation, g € COND(V* U V")
der kontinuierliche Guard, der eine Bedingung iiber die Zustands- oder die Eingabeva-
riablen angibt, ¢ € (I U O) der I/O-Guard, a € [[V* — R] — [V* — R]] die
kontinuierliche Aktualisierung und " € L Ziellocation.

Abbildung 2.11 aus [Bur06] zeigt einen hybriden Automaten, der das Fahrverhalten eines
Shuttles modelliert. Ein Shuttle kann entweder alleine oder im Konvoi fahren. Abhiingig
von der Situation ist ein bestimmter Regler aktiv. Nutzt das Shuttle den Geschwindig-

26

2.3 Modell-basierte Softwareentwicklung

/—__VelocityToPosition N\ d',, <t <d',
y(t) = O‘(t) * Vout + (1 - 0(‘t)) * pout
t, < d1up J

positionFailure

- Position N
T1 * y = * (preq(t) pcur(t)) +
* (Preq(t) - Peur(t)) - Y(Y)
t,=0
velocity

- Velocity

t y(t) =k* (Vreq(t) - chr(t))

velocityFailure
[/~ PositionToVelocity

low < t < d y(t) = 0‘(t) * Pout + (1 - O‘(t)) * Vout
t, < dzup

Abbildung 2.11: Hybrider Automat

d’

keitsregler, bewegt es sich mit einer bestimmten Geschwindigkeit fort, die sich innerhalb
eines vorgegebenen Intervalls befindet. Wenn es mit einem anderen Shuttle in einem Kon-
voi fahrt, wird die Geschwindigkeit des Shuttles anhand seiner Position geregelt. Hierbei
stellt der Positionsregler sicher, dass der Abstand zwischen den beiden Shuttles nicht zu
grof3 bzw. nicht zu klein wird.

Zu Anfang befindet sich das Shuttle in der Location Velocity. Diese Location beinhal-
tet eine Differentialgleichung, die den Geschwindigkeitsregler reprédsentiert. Anhand der
Differentialgleichung ist zu erkennen, dass der Ausgang y des Reglers von den beiden
Eingéngen v,., und v,,, und einer Konstante k abhingt.

Liegt das Event position an, wird vom Geschwindigkeitsregler zum Positionsregler ge-
wechselt. Um den Wechsel zwischen diesen beiden Reglern zu ermoglichen, existiert ein
SO genannter Uberblendzustand. Dieser Uberblendzustand enthilt eine Funktion, die den
Ausgang des Geschwindigkeitsreglers auf den Ausgang des Positionsreglers iiberblen-
det. Diese Funktion wiederum beinhaltet die Uberblendfunktion a(t) aus [Voe03] mit:
a(t) = =2(;)" +3(5-)?

tdauer tdauer

Wird von der Location Velocity in die Location VelocityToPosition gewechselt, wird der
Wert der Uhr ¢, auf Null gesetzt. In der Location VelocityToPosition befindet sich eine
Zeitinvariante, die aussagt, dass die Location verlassen sein muss, wenn t; > dip gilt.
Liegt das Event positionFailure an, ist wihrend des Uberblendvorgangs ein Fehler auf-
getreten und der hybride Automat wechselt wieder in die Location Velocity. Liegt kein
Event an und ist der Timeguard d}ow <t < dip wahr, verlédsst der hybride Automat die
Location VelocityToPosition und wechselt in die Location Position. Diese Location bein-
haltet eine Differentialgleichung, die den Positionsregler reprisentiert. Der Ausgang y der
Differentialgleichung ist von den beiden Eingéngen p,., und p.,, und den Konstanten k;
und k- abhéngig.

27

Kapitel 2 Grundlagen

Liegt das Event velocity an, muss vom Positionsregler auf den Geschwindigkeitsregler
gewechselt werden. Hierfiir existiert der Uberblendzustand PositionToVelocity. Wenn die
Location Position verlassen wird, wird der Wert der Uhr ¢, auf Null gesetzt. In der Lo-
cation PositionToVelocity ist eine Funktion eingebettet. Diese wiederum beinhaltet die
Uberblendfunktion «(t). Die Zeitinvariante ¢, < dZ, sagt aus, bis wann die Location
spitestens verlassen sein muss. Die Location kann verlassen werden, wenn das Event
velocityFailure anliegt oder der Timeguard dj,,, <ty < d;,, wahr ist.

Wie dieses Beispiel zeigt, vereinen hybride Automaten kontinuierliche Regler und dis-
krete Zustinde. Durch diese Kombination ermoglichen sie unter anderem die Simulation
von physikalischen Gesetzen, die héufig fiir hybride Systeme benotigt werden. Zudem ist
eine automatische, formale Uberpriifung von Invarianten moglich.

Allerdings werden alle Komponenten durch einen einzigen hybriden Automaten model-
liert. Dies fiihrt schnell zu komplexen Modellen, die schwer zu verifizieren sind. Des
Weiteren ermoglicht das Modell des hybriden Automaten keine Rekonfiguration, wie sie
in [FGKT04][Bur06] definiert ist. Durch einen Wechsel der Locations werden zwar die
Regler ausgetauscht, aber die Struktur und der interne Zustand der Regler konnen von
einem hybriden Automaten nicht beeinflusst werden. Wie auch beim Timed Automaton
findet beim hybriden Automaten ein Schaltvorgang in Null Zeit statt. Dies entspricht je-
doch nicht der Realitit, da ein Locationwechsel oft eine gewisse Zeit benotigt.

2.3.4 Graphen

Die in den vorherigen Abschnitten vorgestellten Modelle der Timed Automata und der
Hybriden Automaten verfiigen iiber eine zeitliche Komponente, mit welcher es moglich
ist, kontinuierliches (Echtzeit-) Verhalten zu modellieren. Das Verhalten ist dabei auf eine
vorgegebene Zustandsstruktur festgelegt. In komplexen, vernetzten mechatronischen Sys-
temen stehen nur begrenzte Rechen- und Speicherkapazititen zur Verfiigung. Zusitzlich
unterliegt das System zur Laufzeit einer Evolution abhingig vom gegebenem Kontext.
Anforderungen an komplexe, mechatronische Systeme sehen deshalb Dynamik vor. So
miissen z.B. zur Laufzeit Softwarekomponenten instanziiert und deinstanziiert werden.

An dieser Stelle wird das Modell der Graphtransformationssysteme vorgestellt, welches
iiber keine vergleichbare zeitliche Komponente verfiigt. Allerdings ist es im Gegensatz
zu den vorgestellten Automatenmodellen moglich, dynamische Bestandteile abzubilden
und damit eine Zustandsstruktur dynamisch zu erzeugen. Mit Hilfe von Graphtransfor-
mationssystemen werden strukturelle Verdnderungen auf Graphen herbeigefiihrt.

Definition 5
Ein gerichteter Graph ist ein Tupel G := (V, E, Es, E;), bestehend aus einer Menge von
Knoten V' sowie einer Menge von Kanten E. Eine Kante e € F verbindet einzelne Knoten

28

2.3 Modell-basierte Softwareentwicklung

Vs, Uy € V miteinander. Die Funktion E, ordnet jeder Kante e € I einen Startknoten v
zu. Entsprechend ordnet die Funktion E; jeder Kante e einen Zielknoten v; zu.

Zusitzlich zu den bis hier beschriebenen Eigenschaften gibt es die Mdoglichkeit, fiir die
einzelnen Knoten und Kanten eines Graphen eindeutige IDs zu vergeben, um eine ein-
deutige Zuordnung aller Elemente vornehmen zu kdnnen.

Definition 6

Ein gerichteter Graph mit Knoten und Kanten IDs besteht aus G := (V, E, E, 4, V;, E;),
wobei V, E, E, E, wie beim gerichteten Graphen in Definition 5 definiert sind. Zusdtzlich
existiert eine injektive Funktion V;, welche jedem Knoten aus V' ein eindeutiges n; zuord-

net, sowie I; eine injektive Funktion, die jeder Kante aus E eine eindeutiges e; zuordnet.
Dabei sind n;,e; € NT.

Eine Eigenschaft, welche fiir den Umgang mit den hier verwendeten Graphen notwendig
ist, ist die Teilgraphbeziehung.

Definition 7

G = (V,E, E, E) ist ein Teilgraph von G' .= (V' E',E., E}) (G < G') wenn gilt,
V CV', E C FE', sowie das die Zuordnungsfunktionen Es und E. fiir die Kanten V NV’
identisch sind. Ebenfalls muss gelten E, und E] sind identisch fiir die Menge V N'V".

In Abbildung 2.12 sind zwei Graphen abgebildet, wobei der rechte Graph einen Teilgraph
des linken Graphen darstellt. Die Knoten 71, ny sowie die Kante e, des rechten Graphen
sind ebenfalls im linken vorhanden.

€2

€3

) (ry—=—(")

Abbildung 2.12: Die Abbildung zeigt zwei Graphen, wobei der rechte im linken Graphen
enthalten ist.

Um iiber Graphtransformationssysteme zu reden, ist es notwendig, Relationen zwischen
Graphen zu definieren. Eine Relation wire z.B. die gerade erwihnte Teilgraph-Relation.
Um Abbildungen zwischen einzelnen Graphen vornehmen zu kdnnen, muss hierfiir ein
Graphmorphismus fiir Graphtransformationssysteme definiert werden:

29

Kapitel 2 Grundlagen

Definition 8
Fiir einen Graphmorphismus m = (m,, m¢) mitm, € V.— V' und m, € E — F/,
welcher einen Graphen G := (V, E, Eq, E}) auf G' == (V', E', E', E}) abbildet gilt:

e Vo:veV —m,(v) eV’
e Ve:e€ E— mg(e) € F

o Ve:ee E— my(Es(e)) = El(me(e)) Amy(E(e)) = Ej(m.(e))

Die einzelnen, innerhalb der Graphtransformationssysteme vorhandenen Graphen haben
eine statische Struktur. Damit ein dynamisches Strukturverhalten ermdglicht wird, fin-
den Ubergiinge zwischen einzelnen Graphen statt, wobei die einzelnen Graphen Zustinde
des Graphtransformationssystems reprisentieren. Um diese Ubergiinge zu ermoglichen,
werden Regeln verwendet, die durch ihre Anwendung Strukturen innerhalb von Graphen
suchen und Verdnderungen herbeifiihren. Diese Regeln werden nachfolgend Graphtrans-
formationsregeln genannt.

Definition 9

Eine Graphtransformationsregel P := (P, P,, h) besteht aus den Graphen P,, P, und
dem partiellen Graphhomomorphismus h € p; — p,. Dabei gilt: p; ist ein Teilgraph von
P, so wie p, ein Teilgraph von P, ist. Die Menge d(P) := {Vp, \ Vp,} U{Ep \ Ep,}
beschreibt die Elemente, welche durch P geloscht werden und n(P) := {Vp. \ Vp} U
{Ep,\ Ep} die Elemente, welche durch die Anwendung von P hinzugefiigt werden. Dabei
sind Ep,, Vp, die Knoten und Kanten aus P, und Ep,,Vp,. die Knoten und Kanten aus P,.

Ein Graph G kann mit Hilfe einer Graphtransformationsregel P in einen Nachfolgegra-
phen G’ iiberfiihrt werden. Den Graphen G, auf welchem die Graphtransformationsregel
angewendet wird, bezeichnet man auch als Wirts- oder Muttergraph. Entsprechend wird
der resultierende Graph G’ als Tochtergraph bezeichnet.

Damit die Anwendung einer Graphproduktion P(P;, P, h) auf einen Wirtsgraphen G
moglich ist, aus der ein Tochtergraph G’ resultiert, muss ein Teilgraph g aus G, sowie
ein Graphmorphismus m existieren, welcher P, auf g abbildet. Der resultierende Tochter-
graph G’ ergibt sich aus den Kanten E und Knoten Vi

Vo ={Ve \my(v) :vedP)NVi}U{v:venP)NV,}

Eg ={Eg\me(e):ecd(P)NE}U{e:ecn(P)NE,}
V; und Ej sind die Knoten und Kanten der linken Seite P, und V., E, die Knoten und Kan-
ten aus P, der rechten Seite von P. Ein Beispiel fiir eine derartige Regelanwendung zeigt

die Abbildung 2.13, bei der aus dem linken Graphen der Knoten n3, sowie die Kanten
e, es, e4 entfernt werden. Bei der Anwendung wird die Kante e; hinzugefiigt.

30

2.3 Modell-basierte Softwareentwicklung

Abbildung 2.13: Schematische Darstellung einer Regelanwendung.

Dabei ist es moglich, die einzelnen Graphtransformationsregeln mit Prioritédten zu verse-
hen. Eine solche priorisierte Graphtransformationsregel erlaubt es dann in dem Fall, dass
auf einen Wirtsgraphen GG zwei unterschiedliche Regeln P, und P, angewendet werden
konnen. Die Reihenfolge der Anwendung wird durch die Priorititen geregelt. Hierdurch
wird Nichtdeterminismus vermieden.

Definition 10

Eine Graphtransformationsregel P := (P, P,, h,r) besteht zusdtzlich zu der in Definiti-
on 9 definierten Graphtransformationsregel P := (P,, P., h) aus einer Prioritdt r, wobei
r € N*. Ein Regel p; mit einem zugehorigen r; , wird gegeniiber einer Regel P; mit
zugehorigem r; bevorzugt, falls r; > r;.

Am Beispiel bedeutet dies auch, dass falls zwei Regeln P;, P; auf einen Graphen G ange-
wendet werden konnen, eine Regel mit hoherer Prioritit die andere verdringt. Mit Hilfe
der bis hier vorgestellten Definitionen ldsst sich ein Graphtransformationssystem wie folgt
formulieren:

Definition 11

Ein Graphtransformationssystem S := (G,G° P) besteht aus einer potentiell unendli-
chen Menge an Zustinden in Form der Graphen G, einer endlichen Anzahl an Startzu-
stiinden in Form der Graphen G° sowie P := (Pi, ..., P,) einer endlichen Anzahl an
Graphtransformationsregeln P;, mit 1 € N.

Bei der Anwendung von Graphtransformationsregeln kommt es vor, dass einzelne Kanten
und Knoten aus dem Wirtsgraphen entfernt werden. Dabei kann es passieren, dass Kan-
ten entstehen, bei welchen kein Zielknoten, bzw. kein Startknoten vorhanden ist (siehe

31

Kapitel 2 Grundlagen

Abbildung 2.14). Eine solche Kante wird als Dangling-Edge bezeichnet. Zur Behand-
lung dieses Problems gibt es zwei unterschiedliche Vorgehensprinzipien, den so genann-
ten single-pushout approach (SPO) und den double-pushout approach (DPO) [Roz97]. In
der vorliegenden Arbeit wird der SPO verwendet. Wird bei einem Wirtsgraphen durch die
Anwendung des linken Teils einer Graphtransformationsregel ein Knoten e € F entfernt,
so werden beim SPO alle mit dem Knoten inzidenten Kanten v € V' geloscht. Somit ist
die Entstehung von Dangling-Edges zwar ausgeschlossen, allerdings kann es passieren,
dass Elemente aus einem Graphen entfernt werden, obwohl dies nicht beabsichtigt ist.

Wirtsgraph e a
ng

€3

Anwendungsregel

€

Resultierender
Graph ”y

Abbildung 2.14: Die Abbildung zeigt oben einen Wirtsgraphen, auf den eine Regel (blau
gestrichelt) angewendet wird und durch das Entfernen von Elementen
ein resultierender Graph mit zwei Dangling-Edges entsteht (grau mar-
kierte Kanten im unteren Graph).

Um zu vermeiden, dass zu viele Knoten und Kanten unbeabsichtigt durch eine Graph-
transformationsregel geloscht werden, besteht die Moglichkeit, eine sogenannte Negative-
Application-Condition (NAC) zu verwenden (sieche [HHT96]). Mit Hilfe einer NAC kann
formuliert werden, welche Bedingung im Wirtsgraphen nicht vorhanden sein darf, da-
mit eine Graphtransformation angewendet werden kann. Eine Graphtransformationsregel
kann entsprechend mit einer zusitzlichen NAC versehen werden, wobei es sich bei die-
ser ebenfalls um einen Graphen handelt. Kann die NAC im Wirtsgraphen an der gleichen
Stelle aufgefunden werden wie die linke Seite P, so wird die zugehorige Graphtransfor-
mation an dieser Stelle nicht angewendet. Eine Graphtransformationsregel mit NAC wird
wie folgt definiert:

32

2.3 Modell-basierte Softwareentwicklung

Definition 12

Eine Graphtransformationsregel P := (P, P,, Pyac, h) mit negativer Anwendungsbe-
dingung besteht aus einem linken Anwendungsteil P,, welcher die Vorbedingung darstellt,
sowie einem rechten Anwendungsteil P,, welcher die Nachbedingung abbildet. Zusditzlich
verfiigt P iiber Py ac, eine negative Anwendungsbedingung, welche nicht im Wirtsgra-
phen an der gleichen Stelle auffindbar sein darf, damit die Graphtransformationsregel P
an dieser Stelle angewendet werden kann. Py ac kann entweder P, vollstindig enthal-
ten und um zusdtzliche Knoten und Kanten erweitern oder Py ac entspricht dem leeren
Graphen.

Die Anwendung einer Graphtransformationsregel mit Negative-Application-Condition ist
wie folgt definiert:

Definition 13
Eine Graphtransformationsregel P := (P, P,, Pyac, h) mit Negative-Application-Con-
dition kann auf einen Wirtsgraphen G := (V, E, E, E;) angewendet werden, wenn die
Bedingungen erfiillt sind, dass:

dg:9g<G

Jh:h:P —g

Bhnac i hyac i Pnac — ¢ Ng<¢

2.3.5 Verifikation

Bei der Analyse und Verifikation von Modellen, so auch bei den Automaten und Graph-
transformationssystemen, konnen unterschiedliche Eigenschaften untersucht werden. Da-
bei wird zwischen der Berechnung der erreichbaren Zustiinde und dem erweiterten Ver-
fahren des Model Checking unterschieden. Nachfolgend wird hier kurz auf die unter-
schiedlichen Verfahren eingegangen.

2.3.5.1 Erreichbarkeitsanalyse

Um die erreichbaren Zustinde, bzw. den Zustandsraum eines Modells zu erzeugen, ist
es notwendig, basierend auf den initial gegebenen Zustédnden eine Erreichbarkeitsanalyse
durchzufiihren. So auch bei den Modellen des Timed Automaton und der Graphtrans-
formationssysteme. Hierbei ist von Interesse, welche Zustinde innerhalb des Modells er-
reichbar sind, oder sicher zu stellen, dass bestimmte Zustinde ausgeschlossen werden
konnen. Nachfolgend wird fiir die beiden Modelle des Timed Automaton und der Graph-
transformationssysteme jeweils ein Verfahren vorgestellt, mit dem eine solche Erreich-
barkeitsanalyse durchgefiihrt werden kann.

33

Kapitel 2 Grundlagen

2.3.5.2 Model Checking

Ein Verifikationsverfahren ist das so genannte Model Checking [CGPOO], bei dem auch
komplexere Aussagen in Form einer speziellen Logik gegen ein Modell gepriift werden.
Bei dem zu iiberpriifenden Modell kann es sich beispielsweise um einen Automaten oder
dhnliches handeln. Es existieren dabei verschiedene Logiken um Aussagen zu formu-
lieren, sowie unterschiedliche Verfahren um diese gegen das entsprechende Modell zu
priifen. So gibt es Logiken und Verfahren fiir diskrete sowie kontinuierliche Modelle
und Eigenschaften. Model Checking kann als folgendes Entscheidungsproblem formu-
liert werden:

Sei M ein zu testendes Modell und ¥ eine Spezifikation. Erfiillt das Modell
die Spezifikation, gilt also M = W?

Die Eigenschaften, die sich mit Hilfe einer solchen Logik formulieren lassen, kdnnen
wesentlich komplexer sein als die einfache Erreichbarkeit von Zustdnden. So kann iiber-
priift werden, ob die einzelnen Zustdnde in einer bestimmten Reihenfolge innerhalb des
Modells erreicht werden kénnen. Im Vergleich zu der Erreichbarkeitsanalyse, kann dort
nicht nur iiberpriift werden, welche Zustidnde erreicht werden. Beim Model Checking gibt
es die Moglichkeit, Aussagen zu formulieren und zu iiberpriifen, in welcher Reihenfol-
ge diese Zustdnde erreicht werden miissen. Dabei ist Voraussetzung fiir eine derartige
Uberpriifung, dass diese entsprechenden Zustinde bereits ermittelt wurden.

Jedoch hat auch das Verfahren des Model Checking seine Grenzen. Abbildung 2.15 zeigt
noch einmal die generelle Vorgehensweise beim Model Checking. Werden jedoch die
Eingabemodelle, wie in Abbildung 2.16 beschrieben, immer komplexer, skaliert das Ver-
fahren des Model Checkings aufgrund des Problems der Zustandsraumexplosion nicht
mehr. In 2.15 ist verdeutlicht, dass Model Checking fiir hybride Modelle nicht in akzep-
tabler Zeit durchgefiihrt werden kann.

Um ein Gefiihl fiir die Komplexitit solcher Zustandsraume, die bei der Verifikation erstellt
werden, zu bekommen, wird im folgenden die Konstruktion fiir das Eingabemodell der
Timed Automata (sieche Abschnitt 2.3.5.3) und anschlieBend fiir Graphtransformations-
system (siehe Abschnitt 2.3.5.4) gezeigt.

2.3.5.3 Zustandsraum des Timed Automaton

Bei einem Timed Automaton A := (3,8,8% X, I,T) hingen die Zustinde nicht nur
von der jeweiligen Location ab, der aktuelle Zustand ergibt sich zusitzlich aus der Bele-
gung der einzelnen Clocks. Einer Location s € S wird durch eine Zuordnungsfunktion
ein C(X) zugeordnet. Dabei ist C(X) eine Teilmenge der Bedingungen iiber die Clock-
variablen aus X. Dies bedeutet, dass sich der Zustand eines Timed Automaton aus der

34

2.3 Modell-basierte Softwareentwicklung

Anforderung
Zu keinem Zeitpunkt
ist der Abstand zum
vorausfahrenden
Shuttle kleiner als 4m

Hybrider Model-Checker

Abbildung 2.15: Problem: Hybrides Model Checking

. Synchrone Sprachen

. Endliche Automaten

Buosyo
[BPON Wiaq zuaiziy3g

. Timed Automata

. Hybride Automaten

3
=3
0
X,
=
'Q_J;
o
®
)
<
o
Q
@
23

Abbildung 2.16: Michtigkeit des Eingabemodells vs. Effizienz beim Model Checking

aktuellen Location, sowie den dort aktuell geltenden zeitlichen Bedingungen iiber die
einzelnen Clocks zusammen setzt.

Im Beispiel des Automaten aus Abbildung 2.10 setzt sich der initiale Zustand aus der Lo-
cation sg, sowie der dort vorhandenen Invariante zusammen. Die Invariante, welche die
Clock-Variable =5 beinhaltet, definiert einen zeitlichen Erreichbarkeitsraum, in dem gilt,
dass der Wert von x5 < 2 ist. Uber die Clock z; ist im initialen Zustand in der Location s,
keine einschrinkende Bedingung vorhanden, allerdings haben die im Automaten existie-
renden Clocks die Eigenschaft, dass diese in der Zeit synchron voranschreiten. Hierdurch
ergibt sich eine Abhingigkeit zwischen x; und x5 in der Art und Weise, dass beide den

35

Kapitel 2 Grundlagen

gleichen Wert besitzen miissen. Diese Abhéngigkeit zwischen x; und z, gilt solange, bis
durch einen Reset eine der beiden Clocks auf den Wert O zuriick gesetzt wird. Auch dann
laufen beide weiterhin synchron, allerdings konnen die einzelnen Werte sich unterschei-
den. Solange in der initialen Location sy verweilt wird, sind die entsprechenden Werte
identisch und somit z; und x5 jeweils kleiner oder gleich dem Wert 2.

Die Wertemengen, welche durch die moglichen Clock-Belegungen aufgebaut werden,
sind in der Regel unendlich groB3. Bei der Analyse des Erreichbarkeitsraumes ist es nicht
moglich, jeden Zustand einzeln abzubilden, da nicht jeder Zustand und die daraus resul-
tierenden Folgezustinde in endlicher Zeit betrachtet werden konnen. Somit ist es notwen-
dig, eine endlich groB3e Reprisentation dieser Erreichbarkeitsrdume vorzunehmen. Um ei-
ne endliche Reprisentation dieser Bereiche zu ermdoglichen, existieren verschiedene Da-
tenstrukturen. Eine davon ist das Modell der sogenannten Clock-Regions, welches bei
[CGPO00] sowie [BBF101] genauer beschrieben wird.

Die entsprechende Clock-Region fiir den initialen Zustand des Timed Automaton aus dem
Beispiel im Abschnitt 2.3.2, ldsst sich grafisch wie in Abbildung 2.17 darstellen. Dabei
stellen die grau markierten Bereiche die Wertemenge dar, welche die Clock-Variablen z
und x5 annehmen konnen. In dieser Menge sind alle Werte enthalten, die auf der Win-
kelhalbierenden des ersten Quadranten des Koordinatensystems liegen und kleiner oder
gleich dem Wert 2 sind.

X3

Abbildung 2.17: Der zeitliche Erreichbarkeitsraum des initialen Zustandes des Automa-
ten aus Abbildung 2.10. Die grau markierten Bereiche entsprechen der
Menge der Werte, welche die Clocks z; und z» annehmen konnen.

Zusammen mit der Location sy bildet diese Clock-Region den initialen Zustand des
Beispiel-Automaten aus Abbildung 2.10. In der vorliegenden Arbeit wird allerdings mit

36

2.3 Modell-basierte Softwareentwicklung

einer anderen Form zur Darstellung der zeitlichen Erreichbarkeitsriume gearbeitet. Dies
sind die sogenannten Clockzones, die in dieser Arbeit Verwendung finden.

Clockzone Hier wird kurz auf die Datenstruktur und Operationen der Clockzones ein-
gegangen. Eine genauere Definition fiir die hier vorgestellte Datenstruktur ist bei Clarke
und anderen [CGPOO] zu finden.

Eine Clockzone definiert eine Reihe an Bedingungen iiber einzelne Clock-Variablen, wo-
bei hierzu Ungleichungen dhnlich wie beim Modell des Timed Automaton (siehe Defini-
tion 3) verwendet werden:

i,jeNY deZ,z; e RY, e {<,<}:x; <d,d<xj,x; —x; < d.

Zusitzlich verfiigt jede Clockzone iiber eine Referenz-Clock zy, welche zu jedem Zeit-
punkt den Wert 0 besitzt. Die gesamte Clockzone ergibt sich durch die Konjunktion der
einzelnen Ungleichungen iiber die Clock-Variablen. Am Beispiel aus der Abbildung 2.10
wird die initiale Clockzone durch die folgenden Ungleichungen aufgebaut:

{L‘QSQ,ZL’O—ZEQSO/\{L‘l—ZEQSO/\ZL‘Q—xl§0A$0—$1§0

Dabei resultiert die erste Ungleichung aus der Invariante der initialen Location sy. Die
restlichen Bedingungen entstehen aus der Eigenschaft, dass alle vorhandenen Clocks z; €
X des Beispiel-Automaten synchron in der Zeit voranschreiten, sowie dass diese immer
> 0 seien miissen.

Definition 14

Eine Clockzone Z hat eine Menge X an Clock-Variablen x;. Jedes x; kann Werte aus
R* U 0 annehmen, wobei i € N* und i > 0. Zusditzlich existiert eine Referenz-Clock
xo, die immer den Wert 0 besitzt, sowie eine Anzahl von Bedingungen ¢ € C'in Form
von Ungleichungen der Art x; < d,d < zj,x; —x; < d, miti,j € N*, d € Z und
<€ {<, <}. Die Clockzone ergibt sich aus der Konjunktion iiber die Bedingungen aus C.

Eine Clockzone mit k verschiedenen Clocks wird als k-dimensional bezeichnet, da jede
Clock im euklidischen Raum eine eigene Dimension aufspannt (ohne die Referenz-Clock
xo). Der hierbei aufgespannte Raum erfiillt zusitzlich die Eigenschaft, dass dieser konvex
ist. Die Abbildung 2.18 zeigt in grafischer Form die Clockzone ¢ mit den zwei Clocks
21, T2 und den folgenden Bedingungen:

[L‘l§4/\$2§5/\2§[L‘1/\1§$2/\1‘1§l’2

37

Kapitel 2 Grundlagen

-

2 4 X,

Abbildung 2.18: Die Clockzone ¢

Es existieren eine Anzahl an Operatoren, welche auf eine, bzw. mehrere Clockzones an-
gewendet werden konnen. Dabei werden fiir die zeitliche Erreichbarkeitsanalyse, wie die-
se etwa beim Timed Automaton vorgenommen wird, drei spezielle Operatoren benétigt.
Hierzu zihlt die Vereinigung von zwei Clockzones, das Verstreichen lassen von Zeit und
das Zuriicksetzen von einzelnen Clocks:

e Vereinigung von zwei Clockzones: ¢; A ¢o
e Verstreichen lassen von Zeit (Up-Operation): ¢

e Zuriicksetzen von Uhren (Clock-Reset): ¢[y] mit v C X, wobei X die Menge der
Clock-Variablen in ¢ ist.

Bei der Vereinigung von zwei Clockzones ist es auch moglich, dass ¢; oder ¢, nur aus
einer einzigen Bedingung besteht, wie diese etwa durch einen Guard oder eine Invariante
gegeben ist.

Die entsprechenden drei Operatoren werden bendétigt, um die Erreichbarkeitsanalyse beim
Timed Automaton durchzufiihren. So etwa beim Zustandswechsel innerhalb des Auto-
maten. Dabei setzt sich ein Zustand aus der jeweiligen Location sowie der dort momen-
tan vorhandenen Belegung der einzelnen Clockvariablen zusammen. Diese Belegung der
Clockvariablen kann durch eine entsprechende Clockzone dargestellt werden. So exis-
tiert etwa fiir die Location s eine Clockzone ¢ und der Zustand des Automaten ergibt
sich aus dem Tupel (s, ¢). Um den Nachfolgezustand succ(s, ¢, t) beim Wechsel von der
Location s iiber eine Transition ¢ zu einer Location s’ zu berechnen, sind die vorgestell-
ten Operatoren auf die Clockzone ¢ anzuwenden. Dabei wird hier zur Berechnung der
Folge-Clockzone ¢’ die Funktion succ, eingefiihrt, welcher ¢ selbst, die Invarianten
der Location s, sowie die Guards ¢ der Transition ¢ iibergeben werden.

38

2.3 Modell-basierte Softwareentwicklung

Algorithmus 2.1 procedure ¢, = succy(¢, I, p)

procedure (bsucc = SUCC¢(¢, [7 gp)

1: Bilden der Schnittmenge: ¢ = ¢ A

2: Verstreichen lassen von Zeit: ¢ {}

3: Wiederum Bilden der Schnittmenge: ¢ = ¢ A [
4: Vereinigen mit p: ¢ = ¢ A ¢

Falls die resultierende Clockzone ¢, nicht leer! ist, kann iiber die Transition ¢ zur Lo-
cation s’ gewechselt werden. Eine Clockzone ¢ ist leer, wenn fiir alle ¢ € ¢ gilt: Es gibt
keine mdogliche Belegung fiir die Clocks x; aus ¢, so dass alle Ungleichungen c erfiillt
sind.

AnschlieBend miissen noch die Clockresets A der Transition ¢ ausgefiihrt werden, um aus
Osuce» @' zu erhalten. Dies wird durch den Algorithmus 2.2 succ;) beschrieben.

Algorithmus 2.2 procedure ¢ = succ;ﬁ(czbsucc, A)

procedure ¢’ = succﬁé(@wc, A)
1: Zuriicksetzen der Clocks \: ¢/ = ¢gyec| A := 0]

Bevor ¢ zu s’ als Folge-Clockzone hinzugefiigt wird, muss die Schnittmenge ¢’ mit den
Invarianten ¢’ A I(s’) von s’ gebildet werden. Diese Schnittmenge ergibt zusammen mit s’
den Folgezustand, welcher tiber die Transition ¢ erreicht wird. Dabei kann es vorkommen,
dass durch die Beriicksichtigung der Invarianten von s’, beim Bilden der Schnittmenge
¢' A I(s') eine Clockzone entsteht, die leer ist. Der hierdurch abgebildete Zustand wird
auch als Timedeadlock bezeichnet.

Ein Timedeadlock bezeichnet einen erreichten Zustand, bei dem aufgrund der zeitlichen
Bedingungen aus diesem kein Folgezustand erreicht werden kann. Fiir eine Clockzone ¢
mit einem Timedeadlock gilt, dass ¢ einerseits erreicht wurde und es andererseits mindes-
tens eine Ungleichung der Form z; — x5 ~ d gibt, welche zusammen mit den restlichen
Ungleichungen aus ¢ nicht erfiillt werden kann.

Die Funktionen succy, die Uberpriifung ob die resultierende Clockzone leer ist, sowie die
Funktion succ); werden zu der Funktion succ(¢, I(s), ¢, A, I(s")) zusammengefasst. Die
Berechnung ist in Algorithmus 2.3 beschrieben.

Mit Hilfe von suce(¢, I(s), ¢, A, I(s')) wird nun die Funktion reach(A) zur Berechnung
der erreichbaren Zustinde formuliert. Die Berechnung ist in Algorithmus 2.4 beschrieben.

I'Siehe [CGPO0] zur Definition einer leeren Clockzone und wie dies festgestellt werden kann.

39

Kapitel 2 Grundlagen

Algorithmus 2.3 procedure ¢’ = succ(p, I(s), ¢, A, I(s')
procedure ¢’ = succ(p, I(s), ¢, A, I(s)
: qbsucc = SUCC¢(¢, [(5)7 90»

[y

2: if ¢y 1t nicht leer then
3: ¢ = succl(Dsuce; N)
4: ¢ =¢ NI(S)

5: end if

Algorithmus 2.4 procedure reach(A)
procedure reach(A)

A= (3,8,8X,1,7)

2: Open =0, Close = ()

3: forall s € Sy do

4: z:=(s,1(s))

5: Open = Open U z

6: end for

7: while Open # () do

g forallteT:t:=sx C(X)x2¥ x5 do
9: ¢ = succ(s, ¢, t)

10 if ¢; # empty then

11 ¢ =oe NI(S)

12: 2= (s, ¢")

13: Open = Open U 2/
14: end if

15: end for

16: Open = Open \ z
17: Close = Close U z
18: end while

Das Ergebnis der Berechnung ist die Menge Close, welche sich aus einzelnen Tupeln
(s, ¢) zusammen setzt. Diese Tupel beschreiben die Menge der erreichbaren Zustinde.

Bei jedem berechneten Folgezustand (s', ¢) stammt s’ immer aus der Menge S des
Timed Automaton A. Somit sind alle Locations und hierdurch auch die Struktur des
durch A abgebildeten Modells bereits fest vorgegeben. Strukturdynamische Eigenschaf-
ten werden hier somit nicht abgebildet, im Gegensatz zu den Graphtransformationssys-
temen. Die Datenstruktur der Difference-Bound-Matrices erlaubt es, Clockzones effizi-
ent zu kodieren und zu manipulieren. Ein Vorteil der Datenstruktur Difference-Bound-
Matrice liegt darin, dass eine kanonische Form herleitbar ist, welche es moglich macht
mehrere Difference-Bound-Matrices effizient miteinander zu vergleichen. Fiir weiterge-
hende Informationen zu der Datenstruktur der Difference-Bound-Matrice sieche [CGPO0O].

40

2.3 Modell-basierte Softwareentwicklung

2.3.5.4 Zustandsraum des Graphtransformationssystems

Im Gegensatz zu dem Modell des Timed Automaton lassen sich mit Hilfe von Graph-
transformationssystemen dynamische Strukturen modellieren. Diese Strukturen werden
in Form von Graphen, wihrend der Erreichbarkeitsanalyse, durch Anwendung der ein-
zelnen Graphtransformationsregeln aufgebaut. Eine zeitliche Komponente, wie sie beim
Timed Automaton vorhanden ist, gibt es hingegen nicht.

Der Ausgangspunkt ist dabei ein Graphtransformationssystem S := (G, Gy, P), mit einer
Menge an Graphen G, einer Menge an initialen Graphen G° und einer Menge an Graph-
transformationsregeln P. Damit der erreichbare Zustandsraum ermittelt werden kann,
wird hier davon ausgegangen, dass alle Mengen endlich sind?.

Um, ausgehend von einem gegebenen Wirtsgraphen G, iiber eine Graphtransformations-
regel P die Menge der daraus resultierenden Tochtergraphen G’ zu berechnen, wird die
Funktion prod(G, P) eingefiihrt. Diese liefert die Menge der Graphmorphismen m € M
zuriick, welche P, aus der Graphtransformationsregel P auf einem Teilgraphen g des
Wirtsgraphen G abbilden. Fiir diese Morphismen m := (m,,, m.) gelten die Eigenschaf-
ten, die in Abschnitt 2.3.4 bei der Anwendung einer Graphtransformationsregel beschrie-
ben wurden.

Der Tochtergraph G’ ergibt sich aus der Anwendung von P zusammen mit dem jeweiligen

Morphismus m:
m,P

G— G

Um die Notation abzukiirzen wird die Funktion prod(G, P) verwendet, um sowohl die
Morphismen m als auch die Folgegraphen G’ herzuleiten. Fiir weitergehende Details, z. B.
wie genau eine Graphtransformationsregel P auf einen Wirtsgraphen nach dem Prinzip
des SPO angewendet wird, sieche [Roz97].

Mit Hilfe der Funktion prod wird ein Algorithmus formuliert, mit dem das gesamte
Graphtransformationssystem aufgebaut werden kann. Der hier angegebene Algorithmus
2.5 entspricht einer Breitensuche iiber ein Graphtransformationssystem S.

Um auch die Prioritdt einer einzelnen Graphtransformationsregel zu beriicksichtigen,
muss die Zeile 5 des Algorithmus angepasst werden. Dort werden alle Graphproduktio-
nen in einzelnen Mengen (), zusammengefasst, die iiber die gleiche Prioritit r verfiigen.
Aus diesen Mengen werden ihrer Prioritét entsprechend absteigend, die einzelnen Regeln
wie in Zeile 6 auf den Wirtsgraphen GG angewendet. Die einzelnen Mengen (), werden
solange verarbeitet, bis mindestens eine Regel aus (),. auf G angewendet werden kann, al-
so die Funktion prod nicht die leere Menge zuriick geliefert hat. Falls dieser Fall eintrifft,

2Falls eine der Mengen G, Gy oder P nicht endlich ist, wiirde das hier vorgestellte Verfahren nicht termi-
nieren.

41

Kapitel 2 Grundlagen

Algorithmus 2.5 procedure Open = reachGTS(S)
procedure Open = reachGTS(S)

DS = (g7g0773>

[y

2: Open = Gy, Close =)
3: while Open # () do
4: for all G € Open do
5: for all P € P do
6: Open = Open U prod(G, P)
7: end for
8: end for
9: Close = Close UG
10: Open = Open \ G

- end while
: return C'lose

—_ =
N —

wird die innere Schleife in Zeile 5 verlassen und mit der duBeren in Zeile 3 fortgefah-
ren. Das hieraus resultierende Graphtransformationssystem verfiigt in Form der durch die
Transitionen erzeugten Tochtergraphen iiber die hinzugekommenen dynamischen Struk-
turbestandteile allerdings iiber keine zeitliche Komponente, wie dies beim Modell des
Timed Automaton der Fall ist.

Nachdem nun die Modelle zur Beschreibung der Struktur und des Verhaltens von re-
gelungstechnischen Systemen (Abschnitt 2.2) sowie von Softwaresystemen beschrieben
wurden, wird im nédchsten Abschnitt nun auf die Integration der Doméne des Software
Engineering mit der Doméne der Regelungstechnik eingegangen. Der nun im Folgenden
beschriebene MECHATRONIC UML Ansatz vereint beide Doménen.

2.4 Mechatronic UML

Der MECHATRONIC UML Ansatz [GHH'08b] ermoglicht die modell-basierte Ent-
wicklung von mechatronischen Systemen (sieche Abschnitt 2.1). MECHATRONIC UML
unterstiitzt dabei die Spezifikation von Softwarestrukturen und Strukturdnderungen
[BBGT06], die Koordination von komplexem Echtzeitverhalten [BGS05], formale
Verifikation von Sicherheitseigenschaften [BGH™05b][GTB*03][Hir04][HG03] und
die Fehleranalyse [GT06]. Neben diesen unterstiitzt MECHATRONIC UML auch die
Integration der Modellierung von Regelungstechnik, kontinuierlichen Verhalten durch die
Einbettung von Reglerstrukturen in die Zustdnde, ohne dabei die Verifikationsergebnisse
der Echtzeiteigenschaften zu verletzen. [BGHOS5a].

42

2.4 Mechatronic UML

2.4.1 Echtzeitverhalten

Das Echtzeit-Koordinationsverhalten beschreibt die nachrichtenbasierte Kommunikation
zwischen verschiedenen mechatronischen Komponenten unter harten Echtzeitbedingun-
gen. Zuallererst wird bei dem Ansatz das Kommunikationsverhalten verschiedener Sze-
narien durch die Verwendung von Echtzeit-Sequenzdiagrammen spezifiziert. Die Menge
von spezifizierten Szenarien, z.B. die Bildung des Konvois von Shuttles, kann automa-
tisch zu Realtime Statecharts synthetisiert werden, wobei die beteiligten Rollen auf Soft-
ware Komponenten abgebildet werden. Realtime Statecharts sind eine Erweiterung von
UML State Machines um spezielle Echtzeiteigenschaften fiir die periodische Ausfiihrung,
Echtzeitverhalten, Wort Case Ausfiihrungszeiten usw. zu modellieren. Die Semantik der
Realtime Statecharts ist iiber die Semantik der Timed Automata (sieche Abschnitt 2.3.2
und [HGO3][Hir04][BGHSO04]) definiert.

Die Realtime Statecharts der verschiedenen Software Komponenten werden aus den so
genannten Echtzeit-Koordinationsmustern abgeleitet. Realtime Statecharts spezifizieren
das Verhalten einer bestimmen Rolle in einer Koordination. Am Beispiel des Shuttlekon-
vois lassen sich zwei Rollen aufzeigen, die Rolle eines Fiihrungsshuttles und die Rolle
eines hinterherfahrenden Shuttles. Da so ein Koordinationsverhalten in mechatronischen
Systemen immer sicherheitskritischen Charakter hat, stellt der MECHATRONIC UML An-
satz zur Analyse der Echtzeit-Koordinationsmuster formale Verifikationstechniken zur
Verfiigung.

Wie schon angedeutet, leitet sich das Verhalten der Komponenten durch die Verwendung
der verfeinerten Rollen ab. MECHATRONIC UML baut auf einer Verfeinerungsbeziehung
auf, die garantiert, dass, falls eine Komponente eine Rolle verfeinert, die Verifikation der
Rolle ebenfalls fiir die Komponente gilt. Als letztes werden Regler in die Zustdnde der
Statecharts einer Komponente eingebettet. Hierdurch wird die Verbindung zu der Doméne
der Regelungstechnik geschlagen. Im Folgenden werden die bereits skizzierten Schritte
anhand der Modellierung des Konvoiszenarios detailliert beschrieben.

2.4.2 Echtzeit-Koordinationsmuster

In Abbildung 2.19 ist ein Echtzeit Sequenzdiagramm modelliert. Es zeigt die Bildung ei-
nes Shuttlekonvois an einer Weiche [GHHKO6]. Hierbei wird die Nachrichteninteraktion
zwischen Komponenten modelliert. Durch die Integration von Zustidnden und Zeit ist es
moglich, die Nachrichteninteraktion in eine globale zeitliche und lokale kausale Ordnung
zu bringen.

Durch den Syntheseansatz aus [GB04][GHHKO6] konnen aus diesen Szenarien Rollen
eines Echtzeit-Koordinationsmusters generiert werden, die durch Realtime Statecharts

43

Kapitel 2 Grundlagen

requ @ request
.‘_'_-‘-\—_.__________ _—'_'_'_'_'_,__
wait

e
wait
assertion() assert

11 = now

requestBid decide J e requestBid
- -_—_‘—‘—_._
)

sentBid sentBid
‘_—_‘———-___H _____r——ﬂ_rﬂ_‘

e
calcula@ calculate
go S j
wait %__-——-"’J “_—_“‘ﬂl wait ;

close

) (§]

1.6

Ly

- passed passed _
{t1mrﬁaaﬁ- agrffﬂ {t1+0.0.t1+pass_wcet}
| ﬁ {H+0.0.1 __'_=t
Tdie
| L |

Abbildung 2.19: Echtzeit Sequenzdiagramm

spezifiziert sind. Natiirlich konnen Rollen auch direkt spezifiziert werden. Eine Rolle spe-
zifiziert das Verhalten des Fithrungsshuttles, die andere Rolle die des hinterherfahrenden
Shuttles (siehe Abbildung 2.20). Zusitzlich wird das Verhalten des Connectors, der das
Kommunikationsmedium darstellt, durch ein Realtime Statechart beschrieben.

Beide Rollen befinden sich initial in dem Zustand noConvoy::default, der die Bedeutung,
von zwei allein, nicht im Konvoibetrieb fahrenden Shuttles, darstellt. Die Rolle rear kann
nun nicht-deterministisch wihlen, ob ein Konvoibetrieb aufgenommen werden soll oder
nicht. Fiir den positiven Fall, dass ein Konvoibetrieb aufgenommen werden soll, sendet die
Rolle eine Nachricht an das andere Shuttle, bzw. Rolle front. Die Rolle front entscheidet
nun ebenfalls nicht-deterministisch, den Vorschlag abzuweisen oder anzunehmen. Im ne-
gativen Fall schalten beide Realtime Statecharts zuriick in den Zustand noConvoy::default.
Im positiven Fall schalten beide in den Zustand convoy::default.

Fiir den Fall, dass das hinterherfahrende Shuttle nicht-deterministisch entscheidet, zu
bremsen, sendet dies dieses Ereignis an das Fiihrungsshuttle. Auch hier kann das Fiih-
rungsshuttle den Vorschlag abweisen oder akzeptieren. Wenn der Vorschlag abgelehnt
wird, bleiben beide Shuttles im Konvoizustand, andernfalls wechseln beide Shuttles in
den Zustand noConvoy::default.

Der Connector zwischen beiden Rollen représentiert eine Funkverbindung. In diesem Bei-
spiel wird der Connector nicht explizit durch ein Realtime Statechart beschrieben, sondern
nur durch QoS Angaben spezifiziert. In [Hof07] ist ein Verfahren vorgestellt, hieraus au-
tomatisch Connectoren zu synthetisieren. In dem Beispiel wird angenommen, dass Nach-

44

2.4 Mechatronic UML

-
- -
-

Distance- ™,
“. coordination,.”

-
”
’
L}

Lault S

P

Fl L3
’ b]
’, \\
’
RearRole -~ . FrontRole
(a) Echtzeit-Koordinatiosmuster
(" N
a) Rear Role \ noConvoy frontRole.convoyProposalRejected /
\ / frontRole.convoyProposal ;
default wait
o A J
frontRole.breakConvoy / frontRole.startConvoy /
(convoy h
wa? / frontRole.breakConvoyProposal I default
frontRole.breakConvoyProposalRejected /
o J
b) Front Role .\/noConvoy / rearRole.convoyProposalRejected h
rearRole.convoyProposal / [1 <o <1000]
™~ default wait {to} answer
o A J
/ rearRole.startConvoy
(" N
convoy rearRole.breakConvoyProposal
/ rearRole.breakConvoy (default
rearRole.breakConvoyProposal
L / rearRole.breakConvoyRejected)

(b) Rollenverhalten

Abbildung 2.20: Echtzeit-Koordinationsmuster fiir die Konvoikoordination

richten um 1 bis 5 Zeiteinheiten verzogert werden konnen. Aulerdem ist der Connector
nicht zuverléssig, so dass Nachrichten verloren gehen konnen.

Um die Sicherheitseigenschaften zu {iberpriifen, miissen diese zuerst spezifiziert werden.
Hierfiir kann z.B. TCTL verwendet werden. In diesem Beispiel soll gelten: rear.convoy
implies front.convoy. Befindet sich das hinterherfahrende Shuttle im Konvoimodus, muss
sich auch das Fiihrungsshuttle im Konvoimodus befinden. Andernfalls kann es in einer
Notfallsituation zu einem Unfall kommen, da das Fiihrungsshuttle fiir die Situation nicht
geeignete Entscheidungen treffen konnte.

In [Gie03, BGHS04, BGH'05b] wurde gezeigt, dass die Eigenschaft erfiillt ist. Nach
der erfolgreichen Verifikation des Echtzeit-Koordinationsmusters konnen diese nun zu
Komponenten verfeinert werden.

45

Kapitel 2 Grundlagen

2.4.3 Komponenten

Die im letzten Abschnitt vorgestellten Echtzeit-Koordinationsmuster werden bei der Ver-
haltenserstellung der Softwarekomponenten verwendet. Die von MECHATRONIC UML
verwendeten Komponentendiagramme basieren auf denen der UML 2.0. Diskrete Kom-
ponenten werden von kontinuierlichen Komponenten unterschieden. Das Verhalten von
diskreten Komponenten wird durch Realtime Statecharts modelliert, das Verhalten von
kontinuierlichen Komponenten durch Blockdiagramme aus der Doméne der Regelungs-
technik. Dieselbe Unterscheidung wird auch bei Ports gemacht. Die Definition der Kom-
ponenten unterstiitzt die Verwendung von Interface Statecharts [BGOO06] fiir die Spezifi-
zierung von verschiedenen Ports und Konfigurationen/Zustidnden der Komponenten.

