
Size Equivalent Cluster Trees -

Rendering CAD Models in

Industrial Scenes

Dissertation

by

Michael Kortenjan

Heinz Nixdorf Institute and Department of Computer Science

University of Paderborn

April 2008

ii

Reviewers:

• Prof. Dr. Friedhelm Meyer auf der Heide, University of Paderborn

• Prof. Dr. Gitta Domik, University of Paderborn

CONTENTS

1 Introduction 1

1.1 Motivation . 1

1.2 Material Flow Simulations as a Rendering Application 2

1.3 Graphic Cards are not Everything 3

1.4 Contributions . 4

1.5 The Basic Approach . 7

1.6 Overview . 8

2 Previous Work 9

2.1 Level of Detail Modeling . 9

2.1.1 Surface Simplification . 10

2.1.2 LOD Management . 11

2.1.3 HLODs . 12

2.2 Sampling . 13

2.2.1 Survels . 13

2.2.2 The Randomized Sample Tree 14

2.2.3 Far Voxels . 16

2.3 Occlusion Culling . 16

2.3.1 The Prioritized-Layered Projection Algorithm 17

2.4 Hybrid Rendering Systems . 19

2.4.1 Giga Walk . 19

2.4.2 iWalk . 20

2.5 Clustering . 21

iii

iv CONTENTS

2.5.1 DBSCAN . 21

3 SEC–Trees 23

3.1 Outline of the Approach . 23

3.1.1 A Simple Example . 25

3.2 Grouping Triangles by Size . 28

3.3 Clustering . 29

3.4 Construction of the SEC–Tree . 34

3.5 Global SEC–Trees . 37

3.6 Construction Costs of SEC–Trees 38

3.6.1 Costs of an Arranging Phase 38

3.6.2 Clustering . 41

3.6.3 Overall Costs . 50

4 Rendering with Triangle Budgets 55

4.1 Selecting Triangles from Objects 57

4.2 Global SEC–Trees in Static Scenes 60

4.2.1 Integrating Frustum Culling 63

4.3 From the Randomized Sample Tree to the SEC–Tree 64

4.4 Weighting Objects to Assign Triangle Budgets in Dynamic Scenes 68

4.5 Out-Of-Core Rendering . 69

4.6 Generating Multi-Point Level of Detail 72

4.6.1 Emphasizing Significant Objects 73

4.6.2 Emphasizing Regions Surrounding Significant Objects . 74

5 Implementation Details 75

5.1 Preprocessing . 75

5.2 Triangle Centers . 76

5.3 SEC–Tree Structure . 77

5.4 System Architecture . 79

5.4.1 The Management Thread 80

5.4.2 The Rendering Thread . 80

5.4.3 The Prefetching Thread 81

5.5 Coordinate Systems . 82

6 Practical Results 83

6.1 Rendering Static Scenes . 83

6.1.1 Rendering Statistics . 86

6.1.2 Image Quality . 89

CONTENTS v

6.2 Rendering Dynamic Scenes . 91

6.3 Multi-Point Level of Detail . 97

6.4 Out-of-Core Rendering . 101

6.5 A Comparison to Rendering Octrees 105

6.5.1 Discarding Small Octree Nodes 106

6.5.2 Rendering Octrees with Triangle Budgets 107

7 Conclusions 111

7.1 Contributions . 111

7.2 Future Work . 112

Bibliography 115

vi CONTENTS

LIST OF FIGURES

2.1 Importance of triangles relies on more factors than distance . . 18

3.1 An example of a SEC–Tree . 26

3.2 Steps of the SEC–Tree construction 27

4.1 SEC–Tree of a lathe . 58

4.2 Lathe rendered with different triangles budgets 60

4.3 Large objects are displayed highly detailed at positions near to

the viewer . 61

4.4 Bounding the projected size of geometry 71

5.1 Choosing triangles centers . 77

5.2 Architecture of the rendering system 79

6.1 Screenshots of the static scene . 85

6.2 Rendering statistics on a sample path through the static scene . 88

6.3 Pixel errors on the path through the scene. 90

6.4 Overview on the dynamic test scene 92

6.5 Measurements along a path through different scales of the dy-

namic scenes . 96

6.6 Different representations of significant objects 98

6.7 Example of increased details due to a significant object posi-

tioned nearby . 99

6.8 Magnification of significant regions 100

6.9 Sample scene containing significant objects 102

vii

viii LIST OF FIGURES

6.10 Significance of objects had no influence on rendering performance103

6.11 Memory consumption of SEC–Trees in different scenes 104

6.12 Number of triangles rendered by an octree approach 106

6.13 Screenshots comparing weighted rendering of the SEC–Tree and

octree . 108

CHAPTER 1

INTRODUCTION

Visualizing industrial scenes containing diverse CAD models is a challenging

task, as the individual models, and therefore the complete scenes, are highly

complex. Thus, geometrical data exceeds rendering capabilities of common

hardware, and scenes are larger than main memory.

Our application is the visualization of scenes simulated by a material flow

simulation. Since CAD models of objects contained in this kind of scenes

are available, our scenes feature such characteristics. For this application,

we have developed the Size Equivalent Cluster Tree (SEC–Tree). This data

structure enables the user to navigate smoothly through large scenes. Only

portions of the tree reside in main memory at a time, which allows handling

scenes far larger than available memory capacities. Further, our approach

enables the user to interact with the 3-dimensional environment and manip-

ulate the simulation from within the virtual world.

1.1 Motivation

Virtual scenes are widely used to visualize real world processes. Walkthrough

systems allow the viewer to navigate through such 3-dimensional artificial

worlds. These virtual scenes can provide the user with an impression of what

the actual scene looks like or how it could be if this scene represents a project

1

2 Introduction

which still has to be realized. Planning of industrial facilities is one such

application.

The graphical representation should concur to the real world scene as com-

pletely as possible, in order to give the most lifelike image to the user. For

once, this means the graphical quality should be high enough to identify de-

tails of objects. Even more important is a frame rate high enough to allow

interactive navigation through the scene.

These two goals contradict one another. Increasing the visual details of a

scene representation results in additional computations. However, these com-

putations slow down the overall performance, including the rendering speed.

Therefore, a balanced approach keeps up the necessary frame rate, while at

the same time showing as much details as possible under these conditions.

Despite the tremendous progress in graphics hardware during the last years,

real-time rendering of large 3D scenes still requires adequate techniques.

While especially computer games take advantage of features like vertex and

fragment shaders, which allow computing transformations and special effects

on the graphics card, other applications hardly benefit.

Shaders do not provide a solution in cases of 3D scenes consisting of millions

of polygons. An example of such scenes can be found when looking at mod-

els of industrial facilities. Modern companies model their facilities in CAD

systems, resulting in models of individual machines consisting of some hun-

dred thousand triangles. Therefore, an entire facility contains some million

triangles.

1.2 Material Flow Simulations as a Rendering

Application

Planning industrial facilities is a resource intensive task. Machines need to

have sufficient capacities, such that not one undersized machine restrains the

entire production process. On the other hand, oversized machines tend to be

more expansive while their additional capabilities can not be exploited. Try-

ing just every type of machines until the best one is found would be expansive

and time consuming and therefore is not practical. Instead, material flow

simulations provide a suitable tool to simulate production processes.

1.3. Graphic Cards are not Everything 3

In addition, modifications of existing facilities, as restructuring to assembling

new products or increasing capacities of the current layout as examples, can

be planned using simulations. Potential reactions to unexpected events like,

a broken down machine, are tested by picturing the current situation in a

simulation environment and projecting the future development. This way, ap-

propriate retaliatory actions can be initiated before the complete production

process is affected.

Commercial tools like EM Plant or Simple++ offer several statistics and dia-

grams to evaluate simulation results. While experts are used to this form of

output, communicating the outcome to people who have to arrange the prac-

tical realization becomes difficult. 3D visualizations of simulations can help

resolving this communication barrier.

A second possible application for 3D visualizations in material flow simula-

tions is the verification of created simulations models. If the model looks

exactly like a real facility, incorrect behavior becomes visible and can be cor-

rected.

Existing tools offer only a rudimentary 3D visualization. Standard templates

are used, which may vary from the actual items. On the other hand, complex

CAD models of machines are available in large companies, which would allow

creating an exact representation of the facility. The main problem is the com-

plexity of these models each consisting of some thousand triangles. Therefore,

sophisticated methods are needed to display huge plants at real-time.

Visualizing a simulation results in special requirements on the rendering sys-

tem. The simulated environment contains multiple moving objects, examples

are forklifts or products, which are produced by one machine and further pro-

cessed by another one. Therefore, rendering algorithms, which allow only

displaying static scenes, are not suited for this application.

1.3 Graphic Cards are not Everything

Graphics applications are limited by one of four potential bottlenecks. They

are either fill rate limited, geometry limited, bandwidth limited or cpu limited

(see [CW02]). In fill rate limited applications, the per pixel operations, like

coloring and processing textures, present the bottleneck. Per vertex opera-

tions constitute restrictions in geometry limited cases. Examples are trans-

4 Introduction

formations which occur especially in animations, but also projections from an

object’s coordinate system to the screen coordinate system. Bandwidth limited

applications suffer from the large amount of data that has to be transferred

from main memory to the graphics hardware. Despite the increase of mem-

ory available on modern graphics cards, its size is not sufficient to store large

scenes completely on the graphics hardware. If the bottleneck is not related

to graphics hardware but computations on the cpu, an application is called

cpu limited.

Over the past few years graphics hardware has made tremendous improve-

ments. While especially computer games benefit from these advancements,

some other applications, like rendering CAD models, can hardly capitalize on

these developments.

New features like programmable vertex and pixel shaders allow manipulating

data to create impressive visual effects. Instead of polygons, textures can be

used to show details of the scene, resulting in less geometry which has to be

processed. Sophisticated lighting can further increase the visual quality of

the impressions made by textures.

Computer games rely heavily on these techniques. The main difference to

rendering CAD models is that scenes in computer games are created with

this application in mind. Models consist of few polygons and detailed textures.

The complexity of models and textures are adjusted to the rendering engine.

Therefore, games are usually fill rate limited.

CAD models are created, in order to produce an exact image of the object

they represent. Every detail, like single screws as an example, are modeled

such that it is possible to create the actual object by producing it as a copy of

the CAD model. While objects in computer games only need to look like an

object, CAD models also have to have correct geometry. This large amount of

geometry results in bandwidth limited applications. Therefore, cases in which

CAD models are rendered hardly benefit from modern graphics cards.

1.4 Contributions

If the user wants to observe a simulation in a 3D environment, he must be

able to move in real-time to any place he is interested in, requiring a suffi-

ciently high frame rate. We have developed a rendering algorithm as part of

1.4. Contributions 5

the material flow simulation tool d3FACT for realtime visualization of simu-

lated processes. d3FACT features several abilities, which are beyond possibil-

ities of concurring tools ([MDL+04]).

For rendering these large simulated worlds under the conditions arising from

our application, we have developed the Size Equivalent Cluster Tree (SEC–

Tree, [KS06]). This data structure and its application for rendering will be

the focus of this work. As its main properties, the SEC–Tree offers

• rendering at a chosen frame-rate with only small fluctuations at differ-

ent viewing positions in the scene, adjustable to capabilities of the given

hardware

• organizing the triangles of objects to obtain a subset of triangles for ren-

dering, while making only small sacrifices on quality of rendered images

• rendering of large dynamic scenes, containing some thousand moving

objects. Forklifts or packets created by the simulation, representing pro-

duced goods, are examples of such objects

• organizing static scenes on object level, which allows a more efficient

handling compared to dynamic scenes

• keeping up object identities, which enables the altering of object param-

eters or positions at runtime

• displaying scenes larger than memory capacities by applying an out-of-

core rendering approach, tested with a scene occupying 66 GB

• adaptive regulation of object details depending on the location of the

viewer. Parts of objects near to the viewer are automatically rendered at

a higher degree of detail

• rendering of important objects at a higher level of detail. These impor-

tant objects may be identified by the d3FACT simulation tool

We have analyzed the construction of the SEC–Tree and will show that these

costs mainly depend on the costs of a clustering algorithm utilized within the

construction process.

Further, we have implemented the SEC–Tree as part of a prototypical ren-

dering system. This system was used to obtain experimental results, proving

that our approach works well in practice.

6 Introduction

SEC–Trees fulfill the requirements raised by our simulation tool d3FACT.

d3FACT allows multiple users to work commonly at the same simulation

model, by providing a 3-dimensional multi-user environment. This 3D-world

permits manipulating the underlying simulation model. Such interactions

with the simulation result in additional requirements. If the user wants to

see parameters of a machine or make changes to the virtual world, he must

be able to select an object. Therefore, object identity has to be preserved in the

rendering system. In contrast to some other rendering systems, our approach

fulfills this requirement.

Further, d3FACT supports significant events, which can be reported to the

renderer and are specially treated by the rendering system. Such event can

be defect machines or filled depots. This supports the user by directing him

to locations where his attention is required.

The user is lead to the places, where significant events occurred, by showing

a path in the virtual world. This path is automatically determined, started at

current position of the viewer and leading around obstacles to the place of the

significant by displaying arrows on floor.

Path finding is used for moving simulation objects, forklifts as an example,

as well ([FMM+05]). While common simulation tools require the developer

to specify paths explicitly, d3FACT determines them automatically. Further,

adjusting simulation models no longer requires updating paths manually to

consider changed object locations, as this is done by the application. We have

developed a new motion planning algorithm to compute the paths in the vir-

tual environment ([MLD+05]).

Recent progress of d3FACT includes the simulation and rendering of multiple

experiments in parallel ([DHL+06], [FLH+07]). Since this exceeds the compu-

tation power of a single CPU, a distributed approach is used. These multiple

simulations are rendered in one single 3D-image, thus allowing a direct com-

parison of the various parameter sets. At any time, the user can terminate

simulations, or clone them to create an additional simulation run, where al-

tered parameters can be tested. Since rendering multiple simulations at once

is an even more complex task than rendering just one simulation, the render-

ing algorithm used also works in parallel.

1.5. The Basic Approach 7

1.5 The Basic Approach

In order to achieve a rendering system, which is able to display huge scenes at

interactive frame rates, we limit the amount of rendered geometry depending

on capabilities of the given hardware. The SEC-tree is created for each object

as a preprocessing.

At runtime, each object is assigned a weight corresponding to its size and dis-

tance to the viewer. According to this weight, the number of triangles chosen

from this object for rendering is determined. The SEC-tree is used to select

which triangles are rendered. This allows not only displaying objects with

different degrees of detail, but further details can vary within one object.

The SEC-tree organizes each object into a hierarchy of details. Larger trian-

gles are at higher levels of the tree, while smaller triangles are stored further

down. The tree is created bottom up by finding clusters of the smallest tri-

angles initially. These clusters are combined with triangles of size equal to

the accumulated size of contained triangles forming new clusters. Continuing

this approach, a hierarchy of all triangles is created.

In static scenes another SEC–Tree is built on object level and used at run-

time for frustum culling and weight distribution. While this is not possible

in dynamic scenes, as SEC–Trees are a static data structure, scenes contain-

ing some thousand moving objects can be handled without any sophisticated

global data structure managing the objects, using only SEC–Trees for the sin-

gle objects.

To allow scenes larger than main memory, only parts of the objects possibly

needed within the next frames are loaded from hard drive. A separate thread

is responsible for prefetching and deleting geometry to avoid waiting times

caused by hard drive access.

Object details can be increased at points of interest determined by a simula-

tion [FMM+05]. Depending on the level of significance, such objects obtain

additional triangles. These triangles are either redistributed from other, less

important, objects or assigned in addition, allowing exceeding the budget in

favor of details. Further, instead of emphasizing just the one significant ob-

ject, other objects surrounding it can be increased in detail well.

8 Introduction

1.6 Overview

The further is structured as follows: In Chapter 2 we cite work of other au-

thors related to the topic and compare them to our approach. Chapter 3 in-

troduces the SEC–Tree in detail, describing how it constructed, followed by

analyzing the costs of this process. In Chapter 4 we will show how to use

the SEC–Tree to render a scene. Then, some details on the implementation

are presented in Chapter 5. In Chapter 6 we will present practical results

obtained from the prototypical system. Finally, we draw our conclusions and

give an outlook on future possibilities in Chapter 7.

CHAPTER 2

PREVIOUS WORK

By the increasing use of CAD modeling to support industrial purposes like

visualization of product flows or industrial plants, the object and thus the

scene complexity has grown tremendously. Different strategies appeared to

overcome the problem of rendering large scenes, which are too complex for

obtaining interactive frame-rates, when rendering the complete scene.

Neglecting complexity or brute force rendering will not consider the complex-

ity of the modeled scene with all its objects and will likely fail, even if the

scene is small enough to fit into main memory. Current graphic cards may

feature more than 130 million triangles per second in theory as peak per-

formance, while this performance is not archievable in practice. Thus, one

challenge in displaying complex scenes with interactive frame rates is to find

an appropriate reduction of the scene complexity in the number of primitives.

For a brief context overview we give a short introduction in some general tech-

niques in complex scene visualization and give a more detailed description on

some work closer related to our approach.

2.1 Level of Detail Modeling

Level of Detail proposed by Clark [Cla76] creates multiple versions of every

3D object as a preprocessing step, each of different complexity. These differ-

9

10 Previous Work

ent representatives are used within the rendering system, depending on the

distance from the viewer. One difficulty of this approach is to generate the

various coarse-level representations of an object.

The visual discontinuity appearing while switching between different repre-

sentations motivates the continuous LOD approach [LRC+03]. Rather than

creating a few LOD’s for each object, the simplification system creates a data

structure encoding a stream of continuous details.

Chhugani et. al. subdiveded the view space into view-cells, similar to an

octree based partitioning scheme and generated vLODs [CPK+05], based on

the given LODs as view dependent representatives of view-cells. Usually,

generated vLODs are much larger than the original model and to large to be

stored directly on disk.

2.1.1 Surface Simplification

While creating differently detailed models of an object by hand results in high

quality approximations when created by an expert, this is incorporated with

significant additional work.

Surface simplification describes a process of automatically obtaining a model

with less complexity from a single highly detailed model, and can be deployed

to obtain multiple models with different degrees of detail as mentioned LOD

models. To obtain this, mainly edge collapsing (contraction), vertex splitting,

or methods combining both as described by Garland [Gar99] and Rossignac

[Ros04] are used. Several differently detailed models may be obtained and

stored as discrete LODs, as constantly redefining objects during rendering

may result in a significant computation overhead at runtime.

Hoppe introduced progressive meshes [Hop96] to create a sequence of opera-

tions refining a simplified mesh stepwise up to the original model. An energy

function is used to determine the order, in which edges are processed. Garland

and Shaffer combined an initial uniform clustering on the input model (of size

n) to produce an intermediate approximation (of size r) with an iterative edge

contraction phase [GS02]. Their system produces results comparable to the

QSlim [GH97] approach. In advance their new method provides approxima-

tions in 1/5 the time or less and uses less memory.

For deeper insights in the matter of multi-resolution modeling, LOD, surface

2.1. Level of Detail Modeling 11

simplification, and visibility techniques we would like to refer to the following

articles Puppo and Scopigno [PS97], Erikson [Eri96] and Luebke [Lue97].

2.1.2 LOD Management

If LODs are selected simply depending on their distance to the viewer, ren-

dering performance may depend heavily on the user’s viewing direction and

position in the scene. A user located at the border of the scene might see the

complete scene at one moment, but by turning his viewing direction all objects

may become invisible after a few frames.

Funkhouser and Séquin introduced a heuristic to choose LODs for any view-

point [FS93], such that rendering costs do not exceed rendering capabilities.

A benefit function rates every detail level of any object. A cost function esti-

mates the rendering costs, given a selected detail level for every object. LODs

should be selected, such that the benefit function is maximized, while at the

same time rendering costs are below some threshold. Selecting LODs satisfy-

ing these conditions corresponds to solving a version of the knapsack problem,

which is NP-complete.

Therefore an approximation algorithm is used to find a solution which is at

least half as good as the optimal solution and has worst case costs of only

O (n logn). Benefiting from temporal coherence solutions of succeeding frames

tend to be quite similar. Typically, given the solution for one frame a result

for the next frame can be obtained very fast. However, for the first frame or

in case the user teleports to a distant viewpoint, selecting LODs might slow

down the rendering algorithm significantly and may be even slower than just

rendering the complete scene at a high complexity.

The estimation of rendering costs depends on the number of rendered poly-

gons, their vertices and an approximation on the number of covered pixels.

Similar to our approach, the benefit function considers the projected size, ac-

curacy at a given distance and importance of an object. In addition, speed of

moving objects, projected screen position and detail differences to the previ-

ous frame have an impact. For optimization reasons a PVS system is used

to identify occluded objects. However, since PVS systems are static, moving

objects are not regarded for occlusion culling.

A drawback of static LODs is that selecting LODs requires creating several

12 Previous Work

instances of each object with different detail levels beforehand. This can be

done automatically but does not neccesarily lead to good results and is limited

by restrictions on the type of models such algorithms can be applied to. On

the other hand, modeling different versions of a model by hand leads to good

results, but requires enormous effort. Another drawback of fixed LODs is that

the degree of details can only be customized for the entire model, while our

approach allows increasing details within one model at locations near to the

viewer and choose less refined representations at portions further away at the

same time.

Out of core algorithms have not been considered within the LOD management

system, every LOD of each model is kept in main memory simultaneously.

It remains unclear if continuity in the cost and benefit functions could be

utilized to efficiently integrate out-of-core rendering.

2.1.3 HLODs

Simple LOD approaches consider only one object at a time and not the over-

all complexity of the scene. To overcome this, the approach by Erikson et.

al. enhanced the classical LOD approach by introducing hierarchical levels

of detail (HOLDs) [EMWVB01] and presented its performance as a part of

a system called SHAPE. HLOD supports scenes with limited dynamics and

features target frame rendering with a constant frame rate.

The algorithm works on scenes organized as a scene graph [Cla76], [RH94].

At first, this scene graph is reorganized for better support of spatial criteria,

i.e. nodes near to each other in the graph should represent geometry located

near to each other. For each node containing geometry, discrete LODs are

created using the GAPS [EM99] algorithm. HLODs represent not only the

geometry of one node, but also all succeeding nodes. The finest representation

of a node consists of its coarsest LOD and the coarsest HLODs of its children.

Using GAPS again, coarser HLODs are created for the node. When an HLOD

is rendered, an error bound on each node measures the deviation from the

correct image, depending on the distance from the viewer.

Rendering the scene graph, either the frame rate or image quality can be

fixed. If image quality is the main concern, the scene graph is traversed and

at each node the error bound is used to determine if rendering HLODs of

this node results in an appropriate image. If so, following nodes can be dis-

2.2. Sampling 13

carded, as HLODs represent a node well enough as a replacecment of suc-

ceeding nodes. Otherwise, an LOD is selected for the node and children are

processed recursively.

When rendering with a constant frame rate is preferred over correct images,

a polygon budget is applied. Starting with the root, nodes are recursively tra-

versed to select HLODs from the graph with a combined number of polygons

below the budget. As long as the budget is not reached, the scene graph is

traversed further, continuing at the node of largest error.

Dynamic scenes may require updating the scene graph structure in order

to keep spatial locality of nodes. This goes along with anew generation of

HLODs. The authors used a multiprocessor platform to perform these up-

dates parallel to rendering the scene, as regenerating HLODs was more ex-

pansive than the actual rendering. Therefore, this approach can handle scenes

with few moving objects, but does not cope with their increasing number. Fur-

ther, the authors used a SGI Reality Monster with 16 GB of main memory,

sufficient to store all their test scenes in main memory.

