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AbstractNowadays, XML has shown to be the de facto standard for electronic datainterchange on the Internet. Available XML data ranges from small Web pagesto possibly unbounded streams, as used e.g. in news agencies.Especially when using small mobile devices (such as mobile phones or PDAs),the data size forms a problem due to the limitations in main memory, andthe size of the transferred data forms a problem due to the limitations inenergy consumption. In these cases, i.e., whenever the data size or energyconsumption limitations form the bottleneck of an XML based application,these applications can pro�t from the usage of XML compression. It is desirablethat these applications can perform all XML based operations, like XML queryevaluation and XML data manipulation, directly on the compressed XML data,to avoid additional computation caused by prior decompression and subsequentcompression. Furthermore, it is desirable that there is no loss in e�ciency whenperforming query evaluation on compressed data in contrast to performingquery evalution on uncompressed data. Finally, it is desirable that it is possibleto perform the query evaluation on possibly unbounded streams.The existing approaches to XML compression can be classi�ed accordingto whether they support these XML based operations or not. Approaches likeGZip, BZip2, XMill, and others reach a strong compression, while the eva-luation of queries requires prior decompression and subsequent compression.Other approaches, like XGrind and XQueC, allow to evaluate queries on thecompressed data, but they are outperformed in terms of compression ratio bythose approaches that do not support these XML based operations. The ap-proaches to XML compression that where implemented and presented in thisthesis allow query evaluation and updates on the compressed data while atthe same time, they reach compression ratios comparable to those approachesthat do not support the XML based operations. The approaches presented inthis thesis focus on XML structure compression, i.e., on the compression ofthe XML elements and attributes, but all presented approaches can be combi-ned arbitrarily with quite a number of data compressors for text and attributevalues that are based on prior ideas from literature. i



ii In this thesis, I present three basic approaches to the compression of XMLstructure � coding based compression, compression based on structural redun-dancies, and schema based compression � and demonstrate that query evalua-tion as well as update operations can be performed directly on the resultingcompressed data. The presented approaches provide compression ratios signi-�cantly better than those of other queriable XML compression techniques likee.g. XGrind. Futhermore, I present two combinations of these compression ap-proaches that provide the advantages of the combined approaches and therebyreach a better compression ratio and a faster compression and decompressionwhile showing the same capabilities in other respects.The approaches to XML structure compression presented in this thesis sup-port query evaluation in form of a simple interface. To support all axes ofXPath, these approaches are amended by a generic approach to XPath queryevaluation. This approach allows to e�ciently evaluate queries on compres-sed XML representations that implement a simple, shallow interface. Amongstcompressed XML, this approach allows to evaluate queries on uncompressedXML �les and on possibly unbounded data streams. When comparing this ap-proach with the standard XPath evaluator JAXP, the generic XPath evaluatorreached evaluation times comparable or even better than those of JAXP.Finally, I have performed extensive performance evaluations to compare thepresented compression approaches with other available approaches to XMLcompression, and I show that the presented compression approaches outper-form the other approaches GZip, BZip2, and XMill in terms of query evaluationund updates on the compressed data.When comparing the newly developed approaches to XML compression witheach other, it can be seen that each approach shows its strength in di�erentaspects: While one approach reaches a strong compression, another approachshows fast compression and decompression times, whereas the third approachallows to evaluate queries e�ciently. None of the presented approaches outper-forms the other approaches completely.



ZusammenfassungHeutzutage hat sich XML als der de facto Standard für den Datenaustauschim Internet durchgesetzt. Dabei reicht die Spanne an verfügbaren XML-Datenvon kleinen Webseiten bis hin zu möglicherweise unendlichen Datenströmen,wie sie z.B. von Nachrichten-Agenturen versandt werden.Vor allem beim Einsatz von mobilen Kleinstgeräten (wie z.B. Mobiltelefonenoder PDAs) stellt die Datengröÿe aufgrund des nur eingeschränkt verfügbarenArbeitsspeichers und die Übertragungsgröÿe aufgrund der nur eingeschränktverfügbaren Energie ein Problem dar. In diesen Fällen, also immer, wenn Da-tengröÿe oder begrenzter Energieverbrauch das Nadelöhr einer XML-basiertenAnwendung darstellen, können diese Anwendungen von der Nutzung von XML-Kompression pro�tieren. Hierbei ist es wünschenswert, dass diese Anwendun-gen alle XML-basierten Operationen, wie z.B. XML-Anfrage-Auswertung oderManipulationen der XML-Daten, direkt auf den komprimierten Daten durch-führen können, um einen Mehraufwand durch vorherige Dekompression undanschlieÿende Kompression zu vermeiden. Weiterhin ist es wünschenswert, dassbei der Anfrage-Auswertung auf komprimierten Daten keine E�zienzverlusteim Vergleich zur Anfrage-Auswertung auf nicht-komprimierten Daten auftre-ten, und dass diese Anfrage-Auswertung auch auf quasi-unendlichen kompri-mierten Datenströmen möglich ist.Bisher in der Literatur verfügbare Kompressions-Verfahren lassen sich unteranderem danach gliedern, ob sie die XML-basierten Operationen unterstützenoder nicht. Verfahren wie GZip, BZip2, XMill und andere erreichen eine sehrstarke Kompression, die Durchführung der XML-basierten Operationen erfor-dert jedoch vorherige Dekompression und anschlieÿende Kompression. AndereVerfahren wie z.B. XGrind oder XQueC bieten zwar die Möglichkeit, Anfra-gen direkt auf dem Komprimat auszuwerten, sie bleiben jedoch bezüglich ih-rer Kompressionsstärke deutlich hinter denjenigen Kompressoren zurück, diedie XML-basierten Operationen nicht unterstützen. Die in dieser Arbeit ent-wickelten und vorgestellten Kompressions-Verfahren bieten im Gegensatz dazudie Möglichkeit, Anfrage-Auswertung und Updates direkt auf dem Komprimatdurchzuführen, wobei gleichzeitig Kompressionsstärken vergleichbar mit denenderjenigen Kompressoren erreicht werden, die diese XML-basierten Operatio-iii



ivnen nicht unterstützen. Hierbei konzentriert sich diese Arbeit insbesondere aufdie Struktur-Kompression, also auf die Kompression der XML-Elemente und-Attribute, wobei alle vorgestellten Struktur-Kompressions-Verfahren beliebigmit einer Reihe von Daten-Kompressoren kombiniert werden können, welcheauf bereits in der Literatur diskutierten Ideen basieren.In dieser Arbeit werden drei grundlegende Verfahren zur XML-Struktur-Kompression � Kodierungs-basierte Kompression, Kompression basierend aufStruktur-Redundanzen sowie Schema-basierte Kompression � präsentiert, undes wird nachgewiesen, dass sowohl Anfrage-Auswertung als auch Updates di-rekt, also ohne Dekompression, auf den aus diesen Verfahren resultierendenKomprimaten durchgeführt werden können. Diese Verfahren erreichen besse-re Kompressionsraten als Kompressions-Verfahren mit vergleichbaren Eigen-schaften bei der Anfrage-Auswertung wie z.B. XGrind. Des Weiteren werdenzwei Kombinationsmöglichkeiten dieser Verfahren vorgestellt, die die Vorteileder jeweiligen Verfahren vereinigen, und somit bei ansonsten gleichbleibendenEigenschaften gleichzeitig eine stärkere Kompression und eine schnellere De-kompression erreichen.Die in dieser Arbeit vorgestellten Verfahren zur XML-Struktur-Kompressionunterstützen eine Basis-Anfrage-Auswertung in Form einer einfachen Schnitt-stelle. Um alle Achsen des XPath-Standards zu unterstützen, wurden die-se Verfahren ergänzt durch ein neu entwickeltes generisches XPath-Auswer-tungs-Verfahren. Dieses erlaubt e�ziente Anfrage-Auswertung auf komprimier-ten XML-Repräsentationen, welche eine schlanke, einfache Schnittstelle im-plementieren. Neben komprimiertem XML, erlaubt dieses Verfahren auch dieAnfrage-Auswertung auf nicht-komprimiertem XML-Dateien und auf nicht-komprimierten quasi-unendlichen Datenströmen. Bei einem Vergleich mit demStandard-XPath-Auswerter JAXP hat sich hierbei herausgestellt, dass bei derVerwendung des neu entwickelten XPath-Auswertungs-VerfahrensAuswertungszeiten erreicht wurden, welche vergleichbar oder sogar besser wa-ren als die von JAXP.In einer ausführlichen Messreihe wurden die vorgestellten Verfahren unter-einander und mit anderen verfügbaren XML-Kompressions-Verfahren vergli-chen, und es wurde nachgewiesen, dass sie den anderen Verfahren GZip, BZip2und XMill in Bezug auf Anfrage-Auswertung und Updates überlegen sind.Im Vergleich der neu entwickelten Kompressions-Verfahren untereinanderhat sich gezeigt, dass jedes der Verfahren seine Stärke in einem anderen Bereichhat: Während eines besonders stark komprimiert, weist ein anderes besondersniedrige Kompressions- und Dekompressionszeiten vor, wohingegen das dritteVerfahren besonders e�ziente Anfrage-Auswertung erlaubt. Keines der neuentwickelten und vorgestellten Verfahren ist also den jeweils anderen absolutüberlegen.
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1 Einleitung
1.1 MotivationIm Laufe der letzten Jahre setzte sich XML immer mehr als Standard-Formatzum Datenaustausch, insbesondere bei Web-Anwendungen, durch.Während XML durch seine Anreicherung der Daten mit Struktur und derdamit verbundenen Flexibilität groÿe Vorteile gegenüber anderen Austausch-formaten bietet, sorgt jedoch gerade diese Struktur für einen erheblichen Over-head im Vergleich zu den eigentlichen Nutzdaten.Obwohl die verfügbare Bandbreite zur Datenübertragung erheblich angestie-gen ist bei gleichzeitiger Reduktion der Kosten, stellt genau diese Datenüber-tragung, verglichen z.B. mit der Speicherung auf Festplatten oder dauerhaftenSpeichermedien, noch immer das Nadelöhr einer jeden Internet-basierten An-wendung dar. Insbesondere bei der Verwendung von mobilen Kleinstgeräten(wie z.B. Mobiltelefonen oder PDAs) stellen die Datenübertragung und derdamit verbundene Energie-Verbrauch den gröÿten �Kostenfaktor� dar.Auch der Arbeitsspeicher bei diesen mobilen Kleinstgeräten entspricht imAllgemeinen nur einem Bruchteil des Arbeitsspeichers von herkömmlichen PCs.Daher können diese Kleinstgeräte nur einen deutlich geringeren Teil einesXML-Dokumentes einsehen und bearbeiten, als dies auf einem PC möglichwäre. Bisherige Speichermodelle, wie z.B. der DOM-Baum, sind daher für sol-che Anwendungen auf Kleinstgeräten nur sehr eingeschränkt nutzbar.Als eine mögliche Lösung dieser Probleme stelle ich in dieser Arbeit ver-schiedene Verfahren zur Kompression von XML-Dokumenten vor. Durch dieverkleinerte Darstellung derselben Inhalte können sowohl der Datentransfer alsauch der Arbeitsspeicher-Bedarf minimiert werden, ohne dass die durch die Se-mi-Strukturiertheit erzielte Flexibilität eingeschränkt werden muss (lediglichdie direkte Lesbarkeit durch Menschen geht verloren). Bieten solche Verfahrenzur XML-Kompression dieselben Zugri�s- und Manipulationsmöglichkeiten wieherkömmliches XML, so können alle XML-basierten Anwendungen ohne spür-1



2 Einleitungbaren Nachteil auf der komprimierten Darstellung statt auf herkömmlichemXML ausgeführt werden.1.2 SzenarienIn diesem Kapitel werde ich Szenarien vorstellen, die davon pro�tieren, wennstatt herkömmlichem XML eine komprimierte XML-Repräsentation gewähltwird. Anschlieÿend werde ich die aus diesen Szenarien ableitbaren Anforde-rungen erörtern.1.2.1 NewstickerSeit 1999 benutzen Nachrichten-Agenturen wie z.B. Reuters oder AP zur Da-tenübermittlung an ihre Nachrichten-Bezieher den XML-basierten StandardNews Industry Text Format (NITF), welcher im Jahre 2000 durch das eben-falls XML-basierte NewsML ersetzt wurde.Ein News-Ticker-System stellt hierbei ein typisches Szenario für die vonmir in dieser Arbeit vorgestellten Verfahren dar. Auf der einen Seite stehtdie Nachrichten-Agentur, die einen kontinuierlichen Strom an verschiedenstenNachrichten produziert. Auf der anderen Seite steht der Bezieher, der nur aneinem Teil der produzierten Nachrichten interessiert ist (z.B. nur Börsen- oderSportnachrichten, nur regionale Nachrichten). Damit der Bezieher nicht denkompletten Nachrichten-Strom eines News-Tickers empfangen muss, steht zwi-schen Nachrichten-Agentur und Bezieher der Nachrichten-Broker. Dieser kenntdie Interessen des Beziehers, �ltert die für ihn interessanten Nachrichten ausdem Datenstrom und leitet sie an den Bezieher weiter.Da in solch einem System eine sehr hohe Menge von Daten kontinuierlichversendet wird, kann dieses Szenario in hohem Maÿe vom Einsatz eines Kom-pressions-Verfahrens pro�tieren. Würde man nun einen einfachen, generischenKompressor (wie z.B. gzip) verwenden, bedeutete dies aus Sicht des Brokers,dass er die komprimierten Nachrichten zunächst vollständig dekomprimierenmüsste, bevor er die für den Bezieher interessanten Nachrichten heraus�lternkann, um sie anschlieÿend wieder zu komprimieren und an den Bezieher zuversenden. Durch die zusätzliche Dekompression und Kompression entstehtalso ein nicht unerheblicher Rechen-Mehraufwand insbesondere auf Seiten desNachrichten-Brokers.Beim Einsatz von XML-spezi�schen Verfahren, die diese Filterung und ge-gebenenfalls die Modi�kation des XML-Datenstroms direkt auf den kompri-mierten Daten unterstützen, entfällt dieser Mehraufwand, das gesamte Systempro�tiert von der Kompression, ohne dass weitere Nachteile entstehen.



Einleitung 31.2.2 Daten-Management für mobile, Ajax-basierte Web 2.0AnwendungenAjax [47] ist eine Programmier-Technik für interaktive Web-Anwendungen, dieXML-Daten-Repräsentation in Form eines DOM-Baumes � also einer Baum-Repräsentation der hierarchischen XML-Daten � auf einem Client mit XML-HttpRequests als Daten-Austausch-Protokoll und JavaScript als Client-seitigerProgrammiersprache kombiniert. Ajax erlaubt z.B., dass bei Benutzeraktionensynchron oder asynchron Teile des DOM-Baumes von einem Server nachge-laden werden, so dass der Benutzer eine schnelle Antwort auf seine Aktionerhält, ohne dass der komplette Dokument-Inhalt neu aufgebaut werden muss.Ein Beispiel für solche Anwendungen ist die automatische Vervollständigungdes Suchbegri�s bei der Suche in einem Web-Lexikon. Das Potential, welchesAjax bietet, um interaktive Web-Anwendungen zu generieren, und der gegen-wärtige Stand der Technik von Ajax werden in [70] dargestellt.Um zur Laufzeit dynamische Modi�kationen an Teilen einer im Client-Brow-ser dargestellten Web-Anwendung vorzunehmen, benötigt ein XML-Kompres-sions-Verfahren, welches im Zusammenhang mit Ajax eingesetzt wird, die vol-le DOM-Unterstützung. Dies umfasst die Navigation (mindestens entlang derAchsen �rst-child, next-sibling und parent) sowie Updates (mindestens insertund remove) auf der komprimierten Darstellung.Ersetzt man also die DOM-Komponente auf Client-Seite durch eine Na-vigations- und Update-fähige, komprimierte XML-Repräsentation, so könnendie restlichen Ajax-Komponenten unverändert übernommen werden. Statt un-komprimiertem XML wird nun komprimiertes XML übertragen, so dass Über-tragungskosten eingespart werden. Die Darstellung der komprimierten XML-Repräsentation erfordert im Hauptspeicher deutlich weniger Speicher-Bedarfals die Darstellung des eigentlichen DOM-Baumes bei gleichem Funktionsum-fang, so dass Arbeitsspeicher eingespart werden kann. Dadurch können beigleichem Arbeitsspeicher deutlich umfangreichere Ajax-Anwendungen umge-setzt werden, und somit wird es auch mobilen Kleinstgeräten (wie z.B. Mo-biltelefonen und PDAs) ermöglicht, Ajax-basierte Web 2.0 Anwendungen zunutzen.Teile der Ideen eines durch XML-Kompression verbesserten Daten-Manage-ments für mobile, Ajax-basierte Web 2.0 Anwendungen wurden in [21] veröf-fentlicht.1.2.3 Verbesserung der Cache-Kapazität durch KompressionIn herkömmlichen Caching-Szenarien speichert der Client in seinem Cache dieAntworten auf zuvor gestellte Anfragen. Bei einer erneuten Anfrage muss nichtmehr das komplette Anfrage-Ergebnis vom Server an den Client gesendet wer-



4 Einleitungden, sondern nur noch diejenigen Fragmente, die nicht im Cache enthalten sind.Dadurch müssen weniger Daten vom Server zum Client übertragen werden, sodass sowohl Transferkosten als eventuell auch Transferzeiten gesenkt werden.Um in diesem Szenario allerdings die Antwort-Fragmente korrekt in denvorhandenen Cache-Inhalt zu integrieren, muss zusätzlich zu den eigentlichenInhalten eines Fragmentes eine Identi�zierungsinformation (wie z.B. eine Ord-path-Nummer [69]) mitgesendet werden. Insbesondere bei kleinen Antwort-Fragmenten ergibt sich so ein nicht unerheblicher Overhead.Ebenso hat bei einem solchen Szenario im Allgemeinen der Client das Pro-blem zu entscheiden, ob er alle benötigten Daten bereits in seinem Cache vor-handen hat. Dies ist entweder durch einen Teilmengen-Test möglich, in demder Client testet, ob die zur Auswertung benötigten Fragmente eine Teilmen-ge der Daten sind, die von einer früheren Anfrage noch im Cache gespeichertsind. Solch ein Teilmengen-Test ist zwar für einige Teilklassen in Polynomzeitberechenbar ( [18,19,40,62,64,77]), aber bereits für Anfragen, die gleichzeitigdescendant-Achsen und Wildcards enthalten, NP-vollständig ( [40,62,64]). Ei-ne andere Möglichkeit sind sogenannte Compensation-Anfragen C, welche eineUmformung der ursprünglichen Anfrage A darstellen, so dass C angewandt aufden Cache genau dasselbe Ergebnis liefert wie A angewandt auf das Original-Dokument. Doch auch die Berechnung solch einer Compensation-Anfrage istNP-vollständig, wie in [58, 61] gezeigt wurde.Bietet ein XML-Kompressions-Verfahren eine stark komprimierte Darstel-lung der XML-Struktur, ergibt sich ein neues Caching-Szenario: Bereits ab derInitialisierung der Anwendung enthält der Client-Cache die komplette Strukturdes XML-Dokumentes (also alle ö�enenden und schlieÿenden XML-Tags inklu-sive der Attribut-Namen jedoch ohne Attribut- und Text-Werte). Als Antwortauf eine Anfrage muss der Server nur noch eine komprimierte Liste der nochnicht im Cache enthaltenen, zur Beantwortung der Anfrage notwendigen Kon-stanten in Dokumentreihenfolge übertragen (also die notwendigen Attribut-bzw. Text-Werte). Verwendet der Client ein Anfrage-Auswertungsverfahren,welches alle Knoten in Dokumentreihenfolge abarbeitet (wie z.B. das in Ka-pitel 9 vorgestellte Verfahren), so wird keinerlei zusätzliche Information zurkorrekten Integration der nachgeladenen Daten in den Cache benötigt, dieseist durch die Übertragungsreihenfolge implizit gegeben.Neben dem fehlenden Overhead aufgrund nicht benötigter Identi�zierungs-informationen ist ein weiterer erheblicher Vorteil dieses neuen Szenarios, dassder Client nur aufgrund seines Cache-Inhaltes in linearer Zeit der Cache-Gröÿe entscheiden kann, ob er bereits alle benötigten Informationen zur Be-antwortung einer gegebenen Anfrage enthält. Der Client muss lediglich dieAnfrage-Auswertung auf seinem Cache starten. Stöÿt er dabei nicht auf Text-Platzhalter, zu denen der Text-Wert noch nicht übertragen wurde, so enthält



Einleitung 5der Cache bereits die vollständige Antwort, in diesem Fall muss keinerlei Da-tentransfer zwischen Server und Client statt�nden.Teile der Ideen eines durch Struktur-Kompression verbesserten Cachingswurden in [14] zur Verö�entlichung eingereicht.1.3 AnforderungenAus den eben vorgestellten Szenarien lassen sich Anforderungen ableiten, dieerfüllt werden müssen, damit ein Kompressions-Verfahren besonders gut fürdiese Szenarien geeignet ist. In welchem Maÿe diese Anforderungen jedoch ge-wichtet sind, hängt in hohem Maÿe vom konkreten Szenario ab. Im folgendengliedern sich die Anforderungen auf in allgemeine Anforderungen an die Kom-pressionsrate sowie Kompressions- und Dekompressionszeit, in Anforderungenan die Kompression von XML-Datenströmen und in Anforderungen an die Na-vigation bzw. Anfrage-Auswertung direkt auf der komprimierten Repräsenta-tion. Abschlieÿend werden diese Anforderungen noch einmal zusammenfassendaufgelistet.1.3.1 Kompression und deren spezielle AnforderungenZunächst einmal muss ein Kompressions-Verfahren korrekt sein, also Kompres-sion und Dekompression müssen Umkehroperationen voneinander darstellen.Dies bedeutet, dass man wieder das ursprüngliche XML-Dokument xml ent-hält, wenn man ein XML-Dokument xml komprimiert und anschlieÿend mitdem entsprechenden Dekompressions-Verfahren wieder dekomprimiert.Um einen Vorteil gegenüber anderen bereits verfügbaren XML-Kompressions-Verfahren zu erzielen, sollte ein neues Verfahren gegenüber anderen Verfahren,welche dieselben Anforderungen erfüllen, eine stärkere Kompressionsrate vor-weisen. Hat das Kompressions-Verfahren hingegen starke Vorteile in Bezug aufandere Anforderungen, so kann ein gewisser Verlust bezüglich der Kompressi-onsrate in Kauf genommen werden. Ein Verfahren, welches z.B. weder Anfrage-Auswertung noch Updates direkt auf dem Komprimat erlaubt, wird voraus-sichtlich stärkere Kompressionsraten erreichen können als Verfahren, welchedies auf dem Komprimat zulassen. Da jedoch � wie im News-Ticker-Szenariobeschrieben � durch die Anfrage-Auswertung direkt auf dem Komprimat einRechen-Mehraufwand vermieden werden kann, kann für viele Anwendungenein gewisser Verlust der Kompressionsrate in Kauf genommen werden.Da man in vielen Szenarien (z.B. News-Ticker) die komprimierten Datenbereits während des Kompressions-Vorgangs versenden möchte, sollten Kom-pression und Dekompression vergleichbar hohe Durchsätze erreichen, wie siedurch heute übliche Übertragungstechniken (z.B. ADSL) ermöglicht werden.



6 EinleitungDa man jedoch typischerweise ein Dokument nur einmalig komprimiert, je-doch mehrfach und auf verschiedenen Rechnern dieses komprimierte Dokumentweiterverarbeitet, indem man dieses z.B. dekomprimiert, ist ein etwas erhöh-ter Rechenaufwand bei der Kompression eher in Kauf zu nehmen als bei derDekompression. Insbesondere ist es wünschenswert, dass mindestens genau-so schnell dekomprimiert wie komprimiert werden kann, um einen möglichenPu�er-Überlauf beim Dekompressor und somit Empfänger der komprimiertenDaten zu vermeiden.1.3.2 XML-Datenströme und deren spezielle AnforderungenWann immer die Gröÿe der Dokument-Repräsentation die Gröÿe des verfüg-baren Hauptspeichers überschreitet, erhalten wir besondere Anforderungen andie verarbeitenden Anwendungen � sowohl an die Kompression, als z.B. auchan die Anfrage-Auswertung. Dies ist insbesondere der Fall, wenn es um Daten-verarbeitung auf mobilen Kleinstgeräten (wie z.B. Mobiltelefonen oder PDAs)geht. Besonders stark kommt dieser Aspekt allerdings zum Tragen, wenn es umdie Verarbeitung von unendlichen Datenströmen, wie z.B. Datenströmen ausXML-News-Tickern geht. Dies führt zu einer Reihe von neuen Anforderungen.Da die XML-Datenströme potentiell unendlich lang sind, ist nur ein ein-maliger Durchlauf des Dokuments möglich. Es kann � wenn überhaupt � nurinnerhalb eines gewissen Fensters vor und zurück navigiert werden. Da die Ver-arbeitung mindestens genauso schnell sein muss, wie die übertragenen Dateneintre�en, emp�ehlt es sich oftmals, lediglich vorwärts, also linear, durch denStrom zu navigieren.Zu einem Zeitpunkt ist immer nur ein kleiner Ausschnitt des Stroms be-kannt. Aus diesem müssen dann die relevanten Daten herausge�ltert werdenund eventuell für eine spätere Weiterverarbeitung zwischengespeichert werden.Hierbei ist es egal, ob ein Kompressions-Verfahren zur Verarbeitung von un-endlichen Datenströmen diskrete oder gleitende Fenster verwendet, innerhalbderer das Verfahren unbegrenzt auf die Daten zugreifen kann. Bei gleitendenFenstern wird das Fenster kontinuierlich weiterbewegt, das Fenster 'gleitet' alsolangsam während des Fortschreitens im XML-Datenstrom mit, und es existierteine groÿe Überschneidung des aktuellen Fensterinhalts mit dem vorherigenFensterinhalt. Verfahren mit diskreten Fenstern bewegen das Fenster diskretweiter: Erst wird ein Teil des Stroms eingelesen und verarbeitet, anschlieÿendein weiterer. Die einzelnen Fensterinhalte haben in diesem Fall wenig bis garkeine Überschneidungen.



Einleitung 71.3.3 Anfrage-Auswertung und deren spezielle AnforderungenEin Verfahren, welches Navigation beziehungsweise Anfrage-Auswertung direktauf dem Komprimat erlaubt, erfordert je nach Anwendung, dass das Ergebnisin komprimierter Form zur Verarbeitung weitergeleitet wird, oder aber dass dasErgebnis unabhängig vom Rest des Dokumentes dekomprimiert werden kann.Ein Kompressions-Verfahren muss also zunächst einmal partielle Dekompressi-on erlauben, es muss also erlauben, dass Teile des Dokumentes dekomprimiertwerden können, ohne dabei das gesamte Komprimat zu lesen. Die Unterstüt-zung partieller Dekompression ist notwendig, um gegebenenfalls das Ergebniseiner Anfrage zur Weiterverarbeitung zu dekomprimieren.Sowohl Navigation auf XML-Dokumenten wie auch Auswertung von XPath-Anfragen kann laut [50] auf wenige Basis-Operationen zurückgeführt werden.Diese Basis-Operationen umfassen die Navigation zum �rst-child � also zum er-sten Kind-Knoten im XML-Baum � die Navigation zum next-sibling � also zumnachfolgenden Geschwister-Knoten im XML-Baum � die Navigation zum pa-rent � also zum Elternknoten im XML-Baum � sowie die Ermittlung des Typsund des Labels eines Knotens. Ein Kompressions-Verfahren, welches Naviga-tion und Anfrage-Auswertung direkt auf dem Komprimat unterstützt, musssomit also zunächst einmal zu jedem Knoten des ursprünglichen XML-Baumseine entsprechende Repräsentation im Komprimat bieten, welches diesen Kno-ten eindeutig identi�ziert. Für all diese Knoten-Repräsentationen müssen danndie genannten Basis-Operationen unterstützt werden.Manche Kompressions-Verfahren erlauben neben der Unterstützung der Ba-sis-Operationen zur Navigation und zur Anfrage-Auswertung eine direkte, op-timierte Unterstützung aller oder einiger XPath-Achsen. Ist eine solche Op-timierung verfügbar, ist es natürlich sinnvoll diese Optimierung anzuwenden,um Navigation und Anfrage-Auswertung e�zienter zu gestalten. Insgesamt istes wünschenswert, dass Navigation und Anfrage-Auswertung mit vergleichba-rem Rechenaufwand und Rechenzeit auf dem Komprimat durchgeführt wer-den können wie auf unkomprimiertem XML. Hat eine komprimierte XML-Repräsentation jedoch erhebliche andere Vorteile � wie z.B. eine sehr starkeKompressionsrate � so kann in einigen Anwendungen auch ein etwas höhererRechenaufwand oder eine etwas höhere Rechenzeit in Kauf genommen werden.1.3.4 Updates und deren spezielle AnforderungenSzenarien wie komprimierte, Ajax-basierte Web-Anwendungen und Cachingerfordern � neben der Navigation bzw. der Anfrage-Auswertung direkt auf demKomprimat � zusätzlich die Möglichkeit, Updates direkt auf dem Komprimatzu unterstützen.



8 EinleitungÄhnlich wie die Anfrage-Auswertung auf die oben genannten Basis-Ope-rationen zurückgeführt werden kann, kann man auch Updates auf die Basis-Operationen insert(XML xml, XML xmlIns, int p), welche den XML-TeilbaumxmlIns im XML-Dokument xml an Position p einfügt undremove(XML xml, int p), welche den Teilbaum an Position p aus dem XML-Dokument xml entfernt, zurückführen.Sollte dies in einem XML-Kompressions-Verfahren zu einer e�zienteren Um-setzung führen, so können weitere Update-Operationen wie z.B.replace(XML xml, XML xmlRep, Position p), welche den an Position p imXML-Dokument xml stehenden Teilbaum durch den XML-Teilbaum xmlRepersetzt, direkt auf dem Komprimat umgesetzt werden, ohne den Umweg überdie Hintereinanderausführung der Operationen remove und insert zu gehen.Hinsichtlich der Unterstützung der Updates lassen sich zwei Qualitätsstu-fen unterscheiden: Einige Verfahren erzeugen durch Updates ein korrektes,nicht aber optimales Komprimat, während andere sowohl korrekte als auchoptimale Komprimate erzeugen. Ein Komprimat ist hierbei korrekt, wenn dieHintereinanderausführung von Kompression, Update auf dem Komprimat undDekompression zu demselben XML-Dokument xml' führt, wie die Durchfüh-rung des selben Updates direkt auf dem ursprünglichen XML-Dokument xml.Gilt zusätzlich, dass Kompression und Update auf dem Komprimat zu dem-selben Komprimat kxml' führen, wie Update auf dem XML-Dokument undanschlieÿende Kompression, so ist dieses Update zusätzlich optimal. Dies be-deutet, dass nicht-optimale Updates im Allgemeinen zu einer Verschlechterungder Kompressionsrate führen, dennoch bieten Kompressions-Verfahren, welchebei Updates zu nicht-optimalen Komprimaten führen, einen erheblichen Vor-teil gegenüber Kompressions-Verfahren, die keinerlei Updates direkt auf demKomprimat erlauben, da im Falle von Updates der erhebliche Mehraufwanddurch Dekompression und erneute Kompression eingespart werden kann.1.3.5 Zusammenfassung der AnforderungenZusammenfassend lassen sich also die folgenden Anforderungen nennen, wel-che durch navigierbare Kompressions-Verfahren erfüllt werden sollten, so dassz.B. die oben genannten Szenarien in hohem Maÿe von der Verwendung dieserVerfahren pro�tieren können:
• Anforderung 1: Kompression und Dekompression müssen zueinanderinvers sein, die Dekompression der komprimierten Repräsentation mussalso bei Eingabe eines beliebigen validen Dokuments wieder das ur-sprüngliche Dokument erzeugen.



Einleitung 9
• Anforderung 2: Die Kompressionsrate muss mindestens so stark seinwie die anderer XML-Kompressions-Verfahren mit vergleichbaren Eigen-schaften.
• Anforderung 3: Kompression und Dekompression müssen vergleichba-re Durchsätze erreichen wie derzeit übliche Übertragungsverfahren (z.B.ADSL).
• Anforderung 4: Die Dekompression muss mindestens so schnell seinwie die Kompression.
• Anforderung 5: Kompression und Dekompression müssen möglich sein,ohne dass das gesamte Dokument beziehungsweise das gesamte Kompri-mat bekannt ist.
• Anforderung 6: Zu jedem Knoten des ursprünglichen XML-Dokumentesmuss eine eindeutige Repräsentation im Komprimat existieren.
• Anforderung 7: Partielle Dekompression, also Dekompression von XML-Teilbäumen innerhalb des Komprimats, muss möglich sein.
• Anforderung 8: Die Basis-Operationen �rst-child, next-sibling, parentsowie die Ermittlung des Typs und des Labels eines Knotens direkt aufdem Komprimat müssen unterstützt werden.
• Anforderung 9: Die Anfrage-Auswertungszeiten auf dem Komprimatsollten hierbei vergleichbar zu Anfrage-Auswertungszeiten auf unkompri-miertem XML sein.
• Anforderung 10: Die Basis-Operationen insert und remove müssen di-rekt auf dem Komprimat unterstützt werden.Zum Zeitpunkt der Verö�entlichung der in dieser Arbeit vorgestellten Ver-fahren war noch kein Verfahren bekannt, welches all diese Anforderungen indem Maÿe unterstützt, wie es die in dieser Arbeit vorgestellten Verfahren tun.1.4 Beitrag dieser Arbeit und GesamtüberblickIn dieser Arbeit leiste ich den folgenden Beitrag zur Erfüllung der im vorigenAbschnitt präsentierten Anforderungen:
• Trennung einer XML-Repräsentation in eine Struktur-Repräsentation,welche die inneren Knoten eines XML-Baums enthält und eine Konstan-ten-Repräsentation, welche die Blattknoten eines XML-Baums enthält.
• Entwicklung und De�nition dreier neuer, komprimierter XML-Struktur-Kompressions-Verfahren, wobei jedes dieser Verfahren die oben genann-ten Anforderungen erfüllt. Jedes Verfahren erreicht jedoch ein unter-schiedlich hohes Maÿ an Erfüllung der Anforderungen, so dass jedes



10 EinleitungVerfahren andere Stärken hat und somit entsprechend den in der je-weiligen Anwendung erforderlichen Anforderungen das beste Verfahrenausgewählt werden kann. Zusammenfassend werden für jedes dieser dreiVerfahren� die Korrektheit bewiesen, es wird also bewiesen, dass die Dekom-pression des Komprimats wieder das ursprüngliche XML-Dokumenterzeugt.� die Korrektheit der Navigation auf dem Komprimat mit Hilfe derBasis-Operationen �rst-child, next-sibling, parent, getLabel und get-Type nachgewiesen.� Update-Möglichkeiten direkt auf dem Komprimat und Unterstüt-zung der DOM-Schnittstelle durch das Kompressions-Verfahren er-örtert.� die Verarbeitung von unendlichen Datenströmen dargestellt.
• Vorstellung zweier Kombinationsmöglichkeiten dieser Verfahren, so dassauch diese beiden hybriden Verfahren die oben genannten Anforderungenerfüllen.
• Vorstellung und Vergleich verschiedener Verfahren zur Konstanten-Kom-pression sowie deren Integration mit der Repräsentation der XML-Struk-tur.
• Entwicklung und De�nition eines XPath-Auswertungs-Verfahrens, wel-ches XPath-Anfragen auf allen XML-Repräsentationen, die die Basis-Operationen �rst-child, next-sibling, parent, getLabel und getType un-terstützen, auswertet. Die Auswertungszeit dieses Verfahrens ist hierbeilinear, also proportional zur Dokument-Gröÿe.
• Vergleich der vorgestellten Verfahren bezüglich ihrer Kompressionsratesowie ihrer Kompressions-, Dekompressions- und Anfrage-Auswertungs-Zeiten untereinander sowie mit anderen XML-Kompressions-Verfahren.1.5 Gliederung dieser ArbeitDiese Arbeit gliedert sich wie folgt:
• Kapitel 2 de�niert die theoretischen Grundlagen von XML, SAX, XPathund DOM.
• Kapitel 3 de�niert verschiedene SAX-Strom-Varianten, die als Eingabefür die verschiedenen vorgestellten Verfahren genutzt werden.
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• Kapitel 4, 5 und 6 stellen den Hauptteil dieser Arbeit dar. Sie beschreibendie drei Struktur-Kompressions-Verfahren Succinct(Kodierungs-basierteKompression), DAG(Kompression basierend auf Struktur-Redundanzen)und DTD-Subtraktion(Schema-basierte Kompression).
• Kapitel 7 stellt eine Kombination von auf Struktur-Redundanzen ba-sierten Verfahren mit Kodierungs-basierter bzw. mit Schema-basierterXML-Kompression vor.
• Kapitel 8 beschreibt die Integration der komprimierten Daten mit derkomprimierten XML-Struktur-Repräsentation und stellt einige Verfahrenzur Daten-Kompression vor.
• Kapitel 9 beschreibt das Verfahren zur linearen Anfrage-Auswertung aufnavigierbaren XML-Repräsentationen.
• Kapitel 10 vergleicht die in dieser Arbeit präsentierten Ideen mit denbereits in der Literatur existierenden.
• Kapitel 11 enthält die Performanz-Auswertungen und Vergleiche der inden Kapiteln 4, 5, 6 und 7 vorgestellten Verfahren bezüglich Kompres-sionsrate sowie bezüglich Kompressions-, Dekompressions- und Anfrage-Auswertungs-Zeiten untereinander sowie mit anderen verfügbaren XML-Kompressions-Verfahren.
• Kapitel 12 diskutiert, von welchen der in dieser Arbeit vorgestellten Ver-fahren die in diesem Kapitel vorgestellten Szenarien besonders stark pro-�tieren.
• Kapitel 13 enthält eine Zusammenfassung dieser Arbeit sowie einen Aus-blick auf weiterführende Forschungsansätze.



2 Grundlagen
2.1 XMLXML (Extensible Markup Language) [23] ist eine Auszeichnungssprache zurDarstellung hierarchisch strukturierter Daten in Form von Textdateien. EinXML-Dokument besteht aus den folgenden fünf verschiedenen Komponenten:

• ElementeDiese werden entweder durch ein Paar aus Start-Tag (<Tag-Name>)und End-Tag (</Tag-Name>) oder durch einen Empty-Element-Tag(<Tag-Name/>) dargestellt.
• Attribut-Wert-PaareDiese sind Schlüsselwort-Wert-Paare (Attribut= �Attribut-Wert�), diein einem Start-Tag oder einem Empty-Element-Tag auf den Element-Namen folgen.
• Verarbeitungsanweisungen(<?Ziel-Name Parameter ?>).
• Kommentare(<!� Kommentar-Text �>).
• TextText kann als normaler Text oder in Form eines CDATA-Abschnittes(<![CDATA[beliebiger Text]]>) auftreten.Viele Anwendungen greifen jedoch nur auf die eigentlichen Inhalte zu, diedurch Elemente, Attribute, Attribut-Werte und Texte dargestellt werden, wäh-rend Kommentare und Verarbeitungsanweisungen ignoriert werden. Auch diesogenannten Whitespaces, also die Leerzeichen, Tabulatoren und Zeilenumbrü-che, die zur Formatierung zwischen den Tags stehen, nicht jedoch einem ei-gentlichen Text-Element entsprechen, werden von den meisten Anwendungenignoriert. Daher werde ich in den nachfolgenden Kapiteln alle vorgestelltenVerfahren auf die Darstellung des Inhaltes, also auf die Elemente, Attribute,Attribut-Werte und Texte beschränken.12



Grundlagen 13Durch die Schachtelung von Elementen ineinander entsteht eine streng hier-archische Struktur. Diese erlaubt es, beliebige XML-Dokumente als Baum dar-zustellen. Dazu werden jedem Element die direkt untergeordneten Elementesowie die Attribute und die direkt eingeschlossenen Texte als Kindknoten zu-geordnet. Formal kann man den Inhalt eines XML-Dokumentes mit Hilfe einesBaumes wie folgt de�nieren:De�nition 2.1 (XML-Baum). Ein XML-Baum xml = (V,E) sei ein geord-neter Baum, wobei V die Menge der Knoten sei und E ⊆ (V × V ) die Mengeder Kanten. Die Menge V der Knoten teilt sich in die disjunkten Teilmengen
V = {r} ∪ V E ∪ V A ∪ V AW ∪ V T auf, wobei r der Wurzelknoten, VE dieElement-Menge, VA die Attribut-Menge, VAW die Menge der Attributwerteund VT die Text-Menge ist. Für diese Mengen gilt

• not ∃v ∈ V : (v, r) ∈ E

• ∀vt ∈ (V T ∪ V AW ) : not ∃v ∈ V : (vt, v) ∈ E

• ∀va ∈ V A ∃vaw ∈ V AW : (va, vaw) ∈ E.Zu einem Knoten v ∈ V sei v.label das Label von v. Σ :=
⋃

v∈V v.label sei dieMenge aller Label von xml.Im weiteren Verlauf bezeichne S = SV ∪ SE mit SV = {r} ∪ V E ∪ V Aund SE = {(a, b) ∈ E|a, b ∈ SV } den Strukturanteil eines XML-Baumes und
D = V T ∪ V AW den Daten- bzw. Konstantenanteil.Bei der Verarbeitung von XML hat ein herkömmlicher XML-Baum denNachteil, dass jeder Knoten beliebig viele Kindknoten haben kann. Im Gegen-satz dazu ist die Binärbaum-Darstellung eines XML-Dokuments einfacher zuverarbeiten. Hierbei hat jeder Knoten maximal zwei Zeiger auf Nachfolgerkno-ten. Der erste Zeiger � der �rst-child-Zeiger � zeigt auf den ersten Kindknoten,während der zweite Zeiger � der next-sibling-Zeiger � auf den nächsten Ge-schwisterknoten zeigt, also auf denjenigen Knoten, der den selben Elternkno-ten hat, und in Reihenfolge der Breitensuche direkt auf den aktuellen Knotenfolgt.Beide Darstellungen � der herkömmliche XML-Baum und der binäre XML-Baum � haben exakt die selbe Anzahl an Kanten und Knoten.2.2 DTDEine DTD (Document Type De�nition) [23] ist eine Menge von Produktions-regeln, welche eine Menge von gültigen XML-Dokumenten bzw. XML-Bäumende�niert. Eine DTD besteht aus einer Liste von Elementtyp-Deklarationen,Attributlisten-Deklarationen, Entity-Deklarationen und Notation-Deklaratio-nen, die wie folgt aufgebaut sind:



14 GrundlagenEine Elementtyp-Deklaration legt die De�nition eines Elementes e sowie dieBeziehungen zwischen dessen Kindern untereinander fest. Sie wird entspre-chend der folgenden Grammatik gebildet:elementdecl ::= '<!ELEMENT ' Name ' ' contentspec '>'contentspec ::= 'EMPTY' | 'ANY' | cc ::= c'*' | c'+' | c'?' |Name | 'PCDATA' | '('c','c') | '('c'|'c')'Hierbei haben die Operatoren 'EMPTY', 'ANY', 'PCDATA', ',', '|' '*', '+','?' die folgende Bedeutung:
• EMPTYDas de�nierte Element hat keinen Inhalt, stellt also einen Blattknotenim XML-Baum dar.
• ANYDas de�nierte Element hat beliebigen Inhalt, der Inhalt ist also in dieserDTD nicht näher spezi�ziert.
• PCDATADas de�nierte Element hat als Inhalt einen Text-Wert.
• a,b (Sequenz)Auf die durch a de�nierte Liste von Kindknoten folgt die durch b de�-nierte Liste von Kindknoten.
• a|b (Choice)Es folgt entweder die durch a de�nierte Liste von Kindknoten oder diedurch b de�nierte Liste von Kindknoten.
• a* (Kleene)Die durch a de�nierte Liste von Kindknoten kommt beliebig oft vor.
• a+ (Plus)Die durch a de�nierte Liste von Kindknoten kommt beliebig oft vor,mindestens ist sie jedoch einmal vorhanden.
• a? (Option)Die durch a de�nierte Liste von Kindknoten ist optional, ist also einmaloder keinmal vorhanden.Eine Attributlisten-Deklaration legt eine Liste von Attributen zu einem Ele-ment fest. Sie hat die Form <!ATTLIST Elementname Attributliste>, wo-bei Elementname der Name eines Elementes ist, und Attributliste eine Listevon Attributen ist, in der für jedes Attribut Attributname, Attributtyp so-wie Attributvorgaben festgelegt werden. Attributtyp kann hierbei 'CDATA','ID', 'IDREF', 'IDREFS', 'NMTOKEN', 'NMTOKENS', 'ENTITY', 'ENTI-TIES', 'NOTATION', 'NOTATIONS', sowie Aufzählungen und NOTATION-



Grundlagen 15Aufzählungen sein. Eine Attributvorgabe ist entweder '#REQUIRED' (dasAttribut muss angegeben werden), '#IMPLIED' (das Attribut ist optional),�Wert� (dieser Wert gilt, falls das Attribut nicht angegeben wird) oder '#FIXED�Wert� ' (dieser Wert ist immer der Attributwert).Da die Entity-Deklarationen und die Notation-Deklarationen für die in dieserArbeit vorgestellten Kompressionsverfahren keine weitere Bedeutung haben,wird an dieser Stelle nicht näher auf diese eingegangen.Neben einer DTD gibt es noch andere Möglichkeiten zur Spezi�kation desXML-Inhaltsmodelles wie z.B. XML Schema [42] oder RelaxNG [36]. Da diein dieser Arbeit beschriebenen Verfahren auf der DTD als Inhaltsmodell basie-ren, werde ich an dieser Stelle nicht näher auf die alternativen Inhaltsmodelleeingehen.2.3 SAXDas Simple API for XML (SAX) ist eine unabhängige Programmier-Schnitt-stelle, die es erlaubt, XML-Dokumente sequentiell zu verarbeiten. Ein Parserdurchläuft das XML-Dokument und erzeugt entsprechend des gelesenen In-puts eine Folge aus SAX-Events, wobei jedes SAX-Event aus der Menge derfolgenden SAX-Events ist(die hier vorgestellten Events weichen zwecks einereinfacheren Darstellung bzgl. der Attribute von der üblichen SAX-Darstellungab. In der hier vorgestellten Darstellung werden für Attribute eigenständigeEvents erzeugt, wohingegen diese in der üblichen SAX-Schnittstelle Bestand-teil der Element-Events sind):
• startDocument()Das SAX-Event startDocument wird einmalig zu Beginn eines Durchlaufsdes XML-Dokumentes bzw. des XML-Stroms erzeugt.
• startElement(String name)Das SAX-Event startElement wird für jeden gelesenen ö�nenden Tagerzeugt. Hierbei enthält der Parameter name den Elementnamen.
• startAttribute(String name)Das SAX-Event startElement wird für jedes gelesene Attribut erzeugt.Hierbei enthält der Parameter name den Attributnamen.
• characters(String text)Das SAX-Event characters wird für alle gelesenen Text-Elemente erzeugt,also für alle Texte und Attributwerte. Der Parameter text enthält hierbeidie gelesenen Zeichen.
• endAttribute(String name)Das SAX-Event endElement wird für jedes gelesene Attribut nach Verar-



16 Grundlagenbeitung des Attributwertes erzeugt. Hierbei enthält der Parameter nameden Attributnamen.
• endElement(String name)Das SAX-Event endElement wird für jeden gelesenen schlieÿenden Tagerzeugt. Hierbei enthält der Parameter name den Elementnamen.
• endDocument()Das SAX-Event endDocument wird einmalig am Ende eines Durchlaufsdes XML-Dokuments bzw. des XML-Stroms erzeugt.Durch die sequentielle Verarbeitung benötigen Programme, die auf SAX ba-sieren, wenig Arbeitsspeicher im Vergleich zur Dokumentgröÿe. Daher sindSAX-basierte Programme insbesondere für unbegrenzte XML-Datenströmeoder für mobile Endgeräte mit wenig Arbeitsspeicher geeignet.Formal kann man einen SAX-Strom zu einem gegebenen XML-Baum wiefolgt de�nieren. Hierbei bezeichnet der Operator ⊗ die Konkatenation zweierListen.De�nition 2.2 (SAX-Event-Strom zu einem XML-Baum). Sei xml ein XML-Baum entsprechend De�nition 2.1 mit Knotenmenge V = {r} ∪ V E ∪ V A ∪

V AW ∪ V T und Kantenmenge E ⊆ (V × V ) und Labelmenge Σ. SeiEv={startDocument()}∪ {endDocument()}∪ {startElement(σ)| σ ∈ Σ} ∪{endElement(σ)| σ ∈ Σ} ∪ {startAttribute(σ)| σ ∈ Σ} ∪ {endAttribute(σ)|
σ ∈ Σ}∪ {characters(σ)| σ ∈ Σ} die Menge aller SAX-Events.Zu einem Knoten v ∈ V mit Kindknoten cv1, . . . , cvn sei der SAX-Event-Strom sax(v) : V → Ev∗ de�niert durch

sax(v) :=


















































































(startDocument()) ⊗
(startElement(v.label)) ⊗ sax(cv1) ⊗
. . . ⊗ sax(cvn)⊗ (endElement(v.label)) ⊗
(endDocument())

falls v = r

(startElement(v.label)) ⊗ sax(cv1) ⊗
. . . ⊗ sax(cvn) ⊗ (endElement(v.label))

falls v ∈ V E

(startAttribute(v.label)) ⊗ sax(cv1) ⊗
(endAttribute(v.label))

falls v ∈ V A

(characters(v.label))
falls v ∈
V T ∪ V AWDer SAX-Event-Strom des XML-Baumes xml ist dann de�niert durch

SAX(xml) := sax(r).De�nition 2.3 (Position eines Knotens im SAX-Event-Strom). Sei xml einXML-Baum entsprechend De�nition 2.1 mit Knotenmenge V = {r} ∪ V E ∪
V A ∪ V AW ∪ V T und Kantenmenge E ⊆ (V × V ) und Labelmenge Σ.



Grundlagen 17Sei SAX(xml) = (s1, . . . , sn) der SAX-Event-Strom zu xml. Sei weiterhin
v ∈ V ein Knoten des XML-Baums xml mit sax(v) = (si, . . . , sj), 1 ≤ i, j ≤ nist eine Teilfolge von SAX(xml).Dann ist i die Position des Knotens v im SAX-Event-Strom zum XML-Baum
xml.2.4 XPathDie XML Path Language (XPath) [37] ist eine vom W3C-Konsortium ent-wickelte Anfragesprache, um mit Hilfe von Pfad-Anfragen Teile eines XML-Dokumentes zu adressieren.Eine XPath-Anfrage ist eine Liste sogenannter Location-Steps, wobei jederLocation-Step aus einem Achsen-Test, einem Knoten-Test und einer Folge vonPrädikat-Filtern besteht. Ein XML-Knoten x erfüllt einen Location-Step ange-wandt auf einen Kontextknoten k, wenn k und x den Achsen-Test erfüllen, wennx.label den Knoten-Test erfüllt sowie wenn jeder der vorhandenen Prädikat-Filter zu true evaluiert werden kann. Das Ergebnis einer XPath-Anfrage XP,bestehend aus den Location-Steps ls1, . . . , lsn, kann man berechnen, indemman ls1 auf den Wurzelknoten r eines XML-Baumes anwendet, und lsi für
1 < i ≤ n auf die erfüllenden Knoten von lsi−1. Das Ergebnis von XP ange-wandt auf xml sind dann die erfüllenden Knoten von lsn.Lassen wir die Unterscheidung zwischen Element-, Attribut- und Text-Knotenauÿen vor, so existieren 10 verschiedene XPath-Achsen, die jedoch alle auf dieschon im binären XML-Baum auftretenden Achsen �rst-child und next-sibling,sowie die Achse self zurückführbar sind. Diese binären oder auch atomarenXPath-Achsen sind wie folgt de�niert.De�nition 2.4 (�rst-child, next-sibling und self). Sei xml ein XML-Dokumententsprechend De�nition 2.1 mit Wurzel-Knoten r und seisax(xml)= (sr)⊗. . .⊗(er) ein SAX-Event-Strom zu xml entsprechend De�niti-on 2.2. Seien E1, E2 ∈ V E zwei Element-Knoten in xml mitsax(E1)= (sE1) ⊗ . . . ⊗ (eE1) und sax(E2)= (sE2) ⊗ . . . ⊗ (eE2). Dann be-zeichnen wir(a) E2 als �rst-child von E1, E2=�rst-child(E1), genau dann, wennsax(E1)= (sE1) ⊗ (sE2) ⊗ . . . ⊗ (eE1).(b) E2 als next-sibling von E1, E2=next-sibling(E2) genau dann, wennsax(r)= (sr) ⊗ . . . ⊗ (sE1) ⊗ . . . ⊗ (eE1) ⊗ (sE2) ⊗ . . . ⊗ (er)(c) E2 als self von E1, E2=self(E1) genau dann, wenn E1=E2.