Diskrete Komponenten verfeinern einfach nur das Verhalten der Rollen. Der Entwickler
muss lediglich ein Synchronisationsverhalten der beteiligten Rollen modellieren, um das
Verhalten der Rollen zu koordinieren. Danach werden die Rollen als Ports zu den Kom-
ponenten hinzugefiigt (siche Abbildung 2.21).

Eine Komponente spezifiziert ebenfalls, ob noch weitere Komponenten eingebettet sind.
In dem Beispiel sind dies noch die beiden kontinuierlichen Komponenten - eine um die
Geschwindigkeit zu kontrollieren (Velocity Controller) und eine, um den Abstand zum
vorausfahrenden Shuttle zu kontrollieren (Distance Controller). Da die kontinuierlichen
Komponenten typischerweise aus der Regelungstechnik kommen, verdeutlicht dies sehr
deutlich die doméniibergreifende Integration [HHO6].

Shuttle @

RearRole | V = FrontRole
11 vt Velocity Controller -0
X

d , 2]
0 :Distance Controller V*

Abbildung 2.21: Shuttle Komponente

Wiihrend die Rollen der Komponenten hinzugefiigt werden, konnen diese durch den Ent-
wickler verfeinert werden, indem sie z.B. im Verhalten eingeschrinkt werden. Im Beispiel
kann der Entwickler z.B. festlegen, dass ein Shuttle nur als rear einem Konvoi beitritt.

46

2.4 Mechatronic UML

(7
FrontRole
noConvoy noConvoy / RearRole.convoyProposalRejected
o— .\ -y d. i
C
) RearRole.convoyProposal / isConvoyOK (" ooa
defaulb yriop y wait
i
de RearRole.breakConvoy convoyOk
/ breakConvoy / RearRole.startConvoy
Convoy £dc d, —
) doBreakConvoy e
wait / RearRole.breakConvoyProposal d default
RearRole.breakConvoyProposalRejected / ¢ —*
Synchronization "
~ £ isConvoyOOK
convoyFront / convoyOK isConvoyOk
when(convoyNotUseful) 1 /noConvoy
/ doBreakConvoy when(convoyUsefuI)i d <@
/ buildConvoy [Ve
dy - noConvoy convoyRear
default di breakConvoy /
breakConvoy / q\ T
1-) < to dl
RearRole
(noConvoy FrontRole.convoyProposalRejected / breakConvoy h
.% —
de \b buildConvoy / FrontRole.convoyProposal ‘
default) wa@
g --— dc du)
FrontRole.startConvoy /
(FrontRole.breakConvoyProposal 1 h
convoy /FrontFéoIé.breakConvoy be_ o
breakConvoy (
default
FrontRole.breakConvoyProposal Fd
L / FrontRole.breakConvoyRejected ¢)
- J

Abbildung 2.22: Realtime Statechart der Shuttle Komponente

In Abbildung 2.22 ist das Verhalten der Komponente Shuttle aus Abbildung 2.21 darge-
stellt. Das Realtime Statechart besteht aus drei orthogonalen Zustidnden FrontRole, Rear-
Role und Synchronization. Die Zustinde FrontRole und RearRole sind Verfeinerungen
des Rollenverhaltens aus Abbildung 2.20 und spezifizieren das Kommunikationsverhal-
ten im Detail, um einen Konvoi zu erzeugen oder aufzulosen. Im Zustand Synchronization
wird das Kommunikationsverhalten und die Initiierung eines Konvois modelliert. Die drei
Unterzustinde des Zustandes Synchronization stellen dar, ob sich das Shuttle gerade als
Fithrungsfahrzeug (convoyFront), als letztes Fahrzeug (convoyRear) oder als allein fah-
rendes Shuttle (noConvoy) verhilt.

47

Kapitel 2 Grundlagen

Das ganze Statechart ist eine Verfeinerung beider Rollen und es wurde nur der Nicht-
Determinismus der Rollen aus Abbildung 2.20 durch hinzufiigen von Synchronisation
aufgelost.

Wie schon erwihnt, erfiillen Komponenten in der Doméne der mechatronischen Systeme
eine Menge von Echtzeitbedingungen. In dem Beispiel muss gelten, dass RearRole die
Nachricht startConvoy innerhalb einer bestimmten Zeit verschickt, nachdem sie convo-
yOK empfangen hat.

Um dieses addquat durch Realtime Statecharts abbilden zu kénnen, muss es moglich sein,
an Transitionen Zeit zu spezifizieren - in der Realitét passiert auch keine Aktion in Null-
zeit. Hierfiir werden die folgenden Deadline Konstrukte verwendet: In Abbildung 2.22
wird das Deadlineintervall d. und d; verwendet, um eine minimale und maximale Schalt-
zeit einer Transition anzugeben. Zum Beispiel muss das Senden der Nachricht convoy-
ProposalRejected innerhalb der Deadline d,. passieren, nachdem die Nachricht noConvoy
im Zustand FrontRole::noConvoy::wait empfangen wurde. Ein weiteres Beispiel ist der
Wechsel im Statechart Synchronization von noConvoy nach convoyFront, der innerhalb
von d; beendet sein muss.

Fiir eine Komponente, die mehrere Echtzeit-Koordinationsmuster anwendet, sind die
Verifikationsergebnisse der einzelnen Echtzeit-Koordinationsmuster immer noch erfiillt
[GTB*03]. Aufgrund dieses kompositionellen Ansatzes lassen sich mechatronische Sys-
teme sehr einfach komponentenbasiert entwickeln.

2.4.4 Einbettung hybrider Komponenten

Die Typdefinition der Komponenten aus Abbildung 2.21 spezifiziert, dass die Shuttle
Komponenten zwei verschiedene Unterkomponenten einbettet. Eingebettete Komponen-
ten sind im Kontext von mechatronischen Systemen zur Ressourceneinsparung nicht im-
mer aktiv. Die Aktivierung und Deaktivierung, oder auch Rekonfiguration, wird von Soft-
ware iibernommen.

Das Modell der Realtime Statecharts aus Abbildung 2.22 wird dementsprechend erweitert
zu so genannten Hybriden Rekonfigurations Charts. Die Komponenten werden Zustinden
zugeordnet, so dass hier von Zustandskonfigurationen gesprochen wird. Der Velocity Reg-
ler ist aktiv in dem Zustand convoyFront und noConvoy. Beide Regler sind aktiv in dem
Zustand convoyRear, wobei der Wert des Distance Reglers noch als Eingabe fiir den Velo-
city Regler dient. Das das Modell der Hybriden Rekonfigurations Charts fiir den weiteren
Verlauf der Arbeit essentiell ist, wird es im Folgenden detailliert beschrieben.

Das klassische hybride Automatenmodell aus Definition 4 ermdglicht keine modulare
Rekonfiguration zur Laufzeit. Dieser Nachteil kann durch den hybriden Rekonfigurations

48

2.4 Mechatronic UML

Synchronization

isConvoyOk
/ noConvoy

d -
isConvoyoOK when(convoyUseful) R :
/ convoyOK ! nv r
/ buildConvoy convoyneal when(convoyNotUseful)
\Lk dy ‘ / doBreakConvoy
} =
convoyFront noConvoy dy ®—={(default

after (15 msec)

v gj v = .
1% :Velocity Controller F V= :Velocity Controller F* $])
" :Distance Controller

|) i
bg | 2] %
% :Velocity Controller F
X

Abbildung 2.23: Einbettung von kontinuierlichen Unterkomponenten in ein hybrides Re-
konfigurations Chart

-— 4,

breakConvoy / breakConvoy /

Automaten aus [BGHO5a] aufgehoben werden. Wie auch beim hybriden Automaten bet-
tet ein hybrider Rekonfigurations Automat Komponenteninstanzen in die Zustédnden ein
und tauscht diese durch einen Zustandswechsel aus. Jedoch bietet der hybride Rekonfi-
gurations Automat zusitzlich die Moglichkeiten, die Struktur und den internen Zustand
der Komponenten durch einen Wechsel der Locations zu modifizieren. Durch diese bei-
den Moglichkeiten erlaubt das Modell eine Rekonfiguration des Systems. Ein weiterer
Vorteil des hybriden Rekonfigurations Automaten gegeniiber dem hybriden Automaten
liegt darin, dass die Ports immer in Abhéngigkeit von einer Location aktiv sind. Ports, die
innerhalb einer Location keine Signale empfangen, werden in dieser Location auch nicht
mehr dargestellt. Durch diese Moglichkeit der Modellierung wird dem Betrachter sofort
ersichtlich, von welchen Eingangsports der Ausgangsport abhingt.

Um die beschriebenen Vorteile umzusetzen, verwendet der hybride Rekonfigurations Au-
tomat im Gegensatz zum hybriden Automaten ein verdndertes kontinuierliches Modell.
In diesem Modell werden die Zustands-, Eingabe- und Ausgabevariablen in Abhingig-
keit der jeweiligen Location angegeben.

Definition 15
Formal ist das kontinuierliche Modell D(l) des hybriden Rekonfigurations-Automaten
durch ein 7 Tupel (V=(1),V(1),V¥(l), F(1), G(1),C(1), X°(1)) definiert:

o V*(l): Menge der Zustandsvariablen,
o VU(l): Menge der Eingabevariablen,
e VY(l): Menge der Ausgabevariablen,

49

Kapitel 2 Grundlagen

F(l) C EQ(VEY Ve, V*JV*JV®): beschreibt den Fluss der Zustandsvaria-
blen,

G(l) CEQ(VYJV®,VrUV U V*): bestimmt die Ausgabevariablen,

C(l) € COND(V*®): Invariante, welche die Menge der zuldissigen Zustinde be-
stimmt und

o X9(I): Menge der Anfangszustinde.

Ein Nachteil ist, dass durch das Einfiihren von Zustidnden, die den Austausch von Reglern
realisieren, die Zustandsmenge zunimmt. Dies hat zur Folge, dass hybride Rekonfigurati-
ons Automaten sehr umfangreich werden. Des Weiteren kann in einem hybriden Rekon-
figurations Automaten keine Schaltdauer angegeben werden. Automatenmodelle bieten
ebenfalls keine Mdoglichkeit, hierarchische Zustinde zu verwenden. Hybride Rekonfigu-
rations Chart, wie sie im Folgenden eingefiihrt werden, integrieren alle Konzepte.

Hybride Rekonfigurations Charts [BGHO05a] bauen wie schon erwihnt auf dem Konzept
der Realtime Statecharts und der hybriden Rekonfigurations Automaten auf. Mit ihnen ist
es moglich, das Verhalten hybrider Komponenten, die sich durch die Kombination von
diskreten und kontinuierlichen Komponenten auszeichnen, zu modellieren. Sie besitzen
zusitzlich zu allen Eigenschaften der Realtime Statecharts die Moglichkeit, zwischen ato-
maren Umschalttransitionen und nicht-atomaren Umschalttransitionen zu unterscheiden.
AuBerdem ist es moglich, in den Zustinden Komponenteninstanzdiagramme einzubetten,
so dass Rekonfiguration erméglicht wird. Da Rekonfiguration nicht nur allein durch den
Austausch von Komponenteninstanzen erreicht werden kann, erlaubt es das Konzept der
hybriden Rekonfigurations Charts zusétzlich, die interne Struktur und den Zustand der
Komponenten zur Laufzeit zu dndern. In jedem Zustand, ausgenommen Start- und Stop-
zustand, konnen Komponenteninstanzdiagramme eingebettet werden.

Die Komponenteninstanzdiagramme bestehen aus den Komponenteninstanzen, die in der
Komponente eingebettet sind, deren Verhalten durch das hybride Rekonfigurations Chart
beschrieben wird. Fiir jede Komponenteninstanz kann angegeben werden, ob sie in ei-
nem Zustand existiert oder nicht. Falls eine hybride bzw. eine diskrete Komponentenin-
stanz in einem Zustand vorhanden ist, wird zusitzlich spezifiziert, in welchem Zustand
sich diese Komponenteninstanz befindet. Daraus ergibt sich ebenfalls, welche Ports aktiv
und welche inaktiv sind. Bei der Einbettung einer kontinuierlichen Komponente in einen
Zustand wird kein interner Zustand spezifiziert. Folglich sind auch alle Ports der konti-
nuierlichen Komponente aktiv. Neben der Einbettung von Komponenteninstanzen wird
zusitzlich spezifiziert, welche Delegations und Assemblys in diesem Zustand aktiv sind.
Durch diese vielfiltige Spezifikation wird fiir jeden Zustand des hybriden Rekonfiguration
Charts ein Komponenteninstanzdiagramm erstellt. Verlidsst bzw. betritt die Komponente
einen Zustand, wird bei der Modellierung vorausgesetzt, dass die eingebetteten Kompo-
nenteninstanzen ihren internen Zustand zeitgleich verlassen bzw. betreten.

50

2.4 Mechatronic UML

Die Transitionen des hybriden Rekonfigurations Charts konnen zusétzlich zu den Tran-
sitionen eines Realtime Statecharts eine Umschaltfunktion besitzen. Diese ermdglicht
es, die Ausginge der eingebetteten Komponenteninstanzen in einem Zustand auf die
Ausginge der eingebetteten Komponenteninstanzen in einem anderen Zustand umzu-
schalten. Eine Umschalttransitionen besteht aus einer Funktion ff,q. und einem Inter-
vall d = [djpu, dup], das die minimale und maximale Dauer des Umschaltens spezifiziert,
sowie der Ports, die ineinander iibergeblendet werden. Die Dauer der Umschaltfunkti-
on wird als Deadline fiir die Umschalttransitionen spezifiziert. Durch das Konzept der
Umschaltfunktion existieren im Gegensatz zum hybriden Rekonfigurations Automaten
keine Zustinde, die das Uberblenden zwischen zwei Reglern realisieren. Dies fiihrt dazu,
dass ein hybrides Rekonfigurations Chart nicht so komplex ist wie ein hybrider Rekon-
figurations Automat. Des Weiteren ermdglicht ein hybrides Rekonfigurations Chart die
Spezifikation von mehreren Hierarchieebenen.

AbschlieBend wird die formale Definition eines hybriden Rekonfigurations Chart gege-
ben. Die Definition baut auf der Definition eines hybriden Automaten (siehe Definition 4)
auf.

Definition 16

Ein Hybrides Rekonfigurations Chart wird durch ein 6-Tuple (L,D,I,0,T,S°)
beschrieben. Dabei ist L eine endliche Menge von Locations, D eine Funkti-
on iiber L, die jedem | € L ein kontinuierliches Modell zuordnet, D(l) =
(VE), Ve, ved), F(),G(),C(1), X°(1)) ist ein kontinuierlicher Block wie in
Definition 15 beschrieben, I ist eine endliche Menge von Eingabesignalen, O eine

endliche Menge von Ausgabesignalen, T eine endliche Menge von Transitionen und
SYC{(l,z)|l € L Nz € X(I)} die Menge der initialen Locations.

Fiir jede Transition (l,g,9%,a,l') € T gilt, dass | € L die Sourcelocations, g €
COND(V*(l) U V¥(l)) ein kontinuierlicher Guard, g' € (I U O) der I/O-Guard,
a € [[V¥() — R] — [V*(') — R|] die Aktualisierung kontinuierlicher Daten und
I € L die Targetlocation ist. Fiir jedes | € L wird gefordert, dass D(l) wohl-definiert ist.

Das Hybride Rekonfigurations Charts erlaubt, dass jeder Location eine eigene Variablen-
menge besitzt. Mit V* wird die Vereinigung aller V* (1) beschrieben. V" und VY werden
analog bestimmt. Mit V*(F (1)) werden die Variablenmengen der Locations beschrieben.
Alle zugewiesenen Ausgabevariablen werden analog als provided Ausgabevariablenmen-
ge (VY(F(I) U G(l))) und alle Eingabevariablen als required Eingabevariablenmenge
(V*(F(l) UG(l))) bezeichnet.

Fiir eine Einbettung bendtigt eine iibergeordnete Komponente jedoch nicht alle Infor-
mationen, welche die hybriden Rekonfigurations Charts der eingebetteten Komponenten-
instanzen liefern. Es sind lediglich die nach auBlen sichtbaren Schnittstellen notwendig.
Diese werden von einem Interface Statechart beschrieben.

51

Kapitel 2 Grundlagen

Definition 17
Ein Interface Statechart fiir einen hybriden Rekonfigurations Automat M =
(L,D,1,0,T,S°) existiert genau dann, wenn fiir das kontinuierliche Modell D
folgendes gilt:

o VYNVY =),
e allev € V* sind Uhren: v = 1,

o der Seiteneffekt a fiir jede Transition (1, g, g',a,l*) ist beschrinkt durch OP,.q,s,
wobei OP,,, s die Menge der moglichen Konstanten ist,

o das kontinuierliche Verhalten von V'V ist unbestimmt.

2.4.5 Anpassung der Softwarestruktur

Echtzeit-Koordinationsmuster spezifizieren die Koordination zwischen unterschied-
lichen mechatronischen Komponenten. Wihrend der Laufzeit konnen Komponenten
allerdings aktiviert und deaktiviert werden. Um dies auch zu beriicksichtigen, muss
ein geeignetes Modell verwendet werden. dass die Echtzeit-Koordinationsmuster ent-
sprechend integriert. So ein Modell modelliert die Strukturanpassung von Software.
Bei Betrachtung wird ein Systemzustand durch eine Konfiguration aus Komponenten
und Echtzeit-Koordinationsmuster charakterisiert. Die Erzeugung und Loschung von
Echtzeit-Koordinationsmustern sowie der Austausch von Komponenten kann also durch
ein Graphtransformationssystem formalisiert werden [Sch06].

Der MECHATRONIC UML Ansatz unterstiitzt die Spezifikation von Strukturen durch
Klassendiagramme. Strukturdnderungen konnen durch Story Diagramme modelliert
werden. Der Ansatz unterstiitzt ferner die Verifikation von strukturellen Invarianten
[BBGT06].

Fiir das Shuttlebeispiel ist ein Klassendiagramm in Abbildung 2.24(a)) dargestellt. Es
stellt die Komponenten des physikalischen Modells dar (Shuttles und Schienenabschnit-
te). Auf ein Schienenstiick passt genau ein Shuttle. Die Position eines Shuttles ist durch
die on Assoziation modelliert; die go Assoziation modelliert die physikalische Bewegung
auf einem Schienenstiick.

Wie gerade erwihnt findet die Kollisionsvermeidung durch das DistanceCoordination-
Pattern statt. Das DistanceCoordinationPattern wird erzeugt, sobald ein Shuttle sich
einem anderen Shuttle ndhert. Die Instanziierungsregel createDC erzeugt das Echtzeit-
Koordinationsmuster, sofern zwei unverbundene Shuttle da sind (siehe Abbildung
2.24(b)).

52

2.4 Mechatronic UML

<<community>>
DistanceCoordinationPattern PG

dc1 :DistanceCoordinationPattern
1 APt

«create» «create»
A rear afront

<<role>> <<role>> SUCCessor <1 Shuttle s2 :Shuttle
front rear . e
<<commitment>>
<<agent>> next <<entity>> on Yon
Shuttle L Track 2 Track
(a) Klassendiagramm (b) Instanziierungsregel: Erzeugung des Distan-
ceCoordinationPattern
Abbildung 2.24: Klassendiagramm und Instanziierung eines Echtzeit-
Koordinationsmuster

Zwei Regeln sind spezifiziert: (1) goSimple1 (sieche Abbildung 2.25(a)) beschreibt die
Bewegung eines einzelnen Shuttles von einem Schienenstiick zum néchsten. (2) goDC1
(siehe Abbildung 2.25(b)) erlaubt dem rear Shuttle sich nur zu bewegen, wenn das front
Shuttle sich auch bewegt.

s1 :Shuttle ’B (dc1 :Distal irmationPattern

dc1 :DistanceCoordinationPattern |
1

«create» Arear A front

> next
s2 :Shuttle

s1 :Shuttle [
1 Track > successor S—
rac te:frack t3 :Track «create»
«destroy> » next

«create»

«create»
vgo

Yon »go > next on
ek [—|t1 Track } > successor 2 Track | > successor 13 Track
(a) Ein freies Shuttle bewegt sich (b) Koordinierte Fahrweise zweier Shuttles
Abbildung 2.25: Verhaltensregeln
dca :Distan imationPattern
‘bsi/ \ A Pt
sa :Shuttle _sb :Shuttle
»
v on\ Y on
ta :Track > successor tb :Track

Abbildung 2.26: Invariante: Keine unkontrollierte Bewegung zweier benachbarter Shutt-
les

Eine in diesem Kontext angewendete Invariante ist, die es gilt zu verifizieren, dass ein
Shuttle nie versucht, ein bereits besetztes Schienenstiick zu befahren, ohne sich mit dem

53

Kapitel 2 Grundlagen

anderen Shuttle abgesprochen zu haben. Abbildung 2.26 zeigt diese Invariante als Nega-
tive Anwendungsbedingung.

2.5 Zusammenfassung

In diesem Kapitel wurden die Grundlagen dieser Arbeit beschrieben. Hierzu wurde zuerst
die grundlegende hierarchische Struktur eines mechatronischen System nach Liickel, wie
es in dieser Arbeit aufgefasst wird, diskutiert. Ein Operator-Controler-Modul beschreibt
die Informationsverarbeitung eines mechatronischen System. Es ist in die drei Ebenen
Controller, Reflektorischer Operator und Kognitiver Opertor aufgebaut. Die Software ei-
nes OCMs ist sowohl fiir die Koordination innerhalb als auch fiir die Koordination meh-
rerer OCMs verantwortlich. Da die Software komplex und sicherheitskritisch ist, muss
diese verifiziert werden.

Anhand des Vorgehens der modell-basierten Entwicklung, wurden Modelle und Verfah-
ren zur Verifikation von mechatronischen Systemen vorgestellt. Diese sind jedoch fiir die
komplexen, vernetzten mechatronischen Systeme, wie sie hier beschrieben sind, nicht
alleine anwendbar. Der MECHATRONIC UML Ansatz wird hier als Losung vorgeschla-
gen. Dieser kombiniert die Techniken aus den verschiedenen Doménen der Softwaretech-
nik und der Regelungstechnik, die es erlauben, solche Modelle adidquat zu modellieren
und zu verifizieren. Die Architektur der Software wird mittels Komponentendiagrammen
und Echtzeit-Koordinationsmustern beschrieben. Zur Spezifikation der komponentenin-
ternen Struktur werden Klassendiagramme verwendet. Das Verhalten wird durch Re-
altime Statecharts und Hybride Rekonfigurations Charts beschrieben. Die dynamischen
Strukturdnderungen werden durch Story Pattern beschrieben.

Aufbauend auf den Techniken des MECHATRONIC UML Ansatzes werden nun in den
nichsten Kapiteln Erweiterungen und neue Verfahren fiir die Modellierung, als auch fiir
die Verifikation, komplexer, vernetzter mechatronischer Systeme vorgestellt.

54

Kapitel 3

Verifikation eines OCM

In Kapitel 2.1 wurde die Struktur eines mechatronischen Systems (sieche Abbildung 2.1)
beschrieben. Der Fokus dieses Kapitels liegt nun auf der Verifikation eines OCMs, ge-
nauer gesagt, auf der Verifikation des korrekten Zusammenspiels hinsichtlich der hierar-
chischen Rekonfiguration (siehe Abschnitt 2.4.4) zwischen dem Reflektorischen Operator
und dem Controller. In Abbildung 3.1 ist die Aufgabe der Verifikation eines OCM, wie sie
in diesem Kapitel im Folgenden beschrieben wird, skizziert. Hierzu wird zuerst anhand
der in den Grundlagen vorgestellten Modellierungskonzepte der MECHATRONIC UML
(siehe Abschnitt 2.4) informal ein Beispiel eingefiihrt (siche Abschnitt 3.1). Danach wird
die syntaktische Verifikation fiir die hierarchische Rekonfiguration bedingt durch rein lo-
kal relevante Zeitbedingungen fiir die Rekonfiguration innerhalb eines OCMs beschrieben
(Abschnitt 3.2). Anschliefend wird in Abschnitt 3.3 das Beispiel um nicht lokale Eigen-
schaften beziiglich der Zeitbedingungen sowie um nicht-deterministisches Verhalten be-
ziiglich der Rekonfiguration erweitert. Anhand dieses Beispiels werden die Konzepte zur
Verifikation fiir die sichere Rekonfiguration in Abschnitt 3.4 erklirt. Das Kapitel schlieft
mit einer Zusammenfassung in Abschnitt 3.6.

3.1 Beispiel

Das Feder-Neige-Modul ist ein Teilsystem des in Abschnitt 1.2 vorgestellten Shuttlesys-
tems der Neuen Bahntechnik Paderborn. Das Feder-Neige-Modul ist ein Beispiel fiir ein
komplexes mechatronisches System. Die Aufgabe des Feder-Neige-Moduls ist es, einen
maximalen Fahrkomfort fiir die Passagiere eines Shuttles zu ermoglichen. Befihrt ein
Shuttle einen Schienenabschnitt, sammelt es Informationen iiber die Streckenverhiltnisse
und sendet diese nach Befahren des Streckenabschnittes an eine Streckenabschnittskon-
trolle. Die Streckenabschnittskontrolle kann diese Information weiteren Shuttles zur Ver-
fiigung stellen, so dass diese anhand der Streckeninformationen Unebenheiten ausglei-
chen konnen und somit der Fahrkomfort erhoht wird. Die Verarbeitung der Streckenin-
formationen sowie das damit verbundene Erreichen des maximalen Fahrkomforts werden

55

Kapitel 3 Verifikation eines OCM

Reflektorischer Operator

BeaVIOr
when(nextSegment
data(Vector zRef)? /
. -
y V= |
: | AllAvailable AbsAvailable
:BC[Reference] :Sensor[On] :BC[Absqute]#H%] :Sensor[On]
when(next
Segment)
noData? / dd4$
storage:Storage

Uberprifung der hierarchischen Rekonfiguration

Behavior N4

Reference @ € Absolute @
Zref ?dj

. 3 Zabs
Zabs

I zRefFailure do— *

Controller

Abbildung 3.1: Verifikation eines OCM

vom Feder-Neige-Modul ermoglicht [TMVO06]. Der physikalische Aufbau aller relevanten
Teilmodule ist in Abbildung 3.2 dargestellt und wird im Folgenden im Detail beschrieben.

Das Feder-Neige-Modul besteht unter anderem aus einem Aufbau, der iiber Luftfedern
mit dem Fahrwerk verbunden ist. Zudem enthilt das Feder-Neige-Modul verschiedene
Regler, welche die Position der drei hydraulischen Zylinder A, B und C' aufgrund von
Werten der Sensoren regeln. Die Zylinder wiederum beeinflussen aktiv den Aufbau und
damit auch das Fahrwerk [HSEO02].

Die Sensoren messen die Streckenverhiltnisse und liefern diese Werte als Eingabe fiir
den jeweiligen Regler. Dieser fiihrt anhand der Eingabewerte Berechnungen durch, um
die Ergebnisse anschliefend an die Zylinder weiterzuleiten. Je nach Ergebnis ihrer Be-
rechnung wird die Position der Zylinder verédndert, so dass sich das Feder-Neige-Modul

56

3.1 Beispiel

der Schienenumgebung anpassen kann und damit den fiir die Strecke hochstmdéglichen
Fahrkomfort liefert.

to the
actuators

controller

(I
car body

ors

Abbildung 3.2: Schematische Darstellung des Feder-Neige-Moduls

Das verwendete CAE Werkzeug CAMeL [Ric96] ermdglicht die Beschreibung des kom-
pletten kontinuierlichen Parts des Modells durch strikte, hierarchische Blockdiagramme
mit nichtlinearen Gleichungen der Art

= f(z,u,t) und y=g(z,u,t)

wobei x der Zustandsvektor, z die erste Ableitung des Zustandsvektors, y der Ergebnis-
vektor, u der Eingabevektor und ¢ die Zeit ist.

Das Feder-Neige-Modul besteht aus drei Reglern. Der Regler Reference stellt den hochs-
ten Komfort zur Verfiigung, indem er durch die Vorgabe einer Trajektorie die Bewegung
des Aufbaus beschreibt, um Unebenheiten der Strecke auszugleichen. Um die Stabilitit
des Systems zu gewihrleisten und um damit Entgleisungen des Shuttles entgegenzuwir-
ken, miissen alle Sensoren immer korrekte Werte liefern (siehe Grundlagenkapitel 2.2).
Falls dies beim Regler Reference nicht mehr der Fall ist, wird der Regler Absolute ver-
wendet, der als Eingabe nur die vertikale Beschleunigung des Aufbaus benotigt. Falls
auch dieser Sensor ausfillt, wird der Regler Robust aktiv, der den geringsten Komfort zur
Verfiigung stellt. Dieser Regler benétigt nur die Standardeingabewerte, um Stabilitit zu
gewihrleisten.

Das Blockdiagramm der Regler ist in Abbildung 3.3 dargestellt. Die Komponente body
control (BC) ist verantwortlich fiir die tibergeordnete Regelung des Feder-Neige-Moduls

57

Kapitel 3 Verifikation eines OCM

und besteht aus den eben beschriebenen drei Reglern. Abhéngig von den Eingabesignalen
wird zwischen den Reglern umgeschaltet. Das Referenzsignal ist mit 2,..; und die absolute
Beschleunigung mit Z,;,s bezeichnet. Die Ausgabewerte sind Xz A yef, ..., Xz 0 rer und
geben die Position der hydraulischen Zylinder an.

Zret, ! “reference” »
T P P —)
zabs.
, ™ “absolute” i X
common _» I g
norma .
inputs%— XZ’ o
XZ, C, ref. o
robust switch control
failure body control

Abbildung 3.3: Blockdiagramm der Regler

Beim Wechsel zwischen zwei Reglern wird zwischen zwei Fillen unterschieden: Atoma-
res Umschalten und nicht-atomares Umschalten. Im ersten Fall findet der Wechsel ganz
normal zwischen zwei Berechnungsschritten statt. Im Beispiel wire der Wechsel vom
Block normal zum Block failure atomar. Im anderen Fall ist es notwendig, eine Umschalt-
funktion fy,ch (t) und eine Umschaltdauer zu spezifizieren [OMT*08]. Im Beispiel wiire
das der Wechsel zwischen dem Regler reference und dem Regler absolut.

3.1.1 Komponenten Struktur

In diesem Abschnitt wird beschrieben, wie sich die Architektur mittels MECHATRO-
NIC UML beschreiben lidsst. Abbildung 3.4 zeigt die Architektur. Die Monitor Kompo-
nente koordiniert die Einbettung der Komponenten BC, Sensor, und Storage. Auflerdem
kommuniziert sie iiber das Echtzeit-Koordinationsmuster MonitorRegistration mit einer
Streckenabschnittskontrolle Registry. Die Streckenabschnittskontrolle sendet Informatio-
nen iiber die kommenden Streckenabschnitte an die Komponente Monitor, die diese dar-
aufhin in der Unterkomponente Storage abspeichert. Die Unterkomponente Sensor liefert
die bendtigten Signale.

58

3.1 Beispiel

:Monitor @

:Sensor @ +"_Monitor— °,
. Registration

E \\/___,/ﬂ/
B = b2

Y , :Registry
\ /
Monitor Registry

@ Role Role

storage : Storage

Abbildung 3.4: Die Architektur

3.1.2 Verhalten der Komponenten

Das Verhalten sowie die Einbettung von kontinuierlichem Verhalten einer Komponenten
wird durch ein Hybrides Rekonfigurations Chart beschrieben (siehe Kapitel 2.4). Abbil-
dung 3.5 zeigt das Hybride Rekonfiguration Chart der Komponente BC. Diese besteht
aus den drei Zustinden Robust, Absolute und Reference. Jedem Zustand ist ein konti-
nuierlicher Regel mit verschiedenen Eingangs- und Ausgangssignalen zugeordnet. Die
fett gezeichneten Transitionen zeigen an, das bei diesen Zustandswechseln umgeschal-
tet wird, es sich also um nicht-atomares Umschalten handelt. Die anderen Transitionen
stellen atomares Umschalten dar.

3.1.3 Beschreibung des Interface

Fiir die Einbettung oder Verkniipfung von hybriden Komponenten werden nicht immer
alle Details der Realisierung einer Komponente benotigt. Es reichen hier die Informa-
tionen iiber die externen Signale aus, so dass die Kompatibilitdt analysiert werden kann.
Abbildung 3.6 zeigt das abgeleitete Interface Statechart (siehe Definition 17) der Kom-
ponente BC. Die BC Komponente hat drei mogliche verschiedene externe Zustinde mit
unterschiedlichen kontinuierlichen Eingabesignalen.

59

Kapitel 3 Verifikation eines OCM

-

zAbsOK > Absolute
I ffad64 T éubs
dy — L
N zAbsFailure | .| <Abs>
Robust
- d2
- <Rob> =
ffadez
zRefFailure
zRefOK
ffadeg
d34
2AbsOK Jrade: . \
Reference
Rref
dl 2ab:>
) | <Ref> >
zAbsFailure .

&

Abbildung 3.5: Verhalten der Body Komponente

dy
zAbsOK ‘
V | 3> [Absolute] @
‘ zAbsFailure Zabs
[Robust] @ $
% Akdg
zRefFailure
zRefOK
d3 4V
zAbsOK
3> [Reference]
Zref
dl éu,bs
zAbsFailure

l

Abbildung 3.6: Interface Statechart der Komponente BC

60

3.2 Verifikation der hierarchischen Rekonfiguration bedingt durch lokale
Zeitbedingungen

Im Folgenden wird die Einbettung der Unterkomponenten innerhalb eines hybriden Re-
konfigurations Charts beschrieben. Diese Einbettung erlaubt es spiter, die korrekte Ein-
bettung rein syntaktisch zu iiberpriifen (siche Abschnitt 3.2).

3.1.4 Einbettung

Durch Zuordnung von Konfigurationen der Untergeordneten Komponenten zu jedem Zu-
stand eines hybriden Rekonfigurations Chart wird die Einbettung realisiert. (siche Abbil-
dung 3.7). Ein Wechsel zwischen den Zustinden in der Monitor Komponente impliziert
einen Wechsel der Zustidnde im Interface Statechart der eingebetteten Komponenten.

Das Verhalten der Monitor Komponente ist wie folgt durch das hybride Rekonfigurations
Chart beschrieben (siehe Abbildung 3.7). Der obere orthogonale Zustand besteht aus den
Zustinden AbsAvailable, NoneAvailable, RefAvailable und AllAvailable. Die letzten beiden
repréasentieren, ob die bendtigte Referenztrajektorie fiir den aktuellen Schienenabschnitt
zur Verfligung steht oder nicht.

Die Komponente BC ist jedem Zustand des oberen orthogonalen Zustandes zugeordnet.
So ist z. B. die Komponenteninstanz BC im Zustand Reference dem Zustand AllAvailable
der Komponente Monitor zugewiesen, in dem z,.r sowie as Z,;s verfiigbar sind.

Die Kommunikation mit der Streckenabschnittskontrolle Registry ist im unteren ortho-
gonalen Zustand in der Abbildung (Abbildung 3.7) modelliert. Der obere orthogonale
Zustand synchronisiert sich mit dem unteren Zustand.

3.2 Verifikation der hierarchischen Rekonfiguration
bedingt durch lokale Zeitbedingungen

Fiir die Verifikation eines OCMs werden die folgenden zwei Verifikationsverfahren be-
reitgestellt. Als erstes muss das reine Echtzeitkoordinationsverhalten der Software, mo-
delliert durch Komponenten und Echtzeit-Koordinationsmuster, verifiziert werden. Hier-
fiir wird der in [Gie03][GTB " 03][Hir04][BGH"05b] beschriebene Ansatz verwendet und
im Folgenden kurz skizziert. In diesem Zusammenhang wird eine Definition von Verfei-
nerung gegeben, welche die Eigenschaft der deadlock-Freiheit erhilt. Weiterhin wird eine
Menge von kompositionellen Bedingungen eingefiihrt. Diese Grundlagen bilden ein Fra-
mework, welches es erlaubt, komplexe Echtzeitsysteme auf high-level Ebene (siehe Ab-
schnitt 2.4) zu spezifizieren und zu verifizieren. Der Ansatz bezieht sich auf die Notation
von Komponenten und Echtzeit-Koordinationsmustern, wie sie in Kapitel 2.4 eingefiihrt
wurden. Der Vorteil ist, dass der erorterte Ansatz es erlaubt, ein System zu verifizieren,

61

Kapitel 3 Verifikation eines

ocCM

4 N
when(nextSegment) when(nextSegment)
data(Vector zRef)? / data(Vector zRef)? /
v R |
AllAvailable AbsAvailable
:BC[Reference] :Sensor[On] :BC[Absolute] #}_@ :Sensor[On]
when(next
Segment)
noData? / dyg —* A dq =
storage:Storage ‘
sensor.failure
. =
sensor.failure sensor.ok
sensor.ok I
. data(Vector zRef)?
RefAvailable () NoneAvailable
:BC[Robust] :Sensor[Off] noData? :BC[Robust] :Sensor[Off]
1 \
when(nextSegment)
data(Vector zRef)?
noData!/ . registry.sendInfo(zRef) / storage.add(zRef)
.\ registry.experience
TrajectoryNot when(. Trajector
Avaliable’ S o TR Avaliabie
T / registry.experience ¢
afte,r&20)/ -
registry.requestinfo when(storage.isEmpty())
o /

Abbildung 3.7: Einbettung der Untergeordneten Komponenten im Monitor

ohne jemals den gesamten Zustandsraum aufzubauen. Stattdessen kann jede Komponente
und jedes Echtzeit-Koordinationsmuster einzeln durch einen Model Checker verifiziert
werden. Die folgenden fiinf Schritte skizzieren den Ablauf der Verifikation:

1.

2
3
4,
5

Spezifiziere alle Echtzeit-Koordinationsmuster und ihre Rollen.

. Verifiziere jedes Echtzeit-Koordinationsmuster einzeln.

. Spezifiziere die Komponenten durch Verfeinerung der Rollen zu Ports.

Verifiziere jede Komponente einzeln.

. Konstruiere durch Komposition der Echtzeit-Koordinationsmuster und Komponen-

ten das vollstindige Modell.

Schritt 5 sichert die korrekte semantische Komposition bei einer korrekten syntaktischen
Komposition zu. Ein zusitzlicher sechster Schritt, der die Verifikation des ganzen Sys-

62

3.2 Verifikation der hierarchischen Rekonfiguration bedingt durch lokale
Zeitbedingungen

tems durchfiihren wiirde, ist nicht erforderlich. Dieses Resultat folgt aus Theorem 1 in
[Gie03]. Jedoch ist dieses Theorem nur unter der Annahme giiltig, dass lokale Eigen-
schaften fiir Echtzeit-Koordinationsmuster und Komponenten vorliegen. Abbildung 3.8
zeigt die Uberschneidung der Elemente Echtzeit-Koordinationsmuster und Komponenten.
Diese ist immer durch ein wohl definiertes Protokoll, das von beiden Seiten eingehalten
wird, gekennzeichnet. Der Echtzeitcharakter der Protokolle stellt sicher, dass unbegrenzte
gegenseitige Sperreffekte ausgeschlossen werden. In nicht zeitbehafteten Systemen ist ein
dhnlicher Ansatz nicht moglich, da maximale Sperrzeiten nicht explizit angegeben sind
und deshalb zyklische Sperreffekte entstehen konnen (siehe hierzu [Gie00]).

|

./ _Monitor— ",
‘ . Registration
|

Abbildung 3.8: Verifikation des Echtzeitkoordinationsverhaltens der Software, modelliert
durch Komponenten und Echtzeit-Koordinatiosmuster

Als zweites muss die im letzten Abschnitt beschriebene hierarchische Komponentenstruk-
tur fiir die Modellierung von diskreten und kontinuierlichen regelungstechnischen Verhal-
ten hinsichtlich der konsistenten Rekonfiguration und der korrekten Echtzeitsynchronisa-
tion hinsichtlich der Rekonfiguration verifiziert werden. Das zweite Verifikationsverfah-
ren kann dabei in das erste integriert werden [GBSO04][GHO5b][GHO06].

Hierbei werden die in der Einleitung 1.3 beschriebenen Konzepte der Abstraktion und
Verfeinerung eingesetzt. Wie schon angedeutet, ist es das Ziel, den bisherigen komposi-
tionellen Ansatz weiter zu verwenden. Hierzu muss nun geeignet vom hybriden Verhalten
abstrahiert werden. In Abbildung 3.9 ist eine Abstraktion skizziert, die vorgenommen
werden muss. Um diese formal zu beschreiben, wird im Folgenden das Hierarchie- und
Modularitdtskonzept von hybriden Rekonfigurations Charts formal eingefiihrt.

3.2.1 Modularitat

In diesem Abschnitt wird das modulare Konzept, welches von dem Verifikationsverfahren
unterstiitzt wird, beschrieben. Als erstes werden notwendige Bezeichnungen eingefiihrt.
Eine hierarchische Komponentenstruktur ist durch eine Menge von Komponenteninstan-
zen (4, ..., C, und Funktionen sub, sub* : {1,...,n} — p({1,...,n}) beschrieben.

63

Kapitel 3 Verifikation eines OCM

Echtzeitsystem:
YA
ﬁAbstraktion von hybridem Verhalten
Hybrides| ~ ——=—— N e
System C s ® S2] :
Cc1l Cl >
L <D,> ’s <Ds;> I‘I

Abbildung 3.9: Abstraktion

Hierbei ist sub(i) die Indexmenge von allen direkt angrenzenden Komponenten von C.
sub* (i) bildet die transitive Hiille von sub einschlieflich des Input-Index i. Das Verhalten
jeder Komponenteninstanz C; wird durch einen zugehorigen Automaten M;, der ein hy-
brides Rekonfiguration Chart (siehe Definition 16, Kapitel 2.4.4) reprisentiert, beschrie-
ben. Weiterhin gibt es einen Automaten M}, der das zugehdrige Interface Statechart (sie-
he Definition 17, Kapitel 2.4.4) repréasentiert. Das Interface eines Automaten M wird mit
I (M) bezeichnet. Es besteht aus Eingabe- und Ausgabevariablen. Die Parallelausfithrung
zweier Automaten wird durch || beschrieben. Das Interface eines einzelnen Automaten M
kann eingeschrinkt werden, indem alle Signale zur Synchronisation sowie alle Variablen,
die nicht im Interface vorkommen, versteckt werden. Dies wird mit M |; beschrieben.
(siehe [GHO5a] fiir die verwendete Definition der Verfeinerung)

Im Folgenden wird nun das Modularitdtskonzept formal definiert. Fiir jede Blatt-
Komponente C; mit sub(j) = () gilt die Verfeinerung C py zwischen dem Komponenten-
verhalten M;, beschrieben durch das hybride Rekonfigurations Chart, und dem abstrakten
Interface Statechart M

M; Ty M. (3.1)

Fiir jede nicht Blatt-Komponente Cj, wird angenommen, dass fiir M/ und M, inklusive
aller Interface Automaten der untergeordneten Komponenten gilt:

(Mk” (||168ub(k)MlI>)|I(M,g) CHy le (3.2)

64

3.2 Verifikation der hierarchischen Rekonfiguration bedingt durch lokale
Zeitbedingungen

Die Bedingung 3.2 gilt, da zwischen dem Verhalten einer Komponente und dem Verhalten
eines Interface Automaten die Verfeinerung

Mkl[(]\/[}g) EHY M;f (3.3)

gilt und dass der Einfluss von M auf das Verhalten seiner Unterkomponenten M/; mit
[€ sub(k) immer in einer korrekten Einbettung

(M|l ([lresubeey Mi") raay Erry M (3.4)

endet.

Die Bedingungen 3.1 und 3.2 stellen jeweils eine lokale Abstraktionsbedingung fiir jede
Komponente Cj, und dem zugehdrigen Verhalten M, sowie des Interface Automaten M}
dar. Per Induktion iiber die Baumstruktur kann nun modular gezeigt werden, dass jedes
Komponentenverhalten sowie der Interface Automat durch den vollstindigen Baum, be-
stehend aus den direkten und indirekten Unterkomponenten inklusive der Komponenten
selber, abgebildet werden kann.

(Iliesub) Mi) |1(aty) Sy My A ([l subs 1y M:) 10uiy Eny M (3.5)

Um das beschriebene Modularititskonzept praktisch anwenden zu konnen, wird ein ef-
fektiver und effizienter Algorithmus, um die Verfeinerung und Einbettung zu iiberpriifen,
benotigt. Fiir allgemeine hybride Systeme, die sich nicht mehr durch die Klasse der rec-
tangular automata, bei denen die analogen Variablen Trajektorien mit teilweise-linearer
Entwicklung und Spriingen, bedingt durch Re-Initialisierungen, folgen, beschreiben las-
sen, ist die Erreichbarkeit nicht mehr entscheidbar [HKPV98]. Selbst bei der Verwendung
der eingeschridnkten Klasse ist die Verifikation durch Model Checking ebenfalls nur fiir
kleine Beispiele anwendbar [Dor(08].

Aufgrund dieser Tatsache werden die Analysen zuerst auf das reine Echtzeitverhalten und
die Analyse, ob rein konsistente Konfigurationen mit wohl-definierten kontinuierlichen
Gleichungen erreicht werden konnen, beschrinkt.

In einem ersten Schritt wird hierfiir von dem kontinuierlichen Verhalten eines Automa-
ten M abstrahiert, indem nur die Uhren betrachtet werden, so dass das Hybride Rekon-
figurations Chart sowie das zugehorige Interface Statechart auf ein Realtime Statechart
abgebildet werden konnen. Als néchstes kann das Realtime Statechart nach den in
[Hir04][BGHSO04] beschriebenen Regeln auf Timed Automata abgebildet werden. Auf
dem Modell der Timed Automata kann nun die Uberpriifung der Verfeinerung sowie die
Uberpriifung der korrekten Einbettung durchgefiihrt werden. Fiir die Timed Automata
miissen hier anstelle von C gy nur C gy sowie die Bedingung D¢(Mg, c¢) C D¢(My, ")
fiir die Variablenabhéngigkeiten iiberpriift werden.

65

Kapitel 3 Verifikation eines OCM

3.2.2 Uberpriifung der Verfeinerung

In vorangegangenen Arbeiten [GBSOO04] wurden die Zeitbedingungen in den Interface
Statecharts auf solche eingeschrinkt, welche die reine Schaltdauer einer Transition ange-
ben (die Verweildauer in einem Zustand in einem Timed Automaton (siche [Hir04])).

Definition 18

Sei M = (L,D,1,0,T,S°) ein hybrider Automat. Ein Zustand ' ist ein Umschalt-
Zustand, falls eine Uhr ¢ und Konstanten o' und V' existieren, so dass nur eine einzelne
Transition t € T um I’ zu verlassen existiert mit t = (I';a’ < t < V',1"") und fiir alle
Transitionen (1", g,S, R,l') € T gilt, dass c € Rund C(l') = ¢ < V. Ein Zustand [ist
passiv genau dann, wenn CL(l) = true und fiir alle Transitionen (1, g, S, R,1') € T, wobei
" ein Umschalt-Zustand ist und g = true gilt.

Definition 19
Ein Automat M = (L, D, 1,0, T, S°) wird als simpel bezeichnet, falls Mengen von pas-
siven Zustinden L, und Umschalt-Zustdinde L existieren, mit L = L, & L.

Aufgrund dieser Annahmen ist es moglich, die Verfeinerung zwischen einem simplen In-
terface Automaten M! = (L', D' 11,0 T!,5°) fiir ein gegebenes simples Interface
Statechart und dem zugehérigen Komponentenverhalten M = (L, D, 1,0, T, S°) durch
reine syntaktische Regeln zu iiberpriifen. Fiir Ly C L und L' = L] W L}, wobei L/ die
Menge der passiven Zustinden von L/, L} und L; die Mengen der Umschalt-Zustinde,
map : LII) — (L) eine Abbildungsfunktion zwischen den passiven Zustinden des Inter-
face Automaten und den zugehorigen Zustinden des Hybriden Rekonfigurations Charts
der unterliegenden Komponente sind, kann einfach iiberpriift werden, ob fiir die Verfei-
nerung des Echtzeitverhaltens gilt:

1. Fir alle Zustinde [; € L{,, [€ map(l;) und I" € Ly wird uiberpriift, ob fiir jedes
Paar von Transitionen zwischen passiven Zustinden und Umschalt-Zustidnden gilt,
dass bei der Verfeinerung nicht die externen Signale sowie Zeitrestriktionen, wie
vom Interface Automaten vorgegeben, verdndert werden:

V(l,g,8, R, (I',g, S R I") € T,3;,q", S, R, 1., (Il,g",S", R, I!)) € T :
g =trueNg' =a<t<bAg"=a <t<b A
cly=t<bAcll)=t<b A
al >anb>b A
I'e Ly Nl € LEA
g=true NR=R = {t} ANl" € map(l})

Y(li,g,S, R, I) € T : g=true A3(l,¢,S,R,I') € T A \/ g’ = true.
(Lg',S.R'I')ET

66

3.2 Verifikation der hierarchischen Rekonfiguration bedingt durch lokale
Zeitbedingungen

2. Fiir alle Zustinde [,I' € L\ L ¢ muss lberpriift werden, dass die Transitionen zwi-
schen ihnen zugehorige Transitionen im Interface Automaten haben oder die fol-
gende Abbildung erfiillen:

(i, g, 5, RI)ET:
(S=0AVIl e L': (1 €map(ly) =1 €map(ly))V
(g = true A 3(l;, true, S, R, 1)) € TY) : I € map(l}).

3. Fiir alle Zustinde [€ L, muss tiberpriift werden, dass [¢ Ly und dass sie durch die
initialen Locations des zugehorigen Interface Automaten abgedeckt sind:

3l; € L 21 € map(ly).

