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1 Einleitung

Inhaltlicher Uberblick . Diese Arbeit dokumentiert den Entwurf und die Bmsae einer leistungé-
higen und zugleich skaliearen, ressourceneffizienten C-Multiprozessor(CMF-Architektur, der
GigaNetIC-Architektur, siehébbildung 1-1. Das GigaNoC ist die zu Grunde liede hierarchi-
sche On-Chip-Kommmuikationsinfrastruktur, die es durch ihre Modula@riind Skalierbarkeitr-
laubt, die Entwurfgroduktivitatilicke starker zu schlie3en, als es bisher moglien Wie Eit-
wurfsproduktivitatslicke bezeichnet die Problem dass aufgrund der immer gré3er werder
Integrationsdichte auf zukinftin Halbleiterbausteinemehr Funktionalitduntergebracht werden
kann, als irder zur Verfigung stehenc Zeit durch Entwicklerteams konstruktiv neu erzewgr-

den kann.
ce @
(Giga Netlc

Leistung:

—

Infineon Ressourceneffizienz

Abbildung 1-1: Netzwerktechnik der ndchsten Generatior- Architektur des
massiv parallelen Netzwerkprozessors aus Paderborantergebracht auf dem 20stel der Flache eines Ces

Motivation. Das Konzept des v nunmehr fast 50 Jahremtworfenen integrierten Schaltkreis
sowie die fortwahrenden, dewor mehr als 40 Jahren aufgestellterodkeschen Gesetz gehor-
chendenverbesserungen in der Halbleitertechnologie erlatmmer komplexere undeistungsfa-
higere Schaltungen. Die vonddREe aufgestellte Regel besagt, dass siiehAnzahl der zu intece-
renden Transistoren undrda die Komplexitat integrierter Schaltkreise all@ bis 24 Monate -
doppeln. Abbildung 1-Zeigt die Entwicklung von Speicl- und Prozess-Modulen MPU) in
GBits bzw. in Logiktransistoren pro Chip auf unceilagert die prognostizierte Entwicklung neé
MOORE[1].

Glaubt man den Prognosen deternational Semiconductor Roadn (ITRS) [2], die von fuhren-
den Halbleiterherstellern aus der gesamten Wefassrwid, so wird sich di prognostizierte Ent-
wicklung nach MoRrREauch in den nachsten Jahren fortse (vgl. Abbildung1-2). Dies schafft die
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2 Kapitel 1. Einleitung

Voraussetzungen fur héchst komplexe Systeme, dieinan Chip integriert werden konnefys-
tem-on-Chip/ SoQ. Nunmehr gilt es, diese technologischen Mdglidtake sinnvoll einzusetzen
und weiterhin beherrschbar zu halten, denn langststeigt die Anzahl der integrierbaren Transis-
toren die Leistungsfahigkeit vieler Schaltungsemfswerkzeuge. In diesem Zusammenhang
spricht man auch, wie eingangs erwahnt, von einéwtfsproduktivitatsliickelesign Productivi-

ty Gap. Auch wenn die Bestandigkeit desolReschen Gesetzes noch fur die nahe Zukunft prok-
lamiert wird, stol3t man in einigen Gebieten schetatjan Grenzen. So wird die bis heute stetige
Erh6hung der Taktfrequenz nicht mehr allein aubezi¢c um die Leistungsfahigkeit von Prozesso-
ren und Systemen angemessen zu erhdhen [3]. Vielgatten die etablierten Hersteller, wie z. B.
Intel, AMD, Sun oder IBM, bereits von allgemein wendbaren ProzessoreGdneral Purpose
CPUS9 zu einer Integration mehrerer Rechenkerne awhei@hip Gber [4][5]. Die ITRS prognosti-
ziert nach einem Modell delapan Semiconductor Technology Roadmap Design Wp&roup
einen 1000mal groRReren Bedarf an Rechenleistungddnsumer“-SoCs als auch ,High Perfor-
mance“-SoCs in zehn Jahren, bei nahezu gleicheordefungen an die Leistungsaufnahme [2].
Auch hier geht man davon aus, dass die Losungrallpien Architekturen mit einer Vielzahl von
integrierten Verarbeitungseinheiten liegt.

1 1

1.E+03 [E I I -A- Flash Bits / Chip [GBIt]
- Industrieller Single-Level-Cell (SLC)
B Durchschnitt des
| ,Mooreschen Gesetzes" -
1.E+02 = zwischen 1970 und 2020: / - Flash Bits / Chip [GBit]
- Verdopplung der A== Multi-Level-Cell (MLC)
I Funktionen / Chip, - A A <)&
- alle 2 Jahre = /- o
g_'g‘ 1.E+01 < — e m MPU GTransistoren / Chip
S5 N7 > =g High-Performance (HP)
- [ ]
<z /_MW%
&= N =T
= Y 1.E+00 = a=e > 7 = MPU GTransistoren / Chip
= > o A
3 a -ﬁttllﬁ = Z/ Cost-Performance (CP)
ce i ﬁ. LIS 54
1.E-01 ) ; ¢ DRAM-Bits / Chip [GBi(]
i Durchschnittliches
1.E-02 — .Mooresches Gesetz"
v bez. auf die Industrie
/695 2000 2005 2010 2015 2020

Jahr der Produktion

Abbildung 1-2: Produkt-Technologie-Trends — Funktimen pro Chip [2]

Durch Parallelitat kbnnen in Abhéngigkeit von demwendung die derzeitigen technischen Gren-
zen der Leistungsfahigkeit erweitert werden. Eiitever wesentlicher Aspekt der Verwendung von
parallelen Einheiten ist die Moglichkeit der Redoktbzw. Begrenzung der Leistungsaufnahme.
Dies ist speziell fur zukinftige eingebettete Systevon groRer Bedeutung, da diese mehr und
mehr Einsatz in mobilen Bereichen finden, bei desierEnergieressourcen beschrankt sind. In die-
sem Zusammenhang steht auch die besondere Bedalguigessourceneffizienz fur diese Arbeit.
Das heil3t, die zu entwerfende Architektur solingeh Schwerpunkt der Systemspezifikation, unter
Bertcksichtigung einer Kostenfunktion eine bestnobg Losung bezuglich der betrachteten Kos-
tenmalie Flache, Leistungsaufnahme, Rechenleistth§lexibilitat darstellen (vgl. Abschnitt 3.1).
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Einbettung. Durch die thematische Einbettung dieser Disgertah das BMBF-Projekt GigaNetIC
[6][7][8], profitiert das hier vorgeschlagene Artdkturkonzept bereits im frihen Entwurfsstadium
von der engen interdisziplindren Arbeitsweise dexi theteiligten Projektpartner der Universitat
Paderborn und Infineon Technologies, Minchen. Dipefgise der drei Paderborner Fachgebiete
liegt u. a. in der Entwicklung hochintegrierter 8ltkreise (Fachgebiet Prof. Dr.-Ing. Ulrich Rick-
ert, Schaltungstechnik), in der Konzeption von Paogmiersprachen und Ubersetzern (Fachgebiet
Prof. Dr. Uwe Kastens, Programmiersprachen und $étteer) sowie in der Entwicklung, Analyse
und Implementierung von Kommunikationsalgorithmeéradhgebiet Prof. Dr. math. Friedhelm
Meyer auf der Heide, Algorithmen und Komplexité#uf diese Weise kann bei der Konzeption der
Systemarchitektur ein ganzheitlicher Ansatz vetfolgrden, der sowohl schaltungstechnische
Entwurfskriterien bertcksichtigt als auch compilemsnd algorithmenbedingte Entwurfsent-
scheidungen im Wechselspiel miteinander vereint.

= a\wr\gstechnik eip
S

Abbildung 1-3: Die Kernpunkte dieser Arbeit

Die wesentlichen Beitrage dieser Arbeit (vgl. Adiihg 1-3) zur ressourceneffizienten Schaltungs-
technik eingebetteter Parallelrechner sind:

» der Systementwurf eines massiv parallelen, skalrerb SoC, basierend auf einem hierar-
chischen On-Chip-Netzwerk

» eine Werkzeugkette, die einen hierarchisch gerieht®ptimierungsansatz fir SoCs unters-
tatzt

» die prototypische Realisierung des Gesamtsysterss Sainulationsmodell sowie als
FPGA(Field Programmable Gate Arrayund Standardzellenimplementierung in 130-nm-
und 90-nm-CMOS-Technologie

» Analyse und Definition von Benchmarks sowie diest@ngsbewertung des entworfenen
Systems fir ausgewdahlte Anwendungsszenarien.

Gliederung. Kapitel 2 gibt einen Uberblick Uiber eingebettpteallele Rechnerarchitekturen und
die wesentlichen Komponenten dieser SoCs. Typigeiveendungsgebiete von On-Chip-Parallel-
rechnern werden aufgezeigt und vermitteln eineteer&inblick in die Anforderungen, die an diese
Systeme gestellt werden.

Definitionen, Bewertungsmalde, Kostenfunktionen andlytische Modelle werden in Kapitel 3 zur
Bewertung der Architektur eingefiihrt und im weiteMderlauf dieser Arbeit mit den Syntheseer-
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gebnissen der Hardwareblocke korreliert. Diese Med@&nnen herangezogen werden, um fur zu-
kunftige Technologien und Architekturvarianten inorféld der Realisierung erste Bewertungen
treffen zu kdnnen. Anhand von Kostenfunktionen lgmdann besonders geeignete Realisierungen
dedizierter Anwendungsszenarien leichter ermitidtden. Der Begriff der Ressourceneffizienz
wird hier diskutiert und im schaltungstechnischemtext definiert.

Kapitel 4 zeigt den Aufbau und die Besonderheiten @lgenen Ansatzes fir ein ressourceneffizien-
tes eingebettetes System. Es soll eine flexiblgljestbare Architektur, die auf dem Konzept massi-
ver Parallelverarbeitung basiert, entwickelt werdaelso ein leistungsstarker Parallelrechner auf
einem Chip. Kernkomponenten werden eine Vielzalmhdgener Verarbeitungseinheiten sein, die
Uber ein hoch performantes On-Chip-Netzweddet{(vork-on-Chip/ NoC) miteinander verbunden
sind. Durch die besondere Skalierbarkeit der Syatehitektur kann eine Verwendbarkeit fur viele
Einsatzgebiete erreicht werden. Das modulare, tieiclieiterbare Konzept erlaubt die einfache In-
tegration zusatzlicher Hardwarebeschleuniger urgdkran anwendungsspezifischer Funktionsein-
heiten an verschiedenen, unterschiedlich leist@nggén Schnittstellen im SoC. Besonders geeig-
nete Systemkonfigurationen fur dedizierte Anwendumigonnen durch die in Kapitel 6 vorgestellte
Werkzeugkette komfortabel bestimmt und im SinneRiessourceneffizienz optimiert werden. Der
IP(Intellectual Property-basierte Ansatz hilft, die Entwurfsproduktivitifitske, die bei modernen
Chipentwurfen zunehmend eine Rolle spielt, zu s@dn. So kann in vielen Fallen auf bereits be-
stehende Hardwarebltcke zurtickgegriffen werdenclveetlann leicht mit Hilfe definierter Kapse-
lungen Wrappe) in das SoC integriert werden kdnnen. Die Wiedeveadbarkeit wird erhéht und
der Entwurfsaufwand reduziert sich. Weitere Voetelleser homogenen, skalierbaren Systemarchi-
tektur liegen in dem einheitlichen Programmiermbdet! der vereinfachten Testbarkeit.

Kapitel 5 zeigt die verschiedenen Abstraktionsehen@ fir die Simulation bzw. Emulation des
Systems entworfen werden, auf. Eine zyklenakkuCabasierte Simulation adfrozessor-Cluster
Ebene ermdglicht ein schnelles und komfortablesnfassen der Laufzeiten einzelner Programm-
abschnitte. Die abstraktere Modellierung in Systelert hingegen Aussagen zur Leistung des
Gesamtsystems und ermaoglicht eine frihe Verifizigrader Funktionsfahigkeit der Systemsoft-
ware. Durch Variation wesentlicher Systemparamkdemen aufgrund der hohen Simulationsge-
schwindigkeit schnell Ruckschlisse auf die zu etevalte Performanz der spateren Hardware gezo-
gen werden. Die rechenintensiveRTL(Register Transfer Level Register-Transfer-Ebene)-
Simulation erlaubt letztendlich detaillierte Auseagiber das Verhalten der einzelnen Hardware-
Komponenten. Im Anschluss an die Verifikation aigsér Ebene erfolgt der Test einzelner Blécke
und der Gesamtschaltung auf dem FPGA-basiertendR&pitotyping-System RAPTOR2000
[9][10], das, verglichen mit der RTL- und System{@8lation, eine um Grél3enordnungen schnel-
lere Emulation des Multiprozessorsystems ermdglicid zuséatzlich die Anbindung realer Netz-
werkkomponenten gestattet.

In Kapitel 6 wird eine Methode vorgestellt, die d&ml dient, eine besonders effiziente Architek-
turvariante — im Sinne der Ressourceneffizienzr-efti gegebenes Anwendungsszenario zu erzie-
len. Hierbei kann die homogene Ausgangsarchitekiuch eine Reihe von Mechanismen optimiert
werden. Der Optimierungsansatz ist hierarchisciclggt und sieht u. a. folgende Mal3nahmen vor:
Anpassung und Optimierung der Software, Erweiterdeg) Instruktionssatzes des Prozessors, Hin-
zufigen von Hardwarebeschleunigern sowie Abstimmdeg On-Chip-Kommunikationsinfra-
struktur auf die zu erwartenden Datenraten unddEmson parallel arbeitenden Rechenclustern auf
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einem Chip sowie die Optimierung der Speicherhatmarim Hinblick auf die spatere Anwendung.
Exemplarisch wird die in Kapitel 3 vorgestellte Metle anhand von 16 Realisierungsvarianten
eines einfachen selbst entworfenen Netzwerkprorestemonstriert. Mit Hilfe der Kostenfunkti-
ons-basierten Analyse wird fur unterschiedliche Andungsszenarien die eine moglichst pareto-
optimale und damit ressourceneffiziente Losung eethi

Kapitel 7 greift die bisherigen Ergebnisse auf wehdet sie auf konkrete Kommunikations- und
Netzwerkanwendungen an. Hierzu werden sowohl etablBenchmarks verwendet als auch neue
Benchmarks definiert. Besondere Beriicksichtigunden hier Funktionen aus dem stark wachsen-
den DSL(Digital Subscriber LingSegment.DSL-Access-Multiplexe(DSLAMg realisieren die
schnelle Datennetzanbindung der DSL-Endkunden.digése Netzwerkknoten, die eine Vielzahl
von Datenstromen aggregieren und zum Internetdianbieter Ioternet-Service-Providef ISP)
weiterleiten und umgekehrt, wird ein spezifischemBhmark entworfen und auf der GigaNetIC-
Architektur evaluiert. Netzwerksimulationen soll&afschluss tber die zu wahlende Topologie und
den internen Aufbau des On-Chip-Netzwerks liefend so einen maximalen Durchsatz und damit
einhergehend eine maoglichst optimale Lastverteilanfjdie einzelnen Verarbeitungseinheiten ga-
rantieren. Es werden Instruktionssatzerweiterungehspezifische Hardwarebeschleuniger vorges-
tellt, die in dieser Arbeit entstanden sind. Exeanipth werden die Funktionsweise und die Integra-
tion eines Hardwarebeschleunigers zur Paketvetarigedetaillierter beschrieben.

Gegenstand von Kapitel 8 sind prototypische Realisigen der GigaNetlC-Architektur. Das in

Kapitel 7 untersuchte Netzwerkszenario wird als BHRalisierung in einer realen Netzwerkum-
gebung in Betrieb genommen und dient zur Veranginaung und Verifikation des Systemkon-

zepts. Auf Basis der erfolgreichen Realisierungdeardann Implementierungen fir komplexere
Systeme in 130-nm- und 90-nm-CMOS-Standardzelléni@ogie vorgestellt. Abbildung 1-1 ver-

deutlicht das in dieser Arbeit vorgestellte Konzepd die Anforderungen an die Realisierung. Wei-
tere Bewertungen der Architektur im Hinblick aukdressourceneffizienz schlielRen die prakti-
schen Betrachtungen der GigaNetIC-Chip-Multiproaem<shitektur ab.

Zusammenfassend soll die hier zu entwerfende Gidg@Nerchitektur als Basis fur weitere CMP-
Varianten dienen und ein neues Paradigma der Praagshitektur aufzeigen, das besonders durch
Modularitat, Skalierbarkeit und Ressourceneffizisowie einen ganzheitlichen Ansatz hervorsticht
und prototypisch verifiziert wird.






2 Eingebettete parallele Rechnerarchitekturen

Bereits 2004 zeichnete sich deutlich ein Umdenketieir Prozessorindustrie hinsichtlich paralleler
Strukturen ab. Der Ende 2004 verdffentlichte Micomessor-Report-Artikel ,Intel Cancels 4 GHz
P4“ [3] sah die Abkiindigung der Desktop-CPU mit Hisr dahin hochsten Taktfrequenz als Uber-
raschung an. Tatsachlich ist ein serienmalliger 4-Béhtium bis heute nicht zu erwerben. Letz-
tendlich erkannte man das kontinuierliche SteigEnnTaktfrequenz als unzureichende Mal3nhahme,
und nicht nur Intel wurde gezwungen die Prozessmadmameu zu Uberdenken, was nicht zuletzt
in der Entwicklung der Dual-Cores, der heutigenezArchitektur resultierte.

Trotz aller Hindernisse bei manchen Anwendungssmamast selbst bei den namhaften Desktop-
und Server-CPU-Herstellern wie Intel und AMD deefid zu Dual-, Quad- oder gar Multi-Cores
zu verzeichnen. Fur Prozessoren mit noch mehr Kemede bei Intel der Name ,Many-Cores*
etabliert, um sich von den heutigen ,Multi-Coresit ginigen wenigen Prozessorkernen noch star-
ker abgrenzen zu kdénnen (vgl. Abschnitt 2.8.1).hNiaur Intel plant, Architekturen zu bauen, die
weit mehr als nur eine CPU auf einem Siliziumchgremen. Eines der jingsten Beispiele fur sol-
che ,Mehrkern-Prozessoren” ist der Cell-Prozessor BM, Sony und Toshiba, der u. a. in der
Playstation 3 eingesetzt wird. Er wurde ab Marz1266t einem Budget von tber 400 Mio. US$
von einem 400 Personen umfassenden Team entwjikeltDer Cell-Prozessor integriert acht mit
3,2 GHz getaktete Recheneinheiten auf eifal. Die ungefahre Leistungsaufnahme dieses Sys-
tems liegt deshalb auch deutlich Gber 100 W [12¢. @ermanente Erhdhung der Taktfrequenz, die
eine Verringerung der Betriebsspannung nur schetedrmaoglicht, fuhrt wie in Abschnitt 3.1 be-
schrieben, zu einer immensen Leistungsaufnahm€@els, die u. a. zu hohen Kosten fir Gehause
und Kuhlung fihrt. Anders kann sich dies bei patait Architekturen gestalten. Hier lasst sich die
Versorgungsspannung aufgrund der geringeren Fregietlich reduzieren. Aufgrund des quadra-
tischen Anteils der Versorgungsspannung an derrdigthen Verlustleistung fuhrt dies zu einer
drastischen Reduktion der Leistungsaufnahme de®i@gsvgl. Gleichung (3.18). Weiterhin lasst
sich die Performanz einer Prozessorarchitekturrdital3nahmen wie Architekturoptimierung und
Integration von Hardwarebeschleunigern deutlichbleem. Gleichzeitig kann eine Reduktion der
Leistungsaufnahme verzeichnet werden (vgl. Kaijel2007 betrug in den USA der Anteil von
Computersystemen und Peripherie am Gesamtenergidébadhr als 15% [13]. Derzeit benétigen
die Betreiber der funf gréfiten Suchmaschinen cai Millionen Server, die ungefahr 2,4 GW
Leistung aufnehmen [13]. Mit permanent wachsendgve3zahl wird in Zukunft der Bedarf stei-
gen, grol3e Serversysteme auf energieeffizienteallBlaystemen zu virtualisieren.

Auch AMD hat eine solche Architekturerweiterung flie zuktnftigen Chip-Generationen ange-
kundigt, bei der nicht nur homogene Mehrkernprozess sondern auch anwendungsspezifische
Hardwarebeschleuniger integriert werden sollen. Asicht hier von der ,Accelerated Proces-
sing Era“, die ab 2009 mehr und mehr an Bedeut@wgrmen werde. Diese Konstellation von so-
wohl homogenen, massiv-parallelen Rechenkernerawats beliebig integrierbaren Hardwarebe-
schleunigern fur verschiedenste Anwendungsgebseteei der GigaNetIC-Architektur bereits rea-

! DerDie bezeichnet den zumeist rechteckigen Halbleitekoéier integrierten Schaltung.

7
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lisiert und erfolgreich getestet. Dieses neuar8gstemkonzept wurde bereits 2002 strukturell [14]
und 2003 detailliert [6] von mir vorgestellt. Ahclie Ansatze halten nun zunehmend weltweit Ein-
zug in Prozessorarchitekturen der ndchsten Gearrdabei ist aulerdem zu berticksichtigen, dass
zu der Architektur eines Systems nicht nur deraédfbau der Hardware zahlt, sondern auch die
Einbettung in ein funktionales Programmiermodelds zusammen mit den Fachgebieten ,Prog-
rammiersprachen und Ubersetzer”, Prof. Uwe Kastems,Algorithmen und Komplexitat®, Prof.
Friedhelm Meyer auf der Heide, der Universitat Pade fir die GigaNetlC-Architektur erfolg-
reich entworfen wurde.

2.1 Leistungsabschatzungen und Prognosen fir CMPs

Der folgende Abschnitt dokumentiert einige etabdehbschatzungen bzw. postulierte Gesetzma-
Rigkeiten fur Parallelrechner. Abschliel3end wirdl Rtognosen zur Entwicklung von Mehrprozes-
sorsystemen und die damit verbundenen Herausfarderueingegangen.

2.1.1 AMDAHL s Gesetz — eine asymptotische Barriere fur Parallechner?

Beschleunigung S

sequentieller Anteil o ' 0 Anzahl der Prozessoren P

Abbildung 2-1: Anwendungsbeschleunigung durch Ausntizung inharenter Parallelitat
nach dem Gesetz von MDAHL

Eine etablierte, wenn auch sehr vereinfachte Aligang zur Leistungssteigerung durch Parallelitat
liefert das AMDAHL sche Gesetz [15]. Es besagt, dass Anwendungen daralele Ausfiihrung nur
zu dem Grad beschleunigt werden kénnen, wie esrtiealtene Parallelitat des sequentiellen An-
wendungsprogramms zulésst:

_ 1 . 1
S(Fa—ml_;,:»ggwe’sa @)
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Skennzeichnet hierbei dé®peedupalso die Beschleunigung der Anwendung bei deweéadung
von P parallel arbeitenden Verarbeitungseinheiten. Datter mit 0<a <1 als sequentieller An-
teil des Programms zu sehen.

Abbildung 2-1 zeigt die mdgliche Beschleuniguhgines Programms durch parallele Verarbeitung

in Abhangigkeit von der Anzahl der ProzessoRenind dem sequentiellen Antedt des Prog-
ramms. Es ist deutlich zu sehen, dass bereitg al®,1 eine drastische Reduktion der Beschleuni-

gung einsetzt. Die maximal erreichbare Beschleurggbei einem sequentiellen Anteil von 1 %
nahert sich asymptotisch dem Faktor 100. Bei 10®4d3soren liegt sie bei 91,18.

Gleichung (2.1) ergibt eine begrenzte, asymptotisataufende Beschleunigung durch Parallelitat
fur Anwendungen mit einem Ublicherweise nicht vottkmen vernachléassigbaren sequentiellen
Anteil. Anwendungsklassen, deren Problemgrol3e hegekalierbar ist, wie z. B. bei den in Kapi-
tel 7 betrachteten Netzwerkszenarien, erforderei@ifiodelle.

2.1.2 GUSTAFSONs Gesetz — ein Ausweg fur die Parallelwelt?

Das bereits 1967 vonMDAHL postulierte Gesetz wurde 1988 vonsgarsoNaufgrund praktischer
Beobachtungen an einem Parallelrechnersystem n2# Hrozessoren modifiziert und ging als
GUSTAFSONSGesetz in die Literatur [16] ein.

1000 -
800
600

400

Beschleunigung S

200

1000

0.4

Anzahl der Prozessoren P 0 ' sequentieller Anteil a

Abbildung 2-2: Beschleunigung durch Parallelitat n@h dem Gesetz von GSTAFSON

GusTAFsONbeobachtete fir Anwendungsklassen, deren Probt#segkalierbar war eine deutliche
Beschleunigung durch den Einsatz von zusatzlichemeRsoren. Dies bedeutete eine Modifikation
der Randbedingungen vormBAHLS Gesetz. Er wies darauf hin, dasgDAHLS Gesetzmaligkeit
diese wesentliche Komponente vieler AnwendungssiesmaulRer Acht lasst:in practice the
problem size scales with the number of proce$stas bedeutet, dass ein moéglicher Zusammen-
hang zwischen dem parallelen Anteil der Anwendund der Anzahl zur Verfigung stehender
Prozessoren in MIDAHLS Formel (2.1) ignoriert wird, da Amdahl diese Amwendungsklasse
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nicht untersucht hat. @TaAFsoNmacht deutlich, dass man ein Problem mit bekaritdenplexitat
nicht auf einen beliebig grofen Rechnerverbundagest, sondern versuchen wird, komplexere
Probleme durch mehr Parallelitat in endlicher zeititbsen. Dies impliziert, dass eher die Laufzeit
als konstant anzusehen ist als die Problemgrof3e P16 modifizierte Formel hat deshalb die fol-
gende Form:

_ Mehrprozessorsystem
( ) - Einzelprozessor
_ sequentieller Anteil + paralleler AnteilProzessore
- sequentieller Anteil + paralleler Anteil (2.2)
_a+(1l-a)P
Coa+ Q-a)
=a+(1l-a)lP=> inqu( P=c

S

Skaliert

Gleichung (2.2) zeigt fur Anwendungsklassen skiafiegr Problemgrof3en deutlich realistischere
Perspektiven fir parallele Systeme und ihre Legstiahigkeit auf. Abbildung 2-2 stellt, in Abhan-
gigkeit von der Anzahl der Prozessoferund dem sequentiellen Anteit des Programms, den
linearen Verlauf der Beschleunigung naabs@Fsons Gesetz dar.

a) Amdahl b) Gustafson
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Abbildung 2-3: AMDAHL s und GUSTAFSONs Gesetz in Bezug auf Anwendungen mit skalierbaré?Problemgréiie

Die Prognosen beider Ansétze in Bezug auf Anwenelumgit skalierbarer Problemgrof3e und die
sich ergebende Differenz ist in Abbildung 2-3 datght. Eine Missinterpretation desvAAHL-
schen Gesetzes fiur diese Anwendungsklassen wirdeamatischen Fehleinschatzungen fur die
Zukunft paralleler Systeme fuhren. In der Vergamg#inzeigte sich deshalb, eine haufig unbegrin-
dete, Skepsis gegeniber der Leistungsfahigkeitimpagalleler Architekturen.

Ein Manko der Ansatze von sowohMAAHL, als auch von GsTAFSONist die unzureichende Mo-
dellierung des Datenaustauschs zwischen den garalRrozessorelementen, der lediglich mit in
den sequentiellen Anteil der Anwendung eingehemkan

2.1.3 WeiterfUhrende Ansatze

Weitere, tiefer gehende Ansatze zur Bestimmung lB&wertung von massiv-parallelen Rechner-
systemen liefern @.LER [17] mit demLogP-Modell und VALIANT mit demBSRBulk Synchronous
Parallel)-Ansatz [18] (vgl. Abschnitt 4.5.2). Beiden Ansétizist gemein, dass sie versuchen, die
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Lucke zwischen theoretischen Erkenntnissen un@émddlaschinen zu schliel3en. In beiden Model-
len wird auRerdem die Kommunikation zwischen dezenen Knoten beriicksichtigt.

