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Abstract

Nowadays, XML has shown to be the de facto standard for electronic data
interchange on the Internet. Available XML data ranges from small Web pages
to possibly unbounded streams, as used e.g. in news agencies.

Especially when using small mobile devices (such as mobile phones or PDAs),
the data size forms a problem due to the limitations in main memory, and
the size of the transferred data forms a problem due to the limitations in
energy consumption. In these cases, i.e., whenever the data size or energy
consumption limitations form the bottleneck of an XML based application,
these applications can profit from the usage of XML compression. It is desirable
that these applications can perform all XML based operations, like XML query
evaluation and XML data manipulation, directly on the compressed XML data,
to avoid additional computation caused by prior decompression and subsequent
compression. Furthermore, it is desirable that there is no loss in efficiency when
performing query evaluation on compressed data in contrast to performing
query evalution on uncompressed data. Finally, it is desirable that it is possible
to perform the query evaluation on possibly unbounded streams.

The existing approaches to XML compression can be classified according
to whether they support these XML based operations or not. Approaches like
GZip, BZip2, XMill, and others reach a strong compression, while the eva-
luation of queries requires prior decompression and subsequent compression.
Other approaches, like XGrind and XQueC, allow to evaluate queries on the
compressed data, but they are outperformed in terms of compression ratio by
those approaches that do not support these XML based operations. The ap-
proaches to XML compression that where implemented and presented in this
thesis allow query evaluation and updates on the compressed data while at
the same time, they reach compression ratios comparable to those approaches
that do not support the XML based operations. The approaches presented in
this thesis focus on XML structure compression, i.e., on the compression of
the XML elements and attributes, but all presented approaches can be combi-
ned arbitrarily with quite a number of data compressors for text and attribute
values that are based on prior ideas from literature.
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In this thesis, I present three basic approaches to the compression of XML
structure — coding based compression, compression based on structural redun-
dancies, and schema based compression — and demonstrate that query evalua-
tion as well as update operations can be performed directly on the resulting
compressed data. The presented approaches provide compression ratios signi-
ficantly better than those of other queriable XML compression techniques like
e.g. XGrind. Futhermore, I present two combinations of these compression ap-
proaches that provide the advantages of the combined approaches and thereby
reach a better compression ratio and a faster compression and decompression
while showing the same capabilities in other respects.

The approaches to XML structure compression presented in this thesis sup-
port query evaluation in form of a simple interface. To support all axes of
XPath, these approaches are amended by a generic approach to XPath query
evaluation. This approach allows to efficiently evaluate queries on compres-
sed XML representations that implement a simple, shallow interface. Amongst
compressed XML, this approach allows to evaluate queries on uncompressed
XML files and on possibly unbounded data streams. When comparing this ap-
proach with the standard XPath evaluator JAXP, the generic XPath evaluator
reached evaluation times comparable or even better than those of JAXP.

Finally, I have performed extensive performance evaluations to compare the
presented compression approaches with other available approaches to XML
compression, and I show that the presented compression approaches outper-
form the other approaches GZip, BZip2, and XMill in terms of query evaluation
und updates on the compressed data.

When comparing the newly developed approaches to XML compression with
each other, it can be seen that each approach shows its strength in different
aspects: While one approach reaches a strong compression, another approach
shows fast compression and decompression times, whereas the third approach
allows to evaluate queries efficiently. None of the presented approaches outper-
forms the other approaches completely.



Zusammenfassung

Heutzutage hat sich XML als der de facto Standard fiir den Datenaustausch
im Internet durchgesetzt. Dabei reicht die Spanne an verfiigbaren XML-Daten
von kleinen Webseiten bis hin zu moglicherweise unendlichen Datenstromen,
wie sie z.B. von Nachrichten-Agenturen versandt werden.

Vor allem beim Einsatz von mobilen Kleinstgerdten (wie z.B. Mobiltelefonen
oder PDAs) stellt die Datengrofe aufgrund des nur eingeschrinkt verfiigharen
Arbeitsspeichers und die Ubertragungsgréfe aufgrund der nur eingeschriinkt
verfiigharen Energie ein Problem dar. In diesen Fillen, also immer, wenn Da-
tengrofe oder begrenzter Energieverbrauch das Nadelohr einer XML-basierten
Anwendung darstellen, kénnen diese Anwendungen von der Nutzung von XML-
Kompression profitieren. Hierbei ist es wiinschenswert, dass diese Anwendun-
gen alle XML-basierten Operationen, wie z.B. XML-Anfrage- Auswertung oder
Manipulationen der XML-Daten, direkt auf den komprimierten Daten durch-
fithren kdénnen, um einen Mehraufwand durch vorherige Dekompression und
anschliefsende Kompression zu vermeiden. Weiterhin ist es wiinschenswert, dass
bei der Anfrage-Auswertung auf komprimierten Daten keine Effizienzverluste
im Vergleich zur Anfrage-Auswertung auf nicht-komprimierten Daten auftre-
ten, und dass diese Anfrage-Auswertung auch auf quasi-unendlichen kompri-
mierten Datenstromen moglich ist.

Bisher in der Literatur verfiighbare Kompressions-Verfahren lassen sich unter
anderem danach gliedern, ob sie die XML-basierten Operationen unterstiitzen
oder nicht. Verfahren wie GZip, BZip2, XMill und andere erreichen eine sehr
starke Kompression, die Durchfithrung der XML-basierten Operationen erfor-
dert jedoch vorherige Dekompression und anschlieffende Kompression. Andere
Verfahren wie z.B. XGrind oder XQueC bieten zwar die Moglichkeit, Anfra-
gen direkt auf dem Komprimat auszuwerten, sie bleiben jedoch beziiglich ih-
rer Kompressionsstarke deutlich hinter denjenigen Kompressoren zuriick, die
die XML-basierten Operationen nicht unterstiitzen. Die in dieser Arbeit ent-
wickelten und vorgestellten Kompressions-Verfahren bieten im Gegensatz dazu
die Moglichkeit, Anfrage-Auswertung und Updates direkt auf dem Komprimat
durchzufiihren, wobei gleichzeitig Kompressionsstérken vergleichbar mit denen
derjenigen Kompressoren erreicht werden, die diese XML-basierten Operatio-
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nen nicht unterstiitzen. Hierbei konzentriert sich diese Arbeit insbesondere auf
die Struktur-Kompression, also auf die Kompression der XML-Elemente und
-Attribute, wobei alle vorgestellten Struktur-Kompressions-Verfahren beliebig
mit einer Reihe von Daten-Kompressoren kombiniert werden koénnen, welche
auf bereits in der Literatur diskutierten Ideen basieren.

In dieser Arbeit werden drei grundlegende Verfahren zur XML-Struktur-
Kompression — Kodierungs-basierte Kompression, Kompression basierend auf
Struktur-Redundanzen sowie Schema-basierte Kompression — prasentiert, und
es wird nachgewiesen, dass sowohl Anfrage-Auswertung als auch Updates di-
rekt, also ohne Dekompression, auf den aus diesen Verfahren resultierenden
Komprimaten durchgefithrt werden konnen. Diese Verfahren erreichen besse-
re Kompressionsraten als Kompressions-Verfahren mit vergleichbaren Eigen-
schaften bei der Anfrage-Auswertung wie z.B. XGrind. Des Weiteren werden
zwei Kombinationsmoglichkeiten dieser Verfahren vorgestellt, die die Vorteile
der jeweiligen Verfahren vereinigen, und somit bei ansonsten gleichbleibenden
Eigenschaften gleichzeitig eine stirkere Kompression und eine schnellere De-
kompression erreichen.

Die in dieser Arbeit vorgestellten Verfahren zur XML-Struktur-Kompression
unterstiitzen eine Basis-Anfrage-Auswertung in Form einer einfachen Schnitt-
stelle. Um alle Achsen des XPath-Standards zu unterstiitzen, wurden die-
se Verfahren ergénzt durch ein neu entwickeltes generisches XPath-Auswer-
tungs-Verfahren. Dieses erlaubt effiziente Anfrage-Auswertung auf komprimier-
ten XML-Repréasentationen, welche eine schlanke, einfache Schnittstelle im-
plementieren. Neben komprimiertemm XML, erlaubt dieses Verfahren auch die
Anfrage-Auswertung auf nicht-komprimiertem XML-Dateien und auf nicht-
komprimierten quasi-unendlichen Datenstromen. Bei einem Vergleich mit dem
Standard-XPath-Auswerter JAXP hat sich hierbei herausgestellt, dass bei der
Verwendung des neu  entwickelten — XPath-Auswertungs-Verfahrens
Auswertungszeiten erreicht wurden, welche vergleichbar oder sogar besser wa-
ren als die von JAXP.

In einer ausfithrlichen Messreihe wurden die vorgestellten Verfahren unter-
einander und mit anderen verfiigharen XML-Kompressions-Verfahren vergli-
chen, und es wurde nachgewiesen, dass sie den anderen Verfahren GZip, BZip2
und XMill in Bezug auf Anfrage-Auswertung und Updates iiberlegen sind.

Im Vergleich der neu entwickelten Kompressions-Verfahren untereinander
hat sich gezeigt, dass jedes der Verfahren seine Stirke in einem anderen Bereich
hat: Wahrend eines besonders stark komprimiert, weist ein anderes besonders
niedrige Kompressions- und Dekompressionszeiten vor, wohingegen das dritte
Verfahren besonders effiziente Anfrage-Auswertung erlaubt. Keines der neu
entwickelten und vorgestellten Verfahren ist also den jeweils anderen absolut
iiberlegen.
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1 Einleitung

1.1 Motivation

Im Laufe der letzten Jahre setzte sich XML immer mehr als Standard-Format
zum Datenaustausch, insbesondere bei Web-Anwendungen, durch.

Wihrend XML durch seine Anreicherung der Daten mit Struktur und der
damit verbundenen Flexibilitdt grofte Vorteile gegeniiber anderen Austausch-
formaten bietet, sorgt jedoch gerade diese Struktur fiir einen erheblichen Over-
head im Vergleich zu den eigentlichen Nutzdaten.

Obwohl die verfiighare Bandbreite zur Dateniibertragung erheblich angestie-
gen ist bei gleichzeitiger Reduktion der Kosten, stellt genau diese Dateniiber-
tragung, verglichen z.B. mit der Speicherung auf Festplatten oder dauerhaften
Speichermedien, noch immer das Nadelohr einer jeden Internet-basierten An-
wendung dar. Insbesondere bei der Verwendung von mobilen Kleinstgerédten
(wie z.B. Mobiltelefonen oder PDAs) stellen die Dateniibertragung und der
damit verbundene Energie-Verbrauch den grofiten ,Kostenfaktor” dar.

Auch der Arbeitsspeicher bei diesen mobilen Kleinstgerdten entspricht im
Allgemeinen nur einem Bruchteil des Arbeitsspeichers von herkémmlichen PCs.
Daher konnen diese Kleinstgerdte nur einen deutlich geringeren Teil eines
XML-Dokumentes einsehen und bearbeiten, als dies auf einem PC moglich
wire. Bisherige Speichermodelle, wie z.B. der DOM-Baum, sind daher fiir sol-
che Anwendungen auf Kleinstgerdten nur sehr eingeschréinkt nutzbar.

Als eine mogliche Losung dieser Probleme stelle ich in dieser Arbeit ver-
schiedene Verfahren zur Kompression von XML-Dokumenten vor. Durch die
verkleinerte Darstellung derselben Inhalte kdnnen sowohl der Datentransfer als
auch der Arbeitsspeicher-Bedarf minimiert werden, ohne dass die durch die Se-
mi-Strukturiertheit erzielte Flexibilitét eingeschréinkt werden muss (lediglich
die direkte Lesbarkeit durch Menschen geht verloren). Bieten solche Verfahren
zur XML-Kompression dieselben Zugriffs- und Manipulationsmdglichkeiten wie
herkémmliches XML, so kénnen alle XML-basierten Anwendungen ohne spiir-
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baren Nachteil auf der komprimierten Darstellung statt auf herkémmlichem
XML ausgefiihrt werden.

1.2 Szenarien

In diesem Kapitel werde ich Szenarien vorstellen, die davon profitieren, wenn
statt herkommlichemm XML eine komprimierte XML-Repréasentation gewahlt
wird. Anschlieffend werde ich die aus diesen Szenarien ableitbaren Anforde-
rungen erortern.

1.2.1 Newsticker

Seit 1999 benutzen Nachrichten-Agenturen wie z.B. Reuters oder AP zur Da-
tentibermittlung an ihre Nachrichten-Bezieher den XML-basierten Standard
News Industry Text Format (NITF), welcher im Jahre 2000 durch das eben-
falls XML-basierte NewsML ersetzt wurde.

Ein News-Ticker-System stellt hierbei ein typisches Szenario fiir die von
mir in dieser Arbeit vorgestellten Verfahren dar. Auf der einen Seite steht
die Nachrichten-Agentur, die einen kontinuierlichen Strom an verschiedensten
Nachrichten produziert. Auf der anderen Seite steht der Bezieher, der nur an
einem Teil der produzierten Nachrichten interessiert ist (z.B. nur Borsen- oder
Sportnachrichten, nur regionale Nachrichten). Damit der Bezieher nicht den
kompletten Nachrichten-Strom eines News-Tickers empfangen muss, steht zwi-
schen Nachrichten-Agentur und Bezieher der Nachrichten-Broker. Dieser kennt
die Interessen des Beziehers, filtert die fiir ihn interessanten Nachrichten aus
dem Datenstrom und leitet sie an den Bezieher weiter.

Da in solch einem System eine sehr hohe Menge von Daten kontinuierlich
versendet wird, kann dieses Szenario in hohem Mafe vom Einsatz eines Kom-
pressions-Verfahrens profitieren. Wiirde man nun einen einfachen, generischen
Kompressor (wie z.B. gzip) verwenden, bedeutete dies aus Sicht des Brokers,
dass er die komprimierten Nachrichten zundchst vollstandig dekomprimieren
miisste, bevor er die fiir den Bezieher interessanten Nachrichten herausfiltern
kann, um sie anschlieffend wieder zu komprimieren und an den Bezieher zu
versenden. Durch die zusétzliche Dekompression und Kompression entsteht
also ein nicht unerheblicher Rechen-Mehraufwand insbesondere auf Seiten des
Nachrichten-Brokers.

Beim Einsatz von XML-spezifischen Verfahren, die diese Filterung und ge-
gebenenfalls die Modifikation des XML-Datenstroms direkt auf den kompri-
mierten Daten unterstiitzen, entfallt dieser Mehraufwand, das gesamte System
profitiert von der Kompression, ohne dass weitere Nachteile entstehen.
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1.2.2 Daten-Management fiir mobile, Ajax-basierte Web 2.0
Anwendungen

Ajax [47| ist eine Programmier-Technik fiir interaktive Web-Anwendungen, die
XML-Daten-Reprasentation in Form eines DOM-Baumes — also einer Baum-
Représentation der hierarchischen XML-Daten — auf einem Client mit XML-
HttpRequests als Daten-Austausch-Protokoll und JavaScript als Client-seitiger
Programmiersprache kombiniert. Ajax erlaubt z.B., dass bei Benutzeraktionen
synchron oder asynchron Teile des DOM-Baumes von einem Server nachge-
laden werden, so dass der Benutzer eine schnelle Antwort auf seine Aktion
erhélt, ohne dass der komplette Dokument-Inhalt neu aufgebaut werden muss.
Ein Beispiel fiir solche Anwendungen ist die automatische Vervollsténdigung
des Suchbegriffs bei der Suche in einem Web-Lexikon. Das Potential, welches
Ajax bietet, um interaktive Web-Anwendungen zu generieren, und der gegen-
wartige Stand der Technik von Ajax werden in |70] dargestellt.

Um zur Laufzeit dynamische Modifikationen an Teilen einer im Client-Brow-
ser dargestellten Web-Anwendung vorzunehmen, benotigt ein XML-Kompres-
sions-Verfahren, welches im Zusammenhang mit Ajax eingesetzt wird, die vol-
le DOM-Unterstiitzung. Dies umfasst die Navigation (mindestens entlang der
Achsen first-child, next-sibling und parent) sowie Updates (mindestens insert
und remove) auf der komprimierten Darstellung.

Ersetzt man also die DOM-Komponente auf Client-Seite durch eine Na-
vigations- und Update-fahige, komprimierte XML-Représentation, so kdnnen
die restlichen Ajax-Komponenten unveréindert iibernommen werden. Statt un-
komprimiertem XML wird nun komprimiertes XML iibertragen, so dass Uber-
tragungskosten eingespart werden. Die Darstellung der komprimierten XML-
Représentation erfordert im Hauptspeicher deutlich weniger Speicher-Bedarf
als die Darstellung des eigentlichen DOM-Baumes bei gleichem Funktionsum-
fang, so dass Arbeitsspeicher eingespart werden kann. Dadurch kénnen bei
gleichem Arbeitsspeicher deutlich umfangreichere Ajax-Anwendungen umge-
setzt werden, und somit wird es auch mobilen Kleinstgeraten (wie z.B. Mo-
biltelefonen und PDAs) ermoglicht, Ajax-basierte Web 2.0 Anwendungen zu
nutzen.

Teile der Ideen eines durch XML-Kompression verbesserten Daten-Manage-
ments fiir mobile, Ajax-basierte Web 2.0 Anwendungen wurden in [21] verdf-
fentlicht.

1.2.3 Verbesserung der Cache-Kapazitit durch Kompression

In herkémmlichen Caching-Szenarien speichert der Client in seinem Cache die
Antworten auf zuvor gestellte Anfragen. Bei einer erneuten Anfrage muss nicht
mehr das komplette Anfrage-Ergebnis vom Server an den Client gesendet wer-
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den, sondern nur noch diejenigen Fragmente, die nicht im Cache enthalten sind.
Dadurch miissen weniger Daten vom Server zum Client {ibertragen werden, so
dass sowohl Transferkosten als eventuell auch Transferzeiten gesenkt werden.

Um in diesem Szenario allerdings die Antwort-Fragmente korrekt in den
vorhandenen Cache-Inhalt zu integrieren, muss zusétzlich zu den eigentlichen
Inhalten eines Fragmentes eine Identifizierungsinformation (wie z.B. eine Ord-
path-Nummer [69]) mitgesendet werden. Insbesondere bei kleinen Antwort-
Fragmenten ergibt sich so ein nicht unerheblicher Overhead.

Ebenso hat bei einem solchen Szenario im Allgemeinen der Client das Pro-
blem zu entscheiden, ob er alle bendtigten Daten bereits in seinem Cache vor-
handen hat. Dies ist entweder durch einen Teilmengen-Test mdglich, in dem
der Client testet, ob die zur Auswertung bendtigten Fragmente eine Teilmen-
ge der Daten sind, die von einer fritheren Anfrage noch im Cache gespeichert
sind. Solch ein Teilmengen-Test ist zwar fiir einige Teilklassen in Polynomzeit
berechenbar ( [18,19,40,62,64,77]), aber bereits fiir Anfragen, die gleichzeitig
descendant-Achsen und Wildcards enthalten, NP-vollstandig ( [40,62,64]). Ei-
ne andere Mdglichkeit sind sogenannte Compensation-Anfragen C, welche eine
Umformung der urspriinglichen Anfrage A darstellen, so dass C angewandt auf
den Cache genau dasselbe Ergebnis liefert wie A angewandt auf das Original-
Dokument. Doch auch die Berechnung solch einer Compensation-Anfrage ist
NP-vollstandig, wie in [58,61] gezeigt wurde.

Bietet ein XML-Kompressions-Verfahren eine stark komprimierte Darstel-
lung der XML-Struktur, ergibt sich ein neues Caching-Szenario: Bereits ab der
Initialisierung der Anwendung enthilt der Client-Cache die komplette Struktur
des XML-Dokumentes (also alle 6ffenenden und schlieftenden XML-Tags inklu-
sive der Attribut-Namen jedoch ohne Attribut- und Text-Werte). Als Antwort
auf eine Anfrage muss der Server nur noch eine komprimierte Liste der noch
nicht im Cache enthaltenen, zur Beantwortung der Anfrage notwendigen Kon-
stanten in Dokumentreihenfolge iibertragen (also die notwendigen Attribut-
bzw. Text-Werte). Verwendet der Client ein Anfrage-Auswertungsverfahren,
welches alle Knoten in Dokumentreihenfolge abarbeitet (wie z.B. das in Ka-
pitel 9 vorgestellte Verfahren), so wird keinerlei zuséitzliche Information zur
korrekten Integration der nachgeladenen Daten in den Cache benétigt, diese
ist durch die Ubertragungsreihenfolge implizit gegeben.

Neben dem fehlenden Overhead aufgrund nicht bendtigter Identifizierungs-
informationen ist ein weiterer erheblicher Vorteil dieses neuen Szenarios, dass
der Client nur aufgrund seines Cache-Inhaltes in linearer Zeit der Cache-
Grofe entscheiden kann, ob er bereits alle bendtigten Informationen zur Be-
antwortung einer gegebenen Anfrage enthélt. Der Client muss lediglich die
Anfrage-Auswertung auf seinem Cache starten. Stofst er dabei nicht auf Text-
Platzhalter, zu denen der Text-Wert noch nicht iibertragen wurde, so enthalt
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der Cache bereits die vollstdndige Antwort, in diesem Fall muss keinerlei Da-
tentransfer zwischen Server und Client stattfinden.

Teile der Ideen eines durch Struktur-Kompression verbesserten Cachings
wurden in [14] zur Verdffentlichung eingereicht.

1.3 Anforderungen

Aus den eben vorgestellten Szenarien lassen sich Anforderungen ableiten, die
erfiillt werden miissen, damit ein Kompressions-Verfahren besonders gut fiir
diese Szenarien geeignet ist. In welchem Mafe diese Anforderungen jedoch ge-
wichtet sind, hdngt in hohem Mafe vom konkreten Szenario ab. Im folgenden
gliedern sich die Anforderungen auf in allgemeine Anforderungen an die Kom-
pressionsrate sowie Kompressions- und Dekompressionszeit, in Anforderungen
an die Kompression von XML-Datenstromen und in Anforderungen an die Na-
vigation bzw. Anfrage-Auswertung direkt auf der komprimierten Représenta-
tion. Abschlietend werden diese Anforderungen noch einmal zusammenfassend
aufgelistet.

1.3.1 Kompression und deren spezielle Anforderungen

Zunéchst einmal muss ein Kompressions-Verfahren korrekt sein, also Kompres-
sion und Dekompression miissen Umkehroperationen voneinander darstellen.
Dies bedeutet, dass man wieder das urspriingliche XML-Dokument xml ent-
h&lt, wenn man ein XML-Dokument xml komprimiert und anschliefend mit
dem entsprechenden Dekompressions-Verfahren wieder dekomprimiert.

Um einen Vorteil gegeniiber anderen bereits verfiigharen XML-Kompressions-
Verfahren zu erzielen, sollte ein neues Verfahren gegeniiber anderen Verfahren,
welche dieselben Anforderungen erfiillen, eine stirkere Kompressionsrate vor-
weisen. Hat das Kompressions-Verfahren hingegen starke Vorteile in Bezug auf
andere Anforderungen, so kann ein gewisser Verlust beziiglich der Kompressi-
onsrate in Kauf genommen werden. Ein Verfahren, welches z.B. weder Anfrage-
Auswertung noch Updates direkt auf dem Komprimat erlaubt, wird voraus-
sichtlich stirkere Kompressionsraten erreichen kénnen als Verfahren, welche
dies auf dem Komprimat zulassen. Da jedoch — wie im News-Ticker-Szenario
beschrieben — durch die Anfrage-Auswertung direkt auf dem Komprimat ein
Rechen-Mehraufwand vermieden werden kann, kann fiir viele Anwendungen
ein gewisser Verlust der Kompressionsrate in Kauf genommen werden.

Da man in vielen Szenarien (z.B. News-Ticker) die komprimierten Daten
bereits wiahrend des Kompressions-Vorgangs versenden mochte, sollten Kom-
pression und Dekompression vergleichbar hohe Durchsitze erreichen, wie sie
durch heute iibliche Ubertragungstechniken (z.B. ADSL) erméglicht werden.
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Da man jedoch typischerweise ein Dokument nur einmalig komprimiert, je-
doch mehrfach und auf verschiedenen Rechnern dieses komprimierte Dokument
weiterverarbeitet, indem man dieses z.B. dekomprimiert, ist ein etwas erhoh-
ter Rechenaufwand bei der Kompression eher in Kauf zu nehmen als bei der
Dekompression. Insbesondere ist es wiinschenswert, dass mindestens genau-
so schnell dekomprimiert wie komprimiert werden kann, um einen moglichen
Puffer-Uberlauf beim Dekompressor und somit Empfianger der komprimierten
Daten zu vermeiden.

1.3.2 XML-Datenstrome und deren spezielle Anforderungen

Wann immer die Grofse der Dokument-Repréasentation die Grofe des verfiig-
baren Hauptspeichers iiberschreitet, erhalten wir besondere Anforderungen an
die verarbeitenden Anwendungen — sowohl an die Kompression, als z.B. auch
an die Anfrage-Auswertung. Dies ist insbesondere der Fall, wenn es um Daten-
verarbeitung auf mobilen Kleinstgerdten (wie z.B. Mobiltelefonen oder PDAs)
geht. Besonders stark kommt dieser Aspekt allerdings zum Tragen, wenn es um
die Verarbeitung von unendlichen Datenstromen, wie z.B. Datenstromen aus
XML-News-Tickern geht. Dies fithrt zu einer Reihe von neuen Anforderungen.

Da die XML-Datenstrome potentiell unendlich lang sind, ist nur ein ein-
maliger Durchlauf des Dokuments moglich. Es kann — wenn {iberhaupt — nur
innerhalb eines gewissen Fensters vor und zuriick navigiert werden. Da die Ver-
arbeitung mindestens genauso schnell sein muss, wie die iibertragenen Daten
eintreffen, empfiehlt es sich oftmals, lediglich vorwérts, also linear, durch den
Strom zu navigieren.

Zu einem Zeitpunkt ist immer nur ein kleiner Ausschnitt des Stroms be-
kannt. Aus diesem miissen dann die relevanten Daten herausgefiltert werden
und eventuell fiir eine spitere Weiterverarbeitung zwischengespeichert werden.
Hierbei ist es egal, ob ein Kompressions-Verfahren zur Verarbeitung von un-
endlichen Datenstromen diskrete oder gleitende Fenster verwendet, innerhalb
derer das Verfahren unbegrenzt auf die Daten zugreifen kann. Bei gleitenden
Fenstern wird das Fenster kontinuierlich weiterbewegt, das Fenster ’gleitet’ also
langsam wéhrend des Fortschreitens im XML-Datenstrom mit, und es existiert
eine grofe Uberschneidung des aktuellen Fensterinhalts mit dem vorherigen
Fensterinhalt. Verfahren mit diskreten Fenstern bewegen das Fenster diskret
weiter: Erst wird ein Teil des Stroms eingelesen und verarbeitet, anschlieffend
ein weiterer. Die einzelnen Fensterinhalte haben in diesem Fall wenig bis gar
keine Uberschneidungen.
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1.3.3 Anfrage-Auswertung und deren spezielle Anforderungen

Ein Verfahren, welches Navigation beziehungsweise Anfrage-Auswertung direkt
auf dem Komprimat erlaubt, erfordert je nach Anwendung, dass das Ergebnis
in komprimierter Form zur Verarbeitung weitergeleitet wird, oder aber dass das
Ergebnis unabhéngig vom Rest des Dokumentes dekomprimiert werden kann.
Ein Kompressions-Verfahren muss also zunéchst einmal partielle Dekompressi-
on erlauben, es muss also erlauben, dass Teile des Dokumentes dekomprimiert
werden konnen, ohne dabei das gesamte Komprimat zu lesen. Die Unterstiit-
zung partieller Dekompression ist notwendig, um gegebenenfalls das Ergebnis
einer Anfrage zur Weiterverarbeitung zu dekomprimieren.

Sowohl Navigation auf XML-Dokumenten wie auch Auswertung von XPath-
Anfragen kann laut [50] auf wenige Basis-Operationen zuriickgefithrt werden.
Diese Basis-Operationen umfassen die Navigation zum first-child — also zum er-
sten Kind-Knoten im XML-Baum — die Navigation zum nezt-sibling — also zum
nachfolgenden Geschwister-Knoten im XML-Baum - die Navigation zum pa-
rent — also zum Elternknoten im XML-Baum — sowie die Ermittlung des Typs
und des Labels eines Knotens. Ein Kompressions-Verfahren, welches Naviga-
tion und Anfrage-Auswertung direkt auf dem Komprimat unterstiitzt, muss
somit also zunéchst einmal zu jedem Knoten des urspriinglichen XML-Baums
eine entsprechende Représentation im Komprimat bieten, welches diesen Kno-
ten eindeutig identifiziert. Fiir all diese Knoten-Reprasentationen miissen dann
die genannten Basis-Operationen unterstiitzt werden.

Manche Kompressions-Verfahren erlauben neben der Unterstiitzung der Ba-
sis-Operationen zur Navigation und zur Anfrage-Auswertung eine direkte, op-
timierte Unterstiitzung aller oder einiger XPath-Achsen. Ist eine solche Op-
timierung verfiigbar, ist es natiirlich sinnvoll diese Optimierung anzuwenden,
um Navigation und Anfrage-Auswertung effizienter zu gestalten. Insgesamt ist
es wiinschenswert, dass Navigation und Anfrage-Auswertung mit vergleichba-
rem Rechenaufwand und Rechenzeit auf dem Komprimat durchgefiihrt wer-
den konnen wie auf unkomprimiertem XML. Hat eine komprimierte XML-
Représentation jedoch erhebliche andere Vorteile — wie z.B. eine sehr starke
Kompressionsrate — so kann in einigen Anwendungen auch ein etwas hoherer
Rechenaufwand oder eine etwas hohere Rechenzeit in Kauf genommen werden.

1.3.4 Updates und deren spezielle Anforderungen

Szenarien wie komprimierte, Ajax-basierte Web-Anwendungen und Caching
erfordern — neben der Navigation bzw. der Anfrage-Auswertung direkt auf dem
Komprimat — zusédtzlich die Moglichkeit, Updates direkt auf dem Komprimat
zu unterstiitzen.
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Ahnlich wie die Anfrage-Auswertung auf die oben genannten Basis-Ope-
rationen zuriickgefithrt werden kann, kann man auch Updates auf die Basis-
Operationen insert(XML zml, XML zmllns, int p), welche den XML-Teilbaum
xmllns  im  XML-Dokument xml an Position p einfiigt und
remove(XML xml, int p), welche den Teilbaum an Position p aus dem XML-
Dokument xml entfernt, zuriickfiihren.

Sollte dies in einem XML-Kompressions-Verfahren zu einer effizienteren Um-
setzung fithren, so konnen weitere Update-Operationen wie z.B.
replace(XML xml, XML xmlRep, Position p), welche den an Position p im
XML-Dokument xml stehenden Teilbaum durch den XML-Teilbaum xmlRep
ersetzt, direkt auf dem Komprimat umgesetzt werden, ohne den Umweg iiber
die Hintereinanderausfithrung der Operationen remove und insert zu gehen.

Hinsichtlich der Unterstiitzung der Updates lassen sich zwei Qualitatsstu-
fen unterscheiden: Einige Verfahren erzeugen durch Updates ein korrektes,
nicht aber optimales Komprimat, wihrend andere sowohl korrekte als auch
optimale Komprimate erzeugen. Ein Komprimat ist hierbei korrekt, wenn die
Hintereinanderausfithrung von Kompression, Update auf dem Komprimat und
Dekompression zu demselben XML-Dokument xml’ fiihrt, wie die Durchfiih-
rung des selben Updates direkt auf dem urspriinglichen XML-Dokument xml.
Gilt zusétzlich, dass Kompression und Update auf dem Komprimat zu dem-
selben Komprimat kxml’ fithren, wie Update auf dem XML-Dokument und
anschlieffende Kompression, so ist dieses Update zusétzlich optimal. Dies be-
deutet, dass nicht-optimale Updates im Allgemeinen zu einer Verschlechterung
der Kompressionsrate fiihren, dennoch bieten Kompressions-Verfahren, welche
bei Updates zu nicht-optimalen Komprimaten fithren, einen erheblichen Vor-
teil gegeniiber Kompressions-Verfahren, die keinerlei Updates direkt auf dem
Komprimat erlauben, da im Falle von Updates der erhebliche Mehraufwand
durch Dekompression und erneute Kompression eingespart werden kann.

1.3.5 Zusammenfassung der Anforderungen

Zusammenfassend lassen sich also die folgenden Anforderungen nennen, wel-
che durch navigierbare Kompressions-Verfahren erfiillt werden sollten, so dass
z.B. die oben genannten Szenarien in hohem Mafe von der Verwendung dieser
Verfahren profitieren kénnen:

e Anforderung 1: Kompression und Dekompression miissen zueinander
invers sein, die Dekompression der komprimierten Reprisentation muss
also bei Eingabe eines beliebigen validen Dokuments wieder das ur-
spriingliche Dokument erzeugen.
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e Anforderung 2: Die Kompressionsrate muss mindestens so stark sein
wie die anderer XML-Kompressions-Verfahren mit vergleichbaren Eigen-
schaften.

e Anforderung 3: Kompression und Dekompression miissen vergleichba-
re Durchsiitze erreichen wie derzeit iibliche Ubertragungsverfahren (z.B.
ADSL).

e Anforderung 4: Die Dekompression muss mindestens so schnell sein
wie die Kompression.

e Anforderung 5: Kompression und Dekompression miissen maglich sein,
ohne dass das gesamte Dokument beziehungsweise das gesamte Kompri-
mat bekannt ist.

e Anforderung 6: Zu jedem Knoten des urspriinglichen XML-Dokumentes
muss eine eindeutige Reprasentation im Komprimat existieren.

e Anforderung 7: Partielle Dekompression, also Dekompression von XML-
Teilbdumen innerhalb des Komprimats, muss moglich sein.

e Anforderung 8: Die Basis-Operationen first-child, next-sibling, parent
sowie die Ermittlung des Typs und des Labels eines Knotens direkt auf
dem Komprimat miissen unterstiitzt werden.

e Anforderung 9: Die Anfrage-Auswertungszeiten auf dem Komprimat
sollten hierbei vergleichbar zu Anfrage-Auswertungszeiten auf unkompri-
miertem XML sein.

e Anforderung 10: Die Basis-Operationen insert und remove miissen di-
rekt auf dem Komprimat unterstiitzt werden.

Zum Zeitpunkt der Verdffentlichung der in dieser Arbeit vorgestellten Ver-
fahren war noch kein Verfahren bekannt, welches all diese Anforderungen in
dem Mafe unterstiitzt, wie es die in dieser Arbeit vorgestellten Verfahren tun.

1.4 Beitrag dieser Arbeit und Gesamtiiberblick

In dieser Arbeit leiste ich den folgenden Beitrag zur Erfiillung der im vorigen
Abschnitt présentierten Anforderungen:

e Trennung einer XML-Représentation in eine Struktur-Reprisentation,
welche die inneren Knoten eines XML-Baums enthilt und eine Konstan-
ten-Reprisentation, welche die Blattknoten eines XML-Baums enthélt.

e Entwicklung und Definition dreier neuer, komprimierter XML-Struktur-
Kompressions-Verfahren, wobei jedes dieser Verfahren die oben genann-
ten Anforderungen erfiillt. Jedes Verfahren erreicht jedoch ein unter-
schiedlich hohes Maf an Erfiilllung der Anforderungen, so dass jedes
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Verfahren andere Starken hat und somit entsprechend den in der je-
weiligen Anwendung erforderlichen Anforderungen das beste Verfahren
ausgewahlt werden kann. Zusammenfassend werden fiir jedes dieser drei
Verfahren

— die Korrektheit bewiesen, es wird also bewiesen, dass die Dekom-
pression des Komprimats wieder das urspriingliche XML-Dokument
erzeugt.

— die Korrektheit der Navigation auf dem Komprimat mit Hilfe der
Basis-Operationen first-child, next-sibling, parent, getLabel und get-
Type nachgewiesen.

— Update-Moglichkeiten direkt auf dem Komprimat und Unterstiit-
zung der DOM-Schnittstelle durch das Kompressions-Verfahren er-
ortert.

— die Verarbeitung von unendlichen Datenstrémen dargestellt.

Vorstellung zweier Kombinationsmoglichkeiten dieser Verfahren, so dass
auch diese beiden hybriden Verfahren die oben genannten Anforderungen
erfiillen.

Vorstellung und Vergleich verschiedener Verfahren zur Konstanten-Kom-
pression sowie deren Integration mit der Reprasentation der XML-Struk-
tur.

Entwicklung und Definition eines XPath-Auswertungs-Verfahrens, wel-
ches XPath-Anfragen auf allen XML-Représentationen, die die Basis-
Operationen first-child, next-sibling, parent, getLabel und getType un-
terstiitzen, auswertet. Die Auswertungszeit dieses Verfahrens ist hierbei
linear, also proportional zur Dokument-Grofse.

Vergleich der vorgestellten Verfahren beziiglich ihrer Kompressionsrate
sowie ihrer Kompressions-, Dekompressions- und Anfrage-Auswertungs-
Zeiten untereinander sowie mit anderen XML-Kompressions-Verfahren.

1.5 Gliederung dieser Arbeit

Diese Arbeit gliedert sich wie folgt:

o Kapitel 2 definiert die theoretischen Grundlagen von XML, SAX, XPath

und DOM.

e Kapitel 3 definiert verschiedene SAX-Strom-Varianten, die als Eingabe

fiir die verschiedenen vorgestellten Verfahren genutzt werden.
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e Kapitel 4, 5 und 6 stellen den Hauptteil dieser Arbeit dar. Sie beschreiben
die drei Struktur-Kompressions-Verfahren Succinct(Kodierungs-basierte
Kompression), DAG (Kompression basierend auf Struktur-Redundanzen )
und DTD-Subtraktion(Schema-basierte Kompression).

o Kapitel 7 stellt eine Kombination von auf Struktur-Redundanzen ba-
sierten Verfahren mit Kodierungs-basierter bzw. mit Schema-basierter
XML-Kompression vor.

e Kapitel 8 beschreibt die Integration der komprimierten Daten mit der
komprimierten XML-Struktur-Repréasentation und stellt einige Verfahren
zur Daten-Kompression vor.

e Kapitel 9 beschreibt das Verfahren zur linearen Anfrage-Auswertung auf
navigierbaren XML-Reprisentationen.

e Kapitel 10 vergleicht die in dieser Arbeit prisentierten Ideen mit den
bereits in der Literatur existierenden.

e Kapitel 11 enthélt die Performanz-Auswertungen und Vergleiche der in
den Kapiteln 4, 5, 6 und 7 vorgestellten Verfahren beziiglich Kompres-
sionsrate sowie beziiglich Kompressions-, Dekompressions- und Anfrage-
Auswertungs-Zeiten untereinander sowie mit anderen verfiigbaren XML-
Kompressions-Verfahren.

e Kapitel 12 diskutiert, von welchen der in dieser Arbeit vorgestellten Ver-
fahren die in diesem Kapitel vorgestellten Szenarien besonders stark pro-
fitieren.

e Kapitel 13 enthélt eine Zusammenfassung dieser Arbeit sowie einen Aus-
blick auf weiterfithrende Forschungsansétze.



2 Grundlagen

2.1

XML

XML (Extensible Markup Language) [23] ist eine Auszeichnungssprache zur
Darstellung hierarchisch strukturierter Daten in Form von Textdateien. Ein
XML-Dokument besteht aus den folgenden fiinf verschiedenen Komponenten:

Elemente

Diese werden entweder durch ein Paar aus Start-Tag (<Tag-Name>)
und End-Tag (</Tag-Name>) oder durch einen Empty-Element-Tag
(<Tag-Name/>) dargestellt.

Attribut- Wert-Paare

Diese sind Schliisselwort-Wert-Paare (Attribut= “Attribut-Wert”), die
in einem Start-Tag oder einem Empty-Element-Tag auf den Element-
Namen folgen.

Verarbeitungsanweisungen

(<?Ziel-Name Parameter 7>).

Kommentare

(<!~ Kommentar-Text —>).

Text

Text kann als normaler Text oder in Form eines CDATA-Abschnittes
(<![CDATA[beliebiger Text|]>) auftreten.

Viele Anwendungen greifen jedoch nur auf die eigentlichen Inhalte zu, die
durch Elemente, Attribute, Attribut-Werte und Texte dargestellt werden, wéh-
rend Kommentare und Verarbeitungsanweisungen ignoriert werden. Auch die
sogenannten Whitespaces, also die Leerzeichen, Tabulatoren und Zeilenumbrii-
che, die zur Formatierung zwischen den Tags stehen, nicht jedoch einem ei-
gentlichen Text-Element entsprechen, werden von den meisten Anwendungen
ignoriert. Daher werde ich in den nachfolgenden Kapiteln alle vorgestellten
Verfahren auf die Darstellung des Inhaltes, also auf die Elemente, Attribute,
Attribut-Werte und Texte beschrinken.

12
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Durch die Schachtelung von Elementen ineinander entsteht eine streng hier-
archische Struktur. Diese erlaubt es, beliebige XML-Dokumente als Baum dar-
zustellen. Dazu werden jedem Element die direkt untergeordneten Elemente
sowie die Attribute und die direkt eingeschlossenen Texte als Kindknoten zu-
geordnet. Formal kann man den Inhalt eines XML-Dokumentes mit Hilfe eines
Baumes wie folgt definieren:

Definition 2.1 (XML-Baum). Ein XML-Baum xml = (V, E) sei ein geord-
neter Baum, wobei V' die Menge der Knoten sei und E C (V' x V) die Menge
der Kanten. Die Menge V' der Knoten teilt sich in die disjunkten Teilmengen
V ={r}UVEUVAUVAW UVT auf, wobei r der Wurzelknoten, VE die
Element-Menge, VA die Attribut-Menge, VAW die Menge der Attributwerte
und VT die Text-Menge ist. Fiir diese Mengen gilt

e notveV:(vr)ekE
o Vot € (VIUVAW) :not v eV : (vt,v) € E
e Yva € VA Jvaw € VAW : (va,vaw) € E.

Zu einem Knoten v € V sei v.label das Label von v. ¥ := (J, ¢y v.label sei die
Menge aller Label von xml.

Im weiteren Verlauf bezeichne S = SV U SE mit SV = {r} UVEUVA
und SE = {(a,b) € Ela,b € SV} den Strukturanteil eines XML-Baumes und
D =VT UVAW den Daten- bzw. Konstantenanteil. O

Bei der Verarbeitung von XML hat ein herkommlicher XML-Baum den
Nachteil, dass jeder Knoten beliebig viele Kindknoten haben kann. Im Gegen-
satz dazu ist die Bindrbaum-Darstellung eines XML-Dokuments einfacher zu
verarbeiten. Hierbei hat jeder Knoten maximal zwei Zeiger auf Nachfolgerkno-
ten. Der erste Zeiger — der first-child-Zeiger — zeigt auf den ersten Kindknoten,
wahrend der zweite Zeiger — der next-sibling-Zeiger — auf den néchsten Ge-
schwisterknoten zeigt, also auf denjenigen Knoten, der den selben Elternkno-
ten hat, und in Reihenfolge der Breitensuche direkt auf den aktuellen Knoten
folgt.

Beide Darstellungen — der herkommliche XML-Baum und der bindre XML-
Baum — haben exakt die selbe Anzahl an Kanten und Knoten.

2.2 DTD

Eine DTD (Document Type Definition) [23| ist eine Menge von Produktions-
regeln, welche eine Menge von giiltigen XML-Dokumenten bzw. XML-Baumen
definiert. Eine DTD besteht aus einer Liste von Elementtyp-Deklarationen,
Attributlisten-Deklarationen, Entity-Deklarationen und Notation-Deklaratio-
nen, die wie folgt aufgebaut sind:
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Eine Elementtyp-Deklaration legt die Definition eines Elementes e sowie die
Beziehungen zwischen dessen Kindern untereinander fest. Sie wird entspre-
chend der folgenden Grammatik gebildet:

elementdecl = <!ELEMENT ’ Name ’ ’ contentspec ’>’
contentspec = DEMPTY’ | ’ANY’ | ¢
c = cr%? | cl+? | 07?7 |
Name | ?PCDATA’ | *(’c¢c?,’¢c?) | *(C’c’|’c?)?
Hierbei haben die Operatoren "TEMPTY’, ’ANY’, 'PCDATA’, 7, ’|" ", "+,
7 die folgende Bedeutung:
o EMPTY

Das definierte Element hat keinen Inhalt, stellt also einen Blattknoten
im XML-Baum dar.

ANY

Das definierte Element hat beliebigen Inhalt, der Inhalt ist also in dieser
DTD nicht naher spezifiziert.

PCDATA

Das definierte Element hat als Inhalt einen Text-Wert.

a,b (Sequenz)

Auf die durch a definierte Liste von Kindknoten folgt die durch b defi-
nierte Liste von Kindknoten.

a/b (Choice)

Es folgt entweder die durch a definierte Liste von Kindknoten oder die
durch b definierte Liste von Kindknoten.

a* (Kleene)

Die durch a definierte Liste von Kindknoten kommt beliebig oft vor.

a+ (Plus)

Die durch a definierte Liste von Kindknoten kommt beliebig oft vor,
mindestens ist sie jedoch einmal vorhanden.

a? (Option)

Die durch a definierte Liste von Kindknoten ist optional, ist also einmal
oder keinmal vorhanden.

Eine Attributlisten-Deklaration legt eine Liste von Attributen zu einem Ele-
ment fest. Sie hat die Form </ATTLIST Elementname Attributliste>, wo-
bei Elementname der Name eines Elementes ist, und Attributliste eine Liste
von Attributen ist, in der fiir jedes Attribut Attributname, Attributtyp so-
wie Attributvorgaben festgelegt werden. Attributtyp kann hierbei ‘CDATA’,
'ID’, 'IDREF’, "IDREFS’, 'NMTOKEN’, 'NMTOKENS’, "ENTITY’, "ENTI-
TIES’, 'NOTATION’, 'NOTATIONS’, sowie Aufzéhlungen und NOTATION-
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Aufzdhlungen sein. Eine Attributvorgabe ist entweder '#REQUIRED’ (das
Attribut muss angegeben werden), '#IMPLIED’ (das Attribut ist optional),
“Wert” (dieser Wert gilt, falls das Attribut nicht angegeben wird) oder "#FIXED
“Wert”’ (dieser Wert ist immer der Attributwert).

Da die Entity-Deklarationen und die Notation-Deklarationen fiir die in dieser
Arbeit vorgestellten Kompressionsverfahren keine weitere Bedeutung haben,
wird an dieser Stelle nicht ndher auf diese eingegangen.

Neben einer DTD gibt es noch andere Moglichkeiten zur Spezifikation des
XML-Inhaltsmodelles wie z.B. XML Schema [42] oder RelaxNG [36]. Da die
in dieser Arbeit beschriebenen Verfahren auf der DTD als Inhaltsmodell basie-
ren, werde ich an dieser Stelle nicht ndher auf die alternativen Inhaltsmodelle
eingehen.

2.3 SAX

Das Simple API for XML (SAX) ist eine unabhéngige Programmier-Schnitt-
stelle, die es erlaubt, XML-Dokumente sequentiell zu verarbeiten. Ein Parser
durchlduft das XML-Dokument und erzeugt entsprechend des gelesenen In-
puts eine Folge aus SAX-Events, wobei jedes SAX-Event aus der Menge der
folgenden SAX-Events ist(die hier vorgestellten Events weichen zwecks einer
einfacheren Darstellung bzgl. der Attribute von der iiblichen SAX-Darstellung
ab. In der hier vorgestellten Darstellung werden fiir Attribute eigenstdndige
Events erzeugt, wohingegen diese in der iiblichen SAX-Schnittstelle Bestand-
teil der Element-Events sind):

o startDocument()
Das SAX-Event startDocument wird einmalig zu Beginn eines Durchlaufs
des XML-Dokumentes bzw. des XML-Stroms erzeugt.

o startBlement(String name)
Das SAX-Event startElement wird fiir jeden gelesenen &ffnenden Tag
erzeugt. Hierbei enthilt der Parameter name den Elementnamen.

o startAttribute(String name)
Das SAX-Event startElement wird fiir jedes gelesene Attribut erzeugt.
Hierbei enthilt der Parameter name den Attributnamen.

o characters(String text)
Das SAX-Event characters wird fiir alle gelesenen Text-Elemente erzeugt,
also fiir alle Texte und Attributwerte. Der Parameter text enthélt hierbei
die gelesenen Zeichen.

o endAttribute(String name)
Das SAX-Event endElement wird fiir jedes gelesene Attribut nach Verar-
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beitung des Attributwertes erzeugt. Hierbei enthilt der Parameter name
den Attributnamen.

o endElement(String name)
Das SAX-Event endElement wird fiir jeden gelesenen schliefsenden Tag
erzeugt. Hierbei enthilt der Parameter name den Elementnamen.

e cndDocument()
Das SAX-Event endDocument wird einmalig am Ende eines Durchlaufs
des XML-Dokuments bzw. des XML-Stroms erzeugt.

Durch die sequentielle Verarbeitung bendtigen Programme, die auf SAX ba-
sieren, wenig Arbeitsspeicher im Vergleich zur Dokumentgrofe. Daher sind
SAX-basierte Programme insbesondere fiir unbegrenzte XML-Datenstrome
oder fiir mobile Endgeréite mit wenig Arbeitsspeicher geeignet.

Formal kann man einen SAX-Strom zu einem gegebenen XML-Baum wie
folgt definieren. Hierbei bezeichnet der Operator ® die Konkatenation zweier
Listen.

Definition 2.2 (SAX-Event-Strom zu einem XML-Baum). Sei xml ein XML-
Baum entsprechend Definition 2.1 mit Knotenmenge V = {r} UVEUVAU
VAW U VT und Kantenmenge E C (V x V) und Labelmenge X. Sei
Ev={startDocument() }U {endDocument()}U {startElement(c)| ¢ € X} U
{endElement(c)| 0 € X} U {startAttribute(c)| o € £} U {endAttribute(o)]
o € X}U {characters(o)| o € £} die Menge aller SAX-Events.

Zu einem Knoten v € V mit Kindknoten cuvy,...,cv, sei der SAX-Event-
Strom sax(v) : V' — Ewvx definiert durch

(start Document()) ®
(startElement(v.label)) ® sax(cvy) @ Ffalls v =r
... ® sax(cv,) @ (endElement(v.label)) ® B
(endDocument())
(startElement(v.label)) ® sax(cvy) @
saz(v) = { .. ® sax(cv,) @ (endElement (v.label)) fallsv e VE
(start Attribute(v.label)) ® sax(cvy) ®
(endAttribute(v.label)) fallsveva
(characters(v.label)) {/czj{lz QXJ/EW
Der SAX-Event-Strom des XML-Baumes xml ist dann definiert durch
SAX (zml) := sax(r). O

Definition 2.3 (Position eines Knotens im SAX-Event-Strom). Sei zml ein
XML-Baum entsprechend Definition 2.1 mit Knotenmenge V = {r} UVE U
VAUVAW U VT und Kantenmenge £ C (V x V) und Labelmenge X.
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Sei SAX (zml) = (s1,...,8,) der SAX-Event-Strom zu xml. Sei weiterhin
v € V ein Knoten des XML-Baums zml mit sazx(v) = (s;,...,s;),1 <i,j<n
ist eine Teilfolge von SAX (zml).
Dann ist i die Position des Knotens v im SAX-Event-Strom zum XML-Baum
xml.
O

2.4 XPath

Die XML Path Language (XPath) [37] ist eine vom W3C-Konsortium ent-
wickelte Anfragesprache, um mit Hilfe von Pfad-Anfragen Teile eines XML-
Dokumentes zu adressieren.