2.2 Sampling

Point based rendering uses points as rendering primitives. In order to reduce

the polygon rendering complexity, points can be used to represent as set of

polygons. An alternative to using sample points is rendering only sample set

of polygons.

These techniques to choose representatives have been early introduced by

Catmull [Cat74] and Levoy and Whitted [LW85] and later been picked up

by Grossman and Dally [GD98]. Further enhancements providing realtime

rendering, including scalability of polygonal scenes, are made by Zwicker et.

al. [ZGP00], Rusinkiewicz and Levoy [RL00], and Klein et. al. [KKF+02].

2.2.1 Survels

Pfister et al presented survels [PZvBG00] to represent objects by sampled

points. In addition to the coordinates of a point, survels contain information

about the normal, color and textures of the model at the given position.

14 Previous Work

In a preprocessing step, survels are created and organized in an octree by a

bottom up approach. Initially, the model is projected by three orthographic

projections from different directions. Using ray casting, the intersections of

rays with the model are calculated and stored as survels. The density of rays

determines the granularity of object representation. The set of survels is used

to create an octree, which stores survels in its leafs. Every parent node con-

tains half the survels of its children. The survels associated with a node are

referred to as a block.

Rendering an object is performed by traversing the octree and projecting

blocks to screen coordinates. The number of survels projected to one pixel

under an orthographic projection can be estimated and is used as abbortion

criteria. The traversal stops if at least a certain number of survels cover a

pixel. This may be one survel per pixel for fast rendering or more than one, to

improve image quality. Since the estimation is correct for orthographic pro-

jections but perspective projections are commonly utilized, holes may appear

which require special consideration. Further, anti aliasing and texture filter

techniques can be applied to improve image quality.

The scenes considered by the authors contained only one single object. Ren-

dering a scene of a single model with originally about 81.100 polygons on a

700 MHz Pentium III at a resolution of 480 × 480 resulted in 4.6 frames

per second. While this definitely would run smoothly on current hardware, a

scene consisting or multiple objects might be problematic. It remains unclear,

how the algorithm performs if the complete scene was treated like one object,

as this might results in a very different topology. Further, such an approach

could only be applied to static scenes. On the other hand, generating and ren-

dering a separate tree for every object might not be fast enough for a scene

containing multiple objects.

2.2.2 The Randomized Sample Tree

While survels perform well for objects with lots of small details, large, flat

areas are much better represented by polygons. The randomized Z-buffer

[WFP+01] can be classified as a hybrid method, which overcomes this dis-

advantage. Its main idea is to represent geometry projected to only a small

screen area by reconstructing it from an set of random surface sample points,

while accurately rendering geometry covering larger portions of the screen.

2.2. Sampling 15

The randomized sample tree [KKF+02] extends the randomized Z-buffer with

out-of-core techniques.

As a preprocessing step, initially an octree is created from the input triangles.

Then, for each node u triangles are randomly selected and stored in the parent

node with probability of the triangles area relative to the summed area of all

triangles located in u. At rendering time the tree is traversed by a depth first

search. The triangles contained in each node encountered are rendered until

the projected size of a node is smaller than one pixel. Rendering is aborted at

such locations and continued with the next large node found by the traversal.

A client server architecture allows rendering scenes which may not fit into

main memory. The server loads geometry as needed and sends it to the client.

This allows more general scenes than or implementation which loads geome-

try only from local hard drive. On the other hand, the SEC–Tree prefetches

geometry to avoid slow downs during rendering due to missing geometry,

which in contrast become visible in case of the sample tree. However, it should

be possible to integrate prefetching without severe problems.

The authors show that for a certain sample size selected during the tree con-

struction, correct images are obtained with high probability. However, their

definition of correctness varies from the result actual rendering delivers. Still

such errors occur only at nodes of small projected size. Rendering such nodes,

aliasing becomes the main problem and even an approach rendering every

triangle might result an image with pixels not representing the scene accord-

ingly. As an alternative to rendering the sample points, a single color value

can be precomputed for each sample tree node by averaging the colors of all

triangles. However, this does not consider occlusion or orientation towards

the viewer.

This approach is related to rendering SEC–Trees as both methods choose a

subset of the overall geometry when rendering the image. The main differ-

ences are the underlying data structure and the number of regarded trian-

gles. The randomized sample tree selects sufficient triangles from an octree

to ensure image quality, while a constant number of triangles is selected from

a SEC–Tree to keep up a constant frame rate. At locations in a scene, where

many large triangles are near to the viewer, the sample tree has to render all

of them, which might lead to frame rate decreases unsuitable for interactive

walkthroughs.

The randomized sample tree considers the complete scene as a triangle soup,

16 Previous Work

i.e. the input is a set of unstructured triangles. Object identity is not con-

sidered and therefore can not be preserved. If objects are not known by the

data structure, removing or relocating objects is not possible and limits the

randomized sample tree to static scenes.

2.2.3 Far Voxels

Gobbetti et al presented far voxels [GM05], an approach for out-of-core con-

struction and view-dependent rendering of large models on commodity graph-

ics platforms, instead of choosing points randomly they look for points visible

from viewing positions on the outside of the model. Their method integrates

visibility culling and out-of-core data management with level-of-detail con-

struction and rendering. Triangles as well as volumetric data are considered

by their approach. Nodes of an underlying BSP tree [FKN80] contain tri-

angles in case of leaf nodes, while inner nodes are discretized into cubical

voxels. Voxels are associated with points obtained from intersections of rays,

originating from multiple directions, with the model’s surface.

At rendering time, the tree is rendered in front to back order, using hardware

occlusion culling to avoid rendering invisible parts of the object. Triangles

stored in leaf nodes are rendered, while inner nodes are traversed until pro-

jected voxel size falls beneath a threshold. When this case occurs, points as-

sociated with voxels are rendered and subtrees are ignored. Only portions of

the model that have to be rendered are kept in main memory and are loaded

on demand when not present.

The disadvantages are similar to those of surfels, that is dynamic scenes or

scenes consisting of multiple objects are not considered.

2.3 Occlusion Culling

Occlusion culling algorithms discard polygons which are not visible within the

rendered image due to occlusion. Two basic approaches can be distinguished.

From region visibility algorithms organize the space into cells and determine

visibility relations between these cells as a preprocessing step. For each cell a

set of potentially visible cells (potentially visible sets, PVS) is computed. Teller

and Séquin [TS91] presented one example of such an approach.

2.3. Occlusion Culling 17

While PVS are calculated in object space, other approaches like hierarchi-

cal occlusion maps [ZMHH97] or the hierarchical Z-buffer [GKM93] work in

screen space. Such point visibility approaches identify visible portions of the

scene at runtime and depend on the viewer’s current position in the scene.

With the hierarchical Z-buffer [GKM93], regions of a scene are culled, when

their closest depth value is greater then that of the pixel which is already dis-

played at the projected scene location. Finding occluded polygons is supported

by advances in current graphics hardware, see Bittner et. al. [BWPP04]. An

overview on different occlusion culling algorithms can be found in the survey

of Aliaga et. al. [COCSD03].

2.3.1 The Prioritized-Layered Projection Algorithm

The prioritized-layered projection (PLP) algorithm [KS00] has been introduced

by Klosowski and Silva. This approach is strongly related to occlusion culling,

as it traverses a data structure in an order preferring nodes that are more

likely not to be occluded. The algorithm is not conservative, i.e. visible por-

tions of a scene may not be recognized. This results from a limited polygon

budget available for rendering each frame, similar to our approach. An exten-

sion resulting in conservative visibility is presented in cPLP [KS01].

As a preprocessing step, the polygons of the scene are organized in a data

structure which leads to convex cells, such that polygons within a cell are

evenly distributed. The authors proposed an octree as a well as a delauny

triangulation as possible data structures to obtain such cells. Each cell is as-

signed a solidity value, indicating how large the contained geometry is com-

pared to the cell.

At runtime, the data structure is traversed in an order similar to a front-to-

back traversal, starting with the cell containing the user’s current viewpoint.

All nodes which might be visited next are stored in a priority queue of candi-

dates called front. Initially, the front is empty. Whenever a node is rendered,

the neighboring nodes which have not been rendered yet are updated in the

front. Depending on the solidity of the rendered node, the direction to the

neighbor compared to the direction to viewer and depending on the orienta-

tion of the boundary between the node and its neighbor, the solidity value is

determined. The intention is to reach a high solidity value if much geome-

try between a node and the viewer has been rendered and instead continue

18 Previous Work

working on the front at less occluded positions.

For each node encountered during the traversal, the number of rendered poly-

gons is counted. If this number exceeds the given budget, the traversal is

aborted. The differences to rendering SEC–Trees are the underlying data

structure and how triangles are chosen. The PLP algorithm tries to select

triangles which are most likely to be not occluded and moves in a direction

away from the viewer.

In contrast, the SEC–Tree selects triangles depending on distance and size,

and therefore prefers components defining the approximate structure over

details, even if those are facing the viewer. Figure 2.1 shows the image of an

example object, Figure 2.1(b) shows how it is rendered using the SEC–Tree.

The lattices are partly drawn, indicating that they exist but not wasting that

much of the budget. For approaches utilizing a triangle budget, choosing the

nearest triangles is not necessarily an optimal strategy. The lattices in the

front would be encountered and drawn by the PLP algorithm early, while they

contribute only little to the final image.

(a) The model with all triangles (b) and rendered with a SEC–Tree

Figure 2.1: Triangles in the front may not be the most important

Since the PLP approach works on a polygon level rather than object level,

object identity can not be prevailed. Further, dynamic scenes are not sup-

ported. Out-of-core rendering is not supported or discussed in the proposed

algorithm, however the walkthrough system iWalk [CKS03] integrates the

PLP algorithm in an out-of-core rendering system.

2.4. Hybrid Rendering Systems 19

2.4 Hybrid Rendering Systems

Some systems use hybrid approaches, relying on more than one single techique

for rendering scenes, thus combining several methods. The UC Berkeley Ar-

chitecture Walkthrough system [FTSK96] combined hierarchical algorithms

with object-space visibility computations [Tel92] and LODs for architectural

models.

A framework presented by Andujar et. al. [ASVNB00] integrated occlusion

culling and LODs. This approach estimated the degree of visibility of each

object by using PVS. Then, this value is used for selecting appropriate LODs

and culling. The method relies on decomposing scene objects into overlapping

convex regions (axis-aligned boxes) which are considered as occluders.

Another integrated approach uses the prioritized-layered projection visibility

approximation with view-dependent LOD rendering [ESSS01]. Instead of dis-

carding scene portions which are likely to be occluded, they use its visibility

estimation to determine their level of detail.

The UNC Massive Model Rendering (MMR) system [ACW+99] combined LODs

with image-based impostors and occlusion culling to deliver interactive walk-

throughs of complex models.

2.4.1 Giga Walk

Giga walk [BSGM02] combined a complex mixture of different technologies

to obtain 12-37 frames per second within complex environments on dedicated

SGI workstations. Their approach uses two graphics pipelines in parallel,

the first for occlusion culling, while the second renders visible geometry. An

additional process loads geometry on demand, such that only geometry cur-

rently required is kept main memory which allows displaying scenes larger

than main memory.

An axis aligned bounding box (aabb) hierarchy for managing LODs is built

up as a preprocessing. Creating this data structure, at first larger objects are

split up and a clustering approach combines these smaller object fragments

into new objects. While these redefined objects feature a larger spactal to-

getherness, information about original input objects is lost. After building

the aabb hierarchy for the new objects, HLODs are computed using GAPS

20 Previous Work

[EM99]. Leaf nodes contain traditional static LODs, while LODs of inner

nodes approximate the geometry of all children.

Rendering the data structure, objects which were visible in the last frame are

rendered as occluders. Using a hierarchical Z-buffer [GKM93], the aabb hier-

archy is traversed and objects are tested for visibility. Then, visible objects are

rendered in a second graphics pipeline. For each node visited, the HLODs are

checked for the resulting errors if they are used for rendering instead of the

original geometry. Adjusting this threshold allows to sacrifice image quality

for higher frame rates. However, this approach still keeps image quality fixed

and offers no possibility to predict the image quality necessary to guaranty a

certain frame rate.

2.4.2 iWalk

Correa et. al. presented the out-of-core rendering system iWalk [CKS03]. It

uses the PLP algorithm for rendering and to perform visibility based prefetch-

ing of geometry. Two rendering modes are supported, either approximate

rendering, limiting the displayed geometry by a triangle budget to keep up a

constant frame rate comparable to rendering SEC–Trees, or conservative ren-

dering, displaying all visible triangles and thus favoring image quality over

speed.

Since the PLP algorithm is integrated into their system, their basic data

structure is an octree, which is created in an out-of-core preprocessing. The

iWalk walkthrough system traverses this octree at runtime to render the

scene.

There are two threads involved in the rendering process, first the actual ren-

dering thread and second a lookahead thread for prefetching geometry. The

rendering thread uses PLP in approximate rendering mode or cPLP in conser-

vative rendering mode to determine visible portions of the scene. A geometry

cache loads the necessary geometry from hard drive if it is not currently avail-

able. Then, this geometry is passed to the graphics hardware for rendering. In

order to avoid delays while waiting for geometry to be loaded, the lookahead

thread predicts future positions of the viewer and uses the visibility algorithm

to identify geometry which might be rendered in one of the next frames.

iWalk combines the PLP algorithm with out-of-core rendering, removing one

2.5. Clustering 21

problem from the original PLP approach when displaying large scenes. How-

ever, the other drawbacks inheritet from PLP as described in Section 2.3.1

still remain unsolved in iWalk, namely object identity is still lost and chang-

ing the scene at runtime is not possible.

2.5 Clustering

One step within the construction of SEC–Trees will be clustering center points

of similar sized triangles. A variety of different clustering approaches have

been developed, like k-means, k-medoids or hierarchical clustering, an exten-

sive overview is given in the surveys by Pavel [Ber02] and Xu and Wunsch

[XW05]. Our approach is similar to the density based clustering algorithms

DBSCAN [EKSX96] and OPTICS [ABKS99].

2.5.1 DBSCAN

Within the precprocessing, we use a density based clustering algorithm sim-

ilar to DBSCAN [EKSX96]. DBSCAN searches for clusters by defining an

ǫ-neighborhood around each input point and identifying neighbors located

within this region.

The algorithm DBSCAN discovers clusters and identifies noise in a database.

It starts by defining core objects, which are points containing a number above

a given threshold of other points inside an ǫ-neighborhood. An point P̃ is

called density reachable by P if there exists a chain of core objects between

them, such that each of these points is contained in an ǫ-neighborhood of the

previous one, starting with P and ending with P̃ . Then, a cluster is a maximal

set of points, where each point is density reachable from the others.

The retrieval of density reachable points is performed by iteratively searching

for them. DBSCAN checks the ǫ-neighborhood of each point in the database.

If the neighborhood contains sufficient points, a new cluster is created from

these points. Then, the ǫ-neighborhood of all added points which have not

been processed is checked. If this neighborhood contains at least the required

number of points, the neighbors which are not already contained in the cluster

are added and their neighborhood is checked in the next step. This procedure

is repeated until no new point can be added to the current cluster.

22 Previous Work

While the construction process of SEC–Trees contains similar approach, the

intentions for our clustering algorithm are different from those in DBSCAN.

DBSCAN is created for data mining in databases, while we are interested in

spatial organization of triangles to create a rendering hierarchy. As a result,

DBSCAN tries to identify noise inside the point set, which are points not con-

tained inside any cluster, while SEC–Trees on the other hand do not discard

any triangles from the input set. The authors state that their algorithm has

costs of O (n log n) if the input consists of n points. However, their assump-

tion is that the number of points reported by a range query is bounded by a

constant, as query regions are small. SEC–Trees need every point to be con-

tained in a cluster, so neighborhoods might become large. We will present a

version of our clustering algorithm which guaranties that the number points

each range query reports will be limited by a constant. Still, our algorithm

has higher overall costs, as we enlarge neighborhoods until every point is con-

tained in a cluster, while DBSCAN in contrast considers a fixed value of ǫ.

An enhancement of DBSCAN, called OPTICS [ABKS99], overcomes this lim-

itation of DBSCAN that only one fixed value of ǫ is considered. Instead of

computing clusters explicitly, they determine an order which allows, with few

additional information per point, to apply an algorithm based on DBSCAN

finding clusters for any ǫ′ ≤ ǫ. However, neighborhoods larger than ǫ are not

supported.

CHAPTER 3

SEC–TREES

In the following we will give a detailed on description on the construction

of SEC–Trees. We start giving a short overview on this process and a sim-

ple example in Section 3.1. In Section 3.2 we describe how groups of similar

sized triangles are created. Section 3.3 introduces our clustering algorithm.

Then, we present our approach on creating SEC–trees in Section 3.4, using

the two previous algorithms. While these methods are applied to single ob-

jects, we introduce our global data structure in Section 3.5. In Section 3.6,

an analysis of the algorithms is given. However, while the algorithms have

been implemented as described before and perform well in practice, we will

analyse alternatives which are showing a better worst case behavior.

3.1 Outline of the Approach

The main idea behind the SEC–Tree is to create a data structure, in which

every node represents a cluster of nearly equally sized smaller clusters and

triangles. The input data for the rendering system are objects J1, . . . , Jm con-

sisting of triangles. For each object the position of the bounding box center is

given, additionally a 3D model is specified defining the geometry of the object.

For every 3D model a SEC–Tree is constructed individually, containing all

triangles in object coordinate space. Then, transformation matrix defines how

23

24 SEC–Trees

to transform the SEC–Tree of the 3D model corresponding to an object into

world coordinate space. If positions of objects do not change, the scene is

static, and in addition to the trees created for each model, a further SEC-tree

can be built on object level. We will call this tree a global SEC-tree. The

SEC–Tree of all 3D models as well as a global SEC-tree are built once in a

preprocessing step and stored on hard drive. Instead of a complete scene, we

will consider a single object J consisting of n triangles T1, . . . , Tn as our input

data first, before dealing with static scenes containing multiple objects later

on in Section 3.5.

For each triangle Ti its area A (Ti) and center point zi are the main information

when organizing these triangles in a SEC–Tree. The SEC–Tree differs from

most spatial data structures used for rendering, as the main characteristic of

triangles is their area, while position is only secondary. In contrast most other

approaches, like octrees as an example, consider position to be the primary

attribute. Inserting a triangle into an octree, at first one has to decide which

octant contains this triangle. The triangle’s size is only important to find the

appropriate depth in the tree.

The SEC–Tree construction process groups triangles of approximately equal

area first, the primary attribute is a triangle’s area. Then, spatial criteria

become of importance, as clusters within groups of equally sized triangles are

searched for, but this criteria is not considered in the first step.

Another difference to most other spatial data structures lies in the avoidance

of a strict distinction between data structure and stored data. As an exam-

ple, in an octree each node has exactly eight children and contains a varying

amount of geometry, clearly delimiting nodes from triangles. The SEC–Tree,

on the other hand, is build up in bottom up manner, combining triangles with

clusters. The combinations are based on size and the position of the center

point of triangles and clusters. Only definitions of these parameters are dif-

ferent, beyond that triangles and clusters are treated equally. At this point, a

subtree of the SEC–Tree is handled exactly like a triangle.

We assume that objects are not animated, in the sense that objects are static

in themselves, i.e. turning wheels on forklifts are not supported, thus a data

structure organizing this object can be constructed in a preprocessing stage

and no reorganization has to be performed at runtime. Complete objects how-

ever may be inserted, deleted or moved in the scene.

The goal is to get an approximation of a scene suited for interactive rendering

3.1. Outline of the Approach 25

regardless of the object’s complexity. An object’s impact on the rendered im-

age is depending on the number of pixels covered after its projection to screen

coordinates. Considering the object’s size and distance to the viewer allows

to rate the importance of an object for displaying, because these parameters

mainly determine its projected size. The SEC–Tree organizes all triangles

by size and position, offering information needed for high quality approxima-

tions. A detailed description of the deployment of SEC–Trees in the rendering

process will be given in Chapter 4.

Our approach consists of two main phases which are iterated. First, triangles

are sorted by size in ascending order. After that, those positions inside the

sorted list are identified where consecutive triangles show most difference.

By splitting the list at these positions groups of nearly equally sized triangles

result.

To structure these groups we take spatial criteria into account. More pre-

cisely, we use a clustering approach for finding triangles located near to each

other in every group. Groups are treated in a sequence consecutive of con-

tained triangles’ size, starting with the group of smallest triangles. The ob-

tained clusters are treated like larger triangles and reinserted into the trian-

gles groups. Since clusters can be inserted into groups of triangles and take

part in the clustering processes, doing so results in a hierarchy of clusters.

In addition to groups constructed as described above, an empty group is cre-

ated, into which we insert clusters larger than original triangles of the input

data set. Instead of clustering this group we start at the beginning, sorting

the clusters contained in this group by size again. We iterate these two phases

of grouping by size and clustering groups, until we finally obtain one cluster,

which defines the root of the SEC–Tree.

3.1.1 A Simple Example

To improve clarity, Figure 3.1 illustrates the following example: The SEC–

Tree is constructed from an object of fourteen triangles (top of Figure 3.1(a)).

Those are divided into three groups of similar sized triangles (Figure 3.1(b)).

An empty fourth group will receive clusters which are larger than the input

triangles but is not listed in the figure.

We will visualize different levels in the SEC–Tree by colors. Triangles are

26 SEC–Trees

(a) An example object with 14 triangles. Be-

low the SEC–Tree created for this object is

shown.

(b) Triangles are arranged in 3 groups

Figure 3.1: An example of a SEC–Tree

3.1. Outline of the Approach 27

(a) The first group is clustered (b) Clusters are inserted into the group

of larger triangles

(c) The second group is clustered (d) Clusters are inserted into the 3rd

group

(e) The clustering alorithm generates

2 clusters from the 3rd group

(f) One group is created from the two

clusters, resulting in a single root clus-

ter

Figure 3.2: The SEC–Tree construction process

28 SEC–Trees

colored black. In Figure 3.1(a) red, blue, green and yellow are used for nodes

with ascending levels in this order. We will draw triangles in Figure 3.2(a) to

3.2(f) in the same color as the representing node, once they are assigned to a

cluster.

At first, we cluster the group containing the smallest triangles, resulting

in three clusters (Figure 3.2(a)), which are inserted into the second group.

Figure 3.2(b) shows the the situation of the second group afterwards, this

is it contains three original triangles as well as the newly created clusters.

Again, we use our clustering algorithm (Figure 3.2(c)), combining triangles

with equally large clusters and insert the three new clusters into the third

group (Figure 3.2(d)). We continue with clustering this third group, resulting

in two clusters larger than all out triangles. These clusters are now inserted

into the empty fourth group, which contains the input data for a new itera-

tion, i.e. we generate new groups (Figure 3.2(e)) from these clusters. Since we

only have two clusters, which are nearly equally sized, only one group results.

When we search for clusters inside this group, we find one cluster (Figure

3.2(f)) which is the root of the SEC–Tree. The complete tree is illustrated at

the bottom of Figure 3.1(a).