Zusitzlich muss fir alle [€ Lund l; € L; mitl € map(l;) gelten, dass jede Abhingigkeit
zwischen den Eingabe und Ausgabe Variablen D(l) ebenfalls im zugehorigen Interface
Automaten als D' ([;) vorkommen.

3.2.3 Uberpriifung der korrekten Einbettung

Um die korrekte Einbettung sicherzustellen, muss als erstes die korrekte Echtzeitkoordi-
nation der Umschaltzeiten der Transitionen iiberpriift werden. Hierbei reicht es aus, die
simplen Interface Statecharts zu betrachten, um zu zeigen, dass ein Hybrides Rekonfi-
guration Chart alleine eine Abstraktion von einem Hybriden Rekonfigurations Chart zu-
sammen mit den Interface Statecharts der Unterkomponenten ist (sieche Bedingung 3.2).
Da auch hier die Erreichbarkeitsfrage nicht entscheidbar und fiir die meisten praktischen
Systeme auch nicht anwendbar ist, wird in [GBSO04] vorgeschlagen, anstelle der Ana-
lyse des kompletten Zustandsraums statische Analysen, die auf den Transitionsmengen
und Zustandsmengen der Hybriden Rekonfigurations Automaten A/; und der Interface
Automaten M} mit [€ sub(i) operieren, zu verwenden. Dieses wird im Folgenden for-
malisiert.

Gegeben sei eine Funktion mode : L x sub(i) — U, ¢ o) Lf» so dass fir alle € L und
j € sub(i) gilt, dass mode(l, j) € L}. Weiterhin wird angenommen, dass alle lokalen
Transitionen mit den Eingabe und Ausgabe Variablen () markiert sind und dass Ly C L
und L] = L W L], mit L] und L, alles passive Locations und L/ ; und L; alles
Umschaltlocations sind.

1. Fiir alle Zustinde [€ L\ L; und I’ € L, wird iiberpriift, dass fiir jedes Paar von
Transitionen zwischen passiven Locations und Umschaltlocations gilt, dass fiir jede

67

Kapitel 3 Verifikation eines OCM

zugehorige Komponente j € sub(i) gilt, dass ein Paar von Transitionen existiert,
das in den vorgegebenen Zeitschranken von M arbeitet:

V(l,9,8,R,I),(I',g',S", R, 1I") € T,3(ly, 95,5, Ry, I5), (I}, 95, S5, R, 1Y) € T}
g:aStSbAgj—a]Iﬁtgb]I-
c(l') =t <bAc(ly) =t <bEA
aﬁZa/\beﬁ/\
I'e Ly Nl € Lj ; A
g =true A R = {t} C RAl; = mode(l, j) A ljmode(l", j)

2. Fir alle Zustdnde [, ' € L\ Ly jeder zugehorigen Komponente j € sub(i) und alle
Transitionen ([, g, S, R, 1) € T muss iiberpriift werden, das jede atomare Transition
keine Rekonfiguration hervorruft oder von ihr abgedeckt ist:

(mode(l, j) = mode(l', j)) V (3(l;, true, S;, R;,) € T') : I} = mode(l', j).

3. Fiir alle initialen Zustinde [€ L; und alle zugehorigen Komponenten j € sub(7)

mit [; = mode(l, j), muss iiberpriift werden, dass sie alle durch alle initialen Loca-

tions abgedeckt werden:

In [GBSO04][BGO04] wurde gezeigt, dass die Uberpriifungen ausreichen um fiir simple
Interface Statecharts zu zeigen, dass die Bedingung 3.2 erfiillt ist.

In Abbildung 3.10 ist das Verhalten der Monitorkomponenten und der Teil der Interface
Statecharts der eingebetteten BC Komponenten (sieche Abbildung 3.6 und 3.7) dargestellt.
Die Semantik der hybriden Rekonfigurations Charts erfordert, dass eine Transition vom
Zustand AbsAvailable zum Zustand AllAvailable einen Transitionswechsel in der BC Kom-
ponente vom Zustand Absolute zum Zustand Reference bedingt. Fiir die monitor Kompo-
nenten gilt, dass die Transition innerhalb des Zeitintervalls d, abgeschlossen ist. Fiir den
implizierten Zustandswechsel in der BC Komponente hingegen gilt, dass dieser innerhalb
des Zeitintervalls d3 abgeschlossen sein muss. Dies bedeutet eine konsistente parallele
Ausfiihrung beider Transitionen die erfordert, dass d3 C d,, erfiillt ist. Fiir die Transition
zu AllAvailable und der Transition zum Zustand Reference in der BC Komponente gilt,
dass dy C d, erfiillt sein muss.

Fiir einen spezifischen Zustandswechsel eines Hybriden Rekonfigurations Chart gilt, dass
es nur dann in einer inkorrekten Rekonfiguration endet, falls die Abhédngigkeit der zu-
gehorigen Zustandskombinationen der Unterkomponenten einen Zyklus enthilt. Da die
verwendete Verfeinerungsbeziehung sicherstellt, dass fiir jede Abhingigkeit zwischen
Eingabe- und Ausgabesignalen von M diese ebenfalls im zugehorigen Interface Auto-
maten M! vorkommen, ist es in diesem Falls ausreichend, den Interface Automaten zu

68

3.2 Verifikation der hierarchischen Rekonfiguration bedingt durch lokale
Zeitbedingungen

E

Monitor
Bty 0T e
: when(nextSegment
; data(Vector zRef)? /
: -
= |
- | AllAvailable ! AbsAvailable
:BC[Reference] @ :Sensor[On] ! :BC[Absolute] @ :Sensor[On]
‘ ! when(next /
| ! Segment) ,
\ , noData?/ d; — A !
storage:Storage |\ ! ! !
o \\ Jl’ ' /I
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, R L S RS
\ 1 il l
\ i Il i
\ [,‘ i
\ I | [
ll '
BC ,, !
Behavior i i
Tt [ASSSS S f
: 1 zZRefOK | | :
Reference @ - V ” Absolute @ :
irﬂf ? dd l’ é Zabs
Zabs !
v
| zRefFailure dy — .T\

Abbildung 3.10: Schema fiir die syntaktische Uberpriifung bei der korrekten Einbettung

und korrekten Rekonfiguration
betrachten und alle Kombinationen von mode zu betrachten um diese inkorrekten Zu-

standskonfigurationen auszuschlieen.

3.2.4 Grenzen des Ansatzes
Der hier vorgestellte Ansatz erlaubt die systematische Entwicklung von mechatronischen
Systemen mit sicheren Rekonfigurationseigenschaften, bei denen eine strikte Hierarchie
mit einer top-down Rekonfiguration zugrunde liegt. Jedoch zeigt dieser Ansatz eine Reihe

von Einschrinkungen, welche oftmals bei komplexen mechatronischen Systemen so nicht

mehr angenommen werden konnen.
Eine Haupteinschrinkung ist, dass in einem Interface Statechart nur die Dauer einer Tran-

sition und nicht deren Ausfiihrungszeitpunkt spezifiziert werden kann. Beispiele hierfiir
sind Interface Statecharts, bei denen z.B. die Frequenz zwischen Rekonfigurationen mo-
delliert werden soll. In dem hier vorliegenden Beispiel konnte durch die Doméne der Re-

69

Kapitel 3 Verifikation eines OCM

gelungstechnik vorgegeben werden, um die Stabilitdt des Systems zu beeinflussen, dass
nach dem Umschalten von Zustand Reference zu Zustand Absolute eine Zeitspanne ver-
streichen muss, bevor die BC Komponente es erlaubt, zuriick zu dem komfortableren
Reference Zustand erneut zu wechseln.

Eine weitere Restriktion ist die strikte top-down Rekonfiguration. Wenn z.B. ein Sensor
bereits einen Fehler feststellt, muss dieser in den Unterkomponenten behandelt werden.
Der bisherige Ansatz von Interface Statecharts erlaubt dies nicht. Um also auch War-
nungen, Fehler oder dhnliche Signale zu den eingebetteten Komponenten zu propagieren,
miissen die Interface Statecharts um entsprechendes proaktives Verhalten [Woo00][Ge05]
angereichert werden, so dass das Interface Statechart aufgrund dieser Ereignisse entspre-
chende Reaktionen innerhalb einer Zeitspanne anstof3en kann.

Als Beispiel hierfiir kann der Fall betrachtet werden, dass die BC Komponente bemerkt,
dass die Referenzdaten ein unerwartetes Problem hervorrufen und dieses an die Monitor
Komponenten propagieren mochte. Dieses kann ebenfalls fiir das Interface Statechart fiir
die BC Komponente bedeuten, dass hier eine Deadline spezifiziert werden muss, um den
Zustand Reference zu verlassen um zu einen sicheren Zustand zu wechseln.

Formal kann man diese beiden Fille wie folgt definieren, um die Interface Automaten zu
erweitern:

Definition 20

Ein Interface Automat M ist komplex, falls es nicht mehr simple, aber immer noch deter-
ministisch ist. Ein Interface Automat M ist proaktiv, falls es autonom entscheiden kann,
dass eine Rekonfiguration erforderlich ist.

3.3 Modellierung hierarchischer Rekonfiguration
bedingt durch proaktives Verhalten

In diesem Abschnitt wird ein Beispiel fiir die Modellierung von hybriden Systemen mit
proaktivem Verhalten gegeben. Hierzu wird das Beispiel aus Abschnitt 3.1 erweitert. Als
erstes wird das neue Verhalten informal beschrieben. Danach werden die Auswirkungen
des neuen Verhaltens auf das gesamte System beschrieben.

3.3.1 Erweitertes Beispiel

In Abschnitt 3.1 wurde das Feder-Neige Modul beschrieben und die Software modelliert.
Eine Besonderheit der Modellierung war hier die strikte top-down Hierarchie. So war es
fiir die BC Komponente nicht moglich, die Monitor Komponente direkt iiber Signale zu

70

3.3 Modellierung hierarchischer Rekonfiguration bedingt durch proaktives Verhalten

beeinflussen. Wenn z.B. ein Fehler in der BC Komponente passiert, wihrend die Kompo-
nente im Reference Zustand ist, muss die BC direkt zum Robust wechseln und gleichzei-
tig die iibergeordnete Monitor Komponente informieren, um entsprechend zu reagieren.
Ebenfalls soll ein zu schnelles Hin- und Herschalten vermieden werden, um Stabilitétsei-
genschaften zwischen den Zustinden Absolute und Reference sicherzustellen.

3.3.2 Verhalten der Komponente

In Abbildung 3.11 ist das erweiterte Verhalten der BC Komponente dargestellt. Das Ver-
halten der alten BC Komponente ist nun um proaktives Verhalten erweitert worden. Be-
findet sich die BC Komponente in dem Zustand Reference, kann die Komponente nun
autonom entscheiden, in den Zustand Robust zu wechseln. Dies ist durch eine non-urgent
Transition (gestrichelte Linie), die Nicht-Determinismus modelliert, beschrieben. Im De-
tail ist dies wie folgt modelliert: Solange der Zustand Reference aktiv ist, sendet die BC
Komponente eine Nachricht switchToRobust zu der iibergeordneten Monitor Komponente.
Nach Verschicken wechselt die BC Komponente in den Zustand Timeout Zustand. Ist der
Timeout erreicht, wechselt die BC Komponente in den Robust Zustand.

ZAbsOK Absolute
ffudc.1 5
dI ot
— zAbsFailure <Abs>
Robust ‘
~—d, t:=0
- <Rob> =~ zRefFailure | |
jfa,deg
zRefOK
ffade;;
t > threshold
(]t —e\l/
2AbsOK frade; 5 ReterencaMan)
erence(Main,
t := threshold ? e
d'] 5at;j> I
= <Ref> =
zAbsFailure .

timer == 50 - . !
Timeout |/ switchToRobust |
timer :=0

Abbildung 3.11: Verhalten der BC Komponente

Um das Schaltverhalten zwischen Absolute und Reference zu kontrollieren, wird ein Ti-
mer t verwendet. Jedesmal, wenn der Reference ausgehend vom Zustand Absolute be-
treten wird, wird die Uhr t auf den Wert 0 gesetzt. Um ein sofortiges Zuriickspringen

71

Kapitel 3 Verifikation eines OCM

und somit Instabilitdt zu vermeiden, wird eine Bedingung (Schwellwert) t>=threshold
der Transition hinzugefiigt. Alle anderen eingehenden Transitionen zum Reference Zu-
stand bekommen als Zuweisung t:=threshold, was bedingt, dass der Schwellwert nicht
beriicksichtigt wird.

In Abbildung 3.12 ist das Interface Statechart der sensor Komponente dargestellt. Das
Interface Statechart besteht aus zwei Zustinden, on und off.

!

|

I

I

/ ok / failure !
I

I

\/

|
“

Abbildung 3.12: Interface Statechart der Komponente Sensor

3.3.3 Einbettung

Das erweiterte Verhalten der Monitor Komponente (dhnlich Abbildung 3.7) ist in Abbil-
dung 3.13 dargestellt. Zusitzlich zum alten Verhalten der Monitor Komponente miissen
nun das proaktive Verhalten und die Zeitangaben der eingebetteten Komponenten beriick-
sichtigt werden. In diesem Fall muss das von der BC Komponente verschickte Signal
switchToRobust entsprechend verarbeitet werden.

3.4 Verifikation der hierarchischen Rekonfiguration
bedingt durch proaktives Verhalten

Um das Modularitdtskonzept, wie im letzten Abschnitt beschrieben, fiir die Erweiterung
der Interface Automaten anwenden zu konnen, miissen die Uberpriifungen fiir die Ver-
feinerung sowie fiir die korrekte Einbettung erweitert werden. Die Erweiterungen werden
im Folgenden beschrieben.

72

3.4 Verifikation der hierarchischen Rekonfiguration bedingt durch proaktives Verhalten

f

;" when(nextSegment) N
when(nextSegment) data(Vector zRef)? /
data(Vector zRef)? /
’ t=0
v
AllAvailable AbsAvailable
:BC[Reference] :Sensor[On] :BC[Absolute] %]_é :Sensor[On]
when(next
Segment)
noData? / dg — :f\ do —* A
w ‘ t > threshold
N sensor.failure
d 1
c —
sensor.failure sensor.ok
sensor.ok
’ data(Vector zRef)?
RefAvailable () NoneAvailable
:BC[Robust] :Sensor[Off] noData? :BC[Robust] :Sensor[Off]
{ |
when(nextSegment)
data(Vector zRef)?
noData! / . registry.sendinfo(zRef) / storage.add(zRef)
& registry.experience ¢
when
TrajectoryNot Trajector
Avaiiabie ('f;ga S SE TR Avaiiable
T / reglstry expenence)
afte,r&ZO)/ -
registry.requestinfo when(storage.isEmpty())
- /

Abbildung 3.13: Einbettung von Verhalten in die Monitor Komponente

3.4.1 Uberpriifung der Verfeinerung

Komplexe und proaktive Komponenten kdnnen nicht auf ein simples Interface Statechart
abgebildet werden (siehe Definition 20). Deshalb konnen die bisher beschriebenen Ver-
fahren zur Uberpriifung, dass das Verhalten eines Interface Statecharts dem Verhalten
einer Komponente entspricht (siche Abschnitt 3.2), so nicht angewendet werden.

In [JGGSO0O0] (sieche Verwandte Arbeiten 6.1.2) wird ein Ansatz vorgestellt, der die Ver-
feinerung M Ty M7 iiberpriift. Jedoch wird hier gefordert, dass M’ deterministisch ist.
Falls das Interface Statechart M komplex ist, jedoch nicht proaktiv, kann dieser Ansatz
verwendet werden. For einen deterministischen Automaten M/’ erhilt man den entspre-
chenden Test Automaten M} wie in [JGGS00] beschrieben und kann entsprechend M || M/
auf time stopping deadlocks iberpriifen.

Fiir den Fall, dass das Interface Statechart M proaktiv ist und deshalb nicht-
deterministisch, ldsst sich das Verfahren aus [JGGSO00] nicht anwenden. Um hier

73

Kapitel 3 Verifikation eines OCM

einen deterministischen Automaten fiir einen nicht-deterministischen zu erhalten, lassen
sich dhnliche Verfahren, wie in [Tri04] beschrieben, anwenden. Bei genauerer Betrach-
tung des Ansatzes [JGGS00] stellt man fest, dass bei der on-the-fly Bestimmung des
Kreuzproduktes einfach eine eindeutige Abbildung von einem Zustand in das verfeinerte
Modell existieren muss, die in [JGGS00] durch die deterministischen Eigenschaften von
M garantiert wird.

Der hier vorgeschlagene Ansatz nutzt die Abbildung map : Li, — L zwischen den pas-
siven Zustidnden des Interface Automaten und den zugehorigen Zustinden in der Reali-
sierung aus, um eine geeignete Losung vorzuschlagen. Fiir die Abbildung map, die je-
dem Zustand in der Realisierung genau einen Zustand des Interface Automaten zuord-
net (Vi € L : [{I'|l'’© map(l)}| = 1 und deshalb ist map~' eine Funktion so dass
I’ = map~'(l)) und fiir den Fall, dass keine zwei Transitionen mit der selben Quelle, Mar-
kierung und Ziellocation existieren (VI,I' € L,s CITUO : [{(l,9,S,R,l') € T}| < 1),
kann das Kreuzprodukt syntaktisch erstellt werden M’ = MT x,,,, M mit M’ =
(,p',r,o,1,6.s"°, M = (L', DI 11,01, 7", 1% und M = (L,D,I,0,T,S°)
und L} und L; sind Umschaltzustinde von L oder L wie folgt:

o I'={(l,I') e L' x L} Uerror,
o D'(1,I") = DI(1)||D(I') und D’(error) sind leer,
o I'=1'UI,O'=0"U0.

_ / : / __ ir rel re2 s : :
o 1" =Uumnerferrory.scrvo Tip,s mit Ty o = 177 s UT5 ¢ UT]5 g ist die Verei-
nigung der zugehorigen normalen n und fehlerhaften Transitionsmengen (el, e2).

o 50 =387 xg80

Die Menge der normalen Transitionen 7} ¢ bildet sich durch alle Paare von Tran-

sitionen die durch eine Ubereinstimmung s in der Menge {((I,'),g A ¢,S,R U
RI7 (l”a ll”))|(l7 9, S7 Ra l//) € T A (l/7 g/a Sa Rla lm) eETANI'= mapil(l)} landen.

Die initiale Menge von fehlerhaften Transitionen 7}/ ¢ fiir [¢ L} oder I ¢ Ly behandelt
das Verhalten, bei dem das Interface Statechart schalten kann, aber nicht die Realisierung:
7—73/1’5 = ((l, l/), qg A _‘g//, S, @, error)|(l, qg, S, R, l”) c TI A\ g// = v(l’,g’,S,R/,l”/)ET g/}

Analog wird die nidchste Menge von fehlerhaften Transitionen bestimmt Tl"f? S
fuir [¢ Lff or ' ¢ Ly wobei das Verhalten betrachtet wird, das in der
Realisierung schalten kann, jedoch nicht im Interface Statechart: Tl’i? g =

{((l7 l/)v g/ A ﬁg//7 S7 (0’ error)'(lla g/v Sv R/v lm) cT A g// = v(l,%S,R,l”)ETI g}'

Fir [€ Lfc und I’ € L; im Gegensatz kann angenommen werden, dass die Bedingungen
einer Transition immer die Form a’ < ¢ < ' haben. Deshalb ist 75! ¢ gleich {((l,1'),a <
t <al,S,0,error)|(l,a! <t <V, S, RI") €T AN(l,a<t<bSR]I")cT}und

74

3.4 Verifikation der hierarchischen Rekonfiguration bedingt durch proaktives Verhalten

T/ g ist gleich {((1,1'),b" <t < b, 5,0, error)|(l,a" <t <", S,R,1") € T" A(l,a <
t <b,S,R,l") € T} um inkompatible Zeitbedingungen darzustellen. Im ersten Fall wird
eine zu frithe Terminierung des Umschaltvorgangs iiberpriift, im zweiten Fall wird eine
zu spite Terminierung iiberpriift.

Danach kann einfach iiberpriift werden, ob ein time stopping deadlock besteht oder
der Zustand error in M’ erreicht wird. Daraus lisst sich schlieBen, ob die Verfeine-
rung gilt oder verletzt ist. Aufgrund der Einschrinkung, dass niemals zwei Transitionen
mit derselben Quelle, Markierung und Ziellocation in T' existieren, gilt, dass fiir jede
t'=(',g',S,R',I") € T mindestens eine zugehorige Transition t = (I, g, S, R,1") € T*
existiert, die in 7}, ¢ ist und die Eigenschaft I’ = map~" (1) erfiillt.

Eine Abbildung map, die jedem realisierten Zustand mehr als einen Zustand des Inter-
face Automaten zuweist, resultiert nicht in der beabsichtigten Zustandsraumreduzierung
fiir M beziiglich M und deshalb ist diese Restriktion anwendbar fiir die hier verwendete
Idee. Im Falle, dass zwei Transitionen (I, g, S, R,l') € T! und (I,¢', S, R',l') € T mit
derselben Start- und Ziellocation sowie Markierung existieren, miissen zwei Fille unter-
schieden werden. (1) Falls R = R’ konnen diese einfach vereint werden in einer Regel
(I,9Vv4d', S, R,l") ohne Verhaltensinderung. (2) Andernfalls muss ein zusitzlicher Zustand
I"” und eine zusitzliche Uhr hinzugefiigt werden und die erste Regel (I, ¢, S, R, ') € T
durch die folgenden beiden Regeln ersetzen: (I, g, S, RU{t},1”) und (", true, 0, (), ") und
die Angabe der Invarianten C'({”) mit ¢ < 0 um die Annahme zu erfiillen.

Um zu iiberpriifen, dass der hybride Rekonfigurations Automat von der Komponente BC
eine korrekte Verfeinerung des Interface Statecharts der BC Komponente ist, muss ein
Timed Automata Modell wie oben beschrieben, erstellt werden. Auf diesem Modell kann
dann mittels Model Checking durch den Model Checker UPPAAL [BDLO04] die korrekte
Verfeinerung verifiziert werden. Hierzu muss die Eigenschaft A[] not deadlock sowie E<>
BodyControl.Error iiberpriift werden.

3.4.2 Dynamische Uberpriifung der Einbettung

Die dynamische Uberpriifung der korrekten Einbettung der Komponenteninstanzen hat
das gleiche Ziel wie die syntaktische Uberpriifung. Sie beriicksichtigt - im Gegensatz zur
syntaktischen Uberpriifung - auch komplexeres Zeitverhalten, das z.B. durch Timeguards
ausgedriickt wird. Die dynamische Uberpriifung ist damit fiir nicht simple, proaktive In-
terface Statecharts geeignet.

In Abbildung 3.14 sind ein Echtzeitsystem und ein hybrides System exemplarisch dar-
gestellt. Die Verifikation des Echtzeitverhaltens jeder einzelnen Komponente wird mit
Hilfe von Model Checking realisiert. Um zu iiberpriifen, ob die Rekonfiguration nicht zu
Inkonsistenzen fiihrt, miissen weitere Verifikationsschritte durchgefiihrt werden. Verlasst

75

Kapitel 3 Verifikation eines OCM

bzw. betritt die iibergeordnete Komponente ihren Zustand, miissen zeitgleich die einge-
betteten Komponenteninstanzen ihren internen Zustand verlassen bzw. betreten. Dies ist
jedoch nur moglich, wenn sich die spezifizierten Echtzeitangaben, wie Deadlines, Time-
guards und Uhren-Resets nicht gegenseitig ausschlieBen. Dies wird mittels der dynami-
schen Uberpriifung verifiziert.

Hybrides Rekonfigurationschart Interface Statechart der Interface Statechart der
der Uibergeordneten Komponente eingebetteten Komponenteninstanz eingebetteten Komponenteninstanz

Synchronisierung Synchronisierung Synchronisierung

N /
Y

(Y sensorhtare (g) i \ sensorhfalure [Grasiohe) i i (. sensorhfalure [Grasioc)
sonsorsfalus| fensor Bk somomfaiue [sonor sok |1 swoBmiue kewoBok sensoBialre| ook} eee || sensoBis bowoBok somoBfalue| fensoBok
i i i
(retAvailable)< SENSOTAfaIU (™ ia aiiaple) HH refAvailable sensorAfailure (™ available i i (refAvailable)< SesOrAfailure (™ yavaiape)

— e e B A e o s B 1 A | S e o= e

L

Echtzeit - Model Checking

Abbildung 3.14: Dynamische =~ Uberpriifung ~ der korrekten Einbettung der
Komponenteninstanzen

Um zu verifizieren, ob eine Komponente korrekt in eine weitere Komponente eingebettet
ist, darf sich das Echtzeitverhalten beider Komponenten nicht gegenseitig ausschlieen.
Dies ist der Fall, wenn das spezifizierte Echtzeitverhalten des gesamten Systems keinen
Deadlock enthilt. Eine Uberpriifung auf Deadlockfreiheit kann erfolgen, wenn das hybri-
de Rekonfigurationschart der iibergeordneten Komponente und die Interface Statecharts
der eingebetteten Komponenteninstanzen parallel initialisiert werden und das Verfahren
des Model Checkings mit der Bedingung A/] not deadlock angewandt wird.

Um die dynamische Uberpriifung fiir die korrekte Rekonfiguration zu realisieren, miissen
sowohl das hybride Rekonfigurations Chart sowie das Interface Statechart in ein geeigne-
tes Eingabemodell fiir einen Model Checker transformiert werden. In [HirO4][BGHS04]
wurde eine Transformation, die Realtime Statecharts auf Timed Automata abbildet, for-
mal beschrieben. Im Folgenden werden diese Transformationsregeln wiederverwendet
und erweitert.

In hybriden Rekonfigurations Charts sind Komponenteninstanzen in Zusténde eingebettet.
Wihrend der Transformation konnen die eingebetteten Instanzen vernachléssigt werden,
da diese durch das Interface Statechart, welches ebenfalls transformiert wird, abgedeckt

76

3.5 Evaluierung

werden. Aufgrund dieser Tatsache konnen fiir die Zustédnde genau dieselben Regeln wie
in [Hir0O4][BGHS04] angewendet werden.

Neben den Zustinden miissen auch noch die Transitionen abgebildet werden. Im Gegen-
satz zu der Transformation in [Hir04][BGHSO04] ist hier eine Transition mit einer Um-
schaltfunktion markiert. Da die Umschaltfunktion jedoch nicht das Echtzeitverhalten be-
einflusst, kann sie ebenfalls vernachlissigt werden. So kann auch hier die Transformation
aus [BGHS04] verwendet werden.

Bei der Modellierung des hybriden Rekonfiguration Charts der iibergeordneten Kompo-
nente wird explizit angenommen, dass die eingebetteten Komponenteninstanzen ihren in-
ternen Zustand zeitgleich mit dem Zustand der iibergeordneten Komponente verlassen
bzw. betreten. Da die Aktivierung der Transitionen und der Schaltvorgang innerhalb der-
selben Perioden stattfinden, wird bei der Ausfithrung des Systems das zeitgleiche Ver-
lassen und Betreten von Zustinden erzwungen. Verldsst zum Beispiel die Komponente
Monitor den Zustand NoneAvailable, muss die eingebettete Komponenteninstanz BC den
internen Zustand Robust verlassen.

Um das zeitgleiche Verlassen und Betreten von Zustinden auch beim Model Checking zu
realisieren, ist eine Synchronisierung der Schaltvorginge notwendig. Die Synchronisie-
rung kann mit Hilfe von Synchronisationskanilen umgesetzt werden. Die iibergeordnete
Komponente ist dabei Sender, wihrend die eingebetteten Komponenteninstanzen Emp-
fanger sind. Die Synchronisierung muss genau dann erfolgen, wenn ein Zustand verlas-
sen und betreten wird. Da hybride Rekonfiguration Charts und Interface Statecharts sowie
auch Realtime Statecharts diese Moglichkeit nicht bieten, muss eine Transformation der
Modelle erfolgen. Im Fall, dass mehrere eingebettete Komponenteninstanzen reagieren
miissen, kann eine Kette von committed locations (sieche [BDL04]) verwendet werden. In
Abbildung 3.15 ist ein Ausschnitt aus dem Mapping dargestellt.

3.5 Evaluierung

In [Kud05] wurden die Funktionalitdten zur Modellierung und die Verifikation der rein
syntaktischen Verifikationsverfahren aus [GBSOO04] in der Fujaba Realtime Tool Suite!
implementiert. Der in diesem Kapitel vorgestellte Ansatz wurde anhand des eingefiihrten
Beispiel des Feder-Neige-Moduls evaluiert. Fiir die Evaluierung wurde der Model Che-
cker UPPAAL [BDLO04] verwendet, da dieser bereits in der Fujaba Realtime Tool Suite
integriert wurde [Hir04][BGH'05b].

In Abbildung 3.16 und 3.18 sind die transformierten Timed Automata der Interface
Statecharts BodyControl und des Rekonfigurations Charts Monitor, wie sie von UPPAAL

"http://www.fujaba.de/realtime

7

Kapitel 3 Verifikation eines OCM

sensorAbs.ok

Lintern 2 diow
NoneAvailable- tintern 1= 0 NoneAvailable-
AbsAvailable_Exit! OffOn_Exit! AbsAvailable_Enter! OffOn_Entry!

None-

intermediatel NoneAvailable_ ntermediate2 None-
Available ‘ AbsAvailable ‘ Available
commited ‘ ‘ commited
Lintern < dup
Synchronization 1

Robust Robust_ | tintern = diow Absolute
NoneAvailable- Absolute NoneAvailable-
AbsAvailable Fxit? AbsAvailable Enter?

tintern

(_of (offon) (On
OffOn_Exit? OffOn_entry?
tintern == 0 tintern < 0

Abbildung 3.15: Synchronisation zwischen Monitor, Sensor und BodyControl

als Fingabe verwendet werden, dargestellt. Der Timed Automaton des Sensors ist in Ab-
bildung 3.17 dargestellt. Fiir die Verifikation wurde die parallele Ausfithrung betrachtet
und die Eigenschaft A[] not deadlock iiberpriift Das Ergebnis der Verifikation war, dass

Robust

AbsAvailableNoneAvailable_entry? ‘—i“‘feﬁfo

AbsAvailableNoneAvailable_exit? Absolute
N\

t_intern:=0

oneAvailableAbsAvailable_exit? t_intern>=20
t_intern:=0

NoneAvailableAbsA

dgilable_entry?

timer==50

t_intern>=20
RefAvailableAllAvailable/ exit?
t_intern:£0

AlIA

t intern:20 ailableAbsAvailable_entry?
t_intern<=50 AbsAvailableAllAvailable /exit?

Timeout

AllAvailableRefAvailable_entry?

t_intern<=50 . timer<=50

switchNotPossible? be_switchToRobust!

t_intern<=50
t_intern:=0

AI\AvaiIabIeRefiAvaiIableiexiW

t]intern<=50
t_intern>=20

AbsAvailableAllAvailable_entry?

tintem>=20 t>=threshold
RefAvailableAllAvailable_entry? 4 AllAvailableAbsAvailable_exit?
t:=threshold

Reference t_intern:=0

Abbildung 3.16: Timed Automaton des Interface Statecharts der BC Komponente

t_intern:=0

NoneAvailableAbsAvailable_entry? ~ NoneAvailableAbsAvailable_exit?

Available_entry? RefAvailableAtiAva
. t_intern:=0
reinit? =0O) ot
AllAvailableRefAvailable_exit?
t_intern=0

On

AbsAvailableNoneAvailable_exit? AbsAvailableNoneAvailable_entry?
t_intern:=0

Abbildung 3.17: Timed Automaton des Interface Statecharts der Sensor Komponente

78

3.6 Zusammenfassung

AllAvailable AbsAvailableAllAvailable_entry! AbsAvailableAllAvailable_exitt ~ ABSAvailable

©)=

0 @)~
timer:=0 N

t_intern>=20 t_intern:=0

t_intern<=50

be_switchToRobust?
RefAvailapleAllAvailable_entry!
t_intern:=0

AbsAvailgbleNoneAvailable_exit!
t_intern:=p

AllAvailableAbsAvailable_exit!

AllAvailableAbsAvailable_entry!

()
N

t_intern>=20 t_intern>=20
RefAvailableAllAvailable_entry!

AllAvailableRefAvailable_exit!

AbsAvailgbleNoneAvailable_exit!
NoneAvailableAbsAvailable_entry!

timer<=51

reinit!

tlintern<=50 tlintern<=0

tintern<=50 tJintern<=50
t_intern>=20
RefAvailapleAllAvailable_exit!

AllAvailableRefAvailable_entry!

AbsAvailgbleNoneAvailable_entry!
NoneAvailableAbsAvailable_exit!

o ©
| exit!
RefAvailal bleNoneAvailable_entry!
t_intern:=|
A neAvailable
~ &/

Abbildung 3.18: Timed Automaton des Monitor Verhaltens

das System deadlock frei ist. Daraus ergibt sich, dass die Einbettung aller Komponenten
korrekt ist. Die Verifikation hat ca. 0.31 Sekunden bei einem Speicherverbrauch von 2092
KB benotigt.”.

3.6 Zusammenfassung

In diesem Kapitel wurde beschrieben, wie sich ein OCM verifizieren lidsst. Dabei wur-
de ein bereits vorhandener Ansatz [GBSOO04] zur Verifikation der Rekonfiguration von
MECHATRONIC UML Modellen erweitert, der durch zahlreiche Einschrinkungen in der
Ausdrucksstirke fiir die Interface Statecharts fiir die komplexen mechatronischen Syste-
me nicht anwendbar war. Der neue Ansatz erlaubt nun auch die Modellierung und Veri-
fikation von komplexen Zeitbedingungen (nicht lokale Zeitbedingungen) und proaktivem
Verhalten. Die Konzepte wurden formal definiert und eine experimentelle Evaluierung hat
die Ergebnisse bestitigt.

Wurde auf einem Pentium 4, 2.4 GHz, 1 GB memory, OS Linux Redhat durchgefiihrt.

79

Kapitel 3 Verifikation eines OCM

80

Kapitel 4

Verifikation des Verhaltens eines
OCM in der Umwelt

Im vorangegangenen Kapitel wurde beschrieben, wie sich ein einzelnes OCM model-
liert durch statische Konstrukte hinsichtlich Sicherheitseigenschaften verifizieren lésst.
In komplexen, vernetzten mechatronischen Systemen stehen allerdings nur begrenzte
Rechen- und Speicherkapazititen zur Verfiigung. Zusitzlich unterliegt das System zur
Laufzeit einer Evolution abhingig vom gegebenem Kontext bestimmt durch die Umwelt.
Anforderungen an komplexe, mechatronische Systeme sehen deshalb Dynamik vor, d.h.
Steuerungssoftware muss zu Laufzeit ausgetauscht werden konnen. In Schilling [Sch06]
wurde bereits beschrieben, wie Graphtransformationssysteme zur Beschreibung von dy-
namischen Veridnderungen im Kontext von mechatronischen Systemen eingesetzt werden
konnen. So wurde das in Abbildung 4.1 dargestellte Szenario auf der Basis von Graph-
transformationssystemen beschrieben. Die obere Hilfte des Bildes zeigt einen aktuellen
Systemzustand. Hier fahren zwei Shuttles hintereinander auf zwei verschiedenen Stre-
ckenabschnitten. Dabei wird die Diskretisierung vorgenommen, dass ein Shuttle immer
genau auf einem Streckenabschnitt steht. Die untere Hilfte des Bildes zeigt die koordi-
nierte Bewegung des Shuttles auf den Streckenabschnitten, modelliert durch eine graph-
basierte Regel. Hier wird beschrieben, welche Objekte existieren und wie miteinander
verbunden sind. Im vorliegenden Beispiel existiert eine Instanz des DistanceCoordina-
tionPattern, welches die Verhaltenskoordination zweier verbundener Shuttles realisiert.

4.1 Grenzen des bisherigen Ansatzes

Der von Schilling vorgeschlagene Ansatz [Sch06] zeigt eine Schwiche in der Model-
lierung und Verifikation auf: es wird keine Zeit beriicksichtigt. Daraus ergeben sich die
folgenden zwei Probleme:

81

Kapitel 4 Verifikation des Verhaltens eines OCM in der Umwelt

Systemzustand: Track1 Track2
Regel: dc1:DistanceCoordinationPattern
A A
2 g
s1:Shuttle s2:Shuttle
L VT() =4 QOA
v 9o reafeu; v
t1:Track next > :Track next > Track

Abbildung 4.1: Beispiel fiir ein Graphtransformationssystem

Instanziierungsdauer von Echtzeit-Koordinationsmustern: Es ist nicht mog-
lich, die Instanziierungsdauer eines Echtzeit-Koordinationsmusters zu beschreiben. In
Abbildung 4.1 ist durch die Regel lediglich beschrieben, dass zwei aufeinander folgende
Shuttles das DistanceCoordinationPattern instanziieren miissen. Im Detail aber bedeutet
die Instanziierung eines Echtzeit-Koordinationsmusters das Aktivieren und Deaktivieren
von Softwarekomponenten, welches, dhnlich wie das Umschalten zwischen Reglern, Zeit
benotigt. Neben diesem Zeitaspekt muss auch das aktuelle kontinuierliche Verhalten, wie
z.B. die Geschwindigkeit, des Shuttles beriicksichtigt werden. Es ist offensichtlich, dass
ein Shuttle, das 160’“7m fahrt, ebenfalls rechtzeitig die Aktivierung und Deaktivierung von
Softwarekomponenten vornehmen kénnen muss wie ein Shuttle, das nur 40’%m fahrt. D.h.
die Abhingigkeit zwischen der Dauer der Instanziierung einer Softwarekomponente zur
aktuellen Geschwindigkeit muss ebenfalls beriicksichtigt werden.

Beschreibung von kontinuierlichen Bewegungen: Bei der in Abbildung 4.2
dargestellten Situation bewegt sich ein Shuttle {iber aufeinander folgende Streckenab-
schnitte. Hierbei entspricht die GroBe eines Streckenabschnitts nun nicht mehr genau der
GroBe eines Shuttles, sondern kann beliebig endlich lang sein, um das Modell realitédtsge-
treu abzubilden. Falls nun aber mehrere Shuttles hintereinander in die gleiche Richtung
fahren, wire es moglich, dass diese kollidieren, da sich die Position der Shuttles nicht
diskret bestimmen lésst.

82

4.1 Grenzen des bisherigen Ansatzes

Um eine derartige Situation im Modell auszuschlieBen, bestiinde eine Moglichkeit dar-
in, dafiir zu sorgen, dass alle Shuttles mit der gleichen Geschwindigkeit die Streckenab-
schnitte passieren. Wenn es im zugrunde liegenden Modell also mdoglich ist, Aussagen
iber die Zeit zu formulieren, so kann iiber den Zusammenhang, dass sich die Geschwin-
digkeit aus der Strecke pro Zeit ermitteln lédsst, hiermit auch die Eigenschaft, dass die
Shuttles alle die gleiche Geschwindigkeit fahren, formuliert werden. Hiermit ist im Bei-
spiel eine derartige Kollision ausgeschlossen. Um diese Eigenschaften umzusetzen ist die
Idee, die Regeln mit Zeitbedingungen zu versehen sowie Zeitinvarianten fiir Graphsitua-
tionen zu beschreiben, um kontinuierliche Zeitvorgiinge zu modellieren. In Abbildung 4.2
ist die entsprechende Regel mit Zeitbedingung (unten links) sowie die Invariante (unten
rechts) fiir die Fortbewegung eines Shuttles modelliert.

