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Zusammenfassung

Beim Entwurf selbstoptimierender, mechatronischer Systeme stellt die eingebettete Soft-
ware einen großen Teil der Wertschöpfung dar. Typischerweise werden Regelungen oder
Steuerungen in Software umgesetzt. Durch die starke Vernetzung selbstoptimierender
Systeme wird Software auch zur nachrichtenbasierten Kommunikation und Koordination
zwischen den einzelnen verteilten selbstoptimierenden Systemen eingesetzt. Diese Kom-
munikation geht über die Aufnahme von System- und Umweltdaten durch Sensorik hin-
aus. Hier werden ggf. komplexe Zustandsinformationen über entsprechende Protokolle
und zugrunde liegende Kommunikationskanäle ausgetauscht, die dann wieder das Ver-
halten bzw. die zugrunde liegenden Berechnungen der einzelnen Komponenten massiv
beeinflussen können. Diese Entwicklung führt zu äußerst komplexer hybrider (diskreter
/ kontinuierlicher) Software. Des Weiteren werden selbstoptimierende, mechatronische
Systeme oftmals in sicherheitskritischen Umgebungen eingesetzt. Hierdurch müssen for-
male Verfahren zur Verifikation der Korrektheit des Systems gegenüber sicherheitskriti-
schen Eigenschaften eingesetzt werden.

Im Rahmen dieser Dissertation werden nun Konzepte und Methoden zur Modellierung
und Verifikation mechatronischer Systeme entwickelt und formal beschrieben. Der hier
vorgestellte Ansatz baut auf dem im Sonderforschungsbereichs 614 entwickelten ME-
CHATRONIC UML Ansatz auf. Dieser unterstützt einen kompositionellen Verifikations-
ansatz für das Echtzeitverhalten von mechatronischen Systemen.

Um eine effiziente Verifikation solcher vernetzten mechatronischen Systeme zu ermögli-
chen, werden in dieser Arbeit Techniken der Abstraktion, Dekomposition sowie der regel-
basierten Modellierung eingeführt. Hierbei werden diese nicht orthogonalen Techniken
geschickt miteinander kombiniert. Ziel ist es, die besonders durch die Verwendung domä-
nenübergreifender Modelle, wie sie bei der Modellierung von mechatronischen Systemen
vorkommen, entstehenden inhärenten multi-Paradigmenwechsel modellieren zu können.
Der hier vorgeschlagene Ansatz zur modell-basierten Verifikation mechatronischer Sys-
teme zeichnet sich durch die Integration effizienter Verifikationstechniken, basierend auf
dem Modellwissen und einer geschickten Modellierung, aus.
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Kapitel 1

Einleitung

Intelligente mechatronische Systeme, die autonom und flexibel auf Änderungen in ihrem
Umfeld reagieren, sind in unserer Zukunft nicht mehr wegzudenken. Nicht nur in kleinen
Anwendungen wie in der intelligenten Lichtsteuerung in modernen Autos, sondern auch
in großen Projekten wie in der Entwicklung des „intelligenten, selbst denkenden Hau-
ses“ oder in innovativen Güter- und Personentransportsystemen der Zukunft fließen diese
Konzepte maßgeblich mit ein. Um solche Systeme zu realisieren, bedarf es einer engen
Verknüpfung der Konzepte und Methoden der in der Mechatronik verankerten Domänen
Maschinenbau, Elektronik und Softwaretechnik (siehe Abbildung 1.1). Im Gegensatz zu
reinen Softwareanwendungen bekommt der Sicherheitsaspekt in solchen Systemen einen
deutlich höheren Stellenwert, da Fehler meist unmittelbar Gefahr für Menschenleben be-
deuten [Lev95][Her99].

Mechanical Engineering

Mechanisation

Electrical Technology

Elctro-mechanical 
Systems

Information Technology & 
Software

Mechatronics

Electronics

Softwaretechnik

Mechanik Elektronik

Mechatronik

Abbildung 1.1: Die Disziplin Mechatronik ergibt sich aus der Kombination der drei Dis-
ziplinen Softwaretechnik, Mechanik und Elektronik

Solche intelligenten, mechatronischen Systeme, wie sie von Schäfer und Wehrheim
[SW07] oder auch von Dawson und anderen [DSBB00] beschrieben werden, bestehen
heutzutage aus einer Vielfalt von komplexen Einzelkomponenten, welche untereinander
verbunden sind und miteinander interagieren. Das Verhalten des Gesamtsystems ist ent-
sprechend durch die Kommunikation und Kooperation der intelligenten Systemelemente
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Kapitel 1 Einleitung

charakterisiert. Aus informationstechnischer Sicht handelt es sich um verteilte Systeme
von miteinander kooperierenden Agenten.

1.1 Motivation

Beim Entwurf selbstoptimierender, mechatronischer Systeme stellt die eingebettete Soft-
ware einen großen Teil der Wertschöpfung dar. Typischerweise werden Regelungen oder
Steuerungen in Software umgesetzt. Durch die starke Vernetzung selbstoptimierender
Systeme wird Software auch zur nachrichtenbasierten Kommunikation und Koordination
zwischen den einzelnen verteilten selbstoptimierenden Systemen eingesetzt. Diese Kom-
munikation geht über die Aufnahme von System- und Umweltdaten durch Sensorik hin-
aus. Hier werden ggf. komplexe Zustandsinformationen über entsprechende Protokolle
und zugrunde liegende Kommunikationskanäle ausgetauscht, die dann wieder das Ver-
halten bzw. die zugrunde liegenden Berechnungen der einzelnen Komponenten massiv
beeinflussen können. Diese Entwicklung führt zu äußerst komplexer hybrider (diskret /
kontinuierlicher) Software. In Abbildung 1.2 ist ein Beispiel für hybrides Verhalten ge-
zeigt. In dem linken Oval ist rein kontinuierliches Verhalten, im rechten Oval rein diskre-
tes Verhalten beschrieben. Das Zusammenspiel, das Umschalten zwischen verschiedenen
kontinuierlichen Verhalten, kann nun durch die Integration beider Verhalten vorgenom-
men werden. Genau dieses wird als hybrid bezeichnet.
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Abbildung 1.2: Hybrides Verhalten

Des Weiteren werden selbstoptimierende, mechatronische Systeme oftmals in sicherheits-
kritischen Umgebungen eingesetzt. Hierdurch müssen formale Verfahren zur Verifikati-
on der Korrektheit des Systems gegenüber sicherheitskritischen Eigenschaften eingesetzt
werden.

Auf Grund der steigenden Komplexität solcher Systeme ist es notwendig, Methoden zu
entwickeln, die auf der einen Seite eine geeignete Modellierung erlauben und auf der
anderen Seite die Validierung und Verifikation dieser Modelle in akzeptabler Zeit durch-
führen können. Das Gebiet der Softwaretechnik beschäftigt sich mit dieser Thematik.
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1.1 Motivation

Softwaretechnik: Zielorientierte Bereitstellung und systematische Verwen-
dung von Prinzipien, Methoden, Konzepten, Notationen und Werkzeugen für
die arbeitsteilige, ingenieurmäßige Entwicklung und Anwendung von um-
fangreichen Software-Systemen. (Nach Balzert [Bal98])

Um einen sicheren Betrieb eines mechatronischen Systems zu gewährleisten, müssen die
Sicherheitseigenschaften dieses Systems überprüft werden. Die Überprüfung eines me-
chatronischen Systems durch Testen, d.h. die experimentelle Ausführung des Systems,
kann ein sicheres Verhalten alleine nicht ausreichend nachweisen, da durch reines Testen
nicht alle Ausführungspfade erreicht werden können. Dabei ist dann nicht auszuschlie-
ßen, dass Pfade, die durch das Testen nicht überprüft wurden, sicherheitskritische Eigen-
schaften aufweisen. Außerdem werden durch Testen erhebliche Kosten verursacht, da sie
oftmals manuell durchgeführt werden und unvollständig sind [BN03].

In der Softwaretechnik werden formale Methoden [Win90] verwendet, die mathematisch
fundierte Techniken zur Spezifikation von Systemen zur Verfügung stellen. In [CW96]
wird ein Überblick über formale Methoden und formale Verifikationstechniken gegeben.
Diese gehen von manuellen, unvollständigen Testverfahren, über interaktive Theorembe-
weise, bis hin zu automatischen, vollständigen formalen Verifikationsverfahren. Eine for-
male Verifikationstechnik ist z.B. das Model Checking. Im Gegensatz zum Testen werden
hier alle Pfade des Systems automatisch erstellt und überprüft. Jedoch bringt der Einsatz
von formalen Verifikationstechniken eine ganze Reihe von Problemen mit sich.

Die benötigte Rechenzeit und der Speicherbedarf hängen z.B. beim Model Checking von
der Größe des zu überprüfenden Systems ab. Daher werden beim Model Checking effi-
ziente Algorithmen eingesetzt, um möglichst große Systeme überprüfen zu können. Die
Software eines mechatronischen Systems kann jedoch einen sehr großen oder unendlich
großen Zustandsraum besitzen. Deshalb ist eine Überprüfung mechatronischer Systeme
in den meisten Fällen auf Grund der Größe des Zustandsraums durch diese Verifikations-
technik alleine nicht möglich. Deshalb müssen weitere Techniken wie z.B. Abstraktion,
Approximation und viele andere mit dem Model Checking kombiniert werden, um die
Verifikation durchführen zu können. Nicht nur die Größe des zu verifizierenden Systems
stellt beim Model Checking ein Problem dar. Die Konstruktion des Modells, die Spezifi-
kation der zu überprüfenden Eigenschaften in der geeigneten temporallogischen Formel,
das Problem der Zustandsraumexplosion sowie die Interpretation der Ergebnisse sind wei-
tere Probleme beim Model Checking (siehe [CGP00, Dwy02]).

Der interdisziplinäre Sonderforschungsbreich „SFB 614: Selbstoptimierende Systeme des
Maschinenbaus“1 an der Universität Paderborn beschäftigt sich unter anderem mit dem
oben beschriebenen Forschungsgebiet der effizienten Verifikation von mechatronischen
Systemen. Im Folgenden wird das Anwendungsbeispiel genau erklärt, welches im Ver-

1http://www.sfb614.de
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laufe der Arbeit als durchgängiges Beispiel genutzt wird, um die bisherigen Probleme in
der Verifikation zu beleuchten und die neuen Konzepte vorzustellen.

1.2 Anwendungsbeispiel

Im Rahmen des Sonderforschungsbereichs 614 „Selbstoptimierende Systeme des Maschi-
nenbaus“ werden Konzepte und Methoden zur Entwicklung von mechatronischen Syste-
men mit inhärenter Teilintelligenz erforscht. Konkret finden die entwickelten Konzepte
im RailCab2 Forschungsprojekt Anwendung. In diesem Projekt werden innovative Güter-
und Personentransportsystemen der Zukunft, so genannte Shuttles, entwickelt. Diese wer-
den durch einen Linear-Motor angetrieben und verfügen über drahtlose Netzwerke zur
Kommunikation untereinander. Die Energieübertragung wird durch einen Streckenstator,
der einem üblichen Schienennetz hinzugefügt werden kann, erreicht.

Ein Shuttle ist eine kleine, autonome, führerlose Einheit (siehe Abbildung 1.3(a)). Diese
Shuttles sollen Personen und Güter, auf Nachfrage, individuell von ihrem Ausgangspunkt
zu ihrem gewünschten Zielort transportieren. Während der Fahrt können sich einzelne
Shuttles zu einem Konvoi zusammenschließen (siehe Abbildung 1.3(b)). Dies spart durch
die Windschattenfahrt Energie und erhöht bei stark frequentierten Strecken die Kapazität,
da die Züge nicht mehr getrennt fahren müssen. Die Shuttles bleiben während der Kon-
voifahrt weiterhin autonom und treffen individuelle Entscheidungen. Durch das autonome
Verhalten treten jedoch Schwierigkeiten auf. Das Problem besteht darin, die Shuttles so zu
koordinieren, dass sie so häufig wie möglich Konvois bilden um den Windwiderstand und
hiermit den Energieverbrauch zu reduzieren. Zusätzlich sollte der Abstand zwischen den
Fahrzeugen so gering wie möglich sein, um den Effekt noch zu verstärken. Die Erstellung
und Auflösung eines Konvois ist ein sicherheitskritisches Manöver, bei dem eine Reihe
von Echtzeitbedingungen eingehalten werden müssen. Dabei ist das Verhalten der Be-
schleunigungsregelung jedes Shuttles je nach aktuellem Szenario verschieden. So könnte
es für ein führendes oder einem allein fahrenden Shuttle ein Ziel sein, eine möglichst
gleichmäßige Geschwindigkeit zu halten. Dieses Verhalten ist innerhalb des Konvois je-
doch nicht optimal. Durch das autonome Verhalten der Shuttles kann es zu kleinen Abwei-
chungen zwischen den Geschwindigkeitseinstellungen der Regler kommen. Sobald ein
nachfolgendes Shuttle, welches in einem Abstand von 10 cm folgt, nur 0,01 km

h
schneller

wäre, würde dies nach nur 36 Sekunden mit dem vorausfahrenden Shuttle kollidieren. Für
diesen Fall ist also ein Konvoimodus, in dem der Abstand konstant gehalten wird, besser
als eine konstante Geschwindigkeit.

2http://www-nbp.upb.de
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1.3 Ziel und Lösungsansatz

(a) Shuttles im Konvoi (b) Zwei Shuttles bei der Bildung eines Konvois

Abbildung 1.3: Fallstudie „RailCab – Neue Bahntechnik Paderborn“ (Quelle: NBP)

1.3 Ziel und Lösungsansatz

Ziel dieser Dissertation ist es, Konzepte und Methoden zur Modellierung und Verifika-
tion mechatronischer Systeme zu entwickeln und formal zu beschreiben. Ziel ist es da-
bei, die besonders durch die Verwendung domänenübergreifender Modelle, wie sie bei
der Modellierung von mechatronischen Systemen vorkommen, entstehenden inhärenten
multi-Paradigmenwechsel [HH06] modellieren und verifizieren zu können. Der hier vor-
geschlagene Ansatz zur modell-basierten Entwicklung mechatronischer Systeme zeichnet
sich durch die Integration effizienter Verifikationstechniken, basierend auf dem Modell-
wissen, Abstraktionstechniken und einer geschickten Modellierung, aus.

Im Rahmen des Sonderforschungsbereichs 614 wurde die MECHATRONIC UML
[GHH+08b] entwickelt. Diese erlaubt es, Struktur und Verhalten von mechatronischen
Systemen und die Interaktion zwischen mechatronischen Systemen zu spezifizieren und
zu verifizieren. Dabei richtet sich die Struktur eines komplexen mechatronischen Systems
nach der von Lückel [LHLH01][OHG04][HOG04][Ge05] vorgeschlagenen Struktur.
Die konkrete Umsetzung dieser Struktur findet sich im Operator-Controller-Modul
(OCM) wieder. Die Informationsverarbeitung eines mechatronischen Systems kann als
Operator-Controller-Modul (OCM) aufgefasst werden. Ein solches Modul ist in die
drei Ebenen Controller, reflektorischer Operator und kognitiver Operator unterteilt.
Während der Controller direkten Zugriff auf die Aktuatoren des Systems hat, wird der
reflektorische Operator dazu verwendet, den Controller zu steuern und die Interaktion
mit anderen OCMs zu koordinieren. Die Aufgabe des kognitiven Operators besteht darin
Wissen über die Umwelt und das OCM selber zu sammeln und dazu zu nutzen, das
Verhalten des OCM besser an die gegebenen Anforderungen anzupassen.

Da die Software des reflektorischen Operators für die Steuerung des Controllers sowie
die Interaktion des OCMs mit anderen OCMs verantwortlich ist, ist sie sicherheitskri-
tisch. Deshalb besteht das Ziel dieser Arbeit in der Entwicklung eines ganzheitlichen,
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effizienten Ansatzes zur Modellierung und Verifikation für die Software des OCMs sowie
für die Koordination zwischen OCMs.

Im Folgenden wird eine erste Idee vermittelt, wie und welche Techniken verwendet wer-
den, um die effiziente Verifikation von durch MECHATRONIC UML beschriebenen ver-
netzen mechatronischen Systemen zu ermöglichen. In Abbildung 1.4 ist ein Überblick
über das Zusammenspiel der in dieser Arbeit verwendeten Techniken „Kompositioneller
Aufbau & Verifikation“, „Abstraktion und Verfeinerung“, „Dekomposition“ und „Regel-
basierte Modellierung“ gegeben.

Dekomposition Regelbasierte 
Modellierung

Kompositioneller 
Aufbau & Verifikation

Abstraktion & 
Verfeinerung

Kompositioneller 
Aufbau & 

Verifikation

Dekomposition Regelbasierte 
Modellierung

Abstraktion & 
Verfeinerung

Abbildung 1.4: Die einzelnen „Bausteine“ zu einer effizienten Verifikation von mechatro-
nischen Systemen

Durch den nach innen schwächer werdenden Farbverlauf ist kenntlich gemacht, dass die
einzelnen Techniken nicht orthogonal zueinander stehen, sondern ineinander greifen und
aufeinander aufbauen. Dies wird in den Folgenden Abschnitten deutlich.

Kompositioneller Aufbau & Verifikation. Die kompositionelle Verifikationsme-
thode ist eine effiziente Möglichkeit, um große Modelle zu verifizieren [CGP00]. Die-
se stellen wirkungsvolle Methoden für die Verifikation eines nebenläufigen Systems dar,
weil hier direkt der Ursache für den exponentiellen Anstieg des Zustandsraums entgegen-
gewirkt wird. Im Gegensatz zur Überprüfung einer temporallogischen Spezifikation auf
dem globalen Zustandsraum wird die kompositionelle Verifikation lediglich auf Teilzu-
standsräumen mit lokalen temporallogischen Spezifikationen durchgeführt.
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Ein Vorteil dieses Verfahrens gegenüber Verfahren, die auf globalem Zustandsraum ar-
beiten, ist, dass dadurch, dass Komponenten unabhängig voneinander spezifiziert und ve-
rifiziert werden können, Komponenten zu verschiedenen Zeitpunkten während der Soft-
wareentwicklung überprüft werden können. Durch diese unabhängige Verifizierung der
Komponenten lässt sich der Verifikationsprozess in den Modellierungsprozess integrieren.
Dies hat den Vorteil, dass Fehler zu einem sehr frühen Zeitpunkt in der Entwicklungspha-
se entdeckt und beseitigt werden können. Auch lassen sich so wiederverwendbare Module
spezifizieren und verifizieren.

In Abbildung 1.5 ist der in dieser Arbeit verfolgte Ansatz für einen kompositionellen
Aufbau anhand einer Komponentenarchitektur dargestellt [GTB+03][HG03][Hir04]. Das
Verhalten des Systems ist hierbei zustandsbasiert und rein zeit-kontinuierlich beschrie-
ben. Hier wird in einem ersten Schritt die Echtzeit-Koordination zwischen zwei Kompo-
nenten durch ein so genanntes Echtzeit-Koordinationsmuster modelliert (siehe Abbildung
1.5(a)), welches einzeln verifiziert werden kann. In einem nächsten Schritt wird hieraus
das Verhalten von Komponenten hergeleitet (siehe Abbildung 1.5(b)), das nun auch sepa-
rat verifiziert werden kann. Da jetzt sowohl die Kommunikation als auch das Komponen-
tenverhalten verifiziert wurden (und beide in einer bestimmten Verfeinerungsbeziehung
(siehe nächster Abschnitt) stehen), ist es möglich, das System durch reine, korrekte syn-
taktische Anwendungen der Koordinationsmuster und Komponenten zu modellieren.

shuttle coordinator

ConvoyCoordination

shuttle.convoy implies coordinator.convoy

(a) Echtzeit-Koordinationsmuster

<<Component>>

shuttle2 :Shuttle

shuttle <<Component>>

shuttle1 :Shuttle

coordinator

(b) Anwendung des Echtzeit-Koordinationsmusters

Abbildung 1.5: Kompositioneller Ansatz

Abstraktion & Verfeinerung. Eine Abstraktion eines Modells abstrahiert von den
internen Eigenschaften und ist das Gegenstück von Verfeinerung. Ist ein System A eine
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Abstraktion von B, so ist B eine Verfeinerung von A. Die Eigenschaft der Abstrakti-
on und Verfeinerung kann zur Unterstützung der Verifikation genutzt werden. Kann das
ursprüngliche Modell aufgrund seiner Komplexität nicht in einem angemessenen Zeitrah-
men verifiziert werden, wird das Modell mit Hilfe der Abstraktion handhabbar gemacht.
Das neu erstellte Modell, das vom Umfang her kleiner ist, beinhaltet weiterhin die für
eine Verifikation relevanten Eigenschaften und kann schneller verifiziert werden.

Abbildung 1.6 zeigt exemplarisch den Aufbau eines zeit-kontinuierlichen Echtzeitsystems
und eines hybriden Systems. Das Verhalten beider Systeme ist durch Echtzeitverhalten
charakterisiert. Da eine falsche Spezifikation des Echtzeitverhaltens zum Beispiel zu ei-
nem Ausfall des Systems führen kann, muss hier eine geeignete Verifikation durchgeführt
werden. Im letzten Abschnitt wurde kompositionelles Model Checking zur Verifikation
des Echtzeitverhaltens vorgestellt. Zur Verifikation des Echtzeitverhaltens eines hybriden
Systems bietet es sich ebenfalls an, dieses Verfahren zu verwenden. Dazu muss jedoch
eine Abstraktion von dem hybriden Verhalten erfolgen. Diese wird mit Hilfe der Verfei-
nerungsbeziehung zwischen den beiden Systemen erstellt.

Universität Paderborn
AG Softwaretechnik
Prof. Dr. W. Schäfer

3.4 Abstraktion

Echtzeitsystem

Hybrides S1 S2

Abstraktion von hybridem Verhalten

Hybrides 
System S1

C1
<D >

C1
<D >

S2

<D1> <D3>

D DD1

C2
<E1>

C3
<E3>

D3

C4
<F2>

Modulare Echtzeitverifikation hybrider UML-Komponenten Seite: 41

<E1> <E3> <F2>

Abbildung 1.6: Abstraktion

Wichtig ist zudem, dass der unterschiedliche Aufbau der beiden Systeme berücksichtigt
wird. Während ein Echtzeitsystem auf einer Hierarchieebene spezifiziert wird, sind hybri-
de Systeme hierarchisch aufgebaut [GBSO04]. Abbildung 1.6 verdeutlicht diesen Unter-
schied. Aufgrund des unterschiedlichen Aufbaus reicht kompositionelles Model Checking
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allein zur Verifikation des Echtzeitverhaltens nicht aus. Neben der Spezifikation von Echt-
zeitverhalten können zudem Inkonsistenzen durch den hierarchischen Aufbau und die da-
durch bedingte Rekonfiguration entstehen [GH05b][GH06].

Dekomposition. In hybriden Systemen ist häufig eine klare Trennung zwischen der
diskreten und der kontinuierlichen Komponente gegeben. Der kontinuierliche Teil dient
der möglichst exakten Abbildung mechatronischer oder physikalischer Abläufe und Zu-
sammenhänge. Die diskrete Komponente muss ihr Verhalten an die kontinuierliche Kom-
ponente koppeln, um so z.B. auf Veränderungen der Umwelt zu reagieren.

Durch die bereits erwähnte kompositionelle Modellierung der Echtzeitkoordination und
der Abstraktion, die Steuer- und Regelungsalgorithmen entsprechend integriert, ist es
möglich, für Verifikationszwecke eine abstrakte Betrachtung des relevanten kontinuier-
lichen und diskreten Verhaltens der Koordinationslogik vorzunehmen. Dabei werden ent-
sprechend benötigte Eigenschaften der unterlagerten Regelung, die mit klassischen Tech-
niken der Mathematik und der Regelungstechnik verifiziert werden können, als Basis für
weitere Betrachtungen verwendet. Darauf aufbauend lässt sich dann durch formale Veri-
fikationstechniken für Echtzeitsysteme eine Verifikation der benötigten Sicherheitseigen-
schaften der Echtzeitkoordination erreichen [GHH+06c].

In Abbildung 1.7 ist die hierbei zugrunde liegende Idee der Dekomposition skizziert.
Die obere Hälfte der Abbildung zeigt die Modellierung des Komponentenverbunds ei-
nes Shuttlekonvois. Jede Komponente kommuniziert mit ihrer Nachbarkomponente. In
einer Komponente selber ist das interne, sowohl Zeit-kontinuierliche als auch Werte-
kontinuierliche Verhalten skizziert. Der untere Teil der Abbildung zeigt die Dekomposi-
tion des Modells. Der Komponentenverbund wurde in die Kommunikation und die Kom-
ponenten (siehe Kompositioneller Ansatz), aufgeteilt. Weiterhin wurde auch das interne
Verhalten dekomponiert. So ist zu erkennen, dass nun das Zeit-kontinuierliche Verhal-
ten von dem Werte-kontinuierlichen Verhalten getrennt ist. Dies ermöglicht, wie schon
beschrieben, eine getrennte Verifikation der einzelnen Verhalten.

Regelbasierte Modellierung. In komplexen, vernetzten mechatronischen Systemen
stehen nur begrenzte Rechen- und Speicherkapazitäten zur Verfügung. Zusätzlich unter-
liegt das System zur Laufzeit einer Evolution abhängig vom gegebenem Kontext. Anfor-
derungen an komplexe, mechatronische Systeme sehen deshalb Dynamik vor, d.h. Steue-
rungssoftware muss zu Laufzeit ausgetauscht werden können.

In Schilling [Sch06] wurde bereits beschrieben, wie Graphtransformationssysteme zur
Beschreibung von dynamischen Veränderungen im Kontext von mechatronischen Syste-
men eingesetzt werden können. So wurde das in Abbildung 1.8 dargestellte Szenario auf
der Basis von Graphtransformationssystemen beschrieben. Die obere Hälfte des Bildes
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Abbildung 1.7: Dekomposition der Struktur und des internen Verhaltens

zeigt einen aktuellen Systemzustand. Hier fahren zwei Shuttles hintereinander auf zwei
verschiedenen Streckenabschnitten. Die untere Hälfte des Bildes zeigt die koordinierte
Bewegung des Shuttles auf den Streckenabschnitten, modelliert durch eine graphbasierte
Regel. Hier wird beschrieben, welche Objekte existieren und wie miteinander verbunden
sind. Im vorliegenden Beispiel existiert eine Instanz des DistanceCoordinationPattern,
welches die Verhaltenskoordination zweier verbundener Shuttles realisiert.

Neben der reinen Beschreibung der Strukturdynamik eines einzelnen OCMs ist es mög-
lich, eine regelbasierte Modellierung für die Koordination von OCMs in gegebenen Kon-
texten, wie einem Konvoi, zu verwenden. So ist nachzuvollziehen, dass ein Konvoi, um
auch wirklich energieeffizient zu sein, aus mehr als zwei Shuttles bestehen muss. Weiter-
hin ist die Anzahl der Konvoiteilnehmer zum Zeitpunkt der Instanziierung der initialen
Konvoikoordination unbekannt. Mal muss ein und dasselbe Koordinationsprotokoll ein
Konvoi der Länge k und im nächsten Moment ein Konvoi der Länge k + 1 koordinieren,
ohne die Stabilität eines Konvois zu verletzten. Abbildung 1.9 zeigt eine Graphtransfor-
mationsregel, die den Zusammenschluss zweier Shuttles zur Laufzeit in einem Konvoi
darstellt. Hier ist zu erkennen, welche Modellelemente bei der Konvoibildung erzeugt
werden.
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s1:Shuttle

t1:Track

at

:Tracknext :Track

go

next

at

s2:Shuttle

dc1:DistanceCoordinationPattern

front

rear

go
<<create>>

Regel:

Shuttle Shuttle

Systemzustand:

Abbildung 1.8: Beispiel für ein Graphtransformationssystem

: Shuttle

: Coordinator

: VelocityControl

:P

:P

: Shuttle

: VelocityControl :P :P:P ++ :P

:P:P
<< last >>  ++

t>5

clock:t

clock:t

clock:t

++ ++

++

++
++

++

Abbildung 1.9: Regelbasierte Modellierung der Koordination

1.4 Aufbau der Arbeit

Die vorliegende Arbeit gliedert sich wie folgt:

Im nächsten Kapitel 2 werden die für diese Arbeit notwendigen Grundlagen beschrieben.
Hier wird zuerst der Aufbau von mechatronischen Systemen beschrieben. Anschließend
wird die Idee der modell-basierten Softwareentwicklung beschrieben. An den hier fest-
gemachten Prinzipien werden nun Konzepte, Modelle und Verifikationstechniken für me-
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chatronische Systeme vorgestellt, welche die Grundlage für die MECHATRONIC UML,
die als letztes vorgestellt wird, bilden.

Im Anschluss wird in Kapitel 3 der neue Ansatz zur Verifikation eines wie in Kapitel 2
eingeführten OCMs beschrieben und diskutiert.

In Kapitel 4 wird darauf eingegangen, wie sich mechatronische Systeme, dessen Hardwa-
reressourcen beschränkt sind und ihr Verhalten kontextabhängig dynamisch anpassen, mit
zeitbehafteten Graphtransformationssystemen modellieren lassen und welche Techniken
hier zur Verifikation eingesetzt werden.

Kapitel 5 bedient sich der Ansätze aus den vorherigen beiden Kapiteln 3 und 4 und be-
schreibt die Modellierung und Verifikation von parametrisierten Koordinationsmustern
mit Strukturveränderungen in mechatronischen Systemen.

In Kapitel 6 werden verwandte Arbeiten auf dem Gebiet der Verifikation von mechatro-
nischen Systemen diskutiert.

Die vorliegende Dissertation schließt in Kapitel 7 mit einer Zusammenfassung. Dabei
werden die Ergebnisse dieser Arbeit zusammengefasst und ein Überblick über mögliche
Erweiterungen des Ansatzes wird gegeben.
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Kapitel 2

Grundlagen

Dieses Kapitel behandelt die theoretischen Konzepte und Modelle, die als Grundlage zu
dieser Arbeit dienen. Im ersten Teil (Abschnitt 2.1) werden mechatronische Systeme, wie
sie in dieser Arbeit aufgefasst werden, beschrieben. Daran schließt sich ein Abschnitt
über die Grundlagen der Regelungstechnik, wie sie für die Modellierung von mechatroni-
schen Systemen benötigt werden an. Dieser Abschnitt motiviert besonders die Integration
der Domäne Regelungstechnik in die Domäne der Softwaretechnik. Nachfolgend schließt
sich ein Abschnitt über die Modell-basierte Softwareentwicklung mechatronischer Syste-
me an (siehe Abschnitt 2.3). In diesem Abschnitt werden Modelle zur Beschreibung von
mechatronischen Systemen sowie Verifikationsverfahren grundlegend erklärt. Im Detail
werden Automatenmodelle sowie Graphmodelle vorgestellt und deren Gemeinsamkeiten
diskutiert. Weiterhin werden hierfür Verifikationsverfahren, Model Checking und Erreich-
barkeitsanalysen beschrieben. Der MECHATRONIC UML Ansatz (siehe Abschnitt 2.4)
integriert alle bis dahin vorgestellten Modelle und Verfahren zur Modellierung und Ve-
rifikation von mechatronischen Systemen. Der MECHATRONIC UML Ansatz bildet die
Grundlage für alle in dieser Arbeit neuen Modellierungs- und Verifikationsverfahren. Das
Grundlagenkapitel schließt mit einer Zusammenfassung im letzten Abschnitt 2.5.

2.1 Mechatronische Systeme

Der Begriff „Mechatronik“ (Mechanik - Elektronik) wurde 1969 von einer japanischen
Firma geprägt [STF96] und bezeichnete zunächst nur die ganzheitliche Betrachtung me-
chanischer und elektrischer Bestandteile eines technischen Systems. Im Laufe der Zeit
wurden immer häufiger Mikrokontroller zu technischen Systemen hinzugefügt, so dass
die Mechatronik heute die interdisziplinäre Betrachtung mechanischer, elektrischer und
informationstechnischer Bestandteile umfasst. Die stetige Zunahme des informationstech-
nischer Anteils ermöglicht unter anderem mechatronische Systeme, die ihr Verhalten an
geänderte Bedingungen ihrer Umwelt anpassen, also eine Teilintelligenz besitzen.
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In der Entwicklung mechatronischer Systeme wird zunächst ein Modell des Systems er-
stellt. Dieses Modell wird dann in ein reales System überführt. Aufgrund der Komplexität
mechatronischer Systeme hat sich in den letzten Jahren eine komponentenbasierte Mo-
dellierung bewährt. Hierbei wird das System als Menge von Komponenten dargestellt,
die Informationen verarbeiten. Diese Komponenten sind untereinander verbunden, sodass
sich das Verhalten des Gesamtsystems aus der Interaktion der einzelnen Komponenten er-
gibt. Jede dieser Komponenten ist durch die von ihr zur Verfügung gestellten und benötig-
ten Informationen, deren Verarbeitung, sowie die Parameter dieser Verarbeitung eindeutig
charakterisiert.

Im Rahmen des SFB 614 wurde der in Abbildung 2.1 dargestellte hierarchische, modulare
Aufbau von mechatronischen Systemen entwickelt. Abbildung 2.1 zeigt den Aufbau eines
komplexen mechatronischen Systems nach Lückel [LHLH01][Ge05][GHH+08b].
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The distinction between the reflective and cognitive operator
clearly decouples control under hard real-time constraints
from long-range planning and the resulting input for self-
optimization.

In general, the OCM-hierarchy defines a strictly hierarchical
control flow low, i.e. each level tries to execute control as
much as possible locally but whether reconfiguration is to be
executed is decided on the next higher level.
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motion
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shuttle OCM shuttle OCM

motion control OCM energy subsystem OCM

Fig. 3. The OCM hierarchy of a shuttle and its connections with other
shuttles

The OCM hierarchy can be nested, i.e. each nesting level
may include an OCM which however does not include the
controller part. Controllers, which implement the continuous
part of the software, usually exist only on the leave level of
a nested OCM hierarchy. As an example, consider the above
mentioned shuttles of the RailCab project. The architecture
is defined by OCMs w.r.t. the reflective operators and the
controllers as depicted in Fig. 3. A shuttle consists of compo-
nents like the suspension/tilt module, the engine, the tracking
module1 etc. which in turn is defined by OCMs.

As a complete mechatronic system usually consists of
several concurrently running components, there exists a further
possibility of communication between components besides the
strict hierarchical control flow. Top-level OCMs of several
nested hierarchies, which usually represent a major system
component, may act as freely interacting software agents. This
means that agents exchange information but no central control
is defined anymore. As examples of such major system com-
ponents consider the different shuttles, stations and possibly
job brokers of the RailCab project. These agents interact with
each other through well-defined interfaces. In principle, the
controllers of different agents can interact with each other,
as well as the reflective operators and the cognitive operators,
each on their corresponding levels. In any case their interaction
is limited to a peer-to-peer connection, i.e. for safety reasons
no broadcasting of messages is supported which avoids any
side effects between many messages being exchanged concur-
rently.

1TODO: ”Spurführungsmodul” heisst laut NBP Seite tracking mod-
ule, aber wohl auch nur dort. Beim suchen habe ich eher steer-
ing module gefunden: z.B. folgendes: The aim of the steering con-
troller is to provide good tracking performance when the vehicle is in
tight curves and to minimize wheel/rail wear. It will utilize the same
hardware (actuators, sensors and controller) and will require additional
software only (from: http://www.lboro.ac.uk/departments/el/research/esc-
miniconference/papers/pearson.pdf).

As all safety and time critical aspects are handled by the re-
flective operators and controllers, peer-to-peer communication
(across the hierarchy) is also allowed between the different
cognitive operators of different levels in the nested OCM
hierarchies. This may facilitate complex planning and the
needed information exchange between different components
but the interface between a reflective and cognitive operator
resp. in each component and on each nesting level will make
sure that no changes are introduced by the cognitive operators
which invalidate safety properties.

Our MDD approach takes the general model of Fig. 3
as an informal architectural basis. It provides for a formal
definition of arbitrary OCM hierarchies, their behavior as well
as their peer-to-peer communication using a refined UML 2.0
component model and a refined notion of statecharts including
the definition of timing constraints and hybrid behavior. This
definition is the input for our model checking approach which
uses standard model checkers but before using them decom-
poses the overall system in such a way that the individual
parts can be checked separately, i.e. no side effects between
their behavior definitions exist which invalidate the model
checking results. This is guaranteed mainly by the well-defined
interfaces between the three levels of the OCM hierarchy and
especially the separation between the reflective and cognitive
operator as well as the completely independent side-effect free,
peer-to-peer communication between different components.

TODO:
Wilhelm, du wolltest das Folgende noch überarbeiten.
For the specific domain of mechatronic system, the outlined

MUML approach therefore includes the architectural description of
the software via component and connectors for hierarchies and peer-
to-peer structures.2

III. THE HIERARCHICAL COMPONENT MODEL

The formal definition of an OCM hierarchy, as given in
this section, not only defines component interfaces in such
a way that modular model checking becomes possible, but
also enables syntactic checks of important system properties
such as the consistent refinement of timing restrictions on the
various levels of the hierarchy.

A. Static Component Structures

1) Structure: To support the coupling of time-continuous
control behavior with discrete behavior, we extend the defi-
nition of ports in the UML 2.0 component model. Ports may
also be defined by time-continuous variables. While a signal
is sent and received at discrete points in time (cf. SignalEvent
in UML), a time-continuous variable has a well-defined value
for each point in time.

As an example the MUML model of the OCM of the shuttle
responsible for travelling either in convoy or stand alone
mode is depicted in Fig. 4. The Shuttle component instance
sh contains a AccelerationControl (AC) component instance ac
representing the controller and a Planer component instance
pl representing the cognitive operator. The reflective operator

2Due to the ROOM [?] concepts present in UML 2.0 the deficits of former
UML versions as an architectural description language are not present an more
(cf. [?]).

Abbildung 2.1: Hierarchische Struktur eines mechatronischen Systems nach Lückel

Die Basis bildet das mechatronische Funktionsmodul (MFM). Es ist aus einer mechani-
schen Grundstruktur, Sensoren und Aktoren und einer lokalen Informationsverarbeitung
aufgebaut. Die mechanische Grundstruktur führt die Aufgaben des mechatronischen Sys-
tems in der realen Welt aus. Dazu gehört zum Beispiel das Heben einer Last oder wie in
dem in Abbildung 2.1 dargestellten Beispiel das Neigen eines Fahrzeugs (suspension tilt
OCM). Die Steuerung des Systems übernimmt die Informationsverarbeitung. Sie kom-
muniziert über Sensoren und Aktoren mit der mechanischen Grundstruktur. Autonome
mechatronische Systeme (AMS) sind aus MFM aufgebaut, die informationstechnisch oder
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mechanisch gekoppelt sind. Die Informationsverarbeitung eines AMS übernimmt überge-
ordnete Aufgaben. Dazu gehören zum Beispiel die Überwachung mit Fehlerdiagnose und
Instandhaltungsentscheidungen (motion control OCM). Außerdem werden Vorgaben für
die lokale Informationsverarbeitung generiert. Aus den AMS werden vernetzte mechatro-
nische Systeme (VMS) gebildet. Sie entstehen durch die Verbindung von AMS über die
Informationsverarbeitung. Im dargestellten Beispiel entspricht das Feder-Neige-Modul
dem MFM, das Shuttle einem AMS und ein Fahrzeugverband einem VMS. In der Abbid-
lung ist zu sehen, dass jede Schicht, MFM, AMS sowie VMS durch OCMs beschrieben
wird.

Abbildung 2.2 zeigt ein Operator-Controller-Modul (OCM) [Ge05][HOG04]. Das OCM
ist in die drei Ebenen Controller, reflektorischer Operator und kognitiver Operator auf-
geteilt. Der Controller bildet die unterste Ebene. Er arbeitet direkt mit der mechanischen
Grundstruktur, verarbeitet auf direkte Weise die Messsignale, ermittelt daraus Stellsignale
und gibt sie an die mechanische Grundstruktur weiter. Der Controller arbeitet kontinuier-
lich und unter harten Echtzeitbedingungen. Der reflektorische Operator bildet die mittlere
Ebene. Er steuert den Controller und unterliegt ebenfalls harten Echtzeitbedingungen. Er
agiert nicht direkt mit dem System, sondern beeinflusst den Controller durch Initiierung
von Parameter- und Strukturänderungen. Die oberste Ebene bildet der kognitive Operator.
Auf dieser Ebene kann das System Wissen über sich und die Umgebung zur Verbesserung
des eigenen Verhaltens nutzen. Der kognitive Operator unterscheidet sich von den ande-
ren beiden Ebenen vor allem dadurch, dass er weichen Echtzeitanforderungen unterliegt.

Das dargestellte System kann also in zwei Teile untergliedert werden: Ein Teil, der unter
harten Echtzeitbedingungen arbeitet und den Controller und den reflektorischen Opera-
tor umfasst und ein Teil, der unter weichen Echtzeitbedingungen arbeitet. Zum letzteren
gehört der kognitive Operator. Um zu verstehen, wie das Werte-kontinuierliche Verhalten
des Controllers spezifiziert ist, werden im Folgenden Grundlagen der Regelungstechnik
beschrieben.

2.2 Regelungstechnik

Technische Systeme lassen sich im regelungstechnischen Sinn durch Zustandsgrößen be-
schreiben. In vielen Fällen will man diese Zustandsgrößen gezielt beeinflussen, um ge-
wünschtes Verhalten zu erzielen. Das Ziel ist es, die Zustandsgrößen an einen bestimmten
Wert zu ändern oder sie an einem Wert zu halten (z.B. die Rotationsgeschwindigkeit soll
immer 100 rad

s
betragen).

In der Regelungstechnik liegt der Schwerpunkt nicht auf der Konstruktion eines Sys-
tems, sondern auf der Beschreibung der kontinuierlichen Zustandsgrößen durch Differen-
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Abbildung 2.2: Operator-Controller-Modul

tialgleichungen. Hierbei wird das dynamische Verhalten der Regler durch Differential-
gleichungen beschrieben, die dafür sorgen, dass sich das System wie gewünscht verhält
[Föl05].

In Abbildung 2.3 ist die generelle Struktur einer Steuerung dargestellt. Das Problem ei-
ner Steuerung kann wie folgt beschrieben werden: Gegeben sei das Ziel eines Systems.
Die Stellgröße (control) y und die Zustandsgröße/Ausgangsgröße (controlled) x. Die Auf-
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gabe der Steuerung ist die Beeinflussung von x durch y in der Art und Weise, dass ein
gewünschtes Verhalten trotz Einwirkung von Störgrößen z (disturbance), die nicht immer
bekannt sind, erreicht wird. x und y sind Elemente eines Vektors ~x bzw. ~y. Da Systeme mit
mehr als einer Zustandsgröße und einer Stellgröße nach demselben Prinzip funktionieren,
werden im Folgenden nur Systeme mit x und y betrachtet.

Plantcontrol y controlled x

disturbance z

Abbildung 2.3: Generelle Struktur einer Steuerung

Grundsätzlich wird zwischen Steuerungen (Feed-Forward-Regler] und Reglern (Feed-
Back-Reglern) unterschieden. Steuerungen reagieren schneller auf a priori bekannte Stö-
rungen, allerdings nicht auf unbekannte Störungen. Regler reagieren durch den Regelkreis
auf jede Art von Störungen, allerdings nur, wenn die Zustandsgrößen und die Abweichun-
gen messbar sind. Das Ziel einer Regelung ist es, die Differenz zwischen einem Vorgabe-
wert und der Realität gegen 0 zu regeln. (siehe Abbildung 2.4).

control y
Control law Plant

zdisturbance

e=w−rw
difference
control

−

Controller

variable
reference

controlled x

Abbildung 2.4: Einfacher Regelkreis

Die Entscheidung für einen bestimmten Regler-Typ hängt von den Zeiteigenschaften und
der Genauigkeit des Systems ab. In der Literatur wird hier zwischen drei Regler-Typen
unterschieden: Proportionalregler (P), Proportional-Integral-Regler (PI) und Proportional-
Integral-Differential-Regler (PID). Letzterer wird am meisten in der Praxis verwendet
[HPPS03]. Je nach Eigenschaft der Strecke und der vorgegebenen Anforderungen werden
nun die Regler ausgesucht, um eine möglichst hohe Stabilität des Systems zu erreichen
dabei Überschwingen zu vermeiden und Reaktionszeiten zu verbessern.

2.2.1 Adaptive Regler

Einige Systemänderungen sind nicht vorhersagbar und gewöhnliche Regelsysteme kön-
nen möglicherweise nicht richtig reagieren, wenn die Eingangs- und Ausgangsrelation
sich verändert. Manchmal können diese Effekte durch herkömmliche Regelungstechni-
ken geregelt werden, jedoch nicht immer [IML92].
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Adaptive Regelungen können hier helfen, die Stabilität sowie die Reaktionszeit zu ver-
bessern. Dieser Ansatz verändert die Regler-Algorithmen in Echtzeit, um sich an die Än-
derungen der Umgebung anzupassen. Allgemein beobachtet der Regler periodisch die
System Eingabe- und Ausgaberelation und ändert den Regler-Algorithmus. Das Ziel ist
es, dadurch den Regler so robust wie möglich zu haben, und damit das dynamische Sys-
tem so unempfindlich gegen Störungen wie möglich zu halten.

In der Literatur gibt es drei Hauptansätze, um adaptive Feed-Back Regler zu modellieren:
Der erste, triviale Ansatz legt z.B. in einer Datenbank a priori fest, wie sich der Regler
bei bestimmten Änderungen zu verhalten hat. Neben der trivialen adaptiven Regelung
gibt es noch den Model Reference Adaptive Control (MRAC) und Self-Tuning Regulators
(STRs) Ansatz. Beim MRAC Ansatz beschreibt ein Referenzmodell die Systemeigen-
schaften. Der adaptive Regler ist hier so aufgebaut, dass das System bzw. die Strecke sich
so verhält, wie das Referenzmodell. Die Ausgaben des Modells werden mit den tatsäch-
lichen Ausgaben verglichen und die Differenz wird verwendet, um die Regler-Parameter
anzupassen. Im dritten Ansatz STRs werden selbsteinstellende Regler verwendet. Diese
nehmen ein lineares Modell an. Die Regler verwenden die zugrunde liegenden Reglerge-
setze, um ihre Koeffizienten zu verändern.

2.2.2 Rekonfiguration

Bis jetzt wurden nur Regler betrachtet, die immer aktiv sind. Zusätzlich wurde angenom-
men, dass für eine Aufgabe immer ein Regler zur Verfügung steht. Für das Shuttle System
wird Rekonfiguration benötigt, um die Regler-Algorithmen auszutauschen, wenn z.B. ein
Konvoi gebildet wird um die beste Strategie zu fahren. Da die Ressourcen in eingebetteten
Systemen typischerweise begrenzt sind, ist es erforderlich, diese soweit wie möglich ein-
zusparen. Hierfür wird Rekonfiguration verwendet, um zwischen verschiedenen Rollen,
z.B. Führungsfahrzeug oder letztes Shuttle im Konvoi, hin und her zuschalten. Um dies
zu ermöglichen, muss eine Logik, welche die Reglerstruktur steuert, hinzugefügt wer-
den. Durch Hybride Rekonfigurations Charts (siehe Kapitel 2.4) kann modelliert werden,
welche Regler in welcher Situation aktiv oder inaktiv sein sollen.