Das LogP-Modell von GLLER wurde speziell fir den praktischen Einsatz auleredultiprozes-
sor-Topologien entworfen. Es geht dabei von eineattiprozessorsystem mit verteiltem Speicher
und einer beliebigen Kommunikationsinfrastrukturt rRunkt-zu-Punkt-Verbindungen beliebiger
Topologie aus. Die wesentlichen Parameter des Niodeld die Latenz als obere Grenze fir die
Zeitspanne der Ubertragung einer Nachricht wenigérter vom Sender zum Empfanger umdls
Overheadoder Verwaltungsaufwand, mit dem ein Prozessav akit der Ubertragung beschaftigt
ist, wahrend der er keine anderen Aufgaben erledigan.g definiert die LickeGap zwischen
zwei aufeinander folgenden Ubertragungen bzw. Engsfeorgangen eines Prozessors. Der rezip-
roke Wert vong entspricht der Ubertragungsbandbrdtedie den einzelnen Prozessoren zur Ver-
fligung stehtP beziffert die Anzahl der Prozessor-Speicher-Koratomen. Aufgrund der als end-
lich angenommenen Kapazitat der Ubertragungskaevgit sich die Anzahl der zeitgleich tber-

: L o .
tragbaren Nachrichten z{uﬂ L, o undg werden in Vielfachen eines Prozessortaktes angegeb

Das Modell ist auch auf ,Shared Memory*“-Architeldnranwendbar, wobei dann fur die Kommu-
nikation zum Speicher hin und zuriick ein Wert \2In+ 40 angesetzt wird. Fir eine gegebene Zeit
T und feste Werte fiic, o, g undP kann dann eine effiziente Verteilung der Aufgabehdie Pro-
zessoren, ,Computation Schedule®, und ein Zeitfilardie Nachrichtentubertragung, ,Communica-
tion Schedule”, aufgestellt werden. BSP als auapALsind geeignete Modelle, um sowohl Compu-
ternetzwerke im Allgemeinen als auch On-Chip-Netkeebeziglich ihrer Leistungsfahigkeit zu
charakterisieren.

2.1.4 Trends bei parallelen eingebetteten Systemen

Aufgrund der Anforderungen der von mir betrachtetewendungsszenarien, die eine vonss
TAFSON beschriebene Parallelitat enthalten und nicht, dei® AMDAHLSsche Gesetz (2.1) vermuten
lie3e, nur wenige Verarbeitungseinheiten ausnukemen, werden mehr und mehr Prozessorele-
mente (PE) auf heutigen und zukinftigen Halblededteinen integriert. Diese stetige Zunahme
wird ebenfalls in detnternational Technology Roadmap for SemiconductiesSemiconductor
Industry Associatiofi2] prognostiziert (vgl. Abbildung 2-4). Demzuf@gst ein rapider Anstieg der
realisierbaren Anzahl von Verarbeitungseinheiteineauem Chip bis zum Jahre 2020 zu erwarten:
von gegenwartig um die 20 Verarbeitungseinheitenzioi Gber 870 bei einer konstant bleibenden
Chipgrof3e von 64 mm? in weiteren 15 Jahren. Digspeicht einem mehr als 40-fachen Zuwachs
bis zum Ende der nachsten Dekade.

AulRerdem zeichnet sich der Trend ab, dass die Gté8@ntegrierten Speichers eines SoCs starker
zunimmt als die GroRRe fur Logikblocke. Dies ist deeum mit der bereits erwahnten Entwurfspro-
duktivitatslicke und der Wiederverwendbarkeit voardivareblocken zu erklaren. So lasst sich
Speicher leichter wiederverwenden als Logikbloake, bei einer Wiederverwendung immer noch
einen gewissen Entwurfsaufwand zur Integration bgen. Bis zu 50 % des normalen Entwurfs-
aufwandes fiur Logikblocke entstehen u. a. durclktionale Erweiterung und den Aufwand fur die
physikalische Implementierung. Um die Mdglichkejtdie neue Technologien bieten, ausschdpfen
zu konnen, wird aufgrund der effizienten Nutzungghatikeiten mehr und mehr der zur Verfi-
gung stehenden Flache mit Speicher ausgefillt. N2jckind allerdings insbesondere im Bereich
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der Logikblocke zusatzliche Anstrengungen erfordeylum die Entwurfsproduktivitat in diesem
Bereich zu steigern. Das kann durch Instanziiexam bvekannten Verarbeitungseinheiten erfolgen,
die im Sinne von Dokumentation, Testbarkeit undifizerung gut erfasst sind. Dies erfordert
dann jedoch eine leistungsfahige Kommunikationastfuktur auf dem Chip, um die wiederver-
wendeten Einheiten effizient einsetzen zu konnah¢sAbschnitt 4.2). AuRerdem werden ,High-
Level“-Modellierungsansatze auf abstrakterer Ebeane,sie durch SystemC-Beschreibungen mag-
lich sind, unabdingbar, denn sie erlauben einelidbat Steigerung der Entwurfsproduktivitat [2].
Fur das gesamte GigaNetlC-System wurde bereitsseilcee Modellierung erstellt, von der bereits
viele Bereiche der Soft- und Hardwareverifizierwogvie -planung profitieren (vgl. Abschnitt 5.2).
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Abbildung 2-4: System-on-Chip-Entwurfskomplexitatstends [2]

Ein weiterer wesentlicher Ansatz zur Steigerungktgwurfsproduktivitat liegt nach [2] u. a. in der
Verbesserung der Entwurfsautomatismen und der danitundenen Entwurfswerkzeuge, die flr
die GigaNetIC-Architektur in den Kapiteln 5 und Gséihrlich beschrieben werden. Die ITRS
prognostiziert eine immense Erh6hung der Recheateggsanforderungen an ,Consumer-
Produkte, und zwar um den Faktor 200 in den nashsfeJahren [2]. Die potentiellen Anwen-
dungsgebiete, die diesen Zuwachs fordern, werdébgchnitt 2.6 kurz vorgestellt.

CULLER und SNGH [19] veranschaulichen in einer pyramidenférmigeristellung die Marktanteile
fur Prozessorsysteme (vgl. Abbildung 2-5). Ber@R88 gab es weltweit einen Markt fur mehr als
hunderttausend Systeme mit mehr als zehn Prozesslieezumeist in Serveranwendungen Einsatz
gefunden haben. Der Bedarf fur Rechner mit mehil@® Prozessorkernen beschrankte sich auf
wenige Tausend. Fur Systeme mit mehreren 1000 @RlIWder Markt auf einige Dutzend limitiert.
Der grofl3te Marktanteil jedoch wurde von Uniprozessgstemen mit einigen Hundertmillionen
eingenommen.



2.1 Leistungsabschatzungen und Prognosen fir CMPs 13

Die Leistung von Prozessoren verhundertfacht sicierhalb einer Dekade bzw. steigt sogar um
den Faktor 200, wenn LINPACK- bzw. SpecFP-Benchmarkrangezogen werden, wobei die
Taktfrequenz von Prozessoren um den Faktor 10%wd Dekade gesteigert wird [19]. Dies geht
einher mit einer Verhundertfachung der Speicherkiégiavon DRAM innerhalb dieser Zeitspanne
[19]. All diese Verbesserungen werden nicht zulelizich die Erhéhung der Transistorzahl pro
Chip um den Faktor 30 innerhalb von zehn Jahrerdglioht. Ich halte es fur sehr wahrscheinlich,
dass Multicore-Systeme schon bald den Markt bettegrswerden. Sie halten schon jetzt Einzug in
Desktop PCs und Notebooks, so dass eine VerschlgabuRichtung einer kegelférmigen Pyrami-
denstruktur zu erwarten ist, und Mehrkernprozegsteme den grof3ten Marktanteil der Prozesso-
ren einnehmen werden. Unbertcksichtigt sind hienoeh die zahllosen eingebetteten Systeme z.
B. in Mobiltelefonen oder PDAg$¢ersonal Digital Assistanfsdie gro3tenteils ebenfalls schon heu-
te Uber mehrere Prozessoren verfigen und derenuedein Zukunft deutlich zunehmen wird
(vgl. Abbildung 2-5).
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1 .
mehrere Hundertmillionen
1
Stand 1998, nach Culler und Slngh mehrere Hundertmillionen

Prognose fir die néachste Dekade

Abbildung 2-5: Marktanteile fir Parallelcomputer nach [19] fur 1998 und
eigene Prognose fir die kommende Dekade

Der Weiterentwicklung dieser komplexen Systeme estelb einem gewissen Zeitpunkt mehrere
potentielle Barrieren im Weg:

» Die Ausbreitungsgeschwindigkeit von elektrischegn@len setzt eine untere Grenze fir La-
tenzzeiten. Aufgrund der Begrenzung durch die lgebthwindigkeit kbnnen Signale in-
nerhalb einer Zeit von 250 ps, dies entsprichtreiraktperiode von 4 GHz, maximal eine
Distanz von 7,5cm (im Vakuum) dberwinden. DiesererwVist fur On-Chip-
Verbindungsleitungen mit ca. 2€3anzusetzen, also kdnnen im besten Falle 5 cm ineme
Signal auf einem Chip innerhalb dieser Zeit zurigtgt werden.

* Eine weitere Barriere besteht in der immensen uegdaufnahme komplexer, hochgetakte-
ter CMOS-Systeme, die bereits heute schon meht@G%V/cm2 — im Vergleich zu einer
Herdplatte mit 10 W/cm?2 — aufnehmen.

» Die Kosten steigen mit jedem neuen Technologieticlso dass evtl. die Herstellung von
Systemen mit einer Flache des maximal technischhben nicht rentabel ist, und so mas-
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siv parallele Systeme auf einen Chip aus Kosterdgnimicht in der realisierbaren Auspra-
gung gefertigt werden.

* Bei einer zu erwartenden Komplexitdt von mehrereitlidvlen Transistoren auf einem
Chip werden Fehler sowohl beim Design als auchiddre Fertigung immer wahrscheinli-
cher. Werden nicht geeignete Konzepte zur Fehtdnk (vgl. Definition 33) erarbeitet,
und integriert so durfte die geringe Ausbeutéld aus kommerzieller Sicht dem Erfolg
dieser Systeme im Wege stehen.

* Ungenitgende Leistungsreserven der Kommunikatiorstriiktur (vgl. LTTLES Gesetz
[20]) fuhren dazu, dass bei konkurrierenden Zugnifind Transfers die systemimmanente
Latenz, die durch die maximale Ausbreitungsgesctigkeit nach unten begrenzt ist, zu-
satzlich erhght wird.

* Die Weiterentwicklung und Optimierung passendegRammiermodelle fir massiv paralle-
le Systeme und die gezielte Ausbildung der Softesatgickler fir kinftige parallelverar-
beitungstaugliche Anwendungen muss noch starkemgatrieben werden. Dies gilt fur alle
Klassen von Software: Programmiersprachen, Cometriebssysteme und Anwendun-
gen.

Abschlie3end sei hier auf den bis 2007 schnellSigmercomputer der Welt, BlueGene/L von IBM
verwiesen, der auf massiv paralleler Verarbeituaguibt und 2005 in Betrieb genommen wurde
[21]. Er umfasst 65.536 700-MHz-Dual-PowerPC-440f€emit insgesamt 32,8 TByte Hauptspei-
cher. Die einzelnen Knoten sind in einem dreidin@raen Torus miteinander verbunden. Seine
maximale Systemleistung betragt 365 TFlops. Diepgtauwvendungsgebiete liegen im Bereich der
Erforschung biomolekularer Phdnomene, hydrodyndmis¥organge und der Genforschung sowie
der Simulation nuklearer Waffen. Das gesamte Syssenm 64 Schaltschranken mit je 128 Sys-
templatinen auf Gber 230 m? untergebracht und saogh weit von einer Ein-Chip-Losung ent-
fernt. Seine Leistungsaufnahme betragt ca. 1,2 Mid, die durchschnittliche Betriebszeit bis zu
einem Ausfall wird mit etwas mehr als sechs Tageziftert. In den folgenden Abschnitten werden
Techniken und Ansatze aufgezeigt, die es ermdglicherden, derart leistungsfahige Rechensys-
teme in Zukunft auf deutlich weniger Volumen zwemptieren, als es bisher moglich war.

2.2 Kernkomponenten eingebetteter paralleler Rechnerargitekturen

In den folgenden Abschnitten werden wesentlichetd@eheile von eingebetteten Parallelrechnern
bzw. Chip-Multiprozessoren (CMPs) erlautert (vgbbdung 2-6). Hierzu zahlen diéerarbei-
tungseinheiten alsoProzessorersowie Hardwarebeschleuniggeder Art (vgl. Abschnitt 2.4). Die
Art und Anzahl sowie die Verschaltung dieser Eitdmweist stark von der spateren Anwendung ab-
hangig und sollte im Vorfeld durch Simulation undindliche Analyse eruiert werden. Weiterhin
ist derSpeicher(vgl. Abschnitt 2.5) eine bedeutende Komponente @bip-Multiprozessoren, der
je nach System zusatzlich noch hierarchisch strigttuwerden kann bzw. werden sollte. Die
Kommunikationsinfrastruktur des Systems wird duealmOn-Chip-Netzwerk(NoC) gebildet. Die
eigentliche Funktion des Gesamtsystems wird ersthddas Zusammenspiel aller Einzelkomponen-
ten realisiert, wobei zuséatzlich spezifische SofeMazw. Algorithmen bendtigt werden. Zusammen
definieren diese vier Komponenten das System, ogyeketteten Parallelrechner.



2.3 On-Chip-Netzwerke 15

Eingebettete Parallelrechner

Speicher |Algorithmen

Abbildung 2-6: Kernkomponenten eingebetteter Paraklrechner

Im folgenden Abschnitt wird zunachst auf das Ruakgines Chip-Multiprozessors, das On-Chip-
Netzwerk, eingegangen.

2.3 On-Chip-Netzwerke

Mit dem Fortschreiten der Strukturgréf3enminimierumgler Halbleitertechnologie ist es moglich,
Milliarden von Transistoren [2] auf einem Chip zuiegrieren. Dies erlaubt mehr und mehr Funk-
tionalitat auf einem Siliziumtrageb(e). Neue Systemansatze werden ermdglicht, die gapzee-
me auf einenDie realisieren. Man spricht hier von Systems-on-Cli§®C3. Auf einem Baustein
konnen theoretisch Tausende von Modulen, wie Speidferarbeitungseinheiten, Kommunikati-
onsschnittstellen und Mixed-Signal-Elemente, urdbrgcht werden und parallel arbeiten. Solche
SoCs werden schon heute mit einer ,Handvoll* inexter Module gefertigt und eingesetzt. Be-
sonders Multimedia- und Netzwerkanwendungen peséth von den neuen Mdoglichkeiten, die sich
aus der Parallelitdt solcher Bausteine ergeben.

Die Auswahl der richtigen NoC-Topologie hangt ehtsdend von den Anforderungen der Anwen-
dung aber auch von den Randbedingungen des Clgpde@Preis / Flache, Leistungsaufnahme,
erwartete Leistungsfahigkeit und Flexibilitat) aig). Kapitel 3. Dabei ist zu beachten, dass mal3ge-
schneiderte Netzwerke, die speziell auf den entert®urchsatz und spezifizierte Lastverteilung
ausgelegt sind, keine erstrebenswerte Losung wi@ch sie keine Flexibilitdt gegentber unerwarte-
ten Veranderungen des Datenaufkommens vorhaltereidenSoC-Architektur erfolgreich zu reali-
sieren empfiehlt sich ein flexibles und skalierfi@s (vgl. Definition 35) Netzwerk [22].

2.3.1 NoC-Topologien

Eine Hauptanforderung fur eine ressourceneffizidhiézung dieser neuen Mdglichkeiten ist eine
angemessene On-Chip-Kommunikationsinfrastruktuer ithe die einzelnen Module effizient mi-
teinander kommunizieren kdnnen. Heutige Systemeesgiien haufig eine ,flache” Bus-, Multip-
lexer- oder Kreuzschienenverteilerpossbaj-Topologie (vgl. Abbildung 2-7 a). Solche Verbin-
dungsstrukturen eignen sich jedoch nicht fir Striedt mit Dutzenden oder gar Tausenden von
Modulen. Sie bendétigen sehr viel Flache oder weisiee sehr hohe Latenz auf und skalieren
schlecht [23][24]. BANG et al. haben in [25] bereits erste hierarchiscleebWvidungsstrukturen
vorgestellt, die die Kopplung heterogener Elemamt®oC-Strukturen unterstitzen.
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Fur SoC-Kommunikationsstrukturen ergeben sich zostddie gleichen Modelle wie flr verteilte
Multiprozessorsysteme, die if@rid- oderClustercomputingeingesetzt werden. Die Struktur wird
von der verwendeten Topologie und dem zugrundetidgn Graphen gepragt. Beim SoC ist aller-
dings derzeit noch zu bericksichtigen, dass Modetle. Graphen, die sich gut auf zweidimensio-
nale Strukturen abbilden lassen, von den Gegebenhger heutigen Halbleitertechnologie profitie-
ren. Dreidimensionale Ansétze, wie sie haufig irtaiten Computernetzen eingesetzt werden, stel-
len momentan noch nicht befriedigend |0sbare Ardnrdgen an den Aufbau von Siliziumchips.

Nomenklatur. Im Folgenden wird die Notation fiir NoC-Begrifttkeiten, in Anlehnung anADLY
[22], eingeflhrt:

Ein Netzwerk setzt sich awgnotenN" und derKanélen C, die die einzelnen Knoten miteinander
verbinden, zusammen. Datenpakete werden danctknotenN ins Netzwerk injiziert und von die-
sen letztendlich auch terminiert. Hierbei ISt0 N™. Viele Netzwerke besitzen nur Endknoten und
keine Weiterleitungselemente bzRoutingknoten N* = N*\ N. In diesem Fall werden die End-
knoten ebenfalls als Knoten referenziert. JederaKarr (x, y)D C des Netzwerks verbindet einen
Quellknoterx mit einem Zielknotery mit x, yO N 2. Ein Quellknotenwird mit s; und einZielkno-
ten mit d. bezeichnet. EinKante k des Graphen setzt sich somit zusammen aus den ggnad
dem Kanak, x mit X, yON' .

Ein Kanal c = (x, y) wiederum lasst sich durch seikéeitew, , also die Anzahl paralleler Leitun-

gen, seindetriebsfrequen4., also die Rate, mit der Datenbits auf jeder Leajttnansportiert wer-
den konnen, und seinatenzL.. bzw.t. charakterisieren. Die Latenz kennzeichnet diespaiine,
die bendtigt wird, um ein Bit von Knotenzuy zu transportieren (vgl. Definition 16). Sie regarit
im Allgemeinen aus dekanallangel. und der charakteristisch&usbreitungsgeschwindigkei

I , . : . : :
zu t. =—=. Die Bandbreiteb; eines Kanals resultiert aus der Weite und deri@®tfrequenz zu
v

b, =w, f..

Jeder Kommunikationsknotenx hat einen Satz von KandlenC,=C,0G,,. Mit

C, ={c0C|d = %} alsMenge der Eingangskanaleind mit C,, ={c0C|5 = % als Menge der
AusgangskanéleDer Grad eines Knotens ist J, =|CX|, also die Summe aus allen Eingangskana-
len J, =|C,| und Ausgangskanéled,, =|C.,| eines Knotens. Wenn der Grad allefl N" gleich

ist, wird im Folgenden nur vof als Grad gesprochen.

Unter einenSchnitt bzw. einerTeilung C(Ny, Nb) wird die Aufteilung eines Netzwerks in zwei
disjunkte Subnetzwerki; und N, verstanden. Jeder KanaOC( N, N,) hat seine Quelle if;

und Senke i, und umgekehrt. EinBisektion oder auchHalbierung ist wiederum eine Teilung
des gesamten Netzwerks in zwei, wenn moglich, lglgro3e — im Sinne der Anzahl der Knoten —
Subnetze]N,|<|N,|<|N,| +1. Dies gilt sowohl firr die Endknoten als auch fig Routingknoten.

Die Kanalbisektion B¢ eines Netzwerks bezeichnet die minimal aufzufindeKdnalanzahl aller
moglichen Bisektionen des gesamten Netzwddkss min ’]C( N, NZ)‘ Somit ergibt sich didi-

Bisektione|

2 Beim riicklaufigen Kanal kehrt sich die Notatiorisgmechend um, der Quellknotenysindx wird der Zielknoten.
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sektionsbandbreite [26] als minimale Bandbreite aller Bisektionen dé¢etzwerks zu
By = min JB(NuNz)‘- Far Netzwerke mit gleichgearteter Kanalbandbreiteergibt sich

Bisektione|

B; =b[B.. Sie kennzeichnet die minimal verfiigbare Bandbreitischen den resultierenden zwei

Subnetzen, unter Berlcksichtigung aller mdglicheslufgen. Die Bisektionsbandbreite ist ein
natzliches Mafl3, um einerseits die benétigten Ressawer globalen Verdrahtung eines Netzwerks
zu bestimmen und andererseits eine Aussage uUb&wdiallsicherheit bzw. Leistungsfahigkeit des
NoCs treffen zu kénnen. Sie gibt sozusagen derchdsdhals der verfligbaren Bandbreite zwischen
den Knoten zweier Subnetze an.

Als Pfad P mit P={g,c,,...,¢} wird eine geordnete Menge von Kanékehezeichnet, die einen

Quellknotens, = s, mit dem zugehdrigen Zielknoteth, = d,, verbindet. Die Lange eines Pfades,
gleichbedeutend mit der Anzahl atops, ist definiert aIs|P|. Existiert fur alle Quell-Ziel-

Verbindungsmadglichkeiten in einem gegebenen Netzwendestens ein Pfad, unter Beriicksichti-
gung des verwendeten Routingalgorithmus, so bezeicman das Netzwerk alerbunden Ein
minimaler Pfadist gekennzeichnet durch die geringste Anzahlearbtgten Hops bei der Verbin-
dung zweier beliebiger Knoten im Netz. Die Gesartiléer minimalen Pfade wird zR,, gesetzt.
H(x, y)ist die Anzahl an Hops eines minimalen Pfades @vés den Knoter undy. Der Durch-
messeD des Netzwerks ist somit bestimmt durch die maxindadeahl an Hops Uber alle minima-
len Pfade zwischen allen Endknotely,, = g]ygllz(H (x,y) (vgl. [22]). Fur ein komplett verbundenes

Netzwerk mitN Endknoten, die Gber Kopplungselemente mit dem Angggradd, verbunden
sind, ergibt sich somit eine untere Grenze flrndaximale Hopanzahhon H, ., =log,; N. Netz-

werke, die sich dieser unteren Schranke nahern,zwi. Butterfly-Netzwerke, offerieren keine
alternativen Wege, bei ihnen sind die Routen féstgeDies ist bezlglich Ausfallsicherheit und
dynamischer Anpassung an Lastverteilungsvariatiaiergrof3er Nachteil (vgl. [22]). Didurch-
schnittliche minimale Anzahl an Hopgines Netzwerks zwischen allen Quell- und Zielknoist
definiert zu:H :iz > H(xY).

N X, YON
Viele NoC-Implementierungen sehen aul3er den mim~&ifaden zusétzlich noch alternative Rou-
ten vor. Es sind aufgrund von dynamischen Wegeveafdtiren und aufgrund spezifischer Realisie-

rungen Szenarien denkbar, in denen es von Vosdkiminimale Pfade nicht zu wahlen. Fur diese

Netzwerke definiert sich didurchschnittliche HopanzahlH; nicht tber die minimalen Pfade
bzw. die minimale Anzahl von Hop#i sondern Uber die verwendeten Pfade im Netzwerk

H,=2H,,, .

min ?

Die physikalischeistanzeines Pfades wird beschrieben durEi(P) =>I., wobei die Verzége-
caP
D(P)
%
meter, der speziell fur die ASIC-Implementierungh\Bedeutung ist, da sich unterschiedliche Sig-

nallaufzeiten aufgrund variierender Leitungslangegativ auf die Performanz eines On-Chip-
Netzwerks und somit auf das gesamte System auswirke

rung eines Pfades mit( P) = angegeben wird. DiKonstanz der Kantenlangest ein Para-
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Betrachtet man nun die gesamte Ubertragungsstrats@ sowohl den Pfad mit den betreffenden
Kanten als auch die involvierten Knoten, so ergibh eine Gesamtlatenz votj,,,= th+tik
ioP

(2.3), Wobeith die Latenz der benutzten Kanale beziffert UE% die Latenz innerhalb der

ioP i
Routing- bzw. Endknoten darstellt.
Symmetrieist fir ein Netzwerk ein entscheidendes Kriteriudo. ermoglicht eine symmetrische
Struktur alternative Routen fir universelle Lastedungen. Der Wegewabhlalgorithmus muss nicht
auf spezielle Eigenarten der Struktur angepassiemeisondern ist in allen Knoten des Netwerks, je
nach Symmetrieform, relativ identisch anzuwenden.

In der Literatur wird zwischedirekten undindirekten Netzwerkerunterschieden. Ein Netzwerk-
knoten xO N’ kann, wie bereits erwahnt ein Endknotghl N sein, der sowohl Daten versendet
als auch empfangt, oder aber nur, wie im FallessReutingknotensx(J N*, die Daten weiterlei-
tet. Bei einem direkten Netzwerk vereint jeder Kamobeide Eigenschaften in sich: Er fungiert so-
wohl als Endknoten zur Datenverarbeitung als algliRautingknoten zur Datenweiterleitung. Bei
einem indirekten Netzwerk hingegen wird zwischen &&d- und den Weiterleitungsknoten strikt
getrennt. Dies ist z. B. beim Butterfly-Netzwerkr dall (vgl. Abbildung 2-8). Im direkten Netz-
werk findet der Datenverkehr zwischen den Endknotirekt* statt, wohingegen beim indirekten
Netzwerk der Datentransport immer Uber zwischerigdtgte Routingknoten laufen muss. Es gibt
auch hybride Formen, die sowohl direkte als audirekte Subnetzwerke beinhalten. Jedes direkte
Netzwerk lasst sich zudem in ein indirektes tramaferen, indem der Endknoten in Verarbeitungs-
und Weiterleitungseinheit aufgeteilt wird.

NoC-Charakteristika. Tabelle 2-1 gibt einen Uberblick tiber die zuvefinierten Eigenschaften
verschiedener Netztopologien bzw. Graphen fir Cderpatze im Allgemeinen ebenso wie fir
On-Chip-Netzwerke. Die Konstanz der Kantenlangeaidesichtigt die Mdglichkeit einer effizien-
ten Realisierung in Halbleiterbausteinen und dimitd@inhergehende Lange der Verbindungslei-
tungen zwischen zwei Knoten. Skalierfahige dreidisi@nale Topologien sind heutzutage fir ein-
gebettete parallele Rechnerarchitekturen nur auBergeschrankt geeigneh stellt eine Hilfsgro-
Re dar und dient als Berechnungsgrundlage zurrBestng der Knotenanzah', des Durchmes-
sersD, der BisektionsweitBc sowie des Graded der jeweiligen Netztopologie.