Track1 Track2
ool M.W .o
--------------- t>=5
:Shuttle :Shuttle
, Clock : t
A 3
A
] s d t<6
=(w NG
v i [SENN
! :Track
:Track ! > :Track —
Jnext Clock : t
“Zeitbehaftete Regel Invarianten Regel

~~~~~

Abbildung 4.2: Beispiel fiir ein zeitbehaftetes Graphtransformationssystem

Um eine derartige Situation zu modellieren ist es moglich, auch auf andere Modellarten
zuriick zu greifen. So konnte etwa ein Konvoi durch Timed Automata oder Petrinetze
abgebildet werden, bei welchem die Eigenschaft beriicksichtigt wird, dass alle Shuttles
die gleiche Geschwindigkeit fahren. Allerdings verfiigen diese Modelle nicht direkt tiber
eine dynamische Struktur, was es schwierig macht, ein entsprechendes Modell fiir eine
beliebige Anzahl an Shuttles zu erstellen und den zur Laufzeit benotigten Austausch von
Softwarekomponenten zu modellieren.

83



Kapitel 4 Verifikation des Verhaltens eines OCM in der Umwelt

Im Folgenden werden nun zuerst die Erweiterungen hinsichtlich der Modellierung in Ab-
schnitt 4.2 beschrieben und anschliefend in Abschnitt 4.3 formalisiert. Die Verifikation
des Verhaltens von OCMs in der Umwelt wird in Abschnitt 4.4 beschrieben.

4.2 Modellierung

In diesem Abschnitt wird beschrieben, in welcher Art und Weise Graphtransformations-
systeme erweitert werden, um zeitliche Bestandteile in das bestehende Modell zu integrie-
ren. Als erstes wird das Shuttlebeispiel aufgegriffen, anhand dessen die neuen Konzepte
durchgéngig erklart werden. Ein Vergleich der Modelle der Graphtransformationssysteme
und der Timed Automata zeigt Gemeinsamkeiten und Probleme auf, die sich durch die
dynamische Struktur von Graphtransformationssystemen ergeben und darauf, wie diese
Eigenschaften Einfluss auf die Modellierung von Zeit haben. Die hier gewonnenen Er-
kenntnisse gehen in die Erweiterungen fiir die Definition eines zeitbehaftetes Graphtrans-
formationssystem ein.

4.2.1 Beispiel

Als Beispiel fiir ein entsprechendes Modell, welches sowohl iiber eine dynamische Struk-
tur als auch iiber eine zeitliche Komponente verfiigt, dient das in der Einleitung (siehe
Abschnitt 1.2) beschriebene Shuttlesystem. Dabei wird betrachtet, wie die Fortbewegung
eines Shuttles von Schienenabschnitt zu Schienenabschnitt modelliert werden kann.

Alle diese Komponenten werden im Modell beriicksichtigt. Dabei wird die Darstel-
lung dieser Komponenten innerhalb des Beispiels in Form von speziellen UML-Klassen-
Diagrammen und UML-Objekt-Diagrammen vorgenommen. Die hierbei verwendete No-
tation orientiert sich an den von Ziindorf [ZiinO1] vorgestellten Story-Pattern.

Die Bestandteile, z.B. einzelne Shuttle oder die Schienenabschnitte sind in Form von Kno-
ten beschrieben. Verbindungen oder Assoziationen zwischen den Knoten werden durch
gerichtete Kanten dargestellt. Eine solche Assoziation existiert z.B., wenn sich ein Shutt-
le auf einem Schienenabschnitt befindet. Dieses wird durch eine gerichtete Kante zwi-
schen den entsprechenden Knoten abgebildet. Die Abbildung 4.3 zeigt einen Ausschnitt
des Schienensystems mit Shuttlen. Zusitzlich zu den Strukturbeschreibungen sollen auch
zeitliche Abhiéngigkeiten und Eigenschaften im Modell beriicksichtigt werden. Bei einem
realen System ist es wie bereits erwihnt entscheidend, wie lange ein Shuttle zum Uber-
fahren eines Schienenabschnitts benotigt, um hierdurch die aktuelle Geschwindigkeit des
Shuttles zu modellieren.

84



4.2 Modellierung

shuttlel : Shuttle

)
=3
\

next > next > next > next > next >

trackl : Track track2 : Track track3 : Track track4 : Track
track10 : Track trackb : Track
track9 : Track track8 : Track track? : Track track6 : Track
< next < next < next < next < next
N
T

shuttle? : Shuttle

Abbildung 4.3: Das durch einen Graphen beschriebene Shuttlesystem

4.2.2 Zeit und Graphtransformationssysteme

In diesem Abschnitt wird beschrieben, wie Graphtransformationssysteme mit zeitlichen
Bedingungen modelliert werden koénnen. Als Referenzmodell fiir die Beschreibung von
Echtzeit-Verhalten wird das Modell der Timed Automata (sieche Abschnitt 2.3.2) verwen-
det.

Es gibt grundsitzlich verschiedene Moglichkeiten, Zeit innerhalb eines Modells abzubil-
den, so etwa, wie bei [CGP0OO] beschrieben, in Form von diskreter oder kontinuierlicher
Echtzeit. Die in dieser Arbeit gewidhlte Form, wie sie bei den Graphtransformationssys-
temen ergédnzt wird, orientiert sich an der Art wie sie auch beim Timed Automaton Ver-
wendung findet. Dort wird kontinuierliches Echtzeitverhalten modelliert. Hierzu werden,
wie in Kapitel 2.3.2 beschrieben, einzelne Clocks z;, x; : 4,7 € Nt verwendet, die belie-
bige Werte aus den positiven reellen Zahlen annehmen konnen. Uber diese Clocks werden
dann, wie beim Timed Automaton, einzelne Bedingungen in der Form z; — xz; ~ c for-
muliert (siehe Definition 3, Abschnitt 2.3.2).

4.2.2.1 Vergleich: Timed Automaton - GTS

Anhand der Uberfiihrung eines Graphtransformationssystems in das entsprechende Mo-
dell eines Timed Automaton wird hier ein Vergleich beider Modelle beschrieben. Die

85



Kapitel 4 Verifikation des Verhaltens eines OCM in der Umwelt

hierbei auftretenden Probleme geben Hinweise darauf, wie die einzelnen zeitlichen Be-
standteile des Timed Automaton angepasst werden miissen, um diese bei den Graph-
transformationssystemen zu beriicksichtigen. Ziel ist es, anhand der Ergebnisse dieses
Vergleiches eine Losung zu entwickeln, die es ermdglicht nach dem Vorbild des Timed
Automaton zeitliche Bestandteile bei den Graphtransformationssystemen zu ergédnzen.
Bei diesen zu ergiinzenden Bestandteilen handelt es sich um einzelne Clocks, Guards,
Clockresets sowie Invarianten.

Bei der Uberfiihrung steht dabei nicht im Vordergrund, ein moglichst optimales oder voll-
standiges Verfahren zu entwickeln, vielmehr werden hierdurch Unterschiede zwischen
den beiden Modellen erarbeitet. Das in der Abbildung 4.4 dargestellte System wird nun

: Shuttle
A
N
Q.
8 o
é v TTC/'@QI AN
Q
v S
: Track next > : Track
Regel P,
: Shuttle : Shuttle
2 QN
\"
: Track next > : Track : Track next > : Track
Graph G, Graph G2

Abbildung 4.4: Ein Beispiel fiir ein Graphtransformationssystem mit zwei Graphen G,
G5 und einer Graphtransformationsregel P

in einen entsprechenden Automaten iiberfiihrt (siche Abbildung 4.5). Hierfiir werden die
einzelnen Graphen (G; und G in zwei entsprechende Zustinde s, und s; eines endlichen
Automaten iiberfiihrt. Die Anwendung der Graphtransformationsregel P, wird durch eine
Transition p; zwischen diesen beiden Zustinden ausgedriickt.

Nachfolgend wird der Algorithmus 4.1 vorgestellt, der eine entsprechende Zuordnungs-
vorschrift fiir einen endlichen Automaten M (siehe Kapitel 2.3.1, Abbildung 2.9), mit
M = (%,9,A, Q% beschreibt. Als Ausgang dient ein Graphtransformationssystem

86



4.2 Modellierung

P1

So

Abbildung 4.5: Ein dem Graphtransformationssystem in Abbildung 4.4 entsprechender
Automat

S = (G,G° P), mit G der Menge der Zustinde, G° der Menge der Startzustinde und
‘P der Menge der Graphtransformationsregeln:

Algorithmus 4.1 procedure M = transfer(S)

procedure M = transfer(S)
1 M:=(%,09,A,Q%
Q'Y A=10
: for all g; € G do
f(gi) = a
Q=0QUg
end for
. for all ¢{ € G° do
¢°
flg) =a
QO — QO U qo
: end for
: forallm : m := g; x P; x g5, do
A =AU(f(g;) x P x f(ge))
: end for

e AERD

—_ = = e
o0 =2

Y} bleibt bei dieser Abbildung leer, worauf nachfolgend noch eingegangen wird.

An dieser Stelle wird auf zwei der Eigenschaften eingegangen, die aufzeigen, weshalb
die Abbildung schwierig, bzw. unvollstindig ist. Dabei handelt es sich zum einen um die
Kantenbeschriftungen, die bei den Modellen eine unterschiedliche Bedeutung haben, zum
anderen um den Zeitpunkt, zu dem eine Abbildung wie oben beschrieben vorgenommen
werden kann.

Bei endlichen Automaten hat die Kantenbeschriftungen Y eine andere Bedeutung als die
Transitionen iiber Graphtransformationsregeln innerhalb von Graphtransformationssys-
temen. Bei einem Automaten entspricht die Beschriftung einer méglichen Eingabe, bei
welcher der Automat seinen Zustand iiber die entsprechende Kante wechselt. So kann
etwa bei den Kanten des Beispielautomaten aus dem Kapitel 2.3.1, von dem Zustand s
nach s; gewechselt werden, wenn die Eingabe a erfolgt. Bei Graphtransformationssys-

87



Kapitel 4 Verifikation des Verhaltens eines OCM in der Umwelt

temen bezeichnet diese Beschriftung der Kante die Graphtransformation, welche ange-
wendet wird, um vom Wirtsgraphen zum Tochtergraphen zu gelangen. Dabei ist die Vor-
aussetzung fiir die entsprechende Transition keine Eingabe sondern eine Bedingung, die
im aktuellen Zustand zutreffen muss. Diese Bedingung ist, dass die linke Seite der jewei-
ligen Graphtransformationsregel im Wirtsgraphen auffindbar sein muss. Der Unterschied
liegt hier also darin, dass beim endlichen Automaten die Kanten mit der Eingabe be-
schriftet werden und bei den Graphtransformationssystemen mit dem Namen der Graph-
transformationsregel, iiber die zwischen den einzelnen Graphen gewechselt wird. Beim
Modell des Automaten wird diese Bedingung in Form einer Eingabe vorgegeben, wih-
rend bei den Graphtransformationssystemen diese Bedingung einer Struktur entspricht,
deren Vorkommen bei der Analyse iiberpriift werden muss.

Ein weiterer Unterschied zwischen den beiden Modellen besteht darin, zu welchem Zeit-
punkt die Zustinde und Transitionen festgelegt werden. Bei den Automaten geschieht
dies bereits bei der Aufstellung des Modells. Im Gegensatz dazu entstehen die Knoten und
Kanten des Graphtransformationssystems, mit Ausnahme der initialen Startzustéinde G°,
nicht bei der Erstellung des Modells. Das erstellte Modell eines Graphtransformations-
systems verfiigt vor der Erreichbarkeitsanalyse nur iiber die initialen Graphen und eine
Anzahl an Graphtransformationsregeln. Um daraus den vollstindigen Zustandsraum des
Graphtransformationssystems zu erzeugen, ist es notwendig, eine Erreichbarkeitsanalyse
durchzufiihren. Vorher wire es nicht moglich, nach dem oben beschriebenen Vorgehen ei-
ne Abbildung des Graphtransformationssystems auf einen Automaten vorzunehmen. Im
Gegensatz hierzu ist die gesamte Struktur eines Automaten bereits vollstindig vorgege-
ben, sobald das Modell formuliert ist. Bei der dort durchgefiihrten Erreichbarkeitsanalyse
wird dann die Reihenfolge festgelegt, in der die einzelnen Zusténde erreicht werden kon-
nen; die Struktur des endlichen Automaten wird hierdurch aber nicht veridndert.

Die hier aufgezeigte Eigenschaft, dass die Struktur des endlichen Automaten fest vorge-
geben ist, ldsst sich auf die einzelnen Locations bei dem erweiterten Modell des Timed
Automaton iibertragen. Die hinzukommenden Bestandteile des Timed Automaton, wel-
che die zeitlichen Eigenschaften in Form von einzelnen Clocks und deren Bedingungen
reprisentieren, sind den fest vorgegebenen Strukturen des Modells des Automaten zu-
geordnet, wie in Abbildung 4.6 dargestellt. Dabei sind den einzelnen Locations die In-
varianten und den Kanten, bzw. Transitionen die Guards und Clock-Resets zugeordnet.
Die Clocks selbst existieren zu jedem Zeitpunkt und Zustand, in dem sich der Timed-
Automaton gerade befindet. Somit sind diese immer dem gesamten Modell des Timed
Automaton zugeordnet.

Im Folgenden werden Zuordnungsvorschriften der Clocks, Guards, Resets und Invarian-
ten beschrieben, die dem Modell der Graphtransformationssysteme die Clocks, Guards,
Resets und Invarianten zuordnen, ohne bereits alle erreichbaren Zustinde zu kennen. Da-
bei wird zuerst grundlegend behandelt, wie eine Zuordnung von einzelnen zeitlichen Be-
standteilen, wie diese beim Timed Automaton vorhanden sind, im Fall der Graphtransfor-

88



4.2 Modellierung

Xo>1 X2:=0 >
Guards und Resets
werden Kanten

zugeordnet

Invarianten werden
Locations zogeordnet

Clocks: X1 ,X2
7 > = Xo<3 ™
i X2§2 X2_1 Xo: 0 2 \
. » b X1§2 S
X1:=0 X1>2

Die in Guards, Resets und Invarianten vorkommenden
Clocks werden dem gesamten Automaten zugeordnet

Abbildung 4.6: Zuordnung der zeitlichen Bestandteile zu den festen Strukturen des
Timed Automaton.

mationssysteme vorgenommen wird. Hierbei gibt es verschiedene Aspekte, die betrach-
tet werden miissen, um eine solche Zuordnung zu ermoglichen. Allerdings ist neben der
Frage, wie dies im Modell technisch moglich ist, auch entscheidend fiir welchen Zweck
entsprechende Eigenschaften formulierbar sind.

Es wird hier mit einer bestimmten Eigenschaft von Graphtransformationssystemen gear-
beitet, ndmlich, dass es bei diesen hauptsidchlich um Strukturen geht, welche innerhalb
der initialen Graphen und den daraus resultierenden Folgegraphen vorhanden sind. Nach
diesen Strukturen wird eben durch die Graphtransformationsregeln gesucht. Diese Struk-
turen beschreiben Situationen und Zustinde, bzw. einen Teil dieser, welche innerhalb des
aktuellen Graphen gelten.

Mit diesen Strukturen werden einzelne zeitliche Eigenschaften verbunden. Dies bedeutet,
dass Graphtransformationsregeln dahingehend erweitert werden, bzw. neue Regeln hin-
zukommen. Diese sollten in der Lage sein, durch ihre Anwendung zeitliche Eigenschaften
zu einem Graphtransformationssystem hinzuzufiigen. Zunichst wird hier an einem Bei-
spiel darauf eingegangen, warum diese Losung gewéhlt wurde und welche Eigenschaften
hierdurch modellierbar sind.

89



Kapitel 4 Verifikation des Verhaltens eines OCM in der Umwelt

Als Eigenschaft soll formuliert werden, dass ein Shuttle mindestens 10 Zeiteinheiten zum
Uberfahren eines Schienenabschnittes bendtigt. Abbildung 4.7 zeigt diese Regel. Ent-
scheidend fiir die Information, wie lange das Shuttle auf dem Schienenabschnitt sein soll,
ist die mit einem Kreis markierte Struktur im Wirtsgraphen.

——

N
/7 N c>10
/ : Shuttle

Abbildung 4.7: Zuordnung einer Clock c zu einer Graphtransformationsregel

Um allerdings eine solche Bedingung formulieren zu konnen ist es notwendig iiber zu-
gehorige Clocks zu verfiigen. Im Beispiel wird die Clock ¢ bendtigt, um iiber diese die
Bedingung ¢ > 10 formulieren zu konnen.

4.2.2.2 Clockinstanzen

Die benotigten Clocks stellen im Vergleich zum Timed Automaton eine Besonderheit dar,
denn bei Graphtransformationssystemen ergibt sich die Struktur erst bei der Erreichbar-
keitsanalyse. Ohne eine bereits vorgegebene Struktur ist es nicht moglich, alle Clocks fest-
zulegen, die innerhalb des Graphtransformationssystems benotigt werden. Warum dies
der Fall ist, wird nachfolgend an einem Beispiel illustriert. Dabei handelt es sich um den
Wirtsgraphen GG in Abbildung 4.8, bei welchem die dort abgebildete Regel an den zwei
markierten Stellen angewendet werden kann. Da es moglich ist, dass eine der beiden
Stellen im Wirtsgraphen bereits ldnger existiert als die andere, werden fiir die Beriick-
sichtigung der zeitlichen Bedingungen ¢ > 3 auch entsprechend zwei einzelne Clocks
benotigt.

Um mehrere Clocks innerhalb eines Wirtsgraphen zu ermoglichen, werden von einer
Clock mehrere Instanzen erzeugt. Dabei wird der Name der jeweiligen Clock um die
IDs der einzelnen Knoten des Wirtsgraphen erweitert, auf welchen die Regel angewendet
wird. Entsprechend werden in dem Beispiel aus Abbildung 4.8 zwei Clocks c erzeugt, die

90



4.2 Modellierung

/| shuttle > Track N _
\ ID:5 c>=3
« |ID:2 ID:1 7
S~ -=" Shutle  |-=destroy>> > Track
- Qv Clock:c
e ——=Q Clock:c Clock:c
| = > =~ ~
i Shutle |~ Track N
\_ D4 ' ID:3 7 x={c.{1.2}L{5}}  y:={c.{3.4}{7}
Graph G~ ~

Abbildung 4.8: Der Graph G verfiigt iiber zwei Stellen, bei denen die Graphtransfor-
mationsregel mit der zeitlichen Bedingung ¢ > 3 angewendet werden
kann.

sich hinsichtlich der IDs der Knoten des Wirtsgraphen unterscheiden. Dem Graphen des
Beispiels werden die beiden Clocks x und y zugeordnet, wobei diese iiber einen Namen
identifiziert werden, sowie iiber einen Schliissel, der sich aus den IDs des Wirtsgraphen
zusammen setzt. Um die Zuordnung von einzelnen Clocks mit gleichem Namen und un-
terschiedlichen IDs eindeutig zu machen, werden zusitzlich die Kanten des Wirtsgraphen
bei dem erzeugten Schliissel mit beriicksichtigt:

x:=c[1,5,2],y :=[3,7,4]

Die so erzeugten Clocks werden nachfolgend als Clockinstanzen bezeichnet, um eine
Differenzierung zu den iiblichen Clocks zu erlauben.

Weiterhin soll es moglich sein, nur einen Teil der linken Seite einer Anwendungsregel mit
einer zugehorigen Clockinstanz zu verbinden. So etwa, wie es im Beispiel der Abbildung
4.7 dargestellt ist. Dort wird die Clockinstanz c, iiber welche eine Bedingung formuliert
ist, nur mit zwei der drei Knoten sowie einer der drei Kanten der Regel assoziiert. Um dies
zu ermOglichen werden die Anwendungsregeln erweitert, so dass den einzelnen Elemen-
ten ein entsprechendes Attribut hinzugefiigt werden kann, welches angibt, ob ein Knoten
oder eine Kante zu einer Clockinstanz zugehorig ist. Dabei wird wie in Abbildung 4.8 an
jedes Element der Anwendungsregel geschrieben, mit welchen Clockinstanz-Namen das
Element verbunden ist (gelb markiert). In Abbildung 4.8 ist die gesamte linke Seite mit
der Clockinstanz ¢ verbunden.

Aus diesen erweiterten Anwendungsregeln werden dann fiir die Clockinstanzen weitere
Regeln abgeleitet. Diese sorgen dafiir, dass den einzelnen Graphen des Graphtransfor-
mationssystems die entsprechenden Clockinstanzen hinzugefiigt werden. Fiir die Regel
aus dem Beispiel der Abbildung 4.7, zeigt die Darstellung 4.9 auf der rechten Seite die
abgeleitete Clockinstanzregel.

91



Kapitel 4 Verifikation des Verhaltens eines OCM in der Umwelt

c>10

. Shuttle . Shuttle
Clock:c

N

é‘ @]

D| @ = QD
21=9 & v
S| V& TTC’r@ & v
ﬁ o ‘91‘@A

\Y

: Track next > : Track : Track
Clock:c

Abgeleitete Regel fur Clock ¢

Abbildung 4.9: Die Abbildung zeigt auf der linken Seite eine Anwendungsregel mit den
attributierten Elementen, welche der Clock ¢ zugehorig sind. Rechts ist
die daraus abgeleitete Clockinstanzregel dargestellt.

Mit Hilfe dieser abgeleiteten Regeln werden die einzelnen Clockinstanzen einem Wirts-
graphen hinzugefiigt. Dabei muss noch beriicksichtigt werden, dass die Ausfiihrung der
Clockinstanzregel vor den zugehorigen Anwendungsregeln, aus welchen diese abgelei-
tet wurden, geschehen muss. Dies ist der Fall, da es fiir einzelne Clockinstanzen, welche
durch eine Clockinstanzregel erzeugt werden, entscheidend ist, seit wann diese existie-
ren. Um sicher zu stellen, dass Clockinstanzregeln vor den Anwendungsregeln ausgefiihrt
werden, wird den Graphtransformationsregeln eine Prioritit hinzugefiigt. Dabei erhalten
die Clockinstanzregeln eine hohere Prioritit als alle anderen Arten von Regeln. Der Me-
chanismus von priorisierten Anwendungsregeln wurde bereits in Definition 10 beschrie-
ben und kann von den bestehenden Modellen der Graphtransformationssysteme direkt
iibernommen werden.

4.2.2.3 Clockresets

Eine weiterer Bestandteil, der von dem Modell des Timed Automaton iibernommen wird,
sind die so genannten Clockresets. Diese werden bei den Graphtransformationssystemen
ebenfalls mit der Anwendungsregel verkniipft, wobei angegeben wird, welche Clockin-
stanzen durch die Anwendung der erweiterten Regel auf den Wert 0 zuriick gesetzt wer-
den. Das Vorgehen orientiert sich dabei an der Art und Weise, wie Guards mit Hilfe der
Graphtransformationsregeln hinzugefiigt werden. Ein Beispiel zeigt die Abbildung 4.10.
Dort ist die Clockinstanz ¢ mit der Graphtransformationsregel verkniipft und wird durch
einen entsprechenden Reset bei Anwendung auf den Wert 0 zuriick gesetzt. Dabei werden
fiir die verwendete Clockinstanz innerhalb des Resets nach dem gleichen Prinzip wie fiir
die zeitlichen Bedingungen einzelne Clockinstanzregeln abgeleitet.

92



4.2 Modellierung

c>10

_ Shuttle Reset: ¢:=10
Clock:c

N

3‘ (@]

D| o2

2l =9 U

S| V& Tc’ee z

Y, o ‘o

Vv

: Track next > . Track
Clock:c

Abbildung 4.10: Eine um Clockreset erweiterte Graphtransformationsregel. Dabei wird
die Clock ¢ nach Anwendung der Regel auf den Wert O zuriick gesetzt.

4.2.2.4 Invarianten

Hier wird beschrieben, wie die Invarianten des Timed Automaton bei dem Modell des
Graphtransformationssystems iibernommen werden. Uber diese werden beim Timed-
Automaton zeitliche Bedingungen zu einer Location hinzugefiigt. Hier wird ein Ansatz
vorgestellt, der es ermdglicht, diese Invarianten auf die einzelnen Graphen eines Graph-
transformationssystems zu iibertragen. Da vor einer Erreichbarkeitsanalyse des Graph-
transformationssystems nicht klar ist, welche Folge-Graphen erreichbar sind, ist eine Zu-
ordnung von Invarianten direkt zu einzelnen Graphen nicht sinnvoll moglich. Um aber
eine Umsetzung von Invarianten zu ermoglichen, wird hierfiir wiederum auf Strukturen
zuriick gegriffen, nach denen innerhalb eines Graphen durch eine Graphtransformations-
regel gesucht wird. Es werden Anwendungsregeln eingefiihrt, die nur dem Zweck dienen,
einzelne zeitliche Bedingungen zu einzelnen Graphen hinzuzufiigen. Hierzu werden so
genannte Invariantenregeln eingefiihrt. Diese Regeln verindern die Struktur des Wirtsgra-
phen, auf den sie angewendet werden, nicht, genauso wie die Clockinstanzregeln. Es wird
lediglich ein Matching mit der linken Seite der Anwendungsregel durchgefiihrt, d.h. die
Regel verfiigt tiber keine rechte Anwendungsseite. Falls eine Invariantenregel anwendbar
ist, wird die mit dieser verbundene zeitliche Bedingung dem Wirtsgraphen hinzugefiigt.
Eine mogliche Eigenschaft, die mit Hilfe einer solchen Invariantenregel formuliert wird,
wire, dass die Verweildauer eines Shuttles auf einem Schienenabschnitt max. 11 Zeitein-
heiten dauern darf (sieche Abbildung 4.11)

Ahnlich wie die Anwendungsregeln mit zeitlicher Bedingung benéstigen die Invarianten-
regeln ebenfalls zugehorige Clockinstanzen. Beim Beispiel der Abbildung 4.11 ist dies
die Clock d, von der es innerhalb eines Wirtsgraphen mehrere Instanzen geben kann. Dies
ist der Fall, da es wie bei den normalen Anwendungsregeln mehrere Stellen innerhalb des
Wirtsgraphen geben kann, an denen die Invariantenregeln anwendbar sind.

93



Kapitel 4 Verifikation des Verhaltens eines OCM in der Umwelt

d<11

<le
P9010

- Track
Clock:d

Abbildung 4.11: Die Regel fiigt einem Graphen die Invariante d < 11 hinzu.

Das Vorgehen bei den Invarianten ist dquivalent zu dem der zeitbehafteten Graphtransfor-
mationsregeln. Bei den Invarianten werden ebenfalls einzelne Elemente der linken Seite
der Regel mit den zugehorigen Clockinstanzen der Ungleichungen verkniipft. In der Ab-
bildung 4.11 sind alle Elemente mit der Clockinstanz d verbunden.

4.2.2.5 Zeitbehafteter Graph

Bei den hier betrachteten Erweiterungen spielen bei den Graphen des Graphtransfor-
mationssystems auch die zeitlichen Erreichbarkeitsraume eine Rolle. Dabei werden ein-
zelne Graphen mit Bedingungen iiber einzelne Clockinstanzen versehen. Ein Beispiel
hierfiir ist die Ungleichung der Form d < 11, die iiber die Invariantenregel in Abbil-
dung 4.11 den einzelnen Graphen hinzugefiigt wird. Somit muss das hier verwendete
Modell eines Graphen erweitert werden, um diesen Graphen einzelne zeitliche Erreich-
barkeitsriume hinzuzufiigen.

Dabei ist der Fall zu beriicksichtigen, dass ein einzelner Graph nicht nur iiber einen,
sondern auch iiber mehrere, eventuell disjunkte, zeitliche Erreichbarkeitsrdume verfiigen
kann. Dies ist der Fall, wenn innerhalb eines solchen erweiterten Graphtransformations-
systems ein Zyklus aus Transitionen zwischen den einzelnen Graphen existiert und durch
den Clockreset einer Graphtransformationsregel zu einem bereits existierenden Graphen
ein weiterer zeitlicher Erreichbarkeitsraum hinzugefiigt wird. In Abbildung 4.12 ist ein
Graphtransformationssystem dargestellt, bei dem zwei einzelne Graphen iiber jeweils
zwei unterschiedliche Erreichbarkeitsrdume verfiigen.

94



4.3 Semantik

Initialer Graph G, Graph G;
Pl c<=3 v
—

3]
(@]
o

(@]

Zeitliche Bedingungen: & Zeitliche Bedingungen: c<=3
lpg c>=3
Graph G, Graph G;
Pl c<=3
\
c:C PZ—C>:3 c:C

Zeitliche Bedingungen: c=3 Zeitliche Bedingungen: c<=3 A ¢>=3 => c=3

Abbildung 4.12: Die beiden Graphen GG; und G4, welche iiber jeweils zwei unterschied-
liche zeitliche Erreichbarkeitsriume verfiigen.

4.3 Semantik

Nachfolgend wird die Semantik der gerade vorgestellten Konzepte beschrieben. Dabei
wird das Modell der Graphtransformationssysteme aus dem Grundlagenkapitel 2.3.4 er-
weitert. Der Abschnitt schlie3t mit der Definition eines zeitbehafteten Graphen und eines
zeitbehafteten Graphtransformationssystems.

4.3.1 Clockinstanzen

Um Zeit in Graphtransformationssystemen beriicksichtigen zu konnen, miissen zeitliche
Bedingungen und die dort verwendeten Clockinstanzen definiert werden. Die bei den
erweiterten Graphtransformationssystemen verwendeten zeitlichen Bedingungen setzen
sich aus Ungleichungen der Form x; — x; ~ d zusammen. z;, x; sind Clockinstanzen,
wobei z;, z; € RT, sowie ~€ {<, <} und d € Z. Jede Clockinstanz ist immer mit min-
destens einem Graphen G verbunden. Dies bedeutet, dass eine Clockinstanz einen Namen
M und eine Menge an Knoten und Kanten aus G zugeordnet hat. Diese Kanten und Kno-
ten miissen dabei anhand einer ID eindeutig in G identifizierbar sein. Die Identitit einer
solchen Clockinstanz ergibt sich also aus einem Namen und den IDs der zugeordneten
Elemente aus G. Ein Beispiel fiir einen Graphen sowie den zugehorigen Clockinstanzen
ist in Abbildung 4.13 dargestellt.

95



Kapitel 4 Verifikation des Verhaltens eines OCM in der Umwelt

(/ shuttlel : Shuttle D'>5 trackl : Track \\
. !
N\ ID:2 ID:1 v
~ - -4 -
S——____ - ___L-- Shutlle  |=destroy>> > Track
Qv Clock:c
- ————=-90 _ Clock:c Clock:c
e -7 > 7~ N
/ shuttle2 : Shuttle 7 track? : Track \
\ .
N ID:4 ID:3 7 x:={c{1,2},{8)} ; y={c.{3,4L{7h
~
Graph G

Abbildung 4.13: Zum Wirtsgraphen G werden zwei Instanzen x,y der Clockinstanz c
erzeugt. Dabei ergibt sich x := (¢, {1,2},{5}) und y := (¢, {3,4},{7}).

Definition 21

Eine Graph-Clockinstanz ist eine Clock x := (M, N ,E), wobei M der Name der Clock
ist, N die Menge der Knoten-IDs und £ die Menge der Kanten-IDs darstellt. v kann dabei,
iiber die Zuweisungsfunktion V (x), ein Wert aus den reellen positiven Zahlen zugewiesen
werden.

Nachfolgend wird in dieser Arbeit die Zuweisungsfunktion V' (z) weg gelassen, um die
Notation abzukiirzen und die Clockinstanzen beziiglich der Notation, wie die Clocks der
Clockzones aus Kapitel 2.3.5.3, behandeln zu konnen. Ahnlich wie bei den Clockzones
existiert auch hier eine Referenzclock z, die keinem Knoten und keiner Kante zugeord-
net ist. Die hier definierten Clockinstanzen werden bei den zeitlichen Bedingungen zur
Darstellung der Erreichbarkeitsriume verwendet. Innerhalb der Ungleichungen werden
die entsprechenden Clockinstanzen eingesetzt.

Definition 22

Eine zeitliche Bedingung t := x; — x; ~ d mit Clockinstanzen setzt sich zusammen aus
x;, xj, wobei entweder x; oder x; der Referenz-Clock o entsprechen kann. Falls x;, bzw.
xj # xg, so ist x;, bzw. x; eine Clockinstanz wie in Definition 21 beschrieben. Weiterhin

gilt ~€ (<, <), 4,7 € {N*\ 0} und d € Z.

Aus einer Menge dieser zeitlichen Bedingungen wird ein zeitlicher Erreichbarkeitsraum
aufgebaut. Hierzu wird eine Anzahl an ¢; von zeitlichen Bedingungen mit Clockinstanzen
zu einer Menge 1" zusammen gefasst. Der eigentliche zeitliche Erreichbarkeitsraum er-
gibt sich, indem #hnlich wie bei den in Kapitel 2.3.5.3 beschriebenen Clockzones die
Konjunktion iiber alle ¢; € 7" gebildet wird.

Definition 23

Ein zeitlicher Erreichbarkeitsraum T := (t, .., t,) mit |, n € N besteht aus einer Menge
an einzelnen zeitlichen Bedingungen t;, wie diese in Definition 22 definiert sind. Dabei ist
es moglich das T = () ist.

96



4.3 Semantik

4.3.2 Zeitbehaftete Anwendungsregeln

In diesem Abschnitt werden die neuen zeitbehafteten Anwendungsregeln definiert.

Definition 24

Eine Graphtransformationsregel P, : (P, P,, h,T,V;, E;) mit zeitlichen Bedingungen be-
steht aus einem linken Anwendungsteil P, und einem rechten Anwendungsteil P,. Zusdtz-
lich zu einer Graphtransformationsregel, wie in Definition 9 beschrieben, verfiigt P, iiber
eine Menge an zeitlichen Bedingungen T' mit Clockinstanzen, wie in Definition 22 defi-
niert. Weiterhin existieren die Zuordnungsfunktionen V; und E;, welche den Elementen
der linken Seite P, von P, IDs zuordnen. V; ordnet allen Knoten von P, \ d(P,;) ein inner-
halb von P, eindeutiges ny, zu und E; ordnet allen Kanten in P, \ d(P;) ein eindeutiges
ey zu. Dabei gilt ny,, e, € NT. Fiir jede Clockinstanz x; € X, mit X := (21, .., x,) und
Tj = (M, N, E), die in einem t € T verwendet wird (siehe Definition 22), ergeben sich
N und & wie folgt: N werden alle Elemente aus V; und € alle Elemente aus E; zugewie-
sen.

In der obigen Definition sind alle Clockinstanzen immer mit dem gesamten Teil der lin-
ken Seite P, \ d(P;) einer Anwendungsregel verbunden. Diese wird nun im Folgenden,
angelehnt an Abschnitt 4.2.2.2, derart erweitert, dass es auch moglich ist, Clockinstanzen
nur mit einem Teil einer Anwendungsregel zu verkniipfen.

Definition 25

Eine Graphtransformationsregel P, := (P, P,,h,T,V;, E;, f) mit zeitlichen Bedingun-
gen und einer Anzahl an zugeordneten Clock-Elementen verfiigt zusdtzlich zu Definition
24 iiber eine Funktion f, welche den in T vorkommenden Clockinstanzen die Menge v
und e zuordnet, wobei v C V; und e C E;.

4.3.2.1 Resets

Bei den bis hier vorgestellten erweiterten Graphtransformationsregeln fehlen noch die
Resets, bei deren Anwendung einzelne Clockinstanzen zuriick gesetzt werden.

Definition 26
Ein Clockinstanz-Reset v := (x,.) besteht aus der zugehorigen Clockinstanz x,, welche
bei Anwendung von r auf den Wert 0 zuriick gesetzt wird.

Die Graphtransformationsregel aus Definition 25 wird entsprechend um die Clockinstanz-
Resets erweitert.

Definition 27
Eine Graphtransformationsregel P, := (P, P,,h,T,V;, E;, R, f), welche um Clockin-
stanz-Resets erweitert ist, besteht zusdtzlich aus der Menge R. Fiir alle r € R gilt, dass

97



Kapitel 4 Verifikation des Verhaltens eines OCM in der Umwelt

r ein Clockinstanz-Reset ist. Fiir die Zuordnungsfunktion f gilt zusdtzlich, dass diese den
Clockinstanzen xy, welche in v € R vorkommen, ebenfalls einzelne Elemente aus V; und
E; zuordnet.

Dabei gilt der bei einer Anwendung ausgefiihrte Reset als eine Nachbedingung, welche
mit dem rechten Teil P, der Graphtransformationsregel verbunden wird.

4.3.2.2 Invarianten

Neben den Clockinstanz-Regeln gibt es eine weitere Art von Graphtransformationsregeln,
nidmlich die in Abschnitt 4.2.2.4 beschriebenen Invarianten.

Definition 28

Eine Invarianten-Graphtransformationsregel 1, := (I, h,t,V;, E;, f) besteht aus einer
linken Seite I;, welche die Vorbedingung darstellt, einem Graphmorphismus h sowie aus
einer zeitlichen Bediungung t := (x1 — x5 ~ d) mit Clockinstanzen, wie bei Definition 22
definiert. Falls x1, bzw. x5 nicht der Referenz-Clock xq entspricht, so wird den Mengen N
und & (der Clockinstanzen x1 und x5) das Ergebnis der Funktion f(n) zugewiesen, wobei
gilt, n stammt aus den Knoten und Kanten von I,.

Da der Graphmorphismus h [; immer auf I; selbst abbildet, werden bei der Anwendung
entsprechend keine Kanten oder Knoten entfernt oder hinzugefiigt. Eine so definierte In-
variantenregel verfiigt iiber keine rechte Seite. Bei Anwendung dieser Regel wird den
zeitlichen Erreichbarkeitsriumen eines Graphen als Nachbedingung die Ungleichung ¢
hinzugefiigt.

4.3.2.3 Ableitung von Clockinstanzregeln

Um die Clockinstanzen zu einem Graphen G hinzuzufiigen, werden aus den erweiterten
Graphtransformationsregeln aus Definition 27 weitere Regeln abgeleitet. Dabei werden
fiir jede Clockinstanz xj, die in den Bedingungen 7' einer zeitbehafteten Graphtransfor-
mationsregel, in den Clockinstanz-Resets R oder in der jeweiligen Bedingung ¢ einer In-
variantenregel vorkommt, einzelne Graphtransformationsregeln C}; abgeleitet. Diese wer-
den nachfolgend als Clockinstanzregeln bezeichnet und ergeben sich aus der linken Seite
P, der Graphtransformationsregel FP;, bzw. aus der linken Seite [; der Invariantenregel.
Hierbei werden fiir eine Clockinstanz xy, die durch die Funktion f aus P, oder I; iiber
die IDs zugeordneten Knoten und Kanten verwendet, um die linke Seite der Clockin-
stanzregel C; herzuleiten. Die einzige Nachbedingung von C} ist, dass dem Graphen G
eine Clockinstanz x), hinzugefiigt wird, falls diese innerhalb von G noch nicht existiert.
Dabei werden z nicht die Knoten und Kanten IDs zugeordnet, welche die Funktion f

98



4.3 Semantik

liefert, sondern die Knoten- und Kanten-IDs, welche innerhalb des Wirtsgraphen GG beim
Anwenden der Clockinstanz-Regel im Wirtsgraphen aufgefunden werden (siehe Abbil-
dung 4.13).

Definition 29

Eine Clockinstanzregel C; = (M, Cy, h,C;), welche auf einen Wirtsgraphen G ange-
wendet wird, besteht aus dem Namen M der Clockinstanz, sowie der linken Seite C) der
Graphtransformationsregel. C; entspricht dabei einer linken Seite P, einer Graphtrans-
formationsregel, wie in Definition 9 angegeben, mit dem Unterschied, dass die Funktion
d(Cy) des Graphmorphismus h die leere Menge ) liefert. C, verfiigt iiber eine Nachbe-
dingung C; = (M,N,E), wobei C; eine Clockinstanz ist und N eine Teilmenge der
Kanten-IDs V;(v) mitv € V und V aus C;und € C E;(e) mit e € FE und E aus C,.

Im Folgenden wird darauf eingegangen, wie aus einer Graphtransformationsregel oder
Invariantenregel mit zeitlicher Bedingung die einzelnen Clockinstanzregeln hergeleitet
werden. Das hier beschriebene Vorgehen findet nach dem Erstellen eines entsprechen-
den initialen Graphtransformationssystems und vor der Durchfiihrung einer Erreichbar-
keitsanalyse statt. Auf das entsprechende Verfahren, um die Clockinstanzregeln auf einen
Wirtsgraphen anzuwenden, wird im nédchsten Abschnitt eingegangen.

Eine entsprechende Graphtransformationsregel P, := (P, P, h,T,V;, E;, R, f) verfiigt
iiber eine Menge an zeitlichen Bedingungen 7" und Clockinstanz-Resets R. Fiirallet € T’
giltt ;== (xy — 29 ~ d) und fir alle r € R gilt r := (x,). X;, ist die Menge, welche sich
aus der Vereinigung der Clockinstanzen x1, 2 und aus allen ¢ € T sowie allen x,, die
in den r € R vorhanden sind, ergibt. Fiir jedes z := (M, N, &) mit z € X;, wird dann
eine Clockinstanz-Regel ¢; := (M;, C};, h,C; ;) mit j € N* nach dem im Algorithmus
4.2 beschriebenen Schema hergeleitet, wobei () ; = (V., E.). Die Funktion f der In-
variantenregel I; := (I, h,t, E;, V;, f) kann mit Graph /; anstelle des Graphen F, aus P,
verwendet werden, um die Clockinstanzregeln der Invarianten analog herzuleiten.

Die bei der Nachbedingung C; ; := (M;, N}, &;) vorhandenen Mengen ; und &;, welche
die Knoten- und Kanten-IDs der durch die Regel erzeugten Clockinstanz darstellen, wer-
den erst bei der Anwendung auf einen Wirtsgraphen G mit den entsprechenden Elementen
gefiillt. Somit sind diese bei der Erstellung der Clockinstanz-Regel immer leer.

4.3.3 Zeitbehafteter Graph & Graphtransformationssystem
4.3.3.1 Zeitbehafteter Graph

Um ein erweitertes Graphtransformationssystem zu analysieren, muss ein zeitbehafteter
Graph definiert werden. Basierend auf diesem konnen dann Nachfolger- und Vorgéinger-
zustinde hergeleitet werden. Ein gerichteter und benannter Graph G wird um die ent-

99



Kapitel 4 Verifikation des Verhaltens eines OCM in der Umwelt

Algorithmus 4.2 Schema zur Herleitung einer Clockinstanz-Regel c¢; =
(Mj, Cl,j7 h, Ci7j), j =5\

1. M; =M
2: foralln € P, do
3 if f(n) € N then
4 V.=V, Un
5 end if
6: end for
7
8
9

: foralle € P, do

if f(e) € £ then
: E.=FE.Ue
10: end if
11: end for
12: C;; = (M,0,0)

sprechenden Bestandteile erweitert, so dass zeitliche Erreichbarkeitsriume mit diesem
verkniipft werden. Hierzu werden zu G Ungleichungen wie in Definition 22 sowie die
dort vorhandenen Clockinstanzen hinzugefiigt.

Definition 30

Ein zeitbehafteter Graph G, := (G, C,T) ist ein Tripel mit einem gerichteten Graph G,
einer Anzahl an Clockinstanzen C und einer Menge an zeitlichen Bedingungen T' iiber
einzelnen Elementen aus C. Jeder Knoten v aus G besitzt eine eindeutige ID n; und jede
Kante e € E eine entsprechende ID e; mit i,j € N*.

Mit Hilfe der oben stehenden Definition 30 wird einem einzelnen Graphen g aus der Men-
ge aller Graphen G eines Graphtransformationssystems, wie in Definition 11 beschrieben,
ein zeitlicher Erreichbarkeitsraum zugewiesen und dieser gleichzeitig iiber die verwende-
ten IDs der Clockinstanzen mit g verkniipft.

Bei dem im weiteren Verlauf verwendeten Modell ist es moglich, dass ein Graph GG; meh-
rere zeitliche Erreichbarkeitsrdume haben kann. Ein Beispiel hierfiir ist das Graphtrans-
formationssystem, welches in Abbildung 4.14 aufgebaut wird. Dort gibt es einen initialen
Graphen (G; und zwei zeitbehaftete Graphtransformationsregeln, P, und P». Ohne bereits
genau darauf einzugehen, wie ein entsprechender Algorithmus zum Aufbau des Graph-
transformationssystems aussieht, ist es moglich, wie in Abbildung 4.12 dargestellt, die
Folgegraphen sowie die zu den Graphen zugehdrigen zeitlichen Bedingungen in diesem
einfachen Fall zu erstellen. Dabei ergeben sich, wie in Abbildung 4.12 zu sehen, meh-
rere identische Folgegraphen, welche sich nur in den ihnen zugeordneten zeitlichen Be-
dingungen unterscheiden. So existieren dort die Graphen GG; und G, jeweils mit zwei
unterschiedlichen zeitlichen Bedingungen.

100



4.3 Semantik

Somit muss es moglich sein, einem zeitbehafteten Graphen nicht nur eine sondern meh-
rere der zeitlichen Erreichbarkeitsraume zuzuordnen, die durch Bedingungen wie in De-
finition 22 beschrieben aufgebaut werden.

Definition 31

Ein zeitbehafteter Graph G := (G, C, T ) mit mehreren zeitlichen Erreichbarkeitsriumen
ist ein Tripel mit einem gerichteten Graph G, einer Anzahl Clockinstanzen C und einer
Menge T. Dabei ist T := {T},...,T,} mit l,n € N*. Jedes T; € T besteht dabei aus
einer Menge an zeitlichen Bedingungen iiber einzelnen Elementen aus C'. Jeder Knoten v

aus G besitzt eine eindeutige ID n; und jede Kante e € E eine entsprechende ID e; mit
i,7 € Nt

Regel P, c<=3 Regel P, c>=3
A <<destroy>> B A <<create>> B
clock:c clock:c
<<create>> <<destroy>>
C C

Initialer Graph G,

a:A b:B
>

Abbildung 4.14: Ein Graphtransformationssystem mit einem initialen Startgraphen G,
sowie zwei zeitbehaftete Graphtransformationsregeln P und P.

4.3.3.2 Zeitbehaftetes Graphtransformationssystem

Bisher wurden alle notwendigen Definitionen eines zeitbehafteten Graphen gegeben.
Im Folgenden wird nun darauf aufbauend ein zeitbehaftetes Graphtransformationssys-
tem formal definiert. Zu diesem erweiterten Graphtransformationssystem gehoren die
in den vorherigen Abschnitten beschriebenen Bestandteile, welche sich aus einzelnen
zeitbehafteten Graphen G; := (G, C,T), aus erweiterten Graphtransformationsregeln
P, .= (P, P.,h,T,V;, E;, R, f) und aus Invariantenregeln I; := (G, t) zusammenset-
zen.

101



Kapitel 4 Verifikation des Verhaltens eines OCM in der Umwelt

Definition 32

Ein Graphtransformationssystem S; := (G, g,? , Pt, Zy) mit zeitlichen Bestandteilen be-
steht aus einer potentiell unendlichen Menge an zeitbehafteten Graphen G,, einer end-
lichen Menge an initialen zeitbehafteten Graphen G, einer endlichen Menge an zeitbe-
hafteten Graphtransformationsregeln P;, wie diese in Definition 27 definiert sind, sowie
einer endlichen Menge an Invarianten-Regeln ;.

Um alle erreichbaren Zustinde fiir das Graphtransformationssystem S; zu berechnen,
muss nun noch beschrieben werden, wie sich aus den Graphtransformationsregeln P, ab-
leitbare Clockinstanzregeln erzeugen lassen.

4.3.3.3 Clockinstanzregeln

Bei dem oben vorgestellten Graphtransformationssystem S; := (G;, G°, Py, ;) fehlen fiir
eine Erreichbarkeitsanalyse noch die zugehorigen Clockinstanzregeln, welche innerhalb
der Graphtransformationsregeln P; sowie den Invariantenregeln Z, vorkommen. Diese
konnen, wie im Abschnitt 4.3.2, Definition 29, dargestellt und aus den einzelnen Graph-
transformationsregeln P; € P, abgeleitet werden.

Um die entsprechenden Clockinstanzregeln C; zu erhalten, wird fiir jede Graphtransfor-
mationsregel P; € P; das in Abschnitt 4.3.2 (siehe Definition 29) beschriebene Verfahren
zur Ableitung von Clockinstanzregeln angewendet, wobei jede erstellte Clockinstanzregel
¢; der Menge C; hinzugefiigt wird. Es ist moglich, dass identische Regeln mehrfach ab-
geleitet und zu C; hinzugefiigt werden. Da C; eine Menge ist, fallen doppelte Vorkommen
weg.

4.4 Erreichbarkeitsanalyse

Auf der Basis des im vorherigen Abschnitt erstellten und erweiterten Modells eines
Graphtransformationssystems der Form S; := (G, Qf, Py, Z;) wird hier ein Algorithmus
vorgestellt, mit dem eine Erreichbarkeitsanalyse durchgefiihrt werden kann. Dabei wer-
den die hierzu verwendeten Operationen schrittweise erarbeitet.

4.4.1 Darstellung durch Clockzones

Der zeitliche Erreichbarkeitsraum eines zeitbehafteten Graphen G, (siehe Abschnitt 4.3.3)
lasst sich mit Hilfe der Datenstruktur der Clockzones beschreiben. Natiirlich ist es auch

102



4.4 Erreichbarkeitsanalyse

moglich, eine andere Datenstruktur zu wihlen, um die zeitlichen Bedingungen aus Ka-
pitel 4.3.3 zu beschreiben. Die Entscheidung, bereits an dieser Stelle die Datenstruktur
der Clockzones zu verwenden, begriindet sich darin, dass hierdurch die im Folgenden
beschriebenen Algorithmen besser veranschaulicht werden konnen. Zusitzlich sind die
hier verwendeten zeitlichen Bedingungen, welche in Form von Ungleichungen in Kapi-
tel 4.3.3 definiert wurden, denen sehr dhnlich, die bei der Datenstruktur der Clockzones
verwendet werden.

Aus den erwihnten Griinden erfolgt die Darstellung der zeitlichen Erreichbarkeitsrdume
in Form der in Definition 2.3.5.3 vorgestellten Clockzones. Die Definition eines zeitbe-
hafteten Graphen wird entsprechend abgedndert. Somit ergibt sich der hier verwendete
zeitbehaftete Graph G; := (G, C, Z), indem die in Definition 31 verwendete Menge 7°
durch die Menge Z ersetzt wird. Bei 7 handelt es sich dabei um eine Menge dem Graphen
zugeordneter zeitlicher Erreichbarkeitsriume 7', die wiederum aus einzelnen zeitlichen
Bedingungen ¢ bestehen. Dabei wird jedes 7' in eine einzelne Clockzone Z iiberfiihrt.

Diese Uberfiihrung ist problemlos moglich, da die zeitlichen Ungleichungen t := (z; —
Tj ~ d) sehr stark denen der Clockzones #hneln. Der einzige Unterschied besteht darin,