Eine XPath-Anfrage ist eine Liste sogenannter Location-Steps, wobei jeder
Location-Step aus einem Achsen-Test, einem Knoten-Test und einer Folge von
Pradikat-Filtern besteht. Ein XML-Knoten x erfiillt einen Location-Step ange-
wandt auf einen Kontextknoten k, wenn k und x den Achsen-Test erfiillen, wenn
x.label den Knoten-Test erfiillt sowie wenn jeder der vorhandenen Pradikat-
Filter zu true evaluiert werden kann. Das Ergebnis einer XPath-Anfrage XP,
bestehend aus den Location-Steps lsq,...,[ls,, kann man berechnen, indem
man [s; auf den Wurzelknoten r eines XML-Baumes anwendet, und [s; fiir
1 < ¢ < n auf die erfiillenden Knoten von [s;_1. Das Ergebnis von XP ange-
wandt auf xml sind dann die erfiillenden Knoten von Is,,.

Lassen wir die Unterscheidung zwischen Element-, Attribut- und Text-Knoten
aufsen vor, so existieren 10 verschiedene XPath-Achsen, die jedoch alle auf die
schon im bindren XML-Baum auftretenden Achsen first-child und next-sibling,
sowie die Achse self zuriickfithrbar sind. Diese bindren oder auch atomaren
XPath-Achsen sind wie folgt definiert.

Definition 2.4 (first-child, next-sibling und self). Sei xml ein XML-Dokument
entsprechend  Definition 2.1  mit  Wurzel-Knoten r und  sei
sax(xml)= (s7)®...®(er) ein SAX-Event-Strom zu xml entsprechend Definiti-
on 2.2. Seien FE1,EF2 € VE zwei Element-Knoten in xml mit
sax(El)= (sF1) ® ... ® (eE1) und sax(E2)= (sF2) ® ... ® (eE2). Dann be-
zeichnen wir

(a) E2 als first-child von E1, E2=first-child(E1), genau dann, wenn
sax(El)= (sE1) ® (sE2) ® ... ® (eE1).

(b) E2 als next-sibling von El, E2=next-sibling(E2) genau dann, wenn
sax(r)=(sr)®...® (sE1) ® ... ® (eEl) ® (sE2) @ ... ® (er)

(c) E2 als self von E1, E2=self(E1) genau dann, wenn E1=E2.
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Basierend auf der Definition der bindren Achsen kann man nun gemé&f einer
Ideen von [50] alle XPath-Achsen wie folgt definieren:

Definition 2.5 (XPath-Achsen). Sei xml ein XML-Baum entsprechend Defi-
nition 2.1 und E1 € V ein Knoten in xml. Dann bezeichnen wir

(a) die rekursiv definierte Element-Menge E1/child:={Ek | Ek=first-child(E1)
V(3 E2 € V: E2 € E1/child A Ek—next-sibling(E2))} als child-Knoten von
El.

(b) das Element E1/parent:=(Ek | E1 € Ek/child) als parent-Knoten von E1.

(c) dierekursiv definierte Element-Menge E1/descendant:={Ek | Ek € child(E1)
V(3 E2 € V: E2 € El/descendant A Ek € E2/child)} als descendant-
Knoten von EI.

(d) die Element-Menge El/descendant-or-self:={Ek | Ek=self(E1) v Ek €
E1l/descendant} als descendant-or-self-Knoten von E1.

(e) die Element-Menge E1/ancestor:—{Ek | E1 € Ek/descendant} als ancestor-
Knoten von EI.

(f) die Element-Menge E1/ancestor-or-self:={Ek | E1 € Ek/descendant-or-
self} als ancestor-or-self-Knoten von E1.

(g) die Element-Menge E1/following-sibling:—{Ek | Ek—next-sibling(E1) V(3
E2 € V: E2 € El/following-sibling A Ek—next-sibling(E2))} als following-
sibling-Knoten von E1.

(h) die Element-Menge E1/preceding-sibling:={Ek | E1 € Ek/following-sibling}
als preceding-sibling-Knoten von El.

(i) die Element-Menge E1/following:={Ek | 3 E2, E3 € V: E2 € El/ances-
tor-or-self A E3 € E2/following-sibling A Ek € E3/descendant-or-self} als
following-Knoten von E1.

(j) die Element-Menge E1/preceding:—{Ek | E1 € Ek/following} als preceding-
Knoten von EI.

Hierbei werden die Achsen self, child, descendant, descendant-or-self, following-
sibling und following als Vorwdrtsachsen und die Achsen parent, ancestor,
ancestor-or-self, preceding-sibling und preceding als Rickwdrtsachsen bezeich-
net. ]

Formal kénnen wir nun eine XPath-Anfrage wie folgt definieren:

Definition 2.6 (XPath-Anfrage). Sei xml ein XML-Baum entsprechend De-
finition 2.1 mit der Menge ¥ von Labeln. Sei ¥’ := ¥ U {'¥'}. Sei x eine
XPath-Achse entsprechend Definition 2.5. Dann definiert die folgende EBNF-
Grammatik mit Start-Symbol cxp eine giiltige XPath-Anfrage.
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cxXp = ’/? locationpath
locationpath ::= locationstep (’/’ locationstep)*
locationstep ::= x ?::? X' | x ?::2 ¥ ’[? pred ]’
pred ::= locationpath | locationpath comp constant |
’(? pred ’and’ pred ’)’ |
>(’ pred ’or’ pred ’)’
comp ti= o =0 | o | o< | o | > | 7?57

O

2.4.1 Eliminerung der Riickwartsachsen und der Following-Achse

Gewisse Anwendungen — wie z.B. die Auswertung von unendlichen SAX-Stro-
men — erfordern eine strenge lineare Durchquerung des Stroms. Dies bedeutet
insbesondere, dass man nicht innerhalb des Stroms zuriickspringen kann, was
die Auswertung der Riickwértsachsen erschwert.

Zwar lassen sich — wie im vorhergehenden Abschnitt gezeigt — die Vorwérts-
achsen (mit Ausnahme der Achse following) direkt auf die atomaren Achsen
first-child und next-sibling zuriickfithren, so dass einer linearen Auswertung
dieser Achsen nichts im Wege steht. Zur Auswertung der Riickwirtsachsen
jedoch werden die Inversen der Vorwértsachsen benotigt, was einer entgegen-
gesetzten Navigation im Strom entspricht.

[68] bietet ein Verfahren an, das es erlaubt, beliebige Anfragen in dquivalen-
te Anfragen umzuschreiben, die frei von Riickwértsachsen sind. Soll also eine
Anfrage nicht nur auf die atomaren Achsen abgebildet werden, sondern gleich-
zeitig von allen Riickwértsachsen befreit werden, so bietet sich das folgende
Verfahren an:

1. Eliminierung aller Riickwértsachsen entsprechend des in [68] beschriebe-
nen Verfahrens. Nach diesem Schritt erhalten wir eine Anfrage bestehend
aus den Achsen descendant-or-self, descendant, self, child, following und
following-sibling.

2. Umschreiben aller following-Achsen mit Hilfe der folgenden &quivalenz-
erhaltenden Umformungsregel:
following — ancestor-or-self/following-sibling /descendant-or-self.

Nach diesem Schritt erhalten wir eine Anfrage bestehend aus den Achsen
descendant-or-self, descendant, self, child, following-sibling und ancestor-
or-self.

3. Erneute Anwendung des in [68] beschriebenen Verfahrens, um die im
zweiten Schritt entstandenen ancestor-or-self Achsen zu eliminieren. Nach
Abschluss aller Schritte enthélt die Anfrage nun nur noch die Achsen de-
scendant-or-self, descendant, self, child und following-sibling.
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4. Abbilden der verbleibenden Achsen auf first-child und next-sibling.

Dadurch erhalten wir eine reine Abbildung auf die Achsen first-child und
next-sibling.

2.5 bOM

Das Document Object Model (DOM) [54] ist eine Programmier-Schnittstelle
fiir sowohl lesenden als auch schreibenden Zugrift auf XML-Béume. Sie wurde
vom W3C-Konsortium definiert. Die DOM-Schnittstelle umfasst eine Vielzahl
verschiedener Objekte (z.B. Document und Node) und darauf ausfithrbarer
Methoden. Ahnlich wie man XML in eine dquivalente Bindrbaum-Darstellung
iiberfithren kann und XPath auf Ausdriicke iiber die atomaren Achsen first-
child, next-sibling und self normalisieren kann, so kann man auch die Funktio-
nalitdten von DOM auf wenige Grundfunktionalitdten zuriickfiihren.

Grundlegender Gedanke der DOM-Schnittstelle ist es, dass man das XML-
Dokument als einen Baum betrachtet, der sich komplett im Hauptspeicher
befindet, und innerhalb dessen beliebig iiber die XPath-Achsen navigiert wer-
den kann, und der beliebig durch Einfiigen, Loschen und Andern manipuliert
werden kann.

2.5.1 Lesende DOM-Operationen

Die Menge aller lesenden DOM-Operationen kann mit einer Riickfiihrung die-
ser Operationen auf die Navigation mittels XPath-Ausdriicken im DOM-Baum
realisiert ~ werden. So  liefert  beispielsweise die = DOM-Methode
Document.getElementByld(String elementID) alle Dokument-Knoten zuriick,
die ein Attribut “id” enthalten, wobei das Attribut “id” den Attribut-Wert ele-
mentlID des Parameters hat. Diese kann z.B. mit Hilfe des XPath-Ausdrucks
//descendant-or-self::*[. /attribute::id—elementID’] simuliert werden.

Da aber jede XPath-Anfrage auf die Achsen-Menge first-child, next-sibling,
self und parent! zuriickgefiihrt werden kann, geniigt es also, dass eine XML-
Représentation diese atomaren Achsen unterstiitzt, so dass die Menge aller
lesenden DOM-Operationen auf diesem Verfahren ausgefiihrt werden kénnen.

2.5.2 Schreibende DOM-QOperationen

Hinweis: Im Folgenden wird auf die Position p innerhalb eines XML-Dokuments
bzw. XML-Baums verwiesen. Diese sei analog zum SAX-Event-Strom wie in
Definition 2.3 definiert.

!Da bei einer DOM-Anwendung der Kontextknoten nicht zwangsliufig der Wurzelknoten
des XML-Dokumentes ist, muss zusétzlich noch die parent-Achse realisiert werden.
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Ebenso wie die lesenden DOM-Operationen auf die Navigation via XPath
zuriickgefiihrt werden konnen, kann man die schreibenden DOM-Operationen
auf folgende Schreiboperationen auf XML zuriickfiihren:

o insert(XML xml, XML zmllns, int p)
Fiigt den iibergebenen XML-Teilbaum xmllns im XML-Dokument xml
an Position p ein.

o remove(XML xml, int p)
Entfernt den Teilbaum an Position p aus dem XML-Dokument xml.

o replace(XML xml, XML xzmlRep, Position p)
Ersetzt den an Position p im XML-Dokument xml stehenden Teilbaum
durch den XML-Teilbaum xmlRep.

Da die Methode replace durch ein Hintereinanderausfithren der Methoden
remove und insert simuliert werden kann, werde ich fiir alle XML-Repréasen-
tationen die schreibenden Operationen insert und remowve definieren, um zu
motivieren, dass es moglich ist, eine DOM-Schnittstelle fiir diese Représenta-
tionen zu implementieren.

Die Operation insert(XML xml, XML xmllns, int p) figt ein XML-Dokument
xmllns an gegebener Position p in das XML-Dokument xml ein. Algorithmus
2.1 zeigt eine Umsetzung dieser Operation, wobei die Operation
concat(XML zmll, XML zml2) die Konkatenation zweier XML-Fragmente be-
rechnet, und die Operation subsequence(XML xml, int start, int end) ein Teil-
fragment von XML berechnet, das an Position start beginnt und an Position
end endet.

public XML insert (XML xml, XML xmlIns, int p){
XML xmlNeu = subsequence(xml, 1, p—1);

xmlNeu = concat (xmlNeu, xmllns);
xmlNeu = concat (xmlNeu, subsequence(xml, p, xml.
length));

return xmlNeu;

Algorithmus 2.1: insert-Operation fiir XML-Dokumente

In Definition 2.7 wird die Funktion insertymi zmi,,. p(z) definiert, die den
Zusammenhang zwischen den XML-Dokumenten xml und xml;,s vor und dem
XML-Dokument xml,e, nach der Operation herstellt. Sie wird spéter benotigt,
um die Korrektheit der Update-Operationen auf den XML-Repréasentationen
nachzuweisen.
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Definition 2.7 (insert). Seien zml — (xml,, ..., zml,) und xmlys —
(xmlins,, - .-, TMlins,,) zwei XML-Dokumente. Sei p eine Position in xml mit
1<p<n-+1. Dann ist die Funktion insert i zmi,. p(): {1, ..., n+m} — XML
definiert als:

xml, fallsxz <p
insertyml emlymsp(T):= § TMlins, ., fallsp <x <p+m
xml, . sonst
TMlpey, 1= (INSErtpmizmi.p(1), -, iNSErtyml zmi,, . p(n +m)) O

Sei p die Position eines startElement-Events in xml. Die Operation
remove(XML zml, int p) 16scht einen Teilbaum beginnend an gegebener Posi-
tion p aus einem XML-Dokument xml. Algorithmus 2.2 zeigt eine Umsetzung
dieser Operation, wobei die Operation endTag(XML zml, int pos) die Position
des End-Tags zu einem durch die Position pos gegeben Start-Tag berechnet.

public XML remove (XML xml, int p){

XML xmlNeu = subsequence(xml, 1, p—1);

xmlNeu = concat (xmlNeu, subsequence(xml, endTag(xml,p
)+1, xml.length));

return xmlNeu;

Algorithmus 2.2: remove-Operation fiir XML-Dokumente

In Definition 2.8 wird die Funktion removey,,; ,(x) definiert, die den Zusam-
menhang zwischen dem XML-Dokument xml vor und dem XML-Dokument
Tmlpey nach der Operation herstellt. Sie wird spéater benotigt, um die Korrekt-
heit der Update-Operationen auf den XML-Reprasentationen nachzuweisen.

Definition 2.8 (remove). Sei xml = (zmly, ..., xmly) ein XML-Dokument.
Sei xml, der Start-Tag eines XML-Elements E mit Position p und sei xmly
der End-Tag von E mit Position k im XML-Dokument xml. Sei l:=k-p. Dann
ist die Funktion removegm;p(x): {1, ..., n-l} — XML definiert als:

xmly fallsx <p

remOUmel,p(x):: $ml + sonst
xr

TMlpey = (removegmi (1), ..., removegm p(n —1)) O
2.6 Speichereffiziente Darstellung von ganzzahligen

natiurlichen Werten

In einigen der vorgestellten Verfahren zur XML-Kompression wird ein Ver-
fahren benotigt, um ganzzahlige Werte speichereffizient darzustellen. In Java
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beispielsweise wird jeder Integer-Wert durch 4 Byte kodiert. Dies bedeutet
erstens einen grofien Overhead fiir kleine Zahlen, zweitens schrénkt es den
Wertebereich auf Zahlen im Intervall von -2.147.483.647 bis 2.147.483.648 ein.

Um diese beiden Nachteile zu umgehen, nutzen wir z.B. die folgende dy-
namische Uberlaufkodierung fiir ganzzahlige Werte, ebenso konnen aber auch
entsprechende, andere Uberlaufkodierungen genutzt werden, die es erlauben,
beliebig groke Integer-Werte mit dynamischer Bitanzahl darzustellen. Sei n die
Anzahl an Bits, die wir fiir einen Integer-Wert mindestens verwenden wollen,
z.B. n=6. Wir nutzen nun fiir jede Bitfolge von n Bits das allererste Bit als
Markierungsbit: Ist das erste Bit ein '1’-Bit, so gehoren die néchsten n Bits
ebenfalls zu dieser Zahl, ist das erste Bit ein ’0’-Bit, so wurde mit den aktuellen
n Bits die letzte Bitfolge der Zahl gelesen.

Beispiel 2.1 Die Bindrdarstellung der Zahl 134 ist 10000110. Um eine Uber-
laufkodierung mit n=06 fiir diese Zahl zu berechnen, teilen wir sie zundchst in
Gruppen der Gréfie 5 Bits, wir erhalten also: 100 00110. Nach Auffillen von
fihrenden Nullen erhalten wir: 00100 00110. Um nun auszudricken, dass beide
5-stelligen Bitfolgen zur selben Zahl gehoren, stellen wir der letzten Bitfolge ein
’0°-Bit voran, allen ibrigen Bitfolgen dieser Zahl stellen wir ein ’1°-Bit voran.
Die endgiiltige Kodierung der Zahl 134 mit n=6 ist also: 100100 000110.

2.7 Beispiel

Im Verlauf dieser Arbeit werde ich alle vorgestellten Verfahren mit Hilfe des
in Listing 2.3 vorgestellten Beispiels erldutern. Bei diesem Beispiel-Dokument
handelt es sich um eine kleine Adress-Datenbank mit derzeit drei Personen,
die jeweils

e ecinen Namen,

e beliebig viele Fragemente jeweils bestehend aus

— (Strasse und Ort) oder Postfach,

— optional einer Telefonnummer mit entsprechendem Telefonmodell
(z.B. mobil oder Festnetz)

beinhalten.

1|<Adressen>

2

UL s W

<Person>
<Name>Peter Miiller</Name>
<Postfach>0815</Postfach>
</Person>
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<Person>
<Name>Anna Schmidt</Name>
<Strasse>Lindenstrasse</Strasse>
<Ort>Berlin</Ort>
<Postfach>4711</Postfach>

</Person>

<Person>
<Name>Paul Schulze</Name>
<Postfach>3300</Postfach>
<Telefon modell="mobil">0171/666666</Telefon>

</Person>

</Adressen>

Listing 2.3: XML-Beispiel-Datei

Abbildung 2.1 zeigt die Baum-Darstellung dieses XML-Dokumentes, wih-
rend Abbildung 2.2 die Bindrbaum-Darstellung zeigt.

Adressen
/ \
Person Person Person

/ N\ A N
Name Postfach Name Strasse Ort Postfach Name Postfach Telefon
/\
Miller 0813 Schmide st =Bemin =47 QIR <3300 @model g/

=mobil

Abbildung 2.1: Baum-Darstellung des XML-Dokumentes

Listing 2.4 enthilt die dazugehorige D'TD. Diese definiert, dass innerhalb
des Elements Adressen beliebig viele Person-Elemente geschachtelt sind (Zeile
1). Zu einem Person-Element sind als Kindknoten

e cin Name-Element,

e cine Folge von Fragmenten bestehend aus

— (Strasse und Ort) oder Postfach,

— optional einer Telefonnummer mit entsprechendem Telefonmodell
(z.B. mobil oder Festnetz)

zugelassen (Zeile 2).
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Adressen
Person Person Person
| |
Name — Postfach Name —— Strasse —> Ort —— Postfach Name —> Postfach — Telefon
R T e
Miller 015 Sohmide  ame | SBerlin <47l QYR <3300 @modell 3 ot/

=mobil

Abbildung 2.2: Bindrbaum-Darstellung des XML-Dokumentes

Die Elemente Strasse, Ort, Postfach und Telefon enthalten keine Kindele-
mente, sondern lediglich einen Textknoten als Kind (Zeilen 3-6). Telefon hat
noch zusétzlich ein Attribut mit Namen modell (Zeile 7).

<EFLEMENT Adressen (Person )s>

<EIEMENT Person (Name, ((Postfach | (Strasse, Ort)),
Telefon?) x)>

<EHEMENT Strasse #PCDATA>

<ELEMENT Ort #PCDATA-

<HEMENT Postfach #PCDATA-~

<[ELEMENT Telefon #PCDATA-~

<!ATTLIST Telefon modell #AREQUIRED-

Listing 2.4: DTD zur XML-Beispiel-Datei



3 Ableitbare
SAX-Strom-Varianten

3.1 Motivation

Betrachtet man XML-Dokumente, so stellt man fest, dass sich in der Regel
im Strukturanteil, also innerhalb der Element- und der Attribut-Knoten, eine
grofere Anzahl an Wiederholungen findet als im Datenanteil, also innerhalb
der Text- und der Attribut-Wert-Knoten. Dies ist darin begriindet, dass jedes
XML-Dokument nur eine sehr beschrénkte Anzahl von verschiedenen Element-
und Attributnamen benutzt.

Daher liegt es nahe, zur Kompression von Struktur und Daten jeweils ver-
schiedene Kompressions-Verfahren zu benutzen. In diesem Kapitel stelle ich
daher vor, wie man den SAX-Eingabestrom in zwei Eingabestrome aufteilen
kann, um diese beiden Stréme dann an getrennte Kompressoren weiterzuleiten.
In Kapitel 8 stelle ich dann im Anschluss an die Kompressions-Verfahren fiir
Strukturanteil und Datenanteil vor, wie man die beiden komprimierten Strome
miteinander integrieren kann, um weiterhin eine effiziente Weiterverarbeitung —
z.B. in Form von Dekompression oder Anfrage-Auswertung — zu gewahrleisten.

3.2 Struktur-Strom

Ein Struktur-Strom enthélt nur die Struktur des XML-Dokumentes bzw. des
XML-Baumes, also nur den Wurzelknoten sowie die Element- und Attribut-
Knoten. Die Text- und Attribut-Wert-Knoten werden in Form eines Platz-
halters gespeichert, d.h. als Element-Knoten mit Label '=T". Die eigentlichen
Label der Text-Knoten werden im separaten Daten-Strom gespeichert.

Um die Darstellung zu vereinfachen, werden die Attribut-Knoten als be-
sondere Element-Knoten gespeichert, man kann einen Attribut-Knoten ledig-
lich am Markierungszeichen ’Q’ zu Beginn des Labels erkennen. Auch das
start Document- und das endDocument-Event konnen als Sonderfille des start-
Element- bzw. endElement-Events gesehen werden, gekennzeichnet durch das

26
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Label 'root’, wobei root nicht in der Labelmenge ¥ des XML-Baumes enthalten
sein darf.

Dies fithrt uns zu einem einfachen Struktur-Strom, der nur noch die beiden
Events startElement und endElement enthélt. Formal ist ein Struktur-Strom
wie folgt definiert:

Definition 3.1 (Struktur-Strom). Sei xml ein XML-Baum nach Definition
2.1 mit Knotenmenge V. = {r} UVEUVAU VAW U VT und Kanten-
menge £ C (V x V) und Labelmenge X. Sei SE={startElement(c)| o €
Y} U {endElement(c)| ¢ € ¥} die Menge aller Struktur-Events. Eine Liste
(s1, ..., Sp) mit s; € SE fiir 1<i<n bezeichnen wir als Struktur-Strom. Zu
jedem Knoten v € V mit Kindknoten cuvy,...,cv,, sei der Struktur-Strom
ss(v) : V.— SEx definiert durch

(startElement('root’)) @
(startElement(v.label)) ® ss(cv1) ® ... ® Falls v = r
ss(cvm) ® (endElement(v.label)) ®
(endElement("root’))
(startElement(v.label)) ® ss(cv1) @ ... ®
ss(v) =1 ss(cvpm) ® (endElement(v.label)) fallsveVE
(startElement ('@ 4 v.label)) ® ss(cv1) ®
(endElement('Q" + v.label)) fallsve VA
fallsv €
(startElement('=T")) ® (endElement('=T")) (VT U
VAW)
Der Struktur-Strom des XML-Baumes xml ist dann definiert durch
SS(xzml) = ss(r). O

Im Folgenden bezeichne () die leere Liste.

Definition 3.2 (startElement- und endElement-Strom). Sei xml ein XML-
Baum nach Definition 2.1 mit Knotenmenge V = {r}UVEUVAUVAWUVT
und Kantenmenge E C (V x V) und Labelmenge 3. Sei SE={startElement(c)]
o € ¥} U {endElement(c)| ¢ € X} die Menge aller Struktur-Events. Sei
S:=SS(zml)=(s1, ..., Sn), mit s; € SE fiir 1<i<n der Struktur-Strom von
xml nach Definition 3.1.

Dann sei sstart : {1,...,n} — (SE U ()) definiert durch
(sz €S) falls s = startElement(o) fir o € ¥
O sonst

Dann bezeichnen wir SStart(SS) := (sstart(l) ® ... ® sstart(n)) als
startElement-Strom von S.

Sei weiterhin send : {1,...,n} — (SE U ()) definiert durch

sstart(z) =
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send(x) := (82 €5) [falls sy = endElement(o) fiir 0 € X
() sonst
Dann bezeichnen wir SEnd(SS) := (send(1) ® ... ® send(n)) als

endElement-Strom von S.
O

Die Berechnung eines Struktur-Stroms zu einem SAX-Event-Strom geht also
entsprechend Definitionen 2.2 und 3.1 wie folgt vor:

o startDocument und endDocument:
Die SAX-Events startDocument und endDocument werden umgewandelt
in startElement(’root’) bzw. endElement(root’).

o characters
Aus einem SAX-Event vom Typ characters(textwert) wird eine Event-
Folge startElement(’=T’) und endElement(’=T’) generiert. Hierbei steht
'=T" fiir einen Platzhalter fiir Textknoten; =T’ darf nicht als Element-
name im XML-Dokument benutzt werden.

o startAttribute und endAttribute
Fir jedes Paar Attribut=Value wird eine Element-Folge
startElement(’@’ + Attribut), startElement(’=T"), endElement(’=T"),
endElement ('@’ + Attribut) generiert.

o startElement und endElement
Die SAX-Events startElement und endElement werden unverandert in
den Struktur-Strom geschrieben.

Der Platzhalter '=T" gewéhrleistet hierbei, dass man bei der spateren Ver-
arbeitung rekonstruieren kann, an welcher Stelle im Dokument ein Textknoten
enthalten war. Die Reihenfolge der Textknoten ist hierbei durch die Reihenfol-
ge der Werte innerhalb des Daten-Stroms gegeben.

Beispiel 3.1 Listing 3.1 zeigt den Struktur-Strom der zum Beispieldokument
aus Listing 2.3 generiert wird.

startElement ( 'root ’);
startElement ( "Adressen ') ;
startElement ( "Person ’);
startElement ( 'Name’) ;
startElement ( '=1");
endElement ('=T’);
endElement ( 'Name’) ;
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startElement ( "Postfach ’);

startElement ( '=1");
endElement ('=T");

endElement (’Postfach’);

endElement (’Person’);
startElement ( "Person ’);
startElement ( 'Name’) ;
startElement ( '=1");
endElement ('=T");
endElement ( 'Name’) ;
startElement (' Strasse ') ;
startElement (=T’ ) ;
endElement ('=1");
endElement (’Strasse’);
startElement (’Ort’);
startElement (=T’ ) ;
endElement ('=1");
endElement (’0rt’);

startElement ( "Postfach ') ;

startElement (=T’ ) ;
endElement ('=1");

endElement (’Postfach’);

endElement (’Person’);
startElement ( 'Person ’);
startElement ( 'Name’) ;
startElement ( '=1");
endElement ('=T");
endElement ( 'Name’) ;

startElement ( "Postfach ’);

startElement ( '=1");
endElement ('=T");

endElement (’Postfach’);

startElement (' Telefon ) ;
startElement (’ @modell ") ;
startElement ( '=1");
endElement ('=T");
endElement (’@modell ’);
startElement (=T’ ) ;
endElement ('=1");
endElement (' Telefon’);
endElement ( ’Person’);
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49| endElement (’Adressen’);
50| endElement (’root’);

Listing 3.1: Simple-SAX-Strom des Beispiels

3.2.1 Unterscheidung von Elementen, Attributen und
Text-Werten bei der Anfrage-Auswertung

Im Struktur-Strom werden Elemente, Attribute und Text-Werte gleich behan-
delt und als Element mit gegebenfalls besonderer Markierung betrachtet. Bei
der Anfrage-Auswertung werden jedoch die drei Knoten-Typen iiber verschie-
dene Achsen angesprochen.

Daher muss bei der Anfrage-Auswertung die Unterscheidung zwischen Ele-
menten, Attributen und Text-Werten sichergestellt werden. Lautet die Anfrage
z.B. /*, es sind also alle Element-Kindknoten gesucht, nicht aber die Attribute,
so miissen die Attribute, also diejenigen Knoten, deren Label mit ’Q’ beginnt,
iibersprungen werden, und nur die tatsidchlichen Element-Knoten als Ergebnis
der Anfrage betrachtet werden. Entsprechend miissen bei einer Anfrage /@Q*
welche alle Attribut-Knoten des aktuellen Kontext-Knotens abfragt, alle Ele-
mente iibersprungen werden, und nur die Attribut-Knoten diirfen als Ergebnis
betrachtet werden.

3.3 Binarer Struktur-Strom

Analog wie man zu einem XML-Baum die Bindrbaum-Darstellung berechnen
kann, kann man zu einem Struktur-Strom den bindren Struktur-Strom berech-
nen.

Hierzu werden aus den Events startElement und endElement des Struktur-
Stroms die bindren Events firstChild, nextSibling und parent des bindren Struk-
tur-Stroms generiert. Es werden immer Paare von Struktur-Strom-Events be-
trachtet.

o startElement, startElement
Ein SAX-Event startElement(x) gefolgt von einem weiteren SAX-Event
startElement(a) entspricht der first-child-Achse. Daher wird dieses trans-
formiert in das bindre SAX-Event firstChild(a).

e startElement(a), endElement(a)
Ein SAX-Event startElement(a) gefolgt von einem SAX-Event
endElement(a) entspricht einem leeren Element-Tag. Hieraus wird kein
bindres SAX-Event generiert.
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e endElement(z), startElement(a)
Ein SAX-Event endElement(x) gefolgt von einem SAX-Event
startElement(a) entspricht der next-sibling-Achse. Daher wird dieses trans-
formiert in das bindre SAX-Event nextSibling(a).

e cndElement(z), endElement(y)
Ein SAX-Event endElement(x) gefolgt von einem weiteren SAX-Event
endElement(y) entspricht der parent-Achse. Daher wird dieses transfor-
miert in das bindre SAX-Event parent().

Wir erhalten so einen bindren Struktur-Strom, der aus Events vom Typ
firstChild, nextSibling und parent besteht. Dieser ist wie folgt formal definiert:

Definition 3.3 (binérer Struktur-Strom). Sei zml ein XML-Baum nach De-
finition 2.1 mit Labelmenge ¥ und SS(xml) = (ssi,...,ss,) der Struktur-
Strom zu xml nach Definition 3.1. Seien SStart und SEnd startElement- und
endElement-Strom von SS(xml) nach Definition 3.2. Sei weiterhin
BE={firstChild(c)| o € ¥} U {nextSibling(c)| o € ¥} U {parent()} die Menge
aller bindren Struktur-Events. Dann ist die Abbildung

bsss@mi) : {1,-..,n — 1} — (BEU()) definiert durch:

(firstChild(c)) falls ss, 11 = startElement(o) A ss; €
SStart
(netSibling(o)) falls ss, 11 = startElement(o) A ss; €
bSSS(wml)(x) = Sknd
(parent()) falls ssy 41 € SEnd N\ ss, € SEnd
() sonst

Der binére Struktur-Strom des XML-Baumes xml bzw. des Struktur-Stromes
SS(xml) = (ss1,...,8sy) ist dann definiert durch
BS :=(bs(1) ® ... ®bs(n — 1)). O

Beispiel 3.2 Listing 3.2 zeigt den bindren SAX-Strom, der zum Beispieldoku-
ment aus Listing 2.8 bzw. zum Struktur-Strom aus Listing 3.1 generiert wird.

firstChild ( "Adressen ') ;
firstChild ( 'Person’);
firstChild ( 'Name’) ;
firstChild ('=T");
parent();
nextSibling ( 'Postfach ’);
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firstChild ( '=T"’);
parent();

parent();

nextSibling ( 'Person ’);

firstChild ( 'Name’) ;
firstChild (=T") ;
parent();

nextSibling ('Strasse ') ;
firstChild ( '=T");
parent();

nextSibling ('Ort’) ;
firstChild ( '=T");
nextSibling ( 'Postfach ’);

firstChild ( '=T");
parent();

parent();

nextSibling ( 'Person’);

firstChild ( 'Name’) ;
firstChild (=T") ;
parent();
nextSibling ( 'Postfach ’);
firstChild ( '=T");
parent();

nextSibling ('Telefon ’);
firstChild (’@modell ’) ;
firstChild (=T") ;
parent();

nextSibling ('=T");
parent();

parent();

parent();

parent();

Listing 3.2: bindrer SAX-Strom des Beispiels

3.4 Daten-Strom

Der Daten-Strom enthélt eine Sequenz aller Text-Werte — also Text- und
Attribut-Wert-Knoten — in Dokumentreihenfolge.

Da jedoch das umgebende Element bzw. Attribut gleichzeitig eine semanti-
sche Kontextinformation beinhaltet, die spiter zur Optimierung der Kompres-
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sion des Daten-Stroms verwendet werden kann, wird dieser Daten-Strom um
diesen Element- bzw. Attributnamen angereichert, damit diese Information bei
der spéteren Kompression zur Verfiigung steht. Zur lediglichen Rekonstrukti-
on des Ursprungs-SAX-Stroms sind die Informationen iiber den Element- bzw.
Attributnamen nicht notwendig. Der Daten-Strom enthélt also Paare (Name,
Text-Wert) aus Element- bzw. Attributnamen und Text-Werten.

Formal kann man den Daten-Strom zu einem XML-Dokument bzw. XML-
Baum wie folgt definieren. Hierbei bezeichnet der Operator ® die Konkatena-
tion zweier Listen.

Definition 3.4 (Daten-Strom). Sei zml ein XML-Baum nach Definition 2.1
mit Knotenmenge V = {r} UVEUVAUVAW U VT und Kantenmenge
E C (V x V) und Labelmenge .

Zu einem Knoten v € V mit Kindknoten cvy,...,cv, und Elternknoten pv
sei der Datenstrom data(v) definiert durch

data(cvy) @ ... ® data(cv,) fallsv e {r} UVEUVA

data(v) := (pv.label, v.label) fallsv e VI UV AW
Der Daten-Strom des XML-Baumes xml ist dann definiert durch
DAT A(xml) := data(r). O

Beispiel 3.3 Listing 3.3 zeigt den entsprechenden Daten-Strom, der zum Bei-
spieldokument aus Listing 2.3 generiert wird.

( "Name ’, "Peter Mdiller ’);
("Postfach’, '08157);

( "Name ’, "Anna Schmidt’) ;
(’Strasse’, ’Lindenstrasse’);
(’Ort’, "Berlin ’) ;

( "Postfach’, '47117);

( "Name ’, "Paul Schulze ’);
("Postfach’, '33007);
(’@modell , 'mobil’);
(’Telefon’, "0171/666666 ) ;

Listing 3.3: Daten-Strom des Beispiels



4 XML-Kompression durch
platzetfiziente Kodierung

Das erste vorgestellte Verfahren — das Succinct- Verfahren — bietet eine kom-
primierte Darstellung der XML-Struktur, indem es die Struktur durch kiirzere
Zeichenfolgen darstellt. Im ersten Abschnitt dieses Kapitels werde ich zunéchst
das zugrunde liegende Verfahren aus [48| vorstellen und die diesem Verfahren
zugrunde liegenden Ideen formalisieren. Anschliefend werde ich dann eine Op-
timierung der Darstellung vorstellen, die es erlaubt, die Anfrageauswertung
effizienter zu gestalten. Schlieflich werde ich Update-Operationen auf dem op-
timierten Verfahren erldutern.

4.1 Succinct-Darstellung und die atomaren
XPath-Achsen

4.1.1 Succinct-Darstellung

Das Succinct-Verfahren erhélt als Eingabe den Struktur-Strom nach Definition
3.1 und berechnet daraus

e einen Bitstrom, der die Schachtelung der Start- und End-Tags, nicht aber
deren Label darstellt,

e cine Symboltabelle, die eine Zuordnung von Labeln zu Symbolen — also
kurzen Bit-Darstellungen — enthalt,

e cinen Symbol-Strom, der eine Zuordnung von Bitstrom-Positionen zu
Symbolen enthélt.

Die folgenden Definitionen 4.1 bis 4.7 beschreiben die Datenstrukturen, Hilfs-
funktionen und Berechnungsfunktionen zur Kompression, und die anschliefen-
den Definitionen 4.8 bis 4.10 beschreiben Berechnungsfunktionen zur Dekom-
pression.

34



XML-Kompression durch platzeffiziente Kodierung 35

Definition 4.1 (Bitstrom, Position). Sei ¥ die Menge aller Label. Sei
SE={startElement(c)| 0 € X} U {endElement(c)| o € X} die Menge aller
Struktur-Events. Sei S=(s1, ..., $,,) mit s; € SE fiir 1<i<n ein Struktur-Strom
nach Definition 3.1 und SStart der startElement-Strom von S nach Definition
3.2. Sei die Funktion b: SE — {0,1} definiert als
_J 1 fallss e SStart

b(s) := 0 sonst

Dann bezeichnen wir die Bitfolge B(S)=(b(s1), ..., b(sy)) als Bitstrom zum
Struktur-Strom S. Die Indizes 1, ..., n nennen wir Positionen der Events
S1, -+ ., Sp im Bitstrom. Weiterhin bezeichnen wir mit e(B(S)):—{i | b(s;)— 1}
die Menge aller Eins-Positionen von B(S) und mit n(B(S)):={i | b(s;)=0} die
Menge aller Null-Positionen von B(S).

Beispiel 4.1 Listing 4.1 zeigt den Bitstrom, der zum Struktur-Strom aus Li-
sting 3.1 generiert wird.

11111001100 111001100110
001110011 0111001000°¢0°0

el )

Listing 4.1: Bitstrom des Beispiels

Analog zu einem wohlgeformten XML-Dokument werde ich einen korrekten
Bitstrom definieren. Hierzu werden zunéchst einige Hilfsfunktionen bendotigt,
die gewisse Bitstrom-Eigenschaften représentieren.

Die Funktion level berechnet die Tiefe eines durch ein ’1’-Bit im Bitstrom
reprisentierten XML-Knotens.

Definition 4.2 (Level). Sei S ein Struktur-Strom und B—(by, ..., by) der
Bitstrom zu S nach Definition 4.1.

Sei die Hilfsfunktion vp: {1, ..., n} — {-1,1} definiert durch
1 fallsz € e(B)
—1 sonst
Dann ist die Funktion levelg: {1, ..., n} — {0, ..., n} definiert durch
levelp(x) :=X7_ vp(z)

vp(x) =

Die Funktion end berechnet die Position des zugehorigen endElement-Events
zu einer gegebenen Position eines gegebenen startElement-Events. Die Funk-
tion start entspricht der Umkehrung der Funktion end und berechnet die Po-
sition des zugehorigen startElement-Events zu einer gegebenen Position eines
gegebenen endElement-Events.

Definition 4.3 (End, Start). Sei B=(by, ..., b,) ein Bitstrom nach Definition
4.1 mit der Menge ¢(B) der Eins-Positionen und der Menge n(B) der Null-
Positionen. Dann ist die Funktion endp: ¢(B) — n(B) definiert durch
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endp(x) =y mit y>x A levelg(x)-levelg(y)=1 A not I u
levelp(x)-levelp(z)=1 A x<z<y.

Entsprechend ist die Funktion startp: n(B) — e(B) definiert durch

startp(x):= y mit y<x A levelg(y)-levelg(x)=1 A not I =z
levelp(y)-levelp(z)=1 A y<z<x.

Satz 4.1. Sei S ein Struktur-Strom, sei E ein Element, und sei i die Position des
startElement-Events von E in S. Dann gilt: j ist die Position des endElement-
Events von E in S < endp(i)=j.

Beweis. Folgt aus der Analogie von Bitstrom und Struktur-Strom nach den
Definitionen 3.1, 4.1, 4.2 und 4.3. U

Die Funktion endOfParent berechnet die Position des endElement-Events
des parents zu einer gegebenen Position eines startElement-Events.

Definition 4.4 (EndOfParent). Sei B—(by, ..., b,) ein Bitstrom nach Defi-
nition 4.1 mit der Menge e(B) der Eins-Positionen und der Menge n(B) der
Null-Positionen. Dann ist die Funktion endO f Parentp: e(B) — n(B) definiert
durch

endO f Parentg(x) :=y mit y>x A level g (x)-levelg(y)=2 A not 3 z: level p(x)-
levelp(z)=2 N x<z<y

Satz 4.2. Sei S ein Struktur-Strom nach Definition 3.1, sei E ein Element, sei
i die Position des startElement-Events von E in S, und sei P—E/parent der
parent-Knoten von E. Dann gilt: j ist die Position des endElement-Events von
P in S < endOfParent(i)—j.

Beweis. Folgt aus Definitionen 2.5, 4.1, 4.2 und 4.4. O

Anmerkung: Die Funktion endO f ParentB kann auch als Konkatenation der
Funktionen endp und der spater vorgestellten Funktion parent definiert wer-
den. Da jedoch die Funktion parent eine ,Riickwirtsnavigation“ im Bitstrom
darstellt, wurde hier eine andere Definition gewahlt, die eine lineare Durchque-
rung des Bitstroms erlaubt.

Definition 4.5 (Korrekter Bitstrom). Sei B—(by, ..., b,) ein Bitstrom nach
Definition 4.1 mit den Funktionen levelg, endp und endO f Parentg. Dann
bezeichnen wir B als korrekten Bitstrom genau dann, wenn

1. Vx € eB) Iy € n(B): endp(x)=y,
2. Vye{l, ..., n1}: levelp(y)>0.
Definition 4.6 (Symboltabelle). Sei ¥ eine Menge von Labeln und Sym eine

Menge von Symbolen mit |Sym|—|3|. Eine Symboltabelle S ist eine umkehrbare
Funktion S: ¥ — Sym, die jedem Label s eindeutig ein Symbol S(s) zuordnet.
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Beispiel 4.2 Tabelle 4.1 zeigt eine mogliche Symboltabelle zum Struktur-Strom
aus Listing 3.1.

String Symbol
root
Adressen
Person
Name
=T
Postfach
Strasse
Ort
Telefon
@modell

= © 00 - O O i W N =

0

Tabelle 4.1: Symboltabelle des Beispiels

Definition 4.7 (Symbol-Strom). Sei ¥ die Menge aller Label, Sym eine Menge

von Symbolen mit [Sym|=|3|, ST:¥X — Sym eine Symboltabelle. Sei start=

{startElement(c) | 0 € ¥} die Menge aller startElement-Events {iber ¥. Dann

ist die umkehrbare Funktion ss: start — Sym definiert als
ss(startElement(c)) :—=ST(0).

Sei S—(s1, ..., Sp) ein Struktur-Strom nach Definition 3.1 und sei SStart—
(sstarty, ..., sstartz) der startElement-Strom von S nach Definition 3.2. Die
Liste von Symbolen SS(S)=(ss(sstarty), ..., ss(sstarts)) bezeichnen wir als

Symbol-Strom zum Struktur-Strom S.

Beispiel 4.3 Listing 4.2 zeigt den Symbol-Strom zum Struktur-Strom aus Li-
sting 3.1 entsprechend der Symboltabelle aus Tabelle 4.1.

1238 4665638 4565758560563 4560563450615 9
10 5 &5

Listing 4.2: Symbol-Strom des Beispiels

Zusammen stellen Bitstrom, Symboltabelle und Symbol-Strom eine spei-
chereffiziente Darstellung der Struktur eines XML-Dokuments dar.

Wihrend die Dekompression des Bitstroms zu einer Folge von start- und
endElement-Events — ohne Label-Information — direkt durch die Umkehrung
der Funktion b gelost werden kann, erfordert die Ermittlung der Label zu
diesen Events einen hoheren Berechnungsaufwand.
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Zur Berechnung der Label-Information wird die Funktion rang benotigt,
die zu einer gegebenen Position im Bitstrom berechnet, wie viele ’1’-Bits im
Bitstrom bis zu dieser Position vorhanden sind.

Definition 4.8 (Rang). Sei B=(by, ..., b,) ein Bitstrom. Dann ist die Funk-
tion rangp: {1, ..., n} — {1, ..., n} definiert als: rangp(x) :=X_,b;

Die Funktion label berechnet das Label zu einem durch eine '1’-Position im
Bitstrom gegebenen startElement-Event.

Definition 4.9 (Label). Sei ¥ eine Menge von Labeln, Sym eine Menge von
Symbolen mit |Sym|=|X|, ST:X — Sym eine Symboltabelle. Sei B=(by, ..., by,)
ein korrekter Bitstrom, und sei SS=(ss1, ..., ss2) ein Symbol-Strom. Dann
ist die Funktion labelgs: e(B)— ¥ definiert als

labelgs(x):=ST ™ (sS,angp(2))-

Wir sagen auch labelgg(x) ist das Label zur 1-Position © bzw. zum zur 1-
Position gehorenden startElement-Events.

Satz 4.3. Sei S ein Struktur-Strom, sei i die Position eines startElement-Events
sE in S und lab ein Label. Dann gilt: lab ist das Label von sE < labelgg(i)=lab.

Beweis. Folgt aus Definitionen 4.7, 4.8 und 4.9. O

Mit Hilfe dieser Funktionen wird die Dekompressions-Funktion wie folgt de-
finiert:

Definition 4.10 (Decomp). Sei 3 eine Menge von Labeln, Sym eine Menge
von Symbolen mit |Sym|—|¥|, ST:¥ — Sym eine Symboltabelle. Sei
B=(by, ..., by) ein korrekter Bitstrom, und sei SS=(ssy, ..., ss%) ein Symbol-
Strom. Sei weiterhin E:={startElement(c)|oc € ¥} U {endElement(c)|c € X}
die Menge aller Events iiber 3.

Dann ist die Funktion decompgg p: {1, ..., n} — E definiert als
start Element(labelgs(z)) falls x € e¢(B)

decompss, (x) :_{ endElement(labelgg(startp(x))) sonst

Der folgende Satz besagt, dass Bitstrom, Symboltabelle und Symbol-Strom
zusammen mit der Funktion decomp eine korrekte Kompression darstellen.
Dies bedeutet, dass wenn man zu einem Struktur-Strom S und einer Symbol-
tabelle ST den Bitstrom B und den Symbol-Strom SS berechnet und anschlie-
Kend die Funktion decomp auf B und SS ausfiihrt, dann erhélt man wieder den
urspriinglichen Struktur-Strom S.

Satz 4.4. Sei X eine Menge von Labeln, Sym eine Menge von Symbolen mit
|Sym|—|X|, ST:¥ — Sym eine Symboltabelle. Sei S—(s1, ..., sp) ein Struktur-
Strom wund SStart der startElement-Strom von S. Sei weiterhin
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B(S)=(b1, ..., bp) der Bitstrom zu S und SS(SStart)=(ss1, ..., ssz) der
Symbol-Strom zu S und ST. Dann gilt decompgs p(i)=s; fiir alle 1<i<n.

Beweis. Sei s; vom Typ startElement(lab). Dann ist b;—1 also i € e(B) und
SSrang(n—ST(lab).  Somit  gilt  labelgs(i)=ST ™! (85,angp(;))=lab  und
decompgsg, p(i)=startElement(lab).

Sei nun s; vom Typ endElement(lab). Dann ist b;=0, also i ¢ e(B). Das La-
bel lab steht in der Labelliste an der Position des dazugehorigen startElement-
Events, also  $S.qngy(starty(i)) =S T (lab). Somit gilt labelss(startp(x))=
ST_l(ssmngB(smrtB(i))):lab und decompgs, g(i)=endElement(lab).

O

Durch die Verwendung der Funktion start erfordert die Dekompression eine
Riickwértsnavigation, die in vielen Féllen unerwiinscht ist. Dies kann vermie-
den werden, indem fiir alle ge6ffneten, aber noch nicht geschlossenen Knoten
Kx an Position x der Wert der Funktion label(start(x)) auf einem Stack zwi-
schengespeichert wird. Da die getdffneten, aber noch nicht geschlossenen Kno-
ten dem child-Pfad von der Wurzel bis zum aktuellen Knoten entsprechen, ist
die Menge der zu speichernden Werte beschrankt durch die Dokument-Tiefe.
Dennoch gilt, dass zwar die Kompression ohne weiteren Speicherbedarf durch
lineares Durchqueren durchgefiihrt werden kann, zur Dekompression wird aber
entweder bidirektionales Durchqueren oder weiterer Speicherbedarf der Grofe
O(n) bendtigt, wobei n die maximale Tiefe des Dokuments ist.

4.1.2 Abbilden der atomaren Achsen first-child und next-sibling

In diesem Kapitel werde ich nun erldutern, wie man mit Hilfe des Bitstroms der
Succinct-Darstellung entlang der Achsen first-child und next-sibling navigieren
kann, ohne vorher das urspriingliche XML-Dokument zu rekonstruieren.

Hat ein Knoten p ein first-child fc, so befindet sich das startElement-Event
von fc im Struktur-Strom direkt hinter dem startElement-Event von p.

Dies fiihrt zur folgenden Definition der Funktion fc, die zu einer gegebenen
Position die eventuelle Position des first-childs berechnet.

Definition 4.11 (Funktion fc). Sei B—(by, ..., b,) ein korrekter Bitstrom mit
der Menge e(B) der Eins-Positionen. Dann ist die Funktion
fe:e(B) — {1, ..., n} definiert als:

fe(x) ==x+1

Satz 4.5. Sei S ein Struktur-Strom und seien i und j die Positionen je ei-
nes startElement-Events eines Knotens k; bzw. k; im Struktur-Strom und
B(S)=(b1, ..., by) der Bitstrom von S. Dann gilt: k;=first-child(k;) < fc(i)=j
und b;—1.
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Beweis. Beweis folgt aus Definitionen 2.4(a), 4.1 und 4.11. O

Das next-sibling eines Knotens k ist der Knoten, der auf den End-Tag von k
folgt. Dies fiihrt zu der folgenden Funktion ns, die zu einer gegebenen Position
aus der Menge der Eins-Positionen die eventuelle Position des next-siblings
berechnet.

Definition 4.12 (Funktion ns). Sei B—(by, ..., b,) ein korrekter Bitstrom
mit der Menge e(B) der Eins-Positionen. Dann ist die Funktion ns: e(B) —
{1, ..., n+1} definiert als:

ns(x) :=endp(x) + 1.

Satz 4.6. Sei S ein Struktur-Strom und seien i und j die Positionen je ei-
nes startElement-Events eines Knotens k; bzw. k; im Struktur-Strom und
B(S)=(b1, ..., by) der Bitstrom von S. Dann gilt: k;=next-sibling(k;) < ns(i)=j
und b;—1.

Beweis. Beweis folgt aus Definitionen 2.4(b), 4.1 und 4.12. O

Satz 4.7. Sei B=(by, ..., b,) ein korrekter Bitstrom mit der Menge e(B) der
Eins-Positionen. Dann kann

(a) die Funktion fc in O(1) und

(b) die Funktion ns in O(n) berechnet werden.

Beweis. (a) folgt aus Definition 4.11.
Da die Berechnung der Position endp im worst case ein komplettes Durch-
queren des Bitstroms erfordert, folgt Aussage (b) aus Definition 4.12. O

Laut den Sétzen 4.3, 4.5, 4.6 und 4.7 ermdoglichen die Funktionen label, ns
und fc eine effiziente Anfrage-Auswertung direkt auf der Succinct-Darstellung
ohne vorherige Dekompression. Dabei kdnnen die Anfragen so ausgewertet wer-
den, dass ein einmaliges lineares Durchqueren des Bitstroms und der Labelliste
geniigt; diese Anfrage-Auswertung ist auch fiir quasi-unendliche, komprimierte
Datenstrome geeignet.