Tabelle 2-1: Eigenschaften verschiedener Netztopgien

Anzahl Knoten | Durchmesser Bisektionsweite Grad der Verbindung |Kantenlange konstant

Topologie N D Be 5

2-d Gitter m? 2(m-1) m 4 Ja

2-d Torus m? m-1 2m 4 Nein
3-d Gitter m?® 3(m-1) m? 6 Ja

n-d Gitter m" n(m-1) m"? 2n fiir kleine n

Binarer omq 2(m-1) 1 3 Nein

Hyperbaum 2"(2m1-1) 2m 2mt 6 Nein
Pyramide (4m3-1)/3 2logm 2m 9 Nein

Butterfly (m+1) 2™ 2m 2m 4 Nein
Hypercube m? m 2mt m Nein

Fur eine 2-d-Realisierung auf einem Siliziumchigldizieren sich nach Tabelle 2-1 zunachst das
2-d-Gitter, der Torus, ein bindrer Baum oder didt&tly-Topologie. LielRe man die Forderung
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nach identischen Signallaufzeiten auf demg Line€ auBer Acht, so ware die Bisektionsweite des
Baumes von 1 ein Hinderungsgrund fir die Realisigreiner solchen Topologie. Entweder wirde
zum Hauptknoten ein Kommunikationsflaschenhalstehé, oder es missten, wie z. B. b&at
Tree eine uneinheitliche Anzahl von Leitungen verweanderden. Dies wurde wiederum zu Lasten
der Homogenitat des Schaltungsentwurfs gehen. Byttrukturen bieten zunéchst keine Mog-
lichkeit der Wegewahl. Es gibt jeweils einen fest¥ag zum Ziel. Wirde diese Option zuséatzlich
implementiert, missten zuséatzliche Stufen zu LadenDurchmessers eingebaut werden. Ein wei-
terer Nachteil bei Butterfly-Netzwerken ist, dagssé nicht realisiert werden kénnen, ohne Leitun-
gen zu integrieren, die die Halfte des DurchmesdesdNetzwerks ausmachen [22]. Deshalb eignen
sich solche Strukturen weniger gut fur mittlere gnd3e SoCs. Bei kleineren NoCs wird diese To-
pologie hingegen nicht zuletzt aufgrund des eirdacRoutings haufig eingesetzt. Berlcksichtigt
man den oben erwahnten Punkt gleichlanger Verbigslaitungen zwischen den Knoten, so redu-
ziert sich die Auswahl auf das 2-d Gitter.

Abbildung 2-7 zeigt Varianten einfacher On-Chip-Ne¢rktopologien, die fur sich allein genom-
men nicht oder nur sehr eingeschrénkt skaliereh P&finition 35) und so fur eine gré3ere Anzahl
Teilnehmer nicht effizient einsetzbar sind.

o % 0 %

a) Bus b) Multiplexer c) Stern d) Ring e) Punkt zu Punkt
Abbildung 2-7: Varianten einfacher On-Chip-Netzwerke flr System-On-Chips

Die in Abbildung 2-8 dargestellten Netzstrukturégllen bekannte Topologien implementierter On-
Chip-Netzwerke dar. Abbildung 2-8 a) und b) zeigha fur die Hardwarerealisierung aufgrund
ihrer vorwiegend gleich langen Verbindungen unciilmelativ einfachen Abbildung auf zweidi-
mensionale Strukturen gut geeigneten TopologieteGitnd Torus. Wirfel und Hyperwirfel Ab-
bildung 2-8 c) und d) werden haufiger in konventilben Computernetzen eingesetzt, ebenso wie
Baum- und Butterfly-Topologie.

= W%ee

a) Gitter b) Torus c) Wurfel  d) Hypercube, Dim 4 e) Baum f) Butterfly

Abbildung 2-8: Topologien etablierter On-Chip-Netzwerke fiir System-On-Chips

In Abbildung 2-9 werden hierarchische On-Chip-Netdve dargestellt. Abbildung 2-9 a) zeigt ein
zweistufiges hierarchisches On-Chip-Netzwerk, ded#sergeordnete Hierarchieebene ein regel-
malfiges Gitter bildet. Die an den Gitterknoten aongkssenen Cluster bestehen aus einer variab-
len Anzahl von Modulen, die tGber einen lokalen Bosnmunizieren. Abbildung 2-9 b) hingegen
stellt ein weniger streng strukturiertes, mehrererd&ichiestufen umfassendes On-Chip-Netzwerk
dar, das weitaus komplexer geartet ist als dag\bbddung 2-9 a). Fur besondere Anwendungsge-

% Long Linessind die langen, zumeist intermodularen Verbindieigingen eines Chips und werden vorwiegend auf
den héheren Metalllagen realisiert.
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biete kbnnen solche Spezialldsungen ggf. sehriefizein, allerdings fehlt ihnen evtl. die Flexibi
litat, um sich auch fiur andere Anwendungsklassegrignen. Ferner sind derartige Strukturen der-
zeit mit Standard-Technologien noch nicht effiziegdlisierbar.

: [
\ -
/ ‘ ~ ‘r‘: [
e i ‘
J '
[ : [ #
|
a) Hierarchische Gittertopologie b) Freie, hierarchische NoC-Topologie

Abbildung 2-9:Topologien von hierarchischen On-ChipNetzwerken fiir System-On-Chips

Vorteile hierarchischer On-Chip-Netzwerke. Im Folgenden werden die Vorteile von hierarchi-
schen On-Chip-Netzwerken fur System-on-Chips vdediésund diskutiert. Hierarchische On-
Chip-Netzwerke helfen, die Performanz des Gesanmetsyszu erhéhen. Aufgrund der strukturier-
ten hierarchischen Verbindung der einzelnen Modiel verteilte Routingentscheidungen maog-
lich. Aufgrund dieser skalierbaren Dezentralitatduinassiv parallele Hardware besser unterstuitzt.
Daraus resultieren geringere zeitliche Arbitrierswveyluste verglichen mit zentralen Kommunikati-
onsstrukturen wie z. B. Bussen oder Multiplexers.eEgeben sich geringere Latenzen, und je nach
Realisierung werden weniger Pufferspeicher bendtigt

NoCs koénnen eine starkere Entkopplung der einzeWemarbeitungseinheiten ermdglichen und
erlauben so z. B. unterschiedliche Taktdoméanenlokdl hoheren Taktraten. In diesem Zusam-
menhang spricht man auch héaufig von global asymamplokal synchronerGALS Ansatzen [27]
[28], die einen der Forschungsschwerpunkte im Ne&teBh bilden. Aufgrund der begrenzten
Ausbreitungsgeschwindigkeit und der immer hoheraktrten bei gleichzeitiger Verringerung der
StrukturgréR3en und Reduktion der Versorgungsspanmires mittlerweile bei grol3en SoCs nicht
mehr moglich, Signale innerhalb eines Taktes Ulergesamten Durchmesser des Chips zu trans-
portieren. Gatter-Verzégerungszeiten skalieren deit Technologie, Leitungsverzégerungszeiten
hingegen steigen nahezu exponentiell oder zumirigestr unter Zuhilfenahme vdrRepeaterrj29]

an.

Nach [30][31] und [32] werden tber 80 % der kritisn Pfade ifJLSI(Ultra Large Scale Integra-
tion)-Schaltungen durch Verbindungsleitungen bestinb@shalb missen Systementwirfe auch
Kommunikationsnetze [33] und verteiltes Rechnenbmaiticksichtigen. Hierarchische NoCs helfen
bei der Minimierung der Anzahl vaglobal wires/ long lines also der globalen und damit relativ
langsamen Verbindungsleitungen des Chips. Hierduicth u. a. auch de€lock Skewdie Takt-
Varianz, verringert und eine héhere Signalintegrtd@eicht. Dies wiederum erhdht die Ausfallsi-
cherheit. Zusatzlich kénnen weniger leistungsstaniaberstufen eingesetzt werden, wodurch die
Leistungsaufnahme deutlich reduziert wird.

Durch definierte Schnittstellen des NoCs und digghttikeit der Kapselung von IP-Blocken durch
so genannte ,Wrapper* (vgl. Abbildung 4-19) lassé&ch Hardwarekomponenten einheitlicher in-
tegrieren. Aufgrund dieser Integrationsmaglichkeitd eine Erhéhung der Wiederverwendbarkeit
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des Systemkonzepts basierend auf Hardware-/SoftRibli®thekselementen fur nachfolgende
Projekte erhoht. Parametrisierbare NoCs konneitle@af neue Anforderungen bezlglich Band-
breite oder Energie-/Flachenbedarf angepasst welfderch die Wiederverwendbarkeit erreicht
man eine kurzere ,Time-to-Market-Spanne” sowie rgggre NRENon-recurring Engineering
Kosten, d.h. die einmalig entstehenden Kosten dinerDesigns werden aufgrund wiederverwertba-
rer Bestandteile reduziert. Ebenso verringert dige Entwurfsrisiko, da auf bestehende Strukturen
zuruckgegriffen werden kann; zudem sinkt der Tdstand. Ferner kann so die , Time-to-Volume-
Spanne* aufgrund des geringeren Entwurfsaufwarethszrert werden.

Hierarchische NoCs skalieren im Gegensatz zu Busdeliplexern oder Kreuzschienenverteilern

und ermoglichen so eine deutlich groRere Anzahl Weinehmern. Bei grof3eren Systemen erzielt
man eine deutliche Flachenersparnis im VergleictlBassystemen oder Kreuzschienenverteilern.
Die Vielseitigkeit hierarchischer NoCs ermdglicimten grol3tmdglichen Einsatz in unterschiedlich-
sten Systemimplementierungen. Fur die System- Bawendungssoftware ergibt sich eine deut-
lich bessere Portierbarkeit auf zukinftige Systesiaesie im Normalfall entkoppelt von der System-
Topologie implementiert werden kann.

Fur Systeme mit wenigen Teilnehmern eignen sichalilische NoCs in der Regel weniger, da im
Allgemeinen ein deutlich groRerer Flachenaufwandclluzusatzliche, meist unbendtigte Leis-
tungsmerkmale, zu verzeichnen ist, es sei dennNd&s offeriert zusatzlich eine angepasste Va-
riante flr Systeme geringerer Komplexitat (vgl. Alsitt 4.2).

2.3.2 Organisation von On-Chip-Kommunikation

In diesem Abschnitt wird die Organisation von OngEKommunikationsprotokollen im Allge-
meinen und im Hinblick auf das entworfene GigaNua@l.(Abschnitt 4.2) vorgestellt.

Schichtenmodell.Eigenschaften von NoC-Architekturen definiererhszeim einen aus der Topo-
logie des On-Chip-Netzwerks und zum anderen ausw#emendeten Protokoll oder, im Falle von
heterogenen oder hierarchischen NoCs, den verwamdbtokollen. NoC-Protokolle sind, in An-
lehnung an dadSO/OS(International Organization for Standardizatid®pen Systems Inter-
connectiop-Referenzmodell [34] typischerweise schichtenar{8b] organisiert (vgl. auch
DIN ISO 7498). Dieses Referenzmodell vereinheitlicind regelt den Transport von Daten in
Kommunikationsmedien (vgl. Abbildung 2-10). So wandlie verschiedenen Anwendungsbereiche
der Kommunikation in Schichten unterteilt, die ishsgeschlossen und unabh&ngig voneinander
abgearbeitet werden kdénnen. Jede Schicht erfiil# definierte Funktionalitat. Auf Sender- und
Empfangerseite des Kommunikationskanals existieentische Schichten, zwischen denen logi-
sche Verbindungen aufgebaut werden. Die Art unds@/evie die Daten transportiert werden, ist in
einem Protokoll festgelegt, das beide Teilnehmdrelrschen. Innerhalb eines Gerates erfolgt die
physikalische Datenweitergabe in vertikaler Wewsebei beim Sender Paketkopfdgade) hin-
zugefugt und beim Empfanger wieder entfernt, alsatdRolle ,terminiert® werden. Die sender-
/lempfangerseitigen Schichten tauschen sich hoatdier diese Protokolle aus. Der Grad der Ab-
straktion wird in Richtung der héheren Schichtemien gro3er. Der untersten Schicht ist die phy-
sikalische Ubertragung der einzelnen Bits zugewigggihrend die oberste Schicht mit der initiie-
renden Anwendung kommuniziert und ggf. Anwenderakgon einbezieht.
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Abbildung 2-10: Schichtenmodell fir Netzwerk-Kommurikationskomponenten

Beim 1SO/OSI-Modell sind sieben Schichten vorgesetdie sich Ublicherweise bei On-Chip-
Netzwerken auf drei zusammenfassen lassen [35]dé&taillierten Definition der einzelnen Funk-
tionen der sieben Schichten des ISO/OSI-Referenelisodei auf die einschlagige Literatur [34]
verwiesen. Im Folgenden werden die drei Schichtes MoC-Referenzmodells kurz vorgestellt:
physikalische Schicht, Architektur- und Steuerucbgsht, Software-Schicht.

Die physikalische Schichtumfasst die technische Realisierung der Kommuioikakanale, also
Verdrahtung sowie Treiber- und Empfangerstufenr abeh Datenpuffer zur Zwischenspeicherung

der Signale.
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Abbildung 2-11: Die zu versendende Nachricht dargéslit in Stufen der Paketverarbeitung

Die Architektur- und Steuerungsschichtereint in sich die urspringlichen Schichten zhisivier
des ISO/OSI-Referenzmodells. Die enthaltene Sictgmschicht Data-Link-Laye) ist fir die zu-
verlassige Ubertragung der Daten, z. B. durch Hiigen von Redundanz fir fehlererkennende
bzw. sogar fehlerkorrigierende Codes zustandigr&jelt auRerdem den Zugriff auf das Kommu-
nikationsmedium und teilt die Daten, falls vorgesghin Blécke auf. Die Aufteilung von Daten-
Telegrammen in einzelne Pakete ist besonders &ivérmeidung und Behebung von Ubertra-
gungsfehlern von Vorteil, da die Absicherung deteahierbei durch etablierte Prifsummenver-
fahren, z. B. zyklische Codes (CRC-Prifsummen) kol@ise geschehen kann. Abbildung 2-11
zeigt die logischen bzw. physikalischen Formen remetbertragenden Nachricht auf. DNach-
richt kann in ein oder mehreRaketebzw. Telegrammeufgeteilt werden, denen Informationen in
Form von Paket-Kopfen, auch Paket-Headern genam#ugefiigt werden. Die einzelnen Pakete
wiederum werden bei vielen NoCs nochmals aufgateiflits (Flow Control Digit9, die atomaren
Ubertragungseinheiten mit Paketeigenschaften. AlietFlits bekommen einen zusétzlichen Kopf,
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der in den meisten Fallen deutlich kleiner alsden Paketen ausfallt und haufig nur wenige Bytes
beansprucht. Schlief3lich kann es noch, je nacheémghtierung, vorkommen, dass diese Flits, oder
aber auch die Pakete direkthits (Physical Unit$ Gbertragen werden. Unter eindthit versteht
man die Menge an Bits, die innerhalb eines Takbes die Verbindung, auch Link genannt, zur
Gegenstelle der Ubertragungsleitung transferiertdam® konnenPhits haben (blicherweise keine
eigenen Kopfe, sondern werden ggf. kiéndshakeMechanismen kontrolliert.

Weiterhin sind in der Architektur- und Steuerundmsicst Mechanismen enthalten, die der Netz-
werkschicht Network Layey zuzuordnen sind. Dies betrifft das Schalten derbihdungen Qwit-
ching) fur den Datentransport und letztendlich das Weiten und die Wegsuchd&kguting der
Pakete durch das Netzwerk.

Switching-Verfahren. Switching bezeichnet im Hinblick auf die technisdRealisierung die Art
und Weise, wie Daten zum nachsten Knoten weiteitgeleerden. Zu den bekanntes®@witching-
Verfahren zahlen u. a. da€ircuit SwitchindCS, das Packet- bzw. Store-And-Forwd&AP-
Switching, dasVirtual-Cut-ThrouglfVCT)-, dasWormhol¢WH)- und dasMad-PostmarSwitch-

ing.
Im Folgenden werden die oben genannten Switchimfg¥deen kurz bewertet:

« CSreserviert vor der eigentlichen Ubertragung desageen Pfad vom Quellknoten bis zum
Zielknoten der Ubertragung. Hierzu wird haufig gitouting Header Flit“ zum Zielknoten
geschickt, das den Pfad durchlauft. Nach erfolgeiddbertragung wird eine Bestatigung
zum Quellknoten versendet und die Verbindung zvaactien beiden Teilnehmern ist ex-
klusiv eingerichtet. Somit setzt sich die Zgjt aus der Zeit des Verbindungsaufbaus und
der eigentlichen Ubertragung zusammen:=t Ft . CSist empfehlenswert,

Verbindungsaufbau
wenn Pakete relativ selten zwischen den Teilnehmersendet werden und die Datenmen-
gen relativ umfangreich sind. Dies relativiert darsatzlichen Aufwand des Verbindungs-
aufbaus. Ein grol3er Nachteil ist die Blockade vodesien Paketen, die fir die Zeit der Re-
servierung keine Verbindung aufbauen kénnen. Spdze stark frequentierten Ubertra-
gungswegen und relativ geringen Datenmengen, al& #ir Anwendungsszenarien von
Single-Chip-Multiprozessoren, empfiehlt es sich stens, da$acket-Switching/erfahren
vorzuziehen (vgl. [26]).

» SAFbzw. PacketSwitching bendtigt eine grol3e Menge an Pufferdpién den einzelnen
Kommunikationsknoten, da mindestens ein Paket heisgespeichert werden muss. Zu-
satzliche Latenz wird hinzugefugt, allerdings epfadieser Switching-Algorithmus komple-
xe Routingverfahren, da fir jeden Knoten Einbliokden gesamten Inhalt des Pakets be-
steht. Ein Datentelegramm wird ggf. in mehrere Rakefgeteilt und ohne eine feste Reser-
vierung des Kanals zu bendtigen, transportiertedeginzelne Paket kann gegebenenfalls
Uber einen anderen Weg zum Ziel geleitet werdeokdeSwitching ist besonders bei hau-
figem Datenverkehr mit relativ geringem Datenvolunw®n Vorteil. Nachteilig kann sich
die etwaige Aufteilung des Telegramms in Paketgramid des damit verbundenen Over-
heads (z. B. redundante Headerinformationen imjelli etc.) auswirken.

» VCT-Switching reduziert die absolut benétigte Speioterge in den Routingknoten und
verringert ggf. die Latenzzeiten, falls das NetZwacht blockiert sein sollte. Ist die Gegen-
stelle allerdings nicht verfliigbar, so muss auch inleschlimmsten Fall das gesamte Paket
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innerhalb eines Knotens zwischengespeichert wekdanen. Sind die Verbindungen nicht
belegt, so wird bereits nach dem Empfang des HeatierNachricht zum néchsten Knoten
weitergeleitet. Dieser Mechanismus wird al&rfual Cut-Through“Switching bezeichnet.
Man bezeichnet diese Art der Ubertragung dann algPipelining der Nachricht, da sich
die einzelnen Segmente in aufeinanderfolgendendRobefinden. Aufgrund der méglichen
Blockierung der Paketentitaten verhalt sich W&J-Switching bei Uberlastung des Netzes
wie das oben erwdhnte Packet-Switching.

* Beim WH-Switching wird das Datentelegramm nicht nur in &eak sondern noch weiter in
die oben genannteflits unterteilt. Das Header-Flit enthalt die Inforroagn, die fur das
Routing bendtigt werden, alle weiteren Flits deke®afolgen ihm Uber die gleichen Wege
durchs Netz. Auch hier findet ein Pipelining dercNachtentibertragung statt. Vorteile bei
diesem Verfahren sind die geringere Speichermetigdyendtigt wird, da nur wenige Flits
pro Router gespeichert werden mussen. Weiterhichmet sich WH-Switching durch die
deutlich kleinererSAFLatenzzeiten bei der Ubertragung aus. Nachtedignksich die Blo-
ckierung Blocking eines Ubertragungsweges durch eine Flit-Ketteeissn, wenn hier
nicht durch Soft- oder Hardware Abhilfe geschaftard. Die Eigenschaften, die dagH-
Verfahren bietet, ermdéglichen die Realisierung \f@Ethenextensiven, kompakten und
schnellen Routern (vgl. [26]). Die Latenz ist dleighe wie beimiVCT-Switching.

* Eine Weiterentwicklung de¥CT-Switchings in Kombination mit deriVH-Switching ist
das Mad PostmatSwitching. Bei diesem wird versucht, die Latener dPaketsegmente
nochmals zu minimieren. Ein eintreffendes Flit wixeteits wahrend des Empfangs spekula-
tiv zum gegenuberliegenden Ausgang weitergeletigeziell in 2D-Gittern kann eine solche
Strategie die Performanz steigern, da hier hauggRichtung eines Flits gleich bleibt. Das
MP-Switching eignet sich vor allem fiir bit-serielld&rtragungen, und wenn die physikali-
sche Ubertragung innerhalb des Netzwerks so gdattetass sich ein Flit mehrere Zyklen
auf der Ubertragungsleitung befindet. Handelt els bei dem zugrunde liegenden Netzwerk
hingegen um eine Infrastruktur, die in der Lagerisativ breite Flits innerhalb eines Zyklus
zum nachsten Knoten zu transportieren, so bietetedi Verfahren nahezu keinen Vorteil
gegenuber denrdCT- und demWH-Switching (vgl. [26]).

Die Methode devirtuellen Kanale(Virtual Channeld VC) erméglicht es einem NoC, einen einzi-
gen physikalischen Kanal, z. B. einen Inter-SwiBdx-Link (vgl. 4.2.1), fur mehrere Datenstrome
zu multiplexen und somit virtuelle Kanale zur Verfigung zu stellen. Dazuden mehrere Puffer
fur einen physikalischen Kanal bendgtigt. Diese Me#herhoht den Ressourcenbedarf, kann jedoch
zur Latenzminimierung einzelner Paketklassen he&zogen werden und steigert ggf. den gesam-
ten Netzwerkdurchsatz. Virtuelle Kanédle ermdglichema. auch den Einsatz von Verfahren zur
Bandbreitenkontrolle und danm@uality-of-Servic€Qo9-Mechanismen. Der Einsatz einer Vielzahl
von virtuellen Kanélen kann jedoch die Latenz, elie Paket innerhalb eines Knotens erfahrt, auf-
grund der Entscheidungsfindung Gber die Prioritatsefung erhdohen.

Durch die Einfuhrung von virtuellen Kanélen konntem genanntdybride Switchingverfahren
entwickelt werden. Zu diesen Techniken zahlen wlasBuffered Wormhole Switchingipelined
Circuit Switchingsowie dasScouting SwitchingDiese Verfahren sind im Gegensatz zu den oben
genannteroptimistischenSwitching-Algorithmen alkonservativeinzustufen und verbessern be-
sonders die Eignung des Netzwerks im Hinblick aalilértoleranz.
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Zusammenfassend ist zu sagen, dass Switching-\ferfaheben Topologie, Routingverfahren und
FluZkontrollmechanismen, einen grol3en EinflussdiaifLeistungsfahigkeit des Netzwerks haben.
Das Switching-Verfahren bestimmt nicht zuletzt darfbau und damit auch die benétigten Res-
sourcen des einzelnen Routingknotens. WormholeeBuaig ist das derzeit am haufigsten verwen-
dete Verfahren bei parallelen Rechnerarchitekt{@éh Es wurde bereits 1986 vorgestellt [36][37]
und ermdglicht kleine und zugleich schnelle Rolkmgen, die in der Lage sind, Nachrichten jeder
Lange effizient zu Ubertragen.

Wegewahl-/Routingstrategien.Routing bezeichnet die Art und Weise, wie die Wegewahl der
Nachrichtenstrome in Netzwerken entschieden wial.daketvermittelten Datennetzen ist prinzipi-
ell zwischenRoutingund Forwarding zu unterscheiden: Wahrend das Routing die komplgaal
des Weges durch das Netzwerk bestimmt, entscheaddtorwarding nur Gber den zu wahlenden
Nachbarknoten, tber den die Nachricht weitergedleigzden soll.
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Abbildung 2-12: Ubersicht tiber etablierte Routingme&hanismen

Beim Routing kann zwischesdaptivenund gedachtnislosebzw. statischerRoutingverfahren un-
terschieden werden. Wéahrend adaptive VerfahrerAasfastung Contentio) und Blockade bzw.
Uberlastung Congestioh der einzelnen Kommunikationswege reagieren korunah die Wege-
wahl von solchen und anderen Parametern abhé&ngigananehmen statische bzw. gedachtnislose
Verfahren (auch ,Oblivious® Routing genannt) keiRécksicht auf die derzeitigen Verkehrsver-
haltnisse des Netzwerks. Beim statischen / gediébtbden Routing wird zwischedeterministi-
schenundstochastischeVerfahren unterschieden. Wéhrend deterministid&éahren immer zur
gleichen Entscheidung beziglich des Pfades fuhved,die Wegewahl beim stochastischen Rou-
ting zufallsbasiert entschieden. Abbildung 2-12t gilmen Uberblick tiber etablierte Routingmecha-
nismen, die im Folgenden naher diskutiert werden.

Gerade fir nicht vorhersehbares Kommunikationsanfken sind zwar adaptive Verfahren zu
empfehlen, sie bendtigen jedoch fir die RealisigrimNoC-Komponenten meist deutlich mehr
Ressourcen bzw. Flache. Die nachsthohere Aufgabeyath Architektur- und Steuerungsschicht
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tUbernommen wird und im Allgemeinen der Transportdthzuzuschreiben ist, ist die Segmentie-
rung von Nachrichten in Pakete und ggf. in Flitee Bchichten, die oberhalb dieser Schicht ange-
siedelt sind, brauchen die Eigenschaften des Konkationsnetzes nicht in Betracht zu ziehen, da
auf der Transportschicht eine vollstdndige ,Endeende“-Kommunikation stattfindet. Aufgrund
der haufig recht hohen Empfindlichkeit eines Netzesiglich der verwendeten Paketgrol3en stellt
die richtige Segmentierung oft eine Herausforderdag Dies beinhaltet sowohl Aspekte der Per-
formanz als auch der Leistungsaufnahme und dertigés®d Flache.

Probleme, die sowohl beim gedéachtnislosen als hath adaptiven Routing auftreten, siftbad-
lock, Livelockund Starvation Beim Deadlockblockieren sich zwei Pakete gegenseitig im Routing
knoten aufgrund der Belegung von ausschliel3lichess®urcen. Dies macht ein Weiterleiten der
jeweiligen Daten fur den Router unmoglich. Bdimelockzirkuliert das Paket unendlich im Netz,
ohne seinen Zielknoten zu erreichen. Dieses Phamotri bei nicht-minimalen Routing-
Algorithmen auf.Livelockbeeintrachtigt die Leistungsfahigkeit des Netzwarkd sollte durch ge-
eignete MalBhahmen, wie z. B. Reduzierung der Lelzeres ((Jime To Live-Parameter) verhin-
dert werdenStarvationbezeichnet die Situation, wenn das Netzwerk komgitich Daten hoher
Prioritat transportieren muss und Pakete geringerit aufgrund der vorherrschenden Sattigung
des Netzes nicht weitergeleitet werden kénnen.

Im Folgenden werden einige relevante Routingstrategaher vorgestellt.

Gedéachtnisloses / statisches Routinddimension-Order-RoutingVerfahren leiten ein Paket di-
mensionsweise ans Ziel. D. h. es wird der kir2é&g zum Zielknoten bestimmt, dann werden die
Kanten einer Dimension nach der jeweiligen Vordthies Routingalgorithmus reduziert, bis letz-
tendlich das Paket beim Zielknoten angekommeninstAllgemeinen habemimension-Order
Verfahren keine vorteilhaften ,Load-Balancing”- @lkastverteilungseigenschaften, sind allerdings
sehr leicht und mit relativ Uberschaubarem Hardaafmeand zu realisieren.