dass bei den Ungleichungen ¢ € 7" anstelle der einfachen Clockvariablen der Clockzones
die Clockinstanzen aus der Definition 21 verwendet werden. An dieser Stelle wird das
Modell der Clockzones dahingehend angepasst, dass die dort verwendeten Clockvariablen
durch Clockinstanzen ersetzt werden. Die daraus leicht abgednderte Form der Clockzones
ergibt sich zu:

Definition 33

Eine Clockzone Z mit Clockinstanzen hat eine Anzahl von Clockinstanzen x;, wie diese in
Definition 21 definiert sind. Die einzelnen x; konnen Werte aus R™ U 0 annehmen, wobei
1 € Nt und i > 0. Zusditzlich existiert eine Referenz-Clock x, die immer den Wert ()
besitzt sowie eine Anzahl von Bedingungen ¢ € C' in Form von Ungleichungen der Art
rj <d,d<xjx; —x; <d miti,j € N, d e Zund <€ {<, <}. Die Clockzone ergibt
sich aus der Konjunktion iiber Bedingungen aus C'.

Die Eigenschaften und die Operationen auf den Clockzones @ndern sich durch diese Er-
weiterung nicht. Die restlichen Bestandteile lassen sich direkt iibernehmen. So entspricht
die Referenzclock z bei der Datenstruktur der Clockzones der Referenzclock, wie die-
se bei den zeitlichen Bedingungen in Kapitel 4.3.3 definiert wurde. Die Ungleichungen
lassen sich direkt iibernehmen. Ein zeitbehafteter Graph mit mehreren zeitlichen Erreich-
barkeitsriumen, wie in Definition 31 dargestellt, wird dann zu einem entsprechenden Gra-
phen G; := (G, C, Z) mit mehreren Clockzones Z.

103



Kapitel 4 Verifikation des Verhaltens eines OCM in der Umwelt

4.4.2 Zeitbehafteter Folgegraph

Die einzelnen Schritte, um einen Folgegraphen fiir einen zeitbehafteten Graphen
abzuleiten, werden im Folgenden beschrieben. Ausgangspunkt sind dabei ein zeit-
behafteter Graph G; = (G,C,Z), eine zeitbehaftete Graphtransformationsregel
P, .= (P,P.,h,T,V;, E;, R, f,r), die Clockinstanzregeln C und Invariantenregeln Z.
Dabei wird durch den zeitbehafteten Graphen GG, eine Anzahl von Zustéinden abgebildet,
die sich durch die Kombination des Graphen G aus G; mit den einzelnen Clockzones
Z € Z ergeben. Ein solcher Zustand ist somit ein Tupel (G,Z). Weiterhin wird
davon ausgegangen, dass die von der Graphtransformationsregel P, abgeleiteten Clockin-
stanzregeln in der Menge C enthalten sind sowie, dass die durch diese Regeln erzeugbaren
Clockinstanzen der Menge C' des zeitbehafteten Graphen G; bereits hinzugefiigt wurden.
Die sich aus der Anwendung der Graphtransformationsregel P; auf den Graphen G,
ergebenden Folgezustinde konnen durch die Funktion prod (Kapitel 2.3.5.4) berechnet
werden. Die Funktion liefert die Menge M der Graphmorphismen m := (m,,m.)
zuriick, welche P, aus P; auf einen Teilgraphen g aus GG abbilden, wobei wiederum G aus
G stammt.

Nach Anwendung der Funktion prod auf einem Graphen G miissen dann im Unterschied
zu den urspriinglichen Graphtransformationssystemen weitere Schritte durchgefiihrt wer-
den, bevor mit Hilfe der einzelnen Graphmorphismen m € M die Tochtergraphen her-
geleitet werden. Zu diesen Schritten gehort die Uberpriifung der zeitlichen Bedingungen
t € T von P,. Bevor allerdings diese Uberpriifung stattfinden kann ist es notwendig, die
innerhalb der einzelnen ¢ verwendeten Clockinstanzen zuzuordnen. Warum und in wel-
cher Art dies geschehen muss, ist nachfolgend beschrieben.

4.4.2.1 Zuordnen der Clockinstanzen zu den Regelanwendungen

Bei Clockinstanzen wird unterschieden zwischen Clockinstanzen, die innerhalb von zeit-
behafteten Graphtransformationsregeln, Clockinstanzregeln sowie Invariantenregeln vor-
kommen und denen, wie diese innerhalb der zeitlichen Erreichbarkeitsriaume vorhanden
sind. Innerhalb der Graphtransformationsregeln, Clockinstanzregeln sowie Invarianten-
regeln handelt es sich um Clockinstanzen, die mit einzelnen Element-IDs des Graphen
der linken Seite der jeweiligen Graphtransformationsregel P;, bzw. der Clockinstanzregel
C; oder Invariantenregel /; verbunden sind. Im Gegensatz dazu sind die Clockinstanzen
der zeitlichen Erreichbarkeitsraume mit den IDs der Elemente des Graphen G aus G ver-
bunden, auf den die einzelnen Regeln und Graphroduktionen angewendet werden. Wie
diese Verkniipfung zu den IDs der Elemente aus G' mit Hilfe der Clockinstanzregeln vor-
genommen wird, ist im Kapitel 4.2.2.2 beschrieben.

104



4.4 Erreichbarkeitsanalyse

Damit die mit einer Graphtransformationsregel verbundenen Guards 7" und Clockresets
R innerhalb einer Graphtransformationsregel P, verwendet werden konnen ist es not-
wendig, die dort vorhandenen Clockinstanzen bei der Anwendung von F; auszutauschen.
Dies bedeutet fiir jeden Morphismus m, der aus prod(P;, G) resultiert, eigene Guards 7,
und Clockresets R,, herzuleiten. Hierzu wird die Funktion assign(m, T, R) verwendet,
welche nach dem folgenden Schema arbeitet und das Tupel (7,,,, R,,,) zuriickliefert.

Dabei miissen die Clockinstanzen aus P, mit denen dem Graphen G durch die Clockin-
stanzregeln hinzugefiigten Clockinstanzen ausgetauscht werden. Hierzu muss beim Auf-
suchen der linken Seite P, von P, innerhalb des Wirtsgraphen G eine Zuordnung der
Element-IDs von der linken Seite P, zu den Element-IDs der Stelle m in G vorgenommen
werden, an der P, innerhalb von G bei der aktuellen Anwendung erfiillt ist. Ein Beispiel
hierfiir zeigt die Abbildung 4.15.

Graph G;
P s N Graphproduktion P,
/ Shuttle Track \\ _
\ - ID:5 - , c>=3
< [Ip2 ID:1 P
S~ -=" Shuttle 2 Track
- Ll v Clock:c
a Clock:c Clock:c
Shuttle ID'; Track Clockinstanz von P; ¢(1,3,2)
ID:4 ID:3 Zuordnung der Ids:
Gel=P:l
Clockinstanz von G; ¢(2,5,1) Gu5=P¢3
Gi2=Pg2

Abbildung 4.15: Im Wirtsgraphen G; wird die Graphtransformationsregel P; an der rot
umrandeten Stelle angewendet

Diese Zuordnung geschieht, indem 7" und R wie folgt iiberfithrt werden. Dabei gilt fiir
allet € T', t := (x; — x; ~ d) ist eine zeitliche Bedingung mit Clockinstanzen x; und x;.
xo beschreibt die Referenz-Clock, welche zu jedem Zeitpunkt den Wert 0 besitzt.

Zunichst wird die Funktion graphl D(m, z, G, P;) eingefiihrt (siche Anhang A, Algorith-
mus A.1). Diese nimmt eine Zuordnung der Knoten- und Kanten-IDs zu dem Graphmor-
phismus m := (m,, m.), einer Clockinstanz z := (M, N, &), dem Wirtsgraphen G :=
(Vg, Eg, E(sﬁ), E(t,G)7 Vv(ig), E(i,G’)) und der linken Seite Pl = (Vp, Ep, E(87p)7 E(t7p),
Vii.p), B, p)) aus P, vor. Dies geschieht nach dem Vorgehen wie im Beispiel der Abbil-
dung 4.15 aufgezeigt. Der Riickgabewert sind die Knoten- und Kanten-IDs N’ £’ aus
dem Wirtsgraphen G.

Mit Hilfe der Funktion graphl D wird nachfolgend die Funktion assign formuliert (siehe
Anhang A, Abbildung A.2), mit der die Guards 7" und Resets R zu 7}, und R,, iiberfiihrt
werden.

105



Kapitel 4 Verifikation des Verhaltens eines OCM in der Umwelt

Die hierdurch entstandenen Guards 7;,, und Clockresets R, gelten ausschlieBlich fiir die
momentane Anwendung der Graphtransformationsregel P, beziiglich m innerhalb des
Wirtsgraphen G.

4.4.2.2 Erzeugen einer Folge-Clockzone

Bevor fiir die durch prod hergeleiteten Graphmorphismen m angewendet werden, muss
an dieser Stelle iiberpriift werden, von welchen Graphzustinden (G, ¢) aus zusammen
mit den Guards 7" eine Clockzone ¢’ mit Hilfe der Funktion succ,(¢, I, ¢) aus Kapitel
2.3.5.3 hergeleitet werden kann. Um diese Funktion anwenden zu konnen, sind die dem
aktuellen Zustand zugehorigen Invarianten / notwendig.

Diese Invarianten werden hergeleitet, indem die einzelnen Invariantenregeln /; € Z auf
den Wirtsgraphen G angewendet werden. Dabei kann die Funktion prod aus Kapitel
2.3.5.4 verwendet werden, um die Menge der Morphismen M herzuleiten. Die Funkti-
on benotigt eine linke und rechte Anwendungsseite L und R, sowie einen Morphismus
m. Eine Invariantenregel I, := (I}, h,t,V;, E;, f) besitzt keine rechte Anwendungsseite
R. Dabei ist bei I; diese identisch mit [;, also ergibt sich R, L = [, und m = h. So-
mit kann die Funktion prod verwendet werden um die Menge der Graphmorphismen M
herzuleiten.

Aus diesen Graphmorphismen M konnen nach dem gleichen Schema wie in Kapitel
4.4.2.1 beschrieben die einzelnen Ungleichungen hergeleitet werden. Die hierdurch ent-
stehende Menge an Invarianten I/, welche aus einzelnen zeitlichen Bedingungen ¢ mit
Clockinstanzen besteht, wird der Funktion succ, (¢, I,T") zusammen mit der Clockzone
¢ und den Guards 7" iibergeben. Als Ergebnis liefert succ, die Clockzone ¢y, bei der
es zu iiberpriifen gilt, ob diese leer ist'.

Falls ¢4, einer leeren Clockzone entspricht, wird das Ergebnis verworfen. Ein Folge-
Clockzone kann entsprechend iiber die Funktion succy nicht hergeleitet werden und somit
die Transition von dem Wirtsgraphen G aus G zu einem Folgegraphen G’ nicht iiber die
Clockzone ¢ an der zu m zugehorigen Stelle vorgenommen werden. Andernfalls wird da-
mit fortgefahren, die Clockresets R,,, mit Hilfe der Funktion succy, aus Kapitel 2.3.5.3 auf
Osuce anzuwenden, um die Clockzone ¢’ zu erhalten. Falls eine Clockzone ¢, nicht leer
ist, wird der aus dem Graphmorphismus m herleitbare Graph G’ erzeugt. Welche Knoten
vg und Kanten E sich dabei aus m zu G’ ergeben, ist in Abschnitt 2.3.4 beschrieben.

Bevor mit Hilfe des so erzeugten Graphen G’ und der Clockzone ¢’ ein Folgezustand
(G', ¢') zu dem zeitbehafteten Folgegraphen GG hinzugefiigt wird, miissen weitere Schrit-
te durchgefiihrt werden. Hierzu gehort die Erzeugung der Clockinstanzen des Graphen G’
durch die Clockinstanzregeln C, sowie die weitere Uberarbeitung der Clockzone ¢'. Bei

1Zu leeren Clockzones siehe Kapitel 2.3.5.3.

106



4.4 Erreichbarkeitsanalyse

dieser miissen die Invarianten hinzugefiigt werden, welche iiber die Anwendung der In-
variantenregeln auf G’ erzeugbar sind. Zusitzlich miissen alle zeitlichen Bedingungen ¢
entfernt werden, fiir die keine Clockinstanzen durch die einzelnen ¢ € C innerhalb von G’
erzeugt wurden.

4.4.2.3 Erzeugen der Clockinstanzen des Folgegraphen

Zur Erzeugung der Clockinstanzen C' durch die Clockinstanzregeln aus C innerhalb des
Graphen G’ wird eine Funktion C' = prod,.(C, G') eingefiihrt (siche Anhang A, Algo-
rithmus A.3).

4.4.2.4 Erzeugen des Folgezustands

Mit Hilfe der so erzeugten Clockinstanzen C', sowie den Invarianten / des Folgegraphen
G', wird der Folgezustand hergeleitet. Innerhalb der Menge C' konnen Clockinstanzen
vorhanden sein, die beim Folgegraphen G’ durch die Funktion prod...; neu erzeugt wur-
den. Diese neuen Clockinstanzen ergeben sich, indem alle Clockinstanzen ¢ € C¢ des
Graphen G aus der Menge C' der Clockinstanzen des Graphen G’ entfernt werden. Die
resultierende Menge wird an dieser Stelle mit C,,.,, = C'\ C bezeichnet. Diese hinzuge-
kommenen Clockinstanzen wurden gerade erst erzeugt und miissen entsprechend zu den
bereits existierenden in Relation gesetzt werden. Fiir die neu hinzugekommenen Clock-
instanzen c,.,, gilt, dass diese zu den bereits existierenden wie folgt in Relation gesetzt
werden miissen:

Fiir die Menge der Clockinstanzen Cyy = C'\ Cle, Welche bereits bei dem Vorgén-
ger Graphen GG vorhanden waren, existiert eine Anzahl an Bedingungen innerhalb der
Clockzone ¢'. Jede Clockinstanz ¢,y € C\;4 hat dort eine obere Schranke o und untere
Schranke u, fiir die gilt, dass 0 € Z* U co und u € R™. Diese Schranken lassen sich
aus den zeitlichen Bedingungen t aus ¢’ ermitteln. Fiir die hinzugekommenen Clockin-
stanzen Cye,, € Chey miissen fiir jede Clockinstanz aus c,;q € Cyq Ungleichungen der Art
Cnew — Cold ~ —u UNd Cyqg — Cpewy, ~ 0 hinzugefiigt werden. o und u miissen dabei zu jedem
Colq ermittelt werden. ~ entspricht < oder <, je nachdem, welche Art der Ungleichung
bei dem entsprechenden ¢ aus ¢’ ermittelt wurde.

Nachfolgend werden die Invarianten [ auf ¢’ := ¢’ U I angewendet und anschlieend
alle Bedingungen t = (z; — Tj ~ d) aus ¢ entfernt, fiir die gilt, dass mindestens eine
Clockinstanz z; oder z; nicht in C' enthalten ist (siche Anhang A, Algorithmus A.4).

Zum Abschluss werden mit der Funktion ¢’ = succ(¢’, R’), wie in Kapitel 2.3.5.3 be-
schrieben, die Clockresets R’ auf ¢’ angewendet. Die hieraus resultierende Clockzone

107



Kapitel 4 Verifikation des Verhaltens eines OCM in der Umwelt

bildet zusammen mit dem Graphen G’ in Form des Tupels (G’, ¢’) einen Folgezustand
des zeitbehafteten Folgegraphen G.

4.4.2.5 Zeitbehafteter Folgegraph

Um den gesamten zeitbehafteten Folgegraphen G} zu berechnen, werden die hier vor-
gestellten Operationen bzw. Funktionen wie im Algorithmus production,, angewendet
(sieche Anhang A, Algorithmus A.5). Um alle durch P, erzeugbaren Folgegraphen G; zu
berechnen, wird die Funktion production,, zam Algorithmus production erweitert (siche
Anhang A, Algorithmus A.6).

4.4.3 Erreichbares Graphtransformationssystem

AbschlieBend kann nun beschrieben werden, wie sich mit den angegebenen Funktionen
der gesamte Erreichbarkeitsraum eines zeitbehafteten Graphtransformationssystems er-
zeugen ldsst. Ausgangspunkt ist hierfiir das zeitbehaftete Graphtransformationssystem
S; := (G;, G?, P;, I;), wobei G; eine Menge an zeitbehafteten Graphen G;, G° die Menge
der initialen zeitbehafteten Graphen G?, P; die Menge an zeitbehafteten Graphtransfor-
mationsregeln P; und Z die Menge der Invariantenregeln darstellt.

4.4.3.1 Erreichbarkeitsanalyse

Nach der Initialisierung und Erzeugung der Clockinstanzregeln C aus den einzelnen
Graphtransformationsregeln P, wird die folgende Funktion reachGT'S; aufgestellt (sie-
he Algorithmus 4.3), mit welcher der Zustandsraum des Graphtransformationssystems
aufgebaut wird. Dabei gibt es zwei Mengen Open und Closed, wobei die vorhandenen
Graphen aus S; initial der Menge Open zugewiesen werden. Der Menge C'losed sind alle
Graphen aus G; zugewiesen, die nicht in der Menge der initialen Graphen G vorhanden
sind.

Dabei arbeitet der Algorithmus wie folgt: Solange noch ein zeitbehafteter Graph G; in-
nerhalb der Menge Open enthalten ist (Zeile 3), durchlaufe alle Graphen der Menge
Open (Zeile 4) und wende auf jeden Graphen die einzelnen zeitbehafteten Graphtrans-
formationsregeln P, mit Hilfe der Funktion production an (Zeile 7). Fiir jeden dar-
aus resultierenden zeitbehafteten Folgegraphen G, € G, (Zeile 8) iiberpriife, ob der
in G, enthaltene einfache Graph G’ bereits in einem zeitbehafteten Graphen Gy, =
(Gtmp, Cimps Zimp) der Mengen Open oder Closed vorhanden ist (Zeile 11-15). Falls dies
der Fall ist iiberpriife, ob die Menge Z’ der Folge-Clockzones des Graphen G} nicht iden-
tisch mit der Menge Z; der Clockzones des Graphen G/ ist (Zeile 16). Falls dies zutrifft,

108



4.4 Erreichbarkeitsanalyse

Algorithmus 4.3 procedure S; = reachGT S;(S;, C')
procedure S; = reachGT'S;(S;, C')

1: Sy = (Gi, Go, P, It)

2: Open = G, Closed = G \ G?

3: while Open # () do

4: for all G, € Open : G, := (G,C, Z) do

5: for all P, € P; do

6: selfedge = false

7 G, = production(Gy, P, C,I;) > *
8: forallG, € G, : G, := (G',C", Z') do

9: found := (G¢,Cy, Z¢)

10: found = NULL

11: for all Gy,,,, € Open U Closed : Gy = (Gimps Cimps Ztmyp) do

12: if G' = Gy, then

13: found = Gy, break

14: end if

15: end for

16: if found # NULL N\ Z; # Z' then > *
17: Zf =2Z'U Zf > *
18: Open = Open U found > *
19: Closed = Closed \ found > *
20: if Gy = G then
21: sel fedge = true
22: end if
23: end if
24: if found == NULL then
25: Open = Open U G|,
26: end if
27: end for

28: end for

29: if —sel fedge then

30: Open = Open \ G,

31: end if

32: end for

33: end while

existierte bereits ein zeitbehafteter Graph innerhalb des Graphtransformationssystems,
der sich nur beziiglich der diesem zugeordneten zeitlichen Erreichbarkeitsraum unter-
scheidet. Somit wird dem bereits existierenden Graphen Gy die Vereinigung beider zeit-
lichen Erreichbarkeitsriume zugewiesen (Zeile 17). AnschlieBend wird G5 in die Menge
Open verschoben und aus C'losed entfernt (Zeile 18 und 19). Die in Zeile 21 zugewiesene

109



Kapitel 4 Verifikation des Verhaltens eines OCM in der Umwelt

Variable behandelt einen Sonderfall, nimlich, dass der Mutter- und Tochtergraph iden-
tisch ist. In diesem Fall darf GG; nicht aus der Menge Open in Zeile 30 entfernt werden, da
zu G, ein zeitlicher Erreichbarkeitsraum hinzugekommen ist. Falls kein entsprechender
Graph G, innerhalb der Mengen Open U Closed aufgefunden wird, so handelt es sich
bei G, um einen neuen Graphen, welcher der Menge der offenen Graphzustinde Open
zugewiesen wird (Zeile 20-21). Der Algorithmus ist beendet, wenn die Menge Open aller
offenen Graphen leer ist.

Im Vergleich mit dem Algorithmus zur Berechnung der erreichbaren Zustinde eines
Graphtransformationssystems ohne zeitliche Bestandteile (sieche Kapitel 2.3.5.4) sind im
Wesentlichen die Zeilen, welche mit einem * am Ende versehen sind, hinzugekommen.

4.4.3.2 Prioritaten

Um die in Kapitel 2.3.4 beschriebenen Prioritdten zu beriicksichtigen muss der oben ange-
gebene Algorithmus angepasst werden. Dabei wird davon ausgegangen, dass die zeitbe-
hafteten Graphtransformationsregeln P, des zeitbehafteten Graphtransformationssystems
Sy := (G, G?, Py, T;) zusiitzlich iiber eine Prioritit r € NT verfiigen.

Hierbei muss die for-Schleife in Zeile 5 der Funktion reachGT'S; so erweitert werden,
dass alle Graphtransformationsregeln P, mit gleicher Prioritét r in jeweils einer Menge (),
zusammengefasst werden. Die einzelnen Mengen werden dann mit der for-Schleife der
Zeile 5 abgearbeitet, wobei die Menge mit den Regeln, welche die hochste Prioritit » ha-
ben, zuerst abgearbeitet wird. Vor jeder Abarbeitung wird tiberpriift, ob durch mindestens
eine der Regeln P, der vorhergehenden Menge bereits ein oder mehrere Folgegraphen
hergeleitet wurden. Ist dies der Fall, so wird mit dem néchsten Graphen G; in Zeile 4
fortgefahren.

4.4.3.3 Verifikationsverfahren

Um weitergehende Verifikationsverfahren wie etwa das Model Checking anwenden zu
konnen ist es notwendig, neben den erreichbaren Zustinden auch die Reihenfolge zu ken-
nen, in der diese erreicht werden. Eine entsprechende Erweiterung kann vorgenommen
werden, indem zu den Zustinden des Graphtransformationssystems zusitzlich die Uber-
ginge angegeben werden. Ein solcher Zustand (G, Z) setzt sich zusammen aus einem
Graphen G sowie einer Clockzone Z. Entsprechend miissen fiir eine weitere Analyse
die Ubergiinge (G, Z) x (G', Z') dem Graphtransformationssystem hinzugefiigt werden.
Diese Ubergiinge kénnen in dem Algorithmus reachGT'S; beim Anwenden der Funktion
production in Zeile 7 erzeugt werden. Dabei entstehen aus dem Graphen G, := (G, C, 2)
zusammen mit den Folgegraphen G/ die einzelnen Ubergiinge. G, setzt sich dabei wieder-

110



4.4 Erreichbarkeitsanalyse

um aus einer Anzahl an Graphen G} := (G’,C’, Z') zusammen. Die Ubergiinge ergeben
sich aus dem Kreuzprodukt (G, Z) x (G', Z') fur alle G, Z aus G, und fiir alle G’, Z' der
G}, aus G,. Der Algorithmus reachGT'S; kann hierzu in Zeile 7 um die folgenden Zeilen
erginzt werden:
forall G, € G, : G, := (G',C", Z' do
TR:=TRU(G,Z) x (G, Z")
end for

T R bildet dabei die Menge der Transition ab, die innerhalb des Graphtransformationssys-
tems vorhanden sind.

4.4.3.4 Optimierung

Um den erzeugten Zustandsraum bei der Erreichbarkeitsanalyse moglichst klein zu hal-
ten, konnen bestimmte Teilzustdnde zusammengefasst werden. Dies betrifft die zeitlichen
Erreichbarkeitsraume 7, welche zusammen mit den einzelnen Graphen G einen Zustand
(G, Z) bilden. Dabei kann es vorkommen, dass bei unterschiedlichen Zustinden (G4, Z;)
und (G+, Z5) fiir die beiden Clockzones Z; und Z, gilt, dass die eine Teilmenge der ande-
ren ist. Dies ist der Fall, wenn beide die gleichen Clockinstanzen enthalten und zusétzlich
fiir die aufgespannten Erreichbarkeitsrdume gilt, dass Z; in Z5 enthalten ist bzw. Z5 in 73
enthalten.

Falls dies der Fall ist und zusitzlich gilt, dass die beiden Graphen (G; und G5 isomorph
sind, kann der Zustand verworfen werden, bei dem die zugehorige Clockzone eine Teil-
menge der Clockzone des anderen Zustandes darstellt.

Um effizient feststellen zu kdnnen, ob eine Clockzone Teilmenge einer anderen ist, kann
mit der Datenstruktur der Difference-Bound-Matrice gearbeitet werden. Jede Clockzone
kann, wie in Kapitel 2.3.5.3 beschrieben, in Form einer Difference-Bound-Matrice dar-
gestellt werden. Jede Difference-Bound-Matrice kann in eine kanonische Form iiberfiihrt
werden, womit entsprechende Vergleiche effizient moglich sind.

Eine derartige Optimierung macht nur Sinn, wenn keine erweiterten Verifikationsverfah-
ren angewendet werden sollen, fiir die gilt, dass diese die genaue Abfolge von erreichten
Zustinden kennen miissen. Dieser Fall ist etwa beim Model Checking gegeben. Dort ist
von Interesse, in welcher Reihenfolge die Zustidnde erreicht werden. Da durch die hier
aufgezeigte Optimierung einzelne Zustinde wegfallen konnen, fallen damit entsprechen-
de Informationen iiber die logische Abfolge, in der diese erreicht wurden, ebenfalls weg.

111



Kapitel 4 Verifikation des Verhaltens eines OCM in der Umwelt

4.5 Evaluierung

Die hier vorstellten Konzepte wurden in [NeuO7] prototypisch in dem Werkzeug GROO-
VE? [Ren04, RKS06] umgesetzt. GROOVE ist ein Werkzeug zur Modellierung und Ana-
lyse von Graphtransformationssystemen. GROOVE bietet die Moglichkeit, den komplet-
ten Erreichbarkeitsraum eines Graphtransformationssystems zu erstellen. GROOVE be-
steht aus mehreren Teilwerkzeugen, einem Editor, Generator und Simulator. In dem Edi-
tor werden einzelne Graphtransformationsregeln erstellt, die spéter das Graphtransfor-
mationssystem aufspannen. Uber den Simulator kénnen spiter alle erreichbaren Zustinde
ermittelt werden. Der Generator arbeitet dhnlich dem Simulator, jedoch ohne grafische
Oberflache.

Das zu Beginn des Kapitels vorgestellte Beispiel (sieche Abschnitt 4.2.1) wurde in GROO-
VE modelliert. Dabei wurde das Beispiel erweitert derart, dass das Schienennetz nun auch
aus Weichen besteht, die zwei Ovale miteinander verbinden. Neben der einfachen Regel,
die eine Shuttlebewegung von einem Schienenabschnitt zum anderen beschreibt, muss
nun auch die Uberfahrt einer Weiche mit Zeit beschrieben werden (siehe Abbildung 4.16).
Die vollstiandigen Regeln sind in Anhang B dargestellt.

[& shuttlemstart - Production Simulator [mE<)

File Ecit View Explore Verify Help

& P.”“.g‘;v 1000 =R ER
{57 clockl
; {Labels
P k2 ¥ Shumtle
P clacks Switch

S-Priority 500 Track
-5 imariantshuleswitch Track2
-5 imariantshuttleTrack at

-5 invariantshuttleTrack2 at Track next

& oy 0
o o

i nSwitch
"J moveFromswitch2
E| 5P moveTagwitch

"B Match 1

L5009 moveToSwitch2
(S ]
next

next

next
[Switch]

next

Current state: start

Abbildung 4.16: Schienennetz

http://groove.cs.utwente.nl/groove—home/

112



4.5 Evaluierung

In Abbildung 4.17 ist das aus der Erreichbarkeitsanalyse resultierende Graphtransfor-
mationssystem fiir das Beispiel dargestellt. Es besteht aus 28 Graphzustinden, 50 Tran-
sitionen zwischen den einzelnen Graphzustinden in Form von Kanten, sowie iiber 54
zeitliche Erreichbarkeitsriume. Die Analyse® hat 2 Sekunden gedauert. Wird noch ein
weiteres Shuttle hinzugefiigt, entstehen 165 Graphzustidnde, 537 Transitionen sowie 869
zeitliche Erreichbarkeitsrdume. Bei diesem Szenario dauert die Analyse 7 Sekunden.

Eines der grofiten Probleme bei der Analyse von komplexeren Modellen ist die steigen-
de Anzahl an Clockzones, welche zusammen mit den Graphzustinden einen Zustand des
erweiterten Graphtransformationssystems abbilden. Dies liegt vor allem daran, dass eine
Clockzone mit n Clockinstanzen die GroBe n? hat. Hier greift die Optimierung, welche
ebenfalls in GROOVE implementiert wurde. Ist diese aktiv, verringert sich die Anzahl
der zeitlichen Erreichbarkeitsrdume bei dem Szenario mit drei Shuttles auf 698. Die Ana-
lyse hat hierbei 8 Sekunden gedauert. Die erhohte Analysezeit ist auf die Optimierung
zuriickzufiihren. Fiir eine detaillierte Auswertung des Optimierungsverfahrens wird auf
die Arbeit [NeuO7] verwiesen.

ﬁ shuttle@start - Production Simulator E]@

File Edit W“iew Explore Yerify Help

T e & )

? clock2 g
TP ciocks <mowves <movez >
EH-Priarity 500 y <move >

C B8 invariamShuttleSwitch <moveFromswitch2 >
?-? invariantShuttleT rack <moveFromSwitch>

© 58 imvariamShuttleT rark2 <moweToswitch2 »
& Priarity O

4 Labels
M

<moveTo&witch >

<moveToswitchs
-5 move
“ B Match 1
DJ mowez ,:,

%8 moveFromswitch
%P moveFromSwitch2
B+%2 moveT oswitch ; o
| omesaMatch 1

°.7 moveT oSwitch2

A
<MOve2 > MOvEe<m < moveT oSwitch2 > b it <mc < mopeFromSwitch >

— ] /A‘lm

28 nodes, 50 edges

Abbildung 4.17: Das resultierende Graphtransformationssystem

3Wurde auf einem Pentium 4, 2.4 GHz, 1 GB memory, OS Linux Redhat durchgefiihrt.

113



Kapitel 4 Verifikation des Verhaltens eines OCM in der Umwelt

4.6 Zusammenfassung

In diesem Kapitel wurden Modellierungs- und Verifikationstechniken fiir das duere Ver-
halten eines OCMs in der Umwelt vorgestellt. Bei der Modellierung wurde auf den For-
malismus der Graphtransformationssysteme zuriickgegriffen, der hier durch Zeitannota-
tionen angereichert wurde. Die Zeitannotationen basieren auf den Konzepten der Timed
Automata. Da diese aber nicht so einfach iibernommen werden konnen, wurde hierzu
zuerst ein Vergleich beider Modelle diskutiert. Aufgrund dieser Erkenntnis wurden Kon-
zepte zur Modellierung von zeitbehafteten Graphtransformationssystemen definiert. Nach
der formalen Definition eines zeitbehafteten Graphtransformationssystems wurden an-
schlieBend die Erreichbarkeitsanalyse fiir ein solches System und Algorithmen hierfiir
beschrieben. Am Ende des Kapitels wurde eine Evaluierung des Ansatzes gezeigt.

114



Kapitel 5

Parametrisierte
Koordinationsmuster

In den beiden vorangegangenen Kapiteln wurde beschrieben, wie sich ein OCM model-
lieren und verifizieren ldsst. Der Fokus dieses Kapitels steht nun auf der Modellierung
und Verifikation der Koordination von OCMs in vernetzten mechatronischen Systemen.
Hierbei werden die bisher vorgestellten Techniken aus den vorangegangenen Kapiteln
miteinander geschickt verkniipft.

Ein wichtiges Problem bei vernetzten mechatronischen Systemen ist, dass jedes Teilsys-
tem eine potentiell unterschiedliche lokale Sicht haben kann, auf deren Basis jederzeit
Entscheidungen autonom und lokal getroffen werden miissen. Die Logik aller Teilsyste-
me muss dabei auf Basis dieser lokalen Sicht bei einem Teilausfall im Gesamtsystem
so koordiniert reagieren, dass Gefahren ausgeschlossen sind. Im Beispiel der ,,Neuen
Bahntechnik Paderborn (siehe Abschnitt 1.2) miissen die Shuttles trotz moglicher Fehler
immer ein sicheres Fahrmandver garantieren. Diese Sicherheitseigenschaft muss fiir das
modellierte Verhalten des Shuttles iiberpriift werden. Diese Uberpriifung muss alle mogli-
chen Situationen betrachten und den Ausschluss der Gefahren durch formale Verifikation
absichern.

Der bisherige  MECHATRONIC UML Ansatz stellt das Konzept der Echtzeit-
Koordinationsmuster (sieche Grundlagen 2.4.2) zur Verfiigung, um die Koordination
verteilter Komponenten zu modellieren und formal zu verifizieren. Weiter unterstiitzt
der Ansatz eine Integration der benotigten Steuer- und Regelungsalgorithmen (siehe
Grundlagen 2.4.4).

Ziel dieses Kapitels ist es nun, fiir Verifikationszwecke eine abstrakte Betrachtung des re-
levanten Werte- und Zeit-kontinuierlichen Verhaltens der Koordinationslogik zu ermog-
lichen. Dabei werden entsprechend benétigte Eigenschaften der unterlagerten Regelung,
die mit klassischen Techniken der Regelungstechnik und Mathematik verifiziert werden
konnen, als Basis fiir weitere Betrachtungen verwendet. Darauf aufbauend lédsst sich dann
durch formale Verifikationstechniken fiir Echtzeitsysteme eine Verifikation der benotigten

115



Kapitel 5 Parametrisierte Koordinationsmuster

Sicherheitseigenschaften der Echtzeitkoordination bzgl. der relevanten Fehlerszenarien
erreichen.

Zuerst wird mit dem in den Grundlagen (siehe Kapitel 2.4.1) vorgestellten Ansatz zur
Modellierung der bisherigen Echtzeit-Koordinationsmuster das Beispiel der Konvoiko-
ordination noch einmal kurz beschrieben. Hieran werden anschlieBend die Grenzen des
bisherigen Ansatzes aufgezeigt (siche Abschnitt 5.2). Anhand eines erweiterten Beispiels
wird in Abschnitt 5.3 die Idee eine Losungsidee vorgestellt. Anschlieend werden die in
diesem Kapitel neu eingefiihrten parametrisierten Koordinationsmuster in Abschnitt 5.4
zuerst informal eingefiihrt und spéter formalisiert. Abschlielend werden die nétigen Ve-
rifikationsschritte fiir ein parametrisiertes Koordinationsmuster beschrieben. Das Kapitel
schlieft mit einer Zusammenfassung in Abschnitt 5.5.

5.1 Beispiel

Mit dem kompositionellen Ansatz aus [GTB103] ist es moglich, die Kommunikation zwi-
schen Komponenten durch so genannte Echtzeit-Koordinationsmuster (siehe Kapitel 2.4)
zu modellieren. Das Verhalten der Koordinationsmuster wird spiter bei der Anwendung
zum Verhalten der Komponenten verfeinert.

In Abbildung 5.1 ist ein Echtzeit-Koordinationsmuster dargestellt. Es besteht aus
mehreren Kommunikationspartnern, den so genannten Rollen. Rollen interagieren
iber einen Connector, durch den sie verbunden sind. Das Verhalten der Rollen und
des Connectors wird durch Realtime Statecharts realisiert. Weiterhin besitzt eine
Rolle Invarianten, welche eingehalten werden miissen. Das ganze Verhalten eines
Echtzeit-Koordinationsmusters kann durch Constraints eingeschriankt werden.

In dem Beispiel wird die sichere Echtzeitkoordination in einem Konvoi fiir zwei hinter-
einander herfahrende Shuttles durch ein Echtzeit-Koordinationsmuster beschrieben. Das
Echtzeit-Koordinationsmuster ConvoyCoordination besitzt zwei Rollen, die Rolle shuttle
und die Rolle coordinator und einen Connector, der diese verbindet. Die Eigenschaft, die
das Echtzeit-Koordinationsmuster zu erfiillen hat, ist, dass wenn das hinterherfahrende
Shuttle im Konvoimodus ist, auch das vorherfahrende Shuttle im Konvoimodus sein muss
(shuttle.Convoy implies coordinator.convoy). Wire das hinterherfahrende Shuttle nim-
lich im Konvoimodus, das vorherfahrende jedoch nicht, wiirde in einer Notfallsituation
das vorherfahrende Shuttle aufgrund der lokalen Information nicht richtig reagieren und
einen Auffahrunfall verursachen.

In Abbildung 5.2 ist die Anwendung des Echtzeit-Koordinationsmusters gezeigt. Im Bei-
spiel wendet das Shuttle shuttle? die Rolle shuttle an und das Shuttle shuttlel iibernimmt
die Rolle coordinator.

116



5.2 Grenzen des bisherigen Ansatzes

shuttle.convoy implies coordinator.convoy

__ ConvoyCoordination

- _ _ -

s
’
, N
, N
N

U “shuttle coordinator

Abbildung 5.1: Echtzeit-Koordinationsmuster ConvoyCoordination

<<Component>> <<Component>>

shuttle coordinator

shuttle2 :Shuttle shuttle1 :Shuttle

Abbildung 5.2: Anwendung des Echtzeit-Koordinationsmuster ConvoyCoordination
5.2 Grenzen des bisherigen Ansatzes

Der bisherige MECHATRONIC UML Ansatz stellt die fundamentalen Konzepte zur kom-
positionellen Modellierung und Verifikation zur Verfiigung. Jedoch hat der bisherige ME-
CHATRONIC UML Ansatz eine Reihe von Einschridnkungen hinsichtlich der zur Beschrei-
bung der Koordination von OCMs verwendeten Echtzeit-Koordinationsmuster. Dies lédsst
sich an den folgenden zwei Punkten manifestieren.

Dynamik: Ein Echtzeit-Koordinationsmuster besteht a priori immer aus einer festen
Anzahl von Rollen. Anforderungen an komplexe, mechatronische Systeme sehen jedoch
mehr Dynamik vor. Am Beispiel des Shuttlekonvois ist dies gut zu verdeutlichen. So ist
nachzuvollziehen, dass ein Konvoi, um auch wirklich energieeffizient zu sein, aus mehr
als zwei Shuttles bestehen muss. Dabei ist die Anzahl der Konvoiteilnehmer zum Zeit-
punkt der Instanziierung des Koordinationsmusters unbekannt. Mal muss ein und dasselbe
Koordinationsmuster einen Konvoi der Linge £ und im nichsten Moment einen Konvoi
der Léange £ + 1 koordinieren, ohne die Stabilitit eines Konvois dabei zu verletzten.

Stabilitat: Bei den bisherigen Echtzeit-Koordinationsmustern steht das Koordinations-
verhalten nicht in Verbindung mit dem Werte-kontinuierlichen Verhalten eines OCMs.
Um jedoch die Stabilitéit eines Shuttlekonvois zu erreichen und damit das ,,Aufschau-
keln“ und den so genannten Ziehharmonikaeffekt zu vermeiden, muss zusitzlich zur
reinen Echtzeitkoordination das Werte-kontinuierliche Verhalten beriicksichtigt werden.
So miissen Brems- und Beschleunigungssituationen, die durch nicht-lineares Verhalten
beschrieben werden, beriicksichtigt werden. Eine alleinige Verbindung beider Verhalten
durch das Synchronisationsstatechart innerhalb eines OCMs durch ein Hybrides Rekon-

117



Kapitel 5 Parametrisierte Koordinationsmuster

figurations Chart (siehe Grundlagen 2.4.4) kann dies noch nicht garantieren. Alleine die
Koordination durch einen Konvoifiihrer, der auch die Werte-kontinuierlichen Vorgaben
hinsichtlich Brems- und Beschleunigungssituationen initial vorgibt sowie bei dynami-
schen Anderungen zur Laufzeit diese neu verteilt, kann dies garantieren.

Durch das im Folgenden erweiterte Konvoibeispiel wird die Idee, wie diese Probleme
durch die Modellierung mit MECHATRONIC UML gefasst werden konnen, beschrieben.

5.3 Erweitertes Beispiel

Das erweiterte Beispiel setzt auf dem Beispiel aus Abschnitt 5.1 auf. Es wird nun
ein Konvoi der Linge n betrachtet (sieche Abbildung 5.3). Bei der Verhaltensmodellie-

Abbildung 5.3: Konvoi der Ldnge n

rung fiir die Konvoibildung und -fahrt muss neben dem idealisierten fehlerfreien Fall
auch der Ausfall einzelner Systemelemente betrachtet werden. Das modellierte Verhalten
muss hierbei nicht tolerierbare Gefahren ausschlieSen. Durch Szenarien (sieche Echtzeit-
Sequenzdiagramme, Abschnitt 2.4.2) wurden die folgenden in dem vorliegenden Anwen-
dungsbeispiel identifizierten reguldren Abldufe des Systems beschrieben:

(1) n-Shuttles fahren in einem Konvoi,

(2) Shuttle/Konvoi fahrt auf ein weiteres Shuttle/Konvoi auf,

(3) n-Shuttles fahren unabhingig,

(4) Konvoi fihrt mit Sicherheitsabstand hinter einem andern Konvoi und

(5) Auflosung eines Konvois in zwei unabhingige Konvois bzw. in n-Shuttles.

Anhand der Techniken zur Gefahrenanalyse, die von Tichy in seiner Arbeit vorgestellt
werden [TicO8], konnten die in den Szenarien beobachteten Hazards:

(1) die Kollision von mehreren Shuttles,

(i1) die Kollision eines Shuttles mit einem Gegenstand oder

118



5.3 Erweitertes Beispiel

(i11) die Entgleisung eines Shuttles

genauer analysiert werden. In Abbildung 5.4 ist ein Ausschnitt eines Fehlerbaums darge-
stellt, der den Hazard Kollision mehrerer Shuttles genauer analysiert und beschreibt. Es
ist zu sehen, dass entweder der (a) Ausfall eines einzelnen Shuttles oder der (b) (partielle)
Ausfall des Netzwerks oder gar der (c) Ausfall des Streckenstators zu dem Hazard fiih-
ren kann. Die primédren Ereignisse, die jeweils die Ursache darstellen, werden hier nicht
genauer beschrieben (grau dargestellt).

Kollision mehrere
Shuttles

21
Ausfall eines (partieller)Ausfall Ausfall
Shuttles des Netzwerks Streckenstator

Abbildung 5.4: Fehlerbaum

Die Analyse sowie der Fehlerbaum sind nicht vollstindig, sondern sollen hier nur an-
deuten, welches Fehlverhalten von dem Protokollverhalten bei einen Konvoi abgedeckt
werden muss, um ein sicheres Konvoimandver zu garantieren.

5.3.1 Losungsidee

Um die in Abschnitt 5.2 aufgezédhlten und im Abschnitt 5.3 am Beispiel verdeutlich-
ten Anforderungen adiquat fiir die Modellierung und Verifikation umzusetzen, wird im
Folgenden eine Losungsidee vorgestellt. Um die Komplexitét auch hier zu beherrschen,
wird das Zeit-kontinuierliche Verhalten getrennt vom Werte-kontinuierlichen Verhalten
betrachtet. In Abbildung 5.5 ist die Idee der Dekomposition skizziert. Die obere Hélfte
der Abbildung zeigt die Modellierung des Komponentenverbunds eines Shuttlekonvois.
Jede Komponente kommuniziert mit ihrer Nachbarkomponente. In einer Komponente
selber ist das interne, sowohl Zeit-kontinuierliche als auch Werte-kontinuierliche Ver-
halten, skizziert. Der untere Teil der Abbildung zeigt die Dekomposition des Modells.
Der Komponentenverbund wurde in die Kommunikation und die Komponenten (siehe

119



Kapitel 5 Parametrisierte Koordinationsmuster

Kompositioneller Ansatz), aufgeteilt. Weiterhin wurde auch das interne Verhalten de-
komponiert. So ist zu erkennen, dass nun das Zeit-kontinuierliche Verhalten von dem
Werte-kontinuierlichen Verhalten getrennt ist. Dies ermoglicht, wie schon beschrieben,
eine getrennte Verifikation der einzelnen Verhalten, welches im Folgenden beschrieben
wird.

/ N
/ \.
/ \
/ N
/ N
\

‘_“ - —-,“ -

shutt‘lke3: Shuttle shuttieZ: Shuttle shuttléi: Shuttle

= ’> -, £ — o E — -

shuttle3: Shuttle shuttle2: Shuttle shuttlel: Shuttle

Abbildung 5.5: Dekomposition der Struktur

Zeit-kontinuierliche Verhalten: Um das Zeit-kontinuierliche Verhalten fiir eine be-
liebige Anzahl von gleichen Rollen zu modellieren, werden parametrisierte Rollen ver-
wendet. Eine parametrisierte Rolle steht hierbei fiir eine Menge von Unterrollen, die sich
untereinander synchronisieren konnen, um nach auflen hin als eine Einheit aufzutreten.
In Abbildung 5.6 ist dies schematisch dargestellt. M., ist hierbei eine parametrisier-
te Rolle. Bei der Anwendung wird das Verhalten wie in der Abbildung dargestellt. Die
parametrisierte Rolle wird quasi entfaltet. Die einzelnen Unterrollen koordinieren sich
untereinander durch ausgezeichnete Signale. In dem Beispiel ist es das Signal next;.

Eine Unterrolle kann als Struktur aufgefasst werden. Das Hinzufiigen und das Loschen
von einzelnen Unterrollen kann durch zeitbehaftete Graphtransformationssysteme be-
schrieben werden. Diese besitzen die Moglichkeit, strukturdynamische Anderungen mit
Zeitbedingungen zu modellieren (siehe Kapitel 4). Die Integration der Graphtransfor-
mationssysteme geschieht nach dem von Klein [HHGO8][KI1e08] vorgestellten Ansatz.

120



5.3 Erweitertes Beispiel

Parametrisierte Rolle Myaram

Inext, Inext; ?next,

Entfaltete parametrisierte Rolle - Koordination der Unterrollen

Abbildung 5.6: Parametrisierte Rolle mit zugehdriger Entfaltung und Koordination der
Unterrollen

Hierbei wird ein gemeinsames Metamodell zur Integration beider Formalismen vorge-
schlagen. Nachdem nun die Idee fiir die Modellierung des Zeit-kontinuierlichen Verhal-
tens skizziert wurde, wird die Losungsidee fiir das Werte-kontinuierliche Verhalten vor-
gestellt.

Werte-kontinuierliche Verhalten: Basis der Losungsidee sind Fahrprofile, die den
Shuttles, die an einem Konvoi teilnehmen, von einem Leitfahrzeug zugeteilt werden. Im
Normalbetrieb werden diese Fahrprofile stindig der aktuellen Situation angepasst und
zwischen den Fahrzeugen kommuniziert. Ein solches Fahrprofil beinhaltet im Wesentli-
chen einen Bremskorridor, der dem jeweiligen Shuttle vorgibt, wie es sich in den verschie-
denen betrachteten Gefahrensituationen zu verhalten hat. Maf3geblich wird ein Bremskor-
ridor durch die physikalischen Eigenschaften eines Shuttles sowie durch die Position des
Shuttles im Konvoi bestimmt. Um die Gefahr einer Kollision zu vermeiden, werden hier
die diskutierten Ausfille (a), (b) und (c) betrachtet.

Ein Ausfall eines Shuttles (Ausfallszenario (a)) und der partielle Ausfall des Netzwerks
(Ausfallszenario (b)) ist Abbildung 5.7(a) zu entnehmen. In dem dort betrachteten Szena-

121



Kapitel 5 Parametrisierte Koordinationsmuster

rio féllt Fahrzeug 2 aus. Die Fahrzeuge, die sich in dem Konvoi vor Fahrzeug 2 befinden,
hier Fahrzeug 1, fahren weiter. Die Fahrzeuge, die sich hinter Fahrzeug 2 befinden, hier
Fahrzeug 3, bremsen so stark wie moglich ab.

Abbildung 5.7(b) zeigt das Bremsverhalten bei einem Statorausfall. Um eine Kollision
bei dem Bremsvorgang zu vermeiden, bremsen die Fahrzeuge zeitverzogert, wodurch die
Bremskorridore disjunkt sind und damit keine Kollision auftreten kann.

Shuttle 1
Shuttle 1
Shuttle 2
Shuttle 2
Shuttle 3
Shuttle 3
I:f ! lif iz I53 !
(a) Bremsverhalten Netzwerkausfall Fahrzeug 2 (b) Bremsverhalten Statorausfall

Abbildung 5.7: Mogliches Bremsverhalten

Nachdem nun die Ideen skizziert wurden, werden im Folgenden detailliert der regelungs-
technische Entwurf sowie der Softwaretechnische Entwurf zur Modellierung und Verifi-
kation beschrieben.

5.3.2 Regelungstechnischer Entwurf

Ausgangspunkt fiir die hier betrachteten Uberlegungen ist ein geregeltes Fahrzeug. Dabei
miissen die zwei grundlegenden Fille der Geschwindigkeitsregelung und der Abstands-
bzw. Positionsregelung unterschieden werden. Ein einzelnes Fahrzeug bzw. das erste
Fahrzeug im Konvoi soll sich mit einer vorgegebenen Geschwindigkeit v,,; bewegen. Die
folgenden Fahrzeuge haben im Konvoi eine auf das Fiithrungsfahrzeug bezogene Positi-
on einzunehmen und einen bestimmten Abstand zum direkt vorausfahrenden Fahrzeug
einzuhalten. Um die Regelungen fiir die beiden beschriebenen Fille auszulegen, wur-
de zunidchst ein Fahrzeug als Starrkdrper mit dem Entwicklungswerkzeug CAMeL-View
[Ric96] modelliert, wobei nur die Langsdynamik beriicksichtigt wird. Fiir die Geschwin-
digkeitsregelung geniigt hier ein einfacher PI-Regler mit Anti-Windup (Abbildung 5.8),

122



5.3 Erweitertes Beispiel

um Probleme durch den Integratoranteil zu vermeiden, die sich aus der Begrenzung der
Antriebskraft ergeben. Der Linearantrieb ist im Modell vereinfacht durch ein Verzoge-
rungsglied erster Ordnung mit nachgeschaltetem Begrenzer abgebildet.

-
v0
s0 shuttleDynamics
gifference gl AntiWindup cohverter limit F M b _,_—
By =1 imun =8 Bisfwun P = 1w =0 B 5
— byogiu’] b # >r=amﬂbj—2!=ww'j T‘—.fr—L v
v_soll ummationClass ISystem_AntiWindupClass PT18ystemClass  LimitClass [ —
a

ShuttleDynamics{lass

Abbildung 5.8: CAMeL-View-Modell eines geschwindigkeitsgeregelten Fahrzeugs

Dieser Geschwindigkeitsregelung ist fiir die Konvoifahrzeuge ein Abstands- bzw. Positi-
onsregler iiberlagert, der einerseits die Position des Fahrzeugs bezogen auf die aktuelle
Position des fithrenden Fahrzeugs regelt, andererseits den Abstand und die Differenzge-
schwindigkeit zum direkt vorausfahrenden Fahrzeug beriicksichtigt, um Kollisionen aus-
schlieBen zu konnen [HVB*05]. Durch diese Regelungsstrategie kann die Stabilitit eines
Konvois auch fiir langere Konvois garantiert werden. Allerdings ist dafiir die Kommuni-
kation jedes Fahrzeugs mit dem direkt vorausfahrenden Fahrzeug und dem Leitfahrzeug
notwendig. Die erforderliche Kommunikationsstruktur ist in Abbildung 5.9 dargestellt.