3.2 Grouping Triangles by Size

We assume that a list of triangles M = {T1, . . . , Tn} is given, sorted in ascend-

ing order. This set is split at a position j, such that the size difference of two

consecutive triangles is as large as possible at position j. More interesting

than the absolute value of size differences is a relative measure. Therefore,

we choose j as the position of largest size ratio, i.e. such that

A
(

Tj+1)

)

/A (Tj) = max
1≤k≤n−1

A (Tk+1) /A (Tk) .

We divide the set of triangles at position j into a set of larger triangles L :=

{Tj+1, . . . , Tn} and smaller triangles S := {T1, . . . , Tj}.

This procedure is repeated recursively with sets S and L. However, sorting

only has to take place once, after that order can be assumed. We abort if one

the following three conditions is true for a set Tk, Tk+1, . . . , Tl, k < l:

l − k ≤ c1,
A(Tl)

A(Tl)−A(Tk)
> c2 or A (Tl) < c3 for appropriate values of c1, c2, c3.

Groups of less than c1 elements are no longer divided to avoid groups contain-

3.3. Clustering 29

ing too few triangles. If the size difference between triangles is small com-

pared to the overall size of the triangles, we can consider the triangles to be of

nearly equal size and stop splitting the set. Additionally, we do not continue

if the size of all triangles is below c3, since a relative comparison of triangles

sizes is of limited use regarding small values. Triangles of such a small area

present a numerical problem, computing their area becomes challenging, and

therefore comparing these values has only limited expressiveness.

To organize generated groups we create a search tree. Every time a set M of

triangles gets split into sets S and L, two new nodes appear representing the

sets S respectively L. These nodes become children of the node representing

the complete set M . All leaf nodes are storing groups of nearly equally sized

triangles, while inner nodes store the value v of smallest triangle in the subset

of larger triangles, i.e. v = minT∈LA (T). When this tree is completed, we

finally add an empty leaf at the most right position. This leaf will contain

clusters which are larger than the original input triangles or cluster. These

are the input data for a next iteration. Algorithm 1 summarizes this process.

Algorithm 1 Construction of the Searchtree

Require: sorted set of triangles M = {T1, . . . , Tn} with A (Tj) ≤ A (Ti) for all

j ≤ i

1: if n > c1 && A (Tm) / (A (T1) −A (Tn)) ≤ c2 && A (Tn) ≥ c3 then

2: divide M at position j of largest size ratio A (Tj+1) /A (Tj) into sets S =

{T1, . . . , Tj} of smaller and L = {Tj+1, . . . , Tn} of larger triangles

3: store v = A (Tj+1)

4: left = new searchtree(S)

5: right = new searchtree(L)

6: else

7: store M

8: end if

3.3 Clustering

In the following section we will describe the algorithm used to cluster tri-

angles inside a leaf of the search tree. Until now, we have organized sets

of triangles by size, next we take spatial aspects into account. Given a set

30 SEC–Trees

S of similar sized triangles, we associate triangles nearby resulting in clus-

ters. On the one hand these clusters should feature high density, and on the

other hand cover a sufficient number of triangles. Clusters of few triangles

provide sparse information about neighborhood relations. Otherwise, clusters

embracing large sets may contain subsets of sufficient size to form a cluster

on their own, thus preventing denser clusters. This way, information about

immediate neighborhood of these triangles is lost. Therefore, we will deter-

mine a lower limit c cluster size should not fall below, and search for clusters

containing no denser sub-clusters of relevance.

We want to group triangles positioned near to each other. Instead of exam-

ining complete triangles we treat them as points. All triangles stored in one

node of the search tree are of nearly equal size. Therefore, a single point spec-

ifying the position contains sufficient information to characterize an triangle

and we do not lose too much information. Given a triangle Ti, we will refer to

this point as the center zi.

The approach applied follows a flooding strategy: We start with a triangle

and try to find other triangles near to it. This is continued with the found

triangles until no longer new triangles are discovered. For every triangle

a sphere defining a neighborhood is determined and the triangle with the

smallest neighborhood is selected as the starting point, since a cluster should

be as dense as possible. The sphere size determines the density of the cluster.

If the sphere is small, all neighbors have to be near to the center and we

obtain a dense cluster, but if we start with a larger neighborhood, there might

be a real subset of triangles contained forming a denser cluster. On the other

hand, the number of triangles in a cluster has to be sufficient in order to

prevent an inefficient data structure with only little information about direct

neighbors. Thus, we only accept large clusters and discard those, which are

to small.

The neighborhood of a triangle T = (P1, P2, P3) depends on its extensions.

Larger triangles result in larger spheres as the radius of the neighborhood

sphere is determined by its span d(T) := max1≤k,l≤3 ||Pk − Pl||, which is the

longest distance between two of its vertices. If a triangles has a large span,

points far away from the center can be near to another point inside the tri-

angle. If the span is small, points near to the triangle have to be near to the

center. As a neighborhood we define a sphere with radius proportional to the

span.

3.3. Clustering 31

Triangles are considered to be neighbors if their centers are contained in a

neighborhood. Continuing with these neighbors, the same method is applied

for further searching. This is repeated until no more triangles can be found.

If there have been spotted a sufficient number of triangles, the cluster is ac-

cepted. In case that the number is too low, the initial neighborhood is en-

larged and the procedure is repeated. Triangles, which have been inserted

into a cluster, are removed from the set S, therefore every triangle is inserted

into exactly one cluster.

Algorithm 2 reproduces our approach to create clusters of triangles. In the

following we will describe the calculations carried out in the k-th iteration of

the while loop starting at line 5. We define the neighborhood of Ti in iteration

k by K
(

zi, 2
sk(Ti)+1d (Ti)

)

, whereas zi is the center of triangle Ti, d (Ti) refers to

the span of Ti, which is half the initial neighborhood radius, and K (p, r) :=

{q ∈ R3| ‖ p − q ‖≤ r} for p ∈ R3, q ∈ R describes a sphere with center p

and radius r. sk (Ti) indicates how often Ti has been this starting point of

the search for a cluster. We will denote this starting point as seed. Flooding

always starts with a triangle as seed, which has a neighborhood of minimal

volume.

Let Ck denote the cluster determined during the k-th iteration. Sk refers to the

set of triangles not integrated into a cluster of sufficient size c before iteration

k, so

Sk := S \
k−1
⋃

j=1

{Cj| ‖ Cj ‖≥ c}.

In Algorithm 2 S is replaced by the set Sk (line 20). ukj := uk (Tj) := 2sk(Tj)+1d (Tj)

describes the neighborhood of triangle Tj to regard in iteration k (line 1-3 and

20) if Tj is choosen as seed. The function sk (T) with

s1 (T) := 0 ∀T ∈ S,

sk+1 (Ttk) := sk (Ttk) + 1, sk+1 (T) := sk (T)∀T ∈ S \ {Ttk}

indicates, how often clustering has started with triangle T in iterations 1 to

k − 1, i.e. how often T has been the seed. Thereby Ttk ∈ Sk is an arbitrary

triangle with

uk (Ttk) = min
T∈Sk

uk (T) ,

i. e. Ttk is a triangle with smallest neighborhood. Therefore, neighboring

triangles are comparatively near to Ttk , such that generated clusters feature

32 SEC–Trees

Algorithm 2 Cluster construction

Require: Set of triangle centers S = {T1, . . . , Tn}
1: for all 1 ≤ j ≤ n do

2: u [j] := 2 ∗ d (Tj) {initial neighborhood}

3: end for

4: F = ∅ {set of clusters}

5: Outer loop:

6: while ‖ S ‖> 2 ∗ c do

7: {enough triangles to create clusters}

8: find triangle Ti ∈ S such that u [i] = minTj∈S u [j] {triangle with minimal

neighborhood}

9: CTmp := {Ti} {triangles that are to be examined}

10: C := ∅ {set of processed objects}

11: Inner loop: flooding

12: while CTmp 6= ∅ do

13: select arbitrary Tt ∈ CTmp {search for neighbors of Tt next}

14: C := C ∪ {Tt}
15: find set M = {Tj ∈ S \ C|zj ∈ K (zt, u[i])} {search for neighbors of Tt}

16: CTmp := (CTmp ∪M) \ {Tt} {add neighbors of Tt to cluster, Tt is pro-

cessed}

17: end while

18: if ‖ C ‖≥ c then

19: F := F ∪ {C} {add C to set of clusters}

20: S := S \ C {make sure, each triangle is contained in only one cluster}

21: else

22: u[i]∗ = 2 {enlarge neighborhood of Ti in case there were not sufficient

triangles inside}

23: end if

24: end while

25: F := F ∪ {S} {consider remaining triangles to be a cluster}

3.3. Clustering 33

high density. Starting with Ttk , triangles of the next cluster are searched

(starting at line 7).

A cluster is build by flooding. Beginning with Ttk all neighbors within Sk are

acquired, and proceeding those afterwards search is continued (lines 10-16).

A triangle is a neighbor if its center is positioned inside a sphere defining a

neighborhood. Every triangle found is inserted into a temporary cluster CTmp,

containing triangles to be processed (line 14). We continue the search for

new triangles by examining neighborhoods of these newly added triangles.

The considered neighborhoods are spheres positioned at the centers of the

added triangles with radius uk equally to the initial sphere. This search for

neighborhoods of triangles in TTMP is repeated until no more triangles are

found (line 12). So, the resulting cluster is

Ck = {T ∈ Sk| ∃Ti1 , . . . Til ∈ Sk, Ti1 = Ttk , Til = T,

zij ∈ K
(

zij−1
, uk (Ttk)

)

, 2 ≤ j ≤ l}

We define

C0
i := {zi} and Ck

i :=

{

Ck, if i = tk
Ck−1
i , else

to be temporary clusters we have found up to iteration k with seed Ti.

If the found cluster Ck contains a sufficient number of triangles, i.e. if there

are more than c triangle centers located in Ck, the cluster is added to a set of

final clusters F and inserted into the search tree as described in Section 3.4

(line 18). If ‖ Ck ‖< c, the radius ukj of Ttk ’s neighborhood is doubled (line 22),

such that additional neighbors of Ttk might be found in an iteration later on

and Ck is discarded. After this, the smallest neighborhood might belong to

another triangle, which is then chosen as the seed of the next iteration.

We continue constructing clusters Ck this way until the number of remaining

triangles becomes too low to form more than one cluster satisfying our size

criteria, i.e. until ‖ Sk ‖< 2c (lines 5, 6). Finally, this remaining set of triangles

is considered to be a cluster of lowest density (line 24), since further splitting

would unavoidably lead to clusters not satisfying the size criteria.

34 SEC–Trees

3.4 Construction of the SEC–Tree

A SEC–Tree is constructed by repeating two phases, the arranging and the

clustering phase (Algorithm 3). At first triangles are arranged in groups of

similar sized triangles during an arranging phase, and a search tree manag-

ing these groups is constructed as described in Section 3.2 (line 5 of Algorithm

3).

Let L1, . . . , Lm denote the leafs of this searchtree, whereas Li represents a set

of triangles Mi. We assume a numeration of leafs is given in an ascending

order, i.e. A (T) < A (Q)∀T ∈ Lk, Q ∈ Ll, k < l. We perform traversals of

the searchtree by a depth search, such that leaves are visited in sequence

L1, . . . , Lm.

Phase two is the clustering phase, where the tree created in the arranging

phase is traversed and clusters inside the groups are searched for. Leafs are

visited in an order such that leafs containing triangles of smallest area are

visited first. This starts at the most left leaf L1 of the tree. If a leave Li is

reached, we check if there is a sufficient number of triangles, i.e. ‖ Mi ‖≥ c4.

If this condition holds, the clustering algorithm described in Section 3.3 is

applied to Mi resulting in clusters Ci,1, . . . Ci,hi (line 15). For each cluster Ci,j
we define its size to be the summed area of triangle areas contained in Ci,j, so

A (Ci,j) :=
∑

T∈Ci,j
A (T).

Now, a cluster of triangles will be treated like new triangles. This cluster is

inserted into the search tree according to its area. Then we have A (Ci,j) ≥

minT∈Mi
A (T) > A

(

T̃
)

∀T̃ ∈ Mj , j < i, i.e. the cluster is at least as large as

every triangle in L1, . . . , Li−1. Therefore, if we insert Ci,j into the searchtree,

it will be included in a leaf L ∈ Li, . . . Lm (line 17). However, if the cluster is

not larger than the largest triangle in the current leaf Li, it would be inserted

into the same leaf we are just handling. This situation occurs when there are

only few triangles left after the last iteration within the clustering process.

In this case we choose the next leaf L = Li+1 instead. Now, L is a leaf we

will encounter later on while traversing the search tree. So, if the traversal

reaches L, not only triangles Tk, . . . , Tl will be found, but at least one cluster

too. Note, that Mi might change here, as it will represent inserted clusters as

well. More precisely, we have to consider

M̃i := Mi ∪ {Cj,k, 1 ≤ j ≤ i− 1, 1 ≤ k ≤ hj | Cj,k is inserted into Li}.

3.4. Construction of the SEC–Tree 35

Algorithm 3 Construction of the SEC–Tree

Require: set S of triangles S = {T1, . . . , Tn}, sorted in ascending order by

their size A (Ti)

1: {start of arranging phase}

2: if n < minimum then

3: cluster triangles and add them under the root of the SEC–Tree

4: else

5: generate searchtree from S with leafs L1, . . . , Lm
6: {start of clustering phase}

7: for all leaves Li from L1 up to Lm do

8: if Li = Lm then

9: new SEC–Tree(triangles and clusters of Lm) {start phase 1 again}

10: else

11: if (‖Mi ‖< c4) then

12: Mi+1 := Mi+1 ∪Mi

13: else

14: generate clusters Ci,1 . . . , Ci,hi from set Mi of triangles and clus-

ters of Li
15: for all clusters Ci,j do

16: insert Ci,j into set Mk of a leaf Lk ∈ {Li+1, . . . , Lm} according to

its size A (Ci,j) :=
∑

T∈Ci,j
A (O)

17: end for

18: end if

19: end if

20: end for

21: end if

36 SEC–Trees

So, input data to the clustering algorithm (Algorithm 2) will not only consist

of triangles, but additionally may contain clusters. Since the algorithm only

depends on triangle centers and extensions and not on accurate geometry, we

can extend the approach to sets containing objects as well as clusters. We will

refer in the following to triangles, although there might be clusters as well.

Small clusters should be avoided. They reduce the breadth of the SEC–Tree

and increase depth. We need more time to traverse the tree without a gain of

information. Therefore, we do not start the clustering algorithm if the num-

ber of triangles in a leaf Li is below a minimum of c4. Instead, the triangles

are inserted into the next leaf Li+1 (line 12) if their number is low. We could

avoid the creation of leaves containing less than c4 triangles if we checked for

the minimal number of triangles while building the search tree. This way sets

of triangles always could be divided only into subsets greater than a minimal

number of ||Mi|| > c4. But since clusters of triangles might be inserted later

into leaves containing few triangles, their number of triangles ||M̃i|| can in-

crease on more than c4 elements. In the beginning we do not know the number

of triangles ||M̃i|| that will be in a leaf when it is reached by the traversal.

Phase two ends by the traversal of the search tree reaching Lm. This leaf is

treated differently than L1, . . . , Lm−1. Since we know that there exits a T ∈
Mm−1 with A (Ci,j) < A (T) for all clusters Ci,j inserted into a leaf L1, . . . , Lm−1,

all these clusters fitted somewhere between the initial data, i.e. they were

smaller than the largest triangle and could be inserted at an appropriate place

inside the tree. This is not true for clusters inserted into Lm, since they can

be arbitrarily large. We know that A (Ci,j) ≥ minT∈M̃i
A (T) holds for them,

but they might be significantly larger than all triangles. Nothing about the

ratio between sizes of elements in Lm can be stated, they could differ by the

order of several magnitudes. If we continued as before by clustering the data,

the result might be a degenerated data structure, we might cluster elements

without similarity. Therefore, we start again with phase one with the trian-

gles and clusters contained in this leaf and group them by size again, i.e. a

new arranging phase is started with triangles and clusters contained in Mm

as input data.

If phase one starts with less triangles or clusters than a given minimal num-

ber, repetition of the two phases is aborted and we only start one last clus-

tering on the given set of triangles. The SEC–Tree root is created and the

newly generated clusters are inserted beneath this root node (line 3). Since

we wanted groups which are clustered to have a size of at least c4 elements,

3.5. Global SEC–Trees 37

we choose the minimal number within the abortion criteria not smaller than

c4.

After finishing the construction of the tree structure we traverse it and sort

the triangles inside every node. Actual triangles are stored first, followed by

clusters of smaller triangles. Triangles are sorted by their area, large trian-

gles first, while clusters are sorted by the number of triangles they contain,

those including least triangles are first. This ordering will be beneficial when

the object is rendered.

3.5 Global SEC–Trees

We have described how to build the SEC–Tree for a single object. Given a

static scene, an additional SEC–Tree is created organizing the objects con-

tained in the scene.

Now our input data is a set of n objects J1, . . . , Jn, each object Ji is modeled by

a number of triangles Ti,1, . . . , Ti,ni. Additionally, we compute an axis aligned

bounding box Bi = (P i
1, P

i
2) , P

i
1, P

i
2 ∈ R3, enclosing Oi, where P i

j contains the

minimal respectively maximal coordinates of all triangles Ti,k, 1 ≤ k ≤ ni.

The size A (Ji) of an object Ji is defined by the area of its triangles: A (Ji) :=
∑ni

j=1A (Ti,j).

Instead of considering accurate geometry, only the bounding box enclosing an

object is regarded. Via this bounding box we define the center zi := 1
2
(P i

1 + P i
2)

and diameter d (Ji) :=‖ P i
1 − P i

2 ‖ of an object Ji. Bounding box position and

diameter already provide sufficient information to determine objects located

near to each other. Construction of the SEC–Tree does not rely on accurate

geometry of an object but only the center point and span, which are used to

define an initial neighborhood within the clustering, so all information needed

to apply the algorithm described above are present.

Within each node of a global SEC–Tree, objects and clusters are sorted in a

descending order by the number of triangles they contain. While triangles

and clusters have been separated in SEC–Trees of singles objects, as trian-

gles were followed by clusters, objects within the global SEC–Tree are more

similar to clusters than a single triangle. Therefore, clusters and objects are

mixed in the global SEC–Tree.

38 SEC–Trees

Even in scenes containing multiple objects we do not store the triangles on a

per object base, but instead for object types. Every object type refers to a 3D-

model and every object is specified by its type and a transformation matrix,

describing how to obtain object triangles in world coordinates from object type

triangles given in a local coordinate system.

Summarizing, for the complete scene a global SEC–Tree is build also, orga-

nizing its objects the same way triangles of a single object were structured.

We only had to define an object’s center and span.

3.6 Construction Costs of SEC–Trees

The time needed to build a SEC–Tree mainly depends on the clustering costs.

We will present two variations with costs of O
(

n (logn + ǫ−2) log D
dmin

)

respec-

tively O (n2 log n), whereas D is the diameter of the scene, dmin is the mini-

mal span of a triangle and ǫ an error which is permitted when neighbors are

searched for. Further, we will show that the multiple repition of clustering

phases does not lead to increased costs.

In the following, we will look at the costs of the arranging phase at first. Then,

we will look at the clustering algorithm itself and show that one clustering

phase will not take more time even if there is more than one group in which

clustering has to take place, and finally we will prove that the overall costs do

not differ from the costs of the clustering algorithm.

3.6.1 Costs of an Arranging Phase

The group creation approach presented in algorithm 1 needs to find the po-

sition of largest ratio between consecutive triangles’ size (line 2). A naive

solution would be to iterate through the complete list, resulting in a linear

runtime. This leads to similar worst cases as the well known quicksort al-

gorithm [Sed92], i.e. if the splitting position is always at the end position,

resulting in quadratic costs. Modifying the algorithm as described in the fol-

lowing, costs of O (n logn) are possible.

Algorithm 1 divides a set of triangles, each time looking for the largest gap

within the set. On the other hand, gaps do not change. An initial sorting of

3.6. Construction Costs of SEC–Trees 39

these gaps allows to establish an order of splitting positions, but algorithm 1

does not benefit from this information. Instead of looking at a set of triangles

and finding a splitting position within, algorithm 4 starts with a splitting

position and finds the set which has to be divided. Using the order of gaps, the

next position is always known. An AVL-tree [Knu98] can be used to efficiently

manage the sets by storing the end index of each set.

Algorithm 4 Alternative Construction of the Searchtree

Require: sorted set of triangles M = {T1, . . . , Tn} with A (Tj) ≤ A (Ti) for all

j ≤ i

1: insert n into AVL tree

2: compute permutation ψ such that
A(Tψ(i))

A(Tψ(i+1))
≥

A(Tψ(j))

A(Tψ(j+1))
for i ≤ j

3: for all 1 ≤ i ≤ n do

4: if ψ(i) has been marked then

5: continue

6: end if

7: find next smaller ai := a(ψ(i)) and larger bi := b(ψ(i)) values than ψ(i)

in AVL tree

8: if b(i) − a(i) < c1 || A (Tai) / (A (Ta1) −A (Tbi)) > c2 || A (Tbi) < c3 then

9: mark Tai , Tai+1, . . . , Tbi
10: else

11: insert ψ(i) into AVL tree

12: end if

13: end for

14: get groups from AVL tree

Given a set of triangles T1, . . . , Tn, within an arranging phase we will find

groups of similar sized triangles. W.l.o.g. we assume A(Ti) ≤ A(Ti+1). Other-

wise sorting the triangles would result in the required condition. Since sort-

ing takes O(n logn) and we will see, that costs of algorithm 4 are O(n logn) as

well, we can consider the triangles to be already sorted.

We define ri := A(Ti)
A(Ti+1)

, i = 1, . . . , n − 1, to be the size ratio of two consecutive

triangles. Let σ ∈ Sn−1 be a permutation such that σ(i) ≤ σ(j) for ri ≥ rj , i.e.

σ sorts the ratios rσ(i) in a descending order. In the following we will only use

its inverse, which we denote by ψ := σ−1. ψ can be obtained by sorting the

ri values and keeping track of the initial position of each element. Then, the

i-th largest ratio is between positions ψ(i) and ψ(i) + 1.

40 SEC–Trees

Groups are created by splitting temporary groups at the points of the largest

fraction. A temporary group is a set of consecutive triangles, which does not

fulfill the conditions stated in line 8 of algorithm 4 and thus has to be divided

further. Each group stores the indices of the triangles it contains. We used a

search tree when describing the algorithm in section 3.2, however such a tree

is not necessarily balanced. Therefore, the temporary groups are managed by

an AVL-tree storing the index of the largest triangle contained in the tempo-

rary group. Initially one group containing all triangles is given. Thus, the

AVL-tree contains only the value n. Splitting groups will be stopped at final

groups, at which point contained triangles are tagged, indicating that we do

not have to process them any further.

For i ∈ {1, . . . , n− 1} we denote the starting point of the temporary group

containing i by a(i) and the endpoint by b(i). Using the AVL-tree, these values

can be received efficiently in O (log n).

The algorithm examines the positions rψ(1), . . . , rψ(n−1) in order to decide where

a group has to be split. After rψ(1), . . . , rψ(i−1) have been evaluated, rψ(i) is con-

sidered. If the triangle Tψ(i) has been tagged, the position ψ(i) has been pro-

cessed. Otherwise, the temporary group is split, resulting in the new groups

from a(ψ(i)) to ψ(i) and from ψ(i) + 1 to b(ψ(i)), which corresponds to the sets

L and R in algorithm 1. Then, the value ψ(i) is inserted into the AVL-tree.