18 GrundlagenBasierend auf der De�nition der binären Achsen kann man nun gemäÿ einerIdeen von [50] alle XPath-Achsen wie folgt de�nieren:De�nition 2.5 (XPath-Achsen). Sei xml ein XML-Baum entsprechend De�-nition 2.1 und E1 ∈ V ein Knoten in xml. Dann bezeichnen wir(a) die rekursiv de�nierte Element-Menge E1/child:={Ek | Ek=�rst-child(E1)
∨(∃ E2 ∈ V: E2 ∈ E1/child ∧ Ek=next-sibling(E2))} als child-Knoten vonE1.(b) das Element E1/parent:=(Ek | E1 ∈ Ek/child) als parent-Knoten von E1.(c) die rekursiv de�nierte Element-Menge E1/descendant:={Ek | Ek ∈ child(E1)
∨(∃ E2 ∈ V: E2 ∈ E1/descendant ∧ Ek ∈ E2/child)} als descendant-Knoten von E1.(d) die Element-Menge E1/descendant-or-self:={Ek | Ek=self(E1) ∨ Ek ∈E1/descendant} als descendant-or-self-Knoten von E1.(e) die Element-Menge E1/ancestor:={Ek | E1 ∈ Ek/descendant} als ancestor-Knoten von E1.(f) die Element-Menge E1/ancestor-or-self:={Ek | E1 ∈ Ek/descendant-or-self} als ancestor-or-self-Knoten von E1.(g) die Element-Menge E1/following-sibling:={Ek | Ek=next-sibling(E1) ∨(∃E2 ∈ V: E2 ∈ E1/following-sibling ∧ Ek=next-sibling(E2))} als following-sibling-Knoten von E1.(h) die Element-Menge E1/preceding-sibling:={Ek | E1 ∈ Ek/following-sibling}als preceding-sibling-Knoten von E1.(i) die Element-Menge E1/following:={Ek | ∃ E2, E3 ∈ V: E2 ∈ E1/ances-tor-or-self ∧ E3 ∈ E2/following-sibling ∧ Ek ∈ E3/descendant-or-self} alsfollowing-Knoten von E1.(j) die Element-Menge E1/preceding:={Ek | E1 ∈ Ek/following} als preceding-Knoten von E1.Hierbei werden die Achsen self, child, descendant, descendant-or-self, following-sibling und following als Vorwärtsachsen und die Achsen parent, ancestor,ancestor-or-self, preceding-sibling und preceding als Rückwärtsachsen bezeich-net.Formal können wir nun eine XPath-Anfrage wie folgt de�nieren:De�nition 2.6 (XPath-Anfrage). Sei xml ein XML-Baum entsprechend De-�nition 2.1 mit der Menge Σ von Labeln. Sei Σ′ := Σ ∪ {′∗′}. Sei x eineXPath-Achse entsprechend De�nition 2.5. Dann de�niert die folgende EBNF-Grammatik mit Start-Symbol cxp eine gültige XPath-Anfrage.



Grundlagen 19cxp ::= '/' locationpathlocationpath ::= locationstep ('/' locationstep)*locationstep ::= x '::' Σ′ | x '::' Σ′ '[' pred ']'pred ::= locationpath | locationpath comp constant |'(' pred 'and' pred ')' |'(' pred 'or' pred ')'comp ::= '=' | '<' | '≤' | '>' | '≥' | '6='2.4.1 Eliminerung der Rückwärtsachsen und der Following-AchseGewisse Anwendungen � wie z.B. die Auswertung von unendlichen SAX-Strö-men � erfordern eine strenge lineare Durchquerung des Stroms. Dies bedeutetinsbesondere, dass man nicht innerhalb des Stroms zurückspringen kann, wasdie Auswertung der Rückwärtsachsen erschwert.Zwar lassen sich � wie im vorhergehenden Abschnitt gezeigt � die Vorwärts-achsen (mit Ausnahme der Achse following) direkt auf die atomaren Achsen�rst-child und next-sibling zurückführen, so dass einer linearen Auswertungdieser Achsen nichts im Wege steht. Zur Auswertung der Rückwärtsachsenjedoch werden die Inversen der Vorwärtsachsen benötigt, was einer entgegen-gesetzten Navigation im Strom entspricht.[68] bietet ein Verfahren an, das es erlaubt, beliebige Anfragen in äquivalen-te Anfragen umzuschreiben, die frei von Rückwärtsachsen sind. Soll also eineAnfrage nicht nur auf die atomaren Achsen abgebildet werden, sondern gleich-zeitig von allen Rückwärtsachsen befreit werden, so bietet sich das folgendeVerfahren an:1. Eliminierung aller Rückwärtsachsen entsprechend des in [68] beschriebe-nen Verfahrens. Nach diesem Schritt erhalten wir eine Anfrage bestehendaus den Achsen descendant-or-self, descendant, self, child, following undfollowing-sibling.2. Umschreiben aller following-Achsen mit Hilfe der folgenden äquivalenz-erhaltenden Umformungsregel:following → ancestor-or-self/following-sibling/descendant-or-self.Nach diesem Schritt erhalten wir eine Anfrage bestehend aus den Achsendescendant-or-self, descendant, self, child, following-sibling und ancestor-or-self.3. Erneute Anwendung des in [68] beschriebenen Verfahrens, um die imzweiten Schritt entstandenen ancestor-or-self Achsen zu eliminieren. NachAbschluss aller Schritte enthält die Anfrage nun nur noch die Achsen de-scendant-or-self, descendant, self, child und following-sibling.



20 Grundlagen4. Abbilden der verbleibenden Achsen auf �rst-child und next-sibling.Dadurch erhalten wir eine reine Abbildung auf die Achsen �rst-child undnext-sibling.2.5 DOMDas Document Object Model (DOM) [54] ist eine Programmier-Schnittstellefür sowohl lesenden als auch schreibenden Zugri� auf XML-Bäume. Sie wurdevom W3C-Konsortium de�niert. Die DOM-Schnittstelle umfasst eine Vielzahlverschiedener Objekte (z.B. Document und Node) und darauf ausführbarerMethoden. Ähnlich wie man XML in eine äquivalente Binärbaum-Darstellungüberführen kann und XPath auf Ausdrücke über die atomaren Achsen �rst-child, next-sibling und self normalisieren kann, so kann man auch die Funktio-nalitäten von DOM auf wenige Grundfunktionalitäten zurückführen.Grundlegender Gedanke der DOM-Schnittstelle ist es, dass man das XML-Dokument als einen Baum betrachtet, der sich komplett im Hauptspeicherbe�ndet, und innerhalb dessen beliebig über die XPath-Achsen navigiert wer-den kann, und der beliebig durch Einfügen, Löschen und Ändern manipuliertwerden kann.2.5.1 Lesende DOM-OperationenDie Menge aller lesenden DOM-Operationen kann mit einer Rückführung die-ser Operationen auf die Navigation mittels XPath-Ausdrücken im DOM-Baumrealisiert werden. So liefert beispielsweise die DOM-MethodeDocument.getElementById(String elementID) alle Dokument-Knoten zurück,die ein Attribut �id� enthalten, wobei das Attribut �id� den Attribut-Wert ele-mentID des Parameters hat. Diese kann z.B. mit Hilfe des XPath-Ausdrucks//descendant-or-self::*[./attribute::id='elementID'] simuliert werden.Da aber jede XPath-Anfrage auf die Achsen-Menge �rst-child, next-sibling,self und parent1 zurückgeführt werden kann, genügt es also, dass eine XML-Repräsentation diese atomaren Achsen unterstützt, so dass die Menge allerlesenden DOM-Operationen auf diesem Verfahren ausgeführt werden können.2.5.2 Schreibende DOM-OperationenHinweis: Im Folgenden wird auf die Position p innerhalb eines XML-Dokumentsbzw. XML-Baums verwiesen. Diese sei analog zum SAX-Event-Strom wie inDe�nition 2.3 de�niert.1Da bei einer DOM-Anwendung der Kontextknoten nicht zwangsläu�g der Wurzelknotendes XML-Dokumentes ist, muss zusätzlich noch die parent-Achse realisiert werden.



Grundlagen 21Ebenso wie die lesenden DOM-Operationen auf die Navigation via XPathzurückgeführt werden können, kann man die schreibenden DOM-Operationenauf folgende Schreiboperationen auf XML zurückführen:
• insert(XML xml, XML xmlIns, int p)Fügt den übergebenen XML-Teilbaum xmlIns im XML-Dokument xmlan Position p ein.
• remove(XML xml, int p)Entfernt den Teilbaum an Position p aus dem XML-Dokument xml.
• replace(XML xml, XML xmlRep, Position p)Ersetzt den an Position p im XML-Dokument xml stehenden Teilbaumdurch den XML-Teilbaum xmlRep.Da die Methode replace durch ein Hintereinanderausführen der Methodenremove und insert simuliert werden kann, werde ich für alle XML-Repräsen-tationen die schreibenden Operationen insert und remove de�nieren, um zumotivieren, dass es möglich ist, eine DOM-Schnittstelle für diese Repräsenta-tionen zu implementieren.Die Operation insert(XML xml, XML xmlIns, int p) fügt ein XML-DokumentxmlIns an gegebener Position p in das XML-Dokument xml ein. Algorithmus2.1 zeigt eine Umsetzung dieser Operation, wobei die Operationconcat(XML xml1, XML xml2) die Konkatenation zweier XML-Fragmente be-rechnet, und die Operation subsequence(XML xml, int start, int end) ein Teil-fragment von XML berechnet, das an Position start beginnt und an Positionend endet.1 public XML i n s e r t (XML xml , XML xmlIns , int p) {2 XML xmlNeu = subsequence (xml , 1 , p−1) ;3 xmlNeu = concat (xmlNeu , xmlIns ) ;4 xmlNeu = concat (xmlNeu , subsequence ( xml , p , xml .l ength ) ) ;5 return xmlNeu ;6 } Algorithmus 2.1: insert-Operation für XML-DokumenteIn De�nition 2.7 wird die Funktion insertxml,xmlins,p(x) de�niert, die denZusammenhang zwischen den XML-Dokumenten xml und xmlins vor und demXML-Dokument xmlneu nach der Operation herstellt. Sie wird später benötigt,um die Korrektheit der Update-Operationen auf den XML-Repräsentationennachzuweisen.



22 GrundlagenDe�nition 2.7 (insert). Seien xml = (xml
1
, . . . , xmln) und xmlins =(xmlins1

, . . . , xmlinsm) zwei XML-Dokumente. Sei p eine Position in xml mit1≤p≤n+1. Dann ist die Funktion insertxml,xmlins,p(x): {1, . . . , n+m} → XMLde�niert als:
insertxml,xmlins,p(x):= 









xmlx falls x < p
xmlinsx−p+1

falls p ≤ x < p + m
xml

x−m
sonst

xmlneu := (insertxml,xmlins,p(1), . . . , insertxml,xmlins,p(n + m))Sei p die Position eines startElement-Events in xml. Die Operationremove(XML xml, int p) löscht einen Teilbaum beginnend an gegebener Posi-tion p aus einem XML-Dokument xml. Algorithmus 2.2 zeigt eine Umsetzungdieser Operation, wobei die Operation endTag(XML xml, int pos) die Positiondes End-Tags zu einem durch die Position pos gegeben Start-Tag berechnet.1 public XML remove (XML xml , int p) {2 XML xmlNeu = subsequence (xml , 1 , p−1) ;3 xmlNeu = concat (xmlNeu , subsequence ( xml , endTag (xml , p)+1, xml . l ength ) ) ;4 return xmlNeu ;5 } Algorithmus 2.2: remove-Operation für XML-DokumenteIn De�nition 2.8 wird die Funktion removexml,p(x) de�niert, die den Zusam-menhang zwischen dem XML-Dokument xml vor und dem XML-Dokument
xmlneu nach der Operation herstellt. Sie wird später benötigt, um die Korrekt-heit der Update-Operationen auf den XML-Repräsentationen nachzuweisen.De�nition 2.8 (remove). Sei xml = (xml1, . . . , xmln) ein XML-Dokument.Sei xmlp der Start-Tag eines XML-Elements E mit Position p und sei xmlkder End-Tag von E mit Position k im XML-Dokument xml. Sei l:=k-p. Dannist die Funktion removexml,p(x): {1, . . . , n-l} → XML de�niert als:

removexml,p(x):= {

xmlx falls x < p
xmlx+l sonst

xmlneu := (removexml,p(1), . . . , removexml,p(n − l))2.6 Speichere�ziente Darstellung von ganzzahligennatürlichen WertenIn einigen der vorgestellten Verfahren zur XML-Kompression wird ein Ver-fahren benötigt, um ganzzahlige Werte speichere�zient darzustellen. In Java



Grundlagen 23beispielsweise wird jeder Integer-Wert durch 4 Byte kodiert. Dies bedeuteterstens einen groÿen Overhead für kleine Zahlen, zweitens schränkt es denWertebereich auf Zahlen im Intervall von -2.147.483.647 bis 2.147.483.648 ein.Um diese beiden Nachteile zu umgehen, nutzen wir z.B. die folgende dy-namische Überlaufkodierung für ganzzahlige Werte, ebenso können aber auchentsprechende, andere Überlaufkodierungen genutzt werden, die es erlauben,beliebig groÿe Integer-Werte mit dynamischer Bitanzahl darzustellen. Sei n dieAnzahl an Bits, die wir für einen Integer-Wert mindestens verwenden wollen,z.B. n=6. Wir nutzen nun für jede Bitfolge von n Bits das allererste Bit alsMarkierungsbit: Ist das erste Bit ein '1'-Bit, so gehören die nächsten n Bitsebenfalls zu dieser Zahl, ist das erste Bit ein '0'-Bit, so wurde mit den aktuellenn Bits die letzte Bitfolge der Zahl gelesen.Beispiel 2.1 Die Binärdarstellung der Zahl 134 ist 10000110. Um eine Über-laufkodierung mit n=6 für diese Zahl zu berechnen, teilen wir sie zunächst inGruppen der Gröÿe 5 Bits, wir erhalten also: 100 00110. Nach Au�üllen vonführenden Nullen erhalten wir: 00100 00110. Um nun auszudrücken, dass beide5-stelligen Bitfolgen zur selben Zahl gehören, stellen wir der letzten Bitfolge ein'0'-Bit voran, allen übrigen Bitfolgen dieser Zahl stellen wir ein '1'-Bit voran.Die endgültige Kodierung der Zahl 134 mit n=6 ist also: 100100 000110.2.7 BeispielIm Verlauf dieser Arbeit werde ich alle vorgestellten Verfahren mit Hilfe desin Listing 2.3 vorgestellten Beispiels erläutern. Bei diesem Beispiel-Dokumenthandelt es sich um eine kleine Adress-Datenbank mit derzeit drei Personen,die jeweils
• einen Namen,
• beliebig viele Fragemente jeweils bestehend aus� (Strasse und Ort) oder Postfach,� optional einer Telefonnummer mit entsprechendem Telefonmodell(z.B. mobil oder Festnetz)beinhalten.1 <Adressen>2 <Person>3 <Name>Peter Mül ler</Name>4 <Postfach>0815</Postfach>5 </Person>



24 Grundlagen6 <Person>7 <Name>Anna Schmidt</Name>8 <Strasse>Lindens t ra s s e</Strasse>9 <Ort>Ber l i n</Ort>10 <Postfach>4711</Postfach>11 </Person>12 <Person>13 <Name>Paul Schulze</Name>14 <Postfach>3300</Postfach>15 <Telefon modell="mobil ">0171/666666</Telefon>16 </Person>17 </Adressen> Listing 2.3: XML-Beispiel-DateiAbbildung 2.1 zeigt die Baum-Darstellung dieses XML-Dokumentes, wäh-rend Abbildung 2.2 die Binärbaum-Darstellung zeigt.AdressenPersonName=PeterMüller Postfach=0815 PersonName=AnnaSchmidt Strasse=Linden-strasse Ort=Berlin Postfach=4711 PersonName=PaulSchulze Postfach=3300 Telefon@modell=mobil =0171/666666Abbildung 2.1: Baum-Darstellung des XML-DokumentesListing 2.4 enthält die dazugehörige DTD. Diese de�niert, dass innerhalbdes Elements Adressen beliebig viele Person-Elemente geschachtelt sind (Zeile1). Zu einem Person-Element sind als Kindknoten
• ein Name-Element,
• eine Folge von Fragmenten bestehend aus� (Strasse und Ort) oder Postfach,� optional einer Telefonnummer mit entsprechendem Telefonmodell(z.B. mobil oder Festnetz)zugelassen (Zeile 2).



Grundlagen 25AdressenPersonName=PeterMüller Postfach=0815
PersonName=AnnaSchmidt Strasse=Linden-strasse Ort=Berlin Postfach=4711

PersonName=PaulSchulze Postfach=3300 Telefon@modell=mobil =0171/666666
Abbildung 2.2: Binärbaum-Darstellung des XML-DokumentesDie Elemente Strasse, Ort, Postfach und Telefon enthalten keine Kindele-mente, sondern lediglich einen Textknoten als Kind (Zeilen 3-6). Telefon hatnoch zusätzlich ein Attribut mit Namen modell (Zeile 7).1 <!ELEMENT Adressen ( Person )∗>2 <!ELEMENT Person (Name , ( ( Post fach | ( Strasse , Ort ) ) ,Te le fon ?) ∗)>3 <!ELEMENT S t r a s s e #PCDATA>4 <!ELEMENT Ort #PCDATA>5 <!ELEMENT Postfach #PCDATA>6 <!ELEMENT Tele fon #PCDATA>7 <!ATTLIST Tele fon modell #REQUIRED>Listing 2.4: DTD zur XML-Beispiel-Datei



3 AbleitbareSAX-Strom-Varianten3.1 MotivationBetrachtet man XML-Dokumente, so stellt man fest, dass sich in der Regelim Strukturanteil, also innerhalb der Element- und der Attribut-Knoten, einegröÿere Anzahl an Wiederholungen �ndet als im Datenanteil, also innerhalbder Text- und der Attribut-Wert-Knoten. Dies ist darin begründet, dass jedesXML-Dokument nur eine sehr beschränkte Anzahl von verschiedenen Element-und Attributnamen benutzt.Daher liegt es nahe, zur Kompression von Struktur und Daten jeweils ver-schiedene Kompressions-Verfahren zu benutzen. In diesem Kapitel stelle ichdaher vor, wie man den SAX-Eingabestrom in zwei Eingabeströme aufteilenkann, um diese beiden Ströme dann an getrennte Kompressoren weiterzuleiten.In Kapitel 8 stelle ich dann im Anschluss an die Kompressions-Verfahren fürStrukturanteil und Datenanteil vor, wie man die beiden komprimierten Strömemiteinander integrieren kann, um weiterhin eine e�ziente Weiterverarbeitung �z.B. in Form von Dekompression oder Anfrage-Auswertung � zu gewährleisten.3.2 Struktur-StromEin Struktur-Strom enthält nur die Struktur des XML-Dokumentes bzw. desXML-Baumes, also nur den Wurzelknoten sowie die Element- und Attribut-Knoten. Die Text- und Attribut-Wert-Knoten werden in Form eines Platz-halters gespeichert, d.h. als Element-Knoten mit Label '=T'. Die eigentlichenLabel der Text-Knoten werden im separaten Daten-Strom gespeichert.Um die Darstellung zu vereinfachen, werden die Attribut-Knoten als be-sondere Element-Knoten gespeichert, man kann einen Attribut-Knoten ledig-lich am Markierungszeichen '@' zu Beginn des Labels erkennen. Auch dasstartDocument- und das endDocument-Event können als Sonderfälle des start-Element- bzw. endElement-Events gesehen werden, gekennzeichnet durch das26



Ableitbare SAX-Strom-Varianten 27Label 'root', wobei root nicht in der Labelmenge Σ des XML-Baumes enthaltensein darf.Dies führt uns zu einem einfachen Struktur-Strom, der nur noch die beidenEvents startElement und endElement enthält. Formal ist ein Struktur-Stromwie folgt de�niert:De�nition 3.1 (Struktur-Strom). Sei xml ein XML-Baum nach De�nition2.1 mit Knotenmenge V = {r} ∪ V E ∪ V A ∪ V AW ∪ V T und Kanten-menge E ⊆ (V × V ) und Labelmenge Σ. Sei SE={startElement(σ)| σ ∈
Σ} ∪ {endElement(σ)| σ ∈ Σ} die Menge aller Struktur-Events. Eine Liste(s1, . . . , sn) mit si ∈ SE für 1≤i≤n bezeichnen wir als Struktur-Strom. Zujedem Knoten v ∈ V mit Kindknoten cv1, . . . , cvm sei der Struktur-Strom
ss(v) : V → SE∗ de�niert durch

ss(v) :=






















































































(startElement(′root′)) ⊗
(startElement(v.label)) ⊗ ss(cv1) ⊗ . . . ⊗
ss(cvm) ⊗ (endElement(v.label)) ⊗
(endElement(′root′))

falls v = r

(startElement(v.label)) ⊗ ss(cv1) ⊗ . . . ⊗
ss(cvm) ⊗ (endElement(v.label))

falls v ∈ V E

(startElement(′@′ + v.label))⊗ ss(cv1)⊗
(endElement(′@′ + v.label))

falls v ∈ V A

(startElement(′= T ′)) ⊗ (endElement(′= T ′))

falls v ∈
(V T ∪
V AW )Der Struktur-Strom des XML-Baumes xml ist dann de�niert durch

SS(xml) := ss(r).Im Folgenden bezeichne () die leere Liste.De�nition 3.2 (startElement- und endElement-Strom). Sei xml ein XML-Baum nach De�nition 2.1 mit Knotenmenge V = {r}∪V E∪V A∪V AW ∪V Tund Kantenmenge E ⊆ (V ×V ) und Labelmenge Σ. Sei SE={startElement(σ)|
σ ∈ Σ} ∪ {endElement(σ)| σ ∈ Σ} die Menge aller Struktur-Events. SeiS:=SS(xml)=(s1, . . . , sn), mit si ∈ SE für 1≤i≤n der Struktur-Strom vonxml nach De�nition 3.1.Dann sei sstart : {1, . . . , n} → (SE ∪ ()) de�niert durch

sstart(x) := {

(sx ∈ S) falls sx = startElement(σ) für σ ∈ Σ
() sonstDann bezeichnen wir SStart(SS) := (sstart(1) ⊗ . . . ⊗ sstart(n)) alsstartElement-Strom von S.Sei weiterhin send : {1, . . . , n} → (SE ∪ ()) de�niert durch



28 Ableitbare SAX-Strom-Varianten
send(x) := {

(sx ∈ S) falls sx = endElement(σ) für σ ∈ Σ
() sonstDann bezeichnen wir SEnd(SS) := (send(1) ⊗ . . . ⊗ send(n)) alsendElement-Strom von S.Die Berechnung eines Struktur-Stroms zu einem SAX-Event-Strom geht alsoentsprechend De�nitionen 2.2 und 3.1 wie folgt vor:

• startDocument und endDocument:Die SAX-Events startDocument und endDocument werden umgewandeltin startElement('root') bzw. endElement('root').
• charactersAus einem SAX-Event vom Typ characters(textwert) wird eine Event-Folge startElement('=T') und endElement('=T') generiert. Hierbei steht'=T' für einen Platzhalter für Textknoten; '=T' darf nicht als Element-name im XML-Dokument benutzt werden.
• startAttribute und endAttributeFür jedes Paar Attribut=Value wird eine Element-FolgestartElement('@' + Attribut), startElement('=T'), endElement('=T'),endElement('@' + Attribut) generiert.
• startElement und endElementDie SAX-Events startElement und endElement werden unverändert inden Struktur-Strom geschrieben.Der Platzhalter '=T' gewährleistet hierbei, dass man bei der späteren Ver-arbeitung rekonstruieren kann, an welcher Stelle im Dokument ein Textknotenenthalten war. Die Reihenfolge der Textknoten ist hierbei durch die Reihenfol-ge der Werte innerhalb des Daten-Stroms gegeben.Beispiel 3.1 Listing 3.1 zeigt den Struktur-Strom der zum Beispieldokumentaus Listing 2.3 generiert wird.1 startElement ( ' roo t ' ) ;2 startElement ( ' Adressen ' ) ;3 startElement ( ' Person ' ) ;4 startElement ( 'Name ' ) ;5 startElement ( '=T ' ) ;6 endElement ( '=T ' ) ;7 endElement ( 'Name ' ) ;



Ableitbare SAX-Strom-Varianten 298 startElement ( ' Pos t f a ch ' ) ;9 startElement ( '=T ' ) ;10 endElement ( '=T ' ) ;11 endElement ( ' Pos t f a ch ' ) ;12 endElement ( ' Person ' ) ;13 startElement ( ' Person ' ) ;14 startElement ( 'Name ' ) ;15 startElement ( '=T ' ) ;16 endElement ( '=T ' ) ;17 endElement ( 'Name ' ) ;18 startElement ( ' S t r a s s e ' ) ;19 startElement ( '=T ' ) ;20 endElement ( '=T ' ) ;21 endElement ( ' S t r a s s e ' ) ;22 startElement ( ' Ort ' ) ;23 startElement ( '=T ' ) ;24 endElement ( '=T ' ) ;25 endElement ( ' Ort ' ) ;26 startElement ( ' Pos t f a ch ' ) ;27 startElement ( '=T ' ) ;28 endElement ( '=T ' ) ;29 endElement ( ' Pos t f a ch ' ) ;30 endElement ( ' Person ' ) ;31 startElement ( ' Person ' ) ;32 startElement ( 'Name ' ) ;33 startElement ( '=T ' ) ;34 endElement ( '=T ' ) ;35 endElement ( 'Name ' ) ;36 startElement ( ' Pos t f a ch ' ) ;37 startElement ( '=T ' ) ;38 endElement ( '=T ' ) ;39 endElement ( ' Pos t f a ch ' ) ;40 startElement ( ' Te l e f on ' ) ;41 startElement ( ' @modell ' ) ;42 startElement ( '=T ' ) ;43 endElement ( '=T ' ) ;44 endElement ( ' @modell ' ) ;45 startElement ( '=T ' ) ;46 endElement ( '=T ' ) ;47 endElement ( ' Te l e f on ' ) ;48 endElement ( ' Person ' ) ;



30 Ableitbare SAX-Strom-Varianten49 endElement ( ' Adressen ' ) ;50 endElement ( ' roo t ' ) ;Listing 3.1: Simple-SAX-Strom des Beispiels3.2.1 Unterscheidung von Elementen, Attributen undText-Werten bei der Anfrage-AuswertungIm Struktur-Strom werden Elemente, Attribute und Text-Werte gleich behan-delt und als Element mit gegebenfalls besonderer Markierung betrachtet. Beider Anfrage-Auswertung werden jedoch die drei Knoten-Typen über verschie-dene Achsen angesprochen.Daher muss bei der Anfrage-Auswertung die Unterscheidung zwischen Ele-menten, Attributen und Text-Werten sichergestellt werden. Lautet die Anfragez.B. /*, es sind also alle Element-Kindknoten gesucht, nicht aber die Attribute,so müssen die Attribute, also diejenigen Knoten, deren Label mit '@' beginnt,übersprungen werden, und nur die tatsächlichen Element-Knoten als Ergebnisder Anfrage betrachtet werden. Entsprechend müssen bei einer Anfrage /@*,welche alle Attribut-Knoten des aktuellen Kontext-Knotens abfragt, alle Ele-mente übersprungen werden, und nur die Attribut-Knoten dürfen als Ergebnisbetrachtet werden.3.3 Binärer Struktur-StromAnalog wie man zu einem XML-Baum die Binärbaum-Darstellung berechnenkann, kann man zu einem Struktur-Strom den binären Struktur-Strom berech-nen.Hierzu werden aus den Events startElement und endElement des Struktur-Stroms die binären Events �rstChild, nextSibling und parent des binären Struk-tur-Stroms generiert. Es werden immer Paare von Struktur-Strom-Events be-trachtet.
• startElement, startElementEin SAX-Event startElement(x) gefolgt von einem weiteren SAX-EventstartElement(a) entspricht der �rst-child-Achse. Daher wird dieses trans-formiert in das binäre SAX-Event �rstChild(a).
• startElement(a), endElement(a)Ein SAX-Event startElement(a) gefolgt von einem SAX-EventendElement(a) entspricht einem leeren Element-Tag. Hieraus wird keinbinäres SAX-Event generiert.



Ableitbare SAX-Strom-Varianten 31
• endElement(x), startElement(a)Ein SAX-Event endElement(x) gefolgt von einem SAX-EventstartElement(a) entspricht der next-sibling-Achse. Daher wird dieses trans-formiert in das binäre SAX-Event nextSibling(a).
• endElement(x), endElement(y)Ein SAX-Event endElement(x) gefolgt von einem weiteren SAX-EventendElement(y) entspricht der parent-Achse. Daher wird dieses transfor-miert in das binäre SAX-Event parent().Wir erhalten so einen binären Struktur-Strom, der aus Events vom Typ�rstChild, nextSibling und parent besteht. Dieser ist wie folgt formal de�niert:De�nition 3.3 (binärer Struktur-Strom). Sei xml ein XML-Baum nach De-�nition 2.1 mit Labelmenge Σ und SS(xml) = (ss1, . . . , ssn) der Struktur-Strom zu xml nach De�nition 3.1. Seien SStart und SEnd startElement- undendElement-Strom von SS(xml) nach De�nition 3.2. Sei weiterhinBE={�rstChild(σ)| σ ∈ Σ} ∪ {nextSibling(σ)| σ ∈ Σ} ∪ {parent()} die Mengealler binären Struktur-Events. Dann ist die Abbildung

bsSS(xml) : {1, . . . , n − 1} → (BE ∪ ()) de�niert durch:
bsSS(xml)(x) :=


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(firstChild(σ)) falls ssx+1 = startElement(σ) ∧ ssx ∈
SStart

(nextSibling(σ)) falls ssx+1 = startElement(σ) ∧ ssx ∈
SEnd

(parent()) falls ssx+1 ∈ SEnd ∧ ssx ∈ SEnd

() sonstDer binäre Struktur-Strom des XML-Baumes xml bzw. des Struktur-Stromes
SS(xml) = (ss1, . . . , ssn) ist dann de�niert durch

BS := (bs(1) ⊗ . . . ⊗ bs(n − 1)).Beispiel 3.2 Listing 3.2 zeigt den binären SAX-Strom, der zum Beispieldoku-ment aus Listing 2.3 bzw. zum Struktur-Strom aus Listing 3.1 generiert wird.1 f irstChi ld ( ' Adressen ' ) ;2 f irstChi ld ( ' Person ' ) ;3 f irstChi ld ( 'Name ' ) ;4 f irstChi ld ( '=T ' ) ;5 parent ( ) ;6 nextSibling ( ' Pos t f a ch ' ) ;



32 Ableitbare SAX-Strom-Varianten7 f irstChi ld ( '=T ' ) ;8 parent ( ) ;9 parent ( ) ;10 nextSibling ( ' Person ' ) ;11 f irstChi ld ( 'Name ' ) ;12 f irstChi ld ( '=T ' ) ;13 parent ( ) ;14 nextSibling ( ' S t r a s s e ' ) ;15 f irstChi ld ( '=T ' ) ;16 parent ( ) ;17 nextSibling ( ' Ort ' ) ;18 f irstChi ld ( '=T ' ) ;19 nextSibling ( ' Pos t f a ch ' ) ;20 f irstChi ld ( '=T ' ) ;21 parent ( ) ;22 parent ( ) ;23 nextSibling ( ' Person ' ) ;24 f irstChi ld ( 'Name ' ) ;25 f irstChi ld ( '=T ' ) ;26 parent ( ) ;27 nextSibling ( ' Pos t f a ch ' ) ;28 f irstChi ld ( '=T ' ) ;29 parent ( ) ;30 nextSibling ( ' Te l e f on ' ) ;31 f irstChi ld ( ' @modell ' ) ;32 f irstChi ld ( '=T ' ) ;33 parent ( ) ;34 nextSibling ( '=T ' ) ;35 parent ( ) ;36 parent ( ) ;37 parent ( ) ;38 parent ( ) ; Listing 3.2: binärer SAX-Strom des Beispiels3.4 Daten-StromDer Daten-Strom enthält eine Sequenz aller Text-Werte � also Text- undAttribut-Wert-Knoten � in Dokumentreihenfolge.Da jedoch das umgebende Element bzw. Attribut gleichzeitig eine semanti-sche Kontextinformation beinhaltet, die später zur Optimierung der Kompres-



Ableitbare SAX-Strom-Varianten 33sion des Daten-Stroms verwendet werden kann, wird dieser Daten-Strom umdiesen Element- bzw. Attributnamen angereichert, damit diese Information beider späteren Kompression zur Verfügung steht. Zur lediglichen Rekonstrukti-on des Ursprungs-SAX-Stroms sind die Informationen über den Element- bzw.Attributnamen nicht notwendig. Der Daten-Strom enthält also Paare (Name,Text-Wert) aus Element- bzw. Attributnamen und Text-Werten.Formal kann man den Daten-Strom zu einem XML-Dokument bzw. XML-Baum wie folgt de�nieren. Hierbei bezeichnet der Operator ⊗ die Konkatena-tion zweier Listen.De�nition 3.4 (Daten-Strom). Sei xml ein XML-Baum nach De�nition 2.1mit Knotenmenge V = {r} ∪ V E ∪ V A ∪ V AW ∪ V T und Kantenmenge
E ⊆ (V × V ) und Labelmenge Σ.Zu einem Knoten v ∈ V mit Kindknoten cv1, . . . , cvn und Elternknoten pvsei der Datenstrom data(v) de�niert durch

data(v) := {

data(cv1) ⊗ . . . ⊗ data(cvn) falls v ∈ {r} ∪ V E ∪ V A
(pv.label, v.label) falls v ∈ V T ∪ V AWDer Daten-Strom des XML-Baumes xml ist dann de�niert durch

DATA(xml) := data(r).Beispiel 3.3 Listing 3.3 zeigt den entsprechenden Daten-Strom, der zum Bei-spieldokument aus Listing 2.3 generiert wird.1 ( 'Name ' , ' Peter Mül l er ' ) ;2 ( ' Pos t f a ch ' , ' 0815 ' ) ;3 ( 'Name ' , 'Anna Schmidt ' ) ;4 ( ' S t r a s s e ' , ' L i nd en s t r a s s e ' ) ;5 ( ' Ort ' , ' Ber l in ' ) ;6 ( ' Pos t f a ch ' , ' 4711 ' ) ;7 ( 'Name ' , ' Paul Schu l z e ' ) ;8 ( ' Pos t f a ch ' , ' 3300 ' ) ;9 ( ' @modell ' , ' mob i l ' ) ;10 ( ' Te l e f on ' , ' 0171/666666 ' ) ;Listing 3.3: Daten-Strom des Beispiels



4 XML-Kompression durchplatze�ziente KodierungDas erste vorgestellte Verfahren � das Succinct-Verfahren � bietet eine kom-primierte Darstellung der XML-Struktur, indem es die Struktur durch kürzereZeichenfolgen darstellt. Im ersten Abschnitt dieses Kapitels werde ich zunächstdas zugrunde liegende Verfahren aus [48] vorstellen und die diesem Verfahrenzugrunde liegenden Ideen formalisieren. Anschlieÿend werde ich dann eine Op-timierung der Darstellung vorstellen, die es erlaubt, die Anfrageauswertunge�zienter zu gestalten. Schlieÿlich werde ich Update-Operationen auf dem op-timierten Verfahren erläutern.4.1 Succinct-Darstellung und die atomarenXPath-Achsen4.1.1 Succinct-DarstellungDas Succinct-Verfahren erhält als Eingabe den Struktur-Strom nach De�nition3.1 und berechnet daraus
• einen Bitstrom, der die Schachtelung der Start- und End-Tags, nicht aberderen Label darstellt,
• eine Symboltabelle, die eine Zuordnung von Labeln zu Symbolen � alsokurzen Bit-Darstellungen � enthält,
• einen Symbol-Strom, der eine Zuordnung von Bitstrom-Positionen zuSymbolen enthält.Die folgenden De�nitionen 4.1 bis 4.7 beschreiben die Datenstrukturen, Hilfs-funktionen und Berechnungsfunktionen zur Kompression, und die anschlieÿen-den De�nitionen 4.8 bis 4.10 beschreiben Berechnungsfunktionen zur Dekom-pression.34



XML-Kompression durch platze�ziente Kodierung 35De�nition 4.1 (Bitstrom, Position). Sei Σ die Menge aller Label. SeiSE={startElement(σ)| σ ∈ Σ} ∪ {endElement(σ)| σ ∈ Σ} die Menge allerStruktur-Events. Sei S=(s1, . . . , sn) mit si ∈ SE für 1≤i≤n ein Struktur-Stromnach De�nition 3.1 und SStart der startElement-Strom von S nach De�nition3.2. Sei die Funktion b: SE → {0,1} de�niert alsb(s) :={

1 falls s ∈ SStart
0 sonstDann bezeichnen wir die Bitfolge B(S)=(b(s1), . . . , b(sn)) als Bitstrom zumStruktur-Strom S. Die Indizes 1, . . . , n nennen wir Positionen der Events

s1, . . . , sn im Bitstrom. Weiterhin bezeichnen wir mit e(B(S)):={i | b(si)= 1}die Menge aller Eins-Positionen von B(S) und mit n(B(S)):={i | b(si)=0} dieMenge aller Null-Positionen von B(S).Beispiel 4.1 Listing 4.1 zeigt den Bitstrom, der zum Struktur-Strom aus Li-sting 3.1 generiert wird.1 1 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 00 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 0 0 0Listing 4.1: Bitstrom des BeispielsAnalog zu einem wohlgeformten XML-Dokument werde ich einen korrektenBitstrom de�nieren. Hierzu werden zunächst einige Hilfsfunktionen benötigt,die gewisse Bitstrom-Eigenschaften repräsentieren.Die Funktion level berechnet die Tiefe eines durch ein '1'-Bit im Bitstromrepräsentierten XML-Knotens.De�nition 4.2 (Level). Sei S ein Struktur-Strom und B=(b1, . . . , bn) derBitstrom zu S nach De�nition 4.1.Sei die Hilfsfunktion vB: {1, . . . , n} → {-1,1} de�niert durch
vB(x) :={

1 falls x ∈ e(B)
−1 sonstDann ist die Funktion levelB : {1, . . . , n} → {0, . . . , n} de�niert durch

levelB(x) :=Σx
i=1vB(x)Die Funktion end berechnet die Position des zugehörigen endElement-Eventszu einer gegebenen Position eines gegebenen startElement-Events. Die Funk-tion start entspricht der Umkehrung der Funktion end und berechnet die Po-sition des zugehörigen startElement-Events zu einer gegebenen Position einesgegebenen endElement-Events.De�nition 4.3 (End, Start). Sei B=(b1, . . . , bn) ein Bitstrom nach De�nition4.1 mit der Menge e(B) der Eins-Positionen und der Menge n(B) der Null-Positionen. Dann ist die Funktion endB : e(B) → n(B) de�niert durch



36 XML-Kompression durch platze�ziente Kodierung
endB(x) :=y mit y>x ∧ levelB(x)-levelB(y)=1 ∧ not ∃ z:

levelB(x)-levelB(z)=1 ∧ x<z<y.Entsprechend ist die Funktion startB: n(B) → e(B) de�niert durch
startB(x):= y mit y<x ∧ levelB(y)-levelB(x)=1 ∧ not ∃ z:

levelB(y)-levelB(z)=1 ∧ y<z<x.Satz 4.1. Sei S ein Struktur-Strom, sei E ein Element, und sei i die Position desstartElement-Events von E in S. Dann gilt: j ist die Position des endElement-Events von E in S ⇔ endB(i)=j.Beweis. Folgt aus der Analogie von Bitstrom und Struktur-Strom nach denDe�nitionen 3.1, 4.1, 4.2 und 4.3.Die Funktion endOfParent berechnet die Position des endElement-Eventsdes parents zu einer gegebenen Position eines startElement-Events.De�nition 4.4 (EndOfParent). Sei B=(b1, . . . , bn) ein Bitstrom nach De�-nition 4.1 mit der Menge e(B) der Eins-Positionen und der Menge n(B) derNull-Positionen. Dann ist die Funktion endOfParentB: e(B) → n(B) de�niertdurch
endOfParentB(x) :=y mit y>x ∧ levelB(x)-levelB(y)=2 ∧ not ∃ z: levelB(x)-

levelB(z)=2 ∧ x<z<ySatz 4.2. Sei S ein Struktur-Strom nach De�nition 3.1, sei E ein Element, seii die Position des startElement-Events von E in S, und sei P=E/parent derparent-Knoten von E. Dann gilt: j ist die Position des endElement-Events vonP in S ⇔ endOfParent(i)=j.Beweis. Folgt aus De�nitionen 2.5, 4.1, 4.2 und 4.4.Anmerkung: Die Funktion endOfParentB kann auch als Konkatenation derFunktionen endB und der später vorgestellten Funktion parent de�niert wer-den. Da jedoch die Funktion parent eine �Rückwärtsnavigation� im Bitstromdarstellt, wurde hier eine andere De�nition gewählt, die eine lineare Durchque-rung des Bitstroms erlaubt.De�nition 4.5 (Korrekter Bitstrom). Sei B=(b1, . . . , bn) ein Bitstrom nachDe�nition 4.1 mit den Funktionen levelB , endB und endOfParentB. Dannbezeichnen wir B als korrekten Bitstrom genau dann, wenn1. ∀ x ∈ e(B) ∃ y ∈ n(B): endB(x)=y,2. ∀ y ∈ {1, . . . , n-1}: levelB(y)>0.De�nition 4.6 (Symboltabelle). Sei Σ eine Menge von Labeln und Sym eineMenge von Symbolen mit |Sym|=|Σ|. Eine Symboltabelle S ist eine umkehrbareFunktion S: Σ → Sym, die jedem Label s eindeutig ein Symbol S(s) zuordnet.



XML-Kompression durch platze�ziente Kodierung 37Beispiel 4.2 Tabelle 4.1 zeigt eine mögliche Symboltabelle zum Struktur-Stromaus Listing 3.1. String Symbolroot 1Adressen 2Person 3Name 4=T 5Postfach 6Strasse 7Ort 8Telefon 9@modell 10Tabelle 4.1: Symboltabelle des BeispielsDe�nition 4.7 (Symbol-Strom). Sei Σ die Menge aller Label, Sym eine Mengevon Symbolen mit |Sym|=|Σ|, ST:Σ → Sym eine Symboltabelle. Sei start={startElement(σ) | σ ∈ Σ} die Menge aller startElement-Events über Σ. Dannist die umkehrbare Funktion ss: start → Sym de�niert alsss(startElement(σ)) :=ST(σ).Sei S=(s1, . . . , sn) ein Struktur-Strom nach De�nition 3.1 und sei SStart=(sstart1, . . . , sstartn
2
) der startElement-Strom von S nach De�nition 3.2. DieListe von Symbolen SS(S)=(ss(sstart1), . . . , ss(sstartn

2
)) bezeichnen wir alsSymbol-Strom zum Struktur-Strom S.Beispiel 4.3 Listing 4.2 zeigt den Symbol-Strom zum Struktur-Strom aus Li-sting 3.1 entsprechend der Symboltabelle aus Tabelle 4.1.1 2 3 4 5 6 5 3 4 5 7 5 8 5 6 5 3 4 5 6 5 3 4 5 6 5 910 5 5 Listing 4.2: Symbol-Strom des BeispielsZusammen stellen Bitstrom, Symboltabelle und Symbol-Strom eine spei-chere�ziente Darstellung der Struktur eines XML-Dokuments dar.Während die Dekompression des Bitstroms zu einer Folge von start- undendElement-Events � ohne Label-Information � direkt durch die Umkehrungder Funktion b gelöst werden kann, erfordert die Ermittlung der Label zudiesen Events einen höheren Berechnungsaufwand.



38 XML-Kompression durch platze�ziente KodierungZur Berechnung der Label-Information wird die Funktion rang benötigt,die zu einer gegebenen Position im Bitstrom berechnet, wie viele '1'-Bits imBitstrom bis zu dieser Position vorhanden sind.De�nition 4.8 (Rang). Sei B=(b1, . . . , bn) ein Bitstrom. Dann ist die Funk-tion rangB: {1, . . . , n} → {1, . . . , n} de�niert als: rangB(x) :=Σx
i=1biDie Funktion label berechnet das Label zu einem durch eine '1'-Position imBitstrom gegebenen startElement-Event.De�nition 4.9 (Label). Sei Σ eine Menge von Labeln, Sym eine Menge vonSymbolen mit |Sym|=|Σ|, ST:Σ → Sym eine Symboltabelle. Sei B=(b1, . . . , bn)ein korrekter Bitstrom, und sei SS=(ss1, . . . , ssn

2
) ein Symbol-Strom. Dannist die Funktion labelSS : e(B)→ Σ de�niert als

labelSS(x):=ST−1(ssrangB(x)).Wir sagen auch labelSS(x) ist das Label zur 1-Position x bzw. zum zur 1-Position gehörenden startElement-Events.Satz 4.3. Sei S ein Struktur-Strom, sei i die Position eines startElement-EventssE in S und lab ein Label. Dann gilt: lab ist das Label von sE⇔ labelSS(i)=lab.Beweis. Folgt aus De�nitionen 4.7, 4.8 und 4.9.Mit Hilfe dieser Funktionen wird die Dekompressions-Funktion wie folgt de-�niert:De�nition 4.10 (Decomp). Sei Σ eine Menge von Labeln, Sym eine Mengevon Symbolen mit |Sym|=|Σ|, ST:Σ → Sym eine Symboltabelle. SeiB=(b1, . . . , bn) ein korrekter Bitstrom, und sei SS=(ss1, . . . , ssn
2
) ein Symbol-Strom. Sei weiterhin E:={startElement(σ)|σ ∈ Σ} ∪ {endElement(σ)|σ ∈ Σ}die Menge aller Events über Σ.Dann ist die Funktion decompSS,B: {1, . . . , n} → E de�niert als

decompSS,B(x) :={

startElement(labelSS(x)) falls x ∈ e(B)
endElement(labelSS(startB(x))) sonstDer folgende Satz besagt, dass Bitstrom, Symboltabelle und Symbol-Stromzusammen mit der Funktion decomp eine korrekte Kompression darstellen.Dies bedeutet, dass wenn man zu einem Struktur-Strom S und einer Symbol-tabelle ST den Bitstrom B und den Symbol-Strom SS berechnet und anschlie-ÿend die Funktion decomp auf B und SS ausführt, dann erhält man wieder denursprünglichen Struktur-Strom S.Satz 4.4. Sei Σ eine Menge von Labeln, Sym eine Menge von Symbolen mit|Sym|=|Σ|, ST:Σ → Sym eine Symboltabelle. Sei S=(s1, . . . , sn) ein Struktur-Strom und SStart der startElement-Strom von S. Sei weiterhin



XML-Kompression durch platze�ziente Kodierung 39B(S)=(b1, . . . , bn) der Bitstrom zu S und SS(SStart)=(ss1, . . . , ssn
2
) derSymbol-Strom zu S und ST. Dann gilt decompSS,B(i)=si für alle 1≤i≤n.Beweis. Sei si vom Typ startElement(lab). Dann ist bi=1 also i ∈ e(B) und

ssrangB(i)=ST(lab). Somit gilt labelSS(i)=ST−1(ssrangB(i))=lab und
decompSS,B(i)=startElement(lab).Sei nun si vom Typ endElement(lab). Dann ist bi=0, also i /∈ e(B). Das La-bel lab steht in der Labelliste an der Position des dazugehörigen startElement-Events, also ssrangB(startB(i))=ST(lab). Somit gilt labelSS(startB(x))=ST−1(ssrangB(startB (i)))=lab und decompSS,B(i)=endElement(lab).Durch die Verwendung der Funktion start erfordert die Dekompression eineRückwärtsnavigation, die in vielen Fällen unerwünscht ist. Dies kann vermie-den werden, indem für alle geö�neten, aber noch nicht geschlossenen KnotenKx an Position x der Wert der Funktion label(start(x)) auf einem Stack zwi-schengespeichert wird. Da die geö�neten, aber noch nicht geschlossenen Kno-ten dem child-Pfad von der Wurzel bis zum aktuellen Knoten entsprechen, istdie Menge der zu speichernden Werte beschränkt durch die Dokument-Tiefe.Dennoch gilt, dass zwar die Kompression ohne weiteren Speicherbedarf durchlineares Durchqueren durchgeführt werden kann, zur Dekompression wird aberentweder bidirektionales Durchqueren oder weiterer Speicherbedarf der GröÿeO(n) benötigt, wobei n die maximale Tiefe des Dokuments ist.4.1.2 Abbilden der atomaren Achsen �rst-child und next-siblingIn diesem Kapitel werde ich nun erläutern, wie man mit Hilfe des Bitstroms derSuccinct-Darstellung entlang der Achsen �rst-child und next-sibling navigierenkann, ohne vorher das ursprüngliche XML-Dokument zu rekonstruieren.Hat ein Knoten p ein �rst-child fc, so be�ndet sich das startElement-Eventvon fc im Struktur-Strom direkt hinter dem startElement-Event von p.Dies führt zur folgenden De�nition der Funktion fc, die zu einer gegebenenPosition die eventuelle Position des �rst-childs berechnet.De�nition 4.11 (Funktion fc). Sei B=(b1, . . . , bn) ein korrekter Bitstrom mitder Menge e(B) der Eins-Positionen. Dann ist die Funktionfc: e(B) → {1, . . . , n} de�niert als:fc(x) :=x+1Satz 4.5. Sei S ein Struktur-Strom und seien i und j die Positionen je ei-nes startElement-Events eines Knotens ki bzw. kj im Struktur-Strom undB(S)=(b1, . . . , bn) der Bitstrom von S. Dann gilt: kj=�rst-child(ki) ⇔ fc(i)=jund bj=1.