4.2 Optimierte Auswertung der Vorwarts-Achsen

Nachdem ich im vorangehenden Kapitel die Ideen aus [48| vorgestellt und for-
malisiert habe, werde ich nun eine Optimierung dieser Ideen prasentieren, die
eine optimierte Auswertung der Vorwértsachsen child, descendant, following-
sibling und following erlaubt.

Hauptidee dieser Optimierung ist die Benutzung einer invertierten Labelliste
an Stelle der Labelliste, also einer Zuordnung von ’1’-Bit-Positionen zu Labeln.



XML-Kompression durch platzeffiziente Kodierung 41

Definition 4.13 (Invertierte Labellisten). Sei ¥ die Menge aller Label. Sei o €
Y ein beliebiges Label. Sei S=(sy, ..., sp) ein Struktur-Strom, sei SStart der
startElement-Strom von S und sei start, :—(s; € SStart | s;—startElement (o))
eine Teilfolge von SStart mit start,=(s1, ..., Sm). Dann ist die Funktion
invLLy: start, — {1, ..., n} definiert durch

invLLy(x):=(1 | x=s;)

Die Liste I Ly:—(invLLs(S1), ..., invLLy(spy)) zu einem Label o € ¥ be-
zeichnen wir als invertierte Labelliste zu o. Die Menge ILy= {IL, | 0 € ¥}
bezeichnen wir als die invertierten Labellisten zu ¥ und S.

Beispiel 4.4 Tubelle 4.2 zeigt die invertierten Labellisten, die aus dem Struktur-
Strom aus Listing 3.1 generiert werden.

ILamoden | (41)

IL pgressen (2)
ILName (4, 14, 32)
ILoy (22)
ILperson (3, 13, 31)
ILPostfach (267 36)
ILStrasse (18)
ILTelefon (40)

Tabelle 4.2: Invertierte Labellisten des Beispiels

Durch die Funktion invToSS kann zu einer Menge von invertierten Labellis-
ten ein Symbol-Strom berechnet werden, der dann zur Dekompression genutzt
werden kann.

Definition 4.14 (Funktion invToSS). Sei ¥ die Menge aller Label, sei Sym
eine Menge von Symbolen mit |Sym|—|3], sei ST:¥ — Sym eine Symboltabelle,

sei S ein Struktur-Strom, und sei B(S)=(b1, ..., by) ein Bitstrom. Seien ILy,
die Menge der invertierten Labellisten zu ¥ und S. Dann ist die Funktion
invToSSypy: {1, ..., §} — Sym definiert als

invT0SS1L,,(x)=(ST(0) | x=rangp(y) Ny € IL,).

Laut dem folgenden Satz 4.8 stellt die Kombination aus Bitstrom und in-
vertierten Labellisten eine korrekte Kompression des Struktur-Stroms dar, die
mit Hilfe der Funktionen invToSS und decomp umgekehrt werden kann.

Satz 4.8. Sei ¥ die Menge aller Label, Sym eine Menge von Symbolen mit
|Sym|=|X| und ST:¥ — Sym eine Symboltabelle. Sei S=(S51, ..., S,) ein
Struktur-Strom {iber ¥ und B(S) der Bitstrom von S. Sei weiterhin I Ly, die
Menge der invertierten Labellisten zu ¥ und S. Dann gilt:
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SS:=(invT0SS11y (1), - .., invT 0SS Ly (3))=(ss1, ..., ssz) ist der Symbol-
Strom zu ST und S, so dass decompgg, g(i)=s; fiir alle 1<i<n.

Beweis. Sei s; vom Typ startElement(lab). Dann ist b;=1 also i € ¢(B(S)) und
i € ILiqp- Somit gilt laut Definition 4.14 55,454, ) —=invT0S Sy (rangp(i))=
ST(lab). Weiterhin  gilt labelgs(i)=ST " (Srangy(i))=lab und  somit
decompgg, p(i)=startElement(lab).

Sei nun s; vom Typ endElement(lab). Dann folgt die Richtigkeit analog zum
Beweis zu Satz 4.4. O

Die invertierten Labellisten stellen einen Index auf die ’1’-Bit-Positionen
sortiert nach den zugehdrigen Labeln dar. Dieser Index wird nun bei der opti-
mierten Anfrageauswertung benutzt, um entsprechend des Knoten-Tests eines
Location-Steps vorab eine Menge von potentiellen Kandidaten zu ermitteln,
so dass die Achsen-Tests nur fiir diese Kandidaten, nicht aber fiir alle ’1’-Bit-
Positionen durchgefithrt werden miissen.

4.2.1 child::a

Sei Kp der aktuelle Kontextknoten und p die Position des ’1’-Bits, das Kp im
Bitstrom B reprasentiert. Sei weiterhin Kc € Kp/child ein child-Knoten von
Kp und c die Position des '1’-Bits, das Kc¢ im Bitstrom reprisentiert. Dann
muss Kc den Knoten-Test ’a’ erfiillen, eine Ebene unterhalb von Kp liegen,
und ¢ muss zwischen den Positionen p und endp(p) liegen, also p<c<endp(p).

Definition 4.15 (child,(p)). Sei ¥ die Menge aller Label und sei o € ¥ ein
beliebiges Label. Sei B=(by, ..., b,) ein Bitstrom, sei p eine Position in B und
sei IL, die invertierte Labelliste zu 0. Dann ist die Menge child,(p) C IL,
definiert als:

child,(p) :={c € IL, | levelg(p)-levelp(c)=1 A p<c<endp(p)}

Satz 4.9. Seien S ein Struktur-Strom, i und j die Positionen je eines startEle-
ment-Events eines Knotens k; bzw. k; im  Struktur-Strom und
B(S)=(b1, ..., by) der Bitstrom von S. Dann gilt:

k; € k;/child::a < j € child,(i).

Beweis. Beweis folgt aus Definitionen 2.5(a) und 4.15. O

4.2.2 descendant::a

Sei Kanc der aktuelle Kontextknoten und anc die Position des ’1’-Bits, das
Kanc im Bitstrom B reprisentiert. Sei weiterhin Kd € Kanc/descendant ein
descendant-Knoten von Kanc und d die Position des '1’-Bits, das Kd im Bit-
strom représentiert. Dann muss Kd den Knoten-Test ’a’ erfiillen, und d muss



XML-Kompression durch platzeffiziente Kodierung 43

zwischen den Positionen anc und endp(anc) liegen, also anc<d<endp(anc).
Es existiert keine Bedingung an levelp(d).

Definition 4.16 (descendant,(a)). Sei ¥ die Menge aller Label und sei o €
Y ein beliebiges Label. Sei B=(by, ..., b,) ein Bitstrom, sei a eine Position
im Bitstrom und sei IL, die invertierte Labelliste zu o. Dann ist die Menge
descendant,(a) C I L, definiert als:

descendant,(a) :—{d € IL, | a<d<endp(a)}

Satz 4.10. Seien S ein Struktur-Strom, i und j die Positionen je eines startEle-
ment-Events eines Knotens k; bzw. k; im  Struktur-Strom und
B(S)=(b1, ..., by) der Bitstrom von S. Dann gilt:

k; € k;/descendant::a < j € descendant,(i).

Beweis. Beweis folgt aus Definitionen 2.5(c) und 4.16. O

4.2.3 following-sibling::a

Sei Kp der aktuelle Kontextknoten und p die Position des ’1’-Bits, das Kp im
Bitstrom B représentiert. Sei weiterhin Kf € Kp/following-sibling ein following-
sibling-Knoten von Kp und f die Position des ’1’-Bit, das Kf im Bitstrom
reprasentiert. Dann muss Kf den Knoten-Test ’a’ erfiillen, auf derselben Ebene
wie Kp liegen, und f muss zwischen den Positionen p und endO f Parentp(p)
liegen, also p<f<endO f Parentg(p).

Definition 4.17 (following — sibling,(p)). Sei ¥ die Menge aller Label und
sei o € X ein beliebiges Label. Sei B=(b1, ..., b,) ein Bitstrom, sei p eine
Position in B und sei I L, die invertierte Labelliste zu ¢. Dann ist die Menge
following — sibling,(p) C IL, definiert als:

following — sibling, (p) =

{f € IL, | levelp(p)-levelp(f)—0 A p<f<endO f Parentp(p)}

Satz 4.11. Seien S ein Struktur-Strom, i und j die Positionen je eines startEle-
ment-Events eines Knotens k; bzw. k; im  Struktur-Strom und
B(S)=(b1, ..., by) der Bitstrom von S. Dann gilt:

k;j € k;/following-sibling::a < j € following — sibling,(i).

Beweis. Beweis folgt aus Definitionen 2.5(g) und 4.17. O

4.2.4 following::a

Sei Kp der aktuelle Kontextknoten und p die Position des ’1’-Bits, das Kp im
Bitstrom repréasentiert. Sei weiterhin Kf € Kp/following ein following-Knoten
von Kp und f die Position des ’1’-Bits, das Kf im Bitstrom B représentiert.
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Dann muss Kf den Knoten-Test ’a’ erfiillen, und f muss hinter der Position
endp(p) liegen, also endp(p)<f. Es existiert keine Bedingung an levelpg(f).

Definition 4.18 (following,(p)). Sei ¥ die Menge aller Label und sei o € ¥
ein beliebiges Label. Sei B=(by, ..., b,) ein Bitstrom, p eine Position in B und
sei L, die invertierte Labelliste zu o. Dann ist die Menge following,(p) C
1L, definiert als:

following,(p) :={f € IL, | endp(p)<f<n}

Satz 4.12. Seien S ein Struktur-Strom, i und j die Positionen je eines startEle-
ment-Events eines Knotens k; bzw. k; im  Struktur-Strom und
B(S)=(b1, ..., by) der Bitstrom von S. Dann gilt:

k; € k;/following::a < j € following,(i).

Beweis. Beweis folgt aus Definitionen 2.5(i) und 4.18. O

Satz 4.13. Sei X die Menge aller Label, sei S ein Struktur-Strom, sei
B(S)=(b1, ..., by) der Bitstrom von S und IL, die invertierte Labelliste zu
o € X. Die Mengen child,, descendant, following — sibling, und following,
kénnen in O(n) berechnet werden.

Beweis. Die Definition aller 4 Mengen sind von der Form (level-Bedingung A
start<x<end), wobei start und end jeweils auch auf Berechnungen der Funk-
tion level zuriickfiihrbar sind. Daher reicht zur Berechnung dieser Mengen
ein lineares Durchqueren des Bitstroms beginnend an Position start und en-
dend an Position end, wobei fiir jede Position p mit start<p<end die Level-
Differenz level g (start)-level g (p) berechnet wird. Gilt p € IL,, so wird zusétz-
lich die level-Bedingung iiberpriift. Somit reicht ein lineares Durchqueren des
Bitstroms im worst case, es gilt also, dass die Mengen in O(n) berechenbar
sind. O

Laut den Séatzen 4.9, 4.10, 4.11, 4.12 und 4.13, ermdglichen die Mengen
child,, descendant,, following — sibling, und following, eine effiziente An-
frage-Auswertung direkt auf der Succinct-Darstellung ohne vorherige Dekom-
pression. Dabei konnen die Anfragen so ausgewertet werden, dass ein einmali-
ges lineares Durchqueren des Bitstroms geniigt; diese Anfrage-Auswertung ist
auch fiir quasi-unendliche, komprimierte Datenstrome geeignet.

4.3 Succinct-Darstellung zur Kompression
unendlicher Datenstrome

Die Succinct-Darstellung, bestehend aus Bitstrom, Labelliste und Symbolta-
belle, ist uneingeschrankt auf unendliche Struktur-Stréme anwendbar, da je-
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weils jedes Event des Struktur-Stroms autonom von allen anderen Events ver-
arbeitet und komprimiert wird.

Fiir die Succinct-Darstellung bestehend, aus Bitstrom und invertierten La-
bellisten, gilt zwar auch, dass jedes Event des Struktur-Stroms autonom kom-
primiert wird, hier tritt jedoch das Problem auf, dass mit steigender Lénge
des verarbeiteten Strom-Anteils die Grofke der Positionen in den invertierten
Labellisten ansteigt. Zwar erlaubt die in Kapitel 2.6 vorgestellte Kodierung
ganzzahliger Werte auch die Darstellung entsprechend grofser Zahlen, dennoch
wiirde die Kompression dadurch ineffizient werden, da grofse Zahlen auch durch
eine entsprechend hohe Anzahl an Bits kodiert werden miissen. Daher emp-
fiehlt es sich, in den invertierten Labellisten nicht die absoluten Positionen zu
speichern, sondern jeweils nur die relativen Positionen, also die Differenz zum
letztmaligen Auftreten des Labels.

Definition 4.19 (Relative invertierte Labellisten). Sei ¥ die Menge aller La-

bel. Sei o € ¥ ein beliebiges Label. Sei S=(s1, ..., s,) ein Struktur-Strom,

und sei I Ly=(ily1, ..., ilgm) die invertierte Labelliste zu einem Label o € X.

Die umkehrbare Funktion relLL: {1, ..., m} — {1, ..., n} ist definiert als
relLLy (x)— ily1 fallsx =1

oy — tlgp—1 sonst

Die Folge RLy=(relLL,(1), ..., relLL,(m)) zu einem Label o € ¥ bezeich-
nen wir als relative invertierte Labelliste zu 0. Die Menge RLy,= {RL, | 0 € ¥}
bezeichnen wir als die relativen invertierten Labellisten zu ¥ und S.

Beispiel 4.5 Tabelle 4.3 zeigt die relativen invertierten Labellisten, die aus
dem Struktur-Strom aus Listing 3.1 generiert werden.

ILamoden | (41)
ILAdressen (2)
ILNgme (4, 10, 18)
ILoy (22)
ILperson (3, 10, 18)
ILPostfach (267 10)
ILStrasse (18)
ILTelefon (40)

Tabelle 4.3: Relative invertierte Labellisten des Beispiels

Die Kompression eines unendlichen Datenstroms durch das Succinct-Verfah-
ren kann ohne weiteren Speicherbedarf fiir beide Versionen (Bitstrom, Symbol-
tabelle, Labelliste bzw. Bitstrom, invertierte relative Labellisten) durchgefiihrt
werden. Da jedoch der Empfénger — z.B. die Dekompression oder die Anfrage-
Auswertung — die aktuellen Werte aus den jeweiligen Komponenten gleichzeitig
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bendtigt, miissten entsprechend viele Verbindungen von der Kompression zum
Empfianger vorhanden sein. Imm Falle der Kombination Bitstrom und invertier-
te Labellisten miissten dies eine Verbindung fiir den Bitstrom und jeweils eine
Verbindung je invertierter Labelliste sein.

Da dies im Allgemeinen nicht praktikabel ist, empfiehlt sich das Aufteilen des
Struktur-Stroms in mehrere Pakete anhand eines Parameters, der die maxima-
le Anzahl von Struktur-Events je Struktur-Paket vorgibt. Die verschiedenen
Strome konnen dann so gebiindelt werden, dass die einzelnen Komponenten
(Symbol-Strom, invertierte Labelliste und Bitstrom) in jedem Paket nachein-
ander gesendet werden. Hierbei ist eine sinnvolle Reihenfolge: Symbol-Strom
bzw. invertierte Labellisten, Bitstrom. Dies ermoglicht bei der Dekompression,
dass die invertierten Labellisten noch vor der Dekompression, die durch den
Bitstrom gesteuert wird, in einen Symbol-Strom umgewandelt werden konnen.
Auch fiir die optimierte Anfrageauswertung von Anfragen der Form achse::a
wird die invertierte Labellisten zu ’a’ als erstes benotigt.

Durch das Aufteilen in Pakete und das Biindeln der Strome erreichen wir
eine vollstdndige Streamingfihigkeit des Verfahrens.

4.4 Unterstiitzung der DOM-Schnittstelle

Um zu zeigen, dass die Succinct-Darstellung die komplette DOM-Schnittstel-
le unterstiitzt, werde ich in diesem Kapitel noch erldutern, wie die lesende
DOM-Funktion parent sowie die schreibenden DOM-Operationen insertBefore,
insert After und remove direkt auf dem Komprimat — ohne vorherige Dekom-
pression — definiert sind.

4.4.1 Die parent-Achse

Sei Kc der aktuelle Kontextknoten und ¢ die Position des '1’-Bits, das Kc¢ im
Bitstrom B représentiert. Dann gilt fiir den parent-Knoten Kp von Kc, der
durch das ’1’-Bit an Position p im Bitstrom repréisentiert ist, dass das Level
von Kp um eins geringer ist als das Level von Kc, dass p vor ¢ im Bitstrom
liegt, und dass kein Knoten existiert, dessen Level um eins geringer ist als das
Level von Kc und der zwischen p und c im Bitstrom liegt.

Definition 4.20 (Funktion parent). Sei B—(by, ..., b,) ein korrekter Bitstrom
mit der Menge e(B) der Eins-Positionen. Dann ist die Funktion
parent: ¢(B)-{1} — e(B) definiert als:

parent(x) =y mit y<x A levelg(y)-levelg(z)=1 A not 3I =z
levelp(z)-levelg(x) =1 N y<z<x.
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Satz 4.14. Sei S ein Struktur-Strom und seien i und j die Positionen je ei-
nes startElement-Events eines Knotens k; bzw. k; im Struktur-Strom und
B(S)=(b1, ..., by) der Bitstrom von S. Dann gilt: k;=k;/parent < parent(i)=j.

Beweis. Beweis folgt aus Definitionen 2.5(b), 4.1 und 4.20. O
4.4.2 Einfiigen und Léschen in Bitstrom, Symbol-Strom und
invertierten Labellisten

Die nachfolgende Funktion fiigt einen Bitstrom B, an einer gegebenen Posi-
tion p in einen anderen Bitstrom By ein.

Definition 4.21 (insertp,, Bo..p). Seien Bay=(bat1, .., ban) und
Breu=(bneut, - - bpeum) zwei Bitstrome. Sei p € {1, ..., n} eine Position in
Byjt. Dann ist die Funktion insertp,,, B,oup: {1, - -, n+m} — {0,1} definiert
als
baitz fallsz <p
iNSErtB,;, Buew,p(T): =1 bneu@w—pt+1) fallsp <z <p+m
batt(z—m) sonst

Entsprechend 16scht die remove-Funktion einen Teilbaum bestehend aus 1
Bits aus dem Bitstrom, dessen Wurzel durch eine Eins-Position p im Bitstrom
gegeben ist.

Definition 4.22 (removep ). Sei B=(b, ..., by) ein korrekter Bitstrom und
seip € {1, ..., n} eine Eins-Position in B und sei l:—end(p)-p+1. Dann ist die
Funktion removepp: {1, ..., n-1} — {0,1} definiert als

bz fallsx <p

removeg,p(a;):{ boys sonst
€T

Die entsprechende insert-Funktion fiir den Symbol-Strom fiigt einen Symbol-
Strom SS)e, an einer gegebenen Position p in einen anderen Symbol-Strom
S S ein.

Definition 4.23 (insertss,,, SSneup). S€ien SSaou=(SSait1, ---, SSaitn) und
SSnew=(8Sneul, -5 SSneum) zZwei Symbol-Strome. Sei p € {1, ..., n} eine
Position in SS,. Dann ist die Funktion insertss,,, sSmeup: 11, --., n+m} —
{0,1} definiert als
SSalte fallsx <p
insSertss,;, SSneup(L):=9 SSpeu(w—pt+1) Jfallsp<x <p+m
8Sqlt(z—m) sonst

Die folgende remove-Funktion 16scht ein Fragment beginnend an Position p
der Lange 1 aus dem Symbol-Strom.
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Definition 4.24 (removegsp). Sei SS=(ssi, ..., sS,) ein Symbol-Strom und
seip € {1, ..., n} eine Position in Bund seil € {1,... n}. Dann ist die Funktion
removess i {1, ..., n-l} — {0,1} definiert als

S8z fallsx <p

TemOUeSS,p,l(x):{ SSpyl Sonst
x

Die nachfolgende Funktion fiigt eine invertierte Labelliste I L., in eine an-
dere invertierte Labelliste I Ly ein, so dass alle Werte von ILe, in ILgy
zwischen die Werte p (das der Start-Position eines Teilbaumes T in einem zu
ILg; gehorenden Bitstrom By entspricht) und p+1 eingefiigt werden. Die
Lénge | entspricht hierbei der Lange des zu I L, gehorenden Bitstroms Bj,ey.
Dies erfordert eine Neuberechnung aller Werte, die gréofer als p sind.

Definition 4.25 (insertrr,,, iin..,p)- S€ien ILgp=(ilge1, ..., lan) und
ILpey =(ilneut, -+ tlpeum) zwel invertierte Labellisten. Seien p und 1 zwei
Integer-Werte und sei k:i—[{ilgtr | #latr < p}|. Dann ist die Funktion
insertrr ,, ILneapl: 11, -+, n+m} — Integer definiert als
Ualte fallsz <k
iNSErtIL 1, ILnewpl (€)= Uneu@—k) t P fallsk <z <k+m

ilalt(z—m) +1 sonst

Die folgende remove-Funktion 16scht alle Positionen x mit p<x<p-+l fiir
gegebenen Werte p und | aus einer invertierten Labelliste.

Definition 4.26 (removerr, ;). Sei IL=(ily, ..., il,) eine invertierte La-
belliste. Seien p, | zwei Integer und sei k:=|[{il; | il < p}| und o:=|{il; |
p< ily <p-+l}|. Dann ist die Funktion removerr ,;: {1, ..., o-p} — Integer

definiert als
iy falls x < k

removeIL,p,l(x):—{ il(pro)— 1 sonst

4.4.3 insert und remove

Die folgenden Sitze zeigen, dass eine Ausfithrung der insert- bzw. der remove-
Funktion auf dem Struktur-Strom S zu dem gleichen Ergebnis fiihrt wie ein
Ausfithren der insert- bzw. remove-Funktion auf dem S entsprechenden Kom-
primat bestehend aus Bitstrom und invertierten Labellisten zuziiglich anschlie-
Kender Dekompression.

Satz 4.15. Seien SSu;=(SSa1t1, - - -, SSaitn) Und SSpew=_(8Sneut; - - - SSneum)
zwei Symbol-Strome. Sei p mit 1<p<n gegeben. Sei SS=(ss1, ..., $Smin):=
(insertss, ;. SSnew,p(1)s - - iNSETtSS, ), SSnew,p(M + 1)). Sei ¥ die Menge aller

Label, und seien [Lgalt:{IL(mlt‘O' € E} mit ILoalt:(ilgalﬂ, ey ilgaltk) und



XML-Kompression durch platzeffiziente Kodierung 49

ILyneu—{ILoneu|loc € X} mit I Lopey—iloneut, - - -, tloneur) zwei Mengen von
invertierten Labellisten. Sei I Ls;:={IL,|oc € ¥} mit
ILU:(z‘nsertImeILnew,p,m(1), ceey insertILgazt,ILneua,p,m(k + l))
Dann gilt: invT0S Sy (1) =5Sa fiir 1<i<n und invT0SStrsmneu(j) =5Sneu;
fiir 1<j<m < invToSSL, (x)=ss, fiir I<x<n+m.

Beweis. Folgt aus Definitionen 4.14, 4.23 und 4.25. O

Satz 4.16. Sei SSu:=(SSait1, ---, SSaitn) €in Symbol-Strom. Seien p,l mit
1<p,I<n gegeben. Sei SS=(ss1, ..., Ssp_1):=(removess,,pi(1), ...,
removegs,,, pi(n—1)). Sei 3 die Menge aller Label, und sei I Ly, ={1 Loqit|0 €
Y} mit I Lygip=(ilyqit1, - - -, tloaier) €ine Menge von invertierten Labellisten. Sei
ILs:={ILs|oc € £} mit IL,=(removery,_,, pi(1), ..., removery,_ . pi(k—1)).

Dann gilt: invT0S St (1)=58q¢ fir 1<i<n < invToSSyL, (x)=ss, fir
1<x<n-l.

Beweis. Folgt aus Definitionen 4.14, 4.24 und 4.26. O
Satz 4.17. Seien Syp=(Sait1, ---» Saitn) UNd Spew=(Sneuls ---» Sneum) zZwei
Struktur-Strome. Sei p mit 1<p<n gegeben. Sei S=(s1, ..., Smin):=
(inserts,,, Snew,p(1), ..., inserts,,, g,..p(m + n)). Seien weiterhin Byy=
(batt1, -+, ban) und Bpey=(bneul, ---, bneum) zwei Bitstrome. Sei B=
(b1, ..., bmtn):=(insertp,, Bpewp(l), ..., inSErtB,;, Bhewp(Mm + n)). Seien
SSar=(sSait1, ---, ssalt%) und SS,eu=(8Sneut, ---» sSneu%) zwei Symbol-
Strome. Sei

SS=(ss1, ..., ssmTM)::(insertggalt,ssmmp(1), o insertss,, SSneup(Ta ).

Dann gilt decompss,,,.B,,, (1)=5Sar fir 1<i<n & decompgs, p(x)=ss, fiir
1<x<m-+n.

Beweis. Folgt aus Definitionen 2.7, 4.10, 4.21 und 4.23. O

Satz 4.18. Sei Sq=(Sait1, -- -, Saitn) €in Struktur-Strom. Sei p mit 1<p<n
gegeben. Sei ss, das startElement-Event eines XML-Elements E zu einem ge-
gebenen Wert p und sei ss; das endElement-Event von E. Sei l:=k-p+1. Sei

S=(s1, ..., Sn—1):=(removes,, »(1), ..., removeg,,, p(n — 1)). Sei weiterhin
Biit=(bait1; - - -, baitn) ein Bitstrom. Sei B=(by, ..., b,_;):=(removeg,, »(1),
..., removep,, p(n—1)). Sei SSu=(s5q111, - - -, ssalt%) ein Symbol-Strom. Sei
SS=(ss1, ..., ss,%z)::(removegsaltp,l(l), el removegsampJ("T_l)).

Dann gilt decompgs,,,.B,,, (1)=8Sari fir 1<i<n < decompgs p(x)=ss, fir
1<x<n-l.

Beweis. Folgt aus Definitionen 2.8, 4.10, 4.22 und 4.24. U
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Satz 4.19. Sei ¥ die Menge aller Label, sei S ein Struktur-Strom, sei
B(S)=(b1, ..., by) der Bitstrom von S und IL, die invertierte Labelliste zu
o € X. Die Funktionen insert und remove fiir B,S und IL konnen in O(n)
berechnet werden.

Beweis. Da entsprechend der Definitionen all diese Funktionen durch ein ein-
maliges Durchqueren der jeweiligen Folge berechnet werden konnen, sind sie
in O(n) berechenbar. O

Laut den Séatzen 4.15, 4.16, 4.17, 4.18 und 4.19 ermdglichen die Funktio-
nen insert und remove fiir Bitstrom, Symbol-Strom und invertierte Labellisten
eine effiziente Implementierung der DOM-Schnittstelle direkt auf der Succinct-
Darstellung ohne vorherige Dekompression. Dabei konnen die Update-Opera-
tionen so ausgefithrt werden, dass ein einmaliges lineares Durchqueren der je-
weiligen Struktur geniigt. Dies gilt sowohl fiir eine Succinct-Darstellung beste-
hend aus Bitstrom und Symbol-Strom, als auch fiir eine Succinct-Darstellung
bestehend aus Bitstrom und invertierten Labellisten.

4.5 Zusammenfassung: Eigenschaften der
Succinct-Darstellung

4.5.1 Kompressionsstarke

Betrachten wir die Baumdarstellung eines XML-Dokumentes, so benotigt die
Succinct-Darstellung den folgenden Speicherbedarf fiir die einzelnen Repra-
sentationen der Dokument-Struktur. Hierbei gehen wir von der vereinfachten
Annahme aus, dass das gesamte Dokument in einem Paket gespeichert werden
kann. Seien n die Anzahl Baumknoten, length(name) die Anzahl Zeichen von
name und count(name) die Anzahl Knoten, die mit diesem Label existieren:

e DBitstrom: 2*n Bits.

o Symbol-Strom: Je Element- bzw. Attribut-Name name: length(name)
Char + 1 * Integer fiir die Symboltabelle zzgl. count(name)*Integer fiir
die Labelliste.

o (relative) invertierte Labelliste: Je Element-bzw. Attribut-Name (£“=T"):
length(name) * Char + count(name)*Integer + 1*Integer (fiir Listenen-

de).

*

4.5.2 Weitere Eigenschaften

Wie im Verlaufe dieses Kapitels gezeigt, hat die Succinct-Darstellung die fol-
genden Eigenschaften:
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e Streamingfihig: Sie ist mit Hilfe diskreter Fenster (Pakete) uneinge-
schrankt streamingfihig.

o Auswertung von Pfad-Anfragen: Pfad-Anfragen konnen direkt auf dem
Komprimat ausgewertet werden.

e Updates: Updates konnen unbeschrinkt auf dem Komprimat durchge-
fiihrt werden, insofern, als das Komprimat mit darauf ausgefiihrtem Up-
date identisch dazu ist, dass man erst dekomprimiert héitte, die Updates
auf dem XML-Dokument ausgefiihrt hatte und dann anschlieffend wieder
komprimiert hétte.

o DOM: Sie unterstiitzt die DOM-Schnittstelle.



5 XML-Kompression durch
Eliminierung struktureller
Redundanzen

Das zweite Kompressions-Verfahren, welches ich in dieser Arbeit vorstellen wer-
de, komprimiert XML-Dokumente durch Zusammenfassen von gleichen Teil-
bdumen. Ahnliche Verfahren wurden bereits in [25,28] vorgestellt. Das hier
vorgestellte Verfahren unterscheidet sich jedoch von den bisherigen Verfahren
darin, dass es einerseits durch eine Uberlaufstrategie auf potentiell unendliche
Datenstrome angewandt werden kann und dass es andererseits einen kompri-
mierten SAX-&hnlichen Strom erzeugen kann. Dieser Ereignis-Strom kann als
Eingabe fiir weitere Kompressoren dienen. Da dieses Verfahren somit aus dem
XML-Baum einen Baum zzgl. Riickwéartskanten, also einen DAG (=directed
acyclic graph) macht, werde ich im weiteren Verlauf dieser Arbeit das Verfah-
ren als DAG-Verfahren bezeichnen.

5.1 XML-Kompression durch Zusammenfassen von
gleichen Teilbaumen

5.1.1 Konzept

Die Grundidee des DAG-Verfahrens ist die Eliminierung struktureller Redun-
danzen durch das Zusammenfassen von gleichen Teilbdumen. Tritt innerhalb
der Struktur ein Teilbaum mit Wurzel w zum wiederholten Male auf, so wird
diese Wiederholung geldscht, und statt dessen wird ein Zeiger vom parent-
Knoten von w zum erstmaligen Auftreten von w erzeugt.

Die folgende, rekursive Definition definiert, wann zwei Teilbdume gleich sind:

Definition 5.1 (gleiche Teilbdume). Sei B=(V,E) ein geordneter Baum mit
Knotenmenge V und Kantenmenge £ C V x V. Sei zu einem Knoten k k.label
das Label von k und k.child(i) der Teilbaum mit dem i-ten Kindknoten von
k als Wurzel und k.noOfChildren die Anzahl an Kindknoten des Knotens k.

52
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Zwei Teilbdume th1=(V1,El), th2=(V2E2) mit V1,V2 C V und E1LE2 C E
mit Wurzelknoten wl bzw. w2 sind gleich, tb1l > tb2, genau dann, wenn gilt
o wl.label = w2.label
e wl.noO fChildren = w2.noO fChildren
o Vimitl <i<wlnoOfChildren: wl.child(i) > w2.child(i)

O

Dementsprechend ist der minimale DAG zu einem Baum B ein Graph, der
keine zwei gleichen Teilbdume enthélt, der jedoch alle Kantenbeziehungen von
B enthilt:

Definition 5.2 (minimaler DAG). Sei XML=(V i, Ezmi) ein geordneter XML-
Baum mit Knotenmenge V,,,; und Kantenmenge FE..; C Vimg X Vimg. Sei
DAG=(Vyag, Fdag) €in azyklischer Graph mit Knotenmenge V4, und Kanten-
menge Eg.g C Viag X Viag. Dann gilt DAG ist der minimale DAG zu XML,
genau dann, wenn gilt:

® Vil € Vemi E|:Edag S Vdag Mt Tppm X Tdag

° V:Edag S Vdag ATt € Vi mit Tdag P Tami

g v(Jjacmlyy:z:ml) € Exml EI($clag/aydag) € Edag mit gy D Ldag und Yaml D
Ydag

L4 v(xdagyydag) S Edag El(xmmlayxml) S Exml mit Teml ™ xdag und Yzmi P
Ydag

e not dxl, 22 € Vyuy mit 21 # 22 und z1 > 22.

O

Beispiel 5.1 Abbildung 5.1 zeigt den minimalen DAG zum Strukturanteil der
bindren XML-Baumdarstellung aus Abbildung 2.2.

Da der DAG die Kantenbeziehungen des XML-Baums erhilt, konnen die na-
vigierenden DOM-Operationen genau wie auf dem urspriinglichen XML-Baum
durchgefiihrt werden.

5.1.2 Vergleich bindrer DAG zu herkémmlichem DAG

Das zugrunde liegende Konzept, wie es im vorherigen Abschnitt beschrieben
wurde, ist zundchst einmal unabhingig von der Baum-Darstellung — es ist
sowohl auf herkdmmliche XML-Baume anwendbar, als auch auf Bindrbaum-
Darstellungen. Wenden wir dieses Konzept sowohl auf die herkdmmliche Baum-
Darstellung als auch auf die Bindrbaum-Darstellung desselben Dokumentes an,
so konnen wir Folgendes feststellen: Obwohl die beiden Baum-Darstellungen
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Adressen

Person Person Person

Name — Postfach Name — Strasse — Ort Name — Postfach — Telefon

@modell

Abbildung 5.1: Minimaler DAG zur Bindrbaum-Darstellung des XML-

Dokumentes
a a a a
4 v +
b \b b— b b \b b— b
v vy v ¥ N 4 4 PN v ¥ N + ¥
c d e c e c>d->e c>d->e c d e f e c>d->e f>d->e
(a) (b) (c) (d)
a a
a a / J/
VY 1 b \b b———b
b b b v N\ v 1 +
VA i/ c d e f cs>d—se f
c d e cSd—e ~

Abbildung 5.2: Vergleich bindrer DAG zu herkdmmlichem DAG

gleiche Anzahl an Knoten und Kanten besitzen, gilt letzteres im Allgemeinen
nicht fiir die jeweiligen DAG-Darstellungen.

Beispiel 5.2 Abbildung 5.2(a) zeigt den herkommlichen XML-Baum und Ab-
bildung 5.2(b) den bindren XML-Baum, jeweils darunter die entsprechenden
DAGSs (Abbildungen 5.2(e) und (f)). Wie wir sehen, hat der herkémmliche
DAG in diesem Fuall 5 Knoten und 5 Kanten, wdhrend der bindre DAG 6
Knoten und 6 Kanten hat, also grofer ist. Abbildungen 5.2(c),(d),(g) und (h)
zeigen dies noch einmal fir einen leicht verdnderten XML-Baum. Wie wir se-
hen, hat dieses Mal der herkommliche DAG 7 Knoten und 8 Kanten, wahrend
der bindre DAG 7 Knoten und 7 Kanten hat, also kleiner ist.

Wie an diesem Beispiel zu sehen ist, kann man nicht im Allgemeinen sagen,
dass der bindre DAG dem herkdmmlichen DAG in Bezug auf Kompressions-
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stiarke iiberlegen ist. Da jedoch der bindre DAG einfacher darzustellen ist, da
jeder Knoten maximal 2 Kindknoten hat, wihrend im herkdmmlichen DAG
jeder Knoten eine beliebige Anzahl an Kindknoten haben kann, werde ich im
weiteren Verlauf dieses Kapitels das Verfahren auf dem bindren DAG erldu-
tern. Es ist aber anzumerken, dass die hier beschriebenen Ideen mit wenigen
Anderungen auch auf den herkémmlichen DAG angewandt werden kénnen.

5.1.3 DAG-Event-Strom

Hat man den minimalen DAG zu einem bindren XML-Baum berechnet, so
kann man — analog wie einen SAX-Strom zu einem XML-Baum — einen DAG-
Event-Strom zu diesem DAG generieren, der z.B. als Eingabe fiir einen weiteren
Verarbeitungsschritt dienen kann.

Fiir diesen DAG-Event-Strom wird als Eigenschaft vorausgesetzt, dass Ver-
weise immer nur “riickwérts” erfolgen, dass also die verwiesenen Knoten immer
bereits gelesen wurden, bevor ein Verweis auf diese Knoten erfolgt.

Der DAG-Event-Strom enthélt auler den Ereignissen des zugrunde liegen-
den Stroms noch das DAG-Ereignis pointer(int offset). Das Ereignis pointer(int
offset) verweist auf die Ereignissequenz startend bei dem Ereignis, das ’offset’
Ereignisse zuriickliegt. Das Ereignis pointer(int offset) folgt also ’offset” Ereig-
nisse spater als das verwiesene Ereignis.

Beispiel 5.3 Listing 5.1 enthdlt den DAG-Strom des DAGs zum Struktur-
Strom aus Listing 3.1. Hierbei ist zu beachten, dass der DAG bzgl. des Bindr-
baums berechnet wurde.

startElement ( 'root ’);
startElement ( "Adressen ') ;
startElement ( "Person ’);
startElement ( 'Name’) ;
startElement ( '=1");

endElement () ;

endElement () ;

startElement ( "Postfach ') ;
pointer(4); //Verweis auf Zeile 5
endElement () ;

startElement ( "Person ') ;
startElement ( 'Name’) ;

pointer(8); //Verweis auf Zeile 5
startElement (' Strasse ’);
pointer(10); //Verweis auf Zeile 5
startElement (’Ort’);
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pointer(12); //Verweis auf Zeile 5
pointer(10); //Verweis auf Zeile 8
startElement ( 'Person ’) ;
startElement ( 'Name’) ;

pointer(16); //Verweis auf Zeile 5
startElement ( "Postfach ') ;
pointer(18); //Verweis auf Zeile 5
startElement (' Telefon ) ;
startElement (’ @modell ") ;
pointer(21); //Verweis auf Zeile 5
pointer(22); //Verweis auf Zeile 5
endElement () ;

endElement () ;

Listing 5.1: DAG-Event-Strom zu Listing 3.1

Da es sich bei dem DAG-Event-Strom um eine Erweiterung des Struktur-
Stroms handelt, handelt es sich beim Struktur-Strom um einen Sonderfall des
DAG-Event-Stroms. Alle Anwendungen, die fiir einen DAG-Event-Strom ge-
schrieben sind, kdnnen entsprechend auch auf den zugrunde liegenden Struktur-
Strom angewandt werden.

5.1.4 Implementierung einer DAG-Kompression

Nachdem ich das der DAG-Kompression zugrunde liegende Konzept erlédutert
habe, stelle ich nun eine mdgliche Implementierung dieses Konzeptes vor.

Die Eingabe dieser Implementierung ist ein bindrer Struktur-Strom, woraus
dann eine Liste von DAG-Knoten erzeugt wird. Jeder DAG-Knoten besteht
aus einem Label und jeweils einem Zeiger auf den first-child- und den next-
sibling-Knoten. Im Unterschied zu einer Baum-Darstellung, bei der jeder Kno-
ten einen Eingangsgrad von maximal 1 hat (nur die Wurzel hat Eingangsgrad
0), kann der Eingangsgrad eines DAG-Knotens beliebig grofs werden im Falle
einer Verzeigerung auf vorhergehende, sich wiederholende Teilbdume.

In dieser Implementierung wird ein Stack verwendet, der den Pfad von der
Wurzel bis zum aktuellen Knoten enthélt, da fiir diese Knoten noch nicht alle
Informationen vorhanden sind, next-sibling und fiir den zuletzt gelesen Knoten
evtl. auch first-child eines solchen Knotens sind noch unbekannt.

Algorithmus 5.2 fasst diese Implementierung zusammen. Da die Eingabe der
Implementierung ein bindrer Struktur-Strom ist, also eine Folge von Events
vom Typ firstChild, nextSibling und parent, wird im Folgenden die Aktionen,
die bei der Auslésung eines dieser Events ausgefiihrt wird, erldutert:
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1. firstChild (Zeilen 5-10): Bislang ist {iber den aktuellen durch das binére
Event firstChild beschriebenen Knoten nur das Knotenlabel bekannt. Da-
her wird ein DAG-Knoten mit entsprechendem Label erzeugt (Zeile 6).
Um spéter unterscheiden zu kénnen, ob auf diesen Knoten ein Zeiger vom
Typ FirstChild oder NextSibling verweist, wird gespeichert, dass dieser
Knoten vom Typ FirstChild ist (Zeile 7) und der Knoten wird zum Stack
der noch offenen Elemente hinzugefiigt (Zeile 9). Fiir den Fall, dass es
sich bei dem Knoten um den Wurzelknoten handelt, also der Stack derzeit
noch leer ist, wird dem DAG dieser Knoten als Wurzelknoten mitgeteilt
(Zeile 8).

2. nextSibling (Zeilen 12-19): Uber den zuletzt gedffneten, aber noch nicht
geschlossenen Knoten ist bekannt, dass alle seine Kindknoten bereits gele-
sen wurden. Falls bis jetzt kein first-child-Knoten fiir diesen aufgetreten
ist, folgt daraus, dass kein first-child-Knoten existiert. Daher wird der
first-child-Zeiger des obersten Stack-Elements auf ,NOTHING* gesetzt,
falls der Zeiger noch nicht gesetzt ist (Zeilen 13-15). Anschliefend wird
ein neuer DAG-Knoten mit entsprechendem Label und dem Typ Next-
Sibling erzeugt (Zeilen 16-17) und zum Stack der noch offenen Elemente
hinzugefiigt (Zeile 18).

3. parent (Zeilen 21-28): Uber den zuletzt gedffneten, aber noch nicht ge-
schlossenen Knoten ist bekannt, dass alle seine Kindknoten und auch
Geschwisterknoten bereits gelesen wurden. Falls bis jetzt kein first-child-
Knoten fiir diesen aufgetreten ist, folgt daher, dass kein first-child-Knoten
existiert (Zeilen 23-24). Ebenso folgt, dass kein next-sibling-Knoten exi-
stiert, falls bis jetzt noch kein next-sibling-Knoten aufgetreten ist (Zeilen
25-26). Da nun alle Daten des obersten DAG-Knotens bekannt sind, kann
dieser vom Stack in den DAG verschoben werden. Dort wird iiberpriift,
ob bereits ein gleicher Knoten exisitiert, und wird entweder die entspre-
chende ID zuriickgeliefert, oder eine neu erzeugte ID (Zeile 33). Dies wird
durch die ausgelagerte Methode clearStack iibernommen. Wir verdrangen
das in den DAG eingefiigte Element lastElement vom Stack (Zeile 34),
und wir setzen je nach Typ von lastElement entweder den first-child- oder
den next-sibling-Zeiger des nun oben auf dem Stack befindenden Knotens
auf lastElement (Zeilen 35-38), somit ist der Zeiger vom parent-Knoten
bzw. vom previous-sibling-Knoten entsprechend der im XML-Baum be-
stehenden Beziehung korrekt gesetzt. Dies wird solange wiederholt, wie
noch vollsténdige DAG-Elemente auf dem Stack liegen.

Das Einfiigen von Knoten in den DAG und das Uberpriifen, ob ein DAG-
Knoten bereits vorhanden ist, kann effizient mit Hilfe eines Hashings
realisiert werden.
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Definition 5.3 (BinarySAX2DAG). Sei BS ein bindrer Struktur-Strom. Dann
Klasse BinarySAX2DAG mit den BinarySAX-Operationen
firstChild(String name), nextSibling(String name) und parent() von BS wie

st

folgt definiert:

public class BinarySAX2DAG implements BinarySAX{
private Stack openElements;
public DAG dag;

public void firstChild (String name){

}

DAGEntry fc = new DAGEntry(name) ;
fc.setType (DAGEntry. FirstChild ) ;

if (openElements.isEmpty () )DAG. setRoot(fc);
openElements . push (fc);

public void nextSibling (String name){

}

DAGEntry lastElement = openElements.top () ;
if (lastElement.getFC ()==null)

lastElement .setFC (DAGEntry .NOTHING) ;
DAGEntry ns — new DAGEntry(name) ;
ns.setType (DAGEntry. NextSibling ) ;
openElements . push (ns);

public void parent (){

}

DAGEntry lastElement = openElements.top () ;
if (lastElement.getFC ()==null)

lastElement .setFC (DAGEntry .NOTHING) ;
if (lastElement.getNS ()==null)

lastElement . setNS (DAGEntry .NOTHING) ;
clearStack();

~ o~ A~ —

private void clearStack () {

DAGEntry lastElement = openElements.top () ;
while (lastElement .getFC ()!=null && lastElement.
getNS () !=null){
int ID = DAG. insert (lastElement);
openElements . pop () ;
if (lastElement.getType ()=DAGEntry. FirstChild)
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openElements . top () .setFC(ID);
else

openElements . top () .setNS(ID);
lastElement = openElements.top();

Algorithmus 5.2: DAG-Kompression des Struktur-Stroms

Beispiel 5.4 Tabelle 5.1 zeigt den DAG zu Listing 2.3. Hierbei ist der mit '—’
markierte  DAG-Knoten  der  Wurzelknoten  und -’ steht  fir
DAGEntry. NOTHING.

ID | Label First-Child | Next-Sibling
1| =T - -

2 | Postfach 1 -

3 | Name 1 2

4 | Ort 1 2

5 | Strasse 1 4

6 | Name 1 5}

7 | @modell 1 1

8 | Telefon 7 -

9 | Postfach 1 8
10 | Name 1 9
11 | Person 10 -
12 | Person 6 11
13 | Person 3 12
—14 | Adressen 13 -

Tabelle 5.1: DAG zum Beispieldokument aus Listing 2.3

Dadurch, dass neue DAG-Eintrége erst beim parent-Event des bindren SAX-
Event-Stroms vom Stack in den DAG verschoben werden, der DAG also bottom-
up aufgebaut wird, hat der durch diese Implementierung erzeugte DAG die
Eigenschaft, dass Verweise immer nur ‘“riickwérts” erfolgen, dass also die ver-
wiesenen Knoten immer bereits gelesen wurden, bevor ein Verweis auf diese
Knoten erfolgt.

5.1.5 Implementierung einer DAG-Dekompression

Algorithmus 5.3 enthélt ein DAG-Objekt, also eine Liste von DAG-Knoten und
erzeugt daraus einen bindren Struktur-Strom.
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Dazu wird die DAG-Knoten-Liste rekursiv durchquert, startend mit dem
Wurzelknoten des DAGs (Zeile 5). Je nach Typ des aktuellen DAG-Knotens
wird ein firstChild- oder ein nextSibling-Event des bindren Sturktur-Stroms
binarySAX erzeugt (Zeilen 9-12). Falls ein first-child-Zeiger existiert, wird an-
schliefend die Dekompression fiir diesen Knoten aufgerufen (Zeilen 13-14).
Ebenso wird die Dekompression fiir den next-sibling aufgerufen, falls dieser
existiert (Zeilen 15-16). Existiert kein next-sibling, so bedeutet dies, dass das
Ende der sibling-Liste erreicht ist, somit wird ein parent-Event erzeugt (Zeilen
17-18).

Definition 5.4 (decompress). Sei dag ein DAG. Dann ist die Operation de-
compress(DAG dag) in der folgenden Funktion decompress definiert:

public class DAG2BinarySAX{
BinarySAX binarySAX;

public void decompress(DAG dag){
decompressNode (dag.getRoot () ,DAGEntry. FirstChild ) ;
}

public void decompressNode (DAGEntry node, Type type){
if (type=DAGEntry. FirstChild)
binarySAX . firstChild (node. getLabel ());
else
binarySAX .nextSibling (node.getLabel());
if (node. getFirstChild () !=DAGEntry .NOTHING)
decompressNode (node. getFirstChild () , DAGEntry.
FirstChild ) ;
if (node. getNextSibling () !=DAGEntry. NOTHING)
decompressNode (node . getNextSibling () , DAGEntry.
NextSibling);
else
binarySAX . parent () ;

Algorithmus 5.3: Dekompression der DAG-Kompression

Der folgende Satz besagt, dass es sich bei den vorgestellten Kompressions-
und Dekompressions-Operationen um eine korrekte Kompression handelt, dass
also die Dekompression wieder den urspriinglichen Struktur-Strom herstellt.
Dies gilt nicht nur fiir den gesamten bindren Struktur-Strom, sondern fiir alle
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im bindren Struktur-Strom enthaltenen vollstdndigen binédren Teilbdume. Be-
vor der Satz vorgestellt wird, muss zunéchst einmal ein vollstdndiger binérer
Teilbaum definiert werden:

Definition 5.5 (Vollstandiger bindrer Teilbaum ). Sei BS—(bsy, ..., bs,) ein
bindrer Struktur-Strom nach Definition 3.3. Seien fe,:={bs; € BS|1 < i <
x,bs; ist vom Typ firstChild}, ns,:—{bs; € BS|1 < i < x,bs; ist vom Typ
nextSibling} und pa,:={bs; € BS|1 < i < x,bs; ist vom Typ parent}. Dann
bezeichnen wir BS als vollstdndigen bindren Teilbaum genau dann, wenn gilt:

L. bsy € fer Apan| = |fen| AVZ, 1 <z < n:|pag| < |fes| oder
2. bsy € nsy Alpap| = |fen| +1AVZ, 1 <z <n:lpag| < |fes| +1

Satz 5.1. Sei BS ein bindrer Struktur-Strom nach Definition 3.3, und sei
vBS C BS ein vollstandiger bindrer Teilbaum nach Definition 5.5. Sei dag der
DAG, der entsteht, wenn die in der Klasse BinarySAX2DAG aus Definition
5.3 definierten Aktionen fiir die bindren SAX-Events von vBS ausgefiihrt wer-
den. Sei decompress(DAG dag) eine Dekompressions-Funktion entsprechend
Definition 5.4. Dann gilt: decompress(dag) erzeugt vBS.

Beweis. Sei ’x’ der Elementname des Wurzelknotens von vBS, ’y’ der Element-
name des parents des Wurzelknotens von vBS.

e Der kleinste vollstdndige binédre Teilbaum vBS ist ein Blattknoten, ist
also entweder von der Form firstChild(’x’) ® parent() (Fall la) oder
nextSibling(’x’) ® parent() (Fall 1b).

— Fall la: Der resultierende DAG enthdlt die DAG-Knoten
Dl1=(a, y, b, UNKNOWN) und D2=(b, x, NOTHING, NOTHING),
wobei a die ID von D1 und b die ID von D2 ist. Anwendung der
Operation decompressNode auf den Knoten D1 fiihrt somit zu einem
Aufruf der Operation decompressNode(D2, DAGEntry.FirstChild).
Diese erzeugt die Folge firstChild(’'x’) ® parent().

— Fall 1b: Der resultierende DAG enthilt die DAG-Knoten
Dl1=(a, y, UNKNOWN, b) und D2=(b, x, NOTHING, NOTHING),
wobei a die ID von D1 und b die ID von D2 ist. Anwendung der
Operation decompressNode auf den Knoten D1 fiihrt somit zu einem
Aufruf der Operation decompressNode(D2, DAGEntry.NextSibling).
Diese erzeugt die Folge nextSibling(’x’) ® parent().

e Nun bestehe der vollstdndige bindre Teilbaum vBS aus einem Wurzel-
knoten und einem first-child, es existiere aber kein next-sibling des Wur-
zelknotens. Dann ist vBS von der Form firstChild(’x’) ® vFC ® parent()
(Fall 2a) oder nextSibling(’x’) ® vFC ® parent() (Fall 2b), wobei fiir den
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vollstdndigen bindren Teilbaum vFC mit Wurzel vom Typ firstChild die
Behauptung gelte, so dass fc die DAG-ID des Wurzelknotens von vFC
sei.