Sie gliedert die Informationsverarbeitung anhand der im Grundlagenkapitel vorgestellten
Strukturierung mechatronischer Systeme (siehe Abschnitt 2.1) hier in Autonome Mecha-
tronische Systeme (AMS), nimlich den einzelnen Fahrzeugen, und Vernetzte Mechatro-
nische Systeme (VMS), den gesamten Konvoi. Die hier vorgeschlagene Regelung eines
Konvois wurde bereits erfolgreich im RailCab-Projekt umgesetzt und in der Praxis er-
probt [HTBSO08]. Die vorgestellte Regelung geht von idealisierten Bedingungen unab-

VMS,
Vsoll vsoll Vsoll Konvoi V
Ssoll v Ssoll S soll l SSOH
. . . soll
AMS . = [AMS . [AMS "> [AMS
Shuttle Sist Shuttle 'Sist Shuttle Sm Shuttle

Abbildung 5.9: Struktur der Informationsverarbeitung im Konvoi

hingig von dulleren Einfliissen, Unterschieden in der Fahrzeugdynamik und den eingangs
erwidhnten moglichen Fehlern aus. Um den kollisionsfreien Betrieb des realen Systems

123



Kapitel 5 Parametrisierte Koordinationsmuster

gewihrleisten zu konnen, sind also zusitzliche Uberlegungen erforderlich. Der hier vor-
gestellte Ansatz zielt darauf ab, gewisse Grenzen fiir das Verhalten eines einzelnen Fahr-
zeugs nachzuweisen, die das geregelte System mit Sicherheit nicht iiberschreitet.

Wir betrachten hier als mogliche Fehler (a) den Ausfall des Antriebsmotors eines Shutt-
les, (b) den Kommunikationsausfall und (c) den streckenseitigen Ausfall des Motors (Sta-
torausfall). Tritt einer dieser Fehler auf, miissen die betroffenen und alle nachfolgenden
Fahrzeuge bis zum Stillstand abgebremst werden'. Fiir das Bremsen stehen drei Moglich-
keiten zur Verfiigung. Die notwendige Bremskraft kann iiber den Linearantrieb erzeugt
werden. In diesem Fall kann auf ein vorgegebenes Geschwindigkeitsprofil zuriickgegrif-
fen werden, das kontrolliertes Bremsen ermoglicht. Zusitzlich existiert eine mechanische
Notbremse, die iiber Federn Bremsklotze direkt auf die Schienen driickt. AuBBerdem kon-
nen beide Bremsen gleichzeitig eingesetzt werden. Je nach auftretendem Fehler stehen
allerdings nicht alle drei Moglichkeiten zur Verfiigung. Fillt der Linearantrieb strecken-
oder fahrzeugseitig aus, kann nur die mechanische Notbremse eingesetzt werden. Dieser
Fall soll beispielhaft fiir die Vorausberechnung von Grenzen betrachtet werden, die das
System unter Beriicksichtigung der Modellunsicherheiten einhilt.

Der tatsidchliche Bremsweg hingt bei den mechanischen Notbremsen im Wesentlichen
von den Fahrzeugeigenschaften wie Masse und aktuelle Geschwindigkeit und dem Reib-
koeffizienten p ab. Da dieser nicht als exakt bekannt vorausgesetzt werden kann, muss
man auf Minimal- bzw. Maximalwerte zuriickgreifen. Ein mechanisch gebremstes Fahr-
zeug wird dann in einem Bereich zwischen dem minimal und maximal moglichen Brems-
weg zum Stehen kommen. In Abbildung 5.10 ist das Ergebnis einer Simulation dieser Si-
tuation dargestellt, bei der der Reibkoeffizient wihrend des Bremsvorgangs beit = 1, 7s
sprungformig abnimmt. Das Fahrzeug bewegt sich innerhalb der fiir die Position und Ge-
schwindigkeit vorausberechneten Korridore fiir 4,,,;, und ft,,,4., die ohne exakte Kenntnis
des tatsidchlichen Reibkoeffizienten angegeben werden konnen. Fiir Bremsvorgdnge mit
dem Linearantrieb lassen sich diese Korridore noch genauer vorhersagen, da dann das
Bremsen vom Geschwindigkeitsregler kontrolliert nach einem vorgegebenen Profil ab-
lauft. Auf diese Weise kann jedes Fahrzeug vorausberechnen, in welchen Grenzen es sich
im Fall einer der drei moglichen Notbremsungen bewegen wird. Darauf aufbauend lésst
sich iiberlagert das Verhalten der Fahrzeuge im Konvoi und im Fehlerfall modellieren und
mit den im Folgenden beschriebenen Verfahren verifizieren.

IBei Kommunikationsausfall sind auch andere kontrollierte Manover denkbar, z.B. das autonome Fahren
mit vergroertem Abstand mit Hilfe von Abstandssensoren. Diese Betrachtungen dndern nichts an dem
vorgestellten Ansatz zur Verifikation des sicheren Verhaltens und werden deshalb nicht niaher betrachtet.

124



5.3 Erweitertes Beispiel

25 10
20 — 8
[ ﬁ?’..‘f‘.":.—. ...................... 6
_ 15 ; _—
.g ........ p E 4
%] max >
10 —
r “ist 2
5 R —
“min 0
0 | | | | | 2
0 1 2 3 4 0 1 2 3 4
t[s] t[s]

Abbildung 5.10: Bremskorridore bei einer mechanischen Notbremsung

5.3.3 Softwaretechnische Umsetzung

Um nun die neuen Anforderungen, beliebige Anzahl von Rollen sowie Werte-
kontinuierliches Reglerverhalten zu integrieren, wird das Konzept der modell-basierten
Entwicklung mit Echtzeit-Koordinationsmustern erweitert.

Hierzu werden zum einen Abstraktionstechniken eingesetzt, die auf den zugesicherten
Eigenschaften der Regler aufbauen (siehe letzter Abschnitt). Um eine Verifikation durch-
fiihren zu konnen wird neben Model Checking das Verfahren der Induktion eingesetzt,
um Verhaltenseigenschaften iiber die Struktur zu beweisen. Dies wird im Folgenden ange-
deutet. Kontinuierliche Systeme besitzen einen unendlichen Zustandsraum. Dieses macht
eine formale Verifikation durch Model Checking alleine unmdoglich, da hier ein endlicher
Zustandsraum benotigt wird. Um dennoch Werte-kontinuierliches, regelungstechnische
Verhalten zu verifizieren, im vorliegenden Fall kontinuierliches Beschleunigungsverhal-
ten, wird dieses durch Abstraktionstechniken auf ein endliches, diskretes System abge-
bildet. Der Abstraktion liegen die zugesicherten Eigenschaften des Reglers zu Grunde.
Dadurch ist es moglich, das Verhalten dieser einzuschrinken. In dem Beispiel wird das
Verhalten durch so genannte Bremskorridore beschrieben. Diese geben das minimale und
maximale Beschleunigungsverhalten eines Shuttles an. Hierdurch ist es moglich, bei der
Modellierung das Verhalten der Shuttles weiterhin durch diskrete Zustinde zu beschrei-
ben und die formale Verifikation durch Model Checking durchzufiihren. Durch z.B. nu-
merische Uberprijfung [Pra05][PJO4][PP05] muss nun vorab verifiziert werden, ob sich
die Bremskorridore schneiden oder nicht. Diese Uberpriifung kann auch zur Laufzeit bei
Neuverteilung der Profile effizient durchgefiihrt werden.

Durch geeignete Modellierung des Kommunikationsprotokolls werden diese Eigenschaf-
ten im System umgesetzt. Um mit der beliebigen Anzahl n zurecht zu kommen, werden
hierfiir parametrisierte Rollen verwendet. Jedem Shuttle wird ein so genanntes Fahrprofil

125



Kapitel 5 Parametrisierte Koordinationsmuster

p; zugeordnet. Dieses beinhaltet u.a. das Verhalten, wie es sich in Notfallsituationen zu
verhalten hat. Insgesamt gibt es n Fahrprofile. Fiir die Fahrprofile gilt die Eigenschaft,
dass p; immer eine Notfallreaktion in einem Konvoi garantiert, die ein Shuttle mit Fahr-
profil p; nicht in Gefahr bringt, wobei i <= 7, gelten muss. In Abbildung 5.7(b) hat das
vorausfahrende Shuttle 1 das Fahrprofil p, und Shuttle 2 und Shuttle 3 das Fahrprofil p;.
Dieses Verhalten wird formal iiber die Struktur des Modells (Konvoiteilnehmer) mittels
Induktion bewiesen. Da das Hinzufiigen und Loschen von Unterrollen durch zeitbehafte-
te Graphtransformationssysteme beschrieben wird, kann zur Verifikation der Ansatz aus
Kapitel 4 herangezogen und mit Model Checking geschickt verkniipft werden.

Abbildung 5.11 skizziert die Struktur des ConvoyCoordinator. Die gestrichelten Pfeile
deuten die Abarbeitungsreihenfolge der beteiligten Rollen an, welche durch das Protokoll
realisiert werden muss.

<<Component>>
Shuttle

<<Component>>

coordinator :Coordinator

Abbildung 5.11: Modellierung und Koordination eines multi-Ports — jedem Port und da-
mit Shuttle wird eine Eigenschaft p; zugeordnet

In Abbildung 5.12 ist in einem Sequenzdiagramm beispielhaft die Konvoikommunikation
fiir drei Shuttles modelliert. Hierbei ist der Coordinator als einzelne Komponente model-
liert. Diese kann sich aber als Unterkomponente auf dem Fithrungsshuttle befinden. Es ist
zu sehen, dass sich zuerst alle Shuttles bei dem Coordinator registrieren. Der Coordinator
berechnet darauthin eine giiltige Profilreihenfolge fiir die Shuttles und weillt diese ent-
sprechend zu. Periodisch wird nun die Erreichbarkeit aller Shuttles tiberpriift. Wenn die
Erreichbarkeit ausbleibt, also ein potentieller Netzwerkausfall vorliegt, werden von den
einzelnen Shuttles die entsprechenden Notfallroutinen gefahren, die durch das Profil, das
hierfiir das regelungstechnische Verhalten vorgibt, bestimmt ist.

5.4 Parametrisierte Koordinationsmuster

In diesem Abschnitt wird das Konzept der neuen parametrisierten Koordinationsmuster
beschrieben. Hier werden die eben beschriebenen Modellierungskonzepte integriert.

126



5.4 Parametrisierte Koordinationsmuster

shuttle3:Shuttle shuttle2:Shuttle shuttlel:Shuttle cc:ConvoyCoordinator

| ———— | [ init(idprofile) _init(id,profile)init(d, profile)
I

______ T - convoyPosition:=calculateConvoyOrder();
- newProfile:=calculateProfile():

buildConvoy(convoyPosition,,new rofile)

s—»__///

=1 " Track~——_

———————— --—ping) "
\‘&pmg()ﬂ
— |

~J

ack |
I R emergency / breakConvoy
NP0 | | feakConvoy()
emergency| | _——a——" |
emergenc) =

Abbildung 5.12: Beispielkommunikation fiir 3 Shuttles im Konvoi mit Netzwerkausfall

5.4.1 Informale Beschreibung

Genau wie die einfachen Echtzeit-Koordinationsmuster bestehen die parametrisierten
Koordinationsmuster aus Rollen und Connectoren. Dabei richtet sich die grundsitzliche
Idee der parametrisierten Koordinationsmuster nach den in der UML (siehe [OMGO07],
Seite 168ff) beschriebenen Collaborations. In der UML werden die Collaborations ver-
wendet, um die dynamischen Beziehungen zwischen Rollen zu beschreiben. Jedoch ist
dies auf die reine Software bezogen, so dass kontinuierliche Aspekte (Stabilitit) sowohl
auf der Ebene der Struktur als auch bei den Constraints, nicht beriicksichtigt werden.

Abbildung 5.13 zeigt ein parametrisiertes Koordinationsmuster fiir die Konvoikoordina-
tion von n Shuttles. Ein optionales Modellelement sind die multi-Rollen. Multi-Rollen

127



Kapitel 5 Parametrisierte Koordinationsmuster

werden durch iiberlappende Quadrate dargestellt und besitzen eine Kardinalitit n. Multi-
Rollen sind eine vereinfachte Darstellung fiir eine Menge von gleichen Rollen, die zum
gleichen Typ einer Komponente gehoren. Im vorliegenden Beispiel der Konvoikoordina-
tion besitzt die Rolle shuttle die Kardinalitit 1 und die coordinator Rolle die Kardinalitit
n. Dieses bedingt eine eindeutige Zuordnung jeder ,,einfachen Rolle* einer multi-Rolle
zu einem eindeutigen Gegenpart, dhnlich wie bei einer 1 zu n Assoziation in Klassendia-
grammen. Weiterhin ist es moglich, multi-Rollen mit Attributen wie {ordered} zu verse-
hen. Hierdurch wird eine Reihenfolge fiir die Auswertung der Rollen festgelegt. Weiterhin
hat jedes parametrisierte Koordinationsmuster Constraints, die das Verhalten, besonders
das der Profileigenschaften, beschreiben. Das Constraint Vk7l/\k<l(55i, S]l,j) =li—jl <1
beschreibt die Eigenschaft, dass die Profilreihenfolge zweier benachbarter Shuttles immer
monoton ist und sich die Profile in ihrem Index niemals um mehr als 1 unterscheiden.

{ ordered }

Abbildung 5.13: Parametrisiertes Koordinationsmuster

In Abbildung 5.14 ist der Typ Shuttle dargestellt. Die Komponente bettet zwei Unter-
komponenten Coordinator und VelocityControl ein. Das Verhalten der Komponenten ist
wie folgt definiert. Da die Komponente das parametrisierte Koordinationsmuster Convoy-
Coordination anwendet, muss sie sowohl als coordinator als auch als shuttle fungieren.
Der multi-Port ist durch eine Assembly mit der inneren Komponente Coordinator und Ve-
locityControl verbunden, um das obige Verhalten zu realisieren. Die flache Komponente
Coordinator realisiert die Berechnung sowie die Abspeicherung aller Profile im Fiihrungs-
shuttle. Bei der Berechnung der Profile wird die aktuelle Geschwindigkeit bendtigt. Die
Komponente VelocityControl bettet eine kontinuierliche Reglerkomponente ein, welche
diese Daten kontinuierlich zur Verfiigung stellt.

In Abbildung 5.15 ist die Laufzeit-Instanz von zwei Shuttles dargestellt, welche das para-
metrisierte Koordinationsmuster ConvoyCoordination anwenden.

Das Verhalten bestimmt sich, wie in der Losungsidee 5.3.1 beschrieben, sowohl durch
zeitbehaftete Graphtransformationssysteme als auch durch parametrisierte Automaten.
Dieses wird im Folgenden beschrieben.

128



5.4 Parametrisierte Koordinationsmuster

<< Component >>
Shuttle

<< Component >>
c: Coordinator

| et

<< Component >>
vcl: VelocityControl

Abbildung 5.14: Der Typ Shuttle

<<Component>> shuttle coordinator <<Component>>
shuttle2 :Shuttle shuttle1 :Shuttle

Abbildung 5.15: Laufzeit-Instanz zweier Shuttles, welche das parametrisierte Koordina-
tionsmuster ConvoyCoordination anwenden

5.4.2 Modellierung des Verhaltens eines parametrisierten
Koordinationsmusters

5.4.2.1 Verhalten der Rollen

Wie schon in der im Abschnitt 5.3.1 skizzierten Losung beschrieben werden, um die
multi-Rollen zu beschreiben, parametrisierte Automaten verwendet.

Die neue parametrisierte Rolle coordinator des parametrisierten Koordinationsmusters
ist in Abbildung 5.16 dargestellt. Die Erweiterungen hinsichtlich der Parameter bezie-
hen sich auf die Synchronisationskanile next; und nextFailed,. Uber diese Kaniile syn-
chronisieren sich die n Rollen untereinander. Die Rolle befindet sich initial im Zustand
WaitForTrigger. Empfangt die Rolle das next; Triggersignal (initial vom Synchronisa-
tionsstatechart und danach von der Vorgingerrolle), schaltet die Rolle in den Zustand
Idle. Nun beginnt der Kommunikationsaustausch mit der shuttle Rolle. Es wird ein up-
date Signal mit dem aktuellen Profil, welches das Shuttle annehmen soll, sowie der Be-
zugsgeschwindigkeit und der Bezugsposition verschickt. Danach wartet die Rolle in dem
Zustand SentAcknowledge auf die Bestidtigung acknowledge des Gegenparts, der Rolle
shuttle. Wird diese empfangen, schaltet die Rolle wieder in den Zustand WaitForTrigger
und sendet dabei das next;.; Signal, um die nichste Rolle zu aktivieren. Empfingt die
Rolle kein acknowledge, schaltet die Rolle in den Zustand NextFailed und signalisiert
dies dem Synchronisationsstatechart, um geeignete Routinen zu aktivieren. Weiterhin be-

129



Kapitel 5 Parametrisierte Koordinationsmuster

sitzt die Rolle den Zustand StatorFailure. Dieser wird vom Zustand Idle erreicht, falls die
zugehorige shuttle Rolle dieses Signal propagiert.

1

WaitForTrigger ? nextFailed, NextFailed

- ] shuttle.acknowledge(s_act,v_act)
! nexty ? nextFailed,,
v I nextyyq I
Idle SentAcknowledge
shuttle.publishStatorFailure

StatorFailure Stop

Abbildung 5.16: Das Verhalten einer parametrisierten Rolle coordinator

/ shuttle.update(profile,s_ref,v_ref

Die Rolle shuttle (siehe Abbildung 5.17) besteht aus drei Zustdnden. Initial befindet sie
sich im Zustand Normal. Spitestens alle 150 Zeiteinheiten muss die Rolle ein update
Signal von der zugehdrigen coordinator Rolle empfangen. Dies ist durch eine Selbsttran-
sition am Zustand realisiert. Das Signal beinhaltet das aktuelle Profil profile, die Bezugs-
position und die Bezugsgeschwindigkeit. Die Rolle bestitigt den Erhalt des Signals durch
ein acknowledge Signal, welches die aktuelle Position und die aktuelle Geschwindigkeit
enthilt. Falls kein update Signal empfangen wird (z.B. Ausfall des Netzwerks), schaltet
die Rolle nach 150 Zeiteinheiten in den Zustand NetworkFailure. Der Zustand StatorFai-
lure wird nicht-deterministisch erreicht. Dabei wird der Fehler dann an die zugehorige
coordinator Rolle propagiert.

Nachdem nun die Rollen modelliert sind ist die Frage, wie sich diese in die Architektur
integrieren lassen. In Abbildung 5.18 ist hierfiir eine hierarchische Architektur, die sich
nach dem kompositionellen Ansatz aus [GTB"03] richtet, vorgeschlagen. Hierbei wird
vorgeschlagen, eine zusitzliche Koordinationsschicht einzufiigen. Diese Koordinations-
schicht beinhaltet einen weiteren Automaten, der es ermoglicht, die multi-Ports mit dem
eigentlichen Synchronisationsstatechart zu verbinden. Falls nur ein einfacher Port exis-
tiert, ist ein solcher Automat nicht notwendig.

Eine Shuttle Komponente, welche das parametrisierte Koordinationsmuster ConvoyCoor-
dination anwendet, muss sowohl als coordinator als auch als shuttle agieren. Ein Aus-
schnitt des Synchronisationsstatechart, dass beide Rollen triggern kann, je nachdem, in
welcher sich ein Shuttle befindet, ist in Abbildung 5.19 dargestellt. Die Entscheidung, ob
ein Konvoi erzeugt werden soll und welche Rolle das Shuttle einnimmt, wird vorher durch
den kognitiven Operator (sieche Kapitel 2.1) bestimmt, der Informationen z.B. von einer

130



5.4 Parametrisierte Koordinationsmuster

{timer}

(Normal ) 150<=timer<=150 (NetworkFaiIure w
timer<=150 Lassert: controlledBrake J
/ coordinator.statorFailure

-
StatorFailure W

assert: mechanicaIBrakeJ
coordinator.publishStatorFailure

O<=timer<150

coordinator.update(profile[i],s_ref,v_ref)

/ coordinator.acknowledge(s_act,v_act), currentProfile=profile][i]
{timer}

Abbildung 5.17: Das Verhalten der Rolle shuttle

shuttle
L
<<Component>>

Shuttle 1

coordinator

shuttle.role
synchronization
~
L B

coordinator.role;

&y

coordinator.adaption

coordinator.role,,

St
N 7

Abbildung 5.18: Hierarchische Architektur

Schienenabschnittskontrolle iiber die Position und Reihenfolge der Shuttles bekommen
hat. Die Signale ?convoyUseful, ?shuttle und ?coordinator werden entsprechend getrig-
gert. Anschliefend initiiert das jeweilige Synchronisationsstatechart die entsprechenden

131



Kapitel 5 Parametrisierte Koordinationsmuster

p
Coordinator

? convoyUseful ("~ \yait | ? coordinator| (" it } [ J
Default
. N

NoConvoD

shuttle

Shuttle

?

| start
Default

I accelerate(profile)

? restoreConvoy

I coordinateShuttle

?
SafeRestore ? restoreConvoy

AddShuttlePort

. /

Abbildung 5.19: Synchronisationsstatecharts der Komponente Shuttle

Rollen, indem es das Signal start an die Rolle shuttle bzw. das Signal coordinateShuttle
an die Rolle coordinator sendet.

Ein Konvoi wird aufgehoben, wenn ein Fehler festgestellt wurde. Diese werden von den
Rollen festgestellt, wenn z.B. ein Signal nicht in der vorgegebenen Zeit angekommen ist.
Das Synchronisationsstatechart beginnt dann, nach der vorgegebenen Profil zu fahren. Die
Wiederherstellung und weitere Details werden hier nicht betrachtet.

Der neue Automat, in der Abbildung 5.18 als coordinator.adaptation bezeichnet, wird
durch das Synchronisationsstatechart getriggert. Danach hat es die Moglichkeit, die Akti-
on CreatePort(shuttle), getriggert durch das Signal createPort, eine neue Rolle der multi-
Rolle hinzuzufiigen. Die neue Rolle wird entsprechend der Strukturregeln (siehe folgen-
der Abschnitt 5.4.3) angelegt. Hierbei wird auch entsprechend der Parameter & inkremen-
tiert. Dieser gibt Auskunft tiber die Anzahl der Shuttles und somit ist es moglich, immer
die néchste Rolle eines multi-Ports, entsprechend der vorgegebenen Eigenschaft ordered,
anzusprechen (siehe Abbildung 5.20).

In Abbildung 5.21 ist die verfeinerte shuttle Rolle dargestellt. Um dem Verhalten des
Synchronisationsstatecharts zu geniigen, konsumiert es das Signal start. Falls ein Fehler
entdeckt wird, propagiert die Rolle ein entsprechendes Signal an das Synchronisations-
statechart.

Nachdem nun das Verhalten komplett modelliert ist, ist die Frage, wie sich die dynami-
schen Strukturdnderungen zur Laufzeit modellieren lassen.

132



5.4 Parametrisierte Koordinationsmuster

Wait ?createPort
[createPort(shuttle)
. ? coordinateShuttle
) k=1
I next;
IrestoreConvoy /createPort(shuttle)
k:=1

[ Faiwe || nextFailed,

n==k?n=1:n++

le D! next, 1

/createPort(shuttle) ( _ W
o

k++
? coordinateShuttle

?createPort

AddPort

Abbildung 5.20: Koordinationsstatechart fiir die multi-Rolle

e N
Wait ! restoreConvoy
! restoreConvoy
?start
J
?start| imer} | {timer}
B =t = ( .
(Normal 150<=timer<=150 (NetworkFailure
timer<=150 \assert: controlledBrake )
/ coordinator.statorFailure

-
StatorFailure

assert: mechanicaIBrakej
coordinator.publishStatorFailure

O<=timer<150

coordinator.update(profile[i],s_ref,v_ref)

/ coordinator.acknowledge(s_act,v_act), currentProfile=profile[i]
{timer}

Abbildung 5.21: Verfeinerte shuttle Rolle
5.4.3 Modellierung der dynamischen Strukturanderungen

Im Folgenden werden die Regeln, welche die erlaubten Strukturinderungen des parame-
trisierten Koordinationsmusters angeben (siehe 5.3.1), beschrieben. Die erlaubten Struk-
turregeln werden in das Verhalten integriert, wie in [HHGOS] beschrieben. Um die Re-

133



Kapitel 5 Parametrisierte Koordinationsmuster

geln zu strukturieren, werden sie in Erweiterungsregeln und Reduzierungsregeln aufge-
teilt. Alle moglichen strukturellen Rekonfigurationsschritte fiir ein parametrisiertes Ko-
ordinationsmuster werden durch zeitbehaftete Graphtransformationsregeln (sieche Kapitel
4) beschrieben.

5.4.3.1 Erweiterungsregeln

In Abbildung 5.22 ist die initiale Regel, die erste Erweiterungsregel, welche das para-
metrisierte Koordinationsmuster fiir zwei Shuttles anwendet, dargestellt. Damit ist ein
eindeutiger Startgraph festgelegt. Wenn das parametrisierte Koordinationsmuster das ers-
te Mal angewendet wird, wird bei dem Fiihrungsshuttle ein multi-Port angelegt. Das
hinterherfahrende Shuttle bekommt einen einfachen Port. Die Ports werden durch einen
Connector verbunden. Die Zeitbedingung ¢ > 5 (siehe Kapitel 4) gibt an, dass dies min-
destens 5 Zeiteinheiten benotigt. Um auch eine Obergrenze fiir diese Aktion festzulegen,
ist in Abbildung 5.23 eine Invariantenregel (siehe Kapitel 4) dargestellt, die dem Graph-
transformationssystem hinzugefiigt wird. Weiterhin wird dem Connector der Stereotyp
<last>> hinzugefiigt. Dieser gibt an, dass das hinterherfahrende Shuttle das letzte im
Konvoi ist. Damit ist markiert, an welcher Stelle neue Shuttles dem Konvoi beitreten kon-
nen.

Natiirlich muss bei der Anwendung des parametrisierten Koordinationsmusters auch das
interne Verhalten sowie die interne Komponentenstruktur eines Shuttles rekonfiguriert
werden. Dies ist in der initialen Regel 5.22 ebenfalls angedeutet. Hier wird bei der Er-
zeugung des parametrisierten Koordinationsmusters im Fithrungsshuttle entsprechend die
Komponente Coordinator aktiviert. Wie die Erzeugung solcher Komponenten in das Ver-
halten von hybriden Rekonfiguration Charts integriert werden kann, ist in [Krda06] be-
schrieben.

+ Shuttle
++

+Shuttle >5 : Coordinator

++ clock:t =

- VelocityControl _Pj << Ias-'t“;> ++ \E :ipi

P clock:t clock:t P

=] - = |

: VelocityControl

Abbildung 5.22: Initiale Regel zur Anwendung des parametrisierten
Koordinationsmusters

134



5.4 Parametrisierte Koordinationsmuster

clock:t
<7
P P
clock:t <<last>> | clock:t

Abbildung 5.23: Regel zur Erzeugung einer Zeitinvariante

Bei dem parametrisierten Koordinationsmuster gibt es noch eine weitere Erweiterungsre-
gel (siehe Abbildung 5.24). Die zweite Regel beschreibt das Auffahren eines Shuttles auf
einen bereits existierenden Konvoi (siehe Abbildung 5.24). Hierbei wird bei dem neu hin-
zukommenden Shuttle ein shuttle-Port erzeugt. Weiterhin wird ein Connector zum Fiih-
rungsfahrzeug erzeugt. Der Stereotyp <last™> wird entsprechend vom alten Connector
geloscht und an den neu erzeugten Connector gebunden, um die letzte Position neu zu
markieren. Die Instanzsituation ist in Abbildung 5.25 dargestellt.

>5 << create >> ++

clock:t : Shuttle

<< last >> ++ |7
: Shuttle ‘

- VelocityControl

- |

,J }j << Component >> |
| shuttlel: Shuttle |

- Lj << Component >>

|

|

|

| LI vel: VelcityControl
| -

|

|

<< Component >>
shuttle3: Shuttle

<< Component >>
shuttle2: Shuttle

<< Component >>

ve3: VelocityControl

<< Component >>
ve2: VelocityControl

,,,,,,,,,,,,,,,,,,,,,,,,

Abbildung 5.25: Instanzsicht nach der Anwendung von Regel aus Abbildung 5.24

5.4.3.2 Reduzierungsregeln

Um das Auflosen eines Konvois zu beschreiben, werden zusitzlich Reduzierungsregeln
benotigt. In Abbildung 5.26 ist dargestellt, wie das letzte Shuttle eines Konvois diesen
verldsst. Dabei werden die Ports vernichtet und der Connector ebenfalls. Um das neue
letzte Shuttle zu markieren, wird nun der Stereotyp <last>> an den Connector des vor-
herfahrenden Shuttles gebunden.

135



Kapitel 5 Parametrisierte Koordinationsmuster

t>5
clock:t

<< last >> --

<< >> --
destroy : Shuttle

: VelocityControl

: Shuttle : Shuttle

<< last >> ++

: VelocityControl E  VelocityControl E E

clock:t

Abbildung 5.26: Letztes Shuttle verldsst den Konvoi

Falls der Konvoi nur noch aus zwei Teilnehmern besteht, muss das parametrisierte Koor-
dinationsmuster entsprechend deinstanziiert werden. Bevor dies jedoch geschieht, muss
die Regel aus Abbildung 5.27 angewendet werden. Hierbei wird die Komponente Coor-
dinator im Fiihrungsshuttle deaktiviert. Ebenfalls wird der Connector und die beteiligten
Ports vernichtet.

: Shuttle
<<destroy>>

: Shuttle t>5

-- clock:t
: VelocityControl _Pj — Ias-t- = \£
P clock:t clock:t

Abbildung 5.27: Konvoi der Linge 2 wird aufgelost

Als letztes wird eine Regel dafiir angegeben, dass das Fiihrungsshuttle den Konvoi ver-
lasst. Hierbei muss die Unterkomponente Coordinator des Fithrungsshuttles an das hinter-
herfahrende Shuttle iibertragen werden. Ausserdem muss der multi-Port vernichtet wer-
den. Das hinterherfahrende Shuttle hingegen muss seine einfache shuttle Rolle nun in
einen multi-Port coordinator umwandeln. Die Regel ist in Abbildung 5.28 dargestellt.

Um die Verifikation eines parametrisierten Koordinationsmusters zu beschreiben, wird im
nichsten Abschnitt zuerst eine formale Definition eines parametrisierten Koordinations-
musters vorgenommen.

5.4.4 Formalisierung

Als erstes wird der zur Beschreibung des Verhaltens einer Unterrolle verwendete Forma-
lismus des Timed Automaton zu einem parametrisieren Timed Automaton erweitert.

136



5.4 Parametrisierte Koordinationsmuster

: Shuttle . Shuttle
++ -

: Coordinator + clock:t E : Coordinator
t>5 —

P . - . P

+ —PJ <<last>> -- \E

i clock:t clock:t P

B2y Bz
: VelocityControl | :P P |: VelocityControl
Abbildung 5.28: Fiihrungsshuttle verldsst den Konvoi
Definition 34

Ein parametrisierter Timed-Automaton A ist ein 7-Tupel A := (2, S,8°, X, I, Sig(l, P),T),
wobei Y. ein endliches Eingabealphabet, S eine endliche Menge an Locations, S° C S
eine endliche Menge von Start-Locations, X = (x1,..,x,) eine endliche Menge an
Clock-Variablen mit x; € R*, I eine Zuordnungsfunktion I — C(X), welche den ein-
zelnen Locations eine Menge an Ungleichungen zuordnet, die so genannten Invarianten,
Sig(l, P) eine Menge von Signalen, die mit | parametrisiert sind. P ist hierbei eine
spezielle Eigenschaft des Automaten. T ist die Menge der Transitionen. C(X) ist eine
Menge von Bedingungen iiber Clock-Variablen aus X. Dabei besteht C(X) aus einer
Menge an Ungleichungen der Form x; < c\ ¢ < x;, wobei < entweder < oder < ist und
¢ € N*. Fiir T, die Menge der Transitionen, gilt T C S x ¥ x C(X) x 2% x Sig(l,p) x S.
Eine Transition von Location s nach s' lifst sich durch ein 6-Tupel (s,a, p, A, sig, s')
beschreiben. Dabei ist a € Y. die Beschriftung der zugehorigen Kante,  eine Bedingung,
die erfiillt sein muss damit die Transition schalten kann und N\ C X eine Anzahl an
Clockvariablen, die beim Schalten auf 0 zuriick gesetzt werden. sig C Sig(l, P) ist ein
durch einen Parameter | gekennzeichnetes Signal, dass den Wert p € P iibermittelt.

Die parallele Ausfiihrung zweier parametrisierter Automata A* und A’ ist wie folgt defi-
niert:

Definition 35 ,

Gegeben sei ein parametrisierter Timed-Automaton A’ := (X! ' 8% X ¢ Sig(l*, P"), T*)
und ein parametrisierter Timed-Automaton A7 := (X7, 87, 8% X7 [ Sig(l7, P7),T7)
wie in Definition 34 definiert. Jeder Automat A* und A’ verhiilt sich lokal wie in
den Grundlagen (Abschnitt 2.3.2) beschrieben. Nur iiber die parametrisierten Signale
Sig(l*, P*) und Sig(l7, P?) findet eine Synchronisation statt, wenn i = j ist. Dabei wird

Pl =P fallsi < j

Mit dieser Beschreibung ist es nun moglich, eine Unterrolle zu definieren.

137



Kapitel 5 Parametrisierte Koordinationsmuster

Definition 36

Rl = (A, ) ist eine Unterrolle mit dem Index |, wobei das Verhalten durch einen pa-
rametrisierte Timed Automaton A beschrieben wird. Ferner besitzt die Unterrolle eine
Menge von lokalen Constraints V.

Hiermit ldsst sich nun der Begriff einer multi-Rolle definieren:

Definition 37

Eine multi-Rolle eines parametrisierten Koordinationsmusters C' ist definiert als ein 3-
Tupel MR = (n,R!, attr) wobei n die Multiplizitit, R' mit | € {1...n} die Menge
aller Unterrollen Rollen, attr eine Ordnung auf R' ist.

Definition 38
Mit I(MR®) C X x Sig(l, p) wird das Interfaceverhalten einer multi-Rolle bezeichnet.

Definition 39

Ein parametrisiertes Koordinationsmuster C' = (MR, P, V(P), PE, PE PF) besteht
aus einer Menge multi-Rollen MR, einer Menge von Profilen P = p; . .. p,, Constraints
iiber die Profile V(P), einer Menge von zeitbehafteten Erzeugungsregeln sowie Reduzie-
rungsregeln PE, PE sowie einer Menge von verbotenen Strukturregeln PF .

5.4.5 Verifikation

Im Folgenden wird die Verifikation eines wie im letzten Abschnitt formal definierten pa-
rametrisierten Koordinationsmusters beschrieben. Wie eingangs im Kapitel beschrieben,
kommen hier die Techniken des Model Checking, die Analyse von Graphtransformations-
system sowie der Induktion zum Tragen.

Die Korrektheit hinsichtlich der spezifizierten Profileigenschaften einer multi-Rolle wird
induktiv bewiesen. Fiir die Verifikation eines parametrisierten Koordinationsmusters C'
sind die folgenden Schritte notwendig:

1. Verifiziere mittels Model Checking, dass R}, pc = ¥(R) A =6

2. Verifiziere R% ..||R7 L. = =0 Aval(RE, ...) < val(RL ), wobei val(R:, .o
MR MR MR MR MR

die Werte von p liefert, die in der Rolle angenommen werden kénnen

3. Nutze den Ansatz aus Kapitel 4 um mittels Erreichbarkeitsanalyse zu tiberpriifen,
dass

a) die Zeitbedingungen der Regeln PF und P/ eingehalten werden und

b) dass die durch die verbotenen Strukturregeln P/* beschriebenen Situationen
nicht auftreten.

138



5.5 Zusammenfassung

4. Verifiziere mittels Model Checking, dass I(M RS)||...||[I(MR) = —§ (k Anzahl
der multi-Rollen von (') erfiillt ist.

Theorem 1
Ein parametrisiertes Koordinationsmuster erfiillt die hinsichtlich der Profile spezifizierten
Constraints V(P), wenn jeder Verifikationsschritt 1 — 4 erfiillt ist.

Beweis 1

Beweis durch Induktion (Beweisskizze): (1) stellt sicher, das eine einzelne Rolle R' einer
multi-Rolle hinsichtlich W(R") korrekt ist und sie keinen Deadlock enthiilt (Induktions-
anfang). (2) beweist die Induktionsannahme, dass fiir zwei benachbarte parametrisierte
Rollen die Profileigenschaft erfiillt ist. Der Induktionsschritt wird durch (3) gezeigt. Das
korrekte Zusammenspiel aller einzeln verifizierten multi-Rollen eines parametrisierten
Koordinationsmusters wird durch die Verifikation der parallelen Komposition aller Inter-
faceverhalten der multi-Rollen gezeigt (4). (g.e.d.)

5.5 Zusammenfassung

In den beiden vorangegangenen Kapiteln wurde beschrieben, wie sich ein OCM model-
lieren und verifizieren ldsst. Der Fokus dieses Kapitels steht nun auf der Modellierung
und Verifikation der Koordination von OCMs in vernetzten mechatronischen Systemen.
Hierbei werden die bisher vorgestellten Techniken aus den vorangegangenen Kapiteln
miteinander geschickt verkniipft.

Hierzu wurde zuerst der bisherige kompositionelle Ansatz zur Modellierung und Veri-
fikation der Echtzeit-Koordination vorgestellt. Bei der Anwendung fiir komplexe, ver-
netzte mechatronische Systeme zeigt dieser Ansatz jedoch einige Einschrinkungen, die
auch diskutiert wurden. Dies waren die Punkte Dynamik hinsichtlich der Struktur des
Echtzeit-Koordinationsmusters, die statisch vorgegeben ist, sowie die Stabilitét hinsicht-
lich Koordinationsverhalten beziiglich der Regelungstechnik. Basierend auf dem kom-
positionellen Ansatz wurde der neue Ansatz, die parametrisierten Koordinationsmuster,
welche nun zusitzlich dynamische Strukturdnderungen als auch Werte-kontinuierliches
Reglerverhalten mit beriicksichtigen, vorgestellt. Die parametrisierten Koordinationsmus-
ter wurden zuerst informell eingefiihrt und danach formal definiert. Am Ende wurden die
Verifikationsschritte, um ein parametrisiertes Koordinationsmuster formal zu verifizieren,
beschrieben.

139



Kapitel 5 Parametrisierte Koordinationsmuster

140



Kapitel 6

Verwandte Arbeiten

In diesem Kapitel werden nun verwandte Arbeiten betrachtet, die sich mit der modell-
basierten Verifikation von komplexen, vernetzten mechatronischen Systemen befassen.
Da es, wie in der Einleitung schon beschrieben, nicht die Verifikationsmethode fiir solche
Systeme gibt, sondern immer einer geschickten Kombination mehrerer Techniken bedarf,
wird im Folgenden zuerst die Verifikation von Echtzeitsystemen betrachtet (sieche Ab-
schnitt 6.1). Hierbei werden verschiedene Modelle und Verifikationstechniken diskutiert,
die eine effiziente Verifikation dieser Systeme ermoglichen, bzw. die aufzeigen, wo die
Grenzen liegen. Daran anschlieBend wird im Abschnitt 6.2 die Verifikation von hybriden
Systemen diskutiert. Im Abschnitt 6.3 wird diskutiert, wie sich Architekturen, beschrie-
ben durch hybride Modelle, verifizieren lassen. Bevor das Kapitel in Abschnitt 6.5 mit
einer Zusammenfassung schlieft, wird im vorletzten Abschnitt 6.4 die Verifikation von
adaptiven Systemen behandelt.

6.1 Verifikation von Echtzeitsystemen

Farn Wang stellt in einer Ubersicht [Wan04] einen Katalog von Modellen, Techniken und
Werkzeugen fiir die Verifikation von Echtzeitsystemen vor. Weiterhin wird von Giese und
Henkler in [GHO6] ein Uberblick iiber Ansitze fiir die modell-basierte Entwicklung von
software-intensiven Systemen gegeben. Es existiert eine Reihe von Modellierungs- und
Verifikationstechniken fiir Echtzeitsysteme. Im Folgenden werden drei Projekte aus dieser
Auswahl stellvertretend fiir die Verifikation von Echtzeitsystemen vorgestellt, welche die
wesentlichen Techniken und Modelle aus der vorliegenden Arbeit abdecken.

6.1.1 Generelle Ansatze

UPPAAL. UPPAAL [BDLO04] ist ein Werkzeug fiir die Modellierung, Validierung und
Verifikation von Echtzeitsystemen, die durch ein Netzwerk von untereinander kommuni-

141



Kapitel 6 Verwandte Arbeiten

zierenden Timed Automata beschrieben sind. Die Modelle erlauben dabei die Verwen-
dung von komplexen Datenstrukturen, wie Array usw. Zur Kodierung der Clocks wird
die Datenstruktur der Difference-Bound-Matrices (DBM) [Dil90] verwendet, die auch
in dieser Arbeit aufgegriffen wurde, um das Zeitmodell bei den zeitbehafteten Graph-
transformationssystem zu verwalten (siehe Kapitel 4). Die Verifikation stellt verschiede-
ne Optionen zur Optimierung des Zustandsraumes zur Verfiigung, wie clock-reduction,
convex-hull approximation usw.

HUGO/RT. In Knapp und andere [KMRO02] wird das Werkzeug HUGO/RT vorgestellt.
Mit diesem Werkzeug ist es moglich Modelle, beschrieben durch UML state machines,
zu verifizieren. Die zu verifizierenden Eigenschaften werden durch Szenario Diagramme
(Sequenzdiagramme) beschrieben. Um die Verifikation mit UPPAAL oder SPIN durch-
fithren zu konnen, werden von HUGO/RT die UML state machines in Timed Automata
transformiert. Ein UML Sequenzdiagramm wird auf einen Observer Timed Automaton
abgebildet. Die Verifikation findet nun statt, indem Erreichbarkeitsanfragen iiber den Ob-
server Timed Automaton gestellt werden. Balser und andere stellen in [BBK104] einen
Ansatz vor, der den interaktiven Verifizierer KIV [BRSS99] anstelle von UPPAAL und
SPIN in die Werkzeugkette integriert. Die Modelle werden weiterhin mit HUGO/RT mo-
delliert, die temporalen Eigenschaften der UML state machines werden nun allerdings mit
KIV {iberpriift. Dieser Ansatz hat den Vorteil, dass prinzipiell auch UML state machines
mit unendlichem Zustandsraum iiberpriift werden konnen, da bei der Verifikation mit KIV
Techniken wie z.B. Induktion verwendet werden. Der Fokus dieses Ansatz liegt auf der
Beschreibung von Verifikationsalgorithmen, hingegen verfolgt der in dieser Arbeit vor-
gestellte ansatz eine durchgingige modellbasierte Entwicklung durch die Integration von
UML basierten Modell- und Verifikationstechniken unter Ausnutzung von vorgegebenen
Architekturen.

IST OMEGA. Das Projekt IST OMEGA [GHO04] hat sich zum Ziel gesetzt, den Kor-
rektheitsnachweis fiir eine auf die speziellen Bediirfnisse eingebetteter Echtzeitsoftware
abgestimmte Teilmenge der UML [DJVPO03] durch Integration von Verifikationswerkzeu-
gen wie Model Checker und Theorembeweiser (PVS) und UML CASE Werkzeugen zu
ermOglichen. Dabei wurde die UML um eine Systemzeit (now) und Timerkonzepte er-
ginzt, die durch eine Abbildung auf Communication Extended Timed Automata seman-
tisch fundiert wurde. Im Gegensatz zum MECHATRONIC UML Ansatz ermoglicht der
OMEGA Ansatz nur eine kompositionelle Betrachtung bei semi-automatischen, interak-
tiven Beweisen mit dem Theorembeweiser.

Fazit. Alle hier vorgestellten Werkzeuge und Modelle basieren auf dem Grundmodell
des Timed Automatons. Allerdings erreicht keines der Modelle die Ausdrucksstéirke der

142



6.1 Verifikation von Echtzeitsystemen

in dieser Arbeit vorgestellten Verhaltensmodelle der Realtime Statecharts bzw. der Hybri-
den Rekonfigurations Charts [GHO6]. Auf Basis der hier vorgestellten Werkzeuge werden
nun im Folgenden Techniken vorgestellt, die zum Einsatz kommen, um die Verifikation
fiir Echtzeitsysteme, wie in der Einleitung dieser Arbeit beschrieben, iiberhaupt erst an-
wendbar bzw. effizient zu machen. Diese sind jedoch alleine nicht ausreichend, um dem
doméneniibergreifenden Charakter von mechatronischen Systeme gerecht zu werden und
diesen entsprechend zu verifizieren.

6.1.2 Techniken

Abstraktion und Komposition. Es existieren viele Ansitze zur Abstraktion und
Komposition von Echtzeitsystemen. Der von Jensen und anderen [JGGS00] vorgestellte
Ansatz wird spiter in dieser Arbeit aufgegriffen und deshalb im Folgenden kurz vorge-
stellt. Der Ansatz beschiftigt sich damit, das bei der Verifikation von Echtzeitsystemen,
die mit UPPAAL Timed Automata modelliert wurden, auftretende Problem der Zustands-
raumexplosion durch eine Kombination von Abstraktion und Komposition zu beheben.
Durch die timed simulation werden die fiir die Abstraktion notwendigen grundlegenden
Eigenschaften zwischen Timed Automata erhalten. Das Problem ist, dass bei dem Timed
Automata Konzept, wie es in UPPAAL verwendet wird, globale Variablen und urgent
Kommunikationskanile vorkommen. Diese fithren dazu, dass eine reine Erhaltung der
timed simulation nicht ausreichend fiir einen kompositionellen Ansatz ist (siche Kapitel
3 in [JGGSO00]). Es wird deshalb ein erweiterter Ansatz, timed ready simulation, vorge-
stellt, der Abstraktion und Komposition unterstiitzt. Der Test auf timed ready simulation
zwischen Timed Automata wird in UPPAAL durch eine Erreichbarkeitsanalyse durchge-
fiihrt. Angenommen, < ist eine Simulationsrelation und M < M, gilt es zu liberpriifen.
Hierzu wird nun zuerst ein Test Timed Automaton Ty, fiir M, konstruiert. Im zwei-
ten Schritt wird nun getestet, ob in M || Ty, ein so genannter reject Zustand erreicht
werden kann. Ist dies der Fall, gilt M £ M,,s, andernfalls M < Mys. Typs wird in der
Form eines Komplementautomaten von M, konstruiert. Die Konstruktion eines solchen
Komplementautomaten 7 ist immer dann moglich, wenn M ;¢ ein deterministischer Ti-
med Automaton ist. Ein Timed Automaton 7’ ist deterministisch, wenn fiir alle Zustinde
s,s',s" von T gilt: Falls s = s’ und s — s”, dann folgt s’ = s".

Das Problem bei Timed Automata ist, dass sich nicht-deterministische Timed Automata
nicht einfach in deterministische umwandeln lassen. Dies liegt daran, dass die Klasse
der nicht-deterministischen Timed Automata nicht gegen Komplement abgeschlossen ist.
Nicht-deterministsiche Event-Clock Automata, die eine strenge Formulierung der Timed
Automata sind, lassen sich hingegen in deterministische umwandeln [AFH97]. Allerdings
ist diese Einschrinkung fiir die bei mechatronischen Systemen verwendeten Modelle zu
restriktiv, so dass die Idee aus Jensen und anderen [JGGSO00] in dieser Arbeit aufgegriffen
und erweitert wurde.

143



Kapitel 6 Verwandte Arbeiten

Counterexample basierte Abstraktion. Clarke und andere beschreiben in
[CGJ"03] eine Technik, um eine obere Abstraktion eines original Modells zu erhalten.
Ist ein Bedingung von dem abstrakten Modell erfiillt, so ist sie auch in dem konkreten
Modell erfiillt. Ist die Eigenschaft in dem abstrakten Modell falsch, so resultiert ein
Gegenbeispiel in einem Verhalten in der Approximation, dass nicht in dem original
Modell vorhanden ist. In diesem Fall muss die Abstraktion verfeinert werden, so dass
das Verhalten, welches durch das Gegenbeispiel beschrieben wird, nicht mehr bertick-
sichtigt wird. Clarke und andere stellen in ihrem Beitrag eine effiziente, automatische
Verfeinerungsmethode vor, um aus den Informationen der Gegenbeispiele dies zu
erreichen.

Diese Methode wird von einigen Model Checkern in der Echtzeitdoméne eingesetzt. So
z.B. auch in dem Werkzeug SAL [TKO02]. Der Vorteil ist eine geschickte Abstraktion, je-
doch werden das Werte-kontinuierliche Verhalten sowie das Zeit-kontinuierliche Verhal-
ten nicht getrennt voneinander betrachtet, so dass hier die Komplexitit nicht ausreichend
reduziert wird. AuBlerdem ist die Abstraktion von der vorgegebenen Systemarchitektur
abhingig, was zur Folge hat, dass das Verfahren nicht immer eine optimale und damit
effiziente Abstraktion liefert.

6.1.3 Komplexe Ansatze

Nachdem nun grundlegende, verwandte Techniken und Methoden der Abstraktion von
Echtzeitmodellen diskutiert wurden, befasst sich dieser Abschnitt mit komplexen Ansét-
zen zur modell-basierten Entwicklung von Echtzeitsystemen.

Zeitbehaftete Komponentenspezifikation. Metzler und Wehrheim stellen in
[MWO7] eine Spezifikationssprache fiir die Modellierung von zeitbehafteten Kompo-
nentenarchitekturen (timed CSP-OZ) vor. Der Ansatz baut auf vorhandenen Konzepten
von CSP-OZ, bei denen die Schnittstellen der Komponenten bereits durch pre/post
Bedingungen beschrieben werden konnen, auf. Um jedoch den Anforderungen von
Echtzeitsystemen gerecht zu werden, wird hier der Ansatz um die Modellierung von Zeit