Das XY-Routingverfahrezahlt zu einem der bekanntest@mension-OrdeiVerfahren. Es eignet
sich fUr zweidimensionale Topologien wie Gitter od®ri. Hierbei werden die Pakete zunachst
horizontal (also in X-Richtung) und anschlie3endikal (in Y-Richtung) bis zum Zielknoten wei-
tergeleitet. Bezuglich der Lastverteilung entsiehter Mitte des Netzwerks die gréfite Belastung,
welche durch geeignete, Ubergelagerte Algorithmigellrert werden kann. Bedeutender Vorteil
beim XY-Routing ist die Tatsache, dass kdinglocksbzw. Deadlocksn mehr als einer Dimensi-
on auftreten [38].

DasPseudo-Adaptive-XY-Routiragbeitet in zwei unterschiedlichen Modi, je nadliskastung des
Netzwerks. Bei geringer Auslastung kommt die deteistische Variante zum Tragen. Treten ge-
hauft Blockierungen des Netzes auf, so wechseltdafahren auf den adaptiven Modus, in dem
weniger ausgelastete Verbindungen fur die Wegewabfyesucht werden. Dieses Verfahren wird
vornehmlich bei zweidimensionalen Gittern eingesétei denen die Router Uber 5 Ports verfiigen,
wobei vier nach Norden, Osten, Siden und Westeohget sind, und der flinfte den lokalen An-
schluss anbindet. Das Pseudo-Adaptive-XY-Routinfgieen versucht im Gegensatz zum her-
kommlichen XY-Routing die Mitte des Netzwerks zulasten und eine Gleichverteilung des Da-
tenverkehrs herzustellen.

Beim Surrounding-XY-Routingesteht die Méglichkeit, Knoten als blockiert zznkzeichnen und
somit den Routingalgorithmus zur Wahl einer ,Umleig“ zu veranlassen. In diesem Fall unter-
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scheidet man die Ausweichmo8H-XY-und SV-XY-RoutingBei der ersten Variante wird die al-
ternative Wegstrecke in der Horizontalen gesuaid, hei Blockierung in vertikaler Richtung findet
das Paket auf einer vertikalen Ausweichroute zueh Zi

Bei denRotations-Routingverfahrewird vorgeschrieben, welche Richtungswechsel @kePbei
der Wegewahl erfahren darf. Hier gibt es zahlreithplementierungen wie z. B. daforth-last-
Routingoder dasVest-first-Routingwobei der Name schon die Vorschrift verrat.

Deterministische Routing-Algorithmewerwenden immer den gleichen Pfad, ohne die Ausigs

der betreffenden Kanale zu beriicksichtigen. Inkadefreien Netzen zeichnen sie sich durch kurze
Latenzzeiten und ihre Zuverlassigkeit aus. Deskald sie besonders fur Echtzeit-Anwendungen
geeignet. Pakete treffen in der Reihenfolge eirdansie versendet worden sind, so dass das Prob-
lem des Packet Reorderidgnicht auftreten kann. Im einfachsten Fall hat Router eine fixe Rou-
tingtabelle, die alle Routen zu seinen Nachbarknbtnhaltet.

Mit Hilfe dieses routingtabellenbasierten Ansatlessen sich verschiedene Formen des determinis-
tischen Routings realisieren. Eines der bekanmiegerfahren ist dasShortest Path Routifig
Hierbei werden die Pakete entlang des kirzestedeBfgeleitet. Zu den Varianten dekortest-
Path-Routings zéahlen dd3istance Vector Routingnd dad.ink State RoutingBeim Distance Vec-

tor Routingbeinhaltet die Routingtabelle des jeweiligen Knsténformationen ber die Konnekti-
vitat der Nachbarschaft. Pakete werden Uber dieijsvkirzeste Verbindung zum Ziel geleitet.
Beim Link State Routingvird die Routingtabelle zwischen allen Routerngatiguscht bzw. geteilt.

In SoCs werden die Routingtabellen schon wahremdPdaduktion voreingestellt und nur in Son-
derfallen, z. B. bei Ausfallen wahrend des Betrjelmsprogrammiert. BeirGource Routingverden
bereits beim Quellknoten alle Entscheidungen beédtigler Wegewahl getroffen. Dd®pologie-
adaptive Routingrweitert das deterministische RoutingverfahrendierEigenschaft, auf Verande-
rungen der Topologie einzugehen, indem die IntddteRoutingtabellen angepasst werden kénnen.
Man spricht hierbei auch vadnline Oblivious Routing

Stochastische Routingverfahresind zum einen einfach zu realisieren und fehleréamt, zum an-
deren brauchen sie mehr Netzwerkressourcen, algendtg ware. Fur diese Algorithmen ist eine
Begrenzung der Lebenszeit von Paketen unabdingbags sonst zu dem Problem &arvation
kommen kénnte. Zu den bekanntesten stochastiscbatingverfahren gehoren die so genannten
Flooding-Algorithmen. Bei der einfachsten ImplementierudgmProbabilistic Flooding wird ein
Paket zu allen Verbindungen weitergeleitet. Esdtrabmit eine ,Uberflutung” des Netzwerks statt.
Sobald eine Kopie den Zielknoten erreicht, werdida \aeiteren Kopien beim Eintreffen am Ziel-
knoten geldscht. Eine Weiterentwicklung spiegelt Digected-FloodAlgorithmus wieder. Hierbei
werden die Pakete in die ungefahre Richtung delkrfigens ins Netz injiziert, somit weniger
Netzwerkressourcen bendétigt. Als weitere Einschuagkdieses Algorithmus ist d&andom-Walk
Verfahren zu nennen. Hier wird jeweils nur eineirdefte Anzahl von gerichteten Paketen von je-
dem Routingknoten weitergeleitet. Dies verringatittich die beanspruchten Netzwerkressourcen.
Um die hohen Belastungen an Datenaufkommen furNgdswerk zu reduzieren, wurde déa-
liant-Algorithmus entwickelt. Bei dieser Methode wircedBelastung des Netzes reduziert. Er eig-
net sich besonders fur hoch dimensionierte Netzsveri einem grof3en Grad. Es wird zufallig ein
Knoten im Netz ausgewahlt, zu dem das Paket zuhgensutet wird. Anschliel3end werden von
diesem Knoten herkdbmmliche, gedachtnislose Verfahue Wegewahl angewendet.
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Adaptive Routing-Algorithmenzeichnen sich dadurch aus, dass sie sich demrifusias Netz-
werks entsprechend ihrer Wegewahl anpassen. ZaerdiReutingverfahren zahlen u. a.: Dami-
mal adaptive RoutingdasHot-Potato-RoutingdasQ-Routing dasvolladaptive RoutingdasCon-
gestion-Look-Ahead-Routinglie Turnaround-Routingverfahrendas Turn-Back-When-Possible-
Routingund dagOdd-Even-Routing

Beim minimal adaptiven Routingird immer versucht, den kirzesten Pfad zu wahled, bei al-
ternativen Routen entscheidet sich der Algorithmimuglie geringer ausgelastete Verbindung. Beim
Hot-Potato-Routingverden Pakete ohne Aufenthalt weitergeleitet.t&eiine Verbindung blockiert
sein, wird das Paket wahllos in eine andere, fRaehtung geschickt, gleichsam wie eine ,heil3e
Kartoffel* weitergereicht. Bei einer Aneinanderreity von blockierten Pfaden kann das Paket
komplett in die entgegengesetzte Richtung transgsbrerden, man spricht dann auch von ,Mis-
routing“. Die Hardwareressourcen fur dieses Vedalsind bzgl. der Speichermenge relativ gering,
da so gut wie kein Pufferspeicher in den Routengesetzt wird [39]. Ein Beispiel fir ein Routing-
verfahren, das das Verkehrsaufkommen innerhallNe¢awverks statistisch auswertet und die We-
gewahl basierend auf den resultierenden Ergebntsi$ienist dasQ-Routing [40] Hierbei werden
Merkmale wie Latenz und Auslastung der Pfade besigbkigt. Beimvolladaptiven Routingvird
immer der am wenigsten belastete Kanal ausgewdnity wenn damit ein Umweg verbunden ist.
Allerdings wird bei unterschiedlichen Mdglichkeitere kirzeste Strecke bevorzugt gewahlt. Das
Congestion-Look-Ahead-Routingrwendet Informationen der potentiell involviertRouter tber
die Auslastung relevanter Kandle, um so ,voraussehd“ Staus zu umgehefurnaround-
Routingverfahrenwverden bei Baum- und Butterfly-Topologien eingeseind zeichnen sich da-
durch aus, dass Pakete zunachst in die entgegertge&echtung und dann von der entfernten
Netzwerkseite zurtick zum eigentlichen Empfangesemdet werden. Diese Methode wird durch
dasTurn-Back-When-Possible-Routimgtimiert, indem die Auslastung des potentielldiciRve-
ges mit in die Wegewahl einbezogen wird und ggieéAlternative ausgesucht wird. Bei@dd-
Even-Routingvird zwischen erlaubten und nicht erlaubten Ringawechseln von Knoten zu Kno-
ten und Spalte zu Spalte bzw. Reihe zu Reihe iteQinterschieden. Diese variieren und ermogli-
chen einéDeadlockfreie Wegewahl.

Aul3er den hier genannten Verfahren gibt es weitgemiger relevante Routingverfahren und Ab-
wandlungen der oben genannten Methoden. Zur Venigfsei auf die weiterfihrende Literatur
[22][26][35][41] verwiesen. Basierend auf den beyeiorgestellten Switching- und Routingverfah-
ren kdnnen nun weiterreichende Netzwerkmechanisgimeggesetzt werden, die die Leistungsfahig-
keit des NoCs fur die jeweiligen Einsatzgebietetligusteigern konnen. Hierzu zé&hlt auch die ga-
rantierte Bandbreitenzuweisun@uality-of-ServicQoS.

Congestion- / Flow-Control-Techniken Um die entsprechenden Prioritdten der Daten(dggrirg
und die damit verbundenen maximalen Latenzen demau kbnnen, missen zwei grundlegende
Phanomene erlautert werden. Die Problematik, daket® um Netzwerkressourcen konkurrieren
und damit zunachst eine hohe AuslastuGgntention herbeifiihren, die in einer Uberlastung
(Congestioin enden kann, erforde@ongestion-ContrelTechniken. Ein korreliertes Problem tritt
auf, wenn einzelne Endknoten unterschiedliche Beaitn injizieren bzw. absorbieren kénnen.
Um diese Problematik zu l6sen, musséow-Contro(FluZkontroll)-Techniken eingesetzt werden.
Congestion-ContreTechniken arbeiten gegen eine Uberlastung desweks und seiner Rou-
tingknoten im Allgemeinen, wéhrend Flow-Control-Maaismen den reibungslosen Datenfluss
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zwischen Sender- und Empfangerknoten regeln. DEiokatz dieser beiden Techniken wird die
Einhaltung einer minimal garantierten Bandbreiiage garantierten maximalen Latenz und eines
maximal zulassigen Jitters und damit QoS erst eliotig

Durch raumliche Ressourcenverwaltung, also Zuwegjston Routingkanélen und Speicher, sowie
zeitliche Zuteilung kann eine Stauung und letztiehdUberlastung der Ressourcen vermieden wer-
den.Congestion-ContreMechanismen kdnnen in riickgekoppeheef@iback und offene bzw. vor-
beugendefreventivg Verfahren eingeteilt werden [42]. AuRerdem kamedEinteilung in ressour-
cenreservierende und in nicht-ressourcenresender®talinahmen vorgenommen werden.

Zu den Letzteren zahlt das Verfahren, bei dem Rakk aufgrund von Stauungen nicht weiterge-
leitet werden konnen, einfach verworfen werdémopping. Zunachst kbnnen mit nicht-ressourcen-
reservierenden Verfahren Verstopfungen aufgelostieve insgesamt jedoch missen die Pakete
erneut versendet werden, was zu einem héheren &dkemmen fuhrt. Dies reduziert folglich die
effektiv Ubertragene Datenmenge. Derzeit sind @the NoCs bekannt, die dieses in Datennetzen
etablierte Verfahren ebenfalls anwenden [35]. Bieitere Methode stellen dynamische Routing-
verfahren dar, die so genannte ,Hot Spots®, alsokkRubesonders hohen Datenaufkommens, ver-
meiden [43]. Dieses Verfahren hat jedoch den Nachlass die Reihenfolge der Pakete verandert
werden kannRacket Reordering Ein anderer Ansatz steuert die Paketinjektidesbasierend auf
statistischen Daten, die wahrend des Betriebs awstgt werden [44]. BNINI charakterisiert die
bisher erlauterten Verfahren als reaktiv, d. rargumentiert, dass sie erst greifen kdnnen, ween da
Netzwerk bereits Uberlastet ist [35]. Dies triffeimer Ansicht jedoch nicht bei dynamischen Rou-
tingverfahren zu, die zufallig tber die Wegewaltseheiden. Ebenso lasst sich durch eine geeigne-
te Schwelle bei den Monitoren schon vor der Ubautas des Netzwerks eine Reduktion der Paket-
injektion einleiten und damit der Verstopfung vargen.

Ressourcenreservierende MaRnahmen teilen vor dertrdgung die Ressourcen zeitlich und 6rt-
lich zu. Zunachst werden alle geplanten Ubertragarfgstgestellt und anhand ihrer Erfordernisse
eine Ressourcenzuteilungdmission Contrglvorgenommen. Zusétzlich zu dieser Initialisiersing
phase getup wird am Ende einer Ubertragung noch eine Infoiomsphasetéar-dowr) benétigt,

in der den anderen Netzwerkknoten mitgeteilt witdss die Daten komplett Gbermittelt worden
sind und die Ressourcen fir neue Transfers zuriigarfg stehen. Sollten alle Ubertragungen und
deren Anforderungen bereits im Vorfeld bekannt sem lie3e sich mit einem Zeit-Multiplex-
Verfahren Time Division Multiplex’ TDM) die Uberlastungsfreiheit des Netzwerks garantiere
Globale Einplanungsverfahre@lpbal Scheduling die u. a. auf derfiDM-Prinzip basieren, wer-
den in NuMesh [45], Nostrum [46] und Athereal [éW]gesetzt. Diese globalen Einplanungsver-
fahren sind jedoch nur bedingt fur einen univeesekinsatz geeignet und wenig flexibel bei nicht-
vorhersehbarem Lastaufkommen, wie dies u. a. héwfigNetzwerkanwendungen der Fall ist.
Nachteilig an diesem Ansatz ist die relativ hohectschnittliche Latenz, die ein Paket aufgrund
der Initialisierungs- und Informationsphase erfabafur erhalt man ein verstopfungsfreiesr{-
gestion-freg und konkurrenzfreiexfntention-freg Netzwerk.

Ein anderer Ansatz bei ressourcenreservierendemae®en sind bandbreitenkontrollierende Ver-
fahren (ate-control schemésHierbei werden berechnete Injektionsraten fig Quellknoten vor-
gegeben, so dass eine obere Schranke fur die Awsipdes Netzwerks und Latenz definiert ist.
Zur Vermeidung von, bei diesem Verfahren haufigatstehenden, Ubertragungsspitz&ursts
werden zusatzliche Pufferspeicher bendtigt, dié siachteilig auf den Flachenbedarf auswirken.



30 Kapitel 2. Eingebettete parallele Rechnerarchitedtu

Vorteilhaft ist die Eigenschaft, dass die durchsttliche Latenz geringer als beim TDM-Verfahren
ist. Einsatz finden Varianten dieser Methode zb&m MANGOMessage-passing Asynchronous
Network-on-Chip providing Guaranteed services tiglouOCP interfacesOn-Chip-Netzwerk
[48][49].

Die Flusskontrolleibernimmt die Aufgabe, dass Pakete, trotz vorhaedAuslastungskontrolle,
nicht in Routern stecken bleiben, deren Puffer nesitleert werden kdnnen, weil ein Endknoten
nicht genug Bandbreite zur Verfigung stellt. Flusgkolle dient zur Vermeidung von ,Dead-
locks®, auch wenn keine Auslastungskontrolle veregrwird. Es gibt eine Vielzahl von Algorith-
men zur Flusskontrolle. Die einfachste Art ist, &ak die nicht weitergeleitet werden kénnen, zu
verwerfen. Eine weitere Methode besteht darin,Zepkable Pakete zum Sender zuriickzuleiten, der
diese garantiert annehmen muss. Diese beiden Mathedrden derzeit in bekannten NoCs im Ge-
gensatz zu Computernetzen nicht eingesetzt. BeilN §Ftalable Programmable Interconnection
NetworR-On-Chip-Netzwerk [50] wird ein Verfahren eingegebei dem bei Blockierung kurzfris-
tig Pakete zu freien Knoten weitergeleitet werdem, nach kurzer Zeit erneut zum Endknoten ge-
schickt zu werden.

Die folgenden Mechanismen zur Flusskontrolle basieuf der Reservierung von Ressourcen. Um
zu garantieren, dass gentigend Pufferplatz in derelsien Ubertragungsknoten vorhanden ist, kon-
nen Ende-zu-Ende-Quittierungsmechanisnméanfdshakev/erfahren) eingesetzt werden, bei denen
gof. bei nicht ausreichender Speichermenge dieunia zur Ubertragung zum Zielknoten verzo-
gert wird, auf die der Quellknoten zu warten hah &derer Ansatz wird durch so genannte Kre-
ditpunkte-basierte Gredit-basell Ende-zu-Ende-Flusskontrollen aufgezeigt. Die Rgkinoten
verfigen Uber ein gewisses KontingentGredits das ihrer Speichermenge entspricht. Soll ein Pa-
ket in das Netzwerk injiziert werden, so benotigt 8ender zunachst entsprechende Credits seitens
des Empfangers. Aus diesem Grund werden regeln@®@ujts von freien Routingknoten an Nach-
barknoten versendet. Bei erfolgreicher Versenduird un Sender der Credit-Zahler um die spei-
chermengen-entsprechende Anzahl dekrementiert indverbrauchten* Credits an den Emp-
fangsknoten zurtickgeschickt. Dieser zuséatzliche&k&far an ,Credit-Paketen* kann bis zu 31% der
verfugbaren Bandbreite beanspruchen [43]. Spdzetlkleinen Datenmengen ist der Overhead be-
trachtlich und dieses Verfahren relativ ineffizieBs gibt zahlreiche Abwandlungen dieses Verfah-
rens, um die Nachteile zu nivellieren. Atherealstion, QNoC und SPIN verwenden u. a. Varian-
ten dieser Methode zur Flusskontrolle. Nach [35fwemden derzeit nur wenige On-Chip-
Netzwerke sowohl Congestion- als auch Flow-ContteEhanismen, um harte Bandbreitengaran-
tien zu gewahrleisten. Hierzu zahlen ebenfalls Aedle MANGO und das SonicsMX-On-Chip-
Netzwerk [51]. Zusammenfassend ist zu sagen, daseleen den Vorteilen der Ressourcenreser-
vierung auch zahlreiche Nachteile dieses Verfahgdnis Es gilt also von Fall zu Fall abzuwéagen,
welche MalRnahmen fur die Implementierung einesorgssneffizienten On-Chip-Netzwerks zu
treffen sind. Je flexibler ein On-Chip-Netzwerk atdéranderungen hinsichtlich des Verkehrsauf-
kommens und der Topologie bzw. der Anzahl der Bilner reagieren kann, sowohl im Betrieb,
als auch bei der Konzeption neuer Hardware, défmesater wird es sich auch in zukiinftige SoCs
integrieren lassen. Zukunftig werden immer staketwicklungswerkzeuge, die speziell fir den
Entwurf der Kommunikationsinfrastruktur von Syste@s-Chip konzipiert sind, in die Entwurfs-
kette komplexer digitaler Schaltkreise Einzug halteie sie z. B. von ATERIS bereits vorgestellt
wurden [52].
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Dienstqualitat. Quality-of-Servic€Qo9 ist fur viele Anwendungsbereiche ein weitereshivges
Merkmal fir Netzwerke und stellt ebenso eine Hefladgrung fir On-Chip-Netzwerke dar. Unter
QoS werden Mechanismen verstanden, die es erméglidie Ubertragungsbandbreite fur unter-
schiedliche Datentypen oder zwischen einzelnen &oighk unter Berlcksichtigung spezifizierter
Transportklassen dediziert zuzuweisen. Geraderbéidrter Bandbreite des Netzwerks und spezi-
ell auch fiur ,Echtzeit“-Anwendungen ist diese FuoRalitdt von besonderer Bedeutung. QoS er-
laubt ein priorisiertes Ubertragen unterschiedlicBatentypen, was nicht zuletzt bei heutigen
Breitbandnetzwerkanwendungen wie ,Tripple PlayscaDatenverkehr, Telefonie und multimedia-
le Video-Inhalte, von groRer Bedeutung ist. Fir Gi® Mechanismen zur Uberwachung des
Transportaufkommens notwendig, die u. a. Entscimgen Gber die Wegewahl und die zeitliche
Ablaufsteuerung der Kommunikation treffen. Wenn Bietzwerk tber keine QoS-Mechanismen
verfugt, spricht man von einem ,Best-Effort-Ansatiierunter versteht man das Prinzip, dass alle
Daten und Verbindungen gleich behandelt werdenderdTransport nach den Moéglichkeiten des
Systems geschieht. Es konnen keine festen Zusaggmglich der zur Verfligung gestellten Band-
breite gemacht werden. Ein haufig eingesetzteseMigin Netzwerk QoS-tauglich zu machen, be-
steht darin, das Netzwerk grol3ztigiger bezlglicheseBandbreite zu dimensionieren, damit die
anfallende Datenlast mihelos bewaltigt werden kafierbei sind die Wege, die das Rickgrat des
Netzes ausmachen, so leistungsfahig zu gestalées, die Endknoten nicht anndhernd die Daten-
menge ins Netz injizieren konnen, die zu einer Wistung Congestioh des Netzwerks fiihren
kénnte. Diese relativ einfache Methode wird aw@ber-Provisioninggenannt. Diese Form der
QoS-Implementierung ist jedoch immer kritisch ind&en zu der Anwendung und der Art des Da-
tenaufkommens sowie der Anzahl der Teilnehmer herseFur héhere Anforderungen setzt man
haufig auf ein Markieren der einzelnen Datenpakatélinblick auf ihre Anforderungen beztiglich
Latenz, Jitter und Zuverlassigkeit ihrer Zustellulmgdiesem Zusammenhang spricht man auch von
.differenzierten Diensten“ oder au@iffServ(Differentiated ServicgsJedes Datenpaket tragt eine
Kennung in sich, in der die Anforderungen kodi@ntds Die Knoten im Netz konnen dann den an-
fallenden Datenverkehr anhand ihrer AuslastungdsrdKennungen innerhalb der Pakete steuern.
Allerdings kann auch ein solches Netzwerk nur imddalRe befriedigende Leistung bieten, als es
physikalisch angemessen flr das entsprechende Alungaszenario ausgelegt ist. In diesem Falle
steigert die QoS-Fahigkeit die Performanz.

Die Software-Schicht umfasst die abstrakteren Schichten funf bis sieldes [ISO/OSI-
Referenzmodells. Diese Schicht bezieht sich sovawlfilSystem- als auch auf Anwendungssoft-
ware. Die Systemsoftware abstrahiert von der €lighenh Hardware und fungiert aldardware
Abstraction LayefHAL). Dies entkoppelt die Anwendungssoftware von dardware und gewahr-
leistet eine héchstmogliche Flexibilitat. Die Syssoftware ist eng an systemspezifische Schnitt-
stellen fur Hardwarebeschleuniger (vgl. Abbildund%) und IPs gebunden (vgl. Abbildung 4-4).
Sie gestaltet sich als kontrolllastig mit geringeriéommunikationsaufkommen. Inwieweit die Sys-
temsoftware ausgepragt ist, also ob es sich uneki@zAufgaben / Tasks handelt, oder ob ein
komplettes eingebettetes Betriebssystem zum Eitksatumt, hangt maf3geblich von der jeweiligen
Anwendung und dem Einsatzgebiet ab. Die Anwenduwftygare sollte flr ein massiv paralleles
System einem geeigneten Programmiermodell unterii€ggl. Abschnitt 4.5) und ist haufig stark
kommunikationslastig.

Abbildung 2-13 zeigt zusammenfassend die in deangggangenen Abschnitten diskutierten we-
sentlichen Mechanismen zur Gestaltung und Leisgteggerung von On-Chip-Netzwerken. In Ab-
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hangigkeit vom jeweiligen Anwendungsszenario und damit verbundenen Anforderungen wer-
den Hardware und Protokolle unter Verwendung degestellten MaRnahmen zur Optimierung
konzipiert.

Anwendungsszenario

On-Chip-Netzwerk-Entwurf )
Festlegung der Topologie

S Switching-Verfahren
1 g Virtuelle Kanale
S E
= g:_ Routing-Verfahren
S 9 .
§ = Auslastungs-/Uberlastungskontrolle
3

~ Flusskontrolle

=

Dienstqualitat

System- und Anwendungssoftware

Abbildung 2-13: Mechanismen zur Gestaltung und Leigingssteigerung von On-Chip-Netzwerken

2.3.3 Beispiele von On-Chip-Netzwerken

In Tabelle 2-2 werden wesentliche Merkmale etatdiekoC-Varianten vorgestellt. Die bevorzugte
Topologie der aufgefiihrten Netzwerke ist das 20eGidas aufgrund seiner regelmafigen Struktur
relativ gut zu implementieren ist. Die GroRe demnifounikationskanéle, also die Breite der Uber-
tragung, liegt zwischen 19 Bits beim Marescaux-Ansad 294 Bits beim Dally-NoC. Einige
NoCs sind in dieser Hinsicht auch parametrisierbaée, z. B. QNoC, Hermes-NoC oder auch das
GigaNoC. Bei diesen Netzwerktopologien besteht riggielraum, und es kann auf Anforderungen
seitens der Anwendung eingegangen werden, um songiiglichst effiziente Realisierung zu tref-
fen. Die vorherrschende Routingstrategie ist WasrmholeSwitching mit XY-Routing-Ansatz.
Beim Athereal-NoC wirdVormhole Switching nur furBest-Effor(BE)-Pakete verwendet und fur
Guaranteed-Throughput-TraffiéT)-Circuit-Switchinggenutzt. Weitere Details zu einigen der auf-
gefuhrten NoCs sind in [53] aufgefuhrt.

Die Art der Pufferung entscheidet, wie anfallig leCs gegentber dem Phanomen ldead-of-
Line-BlockingHOL)-Problems sind. Einige Ansatze verwenden Eingamisp bzw. Eingangs-
FIFOs, um die eintreffenden Pakete/Flits zwischepeichern, andere benutzen diese Speicherele-
mente im Ausgang. Besonders flachenintensiv simdezst die Varianten, die sowohl Ein- als auch
Ausgénge mit Speicher ausristen. Dies schlagtdsion allerdings positiv auf die Performanz nie-
der. Die Realisierung des Kreuzschienenverteilengrhalb des Routers kann zum einen vollstan-
dig (voll) sein. In diesem Fall kénnen alle virtieel Kanale YC), die der Router zur Verfigung
stellt, direkt zugewiesen werden, d. h. die Anz#l Ein-/Ausgangsports des Kreuzschienenvertei-
lers ist gleich der Zahl der virtuellen Kan&@hemultipliziert mit der Anzahl der Routerponts Zum
anderen kann ein Multiplexer eingesetzt werden,dierjeweiligen Verbindungen arbitriert hers-
tellt. Hierdurch entsteht ggf. ein Performanznaithédlerdings ist die benétigte Flache fir Verbin-
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dungsleitungen geringer. Beim multiplexerbasiett@auzschienenverteiler entspricht die Anzahl
der Ein- und Ausgangsverbindungen jeweilDiese Art der Realisierung eignet sich spezigéll f

Implementierungen, die eine hohe Anzahl von vitareKanalen erlauben [54].