2.2.3 Block Diagramme

Eine gängige Technik für die Modellierung von Reglerstrukturen sind hierarchische Block
Diagramme. Block Diagramme bestehen aus Grund-Blöcken, die das Verhalten modellie-
ren und hierarchischen Blöcken, welche die Grund-Blöcke oder andere hierarchische Blö-
cke beinhalten, um die visuelle Komplexität zu reduzieren. Jeder Block besitzt Eingabe-
und Ausgabesignale. Blöcke sind durch gerichtete Verbindungen untereinander verbun-
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den, um den Informationsfluss darzustellen. Z.B. kann das Ausgabesignal eines Blocks
als Eingabesignal eines anderes Blocks verwendet werden.

Definition 1
Ein kontinuierlicher Block M wird durch ein 7 Tupel (V x, V u, V y, F,G,C,X0) definiert:

• V x: Menge der Zustandsvariablen,

• V u: Menge der Eingabevariablen,

• V y: Menge der Ausgabevariablen,

• F ⊆ EQ(V ẋ
⋃
V a, V x

⋃
V u
⋃
V a) mit V a = V y

⋂
V u: beschreibt den Fluss der

Zustandsvariablen,

• G ⊆ EQ(V ẏ
⋃
V a, V x

⋃
V u
⋃
V a): bestimmt die Ausgabevariablen,

• C ∈ COND(V x): Invariante, welche die Menge der zulässigen Zustände bestimmt
und

• X0: Menge der Anfangszustände.

Die Menge EQ(Vl, Vr) bezeichnet alle Gleichungen der Form vl = f i(v1
r , ..., v

n
r ), mit den

Funktionen f i, die n Argumente besitzen, und den Variablen vl ∈ Vl und v1
r , ..., v

n
r ∈ Vr.

Die Menge COND(V ) beinhaltet alle Bedingungen über die Variable V .

Ein Block M ist wohl-definiert, wenn für alle Differentialgleichungen des Systems F
⋃
G

gilt, dass es keine zyklischen Abhängigkeiten gibt, keine doppelten Zuweisungen, alle un-
definierten Verweise auf Variablen in V u−V y enthalten sind und jeder Zustandsvariablen
V x und Ausgabevariablen V y ein Wert zugewiesen ist.

2.2.3.1 Beispiel

Wie in Kapitel 1.2 beschrieben, wird die Konvoifahrt genutzt, um möglichst energieeffizi-
ent zu fahren. Das ist nur dann möglich, wenn die Shuttles möglichst nah hintereinander
fahren. Hierbei muss die Distanz ständig geregelt werden, um Auffahrunfälle zu vermei-
den. Die Geschwindigkeit des Shuttles muss also ständig in Bezug auf die Distanz zum
Führungsfahrzeug angepasst werden. Um dies zu erreichen, benötigt das hinterherfah-
rende Shuttle zwei Regler, einen Distanzregler und einen Geschwindigkeitsregler. Das
Führungsshuttle hingegen benötigt nur einen Geschwindigkeitsregler.

Als erstes wird das Modell der Strecke beschrieben. Dieses ist in Abbildung 2.5 darge-
stellt. Es gilt: mv̇ + bv = u, y = v, wobei m die Masse eines Shuttles, v die Geschwin-
digkeit, v̇ die Ableitung der Geschwindigkeit v, bv die Reibungkraft, u die Antriebskraft
und y die Zustandsgröße ist.
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Abbildung 2.5: Model der Strecke

Als nächstes wird der PID Regler beschrieben. Der Unterschied zwischen dem gewünsch-
ten Eingabewert und dem tatsächlichen Ausgabewert wird durch den Fehler e dargestellt
(siehe Abbildung 2.4). e wird an den PID Regler weitergeleitet, der daraufhin die Ablei-
tung sowie das Integral von e berechnet. Das Signal u ist nun, nachdem es zum Regler
weitergeleitet wurde, gleich dem Proportionalglied KP multipliziert mit dem Betrag des
Fehlers plus dem Integrationsglied KI multipliziert mit dem Integral des Fehlers plus
dem Differenzialglied KD multipliziert mit der Ableitung des Fehlers. Das Signal u wird
danach an die Strecke weitergegeben. Der neue Ausgabewert x wird entsprechend herge-
leitet. Der neue Ausgabewert x wird erneut zurück an den Sensor geleitet, um den neuen
Fehler e zu bekommen. Der Regler bekommt diesen neuen Fehler und berechnet die Ab-
leitung und das Integral erneut (siehe Abbildung 2.6). Der PID Regler wurde entsprechend
am linearisierten Modell der Strecke ausgelegt.

Abbildung 2.6: PID Geschwindigkeitsregler

2.2.3.2 Rekonfiguration

Abbildung 2.7 zeigt die Logik der Abstandsregelung in einem Stateflow Diagramm. Das
Modell besteht aus drei Modi. Initial ist das Shuttle im Modus NoConvoy. Die Ereignisse
convoyFront und convoyRear erzwingen den Wechsel von NoConvoy zum Modus Con-
voyFront oder ConvoyRear. Das Ereignis breakConvoy löst den Konvoi auf und erzwingt
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den Wechsel in den Modus NoConvoy. In den Modi NoConvoy und ConvoyFront ist die
Geschwindigkeitsregelung implementiert. Im Zustand ConvoyRear ist die Distanzrege-
lung implementiert.

Abbildung 2.7: Stateflow Diagramm der Shuttlesteuerung

In Abbildung 2.8 ist das hybride Modell einer Shuttleregelung für die Konvoiregelung
als Simulink Diagramm dargestellt. Es beinhaltet die Reglerlogik (oben links), die Regl-
ergesetze für die Distanz- und Geschwindigkeitsregelung (mitte) und die Beschreibung
des physikalischen Modells (rechts). Der Block zur Distanzkontrolle beinhaltet sowohl
den Distanzregler als auch den Geschwindigkeitsregler. Der schwarze Balken (rechts) ist
ein Umschalter. Durch die Mode/Konfigurationseingabe beider Kontroller und dem Um-
schalter ist es möglich, den gerade benötigten Regler zu aktivieren und einen anderen zu
deaktivieren.

Abbildung 2.8: Hybrides Modell der Shuttelsteuerung
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2.3 Modell-basierte Softwareentwicklung

Die Techniken der modell-basierten Softwareentwicklung wurden eingeführt, um die
Komplexität eines Problems zu reduzieren und ein abstrakteres Modell zu erhalten, wel-
ches frei von Implementierungsdetails ist [Fav05]. Damit wird das Modell übersichtlicher
und es lassen sich einfacher Operationen durchführen. Drei wesentliche Schritte in der
modell-basierten Entwicklung sind die (1) Modellierung, (2) Verifikation und (3) Code-
synthese.

Die UML hat sich als Standardmodellierungssprache für die modell-basierte Software-
entwicklung durchgesetzt. Sie bietet eine große Palette von Diagrammen, um ein System-
modell zu erstellen und ihr Verhalten zu spezifizieren. Um allerdings komplexe, vernetz-
te mechatronische Systeme, wie sie bereits vorgestellt wurden, adäquat zu modellieren,
reicht die UML nicht mehr aus. Um dem domänenübergreifenden Charakter von mecha-
tronischen Systemen gerecht zu werden, müssen bei der modell-basierten Entwicklung
auch die entsprechenden Techniken der verschiedenen Domänen miteinander integriert
werden [Bur06][HHKS08][GHH+08b][BGH+07]. Neben der Modellierung steht bei der
modell-basierten Entwicklung auch die Verifikation im Vordergrund. Da nun Modelle des
eigentlichen System vorliegen, ist es möglich, diese formal zu verifizieren. Jedoch wirft
die Welt der komplexen, vernetzen mechatronischen Systeme auch hier Probleme auf.
Bisherige Ansätze lassen sich nicht anwenden, da sie mit der Vielfalt der Modelle der
anderen Domänen nicht entsprechend klar kommen oder nicht skalieren [GH06].

Im Folgenden werden nun zuerst Verhaltens- und Strukturmodelle vorgestellt, die bei der
klassischen Modellierung und Verifikation von mechatronischen Systemen bisher ver-
wendet wurden. Die Auswahl der aufeinander aufbauenden Modelle wurde getroffen,
da sie die syntaktische und semantische Grundlage für die später in der MECHATRO-
NIC UML eingeführten Modelle bilden.

2.3.1 Automaten

Um das Verhalten von reaktiven Systemen zu modellieren, können endliche Automaten
verwendet werden. Von den verschiedenen existierenden Formen von Automaten werden
hier die endlichen Automaten betrachtet, welche auch bei [CGP00] als Grundlage für das
dort definierte Modell eines Timed Automaton dienen. Für weitergehende Informationen
zu endlichen Automaten siehe [HU79]. Ein endlicher Automat setzt sich zusammen aus
einzelnen Knoten, welche über Kanten miteinander verbunden sind. Die Knoten stellen
einzelne Zustände und die Kanten Transitionen zwischen diesen dar.
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Definition 2
Ein endlicher Automat M ist ein Quadrupel M := (Σ,Q,∆,Q0), wobei Σ ein endli-
ches Eingabealphabet, Q eine endliche Menge an Zuständen, ∆ ⊆ Q × ∆ × Q eine
Transitionsrelation und Q0 die endliche Menge der initialen Startzustände darstellt.

Ein endlicher Automat M besteht aus Q, einer endlichen Menge an Knoten bzw. Zustän-
den, ∆ der Menge an Kanten, welche die Transitionen zwischen den Zuständen abbilden,
aus Q0, einer endlichen Menge an initialen Startzuständen sowie aus Σ. Σ setzt sich zu-
sammen aus einer Menge an möglichen Eingaben, bei welchen über die Transitionen
δ ∈ ∆ zwischen den Zuständen aus Q ∪ Q0 gewechselt werden kann. Ein Beispiel für
einen solchen Automaten zeigt die Abbildung 2.9. Der abgebildete Automat setzt sich
zusammen aus der Eingabemenge Σ = {a, b}, den Zuständen Q = {s0, s1} und dem
Startzustand Q0 = {s0}. Die Menge der Übergangstransitionen ∆ lässt sich beschreiben
durch die Tripel (s0, a, s1) und (s1, b, s0).

<< Component >>
Shuttle

<< Component >>
c: Coordinator

<< Component >>
vc1: VelocityControl

S0 S1

a

b

Abbildung 2.9: Ein endlicher Automat mit den Zuständen s0, s1 und zwei Kanten, welche
mit a und b beschriftet sind.

Die in diesem Abschnitt vorgestellten Modelle eignen sich zur Beschreibung von Sys-
temen, welche durch ein diskretes Zeitmodell (siehe [CGP00], Kapitel 16) beschrieben
werden können. Um Zeit-kontinuierliche Eigenschaften zu modellieren, müssen die Mo-
delle erweitert werden. Es gibt verschiedene Möglichkeiten, um Zeit in einem Modell
abzubilden. Dies bezieht sich z.B. auf das Verhalten von Uhren (eine solche Uhr wird
nachfolgend Clock genannt), durch welche das Fortschreiten der Zeit abgebildet wird. So
wird bei [CGP00][Kop97] unterschieden zwischen diskreter und kontinuierlicher Echt-
zeit, wobei in der vorliegenden Arbeit Modelle mit kontinuierlichem Echtzeit-Verhalten
betrachtet werden. Als Gemeinsamkeit für die hier verwendeten Modelle gilt weiterhin,
dass alle dort auftretenden Uhren mit der gleichen Geschwindigkeit voranschreiten und
somit synchron laufen. In [GHH06a] wird beschrieben, weshalb diese Annahme für me-
chatronische Systeme, wie hier beschrieben, gültig ist.

2.3.2 Timed Automata

Synchrone Modelle basieren meistens auf einem diskreten Zeitmodell. Ein Beispiel ist
das gleichmäßige Takten einer Hardwareeinheit. Dies hat zur Folge, dass als Uhrwerte
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nur positive ganzzahlige Werte zur Verfügung stehen und Ereignisse nur zu ganzzahli-
gen Zeitpunkten auftreten können. Will man nun asynchrone Modelle untersuchen, muss
man ein kontinuierliches Zeitmodell zu Grunde legen. Hier können z.B. Ereignisse in be-
liebig kleinen Abständen hintereinander auftreten. Um solche Systeme zu diskretisieren,
ist es nötig, kleine, a priori vorgegebene minimale Zeitintervalle, festzulegen. Abstände
zwischen Ereignissen können nun als Vielfache dieser Maßeinheit ausgedrückt werden.
Dieses ist jedoch schwer von Beginn an festzulegen und schränkt zusätzlich die Genau-
igkeit eines Systems ein. Brzozowski und Seger [BS91] haben sogar gezeigt, dass das
Erreichbarkeitsproblem für asynchrone Schaltkreise unter der Annahme von festen Zeit-
intervallen, Zeit wird diskretisiert, nicht korrekt gelöst werden kann. Hinzu kommt, dass
der Zustandsraum bei der Verwendung von sehr kleinen Intervallen, wie sie bei einer mög-
lichst exakten Modellierung eines asynchronen Systems vorkommen, schlagartig explo-
diert. Dadurch wird die Verifikation undurchführbar. Obgleich viele verschiedene Ansätze
zur Modellierung von Systemen mit einem kontinuierlichen Zeitsystem gemacht wurden,
hat sich das Modell der Timed Automata von Alur, Courcoubetis und Dill [ACD90] eta-
bliert, welches im Folgenden beschrieben wird.

Ein Timed Automaton ist ein endlicher Automat, der über eine feste Anzahl von Clocks
verfügt. Eine Clock kann dabei einen Wert aus den positiven reellen Zahlen annehmen,
wodurch Modelle mit kontinuierlichen Echtzeit-Bedingungen formuliert werden können.
Die Transitionsrelation ∆ des Timed Automaton verfügt zusätzlich zu den endlichen Au-
tomaten über zeitliche Bedingungen, welche erfüllt sein müssen, damit der jeweilige
Übergang stattfinden kann. Diese Bedingungen werden als Guards bezeichnet. Weiter-
hin kann eine solche Transition über so genannte Resets verfügen, welche beim Schalten
dafür sorgen, dass einzelne Clocks auf den Zahlenwert 0 zurück gesetzt werden.

Ähnlich wie die Kanten (Kanten repräsentieren die Transitionen) über Guards verfügen
können, kann jeder Knoten ebenfalls zeitliche Bedingungen besitzen, so genannte Invari-
anten. Diese müssen erfüllt sein, damit bei dem jeweiligen Knoten verweilt werden kann.
Entsprechend ist es möglich bei einem Knoten zu verweilen, während die Transitionen
zwischen den einzelnen Knoten in Null-Zeit passiert.

Im Unterschied zu den einfachen endlichen Automaten, bei denen die Zustände durch die
MengeQ beschrieben werden können, hängt der Zustand beim Timed Automaton zusätz-
lich von den geltenden Bedingungen über die einzelnen Clocks ab. Somit wird hier nicht
von der Menge der ZuständeQ, sondern von so genannten Locations S gesprochen, wel-
che den Knoten des Automaten zugeordnet sind. Dabei kann es innerhalb einer Location
für die einzelnen Clocks nicht nur eine Belegung geben, sondern eine unendlich große
Menge an möglichen Belegungen. Diese Eigenschaft ergibt sich aus der Verwendung von
Ungleichungen bei den Invarianten und Guards, durch welche komplette zeitliche Er-
reichbarkeitsräume aufgebaut werden können. So ist es möglich innerhalb einer Location
für eine Zeitspanne zu verweilen. Dabei können die Clockvariablen Werte aus den posi-
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tiven reellen Zahlen annehmen. Auf diese Eigenschaft der Locations wird im Folgenden
noch genauer eingegangen.

Ein Beispiel für einen entsprechenden Timed Automaton zeigt die Abbildung 2.10. Der
Automat verfügt über die Locations s0, s1, die zwei Clock-Variablen x1, x2 sowie über
die Transition a, welche s0 mit s1 verbindet und die Transition b, welche s1 mit s0 verbin-
det. Der Automat startet in der Location s0 und kann dort höchstens solange verweilen,
bis die Clock x2 den Wert 2 erreicht hat. Dies wird durch die Invariante x2 ≤ 2 in s0

vorgegeben. Sobald die Clockvariable x2 den Wert 1 erreicht oder überschreitet, kann
der Automat über die Transition a zu der Location s1 wechseln. Dieser Wechsel muss
spätestens vollzogen werden, wenn die Clock x2 den Wert 2 erreicht. Diese Eigenschaft
ergibt sich durch die Kombination des entsprechenden Guards x2 ≥ 1 an der Transition
a, zusammen mit der Invariante innerhalb der Location s0. Beim Übergang von s0 nach
s1 wird die Clock-Variable x2 durch den Reset x2 := 0 zurück gesetzt. Ähnlich verfügt
die Location s1 über die Invarianten x2 ≤ 3 und x1 ≤ 2, sowie die Transition b über den
Guard x1 ≥ 2 und den Clock-Reset x1 := 0.

<< Component >>
Shuttle

<< Component >>
c: Coordinator

<< Component >>
vc1: VelocityControl

S0 S1
a

bx2≤2 x2≤3
x1≤2

x2≥1 x2:=0

x1:=0 x1≥2

Abbildung 2.10: Ein Timed Automaton, der über zwei Location, drei Invarianten und
zwei Kanten mit jeweils einem Guard und einem Clockreset verfügt.

Formal ist ein Timed Automaton nach [CGP00] wie folgt definiert:

Definition 3
Ein Timed Automaton A ist ein 6-Tupel A := (Σ,S,S0, X, I, T ), wobei Σ ein endli-
ches Eingabealphabet, S eine endliche Menge an Locations, S0 ⊆ S eine endliche Men-
ge von Start-Locations, X := (x1, .., xn) eine endliche Menge an Clock-Variablen mit
xi ∈ R+, I eine Zuordnungsfunktion I → C(X), welche den einzelnen Locations eine
Menge an Ungleichungen zuordnet, die so genannten Invarianten, und T ist die Menge
der Transitionen. C(X) ist eine Menge von Bedingungen über die Clock-Variablen aus
X . Dabei besteht C(X) aus einer Menge an Ungleichungen der Form xi ≺ c ∨ c ≺ xi,
wobei ≺ entweder < oder ≤ ist und c ∈ N+. Für T , die Menge der Transitionen gilt
T ⊆ S × Σ × C(X) × 2X × S . Eine Transition von Location s nach s′ läßt sich durch
ein 5-Tuple (s, a, ϕ, λ, s′) beschreiben. Dabei ist a ∈ Σ die Beschriftung der zugehörigen
Kante, ϕ eine Bedingung, die erfüllt sein muss damit die Transition schalten kann und
λ ⊆ X eine Anzahl an Clockvariablen, die beim Schalten auf 0 zurück gesetzt werden.
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2.3.3 Hybride Automaten

Mit einem hybriden Automaten kann das Verhalten von hybriden Systemen modelliert
werden. Hybride Systeme sind dadurch gekennzeichnet, dass sie sowohl aus einem dis-
kreten wie auch einem kontinuierlichen Teil bestehen. Der hybride Automat stellt eine
Erweiterung zum endlichen Automaten und zum Timed Automaton dar, da er zusätzlich
zu einem diskreten Teil auch einen kontinuierlichen Teil besitzt.

Jeder hybride Automat besteht aus Locations und Transitionen, die einen Übergang zwi-
schen zwei Locations ermöglichen. Wie auch beim endlichen Automaten existiert im hy-
briden Automaten eine ausgezeichnete Teilmenge der Locations, welche die Anfangslo-
cations bilden. Das Hauptmerkmal des hybriden Automaten ist, dass er es erlaubt, in je-
der Location eine Differentialgleichung, die einen kontinuierlichen Regler repräsentiert,
einzubetten. Der Übergang zwischen zwei Locations erfolgt durch diskrete Übergänge.
Durch diese Einbettung und die Übergänge kann mit Hilfe eines hybriden Automaten
das Verhalten von hybriden Systemen modelliert werden. Des Weiteren wird durch den
Wechsel von einer Location in eine andere ein Austausch von kontinuierlichen Reglern
erreicht.

Neben der Einbettung von kontinuierlichen Reglern ermöglicht der hybride Automat wie
auch der Timed Automaton die Spezifikation von Zeitangaben. Innerhalb einer Location
können Zeitinvarianten in Bezug auf eine Uhr angegeben werden. Eine Zeitinvariante
drückt aus, bis wann eine Location spätestens verlassen sein muss. Ein Locationübergang
kann nur stattfinden, wenn der spezifizierte Timeguard wahr ist und das entsprechende
Event anliegt. Während des Schaltvorgangs einer Transition ist es möglich, Uhren auf
den Wert Null zu setzen. Nach [BGH05a] ist ein hybrider Automat M wie folgt definiert:

Definition 4
Ein hybrider Automat ist durch ein 6-Tupel (L,D, I, O, T, S0) definiert. Dabei ist L eine
endliche Menge von Locations, D eine Funktion über L, die jeder Location l ∈ L ein
kontinuierliches Modell D(l) = (V x, V u, V y, F (l), G(l), C(l), X0(l)) wie in Definition 1
beschrieben, zuweist, I eine endliche Menge von Eingabesignalen,O eine endliche Menge
von Ausgabesignalen, T eine endliche Menge von Transitionen und S0 ⊆ {(l, x)|l ∈
L ∧ x ∈ X0(l)} die Menge der Anfangslocations.

Für jede Transition (l, g, g′, a, l′) ∈ T ist l ∈ L die Startlocation, g ∈ COND(V x ∪ V u)
der kontinuierliche Guard, der eine Bedingung über die Zustands- oder die Eingabeva-
riablen angibt, g′ ∈ ℘(I ∪ O) der I/O-Guard, a ∈ [[V x → R] → [V x → R]] die
kontinuierliche Aktualisierung und l′ ∈ L Ziellocation.

Abbildung 2.11 aus [Bur06] zeigt einen hybriden Automaten, der das Fahrverhalten eines
Shuttles modelliert. Ein Shuttle kann entweder alleine oder im Konvoi fahren. Abhängig
von der Situation ist ein bestimmter Regler aktiv. Nutzt das Shuttle den Geschwindig-
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PositionToVelocity

VelocityToPosition

velocity

velocityFailure

position positionFailure

y(t) = k * (v (t) - v (t))req cur

t = 01

d t d
2 2

low 2 up� �

d t d
1 1

low 1 up� �

y(t) = (t) * v + (1 - (t)) * p� �out out

t d1 up�

1

y(t) = (t) * p + (1 - (t)) * v� �out out

t d2 up�

2

t = 02

T * y(t) = k * (p (t) - p (t)) +

k * (p (t) - p (t)) - y(t)
1 1 req cur

2 req cur

Abbildung 2.11: Hybrider Automat

keitsregler, bewegt es sich mit einer bestimmten Geschwindigkeit fort, die sich innerhalb
eines vorgegebenen Intervalls befindet. Wenn es mit einem anderen Shuttle in einem Kon-
voi fährt, wird die Geschwindigkeit des Shuttles anhand seiner Position geregelt. Hierbei
stellt der Positionsregler sicher, dass der Abstand zwischen den beiden Shuttles nicht zu
groß bzw. nicht zu klein wird.

Zu Anfang befindet sich das Shuttle in der Location Velocity. Diese Location beinhal-
tet eine Differentialgleichung, die den Geschwindigkeitsregler repräsentiert. Anhand der
Differentialgleichung ist zu erkennen, dass der Ausgang y des Reglers von den beiden
Eingängen vreq und vcur und einer Konstante k abhängt.

Liegt das Event position an, wird vom Geschwindigkeitsregler zum Positionsregler ge-
wechselt. Um den Wechsel zwischen diesen beiden Reglern zu ermöglichen, existiert ein
so genannter Überblendzustand. Dieser Überblendzustand enthält eine Funktion, die den
Ausgang des Geschwindigkeitsreglers auf den Ausgang des Positionsreglers überblen-
det. Diese Funktion wiederum beinhaltet die Überblendfunktion α(t) aus [Voe03] mit:
α(t) = −2( t−t0

tdauer
)3 + 3( t−t0

tdauer
)2

Wird von der Location Velocity in die Location VelocityToPosition gewechselt, wird der
Wert der Uhr t1 auf Null gesetzt. In der Location VelocityToPosition befindet sich eine
Zeitinvariante, die aussagt, dass die Location verlassen sein muss, wenn t1 > d1

up gilt.
Liegt das Event positionFailure an, ist während des Überblendvorgangs ein Fehler auf-
getreten und der hybride Automat wechselt wieder in die Location Velocity. Liegt kein
Event an und ist der Timeguard d1

low ≤ t1 ≤ d1
up wahr, verlässt der hybride Automat die

Location VelocityToPosition und wechselt in die Location Position. Diese Location bein-
haltet eine Differentialgleichung, die den Positionsregler repräsentiert. Der Ausgang y der
Differentialgleichung ist von den beiden Eingängen preq und pcur und den Konstanten k1

und k2 abhängig.
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Liegt das Event velocity an, muss vom Positionsregler auf den Geschwindigkeitsregler
gewechselt werden. Hierfür existiert der Überblendzustand PositionToVelocity. Wenn die
Location Position verlassen wird, wird der Wert der Uhr t2 auf Null gesetzt. In der Lo-
cation PositionToVelocity ist eine Funktion eingebettet. Diese wiederum beinhaltet die
Überblendfunktion α(t). Die Zeitinvariante t2 ≤ d2

up sagt aus, bis wann die Location
spätestens verlassen sein muss. Die Location kann verlassen werden, wenn das Event
velocityFailure anliegt oder der Timeguard d2

low ≤ t2 ≤ d2
up wahr ist.

Wie dieses Beispiel zeigt, vereinen hybride Automaten kontinuierliche Regler und dis-
krete Zustände. Durch diese Kombination ermöglichen sie unter anderem die Simulation
von physikalischen Gesetzen, die häufig für hybride Systeme benötigt werden. Zudem ist
eine automatische, formale Überprüfung von Invarianten möglich.

Allerdings werden alle Komponenten durch einen einzigen hybriden Automaten model-
liert. Dies führt schnell zu komplexen Modellen, die schwer zu verifizieren sind. Des
Weiteren ermöglicht das Modell des hybriden Automaten keine Rekonfiguration, wie sie
in [FGK+04][Bur06] definiert ist. Durch einen Wechsel der Locations werden zwar die
Regler ausgetauscht, aber die Struktur und der interne Zustand der Regler können von
einem hybriden Automaten nicht beeinflusst werden. Wie auch beim Timed Automaton
findet beim hybriden Automaten ein Schaltvorgang in Null Zeit statt. Dies entspricht je-
doch nicht der Realität, da ein Locationwechsel oft eine gewisse Zeit benötigt.

2.3.4 Graphen

Die in den vorherigen Abschnitten vorgestellten Modelle der Timed Automata und der
Hybriden Automaten verfügen über eine zeitliche Komponente, mit welcher es möglich
ist, kontinuierliches (Echtzeit-)Verhalten zu modellieren. Das Verhalten ist dabei auf eine
vorgegebene Zustandsstruktur festgelegt. In komplexen, vernetzten mechatronischen Sys-
temen stehen nur begrenzte Rechen- und Speicherkapazitäten zur Verfügung. Zusätzlich
unterliegt das System zur Laufzeit einer Evolution abhängig vom gegebenem Kontext.
Anforderungen an komplexe, mechatronische Systeme sehen deshalb Dynamik vor. So
müssen z.B. zur Laufzeit Softwarekomponenten instanziiert und deinstanziiert werden.

An dieser Stelle wird das Modell der Graphtransformationssysteme vorgestellt, welches
über keine vergleichbare zeitliche Komponente verfügt. Allerdings ist es im Gegensatz
zu den vorgestellten Automatenmodellen möglich, dynamische Bestandteile abzubilden
und damit eine Zustandsstruktur dynamisch zu erzeugen. Mit Hilfe von Graphtransfor-
mationssystemen werden strukturelle Veränderungen auf Graphen herbeigeführt.

Definition 5
Ein gerichteter Graph ist ein Tupel G := (V,E,Es, Et), bestehend aus einer Menge von
Knoten V sowie einer Menge von Kanten E. Eine Kante e ∈ E verbindet einzelne Knoten
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vs, vt ∈ V miteinander. Die Funktion Es ordnet jeder Kante e ∈ E einen Startknoten vs
zu. Entsprechend ordnet die Funktion Et jeder Kante e einen Zielknoten vt zu.

Zusätzlich zu den bis hier beschriebenen Eigenschaften gibt es die Möglichkeit, für die
einzelnen Knoten und Kanten eines Graphen eindeutige IDs zu vergeben, um eine ein-
deutige Zuordnung aller Elemente vornehmen zu können.

Definition 6
Ein gerichteter Graph mit Knoten und Kanten IDs besteht ausG := (V,E,Es, Et, Vi, Ei),
wobei V,E,Es, Et wie beim gerichteten Graphen in Definition 5 definiert sind. Zusätzlich
existiert eine injektive Funktion Vi, welche jedem Knoten aus V ein eindeutiges ni zuord-
net, sowie Ei eine injektive Funktion, die jeder Kante aus E eine eindeutiges ei zuordnet.
Dabei sind ni, ei ∈ N+.

Eine Eigenschaft, welche für den Umgang mit den hier verwendeten Graphen notwendig
ist, ist die Teilgraphbeziehung.

Definition 7
G = (V,E,Es, Et) ist ein Teilgraph von G′ := (V ′, E ′, E ′s, E

′
t) (G ≤ G′) wenn gilt,

V ⊆ V ′, E ⊆ E ′, sowie das die Zuordnungsfunktionen Es und E ′s für die Kanten V ∩ V ′
identisch sind. Ebenfalls muss gelten Et und E ′t sind identisch für die Menge V ∩ V ′.

In Abbildung 2.12 sind zwei Graphen abgebildet, wobei der rechte Graph einen Teilgraph
des linken Graphen darstellt. Die Knoten n1, n2 sowie die Kante e2 des rechten Graphen
sind ebenfalls im linken vorhanden.

n1
e2

n3

e3

e1

n2

e2n1 n2

Abbildung 2.12: Die Abbildung zeigt zwei Graphen, wobei der rechte im linken Graphen
enthalten ist.

Um über Graphtransformationssysteme zu reden, ist es notwendig, Relationen zwischen
Graphen zu definieren. Eine Relation wäre z.B. die gerade erwähnte Teilgraph-Relation.
Um Abbildungen zwischen einzelnen Graphen vornehmen zu können, muss hierfür ein
Graphmorphismus für Graphtransformationssysteme definiert werden:
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Definition 8
Für einen Graphmorphismus m := (mv,me) mit mv ∈ V → V ′ und me ∈ E → E ′,
welcher einen Graphen G := (V,E,Es, Et) auf G′ := (V ′, E ′, E ′s, E

′
t) abbildet gilt:

• ∀v : v ∈ V → mv(v) ∈ V ′

• ∀e : e ∈ E → me(e) ∈ E ′

• ∀e : e ∈ E → mv(Es(e)) = E ′s(me(e)) ∧mv(Et(e)) = E ′t(me(e))

Die einzelnen, innerhalb der Graphtransformationssysteme vorhandenen Graphen haben
eine statische Struktur. Damit ein dynamisches Strukturverhalten ermöglicht wird, fin-
den Übergänge zwischen einzelnen Graphen statt, wobei die einzelnen Graphen Zustände
des Graphtransformationssystems repräsentieren. Um diese Übergänge zu ermöglichen,
werden Regeln verwendet, die durch ihre Anwendung Strukturen innerhalb von Graphen
suchen und Veränderungen herbeiführen. Diese Regeln werden nachfolgend Graphtrans-
formationsregeln genannt.

Definition 9
Eine Graphtransformationsregel P := (Pl, Pr, h) besteht aus den Graphen Pl, Pr und
dem partiellen Graphhomomorphismus h ∈ pl → pr. Dabei gilt: pl ist ein Teilgraph von
Pl, so wie pr ein Teilgraph von Pr ist. Die Menge d(P ) := {VPl

\ VPr} ∪ {EPl
\ EPr}

beschreibt die Elemente, welche durch P gelöscht werden und n(P ) := {VPr \ VPl
} ∪

{EPr \EPl
} die Elemente, welche durch die Anwendung von P hinzugefügt werden. Dabei

sind EPl
, VPl

die Knoten und Kanten aus Pl und EPr , VPr die Knoten und Kanten aus Pr.

Ein Graph G kann mit Hilfe einer Graphtransformationsregel P in einen Nachfolgegra-
phen G′ überführt werden. Den Graphen G, auf welchem die Graphtransformationsregel
angewendet wird, bezeichnet man auch als Wirts- oder Muttergraph. Entsprechend wird
der resultierende Graph G′ als Tochtergraph bezeichnet.

Damit die Anwendung einer Graphproduktion P (Pl, Pr, h) auf einen Wirtsgraphen G
möglich ist, aus der ein Tochtergraph G′ resultiert, muss ein Teilgraph g aus G, sowie
ein Graphmorphismus m existieren, welcher Pl auf g abbildet. Der resultierende Tochter-
graph G′ ergibt sich aus den Kanten EG′ und Knoten VG′:

VG′ = {VG \mv(v) : v ∈ d(P ) ∩ Vl} ∪ {v : v ∈ n(P ) ∩ Vr}
EG′ = {EG \me(e) : e ∈ d(P ) ∩ El} ∪ {e : e ∈ n(P ) ∩ Er}

Vl und El sind die Knoten und Kanten der linken Seite Pl und Vr, Er die Knoten und Kan-
ten aus Pr, der rechten Seite von P . Ein Beispiel für eine derartige Regelanwendung zeigt
die Abbildung 2.13, bei der aus dem linken Graphen der Knoten n3, sowie die Kanten
e1, e3, e4 entfernt werden. Bei der Anwendung wird die Kante e5 hinzugefügt.
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n1
e2

n3

e3

e1

n2

n4e4

e2

e5

n4

n2n1

Abbildung 2.13: Schematische Darstellung einer Regelanwendung.

Dabei ist es möglich, die einzelnen Graphtransformationsregeln mit Prioritäten zu verse-
hen. Eine solche priorisierte Graphtransformationsregel erlaubt es dann in dem Fall, dass
auf einen Wirtsgraphen G zwei unterschiedliche Regeln P1 und P2 angewendet werden
können. Die Reihenfolge der Anwendung wird durch die Prioritäten geregelt. Hierdurch
wird Nichtdeterminismus vermieden.

Definition 10
Eine Graphtransformationsregel P := (Pl, Pr, h, r) besteht zusätzlich zu der in Definiti-
on 9 definierten Graphtransformationsregel P := (Pl, Pr, h) aus einer Priorität r, wobei
r ∈ N+. Ein Regel pi mit einem zugehörigen ri , wird gegenüber einer Regel Pj mit
zugehörigem rj bevorzugt, falls ri > rj .

Am Beispiel bedeutet dies auch, dass falls zwei Regeln Pi, Pj auf einen Graphen G ange-
wendet werden können, eine Regel mit höherer Priorität die andere verdrängt. Mit Hilfe
der bis hier vorgestellten Definitionen lässt sich ein Graphtransformationssystem wie folgt
formulieren:

Definition 11
Ein Graphtransformationssystem S := (G,G0,P) besteht aus einer potentiell unendli-
chen Menge an Zuständen in Form der Graphen G, einer endlichen Anzahl an Startzu-
ständen in Form der Graphen G0 sowie P := (P1, ..., Pn) einer endlichen Anzahl an
Graphtransformationsregeln Pi, mit i ∈ N.

Bei der Anwendung von Graphtransformationsregeln kommt es vor, dass einzelne Kanten
und Knoten aus dem Wirtsgraphen entfernt werden. Dabei kann es passieren, dass Kan-
ten entstehen, bei welchen kein Zielknoten, bzw. kein Startknoten vorhanden ist (siehe
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Abbildung 2.14). Eine solche Kante wird als Dangling-Edge bezeichnet. Zur Behand-
lung dieses Problems gibt es zwei unterschiedliche Vorgehensprinzipien, den so genann-
ten single-pushout approach (SPO) und den double-pushout approach (DPO) [Roz97]. In
der vorliegenden Arbeit wird der SPO verwendet. Wird bei einem Wirtsgraphen durch die
Anwendung des linken Teils einer Graphtransformationsregel ein Knoten e ∈ E entfernt,
so werden beim SPO alle mit dem Knoten inzidenten Kanten v ∈ V gelöscht. Somit ist
die Entstehung von Dangling-Edges zwar ausgeschlossen, allerdings kann es passieren,
dass Elemente aus einem Graphen entfernt werden, obwohl dies nicht beabsichtigt ist.

n1
e2

n3

e3

e1

n2

e1n3 n2

Wirtsgraph

Anwendungsregel

n1
e2

e3

Resultierender
Graph

Abbildung 2.14: Die Abbildung zeigt oben einen Wirtsgraphen, auf den eine Regel (blau
gestrichelt) angewendet wird und durch das Entfernen von Elementen
ein resultierender Graph mit zwei Dangling-Edges entsteht (grau mar-
kierte Kanten im unteren Graph).

Um zu vermeiden, dass zu viele Knoten und Kanten unbeabsichtigt durch eine Graph-
transformationsregel gelöscht werden, besteht die Möglichkeit, eine sogenannte Negative-
Application-Condition (NAC) zu verwenden (siehe [HHT96]). Mit Hilfe einer NAC kann
formuliert werden, welche Bedingung im Wirtsgraphen nicht vorhanden sein darf, da-
mit eine Graphtransformation angewendet werden kann. Eine Graphtransformationsregel
kann entsprechend mit einer zusätzlichen NAC versehen werden, wobei es sich bei die-
ser ebenfalls um einen Graphen handelt. Kann die NAC im Wirtsgraphen an der gleichen
Stelle aufgefunden werden wie die linke Seite Pl, so wird die zugehörige Graphtransfor-
mation an dieser Stelle nicht angewendet. Eine Graphtransformationsregel mit NAC wird
wie folgt definiert:
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Definition 12
Eine Graphtransformationsregel P := (Pl, Pr, PNAC , h) mit negativer Anwendungsbe-
dingung besteht aus einem linken Anwendungsteil Pl, welcher die Vorbedingung darstellt,
sowie einem rechten Anwendungsteil Pr, welcher die Nachbedingung abbildet. Zusätzlich
verfügt P über PNAC , eine negative Anwendungsbedingung, welche nicht im Wirtsgra-
phen an der gleichen Stelle auffindbar sein darf, damit die Graphtransformationsregel P
an dieser Stelle angewendet werden kann. PNAC kann entweder Pl vollständig enthal-
ten und um zusätzliche Knoten und Kanten erweitern oder PNAC entspricht dem leeren
Graphen.

Die Anwendung einer Graphtransformationsregel mit Negative-Application-Condition ist
wie folgt definiert:

Definition 13
Eine Graphtransformationsregel P := (Pl, Pr, PNAC , h) mit Negative-Application-Con-
dition kann auf einen Wirtsgraphen G := (V,E,Es, Et) angewendet werden, wenn die
Bedingungen erfüllt sind, dass:

∃g : g ≤ G

∃h : h : Pl → g

6 ∃hNAC : hNAC : PNAC → g′ ∧ g ≤ g′

2.3.5 Verifikation

Bei der Analyse und Verifikation von Modellen, so auch bei den Automaten und Graph-
transformationssystemen, können unterschiedliche Eigenschaften untersucht werden. Da-
bei wird zwischen der Berechnung der erreichbaren Zustände und dem erweiterten Ver-
fahren des Model Checking unterschieden. Nachfolgend wird hier kurz auf die unter-
schiedlichen Verfahren eingegangen.

2.3.5.1 Erreichbarkeitsanalyse

Um die erreichbaren Zustände, bzw. den Zustandsraum eines Modells zu erzeugen, ist
es notwendig, basierend auf den initial gegebenen Zuständen eine Erreichbarkeitsanalyse
durchzuführen. So auch bei den Modellen des Timed Automaton und der Graphtrans-
formationssysteme. Hierbei ist von Interesse, welche Zustände innerhalb des Modells er-
reichbar sind, oder sicher zu stellen, dass bestimmte Zustände ausgeschlossen werden
können. Nachfolgend wird für die beiden Modelle des Timed Automaton und der Graph-
transformationssysteme jeweils ein Verfahren vorgestellt, mit dem eine solche Erreich-
barkeitsanalyse durchgeführt werden kann.
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2.3.5.2 Model Checking

Ein Verifikationsverfahren ist das so genannte Model Checking [CGP00], bei dem auch
komplexere Aussagen in Form einer speziellen Logik gegen ein Modell geprüft werden.
Bei dem zu überprüfenden Modell kann es sich beispielsweise um einen Automaten oder
ähnliches handeln. Es existieren dabei verschiedene Logiken um Aussagen zu formu-
lieren, sowie unterschiedliche Verfahren um diese gegen das entsprechende Modell zu
prüfen. So gibt es Logiken und Verfahren für diskrete sowie kontinuierliche Modelle
und Eigenschaften. Model Checking kann als folgendes Entscheidungsproblem formu-
liert werden:

Sei M ein zu testendes Modell und Ψ eine Spezifikation. Erfüllt das Modell
die Spezifikation, gilt also M |= Ψ?

Die Eigenschaften, die sich mit Hilfe einer solchen Logik formulieren lassen, können
wesentlich komplexer sein als die einfache Erreichbarkeit von Zuständen. So kann über-
prüft werden, ob die einzelnen Zustände in einer bestimmten Reihenfolge innerhalb des
Modells erreicht werden können. Im Vergleich zu der Erreichbarkeitsanalyse, kann dort
nicht nur überprüft werden, welche Zustände erreicht werden. Beim Model Checking gibt
es die Möglichkeit, Aussagen zu formulieren und zu überprüfen, in welcher Reihenfol-
ge diese Zustände erreicht werden müssen. Dabei ist Voraussetzung für eine derartige
Überprüfung, dass diese entsprechenden Zustände bereits ermittelt wurden.

Jedoch hat auch das Verfahren des Model Checking seine Grenzen. Abbildung 2.15 zeigt
noch einmal die generelle Vorgehensweise beim Model Checking. Werden jedoch die
Eingabemodelle, wie in Abbildung 2.16 beschrieben, immer komplexer, skaliert das Ver-
fahren des Model Checkings aufgrund des Problems der Zustandsraumexplosion nicht
mehr. In 2.15 ist verdeutlicht, dass Model Checking für hybride Modelle nicht in akzep-
tabler Zeit durchgeführt werden kann.

Um ein Gefühl für die Komplexität solcher Zustandsräume, die bei der Verifikation erstellt
werden, zu bekommen, wird im folgenden die Konstruktion für das Eingabemodell der
Timed Automata (siehe Abschnitt 2.3.5.3) und anschließend für Graphtransformations-
system (siehe Abschnitt 2.3.5.4) gezeigt.

2.3.5.3 Zustandsraum des Timed Automaton

Bei einem Timed Automaton A := (Σ,S,S0, X, I, T ) hängen die Zustände nicht nur
von der jeweiligen Location ab, der aktuelle Zustand ergibt sich zusätzlich aus der Bele-
gung der einzelnen Clocks. Einer Location s ∈ S wird durch eine Zuordnungsfunktion
ein C(X) zugeordnet. Dabei ist C(X) eine Teilmenge der Bedingungen über die Clock-
variablen aus X . Dies bedeutet, dass sich der Zustand eines Timed Automaton aus der
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Abbildung 2.16: Mächtigkeit des Eingabemodells vs. Effizienz beim Model Checking

aktuellen Location, sowie den dort aktuell geltenden zeitlichen Bedingungen über die
einzelnen Clocks zusammen setzt.

Im Beispiel des Automaten aus Abbildung 2.10 setzt sich der initiale Zustand aus der Lo-
cation s0, sowie der dort vorhandenen Invariante zusammen. Die Invariante, welche die
Clock-Variable x2 beinhaltet, definiert einen zeitlichen Erreichbarkeitsraum, in dem gilt,
dass der Wert von x2 ≤ 2 ist. Über die Clock x1 ist im initialen Zustand in der Location s0

keine einschränkende Bedingung vorhanden, allerdings haben die im Automaten existie-
renden Clocks die Eigenschaft, dass diese in der Zeit synchron voranschreiten. Hierdurch
ergibt sich eine Abhängigkeit zwischen x1 und x2 in der Art und Weise, dass beide den
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gleichen Wert besitzen müssen. Diese Abhängigkeit zwischen x1 und x2 gilt solange, bis
durch einen Reset eine der beiden Clocks auf den Wert 0 zurück gesetzt wird. Auch dann
laufen beide weiterhin synchron, allerdings können die einzelnen Werte sich unterschei-
den. Solange in der initialen Location s0 verweilt wird, sind die entsprechenden Werte
identisch und somit x1 und x2 jeweils kleiner oder gleich dem Wert 2.

Die Wertemengen, welche durch die möglichen Clock-Belegungen aufgebaut werden,
sind in der Regel unendlich groß. Bei der Analyse des Erreichbarkeitsraumes ist es nicht
möglich, jeden Zustand einzeln abzubilden, da nicht jeder Zustand und die daraus resul-
tierenden Folgezustände in endlicher Zeit betrachtet werden können. Somit ist es notwen-
dig, eine endlich große Repräsentation dieser Erreichbarkeitsräume vorzunehmen. Um ei-
ne endliche Repräsentation dieser Bereiche zu ermöglichen, existieren verschiedene Da-
tenstrukturen. Eine davon ist das Modell der sogenannten Clock-Regions, welches bei
[CGP00] sowie [BBF+01] genauer beschrieben wird.

Die entsprechende Clock-Region für den initialen Zustand des Timed Automaton aus dem
Beispiel im Abschnitt 2.3.2, lässt sich grafisch wie in Abbildung 2.17 darstellen. Dabei
stellen die grau markierten Bereiche die Wertemenge dar, welche die Clock-Variablen x1

und x2 annehmen können. In dieser Menge sind alle Werte enthalten, die auf der Win-
kelhalbierenden des ersten Quadranten des Koordinatensystems liegen und kleiner oder
gleich dem Wert 2 sind.

x1

x 2

0 1 2 3

1

2

3

Abbildung 2.17: Der zeitliche Erreichbarkeitsraum des initialen Zustandes des Automa-
ten aus Abbildung 2.10. Die grau markierten Bereiche entsprechen der
Menge der Werte, welche die Clocks x1 und x2 annehmen können.

Zusammen mit der Location s0 bildet diese Clock-Region den initialen Zustand des
Beispiel-Automaten aus Abbildung 2.10. In der vorliegenden Arbeit wird allerdings mit
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einer anderen Form zur Darstellung der zeitlichen Erreichbarkeitsräume gearbeitet. Dies
sind die sogenannten Clockzones, die in dieser Arbeit Verwendung finden.

Clockzone Hier wird kurz auf die Datenstruktur und Operationen der Clockzones ein-
gegangen. Eine genauere Definition für die hier vorgestellte Datenstruktur ist bei Clarke
und anderen [CGP00] zu finden.

Eine Clockzone definiert eine Reihe an Bedingungen über einzelne Clock-Variablen, wo-
bei hierzu Ungleichungen ähnlich wie beim Modell des Timed Automaton (siehe Defini-
tion 3) verwendet werden:

i, j ∈ N+, d ∈ Z, xi ∈ R+,≺∈ {<,≤} : xj ≺ d, d ≺ xj, xi − xj ≺ d.