40 XML-Kompression durch platze�ziente KodierungBeweis. Beweis folgt aus De�nitionen 2.4(a), 4.1 und 4.11.Das next-sibling eines Knotens k ist der Knoten, der auf den End-Tag von kfolgt. Dies führt zu der folgenden Funktion ns, die zu einer gegebenen Positionaus der Menge der Eins-Positionen die eventuelle Position des next-siblingsberechnet.De�nition 4.12 (Funktion ns). Sei B=(b1, . . . , bn) ein korrekter Bitstrommit der Menge e(B) der Eins-Positionen. Dann ist die Funktion ns: e(B) →{1, . . . , n+1} de�niert als:ns(x) :=endB(x) + 1.Satz 4.6. Sei S ein Struktur-Strom und seien i und j die Positionen je ei-nes startElement-Events eines Knotens ki bzw. kj im Struktur-Strom undB(S)=(b1, . . . , bn) der Bitstrom von S. Dann gilt: kj=next-sibling(ki)⇔ ns(i)=jund bj=1.Beweis. Beweis folgt aus De�nitionen 2.4(b), 4.1 und 4.12.Satz 4.7. Sei B=(b1, . . . , bn) ein korrekter Bitstrom mit der Menge e(B) derEins-Positionen. Dann kann(a) die Funktion fc in O(1) und(b) die Funktion ns in O(n) berechnet werden.Beweis. (a) folgt aus De�nition 4.11.Da die Berechnung der Position endB im worst case ein komplettes Durch-queren des Bitstroms erfordert, folgt Aussage (b) aus De�nition 4.12.Laut den Sätzen 4.3, 4.5, 4.6 und 4.7 ermöglichen die Funktionen label, nsund fc eine e�ziente Anfrage-Auswertung direkt auf der Succinct-Darstellungohne vorherige Dekompression. Dabei können die Anfragen so ausgewertet wer-den, dass ein einmaliges lineares Durchqueren des Bitstroms und der Labellistegenügt; diese Anfrage-Auswertung ist auch für quasi-unendliche, komprimierteDatenströme geeignet.4.2 Optimierte Auswertung der Vorwärts-AchsenNachdem ich im vorangehenden Kapitel die Ideen aus [48] vorgestellt und for-malisiert habe, werde ich nun eine Optimierung dieser Ideen präsentieren, dieeine optimierte Auswertung der Vorwärtsachsen child, descendant, following-sibling und following erlaubt.Hauptidee dieser Optimierung ist die Benutzung einer invertierten Labellistean Stelle der Labelliste, also einer Zuordnung von '1'-Bit-Positionen zu Labeln.



XML-Kompression durch platze�ziente Kodierung 41De�nition 4.13 (Invertierte Labellisten). Sei Σ die Menge aller Label. Sei σ ∈
Σ ein beliebiges Label. Sei S=(s1, . . . , sn) ein Struktur-Strom, sei SStart derstartElement-Strom von S und sei startσ :=(si ∈ SStart | si=startElement(σ))eine Teilfolge von SStart mit startσ=(s1, . . . , sm). Dann ist die Funktion
invLLσ: startσ → {1, . . . , n} de�niert durch

invLLσ(x):=(i | x=si)Die Liste ILσ:=(invLLσ(s1), . . . , invLLσ(sm)) zu einem Label σ ∈ Σ be-zeichnen wir als invertierte Labelliste zu σ. Die Menge ILΣ= {ILσ | σ ∈ Σ}bezeichnen wir als die invertierten Labellisten zu Σ und S.Beispiel 4.4 Tabelle 4.2 zeigt die invertierten Labellisten, die aus dem Struktur-Strom aus Listing 3.1 generiert werden.
IL@modell (41)
ILAdressen (2)
ILName (4, 14, 32)
ILOrt (22)
ILPerson (3, 13, 31)
ILPostfach (26, 36)
ILStrasse (18)
ILTelefon (40)Tabelle 4.2: Invertierte Labellisten des BeispielsDurch die Funktion invToSS kann zu einer Menge von invertierten Labellis-ten ein Symbol-Strom berechnet werden, der dann zur Dekompression genutztwerden kann.De�nition 4.14 (Funktion invToSS). Sei Σ die Menge aller Label, sei Symeine Menge von Symbolen mit |Sym|=|Σ|, sei ST:Σ → Sym eine Symboltabelle,sei S ein Struktur-Strom, und sei B(S)=(b1, . . . , bn) ein Bitstrom. Seien ILΣdie Menge der invertierten Labellisten zu Σ und S. Dann ist die Funktion

invToSSILΣ
: {1, . . . , n

2 } → Sym de�niert als
invToSSILΣ

(x)=(ST(σ) | x=rangB(y) ∧ y ∈ ILσ).Laut dem folgenden Satz 4.8 stellt die Kombination aus Bitstrom und in-vertierten Labellisten eine korrekte Kompression des Struktur-Stroms dar, diemit Hilfe der Funktionen invToSS und decomp umgekehrt werden kann.Satz 4.8. Sei Σ die Menge aller Label, Sym eine Menge von Symbolen mit|Sym|=|Σ| und ST:Σ → Sym eine Symboltabelle. Sei S=(S1, . . . , Sn) einStruktur-Strom über Σ und B(S) der Bitstrom von S. Sei weiterhin ILΣ dieMenge der invertierten Labellisten zu Σ und S. Dann gilt:



42 XML-Kompression durch platze�ziente KodierungSS:=(invToSSILΣ
(1), . . . , invToSSILΣ

(n
2 ))=(ss1, . . . , ssn

2
) ist der Symbol-Strom zu ST und S, so dass decompSS,B(i)=si für alle 1≤i≤n.Beweis. Sei si vom Typ startElement(lab). Dann ist bi=1 also i ∈ e(B(S)) undi ∈ ILlab. Somit gilt laut De�nition 4.14 ssrangB(i)=invToSSILΣ

(rangB(i))=ST(lab). Weiterhin gilt labelSS(i)=ST−1(ssrangB(i))=lab und somit
decompSS,B(i)=startElement(lab).Sei nun si vom Typ endElement(lab). Dann folgt die Richtigkeit analog zumBeweis zu Satz 4.4.Die invertierten Labellisten stellen einen Index auf die '1'-Bit-Positionensortiert nach den zugehörigen Labeln dar. Dieser Index wird nun bei der opti-mierten Anfrageauswertung benutzt, um entsprechend des Knoten-Tests einesLocation-Steps vorab eine Menge von potentiellen Kandidaten zu ermitteln,so dass die Achsen-Tests nur für diese Kandidaten, nicht aber für alle '1'-Bit-Positionen durchgeführt werden müssen.4.2.1 child::aSei Kp der aktuelle Kontextknoten und p die Position des '1'-Bits, das Kp imBitstrom B repräsentiert. Sei weiterhin Kc ∈ Kp/child ein child-Knoten vonKp und c die Position des '1'-Bits, das Kc im Bitstrom repräsentiert. Dannmuss Kc den Knoten-Test 'a' erfüllen, eine Ebene unterhalb von Kp liegen,und c muss zwischen den Positionen p und endB(p) liegen, also p<c<endB(p).De�nition 4.15 (childσ(p)). Sei Σ die Menge aller Label und sei σ ∈ Σ einbeliebiges Label. Sei B=(b1, . . . , bn) ein Bitstrom, sei p eine Position in B undsei ILσ die invertierte Labelliste zu σ. Dann ist die Menge childσ(p) ⊆ ILσde�niert als:

childσ(p) :={c ∈ ILσ | levelB(p)-levelB(c)=1 ∧ p<c<endB(p)}Satz 4.9. Seien S ein Struktur-Strom, i und j die Positionen je eines startEle-ment-Events eines Knotens ki bzw. kj im Struktur-Strom undB(S)=(b1, . . . , bn) der Bitstrom von S. Dann gilt:
kj ∈ ki/child::a ⇔ j ∈ childa(i).Beweis. Beweis folgt aus De�nitionen 2.5(a) und 4.15.4.2.2 descendant::aSei Kanc der aktuelle Kontextknoten und anc die Position des '1'-Bits, dasKanc im Bitstrom B repräsentiert. Sei weiterhin Kd ∈ Kanc/descendant eindescendant-Knoten von Kanc und d die Position des '1'-Bits, das Kd im Bit-strom repräsentiert. Dann muss Kd den Knoten-Test 'a' erfüllen, und d muss



XML-Kompression durch platze�ziente Kodierung 43zwischen den Positionen anc und endB(anc) liegen, also anc<d<endB(anc).Es existiert keine Bedingung an levelB(d).De�nition 4.16 (descendantσ(a)). Sei Σ die Menge aller Label und sei σ ∈
Σ ein beliebiges Label. Sei B=(b1, . . . , bn) ein Bitstrom, sei a eine Positionim Bitstrom und sei ILσ die invertierte Labelliste zu σ. Dann ist die Menge
descendantσ(a) ⊆ ILσ de�niert als:

descendantσ(a) :={d ∈ ILσ | a<d<endB(a)}Satz 4.10. Seien S ein Struktur-Strom, i und j die Positionen je eines startEle-ment-Events eines Knotens ki bzw. kj im Struktur-Strom undB(S)=(b1, . . . , bn) der Bitstrom von S. Dann gilt:
kj ∈ ki/descendant::a ⇔ j ∈ descendanta(i).Beweis. Beweis folgt aus De�nitionen 2.5(c) und 4.16.4.2.3 following-sibling::aSei Kp der aktuelle Kontextknoten und p die Position des '1'-Bits, das Kp imBitstrom B repräsentiert. Sei weiterhin Kf ∈ Kp/following-sibling ein following-sibling-Knoten von Kp und f die Position des '1'-Bit, das Kf im Bitstromrepräsentiert. Dann muss Kf den Knoten-Test 'a' erfüllen, auf derselben Ebenewie Kp liegen, und f muss zwischen den Positionen p und endOfParentB(p)liegen, also p<f<endOfParentB(p).De�nition 4.17 (following − siblingσ(p)). Sei Σ die Menge aller Label undsei σ ∈ Σ ein beliebiges Label. Sei B=(b1, . . . , bn) ein Bitstrom, sei p einePosition in B und sei ILσ die invertierte Labelliste zu σ. Dann ist die Menge

following − siblingσ(p) ⊆ ILσ de�niert als:
following − siblingσ(p) :={f ∈ ILσ | levelB(p)-levelB(f)=0 ∧ p<f<endOfParentB(p)}Satz 4.11. Seien S ein Struktur-Strom, i und j die Positionen je eines startEle-ment-Events eines Knotens ki bzw. kj im Struktur-Strom undB(S)=(b1, . . . , bn) der Bitstrom von S. Dann gilt:
kj ∈ ki/following-sibling::a ⇔ j ∈ following − siblinga(i).Beweis. Beweis folgt aus De�nitionen 2.5(g) und 4.17.4.2.4 following::aSei Kp der aktuelle Kontextknoten und p die Position des '1'-Bits, das Kp imBitstrom repräsentiert. Sei weiterhin Kf ∈ Kp/following ein following-Knotenvon Kp und f die Position des '1'-Bits, das Kf im Bitstrom B repräsentiert.



44 XML-Kompression durch platze�ziente KodierungDann muss Kf den Knoten-Test 'a' erfüllen, und f muss hinter der Position
endB(p) liegen, also endB(p)<f. Es existiert keine Bedingung an levelB(f).De�nition 4.18 (followingσ(p)). Sei Σ die Menge aller Label und sei σ ∈ Σein beliebiges Label. Sei B=(b1, . . . , bn) ein Bitstrom, p eine Position in B undsei ILσ die invertierte Labelliste zu σ. Dann ist die Menge followingσ(p) ⊆
ILσ de�niert als:

followingσ(p) :={f ∈ ILσ | endB(p)<f<n}Satz 4.12. Seien S ein Struktur-Strom, i und j die Positionen je eines startEle-ment-Events eines Knotens ki bzw. kj im Struktur-Strom undB(S)=(b1, . . . , bn) der Bitstrom von S. Dann gilt:
kj ∈ ki/following::a ⇔ j ∈ followinga(i).Beweis. Beweis folgt aus De�nitionen 2.5(i) und 4.18.Satz 4.13. Sei Σ die Menge aller Label, sei S ein Struktur-Strom, seiB(S)=(b1, . . . , bn) der Bitstrom von S und ILσ die invertierte Labelliste zu

σ ∈ Σ. Die Mengen childσ , descendantσ , following− siblingσ und followingσkönnen in O(n) berechnet werden.Beweis. Die De�nition aller 4 Mengen sind von der Form (level-Bedingung ∧start<x<end), wobei start und end jeweils auch auf Berechnungen der Funk-tion level zurückführbar sind. Daher reicht zur Berechnung dieser Mengenein lineares Durchqueren des Bitstroms beginnend an Position start und en-dend an Position end, wobei für jede Position p mit start<p<end die Level-Di�erenz levelB(start)-levelB(p) berechnet wird. Gilt p ∈ ILσ, so wird zusätz-lich die level-Bedingung überprüft. Somit reicht ein lineares Durchqueren desBitstroms im worst case, es gilt also, dass die Mengen in O(n) berechenbarsind.Laut den Sätzen 4.9, 4.10, 4.11, 4.12 und 4.13, ermöglichen die Mengen
childσ , descendantσ , following − siblingσ und followingσ eine e�ziente An-frage-Auswertung direkt auf der Succinct-Darstellung ohne vorherige Dekom-pression. Dabei können die Anfragen so ausgewertet werden, dass ein einmali-ges lineares Durchqueren des Bitstroms genügt; diese Anfrage-Auswertung istauch für quasi-unendliche, komprimierte Datenströme geeignet.4.3 Succinct-Darstellung zur Kompressionunendlicher DatenströmeDie Succinct-Darstellung, bestehend aus Bitstrom, Labelliste und Symbolta-belle, ist uneingeschränkt auf unendliche Struktur-Ströme anwendbar, da je-



XML-Kompression durch platze�ziente Kodierung 45weils jedes Event des Struktur-Stroms autonom von allen anderen Events ver-arbeitet und komprimiert wird.Für die Succinct-Darstellung bestehend, aus Bitstrom und invertierten La-bellisten, gilt zwar auch, dass jedes Event des Struktur-Stroms autonom kom-primiert wird, hier tritt jedoch das Problem auf, dass mit steigender Längedes verarbeiteten Strom-Anteils die Gröÿe der Positionen in den invertiertenLabellisten ansteigt. Zwar erlaubt die in Kapitel 2.6 vorgestellte Kodierungganzzahliger Werte auch die Darstellung entsprechend groÿer Zahlen, dennochwürde die Kompression dadurch ine�zient werden, da groÿe Zahlen auch durcheine entsprechend hohe Anzahl an Bits kodiert werden müssen. Daher emp-�ehlt es sich, in den invertierten Labellisten nicht die absoluten Positionen zuspeichern, sondern jeweils nur die relativen Positionen, also die Di�erenz zumletztmaligen Auftreten des Labels.De�nition 4.19 (Relative invertierte Labellisten). Sei Σ die Menge aller La-bel. Sei σ ∈ Σ ein beliebiges Label. Sei S=(s1, . . . , sn) ein Struktur-Strom,und sei ILσ=(ilσ1, . . . , ilσm) die invertierte Labelliste zu einem Label σ ∈ Σ.Die umkehrbare Funktion relLL: {1, . . . , m} → {1, . . . , n} ist de�niert als
relLLσ(x):={

ilσ1 falls x = 1
ilσx − ilσx−1 sonstDie Folge RLσ=(relLLσ(1), . . . , relLLσ(m)) zu einem Label σ ∈ Σ bezeich-nen wir als relative invertierte Labelliste zu σ. Die Menge RLΣ= {RLσ | σ ∈ Σ}bezeichnen wir als die relativen invertierten Labellisten zu Σ und S.Beispiel 4.5 Tabelle 4.3 zeigt die relativen invertierten Labellisten, die ausdem Struktur-Strom aus Listing 3.1 generiert werden.

IL@modell (41)
ILAdressen (2)
ILName (4, 10, 18)
ILOrt (22)
ILPerson (3, 10, 18)
ILPostfach (26, 10)
ILStrasse (18)
ILTelefon (40)Tabelle 4.3: Relative invertierte Labellisten des BeispielsDie Kompression eines unendlichen Datenstroms durch das Succinct-Verfah-ren kann ohne weiteren Speicherbedarf für beide Versionen (Bitstrom, Symbol-tabelle, Labelliste bzw. Bitstrom, invertierte relative Labellisten) durchgeführtwerden. Da jedoch der Empfänger � z.B. die Dekompression oder die Anfrage-Auswertung � die aktuellen Werte aus den jeweiligen Komponenten gleichzeitig



46 XML-Kompression durch platze�ziente Kodierungbenötigt, müssten entsprechend viele Verbindungen von der Kompression zumEmpfänger vorhanden sein. Im Falle der Kombination Bitstrom und invertier-te Labellisten müssten dies eine Verbindung für den Bitstrom und jeweils eineVerbindung je invertierter Labelliste sein.Da dies im Allgemeinen nicht praktikabel ist, emp�ehlt sich das Aufteilen desStruktur-Stroms in mehrere Pakete anhand eines Parameters, der die maxima-le Anzahl von Struktur-Events je Struktur-Paket vorgibt. Die verschiedenenStröme können dann so gebündelt werden, dass die einzelnen Komponenten(Symbol-Strom, invertierte Labelliste und Bitstrom) in jedem Paket nachein-ander gesendet werden. Hierbei ist eine sinnvolle Reihenfolge: Symbol-Strombzw. invertierte Labellisten, Bitstrom. Dies ermöglicht bei der Dekompression,dass die invertierten Labellisten noch vor der Dekompression, die durch denBitstrom gesteuert wird, in einen Symbol-Strom umgewandelt werden können.Auch für die optimierte Anfrageauswertung von Anfragen der Form achse::awird die invertierte Labellisten zu 'a' als erstes benötigt.Durch das Aufteilen in Pakete und das Bündeln der Ströme erreichen wireine vollständige Streamingfähigkeit des Verfahrens.4.4 Unterstützung der DOM-SchnittstelleUm zu zeigen, dass die Succinct-Darstellung die komplette DOM-Schnittstel-le unterstützt, werde ich in diesem Kapitel noch erläutern, wie die lesendeDOM-Funktion parent sowie die schreibenden DOM-Operationen insertBefore,insertAfter und remove direkt auf dem Komprimat � ohne vorherige Dekom-pression � de�niert sind.4.4.1 Die parent-AchseSei Kc der aktuelle Kontextknoten und c die Position des '1'-Bits, das Kc imBitstrom B repräsentiert. Dann gilt für den parent-Knoten Kp von Kc, derdurch das '1'-Bit an Position p im Bitstrom repräsentiert ist, dass das Levelvon Kp um eins geringer ist als das Level von Kc, dass p vor c im Bitstromliegt, und dass kein Knoten existiert, dessen Level um eins geringer ist als dasLevel von Kc und der zwischen p und c im Bitstrom liegt.De�nition 4.20 (Funktion parent). Sei B=(b1, . . . , bn) ein korrekter Bitstrommit der Menge e(B) der Eins-Positionen. Dann ist die Funktionparent : e(B)-{1} → e(B) de�niert als:parent(x) :=y mit y<x ∧ levelB(y)-levelB(x)=1 ∧ not ∃ z:
levelB(z)-levelB(x) =1 ∧ y<z<x.



XML-Kompression durch platze�ziente Kodierung 47Satz 4.14. Sei S ein Struktur-Strom und seien i und j die Positionen je ei-nes startElement-Events eines Knotens ki bzw. kj im Struktur-Strom undB(S)=(b1, . . . , bn) der Bitstrom von S. Dann gilt: kj=ki/parent ⇔ parent(i)=j.Beweis. Beweis folgt aus De�nitionen 2.5(b), 4.1 und 4.20.4.4.2 Einfügen und Löschen in Bitstrom, Symbol-Strom undinvertierten LabellistenDie nachfolgende Funktion fügt einen Bitstrom Bneu an einer gegebenen Posi-tion p in einen anderen Bitstrom Balt ein.De�nition 4.21 (insertBalt,Bneu,p). Seien Balt=(balt1, . . . , baltn) und
Bneu=(bneu1, . . . , bneum) zwei Bitströme. Sei p ∈ {1, . . . , n} eine Position in
Balt. Dann ist die Funktion insertBalt,Bneu,p: {1, . . . , n+m} → {0,1} de�niertals

insertBalt,Bneu,p(x):=









baltx falls x < p
bneu(x−p+1) falls p ≤ x < p + m

balt(x−m) sonstEntsprechend löscht die remove-Funktion einen Teilbaum bestehend aus lBits aus dem Bitstrom, dessen Wurzel durch eine Eins-Position p im Bitstromgegeben ist.De�nition 4.22 (removeB,p). Sei B=(b1, . . . , bn) ein korrekter Bitstrom undsei p ∈ {1, . . . , n} eine Eins-Position in B und sei l:=end(p)-p+1. Dann ist dieFunktion removeB,p: {1, . . . , n-l} → {0,1} de�niert als
removeB,p(x):={

bx falls x < p
bx+l sonstDie entsprechende insert-Funktion für den Symbol-Strom fügt einen Symbol-Strom SSneu an einer gegebenen Position p in einen anderen Symbol-Strom

SSalt ein.De�nition 4.23 (insertSSalt,SSneu,p). Seien SSalt=(ssalt1, . . . , ssaltn) und
SSneu=(ssneu1, . . . , ssneum) zwei Symbol-Ströme. Sei p ∈ {1, . . . , n} einePosition in SSalt. Dann ist die Funktion insertSSalt,SSneu,p: {1, . . . , n+m} →{0,1} de�niert als

insertSSalt,SSneu,p(x):=









ssaltx falls x < p
ssneu(x−p+1) falls p ≤ x < p + m

ssalt(x−m) sonstDie folgende remove-Funktion löscht ein Fragment beginnend an Position pder Länge l aus dem Symbol-Strom.



48 XML-Kompression durch platze�ziente KodierungDe�nition 4.24 (removeSS,p). Sei SS=(ss1, . . . , ssn) ein Symbol-Strom undsei p ∈ {1, . . . , n} eine Position in B und sei l ∈ {1,. . . ,n}. Dann ist die Funktion
removeSS,p,l: {1, . . . , n-l} → {0,1} de�niert als

removeSS,p,l(x):={

ssx falls x < p
ssx+l sonstDie nachfolgende Funktion fügt eine invertierte Labelliste ILneu in eine an-dere invertierte Labelliste ILalt ein, so dass alle Werte von ILneu in ILaltzwischen die Werte p (das der Start-Position eines Teilbaumes T in einem zu

ILalt gehörenden Bitstrom Balt entspricht) und p+1 eingefügt werden. DieLänge l entspricht hierbei der Länge des zu ILneu gehörenden Bitstroms Bneu.Dies erfordert eine Neuberechnung aller Werte, die gröÿer als p sind.De�nition 4.25 (insertILalt,ILneu,p). Seien ILalt=(ilalt1, . . . , ilaltn) und
ILneu =(ilneu1, . . . , ilneum) zwei invertierte Labellisten. Seien p und l zweiInteger-Werte und sei k:=|{ilaltx | ilaltx < p}|. Dann ist die Funktion
insertILalt,ILneu,p,l: {1, . . . , n+m} → Integer de�niert als

insertILalt,ILneu,p,l(x):=









ilaltx falls x ≤ k
ilneu(x−k) + p falls k < x ≤ k + m

ilalt(x−m) + l sonstDie folgende remove-Funktion löscht alle Positionen x mit p≤x≤p+l fürgegebenen Werte p und l aus einer invertierten Labelliste.De�nition 4.26 (removeIL,p,l). Sei IL=(il1, . . . , iln) eine invertierte La-belliste. Seien p, l zwei Integer und sei k:=|{ilx | ilx < p}| und o:=|{ilx |p≤ ilx ≤p+l}|. Dann ist die Funktion removeIL,p,l: {1, . . . , o-p} → Integerde�niert als
removeIL,p,l(x):={

ilx falls x ≤ k
il(x+o) − l sonst4.4.3 insert und removeDie folgenden Sätze zeigen, dass eine Ausführung der insert- bzw. der remove-Funktion auf dem Struktur-Strom S zu dem gleichen Ergebnis führt wie einAusführen der insert- bzw. remove-Funktion auf dem S entsprechenden Kom-primat bestehend aus Bitstrom und invertierten Labellisten zuzüglich anschlie-ÿender Dekompression.Satz 4.15. Seien SSalt=(ssalt1, . . . , ssaltn) und SSneu=(ssneu1, . . . , ssneum)zwei Symbol-Ströme. Sei p mit 1≤p≤n gegeben. Sei SS=(ss1, . . . , ssm+n):=(insertSSalt,SSneu,p(1), . . . , insertSSalt,SSneu,p(m + n)). Sei Σ die Menge allerLabel, und seien ILΣalt={ILσalt|σ ∈ Σ} mit ILσalt=(ilσalt1, . . . , ilσaltk) und



XML-Kompression durch platze�ziente Kodierung 49
ILΣneu={ILσneu|σ ∈ Σ} mit ILσneu=(ilσneu1, . . . , ilσneul) zwei Mengen voninvertierten Labellisten. Sei ILΣ:={ILσ|σ ∈ Σ} mit

ILσ=(insertILσalt,ILneuσ,p,m(1), . . . , insertILσalt,ILneuσ ,p,m(k + l)).Dann gilt: invToSSILΣalt(i)=ssalti für 1≤i≤n und invToSSILΣneu(j)=ssneujfür 1≤j≤m ⇔ invToSSILΣ
(x)=ssx für 1≤x≤n+m.Beweis. Folgt aus De�nitionen 4.14, 4.23 und 4.25.Satz 4.16. Sei SSalt=(ssalt1, . . . , ssaltn) ein Symbol-Strom. Seien p,l mit1≤p,l≤n gegeben. Sei SS=(ss1, . . . , ssn−l):=(removeSSalt,p,l(1), . . . ,

removeSSalt,p,l(n−l)). Sei Σ die Menge aller Label, und sei ILΣalt={ILσalt|σ ∈
Σ} mit ILσalt=(ilσalt1, . . . , ilσaltk) eine Menge von invertierten Labellisten. Sei
ILΣ:={ILσ|σ ∈ Σ} mit ILσ=(removeILσalt,p,l(1), . . . , removeILσalt,p,l(k− l)).Dann gilt: invToSSILΣalt(i)=ssalti für 1≤i≤n ⇔ invToSSILΣ

(x)=ssx für1≤x≤n-l.Beweis. Folgt aus De�nitionen 4.14, 4.24 und 4.26.Satz 4.17. Seien Salt=(salt1, . . . , saltn) und Sneu=(sneu1, . . . , sneum) zweiStruktur-Ströme. Sei p mit 1≤p≤n gegeben. Sei S=(s1, . . . , sm+n):=(insertSalt,Sneu,p(1), . . . , insertSalt,Sneu,p(m + n)). Seien weiterhin Balt=(balt1, . . . , baltn) und Bneu=(bneu1, . . . , bneum) zwei Bitströme. Sei B=(b1, . . . , bm+n):=(insertBalt,Bneu,p(1), . . . , insertBalt,Bneu,p(m + n)). Seien
SSalt=(ssalt1, . . . , ssaltn

2
) und SSneu=(ssneu1, . . . , sSneu m

2
) zwei Symbol-Ströme. SeiSS=(ss1, . . . , ssm+n

2

):=(insertSSalt,SSneu,p(1), . . . , insertSSalt,SSneu,p(
m+n

2 )).Dann gilt decompSSalt,Balt
(i)=ssalti für 1≤i≤n ⇔ decompSS,B(x)=ssx für1≤x≤m+n.Beweis. Folgt aus De�nitionen 2.7, 4.10, 4.21 und 4.23.Satz 4.18. Sei Salt=(salt1, . . . , saltn) ein Struktur-Strom. Sei p mit 1≤p≤ngegeben. Sei ssp das startElement-Event eines XML-Elements E zu einem ge-gebenen Wert p und sei ssk das endElement-Event von E. Sei l:=k-p+1. SeiS=(s1, . . . , sn−l):=(removeSalt,p(1), . . . , removeSalt,p(n − l)). Sei weiterhin

Balt=(balt1, . . . , baltn) ein Bitstrom. Sei B=(b1, . . . , bn−l):=(removeBalt,p(1),. . . , removeBalt,p(n− l)). Sei SSalt=(ssalt1, . . . , ssaltn
2
) ein Symbol-Strom. SeiSS=(ss1, . . . , ssn−l

2

):=(removeSSaltp,l(1), . . . , removeSSalt,p,l(
n−l
2 )).Dann gilt decompSSalt,Balt

(i)=ssalti für 1≤i≤n ⇔ decompSS,B(x)=ssx für1≤x≤n-l.Beweis. Folgt aus De�nitionen 2.8, 4.10, 4.22 und 4.24.



50 XML-Kompression durch platze�ziente KodierungSatz 4.19. Sei Σ die Menge aller Label, sei S ein Struktur-Strom, seiB(S)=(b1, . . . , bn) der Bitstrom von S und ILσ die invertierte Labelliste zu
σ ∈ Σ. Die Funktionen insert und remove für B,S und IL können in O(n)berechnet werden.Beweis. Da entsprechend der De�nitionen all diese Funktionen durch ein ein-maliges Durchqueren der jeweiligen Folge berechnet werden können, sind siein O(n) berechenbar.Laut den Sätzen 4.15, 4.16, 4.17, 4.18 und 4.19 ermöglichen die Funktio-nen insert und remove für Bitstrom, Symbol-Strom und invertierte Labellisteneine e�ziente Implementierung der DOM-Schnittstelle direkt auf der Succinct-Darstellung ohne vorherige Dekompression. Dabei können die Update-Opera-tionen so ausgeführt werden, dass ein einmaliges lineares Durchqueren der je-weiligen Struktur genügt. Dies gilt sowohl für eine Succinct-Darstellung beste-hend aus Bitstrom und Symbol-Strom, als auch für eine Succinct-Darstellungbestehend aus Bitstrom und invertierten Labellisten.4.5 Zusammenfassung: Eigenschaften derSuccinct-Darstellung4.5.1 KompressionsstärkeBetrachten wir die Baumdarstellung eines XML-Dokumentes, so benötigt dieSuccinct-Darstellung den folgenden Speicherbedarf für die einzelnen Reprä-sentationen der Dokument-Struktur. Hierbei gehen wir von der vereinfachtenAnnahme aus, dass das gesamte Dokument in einem Paket gespeichert werdenkann. Seien n die Anzahl Baumknoten, length(name) die Anzahl Zeichen vonname und count(name) die Anzahl Knoten, die mit diesem Label existieren:

• Bitstrom: 2*n Bits.
• Symbol-Strom: Je Element- bzw. Attribut-Name name: length(name) *Char + 1 * Integer für die Symboltabelle zzgl. count(name)*Integer fürdie Labelliste.
• (relative) invertierte Labelliste: Je Element-bzw. Attribut-Name (6=�=T�):length(name) * Char + count(name)*Integer + 1*Integer (für Listenen-de).4.5.2 Weitere EigenschaftenWie im Verlaufe dieses Kapitels gezeigt, hat die Succinct-Darstellung die fol-genden Eigenschaften:
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• Streamingfähig: Sie ist mit Hilfe diskreter Fenster (Pakete) uneinge-schränkt streamingfähig.
• Auswertung von Pfad-Anfragen: Pfad-Anfragen können direkt auf demKomprimat ausgewertet werden.
• Updates: Updates können unbeschränkt auf dem Komprimat durchge-führt werden, insofern, als das Komprimat mit darauf ausgeführtem Up-date identisch dazu ist, dass man erst dekomprimiert hätte, die Updatesauf dem XML-Dokument ausgeführt hätte und dann anschlieÿend wiederkomprimiert hätte.
• DOM: Sie unterstützt die DOM-Schnittstelle.



5 XML-Kompression durchEliminierung strukturellerRedundanzenDas zweite Kompressions-Verfahren, welches ich in dieser Arbeit vorstellen wer-de, komprimiert XML-Dokumente durch Zusammenfassen von gleichen Teil-bäumen. Ähnliche Verfahren wurden bereits in [25, 28] vorgestellt. Das hiervorgestellte Verfahren unterscheidet sich jedoch von den bisherigen Verfahrendarin, dass es einerseits durch eine Überlaufstrategie auf potentiell unendlicheDatenströme angewandt werden kann und dass es andererseits einen kompri-mierten SAX-ähnlichen Strom erzeugen kann. Dieser Ereignis-Strom kann alsEingabe für weitere Kompressoren dienen. Da dieses Verfahren somit aus demXML-Baum einen Baum zzgl. Rückwärtskanten, also einen DAG (=directedacyclic graph) macht, werde ich im weiteren Verlauf dieser Arbeit das Verfah-ren als DAG-Verfahren bezeichnen.5.1 XML-Kompression durch Zusammenfassen vongleichen Teilbäumen5.1.1 KonzeptDie Grundidee des DAG-Verfahrens ist die Eliminierung struktureller Redun-danzen durch das Zusammenfassen von gleichen Teilbäumen. Tritt innerhalbder Struktur ein Teilbaum mit Wurzel w zum wiederholten Male auf, so wirddiese Wiederholung gelöscht, und statt dessen wird ein Zeiger vom parent-Knoten von w zum erstmaligen Auftreten von w erzeugt.Die folgende, rekursive De�nition de�niert, wann zwei Teilbäume gleich sind:De�nition 5.1 (gleiche Teilbäume). Sei B=(V,E) ein geordneter Baum mitKnotenmenge V und Kantenmenge E ⊆ V ×V . Sei zu einem Knoten k k.labeldas Label von k und k.child(i) der Teilbaum mit dem i-ten Kindknoten vonk als Wurzel und k.noOfChildren die Anzahl an Kindknoten des Knotens k.52



XML-Kompression durch Eliminierung struktureller Redundanzen 53Zwei Teilbäume tb1=(V1,E1), tb2=(V2,E2) mit V1,V2 ⊆ V und E1,E2 ⊆ Emit Wurzelknoten w1 bzw. w2 sind gleich, tb1 ./ tb2, genau dann, wenn gilt
• w1.label = w2.label

• w1.noOfChildren = w2.noOfChildren

• ∀ i mit 1 ≤ i ≤ w1.noOfChildren: w1.child(i) ./ w2.child(i)Dementsprechend ist der minimale DAG zu einem Baum B ein Graph, derkeine zwei gleichen Teilbäume enthält, der jedoch alle Kantenbeziehungen vonB enthält:De�nition 5.2 (minimaler DAG). Sei XML=(Vxml, Exml) ein geordneter XML-Baum mit Knotenmenge Vxml und Kantenmenge Exml ⊆ Vxml × Vxml. SeiDAG=(Vdag , Edag) ein azyklischer Graph mit Knotenmenge Vdag und Kanten-menge Edag ⊆ Vdag × Vdag. Dann gilt DAG ist der minimale DAG zu XML,genau dann, wenn gilt:
• ∀xxml ∈ Vxml ∃xdag ∈ Vdag mit xxml ./ xdag

• ∀xdag ∈ Vdag ∃xxml ∈ Vxml mit xdag ./ xxml

• ∀(xxml, yxml) ∈ Exml ∃(xdag, ydag) ∈ Edag mit xxml ./ xdag und yxml ./
ydag

• ∀(xdag, ydag) ∈ Edag ∃(xxml, yxml) ∈ Exml mit xxml ./ xdag und yxml ./
ydag

• not ∃x1, x2 ∈ Vdag mit x1 6= x2 und x1 ./ x2.Beispiel 5.1 Abbildung 5.1 zeigt den minimalen DAG zum Strukturanteil derbinären XML-Baumdarstellung aus Abbildung 2.2.Da der DAG die Kantenbeziehungen des XML-Baums erhält, können die na-vigierenden DOM-Operationen genau wie auf dem ursprünglichen XML-Baumdurchgeführt werden.5.1.2 Vergleich binärer DAG zu herkömmlichem DAGDas zugrunde liegende Konzept, wie es im vorherigen Abschnitt beschriebenwurde, ist zunächst einmal unabhängig von der Baum-Darstellung � es istsowohl auf herkömmliche XML-Bäume anwendbar, als auch auf Binärbaum-Darstellungen. Wenden wir dieses Konzept sowohl auf die herkömmliche Baum-Darstellung als auch auf die Binärbaum-Darstellung desselben Dokumentes an,so können wir Folgendes feststellen: Obwohl die beiden Baum-Darstellungen



54 XML-Kompression durch Eliminierung struktureller RedundanzenAdressenPersonName Postfach PersonName Strasse Ort
=T

PersonName Postfach Telefon@modell
Abbildung 5.1: Minimaler DAG zur Binärbaum-Darstellung des XML-Dokumentesabc d e bc d e(a) abc d e bc d e(b) abc d e bf d e(c) abc d e bf d e(d)abc d e(e) abc d e b(f) abc d e bf(g) abc d e bf(h)Abbildung 5.2: Vergleich binärer DAG zu herkömmlichem DAGgleiche Anzahl an Knoten und Kanten besitzen, gilt letzteres im Allgemeinennicht für die jeweiligen DAG-Darstellungen.Beispiel 5.2 Abbildung 5.2(a) zeigt den herkömmlichen XML-Baum und Ab-bildung 5.2(b) den binären XML-Baum, jeweils darunter die entsprechendenDAGs (Abbildungen 5.2(e) und (f)). Wie wir sehen, hat der herkömmlicheDAG in diesem Fall 5 Knoten und 5 Kanten, während der binäre DAG 6Knoten und 6 Kanten hat, also gröÿer ist. Abbildungen 5.2(c),(d),(g) und (h)zeigen dies noch einmal für einen leicht veränderten XML-Baum. Wie wir se-hen, hat dieses Mal der herkömmliche DAG 7 Knoten und 8 Kanten, währendder binäre DAG 7 Knoten und 7 Kanten hat, also kleiner ist.Wie an diesem Beispiel zu sehen ist, kann man nicht im Allgemeinen sagen,dass der binäre DAG dem herkömmlichen DAG in Bezug auf Kompressions-



XML-Kompression durch Eliminierung struktureller Redundanzen 55stärke überlegen ist. Da jedoch der binäre DAG einfacher darzustellen ist, dajeder Knoten maximal 2 Kindknoten hat, während im herkömmlichen DAGjeder Knoten eine beliebige Anzahl an Kindknoten haben kann, werde ich imweiteren Verlauf dieses Kapitels das Verfahren auf dem binären DAG erläu-tern. Es ist aber anzumerken, dass die hier beschriebenen Ideen mit wenigenÄnderungen auch auf den herkömmlichen DAG angewandt werden können.5.1.3 DAG-Event-StromHat man den minimalen DAG zu einem binären XML-Baum berechnet, sokann man � analog wie einen SAX-Strom zu einem XML-Baum � einen DAG-Event-Strom zu diesem DAG generieren, der z.B. als Eingabe für einen weiterenVerarbeitungsschritt dienen kann.Für diesen DAG-Event-Strom wird als Eigenschaft vorausgesetzt, dass Ver-weise immer nur �rückwärts� erfolgen, dass also die verwiesenen Knoten immerbereits gelesen wurden, bevor ein Verweis auf diese Knoten erfolgt.Der DAG-Event-Strom enthält auÿer den Ereignissen des zugrunde liegen-den Stroms noch das DAG-Ereignis pointer(int o�set). Das Ereignis pointer(into�set) verweist auf die Ereignissequenz startend bei dem Ereignis, das 'o�set'Ereignisse zurückliegt. Das Ereignis pointer(int o�set) folgt also 'o�set' Ereig-nisse später als das verwiesene Ereignis.Beispiel 5.3 Listing 5.1 enthält den DAG-Strom des DAGs zum Struktur-Strom aus Listing 3.1. Hierbei ist zu beachten, dass der DAG bzgl. des Binär-baums berechnet wurde.1 startElement ( ' roo t ' ) ;2 startElement ( ' Adressen ' ) ;3 startElement ( ' Person ' ) ;4 startElement ( 'Name ' ) ;5 startElement ( '=T ' ) ;6 endElement ( ) ;7 endElement ( ) ;8 startElement ( ' Pos t f a ch ' ) ;9 pointer (4 ) ; //Verweis au f Z e i l e 510 endElement ( ) ;11 startElement ( ' Person ' ) ;12 startElement ( 'Name ' ) ;13 pointer (8 ) ; //Verweis au f Z e i l e 514 startElement ( ' S t r a s s e ' ) ;15 pointer (10) ; //Verweis au f Z e i l e 516 startElement ( ' Ort ' ) ;



56 XML-Kompression durch Eliminierung struktureller Redundanzen17 pointer (12) ; //Verweis au f Z e i l e 518 pointer (10) ; //Verweis au f Z e i l e 819 startElement ( ' Person ' ) ;20 startElement ( 'Name ' ) ;21 pointer (16) ; //Verweis au f Z e i l e 522 startElement ( ' Pos t f a ch ' ) ;23 pointer (18) ; //Verweis au f Z e i l e 524 startElement ( ' Te l e f on ' ) ;25 startElement ( ' @modell ' ) ;26 pointer (21) ; //Verweis au f Z e i l e 527 pointer (22) ; //Verweis au f Z e i l e 528 endElement ( ) ;29 endElement ( ) ;Listing 5.1: DAG-Event-Strom zu Listing 3.1Da es sich bei dem DAG-Event-Strom um eine Erweiterung des Struktur-Stroms handelt, handelt es sich beim Struktur-Strom um einen Sonderfall desDAG-Event-Stroms. Alle Anwendungen, die für einen DAG-Event-Strom ge-schrieben sind, können entsprechend auch auf den zugrunde liegenden Struktur-Strom angewandt werden.5.1.4 Implementierung einer DAG-KompressionNachdem ich das der DAG-Kompression zugrunde liegende Konzept erläuterthabe, stelle ich nun eine mögliche Implementierung dieses Konzeptes vor.Die Eingabe dieser Implementierung ist ein binärer Struktur-Strom, worausdann eine Liste von DAG-Knoten erzeugt wird. Jeder DAG-Knoten bestehtaus einem Label und jeweils einem Zeiger auf den �rst-child- und den next-sibling-Knoten. Im Unterschied zu einer Baum-Darstellung, bei der jeder Kno-ten einen Eingangsgrad von maximal 1 hat (nur die Wurzel hat Eingangsgrad0), kann der Eingangsgrad eines DAG-Knotens beliebig groÿ werden im Falleeiner Verzeigerung auf vorhergehende, sich wiederholende Teilbäume.In dieser Implementierung wird ein Stack verwendet, der den Pfad von derWurzel bis zum aktuellen Knoten enthält, da für diese Knoten noch nicht alleInformationen vorhanden sind, next-sibling und für den zuletzt gelesen Knotenevtl. auch �rst-child eines solchen Knotens sind noch unbekannt.Algorithmus 5.2 fasst diese Implementierung zusammen. Da die Eingabe derImplementierung ein binärer Struktur-Strom ist, also eine Folge von Eventsvom Typ �rstChild, nextSibling und parent, wird im Folgenden die Aktionen,die bei der Auslösung eines dieser Events ausgeführt wird, erläutert:



XML-Kompression durch Eliminierung struktureller Redundanzen 571. �rstChild (Zeilen 5-10): Bislang ist über den aktuellen durch das binäreEvent �rstChild beschriebenen Knoten nur das Knotenlabel bekannt. Da-her wird ein DAG-Knoten mit entsprechendem Label erzeugt (Zeile 6).Um später unterscheiden zu können, ob auf diesen Knoten ein Zeiger vomTyp FirstChild oder NextSibling verweist, wird gespeichert, dass dieserKnoten vom Typ FirstChild ist (Zeile 7) und der Knoten wird zum Stackder noch o�enen Elemente hinzugefügt (Zeile 9). Für den Fall, dass essich bei dem Knoten um den Wurzelknoten handelt, also der Stack derzeitnoch leer ist, wird dem DAG dieser Knoten als Wurzelknoten mitgeteilt(Zeile 8).2. nextSibling (Zeilen 12-19): Über den zuletzt geö�neten, aber noch nichtgeschlossenen Knoten ist bekannt, dass alle seine Kindknoten bereits gele-sen wurden. Falls bis jetzt kein �rst-child-Knoten für diesen aufgetretenist, folgt daraus, dass kein �rst-child-Knoten existiert. Daher wird der�rst-child-Zeiger des obersten Stack-Elements auf �NOTHING� gesetzt,falls der Zeiger noch nicht gesetzt ist (Zeilen 13-15). Anschlieÿend wirdein neuer DAG-Knoten mit entsprechendem Label und dem Typ Next-Sibling erzeugt (Zeilen 16-17) und zum Stack der noch o�enen Elementehinzugefügt (Zeile 18).3. parent (Zeilen 21-28): Über den zuletzt geö�neten, aber noch nicht ge-schlossenen Knoten ist bekannt, dass alle seine Kindknoten und auchGeschwisterknoten bereits gelesen wurden. Falls bis jetzt kein �rst-child-Knoten für diesen aufgetreten ist, folgt daher, dass kein �rst-child-Knotenexistiert (Zeilen 23-24). Ebenso folgt, dass kein next-sibling-Knoten exi-stiert, falls bis jetzt noch kein next-sibling-Knoten aufgetreten ist (Zeilen25-26). Da nun alle Daten des obersten DAG-Knotens bekannt sind, kanndieser vom Stack in den DAG verschoben werden. Dort wird überprüft,ob bereits ein gleicher Knoten exisitiert, und wird entweder die entspre-chende ID zurückgeliefert, oder eine neu erzeugte ID (Zeile 33). Dies wirddurch die ausgelagerte Methode clearStack übernommen. Wir verdrängendas in den DAG eingefügte Element lastElement vom Stack (Zeile 34),und wir setzen je nach Typ von lastElement entweder den �rst-child- oderden next-sibling-Zeiger des nun oben auf dem Stack be�ndenden Knotensauf lastElement (Zeilen 35-38), somit ist der Zeiger vom parent-Knotenbzw. vom previous-sibling-Knoten entsprechend der im XML-Baum be-stehenden Beziehung korrekt gesetzt. Dies wird solange wiederholt, wienoch vollständige DAG-Elemente auf dem Stack liegen.Das Einfügen von Knoten in den DAG und das Überprüfen, ob ein DAG-Knoten bereits vorhanden ist, kann e�zient mit Hilfe eines Hashingsrealisiert werden.



58 XML-Kompression durch Eliminierung struktureller RedundanzenDe�nition 5.3 (BinarySAX2DAG). Sei BS ein binärer Struktur-Strom. Dannist die Klasse BinarySAX2DAG mit den BinarySAX-Operationen�rstChild(String name), nextSibling(String name) und parent() von BS wiefolgt de�niert:1 public c lass BinarySAX2DAG implements BinarySAX{2 private Stack openElements ;3 public DAG dag ;45 public void f i r s t C h i l d ( S t r ing name) {6 DAGEntry f c = new DAGEntry(name) ;7 f c . setType (DAGEntry . F i r s tCh i ld ) ;8 i f ( openElements . isEmpty ( ) )DAG. setRoot ( f c ) ;9 openElements . push ( f c ) ;10 }1112 public void nex tS i b l i n g ( S t r ing name) {13 DAGEntry las tElement = openElements . top ( ) ;14 i f ( las tElement . getFC ( )==null )15 l a s tE lement . setFC (DAGEntry .NOTHING) ;16 DAGEntry ns = new DAGEntry(name) ;17 ns . setType (DAGEntry . NextS ib l ing ) ;18 openElements . push ( ns ) ;19 }2021 public void parent ( ) {22 DAGEntry las tElement = openElements . top ( ) ;23 i f ( las tElement . getFC ( )==null )24 l a s tE lement . setFC (DAGEntry .NOTHING) ;25 i f ( las tElement . getNS ( )==null )26 l a s tE lement . setNS (DAGEntry .NOTHING) ;27 c l e a rS t a ck ( ) ;28 }2930 private void c l e a rS t a ck ( ) {31 DAGEntry las tElement = openElements . top ( ) ;32 while ( las tElement . getFC ( ) !=null && lastElement .getNS ( ) !=null ) {33 int ID = DAG. i n s e r t ( las tElement ) ;34 openElements . pop ( ) ;35 i f ( las tElement . getType ( )==DAGEntry . F i r s tCh i ld )



XML-Kompression durch Eliminierung struktureller Redundanzen 5936 openElements . top ( ) . setFC ( ID) ;37 else38 openElements . top ( ) . setNS ( ID) ;39 l a s tE lement = openElements . top ( ) ;40 }41 }42 } Algorithmus 5.2: DAG-Kompression des Struktur-StromsBeispiel 5.4 Tabelle 5.1 zeigt den DAG zu Listing 2.3. Hierbei ist der mit '→'markierte DAG-Knoten der Wurzelknoten und '-' steht fürDAGEntry.NOTHING.ID Label First-Child Next-Sibling1 =T - -2 Postfach 1 -3 Name 1 24 Ort 1 25 Strasse 1 46 Name 1 57 @modell 1 18 Telefon 7 -9 Postfach 1 810 Name 1 911 Person 10 -12 Person 6 1113 Person 3 12
→14 Adressen 13 -Tabelle 5.1: DAG zum Beispieldokument aus Listing 2.3Dadurch, dass neue DAG-Einträge erst beim parent-Event des binären SAX-Event-Stroms vom Stack in den DAG verschoben werden, der DAG also bottom-up aufgebaut wird, hat der durch diese Implementierung erzeugte DAG dieEigenschaft, dass Verweise immer nur �rückwärts� erfolgen, dass also die ver-wiesenen Knoten immer bereits gelesen wurden, bevor ein Verweis auf dieseKnoten erfolgt.5.1.5 Implementierung einer DAG-DekompressionAlgorithmus 5.3 enthält ein DAG-Objekt, also eine Liste von DAG-Knoten underzeugt daraus einen binären Struktur-Strom.



60 XML-Kompression durch Eliminierung struktureller RedundanzenDazu wird die DAG-Knoten-Liste rekursiv durchquert, startend mit demWurzelknoten des DAGs (Zeile 5). Je nach Typ des aktuellen DAG-Knotenswird ein �rstChild- oder ein nextSibling-Event des binären Sturktur-StromsbinarySAX erzeugt (Zeilen 9-12). Falls ein �rst-child-Zeiger existiert, wird an-schlieÿend die Dekompression für diesen Knoten aufgerufen (Zeilen 13-14).Ebenso wird die Dekompression für den next-sibling aufgerufen, falls dieserexistiert (Zeilen 15-16). Existiert kein next-sibling, so bedeutet dies, dass dasEnde der sibling-Liste erreicht ist, somit wird ein parent-Event erzeugt (Zeilen17-18).De�nition 5.4 (decompress). Sei dag ein DAG. Dann ist die Operation de-compress(DAG dag) in der folgenden Funktion decompress de�niert:1 public c lass DAG2BinarySAX{2 BinarySAX binarySAX ;34 public void decompress (DAG dag ) {5 decompressNode ( dag . getRoot ( ) ,DAGEntry . F i r s tCh i ld ) ;6 }78 public void decompressNode (DAGEntry node , Type type ) {9 i f ( type==DAGEntry . F i r s tCh i ld )10 binarySAX . f i r s t C h i l d ( node . getLabe l ( ) ) ;11 else12 binarySAX . nex tS i b l i n g ( node . getLabe l ( ) ) ;13 i f ( node . g e tF i r s tCh i l d ( ) !=DAGEntry .NOTHING)14 decompressNode ( node . g e tF i r s tCh i l d ( ) , DAGEntry .F i r s tCh i ld ) ;15 i f ( node . g e tNextS ib l i ng ( ) !=DAGEntry .NOTHING)16 decompressNode ( node . g e tNextS ib l i ng ( ) , DAGEntry .NextS ib l ing ) ;17 else18 binarySAX . parent ( ) ;19 }20 } Algorithmus 5.3: Dekompression der DAG-KompressionDer folgende Satz besagt, dass es sich bei den vorgestellten Kompressions-und Dekompressions-Operationen um eine korrekte Kompression handelt, dassalso die Dekompression wieder den ursprünglichen Struktur-Strom herstellt.Dies gilt nicht nur für den gesamten binären Struktur-Strom, sondern für alle



XML-Kompression durch Eliminierung struktureller Redundanzen 61im binären Struktur-Strom enthaltenen vollständigen binären Teilbäume. Be-vor der Satz vorgestellt wird, muss zunächst einmal ein vollständiger binärerTeilbaum de�niert werden:De�nition 5.5 (Vollständiger binärer Teilbaum ). Sei BS=(bs1, . . . , bsn) einbinärer Struktur-Strom nach De�nition 3.3. Seien fcx:={bsi ∈ BS|1 ≤ i ≤
x, bsi ist vom Typ �rstChild}, nsx:={bsi ∈ BS|1 ≤ i ≤ x, bsi ist vom TypnextSibling} und pax:={bsi ∈ BS|1 ≤ i ≤ x, bsi ist vom Typ parent}. Dannbezeichnen wir BS als vollständigen binären Teilbaum genau dann, wenn gilt:1. bs1 ∈ fc1 ∧ |pan| = |fcn| ∧ ∀x, 1 ≤ x < n : |pax| < |fcx| oder2. bs1 ∈ ns1 ∧ |pan| = |fcn| + 1 ∧ ∀x, 1 ≤ x < n : |pax| < |fcx| + 1Satz 5.1. Sei BS ein binärer Struktur-Strom nach De�nition 3.3, und seivBS ⊆ BS ein vollständiger binärer Teilbaum nach De�nition 5.5. Sei dag derDAG, der entsteht, wenn die in der Klasse BinarySAX2DAG aus De�nition5.3 de�nierten Aktionen für die binären SAX-Events von vBS ausgeführt wer-den. Sei decompress(DAG dag) eine Dekompressions-Funktion entsprechendDe�nition 5.4. Dann gilt: decompress(dag) erzeugt vBS.Beweis. Sei 'x' der Elementname des Wurzelknotens von vBS, 'y' der Element-name des parents des Wurzelknotens von vBS.