— Fall 2a: Der resultierende DAG enthédlt die DAG-Knoten
D1=(a, y, b, UNKNOWN) und D2=(b, x, fc, NOTHING), wobei a
die ID von D1 und b die ID von D2 ist. Anwendung der Operation
decompressNode auf den Knoten D1 fiihrt somit zu einem Aufruf
der Operation decompressNode(D2, DAGEntry.FirstChild). Diese
erzeugt die Folge firstChild(’x’) ® vFC ® parent().

— Fall 2b: Der resultierende DAG enthdlt die DAG-Knoten
Dl1=(a, y, UNKNOWN, b) und D2=(b, x, fc, NOTHING), wobei a
die ID von D1 und b die ID von D2 ist. Anwendung der Operation
decompressNode auf den Knoten D1 fiihrt somit zu einem Aufruf
der Operation decompressNode(D2, DAGEntry.NextSibling). Diese
erzeugt die Folge nextSibling('x’) ® vFC ® parent().

e Nun bestehe der vollstdndige bindre Teilbaum vBS aus einem Wurzel-
knoten und einem next-sibling, es existiere aber kein first-child des Wur-
zelknotens. Dann ist vBS von der Form firstChild(’x’) ® vNS (Fall 3a)
oder nextSibling(’x’) ® vNS (Fall 3b), wobei fiir den vollstdndigen bi-
néren Teilbaum vNS mit Wurzel vom Typ nextSibling die Behauptung
gelte, so dass ns die DAG-ID des Wurzelknotens von vNS sei.

— Fall 3a: Der resultierende DAG enthédlt die DAG-Knoten
D1=(a, y, b, UNKNOWN) und D2=(b, x, NOTHING, ns), wobei a
die ID von D1 und b die ID von D2 ist. Anwendung der Operation
decompressNode auf den Knoten D1 fiihrt somit zu einem Aufruf
der Operation decompressNode(D2, DAGEntry.FirstChild). Diese
erzeugt die Folge firstChild('x’) ® vNS.

— Fall 3b: Der resultierende DAG enthélt die DAG-Knoten
D1=(a, y, UNKNOWN, b) und D2=(b, x, NOTHING, ns), wobei a
die ID von D1 und b die ID von D2 ist. Anwendung der Operation
decompressNode auf den Knoten D1 fiihrt somit zu einem Aufruf
der Operation decompressNode(D2, DAGEntry.NextSibling). Diese
erzeugt die Folge nextSibling('x’) ® vNS.

e Schliefslich bestehe der vollsténdige bindre Teilbaum vBS aus einem Wur-
zelknoten, einem first-child und einem next-sibling des Wurzelknotens.
Dann ist vBS von der Form firstChild('x’) ® vFC ® vNS (Fall 4a) oder
nextSibling(’x’) ® vFC ® vNS (Fall 4b), wobei fiir die vollstindigen
bindren Teilbdume vFC mit Wurzel vom Typ firstChild und vNS mit
Wurzel vom Typ nextSibling die Behauptung gelte, so dass fc die DAG-
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ID des Wurzelknotens von vFC und ns die DAG-ID des Wurzelknotens
von vINS seien.

— Fall 4a: Der resultierende DAG enthdlt die DAG-Knoten
Dl=(a, y, b, UNKNOWN) und D2=(b, x, fc, ns), wobei a die
ID von D1 und b die ID von D2 ist. Anwendung der Operation
decompressNode auf den Knoten D1 fiihrt somit zu einem Aufruf
der Operation decompressNode(D2, DAGEntry.FirstChild). Diese
erzeugt die Folge firstChild(’x’) ® vFC ® vNS.

— Fall 4b: Der resultierende DAG enthilt die DAG-Knoten
Dl=(a, y, UNKNOWN, b) und D2=(b, x, fc, ns), wobei a die
ID von D1 und b die ID von D2 ist. Anwendung der Operation
decompressNode auf den Knoten D1 fiihrt somit zu einem Aufruf
der Operation decompressNode(D2, DAGEntry.NextSibling). Diese
erzeugt die Folge nextSibling(’x’) ® vFC ® vNS.

Da die Fille 1a bis 4b alle vollstandigen bindren Teilbdume umfassen, gilt
somit die Behauptung.
O

5.2 DAG-Kompression fiir unendlich lange
XML-Datenstrome

Wihrend der Kompression — also wéhrend der Berechnung des DAGs — steigt
bei unendlich langen XML-Datenstromen die Grofse des DAGs immer weiter
an. Dies stellt jedoch kein Problem dar, da man in diesem Fall den DAG beim
Erreichen einer vorher festgelegten Grofe “abschliefen” und zum Empfanger
versenden kann. Dies entspricht also der Anwendung eines diskreten Fensters
auf dem Eingangsstrom, so dass immer nur innerhalb eines Fensters Verweise
auftreten konnen, jedoch nicht von Fenster zu Fenster.

Da laut [11]| die durchschnittliche Tiefe eines XML-Dokuments bei 4 Knoten
liegt (wobei 99% aller Dokumente eine Tiefe von maximal 8 Knoten haben, und
die maximal erreichte Tiefe 135 war), ist zwar die Tiefe eines unendlichen XML-
Datenstroms beschréankt, dies gilt jedoch nicht fiir die Breite. Daher steigt auch
die Grofe des Stacks, der alle offenen Knoten, also den Pfad zum aktuellen
Knoten bestehend aus first-child- und next-sibling- Achsen, enthélt. Da fiir diese
Knoten allerdings noch mindestens eine Information fehlt, kénnen diese Knoten
noch nicht zum Empfanger versendet werden.

Beispiel 5.5 Abbildung 5.3 zeigt schematisch eine mégliche Uberlaufsituation.
Die Knoten vl bis v7 sind jeweils noch nicht komplett abgearbeitet, da der
next-sibling-Knoten und eventuell der first-child-Knoten noch nicht abgearbeitet
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wurden und daher die entsprechende ID fir einen Verweis noch unbekannt ist.
Die grauen Vierecke D1 bis D4 stellen in dieser Abbildung einen bereits fertig
abgearbeiteten DAG dar, die Knoten innerhalb dieser Vierecke wurden bereits
komplett abgearbeitet und dem DAG hinzugefiigt.

V7 —— -

|

v6 v v4
L
D1 D2 v3 v2 vl
[ L
D3 D4

Abbildung 5.3: Zusammenhang zwischen DAG und Stack

Tubelle 5.2 stellt entsprechend den aktuellen Stack dar.

Typ | ID | Label | First-Child | Next-Sibling
NS vl
NS v2 D4
FC v3 D3
NS v4
NS vb D2
FC v6 D1
FC v7

Tabelle 5.2: Stack zum Beispiel

Um nun Teile des Stacks in den DAG verdringen zu kénnen und somit zum
Empfinger zu senden, erhdlt der oberste auf dem Stack liegende Knoten, der
noch keine ID hat (v1), eine ID, so dass die clearStack-Funktion durchgefihrt
werden kann. Tabelle 5.3 zeigt den Zustand danach, wobei die beiden graw hin-
terlegten Zeilen nun komplett abgearbeitet wurden und aus dem Stack in den
DAG verdringt wurden.

Dies wird dann mit dem ndchsten obersten Stack-Element fortgefihrt, das
noch keine ID hat. Schlieflich verbleiben nur noch die Knoten mit Label v1, v4
und v7, also die Knoten, fir die das next-sibling noch unbekannt ist, 1m Stack.
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Typ | ID | Label | First-Child | Next-Sibling
NS 1| vl
NS v4 3
NS Vo D2
FC v6 D1
FC v7

Tabelle 5.3: Stack zum Beispiel

Um Teile des Stacks verdrdngen zu konnen, erhdlt das oberste auf dem Stack
befindliche Element TE, welches noch keine ID besitzt, eine ID, und die Funk-
tion clearStack wird durchgefiihrt, d.h., alle preceding-siblings von TE werden
vom Stack verdrangt und in den DAG eingefiigt. Dies wird solange wiederholt,
bis kein Element ohne ID mehr auf dem Stack liegt. Dadurch verbleiben nur
noch diejenigen Knoten auf dem Stack, fiir die der next-sibling noch unbekannt
ist, der Stack enthélt also maximal x Elemente, wobei x die Tiefe des aktuellen
Knotens innerhalb des XML-Datenstroms ist. Da jedoch — wie bereits oben er-
wahnt — die Tiefe selbst eines unendlich langen Datenstroms beschrénkt ist, ist
somit auch die Grofe des Stacks beschriinkt, daher kann mit Hilfe dieser Uber-
laufbehandlung das DAG-Verfahren auch auf unendliche XML-Datenstrome
angewandt werden.

Wenn also DAG und Stack zusammen eine vorher festgelegte Fenstergro-
ke erreichen, so wird — wie oben beschrieben — der Stack bereinigt, und so-
wohl DAG als auch bereinigter Stack werden an den Empfanger versandt. Die
Stack-Knoten unterscheiden sich dadurch von den DAG-Knoten, dass sie kei-
nen Eintrag fiir den next-sibling-Knoten enthalten. Beim Sender wird der DAG
geloscht, der Stack jedoch fiir die weitere Kompression weiterverwendet.

Der Dekompressor auf der Empféngerseite kann die Dekompression wie in
Kapitel 5.1.5 beschrieben durchfiithren, wobei der Wurzelknoten, bei dem die
Dekompression gestartet wird, das unterste Stack-Element ist. Sobald die De-
kompression auf einen leeren Verweis stéfst, wurde das Ende des aktuellen
Fensters erreicht. In diesem Fall kann auf Empfingerseite der DAG geléscht
werden, und ein neues DAG- und Stack-Paket empfangen werden. Auch der
Stack kann auf Empféngerseite geloscht werden, da alle im bisherigen Stack
enthaltenen Elemente entweder im neuen DAG oder im neuen Stack enthalten
sind. Nach Erhalt eines neuen Pakets fahrt die Dekompression bei demjenigen
Verweis desjenigen Elementes fort, bei dem die Dekompression beim letzten
Paket beendet wurde. Hierbei ist lediglich zu beachten, dass das Element sich
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nun statt auf dem Stack auf dem DAG befinden kann, dies kann jedoch einfach
mit Hilfe der ID ermittelt werden.

Wird das Verfahren auf unendliche XML-Datenstrome angewandt, so erhalt
man als Resultat im Allgemeinen nicht den minimalen DAG, sondern nur einen
etwas weniger stark komprimierten DAG, da es nicht moglich ist, auf sehr weit
entfernte Teilbdume zu verweisen. Wurde ein Teilbaum aus dem DAG ver-
dringt und bereits zum Empfanger versendet, so kann auf diesen Teilbaum
nicht mehr verwiesen werden, ein wiederholtes Auftreten muss erneut gespei-
chert werden.

5.3 Navigation entlang von first-child und
next-sibling

Ein DAG-Knoten représentiert im Normalfall nicht einen einzelnen Knoten
des Ursprungs-Dokumentes, sondern eine Menge von Knoten des Ursprungs-
Dokumentes. Um einen Knoten des Ursprungs-Dokumentes eindeutig zu identi-
fizieren, wird eine Liste von Paaren von DAG-Knoten-ID sowie dem Typ (First-
Child bzw. NextSibling) der eingehenden Kante in diesen Knoten benotigt.
Wihrend die Methoden zur Anfrage-Auswertung fiir die Succinct-Darstellung
lediglich eine Position im Bitstrom zur Identifizierung eines Knotens benoti-
gen, erhalten dieselben Methoden fiir die DAG-Kompression einen Stack mit
Paaren (ID, Knotentyp).

Notation 5.1 Sei aml ein XML-Baum, SS(zml)=(ss1,...,ssy) der Struktur-
Strom zu xml und BS(xml)=(bs1,...,bsy,) der bindre Struktur-Strom zu zml.
Dann sagen wir, ein Knoten k des XML-Baums entspricht dem binéren Event
bs; = bs(i) nach Definition 3.3 genau dann, wenn ss;+1 = ss(k) nach Defini-
tion 3.1.

Notation 5.2 Sei BS=(si,...,sy) ein bindrer Struktur-Strom und DAG ein
minimaler DAG. Sei E ein Element mit entsprechendem firstChild-Event sE €
BS (bzw. mit nextSibling-Event sE € BS). Sei s ein Stack bestehend aus
Paaren (ID, Knotentyp). Dann sagen wir E korrespondiert mit (DAG, s) genau
dann, wenn decompressNode(dag.getEntry(s.top().1D), DAGEntry.FirstChild)
(bzw. decompressNode(dag.getEntry(s.top().ID), DAGEntry. NextSibling)) den
vollstindigen bindren Teilbaum BS’ C BS startend mit Event sE erzeugt.

Hierbei ist anzumerken, dass der Stack lediglich fiir die Implementierung
der parent-Achse bendtigt wird. Wird ein Verfahren der Anfrage-Auswertung
zugrunde gelegt, das lediglich die Vorwértsachsen benutzt, also nur auf die
atomaren Achsen first-child und next-sibling zuriickgreift, so kann statt des
Stacks auch lediglich die ID des aktuellen Knotens verwendet werden.
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5.3.1 first-child

Um aus einem gegebenen Stack den Stack fiir den first-child-Knoten zu bilden,
muss lediglich im DAG die ID fc des first-childs des aktuell oben auf dem Stack
liegenden Knotens ermittelt werden, und das Paar (fc, DAGEntry.FirstChild)
oben auf den Stack gelegt werden.

Dies wird noch einmal in Algorithmus 5.4 verdeutlicht:

public Stack getFirstChild (DAG dag, Stack xmlID){
int fc=dag.getEntry (xmlID.top().ID).getFirstChild();
xmlID . push (fc , DAGEntry. FirstChild ) ;
return xmllID;

Algorithmus 5.4: getFirstChild-Funktion fiir die DAG-Kompression
Der folgende Satz 5.2 zeigt die Korrektheit von Algorithms 5.4.

Satz 5.2. Sei BS ein binédrer Struktur-Strom und E ein Element mit firstChild-
oder nextSibling-Event sFE € BS. Sei dag ein DAG und s ein Stack, so dass E
mit dem Tupel (dag, s) korrespondiert. Sei s”:= getFirstChild(dag, s);

Dann gilt: E/first-child korrespondiert mit dem Tupel (dag, s’).

Beweis. Laut Definitionen 2.4 und 3.3 entspricht E/first-child einem Event
sFC € S mit der Eigenschaft, dass sFC vom Typ first-child ist, und dass sFC
im bindren Struktur-Strom direkt hinter sE folgt.

Nach Definition 5.3 erhélt also der DAG-Knoten dE mit E > dE als first-
child-Zeiger einen Verweis auf den DAG-Knoten dFC mit E/first-child 1 dFC.
Wegen s:=getFirstChild(dag, s) gilt somit also s’.top().ID=dFC.ID. Somit
folgt die Behauptung.

O

5.3.2 next-sibling

Analog zur Implementierung der getFirstChild-Funktion muss zur Implemen-

tierung der getNextSibling-Funktion lediglich im DAG dag die ID ns des next-

siblings des aktuell oben auf dem Stack liegenden Knotens ermittelt werden

und das Paar (ns, DAGEntry.NextSibling) oben auf den Stack gelegt werden.
Dies wird noch einmal in Algorithmus 5.5 verdeutlicht:
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public Stack getNextSibling (DAG dag, Stack xmlID){
int ns—dag.getEntry (xmlID.top().ID).getNextSibling();
xmlID. push (ns, DAGEntry. NextSibling ) ;
return xmlID;

Algorithmus 5.5: getNextSibling-Funktion fiir die DAG-Kompression
Der folgende Satz 5.3 belegt die Korrektheit von Algorithms 5.5.

Satz 5.3. Sei BS ein binédrer Struktur-Strom und E ein Element mit firstChild-
oder nextSibling-Event sE € BS. Sei dag ein DAG und s ein Stack, so dass E
mit dem Tupel (dag, s) korrespondiert. Sei s:= getNextSibling(dag, s);

Dann gilt: E/next-sibling korrespondiert mit dem Tupel (dag, s).

Beweis. Laut Definitionen 2.4 und 3.3 entspricht E/first-child einem Event
sNS € BS mit der Eigenschaft, dass sNS vom Typ next-sibling ist, und dass
BS'—(sE® FC ® sNS) € BS, wobei FC ein — eventuell leerer — vollstandiger
binérer Teilbaum startend mit einem first-child-Event ist.

Nach Definition 5.3 erhélt also der DAG-Knoten dE mit E <t dE nach Ab-
arbeitung von FC als next-sibling-Zeiger einen Verweis auf den DAG-Knoten
dNS mit E/first-child >x ANS. Wegen s’:—getNextSibling(dag, s) gilt somit also
s”.top().ID=dNS.ID. Somit folgt die Behauptung.

O

5.4 Unterstiitzung der DOM-Schnittstelle

5.4.1 Die parent-Achse

Um die Methode getParent zu implementieren, muss nun zum ersten Mal lesend
auf den Stack zugegriffen werden. Um zum parent zu navigieren, muss zunéchst
zum first-child navigiert werden, es muss also solange zum previous-sibling
navigiert werden, bis kein weiterer previous-sibling mehr exisitiert. Uber die
umgekehrte first-child-Kante erreichen wir schlieflich den parent-Knoten.

Auf den Stack bezogen, entfernen wir also zunéchst solange das oberste
Stack-Element, solange dies den Typ NextSibling beinhaltet. Das nun oberste
Element ist das first-child. Wird auch dieses vom Stack entfernt, entspricht das
oberste Stack-Element dem gesuchten parent-Element.

Dies wird noch einmal in Algorithmus 5.6 verdeutlicht:
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public Stack getParent (DAG dag, Stack xmlID){
(int ID, Type t) = xmlID.pop();
do{
(ID,t) = xmlID.pop();
}while (t=DAGEntry. NextSibling )
return xmlID;

Algorithmus 5.6: getParent-Funktion fiir die DAG-Kompression

5.4.2 Einfiigen und Léschen

Bei Update-Operationen auf dem DAG muss man beachten, dass ein DAG-
Knoten nicht einen einzelnen, sondern eine Menge von Knoten des Original-
Dokuments repréasentiert. Da jedoch im allgemeinen Fall nur ein einzelner Kno-
ten aus dieser Menge von Knoten modifiziert werden soll, muss zunéchst einmal
dieser Knoten aus der Menge von Knoten extrahiert werden. Dies geschieht
durch Verdopplung mit Hilfe der Methode extractNode aus Algorithmus 5.7.

5.4.2.1 Hilfsfunktion extractNode

Die Hilfsfunktion extractNode extrahiert einen durch einen Stack aus Paaren
(ID, Knotentyp) identifizierten XML-Knoten aus dem DAG-Knoten, der eine
Menge von XML-Knoten reprisentiert. Hierzu wird fiir jeden Knoten die An-
zahl der Zeiger, die auf ihn verweisen, benotigt. Diese kann entweder bei der
Kompression ermittelt werden und zusammen mit dem Komprimat iibermit-
telt werden oder aber nachtraglich auf Empfingerseite ermittelt werden. Wir
gehen davon aus, dass eine Methode getNoOfPointer zur Verfiigung steht, die
zu einem Knoten die Anzahl an Zeigern, die auf diesen verweisen, zuriickgibt.

Um den Knoten zu extrahieren, gehen wir im DAG top-down vor. Dies be-
deutet, dass wir im Stack — entgegen der sonst iiblichen Richtung — von unten
nach oben vorgehen (Zeilen 2-12). Sobald der Stack auf einen DAG-Knoten
verweist, der mehr als einen Eingangszeiger hat (Zeile 4), duplizieren wir die-
sen im DAG (Zeilen 5-7), ersetzen den Zeiger des DAG-Knotens, auf den das
im Stack darunterliegende Element verweist (Zeilen 8+9), und ersetzen den
Stack-Eintrag durch das Duplikat (Zeile 10). Dies wiederholen wir, bis wir am
zu dndernden Knoten MN angekommen sind, also bis der komplette Stack
durchlaufen wurde. Schlieflich ist der komplette Pfad von der Wurzel zu MN
eindeutig, der Knoten kann ohne Seiteneffekte gedndert werden.




0 ~J O T = W N

10
11
12
13
14

70 XML-Kompression durch Eliminierung struktureller Redundanzen

public Stack extractNode(DAG dag, Stack xmlID){
for (int pos—0; pos< xmlID.size (); pos++){

(int ID, NodeType nt) = xmlID.get (pos);
if (getNoOfPointer (ID)>1){

DAGNode dn = DAG. get (ID) . clone () ;

int newID — DAG. getNewlID () ;

dn.setID (newlD) ;

if (nt—NodeType. FirstChild )xmlID. get (pos—1).

setF'C (newlD) ;
else xmlID.get (pos—1).setNS (newlID) ;
xmlID.set (pos, dn);

}
}

return xmllID;

Algorithmus 5.7: Hilfsfunktion extractNode fiir die DAG-Kompression

Beispiel 5.6 Nachfolgend werde ich nun das Extrahieren eines Knotens er-
lautern. Grundlage ist wieder das Beispiel aus Listing 2.3, wobei wir in diesem
Fall der Einfachheit halber davon ausgehen, dass die ersten beiden Personen
jeweils nur die Kindknoten Name und Postfach haben. In Abbildung 5.4 (a) wird
der Zustand vor dem Update dargestellt, beide Personen-Elemente verweisen
auf dieselbe Kindknoten-Liste. Der zweiten Person soll ein Telefon hinzugefiigt
werden, welches den next-sibling des Postfach-Knotens darstellt. Daher muss
der Postfach-Knoten extrahiert werden.

Der erste Knoten auf dem Pfad von der DAG-Wurzel zu dem zu modifizieren-
den Knoten, der mehr als einen Fingangszeiger besitzt, ist der Name-Knoten.
Daher wird dieser verdoppelt, und die Zeiger werden entsprechend angepasst.
Abbildung 5.4(b) zeigt den Zustand nach Verdopplung des Name-Knotens.

Da noch nicht das oberste Stack-Element ereicht wurde, wird die Extraktion
noch ein weiteres Mal wiederholt. Der nun zu betrachtende Knoten mit mehr
als einem Eingangszeiger ist der Postfach-Knoten. Auch dieser wird verdoppelt,
und die Zeiger werden angepasst. Abbildung 5.4(c) zeigt den Zustand nach
Verdopplung des Postfach-Knotens.

Da dieser Knoten das oberste Stack-Element darstellt, ist die Extraktion die-
ses Knotens abgeschlossen, die eigentliche Update-Operation, also das Einfligen
eines Telefon-Knotens inklusive Attribut 'modell’ kann durchgefihrt werden.
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Adressen Adressen Adressen
Person - Person — - - Person — > Person — - -+ Person — > Person — - -+
Name »> Postfach Name » Postfach Name Name »> Postfach Name > Postfach
—_T =T =T
(a) (b) (c)

Abbildung 5.4: Extrahieren des Postfachs der zweiten Person

5.4.2.2 Einfiigen

Algorithmus 5.8 fiigt in einen urspriinglichen DAG old einen neuen DAG new
als next-sibling eines durch den Stack node gegebenen Knotens des DAGs old
ein. O.B.d.A. gehen wir davon aus, dass beide DAGs unterschiedliche Wertebe-
reiche fiir Thre IDs benutzen, so dass keine ID in beiden DAGs verwendet wird.
Hierzu muss zunéchst einmal der durch den Stack node identifizierte Knoten —
wie im vorherigen Abschnitt beschrieben — extrahiert werden (Zeile 2). Danach
muss die Wurzel des neuen DAGs new den bisherigen next-sibling nextSib des
Knotens node als next-sibling erhalten (Zeilen 3+5). Der Knoten node erhilt
als neuen next-sibling den Wurzelknoten des neuen DAGs new (Zeile 4). Die
Operation old.addAll(DAG new) (Zeile 6) kopiert alle DAG-Knoten des neuen
DAGs new in den alten DAG.

public DAG insert (DAG old, DAG new, Stack node){

extractNode(old ,node) ;

int nextSib — old.getEntry (node.top().ID).
getNextSibling () ;

old . getEntry (node.top () .ID).setNextSibling (new.
getRoot ());

new. getRoot () .setNextSibling (nextSib ) ;

old .addAll (new) ;

return old;

Algorithmus 5.8: Einfiigen fiir die DAG-Kompression

Eine entsprechende Operation fiir das Einfiigen eines DAGs als first-child
eines Knotens kann analog durchgefiihrt werden, indem in Zeile (3) die Funk-
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tion getFirstChild() und in Zeile (4) die Funktion setFirstChild() aufgerufen
wird.

Beispiel 5.7 Betrachten wir wieder das im vorherigen Abschnitt begonnene
Beispiel. Nachdem der Knoten extrahiert wurde, soll nun ein DAG bestehend
aus Telefon mit Attribut modell und den entsprechenden Text- und Attributwer-
ten eingefiigt werden. Abbildung 5.5 zeigt den Zustand des DAGSs (beschrankt
auf die modifizierte Person und die bisherige Person 8 aus dem Beispiel) nach
dem Einfiigen. Wie wir sehen kénnen, enthdlt nun der DAG allerdings eine
Redundanz, da durch das Einfiigen eine Gleichheit der beiden Teilbdume ent-
standen 1st.

Adressen

-+ — Person Person

| J

Name — Postfach - Telefon Name — Postfach » Telefon

| |

@modell @modell

=T

Abbildung 5.5: Einfiigen eines neuen Teilbaums

Hitten wir beim Einfiigen des neuen DAGs in den alten DAG die Methode
DAG.insert benutzt, so dass zumindest der neu eingefiigte Teilbaum als bereits
vorhanden erkannt worden wire, hétte dies allerdings zu einem Vorwértsver-
weis innerhalb des DAGs gefiihrt, da der sich wiederholende Teilbaum im alten
DAG erst nach der Wiederholung durch den neu eingefiigten DAG steht. Sol-
che Vorwértsverweise sind jedoch nicht erwiinscht, da dann beispielsweise kein
DAG-Event-Strom aus dem DAG generiert werden konnte.

Auch wire nicht festgestellt worden, dass durch das Neueinfiigen ein bereits
vorhandener Teilbaum (startend beim Knoten Name) einem anderen bereits
vorhandenen Teilbaum gleich geworden ist.

Soll diese Redundanz dennoch vermieden werden, miissten mindestens alle
Knoten gleichen Labels auf Redundanzen untersucht werden, was ein Wieder-
einfiigen vieler DAG-Elemente in den DAG erfordern kénnte, und somit einen
erheblichen Mehraufwand zur Folge héitte.
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Wir erhalten an dieser Stelle also einen Trade-Off zwischen geringerer Kom-
pressionsstéarke, aufgrund von Redundanzen durch Update-Operationen und
erhohtem Rechenaufwand bei Update-Operationen.

Es bietet sich allerdings ein Kompromiss an: Update-Operationen werden
durchgefiihrt, ohne eine explizite Redundanz-Vermeidung. Nach einer vorher
festgelegten Anzahl x an Update-Operationen wird ein “Wartungsschritt” durch-
gefiihrt, also alle DAG-Knoten werden erneut bottom-up in den DAG einge-
fiigt, so dass nach x Update-Operationen wieder der minimale DAG hergestellt
wird.

5.4.2.3 Loschen

Algorithmus 5.9 16scht aus dem DAG dag einen durch den Stack node ge-
gebenen Knoten vNode inklusive des Teilbaums, dessen Wurzel er ist. Dies
geschieht, indem er den Vorginger-Knoten von vNode aus dem DAG extra-
hiert und anschliefsend den Verweis zum zu l6schenden Knoten aus dem DAG
entfernt. Zunéchst einmal wird ein Stack fiir den Vorgénger-Knoten erzeugt.
Dazu wird das oberste Element aus dem Stack entfernt — der Stack node repré-
sentiert jetzt nicht mehr den zu loschenden Knoten, sondern dessen Vorgénger-
Knoten (Zeile 2). Hierbei werden ID und Knotentyp des zu loschenden Stack-
Elements vor der Entfernung dieses Elements gespeichert. Anschliefend wird
der Vorgianger-Knoten aus dem Stack extrahiert (Zeile 3). Ist der zu 16schende
Knoten vom Typ next-sibling, so muss der next-sibling-Verweis des previous-
siblings auf den next-sibling des zu loschenden Knotens gesetzt werden (Zeilen
4-7). Ist der zu loschende Knoten vom Typ first-child, so muss der first-child-
Verweis des parents auf den next-sibling des zu 16schenden Knotens gesetzt
werden (Zeilen 8-11).

public DAG remove (DAG dag, Stack node){

(int ID, Type t) = node.pop();

extractNode(dag, node);

if (t=DAGEntry. NextSibling ) {
dag.getEntry (node.top().ID).setNextSibling (
dag.getEntry (ID).getNextSibling);

¥

else{
dag.getEntry (node.top () .ID).setFirstChild (
dag.getEntry (ID) . getNextSibling) ;

Algorithmus 5.9: Loschen fiir die DAG-Kompression
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Die Knoten verbleiben in diesem Fall im DAG. Falls der geldschte Verweis
der einzige Verweis war (es sich bei dem geloschten Teilbaum also nicht um
einen mehrfach verwendeten Teilbaum gehandelt hat), so existiert kein Verweis
mehr auf diesen Knoten. Daher empfiehlt es sich auch beim Loschen, neben
der im vorherigen Kapitel bereits erwéahnten Redundanz durch Updates, von
Zeit zu Zeit einen “Wartungsschritt” inklusive Neueinfiigen aller DAG-Knoten
durchzufiihren, um nicht erreichbare Knoten zu léschen.

5.5 Zusammenfassung: Eigenschaften der
DAG-Kompression

5.5.1 Kompressionsstadrke

Im Gegensatz zur Succinct-Darstellung kann der genaue Speicherbedarf des
Komprimats nicht angegeben werden, da dieser sehr stark von der vorhan-
denen Redundanz innerhalb des Dokumentes abhingt. Ausgehend vom mini-
malen DAG kann jedoch angegeben werden, wieviel Speicherplatz fiir jeden
DAG-Knoten bendtigt wird, die Anzahl DAG-Knoten kann aber nicht in Ab-
héngigkeit der Dokument-Grofle angegeben werden.

o Fiir die Adresse eines DAG-Knotens sowie fiir die Verweise auf first-child
und next-sibling werden je ein Integer-Wert, insgesamt also 3 Integer-
Werte benotigt.

e Fiir das Label eines DAG-Knotens wird ein String benétigt. Da auch
hier noch Redundanzen auftreten, die vermeidbar sind, konnte durch den
Einsatz einer Symboltabelle hier noch eine stérkere Kompression erreicht
werden.

5.5.2 Weitere Eigenschaften

Wie im Verlauf dieses Kapitels gezeigt, hat die DAG-Kompression die folgenden
Eigenschaften:

o Streamingfihig: Sie ist mit Hilfe der Uberlaufkodierung streamingfihig
und kann auf unendliche XML-Datenstrome angewandt werden, jedoch
kann bei unendlichen Datenstromen nicht mehr die Kompressionsstarke
des minimalen DAGs erreicht werden, sondern lediglich eine leicht ver-
ringerte Kompressionsstarke.

o Auswertung von Pfad-Anfragen: Pfad-Anfragen, die mit Hilfe der ato-
maren Achsen first-child und next-sibling ausgedriickt werden kénnen,
konnen direkt auf dem Komprimat ausgewertet werden. Hierbei kann
sehr effizient direkt zum next-sibling navigiert werden.
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e Updates: Updates konnen auf dem Komprimat durchgefiihrt werden, es
besteht aber ein Trade-Off: Entweder fithren Updates zu einem Verlust
der Kompressionsstéirke, oder sie erfordern einen Berechnungs-Mehrauf-
wand, der evtl. das Neueinfiigen vieler Knoten bedeuten kénnte. Dennoch
konnen optimale Updates — also Updates mit Erreichen der optimalen
Kompressionsstéirke — effizienter durchgefiihrt werden als die Kombinati-
on aus Dekompression, Update auf XML und Kompression.

o DOM: Alle Achsen der DOM-Schnittstelle werden voll unterstiitzt.



6 XML-Kompression durch
Eliminierung externer
Redundanzen

Das néichste vorgestellte Verfahren — DTD-Subtraktion — entfernt Informatio-
nen aus dem Struktur-Anteil eines XML-Dokumentes, die aus der vorhandenen
DTD geschlossen werden konnen.

Beispiel 6.1 Betrachten wir zur Einfihrung dieses Verfahrens die DTD aus
Listing 2.4 bzw. insbesondere die Elementtyp-Deklaration fir das Element *Per-
son’. Betrachten wir parallel dazu die zweite Person aus dem XML-Dokument
in Listing 2.3. Wie wir sehen, schreibt die DTD den ersten Kindknoten — den
Knoten 'Name’ — fest vor, er muss also — um das Dokument in kompakterer
Form darzustellen — nicht gespeichert werden. Als ndchstes gibt die Elementtyp-
Deklaration durch den Kleene-Operator (*) vor, dass eine Wiederholung beste-
hend aus entweder ’Strasse’ und ’Ort’ oder aus 'Postfach’ optional gefolgt von
dem Element "Telefon’ folgen wird. Hier geniigt es, die tatsdchliche Anzahl von
Wiederholungen — in diesem Fall 2 — zu speichern. Ebenso muss fir die bi-
ndre Entscheidung, die durch den Oder-Operator (/) dargestellt wird, also, ob
‘Strasse’ und 'Ort’ oder ob ’Postfach’ folgt, nur die gewdhlte Alternative ge-
speichert werden. Diese bindre Entscheidung kann durch ein Bit im Komprimat
reprasentiert werden. Auch der Option-Operator(?) stellt eine bindre Entschei-
dung dar, namlich, ob ein ’Telefon’-Element folgt oder nicht, und kann somit
durch ein Bit reprasentiert werden. Insgesamt reicht also die Folge int(2), 0, 0,
1, 0 aus, um mat Hilfe der DTD die Kindknoten des zweiten Person-Elements
zu reprasentieren. Hierbei steht die int(2) fir 2 Wiederholungen, und die J Bits
(0, 0, 1, 0) stehen fir die 4 bindren Entscheidungen (zweimal ein Oder-Operator
gefolgt von einem Option-Operator).

Wie an diesem Beispiel zu sehen ist, enthélt das XML-Dokument Informa-
tionen, die bereits durch die DTD bekannt sind. Haben wir also Kenntnis der
DTD, handelt es sich bei diesen Informationen um redundante Informationen,
die entfernt werden konnen, um eine kompaktere Reprisentation des XML-

76
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Dokumentes zu erhalten. Bereits bei diesem kleinen Beispiel enthélt die kom-
primierte Reprisentation 1 Integer-Wert + 4 Bits, wihrend nur die 4 Element-
Namen (Name, Strasse, Ort und Postfach) bereits 22 Zeichen bendétigen.

6.1 XML-Kompression durch DTD-Subtraktion

Gehen wir davon aus, dass Attribute als besondere Elemente gespeichert wer-
den (mit '@’ als Markierungszeichen), ist die DTD eine Menge von Element-
Deklarationen. Jede Element-Deklaration enthédlt den Namen des zu definie-
renden Elementes — die so genannte linke Seite der Element-Deklaration —
und einen reguldren Ausdruck, der die Liste der Kindknoten definiert — die so
genannte rechte Seite der Element-Deklaration.

Definition 6.1 (reguldrer Ausdruck). Sei ¥ die Menge aller Label. Dann gilt:
Fiir a € ¥ ist a ein reguldrer Ausdruck.

EMPTY ist eine regulérer Ausdruck.

PCDATA ist eine reguldrer Ausdruck.

() ist ein regulidrer Ausdruck.

DA S

R1, Ro ist ein regulérer Ausdruck, falls Ry und Rs reguldre Ausdriicke
sind.

6. Ri|Rs ist ein reguldrer Ausdruck, falls Ry und Ry reguldre Ausdriicke
sind.

7. Rx ist ein reguldrer Ausdruck, falls R ein reguldrer Ausdruck ist.

8. Nur die durch 1.-7. gebildeten Ausdriicke sind regulére Ausdriicke.
O

Zur Vereinfachung der Darstellung wandeln wir innerhalb der rechten Seite
der DTD jeden Teilausdruck der Form ’x+’ in die Sequenz ’'x,x*’ um, wobei
x wiederum ein regulérer Ausdruck ist. Weiterhin wandeln wir innerhalb der
rechten Seite der DTD jeden Teilausdruck der Form ’x?’ in den Ausdruck
'EMPTY]|x’ um, wobei x wiederum ein reguldrer Ausdruck ist. Somit enthalten
die rechten Seiten nur noch die Operatoren ’,”, ’|’ und ™.

Definition 6.2. Sei D eine DTD und sei ED € D eine Elementtyp-Deklaration
der Form <!ELEMENT name(ED) regExp(ED)>. Sei sb(regExp(ED)) ein
Syntaxbaum zum reguldren Ausdruck regExp(ED) mit Knotenmenge
sb(regExp(ED)).V. Dann bezeichne SB=(Ugpep sb(regExp(ED)).V) die
Menge aller Syntaxknoten zu D.

O
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Die dem reguldren Ausdruck einer rechten Seite einer DTD-Regel entspre-
chenden Syntaxbdume enthalten 6 verschiedene Knotentypen:

o EMPTY: Dieser Knoten entspricht dem Schliisselwort EMPTY in der
DTD. Der Knoten hat im Syntaxbaum keine Kindknoten.

e PCDATA: Dieser Knoten entspricht dem Schliisselwort PCDATA in der
DTD. Der Knoten hat im Syntaxbaum keine Kindknoten.

e clem: Dieser Knoten entspricht einem Nicht-Terminal in der DTD, al-
so einem Element-Label. Der Knoten hat im Syntaxbaum keine Kind-
knoten. Der Knoten erhélt als Parameter name’ einen Verweis auf den
Wurzelknoten des Syntaxbaums der zum Element-Label gehorenden De-
finition und als Parameter label” den Bezeichner des Nicht-Terminals.

e seq: Dieser Knoten entspricht dem rechts-assoziativen ’’-Operator in der
DTD. Er hat im Syntaxbaum als linken Kindknoten den ersten Parame-
ter und als rechten Kindknoten den zweiten Parameter dieses Operators.

o choice: Dieser Knoten entspricht dem rechts-assoziativen ’|’-Operator in
der DTD. Er hat im Syntaxbaum als linken Kindknoten den ersten Pa-
rameter und als rechten Kindknoten den zweiten Parameter dieses Ope-
rators.

e kleene: Dieser Knoten entspricht dem *’-Operator in der DTD. Er hat
im Syntaxbaum als linken Kindknoten den Parameter dieses Operators
und hat keinen rechten Kindknoten.

Im Nachfolgenden liefert die Funktion x.left fiir einen Knoten x im Syntax-
baum den linken Kindknoten und die Funktion x.right den rechten Kindknoten.

Beispiel 6.2 Betrachten wir die folgende DTD-Regel aus Beispiel 2./:
<IELEMENT Adresse (Name, ((Postfach | (Strasse, Ort)), Telefon?)*)>
Zundchst einmal wird der ?-Operator ersetzt, so dass wir als rechite Seite der

DTD-Regel den folgenden reguliren Ausdruck erhalten
(Name, ((Postfach | (Strasse, Ort)), (EMPTY | Telefon) )*)

Der entsprechende Syntazbaum hierzu wird in Abbildung 6.1 dargestellt. In
dieser Abbildung hat jeder Knoten zusdtzlich eine ID (ID1, ..., ID12), die
lediglich fir Referenzen in den Erlduterungen bendtigt werden.

Fiir XML gilt die Eigenschaft, dass alle Inhaltsmodelle fiir XML — und so-
mit auch eine DTD — 1-eindeutig sind, d.h. es geniigt, das néchste Event im
Struktur-Strom anzuschauen, um z.B. fiir einen Syntaxknoten vom Typ choice
entscheiden zu konnen, welche Alternative gewdhlt wurde. Die folgende Funkti-
on zur Berechnung der Menge der Start-Terminal-Symbole gibt fiir jeden Syn-
taxknoten diejenigen Element-Label an, die als erstes Element erzeugt werden
kénnten.
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SEQ
ID1

ELEM(Name) | | KLEENE

1D2 D3
SEQ
1D4
CHOICE CHOICE
ID5 ID10
ELEM(Postfach) SEQ EMPTY | | ELEM(Telefon)
ID6 ID7 ID11 ID12

ELEM(Strasse) ELEM(Ort)
ID8 ID9

Abbildung 6.1: Schematische Darstellung eines Syntaxbaumes

Definition 6.3 (STS). Sei D eine DTD und sei ¥ die Menge aller in D defi-
nierten Element-Label. Sei SK die Menge aller Syntaxknoten zu D. Dann ist
die Funktion STS: SK — P({EMPTY, PCDAT A} UX) definiert durch

{z.label}, falls x vom Typ elem
{PCDATA}, falls x vom Typ PCDAT A
{EMPTY}, falls x vom Typ EM PTY
STS(xz.left), falls x vom Typ seq und
STS(x):= - (EMPTY € STS(xz.left))

STS(xz.left) U STS(xz.right), falls x vom Typ seq und
EMPTY € STS(xz.left)

STS(x.left) U STS(x.right), falls x vom Typ choice

{EMPTY}USTS(xz.left),  falls x vom Typ kleene

Die Kompressions- und Dekompressions-Operationen arbeiten auf zwei Lis-
ten: dem Struktur-Strom einerseits und dem KST-Strom — dem Komprimat
— andererseits. Beide Listen verfiigen iiber die Operationen read, write, skip,
getPos und setPos, die wie folgt mit Hilfe eines Arrays implementiert werden
koénnen.

1| public class

2| List{ Object [| list;

3 int p = 0; //aktuelle Position
4
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public void write (Object o){
list [p|=o0;
p = ptl

}

public void write(Object o, int pos){
list [pos]—o;
}

public Object read (){
Object ret — list |
P =ptl;
return ret;

pl;

}

public void skip (Object o){

if (o=list |p|) p = p+1;

else FRROR("Unerwartetes Objekt gefunden");
}

public int getPos(){
return p;
}

public void setPos(int pos){
p=pos;
}

Algorithmus 6.1: Die Klasse List

Die Operation write(Object o) schreibt das iibergebene Object o an die
aktuelle Position p der Liste und setzt die Position p um 1 weiter. Hierbei
ist zu beachten, dass bereits an dieser Stelle stehende Werte iiberschrieben
werden.

Die Operation write(Object o, int pos) schreibt das iibergebene Object o
an die iibergebene Position pos. Die aktuelle Position p der Liste wird hierbei
nicht verdandert. Werte, die evtl. an Position pos stehen, werden iiberschrieben.

Die Operation read() gibt das an Position p der Liste stehende Object zuriick
und setzt die Position p um 1 weiter.
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Die Operation skip(Object o) setzt die Position p der Liste um 1 weiter,
falls das an aktueller Position p der Liste stehende Object identisch mit dem
iibergebenen Object ist, andernfalls wird ein Fehler erzeugt.

Die Operation getPos() liefert die aktuelle Position p der Liste zuriick und
die Operation setPos(int pos) setzt die aktuelle Position p der Liste auf den
iibergebenen Wert pos.

Da im Folgenden Operationen zur Kompression von XML-Dokumenten de-
finiert werden, die aus einer Folge von Listen-Operationen auf dem Struktur-
Strom einerseits und dem Komprimat andererseits bestehen, bezeichnen wir
die Operationen write(Object o), write(Object o, int pos), read(), skip(Object
0), getPos() und setPos(int pos) als elementare Listen-Operationen.

Notation 6.1 Sei list eine Liste mit den oben definierten elementaren Listen-
Operationen write(Object o), write(Object o, int pos), read(), skip(Object o),
getPos() und setPos(int pos) und op eine Operation auf list, die aus einer
Folge dieser elementaren Listen-Operation besteht. Sei p die Position der Li-
ste list vor Ausfihrung der Operation op und p’ die Position der Liste nach
Ausfithrung von op. Wir sagen OUT ist die Ausgabe von op in list, wenn op
keine der Operationen list.skip(Object o) und list.read() enthdlt, und wenn gilt
OUT=(list[p], ..., list[p’]). Analog sagen wir IN ist die Eingabe von op in list,
wenmn op keine der Operationen list.write(Object 0) und
list.write(Object o, int pos) enthdlt, und wenn gilt IN=(list[p], . .., list[p’]).

Zwei Operationen sind Umkehroperationen, wenn die eine Operation schreibt,
was die andere liest und umgekehrt, also wenn die Rolle von Ein- und Ausgabe
vertauscht sind, und somit das Ergebnis der Hintereinanderausfiihrung gleich
der urspriinglichen Eingabe ist.

Notation 6.2 Seien op! und op2 zwei Operationen. Wir sagen, opl ist eine
Umkehroperation von op2, genau dann, wenn die Eingabe von opl gleich der
Ausgabe von op2 und wenn die Ausgabe von opl gleich der Fingabe von op?2
18t.

Die elementaren Listen-Operationen write(Object o) und read() sind Um-
kehroperationen zueinander, da write(Object o) gestartet an Position p genau
das schreibt, was read() gestartet an Position p liest, also die Ausgabe von
write(Object o) der Eingabe von read() entspricht. Da write(Object o) kei-
ne Eingabe enthélt und read keine Ausgabe, gelten beide Bedingungen, die
Operationen sind Umkehroperationen zueinander.

Entsprechend sind auch die elementaren Listen-Operationen write(Object o)
und skip(Object o) Umkehroperationen zueinander.

Nun werde ich zunéchst die allgemeine Kompressions- und Dekompressions-
Operation definieren, die eine Art Weiche fiir die eigentlichen Kompressions-
und Dekompressions-Operationen fiir die verschiedenen Syntaxknoten-Typen



© 00~ O U = W N =

NN N RN KN DN N KN o e e e b e e
N O Ut e RN RO O 00O O W N = O

82 XML-Kompression durch Eliminierung externer Redundanzen

darstellt. Nachfolgend werde ich fiir jeden Syntaxknoten-Typ die Grundidee
der Kompression, sowie die Operationen comp und decomp definieren.

Schliefslich werde ich zeigen, dass comp und decomp Umkehroperationen zu-
einander darstellen, da die eine schreibt, was die andere liest, und umgekehrt.
Fiir die nachfolgenden Operationen comp und decomp bedeutet dies insbeson-
dere, dass die Operation decomp aus dem Komprimat KST die urspriinglich
von der Operation comp gelesene Teilsequenz des Struktur-Stroms S rekon-
struiert.

Definition 6.4 (comp, decomp). Sei S ein Struktur-Strom und KST ein
Strom aus Integer-Werten, so sind die Operationen comp(Syntazknoten n) und
decomp(Syntazknoten n) wie folgt definiert.

List S;
List KST;

public void comp(Syntaxknoten n)

{

case (n ist vom Typ)

{
EMPTY: compEMPTY () ;
PCDATA: compPCDATA() ;
elem : compELEM (n )
seq: compSEQ (n)
choice: compCHOICE
kleene: compKLEENE

Y

(n);
(n);
¥
}
public void decomp (Syntaxknoten n)

{

case (n ist vom Typ)

{
EMPTY:  decompEMPTY ()
PCDATA: decompPCDATA (
elem : decompELEM (n)
seq : decompSEQ (n) ;
choice: decompCHOICE (n) ;
kleene: decompKLEENE(n);

);

Y

Algorithmus 6.2: Globale Kompressions- und Dekompressions-Operation
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6.1.1 EMPTY

Einem Syntaxknoten vom Typ EMPTY entspricht die leere Sequenz im Struk-
tur-Strom. Daher liest die Operation comp weder etwas aus dem Struktur-
Strom, noch schreibt sie etwas in das Komprimat.

Definition 6.5 (compEMPTY, decompEMPTY). Sei S ein Struktur-Strom,
und KST ein Strom aus Integern, so sind die Operationen
compEMPTY (Syntazknoten n) und decompEMPTY (Syntazknoten n) wie folgt
definiert.

List S;
List KST;

public void compEMPTY ()

{3

public void decompEMPTY ()

{}

Algorithmus 6.3: Kompression und Dekompression fiir EMPTY
O

Lemma 6.1. decompEMPTY (Syntazknoten n) ist die Umkehroperation zu
compEMPTY (Syntazknoten n).

Beweis. Die Behauptung folgt offensichtlich, da bei beiden Operationen weder
eine Eingabe noch eine Ausgabe erfolgt. O

6.1.2 PCDATA

Einem Syntaxknoten vom Typ PCDATA entspricht eine Teilfolge <=T>,
< /=T> im Struktur-Strom. Da der PCDATA-Knoten deterministisch ist, wer-
den das startElement- und das endElement-Event aus dem Struktur-Strom
gelesen, es muss jedoch nichts in das Komprimat geschrieben werden.

Definition 6.6 (compPCDATA, decompPCDATA). Sei S ein Struktur-Strom,
und KST ein Strom aus Integern, so sind die Operationen
compPCDATA (Syntaxzknoten n) und decompPCDATA (Syntazknoten n) wie
folgt definiert.
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List S;
List KST;
public void compPCDATA ()
{
S.skip ('<=T>");
S.skip ('</=1>");
}
public void decompPCDATA ()

{
S.write ('<=I>")

S.write ('</=1>");

Algorithmus 6.4: Kompression und Dekompression fiir PCDATA
O

Lemma 6.2. decompPCDATA (Syntazknoten n) ist die Umkehroperation zu
compPCDATA (Syntazknoten n).

Beweis. Bei  einem  validen Dokument iiberspringt die Operation
compPCDATA (Syntazknoten n) die Folge '<—T></=T>" im Struktur-Strom
und schreibt nichts in das Komprimat. Entsprechend liest die Operation de-
compPCDATA (Syntaxknoten n) nichts aus dem Komprimat und schreibt die
Folge ’'<=T> </=T>" in  den  Struktur-Strom. Also ist
decompP CDATA (Syntazknoten n) die Umkehroperation zu
compPCDATA (Syntazknoten n). O

6.1.3 elem

Ein Syntaxknoten vom Typ elem mit Parameter label=’a’ entspricht einem
Knoten n mit Label 'a’ im Struktur-Strom S, also einer Teilfolge <a>S’< /a>,
wobel S’ eine Teilfolge von S ist. Da der elem-Knoten deterministisch durch
die DTD vorgegeben ist, werden das startElement- und das endElement-Event
aus dem Struktur-Strom gelesen, es muss jedoch nichts in das Komprimat
geschrieben werden.

Anschliefsend muss die Kompression des Teilstroms S’ gestartet werden, in
dem die comp-Funktion fiir den Syntaxbaum der der Elementdeklaration mit
Namen ’a’ entspricht angestofen wird. Dies geschieht im Folgenden durch den
Aufruf der Mothode comp(n.name) in Zeile 8 im nachfolgenden Algorithmus.
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Definition 6.7 (compELEM, decompELEM). Sei S ein Struktur-Strom und
KST ein  Strom  aus Integern, so sind die  Operationen
compELEM (Syntazknoten n) und decompELEM (Syntaxknoten n) wie folgt de-
finiert.