in den Schnittstellen erweitert. Um die Integration von Zeit so einfach wie moglich zu
gestalten, wird hier kein neuer Formalismus, sondern nur ein neuer Datentyp, der die
Zeit reprasentiert, hinzugefiigt. Die Semantik wird formal tiber Timed Automata defi-
niert. Dies hat den Vorteil, dass zu Verifikationszwecken der Model Checker UPPAAL
eingebunden werden kann. Weiterhin werden hierauf Bedingungen fiir timed simulation
definiert, so dass es auch moglich ist, Kompositionalitit 0.4. zu verwenden.

144



6.2 Verifikation von hybriden Systemen

Service orientierte Modellierung und Verifikation. In [EHK'07] wird ein
modell-basierter Ansatz fiir die Entwicklung von verteilten, eingebetteten Echtzeitsyste-
men beschrieben. Um die Komplexitit solcher Systeme in den Griff zu bekommen, wird
ein Service-orientierter Ansatz verfolgt. Dabei werden zu Beginn die Funktionalitdten
des Systems unabhingig voneinander durch Interaktionsdiagramme modelliert und
verifiziert. Ein vorgegebener Prozess, der einer wohl-definierten Verfeinerungsbeziehung
unter den Modellen folgt, erlaubt die schrittweise Entwicklung solcher Systeme. Der
Service-orientierte Ansatz unterstiitzt die Entwicklung verteilter, eingebetteter Systeme
angefangen von der Anforderungsanalyse bis hin zur Implementierung, Verifikation und
Validierung.

Aufbauend auf den Konzepten wird in [EMK™07][EFF*08] ein Failure Management An-
satz fiir eingebettete Systeme vorgestellt. Hierbei werden so genannte Interaktionsmuster
fiir die Kommunikation zwischen Komponenten beschrieben, die entsprechend verifiziert

werden konnen. Die Interaktionsmuster werden auf Automaten abgebildet, die vom Mo-
del Checker SPIN [AKPMOS5] verifiziert werden kénnen.

Im nichsten Abschnitt wird nun die Verifikation von hybriden Modellen diskutiert. Die
dabei vorgestellten Ansétze nutzen weiterhin die bereits vorgestellten Techniken aus und
einwickeln entsprechende Losungen fiir den hybriden Fall.

6.2 Verifikation von hybriden Systemen

6.2.1 Generelle Ansatze

MATLAB/Simulink' ist der Industriestandard beim Entwurf von Regelungssystemen. Ba-
sierend auf Blockdiagrammen, die via zeit-kontinuierlichen Signalen interagieren, wird
der Entwurf komplexer Werte-kontinuierlicher Systeme ermdéglicht. Die Integration von
Stateflow ermoglicht zudem die Modellierung ereignis-diskreten Verhaltens. MATLAB/-
Simulink Modelle sind im Vergleich zu den anderen betrachteten Verfahren nicht formal
hinterlegt. Eine formale Verifikation wird durch zusitzliche Formalisierung, wie zum Bei-
spiel bei dem CheckMate [SRKCO00] Ansatz erreicht.

Neben MATLAB/Simulink und Stateflow exisitieren eine Vielzahl von Ansitzen und
Werkzeugen fiir die Modellierung und Verifikation hybrider Systeme. Hybrid Statecharts
[KP91], Charon [ADE*01], Masaccio [Hen00], HyCharts & HyRoom [GSB98][SPP01]
und HyTech/PHAver [Fre05] adressieren die Modellierung in Form von hybriden State
Charts und Verifikation von komplexen hybriden Systemen.

"http://www.mathworks.com/

145



Kapitel 6 Verwandte Arbeiten

Fazit. Alle existierenden Ansitze unterstiitzen jedoch keine addquate Modellierung fiir
die hier behandelten komplexen, vernetzten mechatronischen Systeme [BurO6][GHO6].
Das Hautproblem ist, dass die hier geforderte Dynamik und Modularitéit der Architektur
von keinem Ansatz geeignet unterstiitzt wird. Das hat zur Folge, das zur Verifikation im-
mer das gesamte System betrachtet werden muss, da es nicht dekomponiert werden kann
und deshalb die Verifikation trotz Techniken, wie sie im Folgenden vorgestellt werden,
nicht anwendbar ist.

Ein anderer Nachteil der vorhandenen Ansitze ist, dass die Doménen der Regelungs-
technik und der Softwaretechnik nicht sauber in der Modellierung getrennt sind. Hierbei
werden sowohl das Koordinationsverhalten als auch das kontinuierliche Verhalten inner-
halb einer einzigen hybriden Komponente modelliert. Dies erfordert eine enge Zusam-
menarbeit der Disziplinen und ldsst sich auch manchmal so gar nicht realisieren. Der hier
verfolgte Ansatz der MECHATRONIC UML erlaubt durch klar definierte Schnittstellen
zwischen den Doménen die getrennte Modellierung des Echtzeit-Koordinationsverhaltens
und der kontinuierlichen Regler und unterstiitzt durch einen klaren Modularitétsbegriff die
Integration aller Dominen [GHH™08b].

Im Folgenden werden nun anhand dieser Ansétze und Werkzeuge Techniken vorgestellt,
die bei der Verifikation von hybriden Systemen eingesetzt werden, um die Komplexitit
teilweise zu vermindern.

6.2.2 Techniken

Approximation. HyTech, 1995 entwickelt, ist ein symbolischer Model Checker fiir
Hybride Systeme [HHWT95]. Um diese Systeme zu behandeln, benutzt HyTech Hybride
Automaten, mit denen in einem einzigen Formalismus diskrete und kontinuierliche Zu-
standsdnderungen formuliert werden konnen. Das besondere an HyTech ist, dass es auch
eine parametrische Analyse vornimmt. Es wird also nicht nur iiberpriift ob ein Modell eine
bestimmte Formel (bei HyTech eine CTL-Formel) erfiillt oder nicht, sondern es werden
Bedingungen bzw. Begrenzungen fiir bestimmte Parameter des Modells berechnet, unter
denen die Korrektheit des Modells garantiert werden kann. Neben dieser gro3en Stirke
von HyTech gibt es allerdings auch eine groe Schwiche [Fre05]: HyTech benutzt keine
exakte Arithmetik. Dies fiihrt dazu, dass die Zahldarstellung irgendwann ungenau wird
und dies fiihrt zu Overflow-Fehlern. Wegen dieser Ungenauigkeit kann HyTech nicht auf
komplexe Systeme angewandt werden, welche eine grole Genauigkeit fordern. Weiter-
hin ist HyTech eher fiir Systeme mit Variablen mit kleinen Anderungsraten geeignet, da
ansonsten der Zustandsraum zu grof8 wird um ihn noch in verniinftiger Art und Weise zu
behandeln.

HyTech wird seit Ende 1996 nicht mehr weiterentwickelt. PHAVer baut auf HyTech
auf und hat es sich zum Ziel gesetzt, die groBten Nachteile von HyTech zu eliminie-

146



6.2 Verifikation von hybriden Systemen

ren [Fre05]. So benutzt PHAVer eine Arithmetik-Bibliothek, welche eine exakte Zahldar-
stellung ermdoglicht und damit Overflow Fehler vermeidet. Auf der anderen Seite stellt
PHAVer konservative Verfahren wie Approximationstechniken vor, um die Polyeder-
Darstellung zu vereinfachen. Aufgrund der exakten Arithmetik konnen ndmlich sowohl
die Koeffizienten als auch die Anzahl der Constraints (Gleichungen oder (Ungleichun-
gen), welche die konvexen Polyeder begrenzen, iiberméfig gro3 werden. Daher werden
hier Approximationstechniken eingesetzt, um einerseits die Bits (der Koeffizienten) als
auch die Anzahl der Constraints zu begrenzen.

Pradikat Abstraktion. CHARON / R-CHARON stellt ein hierarchisches, hybri-
des Automatenmodell zur Verhaltensbeschreibung zur Verfiigung [ADET01] [ADIO6]
[ADIO3] [Iva03] [KSPLO06]. Daneben unterstiitzt CHARON auch das Strukturkonzept der
Hierarchie, um die Komplexitit zu beherrschen (ROOM actor diagrams) [AGLS01] und
definiert dabei eine Verfeinerungsbeziehung zischen den eingebetteten Komponenten und
damit Verhaltensmodellen.

Zur Verifikation wird das Programm d/dt verwendet, das auf Préddikatenabstraktion be-
ruht. Das System wird iiber Pridikate definiert, die das zu untersuchende Verhalten des
Systems wiederspiegeln und die nicht relevanten Systemeigenschaften fiir diesen Verifi-
kationsschritt wegabstrahieren.

Der Model Checker d/dt untersiitzt zwei unterschiedliche Verifikationsformen [ADMO2].
Es ist moglich, alle erreichbaren Zustinde aus dem initialen Zustand zu berechnen. Bei
der Auswertung des Ergebnisses wird festgestellt, ob ein oder mehrere kritische System-
zustiande eintreten konnen. Ist man daran interessiert, ob ein bestimmter Zustand oder eine
Menge von Zustdnden erreicht werden kann, so definiert man zusitzlich das Schliissel-
wort ,,bad set”. Anschlielend fiihrt d/dt eine gezielte Suche im Zustandsraum durch, ob
diese Zustinde erreicht werden konnen. Fiir jedes System in d/dt muss vorher festgelegt
werden, welche Dimension es haben soll. Die Dimension ist die Anzahl der verianderli-
chen Variablen. Anschlieend werden die Differentialgleichungen des Systems mit Hilfe
von Matrizen angegeben.

Dekomposition. Komplexe Systeme, bei denen sowohl diskretes Verhalten als auch
kontinuierliche Daten vorkommen, sind als Ganzes schwer bis gar nicht zu verifizieren.
Metzler stellt in [Met07] einen Dekompositionsansatz vor, der es erlaubt, die komplexen
Strukturen modelliert in CSP-OZ, in kleine, fiir die Verifikation handhabbare Teile zu
dekomponieren. Die Dekomposition wird durch die Technik des Slicing [BDFWO7] be-
stimmt. Dabei wird keine kompositionelle Modellierung vorausgesetzt, sondern anhand
der globalen Eigenschaften wird durch das Slicing eine kompositionelle Aufteilung zur
Verifikation bestimmt. Der Ansatz wurde anhand der Konvoifahrt aus der ,,Neuen Bahn-
technik Paderborn* beispielhaft gezeigt.

147



Kapitel 6 Verwandte Arbeiten

Fazit. Die letzten drei vorgestellten Techniken sind effizient anwendbar fiir kleine hy-
bride Modelle. Allerdings werden durch die Ansitze keine komplexen, vernetzen mecha-
tronischen Architekturen in ihrer Ginze wie dem in dieser Arbeit zu Grunde liegenden
Ansatz unterstiitzt. In dieser Arbeit wurden die Ideen dieser Techniken aufgegriffen und
in den in dieser Arbeit vorgestellten Ansatz zu Verifikation integriert.

Im Folgenden werden nun Techniken vorgestellt, die sich in der Basis mit der Stabilitéts-
analyse von hybriden Systemen beschiftigen.

6.2.3 Stabilitat

Zuerst wird die Lyapunov Stabilitdtsanalyse betrachtet. Diese ist in der Regelungstech-
nik eine zentrale Technik zur Uberpriifung von regelungstechnischen Stabilititsverhalten.
Daran anschliefend werden spezielle Techniken zur Gewihrleistung der Stabilitét eines
Konvois, wie sie bei der Modellierung der parametrisierten Koordinationsmuster betrach-
tet wurden, diskutiert.

Lyapunov Stabilitatsanalyse. Stabilitit bezeichnet im Allgemeinen, dass ein Sys-
tem auch unter dem Einfluss von Storungen einen begrenzten Bereich nicht verlidsst. In
den einzelnen Doménen existieren hiufig konkrete Definitionen, die auch eine feinere
Unterteilung des jeweiligen Stabilitdtsbegriffes zulassen. Beispielsweise wird in der Re-
gelungstechnik ein lineares zeitinvariantes System dann als stabil bezeichnet, wenn die
Sprungantwort h(t) fir ¢ — oo einem endlichen Wert zustrebt. Andernfalls wird es als
instabil bezeichnet. Ein solches System wird als i{ibertragungsstabil bezeichnet, wenn es
auf eine beschrinkte Eingangsgrofe stets mit einer beschrinkten Ausgangsgrofle antwor-
tet: |u(t)] < M — |y(t)] < N (BIBO-Stabilitit: Bounded Input - Bounded Output).
In der Stabilitédtstheorie nach Lyapunov werden fiir derartige Systeme Techniken vorge-
schlagen, die eine mathematische Analyse hinsichtlich bestimmter Kriterien ermdglicht
[F6105][Lud9s5].

Im Fall einer Reglerumschaltung in mechatronischen Systemen ergeben sich durch die
Umschaltung jeweils neue Reglersysteme. Diese miissen einzeln doménenspezifisch sta-
bil sein. AuBerdem muss die Funktion, welche die Regler umschaltet, konvergieren
[LM99][OMT+08]. In [SB03] werden fiir den Nachweis der Stabilitit fiir die Umschalt-
funktion Multiple Lyapunov Funktionen vorgeschlagen. Dabei wird davon ausgegangen,
das die jeweilige Verdnderung am System zusammen mit dem System als Hybrider Au-
tomat mit diskreten Zustidnden fiir die Umschaltung und kontinuierlichen Teilzustinden
fiir das jeweilige Systemverhalten in einem diskreten Zustand beschreibbar sind. Geméf
Lyapunov heif3it ein System (bzw. dessen Ruhelage) genau dann stabil, wenn es eine ver-
allgemeinerte Energiefunktion gibt, welche beziiglich der moglichen Zustandsverdnde-

148



6.2 Verifikation von hybriden Systemen

rungen abnimmt. Dieses Prinzip muss auch bei Strukturvariablen, also schaltenden Syste-
men gelten. Ferner miissen die Einfliisse auf das System aus dem Umfeld, vom Benutzer
und aus dem System selbst stets zu einem stabilen Zielsystem fiihren. Der in dieser Ar-
beit diskutierte MECHATRONIC UML Ansatz adressiert die Problematik der Stabilitit
beim Umschalten zwischen Strukturen durch die Erweiterung der klassischen Hybriden
Automaten zu hybriden Rekonfigurations Charts [OMT"08]. Hier werden Umschaltfunk-
tionen, die vorab verifiziert wurden, mit Transitionen, die einen Wechsel der Struktur be-
schreiben, assoziiert. Die Zeit, welche eine Umschaltfunktion benétigt, wird entsprechend
als Deadline in das Modell der hybriden Rekonfigurations Charts iibernommen und fliet
damit in die in dieser Arbeit beschriebene Verifikation ein. Dies ermdglicht die formale
Verifikation der Stabilitidt beim Umschalten zwischen Strukturen.

Konvoi Stabilitdt. In der Literatur werden verschiedene Konzepte zur Konvoirege-
lung vorgestellt. Diese Ansédtze konnen grundlegend darin unterschieden werden, ob ei-
ne Kommunikation zwischen den einzelnen Fahrzeugen des Konvois moglich ist oder
nicht. In [YEK98] wird eine mogliche Konvoiregelung beschrieben, die ohne Kommu-
nikation arbeitet. Ein weiterer Ansatz zur Konvoiregelung ohne Kommunikation wird in
[HWLLO04] beschrieben. Dieser Ansatz zeichnet sich dadurch aus, dass neuronale Netze
zur Regelung genutzt werden. Andere Ansitze wie [BG03] und [ZEAQ3] setzen explizit
eine Kommunikation zwischen allen Fahrzeugen voraus, um eine bessere Konvoiregelung
zu erreichen. Zlocki und Zambou nutzen WLAN-Standardkomponenten fiir die Kommu-
nikation innerhalb eines Konvois aus zwei Fahrzeugen [ZZ05]. Die Kommunikationsei-
genschaften sind laut den Autoren hierbei ausreichend. Diesen Ansitzen ist gemein, dass
sie Ausfélle der Kommunikation nicht umfassend betrachten. Vor allem eine geeignete
Modellierung und formale Uberpriifung der Kommunikation bzgl. Einhaltung der Sicher-
heit wird nicht durchgefiihrt.

6.2.4 Barrier certificates

Prajna und andere stellen in [PJO4][Pra05] eine Technik vor, um temporale Eigenschaf-
ten von hybriden Systemen zu verifizieren. Im Gegensatz zum Model Checking wird
hier nicht der Zustandsraum aller erreichbaren Zustinde aufgebaut. Um Sicherheitseigen-
schaften, Erreichbarkeitsfragen, Moglichkeiten oder deren Kombination zu verifizieren,
wird das theoretische Konzept der barrier certificates und density functions verwendet.
Ein barrier certificate ist eine Funktion oder eine Menge von Funktionen von Zustin-
den, die Ungleichungen der Funktion selber und deren Ableitungen iiber den Verlauf be-
schreiben. Im Detail kann durch barrier certificates berechnet werden, ob alle moglichen
Trajektorien von einem definierten Startpunkt in einer sicheren Region enden oder nicht.
Das Konzept der barrier certificates funktioniert dhnlich der Lyapunov Stabilitdtsanalyse,
jedoch lassen sich hier neben reinen Stabilitdtseigenschaften auch die gerade beschriebe-

149



Kapitel 6 Verwandte Arbeiten

nen Eigenschaften verifizieren. Die Berechnung der barrier certificates basiert auf der
Bestimmung der sum of squares[BKAT07][PP05], die sich effizient berechnen lassen.

6.3 Verifikation von Architekturen beschrieben
durch hybride Modelle

Im Rahmen des Teilprojektbereichs H des AVACS Projektes ,,Automatic Verificati-
on and Analysis of Complex Systems* (SFB/TR 14 AVACS?) wird die Verifikation
von hybriden Systemen untersucht. In diesem Rahmen wird ein Grofteil der bis-
her beschriebenen Techniken in neuen Techniken und Methoden eingesetzt, die

anhand der Fallstudie ETCS (European Train Control System) evaluiert werden.
[DMO™07][DHO04][PQO8][BBE*04][FHO5].

Im Detail werden Verifikationstechniken fiir untereinander kooperierende Agenten be-
schrieben. Hierzu wurde eine drei Schichten Architektur mit den Ebenen cooperation
layer (kontinuierliche Zeit), control layer (kontinuierliche Zeit) und design layer (diskrete
Zeit) beschrieben. Fiir jede einzelne Schicht werden eigens hierfiir geeignete Verifikati-
onstechniken zur Verfiigung gestellt, die fiir das unterlagerte Zeitmodell geeignet sind.
Die Verifikation umfasst vorverifizierte Entwurfsmuster, die automatische Synthese von
Lyapunov Funktionen, die Erzeugung von Parametereigenschaften sowie definierte Ver-
feinerungsbeziehungen zwischen Modellen im Entwicklungsprozess.

Fazit. Die Techniken und Methoden aus dem AVACS Projekt kommen den in dieser
Dissertation vorgestellten Ansédtzen relativ nahe. Jedoch zeigt der AVACS Ansatz im
Vergleich einige Schwichen. So ist die drei Schichtenarchitektur dhnlich der hier vor-
gestellten Architektur eines OCMs (siehe Kapitel 2.1), jedoch ist das Zusammenspiel
der einzelnen Schichten nicht genauer definiert, so dass auch hier keine Vorgehensweise
fiir eine Verifikation beschrieben ist. Im vorliegenden Ansatz wurden Schnittstellen und
Abstraktionen zwischen den einzelnen Schichten definiert, die eine Verifikation ermog-
lichen. Weiterhin gibt es zwar die Moglichkeit, die Interaktion zwischen Agenten durch
vorab verifizierte Muster zu beschreiben, jedoch ist diese auf eine feste, statische Struk-
tur beschrinkt. Durch den graphbasierten Ansatz aus dieser Arbeit ist es moglich, eine
dynamische Struktur zu verifizieren.

Zhttp://www.avacs.org/

150



6.4 Adaptive Systeme

6.4 Adaptive Systeme

Wie in der Einleitung motiviert, sind vernetzte mechatronische Systeme auch dadurch
charakterisiert, dass sie zur Laufzeit ihre Struktur und ihr Verhalten dndern. Hierbei wird
von adaptiven Systemen gesprochen.

Ein wichtiges Problem bei verteilten mechatronischen Systemen ist, dass bei vernetzten
Systemen jedes Teilsystem aufgrund der zur Laufzeit erfolgten Adaption eine potentiell
unterschiedliche lokale Sicht haben kann, auf deren Basis in Notfillen Entscheidungen
autonom und lokal getroffen werden miissen. Deshalb miissen auch hier Techniken und
Methoden entwickelt werden, die hier bei der Verifikation der Sicherheitseigenschaften
verwendet werden konnen.

Ein weiterer Ansatz, welcher sich mit der Integration von Zeit in das Modell der Graph-
transformationssysteme beschiftigt und somit die Dynamik von zeitlichen Strukturin-
derungen in adaptiven Systemen adressiert, wird von Heckel und anderen in [GVHO3]
aufgezeigt. Dort wird Zeit in Anlehnung an Time ER-Netze [GMMP91] modelliert. Ein
malgeblicher Unterschied liegt darin, dass es die in der vorliegenden Arbeit vorgestell-
ten erweiterten und neu hinzugekommenen Graphtransformationsregeln erlauben, zeit-
liche Eigenschaften und Bedingungen gezielt mit einzelnen Teilgraphen zu verkniipfen.
Dabei konnen die einzelnen zeitlichen Bedingungen einem Teil der linken Seite einer
Graphtransformationsregel zugeordnet werden, wodurch es moglich ist, komplexe Be-
dingungen, wie sie in mechatronischen Systemen vorkommen, innerhalb einer Regel zu
formulieren.

Fazit. Es gibteine Reihe von Ansitzen fiir die Modellierung und Verifikation von struk-
turellen Aspekten von adaptiven Systemen [GVHO03] [TGMO00] [M§6] [HIMO98] [OMT98]
[KMS92] sowie fiir die Modellierung und Verifikation des Verhaltens [ZC06] [ADG98]
[KM98] [CPT99]. Jedoch umfasst keiner dieser Ansitze allumfassend beide Aspekte
[BCDWO04]. Der in dieser Arbeit verfolge MECHATRONIC UML Ansatz kombiniert beide
Aspekte und unterstiitzt hierfiir ein Verifikationsverfahren und adressiert dabei die Kom-
plexitdt von mechatronischen Systemen.

6.5 Zusammenfassung

In diesem Kapitel wurden verwandte Arbeiten zum Thema dieser Dissertation diskutiert.
Zuerst wurden Werkzeuge fiir die Verifikation von Echtzeitsystemen vorgestellt. Daran
anschliefend wurden Techniken der Abstraktion, wie sie bei solchen Model Checkern
eingesetzt werden, um die Komplexitdt von Echtzeitsystemen zu beherrschen, vorgestellt

151



Kapitel 6 Verwandte Arbeiten

und diskutiert. AbschlieBend wurden komplexe modell-basierte Ansétze zur Verifikation
von Echtzeitsystemen vorgestellt. Die Diskussion dieses Abschnitts hat gezeigt, dass ei-
ne Reihe von einzelnen Techniken fiir die Verifikation von Echtzeitsystemen existieren,
die in ihrer Theorie gut durchdacht, jedoch fiir praktische Verifikationsaufgaben im Be-
reich von mechatronischen Systemen alleine effizient nicht anwendbar sind. Griinde sind
hierfiir u.a. die fehlende Integration in eine vernetzte, strukturierte modulare und kom-
positionelle Architektur oder das nicht beriicksichtigte inhdrente doméneniibergreifende
Verhalten.

Daran anschlieend wurden verwandte Arbeiten zur Verifikation von hybriden Systemen
diskutiert, die sich mit doméneniibergreifenden Verhalten beschiftigen. Hier wurden auf-
einander aufbauende Techniken und Methoden vorgestellt, die es erlauben, bestimme Ei-
genschaften wie Erreichbarkeit oder Stabilitit hinsichtlich spezifizierter Eigenschaften zu
verifizieren. Allerdings hat die Diskussion gezeigt, dass die Ansitze keine komplexen,
vernetzen mechatronischen Architekturen in ihrer Ginze, wie dem in dieser Arbeit zu
Grunde liegenden Ansatz, unterstiitzen. In dieser Arbeit wurden die Ideen dieser Techni-
ken aufgegriffen und in den in dieser Arbeit vorgestellten Ansatz zu Verifikation integriert.

Die Verifikation von komplexen Architekturen, beschrieben durch hybride Modelle, wur-
de anhand des AVACS Projekts vorgestellt, welches die vorgestellten Techniken integriert.
Das AVACS Projekt kommt den Ansitzen dieser Arbeit sehr nahe, zeigt jedoch einige
Einschrinkungen hinsichtlich der zu verifizierenden Architektur und der Eigenschaften
hinsichtlich der Dynamik.

Abschliefend wurde noch auf die Verifikation von adaptiven Systemen eingegangen. Die
Diskussion hat gezeigt, dass bisher keine addquaten Ansitze, die sowohl Struktur als auch
Verhalten in Verifikationsansitzen behandeln, existieren.

152



Kapitel 7

Zusammenfassung & Ausblick

Beim Entwurf selbstoptimierender, mechatronischer Systeme stellt die eingebettete Soft-
ware einen grofen Teil der Wertschopfung dar. Typischerweise werden Regelungen oder
Steuerungen in Software umgesetzt. Durch die starke Vernetzung selbstoptimierender
Systeme wird Software auch zur nachrichtenbasierten Kommunikation und Koordination
zwischen den einzelnen verteilten selbstoptimierenden Systemen eingesetzt. Diese Kom-
munikation geht tiber die Aufnahme von System- und Umweltdaten durch Sensorik hin-
aus. Hier werden ggf. komplexe Zustandsinformationen iiber entsprechende Protokolle
und zugrunde liegende Kommunikationskanéle ausgetauscht, die dann wieder das Ver-
halten bzw. die zugrunde liegenden Berechnungen der einzelnen Komponenten massiv
beeinflussen konnen. Diese Entwicklung fiihrt zu duflerst komplexer hybrider (diskreter
/ kontinuierlicher) Software. Des Weiteren werden selbstoptimierende, mechatronische
Systeme oftmals in sicherheitskritischen Umgebungen eingesetzt. Hierdurch miissen for-
male Verfahren zur Verifikation der Korrektheit des Systems gegeniiber sicherheitskriti-
schen Eigenschaften eingesetzt werden.

Ziel dieser Dissertation war es, Konzepte und Methoden zur Modellierung und Verifika-
tion mechatronischer Systeme zu entwickeln und formal zu beschreiben. Ziel dabei war
es, die besonders durch die Verwendung doméneniibergreifender Modelle, wie sie bei
der Modellierung von mechatronischen Systemen vorkommen, entstehenden inhédrenten
multi-Paradigmenwechsel [HHO06] bei der Modellierung und Verifikation zu beriicksichti-
gen. Der hier vorgeschlagene Ansatz zur modell-basierten Entwicklung mechatronischer
Systeme zeichnet sich durch die Integration effizienter Verifikationstechniken, basierend
auf Modellwissen, Abstraktionstechniken, regelbasierten und geschickten Modellierung
aus.

153



Kapitel 7 Zusammenfassung & Ausblick

7.1 Zusammenfassung

In dieser Arbeit wurden zuerst anhand des Vorgehens der modell-basierten Entwicklung
Modelle und Verfahren zur Verifikation von mechatronischen Systemen vorgestellt. Diese
sind jedoch fiir die komplexen, vernetzten mechatronischen Systeme, wie sie einleitend
beschrieben wurden, nicht alleine anwendbar. Ziel der vorliegenden Arbeit war es, auf-
bauend auf dem vorhandenen Ansatz der MECHATRONIC UML, Erweiterungen und neue
Ansitze zur Modellierung und Verifikation solcher Systeme vorzuschlagen.

In Kapitel 3 wurde zuerst beschrieben, wie sich ein einzelnes OCM verifizieren ldsst.
Hierbei wurde beschrieben, wie sich das Zusammenspiel des reflektorischen Operators
mit dem Controller verifizieren lidsst. Hierbei mussten die harten Echzeiteigenschaften
des reflektorischen Operators sowie das kontinuierliche Verhalten des Controllers bertick-
sichtigt werden. Um das hybride Verhalten verifizieren zu konnen, wurde ein Modulari-
tatskonzept der Struktur beschrieben, welches auf einer wohl-definierten Verfeinerungs-
beziehung aufbaut und die zur Verifikation notigen Abstraktionen untersiitzt.

Im darauf folgenden Kapitel 4 wurde beschrieben, wie sich das duflere Verhalten von
OCMs in der Umwelt modellieren und verifizieren lidsst. Motivierend hierfiir war eine
moglichst realititsnahe Beschreibung von Strukturverdnderungen. In Schilling [Sch06]
wurde bereits beschrieben, wie Graphtransformationssysteme zur Beschreibung von
dynamischen Veridnderungen im Kontext von mechatronischen Systemen eingesetzt
werden konnen. Dieser Ansatz wurde derart erweitert, dass nun auch Zeitbedingungen
bei der Modellierung und Verifikation beriicksichtigt werden. So méchte man z.B.
bei der Beschreibung der Fortbewegung eines Shuttles angeben konnen, wie lange
ein Shuttle zum Durchfahren eines Schienenabschnitts bendtigt oder wie lange die
Instanziierung von Softwarekomponenten dauert, die bei der Anwendung von Echtzeit-
Koordinationsmustern instanziiert werden miissen. Durch untere Schranken (guards)
ist es moglich, eine Mindestzeitdauer festzulegen und diese nach oben hin durch eine
Invariante zu begrenzen, die dadurch das Fortschreiten des Verhaltens garantiert. Hierbei
wurde der Formalismus der Graphtransformationssysteme um Zeitannotationen erweitert.

In Kapitel 5 wurde die Koordination von mehreren OCMs auf der VMS Ebene be-
trachtet. Zwar bietet die MECHATRONIC UML hierfiir schon den Ansatz der Echtzeit-
Koordinationsmuster, diese jedoch weisen eine Reihe von Einschrinkungen auf. So sind
diese durch eine statische Struktur gekennzeichnet und beriicksichtigen kein hybrides Ver-
halten. Die hier neu eingefiihrten parametrisierten Koordinationsmuster ermoglichen nun
die Integration von kontinuierlichem Verhalten sowie von dynamischen Strukturdnderun-
gen.

154



7.2 Ausblick

7.2 Ausblick

AbschlieBend werden Ausblicke auf weitere Arbeiten gegeben. Im Fachgebiet Software-
technik! und im SFB 614 wird die MECHATRONIC UML stetig weiterentwickelt, um den
neuen Forschungsergebnissen gerecht zu werden.

Wie anfangs in der Zusammenfassung und bei den Konzepten der modell-basierten Ent-
wicklung erwihnt, steht neben der Modellierung und Verifikation auch die Codesynthe-
se aus Modellen im Vordergrund. Um nun auch die neuen parametrisierten Koordinati-
onsmuster zu unterstiitzen und die hier erreichten Verifikationsergebnisse zu verwenden,
muss die bisherige Codesynthese [Bur06][BGS05] angepasst werden.

Eine ndchste Erweiterung wire, die bereits vorhandene Synthese aus [GHHKO6] zur
automatischen Synthese von dynamischen Collaborationen zu erweitern. In diesem
Kontext kann auch untersucht werden, inwiefern sich TSSDs [KleO8][GHH'07] ver-
wenden lassen, um die Constraints der neuen parametrisierten Koordinationsmuster
zu formulieren. Hierbei kann auch untersucht werden, inwiefern sich der Ansatz aus
der Automobilindustrie zur Beschreibung von komplexen Constraints integrieren ldsst
[GHST07a][GHST07b][GNNT06].

Als letzter Punkt steht nun die Integration von Testverfahren in den Ansatz.
[GHHPO7][HHO7][GHHO8a]. Oftmals ist die Uberpriifung eines verifizierten Mo-
dells allein trotz automatischer Codegenerierung nicht immer ausreichend, um die
Konformitidt des Systems zu seiner Spezifikation zu zeigen. Z.B. werden nachtriglich
Verdnderungen am Code zur Optimierung vorgenommen oder Legacy Komponenten
werden integriert. Um die Konformitit der Software in den oben beschrieben Féllen
dennoch sicherzustellen, ist es erforderlich, den Code zu ,,verifizieren®. Eine verbreitete
Methode dazu ist der Software-Test. Aufbauend auf vorhandenen Verfahren miissen die
Software-Tests jetzt auch auf komplexe, vernetze mechatronische Systeme erweitert
werden.

'http://www.upb.de/cs/ag-schaefer

155



Kapitel 7 Zusammenfassung & Ausblick

156



Kapitel 8

Literaturverzeichnis

Eigene Veroffentlichungen

[BGHO5a]

[BGH'05b]

[BGH107]

[BGHSO04]

BURMESTER, Sven ; GIESE, Holger ; HIRSCH, Martin: Syntax and Seman-
tics of Hybrid Components / University of Paderborn. Paderborn, Germany,
October 2005 (tr-ri-05-264). — Forschungsbericht

BURMESTER, Sven ; GIESE, Holger ; HIRSCH, Martin ; SCHILLING, Da-
niela ; TICHY, Matthias: The Fujaba Real-Time Tool Suite: Model-Driven
Development of Safety-Critical, Real-Time Systems. In: Proc. of the 27th
International Conference on Software Engineering (ICSE), St. Louis, Miss-
ouri, USA, ACM Press, Mai 2005, S. 670-671

BURMESTER, Sven ; GIESE, Holger ; HENKLER, Stefan ; HIRSCH, Martin
; TICHY, Matthias ; GAMBUZZA, Alfonso ; MUCH, Eckehard ; VOCKING,
Henner: Tool Support for Developing Advanced Mechatronic Systems: Inte-
grating the Fujaba Real-Time Tool Suite with CAMeL-View. In: Proc. of the
29th International Conference on Software Engineering (ICSE), Minneapo-
lis, Minnesota, USA, IEEE Computer Society Press, Mai 2007, S. 801-804

BURMESTER, Sven ; GIESE, Holger ; HIRSCH, Martin ; SCHILLING, Da-
niela: Incremental Design and Formal Verification with UML/RT in the
FUJABA Real-Time Tool Suite. In: Proc. of the International Workshop on
Specification and Validation of UML Models for Real-Time and Embedded
Systems, SVERTS2004, Satellite Event of the 7th International Conference
on the Unified Modeling Language, UML2004, 2004, S. 1-20

157



Kapitel 8 Literaturverzeichnis

[GHOS5a]

[GHOS5b]

[GHO6]

[GHHO6a]

[GHH*06¢]

[GHH*07]

[GHHO8a]

158

GIESE, Holger ; HIRSCH, Martin: Checking and Automatic Abstraction
for Timed and Hybrid Refinement in Mechtronic UML / Lehrstuhl fiir Soft-
waretechnik, Universitidt Paderborn. Paderborn, Germany, December 2005
(tr-ri-03-266). — Forschungsbericht

GIESE, Holger ; HIRSCH, Martin: Modular Verificaton of Safe Online-
Reconfiguration for Proactive Components in Mechatronic UML. In: Proc.
of the International Workshop on Modeling and Analysis of Real-Time
and Embedded Systems (MARTES), Satellite Event of the 8th Internatio-
nal Conference on Model Driven Engineering Languages and Systems, Mo-
DELS/UML2005, 2005, S. 7-26

GIESE, Holger ; HIRSCH, Martin: Modular Verificaton of Safe Online-
Reconfiguration for Proactive Components in Mechatronic UML. In:
BRUEL, Jean-Michel (Hrsg.): Satellite Events at the MoDELS 2005 Confe-
rence, Montego Bay, Jamaica, October 2-7, 2005, Revised Selected Papers
Bd. 3844. Springer Verlag, January 2006, S. 67-78

GIESE, Holger ; HENKLER, Stefan ; HIRSCH, Martin: Analysis and Mode-
ling of Real-Time with Mechatronic UML taking Clock Drift into Account.
In: Proc. of the International Workshop on Modeling and Analysis of Real-
Time and Embedded Systems (MARTES), Satellite Event of the 9th Interna-
tional Conference on Model Driven Engineering Languages and Systems,
MoDELS/UML2006, Genova, Italy Bd. 343. University of Oslo, October
2006 (Research Report). — ISBN 82-7368-299-4, S. 41-60

GIESE, Holger ; HENKLER, Stefan ; HIRSCH, Martin ; TICHY, Matthias
; VOCKING, Henner: Modellbasierte Entwicklung vernetzter, mechatroni-
scher Systeme am Beispiel der Konvoifahrt autonom agierender Schienen-
fahrzeuge. In: Proc. of the Fourth Paderborner Workshop Entwurf mecha-
tronischer Systeme Bd. 189, 2006 (HNI-Verlagsschriftenreihe), S. 457-473

GIESE, Holger ; HENKLER, Stefan ; HIRSCH, Martin ; KLEIN, Florian ;
SPIJKERMAN, Michael: Monitoring of Structural and Temporal Proper-
ties. In: GEIGER, Leif (Hrsg.) ; GIESE, Holger (Hrsg.) ; ZUNDORF, Albert
(Hrsg.): Proc. of the 5th International Fujaba Days 2007, Kassel, Germany,
2007,S. 14

GIESE, Holger ; HENKLER, Stefan ; HIRSCH, Martin: Combining Com-
positional Formal Verification and Testing for Correct Legacy Component
Integration in Mechatronic UML. In: LEMOS, Rogério de (Hrsg.) ; GI-
ANDOMENICO, Felicita D. (Hrsg.) ; GACEK, Cristina (Hrsg.) ; MUCCINI,
Henry (Hrsg.) ; VIEIRA, Marlon (Hrsg.): Architecting Dependable Systems
V Bd. 5135, Springer Verlag, Juni 2008 (Lecture Notes in Computer Science



(LNCS)), S. 248-272

[GHH*08b] GIESE, Holger ; HENKLER, Stefan ; HIRSCH, Martin ; ROUBIN, Vladimir

[GHHKO6]

[GHHPO7]

[GHS*07a]

[GHS™07b]

[GNNT06]

; TICHY, Matthias: Modeling Techniques for Software-Intensive Systems.
In: TIAKO, Dr. Pierre F. (Hrsg.): Designing Software-Intensive Systems: Me-
thods and Principles. 1dea Group Publishing, Mai 2008, S. 21-57

GIESE, Holger ; HENKLER, Stefan ; HIRSCH, Martin ; KLEIN, Florian: No-
body’s perfect: Interactive Synthesis from Parametrized Real-Time Scena-
rios. In: Proc. of the 5th ICSE 2006 Workshop on Scenarios and State Ma-
chines: Models, Algorithms and Tools (SCESM’06),Shanghai, China, ACM
Press, Mai 2006, S. 67-74

GIESE, Holger ; HENKLER, Stefan ; HIRSCH, Martin ; PRIESTERJAHN,
Claudia: Model-Based Testing of Mechatronic Systems. In: GEIGER, Leif
(Hrsg.) ; GIESE, Holger (Hrsg.) ; ZUNDORF, Albert (Hrsg.): Proc. of the 5th
International Fujaba Days 2007, Kassel, Germany, 2007, S. 1-4

GEHRKE, Matthias ; HIRSCH, Martin ; SCHAFER, Wilhelm ; NIGGEMANN,
Oliver ; STICHLING, Dirk ; NICKEL, Ulrich: Verifikation zeitlicher An-
forderungen in automotiven komponentenbasierten Software Systemen. In:
BLEEK, Wolf-Gideon (Hrsg.) ; SCHWENTNER, Henning (Hrsg.) ; ZULLIG-
HOVEN, Heinz (Hrsg.): Proc. of the Software Engineering 2007 Conference,
Hamburg, Germany, 27.-30.3.2007 Bd. P-105, Gesellschaft fiir Informatik,
Mirz 2007 (Lecture Notes in Informatics (LNI)), S. 251-252

GEHRKE, Matthias ; HIRSCH, Martin ; SCHAFER, Wilhelm ; NIGGEMANN,
Oliver ; STICHLING, Dirk ; NICKEL, Ulrich: Typisierung und Verifikation
zeitlicher Anforderungen automotiver Software Systeme. In: CONRAD, Mir-
ko (Hrsg.) ; GIESE, Holger (Hrsg.) ; RUMPE, Bernhard (Hrsg.) ; SCHATZ,
Bernhard (Hrsg.): Proc. of the Dagstuhl-Workshop: Model-Based Deve-
lopment of Embedded Systems (MBEES), 15.-18.1.2007, Schloss Dagstuhl,
Germany. Technische Universitit Braunschweig, January 2007 (Informatik-
Bericht 2007-1), S. 73-82

GEHRKE, Matthias ; NAWRATIL, Petra ; NIGGEMANN, Oliver ; SCHA-
FER, Wilhelm ; HIRSCH, Martin: Scenario-Based Verification of Auto-
motive Software Systems. In: GIESE, Holger (Hrsg.) ; RUMPE, Bern-
hard (Hrsg.) ; SCHATZ, Bernhard (Hrsg.): Proc. of the Dagstuhl-Workshop:
Model-Based Development of Embedded Systems (MBEES), 9.-13.1.2005,
Schloss Dagstuhl, Germany. Technische Universitit Braunschweig, Janua-
ry 2006 (Informatik-Bericht 2006-1), S. 35-42

159



Kapitel 8 Literaturverzeichnis

[HGO3]

[HHO6]

[HHO7]

[HHGO8]

[HHKSO08]

[Hir04]

[OMT"08]

160

HIRSCH, Martin ; GIESE, Holger: Towards the Incremental Model
Checking of Complex RealTime UML Models. In: GIESE, Holger (Hrsg.)
; ZUNDORF, Albert (Hrsg.): Proc. of the first International Fujaba Days
2003, Kassel, Germany Bd. tr-ri-04-247, University of Paderborn, October
2003 (Technical Report), S. 9-12

HENKLER, Stefan ; HIRSCH, Martin: A Multi-Paradigm Modeling Ap-
proach for Reconfigurable Mechatronic Systems. In: Proc. of the Internatio-
nal Workshop on Multi-Paradigm Modeling: Concepts and Tools (MPMO06),
Satellite Event of the the 9th International Conference on Model-Driven En-
gineering Languages and Systems MoDELS/UML2006, Genova, Italy Bd.
2006/1. Budapest University of Technology and Economics, October 2006
(BME-DAAI Technical Report Series), S. 15-25

HENKLER, Stefan ; HIRSCH, Martin: Compositional Validation of Distri-
buted Real Time Systems. In: GEHRKE, Matthias (Hrsg.) ; GIESE, Holger
(Hrsg.) ; STROOP, Joachim (Hrsg.): Proc. of the 4th Workshop on Object-
oriented Modeling of Embedded Real-Time Systems (OMER 4), Paderborn,
Germany, 30.-31.10.2007 Bd. tr-ri-07-286, University of Paderborn, Octo-
ber 2007, S. 52-56

HIRSCH, Martin ; HENKLER, Stefan ; GIESE, Holger: Modeling Collabora-
tions with Dynamic Structural Adaptation in Mechatronic UML. In: Proc.
of the ICSE 2008 Workshop on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS’08),Leipzig, Germany, ACM Press, Mai 2008,
S. 3340

HENKLER, Stefan ; HIRSCH, Martin ; KAHL, Sascha ; SCHMIDT, Alex-
ander: Development of Self-Optimizing Systems: Domain-spanning and
Domain-specific models exemplified by an Air Gap Adjustment System
for Autonomous Vehicles. In: 2008 ASME International Design Enginee-
ring Technical Conferences and Computers and Information in Engineering
Conference. New York, NY, USA, 2008, S. 654—665

HIRSCH, Martin: Effizientes Model Checking von UML-RT Modellen und
Realtime Statecharts mit UPPAAL. Fakultit fiir Elektrotechnik, Informatik

und Mathematik / Institut fiir Informatik, Universitit Paderborn, Diplomar-
beit, Juni 2004

OswMmic, Semir ; MUNCH, Eckehard ; TRACHTLER, Ansgar ; HENKLER,
Stefan ; SCHAFER, Wilhelm ; GIESE, Holger ; HIRSCH, Martin: Safe
Online-Reconfiguration of Self-Optimzing Mechatronic Systems. In: GAU-
SEMEIER, Jiirgen (Hrsg.) ; RAMMIG, Franz (Hrsg.) ; SCHAFER, Wilhelm
(Hrsg.): Selbstoptimierende mechatronische Systeme: Die Zukunft gestalten.



7. Internationales Heinz Nixdorf Symposium fiir industrielle Informations-

technik, 2008, S. 411-426

Literatur

[ACDO90]

[ADE*01]

[ADGO98]

[ADIO3]

[ADIO6]

[ADMO2]

[AFHI97]

ALUR, Rajeev ; COURCOUBETIS, Costas ; DILL, David: Model-Checking
for Real-Time Systems. In: Proceedings of the 5th Annual Symposium on
Logic in Computer Science, IEEE Computer Society Press, 1990, S. 414—
425

ALUR, Rajeev ; DANG, Thao ; ESPOSITO, Joel M. ; FIERRO, Rafael B. ;
HUR, Yerang ; IVANCIC, Franjo ; KUMAR, Vijay ; LEE, Insup ; MISHRA,
Pradyumna ; PAPPAS, George J. ; SOKOLSKY, Oleg: Hierarchical Hybrid
Modeling of Embedded Systems. In: EMSOFT ’01: Proceedings of the First
International Workshop on Embedded Software. London, UK : Springer
Verlag, 2001. — ISBN 3-540-42673-6, S. 14-31

ALLEN, Robert ; DOUENCE, Rémi ; GARLAN, David: Specifying and Ana-

lyzing Dynamic Software Architectures. In: Lecture Notes in Computer
Science (LNCS) 1382 (1998), S. 21-36

ALUR, Rajeev ; DANG, Thao ; IVANCIC, Franjo: Progress on Reachability
analysis of Hybrid Systems Using Predicate Abstraction. In: MALER, Oded
(Hrsg.) ; PNUELI, Amir (Hrsg.): HSCC ’03: Proceedings of the 6th Inter-
national Workshop on Hybrid Systems: Computation and Control, Prague,
Czech Republic, April 3-5 Bd. 2623, Springer Verlag, 2003 (Lecture Notes
in Computer Science (LNCS)). — ISBN 3-540-00913-2, S. 4-19

ALUR, Rajeev ; DANG, Thao ; IVANCIC, Franjo: Predicate abstraction for
reachability analysis of hybrid systems. In: Trans. on Embedded Computing
Sys. 5 (2006), Nr. 1, S. 152-199. — ISSN 1539-9087

ASARIN, Eugene ; DANG, Thao ; MALER, Oded: The d/dt Tool for Verifica-
tion of Hybrid Systems. In: CAV ’02: Proceedings of the 14th International
Conference on Computer Aided Verification. London, UK : Springer-Verlag,
2002. — ISBN 3-540-43997-8, S. 365-370

ALUR, Rajeev ; Fix, Limor ; HENZINGER, Thomas A.: Event-clock auto-
mata: a determinizable class of timed automata. In: Theoretical Computer
Science 211 (1997), April, S. 253-273

161



Kapitel 8 Literaturverzeichnis

[AGLSO1]

[AKPMO5]

[Bal98]

[BBE*04]

[BBE+01]

[BBG106]

[BBK*04]

[BCDWO04]

162

ALUR, Rajeev ; GROSU, Radu ; LEE, Insup ; SOKOLSKY, Oleg: Compo-
sitional Refinement of Hierarchical Hybrid Systems. In: Proceedings of the
Fourth International Conference on Hybrid Systems: Computation and Con-
trol (HSCC’01) Bd. 2034, Springer Verlag, 2001 (Lecture Notes in Computer
Science), S. 33-48

AHLUWALIA, Jaswinder ; KRUGER, Ingolf H. ; PHILLIPS, Walter ; MEISIN-
GER, Michael: Model-based run-time monitoring of end-to-end deadlines.
In: EMSOFT °05: Proceedings of the 5th ACM international conference on
Embedded software. New York, NY, USA : ACM, 2005. — ISBN 1-59593—
0914, S. 100-109

BALZERT, Helmut: Lehrbuch der Software-Technik: Software-Management,
Software-Qualitdtssicherung, Unternehmensmodellierung. Heidelberg, Ber-

lin, Oxford : Spektrum Akademischer Verlag, 1998

BECKER, Bernd ; BEHLE, Markus ; EISENBRAND, Fritz ; FRANZLE, Mar-
tin ; HERBSTRITT, Marc ; HERDE, Christian ; HOFFMANN, Joerg ; KRO-
NING, Daniel ; NEBEL, Bernhard ; POLIAN, Ilia ; WIMMER, Ralf: Bounded
Model Checking and Inductive Verification of Hybrid Discrete-Continuous
Systems. In: GI/ITG/GMM Workshop: Methoden und Beschreibungsspra-
chen zur Modellierung und Verifikation von Schaltungen und Systemen. Ri-
chard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby : Informatics
and Mathematical Modelling, Technical University of Denmark, DTU, Fe-
bruary 2004

BERARD, B. ; BIDOIT, M. ; FINKEL, A. ; LAROUSSINIE, F. ; PETIT, A. ;
BETRUCCI, L. ; SCHNOEBELEN, Ph. ; MCKENZIE, P.: Systems and Software
Verification. Springer, 2001

BECKER, Basil ; BEYER, Dirk ; GIESE, Holger ; KLEIN, Florian ; SCHIL-
LING, Daniela: Symbolic Invariant Verification for Systems with Dynamic

Structural Adaptation. In: Proc. of the 28" International Conference on
Software Engineering (ICSE), Shanghai, China, ACM Press, 2006, S. 72-81

BALSER, Michael ; BAUMLER, Simon ; KNAPP, Alexander ; REIF, Wolf-
gang ; THUMS, Andreas: Interactive Verification of UML State Machines.
In: DAVIES, Jim (Hrsg.) ; SCHULTE, Wolfram (Hrsg.) ; BARNETT, Michael
(Hrsg.): ICFEM Bd. 3308. Springer Verlag, 2004, S. 434448

BRADBURY, Jeremy S. ; CORDY, James R. ; DINGEL, Juergen ; WERME-
LINGER, Michel: A survey of self-management in dynamic software archi-
tecture specifications. In: WOSS *04: Proceedings of the 1st ACM SIGSOFT
workshop on Self-managed systems. New York, NY, USA : ACM, 2004. —



[BDFWO07]

[BDLO4]

[BGO3]

[BGOO04]

[BGOO06]

[BGSO05]

[BKA*07]

ISBN 1-58113-989-6, S. 28-33

BRUCKNER, 1. ; DRAGER, K. ; FINKBEINER, B. ; WEHRHEIM, H.: Sli-
cing Abstractions. In: ARBAB, F. (Hrsg.) ; SIRJANI, M. (Hrsg.): FSEN
2007: IPM International Symposium on Fundamentals of Software Enginee-
ring Bd. 4767, Springer, April 2007 (Lecture Notes in Computer Science). —
ISBN 978-3-540-75697-2, 17-32

BEHRMANN, Gerd ; DAVID, Alexandre ; LARSEN, Kim G.: A Tutorial on
UPPAAL. In: BERNARDO, Marco (Hrsg.) ; CORRADINI, Flavio (Hrsg.):