Looking at the endpoints, one can decide if one or both of these two groups are

a final group, i.e. the condition in line 1 of algorithm 1 is not met, in which

case all triangles contained in the affected group are tagged.

This algorithm creates the triangle groups in O(n logn). This holds for the

initial sorting of the ri values utilizing a common sorting algorithm. The fol-

lowing loop considers every ri exactly once, therefore passing through n − 1

iterations. Within each iteration, finding the end positions of the temporary

group containing the currently regarded element within the AVL-tree takes

O(logn). The decision if one or both of the newly generated groups are final

groups can be made in constant time. In addition, we have to consider the

costs of tagging the triangles. While these costs within one iteration of the

loop depend on the size of a created group, the algorithm tags each triangle

exactly once, requiring O(n) time. Therefore, all iterations of the loop com-

bined take O(n logn) time, just like an initial sorting.

3.6. Construction Costs of SEC–Trees 41

3.6.2 Clustering

In the following we will look at the time required to generate clusters from

a group of triangles T1, . . . , Tn. However, instead of considering triangles, we

only use their centers for clusters. Therefore, we can restrict our examination

to the set of their center points z1, . . . , zn.

The efficiency of the clustering algorithm depends on the efficiency of range

queries. Epstein et al introduced skip octrees ([EGS05]), which we will utilize

in our analasys. Given a set of n points in Rd, skip octrees can be constructed

in O (n log n). Insertions, deletions and point location can be performed in

O (logn).

Given a point p and radius r, a (1 + ǫ)-approximate range query reports all

points contained in K (p, r) and no points located beyond K (p, r + ǫ). Points

contained in K (p, r + ǫ) \ K (p, r) may or may not be reported. Such (1 + ǫ)-

approximate range queries are supported. Skip octrees can answer (1 + ǫ)-

approximate range queries in O
(

log n+ ǫ1−d + k
)

with k being the number of

reported points.

An (1 + ǫ)-approximate nearest neighbor of p is a point is a point q, such that

‖ p−q ‖≤ (1 + ǫ) ‖ p−v ‖, with v being a nearest neighbor of p. The skip octree

reports an (1 + ǫ)-approximate nearest neighbor in O
(

ǫ1−d (log n+ log ǫ−1)
)

. In

our case, we have d = 3 as we are interested in center points of triangles in a

3-dimensional scene.

Clustering with Approximate Range queries

In the following we will analyse the costs of a variation of algorithm 2. One

part of searching for neighbors within this algorithm was performing range

queries. A naive approach to perform range queries is simply checking every

point if it is located in the requested area. However, this leads to a linear

runtime of O (n) for each query. Various more efficient algorithms have been

developed, see the surveys of Matousek [Mat94] and Agarwal and Erikson

[AE99]. In our implementation we use kd-trees, which leads to worst case

costs of O
(

n
2
3 + k

)

with k being the number of reported points. While this

performs well in practice, we will allow (1 + ǫ)-approximate requests instead

of exact ones as originally proposed. Using the skip octree, this leads to only

logarithmic costs.

42 SEC–Trees

At first, we have a look at the number of outer loop iterations k. Let D be

diameter of the bounding box surrounding the complete scene, and dmin :=

min{d (Ti) |1 ≤ i ≤ n} the minimal span of all triangles. Then the initial

neighborhood of each triangle is a sphere with a radius of at least 2dmin. Every

time a triangle Ti is chosen as a seed and we did not find a cluster, we double

the neighborhood we have to consider the next Ti is chosen as a seed. After

log D
dmin

iterations the neighborhood covers the complete bounding box. Since

this holds for every triangle, no more than n log D
dmin

iterations are necessary.

At the beginning of each iteration (line 8), we have to find a triangle with a

minimal neighborhood. The appropriate data structure to find this triangle is

a heap. The initial construction of the heap requires O (n logn) ([CLR90]). In

every iteration of the outer loop, the minimum can be found in constant time.

Removing it and inserting this triangle with an enlarged neighborhood can be

done in O (log n).

Inserting a cluster into the set F (line 19) corresponds to simply inserting a

pointer into a list and therefore can be done in constant time, while we will

update S (line 20) during the inner loop. Checking if ‖ C ‖≥ c can also be done

in constant time if we count the number of iterations within the inner loop.

Now, we will consider the inner loop. The sets C and CTMP are organized

as double linked lists. Selecting and deleting an element from CTMP and in-

serting it into C can be done in constant time. Finding a set M requires

O (logn + ǫ−2 + r) with r being the number of results reported by the skip oc-

tree. Instead of removing the set C from S after a cluster has been found as

described in the algorithm, we will remove M immediately from the skip oc-

tree. This also means we have to reinsert C if we have not found a cluster, i.e.

the condition in line 18 is not met after leaving the loop. Since these insertions

take as long as removals before, we do not have to consider the reinsertions

when looking at the overall costs. On the other hand, if we have found a clus-

ter, we have to update the heap by removing the appropriate triangles. Since

each triangles can not be contained in more than one cluster, heap updates

take O (n logn) in total.

At the beginning of the outer loop the elements within the skip octree cor-

respond to the set Sk. Within each iteration of the inner loop, we have to

perform a range query and delete the reported elements from the skip octree.

If r elements have been found, a range query and the following deletions re-

quire O (logn + ǫ−2 + r logn). Let ri be the number of triangles found during

3.6. Construction Costs of SEC–Trees 43

all iterations of the inner loop within the ith iteration of the outer loop. The

combined runtime of all inner loop iterations is then O
(

∑k

i=1 ri log n+ riǫ
−2
)

.

We can differentiate the iterations of the outer loop by those, which resulted

in a cluster, and those, which did not find a sufficient number of triangles. Let

be I1 := {j|rj ≤ c} and I2 := {j|rj > c}. Then, we have

k
∑

i=1

(

ri log n+ riǫ
−2
)

=
(

logn + ǫ−2
)

k
∑

i=1

ri

=
(

log n+ ǫ−2
)

(

∑

i∈I1

ri +
∑

i∈I2

ri

)

≤
(

log n+ ǫ−2
)

(

∑

i∈I1

c + n

)

≤
(

log n+ ǫ−2
)

(

n log
D

dmin
c+ n

)

= O

(

n log
D

dmin

(

log n+ ǫ−2
)

)

In total, we have costs of O (n) for determination the initial neighborhoods,

O (n logn) to remove elements from the heap that have been inserted into a

cluster, n log D
dmin

iterations which need O (logn) to remove and if applicable

insert a triangle into the heap and O
(

n log D
dmin

(log n+ ǫ−2)
)

for all iterations

of the inner loop combined and updating the set S. Since the overall costs

are determined by the maximal value, in the worst case we have costs of

O
(

n log D
dmin

(logn + ǫ−2)
)

for creating a cluster.

A Modified Clustering Approach

With some modifications on the clustering algorithm and the resulting clus-

ters, we can achieve clustering costs which only depend on n and are indepent

of ǫ and D
dmin

.

Basically, algorithm 5 works like algorithm 2 did, by taking a triangle with

minimal neighborhood and starting flooding at its center point. The main

differences are the size of the initial neighborhood and how neighborhoods

44 SEC–Trees

are enlarged. Further, some details have been concretized in section 3.6.2.

These are the application of a heap and skip octree, which are integrated into

algorithm 5.

We can use the approximate range queries and nearest neighbor searches for

a fixed ǫ, in order to find lower bounds of neighborhoods we have to exam-

ine. This will enable us to perform exact range queries in logarithmic time.

First, we will alter the initial neighborhoods by searching for a 2-approximate

nearest neighbor. Finding such a neighbor for every triangle can be done in

O (n logn). Then, we will use a fixed ǫ = 1 for range queries, resulting in costs

ofO (log n)+r. Furthermore, we will show that r does not exceed a constant for

every query we perform. Then, we can check every one of the r reported points

for being contained in the exact query region, requiring only constant time al-

together. Therefore, each exact region query can be performed in O (log n).

The function range query in algorithm 5 performs these operations.

The reason enabling us to perform exact queries efficiently, is that points will

be removed from the set we have to consider, as soon as a cluster has been

found. If the number points reported from a range query would exceed a

certain constant, there has to be a subset of higher density, which forms a

cluster and had to be found in a previous step.

In the following we will make some observations, which will enable us to anal-

yse the costs of the modified clustering algorithm. We will use a skip octree Q

synonymous to the set of points it contains.

Lemma 1 uki is lower bound on the distance from zi to all points, which are

neither already contained in a cluster nor have been found as a neighbor dur-

ing a previous iteration, i.e. ‖ zi − z̃ ‖≥ uki ∀z̃ ∈ Q \ Ck
i .

Proof: Initially uki is half the distance to a 2-approximate nearest neighbor

and therefore a lower bound on the distance to the nearest neighbor. When

uki is updated, it becomes either the distance to the nearest neighbor of all

points remaining in Q (line 12) or half the distance to a 2-approximate nearest

neighbor of all points that are still contained in Q (lines 15 and 32). Since all

points that have been neighbors in previous iterations or have been inserted

into clusters are no longer contained in Q at these times (lines 11, 26), the

lemma follows. �

Remark: It might be possible, that started with a radius r < uki and seed zi
a cluster is encountered. However, in this case the additional points are no

3.6. Construction Costs of SEC–Trees 45

Algorithm 5 Modified cluster construction

Require: Set of points S = {z1, . . . , zn} = {z (T1) , . . . , z (Tn)}
1: build skip octree Q from S

2: for all 1 ≤ i ≤ n do

3: ui := 1
2

distance to 2-appr NN of zi {initial neighborhood}

4: Ci := {zi}
5: end for

6: build Heap H from z1, . . . , zn with keys u1, . . . , un
7: F = ∅ {set of clusters}

8: Outer loop:

9: while ‖ Q ‖> 2 ∗ c do

10: receive and remove seed zi with minimal ui from H

11: remove Ci from Q

12: ui := distance to exact NN of zi within K (zi, 2 ∗ ui)
13: if ui > min (H) or no neighbor has been found then

14: if no neighbor has been found then

15: ui := 1
2

2-appr-NN search(Q, zi)

16: end if

17: reinsert zi into H with key ui, Ci into Q

18: continue outer loop

19: end if

20: CTmp := {zi}
21: Inner loop:

22: while CTmp 6= ∅ do

23: choose arbitrary zj from CTmp
24: CTmp := CTmp \ {zj}
25: C := rangequery (Q,K (zj , ui)); Ci := Ci ∪ C; CTmp := Ci ∪ C
26: remove C from Q

27: end while

28: if ‖ Ci ‖≥ c then

29: F := F ∪ {Ci} {add Ci to set of clusters}

30: H := H \Ci {make sure, each element is contained in only one cluster}

31: else

32: ui := 1
2

2-appr-NN search(Q, zi)

33: insert zi into H with key ui
34: insert Ci into Q

35: end if

36: end while

37: F := F∪ elements of Q {consider remaining points to be a cluster}

46 SEC–Trees

direct neighbors of zi. If z̃ ∈ Ck
i \C

k−1
i is a new point we found when searching

with radius r, then there is a chain of points zi2 , . . . zil ∈ Ck
i \ Ck−1

i , zi1 ∈ Ck−1
i

with zil = z̃, zij ∈ K
(

zij−1
, r
)

. Therefore, we have ukil ≤ r < uki and zil is chosen

as a seed before zi.

Also note that the seed is only significant for choosing the size of neigh-

borhoods and as it is one known point of the cluster. Flooding could start

with an abritrary point of the cluster without generating a different result as

long as the same radius is used in the range queries. This is true because

zj1 ∈ K (zj2 , r) ⇔ zj2 ∈ K (zj1 , r) for any r.

Lemma 2 Let uki and ulj be the radius of the considered neighborhood in iter-

ations k and l, k < l. Then uki ≤ ulj holds.

Proof: The neighborhood’s radius ui is always the minimal value on the heap.

Since ui is always replaced by a larger value, the claim follows. �

If we have not found a cluster during an iteration of the outer loop, the set Ci
is reinserted into Q (line 34). However, at no time points are removed from

a set Ci. Therefore, we have to ensure that all elements contained in Ci are

elements of Q at the beginning of the iteration, otherwise we would insert

points already contained in a cluster. The following lemma states that this

does not happen.

Lemma 3 If z̃ has been inserted into Ci, then z̃ and zi will be elements of the

same cluster.

Proof: From z̃ ∈ C l
i during an iteration l follows the existence of a chain of

points zi1 , . . . , zit, such that zi = zi1 , z̃ = zit and zir ∈ K
(

zir−1 , u
k
l

)

. Now consider

a iteration l̃ > l. From lemma 2 we know ul ≤ ul̃, and therefore we have

K (zir , ul) ⊆ K (zir , ul̃). Now, if we encounter one of the points zi1 , . . . , zit during

the flooding in iteration l̃ we will find the other points as well. If one point is

inserted into a cluster, this holds for all these points. �

Lemma 4 Let zi be the seed in iteration k of the outer loop in algorithm 5 and

uki the radius of considered neighborhood. Then every range query within the

inner loop (line 25) returns O (1) results.

Proof: zi is selected such that uki = min (H) (line 25). We have to show that

K
(

zj , 2u
k
i

)

does not contain more than a constant number of points, which

have not been inserted into clusters. Those points already contained in clus-

ters have been removed from Q and therefore will not be encountered again.

3.6. Construction Costs of SEC–Trees 47

Let be zj1, . . . , zjl ∈ K
(

zj , 2u
k
i

)

, such that these points are not contained in a

cluster before iteration k. We have zjr ∈ K
(

zjs ,
uki
2

)

⇔ K
(

zjr ,
uki
4

)

∩K
(

zjs ,
uki
4

)

6=

∅. At least an eighth of K
(

zjs,
uki
4

)

is located within K
(

zj , 2u
k
i

)

, since it con-

tains the center zjs. If we consider the ratio of volumes between K
(

zj , 2u
k
i

)

and 1
8
K
(

zjs ,
uki
4

)

, we get

4
3
π8
(

uki
)3

1
4

4
3
π 1

512

(

uki
)3 = 16384

Therefore, given 16384 Spheres of radius
uki
4

and with a center contained in

K
(

zj , 2u
k
i

)

, at least one point is located within two of the smaller spheres.

Now assume l ≥ 16384c. We will show that this leads to a contradiction and

therefore only O (1) points can be located within K
(

zj, 2u
k
i

)

.

Given 16384c spheres of radius
uki
4

and with a center located within K
(

zj , 2u
k
i

)

there exists at least one point z̃ located within c of the smaller spheres. W.l.o.g.

we assume z̃ ∈ K
(

zj1 ,
uki
4

)

, . . . , K
(

zjc ,
uki
4

)

. Then, zj1 , . . . , zjc ∈ K
(

zj1 ,
uki
2

)

holds.

According to lemma 1, ukj1 is a lower bound on the distance from zj1 to all

points, which have not been inserted into a cluster or Cj1. Since we found

zj1, . . . , zjc during a range query, we know zj1, . . . , zjc have not been inserted

into a cluster yet. This also ensures that we have ‖ Ck
j1

‖< c, otherwise

we would have found a cluster containing zj1. Therefore, one of the points

zj1, . . . , zjc is no element of Ck
j1

, w.l.o.g. this is true for zj2. Then, we get

ukj1 ≤‖ zj1 − zj2 ‖≤
uki
2
< uki . This is a contradiction, since uki was the minimal

element of the heap. Therefore, we know that the number reported points for

one range query is l < 2048c. �

Consequence: The exact nearest neighbor searches in line 12 can be per-

formed in O (log n). First, we perform a range query, finding points contained

in K
(

zi, 2u
k
i

)

. This requires O (logn) and returns up to a constant number

of results. The proof is analogous to the one above. Then, we can find the

nearest neighbor of zi within the result set in constant time.

Now, we will have a closer at the number of iterations the algorithm passes.

The following lemma considers the iterations of the outer loop.

Lemma 5 The outer loop of the modified clustering algorithm is iterated at

48 SEC–Trees

most O (n2) times.

Proof: Consider all iterations with a fixed seed zi. Regarding the conditions in

lines 13 and 14, there are three different cases which might occur.

Case 1: No neighbor was found in K
(

zi, 2u
k
i

)

. When uki was assigned its value,

there was a neighbor located within this neighborhood as 2uki was the distance

to a 2-approximate nearest neighbor. If this point is no longer available, it

must have been inserted into a cluster. Since each point is contained in only

one cluster, this can only happen n− 1 times.

Case 2: There is a neighbor in K
(

zi, 2u
k−1
i

)

but uki > min (H) after updating

uki in line 12. Now, there are two possibilities which can occur the next time zi
is chosen as the seed. After line 12, we have either uki = min (H), which will

be case 3, or uki > min (H). If uki > min (H), the nearest neighbor must have

been removed, i.e. it has been inserted into a cluster. Therefore, case 2 can

only occur as often as case 3 plus n− 1 times.

3. Now, uki is assigned no different value after finding the nearest neighbor

z̃i of zi in K
(

zi, 2u
k
i

)

. Then, z̃ ∈ K
(

zi, u
k
i

)

holds. On the other hand, we know

that z̃ /∈ Ck−1
i , because all elements of Ck−1

i have been removed from Q before

performing the range queries (line 11). Therefore, Ck
i) Ck−1

i follows. This

event occurs at most n− 1 times.

Combining all three cases, we have at most 4 (n− 1) iterations with seed zi in

total. Since this holds for every i, we have O (n2) iterations of the outer loop

in total. �

Now, we will use this knowledge on the number of outer loop iterations to have

a closer look at the inner loop. Similar to the previous clustering algorithm,

we will not consider the cost of the inner loop within one iteration of the outer

loop, but rather the costs of all inner loop iterations combined.

Lemma 6 All inner loop iterations of the modified clustering algorithm com-

bined have costs of O (n2 log n).

Proof: Let ri be the number of triangles found during all iterations of the inner

loop within the i-th iteration of the outer loop and l the number of overall

outer loop iterations, analogous to the runtime consideration of the previous

clustering approach.

The costs of the operations within one inner loop iterations are as follows:

Removing zj from CTMP (line 24) takes constant time if CTMP is organized as

3.6. Construction Costs of SEC–Trees 49

a list and zj is chosen the first element.

A single range query (line 25) takes O (log n), since a 2-approximate range

query can be performed in O (logn) first, which reports only O (1) results ac-

cording to lemma 4. Then, we can check in constant time, which of the re-

ported points are contained in the exact query region.

The costs of the range queries in all iterations combined are
∑l

i=1 ri log n =

O (n2 log n). The proof is analogous to the one we gave for the combined run-

time of inner loop iterations for the previous clustering approach.

The costs of removing one point reported by the range query from Q (line 26)

are O (logn). Therefore, removing the results of the range queries from Q

costs as much as the queries themselves. �

Combining these results we can now determine the costs of the modified clus-

tering algorithm:

Theorem 1 The modified clustering algorithm has costs of O (n2 logn).

Proof: The intitialization consists of building the skip octree Q, the heap H

and calculating the starting radii of neighborhoods uki , which take O (n logn)

each (lines 1-7).

Within each iteration of the outer loop, we have to select and remove an ele-

ment from the heap (O (log n)), remove Ci from Q (O (log n) since ‖ Ci ‖< c),

and find the nearest neighbor of zi (O (logn)).

When checking conditional clauses in lines 9 and 28, we have to know the

number elements currently contained in the data structure. While counting

these elements might take linear time, we can avoid this by keeping track of

set cardinalities whenever we insert or remove an element fromQ or Ci. Then,

we can always decide in constant time if a set becomes larger or smaller than

some threshold (lines 9, 28). Obviously, modifying a counter is faster than

altering one of the sets and therefore has no influence on the overall costs.

In case the if-clause in line 13 is met, a nearest neighbor search might have

to be performed (line 15), which takes O (log n). This holds for the insertion

of zi into H and Ci into Q as well (line 17), while checking the if-clause itself

only requires constant time.

As we have seen in lemma 6, all inner loop iterations have costs of O (n2 log n)

combined, so we do not have to regard lines 22 to 27 when examining the costs

50 SEC–Trees

of the outer loop.

Depending on the result of the if-clause in line 28, we either have to perform a

2-approximate range query (O (logn)), insert zi into H (O (log n)) and reinsert

Ci into Q (O (logn) since ‖ Ci ‖< c, lines 32-34), or we have to insert Ci into

F which corresponds to inserting a pointer into a list (O (1)) and remove

the elements of Ci from the heap. The costs of these heap updates depend on

the number of elements the cluster contains. However, since each element is

a member of exactly one cluster, not more than n delete operations will we

performed in total.

Summarized, we have O (n2) iterations of the outer loop with costs O (logn)

and in addition costs ofO (n2 logn) for all iterations of the inner loop combined,

as stated in the theorem. �

3.6.3 Overall Costs

We have seen before, that modifications on the clustering algorithm have

an influence on the construction costs. In both cases, the costs of creating

the complete SEC–Tree will be identical to the costs of the clustering algo-

rithm. We will see that this holds for any clustering algorithm, if it pro-

duces clusters with an average size of at least n
c

and its costs are speci-

fied as follows: O (nf (n,m)), whereby f (n,m) = log n + g (n) h1 (m) + h2 (m)

with a monotonously ascending function g. h1 and h2 are arbitrary positive

functions independent of n. Through the remaining chapter, we will only

consider this more general function instead of the two concrete examples

n (logn + ǫ−2) log D
dmin

and n2 log n.

Both examples are covered by f . If we define g (n) = log n, m = (ǫ,D, dmin),

h1 (m) = log D
dmin

and h2 (m) = ǫ−2 log D
dmin

we the result of the analysis of the

first clustering algorithm. In case of the modified version, we have g (n) =

n logn and h1 = h2 = 1. The single log n term of f has no effect in these cases,

but we have seen in 3.6.1 that the creation of groups might take O (n logn)

and therefore the assumption that this holds for the clustering algorithm as

well is no drawback. It will simplify notations in the following sections, as we

will get costs of O (n log n) anyways.

In this section we will show that the overall costs of building a SEC–Tree

do not differ from the time needed to create a cluster, which is O (nf (n,m)).

3.6. Construction Costs of SEC–Trees 51

First, we will look at a single clustering phase.

Costs of one Clustering Phase

Within a clustering phase, groups created in an arranging phase are vis-

ited and each group is clustered. Then, the created clusters are inserted the

groups again, see lines 7 - 20 of algorithm 3.

Consider k groups consisting of n1, . . . , nk triangles with
∑k

i=1 ni = n. Clusters

are inserted into the a group of larger triangles according to the their size. Let

mi,j, 1 ≤ i, j ≤ k be the number of clusters created in group j and inserted into

group i. Thenmi,j = 0 for j ≥ i, as clusters are inserted into groups of triangles

larger than those the cluster is derived from. Let ñi = ni+
∑k

j=1mi,j be number

total number of elements encountered in group i, when it is clustered. Every

cluster we create within one group has at least c elements, besides the last

one, which consists of the last elements if there are less than 2c. However, if

this last cluster contains less than c elements, together with the second but

last there are at least 2c elements, since we consider all elements to be one

cluster if there are only 2c or less elements left (see algorithm 2 line 6 and

algorithm 5 line 9). So, on average every cluster has at least c elements, and

therefore for the number of clusters created in group j holds:
∑k

i=1mi,j ≤ ⌊ ñj
c
⌋.

As we have seen in the previous section, the time needed to create the clus-

ters within all groups is O
(

∑k

i=1 ñif (ñi, m)
)

. We will show that this does not

exceed O (nf (n,m)).