List S;
List KST;
public void compELEM(Syntaxknoten n)
{
S.skip(’<’+n.label+’>7);
//Komprimiere Teilbaum wunterhalb dieses Elements
comp (n.name) ;
S.skip(’</’+n.label+’>");

}

public void decompELEM (Syntaxknoten n)
{
S.write(’<’+n.label+’>7);
//Dekomprimiere Teilbaum unterhalb dieses Elements
decomp (n.name) ;
S.write(’</’4n.label+’>");

Algorithmus 6.5: Kompression undDekompression fiir ELEM
O

Lemma 6.3. Sei decomp(Syntaxknoten n) die Umkehroperation zu
comp(Syntaxknoten n). Dann ist decompELEM (Syntazknoten n) die Dekom-
pression zu compELEM (Syntazknoten n).

Beweis. Sei lab:=n.label. Die Operation compELEM (Syntazknoten n) iiber-
springt zunéchst das Event <lab>, fithrt dann die Operation comp(n.name)
aus und iiberspringt dann </lab>. Die Eingabe besteht aus <lab>, gefolgt
von der Eingabe von comp(n.name), gefolgt von </lab>, die Ausgabe be-
steht aus der Ausgabe von comp(n.name). Entsprechend besteht die Ausga-
be der Operation decompELEM (Syntazknoten n) aus <lab>, gefolgt von der
Ausgabe von decomp(n.name), gefolgt von < /lab>, die Eingabe besteht aus
der Eingabe von decomp(n.name). Unter der Annahme, dass comp(n.name)
und decomp(n.name) Umkehroperationen sind, dass also die Ausgabe von
comp(n.name) der Eingabe von decomp(n.name) entspricht und umgekehrt,
folgt auch, dass compELEM (Syntazknoten n) und decomp ELEM (Syntazknoten
n) zueinander Umkehroperationen sind. O
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6.1.4 seq

Ein Syntaxknoten vom Typ seq entspricht einer Folge zweier Teilfolgen im
Struktur-Strom. Da der seq-Knoten deterministisch ist, muss nichts gelesen
werden und nichts in das Komprimat geschrieben werden, es wird lediglich die
Kompression der beiden Teilfolgen ausgefiihrt.

Definition 6.8 (compSEQ, decompSEQ). Sei S ein Struktur-Strom und KST
ein Strom aus Integern, so sind die Operationen compSEQ(Syntazknoten n)
und decompSEQ(Syntazknoten n) wie folgt definiert.

List S;
List KST;

public void compSEQ (Syntaxknoten n)
{
comp(n.left); //Komprimiere linke Teilfolge
comp(n.right);//Komprimiere rechte Teilfolge
}
public void decompSEQ (Syntaxknoten n)
{
decomp (n.left); //Dekomprimiere linke Teilfolge
decomp (n.right);//Dekomprimiere rechte Teilfolge

Algorithmus 6.6: Kompression undDekompression fiir SEQ
O

Lemma 6.4. Sei decomp(Syntaxknoten n) die Umkehroperation zu
comp(Syntaxknoten n). Dann ist decompSEQ(Syntazknoten n) die Umkehr-
operation zu compSEQ(Syntaxknoten n).

Beweis. Die Eingabe der Operation compSEQ(Syntazknoten n) besteht aus
comp(n.left), gefolgt von der Eingabe von comp(n.right). Entsprechend be-
steht die Ausgabe der Operation compSEQ(Syntazknoten n) aus der Ausgabe
von comp(n.left), gefolgt von der Ausgabe von comp(n.right). Analog besteht
die Eingabe der Operation decompSEQ(Syntazknoten n) aus decomp(n.left),
gefolgt von der Eingabe von decomp(n.right), und die Ausgabe der Operation
decompSEQ(Syntazknoten n) besteht aus der Ausgabe von decomp(n.left), ge-
folgt von der Ausgabe von decomp(n.right). Unter der Annahme, dass comp
(Syntaxknoten n) und decomp(Syntaxknoten n) Umkehroperationen sind, dass
also die Ausgabe von comp(Syntaxknoten n) der Eingabe von decomp(Syn-
taxknoten n) entspricht und umgekehrt, folgt, dass compSEQ(Syntazknoten n)
und decompSEQ(Syntazknoten n) zueinander Umkehroperationen sind. O
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6.1.5 choice

Ein Syntaxknoten vom Typ choice entspricht einer Teilfolge im Struktur-Strom,
wobei der Teilbaum entweder dem linken Kindknoten des choice-Knotens oder
dem rechten Kindknoten des choice-Knotens entspricht. Die Kompression ko-
diert die gewdhlte Alternative bindr und fiihrt anschlieffend die Kompression
fiir den entsprechenden Syntaxknoten aus.

Definition 6.9 (compCHOICE, decompCHOICE). Sei S ein Struktur-Strom,
und KST ein Strom aus Integern, so sind die Operationen
compCHOICE(Syntazknoten n) und decomp CHOICE(Syntazknoten n) wie folgt
definiert.

List KST;
public void compCHOICE (Syntaxknoten n)
{
//Lese ndchstes FEvent, ohne den Positionszeiger zu

andern
int p = S.getPos();
Event e = S.read () ;
S.setPos(p);
if (e in STS(n)){//Alternative 0
KST. write (0) ;
comp(n.left);
telse { //Alternative 1
KST. write (1) ;
comp(n.right);

~— —

}
}
public void decompCHOICE (Syntaxknoten n)

{
x = KST.read () ;
if (x==0) decomp (n.left);
else decomp (n.right);

Algorithmus 6.7: Kompression und Dekompressionfiir CHOICE
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Lemma 6.5. Sei decomp(Syntaxknoten n) die Umkehroperation zu
comp(Syntaxknoten n). Dann ist decompCHOICE(Syntazknoten n) die Um-
kehroperation zu comp CHOICE(Syntazknoten n).

Beweis. Alternative 0 (Das folgende Event im Struktur-Strom entspricht dem
linken  Teilbaum  des  Syntaxknotens n): Die  Ausgabe von
compCHOICE(Syntazknoten n) besteht aus 0, gefolgt von der Ausgabe von
comp(n.left). Da der Positionszeiger der Liste S nicht verdndert wurde, be-
steht die Eingabe von compCHOICE(Syntazknoten n) aus der Eingabe von
comp(n.left). Entsprechend besteht die Eingabe von
decompCHOICE(Syntazknoten n) aus 0, gefolgt von der Eingabe von
decomp(n.left), die Ausgabe besteht aus der Ausgabe von decomp(n.left).

Alternative 1 (Das folgende Event im Struktur-Strom entspricht dem rechten
Teilbaum des Syntaxknotens n): Die Ausgabe von comp CHOICE(Syntazknoten
n) besteht aus 1, gefolgt von der Ausgabe von comp(n.right). Da der Positions-
zeiger der Liste S nicht verdndert wurde, besteht die Eingabe von
compCHOICE(Syntazknoten n) aus der Eingabe von comp(n.right). Entspre-
chend besteht die Eingabe von decompCHOICE(Syntazknoten n) aus 1, gefolgt
von der Eingabe von decomp(n.right), die Ausgabe besteht aus der Ausgabe
von decomp(n.right).

In beiden Féllen ist die Eingabe von compCHOICE(Syntazknoten n) gleich
der Ausgabe von decompCHOICE(Syntazknoten n) und umgekehrt, also ist
decomp CHOICE(Syntazknoten n) die Umkehroperation zu
compCHOICE(Syntazknoten n). O

6.1.6 kleene

Ein Syntaxknoten vom Typ kleene entspricht einer Folge von x Teilfolgen im
Struktur-Strom, wobei jede der Teilfolgen dem linken Kindknoten des kleene-
Knotens entspricht. In diesem Fall wird die Anzahl x an Wiederholungen in
das Komprimat geschrieben.

Definition 6.10 (compKLEENE, decompKLEENE). Sei S ein Struktur-Strom,
und KST ein Strom aus Integern, so sind die Operationen
compKLEENE(Syntazknoten n) und decompKLEENE(Syntaxknoten n) wie
folgt definiert.

1| List KST;

2

3| public void compKLEENE(Syntaxknoten n)
4{
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//Lese ndchstes Event, ohne den Positionszeiger zu
andern
int p = S.getPos();
Event e = S.read () ;
S.setPos(p);
int pos = KST.getPos();//Merke aktuelle KST-Position
KST. write(0);//Schreibe Platzhalter an aktuelle
Position
int i = 0;
while(e in STS(n)){
i =1+ 1;
comp(n.left);
p = S.getPos();
e = S.read () ;
S.setPos(p);
}
//Schreibe Anzahl i an gemerkte Position pos
KST. write (i, pos);

}

public void decompKLEENE(Syntaxknoten n)

{
int i — kst.read();

for (int x = 0; x<i; x++)
decomp (n.left ());

Algorithmus 6.8: Kompression und Dekompressionfiir KLEENE
O

Lemma 6.6. Sei decomp(Syntaxknoten n) die Umkehroperation zu
comp(Syntaxknoten n). Dann ist decompKLEENE(Syntazknoten n) die Um-
kehroperation zu compKLEENE(Syntazknoten n).

Beweis. Die Ausgabe von compKLEENE(Syntazknoten n) besteht aus der An-
zahl i der durch den Kleene-Operator erzeugten Teilfolgen gefolgt von i mal der
Ausgabe von comp(n.left). Zeilen (7)-(9) sowie Zeilen (16)-(18) der Operation
compKLEENE(Syntazknoten n) stellen trotz Aufruf der read-Operation keine
Eingabe dar, da der Positionszeiger von S nicht verdndert wird, die Eingabe
von compKLEENE(Syntaxknoten n) besteht also nur aus i mal der Eingabe von
comp(n.left). Entsprechend besteht die Eingabe von
decompKLEENE(Syntaxknoten n) aus der Anzahl i der zu erzeugenden Teil-
folgen, gefolgt von i mal der Eingabe von decomp(n.left), und die Ausgabe be-
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steht aus i mal der Ausgabe von decomp(n.left). Unter der Annahme, dass de-
comp(Syntaxknoten n) die Umkehroperation von comp(Syntaxknoten n) ist, ist
decompKLEENE(Syntaxknoten n) die Umkehroperation zZu
compKLEENE(Syntazknoten n). O

Satz 6.1. Die Operation decomp nach Definition 6.4 ist die Umkehroperation
zur Operation comp nach Definition 6.4.

Beweis. Betrachtet man das XML-Dokument bottom-up, so sind die Blattkno-
ten vom Typ EMPTY oder PCDATA. Fiir diese beiden Syntaxknoten-Typen
gilt die Behauptung nach Lemmata 6.1 und 6.2 ohne weitere Annahmen. Fiir
die weiteren Syntaxknoten-Typen elem, seq, choice und kleene gilt die Behaup-
tung nach Lemmata 6.3, 6.4, 6.5, 6.6 unter der Annahme, dass die Behauptung
fiir die jeweiligen Kindknoten gilt. Da die Behauptung fiir die Blattknoten be-
wiesen ist, folgt sie somit induktiv fiir alle inneren Knoten. O

Beispiel 6.3 Listing 6.9 zeigt den KST-Strom, der zum Struktur-Strom aus
Listing 3.1 generiert wird. Die erste Zeile gibt die Position innerhalb des Kom-
primats an, die zweite enthdlt den jeweiligen Wert im Komprimat, und die
dritte Zeile gibt an, ob fir diesen Wert Speicherbedarf in Form eines Integers
(i) oder in Form eines Bits (b) besteht.

Hierbei wird die 8 an Position 1 durch den duferen Kleene-Operator erzeugt
(8 Personen), die 1 an Position 2 durch den inneren Kleene-Operator(1 Wie-
derholung von ((Postfach | (Strasse, Ort)), Telefon?)), die 0 an Position 3
durch den choice-Operator (gewdhlte Alternative: Postfach), die 0 an Position
4 durch den choice-Operator (kein Telefon, Alternative: EMPTY), usw.

Position 1 2 8 4 5 6 7 8& 910 11 12
Wert $ 1 0 0 2 1 0 0 0 1 0 I
(b)it/(i)nt i i b b i b b b b i b b

Listing 6.9: DTD-Subtraktion-Kompression des Beispiels

6.2 DTD-Subtraktion fiir unendlich lange
XML-Datenstrome

Betrachtet man die verschiedenen Syntaxknoten-Typen und deren Kompres-
sions- und Dekompressions-Operationen, stellt man fest, dass der Grofsteil der
Operationen nur lokal auf dem Struktur-Strom und dem Komprimat arbeitet,
es werden lediglich die Operationen read(), write(Object o) sowie skip(Object
o) verwendet. Lediglich die Operation compKLEENE(Syntaxknoten n) greift
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auf die Operation write(Object o, int pos) zuriick, die an der vorgegebenen
Position pos im Komprimat, und somit nicht lokal, schreibt. Fiihren wir diese
Operation auf einem potentiell unendlichen Datenstrom aus, wiirde das bedeu-
ten, dass wir das Komprimat zwischenspeichern miissten und die Weiterleitung
der Ausgabe verzogern miissten, bis die endgiiltige Anzahl der Wiederholun-
gen ermittelt wurde. Da ein unendlicher Datenstrom allerdings theoretisch eine
unendliche Anzahl an Wiederholungen enthalten kann, ist dies praktisch nicht
durchfiihrbar.

Um das Kompressionsverfahren DTD-Subtraktion so zu erweitern, dass es
auch potentiell unendliche Datenstrome komprimieren kann, benotigt man ei-
ne Uberlaufkodierung fiir Syntaxknoten vom Typ kleene. Diese kénnte z.B. so
umgesetzt werden, dass man eine festgelegte Fenstergrofe hat, innerhalb de-
rer das Komprimat zwischengespeichert wird und innerhalb derer die Ausgabe
des Komprimats verzdgert wird. Ist der Zwischenspeicher komplett gefiillt,
kann jedoch die Ausgabe noch nicht ausgegeben werden, da fiir mindestens
einen kleene-Knoten noch nicht die Anzahl an Wiederholungen ermittelt wer-
den konnte, wird an diese Stelle ein Markierungszeichen geschrieben, gefolgt
von der aktuellen Anzahl an Wiederholungen i. Dieses Markierungszeichen gibt
an, dass an spiterer Stelle die weitere Anzahl an Wiederholungen folgen wird.

Liest die Dekompressions-Operation das Markierungszeichen, weif sie, dass
zunéchst i Wiederholungen folgen, und nach Abschluss dieser Wiederholungen
die noch fehlende Anzahl an Wiederholungen folgen wird.

Mit Hilfe dieser Uberlaufkodierung fiir Syntaxknoten vom Typ kleene kann
das Kompressionsverfahren DTD-Subtraktion auch fiir potentiell unendliche
Datenstrome verwendet werden.

6.3 Navigation entlang von first-child und
next-sibling

Nun werde ich die Operationen first und next zur Berechnung von first-child
und next-sibling auf dem Komprimat KST vorstellen.

Ein Element E im Struktur-Strom wird eindeutig durch das Tupel
(KST, n, p) identifiziert, wobei KST ein Komprimat, n ein Syntaxknoten und
p eine Position im Komprimat ist:

Notation 6.3 Sei S=(s1,...,s,) ein Struktur-Strom und KST ein Kompri-
mat. Sei E ein Element mit startElement-Event sE € S und endElement-Event
ekl € S. Sei n ein Syntazknoten und p eine Position. Dann sagen wir E kor-

respondiert mit (KST, n, p) genau dann, wenn die Hintereinanderausfihrung
von KST.setPos(p), decomp(n) die Ausgabe S’:=(sE,...,eE) C S erzeugt.
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6.3.1 first-child

Zu einem Knoten E1 mit startElement-Event sE1 ist entsprechend Definition
2.4 das first-child derjenige Knoten E2, dessen startElement-Event sE2 direkt
nach sE1 im SAX-Event-Strom und somit auch im Struktur-Strom folgt. Folgt
auf sE1 kein startElement-Event, so hat E1 kein first-child.

Entsprechend simuliert die Operation first die XML Operation first-child auf
dem Komprimat KST. Sei E1 ein Element und E2=E1 /first-child. Sei weiterhin
das Tupel (KST, n, p) das zu E1 korrespondierende Tupel. Dann berechnet die
Operation first fiir die DTD-Subtraktion zu (KST, n, p) die Werte n” und p’,
mit n’=first(n); p’=KST.getPos(), so dass E2 mit (KST, n’, p’) korrespondiert.
Dies wird in Abbildung 6.2 visualisiert.

DTD-Subtraktion
(KST.np) = (KST.n'p)
korrespondiert korrespondiert
@ first-child %t_(:hﬂd
XML

Abbildung 6.2: Schematische Darstellung der first-Operation

Die Operation first simuliert die decomp-Operation, wobei sie im Gegen-
satz zur decomp-Operation nach Erreichen des ersten PCDATA- oder ELEM-
Syntaxknoten abbricht und diesen Knoten ausgibt, so dass die Pointer-Position
im Komprimat auf dessen Position verweist. Sie bleibt vor der ersten Ausgabe
in den Struktur-Strom stehen, so dass die anschlieffende Dekompression auf
dem KST mit der berechneten aktuellen Position p’ diesen Knoten erzeugt.

Ahnlich wie bei der Dekompression existiert eine iibergeordnete first-Opera-
tion, die eine Weiche fiir die first-Operationen der unterschiedlichen Knoten-
typen darstellt.

Definition 6.11 (first). Sei KST ein Strom aus Integern mit aktueller Position
p = KST.getPos(), so ist die Operation first(Syntaxknoten n) wie folgt definiert.
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List KST;

public Syntaxknoten first (Syntaxknoten n)

{

case (n ist vom Typ)

{
EMPTY: return firstEMPTY (n
PCDATA: return firstPCDATA (
elem : return firstELEM (n)
seq: return firstSEQ (n);
choice: return firstCHOICE (n);
kleene: return firstKLEENE (n);

b
i)l

?

Algorithmus 6.10: Die globale first-Operation
O

Der EMPTY-Knoten erzeugt keine Ausgabe und hat auch keine weiteren
Kindknoten. Die first-Operation des EMPTY-Knotens &ndert den Zustand
nicht und gibt null zuriick.

Definition 6.12 (firstEmpty). Sei KST ein Strom aus Integern mit aktueller
Position p = KST.getPos(), so ist die Operation first EMPTY (Syntazknoten n)
wie folgt definiert.

List KST;

public Syntaxknoten firstEMPTY (Syntaxknoten n)

{

n.mark () ;
return null;

Algorithmus 6.11: Operation first fiir EMPTY
O

Hinweis: Die Markierung, die durch den Aufruf von n.mark() gesetzt wird,
wird im nachfolgenden Abschnitt iber das Ermitteln des next-siblings erldu-
tert, da erst dann lesend darauf zugegriffen wird.
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Der PCDATA- und der elem-Knoten erzeugen beide eine Ausgabe im Struk-
tur-Strom, ohne dass im Komprimat gelesen werden muss. Daher geben beide
sich selbst als Riickgabewert zuriick und &ndern den Zustand nicht.

Definition 6.13 (firstPCDATA, firstELEM). Sei KST ein Strom aus In-
tegern mit aktueller Position p = KST.getPos(), so sind die Operationen
firstPCDATA (Syntazknoten n) und firstELEM (Syntazknoten n) wie folgt de-
finiert.

List KST;

public Syntaxknoten firstPCDATA (Syntaxknoten n)
{
n.mark () ;
return n;

}

public Syntaxknoten firstELEM (Syntaxknoten n)

{

n.mark () ;
return n;

Algorithmus 6.12: Operation first fiir PCDATA undELEM
O

Der seq-Knoten erzeugt eine Folge von zwei Teilfolgen, wobei die Teilfol-
gen auch leer sein konnen. Er gibt den first-Knoten der ersten Teilfolge aus,
falls dieser ungleich null ist, andernfalls gibt er den first-Knoten der zweiten
Teilfolge aus. Wéhrend er den first-Knoten der ersten und evtl. auch der zwei-
ten Teilfolge ermittelt, wird die aktuelle Pointer-Position p im Komprimat im
Allgemeinen verdndert.

Definition 6.14 (firstSEQ). Sei KST ein Strom aus Integern mit aktueller
Position p = KST.getPos(), so ist die Operation firstSEQ(Syntazknoten n)
wie folgt definiert.

List KST;

public Syntaxknoten firstSEQ (Syntaxknoten n)

{

Syntaxknoten first — first (n.left);
if(first!=null) return first;
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else return first (n.right);

8}

W ~J O U = W N =

Algorithmus 6.13: Operation first fiir SEQ
O

Der choice-Knoten erzeugt eine von zwei moglichen Teilfolgen, wobei im
Komprimat die gew#hlte Alternative kodiert ist. Die first-Operation fiir den
choice-Knoten ermittelt, welche von beiden Alternativen giiltig ist, und liefert
den first-Knoten der giiltigen Alternative zuriick. Da die first-Operation hierfiir
im Komprimat lesen muss, wird hierbei auf jeden Fall die aktuelle Pointer-
Position p verdndert.

Definition 6.15 (firstCHOICE). Sei KST ein Strom aus Integern mit aktueller
Position p = KST.getPos(), so ist die Operation firstCHOICE(Syntazknoten
n) wie folgt definiert.

List KST;

public Syntaxknoten firstCHOICE (Syntaxknoten n)

{
int x — KST.read ();

if (x==0) return first(n.left);
else return first (n.right);

Algorithmus 6.14: Operation first fiir CHOICE
O

Der kleene-Knoten erzeugt im SAX-Storm eine (evtl. leere) Folge von nicht-
leeren Teilfolgen von SAX-Events, wobei im Komprimat die Anzahl der Teil-
folgen gespeichert ist. Die first-Operation fiir den kleene-Knoten liefert den
first-Knoten der ersten Teilfolge zuriick, falls mindestens eine Teilfolge exi-
stiert; sonst liefert sie null zuriick. Hierbei wird im Komprimat gelesen, somit
bleibt die aktuelle Pointer-Position p unverandert.

Definition 6.16 (firstKLEENE). Sei KST ein Strom aus Integern mit aktuel-
ler Position p = KST.getPos(), so ist die Operation firstKLEENE(Syntazknoten
n) wie folgt definiert.
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List KST;

public Syntaxknoten firstKLEENE (Syntaxknoten n)
{
int x = KST.read();
n.max — Xx;
n.count=1;
if (x>0) return first (n.left);
else return null;

Algorithmus 6.15: Operation first fiir KLEENE
O

Hinweis: Ahnlich wie der Aufruf von n.mark(), handelt es sich bei den Zuwei-
sungen an n.max und n.count um Markierungen, die erst bei der Ermittlung
des next-siblings gelesen werden, und daher erst im nachfolgenden Abschnitt
erldutert werden.

Die bisher vorgestellte Menge von Definitionen der first-Operationen fiihrt
uns zu dem in Abbildung 6.2 in Abschnitt 6.3.1 skizzierten Hauptsatz:

Satz 6.2. Sei S ein Struktur-Strom und E ein Element mit startElement-
Event sE € S und endElement-Event eE € S. Sei KST ein Komprimat, p
eine Position und n ein Syntaxknoten, so dass E mit dem Tupel (KST, n, p)
korrespondiert. Seien n’!=null und p’ die Riickgabewerte der folgenden Hin-
tereinanderausfithrung:

KST setPos(p); n’=first(n); p’=KST.getPos();

Dann gilt: E/first-child korrespondiert mit dem Tupel (KST, n’,p’)

Beweis. Nach Definition 2.4 gilt fiir ein Element E mit startElement sE und
E/first-child mit startElement sEFC, dass sEFC direkt auf sE im Struktur-
Strom folgt. Existiert kein E/first-child, so ist das néchste auf sE folgende
Event vom Typ endElement. Entsprechend gilt es im Komprimat zu zeigen,
dass die Funktion firs,t angewandt auf einen beliebigen Knoten, den ersten
erreichbaren elem- bzw. PCDATA-Syntaxknoten zuriickliefert, oder dass sie
null zuriickliefert, falls kein solcher Syntaxknoten exisitert. Die Blattknoten
im Syntaxbaum sind vom Typ EMPTY oder PCDATA bzw. elem. Entspre-
chend liefert first EMPTY (Syntaxknoten n) nach Definition 6.12 null zuriick,
da kein Knoten existiert, und die Operationen firsst PCDATA (Syntaxknoten n)
und firstELEM (Syntaxknoten n) nach Definition 6.13 liefern den Syntaxknoten
n’=n zuriick, der Positionszeiger entspricht unverdndert der aktuellen Position,
also p’=p.
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Fiir jeden inneren Syntaxknoten vom Typ seq bzw. fiir dessen Operation
firstSEQ(Syntaxknoten n) entsprechend Definition 6.14 wird erst iiberpriift,
ob im linken Teilbaum ein elem- bzw. PCDATA-Knoten existiert, in dem fiir
n.left die Operation first(Syntaxknoten n) aufgerufen wird. Liefert diese einen
Knoten n’ zuriick, so ist dieser ein Ergebnis, liefert diese null zuriick, wird die
Suche im rechten Teilbaum (n.right) fortgefiihrt. Der Positionszeiger entspricht
unverandert der aktuellen Position p’=p-+x, wobei x die Anzahl an Positionen
ist, die bei der Durchquerung des linken bzw. rechten Teilbaums gelesen wur-
den.

Fiir jeden inneren Syntaxknoten vom Typ choice bzw. fiir dessen Operation
first CHOICE(Syntaxknoten n) entsprechend Definition 6.15 wird die Opera-
tion first(Syntaxknoten n) fiir die gewéhlte Alternative aufgerufen und deren
Ergebnis (null bzw. n’) zuriickgeliefert. Da die gew#hlte Alternative gelesen
wurde, gilt p’=p+1-+x, wobei x die Anzahl an Positionen ist, die bei der Durch-
querung der gewéhlten Alternative gelesen wurden.

Fiir jeden inneren Syntaxknoten vom Typ kleene bzw. fiir dessen Opera-
tion first KLEENE(Syntaxknoten n) entsprechend Definition 6.16 wird iiber-
priift, ob mindestens eine Wiederholung vorhanden ist. Da es sich hierbei
um eine nicht-leere Teilfolge handeln muss, wird in diesem Fall die Operation
first(Syntaxknoten n) fiir den unter dem kleene-Knoten stehenden Teilbaum
n.left aufgerufen und dessen Ergebnis n’ zuriickgeliefert. Da die gewédhlte Al-
ternative gelesen wurde, gilt p’=p-+1+x, wobei x die Anzahl an Positionen ist,
die bei der Durchquerung des linken Teilbaums gelesen wurden.

Die inneren Knoten rufen somit die Operation first(Syntaxknoten n) fiir die
Kindknoten auf bis ein Blattknoten vom Typ PCDATA oder elem erreicht wird
und der erste von EMTPY verschiedene Blattknoten als Ergebnis zuriickgelie-
fert werden kann.

Somit korrespondiert das Tupel (KST, n’, p’) mit dem néchsten zu erzeu-
genden Knoten, und somit mit dem Knoten E/first-child. O

6.3.2 next-sibling

Zu einem Knoten E1 mit startElement-Event sE1 und endElement-Event ekl
ist entsprechend Definition 2.4 das next-sibling derjenige Knoten E2, dessen
startElement-Event sE2 direkt nach dem endElement-Event eEl im SAX-
Event-Strom und somit auch im Struktur-Strom folgt. Folgt auf eEl kein
start Element-Event, hat E1 kein next-sibling.

Dies bedeutet, dass die next-Operation fiir die DTD-Subtraktion zunéchst
einmal den aktuellen Teilbaum iiberspringen muss, um zum ,End-Tag* des
aktuellen Knotens zu gelangen. Anschlieffend muss das als nichstes erzeugte
Element ermittelt werden.
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Im Folgenden werde ich eine mogliche Implementierung der next-Operation
vorstellen, die ein Marker-Konzept zu Hilfe nimmt, um den als nichstes erzeug-
ten Knoten zu ermitteln. Der Marker wird hierbei genutzt, um die bereits be-
suchten Knoten zu markieren. Die Markierung wird geldscht, wenn durch einen
iibergeordneten Kleene-Knoten eine weitere Wiederholung begonnen wird.

Beispiel 6.4 Betrachten wir zundchst einmal den Syntazbaum aus Beispiel 6.2
auf Seite 78. Die zweite Person aus Listing 2.3 enthdlt die Kindknoten Name,
Strasse, Ort und Postfach in der angegebenen Rethenfolge. Dementsprechend
beginnt der fir diesen Teilbaum relevante Ausschnitt aus dem Komprimat in
Listing 6.9 an Position 5 und endet ber Position 9. Hierbei steht die 2 an Posi-
tion & fiir 2 Teilfolgen entsprechend des Teilbaums unter dem Kleene-Knoten,
die 1 an Position 6 fir Alternative 1 (Strasse, Ort), die 0 an Position 7 fiir
Alternative 0 (EMPTY). Die 0 an Position 8 steht fir Alternative 0 (Postfach)
gefolgt von einer 0 an Position 9 fir Alternative 0 (EMPTY).

Gesucht sei der newt-sibling zum Element E=0rt, welches ein Kindknoten
der zweiten Person aus Listing 2.3 ist und welches mit dem Tupel (KST, n, p)
korrespondiert, wobei p=7 gilt (da die Alternative Strasse/Ort bereits gelesen
wurde) und n der Konten ID9 in Beispiel 6.2 ist. Dies bedeutet, dass Knoten
ID9 und alle zuvor besuchten elem-Knoten (Knoten ID2, ID8 und ID9) als
besucht markiert sind. Zusdtzlich miissen wir im kleene-Knoten speichern, dass
es genau 2 Wiederholungen gibt und wir uns aktuell in der 1. Wiederholung

befinden.

Um den next-sibling zu ermitteln, missen wir zundchst den Teilbaum unter-
halb von Ort und alle entsprechenden KST-FEintrige tiberspringen. Da Ort in
diesem Fall nur PCDATA enthdlt, existiert kein KST-FEintrag, der zum Teil-
baum unterhalb von Ort gehort, die Pointer-Position p tm KST bleibt unver-
andert.

Nun muss der ndchste zu erzeugende Knoten ermattelt werden: Da der Kno-
ten mit ID9 als besucht markiert ist, setzen wir die Suche bei dessen parent-
Knoten (ID7) fort. Dieser ist vom Typ seq. Da beide Kindknoten bereits als
besucht markiert wurden, ist die Verarbeitung dieses Knotens abgeschlossen. Er
wird ebenfalls als besucht markiert, und die Suche wird beim ndchsten parent-
Knoten (ID5) fortgefiihrt.

ID5 ist vom Typ choice. Ein Knoten vom Typ choice ist abgearbeitet, wenn
mindestens einer der beiden Kindknoten (die gewdhlte Alternative) markiert
1st. Da dies der Fall ist, wird auch ID5 als besucht markiert, die Suche fdhrt
bei ID} fort. In diesem Full existiert ein noch nicht markierter Kindknoten
(ID10), in dem nach dem next-sibling gesucht wird.

ID10 ist vom Typ choice, und es ist noch kein Kindknoten markiert, also wird
das ndchste Zeichen (0) aus dem KST gelesen, um die gewdhlte Alternative zu
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ermitteln. Da die gewdhlte Alternative (ID11) EMPTY entspricht, muss die
Suche weiter fortgesetzt werden, die Knoten ID11, ID10 und ID 4 werden als
besucht markiert.

Der ndchste zu betrachtende Knoten ist ID3, ein Knoten vom Typ kleene.
Dieser enthdlt als Markierung die aktuelle Wiederholung (count=1) sowie die
mazimale Anzahl an Wiederholungen (max=2). Da count<max gilt, existiert
noch eine weitere Wiederholung, alle Markierungen wm darunterliegenden Teil-
baum werden geloscht, und die Suche wird bei Knoten IDj und schliefilich bei
ID5 und ID6 fortgefiihrt.

Mit ID6 wurde der erste nicht-markierte elem- bzw. PCDATA-Knoten ermit-
telt, der somit auch das Ergebnis der next-sibling-Suche darstellt. Das Element
Postfach bzw. die entsprechenden Eintrige KST, Syntazknoten n’=ID6 und die
Position sm KST p’=5 wurden ermittelt, so dass das Element Postfach dem
Tupel (KST, n’, p’) entspricht.

Allgemein wird die Suche in dem zum aktuellen Element gehorenden elem-
Syntaxknoten, einem Blattknoten, gestartet. Hierbei sind im Syntaxbaum so-
wohl der aktuelle elem-Syntaxknoten nE1 als auch alle bereits besuchten Syn-
taxknoten als besucht markiert. Fiir jeden Syntaxknoten n wird zunéchst ver-
sucht, den next-sibling Knoten im Komprimat, also den néchsten zu erreichen-
den elem- bzw PCDATA-Syntaxknoten, unter den descendant-Syntaxknoten
zu finden. Wurden alle descendant-Syntaxknoten von n untersucht, jedoch kein
elem- bzw. PCDATA-Syntaxknoten gefunden, wird die Suche mit dem parent-
Syntaxknoten von n und dessen noch nicht besuchten descendant-Syntaxknoten
fortgesetzt. Die Suche kann beendet werden, wenn ein elem- bzw. ein PCDATA-
Syntaxknoten erreicht wurde. Wurden alle Syntaxknoten abgearbeitet, ohne
dass ein elem- bzw. ein PCDATA-Syntaxknoten erreicht wurde, existiert kein
next-sibling-Knoten im Komprimat.

Da das Fortsetzen der Suche beim parent-Knoten immer gleich ablauft, wur-
de diese Teiloperation in die Operation processParent ausgelagert.

Definition 6.17 (processParent). Sei KST ein Strom aus Integern mit aktuel-
ler Position p = KST.getPos(), so ist die Operation processParent(Syntazknoten
n) wie folgt definiert.

1| List KST;

2

3| public Syntaxknoten processParent (Syntaxknoten n)

il {

5

n.mark () ;
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if (n.parent—null)return null;
else return next(n.parent);

8|}
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Algorithmus 6.16: Operation processParent
O

Ahnlich wie bei der Dekompression und der first-Operation existiert eine
iibergeordnete next-Operation, die eine Weiche fiir die next-Operationen der
unterschiedlichen Knotentypen darstellt.

Definition 6.18 (next). Sei KST ein Strom aus Integern mit aktueller Posi-
tion p = KST.getPos(), so ist die Operation next(Syntazknoten n) wie folgt
definiert.

List KST;

public Syntaxknoten next(Syntaxknoten n)

{

case (n ist vom Typ)

{
EMPTY: return nextEMPTY (n
PCDATA: return nextPCDATA(
elem : return nextELEM (n)
seq: return nextSEQ (n) ;
choice: return nextCHOICE(n);
kleene: return nextKLEENE(n);

s
)l

?

Algorithmus 6.17: Die globale next-Operation
O

Der EMPTY-Knoten stellt keinen Kindknoten und somit auch keinen next-
sibling dar. Wird ein EMPTY-Knoten erreicht, wird dieser durch Aufruf der
Operation processParent(Syntaxknoten n) als besucht markiert, und die Suche
nach dem next-sibling-Knoten beim parent-Knoten fortgefiihrt.

Definition 6.19 (nextEmpty). Sei KST ein Strom aus Integern mit aktueller
Position p = KST.getPos(), so ist die Operation nextEMPTY (Syntazknoten n)
wie folgt definiert.
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List KST;

public Syntaxknoten nextEMPTY(Syntaxknoten n)

{
}

return processParent (n);

Algorithmus 6.18: Operation next fiir EMPTY
O

Der PCDATA-Knoten erzeugt einen Text-Knoten. Da an dieser Stelle nicht
zwischen Element-, Attribut- und Text-Knoten unterschieden wird, sondern
diese Aufgabe durch das iibergeordnete XPath-Framework iibernommen wird,
wird er gleich wie ein elem-Knoten behandelt.

Da ein Knoten iiber einen Pfad von first-child- und next-sibling-Achsen er-
reicht wurde, wurden durch die Aufrufe der Operationen first und next eventu-
ell bereits einige der Knoten markiert. Da sowohl die Operationen
firstPCDATA (Syntaxknoten n) und firstELEM(Syntaxknoten n) als auch die
Operationen nextPCDATA (Syntaxknoten n) und next ELEM(Syntaxknoten n)
einen Aufruf der Methode n.mark() durchfiihren, falls der Knoten nicht bereits
markiert ist!, ist insbesondere immer der aktuelle PCDATA- bzw. elem-Knoten
markiert, fiir den die Operation next(Syntaxknoten n) initial aufgerufen wurde.
Die next-Operation unterscheidet daher zun#chst, ob der aktuelle PCDATA-
bzw. elem-Knoten markiert ist oder nicht. Ist der Knoten markiert, handelt es
sich hierbei um den aktuellen Kontextknoten, fiir den der next-sibling-Knoten
ermittelt werden soll. In dem Fall wird zunéchst im Komprimat mit Hilfe der
Operation skipSubtree der Teilbaum unter dem elem-Knoten iibersprungen
und dann wird die Suche beim parent-Knoten fortgesetzt. Ist der Knoten noch
unmarkiert, wurde der gesuchte next-sibling-Knoten gefunden, und dieser Kno-
ten wird zuriickgegeben.

Die Operation skipSubtree ist hierbei analog zur Operation decomp definiert,
nur dass die schreibenden Operationsaufrufe S.write(...) entfallen.

Definition 6.20 (nextPCDATA, nextELEM). Sei KST ein Strom aus In-
tegern mit aktueller Position p = KST.getPos(), so sind die Operationen
nestPCDATA (Syntazknoten n) und nextELEM (Syntazknoten n) wie folgt de-
finiert.

! Die Operationen nextPCDATA (Syntaxknoten n) und nextELEM (Syntaxknoten n) fithren
diesen Aufruf indirekt durch einen Aufruf der Operation processParent(Syntaxknoten n)
durch.
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List KST;

public Syntaxknoten nextPCDATA(Syntaxknoten n)
{
if (!n.isMarked () )return n;
else{
skipSubtree (n);
return processParent (n);

Y

}
}
public Syntaxknoten nextELEM(Syntaxknoten n)
{

if (In.isMarked () )return n;

else{

return processParent (n);
}

Y

Algorithmus 6.19: Operation next fiir PCDATA undELEM
O

Der seq-Knoten erzeugt im Struktur-Strom eine Folge von zwei Teilfolgen,
wobei die Teilfolgen auch leer sein konnen. Die next-Operation sucht beginnend
mit dem ersten nicht-markierten Knoten x nach dem next-sibling-Knoten, in-
dem sie fiir x die next-Operation aufruft und deren Ergebnisknoten als Er-
gebnis weiterreicht. Existiert kein unmarkierter Knoten, wird die Suche beim
parent-Knoten fortgesetzt.

Definition 6.21 (nextSEQ). Sei KST ein Strom aus Integern mit aktueller
Position p = KST.getPos(), so ist die Operation neztSEQ(Syntazknoten n) wie
folgt definiert.

List KST;

public Syntaxknoten nextSEQ(Syntaxknoten n)

{
if (!left.isMarked()){

return next(n.left);
}

else if (!right.isMarked()){
return next(n.right);
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}

else{
return processParent (n);
}

Algorithmus 6.20: Operation next fiir SEQ
O

Der choice-Knoten erzeugt eine von zwei moglichen Teilfolgen, wobei im
Komprimat die gewidhlte Alternative kodiert ist. Ist noch keiner der beiden
Kindknoten markiert, wird die Suche bei der im Komprimat kodierten Al-
ternative fortgesetzt. Ist bereits ein Knoten (die gewéhlte Alternative) mar-
kiert, wurde dieser Knoten komplett durchsucht. Die Suche wird deshalb beim
parent-Knoten fortgesetzt.

Definition 6.22 (nextCHOICE). Sei KST ein Strom aus Integern mit aktuel-
ler Position p = KST.getPos(), so ist die Operation next CHOICE(Syntazknoten
n) wie folgt definiert.

List KST;
public Syntaxknoten nextCHOICE(Syntaxknoten n)
{
if(left.isMarked () || right.isMarked()){
return processParent (n);
}
else{
int x = KST.read () ;

if (x==0) return next(left);
else return next(right);

Algorithmus 6.21: Operation next fiir CHOICE
O

Der kleene-Knoten erzeugt eine (evtl. leere) Folge von nichtleeren Teilfolgen,
wobel im Komprimat die Anzahl der Teilfolgen kodiert ist. Wenn ein kleene-
Knoten erreicht wird, bedeutet dies eine neue Wiederholung, und samtliche
Markierungen des Teilbaums unterhalb des kleene-Knotens werden gel6scht.
Dies geschieht mit Hilfe der Operation deleteDescendantMarks(). Wiahrend fiir
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alle anderen Knotentypen die Markierung lediglich widergibt, ob dieser Knoten
bereits besucht wurde oder nicht, enthélt die Markierung des kleene-Knotens
mehr Informationen: mit Hilfe der Markierung wird sowohl gespeichert, in der
wievielten Teilfolge das aktuelle Element enthalten ist (Parameter: count), als
auch wieviele Teilfolgen insgesamt vorhanden sind (Parameter: max). Wird die
aktuelle Markierung geloscht, werden die Werte der beiden Parameter max und
count auf den Wert "'UNKNOWN’ gesetzt, so dass beim néchsten Erreichen des
kleene-Knotens der ab dann giiltige Wert fiir max — die Anzahl der Teilfolgen
— aus dem Komprimat gelesen werden muss.

Definition 6.23 (nextKLEENE). Sei KST ein Strom aus Integern mit aktuel-
ler Position p = KST.getPos(), so ist die Operation nextKLEENE(Syntazknoten
n) wie folgt definiert.

List KST;
public Syntaxknoten nextKLEENE (Syntaxknoten n)
{
if (n.max=UNKNOWN) {
n.max — KST.read ();
n.count=0;
if(n.count < n.max){//Es folgt eine weitere
Wiederholung
deleteDescendantMarks () ;
n.count-++;

return left .next();

else{ //Die letzte Wiederholung wurde abgearbeitet
weiter beim Parent
return processParent (n);

Algorithmus 6.22: Operation next fiir KLEENE
O

Die bisher vorgestellte Menge von Definitionen der next-Operationen fiihrt
uns zu dem in Abbildung 6.2 skizzierten Hauptsatz, wobei jeweils first durch
next und first-child durch next-sibling ersetzt werden muss:

Satz 6.3. Sei S ein Struktur-Strom und E ein Element mit startElement-
Event sE € S und endElement-Event eE € S. Sei KST ein Komprimat, p
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eine Position und n ein Syntaxknoten, so dass E mit dem Tupel (KST, n, p)
korrespondiert. Seien n’!=null und p’ die Riickgabewerte der folgenden Hin-
tereinanderausfithrung:

KST .setPos(p); n’=next(n); p’=KST.getPos();

Dann gilt: E/next-sibling korrespondiert mit dem Tupel (KST, n’,p’).

Beweis. Laut Definition 2.4 ist das next-sibling-Element im Struktur-Strom
durch das néchste auf das zugehorige endElement-Event folgende startElement-
Event im Struktur-Strom definiert. Entsprechend geht auch die Operation next
fiir die DTD-Subtraktion vor: Zun#chst wird in der Operation
nextELEM (Syntaxknoten n) nach Definition 6.20 der unterhalb des aktuel-
len Elements liegende Teilbaum mit Hilfe der Operation skipSubtree() iiber-
sprungen, um zum zugehorigen endElement-Event zu gelangen. Bei der Ope-
ration next EMPTY (Syntaxknoten n) fiir die Blattknoten n vom Typ EMPTY
bzw. fiir markierte elem- bzw. PCDATA-Syntaxknoten wird die Suche beim
parent von n fortgefiihrt (siehe Definitionen 6.19 und 6.20). Fiir unmarkier-
te elem- bzw. PCDATA-Syntaxknoten n wird der Knoten n selbst zuriick-
gegeben (siehe Definition 6.20). Fiir die inneren Syntaxknoten vom Typ seq,
choice und kleene wird zunéchst fiir die unmarkierten Kindknoten die Operati-
on next(Syntaxknoten) aufgerufen, um das next-sibling zu ermitteln. Sind alle
Kindknoten markiert, wird die Suche beim parent fortgefiihrt (siehe Definitio-
nen 6.21, 6.22 und 6.23). Wird ein unmarkierter elem- bzw. PCDATA-Knoten
n’ gefunden, bildet er zusammen mit der aktuellen Position p’ im Komprimat
KST das mit dem next-sibling-Element im Struktur-Strom korrespondieren-
de Tupel (KST, n’, p’). Existiert kein solcher elem- bzw. PCDATA-Knoten,
exisitiert auch kein next-sibling. O

6.4 Unterstiitzung der DOM-Schnittstelle

Um zu zeigen, dass die DTD-Subtraktion mit Hilfe kleiner Modifikationen die
komplette DOM-Schnittstelle unterstiitzt, werde ich in diesem Kapitel eine
mogliche Umsetzung der lesenden DOM-Funktion parent sowie der schreiben-
den DOM-Operationen insert und remove direkt auf dem Komprimat — ohne
vorherige Dekompression — beschreiben.

6.4.1 Die parent-Achse

Im Gegensatz z.B. zur Succinct-Darstellung kann die parent-Achse nicht ein-
fach auf dem Komprimat berechnet werden, denn es ist nicht mdglich, fiir einen
Knoten E bzw. fiir dessen korrespondierendes Tupel (KST, n, p) ein Tupel
(KST’, n’, p’) zu berechnen, so dass E/parent mit dem Tupel
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(KST’, n’, p’) korrespondiert.

Beispiel 6.5 Betrachten wir das Beispieldokument aus Listing 2.3. Das ent-
sprechende Komprimat wird in Listing 6.9 dargestellt. Gesucht werde das pa-
rent zum Postfach der ersten Person. Dieser Postfach-Knoten entspricht dem
Tupel (KST, n, p), wobei n der elem(Person)-Knoten (ID6) im Syntazbaum
in Abbildung 6.1 ist, und p=3, die Pointer-Position zeigt auf die erste 0 im
KST, die fir die gewdhlte Alternative 0 steht. Laufen wir ,rickwdrts“ im KST,
kann das Zeichen an Position 2 fiir zwei verschiedene Syntaxknoten stehen: er-
stens kann es fir den kleene-Knoten stehen, also aussagen, dass es insgesamt
eine wiederholte Teilfolge gibt, andererseits konnte es aber auch Teil einer vor-
angehenden Wiederholung sein, und somit fiir choice-Knoten (ID10) und die
gewdhlte Alternative ,Telefon” stehen.

Solch einen Beispielfall kann man nicht nur fir Wiederholungen, sondern
insbesondere auch fiir choice-Knoten mit Alternativen, die eine unterschiedli-
che Anzahl Zeichen im KST bewirken, konstruieren.

Um dennoch eine DOM-Schnittstelle fiir die DTD-Subtraktion unterstiitzen
zu kénnen, kann man die parent-Achse z.B. mit Hilfe eines Stacks, der alle
ancestor-Knoten des aktuell betrachteten Knotens enthilt, realisieren.

Da es sich laut [11] bei einer Untersuchung von iiber 190.000 im Web ver-
fiigbaren XML-Dokumenten gezeigt hat, dass die durchschnittliche Tiefe eines
XML-Dokuments bei 4 Knoten liegt (wobei 99% aller Dokumente eine Tiefe
von maximal 8 Knoten haben, und die maximal erreichte Tiefe 135 war), ist
die zu erwartende Grofe des Stacks entsprechend begrenzt, so dass kein allzu
grofier Overhead entsteht.

Hierzu muss jedes Mal, wenn ein Syntaxknoten durch die first-Operation
zuriickgeliefert wird, dieser zusammen mit der aktuellen Position auf den Stack
gelegt werden, und jedes Mal, wenn ein Syntaxknoten durch die next-Operation
zuriickgeliefert wird, muss dieser zusammen mit der aktuellen Pointer-Position
p im KST die oberste Stack-Ebene ersetzen. Um zum parent zuriickzukehren,
wird das oberste Element des Stacks zuriickgeliefert und vom Stack entfernt.
Dies fiihrt zu den folgenden Neudefinitionen der first- und der next-Operation
und zur folgenden Defintion der parent-Operation:

Definition 6.24 (firstPCDATA, firstELEM). Sei KST ein Strom aus In-
tegern mit aktueller Position p = KST.getPos(), so sind die Operationen
firstPCDATA (Syntaxzknoten n) und firstELEM (Syntazknoten n) wie folgt de-
finiert.
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Stack ancestor;
public Syntaxknoten firstPCDATA (Syntaxknoten n)
{

n.mark () ;

ancestor .push ((n, KST.getPos()));

return n;

}

public Syntaxknoten firstELEM (Syntaxknoten n)

{

n.mark () ;
ancestor .push ((n, KST.getPos()));
return n;

Algorithmus 6.23: Operation first fiir PCDATA undELEM
O

Zusitzlich zu der aus Definition 6.13 bekannten Funktionalitit werden vor
Riickgabe des Syntaxknotens der ermittelte Syntaxknoten und die aktuelle
Position auf dem Stack ancestor gespeichert (Zeilen 7 und 13).

Definition 6.25 (nextPCDATA, nextELEM). Sei KST ein Strom aus In-
tegern mit aktueller Position p = KST.getPos(), so sind die Operationen
nextPCDATA (Syntazknoten n) und nextELEM (Syntazknoten n) wie folgt de-
finiert.

List KST;
Stack ancestor;
public Syntaxknoten nextPCDATA(Syntaxknoten n)
{
if (!n.isMarked()){
ancestor .pop () ;
ancestor .push ((n, KST.getPos()));
return n;

}

else{
skipSubtree (n);
return processParent (n);
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}

public Syntaxknoten nextELEM(Syntaxknoten n)
{
if (!n.isMarked()){
ancestor .pop () ;
ancestor.push((n, KST.getPos()));
return n;
}
else{
return processParent (n);
¥

Algorithmus 6.24: Operation next fiir PCDATA und ELEM
O

Zusitzlich zu der aus Definition 6.20 bekannten Funktionalitdt wird vor
Riickgabe des Syntaxknotens das oberste Element des Stacks ancestor durch
den ermittelte Syntaxknoten und die akutelle Position ersetzt (Zeilen 7-8 und
19-20).

Definition 6.26 (parent). Sei KST ein Strom aus Integern mit aktueller Po-
sition p = KST.getPos(), so ist die Operation parent() wie folgt definiert.

List KST;
Stack ancestor;

public Syntaxknoten parent ()
{
(Syntaxknoten n, int p) = ancestor.top();
ancestor .pop () ;
KST.setPos(p);
return n;

Algorithmus 6.25: Operation parent
O

Anstatt Syntaxknoten und Position des parents zu berechnen, werden diese
vom obersten Stack-Element ausgelesen, vom Stack verdréngt und zuriickge-
geben.
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6.4.2 Einfiigen und L&schen

Die Update-Operationen insert und remove erfordern bei der DTD-Subtraktion
im Wesentlichen lokale Anderungen. Bis auf zwei Ausnahmen heisst dies, dass
lediglich der komprimierte Teilbaum an der ausgewéhlten Stelle in das Kom-
primat geschrieben wird bzw. aus dem Komprimat geloscht wird. Einzig wenn
die Update-Operation die gewéhlte Alternative oder die Anzahl Wiederholun-
gen einer Teilfolge betrifft, muss zusitzlich die entsprechende iibergeordnete
Information im Komprimat gedndert werden.

Wird eine gewidhlte Alternative durch eine andere Alternative ersetzt, muss
zusétzlich zum Loschen und Neueinfiigen der komprimierten Teilbdume das
Bit, welches die gewihlte Alternative kodiert, gedndert werden. Dieses Bit
befindet sich direkt vor dem geldschten Teilbaum und kann beim FErsetzen
direkt gelesen werden und mit wenig Aufwand geéindert werden.