Formal Methods for the Design of Real-Time Systems: 4th International
School on Formal Methods for the Design of Computer, Communication,
and Software Systems, SFM-RT 2004 Bd. 3185, Springer Verlag, September
2004 (Lecture Notes in Computer Science (LNCS)), S. 200-236

BAER, H. ; GERDES, j. C.: Parameter Estimation and Command Modifica-
tion for Longitudinal Control of Heavy Vehicles / University of California.
Berkeley, CA, USA, 2003 (PATH Research Report UCB-ITS-PRR-2003-
16). — Forschungsbericht

BURMESTER, Sven ; GIESE, Holger ; OBERSCHELP, Oliver: Hybrid UML
Components for the Design of Complex Self-optimizing Mechatronic Sys-
tems. In: ARAUJO, Helder (Hrsg.) ; VIEIRA, Alves (Hrsg.) ; BRAZ, Jose
(Hrsg.) ; ENCARNACAO, Bruno (Hrsg.) ; CARVALHO, Marina (Hrsg.): Proc.
of Ist International Conference on Informatics in Control, Automation and
Robotics (ICINCO 2004), Setubal, Portugal, INSTICC Press, August 2004,
S.222-229

BURMESTER, Sven ; GIESE, Holger ; OBERSCHELP, Oliver: Hybrid UML
Components for the Design of Complex Self-optimizing Mechatronic Sys-
tems. In: BRAZ, J. (Hrsg.) ; ARAUJO, H. (Hrsg.) ; VIEIRA, A. (Hrsg.) ;
ENCARNACAO, B. (Hrsg.): Informatics in Control, Automation and Robo-
tics 1. Springer Verlag, Mirz 2006, S. 281-288

BURMESTER, Sven ; GIESE, Holger ; SCHAFER, Wilhelm: Model-Driven
Architecture for Hard Real-Time Systems: From Platform Independent Mo-
dels to Code. In: Proc. of the European Conference on Model Driven Archi-
tecture - Foundations and Applications (ECMDA-FA’05), Niirnberg, Germa-
ny, Springer Verlag, November 2005 (LNCS), S. 1-15

BADAMCHIZADEH, Mohammad-Ali ; KHANMOHAMMADI, Sohrab ;
ALIZADEH, Ghasem ; AGHAGOLZADEH, Ali ; KARIMIAN, Ghader: Using
Sum of Squares Decomposition for Stability of Hybrid Systems. In: IEICE
Transactions 90-A (2007), Nr. 11, S. 2478-2487

163



Kapitel 8 Literaturverzeichnis

[BNO3]

[BRSS99]

[BS91]

[Bur06]

[CGI103]

[CGPOO]

[CPT99]

[CW96]

[DHOO04]

[Di190]

164

BROEKMAN, Bart ; NOTENBOOM, Edwin: Testing Embedded Software.
Addison-Wesley, 2003

BALSER, Michael ; REIF, Wolfgang ; SCHELLHORN, Gerhard ; STENZEL,
Kurt: KIV 3.0 for Provably Correct Systems. In: FM-Trends 98: Proceedings
of the International Workshop on Current Trends in Applied Formal Method.
London, UK : Springer Verlag, 1999, S. 330-337

BRZ0OZOWSKI, J. A. ; SEGER, C. J.: Advances in asynchornous circuit theo-
ry, Part II: Bounded inertial delay model, MOS circuits, design techniques.
Bd. 43. European Association for Theoretical Computer Science, 1991. —
199-263 S.

BURMESTER, Sven: Model-Driven Engineering of Reconfigurable Mecha-
tronic Systems. Fakultit fiir Elektrotechnik, Informatik und Mathematik /
Institut fiir Informatik, Universitidt Paderborn, PhD Dissertation, 2006

CLARKE, Edmund ; GRUMBERG, Orna ; JHA, Somesh ; LU, Yuan ; VEITH,

Helmut: Counterexample-guided abstraction refinement for symbolic model
checking. In: J. ACM 50 (2003), Nr. 5, S. 752-794. — ISSN 0004-5411

CLARKE, E. M. ; GRUMBERG, O. ; PELED, D. A.: Model Checking. MIT
Press, 2000

CANAL, Carlos ; PIMENTEL, Ernesto ; TROYA, José M.: Specification and
Refinement of Dynamic Software Architectures. In: WICSA1: Proceedings
of the TC2 First Working IFIP Conference on Software Architecture (WIC-
SAI). Deventer, The Netherlands, The Netherlands : Kluwer, B.V., 1999. —
ISBN 0-7923-8453-9, S. 107-126

CLARKE, Edmund M. ; WING, Jeannette M.: Formal methods: state of the
art and future directions. In: ACM Comput. Surv. 28 (1996), Nr. 4, S. 626—
643. — ISSN 0360-0300

DAMM, W. ; HUNGAR, H. ; OLDEROG, E.-R.: On the Verification of Co-
operating Traffic Agents. In: BOER, E.S. de (Hrsg.) ; BONSANGUE, M.M.
(Hrsg.) ; GRAF, S. (Hrsg.) ; ROEVER, W.-P. de (Hrsg.): Proc. FMCO ’03:
Formal Methods for Components and Objects Bd. 3188, 2004 (Lecture No-
tes in Computer Science (LNCS)), 78-110

DiLL, D. L.: Timing assumptions and verification of finite-state concur-
rent systems. In: Proceedings of the international workshop on Automatic
verification methods for finite state systems. New York, NY, USA : Springer-
Verlag New York, Inc., 1990. — ISBN 0-387-52148-8, S. 197-212



[DJVPO3]

[DMO™"07]

[Dor08]

[DSBBO0O0]

[Dwy02]

[EFF+08]

[EHK"07]

[EMK*07]

DAMM, W. ; JOSKO, B. ; VOTINTSEVA, A. ; PNUELI, A.: A Formal Se-
mantics for a UML Kernel Language / OMEGA: Correct Development
of Real-Time Embedded Systems IST-2001-33522. 2003 (IST/33522/WP
1.1/D1.1.2-Partl). — Forschungsbericht. — Version 1.2

DAMM, Werner ; MIKSCHL, Alfred ; OEHLERKING, Jens ; OLDEROG,
Ernst-Riidiger ; PANG, Jun ; PLATZER, André ; SEGELKEN, Marc ; WIRTZ,
Boris: Automating Verification of Cooperation, Control, and Design in Traf-
fic Applications. In: JONES, CIliff (Hrsg.) ; L1U, Zhiming (Hrsg.) ; WOOD-
COCK, Jim (Hrsg.): Formal Methods and Hybrid Real-Time Systems Bd.
4700, Springer Verlag, 2007 (Lecture Notes in Computer Science (LNCS)),
S. 115-169

DOROCIAK, Rafal: Hybride Verifikation von Mechatronic UML Modellen
durch Integration des Modelcheckers PHAVer. Fakultit fiir Elektrotechnik,
Informatik und Mathematik / Institut fiir Informatik, Universitit Paderborn,
Bachelorarbeit, Januar 2008

DAWSON, D. ; SEWARD, D. ; BRADLEY, D.A. ; BURGE, S.: Mechatronics
and the Design of Intelligent Machines and Systems. Nelson Thornes, 2000.
— ISBN 0748754431

DWYER, Matthew: Software Model Checking Tutorial, FSE’02. Charleston,
South Carolina, USA, November 2002

ERMAGAN, Vina ; FARCAS, Claudiu ; FARCAS, Emilia ; KRUGER, Ingolf H.
; MENARINI, Massimilano: A Service-Oriented Approach to Failure Mana-
gement. In: GIESE, Holger (Hrsg.) ; HUHN, Michaela (Hrsg.) ; NICKEL, Ul-
rich (Hrsg.) ; SCHATZ, Bernhard (Hrsg.): Proc. of the Dagstuhl-Workshop:
Model-Based Development of Embedded Systems (MBEES), 7.4.-9.4.2008,
Schloss Dagstuhl, Germany. Technische Universitit Braunschweig, April
2008 (Informatik-Bericht 2008-2), S. 102-116

ERMAGAN, Vina ; HUANG, T.-J. ; KRUGER, Ingolf ; MEISINGER, Micha-
el ; MENARINI, Massimilano ; MOORTHY, P.: Towards Tool Support for
Service-Oriented Development of Embedded Automotive Systems. In: CON-
RAD, Mirko (Hrsg.) ; GIESE, Holger (Hrsg.) ; RUMPE, Bernhard (Hrsg.)
; SCHATZ, Bernhard (Hrsg.): Proc. of the Dagstuhl-Workshop: Model-
Based Development of Embedded Systems (MBEES), 15.-18.1.2007, Schloss
Dagstuhl, Germany. Technische Universitit Braunschweig, Januar 2007
(Informatik-Bericht 2007-1), S. 1-24

ERMAGAN, Vina ; MENARINI, Massimilano ; KRUGER, Ingolf ; MIZUTANTI,
Jun ichi ; OGUCHI, Kentaro ; WEIR, David: Towards Model-Based Failure-

165



Kapitel 8 Literaturverzeichnis

[Fav05]

[FGK™04]

[FHOS]

[Fre05]

[Fo6105]

[GB04]

[GBSO04]

[Ge05]

166

Management for Automotive Software. In: SEAS °07: Proceedings of the 4th
International Workshop on Software Engineering for Automotive Systems.
Washington, DC, USA : IEEE Computer Society, 2007. — ISBN 0-7695—
2968-2, S. 8

FAVRE, Jean-Marie: Foundations of Model (Driven) (Reverse) Engineering
: Models — Episode I: Stories of The Fidus Papyrus and of The Solarus.
In: BEZIVIN, Jean (Hrsg.) ; HECKEL, Reiko (Hrsg.): Language Engineering
for Model-Driven Software Development. Dagstuhl, Germany : Internatio-
nales Begegnungs- und Forschungszentrum fiir Informatik (IBFI), Schloss
Dagstuhl, Germany, 2005 (Dagstuhl Seminar Proceedings 04101). — ISSN
1862-4405

FRANK, Ursula ; GIESE, Holger ; KLEIN, Florian ; OBERSCHELP, Oliver
; SCHMIDT, Andreas ; SCHULZ, Bernd ; VOCKING, Henner ; WITTING,
Katrin ; GAUSEMEIER, Jiirgen (Hrsg.): Selbstoptimierende Systeme des Ma-
schinenbaus - Definitionen und Konzepte. 1. Auflage. Paderborn, Germany
: Bonifatius GmbH, 2004 (HNI-Verlagsschriftenreihe Band 155)

FRANZLE, Martin ; HERDE, Christian: Efficient Proof Engines for Bounded
Model Checking of Hybrid Systems. In: Electr. Notes Theor. Comput. Sci.
133 (2005), S. 119-137

FREHSE, Goran: PHAVer: Algorithmic Verification of Hybrid Systems Past
HyTech. In: HSCC, Springer Verlag, 2005 (Lecture Notes in Computer
Science (LNCS)), S. 258-273

FOLLINGER, Otto: Regelungstechnik. Einfiihrung in die Methoden und ihre
Anwendung. Hiithig, 2005

GIESE, Holger ; BURMESTER, Sven: Analysis and Synthesis for Parame-
terized Timed Sequence Diagrams. In: GIESE, Holger (Hrsg.) ; KRUGER,
Ingolf (Hrsg.): Proc. of the 3rd International Workshop on Scenarios and
State Machines: Models, Algorithms, and Tools (ICSE 2003 Workshop W5S),
Edinburgh, Scotland, IEE, May 2004, S. 43-50

GIESE, Holger ; BURMESTER, Sven ; SCHAFER, Wilhelm ; OBERSCHELP,
Oliver: Modular Design and Verification of Component-Based Mechatro-
nic Systems with Online-Reconfiguration. In: Proc. of 12th ACM SIGS-
OFT Foundations of Software Engineering 2004 (FSE 2004), Newport Be-
ach, USA, ACM Press, November 2004, S. 179-188

GAUSEMEIER, Jiirgen ; ET al.: Sonderforschungsbereich 614 - Selbstopti-
mierende Systeme des Maschinenbaus, 2. Forderperiode, Finanzierungsan-
trag.. Bd. 1. Universitit Paderborn, 2005



[GHO4]

[GHO6]

[G1e00]

[Gie03]

[GMMP91]

[GSBI98]

[GTO6]

[GTB*03]

GRAF, Susanne ; HOOMAN, Jozef: Correct Development of Embedded Sys-
tems. In: OQUENDO, Flavio (Hrsg.) ; WARBOYS, Brian (Hrsg.) ; MORRISI-
ON, Ron (Hrsg.): Proceedings of the First European Workshop on Software
Architecture, EWSA2004 Bd. 3047. St Andrews, UK : Springer Verlag, May
21-22 2004 (Lecture Notes in Computer Science (LNCS)), S. 241-249

GIESE, Holger ; HENKLER, Stefan: A Survey of Approaches for the Visu-
al Model-Driven Development of Next Generation Software-Intensive Sys-
tems. In: Journal of Visual Languages and Computing Bd. 17, 2006, S.
528-550

GIESE, Holger: Contract-based Component System Design. In: RALPH
H. SPRAGUE, Jr. (Hrsg.): Thirty-Third Annual Hawaii International Confe-
rence on System Sciences (HICSS-33), Maui, Hawaii, USA, IEEE Computer
Press, Januar 2000

GIESE, Holger: A Formal Calculus for the Compositional Pattern-Based
Design of Correct Real-Time Systems. / Lehrstuhl fiir Softwaretechnik, Uni-
versitidt Paderborn. Paderborn, Deutschland, July 2003 (tr-ri-03-240). — For-
schungsbericht

GHEZZI, Carlo ; MANDRIOLI, Dino ; MORASCA, Sandro ; PEZZE, Mauro:
A Unified High-Level Petri Net Formalism for Time-Critical Systems. In:
IEEE Trans. Softw. Eng. 17 (1991), Nr. 2, S. 160-172. — ISSN 0098-5589

GROSU, Radu ; STAUNER, Thomas ; BROY, Manfred: A Modular Visual
Model for Hybrid Systems. In: FTRTFT ’98: Proceedings of the 5th Inter-
national Symposium on Formal Techniques in Real-Time and Fault-Tolerant
Systems Bd. 1486. London, UK : Springer Verlag, 1998 (Lecture Notes in
Computer Science (LNCS)). — ISBN 3-540-65003-2, S. 75-91

GIESE, Holger ; TICHY, Matthias: Component-Based Hazard Analysis: Op-
timal Designs, Product Lines, and Online-Reconfiguration. In: Proc. of the
25th International Conference on Computer Safety, Security and Reliability
(SAFECOMP), Gdansk, Poland, Springer Verlag, September 2006 (Lecture
Notes in Computer Science (LNCS)), S. 156-169

GIESE, Holger ; TICHY, Matthias ; BURMESTER, Sven ; SCHAFER, Wil-
helm ; FLAKE, Stephan: Towards the Compositional Verification of Real-
Time UML Designs. In: Proc. of the 9th European software engineering
conference held jointly with 11th ACM SIGSOFT international symposium
on Foundations of software engineering (ESEC/FSE-11), ACM Press, Sep-
tember 2003, S. 38—47

167



Kapitel 8 Literaturverzeichnis

[GVHO3]

[HenOO]

[Her99]

[HHT96]

[HHWT9S]

[HIM98]

[HKPV9S]

[Hof07]

[HOGO4]

[HPPSO03]

168

GYAPAY, Szilvia ; VARRO, Déniel ; HECKEL, Reiko: Graph transformation
with time. In: Fundam. Inf. 58 (2003), Nr. 1, S. 1-22. — ISSN 0169-2968

HENZINGER, Thomas A.: Masaccio: A Formal Model for Embedded Com-
ponents. In: Proceedings of the First IFIP International Conference on Theo-
retical Computer Science (TCS) Bd. 1872, 2000 (Lecture Notes in Computer
Science (LNCS)), 549-563

HERRMANN, Debra S.: Software Safety and Reliability : Techniques, Ap-
proaches, and Standards of Key Industrial Sectors. IEEE Computer Press,
1999. — ISBN 0769502997

HABEL, Annegret ; HECKEL, Reiko ; TAENTZER, Gabriele: Graph Gram-
mars with Negative Application Conditions. In: Fundamenta Informaticae
26 (1996), Nr. 3/4, S. 287-313

HENZINGER, Thomas A. ; HO, P.-H. ; WONG-ToI1, H.: HyTech: The Next
Generation. In: RTSS ’95: Proceedings of the 16th IEEE Real-Time Systems
Symposium (RTSS ’95). Washington, DC, USA : IEEE Computer Press,
December 1995. — ISBN 0-8186-7337-0, S. 55-65

HIRSCH, Dan ; INVERARDI, Paolo ; MONTANARI, Ugo: Graph grammars
and constraint solving for software architecture styles. In: ISAW ’98: Pro-

ceedings of the third international workshop on Software architecture. New
York, NY, USA : ACM, 1998. — ISBN 1-58113-081-3, S. 69-72

HENZINGER, Thomas A. ; KOPKE, Peter W. ; PURI, Anuj ; VARAIYA, Pra-
vin: What’s decidable about hybrid automata? In: Journal of Computer and
System Sciences 57 (1998), S. 94-124

HOFFMANN, Thomas: Spezifikation und Synthese von Konnektorverhalten
fiir Mechatronic UML. Fakultit fiir Elektrotechnik, Informatik und Mathe-
matik / Institut fiir Informatik, Universitidt Paderborn, Bachelorarbeit, Januar
2007

HESTERMEYER, Thorsten ; OBERSCHELP, Oliver ; GIESE, Holger: Struc-
tured Information Processing For Self-optimizing Mechatronic Systems. In:
ARAUJO, Helder (Hrsg.) ; VIEIRA, Alves (Hrsg.) ; BRAZ, Jose (Hrsg.) ;
ENCARNACAO, Bruno (Hrsg.) ; CARVALHO, Marina (Hrsg.): Proc. of Ist
International Conference on Informatics in Control, Automation and Robo-
tics (ICINCO 2004), Setubal, Portugal, INSTICC Press, August 2004, S.
230-237

HAHN, Gabor ; PHILIPPS, Jan ; PRETSCHNER, Alexander ; STAUNER, Tho-
mas: Prototype-based Tests for Hybrid Reactive Systems. In: Proc. 14th



[HSEO2]

[HTBS08]

[HU79]

[HVB'05]

[HWLLO04]

[IML92]

[Iva03]

[JGGSO00]

[K1e08]

IEEE Intl. Workshop on Rapid System Prototyping (RSP’03), 2003, S. 78—
85

HESTERMEYER, Thorsten ; SCHLAUTMANN, Philipp ; ETTINGSHAUSEN,
Clemens: Active suspension system for railway vehicles-system design and

kinematics. In: Proc. of the 2nd IFAC - Confecence on mechatronic systems.
Berkeley, California, USA, December 2002, S. 9-11

HENKE, Christian ; TICHY, Matthias ; BOCKER, Joachim ; SCHAFER, Wil-
helm: Organization and Control of Autonomous Railway Convoys. In: Pro-
ceedings of the 9th International Symposium on Advanced Vehicle Control,
Kobe, Japan, 2008. — accepted

HOPCRAFT, John E. ; ULLMAN, Jeffrey D.: Introduction to Automata Theo-
ry, Languages, and Computation. Addison-Wesley, 1979

HENKE, Christian ; VOCKING, Henner ; BOCKER, Joachim ; FROHLEKE,
Norbert ; TRACHTLER, Ansgar: Convoy Operation of Linear Motor Driven
Railway Vehicles. In: Proc. of the Fifth International Symposium on Line-
ar Drives for Industry Applications - LDIA2005, Awaji Yumebutai, Hyogo,
Japan, 2005

Hsu, Chun-Fei ; WANG, Wen-June ; LEE, Tsu-Tian ; LIN, Chih-Min: Lon-
gitudinal control of vehicle platoon via wavelet neural network. In: SMC (4),
2004, S. 3811-3816

ISERMANN, Rolf ; MATKO, Drago ; LACHMANN, Karl-Heinz: Adaptive
Control Systems. Upper Saddle River, NJ, USA : Prentice-Hall, Inc., 1992.
— ISBN 0130054143

IvANCIC, Franjo: Modeling and Analysis of Hybrid Systems, University of
Pennsylvania, Diss., 2003

JENSEN, Henrik E. ; GULDSTR, Kim ; GULDSTR, Kim ; SKOU, Arne: Sca-
ling up Uppaal Automatic Verification of Real-Time Systems using Com-
positionality and Abstraction. In: Proceedings of the 6th International
Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT 2000) Bd. 1926. Pune, India : Springer Verlag, September 2000
(Lecture Notes in Computer Science (LNCS)), S. 19-30

KLEIN, Florian: A Model-Driven Approach to Multi-Agent System Design.
Fakultit fiir Elektrotechnik, Informatik und Mathematik / Institut fiir Infor-
matik, Universitit Paderborn, PhD Dissertation, 2008. — eingereicht

169



Kapitel 8 Literaturverzeichnis

[KMO8]

[KMRO2]

[KMS92]

[Kop97]

[KP91]

[Krd06]

[KSPLO6]

[Kud05]

[Lev9s]

[LHLHO1]

170

KRAMER, J. ; MAGEE, J.: Analysing Dynamic Change in Software Ar-
chitectures: A Case Study. In: CDS ’98: Proceedings of the International
Conference on Configurable Distributed Systems. Washington, DC, USA :
IEEE Computer Society, 1998. — ISBN 0-8186-8451-8, S. 91

KNAPP, A. ; MERZ, S. ; RAUH, C.: Model Checking timed UML State Ma-
chines and Collaborations. Tth International Symposium on Formal Techni-
ques in Real-Time and Fault Tolerant Systems (FTRTFT 2002), Oldenburg,
September 2002, Lecture Notes in Computer Science volume 2469 pages
395-414. Springer-Verlag, 2002

KRAMER, Jeff ; MAGEE, Jeff ; SLOMAN, Morris: Configuring distributed
systems. In: EW 5: Proceedings of the 5th workshop on ACM SIGOPS Eu-
ropean workshop. New York, NY, USA : ACM, 1992, S. 1-5

KoPETZ, Hermann: Real-Time Systems: Design Principles for Distributed
Embedded Applications. Norwell, MA, USA : Kluwer Academic Publishers,
1997. — ISBN 0792398947

KESTEN, Yonit ; PNUELI, Amir: Timed and Hybrid Statecharts and Their
Textual Representation. In: Proceedings of the Second International Sympo-
sium on Formal Techniques in Real-Time and Fault-Tolerant Systems Bd.
571. London, UK : Springer Verlag, 1991 (Lecture Notes in Computer
Science (LNCS)), S. 591-620

KRAMER, Helmer: Laufzeitanpassung von Softwarestrukturen fiir mecha-
tronische Systeme, University of Paderborn / Fakultit fiir Elektrotechnik —
Informatik — Mathematik / Fachgebiet Softwaretechnik, Diplomarbeit, Au-
gust 2006

KRATZ, Fabian ; SOKOLSKY, Oleg ; PAPPAS, George J. ; LEE, Insup: R-

Charon, a Modeling Language for Reconfigurable Hybrid Systems. In:
HSCC, 2006, S. 392-406

KUDAK, Margarete: Modulare Echtzeitverifikation hybrider UML-
Komponenten, University of Paderborn / Fakultit fiir Elektrotechnik — Infor-
matik — Mathematik / Fachgebiet Softwaretechnik, Diplomarbeit, December
2005

LEVESON, Nancy G.: Safeware : system safety and computers. Addison-
Wesley, 1995. — ISBN 0-201-11972-2

LUCKEL, Joachim ; HESTERMEYER, Thorsten ; L1U-HENKE, Xiaobo: Ge-
neralization of the Cascade Principle in View of a Structured Form of Me-
chatronic Systems. In: IEEE/ASME International Conference on Advanced



[LM99]

[Lud95]

[M96]

[Met07]

[MWO07]

[NeuO7]

[OHGO04]

[OMGO7]

[OMT98]

Intelligent Mechatronics (AIM 2001), Villa Olmo, Como, Italy Bd. 1, IEEE
Service Center, Piscataway, 2001, S. 123—-128

LIBERZON, Daniel ; MORSE, A. S.: Basic problems in stability and design
of switched systems. In: IEEE Control Systems Magazine 19 (1999), S. 59—
70

LUDYK, G.: Theoretische Regelungstechnik 1, Grundlagen, Synthese linea-
rer Regelungssysteme. Berlin / Heidelberg : Springer Verlag, 1995

METAYER, Daniel L.: Software architecture styles as graph grammars. In:
SIGSOFT ’96: Proceedings of the 4th ACM SIGSOFT symposium on Foun-
dations of software engineering. New York, NY, USA : ACM, 1996. — ISBN
0-89791-797-9, S. 15-23

METZLER, Bjorn: Decomposing Integrated Specifications for Verification.
In: DAVIES, Jim (Hrsg.) ; GIBBONS, Jeremy (Hrsg.): IFM Bd. 4591, Sprin-
ger Verlag, 2007 (Lecture Notes in Computer Science (LNCS)), S. 459479

METZLER, Bjorn ; WEHRHEIM, Heike: Extending a Component Specifi-
cation Language with Time. In: Electron. Notes Theor. Comput. Sci. 176
(2007), Nr. 2, S. 47-67. — ISSN 1571-0661

NEUMANN, Stefan: Modellierung und Verifikation von zeitbehafteten
Graphtransformationssystemen mittels GROOVE, University of Paderborn
/ Fakultit fiir Elektrotechnik — Informatik — Mathematik / Fachgebiet Soft-
waretechnik, Diplomarbeit, September 2007

OBERSCHELP, Oliver ; HESTERMEYER, Thorsten ; GIESE, Holger: Struk-
turierte Informationsverarbeitung fiir selbstoptimierende mechatronische
Systeme. In: Proc. of the Second Paderborner Workshop Intelligen-
te Mechatronische Systeme Bd. 145. Paderborn, Germany, 2004 (HNI-
Verlagsschriftenreihe), S. 43-56

OMG ; OBJECT MANAGEMENT GROUP (Hrsg.): UML 2.1.2 Superstructure
Specification. Document: formal/07-11-01. : Object Management Group,
November 2007

OREIZY, Peyman ; MEDVIDOVIC, Nenad ; TAYLOR, Richard N.:
Architecture-based runtime software evolution. In: ICSE ’98: Proceedings
of the 20th international conference on Software engineering. Washington,
DC, USA : IEEE Computer Society, 1998. — ISBN 0-8186-8368-6, S. 177-
186

171



Kapitel 8 Literaturverzeichnis

[PJO4]

[PPO5]

[PQOB]

[Pra05]

[Ren04]

[Ric96]

[RKS06]

[Roz97]

[SBO3]

[Sch06]

172

PRAIJNA, Stephen ; JADBABAIE, Ali: Safety Verification of Hybrid Systems
Using Barrier Certificates. In: ALUR, Rajeev (Hrsg.) ; PAPPAS, George J.
(Hrsg.): HSCC Bd. 2993, Springer Verlag, 2004 (Lecture Notes in Computer
Science (LNCS)), 477-492

PAPACHRISTODOULOU, Antonis ; PRAINA, Stephen: A Tutorial on Sum
of Squares Techniques for Systems Analysis. In: Proceedings of the Ameri-
can Control Conference (ACC). Portland, OR, 2005. Bd. 4, IEEE Computer
Press, 2005, S. 2686 — 2700

PLATZER, André ; QUESEL, Jan-David: Logical Verification and Systema-
tic Parametric Analysis in Train Control. In: EGERSTEDT, Magnus (Hrsg.) ;
MISHRA, Bud (Hrsg.): Hybrid Systems: Computation and Control, 10th In-
ternational Conference, HSCC 2008, St. Louis, USA, Proceedings, Springer
Verlag, 2008 (Lecture Notes in Computer Science (LNCS))

PRAINA, Stephen: Optimization-Based Methods for Nonlinear and Hybrid
Systems Verification. California Institute of Technology, Pasadena, Calofor-
nia, California Institute of Technology, PhD Dissertation, 2005

RENSINK, Arend: The GROOVE Simulator: A Tool for State Space Ge-
neration. In: PFALZ, J. (Hrsg.) ; NAGL, M. (Hrsg.) ; BOHLEN, B. (Hrsg.):
Applications of Graph Transformations with Industrial Relevance (AGTIVE)
Bd. 3062, Springer Verlag, 2004 (Lecture Notes in Computer Science (LN-
CS)), S. 479485

RICHERT, Jobst: Integration of Mechatronic Design Tools with CAMeL,
Exemplified by Vehicle Convoy Control Design. In: Proc. of the IEEE Inter-

national Symposium on Computer Aided Control System Design. Dearborn,
Michigan, USA : IEEE Computer Press, 1996, S. 516-523

RENSINK, Arend ; KASTENBERG, Harmen ; STAIJEN, Tom: User Manual
for the GROOVE Tool Set. Department of Computer Science, University of
Twente, 2006

ROZENBERG, Grzegorz: HANDBOOK of GRAPH GRAMMARS and COM-
PUTING by GRAPH TRANSFORMATION, Volume 1: Foundations. World
Scientific, 1997. — ISBN 9810228848

SAMAD, T. (Hrsg.) ; BALAS, G. (Hrsg.): Software-Enabled Control: In-
formation Technology for Dynamical Systems. IEEE Press and Wiley-
Interscience, 2003. — 419 S.

SCHILLING, Daniela: Kompositionale Softwareverifikation mechatronischer
Systeme. Fakultit fiir Elektrotechnik, Informatik und Mathematik / Institut



[SPPO1]

[SRKCO00]

[STF96]

[SWO07]

[TGMOO0]

[TicO8]

[TKO2]

[TMVO06]

fiir Informatik, Universitiat Paderborn, PhD Dissertation, 2006

STAUNER, T. ; PRETSCHNER, A. ; PETER, I.: Approaching a Discrete-
Continuous UML: Tool Support and Formalization. In: Proc. UML’2001
workshop on Practical UML-Based Rigorous Development Methods — Coun-
tering or Integrating the eXtremists. Toronto, Canada : Gesellschaft fiir In-
formatik, October 2001, S. 242-257

SILVA, B. ; RICHESON, K. ; KROGH, B. ; CHUTINAN, A.: Modeling and
verification of hybrid dynamical system using CheckMate. In: ADPM 2000,
Shaker, 09 2000

SHARASHIMA, F. ; TOMIZUKA, M. ; FUKUDA, T.: Mechatronics - ,,What Is
It, Why, and How?** An Editorial. In: Transactions on Mechatronics Bd. 1.
IEEE/ASME Transactions on Mechatronics, 1996, S. 14

SCHAFER, Wilhelm ; WEHRHEIM, Heike: The Challenges of Building Ad-
vanced Mechatronic Systems. In: FOSE ’07: 2007 Future of Software Engi-
neering. Washington, DC, USA : IEEE Computer Society, 2007, S. 72-84

TAENTZER, Gabriele ; GOEDICKE, Michael ; MEYER, Torsten: Dynamic
Change Management by Distributed Graph Transformation: Towards Con-
figurable Distributed Systems. In: TAGT 98: Selected papers from the 6th
International Workshop on Theory and Application of Graph Transforma-
tions. London, UK : Springer-Verlag, 2000. — ISBN 3-540-67203-6, S.
179-193

TICHY, Matthias: Analyse und Verbesserung der Verldisslichkeit mechatro-
nischer Systeme. Fakultit fiir Elektrotechnik, Informatik und Mathematik
/ Institut fiir Informatik, Universitit Paderborn, PhD Dissertation, 2008. —
eingereicht

TIWARI, Ashish ; KHANNA, Gaurav: Series of Abstractions for Hybrid Au-
tomata. In: TOMLIN, C.J. (Hrsg.) ; GREENSTREET, M.R. (Hrsg.): Procee-
dings of the 5th International Workshop on Hybrid Systems: Computation
and Control (HSCC 2002) Bd. 2289. Stanford, CA, USA : Springer Verlag,
Mirz 2002 (Lecture Notes in Computer Science (LNCS)), S. 465ff

TRACHTLER, Ansgar ; MUNCH, Eckehard ; VOCKING, Henner: Iterati-
ve Learning and Self-Optimization Techniques for the Innovative Railcab-
System. In: Proceedings of the 32nd Annual Conference of the IEEE Indus-
trial Electronics Society (IECON’06), IEEE Computer Press, 2006. — ISBN
1-4244-0391-X, S. 46834688

173



Kapitel 8 Literaturverzeichnis

[Tri04]

[Voe03]

[Wan04]

[Win90]

[Woo000]

[YEK98]

[ZCO06]

[ZEAO03]

[ZiinO1]

[ZZ05]

174

TRIPAKIS, Stavros: Folk Theorems on the Determinization and Minimizati-
on of Timed Automata. In: Formal Modeling and Analysis of Timed Systems:
First International Workshop, FORMATS 2003, Marseille, France, Septem-
ber 6-7, 2003. Revised Papers, 2004. — ISBN 3-540-21671-5, S. 182 —
188

VOECKING, Henner: Multirate-Verfahren und Umschaltstrategien fiir ver-
teilte Reglersysteme, Universitit Paderborn, Diplomarbeit, 2003

WANG, Farn: Formal Verification of Timed Systems: A Survey and Per-
spective. In: Proceedings of the IEEE Bd. 92, IEEE Computer Press, August
2004, S. 1283-1307

WING, Jeannette M.: A Specifier’s Introduction to Formal Methods. In:
Computer 23 (1990), Nr. 9, S. 8-23. — ISSN 0018-9162

WOOLDRIDGE, Michael: Reasoning about Rational Agents. 1st. The MIT
Press, 2000. — 241 S. — ISBN 0262232138

YANAKIEV, Diana ; EYRE, Jennifer ; KANELLAKOPOULOS, Ioannis: Lon-
gitudinal Control of Heavy Duty Vehicles: Experimental Evaluation / Uni-
versity of California. Berkeley, CA, USA, 1998 (California PATH Research
Report UCB-ITS-PRR-98-15). — Forschungsbericht

ZHANG, Ji ; CHENG, Betty H. C.: Model-based development of dynami-
cally adaptive software. In: ICSE ’06: Proceeding of the 28th international
conference on Software engineering. New York, NY, USA : ACM, 2006. —
ISBN 1-59593-375-1, S. 371-380

ZAMBOU, N. ; ENNING, M. ; ABEL, D.: Lingsdynamikregelung eines Fahr-
zeugkonvois mit Hilfe der Modellgestiitzten Pradikativen Regelung. In: 7ele-
matik 2003 Bd. VDI-Berichte 1785. Diisseldorf, Deutschland : VDI-Verlag,
2003

ZUNDOREF, Albert: Rigorous Object Oriented Software Development. Habi-
litation Thesis, University of Paderborn, 2001

Z1OCKI, A. ; ZAMBOU, N.: Application of WLAN vehicle-to-vehicle com-
munication for automatic guidance of a vehicle driven in platoon. In: Pro-

ceedings of the 2nd International Workshop on Intelligent Transportation
(WIT), Mdirz 2005, Hamburg, 2005



Anhang A

Algorithmen zu zeitbehaften
Graphtransformationssystemen

In diesem Anhang werden die Algorithmen, die bei der Erreichbarkeitsanalyse fiir zeitbe-
haftete Graphtransformationssysteme (sieche Abschnitt 4.4) verwendet werden, aufgelis-
tet. Die informelle Beschreibung und Anwendung findet sich in Abschnitt 4.4.

Algorithmus A.1 Der Algorithmus N7, &' = graphID(m,z,G, P,)
procedure N’ &' = graphID(m,z, G, P)

1 N.E =0

2: foralln € NV do

3 Vg = mv(v(;,zlv) (n))

4: n' = Vi) (vg)

5: N =N"Un

6: end for

7: for alle € £ do

8: €g = me(E(_i,lP)(e))
9: e = Euq)(eg)

10: E=&uUe

11: end for

175



Anhang A Algorithmen zu zeitbehaften Graphtransformationssystemen

Algorithmus A.2 Der Algorithmus (7,,,, R,,) = assign(m,T, R, G, P))

procedure (7,,,, R,,) = assign(m,T, R, G, P))
1: T, Ry, =0
2: forallt € T :t :=xy — 19 ~d,x; = (M, N1, &), 09 := (M3, N3, &) do

3: T, Th 1= xg

4: t=a)—a,~d

5: if T # o then

6: oy = (M, NI, E)) mit N, E] =
7: 1,&€ = graphID(m,x,,G, P,)
8: end if

9: if 25 # x( then

10: rhy = (My, N3, E) mit N, EL =)
11: b, &4 = gaphID(m, 9, G, P))
12: end if

13: T, =1T,Ut

14: end for

15: forallr € R:r =z, 0= (M,N, &) do
16: N’,g, =0

17: = (M,N" &)

18: r=a

19:  Erzeuge 2/ := (M, N, &) mit N, &' =)
20: N'. & = graphID(m,z,G, P)

21: R, =R, Ur

22: end for

Algorithmus A.3 Der Algorithmus C' = prod e, (C, G)

procedure C' = prodge(C, G)
1: C=10
2: forallc e C:c=(M,C,,C;) do
3: for all m = prod(C), G) : m = (m,,, m.) do

4: N, E=10

5: r=(M,N,E)

6: for all v,e € C; do

7: N = Nj ey (my(v))
8: £ = Eia(me(e))
9: end for

10: C=CUzx

11: end for

12: end for

176



Algorithmus A.4 Der Algorithmus ¢ = clear(C, ¢)

procedure ¢ = clear(C, ¢)
I: forallt € ¢ :t = (x; —x; ~d) do
2: ifxl¢0\/$]§§0then

3: ¢ =0\t
4: end if
5: end for

Algorithmus A.5 Der Algorithmus G}, = production, (G, P;, C,Z,m)

procedure G = production,,(Gy, P;, C,Z, m)
1. Gy:=(G,C,2); P:=(P,P,,T,V;,, E;, R, f,r), m := (m,, m,)
2: (T', R) = assign(m, T, R)
3 Z' =)
4: forall p € Z do

5: ¢ = succy(p, 1,T")
6: if ¢'notempty then

7 ¢' = succl(¢', R')
8: Z=ZU¢

9: end if

10: end for

11: if Z' # () then

12: G’ = prodyest(m, Py, P,)
13: C' = prodeeq(C, G")

14: for all ¢’ € Z' do

15: ¢ =¢' NIG)
16: ¢’ = clear(C', ¢")
17: ¢' = succ(¢', R')

18: end for
19: G, =(G,C,2")
20: end if

Algorithmus A.6 Der Algorithmus G; = production(Gy, P, C,T)

procedure G; = production(Gy, P, C,T)
I: Gy = (G,C, 2); P, := (P, P., T, Vi, i, R, f,7)
2: G =10
3: for all m = prod,,.(P,,G) : m := (vertex, edge, I D) do
4: g, = G, U production,, (G, P;,C,Z,m)
5: end for

177



Anhang A Algorithmen zu zeitbehaften Graphtransformationssystemen

178



Anhang B

Regeln zum Shuttlebeispiel aus
Kapitel 4

In diesem Anhang werden die zeitbehafteten Graphtransformationsregeln fiir das Eva-
luierungsbeispiel aus Kapitel 4.5 beschrieben. Abbildungen B.1,B.2 und B.3 beschrei-
ben jeweils die Clockinstanzen, die im System vorkommen. Um das Fortschreiten eines

Abbildung B.1: Clockinstanz clock1

Shuttles zu gewihrleisten, miissen noch Invarianten spezifiziert werden. Diese sind in den
Abbildungen B.4, B.5 und B.5 dargestellt.

AbschlieBend werden noch die Regeln benétigt, die das Forschreiten eines Shuttles so-
wohl auf einem normalen Schienenabschnitt, als auch auf einer Weiche beschreiben. Die-
se Regeln besitzen die angegebenen Zeitguards:

179



Anhang B Regeln zum Shuttlebeispiel aus Kapitel 4

Clock:clock2

ar

Abbildung B.2: Clockinstanz clock2

Clock:clock3

ak

Abbildung B.3: Clockinstanz clock3

Invariante:
clock2 <=6

at
Shuttle

Abbildung B.4: Clockinvariante zum Uberfahren einer Weiche

180



Invariante:
clockl<=6

at

Abbildung B.5: Clockinvariante zum Uberfahren eines Schienenabschnittes

Invariante:
clock3 <=3

at

Shuttle

Abbildung B.6: Clockinvariante zum Uberfahren eines Schienenabschnittes

clock:clackl

del: at ety ak

clock. clackl

Guard: clockl >=6

Shuttle

clack:clock1

Abbildung B.7: Zeitbehaftete Regel zum Forbewegen von einem Schienenabschnitt zum
nichsten

181



Anhang B Regeln zum Shuttlebeispiel aus Kapitel 4

clack: clack3

del: at
clock:clack3

Guard: clock3 >= 3

Shuttle

clock:clack3

Abbildung B.8: Zeitbehaftete Regel zum Forbewegen von einem Schienenabschnitt zum
nichsten

182



next

clock:clockz new: ak

Guard: clock3 >=6

Abbildung B.9: Zeitbehaftete Regel, um von einer Weiche zu fahren

next

chdel: akckz new: ak

Guard: clock2 >=6

Abbildung B.10: Zeitbehaftete Regel, um von einer Weiche zu fahren

183



Anhang B Regeln zum Shuttlebeispiel aus Kapitel 4

nexk Switch
clock:clackl

chdel:atckl new:at

Shuttle

Guard: clockl >=6
clock:clackl

Abbildung B.11: Zeitbehaftete Regel, um auf eine Weiche zu fahren

next

chdel: atckz net: ak

Guard: clock2 >=6

Abbildung B.12: Zeitbehaftete Regel, um von einer Weiche zu fahren

184



Abbildungsverzeichnis

1.1

1.2
1.3

1.4

1.5

1.6
1.7
1.8
1.9

2.1
22
2.3
24
2.5
2.6
2.7
2.8
2.9

2.10

2.11
2.12

2.13

Die Disziplin Mechatronik ergibt sich aus der Kombination der drei Dis-
ziplinen Softwaretechnik, Mechanik und Elektronik . . . . . . ... ...
Hybrides Verhalten . . . . . . .. .. ... ... .. ... .. ...,
Fallstudie ,,RailCab — Neue Bahntechnik Paderborn“ (Quelle: NBP)

(@) ShuttlesimKonvoi . . . ... ... ... ... .. ... ......
(b)  Zwei Shuttles bei der Bildung eines Konvois . . . . .. ... ...
Die einzelnen ,,Bausteine* zu einer effizienten Verifikation von mechatro-
nischen Systemen . . . . . . . .. ...
Kompositioneller Ansatz . . . . . .. ... .. .. ... L.
(a)  Echtzeit-Koordinationsmuster . . . . . . ... ... ... .....
(b) Anwendung des Echtzeit-Koordinationsmusters . . . . . . . . . ..
Abstraktion . . . .. ... oL
Dekomposition der Struktur und des internen Verhaltens . . . . . . . ..
Beispiel fiir ein Graphtransformationssystem . . . . . .. .. ... ...
Regelbasierte Modellierung der Koordination . . . . . . . ... ... ..

Hierarchische Struktur eines mechatronischen Systems nach Liickel
Operator-Controller-Modul . . . . . ... ... ... ... .. ......
Generelle Struktur einer Steuerung . . . . . . . ... ... ... L.
Einfacher Regelkreis . . . . . . . .. .. ... ... ... . .. .. ...
Model der Strecke . . . . . . . .. Lo Lo
PID Geschwindigkeitsregler . . . . . .. ... ... ... ........
Stateflow Diagramm der Shuttlesteuerung . . . . . . . . ... ... ...
Hybrides Modell der Shuttelsteuerung . . . . . . . . ... ... .....
Ein endlicher Automat mit den Zustinden sg, s; und zwei Kanten, welche
mit a und b beschriftetsind. . . . . . ... ..o Lo
Ein Timed Automaton, der iiber zwei Location, drei Invarianten und zwei
Kanten mit jeweils einem Guard und einem Clockreset verfiigt. . . . . .
Hybrider Automat . . . . . . . .. .. ... ...
Die Abbildung zeigt zwei Graphen, wobei der rechte im linken Graphen
enthaltenist. . . . . . . . . .. L L L
Schematische Darstellung einer Regelanwendung. . . . . . . . . .. . ..

185



Abbildungsverzeichnis

186

2.14 Die Abbildung zeigt oben einen Wirtsgraphen, auf den eine Regel (blau
gestrichelt) angewendet wird und durch das Entfernen von Elementen ein
resultierender Graph mit zwei Dangling-Edges entsteht (grau markierte
Kanten im unteren Graph). . . . . . . ... .. ... ... ........

2.15 Problem: Hybrides Model Checking . . . . . ... ... ... ......

2.16 Michtigkeit des Eingabemodells vs. Effizienz beim Model Checking . . .

2.17 Der zeitliche Erreichbarkeitsraum des initialen Zustandes des Automaten
aus Abbildung 2.10. Die grau markierten Bereiche entsprechen der Men-
ge der Werte, welche die Clocks z; und x5, annehmen kénnen. . . . . . .

2.18 DieClockzone ¢ . . . . . . . . . . . . ...

2.19 Echtzeit Sequenzdiagramm . . . . . . . . . .. ...

2.20 Echtzeit-Koordinationsmuster fiir die Konvoikoordination . . . . . . . . .
(a) Echtzeit-Koordinatiosmuster . . . . . . . . . . . . . ... .....
(b) Rollenverhalten . . . . . . . . . .. ... ...

2.21 Shuttle Komponente . . . . . .. ... ... ... ... ...

2.22 Realtime Statechart der Shuttle Komponente . . . . . . . ... ... ...

2.23 Einbettung von kontinuierlichen Unterkomponenten in ein hybrides Re-
konfigurations Chart . . . . . . .. ... ..o

2.24 Klassendiagramm und Instanziierung eines Echtzeit-Koordinationsmuster
(a) Klassendiagramm . . . .. .. ... ... ... ...
(b) Instanziierungsregel: Erzeugung des DistanceCoordinationPattern .

2.25 Verhaltensregeln . . . . . . . ... ... o
(a)  FEin freies Shuttle bewegtsich . . . ... ... ... ........
(b) Koordinierte Fahrweise zweier Shuttles . . . . . . . ... ... ..

2.26 Invariante: Keine unkontrollierte Bewegung zweier benachbarter Shuttles

3.1 VerifikationeinesOCM . . . . . . ... . ... ... ... ... ..
3.2 Schematische Darstellung des Feder-Neige-Moduls . . . . . .. ... ..
3.3 BlockdiagrammderRegler . . . . . ... ... ... ... L.
3.4 DieArchitektur . . . . . ..o
3.5 Verhalten der Body Komponente . . . . . .. ... ... .........
3.6 Interface Statechart der Komponente BC . . . . . . . .. ... ... ...
3.7 Einbettung der Untergeordneten Komponenten im Monitor . . . . . . . .
3.8 Verifikation des Echtzeitkoordinationsverhaltens der Software, modelliert
durch Komponenten und Echtzeit-Koordinatiosmuster . . . . . . . . . ..
3.9 Abstraktion . . . ...
3.10 Schema fiir die syntaktische Uberpriifung bei der korrekten Einbettung
und korrekten Rekonfiguration . . . . ... ... ... ...,
3.11 Verhalten der BC Komponente . . . . . ... ... ... .........
3.12 Interface Statechart der Komponente Sensor . . . . . . . ... ... ...
3.13 Einbettung von Verhalten in die Monitor Komponente . . . . . . ... ..

32
35
35



Abbildungsverzeichnis

3.14

3.15
3.16
3.17
3.18

4.1
4.2
4.3
4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11
4.12

4.13

4.14

4.15

4.16
4.17

5.1
5.2
5.3
54
5.5

Dynamische Uberpriifung der korrekten Einbettung der Komponentenin-

StANZEN . .. .. e e 76
Synchronisation zwischen Monitor, Sensor und BodyControl . . . . . . . 78
Timed Automaton des Interface Statecharts der BC Komponente . . . . . 78
Timed Automaton des Interface Statecharts der Sensor Komponente . . . 78
Timed Automaton des Monitor Verhaltens . . . . . . ... ... ... .. 79
Beispiel fiir ein Graphtransformationssystem . . . . . .. .. ... ... 82
Beispiel fiir ein zeitbehaftetes Graphtransformationssystem . . . . . . . . 83
Das durch einen Graphen beschriebene Shuttlesystem . . . . . . . . . .. 85
Ein Beispiel fiir ein Graphtransformationssystem mit zwei Graphen G,

(G5 und einer Graphtransformationsregel P, . . . . . . . ... ... ... 86
Ein dem Graphtransformationssystem in Abbildung 4.4 entsprechender

Automat . . . . ... 87
Zuordnung der zeitlichen Bestandteile zu den festen Strukturen des

Timed Automaton. . . . . . .. . .. ... 89
Zuordnung einer Clock ¢ zu einer Graphtransformationsregel . . . . . . . 90

Der Graph G verfiigt iiber zwei Stellen, bei denen die Graphtransfor-
mationsregel mit der zeitlichen Bedingung ¢ > 3 angewendet werden

Die Abbildung zeigt auf der linken Seite eine Anwendungsregel mit den
attributierten Elementen, welche der Clock c zugehorig sind. Rechts ist

die daraus abgeleitete Clockinstanzregel dargestellt. . . . . . . . . .. .. 92
Eine um Clockreset erweiterte Graphtransformationsregel. Dabei wird die

Clock ¢ nach Anwendung der Regel auf den Wert O zuriick gesetzt. . . . . 93
Die Regel fiigt einem Graphen die Invariante d < 11 hinzu. . . . . . . . . 94
Die beiden Graphen (G; und G5, welche tiber jeweils zwei unterschiedli-

che zeitliche Erreichbarkeitsraume verfiigen. . . . . . . . ... ... ... 95
Zum Wirtsgraphen G werden zwei Instanzen z, y der Clockinstanz c er-

zeugt. Dabei ergibt sich x := (¢, {1,2},{5}) und y := (¢, {3,4},{7}). . . 96
Ein Graphtransformationssystem mit einem initialen Startgraphen G, so-

wie zwei zeitbehaftete Graphtransformationsregeln P, und . . . . . . . 101
Im Wirtsgraphen G; wird die Graphtransformationsregel P, an der rot

umrandeten Stelle angewendet . . . . . . .. ... .. ... ... ... 105
Schienennetz . . . . . ... ... L L 112
Das resultierende Graphtransformationssystem . . . . . . ... ... .. 113
Echtzeit-Koordinationsmuster ConvoyCoordination . . . . . ... .. .. 117
Anwendung des Echtzeit-Koordinationsmuster ConvoyCoordination . . . 117
KonvoiderLiangen . . . . . . . . .. ... .. ... . 118
Fehlerbaum . . . . . . . . .. .. . 119
Dekomposition der Struktar . . . . .. ... L oL 120

187



Abbildungsverzeichnis

5.6 Parametrisierte Rolle mit zugehoriger Entfaltung und Koordination der

Unterrollen . . . . . . . . . . . . . . e 121
5.7 Mogliches Bremsverhalten . . . . . ... .. ... ... ......... 122
(a) Bremsverhalten Netzwerkausfall Fahrzeug2 . . . ... ... ... 122
(b) Bremsverhalten Statorausfall . . . . .. ... ... ......... 122
5.8 CAMeL-View-Modell eines geschwindigkeitsgeregelten Fahrzeugs . . . 123
5.9  Struktur der Informationsverarbeitung im Konvoi . . . . . .. ... ... 123
5.10 Bremskorridore bei einer mechanischen Notbremsung . . . . . . . . . .. 125
5.11 Modellierung und Koordination eines multi-Ports — jedem Port und damit
Shuttle wird eine Eigenschaft p; zugeordnet . . . . . . . ... ... ... 126
5.12 Beispielkommunikation fiir 3 Shuttles im Konvoi mit Netzwerkausfall . . 127
5.13 Parametrisiertes Koordinationsmuster . . . . . . . ... ... ... ... 128
5.14 DerTypShuttle . . . . . . . . .. .. 129
5.15 Laufzeit-Instanz zweier Shuttles, welche das parametrisierte Koordinati-
onsmuster ConvoyCoordination anwenden . . . . . .. ... ... .. .. 129
5.16 Das Verhalten einer parametrisierten Rolle coordinator . . . . . . . . .. 130
5.17 Das Verhalten der Rolle shuttle . . . . . ... ... ... ... ...... 131
5.18 Hierarchische Architektur . . . . . . . . .. ... ... ... ....... 131
5.19 Synchronisationsstatecharts der Komponente Shuttle . . . . . . ... .. 132
5.20 Koordinationsstatechart fiir die multi-Rolle . . . . . . .. ... ... .. 133
5.21 Verfeinerte shuttleRolle . . . . . . .. ... ... .. ... ....... 133
5.22 Initiale Regel zur Anwendung des parametrisierten Koordinationsmusters 134
5.23 Regel zur Erzeugung einer Zeitinvariante . . . . . . . . . .. ... ... 135
5.24 Ein Shuttle reiht sich hinten in den Konvoiein . . . . . . ... ... ... 135
5.25 Instanzsicht nach der Anwendung von Regel aus Abbildung 5.24 . . . . . 135
5.26 Letztes Shuttle verldsstden Konvoi . . . . . . .. ... ... .. ..... 136
5.27 Konvoi der Ldnge 2 wird aufgelost . . . . . . ... ..o 136
5.28 Fiihrungsshuttle verldsstden Konvor . . . . . . . ... ... ... .... 137
B.1 Clockinstanzclockl . . . . . . ... ... ... ... .. ... ..., 179
B.2 Clockinstanzclock2 . . . . . . . . .. ... ... .. 180
B.3 Clockinstanzclock3 . . . . . ... ... ... ... .. ... .. ..., 180
B.4 Clockinvariante zum Uberfahren einer Weiche . . . . . . .. ... .. .. 180
B.5 Clockinvariante zum Uberfahren eines Schienenabschnittes . . . . . . . . 181
B.6 Clockinvariante zum Uberfahren eines Schienenabschnittes . . . . . . . . 181
B.7 Zeitbehaftete Regel zum Forbewegen von einem Schienenabschnitt zum
nidchsten . . . . . . ..o 181
B.8 Zeitbehaftete Regel zum Forbewegen von einem Schienenabschnitt zum
nidchsten . . . . . ... 182
B.9 Zeitbehaftete Regel, um von einer Weiche zu fahren . . . . . . . . . . .. 183
B.10 Zeitbehaftete Regel, um von einer Weiche zu fahren . . . . . . . . . . .. 183
B.11 Zeitbehaftete Regel, um auf eine Weiche zu fahren . . . . ... ... .. 184

188



Abbildungsverzeichnis

B.12 Zeitbehaftete Regel, um von einer Weiche zu fahren . . . . . . . . . . .. 184

189