At first we have a closer look at

k
∑

i=1

ñi =
k
∑

i=1

(

ni +
k
∑

j=1

mi,j

)

= n+

k
∑

i=1

k
∑

j=1

mi,j = n+

k
∑

j=1

k
∑

i=1

mi,j

≤ n+
k
∑

j=1

⌊
ñj
c
⌋ ≤ n +

k
∑

j=1

ñj
c

≤ n+
k
∑

j=1

ñj
2

52 SEC–Trees

Looking at the start and end of the inequality we have

k
∑

i=1

ñi ≤ n+
1

2

k
∑

j=1

ñj

⇔
k
∑

i=1

ñi ≤ 2n

Since a group can not contain more elements than the original number of

triangles, we have ñi ≤ n for every i. With these results we get

k
∑

i=1

ñif (ñi, m)

≤ f (n,m)

k
∑

i=1

ñi

≤ 2nf (n,m)

= O (nf (n,m))

Within one clustering phase, we do not only have create the clusters, but also

have to insert them into the appropriate groups (line 17). The number of these

insertions is
k
∑

i=1

k
∑

j=1

mi,j =
k
∑

i=1

ñi − n ≤ n

The groups are organized in an AVL tree, therefore inserting one cluster into

a group takes O (log n), so all insertions combined need at most O (n logn). At

this point the single log n term in f comes in handy, and we finally get that

the overall time necessary for a clustering phase is O (nf (n,m)).

Overall Costs of all Phases

Arranging and clustering phases are repeated until we start an arranging

phase with a number of clusters below our threshold (algorithm 3, line 2).

Now, let k denote the number these phases are iterated and ni be the number

of triangles or clusters considered as the input of the i-th iteration, whereby

3.6. Construction Costs of SEC–Trees 53

n1 = n is the number initial triangles. Then the time needed to build the

complete SEC–Tree is O
(

∑k

i=1 nif (ni, m)
)

.

The triangles in the last group within iteration i are the input for iteration i+

1. There are two possibilities, when triangles are inserted into this last group.

Either by creating a cluster which is larger than the triangles contained in the

input set, or by moving triangles into the next group because there were less

than c4 triangles, until the last group is reached.

As we have already seen in before, every cluster contains on average at least c

triangles, therefore at most ni
c

clusters can be inserted the last group. Further,

not more than c4 triangles can be moved into this last group without creating

clusters, otherwise these triangles would have been elements in the second

but last group and we would have clustered this group instead pushing the

triangles forward. Further, a triangle inserted into a cluster can not be one

of the triangles inserted into the last group without being part of a clustering

process. Therefore, we have

ni+1 ≤
ni − c4
c

+ c4

With n1 = n this leads to ni ≤
n−c4
ci−1 +c4. This can easily be proven by induction:

The induction beginning is already stated above if we replace i by one: n2 ≤
n1−c4
c

+ c4. Now consider i ≥ 2. Then

ni ≤
ni−1 − c4

c
+ c4 ≤

n−c4
ci−2 + c4 − c4

c
+ c4 =

n− c4
ci−1

+ c4.

Therefore, after i = logc n iterations ni is at most c4 and thus the number of

iterations is k ≤ 1 + logc n.

Since the number of triangles inserted into the last group during a cluster-

ing phase can not be larger than the number of triangles the corresponding

arranging phase was started with, it follows that ni ≤ ni−1 and especially

ni ≤ n. Now, we can now look at the overall costs utilizing the preceding

estimations:
k
∑

i=1

nif (ni, m)

≤ f (n,m)

k
∑

i=1

ni

54 SEC–Trees

≤ f (n,m)
k
∑

i=1

(

n− c4
ci−1

+ c4

)

= f (n,m)

(

kc4 + (n− c4)
k
∑

i=1

1

ci−1

)

≤ f (n,m)

(

c4 (logc n+ 1) + (n− c4)
c

c− 1

)

≤ (2n+ c4 (logc n + 1)) f (n,m)

= O (nf (n,m))

Finally, our result is that the complete SEC–Tree can be build in O (nf (n,m)).

Note, how the algorithm used to perform the range queries influences the

overall costs. Under reasonable assumptions on the performance of the clus-

tering algorithm, the costs do not differ from the time needed to create to

complete tree, besides a constant factor. The only assumption necessary was,

that clusters created within one group have at least c elements on average

and that the clustering algorithm has costs of O (n logn) or more.

CHAPTER 4

RENDERING WITH TRIANGLE BUDGETS

If the visualization of a scene becomes too slow, navigating through the virtual

environment is nearly impossible. Therefore, rendering has to be fast and the

frame rate should not fall below a minimal number. Navigation in a scene

becomes possible if ten frames per second are rendered. In order to achieve a

smooth visualization, even higher frame rates are necessary.

Since we do not use expensive effects for lighting or similar operations, per

pixel operations claim only small part of computation power and do not limit

rendering speed, therefore we are not fill rate limited. Further, only little cpu

effort is needed since there are no expensive computations during rendering.

However, in dynamic scenes we will have to touch every object. This results in

cpu limited rendering for large scenes, with scenes of 20.000 objects requiring

as much time to process objects than for actually rendering the scene with

300.000 triangles. We need the cpu to perform frustum culling, move objects

to new positions and assign weights to them. Navigation in such scenes is still

possible, while in static scenes this disadvantage is abated. Traversing the

SEC–Tree of objects itself is much less expensive than rendering the triangles

we encounter during the traversal.

The main limiting factor is the amount of triangles in the scene. Since the

graphics card is only capable of a certain number of operations per second,

rendering necessarily will be too slow if the number of triangles exceeds a

limit, depending on the actual hardware. If we want to render always at high

55

56 Rendering with Triangle Budgets

frame rates, we have to limit the number of processed primitives. Therefore,

only a subset of all triangles is considered by our rendering algorithm. The

size of this subset is given in advance, depending on the hardware. There are

never more primitives touched than the given limit, such that the number

of graphics operations is independent of the scene’s size. This may result in

image errors, as more triangles might be visible than we have chosen. Ad-

ditionally, if triangles would be chosen arbitrarily we might not catch those

with the most impact on the correct image, since the chosen triangles might

be occluded, their area might be small, or they could be located completely

outside the view frustum. To get high image quality, we have to pick the tri-

angles with most impact on the correct image and reduce errors this way. On

the other hand, finding exactly those triangles would be to expansive again,

so what we are looking for is a good estimation.

Generally, large primitives contribute more to the image than smaller ones.

But not only actual area is crucial, more important is the area of the projected

primitive on the screen. This depends on the actual area, the distance from

the viewer’s position, the orientation and the position relative to the view

frustum, i.e. whether a triangle is completely, partially or not at all inside the

view frustum.

We do not consider orientation of triangles as this would be to expansive.

However, clusters and objects contain several primitives of different orienta-

tion, thus changing the viewing angle to an object some triangles might turn

away from the viewer, while other triangles turn towards the user, such that

the effects of different orientations are at least partially compensated. The

SEC–Tree gives information about size and area of triangles. In the data

structure, all triangles stored in one node are of approximately equal size.

The clustering approach groups triangles, which are near to each other, and

therefore are nearly at the same distance from the viewer.

A frame is rendered in two phases. In a first phase, each object is assigned a

number of triangles it is allowed to render. We will describe, how this number

is determined for static scenes in Section 4.2 and consider dynamic scenes in

Section 4.4. Given this number, the second rendering phase starts. Now, a

SEC–Tree is used to decide which triangles of an object are chosen.

4.1. Selecting Triangles from Objects 57

4.1 Selecting Triangles from Objects

3D models created in CAD systems are highly detailed and therefore com-

plex. Given an object by a set of triangles, SEC–Trees create a hierarchy of

details. Objects like machines are highly regular and symmetric. By search-

ing for clusters of equally sized triangles, details can be reconstructed. As an

example, buttons may be modeled as a cylinder and consist of a group of small

triangles with equal distances between them.

Figure 4.1 shows an example of a SEC–Tree. On the left the complete tree is

reproduced, while the right shows the geometry contained in some example

nodes. For each of these nodes, all triangles in the complete subtree beneath

are pictured. The root represents the complete model. On a path to a leave

an object is decomposed into details. At level two, the model is divided into

the left and the right part. Level three contains the instrument panel as an

example and the leaves represent e.g. buttons or wheels.

In the following, we describe the rendering of a single object. A triangle bud-

get is assigned to nodes of the SEC-tree, limiting the number of rendered

primitives. At first, triangles at higher levels defining the structure are ren-

dered. Then, spare triangles are distributed on more detailed parts of the

object. Given node Ni of a SEC–Tree, we denote its triangles by T i1, . . . , T
i
ki

and

succeeding nodes by N i
1, . . . , N

i
li
, sorted in the order determined during the

preprocessing. Rendering a cluster is done as follows. At first, we render the

triangles stored in this cluster up to the given limit. Thus, if a Ni is assigned

ti triangles, first T i1, . . . , T
i
min{ti,ki}

are rendered. All triangles contained in a

cluster are of nearly equal size, while a triangle is of approximately the same

area as the sum of triangles in a succeeding cluster N i
k. Hence, one triangle

in this node has greater impact than triangles on deeper levels of the tree.

Triangles were sorted according to their area, thus we choose the largest tri-

angles within a node. If we have rendered the triangles and did not reach the

limit, the remaining number of primitives is distributed on all subclusters. In

this case we have ti > ki and the ti − ki remaining triangles are assigned to

the succeeding nodes. Recursively node N i
k receives and renders wik (ti − ki)

triangles, whereby the weight wik is defined as follows: we denote the viewer’s

position by V , the center of a node N by Z (N), the summed area of triangles

58 Rendering with Triangle Budgets

1 2 3 4

1

2

3

4

5 6

Figure 4.1: SEC–Tree of a lathe

4.1. Selecting Triangles from Objects 59

contained in N and the subtree beneath by A (N) and define

wik :=
A (N i

k) /||V − Z (N i
k) ||

2

∑li
j=1A

(

N i
j

)

/||V − Z
(

N i
j

)

||2

Weights are chosen this way, because the projected size of a triangle increases

linear with its actual area and decreases quadratic to the distance from the

viewing point. Normalizing weights ensures that they sum up to one and

therefore
∑li

j=1w
i
j (ti − ki) = (ti − ki).

Since only few objects partly intersect the view frustum and most are entirely

in or outside, we do not consider frustum culling within one object. Testing

every node for its position relative to the frustum would be to expensive to

justify the benefits, so if an object intersects the view frustum, we consider

every node of the corresponding SEC–Tree to be within the frustum as well.

Clusters are sorted in a descending order according to the number of triangles

inside that subtree. If a cluster is assigned a limit greater than the number

of primitives it contains at all, this will probably happen to a cluster we en-

counter early, and we can assign these waste primitives to other nodes later.

Precisely, we add them to the next cluster’s limit. If we have rendered all tri-

angles but did not exhaust the budget of this node, we report the redundant

number back to the predecessor in the SEC–Tree, where it is assigned to the

next cluster.

If the clusters were not sorted this way, we might encounter clusters with few

triangles late, such that none of the upcoming clusters can make use of more

primitives. These waste triangles had to be reassigned to clusters we have

already rendered. Furthermore, we had to know which triangles have been

rendered and where to spend these additional triangles.

The number of primitives has to be an integer, since we can not render half

triangles, but we might get float values because of non integer weights. In

order to achieve high rendering speed, we never render more triangles than

the given limit. If this is a float value, we round down. If we always round

down, there might be a count difference between the overall limit and the

sum of rounded limits. These left triangles are assigned to the next cluster

we encounter. Due to our ordering, this is the cluster containing the next

smallest number of triangles. On the other hand this means we can expect

large and therefore important triangles there. Thus, raising the triangle limit

of this cluster is most promising.

60 Rendering with Triangle Budgets

Figure 4.2: Lathe rendered with 300, 500, 1000, 3000, 5000 and all 7794

triangles

Figure 4.2 shows a lathe rendered from one viewpoint with a different number

of triangles assigned to the root node. This model consists of 7794 triangles

in total. Even with only 300 triangles rendered, the model is well recogniz-

able, although more than 96% of all triangles are missing. If the distance

to the viewer increases, no difference to the complete model is identifiable.

Details increase with the number of rendered triangles, stepwise refining the

representation of the object.

SEC–Trees control the degree of details depending on the viewer’s position

within different parts of one object. This is different from many other ap-

proaches, discrete LODs as an example, which can alter the degrees of detail

for a complete model, but do not allow to change details for only a part of an

object. Since weights assigned to SEC–tree nodes are view dependent, parts

within an object gain more triangles if they are located near to the view point.

Figure 4.3 shows one model rendered from a position on the top right com-

pared to a viewpoint at the center. Large triangles dominating the structure

are displayed from both viewpoints, giving a good impression of the model.

Details like lattices and parts of robots disappear at the other end of the model

but near to the viewer’s position errors are avoided.

4.2 Global SEC–Trees in Static Scenes

Now, that we have seen how triangles are chosen from an object, we still have

to determine how many triangles each object receives. In static scenes we use

an object hierarchy for this, the global SEC–Tree.

4.2. Global SEC–Trees in Static Scenes 61

Figure 4.3: Large objects are displayed highly detailed at positions near to

the viewer

Rendering the global SEC–Tree basically works the same way as rendering

the tree of a single object. However, while we rendered triangles directly

when we encountered them in a SEC–Tree node, objects are more similar

to clusters, i.e. they contain multiple triangles, and therefore are treated

similarly.

Consider a global SEC–Tree T with nodes N = {N1, . . . , Nn}, created from a

set of objects J = {J1, . . . , Jm}. The viewer is located at position V . We will

assign a limit Li to each node Ni, which is determined recursivly and given

for the root node depending on hardware capabilities. At most Li triangles

contained in the subtree with the root Ni are rendered.

For each node N we define e (N) ⊆ N ∪ J to be the children and objects of

N . We will refer to e (Ni) = {Ei,1, . . .Ei,ni} as elements of Ni, since we do

not have to differ between objects and subtrees. Then, the size of node N is

A (N) =
∑

M∈e(N)A (M).

62 Rendering with Triangle Budgets

The maximal number of rendered triangles Lr is given in advance to the root

Nr as a limit, depending on hardware capability. The limit Li of node Ni is

distributed and each element of Ei,j ∈ e (Ni) is given a smaller limit li,j = wijLi
with

∑ni
k=1 li,k ≤ Li.

The area of a triangle projected to screen depends quadratic on its distance to

the viewer. Therefore, we choose weights wij just like before depending on the

distance of an element’s center Z (Ei,j) to the viewer:

wij :=
A (Ei,j) / ‖ V − Z (Ei,j) ‖2

∑ni
k=1A (Ei,k) / ‖ V − Z (Ei,k) ‖2

(4.1)

Let t (Jj) denote the numbers of triangles represented by object Ji ∈ J , t (N) :=
∑

M∈e(N) t (M) the number of triangles within a subtree with root N ∈ N . Dur-

ing preprocessing, elements are numbered such that we can assume t (Ei,j) ≤
t (Ei,k) for j ≤ k. If li,j > t (Ei,j) for an element Ei,j, there a more triangles

assigned to Ei,j than available. These li,j − t (Ei,j) additional triangles can be

distributed on elements, which have not been visited yet. This happens espe-

cially to elements with few successors, i. e. to elements at the beginning of

the list. Therefore, we render these elements first and redistribute remaining

triangles to elements visited later. We define additional weights w̃ijk to assign

remaining triangles of element Ei,k to Ei,j :

w̃ijk :=
A (Ei,j) / ‖ V − Z (Ei,j) ‖

2

∑ni
l=k+1A (Ei,l) / ‖ V − Z (Ei,l) ‖2

Then each element Ei,j is assigned li,j triangles with

li,j := wijLi +

j−1
∑

k=1

w̃ijk max{0, li,k − t (Ei,k)})

Object SEC–Trees were treated exactly the same way. Instead of objects, tri-

angles Ti,j with t (Ti,j) = 1 were considered. If a triangle Ti,j is assigned a limit

li,j ≥ 1, it is drawn.

Errors due to rounding can be considered. A simple example is a situation of

a node containing to clusters of equal size and distance from the viewer, with

a triangle limit of one. Then, each cluster receives a weight of 0.5, and there-

fore nothing is rendered. In general, only up to
∑ni

j=1⌊li,j⌋ ≤ Li triangles are

rendered. For a large value of ni and small Li this can be a significant differ-

ence. Therefore, values of li,j are rounded to integers, such that no more than

4.2. Global SEC–Trees in Static Scenes 63

Li triangles are assigned to the totality of elements, but on the other hand as

few triangles as possible are lost. This can be done by adding the truncated

decimal places and round up the limit if the sum reaches one. Especially at

lower levels of a SEC–Trees this becomes important. This is even more im-

portant for SEC–Trees created for single objects. In this case, triangle limits

may turn to the value of one, hence they will be displayed. At higher levels,

one triangle more or less is not of such importance.

4.2.1 Integrating Frustum Culling

Now, let us assume that not the complete scene is visible, so we have to take

frustum culling into account. Then, our rendering approach traverses the

global SEC–Tree twice for every frame. We do not consider occlusions or

backfacing geometry, but regard every object intersecting the view frustum

as visible. Frustum culling is done to determine visible parts of the scene

before the actual rendering takes place. We modify the weights to take the

visible area into account. The new weights are proportional to the area of

visible objects.

For every cluster or object in the global SEC–Tree, we have an axis aligned

bounding box. We traverse the hierarchy and test every bounding box if it is

contained in the view frustum, and stop the recursion if a node is not visible.

We report the overall area of all objects contained in this node back to the

predecessor. In the end, every node intersecting the frustum knows the visible

area it contains. The area of an object has to be computed only once as a step

of the preprocessing, since we do not consider partial visibility. The visible

area of an object is either zero if it is located completely outside the view

frustum, or the complete area of all primitives it contains.

Let F ⊆ N ∪ J denote those nodes and objects, which are at least partially

inside the view frustum. We consider each object that intersects the view

frustum to be completely contained. In fact, this is not true, but only a small

portion of all objects is partially inside as well as outside, and checking the

exact intersection of these few cases is too expansive. Further, we denote

the elements of an SEC–Tree node N inside the view frustum by eF (N) :=

e (N) ∩ F . The visible area of N is

AF (N) :=
∑

J∈eF (N)

A (J) for N ∈ N and

64 Rendering with Triangle Budgets

AF (J) := A (J) for J ∈ J ∩ F and AF (J) := 0 for J ∈ J \ F.

Now, weights used to distribute triangles on elements take this visible area

into account. We define

wij, w̃ijk := 0, for Ei,j /∈ F , otherwise:

wij :=
AF (Ei,j) / ‖ V − Z (Ei,j) ‖2

∑ni
k=1AF (Ei,k) / ‖ V − Z (Ei,k) ‖2

w̃ijk :=
AF (Ei,j) / ‖ V − Z (Ei,j) ‖2

∑ni
l=k+1AF (Ei,l) / ‖ V − Z (Ei,l) ‖2

For each frame rendered, the SEC–Tree is traversed twice. The first time only

the global SEC–Tree is considered. The values AF (Ni) are view dependent,

and therefore have to be determined every frame. Because of their recur-

sive definition, computation must proceed bottom-up, and triangle limits can

not be assigned while descending the tree. During the second traversal, the

image is rendered. Now, the weights wij , w̃ijk and triangle limits can be cal-

culated. With these alternative definitions, the global SEC–Tree is traversed

and nodes and objects are assigned weights analogous to the previous case of

rendering without frustum culling.

4.3 From the Randomized Sample Tree to the

SEC–Tree

Now, that we have seen how SEC–Trees can be used for rendering static

scenes, we will show for a better classification how rendering SEC–Trees is

related to the Randomized Sample Tree [KKF+02]. Therefore, we will inte-

grate a rendering budget into the Sample Tree and look at arising problems

and possible solutions. The basic approach of the Randomized Sample Tree

has already been described in Section 2.2.2. The Sample Tree and SEC–Tree

share the basic concept of selecting a subset the overall geometry and render-

ing only this portion. However, there are differences, which we will discuss in

the following.

Rendering large scenes is essentially about balancing. On the one hand, visu-

alization should be smooth, and therefore as the rendering has to be fast, on

the other hand image quality should be high. The Randomized Sample Tree

4.3. From the Randomized Sample Tree to the SEC–Tree 65

and the SEC–Tree prioritize different aspects in this regard. This motivates

the main difference between these two approaches, which is the number of

rendered triangles. The Randomized Sample Tree chooses a subset, which is

sufficient large for being representative for the complete geometry, thus ren-

dering correct images with high probability. While this reduces the number

of rendered primitives significantly compared to the set of all triangles, the

selected subset may still be too large for smooth rendering. We will show

an example for this in our practical results (Section 6.5.1). In contrast, only

a constant number of triangles are selected from the SEC–Tree. Therefore,

errors in the image might occur, while the frame rate is preserved.

There are some further differences. For once, triangles are chosen determin-

istically from the SEC–Tree. Then, the underlying data structure is another

difference, as the Randomized Sample Tree uses an octree. The last main

difference concerns object identities. These are preserved by the SEC–Tree

by building two separate hierarchies, the first on triangle and the second on

object level. The Randomized Sample Tree, in contrast, considers triangles in

the scene without differentiating which object they belong to.

Now, assume we wanted to modify the Randomized Sample Tree, such that

the frame rate is preserved for rendering by applying a triangle budget, as we

did with the SEC–Tree. Then, a constant number had to be chosen. The obvi-

ous modification of the approach is selecting these triangles at random. While

this subset would no longer be representative, this method allows smooth

rendering at any position of the viewer. However, the question how to select

triangles rises. We will discuss one possible approach.

The Randomized Sample Tree chooses a triangle T from an octree node N

with probability
A(T)
A(N)

, whereby A (N) denoted the summed area of all triangles

contained in node N or one of its subtrees. Note that this does not depend on

the viewer’s position. This is not critical for the Randomized Sample Tree, as

octree nodes of a projected size larger than one pixel are always rendered com-

pletely, and sampling influenced only nodes that are entirely in the distance.

Therefore, different distances of triangles within one node are not considered.

Choosing a subset of constant size at random, this selection should depend

on the viewer’s position, as we sample in the foreground as well. This can be

done by estimating the projected size of triangles and nodes by integrating

their distances to the viewer.

Since the projected area of a triangle decreases quadratically with its distance

66 Rendering with Triangle Budgets

to the viewer, we adjust the probabilities accordingly. However, considering

the distance from every triangle of the subtree is expansive. Therefore, we

a hierarchical approach is recommendable. So, let N1, . . . , N8 be the eight

children of octree node N , and Z (Ni) their center. Then, the probability of

triangle T would be

P (T) =
A (T) /||V − Z (T) ||2

∑

R∈N A (R) /||V − Z (R) ||2 +
∑8

i=1A (Ni) /||V − Z (Ni) ||2
, (4.2)

whereasR ∈ N denotes all triangles stored in N without considering triangles

contained in subnodes. The probability P (Ni) of node Ni is defined analogous.