• Der kleinste vollständige binäre Teilbaum vBS ist ein Blattknoten, istalso entweder von der Form �rstChild('x') ⊗ parent() (Fall 1a) odernextSibling('x') ⊗ parent() (Fall 1b).� Fall 1a: Der resultierende DAG enthält die DAG-KnotenD1=(a, y, b, UNKNOWN) und D2=(b, x, NOTHING, NOTHING),wobei a die ID von D1 und b die ID von D2 ist. Anwendung derOperation decompressNode auf den Knoten D1 führt somit zu einemAufruf der Operation decompressNode(D2, DAGEntry.FirstChild).Diese erzeugt die Folge �rstChild('x') ⊗ parent().� Fall 1b: Der resultierende DAG enthält die DAG-KnotenD1=(a, y, UNKNOWN, b) und D2=(b, x, NOTHING, NOTHING),wobei a die ID von D1 und b die ID von D2 ist. Anwendung derOperation decompressNode auf den Knoten D1 führt somit zu einemAufruf der Operation decompressNode(D2, DAGEntry.NextSibling).Diese erzeugt die Folge nextSibling('x') ⊗ parent().
• Nun bestehe der vollständige binäre Teilbaum vBS aus einem Wurzel-knoten und einem �rst-child, es existiere aber kein next-sibling des Wur-zelknotens. Dann ist vBS von der Form �rstChild('x') ⊗ vFC ⊗ parent()(Fall 2a) oder nextSibling('x') ⊗ vFC ⊗ parent() (Fall 2b), wobei für den



62 XML-Kompression durch Eliminierung struktureller Redundanzenvollständigen binären Teilbaum vFC mit Wurzel vom Typ �rstChild dieBehauptung gelte, so dass fc die DAG-ID des Wurzelknotens von vFCsei.� Fall 2a: Der resultierende DAG enthält die DAG-KnotenD1=(a, y, b, UNKNOWN) und D2=(b, x, fc, NOTHING), wobei adie ID von D1 und b die ID von D2 ist. Anwendung der OperationdecompressNode auf den Knoten D1 führt somit zu einem Aufrufder Operation decompressNode(D2, DAGEntry.FirstChild). Dieseerzeugt die Folge �rstChild('x') ⊗ vFC ⊗ parent().� Fall 2b: Der resultierende DAG enthält die DAG-KnotenD1=(a, y, UNKNOWN, b) und D2=(b, x, fc, NOTHING), wobei adie ID von D1 und b die ID von D2 ist. Anwendung der OperationdecompressNode auf den Knoten D1 führt somit zu einem Aufrufder Operation decompressNode(D2, DAGEntry.NextSibling). Dieseerzeugt die Folge nextSibling('x') ⊗ vFC ⊗ parent().
• Nun bestehe der vollständige binäre Teilbaum vBS aus einem Wurzel-knoten und einem next-sibling, es existiere aber kein �rst-child des Wur-zelknotens. Dann ist vBS von der Form �rstChild('x') ⊗ vNS (Fall 3a)oder nextSibling('x') ⊗ vNS (Fall 3b), wobei für den vollständigen bi-nären Teilbaum vNS mit Wurzel vom Typ nextSibling die Behauptunggelte, so dass ns die DAG-ID des Wurzelknotens von vNS sei.� Fall 3a: Der resultierende DAG enthält die DAG-KnotenD1=(a, y, b, UNKNOWN) und D2=(b, x, NOTHING, ns), wobei adie ID von D1 und b die ID von D2 ist. Anwendung der OperationdecompressNode auf den Knoten D1 führt somit zu einem Aufrufder Operation decompressNode(D2, DAGEntry.FirstChild). Dieseerzeugt die Folge �rstChild('x') ⊗ vNS.� Fall 3b: Der resultierende DAG enthält die DAG-KnotenD1=(a, y, UNKNOWN, b) und D2=(b, x, NOTHING, ns), wobei adie ID von D1 und b die ID von D2 ist. Anwendung der OperationdecompressNode auf den Knoten D1 führt somit zu einem Aufrufder Operation decompressNode(D2, DAGEntry.NextSibling). Dieseerzeugt die Folge nextSibling('x') ⊗ vNS.
• Schlieÿlich bestehe der vollständige binäre Teilbaum vBS aus einem Wur-zelknoten, einem �rst-child und einem next-sibling des Wurzelknotens.Dann ist vBS von der Form �rstChild('x') ⊗ vFC ⊗ vNS (Fall 4a) odernextSibling('x') ⊗ vFC ⊗ vNS (Fall 4b), wobei für die vollständigenbinären Teilbäume vFC mit Wurzel vom Typ �rstChild und vNS mitWurzel vom Typ nextSibling die Behauptung gelte, so dass fc die DAG-



XML-Kompression durch Eliminierung struktureller Redundanzen 63ID des Wurzelknotens von vFC und ns die DAG-ID des Wurzelknotensvon vNS seien.� Fall 4a: Der resultierende DAG enthält die DAG-KnotenD1=(a, y, b, UNKNOWN) und D2=(b, x, fc, ns), wobei a dieID von D1 und b die ID von D2 ist. Anwendung der OperationdecompressNode auf den Knoten D1 führt somit zu einem Aufrufder Operation decompressNode(D2, DAGEntry.FirstChild). Dieseerzeugt die Folge �rstChild('x') ⊗ vFC ⊗ vNS.� Fall 4b: Der resultierende DAG enthält die DAG-KnotenD1=(a, y, UNKNOWN, b) und D2=(b, x, fc, ns), wobei a dieID von D1 und b die ID von D2 ist. Anwendung der OperationdecompressNode auf den Knoten D1 führt somit zu einem Aufrufder Operation decompressNode(D2, DAGEntry.NextSibling). Dieseerzeugt die Folge nextSibling('x') ⊗ vFC ⊗ vNS.Da die Fälle 1a bis 4b alle vollständigen binären Teilbäume umfassen, giltsomit die Behauptung.5.2 DAG-Kompression für unendlich langeXML-DatenströmeWährend der Kompression � also während der Berechnung des DAGs � steigtbei unendlich langen XML-Datenströmen die Gröÿe des DAGs immer weiteran. Dies stellt jedoch kein Problem dar, da man in diesem Fall den DAG beimErreichen einer vorher festgelegten Gröÿe �abschlieÿen� und zum Empfängerversenden kann. Dies entspricht also der Anwendung eines diskreten Fenstersauf dem Eingangsstrom, so dass immer nur innerhalb eines Fensters Verweiseauftreten können, jedoch nicht von Fenster zu Fenster.Da laut [11] die durchschnittliche Tiefe eines XML-Dokuments bei 4 Knotenliegt (wobei 99% aller Dokumente eine Tiefe von maximal 8 Knoten haben, unddie maximal erreichte Tiefe 135 war), ist zwar die Tiefe eines unendlichen XML-Datenstroms beschränkt, dies gilt jedoch nicht für die Breite. Daher steigt auchdie Gröÿe des Stacks, der alle o�enen Knoten, also den Pfad zum aktuellenKnoten bestehend aus �rst-child- und next-sibling-Achsen, enthält. Da für dieseKnoten allerdings noch mindestens eine Information fehlt, können diese Knotennoch nicht zum Empfänger versendet werden.Beispiel 5.5 Abbildung 5.3 zeigt schematisch eine mögliche Überlaufsituation.Die Knoten v1 bis v7 sind jeweils noch nicht komplett abgearbeitet, da dernext-sibling-Knoten und eventuell der �rst-child-Knoten noch nicht abgearbeitet



64 XML-Kompression durch Eliminierung struktureller Redundanzenwurden und daher die entsprechende ID für einen Verweis noch unbekannt ist.Die grauen Vierecke D1 bis D4 stellen in dieser Abbildung einen bereits fertigabgearbeiteten DAG dar, die Knoten innerhalb dieser Vierecke wurden bereitskomplett abgearbeitet und dem DAG hinzugefügt.v7 . . .v6D1 v5D2 v4 . . .v3D3 v2D4 v1. . . . . .
Abbildung 5.3: Zusammenhang zwischen DAG und StackTabelle 5.2 stellt entsprechend den aktuellen Stack dar.Typ ID Label First-Child Next-SiblingNS v1NS v2 D4FC v3 D3NS v4NS v5 D2FC v6 D1FC v7Tabelle 5.2: Stack zum BeispielUm nun Teile des Stacks in den DAG verdrängen zu können und somit zumEmpfänger zu senden, erhält der oberste auf dem Stack liegende Knoten, dernoch keine ID hat (v1), eine ID, so dass die clearStack-Funktion durchgeführtwerden kann. Tabelle 5.3 zeigt den Zustand danach, wobei die beiden grau hin-terlegten Zeilen nun komplett abgearbeitet wurden und aus dem Stack in denDAG verdrängt wurden.Dies wird dann mit dem nächsten obersten Stack-Element fortgeführt, dasnoch keine ID hat. Schlieÿlich verbleiben nur noch die Knoten mit Label v1, v4und v7, also die Knoten, für die das next-sibling noch unbekannt ist, im Stack.



XML-Kompression durch Eliminierung struktureller Redundanzen 65Typ ID Label First-Child Next-SiblingNS 1 v1NS 2 v2 D4 1FC 3 v3 D3 2NS v4 3NS v5 D2FC v6 D1FC v7Tabelle 5.3: Stack zum BeispielUm Teile des Stacks verdrängen zu können, erhält das oberste auf dem Stackbe�ndliche Element TE, welches noch keine ID besitzt, eine ID, und die Funk-tion clearStack wird durchgeführt, d.h., alle preceding-siblings von TE werdenvom Stack verdrängt und in den DAG eingefügt. Dies wird solange wiederholt,bis kein Element ohne ID mehr auf dem Stack liegt. Dadurch verbleiben nurnoch diejenigen Knoten auf dem Stack, für die der next-sibling noch unbekanntist, der Stack enthält also maximal x Elemente, wobei x die Tiefe des aktuellenKnotens innerhalb des XML-Datenstroms ist. Da jedoch � wie bereits oben er-wähnt � die Tiefe selbst eines unendlich langen Datenstroms beschränkt ist, istsomit auch die Gröÿe des Stacks beschränkt, daher kann mit Hilfe dieser Über-laufbehandlung das DAG-Verfahren auch auf unendliche XML-Datenströmeangewandt werden.Wenn also DAG und Stack zusammen eine vorher festgelegte Fenstergrö-ÿe erreichen, so wird � wie oben beschrieben � der Stack bereinigt, und so-wohl DAG als auch bereinigter Stack werden an den Empfänger versandt. DieStack-Knoten unterscheiden sich dadurch von den DAG-Knoten, dass sie kei-nen Eintrag für den next-sibling-Knoten enthalten. Beim Sender wird der DAGgelöscht, der Stack jedoch für die weitere Kompression weiterverwendet.Der Dekompressor auf der Empfängerseite kann die Dekompression wie inKapitel 5.1.5 beschrieben durchführen, wobei der Wurzelknoten, bei dem dieDekompression gestartet wird, das unterste Stack-Element ist. Sobald die De-kompression auf einen leeren Verweis stöÿt, wurde das Ende des aktuellenFensters erreicht. In diesem Fall kann auf Empfängerseite der DAG gelöschtwerden, und ein neues DAG- und Stack-Paket empfangen werden. Auch derStack kann auf Empfängerseite gelöscht werden, da alle im bisherigen Stackenthaltenen Elemente entweder im neuen DAG oder im neuen Stack enthaltensind. Nach Erhalt eines neuen Pakets fährt die Dekompression bei demjenigenVerweis desjenigen Elementes fort, bei dem die Dekompression beim letztenPaket beendet wurde. Hierbei ist lediglich zu beachten, dass das Element sich



66 XML-Kompression durch Eliminierung struktureller Redundanzennun statt auf dem Stack auf dem DAG be�nden kann, dies kann jedoch einfachmit Hilfe der ID ermittelt werden.Wird das Verfahren auf unendliche XML-Datenströme angewandt, so erhältman als Resultat im Allgemeinen nicht den minimalen DAG, sondern nur einenetwas weniger stark komprimierten DAG, da es nicht möglich ist, auf sehr weitentfernte Teilbäume zu verweisen. Wurde ein Teilbaum aus dem DAG ver-drängt und bereits zum Empfänger versendet, so kann auf diesen Teilbaumnicht mehr verwiesen werden, ein wiederholtes Auftreten muss erneut gespei-chert werden.5.3 Navigation entlang von �rst-child undnext-siblingEin DAG-Knoten repräsentiert im Normalfall nicht einen einzelnen Knotendes Ursprungs-Dokumentes, sondern eine Menge von Knoten des Ursprungs-Dokumentes. Um einen Knoten des Ursprungs-Dokumentes eindeutig zu identi-�zieren, wird eine Liste von Paaren von DAG-Knoten-ID sowie dem Typ (First-Child bzw. NextSibling) der eingehenden Kante in diesen Knoten benötigt.Während die Methoden zur Anfrage-Auswertung für die Succinct-Darstellunglediglich eine Position im Bitstrom zur Identi�zierung eines Knotens benöti-gen, erhalten dieselben Methoden für die DAG-Kompression einen Stack mitPaaren (ID, Knotentyp).Notation 5.1 Sei xml ein XML-Baum, SS(xml)=(ss1, . . . , ssn) der Struktur-Strom zu xml und BS(xml)=(bs1, . . . , bsm) der binäre Struktur-Strom zu xml.Dann sagen wir, ein Knoten k des XML-Baums entspricht dem binären Event
bsi = bs(i) nach De�nition 3.3 genau dann, wenn ssi+1 = ss(k) nach De�ni-tion 3.1.Notation 5.2 Sei BS=(s1, . . . , sn) ein binärer Struktur-Strom und DAG einminimaler DAG. Sei E ein Element mit entsprechendem �rstChild-Event sE ∈
BS (bzw. mit nextSibling-Event sE ∈ BS). Sei s ein Stack bestehend ausPaaren (ID, Knotentyp). Dann sagen wir E korrespondiert mit (DAG, s) genaudann, wenn decompressNode(dag.getEntry(s.top().ID), DAGEntry.FirstChild)(bzw. decompressNode(dag.getEntry(s.top().ID), DAGEntry.NextSibling)) denvollständigen binären Teilbaum BS' ⊆ BS startend mit Event sE erzeugt.Hierbei ist anzumerken, dass der Stack lediglich für die Implementierungder parent-Achse benötigt wird. Wird ein Verfahren der Anfrage-Auswertungzugrunde gelegt, das lediglich die Vorwärtsachsen benutzt, also nur auf dieatomaren Achsen �rst-child und next-sibling zurückgreift, so kann statt desStacks auch lediglich die ID des aktuellen Knotens verwendet werden.



XML-Kompression durch Eliminierung struktureller Redundanzen 675.3.1 �rst-childUm aus einem gegebenen Stack den Stack für den �rst-child-Knoten zu bilden,muss lediglich im DAG die ID fc des �rst-childs des aktuell oben auf dem Stackliegenden Knotens ermittelt werden, und das Paar (fc, DAGEntry.FirstChild)oben auf den Stack gelegt werden.Dies wird noch einmal in Algorithmus 5.4 verdeutlicht:1 public Stack g e tF i r s tCh i l d (DAG dag , Stack xmlID) {2 int f c=dag . getEntry (xmlID . top ( ) . ID) . g e tF i r s tCh i l d ( ) ;3 xmlID . push ( fc , DAGEntry . F i r s tCh i ld ) ;4 return xmlID ;5 } Algorithmus 5.4: getFirstChild-Funktion für die DAG-KompressionDer folgende Satz 5.2 zeigt die Korrektheit von Algorithms 5.4.Satz 5.2. Sei BS ein binärer Struktur-Strom und E ein Element mit �rstChild-oder nextSibling-Event sE ∈ BS. Sei dag ein DAG und s ein Stack, so dass Emit dem Tupel (dag, s) korrespondiert. Sei s':= getFirstChild(dag, s);Dann gilt: E/�rst-child korrespondiert mit dem Tupel (dag, s').Beweis. Laut De�nitionen 2.4 und 3.3 entspricht E/�rst-child einem Event
sFC ∈ S mit der Eigenschaft, dass sFC vom Typ �rst-child ist, und dass sFCim binären Struktur-Strom direkt hinter sE folgt.Nach De�nition 5.3 erhält also der DAG-Knoten dE mit E ./ dE als �rst-child-Zeiger einen Verweis auf den DAG-Knoten dFC mit E/�rst-child ./ dFC.Wegen s':=getFirstChild(dag, s) gilt somit also s'.top().ID=dFC.ID. Somitfolgt die Behauptung.5.3.2 next-siblingAnalog zur Implementierung der getFirstChild-Funktion muss zur Implemen-tierung der getNextSibling-Funktion lediglich im DAG dag die ID ns des next-siblings des aktuell oben auf dem Stack liegenden Knotens ermittelt werdenund das Paar (ns, DAGEntry.NextSibling) oben auf den Stack gelegt werden.Dies wird noch einmal in Algorithmus 5.5 verdeutlicht:



68 XML-Kompression durch Eliminierung struktureller Redundanzen1 public Stack ge tNextS ib l i ng (DAG dag , Stack xmlID) {2 int ns=dag . getEntry (xmlID . top ( ) . ID) . g e tNextS ib l i ng ( ) ;3 xmlID . push ( ns , DAGEntry . NextS ib l ing ) ;4 return xmlID ;5 } Algorithmus 5.5: getNextSibling-Funktion für die DAG-KompressionDer folgende Satz 5.3 belegt die Korrektheit von Algorithms 5.5.Satz 5.3. Sei BS ein binärer Struktur-Strom und E ein Element mit �rstChild-oder nextSibling-Event sE ∈ BS. Sei dag ein DAG und s ein Stack, so dass Emit dem Tupel (dag, s) korrespondiert. Sei s':= getNextSibling(dag, s);Dann gilt: E/next-sibling korrespondiert mit dem Tupel (dag, s').Beweis. Laut De�nitionen 2.4 und 3.3 entspricht E/�rst-child einem Event
sNS ∈ BS mit der Eigenschaft, dass sNS vom Typ next-sibling ist, und dassBS'=(sE ⊗ FC ⊗ sNS) ∈ BS, wobei FC ein � eventuell leerer � vollständigerbinärer Teilbaum startend mit einem �rst-child-Event ist.Nach De�nition 5.3 erhält also der DAG-Knoten dE mit E ./ dE nach Ab-arbeitung von FC als next-sibling-Zeiger einen Verweis auf den DAG-KnotendNS mit E/�rst-child ./ dNS. Wegen s':=getNextSibling(dag, s) gilt somit alsos'.top().ID=dNS.ID. Somit folgt die Behauptung.5.4 Unterstützung der DOM-Schnittstelle5.4.1 Die parent-AchseUm die Methode getParent zu implementieren, muss nun zum ersten Mal lesendauf den Stack zugegri�en werden. Um zum parent zu navigieren, muss zunächstzum �rst-child navigiert werden, es muss also solange zum previous-siblingnavigiert werden, bis kein weiterer previous-sibling mehr exisitiert. Über dieumgekehrte �rst-child-Kante erreichen wir schlieÿlich den parent-Knoten.Auf den Stack bezogen, entfernen wir also zunächst solange das obersteStack-Element, solange dies den Typ NextSibling beinhaltet. Das nun obersteElement ist das �rst-child. Wird auch dieses vom Stack entfernt, entspricht dasoberste Stack-Element dem gesuchten parent-Element.Dies wird noch einmal in Algorithmus 5.6 verdeutlicht:



XML-Kompression durch Eliminierung struktureller Redundanzen 691 public Stack getParent (DAG dag , Stack xmlID) {2 ( int ID , Type t ) = xmlID . pop ( ) ;3 do{4 ( ID , t ) = xmlID . pop ( ) ;5 }while ( t==DAGEntry . NextS ib l ing )6 return xmlID ;7 } Algorithmus 5.6: getParent-Funktion für die DAG-Kompression5.4.2 Einfügen und LöschenBei Update-Operationen auf dem DAG muss man beachten, dass ein DAG-Knoten nicht einen einzelnen, sondern eine Menge von Knoten des Original-Dokuments repräsentiert. Da jedoch im allgemeinen Fall nur ein einzelner Kno-ten aus dieser Menge von Knoten modi�ziert werden soll, muss zunächst einmaldieser Knoten aus der Menge von Knoten extrahiert werden. Dies geschiehtdurch Verdopplung mit Hilfe der Methode extractNode aus Algorithmus 5.7.5.4.2.1 Hilfsfunktion extractNodeDie Hilfsfunktion extractNode extrahiert einen durch einen Stack aus Paaren(ID, Knotentyp) identi�zierten XML-Knoten aus dem DAG-Knoten, der eineMenge von XML-Knoten repräsentiert. Hierzu wird für jeden Knoten die An-zahl der Zeiger, die auf ihn verweisen, benötigt. Diese kann entweder bei derKompression ermittelt werden und zusammen mit dem Komprimat übermit-telt werden oder aber nachträglich auf Empfängerseite ermittelt werden. Wirgehen davon aus, dass eine Methode getNoOfPointer zur Verfügung steht, diezu einem Knoten die Anzahl an Zeigern, die auf diesen verweisen, zurückgibt.Um den Knoten zu extrahieren, gehen wir im DAG top-down vor. Dies be-deutet, dass wir im Stack � entgegen der sonst üblichen Richtung � von untennach oben vorgehen (Zeilen 2-12). Sobald der Stack auf einen DAG-Knotenverweist, der mehr als einen Eingangszeiger hat (Zeile 4), duplizieren wir die-sen im DAG (Zeilen 5-7), ersetzen den Zeiger des DAG-Knotens, auf den dasim Stack darunterliegende Element verweist (Zeilen 8+9), und ersetzen denStack-Eintrag durch das Duplikat (Zeile 10). Dies wiederholen wir, bis wir amzu ändernden Knoten MN angekommen sind, also bis der komplette Stackdurchlaufen wurde. Schlieÿlich ist der komplette Pfad von der Wurzel zu MNeindeutig, der Knoten kann ohne Seitene�ekte geändert werden.



70 XML-Kompression durch Eliminierung struktureller Redundanzen1 public Stack extractNode (DAG dag , Stack xmlID) {2 for ( int pos=0; pos< xmlID . s i z e ( ) ; pos++){3 ( int ID , NodeType nt ) = xmlID . get ( pos ) ;4 i f ( getNoOfPointer ( ID)>1){5 DAGNode dn = DAG. get ( ID) . c l one ( ) ;6 int newID = DAG. getNewID ( ) ;7 dn . setID (newID ) ;8 i f ( nt==NodeType . F i r s tCh i ld ) xmlID . get ( pos−1) .setFC (newID) ;9 else xmlID . get ( pos−1) . setNS (newID) ;10 xmlID . s e t ( pos , dn ) ;11 }12 }13 return xmlID ;14 } Algorithmus 5.7: Hilfsfunktion extractNode für die DAG-KompressionBeispiel 5.6 Nachfolgend werde ich nun das Extrahieren eines Knotens er-läutern. Grundlage ist wieder das Beispiel aus Listing 2.3, wobei wir in diesemFall der Einfachheit halber davon ausgehen, dass die ersten beiden Personenjeweils nur die Kindknoten Name und Postfach haben. In Abbildung 5.4(a) wirdder Zustand vor dem Update dargestellt, beide Personen-Elemente verweisenauf dieselbe Kindknoten-Liste. Der zweiten Person soll ein Telefon hinzugefügtwerden, welches den next-sibling des Postfach-Knotens darstellt. Daher mussder Postfach-Knoten extrahiert werden.Der erste Knoten auf dem Pfad von der DAG-Wurzel zu dem zu modi�zieren-den Knoten, der mehr als einen Eingangszeiger besitzt, ist der Name-Knoten.Daher wird dieser verdoppelt, und die Zeiger werden entsprechend angepasst.Abbildung 5.4(b) zeigt den Zustand nach Verdopplung des Name-Knotens.Da noch nicht das oberste Stack-Element ereicht wurde, wird die Extraktionnoch ein weiteres Mal wiederholt. Der nun zu betrachtende Knoten mit mehrals einem Eingangszeiger ist der Postfach-Knoten. Auch dieser wird verdoppelt,und die Zeiger werden angepasst. Abbildung 5.4(c) zeigt den Zustand nachVerdopplung des Postfach-Knotens.Da dieser Knoten das oberste Stack-Element darstellt, ist die Extraktion die-ses Knotens abgeschlossen, die eigentliche Update-Operation, also das Einfügeneines Telefon-Knotens inklusive Attribut 'modell' kann durchgeführt werden.



XML-Kompression durch Eliminierung struktureller Redundanzen 71AdressenPerson Person . . .Name Postfach=T (a)
AdressenPerson Person . . .Name Postfach Name=T (b)

AdressenPerson Person . . .Name Postfach Name Postfach=T (c)Abbildung 5.4: Extrahieren des Postfachs der zweiten Person5.4.2.2 EinfügenAlgorithmus 5.8 fügt in einen ursprünglichen DAG old einen neuen DAG newals next-sibling eines durch den Stack node gegebenen Knotens des DAGs oldein. O.B.d.A. gehen wir davon aus, dass beide DAGs unterschiedliche Wertebe-reiche für Ihre IDs benutzen, so dass keine ID in beiden DAGs verwendet wird.Hierzu muss zunächst einmal der durch den Stack node identi�zierte Knoten �wie im vorherigen Abschnitt beschrieben � extrahiert werden (Zeile 2). Danachmuss die Wurzel des neuen DAGs new den bisherigen next-sibling nextSib desKnotens node als next-sibling erhalten (Zeilen 3+5). Der Knoten node erhältals neuen next-sibling den Wurzelknoten des neuen DAGs new (Zeile 4). DieOperation old.addAll(DAG new) (Zeile 6) kopiert alle DAG-Knoten des neuenDAGs new in den alten DAG.1 public DAG i n s e r t (DAG old , DAG new, Stack node ) {2 extractNode ( old , node ) ;3 int nextSib = old . getEntry ( node . top ( ) . ID) .g e tNextS ib l i ng ( ) ;4 o ld . getEntry ( node . top ( ) . ID) . s e tNextS ib l i ng (new .getRoot ( ) ) ;5 new . getRoot ( ) . s e tNextS ib l i n g ( nextSib ) ;6 o ld . addAll (new) ;7 return o ld ;8 } Algorithmus 5.8: Einfügen für die DAG-KompressionEine entsprechende Operation für das Einfügen eines DAGs als �rst-childeines Knotens kann analog durchgeführt werden, indem in Zeile (3) die Funk-



72 XML-Kompression durch Eliminierung struktureller Redundanzention getFirstChild() und in Zeile (4) die Funktion setFirstChild() aufgerufenwird.Beispiel 5.7 Betrachten wir wieder das im vorherigen Abschnitt begonneneBeispiel. Nachdem der Knoten extrahiert wurde, soll nun ein DAG bestehendaus Telefon mit Attribut modell und den entsprechenden Text- und Attributwer-ten eingefügt werden. Abbildung 5.5 zeigt den Zustand des DAGs (beschränktauf die modi�zierte Person und die bisherige Person 3 aus dem Beispiel) nachdem Einfügen. Wie wir sehen können, enthält nun der DAG allerdings eineRedundanz, da durch das Einfügen eine Gleichheit der beiden Teilbäume ent-standen ist. Adressen. . . PersonName Postfach Telefon@modell
PersonName Postfach Telefon@modell=TAbbildung 5.5: Einfügen eines neuen TeilbaumsHätten wir beim Einfügen des neuen DAGs in den alten DAG die MethodeDAG.insert benutzt, so dass zumindest der neu eingefügte Teilbaum als bereitsvorhanden erkannt worden wäre, hätte dies allerdings zu einem Vorwärtsver-weis innerhalb des DAGs geführt, da der sich wiederholende Teilbaum im altenDAG erst nach der Wiederholung durch den neu eingefügten DAG steht. Sol-che Vorwärtsverweise sind jedoch nicht erwünscht, da dann beispielsweise keinDAG-Event-Strom aus dem DAG generiert werden könnte.Auch wäre nicht festgestellt worden, dass durch das Neueinfügen ein bereitsvorhandener Teilbaum (startend beim Knoten Name) einem anderen bereitsvorhandenen Teilbaum gleich geworden ist.Soll diese Redundanz dennoch vermieden werden, müssten mindestens alleKnoten gleichen Labels auf Redundanzen untersucht werden, was ein Wieder-einfügen vieler DAG-Elemente in den DAG erfordern könnte, und somit einenerheblichen Mehraufwand zur Folge hätte.



XML-Kompression durch Eliminierung struktureller Redundanzen 73Wir erhalten an dieser Stelle also einen Trade-O� zwischen geringerer Kom-pressionsstärke, aufgrund von Redundanzen durch Update-Operationen underhöhtem Rechenaufwand bei Update-Operationen.Es bietet sich allerdings ein Kompromiss an: Update-Operationen werdendurchgeführt, ohne eine explizite Redundanz-Vermeidung. Nach einer vorherfestgelegten Anzahl x an Update-Operationen wird ein �Wartungsschritt� durch-geführt, also alle DAG-Knoten werden erneut bottom-up in den DAG einge-fügt, so dass nach x Update-Operationen wieder der minimale DAG hergestelltwird.5.4.2.3 LöschenAlgorithmus 5.9 löscht aus dem DAG dag einen durch den Stack node ge-gebenen Knoten vNode inklusive des Teilbaums, dessen Wurzel er ist. Diesgeschieht, indem er den Vorgänger-Knoten von vNode aus dem DAG extra-hiert und anschlieÿend den Verweis zum zu löschenden Knoten aus dem DAGentfernt. Zunächst einmal wird ein Stack für den Vorgänger-Knoten erzeugt.Dazu wird das oberste Element aus dem Stack entfernt � der Stack node reprä-sentiert jetzt nicht mehr den zu löschenden Knoten, sondern dessen Vorgänger-Knoten (Zeile 2). Hierbei werden ID und Knotentyp des zu löschenden Stack-Elements vor der Entfernung dieses Elements gespeichert. Anschlieÿend wirdder Vorgänger-Knoten aus dem Stack extrahiert (Zeile 3). Ist der zu löschendeKnoten vom Typ next-sibling, so muss der next-sibling-Verweis des previous-siblings auf den next-sibling des zu löschenden Knotens gesetzt werden (Zeilen4-7). Ist der zu löschende Knoten vom Typ �rst-child, so muss der �rst-child-Verweis des parents auf den next-sibling des zu löschenden Knotens gesetztwerden (Zeilen 8-11).1 public DAG remove (DAG dag , Stack node ) {2 ( int ID , Type t ) = node . pop ( ) ;3 extractNode ( dag , node ) ;4 i f ( t==DAGEntry . NextS ib l ing ) {5 dag . getEntry ( node . top ( ) . ID) . s e tNextS ib l i n g (6 dag . getEntry ( ID) . g e tNextS ib l i ng ) ;7 }8 else {9 dag . getEntry ( node . top ( ) . ID) . s e tF i r s tCh i l d (10 dag . getEntry ( ID) . g e tNextS ib l i ng ) ;11 }12 } Algorithmus 5.9: Löschen für die DAG-Kompression



74 XML-Kompression durch Eliminierung struktureller RedundanzenDie Knoten verbleiben in diesem Fall im DAG. Falls der gelöschte Verweisder einzige Verweis war (es sich bei dem gelöschten Teilbaum also nicht umeinen mehrfach verwendeten Teilbaum gehandelt hat), so existiert kein Verweismehr auf diesen Knoten. Daher emp�ehlt es sich auch beim Löschen, nebender im vorherigen Kapitel bereits erwähnten Redundanz durch Updates, vonZeit zu Zeit einen �Wartungsschritt� inklusive Neueinfügen aller DAG-Knotendurchzuführen, um nicht erreichbare Knoten zu löschen.5.5 Zusammenfassung: Eigenschaften derDAG-Kompression5.5.1 KompressionsstärkeIm Gegensatz zur Succinct-Darstellung kann der genaue Speicherbedarf desKomprimats nicht angegeben werden, da dieser sehr stark von der vorhan-denen Redundanz innerhalb des Dokumentes abhängt. Ausgehend vom mini-malen DAG kann jedoch angegeben werden, wieviel Speicherplatz für jedenDAG-Knoten benötigt wird, die Anzahl DAG-Knoten kann aber nicht in Ab-hängigkeit der Dokument-Gröÿe angegeben werden.
• Für die Adresse eines DAG-Knotens sowie für die Verweise auf �rst-childund next-sibling werden je ein Integer-Wert, insgesamt also 3 Integer-Werte benötigt.
• Für das Label eines DAG-Knotens wird ein String benötigt. Da auchhier noch Redundanzen auftreten, die vermeidbar sind, könnte durch denEinsatz einer Symboltabelle hier noch eine stärkere Kompression erreichtwerden.5.5.2 Weitere EigenschaftenWie im Verlauf dieses Kapitels gezeigt, hat die DAG-Kompression die folgendenEigenschaften:
• Streamingfähig: Sie ist mit Hilfe der Überlaufkodierung streamingfähigund kann auf unendliche XML-Datenströme angewandt werden, jedochkann bei unendlichen Datenströmen nicht mehr die Kompressionsstärkedes minimalen DAGs erreicht werden, sondern lediglich eine leicht ver-ringerte Kompressionsstärke.
• Auswertung von Pfad-Anfragen: Pfad-Anfragen, die mit Hilfe der ato-maren Achsen �rst-child und next-sibling ausgedrückt werden können,können direkt auf dem Komprimat ausgewertet werden. Hierbei kannsehr e�zient direkt zum next-sibling navigiert werden.



XML-Kompression durch Eliminierung struktureller Redundanzen 75
• Updates: Updates können auf dem Komprimat durchgeführt werden, esbesteht aber ein Trade-O�: Entweder führen Updates zu einem Verlustder Kompressionsstärke, oder sie erfordern einen Berechnungs-Mehrauf-wand, der evtl. das Neueinfügen vieler Knoten bedeuten könnte. Dennochkönnen optimale Updates � also Updates mit Erreichen der optimalenKompressionsstärke � e�zienter durchgeführt werden als die Kombinati-on aus Dekompression, Update auf XML und Kompression.
• DOM: Alle Achsen der DOM-Schnittstelle werden voll unterstützt.



6 XML-Kompression durchEliminierung externerRedundanzenDas nächste vorgestellte Verfahren � DTD-Subtraktion � entfernt Informatio-nen aus dem Struktur-Anteil eines XML-Dokumentes, die aus der vorhandenenDTD geschlossen werden können.Beispiel 6.1 Betrachten wir zur Einführung dieses Verfahrens die DTD ausListing 2.4 bzw. insbesondere die Elementtyp-Deklaration für das Element 'Per-son'. Betrachten wir parallel dazu die zweite Person aus dem XML-Dokumentin Listing 2.3. Wie wir sehen, schreibt die DTD den ersten Kindknoten � denKnoten 'Name' � fest vor, er muss also � um das Dokument in kompaktererForm darzustellen � nicht gespeichert werden. Als nächstes gibt die Elementtyp-Deklaration durch den Kleene-Operator (*) vor, dass eine Wiederholung beste-hend aus entweder 'Strasse' und 'Ort' oder aus 'Postfach' optional gefolgt vondem Element 'Telefon' folgen wird. Hier genügt es, die tatsächliche Anzahl vonWiederholungen � in diesem Fall 2 � zu speichern. Ebenso muss für die bi-näre Entscheidung, die durch den Oder-Operator (|) dargestellt wird, also, ob'Strasse' und 'Ort' oder ob 'Postfach' folgt, nur die gewählte Alternative ge-speichert werden. Diese binäre Entscheidung kann durch ein Bit im Komprimatrepräsentiert werden. Auch der Option-Operator(?) stellt eine binäre Entschei-dung dar, nämlich, ob ein 'Telefon'-Element folgt oder nicht, und kann somitdurch ein Bit repräsentiert werden. Insgesamt reicht also die Folge int(2), 0, 0,1, 0 aus, um mit Hilfe der DTD die Kindknoten des zweiten Person-Elementszu repräsentieren. Hierbei steht die int(2) für 2 Wiederholungen, und die 4 Bits(0, 0, 1, 0) stehen für die 4 binären Entscheidungen (zweimal ein Oder-Operatorgefolgt von einem Option-Operator).Wie an diesem Beispiel zu sehen ist, enthält das XML-Dokument Informa-tionen, die bereits durch die DTD bekannt sind. Haben wir also Kenntnis derDTD, handelt es sich bei diesen Informationen um redundante Informationen,die entfernt werden können, um eine kompaktere Repräsentation des XML-76



XML-Kompression durch Eliminierung externer Redundanzen 77Dokumentes zu erhalten. Bereits bei diesem kleinen Beispiel enthält die kom-primierte Repräsentation 1 Integer-Wert + 4 Bits, während nur die 4 Element-Namen (Name, Strasse, Ort und Postfach) bereits 22 Zeichen benötigen.6.1 XML-Kompression durch DTD-SubtraktionGehen wir davon aus, dass Attribute als besondere Elemente gespeichert wer-den (mit '@' als Markierungszeichen), ist die DTD eine Menge von Element-Deklarationen. Jede Element-Deklaration enthält den Namen des zu de�nie-renden Elementes � die so genannte linke Seite der Element-Deklaration �und einen regulären Ausdruck, der die Liste der Kindknoten de�niert � die sogenannte rechte Seite der Element-Deklaration.De�nition 6.1 (regulärer Ausdruck). Sei Σ die Menge aller Label. Dann gilt:1. Für a ∈ Σ ist a ein regulärer Ausdruck.2. EMPTY ist eine regulärer Ausdruck.3. PCDATA ist eine regulärer Ausdruck.4. ∅ ist ein regulärer Ausdruck.5. R1, R2 ist ein regulärer Ausdruck, falls R1 und R2 reguläre Ausdrückesind.6. R1|R2 ist ein regulärer Ausdruck, falls R1 und R2 reguläre Ausdrückesind.7. R∗ ist ein regulärer Ausdruck, falls R ein regulärer Ausdruck ist.8. Nur die durch 1.-7. gebildeten Ausdrücke sind reguläre Ausdrücke.Zur Vereinfachung der Darstellung wandeln wir innerhalb der rechten Seiteder DTD jeden Teilausdruck der Form 'x+' in die Sequenz 'x,x*' um, wobeix wiederum ein regulärer Ausdruck ist. Weiterhin wandeln wir innerhalb derrechten Seite der DTD jeden Teilausdruck der Form 'x?' in den Ausdruck'EMPTY|x' um, wobei x wiederum ein regulärer Ausdruck ist. Somit enthaltendie rechten Seiten nur noch die Operatoren ',', '|' und '*'.De�nition 6.2. Sei D eine DTD und sei ED ∈ D eine Elementtyp-Deklarationder Form <!ELEMENT name(ED) regExp(ED)>. Sei sb(regExp(ED)) einSyntaxbaum zum regulären Ausdruck regExp(ED) mit Knotenmengesb(regExp(ED)).V. Dann bezeichne SB=(∪ED∈D sb(regExp(ED)).V) dieMenge aller Syntaxknoten zu D.



78 XML-Kompression durch Eliminierung externer RedundanzenDie dem regulären Ausdruck einer rechten Seite einer DTD-Regel entspre-chenden Syntaxbäume enthalten 6 verschiedene Knotentypen:
• EMPTY : Dieser Knoten entspricht dem Schlüsselwort EMPTY in derDTD. Der Knoten hat im Syntaxbaum keine Kindknoten.
• PCDATA: Dieser Knoten entspricht dem Schlüsselwort PCDATA in derDTD. Der Knoten hat im Syntaxbaum keine Kindknoten.
• elem: Dieser Knoten entspricht einem Nicht-Terminal in der DTD, al-so einem Element-Label. Der Knoten hat im Syntaxbaum keine Kind-knoten. Der Knoten erhält als Parameter 'name' einen Verweis auf denWurzelknoten des Syntaxbaums der zum Element-Label gehörenden De-�nition und als Parameter 'label' den Bezeichner des Nicht-Terminals.
• seq : Dieser Knoten entspricht dem rechts-assoziativen ','-Operator in derDTD. Er hat im Syntaxbaum als linken Kindknoten den ersten Parame-ter und als rechten Kindknoten den zweiten Parameter dieses Operators.
• choice: Dieser Knoten entspricht dem rechts-assoziativen '|'-Operator inder DTD. Er hat im Syntaxbaum als linken Kindknoten den ersten Pa-rameter und als rechten Kindknoten den zweiten Parameter dieses Ope-rators.
• kleene: Dieser Knoten entspricht dem '*'-Operator in der DTD. Er hatim Syntaxbaum als linken Kindknoten den Parameter dieses Operatorsund hat keinen rechten Kindknoten.Im Nachfolgenden liefert die Funktion x.left für einen Knoten x im Syntax-baum den linken Kindknoten und die Funktion x.right den rechten Kindknoten.Beispiel 6.2 Betrachten wir die folgende DTD-Regel aus Beispiel 2.4:<!ELEMENT Adresse (Name, ((Postfach | (Strasse, Ort)), Telefon?)*)>Zunächst einmal wird der ?-Operator ersetzt, so dass wir als rechte Seite derDTD-Regel den folgenden regulären Ausdruck erhalten(Name, ((Postfach | (Strasse, Ort)), (EMPTY | Telefon) )*)Der entsprechende Syntaxbaum hierzu wird in Abbildung 6.1 dargestellt. Indieser Abbildung hat jeder Knoten zusätzlich eine ID (ID1, . . . , ID12), dielediglich für Referenzen in den Erläuterungen benötigt werden.Für XML gilt die Eigenschaft, dass alle Inhaltsmodelle für XML � und so-mit auch eine DTD � 1-eindeutig sind, d.h. es genügt, das nächste Event imStruktur-Strom anzuschauen, um z.B. für einen Syntaxknoten vom Typ choiceentscheiden zu können, welche Alternative gewählt wurde. Die folgende Funkti-on zur Berechnung der Menge der Start-Terminal-Symbole gibt für jeden Syn-taxknoten diejenigen Element-Label an, die als erstes Element erzeugt werdenkönnten.
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CHOICEID10EMPTYID11 ELEM(Telefon)ID12

Abbildung 6.1: Schematische Darstellung eines SyntaxbaumesDe�nition 6.3 (STS). Sei D eine DTD und sei Σ die Menge aller in D de�-nierten Element-Label. Sei SK die Menge aller Syntaxknoten zu D. Dann istdie Funktion STS: SK → P({EMPTY,PCDATA} ∪ Σ) de�niert durch
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{x.label}, falls x vom Typ elem
{PCDATA}, falls x vom Typ PCDATA
{EMPTY }, falls x vom Typ EMPTY
STS(x.left), falls x vom Typ seq und

¬ (EMPTY ∈ STS(x.left))
STS(x.left) ∪ STS(x.right), falls x vom Typ seq und

EMPTY ∈ STS(x.left)
STS(x.left) ∪ STS(x.right), falls x vom Typ choice
{EMPTY } ∪ STS(x.left), falls x vom Typ kleeneDie Kompressions- und Dekompressions-Operationen arbeiten auf zwei Lis-ten: dem Struktur-Strom einerseits und dem KST-Strom � dem Komprimat� andererseits. Beide Listen verfügen über die Operationen read, write, skip,getPos und setPos, die wie folgt mit Hilfe eines Arrays implementiert werdenkönnen.1 public c lass2 L i s t { Object [ ] l i s t ;3 int p = 0 ; // a k t u e l l e Pos i t i on4



80 XML-Kompression durch Eliminierung externer Redundanzen5 public void wr i t e ( Object o ) {6 l i s t [ p]=o ;7 p = p+1;8 }910 public void wr i t e ( Object o , int pos ) {11 l i s t [ pos ]=o ;12 }1314 public Object read ( ) {15 Object r e t = l i s t [ p ] ;16 p = p+1;17 return r e t ;18 }1920 public void sk ip ( Object o ) {21 i f ( o==l i s t [ p ] ) p = p+1;22 else ERROR("Unerwartetes Objekt gefunden" ) ;23 }2425 public int getPos ( ) {26 return p ;27 }2829 public void setPos ( int pos ) {30 p=pos ;31 }32 } Algorithmus 6.1: Die Klasse ListDie Operation write(Object o) schreibt das übergebene Object o an dieaktuelle Position p der Liste und setzt die Position p um 1 weiter. Hierbeiist zu beachten, dass bereits an dieser Stelle stehende Werte überschriebenwerden.Die Operation write(Object o, int pos) schreibt das übergebene Object oan die übergebene Position pos. Die aktuelle Position p der Liste wird hierbeinicht verändert. Werte, die evtl. an Position pos stehen, werden überschrieben.Die Operation read() gibt das an Position p der Liste stehende Object zurückund setzt die Position p um 1 weiter.



XML-Kompression durch Eliminierung externer Redundanzen 81Die Operation skip(Object o) setzt die Position p der Liste um 1 weiter,falls das an aktueller Position p der Liste stehende Object identisch mit demübergebenen Object ist, andernfalls wird ein Fehler erzeugt.Die Operation getPos() liefert die aktuelle Position p der Liste zurück unddie Operation setPos(int pos) setzt die aktuelle Position p der Liste auf denübergebenen Wert pos.Da im Folgenden Operationen zur Kompression von XML-Dokumenten de-�niert werden, die aus einer Folge von Listen-Operationen auf dem Struktur-Strom einerseits und dem Komprimat andererseits bestehen, bezeichnen wirdie Operationen write(Object o), write(Object o, int pos), read(), skip(Objecto), getPos() und setPos(int pos) als elementare Listen-Operationen.Notation 6.1 Sei list eine Liste mit den oben de�nierten elementaren Listen-Operationen write(Object o), write(Object o, int pos), read(), skip(Object o),getPos() und setPos(int pos) und op eine Operation auf list, die aus einerFolge dieser elementaren Listen-Operation besteht. Sei p die Position der Li-ste list vor Ausführung der Operation op und p' die Position der Liste nachAusführung von op. Wir sagen OUT ist die Ausgabe von op in list, wenn opkeine der Operationen list.skip(Object o) und list.read() enthält, und wenn giltOUT=(list[p], . . . , list[p']). Analog sagen wir IN ist die Eingabe von op in list,wenn op keine der Operationen list.write(Object o) undlist.write(Object o, int pos) enthält, und wenn gilt IN=(list[p], . . . , list[p']).Zwei Operationen sind Umkehroperationen, wenn die eine Operation schreibt,was die andere liest und umgekehrt, also wenn die Rolle von Ein- und Ausgabevertauscht sind, und somit das Ergebnis der Hintereinanderausführung gleichder ursprünglichen Eingabe ist.Notation 6.2 Seien op1 und op2 zwei Operationen. Wir sagen, op1 ist eineUmkehroperation von op2, genau dann, wenn die Eingabe von op1 gleich derAusgabe von op2 und wenn die Ausgabe von op1 gleich der Eingabe von op2ist.Die elementaren Listen-Operationen write(Object o) und read() sind Um-kehroperationen zueinander, da write(Object o) gestartet an Position p genaudas schreibt, was read() gestartet an Position p liest, also die Ausgabe vonwrite(Object o) der Eingabe von read() entspricht. Da write(Object o) kei-ne Eingabe enthält und read keine Ausgabe, gelten beide Bedingungen, dieOperationen sind Umkehroperationen zueinander.Entsprechend sind auch die elementaren Listen-Operationen write(Object o)und skip(Object o) Umkehroperationen zueinander.Nun werde ich zunächst die allgemeine Kompressions- und Dekompressions-Operation de�nieren, die eine Art Weiche für die eigentlichen Kompressions-und Dekompressions-Operationen für die verschiedenen Syntaxknoten-Typen



82 XML-Kompression durch Eliminierung externer Redundanzendarstellt. Nachfolgend werde ich für jeden Syntaxknoten-Typ die Grundideeder Kompression, sowie die Operationen comp und decomp de�nieren.Schlieÿlich werde ich zeigen, dass comp und decomp Umkehroperationen zu-einander darstellen, da die eine schreibt, was die andere liest, und umgekehrt.Für die nachfolgenden Operationen comp und decomp bedeutet dies insbeson-dere, dass die Operation decomp aus dem Komprimat KST die ursprünglichvon der Operation comp gelesene Teilsequenz des Struktur-Stroms S rekon-struiert.De�nition 6.4 (comp, decomp). Sei S ein Struktur-Strom und KST einStrom aus Integer-Werten, so sind die Operationen comp(Syntaxknoten n) unddecomp(Syntaxknoten n) wie folgt de�niert.1 L i s t S ;2 L i s t KST;34 public void comp( Syntaxknoten n)5 {6 case (n i s t vom Typ)7 {8 EMPTY: compEMPTY( ) ;9 PCDATA: compPCDATA( ) ;10 elem : compELEM(n) ;11 seq : compSEQ(n) ;12 cho i c e : compCHOICE(n) ;13 k l e ene : compKLEENE(n) ;14 }15 }16 public void decomp ( Syntaxknoten n)17 {18 case (n i s t vom Typ)19 {20 EMPTY: decompEMPTY( ) ;21 PCDATA: decompPCDATA( ) ;22 elem : decompELEM(n) ;23 seq : decompSEQ (n) ;24 cho i c e : decompCHOICE(n) ;25 k l e ene : decompKLEENE(n) ;26 }27 } Algorithmus 6.2: Globale Kompressions- und Dekompressions-Operation
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6.1.1 EMPTYEinem Syntaxknoten vom Typ EMPTY entspricht die leere Sequenz im Struk-tur-Strom. Daher liest die Operation comp weder etwas aus dem Struktur-Strom, noch schreibt sie etwas in das Komprimat.De�nition 6.5 (compEMPTY, decompEMPTY). Sei S ein Struktur-Strom,und KST ein Strom aus Integern, so sind die OperationencompEMPTY(Syntaxknoten n) und decompEMPTY(Syntaxknoten n) wie folgtde�niert.1 L i s t S ;2 L i s t KST;34 public void compEMPTY( )5 {}6 public void decompEMPTY( )7 {} Algorithmus 6.3: Kompression und Dekompression für EMPTYLemma 6.1. decompEMPTY(Syntaxknoten n) ist die Umkehroperation zucompEMPTY(Syntaxknoten n).Beweis. Die Behauptung folgt o�ensichtlich, da bei beiden Operationen wedereine Eingabe noch eine Ausgabe erfolgt.6.1.2 PCDATAEinem Syntaxknoten vom Typ PCDATA entspricht eine Teilfolge <=T>,</=T> im Struktur-Strom. Da der PCDATA-Knoten deterministisch ist, wer-den das startElement- und das endElement-Event aus dem Struktur-Stromgelesen, es muss jedoch nichts in das Komprimat geschrieben werden.De�nition 6.6 (compPCDATA, decompPCDATA). Sei S ein Struktur-Strom,und KST ein Strom aus Integern, so sind die OperationencompPCDATA(Syntaxknoten n) und decompPCDATA(Syntaxknoten n) wiefolgt de�niert.