Zusätzlich verfügt jede Clockzone über eine Referenz-Clock x0, welche zu jedem Zeit-
punkt den Wert 0 besitzt. Die gesamte Clockzone ergibt sich durch die Konjunktion der
einzelnen Ungleichungen über die Clock-Variablen. Am Beispiel aus der Abbildung 2.10
wird die initiale Clockzone durch die folgenden Ungleichungen aufgebaut:

x2 ≤ 2, x0 − x2 ≤ 0 ∧ x1 − x2 ≤ 0 ∧ x2 − x1 ≤ 0 ∧ x0 − x1 ≤ 0

Dabei resultiert die erste Ungleichung aus der Invariante der initialen Location s0. Die
restlichen Bedingungen entstehen aus der Eigenschaft, dass alle vorhandenen Clocks xi ∈
X des Beispiel-Automaten synchron in der Zeit voranschreiten, sowie dass diese immer
≥ 0 seien müssen.

Definition 14
Eine Clockzone Z hat eine Menge X an Clock-Variablen xi. Jedes xi kann Werte aus
R+ ∪ 0 annehmen, wobei i ∈ N+ und i > 0. Zusätzlich existiert eine Referenz-Clock
x0, die immer den Wert 0 besitzt, sowie eine Anzahl von Bedingungen c ∈ C in Form
von Ungleichungen der Art xj ≺ d, d ≺ xj, xi − xj ≺ d, mit i, j ∈ N+, d ∈ Z und
≺∈ {<,≤}. Die Clockzone ergibt sich aus der Konjunktion über die Bedingungen aus C.

Eine Clockzone mit k verschiedenen Clocks wird als k-dimensional bezeichnet, da jede
Clock im euklidischen Raum eine eigene Dimension aufspannt (ohne die Referenz-Clock
x0). Der hierbei aufgespannte Raum erfüllt zusätzlich die Eigenschaft, dass dieser konvex
ist. Die Abbildung 2.18 zeigt in grafischer Form die Clockzone φ mit den zwei Clocks
x1, x2 und den folgenden Bedingungen:

x1 ≤ 4 ∧ x2 ≤ 5 ∧ 2 ≤ x1 ∧ 1 ≤ x2 ∧ x1 ≤ x2
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Abbildung 2.18: Die Clockzone φ

Es existieren eine Anzahl an Operatoren, welche auf eine, bzw. mehrere Clockzones an-
gewendet werden können. Dabei werden für die zeitliche Erreichbarkeitsanalyse, wie die-
se etwa beim Timed Automaton vorgenommen wird, drei spezielle Operatoren benötigt.
Hierzu zählt die Vereinigung von zwei Clockzones, das Verstreichen lassen von Zeit und
das Zurücksetzen von einzelnen Clocks:

• Vereinigung von zwei Clockzones: φ1 ∧ φ2

• Verstreichen lassen von Zeit (Up-Operation): φ ⇑

• Zurücksetzen von Uhren (Clock-Reset): φ[γ] mit γ ⊆ X , wobei X die Menge der
Clock-Variablen in φ ist.

Bei der Vereinigung von zwei Clockzones ist es auch möglich, dass φ1 oder φ2 nur aus
einer einzigen Bedingung besteht, wie diese etwa durch einen Guard oder eine Invariante
gegeben ist.

Die entsprechenden drei Operatoren werden benötigt, um die Erreichbarkeitsanalyse beim
Timed Automaton durchzuführen. So etwa beim Zustandswechsel innerhalb des Auto-
maten. Dabei setzt sich ein Zustand aus der jeweiligen Location sowie der dort momen-
tan vorhandenen Belegung der einzelnen Clockvariablen zusammen. Diese Belegung der
Clockvariablen kann durch eine entsprechende Clockzone dargestellt werden. So exis-
tiert etwa für die Location s eine Clockzone φ und der Zustand des Automaten ergibt
sich aus dem Tupel 〈s, φ〉. Um den Nachfolgezustand succ(s, φ, t) beim Wechsel von der
Location s über eine Transition t zu einer Location s′ zu berechnen, sind die vorgestell-
ten Operatoren auf die Clockzone φ anzuwenden. Dabei wird hier zur Berechnung der
Folge-Clockzone φ′ die Funktion succφ eingeführt, welcher φ selbst, die Invarianten I
der Location s, sowie die Guards ϕ der Transition t übergeben werden.
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Algorithmus 2.1 procedure φsucc = succφ(φ, I, ϕ)

procedure φsucc = succφ(φ, I, ϕ)

1: Bilden der Schnittmenge: φ = φ ∧ I
2: Verstreichen lassen von Zeit: φ ⇑
3: Wiederum Bilden der Schnittmenge: φ = φ ∧ I
4: Vereinigen mit ϕ: φ = φ ∧ ϕ

Falls die resultierende Clockzone φsucc nicht leer1 ist, kann über die Transition t zur Lo-
cation s′ gewechselt werden. Eine Clockzone φ ist leer, wenn für alle c ∈ φ gilt: Es gibt
keine mögliche Belegung für die Clocks xi aus c, so dass alle Ungleichungen c erfüllt
sind.

Anschließend müssen noch die Clockresets λ der Transition t ausgeführt werden, um aus
φsucc, φ′ zu erhalten. Dies wird durch den Algorithmus 2.2 succ′φ beschrieben.

Algorithmus 2.2 procedure φ′ = succ′φ(φsucc, λ)

procedure φ′ = succ′φ(φsucc, λ)

1: Zurücksetzen der Clocks λ: φ′ = φsucc[λ := 0]

Bevor φ′ zu s′ als Folge-Clockzone hinzugefügt wird, muss die Schnittmenge φ′ mit den
Invarianten φ′∧I(s′) von s′ gebildet werden. Diese Schnittmenge ergibt zusammen mit s′

den Folgezustand, welcher über die Transition t erreicht wird. Dabei kann es vorkommen,
dass durch die Berücksichtigung der Invarianten von s′, beim Bilden der Schnittmenge
φ′ ∧ I(s′) eine Clockzone entsteht, die leer ist. Der hierdurch abgebildete Zustand wird
auch als Timedeadlock bezeichnet.

Ein Timedeadlock bezeichnet einen erreichten Zustand, bei dem aufgrund der zeitlichen
Bedingungen aus diesem kein Folgezustand erreicht werden kann. Für eine Clockzone φ
mit einem Timedeadlock gilt, dass φ einerseits erreicht wurde und es andererseits mindes-
tens eine Ungleichung der Form x1 − x2 ∼ d gibt, welche zusammen mit den restlichen
Ungleichungen aus φ nicht erfüllt werden kann.

Die Funktionen succφ, die Überprüfung ob die resultierende Clockzone leer ist, sowie die
Funktion succ′φ werden zu der Funktion succ(φ, I(s), ϕ, λ, I(s′)) zusammengefasst. Die
Berechnung ist in Algorithmus 2.3 beschrieben.

Mit Hilfe von succ(φ, I(s), ϕ, λ, I(s′)) wird nun die Funktion reach(A) zur Berechnung
der erreichbaren Zustände formuliert. Die Berechnung ist in Algorithmus 2.4 beschrieben.

1Siehe [CGP00] zur Definition einer leeren Clockzone und wie dies festgestellt werden kann.
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Algorithmus 2.3 procedure φ′ = succ(φ, I(s), ϕ, λ, I(s′)

procedure φ′ = succ(φ, I(s), ϕ, λ, I(s′)

1: φsucc = succφ(φ, I(s), ϕ))
2: if φsucc ist nicht leer then
3: φ′ = succ′φ(φsucc, λ)
4: φ′ = φ′ ∧ I(s′)
5: end if

Algorithmus 2.4 procedure reach(A)

procedure reach(A)

1: A := (Σ,S,S0, X, I, T )
2: Open = ∅, Close = ∅
3: for all s ∈ S0 do
4: z := 〈s, I(s)〉
5: Open = Open ∪ z
6: end for
7: while Open 6= ∅ do
8: for all t ∈ T : t := s× C(X)× 2X × s′ do
9: φt = succ(s, φ, t)

10: if φt 6= empty then
11: φ′ = φt ∧ I(s′)
12: z′ = 〈s′, φ′〉
13: Open = Open ∪ z′
14: end if
15: end for
16: Open = Open \ z
17: Close = Close ∪ z
18: end while

Das Ergebnis der Berechnung ist die Menge Close, welche sich aus einzelnen Tupeln
〈s, φ〉 zusammen setzt. Diese Tupel beschreiben die Menge der erreichbaren Zustände.

Bei jedem berechneten Folgezustand 〈s′, φ′〉 stammt s′ immer aus der Menge S des
Timed Automaton A. Somit sind alle Locations und hierdurch auch die Struktur des
durch A abgebildeten Modells bereits fest vorgegeben. Strukturdynamische Eigenschaf-
ten werden hier somit nicht abgebildet, im Gegensatz zu den Graphtransformationssys-
temen. Die Datenstruktur der Difference-Bound-Matrices erlaubt es, Clockzones effizi-
ent zu kodieren und zu manipulieren. Ein Vorteil der Datenstruktur Difference-Bound-
Matrice liegt darin, dass eine kanonische Form herleitbar ist, welche es möglich macht
mehrere Difference-Bound-Matrices effizient miteinander zu vergleichen. Für weiterge-
hende Informationen zu der Datenstruktur der Difference-Bound-Matrice siehe [CGP00].
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2.3.5.4 Zustandsraum des Graphtransformationssystems

Im Gegensatz zu dem Modell des Timed Automaton lassen sich mit Hilfe von Graph-
transformationssystemen dynamische Strukturen modellieren. Diese Strukturen werden
in Form von Graphen, während der Erreichbarkeitsanalyse, durch Anwendung der ein-
zelnen Graphtransformationsregeln aufgebaut. Eine zeitliche Komponente, wie sie beim
Timed Automaton vorhanden ist, gibt es hingegen nicht.

Der Ausgangspunkt ist dabei ein Graphtransformationssystem S := (G,G0,P), mit einer
Menge an Graphen G, einer Menge an initialen Graphen G0 und einer Menge an Graph-
transformationsregeln P . Damit der erreichbare Zustandsraum ermittelt werden kann,
wird hier davon ausgegangen, dass alle Mengen endlich sind2.

Um, ausgehend von einem gegebenen Wirtsgraphen G, über eine Graphtransformations-
regel P die Menge der daraus resultierenden Tochtergraphen G ′ zu berechnen, wird die
Funktion prod(G,P ) eingeführt. Diese liefert die Menge der Graphmorphismen m ∈ M
zurück, welche Pl aus der Graphtransformationsregel P auf einem Teilgraphen g des
Wirtsgraphen G abbilden. Für diese Morphismen m := (mv,me) gelten die Eigenschaf-
ten, die in Abschnitt 2.3.4 bei der Anwendung einer Graphtransformationsregel beschrie-
ben wurden.

Der TochtergraphG′ ergibt sich aus der Anwendung von P zusammen mit dem jeweiligen
Morphismus m:

G
m,P−−→ G′

Um die Notation abzukürzen wird die Funktion prod(G,P ) verwendet, um sowohl die
Morphismenm als auch die FolgegraphenG′ herzuleiten. Für weitergehende Details, z. B.
wie genau eine Graphtransformationsregel P auf einen Wirtsgraphen nach dem Prinzip
des SPO angewendet wird, siehe [Roz97].

Mit Hilfe der Funktion prod wird ein Algorithmus formuliert, mit dem das gesamte
Graphtransformationssystem aufgebaut werden kann. Der hier angegebene Algorithmus
2.5 entspricht einer Breitensuche über ein Graphtransformationssystem S.

Um auch die Priorität einer einzelnen Graphtransformationsregel zu berücksichtigen,
muss die Zeile 5 des Algorithmus angepasst werden. Dort werden alle Graphproduktio-
nen in einzelnen Mengen Qr zusammengefasst, die über die gleiche Priorität r verfügen.
Aus diesen Mengen werden ihrer Priorität entsprechend absteigend, die einzelnen Regeln
wie in Zeile 6 auf den Wirtsgraphen G angewendet. Die einzelnen Mengen Qr werden
solange verarbeitet, bis mindestens eine Regel ausQr aufG angewendet werden kann, al-
so die Funktion prod nicht die leere Menge zurück geliefert hat. Falls dieser Fall eintrifft,

2Falls eine der Mengen G, G0 oder P nicht endlich ist, würde das hier vorgestellte Verfahren nicht termi-
nieren.
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Algorithmus 2.5 procedure Open = reachGTS(S)

procedure Open = reachGTS(S)

1: S := (G,G0,P)
2: Open = G0, Close = ∅
3: while Open 6= ∅ do
4: for all G ∈ Open do
5: for all P ∈ P do
6: Open = Open ∪ prod(G,P )
7: end for
8: end for
9: Close = Close ∪G

10: Open = Open \G
11: end while
12: return Close

wird die innere Schleife in Zeile 5 verlassen und mit der äußeren in Zeile 3 fortgefah-
ren. Das hieraus resultierende Graphtransformationssystem verfügt in Form der durch die
Transitionen erzeugten Tochtergraphen über die hinzugekommenen dynamischen Struk-
turbestandteile allerdings über keine zeitliche Komponente, wie dies beim Modell des
Timed Automaton der Fall ist.

Nachdem nun die Modelle zur Beschreibung der Struktur und des Verhaltens von re-
gelungstechnischen Systemen (Abschnitt 2.2) sowie von Softwaresystemen beschrieben
wurden, wird im nächsten Abschnitt nun auf die Integration der Domäne des Software
Engineering mit der Domäne der Regelungstechnik eingegangen. Der nun im Folgenden
beschriebene MECHATRONIC UML Ansatz vereint beide Domänen.

2.4 Mechatronic UML

Der MECHATRONIC UML Ansatz [GHH+08b] ermöglicht die modell-basierte Ent-
wicklung von mechatronischen Systemen (siehe Abschnitt 2.1). MECHATRONIC UML
unterstützt dabei die Spezifikation von Softwarestrukturen und Strukturänderungen
[BBG+06], die Koordination von komplexem Echtzeitverhalten [BGS05], formale
Verifikation von Sicherheitseigenschaften [BGH+05b][GTB+03][Hir04][HG03] und
die Fehleranalyse [GT06]. Neben diesen unterstützt MECHATRONIC UML auch die
Integration der Modellierung von Regelungstechnik, kontinuierlichen Verhalten durch die
Einbettung von Reglerstrukturen in die Zustände, ohne dabei die Verifikationsergebnisse
der Echtzeiteigenschaften zu verletzen. [BGH05a].
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2.4.1 Echtzeitverhalten

Das Echtzeit-Koordinationsverhalten beschreibt die nachrichtenbasierte Kommunikation
zwischen verschiedenen mechatronischen Komponenten unter harten Echtzeitbedingun-
gen. Zuallererst wird bei dem Ansatz das Kommunikationsverhalten verschiedener Sze-
narien durch die Verwendung von Echtzeit-Sequenzdiagrammen spezifiziert. Die Menge
von spezifizierten Szenarien, z.B. die Bildung des Konvois von Shuttles, kann automa-
tisch zu Realtime Statecharts synthetisiert werden, wobei die beteiligten Rollen auf Soft-
ware Komponenten abgebildet werden. Realtime Statecharts sind eine Erweiterung von
UML State Machines um spezielle Echtzeiteigenschaften für die periodische Ausführung,
Echtzeitverhalten, Wort Case Ausführungszeiten usw. zu modellieren. Die Semantik der
Realtime Statecharts ist über die Semantik der Timed Automata (siehe Abschnitt 2.3.2
und [HG03][Hir04][BGHS04]) definiert.

Die Realtime Statecharts der verschiedenen Software Komponenten werden aus den so
genannten Echtzeit-Koordinationsmustern abgeleitet. Realtime Statecharts spezifizieren
das Verhalten einer bestimmen Rolle in einer Koordination. Am Beispiel des Shuttlekon-
vois lassen sich zwei Rollen aufzeigen, die Rolle eines Führungsshuttles und die Rolle
eines hinterherfahrenden Shuttles. Da so ein Koordinationsverhalten in mechatronischen
Systemen immer sicherheitskritischen Charakter hat, stellt der MECHATRONIC UML An-
satz zur Analyse der Echtzeit-Koordinationsmuster formale Verifikationstechniken zur
Verfügung.

Wie schon angedeutet, leitet sich das Verhalten der Komponenten durch die Verwendung
der verfeinerten Rollen ab. MECHATRONIC UML baut auf einer Verfeinerungsbeziehung
auf, die garantiert, dass, falls eine Komponente eine Rolle verfeinert, die Verifikation der
Rolle ebenfalls für die Komponente gilt. Als letztes werden Regler in die Zustände der
Statecharts einer Komponente eingebettet. Hierdurch wird die Verbindung zu der Domäne
der Regelungstechnik geschlagen. Im Folgenden werden die bereits skizzierten Schritte
anhand der Modellierung des Konvoiszenarios detailliert beschrieben.

2.4.2 Echtzeit-Koordinationsmuster

In Abbildung 2.19 ist ein Echtzeit Sequenzdiagramm modelliert. Es zeigt die Bildung ei-
nes Shuttlekonvois an einer Weiche [GHHK06]. Hierbei wird die Nachrichteninteraktion
zwischen Komponenten modelliert. Durch die Integration von Zuständen und Zeit ist es
möglich, die Nachrichteninteraktion in eine globale zeitliche und lokale kausale Ordnung
zu bringen.

Durch den Syntheseansatz aus [GB04][GHHK06] können aus diesen Szenarien Rollen
eines Echtzeit-Koordinationsmusters generiert werden, die durch Realtime Statecharts
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Abbildung 2.19: Echtzeit Sequenzdiagramm

spezifiziert sind. Natürlich können Rollen auch direkt spezifiziert werden. Eine Rolle spe-
zifiziert das Verhalten des Führungsshuttles, die andere Rolle die des hinterherfahrenden
Shuttles (siehe Abbildung 2.20). Zusätzlich wird das Verhalten des Connectors, der das
Kommunikationsmedium darstellt, durch ein Realtime Statechart beschrieben.

Beide Rollen befinden sich initial in dem Zustand noConvoy::default, der die Bedeutung,
von zwei allein, nicht im Konvoibetrieb fahrenden Shuttles, darstellt. Die Rolle rear kann
nun nicht-deterministisch wählen, ob ein Konvoibetrieb aufgenommen werden soll oder
nicht. Für den positiven Fall, dass ein Konvoibetrieb aufgenommen werden soll, sendet die
Rolle eine Nachricht an das andere Shuttle, bzw. Rolle front. Die Rolle front entscheidet
nun ebenfalls nicht-deterministisch, den Vorschlag abzuweisen oder anzunehmen. Im ne-
gativen Fall schalten beide Realtime Statecharts zurück in den Zustand noConvoy::default.
Im positiven Fall schalten beide in den Zustand convoy::default.

Für den Fall, dass das hinterherfahrende Shuttle nicht-deterministisch entscheidet, zu
bremsen, sendet dies dieses Ereignis an das Führungsshuttle. Auch hier kann das Füh-
rungsshuttle den Vorschlag abweisen oder akzeptieren. Wenn der Vorschlag abgelehnt
wird, bleiben beide Shuttles im Konvoizustand, andernfalls wechseln beide Shuttles in
den Zustand noConvoy::default.

Der Connector zwischen beiden Rollen repräsentiert eine Funkverbindung. In diesem Bei-
spiel wird der Connector nicht explizit durch ein Realtime Statechart beschrieben, sondern
nur durch QoS Angaben spezifiziert. In [Hof07] ist ein Verfahren vorgestellt, hieraus au-
tomatisch Connectoren zu synthetisieren. In dem Beispiel wird angenommen, dass Nach-
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Abbildung 2.20: Echtzeit-Koordinationsmuster für die Konvoikoordination

richten um 1 bis 5 Zeiteinheiten verzögert werden können. Außerdem ist der Connector
nicht zuverlässig, so dass Nachrichten verloren gehen können.

Um die Sicherheitseigenschaften zu überprüfen, müssen diese zuerst spezifiziert werden.
Hierfür kann z.B. TCTL verwendet werden. In diesem Beispiel soll gelten: rear.convoy
implies front.convoy. Befindet sich das hinterherfahrende Shuttle im Konvoimodus, muss
sich auch das Führungsshuttle im Konvoimodus befinden. Andernfalls kann es in einer
Notfallsituation zu einem Unfall kommen, da das Führungsshuttle für die Situation nicht
geeignete Entscheidungen treffen könnte.

In [Gie03, BGHS04, BGH+05b] wurde gezeigt, dass die Eigenschaft erfüllt ist. Nach
der erfolgreichen Verifikation des Echtzeit-Koordinationsmusters können diese nun zu
Komponenten verfeinert werden.
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2.4.3 Komponenten

Die im letzten Abschnitt vorgestellten Echtzeit-Koordinationsmuster werden bei der Ver-
haltenserstellung der Softwarekomponenten verwendet. Die von MECHATRONIC UML
verwendeten Komponentendiagramme basieren auf denen der UML 2.0. Diskrete Kom-
ponenten werden von kontinuierlichen Komponenten unterschieden. Das Verhalten von
diskreten Komponenten wird durch Realtime Statecharts modelliert, das Verhalten von
kontinuierlichen Komponenten durch Blockdiagramme aus der Domäne der Regelungs-
technik. Dieselbe Unterscheidung wird auch bei Ports gemacht. Die Definition der Kom-
ponenten unterstützt die Verwendung von Interface Statecharts [BGO06] für die Spezifi-
zierung von verschiedenen Ports und Konfigurationen/Zuständen der Komponenten.

Diskrete Komponenten verfeinern einfach nur das Verhalten der Rollen. Der Entwickler
muss lediglich ein Synchronisationsverhalten der beteiligten Rollen modellieren, um das
Verhalten der Rollen zu koordinieren. Danach werden die Rollen als Ports zu den Kom-
ponenten hinzugefügt (siehe Abbildung 2.21).

Eine Komponente spezifiziert ebenfalls, ob noch weitere Komponenten eingebettet sind.
In dem Beispiel sind dies noch die beiden kontinuierlichen Komponenten - eine um die
Geschwindigkeit zu kontrollieren (Velocity Controller) und eine, um den Abstand zum
vorausfahrenden Shuttle zu kontrollieren (Distance Controller). Da die kontinuierlichen
Komponenten typischerweise aus der Regelungstechnik kommen, verdeutlicht dies sehr
deutlich die domänübergreifende Integration [HH06].

Abbildung 2.21: Shuttle Komponente

Während die Rollen der Komponenten hinzugefügt werden, können diese durch den Ent-
wickler verfeinert werden, indem sie z.B. im Verhalten eingeschränkt werden. Im Beispiel
kann der Entwickler z.B. festlegen, dass ein Shuttle nur als rear einem Konvoi beitritt.
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Abbildung 2.22: Realtime Statechart der Shuttle Komponente

In Abbildung 2.22 ist das Verhalten der Komponente Shuttle aus Abbildung 2.21 darge-
stellt. Das Realtime Statechart besteht aus drei orthogonalen Zuständen FrontRole, Rear-
Role und Synchronization. Die Zustände FrontRole und RearRole sind Verfeinerungen
des Rollenverhaltens aus Abbildung 2.20 und spezifizieren das Kommunikationsverhal-
ten im Detail, um einen Konvoi zu erzeugen oder aufzulösen. Im Zustand Synchronization
wird das Kommunikationsverhalten und die Initiierung eines Konvois modelliert. Die drei
Unterzustände des Zustandes Synchronization stellen dar, ob sich das Shuttle gerade als
Führungsfahrzeug (convoyFront), als letztes Fahrzeug (convoyRear) oder als allein fah-
rendes Shuttle (noConvoy) verhält.
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Das ganze Statechart ist eine Verfeinerung beider Rollen und es wurde nur der Nicht-
Determinismus der Rollen aus Abbildung 2.20 durch hinzufügen von Synchronisation
aufgelöst.

Wie schon erwähnt, erfüllen Komponenten in der Domäne der mechatronischen Systeme
eine Menge von Echtzeitbedingungen. In dem Beispiel muss gelten, dass RearRole die
Nachricht startConvoy innerhalb einer bestimmten Zeit verschickt, nachdem sie convo-
yOK empfangen hat.

Um dieses adäquat durch Realtime Statecharts abbilden zu können, muss es möglich sein,
an Transitionen Zeit zu spezifizieren - in der Realität passiert auch keine Aktion in Null-
zeit. Hierfür werden die folgenden Deadline Konstrukte verwendet: In Abbildung 2.22
wird das Deadlineintervall dc und d1 verwendet, um eine minimale und maximale Schalt-
zeit einer Transition anzugeben. Zum Beispiel muss das Senden der Nachricht convoy-
ProposalRejected innerhalb der Deadline dc passieren, nachdem die Nachricht noConvoy
im Zustand FrontRole::noConvoy::wait empfangen wurde. Ein weiteres Beispiel ist der
Wechsel im Statechart Synchronization von noConvoy nach convoyFront, der innerhalb
von d1 beendet sein muss.

Für eine Komponente, die mehrere Echtzeit-Koordinationsmuster anwendet, sind die
Verifikationsergebnisse der einzelnen Echtzeit-Koordinationsmuster immer noch erfüllt
[GTB+03]. Aufgrund dieses kompositionellen Ansatzes lassen sich mechatronische Sys-
teme sehr einfach komponentenbasiert entwickeln.

2.4.4 Einbettung hybrider Komponenten

Die Typdefinition der Komponenten aus Abbildung 2.21 spezifiziert, dass die Shuttle
Komponenten zwei verschiedene Unterkomponenten einbettet. Eingebettete Komponen-
ten sind im Kontext von mechatronischen Systemen zur Ressourceneinsparung nicht im-
mer aktiv. Die Aktivierung und Deaktivierung, oder auch Rekonfiguration, wird von Soft-
ware übernommen.

Das Modell der Realtime Statecharts aus Abbildung 2.22 wird dementsprechend erweitert
zu so genannten Hybriden Rekonfigurations Charts. Die Komponenten werden Zuständen
zugeordnet, so dass hier von Zustandskonfigurationen gesprochen wird. Der Velocity Reg-
ler ist aktiv in dem Zustand convoyFront und noConvoy. Beide Regler sind aktiv in dem
Zustand convoyRear, wobei der Wert des Distance Reglers noch als Eingabe für den Velo-
city Regler dient. Das das Modell der Hybriden Rekonfigurations Charts für den weiteren
Verlauf der Arbeit essentiell ist, wird es im Folgenden detailliert beschrieben.

Das klassische hybride Automatenmodell aus Definition 4 ermöglicht keine modulare
Rekonfiguration zur Laufzeit. Dieser Nachteil kann durch den hybriden Rekonfigurations
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Abbildung 2.23: Einbettung von kontinuierlichen Unterkomponenten in ein hybrides Re-
konfigurations Chart

Automaten aus [BGH05a] aufgehoben werden. Wie auch beim hybriden Automaten bet-
tet ein hybrider Rekonfigurations Automat Komponenteninstanzen in die Zuständen ein
und tauscht diese durch einen Zustandswechsel aus. Jedoch bietet der hybride Rekonfi-
gurations Automat zusätzlich die Möglichkeiten, die Struktur und den internen Zustand
der Komponenten durch einen Wechsel der Locations zu modifizieren. Durch diese bei-
den Möglichkeiten erlaubt das Modell eine Rekonfiguration des Systems. Ein weiterer
Vorteil des hybriden Rekonfigurations Automaten gegenüber dem hybriden Automaten
liegt darin, dass die Ports immer in Abhängigkeit von einer Location aktiv sind. Ports, die
innerhalb einer Location keine Signale empfangen, werden in dieser Location auch nicht
mehr dargestellt. Durch diese Möglichkeit der Modellierung wird dem Betrachter sofort
ersichtlich, von welchen Eingangsports der Ausgangsport abhängt.

Um die beschriebenen Vorteile umzusetzen, verwendet der hybride Rekonfigurations Au-
tomat im Gegensatz zum hybriden Automaten ein verändertes kontinuierliches Modell.
In diesem Modell werden die Zustands-, Eingabe- und Ausgabevariablen in Abhängig-
keit der jeweiligen Location angegeben.

Definition 15
Formal ist das kontinuierliche Modell D(l) des hybriden Rekonfigurations-Automaten
durch ein 7 Tupel (V x(l), V u(l), V y(l), F (l), G(l), C(l), X0(l)) definiert:

• V x(l): Menge der Zustandsvariablen,

• V u(l): Menge der Eingabevariablen,

• V y(l): Menge der Ausgabevariablen,
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• F (l) ⊆ EQ(V ẋ
⋃
V a, V x

⋃
V u
⋃
V a): beschreibt den Fluss der Zustandsvaria-

blen,

• G(l) ⊆ EQ(V ẏ
⋃
V a, V x

⋃
V u
⋃
V a): bestimmt die Ausgabevariablen,

• C(l) ∈ COND(V x): Invariante, welche die Menge der zulässigen Zustände be-
stimmt und

• X0(l): Menge der Anfangszustände.

Ein Nachteil ist, dass durch das Einführen von Zuständen, die den Austausch von Reglern
realisieren, die Zustandsmenge zunimmt. Dies hat zur Folge, dass hybride Rekonfigurati-
ons Automaten sehr umfangreich werden. Des Weiteren kann in einem hybriden Rekon-
figurations Automaten keine Schaltdauer angegeben werden. Automatenmodelle bieten
ebenfalls keine Möglichkeit, hierarchische Zustände zu verwenden. Hybride Rekonfigu-
rations Chart, wie sie im Folgenden eingeführt werden, integrieren alle Konzepte.

Hybride Rekonfigurations Charts [BGH05a] bauen wie schon erwähnt auf dem Konzept
der Realtime Statecharts und der hybriden Rekonfigurations Automaten auf. Mit ihnen ist
es möglich, das Verhalten hybrider Komponenten, die sich durch die Kombination von
diskreten und kontinuierlichen Komponenten auszeichnen, zu modellieren. Sie besitzen
zusätzlich zu allen Eigenschaften der Realtime Statecharts die Möglichkeit, zwischen ato-
maren Umschalttransitionen und nicht-atomaren Umschalttransitionen zu unterscheiden.
Außerdem ist es möglich, in den Zuständen Komponenteninstanzdiagramme einzubetten,
so dass Rekonfiguration ermöglicht wird. Da Rekonfiguration nicht nur allein durch den
Austausch von Komponenteninstanzen erreicht werden kann, erlaubt es das Konzept der
hybriden Rekonfigurations Charts zusätzlich, die interne Struktur und den Zustand der
Komponenten zur Laufzeit zu ändern. In jedem Zustand, ausgenommen Start- und Stop-
zustand, können Komponenteninstanzdiagramme eingebettet werden.

Die Komponenteninstanzdiagramme bestehen aus den Komponenteninstanzen, die in der
Komponente eingebettet sind, deren Verhalten durch das hybride Rekonfigurations Chart
beschrieben wird. Für jede Komponenteninstanz kann angegeben werden, ob sie in ei-
nem Zustand existiert oder nicht. Falls eine hybride bzw. eine diskrete Komponentenin-
stanz in einem Zustand vorhanden ist, wird zusätzlich spezifiziert, in welchem Zustand
sich diese Komponenteninstanz befindet. Daraus ergibt sich ebenfalls, welche Ports aktiv
und welche inaktiv sind. Bei der Einbettung einer kontinuierlichen Komponente in einen
Zustand wird kein interner Zustand spezifiziert. Folglich sind auch alle Ports der konti-
nuierlichen Komponente aktiv. Neben der Einbettung von Komponenteninstanzen wird
zusätzlich spezifiziert, welche Delegations und Assemblys in diesem Zustand aktiv sind.
Durch diese vielfältige Spezifikation wird für jeden Zustand des hybriden Rekonfiguration
Charts ein Komponenteninstanzdiagramm erstellt. Verlässt bzw. betritt die Komponente
einen Zustand, wird bei der Modellierung vorausgesetzt, dass die eingebetteten Kompo-
nenteninstanzen ihren internen Zustand zeitgleich verlassen bzw. betreten.

50



2.4 Mechatronic UML

Die Transitionen des hybriden Rekonfigurations Charts können zusätzlich zu den Tran-
sitionen eines Realtime Statecharts eine Umschaltfunktion besitzen. Diese ermöglicht
es, die Ausgänge der eingebetteten Komponenteninstanzen in einem Zustand auf die
Ausgänge der eingebetteten Komponenteninstanzen in einem anderen Zustand umzu-
schalten. Eine Umschalttransitionen besteht aus einer Funktion ffade und einem Inter-
vall d = [dlow, dup], das die minimale und maximale Dauer des Umschaltens spezifiziert,
sowie der Ports, die ineinander übergeblendet werden. Die Dauer der Umschaltfunkti-
on wird als Deadline für die Umschalttransitionen spezifiziert. Durch das Konzept der
Umschaltfunktion existieren im Gegensatz zum hybriden Rekonfigurations Automaten
keine Zustände, die das Überblenden zwischen zwei Reglern realisieren. Dies führt dazu,
dass ein hybrides Rekonfigurations Chart nicht so komplex ist wie ein hybrider Rekon-
figurations Automat. Des Weiteren ermöglicht ein hybrides Rekonfigurations Chart die
Spezifikation von mehreren Hierarchieebenen.

Abschließend wird die formale Definition eines hybriden Rekonfigurations Chart gege-
ben. Die Definition baut auf der Definition eines hybriden Automaten (siehe Definition 4)
auf.

Definition 16
Ein Hybrides Rekonfigurations Chart wird durch ein 6-Tuple (L,D, I, O, T, S0)
beschrieben. Dabei ist L eine endliche Menge von Locations, D eine Funkti-
on über L, die jedem l ∈ L ein kontinuierliches Modell zuordnet, D(l) =
(V x(l), V u(l), V y(l), F (l), G(l), C(l), X0(l)) ist ein kontinuierlicher Block wie in
Definition 15 beschrieben, I ist eine endliche Menge von Eingabesignalen, O eine
endliche Menge von Ausgabesignalen, T eine endliche Menge von Transitionen und
S0 ⊆ {(l, x)|l ∈ L ∧ x ∈ X(l)} die Menge der initialen Locations.

Für jede Transition (l, g, gi, a, l′) ∈ T gilt, dass l ∈ L die Sourcelocations, g ∈
COND(V x(l) ∪ V u(l)) ein kontinuierlicher Guard, gi ∈ ℘(I ∪ O) der I/O-Guard,
a ∈ [[V x(l) → R] → [V x(l′) → R]] die Aktualisierung kontinuierlicher Daten und
l′ ∈ L die Targetlocation ist. Für jedes l ∈ L wird gefordert, dass D(l) wohl-definiert ist.

Das Hybride Rekonfigurations Charts erlaubt, dass jeder Location eine eigene Variablen-
menge besitzt. Mit V x wird die Vereinigung aller V x(l) beschrieben. V u und V y werden
analog bestimmt. Mit V x(F (l)) werden die Variablenmengen der Locations beschrieben.
Alle zugewiesenen Ausgabevariablen werden analog als provided Ausgabevariablenmen-
ge (V y(F (l) ∪ G(l))) und alle Eingabevariablen als required Eingabevariablenmenge
(V u(F (l) ∪G(l))) bezeichnet.

Für eine Einbettung benötigt eine übergeordnete Komponente jedoch nicht alle Infor-
mationen, welche die hybriden Rekonfigurations Charts der eingebetteten Komponenten-
instanzen liefern. Es sind lediglich die nach außen sichtbaren Schnittstellen notwendig.
Diese werden von einem Interface Statechart beschrieben.
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Definition 17
Ein Interface Statechart für einen hybriden Rekonfigurations Automat M =
(L,D, I, O, T, S0) existiert genau dann, wenn für das kontinuierliche Modell D
folgendes gilt:

• V y ∩ V u = ∅,

• alle v ∈ V x sind Uhren: v̇ = 1,

• der Seiteneffekt a für jede Transition (l, g, gi, a, l‘) ist beschränkt durch OPconst,
wobei OPconst die Menge der möglichen Konstanten ist,

• das kontinuierliche Verhalten von V y ist unbestimmt.

2.4.5 Anpassung der Softwarestruktur

Echtzeit-Koordinationsmuster spezifizieren die Koordination zwischen unterschied-
lichen mechatronischen Komponenten. Während der Laufzeit können Komponenten
allerdings aktiviert und deaktiviert werden. Um dies auch zu berücksichtigen, muss
ein geeignetes Modell verwendet werden. dass die Echtzeit-Koordinationsmuster ent-
sprechend integriert. So ein Modell modelliert die Strukturanpassung von Software.
Bei Betrachtung wird ein Systemzustand durch eine Konfiguration aus Komponenten
und Echtzeit-Koordinationsmuster charakterisiert. Die Erzeugung und Löschung von
Echtzeit-Koordinationsmustern sowie der Austausch von Komponenten kann also durch
ein Graphtransformationssystem formalisiert werden [Sch06].

Der MECHATRONIC UML Ansatz unterstützt die Spezifikation von Strukturen durch
Klassendiagramme. Strukturänderungen können durch Story Diagramme modelliert
werden. Der Ansatz unterstützt ferner die Verifikation von strukturellen Invarianten
[BBG+06].

Für das Shuttlebeispiel ist ein Klassendiagramm in Abbildung 2.24(a)) dargestellt. Es
stellt die Komponenten des physikalischen Modells dar (Shuttles und Schienenabschnit-
te). Auf ein Schienenstück passt genau ein Shuttle. Die Position eines Shuttles ist durch
die on Assoziation modelliert; die go Assoziation modelliert die physikalische Bewegung
auf einem Schienenstück.

Wie gerade erwähnt findet die Kollisionsvermeidung durch das DistanceCoordination-
Pattern statt. Das DistanceCoordinationPattern wird erzeugt, sobald ein Shuttle sich
einem anderen Shuttle nähert. Die Instanziierungsregel createDC erzeugt das Echtzeit-
Koordinationsmuster, sofern zwei unverbundene Shuttle da sind (siehe Abbildung
2.24(b)).
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(a) Klassendiagramm (b) Instanziierungsregel: Erzeugung des Distan-
ceCoordinationPattern

Abbildung 2.24: Klassendiagramm und Instanziierung eines Echtzeit-
Koordinationsmuster

Zwei Regeln sind spezifiziert: (1) goSimple1 (siehe Abbildung 2.25(a)) beschreibt die
Bewegung eines einzelnen Shuttles von einem Schienenstück zum nächsten. (2) goDC1
(siehe Abbildung 2.25(b)) erlaubt dem rear Shuttle sich nur zu bewegen, wenn das front
Shuttle sich auch bewegt.

(a) Ein freies Shuttle bewegt sich (b) Koordinierte Fahrweise zweier Shuttles

Abbildung 2.25: Verhaltensregeln

Abbildung 2.26: Invariante: Keine unkontrollierte Bewegung zweier benachbarter Shutt-
les

Eine in diesem Kontext angewendete Invariante ist, die es gilt zu verifizieren, dass ein
Shuttle nie versucht, ein bereits besetztes Schienenstück zu befahren, ohne sich mit dem
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anderen Shuttle abgesprochen zu haben. Abbildung 2.26 zeigt diese Invariante als Nega-
tive Anwendungsbedingung.

2.5 Zusammenfassung

In diesem Kapitel wurden die Grundlagen dieser Arbeit beschrieben. Hierzu wurde zuerst
die grundlegende hierarchische Struktur eines mechatronischen System nach Lückel, wie
es in dieser Arbeit aufgefasst wird, diskutiert. Ein Operator-Controler-Modul beschreibt
die Informationsverarbeitung eines mechatronischen System. Es ist in die drei Ebenen
Controller, Reflektorischer Operator und Kognitiver Opertor aufgebaut. Die Software ei-
nes OCMs ist sowohl für die Koordination innerhalb als auch für die Koordination meh-
rerer OCMs verantwortlich. Da die Software komplex und sicherheitskritisch ist, muss
diese verifiziert werden.

Anhand des Vorgehens der modell-basierten Entwicklung, wurden Modelle und Verfah-
ren zur Verifikation von mechatronischen Systemen vorgestellt. Diese sind jedoch für die
komplexen, vernetzten mechatronischen Systeme, wie sie hier beschrieben sind, nicht
alleine anwendbar. Der MECHATRONIC UML Ansatz wird hier als Lösung vorgeschla-
gen. Dieser kombiniert die Techniken aus den verschiedenen Domänen der Softwaretech-
nik und der Regelungstechnik, die es erlauben, solche Modelle adäquat zu modellieren
und zu verifizieren. Die Architektur der Software wird mittels Komponentendiagrammen
und Echtzeit-Koordinationsmustern beschrieben. Zur Spezifikation der komponentenin-
ternen Struktur werden Klassendiagramme verwendet. Das Verhalten wird durch Re-
altime Statecharts und Hybride Rekonfigurations Charts beschrieben. Die dynamischen
Strukturänderungen werden durch Story Pattern beschrieben.

Aufbauend auf den Techniken des MECHATRONIC UML Ansatzes werden nun in den
nächsten Kapiteln Erweiterungen und neue Verfahren für die Modellierung, als auch für
die Verifikation, komplexer, vernetzter mechatronischer Systeme vorgestellt.
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Kapitel 3

Verifikation eines OCM

In Kapitel 2.1 wurde die Struktur eines mechatronischen Systems (siehe Abbildung 2.1)
beschrieben. Der Fokus dieses Kapitels liegt nun auf der Verifikation eines OCMs, ge-
nauer gesagt, auf der Verifikation des korrekten Zusammenspiels hinsichtlich der hierar-
chischen Rekonfiguration (siehe Abschnitt 2.4.4) zwischen dem Reflektorischen Operator
und dem Controller. In Abbildung 3.1 ist die Aufgabe der Verifikation eines OCM, wie sie
in diesem Kapitel im Folgenden beschrieben wird, skizziert. Hierzu wird zuerst anhand
der in den Grundlagen vorgestellten Modellierungskonzepte der MECHATRONIC UML
(siehe Abschnitt 2.4) informal ein Beispiel eingeführt (siehe Abschnitt 3.1). Danach wird
die syntaktische Verifikation für die hierarchische Rekonfiguration bedingt durch rein lo-
kal relevante Zeitbedingungen für die Rekonfiguration innerhalb eines OCMs beschrieben
(Abschnitt 3.2). Anschließend wird in Abschnitt 3.3 das Beispiel um nicht lokale Eigen-
schaften bezüglich der Zeitbedingungen sowie um nicht-deterministisches Verhalten be-
züglich der Rekonfiguration erweitert. Anhand dieses Beispiels werden die Konzepte zur
Verifikation für die sichere Rekonfiguration in Abschnitt 3.4 erklärt. Das Kapitel schließt
mit einer Zusammenfassung in Abschnitt 3.6.

3.1 Beispiel

Das Feder-Neige-Modul ist ein Teilsystem des in Abschnitt 1.2 vorgestellten Shuttlesys-
tems der Neuen Bahntechnik Paderborn. Das Feder-Neige-Modul ist ein Beispiel für ein
komplexes mechatronisches System. Die Aufgabe des Feder-Neige-Moduls ist es, einen
maximalen Fahrkomfort für die Passagiere eines Shuttles zu ermöglichen. Befährt ein
Shuttle einen Schienenabschnitt, sammelt es Informationen über die Streckenverhältnisse
und sendet diese nach Befahren des Streckenabschnittes an eine Streckenabschnittskon-
trolle. Die Streckenabschnittskontrolle kann diese Information weiteren Shuttles zur Ver-
fügung stellen, so dass diese anhand der Streckeninformationen Unebenheiten ausglei-
chen können und somit der Fahrkomfort erhöht wird. Die Verarbeitung der Streckenin-
formationen sowie das damit verbundene Erreichen des maximalen Fahrkomforts werden
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:Sensor[On]:BC[Reference] :Sensor[On]

storage:Storage

:BC[Absolute]

when(next
Segment)
noData? /

Behavior

zRefFailure

Reference Absolute
zRefOK

when(nextSegment)

AbsAvailableAllAvailable

Controller

Reflektorischer Operator

Behavior

data(Vector zRef)? /

Überprüfung der hierarchischen Rekonfiguration

d2

d3
zref

z̈abs

z̈abs

db

dd

Abbildung 3.1: Verifikation eines OCM

vom Feder-Neige-Modul ermöglicht [TMV06]. Der physikalische Aufbau aller relevanten
Teilmodule ist in Abbildung 3.2 dargestellt und wird im Folgenden im Detail beschrieben.

Das Feder-Neige-Modul besteht unter anderem aus einem Aufbau, der über Luftfedern
mit dem Fahrwerk verbunden ist. Zudem enthält das Feder-Neige-Modul verschiedene
Regler, welche die Position der drei hydraulischen Zylinder A, B und C aufgrund von
Werten der Sensoren regeln. Die Zylinder wiederum beeinflussen aktiv den Aufbau und
damit auch das Fahrwerk [HSE02].

Die Sensoren messen die Streckenverhältnisse und liefern diese Werte als Eingabe für
den jeweiligen Regler. Dieser führt anhand der Eingabewerte Berechnungen durch, um
die Ergebnisse anschließend an die Zylinder weiterzuleiten. Je nach Ergebnis ihrer Be-
rechnung wird die Position der Zylinder verändert, so dass sich das Feder-Neige-Modul
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der Schienenumgebung anpassen kann und damit den für die Strecke höchstmöglichen
Fahrkomfort liefert.

A B C

prop.- valves

A / D

controller

D / A

sensors

hydr. pump

car body

hydr. actuators

air springs

to the
actuators

z

y

a

Abbildung 3.2: Schematische Darstellung des Feder-Neige-Moduls

Das verwendete CAE Werkzeug CAMeL [Ric96] ermöglicht die Beschreibung des kom-
pletten kontinuierlichen Parts des Modells durch strikte, hierarchische Blockdiagramme
mit nichtlinearen Gleichungen der Art

ẋ = f(x, u, t) und y = g(x, u, t)

wobei x der Zustandsvektor, ẋ die erste Ableitung des Zustandsvektors, y der Ergebnis-
vektor, u der Eingabevektor und t die Zeit ist.

Das Feder-Neige-Modul besteht aus drei Reglern. Der Regler Reference stellt den höchs-
ten Komfort zur Verfügung, indem er durch die Vorgabe einer Trajektorie die Bewegung
des Aufbaus beschreibt, um Unebenheiten der Strecke auszugleichen. Um die Stabilität
des Systems zu gewährleisten und um damit Entgleisungen des Shuttles entgegenzuwir-
ken, müssen alle Sensoren immer korrekte Werte liefern (siehe Grundlagenkapitel 2.2).
Falls dies beim Regler Reference nicht mehr der Fall ist, wird der Regler Absolute ver-
wendet, der als Eingabe nur die vertikale Beschleunigung des Aufbaus benötigt. Falls
auch dieser Sensor ausfällt, wird der Regler Robust aktiv, der den geringsten Komfort zur
Verfügung stellt. Dieser Regler benötigt nur die Standardeingabewerte, um Stabilität zu
gewährleisten.

Das Blockdiagramm der Regler ist in Abbildung 3.3 dargestellt. Die Komponente body
control (BC) ist verantwortlich für die übergeordnete Regelung des Feder-Neige-Moduls
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und besteht aus den eben beschriebenen drei Reglern. Abhängig von den Eingabesignalen
wird zwischen den Reglern umgeschaltet. Das Referenzsignal ist mit zref und die absolute
Beschleunigung mit z̈abs bezeichnet. Die Ausgabewerte sind XZ,A,ref , . . . , XZ,C,ref und
geben die Position der hydraulischen Zylinder an.

z
..
z

Z ref.

abs.