Still, this approach has its drawbacks. One problem is that the same node

might be selected more often than the number of triangles it contains. As

an example, let us consider a scene containing a plant near to viewer. Walls

or the floor of this plant consist of only few triangles with a large area, thus

obtaining a high probability. This is desirable, as these triangles have a large

impact on the rendered image. But if this probability becomes too high, the

corresponding octree nodes might be selected more often than the number of

triangles they contain. This could be avoided by adjusting the probabilities of

a node. Every time a triangle T is selected from N , the probabilities of all pre-

ceding nodes N1, ldots, n8 could be adjusted, such that they no longer consider

the area of T . However, this has the drawback of altering the probabilities

of every triangle and node each time a triangle has been chosen, and there-

fore induces a significant computational overhead. Further, it is not clear how

probabilities have to be updated, as simple obvious strategies may induce an

imbalance. As an alternative, we could discard a chosen triangle every time

it has been selected before, and repeat this process until a new triangle is en-

countered. However, in the presence of triangles with large probability multi-

ple tries might be necessary until a new triangle is found, and this approach

favors small triangles disproportionally high [KV07].

Note, that the original Sample Tree defined probabilities only once indepen-

dent of the user’s position. Therefore, the sampling process could be shifted

into the preprocessing, thus having no influence on rendering times. Now,

we have to adjust the probabilities for every rendered triangle, based on the

position of the viewer in the scene and the triangles selected before. These

problems can be avoided using a deterministic approach.

The probabilities defined in Formula 4.2 are similar to the weights defined for

the SEC–Tree rendering in Formula 4.1. The difference between the weights

4.3. From the Randomized Sample Tree to the SEC–Tree 67

and the probabilities is that the weights consider only subtrees, while the

probability considers subnodes and triangles in stored in node N as well. The

reason for this is that triangles are chosen from a SEC–Tree node first and

only a remaining budget is assigned to subnodes, while the randomized ap-

proach selects from triangles and subnodes as well. As a consequence, a tri-

angle T is selected with the same probability as a subtree with all triangles

combined of equal area as T if they are the same distance from the viewer. An

algorithm selecting a representative subset, the Randomized Sample Tree as

an example, should show exactly this behavior. However, if only a constant

number of primitives are chosen, we can not expect a representative subset,

and thus selecting those triangles with the largest impact is preferable. Thus,

we alter the randomized algorithm, such that triangles are rendered first. If

all triangles have been rendered, a subnode Ni is chosen at random with prob-

ability of

P (Ni) =
A (Ni) /||V − Z (Ni) ||

2

∑8
j=1A (Nj) /||V − Z (Nj) ||2

,

Now, the probability corresponds exactly to the weights defined for rendering

SEC–Trees. Consider a node N containing t triangles, with N being chosen k

times. Next, assume k > t. Then, each node Ni is chosen P (Ni) (k − t) times in

expectation. Now, if we assign Ni this number of triangles deterministically,

we can check if this value exceeds the number of triangles contained in the

complete subtree and assign those waste primitives to other nodes.

What we have just described is exactly how our rendering algorithm works,

with the difference of using an octree instead of a SEC–Tree. However, using

a SEC–Tree has advantages for this approach, as our practical results will

show (Section 6.5.2). One reasons for this is that SEC–Trees are more adap-

tive to the distribution of geometry in the scene than octrees with their fixed

center point. Further, octrees store triangles with small area but large span

on higher levels, though they contribute little to the final image. In contrast,

the SEC–Tree organizes triangles by size, such that these triangles are stored

at deeper levels.

Summarizing, the Randomized Sample Tree works well as it renders the ge-

ometry of large projected size entirely, and chooses a representative sample

set of smaller geometry. However, selecting from the larger triangles at ran-

dom as well with a fixed triangle budget induces some difficulties, which are

avoided by our deterministic approach.

68 Rendering with Triangle Budgets

4.4 Weighting Objects to Assign Triangle Bud-

gets in Dynamic Scenes

Next, we will consider rendering dynamic scenes with SEC–Trees. We orga-

nize these scenes in a list without any hierarchy. While organizing objects

in SEC–Trees allows efficient rendering of scenes consisting of thousands of

objects, this is only possible in static scenes, since SEC–Trees do not support

dynamic updates, while on the other hand lists allow inserting or deleting ob-

jects in constant time and do not rely on spatial information, allowing fully

dynamic scenes. However, this comes with the costs of needing to touch each

object for every frame.

We assume that scenes are given by a set of objects J1, . . . , Jn. Like before, a

frame is rendered in two phases. First, the list of objects is traversed. The

positions of moving objects are updated and each object is assigned a number

of triangles. During the second phase, a number of triangles corresponding

to the object’s budget is selected and actually rendered. This decision, which

triangles of an object are considered, is made by utilizing a SEC–Tree as ex-

plained in Section 4.1.

In phase 1 of rendering a frame, the triangle budget L is distributed on the

objects. Therefore, each object Ji is assigned a weight wi and wiL triangles

will be selected from this object.

Objects near to the viewer with few triangles may be assigned more triangles

than they contain. In this case, the spare triangles are redistributed on the

other objects. Within one node of a global SEC–Tree, objects were sorted by

their number of triangles. We avoid this in dynamic scenes. Since objects

containing fewer triangles are no longer necessarily rendered before objects

with more triangles, we do not distribute waste triangles on following objects

only. Instead, the complete list is traversed a second time. The weights are

modified, such that objects are not considered if all their triangles have been

selected. Triangles wasted during the first pass are redistributed and as-

signed in addition to triangles previously distributed. This can be repeated

multiple times if there are still wasted triangles. However, most of the time

we needed two and never more than three passes to assign all triangle limits.

Analogous to our approach on static scenes, weighting of objects to determine

their contingent of triangles considers their importance to the final image.

4.5. Out-Of-Core Rendering 69

This is identified by an estimation of the area an object covers on the screen

after passing the viewing pipeline. The area a triangle covers on the screen

increases with its actual area. As before, if object Ji intersects the view frus-

tum, we define its size AF (Ji) by the summed area of all triangles Ji contains.

If on the other hand Ji is located outside the frustum, we define AF (Ji) := 0.

We denote the viewer’s position by V and the center of object Oi by Z (Oi).

Since the area a triangle covers on the screen decreases proportional to the

squared distance from the viewer, we consider this factor and each object is

assigned the weight

wi =
AF (Ji) /||V − Z (Ji) ||

2

∑n

j=1AF (Jj) /||V − Z (Jj) ||2

Dynamic scenes with thousands of moving objects are supported. Since ob-

jects are organized as a list of objects and no additional data structure is

necessary, moving, inserting and deleting objects only causes costs linear in

the number of modified objects.

Assignment of weights does not rely on any kind of coherence. If an object

far away becomes important, the user might be interested in instantly exam-

ining what has happened at that location, so he just teleports to that place.

The view on the scene can suddenly change completely. These events are

not known beforehand and can not be predicted. Since weights depending

on the current position are assigned every frame independently from previ-

ous values, such knowledge is not needed and our approach can handle these

situations, as long as scenes are stored completely in main memory, while

out-of-core rendering might require to load geometry which is to be rendered

from the new viewpoint. We will describe out-of-core rendering in detail in

the following section.

4.5 Out-Of-Core Rendering

Large scenes rise an additional challenge to rendering at sufficient frame

rates, which is memory consumption. Even though the number of triangles

which can be stored in main memory tops the number that can be rendered

in realtime, the size of the complete scene may still be exceeding memory

capacities by far.

70 Rendering with Triangle Budgets

The easiest solution is using instantiation. If a scene contains several objects

of with identical geometrical representation, e. g. several forklifts of the same

type, it is sufficient to store the geometry only once. The triangles are given in

a local coordinate system and each instance of an object type has the transfor-

mation information available, which describes how to position the geometry

in world coordinates. While this approach allows to keep large scenes in main

memory, it is limited to situations where there are only few different object

types which are replicated multiple times.

The more general solution is using an out-of-core algorithm. Only a fraction

of the complete scene is kept in main memory, while the majority is stored on

external memory and loaded as it is needed. Our rendering approach disre-

gards the entire scene for rendering, except for a constant number of triangles.

Therefore, only this amount of geometry is needed at a time. However, in or-

der to avoid latencies arising from loading geometry, it is recommendable to

prefetch geometry which may be needed within the next frames and keep it

in main memory as well.

We introduce an additional constraint to rendering the SEC–Tree of an ob-

ject, which allows discarding the majority of triangles and only depends on

the distance of this object to the viewer, but is not influenced by the position

of the other objects. If all triangles of subtree become too thin, we regard

their impact on the final image as negligible, and the weight of the subtree’s

root node is set to 0. Triangles are considered to be thin if their height after

projecting them to screen coordinates is below some threshold.

In order to determine if a subtree below a node N is ignored, we look at

the heights of all contained triangles. Let N1, . . . , NnN be the subnodes and

T1, . . . , TmN the triangles contained in nodeN . Then, let hi1, h
i
2, h

i
3 be the heights

of triangle Ti. We define hi := minj=1,2,3 h
i
j to be the minimal height of Ti and

HN := max{hi, Hj|1 ≤ i ≤ mN , 1 ≤ j ≤ nN} the largest minimal height of all

triangles contained in the subtree beneath N .

For a node N , a distance of d between the viewer and the bounding box of

N indicates the minimal distance of all triangles contained in N . Knowing

the height of a triangle, an estimation on the projected height can be given.

Depending on the shape of pixels, we look at the width or the height of the

image. If pixels are quadratic, it is irrelevant which dimension we choose,

else we consider the direction in which pixels are shorter. W.l.o.g. let this be

the height, otherwise the examination is analogous. Now, let p be the height

4.5. Out-Of-Core Rendering 71

of the rendered image in pixels and α the vertical opening angle of the view

frustum. Consider a triangle orientated parallel to the projection plane. The

height of the view frustum at a distance of at least d is never smaller than

2d sin α
2

(see Figure 4.4). Therefore, the fraction of the viewing plane covered

by the projection of the triangle in this dimension is at most HN
2d sin α

2
. Since

the height is p pixels, ⌈ p·HN
2d·sin α

2
⌉ is an upper bound on the projected size of the

triangle in at least one dimension. N is discarded for rendering if this value

falls below some threshold.

α
2

p
2

pixel
HN

d

≥
d

︸
︷
︷
︸

︸

︷

︷

︸

︸
︷
︷
︸

︸
︷
︷
︸

≥ d sin α
2

︸

︷

︷

︸

Figure 4.4: The upper half of the view frustum

Knowing beforehand which nodes will necessarily be rendered the next frames,

we will store only such nodes in main memory. If object Oi is positioned at a

point Pi with a bounding sphere radius of ri, and the user is located at posi-

tion V , the distance from the viewer to any triangle of the object is at least

||V − Pi|| − ri. If the user is moving with a maximal speed of tV , the distance

to Oi within the next t steps can not become smaller than max{||V −Pi|| − ri−
t · tV , 0}, as long as Oi does not move. Hence, if

pHN

2 max{||V − Pi|| − ri − t · tV , 0} sin α
2

(4.3)

becomes larger than our threshold, it is possible that we have to render node

N within the next t steps, and therefore load N into main memory.

In scenes with arbitrary dynamics, there are no limitations on the changes

within the transition to the next frame. Since every object could enter or leave

the view frustum at any distance to the viewer, we need to restrict possible

movements in order to determine reasonable bounds on the weights. There-

fore, we assume that movement speeds of objects and the viewer are limited.

72 Rendering with Triangle Budgets

In addition, we do not regard insertions of objects for prefetching, since objects

can be created at any time, and we can not predict if a simulation introduces

new objects. New goods, which are produced by a machine, are one example

of such objects. Thus, necessary geometry of new objects is loaded as soon as

they are created.

In scenes containing moving objects we have to adjust the estimation of pro-

jected size, considering possible distances within future frames. Let the speed

of object Ji be limited by ti. Then, the minimal distance within the next t

frames is max{||V −Pi|| − ri− t · (tV + ti) , 0}. Updating the expressions in For-

mula 4.3 accordingly ensures, that nodes are loaded in time if projection size

will not top the threshold within t steps.

4.6 Generating Multi-Point Level of Detail

We assume that information about significant objects is given by an external

application to our rendering system, e.g. a material flow simulation which

evaluates the processes it simulates. Such an application might identify over-

flowing depots or broken machines, which require special attention of the user.

Our rendering system can increase the visual details at such locations. We

call this multi-point level of detail, since details are not simply depending on

the distance to viewer, as in classical LOD apporaches, but also on points of

special interest.

Multi-point level of detail can be realized by modifying the weights of objects

according to their significance. The simulation identifies points of interests

and assigns a significance value s (Ji) to each object. This value varies be-

tween 0 and 1, for objects which are not significant s (Ji) is equal to zero.

We utilize three approaches to realize multi-point level of detail. The first one

redistributes triangles in favor of significant objects, the second one allows

exceeding the triangle budget, and the third possibility is to increase details

at regions around significant objects and not only on these objects themselves.

4.6. Generating Multi-Point Level of Detail 73

4.6.1 Emphasizing Significant Objects

Rendering SEC–Trees allows increasing details at significant objects by as-

signing additional triangles. In this section, we will present two approaches

of modifying wheights, differing by their concerns on the triangle budget. The

first approach respects the triangle budget and redistributes triangles on sig-

nificant objects, taking them away from less important objects. The second

approach allows exceeding the triangle budget, and significant objects receive

additional triangles, while other objects remain unaltered. This allows choos-

ing if the current frame rate will be maintained or the degree of detail on all

objects is preserved.

In addition to automatically changing details of significant objects, a semi-

automatic control is available. By altering a parameter r, the user can also

influence the appearance of an object by assigning more or less triangles to it.

The integration of significance values is achieved by altering weights wi. We

add a factor 1 + r · s (Ji) and adjust the denominator accordingly.

In our first approach, we redistribute triangles on significant objects. Weights

of such objects are increased, while at the same time weights of other objects

are decreased by modifying the weights as follows:

wi =
(1 + r · s (Ji)) ·AF (Ji) /||V − Z (Ji) ||2

∑n

j=1 (1 + r · s (Jj)) ·AF (Jj) /||V − Z (Jj) ||2

On non significant objects, this increases the denumerator, while the numera-

tor is untouched, decreasing the weight if significant objects are present. For

significant objects, the numerator is enlarged, corresponding to their degree

importance. Thus, objects with increased significance attract triangles from

other objects. This way we achieve a more detailed representation of signifi-

cant objects without influencing rendering performance.

Alternatively, we allow significant objects to exceed the triangle budget. Now,

the significance of objects is ignored when normalizing weights, so we get:

wi =
(1 + r · s (Ji)) ·AF (Ji) /||V − Z (Ji) ||

2

∑n

j=1AF (Jj) /||V − Z (Jj) ||2

In this case objects get additional triangles if their significance increases. For

objects Oi, which are not significant, the value of s (Ji) is equal to zero, there-

fore they obtain the same weight they would get in a scene without significant

74 Rendering with Triangle Budgets

objects, thus all details are preserved. However, this approach might decrease

rendering performance, as more triangles are rendered than the original bud-

get allowed.

4.6.2 Emphasizing Regions Surrounding Significant Ob-

jects

Instead of enhancing details of single significant objects, the details can be

increased for regions surrounding significant objects. This can be helpful if

not only the object is to be examined, but if the user wants to recognize corre-

lations of events resulting in the significance of this object.

Given k−1 significant objects Jl2 , . . . Jlk we denote their centers by Pi := Z (Jli).

In addition, we consider the viewpoint P1 := V . For each object Ji, we look

at its quadratic distances ||Ph − Z (Ji) ||
2 to all significant objects. However, if

objects are far away, the user can not recognize details anyway. Even if objects

are very near to significant events, there is no point in giving them the same

degree of detail objects near to the viewer receive. Therefore, the influence of

a significant object Jlh is weighted by its distance to the viewer ||Ph − V ||.

The higher the significance of an object is, the more important this area be-

comes, and therefore the significance value s (Jlh) influences the weight. Now,

the weights are defined by:

wi =
AF (Ji)

∑k

h=1 s (Jlh) / (||Ph − Z (Ji) ||2 · ||Ph − V ||)
∑n

j=1AF (Jj)
∑k

h=1 s (Jlh) / (||Ph − Z (Jj) ||2 · ||Ph − V ||)

whereby s (Jl1) := 1 +
∑k

j=2 s (Jlh) represents the importance of the viewer’s

position and is larger than the combined significance of all objects, assuring

that the viewpoint is still more important than objects in the scene.

At all points, a minimal distance of 1 is assumed, even when regarding the

distance between identical points, to avoid undefined expressions. So, more

exactly we do not just consider the distances, but the maximum of the distance

and one, but left it out of the formula for reasons of clarity.

CHAPTER 5

IMPLEMENTATION DETAILS

The rendering system has been implemented using Microsoft Visual C++ and

openGL. Since C++ is an object oriented programming language, the use of

the word object can become ambiguous in this chapter. On the one hand,

objects are objects of the simulated world, for example machines or forklifts,

on the other hand, object can refer to C++ objects. If necessary, we will refer

to objects of the simulated world as world objects, however most of the times

this differentiation is nonessential, since each world object is represented by

exactly one C++ object.

5.1 Preprocessing

For each 3D file, which has to be in vrml 97 or obj format, a SEC–Tree is

created in a preprocessing step. This is also done for the global SEC–Tree if

a scene is static. A scene is described in an xml-file, defining the positions of

objects. An xml scheme regulates how this xml file has to be composed.

In contrast to our analysis, we did not use skip octrees in the implementa-

tion. They were an adequate tool to consider costs, but are not necessary in

practice. Instead, we used a kd tree for range queries during the clustering

phase. While k-trees have worst case costs of O
(

n
2
3 + r

)

for a rectangular

range queries reporting r points, they behave fairly good in practice and are

75

76 Implementation Details

easier to implement. Further, we organized groups during an arranging phase

only in a search tree as originally proposed, instead of using an AVL tree,

which would guaranty a balanced tree. In practice, we did not find more than

20 groups during an arranging phase, and therefore a more sophisticated data

structure proposes only overhead in the implementation.

While our rendering algorithm performs out-of-core rendering, our prepro-

cessing is only an in-core approach. Since we create SEC–Trees on a per

object basis, we only need the geometry of one object at a time. An object

has been modeled using a conventional CAD application, which typically does

not support out-of-core representations. Therefore, we can assume that a sin-

gle object fits into main memory. Similarly, a global SEC–Tree only depends

on object positions, but not on actual geometry, and therefore we can assume

that all necessary points can be stored in memory. Since a SEC–Tree has to be

created only once and is stored on hard drive afterwards, hardware demands

higher than those of the rendering algorithm are acceptable, and memory

constraints become less important.

5.2 Triangle Centers

When performing clustering, while constructing the SEC–Tree of an object,

a triangle’s center is used as the regarded point of the clustering algorithm.

A first choice could be the center of gravity. This center is contained in the

triangle and easy to compute. If the triangle is equilateral, this is a adequate

point. However, in cases of acute-angled triangles, this point is no longer

appropriate.

Consider a cylinder as an example. Its superficies surface is approximated by

a set of triangles. If we look at their centers of gravity, we get two clusters,

while the triangles constitute a continous area, which should be one cluster.

Figure 5.1 shows an example of this situation.

The solution is to use a weighted average of triangle points. Each point Pi of

a triangle T is weighted by wi (T), with is proportional to the point’s distance

from the triangle’s centroid z (T). This reduces the maximal distance from the

center to the triangle’s vertices.

More precisely, the following center point Z (T) is used for a triangle T : Let

5.3. SEC–Tree Structure 77

Figure 5.1: The triangles form two clusters if centers of gravity are clustered,

which can be seen on the left example. The desirable result would be to obtain

only one cluster. To achieve this, we have to obtain points located nearer to

each other, like the points on the right.

T = (P1, P2, P3) be a triangle. Then, we define its center by

Z (T) :=

3
∑

i=1

wi (T)Pi,with wi (T) :=
||Pi − z (T) ||

∑3
j=1 ||Pj − z (T) ||

, and z (T) :=
1

3

3
∑

k=1

Pk.

5.3 SEC–Tree Structure

Out-of-core algorithms require the data to be stored externally, such that it

can easily be loaded at runtime. In a preprocessing step, a SEC-tree is created

for each 3D object which might occur in a scene and is stored in a single file.

The structure defined as Algorithm 6 contains all information necessary for

one node. At first, the number of triangles and subnodes are given, which

are needed to determine the amount of data associated with this node. An

array of triangles contains the actual geometry information. The second array

contains instances of the SubclusterData structure, which covers the data

concerning the subnodes.

Within each SubclusterData object, first an index states the position in the

78 Implementation Details

file where the data of a subnode starts. A bounding sphere is needed to bound

the distance of the node to the viewer. In combination with the value HN , it is

possible to decide if the projection becomes large enough within the next steps,

such that the node has to be loaded, as described in Section 4.5. The area

AN := A (N) is needed to determine the weight node N is given for rendering.

Algorithm 6 SEC–Tree Node Structure on Hard drive

Class SectreeNode

{
int numberOfTriangles

int numberOfClusters

Triangle[numberOfTriangles] tringles

SubclusterData[numberOfClusters] subcluster

}

Class SubclusterData

{
int clusterFileIndex

float bounding spheresRadius

Vector bounding spheresCenter

float HN

float AN
}

Subnodes of a given node N constitute a cluster, therefore their data should

be located near to earch other in a file. Since they are of similar size, they

should obtain similar weights, besides a few exceptions near to the viewer,

where small changes in the distance can have a larger impact on weights. As

a result, if one subnode of N has to be loaded, most of the times this holds

for the other subnodes of N as well. Therefore, the SEC–Tree is traversed in

a breadth first search when storing the tree. This allows loading a complete

sublevel at once, instead of getting every node for itself, as all nodes are stored

consecutive in the file. For further increased loading speed, the representation

on hard drive is binary identical to the representation in memory. This way,

data has not to be converted after it has been read, but can be used instantly.

5.4. System Architecture 79

5.4 System Architecture

Management ThreadRendering ThreadPrefetching Thread

Node List Renderer

Network

XML Parser

Object SEC-trees

Object List

Enqueue nodes

Simulation requests

Scene Manager

Parsed messages

Insert, delete, ...
Update positions,

traverse

Render,

remove nodes
Load nodes

Figure 5.2: Architecture of the rendering system

In dynamic scenes, the system consists of three threads. The first thread is re-

sponsible for prefetching geometry into main memory, the second thread ren-

ders the scene, and the third thread manages the world objects of the scene.

Static scenes do not allow changes at runtime, thus the managing thread be-

comes redundant.

Each world object is represented by exactly one C++ object stored either in a

global SEC–Tree or in a list. This C++ object memorizes the position, move-

ment speed and target position if the object is moving, a transformation ma-

trix to project from object coordinates to world coordinates and the inverse

matrix, a bounding box, the significance level and the object’s name. The ac-

tual geometry is not stored with the object itself, instead a pointer refers to

a geometry object holding the SEC–Tree with the triangles of the object in a

80 Implementation Details

local coordinate system. Only one geometry object is needed for each file with

geometry information, which may be shared by multiple objects having the

same geometrical representation.

5.4.1 The Management Thread

Objects can be manipulated by external applications, like a simulation as an

example. The operations cover inserting, deleting and rotating objects, as-

signing a target position and speed for movements, and altering the signifi-

cance level of an object. In order to able to communicate with arbitrary ap-

plications, commands are accepted via a network interface. These commands

have to be composed in xml, specified by a scheme, and are interpreted by a

xerces parser.

Each object can be identified by a string, which has to be included in every

message. A hashmap allows to find the object targeted by the message and

apply the appropriate changes to the object’s paramters.