84 XML-Kompression durch Eliminierung externer Redundanzen1 L i s t S ;2 L i s t KST;34 public void compPCDATA( )5 {6 S . sk ip ( '<=T>' ) ;7 S . sk ip ( '</=T>' ) ;8 }9 public void decompPCDATA( )10 {11 S . wr i t e ( '<=T>' ) ;12 S . wr i t e ( '</=T>' ) ;13 } Algorithmus 6.4: Kompression und Dekompression für PCDATALemma 6.2. decompPCDATA(Syntaxknoten n) ist die Umkehroperation zucompPCDATA(Syntaxknoten n).Beweis. Bei einem validen Dokument überspringt die OperationcompPCDATA(Syntaxknoten n) die Folge '<=T></=T>' im Struktur-Stromund schreibt nichts in das Komprimat. Entsprechend liest die Operation de-compPCDATA(Syntaxknoten n) nichts aus dem Komprimat und schreibt dieFolge '<=T> </=T>' in den Struktur-Strom. Also istdecompPCDATA(Syntaxknoten n) die Umkehroperation zucompPCDATA(Syntaxknoten n).6.1.3 elemEin Syntaxknoten vom Typ elem mit Parameter label='a' entspricht einemKnoten n mit Label 'a' im Struktur-Strom S, also einer Teilfolge <a>S'</a>,wobei S' eine Teilfolge von S ist. Da der elem-Knoten deterministisch durchdie DTD vorgegeben ist, werden das startElement- und das endElement-Eventaus dem Struktur-Strom gelesen, es muss jedoch nichts in das Komprimatgeschrieben werden.Anschlieÿend muss die Kompression des Teilstroms S' gestartet werden, indem die comp-Funktion für den Syntaxbaum der der Elementdeklaration mitNamen 'a' entspricht angestoÿen wird. Dies geschieht im Folgenden durch denAufruf der Mothode comp(n.name) in Zeile 8 im nachfolgenden Algorithmus.



XML-Kompression durch Eliminierung externer Redundanzen 85De�nition 6.7 (compELEM, decompELEM). Sei S ein Struktur-Strom undKST ein Strom aus Integern, so sind die OperationencompELEM(Syntaxknoten n) und decompELEM(Syntaxknoten n) wie folgt de-�niert.1 L i s t S ;2 L i s t KST;34 public void compELEM( Syntaxknoten n)5 {6 S . sk ip ( '< '+n . label+'> ' ) ;7 //Komprimiere Teilbaum unte rha l b d i e s e s Elements8 comp(n . name ) ;9 S . sk ip ( '</ '+n . label+'> ' ) ;10 }11 public void decompELEM( Syntaxknoten n)12 {13 S . wr i t e ( '< '+n . label+'> ' ) ;14 //Dekomprimiere Teilbaum unte rha l b d i e s e s Elements15 decomp (n . name) ;16 S . wr i t e ( '</ '+n . label+'> ' ) ;17 } Algorithmus 6.5: Kompression undDekompression für ELEMLemma 6.3. Sei decomp(Syntaxknoten n) die Umkehroperation zucomp(Syntaxknoten n). Dann ist decompELEM(Syntaxknoten n) die Dekom-pression zu compELEM(Syntaxknoten n).Beweis. Sei lab:=n.label. Die Operation compELEM(Syntaxknoten n) über-springt zunächst das Event <lab>, führt dann die Operation comp(n.name)aus und überspringt dann </lab>. Die Eingabe besteht aus <lab>, gefolgtvon der Eingabe von comp(n.name), gefolgt von </lab>, die Ausgabe be-steht aus der Ausgabe von comp(n.name). Entsprechend besteht die Ausga-be der Operation decompELEM(Syntaxknoten n) aus <lab>, gefolgt von derAusgabe von decomp(n.name), gefolgt von </lab>, die Eingabe besteht ausder Eingabe von decomp(n.name). Unter der Annahme, dass comp(n.name)und decomp(n.name) Umkehroperationen sind, dass also die Ausgabe voncomp(n.name) der Eingabe von decomp(n.name) entspricht und umgekehrt,folgt auch, dass compELEM(Syntaxknoten n) und decompELEM(Syntaxknotenn) zueinander Umkehroperationen sind.



86 XML-Kompression durch Eliminierung externer Redundanzen6.1.4 seqEin Syntaxknoten vom Typ seq entspricht einer Folge zweier Teilfolgen imStruktur-Strom. Da der seq-Knoten deterministisch ist, muss nichts gelesenwerden und nichts in das Komprimat geschrieben werden, es wird lediglich dieKompression der beiden Teilfolgen ausgeführt.De�nition 6.8 (compSEQ, decompSEQ). Sei S ein Struktur-Strom und KSTein Strom aus Integern, so sind die Operationen compSEQ(Syntaxknoten n)und decompSEQ(Syntaxknoten n) wie folgt de�niert.1 L i s t S ;2 L i s t KST;34 public void compSEQ( Syntaxknoten n)5 {6 comp(n . l e f t ) ; //Komprimiere l i n k e Te i l f o l g e7 comp(n . r i gh t ) ; //Komprimiere rech t e T e i l f o l g e8 }9 public void decompSEQ ( Syntaxknoten n)10 {11 decomp (n . l e f t ) ; //Dekomprimiere l i n k e Te i l f o l g e12 decomp (n . r i gh t ) ; //Dekomprimiere rech t e T e i l f o l g e13 } Algorithmus 6.6: Kompression undDekompression für SEQLemma 6.4. Sei decomp(Syntaxknoten n) die Umkehroperation zucomp(Syntaxknoten n). Dann ist decompSEQ(Syntaxknoten n) die Umkehr-operation zu compSEQ(Syntaxknoten n).Beweis. Die Eingabe der Operation compSEQ(Syntaxknoten n) besteht auscomp(n.left), gefolgt von der Eingabe von comp(n.right). Entsprechend be-steht die Ausgabe der Operation compSEQ(Syntaxknoten n) aus der Ausgabevon comp(n.left), gefolgt von der Ausgabe von comp(n.right). Analog bestehtdie Eingabe der Operation decompSEQ(Syntaxknoten n) aus decomp(n.left),gefolgt von der Eingabe von decomp(n.right), und die Ausgabe der OperationdecompSEQ(Syntaxknoten n) besteht aus der Ausgabe von decomp(n.left), ge-folgt von der Ausgabe von decomp(n.right). Unter der Annahme, dass comp(Syntaxknoten n) und decomp(Syntaxknoten n) Umkehroperationen sind, dassalso die Ausgabe von comp(Syntaxknoten n) der Eingabe von decomp(Syn-taxknoten n) entspricht und umgekehrt, folgt, dass compSEQ(Syntaxknoten n)und decompSEQ(Syntaxknoten n) zueinander Umkehroperationen sind.



XML-Kompression durch Eliminierung externer Redundanzen 876.1.5 choiceEin Syntaxknoten vom Typ choice entspricht einer Teilfolge im Struktur-Strom,wobei der Teilbaum entweder dem linken Kindknoten des choice-Knotens oderdem rechten Kindknoten des choice-Knotens entspricht. Die Kompression ko-diert die gewählte Alternative binär und führt anschlieÿend die Kompressionfür den entsprechenden Syntaxknoten aus.De�nition 6.9 (compCHOICE, decompCHOICE). Sei S ein Struktur-Strom,und KST ein Strom aus Integern, so sind die OperationencompCHOICE(Syntaxknoten n) und decompCHOICE(Syntaxknoten n) wie folgtde�niert.1 L i s t KST;23 public void compCHOICE( Syntaxknoten n)4 {5 //Lese nächs t e s Event , ohne den Po s i t i o n s z e i g e r zuändern6 int p = S . getPos ( ) ;7 Event e = S . read ( ) ;8 S . setPos (p ) ;9 i f ( e in STS(n) ) {// A l t e rna t i v e 010 KST. wr i t e (0 ) ;11 comp(n . l e f t ) ;12 } else { // A l t e rna t i v e 113 KST. wr i t e (1 ) ;14 comp(n . r i gh t ) ;15 }16 }17 public void decompCHOICE( Syntaxknoten n)18 {19 x = KST. read ( ) ;20 i f ( x==0) decomp (n . l e f t ) ;21 else decomp (n . r i gh t ) ;2223 } Algorithmus 6.7: Kompression und Dekompressionfür CHOICE



88 XML-Kompression durch Eliminierung externer RedundanzenLemma 6.5. Sei decomp(Syntaxknoten n) die Umkehroperation zucomp(Syntaxknoten n). Dann ist decompCHOICE(Syntaxknoten n) die Um-kehroperation zu compCHOICE(Syntaxknoten n).Beweis. Alternative 0 (Das folgende Event im Struktur-Strom entspricht demlinken Teilbaum des Syntaxknotens n): Die Ausgabe voncompCHOICE(Syntaxknoten n) besteht aus 0, gefolgt von der Ausgabe voncomp(n.left). Da der Positionszeiger der Liste S nicht verändert wurde, be-steht die Eingabe von compCHOICE(Syntaxknoten n) aus der Eingabe voncomp(n.left). Entsprechend besteht die Eingabe vondecompCHOICE(Syntaxknoten n) aus 0, gefolgt von der Eingabe vondecomp(n.left), die Ausgabe besteht aus der Ausgabe von decomp(n.left).Alternative 1 (Das folgende Event im Struktur-Strom entspricht dem rechtenTeilbaum des Syntaxknotens n): Die Ausgabe von compCHOICE(Syntaxknotenn) besteht aus 1, gefolgt von der Ausgabe von comp(n.right). Da der Positions-zeiger der Liste S nicht verändert wurde, besteht die Eingabe voncompCHOICE(Syntaxknoten n) aus der Eingabe von comp(n.right). Entspre-chend besteht die Eingabe von decompCHOICE(Syntaxknoten n) aus 1, gefolgtvon der Eingabe von decomp(n.right), die Ausgabe besteht aus der Ausgabevon decomp(n.right).In beiden Fällen ist die Eingabe von compCHOICE(Syntaxknoten n) gleichder Ausgabe von decompCHOICE(Syntaxknoten n) und umgekehrt, also istdecompCHOICE(Syntaxknoten n) die Umkehroperation zucompCHOICE(Syntaxknoten n).6.1.6 kleeneEin Syntaxknoten vom Typ kleene entspricht einer Folge von x Teilfolgen imStruktur-Strom, wobei jede der Teilfolgen dem linken Kindknoten des kleene-Knotens entspricht. In diesem Fall wird die Anzahl x an Wiederholungen indas Komprimat geschrieben.De�nition 6.10 (compKLEENE, decompKLEENE). Sei S ein Struktur-Strom,und KST ein Strom aus Integern, so sind die OperationencompKLEENE(Syntaxknoten n) und decompKLEENE(Syntaxknoten n) wiefolgt de�niert.1 L i s t KST;23 public void compKLEENE( Syntaxknoten n)4 {



XML-Kompression durch Eliminierung externer Redundanzen 895 //Lese nächs t e s Event , ohne den Po s i t i o n s z e i g e r zuändern6 int p = S . getPos ( ) ;7 Event e = S . read ( ) ;8 S . setPos (p ) ;9 int pos = KST. getPos ( ) ; //Merke a k t u e l l e KST−Pos i t i on10 KST. wr i t e (0 ) ; // Schre i b e P l a t z h a l t e r an a k t u e l l ePos i t i on11 int i = 0 ;12 while ( e in STS(n) ) {13 i = i + 1 ;14 comp(n . l e f t ) ;15 p = S . getPos ( ) ;16 e = S . read ( ) ;17 S . setPos (p ) ;18 }19 // Schre i b e Anzahl i an gemerkte Pos i t i on pos20 KST. wr i t e ( i , pos ) ;21 }22 public void decompKLEENE( Syntaxknoten n)23 {24 int i = kst . read ( ) ;25 for ( int x = 0 ; x<i ; x++)26 decomp (n . l e f t ( ) ) ;27 } Algorithmus 6.8: Kompression und Dekompressionfür KLEENELemma 6.6. Sei decomp(Syntaxknoten n) die Umkehroperation zucomp(Syntaxknoten n). Dann ist decompKLEENE(Syntaxknoten n) die Um-kehroperation zu compKLEENE(Syntaxknoten n).Beweis. Die Ausgabe von compKLEENE(Syntaxknoten n) besteht aus der An-zahl i der durch den Kleene-Operator erzeugten Teilfolgen gefolgt von i mal derAusgabe von comp(n.left). Zeilen (7)-(9) sowie Zeilen (16)-(18) der OperationcompKLEENE(Syntaxknoten n) stellen trotz Aufruf der read-Operation keineEingabe dar, da der Positionszeiger von S nicht verändert wird, die Eingabevon compKLEENE(Syntaxknoten n) besteht also nur aus i mal der Eingabe voncomp(n.left). Entsprechend besteht die Eingabe vondecompKLEENE(Syntaxknoten n) aus der Anzahl i der zu erzeugenden Teil-folgen, gefolgt von i mal der Eingabe von decomp(n.left), und die Ausgabe be-



90 XML-Kompression durch Eliminierung externer Redundanzensteht aus i mal der Ausgabe von decomp(n.left). Unter der Annahme, dass de-comp(Syntaxknoten n) die Umkehroperation von comp(Syntaxknoten n) ist, istdecompKLEENE(Syntaxknoten n) die Umkehroperation zucompKLEENE(Syntaxknoten n).Satz 6.1. Die Operation decomp nach De�nition 6.4 ist die Umkehroperationzur Operation comp nach De�nition 6.4.Beweis. Betrachtet man das XML-Dokument bottom-up, so sind die Blattkno-ten vom Typ EMPTY oder PCDATA. Für diese beiden Syntaxknoten-Typengilt die Behauptung nach Lemmata 6.1 und 6.2 ohne weitere Annahmen. Fürdie weiteren Syntaxknoten-Typen elem, seq, choice und kleene gilt die Behaup-tung nach Lemmata 6.3, 6.4, 6.5, 6.6 unter der Annahme, dass die Behauptungfür die jeweiligen Kindknoten gilt. Da die Behauptung für die Blattknoten be-wiesen ist, folgt sie somit induktiv für alle inneren Knoten.Beispiel 6.3 Listing 6.9 zeigt den KST-Strom, der zum Struktur-Strom ausListing 3.1 generiert wird. Die erste Zeile gibt die Position innerhalb des Kom-primats an, die zweite enthält den jeweiligen Wert im Komprimat, und diedritte Zeile gibt an, ob für diesen Wert Speicherbedarf in Form eines Integers(i) oder in Form eines Bits (b) besteht.Hierbei wird die 3 an Position 1 durch den äuÿeren Kleene-Operator erzeugt(3 Personen), die 1 an Position 2 durch den inneren Kleene-Operator(1 Wie-derholung von ((Postfach | (Strasse, Ort)), Telefon?)), die 0 an Position 3durch den choice-Operator (gewählte Alternative: Postfach), die 0 an Position4 durch den choice-Operator (kein Telefon, Alternative: EMPTY), usw.Po s i t i on 1 2 3 4 5 6 7 8 9 10 11 12Wert 3 1 0 0 2 1 0 0 0 1 0 1( b ) i t /( i ) nt i i b b i b b b b i b bListing 6.9: DTD-Subtraktion-Kompression des Beispiels6.2 DTD-Subtraktion für unendlich langeXML-DatenströmeBetrachtet man die verschiedenen Syntaxknoten-Typen und deren Kompres-sions- und Dekompressions-Operationen, stellt man fest, dass der Groÿteil derOperationen nur lokal auf dem Struktur-Strom und dem Komprimat arbeitet,es werden lediglich die Operationen read(), write(Object o) sowie skip(Objecto) verwendet. Lediglich die Operation compKLEENE(Syntaxknoten n) greift



XML-Kompression durch Eliminierung externer Redundanzen 91auf die Operation write(Object o, int pos) zurück, die an der vorgegebenenPosition pos im Komprimat, und somit nicht lokal, schreibt. Führen wir dieseOperation auf einem potentiell unendlichen Datenstrom aus, würde das bedeu-ten, dass wir das Komprimat zwischenspeichern müssten und die Weiterleitungder Ausgabe verzögern müssten, bis die endgültige Anzahl der Wiederholun-gen ermittelt wurde. Da ein unendlicher Datenstrom allerdings theoretisch eineunendliche Anzahl an Wiederholungen enthalten kann, ist dies praktisch nichtdurchführbar.Um das Kompressionsverfahren DTD-Subtraktion so zu erweitern, dass esauch potentiell unendliche Datenströme komprimieren kann, benötigt man ei-ne Überlaufkodierung für Syntaxknoten vom Typ kleene. Diese könnte z.B. soumgesetzt werden, dass man eine festgelegte Fenstergröÿe hat, innerhalb de-rer das Komprimat zwischengespeichert wird und innerhalb derer die Ausgabedes Komprimats verzögert wird. Ist der Zwischenspeicher komplett gefüllt,kann jedoch die Ausgabe noch nicht ausgegeben werden, da für mindestenseinen kleene-Knoten noch nicht die Anzahl an Wiederholungen ermittelt wer-den konnte, wird an diese Stelle ein Markierungszeichen geschrieben, gefolgtvon der aktuellen Anzahl an Wiederholungen i. Dieses Markierungszeichen gibtan, dass an späterer Stelle die weitere Anzahl an Wiederholungen folgen wird.Liest die Dekompressions-Operation das Markierungszeichen, weiÿ sie, dasszunächst i Wiederholungen folgen, und nach Abschluss dieser Wiederholungendie noch fehlende Anzahl an Wiederholungen folgen wird.Mit Hilfe dieser Überlaufkodierung für Syntaxknoten vom Typ kleene kanndas Kompressionsverfahren DTD-Subtraktion auch für potentiell unendlicheDatenströme verwendet werden.6.3 Navigation entlang von �rst-child undnext-siblingNun werde ich die Operationen �rst und next zur Berechnung von �rst-childund next-sibling auf dem Komprimat KST vorstellen.Ein Element E im Struktur-Strom wird eindeutig durch das Tupel(KST, n, p) identi�ziert, wobei KST ein Komprimat, n ein Syntaxknoten undp eine Position im Komprimat ist:Notation 6.3 Sei S=(s1, . . . , sn) ein Struktur-Strom und KST ein Kompri-mat. Sei E ein Element mit startElement-Event sE ∈ S und endElement-Event
eE ∈ S. Sei n ein Syntaxknoten und p eine Position. Dann sagen wir E kor-respondiert mit (KST, n, p) genau dann, wenn die Hintereinanderausführungvon KST.setPos(p), decomp(n) die Ausgabe S':=(sE, . . . , eE) ⊆ S erzeugt.



92 XML-Kompression durch Eliminierung externer Redundanzen6.3.1 �rst-childZu einem Knoten E1 mit startElement-Event sE1 ist entsprechend De�nition2.4 das �rst-child derjenige Knoten E2, dessen startElement-Event sE2 direktnach sE1 im SAX-Event-Strom und somit auch im Struktur-Strom folgt. Folgtauf sE1 kein startElement-Event, so hat E1 kein �rst-child.Entsprechend simuliert die Operation �rst die XML Operation �rst-child aufdem Komprimat KST. Sei E1 ein Element und E2=E1/�rst-child. Sei weiterhindas Tupel (KST, n, p) das zu E1 korrespondierende Tupel. Dann berechnet dieOperation �rst für die DTD-Subtraktion zu (KST, n, p) die Werte n' und p',mit n'=�rst(n); p'=KST.getPos(), so dass E2 mit (KST, n', p') korrespondiert.Dies wird in Abbildung 6.2 visualisiert.DTD-Subtraktion
XML

(KST,n,p) (KST,n',p')E E/�rst-child
�rst

�rst-childkorrespondiert korrespondiert
Abbildung 6.2: Schematische Darstellung der �rst-OperationDie Operation �rst simuliert die decomp-Operation, wobei sie im Gegen-satz zur decomp-Operation nach Erreichen des ersten PCDATA- oder ELEM-Syntaxknoten abbricht und diesen Knoten ausgibt, so dass die Pointer-Positionim Komprimat auf dessen Position verweist. Sie bleibt vor der ersten Ausgabein den Struktur-Strom stehen, so dass die anschlieÿende Dekompression aufdem KST mit der berechneten aktuellen Position p' diesen Knoten erzeugt.Ähnlich wie bei der Dekompression existiert eine übergeordnete �rst-Opera-tion, die eine Weiche für die �rst-Operationen der unterschiedlichen Knoten-typen darstellt.De�nition 6.11 (�rst). Sei KST ein Strom aus Integern mit aktueller Positionp = KST.getPos(), so ist die Operation �rst(Syntaxknoten n) wie folgt de�niert.



XML-Kompression durch Eliminierung externer Redundanzen 931 L i s t KST;23 public Syntaxknoten f i r s t ( Syntaxknoten n)4 {5 case (n i s t vom Typ)6 {7 EMPTY: return firstEMPTY(n) ;8 PCDATA: return firstPCDATA (n) ;9 elem : return firstELEM(n) ;10 seq : return f i rstSEQ (n) ;11 cho i c e : return firstCHOICE (n) ;12 k l e ene : return firstKLEENE (n) ;13 }14 } Algorithmus 6.10: Die globale �rst-OperationDer EMPTY-Knoten erzeugt keine Ausgabe und hat auch keine weiterenKindknoten. Die �rst-Operation des EMPTY-Knotens ändert den Zustandnicht und gibt null zurück.De�nition 6.12 (�rstEmpty). Sei KST ein Strom aus Integern mit aktuellerPosition p = KST.getPos(), so ist die Operation �rstEMPTY(Syntaxknoten n)wie folgt de�niert.1 L i s t KST;23 public Syntaxknoten firstEMPTY( Syntaxknoten n)4 {5 n . mark ( ) ;6 return null ;7 } Algorithmus 6.11: Operation �rst für EMPTYHinweis: Die Markierung, die durch den Aufruf von n.mark() gesetzt wird,wird im nachfolgenden Abschnitt über das Ermitteln des next-siblings erläu-tert, da erst dann lesend darauf zugegri�en wird.



94 XML-Kompression durch Eliminierung externer RedundanzenDer PCDATA- und der elem-Knoten erzeugen beide eine Ausgabe im Struk-tur-Strom, ohne dass im Komprimat gelesen werden muss. Daher geben beidesich selbst als Rückgabewert zurück und ändern den Zustand nicht.De�nition 6.13 (�rstPCDATA, �rstELEM). Sei KST ein Strom aus In-tegern mit aktueller Position p = KST.getPos(), so sind die Operationen�rstPCDATA(Syntaxknoten n) und �rstELEM(Syntaxknoten n) wie folgt de-�niert.1 L i s t KST;23 public Syntaxknoten firstPCDATA ( Syntaxknoten n)4 {5 n . mark ( ) ;6 return n ;7 }8 public Syntaxknoten firstELEM( Syntaxknoten n)9 {10 n . mark ( ) ;11 return n ;12 } Algorithmus 6.12: Operation �rst für PCDATA undELEMDer seq-Knoten erzeugt eine Folge von zwei Teilfolgen, wobei die Teilfol-gen auch leer sein können. Er gibt den �rst-Knoten der ersten Teilfolge aus,falls dieser ungleich null ist, andernfalls gibt er den �rst-Knoten der zweitenTeilfolge aus. Während er den �rst-Knoten der ersten und evtl. auch der zwei-ten Teilfolge ermittelt, wird die aktuelle Pointer-Position p im Komprimat imAllgemeinen verändert.De�nition 6.14 (�rstSEQ). Sei KST ein Strom aus Integern mit aktuellerPosition p = KST.getPos(), so ist die Operation �rstSEQ(Syntaxknoten n)wie folgt de�niert.1 L i s t KST;23 public Syntaxknoten f i rstSEQ ( Syntaxknoten n)4 {5 Syntaxknoten f i r s t = f i r s t (n . l e f t ) ;6 i f ( f i r s t !=null ) return f i r s t ;



XML-Kompression durch Eliminierung externer Redundanzen 957 else return f i r s t (n . r i gh t ) ;8 } Algorithmus 6.13: Operation �rst für SEQDer choice-Knoten erzeugt eine von zwei möglichen Teilfolgen, wobei imKomprimat die gewählte Alternative kodiert ist. Die �rst-Operation für denchoice-Knoten ermittelt, welche von beiden Alternativen gültig ist, und liefertden �rst-Knoten der gültigen Alternative zurück. Da die �rst-Operation hierfürim Komprimat lesen muss, wird hierbei auf jeden Fall die aktuelle Pointer-Position p verändert.De�nition 6.15 (�rstCHOICE). Sei KST ein Strom aus Integern mit aktuellerPosition p = KST.getPos(), so ist die Operation �rstCHOICE(Syntaxknotenn) wie folgt de�niert.1 L i s t KST;23 public Syntaxknoten firstCHOICE ( Syntaxknoten n)4 {5 int x = KST. read ( ) ;6 i f ( x==0) return f i r s t (n . l e f t ) ;7 else return f i r s t (n . r i gh t ) ;8 } Algorithmus 6.14: Operation �rst für CHOICEDer kleene-Knoten erzeugt im SAX-Storm eine (evtl. leere) Folge von nicht-leeren Teilfolgen von SAX-Events, wobei im Komprimat die Anzahl der Teil-folgen gespeichert ist. Die �rst-Operation für den kleene-Knoten liefert den�rst-Knoten der ersten Teilfolge zurück, falls mindestens eine Teilfolge exi-stiert; sonst liefert sie null zurück. Hierbei wird im Komprimat gelesen, somitbleibt die aktuelle Pointer-Position p unverändert.De�nition 6.16 (�rstKLEENE). Sei KST ein Strom aus Integern mit aktuel-ler Position p = KST.getPos(), so ist die Operation �rstKLEENE(Syntaxknotenn) wie folgt de�niert.



96 XML-Kompression durch Eliminierung externer Redundanzen1 L i s t KST;23 public Syntaxknoten firstKLEENE ( Syntaxknoten n)4 {5 int x = KST. read ( ) ;6 n .max = x ;7 n . count =1;8 i f (x>0) return f i r s t (n . l e f t ) ;9 else return null ;10 } Algorithmus 6.15: Operation �rst für KLEENEHinweis: Ähnlich wie der Aufruf von n.mark(), handelt es sich bei den Zuwei-sungen an n.max und n.count um Markierungen, die erst bei der Ermittlungdes next-siblings gelesen werden, und daher erst im nachfolgenden Abschnitterläutert werden.Die bisher vorgestellte Menge von De�nitionen der �rst-Operationen führtuns zu dem in Abbildung 6.2 in Abschnitt 6.3.1 skizzierten Hauptsatz:Satz 6.2. Sei S ein Struktur-Strom und E ein Element mit startElement-Event sE ∈ S und endElement-Event eE ∈ S. Sei KST ein Komprimat, peine Position und n ein Syntaxknoten, so dass E mit dem Tupel (KST, n, p)korrespondiert. Seien n' !=null und p' die Rückgabewerte der folgenden Hin-tereinanderausführung:KST.setPos(p); n'=�rst(n); p'=KST.getPos();Dann gilt: E/�rst-child korrespondiert mit dem Tupel (KST, n',p')Beweis. Nach De�nition 2.4 gilt für ein Element E mit startElement sE undE/�rst-child mit startElement sEFC, dass sEFC direkt auf sE im Struktur-Strom folgt. Existiert kein E/�rst-child, so ist das nächste auf sE folgendeEvent vom Typ endElement. Entsprechend gilt es im Komprimat zu zeigen,dass die Funktion �rs,t angewandt auf einen beliebigen Knoten, den erstenerreichbaren elem- bzw. PCDATA-Syntaxknoten zurückliefert, oder dass sienull zurückliefert, falls kein solcher Syntaxknoten exisitert. Die Blattknotenim Syntaxbaum sind vom Typ EMPTY oder PCDATA bzw. elem. Entspre-chend liefert �rstEMPTY(Syntaxknoten n) nach De�nition 6.12 null zurück,da kein Knoten existiert, und die Operationen �rstPCDATA(Syntaxknoten n)und �rstELEM(Syntaxknoten n) nach De�nition 6.13 liefern den Syntaxknotenn'=n zurück, der Positionszeiger entspricht unverändert der aktuellen Position,also p'=p.



XML-Kompression durch Eliminierung externer Redundanzen 97Für jeden inneren Syntaxknoten vom Typ seq bzw. für dessen Operation�rstSEQ(Syntaxknoten n) entsprechend De�nition 6.14 wird erst überprüft,ob im linken Teilbaum ein elem- bzw. PCDATA-Knoten existiert, in dem fürn.left die Operation �rst(Syntaxknoten n) aufgerufen wird. Liefert diese einenKnoten n' zurück, so ist dieser ein Ergebnis, liefert diese null zurück, wird dieSuche im rechten Teilbaum (n.right) fortgeführt. Der Positionszeiger entsprichtunverändert der aktuellen Position p'=p+x, wobei x die Anzahl an Positionenist, die bei der Durchquerung des linken bzw. rechten Teilbaums gelesen wur-den.Für jeden inneren Syntaxknoten vom Typ choice bzw. für dessen Operation�rstCHOICE(Syntaxknoten n) entsprechend De�nition 6.15 wird die Opera-tion �rst(Syntaxknoten n) für die gewählte Alternative aufgerufen und derenErgebnis (null bzw. n') zurückgeliefert. Da die gewählte Alternative gelesenwurde, gilt p'=p+1+x, wobei x die Anzahl an Positionen ist, die bei der Durch-querung der gewählten Alternative gelesen wurden.Für jeden inneren Syntaxknoten vom Typ kleene bzw. für dessen Opera-tion �rstKLEENE(Syntaxknoten n) entsprechend De�nition 6.16 wird über-prüft, ob mindestens eine Wiederholung vorhanden ist. Da es sich hierbeium eine nicht-leere Teilfolge handeln muss, wird in diesem Fall die Operation�rst(Syntaxknoten n) für den unter dem kleene-Knoten stehenden Teilbaumn.left aufgerufen und dessen Ergebnis n' zurückgeliefert. Da die gewählte Al-ternative gelesen wurde, gilt p'=p+1+x, wobei x die Anzahl an Positionen ist,die bei der Durchquerung des linken Teilbaums gelesen wurden.Die inneren Knoten rufen somit die Operation �rst(Syntaxknoten n) für dieKindknoten auf bis ein Blattknoten vom Typ PCDATA oder elem erreicht wirdund der erste von EMTPY verschiedene Blattknoten als Ergebnis zurückgelie-fert werden kann.Somit korrespondiert das Tupel (KST, n', p') mit dem nächsten zu erzeu-genden Knoten, und somit mit dem Knoten E/�rst-child.6.3.2 next-siblingZu einem Knoten E1 mit startElement-Event sE1 und endElement-Event eE1ist entsprechend De�nition 2.4 das next-sibling derjenige Knoten E2, dessenstartElement-Event sE2 direkt nach dem endElement-Event eE1 im SAX-Event-Strom und somit auch im Struktur-Strom folgt. Folgt auf eE1 keinstartElement-Event, hat E1 kein next-sibling.Dies bedeutet, dass die next-Operation für die DTD-Subtraktion zunächsteinmal den aktuellen Teilbaum überspringen muss, um zum �End-Tag� desaktuellen Knotens zu gelangen. Anschlieÿend muss das als nächstes erzeugteElement ermittelt werden.



98 XML-Kompression durch Eliminierung externer RedundanzenIm Folgenden werde ich eine mögliche Implementierung der next-Operationvorstellen, die ein Marker-Konzept zu Hilfe nimmt, um den als nächstes erzeug-ten Knoten zu ermitteln. Der Marker wird hierbei genutzt, um die bereits be-suchten Knoten zu markieren. Die Markierung wird gelöscht, wenn durch einenübergeordneten Kleene-Knoten eine weitere Wiederholung begonnen wird.Beispiel 6.4 Betrachten wir zunächst einmal den Syntaxbaum aus Beispiel 6.2auf Seite 78. Die zweite Person aus Listing 2.3 enthält die Kindknoten Name,Strasse, Ort und Postfach in der angegebenen Reihenfolge. Dementsprechendbeginnt der für diesen Teilbaum relevante Ausschnitt aus dem Komprimat inListing 6.9 an Position 5 und endet bei Position 9. Hierbei steht die 2 an Posi-tion 5 für 2 Teilfolgen entsprechend des Teilbaums unter dem Kleene-Knoten,die 1 an Position 6 für Alternative 1 (Strasse, Ort), die 0 an Position 7 fürAlternative 0 (EMPTY). Die 0 an Position 8 steht für Alternative 0 (Postfach)gefolgt von einer 0 an Position 9 für Alternative 0 (EMPTY).Gesucht sei der next-sibling zum Element E=Ort, welches ein Kindknotender zweiten Person aus Listing 2.3 ist und welches mit dem Tupel (KST, n, p)korrespondiert, wobei p=7 gilt (da die Alternative Strasse/Ort bereits gelesenwurde) und n der Konten ID9 in Beispiel 6.2 ist. Dies bedeutet, dass KnotenID9 und alle zuvor besuchten elem-Knoten (Knoten ID2, ID8 und ID9) alsbesucht markiert sind. Zusätzlich müssen wir im kleene-Knoten speichern, dasses genau 2 Wiederholungen gibt und wir uns aktuell in der 1. Wiederholungbe�nden.Um den next-sibling zu ermitteln, müssen wir zunächst den Teilbaum unter-halb von Ort und alle entsprechenden KST-Einträge überspringen. Da Ort indiesem Fall nur PCDATA enthält, existiert kein KST-Eintrag, der zum Teil-baum unterhalb von Ort gehört, die Pointer-Position p im KST bleibt unver-ändert.Nun muss der nächste zu erzeugende Knoten ermittelt werden: Da der Kno-ten mit ID9 als besucht markiert ist, setzen wir die Suche bei dessen parent-Knoten (ID7) fort. Dieser ist vom Typ seq. Da beide Kindknoten bereits alsbesucht markiert wurden, ist die Verarbeitung dieses Knotens abgeschlossen. Erwird ebenfalls als besucht markiert, und die Suche wird beim nächsten parent-Knoten (ID5) fortgeführt.ID5 ist vom Typ choice. Ein Knoten vom Typ choice ist abgearbeitet, wennmindestens einer der beiden Kindknoten (die gewählte Alternative) markiertist. Da dies der Fall ist, wird auch ID5 als besucht markiert, die Suche fährtbei ID4 fort. In diesem Fall existiert ein noch nicht markierter Kindknoten(ID10), in dem nach dem next-sibling gesucht wird.ID10 ist vom Typ choice, und es ist noch kein Kindknoten markiert, also wirddas nächste Zeichen (0) aus dem KST gelesen, um die gewählte Alternative zu



XML-Kompression durch Eliminierung externer Redundanzen 99ermitteln. Da die gewählte Alternative (ID11) EMPTY entspricht, muss dieSuche weiter fortgesetzt werden, die Knoten ID11, ID10 und ID 4 werden alsbesucht markiert.Der nächste zu betrachtende Knoten ist ID3, ein Knoten vom Typ kleene.Dieser enthält als Markierung die aktuelle Wiederholung (count=1) sowie diemaximale Anzahl an Wiederholungen (max=2). Da count<max gilt, existiertnoch eine weitere Wiederholung, alle Markierungen im darunterliegenden Teil-baum werden gelöscht, und die Suche wird bei Knoten ID4 und schlieÿlich beiID5 und ID6 fortgeführt.Mit ID6 wurde der erste nicht-markierte elem- bzw. PCDATA-Knoten ermit-telt, der somit auch das Ergebnis der next-sibling-Suche darstellt. Das ElementPostfach bzw. die entsprechenden Einträge KST, Syntaxknoten n'=ID6 und diePosition im KST p'=5 wurden ermittelt, so dass das Element Postfach demTupel (KST, n', p') entspricht.Allgemein wird die Suche in dem zum aktuellen Element gehörenden elem-Syntaxknoten, einem Blattknoten, gestartet. Hierbei sind im Syntaxbaum so-wohl der aktuelle elem-Syntaxknoten nE1 als auch alle bereits besuchten Syn-taxknoten als besucht markiert. Für jeden Syntaxknoten n wird zunächst ver-sucht, den next-sibling Knoten im Komprimat, also den nächsten zu erreichen-den elem- bzw PCDATA-Syntaxknoten, unter den descendant-Syntaxknotenzu �nden. Wurden alle descendant-Syntaxknoten von n untersucht, jedoch keinelem- bzw. PCDATA-Syntaxknoten gefunden, wird die Suche mit dem parent-Syntaxknoten von n und dessen noch nicht besuchten descendant-Syntaxknotenfortgesetzt. Die Suche kann beendet werden, wenn ein elem- bzw. ein PCDATA-Syntaxknoten erreicht wurde. Wurden alle Syntaxknoten abgearbeitet, ohnedass ein elem- bzw. ein PCDATA-Syntaxknoten erreicht wurde, existiert keinnext-sibling-Knoten im Komprimat.Da das Fortsetzen der Suche beim parent-Knoten immer gleich abläuft, wur-de diese Teiloperation in die Operation processParent ausgelagert.De�nition 6.17 (processParent). Sei KST ein Strom aus Integern mit aktuel-ler Position p = KST.getPos(), so ist die Operation processParent(Syntaxknotenn) wie folgt de�niert.1 L i s t KST;23 public Syntaxknoten processParent ( Syntaxknoten n)4 {5 n . mark ( ) ;



100 XML-Kompression durch Eliminierung externer Redundanzen6 i f (n . parent==null ) return null ;7 else return next (n . parent ) ;8 } Algorithmus 6.16: Operation processParentÄhnlich wie bei der Dekompression und der �rst-Operation existiert eineübergeordnete next-Operation, die eine Weiche für die next-Operationen derunterschiedlichen Knotentypen darstellt.De�nition 6.18 (next). Sei KST ein Strom aus Integern mit aktueller Posi-tion p = KST.getPos(), so ist die Operation next(Syntaxknoten n) wie folgtde�niert.1 L i s t KST;23 public Syntaxknoten next ( Syntaxknoten n)4 {5 case (n i s t vom Typ)6 {7 EMPTY: return nextEMPTY(n) ;8 PCDATA: return nextPCDATA(n) ;9 elem : return nextELEM(n) ;10 seq : return nextSEQ(n) ;11 cho i c e : return nextCHOICE(n) ;12 k l e ene : return nextKLEENE(n) ;13 }14 } Algorithmus 6.17: Die globale next-OperationDer EMPTY-Knoten stellt keinen Kindknoten und somit auch keinen next-sibling dar. Wird ein EMPTY-Knoten erreicht, wird dieser durch Aufruf derOperation processParent(Syntaxknoten n) als besucht markiert, und die Suchenach dem next-sibling-Knoten beim parent-Knoten fortgeführt.De�nition 6.19 (nextEmpty). Sei KST ein Strom aus Integern mit aktuellerPosition p = KST.getPos(), so ist die Operation nextEMPTY(Syntaxknoten n)wie folgt de�niert.



XML-Kompression durch Eliminierung externer Redundanzen 1011 L i s t KST;23 public Syntaxknoten nextEMPTY( Syntaxknoten n)4 {5 return processParent (n) ;6 } Algorithmus 6.18: Operation next für EMPTYDer PCDATA-Knoten erzeugt einen Text-Knoten. Da an dieser Stelle nichtzwischen Element-, Attribut- und Text-Knoten unterschieden wird, sonderndiese Aufgabe durch das übergeordnete XPath-Framework übernommen wird,wird er gleich wie ein elem-Knoten behandelt.Da ein Knoten über einen Pfad von �rst-child- und next-sibling-Achsen er-reicht wurde, wurden durch die Aufrufe der Operationen �rst und next eventu-ell bereits einige der Knoten markiert. Da sowohl die Operationen�rstPCDATA(Syntaxknoten n) und �rstELEM(Syntaxknoten n) als auch dieOperationen nextPCDATA(Syntaxknoten n) und nextELEM(Syntaxknoten n)einen Aufruf der Methode n.mark() durchführen, falls der Knoten nicht bereitsmarkiert ist1, ist insbesondere immer der aktuelle PCDATA- bzw. elem-Knotenmarkiert, für den die Operation next(Syntaxknoten n) initial aufgerufen wurde.Die next-Operation unterscheidet daher zunächst, ob der aktuelle PCDATA-bzw. elem-Knoten markiert ist oder nicht. Ist der Knoten markiert, handelt essich hierbei um den aktuellen Kontextknoten, für den der next-sibling-Knotenermittelt werden soll. In dem Fall wird zunächst im Komprimat mit Hilfe derOperation skipSubtree der Teilbaum unter dem elem-Knoten übersprungenund dann wird die Suche beim parent-Knoten fortgesetzt. Ist der Knoten nochunmarkiert, wurde der gesuchte next-sibling-Knoten gefunden, und dieser Kno-ten wird zurückgegeben.Die Operation skipSubtree ist hierbei analog zur Operation decomp de�niert,nur dass die schreibenden Operationsaufrufe S.write(. . . ) entfallen.De�nition 6.20 (nextPCDATA, nextELEM). Sei KST ein Strom aus In-tegern mit aktueller Position p = KST.getPos(), so sind die OperationennextPCDATA(Syntaxknoten n) und nextELEM(Syntaxknoten n) wie folgt de-�niert.1Die Operationen nextPCDATA(Syntaxknoten n) und nextELEM(Syntaxknoten n) führendiesen Aufruf indirekt durch einen Aufruf der Operation processParent(Syntaxknoten n)durch.



102 XML-Kompression durch Eliminierung externer Redundanzen1 L i s t KST;23 public Syntaxknoten nextPCDATA( Syntaxknoten n)4 {5 i f ( ! n . isMarked ( ) ) return n ;6 else {7 sk ipSubtree (n ) ;8 return processParent (n ) ;9 }10 }11 public Syntaxknoten nextELEM( Syntaxknoten n)12 {13 i f ( ! n . isMarked ( ) ) return n ;14 else {15 return processParent (n ) ;16 }17 } Algorithmus 6.19: Operation next für PCDATA undELEMDer seq-Knoten erzeugt im Struktur-Strom eine Folge von zwei Teilfolgen,wobei die Teilfolgen auch leer sein können. Die next-Operation sucht beginnendmit dem ersten nicht-markierten Knoten x nach dem next-sibling-Knoten, in-dem sie für x die next-Operation aufruft und deren Ergebnisknoten als Er-gebnis weiterreicht. Existiert kein unmarkierter Knoten, wird die Suche beimparent-Knoten fortgesetzt.De�nition 6.21 (nextSEQ). Sei KST ein Strom aus Integern mit aktuellerPosition p = KST.getPos(), so ist die Operation nextSEQ(Syntaxknoten n) wiefolgt de�niert.1 L i s t KST;23 public Syntaxknoten nextSEQ( Syntaxknoten n)4 {5 i f ( ! l e f t . isMarked ( ) ) {6 return next (n . l e f t ) ;7 }8 else i f ( ! r i gh t . isMarked ( ) ) {9 return next (n . r i gh t ) ;



XML-Kompression durch Eliminierung externer Redundanzen 10310 }11 else {12 return processParent (n ) ;13 }14 } Algorithmus 6.20: Operation next für SEQDer choice-Knoten erzeugt eine von zwei möglichen Teilfolgen, wobei imKomprimat die gewählte Alternative kodiert ist. Ist noch keiner der beidenKindknoten markiert, wird die Suche bei der im Komprimat kodierten Al-ternative fortgesetzt. Ist bereits ein Knoten (die gewählte Alternative) mar-kiert, wurde dieser Knoten komplett durchsucht. Die Suche wird deshalb beimparent-Knoten fortgesetzt.De�nition 6.22 (nextCHOICE). Sei KST ein Strom aus Integern mit aktuel-ler Position p = KST.getPos(), so ist die Operation nextCHOICE(Syntaxknotenn) wie folgt de�niert.1 L i s t KST;23 public Syntaxknoten nextCHOICE( Syntaxknoten n)4 {5 i f ( l e f t . isMarked ( ) | | r i g h t . isMarked ( ) ) {6 return processParent (n ) ;7 }8 else {9 int x = KST. read ( ) ;10 i f (x==0) return next ( l e f t ) ;11 else return next ( r i gh t ) ;12 }13 } Algorithmus 6.21: Operation next für CHOICEDer kleene-Knoten erzeugt eine (evtl. leere) Folge von nichtleeren Teilfolgen,wobei im Komprimat die Anzahl der Teilfolgen kodiert ist. Wenn ein kleene-Knoten erreicht wird, bedeutet dies eine neue Wiederholung, und sämtlicheMarkierungen des Teilbaums unterhalb des kleene-Knotens werden gelöscht.Dies geschieht mit Hilfe der Operation deleteDescendantMarks(). Während für



104 XML-Kompression durch Eliminierung externer Redundanzenalle anderen Knotentypen die Markierung lediglich widergibt, ob dieser Knotenbereits besucht wurde oder nicht, enthält die Markierung des kleene-Knotensmehr Informationen: mit Hilfe der Markierung wird sowohl gespeichert, in derwievielten Teilfolge das aktuelle Element enthalten ist (Parameter: count), alsauch wieviele Teilfolgen insgesamt vorhanden sind (Parameter: max). Wird dieaktuelle Markierung gelöscht, werden die Werte der beiden Parameter max undcount auf den Wert 'UNKNOWN' gesetzt, so dass beim nächsten Erreichen deskleene-Knotens der ab dann gültige Wert für max � die Anzahl der Teilfolgen� aus dem Komprimat gelesen werden muss.De�nition 6.23 (nextKLEENE). Sei KST ein Strom aus Integern mit aktuel-ler Position p = KST.getPos(), so ist die Operation nextKLEENE(Syntaxknotenn) wie folgt de�niert.1 L i s t KST;23 public Syntaxknoten nextKLEENE( Syntaxknoten n)4 {5 i f (n .max==UNKNOWN){6 n .max = KST. read ( ) ;7 n . count=0;8 }9 i f (n . count < n .max) {//Es f o l g t e ine we i t e r eWiederholung10 deleteDescendantMarks ( ) ;11 n . count++;12 return l e f t . next ( ) ;13 }14 else { //Die l e t z t e Wiederholung wurde a b g ea r b e i t e t ,we i t e r beim Parent15 return processParent (n ) ;16 }17 } Algorithmus 6.22: Operation next für KLEENEDie bisher vorgestellte Menge von De�nitionen der next-Operationen führtuns zu dem in Abbildung 6.2 skizzierten Hauptsatz, wobei jeweils �rst durchnext und �rst-child durch next-sibling ersetzt werden muss:Satz 6.3. Sei S ein Struktur-Strom und E ein Element mit startElement-Event sE ∈ S und endElement-Event eE ∈ S. Sei KST ein Komprimat, p



XML-Kompression durch Eliminierung externer Redundanzen 105eine Position und n ein Syntaxknoten, so dass E mit dem Tupel (KST, n, p)korrespondiert. Seien n' !=null und p' die Rückgabewerte der folgenden Hin-tereinanderausführung:KST.setPos(p); n'=next(n); p'=KST.getPos();Dann gilt: E/next-sibling korrespondiert mit dem Tupel (KST, n',p').Beweis. Laut De�nition 2.4 ist das next-sibling-Element im Struktur-Stromdurch das nächste auf das zugehörige endElement-Event folgende startElement-Event im Struktur-Strom de�niert. Entsprechend geht auch die Operation nextfür die DTD-Subtraktion vor: Zunächst wird in der OperationnextELEM(Syntaxknoten n) nach De�nition 6.20 der unterhalb des aktuel-len Elements liegende Teilbaum mit Hilfe der Operation skipSubtree() über-sprungen, um zum zugehörigen endElement-Event zu gelangen. Bei der Ope-ration nextEMPTY(Syntaxknoten n) für die Blattknoten n vom Typ EMPTYbzw. für markierte elem- bzw. PCDATA-Syntaxknoten wird die Suche beimparent von n fortgeführt (siehe De�nitionen 6.19 und 6.20). Für unmarkier-te elem- bzw. PCDATA-Syntaxknoten n wird der Knoten n selbst zurück-gegeben (siehe De�nition 6.20). Für die inneren Syntaxknoten vom Typ seq,choice und kleene wird zunächst für die unmarkierten Kindknoten die Operati-on next(Syntaxknoten) aufgerufen, um das next-sibling zu ermitteln. Sind alleKindknoten markiert, wird die Suche beim parent fortgeführt (siehe De�nitio-nen 6.21, 6.22 und 6.23). Wird ein unmarkierter elem- bzw. PCDATA-Knotenn' gefunden, bildet er zusammen mit der aktuellen Position p' im KomprimatKST das mit dem next-sibling-Element im Struktur-Strom korrespondieren-de Tupel (KST, n', p'). Existiert kein solcher elem- bzw. PCDATA-Knoten,exisitiert auch kein next-sibling.6.4 Unterstützung der DOM-SchnittstelleUm zu zeigen, dass die DTD-Subtraktion mit Hilfe kleiner Modi�kationen diekomplette DOM-Schnittstelle unterstützt, werde ich in diesem Kapitel einemögliche Umsetzung der lesenden DOM-Funktion parent sowie der schreiben-den DOM-Operationen insert und remove direkt auf dem Komprimat � ohnevorherige Dekompression � beschreiben.6.4.1 Die parent-AchseIm Gegensatz z.B. zur Succinct-Darstellung kann die parent-Achse nicht ein-fach auf dem Komprimat berechnet werden, denn es ist nicht möglich, für einenKnoten E bzw. für dessen korrespondierendes Tupel (KST, n, p) ein Tupel(KST', n', p') zu berechnen, so dass E/parent mit dem Tupel



106 XML-Kompression durch Eliminierung externer Redundanzen(KST', n', p') korrespondiert.Beispiel 6.5 Betrachten wir das Beispieldokument aus Listing 2.3. Das ent-sprechende Komprimat wird in Listing 6.9 dargestellt. Gesucht werde das pa-rent zum Postfach der ersten Person. Dieser Postfach-Knoten entspricht demTupel (KST, n, p), wobei n der elem(Person)-Knoten (ID6) im Syntaxbaumin Abbildung 6.1 ist, und p=3, die Pointer-Position zeigt auf die erste 0 imKST, die für die gewählte Alternative 0 steht. Laufen wir �rückwärts� im KST,kann das Zeichen an Position 2 für zwei verschiedene Syntaxknoten stehen: er-stens kann es für den kleene-Knoten stehen, also aussagen, dass es insgesamteine wiederholte Teilfolge gibt, andererseits könnte es aber auch Teil einer vor-angehenden Wiederholung sein, und somit für choice-Knoten (ID10) und diegewählte Alternative �Telefon� stehen.Solch einen Beispielfall kann man nicht nur für Wiederholungen, sonderninsbesondere auch für choice-Knoten mit Alternativen, die eine unterschiedli-che Anzahl Zeichen im KST bewirken, konstruieren.Um dennoch eine DOM-Schnittstelle für die DTD-Subtraktion unterstützenzu können, kann man die parent-Achse z.B. mit Hilfe eines Stacks, der alleancestor-Knoten des aktuell betrachteten Knotens enthält, realisieren.Da es sich laut [11] bei einer Untersuchung von über 190.000 im Web ver-fügbaren XML-Dokumenten gezeigt hat, dass die durchschnittliche Tiefe einesXML-Dokuments bei 4 Knoten liegt (wobei 99% aller Dokumente eine Tiefevon maximal 8 Knoten haben, und die maximal erreichte Tiefe 135 war), istdie zu erwartende Gröÿe des Stacks entsprechend begrenzt, so dass kein allzugroÿer Overhead entsteht.Hierzu muss jedes Mal, wenn ein Syntaxknoten durch die �rst-Operationzurückgeliefert wird, dieser zusammen mit der aktuellen Position auf den Stackgelegt werden, und jedes Mal, wenn ein Syntaxknoten durch die next-Operationzurückgeliefert wird, muss dieser zusammen mit der aktuellen Pointer-Positionp im KST die oberste Stack-Ebene ersetzen. Um zum parent zurückzukehren,wird das oberste Element des Stacks zurückgeliefert und vom Stack entfernt.Dies führt zu den folgenden Neude�nitionen der �rst- und der next-Operationund zur folgenden De�ntion der parent-Operation:De�nition 6.24 (�rstPCDATA, �rstELEM). Sei KST ein Strom aus In-tegern mit aktueller Position p = KST.getPos(), so sind die Operationen�rstPCDATA(Syntaxknoten n) und �rstELEM(Syntaxknoten n) wie folgt de-�niert.