X
Z, A, ref.

X
Z, B, ref.

X
Z, C, ref.

normal

“reference”

“absolute”

failure

“robust”

body control

common
inputs

switch control

Abbildung 3.3: Blockdiagramm der Regler

Beim Wechsel zwischen zwei Reglern wird zwischen zwei Fällen unterschieden: Atoma-
res Umschalten und nicht-atomares Umschalten. Im ersten Fall findet der Wechsel ganz
normal zwischen zwei Berechnungsschritten statt. Im Beispiel wäre der Wechsel vom
Block normal zum Block failure atomar. Im anderen Fall ist es notwendig, eine Umschalt-
funktion fswitch(t) und eine Umschaltdauer zu spezifizieren [OMT+08]. Im Beispiel wäre
das der Wechsel zwischen dem Regler reference und dem Regler absolut.

3.1.1 Komponenten Struktur

In diesem Abschnitt wird beschrieben, wie sich die Architektur mittels MECHATRO-
NIC UML beschreiben lässt. Abbildung 3.4 zeigt die Architektur. Die Monitor Kompo-
nente koordiniert die Einbettung der Komponenten BC, Sensor, und Storage. Außerdem
kommuniziert sie über das Echtzeit-Koordinationsmuster MonitorRegistration mit einer
Streckenabschnittskontrolle Registry. Die Streckenabschnittskontrolle sendet Informatio-
nen über die kommenden Streckenabschnitte an die Komponente Monitor, die diese dar-
aufhin in der Unterkomponente Storage abspeichert. Die Unterkomponente Sensor liefert
die benötigten Signale.
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Monitor
Role

:Sensor

:Registry

Registry
Role

:Monitor

storage : Storage

:BC

Registration
Monitor−

Abbildung 3.4: Die Architektur

3.1.2 Verhalten der Komponenten

Das Verhalten sowie die Einbettung von kontinuierlichem Verhalten einer Komponenten
wird durch ein Hybrides Rekonfigurations Chart beschrieben (siehe Kapitel 2.4). Abbil-
dung 3.5 zeigt das Hybride Rekonfiguration Chart der Komponente BC. Diese besteht
aus den drei Zuständen Robust, Absolute und Reference. Jedem Zustand ist ein konti-
nuierlicher Regel mit verschiedenen Eingangs- und Ausgangssignalen zugeordnet. Die
fett gezeichneten Transitionen zeigen an, das bei diesen Zustandswechseln umgeschal-
tet wird, es sich also um nicht-atomares Umschalten handelt. Die anderen Transitionen
stellen atomares Umschalten dar.

3.1.3 Beschreibung des Interface

Für die Einbettung oder Verknüpfung von hybriden Komponenten werden nicht immer
alle Details der Realisierung einer Komponente benötigt. Es reichen hier die Informa-
tionen über die externen Signale aus, so dass die Kompatibilität analysiert werden kann.
Abbildung 3.6 zeigt das abgeleitete Interface Statechart (siehe Definition 17) der Kom-
ponente BC. Die BC Komponente hat drei mögliche verschiedene externe Zustände mit
unterschiedlichen kontinuierlichen Eingabesignalen.
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Abbildung 3.5: Verhalten der Body Komponente
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Abbildung 3.6: Interface Statechart der Komponente BC
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Zeitbedingungen

Im Folgenden wird die Einbettung der Unterkomponenten innerhalb eines hybriden Re-
konfigurations Charts beschrieben. Diese Einbettung erlaubt es später, die korrekte Ein-
bettung rein syntaktisch zu überprüfen (siehe Abschnitt 3.2).

3.1.4 Einbettung

Durch Zuordnung von Konfigurationen der Untergeordneten Komponenten zu jedem Zu-
stand eines hybriden Rekonfigurations Chart wird die Einbettung realisiert. (siehe Abbil-
dung 3.7). Ein Wechsel zwischen den Zuständen in der Monitor Komponente impliziert
einen Wechsel der Zustände im Interface Statechart der eingebetteten Komponenten.

Das Verhalten der Monitor Komponente ist wie folgt durch das hybride Rekonfigurations
Chart beschrieben (siehe Abbildung 3.7). Der obere orthogonale Zustand besteht aus den
Zuständen AbsAvailable, NoneAvailable, RefAvailable und AllAvailable. Die letzten beiden
repräsentieren, ob die benötigte Referenztrajektorie für den aktuellen Schienenabschnitt
zur Verfügung steht oder nicht.

Die Komponente BC ist jedem Zustand des oberen orthogonalen Zustandes zugeordnet.
So ist z. B. die Komponenteninstanz BC im Zustand Reference dem Zustand AllAvailable
der Komponente Monitor zugewiesen, in dem zref sowie as z̈abs verfügbar sind.

Die Kommunikation mit der Streckenabschnittskontrolle Registry ist im unteren ortho-
gonalen Zustand in der Abbildung (Abbildung 3.7) modelliert. Der obere orthogonale
Zustand synchronisiert sich mit dem unteren Zustand.

3.2 Verifikation der hierarchischen Rekonfiguration
bedingt durch lokale Zeitbedingungen

Für die Verifikation eines OCMs werden die folgenden zwei Verifikationsverfahren be-
reitgestellt. Als erstes muss das reine Echtzeitkoordinationsverhalten der Software, mo-
delliert durch Komponenten und Echtzeit-Koordinationsmuster, verifiziert werden. Hier-
für wird der in [Gie03][GTB+03][Hir04][BGH+05b] beschriebene Ansatz verwendet und
im Folgenden kurz skizziert. In diesem Zusammenhang wird eine Definition von Verfei-
nerung gegeben, welche die Eigenschaft der deadlock-Freiheit erhält. Weiterhin wird eine
Menge von kompositionellen Bedingungen eingeführt. Diese Grundlagen bilden ein Fra-
mework, welches es erlaubt, komplexe Echtzeitsysteme auf high-level Ebene (siehe Ab-
schnitt 2.4) zu spezifizieren und zu verifizieren. Der Ansatz bezieht sich auf die Notation
von Komponenten und Echtzeit-Koordinationsmustern, wie sie in Kapitel 2.4 eingeführt
wurden. Der Vorteil ist, dass der erörterte Ansatz es erlaubt, ein System zu verifizieren,
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:Sensor[Off]:BC[Robust]
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Abbildung 3.7: Einbettung der Untergeordneten Komponenten im Monitor

ohne jemals den gesamten Zustandsraum aufzubauen. Stattdessen kann jede Komponente
und jedes Echtzeit-Koordinationsmuster einzeln durch einen Model Checker verifiziert
werden. Die folgenden fünf Schritte skizzieren den Ablauf der Verifikation:

1. Spezifiziere alle Echtzeit-Koordinationsmuster und ihre Rollen.

2. Verifiziere jedes Echtzeit-Koordinationsmuster einzeln.

3. Spezifiziere die Komponenten durch Verfeinerung der Rollen zu Ports.

4. Verifiziere jede Komponente einzeln.

5. Konstruiere durch Komposition der Echtzeit-Koordinationsmuster und Komponen-
ten das vollständige Modell.

Schritt 5 sichert die korrekte semantische Komposition bei einer korrekten syntaktischen
Komposition zu. Ein zusätzlicher sechster Schritt, der die Verifikation des ganzen Sys-
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Zeitbedingungen

tems durchführen würde, ist nicht erforderlich. Dieses Resultat folgt aus Theorem 1 in
[Gie03]. Jedoch ist dieses Theorem nur unter der Annahme gültig, dass lokale Eigen-
schaften für Echtzeit-Koordinationsmuster und Komponenten vorliegen. Abbildung 3.8
zeigt die Überschneidung der Elemente Echtzeit-Koordinationsmuster und Komponenten.
Diese ist immer durch ein wohl definiertes Protokoll, das von beiden Seiten eingehalten
wird, gekennzeichnet. Der Echtzeitcharakter der Protokolle stellt sicher, dass unbegrenzte
gegenseitige Sperreffekte ausgeschlossen werden. In nicht zeitbehafteten Systemen ist ein
ähnlicher Ansatz nicht möglich, da maximale Sperrzeiten nicht explizit angegeben sind
und deshalb zyklische Sperreffekte entstehen können (siehe hierzu [Gie00]).

:Monitor :Registry

Monitor−
Registration

Abbildung 3.8: Verifikation des Echtzeitkoordinationsverhaltens der Software, modelliert
durch Komponenten und Echtzeit-Koordinatiosmuster

Als zweites muss die im letzten Abschnitt beschriebene hierarchische Komponentenstruk-
tur für die Modellierung von diskreten und kontinuierlichen regelungstechnischen Verhal-
ten hinsichtlich der konsistenten Rekonfiguration und der korrekten Echtzeitsynchronisa-
tion hinsichtlich der Rekonfiguration verifiziert werden. Das zweite Verifikationsverfah-
ren kann dabei in das erste integriert werden [GBSO04][GH05b][GH06].

Hierbei werden die in der Einleitung 1.3 beschriebenen Konzepte der Abstraktion und
Verfeinerung eingesetzt. Wie schon angedeutet, ist es das Ziel, den bisherigen komposi-
tionellen Ansatz weiter zu verwenden. Hierzu muss nun geeignet vom hybriden Verhalten
abstrahiert werden. In Abbildung 3.9 ist eine Abstraktion skizziert, die vorgenommen
werden muss. Um diese formal zu beschreiben, wird im Folgenden das Hierarchie- und
Modularitätskonzept von hybriden Rekonfigurations Charts formal eingeführt.

3.2.1 Modularität

In diesem Abschnitt wird das modulare Konzept, welches von dem Verifikationsverfahren
unterstützt wird, beschrieben. Als erstes werden notwendige Bezeichnungen eingeführt.
Eine hierarchische Komponentenstruktur ist durch eine Menge von Komponenteninstan-
zen C1, . . . , Cn und Funktionen sub, sub∗ : {1, . . . , n} → ℘({1, . . . , n}) beschrieben.
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Abbildung 3.9: Abstraktion

Hierbei ist sub(i) die Indexmenge von allen direkt angrenzenden Komponenten von Ci.
sub∗(i) bildet die transitive Hülle von sub einschließlich des Input-Index i. Das Verhalten
jeder Komponenteninstanz Ci wird durch einen zugehörigen Automaten Mi, der ein hy-
brides Rekonfiguration Chart (siehe Definition 16, Kapitel 2.4.4) repräsentiert, beschrie-
ben. Weiterhin gibt es einen Automaten M I

i , der das zugehörige Interface Statechart (sie-
he Definition 17, Kapitel 2.4.4) repräsentiert. Das Interface eines Automaten M wird mit
I(M) bezeichnet. Es besteht aus Eingabe- und Ausgabevariablen. Die Parallelausführung
zweier Automaten wird durch ‖ beschrieben. Das Interface eines einzelnen AutomatenM
kann eingeschränkt werden, indem alle Signale zur Synchronisation sowie alle Variablen,
die nicht im Interface vorkommen, versteckt werden. Dies wird mit M |I beschrieben.
(siehe [GH05a] für die verwendete Definition der Verfeinerung)

Im Folgenden wird nun das Modularitätskonzept formal definiert. Für jede Blatt-
Komponente Cj mit sub(j) = ∅ gilt die Verfeinerung vHY zwischen dem Komponenten-
verhaltenMj , beschrieben durch das hybride Rekonfigurations Chart, und dem abstrakten
Interface Statechart M I

j

Mj vHY M I
j . (3.1)

Für jede nicht Blatt-Komponente Ck wird angenommen, dass für M I
k und Mk inklusive

aller Interface Automaten der untergeordneten Komponenten gilt:

(Mk‖
(
‖l∈sub(k)M I

l

)
)|I(MI

k ) vHY M I
k . (3.2)
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Die Bedingung 3.2 gilt, da zwischen dem Verhalten einer Komponente und dem Verhalten
eines Interface Automaten die Verfeinerung

Mk|I(MI
k ) vHY M I

k (3.3)

gilt und dass der Einfluss von Mk auf das Verhalten seiner Unterkomponenten Ml mit
l ∈ sub(k) immer in einer korrekten Einbettung

(Mk‖
(
‖l∈sub(k)M I

l

)
)|I(Mk) vHY Mk (3.4)

endet.

Die Bedingungen 3.1 und 3.2 stellen jeweils eine lokale Abstraktionsbedingung für jede
Komponente Ck und dem zugehörigen Verhalten Mk sowie des Interface Automaten M I

k

dar. Per Induktion über die Baumstruktur kann nun modular gezeigt werden, dass jedes
Komponentenverhalten sowie der Interface Automat durch den vollständigen Baum, be-
stehend aus den direkten und indirekten Unterkomponenten inklusive der Komponenten
selber, abgebildet werden kann.(

‖l∈sub∗(k)Ml

)
|I(Mk) vHY Mk ∧

(
‖l∈sub∗(k)Ml

)
|I(MI

k ) vHY M I
k (3.5)

Um das beschriebene Modularitätskonzept praktisch anwenden zu können, wird ein ef-
fektiver und effizienter Algorithmus, um die Verfeinerung und Einbettung zu überprüfen,
benötigt. Für allgemeine hybride Systeme, die sich nicht mehr durch die Klasse der rec-
tangular automata, bei denen die analogen Variablen Trajektorien mit teilweise-linearer
Entwicklung und Sprüngen, bedingt durch Re-Initialisierungen, folgen, beschreiben las-
sen, ist die Erreichbarkeit nicht mehr entscheidbar [HKPV98]. Selbst bei der Verwendung
der eingeschränkten Klasse ist die Verifikation durch Model Checking ebenfalls nur für
kleine Beispiele anwendbar [Dor08].

Aufgrund dieser Tatsache werden die Analysen zuerst auf das reine Echtzeitverhalten und
die Analyse, ob rein konsistente Konfigurationen mit wohl-definierten kontinuierlichen
Gleichungen erreicht werden können, beschränkt.

In einem ersten Schritt wird hierfür von dem kontinuierlichen Verhalten eines Automa-
ten M abstrahiert, indem nur die Uhren betrachtet werden, so dass das Hybride Rekon-
figurations Chart sowie das zugehörige Interface Statechart auf ein Realtime Statechart
abgebildet werden können. Als nächstes kann das Realtime Statechart nach den in
[Hir04][BGHS04] beschriebenen Regeln auf Timed Automata abgebildet werden. Auf
dem Modell der Timed Automata kann nun die Überprüfung der Verfeinerung sowie die
Überprüfung der korrekten Einbettung durchgeführt werden. Für die Timed Automata
müssen hier anstelle von vHY nur vRT sowie die Bedingung De(MR, c) ⊆ De(MI , c

′′)
für die Variablenabhängigkeiten überprüft werden.
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3.2.2 Überprüfung der Verfeinerung

In vorangegangenen Arbeiten [GBSO04] wurden die Zeitbedingungen in den Interface
Statecharts auf solche eingeschränkt, welche die reine Schaltdauer einer Transition ange-
ben (die Verweildauer in einem Zustand in einem Timed Automaton (siehe [Hir04])).

Definition 18
Sei M = (L,D, I, O, T, S0) ein hybrider Automat. Ein Zustand l′ ist ein Umschalt-
Zustand, falls eine Uhr c und Konstanten a′ und b′ existieren, so dass nur eine einzelne
Transition t ∈ T um l′ zu verlassen existiert mit t = (l′, a′ ≤ t ≤ b′, l′′′) und für alle
Transitionen (l′′, g, S, R, l′) ∈ T gilt, dass c ∈ R und C(l′) = c ≤ b′. Ein Zustand l ist
passiv genau dann, wennCI(l) = true und für alle Transitionen (l, g, S, R, l′) ∈ T , wobei
l′ ein Umschalt-Zustand ist und g = true gilt.

Definition 19
Ein Automat M = (L,D, I, O, T, S0) wird als simpel bezeichnet, falls Mengen von pas-
siven Zuständen Lp und Umschalt-Zustände Lf existieren, mit L = Lp ] Lf .

Aufgrund dieser Annahmen ist es möglich, die Verfeinerung zwischen einem simplen In-
terface Automaten M I = (LI , DI , II , OI , T I , S0I) für ein gegebenes simples Interface
Statechart und dem zugehörigen Komponentenverhalten M = (L,D, I, O, T, S0) durch
reine syntaktische Regeln zu überprüfen. Für Lf ⊆ L und LI = LIp ] LIf , wobei LIp die
Menge der passiven Zuständen von LI , LIf und Lf die Mengen der Umschalt-Zustände,
map : LIp → ℘(L) eine Abbildungsfunktion zwischen den passiven Zuständen des Inter-
face Automaten und den zugehörigen Zuständen des Hybriden Rekonfigurations Charts
der unterliegenden Komponente sind, kann einfach überprüft werden, ob für die Verfei-
nerung des Echtzeitverhaltens gilt:

1. Für alle Zustände li ∈ LIp, l ∈ map(li) und l′ ∈ Lf wird überprüft, ob für jedes
Paar von Transitionen zwischen passiven Zuständen und Umschalt-Zuständen gilt,
dass bei der Verfeinerung nicht die externen Signale sowie Zeitrestriktionen, wie
vom Interface Automaten vorgegeben, verändert werden:

∀(l, g, S, R, l′), (l′, g′, S ′, R′, l′′) ∈ T,∃(li, g′′, S, R, l′i), (l′i, g′′′, S ′, R′, l′′i ) ∈ T I :

g′ = true ∧ g′′ = a ≤ t ≤ b ∧ g′′′ = aI ≤ t ≤ bI ∧
c(l′) = t ≤ b ∧ c(l′i) = t ≤ bI ∧

aI ≥ a ∧ b ≥ bI ∧
l′ ∈ Lf ∧ l′i ∈ LIf ∧

g = true ∧R = R′ = {t} ∧ l′′ ∈ map(l′′i )

∀(li, g, S, R, l′i) ∈ T I : g = true ∧ ∃(l, g′, S, R′, l′) ∈ T ∧
∨

(l,g′,S,R′,l′)∈T
g′ = true.
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2. Für alle Zustände l, l′ ∈ L \ Lf muss überprüft werden, dass die Transitionen zwi-
schen ihnen zugehörige Transitionen im Interface Automaten haben oder die fol-
gende Abbildung erfüllen:

∀(l, g, S, R, l′) ∈ T :

(S = ∅ ∧ ∀li ∈ LI : (l ∈ map(li)⇒ l′ ∈ map(li))) ∨
(g = true ∧ ∃(li, true, S, R′, l′i) ∈ T I) : l′ ∈ map(l′i).

3. Für alle Zustände l ∈ Li muss überprüft werden, dass l 6∈ Lf und dass sie durch die
initialen Locations des zugehörigen Interface Automaten abgedeckt sind:

∃li ∈ LIi : l ∈ map(li).

Zusätzlich muss für alle l ∈ L und li ∈ Li mit l ∈ map(li) gelten, dass jede Abhängigkeit
zwischen den Eingabe und Ausgabe Variablen D(l) ebenfalls im zugehörigen Interface
Automaten als DI(li) vorkommen.

3.2.3 Überprüfung der korrekten Einbettung

Um die korrekte Einbettung sicherzustellen, muss als erstes die korrekte Echtzeitkoordi-
nation der Umschaltzeiten der Transitionen überprüft werden. Hierbei reicht es aus, die
simplen Interface Statecharts zu betrachten, um zu zeigen, dass ein Hybrides Rekonfi-
guration Chart alleine eine Abstraktion von einem Hybriden Rekonfigurations Chart zu-
sammen mit den Interface Statecharts der Unterkomponenten ist (siehe Bedingung 3.2).
Da auch hier die Erreichbarkeitsfrage nicht entscheidbar und für die meisten praktischen
Systeme auch nicht anwendbar ist, wird in [GBSO04] vorgeschlagen, anstelle der Ana-
lyse des kompletten Zustandsraums statische Analysen, die auf den Transitionsmengen
und Zustandsmengen der Hybriden Rekonfigurations Automaten Mi und der Interface
Automaten M I

l mit l ∈ sub(i) operieren, zu verwenden. Dieses wird im Folgenden for-
malisiert.

Gegeben sei eine Funktion mode : L× sub(i)→ ⋃
j∈sub(i) L

I
j , so dass für alle l ∈ L und

j ∈ sub(i) gilt, dass mode(l, j) ∈ LIj . Weiterhin wird angenommen, dass alle lokalen
Transitionen mit den Eingabe und Ausgabe Variablen ∅ markiert sind und dass Lf ⊆ L
und LIj = LIj,p ] LIj,f mit LIj,p und Lp alles passive Locations und LIj,f und Lf alles
Umschaltlocations sind.

1. Für alle Zustände l ∈ L \ Lf und l′ ∈ Lf wird überprüft, dass für jedes Paar von
Transitionen zwischen passiven Locations und Umschaltlocations gilt, dass für jede
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zugehörige Komponente j ∈ sub(i) gilt, dass ein Paar von Transitionen existiert,
das in den vorgegebenen Zeitschranken von M arbeitet:

∀(l, g, S, R, l′), (l′, g′, S ′, R′, l′′) ∈ T,∃(lj, gj, Sj, Rj, l
′
j), (l

′
j, g
′
j, S

′
j, R

′
j, l
′′
j ) ∈ T Ij :

g′ = a ≤ t ≤ b ∧ g′j = aIj ≤ t ≤ bIj ∧
c(l′) = t ≤ b ∧ c(l′j) = t ≤ bIj ∧

aIj ≥ a ∧ b ≥ bIj ∧
l′ ∈ Lf ∧ l′j ∈ LIi,f ∧

g′ = true ∧R′ = {t} ⊆ R ∧ lj = mode(l, j) ∧ l′′j mode(l′′, j)

2. Für alle Zustände l, l′ ∈ L \Lf jeder zugehörigen Komponente j ∈ sub(i) und alle
Transitionen (l, g, S, R, l′) ∈ T muss überprüft werden, das jede atomare Transition
keine Rekonfiguration hervorruft oder von ihr abgedeckt ist:

(mode(l, j) = mode(l′, j)) ∨ (∃(lj, true, Sj, Rj, l
′
j) ∈ T I) : l′j = mode(l′, j).

3. Für alle initialen Zustände l ∈ Li und alle zugehörigen Komponenten j ∈ sub(i)
mit lj = mode(l, j), muss überprüft werden, dass sie alle durch alle initialen Loca-
tions abgedeckt werden:

lj ∈ LIj,i.

In [GBSO04][BGO04] wurde gezeigt, dass die Überprüfungen ausreichen um für simple
Interface Statecharts zu zeigen, dass die Bedingung 3.2 erfüllt ist.

In Abbildung 3.10 ist das Verhalten der Monitorkomponenten und der Teil der Interface
Statecharts der eingebetteten BC Komponenten (siehe Abbildung 3.6 und 3.7) dargestellt.
Die Semantik der hybriden Rekonfigurations Charts erfordert, dass eine Transition vom
Zustand AbsAvailable zum Zustand AllAvailable einen Transitionswechsel in der BC Kom-
ponente vom Zustand Absolute zum Zustand Reference bedingt. Für die monitor Kompo-
nenten gilt, dass die Transition innerhalb des Zeitintervalls db abgeschlossen ist. Für den
implizierten Zustandswechsel in der BC Komponente hingegen gilt, dass dieser innerhalb
des Zeitintervalls d3 abgeschlossen sein muss. Dies bedeutet eine konsistente parallele
Ausführung beider Transitionen die erfordert, dass d3 ⊆ db erfüllt ist. Für die Transition
zu AllAvailable und der Transition zum Zustand Reference in der BC Komponente gilt,
dass d2 ⊆ dd erfüllt sein muss.

Für einen spezifischen Zustandswechsel eines Hybriden Rekonfigurations Chart gilt, dass
es nur dann in einer inkorrekten Rekonfiguration endet, falls die Abhängigkeit der zu-
gehörigen Zustandskombinationen der Unterkomponenten einen Zyklus enthält. Da die
verwendete Verfeinerungsbeziehung sicherstellt, dass für jede Abhängigkeit zwischen
Eingabe- und Ausgabesignalen von M diese ebenfalls im zugehörigen Interface Auto-
maten M I vorkommen, ist es in diesem Falls ausreichend, den Interface Automaten zu
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storage:Storage

:Sensor[On]:BC[Reference] :Sensor[On]:BC[Absolute]

when(next
Segment)
noData? /

when(nextSegment)

AbsAvailableAllAvailable

Behavior

Monitor

data(Vector zRef)? /

Behavior
BC

zRefFailure

Reference Absolute
zRefOK

db

dd

d2

d3
zref

z̈abs

z̈abs

Abbildung 3.10: Schema für die syntaktische Überprüfung bei der korrekten Einbettung
und korrekten Rekonfiguration

betrachten und alle Kombinationen von mode zu betrachten um diese inkorrekten Zu-
standskonfigurationen auszuschließen.

3.2.4 Grenzen des Ansatzes

Der hier vorgestellte Ansatz erlaubt die systematische Entwicklung von mechatronischen
Systemen mit sicheren Rekonfigurationseigenschaften, bei denen eine strikte Hierarchie
mit einer top-down Rekonfiguration zugrunde liegt. Jedoch zeigt dieser Ansatz eine Reihe
von Einschränkungen, welche oftmals bei komplexen mechatronischen Systemen so nicht
mehr angenommen werden können.

Eine Haupteinschränkung ist, dass in einem Interface Statechart nur die Dauer einer Tran-
sition und nicht deren Ausführungszeitpunkt spezifiziert werden kann. Beispiele hierfür
sind Interface Statecharts, bei denen z.B. die Frequenz zwischen Rekonfigurationen mo-
delliert werden soll. In dem hier vorliegenden Beispiel könnte durch die Domäne der Re-
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gelungstechnik vorgegeben werden, um die Stabilität des Systems zu beeinflussen, dass
nach dem Umschalten von Zustand Reference zu Zustand Absolute eine Zeitspanne ver-
streichen muss, bevor die BC Komponente es erlaubt, zurück zu dem komfortableren
Reference Zustand erneut zu wechseln.

Eine weitere Restriktion ist die strikte top-down Rekonfiguration. Wenn z.B. ein Sensor
bereits einen Fehler feststellt, muss dieser in den Unterkomponenten behandelt werden.
Der bisherige Ansatz von Interface Statecharts erlaubt dies nicht. Um also auch War-
nungen, Fehler oder ähnliche Signale zu den eingebetteten Komponenten zu propagieren,
müssen die Interface Statecharts um entsprechendes proaktives Verhalten [Woo00][Ge05]
angereichert werden, so dass das Interface Statechart aufgrund dieser Ereignisse entspre-
chende Reaktionen innerhalb einer Zeitspanne anstoßen kann.

Als Beispiel hierfür kann der Fall betrachtet werden, dass die BC Komponente bemerkt,
dass die Referenzdaten ein unerwartetes Problem hervorrufen und dieses an die Monitor
Komponenten propagieren möchte. Dieses kann ebenfalls für das Interface Statechart für
die BC Komponente bedeuten, dass hier eine Deadline spezifiziert werden muss, um den
Zustand Reference zu verlassen um zu einen sicheren Zustand zu wechseln.

Formal kann man diese beiden Fälle wie folgt definieren, um die Interface Automaten zu
erweitern:

Definition 20
Ein Interface Automat M ist komplex, falls es nicht mehr simple, aber immer noch deter-
ministisch ist. Ein Interface Automat M ist proaktiv, falls es autonom entscheiden kann,
dass eine Rekonfiguration erforderlich ist.

3.3 Modellierung hierarchischer Rekonfiguration
bedingt durch proaktives Verhalten

In diesem Abschnitt wird ein Beispiel für die Modellierung von hybriden Systemen mit
proaktivem Verhalten gegeben. Hierzu wird das Beispiel aus Abschnitt 3.1 erweitert. Als
erstes wird das neue Verhalten informal beschrieben. Danach werden die Auswirkungen
des neuen Verhaltens auf das gesamte System beschrieben.

3.3.1 Erweitertes Beispiel

In Abschnitt 3.1 wurde das Feder-Neige Modul beschrieben und die Software modelliert.
Eine Besonderheit der Modellierung war hier die strikte top-down Hierarchie. So war es
für die BC Komponente nicht möglich, die Monitor Komponente direkt über Signale zu
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beeinflussen. Wenn z.B. ein Fehler in der BC Komponente passiert, während die Kompo-
nente im Reference Zustand ist, muss die BC direkt zum Robust wechseln und gleichzei-
tig die übergeordnete Monitor Komponente informieren, um entsprechend zu reagieren.
Ebenfalls soll ein zu schnelles Hin- und Herschalten vermieden werden, um Stabilitätsei-
genschaften zwischen den Zuständen Absolute und Reference sicherzustellen.

3.3.2 Verhalten der Komponente

In Abbildung 3.11 ist das erweiterte Verhalten der BC Komponente dargestellt. Das Ver-
halten der alten BC Komponente ist nun um proaktives Verhalten erweitert worden. Be-
findet sich die BC Komponente in dem Zustand Reference, kann die Komponente nun
autonom entscheiden, in den Zustand Robust zu wechseln. Dies ist durch eine non-urgent
Transition (gestrichelte Linie), die Nicht-Determinismus modelliert, beschrieben. Im De-
tail ist dies wie folgt modelliert: Solange der Zustand Reference aktiv ist, sendet die BC
Komponente eine Nachricht switchToRobust zu der übergeordneten Monitor Komponente.
Nach Verschicken wechselt die BC Komponente in den Zustand Timeout Zustand. Ist der
Timeout erreicht, wechselt die BC Komponente in den Robust Zustand.

zRefFailure

zAbsFailure

zAbsOK

Robust

Absolute

zAbsFailure

zAbsOK

<Abs>

<Ref>

<Rob>

zRefOK

Reference(Main)

Timeout

Reference

/ switchToRobust 

d4

ffade1

z̈abs

z̈abs

zref
d1

ffade4

ffade3

d3

t := 0

t := threshold

timer == 50

timer := 0

ffade2

d2

t ≥ threshold

Abbildung 3.11: Verhalten der BC Komponente

Um das Schaltverhalten zwischen Absolute und Reference zu kontrollieren, wird ein Ti-
mer t verwendet. Jedesmal, wenn der Reference ausgehend vom Zustand Absolute be-
treten wird, wird die Uhr t auf den Wert 0 gesetzt. Um ein sofortiges Zurückspringen
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und somit Instabilität zu vermeiden, wird eine Bedingung (Schwellwert) t>=threshold
der Transition hinzugefügt. Alle anderen eingehenden Transitionen zum Reference Zu-
stand bekommen als Zuweisung t:=threshold, was bedingt, dass der Schwellwert nicht
berücksichtigt wird.

In Abbildung 3.12 ist das Interface Statechart der sensor Komponente dargestellt. Das
Interface Statechart besteht aus zwei Zuständen, on und off.

/ failure/ ok

On

Off

Abbildung 3.12: Interface Statechart der Komponente Sensor

3.3.3 Einbettung

Das erweiterte Verhalten der Monitor Komponente (ähnlich Abbildung 3.7) ist in Abbil-
dung 3.13 dargestellt. Zusätzlich zum alten Verhalten der Monitor Komponente müssen
nun das proaktive Verhalten und die Zeitangaben der eingebetteten Komponenten berück-
sichtigt werden. In diesem Fall muss das von der BC Komponente verschickte Signal
switchToRobust entsprechend verarbeitet werden.

3.4 Verifikation der hierarchischen Rekonfiguration
bedingt durch proaktives Verhalten

Um das Modularitätskonzept, wie im letzten Abschnitt beschrieben, für die Erweiterung
der Interface Automaten anwenden zu können, müssen die Überprüfungen für die Ver-
feinerung sowie für die korrekte Einbettung erweitert werden. Die Erweiterungen werden
im Folgenden beschrieben.
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:BC[Robust]

storage:Storage

:Sensor[On]:BC[Reference]

:Sensor[Off]:BC[Robust]

:Sensor[On]:BC[Absolute]

:Sensor[Off]

registry.sendInfo(zRef) / storage.add(zRef)

when(storage.isEmpty())

Trajectory
Available

/ registry.experience
data(Vector zRef)!
!storage.isEmpty())
when(

when(nextSegment)
data(Vector zRef)? /

RefAvailable NoneAvailable

sensor.failure

sensor.ok

data(Vector zRef)?

noData?

AbsAvailable

registry.experience
noData! /

after(20) /
registry.requestInfo

TrajectoryNot
Available

sensor.ok

bc.switchToRobust 

when(nextSegment)
data(Vector zRef)? /

AllAvailable

when(next

sensor.failure

Segment)
noData? /

when(nextSegment)
data(Vector zRef)?
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Abbildung 3.13: Einbettung von Verhalten in die Monitor Komponente

3.4.1 Überprüfung der Verfeinerung

Komplexe und proaktive Komponenten können nicht auf ein simples Interface Statechart
abgebildet werden (siehe Definition 20). Deshalb können die bisher beschriebenen Ver-
fahren zur Überprüfung, dass das Verhalten eines Interface Statecharts dem Verhalten
einer Komponente entspricht (siehe Abschnitt 3.2), so nicht angewendet werden.

In [JGGS00] (siehe Verwandte Arbeiten 6.1.2) wird ein Ansatz vorgestellt, der die Ver-
feinerung M vRT M I überprüft. Jedoch wird hier gefordert, dass M I deterministisch ist.
Falls das Interface Statechart M I komplex ist, jedoch nicht proaktiv, kann dieser Ansatz
verwendet werden. For einen deterministischen Automaten M I erhält man den entspre-
chenden Test AutomatenM I

t wie in [JGGS00] beschrieben und kann entsprechendM‖M I
t

auf time stopping deadlocks überprüfen.

Für den Fall, dass das Interface Statechart M I proaktiv ist und deshalb nicht-
deterministisch, lässt sich das Verfahren aus [JGGS00] nicht anwenden. Um hier
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einen deterministischen Automaten für einen nicht-deterministischen zu erhalten, lassen
sich ähnliche Verfahren, wie in [Tri04] beschrieben, anwenden. Bei genauerer Betrach-
tung des Ansatzes [JGGS00] stellt man fest, dass bei der on-the-fly Bestimmung des
Kreuzproduktes einfach eine eindeutige Abbildung von einem Zustand in das verfeinerte
Modell existieren muss, die in [JGGS00] durch die deterministischen Eigenschaften von
M I garantiert wird.

Der hier vorgeschlagene Ansatz nutzt die Abbildung map : LIp → L zwischen den pas-
siven Zuständen des Interface Automaten und den zugehörigen Zuständen in der Reali-
sierung aus, um eine geeignete Lösung vorzuschlagen. Für die Abbildung map, die je-
dem Zustand in der Realisierung genau einen Zustand des Interface Automaten zuord-
net (∀l ∈ L : |{l′|l′ ∈ map(l)}| = 1 und deshalb ist map−1 eine Funktion so dass
l′ = map−1(l)) und für den Fall, dass keine zwei Transitionen mit der selben Quelle, Mar-
kierung und Ziellocation existieren (∀l, l′ ∈ L, s ⊆ I ∪ O : |{(l, g, S, R, l′) ∈ T}| ≤ 1),
kann das Kreuzprodukt syntaktisch erstellt werden M ′ = M I ×map M mit M ′ =
(L′, D′, I ′, O′, T ′, S ′0), M I = (LI , DI , II , OI , T I , SI,0) und M = (L,D, I, O, T, S0)
und LIf und Lf sind Umschaltzustände von LI oder L wie folgt:

• L′ = {(l, l′) ∈ LI × L} ∪ error,

• D′(l, l′) = DI(l)‖D(l′) und D′(error) sind leer,

• I ′ = II ∪ I , O′ = OI ∪O.

• T ′ = ⋃(l,l′)∈L′\{error},S⊆I′∪O′ T
′
l,l′,S mit T ′l,l′,S = T ′rl,l′,S ∪ T ′e1l,l′,S ∪ T ′e2l,l′,S ist die Verei-

nigung der zugehörigen normalen n und fehlerhaften Transitionsmengen (e1, e2).

• S ′0 = S ′I × S0

Die Menge der normalen Transitionen T ′nl,l′,S bildet sich durch alle Paare von Tran-
sitionen die durch eine Übereinstimmung s in der Menge {((l, l′), g ∧ g′, S, R ∪
R′, (l′′, l′′′))|(l, g, S, R, l′′) ∈ T I ∧ (l′, g′, S, R′, l′′′) ∈ T ∧ l′ = map−1(l)} landen.

Die initiale Menge von fehlerhaften Transitionen T ′e1l,l′,S für l 6∈ LIf oder l′ 6∈ Lf behandelt
das Verhalten, bei dem das Interface Statechart schalten kann, aber nicht die Realisierung:
T ′e1l,l′,S = {((l, l′), g ∧ ¬g′′, S, ∅, error)|(l, g, S, R, l′′) ∈ T I ∧ g′′ = ∨(l′,g′,S,R′,l′′′)∈T g

′}.

Analog wird die nächste Menge von fehlerhaften Transitionen bestimmt T ′e2l,l′,S

für l 6∈ LIf or l′ 6∈ Lf wobei das Verhalten betrachtet wird, das in der
Realisierung schalten kann, jedoch nicht im Interface Statechart: T ′e2l,l′,S =
{((l, l′), g′ ∧ ¬g′′, S, ∅, error)|(l′, g′, S, R′, l′′′) ∈ T ∧ g′′ = ∨(l,g,S,R,l′′)∈T I g}.

Für l ∈ LIf und l′ 6∈ Lf im Gegensatz kann angenommen werden, dass die Bedingungen
einer Transition immer die Form a′ ≤ t ≤ b′ haben. Deshalb ist T ′e1l,l′,S gleich {((l, l′), a ≤
t ≤ aI , S, ∅, error)|(l, aI ≤ t ≤ bI , S, R, l′′) ∈ T I ∧ (l, a ≤ t ≤ b, S,R, l′′) ∈ T} und
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T ′e2l,l′,S ist gleich {((l, l′), bI ≤ t ≤ b, S, ∅, error)|(l, aI ≤ t ≤ bI , S, R, l′′) ∈ T I ∧ (l, a ≤
t ≤ b, S,R, l′′) ∈ T} um inkompatible Zeitbedingungen darzustellen. Im ersten Fall wird
eine zu frühe Terminierung des Umschaltvorgangs überprüft, im zweiten Fall wird eine
zu späte Terminierung überprüft.

Danach kann einfach überprüft werden, ob ein time stopping deadlock besteht oder
der Zustand error in M ′ erreicht wird. Daraus lässt sich schließen, ob die Verfeine-
rung gilt oder verletzt ist. Aufgrund der Einschränkung, dass niemals zwei Transitionen
mit derselben Quelle, Markierung und Ziellocation in T I existieren, gilt, dass für jede
t′ = (l′, g′, S, R′, l′′′) ∈ T mindestens eine zugehörige Transition t = (l, g, S, R, l′′) ∈ T I
existiert, die in T ′nl,l′,S ist und die Eigenschaft l′ = map−1(l) erfüllt.

Eine Abbildung map, die jedem realisierten Zustand mehr als einen Zustand des Inter-
face Automaten zuweist, resultiert nicht in der beabsichtigten Zustandsraumreduzierung
für M I bezüglich M und deshalb ist diese Restriktion anwendbar für die hier verwendete
Idee. Im Falle, dass zwei Transitionen (l, g, S, R, l′) ∈ T I und (l, g′, S, R′, l′) ∈ T I mit
derselben Start- und Ziellocation sowie Markierung existieren, müssen zwei Fälle unter-
schieden werden. (1) Falls R = R′ können diese einfach vereint werden in einer Regel
(l, g∨g′, S, R, l′) ohne Verhaltensänderung. (2) Andernfalls muss ein zusätzlicher Zustand
l′′ und eine zusätzliche Uhr hinzugefügt werden und die erste Regel (l, g, S, R, l′) ∈ T I
durch die folgenden beiden Regeln ersetzen: (l, g, S, R∪{t}, l′′) und (l′′, true, ∅, ∅, l′) und
die Angabe der Invarianten C(l′′) mit t ≤ 0 um die Annahme zu erfüllen.

Um zu überprüfen, dass der hybride Rekonfigurations Automat von der Komponente BC
eine korrekte Verfeinerung des Interface Statecharts der BC Komponente ist, muss ein
Timed Automata Modell wie oben beschrieben, erstellt werden. Auf diesem Modell kann
dann mittels Model Checking durch den Model Checker UPPAAL [BDL04] die korrekte
Verfeinerung verifiziert werden. Hierzu muss die Eigenschaft A[] not deadlock sowie E<>

BodyControl.Error überprüft werden.

3.4.2 Dynamische Überprüfung der Einbettung

Die dynamische Überprüfung der korrekten Einbettung der Komponenteninstanzen hat
das gleiche Ziel wie die syntaktische Überprüfung. Sie berücksichtigt - im Gegensatz zur
syntaktischen Überprüfung - auch komplexeres Zeitverhalten, das z.B. durch Timeguards
ausgedrückt wird. Die dynamische Überprüfung ist damit für nicht simple, proaktive In-
terface Statecharts geeignet.

In Abbildung 3.14 sind ein Echtzeitsystem und ein hybrides System exemplarisch dar-
gestellt. Die Verifikation des Echtzeitverhaltens jeder einzelnen Komponente wird mit
Hilfe von Model Checking realisiert. Um zu überprüfen, ob die Rekonfiguration nicht zu
Inkonsistenzen führt, müssen weitere Verifikationsschritte durchgeführt werden. Verlässt
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bzw. betritt die übergeordnete Komponente ihren Zustand, müssen zeitgleich die einge-
betteten Komponenteninstanzen ihren internen Zustand verlassen bzw. betreten. Dies ist
jedoch nur möglich, wenn sich die spezifizierten Echtzeitangaben, wie Deadlines, Time-
guards und Uhren-Resets nicht gegenseitig ausschließen. Dies wird mittels der dynami-
schen Überprüfung verifiziert.
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Abbildung 3.14: Dynamische Überprüfung der korrekten Einbettung der
Komponenteninstanzen

Um zu verifizieren, ob eine Komponente korrekt in eine weitere Komponente eingebettet
ist, darf sich das Echtzeitverhalten beider Komponenten nicht gegenseitig ausschließen.
Dies ist der Fall, wenn das spezifizierte Echtzeitverhalten des gesamten Systems keinen
Deadlock enthält. Eine Überprüfung auf Deadlockfreiheit kann erfolgen, wenn das hybri-
de Rekonfigurationschart der übergeordneten Komponente und die Interface Statecharts
der eingebetteten Komponenteninstanzen parallel initialisiert werden und das Verfahren
des Model Checkings mit der Bedingung A[] not deadlock angewandt wird.

Um die dynamische Überprüfung für die korrekte Rekonfiguration zu realisieren, müssen
sowohl das hybride Rekonfigurations Chart sowie das Interface Statechart in ein geeigne-
tes Eingabemodell für einen Model Checker transformiert werden. In [Hir04][BGHS04]
wurde eine Transformation, die Realtime Statecharts auf Timed Automata abbildet, for-
mal beschrieben. Im Folgenden werden diese Transformationsregeln wiederverwendet
und erweitert.

In hybriden Rekonfigurations Charts sind Komponenteninstanzen in Zustände eingebettet.
Während der Transformation können die eingebetteten Instanzen vernachlässigt werden,
da diese durch das Interface Statechart, welches ebenfalls transformiert wird, abgedeckt
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werden. Aufgrund dieser Tatsache können für die Zustände genau dieselben Regeln wie
in [Hir04][BGHS04] angewendet werden.

Neben den Zuständen müssen auch noch die Transitionen abgebildet werden. Im Gegen-
satz zu der Transformation in [Hir04][BGHS04] ist hier eine Transition mit einer Um-
schaltfunktion markiert. Da die Umschaltfunktion jedoch nicht das Echtzeitverhalten be-
einflusst, kann sie ebenfalls vernachlässigt werden. So kann auch hier die Transformation
aus [BGHS04] verwendet werden.

Bei der Modellierung des hybriden Rekonfiguration Charts der übergeordneten Kompo-
nente wird explizit angenommen, dass die eingebetteten Komponenteninstanzen ihren in-
ternen Zustand zeitgleich mit dem Zustand der übergeordneten Komponente verlassen
bzw. betreten. Da die Aktivierung der Transitionen und der Schaltvorgang innerhalb der-
selben Perioden stattfinden, wird bei der Ausführung des Systems das zeitgleiche Ver-
lassen und Betreten von Zuständen erzwungen. Verlässt zum Beispiel die Komponente
Monitor den Zustand NoneAvailable, muss die eingebettete Komponenteninstanz BC den
internen Zustand Robust verlassen.

Um das zeitgleiche Verlassen und Betreten von Zuständen auch beim Model Checking zu
realisieren, ist eine Synchronisierung der Schaltvorgänge notwendig. Die Synchronisie-
rung kann mit Hilfe von Synchronisationskanälen umgesetzt werden. Die übergeordnete
Komponente ist dabei Sender, während die eingebetteten Komponenteninstanzen Emp-
fänger sind. Die Synchronisierung muss genau dann erfolgen, wenn ein Zustand verlas-
sen und betreten wird. Da hybride Rekonfiguration Charts und Interface Statecharts sowie
auch Realtime Statecharts diese Möglichkeit nicht bieten, muss eine Transformation der
Modelle erfolgen. Im Fall, dass mehrere eingebettete Komponenteninstanzen reagieren
müssen, kann eine Kette von committed locations (siehe [BDL04]) verwendet werden. In
Abbildung 3.15 ist ein Ausschnitt aus dem Mapping dargestellt.

3.5 Evaluierung

In [Kud05] wurden die Funktionalitäten zur Modellierung und die Verifikation der rein
syntaktischen Verifikationsverfahren aus [GBSO04] in der Fujaba Realtime Tool Suite1

implementiert. Der in diesem Kapitel vorgestellte Ansatz wurde anhand des eingeführten
Beispiel des Feder-Neige-Moduls evaluiert. Für die Evaluierung wurde der Model Che-
cker UPPAAL [BDL04] verwendet, da dieser bereits in der Fujaba Realtime Tool Suite
integriert wurde [Hir04][BGH+05b].

In Abbildung 3.16 und 3.18 sind die transformierten Timed Automata der Interface
Statecharts BodyControl und des Rekonfigurations Charts Monitor, wie sie von UPPAAL

1http://www.fujaba.de/realtime
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Abbildung 3.15: Synchronisation zwischen Monitor, Sensor und BodyControl

als Eingabe verwendet werden, dargestellt. Der Timed Automaton des Sensors ist in Ab-
bildung 3.17 dargestellt. Für die Verifikation wurde die parallele Ausführung betrachtet
und die Eigenschaft A[] not deadlock überprüft Das Ergebnis der Verifikation war, dass
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Abbildung 3.16: Timed Automaton des Interface Statecharts der BC Komponente

On OffAllAvailableRefAvailable_exit?
t_intern=0 AllAvailableRefAvailable_entry?

NoneAvailableAbsAvailable_exit?
t_intern:=0

NoneAvailableAbsAvailable_entry?

AbsAvailableNoneAvailable_exit?
t_intern:=0

AbsAvailableNoneAvailable_entry?

RefAvailableAllAvailable_exit?
t_intern:=0

RefAvailableAllAvailable_entry?

reinit?