5.4.2 The Rendering Thread

In static scenes, the rendering thread traverses the global SEC–Tree perform-

ing frustum culling and assigning a weight to each object, while in dynamic

scenes the object list is processed, additionally updating the positions of all

moving objects as described in Sections 4.2 and 4.4. Then, the SEC–Trees

of all objects, which are assigned at least one triangle, are traversed. This

traversal selects the triangles from the tree according to the limit determined

by the object’s weight. The chosen triangles are sent to the graphics hardware,

where they are rendered.

Some consideration has to be given on the calculation of weights. When de-

termining a weight wi, we devide by the distance of a node Ni to the viewer,

which might be close or even equal to zero if the viewer’s position is located

near to the center of the node. On the other hand, we want our weights to

represent an estimation on projected screen size. Since this screen size is lim-

ited, we also limite the minimal distance we consider, avoiding the problem of

divisions by zero.

5.4. System Architecture 81

When rendering an object’s SEC–Tree, each subnode referred to by a parent

node visited during the traversal, which has not already been loaded into

main memory, is checked if it may be needed within the next steps. If so,

and the node has not been marked, the associated SubClusterData structure

containing the necessary informations to load the node is inserted into the

queue, together with a reference to this node. A marking indicates, that this

subnode has already been queued and has not to be considered again.

We use a caching strategy for efficiency. Nodes in main memory, which gained

no triangles, are checked for last time they have been considered to be possibly

necessary. If at least ten frames have passed since then, we remove the node

and subtree beneath from main memory. Waiting for some frames provides

two advantages over immediately deleting nodes which are not needed. First,

multiple instances of one object type might use the same SEC-tree. If a node

is not necessary for one object, this might not hold for other instances. Ten

frames without considering this node implies that this node was not possibly

necessary for any other instance within at least the last nine frames. The

second advantage is, that backward movements require the same nodes to be

loaded as previous frames. Loading these same nodes, which have just been

deleted, can be avoided if those are kept in main memory for some additional

frames.

5.4.3 The Prefetching Thread

Synchronous prefetching of geometry within the rendering thread, when en-

countering nodes that have to be loaded, would stall the CPU, and therefore

slow down the complete rendering. On the other hand these data are not

required immediately. Since accessing the hard drive in parallel to the ren-

dering is more efficient, loading is realized by an additional thread.

The prefetching thread processes the nodes inserted into the queue by the

rendering thread. At first, we check if the node still has to be loaded or if the

distance has increased due to movements of the object or the viewer during

the time other nodes in the queue have been processed, such that it no longer

has to be loaded.

After loading a node, its children are processed. Instead of inserting them

into the queue, they are directly checked if loading them is requiered. If all

children are necessary, the complete sublevel is loaded at once, otherwise only

82 Implementation Details

the required nodes are accessed. This continues recursively, until no further

nodes are found, which might be rendered in the near future.

5.5 Coordinate Systems

We use instantiation, i.e. geometrical representations of objects are stored

only once for each geometry file, instead of once for every world object in the

scene. The obvious benefit is, that less memory is consumped if one 3D model

represents more than one world object. Therefore, the geometrical data has

to be independent of an object’s actual position. Instead, a local coordinate

system is used, with the center of the object’s bounding box as the origin. For

each object, a transformation matrix defines how to convert local coordinates

into world coordinates.

An additional advantage is, that moving and rotating objects only requires to

update the matrix, while the geometry itself is left unchanged. All matrices

are stored as 4 × 4 matrices, which can be as well used for internal calcula-

tions as be pushed directly on the openGL model-view matrix stack. On the

other hand, this results in a drawback against using world coordinates in the

beginning, as every time the rendering system encounters a new object, the

transformation matrix on the openGL stack has to be changed. However, the

benefit prevails perspicuously.

Assigning weights to nodes of a SEC–Tree, while traversing it for rendering,

includes calculating the distance between the viewer’s position and the cen-

ter of the node. Since the geometry is only available in object coordinates,

this holds for the complete tree, while the viewers’s position is given in world

coordinates. In order to get comparable coordinates, one position has to be

translated into the other coordinate system. Converting the node center into

world coordinates would have to be done everytime a node is visited during

the traversal, while translating the viewer’s position into object coordinates

using the inverse transformation matrix has to be done only once for every

object, which is at least partially rendered. Since objects are only rotated and

translated, distances between the transformed points do not depend on the

chosen coordinate system.

CHAPTER 6

PRACTICAL RESULTS

We tested our approach in a prototypical implementation in C++ without op-

timizing the code. OpenGL was used as low level rendering API. The test

equipment was an AMD Athlon XP 2600+ computer with 1GB Ram and an

Ati Radeon 9600 EZ graphics card, running windows XP.

We tested static scenes as well as dynamic ones, looking at different prop-

erties like frame rates, memory consumption, pixel errors or the influence

of emphasizing significant objects. Further, we compared SEC–Trees to an

octree based rendering approach.

6.1 Rendering Static Scenes

We used static test scenes of different sizes, all showing similar results. In

the following, we will refer to the largest scene. This test scene consists of

23.880 objects with 180.371.756 triangles altogether and is pictured in Figure

6.1. Different kinds of objects were used like halls, machines, machine cells

or boxes.

The number of triangles per object varied from a few hundred to several thou-

sands. The rendering limit for each frame was set to 300.000 triangles. Pre-

processing of this scene took about 12 minutes in total to obtain a global SEC–

Tree as well as those for all different 3D models.

83

84 Practical Results

(a) Measurements were made following the indicated path

(b) This image was rendered using the

SEC–Tree with a detail view on a part of

the image below

(c) All triangles are rendered from the

same position as before. The detail view

demonstrates image errors that occurred

on the left when the SEC–Tree was used

6.1. Rendering Static Scenes 85

(d) A further image rendered with a SEC–

Tree . . .

(e) and the corresponding exact image

with all triangles

(f) Now, the viewing position is closer to

one of the plants. Again, the SEC–Tree is

and used first . . .

(g) and the correct image is given for com-

parison

(h) This wireframe image indicates the

complexity of the models

(i) Triangles in one cluster are drawn in

the same color

Figure 6.1: Screenshots taken from the static scene with about 23000 objects

and 180 million triangles

86 Practical Results

Figure 6.1(a) was taken from a position which allows seeing most parts of

the scene. There are about 20.000 objects visible, with only few objects being

hidden by other objects. In such situations, approaches like occlusion culling

are no solution. Reducing the complexity of single objects by a conventional

level of detail algorithm will still result in a large number of triangles, simply

because of the large number of objects. While most other approaches consider

objects independently of each other, the SEC–Tree in contrast reduces the

number of triangles for an object if it is increased for another one. This results

in a balanced rendering system.

A more detailed view on a single hall can be seen in Figure 6.1(e). The wire-

frame in Figure 6.1(g) demonstrates the complexity of single objects. The

clustering of an object can be seen in Figure 6.1(i). Triangles in one clus-

ter are drawn in the same color, visualizing leaves nodes of the SEC–Tree.

The lattices and rolls in the foreground are examples, where one can see that

triangles of equal size are inserted into groups of neighboring primitives, re-

constructing components of the object.

6.1.1 Rendering Statistics

Figure 6.2 shows some statistics on rendering, following the sample path in-

dicated in Figure 6.1(a). Measuring data at about 2000 positions, rendering

time was almost constant. The visibility changed from views showing nearly

the complete scene to others, such that only a few objects were visible. Fig-

ure 6.2(a) shows the number of rendered triangles at each position. The limit

of 300.000 triangles was nearly exceeded at every position, except for those,

where the number of triangles contained in the view frustum was lower than

300.000. The frame rate was about 12 fps, even when the complete scene

was visible (Figure 6.2(b)). Only at viewing positions near the boundary of

the scene rendering was faster, since the number of triangles inside the view

frustum was less than the triangle limit. Figure 6.2(d) shows this number

of triangles inside the view frustum for every sample position. The number

of visible objects results in nearly the same diagram except for the scale on

y-axis, and therefore is not shown. Independent of the number of visible ob-

jects and triangles, the frame rate never became too slow to interact with the

scene. In contrast, rendering an image of the complete scene without limiting

the number of triangles by sending every triangle to the graphics hardware

took more than 30 seconds for one frame.

6.1. Rendering Static Scenes 87

Pos

T
ri

a
n

g
le

s

2000150010005000

300000

240000

180000

120000

60000

(a) The number of rendered triangles

Pos

F
p

s

2000150010005000

35

30

25

20

15

10

5

(b) Frames per second if rendered constantly with current speed

88 Practical Results

Pos

M
s

2000150010005000

100

80

60

40

20

0

(c) Milliseconds needed for the two rendering phases of frustum culling (green

line) and rendering according to weights (red line)

Pos

t

2000150010005000

1e+008

1e+007

1e+006

100000

10000

1000

(d) Number of triangles t inside the view frustum (red) and the triangle limit

(dotted line). Note that the y-axis is scaled logarithmically

Figure 6.2: Rendering statistics have been collected along a sample path

through the scene. The diagrams above show the results for each of about

2000 frames

6.1. Rendering Static Scenes 89

The time needed to render one frame was dominated by the second traversal

of the data structure, where weights are assigned and triangles are rendered.

Even if all objects were inside the view frustum, checking visibility was al-

ways fast and did not preponderate. Figure 6.2(c) shows the time needed for

the two rendering phases.

6.1.2 Image Quality

We compared correct images with results created by the SEC–Tree. By cor-

rect, we mean that we did not spare any triangles, but rendered the complete

scene contained in the view frustum. Walking through the scene to obtain

these values took several hours due to the high rendering time of correct

images, demonstrating the necessity of approaches speeding up rendering.

Figure 6.1(b) to Figure 6.1(f) show example comparisons of images rendered

using the SEC–Tree to correct images. Though errors are recognizable, espe-

cially when looking at at the extract in Figures 6.1(b) and 6.1(c), this regards

only small details.

Let Ii denote a correct RGB image of resolution w × h at the i-th frame, Ji the

image rendered using a SEC–Tree. We measured errors by comparing color

distances (Figure 6.3(a))

‖ Ii − Jo ‖color:=
1

wh

∑

u

∑

v

‖ Ii (u, v) − Ji (u, v) ‖
2

as well as the fraction of differing pixels (Figure 6.3(b))

‖ Ii − Ji ‖pixel:=
1

wh

∑

u

∑

v

sgn (‖ Ii (u, v) − Ji (u, v) ‖) .

Both curves show the same gradient and differ only in scale, i.e. visual im-

pression only depends on the number of different pixels, the influence of ac-

tual color is of less importance.

Figure 6.3(a) demonstrates the quality of images rendered by the SEC–Tree,

following the same path shown Figure 6.1(a) again. During the first 500

frames, image quality improved, while the number of visible triangles de-

creased, since selecting the same number of triangles from a smaller set re-

sults in a better representation. However, not only the number of triangles

90 Practical Results

Pos

E
rr

o
r

2000150010005000

0.02

0.016

0.012

0.008

0.004

0

(a) Averaged squared color differences

Pos

E
rr

o
r

2000150010005000

0.2

0.16

0.12

0.08

0.04

0

(b) Fraction of pixel differing in SEC–Tree rendered image from a correct image

Figure 6.3: Pixel errors on the path through the scene.

6.2. Rendering Dynamic Scenes 91

is of importance. At about frame 500, errors increased, while the number of

visible primitives decreased. At these positions, some objects were near to

the viewing position and small details were visible in the correct image, while

the SEC–Tree preferred larger triangles. Partially, chosen triangles were oc-

cluded, thus making no contribution to the image. Still, more than 90 percent

of all pixels were correct, so the resulting image was appropriate. At frame

900, nearly the complete scene was contained in the view frustum again, just

as in the beginning, but there were much less errors. This occurred due to a

different viewing angle. In contrast to the first frames, now a lot of objects

were occluded by larger triangles. Great part of these occluders were large

triangles, and therefore chosen as representatives, resulting in correct pixels.

Towards the last frames, the number of visible triangles became less than the

overall limit of rendered primitives. When rendering these frames, all these

visible triangles were selected, hence a correct image was produced.

6.2 Rendering Dynamic Scenes

Figure 6.4(a) shows our dynamic scene, again rendered with 300.000 trian-

gles. The complete scene contains about 14.5 million triangles and 892 objects

in total. The complexity of different models varies from simpler models with

a few hundred polygons to a complex model of a production line with more

than 220.000 triangles. We increased the complexity of the scene by inserting

additional replicas, resulting in six and 100 times the original scene. We will

refer to them as Scene 1, 2 and 3, whereby Scene 1 is the original and Scene

3 the largest scene, shown in Figure 6.4(b).

Figure 6.5 shows some measurements along a path through each of these

three scenes. At each point we looked at the number of objects intersecting

the view frustum, shown in Figure 6.5(a) to 6.5(c). In addition, we considered

the time needed to render a frame. In Figures 6.5(d) to 6.5(f), one can see the

milliseconds needed to update the position of objects, determine the weights

and actually render the scene.

In Scene 1, every object was moving the whole time, in Scene 2 and 3 we

started with all objects staying at their position in the beginning and at one

point they all began to move. While in an actual environment objects rep-

resenting machines would not move but stay at one place, there are various

moving objects like fork lifts or packets. By moving every object, we show

92 Practical Results

(a) A single instance of the scene

(b) The same scene as in Figure 6.4(a) but 100 times replicated

Figure 6.4: Overview on the dynamic test scene

6.2. Rendering Dynamic Scenes 93

that our approach can handle scenes with a large amount of moving objects.

In addition, this demonstrates that no object has to stay at one place. If the

user wants to change the layout of the plant by moving a machine to another

place, this can be done.

The time needed to update the position of an object is independent of the

viewer’s position and the number of objects in the view frustum. Comparing

the time needed to update positions in Scene 1 to 3, one can see at the dot-

ted lines in Figures 6.5(d) to 6.5(f), that this times increases linear with the

number of objects in the scene from about 5ms to 30ms and 500ms.

The results are similar regarding the assignment of weights. While there are

no differences in the time needed to move the objects, there are some fluctu-

ations in the time spent on assigning weights, because at some positions the

object list was passed three times to avoid wasting triangles, while at other

positions we traversed the object list only twice. One pass was never suffi-

cient, since the floor consists of objects containing two very large triangles.

Therefore, these objects received large weights and were assigned too many

triangles, which had to be redistributed.

We see a dependency on the viewer’s position, when we take a look at the ac-

tual rendering time. These curves in Figures 6.5(d) to 6.5(f) correspond to the

number of objects intersecting the frustum, shown in 6.5(a) to 6.5(c). Every

frame, up to a predefined number of triangles is rendered. But there is an

additional overhead to rendering primitives, if the number of objects, which

these triangles are assigned to, increases. For example, we have to alter the

transformation matrix each time the rendered object changes. However, since

the number of triangles to regard is limited, this holds for the number of ob-

jects which are actually rendered, i.e. receive a positive weight. In Figure

6.5(f) and 6.5(c) one can see that the number of visible objects increases at

the end of the walkthrough, while the rendering time stays the same. Fig-

ure 6.5(g) shows the number of objects which are visible but do not receive

any triangles. Even though this means that visible objects are not displayed,

this has only small impact on the resulting image and is not recognizable due

to aliasing anyways. These objects are small and far away from the viewer,

covering only a few pixels. While results gained from the smaller scenes in-

dicate that rendering time increases with the number of objects intersecting

the view frustum, we can see now that this is only true up to a certain point.

Rendering was fast enough to navigate through Scene 1 and 2. In Scene 3, we

94 Practical Results

Pos

O
b
je

ct
s

35030025020015010050

800

600

400

200

0

(a) Number of objects intersecting the view frustum at a path

through Scene 1,

Pos

O
b
je

ct
s

200150100

3000

2000

1000

0

(b) . . . Scene 2

Pos

O
b
je

ct
s

385038003750

30000

20000

10000

0

(c) . . . and Scene 3

6.2. Rendering Dynamic Scenes 95

Pos

M
s

35030025020015010050

140

120

100

80

60

40

20

0

(d) Ms needed to updates position (green), distribute weights

(blue) and render (red) Scene 1,

Pos

M
s

200150100

200
180
160
140
120
100
80
60
40
20
0

(e) . . . Scene 2,

Pos

M
s

385038003750

500

400

300

200

100

0

(f) . . . and Scene 3 on the same path

96 Practical Results

Pos

O
b
je

ct
s

385038003750

45000

36000

27000

18000

9000

0

(g) Number of objects intersecting the view frustum but not receiving triangles

because of their low weight on the walk through Scene 3

Pos

O
b
je

ct
s

180001200060000

6000

4000

2000

0

(h) Number of objects inserted into Scene 2 at time after start

Figure 6.5: Measurements along a path through different scales of the dy-

namic scenes

6.3. Multi-Point Level of Detail 97

got only about one frame per second, half of the time was needed to update

object positions. But this scene shows that a triangle budget leads to a limited

amount of objects that have to be rendered, and therefore rendering time is

bounded, while traversals of the object list depend on the actual number of

objects in the scene.

Scenes are fully dynamically, inserting additional objects is possible any time.

Figure 6.5(h) shows the process of loading Scene 2. Loading the complete

scene takes about 18 seconds. At any time the objects already inserted can

be rendered showing the scene loaded so far. As one can see in Figure 6.5(h)

the time needed to insert additional objects does not depend on the size of the

scene. This is necessary since new objects are created frequently, as during

manufacturing processes new objects are produced and placed in the scene.

6.3 Multi-Point Level of Detail

Figure 6.6 shows the effect of applying multi-point level of detail to a scene. In

addition to some other objects, this scene contains three instances of the ob-

ject displayed in Figure 6.6(d). In Figure 6.6(a), no object is significant, i.e. all

objects have a significance of 0. Since the viewpoint is located at a similar dis-

tance to all three instances, their representation is nearly equal. Altering the

significance of objects changes their weights, and therefore their appearance.

In Figure 6.6(b), instance 3 at the bottom is still not significant. However, the

significance of instances 1 and 2 has been modified. Now, instance 1 on the

left has a significance of one, instance 2 on the right a received value of 0.5.

Triangles formerly assigned to object 3 at the bottom are now assigned to the

significant objects 1 and 2. While the degree of detail of the two significant

objects has increased, it decreased at instance 3. This becomes especially rec-

ognizable when looking at the marked rolls of the conveyor belt. Figure 6.6(c)

shows a scene with the same significance as in Figure 6.6(b), the difference is

that this time budget exceeding is allowed. The significant objects 1 and 2 are

assigned additional triangles and their representations in Figure 6.6(b) and

6.6(c) correspond. However, instance 3 is not influenced by their significance.

Its degree of detail in Figure 6.6(c) is the same as in Figure 6.6(a).

Figure 6.6 shows only a small scene. If we want to look at regions around

significant objects with increased details, we have to consider larger scenes.

Such a scene can be seen in Figure 6.7. The significance of the machine cell

98 Practical Results

(a) None of the objects is significant (b) Significance value of objects 1 is now 1,

object 2 received a value of 0.5 while 3 still

is not significant

(c) Now objects have the same significance

as in Figure 6.6(b), but this budget exceed-

ing is allowed

(d) A single instance of the complete object

we are interested in

Figure 6.6: Views on one scene with different representations of significant

objects. Objects 1, 2, 3 are identically modeled and differ only in significance.

The marked conveyor belt is a part of this model, at which differences in

representations are easy to identify

located at the top right has been changed. In Figure 6.7(a) the scene has

been rendered without any significance, while in Figure 6.7(b) an image has

been created from the same position, now containing a significant machine

cell. The degree of detail around this object was increased. Figure 6.8(a) and

6.8(b) show an enlarged image of the section around the machine cell. The

6.3. Multi-Point Level of Detail 99

(a) No object is significant

(b) The machine cell at the top right became significant

Figure 6.7: Example of increased details due to a significant object positioned

nearby

100 Practical Results

(a) A closer look at the region where significance is about to change

(b) Degree of details increased around the top machine cell, which has be-

come significant

Figure 6.8: A closer look at the significant regions

6.4. Out-of-Core Rendering 101

significant object itself became more detailed, as one can see when looking

at the lattices surrounding the object, but in addition the adjacent conveyor

belts received additional triangles as well.

Modifying the significance of objects did not have any influence on rendering

performance. We looked at the frames per second on a sample path through

Scene 2, which can be seen in Figure 6.9(a). 15 objects were significant, with

different levels of significance. These objects are highlighted in Figure 6.9(b).

None of the objects were moving to ensure that conditions were equal for every

experiment.

Figure 6.10 shows the influence of significant objects on the rendering perfor-

mance. Most of the time there have been no differences and therefore only

the top line is visible. The red line indicates the frame rate when wewalked

through the scene with no significant objects being present. The green and

blue line show the results on the same path with significance considered.

When getting the results for the blue line we allowed exceeding the triangle

budget. Impact on the performance was so small, that it is not recognizable

most of the time. Only between positions 700 and 800 there is a small drop

of the frame rate, as we were near to multiple objects with a high signifi-

cance value. The yellow line represents the results when object significance

increased the degree of details of surrounding objects. All four curves show

the same behavior. Rendering performance showed some fluctuation between

six and 15 frames per second, depending on the position in the scene, but

nearly no influence of significant objects on the performance can be recog-

nized.

6.4 Out-of-Core Rendering

Our rendering algorithm allows displaying scenes exceeding memory capaci-

ties by loading only geometry needed within the next frames. We measured

occupied memory when rendering the same three scenes as in section 6.2, fol-

lowing the same path in each of the scenes. For each frame we counted the

size of nodes in main memory. Instantiation was not considered, every object

was loaded independently of other representatives, even if their geometrical

representation was identical. Global SEC-trees or the object list was always

kept in main memory as its size is neglactable compared to the amount of

geometry in the scenes. Further, our system requires about 124 MB for com-

102 Practical Results

(a) Measurements were made along this path

(b) These objects were significant

Figure 6.9: Sample scene containing significant objects

6.4. Out-of-Core Rendering 103

Pos

F
p

s

10005000

15

12

9

6

3

0

Figure 6.10: Fps while walking through the scene with no object being sig-

nificant (red), objects becoming significant without budget exceeding (yellow),

allowing budget exceeding (blue) and emphasizing regions (pink)

ponents of the rendering system, which is not considered within the following

measurements.

All objects of Scene 1 combined occupy about 660 MB if stored in main mem-

ory. A scene of this size does not require an out-of-core rendering approach,

which is different for Scene 2. Memory requirements increase to about 3960

MB, which is more than a 32 bit windows XP machine can address. Scene 3

consists of 100 replications of Scene 1, therefore occupying even 66 GB.

Figures 6.11(a) and 6.11(b) show the influence of different parameters on size

of nodes loaded into main memory. We followed the same path through Scenes

1, 2 and 3, and used different screen resolutions and movement speeds for

Scene 2.

The red line in Figure 6.11(a) shows results for Scene 1 rendered at a reso-

lution of 800 × 600. Memory consumption fluctuated between about 200 and

350 MB, which is about a third to half the scene size. The main influence on

needed memory was the height of the viewer’s position. At ground level, we

needed about 300 MB for each position. When increasing the viewer’s alti-

tude, more triangles’ spans were beneath our threshold for rendering.

104 Practical Results

Pos

M
B

10008006004002000

600

500

400

300

200

100

0

(a) Consumed memory on the path through Scene 1 (red), Scene 2 (green) and

Scene 3 (blue) . . .

Pos

M
B

10008006004002000

600

500

400

300

200

100

0

(b) . . . and Scene 2 at lower screen resolution (red), higher screen resolution

(green), and looking 50 steps ahead (blue) . . .