Tabelle 2-2: Charakteristika ausgewdahlter On-Chip-Netzwerke

) Switching-/ .
Netzwerk/ Topologie Kommuni- Routing-  |Pufferung Kreuzschienen = Fluss- VC VC-Auswahl QoS-
Router kationskanéle d verteiler kontrolle Unterstitzung
Strategie
Kavaldijev | »p itter NA Wormhole | Input voll NA 4 TDM Ja
[55] Source Queue
2D-Gitter 16 Datenbit Prioritat und
Q[EIS]C regular oder|(parametrierba Wo)r(rghole (Ignu%uut e Voll Credits 4 Puffer- Ja
irregulédr | +10 Kontrollbit Verfugbarkei
Input
.| Wormhole
Dally 2D-gefalteter 256 Datenbit Queue +1 . .
[57] Torus +38 Kontrollbit XY Output Multiplexer Credits 8 NA Ja
Source e
Position
Marescaux 16 Datenbit | Wormhole | 2 Output .
58] 2D-Torus +3 Kontrollbit XY Positions Multiplexer | Handshake 2 TDM Ja
Xpipes | Variabel (zun 32, 64 oder 128 Wormhole | Output . — — .
59] Entwurfszeit Bits Street Sign | Queue Multiplexer | Handshak@arametrierbar Prioritéat Nein
Circuit
Switching
Athereal | 5 h Gitter 32Bits | (GT) Worm-| SutPut NA NA 3 Prioritat Ja
[60] Queue
hole Source
(BE)
. . Input und
Mediawormj Nicht zuord- NA Wormhole | Output Multiplexer NA 2 Virtuelle Uh Ja
[54] nungsf.
Queue
Hermes 16 Datenbit | Wormhole Inout
NoC 2D-Gitter |(parametrierbar) XY / partiell Qupeue Voll Credits 2-4 TDM-adapti Nein
[53] +6 Kontrollbit adaptiv
MANGO 2D-Gitter 32 Datenbit | GS und BE | Output . Handshak -
[48] Clockless | +5 Kontrollbit XY Queue Multiplexer / Credits 8 Prioritat Ja
. Input und
SPIN 32 Datenbit | Wormhole, Handshak .
[50] Fat Tree +4 Kontrollbit adaptiv Output Voll | Credits parametrierbar  NA Ja
Queue
Deflective
Nostrum 2D-Torus NA (Hot—P(_)tato) NA NA Credits | parametrierbar TDM Ja
[46] Routing
Wormhole
2D-Gitter
rﬁ?rlga&(;?e 64 Datenbit W(;w ?ole nggﬂé s 2 Variabel / | Vorgesehen,
GigaNoC 9 (parametrierba . 'l Multiplexer |Handshak .| tabellen- z. Zt. nicht
2D-Torus | adaptivd. | Output parametrierbg ] . h
; +29 Kontrollbit " basiert | implementiert
Variabel (zun Routingtabell{ Queue
Entwurfszeit

Die Flusskontrolle ist besonders b&L-basierten NoCs ein weiteres Merkmal zur Differenaing.

Bei creditbasierterFlusskontrolle halten die Router Zahler fur die ¥Yerfligung stehende Menge
an Pufferspeicher vor. Sind keine Pufferressouroehr verfligbar, so werden eingehende Pake-
te/Flits abgelehnt und dem Sender Geedit-Stand des Empfangers Uber Benachrichtigungskanale
bei freiem Pufferspeicher mitgeteilt [22]. Bei dg@andshakeFlusskontrolle wird dem Sender sei-
tens des Empfangers per dedizierter Leitung odetoRollpaket signalisiert, ob das empfangene
Paket verarbeitet werden kann oder verworfen wit@dwareseitig bedeutet dies deutlich weniger
Aufwand, allerdings ist dieses Verfahren nicht Bzient wie das creditbasierte, da ggf. erfolglose
Ubertragungen stattfinden oder Pufferspeicher ugnéng belegt bleiben. Zudem muss sendersei-
tig auf eine BestatigungAtknowledgegewartet werden.

Die nachsten drei Spalten von Tabelle 2-2 enthah@rspezifische Merkmale. Zunéachst wird die
Anzahl der moglichen virtuellen Kanéle pro Routeg@geben, in der Folgespalte der Zuwei-
sungsmodus. Beim GigaNoC sind virtuelle Kanale geeipen, deren Anzahl parametrisierbar ge-
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halten ist. Sie kdnnen zum einen Uber die AuswahlRbutingstrategie eingerichtet werden, zum
anderen erlauben die Kommandoflits des GigaNoGs leiimerpriore Verarbeitung im Vergleich zu
den Datenflits (vgl. Abschnitt 4.2.2.1), so dasswrdarzeit Uber eine relativ einfache Variante mit
zwei virtuellen Kanalen verfugt. Durch eine zuséts Auswertung von Tabelleneintragen kann
dieser Wert bei Bedarf angepasst werden. Diesegiéinso fur die Unterstlitzung beztglich ver-
schiedener Qualitatsklassen der Kommunikati@uoglity-of-Servicd QoS. Die Mehrzahl der an-
deren NoCs sieht eine Unterstlitzung von Qualitdssidn bei der Kommunikation vor. Beim Gi-
gaNoC kann dies in Abhangigkeit von der Anwendulbgeavogen werden. Die Entscheidung Uber
die Auswahl deWCswird teilweise durch ZeitmultiplexT{me Division MultipleX TDM) oder aber
durch Prioritaten-Vergabe, wie es z. B. beim Int&ifdrotokoll [61] vorgesehen ist, getroffen. Beim
MediaWorm-NoC wird die Allokation der virtuellen Kale mit Hilfe einer virtuellen Uhr geregelt.
Eine globale Zeit im Zusammenhang mit einem indieiten, paketzugeordneten Zeitinkrement
(Vtick) und einer AnkunftszeitAuxVQ dient zur Kanalvergabe. Je kleiner der Wert vaick/ist,
desto schneller muss das Paket weitergeleitet werde

2.3.4 Anforderungen an On-Chip-Netzwerke

Die sich ergebenden wesentlichen Anforderungen mCRip-Netzwerke, gilt es je nach Einsatz-
zweck und unter Berlcksichtigung aller Randbediggmn gewichtet miteinander in Beziehung zu
setzen und eine moglichst optimale Konstellatiormzinlen. Neben den fir Systementwurfe be-
kannten Kriterien wie Performanz (aufgeteilt in Bhsatz, Latenz und Jitter), Leistungsaufnahme,
Flachenbedarf und Kosten, sind weitere Faktoren graféer Relevanz. So ist speziell fur grol3e
Systeme die Skalierbarkeit oder auch die Untemstigizinterschiedlicher Topologien sehr wichtig.
Je nach Leistungsfahigkeit der Verarbeitungseieheftgl. Abschnitt 2.4) kann auch der Funkiti-
onsumfang des NoCs von Bedeutung sein. Bei nicheistungsfahigen Verarbeitungseinheiten
kann ein NoC diese durch eigene Intelligenz emfag€ommunication Off-load Engingsind so
die Gesamtperformanz des Systems steigern. Ebé@mseRk Merkmale wi€uality of Serviceder
Fehlertoleranz in dem jeweiligen Anwendungsszenauio besonderer Wichtigkeit sein. Sehr posi-
tive Eigenschaften fir eine vielseitige Verwendenges On-Chip-Netzwerks sind Flexibilitat bzw.
Robustheit gegentber sich andernden Lastaufkomnzen Bandbreitenansprichen einzelner
Netzwerkpfade. In Abbildung 2-16, Abschnitt 2.7 demn die allgemeinen und NoC-spezifischen
Anforderungen und ihre gegenseitigen Wechselwirkangn einer Merkmalsmatrix fir Chip-
Multiprozessoren gegeniber gestellt. Als weiterdildie Literatur zu On-Chip-Netzwerken sei auf
die Beitrage [22][26][41][53][62][63][64] verwieserdie tiefer gehende Details tber On-Chip-
Netzwerke liefern.

2.4 Eingebettete Verarbeitungseinheiten

Neben der Kommunikationsinfrastruktur stellen diggebetteten Verarbeitungseinheiten die mal3-
gebliche funktionale Einheit eines massiv-paratiedengebetteten Systems dar. Ihre Aufgabe ist es,
die zur Verfiigung gestellten Daten moglichst efitizu verarbeiten und in spezifizierter Form den

Ausgangsschnittstellen zur Verfiigung zu stellen.
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2.4.1 Anforderungen an eingebettete Verarbeitungseinheite

Im Folgenden soll kurz auf die Anforderungen bzesdnderen Merkmale von eingebetteten Ver-
arbeitungseinheiten (PEs) eingegangen werden. Waloéi hier die Performanz, die Leistungsauf-
nahme und die bendétigte Chipflache bzw. die Kogienlen allgemeinen Merkmalen bzw. Anfor-
derungen zahlen, die je nach Anwendungsgebiet saftedliche Stellenwerte haben. Ebenso ist
die Flexibilitat bzw. die Art und Weise der Programerbarkeit einer Verarbeitungseinheit je nach
Einsatzzweck von entscheidender oder weniger beddat Rolle. Verarbeitungseinheiten z. B. in
Funkweckern sind aufgrund des sich nicht &nderrielesatzzweckes, des hohen Preisdrucks und
der limitierten Ressourcen sehr unflexibel, abegleiah klein und energieeffizient realisiert. Bei
zentralen Verarbeitungseinheiten in PDAs hingegaaltsder Preis im Gegensatz zu Flexibilitat
und Leistungsfahigkeit eine untergeordnete Role,die Anwendungsgebiete dieser Geréate sehr
variabel ausfallen und zugleich hohe Leistungsamd@ haben kdnnen. In diesem Szenario kommt
zusatzlich die Wiederverwendbarkeit zum TragenSdéwareentwicklungen auch fir zukinftige
Architekturen verwendet werden sollen. Besonderkdimplexe Systeme ist die Verifizierbarkeit
der Funktionalitat von grof3er Bedeutung. Dies seiz¢ ausgereifte, komfortable und umfangrei-
che Entwicklungsumgebung mit guteDebugMdoglichkeiten* voraus. Im Hinblick auf die Kosten
spielen ebenfalls die von der Verarbeitungseinbeiotigten Ressourcen, wie z. B. Programmspei-
cher und Kommunikationsschnittstellen eine nichtveunachlassigende Rolle. Abbildung 2-16,
Abschnitt 2.7 zeigt u. a. wesentliche Anforderungereingebettete Verarbeitungseinheiten, die es
bei der Konzeption eines Systems zu bertcksichtigghgegeneinander abzuwagen gilt. Sich er-
gebende Wechselwirkungen mit anderen Anforderuriggnveranderungen einzelner Merkmale
kénnen anhand von Trendsymbolen abgelesen werden.

2.4.2 Klassen eingebetteter Verarbeitungseinheiten

Abbildung 2-14 zeigt Varianten eingebetteter Vee#ttingseinheiten und gibt eine qualitative Ein-
stufung ihrer Eigenschaften bezlglich ihrer Perfmm ihrer Flexibilitat und der Zeit bis zur
Marktreife bzw. Verfiuigbarkeit (vgl. Kapitel 3). Mder Zeit bis zur Verflugbarkeit ist bei anwen-
dungsspezifischen Hardwareeinheiten wie den regonérbaren FPGA-Zellen und den speziali-
sierten, meist Standardzellen-basierten Hardwacbbamigern der Entwurf und die Programmie-
rung bzw. Fertigung mit berticksichtigt. Bei den gmaonmierbaren Prozessorddefitral Proces-
sing Unit/ CPU ), Co-ProzessorerCp Processing Unif Co-PU) und anwendungsspezifischen
ProzessorenApplication Specific Instruction Set Process&SIP) wird eine Abstufung bzgl. der
Einfachheit ihrer Programmierung vorgenommen. Diél38 der Kugeln spiegelt den ungeféahren
Flachenbedarf in Bezug auf eine vergleichbare Pedaz der einzelnen Verarbeitungseinheiten
wieder. Die dargestellten Werte dienen zur grobiestlfung der durchschnittlichen Eigenschaften
und kénnen mitunter fur Spezialfalle abweichen.

Zu den hier vorgestellten VerarbeitungseinheitdnezadieUniversal-Prozessore(CPU), die mit-

tels einer Hochsprache sehr flexibel oder mit Helieer maschinennahen Sprache bzgl. der Perfor-
manz zumeist effizienter, aber einhergehend mittliddugroRerem Zeitaufwand programmiert
werden kénnen. Implementierungen einer gefordefenktionalitéat gestalten sich besonders bei
Verwendung einer Hochsprache und der entsprecheindekzeuge wie Compiler und Linker etc.
sehr schnell. Auch die Verifikation der programrteerFunktionalitat wird haufig durch eine Viel-
zahl von Hilfswerkzeugen oder durch integrierte vidzoklungsumgebungen komfortabel unters-
tatzt.
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Abbildung 2-14: Entwurfsraum eingebetteter Verarbetungseinheiten

Zur Performanzsteigerung von Universal-Prozessaeden haufig spezialisierte@oprozessoren
eingesetzt, die Uber einen eingeschrankten, zuraeigendungsspezifischen Befehlssatz verflgen.
Je nach Unterstitzung durch die Entwicklungsumggbunss bestehender Code umgeschrieben
bzw. erweitert werden, um die volle Funktionalgétcher Zusatzprozessoren ausnutzen zu kdénnen.
Dadurch erhoht sich bei ihrer Verwendung die Zeitsype, bis eine zu realisierende Anwendung
verfugbar ist. Sie benétigen zwangslaufig eine Girdibergeordnete Kontrollaufgaben. Aufgrund
ihrer zumeist eingeschrankten Funktionalitat siedven der Flache meist kleiner als der eigentli-
che Prozessor, erzielen dennoch eine héhere Penfiarm ihrem Einsatzbereich.

Anwendungsspezifische ProzessoréApplication-Specific Instruction Set Processara\SIP9
grenzen sich von den Universal-Prozessoren in deald, dass sie speziell fir ausgewahlte An-
wendungsgebiete konzipiert sind. Deshalb ist imddPmanz hoher, ihre Flexibilitat aufgrund ei-
nes eingeschrankten / spezialisierten Befehlssatzégygf. weniger stark ausgepragter Unterstit-
zung von Hochsprachen geringer als die der Unilisazessoren. lhre Programmierung gestaltet
sich zumeist komplexer, so dass die Zeitspanneurms/erfligbarkeit einer Lésung in der Regel
groRRer ausfallt als bei Universalprozessoren, abeeiner héheren Performanz einhergeht. Zu der
Klasse der ASIPs lassen sich auch Netzwerkprozes$65] zahlen, die fur spezielle Aufgaben bei
der Datenverarbeitung in Computernetzen eingesetten, vgl. Kapitel 7 und 8.

Eingebettete rekonfigurierbare HardwareauchFPGA(Field Programmable Gate ArrjaBlocke
genannt, lassen sich durch Formulierungen in Harelveschreibungssprachen und anschlie3ender
Synthese auf die Zieltechnologie in ihrer Funktigdtbeliebig oft konfigurieren. Sie bieten den
Vorteil der Moglichkeit von massiv paralleler Vdraitung bei Betriebsfrequenzen, die derzeit be-
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reits Uber 500 MHz liegen kénnen [66]. Die Reatisigy und Verifikation wird ebenfalls durch
ausgereifte Werkzeugketten unterstitzt, gestattbtadlerdings vom Zeitaufwand in der Regel um-
fangreicher als beim reinen Softwareentwurf. D&fé@nn bei vielen Anwendungen aufgrund der
realisierbaren Parallelitéat eine respektable Perémz erzielt werden. Die Flache ist hingegen auf-
grund der flexibleren Strukturen hoher anzusetzen.

Die zumeist schnellste und zugleich energieeffigste Losung bei geringster Flache sindggie-
zialisierten HardwarebeschleunigefHW-Acq. Sie bieten jedoch am wenigsten Flexibilitat und
bendtigen die langste Implementierungszeit. Siaezigsich fir Aufgaben, deren Spezifikation sich
nicht mehr andert und die besonders viel Rechaategsohne grof3e Flexibilitdtsanforderungen
verlangen. Die Implementierung erfolgt ebenfallsctiuModellierung in einer Hardwarebeschrei-
bungssprache und anschlielende Abbildung auf dspmchende Zieltechnologie, z. B. FPGA-
oder Standardzellentechnologie. Bei der letzterefiechnologie ist der Aufwand deutlich héher
und damit die Zeit bis zur Verfugbarkeit verglichait den anderen Varianten am langsten.

Letztendlich sollte von Fall zu Fall abgewogen vegrdwelche Art von Verarbeitungseinheit fir
welchen Zweck zum Einsatz kommt. Winschenswertirst globale Kommunikationsinfrastruk-
tur, die eine problemlose Anbindung aller Variantem eingebetteten Verarbeitungseinheiten zu-
lasst und fuir den Systemprogrammierer leicht acsa integriert.

Hardwarebeschleuniger, FPGA-Blécke und anwendureg#xrhe Prozessoren sind Einheiten, die
zumeist kunden- bzw. anwendungsspezifisch redligierden. Sie finden Einsatz in sehr einge-
schrankten Anwendungsklassen mit besonderen Amriamden an die Leistungsfahigkeit oder an
die Kosten. Eingebettete Universal-Prozessorennzoien mit ihren Coprozessoren bzw. Copro-
zessorschnittstellen sind nicht ausschliel3lichfmtrollaufgaben geeignet, sondern werden zusatz-
lich fur ein groRes Spektrum von Anwendungen eiegegsNeben den bereits verifizierten Hardwa-
reentwurfen versprechen ausgereifte Entwicklung®loaggen zudem eine kurze Entwurfszeit des
Gesamtsystems. Detaillierte Analysen zu den urttezdlichen eingebetteten Verarbeitungseinhei-
ten in Bezug auf die GigaNetIC-Architektur werdendien Kapiteln 6, 7 und 8 fiir dedizierte An-
wendungen aus dem Netzwerkbereich vorgestellt.

Im Folgenden wird ein Uberblick liber eine Auswabl derbreitetsten Prozessorkerne und ihre
wesentlichen Merkmale gegeben. Selbst wenn fir sebinenlastige Anwendungen spezielle
Hardware Einsatz findet, so werden Universalprazess sehr haufig fur die bereits erwahnten
Ubergeordneten Kontrollaufgaben und Schnittstaliektionen eingesetzt, so dass aktuelle SoCs
zumeist mehrere Prozessorkerne integrieren.

2.4.3 Charakteristika von eingebetteten Prozessoren

Betrachtet man die Kopplung Speicher und Prozessorkinterscheidet man bei den eingebetteten
Prozessoren im Wesentlichen zwischen der Von-NeorAaiohitektur und der Harvard-
Architektur. Bei derVon-Neumann-Architekturwerden Daten und Instruktionen Uber einen ge-
meinsamen Bus transferiert. Zunachst werden dieuktgon und im Anschluss die bendétigten Da-
ten geholt. Diese sequentielle Vorgehensweise lean@ gewisse Geschwindigkeitsreduktion be-
deuten, da der Prozessor ggf. erst auf die Beghitsgy der bendtigten Daten warten muss. Die
Entwicklung der letzten Jahre hat gezeigt, dasscéischwindigkeit von Prozessoren schneller zu-
nimmt als die der Speicher und Bussysteme [67]. Bfarcht in diesem Zusammenhang auch von
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dem ,Von-Neumann-Flaschenhals”, dessen Effekt dficisatz von Caches, also schnellen Zwi-
schenspeichern in enger raumlicher Nahe zum Prodess, verringert werden kann.

Bei derHarvard-Architektur sind getrennte Busse fir Daten und Instruktionergesehen. Hier-
durch wird der Ablauf nicht so stark wie bei derrivideumann-Architektur durch die limitierenden
Ressourcen Bus und Speicher beeintrachtigt. Datdninstruktionen kénnen gleichzeitig geladen
werden. Aus Sicherheitsgrinden ist eine strikteniveg zwischen Daten und Instruktionen eben-
falls empfehlenswert, da so die Gefahr von Schaglcddr zu Pufferiberlaufen fuhrt, reduziert
wird. Allerdings benétigt die Implementierung deardard-Architektur zuséatzliche Chipflache far
die Realisierung der beiden Bussysteme und zusitaénotigter Kontrolllogik.

Bezuglich des Befehlssatzes von Prozessoren wigdnakin zwischemRISGReduced Instruction
Set Computgr und CISQComplex Instruction Set Compuk&rchitekturen unterschieden. Die
RISC-Prozessor-Architektust gekennzeichnet durch einen relativ geringefelsvorrat, daher
auch der Nam&educed Instruction Set Computivesentliche Eigenschaften dieser Architektur
sind vor allem: Die enthaltenen Befehle sind wengpeezialisiert, besitzen nahezu alle die gleiche
Lange und kdnnen meist in einem Taktzyklus abgdé@tbeerden, was u. a. durch Pipelining er-
reicht wird. RISC-Prozessoren sind zumeistlLalad-StoreArchitektur realisiert, d. h. nur Befehle
aus derLoad/StoreGruppe kénnen auf den Speicher zugreifen. Alleeven Befehle arbeiten auf
Registerinhalten. RISC-Kerne verfligen deshalb zsimi#er eine grof3ere Anzahl von Registern,
da dies die beschrankten Mdglichkeiten der Sperciggiffe seitens der Befehle kompensieren
hilft.

CISC-Prozessor-Architekturarerfigen im Gegensatz zu RISC-CPUs Uber eineraugigrof3eren
Befehlsvorrat. CISC-Befehle sind in der Regel irethFunktion deutlich komplexer als RISC-
Befehle. Viele der Befehle sind hochgradig spezigt, bendtigen jedoch meist mehrere Taktzyk-
len. Es stehen mehr Adressierungsmaoglichkeiterb@lsRISC-Architekturen zur Verfigung. Im
Gegensatz zu den meist ,festverdrahteten* Funkitarer RISC-Kerne liegt die Funktionalitat ei-
nes CISC-Kerns héaufig als Microcode in einem irgar$peicher des Prozessors vor. Dieser wird
dann in einzelne einfachere Befehle tbersetzt brthalt diese direkt.

Wesentliche Vorteile der RISC-Architektur gegenutber CISC-Architektur beim Einsatz in einge-
betteten Systemen sind die geringere KomplexitAHdedware und damit die geringere Flache als
auch die geringere Leistungsaufnahme. Zudem lasisbnhthere Taktraten erzielen. Die einges-
parte Flache kann ggf. fur anwendungsspezifischelWkarebeschleuniger verwendet werden. Die
CISC-Architektur zeichnet sich durch die makroatigBefehle aus, die dem Softwareentwickler
bei der Programmierung auf Assemblerebene viel inddenehmen kénnen. Geschieht die Prog-
rammierung hingegen in einer Hochsprache, die InigimesUbersetzersim Weiteren auciCom-
piler genannt, auf den Prozessor Ubertragen wird, salledieser Vorteil.

2.4.4 Methoden zur Erhéhung der Leistungsfahigkeit von Pozessoren

Methoden, die auf Prozessorebene die Performanzdamndt verbunden auch meist die Ressour-
ceneffizienz des Systems steigern kdnnen, grindénhéufig auf das Ausnutzen von Parallelitat.
Hierbei kann zwischen der feingranularen Parafiebiuf Instruktionsebene, man spricht hier auch
von Instruction-Level Parallelisn(ILP), und der grobgranularen Parallelitdt auf Funidebene,
auchTask-Level Parallelisbzw. Thread-Level Parallelisn(TLP) genannt, unterschieden werden.
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ILP lasst sich unterschiedlich erfolgreich ausnut2&'ie erfolgreich, also wie stark die Beschleuni-
gung ausfallt, hangt stark von der Anwendung akerdings tragt auch die Leistungsfahigkeit des
Compilers zum Erfolg bei. Je nach Fahigkeit dessknlens von Parallelitdt auf Instruktionsebene
seitens des Compilers kann ein Programmablauf m@dér weniger stark beschleunigt ausgefiihrt
werden. Der Compiler versucht hierbei durch ein fiétppen bzw. auch ein Vertauschen der Rei-
henfolge der Befehle die Ressourcen der Hardwatlechébesser einzusetzen.

Zu den Techniken, die auf Basis der Mikroarchiteldumgesetzt werden, um ILP auszunutzen, ge-
horen: Instruktionspipelining, superskalare Ausfuhrung Out-of-Order-Verarbeitung Register-
Renaming spekulative AusfihrungBranch Predictionund Multithreading. DurchlInstruktions-
pipelining wird eine teilweise Uberlappung der Ausfilhrung wastruktionen ermdglicht. Hier-
durch kann u. a. die Taktfrequenz erhéht werdes. teigerung kann diguperskalare Ausfih-
rung eingesetzt werden, bei der parallele Einheitenati@imarte Instruktionen ausfihren, deren
Ausfuhrung auch wieder ifipelining-Verfahren stattfinden kann. Eine weitere Techréknendet
die Out-of-Order-Verarbeitung Bei dieser Methode nutzt man die Existenz vongRimmcode
aus, der in keiner Datenabhangigkeit zu anderegr®mamsequenzen steht, so dass dieser parallel
ausgefuhrt werden kann. D@ut-of-Order-Verarbeitungst orthogonal zuninstruktionspipelining
und zur superskalaren Ausfiihrung zu sehen und #ashalb auch mit beiden Techniken kombi-
niert eingesetzt werden. Das Arbeiten mit Schagigistern, aucliRegister-Renaminggenannt, er-
maoglicht die Vermeidung von Konflikten bei d@ut-of-Order-Verarbeitungwas durch diese ver-
steckten internen Register ermdglicht wird. Bpgekulative Ausfuhrungvon zukinftigen, wahr-
scheinlichen Codesequenzen mit moglichen Eingamgsdaihlt ebenso zu den Techniken zur Per-
formanzsteigerung wie die Sprungvorhersageiich Predictior). Bei dieser werden im Vorfeld
maogliche Ergebnisse von zuklnftigen Sprungadrelssegchnet, um den potentiellen Programmab-
lauf parallel zur derzeitigen Operation spekuldbvtzusetzen. Die hier vorgestellten Techniken
sind sowohl in Hardware realisierbar als auch nobgliEinsatzgebiete von Compilern.