Abbildung 3.17: Timed Automaton des Interface Statecharts der Sensor Komponente
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Abbildung 3.18: Timed Automaton des Monitor Verhaltens

das System deadlock frei ist. Daraus ergibt sich, dass die Einbettung aller Komponenten
korrekt ist. Die Verifikation hat ca. 0.31 Sekunden bei einem Speicherverbrauch von 2092
KB benötigt.2.

3.6 Zusammenfassung

In diesem Kapitel wurde beschrieben, wie sich ein OCM verifizieren lässt. Dabei wur-
de ein bereits vorhandener Ansatz [GBSO04] zur Verifikation der Rekonfiguration von
MECHATRONIC UML Modellen erweitert, der durch zahlreiche Einschränkungen in der
Ausdrucksstärke für die Interface Statecharts für die komplexen mechatronischen Syste-
me nicht anwendbar war. Der neue Ansatz erlaubt nun auch die Modellierung und Veri-
fikation von komplexen Zeitbedingungen (nicht lokale Zeitbedingungen) und proaktivem
Verhalten. Die Konzepte wurden formal definiert und eine experimentelle Evaluierung hat
die Ergebnisse bestätigt.

2Wurde auf einem Pentium 4, 2.4 GHz, 1 GB memory, OS Linux Redhat durchgeführt.
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Kapitel 4

Verifikation des Verhaltens eines
OCM in der Umwelt

Im vorangegangenen Kapitel wurde beschrieben, wie sich ein einzelnes OCM model-
liert durch statische Konstrukte hinsichtlich Sicherheitseigenschaften verifizieren lässt.
In komplexen, vernetzten mechatronischen Systemen stehen allerdings nur begrenzte
Rechen- und Speicherkapazitäten zur Verfügung. Zusätzlich unterliegt das System zur
Laufzeit einer Evolution abhängig vom gegebenem Kontext bestimmt durch die Umwelt.
Anforderungen an komplexe, mechatronische Systeme sehen deshalb Dynamik vor, d.h.
Steuerungssoftware muss zu Laufzeit ausgetauscht werden können. In Schilling [Sch06]
wurde bereits beschrieben, wie Graphtransformationssysteme zur Beschreibung von dy-
namischen Veränderungen im Kontext von mechatronischen Systemen eingesetzt werden
können. So wurde das in Abbildung 4.1 dargestellte Szenario auf der Basis von Graph-
transformationssystemen beschrieben. Die obere Hälfte des Bildes zeigt einen aktuellen
Systemzustand. Hier fahren zwei Shuttles hintereinander auf zwei verschiedenen Stre-
ckenabschnitten. Dabei wird die Diskretisierung vorgenommen, dass ein Shuttle immer
genau auf einem Streckenabschnitt steht. Die untere Hälfte des Bildes zeigt die koordi-
nierte Bewegung des Shuttles auf den Streckenabschnitten, modelliert durch eine graph-
basierte Regel. Hier wird beschrieben, welche Objekte existieren und wie miteinander
verbunden sind. Im vorliegenden Beispiel existiert eine Instanz des DistanceCoordina-
tionPattern, welches die Verhaltenskoordination zweier verbundener Shuttles realisiert.

4.1 Grenzen des bisherigen Ansatzes

Der von Schilling vorgeschlagene Ansatz [Sch06] zeigt eine Schwäche in der Model-
lierung und Verifikation auf: es wird keine Zeit berücksichtigt. Daraus ergeben sich die
folgenden zwei Probleme:
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s1:Shuttle

t1:Track

at

:Tracknext :Track

go

next

at

s2:Shuttle

dc1:DistanceCoordinationPattern

front

rear
go
<<create>>

Regel:

Shuttle Shuttle

Systemzustand:

Abbildung 4.1: Beispiel für ein Graphtransformationssystem

Instanziierungsdauer von Echtzeit-Koordinationsmustern: Es ist nicht mög-
lich, die Instanziierungsdauer eines Echtzeit-Koordinationsmusters zu beschreiben. In
Abbildung 4.1 ist durch die Regel lediglich beschrieben, dass zwei aufeinander folgende
Shuttles das DistanceCoordinationPattern instanziieren müssen. Im Detail aber bedeutet
die Instanziierung eines Echtzeit-Koordinationsmusters das Aktivieren und Deaktivieren
von Softwarekomponenten, welches, ähnlich wie das Umschalten zwischen Reglern, Zeit
benötigt. Neben diesem Zeitaspekt muss auch das aktuelle kontinuierliche Verhalten, wie
z.B. die Geschwindigkeit, des Shuttles berücksichtigt werden. Es ist offensichtlich, dass
ein Shuttle, das 160km

h
fährt, ebenfalls rechtzeitig die Aktivierung und Deaktivierung von

Softwarekomponenten vornehmen können muss wie ein Shuttle, das nur 40km
h

fährt. D.h.
die Abhängigkeit zwischen der Dauer der Instanziierung einer Softwarekomponente zur
aktuellen Geschwindigkeit muss ebenfalls berücksichtigt werden.

Beschreibung von kontinuierlichen Bewegungen: Bei der in Abbildung 4.2
dargestellten Situation bewegt sich ein Shuttle über aufeinander folgende Streckenab-
schnitte. Hierbei entspricht die Größe eines Streckenabschnitts nun nicht mehr genau der
Größe eines Shuttles, sondern kann beliebig endlich lang sein, um das Modell realitätsge-
treu abzubilden. Falls nun aber mehrere Shuttles hintereinander in die gleiche Richtung
fahren, wäre es möglich, dass diese kollidieren, da sich die Position der Shuttles nicht
diskret bestimmen lässt.
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Um eine derartige Situation im Modell auszuschließen, bestünde eine Möglichkeit dar-
in, dafür zu sorgen, dass alle Shuttles mit der gleichen Geschwindigkeit die Streckenab-
schnitte passieren. Wenn es im zugrunde liegenden Modell also möglich ist, Aussagen
über die Zeit zu formulieren, so kann über den Zusammenhang, dass sich die Geschwin-
digkeit aus der Strecke pro Zeit ermitteln lässt, hiermit auch die Eigenschaft, dass die
Shuttles alle die gleiche Geschwindigkeit fahren, formuliert werden. Hiermit ist im Bei-
spiel eine derartige Kollision ausgeschlossen. Um diese Eigenschaften umzusetzen ist die
Idee, die Regeln mit Zeitbedingungen zu versehen sowie Zeitinvarianten für Graphsitua-
tionen zu beschreiben, um kontinuierliche Zeitvorgänge zu modellieren. In Abbildung 4.2
ist die entsprechende Regel mit Zeitbedingung (unten links) sowie die Invariante (unten
rechts) für die Fortbewegung eines Shuttles modelliert.

:Shuttle

:Track

at
<

<
destroy>

>

:Track
next

at<<create>>

Zeitbehaftete Regel

:Shuttle

:Track

t < 6

Clock : t

Clock : t

t >= 5

Invarianten Regel

RailCab
Shuttle

Abbildung 4.2: Beispiel für ein zeitbehaftetes Graphtransformationssystem

Um eine derartige Situation zu modellieren ist es möglich, auch auf andere Modellarten
zurück zu greifen. So könnte etwa ein Konvoi durch Timed Automata oder Petrinetze
abgebildet werden, bei welchem die Eigenschaft berücksichtigt wird, dass alle Shuttles
die gleiche Geschwindigkeit fahren. Allerdings verfügen diese Modelle nicht direkt über
eine dynamische Struktur, was es schwierig macht, ein entsprechendes Modell für eine
beliebige Anzahl an Shuttles zu erstellen und den zur Laufzeit benötigten Austausch von
Softwarekomponenten zu modellieren.
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Im Folgenden werden nun zuerst die Erweiterungen hinsichtlich der Modellierung in Ab-
schnitt 4.2 beschrieben und anschließend in Abschnitt 4.3 formalisiert. Die Verifikation
des Verhaltens von OCMs in der Umwelt wird in Abschnitt 4.4 beschrieben.

4.2 Modellierung

In diesem Abschnitt wird beschrieben, in welcher Art und Weise Graphtransformations-
systeme erweitert werden, um zeitliche Bestandteile in das bestehende Modell zu integrie-
ren. Als erstes wird das Shuttlebeispiel aufgegriffen, anhand dessen die neuen Konzepte
durchgängig erklärt werden. Ein Vergleich der Modelle der Graphtransformationssysteme
und der Timed Automata zeigt Gemeinsamkeiten und Probleme auf, die sich durch die
dynamische Struktur von Graphtransformationssystemen ergeben und darauf, wie diese
Eigenschaften Einfluss auf die Modellierung von Zeit haben. Die hier gewonnenen Er-
kenntnisse gehen in die Erweiterungen für die Definition eines zeitbehaftetes Graphtrans-
formationssystem ein.

4.2.1 Beispiel

Als Beispiel für ein entsprechendes Modell, welches sowohl über eine dynamische Struk-
tur als auch über eine zeitliche Komponente verfügt, dient das in der Einleitung (siehe
Abschnitt 1.2) beschriebene Shuttlesystem. Dabei wird betrachtet, wie die Fortbewegung
eines Shuttles von Schienenabschnitt zu Schienenabschnitt modelliert werden kann.

Alle diese Komponenten werden im Modell berücksichtigt. Dabei wird die Darstel-
lung dieser Komponenten innerhalb des Beispiels in Form von speziellen UML-Klassen-
Diagrammen und UML-Objekt-Diagrammen vorgenommen. Die hierbei verwendete No-
tation orientiert sich an den von Zündorf [Zün01] vorgestellten Story-Pattern.

Die Bestandteile, z.B. einzelne Shuttle oder die Schienenabschnitte sind in Form von Kno-
ten beschrieben. Verbindungen oder Assoziationen zwischen den Knoten werden durch
gerichtete Kanten dargestellt. Eine solche Assoziation existiert z.B., wenn sich ein Shutt-
le auf einem Schienenabschnitt befindet. Dieses wird durch eine gerichtete Kante zwi-
schen den entsprechenden Knoten abgebildet. Die Abbildung 4.3 zeigt einen Ausschnitt
des Schienensystems mit Shuttlen. Zusätzlich zu den Strukturbeschreibungen sollen auch
zeitliche Abhängigkeiten und Eigenschaften im Modell berücksichtigt werden. Bei einem
realen System ist es wie bereits erwähnt entscheidend, wie lange ein Shuttle zum Über-
fahren eines Schienenabschnitts benötigt, um hierdurch die aktuelle Geschwindigkeit des
Shuttles zu modellieren.
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Abbildung 4.3: Das durch einen Graphen beschriebene Shuttlesystem

4.2.2 Zeit und Graphtransformationssysteme

In diesem Abschnitt wird beschrieben, wie Graphtransformationssysteme mit zeitlichen
Bedingungen modelliert werden können. Als Referenzmodell für die Beschreibung von
Echtzeit-Verhalten wird das Modell der Timed Automata (siehe Abschnitt 2.3.2) verwen-
det.

Es gibt grundsätzlich verschiedene Möglichkeiten, Zeit innerhalb eines Modells abzubil-
den, so etwa, wie bei [CGP00] beschrieben, in Form von diskreter oder kontinuierlicher
Echtzeit. Die in dieser Arbeit gewählte Form, wie sie bei den Graphtransformationssys-
temen ergänzt wird, orientiert sich an der Art wie sie auch beim Timed Automaton Ver-
wendung findet. Dort wird kontinuierliches Echtzeitverhalten modelliert. Hierzu werden,
wie in Kapitel 2.3.2 beschrieben, einzelne Clocks xi, xj : i, j ∈ N+ verwendet, die belie-
bige Werte aus den positiven reellen Zahlen annehmen können. Über diese Clocks werden
dann, wie beim Timed Automaton, einzelne Bedingungen in der Form xi − xj ∼ c for-
muliert (siehe Definition 3, Abschnitt 2.3.2).

4.2.2.1 Vergleich: Timed Automaton - GTS

Anhand der Überführung eines Graphtransformationssystems in das entsprechende Mo-
dell eines Timed Automaton wird hier ein Vergleich beider Modelle beschrieben. Die
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hierbei auftretenden Probleme geben Hinweise darauf, wie die einzelnen zeitlichen Be-
standteile des Timed Automaton angepasst werden müssen, um diese bei den Graph-
transformationssystemen zu berücksichtigen. Ziel ist es, anhand der Ergebnisse dieses
Vergleiches eine Lösung zu entwickeln, die es ermöglicht nach dem Vorbild des Timed
Automaton zeitliche Bestandteile bei den Graphtransformationssystemen zu ergänzen.
Bei diesen zu ergänzenden Bestandteilen handelt es sich um einzelne Clocks, Guards,
Clockresets sowie Invarianten.

Bei der Überführung steht dabei nicht im Vordergrund, ein möglichst optimales oder voll-
ständiges Verfahren zu entwickeln, vielmehr werden hierdurch Unterschiede zwischen
den beiden Modellen erarbeitet. Das in der Abbildung 4.4 dargestellte System wird nun

: Shuttle

track5 : Track

: Track : Track

<<create>>
next > next >

< next 

at >
<<destroy>>

at >

Regel P1

: Shuttle

: Track : Tracknext >

at >

Graph G1

: Shuttle

: Track : Tracknext >

Graph G2

at >

Abbildung 4.4: Ein Beispiel für ein Graphtransformationssystem mit zwei Graphen G1,
G2 und einer Graphtransformationsregel P1

in einen entsprechenden Automaten überführt (siehe Abbildung 4.5). Hierfür werden die
einzelnen Graphen G1 und G2 in zwei entsprechende Zustände s0 und s1 eines endlichen
Automaten überführt. Die Anwendung der Graphtransformationsregel P1 wird durch eine
Transition p1 zwischen diesen beiden Zuständen ausgedrückt.

Nachfolgend wird der Algorithmus 4.1 vorgestellt, der eine entsprechende Zuordnungs-
vorschrift für einen endlichen Automaten M (siehe Kapitel 2.3.1, Abbildung 2.9), mit
M := (Σ,Q,∆,Q0) beschreibt. Als Ausgang dient ein Graphtransformationssystem
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n1
e2

n3

e3

e1

n2

e2n1 n2

p1S0 S1

Abbildung 4.5: Ein dem Graphtransformationssystem in Abbildung 4.4 entsprechender
Automat

S := (G,G0,P), mit G der Menge der Zustände, G0 der Menge der Startzustände und
P der Menge der Graphtransformationsregeln:

Algorithmus 4.1 procedure M = transfer(S)

procedure M = transfer(S)

1: M := (Σ,Q,∆,Q0)
2: Q,Q0,Σ,∆ = ∅
3: for all gi ∈ G do
4: f(gi) = qi
5: Q = Q∪ qi
6: end for
7: for all g0

i ∈ G0 do
8: q0

9: f(g0
i ) = q0

i

10: Q0 = Q0 ∪ q0

11: end for
12: for all m : m := gj × Pi × gk do
13: ∆ = ∆ ∪ (f(gj)× Pi × f(gk))
14: end for

Σ bleibt bei dieser Abbildung leer, worauf nachfolgend noch eingegangen wird.

An dieser Stelle wird auf zwei der Eigenschaften eingegangen, die aufzeigen, weshalb
die Abbildung schwierig, bzw. unvollständig ist. Dabei handelt es sich zum einen um die
Kantenbeschriftungen, die bei den Modellen eine unterschiedliche Bedeutung haben, zum
anderen um den Zeitpunkt, zu dem eine Abbildung wie oben beschrieben vorgenommen
werden kann.

Bei endlichen Automaten hat die Kantenbeschriftungen Σ eine andere Bedeutung als die
Transitionen über Graphtransformationsregeln innerhalb von Graphtransformationssys-
temen. Bei einem Automaten entspricht die Beschriftung einer möglichen Eingabe, bei
welcher der Automat seinen Zustand über die entsprechende Kante wechselt. So kann
etwa bei den Kanten des Beispielautomaten aus dem Kapitel 2.3.1, von dem Zustand s0

nach s1 gewechselt werden, wenn die Eingabe a erfolgt. Bei Graphtransformationssys-
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temen bezeichnet diese Beschriftung der Kante die Graphtransformation, welche ange-
wendet wird, um vom Wirtsgraphen zum Tochtergraphen zu gelangen. Dabei ist die Vor-
aussetzung für die entsprechende Transition keine Eingabe sondern eine Bedingung, die
im aktuellen Zustand zutreffen muss. Diese Bedingung ist, dass die linke Seite der jewei-
ligen Graphtransformationsregel im Wirtsgraphen auffindbar sein muss. Der Unterschied
liegt hier also darin, dass beim endlichen Automaten die Kanten mit der Eingabe be-
schriftet werden und bei den Graphtransformationssystemen mit dem Namen der Graph-
transformationsregel, über die zwischen den einzelnen Graphen gewechselt wird. Beim
Modell des Automaten wird diese Bedingung in Form einer Eingabe vorgegeben, wäh-
rend bei den Graphtransformationssystemen diese Bedingung einer Struktur entspricht,
deren Vorkommen bei der Analyse überprüft werden muss.

Ein weiterer Unterschied zwischen den beiden Modellen besteht darin, zu welchem Zeit-
punkt die Zustände und Transitionen festgelegt werden. Bei den Automaten geschieht
dies bereits bei der Aufstellung des Modells. Im Gegensatz dazu entstehen die Knoten und
Kanten des Graphtransformationssystems, mit Ausnahme der initialen Startzustände G0,
nicht bei der Erstellung des Modells. Das erstellte Modell eines Graphtransformations-
systems verfügt vor der Erreichbarkeitsanalyse nur über die initialen Graphen und eine
Anzahl an Graphtransformationsregeln. Um daraus den vollständigen Zustandsraum des
Graphtransformationssystems zu erzeugen, ist es notwendig, eine Erreichbarkeitsanalyse
durchzuführen. Vorher wäre es nicht möglich, nach dem oben beschriebenen Vorgehen ei-
ne Abbildung des Graphtransformationssystems auf einen Automaten vorzunehmen. Im
Gegensatz hierzu ist die gesamte Struktur eines Automaten bereits vollständig vorgege-
ben, sobald das Modell formuliert ist. Bei der dort durchgeführten Erreichbarkeitsanalyse
wird dann die Reihenfolge festgelegt, in der die einzelnen Zustände erreicht werden kön-
nen; die Struktur des endlichen Automaten wird hierdurch aber nicht verändert.

Die hier aufgezeigte Eigenschaft, dass die Struktur des endlichen Automaten fest vorge-
geben ist, lässt sich auf die einzelnen Locations bei dem erweiterten Modell des Timed
Automaton übertragen. Die hinzukommenden Bestandteile des Timed Automaton, wel-
che die zeitlichen Eigenschaften in Form von einzelnen Clocks und deren Bedingungen
repräsentieren, sind den fest vorgegebenen Strukturen des Modells des Automaten zu-
geordnet, wie in Abbildung 4.6 dargestellt. Dabei sind den einzelnen Locations die In-
varianten und den Kanten, bzw. Transitionen die Guards und Clock-Resets zugeordnet.
Die Clocks selbst existieren zu jedem Zeitpunkt und Zustand, in dem sich der Timed-
Automaton gerade befindet. Somit sind diese immer dem gesamten Modell des Timed
Automaton zugeordnet.

Im Folgenden werden Zuordnungsvorschriften der Clocks, Guards, Resets und Invarian-
ten beschrieben, die dem Modell der Graphtransformationssysteme die Clocks, Guards,
Resets und Invarianten zuordnen, ohne bereits alle erreichbaren Zustände zu kennen. Da-
bei wird zuerst grundlegend behandelt, wie eine Zuordnung von einzelnen zeitlichen Be-
standteilen, wie diese beim Timed Automaton vorhanden sind, im Fall der Graphtransfor-
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x2≤2 x2≤3
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x2≥1 x2:=0

x1:=0 x1≥2

Clocks: x1 ,x2
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Die in Guards, Resets und Invarianten vorkommenden 
Clocks werden dem gesamten Automaten zugeordnet

Invarianten werden 
Locations zogeordnet

x2≥1 x2:=0
Guards und Resets 
werden Kanten 
zugeordnet

Abbildung 4.6: Zuordnung der zeitlichen Bestandteile zu den festen Strukturen des
Timed Automaton.

mationssysteme vorgenommen wird. Hierbei gibt es verschiedene Aspekte, die betrach-
tet werden müssen, um eine solche Zuordnung zu ermöglichen. Allerdings ist neben der
Frage, wie dies im Modell technisch möglich ist, auch entscheidend für welchen Zweck
entsprechende Eigenschaften formulierbar sind.

Es wird hier mit einer bestimmten Eigenschaft von Graphtransformationssystemen gear-
beitet, nämlich, dass es bei diesen hauptsächlich um Strukturen geht, welche innerhalb
der initialen Graphen und den daraus resultierenden Folgegraphen vorhanden sind. Nach
diesen Strukturen wird eben durch die Graphtransformationsregeln gesucht. Diese Struk-
turen beschreiben Situationen und Zustände, bzw. einen Teil dieser, welche innerhalb des
aktuellen Graphen gelten.

Mit diesen Strukturen werden einzelne zeitliche Eigenschaften verbunden. Dies bedeutet,
dass Graphtransformationsregeln dahingehend erweitert werden, bzw. neue Regeln hin-
zukommen. Diese sollten in der Lage sein, durch ihre Anwendung zeitliche Eigenschaften
zu einem Graphtransformationssystem hinzuzufügen. Zunächst wird hier an einem Bei-
spiel darauf eingegangen, warum diese Lösung gewählt wurde und welche Eigenschaften
hierdurch modellierbar sind.
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Als Eigenschaft soll formuliert werden, dass ein Shuttle mindestens 10 Zeiteinheiten zum
Überfahren eines Schienenabschnittes benötigt. Abbildung 4.7 zeigt diese Regel. Ent-
scheidend für die Information, wie lange das Shuttle auf dem Schienenabschnitt sein soll,
ist die mit einem Kreis markierte Struktur im Wirtsgraphen.

: Shuttle

track5 : Track

: Track : Track

<<create>>
next > next >

< next 

at >
<<destroy>>

at >

: Shuttle

: Track : Tracknext >

at >

Graph G1

: Shuttle

: Track : Tracknext >

Graph G2

at >

c>10

Abbildung 4.7: Zuordnung einer Clock c zu einer Graphtransformationsregel

Um allerdings eine solche Bedingung formulieren zu können ist es notwendig über zu-
gehörige Clocks zu verfügen. Im Beispiel wird die Clock c benötigt, um über diese die
Bedingung c > 10 formulieren zu können.

4.2.2.2 Clockinstanzen

Die benötigten Clocks stellen im Vergleich zum Timed Automaton eine Besonderheit dar,
denn bei Graphtransformationssystemen ergibt sich die Struktur erst bei der Erreichbar-
keitsanalyse. Ohne eine bereits vorgegebene Struktur ist es nicht möglich, alle Clocks fest-
zulegen, die innerhalb des Graphtransformationssystems benötigt werden. Warum dies
der Fall ist, wird nachfolgend an einem Beispiel illustriert. Dabei handelt es sich um den
Wirtsgraphen G in Abbildung 4.8, bei welchem die dort abgebildete Regel an den zwei
markierten Stellen angewendet werden kann. Da es möglich ist, dass eine der beiden
Stellen im Wirtsgraphen bereits länger existiert als die andere, werden für die Berück-
sichtigung der zeitlichen Bedingungen c ≥ 3 auch entsprechend zwei einzelne Clocks
benötigt.

Um mehrere Clocks innerhalb eines Wirtsgraphen zu ermöglichen, werden von einer
Clock mehrere Instanzen erzeugt. Dabei wird der Name der jeweiligen Clock um die
IDs der einzelnen Knoten des Wirtsgraphen erweitert, auf welchen die Regel angewendet
wird. Entsprechend werden in dem Beispiel aus Abbildung 4.8 zwei Clocks c erzeugt, die
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Abbildung 4.8: Der Graph G verfügt über zwei Stellen, bei denen die Graphtransfor-
mationsregel mit der zeitlichen Bedingung c ≥ 3 angewendet werden
kann.

sich hinsichtlich der IDs der Knoten des Wirtsgraphen unterscheiden. Dem Graphen des
Beispiels werden die beiden Clocks x und y zugeordnet, wobei diese über einen Namen
identifiziert werden, sowie über einen Schlüssel, der sich aus den IDs des Wirtsgraphen
zusammen setzt. Um die Zuordnung von einzelnen Clocks mit gleichem Namen und un-
terschiedlichen IDs eindeutig zu machen, werden zusätzlich die Kanten des Wirtsgraphen
bei dem erzeugten Schlüssel mit berücksichtigt:

x := c[1, 5, 2], y := c[3, 7, 4]

Die so erzeugten Clocks werden nachfolgend als Clockinstanzen bezeichnet, um eine
Differenzierung zu den üblichen Clocks zu erlauben.

Weiterhin soll es möglich sein, nur einen Teil der linken Seite einer Anwendungsregel mit
einer zugehörigen Clockinstanz zu verbinden. So etwa, wie es im Beispiel der Abbildung
4.7 dargestellt ist. Dort wird die Clockinstanz c, über welche eine Bedingung formuliert
ist, nur mit zwei der drei Knoten sowie einer der drei Kanten der Regel assoziiert. Um dies
zu ermöglichen werden die Anwendungsregeln erweitert, so dass den einzelnen Elemen-
ten ein entsprechendes Attribut hinzugefügt werden kann, welches angibt, ob ein Knoten
oder eine Kante zu einer Clockinstanz zugehörig ist. Dabei wird wie in Abbildung 4.8 an
jedes Element der Anwendungsregel geschrieben, mit welchen Clockinstanz-Namen das
Element verbunden ist (gelb markiert). In Abbildung 4.8 ist die gesamte linke Seite mit
der Clockinstanz c verbunden.

Aus diesen erweiterten Anwendungsregeln werden dann für die Clockinstanzen weitere
Regeln abgeleitet. Diese sorgen dafür, dass den einzelnen Graphen des Graphtransfor-
mationssystems die entsprechenden Clockinstanzen hinzugefügt werden. Für die Regel
aus dem Beispiel der Abbildung 4.7, zeigt die Darstellung 4.9 auf der rechten Seite die
abgeleitete Clockinstanzregel.
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Abbildung 4.9: Die Abbildung zeigt auf der linken Seite eine Anwendungsregel mit den
attributierten Elementen, welche der Clock c zugehörig sind. Rechts ist
die daraus abgeleitete Clockinstanzregel dargestellt.

Mit Hilfe dieser abgeleiteten Regeln werden die einzelnen Clockinstanzen einem Wirts-
graphen hinzugefügt. Dabei muss noch berücksichtigt werden, dass die Ausführung der
Clockinstanzregel vor den zugehörigen Anwendungsregeln, aus welchen diese abgelei-
tet wurden, geschehen muss. Dies ist der Fall, da es für einzelne Clockinstanzen, welche
durch eine Clockinstanzregel erzeugt werden, entscheidend ist, seit wann diese existie-
ren. Um sicher zu stellen, dass Clockinstanzregeln vor den Anwendungsregeln ausgeführt
werden, wird den Graphtransformationsregeln eine Priorität hinzugefügt. Dabei erhalten
die Clockinstanzregeln eine höhere Priorität als alle anderen Arten von Regeln. Der Me-
chanismus von priorisierten Anwendungsregeln wurde bereits in Definition 10 beschrie-
ben und kann von den bestehenden Modellen der Graphtransformationssysteme direkt
übernommen werden.

4.2.2.3 Clockresets

Eine weiterer Bestandteil, der von dem Modell des Timed Automaton übernommen wird,
sind die so genannten Clockresets. Diese werden bei den Graphtransformationssystemen
ebenfalls mit der Anwendungsregel verknüpft, wobei angegeben wird, welche Clockin-
stanzen durch die Anwendung der erweiterten Regel auf den Wert 0 zurück gesetzt wer-
den. Das Vorgehen orientiert sich dabei an der Art und Weise, wie Guards mit Hilfe der
Graphtransformationsregeln hinzugefügt werden. Ein Beispiel zeigt die Abbildung 4.10.
Dort ist die Clockinstanz c mit der Graphtransformationsregel verknüpft und wird durch
einen entsprechenden Reset bei Anwendung auf den Wert 0 zurück gesetzt. Dabei werden
für die verwendete Clockinstanz innerhalb des Resets nach dem gleichen Prinzip wie für
die zeitlichen Bedingungen einzelne Clockinstanzregeln abgeleitet.
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Abbildung 4.10: Eine um Clockreset erweiterte Graphtransformationsregel. Dabei wird
die Clock c nach Anwendung der Regel auf den Wert 0 zurück gesetzt.

4.2.2.4 Invarianten

Hier wird beschrieben, wie die Invarianten des Timed Automaton bei dem Modell des
Graphtransformationssystems übernommen werden. Über diese werden beim Timed-
Automaton zeitliche Bedingungen zu einer Location hinzugefügt. Hier wird ein Ansatz
vorgestellt, der es ermöglicht, diese Invarianten auf die einzelnen Graphen eines Graph-
transformationssystems zu übertragen. Da vor einer Erreichbarkeitsanalyse des Graph-
transformationssystems nicht klar ist, welche Folge-Graphen erreichbar sind, ist eine Zu-
ordnung von Invarianten direkt zu einzelnen Graphen nicht sinnvoll möglich. Um aber
eine Umsetzung von Invarianten zu ermöglichen, wird hierfür wiederum auf Strukturen
zurück gegriffen, nach denen innerhalb eines Graphen durch eine Graphtransformations-
regel gesucht wird. Es werden Anwendungsregeln eingeführt, die nur dem Zweck dienen,
einzelne zeitliche Bedingungen zu einzelnen Graphen hinzuzufügen. Hierzu werden so
genannte Invariantenregeln eingeführt. Diese Regeln verändern die Struktur des Wirtsgra-
phen, auf den sie angewendet werden, nicht, genauso wie die Clockinstanzregeln. Es wird
lediglich ein Matching mit der linken Seite der Anwendungsregel durchgeführt, d.h. die
Regel verfügt über keine rechte Anwendungsseite. Falls eine Invariantenregel anwendbar
ist, wird die mit dieser verbundene zeitliche Bedingung dem Wirtsgraphen hinzugefügt.
Eine mögliche Eigenschaft, die mit Hilfe einer solchen Invariantenregel formuliert wird,
wäre, dass die Verweildauer eines Shuttles auf einem Schienenabschnitt max. 11 Zeitein-
heiten dauern darf (siehe Abbildung 4.11)

Ähnlich wie die Anwendungsregeln mit zeitlicher Bedingung benötigen die Invarianten-
regeln ebenfalls zugehörige Clockinstanzen. Beim Beispiel der Abbildung 4.11 ist dies
die Clock d, von der es innerhalb eines Wirtsgraphen mehrere Instanzen geben kann. Dies
ist der Fall, da es wie bei den normalen Anwendungsregeln mehrere Stellen innerhalb des
Wirtsgraphen geben kann, an denen die Invariantenregeln anwendbar sind.
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Abbildung 4.11: Die Regel fügt einem Graphen die Invariante d < 11 hinzu.

Das Vorgehen bei den Invarianten ist äquivalent zu dem der zeitbehafteten Graphtransfor-
mationsregeln. Bei den Invarianten werden ebenfalls einzelne Elemente der linken Seite
der Regel mit den zugehörigen Clockinstanzen der Ungleichungen verknüpft. In der Ab-
bildung 4.11 sind alle Elemente mit der Clockinstanz d verbunden.

4.2.2.5 Zeitbehafteter Graph

Bei den hier betrachteten Erweiterungen spielen bei den Graphen des Graphtransfor-
mationssystems auch die zeitlichen Erreichbarkeitsräume eine Rolle. Dabei werden ein-
zelne Graphen mit Bedingungen über einzelne Clockinstanzen versehen. Ein Beispiel
hierfür ist die Ungleichung der Form d < 11, die über die Invariantenregel in Abbil-
dung 4.11 den einzelnen Graphen hinzugefügt wird. Somit muss das hier verwendete
Modell eines Graphen erweitert werden, um diesen Graphen einzelne zeitliche Erreich-
barkeitsräume hinzuzufügen.

Dabei ist der Fall zu berücksichtigen, dass ein einzelner Graph nicht nur über einen,
sondern auch über mehrere, eventuell disjunkte, zeitliche Erreichbarkeitsräume verfügen
kann. Dies ist der Fall, wenn innerhalb eines solchen erweiterten Graphtransformations-
systems ein Zyklus aus Transitionen zwischen den einzelnen Graphen existiert und durch
den Clockreset einer Graphtransformationsregel zu einem bereits existierenden Graphen
ein weiterer zeitlicher Erreichbarkeitsraum hinzugefügt wird. In Abbildung 4.12 ist ein
Graphtransformationssystem dargestellt, bei dem zwei einzelne Graphen über jeweils
zwei unterschiedliche Erreichbarkeitsräume verfügen.
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Abbildung 4.12: Die beiden Graphen G1 und G2, welche über jeweils zwei unterschied-
liche zeitliche Erreichbarkeitsräume verfügen.

4.3 Semantik

Nachfolgend wird die Semantik der gerade vorgestellten Konzepte beschrieben. Dabei
wird das Modell der Graphtransformationssysteme aus dem Grundlagenkapitel 2.3.4 er-
weitert. Der Abschnitt schließt mit der Definition eines zeitbehafteten Graphen und eines
zeitbehafteten Graphtransformationssystems.

4.3.1 Clockinstanzen

Um Zeit in Graphtransformationssystemen berücksichtigen zu können, müssen zeitliche
Bedingungen und die dort verwendeten Clockinstanzen definiert werden. Die bei den
erweiterten Graphtransformationssystemen verwendeten zeitlichen Bedingungen setzen
sich aus Ungleichungen der Form xi − xj ∼ d zusammen. xi, xj sind Clockinstanzen,
wobei xi, xj ∈ R+, sowie ∼∈ {<,≤} und d ∈ Z. Jede Clockinstanz ist immer mit min-
destens einem GraphenG verbunden. Dies bedeutet, dass eine Clockinstanz einen Namen
M und eine Menge an Knoten und Kanten aus G zugeordnet hat. Diese Kanten und Kno-
ten müssen dabei anhand einer ID eindeutig in G identifizierbar sein. Die Identität einer
solchen Clockinstanz ergibt sich also aus einem Namen und den IDs der zugeordneten
Elemente aus G. Ein Beispiel für einen Graphen sowie den zugehörigen Clockinstanzen
ist in Abbildung 4.13 dargestellt.

95



Kapitel 4 Verifikation des Verhaltens eines OCM in der Umwelt

clock : Shuttle

track5 : Track

: Track : Track

<<create>>
next >

next >

< next 

at >
<<destroy>>

at >

shuttle2 : Shuttle track2 : Track>

Graph G

>

c>10

Clock:c

C
lock:c

clock : Shuttle

: Track

at >

Abgeleitete Regel für Clock c

Reset: c:=10

Track

shuttle1 : Shuttle track1 : Track>

ID:1

ID
:6

ID:5

ID:4 ID:3

ID:2

ID:7

Shuttle Track<<destroy>>

Clock:c Clock:c
Clock:c

>

x:={c,{1,2},{5}}   ;  y:={c,{3,4},{7}}

Abbildung 4.13: Zum Wirtsgraphen G werden zwei Instanzen x, y der Clockinstanz c
erzeugt. Dabei ergibt sich x := (c, {1, 2}, {5}) und y := (c, {3, 4}, {7}).

Definition 21
Eine Graph-Clockinstanz ist eine Clock x := (M,N , E), wobei M der Name der Clock
ist,N die Menge der Knoten-IDs und E die Menge der Kanten-IDs darstellt. x kann dabei,
über die Zuweisungsfunktion V (x), ein Wert aus den reellen positiven Zahlen zugewiesen
werden.

Nachfolgend wird in dieser Arbeit die Zuweisungsfunktion V (x) weg gelassen, um die
Notation abzukürzen und die Clockinstanzen bezüglich der Notation, wie die Clocks der
Clockzones aus Kapitel 2.3.5.3, behandeln zu können. Ähnlich wie bei den Clockzones
existiert auch hier eine Referenzclock x0, die keinem Knoten und keiner Kante zugeord-
net ist. Die hier definierten Clockinstanzen werden bei den zeitlichen Bedingungen zur
Darstellung der Erreichbarkeitsräume verwendet. Innerhalb der Ungleichungen werden
die entsprechenden Clockinstanzen eingesetzt.

Definition 22
Eine zeitliche Bedingung t := xi − xj ∼ d mit Clockinstanzen setzt sich zusammen aus
xi, xj , wobei entweder xi oder xj der Referenz-Clock x0 entsprechen kann. Falls xi, bzw.
xj 6= x0, so ist xi, bzw. xj eine Clockinstanz wie in Definition 21 beschrieben. Weiterhin
gilt ∼∈ (<,≤), i, j ∈ {N+ \ 0} und d ∈ Z.

Aus einer Menge dieser zeitlichen Bedingungen wird ein zeitlicher Erreichbarkeitsraum
aufgebaut. Hierzu wird eine Anzahl an ti von zeitlichen Bedingungen mit Clockinstanzen
zu einer Menge T zusammen gefasst. Der eigentliche zeitliche Erreichbarkeitsraum er-
gibt sich, indem ähnlich wie bei den in Kapitel 2.3.5.3 beschriebenen Clockzones die
Konjunktion über alle ti ∈ T gebildet wird.

Definition 23
Ein zeitlicher Erreichbarkeitsraum T := (tl, .., tn) mit l, n ∈ N+ besteht aus einer Menge
an einzelnen zeitlichen Bedingungen ti, wie diese in Definition 22 definiert sind. Dabei ist
es möglich das T := ∅ ist.
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4.3.2 Zeitbehaftete Anwendungsregeln

In diesem Abschnitt werden die neuen zeitbehafteten Anwendungsregeln definiert.

Definition 24
Eine Graphtransformationsregel Pt : (Pl, Pr, h, T, Vi, Ei) mit zeitlichen Bedingungen be-
steht aus einem linken Anwendungsteil Pl und einem rechten Anwendungsteil Pr. Zusätz-
lich zu einer Graphtransformationsregel, wie in Definition 9 beschrieben, verfügt Pt über
eine Menge an zeitlichen Bedingungen T mit Clockinstanzen, wie in Definition 22 defi-
niert. Weiterhin existieren die Zuordnungsfunktionen Vi und Ei, welche den Elementen
der linken Seite Pl von Pt IDs zuordnen. Vi ordnet allen Knoten von Pl \ d(Pt) ein inner-
halb von Pt eindeutiges nk zu und Ei ordnet allen Kanten in Pl \ d(Pt) ein eindeutiges
ek zu. Dabei gilt nk, ek ∈ N+. Für jede Clockinstanz xj ∈ X , mit X := (x1, .., xn) und
xj := (M,N , E), die in einem t ∈ T verwendet wird (siehe Definition 22), ergeben sich
N und E wie folgt: N werden alle Elemente aus Vi und E alle Elemente aus Ei zugewie-
sen.

In der obigen Definition sind alle Clockinstanzen immer mit dem gesamten Teil der lin-
ken Seite Pl \ d(Pt) einer Anwendungsregel verbunden. Diese wird nun im Folgenden,
angelehnt an Abschnitt 4.2.2.2, derart erweitert, dass es auch möglich ist, Clockinstanzen
nur mit einem Teil einer Anwendungsregel zu verknüpfen.

Definition 25
Eine Graphtransformationsregel Pt := (Pl, Pr, h, T, Vi, Ei, f) mit zeitlichen Bedingun-
gen und einer Anzahl an zugeordneten Clock-Elementen verfügt zusätzlich zu Definition
24 über eine Funktion f , welche den in T vorkommenden Clockinstanzen die Menge v
und e zuordnet, wobei v ⊆ Vi und e ⊆ Ei.

4.3.2.1 Resets

Bei den bis hier vorgestellten erweiterten Graphtransformationsregeln fehlen noch die
Resets, bei deren Anwendung einzelne Clockinstanzen zurück gesetzt werden.

Definition 26
Ein Clockinstanz-Reset r := (xr) besteht aus der zugehörigen Clockinstanz xr, welche
bei Anwendung von r auf den Wert 0 zurück gesetzt wird.

Die Graphtransformationsregel aus Definition 25 wird entsprechend um die Clockinstanz-
Resets erweitert.
Definition 27
Eine Graphtransformationsregel Pt := (Pl, Pr, h, T, Vi, Ei, R, f), welche um Clockin-
stanz-Resets erweitert ist, besteht zusätzlich aus der Menge R. Für alle r ∈ R gilt, dass
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r ein Clockinstanz-Reset ist. Für die Zuordnungsfunktion f gilt zusätzlich, dass diese den
Clockinstanzen xk, welche in r ∈ R vorkommen, ebenfalls einzelne Elemente aus Vi und
Ei zuordnet.

Dabei gilt der bei einer Anwendung ausgeführte Reset als eine Nachbedingung, welche
mit dem rechten Teil Pr der Graphtransformationsregel verbunden wird.

4.3.2.2 Invarianten

Neben den Clockinstanz-Regeln gibt es eine weitere Art von Graphtransformationsregeln,
nämlich die in Abschnitt 4.2.2.4 beschriebenen Invarianten.

Definition 28
Eine Invarianten-Graphtransformationsregel It := (Il, h, t, Vi, Ei, f) besteht aus einer
linken Seite Il, welche die Vorbedingung darstellt, einem Graphmorphismus h sowie aus
einer zeitlichen Bediungung t := (x1−x2 ∼ d) mit Clockinstanzen, wie bei Definition 22
definiert. Falls x1, bzw. x2 nicht der Referenz-Clock x0 entspricht, so wird den MengenN
und E (der Clockinstanzen x1 und x2) das Ergebnis der Funktion f(n) zugewiesen, wobei
gilt, n stammt aus den Knoten und Kanten von Il.

Da der Graphmorphismus h Il immer auf Il selbst abbildet, werden bei der Anwendung
entsprechend keine Kanten oder Knoten entfernt oder hinzugefügt. Eine so definierte In-
variantenregel verfügt über keine rechte Seite. Bei Anwendung dieser Regel wird den
zeitlichen Erreichbarkeitsräumen eines Graphen als Nachbedingung die Ungleichung t
hinzugefügt.

4.3.2.3 Ableitung von Clockinstanzregeln

Um die Clockinstanzen zu einem Graphen G hinzuzufügen, werden aus den erweiterten
Graphtransformationsregeln aus Definition 27 weitere Regeln abgeleitet. Dabei werden
für jede Clockinstanz xk, die in den Bedingungen T einer zeitbehafteten Graphtransfor-
mationsregel, in den Clockinstanz-Resets R oder in der jeweiligen Bedingung t einer In-
variantenregel vorkommt, einzelne Graphtransformationsregeln Ct abgeleitet. Diese wer-
den nachfolgend als Clockinstanzregeln bezeichnet und ergeben sich aus der linken Seite
Pl der Graphtransformationsregel Pt, bzw. aus der linken Seite Il der Invariantenregel.
Hierbei werden für eine Clockinstanz xk, die durch die Funktion f aus Pt oder It über
die IDs zugeordneten Knoten und Kanten verwendet, um die linke Seite der Clockin-
stanzregel Ct herzuleiten. Die einzige Nachbedingung von Ct ist, dass dem Graphen G
eine Clockinstanz x′k hinzugefügt wird, falls diese innerhalb von G noch nicht existiert.
Dabei werden x′k nicht die Knoten und Kanten IDs zugeordnet, welche die Funktion f
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liefert, sondern die Knoten- und Kanten-IDs, welche innerhalb des Wirtsgraphen G beim
Anwenden der Clockinstanz-Regel im Wirtsgraphen aufgefunden werden (siehe Abbil-
dung 4.13).

Definition 29
Eine Clockinstanzregel Ct := (M,Cl, h, Ci), welche auf einen Wirtsgraphen G ange-
wendet wird, besteht aus dem Namen M der Clockinstanz, sowie der linken Seite Cl der
Graphtransformationsregel. Cl entspricht dabei einer linken Seite Pl einer Graphtrans-
formationsregel, wie in Definition 9 angegeben, mit dem Unterschied, dass die Funktion
d(Ct) des Graphmorphismus h die leere Menge ∅ liefert. Ct verfügt über eine Nachbe-
dingung Ci := (M,N , E), wobei Ci eine Clockinstanz ist und N eine Teilmenge der
Kanten-IDs Vi(v) mit v ∈ V und V aus Cl und E ⊆ Ei(e) mit e ∈ E und E aus Cl.

Im Folgenden wird darauf eingegangen, wie aus einer Graphtransformationsregel oder
Invariantenregel mit zeitlicher Bedingung die einzelnen Clockinstanzregeln hergeleitet
werden. Das hier beschriebene Vorgehen findet nach dem Erstellen eines entsprechen-
den initialen Graphtransformationssystems und vor der Durchführung einer Erreichbar-
keitsanalyse statt. Auf das entsprechende Verfahren, um die Clockinstanzregeln auf einen
Wirtsgraphen anzuwenden, wird im nächsten Abschnitt eingegangen.

Eine entsprechende Graphtransformationsregel Pt := (Pl, Pr, h, T, Vi, Ei, R, f) verfügt
über eine Menge an zeitlichen Bedingungen T und Clockinstanz-Resets R. Für alle t ∈ T
gilt t := (x1 − x2 ∼ d) und für alle r ∈ R gilt r := (xr). Xt,r ist die Menge, welche sich
aus der Vereinigung der Clockinstanzen x1, x2 und aus allen t ∈ T sowie allen xr, die
in den r ∈ R vorhanden sind, ergibt. Für jedes x := (M,N , E) mit x ∈ Xt,r wird dann
eine Clockinstanz-Regel cj := (Mj, Cl,j, h, Ci,j) mit j ∈ N+ nach dem im Algorithmus
4.2 beschriebenen Schema hergeleitet, wobei Cl,j := (Vc, Ec). Die Funktion f der In-
variantenregel It := (Il, h, t, Ei, Vi, f) kann mit Graph Il anstelle des Graphen Pl aus Pt
verwendet werden, um die Clockinstanzregeln der Invarianten analog herzuleiten.

Die bei der NachbedingungCi,j := (Mj,Nj, Ej) vorhandenen MengenNj und Ej , welche
die Knoten- und Kanten-IDs der durch die Regel erzeugten Clockinstanz darstellen, wer-
den erst bei der Anwendung auf einen WirtsgraphenGmit den entsprechenden Elementen
gefüllt. Somit sind diese bei der Erstellung der Clockinstanz-Regel immer leer.

4.3.3 Zeitbehafteter Graph & Graphtransformationssystem

4.3.3.1 Zeitbehafteter Graph

Um ein erweitertes Graphtransformationssystem zu analysieren, muss ein zeitbehafteter
Graph definiert werden. Basierend auf diesem können dann Nachfolger- und Vorgänger-
zustände hergeleitet werden. Ein gerichteter und benannter Graph G wird um die ent-
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Algorithmus 4.2 Schema zur Herleitung einer Clockinstanz-Regel cj :=
(Mj, Cl,j, h, Ci,j), j ∈ N+

1: Mj = M
2: for all n ∈ Pl do
3: if f(n) ∈ N then
4: Vc = Vc ∪ n
5: end if
6: end for
7: for all e ∈ Pl do
8: if f(e) ∈ E then
9: Ec = Ec ∪ e

10: end if
11: end for
12: Ci,j = (M, ∅, ∅)

sprechenden Bestandteile erweitert, so dass zeitliche Erreichbarkeitsräume mit diesem
verknüpft werden. Hierzu werden zu G Ungleichungen wie in Definition 22 sowie die
dort vorhandenen Clockinstanzen hinzugefügt.