Figure 6.11: Memory consumption of SEC–Trees in different scenes

6.5. A Comparison to Rendering Octrees 105

The results of increasing scene size can be seen at the green line in Figure

6.11(b). Scene 2 contains six times the original scene and therefore is six

times as large. However, memory requirements only slightly increased to

about 250 to 400 MB. The additional geometry was hardly loaded into main

memory. This effect becomes even more visible at the blue line. Scene 3 is 100

times as large as Scene 1, but we never needed more than 425 MB of memory.

The red and green line in Figure 6.11(b) show Scene 2 rendered at a different

screen resolution. Since we discard SEC–Tree nodes containing only trian-

gles with a projected span below a threshold in pixel size, this influences the

amount of memory that is loaded, as each pixel covers a smaller fraction of

the image if the resolution is increased. The red line shows results measured

at a screen resolution of 320 × 240, while the green line represents measure-

ments for a larger resolution of 1200× 900. With increasing screen resolution,

memory consumption also goes up with 70 to 80 MB for the small resolution

and 450 to nearly 600 MB for the high resolution. Thus, changing screen

resolution has a larger influence than increasing scene sizes.

Up to now, we looked 10 steps ahead and loaded nodes, which might be ren-

dered within the next 10 steps. The blue line in Figure 6.11(b) shows the

results of considering 50 steps, this is equivalent to increasing the maximal

speed of the user and objects to five times the previous value. We used Scene

2 again, at the resolution of 800 × 600. This lead to slightly increased mem-

ory requirements of about 50 MB in addition, compared to looking ten steps

ahead, but was not as significant as altering screen resolutions.

6.5 A Comparison to Rendering Octrees

In addition to the SEC–Tree and rendering it with a triangle budget as de-

scribed in 4, we have implemented an octree. We have chosen two ways of ren-

dering the octree and compared them to the SEC–Tree. At first, we rendered

the octree up to a certain depth and ignored small nodes. As an alternative,

we applied our weighted rendering to the octree. In both cases, we discarded

invisible nodes by applying frustum culling.

106 Practical Results

6.5.1 Discarding Small Octree Nodes

We achieve rendering at interactive frame rates by limiting the number of

displayed primitives and thus allowing image errors. In contrast, other ap-

proaches like the Randomized Z-Buffer [WFP+01] focus on producing correct

images of large scenes, but do not keep up a constant frame rate. The Ran-

domized Z-Buffer is an octree based algorithm, which renders larger octree

nodes completely, but only a representative chosen subset of smaller nodes.

We have implemented an octree and a rendering approach between rendering

SEC–Trees and the Randomized Z-Buffer, discarding nodes of projected size

of at most one pixel completely, and therefore rendering even less primitives

than the Randomized Z-Buffer would display.

Pos

t

10005000

1e+008

1e+007

1e+006

100000

10000

1000

Figure 6.12: Number of rendered triangles t, when octree nodes of projected

size of less than one pixel are not rendered, at resolutions of 480 × 360 (red

line) and 1920 × 1080 (green line)

This rendering method was significantly slower than rendering the scene with

a SEC-tree. Comparing actual rendering times is difficult, as this depends

strongly on the implementation. E.g. our test of projected octree node size

is quite expensive, but might be replaced by more efficient strategies. This

resulted in rendering times of more than 10 seconds for most frames.

We have chosen a different measure for comparing these approaches, namely

6.5. A Comparison to Rendering Octrees 107

the number of rendered triangles. Our approach chooses a constant num-

ber of triangles in order to preserve the frame rate, while allowing an un-

limited number of triangles to be rendered necessarily increases rendering

times. Note, that the projected size of octree nodes depends on screen resolu-

tion. Therefore, more triangles will be rendered at higher resolutions if octree

nodes of size less than one pixel are discarded.

Following the same path in the same scene as for the measurements in static

scenes which has been used in 6.2, we counted the number of rendered trian-

gles at a resolution of 480×360 pixels (red line in Figure 6.5.1) and 1920×1080

pixels (green line in Figure 6.5.1). Both curves show the same behaviour as

the curve displaying the number of triangles intersecting the view frustum

6.2(d), they only differ in scale. While most triangles have been discarded, at

positions allowing the viewer to overlook a large portion of the scene, their

number still is significantly larger than rendering capacities. In the first

frame as an example, more than 4 million triangles have been rendered at

lower resolution, and even more than 13 million at the higher resolution.

While this discards more than 90% of the 131 million visible triangles, ren-

dering at interactive frame rate is not possible, even if our implementation

would be more efficient.

The shape of our models is one reason for this behavior. Objects are modeled,

such that they contain many long and thin triangles, lattices or conveyer belts

are examples for this. While contributing little to the image because of their

small area, they are positioned at higher octree levels due to their large di-

ameter. Such nodes are projected to areas than larger one pixel and therefore

these small triangles are rendered. Other scenes containing triangles, which

are equilateral or similar to that, would be represented much better by an

octree.

6.5.2 Rendering Octrees with Triangle Budgets

We combined a further rendering technique with the octree, similar to that

presented in chapter 4. The number of rendered triangles was limited and

each octree node was assigned a limit of triangles to render, corresponding

to the area of triangles it contained and the distance of its center from the

viewer.

The image quality produced by the octree was significantly lower compared

108 Practical Results

(a) Comparison of the SEC–Tree with an octree: the octree was

used to render this

(b) The same view as in figure 6.13(a) rendered with the SEC-tree

Figure 6.13: Screenshots comparing weighted rendering of the SEC–Tree and

octree

6.5. A Comparison to Rendering Octrees 109

to the SEC–Tree. Figure 6.13(a) shows an image rendered with the octree ap-

proach described above. From the same position, the image in Figure 6.13(b)

was drawn, but this time the SEC–Tree was used. Image quality has im-

proved significantly. While some details like lattices around machines are

missing in Figure 6.13(b), those are small details. Using the octree, models

inside the front hall are highly detailed while other objects are completely

missing. Therefore, the SEC–Tree gives a much better impression of the cor-

rect scene. This shows that even if our weighted rendering can be applied to

other hierachical data strucures, it benefits from the way geometry in a scene

is organized by a SEC–Tree.

The reason for this behavior is that objects receive triangle limits depend-

ing on nodes higher in the hierarchy. Objects stored at lower octree levels

near to the viewer might get less weight than appropriate if centers of parent

nodes are located at a larger distance. The SEC–Tree is much less problem-

atic regarding such considerations. At the upper levels, position is not that

important as the primary criteria for organizing triangles and objects is their

size. The number of a node’s successors can be arbitrary large, resulting in

a breadth and shallow tree. Problems arising from data distribution over too

many levels are reduced this way. Additionally, SEC–Tree nodes are a much

better representation of stored data, since the tree structure does not rely

on partitioning space at fixed positions, but is more flexible and adaptive to

object locations compared to an octree.

110 Practical Results

CHAPTER 7

CONCLUSIONS

7.1 Contributions

The SEC–Tree proved to be an appropriate data structure to render massive

industrial scenes containing hundreds of complex CAD models. By keeping

models only partially in main memory and prefetching portions which might

be needed in the future, the size of the scene could extend available memory

capacities by several times over. Scenes were fully dynamic, in the sense that

arbitrary insertions, deletions and movements of objects were possible, while

static scenes allowed further optimizations by building up a second hierarchy

on object level.

By selecting a number of triangles adjusted to hardware capabilities, fast ren-

dering was ensured with only small dependency on the viewer’s position in the

scene. Organizing triangles in SEC–Trees, those triangles presenting large

contributions to the final image could be selected, resulting in only few image

errors, while only a fraction of the scene was rendered. Weights of objects in

the scene could be adjusted to consider importance their and increase details

at significant locations.

111

112 Conclusions

7.2 Future Work

While our approach of rendering SEC–Trees works well in practice, there are

still possibilities for improvements. We will list some of them in the following

section.

The weighting function considers size and distance of triangles from the viewer,

while their actual influence on the correctly rendered image depends on more

parameters than those. View depend weights considering occlusion or orien-

tation of geometry might result in a better choice of rendered triangles.

The out-of-core approach considers scenes stored on hard drive and loaded on

demand into main memory. However, considering graphics hardware, three

levels of memory are available. Instead of sending geometry constantly to

the graphics hardware, storing geometry needed immediately on the graphics

card and reuse this geometry for some frames should speed up the rendering

system.

We consider dynamic scenes, however an object hierarchy is only created for

static scenes, since SEC–Trees do not support updates. A data structure al-

lowing efficient insertions and deletions of objects would be desirable. A goal

easier to accomplish could be animations, where movement is limited to local

alterations or known during the preprocessing.

Objects are rendered by assigning weights hierarchically, depending on the

distance from the viewer. Near to the viewer’s location subnodes of the SEC–

Tree might be located significantly closer than their parent nodes. This is not

considered, when distributing triangles on these nodes. Increasing details in

the foreground by temporarily moving close subtrees on a higher level might

improve the overall image quality.

In theory, there is no limitation on image errors, while in practice we achieve

satisfying results. It would be interesting to describe scenes or objects corre-

sponding to our application and proving that these cases always lead to only

small deviation to the correct image.

Image based rendering approaches might be an alternative to discarding ge-

ometry. In order to reduce image errors, nodes assigned only few triangles

could render a simplified version determined as a preprocessing step. In addi-

tion to classical mesh simplification approaches, textured models might result

in images visually closer to a correct one.

7.2. Future Work 113

Occlusion culling approaches like [GKM93] utilize a precomputed octree to

find appropriate triangles considered as occluders. This is an application the

SEC–Tree might be better suited for in certain scenes. While octrees organize

triangles based on their span, the SEC–Tree is based on actual area. Espe-

cially long but thin triangles are misrepresented by octrees. Because of their

small area, they are a bad choice for occluders. However, exactly this small

area leads to those triangles being stores at lower levels of the SEC–Tree,

which should result in the SEC–Tree being the better suiting data structure

in scenes containing many such triangles.

114 Conclusions

BIBLIOGRAPHY

[ABKS99] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and

Jörg Sander. Optics: ordering points to identify the clustering

structure. SIGMOD Rec., 28(2):49–60, 1999.

[ACW+99] Daniel Aliaga, Jon Cohen, Andrew Wilson, Eric Baker, Han-

song Zhang, Carl Erikson, Kenny Hoff, Tom Hudson, Wolfgang

Stuerzlinger, Rui Bastos, Mary Whitton, Fred Brooks, and Di-

nesh Manocha. Mmr: an interactive massive model rendering

system using geometric and image-based acceleration. In I3D

’99: Proceedings of the 1999 symposium on Interactive 3D graph-

ics, pages 199–206, New York, NY, USA, 1999. ACM.

[AE99] P. Agarwal and J. Erickson. Geometric range searching and its

relatives, 1999.

[ASVNB00] C. Andujar, C. Saona-Vazquez, I. Navazo, and P. Brunet. Inte-

grating occlusion culling and levels of details through hardly-

visible sets, 2000.

[Ber02] Pavel Berkhin. Survey of clustering data mining techniques.

Technical report, Accrue Software, San Jose, CA, 2002.

[BSGM02] W. Baxter, A. Sud, N. Govindaraju, and D. Manocha. Gigawalk:

Interactive walkthrough of complex environments. In Render-

ing Techniques, pages 203–214, 2002.

115

116 Bibliography

[BWPP04] Jiří Bittner, Michael Wimmer, Harald Piringer, and Werner

Purgathofer. Coherent hierarchical culling: Hardware occlusion

queries made useful. Computer Graphics Forum, 23(3):615–624,

sep 2004.

[Cat74] Edwin Earl Catmull. A subdivision algorithm for computer dis-

play of curved surfaces. PhD thesis, 1974.

[CKS03] Wagner T. Correa, James T. Klosowski, and Claudio T. Silva.

Visibility-based prefetching for interactive out-of-core render-

ing. In PVG ’03: Proceedings of the 2003 IEEE Symposium on

Parallel and Large-Data Visualization and Graphics, page 2,

Washington, DC, USA, 2003. IEEE Computer Society.

[Cla76] James H. Clark. Hierarchical geometric models for visible sur-

face algorithms. Communications of the ACM, 19(10):547–554,

1976.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.

Introduction to Algorithms. MIT Press/McGraw-Hill, 1990.

[COCSD03] Daniel Cohen-Or, Yiorgos Chrysanthou, Cláudio T. Silva, and

Frédo Durand. A survey of visibility for walkthrough applica-

tions. IEEE Trans. Vis. Comput. Graph., 9(3):412–431, 2003.

[CPK+05] Jatin Chhugani, Budirijanto Purnomo, Shankar Krishnan,

Jonathan Cohen, Suresh Venkatasubramanian, David S. John-

son, and Subodh Kumar. vlod: High-fidelity walkthrough of

large virtual environments. IEEE Trans. Vis. Comput. Graph.,

11(1):35–47, 2005.

[CW02] Cem Cebenoyan and Matthias Wloka. Graphics performance:

Balancing the rendering pipeline. Presented at Game Develop-

ers Conference 02, 2002.

[DHL+06] Wilhelm Dangelmaier, Daniel Huber, Christoph Laroque, Mark

Aufenanger, Matthias Fischer, Jens Krokowski, and Michael

Kortenjan. d3fact insight goes parallel – aggregation of multiple

simulations. In Simulation and Visualization 2006 (SimViS),

pages 79–88. SCS European Publishing House, 2006.

[EGS05] David Eppstein, Michael T. Goodrich, and Jonathan Z. Sun. The

skip quadtree: a simple dynamic data structure for multidimen-

Bibliography 117

sional data. In SCG ’05: Proceedings of the twenty-first annual

symposium on Computational geometry, pages 296–305, New

York, NY, USA, 2005. ACM Press.

[EKSX96] Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu.

A density-based algorithm for discovering clusters in large spa-

tial databases with noise. In Evangelos Simoudis, Jiawei Han,

and Usama Fayyad, editors, Second International Conference on

Knowledge Discovery and Data Mining, pages 226–231, Port-

land, Oregon, 1996. AAAI Press.

[EM99] Carl Erikson and Dinesh Manocha. GAPS: general and auto-

matic polygonal simplification. In Symposium on Interactive 3D

Graphics, pages 79–88, 1999.

[EMWVB01] Carl Erikson, Dinesh Manocha, and III William V. Baxter.

Hlods for faster display of large static and dynamic environ-

ments. In SI3D ’01: Proceedings of the 2001 symposium on

Interactive 3D graphics, pages 111–120, New York, NY, USA,

2001. ACM Press.

[Eri96] Carl Erikson. Polygonal simplification: An overview. Technical

report, Chapel Hill, NC, USA, 1996.

[ESSS01] Jihad El-Sana, Neta Sokolovsky, and Cláudio T. Silva. Integrat-

ing occlusion culling with view-dependent rendering. In VIS

’01: Proceedings of the conference on Visualization ’01, pages

371–378, Washington, DC, USA, 2001. IEEE Computer Society.

[FKN80] Henry Fuchs, Zvi M. Kedem, and Bruce F. Naylor. On visible

surface generation by a priori tree structures. SIGGRAPH Com-

put. Graph., 14(3):124–133, 1980.

[FLH+07] Matthias Fischer, Christoph Laroque, Daniel Huber, Jens

Krokowski, Bengt Mueck, Michael Kortenjan, Mark Aufe-

nanger, and Wilhelm Dangelmaier. Interactive refinement of a

material flow simulation model by comparing multiple simula-

tion runs in one 3d environment. In European Simulation and

Modelling Conference (ESM 2007), pages 499–505. EUROSIS,

October 2007.

118 Bibliography

[FMM+05] Matthias Fischer, Bengt Mueck, Kiran Mahajan, Michael Ko-

rtenjan, Christoph Laroque, and Wilhelm Dangelmaier. Multi-

user support and motion planning of humans and humans

driven vehicles in interactive 3d material flow simulations. In

WSC ’05: Proceedings of the 37th conference on Winter simula-

tion, pages 1921–1930. Winter Simulation Conference, 2005.

[FS93] Thomas A. Funkhouser and Carlo H. Séquin. Adaptive dis-

play algorithm for interactive frame rates during visualization

of complex virtual environments. In ACM SIGGRAPH ’93: Pro-

ceedings of the 20th annual conference on Computer graphics

and interactive techniques, pages 247–254, New York, NY, USA,

1993. ACM Press.

[FTSK96] Thomas Funkhouser, Seth Teller, Carlo Sequin, and Delnaz

Khorramabadi. The UC berkeley system for interactive visu-

alization of large architectural models. Presence, the Journal of

Virtual Reality and Teleoperators, 5(1):13–44, 1996.

[Gar99] M. Garland. Multiresolution modeling: Survey & future op-

portunities. Eurographics ’99 – State of the Art Reports, pages

111–131, 1999.

[GD98] J. P. Grossman and William J. Dally. Point sample rendering.

In 9th Eurographics Workshop on Rendering, pages 181–192,

1998.

[GH97] Michael Garland and Paul S. Heckbert. Surface simplification

using quadric error metrics. In ACM SIGGRAPH ’97: Proceed-

ings of the 24th annual conference on Computer graphics and in-

teractive techniques, pages 209–216, New York, NY, USA, 1997.

ACM Press/Addison-Wesley Publishing Co.

[GKM93] Ned Green, Michael Kass, and Gavin Miller. Hierarchical z-

buffer visibility. In Computer Graphics Procieedings, Annual

Conference Series, pages 231–238, August 1993.

[GM05] Enrico Gobbetti and Fabio Marton. Far voxels: a multireso-

lution framework for interactive rendering of huge complex 3d

models on commodity graphics platforms. In SIGGRAPH ’05:

ACM SIGGRAPH 2005 Papers, pages 878–885, New York, NY,

USA, 2005. ACM.

Bibliography 119

[GS02] Michael Garland and Eric Shaffer. A multiphase approach to ef-

ficient surface simplification. In VIS ’02: Proceedings of the con-

ference on Visualization ’02, pages 117–124, Washington, DC,

USA, 2002. IEEE Computer Society.

[Hop96] Hugues Hoppe. Progressive meshes. Computer Graphics,

30(Annual Conference Series):99–108, 1996.

[KKF+02] Jan Klein, Jens Krokowski, Matthias Fischer, Michael Wand,

Rolf Wanka, and Friedhelm Meyer auf der Heide. The random-

ized sample tree: a data structure for interactive walkthroughs

in externally stored virtual environments. In VRST ’02: Pro-

ceedings of the ACM symposium on Virtual reality software and

technology, pages 137–146, New York, NY, USA, 2002. ACM

Press.

[Knu98] Donald E. Knuth. The art of computer programming, volume

3: (2nd ed.) sorting and searching. Addison Wesley Longman

Publishing Co., Inc., Redwood City, CA, USA, 1998.

[KS00] J. T. Klosowski and C. T. Silva. The prioritized-layered projec-

tion algorithm for visible set estimation. IEEE Transactions on

Visualization and Computer Graphics, 6(2):108–123, /2000.

[KS01] James T. Klosowski and Cláudio T. Silva. Efficient conserva-

tive visibility culling using the prioritized-layered projection al-

gorithm. IEEE Transactions on Visualization and Computer

Graphics, 7(4):365–379, 2001.

[KS06] Michael Kortenjan and Gunnar Schomaker. Size equiva-

lent cluster trees – realtime rendering of large industrial

scenes. In 4th International Conference on Virtual Reality, Com-

puter Graphics, Visualization and Interaction (Afrigraph 2006).

African Graphics Association (AFRIGRAPH), 25. - 27. January

2006.

[KV07] Michael Kortenjan and Mario Vodisek. A note on throwing repli-

cated balls into bins. Technical Report tr-ri-06-278, Heinz Nix-

dorf Institut, 2007.

[LRC+03] D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson, and

R. Huebner. Level of Detail for 3D Graphics. Morgan Kaufmann,

120 Bibliography

2003.

[Lue97] David Luebke. A survey of polygonal simplification algorithms.

Technical Report TR97-045, 16, 1997.

[LW85] Marc Levoy and Turner Whitted. The use of points as a display

primitive. Technical Report TR 85-022, University of North Car-

olina at Chapel Hill, 1985.

[Mat94] Jiri Matousek. Geometric range searching. ACM Computing

Surveys, 26(4):421–461, 1994.

[MDL+04] Bengt Mueck, Wilhelm Dangelmaier, Christoph Laroque,

Matthias Fischer, and Michael Kortenjan. Guidance of users

in interactive 3d-visualisations of material flow simulations. In

Thomas Schulz, Stefan Schlechtweg, and Volkmar Hinz, edi-

tors, Simulation and Visualisation 2004, pages 73–83, Magde-

burg, 4 - 5 March 2004. SCS European Publishing House.

[MLD+05] Kiran Mahajan, Christoph Laroque, Wilhelm Dangelmaier,

Christian Soltenborn, Michael Kortenjan, and Daniel Kuntze.

d3fact insight: A motion planning algorithm for material flow

simulations in virtual environments. In Thomas Schulze, Gra-

ham Horton, Bernhard Preim, and Stefan Schlechtweg, editors,

Simulation and Visualization 2005 (SimViS), volume 1, pages

115–126. SCS European Publishing House, 3 - 4 March 2005.

[PS97] E. Puppo and R. Scopigno. Simplification, lod and multireso-

lution - principles and applications. Eurographics ’97 Tutorial

Notes, 1997.

[PZvBG00] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and

Markus Gross. Surfels: Surface elements as rendering primi-

tives. In Kurt Akeley, editor, ACM SIGGRAPH 2000, Computer

Graphics Proceedings, pages 335–342. ACM Press / ACM SIG-

GRAPH / Addison Wesley Longman, 2000.

[RH94] John Rohlf and James Helman. Iris performer: a high perfor-

mance multiprocessing toolkit for real-time 3d graphics. In SIG-

GRAPH ’94: Proceedings of the 21st annual conference on Com-

puter graphics and interactive techniques, pages 381–394, New

York, NY, USA, 1994. ACM.

Bibliography 121

[RL00] Szymon Rusinkiewicz and Marc Levoy. QSplat: A multiresolu-

tion point rendering system for large meshes. In sg00, pages

343–352, 2000.

[Ros04] Jarek Rossignac. Surface simplification and 3D geometry com-

pression, chapter 54, pages 1–32. CRC Press, 2004.

[Sed92] Robert Sedgewick. Algorithms in C++. Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA, 1992.

[TS91] Seth J. Teller and Carlo H. Séquin. Visibility preprocessing

for interactive walkthroughs. Computer Graphics, 25(4):61–68,

1991.

[WFP+01] Michael Wand, Matthias Fischer, Ingmar Peter, Fried-

helm Meyer auf der Heide, and Wolfgang Straßer. The random-

ized z-buffer algorithm: Interactive rendering of highly complex

scenes. In Eugene Fiume, editor, ACM SIGGRAPH 2001, Com-

puter Graphics Proceedings, pages 361–370. ACM Press / ACM

SIGGRAPH, 2001.

[XW05] Rui Xu and II Wunsch. Survey of clustering algorithms. Neural

Networks, IEEE Transactions on, 16(3):645–678, 2005.

[ZGP00] Matthias Zwicker, Markus H. Gross, and Hanspeter Pfister. A

survey and classification of real time rendering methods. Tech-

nical Report 2000-09, Mitsubishi Electric Research Laborato-

ries, Cambridge Research Center, March 2000.

[ZMHH97] Hansong Zhang, Dinesh Manocha, Thomas Hudson, and Ken-

neth E. Hoff III. Visibility culling using hierarchical occlusion

maps. Computer Graphics, 31(Annual Conference Series):77–

88, 1997.