XML-Kompression durch Eliminierung externer Redundanzen 1071 Stack ance s to r ;23 public Syntaxknoten firstPCDATA ( Syntaxknoten n)4 {5 n . mark ( ) ;6 ance s to r . push ( ( n , KST. getPos ( ) ) ) ;7 return n ;8 }9 public Syntaxknoten firstELEM( Syntaxknoten n)10 {11 n . mark ( ) ;12 ance s to r . push ( ( n , KST. getPos ( ) ) ) ;13 return n ;14 } Algorithmus 6.23: Operation �rst für PCDATA undELEMZusätzlich zu der aus De�nition 6.13 bekannten Funktionalität werden vorRückgabe des Syntaxknotens der ermittelte Syntaxknoten und die aktuellePosition auf dem Stack ancestor gespeichert (Zeilen 7 und 13).De�nition 6.25 (nextPCDATA, nextELEM). Sei KST ein Strom aus In-tegern mit aktueller Position p = KST.getPos(), so sind die OperationennextPCDATA(Syntaxknoten n) und nextELEM(Syntaxknoten n) wie folgt de-�niert.1 L i s t KST;2 Stack ance s to r ;34 public Syntaxknoten nextPCDATA( Syntaxknoten n)5 {6 i f ( ! n . isMarked ( ) ) {7 ance s to r . pop ( ) ;8 ance s to r . push ( ( n , KST. getPos ( ) ) ) ;9 return n ;10 }11 else {12 sk ipSubtree (n ) ;13 return processParent (n ) ;14 }



108 XML-Kompression durch Eliminierung externer Redundanzen15 }16 public Syntaxknoten nextELEM( Syntaxknoten n)17 {18 i f ( ! n . isMarked ( ) ) {19 ance s to r . pop ( ) ;20 ance s to r . push ( ( n , KST. getPos ( ) ) ) ;21 return n ;22 }23 else {24 return processParent (n ) ;25 }26 } Algorithmus 6.24: Operation next für PCDATA und ELEMZusätzlich zu der aus De�nition 6.20 bekannten Funktionalität wird vorRückgabe des Syntaxknotens das oberste Element des Stacks ancestor durchden ermittelte Syntaxknoten und die akutelle Position ersetzt (Zeilen 7-8 und19-20).De�nition 6.26 (parent). Sei KST ein Strom aus Integern mit aktueller Po-sition p = KST.getPos(), so ist die Operation parent() wie folgt de�niert.1 L i s t KST;2 Stack ance s to r ;34 public Syntaxknoten parent ( )5 {6 ( Syntaxknoten n , int p) = ance s to r . top ( ) ;7 ance s to r . pop ( ) ;8 KST. setPos (p ) ;9 return n ;10 } Algorithmus 6.25: Operation parentAnstatt Syntaxknoten und Position des parents zu berechnen, werden diesevom obersten Stack-Element ausgelesen, vom Stack verdrängt und zurückge-geben.



XML-Kompression durch Eliminierung externer Redundanzen 1096.4.2 Einfügen und LöschenDie Update-Operationen insert und remove erfordern bei der DTD-Subtraktionim Wesentlichen lokale Änderungen. Bis auf zwei Ausnahmen heisst dies, dasslediglich der komprimierte Teilbaum an der ausgewählten Stelle in das Kom-primat geschrieben wird bzw. aus dem Komprimat gelöscht wird. Einzig wenndie Update-Operation die gewählte Alternative oder die Anzahl Wiederholun-gen einer Teilfolge betri�t, muss zusätzlich die entsprechende übergeordneteInformation im Komprimat geändert werden.Wird eine gewählte Alternative durch eine andere Alternative ersetzt, musszusätzlich zum Löschen und Neueinfügen der komprimierten Teilbäume dasBit, welches die gewählte Alternative kodiert, geändert werden. Dieses Bitbe�ndet sich direkt vor dem gelöschten Teilbaum und kann beim Ersetzendirekt gelesen werden und mit wenig Aufwand geändert werden.Wird die Anzahl Wiederholungen eines kleene-Operators geändert, muss derEintrag an der entsprechenden Stelle im Komprimat erhöht bzw. gesenkt wer-den. Da jedoch eine Rückwärtssuche der Stelle im Komprimat, wie im vor-herigen Abschnitt zur parent-Achse motiviert, nicht möglich ist, müssen indiesem Fall zusätzliche Informationen gespeichert werden, um Updates aufdem Komprimat zu ermöglichen. Zusätzlich zu der maximalen Anzahl an Wie-derholungen und der aktuellen Wiederholung, die bereits zur Umsetzung dernext-sibling-Achse benötigt wurden, muss zur Laufzeit für jeden bereits be-suchten Kleene-Knoten die dazugehörige Position im Komprimat gespeichertwerden. Diese kann � entsprechend wie auch die Parameter count und max� beim Durchqueren des Komprimats bei der Ermittlung der Einfüge- bzw.Lösch-Position zur Laufzeit ermittelt werden.Da es zu jedem Paar aus DTD und XML-Dokument genau ein eindeutigesKomprimat bei der DTD-Subtraktion gibt, gibt es insbesondere für das modi-�zierte XML-Dokument, in dem die Updates durchgeführt wurden, genau eineindeutiges Komprimat. Sind die vorgestellten Update-Operationen auf demKomprimat korrekt, führt also eine Update-Operation U auf dem KomprimatK zu einem Komprimat K', so dass eine anschlieÿende Dekompression von K' zugenau demselben XML-Dokument X' führt, wie die Update-Operation direktauf dem ursprünglichen XML-Dokument X, so sind daher auch die Update-Operationen optimal. Dies bedeutet, dass Updates auf dem Komprimat zugenau demselben modi�zierten Komprimat führen, wie wenn man das Kompri-mat dekomprimieren würde, Updates auf dem XML-Dokument durchgeführthätte, und anschlieÿend wieder komprimieren würde.



110 XML-Kompression durch Eliminierung externer Redundanzen6.5 Optimierte Darstellung der Kleene-WerteBei einer Analyse über verschiedene XML-Test-Dokumente hat sich gezeigt,dass die Integer-Werte, welche die Anzahl Wiederholungen eines Kleene-Ope-rators repräsentieren, über alle Dokumente derselben Häu�gkeitsverteilung un-terliegen. Diese Beobachtung erlaubt es, eine statische Hu�man-Kodierung derkleinsten Werte, konkreter der Werte 0-24 zu berechnen. Werte gröÿer als 24werden durch ein Markierungstoken gekennzeichnet und anschlieÿend mit Hilfeder Überlaufkodierung für ganzzahlige Integer-Werte kodiert. Dies führt zu ei-ner Kodierung der Kleene-Werte, bei der ein Wert n mit durchschnittlich 0,7*nBits kodiert wird. Details zu dieser optimierten Darstellung der Kleene-Wertewurden in [16] zur Verö�entlichung eingereicht.6.6 Zusammenfassung: Eigenschaften derDTD-Subtraktion6.6.1 KompressionsstärkeIm Gegensatz zur Succinct-Darstellung kann der genaue Speicherbedarf desKomprimats nicht angegeben werden, da dieser nicht nur vom Dokument, son-dern insbesondere auch von der Genauigkeit der DTD abhängt. So kann fürein Dokument mit zwei verschiedenen DTDs die Gröÿe des Komprimats starkvariieren: Das Komprimat enthält gar keinen Eintrag, wenn die DTD nur ge-nau diese Dokumentstruktur erlaubt, und es enthält umso mehr Einträge, jeöfter *- und |-Operatoren der DTD zur Kompressiohn des XML-Dokumentesbenutzt werden. Zusammenfassend lässt sich sagen:
• Für jede Ausprägung eines *-Operators der DTD im Dokument wird 1Integer im Komprimat benötigt, bzw. unter der Verwendung der stati-schen Hu�man-Kodierung werden durchschnittlich 0,7*n Bits für einenWert n benötigt.
• Für jede Ausprägung eines |-Operators im Dokument wird 1 Bit im Kom-primat benötigt.
• Alle anderen DTD-Operatoren bzw. Syntaxknoten erfordern keinen Spei-cherplatz im Komprimat.6.6.2 Weitere EigenschaftenWie im Verlaufe dieses Kapitels gezeigt, hat die DTD-Subtraktion noch diefolgenden Eigenschaften:



XML-Kompression durch Eliminierung externer Redundanzen 111
• Streamingfähig: Sie ist mit Hilfe der Überlaufkodierung für Syntaxknotenvom Typ kleene streamingfähig.
• Auswertung von Pfad-Anfragen: Pfad-Anfragen, die mit Hilfe der ato-maren Achsen �rst-child und next-sibling ausgedrückt werden können,können direkt auf dem Komprimat ausgewertet werden.
• Updates: Updates können unbeschränkt auf einem gegebenen Kompri-mat K durchgeführt werden, insofern, als das Komprimat mit nachfolgen-der Update-Operation U zu demselben Ergebnis K' führt, wie wenn manerst U zum XML-Dokument X dekomprimiert hätte, die entsprechendeUpdate-Operation U auf X ausgeführt hätte und anschlieÿend wiederzu K�=K' komprimiert hätte. Hierbei wird jedoch zusätzlicher Speicher-aufwand benötigt, da für jeden kleene-Operator auf dem Pfad von derWurzel zum aktuellen Knoten die Stelle seiner Kodierung im Komprimatbekannt sein muss.
• DOM: Sie unterstützt indirekt die DOM-Schnittstelle, indem die parent-Achse mit Hilfe eines Stacks implementiert wird.



7 DAG-basierendeKompression
Wie in Kapitel 5 gezeigt verhält sich der DAG bezüglich der Struktureigen-schaften wie der XML-Baum, da für jede Kante im XML-Baum eine entspre-chende Kante im DAG existiert, und für jeden Knoten im XML-Baum einentsprechender DAG-Knoten. Daher liegt es nahe, zu versuchen, die beiden an-deren vorgestellten Kompressionsverfahren � Succinct-Darstellung und DTD-Subtraktion � so zu verallgemeinern, dass sie statt eines SAX-Event-Stromsauch einen DAG-Event-Strom verarbeiten können.Hierbei betrachtet man den DAG als einen Baum mit zusätzlichen Rück-wärtsverweisen. Sowohl die Succinct-Darstellung als auch die DTD-Subtraktionstellen bereits die Baum-Komponente des DAGs dar, daher diskutiere ich indiesem Kapitel, wie man diese Darstellungen um Rückwärtsverweise erweiternkann.Diese Kombinationen zweier Kompressions-Ideen sollten jeweils in einer ver-besserten Kompression münden, also in einer Kompression mit einem kleinerenKomprimat. Um zu verhindern, dass das Einfügen eines Rückwärtsverweiseszu einer Aufblähung des ursprünglichen Komprimats führt, werden nur diejeni-gen Rückwärtsverweise umgesetzt, die �sinnvoll� sind, also zu einer Verkleine-rung führen. Genauer gesagt bedeutet dies, dass ein wiederholt vorkommenderTeilbaum nur dann durch einen Rückwärtsverweis umgesetzt wird, wenn dieKodierung des Verweises kleiner ist als die Kodierung des wiederholten Teil-baumes. Dies wird insbesondere dazu führen, dass Rückwärtsverweise, die aufsehr kleine Teilbäume verweisen (z.B. mit 1 Knoten) nicht als solche kodiertwerden, sondern statt dessen direkt die Kodierung des Teilbaums ins Kompri-mat geschrieben wird.112



DAG-basierende Kompression 1137.1 Kodierungsarten für RückwärtsverweiseIn diesem Kapitel diskutiere ich die Vorteile zweier möglicher Implementierun-gen der Rückwärtsverweise: der Inline-Kodierung einerseits und der Outline-Kodierung andererseits.Bei der Inline-Kodierung wird ein Rückwärtsverweis direkt an die entspre-chende Stelle im Komprimat geschrieben, gekennzeichnet durch ein Markie-rungstoken. Dadurch muss der Start-Knoten eines Rückwärtsverweises nichtexplizit kodiert werden, da er implizit aufgrund der Position bekannt ist.Bei der Outline-Kodierung werden alle Rückwärtsverweise separat in ei-nem Daten-Strom gespeichert. Dieser muss für jeden Rückwärtsverweis sowohlStart-Knoten als auch Ziel-Knoten explizit speichern.Im Folgenden werde ich die beiden Kodierungsarten zunächst vorstellen unddann den Speicherverbrauch beider Kodierungsarten vergleichen.7.1.1 Inline-KodierungBei der Inline-Kodierung wird der Rückwärtsverweis direkt an der entsprechen-den Position in den Strom geschrieben. Um einen Verweis zu kennzeichnen,wird eine spezielle Bitfolge � genannt Markierungstoken � die solch einen Ver-weis markiert, vorangestellt. Da natürlich diese Bitfolge auch zufällig im Stromauftreten kann, ohne dass sie einen Verweis darstellt, müssen solche zufälligenVorkommen entsprechend maskiert werden.Beispiel 7.1 Nehmen wir an, das Markierungstoken wäre die Bitfolge 111111.Es muss also gewährleistet sein, dass diese Bitfolge nicht zufällig an andererStelle im Strom auftreten kann. Dazu wird jedes Vorkommen der Bitfolge 11111durch die Bitfolge 111110 ersetzt. So wird zum Beispiel die Folge 111111 durch1111101 maskiert, und die Folge 111110 durch 1111100.Sei allgemein nun M=(m1, . . . ,mn), mit mi ∈ {0, 1}, 1 ≤ i ≤ n das Markie-rungstoken bestehend aus n Bits. Dann gilt: eine Bitfolge B=(b1, . . . , bn) mit
∀1 ≤ i < n : bi = mi wird maskiert durch die Bitfolge B'=(b1, . . . , bn−1, 1 −
mn, bn). Solch eine Maskierung von zufällig auftretenden Markierungstokenkann e�zient mit Hilfe eines Automaten umgesetzt werden.Für XML-Repräsentationen, in denen eine Position p im Strom nicht eindeu-tig einen Knoten identi�ziert � dies ist z.B. bei der DTD-Subtraktion der Fall� muss zusätzlich zu dem Markierungstoken die zur eindeutigen Identi�kationnoch fehlende Zusatzinformation an Position p geschrieben werden.Diese Kombination aus Markierungstoken an Position p, eventuell gefolgtvon zusätzlichen Identi�zierungsinformationen, gibt eindeutig den Start-Knotendes Rückwärtsverweises an. Darauf muss die eindeutige Indenti�zierungsinfor-mation für den Ziel-Knoten des Rückwärtsverweises folgen.



114 DAG-basierende Kompression7.1.2 Outline-KodierungBei der Outline-Kodierung werden Paare von Identi�zierungsinformationen fürStart- und Ziel-Knoten eines Rückwärtsverweises in einem extra Strom gespei-chert. Dies hat den Vorteil, dass keine Maskierung des bisherigen Stromeserfolgen muss, wodurch kein zusätzlicher Overhead entsteht. Im Vergleich zurInline-Kodierung muss allerdings zusätzlich die Position des Start-Knotens imStrom gespeichert werden. Ebenfalls erfordert ein zusätzlicher Strom durchVerwaltung und Synchronisation mit den anderen Strömen evtl. einen verwal-tungstechnischen Overhead.7.1.3 Speicherkosten von Inline- und Outline-KodierungBetrachten wir zunächst die durch die Inline-Kodierung entstandenen Zusatz-kosten. Zunächst einmal müssen im Strom alle zufälligen Auftreten der erstent-1 Bits des Markierungstoken maskiert werden, wobei t die Länge des Markie-rungstoken sei. Bei einem Strom der Länge n gibt es also insgesamt (n-(t-1)+1)Bitfolgen der Länge t-1, wobei für jede dieser Bitfolgen die Wahrscheinlichkeit,dass diese Bits gleich den ersten t-1 Bits des Markierungstokens sind, 1
2t−1 be-trägt, wenn wir davon ausgehen, dass alle möglichen Bitfolgen gleichverteiltsind. Nur wenn eine Bitfolge der Länge t-1 den ersten t-1 Bits des Markie-rungstokens entspricht, erhalten wir 1 Bit Overhead für die Maskierung derBitfolge. Wir erhalten also als Kosten M für die Markierung in etwa die fol-genden Kosten:

M(n) ≈ (n − (t − 1) + 1) ∗
1

2t−1
BitsZusätzlich benötigen wir die Kosten zur Speicherung jedes Verweises. Solch einVerweis besteht aus dem Markierungstoken mit t Bits, evtl. einer zusätzlichenIdenti�zierungsinformation mit i Bits sowie der Kodierung des Zielknotens mitz Bits. Nehmen wir an, wir haben v Verweise, so ergibt sich für die Gesamt-Verweiskosten V:

V (v) = v ∗ (t + i + z)BitsBei einer Analyse verschiedener DAG-Kompressionen von XML-Dokumentenhat sich gezeigt, dass v=n
r
mir r=150 für die Succinct-Darstellung und r=300für DTD-Subtraktion ein Mittelwert für die Anzahl der sinnvollen Verweiseist, dass es also im Mittel je 150 Bits bzw. 300 Bits der XML-Repräsentationeinen sinnvollen Rückwärtsverweis gibt. Somit erhalten wir:

V (n) =
n ∗ (t + i + z)

r
Bits



DAG-basierende Kompression 115Insgesamt betragen also die durch die Inline-Kodierung entstanden Zusatzko-sten
I(n) = M(n) + V (n) = (n − (t − 1) + 1) ∗

1

2t−1
+

n ∗ (t + i + z)

r
BitsBetrachten wir nun die durch die Outline-Kodierung entstandenen Zusatz-kosten. Je Verweis erhalten wir für die Outline-Kodierung zwei Knoten-Kodie-rungen der Länge z, da wir davon ausgehen können, dass die Identi�zierung desStart-Knotens dieselbe Anzahl an Bits benötigt wie die Identi�zierung des Ziel-Knotens. Wir erhalten also Zusatzkosten für die Outline-Kodierung in Höhevon:

O(n) = v ∗ 2 ∗ z =
2 ∗ n ∗ z

r
BitsUm nun für die beiden Kodierungsmöglichkeiten herauszu�nden, ob dieInline- oder die Outline-Kodierung weniger Zusatzkosten verspricht, muss alsodie Di�erenz D der beiden Zusatzkosten gebildet werden.

D(n) = I(n) − O(n)

= (n − (t − 1) + 1) ∗
1

2t−1
+

n ∗ (t + i + z)

r
−

2 ∗ n ∗ z

r
Bits

= n ∗ [
1

2t−1
+

t + i − z

r
] −

t − 2

2t−1
BitsIn Abhängigkeit von der Stromgröÿe n erhalten wir also eine Gerade mitSteigung m(t) = 1

2t−1 + t+i−z
r

, für die gilt, dass je geringer die Steigung ist,desto besser ist die Inline-Kodierung im Vergleich zur Outline-Kodierung. Esgilt
m(t) < 0 ⇔ z >

r

2t−1
+ t + ialso ist die Inline-Kodierung im Vergleich zur Outline-Kodierung besser, so-lange die Kosten der Ziel-Kodierung z(t,i) oberhalb der durch t und i vorgege-benen Schranke bleiben.Um die für die Inline-Kodierung im Vergleich zur Outline-Kodierung gün-stigste Länge t des Markierungstokens zu ermitteln, müssen wir das Minimumder Steigung mI von I(n) in Abhängigkeit von t berechnen.

mI(t) =
1

2t−1
+

t + i + z

r

m′

I(t) = −
ln(2)

2t−1
+

1

r



116 DAG-basierende Kompression7.2 Succinct-Verfahren mit DAG-PointernBei der Succinct-Darstellung genügt � wie in Kapitel 4 gezeigt � die Positioninnerhalb des Bitstroms zur eindeutigen Identi�zierung eines Knotens. Daherbeträgt die Länge i für � in diesem Fall nicht vorhandene � Zusatzinformationenzur Identi�zierung des Start-Knotens i=0.Mit dem für die Succinct-Darstellung sinnvollen Wert r=150 ergibt sich alsNullstelle von m′

I(t) und somit als minimale Steigung t=7,7. Da t jedoch nurganzzahlige Werte annehmen kann, ist für jede XML-Repräsentation t ∈ {7, 8}so zu wählen, dass mI(t) minimal ist.Berechnen wir also die Schranke für die Kosten der Ziel-Kodierung z für diebeiden sinnvollen Werte t=7 und t=8 sowie i=0, so erhalten wir z(7,0)>9,34und z(8,0)>9,17. Dies bedeutet, dass bis zu einer Ziel-Kodierung mit (ein-schlieÿlich) 9 Bits � entsprechend einer Paketgröÿe mit bis zu 512 Bits proPaket � die Outline-Kodierung besser ist als die Inline-Kodierung, aber ab ei-ner Ziel-Kodierung mit 10 Bits ist die Inline-Kodierung besser als die Outline-Kodierung.Im Folgenden wählen wir nun z=9 Bits für die Kosten der Ziel-Kodierung,um die für die Inline-Kodierung günstigste Tokenlänge t zu berechnen, damit z=9 eine Paketgröÿe von bis zu 512 Bits adressiert werden kann. Um zuermitteln, welche Tokenlänge t für die Inline-Kodierung optimal wäre, müssenwir mI(7)=0,14 und mI(8)=0,12 berechnen. Da bei einer Tokenlänge von t=8die Steigung der Geraden am geringsten ist, sollte also bei einem Vergleich derbeiden Kodierungen t=8 gewählt werden.Da bei t=8 die Steigung m(8)=0,001 positiv ist, gilt, dass mit steigen-der Stromgröÿe n die Outline-Kodierung immer besser wird als die Inline-Kodierung. Um diese Aussage aber richtig bewerten zu können, müssen wirnoch den Schnittpunkt mit der x-Achse bzw. die Nullstelle von D(n) berech-nen, um zu sehen, ab welcher Stromgröÿe n die Outline-Kodierung besser istals die Inline-Kodierung. Die Nullstelle von D(n) liegt bei n=450
11 ≈ 41, al-so ist ab einer Stromgröÿe von 41 Bits die Outline-Kodierung besser als dieInline-Kodierung.Für die Succinct-Darstellung sollte somit bei Paketgröÿen von bis zu 512die Outline-Kodierung gewählt werden, bei gröÿeren Paketgröÿen die Inline-Kodierung.Dies ergibt also bei der Outline-Kodierung pro Verweis zusätzliche Kostenin Höhe von 2 Integern. Da in der Succinct-Darstellung pro Knoten 2 Bits imBitstrom und 1 Integer im Symbolstrom bzw. in der invertierten Labellistegespeichert werden, lohnt die Umsetzung eines Rückwärtsverweises bereits abeiner Teilbaumgröÿe von 2 Knoten. Lediglich Rückwärtsverweise auf Teilbäu-



DAG-basierende Kompression 117me der Länge 1 (also z.B. auf den Text-Platzhalter =T) lohnen nicht in derUmsetzung und werden daher wiederholt.Die in diesem Abschnitt präsentierten Ideen zur Kombination von DAG-Kompression mit Succinct-Kodierung wurden in [15] verö�entlicht.7.3 DTD-Subtraktion mit DAG-PointernIm Gegensatz zur Succinct-Darstellung sind die Informationen zur eindeutigenIdenti�zierung eines Knotens in der DTD-Subtraktion teurer. Wie in Kapitel 6gezeigt, benötigen wir zur eindeutigen Identi�zierung den Syntaxknoten sowiedie Position innerhalb des KST.Im folgenden beschreibe ich zwei Varianten der Kombination von DTD-Subtraktion mit DAG-Pointern: die naive Variante und eine optimierte Va-riante, die auf sogenannten expliziten Knoten beruht. In der naiven Variantesind Verweise auf jeden Zielknoten des XML-Dokumentes erlaubt.Dies bedeutet, dass wir pro Knoten ca. 2 Integer (Syntaxknoten-ID + KST-Position) benötigen, also für einen Verweis in der Outline-Kodierung ca. 4Integer bzw. 32 Bits. Da im Schnitt ein Knoten mit ca. 2 Bits in der DTD-Subtraktion repräsentiert wird, bedeutet dies, dass erst eine Umsetzung vonRückwärtsverweisen ab einer Teilbaumgröÿe von mindestens 17 Knoten, alsosehr groÿen Teilbäumen, sinnvoll ist.Um diese Kosten zu senken, lässt die optimierte Variante die zusätzlich be-nötigte Identi�zierungsinformation � also die Syntaxknoten-ID � aus, indemeindeutig de�niert ist, welcher Knoten durch die KST-Position identi�ziertwird. Dadurch kann man zwar einige Rückwärtsverweise nicht realisieren, daeinige Knoten dadurch nicht adressierbar sind, aber die Menge der sinnvollenRückwärtsverweise sinkt dadurch nicht, sondern steigt sogar, wie Tests gezeigthaben.De�nition 7.1 (expliziter Knoten). Sei xml ein XML-Dokument, KST dasKomprimat zu xml, p eine Position im KST und sei V(p)={x ∈ xml| x kor-respondiert mit (KST, n, p), n ist ein Syntaxknoten} die Menge von XML-Knoten, die durch die Position p identi�ziert werden. Dann sei der expliziteKnoten eV(p) zu p de�niert durch eV(p)=(y ∈ V(p)| ∀x ∈ V (p) | y=x ∨ xsteht in einem Preorder-Durchlauf von xml vor y).Diese De�nition erlaubt uns, nur Rückwärtsverweise zu realisieren, die einenexpliziten Knoten als Start-Knoten haben, da dieser eindeutig aufgrund derKST-Position identi�ziert werden kann.Wir erhalten somit Zusatzkosten für zusätzliche Identi�zierungsinformatio-nen in Höhe von i=0. Mit dem für die DTD-Subtraktion sinnvollen Wertr=300 ergibt sich als Nullstelle von m′

I(t) und somit als minimale Steigung



118 DAG-basierende Kompressiont=8,7. Da t jedoch nur ganzzahlige Werte annehmen kann, ist für jede XML-Repräsentation t ∈ {8, 9} so zu wählen, dass mI(t) minimal ist. Berechnen wirwieder die Schranke für die Kosten der Ziel-Kodierung z für die beiden sinn-vollen Werte t=8 und t=9 sowie i=0, so erhalten wir wieder z(8,0)>10,34 undz(9,0)>10,17. Dies bedeutet, dass bis zu einer Ziel-Kodierung mit (einschlieÿ-lich) 10 Bits die Outline-Kodierung besser ist als die Inline-Kodierung, aber abeiner Ziel-Kodierung mit 11 Bits ist die Inline-Kodierung besser als die Outline-Kodierung. Da jedoch bei der DTD-Subtraktion die Kodierungskosten für denZielknoten den Syntax-Knoten sowie die KST-Position umfassen, könnten mitbis zu 10 Bits nur sehr kleine Pakete adressiert werden, so dass der bei derDTD-Subtraktion die Inline-Kodierung gewählt werden sollte.Wählen wir z.B. z=16 Bits für die Gesamtkosten der Ziel-Kodierung, so er-halten wir mI(8)=0,088 und mI(9)=0,087; es wäre also 9 die optimale Token-länge. Durch die Inline-Kodierung erhalten wir nun pro Verweis 9 Bits für dasMarkierungstoken sowie 16 Bits für die Kodierung des Ziel-Knotens, es lohnenalso Rückwärtsverweise von Teilbäumen, deren Kodierung mind. 26 Knotenumfasst. Der erwartete Komprimierungsanstieg durch die Kombination vonDAG und DTD-Subtraktion sollte deutlich geringer ausfallen als der erwar-tete Komprimierungsanstieg durch die Kombination von DAG und Succinct-Darstellung. Dieses wird auch durch dien in Kapitel 11 beschriebenen Messun-gen bestätigt.7.3.1 Opimierte Kompression durch Kombination von DAG undDTD-SubtraktionUm weiterhin die Kosten für Rückwärtsverweise zu senken, kann man versu-chen, die Kodierung des Ziel-Knotens e�zienter zu gestalten, z.B. indem manauf die Anfragbarkeit verzichtet, und davon ausgeht, dass das Dokument immerkomplett dekomprimiert wird.Ist dies der Fall, so erlauben die Rückwärtsverweise eine einfache Ziel-Kodie-rung: Da der verwiesene Teilbaum bereits dekomprimiert wurde zum Zeitpunktdes Einlesens des Rückwärtsverweises, kann von vornherein bei der Dekompres-sion die Position jedes erzeugten Knotens innerhalb des SAX-Event-Stromsrekonstruiert werden. Da nun jeder Knoten eine eindeutige Identi�zierung hat,nämlich seine Position innerhalb des DAG-Event-Stroms, kann man � wie auchim DAG-Event-Strom � als Kodierung des Zielknotens einfach die �Länge� desRückwärtsverweises angeben, also den Abstand vom Start-Knoten zum Ziel-Knoten.Durch solche eine optimierte Ziel-Kodierung � jedoch zum Preis des Verlustesder Anfragbarkeit � werden die Kosten für die Kodierung des Ziel-Knotensauf 8 Bits gesenkt, Umsetzung von Rückwärtsverweisen ab 9 Knoten werden



DAG-basierende Kompression 119sinnvoll. Im Gegenzug ist somit aber kein Überspringen von Teilbäumen mehrmöglich, zur Anfrage-Auswertung muss die komplette Struktur dekomprimiertwerden.7.4 Dekompression und NavigationSowohl Dekompression als auch Navigation können wie in den verwendetenKompressions-Verfahren � also in diesem Fall wie in den Kapiteln 4 und 6beschrieben � umgesetzt werden. Lediglich das Fortschreiten im Strom, alsodas Einlesen des nächsten Strom-Elementes weicht ab: Während bisher einfachdas nachfolgende Element des Bitstroms bzw. des KSTs gelesen wurde, müssenbei DAG-basierenden Verfahren auch die Rückwährtsverweise berücksichtigtwerden.Dies kann e�zient mit Hilfe eines Stacks zur Verarbeitungszeit geschehen(vergleiche Algorithmus 7.1). Wird der Start-Knoten s eines Rückwärtsverwei-ses erreicht (Zeile 9), so werden die Identi�zierungsinformationen von s obenauf dem Stack abgelegt (Zeile 10). Anschlieÿend wird zum Ziel-Knoten desRückwärtsverweises gesprungen (Zeile 11). Anderenfalls wird einfach die aktu-elle Position um 1 erhöht (Zeile 14). Sobald das Ende des aktuellen Teilbaumserreicht wurde (Zeile 6), wird das oberste Stack-Element vom Stack genommenund zum dort gespeicherten (ursprünglichen Start-Knoten) gesprungen (Zeile7).1 Stack jumpHistory ;2 int currentPos ;34 public void moveToNextToken5 {6 while ( endOfSubtreeReached ( ) ) {7 currentPos = jumpHistory . pop ( ) + 1 ;8 }9 i f ( i sPo in t e rSou r ce ( currentPos ) ) {10 jumpHistory . push ( currentPos ) ;11 currentPos = getPo interTarget ( currentPos ) ;12 }13 else {14 currentPos++;15 }16 } Algorithmus 7.1: moveToNextToken für DAG-basierte Kompression



120 DAG-basierende KompressionMit Hilfe der in Algorithmus 7.1 beschriebenen Methode zum DAG-basierten�Fortschreiten� im KST bzw. im Bitstrom, können Dekompression und Naviga-tion des Succinct-Verfahrens bzw. der DTD-Subtraktion übernommen werden,lediglich das Berechnen der nächsten Position im KST bzw. im Bitstrom mussmit Hilfe der Funktion moveToNextToken realisiert werden.



8 Integration derKonstanten in dasStruktur-KomprimatIn dieser Arbeit habe ich drei Kompressions-Verfahren inklusive zweier Kom-binationsmöglichkeiten zur Kompression von XML-Struktur-Strömen darge-stellt. Aufgrund der vorangegangenen Trennung von Struktur- und Daten-Strom (siehe Kapitel 3) sind diese Verfahren zur XML-Struktur-Kompressionim Prinzip beliebig kombinierbar mit verschiedenen Varianten der Daten-Kom-pression. Je nach Anwendung und daraus resultierenden Anforderungen kön-nen unabhängig voneinander Struktur-Kompressions-Verfahren sowie Daten-Kompressions-Verfahren ausgewählt werden, so dass die Anforderungen mög-lichst optimal erfüllt werden.Die in diesem Kapitel vorgestellten Ideen und Ansätze zur Integration vonStruktur- und Daten-Strom, sowie zur Kompression des Daten-Stroms sindgröÿtenteils keine eigenen Ideen, sondern stellen im Wesentlichen eine Zu-sammenfassung von in anderen Kompressoren verwendeten Ideen zur Daten-Kompression dar.8.1 Zeigerlose vs. verzeigerte Daten-IntegrationVor der Kompression enthalten die voneinander getrennten Ströme Struktur-Strom und Daten-Strom eine implizite, zeigerlose Verbindung: Der Text-Wertzum i-ten Platzhalter im Struktur-Strom be�ndet sich an der i-ten Position imDaten-Strom.Eine entsprechende implizite, zeigerlose Daten-Integration kann man auchim Zusammenhang mit den in dieser Arbeit vorgestellten XML-Struktur-Kom-pressions-Verfahren nutzen: Erhält ein Daten-Kompressions-Verfahren die Ord-nung der Text-Werte untereinander, kann also die Konstante, die im ursprüng-lichen Daten-Strom an Position i stand, eindeutig identi�ziert werden, so istkeine weitere Zeiger-Information notwendig, um Dekompression und Anfrage-121



122 Integration der Konstanten in das Struktur-KomprimatAuswertung korrekt auf der Kombination aus XML-Struktur-Kompression undDaten-Kompression durchzuführen. Eine solche implizite, zeigerlose Daten-Integration wird z.B. in [17] verwendet.Sollen allerdings nur Teile des Komprimats betrachtet werden � z.B. beipartieller Dekompression oder beim Überspringen nicht-relevanter Teilbäu-me bei der Anfrage-Auswertung � so muss dennoch die zu einem gegebe-nen Strukturknoten passende Text-Konstante gefunden werden. Dieses kannz.B. dadurch erreicht werden, dass für die 'übersprungenen' Anteile der XML-Repräsentation bekannt ist, wieviele Text-Konstanten in diesen Anteilen ent-halten sind. Eine Ermittlung dieser Anzahl zur Laufzeit kommt jedoch prinzi-piell einer Dekompression von Teilen der Struktur gleich, und stellt somit einenerheblichen Nachteil dieser zeigerlosen Daten-Integration, insbesondere bei derAnfrage-Auswertung, dar.Das entgegengesetzte Extrem hierzu wäre eine vollständige Verzeigerung vonden Text-Platzhaltern im Struktur-Strom zu den Text-Werten im Daten-Strom(und/oder je nach Anwendung auch umgekehrt). Dies würde bedeuten, dassman z.B. � ähnlich wie die Rückwärtsverweise in Kapitel 7 � entweder dasVerweis-Ziel an die Position des Platzhalters in der Struktur-Repräsentationinline kodiert, oder in einer separaten Daten-Struktur outline eine Liste vonVerweis-Start (Platzhalter-Position im Struktur-Strom-Komprimat) und Ver-weis-Ziel (Text-Wert-Position im Daten-Strom-Komprimat) speichert. Eine sol-che vollständige Verzeigerung wird z.B. in [8] verwendet.Der Nachteil dieses Verfahrens wird sehr schnell deutlich: Betrachtet maneinen binären XML-Baum, so sind etwa die Hälfte aller Knoten Text-Knoten,bei n Knoten erhalten wir n
2 Text-Platzhalter. Gehen wir von einer Outline-Kodierung aus, so beinhaltet der Zeiger-Strom pro Verweis mindestens 1 In-teger für die Position im Struktur-Strom-Komprimat � vorausgesetzt diese In-formation reicht zur eindeutigen Identi�zierung aus � und 1 Integer für diePosition im Daten-Strom-Komprimat. Wir erhalten also einen Overhead vonca. 1 Integer pro Dokument-Knoten.Um die Vorteile beider Verfahren zu vereinen und die Nachteile zu mini-mieren, emp�ehlt sich der Mittelweg: spärliche Verzeigerung. Hierzu wird fürgewisse Knoten (z.B. äquidistant nach jedem 50. Knoten, oder für jeden Wur-zelknoten eines Teilbaumes mit einer Tiefe, die ein Vielfaches von 4 ist) in einerInline- oder Outline-Kodierung gespeichert, wieviele Text-Knoten bis dahinvorhanden sind. Diese Informationen werden mit dem Komprimat gespeichertund übertragen, so dass diese Informationen zur Laufzeit bekannt sind. Wirdjetzt zu einem Text-Knoten der konkrete Wert gesucht, so muss zur Ermitt-lung des Text-Wertes nur entweder rückwärts oder vorwärts bis zu solch einemverzeigerten Knoten navigiert werden, die auf dem Weg liegende Anzahl anText-Platzhaltern ermittelt werden und auf die dort gespeicherte Anzahl ad-



Integration der Konstanten in das Struktur-Komprimat 123diert bzw. davon subtrahiert werden. Eine solche spärliche Verzeigerung wirdz.B. in [15] verwendet.Je nach Wahl der Verweis-Dichte überwiegen gewisse Vor- bzw. Nachteile die-ser Mischform: Je höher die Dichte gewählt wird, umso stärker nähern wir unsden Vor- und Nachteilen der vollständigen Verzeigerung: Wenig Berechnungs-Overhead bei partieller Dekompression und Anfrage-Auswertung gegenüber ge-sunkener Kompressionstärke. Entsprechend nähern wir uns umso stärker denVor- und Nachteilen der zeigerlosen Verzeigerung, je kleiner die Dichte ge-wählt wird: Optimale Kompressionsstärke gegenüber erhöhtem Berechnungs-Overhead bei partieller Dekompression und Anfrage-Auswertung.8.2 Kontextlose vs. Kontext-sensitiveDaten-KompressionDer Daten-Strom entsprechend De�nition 3.4 enthält nicht nur die eigentli-chen Text-Werte, sondern zusätzlich den Element- bzw. Attribut-Namen desübergeordneten Knotens. Diese Information kann als eine Art Kontext-Infor-mation betrachtet werden, die zur stärkeren Daten-Kompression verwendetwerden kann: Text-Werte, die demselben Element- bzw. Attribut-Namen zu-geordnet sind, stammen üblicherweise aus dem selben Wertebereich (das Ele-ment 'Postfach' z.B. enthält nur 5-stellige Zahlen, während das Element 'Ort'prinzipiell beliebige Zeichenketten enthält). Fasst man all diese Text-Werteeines Element- bzw. Attribut-Knotens mit identischem Label zusammen ineinen Daten-Container und komprimiert diese separat von den anderen Da-ten-Containern, so erhält man eine stärkere Kompression, als wenn man alleText-Werte in einem gemeinsamen komprimierten Container speichert [60].Diese verbesserte Kompression erhält man allerdings wiederum zum Preiseines Overheads in der Zeigerstruktur. Während es bei einem Container füralle Text-Werte gemeinsam genügte, zu speichern, wieviele Text-Werte vor demaktuellen Text-Wert vorhanden waren, muss man dies nun für alle Containerwissen. Dies bedeutet entweder, dass man an einem Verweis-Knoten für jedenContainer die Anzahl davorstehender Text-Werte speichern muss, oder manspeichert diese Information kontext-bezogen, also z.B. ein Verweis-Knoten mitName lab enthält nur Informationen über den zu lab gehörenden Container.Letzere Variante bedeutet entweder eine höhere Verweis-Knoten-Dichte oderein längeres Navigieren zum nächsten passenden Verweis-Knoten, also einenerhöhten Berechnungs-Aufwand.Auch hier erhalten wir wieder einen Trade-O� zwischen den zwei möglichenAlternativen kontextloser und kontext-sensitiver Daten-Kompression. Je nach



124 Integration der Konstanten in das Struktur-KomprimatAnwendung und Anforderungen kann die für diese Anforderungen günstigsteAlternative gewählt werden.8.3 Daten-Kompressions-VerfahrenIn diesem Teilkapitel werde ich einige Verfahren zur Daten-Kompression vor-stellen sowie deren Eigenschaften diskutieren.8.3.1 Daten-Liste mit generischem KompressorDie kompressionsstärkste Variante, um die in einem Daten-Container enthalte-nen Text-Werte zu komprimieren, ist die Kompression des gesamten Containers(im Gegensatz zur Kompression jedes Text-Wertes eines Daten-Containers se-parat, wie es z.B. bei ALM (siehe Kapitel 8.3.4) der Fall ist) mit Hilfe einesgenerischen Kompressors. Hierzu eignet sich z.B. das gzip-Verfahren, welchesauf Hu�man [55] und LZ77 [80] basiert, oder das bzip2-Verfahren, welchesunter anderem auf der Burrows-Wheeler-Transformation [27] basiert. Hierbeiversucht die Hu�man-Kodierung eine möglichst minimale Bit-Darstellung fürjedes Zeichen zu �nden, und das LZ77-Verfahren ersetzt � ähnlich wie derDAG � wiederholte Teilstrings innerhalb eines Fensters durch einen Verweis.Die Burrows-Wheeler-Transformation stellt eine umkehrbare Umsortierung derZeichen dar, so dass andere Kompressoren ein besseres Kompressions-Ergebniserzielen können.Da die Menge aller Text-Werte eines Containers prozentual eine höhere Re-dundanz enthält als die einzelnen Text-Werte, erreichen wir durch die Kom-pression eines kompletten Containers eine erheblich höhere Kompressionsstär-ke, als wenn diese Verfahren auf die Text-Werte separat angewendet wordenwären. Der dadurch erkaufte Nachteil durch die Kompression eines Contai-ners ist, dass beim Zugri� auf eine einzige Konstante der gesamte Containerdekomprimiert werden muss. Es müssen also � je nach Verfahren � z.B. alleText-Werte eines kompletten Fenster-Inhaltes eines unendlichen Daten-Stromsdekomprimiert werden.Soll das komplette Dokument dekomprimiert werden, ist dies kein Nachteilgegenüber anderen Verfahren � im Gegenteil: die Dekompression des gesamtenContainers wird voraussichtlich insgesamt weniger Zeit benötigen als die De-kompression jedes einzelnen Text-Wertes für sich. Betrachten wir aber wiederpartielle Dekompression und Anfrage-Auswertung, kann dies � besonders, wennder Anteil der benötigten Text-Werte gering ist und diese auf viele Containergestreut sind � einen erheblichen Overhead bedeuten.



Integration der Konstanten in das Struktur-Komprimat 125Im Vergleich der beiden Verfahren erzielt bzip2 die stärkere Kompression,während gzip eine schnellere Laufzeit vorweisen kann � wie auch in Kapitel 11zu sehen ist.8.3.2 Hu�manMöchte man den Nachteil umgehen, dass immer komplette Container ent-packt werden müssen, bietet sich die Kompression der einzelnen Text-Werte viaHu�man-Kodierung [55] an. Die Hu�man-Kodierung basiert auf einer Häu�g-keitsanalyse der einzelnen Zeichen und generiert eine Zeichenkodierung, die einZeichen mit umso weniger Bits kodiert, je häu�ger dieses Zeichen insgesamtauftritt. Hierbei wird zwischen statischer und adaptiver Hu�man-Kodierungunterschieden. Die adaptive Hu�man-Kodierung erfordert ein zweimaligesDurchqueren der zu komprimierenden Daten, um im ersten Schritt die Häu�g-keitsanalyse durchzuführen und im zweiten Schritt die Daten entsprechend zukodieren. Die statische Hu�man-Kodierung nutzt eine vorher bekannte Häu-�gkeitsverteilung (z.B. sprachabhängig), so dass ein einmaliger Durchlauf zumKodieren ausreicht.Neben dem Vorteil, dass bei diesem Ansatz nicht mehr der komplette Contai-ner dekomprimiert werden muss, hat die Hu�man-Kodierung noch einen wei-teren Vorteil: gleiche Zeichenketten führen zu gleicher Kodierung. Aufgrunddieser Eigenschaften können Gleichheits-Tests (z.B. bei der Auswertung vonPrädikaten) oder auch Prä�x-Tests direkt auf dem Komprimat durchgeführtwerden und erfordern keinerlei Dekompression.8.3.3 SequiturSequitur [65] führt in gewissem Maÿe die Idee von Hu�man fort, in dem esnicht nur einzelne Zeichen separat betrachtet, sondern Muster aus mehrerenZeichen.Sequitur ersetzt sich wiederholende Zeichenfolgen in Zeichenketten mit Hilfegrammatikalischer Regeln. Hierzu fasst es zunächst mehrfach auftretende Di-gramme � also Paare von Zeichen � zu einer Grammatikregel zusammen, undersetzt diese Digramme durch einen entsprechenden Regelaufruf. Dies wirdhierarchisch fortgesetzt, bis keinerlei Ersetzungen mehr möglich sind. Dabeimuss das Dokument nur einmal linear durchquert werden, lediglich die dabeiaufgebaute Grammatik muss evtl. mehrfach durchsucht werden bei der Su-che nach passenden Regeln. Um eine noch stärkere Kompression zu erreichen,kann im Anschluss an den ersten Durchlauf in einem zweiten Durchlauf für je-de Regel eine optimale Regel-ID mit Hilfe des Hu�man-Verfahrens anhand derAufrufhäu�gkeit bestimmt werden, um so die Gesamtgröÿe der Regelaufrufezu minimieren.



126 Integration der Konstanten in das Struktur-KomprimatEbenso wie beim Hu�man-Verfahren können Gleichheits- und Prä�x-Testsdirekt auf dem Komprimat durchgeführt werden und erfordern keinerlei De-kompression.8.3.4 ALMALM (Antoshenkov-Lomet-Murray) [6, 7] ist ein ordnungserhaltendes Kom-pressions-Verfahren. ALM fasst mehrfach auftretende Teilstrings mit Hilfe ei-nes Wörterbuchs zu kürzeren Token zusammen, wobei die Token alm(a) einesTeilstrings a so gewählt werden, dass gilt: alm(a) < alm(b) ⇒ a < b für alleTeilstrings a und b. Dadurch entsteht eine Kompression mit der Eigenschaft,dass Vergleiche mit =,<,> direkt auf dem Komprimat ausgewertet werdenkönnen, ohne Dekompression der betro�enen Text-Werte. Dies gilt bei die-sem Verfahren jedoch nicht für Prä�x-Tests, da ALM es erlaubt, für gleichePrä�xe verschiedene Token zu wählen. Somit kann pro Container ein globalesALM-Wörterbuch erstellt werden, und die einzelnen Text-Werte können mitHilfe dieses Wörterbuchs dekodiert werden, ohne den gesamten Container zudekodieren.ALM erlaubt keine Prä�x-Tests auf dem Komprimat, dafür sowohl Gleich-heits-Tests als auch Ungleichheits-Tests.8.4 Fazit: Unabhängige Struktur- undDaten-KompressionZusammenfassend kann man sagen, dass die in dieser Arbeit vorgestelltenStruktur-Kompressions-Verfahren (Succinct-Verfahren, DAG, DTD-Subtrakti-on sowie deren Kombinationen) orthogonal und damit beliebig kombinierbarsind mit allen vorgestellten Techniken und Verfahren zur Text-Kompression(z.B. gzip, bzip2, Sequitur, ALM) und mit allen Verfahren zur zeigerlosenoder verzeigerten Daten-Integration sowie der kontextlosen und der kontext-sensitiven Daten-Kompression.