Wird die Anzahl Wiederholungen eines kleene-Operators gedndert, muss der
Eintrag an der entsprechenden Stelle im Komprimat erhoht bzw. gesenkt wer-
den. Da jedoch eine Riickwirtssuche der Stelle im Komprimat, wie im vor-
herigen Abschnitt zur parent-Achse motiviert, nicht moglich ist, miissen in
diesem Fall zusétzliche Informationen gespeichert werden, um Updates auf
dem Komprimat zu ermoglichen. Zusétzlich zu der maximalen Anzahl an Wie-
derholungen und der aktuellen Wiederholung, die bereits zur Umsetzung der
next-sibling-Achse benotigt wurden, muss zur Laufzeit fiir jeden bereits be-
suchten Kleene-Knoten die dazugehorige Position im Komprimat gespeichert
werden. Diese kann — entsprechend wie auch die Parameter count und max
— beim Durchqueren des Komprimats bei der Ermittlung der Einfiige- bzw.
Losch-Position zur Laufzeit ermittelt werden.

Da es zu jedem Paar aus DTD und XML-Dokument genau ein eindeutiges
Komprimat bei der DTD-Subtraktion gibt, gibt es insbesondere fiir das modi-
fizierte XML-Dokument, in dem die Updates durchgefiihrt wurden, genau ein
eindeutiges Komprimat. Sind die vorgestellten Update-Operationen auf dem
Komprimat korrekt, fithrt also eine Update-Operation U auf dem Komprimat
K zu einem Komprimat K’, so dass eine anschlieffende Dekompression von K’ zu
genau demselben XML-Dokument X’ fithrt, wie die Update-Operation direkt
auf dem urspriinglichen XML-Dokument X, so sind daher auch die Update-
Operationen optimal. Dies bedeutet, dass Updates auf dem Komprimat zu
genau demselben modifizierten Komprimat fithren, wie wenn man das Kompri-
mat dekomprimieren wiirde, Updates auf dem XML-Dokument durchgefiihrt
hétte, und anschlieffend wieder komprimieren wiirde.
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6.5 Optimierte Darstellung der Kleene-Werte

Bei einer Analyse iiber verschiedene XML-Test-Dokumente hat sich gezeigt,
dass die Integer-Werte, welche die Anzahl Wiederholungen eines Kleene-Ope-
rators reprisentieren, iiber alle Dokumente derselben Haufigkeitsverteilung un-
terliegen. Diese Beobachtung erlaubt es, eine statische Huffman-Kodierung der
kleinsten Werte, konkreter der Werte 0-24 zu berechnen. Werte grofer als 24
werden durch ein Markierungstoken gekennzeichnet und anschliefsend mit Hilfe
der Uberlaufkodierung fiir ganzzahlige Integer-Werte kodiert. Dies fiihrt zu ei-
ner Kodierung der Kleene-Werte, bei der ein Wert n mit durchschnittlich 0,7*n
Bits kodiert wird. Details zu dieser optimierten Darstellung der Kleene-Werte
wurden in [16] zur Verdffentlichung eingereicht.

6.6 Zusammenfassung: Eigenschaften der
DTD-Subtraktion

6.6.1 Kompressionsstarke

Im Gegensatz zur Succinct-Darstellung kann der genaue Speicherbedarf des
Komprimats nicht angegeben werden, da dieser nicht nur vom Dokument, son-
dern insbesondere auch von der Genauigkeit der DTD abhéngt. So kann fiir
ein Dokument mit zwei verschiedenen DTDs die Grofse des Komprimats stark
variieren: Das Komprimat enthilt gar keinen Eintrag, wenn die DTD nur ge-
nau diese Dokumentstruktur erlaubt, und es enthilt umso mehr Eintrége, je
ofter *- und |-Operatoren der DTD zur Kompressiohn des XML-Dokumentes
benutzt werden. Zusammenfassend lasst sich sagen:

e Fiir jede Auspriagung eines *-Operators der DTD im Dokument wird 1
Integer im Komprimat benotigt, bzw. unter der Verwendung der stati-
schen Huffman-Kodierung werden durchschnittlich 0,7*n Bits fiir einen
Wert n bendtigt.

e Fiir jede Auspréigung eines |-Operators im Dokument wird 1 Bit im Kom-
primat bendtigt.

e Alle anderen DTD-Operatoren bzw. Syntaxknoten erfordern keinen Spei-
cherplatz im Komprimat.

6.6.2 Weitere Eigenschaften

Wie im Verlaufe dieses Kapitels gezeigt, hat die DTD-Subtraktion noch die
folgenden Eigenschaften:
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o Streamingfihig: Sie ist mit Hilfe der Uberlaufkodierung fiir Syntaxknoten
vom Typ kleene streamingfihig.

o Auswertung von Pfad-Anfragen: Pfad-Anfragen, die mit Hilfe der ato-
maren Achsen first-child und next-sibling ausgedriickt werden kdnnen,
konnen direkt auf dem Komprimat ausgewertet werden.

o Updates: Updates konnen unbeschriankt auf einem gegebenen Kompri-
mat K durchgefithrt werden, insofern, als das Komprimat mit nachfolgen-
der Update-Operation U zu demselben Ergebnis K’ fithrt, wie wenn man
erst U zum XML-Dokument X dekomprimiert hétte, die entsprechende
Update-Operation U auf X ausgefithrt hétte und anschlieffend wieder
zu K”=K’ komprimiert hatte. Hierbei wird jedoch zusétzlicher Speicher-
aufwand benotigt, da fiir jeden kleene-Operator auf dem Pfad von der
Waurzel zum aktuellen Knoten die Stelle seiner Kodierung im Komprimat
bekannt sein muss.

o DOM: Sie unterstiitzt indirekt die DOM-Schnittstelle, indem die parent-
Achse mit Hilfe eines Stacks implementiert wird.



7 DAG-basierende
Kompression

Wie in Kapitel 5 gezeigt verhélt sich der DAG beziiglich der Struktureigen-
schaften wie der XML-Baum, da fiir jede Kante im XML-Baum eine entspre-
chende Kante im DAG existiert, und fiir jeden Knoten im XML-Baum ein
entsprechender DAG-Knoten. Daher liegt es nahe, zu versuchen, die beiden an-
deren vorgestellten Kompressionsverfahren — Succinct-Darstellung und DTD-
Subtraktion — so zu verallgemeinern, dass sie statt eines SAX-Event-Stroms
auch einen DAG-Event-Strom verarbeiten kénnen.

Hierbei betrachtet man den DAG als einen Baum mit zusétzlichen Riick-
wartsverweisen. Sowohl die Succinct-Darstellung als auch die DTD-Subtraktion
stellen bereits die Baum-Komponente des DAGs dar, daher diskutiere ich in
diesem Kapitel, wie man diese Darstellungen um Riickwértsverweise erweitern
kann.

Diese Kombinationen zweier Kompressions-Ideen sollten jeweils in einer ver-
besserten Kompression miinden, also in einer Kompression mit einem kleineren
Komprimat. Um zu verhindern, dass das Einfiigen eines Riickwértsverweises
zu einer Aufbldhung des urspriinglichen Komprimats fiihrt, werden nur diejeni-
gen Riickwértsverweise umgesetzt, die “sinnvoll” sind, also zu einer Verkleine-
rung fiihren. Genauer gesagt bedeutet dies, dass ein wiederholt vorkommender
Teilbaum nur dann durch einen Riickwartsverweis umgesetzt wird, wenn die
Kodierung des Verweises kleiner ist als die Kodierung des wiederholten Teil-
baumes. Dies wird insbesondere dazu fiihren, dass Riickwirtsverweise, die auf
sehr kleine Teilbdume verweisen (z.B. mit 1 Knoten) nicht als solche kodiert
werden, sondern statt dessen direkt die Kodierung des Teilbaums ins Kompri-
mat geschrieben wird.

112
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7.1 Kodierungsarten fiir Riickwartsverweise

In diesem Kapitel diskutiere ich die Vorteile zweier mdoglicher Implementierun-
gen der Riickwirtsverweise: der Inline-Kodierung einerseits und der Outline-
Kodierung andererseits.

Bei der Inline-Kodierung wird ein Riickwartsverweis direkt an die entspre-
chende Stelle im Komprimat geschrieben, gekennzeichnet durch ein Markie-
rungstoken. Dadurch muss der Start-Knoten eines Riickwartsverweises nicht
explizit kodiert werden, da er implizit aufgrund der Position bekannt ist.

Bei der Outline-Kodierung werden alle Riickwértsverweise separat in ei-
nem Daten-Strom gespeichert. Dieser muss fiir jeden Riickwértsverweis sowohl
Start-Knoten als auch Ziel-Knoten explizit speichern.

Im Folgenden werde ich die beiden Kodierungsarten zunéchst vorstellen und
dann den Speicherverbrauch beider Kodierungsarten vergleichen.

7.1.1 Inline-Kodierung

Bei der Inline-Kodierung wird der Riickwartsverweis direkt an der entsprechen-
den Position in den Strom geschrieben. Um einen Verweis zu kennzeichnen,
wird eine spezielle Bitfolge — genannt Markierungstoken — die solch einen Ver-
weis markiert, vorangestellt. Da natiirlich diese Bitfolge auch zuféllig im Strom
auftreten kann, ohne dass sie einen Verweis darstellt, miissen solche zufilligen
Vorkommen entsprechend maskiert werden.

Beispiel 7.1 Nehmen wir an, das Markierungstoken wdare die Bitfolge 111111,
Es muss also gewdhrleistet sein, dass diese Bitfolge nicht zufillig an anderer
Stelle wm Strom auftreten kann. Dazu wird jedes Vorkommen der Bitfolge 11111
durch die Bitfolge 111110 ersetzt. So wird zum Beispiel die Folge 111111 durch
1111101 maskiert, und die Folge 111110 durch 1111100.

Sei allgemein nun M=(my,...,my), mit m; € {0,1},1 <14 < n das Markie-
rungstoken bestehend aus n Bits. Dann gilt: eine Bitfolge B=(b1,...,b,) mit
V1 <i < n:b = m; wird maskiert durch die Bitfolge B’=(b1,...,bp—1,1 —
My, by). Solch eine Maskierung von zuféllig auftretenden Markierungstoken
kann effizient mit Hilfe eines Automaten umgesetzt werden.

Fiir XML-Reprisentationen, in denen eine Position p im Strom nicht eindeu-
tig einen Knoten identifiziert — dies ist z.B. bei der D'TD-Subtraktion der Fall
— muss zusétzlich zu dem Markierungstoken die zur eindeutigen Identifikation
noch fehlende Zusatzinformation an Position p geschrieben werden.

Diese Kombination aus Markierungstoken an Position p, eventuell gefolgt
von zusdtzlichen Identifizierungsinformationen, gibt eindeutig den Start-Knoten
des Riickwértsverweises an. Darauf muss die eindeutige Indentifizierungsinfor-
mation fiir den Ziel-Knoten des Riickwértsverweises folgen.
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7.1.2 Outline-Kodierung

Bei der Outline-Kodierung werden Paare von Identifizierungsinformationen fiir
Start- und Ziel-Knoten eines Riickwértsverweises in einem extra Strom gespei-
chert. Dies hat den Vorteil, dass keine Maskierung des bisherigen Stromes
erfolgen muss, wodurch kein zusdtzlicher Overhead entsteht. Im Vergleich zur
Inline-Kodierung muss allerdings zusétzlich die Position des Start-Knotens im
Strom gespeichert werden. Ebenfalls erfordert ein zusétzlicher Strom durch
Verwaltung und Synchronisation mit den anderen Stromen evtl. einen verwal-
tungstechnischen Overhead.

7.1.3 Speicherkosten von Inline- und Outline-Kodierung

Betrachten wir zundchst die durch die Inline-Kodierung entstandenen Zusatz-
kosten. Zunéchst einmal miissen im Strom alle zufélligen Auftreten der ersten
t-1 Bits des Markierungstoken maskiert werden, wobei t die Lange des Markie-
rungstoken sei. Bei einem Strom der Lange n gibt es also insgesamt (n-(t-1)+1)
Bitfolgen der Lénge t-1, wobei fiir jede dieser Bitfolgen die Wahrscheinlichkeit,
dass diese Bits gleich den ersten t-1 Bits des Markierungstokens sind, Qt—l,r be-
tragt, wenn wir davon ausgehen, dass alle moglichen Bitfolgen gleichverteilt
sind. Nur wenn eine Bitfolge der Lange t-1 den ersten t-1 Bits des Markie-
rungstokens entspricht, erhalten wir 1 Bit Overhead fiir die Maskierung der
Bitfolge. Wir erhalten also als Kosten M fiir die Markierung in etwa die fol-
genden Kosten:

1 )
M(n)%(n—(t—1)+1)*2t—_132ts

Zusétzlich benotigen wir die Kosten zur Speicherung jedes Verweises. Solch ein
Verweis besteht aus dem Markierungstoken mit t Bits, evtl. einer zusdtzlichen
Identifizierungsinformation mit i Bits sowie der Kodierung des Zielknotens mit
z Bits. Nehmen wir an, wir haben v Verweise, so ergibt sich fiir die Gesamt-
Verweiskosten V:

V(v) =vx*(t+i+ z)Bits

Bei einer Analyse verschiedener DAG-Kompressionen von XML-Dokumenten
hat sich gezeigt, dass v=7mir r=150 fiir die Succinct-Darstellung und r=300
fiir DTD-Subtraktion ein Mittelwert fiir die Anzahl der sinnvollen Verweise
ist, dass es also im Mittel je 150 Bits bzw. 300 Bits der XML-Repriasentation
einen sinnvollen Riickwartsverweis gibt. Somit erhalten wir:

V(n) = MB#S
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Insgesamt betragen also die durch die Inline-Kodierung entstanden Zusatzko-
sten

1 nx(t+1i+ 2)

51 " Bits

Iln)=Mn)+V(n)=Mn—-(t—1)+1)x

Betrachten wir nun die durch die Outline-Kodierung entstandenen Zusatz-
kosten. Je Verweis erhalten wir fiir die Outline-Kodierung zwei Knoten-Kodie-
rungen der Linge z, da wir davon ausgehen konnen, dass die Identifizierung des
Start-Knotens dieselbe Anzahl an Bits bendtigt wie die Identifizierung des Ziel-
Knotens. Wir erhalten also Zusatzkosten fiir die Outline-Kodierung in Hohe

von:
2%n*z

O(n) =v*2%xz=———Rits
r
Um nun fiir die beiden Kodierungsmoglichkeiten herauszufinden, ob die

Inline- oder die Outline-Kodierung weniger Zusatzkosten verspricht, muss also
die Differenz D der beiden Zusatzkosten gebildet werden.

1 +n>k(t+z'+z) _ 2xmxz
2t—1 r r

1 t+i—z2, t-—2
gt—1 r J - gt—1

In Abhéngigkeit von der Stromgrofke n erhalten wir also eine Gerade mit
Steigung m(t) = 2,5—14 + H=2 fiir die gilt, dass je geringer die Steigung ist,
desto besser ist die Inline-Kodierung im Vergleich zur Outline-Kodierung. Es
gilt

Bits

=mn—(t—-1)+1)=

=nx]| Bits

r .
m(t)<0<:>z>F+t+z

also ist die Inline-Kodierung im Vergleich zur Outline-Kodierung besser, so-
lange die Kosten der Ziel-Kodierung z(t,i) oberhalb der durch t und i vorgege-
benen Schranke bleiben.

Um die fiir die Inline-Kodierung im Vergleich zur Outline-Kodierung giin-
stigste Lénge t des Markierungstokens zu ermitteln, miissen wir das Minimum
der Steigung m; von I(n) in Abhéngigkeit von t berechnen.

1 t+14+ 2
mI(t) = 2t—1 r
In(2
mi(t) = -2 1
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7.2 Succinct-Verfahren mit DAG-Pointern

Bei der Succinct-Darstellung geniigt — wie in Kapitel 4 gezeigt — die Position
innerhalb des Bitstroms zur eindeutigen Identifizierung eines Knotens. Daher
betragt die Lange i fiir — in diesem Fall nicht vorhandene — Zusatzinformationen
zur Identifizierung des Start-Knotens i=0.

Mit dem fiir die Succinct-Darstellung sinnvollen Wert r=150 ergibt sich als
Nullstelle von m/(¢) und somit als minimale Steigung t=7,7. Da t jedoch nur
ganzzahlige Werte annehmen kann, ist fiir jede XML-Représentation t € {7, 8}
so zu wihlen, dass m;(t) minimal ist.

Berechnen wir also die Schranke fiir die Kosten der Ziel-Kodierung z fiir die
beiden sinnvollen Werte t=7 und t=8 sowie i=0, so erhalten wir z(7,0)>9,34
und z(8,0)>9,17. Dies bedeutet, dass bis zu einer Ziel-Kodierung mit (ein-
schlieflich) 9 Bits — entsprechend einer Paketgrofe mit bis zu 512 Bits pro
Paket — die Outline-Kodierung besser ist als die Inline-Kodierung, aber ab ei-
ner Ziel-Kodierung mit 10 Bits ist die Inline-Kodierung besser als die Outline-
Kodierung.

Im Folgenden wihlen wir nun z=9 Bits fiir die Kosten der Ziel-Kodierung,
um die fiir die Inline-Kodierung giinstigste Tokenldnge t zu berechnen, da
mit z=9 eine Paketgrofe von bis zu 512 Bits adressiert werden kann. Um zu
ermitteln, welche Tokenlénge t fiir die Inline-Kodierung optimal wére, miissen
wir my(7)=0,14 und m(8)—0,12 berechnen. Da bei einer Tokenlénge von t—8
die Steigung der Geraden am geringsten ist, sollte also bei einem Vergleich der
beiden Kodierungen t=8 gewéhlt werden.

Da bei t=8 die Steigung m(8)=0,001 positiv ist, gilt, dass mit steigen-
der Stromgrofe n die Outline-Kodierung immer besser wird als die Inline-
Kodierung. Um diese Aussage aber richtig bewerten zu konnen, miissen wir
noch den Schnittpunkt mit der x-Achse bzw. die Nullstelle von D(n) berech-
nen, um zu sehen, ab welcher Stromgrofe n die Outline-Kodierung besser ist
als die Inline-Kodierung. Die Nullstelle von D(n) liegt bei n—20 ~ 41, al-
so ist ab einer Stromgrofe von 41 Bits die Outline-Kodierung besser als die
Inline-Kodierung.

Fiir die Succinct-Darstellung sollte somit bei Paketgrofen von bis zu 512
die Outline-Kodierung gewadhlt werden, bei groferen Paketgrofen die Inline-
Kodierung.

Dies ergibt also bei der Outline-Kodierung pro Verweis zusdtzliche Kosten
in Hohe von 2 Integern. Da in der Succinct-Darstellung pro Knoten 2 Bits im
Bitstrom und 1 Integer im Symbolstrom bzw. in der invertierten Labelliste
gespeichert werden, lohnt die Umsetzung eines Riickwartsverweises bereits ab
einer Teilbaumgrofe von 2 Knoten. Lediglich Riickwértsverweise auf Teilbdu-
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me der Lange 1 (also z.B. auf den Text-Platzhalter —T) lohnen nicht in der
Umsetzung und werden daher wiederholt.

Die in diesem Abschnitt prasentierten Ideen zur Kombination von DAG-
Kompression mit Succinct-Kodierung wurden in [15] verdffentlicht.

7.3 DTD-Subtraktion mit DAG-Pointern

Im Gegensatz zur Succinct-Darstellung sind die Informationen zur eindeutigen
Identifizierung eines Knotens in der D'TD-Subtraktion teurer. Wie in Kapitel 6
gezeigt, benodtigen wir zur eindeutigen Identifizierung den Syntaxknoten sowie
die Position innerhalb des KST.

Im folgenden beschreibe ich zwei Varianten der Kombination von DTD-
Subtraktion mit DAG-Pointern: die naive Variante und eine optimierte Va-
riante, die auf sogenannten expliziten Knoten beruht. In der naiven Variante
sind Verweise auf jeden Zielknoten des XML-Dokumentes erlaubt.

Dies bedeutet, dass wir pro Knoten ca. 2 Integer (Syntaxknoten-ID + KST-
Position) benétigen, also fiir einen Verweis in der Outline-Kodierung ca. 4
Integer bzw. 32 Bits. Da im Schnitt ein Knoten mit ca. 2 Bits in der DTD-
Subtraktion reprisentiert wird, bedeutet dies, dass erst eine Umsetzung von
Riickwértsverweisen ab einer Teilbaumgrofe von mindestens 17 Knoten, also
sehr grofsen Teilbdumen, sinnvoll ist.

Um diese Kosten zu senken, lasst die optimierte Variante die zusétzlich be-
notigte Identifizierungsinformation — also die Syntaxknoten-ID — aus, indem
eindeutig definiert ist, welcher Knoten durch die KST-Position identifiziert
wird. Dadurch kann man zwar einige Riickwértsverweise nicht realisieren, da
einige Knoten dadurch nicht adressierbar sind, aber die Menge der sinnvollen
Riickwéartsverweise sinkt dadurch nicht, sondern steigt sogar, wie Tests gezeigt
haben.

Definition 7.1 (expliziter Knoten). Sei xml ein XML-Dokument, KST das
Komprimat zu xml, p eine Position im KST und sei V(p)—{x € xml| x kor-
respondiert mit (KST, n, p), n ist ein Syntaxknoten} die Menge von XML-
Knoten, die durch die Position p identifiziert werden. Dann sei der ezplizite
Knoten eV(p) zu p definiert durch eV(p)=(y € V(p)| Vo € V(p) | y=x V x
steht in einem Preorder-Durchlauf von xml vor y).

Diese Definition erlaubt uns, nur Riickwértsverweise zu realisieren, die einen
expliziten Knoten als Start-Knoten haben, da dieser eindeutig aufgrund der
KST-Position identifiziert werden kann.

Wir erhalten somit Zusatzkosten fiir zusétzliche Identifizierungsinformatio-
nen in Hohe von i=0. Mit dem fiir die DTD-Subtraktion sinnvollen Wert
r=300 ergibt sich als Nullstelle von m/(¢) und somit als minimale Steigung
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t=8,7. Da t jedoch nur ganzzahlige Werte annehmen kann, ist fiir jede XML-
Représentation ¢ € {8,9} so zu wihlen, dass m(t) minimal ist. Berechnen wir
wieder die Schranke fiir die Kosten der Ziel-Kodierung z fiir die beiden sinn-
vollen Werte t=8 und t=9 sowie i=0, so erhalten wir wieder z(8,0)>10,34 und
z(9,0)>10,17. Dies bedeutet, dass bis zu einer Ziel-Kodierung mit (einschliefs-
lich) 10 Bits die Outline-Kodierung besser ist als die Inline-Kodierung, aber ab
einer Ziel-Kodierung mit 11 Bits ist die Inline-Kodierung besser als die Outline-
Kodierung. Da jedoch bei der DTD-Subtraktion die Kodierungskosten fiir den
Zielknoten den Syntax-Knoten sowie die KST-Position umfassen, kénnten mit
bis zu 10 Bits nur sehr kleine Pakete adressiert werden, so dass der bei der
DTD-Subtraktion die Inline-Kodierung gewahlt werden sollte.

Wihlen wir z.B. z=16 Bits fiir die Gesamtkosten der Ziel-Kodierung, so er-
halten wir m(8)=0,088 und m(9)=0,087; es wire also 9 die optimale Token-
lange. Durch die Inline-Kodierung erhalten wir nun pro Verweis 9 Bits fiir das
Markierungstoken sowie 16 Bits fiir die Kodierung des Ziel-Knotens, es lohnen
also Riickwirtsverweise von Teilbdumen, deren Kodierung mind. 26 Knoten
umfasst. Der erwartete Komprimierungsanstieg durch die Kombination von
DAG und DTD-Subtraktion sollte deutlich geringer ausfallen als der erwar-
tete Komprimierungsanstieg durch die Kombination von DAG und Succinct-
Darstellung. Dieses wird auch durch dien in Kapitel 11 beschriebenen Messun-
gen bestatigt.

7.3.1 Opimierte Kompression durch Kombination von DAG und
DTD-Subtraktion

Um weiterhin die Kosten fiir Riickwértsverweise zu senken, kann man versu-
chen, die Kodierung des Ziel-Knotens effizienter zu gestalten, z.B. indem man
auf die Anfragbarkeit verzichtet, und davon ausgeht, dass das Dokument immer
komplett dekomprimiert wird.

Ist dies der Fall, so erlauben die Riickwartsverweise eine einfache Ziel-Kodie-
rung: Da der verwiesene Teilbaum bereits dekomprimiert wurde zum Zeitpunkt
des Einlesens des Riickwértsverweises, kann von vornherein bei der Dekompres-
sion die Position jedes erzeugten Knotens innerhalb des SAX-Event-Stroms
rekonstruiert werden. Da nun jeder Knoten eine eindeutige Identifizierung hat,
némlich seine Position innerhalb des DAG-Event-Stroms, kann man — wie auch
im DAG-Event-Strom — als Kodierung des Zielknotens einfach die “Lénge” des
Riickwirtsverweises angeben, also den Abstand vom Start-Knoten zum Ziel-
Knoten.

Durch solche eine optimierte Ziel-Kodierung — jedoch zum Preis des Verlustes
der Anfragbarkeit — werden die Kosten fiir die Kodierung des Ziel-Knotens
auf 8 Bits gesenkt, Umsetzung von Riickwartsverweisen ab 9 Knoten werden
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sinnvoll. Im Gegenzug ist somit aber kein Uberspringen von Teilbdumen mehr
moglich, zur Anfrage-Auswertung muss die komplette Struktur dekomprimiert
werden.

7.4 Dekompression und Navigation

Sowohl Dekompression als auch Navigation konnen wie in den verwendeten
Kompressions-Verfahren — also in diesem Fall wie in den Kapiteln 4 und 6
beschrieben — umgesetzt werden. Lediglich das Fortschreiten im Strom, also
das Einlesen des néchsten Strom-Elementes weicht ab: Wahrend bisher einfach
das nachfolgende Element des Bitstroms bzw. des KSTs gelesen wurde, miissen
bei DAG-basierenden Verfahren auch die Riickwahrtsverweise beriicksichtigt
werden.

Dies kann effizient mit Hilfe eines Stacks zur Verarbeitungszeit geschehen
(vergleiche Algorithmus 7.1). Wird der Start-Knoten s eines Riickwértsverwei-
ses erreicht (Zeile 9), so werden die Identifizierungsinformationen von s oben
auf dem Stack abgelegt (Zeile 10). Anschlieflend wird zum Ziel-Knoten des
Riickwirtsverweises gesprungen (Zeile 11). Anderenfalls wird einfach die aktu-
elle Position um 1 erhoht (Zeile 14). Sobald das Ende des aktuellen Teilbaums
erreicht wurde (Zeile 6), wird das oberste Stack-Element vom Stack genommen

und zum dort gespeicherten (urspriinglichen Start-Knoten) gesprungen (Zeile
7).

Stack jumpHistory ;
int currentPos;
public void moveToNextToken
{
while (endOfSubtreeReached () ){
currentPos = jumpHistory .pop() + 1;
}
if (isPointerSource (currentPos)){
jumpHistory . push (currentPos) ;
currentPos = getPointerTarget (currentPos);
}
else{
currentPos-++;

}

Algorithmus 7.1: moveToNextToken fiir DAG-basierte Kompression
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Mit Hilfe der in Algorithmus 7.1 beschriebenen Methode zum DAG-basierten
yfortschreiten® im KST bzw. im Bitstrom, konnen Dekompression und Naviga-
tion des Succinct-Verfahrens bzw. der DTD-Subtraktion iibernommen werden,
lediglich das Berechnen der néichsten Position im KST bzw. im Bitstrom muss
mit Hilfe der Funktion moveToNextToken realisiert werden.



8 Integration der
Konstanten in das
Struktur-Komprimat

In dieser Arbeit habe ich drei Kompressions-Verfahren inklusive zweier Kom-
binationsmoglichkeiten zur Kompression von XMUL-Struktur-Stromen darge-
stellt. Aufgrund der vorangegangenen Trennung von Struktur- und Daten-
Strom (siehe Kapitel 3) sind diese Verfahren zur XML-Struktur-Kompression
im Prinzip beliebig kombinierbar mit verschiedenen Varianten der Daten-Kom-
pression. Je nach Anwendung und daraus resultierenden Anforderungen kon-
nen unabhéngig voneinander Struktur-Kompressions-Verfahren sowie Daten-
Kompressions-Verfahren ausgewdhlt werden, so dass die Anforderungen mog-
lichst optimal erfiillt werden.

Die in diesem Kapitel vorgestellten Ideen und Ansétze zur Integration von
Struktur- und Daten-Strom, sowie zur Kompression des Daten-Stroms sind
groftenteils keine eigenen Ideen, sondern stellen im Wesentlichen eine Zu-
sammenfassung von in anderen Kompressoren verwendeten Ideen zur Daten-
Kompression dar.

8.1 Zeigerlose vs. verzeigerte Daten-Integration

Vor der Kompression enthalten die voneinander getrennten Strome Struktur-
Strom und Daten-Strom eine implizite, zeigerlose Verbindung: Der Text-Wert
zum i-ten Platzhalter im Struktur-Strom befindet sich an der i-ten Position im
Daten-Strom.

Eine entsprechende implizite, zeigerlose Daten-Integration kann man auch
im Zusammenhang mit den in dieser Arbeit vorgestellten XML-Struktur-Kom-
pressions-Verfahren nutzen: Erhélt ein Daten-Kompressions-Verfahren die Ord-
nung der Text-Werte untereinander, kann also die Konstante, die im urspriing-
lichen Daten-Strom an Position i stand, eindeutig identifiziert werden, so ist
keine weitere Zeiger-Information notwendig, um Dekompression und Anfrage-
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Auswertung korrekt auf der Kombination aus XML-Struktur-Kompression und
Daten-Kompression durchzufithren. Eine solche implizite, zeigerlose Daten-
Integration wird z.B. in [17] verwendet.

Sollen allerdings nur Teile des Komprimats betrachtet werden — z.B. bei
partieller Dekompression oder beim Uberspringen nicht-relevanter Teilbdu-
me bei der Anfrage-Auswertung — so muss dennoch die zu einem gegebe-
nen Strukturknoten passende Text-Konstante gefunden werden. Dieses kann
z.B. dadurch erreicht werden, dass fiir die "iibersprungenen’ Anteile der XML-
Reprisentation bekannt ist, wieviele Text-Konstanten in diesen Anteilen ent-
halten sind. Eine Ermittlung dieser Anzahl zur Laufzeit kommt jedoch prinzi-
piell einer Dekompression von Teilen der Struktur gleich, und stellt somit einen
erheblichen Nachteil dieser zeigerlosen Daten-Integration, insbesondere bei der
Anfrage-Auswertung, dar.

Das entgegengesetzte Extrem hierzu wére eine vollstdndige Verzeigerung von
den Text-Platzhaltern im Struktur-Strom zu den Text-Werten im Daten-Strom
(und/oder je nach Anwendung auch umgekehrt). Dies wiirde bedeuten, dass
man z.B. — dhnlich wie die Riickwirtsverweise in Kapitel 7 — entweder das
Verweis-Ziel an die Position des Platzhalters in der Struktur-Représentation
inline kodiert, oder in einer separaten Daten-Struktur outline eine Liste von
Verweis-Start (Platzhalter-Position im Struktur-Strom-Komprimat) und Ver-
weis-Ziel (Text-Wert-Position im Daten-Strom-Komprimat) speichert. Eine sol-
che vollstdndige Verzeigerung wird z.B. in [8] verwendet.

Der Nachteil dieses Verfahrens wird sehr schnell deutlich: Betrachtet man
einen bindren XML-Baum, so sind etwa die Hélfte aller Knoten Text-Knoten,
bei n Knoten erhalten wir § Text-Platzhalter. Gehen wir von einer Outline-
Kodierung aus, so beinhaltet der Zeiger-Strom pro Verweis mindestens 1 In-
teger fiir die Position im Struktur-Strom-Komprimat — vorausgesetzt diese In-
formation reicht zur eindeutigen ldentifizierung aus — und 1 Integer fiir die
Position im Daten-Strom-Komprimat. Wir erhalten also einen Overhead von
ca. 1 Integer pro Dokument-Knoten.

Um die Vorteile beider Verfahren zu vereinen und die Nachteile zu mini-
mieren, empfiehlt sich der Mittelweg: spérliche Verzeigerung. Hierzu wird fiir
gewisse Knoten (z.B. dquidistant nach jedem 50. Knoten, oder fiir jeden Wur-
zelknoten eines Teilbaumes mit einer Tiefe, die ein Vielfaches von 4 ist) in einer
Inline- oder Outline-Kodierung gespeichert, wieviele Text-Knoten bis dahin
vorhanden sind. Diese Informationen werden mit dem Komprimat gespeichert
und tibertragen, so dass diese Informationen zur Laufzeit bekannt sind. Wird
jetzt zu einem Text-Knoten der konkrete Wert gesucht, so muss zur Ermitt-
lung des Text-Wertes nur entweder riickwarts oder vorwérts bis zu solch einem
verzeigerten Knoten navigiert werden, die auf dem Weg liegende Anzahl an
Text-Platzhaltern ermittelt werden und auf die dort gespeicherte Anzahl ad-
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diert bzw. davon subtrahiert werden. Eine solche spérliche Verzeigerung wird
z.B. in [15] verwendet.

Je nach Wahl der Verweis-Dichte iiberwiegen gewisse Vor- bzw. Nachteile die-
ser Mischform: Je hoher die Dichte gewdhlt wird, umso stérker ndhern wir uns
den Vor- und Nachteilen der vollstdndigen Verzeigerung: Wenig Berechnungs-
Overhead bei partieller Dekompression und Anfrage-Auswertung gegeniiber ge-
sunkener Kompressionstarke. Entsprechend ndhern wir uns umso stérker den
Vor- und Nachteilen der zeigerlosen Verzeigerung, je kleiner die Dichte ge-
wahlt wird: Optimale Kompressionsstirke gegeniiber erhohtem Berechnungs-
Overhead bei partieller Dekompression und Anfrage-Auswertung.

8.2 Kontextlose vs. Kontext-sensitive
Daten-Kompression

Der Daten-Strom entsprechend Definition 3.4 enthilt nicht nur die eigentli-
chen Text-Werte, sondern zusétzlich den Element- bzw. Attribut-Namen des
iibergeordneten Knotens. Diese Information kann als eine Art Kontext-Infor-
mation betrachtet werden, die zur stérkeren Daten-Kompression verwendet
werden kann: Text-Werte, die demselben Element- bzw. Attribut-Namen zu-
geordnet sind, stammen {iiblicherweise aus dem selben Wertebereich (das Ele-
ment ’Postfach’ z.B. enthdlt nur 5-stellige Zahlen, wiahrend das Element ’Ort’
prinzipiell beliebige Zeichenketten enthilt). Fasst man all diese Text-Werte
eines Element- bzw. Attribut-Knotens mit identischem Label zusammen in
einen Daten-Container und komprimiert diese separat von den anderen Da-
ten-Containern, so erhélt man eine stérkere Kompression, als wenn man alle
Text-Werte in einem gemeinsamen komprimierten Container speichert [60].

Diese verbesserte Kompression erhilt man allerdings wiederum zum Preis
eines Overheads in der Zeigerstruktur. Wahrend es bei einem Container fiir
alle Text-Werte gemeinsam geniigte, zu speichern, wieviele Text-Werte vor dem
aktuellen Text-Wert vorhanden waren, muss man dies nun fiir alle Container
wissen. Dies bedeutet entweder, dass man an einem Verweis-Knoten fiir jeden
Container die Anzahl davorstehender Text-Werte speichern muss, oder man
speichert diese Information kontext-bezogen, also z.B. ein Verweis-Knoten mit
Name [ab enthélt nur Informationen iiber den zu lab gehorenden Container.
Letzere Variante bedeutet entweder eine hohere Verweis-Knoten-Dichte oder
ein langeres Navigieren zum néchsten passenden Verweis-Knoten, also einen
erhdhten Berechnungs-Aufwand.

Auch hier erhalten wir wieder einen Trade-Off zwischen den zwei moglichen
Alternativen kontextloser und kontext-sensitiver Daten-Kompression. Je nach
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Anwendung und Anforderungen kann die fiir diese Anforderungen giinstigste
Alternative gewahlt werden.

8.3 Daten-Kompressions-Verfahren

In diesem Teilkapitel werde ich einige Verfahren zur Daten-Kompression vor-
stellen sowie deren Eigenschaften diskutieren.

8.3.1 Daten-Liste mit generischem Kompressor

Die kompressionsstirkste Variante, um die in einem Daten-Container enthalte-
nen Text-Werte zu komprimieren, ist die Kompression des gesamten Containers
(im Gegensatz zur Kompression jedes Text-Wertes eines Daten-Containers se-
parat, wie es z.B. bei ALM (siehe Kapitel 8.3.4) der Fall ist) mit Hilfe eines
generischen Kompressors. Hierzu eignet sich z.B. das gzip-Verfahren, welches
auf Huffman [55] und LZ77 [80] basiert, oder das bzip2-Verfahren, welches
unter anderem auf der Burrows-Wheeler-Transformation |27| basiert. Hierbei
versucht die Huffman-Kodierung eine mdéglichst minimale Bit-Darstellung fiir
jedes Zeichen zu finden, und das LZ77-Verfahren ersetzt — &hnlich wie der
DAG - wiederholte Teilstrings innerhalb eines Fensters durch einen Verweis.
Die Burrows-Wheeler-Transformation stellt eine umkehrbare Umsortierung der
Zeichen dar, so dass andere Kompressoren ein besseres Kompressions-Ergebnis
erzielen konnen.

Da die Menge aller Text-Werte eines Containers prozentual eine hohere Re-
dundanz enthilt als die einzelnen Text-Werte, erreichen wir durch die Kom-
pression eines kompletten Containers eine erheblich hohere Kompressionsstér-
ke, als wenn diese Verfahren auf die Text-Werte separat angewendet worden
wiren. Der dadurch erkaufte Nachteil durch die Kompression eines Contai-
ners ist, dass beim Zugriff auf eine einzige Konstante der gesamte Container
dekomprimiert werden muss. Es miissen also — je nach Verfahren — z.B. alle
Text-Werte eines kompletten Fenster-Inhaltes eines unendlichen Daten-Stroms
dekomprimiert werden.

Soll das komplette Dokument dekomprimiert werden, ist dies kein Nachteil
gegeniiber anderen Verfahren —im Gegenteil: die Dekompression des gesamten
Containers wird voraussichtlich insgesamt weniger Zeit benotigen als die De-
kompression jedes einzelnen Text-Wertes fiir sich. Betrachten wir aber wieder
partielle Dekompression und Anfrage-Auswertung, kann dies — besonders, wenn
der Anteil der benétigten Text-Werte gering ist und diese auf viele Container
gestreut sind — einen erheblichen Overhead bedeuten.
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Im Vergleich der beiden Verfahren erzielt bzip2 die stidrkere Kompression,
wahrend gzip eine schnellere Laufzeit vorweisen kann — wie auch in Kapitel 11
zu sehen ist.

8.3.2 Huffman

Mochte man den Nachteil umgehen, dass immer komplette Container ent-
packt werden miissen, bietet sich die Kompression der einzelnen Text-Werte via
Huffman-Kodierung [55] an. Die Huffman-Kodierung basiert auf einer Hiufig-
keitsanalyse der einzelnen Zeichen und generiert eine Zeichenkodierung, die ein
Zeichen mit umso weniger Bits kodiert, je haufiger dieses Zeichen insgesamt
auftritt. Hierbei wird zwischen statischer und adaptiver Huffman-Kodierung
unterschieden. Die adaptive Huffman-Kodierung erfordert ein zweimaliges
Durchqueren der zu komprimierenden Daten, um im ersten Schritt die Haufig-
keitsanalyse durchzufiihren und im zweiten Schritt die Daten entsprechend zu
kodieren. Die statische Huffman-Kodierung nutzt eine vorher bekannte Hau-
figkeitsverteilung (z.B. sprachabhéngig), so dass ein einmaliger Durchlauf zum
Kodieren ausreicht.

Neben dem Vorteil, dass bei diesem Ansatz nicht mehr der komplette Contai-
ner dekomprimiert werden muss, hat die Huffman-Kodierung noch einen wei-
teren Vorteil: gleiche Zeichenketten fiithren zu gleicher Kodierung. Aufgrund
dieser Eigenschaften kénnen Gleichheits-Tests (z.B. bei der Auswertung von
Priadikaten) oder auch Préfix-Tests direkt auf dem Komprimat durchgefiihrt
werden und erfordern keinerlei Dekompression.

8.3.3 Sequitur

Sequitur [65] fithrt in gewissem Mafe die Idee von Huffman fort, in dem es
nicht nur einzelne Zeichen separat betrachtet, sondern Muster aus mehreren
Zeichen.

Sequitur ersetzt sich wiederholende Zeichenfolgen in Zeichenketten mit Hilfe
grammatikalischer Regeln. Hierzu fasst es zunéchst mehrfach auftretende Di-
gramme — also Paare von Zeichen — zu einer Grammatikregel zusammen, und
ersetzt diese Digramme durch einen entsprechenden Regelaufruf. Dies wird
hierarchisch fortgesetzt, bis keinerlei Ersetzungen mehr moglich sind. Dabei
muss das Dokument nur einmal linear durchquert werden, lediglich die dabei
aufgebaute Grammatik muss evtl. mehrfach durchsucht werden bei der Su-
che nach passenden Regeln. Um eine noch stirkere Kompression zu erreichen,
kann im Anschluss an den ersten Durchlauf in einem zweiten Durchlauf fiir je-
de Regel eine optimale Regel-1D mit Hilfe des Huffman-Verfahrens anhand der
Aufruthdufigkeit bestimmt werden, um so die Gesamtgrofe der Regelaufrufe
zu minimieren.
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Ebenso wie beim Huffman-Verfahren kénnen Gleichheits- und Préfix-Tests
direkt auf dem Komprimat durchgefiihrt werden und erfordern keinerlei De-
kompression.

8.3.4 ALM

ALM (Antoshenkov-Lomet-Murray) [6, 7| ist ein ordnungserhaltendes Kom-
pressions-Verfahren. ALM fasst mehrfach auftretende Teilstrings mit Hilfe ei-
nes Worterbuchs zu kiirzeren Token zusammen, wobei die Token alm(a) eines
Teilstrings a so gewahlt werden, dass gilt: alm(a) < alm(b) = a < b fiir alle
Teilstrings a und b. Dadurch entsteht eine Kompression mit der Eigenschaft,
dass Vergleiche mit = ,<,> direkt auf dem Komprimat ausgewertet werden
kénnen, ohne Dekompression der betroffenen Text-Werte. Dies gilt bei die-
sem Verfahren jedoch nicht fiir Prafix-Tests, da ALM es erlaubt, fiir gleiche
Préfixe verschiedene Token zu wédhlen. Somit kann pro Container ein globales
ALM-Wérterbuch erstellt werden, und die einzelnen Text-Werte konnen mit
Hilfe dieses Worterbuchs dekodiert werden, ohne den gesamten Container zu
dekodieren.

ALM erlaubt keine Préfix-Tests auf dem Komprimat, dafiir sowohl Gleich-
heits-Tests als auch Ungleichheits-Tests.

8.4 Fazit: Unabhangige Struktur- und
Daten-Kompression

Zusammenfassend kann man sagen, dass die in dieser Arbeit vorgestellten
Struktur-Kompressions-Verfahren (Succinct-Verfahren, DAG, DTD-Subtrakti-
on sowie deren Kombinationen) orthogonal und damit beliebig kombinierbar
sind mit allen vorgestellten Techniken und Verfahren zur Text-Kompression
(z.B. gzip, bzip2, Sequitur, ALM) und mit allen Verfahren zur zeigerlosen
oder verzeigerten Daten-Integration sowie der kontextlosen und der kontext-
sensitiven Daten-Kompression.
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Bisher wurden in dieser Arbeit verschiedene Verfahren zur Struktur-Kompres-
sion sowie Kombinations-Moglichkeiten dieser Verfahren vorgestellt und dis-
kutiert, wie diese Verfahren zur Struktur-Kompression mit vorhandenen Ver-
fahren zur Daten-Kompression integriert werden konnen. Fiir diese Struktur-
Kompressions-Verfahren wurde die Anfrage-Auswertung in Form der Basis-
Operationen first-child, next-sibling und parent vorgestellt. Um jedoch her-
kommliche XPath-Pfad-Anfragen beantworten zu kénnen, bedarf es noch eines
Verfahrens, welches die XPath-Anfragen umwandelt in Aufrufe der Operatio-
nen first-child, next-sibling und parent.

In diesem Kapitel werde ich daher zunéchst einen Automaten-basierten An-
satz zur Auswertung von XPath-Anfragen auf einem bindren SAX-Strom vor-
stellen. Dieses Verfahren zur Auswertung von XPath-Anfragen auf binéren
SAX-Event-Stromen wurde in [22] publiziert. Im weiteren Verlauf dieses Kapi-
tels werde ich dann zeigen, wie man das Konzept generalisieren kann, so dass
darauf aufbauend ein XPath-Auswerter fiir beliebige XML-Reprisentationen
entwickelt werden kann. Jede XML-Reprasentation muss zur XPath-Auswer-
tung lediglich eine schlanke Schnittstelle bestehend aus den Methoden get-
FirstChild, getNextSibling, getLabel sowie getType implementieren.

9.1 XPath-Auswertung auf binaren
SAX-Event-Stromen

Das in diesem Kapitel beschriebene Verfahren zur Auswertung von XPath-
Anfragen auf herkommlichen XML-Stromen basiert auf Automaten zur Re-
prasentation von XPath-Anfragen, welche einen XML-Strom als Eingabe le-
sen. Eingaben zu diesem Verfahren sind ein bindrer SAX-Event-Strom und ei-
ne Anfrage basierend auf den Vorwértsachsen descendant, descendant-or-self,
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self, child und following-sibling. Wie man die iibrigen XPath-Achsen auf die-
se Vorwirtsachsen zuriickfithren kann, wurde in Kapitel 2.4.1 gezeigt. Aus-
gaben dieses Verfahrens sind diejenigen Fragmente des SAX-Event-Stroms in
Dokument-Reihenfolge, deren Wurzel ein Ergebnis der XPath-Anfrage ist.
Dieses Kapitel gliedert sich wie folgt: Zunédchst werden die elementaren
XPath-Automaten fiir die Vorwértsachsen vorgestellt. Anschliefend wird er-
lautert, wie man fiir eine XPath-Pfad-Anfrage (ohne Filter) einen XPath-
Automaten zusammensetzt und mit dessen Hilfe die Pfad-Anfrage auf dem
Eingabe-Strom auswertet. Anschlieffend wird die Behandlung und Auswertung
von Filtern in Anfragen erldutert. Schlieflich wird erldutert, wie man autbau-
end auf den XPath-Automaten eine Anfrage-Auswertung mit Hilfe der Funk-
tionen getFirstChild, getNextSibling, getLabel und getType umsetzen kann.

9.1.1 Elementare XPath-Automaten

In diesem Kapitel werde ich die elementaren XPath-Automaten vorstellen, die
Achsen- und Knotentests eines Location-Steps innerhalb einer Pfad-Anfrage
reprasentieren. Entsprechend Definition 2.5 kénnen alle Vorwértsachsen mit
Hilfe der atomaren XPath-Achsen first-child und next-sibling berechnet wer-
den. Autbauend auf dieser Beobachtung werde ich fiir alle Vorwartsachsen einen
elementaren XPath-Automaten definieren, der als Eingabe nur die Ereignisse
fc (first-child), ns (next-sibling) sowie s (self) gefolgt von einem Knotentest ak-
zeptiert. Aufgrund dieses minimalen Eingabe-Alphabets erhalten wir schlanke
Automaten zur XPath-Auswertung, die einerseits ein lineares Durchqueren des
Stroms erlauben, andererseits auch sehr speichereffizient darstellbar sind.
Formal ist ein XPath-Automat wie folgt definiert:

Definition 9.1 (XPath-Automat). Ein XPath-Automat einer XPath-Anfrage
path ist ein nicht-deterministischer endlicher Automat (NFA)

XP = (Quzuq()aéa f)7
wobel

e () die endliche Zustandsmenge ist (wir schreiben hierfiir im folgenden

auch XP.Q)
o ¥ = {fc, ns} U {s:za | a ist ein Element-Name, Q" gefolgt von einem
Attribut-Namen, "=’ gefolgt von einer Konstante oder '’} ist die Menge

der Eingabe-Symbole
e o € Q) ist der Startzustand

e §:Q x X x Qist eine Relation von Ubergingen (g1, e, q2), wobei go dann
ein Nachfolge-Zustand von ¢; ist, wenn das Symbol e vom NFA gelesen
wird
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e f € ( ist der Endzustand.

Weiterhin bezeichne active C @ die Menge der derzeit aktiven Zustdnde. [

Um den XPath-Automaten einer Pfad-Anfrage zu berechnen, wird zunéchst
einmal die Pfad-Anfrage in eine Liste von Location-Steps unterteilt und an-
schliefsend fiir jeden Location-Step der elementare XPath-Automat berechnet.
Anschliefsend wird der XPath-Automat zur Anfrage zusammengesetzt.

Ein Location-Step besteht aus einer Achsen-Bedingung sowie aus einem
Knoten-Test. Dementsprechend kann jeder Location-Step der Form
Achse::Knotentest durch die Folge von Location-Steps Achse::* /self::Knotentest
dargestellt werden. Ebenso kann jedes bindre Ereignis firstChild(Label) bzw.
nextSibling(Label) durch die Ereignisfolge firstChild(*);self(Label) bzw.
nextSibling(*);self(Label) représentiert werden.

Dementsprechend benutzen wir — abweichend zu den im Kapitel 2 beschrie-
benen Umformungsregeln — zur Berechnung der elementaren XPath-Automaten
die folgenden Umformungsregeln, welche den Vorteil haben, dass nach einer
first-child bzw. next-sibling Achse immer mindestens eine self-Achse steht. Die-
se Reihenfolge entspricht der Eingabe des Automaten — dem oben beschriebe-
nen, modifizierten bindren SAX-Event-Strom.

o child :: a — first—child : *(/self :: */next—sibling :: ¥)*/self :: a,0 <
1 < 00

e following — sibling :: a — next — sibling :: x(/sel f :: */next — sibling ::
¥)'/self :a,0 <i< oo

e descendant :: a — first — child : x(/self :: %(/ first — child :: x|/next —
sibling :: %)) /self :: a,0 < i < 00

o descendant—or—self :: a — self :: a| first—child : (/self :: x(/ first—
child :: x| /next — sibling :: x))*/self :: a,0 < i < oo

Zu diesen reguldren Ausdriicken bilden wir nun die &quivalenten, nicht-
deterministischen Automaten — die sogenannten elementaren XPath- Automaten
— welche in Abbildung 9.1 gezeigt werden.

9.1.2 Auswertung von Pfad-Anfragen

Der vollstdndige XPath-Automat zu einer Pfad-Anfrage XP wird konstruiert,
indem die elementaren XPath-Automaten zu den Location-Steps von XP in
der durch XP vorgegebenen Reihenfolge konkateniert werden. Um die elemen-
taren XPath-Automaten Al und A2 der Location-Steps L1 und L2 zu einem
XPath-Automaten XP zu konkatenieren, wird der Endzustand von Al mit
dem Startzustand A2 zu einem einzigen Zustand zusammengefasst. Der Start-
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c,ns
)

fi
(c) descendant (d) descendant-or-self

Abbildung 9.1: Elementare XPath-Automaten

zustand von XP ist dann der Startzustand von Al und der Endzustand von
XP ist der Endzustand von A2.

Wird der Endzustand eines Automaten zu einer Pfad-Anfrage erreicht, so
wurde im Eingabe-Strom ein Antwort-Fragment gefunden, so dass der dann
aktuelle "Teilbaum’ des bindren SAX-Stroms als Ergebnis ausgegeben werden
kann.