Definition 30
Ein zeitbehafteter Graph Gt := (G,C, T ) ist ein Tripel mit einem gerichteten Graph G,
einer Anzahl an Clockinstanzen C und einer Menge an zeitlichen Bedingungen T über
einzelnen Elementen aus C. Jeder Knoten v aus G besitzt eine eindeutige ID ni und jede
Kante e ∈ E eine entsprechende ID ej mit i, j ∈ N+.

Mit Hilfe der oben stehenden Definition 30 wird einem einzelnen Graphen g aus der Men-
ge aller GraphenG eines Graphtransformationssystems, wie in Definition 11 beschrieben,
ein zeitlicher Erreichbarkeitsraum zugewiesen und dieser gleichzeitig über die verwende-
ten IDs der Clockinstanzen mit g verknüpft.

Bei dem im weiteren Verlauf verwendeten Modell ist es möglich, dass ein Graph Gt meh-
rere zeitliche Erreichbarkeitsräume haben kann. Ein Beispiel hierfür ist das Graphtrans-
formationssystem, welches in Abbildung 4.14 aufgebaut wird. Dort gibt es einen initialen
Graphen G1 und zwei zeitbehaftete Graphtransformationsregeln, P1 und P2. Ohne bereits
genau darauf einzugehen, wie ein entsprechender Algorithmus zum Aufbau des Graph-
transformationssystems aussieht, ist es möglich, wie in Abbildung 4.12 dargestellt, die
Folgegraphen sowie die zu den Graphen zugehörigen zeitlichen Bedingungen in diesem
einfachen Fall zu erstellen. Dabei ergeben sich, wie in Abbildung 4.12 zu sehen, meh-
rere identische Folgegraphen, welche sich nur in den ihnen zugeordneten zeitlichen Be-
dingungen unterscheiden. So existieren dort die Graphen G1 und G2 jeweils mit zwei
unterschiedlichen zeitlichen Bedingungen.
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Somit muss es möglich sein, einem zeitbehafteten Graphen nicht nur eine sondern meh-
rere der zeitlichen Erreichbarkeitsräume zuzuordnen, die durch Bedingungen wie in De-
finition 22 beschrieben aufgebaut werden.

Definition 31
Ein zeitbehafteter GraphGt := (G,C, T ) mit mehreren zeitlichen Erreichbarkeitsräumen
ist ein Tripel mit einem gerichteten Graph G, einer Anzahl Clockinstanzen C und einer
Menge T . Dabei ist T := {Tl, ..., Tn} mit l, n ∈ N+. Jedes Ti ∈ T besteht dabei aus
einer Menge an zeitlichen Bedingungen über einzelnen Elementen aus C. Jeder Knoten v
aus G besitzt eine eindeutige ID ni und jede Kante e ∈ E eine entsprechende ID ej mit
i, j ∈ N+.

clock : Shuttle

: Track : Track

<<create>>
next >

next >

at >
<<destroy>>

at >

Initialer Graph G1

c>10

Clock:c

C
lock:c

clock : Shuttle
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clock:c

<<destroy>>

Regel P2

<<create>>

Abbildung 4.14: Ein Graphtransformationssystem mit einem initialen Startgraphen G1,
sowie zwei zeitbehaftete Graphtransformationsregeln P1 und P2.

4.3.3.2 Zeitbehaftetes Graphtransformationssystem

Bisher wurden alle notwendigen Definitionen eines zeitbehafteten Graphen gegeben.
Im Folgenden wird nun darauf aufbauend ein zeitbehaftetes Graphtransformationssys-
tem formal definiert. Zu diesem erweiterten Graphtransformationssystem gehören die
in den vorherigen Abschnitten beschriebenen Bestandteile, welche sich aus einzelnen
zeitbehafteten Graphen Gt := (G,C, T ), aus erweiterten Graphtransformationsregeln
Pt := (Pl, Pr, h, T, Vi, Ei, R, f) und aus Invariantenregeln It := (Gl, t) zusammenset-
zen.
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Definition 32
Ein Graphtransformationssystem St := (Gt,G0

t ,Pt, It) mit zeitlichen Bestandteilen be-
steht aus einer potentiell unendlichen Menge an zeitbehafteten Graphen Gt, einer end-
lichen Menge an initialen zeitbehafteten Graphen G0

t , einer endlichen Menge an zeitbe-
hafteten Graphtransformationsregeln Pt, wie diese in Definition 27 definiert sind, sowie
einer endlichen Menge an Invarianten-Regeln It.

Um alle erreichbaren Zustände für das Graphtransformationssystem St zu berechnen,
muss nun noch beschrieben werden, wie sich aus den Graphtransformationsregeln Pt ab-
leitbare Clockinstanzregeln erzeugen lassen.

4.3.3.3 Clockinstanzregeln

Bei dem oben vorgestellten Graphtransformationssystem St := (Gt,G0
t ,Pt, It) fehlen für

eine Erreichbarkeitsanalyse noch die zugehörigen Clockinstanzregeln, welche innerhalb
der Graphtransformationsregeln Pt sowie den Invariantenregeln It vorkommen. Diese
können, wie im Abschnitt 4.3.2, Definition 29, dargestellt und aus den einzelnen Graph-
transformationsregeln Pt ∈ Pt abgeleitet werden.

Um die entsprechenden Clockinstanzregeln Ct zu erhalten, wird für jede Graphtransfor-
mationsregel Pt ∈ Pt das in Abschnitt 4.3.2 (siehe Definition 29) beschriebene Verfahren
zur Ableitung von Clockinstanzregeln angewendet, wobei jede erstellte Clockinstanzregel
ci der Menge Ct hinzugefügt wird. Es ist möglich, dass identische Regeln mehrfach ab-
geleitet und zu Ct hinzugefügt werden. Da Ct eine Menge ist, fallen doppelte Vorkommen
weg.

4.4 Erreichbarkeitsanalyse

Auf der Basis des im vorherigen Abschnitt erstellten und erweiterten Modells eines
Graphtransformationssystems der Form St := (Gt,G0

t ,Pt, It) wird hier ein Algorithmus
vorgestellt, mit dem eine Erreichbarkeitsanalyse durchgeführt werden kann. Dabei wer-
den die hierzu verwendeten Operationen schrittweise erarbeitet.

4.4.1 Darstellung durch Clockzones

Der zeitliche Erreichbarkeitsraum eines zeitbehafteten GraphenGt (siehe Abschnitt 4.3.3)
lässt sich mit Hilfe der Datenstruktur der Clockzones beschreiben. Natürlich ist es auch
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möglich, eine andere Datenstruktur zu wählen, um die zeitlichen Bedingungen aus Ka-
pitel 4.3.3 zu beschreiben. Die Entscheidung, bereits an dieser Stelle die Datenstruktur
der Clockzones zu verwenden, begründet sich darin, dass hierdurch die im Folgenden
beschriebenen Algorithmen besser veranschaulicht werden können. Zusätzlich sind die
hier verwendeten zeitlichen Bedingungen, welche in Form von Ungleichungen in Kapi-
tel 4.3.3 definiert wurden, denen sehr ähnlich, die bei der Datenstruktur der Clockzones
verwendet werden.

Aus den erwähnten Gründen erfolgt die Darstellung der zeitlichen Erreichbarkeitsräume
in Form der in Definition 2.3.5.3 vorgestellten Clockzones. Die Definition eines zeitbe-
hafteten Graphen wird entsprechend abgeändert. Somit ergibt sich der hier verwendete
zeitbehaftete Graph Gt := (G,C,Z), indem die in Definition 31 verwendete Menge T
durch die MengeZ ersetzt wird. Bei T handelt es sich dabei um eine Menge dem Graphen
zugeordneter zeitlicher Erreichbarkeitsräume T , die wiederum aus einzelnen zeitlichen
Bedingungen t bestehen. Dabei wird jedes T in eine einzelne Clockzone Z überführt.

Diese Überführung ist problemlos möglich, da die zeitlichen Ungleichungen t := (xi −
xj ∼ d) sehr stark denen der Clockzones ähneln. Der einzige Unterschied besteht darin,
dass bei den Ungleichungen t ∈ T anstelle der einfachen Clockvariablen der Clockzones
die Clockinstanzen aus der Definition 21 verwendet werden. An dieser Stelle wird das
Modell der Clockzones dahingehend angepasst, dass die dort verwendeten Clockvariablen
durch Clockinstanzen ersetzt werden. Die daraus leicht abgeänderte Form der Clockzones
ergibt sich zu:

Definition 33
Eine Clockzone Z mit Clockinstanzen hat eine Anzahl von Clockinstanzen xi, wie diese in
Definition 21 definiert sind. Die einzelnen xi können Werte aus R+ ∪ 0 annehmen, wobei
i ∈ N+ und i > 0. Zusätzlich existiert eine Referenz-Clock x0, die immer den Wert 0
besitzt sowie eine Anzahl von Bedingungen c ∈ C in Form von Ungleichungen der Art
xj ≺ d, d ≺ xj, xi − xj ≺ d, mit i, j ∈ N+, d ∈ Z und ≺∈ {<,≤}. Die Clockzone ergibt
sich aus der Konjunktion über Bedingungen aus C.

Die Eigenschaften und die Operationen auf den Clockzones ändern sich durch diese Er-
weiterung nicht. Die restlichen Bestandteile lassen sich direkt übernehmen. So entspricht
die Referenzclock x0 bei der Datenstruktur der Clockzones der Referenzclock, wie die-
se bei den zeitlichen Bedingungen in Kapitel 4.3.3 definiert wurde. Die Ungleichungen
lassen sich direkt übernehmen. Ein zeitbehafteter Graph mit mehreren zeitlichen Erreich-
barkeitsräumen, wie in Definition 31 dargestellt, wird dann zu einem entsprechenden Gra-
phen Gt := (G,C,Z) mit mehreren Clockzones Z .
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4.4.2 Zeitbehafteter Folgegraph

Die einzelnen Schritte, um einen Folgegraphen für einen zeitbehafteten Graphen
abzuleiten, werden im Folgenden beschrieben. Ausgangspunkt sind dabei ein zeit-
behafteter Graph Gt := (G,C,Z), eine zeitbehaftete Graphtransformationsregel
Pt := (Pl, Pr, h, T, Vi, Ei, R, f, r), die Clockinstanzregeln C und Invariantenregeln I.
Dabei wird durch den zeitbehafteten Graphen Gt eine Anzahl von Zuständen abgebildet,
die sich durch die Kombination des Graphen G aus Gt mit den einzelnen Clockzones
Z ∈ Z ergeben. Ein solcher Zustand ist somit ein Tupel 〈G,Z〉. Weiterhin wird
davon ausgegangen, dass die von der Graphtransformationsregel Pt abgeleiteten Clockin-
stanzregeln in der Menge C enthalten sind sowie, dass die durch diese Regeln erzeugbaren
Clockinstanzen der Menge C des zeitbehafteten Graphen Gt bereits hinzugefügt wurden.
Die sich aus der Anwendung der Graphtransformationsregel Pt auf den Graphen Gt

ergebenden Folgezustände können durch die Funktion prod (Kapitel 2.3.5.4) berechnet
werden. Die Funktion liefert die Menge M der Graphmorphismen m := (mv,me)
zurück, welche Pl aus Pt auf einen Teilgraphen g aus G abbilden, wobei wiederum G aus
Gt stammt.

Nach Anwendung der Funktion prod auf einem Graphen G müssen dann im Unterschied
zu den ursprünglichen Graphtransformationssystemen weitere Schritte durchgeführt wer-
den, bevor mit Hilfe der einzelnen Graphmorphismen m ∈ M die Tochtergraphen her-
geleitet werden. Zu diesen Schritten gehört die Überprüfung der zeitlichen Bedingungen
t ∈ T von Pt. Bevor allerdings diese Überprüfung stattfinden kann ist es notwendig, die
innerhalb der einzelnen t verwendeten Clockinstanzen zuzuordnen. Warum und in wel-
cher Art dies geschehen muss, ist nachfolgend beschrieben.

4.4.2.1 Zuordnen der Clockinstanzen zu den Regelanwendungen

Bei Clockinstanzen wird unterschieden zwischen Clockinstanzen, die innerhalb von zeit-
behafteten Graphtransformationsregeln, Clockinstanzregeln sowie Invariantenregeln vor-
kommen und denen, wie diese innerhalb der zeitlichen Erreichbarkeitsräume vorhanden
sind. Innerhalb der Graphtransformationsregeln, Clockinstanzregeln sowie Invarianten-
regeln handelt es sich um Clockinstanzen, die mit einzelnen Element-IDs des Graphen
der linken Seite der jeweiligen Graphtransformationsregel Pt, bzw. der Clockinstanzregel
Ct oder Invariantenregel It verbunden sind. Im Gegensatz dazu sind die Clockinstanzen
der zeitlichen Erreichbarkeitsräume mit den IDs der Elemente des Graphen G aus Gt ver-
bunden, auf den die einzelnen Regeln und Graphroduktionen angewendet werden. Wie
diese Verknüpfung zu den IDs der Elemente aus G mit Hilfe der Clockinstanzregeln vor-
genommen wird, ist im Kapitel 4.2.2.2 beschrieben.
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Damit die mit einer Graphtransformationsregel verbundenen Guards T und Clockresets
R innerhalb einer Graphtransformationsregel Pt verwendet werden können ist es not-
wendig, die dort vorhandenen Clockinstanzen bei der Anwendung von Pt auszutauschen.
Dies bedeutet für jeden Morphismus m, der aus prod(Pt, G) resultiert, eigene Guards Tm
und Clockresets Rm herzuleiten. Hierzu wird die Funktion assign(m,T,R) verwendet,
welche nach dem folgenden Schema arbeitet und das Tupel 〈Tm, Rm〉 zurückliefert.

Dabei müssen die Clockinstanzen aus Pt mit denen dem Graphen G durch die Clockin-
stanzregeln hinzugefügten Clockinstanzen ausgetauscht werden. Hierzu muss beim Auf-
suchen der linken Seite Pl von Pt innerhalb des Wirtsgraphen G eine Zuordnung der
Element-IDs von der linken Seite Pl zu den Element-IDs der Stelle m in G vorgenommen
werden, an der Pl innerhalb von G bei der aktuellen Anwendung erfüllt ist. Ein Beispiel
hierfür zeigt die Abbildung 4.15.
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Abbildung 4.15: Im Wirtsgraphen Gt wird die Graphtransformationsregel Pt an der rot
umrandeten Stelle angewendet

Diese Zuordnung geschieht, indem T und R wie folgt überführt werden. Dabei gilt für
alle t ∈ T , t := (xi − xj ∼ d) ist eine zeitliche Bedingung mit Clockinstanzen xi und xj .
x0 beschreibt die Referenz-Clock, welche zu jedem Zeitpunkt den Wert 0 besitzt.

Zunächst wird die Funktion graphID(m,x,G, Pl) eingeführt (siehe Anhang A, Algorith-
mus A.1). Diese nimmt eine Zuordnung der Knoten- und Kanten-IDs zu dem Graphmor-
phismus m := (mv,me), einer Clockinstanz x := (M,N , E), dem Wirtsgraphen G :=
(VG, Eg, E(s,G), E(t,G), V(i,G), E(i,G)) und der linken Seite Pl := (VP , EP , E(s,P ), E(t,P ),
V(i,P ), E(i,P )) aus Pt vor. Dies geschieht nach dem Vorgehen wie im Beispiel der Abbil-
dung 4.15 aufgezeigt. Der Rückgabewert sind die Knoten- und Kanten-IDs N ′, E ′ aus
dem Wirtsgraphen G.

Mit Hilfe der Funktion graphID wird nachfolgend die Funktion assign formuliert (siehe
Anhang A, Abbildung A.2), mit der die Guards T und Resets R zu Tm und Rm überführt
werden.
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Die hierdurch entstandenen Guards Tm und Clockresets Rm gelten ausschließlich für die
momentane Anwendung der Graphtransformationsregel Pt bezüglich m innerhalb des
Wirtsgraphen G.

4.4.2.2 Erzeugen einer Folge-Clockzone

Bevor für die durch prod hergeleiteten Graphmorphismen m angewendet werden, muss
an dieser Stelle überprüft werden, von welchen Graphzuständen 〈G, φ〉 aus zusammen
mit den Guards T ′ eine Clockzone φ′ mit Hilfe der Funktion succφ(φ, I, ϕ) aus Kapitel
2.3.5.3 hergeleitet werden kann. Um diese Funktion anwenden zu können, sind die dem
aktuellen Zustand zugehörigen Invarianten I notwendig.

Diese Invarianten werden hergeleitet, indem die einzelnen Invariantenregeln It ∈ I auf
den Wirtsgraphen G angewendet werden. Dabei kann die Funktion prod aus Kapitel
2.3.5.4 verwendet werden, um die Menge der Morphismen M herzuleiten. Die Funkti-
on benötigt eine linke und rechte Anwendungsseite L und R, sowie einen Morphismus
m. Eine Invariantenregel It := (Il, h, t, Vi, Ei, f) besitzt keine rechte Anwendungsseite
R. Dabei ist bei It diese identisch mit Il, also ergibt sich R,L = Il und m = h. So-
mit kann die Funktion prod verwendet werden um die Menge der Graphmorphismen M
herzuleiten.

Aus diesen Graphmorphismen M können nach dem gleichen Schema wie in Kapitel
4.4.2.1 beschrieben die einzelnen Ungleichungen hergeleitet werden. Die hierdurch ent-
stehende Menge an Invarianten I , welche aus einzelnen zeitlichen Bedingungen i mit
Clockinstanzen besteht, wird der Funktion succφ(φ, I, T ′) zusammen mit der Clockzone
φ und den Guards T ′ übergeben. Als Ergebnis liefert succφ die Clockzone φsucc, bei der
es zu überprüfen gilt, ob diese leer ist1.

Falls φsucc einer leeren Clockzone entspricht, wird das Ergebnis verworfen. Ein Folge-
Clockzone kann entsprechend über die Funktion succφ nicht hergeleitet werden und somit
die Transition von dem Wirtsgraphen G aus Gt zu einem Folgegraphen G′ nicht über die
Clockzone φ an der zu m zugehörigen Stelle vorgenommen werden. Andernfalls wird da-
mit fortgefahren, die ClockresetsRm mit Hilfe der Funktion succ′φ aus Kapitel 2.3.5.3 auf
φsucc anzuwenden, um die Clockzone φ′ zu erhalten. Falls eine Clockzone φsucc nicht leer
ist, wird der aus dem Graphmorphismus m herleitbare Graph G′ erzeugt. Welche Knoten
vG′ und Kanten EG′ sich dabei aus m zu G′ ergeben, ist in Abschnitt 2.3.4 beschrieben.

Bevor mit Hilfe des so erzeugten Graphen G′ und der Clockzone φ′ ein Folgezustand
〈G′, φ′〉 zu dem zeitbehafteten FolgegraphenG′t hinzugefügt wird, müssen weitere Schrit-
te durchgeführt werden. Hierzu gehört die Erzeugung der Clockinstanzen des GraphenG′

durch die Clockinstanzregeln C, sowie die weitere Überarbeitung der Clockzone φ′. Bei

1Zu leeren Clockzones siehe Kapitel 2.3.5.3.
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4.4 Erreichbarkeitsanalyse

dieser müssen die Invarianten hinzugefügt werden, welche über die Anwendung der In-
variantenregeln auf G′ erzeugbar sind. Zusätzlich müssen alle zeitlichen Bedingungen t
entfernt werden, für die keine Clockinstanzen durch die einzelnen c ∈ C innerhalb von G′

erzeugt wurden.

4.4.2.3 Erzeugen der Clockinstanzen des Folgegraphen

Zur Erzeugung der Clockinstanzen C durch die Clockinstanzregeln aus C innerhalb des
Graphen G′ wird eine Funktion C = prodclock(C, G′) eingeführt (siehe Anhang A, Algo-
rithmus A.3).

4.4.2.4 Erzeugen des Folgezustands

Mit Hilfe der so erzeugten Clockinstanzen C, sowie den Invarianten I des Folgegraphen
G′, wird der Folgezustand hergeleitet. Innerhalb der Menge C können Clockinstanzen
vorhanden sein, die beim Folgegraphen G′ durch die Funktion prodclock neu erzeugt wur-
den. Diese neuen Clockinstanzen ergeben sich, indem alle Clockinstanzen c ∈ CG des
Graphen G aus der Menge C der Clockinstanzen des Graphen G′ entfernt werden. Die
resultierende Menge wird an dieser Stelle mit Cnew = C \CG bezeichnet. Diese hinzuge-
kommenen Clockinstanzen wurden gerade erst erzeugt und müssen entsprechend zu den
bereits existierenden in Relation gesetzt werden. Für die neu hinzugekommenen Clock-
instanzen cnew gilt, dass diese zu den bereits existierenden wie folgt in Relation gesetzt
werden müssen:

Für die Menge der Clockinstanzen Cold = C \ Cnew, welche bereits bei dem Vorgän-
ger Graphen G vorhanden waren, existiert eine Anzahl an Bedingungen innerhalb der
Clockzone φ′. Jede Clockinstanz cold ∈ Cold hat dort eine obere Schranke o und untere
Schranke u, für die gilt, dass o ∈ Z+ ∪ ∞ und u ∈ R+. Diese Schranken lassen sich
aus den zeitlichen Bedingungen t aus φ′ ermitteln. Für die hinzugekommenen Clockin-
stanzen cnew ∈ Cnew müssen für jede Clockinstanz aus cold ∈ Cold Ungleichungen der Art
cnew−cold ∼ −u und cold−cnew ∼ o hinzugefügt werden. o und umüssen dabei zu jedem
cold ermittelt werden. ∼ entspricht < oder ≤, je nachdem, welche Art der Ungleichung
bei dem entsprechenden t aus φ′ ermittelt wurde.

Nachfolgend werden die Invarianten I auf φ′ := φ′ ∪ I angewendet und anschließend
alle Bedingungen t = (xi − xj ∼ d) aus φ′ entfernt, für die gilt, dass mindestens eine
Clockinstanz xi oder xj nicht in C enthalten ist (siehe Anhang A, Algorithmus A.4).

Zum Abschluss werden mit der Funktion φ′ = succ′φ(φ′, R′), wie in Kapitel 2.3.5.3 be-
schrieben, die Clockresets R′ auf φ′ angewendet. Die hieraus resultierende Clockzone
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bildet zusammen mit dem Graphen G′ in Form des Tupels 〈G′, φ′〉 einen Folgezustand
des zeitbehafteten Folgegraphen G′t.

4.4.2.5 Zeitbehafteter Folgegraph

Um den gesamten zeitbehafteten Folgegraphen G′t zu berechnen, werden die hier vor-
gestellten Operationen bzw. Funktionen wie im Algorithmus productionm angewendet
(siehe Anhang A, Algorithmus A.5). Um alle durch Pt erzeugbaren Folgegraphen G ′t zu
berechnen, wird die Funktion productionm zum Algorithmus production erweitert (siehe
Anhang A, Algorithmus A.6).

4.4.3 Erreichbares Graphtransformationssystem

Abschließend kann nun beschrieben werden, wie sich mit den angegebenen Funktionen
der gesamte Erreichbarkeitsraum eines zeitbehafteten Graphtransformationssystems er-
zeugen lässt. Ausgangspunkt ist hierfür das zeitbehaftete Graphtransformationssystem
St := (Gt,G0

t ,Pt, It), wobei Gt eine Menge an zeitbehafteten Graphen Gt, G0
t die Menge

der initialen zeitbehafteten Graphen G0
t , Pt die Menge an zeitbehafteten Graphtransfor-

mationsregeln Pt und I die Menge der Invariantenregeln darstellt.

4.4.3.1 Erreichbarkeitsanalyse

Nach der Initialisierung und Erzeugung der Clockinstanzregeln C aus den einzelnen
Graphtransformationsregeln Pt wird die folgende Funktion reachGTSt aufgestellt (sie-
he Algorithmus 4.3), mit welcher der Zustandsraum des Graphtransformationssystems
aufgebaut wird. Dabei gibt es zwei Mengen Open und Closed, wobei die vorhandenen
Graphen aus St initial der Menge Open zugewiesen werden. Der Menge Closed sind alle
Graphen aus Gt zugewiesen, die nicht in der Menge der initialen Graphen G0

t vorhanden
sind.

Dabei arbeitet der Algorithmus wie folgt: Solange noch ein zeitbehafteter Graph Gt in-
nerhalb der Menge Open enthalten ist (Zeile 3), durchlaufe alle Graphen der Menge
Open (Zeile 4) und wende auf jeden Graphen die einzelnen zeitbehafteten Graphtrans-
formationsregeln Pt mit Hilfe der Funktion production an (Zeile 7). Für jeden dar-
aus resultierenden zeitbehafteten Folgegraphen G′t ∈ G ′t (Zeile 8) überprüfe, ob der
in G′t enthaltene einfache Graph G′ bereits in einem zeitbehafteten Graphen Gtmp :=
(Gtmp, Ctmp,Ztmp) der Mengen Open oder Closed vorhanden ist (Zeile 11-15). Falls dies
der Fall ist überprüfe, ob die Menge Z ′ der Folge-Clockzones des Graphen G′t nicht iden-
tisch mit der Menge Zf der Clockzones des Graphen Gf ist (Zeile 16). Falls dies zutrifft,
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4.4 Erreichbarkeitsanalyse

Algorithmus 4.3 procedure S ′t = reachGTSt(St, C)

procedure S ′t = reachGTSt(St, C)

1: St := (Gt,G0,Pt, It)
2: Open = G0

t , Closed = Gt \ G0
t

3: while Open 6= ∅ do
4: for all Gt ∈ Open : Gt := (G, C,Z) do
5: for all Pt ∈ Pt do
6: selfedge = false
7: G ′t = production(Gt, Pt, C, It) . *
8: for all G′t ∈ G ′t : G′t := (G′, C ′,Z ′) do
9: found := (Gf , Cf ,Zf )

10: found = NULL
11: for all Gtmp ∈ Open ∪ Closed : Gtmp := (Gtmp, Ctmp,Ztmp) do
12: if G′ = Gtmp then
13: found = Gtmp, break
14: end if
15: end for
16: if found 6= NULL ∧ Zf 6= Z ′ then . *
17: Zf = Z ′ ∪ Zf . *
18: Open = Open ∪ found . *
19: Closed = Closed \ found . *
20: if Gf = G then
21: selfedge = true
22: end if
23: end if
24: if found == NULL then
25: Open = Open ∪G′t
26: end if
27: end for
28: end for
29: if ¬selfedge then
30: Open = Open \Gt

31: end if
32: end for
33: end while

existierte bereits ein zeitbehafteter Graph innerhalb des Graphtransformationssystems,
der sich nur bezüglich der diesem zugeordneten zeitlichen Erreichbarkeitsraum unter-
scheidet. Somit wird dem bereits existierenden Graphen Gf die Vereinigung beider zeit-
lichen Erreichbarkeitsräume zugewiesen (Zeile 17). Anschließend wird Gf in die Menge
Open verschoben und aus Closed entfernt (Zeile 18 und 19). Die in Zeile 21 zugewiesene
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Variable behandelt einen Sonderfall, nämlich, dass der Mutter- und Tochtergraph iden-
tisch ist. In diesem Fall darf Gt nicht aus der Menge Open in Zeile 30 entfernt werden, da
zu Gt ein zeitlicher Erreichbarkeitsraum hinzugekommen ist. Falls kein entsprechender
Graph Gt innerhalb der Mengen Open ∪ Closed aufgefunden wird, so handelt es sich
bei G′t um einen neuen Graphen, welcher der Menge der offenen Graphzustände Open
zugewiesen wird (Zeile 20-21). Der Algorithmus ist beendet, wenn die Menge Open aller
offenen Graphen leer ist.

Im Vergleich mit dem Algorithmus zur Berechnung der erreichbaren Zustände eines
Graphtransformationssystems ohne zeitliche Bestandteile (siehe Kapitel 2.3.5.4) sind im
Wesentlichen die Zeilen, welche mit einem * am Ende versehen sind, hinzugekommen.

4.4.3.2 Prioritäten

Um die in Kapitel 2.3.4 beschriebenen Prioritäten zu berücksichtigen muss der oben ange-
gebene Algorithmus angepasst werden. Dabei wird davon ausgegangen, dass die zeitbe-
hafteten Graphtransformationsregeln Pt des zeitbehafteten Graphtransformationssystems
St := (Gt,G0

t ,Pt, It) zusätzlich über eine Priorität r ∈ N+ verfügen.

Hierbei muss die for-Schleife in Zeile 5 der Funktion reachGTSt so erweitert werden,
dass alle Graphtransformationsregeln Pt mit gleicher Priorität r in jeweils einer MengeQr

zusammengefasst werden. Die einzelnen Mengen werden dann mit der for-Schleife der
Zeile 5 abgearbeitet, wobei die Menge mit den Regeln, welche die höchste Priorität r ha-
ben, zuerst abgearbeitet wird. Vor jeder Abarbeitung wird überprüft, ob durch mindestens
eine der Regeln Pr der vorhergehenden Menge bereits ein oder mehrere Folgegraphen
hergeleitet wurden. Ist dies der Fall, so wird mit dem nächsten Graphen Gt in Zeile 4
fortgefahren.

4.4.3.3 Verifikationsverfahren

Um weitergehende Verifikationsverfahren wie etwa das Model Checking anwenden zu
können ist es notwendig, neben den erreichbaren Zuständen auch die Reihenfolge zu ken-
nen, in der diese erreicht werden. Eine entsprechende Erweiterung kann vorgenommen
werden, indem zu den Zuständen des Graphtransformationssystems zusätzlich die Über-
gänge angegeben werden. Ein solcher Zustand 〈G,Z〉 setzt sich zusammen aus einem
Graphen G sowie einer Clockzone Z. Entsprechend müssen für eine weitere Analyse
die Übergänge 〈G,Z〉 × 〈G′, Z ′〉 dem Graphtransformationssystem hinzugefügt werden.
Diese Übergänge können in dem Algorithmus reachGTSt beim Anwenden der Funktion
production in Zeile 7 erzeugt werden. Dabei entstehen aus dem GraphenGt := (G, C,Z)
zusammen mit den Folgegraphen G ′t die einzelnen Übergänge. G ′t setzt sich dabei wieder-
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um aus einer Anzahl an Graphen G′t := (G′, C ′,Z ′) zusammen. Die Übergänge ergeben
sich aus dem Kreuzprodukt 〈G,Z〉× 〈G′, Z ′〉 für alle G,Z aus Gt, und für alle G′, Z ′ der
G′t aus G ′t. Der Algorithmus reachGTSt kann hierzu in Zeile 7 um die folgenden Zeilen
ergänzt werden:

for all G′t ∈ G ′t : G′t := (G′, C ′,Z ′ do
TR := TR ∪ 〈G,Z〉 × 〈G′, Z ′〉

end for

TR bildet dabei die Menge der Transition ab, die innerhalb des Graphtransformationssys-
tems vorhanden sind.

4.4.3.4 Optimierung

Um den erzeugten Zustandsraum bei der Erreichbarkeitsanalyse möglichst klein zu hal-
ten, können bestimmte Teilzustände zusammengefasst werden. Dies betrifft die zeitlichen
Erreichbarkeitsräume Z, welche zusammen mit den einzelnen Graphen G einen Zustand
〈G,Z〉 bilden. Dabei kann es vorkommen, dass bei unterschiedlichen Zuständen 〈G1, Z1〉
und 〈G2, Z2〉 für die beiden Clockzones Z1 und Z2 gilt, dass die eine Teilmenge der ande-
ren ist. Dies ist der Fall, wenn beide die gleichen Clockinstanzen enthalten und zusätzlich
für die aufgespannten Erreichbarkeitsräume gilt, dass Z1 in Z2 enthalten ist bzw. Z2 in Z1

enthalten.

Falls dies der Fall ist und zusätzlich gilt, dass die beiden Graphen G1 und G2 isomorph
sind, kann der Zustand verworfen werden, bei dem die zugehörige Clockzone eine Teil-
menge der Clockzone des anderen Zustandes darstellt.

Um effizient feststellen zu können, ob eine Clockzone Teilmenge einer anderen ist, kann
mit der Datenstruktur der Difference-Bound-Matrice gearbeitet werden. Jede Clockzone
kann, wie in Kapitel 2.3.5.3 beschrieben, in Form einer Difference-Bound-Matrice dar-
gestellt werden. Jede Difference-Bound-Matrice kann in eine kanonische Form überführt
werden, womit entsprechende Vergleiche effizient möglich sind.

Eine derartige Optimierung macht nur Sinn, wenn keine erweiterten Verifikationsverfah-
ren angewendet werden sollen, für die gilt, dass diese die genaue Abfolge von erreichten
Zuständen kennen müssen. Dieser Fall ist etwa beim Model Checking gegeben. Dort ist
von Interesse, in welcher Reihenfolge die Zustände erreicht werden. Da durch die hier
aufgezeigte Optimierung einzelne Zustände wegfallen können, fallen damit entsprechen-
de Informationen über die logische Abfolge, in der diese erreicht wurden, ebenfalls weg.
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4.5 Evaluierung

Die hier vorstellten Konzepte wurden in [Neu07] prototypisch in dem Werkzeug GROO-
VE2 [Ren04, RKS06] umgesetzt. GROOVE ist ein Werkzeug zur Modellierung und Ana-
lyse von Graphtransformationssystemen. GROOVE bietet die Möglichkeit, den komplet-
ten Erreichbarkeitsraum eines Graphtransformationssystems zu erstellen. GROOVE be-
steht aus mehreren Teilwerkzeugen, einem Editor, Generator und Simulator. In dem Edi-
tor werden einzelne Graphtransformationsregeln erstellt, die später das Graphtransfor-
mationssystem aufspannen. Über den Simulator können später alle erreichbaren Zustände
ermittelt werden. Der Generator arbeitet ähnlich dem Simulator, jedoch ohne grafische
Oberfläche.

Das zu Beginn des Kapitels vorgestellte Beispiel (siehe Abschnitt 4.2.1) wurde in GROO-
VE modelliert. Dabei wurde das Beispiel erweitert derart, dass das Schienennetz nun auch
aus Weichen besteht, die zwei Ovale miteinander verbinden. Neben der einfachen Regel,
die eine Shuttlebewegung von einem Schienenabschnitt zum anderen beschreibt, muss
nun auch die Überfahrt einer Weiche mit Zeit beschrieben werden (siehe Abbildung 4.16).
Die vollständigen Regeln sind in Anhang B dargestellt.

Abbildung 4.16: Schienennetz

2http://groove.cs.utwente.nl/groove-home/
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In Abbildung 4.17 ist das aus der Erreichbarkeitsanalyse resultierende Graphtransfor-
mationssystem für das Beispiel dargestellt. Es besteht aus 28 Graphzuständen, 50 Tran-
sitionen zwischen den einzelnen Graphzuständen in Form von Kanten, sowie über 54
zeitliche Erreichbarkeitsräume. Die Analyse3 hat 2 Sekunden gedauert. Wird noch ein
weiteres Shuttle hinzugefügt, entstehen 165 Graphzustände, 537 Transitionen sowie 869
zeitliche Erreichbarkeitsräume. Bei diesem Szenario dauert die Analyse 7 Sekunden.

Eines der größten Probleme bei der Analyse von komplexeren Modellen ist die steigen-
de Anzahl an Clockzones, welche zusammen mit den Graphzuständen einen Zustand des
erweiterten Graphtransformationssystems abbilden. Dies liegt vor allem daran, dass eine
Clockzone mit n Clockinstanzen die Größe n2 hat. Hier greift die Optimierung, welche
ebenfalls in GROOVE implementiert wurde. Ist diese aktiv, verringert sich die Anzahl
der zeitlichen Erreichbarkeitsräume bei dem Szenario mit drei Shuttles auf 698. Die Ana-
lyse hat hierbei 8 Sekunden gedauert. Die erhöhte Analysezeit ist auf die Optimierung
zurückzuführen. Für eine detaillierte Auswertung des Optimierungsverfahrens wird auf
die Arbeit [Neu07] verwiesen.

Abbildung 4.17: Das resultierende Graphtransformationssystem

3Wurde auf einem Pentium 4, 2.4 GHz, 1 GB memory, OS Linux Redhat durchgeführt.
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4.6 Zusammenfassung

In diesem Kapitel wurden Modellierungs- und Verifikationstechniken für das äußere Ver-
halten eines OCMs in der Umwelt vorgestellt. Bei der Modellierung wurde auf den For-
malismus der Graphtransformationssysteme zurückgegriffen, der hier durch Zeitannota-
tionen angereichert wurde. Die Zeitannotationen basieren auf den Konzepten der Timed
Automata. Da diese aber nicht so einfach übernommen werden können, wurde hierzu
zuerst ein Vergleich beider Modelle diskutiert. Aufgrund dieser Erkenntnis wurden Kon-
zepte zur Modellierung von zeitbehafteten Graphtransformationssystemen definiert. Nach
der formalen Definition eines zeitbehafteten Graphtransformationssystems wurden an-
schließend die Erreichbarkeitsanalyse für ein solches System und Algorithmen hierfür
beschrieben. Am Ende des Kapitels wurde eine Evaluierung des Ansatzes gezeigt.
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Kapitel 5

Parametrisierte
Koordinationsmuster

In den beiden vorangegangenen Kapiteln wurde beschrieben, wie sich ein OCM model-
lieren und verifizieren lässt. Der Fokus dieses Kapitels steht nun auf der Modellierung
und Verifikation der Koordination von OCMs in vernetzten mechatronischen Systemen.
Hierbei werden die bisher vorgestellten Techniken aus den vorangegangenen Kapiteln
miteinander geschickt verknüpft.

Ein wichtiges Problem bei vernetzten mechatronischen Systemen ist, dass jedes Teilsys-
tem eine potentiell unterschiedliche lokale Sicht haben kann, auf deren Basis jederzeit
Entscheidungen autonom und lokal getroffen werden müssen. Die Logik aller Teilsyste-
me muss dabei auf Basis dieser lokalen Sicht bei einem Teilausfall im Gesamtsystem
so koordiniert reagieren, dass Gefahren ausgeschlossen sind. Im Beispiel der „Neuen
Bahntechnik Paderborn“ (siehe Abschnitt 1.2) müssen die Shuttles trotz möglicher Fehler
immer ein sicheres Fahrmanöver garantieren. Diese Sicherheitseigenschaft muss für das
modellierte Verhalten des Shuttles überprüft werden. Diese Überprüfung muss alle mögli-
chen Situationen betrachten und den Ausschluss der Gefahren durch formale Verifikation
absichern.

Der bisherige MECHATRONIC UML Ansatz stellt das Konzept der Echtzeit-
Koordinationsmuster (siehe Grundlagen 2.4.2) zur Verfügung, um die Koordination
verteilter Komponenten zu modellieren und formal zu verifizieren. Weiter unterstützt
der Ansatz eine Integration der benötigten Steuer- und Regelungsalgorithmen (siehe
Grundlagen 2.4.4).

Ziel dieses Kapitels ist es nun, für Verifikationszwecke eine abstrakte Betrachtung des re-
levanten Werte- und Zeit-kontinuierlichen Verhaltens der Koordinationslogik zu ermög-
lichen. Dabei werden entsprechend benötigte Eigenschaften der unterlagerten Regelung,
die mit klassischen Techniken der Regelungstechnik und Mathematik verifiziert werden
können, als Basis für weitere Betrachtungen verwendet. Darauf aufbauend lässt sich dann
durch formale Verifikationstechniken für Echtzeitsysteme eine Verifikation der benötigten
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Sicherheitseigenschaften der Echtzeitkoordination bzgl. der relevanten Fehlerszenarien
erreichen.

Zuerst wird mit dem in den Grundlagen (siehe Kapitel 2.4.1) vorgestellten Ansatz zur
Modellierung der bisherigen Echtzeit-Koordinationsmuster das Beispiel der Konvoiko-
ordination noch einmal kurz beschrieben. Hieran werden anschließend die Grenzen des
bisherigen Ansatzes aufgezeigt (siehe Abschnitt 5.2). Anhand eines erweiterten Beispiels
wird in Abschnitt 5.3 die Idee eine Lösungsidee vorgestellt. Anschließend werden die in
diesem Kapitel neu eingeführten parametrisierten Koordinationsmuster in Abschnitt 5.4
zuerst informal eingeführt und später formalisiert. Abschließend werden die nötigen Ve-
rifikationsschritte für ein parametrisiertes Koordinationsmuster beschrieben. Das Kapitel
schließt mit einer Zusammenfassung in Abschnitt 5.5.

5.1 Beispiel

Mit dem kompositionellen Ansatz aus [GTB+03] ist es möglich, die Kommunikation zwi-
schen Komponenten durch so genannte Echtzeit-Koordinationsmuster (siehe Kapitel 2.4)
zu modellieren. Das Verhalten der Koordinationsmuster wird später bei der Anwendung
zum Verhalten der Komponenten verfeinert.

In Abbildung 5.1 ist ein Echtzeit-Koordinationsmuster dargestellt. Es besteht aus
mehreren Kommunikationspartnern, den so genannten Rollen. Rollen interagieren
über einen Connector, durch den sie verbunden sind. Das Verhalten der Rollen und
des Connectors wird durch Realtime Statecharts realisiert. Weiterhin besitzt eine
Rolle Invarianten, welche eingehalten werden müssen. Das ganze Verhalten eines
Echtzeit-Koordinationsmusters kann durch Constraints eingeschränkt werden.

In dem Beispiel wird die sichere Echtzeitkoordination in einem Konvoi für zwei hinter-
einander herfahrende Shuttles durch ein Echtzeit-Koordinationsmuster beschrieben. Das
Echtzeit-Koordinationsmuster ConvoyCoordination besitzt zwei Rollen, die Rolle shuttle
und die Rolle coordinator und einen Connector, der diese verbindet. Die Eigenschaft, die
das Echtzeit-Koordinationsmuster zu erfüllen hat, ist, dass wenn das hinterherfahrende
Shuttle im Konvoimodus ist, auch das vorherfahrende Shuttle im Konvoimodus sein muss
(shuttle.Convoy implies coordinator.convoy). Wäre das hinterherfahrende Shuttle näm-
lich im Konvoimodus, das vorherfahrende jedoch nicht, würde in einer Notfallsituation
das vorherfahrende Shuttle aufgrund der lokalen Information nicht richtig reagieren und
einen Auffahrunfall verursachen.

In Abbildung 5.2 ist die Anwendung des Echtzeit-Koordinationsmusters gezeigt. Im Bei-
spiel wendet das Shuttle shuttle2 die Rolle shuttle an und das Shuttle shuttle1 übernimmt
die Rolle coordinator.
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shuttle coordinator

ConvoyCoordination

shuttle.convoy implies coordinator.convoy

Abbildung 5.1: Echtzeit-Koordinationsmuster ConvoyCoordination

<<Component>>

shuttle2 :Shuttle

shuttle <<Component>>

shuttle1 :Shuttle

coordinator

Abbildung 5.2: Anwendung des Echtzeit-Koordinationsmuster ConvoyCoordination

5.2 Grenzen des bisherigen Ansatzes

Der bisherige MECHATRONIC UML Ansatz stellt die fundamentalen Konzepte zur kom-
positionellen Modellierung und Verifikation zur Verfügung. Jedoch hat der bisherige ME-
CHATRONIC UML Ansatz eine Reihe von Einschränkungen hinsichtlich der zur Beschrei-
bung der Koordination von OCMs verwendeten Echtzeit-Koordinationsmuster. Dies lässt
sich an den folgenden zwei Punkten manifestieren.

Dynamik: Ein Echtzeit-Koordinationsmuster besteht a priori immer aus einer festen
Anzahl von Rollen. Anforderungen an komplexe, mechatronische Systeme sehen jedoch
mehr Dynamik vor. Am Beispiel des Shuttlekonvois ist dies gut zu verdeutlichen. So ist
nachzuvollziehen, dass ein Konvoi, um auch wirklich energieeffizient zu sein, aus mehr
als zwei Shuttles bestehen muss. Dabei ist die Anzahl der Konvoiteilnehmer zum Zeit-
punkt der Instanziierung des Koordinationsmusters unbekannt. Mal muss ein und dasselbe
Koordinationsmuster einen Konvoi der Länge k und im nächsten Moment einen Konvoi
der Länge k + 1 koordinieren, ohne die Stabilität eines Konvois dabei zu verletzten.

Stabilität: Bei den bisherigen Echtzeit-Koordinationsmustern steht das Koordinations-
verhalten nicht in Verbindung mit dem Werte-kontinuierlichen Verhalten eines OCMs.
Um jedoch die Stabilität eines Shuttlekonvois zu erreichen und damit das „Aufschau-
keln“ und den so genannten Ziehharmonikaeffekt zu vermeiden, muss zusätzlich zur
reinen Echtzeitkoordination das Werte-kontinuierliche Verhalten berücksichtigt werden.
So müssen Brems- und Beschleunigungssituationen, die durch nicht-lineares Verhalten
beschrieben werden, berücksichtigt werden. Eine alleinige Verbindung beider Verhalten
durch das Synchronisationsstatechart innerhalb eines OCMs durch ein Hybrides Rekon-
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figurations Chart (siehe Grundlagen 2.4.4) kann dies noch nicht garantieren. Alleine die
Koordination durch einen Konvoiführer, der auch die Werte-kontinuierlichen Vorgaben
hinsichtlich Brems- und Beschleunigungssituationen initial vorgibt sowie bei dynami-
schen Änderungen zur Laufzeit diese neu verteilt, kann dies garantieren.

Durch das im Folgenden erweiterte Konvoibeispiel wird die Idee, wie diese Probleme
durch die Modellierung mit MECHATRONIC UML gefasst werden können, beschrieben.

5.3 Erweitertes Beispiel

Das erweiterte Beispiel setzt auf dem Beispiel aus Abschnitt 5.1 auf. Es wird nun
ein Konvoi der Länge n betrachtet (siehe Abbildung 5.3). Bei der Verhaltensmodellie-

Abbildung 5.3: Konvoi der Länge n

rung für die Konvoibildung und -fahrt muss neben dem idealisierten fehlerfreien Fall
auch der Ausfall einzelner Systemelemente betrachtet werden. Das modellierte Verhalten
muss hierbei nicht tolerierbare Gefahren ausschließen. Durch Szenarien (siehe Echtzeit-
Sequenzdiagramme, Abschnitt 2.4.2) wurden die folgenden in dem vorliegenden Anwen-
dungsbeispiel identifizierten regulären Abläufe des Systems beschrieben:

(1) n-Shuttles fahren in einem Konvoi,

(2) Shuttle/Konvoi fährt auf ein weiteres Shuttle/Konvoi auf,

(3) n-Shuttles fahren unabhängig,

(4) Konvoi fährt mit Sicherheitsabstand hinter einem andern Konvoi und

(5) Auflösung eines Konvois in zwei unabhängige Konvois bzw. in n-Shuttles.