Bei der Ausnutzung voithread-LeveParallelitdit muss die Anwendung in mehrere Fumidio
bzw. Threadseinteilbar sein, die nebenlaufig abgearbeitet eerkdonnen. In diesem Zusammen-
hang spricht man auch vastultithreading. Dieses Verfahren nutzt eine grobere Granulaaigitie
desILP aus. Die immer gréf3er werdenden Wartezeiten aeicBpr oder andere Systemressourcen
kénnen z. B. durch das Ausfuhren eines and&teeadssinnvoll vom Prozessor genutzt werden.
Dieses ,neue* Programmierparadigma fuhrt zu neussafzen bei der Anwendungsprogrammie-
rung, bei der nicht mehr nur durch schnellere Pssaeen ein Leistungszuwachs erzielt wird, son-
dern zusatzlich durch Ausnutzen inharenter Anwegdparallelitat und das damit verbundene Ein-
fuhren vonThreads

2.4.5 Beispiele eingebetteter Prozessorkerne

Im Folgenden werden einige relevante, aktuelleebetiete Prozessorkerne vorgestellt. Tabelle 2-3
stellt wesentliche Merkmale dieser eingebettetavzéssorkerne gegenuber. Mit ihrer Hilfe lasst
sich ein erster Eindruck Uber die Einordnung degaBlietlC-Prozessorarchitektur gewinnen, deren
Aufbau in Abschnitt 4.3 ndher beschrieben wird. 8idgezeigten Synthesewerte kbnnen in Kapitel
8 nachvollzogen werden. Zu den hier aufgetragern®arakteristika zéhlen u. a. die maximale Ar-
beitsfrequenz, die stark abhangig von Technologak Architektur respektive Anzahl der Pipeline-
stufen sein kann: von 33 MHz beim MCore in 360-nacfinologie von Freescale mit nur drei Pi-
pelinestufen bis zu 1000 MHz beim IBM Power464 @arin-Technologie mit siebenstufiger Pipe-
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line. Die typische Leistungsaufnahme variiert vg@50mW/MHz beim GigaNetIC-N-Core bis hin
zu 0,58 mW/MHz beim MIPS32 M24K und liegt damit wwei bis drei GréRenordnungen unter
der heutiger Desktop-CPUs (vgl. Abschnitt 8.3.1¢r Blachenbedarf (diBie-Grol3e) des Prozes-
sorkerns bzw. des Kerns mit zusétzlichem Speich&usammenhang mit der Technologie und der
zu fertigenden Stiickzahl entscheidet tber die diusigskosten und damit auch Gber den Preis des
Endprodukts und ist daher ebenfalls von grol3er Beag flir das Gesamtsystem. Die Grél3en sind
abhangig von der Technologie, der Menge des irgggn Speichers und der zusétzlich integrierten
Peripherie. Die angegebenen Daten liegen hier hers©,1 mm2 beim ARM7TDMI-S, gefertigt in
90-nm-Technologie, und 5,8 mm?2 beim IBM Power 46#n zugleich leistungsfahigsten Prozessor
der dargestellten Auswahl. Die Performanz der Fs@@en wird in dem Bewertungsmalfd (vgl. De-
finition 4) DMIPS' [68] angegeben. Dieser bereits 1984 voraKER vorgestellte Benchmark gilt
zwar seit einiger Zeit fur die Bewertung von Degk{OPUs als veraltet, wird aber im Bereich der
eingebetteten Prozessorkerne immer noch zur Cleaisiktung der Leistungsfahigkeit verwendet.
Der Dhrystone-Benchmark ist ein synthetischer Beranik, der die Leistungsfahigkeit bzgl. Inte-
ger- und Stringoperationen der Rechnerarchitekawebtet. Er ist u. a. stark abhangig von der
Architektur, vom Compiler, dessen Codeoptimierudgm Linker, und der eingesetzten Cache-
architektur. Dies spiegelt sich auch in den aufgginen Werten wider. Der N-Core mit einer sehr
einfach gehaltenen Struktur erreicht nur 0,51 DMN®S$z, wohingegen der flachengroldte Prozes-
sorkern Power 464 von IBM auf einen nahezu vierts@thohen Effizienzwert (vgl. Definition 38)
von 2 DMIPS/MHz kommt.

Der ARM11MP-Prozessorkern ist, ebenso wie der GegfINN-Core-Prozessorkern multiprozes-

sorfahig, allerdings nur konfigurierbar mit bis zier Prozessoren, im Gegensatz zum GigaNetIC-
Prozessorcluster, der derzeit bis zu acht Prozessals eng-gekoppeltes MP-System unterstiitzt
(vgl. Kapitel 4). Fur die Realisierung eines magsavallelen Chip-Multiprozessorsystems ist eine
kleine Die-Grol3e der Prozessorkerne von besonderer Bedewgingiapitel 8.

Zu den bedeutendsten Prozessorkernen in eingedret®gistemen zahlen derzeit die Produkte der
Firmen ARC, ARM, Freescale, Hitachi, MIPS und Té&aoai Im Bereich der FPGA-Softcores, also
der fur FPGAs optimierten Prozessorkerne, sindMieroBlaze von Xilinx, wie auch der Niosll
von Altera zu nennen, der&ie-GroR3en aufgrund der abweichenden Zieltechnolagie i

Tabelle 2-3 nicht aufgelistet sind. Wichtig zu elwén ist auf3erdem, dass eine Vielzahl weiterer
Firmen als Lizenznehmer der vorgestellten Architedtt darauf aufbauende, eigene Produkte an-
bieten. Derzeit wird der Markt der eingebetteterkidprozessoren mit tiber 80 % Marktanteil von
ARM dominiert. Mehr als 2,3 Milliarden ARM-basiertdikroprozessordesigns werden derzeit
jahrlich gefertigt [69]. Weitere 200 Millionen irgaerte Schaltkreise werden mit ARC-basierten
Mikroprozessoren pro Jahr gefertigt [70]. Bei eipgjgeten Mikrocontrollern, also Systemen, die
zusatzlich Speicher, Peripherie und erweiterte Bslwllen aufweisen, wird der Markt gegenwartig
unter 40 Herstellern, die insgesamt mit mehr alé\&hitekturvarianten vertreten sind, aufgeteilt.

* DMIPS steht fiirDhrystone MIPSund beziffert die Anzahl erreichter Dhrystone-Bemark-Durchlaufe die eine
Verarbeitungseinheit pro Sekunde bewaltigt, getkilich 1757. 1757 bezeichnet die Anzahl an Durdatgulie eine
VAX11/780 Maschine erzielte. Diese galt als eine-EilPS(Millionen Instruktionen pro Sekunde)-Masahin
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Tabelle 2-3: Kenndaten ausgewabhlter eingebetteter&zessorkerne
CPU- Typische Leis- | . . .
Hersteller Typ Frequenz |Pipelinestufen DMIPS tu%Zsaufnahme Dlﬁ;](;;’gBe Tec[r;]rr::)]logle F|aSsFrJ1(e/ICsh|§LM
[MHZz] [MW/MHZ]
Altera Niosll 200 6 250 k. A k. A. 65 -/ -
ARC ARC 605 40 5 520 0,06 0,31 130 -/ -
ARC ARC 625D 35 5 455 0,08 0,71 130 -/ -
ARC ARC 710D 53 7 800 0,16 0,93 130 -/-
ARM ARM7TDMI-S 245 3 220 0,09 0,1 90, -/ -
ARM 966E-S 470 5 517 0,11 0,38 90 -/-
ARM (Argr/'cl;mz) 620 8 659 0,43 2,54 130 -/16K+16K
ARM (ﬁi?n'\glégiie) 620 8 k. A. 0,37 1,8 130 -/-
Freescale M-Core 33 3 31 0,41 2,2 360 -/-
IBM Power 405 400 5 608 0,19 2,0 90, 0/32K
IBM Power 464-H90 10Q0 7 2004 0,53 5,8 90 0/64K
MIPS Technologieg MIPS32 M4K Core 24D 5 367 0,05 0,4 130 -/ -
MIPS Technologieg MIPS32 M24K Core 625 8 900 0,58 2,8 130 -/ -
Renesas SH4-202 266 5 400 0,06 0,93 130 -/-
Tensilica Diamond 108Mini 250 5 300 0,11 0,44 130 -/ -
Tensilica Diamond 570T 238 5 380 0,28 1,449 130 -/ -
Xilinx MicroBlaze 5.00 210 5 240 k. A k. A 65| -/-
GigaNetIC N-Core 285 3 144 0,05 0,12 90 -/ -
GigaNetIC N-Core-Subsystem 285 3 144 0,2 0,94 90 - /32K

2.5 Speicher fur eingebettete Systeme

Der Speicher stellt neben der Kommunikationsinfragtir und den Verarbeitungseinheiten die
dritte wichtige Hardwarekomponente fur eingebetigteallele Systeme dar. Komplexe Systeme
verfigen haufig nicht nur Uber eine Art Speichendern verwenden eine besonders aufeinander
abgestimmte Speicherstruktur. Dies liegt darin bedet, dass die einzelnen Speichervarianten un-
terschiedliche Eigenschaften und damit auch Vod Nachteile mit sich bringen, die es gilt még-
lichst gut und an die potentielle Anwendung angspas kombinieren.
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SRAM
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DRAM

Sekundéarer Speicher
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n etc.
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Abbildung 2-15: Speicher-Hierarchie bei Prozessorstemen
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Als Grundregel lasst sich folgende Aussage treffechneller Speicher benétigt viel Flache und
Energie, gro3er (im Sinne der SpeicherkapazitagicBpr ist langsam und benétigt weniger Ener-
gie pro Bit. Eine effiziente Speicherhierarchiestaht die Vorteile beider Speicherarten nutzbar zu
machen und maskiert bestenfalls deren NachteilgiliBstigt werden diese Ansatze haufig durch
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die Anwendungen selbst, die oft eine deutliche aAldkt” in ihren Daten und Instruktionen aufwei-
sen. Diese Lokalitat wird u. a. auch besonderssabmellen Zwischenspeichern, den so genannten
Caches (vgl. Abschnitt 4.4.2) ausgenutzt. Man sotexidet zwischeraumlicher undtemporaler
Lokalitat. Unter rAumlicher Lokalitat werden Zugriffe auftea bzw. Instruktionen verstanden, die
in gleichen bzw. benachbarten SpeicherbereichgenieTemporale Lokalitat hingegen bezieht sich
auf zeitlich nah aufeinanderfolgende Zugriffe algiche Daten bzw. Instruktionen. Abbildung 2-15
gibt Aufschluss Uber Kennwerte unterschiedlichezi@pervarianten und die sich hieraus ergebende
Speicher-Hierarchie flr Prozessorsysteme.

Algorithmen sollten, wenn mdoglich, die Lokalitadtrd@aten und Instruktionen ausnutzen bzw. so
implementiert werden, dass moglichst effizient det vorgegebenen Speicher-Hierarchie gearbei-
tet werden kann. Z. B. kann die Verwendung mehréheeads helfen, Speicherlatenzen zu verde-
cken. Bei Multiprozessorsystemen ist normalerwddsenmunikation zwischen den Ubergangen
der einzelnen Hierarchiestufen bzw. zwischen veesidmen Verarbeitungseinheiten notwendig.
Fur den Algorithmus ist in dieser Situation wichtapwagen zu kdnnen, wie teuer, im Sinne von
Takten, die unterschiedlichen Speicherzugriffe bai.Kommunikation zu anderen Verarbeitungs-
einheiten und der Zugriff auf deren Speicher konibas bedeutet, dass eine genauere Charakteri-
sierung dieser Zugriffszeiten fur die spatere Ansarg und deren Realisierung von entscheidender
Bedeutung sein kann. Allerdings sind hier Mitteltgeanzunehmen, da z. B. bei wahlfreiem Zugriff
konkurrierende Anfragen mehrerer Verarbeitungseieheauftreten kénnen. Vorteilhaft sind hier
Simulationen im Vorfeld mit der Moglichkeit der Rametrisierung der einzelnen Komponenten
unter Anwendung der vorgesehenen Zielapplikatigh, Kapitel 5. Ein auf diese Belange einges-
telltes Programmiermodell (vgl. Abschnitt 4.5) kaglmenfalls die Performanz des Gesamtsystems
deutlich optimieren.

2.5.1 Wesentliche Charakteristika von Speicherstrukturen

Neben der in der Speicherhierarchie vorgestellterieling in primare, sekundare und tertidre
Speicher, die durch die Distanz zur Verarbeitungsst definiert sind, gibt es weitere wichtige
Merkmale fur Speicher.

Man unterscheidet zwischéliichtigem und nicht-flichtigem Speicher Eine Eigenschatft, die be-
sagt, ob der Inhalt des Speichers erhalten bleidhn er nicht mehr mit Spannung versorgt wird.
Mit den immer geringer werdenden Zugriffszeitentatiar nicht-flichtige Bausteine finden diese
immer mehr Verwendung bei eingebetteten Systeméohtiger Speicher wird normalerweise nur
fur Primarspeicher eingesetzt, da er eine hoheoReainz bietet, allerdings auch permanent mit
Spannung versorgt werden muss. Flichtiger Speifederum lasst sich unterteilen in die zwei
Hauptgruppen, den statischen und den dynamischeitt&p. Statischer Speicher wird normaler-
weise mit sechs Transistoren pro Bit realisiert omgss durchgangig mit Spannung versorgt wer-
den. Dynamischer Speicher hingegen kann mit eineansistor und einer Kapazitat als speichern-
dem Element pro Bit realisiert werden. Bei diesgmei&ertyp miussen allerdings die Speicherstel-
len periodisch aufgefrischt werden, was einen zlisken Aufwand an Kontrolllogik bedeutet.

Eine weitere Eigenschatft ist die Art und Weise, aid die Daten zugegriffen werden kann: Es
wird grundsatzlich zwischen wahlfreiem und sequetietin Zugriff unterschieden. Bei wahlfreiem
Zugriff ist es maoglich, beliebig oder in einem s@noR3ztigigen Rahmen auf Speicherzellen zuzug-
reifen. Bei sequentiellem Zugriff hingegen kann dagriff nur kontinuierlich in einer geordneten
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Reihenfolge erfolgen. Ein weiteres Merkmal ist Bliéglichkeit der Informations&dnderung. Handelt
es sich um einen reinen Lesespeicl®dM (Read Only Memojy einen einmalig beschreibbaren
SpeicherWrite Once Read Manf’WORM), oder aber einen einmalig programmierbaren Speich
(One-Time-ProgrammableOTP), der z. B. schon bei der Fertigung programmiertd wSpeicher,
der wahlfreien Zugriff gestattedRAM (Random Access Mem@ryvird zusétzlich nach seiner Tech-
nologie bzw. Realisierungsform naher unterschie@&AM DRAM, DDRAM VRAMund weitere.
Die Moglichkeiten der Adressierung sind ebenfalls \Bedeutung. So kann zwischen numerisch
adressiertem Speicher, bei dem jede Informatioremgr numerischen Adresse erreichbar ist, und
inhaltsbasierter Adressierung unterschieden werBen.der inhaltsbasierten Adressierung, auch
Content Addressable Memori@SAM) genannt, werden fir die Speicherinhalte mittelereStreu-
wertfunktion, auch alslash-Funktion bezeichnet, fingerabdruckahnliche Iderigfungsmerkmale
mit geringem Speicherbedarf erzeugt, mit derenetsijfater die abgespeicherte Information wieder
abgerufen werden kann. Diese Art der Adressiershdpesonders fur spezielle Speicher in Netz-
werkkomponenten von grofRer Bedeutung (vgl. Absttng). Die Realisierung kann in Software
unter Verwendung von herkdbmmlichem Speicher erfold2iese Variante ist kostengunstig, aber
langsam. Oder aber die Funktionalitat wird durclplementierung spezieller Hardware, die vor die
Speicherzellen vorgeschaltet ist, realisiert, wetcldeutlich aufwéndiger, aber auch wesentlich
schneller ist. Eine weitere Mdglichkeit ist die Wlagerung der numerischen, maschinenlesbaren
Adressierung durch menschenlesbare Zuordnungenesvie B. bei Dateisystemen Ublich ist, die
ggf. durch ein Betriebssystem gepflegt werden.

Neben den bisher genannten Methoden und Technaltagsen sich Speicher auch durch messba-
re, qualitativ fassbare Parameter definieren:

Die SpeicherkapazitdCy gibt die Gesamtheit der zu speichernden bzw. Barah Information des
Speichers in Bit bzw. Byte und deren VielfachenEin.Bit ist die atomare Informationseinheit in
der Digitaltechnik und reprasentiert die zweiwestigogik durch eine logische ,0* bzw. ,1% Ein
Nibble besteht aus vier Bits, und dBgte setzt sich aus zwéibbleszusammen. Die Definition,
dass ein Byte acht Bits umfasst, gilt fur alle IBMGs und deren Nachfolger. Grundsatzlich be-
zeichnet ein Byte die Anzahl an Bits, die notwersligd, um ein Symbol des Basis-Symbolvorrats
des Systems darzustellen. Die Notation gréf3ereicBg@nengen erfolgt héufig nicht Si-konform
durch dezimale Vielfache (k, M, G, etc.), sondemrctd Vielfache von Zweierpotenzen (
2°=1024% K, 2°2 Netc.).

Die Speicherdichtgo,, wird angegeben iBpeicherkapazitat/Flachalso Bit/mm?. Sie ist ein gutes
Malf3, um die Flachenintensitat verschiedener Speiahanten abzuschatzen.

Die LatenzLy ist das Mal fur die Zeitspanne, die bendtigt winah die Informationen aus einer
bestimmten Speicherzelle auszulesen bzw. Daterege bpeicherzelle zu schreiben. Aufgrund des
technologiebedingten, teilweise unterschiedlicheitv&rhaltens von Speichern beim Lesen bzw.
Schreiben ist sinnvollerweise zwischen Lese-Lalapg) und Schreib-Latenkyw) zu unterschei-
den. Ebenso sinehinimale maximaleunddurchschnittlichd_atenz(min / max / avd-mrw) beson-
ders bei sequentiellen Speichermedien als kennzencles Leistungsmerkmal zu nennen.

Der DurchsatzDy gibt die zur Verfugung gestellte Datenmenge ineBgto Sekunde [B/s] an.
Auch hier wird in Abh&angigkeit von der Zugriffsaatbenso wie bei der Latenz differenziert.
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2.5.2 Anforderungen an eingebettete Speicher

Offensichtlich gibt es zwischen vielen der Anforalggen proportionale aber auch antiproportionale
Wechselwirkungen. So erhdht eine deutlich groReapakitat die Kosten, und ein héherer Durch-
satz, z. B. hervorgerufen durch eine hdhere Takikeaz, vergroRert die Leistungsaufnahme. Diese
konkurrierenden Anforderungen kdnnen durch Waht¢reanderen Technologie bzw. Speicherform
ggf. umgangen bzw. verringert werden. Allerdingglsilies zumeist Kompromisslosungen, bei de-
nen nie alle Ziele optimal erreicht werden konriere Performanz eines Speichers wird im Allge-
meinen durch seine Latenz und den erzielbaren Batzhdefiniert. Die Kosten bzw. der Preis ge-
hen einher mit der Speicherkapazitat, der dafubbgten Flache und der verwendeten Technolo-
gie. Die Leistungsaufnahme hangt, wie bereits emyaon zahlreichen Faktoren ab, wobei fur
viele Einsatzgebiete zusatzliche Funktionen wiB.4lexibler Zugriff auf Speicherinhalte bestimm-
ter Grol3e, Fehlererkennungs- und Fehlerkorrektunanm@smen sowie Stromspar-Modi von beson-
derer Bedeutung sein konnen. Letztendlich spielesh &igenschaften wie Integrationsaufwand,
also die Existenz genormter Schnittstellen, bzwe ggjenaue Spezifikation des bendtigten Zeitver-
haltens eine Rolle. Eine Zusammenfassung der wesent Anforderungen an eigebettete Speicher
im Kontext von Chip-Multiprozessoren wird in Abhildg 2-16, Abschnitt 2.7 gegeben.

2.6 Anwendungsgebiete von On-Chip-Parallelrechnern

Setzt man aus den in den vorherigen Abschnittekutiesten Kernkomponentei®n-Chip-
Netzwerk eingebettete Verarbeitungseinheitamd Speicher baukastenartig Systeme mit mehre-
ren Prozessorkernen zusammen und integriert digfseiem Siliziumtrager, so erhalt m&am-
Chip-Parallelrechner oder auctChip-Multiprozessoren (CMP).

Heutige Anwendungen erfordern aufgrund wachsenaéorderungen und extrem rechenintensiver
Algorithmen in vielen Bereichen bereits paralleleratbeitung. Dabei gestalten sich die An-
wendungsgebiete entgegen der weitlaufig verbreitsteinung sehr vielfaltig und beschréanken sich
nicht nur auf Wissenschaft und Forschung, wie eseuter Dekade noch vorwiegend der Fall war.
Zu den herausfordernden Einsatzgebieten fur pé&ailerarbeitung zahlen u. a.: Berechnung glo-
baler Klimamodelle, Crashtest-Simulationen, dreehsionale Modellierung auf Basis finiter Ele-
mente, Erdbebenvorhersage, Genforschung, militégiseorschung, quantentechnische Simulatio-
nen, Weltraumforschung, Wirtschaftsanalysen undinm@dche Forschung allgemein. All diese
Anwendungsszenarien kommen wie erwartet aus deaden Wissenschaft und Forschung. Im-
mer starker jedoch treten Gebiete aus alltaglidtebensbereichen in Erscheinung und fordern im-
mensen Zuwachs an Rechenleistung. Zu diesen ,nqaadahtiellen Einsatzgebieten paralleler Re-
chensysteme, die hdufig kompakte, SoC-basiertedtahgen erfordern, zahlen: Computerspiele
und Computergrafik allgemein, Multimedia-Anwendungaigemein (z. B. Videobearbeitung in
Echtzeit, MPEG4 etc.), Physikbeschleuniger zur $atien komplexer physikalischer Effekte (z.
B. in 3D-Spielen), Spracherkennung zur Computerdiis®ensteuerung etc. [71], Virtualisierung
(Emulation vieler / verschiedener Betriebssystemt eaner Hardware z. B. balNeb-Hoster
World-Wide-Wekbasierte Suchmaschinen, massiv parallele Daterbettang im Sinne von Netz-
werkanwendungen (z. Bloice-over-IR Tripple Play Home-Video-Entertainmemtc.). Diese Be-
reiche haben mittlerweile eine weitaus grol3ere khaakht als die oben genannten Forschungsbe-
reiche und sind somit bereits als treibende Kiiftelie Entwicklung leistungsfahiger Parallelrech-
nerarchitekturen zu sehen. Dies wird u. a. durehegitwicklung des bereits anfangs dieses Kapitels
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erwahnten Cell-Prozessors deutlich, der hauptséchlir den Home-Entertainmentbereich z. B. in
Spielekonsolen hergestellt wird. Die Tatsache, daisshm auch Supercomputer realisiert werden
konnen ist aus kommerzieller Sicht zweitrangig.

Die Fertigung von SoCs in Nanometertechnologie wirther teurer und diBIRE(Non-Recurring-
Engineering)Kosten fiir solche Entwirfe tUbersteigen die MilkorEuro-Grenze bei weitem. Die
Einsetzbarkeit einer CMP-Architektur fir den Massarkt und fur viele Bereiche dieses Marktes
sind somit fur einen wirtschaftlichen Erfolg zwimgenotwendig. Skalierbarkeit, Wiederverwend-
barkeit und Flexibilitdt gepaart mit angemessengistung sind hier ausschlaggebende Kriterien.
Die weltweite Vernetzung halt mehr und mehr Eingugnser tagliches Leben, und der damit ver-
bundene Informationsaustausch sowie die damit veldre Informationsverarbeitung sind wesent-
liche Treiber fir SoC-Designs. Folglich erscheirgsds Anwendungsgebiet als pradestiniert fur
massiv-parallele Systeme. In Kapitel 7 wird desldith in dieser Arbeit entworfene GigaNetIC-
Architektur speziell fir Netzwerkanwendungen analgsind optimiert.

2.7 Anforderungen an Chip-Multiprozessoren

Im Folgenden werden zusammenfassend die wesemtlih&®orderungsmerkmale an Chip-Multi-
prozessoren aufgezeigt (vgl. Abbildung 2-16). Dagestellte Merkmalsmatrix setzt allgemeine
Anforderungen an Schaltungsentwirfe sowie die gfiemni Charakteristika der zuvor diskutierten
Kernkomponenten (On-Chip-Netzwerk / NoC, Verarb&gseinheiten / PEs und Speicher / Mems)
und des resultierenden Chip-Multiprozessors (CMRemander in Beziehung.

Die bilateralen Abhangigkeiten der Merkmale unteaeider werden dabei in finf Kategorien unter-
teilt. Bei Anderung eines Merkmals kann sich diespprtional, antiproportional oder auch unbes-
timmt auf ein anderes Merkmal auswirken. Bei depBrtionalitat wird zwischen zumeist propor-
tional/antiproportional und proportional/antiproponal unterschieden. Diese Abstufung differen-
ziert so zwischen zwei Qualitaten. Bei einer zuingisportionalen/antiproportionalen Beziehung
wird eine Tendenz angegeben, wohingegen bei propaten/antiproportionalen Zusammenhang
in der Regel die Aussage stets zuttifBeispielsweise bedeutet ein hoherer Durchsatz mReh
formanz und steht somit in proportionaler Beziehmmgdiesem Merkmal. Besteht der gleiche Zu-
sammenhang bei umgekehrter Reihenfolge der Merkifvedetauschung von Ursache und Wir-
kung) ebenfalls, so wird aus Griinden der Ubersatkeit das entsprechende Symbol weggelassen.
Die Felder in der rechten oberen Halfte der Mamd dann grau unterlegt und ,identisch” zu ihren
Pendant in der linken unteren Hélfte der Matrixi Baer nicht kommutativen Beziehung der
Merkmalé werden beide Halften der Matrix zur Kennzeichngegutzt. So bedingt z. B. ein hohe-
rer Preis nicht zwangslaufig eine héhere Performabver aufgrund héherer Performanz lasst sich
am Markt ein hoherer Preis vertreten.

®> Abbildung 2-16 zeigt die typischen Beziehungenitdieallgemeinen gelten, allerdings lassen sich imAesnahme-
szenarien finden, fur die einige Gewichtungen amétmuliert werden kénnen.

® Siehe auch grafische Erlauterung in der Grafikstén linken oberen Bereich.
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Abbildung 2-16: Merkmalsmatrix fir Chip-Multiprozes soren

Zu den Anforderungsmerkmalen zahlen die bereitsageten Anforderungen wie Performanz,
Leistungsaufnahme, Flachenbedarf bzw. Kosten atwey auch weiterfihrende Anspriiche der
Hersteller und Kunden, wie z. B. Flexibilitat un&aBerbarkeit. Der Implementierungsaufwand
umfasst die MalRnahmen, die notwendig sind um, dieefiende Systementitat (vgl. Definition 2,
Kapitel 3) zu erstellen. Die Integration, hierzinlgg u. a. die Verifizierungsmoglichkeiten, Erwei-
terbarkeit und die Wiederverwendbarkeit, in ein &etsystem sollte moéglichst einfach sein und
durch eine ausgereifte Werkzeugkette bestmdglidbrsiiitzt werden. Die Programmierbarkeit ei-
nes parallelen Systems sollte auf Hochspracheeteamsund mdglichst benutzerfreundlich sein. Die
Performanz profitiert durch eine gute Ausnutzung wrschiedenen Parallelitdtsgrade seitens des
CMPs wie ILP, TLP und PE-Level-Parallelitat sowiarch eine hohe Bandbreite der externen
Schnittstellen. Letztendlich sollte der zusatzlidfewaltungsaufwanddverheadl durch die paral-
lele Struktur mdglichst gering sein. Tiefergehe@@rakterisierungen der aufgetragenen Merkma-
le werden in Kapitel 3 vorgestellt.
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Ein interessanter Ausspruch vomusHILL, Microprocessor Report, lautet: ,The Key to Massiv
Parallelism: Think Small* [72]. WLFHILL sieht dies im Zusammenhang mit dem Anwendungsge-
biet des Systems. Die Geschichte habe gezeigtndassiv parallele Systeme stets erfolgreich war-
en, wenn sie flr eng eingegrenzte Problemstellungerendet wurden, anstatt den Anspruch der
Universalitat verfolgt zu haben. Bei der GigaNeA@hitektur wird dieses Prinzip in gewisser
Weise zweifach verfolgt, ohne jedoch den Ansprudd aniverselle Chip-Multiprozessor-
Architektur aufzugeben. Zum einen wird zunachst @niversell einsetzbares System entworfen
(vgl. Kapitel 4), das dann durch die speziell enkelte Werkzeugkette auf eine dedizierte Anwen-
dung optimiert werden kann (vgl. Kapitel 5 und B)m anderen wird bei der Architekturkonzepti-
on auf Uberschaubare Blocke mittlerer Komplexitéaahtet. Der vorgesehene Prozessorkern ist
absichtlich ,klein® im Sinne von Befehlssatz, Pipetiefe, Sprungvorhersage und spekulativer
Ausfuihrung etc. gehalten, um die Grundstruktur Basallelsystems nicht zu Gberladen. Zusétzlich
bendtigte Funktionen oder Hardwarebeschleunigesetasich vor Fertigstellung des Chips leicht
integrieren, vgl. Kapitel 6 und 7.