9 E�zienteXPath-Auswertung aufXML-DatenströmenBisher wurden in dieser Arbeit verschiedene Verfahren zur Struktur-Kompres-sion sowie Kombinations-Möglichkeiten dieser Verfahren vorgestellt und dis-kutiert, wie diese Verfahren zur Struktur-Kompression mit vorhandenen Ver-fahren zur Daten-Kompression integriert werden können. Für diese Struktur-Kompressions-Verfahren wurde die Anfrage-Auswertung in Form der Basis-Operationen �rst-child, next-sibling und parent vorgestellt. Um jedoch her-kömmliche XPath-Pfad-Anfragen beantworten zu können, bedarf es noch einesVerfahrens, welches die XPath-Anfragen umwandelt in Aufrufe der Operatio-nen �rst-child, next-sibling und parent.In diesem Kapitel werde ich daher zunächst einen Automaten-basierten An-satz zur Auswertung von XPath-Anfragen auf einem binären SAX-Strom vor-stellen. Dieses Verfahren zur Auswertung von XPath-Anfragen auf binärenSAX-Event-Strömen wurde in [22] publiziert. Im weiteren Verlauf dieses Kapi-tels werde ich dann zeigen, wie man das Konzept generalisieren kann, so dassdarauf aufbauend ein XPath-Auswerter für beliebige XML-Repräsentationenentwickelt werden kann. Jede XML-Repräsentation muss zur XPath-Auswer-tung lediglich eine schlanke Schnittstelle bestehend aus den Methoden get-FirstChild, getNextSibling, getLabel sowie getType implementieren.9.1 XPath-Auswertung auf binärenSAX-Event-StrömenDas in diesem Kapitel beschriebene Verfahren zur Auswertung von XPath-Anfragen auf herkömmlichen XML-Strömen basiert auf Automaten zur Re-präsentation von XPath-Anfragen, welche einen XML-Strom als Eingabe le-sen. Eingaben zu diesem Verfahren sind ein binärer SAX-Event-Strom und ei-ne Anfrage basierend auf den Vorwärtsachsen descendant, descendant-or-self,127



128 E�ziente XPath-Auswertung auf XML-Datenströmenself, child und following-sibling. Wie man die übrigen XPath-Achsen auf die-se Vorwärtsachsen zurückführen kann, wurde in Kapitel 2.4.1 gezeigt. Aus-gaben dieses Verfahrens sind diejenigen Fragmente des SAX-Event-Stroms inDokument-Reihenfolge, deren Wurzel ein Ergebnis der XPath-Anfrage ist.Dieses Kapitel gliedert sich wie folgt: Zunächst werden die elementarenXPath-Automaten für die Vorwärtsachsen vorgestellt. Anschlieÿend wird er-läutert, wie man für eine XPath-Pfad-Anfrage (ohne Filter) einen XPath-Automaten zusammensetzt und mit dessen Hilfe die Pfad-Anfrage auf demEingabe-Strom auswertet. Anschlieÿend wird die Behandlung und Auswertungvon Filtern in Anfragen erläutert. Schlieÿlich wird erläutert, wie man aufbau-end auf den XPath-Automaten eine Anfrage-Auswertung mit Hilfe der Funk-tionen getFirstChild, getNextSibling, getLabel und getType umsetzen kann.9.1.1 Elementare XPath-AutomatenIn diesem Kapitel werde ich die elementaren XPath-Automaten vorstellen, dieAchsen- und Knotentests eines Location-Steps innerhalb einer Pfad-Anfragerepräsentieren. Entsprechend De�nition 2.5 können alle Vorwärtsachsen mitHilfe der atomaren XPath-Achsen �rst-child und next-sibling berechnet wer-den. Aufbauend auf dieser Beobachtung werde ich für alle Vorwärtsachsen einenelementaren XPath-Automaten de�nieren, der als Eingabe nur die Ereignissefc (�rst-child), ns (next-sibling) sowie s (self) gefolgt von einem Knotentest ak-zeptiert. Aufgrund dieses minimalen Eingabe-Alphabets erhalten wir schlankeAutomaten zur XPath-Auswertung, die einerseits ein lineares Durchqueren desStroms erlauben, andererseits auch sehr speichere�zient darstellbar sind.Formal ist ein XPath-Automat wie folgt de�niert:De�nition 9.1 (XPath-Automat). Ein XPath-Automat einer XPath-Anfrage
path ist ein nicht-deterministischer endlicher Automat (NFA)

XP = (Q,Σ, q0, δ, f),wobei
• Q die endliche Zustandsmenge ist (wir schreiben hierfür im folgendenauch XP.Q)
• Σ = {fc, ns} ∪ {s::a | a ist ein Element-Name, '@' gefolgt von einemAttribut-Namen, '=' gefolgt von einer Konstante oder ′∗′} ist die Mengeder Eingabe-Symbole
• q0 ∈ Q ist der Startzustand
• δ : Q×Σ×Q ist eine Relation von Übergängen (q1, e, q2), wobei q2 dannein Nachfolge-Zustand von q1 ist, wenn das Symbol e vom NFA gelesenwird
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• f ∈ Q ist der Endzustand.Weiterhin bezeichne active ⊆ Q die Menge der derzeit aktiven Zustände.Um den XPath-Automaten einer Pfad-Anfrage zu berechnen, wird zunächsteinmal die Pfad-Anfrage in eine Liste von Location-Steps unterteilt und an-schlieÿend für jeden Location-Step der elementare XPath-Automat berechnet.Anschlieÿend wird der XPath-Automat zur Anfrage zusammengesetzt.Ein Location-Step besteht aus einer Achsen-Bedingung sowie aus einemKnoten-Test. Dementsprechend kann jeder Location-Step der FormAchse::Knotentest durch die Folge von Location-Steps Achse::*/self::Knotentestdargestellt werden. Ebenso kann jedes binäre Ereignis �rstChild(Label) bzw.nextSibling(Label) durch die Ereignisfolge �rstChild(*);self(Label) bzw.nextSibling(*);self(Label) repräsentiert werden.Dementsprechend benutzen wir � abweichend zu den im Kapitel 2 beschrie-benen Umformungsregeln � zur Berechnung der elementaren XPath-Automatendie folgenden Umformungsregeln, welche den Vorteil haben, dass nach einer�rst-child bzw. next-sibling Achse immer mindestens eine self-Achse steht. Die-se Reihenfolge entspricht der Eingabe des Automaten � dem oben beschriebe-nen, modi�zierten binären SAX-Event-Strom.
• child :: a → first−child : ∗(/self :: ∗/next−sibling :: ∗)i/self :: a, 0 ≤

i < ∞

• following− sibling :: a → next− sibling :: ∗(/self :: ∗/next− sibling ::
∗)i/self :: a, 0 ≤ i < ∞

• descendant :: a → first− child : ∗(/self :: ∗(/first− child :: ∗|/next−
sibling :: ∗))i/self :: a, 0 ≤ i < ∞

• descendant−or−self :: a → self :: a|first−child : ∗(/self :: ∗(/first−
child :: ∗|/next − sibling :: ∗))i/self :: a, 0 ≤ i < ∞Zu diesen regulären Ausdrücken bilden wir nun die äquivalenten, nicht-deterministischen Automaten � die sogenannten elementaren XPath-Automaten� welche in Abbildung 9.1 gezeigt werden.9.1.2 Auswertung von Pfad-AnfragenDer vollständige XPath-Automat zu einer Pfad-Anfrage XP wird konstruiert,indem die elementaren XPath-Automaten zu den Location-Steps von XP inder durch XP vorgegebenen Reihenfolge konkateniert werden. Um die elemen-taren XPath-Automaten A1 und A2 der Location-Steps L1 und L2 zu einemXPath-Automaten XP zu konkatenieren, wird der Endzustand von A1 mitdem Startzustand A2 zu einem einzigen Zustand zusammengefasst. Der Start-
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q0 q1

q2

q3
fc s::*s::ans(a) child

q0 q1

q2

q3
ns s::*s::ans(b) following-sibling

q0 q1

q2

q3
fc s::*s::afc,ns(c) descendant

q0 q1

q2

q3
fc s::* s::*s::afc,ns(d) descendant-or-selfAbbildung 9.1: Elementare XPath-Automatenzustand von XP ist dann der Startzustand von A1 und der Endzustand vonXP ist der Endzustand von A2.Wird der Endzustand eines Automaten zu einer Pfad-Anfrage erreicht, sowurde im Eingabe-Strom ein Antwort-Fragment gefunden, so dass der dannaktuelle 'Teilbaum' des binären SAX-Stroms als Ergebnis ausgegeben werdenkann.Durch ein binäres SAX-Event �rstChild('Name') wird zunächst die Einga-be fc an den Automaten weitergeleitet, und dann wird auf dem Automatensolange die Eingabe s::Name ausgewertet, bis keine Zustandsänderung mehrerfolgt. Hierbei gilt, dass bei Eingabe s::Name sowohl die Übergänge mit Labels::Name, als auch die Übergänge mit Label s::* aktiviert werden.Beispiel 9.1 Betrachten wir die XPath-AnfrageXP = /Adressen/Person[./Ort='Berlin']/Name, die nach dem Namen in Ber-lin lebender Personen fragt. Die Haupt-Pfad-Anfrage istXP' = /Adressen/Person/Name. Der dazugehörige XPath-Automat wird inAbbildung 9.2 dargestellt.Betrachten wir nun als Eingabe dieses Automaten den binären SAX-Stromaus Listing 3.2. Nachdem die ersten 10 Events bis einschlieÿlich des Events�rstChild('Person') gelesen und im Automaten ausgewertet wurden, be�ndet
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q0 q1

q2

q3 q4

q5

q6 q7

q8

q9
fc s::*s::Adressenns fc s::*s::Personns fc s::*s::Namens

Abbildung 9.2: XPath-Automat zu XP'=/Adressen/Person/Namesich der Automat in den Zuständen q5 und q6. Der Zustand q6 sagt hierbeiaus, dass ein Ergebnis für die Teil-Anfrage /Adressen/Person gefunden wurde,während der Zustand q5 die Teil-Anfrage /Adressen/* repräsentiert. Zustand
q4 entspricht der Aussage �der Achsentest /Adressen/child:: ist erfüllt�.Damit q6 auch wieder nach dem Lesen des später folgenden EventsnextSibling('Person') aktiviert wird, muss der Automat sich nach Abarbei-ten des Teilbaumes der ersten Person wieder genau in den Zuständen q5 und
q6 be�nden. Hierzu muss das Ende eines Teilbaumes ermittelt werden, wasnur mit Hilfe von Zählen der �rstChild- und parent-Events geschehen kann.Dies kann jedoch nicht durch einen Automaten geschehen. Daher benutzen wirzusätzlich zum Automaten einen Zustands-Stack, der die Folge der Automaten-Zustände verwaltet. Bevor ein �rstChild-Event ausgewertet wird, werden dieaktuellen Zustände des Automaten auf dem Zustands-Stack abgelegt. Nach-dem ein parent-Event gelesen wurde, wird die oberste Stack-Ebene vom Stackheruntergenommen, und die darin enthaltenen Zustände werden wieder aufdem Stack aktiviert.De�nition 9.2 (XPath-Auswertungs-Stack). Ein XPath-Auswertungs-Stackeines XPath-Automaten XP ist ein 3-Tupel

XPE = (XP,Σ,∆),wobei
• XP.q0 als das initiale Stack-Symbol benutzt wird
• Σ = {fc, ns, p} ∪ {s::a | a ist ein Element-Name, '@' gefolgt von einemAttribut-Namen, '=' gefolgt von einer Konstante oder ′∗′} ist die Mengeder Eingabe-Symbole
• ∆(Σ) ist eine Auswertungs-Funktion, welche für ein gegebenes Eingabe-Symbol σ ∈ Σ eine Folge von Operationen ausführt:� ∆(fc) =

{ push(XP.active);XP.event(fc); }
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{ XP.event(ns); }� ∆(s :: a) =

{ XP.closure(s::a); }� ∆(p) =
{ XP.active = pop(); }Hierbei feuert die Operation voidXP.event(InputSymbol) das Ereignis

InputSymbol auf dem XPath-Automaten XP . Die Operation
voidStack.push(XP ) legt die aktive Zustandsmenge des XPath-Automaten
XP als oberstes Element auf den Stack. Die Operation voidStack.pop() löschtdas oberste Stack-Element vom Stack und liefert diese als Ergebnis zurück.Der Operator closure, welcher bei Eingabe von s :: a ausgeführt wird, sendetwiederholt das Eingabe-Ereignis s :: a an den XPath-Automaten XP, bis sichdie Zustandsmenge dieses Automaten nicht mehr ändert.Bei Eingabe von fc wird also die aktive Zustandsmenge von XP oben aufden Stack gelegt. Anschlieÿend wird für XP das Eingabe-Ereignis fc gefeuert.Zusammengefasst wird die Auswertung von (�lterfreien) Pfad-Anfragen wiefolgt durchgeführt: Jede Pfad-Anfrage X wird auf einem binären SAX-StromBS ausgewertet, indem der XPath-Automat XP zu X berechnet wird, und derXPath-Auswertungs-Stack mit XP als XPath-Automaten und mit BS als Ein-gabe ausgeführt wird. Jedes binäre SAX-Event wird dem Stack als Eingabe(bzw. als Folge von Eingaben) weitergeleitet, und die ∆-Funktion wird aufdieser Eingabe ausgeführt. Dies führt potentiell sowohl zu Stack-Operationenals auch zu einer Zustandsänderung des XPath-Automaten. Sobald ein End-zustand des XPath-Automaten erreicht wurde, wird der Teilbaum, der durchdas aktuelle SAX-Event reprästentiert wird, als Ergebnis z.B. in einen Ausga-bestrom geschrieben.Beispiel 9.2 Abbildung 9.3 zeigt den Anfang der Auswertung der AnfrageXP'=/Adressen/Person/Name. Der Automat hierzu wird in Abbildung 9.2 dar-gestellt. Hierbei werden in den Eingabesymbolen aus Platzgründen die ElementeAdressen mit A, Person mit Pe, Name mit N und Postfach mit Po abgekürzt.Als Eingabe wird der binäre SAX-Strom aus Listing 3.2 angenommen, jedochohne die 4. Ebene (also die Knoten Name und Postfach enthalten jeweils keinen�rst-child-Knoten).In der Abbildung besteht jeder Knoten aus der aktuellen Liste der aktivenZustände des Automaten (1. Knotenzeile) sowie dem Zustands-Stack (die wei-teren Zeilen).Würde das Beispiel bis zum Ende durchgeführt, so würde insgesamt 3 Malder Endzustand q9 des Automaten erreicht, nachdem das Event s::N eingelesenwurde, welches das jeweilige Namens-Element repräsentiert.
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fc s::A fc s::Pe fc s::N nss::Pop ns s::Pe fc s::N nsAbbildung 9.3: Ausschnitt der Auswertung der Anfrage/Adressen/Person/Name9.1.3 Auswertung von Prädikat-FilternEnthält ein Location-Step LS einen Prädikat-Filter, so wird auch für denFilter-Pfad ein XPath-Automat gebildet. Dieser wird an den Endzustand deselementaren XPath-Automaten zu LS angehängt. Im Gegensatz zum XPath-Automaten des Haupt-Pfades erzeugt das Erreichen des Endzustandes desXPath-Automaten eines Filter-Pfades keine Ausgabe.Wird ein Zustand aktiviert, der einen Übergang zum Startzustand einesFilter-Automaten enthält, so wird ein sogenannter Vorbehalt erzeugt und anden aktuellen Zustand angehängt. Gleichzeitig wird der Startzustand des Filter-Automaten mit demselben Vorbehalt aktiviert. Dies bedeutet, dass alle einge-henden SAX-Events nicht nur vom Haupt-Automaten, sondern auch von allenaktiven Filter-Automaten ausgewertet werden. Jeder Vorbehalt entspricht ei-ner Boole'schen Variablen, die zu true evaluiert wird, sobald ein Endzustandim Filter-Automaten erreicht wird. Entsprechend wird die Boole'sche Variablezu false evaluiert, sobald die Filter-Bedingung nicht mehr erfüllt werden kann,also sobald dieser Vorbehalt weder in einem Zustand im Automaten noch ineinem auf dem Stack gespeicherten Zustand enthalten ist.Genauer gesagt werden Vorbehalte also wie folgt berechnet: Seien R, R1und R2 Mengen von Vorbehalten und sei res: XP.Q x R eine Zuordnung vonXPath-Automaten-Zuständen zu Mengen von Vorbehalten. Initial enthält keinZustand einen Vorbehalt, es gilt also: ∀q ∈ XP.Q : res(q, ∅).Wird ein Zustand q in XP.Q erreicht, der einen Verweis auf einen Filter-Automaten enthält, so wird die Zuordnung res(q,R) ersetzt durch eine Zuord-nung res(q, R ∪ {r}), wobei r ein neuer, für q erzeugter Vorbehalt sei.



134 E�ziente XPath-Auswertung auf XML-DatenströmenWird ein Übergang der Form (q1, Eingabe, q2) gefeuert, werden alle Vorbe-halte R1 von q1 mit res(q1,R1) auch dem Zustand q2 hinzugefügt, es gilt alsores(q2,R2), wobei R2 = R1 ∪ {r1, . . . , rf}, wobei r1, . . . , rf neu in q2 erzeugteVorbehalte seien.Wird ein Endzustand f des Haupt-Automaten erreicht, der einen Vorbehaltr enthält, der noch nicht zu true oder zu false evaluiert wurde, so wird dieAusgabe der Ergebnis-Fragmente EFr zu f verzögert und in einer Warteschlan-ge verwaltet, bis r ausgewertet wurde. Wird r zu true evaluiert, so wird EFrausgegeben und aus der Warteschlange entfernt (sobald es den Anfang derWarteschlange erreicht hat). Wird r allerdings zu false evaluiert, so wird EFraus der Warteschlange gelöscht, ohne ausgegeben zu werden.Sobald ein Vorbehalt zu false evaluiert wird, verlieren alle Zustände, die die-sen Vorbehalt enthalten, ihre Gültigkeit und können im Automaten deaktiviertwerden bzw. aus dem Stack gelöscht werden.Beispiel 9.3 Erweitern wir Beispiel 9.2 auf die komplette XPath-Anfrage XP= /Adressen/Person[./Ort='Berlin']/Name. Der dazugehörige XPath-Automatwird in Abbildung 9.4 dargestellt. Der Haupt-Automat enthält die Zustände q0bis q9, und der Filter-Automat enthält die Zustände q10 bis q16 und ist an denZustand q6 des Hauptautomaten angehängt.
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Abbildung 9.4: XPath-Automat zu XP'=/Adressen/Person[Ort='Berlin']/NameAbbildung 9.5 zeigt die Auswertung des binären Beispiel-Stroms auf diesemAutomaten. Bei Aktivierung des Zustandes q6 wird der Filter-Automat gestar-tet, und Zustand q10 wird aktiv. Gleichzeitig wird durch diesen Aufruf des



E�ziente XPath-Auswertung auf XML-Datenströmen 135Filter-Automaten ein Vorbehalt r1 angelegt. Im 7. Schritt (Zeile 2, 2. Zustands-Stack) wird der Zustand q9 erreicht, doch unter dem Vorbehalt r1. Die Ausgabeim 7. Schritt erfolgt daher noch unter Vorbehalt. Der Vorbehalt r1 bleibt beste-hen, solange r1 noch nicht evaluiert wurde.
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fc s::A fc s::Pefcs::N ns s::Po pnss::Pe fc s::NAbbildung 9.5: Ausschnitt der Auswertung der Anfrage/Adressen/Person[Ort='Berlin']/NameIm 11. Schritt (Zeile 3, 1. Zustands-Stack) schlieÿlich kann r1 zu false eva-luiert werden, da weder ein Zustand existiert, der r1 enthält, noch ein zu r1gehörender Zustand im Filter-Automat mehr auf dem Stack enthalten ist. So-mit gehört also das im 7. Schritt ermittelte Ergebnis nicht zur Ausgabe. Im12. Schritt wird bei erneuter Aktivierung des Zustandes q6 ein neuer Vorbehalt
r2 erzeugt, und der Filter-Automat wird erneut aktiviert. Dieser Vorbehalt r2wird später zu true evaluiert, so dass schlieÿlich als Ergebnis <Name><=AnnaSchmidt></Name> ausgegeben werden wird.9.1.3.1 Zusammengesetzte Prädikat-FilterDa ein Prädikat-Filter nicht nur einfache Vergleiche Pfad=Wert enthaltenkann, sondern eine logische Verknüpfung verschiedener Vergleiche inklusiveverschachtelter Negationen, Disjunktionen oder Konjunktionen von Verglei-chen, stellen auch Vorbehalte logische Verknüpfungen von Unter-Vorbehaltendar. Ein Prädikat-Filter [(comp1 or comp2) and not comp3], wobei comp1,comp2 und comp3 Vergleiche oder Pfad-Ausdrücke sind, erzeugt einen zusam-



136 E�ziente XPath-Auswertung auf XML-Datenströmenmengesetzten Vorbehalt r = ((r1 or r2) and not r3) und jeweils einen Filter-Automaten für die Unter-Vorbehalte r1, r2 und r3.Sowohl einfache als auch zusammengesetzte Vorbehalte können mit Hilfe ei-ner Lemma-Tabelle verwaltet werden. Sobald ein Vorbehalt ausgewertet wur-de, wird dieses Ergebnis an die Lemma-Tabelle weitergeleitet. Mit Hilfe derLemma-Tabelle wird dann überprüft, welche Vorbehalte bereits vollständigausgewertet werden können, und anschlieÿend werden diese Ergebnisse an denXPath-Automaten, den Stack und die Warteschlange weitergeleitet und Zu-stände sowie Ausgabe-Ereignisse werden gelöscht und evtl. ausgegeben.9.2 Automaten-basierte XPath-Auswertung mitgetFirstChild und getNextSiblingDer bisherige Ansatz � wie im vorangehenden Abschnitt vorgestellt � erhält alsEingabe einen kompletten binären SAX-Strom. Dessen Erzeugung kommt je-doch im Normalfall für alle XML-Repräsentationen einer Dekompression gleich.Daher werde ich nun vorstellen, wie man, basierend auf diesen Konzepten, ei-ne weitere Schnittstelle aufbauen kann, die durch die Verwendung der für dieeinzelnen Kompressionsverfahren vorgestellten Funktionen �rst-child und next-sibling das Überspringen nicht benötigter Teilbäume ermöglicht.Beispiel 9.4 Betrachten wir den Automaten aus Abbildung 9.4 und nehmenwir an, dass momentan die Zustände q8 und q12 aktiv sind (wie etwa im vor-angegangenen Beispiel im 9. Schritt nach Verarbeitung des nextSibling('Post-fach')-Events). Wie wir sehen können, werden die beiden Übergänge, die bei
q8 und q12 starten, durch das Eingabe-Symbol ns ausgelöst. Dies bedeutet,dass nur das next-sibling 'zielführend' ist, dass also das �rst-child und derkomplette Teilbaum unterhalb des �rst-childs übersprungen werden können.Dies entspricht einem Aufruf der jeweiligen Funktion next-sibling der XML-Repräsentation.Der nun folgende Ansatz ermöglicht genau solch ein Überspringen von nichtrelevanten Teilbäumen. Wir gehen hierbei davon aus, dass jede XML-Reprä-sentation neben den Funktionen �rstChild, nextSibling und label auch eineKlasse XMLNode implementiert, die aus Informationen besteht, die zusam-men einen XML-Knoten im Original-Dokument eindeutig identi�zieren. Dieswäre für die Succinct-Darstellung z.B. die Position innerhalb des Bitstromsund für die DTD-Subtraktion das Tupel (KST, n, p) bestehend aus Kompri-mat KST, Syntaxknoten n und Position p innerhalb des Komprimats. Um dasÜberspringen nicht relevanter Teilbäume zu ermöglichen, wird in diesem An-satz der XPath-Auswertungs-Stack des vorherigen Ansatzes durch einen zwei-ten Stack, den Navigations-Stack, ersetzt. Dieser enthält Paare aus XMLNodes



E�ziente XPath-Auswertung auf XML-Datenströmen 137x und zugehörigen Automaten-Zuständen, die nach Verarbeitung von x aktivsind.Im ersten Ansatz war der binäre Strom das steuernde Element: Das Symbol,das als nächstes aus dem SAX-Strom gelesen wurde, entschied über die näch-sten auszuführenden Aktionen. Dies ist nun nicht mehr der Fall. Statt dessensind der Navigations-Stack und der XPath-Automat die steuernden Elemente:Abhängig davon, welche XMLNodes und Zustände oben auf dem Stack liegenbzw. welche Arten von Übergängen von diesen Zuständen ausgehen, werden�rst-child und next-sibling konsumiert oder übersprungen.De�nition 9.3 (Navigations-Stack). Ein Navigations-Stack eines XPath-Au-tomaten und einer XML-Repräsentation Comp ist ein 3-Tupel
XPE = (XP,Comp, navigate()),wobei

• Comp eine XML-Repräsentation ist, und Comp.V alle Identi�zierungs-Informationen zur eindeutigen Identi�zierung eines XML-Knotens V bein-haltet. Entsprechend beinhaltet Comp.root alle Identi�zierungs-Infor-mationen zur eindeutigen Identi�zierung des Wurzelknotens des XML-Baums.
• Jede Stack-Ebene aus einem 3-Tupel (node, setOfStates, fc) besteht, wo-bei node ∈ Comp.V ein XMLNode von Comp ist, setOfStates ⊆ XP.Qeine Zustandsmenge von XP ist, und fc eine Boole'sche Variable ist.
• Das Tupel (Comp.root, XP.q0, false) das initiale Stack-Symbol ist.
• Die Funktion navigate() die Steuerungs-Funktion ist, welche entspre-chend Algorithmus 9.1 de�niert ist.1 Navigat ionStack nst ;23 public stat ic void f i r eEven t (XMLNode x , S t r ing event ){4 i f (x!=null ) {5 nst .XP. a c t i v e = s t a t e s ;6 nst .XP. event ( event ) ;7 Set s t a t e s = nst .XP. a c t i v e ;8 i f ( nst .XP. c o n t a i n s S e l f ( s t a t e s ) ) {9 nst .XP. event ( ' s : : ' + x . label ( ) ) ;10 s t a t e s = nst .XP. a c t i v e ;11 }



138 E�ziente XPath-Auswertung auf XML-Datenströmen12 nst . push (x , s ta t e s , fa l se ) ;13 }14 }1516 public stat ic void nav igate ( )17 {18 while ( ! nst . isEmpty ( ) ) {19 StackEntry top = nst . top ( ) ;20 XMLNode x = top . getNode ( ) ;21 Set s t a t e s = top . g e tS t a t e s ( ) ;22 i f ( ! nst . top ( ) . f c ) { // f i r s t −c h i l d noch n i c h tv e r a r b e i t e t23 i f ( nst .XP. containsFC ( s t a t e s ) ) {24 f i r eEven t ( x . g e tF i r s tCh i l d ( ) , ' f c ' ) ;25 }26 top . f c=true ;27 }28 else {29 nst . pop ( ) ;30 i f ( nst .XP. containsNS ( s t a t e s ) ) {31 f i r eEven t ( x . g e tNextS ib l i ng ( ) , ' ns ' ) ;32 }33 }34 }35 } Algorithmus 9.1: Navigation mit Hilfe des Navigations-StacksAlgorithmus 9.1 beschreibt die Steuerung der XPath-Anfrage-Auswertungdurch Stack und Automaten: Wird ein Stack-Eintrag top zum ersten Mal be-trachtet, so ist die Boole'sche Variable fc=false (Zeile 22). In diesem Fall wirdüberprüft, ob es in der zu top gehörenden Zustandsmenge state einen Über-gang gibt, der die Eingabe 'fc' verlangt (Zeile 23). Ist dies der Fall, so wirddie Methode �reEvent für das �rst-child aufgerufen (Zeile 24). Zunächst wirdüberprüft, ob ein �rst-child existiert (Zeile 4). Nur wenn dies erfüllt ist, wirddas Eingabe-Symbol 'fc' an den Automaten gesendet (Zeilen 5-7). Anschlie-ÿend wird überprüft, ob ein Übergang mit Eingabe 'self' aktivierbar ist (Zeile8), und, falls dies der Fall ist, wird das self-Event generiert und an den Au-tomaten gesendet (Zeilen 9-10). Anschlieÿend wird das 3-Tupel bestehend ausden �rst-child-Knoten, der neuen Zustandsmenge und dem Flag fc=false oben



E�ziente XPath-Auswertung auf XML-Datenströmen 139auf den Stack gelegt. Für den Stack-Eintrag top wird das Flag fc=true gesetzt,da nun das �rst-child abgearbeitet wurde.Wird ein Stack-Element top zum zweiten Mal betrachtet, so ist das Flagfc=true. Es wird wieder wie oben beschrieben verfahren, nur dass dieses Maldas next-sibling anstelle des �rst-childs betrachtet wird.Da für jeden Knoten gilt, dass sein �rst-child dem next-sibling im Stromvorangeht, garantiert der Stack so ein lineares Durchqueren des Stroms.Der Automat behandelt Vorbehalte und Ausgabe entsprechend wie im vor-angehenden Ansatz. Aus Sicht des Automaten hat sich nichts geändert, dadieser nach wie vor Ereignisse fc, ns und s::x erhält und diese ausführt, le-diglich die Anzahl der Ereignisse wurde verringert, da nur noch 'zielführende'Ereignisse ausgeführt werden, alle anderen werden übersprungen.Beispiel 9.5 Abbildung 9.6 zeigt einen Beispieldurchlauf des Navigations-Stacks, durchgeführt mit dem Automaten aus Abbildung 9.2 und beschränktauf die Zustände q0 − q6, wobei q6 den Endzustand darstellt. Dies entsprichtder XPath-Anfrage XP�=/Adressen/Person.Initial be�ndet sich auf dem Navigations-Stack nur der Wurzelknoten sowieder Startzustand q0 und das Flag f(alse). Da der Zustand q0 einen ausgehen-den fc-Übergang hat, wird anschlieÿend fc und self::A(dressen) ausgeführt (ab-gekürzt durch fc::A). Dies führt einerseits dazu, dass das Flag des unterstenStack-Eintrags auf t(rue) gesetzt wird, da das �rst-child verarbeitet wurde, an-dererseits wird der Stack-Eintrag (A1, {q2, q3}, f) auf den Stack gelegt. (Der In-dex 1 ist hier nur zur besseren Unterscheidung im Beispiel vorhanden.) Die er-ste Neuerung macht sich im 4. Schritt bemerkbar: Die Zustandsmenge {q5, q6}enthält keinen fc-Übergang, daher wird weder auf der XML-Repräsentation zum�rst-child navigiert, noch wird auf dem Automaten ein fc-Event gefeuert. Le-diglich das Flag wird auf t(rue) gesetzt, so dass anschlieÿend direkt mit demnext-sibling fortgefahren werden kann. Der komplette, irrelevante Teilbaum un-terhalb des Person-Elementes wird somit übersprungen.root, {q0}, f A1, {q2, q3}, froot, {q0}, t Pe1, {q5, q6}, f
A1, {q2, q3}, troot, {q0}, t Pe1, {q5, q6}, t

A1, {q2, q3}, troot, {q0}, t Pe2, {q5, q6}, f
A1, {q2, q3}, troot, {q0}, t

Pe2, {q5, q6}, t
A1, {q2, q3}, troot, {q0}, t Pe3, {q5, q6}, f

A1, {q2, q3}, troot, {q0}, t Pe3, {q5, q6}, t
A1, {q2, q3}, troot, {q0}, t A1, {q2, q3}, troot, {q0}, t . . .

fc::A1 fc::Pe1 - ns::Pe2-ns::Pe3 - - -Abbildung 9.6: Ausschnitt der Auswertung der Anfrage /Adressen/Person



140 E�ziente XPath-Auswertung auf XML-Datenströmen9.3 Weitere OptimierungsmöglichkeitenDer DAG bietet noch eine weitere Optimierungsmöglichkeit: Repräsentiert einDAG-Knoten mehr als einen XML-Knoten, so können einmal gewonnene Er-gebnisse über den zuerst besuchten XML-Knoten auch auf die anderen XML-Knoten übertragen werden, sofern der Automat bei beiden Knoten im selbenZustand ist.Dies bedeutet, dass man für DAG-Knoten, die mehr als einen XML-Knotenrepräsentieren, also die selbst oder mindestens einer deren Vorgängerknotenmehr als eine Eingangskante haben, Tupel bestehend aus Zustand und Ergebnisin einer Lemma-Tabelle speichern kann.Erreicht man erneut diesen DAG-Knoten, kann man in der Lemma-Tabelleüberprüfen, ob für den nun gültigen Automaten-Zustand und diesen DAG-Knoten bereits ein Eintrag vorhanden ist. Ist dieser vorhanden, so kann mandie an dieser Stelle gespeicherten Ergebnisse übernehmen und so ein weiteresDurchqueren dieses Teilbaums vermeiden.9.4 Zusammenfassung: Eigenschaften derAutomaten-basierten XPath-AuswertungIn diesem Kapitel wurden zwei Varianten eines Automaten-basierten XPath-Auswertungsansatzes vorgestellt, die alle Vorwärts-Achsen von XPath unter-stützen. Wie alle Automaten-basierten Verfahren haben diese beiden Ansätzedie Eigenschaft, dass sie die Eingabe � also die XML-Repräsentation (z.B.binärer SAX-Strom oder XML-Komprimat) � linear durchqueren.Des weiteren ist die Gröÿe der jeweiligen Automaten in O(XP), wobei XPdie Anzahl der Location-Steps innerhalb der zu betrachtenden Anfrage ist, dader Automat aus einer Reihe von elementaren XPath-Automaten konkateniertwird, wobei jeder elementare XPath-Automat einem Location-Step der XPath-Anfrage entspricht.Als weitere Eigenschaft kann der Automat � aufgrund des sehr eingeschränk-ten Eingabealphabets � sowohl sehr e�zient gespeichert als auch ausgeführtwerden.



10 Verwandte Arbeiten
In diesem Kapitel werde ich die vorgestellten Ideen mit anderen in der Literaturbereits erwähnten Ideen vergleichen. Analog der in dieser Arbeit vorgestelltenVerfahren, konzentrieren sich die im Folgenden erörterten Verfahren im We-sentlichen auf die Struktur-Kompression. Lediglich, wenn eines der Verfahreneinen besonderen Ansatz zur Konstanten-Kompression verwendet, wird dieskurz erwähnt. Für einen Überblick über mögliche Ansätze zur Konstanten-Kompression sei ansonsten auf Kapitel 8 verwiesen.Dieses Kapitel unterteilt sich entsprechend der Hauptbeiträge dieser Arbeitin ein Unterkapitel über XML-Kompression � aufgeteilt in XML-Kodierungen,DAG-Varianten, Schema-basierte Varianten und sonstige Verfahren � sowie inein Unterkapitel über Anfrage-Auswertung für XML-Datenströme.10.1 XML-Kompression10.1.1 XML-Kompression durch platze�ziente KodierungDen ersten Ansatz für ein spezielles Kompressions-Verfahren für XML-Doku-mente stellt das in [60] präsentierte Verfahren namens XMill dar. In diesemVerfahren werden Daten und Struktur separat komprimiert. Die Daten wer-den anhand des umschlieÿenden Element- bzw. Attribut-Namens in Containersortiert, und diese Container werden separat mit einem geeigneten Kompres-sor komprimiert. Jedem Element und Attribut der Dokument-Struktur sowiejedem Daten-Container wird eine kurze ID zugeordnet. Neben den Daten-Containern existiert eine zweite Datenstruktur, die die Baum-Struktur reprä-sentiert, und die aus den Element- und Attribut-IDs, die die Start-Tags re-präsentieren, den Container-IDs sowie dem Symbol '/', welches einen End-Tagrepräsentiert, besteht. Auch diese Datenstruktur wird mit einem generischenKompressor komprimiert, so dass auf die Baumstruktur nur mit Hilfe von De-kompression zurückgegri�en werden kann, insbesondere kann also nicht direktauf dem Komprimat navigiert werden. 141



142 Verwandte ArbeitenDer ursprüngliche XMill-Ansatz ist nicht auf unendliche Datenströme an-wendbar. Modi�ziert man diesen jedoch, so dass immer nur fensterweise kom-primiert wird, könnte man mit Hilfe dieser modi�zierten Version auch unend-liche Datenströme komprimieren, da XMill kein mehrfaches Parsen des XML-Dokuments erfordert.Die Verfahren XGrind [75], XPRESS [63] und XQueC [8] stellen Erweite-rungen des XMill-Ansatzes dar: Die Element- bzw. die Attribut-Namen wer-den mit Hilfe der Hu�man-Kodierung bzw. mit Hilfe einer arithmetischen Ko-dierung durch kürzere Token dargestellt, und die Daten werden anhand desparent-Elements in Container sortiert. Es wird allerdings auf eine zusätzlicheKompression der Baum-Struktur-Darstellung verzichtet, so dass diese Erwei-terungen in der Lage sind, Anfragen direkt auf dem Komprimat auszuwerten.Auch für die Kompression der Daten-Container werden spezielle Kompressoren(wie z.B. ALM [6,7]) eingesetzt, die die Auswertung gewisser Funktionen (z.B.Gleichheits-Tests, Ungleichheits-Tests) direkt auf den komprimierten Konstan-ten erlauben. Zusätzlich verwendet XQueC eine Art Struktur-DAG als Indexauf die komprimierten Daten.Wie ihr Vorgänger XMill können diese Verfahren auf unendliche Datenströ-me angewandt werden. Sie erreichen eine deutlich geringere Kompressionsstär-ke als XMill, erlauben im Gegenzug dazu allerdings die Anfrage-Auswertungdirekt auf dem Komprimat.Auch die Ansätze [13] und [49] basieren im Wesentlichen auf der Darstellungder Element-Namen durch kürzere Tokens. Die Besonderheit von [13] und [49]ist, dass das Komprimat zusätzlich um Informationen angereichert wird, welcheeine e�zientere Navigation ermöglichen. Dies sind z.B. Anzahl der Kindknoten,Existenz von Text-Inhalten oder Attributen sowie direkte Zeiger zur Positiondes next-siblings. Beide Verfahren benutzen ein reserviertes Token von 1 ByteLänge, um den End-Tag eines Elements zu kodieren. All diese Verfahren sindauf unendliche Datenströme anwendbar und erlauben die Anfrage-Auswertungdirekt auf dem Komprimat.Der in [79] vorgestellte Ansatz liefert eine weitere Succinct-Darstellung vonXML. Auch hier wird nicht die eigentliche Baum-Darstellung von den Element-und Attribut-Namen getrennt, so dass sowohl für die Token, welche Element-und Attribut-Namen repräsentieren, als auch für das Token, welches den End-Tag repräsentiert, 1 Byte, also insgesamt 2 Bytes (im Gegensatz zu insgesamt1 Token und 2 Bits in dem in Kapitel 4 vorgestellten Ansatz) benötigt werden.Um eine e�zientere Navigation auf dem Komprimat zu ermöglichen, reichertder in [79] vorgestellte Ansatz jedes Paket des Komprimats um zusätzliche In-formationen (Level des ersten Knotens, minimales und maximales Level inner-halb des Pakets) an. Dies dient dem Überspringen ganzer, irrelevanter Pakete



Verwandte Arbeiten 143bei der Navigation zum next-sibling. Diese Erweiterung wäre direkt auf das indieser Arbeit vorgestellte Verfahren anwendbar.Einzig das in [48] präsentierte Verfahren, auf dem das in Kapitel 4 dieser Ar-beit vorgestellte Verfahren basiert, trennt die Baum-Struktur von den Knoten-Labeln, so dass für die Baum-Struktur eine Liste von ö�nenden und schlieÿen-den Klammern erzeugt werden kann, die im Wesentlichen dem Bitstrom der indieser Arbeit erörterten Succinct-Darstellung entspricht. Im Gegensatz zu denin dieser Arbeit vorgestellten invertierten Elementlisten nutzt [48] eine einfacheElementliste, also ein Mapping von ö�nenden Klammern zu Token, die jeweilsein Label eines Element- bzw. Attribut-Knotens repräsentieren. Ähnlich wieauch [79] reichert [48] jedes Paket durch einen Index von sogenannten ö�enen-den und schlieÿenden Pionieren an, die es erlauben, das Paket, in dem sichder End-Tag eines Knotens bzw. der Parent-Knoten eines Knotens be�ndet,e�zient zu ermitteln.Die in dieser Arbeit vorgestellten invertierten Listen zur Speicherung derElement- und Attribut-Namen bieten einen weiteren Vorteil gegenüber [79]:Neben der e�zienteren Speicherung erlauben die invertierten Listen eine e�-zientere Auswertung der Vorwärtsachsen, da die Anzahl der zu überprüfendenBitstrom-Positionen mit Hilfe der invertierten Listen eingeschränkt wird, unddaher weniger Achsen-Bedingungen überprüft werden müssen.Im Vergleich zu diesen Verfahren führt die in dieser Arbeit vorgestellteSuccinct-Darstellung die bereits in XMill erfolgreich umgesetzte Idee der Tren-nung zur besseren Kompression fort: Nicht nur Struktur und Daten werden ge-trennt voneinander komprimiert, sondern auch die Baum-Struktur wird weiteraufgeteilt in die Struktur und die Label. Dies ermöglicht eine noch e�zien-tere Kodierung der Baum-Struktur, wodurch auf eine zusätzliche Komprimie-rung der Struktur-Daten verzichtet werden kann. Dadurch ist die Succinct-Darstellung in der Lage, Anfragen und Updates direkt auf dem Komprimat zuunterstützen, was z.B. bei XMill nicht möglich ist.10.1.2 XML-Kompression durch Eliminierung internerstruktureller RedundanzenDer erste Ansatz zur XML-Kompression, welcher auf der Eliminierung internerstruktureller Redundanzen (entsprechend DAG-Kompression) basiert, wurdeunter dem Namen 'Bisimulation' in [26] vorgestellt. Die Bisimulation stelltden herkömmlichen DAG dar (im Gegensatz zum binären DAG, welcher indieser Arbeit betrachtet wird), wobei bewiesen wird, dass dieser DAG in li-nearer Zeit für ein gegebenes XML-Dokument berechnet werden kann. Ebensowird in [26] die Auswertung der XPath-Vorwärtsachsen sowie deren Komple-xität betrachtet. [25] stellt eine Fortführung dieses Ansatzes dar. Einerseits



144 Verwandte Arbeitenwird die DAG-Kompression auf der XML-Struktur durchgeführt, während dieText- und Attribut-Werte � dem Grundgedanken von XMill folgend � in ver-schiedene Container anhand der Pfad-Informationen sortiert werden und danncontainerweise komprimiert werden. Für dieses Kompressionsmodell wird desWeiteren die Anfrage-Auswertung der Anfragesprache XQuery erläutert, ana-lysiert sowie evaluiert.Einen sehr ähnlichen Ansatz verfolgt auch das Verfahren XQZip [34]: DieXML-Struktur wird mit Hilfe der DAG-Kompression zu einem sogenanntenStructure Index Tree (SIT) komprimiert. Im Gegensatz zu dem in dieser Arbeitvorgestellten Ansatz wird jedoch der herkömmliche DAG erzeugt, wobei nur di-rekt benachbarte, gleiche Knoten zusammengefasst werden dürfen (und nichtbeliebige, gleiche Knoten innerhalb eines vorgegebenen Fensters). Die Text-und Attribut-Werte werden, wie bei XMill, anhand des umgebenden Element-bzw. Attribut-Namens in Container sortiert, die Container in kleinere Blöckeaufgeteilt und Block für Block separat komprimiert. Da bei diesem Ansatz dasAugenmerk besonders stark auf e�zienter Anfrage-Auswertung für XPath-Anfragen liegt, sind SIT und Container-Blöcke mit Hilfe einer Hash-Tabellevollständig verzeigert, so dass bei einer Anfrage-Auswertung nur möglichstwenige Blöcke dekomprimiert werden müssen. Im Gegensatz zum in dieser Ar-beit vorgestellten Ansatz so wie zu den Ansätzen [25,26] unterstützt XQZip nurdie acht XPath-Achsen ancestor, ancestor-or-self, attribute, child, descendant,descendant-or-self, parent und self, nicht aber die �Seitwärtsachsen� following,following-sibling, preceding und preceding-sibling.Auch LZCS [5] ist eine Variante des DAG-Verfahrens. LZCS wendet dasgenerische Kompressions-Verfahren LZ77 auf XML-Dokumente an, wobei diekleinste Einheit innerhalb eines XML-Dokuments ein Knoten im XML-Baumist. Dies bedeutet, dass wiederholt vorkommende Teilbäume durch Rückwärts-zeiger ersetzt werden. LZCS entspricht also dem herkömmlichen DAG ange-wandt auf das gesamte XML-Dokument.Das in [35] vorgestellte Verfahren stellt eine Weiterentwicklung der Kompres-sion mit Hilfe herkömmlicher DAGs dar. Hier wird nicht nur die stark redun-dante Struktur von den weniger redundanten Text-Werten getrennt, sondernes wird auch die Struktur analysiert und mit Hilfe einer Heuristik in stark red-undante und weniger redundante Anteile zerlegt, so dass das DAG-Verfahreneine höhere Kompressionsstärke erreicht.BPLEX [28, 44] stellt eine weitere Fortentwicklung der DAG-Kompressiondar. Nicht nur gleiche Teilbäume werden mit Hilfe von Rückwärtszeigern zu-sammengefasst, sondern auch Teilbäume, die einem ähnlichen Muster entspre-chen. Hierzu werden die unterschiedlichen Anteile der ähnlichen Teilbäumemit Hilfe von Parametrisierung verallgemeinert und die konkreten Parameter-Werte den Rückwärtszeigern beigefügt. Gibt es zu einem Teilbaum mehr als



Verwandte Arbeiten 145eine Möglichkeit der Zusammenfassung mit anderen, ähnlichen Teilbäumen, sowird mit Hilfe einer Heuristik die vielversprechendste Zusammenfassung aus-gewählt.Im Gegensatz zu all diesen Verfahren bietet das in dieser Arbeit vorgestellteDAG-Verfahren eine Überlaufbehandlung für unendliche XML-Datenströme.Während die in diesem Kapitel diskutierten Verfahren bezüglich der XML-Dokumente durch die Gröÿe des verfügbaren Arbeitsspeichers beschränkt sind,kann das in Kapitel 5 dieser Arbeit vorgestellte DAG-Verfahren beliebig groÿeXML-Dokumente und unendliche XML-Datenströme bei konstantem Arbeits-speicher-Bedarf komprimieren.Des Weiteren bieten die in dieser Arbeit vorgestellten Kombinationsmöglich-keiten mit dem Succinct-Verfahren bzw. der DTD-Subtraktion eine speicher-e�ziente Kodierung des DAGs, so dass das DAG-Verfahren nicht nur zur e�-zienteren Darstellung DOM-ähnlicher Strukturen im Arbeitsspeicher, sonderninsbesondere auch zur e�zienten XML-Kompression zur Datenübertragungoder zur Speicherung in Dateien genutzt werden kann.10.1.3 XML-Kompression durch Eliminierung externerRedundanzenMillau [74] ist das erste Verfahren, welches die DTD zur Verbesserung der Kom-pression heranzieht. Im Wesentlichen basiert das Verfahren ähnlich wie auchschon XMill auf Ersetzung der Element- und Attribut-Namen durch Token. DieMenge aller Token werden bei Millau jedoch schon vor Beginn der Kompressi-on erzeugt. Hierbei ist ein Token nicht nur eine Repräsentation des Element-Namens, es enthält zusätzlich in den ersten beiden Bits die Information, obdas Element Attribute und Inhalt enthält. In dieser Variante werden nicht alleaufgrund der DTD redundanten Informationen aus dem XML-Dokument ent-fernt; z.B. die Zusammenhänge der Sibling-Knoten untereinander, die durchdie DTD gegeben werden, werden bei der Kompression durch Millau nichtberücksichtigt.In einer zweiten Variante von Millau, genannt DDT Compression (Di�erenti-al DTD Tree Compression), [74] werden ähnlich wie bei der DTD-Subtraktionnur Informationen für die DTD-Operatoren '?', '|', '+' und '*' gespeichert. Me-thodisch werden dazu die DTD als Graph und das XML-Dokument als DOM-Baum aufgebaut und simultan durchquert und verglichen. Durch die Betrach-tung des XML-Dokuments als DOM-Baum ergeben sich allerdings erheblicheNachteile durch den durch DOM verursachten Hauptspeicher-Verbrauch, wo-durch laut [74] ein Dokument mit 288735 Bytes bereits zu Problemen bei derKompression führte.



146 Verwandte ArbeitenAuch in XCQ [66] werden zu den DTD-Operatoren '?', '|', '+' und '*' zu-sätzliche Informationen gespeichert, die es erlauben, die Struktur des XML-Dokumentes zu speichern: 1 Bit für den unären '?'-Operator, 1 Bit für denbinären '|'-Operator, n+1 (bzw. n) Bits für den unären '*'-Operator (bzw.für den unären '+'-Operator), wobei ein 1-Bit für eine weitere Wiederholungund ein 0-Bit für das Ende der Wiederholungskette steht. Desweiteren benutztXCQ die DTD, um vor Durchführung der Kompression die Menge aller Pfadezu berechnen und für jeden Pfad einen separaten Daten-Container zur spä-teren Daten-Kompression entsprechend des XMill-Konzeptes bereitzustellen.Aufgrund dessen ist XCQ auf nicht-rekursive DTDs beschränkt, da andern-falls die Menge aller durch die DTD erlaubten Pfade unbegrenzt groÿ wäre.Die Verfahren XAUST [73], XENIA [76] und [59] arbeiten Automaten-basiert:Aus dem gegebenen Schema (DTD bei [59], XML Schema bei XENIA [76],bzw. RelaxNG bei XAUST [73]) wird ein Automat generiert. Sobald ein Zu-stand mehr als eine ausgehende Transition hat, werden diese Transitionen mitminimaler Bit-Anzahl durchnummeriert. Der Automat konsumiert das XML-Dokument als Eingabe. Sobald eine Transition gefeuert wird, an die eine Bitfol-ge angehängt wurde, wird die entsprechende Bitfolge ins Komprimat geschrie-ben. Dadurch wird ein sehr ähnliches Komprimat wie bei XCQ erreicht, daauch binäre Entscheidungen für '|' und '?' mit je 1 Bit kodiert werden und fürdie '*'- und '+'-Operatoren n+1 bzw. n Bits kodiert werden müssen (je 1 Bitpro Wiederholung zzgl. 1 Bit für das Ende der Wiederholungen).Mit Ausnahme von Millau, das nur sehr kleine Dokumente komprimierenkann, aufgrund der methodischen Schwäche, dass der gesamte DOM-Baumdes XML-Dokumentes in den Arbeitsspeicher geladen werden muss, sind alldiese Verfahren ebenso wie DTD-Subtraktion auf unendliche Datenströme an-wendbar. Alle vorgestellten Verfahren erlauben, ebenso wie DTD-Subtraktion,Anfrage-Auswertung sowie Updates direkt auf den komprimierten Daten.Betrachtet man jedoch die Kodierung der Entscheidungen, so benötigt DTD-Subtraktion für die binären Entscheidungen für die Operatoren '|' und '?' eben-so wie die anderen Verfahren 1 Bit. Für die Operatoren '*' und '+' werdenjedoch von allen anderen Verfahren für n Wiederholungen ca. n Bits benötigt,während DTD-Subtraktion diese mit Hilfe einer statischen Hu�man-Kodierungmit deutlich weniger als n Bits kodiert (ca. 0,7*n Bits im Durchschnitt für Wie-derholungsanzahlen n von 1-24). So ist insbesondere bei groÿen Dateien, alsobei Dateien mit vielen gleichnamigen Siblings, welche in der DTD durch einen'*'- oder '+'-Operator repräsentiert werden, die zu erwartende Kompressions-tärke der XML-Struktur von DTD-Subtraktion höher als die Kompressions-stärke der anderen in diesem Kapitel vorgestellten Verfahren.



Verwandte Arbeiten 14710.1.4 Weitere XML-Kompressions-VerfahrenDas in [43] vorgestellte Verfahren entspricht vom Grundkonzept her keinem derin dieser Arbeit vorgestellten Verfahren. Das Konzept basiert auf der Burrows-Wheeler-Transformation. Die XML-Daten werden also so transformiert, dassandere Kompressions-Verfahren auf den transformierten Daten eine stärkereKompression erreichen als auf den ursprünglichen Daten. Aufgrund der Trans-formation ist dieser Ansatz nicht auf unendliche Datenströme anwendbar. DasVerfahren erlaubt die Anfrage-Auswertung direkt auf dem Komprimat, soferndas Komprimat um einige Index-Informationen angereichert wird.Das in [33] vorgestellte Verfahren XMLPPM basiert auf einem probabilisti-schen Konzept. Es basiert auf der Annahme, dass innerhalb eines Kontextesdas bislang am häu�gsten aufgetretene Element auch das in der Zukunft amwahrscheinlichsten auftretende Element ist. Daher wird das im aktuellen Kon-text bislang häu�gste Element mit einem kurzen Token dargestellt. Dement-sprechend repräsentiert ein Token nicht durchgängig das selbe Element, son-dern, welches Element durch ein Token repräsentiert ist, hängt einerseits vomaktuellen Kontext, andererseits auch von den bisher gelesenen Elementen in-nerhalb dieses Kontextes ab. Weil ein Element zu einem Token nur ermitteltwerden kann, wenn das komplette Dokument vor dieser Stelle gelesen wurde,unterstützt dieses Verfahren keine Anfrage-Auswertung auf dem Komprimat.Es kann auf unendliche Datenströme angewandt werden, da ein einmaliges,lineares Durchqueren der Daten genügt.10.2 E�ziente XPath-Auswertung aufXML-DatenströmenEs existieren bereits verschiedene Ansätze zur Auswertung von XPath-Anfra-gen auf XML-Datenströmen. Sie können hauptsächlich aufgrund des unter-stützten XPath-Sprachumfangs kategorisiert werden. Nahezu alle dieser Ver-fahren basieren auf Automaten (X-scan [56], XMLTK [9], YFilter [41], [51], [52],AFilter [30], XSQ [71], SPEX [24, 67]) oder Syntaxbäumen ( [10], χαoς [12],[31], [32]).Der Unterschied von Automaten und Syntaxbäumen liegt in der Steuerung:Während beim Automaten die Eingabe, also der XML-Strom, die steuerndeInstanz ist, ist beim Syntaxbaum der Baum, also die Anfrage, die steuerndeInstanz.All diese Ansätze unterstützen die Achsen child und descendant-or-self, undviele dieser Ansätze unterstützen Prädikat-Filter und Wildcards, aber im Ge-gensatz zu dem in Kapitel 9 dieser Arbeit präsentierten Ansatz unterstütztkeiner dieser Ansätze die sibling-Achsen.