Anhand der Techniken zur Gefahrenanalyse, die von Tichy in seiner Arbeit vorgestellt
werden [Tic08], konnten die in den Szenarien beobachteten Hazards:

(i) die Kollision von mehreren Shuttles,

(ii) die Kollision eines Shuttles mit einem Gegenstand oder
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(iii) die Entgleisung eines Shuttles

genauer analysiert werden. In Abbildung 5.4 ist ein Ausschnitt eines Fehlerbaums darge-
stellt, der den Hazard Kollision mehrerer Shuttles genauer analysiert und beschreibt. Es
ist zu sehen, dass entweder der (a) Ausfall eines einzelnen Shuttles oder der (b) (partielle)
Ausfall des Netzwerks oder gar der (c) Ausfall des Streckenstators zu dem Hazard füh-
ren kann. Die primären Ereignisse, die jeweils die Ursache darstellen, werden hier nicht
genauer beschrieben (grau dargestellt).

Ausfall eines 
Shuttles

(partieller)Ausfall 
des Netzwerks

Ausfall 
Streckenstator

Kollision mehrerer 
Shuttles

≥1

& ≥1 ≥1

Abbildung 5.4: Fehlerbaum

Die Analyse sowie der Fehlerbaum sind nicht vollständig, sondern sollen hier nur an-
deuten, welches Fehlverhalten von dem Protokollverhalten bei einen Konvoi abgedeckt
werden muss, um ein sicheres Konvoimanöver zu garantieren.

5.3.1 Lösungsidee

Um die in Abschnitt 5.2 aufgezählten und im Abschnitt 5.3 am Beispiel verdeutlich-
ten Anforderungen adäquat für die Modellierung und Verifikation umzusetzen, wird im
Folgenden eine Lösungsidee vorgestellt. Um die Komplexität auch hier zu beherrschen,
wird das Zeit-kontinuierliche Verhalten getrennt vom Werte-kontinuierlichen Verhalten
betrachtet. In Abbildung 5.5 ist die Idee der Dekomposition skizziert. Die obere Hälfte
der Abbildung zeigt die Modellierung des Komponentenverbunds eines Shuttlekonvois.
Jede Komponente kommuniziert mit ihrer Nachbarkomponente. In einer Komponente
selber ist das interne, sowohl Zeit-kontinuierliche als auch Werte-kontinuierliche Ver-
halten, skizziert. Der untere Teil der Abbildung zeigt die Dekomposition des Modells.
Der Komponentenverbund wurde in die Kommunikation und die Komponenten (siehe
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Kompositioneller Ansatz), aufgeteilt. Weiterhin wurde auch das interne Verhalten de-
komponiert. So ist zu erkennen, dass nun das Zeit-kontinuierliche Verhalten von dem
Werte-kontinuierlichen Verhalten getrennt ist. Dies ermöglicht, wie schon beschrieben,
eine getrennte Verifikation der einzelnen Verhalten, welches im Folgenden beschrieben
wird.
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Abbildung 5.5: Dekomposition der Struktur

Zeit-kontinuierliche Verhalten: Um das Zeit-kontinuierliche Verhalten für eine be-
liebige Anzahl von gleichen Rollen zu modellieren, werden parametrisierte Rollen ver-
wendet. Eine parametrisierte Rolle steht hierbei für eine Menge von Unterrollen, die sich
untereinander synchronisieren können, um nach außen hin als eine Einheit aufzutreten.
In Abbildung 5.6 ist dies schematisch dargestellt. Mparam ist hierbei eine parametrisier-
te Rolle. Bei der Anwendung wird das Verhalten wie in der Abbildung dargestellt. Die
parametrisierte Rolle wird quasi entfaltet. Die einzelnen Unterrollen koordinieren sich
untereinander durch ausgezeichnete Signale. In dem Beispiel ist es das Signal nexti.

Eine Unterrolle kann als Struktur aufgefasst werden. Das Hinzufügen und das Löschen
von einzelnen Unterrollen kann durch zeitbehaftete Graphtransformationssysteme be-
schrieben werden. Diese besitzen die Möglichkeit, strukturdynamische Änderungen mit
Zeitbedingungen zu modellieren (siehe Kapitel 4). Die Integration der Graphtransfor-
mationssysteme geschieht nach dem von Klein [HHG08][Kle08] vorgestellten Ansatz.
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!next2 !next3 ?nextn
……………..

?next2

M1 M2

M

Mn

Mparam

Parametrisierte Rolle Mparam

Entfaltete parametrisierte Rolle - Koordination der Unterrollen 

Abbildung 5.6: Parametrisierte Rolle mit zugehöriger Entfaltung und Koordination der
Unterrollen

Hierbei wird ein gemeinsames Metamodell zur Integration beider Formalismen vorge-
schlagen. Nachdem nun die Idee für die Modellierung des Zeit-kontinuierlichen Verhal-
tens skizziert wurde, wird die Lösungsidee für das Werte-kontinuierliche Verhalten vor-
gestellt.

Werte-kontinuierliche Verhalten: Basis der Lösungsidee sind Fahrprofile, die den
Shuttles, die an einem Konvoi teilnehmen, von einem Leitfahrzeug zugeteilt werden. Im
Normalbetrieb werden diese Fahrprofile ständig der aktuellen Situation angepasst und
zwischen den Fahrzeugen kommuniziert. Ein solches Fahrprofil beinhaltet im Wesentli-
chen einen Bremskorridor, der dem jeweiligen Shuttle vorgibt, wie es sich in den verschie-
denen betrachteten Gefahrensituationen zu verhalten hat. Maßgeblich wird ein Bremskor-
ridor durch die physikalischen Eigenschaften eines Shuttles sowie durch die Position des
Shuttles im Konvoi bestimmt. Um die Gefahr einer Kollision zu vermeiden, werden hier
die diskutierten Ausfälle (a), (b) und (c) betrachtet.

Ein Ausfall eines Shuttles (Ausfallszenario (a)) und der partielle Ausfall des Netzwerks
(Ausfallszenario (b)) ist Abbildung 5.7(a) zu entnehmen. In dem dort betrachteten Szena-
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rio fällt Fahrzeug 2 aus. Die Fahrzeuge, die sich in dem Konvoi vor Fahrzeug 2 befinden,
hier Fahrzeug 1, fahren weiter. Die Fahrzeuge, die sich hinter Fahrzeug 2 befinden, hier
Fahrzeug 3, bremsen so stark wie möglich ab.

Abbildung 5.7(b) zeigt das Bremsverhalten bei einem Statorausfall. Um eine Kollision
bei dem Bremsvorgang zu vermeiden, bremsen die Fahrzeuge zeitverzögert, wodurch die
Bremskorridore disjunkt sind und damit keine Kollision auftreten kann.

(a) Bremsverhalten Netzwerkausfall Fahrzeug 2 (b) Bremsverhalten Statorausfall

Abbildung 5.7: Mögliches Bremsverhalten

Nachdem nun die Ideen skizziert wurden, werden im Folgenden detailliert der regelungs-
technische Entwurf sowie der Softwaretechnische Entwurf zur Modellierung und Verifi-
kation beschrieben.

5.3.2 Regelungstechnischer Entwurf

Ausgangspunkt für die hier betrachteten Überlegungen ist ein geregeltes Fahrzeug. Dabei
müssen die zwei grundlegenden Fälle der Geschwindigkeitsregelung und der Abstands-
bzw. Positionsregelung unterschieden werden. Ein einzelnes Fahrzeug bzw. das erste
Fahrzeug im Konvoi soll sich mit einer vorgegebenen Geschwindigkeit vsoll bewegen. Die
folgenden Fahrzeuge haben im Konvoi eine auf das Führungsfahrzeug bezogene Positi-
on einzunehmen und einen bestimmten Abstand zum direkt vorausfahrenden Fahrzeug
einzuhalten. Um die Regelungen für die beiden beschriebenen Fälle auszulegen, wur-
de zunächst ein Fahrzeug als Starrkörper mit dem Entwicklungswerkzeug CAMeL-View
[Ric96] modelliert, wobei nur die Längsdynamik berücksichtigt wird. Für die Geschwin-
digkeitsregelung genügt hier ein einfacher PI-Regler mit Anti-Windup (Abbildung 5.8),
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um Probleme durch den Integratoranteil zu vermeiden, die sich aus der Begrenzung der
Antriebskraft ergeben. Der Linearantrieb ist im Modell vereinfacht durch ein Verzöge-
rungsglied erster Ordnung mit nachgeschaltetem Begrenzer abgebildet.

Abbildung 5.8: CAMeL-View-Modell eines geschwindigkeitsgeregelten Fahrzeugs

Dieser Geschwindigkeitsregelung ist für die Konvoifahrzeuge ein Abstands- bzw. Positi-
onsregler überlagert, der einerseits die Position des Fahrzeugs bezogen auf die aktuelle
Position des führenden Fahrzeugs regelt, andererseits den Abstand und die Differenzge-
schwindigkeit zum direkt vorausfahrenden Fahrzeug berücksichtigt, um Kollisionen aus-
schließen zu können [HVB+05]. Durch diese Regelungsstrategie kann die Stabilität eines
Konvois auch für längere Konvois garantiert werden. Allerdings ist dafür die Kommuni-
kation jedes Fahrzeugs mit dem direkt vorausfahrenden Fahrzeug und dem Leitfahrzeug
notwendig. Die erforderliche Kommunikationsstruktur ist in Abbildung 5.9 dargestellt.
Sie gliedert die Informationsverarbeitung anhand der im Grundlagenkapitel vorgestellten
Strukturierung mechatronischer Systeme (siehe Abschnitt 2.1) hier in Autonome Mecha-
tronische Systeme (AMS), nämlich den einzelnen Fahrzeugen, und Vernetzte Mechatro-
nische Systeme (VMS), den gesamten Konvoi. Die hier vorgeschlagene Regelung eines
Konvois wurde bereits erfolgreich im RailCab-Projekt umgesetzt und in der Praxis er-
probt [HTBS08]. Die vorgestellte Regelung geht von idealisierten Bedingungen unab-

Abbildung 5.9: Struktur der Informationsverarbeitung im Konvoi

hängig von äußeren Einflüssen, Unterschieden in der Fahrzeugdynamik und den eingangs
erwähnten möglichen Fehlern aus. Um den kollisionsfreien Betrieb des realen Systems
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gewährleisten zu können, sind also zusätzliche Überlegungen erforderlich. Der hier vor-
gestellte Ansatz zielt darauf ab, gewisse Grenzen für das Verhalten eines einzelnen Fahr-
zeugs nachzuweisen, die das geregelte System mit Sicherheit nicht überschreitet.

Wir betrachten hier als mögliche Fehler (a) den Ausfall des Antriebsmotors eines Shutt-
les, (b) den Kommunikationsausfall und (c) den streckenseitigen Ausfall des Motors (Sta-
torausfall). Tritt einer dieser Fehler auf, müssen die betroffenen und alle nachfolgenden
Fahrzeuge bis zum Stillstand abgebremst werden1. Für das Bremsen stehen drei Möglich-
keiten zur Verfügung. Die notwendige Bremskraft kann über den Linearantrieb erzeugt
werden. In diesem Fall kann auf ein vorgegebenes Geschwindigkeitsprofil zurückgegrif-
fen werden, das kontrolliertes Bremsen ermöglicht. Zusätzlich existiert eine mechanische
Notbremse, die über Federn Bremsklötze direkt auf die Schienen drückt. Außerdem kön-
nen beide Bremsen gleichzeitig eingesetzt werden. Je nach auftretendem Fehler stehen
allerdings nicht alle drei Möglichkeiten zur Verfügung. Fällt der Linearantrieb strecken-
oder fahrzeugseitig aus, kann nur die mechanische Notbremse eingesetzt werden. Dieser
Fall soll beispielhaft für die Vorausberechnung von Grenzen betrachtet werden, die das
System unter Berücksichtigung der Modellunsicherheiten einhält.

Der tatsächliche Bremsweg hängt bei den mechanischen Notbremsen im Wesentlichen
von den Fahrzeugeigenschaften wie Masse und aktuelle Geschwindigkeit und dem Reib-
koeffizienten µ ab. Da dieser nicht als exakt bekannt vorausgesetzt werden kann, muss
man auf Minimal- bzw. Maximalwerte zurückgreifen. Ein mechanisch gebremstes Fahr-
zeug wird dann in einem Bereich zwischen dem minimal und maximal möglichen Brems-
weg zum Stehen kommen. In Abbildung 5.10 ist das Ergebnis einer Simulation dieser Si-
tuation dargestellt, bei der der Reibkoeffizient während des Bremsvorgangs bei t = 1, 7s
sprungförmig abnimmt. Das Fahrzeug bewegt sich innerhalb der für die Position und Ge-
schwindigkeit vorausberechneten Korridore für µmin und µmax, die ohne exakte Kenntnis
des tatsächlichen Reibkoeffizienten angegeben werden können. Für Bremsvorgänge mit
dem Linearantrieb lassen sich diese Korridore noch genauer vorhersagen, da dann das
Bremsen vom Geschwindigkeitsregler kontrolliert nach einem vorgegebenen Profil ab-
läuft. Auf diese Weise kann jedes Fahrzeug vorausberechnen, in welchen Grenzen es sich
im Fall einer der drei möglichen Notbremsungen bewegen wird. Darauf aufbauend lässt
sich überlagert das Verhalten der Fahrzeuge im Konvoi und im Fehlerfall modellieren und
mit den im Folgenden beschriebenen Verfahren verifizieren.

1Bei Kommunikationsausfall sind auch andere kontrollierte Manöver denkbar, z.B. das autonome Fahren
mit vergrößertem Abstand mit Hilfe von Abstandssensoren. Diese Betrachtungen ändern nichts an dem
vorgestellten Ansatz zur Verifikation des sicheren Verhaltens und werden deshalb nicht näher betrachtet.
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Abbildung 5.10: Bremskorridore bei einer mechanischen Notbremsung

5.3.3 Softwaretechnische Umsetzung

Um nun die neuen Anforderungen, beliebige Anzahl von Rollen sowie Werte-
kontinuierliches Reglerverhalten zu integrieren, wird das Konzept der modell-basierten
Entwicklung mit Echtzeit-Koordinationsmustern erweitert.

Hierzu werden zum einen Abstraktionstechniken eingesetzt, die auf den zugesicherten
Eigenschaften der Regler aufbauen (siehe letzter Abschnitt). Um eine Verifikation durch-
führen zu können wird neben Model Checking das Verfahren der Induktion eingesetzt,
um Verhaltenseigenschaften über die Struktur zu beweisen. Dies wird im Folgenden ange-
deutet. Kontinuierliche Systeme besitzen einen unendlichen Zustandsraum. Dieses macht
eine formale Verifikation durch Model Checking alleine unmöglich, da hier ein endlicher
Zustandsraum benötigt wird. Um dennoch Werte-kontinuierliches, regelungstechnische
Verhalten zu verifizieren, im vorliegenden Fall kontinuierliches Beschleunigungsverhal-
ten, wird dieses durch Abstraktionstechniken auf ein endliches, diskretes System abge-
bildet. Der Abstraktion liegen die zugesicherten Eigenschaften des Reglers zu Grunde.
Dadurch ist es möglich, das Verhalten dieser einzuschränken. In dem Beispiel wird das
Verhalten durch so genannte Bremskorridore beschrieben. Diese geben das minimale und
maximale Beschleunigungsverhalten eines Shuttles an. Hierdurch ist es möglich, bei der
Modellierung das Verhalten der Shuttles weiterhin durch diskrete Zustände zu beschrei-
ben und die formale Verifikation durch Model Checking durchzuführen. Durch z.B. nu-
merische Überprüfung [Pra05][PJ04][PP05] muss nun vorab verifiziert werden, ob sich
die Bremskorridore schneiden oder nicht. Diese Überprüfung kann auch zur Laufzeit bei
Neuverteilung der Profile effizient durchgeführt werden.

Durch geeignete Modellierung des Kommunikationsprotokolls werden diese Eigenschaf-
ten im System umgesetzt. Um mit der beliebigen Anzahl n zurecht zu kommen, werden
hierfür parametrisierte Rollen verwendet. Jedem Shuttle wird ein so genanntes Fahrprofil
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pi zugeordnet. Dieses beinhaltet u.a. das Verhalten, wie es sich in Notfallsituationen zu
verhalten hat. Insgesamt gibt es n Fahrprofile. Für die Fahrprofile gilt die Eigenschaft,
dass pi immer eine Notfallreaktion in einem Konvoi garantiert, die ein Shuttle mit Fahr-
profil pj nicht in Gefahr bringt, wobei i <= j, gelten muss. In Abbildung 5.7(b) hat das
vorausfahrende Shuttle 1 das Fahrprofil p2 und Shuttle 2 und Shuttle 3 das Fahrprofil p1.
Dieses Verhalten wird formal über die Struktur des Modells (Konvoiteilnehmer) mittels
Induktion bewiesen. Da das Hinzufügen und Löschen von Unterrollen durch zeitbehafte-
te Graphtransformationssysteme beschrieben wird, kann zur Verifikation der Ansatz aus
Kapitel 4 herangezogen und mit Model Checking geschickt verknüpft werden.

Abbildung 5.11 skizziert die Struktur des ConvoyCoordinator. Die gestrichelten Pfeile
deuten die Abarbeitungsreihenfolge der beteiligten Rollen an, welche durch das Protokoll
realisiert werden muss.

<<Component>>

<<Component>>

coordinator :Coordinator

Shuttle

shuttlen
pi

shuttle2
pi

shuttle1
pi

Abbildung 5.11: Modellierung und Koordination eines multi-Ports – jedem Port und da-
mit Shuttle wird eine Eigenschaft pi zugeordnet

In Abbildung 5.12 ist in einem Sequenzdiagramm beispielhaft die Konvoikommunikation
für drei Shuttles modelliert. Hierbei ist der Coordinator als einzelne Komponente model-
liert. Diese kann sich aber als Unterkomponente auf dem Führungsshuttle befinden. Es ist
zu sehen, dass sich zuerst alle Shuttles bei dem Coordinator registrieren. Der Coordinator
berechnet daraufhin eine gültige Profilreihenfolge für die Shuttles und weißt diese ent-
sprechend zu. Periodisch wird nun die Erreichbarkeit aller Shuttles überprüft. Wenn die
Erreichbarkeit ausbleibt, also ein potentieller Netzwerkausfall vorliegt, werden von den
einzelnen Shuttles die entsprechenden Notfallroutinen gefahren, die durch das Profil, das
hierfür das regelungstechnische Verhalten vorgibt, bestimmt ist.

5.4 Parametrisierte Koordinationsmuster

In diesem Abschnitt wird das Konzept der neuen parametrisierten Koordinationsmuster
beschrieben. Hier werden die eben beschriebenen Modellierungskonzepte integriert.
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emergency

ping()

convoyPosition:=calculateConvoyOrder(); 
newProfile:=calculateProfile(): 

Abbildung 5.12: Beispielkommunikation für 3 Shuttles im Konvoi mit Netzwerkausfall

5.4.1 Informale Beschreibung

Genau wie die einfachen Echtzeit-Koordinationsmuster bestehen die parametrisierten
Koordinationsmuster aus Rollen und Connectoren. Dabei richtet sich die grundsätzliche
Idee der parametrisierten Koordinationsmuster nach den in der UML (siehe [OMG07],
Seite 168ff) beschriebenen Collaborations. In der UML werden die Collaborations ver-
wendet, um die dynamischen Beziehungen zwischen Rollen zu beschreiben. Jedoch ist
dies auf die reine Software bezogen, so dass kontinuierliche Aspekte (Stabilität) sowohl
auf der Ebene der Struktur als auch bei den Constraints, nicht berücksichtigt werden.

Abbildung 5.13 zeigt ein parametrisiertes Koordinationsmuster für die Konvoikoordina-
tion von n Shuttles. Ein optionales Modellelement sind die multi-Rollen. Multi-Rollen
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werden durch überlappende Quadrate dargestellt und besitzen eine Kardinalität n. Multi-
Rollen sind eine vereinfachte Darstellung für eine Menge von gleichen Rollen, die zum
gleichen Typ einer Komponente gehören. Im vorliegenden Beispiel der Konvoikoordina-
tion besitzt die Rolle shuttle die Kardinalität 1 und die coordinator Rolle die Kardinalität
n. Dieses bedingt eine eindeutige Zuordnung jeder „einfachen Rolle“ einer multi-Rolle
zu einem eindeutigen Gegenpart, ähnlich wie bei einer 1 zu n Assoziation in Klassendia-
grammen. Weiterhin ist es möglich, multi-Rollen mit Attributen wie {ordered} zu verse-
hen. Hierdurch wird eine Reihenfolge für die Auswertung der Rollen festgelegt. Weiterhin
hat jedes parametrisierte Koordinationsmuster Constraints, die das Verhalten, besonders
das der Profileigenschaften, beschreiben. Das Constraint ∀k,l∧k<l(Skpi

, Slpj
)⇒ |i− j| ≤ 1

beschreibt die Eigenschaft, dass die Profilreihenfolge zweier benachbarter Shuttles immer
monoton ist und sich die Profile in ihrem Index niemals um mehr als 1 unterscheiden.

ConvoyCoordination

n 1

{ ordered }

Abbildung 5.13: Parametrisiertes Koordinationsmuster

In Abbildung 5.14 ist der Typ Shuttle dargestellt. Die Komponente bettet zwei Unter-
komponenten Coordinator und VelocityControl ein. Das Verhalten der Komponenten ist
wie folgt definiert. Da die Komponente das parametrisierte Koordinationsmuster Convoy-
Coordination anwendet, muss sie sowohl als coordinator als auch als shuttle fungieren.
Der multi-Port ist durch eine Assembly mit der inneren Komponente Coordinator und Ve-
locityControl verbunden, um das obige Verhalten zu realisieren. Die flache Komponente
Coordinator realisiert die Berechnung sowie die Abspeicherung aller Profile im Führungs-
shuttle. Bei der Berechnung der Profile wird die aktuelle Geschwindigkeit benötigt. Die
Komponente VelocityControl bettet eine kontinuierliche Reglerkomponente ein, welche
diese Daten kontinuierlich zur Verfügung stellt.

In Abbildung 5.15 ist die Laufzeit-Instanz von zwei Shuttles dargestellt, welche das para-
metrisierte Koordinationsmuster ConvoyCoordination anwenden.

Das Verhalten bestimmt sich, wie in der Lösungsidee 5.3.1 beschrieben, sowohl durch
zeitbehaftete Graphtransformationssysteme als auch durch parametrisierte Automaten.
Dieses wird im Folgenden beschrieben.
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<< Component >>
Shuttle

<< Component >>
c: Coordinator

<< Component >>
vc1: VelocityControl

Abbildung 5.14: Der Typ Shuttle

<<Component>>

shuttle2 :Shuttle

shuttle coordinator <<Component>>

shuttle1 :Shuttle

Abbildung 5.15: Laufzeit-Instanz zweier Shuttles, welche das parametrisierte Koordina-
tionsmuster ConvoyCoordination anwenden

5.4.2 Modellierung des Verhaltens eines parametrisierten
Koordinationsmusters

5.4.2.1 Verhalten der Rollen

Wie schon in der im Abschnitt 5.3.1 skizzierten Lösung beschrieben werden, um die
multi-Rollen zu beschreiben, parametrisierte Automaten verwendet.

Die neue parametrisierte Rolle coordinator des parametrisierten Koordinationsmusters
ist in Abbildung 5.16 dargestellt. Die Erweiterungen hinsichtlich der Parameter bezie-
hen sich auf die Synchronisationskanäle nextk und nextFailedk. Über diese Kanäle syn-
chronisieren sich die n Rollen untereinander. Die Rolle befindet sich initial im Zustand
WaitForTrigger. Empfängt die Rolle das nextk Triggersignal (initial vom Synchronisa-
tionsstatechart und danach von der Vorgängerrolle), schaltet die Rolle in den Zustand
Idle. Nun beginnt der Kommunikationsaustausch mit der shuttle Rolle. Es wird ein up-
date Signal mit dem aktuellen Profil, welches das Shuttle annehmen soll, sowie der Be-
zugsgeschwindigkeit und der Bezugsposition verschickt. Danach wartet die Rolle in dem
Zustand SentAcknowledge auf die Bestätigung acknowledge des Gegenparts, der Rolle
shuttle. Wird diese empfangen, schaltet die Rolle wieder in den Zustand WaitForTrigger
und sendet dabei das nextk+1 Signal, um die nächste Rolle zu aktivieren. Empfängt die
Rolle kein acknowledge, schaltet die Rolle in den Zustand NextFailed und signalisiert
dies dem Synchronisationsstatechart, um geeignete Routinen zu aktivieren. Weiterhin be-
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sitzt die Rolle den Zustand StatorFailure. Dieser wird vom Zustand Idle erreicht, falls die
zugehörige shuttle Rolle dieses Signal propagiert.

Idle SentAcknowledge

WaitForTrigger NextFailed

shuttle.acknowledge(s_act,v_act)

/ shuttle.update(profile,s_ref,v_ref)

shuttle.publishStatorFailure

StatorFailure Stop

? nextFailedk

? nextFailedk
! nextk+1

? nextk

Abbildung 5.16: Das Verhalten einer parametrisierten Rolle coordinator

Die Rolle shuttle (siehe Abbildung 5.17) besteht aus drei Zuständen. Initial befindet sie
sich im Zustand Normal. Spätestens alle 150 Zeiteinheiten muss die Rolle ein update
Signal von der zugehörigen coordinator Rolle empfangen. Dies ist durch eine Selbsttran-
sition am Zustand realisiert. Das Signal beinhaltet das aktuelle Profil profile, die Bezugs-
position und die Bezugsgeschwindigkeit. Die Rolle bestätigt den Erhalt des Signals durch
ein acknowledge Signal, welches die aktuelle Position und die aktuelle Geschwindigkeit
enthält. Falls kein update Signal empfangen wird (z.B. Ausfall des Netzwerks), schaltet
die Rolle nach 150 Zeiteinheiten in den Zustand NetworkFailure. Der Zustand StatorFai-
lure wird nicht-deterministisch erreicht. Dabei wird der Fehler dann an die zugehörige
coordinator Rolle propagiert.

Nachdem nun die Rollen modelliert sind ist die Frage, wie sich diese in die Architektur
integrieren lassen. In Abbildung 5.18 ist hierfür eine hierarchische Architektur, die sich
nach dem kompositionellen Ansatz aus [GTB+03] richtet, vorgeschlagen. Hierbei wird
vorgeschlagen, eine zusätzliche Koordinationsschicht einzufügen. Diese Koordinations-
schicht beinhaltet einen weiteren Automaten, der es ermöglicht, die multi-Ports mit dem
eigentlichen Synchronisationsstatechart zu verbinden. Falls nur ein einfacher Port exis-
tiert, ist ein solcher Automat nicht notwendig.

Eine Shuttle Komponente, welche das parametrisierte Koordinationsmuster ConvoyCoor-
dination anwendet, muss sowohl als coordinator als auch als shuttle agieren. Ein Aus-
schnitt des Synchronisationsstatechart, dass beide Rollen triggern kann, je nachdem, in
welcher sich ein Shuttle befindet, ist in Abbildung 5.19 dargestellt. Die Entscheidung, ob
ein Konvoi erzeugt werden soll und welche Rolle das Shuttle einnimmt, wird vorher durch
den kognitiven Operator (siehe Kapitel 2.1) bestimmt, der Informationen z.B. von einer
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{timer}

Normal

timer<=150

150<=timer<=150 NetworkFailure

assert: controlledBrake

StatorFailure

assert: mechanicalBrake

0<=timer<150

{timer}

/ coordinator.statorFailure

coordinator.publishStatorFailure

coordinator.update(profile[i],s_ref,v_ref)
/ coordinator.acknowledge(s_act,v_act), currentProfile=profile[i]

Abbildung 5.17: Das Verhalten der Rolle shuttle

synchronization

...

m

1

coordinator

shuttle

<<Component>>

Shuttle

co
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di
na
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n coordinator.role1

coordinator.rolen

shuttle.role

Abbildung 5.18: Hierarchische Architektur

Schienenabschnittskontrolle über die Position und Reihenfolge der Shuttles bekommen
hat. Die Signale ?convoyUseful, ?shuttle und ?coordinator werden entsprechend getrig-
gert. Anschließend initiiert das jeweilige Synchronisationsstatechart die entsprechenden
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WaitNoConvoy Init

AddShuttlePort
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Abbildung 5.19: Synchronisationsstatecharts der Komponente Shuttle

Rollen, indem es das Signal start an die Rolle shuttle bzw. das Signal coordinateShuttle
an die Rolle coordinator sendet.

Ein Konvoi wird aufgehoben, wenn ein Fehler festgestellt wurde. Diese werden von den
Rollen festgestellt, wenn z.B. ein Signal nicht in der vorgegebenen Zeit angekommen ist.
Das Synchronisationsstatechart beginnt dann, nach der vorgegebenen Profil zu fahren. Die
Wiederherstellung und weitere Details werden hier nicht betrachtet.

Der neue Automat, in der Abbildung 5.18 als coordinator.adaptation bezeichnet, wird
durch das Synchronisationsstatechart getriggert. Danach hat es die Möglichkeit, die Akti-
on CreatePort(shuttle), getriggert durch das Signal createPort, eine neue Rolle der multi-
Rolle hinzuzufügen. Die neue Rolle wird entsprechend der Strukturregeln (siehe folgen-
der Abschnitt 5.4.3) angelegt. Hierbei wird auch entsprechend der Parameter k inkremen-
tiert. Dieser gibt Auskunft über die Anzahl der Shuttles und somit ist es möglich, immer
die nächste Rolle eines multi-Ports, entsprechend der vorgegebenen Eigenschaft ordered,
anzusprechen (siehe Abbildung 5.20).

In Abbildung 5.21 ist die verfeinerte shuttle Rolle dargestellt. Um dem Verhalten des
Synchronisationsstatecharts zu genügen, konsumiert es das Signal start. Falls ein Fehler
entdeckt wird, propagiert die Rolle ein entsprechendes Signal an das Synchronisations-
statechart.

Nachdem nun das Verhalten komplett modelliert ist, ist die Frage, wie sich die dynami-
schen Strukturänderungen zur Laufzeit modellieren lassen.
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Wait

IdleFailure
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! nextFailedn+1 ! nextn+1

n==k?n=1:n++

! next1

k:=1

k:=1 ? coordinateShuttle

Abbildung 5.20: Koordinationsstatechart für die multi-Rolle

Wait

{timer}

Normal

timer<=150

150<=timer<=150 NetworkFailure

assert: controlledBrake

StatorFailure

assert: mechanicalBrake

0<=timer<150

{timer}

/ coordinator.statorFailure

coordinator.publishStatorFailure

coordinator.update(profile[i],s_ref,v_ref)
/ coordinator.acknowledge(s_act,v_act), currentProfile=profile[i]

?start

! restoreConvoy

! restoreConvoy

?start

{timer}

Abbildung 5.21: Verfeinerte shuttle Rolle

5.4.3 Modellierung der dynamischen Strukturänderungen

Im Folgenden werden die Regeln, welche die erlaubten Strukturänderungen des parame-
trisierten Koordinationsmusters angeben (siehe 5.3.1), beschrieben. Die erlaubten Struk-
turregeln werden in das Verhalten integriert, wie in [HHG08] beschrieben. Um die Re-
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geln zu strukturieren, werden sie in Erweiterungsregeln und Reduzierungsregeln aufge-
teilt. Alle möglichen strukturellen Rekonfigurationsschritte für ein parametrisiertes Ko-
ordinationsmuster werden durch zeitbehaftete Graphtransformationsregeln (siehe Kapitel
4) beschrieben.

5.4.3.1 Erweiterungsregeln

In Abbildung 5.22 ist die initiale Regel, die erste Erweiterungsregel, welche das para-
metrisierte Koordinationsmuster für zwei Shuttles anwendet, dargestellt. Damit ist ein
eindeutiger Startgraph festgelegt. Wenn das parametrisierte Koordinationsmuster das ers-
te Mal angewendet wird, wird bei dem Führungsshuttle ein multi-Port angelegt. Das
hinterherfahrende Shuttle bekommt einen einfachen Port. Die Ports werden durch einen
Connector verbunden. Die Zeitbedingung t > 5 (siehe Kapitel 4) gibt an, dass dies min-
destens 5 Zeiteinheiten benötigt. Um auch eine Obergrenze für diese Aktion festzulegen,
ist in Abbildung 5.23 eine Invariantenregel (siehe Kapitel 4) dargestellt, die dem Graph-
transformationssystem hinzugefügt wird. Weiterhin wird dem Connector der Stereotyp
�last� hinzugefügt. Dieser gibt an, dass das hinterherfahrende Shuttle das letzte im
Konvoi ist. Damit ist markiert, an welcher Stelle neue Shuttles dem Konvoi beitreten kön-
nen.

Natürlich muss bei der Anwendung des parametrisierten Koordinationsmusters auch das
interne Verhalten sowie die interne Komponentenstruktur eines Shuttles rekonfiguriert
werden. Dies ist in der initialen Regel 5.22 ebenfalls angedeutet. Hier wird bei der Er-
zeugung des parametrisierten Koordinationsmusters im Führungsshuttle entsprechend die
Komponente Coordinator aktiviert. Wie die Erzeugung solcher Komponenten in das Ver-
halten von hybriden Rekonfiguration Charts integriert werden kann, ist in [Krä06] be-
schrieben.

: Shuttle

: Coordinator

: VelocityControl

:P

:P

: Shuttle

: VelocityControl :P :P:P ++ :P

:P:P
<< last >>  ++

t>5

clock:t

clock:t

clock:t

++ ++

++

++
++

++

Abbildung 5.22: Initiale Regel zur Anwendung des parametrisierten
Koordinationsmusters
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:P:P:P
<< last >>  

t<7

clock:t

clock:t

clock:t

Abbildung 5.23: Regel zur Erzeugung einer Zeitinvariante

Bei dem parametrisierten Koordinationsmuster gibt es noch eine weitere Erweiterungsre-
gel (siehe Abbildung 5.24). Die zweite Regel beschreibt das Auffahren eines Shuttles auf
einen bereits existierenden Konvoi (siehe Abbildung 5.24). Hierbei wird bei dem neu hin-
zukommenden Shuttle ein shuttle-Port erzeugt. Weiterhin wird ein Connector zum Füh-
rungsfahrzeug erzeugt. Der Stereotyp �last� wird entsprechend vom alten Connector
gelöscht und an den neu erzeugten Connector gebunden, um die letzte Position neu zu
markieren. Die Instanzsituation ist in Abbildung 5.25 dargestellt.

: Shuttle

: VelocityControl:P: Shuttle

: VelocityControl :P

:P

:P

<< create >> ++

:P

: Shuttle

: VelocityControl :P :P

:P

<< last >> --

<< last >> ++

t>5

clock:t

clock:t

clock:t

++

Abbildung 5.24: Ein Shuttle reiht sich hinten in den Konvoi ein

<< Component >>
shuttle1: Shuttle

<< Component >>
vc1: VelcityControl 

<< Component >>
shuttle2: Shuttle

<< Component >>
vc2: VelocityControl

<< Component >>
shuttle3: Shuttle

<< Component >>
vc3: VelocityControl

Abbildung 5.25: Instanzsicht nach der Anwendung von Regel aus Abbildung 5.24

5.4.3.2 Reduzierungsregeln

Um das Auflösen eines Konvois zu beschreiben, werden zusätzlich Reduzierungsregeln
benötigt. In Abbildung 5.26 ist dargestellt, wie das letzte Shuttle eines Konvois diesen
verlässt. Dabei werden die Ports vernichtet und der Connector ebenfalls. Um das neue
letzte Shuttle zu markieren, wird nun der Stereotyp �last� an den Connector des vor-
herfahrenden Shuttles gebunden.
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: Shuttle

: VelocityControl:P: Shuttle

: VelocityControl :P

:P

:P

<< destroy >> --

:P

: Shuttle

: VelocityControl :P :P

:P

<< last >> ++

<< last >> --

t>5

clock:t

clock:t

clock:t

--

Abbildung 5.26: Letztes Shuttle verlässt den Konvoi

Falls der Konvoi nur noch aus zwei Teilnehmern besteht, muss das parametrisierte Koor-
dinationsmuster entsprechend deinstanziiert werden. Bevor dies jedoch geschieht, muss
die Regel aus Abbildung 5.27 angewendet werden. Hierbei wird die Komponente Coor-
dinator im Führungsshuttle deaktiviert. Ebenfalls wird der Connector und die beteiligten
Ports vernichtet.

: Shuttle

: Coordinator

: VelocityControl

:P

:P

: Shuttle

: VelocityControl :P :P:P -- :P

:P:P
<< last >>  --

t>5

clock:t

clock:t

clock:t

<<destroy>>
--

--
--

Abbildung 5.27: Konvoi der Länge 2 wird aufgelöst

Als letztes wird eine Regel dafür angegeben, dass das Führungsshuttle den Konvoi ver-
lässt. Hierbei muss die Unterkomponente Coordinator des Führungsshuttles an das hinter-
herfahrende Shuttle übertragen werden. Ausserdem muss der multi-Port vernichtet wer-
den. Das hinterherfahrende Shuttle hingegen muss seine einfache shuttle Rolle nun in
einen multi-Port coordinator umwandeln. Die Regel ist in Abbildung 5.28 dargestellt.

Um die Verifikation eines parametrisierten Koordinationsmusters zu beschreiben, wird im
nächsten Abschnitt zuerst eine formale Definition eines parametrisierten Koordinations-
musters vorgenommen.

5.4.4 Formalisierung

Als erstes wird der zur Beschreibung des Verhaltens einer Unterrolle verwendete Forma-
lismus des Timed Automaton zu einem parametrisieren Timed Automaton erweitert.
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: Shuttle

: Coordinator

: VelocityControl

:P

:P

: Shuttle

:P-- :P

:P

: Coordinator

: VelocityControl

:P

:P

:P

:P

:P

clock:t
t>5

<<last>> --
clock:t clock:t

++

++
--

--
++

Abbildung 5.28: Führungsshuttle verlässt den Konvoi

Definition 34
Ein parametrisierter Timed-AutomatonA ist ein 7-TupelA := (Σ,S,S0, X, I, Sig(l, P ), T ),
wobei Σ ein endliches Eingabealphabet, S eine endliche Menge an Locations, S0 ⊆ S
eine endliche Menge von Start-Locations, X := (x1, .., xn) eine endliche Menge an
Clock-Variablen mit xi ∈ R+, I eine Zuordnungsfunktion I → C(X), welche den ein-
zelnen Locations eine Menge an Ungleichungen zuordnet, die so genannten Invarianten,
Sig(l, P ) eine Menge von Signalen, die mit l parametrisiert sind. P ist hierbei eine
spezielle Eigenschaft des Automaten. T ist die Menge der Transitionen. C(X) ist eine
Menge von Bedingungen über Clock-Variablen aus X . Dabei besteht C(X) aus einer
Menge an Ungleichungen der Form xi ≺ c∨ c ≺ xi, wobei ≺ entweder < oder ≤ ist und
c ∈ N+. Für T , die Menge der Transitionen, gilt T ⊆ S×Σ×C(X)×2X×Sig(l, p)×S .
Eine Transition von Location s nach s′ läßt sich durch ein 6-Tupel (s, a, ϕ, λ, sig, s′)
beschreiben. Dabei ist a ∈ Σ die Beschriftung der zugehörigen Kante, ϕ eine Bedingung,
die erfüllt sein muss damit die Transition schalten kann und λ ⊆ X eine Anzahl an
Clockvariablen, die beim Schalten auf 0 zurück gesetzt werden. sig ⊆ Sig(l, P ) ist ein
durch einen Parameter l gekennzeichnetes Signal, dass den Wert p ∈ P übermittelt.

Die parallele Ausführung zweier parametrisierter Automata Ai und Aj ist wie folgt defi-
niert:

Definition 35
Gegeben sei ein parametrisierter Timed-AutomatonAi := (Σi,S i,S0i, X i, I i, Sig(li, P i), T i)

und ein parametrisierter Timed-Automaton Aj := (Σj,Sj,S0j, Xj, Ij, Sig(lj, P j), T j)
wie in Definition 34 definiert. Jeder Automat Ai und Aj verhält sich lokal wie in
den Grundlagen (Abschnitt 2.3.2) beschrieben. Nur über die parametrisierten Signale
Sig(li, P i) und Sig(lj, P j) findet eine Synchronisation statt, wenn i = j ist. Dabei wird
P j := P i, falls i ≤ j

Mit dieser Beschreibung ist es nun möglich, eine Unterrolle zu definieren.
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Definition 36
Rl = (A,Ψ) ist eine Unterrolle mit dem Index l, wobei das Verhalten durch einen pa-
rametrisierte Timed Automaton A beschrieben wird. Ferner besitzt die Unterrolle eine
Menge von lokalen Constraints Ψ.

Hiermit lässt sich nun der Begriff einer multi-Rolle definieren:

Definition 37
Eine multi-Rolle eines parametrisierten Koordinationsmusters C ist definiert als ein 3-
Tupel MRC = (n,Rl, attr) wobei n die Multiplizität, Rl mit l ∈ {1 . . . n} die Menge
aller Unterrollen Rollen, attr eine Ordnung aufRl ist.

Definition 38
Mit I(MRC) ⊆ Σ× Sig(l, p) wird das Interfaceverhalten einer multi-Rolle bezeichnet.

Definition 39
Ein parametrisiertes Koordinationsmuster C = (MR,P ,Ψ(P ),PCt ,PRt ,PFt ) besteht
aus einer Menge multi-RollenMR, einer Menge von Profilen P = p1 . . . pn, Constraints
über die Profile Ψ(P ), einer Menge von zeitbehafteten Erzeugungsregeln sowie Reduzie-
rungsregeln PCt ,PRt sowie einer Menge von verbotenen Strukturregeln PFt .

5.4.5 Verifikation

Im Folgenden wird die Verifikation eines wie im letzten Abschnitt formal definierten pa-
rametrisierten Koordinationsmusters beschrieben. Wie eingangs im Kapitel beschrieben,
kommen hier die Techniken des Model Checking, die Analyse von Graphtransformations-
system sowie der Induktion zum Tragen.

Die Korrektheit hinsichtlich der spezifizierten Profileigenschaften einer multi-Rolle wird
induktiv bewiesen. Für die Verifikation eines parametrisierten Koordinationsmusters C
sind die folgenden Schritte notwendig:

1. Verifiziere mittels Model Checking, dass R1
MRC |= Ψ(R) ∧ ¬δ

2. Verifiziere Ri
MRC ||Ri+1

MRC |= ¬δ ∧ val(Ri
MRC ) ≤ val(Ri+1

MRC ), wobei val(Ri
MRC )

die Werte von p liefert, die in der Rolle angenommen werden können

3. Nutze den Ansatz aus Kapitel 4 um mittels Erreichbarkeitsanalyse zu überprüfen,
dass

a) die Zeitbedingungen der Regeln PCt und PRt eingehalten werden und

b) dass die durch die verbotenen Strukturregeln PFt beschriebenen Situationen
nicht auftreten.
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4. Verifiziere mittels Model Checking, dass I(MRC
1 )|| . . . ||I(MRC

k ) |= ¬δ (k Anzahl
der multi-Rollen von C) erfüllt ist.

Theorem 1
Ein parametrisiertes Koordinationsmuster erfüllt die hinsichtlich der Profile spezifizierten
Constraints Ψ(P ), wenn jeder Verifikationsschritt 1− 4 erfüllt ist.

Beweis 1
Beweis durch Induktion (Beweisskizze): (1) stellt sicher, das eine einzelne Rolle Ri einer
multi-Rolle hinsichtlich Ψ(Ri) korrekt ist und sie keinen Deadlock enthält (Induktions-
anfang). (2) beweist die Induktionsannahme, dass für zwei benachbarte parametrisierte
Rollen die Profileigenschaft erfüllt ist. Der Induktionsschritt wird durch (3) gezeigt. Das
korrekte Zusammenspiel aller einzeln verifizierten multi-Rollen eines parametrisierten
Koordinationsmusters wird durch die Verifikation der parallelen Komposition aller Inter-
faceverhalten der multi-Rollen gezeigt (4). (q.e.d.)

5.5 Zusammenfassung

In den beiden vorangegangenen Kapiteln wurde beschrieben, wie sich ein OCM model-
lieren und verifizieren lässt. Der Fokus dieses Kapitels steht nun auf der Modellierung
und Verifikation der Koordination von OCMs in vernetzten mechatronischen Systemen.
Hierbei werden die bisher vorgestellten Techniken aus den vorangegangenen Kapiteln
miteinander geschickt verknüpft.

Hierzu wurde zuerst der bisherige kompositionelle Ansatz zur Modellierung und Veri-
fikation der Echtzeit-Koordination vorgestellt. Bei der Anwendung für komplexe, ver-
netzte mechatronische Systeme zeigt dieser Ansatz jedoch einige Einschränkungen, die
auch diskutiert wurden. Dies waren die Punkte Dynamik hinsichtlich der Struktur des
Echtzeit-Koordinationsmusters, die statisch vorgegeben ist, sowie die Stabilität hinsicht-
lich Koordinationsverhalten bezüglich der Regelungstechnik. Basierend auf dem kom-
positionellen Ansatz wurde der neue Ansatz, die parametrisierten Koordinationsmuster,
welche nun zusätzlich dynamische Strukturänderungen als auch Werte-kontinuierliches
Reglerverhalten mit berücksichtigen, vorgestellt. Die parametrisierten Koordinationsmus-
ter wurden zuerst informell eingeführt und danach formal definiert. Am Ende wurden die
Verifikationsschritte, um ein parametrisiertes Koordinationsmuster formal zu verifizieren,
beschrieben.
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Kapitel 6

Verwandte Arbeiten

In diesem Kapitel werden nun verwandte Arbeiten betrachtet, die sich mit der modell-
basierten Verifikation von komplexen, vernetzten mechatronischen Systemen befassen.
Da es, wie in der Einleitung schon beschrieben, nicht die Verifikationsmethode für solche
Systeme gibt, sondern immer einer geschickten Kombination mehrerer Techniken bedarf,
wird im Folgenden zuerst die Verifikation von Echtzeitsystemen betrachtet (siehe Ab-
schnitt 6.1). Hierbei werden verschiedene Modelle und Verifikationstechniken diskutiert,
die eine effiziente Verifikation dieser Systeme ermöglichen, bzw. die aufzeigen, wo die
Grenzen liegen. Daran anschließend wird im Abschnitt 6.2 die Verifikation von hybriden
Systemen diskutiert. Im Abschnitt 6.3 wird diskutiert, wie sich Architekturen, beschrie-
ben durch hybride Modelle, verifizieren lassen. Bevor das Kapitel in Abschnitt 6.5 mit
einer Zusammenfassung schließt, wird im vorletzten Abschnitt 6.4 die Verifikation von
adaptiven Systemen behandelt.

6.1 Verifikation von Echtzeitsystemen

Farn Wang stellt in einer Übersicht [Wan04] einen Katalog von Modellen, Techniken und
Werkzeugen für die Verifikation von Echtzeitsystemen vor. Weiterhin wird von Giese und
Henkler in [GH06] ein Überblick über Ansätze für die modell-basierte Entwicklung von
software-intensiven Systemen gegeben. Es existiert eine Reihe von Modellierungs- und
Verifikationstechniken für Echtzeitsysteme. Im Folgenden werden drei Projekte aus dieser
Auswahl stellvertretend für die Verifikation von Echtzeitsystemen vorgestellt, welche die
wesentlichen Techniken und Modelle aus der vorliegenden Arbeit abdecken.