2.8 Varianten eingebetteter paralleler Rechnerarchitekuren

Im Folgenden werden ausgewahlte Ansatze fiir CMRgestellt. Kann dieser Uberblick zwar nicht
den Anspruch an Vollstéandigkeit erheben, da aufgjder neuesten Paradigmenwechsel im Bereich
von Prozessorstrukturen eine Vielzahl von Forschakityitaten verodffentlicht wird, so gibt er
doch einen reprasentativen Einblick in aktuellenfekturen.

Chip-Multiprozessoren werden haufig auch als Sh@jg-Multiprozessoren bezeichnet, da sie
mehrere eigenstandige Prozessoren auf einen Cheimea. Hierbei lassen sich verschiedene Or-
ganisationsformen bezuglich der Speicherorganisatial der Kommunikationsmaoglichkeitelm{
terconnectiopder einzelnen Prozessoren untereinander untedecheDie gelaufigsten Organisati-
onsformen von Chip-Multiprozessoren sind &gmmetric Multiprocesso(SMP), derDistributed
Shared Memory Multiprocessor (DSMynd derMessage-Passing Shared-Nothing Multiproces-
sor (vgl. [73]). BeimSMPundDSMteilen sich die Prozessorelemente einen gemeins&ueess-
raum.

Der SMP verflgt Gber einen globalen Hauptspeiathervon allen Prozessoren gemeinsam genutzt
wird. Die Speicherzugriffszeit ist fur jede Adressal fir jeden Prozessor gleich, weshalb der Zu-
griff auch alsUniform Memory AccesgUMA) bezeichnet wird.

Beim DSM ist dieser Hauptspeicher auf die einzelAmzessoren verteilt, so dass jeder einen loka-
len Speicher besitzt, der aber in einen globaleregstaum eingegliedert ist. Hierbei sind allerdings
die unterschiedlichen Zugriffszeiten zu bertcksgdn, denn lokaler Speicher kann schneller er-
reicht werden als ein Speichersegment, das zu diregnden Prozessorelement gehdrt. Man spricht
hier auch vorNonuniform Memory Acces$NUMA).

Shared-Nothing-Prozessordraben keinen gemeinsamen Adressraum und der #speither ist
physikalisch auf die einzelnen Prozessorelementieiite Deshalb kénnen die einzelnen Prozesso-
ren nur Uber dablessage-Passing-Verfahremteinander kommunizieren. Diese Art von Multipro-
zessor lasst sich aufgrund ihrer regelmafigen @iridehr hoch integrieren, allerdings schwerer
programmieren als die Multiprozessoren, die siam Aldressraum teilen. Abbildung 2-17 fihrt die
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besprochenen Architekturen kurz ein, bertcksichédbch nicht die Cache-Organisation der ein-
zelnen Prozessor-Elemente.

Globaler Speicher Physikalisch verteilter Speicher

Prozessor || « ¢ ¢ | Prozessor Prozessor |} « ¢ ¢ | Prozessor
Verbindungsstruktur I
Y Y

Lokaler Lokaler
Speicher Speicher

A\ \
gemeinsamer Speicher [T [T
I:’

‘ Verbindungsstruktur I

Gemeinsamer Adressraum

(SMP) Symmetric Multiprozessor (DSM) Distributed-Shared-Memory
Multiprozessor
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|
N
|
¥
Lokaler Lokaler
Speicher Speicher

Verteilter Adressraum

Sendenl : Empfangen |

...........................................

Message-Passing
(shared-nothing) Multiprozessor

Abbildung 2-17: Organisationsformen von Multiprozesoren (vgl. [73])
Bei CMPs werden bzgl. der Parallelitat folgeri@ain-Level(Granularitatsstufen) unterschieden:
* mehrere Prozesse bzw. Anwendungen, die parall&aabgitet werden,
« mehrere Threads, die zu einer Anwendung gehoérermienplarallel abgearbeitet werden,
* Threads, die aus einem sequentiellen Programmhestttaverden.

DD QQQQ

Prlmarer Prlmarer Prlmarer Prlmarer Prlmarer Prlmarer Prlmarer Prlmarer Primérer Cache
Cache Cache Cache Cache Cache Cache Cache Cache
] L ] ] ] ] ] ]
Cache Cache Cache Cache Sekundarer Cache I Sekundarer Cache I
Hauptspeicher I Hauptspeicher I Hauptspeicher I
a) SMP-Architektur b) SMP-Architektur c) SMP-Architektur
mit gemeinsamem Hauptspeicher mit gemeinsamem Sekundidr-Cache mit gemeinsamem Primér-Cache

Abbildung 2-18: Typische Varianten von SMP-Architekuren im Uberblick (vgl. [73])

In Abbildung 2-18 werden einige typische Implemeningsformen vorshared Memory-CMPs
gezeigt. Je nach Implementierung kann sich die geame Nutzung auf den Hauptspeicher be-
schranken oder aber bis hin zur gemeinsamen Bemyitkes Primar-Caches gehen.
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2.8.1 Beispiele zu Chip-Multiprozessoren

Selbstverstandlich sprengte eine ,enzyklopadiscli&samtschau aller existierenden Chip-
Multiprozessoren den Rahmen dieser Arbeit. Vielmsdilen, mit Hilfe der hier getroffenen Aus-
wabhl, reprasentative Beispiele geliefert werder,glinz besondere Charakteristika von CMPs auf-
weisen. Diese lassen sich teilweise so oder ahmlicler entworfenen GigaNetlIC-Architektur wie-
derfinden. Wie bereits in Abbildung 2-6 aufgezeidann die Konzeption eines Chip-
Multiprozessors nach einem Baukastenprinzip erfoldeei dem jeweils aufeinander angepasste
Komponenten das Gesamtsystem formen. Wesentlichass hier nicht die Performanz einer ein-
zelnen Kernkomponente lber den Erfolg entschegtetidern das Zusammenspiel aller Elemente
die Leistungsfahigkeit der Architektur definiert.

Zahlreiche Anséatze aus der Literatur verwendesbasierte Architekturvariantenvgl. Abbildung
2-7 a). Zu diesen Architekturen gehort z. B. dieLAS Chip-Multiprozessorarchitektur [74].LO-
KOTUN et. al verfolgen mit ihrem vierfach-parallelen 2wéege-CMP ein ahnliches Konzept [75].
Hier fungiert allerdings ein Kreuzschienenverte{i@nnlich Abbildung 2-7 b)) als Schnittstelle zum
gemeinsamen Cache und wirde fur eine gréf3ere AnzahlVerarbeitungseinheiten einen Fla-
schenhals bedeuten. CMPs, bei denen die Verarlgsgimheiten tUber nicht-hierarchische Topolo-
gien, sondern basierend auf Bussen, Multiplexermr &deuzschienenverteilern miteinander ver-
bunden sind, sind nur als voribergehende Lésungeselzen. Diese Topologievarianten ohne Hie-
rarchie skalieren im Sinne von Definition 35 nicimid eignen sich nicht fir massiv parallele einge-
bettete Systeme, sondern erlauben nur die effziertegration einiger weniger Verarbeitungsein-
heiten, siehe auch [76]. In [77] wird ein Ansatzggt, wie busbasierte CMP-Ansatze mit Hilfe
eines Uberlagerten ,Butterfly-Fat-Tree“-Netzwerktso einer zusatzlichen Hierarchie, gkalier-
baren System-on-Chip-Architektureerweitert werden kénnen. Inwieweit dies allerdifiggsreale
Systeme umsetzbar ist, wurde noch nicht gezeigt.

Viele der in der Literatur untersuchten CMP-Arckiteen sind noch nicht in Hardware realisiert,
sondern wurden auf Basis von Simulationen und Afizeimgen untersucht, so dass eine abschlie-
Rende Verifikation dieser Systeme noch aussteht.

2.8.2 Ansétze fur Chip-Multiprozessoren mit akademischenJrsprung

Raw, MIT. Der Raw-Chip-Multiprozessor unterteilt sich in 1@ighférmige Kacheln, die aus ei-
nem MIPS-basierten Prozessor mit acht Pipelinesfuidgmem programmierbaren Routerblock, ei-
ner vierstufigen FlieBpunkt-Einheit, 32 KByte Dataohe und 96 KByte Instruktionscache beste-
hen. Der Gesamtentwurf umfasst 122 Millionen Trstasen und ermdglicht eine Taktfrequenz von
225 MHz in einer 150-nm-Technologie. Die 16 Kachblkanspruchen insgesamt 331 mm2. Die
Leistungsaufnahme wird mit 25 W abgeschatzt [78§][D¥e in vier Richtungen gehenden Busse
zur Verbindung der Nachbarkacheln ermdglichen diert¥agung der Daten innerhalb eines Tak-
tes. Die maximale Lange der Verbindungsleitungersawen den Nachbarkacheln entspricht genau
der Kantenlange einer Kach@&lobal Wireswerden somit kurz gehalten. Die Verbindungsstnuktu
bietet zwei statische und zwei dynamiscidéo(mhole-Switchindpasierte) Routen zu den jeweili-
gen Nachbarkacheln. Die Steuerung des On-Chip-Nekamwvird komplett in Software geldst und
erlaubt dem Programmierer oder dem Compiler sotgro@liche Realisierungsfreiheit. Das Rou-
ting des Ergebnisses einer Arithmetik-Berechnungréichsten Kachel benotigt drei Takte. Teile
der Netzwerkverbindungen sind direkt in die Pipeldes jeweiligen Prozessors eingebunden und
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ermdglichen so direkten Zugriff seitens des Praaesssuf Netzwerkressourcen. Der Raw-Prozessor
ist in Hochsprachen wie C oder Java programmieubdrstellt einen eigenen Compiler zur Verfi-
gung. Extern lassen sich bis zu 64 Raw-Chips irebigjer rechteckiger Anordnung kombinieren
und ermdglichen so ein Konglomerat von insgesar2ét ¥oacheln bzw. Einzelprozessoren.

Hydra, Stanford. Der Hydra-Chip-Multiprozessor ist im Rahmen einessEhungsprojekts der
Universitat Stanford entstanden [80]. Er umfasstr WIIPS-basierte Prozessorkerne mit eigenem
Level-1-Daten- und Instruktions-Cache und gemeimsarhevel-2-Cache. Die Verbindung ist bus-
basiert. Die Autoren skizzieren eine maximale Aushdglichkeit des Systems von bis zu acht Pro-
zessoren, wobei jeder dieser Prozessorkerne eingitt dekoppelten Coprozessor ansteuern kann.
Sie geben allerdings zu bedenken, dass fur eirfeegetéAnzahl von Prozessoren andere, z. B. hie-
rarchische Verbindungsstrukturen zu implementievéren. Die benotigte Flache in einer 250-nm-
Technologie mit vier Prozessorkernen wird mit 902@amgegeben, mit je 8 KByte Daten- und In-
struktionscaches und 128 KByte gemeinsamem Cacle.abgestrebte Taktfrequenz wird mit
250 MHz angegeben.

Daytona Multiprozessor DSP.Der Daytona ist ein Vierfach-MIMDultiple Instruction Multiple
Data)-DSP mit vier 64-Bit-Verarbeitungseinheiten [8Dje vier 32-Bit-RISC-Prozessorkerne vom
Typ Sparc V8 mit einer finfstufigen Pipeline verdiagiber DSP-Erweiterungen sowie je eine eng-
gekoppelte Coprozessoreinheit. Die Verarbeitundiegien sind Uber rekonfigurierbare Level-1-
Caches an eine8plit-Transaction-Bu$STBu3 angeschlossen. Als Cache-Kohérenzprotokoll wird
ein modifiziertes MESI-Protokoll verwendet (vgl. #dhnitt 4.4.2). Ein eingebettet®d OS(Real
Time Operating SystemEchtzeitbetriebssystem) Ubernimmt die Einteiladey Verarbeitungsein-
heiten auf anfallende Aufgaben. Eine Synchronisigrder Prozesse wird Uber Semaphore erreicht.
Der 200 mmz grof3e, in 250-nm-Technologie gefert{@kep arbeitet mit 100 MHz und nimmt ca.

4 W auf.

PipeRench, Carnegie Mellon University.Die PipeRench-Architektur ist eine rekonfiguriada
Architektur, die ohne spezielle Hardwareerweiteemgn anwendungsspezifische Probleme ange-
passt werden kann [82]. Allerdings ist laut [82f dnsatz hier anders als bei herkdbmmlichen
FPGAs Field Programmable Gate ArraysPipeRench ist speziell fir Berechnungen ausgedig
durch die Pipeline ReconfiguratiohTechnik besonders unterstiitzt werden. Hierunted wine
Rekonfiguration der einzelnen Pipelinestufen vexd¢m, beip physikalisch vorhandenen Stufen
werdenv Stufen emuliert, mip < v. Die Konfigurationszeit beeinflusst die Verarbaiunicht
nachteilig und geschieht innerhalb eines Taktes.dbale Verbindungsstruktur ist busbasiert. Die
einzelnen Verarbeitungseinheiten sind acht Bittbkéinnen aber zu gré3eren Bitbreiten kombiniert
werden. Wesentliche Bestandteile der Architektod glie globalen Busse, die in Streifen angeord-
neten Verarbeitungseinheiten und Ubergaberegids.System umfasst 256 Verarbeitungseinhei-
ten, die in 16 Streifen kaskadierbar angeordnet, sind I&asst sich in C, mit Hilfe des mitgelieferte
Compilers, programmieren.

Bevor sich die Diskussion der Merkmale der vordiste Chip-Multiprozessoren anschlief3t, sollen
im Anschluss an die geschilderten Ansatze akadémidderkunft nun weitere Anséatze fir Chip-
Multiprozessoren aus der Industrie charakterisiegtden, die ebenfalls zum Vergleich mit der
GigaNetIC-Architektur herangezogen werden.
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2.8.3 Ansétze fur Chip-Multiprozessoren aus der Industrie

Um einen Uberblick tiber die Anstrengungen, die ierech von Chip-Multiprozessoren unter-
nommen werden, zu geben, reicht es nicht aus, nséte aus dem Bereich der akademischen For-
schung zu beleuchten. Einfluss auf zukinftige Asd#tturen (vgl. Definition 3) werden in nachster
Zeit besonders die ausgewéhlten Beispiele der graablierten Universal-Prozessorhersteller wie
Intel, AMD und IBM nehmen. Diese Unternehmen vedidiber das Kapital und die Humanres-
sourcen, um solche komplexen und extrem kostenauaigén Entwicklungen zu realisieren. Die
Produktstrategien bzw. ,Roadmaps” und Architektuesaten dieser und anderer relevanter Hers-
teller im Zusammenhang mit CMPs werden im Folgeriden vorgestellt.

DRP, NEC. NEC hat mit denDynamically Reconfigurable Processein synchrones Prozessor-
feld bestehend aus bis zu 512 Verarbeitungseinheievickelt [83]. Der DRP verfiigt tber eine 8-
Bit-Genauigkeit und ist in 150-nm-Technologie gefgrund mit 133 MHz zu betreiben. Seine Da-
tenpfade sind innerhalb eines Taktes umkonfiguaierBein Haupteinsatzgebiet sind Bereiche, in
denen bisher DSPs (Digitale Signalverarbeitungzéasoren) verwendet wurden, er lasst sich aber
auch als Netzwerkprozessor nutzen.

XPU128 / XPP Ill, PACT. Die XPU- und XPP-Serie von PACT sind rekonfiguoeme Felder mit
einfachen Arithmetikeinheiten (ALUs), die sich beders flrStreamAnwendungen, also z. B.
Videoverarbeitung eignen. Die PACT-Architekturenrfigen Uber ein effizientes Rekonfigura-
tionsmanagement und lassen sich so auf verschigdiawendungsgebiete optimieren. Horizontal
geschieht die Punkt-zu-Punkt-Verbindung der ALU®riBoutingbusse, vertikal sind die ALUs
direkt miteinander verbunden. Zuséatzlich sind dedie Verbindungen der einzelnen Einheiten
vorgesehen. Die Datenbreite kann zwischen 16, 2432nBit gewéhlt werden. Die Datenubertra-
gung innerhalb des Chips geschieht Uber das paketierte On-Chip-Netzwerk. Die XPU128 war
im Jahr 2000 der erste einsatzbereite Chip der &IRACT und umfasste bereits 128 ALU-
Verarbeitungseinheiten, die mit angestrebten 10&NMH150-nm-Technologie betrieben werden
konnten. Die XPP-lll-Architektur ist der kommerzieingesetzte, in C programmierbare Nachfol-
ger [84][85].

Piranha, Compag. Die in der Forschung von Compaq entwickelte Piraftehitektur [86] be-
schreibt eine achtfach-parallele Struktur mit ethten Alpha-Prozessorkernen, die tber jeweils ei-
nen eigenen Daten- und Instruktions-Cache mit jgByte verfligen und sich einen Level-2-Cache
teilen, mit dem sie Uber einen so genanntdgra-Chip-Switchverbunden sind. Die Prozessoren
sollen in einer 180 nm-Technologie mit 500 MHz ledten werden konnen. Zur weiteren Erh6hung
der CPU-Anzahl verfugt das System Uber einen ireggn Router mit zwei Protokoll-Einheiten,
der den Anschluss weiterer Piranha-Chips Uberniniia.von Compaq verfolgte Entwurfsmetho-
dik begann mit einer Spezifizierung des SystentG+t, dem eine Verfeinerung der einzelnen BI6-
cke in der Hardwarebeschreibungssprache Verilagdol

KiloCore, Rapport. Die derzeit aktuelle Chip-Variante KC256 von Rappmsiert auf Rapports

KiloCore-Architektur. Er umfasst 256 Prozessorkedie mit 8-Bit-Daten- und Befehlsbreite arbei-
ten und ist in 180-nm-Technologie realisiert [8D]e maximal erreichbare Betriebsfrequenz wird
mit bis zu 125 MHz angegeben. Die Leistungsaufnakle® KC256 soll Rapport zufolge unter
500 mW liegen. Der 1025 Kerne umfassende KiloCote2007 in 90-nm-Technologie realisiert
werden. Er wird Gber 1024 8-Bit-Verarbeitungseitdeiverfigen, die von einem PowerPC-Kern
kontrolliert werden. Die Architektur soll auR3erdeekonfigurierbar sein, wobei die Rekonfigurati-
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on nur einen Takt benétigt. Uber die Kommunikatginsktur sind noch keine Details bekannt, al-
lerdings lasst sich eine Uberlagerte Busstruktivaad der Blockdiagramme vermuten. Einsatzge-
biete sollen u. a. Videoverarbeitungsalgorithmen,deei denen er um den Faktor zehn schneller
sein soll als aktuelle Prozessoren.

GPUs, nVIDIA und ATI . nVIDIA und ATI sind namhafte Hersteller fir Grathips fur PCs und
stellen bereits seit mehr als einer Dekade massallple Coprozessoren zur Grafikbeschleunigung
her. Die neueste Generation der nVIDIA Grafikbesahlger, die GeForce 8800, integriert 128 so
genannte ,StreamProzessoren®, die bei Verwendumgy €0-nm-Technologie mit bis zu 1,35 GHz
getaktet werden [88]. nVIDIA kooperiert mit Forscigsinstituten, die die nVIDIA-Grafik-
prozessoren fur komplexe Berechnungen, z. B. fudinmasche Zwecke einsetzen und dadurch
eine Beschleunigung von mehr als 25, verglicheheskdbmmlichen CPUSs, erreichen. ATIs neueste
Consumer-Grafikkarten werden in 80- bzw. 65-nm-Tedbgie gefertigt und vereinen bis zu 720
Millionen Transistoren auf einem Chip, die untedarem fur 64 parallele komplexe 4-Wege-
SIMD(Single Instruction Multiple DadaEinheiten bendtigt werden [89].

PhysX, Ageia.Ageia hat mit dem PhysX einen speziell fur died@ésunigung physikalischer Pha-
nomene konzipierten Chip-Multiprozessor (Physikbémmiger) entwickelt, der tGber Dutzende
von eingebetteten Prozessoren verfiugt und vor aflanBD-Computer-Spiele auf Coprozessor-
Karten eingesetzt wird [90]. Der Chip soll Uber 18lionen Transistoren integrieren und eine
Die-Gro3e von 182 mm? in 130-nm-Technologie haben. I@Bstungsaufnahme beschrankt sich
auf 25 W,

Intels Weg vom ,Single Core” Gber ,Multi Cores” zu ,Many Cores”. Intel hat seit der Einfih-
rung des ersten Ein-Chip-Mikroprozessors 1971 ,lniet 4004, eine Flut von Verbesserungen und
neuartigen Prozessor-Architekturen prasentiert. $tgigender Taktfrequenz, beim Pentium 4 der
Netburst-Architektur bis zu 3,8 GHz, stieg jedocittadie Leistungsaufnahme trotz neuester Tech-
nologie bis auf 115 W (Intel Pentium 4, 672) weiger. Dies bedeutete eine Stromaufnahme von
119 A, die von einerie der GroRe von nur 135 mm2 (in 90 nm-Technologs®, Willionen Tran-
sistoren) aufgenommen werden musste. Die zuvorintah angestrebte maximale Frequenz von
10 GHz fur diese Architektur konnte aus zahlreicteminischen Grinden nicht erreicht werden, so
dass die Entwicklung bereits bei unter 4 GHz eitejiesvurde [3]. Das von nun an verfolgte Archi-
tektur-Paradigma lautete: Mehrere Prozessoren, tiMidres“, bei geringerer Taktfrequenz. Es
wurde mit der Intel-Core-Architektur erfolgreich gesetzt. Die Core-Architektur wird auch als
achte x86-Architektur gefuhrt. Die Mitte 2006 eififfate Core-2-Prozessorlinie, in 65-nm-
Technologie gefertigt und bis zu 2,93 GHz operabat,eine deutlich reduzierte Leistungsaufnah-
me von 65 W bei einer Chipflache von 144 mm?2 unél @8lionen Transistoren. Sie verfugt Gber
zwei Prozessorkerne, 64 KByte Level-1-Cache undByté Level-2-Cache. Seit Anfang 2007 hal-
ten die ersten Vierkern-Prozessoren Einzug in St@h®esktop-PCs. Hierbei handelt es sich um
die ,Core 2 Quad“-Familie, bei der zwei einzelnee®in einem Prozessorgehduse untergebracht
sind. Die Variante Q6600 arbeitet mit 2,4 GHz Kakatund beansprucht pro Die 143 mm?2 bei ei-
ner Strukturgréf3e von 65 nm. Die Leistungsaufnablesgesamten Chips beziffert Intel zu 130 W.
Der neuartige Cache wird jeweils von den beiderehtggen Verarbeitungseinheiten genutzt, wo-
bei die Speicherzuteilung dynamisch geschieht. Add$e konnen die beiden Kerne gegenseitig
Daten Uber ihn austauschen, was verglichen mit tdpeherzugriffen aul3erst effizient ist. Auch
wurde hinsichtlich der Reduktion der Leistungsabfna eine Vielzahl von Mechanismen einge-
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baut, wie z. B. bereichsbezogene Spannungsvariatid€lock Gatingsowie Abschaltung des Ca-
ches. Die Core-Architektur ist die erste vierfaciperskalare Intel-Architektur, die eine simultane
Abarbeitung von vier Mikrooperationen ermoglicht.

Intels zukunftsweisendeBera-Scale-Projekizielt auf massiv parallele Systeme mit einigendast
integrierten Prozessorkernen ab. Zu den bedeutmdsiforderungen, die durch die Tera-Scale-
Architektur erfullt werden sollen, z&hlt Intel denfache, effektive Programmierbarkeit (,Prog-
rammability”) mit einem ausgereiften Programmiermibdind komfortabler Entwicklungsumge-
bung. Die nachste Anforderung ist ,Adaptability”,id die Plattform soll anpassbar an verschiede-
ne Aufgaben und Lastverteilungen sein. Aul3erdeirdsmHardware an verschiedene Umgebungen
in Bezug auf z. B. Leistungsaufnahme und Formfalatgrassbar sein. “Reliability” nennt Intel als
weiteres Schlagwort. D. h. die Plattform soll trar groRen Komplexitat noch zuverlassiger als
die bisherigen Entwurfe sein. ,Trust”, also Vereausoll die Plattform erwecken, um so Kunden
von dem neuen Konzept zu Uberzeugen. AbschlieRerdd &calability”, die Skalierbarkeit der
Architektur in Bezug auf Hardware und Softwarewaésentliche Anforderung formuliert. Die sehr
modular gehaltene Architektur integriert Hardwawsaitdeuniger, optimierte Prozessorkerne und
skalierbare On-Chip-Verbindungsstrukturen. Diesasaz wird von Intel als vielversprechende
Loésung fur die Abdeckung vieler Markte propadiefis Treiber fiir den Kurswechsel in der Archi-
tektur gibt Intel Performanz, Leistungsaufnahme kndze Entwicklungszyklen an. Intel stellte
diesen neuen Ansatz erstmals 2006 der Offentlitiviai[91]. Drei bzw. vier Jahre vorher postu-
lierten wir in [6] und [14] bereits sehr ahnlicheg&tze. Hieran zeigt sich, dass der von uns damals
beschrittene Weg zukunftsweisend ist.

Intels aktuelle 80-Prozessor-ArchitektuiPglaris’, die zundchst unabhéngig vom Tera-Scale-
Projekt entwickelt wurde, basiert auf einem Gitteit 8x10 identischen Verarbeitungseinheiten,
wobei der einzelne Kern bis zu acht Instruktionéichzeitig verarbeiten kann [92]. Der lokale
Speicher ist sehr klein bemessen. Jeder Kern vetiiey 2 KByte Daten- und 3 KByte Instrukti-
onsspeicher. Die Anbindung an das On-Chip-Netzvibdrnimmt ein leistungsstarker Routingkno-
ten. Er erméglicht einen akkumulierten Durchsata 86 GByte/S bei 4 GHz. Jeder Port ist dabei
Uber je %39 Signalleitungen mit dem Nachbarknoten verbun@®ea.Struktur eines solchen Rou-
ters sieht vier Verbindungsschnittstellétofts) zu anderen Knoten vor und einen Port fir die Ver-
bindung eines zusatzlichen SRAMs. Ein Polaris-Keenotigt ca. 1,2 Millionen Transistoren, die
auf einer Flache von 3 mm? in 65 nm-TechnologigzZPfenden. Die Recheneinheiten beinhalten
eine neun-stufige Pipeline. Bei der Polaris-Ardttite wurden zahlreiche Optimierungen wie z. B.
Clock Gating bezuglich der Leistungsaufnahme vorgenommen, ags dler gesamte Chip bei
3,16 GHz nur ca. 62 W aufnimmt. Erhéht man die rauenz auf 5,7 GHz, so nimmt die Leis-
tungsaufnahme um mehr als das Vierfache auf 26%WAuach hier zeigt sich der nichtlineare Zu-
sammenhang zwischen Steigerung der Betriebsfrequeshzler resultierenden Leistungsaufnahme
eines Chips. Der Polaris-Chip bietet auf der Flaeines Daumennagels genauso viel Rechenleis-

" Intel arbeitet u. a. an Grafikchips mit dem Codeen ,Larrybee®, die iiber 16 eingebettete Prozessaekverfiigen,
die auf x86/SSE-Codebasis beruhen und den gleiBeérhissatz wie die Tera-Scale-Architektur verwende

8 Lt. Intel, nach bestehender Nomenklatur 74,51 @Byt
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tung wie vor 11 Jahren in Dienst gestellte Supemadsr, die auf iber 200 m? Flache untergebracht
werden mussten [92].