148 Verwandte ArbeitenX-scan [56], XMLTK [9], and YFilter [41] unterstützen die child- und diedescendant-or-self-Achse sowie Wildcards, indem sie einen endlichen Zustands-automaten nutzen. [51] (für den Haupt-Pfad) und [52] (für die Prädikat-Filter)verwenden einen deterministischen, endlichen Automaten (DFA) in einer soge-nannten 'lazy'-Fassung, das heisst, dass der DFA nicht vor Beginn vollständigerzeugt wird, sondern es werden weitere Zustände nur bei Bedarf hinzuge-fügt. AFilter [30] ist ein anpassbarer Ansatz zur XPath-Anfrage-Auswertung,welcher eine minimale Grundanforderung bzgl. des Speichers stellt, und derlinear in Anfrage- und Datengröÿe skaliert. Sollte mehr Speicher zur Verfü-gung gestellt werden, so nutzt AFilter den verbleibenden Speicher für einenCaching-Ansatz, um die Anfragen schneller beantworten zu können. Ähnlichwie YFilter [41], wurde AFilter entworfen, um groÿe Mengen von Queries aus-zuwerten.XSQ [71] und SPEX [24, 67] nutzen eine Hierarchie oder ein Netzwerk vonTransducern, das heisst, sie nutzen Automaten, die um einen Pu�er erwei-tert wurden und deren Zustände um Aktionen erweitert wurden, um XPath-Anfragen auszuwerten. Der von XSQ unterstützte XPath-Sprachumfang um-fasst Prädikat-Filter, wobei höchstens ein Prädikat-Filter pro Location-Steperlaubt ist, und die Prädikat-Filter lediglich Pfad-Wert-Vergleiche mit Pfadender Länge 1 bestehend aus den Achsen child, text oder attribute enthaltendürfen. Das Konzept basiert auf je einem nicht-deterministischen Push-DownTransducer (PDT) pro Location-Step. Diese Transducer werden dann zu einerHierarchie zusammengefasst.[57] diskutiert die Auswertung der child- und descendant-or-self-Achsen in-klusive Prädikat-Filtern (inklusive Funktionen und Arithmetik) und Wildcardsin XQuery unter Verwendung von TurboXPath. Die Eingabe-Anfrage wird ineine Menge von Syntaxbäumen transformiert. Wird eine Entsprechung einesSyntaxbaumes innerhalb des Datenstroms gefunden, so werden die zugehöri-gen Werte in Form eines Tupels gespeichert, um später bezüglich der Prädikat-und Join-Bedingungen getestet zu werden. Die Ausgabe besteht dann späteraus denjenigen Tupeln, die die entsprechenden Bedingungen erfüllt haben.[10] und χαoς [12] erzeugen zunächst ebenfalls einen Syntaxbaum (zuzüglicheines Syntax-DAGs in [12], da diese somit zusätzlich die parent- und ancestor-Achse unterstützen). Der Syntaxbaum wird genutzt, um die nächsten rele-vanten Knoten, sowie deren Ebene innerhalb des XML-Baums vorherzusagen.Betrachten wir z.B. die Anfrage //a/b und einen Tre�er für 'a' in Ebene 3.Dann wäre der nächste relevante Knoten ein Knoten mit Label 'b' in Ebene 4.[31] stellt einen weiteren, hauptsächlich auf Syntaxbäumen basierenden,Ansatz dar. In diesem Ansatz werden jedoch die Syntaxbäume zu einem Pre�x-Trie wie folgt zusammengefasst: Gleiche Pre�x-Folgen von child-Achsen Loca-



Verwandte Arbeiten 149tion-Steps verschiedener Queries werden zu einem einzigen Pfad innerhalb desPre�x-Tries zusammengefasst.Der in [32] vorgestellte Ansatz verwendet eine Struktur, die einem Syntax-baum mit je einem Stack pro Knoten ähnelt. Diese Stacks werden verwendet,um XML-Knoten zu speichern, die ein Ergebnis einer durch den Syntaxknotenrepräsentierten Teil-Anfrage darstellen (oder die � im Falle von einschränken-den Prädikat-Filtern � mögliche Ergebnisknoten darstellen).Im Gegensatz zu all diesen Ansätzen unterstützt der in dieser Arbeit vorge-stellte Ansatz zusätzlich die Achsen following und following-sibling. Des Wei-teren unterstützt er � im Gegensatz zu [57] und [71] � rekursive XML-Daten,also Daten, in denen derselbe Element-Name innerhalb eines child-Pfades wie-derholt vorkommen kann.



11 Evaluierung dervorgestellten Ansätze
In diesem Kapitel werde ich die vorgestellten Verfahren zur Kompression hin-sichtlich Kompressionsstärke sowie Kompressions-, Dekompressions- und An-frage-Auswertungszeit untereinander verglichen.11.1 MessumgebungAlle Messungen wurden auf einem Intel Pentium M mit 1300 MHz und 768MB Arbeitsspeicher unter dem Betriebssystem Windows 2000 durchgeführt.Für die im Rahmen dieser Arbeit entwickelten Verfahren wurde Java 1.6 alsImplementierungs-Sprache eingesetzt.Zur Evaluierung der Verfahren wurden die folgenden Test-Dokumente ver-wendet:

• XMark � durch den XMark-Benchmark [72] erzeugtes XML-Dokument,welches Auktionsdaten enthält. Je nach Skalierungsfaktor variiert dieGröÿe. So bedeutet ein Skalierungsfaktor von 0,001 116 kB, ein Skalie-rungsfaktor von 0,01 1,2 MB, ein Skalierungsfaktor von 0,1 11,3 MB undein Skalierungsfaktor von 1 113 MB. Ist kein weiterer Faktor angegeben,so beträgt die Dokumentgröÿe 5,3 MB.
• Hamlet (0,3 MB) � eine XML Version des bekannten Shakespeare-Schau-spiels.
• Catalog-01 (10,6 MB), Catalog-02 (105,3 MB), Dictionary-01 (10,8 MB),Dictionary-02 (106,4 MB) � durch den XBench-Benchmark [78] erzeugteXML-Dokumente.
• DBLP(308,2 MB) � eine Sammlung bibliographischer Informationen zuwissenschaftlichen Publikationen im Bereich Informatik.150



Evaluierung der vorgestellten Ansätze 15111.2 KompressionHinsichtlich Kompressionsrate sowie Kompressions- und Dekompressionszeitwurden die in der Arbeit vorgestellten Verfahren mit den folgenden frei ver-fügbaren Kompressoren verglichen:
• XMill [60] � ein XML-Kompressor, welcher die Struktur-Knoten mit Hilfevon Token darstellt und die Konstanten entsprechend der umgebendenElement- und Attributnamen in komprimierte Container sortiert. ZurKompression der Container stehen unter anderem GZip und BZip2 zurVerfügung.
• GZip � ein generischer Textkompressor basierend auf LZ77 und Hu�man-Kodierung.
• BZip2 � ein generischer Textkompressor basierend auf der Burrows-Whee-ler-Transformation.Im Gegensatz zu den in dieser Arbeit vorgestellten Verfahren erlauben die-se drei Kompressoren keine Anfrage-Auswertung direkt auf dem Komprimat.Soll eine Anfrage ausgewertet werden, so muss das Komprimat zunächst de-komprimiert werden, und das Ergebnis der Anfrage muss anschlieÿend wiederkomprimiert werden.Hierbei ist zu beachten, dass für XMill eine native Anwendung zur Verfü-gung stand, während alle anderen Verfahren in Java implementiert sind undunter Java 1.6 ausgeführt wurden. Dies beeinträchtigt möglicherweise die Ver-gleichbarkeit der Zeitmessungen.Da der DAG sich ohne eine geeignete Kodierung � wie z.B. durch Kom-bination mit der Succinct-Darstellung oder der DTD-Subtraktion � nicht alsDatei-Kompressor eignet, sondern lediglich als DOM-Variante mit verringer-ter Knoten- und Kanten-Anzahl, wurde das reine DAG-Verfahren nicht mitden anderen XML-Kompressoren verglichen, sondern statt dessen wurden diehybriden Varianten Succinct+DAG und DTD-Subtraktion+DAG zur Evaluie-rung herangezogen. Um dennoch den Ein�uss des DAGs messen zu können,wurde in einer ersten Messung die Struktur des DAGs mit der ursprünglichenXML-Struktur verglichen.Die Messungen hinsichtlich Kompressionsrate, Kompressions- und Dekom-pressionszeit gliedern sich wie folgt:
• Vergleich der Strukturkompression der vier Verfahren Succinct, Succinct+ DAG, DTD-Subtraktion und DTD-Subtraktion + DAG.
• Untersuchung der Skalierung der Strukturkompression der vier VerfahrenSuccinct, Succinct + DAG, DTD-Subtraktion und DTD-Subtraktion +DAG.



152 Evaluierung der vorgestellten Ansätze
• Vergleich der dazu unabhängig kombinierbaren Konstanten-Kompressi-ons-Varianten GZip und BZip2 ohne getrennt komprimierte Containersowie GZip und BZip2 mit getrennt komprimierten Daten-Containern jeumgebendem Element- und Attributnamen (entsprechend XMill).
• Vergleich der Gesamtkompression der vier Verfahren Succinct, Succinct+ DAG, DTD-Subtraktion und DTD-Subtraktion + DAG in Kombinati-on mit GZip inklusive getrennt komprimierter Daten-Container mit GZipund GZip-basiertem XMill.
• Vergleich der Gesamtkompression der vier Verfahren Succinct, Succinct+ DAG, DTD-Subtraktion und DTD-Subtraktion + DAG in Kombina-tion mit BZip2 inklusive getrennt komprimierter Daten-Container mitBZip2 und BZip2-basiertem XMill.11.2.1 Kompressionsrate der Struktur-Kompression
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Abbildung 11.1: Vergleich DAG zu binärem XML-BaumAbbildung 11.1 zeigt das Gröÿenverhältnis des binären DAGs zum ursprüng-lichen XML-Baum. Je nach Dokument variiert die Kompressionsstärke desDAGs: Die stärkste Kompression erreicht der DAG beim Dokument Catalog-01mit 2,5% der Knoten des XML-Baums und 4,6% der Kanten, die schwächsteKompression erreicht der DAG bei XMark mit 31% der Knoten und 52,7% derKanten.Es ist weiterhin zu beachten, dass das Verhältnis Knoten-Kompression zuKanten-Kompression schwankt, was mit der durchschnittlichen Gröÿe der wie-derverwendeten Teilbäume zusammenhängt: Wird z.B. ein Teilbaum, beste-



Evaluierung der vorgestellten Ansätze 153hend aus einem Knoten, wiederverwendet, so enthält der DAG einen Knotenweniger, jedoch keine Kante weniger als der XML-Baum.
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Abbildung 11.2: Kompressionsvergleich der Struktur-KompressionAbbildung 11.2 zeigt die Struktur-Kompression der vier Verfahren Succinct,Succinct + DAG, DTD-Subtraktion und DTD-Subtraktion + DAG. Das Kom-pressions-stärkste Verfahren ist hierbei DTD-Subtraktion + DAG, welchesKompressionsraten von 0,3% bis 2,2% auf der Dokument-Struktur erreicht, dasKompressions-schwächste Verfahren ist die reine Succinct-Darstellung, welcheKompressionsraten von 6,6% bis 16,7% erreicht. Mit Ausnahme des Dokumen-tes DBLP gilt die Aussage, dass die Succinct-basierten Verfahren schwächerkomprimieren als die DTD-Subtraktion-basierten Verfahren. Ebenso gilt � mitAusnahme der Dateien Dictionary-01 und -02 � dass die DAG-Varianten stär-ker komprimieren als die reinen Verfahren.Es ist zu beobachten, dass die Kombination Succinct + DAG eine stärkereVerbesserung gegenüber der reinen Succinct-Variante erreicht als die Kombina-tion DTD-Subtraktion + DAG gegenüber der reinen DTD-Subtraktion. Diesliegt daran, dass der relative Speicherbedarf eines DAG-Zeigers in der DTD-Subtraktion deutlich höher ist als in der Succinct-Darstellung. Dies führt dazu,dass in der DTD-Subtraktion weniger Verweise realisiert werden, da Verwei-se auf kleine Teilbäume teurer sind als das Wiederholen des Teilbaums. Da-her kann die Kombination DTD-Subtraktion + DAG im Vergleich zur DTD-Subtraktion nur eine deutlich schwächere Verringerung der Kompressionsra-te erreichen als die Kombination Succinct + DAG im Vergleich zu reinemSuccinct.Die Skalierung der Struktur-Kompression der vier Verfahren wird in Ab-bildung 11.3 anhand des XMark-Benchmarks dargestellt, wobei die erzeugtenDateien mit den Skalierungs-Faktoren 0,001, 0,01, 0,1 und 1 erzeugt wurden.



154 Evaluierung der vorgestellten AnsätzeFür alle Verfahren gilt, dass die Kompressionsrate zunächst mit steigenderDokumentengröÿe leicht absinkt, um dann nahezu konstant zu bleiben. DasAbsinken zu Anfang ist damit zu erklären, dass gewisse Daten nur einmalig zuAnfang des Komprimats geschrieben werden müssen. Je gröÿer die Datei ist,desto kleiner ist der Anteil dieser Daten am Struktur-Komprimat.
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Abbildung 11.3: Skalierung der Kompressionssrate11.2.2 Kompressionsrate der Konstanten-Kompression
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Abbildung 11.4: Kompressionsvergleich der Konstanten-KompressionenAbbildung 11.4 zeigt den Vergleich von vier Varianten zur Konstanten-Kom-pression: GZip und BZip2 ohne getrennt komprimierte Container sowie GZip



Evaluierung der vorgestellten Ansätze 155und BZip2 mit getrennt komprimierten Daten-Containern je umgebendemElement- und Attributnamen. Hierbei ist zu erkennen, dass bezüglich der Kom-pressionsstärke die BZip2-basierten Varianten den jeweiligen GZip-basiertenVarianten überlegen sind, und die Varianten mit getrennten Daten-Containernden Varianten ohne Trennung überlegen sind.Für die weiteren Vergleiche mit den Kompressoren XMill, GZip und BZip2wurden daher die Struktur-Kompressions-Verfahren mit den Varianten kombi-niert, die getrennt komprimierte Container verwenden. Erstens erreichen dieseeine stärkere Kompression, zweitens ist so auch eine bessere Vergleichbarkeitmit XMill gegeben, welches auch diese Idee zur Konstanten-Kompression ver-folgt.11.2.3 Gesamt-Kompressionsrate
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Abbildung 11.5: Kompressionsvergleich der Gesamtkompression GZip-basierter KompressorenAbbildungen 11.5 und 11.6 zeigen einen Vergleich der Gesamtkompressions-stärke mit anderen GZip- bzw. BZip2-basierten Kompressoren. In Abbildung11.5 wurden die vier in dieser Arbeit vorgestellten Struktur-Kompressions-Verfahren mit GZip + Daten-Container als Konstanten-Kompressor kombi-niert, in Abbildung 11.6 mit BZip2 + Daten-Container. Jeweils das gleicheKonstanten-Kompressions-Verfahren wurde auch für XMill ausgewählt.



156 Evaluierung der vorgestellten AnsätzeBei den GZip-basierten Verfahren zeigt sich, dass � ausser beim kleinstenDokument Hamlet � alle vier Verfahren stärker komprimieren als GZip selbst.Des weiteren zeigt sich, dass die auf DTD-Subtraktion basierenden Verfahrenstärker komprimieren als XMill, die auf Succinct basierenden Verfahren jedochein wenig schwächer.Auch bei den BZip2-basierten Verfahren komprimieren die auf DTD-Sub-traktion basierenden Verfahren im Allgemeinen stärker als XMill, währendXMill stärker komprimiert als die auf Succinct basierenden Verfahren. Im Ge-gensatz zu GZip komprimiert BZip2 jedoch im Allgemeinen stärker als die reineSuccinct-Variante, es komprimiert jedoch schwächer als die Verfahren Succinct+ DAG (mit Ausnahme von XMark und Hamlet), DTD-Subtraktion sowieDTD-Subtraktion + DAG.
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Abbildung 11.6: Kompressionsvergleich der Gesamtkompression BZip2-basierter Kompressoren11.2.4 Kompressionszeit der Struktur-KompressionHinsichtlich der Kompressionszeit zeigt sich ganz klar der Trade-O� im Ver-gleich zur Kompressionsrate: diejenigen Verfahren, welche eine höhere Kom-pressionsrate erreichen, benötigen dementsprechend auch mehr Zeit, die Kom-pression zu berechnen.Abbildung 11.7 zeigt den Vergleich der Kompressions-Durchsätze der viervorgestellten Struktur-Kompressions-Verfahren untereinander. Hierbei errei-chen die Succinct-basierten Verfahren höhere Durchsätze � sind also schneller� als die DTD-Subtraktion-basierten Verfahren. Ebenso erreichen die XML-basierten Verfahren höhere Durchsätze als die DAG-basierten. Das schnellste



Evaluierung der vorgestellten Ansätze 157Verfahren hierbei ist das Succinct-Verfahren mit Durchsätzen zwischen 2947Bytes/ms (bzw. 22,5 Mbit/s) und 5699 Bytes/ms (bzw. 43,5 Mbit/s), das lang-samste Verfahren ist DTD-Subtraktion + DAG mit Durchsätzen zwischen 582Bytes/ms (bzw. 4,4 Mbit/s) und 1895 Bytes/ms (bzw. 14,5 Mbit/s). Im Ver-gleich dazu hat ADSL eine maximale Empfangsrate von 8 Mbit/s.
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Abbildung 11.7: Vergleich der Kompressions-Durchsätze der Struktur-Kompression
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Abbildung 11.8: Skalierung des KompressionsdurchsatzesAbbildung 11.8 zeigt die Skalierung der vier Verfahren hinsichtlich der Kom-pressionszeit. Auch hier zeigt sich, dass mit steigender Dokumentgröÿe der



158 Evaluierung der vorgestellten AnsätzeDurchsatz zunächst leicht steigt, dann jedoch nahezu konstant bleibt. Dies istwieder dadurch zu erklären, dass gewisse Initialisierungsschritte nur einmaligpro Kompression unternommen werden müssen und der Anteil dieser Schrittean der Gesamtzeit prozentual mit steigender Dokumentgröÿe sinkt.
11.2.5 Kompressionszeit der Konstanten-KompressionAuch bei der Konstanten-Kompression (Abbildungen 11.4 und 11.9) zeigt sichder Trade-O� zwischen Kompressionsstärke und Kompressionszeit. Hier zeigtsich GZip als schnellster Kompressor, gefolgt von GZip + Daten-Container, ge-folgt von BZip2, während BZip2 + Daten-Container der langsamste Kompres-sor ist. Die Durchsätze schwanken hierbei von 164 Bytes/ms (bzw. 1,3 Mbit/s)für BZip2 + Daten-Container auf dem Dokument Hamlet bis 4011 Bytes/ms(bzw. 30,6 Mbit/s) für GZip auf dem Dokument Hamlet. Zu beachten ist, dass� bis auf die Datei Hamlet � Succinct als schnellster Struktur-Kompressor hö-here Durchsatzraten erreicht als GZip als schnellster Daten-Kompressor undauch DTD-Subtraktion + DAG als langsamster Struktur-Kompressor erreichthöhere Durchsätze als BZip2 + Daten-Container.
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Abbildung 11.9: Vergleich der Durchsätze der Konstanten-Kompressionen



Evaluierung der vorgestellten Ansätze 15911.2.6 Gesamt-Kompressionszeit
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Abbildung 11.10: Vergleich der Durchsätze GZip-basierter Kompressoren
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Abbildung 11.11: Vergleich der Durchsätze BZip-basierter Kompressoren



160 Evaluierung der vorgestellten AnsätzeAbbildungen 11.10 und 11.11 zeigen den Vergleich der GZip- bzw. BZip2-basierten Kompressoren hinsichtlich der Kompressionszeit. Hierbei zeigt sich,dass sowohl XMill als auch GZip und BZip2 den vier vorgestellten Verfahrendeutlich überlegen sind. Die vorgestellten Verfahren bieten jedoch den Vorteil,dass Anfragen direkt auf dem Komprimat � jedoch ohne vorherige Dekom-pression � ausgewertet werden können. Auch wird im Allgemeinen nur einmalkomprimiert, jedoch werden viele Anfragen auf dem Komprimat auf verschie-denen Empfänger-Rechnern ausgeführt. Daher sind viele Szenarien vorstellbar,bei denen man eine einmalig höhere Kompressionszeit in Kauf nimmt, um vomVorteil der performanteren Anfrage-Auswertung pro�tieren zu können.11.2.7 Dekompressionszeit der Struktur-KompressionEin deutlich anderes Bild zeigt sich bei der Dekompressionszeit.Abbildung 11.12 zeigt die bei der Dekompression der vier vorgestellten Ver-fahren erreichten Durchsatzraten. Wie auch bei der Kompression erreichendie Succinct-basierten Verfahren höhere Durchsätze als die DTD-Subtraktion-basierten Verfahren. Im Gegensatz dazu sind jedoch die DAG-basierten Vari-anten schneller als die XML-basierten.
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Abbildung 11.12: Vergleich der Dekompressions-Durchsätze derStrukturkompression



Evaluierung der vorgestellten Ansätze 161Das liegt daran, dass bei der Kompression für die einzelnen Teilbäume dieDAG-Kompression und die Succinct- bzw. DTD-Subtraktion-Kompression hin-tereinander ausgeführt werden müssen, während sie bei der Dekompressionstärker miteinander verwoben werden können. Die Dekompression der DAG-basierten Verfahren kann wie bei den XML-basierten Verfahren erfolgen, ledig-lich, wenn ein DAG-Zeiger erreicht wird, muss der im Arbeitsspeicher gepuf-ferte, wiederholte Teilbaum erneut in die Ausgabe-Datei geschrieben werden.Da dies im Allgemeinen schneller ist, als den entsprechenden Teilbaum erneutzu dekomprimieren, sind bei der Dekompression die DAG-basierten Verfah-ren schneller als die XML-basierten Verfahren. Da � wie bereits erwähnt � inder Kombination Succinct + DAG mehr Verweise realisiert werden als in derKombination DTD-Subtraktion + DAG, tritt der Geschwindigkeits-Gewinnbei Succinct + DAG stärker hervor als bei der Kombination DTD-Subtraktion+ DAG.Das schnellste Verfahren � Succinct + DAG � erreicht hierbei Durchsätzevon 3358 Bytes/ms (bzw. 25,6 Mbit/s) bis 6994 Bytes/ms (52,4 Mbit/s), eserreicht also höhere Durchsätze als der schnellste ADSL-Standard ADSL2+ mit25 Mbit/s. Das langsamste Verfahren � DTD-Subtraktion � erreicht Durchsätzevon 1569 Bytes/ms (bzw. 12 Mbit/s) bis 4611 Bytes/ms (35,2 Mbit/s).Hierbei ist der bei der Dekompression erreichte Durchsatz immer höher, alsder bei der Kompression erreichte Durchsatz.
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Abbildung 11.13: Skalierung des DekompressionsdurchsatzesBei der Skalierung der Dekompressionsdurchsätze (Abbildung 11.13) zeigtsich wieder, dass nach anfänglichem Anstieg des Durchsatzes bei steigenderDokumentgröÿe ein nahezu konstanter Durchsatz erreicht wird.



162 Evaluierung der vorgestellten Ansätze11.2.8 Dekompressionszeit der Konstanten-KompressionAbbildung 11.14 zeigt die Dekompressions-Durchsätze der Konstanten-Dekom-pressionen. Auch hier zeigt sich wieder, dass die GZip-basierten Dekompres-soren schneller dekomprimieren als die BZip2-basierten Dekompressoren. Hin-sichtlich der Durchsätze der Container-basierten Varianten im Vergleich zu denContainer-losen Varianten kann jedoch keine klare Aussage getro�en werden.Vermutlich ist dies darin begründet, dass die Container deutlich weniger Ele-mente enthalten als die komprimierten Datenmengen in den Container-losenVarianten, so dass in den Container-losen Varianten in vielen Fällen perfor-manter dekomprimiert werden kann.Während die BZip2-basierten Konstanten-Kompressoren deutlich geringe-re Durchsätze erreichen als die Struktur-Kompressoren, erreichen die GZip-basierten Konstanten-Kompressoren vergleichbare Durchsätze wie die Struktur-Kompressoren. Die Durchsätze reichen von 424 Bytes/ms (bzw. 3,2 Mbit/s) fürBZip2 + Daten-Container auf Hamlet bis zu 7275 Bytes/ms (bzw. 55,5 Mbit/s)für GZip + Daten-Container auf Catalog-02.
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Abbildung 11.14: Vergleich der Durchsätze der Konstanten-Dekompressionen
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Abbildung 11.15: Vergleich der Durchsätze GZip-basierter Dekompressoren
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Abbildung 11.16: Vergleich der Durchsätze BZip-basierter Dekompressoren



164 Evaluierung der vorgestellten AnsätzeTabelle 11.1: Anfragen des Benchmarks XPathMark-AID QueryQ1 /site/closed_auctions/closed_auction/annotation/description/text/keywordQ2 //closed_auction//keywordQ3 /site/closed_auctions/closed_auction//keywordQ4 /site/closed_auctions/closed_auction[annotation/description/text/keyword]/dateQ5 /site/closed_auctions/closed_auction[descendant::keyword]/dateQ6 /site/people/person[pro�le/gender and pro�le/age]/nameQ7 /site/people/person[phone or homepage]/nameQ8 /site/people/person[address and (phone or homepage) and(creditcard or pro�le)]/nameIm Vergleich zum Gesamt-Dekompressions-Durchsatz der Kompressoren X-Mill, GZip und BZip2 (vergleiche Abbildungen 11.15 und 11.16) zeigt sichwiederum, dass die Durchsätze von XMill, GZip und BZip2 die Durchsätzeder in dieser Arbeit vorgestellten Verfahren deutlich übersteigen. Da jedochaufgrund der Abfragbarkeit oftmals auf eine vollständige Dekompression ver-zichtet werden kann, stellt dies nicht unbedingt einen Nachteil der in dieserArbeit vorgestellten Verfahren dar.11.3 AuswertungszeitZur Evaluierung der Anfrage-Auswertungszeiten wurde ein XPath-Frameworkfür Datenströme entsprechend Kapitel 9 genutzt.Es wurden die Basis-Verfahren Succinct, DTD-Subtraktion und DAG ver-glichen mit den folgenden beiden Verfahren:
• Uncompressed � Das XPath-Framework wurde wie Kapitel 9 beschriebenauf einem unkomprimierten SAX-Event-Strom angewandt.
• JAXP (Java API for XML Processing) � die in Java enthaltene Standard-API zum Validieren und Parsen von XML-Dokumenten.Als Test-Dokumente wurden 8 XML-Dokumente durch den XMark-Bench-mark generiert mit Skalierungsfaktoren 0,001, 0,002, 0,004, 0,008, 0,016, 0,032,0,064 und 0,128. Ausgewertet wurden auf diesen die Anfragen des XPath-Benchmarks XPathMark-A [45], welche als Anfragen Q1, . . . , Q8 in Tabelle11.1 gelistet sind.Für alle getesteten Verfahren wurde die Dauer der Ermittlung der Ergebnis-Knoten der XPath-Anfrage gemessen. Dabei wurden nicht die darunter liegen-



Evaluierung der vorgestellten Ansätze 165den Teilbäume ausgegeben, da es von der weiteren Anwendung abhängt, obman z.B. die Teilbäume komprimiert oder dekomprimiert erhalten möchte.
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Abbildung 11.17: Vergleich der Anfrage-AuswertungszeitenAbbildung 11.17 gibt zunächst einen Gesamtüberblick über alle Anfragenangewandt auf das Dokument mit Skalierungsfaktor 0,128. Bei den AnfragenQ1, Q4, Q6, Q7 und Q8 zeigt sich, dass der DAG die schnellste Auswertungs-zeit vorweisen kann, gefolgt von der Succinct-Darstellung, gefolgt von DTD-Subtraktion und schlieÿlich gefolgt von JAXP und Uncompressed. Bei denAnfragen Q3 und Q5 ist die Auswertungszeit für DTD-Subtraktion höher alsfür Uncompressed und JAXP, während sie für DAG und Succinct noch niedri-ger ist. Bei Anfrage Q2 schlieÿlich ist die Auswertungszeit für DAG, Succinctund DTD-Subtraktion höher als für JAXP und Uncompressed.Vergleichen wir diese Anfragen, so sehen wir, dass Q2, Q3 und Q5 jeweilsmindestens eine descendant-Achse enthalten, während die restlichen Anfragennur aus child-Achsen bestehen. Beginnt eine Anfrage mit einem descendant-Achsen-Schritt (wie z.B. Q2), so bedeutet dies, dass jeder Knoten des Do-kumentes ein potentieller Tre�er ist, es kann also bei der Auswertung keinKnoten übersprungen werden. Je später jedoch ein descendant-Achsen-Schrittvorkommt, desto mehr Teile können übersprungen werden und desto gröÿerist der Vorteil der komprimierten Repräsentationen gegenüber dem unkompri-mierten XML.Der DAG erhält hierbei einen noch gröÿeren Vorteil als die anderen Verfah-ren, da dieser bereits � wie bei DOM � einen direkten Zeiger auf �rst-childund next-sibling enthält, während bei der Succinct-Darstellung der Bit-Stromund bei der DTD-Subtraktion DTD und KST bis zum gewünschten Knotengeparst werden müssen.
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Abbildung 11.18: Anfrage-Auswertungszeit für Anfrage Q2Abbildungen 11.18, 11.19 und 11.20 zeigen die Skalierung der Auswertungs-zeiten für die Anfragen Q2 (descendant-Achse zu Beginn), Q5 (descendant-Achse in Tiefe 4 + Prädikat�lter) und Q7 (nur child-Achsen, Prädikat�ltermit Disjunktion).Wie zu sehen ist, skalieren alle Verfahren bei steigender Dokumentgröÿenahezu linear, wobei die Rangfolge der Verfahren (wie in Abbildung 11.17 zusehen) von der Position der ersten descendant-Achse abhängt.
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Abbildung 11.19: Anfrage-Auswertungszeit für Anfrage Q5
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Abbildung 11.20: Anfrage-Auswertungszeit für Anfrage Q7Geht man nicht vom ungünstigsten Fall � also einer Anfrage beginnend mitdescendant-Achse � aus, so ist die Anfrage-Auswertung auf den Komprimatenschneller oder mindestens genauso schnell wie auf unkomprimiertem XML unddamit auf jeden Fall schneller, als wenn man einen nicht-navigierbaren Kom-pressor (z.B. XMill, GZip oder BZip2) verwenden würde und vor der Anfrage-Auswertung dekomprimieren würde.11.4 FazitAls Ergebnis dieser Messreihe kann man sehen, dass keines der vorgestell-ten Basis-Verfahren den jeweils anderen beiden in allen gemessenen Aspektenüberlegen ist: während DTD-Subtraktion die stärkste Kompression erreicht,erreicht die Succinct-Darstellung die gröÿten Kompressions- und Dekompres-sions-Durchsätze und der DAG erreicht die schnellste Auswertungszeit.Je nach Anwendung und den daraus resultierenden Anforderungen an dieseEigenschaften, kann man somit ein geeignetes Verfahren auswählen.Auch bei der Konstanten-Kompression zeigt sich ein deutlicher Trade-O�zwischen Kompressionsrate und Kompressionszeit. Da jedoch diese Verfahrenkomplett unabhängig von der Struktur-Kompression sind, kann auch hier einVerfahren mit den gewünschten Eigenschaften ausgewählt werden und beliebigmit einer geeigneten Struktur-Kompression kombiniert werden.Insgesamt hat sich im Vergleich mit anderen Verfahren gezeigt, dass ins-besondere hinsichtlich der jeweiligen Stärke des jeweiligen Verfahrens die indieser Arbeit entwickelten und vorgestellten Verfahren die anderen geteste-ten Verfahren übertre�en: einerseits hinsichtlich der Kompressionsstärke (z.B.



168 Evaluierung der vorgestellten AnsätzeDTD-Subtraktion + DAG) andererseits hinsichtlich der Kompressionszeit (z.B.Succinct-Verfahren) oder hinsichtlich Anfrage-Auswertungszeit (z.B. DAG).Die Kombination der Verfahren Succinct mit DAG und DTD-Subtraktionmit DAG erreicht erstaunlicherweise nicht nur eine stärkere Kompression alsdiese Verfahren mit XML sondern auch eine schnellere Dekompression. Ledig-lich bei der Kompressionszeit muss man den Trade-O� eingehen und erhälteine etwas höhere Kompressionszeit.



12 Anwendungen fürkomprimierteXML-RepräsentationenIn diesem Kapitel werde ich die in Kapitel 1 vorgestellten Anwendungen wiederaufgreifen und erörtern, von welchen der in dieser Arbeit vorgestellten Kom-pressionsverfahren sie aufgrund der Gewichtung der Anforderungen besondersstark pro�tieren.12.1 News-TickerDas News-Ticker-Szenario besteht aus einer Datenquelle � z.B. einer Nach-richten-Agentur � die einen kontinuierlichen Strom an Nachrichten produziert,einem Bezieher, der nur an einem Teil der produzierten Nachrichten interessiertist, und einem Nachrichten-Broker, der die Interessen des Beziehers kennt, diefür ihn interessanten Nachrichten aus dem Datenstrom heraus�ltert und anden Bezieher weiterleitet.In diesem Szenario sind insbesondere die Anforderungen 1-9 aus Kapitel 1.3wichtig, es muss also eine starke Kompression erreicht werden, Kompressions-und Dekompressionsdurchsatz dürfen nicht unter dem Datendurchsatz der Da-tenquelle liegen, und atomare Anfrage-Auswertung muss unterstützt werden,damit der Nachrichten-Broker e�zient die Nachrichten �ltern kann. Anforde-rung 10 � die Unterstützung von Updates � ist in diesem Beispiel nicht relevant,da keinerlei Updates auf dem Nachrichtenstrom vorgesehen sind.In Anbetracht dieser Anforderungen emp�ehlt sich daher für dieses Szenariodie Verwendung des Kompressions-Verfahrens DTD-Subtraktion, welches einestarke Kompression bei Kompressionsdurchsätzen von ca. 8 Mbit/s erreicht undauch die Anfrage-Auswertung einfacher Pfad-Anfragen e�zient unterstützt.Als weitere Alternative emp�ehlt sich auch, das Succinct-Verfahren einzu-setzen. In diesem Fall erhielte man einen erhöhten Kompressionsdurchsatz und169



170 Anwendungen für komprimierte XML-Repräsentationeneine etwas e�zientere Anfrage-Auswertung beim Nachrichten-Broker, im Ge-genzug erhielte man allerdings eine etwas verringerte Kompressionsstärke.Lediglich die DAG-basierten Varianten Succinct + DAG und DTD-Subtrak-tion + DAG empfehlen sich aufgrund der verringerten Kompressions-Durch-sätze nur bedingt für dieses Szenario.12.2 Daten-Management für mobile, Ajax-basierteWeb 2.0 AnwendungenDas Ajax-Szenario besteht aus einem XML-Server und einem XML-Client inForm eines DOM-basierten Web-Browsers. Der Server enthält das gesamte Do-kument, während der Client nur wenige Ausschnitte des Dokumentes enthält.Sobald der Client weitere Informationen vom Server benötigt, werden dieseasynchron in Form eines XML-Fragmentes vom Server zum Client gesendetund mittels JavaScript in den DOM-Baum des Clients zur Laufzeit integriert,so dass dem Benutzer des Clients eine interaktive Anwendung suggeriert wird.Ersetzt man die DOM-Komponente auf Client-Seite durch eine Navigations-und Update-fähige, komprimierte XML-Repräsentation, so können die übrigenAjax-Komponenten unverändert übernommen werden. Statt unkomprimiertemXML wird komprimiertes XML übertragen, so dass Übertragungskosten einge-spart werden. Die Darstellung der komprimierten XML-Repräsentation erfor-dert im Hauptspeicher deutlich weniger Speicher als die Darstellung des eigent-lichen DOM-Baumes bei gleichem Funktionsumfang, so dass Arbeitsspeichereingespart werden kann. Dadurch können bei gleichem Arbeitsspeicher deut-lich umfangreichere Ajax-Anwendungen umgesetzt werden, und somit wird esauch mobilen Kleinstgeräten (wie z.B. Mobiltelefonen und PDAs) ermöglicht,Ajax-basierte Web 2.0 Anwendungen zu nutzen.In diesem Szenario sind besonders die Anforderungen 1-2 sowie 6-10 wichtig,also eine starke Kompression sowie Auswertung von Anfragen und Updates di-rekt auf dem Komprimat. Die Kompressions- und Dekompressionsdurchsätze(Anforderungen 4-5) spielen eine eher untergeordnete Rolle, da kein kontinu-ierlicher Datenstrom sondern nur kleine XML-Fragmente versendet werden.Aufgrund der guten Kompressionsstärke bei sehr e�zienter Unterstützungder DOM-Funktionalitäten, emp�ehlt sich zur Verbesserung von Ajax insbe-sondere die Kombination aus DAG und Succinct-Darstellung als Kompressi-onsmethode. Da aber alle in dieser Arbeit vorgestellten Kompressionsverfahrendie DOM-Funktionalitäten unterstützen, kann prinzipiell auch eines der ande-ren vorgestellten Verfahren benutzt werden.



Anwendungen für komprimierte XML-Repräsentationen 171Teile der Ideen eines durch XML-Kompression verbesserten Daten-Manage-ments für mobile, Ajax-basierte Web 2.0 Anwendungen wurden in [21] veröf-fentlicht.12.3 Verbesserung der Cache-Kapazität durchKompressionDas Cache-Szenario umfasst einen Server, der das komplette, komprimierteXML-Dokument enthält, sowie einen client-seitigen Cache, der die komplet-te, komprimierte Dokument-Struktur enthält zuzüglich einiger weniger, kom-primierter Text-Knoten, sofern diese für die Beantwortung früherer Anfragenbenötigt wurden.Diese Architektur erlaubt dem Client einerseits, e�zient zu entscheiden, ober zur Beantwortung einer neuen Anfrage bereits alle Daten im Cache hat, an-dererseits entfällt in diesem Szenario auch der Overhead aufgrund von Knoten-IDs, wie sie in anderen XML-basierten Caching-Szenarien notwendig sind, daReihenfolge der Anfrage-Auswertung sowie Dokument-Struktur genügen, umfür jeden Text-Knoten dessen Position im Struktur-Komprimat eindeutig zubestimmen.In diesem Szenario sind insbesondere die Anforderungen 1-2 sowie 6-10 wich-tig, also eine starke Kompression sowie Auswertung von Anfragen und Updatesdirekt auf dem Komprimat. Die Kompressions- und Dekompressionsdurchsätze(Anforderungen 4-5) spielen eine eher untergeordnete Rolle, haben aber einedeutlich stärkere Bedeutung als im vorangehenden Szenario. Dadurch, dass diekomplette, komprimierte Struktur im Cache vorhanden ist, erhalten die An-forderungen 1-2 ein deutlich höheres Gewicht als die übrigen Anforderungen.Für dieses Szenario eignet sich daher insbesondere das Kompressions-Ver-fahren DTD-Subtraktion, da es eine sehr kleine Struktur-Repräsentation er-zeugt. Ebenso unterstützt dieses Verfahren das in Kapitel 9 vorgestellte XPath-Auswertungs-Verfahren, welches die Dokument-Reihenfolge der Text-Knotengarantiert. Prinzipiell können aber alle im Rahmen dieser Arbeit vorgestell-ten Kompressions-Verfahren zur Umsetzung eines solchen Szenarios eingesetztwerden.Zusammengefasst bietet der Einsatz solch eines neuen Caching-Verfahrensdie folgenden Vorteile:
• Aufgrund der Kompression erhöht sich die Cache-Kapazität, dadurchwerden mehr Cache-Hits ermöglicht.
• Weniger Datentransfer durch komprimierte Übertragung.



172 Anwendungen für komprimierte XML-Repräsentationen
• Kein zusätzlicher Overhead durch Identi�zierungs-Informationen für dieZuordnung von Blattknoten der Struktur zu Konstanten.
• Der Client kann Vollständigkeit der Daten in seinem Cache bzgl. einerAnfrage entscheiden.Teile der Ideen eines durch Struktur-Kompression verbesserten Cachingswurden in [14] zur Verö�entlichung eingereicht.



13 Schlussbetrachtungen
13.1 ZusammenfassungIn dieser Arbeit wurden drei verschiedene Verfahren � Succinct-Darstellung,DAG-basierte Kompression und DTD-Subtraktion � zur navigierbaren Kom-pression der Struktur von XML-Datenströmen vorgestellt. Jedes dieser Verfah-ren besitzt die Eigenschaft, dass sowohl Anfragen als auch Updates direkt aufdem Komprimat � ohne vorherige Dekompression und anschlieÿende Kompres-sion � durchgeführt werden können.Für jedes der drei Verfahren wurde bewiesen, dass Kompression und Dekom-pression Umkehroperationen zueinander sind, dass also die Hintereinanderaus-führung von Kompression und Dekompression auf einem XML-Struktur-Stromxml wieder den ursprünglichen Struktur-Strom xml herstellt. Ebenso wurdefür jedes dieser Verfahren die Korrektheit der Basis-Navigation basierend aufden atomaren XPath-Achsen �rst-child, next-sibling und parent sowie auf denFunktionen getLabel und getType nachgewiesen. Die Möglichkeit der Abbil-dung der kompletten DOM-Schnittstelle direkt auf dem Komprimat mit Hil-fe von Basis-Navigation und Updates wurde ebenfalls für alle drei Verfahrennachgewiesen.Neben den drei grundlegenden Verfahren wurden auch zwei hybride Verfah-ren � Succinct + DAG und DTD-Subtraktion + DAG � vorgestellt, die jeweilseine Kombination zweier grundlegender Verfahren darstellen.Für die zuvor von der XML-Struktur getrennten Konstanten wurde eineReihe von verschiedenen, bereits existierenden Kompressions-Verfahren vorge-stellt und deren Eigenschaften erörtert. Ebenso wurden die Vor- und Nachteileverschiedener Integrationsmöglichkeiten von komprimierter Struktur und kom-primierten Daten diskutiert.Um nicht nur eine Basis-Navigation zu unterstützen, sondern den weit ver-breiteten XPath-Standard, wurde ein Verfahren zur XPath-Anfrage-Auswer-tung vorgestellt. Dieses Anfrage-Auswertungs-Verfahren kann auf jeder XML-Repräsentation � egal ob komprimiert oder nicht komprimiert � die die Basis-173



174 SchlussbetrachtungenNavigation, bestehend aus den Achsen �rst-child, next-sibling und parent so-wie aus den Funktionen getLabel und getType, unterstützt, mehrere XPath-Anfragen parallel in einer zur Dokument-Gröÿe proportionalen Zeit auswerten.Abschlieÿend wurden in einer Reihe von Messungen die drei grundlegen-den Verfahren und die beiden hybriden Varianten sowohl untereinander alsauch mit anderen frei verfügbaren XML- bzw. Daten-Kompressoren verglichenund bzgl. Kompressionsstärke, Kompressions- und Dekompressionszeit sowieAnfrage-Auswertungszeit evaluiert. Obwohl die vorgestellten Verfahren im Ge-gensatz zu den anderen getesteten Verfahren navigierbar und Update-fähigsind, erreichen sie dennoch vergleichbare Kompressionsstärken, wenn auch dieKompressions- und Dekompressionszeiten etwas gröÿer sind als die der reinenKompressoren. Ebenso zeigte sich, dass die Anfrage-Auswertungszeiten durch-aus vergleichbar und in vielen Fällen sogar besser sind, als diejenigen vonXPath-Auswertern auf unkomprimiertem XML.Im Vergleich der Verfahren untereinander hat sich gezeigt, dass keines derVerfahren den jeweils anderen absolut überlegen ist. Jedes der Verfahren hatseine Stärke in einem anderen Bereich: Während die DTD-Subtraktion beson-ders stark komprimiert, sind die Kompressions- und Dekompressionszeiten derSuccinct-Darstellung besonders niedrig und die Anfrage-Auswertung auf derDAG-Kompression besonders e�zient. Je nach Anwendung und den darausresultierenden Anforderungen kann entsprechend eines der vorgestellten Ver-fahren in Kombination mit einem für die Anwendung geeigneten, vom Struktur-Kompressions-Verfahren unabhängigen Daten-Kompressions-Verfahren gewähltwerden.13.2 Erfüllung der AnforderungenZusammenfassend werde ich nun noch einmal die in Kapitel 1 vorgestelltenAnforderungen aufgreifen und erörtern, in welchem Maÿe diese durch die indieser Arbeit vorgestellten Lösungen erfüllt werden.
• Anforderung 1: Kompression und Dekompression müssen zueinanderinvers sein, die Dekompression der komprimierten Repräsentation mussalso bei Eingabe eines beliebigen validen Dokuments wieder das ursprüng-liche Dokument erzeugen.Die Erfüllung dieser Anforderung wird für die Succinct-Darstellung inden Sätzen 4.4 und 4.8 nachgewiesen. Für die DAG-basierte Kompressionwird die Erfüllung dieser Anforderung in Satz 5.1 und für die DTD-Subtraktion in Satz 6.1 nachgewiesen.
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• Anforderung 2: Die Kompressionsrate muss mindestens so stark seinwie die anderer XML-Kompressions-Verfahren mit vergleichbaren Eigen-schaften.Wie in Abbildungen 11.5 und 11.6 zu sehen, erreichen alle getestetenVerfahren Kompressionsraten vergleichbar zu XMill, BZip2 und GZip,obwohl keines der letzteren Verfahren Navigation direkt auf dem Kom-primat unterstützt. Somit kann keines dieser Verfahren vergleichbare Ei-genschaften vorweisen.
• Anforderung 3: Kompression und Dekompression müssen vergleichbareDurchsätze erreichen wie derzeit übliche Übertragungsverfahren.Wie in Abbildung 11.7 zu sehen ist, erreichen die gemessenen Verfah-ren Durchsätze von 4,4Mbit/s bis zu 53,5Mbit/s. Im Vergleich zum der-zeit üblichen Übertragungsverfahren ADSL mit Durchsätzen von unter1Mbit/s bis zu 8Mbit/s werden also durchaus vergleichbare Durchsätzeerreicht.
• Anforderung 4: Die Dekompression muss mindestens so schnell seinwie die Kompression.Im Vergleich der Abbildungen 11.7 und 11.12 ist zu sehen, dass für jedesder gemessenen Verfahren die Dekompression höhere Durchsätze erreichtals die Kompression.
• Anforderung 5: Kompression und Dekompression müssen möglich sein,ohne dass das gesamte Dokument beziehungsweise das gesamte Kompri-mat bekannt ist.In den Kapiteln 4.3, 5.2 und 6.2 wird die fenster-basierte Kompressionvon unendlichen Datenströmen und somit die Erfüllung dieser Anforde-rung erläutert.
• Anforderung 6: Zu jedem Knoten des ursprünglichen XML-Dokumentesmuss eine eindeutige Repräsentation im Komprimat existieren.Für die Succinct-Darstellung genügt eine Position p im Bitstrom, fürden DAG ein Stack bestehend aus Paaren (ID, Knotentyp), welcher denPfad zum aktuellen Knoten repräsentiert, und für die DTD-Subtraktiongenügt ein Tupel (KST, n, p) aus Komprimat KST, Syntaxknoten nund Position p im KST, um einen Knoten des ursprünglichen XML-Dokumentes eindeutig zu identi�zieren.
• Anforderung 7: Partielle Dekompression, also Dekompression von XML-Teilbäumen innerhalb des Komprimats, muss möglich sein.Da die Sätze 4.4, 4.8, 5.1 und 6.1 und deren Beweise, die die Korrektheitvon Kompression und Dekompression nachweisen, nicht nur auf das kom-plette Dokument, sondern auch auf Teilbäume bzw. deren Entsprechungim Struktur-Strom anwendbar sind, ist diese Anforderung erfüllt.
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• Anforderung 8: Die Basis-Operationen �rst-child, next-sibling, parentsowie die Ermittlung des Typs und des Labels eines Knotens direkt aufdem Komprimat müssen unterstützt werden.Wie in den Kapiteln 4.1.2, 4.4.1, 5.3, 5.4.1, 6.3 und 6.4.1 gezeigt, werdenvon allen drei Verfahren die Basis-Navigation und somit diese Anforde-rung erfüllt.
• Anforderung 9: Die Anfrage-Auswertungszeiten auf dem Komprimatsollten hierbei vergleichbar zu Anfrage-Auswertungszeiten auf unkompri-miertem XML sein.Wie z.B. in Abbildung 11.17 zu sehen ist, erreichen alle drei Verfahrenvergleichbare bzw. sogar teilweise bessere Anfrage-Auswertungszeiten alsdie der Standard-XPath-Auswertern auf unkomprimiertem XML.
• Anforderung 10: Die Basis-Operationen insert und remove müssen di-rekt auf dem Komprimat unterstützt werden.Wie in den Kapiteln 4.4.3, 5.4.2 und 6.4.2 erörtert, unterstützen alle dreiVerfahren diese Basis-Operationen direkt auf dem Komprimat.13.3 AusblickIn diesem Kapitel werde ich Ideen zur zukünftigen Erweiterung und Verbesse-rung der in dieser Arbeit vorgestellten Ansätze vorstellen.13.3.1 Verbesserte Konstanten-KompressionWie sich in den Messungen gezeigt hat, wird die Struktur des XML-Dokumen-tes sehr stark komprimiert, so dass die komprimierte Struktur nur noch 0,3%bis 16,7% der ursprünglichen Dokumentgröÿe beträgt. Im Vergleich dazu kom-primiert die Konstanten-Kompression mit 9,2% bis 30,4% deutlich schwächer.Es ist daher zu vermuten, dass die Entwicklung eines geeigneten Daten-Kompressors noch einmal einen deutlichen Fortschritt in der XML-Kompressionbringen würde.Da jedoch die Text-Kompression als Forschungsgebiet deutlich länger exi-stiert als die XML-Kompression, ist zu erwarten, dass die derzeit verfügbarenText-Kompressoren bereits sehr leistungsstark sind. Daher sollte der Fokus derzukünftigen Forschung nicht unbedingt auf der Entwicklung verbesserter Text-Kompressoren liegen, sondern eher darauf, wie man mit Hilfe der semantischenInformationen, die durch die XML-Struktur gegeben sind, die vorhandenenText-Kompressoren so erweitern kann, dass sie eine verbesserte Kompressionerreichen können.Einen Einstieg in diese Forschung stellt z.B. das Sortieren der Text-Konstan-ten in semantische Container dar, wie es schon von XMill vollzogen wurde.



Schlussbetrachtungen 17713.3.2 Unterstützung aller XML-AnwendungenMit der Unterstützung von XPath-Pfad-Anfragen und der Unterstützung voneinfachen Update-Operationen wurde in dieser Arbeit ein Anfang gemacht, alleAnwendungen, die auf XML möglich sind, auch auf der entsprechenden kompri-mierten Repräsentation durchführen zu können. XPath stellt dabei zwar einengrundlegenden Baustein dar, jedoch existieren eine Vielzahl weiterer Anwen-dungen und Standards, die teilweise auf den Grundlagen von XPath beruhen.Beispiele für solche Standards sind z.B. die XML-Anfragesprache XQuery unddie Programmiersprache zur Transformation von XML-Dokumenten XSLT.Beide bieten eine Vielzahl von Operationen, die über die Basis-Navigation viaXPath hinausgehen.Um also komprimiertes XML in gleichem Maÿe nutzbar zu machen wie her-kömmliches XML, müsste man die hier vorgestellten Verfahren untersuchen,inwieweit diese in der Lage sind, weitere XML-basierte Standards zu unterstüt-zen, bzw. inwieweit diese Verfahren anpassbar sind, so dass eine Unterstützungder Standards gewährleistet werden kann.Auch bei der schema-basierten Kompression � DTD-Subtraktion � habe ichmich in dieser Arbeit auf die Unterstützung einer Schema-Sprache � DTD �beschränkt. Neben DTD existieren aber noch andere Schema-Sprachen, wiez.B. XML Schema oder RelaxNG, welche eine höhere Mächtigkeit als die DTDbesitzen. Hier bliebe es also zu untersuchen, ob die in dieser Arbeit vorgestell-ten Ergebnisse zur schema-basierten Kompression auf andere Schema-Sprachenübertragbar sind, ob der höhere Sprachumfang eine Übertragung der Ergeb-nisse nicht möglich macht, oder ob der höhere Sprachumfang zu schwächerenoder stärkeren Kompressions-Ergebnissen führt.13.3.3 Verbesserte Navigation durch IndizierungObwohl die in Kapitel 1 dieser Arbeit vorgestellten Anwendungen auch dieUnterstützung von Navigation und teilweise auch von Updates direkt auf demKomprimat erforderten, lag dennoch der Hauptfokus der Anwendungen aufeiner starken Kompression.Möchte man nun statt dieser relativ einfachen Anwendungen ein komplettesnatives XML-Datenbank-System basierend auf komprimiertem XML aufbauen,so erhalten Navigation und Updates einen deutlich höheren Stellenwert.Für solch ein natives XML-Datenbank-System wäre es also interessant, diekomprimierten XML-Repräsentationen um zusätzliche Index-Informationen an-zureichern (z.B. direkte Pointer zu next-siblings), die eine optimierte Anfrage-Auswertung erlauben. Dabei ist natürlich auch die Kompression nicht aus demBlickfeld zu verlieren: Ziel sollten Kompressions-Verfahren sein, die dennocheine starke Kompression (wenn auch eine etwas schwächere Kompression als die



178 Schlussbetrachtungenin dieser Arbeit vorgestellten Verfahren) erreichen, aber die mit Hilfe von In-dizes deutliche Performanz-Steigerungen bei der Anfrage-Auswertung und beider Durchführung von Updates direkt auf der komprimierten Repräsentationerreichen.
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