Durch ein bindres SAX-Event firstChild(’Name’) wird zunéchst die Einga-
be fc an den Automaten weitergeleitet, und dann wird auf dem Automaten
solange die Eingabe s::Name ausgewertet, bis keine Zustandsdnderung mehr
erfolgt. Hierbei gilt, dass bei Eingabe s:Name sowohl die Ubergiéinge mit Label
s::Name, als auch die Ubergiinge mit Label s::* aktiviert werden.

Beispiel 9.1 Betrachten wir die XPath-Anfrage
XP — /Adressen/Person/./Ort—’"Berlin’[/Name, die nach dem Namen in Ber-
lin lebender Personen fragt. Die Haupt-Pfad-Anfrage 15t
XP’ — /Adressen/Person/Name. Der dazugehdrige XPath-Automat wird in
Abbildung 9.2 dargestellt.

Betrachten wir nun als Fingabe dieses Automaten den bindren SAX-Strom
aus Listing 3.2. Nachdem die ersten 10 Events bis einschlieflich des Events
firstChild(’Person’) gelesen und im Automaten ausgewertet wurden, befindet
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|
fc s::Adressenf-\ fc m s::Person m fc
q0 q1 a3 q4 g6
O N O/
ns FH ns s::¥

Abbildung 9.2: XPath-Automat zu XP’=/Adressen/Person/Name

sich der Automat in den Zustinden qs und qg. Der Zustand qg sagt hierbei
aus, dass ein Ergebnis fir die Teil-Anfrage /Adressen/Person gefunden wurde,
wdhrend der Zustand qs die Teil-Anfrage /Adressen/* reprasentiert. Zustand
qq entspricht der Aussage ,der Achsentest /Adressen/child:: ist erfullt.

Damit ¢ auch wieder nach dem Lesen des spéter folgenden Events
nextSibling(’Person’) aktiviert wird, muss der Automat sich nach Abarbei-
ten des Teilbaumes der ersten Person wieder genau in den Zustdnden ¢ und
g¢ befinden. Hierzu muss das Ende eines Teilbaumes ermittelt werden, was
nur mit Hilfe von Zahlen der firstChild- und parent-Events geschehen kann.
Dies kann jedoch nicht durch einen Automaten geschehen. Daher benutzen wir
zusétzlich zum Automaten einen Zustands-Stack, der die Folge der Automaten-
Zustinde verwaltet. Bevor ein firstChild-Event ausgewertet wird, werden die
aktuellen Zustinde des Automaten auf dem Zustands-Stack abgelegt. Nach-
dem ein parent-Event gelesen wurde, wird die oberste Stack-Ebene vom Stack
heruntergenommen, und die darin enthaltenen Zustéinde werden wieder auf
dem Stack aktiviert.

Definition 9.2 (XPath-Auswertungs-Stack). Ein XPath-Auswertungs-Stack
eines XPath-Automaten XP ist ein 3-Tupel

XPE =(XPX,A),
wobel

e X P.qq als das initiale Stack-Symbol benutzt wird

e ¥ = {fc, ns, p} U{s::a | a ist ein Element-Name, '@’ gefolgt von einem
Attribut-Namen, '=" gefolgt von einer Konstante oder ’«'} ist die Menge
der Eingabe-Symbole

e A(Y) ist eine Auswertungs-Funktion, welche fiir ein gegebenes Eingabe-
Symbol o € 3 eine Folge von Operationen ausfiihrt:

] push(XP.active);
~ A(fe) = { XP.event(fc); }
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— A(ns) :{ XP.event(ns); }
~ A(s:a)= { XP.closure(s::a); }

— Alp) = { XP.active = pop(); }
O

Hierbei feuert die Operation wvoid X P.event(InputSymbol) das Ereignis
InputSymbol auf dem  XPath-Automaten XP. Die Operation
void Stack.push(X P) legt die aktive Zustandsmenge des XPath-Automaten
X P als oberstes Element auf den Stack. Die Operation void Stack.pop() 16scht
das oberste Stack-Element vom Stack und liefert diese als Ergebnis zuriick.
Der Operator closure, welcher bei Eingabe von s :: a ausgefiihrt wird, sendet
wiederholt das Eingabe-Ereignis s :: a an den XPath-Automaten XP, bis sich
die Zustandsmenge dieses Automaten nicht mehr &ndert.

Bei Eingabe von fc wird also die aktive Zustandsmenge von XP oben auf
den Stack gelegt. Anschlieffend wird fiir XP das Eingabe-Ereignis fc gefeuert.

Zusammengefasst wird die Auswertung von (filterfreien) Pfad-Anfragen wie
folgt durchgefiihrt: Jede Pfad-Anfrage X wird auf einem bindren SAX-Strom
BS ausgewertet, indem der XPath-Automat XP zu X berechnet wird, und der
XPath-Auswertungs-Stack mit XP als XPath-Automaten und mit BS als Ein-
gabe ausgefithrt wird. Jedes bindre SAX-Event wird dem Stack als Eingabe
(bzw. als Folge von Eingaben) weitergeleitet, und die A-Funktion wird auf
dieser Eingabe ausgefiihrt. Dies fiithrt potentiell sowohl zu Stack-Operationen
als auch zu einer Zustandsénderung des XPath-Automaten. Sobald ein End-
zustand des XPath-Automaten erreicht wurde, wird der Teilbaum, der durch
das aktuelle SAX-Event représtentiert wird, als Ergebnis z.B. in einen Ausga-
bestrom geschrieben.

Beispiel 9.2 Abbildung 9.3 zeigt den Anfang der Auswertung der Anfrage
XP’—/Adressen/Person/Name. Der Automat hierzu wird in Abbildung 9.2 dar-
gestellt. Hierbei werden in den Eingabesymbolen aus Platzgrinden die Elemente
Adressen mit A, Person mit Pe, Name mit N und Postfach mit Po abgekiirzt.
Als FEingabe wird der bindre SAX-Strom aus Listing 3.2 angenommen, jedoch
ohne die 4. Ebene (also die Knoten Name und Postfach enthalten jeweils keinen
first-child-Knoten).

In der Abbildung besteht jeder Knoten aus der aktuellen Liste der aktiven
Zustande des Automaten (1. Knotenzeile) sowie dem Zustands-Stack (die wei-
teren Zeilen).

Wiirde das Beispiel bis zum Ende durchgefihrt, so wiirde insgesamt 3 Mal
der Endzustand q9 des Automaten erreicht, nachdem das Event s::N eingelesen
wurde, welches das jeweilige Namens-Element reprasentiert.
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m T q7 qs,q9 q7
o] fo [a] s:A [12.03] fe s::Pe — fc 45,96 | s::N [a5,96 | ns [ 45,96
92,93 92,93
q 90 q2,q3 92,93 92,93
q0 q0
q q q0
s::Po
q8 qr q8,99 q7
q5,96 q4 q5,46
g5,96 | P ns s::Pe fc 95,96 | s::N | 45,96 | ns | 95,96
42,43 92,93 92,93
42,93 92,93 42,43 42,43
90 qo q0
q 9 9 q0
Abbildung 9.3: Ausschnitt der Auswertung der Anfrage

/Adressen/Person/Name

9.1.3 Auswertung von Pradikat-Filtern

Enthélt ein Location-Step LS einen Pradikat-Filter, so wird auch fiir den
Filter-Pfad ein XPath-Automat gebildet. Dieser wird an den Endzustand des
elementaren XPath-Automaten zu LS angehéingt. Im Gegensatz zum XPath-
Automaten des Haupt-Pfades erzeugt das Erreichen des Endzustandes des
XPath-Automaten eines Filter-Pfades keine Ausgabe.

Wird ein Zustand aktiviert, der einen Ubergang zum Startzustand eines
Filter-Automaten enthélt, so wird ein sogenannter Vorbehalt erzeugt und an
den aktuellen Zustand angehdngt. Gleichzeitig wird der Startzustand des Filter-
Automaten mit demselben Vorbehalt aktiviert. Dies bedeutet, dass alle einge-
henden SAX-Events nicht nur vom Haupt-Automaten, sondern auch von allen
aktiven Filter-Automaten ausgewertet werden. Jeder Vorbehalt entspricht ei-
ner Boole’schen Variablen, die zu true evaluiert wird, sobald ein Endzustand
im Filter-Automaten erreicht wird. Entsprechend wird die Boole’sche Variable
zu false evaluiert, sobald die Filter-Bedingung nicht mehr erfiillt werden kann,
also sobald dieser Vorbehalt weder in einem Zustand im Automaten noch in
einem auf dem Stack gespeicherten Zustand enthalten ist.

Genauer gesagt werden Vorbehalte also wie folgt berechnet: Seien R, R1
und R2 Mengen von Vorbehalten und sei res: X P.QQ x R eine Zuordnung von
XPath-Automaten-Zustdnden zu Mengen von Vorbehalten. Initial enthilt kein
Zustand einen Vorbehalt, es gilt also: Vg € X P.Q : res(q, D).

Wird ein Zustand q in X P.QQ erreicht, der einen Verweis auf einen Filter-
Automaten enthélt, so wird die Zuordnung res(q,R) ersetzt durch eine Zuord-
nung res(q, R U {r}), wobei r ein neuer, fiir q erzeugter Vorbehalt sei.
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Wird ein Ubergang der Form (ql, Eingabe, q2) gefeuert, werden alle Vorbe-
halte R1 von ql mit res(ql,R1) auch dem Zustand g2 hinzugefiigt, es gilt also
res(q2,R2), wobei R2 — R1 U {rl, ..., rf}, wobei rl, ..., rf neu in q2 erzeugte
Vorbehalte seien.

Wird ein Endzustand f des Haupt-Automaten erreicht, der einen Vorbehalt
r enthélt, der noch nicht zu true oder zu false evaluiert wurde, so wird die
Ausgabe der Ergebnis-Fragmente EFr zu f verzdgert und in einer Warteschlan-
ge verwaltet, bis r ausgewertet wurde. Wird r zu true evaluiert, so wird EFr
ausgegeben und aus der Warteschlange entfernt (sobald es den Anfang der
Warteschlange erreicht hat). Wird r allerdings zu false evaluiert, so wird EFr
aus der Warteschlange geldscht, ohne ausgegeben zu werden.

Sobald ein Vorbehalt zu false evaluiert wird, verlieren alle Zustande, die die-
sen Vorbehalt enthalten, ihre Giiltigkeit und kénnen im Automaten deaktiviert
werden bzw. aus dem Stack geloscht werden.

Beispiel 9.3 Erweitern wir Beispiel 9.2 auf die komplette X Path-Anfrage XP
= /Adressen/Person/./Ort—’"Berlin’|/Name. Der dazugehirige X Path-Automat
wird in Abbildung 9.4 dargestellt. Der Haupt-Automat enthdlt die Zustinde qq
bis qo, und der Filter-Automat enthdlt die Zustinde qi10 bis qi1g und ist an den
Zustand qg des Hauptautomaten angehdngt.

|
@ fc o s::Adresseu@ fc /q;\ s::Person /q(;\ fc
ns si* ns 0

0 ns s ¥

Abbildung 9.4: XPath-Automat zu XP’=/Adressen/Person|Ort="Berlin’| /Name

Abbildung 9.5 zeigt die Auswertung des bindren Beispiel-Stroms auf diesem
Automaten. Bei Aktivierung des Zustandes qg wird der Filter-Automat gestar-
tet, und Zustand qio wird oktiv. Gleichzeitig wird durch diesen Aufruf des
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Filter-Automaten ein Vorbehalt r1 angelegt. Im 7. Schritt (Zeile 2, 2. Zustands-
Stack) wird der Zustand qqg erreicht, doch unter dem Vorbehalt r1. Die Ausgabe
im 7. Schritt erfolgt daher noch unter Vorbehalt. Der Vorbehalt r1 bleibt beste-
hen, solange r1 noch nicht evaluiert wurde.

q4 r
q0 fc q1 s A q2,493 fc s::Pe 95, 46(71), 410
q2,43 q2,q3
q0 q0
40 q0
fc
q7(r1), q11 qs(r1),q9(r1), q12 q7(r1),q11 qs(r1), q12

45,96(71), q10

g5,96(r1),q10 |5:N|  g5,496(r1),q10 | DS | g5,96(71),q10 [5::P0 | g5,96(r1),q10 | P

— — q2,93

q2,q3 q2,q3 92,93 92,43 %

9 q 9 9

ns
q7(r2), q11 qs(r2),q9(r2), q12

q4 <pe T q6(r2), q10 e SN
92,45 & 503 q5,96(72), q10 8 g5, q6(r2), q10 .

7 % 92,93 92,43

q 9
Abbildung 9.5: Ausschnitt der Auswertung der Anfrage

/Adressen/Person|Ort='Berlin’] /Name

Im 11. Schritt (Zeile 3, 1. Zustands-Stack) schlieflich kann r1 zu false eva-
luiert werden, da weder ein Zustand existiert, der r1 enthdlt, noch ein zu 11
gehorender Zustand im Filter-Automat mehr auf dem Stack enthalten ist. So-
mit gehdrt also das im 7. Schritt ermittelte Ergebnis nicht zur Ausgabe. Im
12. Schritt wird bei erneuter Aktivierung des Zustandes qg ein neuer Vorbehalt
ro erzeugt, und der Filter-Automat wird erneut aktiviert. Dieser Vorbehalt ro
wird spdter zu true evaluiert, so dass schliefilich als Ergebnis <Name><=Anna
Schmidt></Name> ausgegeben werden wird.

9.1.3.1 Zusammengesetzte Pradikat-Filter

Da ein Priadikat-Filter nicht nur einfache Vergleiche Pfad=Wert enthalten
kann, sondern eine logische Verkniipfung verschiedener Vergleiche inklusive
verschachtelter Negationen, Disjunktionen oder Konjunktionen von Verglei-
chen, stellen auch Vorbehalte logische Verkniipfungen von Unter-Vorbehalten
dar. Ein Pradikat-Filter [(compl or comp2) and not comp3|, wobei compl,
comp2 und comp3 Vergleiche oder Pfad-Ausdriicke sind, erzeugt einen zusam-
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mengesetzten Vorbehalt r = ((rl or r2) and not r3) und jeweils einen Filter-
Automaten fiir die Unter-Vorbehalte rl, r2 und r3.

Sowohl einfache als auch zusammengesetzte Vorbehalte konnen mit Hilfe ei-
ner Lemma-Tabelle verwaltet werden. Sobald ein Vorbehalt ausgewertet wur-
de, wird dieses Ergebnis an die Lemma-Tabelle weitergeleitet. Mit Hilfe der
Lemma-Tabelle wird dann {iberpriift, welche Vorbehalte bereits vollstdndig
ausgewertet werden konnen, und anschliefend werden diese Ergebnisse an den
XPath-Automaten, den Stack und die Warteschlange weitergeleitet und Zu-
stinde sowie Ausgabe-Ereignisse werden geloscht und evtl. ausgegeben.

9.2 Automaten-basierte XPath-Auswertung mit
getFirstChild und getNextSibling

Der bisherige Ansatz — wie im vorangehenden Abschnitt vorgestellt — erhilt als
Eingabe einen kompletten bindren SAX-Strom. Dessen Erzeugung kommt je-
doch im Normalfall fiir alle XML-Représentationen einer Dekompression gleich.
Daher werde ich nun vorstellen, wie man, basierend auf diesen Konzepten, ei-
ne weitere Schnittstelle aufbauen kann, die durch die Verwendung der fiir die
einzelnen Kompressionsverfahren vorgestellten Funktionen first-child und next-
sibling das Uberspringen nicht benétigter Teilbdume erméoglicht.

Beispiel 9.4 Betrachten wir den Automaten aus Abbildung 9.4 und nehmen
wir an, dass momentan die Zustande qs und qi2 oktiv sind (wie etwa im vor-
angegangenen Beispiel im 9. Schritt nach Verarbeitung des nextSibling(’Post-
fach’)-Events). Wie wir sehen kénnen, werden die beiden Uberginge, die bei
gs und qia starten, durch das Eingabe-Symbol ns ausgeldst. Dies bedeutet,
dass nur das next-sibling ’zielfihrend’ ist, dass also das first-child und der
komplette Teilbaum unterhalb des first-childs tibersprungen werden kénnen.
Dies entspricht einem Aufruf der jeweiligen Funktion next-sibling der XML-
Reprisentation.

Der nun folgende Ansatz ermoglicht genau solch ein Uberspringen von nicht
relevanten Teilbdumen. Wir gehen hierbei davon aus, dass jede XML-Repréa-
sentation neben den Funktionen firstChild, nextSibling und label auch eine
Klasse XMLNode implementiert, die aus Informationen besteht, die zusam-
men einen XML-Knoten im Original-Dokument eindeutig identifizieren. Dies
wire fiir die Succinct-Darstellung z.B. die Position innerhalb des Bitstroms
und fiir die DTD-Subtraktion das Tupel (KST, n, p) bestehend aus Kompri-
mat KST, Syntaxknoten n und Position p innerhalb des Komprimats. Um das
Uberspringen nicht relevanter Teilbiume zu erméglichen, wird in diesem An-
satz der XPath-Auswertungs-Stack des vorherigen Ansatzes durch einen zwei-
ten Stack, den Navigations-Stack, ersetzt. Dieser enthélt Paare aus XMLNodes
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x und zugehorigen Automaten-Zusténden, die nach Verarbeitung von x aktiv
sind.

Im ersten Ansatz war der binére Strom das steuernde Element: Das Symbol,
das als nichstes aus dem SAX-Strom gelesen wurde, entschied iiber die néch-
sten auszufiithrenden Aktionen. Dies ist nun nicht mehr der Fall. Statt dessen
sind der Navigations-Stack und der XPath-Automat die steuernden Elemente:
Abhéngig davon, welche XMLNodes und Zustédnde oben auf dem Stack liegen
bzw. welche Arten von Ubergéingen von diesen Zustinden ausgehen, werden
first-child und next-sibling konsumiert oder {ibersprungen.

Definition 9.3 (Navigations-Stack). Ein Navigations-Stack eines XPath-Au-
tomaten und einer XML-Reprisentation Comp ist ein 3-Tupel

XPE = (X P,Comp, navigate()),

wobel

e Comp eine XML-Reprisentation ist, und Comp.V alle Identifizierungs-
Informationen zur eindeutigen Identifizierung eines XML-Knotens V bein-
haltet. Entsprechend beinhaltet Comp.root alle Identifizierungs-Infor-
mationen zur eindeutigen Identifizierung des Wurzelknotens des XML-
Baums.

e Jede Stack-Ebene aus einem 3-Tupel (node, setOfStates, fc) besteht, wo-
bei node € Comp.V ein XMLNode von Comp ist, setOfStates C XP.Q
eine Zustandsmenge von XP ist, und fc eine Boole’sche Variable ist.

e Das Tupel (Comp.root, X P.qp, false) das initiale Stack-Symbol ist.

e Die Funktion navigate() die Steuerungs-Funktion ist, welche entspre-
chend Algorithmus 9.1 definiert ist.

NavigationStack nst;

public static void fireEvent(XMLNode x, String event)
{
if (x!=null) {
nst . XP.active = states;
nst . XP.event (event) ;
Set states = nst.XP.active;
if (nst . XP.containsSelf(states)){
nst .XP.event(’s::’ + x.label());
states = nst .XP.active;
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nst . push(x,states ,false);

}

public static void navigate ()
{
while (! nst . isEmpty () ){
StackEntry top = nst.top();
XMLNode x = top.getNode();
Set states = top.getStates();
if (!nst.top().fc){ //first—child noch nicht
verarbeitet
if (nst .XP.containsFC (states)){
)

fireEvent (x.getFirstChild (), ’fc’);
}
top . fc=true;
}
else{
nst.pop();
if (nst . XP.containsNS (states)){
fireEvent (x.getNextSibling (), 'ns’);

Algorithmus 9.1: Navigation mit Hilfe des Navigations-Stacks
O

Algorithmus 9.1 beschreibt die Steuerung der XPath-Anfrage-Auswertung
durch Stack und Automaten: Wird ein Stack-Eintrag top zum ersten Mal be-
trachtet, so ist die Boole’sche Variable fc—false (Zeile 22). In diesem Fall wird
iiberpriift, ob es in der zu top gehorenden Zustandsmenge state einen Uber-
gang gibt, der die Eingabe ’fc’ verlangt (Zeile 23). Ist dies der Fall, so wird
die Methode fireEvent fiir das first-child aufgerufen (Zeile 24). Zunéachst wird
iiberpriift, ob ein first-child existiert (Zeile 4). Nur wenn dies erfiillt ist, wird
das Eingabe-Symbol ’fc’ an den Automaten gesendet (Zeilen 5-7). Anschlie-
fend wird iiberpriift, ob ein Ubergang mit Eingabe ’self’ aktivierbar ist (Zeile
8), und, falls dies der Fall ist, wird das self-Event generiert und an den Au-
tomaten gesendet (Zeilen 9-10). Anschlieffend wird das 3-Tupel bestehend aus
den first-child-Knoten, der neuen Zustandsmenge und dem Flag fc=false oben
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auf den Stack gelegt. Fiir den Stack-Eintrag top wird das Flag fc=true gesetzt,
da nun das first-child abgearbeitet wurde.

Wird ein Stack-Element top zum zweiten Mal betrachtet, so ist das Flag
fc=true. Es wird wieder wie oben beschrieben verfahren, nur dass dieses Mal
das next-sibling anstelle des first-childs betrachtet wird.

Da fiir jeden Knoten gilt, dass sein first-child dem next-sibling im Strom
vorangeht, garantiert der Stack so ein lineares Durchqueren des Stroms.

Der Automat behandelt Vorbehalte und Ausgabe entsprechend wie im vor-
angehenden Ansatz. Aus Sicht des Automaten hat sich nichts gedindert, da
dieser nach wie vor Ereignisse fc, ns und s::x erhélt und diese ausfiihrt, le-
diglich die Anzahl der Ereignisse wurde verringert, da nur noch ’zielfiithrende’
Ereignisse ausgefiihrt werden, alle anderen werden iibersprungen.

Beispiel 9.5 Abbildung 9.6 zeigt einen Beispieldurchlauf des Navigations-
Stacks, durchgefiihrt mit dem Automaten aus Abbildung 9.2 und beschrinkt
auf die Zustinde qo — qg, wobei qg den Endzustand darstellt. Dies entspricht
der XPath-Anfrage XP"=/Adressen/Person.

Initial befindet sich auf dem Navigations-Stack nur der Wurzelknoten sowie
der Startzustand qy und das Flag f(alse). Da der Zustand qo einen ausgehen-
den fc-Ubergang hat, wird anschliefend fc und self::A(dressen) ausgefiihrt (ab-
gekiirzt durch fc::A). Dies fihrt einerseits dazu, dass das Flag des untersten
Stack-Eintrags auf t(rue) gesetzt wird, da das first-child verarbeitet wurde, an-
dererseits wird der Stack-Eintrag (A1, {q2,q3}, f) auf den Stack gelegt. (Der In-
dex 1 ist hier nur zur besseren Unterscheidung im Beispiel vorhanden.) Die er-
ste Neuerung macht sich im 4. Schritt bemerkbar: Die Zustandsmenge {qs, g6}
enthlt keinen fe-Ubergang, daher wird weder auf der XML-Reprisentation zum
first-child navigiert, noch wird auf dem Automaten ein fc-Event gefeuert. Le-
diglich das Flag wird auf t(rue) gesetzt, so dass anschlieflend direkt mit dem
next-sibling fortgefahren werden kann. Der komplette, irrelevante Teilbaum un-
terhalb des Person-Elementes wird somit ibersprungen.

feirAq
root, {qo}, f

A1, {a2, a3},

fc::Pey

Pey, {95,396}, £

Pey, {g5,96}: t

Pes, {g5,096}, £

root, {qo}, t

A1, {a2,a3}, t

N

A1, {g2, a3}, t

ms:: Peg)
—|

A1, {g2,a3}, ¢

root, {qo}, t

root, {go}, t

root, {qo}, t

Pea, {g5,a6}, t

Pes, {a5, a6}, f

Peg, {a5,a6}, t

A1, {g2,4q3}, t

ms:: Peg

A1, {a2, a3}, t

A1, {g2,a3}, t

A1, {a2, a3}, t

root, {qo}, t

root, {qo}, t

root, {qo}, t

root, {qo}, t

Abbildung 9.6: Ausschnitt der Auswertung der Anfrage /Adressen/Person
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9.3 Weitere Optimierungsmoglichkeiten

Der DAG bietet noch eine weitere Optimierungsmoglichkeit: Représentiert ein
DAG-Knoten mehr als einen XML-Knoten, so kénnen einmal gewonnene Er-
gebnisse iiber den zuerst besuchten XML-Knoten auch auf die anderen XML-
Knoten {ibertragen werden, sofern der Automat bei beiden Knoten im selben
Zustand ist.

Dies bedeutet, dass man fiir DAG-Knoten, die mehr als einen XML-Knoten
reprasentieren, also die selbst oder mindestens einer deren Vorgéngerknoten
mehr als eine Eingangskante haben, Tupel bestehend aus Zustand und Ergebnis
in einer Lemma-Tabelle speichern kann.

Erreicht man erneut diesen DAG-Knoten, kann man in der Lemma-Tabelle
iiberpriifen, ob fiir den nun giiltigen Automaten-Zustand und diesen DAG-
Knoten bereits ein Eintrag vorhanden ist. Ist dieser vorhanden, so kann man
die an dieser Stelle gespeicherten Ergebnisse iibernehmen und so ein weiteres
Durchqueren dieses Teilbaums vermeiden.

9.4 Zusammenfassung: Eigenschaften der
Automaten-basierten XPath-Auswertung

In diesem Kapitel wurden zwei Varianten eines Automaten-basierten XPath-
Auswertungsansatzes vorgestellt, die alle Vorwérts-Achsen von XPath unter-
stiitzen. Wie alle Automaten-basierten Verfahren haben diese beiden Ansétze
die Eigenschaft, dass sie die Eingabe — also die XML-Représentation (z.B.
binérer SAX-Strom oder XML-Komprimat) - linear durchqueren.

Des weiteren ist die Grofe der jeweiligen Automaten in O(XP), wobei XP
die Anzahl der Location-Steps innerhalb der zu betrachtenden Anfrage ist, da
der Automat aus einer Reihe von elementaren XPath-Automaten konkateniert
wird, wobei jeder elementare XPath-Automat einem Location-Step der XPath-
Anfrage entspricht.

Als weitere Eigenschaft kann der Automat — aufgrund des sehr eingeschrink-
ten Eingabealphabets — sowohl sehr effizient gespeichert als auch ausgefiihrt
werden.
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In diesem Kapitel werde ich die vorgestellten Ideen mit anderen in der Literatur
bereits erwahnten Ideen vergleichen. Analog der in dieser Arbeit vorgestellten
Verfahren, konzentrieren sich die im Folgenden erorterten Verfahren im We-
sentlichen auf die Struktur-Kompression. Lediglich, wenn eines der Verfahren
einen besonderen Ansatz zur Konstanten-Kompression verwendet, wird dies
kurz erwihnt. Fiir einen Uberblick iiber mdgliche Ansitze zur Konstanten-
Kompression sei ansonsten auf Kapitel 8 verwiesen.

Dieses Kapitel unterteilt sich entsprechend der Hauptbeitrige dieser Arbeit
in ein Unterkapitel iiber XML-Kompression — aufgeteilt in XML-Kodierungen,
DAG-Varianten, Schema-basierte Varianten und sonstige Verfahren — sowie in
ein Unterkapitel iiber Anfrage-Auswertung fiir XML-Datenstrome.

10.1 XML-Kompression

10.1.1 XML-Kompression durch platzeffiziente Kodierung

Den ersten Ansatz fiir ein spezielles Kompressions-Verfahren fiir XML-Doku-
mente stellt das in [60] préasentierte Verfahren namens XMill dar. In diesem
Verfahren werden Daten und Struktur separat komprimiert. Die Daten wer-
den anhand des umschliefsenden Element- bzw. Attribut-Namens in Container
sortiert, und diese Container werden separat mit einem geeigneten Kompres-
sor komprimiert. Jedem Element und Attribut der Dokument-Struktur sowie
jedem Daten-Container wird eine kurze ID zugeordnet. Neben den Daten-
Containern existiert eine zweite Datenstruktur, die die Baum-Struktur repré-
sentiert, und die aus den Element- und Attribut-IDs, die die Start-Tags re-
prasentieren, den Container-IDs sowie dem Symbol ’/’, welches einen End-Tag
reprasentiert, besteht. Auch diese Datenstruktur wird mit einem generischen
Kompressor komprimiert, so dass auf die Baumstruktur nur mit Hilfe von De-
kompression zuriickgegriffen werden kann, insbesondere kann also nicht direkt
auf dem Komprimat navigiert werden.

141
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Der urspriingliche XMill-Ansatz ist nicht auf unendliche Datenstrome an-
wendbar. Modifiziert man diesen jedoch, so dass immer nur fensterweise kom-
primiert wird, konnte man mit Hilfe dieser modifizierten Version auch unend-
liche Datenstrome komprimieren, da XMill kein mehrfaches Parsen des XML-
Dokuments erfordert.

Die Verfahren XGrind |75], XPRESS [63] und XQueC [8] stellen Erweite-
rungen des XMill-Ansatzes dar: Die Element- bzw. die Attribut-Namen wer-
den mit Hilfe der Huffman-Kodierung bzw. mit Hilfe einer arithmetischen Ko-
dierung durch kiirzere Token dargestellt, und die Daten werden anhand des
parent-Elements in Container sortiert. Es wird allerdings auf eine zusétzliche
Kompression der Baum-Struktur-Darstellung verzichtet, so dass diese Erwei-
terungen in der Lage sind, Anfragen direkt auf dem Komprimat auszuwerten.
Auch fiir die Kompression der Daten-Container werden spezielle Kompressoren
(wie z.B. ALM [6,7]) eingesetzt, die die Auswertung gewisser Funktionen (z.B.
Gleichheits-Tests, Ungleichheits-Tests) direkt auf den komprimierten Konstan-
ten erlauben. Zusatzlich verwendet XQueC eine Art Struktur-DAG als Index
auf die komprimierten Daten.

Wie ihr Vorgénger XMill kénnen diese Verfahren auf unendliche Datenstro-
me angewandt werden. Sie erreichen eine deutlich geringere Kompressionsstér-
ke als XMill, erlauben im Gegenzug dazu allerdings die Anfrage-Auswertung
direkt auf dem Komprimat.

Auch die Ansétze [13] und [49] basieren im Wesentlichen auf der Darstellung
der Element-Namen durch kiirzere Tokens. Die Besonderheit von [13] und [49]
ist, dass das Komprimat zusétzlich um Informationen angereichert wird, welche
eine effizientere Navigation ermdglichen. Dies sind z.B. Anzahl der Kindknoten,
Existenz von Text-Inhalten oder Attributen sowie direkte Zeiger zur Position
des next-siblings. Beide Verfahren benutzen ein reserviertes Token von 1 Byte
Lange, um den End-Tag eines Elements zu kodieren. All diese Verfahren sind
auf unendliche Datenstrome anwendbar und erlauben die Anfrage-Auswertung
direkt auf dem Komprimat.

Der in [79] vorgestellte Ansatz liefert eine weitere Succinct-Darstellung von
XML. Auch hier wird nicht die eigentliche Baum-Darstellung von den Element-
und Attribut-Namen getrennt, so dass sowohl fiir die Token, welche Element-
und Attribut-Namen représentieren, als auch fiir das Token, welches den End-
Tag reprasentiert, 1 Byte, also insgesamt 2 Bytes (im Gegensatz zu insgesamt
1 Token und 2 Bits in dem in Kapitel 4 vorgestellten Ansatz) bendtigt werden.
Um eine effizientere Navigation auf dem Komprimat zu ermoglichen, reichert
der in |79] vorgestellte Ansatz jedes Paket des Komprimats um zusdtzliche In-
formationen (Level des ersten Knotens, minimales und maximales Level inner-
halb des Pakets) an. Dies dient dem Uberspringen ganzer, irrelevanter Pakete



Verwandte Arbeiten 143

bei der Navigation zum next-sibling. Diese Erweiterung wére direkt auf das in
dieser Arbeit vorgestellte Verfahren anwendbar.

Einzig das in [48] présentierte Verfahren, auf dem das in Kapitel 4 dieser Ar-
beit vorgestellte Verfahren basiert, trennt die Baum-Struktur von den Knoten-
Labeln, so dass fiir die Baum-Struktur eine Liste von 6ffnenden und schlieffen-
den Klammern erzeugt werden kann, die im Wesentlichen dem Bitstrom der in
dieser Arbeit erdrterten Succinct-Darstellung entspricht. Im Gegensatz zu den
in dieser Arbeit vorgestellten invertierten Elementlisten nutzt [48] eine einfache
Elementliste, also ein Mapping von 6ffnenden Klammern zu Token, die jeweils
ein Label eines Element- bzw. Attribut-Knotens reprisentieren. Ahnlich wie
auch [79] reichert [48] jedes Paket durch einen Index von sogenannten offenen-
den und schlieffenden Pionieren an, die es erlauben, das Paket, in dem sich
der End-Tag eines Knotens bzw. der Parent-Knoten eines Knotens befindet,
effizient zu ermitteln.

Die in dieser Arbeit vorgestellten invertierten Listen zur Speicherung der
Element- und Attribut-Namen bieten einen weiteren Vorteil gegeniiber [79]:
Neben der effizienteren Speicherung erlauben die invertierten Listen eine effi-
zientere Auswertung der Vorwértsachsen, da die Anzahl der zu iiberpriifenden
Bitstrom-Positionen mit Hilfe der invertierten Listen eingeschréankt wird, und
daher weniger Achsen-Bedingungen iiberpriift werden miissen.

Im Vergleich zu diesen Verfahren fiihrt die in dieser Arbeit vorgestellte
Succinct-Darstellung die bereits in XMill erfolgreich umgesetzte Idee der Tren-
nung zur besseren Kompression fort: Nicht nur Struktur und Daten werden ge-
trennt voneinander komprimiert, sondern auch die Baum-Struktur wird weiter
aufgeteilt in die Struktur und die Label. Dies ermdglicht eine noch effizien-
tere Kodierung der Baum-Struktur, wodurch auf eine zusitzliche Komprimie-
rung der Struktur-Daten verzichtet werden kann. Dadurch ist die Succinct-
Darstellung in der Lage, Anfragen und Updates direkt auf dem Komprimat zu
unterstiitzen, was z.B. bei XMill nicht moglich ist.

10.1.2 XML-Kompression durch Eliminierung interner
struktureller Redundanzen

Der erste Ansatz zur XML-Kompression, welcher auf der Eliminierung interner
struktureller Redundanzen (entsprechend DAG-Kompression) basiert, wurde
unter dem Namen 'Bisimulation’ in [26] vorgestellt. Die Bisimulation stellt
den herkommlichen DAG dar (im Gegensatz zum bindren DAG, welcher in
dieser Arbeit betrachtet wird), wobei bewiesen wird, dass dieser DAG in li-
nearer Zeit fiir ein gegebenes XML-Dokument berechnet werden kann. Ebenso
wird in [26] die Auswertung der XPath-Vorwirtsachsen sowie deren Komple-
xitdt betrachtet. [25] stellt eine Fortfiihrung dieses Ansatzes dar. Einerseits
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wird die DAG-Kompression auf der XML-Struktur durchgefiihrt, wahrend die
Text- und Attribut-Werte — dem Grundgedanken von XMill folgend — in ver-
schiedene Container anhand der Pfad-Informationen sortiert werden und dann
containerweise komprimiert werden. Fiir dieses Kompressionsmodell wird des
Weiteren die Anfrage-Auswertung der Anfragesprache XQuery erldutert, ana-
lysiert sowie evaluiert.

Einen sehr &hnlichen Ansatz verfolgt auch das Verfahren XQZip [34]: Die
XML-Struktur wird mit Hilfe der DAG-Kompression zu einem sogenannten
Structure Index Tree (SIT) komprimiert. Im Gegensatz zu dem in dieser Arbeit
vorgestellten Ansatz wird jedoch der herkémmliche DAG erzeugt, wobei nur di-
rekt benachbarte, gleiche Knoten zusammengefasst werden diirfen (und nicht
beliebige, gleiche Knoten innerhalb eines vorgegebenen Fensters). Die Text-
und Attribut-Werte werden, wie bei XMill, anhand des umgebenden Element-
bzw. Attribut-Namens in Container sortiert, die Container in kleinere Blocke
aufgeteilt und Block fiir Block separat komprimiert. Da bei diesem Ansatz das
Augenmerk besonders stark auf effizienter Anfrage-Auswertung fiir XPath-
Anfragen liegt, sind SIT und Container-Blécke mit Hilfe einer Hash-Tabelle
vollsténdig verzeigert, so dass bei einer Anfrage-Auswertung nur mdoglichst
wenige Blocke dekomprimiert werden miissen. Im Gegensatz zum in dieser Ar-
beit vorgestellten Ansatz so wie zu den Ansétzen |25,26] unterstiitzt XQZip nur
die acht XPath-Achsen ancestor, ancestor-or-self, attribute, child, descendant,
descendant-or-self, parent und self, nicht aber die ,Seitwartsachsen“ following,
following-sibling, preceding und preceding-sibling.

Auch LZCS [5] ist eine Variante des DAG-Verfahrens. LZCS wendet das
generische Kompressions-Verfahren LZ77 auf XML-Dokumente an, wobei die
kleinste Einheit innerhalb eines XML-Dokuments ein Knoten im XML-Baum
ist. Dies bedeutet, dass wiederholt vorkommende Teilbdume durch Riickwérts-
zeiger ersetzt werden. LZCS entspricht also dem herkémmlichen DAG ange-
wandt auf das gesamte XML-Dokument.

Das in [35] vorgestellte Verfahren stellt eine Weiterentwicklung der Kompres-
sion mit Hilfe herkémmlicher DAGs dar. Hier wird nicht nur die stark redun-
dante Struktur von den weniger redundanten Text-Werten getrennt, sondern
es wird auch die Struktur analysiert und mit Hilfe einer Heuristik in stark red-
undante und weniger redundante Anteile zerlegt, so dass das DAG-Verfahren
eine hohere Kompressionsstarke erreicht.

BPLEX [28,44] stellt eine weitere Fortentwicklung der DAG-Kompression
dar. Nicht nur gleiche Teilbdume werden mit Hilfe von Riickwirtszeigern zu-
sammengefasst, sondern auch Teilbdume, die einem dhnlichen Muster entspre-
chen. Hierzu werden die unterschiedlichen Anteile der dhnlichen Teilbdume
mit Hilfe von Parametrisierung verallgemeinert und die konkreten Parameter-
Werte den Riickwirtszeigern beigefiigt. Gibt es zu einem Teilbaum mehr als
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eine Moglichkeit der Zusammenfassung mit anderen, dhnlichen Teilbdumen, so
wird mit Hilfe einer Heuristik die vielversprechendste Zusammenfassung aus-
gewdhlt.

Im Gegensatz zu all diesen Verfahren bietet das in dieser Arbeit vorgestellte
DAG-Verfahren eine Uberlaufbehandlung fiir unendliche XML-Datenstrome.
Wihrend die in diesem Kapitel diskutierten Verfahren beziiglich der XML-
Dokumente durch die Grofe des verfiigbaren Arbeitsspeichers beschrankt sind,
kann das in Kapitel 5 dieser Arbeit vorgestellte DAG-Verfahren beliebig grofe
XML-Dokumente und unendliche XML-Datenstréme bei konstantem Arbeits-
speicher-Bedarf komprimieren.

Des Weiteren bieten die in dieser Arbeit vorgestellten Kombinationsméglich-
keiten mit dem Succinct-Verfahren bzw. der DTD-Subtraktion eine speicher-
effiziente Kodierung des DAGs, so dass das DAG-Verfahren nicht nur zur effi-
zienteren Darstellung DOM-&hnlicher Strukturen im Arbeitsspeicher, sondern
insbesondere auch zur effizienten XML-Kompression zur Dateniibertragung
oder zur Speicherung in Dateien genutzt werden kann.

10.1.3 XML-Kompression durch Eliminierung externer
Redundanzen

Millau |74] ist das erste Verfahren, welches die DTD zur Verbesserung der Kom-
pression heranzieht. Im Wesentlichen basiert das Verfahren dhnlich wie auch
schon XMill auf Ersetzung der Element- und Attribut-Namen durch Token. Die
Menge aller Token werden bei Millau jedoch schon vor Beginn der Kompressi-
on erzeugt. Hierbei ist ein Token nicht nur eine Représentation des Element-
Namens, es enthélt zusétzlich in den ersten beiden Bits die Information, ob
das Element Attribute und Inhalt enthélt. In dieser Variante werden nicht alle
aufgrund der DTD redundanten Informationen aus dem XML-Dokument ent-
fernt; z.B. die Zusammenhénge der Sibling-Knoten untereinander, die durch
die DTD gegeben werden, werden bei der Kompression durch Millau nicht
berticksichtigt.

In einer zweiten Variante von Millau, genannt DDT Compression (Differenti-
al DTD Tree Compression), [74] werden dhnlich wie bei der DTD-Subtraktion
nur Informationen fiir die DTD-Operatoren ’?’, |, >+’ und *’ gespeichert. Me-
thodisch werden dazu die DTD als Graph und das XML-Dokument als DOM-
Baum aufgebaut und simultan durchquert und verglichen. Durch die Betrach-
tung des XML-Dokuments als DOM-Baum ergeben sich allerdings erhebliche
Nachteile durch den durch DOM verursachten Hauptspeicher-Verbrauch, wo-
durch laut [74] ein Dokument mit 288735 Bytes bereits zu Problemen bei der
Kompression fiihrte.
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Auch in XCQ [66] werden zu den DTD-Operatoren ’?’, ’|’, '+’ und *’ zu-
sitzliche Informationen gespeichert, die es erlauben, die Struktur des XML-
Dokumentes zu speichern: 1 Bit fiir den unéren ’7’-Operator, 1 Bit fiir den
bindren ’|’-Operator, n+1 (bzw. n) Bits fiir den undren "*’-Operator (bzw.
fiir den unéren ’+’-Operator), wobei ein 1-Bit fiir eine weitere Wiederholung
und ein 0-Bit fiir das Ende der Wiederholungskette steht. Desweiteren benutzt
XCQ die DTD, um vor Durchfiihrung der Kompression die Menge aller Pfade
zu berechnen und fiir jeden Pfad einen separaten Daten-Container zur spa-
teren Daten-Kompression entsprechend des XMill-Konzeptes bereitzustellen.
Aufgrund dessen ist XCQ auf nicht-rekursive DTDs beschrénkt, da andern-
falls die Menge aller durch die DTD erlaubten Pfade unbegrenzt grofs wére.

Die Verfahren XAUST [73]|, XENIA [76] und |59] arbeiten Automaten-basiert:
Aus dem gegebenen Schema (DTD bei [59], XML Schema bei XENIA [76],
bzw. RelaxNG bei XAUST [73]) wird ein Automat generiert. Sobald ein Zu-
stand mehr als eine ausgehende Transition hat, werden diese Transitionen mit
minimaler Bit-Anzahl durchnummeriert. Der Automat konsumiert das XML-
Dokument als Eingabe. Sobald eine Transition gefeuert wird, an die eine Bitfol-
ge angehingt wurde, wird die entsprechende Bitfolge ins Komprimat geschrie-
ben. Dadurch wird ein sehr dhnliches Komprimat wie bei XCQ erreicht, da
auch bindre Entscheidungen fiir ’|” und ’?” mit je 1 Bit kodiert werden und fiir
die - und ’+’-Operatoren n+1 bzw. n Bits kodiert werden miissen (je 1 Bit
pro Wiederholung zzgl. 1 Bit fiir das Ende der Wiederholungen).

Mit Ausnahme von Millau, das nur sehr kleine Dokumente komprimieren
kann, aufgrund der methodischen Schwiche, dass der gesamte DOM-Baum
des XML-Dokumentes in den Arbeitsspeicher geladen werden muss, sind all
diese Verfahren ebenso wie DTD-Subtraktion auf unendliche Datenstrome an-
wendbar. Alle vorgestellten Verfahren erlauben, ebenso wie DTD-Subtraktion,
Anfrage-Auswertung sowie Updates direkt auf den komprimierten Daten.

Betrachtet man jedoch die Kodierung der Entscheidungen, so benétigt DTD-
Subtraktion fiir die bindren Entscheidungen fiir die Operatoren ’|’ und ’?” eben-
so wie die anderen Verfahren 1 Bit. Fiir die Operatoren '*’ und '+’ werden
jedoch von allen anderen Verfahren fiir n Wiederholungen ca. n Bits benotigt,
wahrend DTD-Subtraktion diese mit Hilfe einer statischen Huffman-Kodierung
mit deutlich weniger als n Bits kodiert (ca. 0,7*n Bits im Durchschnitt fiir Wie-
derholungsanzahlen n von 1-24). So ist insbesondere bei grofsen Dateien, also
bei Dateien mit vielen gleichnamigen Siblings, welche in der DTD durch einen
- oder ’++’-Operator reprisentiert werden, die zu erwartende Kompressions-
tarke der XML-Struktur von DTD-Subtraktion héher als die Kompressions-
stérke der anderen in diesem Kapitel vorgestellten Verfahren.
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10.1.4 Weitere XML-Kompressions-Verfahren

Das in [43] vorgestellte Verfahren entspricht vom Grundkonzept her keinem der
in dieser Arbeit vorgestellten Verfahren. Das Konzept basiert auf der Burrows-
Wheeler-Transformation. Die XML-Daten werden also so transformiert, dass
andere Kompressions-Verfahren auf den transformierten Daten eine stirkere
Kompression erreichen als auf den urspriinglichen Daten. Aufgrund der Trans-
formation ist dieser Ansatz nicht auf unendliche Datenstrome anwendbar. Das
Verfahren erlaubt die Anfrage-Auswertung direkt auf dem Komprimat, sofern
das Komprimat um einige Index-Informationen angereichert wird.

Das in [33] vorgestellte Verfahren XMLPPM basiert auf einem probabilisti-
schen Konzept. Es basiert auf der Annahme, dass innerhalb eines Kontextes
das bislang am haufigsten aufgetretene Element auch das in der Zukunft am
wahrscheinlichsten auftretende Element ist. Daher wird das im aktuellen Kon-
text bislang haufigste Element mit einem kurzen Token dargestellt. Dement-
sprechend reprisentiert ein Token nicht durchgingig das selbe Element, son-
dern, welches Element durch ein Token représentiert ist, hingt einerseits vom
aktuellen Kontext, andererseits auch von den bisher gelesenen Elementen in-
nerhalb dieses Kontextes ab. Weil ein Element zu einem Token nur ermittelt
werden kann, wenn das komplette Dokument vor dieser Stelle gelesen wurde,
unterstiitzt dieses Verfahren keine Anfrage-Auswertung auf dem Komprimat.
Es kann auf unendliche Datenstrome angewandt werden, da ein einmaliges,
lineares Durchqueren der Daten geniigt.

10.2 Effiziente XPath-Auswertung auf
XML-Datenstromen

Es existieren bereits verschiedene Ansétze zur Auswertung von XPath-Anfra-
gen auf XML-Datenstromen. Sie konnen hauptsichlich aufgrund des unter-
stiitzten XPath-Sprachumfangs kategorisiert werden. Nahezu alle dieser Ver-
fahren basieren auf Automaten (X-scan [56], XMLTK [9], YFilter [41], [51], [52],
AFilter [30], XSQ [71], SPEX [24,67]) oder Syntaxbdumen ( [10], xaos [12],
1311, 32]).

Der Unterschied von Automaten und Syntaxbdumen liegt in der Steuerung:
Wihrend beim Automaten die Eingabe, also der XML-Strom, die steuernde
Instanz ist, ist beim Syntaxbaum der Baum, also die Anfrage, die steuernde
Instanz.

All diese Ansétze unterstiitzen die Achsen child und descendant-or-self, und
viele dieser Ansétze unterstiitzen Pradikat-Filter und Wildcards, aber im Ge-
gensatz zu dem in Kapitel 9 dieser Arbeit présentierten Ansatz unterstiitzt
keiner dieser Ansétze die sibling-Achsen.
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X-scan [56], XMLTK [9], and YFilter [41] unterstiitzen die child- und die
descendant-or-self-Achse sowie Wildcards, indem sie einen endlichen Zustands-
automaten nutzen. [51| (fiir den Haupt-Pfad) und [52] (fiir die Pradikat-Filter)
verwenden einen deterministischen, endlichen Automaten (DFA) in einer soge-
nannten ’lazy’-Fassung, das heisst, dass der DFA nicht vor Beginn vollsténdig
erzeugt wird, sondern es werden weitere Zustdnde nur bei Bedarf hinzuge-
fiigt. AFilter [30] ist ein anpassbarer Ansatz zur XPath-Anfrage-Auswertung,
welcher eine minimale Grundanforderung bzgl. des Speichers stellt, und der
linear in Anfrage- und Datengrofe skaliert. Sollte mehr Speicher zur Verfii-
gung gestellt werden, so nutzt AFilter den verbleibenden Speicher fiir einen
Caching-Ansatz, um die Anfragen schneller beantworten zu kénnen. Ahnlich
wie YFilter [41], wurde AFilter entworfen, um grofe Mengen von Queries aus-
zuwerten.

XSQ [71] und SPEX [24,67] nutzen eine Hierarchie oder ein Netzwerk von
Transducern, das heisst, sie nutzen Automaten, die um einen Puffer erwei-
tert wurden und deren Zustdnde um Aktionen erweitert wurden, um XPath-
Anfragen auszuwerten. Der von XSQ unterstiitzte XPath-Sprachumfang um-
fasst Pradikat-Filter, wobei hochstens ein Préadikat-Filter pro Location-Step
erlaubt ist, und die Pradikat-Filter lediglich Pfad-Wert-Vergleiche mit Pfaden
der Lénge 1 bestehend aus den Achsen child, text oder attribute enthalten
diirfen. Das Konzept basiert auf je einem nicht-deterministischen Push-Down
Transducer (PDT) pro Location-Step. Diese Transducer werden dann zu einer
Hierarchie zusammengefasst.

[57] diskutiert die Auswertung der child- und descendant-or-self-Achsen in-
klusive Priadikat-Filtern (inklusive Funktionen und Arithmetik) und Wildcards
in XQuery unter Verwendung von TurboXPath. Die Eingabe-Anfrage wird in
eine Menge von Syntaxbiumen transformiert. Wird eine Entsprechung eines
Syntaxbaumes innerhalb des Datenstroms gefunden, so werden die zugehori-
gen Werte in Form eines Tupels gespeichert, um spéater beziiglich der Pradikat-
und Join-Bedingungen getestet zu werden. Die Ausgabe besteht dann spéter
aus denjenigen Tupeln, die die entsprechenden Bedingungen erfiillt haben.

[10] und xaos [12] erzeugen zunéchst ebenfalls einen Syntaxbaum (zuziiglich
eines Syntax-DAGs in [12], da diese somit zusétzlich die parent- und ancestor-
Achse unterstiitzen). Der Syntaxbaum wird genutzt, um die néchsten rele-
vanten Knoten, sowie deren Ebene innerhalb des XML-Baums vorherzusagen.
Betrachten wir z.B. die Anfrage //a/b und einen Treffer fiir 'a’ in Ebene 3.
Dann wéare der nichste relevante Knoten ein Knoten mit Label b’ in Ebene 4.