6.1.1 Generelle Ansätze

UPPAAL. UPPAAL [BDL04] ist ein Werkzeug für die Modellierung, Validierung und
Verifikation von Echtzeitsystemen, die durch ein Netzwerk von untereinander kommuni-
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zierenden Timed Automata beschrieben sind. Die Modelle erlauben dabei die Verwen-
dung von komplexen Datenstrukturen, wie Array usw. Zur Kodierung der Clocks wird
die Datenstruktur der Difference-Bound-Matrices (DBM) [Dil90] verwendet, die auch
in dieser Arbeit aufgegriffen wurde, um das Zeitmodell bei den zeitbehafteten Graph-
transformationssystem zu verwalten (siehe Kapitel 4). Die Verifikation stellt verschiede-
ne Optionen zur Optimierung des Zustandsraumes zur Verfügung, wie clock-reduction,
convex-hull approximation usw.

HUGO/RT. In Knapp und andere [KMR02] wird das Werkzeug HUGO/RT vorgestellt.
Mit diesem Werkzeug ist es möglich Modelle, beschrieben durch UML state machines,
zu verifizieren. Die zu verifizierenden Eigenschaften werden durch Szenario Diagramme
(Sequenzdiagramme) beschrieben. Um die Verifikation mit UPPAAL oder SPIN durch-
führen zu können, werden von HUGO/RT die UML state machines in Timed Automata
transformiert. Ein UML Sequenzdiagramm wird auf einen Observer Timed Automaton
abgebildet. Die Verifikation findet nun statt, indem Erreichbarkeitsanfragen über den Ob-
server Timed Automaton gestellt werden. Balser und andere stellen in [BBK+04] einen
Ansatz vor, der den interaktiven Verifizierer KIV [BRSS99] anstelle von UPPAAL und
SPIN in die Werkzeugkette integriert. Die Modelle werden weiterhin mit HUGO/RT mo-
delliert, die temporalen Eigenschaften der UML state machines werden nun allerdings mit
KIV überprüft. Dieser Ansatz hat den Vorteil, dass prinzipiell auch UML state machines
mit unendlichem Zustandsraum überprüft werden können, da bei der Verifikation mit KIV
Techniken wie z.B. Induktion verwendet werden. Der Fokus dieses Ansatz liegt auf der
Beschreibung von Verifikationsalgorithmen, hingegen verfolgt der in dieser Arbeit vor-
gestellte ansatz eine durchgängige modellbasierte Entwicklung durch die Integration von
UML basierten Modell- und Verifikationstechniken unter Ausnutzung von vorgegebenen
Architekturen.

IST OMEGA. Das Projekt IST OMEGA [GH04] hat sich zum Ziel gesetzt, den Kor-
rektheitsnachweis für eine auf die speziellen Bedürfnisse eingebetteter Echtzeitsoftware
abgestimmte Teilmenge der UML [DJVP03] durch Integration von Verifikationswerkzeu-
gen wie Model Checker und Theorembeweiser (PVS) und UML CASE Werkzeugen zu
ermöglichen. Dabei wurde die UML um eine Systemzeit (now) und Timerkonzepte er-
gänzt, die durch eine Abbildung auf Communication Extended Timed Automata seman-
tisch fundiert wurde. Im Gegensatz zum MECHATRONIC UML Ansatz ermöglicht der
OMEGA Ansatz nur eine kompositionelle Betrachtung bei semi-automatischen, interak-
tiven Beweisen mit dem Theorembeweiser.

Fazit. Alle hier vorgestellten Werkzeuge und Modelle basieren auf dem Grundmodell
des Timed Automatons. Allerdings erreicht keines der Modelle die Ausdrucksstärke der
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in dieser Arbeit vorgestellten Verhaltensmodelle der Realtime Statecharts bzw. der Hybri-
den Rekonfigurations Charts [GH06]. Auf Basis der hier vorgestellten Werkzeuge werden
nun im Folgenden Techniken vorgestellt, die zum Einsatz kommen, um die Verifikation
für Echtzeitsysteme, wie in der Einleitung dieser Arbeit beschrieben, überhaupt erst an-
wendbar bzw. effizient zu machen. Diese sind jedoch alleine nicht ausreichend, um dem
domänenübergreifenden Charakter von mechatronischen Systeme gerecht zu werden und
diesen entsprechend zu verifizieren.

6.1.2 Techniken

Abstraktion und Komposition. Es existieren viele Ansätze zur Abstraktion und
Komposition von Echtzeitsystemen. Der von Jensen und anderen [JGGS00] vorgestellte
Ansatz wird später in dieser Arbeit aufgegriffen und deshalb im Folgenden kurz vorge-
stellt. Der Ansatz beschäftigt sich damit, das bei der Verifikation von Echtzeitsystemen,
die mit UPPAAL Timed Automata modelliert wurden, auftretende Problem der Zustands-
raumexplosion durch eine Kombination von Abstraktion und Komposition zu beheben.
Durch die timed simulation werden die für die Abstraktion notwendigen grundlegenden
Eigenschaften zwischen Timed Automata erhalten. Das Problem ist, dass bei dem Timed
Automata Konzept, wie es in UPPAAL verwendet wird, globale Variablen und urgent
Kommunikationskanäle vorkommen. Diese führen dazu, dass eine reine Erhaltung der
timed simulation nicht ausreichend für einen kompositionellen Ansatz ist (siehe Kapitel
3 in [JGGS00]). Es wird deshalb ein erweiterter Ansatz, timed ready simulation, vorge-
stellt, der Abstraktion und Komposition unterstützt. Der Test auf timed ready simulation
zwischen Timed Automata wird in UPPAAL durch eine Erreichbarkeitsanalyse durchge-
führt. Angenommen, ≤ ist eine Simulationsrelation und M ≤Mabs gilt es zu überprüfen.
Hierzu wird nun zuerst ein Test Timed Automaton Tabs für Mabs konstruiert. Im zwei-
ten Schritt wird nun getestet, ob in M ‖ Tabs ein so genannter reject Zustand erreicht
werden kann. Ist dies der Fall, gilt M 6≤ Mabs, andernfalls M ≤ Mabs. Tabs wird in der
Form eines Komplementautomaten von Mabs konstruiert. Die Konstruktion eines solchen
Komplementautomaten Tabs ist immer dann möglich, wennMabs ein deterministischer Ti-
med Automaton ist. Ein Timed Automaton T ist deterministisch, wenn für alle Zustände
s, s′, s′′ von T gilt: Falls s v→ s′ und s v→ s′′, dann folgt s′ = s′′.

Das Problem bei Timed Automata ist, dass sich nicht-deterministische Timed Automata
nicht einfach in deterministische umwandeln lassen. Dies liegt daran, dass die Klasse
der nicht-deterministischen Timed Automata nicht gegen Komplement abgeschlossen ist.
Nicht-deterministsiche Event-Clock Automata, die eine strenge Formulierung der Timed
Automata sind, lassen sich hingegen in deterministische umwandeln [AFH97]. Allerdings
ist diese Einschränkung für die bei mechatronischen Systemen verwendeten Modelle zu
restriktiv, so dass die Idee aus Jensen und anderen [JGGS00] in dieser Arbeit aufgegriffen
und erweitert wurde.
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Counterexample basierte Abstraktion. Clarke und andere beschreiben in
[CGJ+03] eine Technik, um eine obere Abstraktion eines original Modells zu erhalten.
Ist ein Bedingung von dem abstrakten Modell erfüllt, so ist sie auch in dem konkreten
Modell erfüllt. Ist die Eigenschaft in dem abstrakten Modell falsch, so resultiert ein
Gegenbeispiel in einem Verhalten in der Approximation, dass nicht in dem original
Modell vorhanden ist. In diesem Fall muss die Abstraktion verfeinert werden, so dass
das Verhalten, welches durch das Gegenbeispiel beschrieben wird, nicht mehr berück-
sichtigt wird. Clarke und andere stellen in ihrem Beitrag eine effiziente, automatische
Verfeinerungsmethode vor, um aus den Informationen der Gegenbeispiele dies zu
erreichen.

Diese Methode wird von einigen Model Checkern in der Echtzeitdomäne eingesetzt. So
z.B. auch in dem Werkzeug SAL [TK02]. Der Vorteil ist eine geschickte Abstraktion, je-
doch werden das Werte-kontinuierliche Verhalten sowie das Zeit-kontinuierliche Verhal-
ten nicht getrennt voneinander betrachtet, so dass hier die Komplexität nicht ausreichend
reduziert wird. Außerdem ist die Abstraktion von der vorgegebenen Systemarchitektur
abhängig, was zur Folge hat, dass das Verfahren nicht immer eine optimale und damit
effiziente Abstraktion liefert.

6.1.3 Komplexe Ansätze

Nachdem nun grundlegende, verwandte Techniken und Methoden der Abstraktion von
Echtzeitmodellen diskutiert wurden, befasst sich dieser Abschnitt mit komplexen Ansät-
zen zur modell-basierten Entwicklung von Echtzeitsystemen.

Zeitbehaftete Komponentenspezifikation. Metzler und Wehrheim stellen in
[MW07] eine Spezifikationssprache für die Modellierung von zeitbehafteten Kompo-
nentenarchitekturen (timed CSP-OZ) vor. Der Ansatz baut auf vorhandenen Konzepten
von CSP-OZ, bei denen die Schnittstellen der Komponenten bereits durch pre/post
Bedingungen beschrieben werden können, auf. Um jedoch den Anforderungen von
Echtzeitsystemen gerecht zu werden, wird hier der Ansatz um die Modellierung von Zeit
in den Schnittstellen erweitert. Um die Integration von Zeit so einfach wie möglich zu
gestalten, wird hier kein neuer Formalismus, sondern nur ein neuer Datentyp, der die
Zeit repräsentiert, hinzugefügt. Die Semantik wird formal über Timed Automata defi-
niert. Dies hat den Vorteil, dass zu Verifikationszwecken der Model Checker UPPAAL
eingebunden werden kann. Weiterhin werden hierauf Bedingungen für timed simulation
definiert, so dass es auch möglich ist, Kompositionalität o.ä. zu verwenden.
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Service orientierte Modellierung und Verifikation. In [EHK+07] wird ein
modell-basierter Ansatz für die Entwicklung von verteilten, eingebetteten Echtzeitsyste-
men beschrieben. Um die Komplexität solcher Systeme in den Griff zu bekommen, wird
ein Service-orientierter Ansatz verfolgt. Dabei werden zu Beginn die Funktionalitäten
des Systems unabhängig voneinander durch Interaktionsdiagramme modelliert und
verifiziert. Ein vorgegebener Prozess, der einer wohl-definierten Verfeinerungsbeziehung
unter den Modellen folgt, erlaubt die schrittweise Entwicklung solcher Systeme. Der
Service-orientierte Ansatz unterstützt die Entwicklung verteilter, eingebetteter Systeme
angefangen von der Anforderungsanalyse bis hin zur Implementierung, Verifikation und
Validierung.

Aufbauend auf den Konzepten wird in [EMK+07][EFF+08] ein Failure Management An-
satz für eingebettete Systeme vorgestellt. Hierbei werden so genannte Interaktionsmuster
für die Kommunikation zwischen Komponenten beschrieben, die entsprechend verifiziert
werden können. Die Interaktionsmuster werden auf Automaten abgebildet, die vom Mo-
del Checker SPIN [AKPM05] verifiziert werden können.

Im nächsten Abschnitt wird nun die Verifikation von hybriden Modellen diskutiert. Die
dabei vorgestellten Ansätze nutzen weiterhin die bereits vorgestellten Techniken aus und
einwickeln entsprechende Lösungen für den hybriden Fall.

6.2 Verifikation von hybriden Systemen

6.2.1 Generelle Ansätze

MATLAB/Simulink1 ist der Industriestandard beim Entwurf von Regelungssystemen. Ba-
sierend auf Blockdiagrammen, die via zeit-kontinuierlichen Signalen interagieren, wird
der Entwurf komplexer Werte-kontinuierlicher Systeme ermöglicht. Die Integration von
Stateflow ermöglicht zudem die Modellierung ereignis-diskreten Verhaltens. MATLAB/-
Simulink Modelle sind im Vergleich zu den anderen betrachteten Verfahren nicht formal
hinterlegt. Eine formale Verifikation wird durch zusätzliche Formalisierung, wie zum Bei-
spiel bei dem CheckMate [SRKC00] Ansatz erreicht.

Neben MATLAB/Simulink und Stateflow exisitieren eine Vielzahl von Ansätzen und
Werkzeugen für die Modellierung und Verifikation hybrider Systeme. Hybrid Statecharts
[KP91], Charon [ADE+01], Masaccio [Hen00], HyCharts & HyRoom [GSB98][SPP01]
und HyTech/PHAver [Fre05] adressieren die Modellierung in Form von hybriden State
Charts und Verifikation von komplexen hybriden Systemen.

1http://www.mathworks.com/
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Fazit. Alle existierenden Ansätze unterstützen jedoch keine adäquate Modellierung für
die hier behandelten komplexen, vernetzten mechatronischen Systeme [Bur06][GH06].
Das Hautproblem ist, dass die hier geforderte Dynamik und Modularität der Architektur
von keinem Ansatz geeignet unterstützt wird. Das hat zur Folge, das zur Verifikation im-
mer das gesamte System betrachtet werden muss, da es nicht dekomponiert werden kann
und deshalb die Verifikation trotz Techniken, wie sie im Folgenden vorgestellt werden,
nicht anwendbar ist.

Ein anderer Nachteil der vorhandenen Ansätze ist, dass die Domänen der Regelungs-
technik und der Softwaretechnik nicht sauber in der Modellierung getrennt sind. Hierbei
werden sowohl das Koordinationsverhalten als auch das kontinuierliche Verhalten inner-
halb einer einzigen hybriden Komponente modelliert. Dies erfordert eine enge Zusam-
menarbeit der Disziplinen und lässt sich auch manchmal so gar nicht realisieren. Der hier
verfolgte Ansatz der MECHATRONIC UML erlaubt durch klar definierte Schnittstellen
zwischen den Domänen die getrennte Modellierung des Echtzeit-Koordinationsverhaltens
und der kontinuierlichen Regler und unterstützt durch einen klaren Modularitätsbegriff die
Integration aller Domänen [GHH+08b].

Im Folgenden werden nun anhand dieser Ansätze und Werkzeuge Techniken vorgestellt,
die bei der Verifikation von hybriden Systemen eingesetzt werden, um die Komplexität
teilweise zu vermindern.

6.2.2 Techniken

Approximation. HyTech, 1995 entwickelt, ist ein symbolischer Model Checker für
Hybride Systeme [HHWT95]. Um diese Systeme zu behandeln, benutzt HyTech Hybride
Automaten, mit denen in einem einzigen Formalismus diskrete und kontinuierliche Zu-
standsänderungen formuliert werden können. Das besondere an HyTech ist, dass es auch
eine parametrische Analyse vornimmt. Es wird also nicht nur überprüft ob ein Modell eine
bestimmte Formel (bei HyTech eine CTL-Formel) erfüllt oder nicht, sondern es werden
Bedingungen bzw. Begrenzungen für bestimmte Parameter des Modells berechnet, unter
denen die Korrektheit des Modells garantiert werden kann. Neben dieser großen Stärke
von HyTech gibt es allerdings auch eine große Schwäche [Fre05]: HyTech benutzt keine
exakte Arithmetik. Dies führt dazu, dass die Zahldarstellung irgendwann ungenau wird
und dies führt zu Overflow-Fehlern. Wegen dieser Ungenauigkeit kann HyTech nicht auf
komplexe Systeme angewandt werden, welche eine große Genauigkeit fordern. Weiter-
hin ist HyTech eher für Systeme mit Variablen mit kleinen Änderungsraten geeignet, da
ansonsten der Zustandsraum zu groß wird um ihn noch in vernünftiger Art und Weise zu
behandeln.

HyTech wird seit Ende 1996 nicht mehr weiterentwickelt. PHAVer baut auf HyTech
auf und hat es sich zum Ziel gesetzt, die größten Nachteile von HyTech zu eliminie-
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ren [Fre05]. So benutzt PHAVer eine Arithmetik-Bibliothek, welche eine exakte Zahldar-
stellung ermöglicht und damit Overflow Fehler vermeidet. Auf der anderen Seite stellt
PHAVer konservative Verfahren wie Approximationstechniken vor, um die Polyeder-
Darstellung zu vereinfachen. Aufgrund der exakten Arithmetik können nämlich sowohl
die Koeffizienten als auch die Anzahl der Constraints (Gleichungen oder (Ungleichun-
gen), welche die konvexen Polyeder begrenzen, übermäßig groß werden. Daher werden
hier Approximationstechniken eingesetzt, um einerseits die Bits (der Koeffizienten) als
auch die Anzahl der Constraints zu begrenzen.

Prädikat Abstraktion. CHARON / R-CHARON stellt ein hierarchisches, hybri-
des Automatenmodell zur Verhaltensbeschreibung zur Verfügung [ADE+01] [ADI06]
[ADI03] [Iva03] [KSPL06]. Daneben unterstützt CHARON auch das Strukturkonzept der
Hierarchie, um die Komplexität zu beherrschen (ROOM actor diagrams) [AGLS01] und
definiert dabei eine Verfeinerungsbeziehung zischen den eingebetteten Komponenten und
damit Verhaltensmodellen.

Zur Verifikation wird das Programm d/dt verwendet, das auf Prädikatenabstraktion be-
ruht. Das System wird über Prädikate definiert, die das zu untersuchende Verhalten des
Systems wiederspiegeln und die nicht relevanten Systemeigenschaften für diesen Verifi-
kationsschritt wegabstrahieren.

Der Model Checker d/dt untersützt zwei unterschiedliche Verifikationsformen [ADM02].
Es ist möglich, alle erreichbaren Zustände aus dem initialen Zustand zu berechnen. Bei
der Auswertung des Ergebnisses wird festgestellt, ob ein oder mehrere kritische System-
zustände eintreten können. Ist man daran interessiert, ob ein bestimmter Zustand oder eine
Menge von Zuständen erreicht werden kann, so definiert man zusätzlich das Schlüssel-
wort „bad set“. Anschließend führt d/dt eine gezielte Suche im Zustandsraum durch, ob
diese Zustände erreicht werden können. Für jedes System in d/dt muss vorher festgelegt
werden, welche Dimension es haben soll. Die Dimension ist die Anzahl der veränderli-
chen Variablen. Anschließend werden die Differentialgleichungen des Systems mit Hilfe
von Matrizen angegeben.

Dekomposition. Komplexe Systeme, bei denen sowohl diskretes Verhalten als auch
kontinuierliche Daten vorkommen, sind als Ganzes schwer bis gar nicht zu verifizieren.
Metzler stellt in [Met07] einen Dekompositionsansatz vor, der es erlaubt, die komplexen
Strukturen modelliert in CSP-OZ, in kleine, für die Verifikation handhabbare Teile zu
dekomponieren. Die Dekomposition wird durch die Technik des Slicing [BDFW07] be-
stimmt. Dabei wird keine kompositionelle Modellierung vorausgesetzt, sondern anhand
der globalen Eigenschaften wird durch das Slicing eine kompositionelle Aufteilung zur
Verifikation bestimmt. Der Ansatz wurde anhand der Konvoifahrt aus der „Neuen Bahn-
technik Paderborn“ beispielhaft gezeigt.
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Fazit. Die letzten drei vorgestellten Techniken sind effizient anwendbar für kleine hy-
bride Modelle. Allerdings werden durch die Ansätze keine komplexen, vernetzen mecha-
tronischen Architekturen in ihrer Gänze wie dem in dieser Arbeit zu Grunde liegenden
Ansatz unterstützt. In dieser Arbeit wurden die Ideen dieser Techniken aufgegriffen und
in den in dieser Arbeit vorgestellten Ansatz zu Verifikation integriert.

Im Folgenden werden nun Techniken vorgestellt, die sich in der Basis mit der Stabilitäts-
analyse von hybriden Systemen beschäftigen.

6.2.3 Stabilität

Zuerst wird die Lyapunov Stabilitätsanalyse betrachtet. Diese ist in der Regelungstech-
nik eine zentrale Technik zur Überprüfung von regelungstechnischen Stabilitätsverhalten.
Daran anschließend werden spezielle Techniken zur Gewährleistung der Stabilität eines
Konvois, wie sie bei der Modellierung der parametrisierten Koordinationsmuster betrach-
tet wurden, diskutiert.

Lyapunov Stabilitätsanalyse. Stabilität bezeichnet im Allgemeinen, dass ein Sys-
tem auch unter dem Einfluss von Störungen einen begrenzten Bereich nicht verlässt. In
den einzelnen Domänen existieren häufig konkrete Definitionen, die auch eine feinere
Unterteilung des jeweiligen Stabilitätsbegriffes zulassen. Beispielsweise wird in der Re-
gelungstechnik ein lineares zeitinvariantes System dann als stabil bezeichnet, wenn die
Sprungantwort h(t) für t → ∞ einem endlichen Wert zustrebt. Andernfalls wird es als
instabil bezeichnet. Ein solches System wird als übertragungsstabil bezeichnet, wenn es
auf eine beschränkte Eingangsgröße stets mit einer beschränkten Ausgangsgröße antwor-
tet: |u(t)| ≤ M → |y(t)| ≤ N (BIBO-Stabilität: Bounded Input - Bounded Output).
In der Stabilitätstheorie nach Lyapunov werden für derartige Systeme Techniken vorge-
schlagen, die eine mathematische Analyse hinsichtlich bestimmter Kriterien ermöglicht
[Föl05][Lud95].

Im Fall einer Reglerumschaltung in mechatronischen Systemen ergeben sich durch die
Umschaltung jeweils neue Reglersysteme. Diese müssen einzeln domänenspezifisch sta-
bil sein. Außerdem muss die Funktion, welche die Regler umschaltet, konvergieren
[LM99][OMT+08]. In [SB03] werden für den Nachweis der Stabilität für die Umschalt-
funktion Multiple Lyapunov Funktionen vorgeschlagen. Dabei wird davon ausgegangen,
das die jeweilige Veränderung am System zusammen mit dem System als Hybrider Au-
tomat mit diskreten Zuständen für die Umschaltung und kontinuierlichen Teilzuständen
für das jeweilige Systemverhalten in einem diskreten Zustand beschreibbar sind. Gemäß
Lyapunov heißt ein System (bzw. dessen Ruhelage) genau dann stabil, wenn es eine ver-
allgemeinerte Energiefunktion gibt, welche bezüglich der möglichen Zustandsverände-
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rungen abnimmt. Dieses Prinzip muss auch bei Strukturvariablen, also schaltenden Syste-
men gelten. Ferner müssen die Einflüsse auf das System aus dem Umfeld, vom Benutzer
und aus dem System selbst stets zu einem stabilen Zielsystem führen. Der in dieser Ar-
beit diskutierte MECHATRONIC UML Ansatz adressiert die Problematik der Stabilität
beim Umschalten zwischen Strukturen durch die Erweiterung der klassischen Hybriden
Automaten zu hybriden Rekonfigurations Charts [OMT+08]. Hier werden Umschaltfunk-
tionen, die vorab verifiziert wurden, mit Transitionen, die einen Wechsel der Struktur be-
schreiben, assoziiert. Die Zeit, welche eine Umschaltfunktion benötigt, wird entsprechend
als Deadline in das Modell der hybriden Rekonfigurations Charts übernommen und fließt
damit in die in dieser Arbeit beschriebene Verifikation ein. Dies ermöglicht die formale
Verifikation der Stabilität beim Umschalten zwischen Strukturen.

Konvoi Stabilität. In der Literatur werden verschiedene Konzepte zur Konvoirege-
lung vorgestellt. Diese Ansätze können grundlegend darin unterschieden werden, ob ei-
ne Kommunikation zwischen den einzelnen Fahrzeugen des Konvois möglich ist oder
nicht. In [YEK98] wird eine mögliche Konvoiregelung beschrieben, die ohne Kommu-
nikation arbeitet. Ein weiterer Ansatz zur Konvoiregelung ohne Kommunikation wird in
[HWLL04] beschrieben. Dieser Ansatz zeichnet sich dadurch aus, dass neuronale Netze
zur Regelung genutzt werden. Andere Ansätze wie [BG03] und [ZEA03] setzen explizit
eine Kommunikation zwischen allen Fahrzeugen voraus, um eine bessere Konvoiregelung
zu erreichen. Zlocki und Zambou nutzen WLAN-Standardkomponenten für die Kommu-
nikation innerhalb eines Konvois aus zwei Fahrzeugen [ZZ05]. Die Kommunikationsei-
genschaften sind laut den Autoren hierbei ausreichend. Diesen Ansätzen ist gemein, dass
sie Ausfälle der Kommunikation nicht umfassend betrachten. Vor allem eine geeignete
Modellierung und formale Überprüfung der Kommunikation bzgl. Einhaltung der Sicher-
heit wird nicht durchgeführt.

6.2.4 Barrier certificates

Prajna und andere stellen in [PJ04][Pra05] eine Technik vor, um temporale Eigenschaf-
ten von hybriden Systemen zu verifizieren. Im Gegensatz zum Model Checking wird
hier nicht der Zustandsraum aller erreichbaren Zustände aufgebaut. Um Sicherheitseigen-
schaften, Erreichbarkeitsfragen, Möglichkeiten oder deren Kombination zu verifizieren,
wird das theoretische Konzept der barrier certificates und density functions verwendet.
Ein barrier certificate ist eine Funktion oder eine Menge von Funktionen von Zustän-
den, die Ungleichungen der Funktion selber und deren Ableitungen über den Verlauf be-
schreiben. Im Detail kann durch barrier certificates berechnet werden, ob alle möglichen
Trajektorien von einem definierten Startpunkt in einer sicheren Region enden oder nicht.
Das Konzept der barrier certificates funktioniert ähnlich der Lyapunov Stabilitätsanalyse,
jedoch lassen sich hier neben reinen Stabilitätseigenschaften auch die gerade beschriebe-
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nen Eigenschaften verifizieren. Die Berechnung der barrier certificates basiert auf der
Bestimmung der sum of squares[BKA+07][PP05], die sich effizient berechnen lassen.

6.3 Verifikation von Architekturen beschrieben
durch hybride Modelle

Im Rahmen des Teilprojektbereichs H des AVACS Projektes „Automatic Verificati-
on and Analysis of Complex Systems“ (SFB/TR 14 AVACS2) wird die Verifikation
von hybriden Systemen untersucht. In diesem Rahmen wird ein Großteil der bis-
her beschriebenen Techniken in neuen Techniken und Methoden eingesetzt, die
anhand der Fallstudie ETCS (European Train Control System) evaluiert werden.
[DMO+07][DHO04][PQ08][BBE+04][FH05].

Im Detail werden Verifikationstechniken für untereinander kooperierende Agenten be-
schrieben. Hierzu wurde eine drei Schichten Architektur mit den Ebenen cooperation
layer (kontinuierliche Zeit), control layer (kontinuierliche Zeit) und design layer (diskrete
Zeit) beschrieben. Für jede einzelne Schicht werden eigens hierfür geeignete Verifikati-
onstechniken zur Verfügung gestellt, die für das unterlagerte Zeitmodell geeignet sind.
Die Verifikation umfasst vorverifizierte Entwurfsmuster, die automatische Synthese von
Lyapunov Funktionen, die Erzeugung von Parametereigenschaften sowie definierte Ver-
feinerungsbeziehungen zwischen Modellen im Entwicklungsprozess.

Fazit. Die Techniken und Methoden aus dem AVACS Projekt kommen den in dieser
Dissertation vorgestellten Ansätzen relativ nahe. Jedoch zeigt der AVACS Ansatz im
Vergleich einige Schwächen. So ist die drei Schichtenarchitektur ähnlich der hier vor-
gestellten Architektur eines OCMs (siehe Kapitel 2.1), jedoch ist das Zusammenspiel
der einzelnen Schichten nicht genauer definiert, so dass auch hier keine Vorgehensweise
für eine Verifikation beschrieben ist. Im vorliegenden Ansatz wurden Schnittstellen und
Abstraktionen zwischen den einzelnen Schichten definiert, die eine Verifikation ermög-
lichen. Weiterhin gibt es zwar die Möglichkeit, die Interaktion zwischen Agenten durch
vorab verifizierte Muster zu beschreiben, jedoch ist diese auf eine feste, statische Struk-
tur beschränkt. Durch den graphbasierten Ansatz aus dieser Arbeit ist es möglich, eine
dynamische Struktur zu verifizieren.

2http://www.avacs.org/
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Wie in der Einleitung motiviert, sind vernetzte mechatronische Systeme auch dadurch
charakterisiert, dass sie zur Laufzeit ihre Struktur und ihr Verhalten ändern. Hierbei wird
von adaptiven Systemen gesprochen.

Ein wichtiges Problem bei verteilten mechatronischen Systemen ist, dass bei vernetzten
Systemen jedes Teilsystem aufgrund der zur Laufzeit erfolgten Adaption eine potentiell
unterschiedliche lokale Sicht haben kann, auf deren Basis in Notfällen Entscheidungen
autonom und lokal getroffen werden müssen. Deshalb müssen auch hier Techniken und
Methoden entwickelt werden, die hier bei der Verifikation der Sicherheitseigenschaften
verwendet werden können.

Ein weiterer Ansatz, welcher sich mit der Integration von Zeit in das Modell der Graph-
transformationssysteme beschäftigt und somit die Dynamik von zeitlichen Strukturän-
derungen in adaptiven Systemen adressiert, wird von Heckel und anderen in [GVH03]
aufgezeigt. Dort wird Zeit in Anlehnung an Time ER-Netze [GMMP91] modelliert. Ein
maßgeblicher Unterschied liegt darin, dass es die in der vorliegenden Arbeit vorgestell-
ten erweiterten und neu hinzugekommenen Graphtransformationsregeln erlauben, zeit-
liche Eigenschaften und Bedingungen gezielt mit einzelnen Teilgraphen zu verknüpfen.
Dabei können die einzelnen zeitlichen Bedingungen einem Teil der linken Seite einer
Graphtransformationsregel zugeordnet werden, wodurch es möglich ist, komplexe Be-
dingungen, wie sie in mechatronischen Systemen vorkommen, innerhalb einer Regel zu
formulieren.

Fazit. Es gibt eine Reihe von Ansätzen für die Modellierung und Verifikation von struk-
turellen Aspekten von adaptiven Systemen [GVH03] [TGM00] [M9́6] [HIM98] [OMT98]
[KMS92] sowie für die Modellierung und Verifikation des Verhaltens [ZC06] [ADG98]
[KM98] [CPT99]. Jedoch umfasst keiner dieser Ansätze allumfassend beide Aspekte
[BCDW04]. Der in dieser Arbeit verfolge MECHATRONIC UML Ansatz kombiniert beide
Aspekte und unterstützt hierfür ein Verifikationsverfahren und adressiert dabei die Kom-
plexität von mechatronischen Systemen.

6.5 Zusammenfassung

In diesem Kapitel wurden verwandte Arbeiten zum Thema dieser Dissertation diskutiert.
Zuerst wurden Werkzeuge für die Verifikation von Echtzeitsystemen vorgestellt. Daran
anschließend wurden Techniken der Abstraktion, wie sie bei solchen Model Checkern
eingesetzt werden, um die Komplexität von Echtzeitsystemen zu beherrschen, vorgestellt
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und diskutiert. Abschließend wurden komplexe modell-basierte Ansätze zur Verifikation
von Echtzeitsystemen vorgestellt. Die Diskussion dieses Abschnitts hat gezeigt, dass ei-
ne Reihe von einzelnen Techniken für die Verifikation von Echtzeitsystemen existieren,
die in ihrer Theorie gut durchdacht, jedoch für praktische Verifikationsaufgaben im Be-
reich von mechatronischen Systemen alleine effizient nicht anwendbar sind. Gründe sind
hierfür u.a. die fehlende Integration in eine vernetzte, strukturierte modulare und kom-
positionelle Architektur oder das nicht berücksichtigte inhärente domänenübergreifende
Verhalten.

Daran anschließend wurden verwandte Arbeiten zur Verifikation von hybriden Systemen
diskutiert, die sich mit domänenübergreifenden Verhalten beschäftigen. Hier wurden auf-
einander aufbauende Techniken und Methoden vorgestellt, die es erlauben, bestimme Ei-
genschaften wie Erreichbarkeit oder Stabilität hinsichtlich spezifizierter Eigenschaften zu
verifizieren. Allerdings hat die Diskussion gezeigt, dass die Ansätze keine komplexen,
vernetzen mechatronischen Architekturen in ihrer Gänze, wie dem in dieser Arbeit zu
Grunde liegenden Ansatz, unterstützen. In dieser Arbeit wurden die Ideen dieser Techni-
ken aufgegriffen und in den in dieser Arbeit vorgestellten Ansatz zu Verifikation integriert.

Die Verifikation von komplexen Architekturen, beschrieben durch hybride Modelle, wur-
de anhand des AVACS Projekts vorgestellt, welches die vorgestellten Techniken integriert.
Das AVACS Projekt kommt den Ansätzen dieser Arbeit sehr nahe, zeigt jedoch einige
Einschränkungen hinsichtlich der zu verifizierenden Architektur und der Eigenschaften
hinsichtlich der Dynamik.

Abschließend wurde noch auf die Verifikation von adaptiven Systemen eingegangen. Die
Diskussion hat gezeigt, dass bisher keine adäquaten Ansätze, die sowohl Struktur als auch
Verhalten in Verifikationsansätzen behandeln, existieren.
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Zusammenfassung & Ausblick

Beim Entwurf selbstoptimierender, mechatronischer Systeme stellt die eingebettete Soft-
ware einen großen Teil der Wertschöpfung dar. Typischerweise werden Regelungen oder
Steuerungen in Software umgesetzt. Durch die starke Vernetzung selbstoptimierender
Systeme wird Software auch zur nachrichtenbasierten Kommunikation und Koordination
zwischen den einzelnen verteilten selbstoptimierenden Systemen eingesetzt. Diese Kom-
munikation geht über die Aufnahme von System- und Umweltdaten durch Sensorik hin-
aus. Hier werden ggf. komplexe Zustandsinformationen über entsprechende Protokolle
und zugrunde liegende Kommunikationskanäle ausgetauscht, die dann wieder das Ver-
halten bzw. die zugrunde liegenden Berechnungen der einzelnen Komponenten massiv
beeinflussen können. Diese Entwicklung führt zu äußerst komplexer hybrider (diskreter
/ kontinuierlicher) Software. Des Weiteren werden selbstoptimierende, mechatronische
Systeme oftmals in sicherheitskritischen Umgebungen eingesetzt. Hierdurch müssen for-
male Verfahren zur Verifikation der Korrektheit des Systems gegenüber sicherheitskriti-
schen Eigenschaften eingesetzt werden.

Ziel dieser Dissertation war es, Konzepte und Methoden zur Modellierung und Verifika-
tion mechatronischer Systeme zu entwickeln und formal zu beschreiben. Ziel dabei war
es, die besonders durch die Verwendung domänenübergreifender Modelle, wie sie bei
der Modellierung von mechatronischen Systemen vorkommen, entstehenden inhärenten
multi-Paradigmenwechsel [HH06] bei der Modellierung und Verifikation zu berücksichti-
gen. Der hier vorgeschlagene Ansatz zur modell-basierten Entwicklung mechatronischer
Systeme zeichnet sich durch die Integration effizienter Verifikationstechniken, basierend
auf Modellwissen, Abstraktionstechniken, regelbasierten und geschickten Modellierung
aus.
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7.1 Zusammenfassung

In dieser Arbeit wurden zuerst anhand des Vorgehens der modell-basierten Entwicklung
Modelle und Verfahren zur Verifikation von mechatronischen Systemen vorgestellt. Diese
sind jedoch für die komplexen, vernetzten mechatronischen Systeme, wie sie einleitend
beschrieben wurden, nicht alleine anwendbar. Ziel der vorliegenden Arbeit war es, auf-
bauend auf dem vorhandenen Ansatz der MECHATRONIC UML, Erweiterungen und neue
Ansätze zur Modellierung und Verifikation solcher Systeme vorzuschlagen.

In Kapitel 3 wurde zuerst beschrieben, wie sich ein einzelnes OCM verifizieren lässt.
Hierbei wurde beschrieben, wie sich das Zusammenspiel des reflektorischen Operators
mit dem Controller verifizieren lässt. Hierbei mussten die harten Echzeiteigenschaften
des reflektorischen Operators sowie das kontinuierliche Verhalten des Controllers berück-
sichtigt werden. Um das hybride Verhalten verifizieren zu können, wurde ein Modulari-
tätskonzept der Struktur beschrieben, welches auf einer wohl-definierten Verfeinerungs-
beziehung aufbaut und die zur Verifikation nötigen Abstraktionen untersützt.

Im darauf folgenden Kapitel 4 wurde beschrieben, wie sich das äußere Verhalten von
OCMs in der Umwelt modellieren und verifizieren lässt. Motivierend hierfür war eine
möglichst realitätsnahe Beschreibung von Strukturveränderungen. In Schilling [Sch06]
wurde bereits beschrieben, wie Graphtransformationssysteme zur Beschreibung von
dynamischen Veränderungen im Kontext von mechatronischen Systemen eingesetzt
werden können. Dieser Ansatz wurde derart erweitert, dass nun auch Zeitbedingungen
bei der Modellierung und Verifikation berücksichtigt werden. So möchte man z.B.
bei der Beschreibung der Fortbewegung eines Shuttles angeben können, wie lange
ein Shuttle zum Durchfahren eines Schienenabschnitts benötigt oder wie lange die
Instanziierung von Softwarekomponenten dauert, die bei der Anwendung von Echtzeit-
Koordinationsmustern instanziiert werden müssen. Durch untere Schranken (guards)
ist es möglich, eine Mindestzeitdauer festzulegen und diese nach oben hin durch eine
Invariante zu begrenzen, die dadurch das Fortschreiten des Verhaltens garantiert. Hierbei
wurde der Formalismus der Graphtransformationssysteme um Zeitannotationen erweitert.

In Kapitel 5 wurde die Koordination von mehreren OCMs auf der VMS Ebene be-
trachtet. Zwar bietet die MECHATRONIC UML hierfür schon den Ansatz der Echtzeit-
Koordinationsmuster, diese jedoch weisen eine Reihe von Einschränkungen auf. So sind
diese durch eine statische Struktur gekennzeichnet und berücksichtigen kein hybrides Ver-
halten. Die hier neu eingeführten parametrisierten Koordinationsmuster ermöglichen nun
die Integration von kontinuierlichem Verhalten sowie von dynamischen Strukturänderun-
gen.
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Abschließend werden Ausblicke auf weitere Arbeiten gegeben. Im Fachgebiet Software-
technik1 und im SFB 614 wird die MECHATRONIC UML stetig weiterentwickelt, um den
neuen Forschungsergebnissen gerecht zu werden.

Wie anfangs in der Zusammenfassung und bei den Konzepten der modell-basierten Ent-
wicklung erwähnt, steht neben der Modellierung und Verifikation auch die Codesynthe-
se aus Modellen im Vordergrund. Um nun auch die neuen parametrisierten Koordinati-
onsmuster zu unterstützen und die hier erreichten Verifikationsergebnisse zu verwenden,
muss die bisherige Codesynthese [Bur06][BGS05] angepasst werden.

Eine nächste Erweiterung wäre, die bereits vorhandene Synthese aus [GHHK06] zur
automatischen Synthese von dynamischen Collaborationen zu erweitern. In diesem
Kontext kann auch untersucht werden, inwiefern sich TSSDs [Kle08][GHH+07] ver-
wenden lassen, um die Constraints der neuen parametrisierten Koordinationsmuster
zu formulieren. Hierbei kann auch untersucht werden, inwiefern sich der Ansatz aus
der Automobilindustrie zur Beschreibung von komplexen Constraints integrieren lässt
[GHS+07a][GHS+07b][GNN+06].

Als letzter Punkt steht nun die Integration von Testverfahren in den Ansatz.
[GHHP07][HH07][GHH08a]. Oftmals ist die Überprüfung eines verifizierten Mo-
dells allein trotz automatischer Codegenerierung nicht immer ausreichend, um die
Konformität des Systems zu seiner Spezifikation zu zeigen. Z.B. werden nachträglich
Veränderungen am Code zur Optimierung vorgenommen oder Legacy Komponenten
werden integriert. Um die Konformität der Software in den oben beschrieben Fällen
dennoch sicherzustellen, ist es erforderlich, den Code zu „verifizieren“. Eine verbreitete
Methode dazu ist der Software-Test. Aufbauend auf vorhandenen Verfahren müssen die
Software-Tests jetzt auch auf komplexe, vernetze mechatronische Systeme erweitert
werden.

1http://www.upb.de/cs/ag-schaefer
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Anhang A

Algorithmen zu zeitbehaften
Graphtransformationssystemen

In diesem Anhang werden die Algorithmen, die bei der Erreichbarkeitsanalyse für zeitbe-
haftete Graphtransformationssysteme (siehe Abschnitt 4.4) verwendet werden, aufgelis-
tet. Die informelle Beschreibung und Anwendung findet sich in Abschnitt 4.4.

Algorithmus A.1 Der Algorithmus N ′, E ′ = graphID(m,x,G, Pl)

procedure N ′, E ′ = graphID(m,x,G, Pl)

1: N ′, E ′ = ∅
2: for all n ∈ N do
3: vg = mv(V

−1
(i,P )(n))

4: n′ = V(i,G)(vg)
5: N ′ = N ′ ∪ n′
6: end for
7: for all e ∈ E do
8: eg = me(E

−1
(i,P )(e))

9: e′ = E(i,G)(eg)
10: E ′ = E ′ ∪ e′
11: end for
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Algorithmus A.2 Der Algorithmus 〈Tm, Rm〉 = assign(m,T,R,G, Pl)

procedure 〈Tm, Rm〉 = assign(m,T,R,G, Pl)

1: Tm, Rm = ∅
2: for all t ∈ T : t := x1 − x2 ∼ d, xi = (M1,N1, E1), x2 := (M2,N2, E2) do
3: x′1, x

′
2 := x0

4: t′ := x′1 − x′2 ∼ d
5: if x1 6= x0 then
6: x′1 := (M1,N ′1, E ′1) mit N ′1, E ′1 := ∅
7: N ′1, E ′1 = graphID(m,x1, G, Pl)
8: end if
9: if x2 6= x0 then

10: x′2 := (M2,N ′2, E ′2) mit N ′2, E ′2 := ∅
11: N ′2, E ′2 = gaphID(m,x2, G, Pl)
12: end if
13: Tm = Tm ∪ t′
14: end for
15: for all r ∈ R : r := x, x = (M,N , E) do
16: N ′, E ′ = ∅
17: x′ := (M,N ′, E ′)
18: r′ := x′

19: Erzeuge x′ := (M,N ′, E ′) mit N ′, E ′ = ∅
20: N ′, E ′ := graphID(m,x,G, Pl)
21: Rm := Rm ∪ r′
22: end for

Algorithmus A.3 Der Algorithmus C = prodclock(C, G)

procedure C = prodclock(C, G)

1: C = ∅
2: for all c ∈ C : c = (M,Cl, Ci) do
3: for all m = prod(Cl, G) : m = (mv,me) do
4: N , E = ∅
5: x = (M,N , E)
6: for all v, e ∈ Cl do
7: N := N(i,G)(mv(v))
8: E := E(i,G)(me(e))
9: end for

10: C = C ∪ x
11: end for
12: end for
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Algorithmus A.4 Der Algorithmus φ = clear(C, φ)

procedure φ = clear(C, φ)

1: for all t ∈ φ : t = (xi − xj ∼ d) do
2: if xi /∈ C ∨ xj /∈ C then
3: φ := φ \ t
4: end if
5: end for

Algorithmus A.5 Der Algorithmus G′t = productionm(Gt, Pt, C, I,m)

procedure G′t = productionm(Gt, Pt, C, I,m)

1: Gt := (G, C,Z);Pt := (Pl, Pr, T, Vi, Ei, R, f, r),m := (mv,me)
2: 〈T ′, R′〉 = assign(m,T,R)
3: Z ′ = ∅
4: for all φ ∈ Z do
5: φ′ = succφ(φ, I, T ′)
6: if φ′notempty then
7: φ′ = succ′φ(φ′, R′)
8: Z ′ = Z ∪ φ′
9: end if

10: end for
11: if Z ′ 6= ∅ then
12: G′ = prodpost(m,Pl, Pr)
13: C ′ = prodclock(C,G

′)
14: for all φ′ ∈ Z ′ do
15: φ′ = φ′ ∩ I(G′)
16: φ′ = clear(C ′, φ′)
17: φ′ = succ′φ(φ′, R′)
18: end for
19: G′t = (G′, C ′,Z ′)
20: end if

Algorithmus A.6 Der Algorithmus G ′t = production(Gt, Pt, C, I)

procedure G ′t = production(Gt, Pt, C, I)

1: Gt := (G, C,Z);Pt := (Pl, Pr, T, Vi, Ei, R, f, r)
2: G ′t = ∅
3: for all m = prodpre(Pl, G) : m := (vertex, edge, ID) do
4: G ′t = G ′t ∪ productionm(Gt, Pt, C, I,m)
5: end for
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Anhang B

Regeln zum Shuttlebeispiel aus
Kapitel 4

In diesem Anhang werden die zeitbehafteten Graphtransformationsregeln für das Eva-
luierungsbeispiel aus Kapitel 4.5 beschrieben. Abbildungen B.1,B.2 und B.3 beschrei-
ben jeweils die Clockinstanzen, die im System vorkommen. Um das Fortschreiten eines

Clock:clock1

Abbildung B.1: Clockinstanz clock1

Shuttles zu gewährleisten, müssen noch Invarianten spezifiziert werden. Diese sind in den
Abbildungen B.4, B.5 und B.5 dargestellt.

Abschließend werden noch die Regeln benötigt, die das Forschreiten eines Shuttles so-
wohl auf einem normalen Schienenabschnitt, als auch auf einer Weiche beschreiben. Die-
se Regeln besitzen die angegebenen Zeitguards:
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Clock:clock2

Abbildung B.2: Clockinstanz clock2

Clock:clock3

Abbildung B.3: Clockinstanz clock3

Invariante:
clock2 <=6

Abbildung B.4: Clockinvariante zum Überfahren einer Weiche
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Invariante:
clock1<=6

Abbildung B.5: Clockinvariante zum Überfahren eines Schienenabschnittes

Invariante:
clock3 <=3

Abbildung B.6: Clockinvariante zum Überfahren eines Schienenabschnittes

Guard: clock1 >=6

Abbildung B.7: Zeitbehaftete Regel zum Forbewegen von einem Schienenabschnitt zum
nächsten
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Guard: clock3 >= 3

Abbildung B.8: Zeitbehaftete Regel zum Forbewegen von einem Schienenabschnitt zum
nächsten
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Guard: clock3 >=6

Abbildung B.9: Zeitbehaftete Regel, um von einer Weiche zu fahren

Guard: clock2 >=6

Abbildung B.10: Zeitbehaftete Regel, um von einer Weiche zu fahren
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Guard: clock1 >=6

Abbildung B.11: Zeitbehaftete Regel, um auf eine Weiche zu fahren

Guard: clock2 >=6

Abbildung B.12: Zeitbehaftete Regel, um von einer Weiche zu fahren
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