[31] stellt einen weiteren, hauptsichlich auf Syntaxbdumen basierenden,
Ansatz dar. In diesem Ansatz werden jedoch die Syntaxbdume zu einem Prefix-
Trie wie folgt zusammengefasst: Gleiche Prefix-Folgen von child-Achsen Loca-
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tion-Steps verschiedener Queries werden zu einem einzigen Pfad innerhalb des
Prefix-Tries zusammengefasst.

Der in [32] vorgestellte Ansatz verwendet eine Struktur, die einem Syntax-
baum mit je einem Stack pro Knoten &hnelt. Diese Stacks werden verwendet,
um XML-Knoten zu speichern, die ein Ergebnis einer durch den Syntaxknoten
reprisentierten Teil-Anfrage darstellen (oder die — im Falle von einschrinken-
den Prédikat-Filtern — mogliche Ergebnisknoten darstellen).

Im Gegensatz zu all diesen Ansétzen unterstiitzt der in dieser Arbeit vorge-
stellte Ansatz zusétzlich die Achsen following und following-sibling. Des Wei-
teren unterstiitzt er — im Gegensatz zu [57| und |71] — rekursive XML-Daten,
also Daten, in denen derselbe Element-Name innerhalb eines child-Pfades wie-
derholt vorkommen kann.



11 Evaluierung der
vorgestellten Ansatze

In diesem Kapitel werde ich die vorgestellten Verfahren zur Kompression hin-
sichtlich Kompressionsstarke sowie Kompressions-, Dekompressions- und An-
frage-Auswertungszeit untereinander verglichen.

11

.1 Messumgebung

Alle Messungen wurden auf einem Intel Pentium M mit 1300 MHz und 768
MB Arbeitsspeicher unter dem Betriebssystem Windows 2000 durchgefiihrt.
Fiir die im Rahmen dieser Arbeit entwickelten Verfahren wurde Java 1.6 als
Implementierungs-Sprache eingesetzt.

Zur Evaluierung der Verfahren wurden die folgenden Test-Dokumente ver-
wendet:
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e XMark — durch den XMark-Benchmark [72] erzeugtes XML-Dokument,

welches Auktionsdaten enthilt. Je nach Skalierungsfaktor variiert die
Grofse. So bedeutet ein Skalierungsfaktor von 0,001 116 kB, ein Skalie-
rungsfaktor von 0,01 1,2 MB, ein Skalierungsfaktor von 0,1 11,3 MB und
ein Skalierungsfaktor von 1 113 MB. Ist kein weiterer Faktor angegeben,
so betrigt die Dokumentgrofe 5,3 MB.

e Hamlet (0,3 MB) — eine XML Version des bekannten Shakespeare-Schau-

spiels.

e Catalog-01 (10,6 MB), Catalog-02 (105,3 MB), Dictionary-01 (10,8 MB),

Dictionary-02 (106,4 MB) — durch den XBench-Benchmark |78] erzeugte
XML-Dokumente.

e DBLP(308,2 MB) — eine Sammlung bibliographischer Informationen zu

wissenschaftlichen Publikationen im Bereich Informatik.
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11.2 Kompression

Hinsichtlich Kompressionsrate sowie Kompressions- und Dekompressionszeit
wurden die in der Arbeit vorgestellten Verfahren mit den folgenden frei ver-
fiigbaren Kompressoren verglichen:

o XMill [60] - ein XML-Kompressor, welcher die Struktur-Knoten mit Hilfe
von Token darstellt und die Konstanten entsprechend der umgebenden
Element- und Attributnamen in komprimierte Container sortiert. Zur
Kompression der Container stehen unter anderem GZip und BZip2 zur
Verfiigung.

o GZip — ein generischer Textkompressor basierend auf LZ77 und Huffman-
Kodierung.

e BZip2 — ein generischer Textkompressor basierend auf der Burrows-Whee-
ler-Transformation.

Im Gegensatz zu den in dieser Arbeit vorgestellten Verfahren erlauben die-
se drei Kompressoren keine Anfrage-Auswertung direkt auf dem Komprimat.
Soll eine Anfrage ausgewertet werden, so muss das Komprimat zunéchst de-
komprimiert werden, und das Ergebnis der Anfrage muss anschliefend wieder
komprimiert werden.

Hierbei ist zu beachten, dass fiir XMill eine native Anwendung zur Verfii-
gung stand, wihrend alle anderen Verfahren in Java implementiert sind und
unter Java 1.6 ausgefiihrt wurden. Dies beeintrachtigt moglicherweise die Ver-
gleichbarkeit der Zeitmessungen.

Da der DAG sich ohne eine geeignete Kodierung — wie z.B. durch Kom-
bination mit der Succinct-Darstellung oder der DTD-Subtraktion — nicht als
Datei-Kompressor eignet, sondern lediglich als DOM-Variante mit verringer-
ter Knoten- und Kanten-Anzahl, wurde das reine DAG-Verfahren nicht mit
den anderen XMUL-Kompressoren verglichen, sondern statt dessen wurden die
hybriden Varianten Succinct+DAG und DTD-Subtraktion+DAG zur Evaluie-
rung herangezogen. Um dennoch den Einfluss des DAGs messen zu konnen,
wurde in einer ersten Messung die Struktur des DAGs mit der urspriinglichen
XML-Struktur verglichen.

Die Messungen hinsichtlich Kompressionsrate, Kompressions- und Dekom-
pressionszeit gliedern sich wie folgt:

e Vergleich der Strukturkompression der vier Verfahren Succinct, Succinct
+ DAG, DTD-Subtraktion und DTD-Subtraktion + DAG.

e Untersuchung der Skalierung der Strukturkompression der vier Verfahren
Succinct, Succinct + DAG, DTD-Subtraktion und DTD-Subtraktion +
DAG.
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Vergleich der dazu unabhingig kombinierbaren Konstanten-Kompressi-
ons-Varianten GZip und BZip2 ohne getrennt komprimierte Container
sowie GZip und BZip2 mit getrennt komprimierten Daten-Containern je
umgebendem Element- und Attributnamen (entsprechend XMill).

Vergleich der Gesamtkompression der vier Verfahren Succinct, Succinct
+ DAG, DTD-Subtraktion und DTD-Subtraktion + DAG in Kombinati-
on mit GZip inklusive getrennt komprimierter Daten-Container mit GZip
und GZip-basiertem XMill.

Vergleich der Gesamtkompression der vier Verfahren Succinct, Succinct
+ DAG, DTD-Subtraktion und DTD-Subtraktion + DAG in Kombina-
tion mit BZip2 inklusive getrennt komprimierter Daten-Container mit
BZip2 und BZip2-basiertem XMill.

11.2.1 Kompressionsrate der Struktur-Kompression

Kompressionsrate(%)
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Abbildung 11.1: Vergleich DAG zu bindrem XML-Baum

Abbildung 11.1 zeigt das Grofenverhiltnis des bindren DAGs zum urspriing-
lichen XML-Baum. Je nach Dokument variiert die Kompressionsstirke des
DAGs: Die stiarkste Kompression erreicht der DAG beim Dokument Catalog-01
mit 2,5% der Knoten des XML-Baums und 4,6% der Kanten, die schwéchste
Kompression erreicht der DAG bei XMark mit 31% der Knoten und 52,7% der
Kanten.

Es ist weiterhin zu beachten, dass das Verhéltnis Knoten-Kompression zu
Kanten-Kompression schwankt, was mit der durchschnittlichen Grofe der wie-
derverwendeten Teilbdume zusammenhdngt: Wird z.B. ein Teilbaum, beste-



Evaluierung der vorgestellten Ansédtze 153

hend aus einem Knoten, wiederverwendet, so enthdlt der DAG einen Knoten
weniger, jedoch keine Kante weniger als der XML-Baum.
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Abbildung 11.2: Kompressionsvergleich der Struktur-Kompression

Abbildung 11.2 zeigt die Struktur-Kompression der vier Verfahren Succinct,
Succinct + DAG, DTD-Subtraktion und DTD-Subtraktion + DAG. Das Kom-
pressions-stiarkste Verfahren ist hierbei DTD-Subtraktion + DAG, welches
Kompressionsraten von 0,3% bis 2,2% auf der Dokument-Struktur erreicht, das
Kompressions-schwéchste Verfahren ist die reine Succinct-Darstellung, welche
Kompressionsraten von 6,6% bis 16,7% erreicht. Mit Ausnahme des Dokumen-
tes DBLP gilt die Aussage, dass die Succinct-basierten Verfahren schwécher
komprimieren als die DTD-Subtraktion-basierten Verfahren. Ebenso gilt — mit
Ausnahme der Dateien Dictionary-01 und -02 — dass die DAG-Varianten stér-
ker komprimieren als die reinen Verfahren.

Es ist zu beobachten, dass die Kombination Succinct + DAG eine stérkere
Verbesserung gegeniiber der reinen Succinct-Variante erreicht als die Kombina-
tion DTD-Subtraktion + DAG gegeniiber der reinen DTD-Subtraktion. Dies
liegt daran, dass der relative Speicherbedarf eines DAG-Zeigers in der DTD-
Subtraktion deutlich hoher ist als in der Succinct-Darstellung. Dies fiihrt dazu,
dass in der DTD-Subtraktion weniger Verweise realisiert werden, da Verwei-
se auf kleine Teilbdume teurer sind als das Wiederholen des Teilbaums. Da-
her kann die Kombination DTD-Subtraktion + DAG im Vergleich zur DTD-
Subtraktion nur eine deutlich schwichere Verringerung der Kompressionsra-
te erreichen als die Kombination Succinct + DAG im Vergleich zu reinem
Succinct.

Die Skalierung der Struktur-Kompression der vier Verfahren wird in Ab-
bildung 11.3 anhand des XMark-Benchmarks dargestellt, wobei die erzeugten
Dateien mit den Skalierungs-Faktoren 0,001, 0,01, 0,1 und 1 erzeugt wurden.



154 Evaluierung der vorgestellten Ansédtze

Fiir alle Verfahren gilt, dass die Kompressionsrate zunéchst mit steigender
Dokumentengrofe leicht absinkt, um dann nahezu konstant zu bleiben. Das
Absinken zu Anfang ist damit zu erklédren, dass gewisse Daten nur einmalig zu
Anfang des Komprimats geschrieben werden miissen. Je grofer die Datei ist,
desto kleiner ist der Anteil dieser Daten am Struktur-Komprimat.
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Abbildung 11.3: Skalierung der Kompressionssrate

11.2.2 Kompressionsrate der Konstanten-Kompression
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Abbildung 11.4: Kompressionsvergleich der Konstanten-Kompressionen

Abbildung 11.4 zeigt den Vergleich von vier Varianten zur Konstanten-Kom-
pression: GZip und BZip2 ohne getrennt komprimierte Container sowie GZip



Evaluierung der vorgestellten Ansédtze 155

und BZip2 mit getrennt komprimierten Daten-Containern je umgebendem
Element- und Attributnamen. Hierbei ist zu erkennen, dass beziiglich der Kom-
pressionsstéirke die BZip2-basierten Varianten den jeweiligen GZip-basierten
Varianten iiberlegen sind, und die Varianten mit getrennten Daten-Containern
den Varianten ohne Trennung iiberlegen sind.

Fiir die weiteren Vergleiche mit den Kompressoren XMill, GZip und BZip2
wurden daher die Struktur-Kompressions-Verfahren mit den Varianten kombi-
niert, die getrennt komprimierte Container verwenden. Erstens erreichen diese
eine stirkere Kompression, zweitens ist so auch eine bessere Vergleichbarkeit
mit XMill gegeben, welches auch diese Idee zur Konstanten-Kompression ver-
folgt.

11.2.3 Gesamt-Kompressionsrate

Kompressionsrate(%)

60 O Succinct
5 1 & Succinct + DAG [ T T T T T T T
50 | @  DTD-Subtraktion @  f———————————————— — — — ——
45 || = DTD-Subtraktion + DAG | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
40 1= : 7(21%4151 ***********************
R
O FTTTTE Ny e e e e e
25 1P g--—-——-—-—-—"-"—"-"—-"-——-"-—----
20 N =N - -
15 N - - -
10 N

5 ] -

0 ¥ & > &

& G@"Q" @@O%

Abbildung 11.5: Kompressionsvergleich  der  Gesamtkompression — GZip-
basierter Kompressoren

Abbildungen 11.5 und 11.6 zeigen einen Vergleich der Gesamtkompressions-
stdrke mit anderen GZip- bzw. BZip2-basierten Kompressoren. In Abbildung
11.5 wurden die vier in dieser Arbeit vorgestellten Struktur-Kompressions-
Verfahren mit GZip + Daten-Container als Konstanten-Kompressor kombi-
niert, in Abbildung 11.6 mit BZip2 + Daten-Container. Jeweils das gleiche
Konstanten-Kompressions-Verfahren wurde auch fiir XMill ausgewéhlt.
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Bei den GZip-basierten Verfahren zeigt sich, dass — ausser beim kleinsten
Dokument Hamlet — alle vier Verfahren starker komprimieren als GZip selbst.
Des weiteren zeigt sich, dass die auf DTD-Subtraktion basierenden Verfahren
starker komprimieren als XMill, die auf Succinct basierenden Verfahren jedoch
ein wenig schwécher.

Auch bei den BZip2-basierten Verfahren komprimieren die auf DTD-Sub-
traktion basierenden Verfahren im Allgemeinen stérker als XMill, wihrend
XMill starker komprimiert als die auf Succinct basierenden Verfahren. Im Ge-
gensatz zu GZip komprimiert BZip2 jedoch im Allgemeinen stérker als die reine
Succinct-Variante, es komprimiert jedoch schwécher als die Verfahren Succinct
+ DAG (mit Ausnahme von XMark und Hamlet), DTD-Subtraktion sowie
DTD-Subtraktion + DAG.
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Abbildung 11.6: Kompressionsvergleich der Gesamtkompression BZip2-
basierter Kompressoren

11.2.4 Kompressionszeit der Struktur-Kompression

Hinsichtlich der Kompressionszeit zeigt sich ganz klar der Trade-Off im Ver-
gleich zur Kompressionsrate: diejenigen Verfahren, welche eine héhere Kom-
pressionsrate erreichen, benotigen dementsprechend auch mehr Zeit, die Kom-
pression zu berechnen.

Abbildung 11.7 zeigt den Vergleich der Kompressions-Durchsétze der vier
vorgestellten Struktur-Kompressions-Verfahren untereinander. Hierbei errei-
chen die Succinct-basierten Verfahren hohere Durchsétze — sind also schneller
— als die DTD-Subtraktion-basierten Verfahren. Ebenso erreichen die XML-
basierten Verfahren hohere Durchsétze als die DAG-basierten. Das schnellste
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Verfahren hierbei ist das Succinct-Verfahren mit Durchsétzen zwischen 2947
Bytes/ms (bzw. 22,5 Mbit/s) und 5699 Bytes/ms (bzw. 43,5 Mbit/s), das lang-
samste Verfahren ist DTD-Subtraktion + DAG mit Durchsétzen zwischen 582
Bytes/ms (bzw. 4,4 Mbit/s) und 1895 Bytes/ms (bzw. 14,5 Mbit/s). Im Ver-
gleich dazu hat ADSL eine maximale Empfangsrate von 8 Mbit/s.
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Abbildung 11.7: Vergleich der Kompressions-Durchsétze é)er Struktur-
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Abbildung 11.8: Skalierung des Kompressionsdurchsatzes

Abbildung 11.8 zeigt die Skalierung der vier Verfahren hinsichtlich der Kom-
pressionszeit. Auch hier zeigt sich, dass mit steigender Dokumentgrofe der
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Durchsatz zunéchst leicht steigt, dann jedoch nahezu konstant bleibt. Dies ist
wieder dadurch zu erkldren, dass gewisse Initialisierungsschritte nur einmalig
pro Kompression unternommen werden miissen und der Anteil dieser Schritte
an der Gesamtzeit prozentual mit steigender Dokumentgrofse sinkt.

11.2.5 Kompressionszeit der Konstanten-Kompression

Auch bei der Konstanten-Kompression (Abbildungen 11.4 und 11.9) zeigt sich
der Trade-Off zwischen Kompressionsstiarke und Kompressionszeit. Hier zeigt
sich GZip als schnellster Kompressor, gefolgt von GZip + Daten-Container, ge-
folgt von BZip2, wihrend BZip2 + Daten-Container der langsamste Kompres-
sor ist. Die Durchsétze schwanken hierbei von 164 Bytes/ms (bzw. 1,3 Mbit/s)
fiir BZip2 + Daten-Container auf dem Dokument Hamlet bis 4011 Bytes/ms
(bzw. 30,6 Mbit/s) fiir GZip auf dem Dokument Hamlet. Zu beachten ist, dass
— bis auf die Datei Hamlet — Succinct als schnellster Struktur-Kompressor ho-
here Durchsatzraten erreicht als GZip als schnellster Daten-Kompressor und
auch DTD-Subtraktion + DAG als langsamster Struktur-Kompressor erreicht
hohere Durchsétze als BZip2 + Daten-Container.
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Abbildung 11.9: Vergleich der Durchsétze der Konstanten-Kompressionen
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11.2.6 Gesamt-Kompressionszeit
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Abbildungen 11.10 und 11.11 zeigen den Vergleich der GZip- bzw. BZip2-
basierten Kompressoren hinsichtlich der Kompressionszeit. Hierbei zeigt sich,
dass sowohl XMill als auch GZip und BZip2 den vier vorgestellten Verfahren
deutlich iiberlegen sind. Die vorgestellten Verfahren bieten jedoch den Vorteil,
dass Anfragen direkt auf dem Komprimat — jedoch ohne vorherige Dekom-
pression — ausgewertet werden konnen. Auch wird im Allgemeinen nur einmal
komprimiert, jedoch werden viele Anfragen auf dem Komprimat auf verschie-
denen Empfanger-Rechnern ausgefiihrt. Daher sind viele Szenarien vorstellbar,
bei denen man eine einmalig hohere Kompressionszeit in Kauf nimmt, um vom
Vorteil der performanteren Anfrage-Auswertung profitieren zu koénnen.

11.2.7 Dekompressionszeit der Struktur-Kompression

Ein deutlich anderes Bild zeigt sich bei der Dekompressionszeit.

Abbildung 11.12 zeigt die bei der Dekompression der vier vorgestellten Ver-
fahren erreichten Durchsatzraten. Wie auch bei der Kompression erreichen
die Succinct-basierten Verfahren hohere Durchsétze als die DTD-Subtraktion-
basierten Verfahren. Im Gegensatz dazu sind jedoch die DAG-basierten Vari-
anten schneller als die XML-basierten.
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Abbildung 11.12: Vergleich der Dekompressions-Durchsitze der
Strukturkompression
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Das liegt daran, dass bei der Kompression fiir die einzelnen Teilbdume die
DAG-Kompression und die Succinct- bzw. DTD-Subtraktion-Kompression hin-
tereinander ausgefithrt werden miissen, wiahrend sie bei der Dekompression
stérker miteinander verwoben werden kénnen. Die Dekompression der DAG-
basierten Verfahren kann wie bei den XML-basierten Verfahren erfolgen, ledig-
lich, wenn ein DAG-Zeiger erreicht wird, muss der im Arbeitsspeicher gepuf-
ferte, wiederholte Teilbaum erneut in die Ausgabe-Datei geschrieben werden.
Da dies im Allgemeinen schneller ist, als den entsprechenden Teilbaum erneut
zu dekomprimieren, sind bei der Dekompression die DAG-basierten Verfah-
ren schneller als die XML-basierten Verfahren. Da — wie bereits erwdhnt — in
der Kombination Succinct + DAG mehr Verweise realisiert werden als in der
Kombination DTD-Subtraktion + DAG, tritt der Geschwindigkeits-Gewinn
bei Succinct + DAG stérker hervor als bei der Kombination DTD-Subtraktion
+ DAG.

Das schnellste Verfahren — Succinct + DAG - erreicht hierbei Durchsétze
von 3358 Bytes/ms (bzw. 25,6 Mbit/s) bis 6994 Bytes/ms (52,4 Mbit/s), es
erreicht also hohere Durchsitze als der schnellste ADSL-Standard ADSL2+ mit
25 Mbit /s. Das langsamste Verfahren — DTD-Subtraktion — erreicht Durchsitze
von 1569 Bytes/ms (bzw. 12 Mbit/s) bis 4611 Bytes/ms (35,2 Mbit/s).

Hierbei ist der bei der Dekompression erreichte Durchsatz immer hoher, als
der bei der Kompression erreichte Durchsatz.
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Abbildung 11.13: Skalierung des Dekompressionsdurchsatzes

Bei der Skalierung der Dekompressionsdurchséitze (Abbildung 11.13) zeigt
sich wieder, dass nach anfinglichem Anstieg des Durchsatzes bei steigender
Dokumentgréfse ein nahezu konstanter Durchsatz erreicht wird.
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11.2.8 Dekompressionszeit der Konstanten-Kompression

Abbildung 11.14 zeigt die Dekompressions-Durchsétze der Konstanten-Dekom-
pressionen. Auch hier zeigt sich wieder, dass die GZip-basierten Dekompres-
soren schneller dekomprimieren als die BZip2-basierten Dekompressoren. Hin-
sichtlich der Durchsétze der Container-basierten Varianten im Vergleich zu den
Container-losen Varianten kann jedoch keine klare Aussage getroffen werden.
Vermutlich ist dies darin begriindet, dass die Container deutlich weniger Ele-
mente enthalten als die komprimierten Datenmengen in den Container-losen
Varianten, so dass in den Container-losen Varianten in vielen Fillen perfor-
manter dekomprimiert werden kann.

Wihrend die BZip2-basierten Konstanten-Kompressoren deutlich geringe-
re Durchsétze erreichen als die Struktur-Kompressoren, erreichen die GZip-
basierten Konstanten-Kompressoren vergleichbare Durchsétze wie die Struktur-
Kompressoren. Die Durchsitze reichen von 424 Bytes/ms (bzw. 3,2 Mbit/s) fiir
BZip2 + Daten-Container auf Hamlet bis zu 7275 Bytes/ms (bzw. 55,5 Mbit/s)
fiir GZip + Daten-Container auf Catalog-02.
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Abbildung 11.14: Vergleich der Durchsétze der Konstanten-Dekompressionen
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11.2.9 Gesamt-Dekompressionszeit
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Tabelle 11.1: Anfragen des Benchmarks XPathMark-A
ID | Query
Q1 | /site/closed auctions/closed auction/annotation/description/text/keyword
Q2 | //closed auction//keyword
Q3 | /site/closed auctions/closed auction//keyword

Q4 | /site/closed _auctions/closed _auction[annotation/description/text/keyword]/date
Qb | /site/closed _auctions/closed auction[descendant::keyword]/date

Q6 | /site/people/person|profile/gender and profile/age]/name

Q7 | /site/people/person|phone or homepage|/name

Q8 | /site/people/personfaddress and (phone or homepage) and

(creditcard or profile)]/name

Im Vergleich zum Gesamt-Dekompressions-Durchsatz der Kompressoren X-
Mill, GZip und BZip2 (vergleiche Abbildungen 11.15 und 11.16) zeigt sich
wiederum, dass die Durchsitze von XMill, GZip und BZip2 die Durchsétze
der in dieser Arbeit vorgestellten Verfahren deutlich iibersteigen. Da jedoch
aufgrund der Abfragbarkeit oftmals auf eine vollstdndige Dekompression ver-
zichtet werden kann, stellt dies nicht unbedingt einen Nachteil der in dieser
Arbeit vorgestellten Verfahren dar.

11.3 Auswertungszeit

Zur Evaluierung der Anfrage-Auswertungszeiten wurde ein XPath-Framework
fiir Datenstrome entsprechend Kapitel 9 genutzt.

Es wurden die Basis-Verfahren Succinct, DTD-Subtraktion und DAG ver-
glichen mit den folgenden beiden Verfahren:

e Uncompressed — Das XPath-Framework wurde wie Kapitel 9 beschrieben
auf einem unkomprimierten SAX-Event-Strom angewandt.

o JAXP (Java API for XML Processing) — die in Java enthaltene Standard-
API zum Validieren und Parsen von XML-Dokumenten.

Als Test-Dokumente wurden 8 XML-Dokumente durch den XMark-Bench-
mark generiert mit Skalierungsfaktoren 0,001, 0,002, 0,004, 0,008, 0,016, 0,032,
0,064 und 0,128. Ausgewertet wurden auf diesen die Anfragen des XPath-
Benchmarks XPathMark-A [45], welche als Anfragen Q1, ..., Q8 in Tabelle
11.1 gelistet sind.

Fiir alle getesteten Verfahren wurde die Dauer der Ermittlung der Ergebnis-
Knoten der XPath-Anfrage gemessen. Dabei wurden nicht die darunter liegen-
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den Teilbdume ausgegeben, da es von der weiteren Anwendung abhéngt, ob
man z.B. die Teilbdume komprimiert oder dekomprimiert erhalten mdochte.
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Abbildung 11.17: Vergleich der Anfrage-Auswertungszeiten

Abbildung 11.17 gibt zunéchst einen Gesamtiiberblick iiber alle Anfragen
angewandt auf das Dokument mit Skalierungsfaktor 0,128. Bei den Anfragen
Q1, Q4, Q6, Q7 und Q8 zeigt sich, dass der DAG die schnellste Auswertungs-
zeit vorweisen kann, gefolgt von der Succinct-Darstellung, gefolgt von DTD-
Subtraktion und schlieklich gefolgt von JAXP und Uncompressed. Bei den
Anfragen Q3 und Q5 ist die Auswertungszeit fiir D'TD-Subtraktion hoher als
fiir Uncompressed und JAXP, wihrend sie fiir DAG und Succinct noch niedri-
ger ist. Bei Anfrage Q2 schlieflich ist die Auswertungszeit fiir DAG, Succinct
und DTD-Subtraktion hoher als fiir JAXP und Uncompressed.

Vergleichen wir diese Anfragen, so sehen wir, dass Q2, Q3 und Q5 jeweils
mindestens eine descendant-Achse enthalten, wihrend die restlichen Anfragen
nur aus child-Achsen bestehen. Beginnt eine Anfrage mit einem descendant-
Achsen-Schritt (wie z.B. Q2), so bedeutet dies, dass jeder Knoten des Do-
kumentes ein potentieller Treffer ist, es kann also bei der Auswertung kein
Knoten iibersprungen werden. Je spéter jedoch ein descendant-Achsen-Schritt
vorkommt, desto mehr Teile kdnnen iibersprungen werden und desto grofier
ist der Vorteil der komprimierten Reprasentationen gegeniiber dem unkompri-
mierten XML.

Der DAG erhélt hierbei einen noch grofieren Vorteil als die anderen Verfah-
ren, da dieser bereits — wie bei DOM — einen direkten Zeiger auf first-child
und next-sibling enthélt, wahrend bei der Succinct-Darstellung der Bit-Strom
und bei der DTD-Subtraktion DTD und KST bis zum gewiinschten Knoten
geparst werden miissen.
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Abbildungen 11.18, 11.19 und 11.20 zeigen die Skalierung der Auswertungs-
zeiten fiir die Anfragen Q2 (descendant-Achse zu Beginn), Q5 (descendant-
Achse in Tiefe 4 + Pridikatfilter) und Q7 (nur child-Achsen, Prédikatfilter

mit Disjunktion).

Wie zu sehen ist, skalieren alle Verfahren bei steigender Dokumentgrofe
nahezu linear, wobei die Rangfolge der Verfahren (wie in Abbildung 11.17 zu
sehen) von der Position der ersten descendant-Achse abhéngt.
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Geht man nicht vom ungiinstigsten Fall — also einer Anfrage beginnend mit
descendant-Achse — aus, so ist die Anfrage-Auswertung auf den Komprimaten
schneller oder mindestens genauso schnell wie auf unkomprimiertem XML und
damit auf jeden Fall schneller, als wenn man einen nicht-navigierbaren Kom-
pressor (z.B. XMill, GZip oder BZip2) verwenden wiirde und vor der Anfrage-
Auswertung dekomprimieren wiirde.

11.4 Fazit

Als Ergebnis dieser Messreihe kann man sehen, dass keines der vorgestell-
ten Basis-Verfahren den jeweils anderen beiden in allen gemessenen Aspekten
iiberlegen ist: widhrend DTD-Subtraktion die stirkste Kompression erreicht,
erreicht die Succinct-Darstellung die grofsten Kompressions- und Dekompres-
sions-Durchsétze und der DAG erreicht die schnellste Auswertungszeit.

Je nach Anwendung und den daraus resultierenden Anforderungen an diese
Eigenschaften, kann man somit ein geeignetes Verfahren auswihlen.

Auch bei der Konstanten-Kompression zeigt sich ein deutlicher Trade-Off
zwischen Kompressionsrate und Kompressionszeit. Da jedoch diese Verfahren
komplett unabhingig von der Struktur-Kompression sind, kann auch hier ein
Verfahren mit den gewiinschten Figenschaften ausgewéhlt werden und beliebig
mit einer geeigneten Struktur-Kompression kombiniert werden.

Insgesamt hat sich im Vergleich mit anderen Verfahren gezeigt, dass ins-
besondere hinsichtlich der jeweiligen Stérke des jeweiligen Verfahrens die in
dieser Arbeit entwickelten und vorgestellten Verfahren die anderen geteste-
ten Verfahren iibertreffen: einerseits hinsichtlich der Kompressionsstérke (z.B.
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DTD-Subtraktion + DAG) andererseits hinsichtlich der Kompressionszeit (z.B.
Succinct-Verfahren) oder hinsichtlich Anfrage-Auswertungszeit (z.B. DAG).
Die Kombination der Verfahren Succinct mit DAG und DTD-Subtraktion
mit DAG erreicht erstaunlicherweise nicht nur eine stirkere Kompression als
diese Verfahren mit XML sondern auch eine schnellere Dekompression. Ledig-

lich bei der Kompressionszeit muss man den Trade-Off eingehen und erhélt
eine etwas hohere Kompressionszeit.
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In diesem Kapitel werde ich die in Kapitel 1 vorgestellten Anwendungen wieder
aufgreifen und erdrtern, von welchen der in dieser Arbeit vorgestellten Kom-
pressionsverfahren sie aufgrund der Gewichtung der Anforderungen besonders
stark profitieren.

12.1 News-Ticker

Das News-Ticker-Szenario besteht aus einer Datenquelle — z.B. einer Nach-
richten-Agentur — die einen kontinuierlichen Strom an Nachrichten produziert,
einem Bezieher, der nur an einem Teil der produzierten Nachrichten interessiert
ist, und einem Nachrichten-Broker, der die Interessen des Beziehers kennt, die
fiir ihn interessanten Nachrichten aus dem Datenstrom herausfiltert und an
den Bezieher weiterleitet.

In diesem Szenario sind insbesondere die Anforderungen 1-9 aus Kapitel 1.3
wichtig, es muss also eine starke Kompression erreicht werden, Kompressions-
und Dekompressionsdurchsatz diirfen nicht unter dem Datendurchsatz der Da-
tenquelle liegen, und atomare Anfrage-Auswertung muss unterstiitzt werden,
damit der Nachrichten-Broker effizient die Nachrichten filtern kann. Anforde-
rung 10 — die Unterstiitzung von Updates —ist in diesem Beispiel nicht relevant,
da keinerlei Updates auf dem Nachrichtenstrom vorgesehen sind.

In Anbetracht dieser Anforderungen empfiehlt sich daher fiir dieses Szenario
die Verwendung des Kompressions-Verfahrens D'TD-Subtraktion, welches eine
starke Kompression bei Kompressionsdurchsitzen von ca. 8 Mbit /s erreicht und
auch die Anfrage-Auswertung einfacher Pfad-Anfragen effizient unterstiitzt.

Als weitere Alternative empfiehlt sich auch, das Succinct-Verfahren einzu-
setzen. In diesem Fall erhielte man einen erhdhten Kompressionsdurchsatz und
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eine etwas effizientere Anfrage-Auswertung beim Nachrichten-Broker, im Ge-
genzug erhielte man allerdings eine etwas verringerte Kompressionsstarke.

Lediglich die DAG-basierten Varianten Succinct + DAG und DTD-Subtrak-
tion + DAG empfehlen sich aufgrund der verringerten Kompressions-Durch-
sdtze nur bedingt fiir dieses Szenario.

12.2 Daten-Management fiir mobile, Ajax-basierte
Web 2.0 Anwendungen

Das Ajax-Szenario besteht aus einem XML-Server und einem XML-Client in
Form eines DOM-basierten Web-Browsers. Der Server enthélt das gesamte Do-
kument, wihrend der Client nur wenige Ausschnitte des Dokumentes enthélt.
Sobald der Client weitere Informationen vom Server bendtigt, werden diese
asynchron in Form eines XML-Fragmentes vom Server zum Client gesendet
und mittels JavaScript in den DOM-Baum des Clients zur Laufzeit integriert,
so dass dem Benutzer des Clients eine interaktive Anwendung suggeriert wird.

Ersetzt man die DOM-Komponente auf Client-Seite durch eine Navigations-
und Update-féahige, komprimierte XML-Reprasentation, so kdnnen die iibrigen
Ajax-Komponenten unveréndert iibernommen werden. Statt unkomprimiertem
XML wird komprimiertes XML iibertragen, so dass Ubertragungskosten einge-
spart werden. Die Darstellung der komprimierten XML-Représentation erfor-
dert im Hauptspeicher deutlich weniger Speicher als die Darstellung des eigent-
lichen DOM-Baumes bei gleichem Funktionsumfang, so dass Arbeitsspeicher
eingespart werden kann. Dadurch kénnen bei gleichem Arbeitsspeicher deut-
lich umfangreichere Ajax-Anwendungen umgesetzt werden, und somit wird es
auch mobilen Kleinstgeriten (wie z.B. Mobiltelefonen und PDAs) ermdglicht,
Ajax-basierte Web 2.0 Anwendungen zu nutzen.

In diesem Szenario sind besonders die Anforderungen 1-2 sowie 6-10 wichtig,
also eine starke Kompression sowie Auswertung von Anfragen und Updates di-
rekt auf dem Komprimat. Die Kompressions- und Dekompressionsdurchsétze
(Anforderungen 4-5) spielen eine eher untergeordnete Rolle, da kein kontinu-
ierlicher Datenstrom sondern nur kleine XML-Fragmente versendet werden.

Aufgrund der guten Kompressionsstirke bei sehr effizienter Unterstiitzung
der DOM-Funktionalititen, empfiehlt sich zur Verbesserung von Ajax insbe-
sondere die Kombination aus DAG und Succinct-Darstellung als Kompressi-
onsmethode. Da aber alle in dieser Arbeit vorgestellten Kompressionsverfahren
die DOM-Funktionalitdten unterstiitzen, kann prinzipiell auch eines der ande-
ren vorgestellten Verfahren benutzt werden.
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Teile der Ideen eines durch XML-Kompression verbesserten Daten-Manage-
ments fiir mobile, Ajax-basierte Web 2.0 Anwendungen wurden in |21] verdf-
fentlicht.

12.3 Verbesserung der Cache-Kapazitat durch
Kompression

Das Cache-Szenario umfasst einen Server, der das komplette, komprimierte
XML-Dokument enthélt, sowie einen client-seitigen Cache, der die komplet-
te, komprimierte Dokument-Struktur enthélt zuzliglich einiger weniger, kom-
primierter Text-Knoten, sofern diese fiir die Beantwortung fritherer Anfragen
benotigt wurden.

Diese Architektur erlaubt dem Client einerseits, effizient zu entscheiden, ob
er zur Beantwortung einer neuen Anfrage bereits alle Daten im Cache hat, an-
dererseits entféllt in diesem Szenario auch der Overhead aufgrund von Knoten-
IDs, wie sie in anderen XML-basierten Caching-Szenarien notwendig sind, da
Reihenfolge der Anfrage-Auswertung sowie Dokument-Struktur geniigen, um
fiir jeden Text-Knoten dessen Position im Struktur-Komprimat eindeutig zu
bestimmen.

In diesem Szenario sind insbesondere die Anforderungen 1-2 sowie 6-10 wich-
tig, also eine starke Kompression sowie Auswertung von Anfragen und Updates
direkt auf dem Komprimat. Die Kompressions- und Dekompressionsdurchsétze
(Anforderungen 4-5) spielen eine eher untergeordnete Rolle, haben aber eine
deutlich stéirkere Bedeutung als im vorangehenden Szenario. Dadurch, dass die
komplette, komprimierte Struktur im Cache vorhanden ist, erhalten die An-
forderungen 1-2 ein deutlich hoheres Gewicht als die iibrigen Anforderungen.

Fiir dieses Szenario eignet sich daher insbesondere das Kompressions-Ver-
fahren DTD-Subtraktion, da es eine sehr kleine Struktur-Reprisentation er-
zeugt. Ebenso unterstiitzt dieses Verfahren das in Kapitel 9 vorgestellte XPath-
Auswertungs-Verfahren, welches die Dokument-Reihenfolge der Text-Knoten
garantiert. Prinzipiell konnen aber alle im Rahmen dieser Arbeit vorgestell-
ten Kompressions-Verfahren zur Umsetzung eines solchen Szenarios eingesetzt
werden.

Zusammengefasst bietet der Einsatz solch eines neuen Caching-Verfahrens
die folgenden Vorteile:

e Aufgrund der Kompression erhoht sich die Cache-Kapazitdt, dadurch
werden mehr Cache-Hits ermoglicht.

e Weniger Datentransfer durch komprimierte Ubertragung.
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e Kein zusédtzlicher Overhead durch Identifizierungs-Informationen fiir die
Zuordnung von Blattknoten der Struktur zu Konstanten.

e Der Client kann Vollstandigkeit der Daten in seinem Cache bzgl. einer
Anfrage entscheiden.

Teile der Ideen eines durch Struktur-Kompression verbesserten Cachings
wurden in [14] zur Verdffentlichung eingereicht.



13 Schlussbetrachtungen

13.1 Zusammenfassung

In dieser Arbeit wurden drei verschiedene Verfahren — Succinct-Darstellung,
DAG-basierte Kompression und DTD-Subtraktion — zur navigierbaren Kom-
pression der Struktur von XML-Datenstromen vorgestellt. Jedes dieser Verfah-
ren besitzt die Eigenschaft, dass sowohl Anfragen als auch Updates direkt auf
dem Komprimat — ohne vorherige Dekompression und anschliefende Kompres-
sion — durchgefiihrt werden konnen.

Fiir jedes der drei Verfahren wurde bewiesen, dass Kompression und Dekom-
pression Umkehroperationen zueinander sind, dass also die Hintereinanderaus-
fithrung von Kompression und Dekompression auf einem XML-Struktur-Strom
xml wieder den urspriinglichen Struktur-Strom xml herstellt. Ebenso wurde
fiir jedes dieser Verfahren die Korrektheit der Basis-Navigation basierend auf
den atomaren XPath-Achsen first-child, next-sibling und parent sowie auf den
Funktionen getLabel und getType nachgewiesen. Die Moglichkeit der Abbil-
dung der kompletten DOM-Schnittstelle direkt auf dem Komprimat mit Hil-
fe von Basis-Navigation und Updates wurde ebenfalls fiir alle drei Verfahren
nachgewiesen.

Neben den drei grundlegenden Verfahren wurden auch zwei hybride Verfah-
ren — Succinct + DAG und DTD-Subtraktion + DAG — vorgestellt, die jeweils
eine Kombination zweier grundlegender Verfahren darstellen.

Fiir die zuvor von der XML-Struktur getrennten Konstanten wurde eine
Reihe von verschiedenen, bereits existierenden Kompressions-Verfahren vorge-
stellt und deren Eigenschaften erortert. Ebenso wurden die Vor- und Nachteile
verschiedener Integrationsmoglichkeiten von komprimierter Struktur und kom-
primierten Daten diskutiert.

Um nicht nur eine Basis-Navigation zu unterstiitzen, sondern den weit ver-
breiteten XPath-Standard, wurde ein Verfahren zur XPath-Anfrage-Auswer-
tung vorgestellt. Dieses Anfrage-Auswertungs-Verfahren kann auf jeder XML-
Représentation — egal ob komprimiert oder nicht komprimiert — die die Basis-
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Navigation, bestehend aus den Achsen first-child, next-sibling und parent so-
wie aus den Funktionen getLabel und getType, unterstiitzt, mehrere XPath-
Anfragen parallel in einer zur Dokument-Grofe proportionalen Zeit auswerten.

Abschlieffend wurden in einer Reihe von Messungen die drei grundlegen-
den Verfahren und die beiden hybriden Varianten sowohl untereinander als
auch mit anderen frei verfiigharen XML- bzw. Daten-Kompressoren verglichen
und bzgl. Kompressionsstirke, Kompressions- und Dekompressionszeit sowie
Anfrage-Auswertungszeit evaluiert. Obwohl die vorgestellten Verfahren im Ge-
gensatz zu den anderen getesteten Verfahren navigierbar und Update-fihig
sind, erreichen sie dennoch vergleichbare Kompressionsstirken, wenn auch die
Kompressions- und Dekompressionszeiten etwas grofier sind als die der reinen
Kompressoren. Ebenso zeigte sich, dass die Anfrage-Auswertungszeiten durch-
aus vergleichbar und in vielen Féllen sogar besser sind, als diejenigen von
XPath-Auswertern auf unkomprimiertem XML.

Im Vergleich der Verfahren untereinander hat sich gezeigt, dass keines der
Verfahren den jeweils anderen absolut iiberlegen ist. Jedes der Verfahren hat
seine Stdrke in einem anderen Bereich: Wihrend die DTD-Subtraktion beson-
ders stark komprimiert, sind die Kompressions- und Dekompressionszeiten der
Succinct-Darstellung besonders niedrig und die Anfrage-Auswertung auf der
DAG-Kompression besonders effizient. Je nach Anwendung und den daraus
resultierenden Anforderungen kann entsprechend eines der vorgestellten Ver-
fahren in Kombination mit einem fiir die Anwendung geeigneten, vom Struktur-
Kompressions-Verfahren unabhéngigen Daten-Kompressions-Verfahren gewéhlt
werden.

13.2 Erfiillung der Anforderungen

Zusammenfassend werde ich nun noch einmal die in Kapitel 1 vorgestellten
Anforderungen aufgreifen und erértern, in welchem Mafe diese durch die in
dieser Arbeit vorgestellten Losungen erfiillt werden.

e Anforderung 1: Kompression und Dekompression miissen zueinander

wwers sein, die Dekompression der komprimierten Reprasentation muss
also ber Eingabe eines beliebigen validen Dokuments wieder das urspriing-
liche Dokument erzeugen.
Die Erfiillung dieser Anforderung wird fiir die Succinct-Darstellung in
den Sétzen 4.4 und 4.8 nachgewiesen. Fiir die DAG-basierte Kompression
wird die Erfiillung dieser Anforderung in Satz 5.1 und fiir die DTD-
Subtraktion in Satz 6.1 nachgewiesen.
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e Anforderung 2: Die Kompressionsrate muss mindestens so stark sein

wie die anderer XML-Kompressions-Verfahren mit vergleichbaren Eigen-
schaften.
Wie in Abbildungen 11.5 und 11.6 zu sehen, erreichen alle getesteten
Verfahren Kompressionsraten vergleichbar zu XMill, BZip2 und GZip,
obwohl keines der letzteren Verfahren Navigation direkt auf dem Kom-
primat unterstiitzt. Somit kann keines dieser Verfahren vergleichbare Fi-
genschaften vorweisen.

e Anforderung 3: Kompression und Dekompression miissen vergleichbare
Durchsitze erreichen wie derzeit bliche Ubertragungsverfahren.
Wie in Abbildung 11.7 zu sehen ist, erreichen die gemessenen Verfah-
ren Durchsitze von 4,4Mbit/s bis zu 53,5Mbit/s. Im Vergleich zum der-
zeit iiblichen Ubertragungsverfahren ADSL mit Durchsitzen von unter
1Mbit/s bis zu 8Mbit/s werden also durchaus vergleichbare Durchsétze
erreicht.

e Anforderung 4: Die Dekompression muss mindestens so schnell sein
wie die Kompression.
Im Vergleich der Abbildungen 11.7 und 11.12 ist zu sehen, dass fiir jedes
der gemessenen Verfahren die Dekompression hohere Durchsitze erreicht
als die Kompression.

e Anforderung 5: Kompression und Dekompression miissen moglich sein,
ohne dass das gesamte Dokument beziehungsweise das gesamte Kompri-
mat bekannt ist.

In den Kapiteln 4.3, 5.2 und 6.2 wird die fenster-basierte Kompression
von unendlichen Datenstromen und somit die Erfiillung dieser Anforde-
rung erlautert.

e Anforderung 6: Zu jedemn Knoten des urspringlichen XML-Dokumentes
muss eine eindeutige Reprdsentation im Komprimat existieren.
Fiir die Succinct-Darstellung geniigt eine Position p im Bitstrom, fiir
den DAG ein Stack bestehend aus Paaren (ID, Knotentyp), welcher den
Pfad zum aktuellen Knoten repréasentiert, und fiir die DTD-Subtraktion
geniigt ein Tupel (KST, n, p) aus Komprimat KST, Syntaxknoten n
und Position p im KST, um einen Knoten des urspriinglichen XML-
Dokumentes eindeutig zu identifizieren.

e Anforderung 7: Partielle Dekompression, also Dekompression von XML-
Teilbaumen innerhalb des Komprimats, muss moglich sein.
Da die Sétze 4.4, 4.8, 5.1 und 6.1 und deren Beweise, die die Korrektheit
von Kompression und Dekompression nachweisen, nicht nur auf das kom-
plette Dokument, sondern auch auf Teilbdume bzw. deren Entsprechung
im Struktur-Strom anwendbar sind, ist diese Anforderung erfiillt.
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e Anforderung 8: Die Basis-Operationen first-child, next-sibling, parent
sowie die Ermittlung des Typs und des Labels eines Knotens direkt auf
dem Komprimat miissen unterstiitzt werden.

Wie in den Kapiteln 4.1.2, 4.4.1, 5.3, 5.4.1, 6.3 und 6.4.1 gezeigt, werden
von allen drei Verfahren die Basis-Navigation und somit diese Anforde-
rung erfiillt.

e Anforderung 9: Die Anfrage-Auswertungszeiten auf dem Komprimat
sollten hierbei vergleichbar zu Anfrage-Auswertungszeiten auf unkompri-
miertem XML sein.

Wie z.B. in Abbildung 11.17 zu sehen ist, erreichen alle drei Verfahren
vergleichbare bzw. sogar teilweise bessere Anfrage- Auswertungszeiten als
die der Standard-XPath-Auswertern auf unkomprimiertem XML.

e Anforderung 10: Die Basis-Operationen insert und remove miissen di-
rekt auf dem Komprimat unterstitzt werden.
Wie in den Kapiteln 4.4.3, 5.4.2 und 6.4.2 erortert, unterstiitzen alle drei
Verfahren diese Basis-Operationen direkt auf dem Komprimat.

13.3 Ausblick

In diesem Kapitel werde ich Ideen zur zukiinftigen Erweiterung und Verbesse-
rung der in dieser Arbeit vorgestellten Ansétze vorstellen.

13.3.1 Verbesserte Konstanten-Kompression

Wie sich in den Messungen gezeigt hat, wird die Struktur des XML-Dokumen-
tes sehr stark komprimiert, so dass die komprimierte Struktur nur noch 0,3%
bis 16,7% der urspriinglichen Dokumentgrofe betriagt. Im Vergleich dazu kom-
primiert die Konstanten-Kompression mit 9,2% bis 30,4% deutlich schwécher.

Es ist daher zu vermuten, dass die Entwicklung eines geeigneten Daten-
Kompressors noch einmal einen deutlichen Fortschritt in der XML-Kompression
bringen wiirde.

Da jedoch die Text-Kompression als Forschungsgebiet deutlich langer exi-
stiert als die XML-Kompression, ist zu erwarten, dass die derzeit verfiigbaren
Text-Kompressoren bereits sehr leistungsstark sind. Daher sollte der Fokus der
zukiinftigen Forschung nicht unbedingt auf der Entwicklung verbesserter Text-
Kompressoren liegen, sondern eher darauf, wie man mit Hilfe der semantischen
Informationen, die durch die XML-Struktur gegeben sind, die vorhandenen
Text-Kompressoren so erweitern kann, dass sie eine verbesserte Kompression
erreichen konnen.

Einen FEinstieg in diese Forschung stellt z.B. das Sortieren der Text-Konstan-
ten in semantische Container dar, wie es schon von XMill vollzogen wurde.
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13.3.2 Unterstiitzung aller XML-Anwendungen

Mit der Unterstiitzung von XPath-Pfad-Anfragen und der Unterstiitzung von
einfachen Update-Operationen wurde in dieser Arbeit ein Anfang gemacht, alle
Anwendungen, die auf XML moglich sind, auch auf der entsprechenden kompri-
mierten Reprisentation durchfithren zu konnen. XPath stellt dabei zwar einen
grundlegenden Baustein dar, jedoch existieren eine Vielzahl weiterer Anwen-
dungen und Standards, die teilweise auf den Grundlagen von XPath beruhen.
Beispiele fiir solche Standards sind z.B. die XML-Anfragesprache XQuery und
die Programmiersprache zur Transformation von XML-Dokumenten XSLT.
Beide bieten eine Vielzahl von Operationen, die iiber die Basis-Navigation via
XPath hinausgehen.

Um also komprimiertes XML in gleichem Mafse nutzbar zu machen wie her-
kémmliches XML, miisste man die hier vorgestellten Verfahren untersuchen,
inwieweit diese in der Lage sind, weitere XML-basierte Standards zu unterstiit-
zen, bzw. inwieweit diese Verfahren anpassbar sind, so dass eine Unterstiitzung
der Standards gewéhrleistet werden kann.

Auch bei der schema-basierten Kompression — DTD-Subtraktion — habe ich
mich in dieser Arbeit auf die Unterstiitzung einer Schema-Sprache — DTD —
beschréankt. Neben DTD existieren aber noch andere Schema-Sprachen, wie
z.B. XML Schema oder RelaxNG, welche eine hohere Méchtigkeit als die D'TD
besitzen. Hier bliebe es also zu untersuchen, ob die in dieser Arbeit vorgestell-
ten Ergebnisse zur schema-basierten Kompression auf andere Schema-Sprachen
iibertragbar sind, ob der hohere Sprachumfang eine Ubertragung der Ergeb-
nisse nicht moglich macht, oder ob der hohere Sprachumfang zu schwécheren
oder stérkeren Kompressions-Ergebnissen fiihrt.

13.3.3 Verbesserte Navigation durch Indizierung

Obwohl die in Kapitel 1 dieser Arbeit vorgestellten Anwendungen auch die
Unterstiitzung von Navigation und teilweise auch von Updates direkt auf dem
Komprimat erforderten, lag dennoch der Hauptfokus der Anwendungen auf
einer starken Kompression.

Méchte man nun statt dieser relativ einfachen Anwendungen ein komplettes
natives XML-Datenbank-System basierend auf komprimiertem XML aufbauen,
so erhalten Navigation und Updates einen deutlich hoheren Stellenwert.

Fiir solch ein natives XML-Datenbank-System wére es also interessant, die
komprimierten XML-Repréasentationen um zusétzliche Index-Informationen an-
zureichern (z.B. direkte Pointer zu next-siblings), die eine optimierte Anfrage-
Auswertung erlauben. Dabei ist natiirlich auch die Kompression nicht aus dem
Blickfeld zu verlieren: Ziel sollten Kompressions-Verfahren sein, die dennoch
eine starke Kompression (wenn auch eine etwas schwéchere Kompression als die
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in dieser Arbeit vorgestellten Verfahren) erreichen, aber die mit Hilfe von In-
dizes deutliche Performanz-Steigerungen bei der Anfrage-Auswertung und bei

der Durchfithrung von Updates direkt auf der komprimierten Représentation
erreichen.
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