Opteron, AMD. AMD ist seit dem Zeitalter der 386er-Prozessorgatien Intels grof3ter Konkur-
rent, der mal schnellere und mal weniger effizieAtehitekturansatze, verglichen mit Intel, her-
vorgebracht hat. Interessant ist, dass AMD ehemads in Bezug auf das Streben nach immer h6-
heren Taktfrequenzen einen anderen Weg eingeschiegeind recht bald nicht mehr die tatséchli-
che Frequenz seiner CPUs als Verkaufsargument nelete, sondern seine Prozessoren mit einer
fiktiven Taktfrequenz bewarb, die mit der Leistuamer entsprechenden Intel-Architektur ver-
gleichbar waren. AMD stellte 2007 die erste, aufeaiDie integrierte Vierfach-Desktop-/Server-
CPU, den Opteron Quad-Core-Prozessor vor [93]. ddiesbeiteton-chip mit dem MOESI-
Cachekoharenzprotokoll.

Mit der Torrenzalnitiative setzt AMD bei zukiinftigen Prozessorgeaimnen verstarkt auf eine
Kopplung von wenigen Universalprozessorkernen umeveadungsspezifischen Hardwarebe-
schleunigern, um sich so gegeniber den von IntghggiertenManyCoreArchitekturen, zu be-
haupten, ein ,Kern-Wettrlisten® solle es vorershhigeben [93]. Allerdings setzt auch Intel auf so
genannterixed Function Unitd92], also ebenfalls auf Hardwarebeschleuniges, sjiezielle Auf-
gaben effizienter |6sen kénnen als Universalprazess

Cell-Architektur, 1BM, Toshiba und Sony.Die Entwicklung der Cell-Architektur [12][94] wurde
bereits zu Anfang dieses Kapitels grob skizziere. itegriert 241 Millionen Transistoren unter
anfanglicher Verwendung einer 90-nm-Technologie, rdicht bald durch eine 65-nm-Variante er-
setzt wurde. Es werden Frequenzen von Uber 4 Gigestmrebt. Motivation fur die Realisierung
dieser Chip-Multiprozessor-Architektur war die ,\d8, Supercomputerleistung ins tagliche Leben
zu bringen” [94]. Cell umfasst einen PowerPC-Kels Kontrollprozessor fur derzeit acht zusatz-
lich integrierte ,Synergistic Processor Elemer88B" als spezielle Coprozessoren, die koharente
DMA(Direct Memory Acce$<Operationen zur Verfiigung haben. [BIBEshaben lokalen Speicher
und zusatzlich einen gemeinsamen Level-2-Cache. GxisChip-Verbindungsstruktur dient der
.Element Interconnect Bus'E(B). Aul3erdem besitzt der Cell-Prozessor einen eig&yzeicher-
controller, ,Memory Interface ControlleMIC)“, und zwei konfigurierbare, Ein-/ Ausgangsschnitt
stellen. Letztendlich wurde noch eine umfangreigtomitor- und Debugeinheit implementiert. Den
Autoren von [94] zufolge sind 40 % des Schaltungsarfs Syntheseergebnisse. Die dominieren-
den 60 % des Chips sind als ,Full Custom Desigritverfen worden. Dies war aufgrund der hohen
Rechenleistungs- und Verlustleistungsanforderungagwendig. Um eine hohe Ausbeute und Zu-
verlassigkeit garantieren zu kdnnen, wurden zatfieiFunktionen fur Build-in-Self-TesB[ST)
und Fehlerumgehundifray Repair Fuseseingebaut. Insgesamt wurde auch beim Cell-Chip ve
sucht, das Design mdglichst modular zu halten. Bsd& ein immenser Simulationsaufwand mit
mehr als zwei Millionen Stunden Simulationszeite&@entspricht 1,5 Trillionen simulierter Takt-
zyklen) im Vorfeld der Chipfertigung getrieben [94)ies lasst auf eine mittlere Simulatorge-
schwindigkeit von ca. 140 Takten/Sekunde schlie®en.Cell-Architektur steht eine umfangreiche
Werkzeugkette zur Verfigung, die verschiedene Betsysteme auf der Cell-Architektur unters-
tiitzt. Tabelle 2-4 gibt einen Uberblick tiber ausgelte Chip-Multiprozessoren und einiger ihrer
wesentlichen Eigenschaften.
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Tabelle 2-4: Charakteristika ausgewébhlter Chip-Multiprozessoren

For- Leis-
Zﬁ:zgﬁs (l::feu Anzahl Pro- | 1ungs- | Chipfla- ) Technolo- Kommunika-
tung, Hers-| quenz | zessorkerne au;‘Tr::h- [ngrr]nez] [r?rlﬁ] Speicher PE tionsstruktur Besonderheiten
teller [MHZz] W]
Typ
T MIPS) e et
225 16 25| 331 150 >16*(32K+96K) 8 Pipeline Skalierbarkeit
Raw stufer] barknoten
WH-Switching
Stanford 250 4 kA 90 250 ~4 (BK+8K)+128 MIPS Bus
Hydra K
Gekoppelte Hardwa-
rebeschleuniger
Sparc V8
Daytona 109 4 4 200 250 >4*8K| 5 Pipeline STBug MESI-Cacher
DSP stufer] Kohérenzprotokoll
RTOS zur PE-
Kontrolle
Ageia 533 >20 PE$ 25 182 130 k. A| Physikengi k. A| Physikbeschleunigbr
PhysX ne
3.160 275
Intel - 62 1 Router pr: 1,01 Terra Flops
' (bis 80 (3 pro 65  >80*(2K+3K) X86 ]
Polaris 5.700 (265 Kachel Kache (1,81 Terra Flopg)
:Isﬁmazcr)wd 3.20(0 148 200 291 90 i;(fzzgtzl) PowerP( Element Interr  Max. 204GByte/g
Sony (>4.000 N + 8 SPEs connect Bus Durchsatz des EIB
Celi +8*256K
Rapport 125 256 0,5 k. A. 180 k.A| 8-Bit-PEY k. A.
KiloCore
Nvidia Strean
8800 Ultra/ 1.500Q 128 175 k. A. 90 k. A. Prozessoren k. A.| 681 Mio. Transistoren
G80
Compaqg >8*(64K+64K) Intra Chip
Piranha 500 8 k. A k. A. 180 +Lo| Alpha CPY Swich
GigaNetIC- . . L
Projekt 285 32 1,8 437 90 1280k  N-Cord  GigaNog Skalierbarkeit, Res
. sourceneffizien
GigaNetIC

2.8.4 Resumierender Vergleich mit dem GigaNetIC-Ansatz

Bei demMIT-Ansatz handelt es sich, wie bei der GigaNetIC-Architekeivenfalls um einen ka-
chelartigen, WH-Switching-basierten CMP, der miinea 16 Prozessorkernen ca. halb so viele
Transistoren bendtigt wie das in Tabelle 8-5 vargie GigaNetIC-System mit 80 N-Cores. Auf-
grund der flachenmalig lUberlegenen GigaNetlC-Psmrarschitektur lasst sich mehr Parallelitat
auf einen Chip bringen, die allerdings in der Staddersion zun&chst tber weniger leistungsfahige
Verarbeitungseinheiten verfiigt. Diese kdnnen algysl speziell auf ein Anwendungsgebiet hin
optimiert werden, ohne unnétigen Flachenbedarfldurdendtigte Funktionen zu verursachen. Ein
kachelartiger Floorplan bietet zahlreiche Vorteite Bezug auf heutige Fertigungstechniken und
wird deshalb auch beim GigaNetlC-Projekt bertcksittivgl. Abschnitt 8.2.3).

Der Hydra CMP entspricht in etwa einem Cluster des GigaNetlC«8Sys, wies aber seinerzeit
kein Ubergeordnetes Konzept zur weiteren Skalierauiy wie es u. a. durch das GigaNoC und
durch die GigaNetIC-Switch-Boxen (vgl. Abschnit2ylgegeben ist.

Der Daytona CMPintegriert einen konfigurierbaren Multiprozessatoa flr seine vier Verarbei-
tungseinheiten, der mit einem a&hnlichen Cache-Katgorotokoll arbeitet, wie es beim GigaNetIC-
Multiprozessorcache zum Einsatz kommt, vgl. Abstthdi4.2. Zusatzlich wurde ein Echtzeitbe-
triebssystemRTOS zur Steuerung der Prozessablaufe entwickeltdgateistungsfahigkeit eines
CMP erheblich steigern kann. Fur den GigaNetIC-Cétthen mehrere Programmiermodelle zur
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Auswahl, vgl. Abschnitt 4.5, allerdings wurde ndatin echtzeitfahiges Betriebssystem mit dem
Gesamtsystem getestet.

Der PipeRenchAnsatz ist als Konzept fir eine rekonfigurierbar@mpilerunterstitzte Architektur,
die ohne zusatzliche Hardwarebeschleuniger an Adwaysszenarien angepasst werden kann, ahn-
lich demDRP-Ansatz von NEC zu sehen. Diese Art der Systemiordition kann beim GigaNet-
IC-CMP ebenfalls fir einzelne Cluster umgesetztderr(vgl. Abschnitt 4.3.3), allerdings ware an
dieser Stelle die GigaNetIC-Compiler-Werkzeugkéitd. Abschnitt 5.6) auf diese neue Konstella-
tion anzupassen, was derZeioch mit nicht zu vernachlassigendem Aufwand vedemn ist.

Der XPP-11l verfolgt einen ahnlichen, wenn auch nicht vollgigrauf FPGA-Technologie basie-
rendes Konzept. Bei ihm wird zusatzlich ein paketdrertes On-Chip-Netzwerk eingesetzt, wie es
auch bei der GigaNetIC-Architektur durch das Gig@Negeben ist.

Beim Entwurf dediranha-CMP wurde bei Compaq bereits vor der Einfuhrung $ystemC eine
C++-basierte Spezifikation des Gesamtsystems vorgaren. Die GigaNetlC-Entwicklungs-
umgebung umfasst ebenfalls fir die Spezifikatiod magleich zur schnellen, SoC-umspannenden,
zyklenakkuraten Simulation ein SystemC-Modell (vélbschnitt 5.2), eine erweiterte C++-
Klassenbibliothek, die seit 2005 IEEE-Standard ist.

Die Architektur deKiloCore verfugt mit 256 bzw. in einer weiteren Ausbaustoi¢ 1024 Verar-
beitungseinheiten Uber die grof3te Anzahl integieRrozessorkerne in diesem Vergleich, aller-
dings handelt es sich auch um sehr einfach geavietarbeitungseinheiten, da sie u. a. nur Uber
einen 8-Bit-breitem Datenpfad verfiigen. In wievgith diese sehr geringe Berechnungsbandbreite,
die nur durch einen nennenswerten Mehraufwand eiteben Datenpfaden konfiguriert werden
kann, bewéahrt, bleibt abzuwarten. Bei dem Proz&ssorder GigaNetlC-Architektur wurde be-
wusst auf eine, zwar einfache, aber bereits 3D iite CPU gesetzt, um einen moglichst effizien-
ten Kompromiss zwischen Leistungsfahigkeit und I@effizienz zu erhalten. Au3erdem wird
durch die Mdoglichkeit der Integration beliebiger rebaarebeschleuniger bzw. Hardwareblécke
(vgl. Abschnitt 4.3.3) gentigend Flexibilitat gewi@istet, um auf spezielle Anforderungen seitens
des Anwendungsgebiets reagieren zu kdnnen.

Die stark auf Performanz optimierten Verarbeitungseiten deiGrafikbeschleuniger/ GPUshin-
gegen sind auf eingeschrankte Anwendungsgebiet®asipeert und bieten wenig Spielraum. Eine
Auslegung auf moglichst geringe Flache oder minamdérlustleistungsaufnahme stand bei der
Entwicklung dieser Architekturen deutlich im Hingeund. Dies verhdlt sich bei der grundsatzlich
als Universalrechner ausgelegten GigaNetlC-Archite&nders. Diese ermdglicht den Entwicklern,
die Positionierung des spateren Systems wahren8pukzifikation bzgl. der vier Dimensionen des
Entwurfsraums (vgl. Definition 11) in alle Richtuery zu variieren. Ahnlich verhalt sich der Ver-
gleich mit den spezialisierten PhysikbeschleunifgysX

Die Polaris-Architektur von Intel kommt der Art des GigaNetKhsatzes in vielen Aspekten sehr
nahe, nicht zuletzt werden durch Intels Tera-Se€atgekt ahnliche Anforderungen an die Rechner-
architekturen der Zukunft definiert, wie es sie lalaei der Konzeptionierung der GigaNetIC-

° Die Fachgebiete Schaltungstechnik, Prof. Dr.-lfigich Riickert und Programmiersprachen und Ubeesefrof. Dr.
Uwe Kastens, forschen mittlerweile aktiv an dieBeematik.
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Architektur zu berlcksichtigen gab. Auch hier wathe gitterférmige, kachelbasierte Anordnung
angewendet. Sind die Kacheln beim Polaris-Chipen® grofl3 und beinhalten nur einen, fir Intels
Verhaltnisse wenig komplexen, Prozessor mit relatiwmig Speicher, so gestalten sich die Kacheln
der GigaNetIC-Cluster mit 4,84 mmz in der 90-nm-iremogie in einer vergleichbaren Grélienord-
nung. Skaliert man diese auf die von Intel verwéad®-nm-Technologie (vgl. Definition 30) so
entspréache sie einer Flache von nur noch 2,5 miférdings beinhalten die GigaNetlC-Kacheln
vier Prozessoren mit insgesamt 32-mal soviel Speit160 KB) und bereits reservierter Flache fur
spezielle Hardwarebeschleuniger. Bzgl. der Recistaleg liegt die Intel-Architektur um GréRRen-
ordnungen vorne, zumal sie je zwei FlieBpunkteireimepro Kachel integriert, die beim GigaNetIC,
aufgrund der betrachteten Anwendungsgebiete (vapitél 7), derzeit nicht vorgesehen sind. Der
Polaris-Router beherrscht einen Durchsatz von T2Byie/s bei 4 GHz gegentiber 26,6 GByte/s
(Netto-Datendurchsatz) der GigaNetIC-Switch-Box mut 714 MHz. Nach den Skalierungsgeset-
zen ergabe sich fiur die Switch-Box in der 65-nmbhredogie ein theoretischer Netto-
Datendurchsatz von 36,84 GByte/s bei 989 MHz. Digshlen zeigen, dass die GigaNetIC-
Architektur in vielen Bereichen durchaus konkurféhm ist. Abschlieend bleibt zu erwdhnen,
dass Polaris tber kein hierarchisches On-Chip-Nartzwerflgt, sondern nur eine Hierarchieebene
vorsieht. Durch die ausgepragt generische Strur GigaNetIC-Architektur (vgl. Abschnitt
4.2.1.2) lassen sich nahezu beliebige Topologiaaten konstruieren, welches mit der Polaris-
Router-Struktur augrund der festen Anzahl von Herts nicht in dem Mal3e zu verwirklichen ist.
AulRerdem ist nicht bekannt, in wieweit die Prozemsalurch eine, beim GigaNetIC-System vor-
handene, ,Offload-Engine* zur Koordination des Om=Datenverkehrs (vgl. 4.2.1.1) entlastet
werden. Ansonsten wirde Rechenleistung der Promssfir die Datentbertragung bendétigt.

Bei den OpteronVierfach-Kernen setzt AMD bereits erfolgreich d&BOESICachekoharenz-
protokoll ein, das gleiche, wie es der GigaNetICHipuozessorcache auf Prozessor-Cluster-Ebene
verwendet (vgl. Abschnitt 4.4.2). Allerdings wirckibh GigaNetIC-Projekt eine deutlich hohere
Parallelitat auf SoC-Ebene, als derzeit bei AMDgestrebt. Mit der zuklnftigeforrenza
Initiative verfolgt AMD einen Ansatz, bei dem heigene Systeme von Prozessoren und Hardwa-
rebeschleunigern auf einem Chip grol3tmogliche Effiz bieten sollen. Dies wird ebenfalls bei der
hybriden Struktur der GigaNetIC-Architektur wirkuswpll eingesetzt, vgl. Kapitel 7 und 8.

Der Cell-Chip-Multiprozessor integriert derzeit die meisterozessorkerne der wirtschaftlich er-
folgreichen Systeme dieses Vergleichs. Die GigaBiétichitektur zielt auf noch héhere Paralleli-
tat ab, die nicht zuletzt durch ihre regelméaRigeikdur und der guten Abbildbarkeit auf verschie-
dene Zieltechnologien aufgrund ihrer synthetisigbaBeschreibung ermdglicht wird. Beim Cell-
Chip sticht hingegen ein hoher Anteil an ,Full Gust Design®; der bei den anderen Hochleis-
tungsprozessoren in ahnlichen Dimensionen lieged,vins Auge. Dies bedeutet einen Nachtell
bzgl. einfacher Skalierbarkeit und zukinftiger, andungsspezifischer Erweiterungen. Dadurch
kann kein automatisierter Synthese-Prozess gregeometrisches Herunterskalieren bei derartigen
Strukturgro3en ist ebenfalls nicht ohne Weiteregliob, deshalb bedeutet eine Portierung auf
neuere Technologien deutlich mehr Aufwand als esi®eGigaNetlC-Architektur der Fall ist. Der
Cell-Chip verfugt Uber eine integrierte, leisturtggse ,Debug”-Einheit, was fir eine produktive
Softwareentwicklung von grol3er Bedeutung ist. Di€3ption ist bei aktuellen GigaNetIC-
Systemen nur ansatzweise vorhanden und ausbaufilfigandige Mechanismen zur Umgehung
bzw. Feststellung von Fertigungsfehlern wurden b&et-Chip integriert — ebenfalls ein Punkt der
bei der GigaNetIC-Architektur noch weiterer Ansgangen bedarf.
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SchlussbemerkungJeder der gezeigten Ansatze weist Besonderheitgispezielle Mechanismen
zur Ausnutzung der Parallelitat auf. Die GigaNe#fit&hitektur wurde ohne eine zuvor angestellte,
tiefer gehende Analyse dieser Architekturen entergrium so weitestgehend unvoreingenommen
einen neuartigen, innovativen massiv parallelerp@hultiprozessor zu erhalten. Diese, durch Ana-
lyse der grundlegenden Methoden und eigene Ubeartggu getriebene Herangehensweise mag
zunachst gewagt erscheinen. Der restimierende \Wargleigt allerdings, dass mit der GigaNetIC-
Architektur ein CMP entwickelt wurde, der zahlresctier Besonderheiten in einem Ansatz vereint
und teilweise neue Methoden einsetzt, um so einliohi®y ressourceneffizientes Konzept zu ver-
wirklichen.

2.9 Zusammenfassung

In diesem Kapitel wurden grundlegende AbschatzurgenLeistungssteigerung durch paralleles
Rechnen und die damit verbundenen AnforderungatieaBysteme aufgezeigt. Es wurden elemen-
tare Grundlagen zu den Kernkomponenten eingebeteatllelrechner vorgestellt. Hierzu zahlen
die On-Chip-Netzwerkeund die in diesem Zusammenhang relevanten Methatleneine mog-
lichst effiziente Verbindung@ingebetteter Verarbeitungseinheitegewéhrleisten. Mit Hilfe dieser
Kommunikationsinfrastruktur, durch die Integration einer angepass&peicherhierarchieund
unter Einbeziehung angepasstdégorithmen und fur die Parallelverarbeitung geeignedewen-
dungenwird so eine funktionale Parallelverarbeitung elgtder eingebetteten Verarbeitungsein-
heiten moglich (vgl. Abbildung 2-6). Anhand von Bnosen und den vorgestellten Anwendungs-
szenarien zeigt sich ein immer grof3er werdendemaBexh solch leistungsfahigen Architekturen.
So prognostiziert die ITRS bereits fur das JahrO26ihe Beherrschbarkeit von Chip-Multipro-
zessoren mit mehr als 800 Prozessorkernen [2].

Beispielhaft wurden innovative Ansatze aus Wisskeaicund Industrie zu On-Chip-Netzwerken,
Verarbeitungseinheiten und Chip-Multiprozessoreigezeigt und diskutiert. Hieraus wird das der-
zeit technisch Mogliche ersichtlich. Zukinftige mds werden abgeleitet. Diese Entwicklungen
bedeuten Herausforderungen, die es auch im Gig@MNatbjekt ganzheitlich zu 16sen galt. Unter-
schiede und Gemeinsamkeiten der vorgestellten Aas#inh Hinblick auf die GigaNetIC-
Architektur wurden in einem Resiimee herausgeathaii® geben so bereits einen ersten Eindruck
Uber die von mir entworfene Systemarchitektur. Dlearakterisierung und analytische Modellie-
rung eines skalierbaren, ressourceneffizienten imgsarallelen eingebetteten Prozessorsystems
sowie dessen praktische Umsetzung sind Bestanigteiblgenden Kapitel.



3 Charakterisierung und analytische Modellierung

Im Verlauf dieses Kapitels wird eine analytische dditierung des Gesamtsystems entwickelt.
Hierbei wird auf GroRen wie Flachenbedarf, Leiseamgnahme, Performanz und Zukunftssicher-
heit der jeweiligen Systemkomponenten und letziehdles gesamten SoCs eingegangen. Anhand
dieser Charakterisierungen wird mit Hilfe von defiten Kostenfunktionen ein Modell entwickelt,
das zur Bewertung von Chip-Multiprozessorsystenmpazigell auch im Hinblick auf ihre Ressour-
ceneffizienz herangezogen werden kann. Die in dieKepitel erarbeiteten Bewertungsmal3stabe
finden in den Folgekapiteln Einsatz zur Bewertundg @ptimierung der GigaNetIC-Architektur in
Bezug auf dedizierte Anwendungsgebiete.

3.1 Ressourceneffizienz eingebetteter Systeme

Thema dieser Arbeit ist die ,Ressourceneffizientbatungstechnik eingebetteter Parallelrechner*.
Was aber ist unter diesem Leitgedanken genau atebhemSchaltungstechnik also der Entwurf
von analogen und digitalen Halbleiterschaltungeigr hm Speziellen basierend auf CMOS-
Standardzellentechnologie, ist in der heutigen tedédchnik eine etablierte und wohl erklarte
Technik.Eingebettete Parallelrechner die im vorigen Kapitel bereits diskutiert wurdemd be-
grifflich ebenfalls etabliert. Wie aber lasst siths KompositunRessourceneffizien4ir System-
on-Chip-Entwurfe definieren, und welche wesentlickeiterien gilt es zu beachten?

Das WortRessourcekommt aus dem Franzoésischen und meint laut DudBsntittel, Rohstoffe
bzw. Grundlagen oder Geldmittel. Im 6ffentlicherbkea wird der Begriff meist mit Vernunft, Ethik
und einem langfristigen Okonomieverstandnis in \fetbng gebracht. Der Brockhaus unterschei-
det zwischen zwei fachsprachlichen Verwendungsweiseden Wirtschaftswissenschaften diene
Ressourceler Bezeichnung ,im weiteren Sinne von Produktiaki®ren (Arbeit, Boden und Kapi-
tal)” und bezeichne ,im engeren Sinne Rohstoffél(i@he Ressourcen)”. Der zweite Bereich, fur
den der Brockhaus den Begriff definiert, die Dagravbeitung, ist treffender fur die Thematik die-
ser Arbeit. Der Brockhaus formuliert: ,Ressourctfittel die genutzt werden kdonnen. Die Res-
sourcen eines PCs sind: 1. die inneren (Prozesstarlg, Arbeitsspeicher, Massenspeicher) und 2.
die auReren (Peripheriegerate). In einem Netzweszkden alle gemeinsam nutzbaren Mittel als
Ressourcen bezeichnet, auch Software (Anwendungspmone, Datenbestande)*.

Der zweite Bestandteil igEffizienz (lateinischefficientia Wirksamkeit), unter dem der Brockhaus
.etwas besonders Wirksames und Wirtschaftliches. llswas besonders Leistungsfahiges* ver-
steht. Der Duden beschrénkt sich auf die Bedeupwirgsam und wirtschaftlich®.

Schlésse man nun aus diesen Definitionen auf eiigliohst treffende Interpretation des Begriffes
Ressourceneffizienz fur die Schaltungstechnik degeter Parallelrechner, so ergdbe sich folgen-
de Begrifflichkeit:

Definition 1 Unterressourceneffizienter Schaltungstechnikird — im Allgemeinen und un-
ter Zuhilfenahme der allgemeinen Definitionen deiden WortbestandteileRessourceund
Effizienz — eine im Hinblick auf die nutzbaren Mittel undu@dlagen besonders leistungs-
fahige, wirtschaftliche Realisierung eines Hall@gtusteins verstanden.

59
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Im Folgenden werden weitere Begriffsdefinitionemejeen, die im Rahmen meiner Charakterisie-
rung eingebetteter Parallelrechner hinsichtlicreihiRessourceneffizienz essentiell sind. Es wird
ferner eine formale Beschreibung vorgestellt, dee Bewertung der Ressourceneffizienz solcher
Systeme ermdglicht.
Definition 2 Als SystementitatS, wird eine zumSystemS gehorige Einheit bezeichnet, die
funktional in sich geschlossen ist und einen weshein Bestandteil des Systems in mate-
rieller oder auch immaterieller Hinsicht darstellt.

SOs, (3.1)

Definition 3  Die Architektur A definiert sich aus der Gesamtheit aller Bestatedtdes
Chip-Multiprozessors. Hierunter werden zum eines ldardware-Systementitaten und de-
ren Verschaltung,,,, und zum anderen alle nichtmateriellen Systemeenitd, , ver-

standen.

AOS,.,., OS (3.2)

e( HW),

{ sy
Zu den Hardware-Systementitaten (vgl. Abschnitieldds 4.4)S,,,, zahlen z. B. Prozessorele-
mente, Hardwarebeschleuniger, Speicher, Cache§HipiNetzwerke sowie Peripheriebldcke.
Die nichtmateriellen Komponent@e(svw sind z. B. der Compiler auf Clusterebene (vgl. ¢ivstt

4.5), der zugehorige Assembler, das On-Chip-Komkatmnsprotokoll (vgl. Abschnitt 4.2.2), das
Ubergeordnete Programmiermodell sowie die Entwwefkreuge und die Zielapplikationen (vgl.
Kapitel 5, 6 und 7).

Definition 4  Ein BewertungsmalBM ist ein charakteristisches Mal3, das zur Bewertiamny
SystementitaterS, bzw. Systemerd, oder auch Architektured\, herangezogen werden

kann.

Definition 5 Kostenmal3eK definieren Obermengen ausgewahlter und thematischand-
ter Bewertungsmal3m.

K, 0 BM_ (3.3)

()
Im weiteren Verlauf dieser Arbeit werden die KostefBe Leistungsaufnahrie Flachenbedard,
(Rechen-)Leistung/PerformanzZl’ und Zukunftssicherheit bzw. Flexibilitatc verwendet,
K ={P, A, T, F}. Kostenmal3e sind nicht zwangslaufig invariantey@goer einander, vielmehr ste-
hen sie haufig in diametraler Wechselwirkung meeiter, vgl. Abbildung 3-2.

Definition 6  Die Zielfunktion ZF beinhaltet ausgewahlte, mit einégsewichtungsfaktorc
gewichteteBewertungsmalle BMines Kostenmaf3€s. .

ZF =G BM, +...+ ¢ BM, (3.4)

Es sind auch andere Zusammenhange der einzelneertBegsmalie denkbar, wie z. B. die Ver-
wendung eines multiplikativen Zusammenhangs:

ZF = ¢ BM, [1..t; BV, (3.5)

Auch exponentielle Gewichtsfaktoren zur Differemarey der Bewertungsmal3e sind denkbar:
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ZF = BM® +...+ BM ® (3.6)

bzw.
ZF = BM,* [1.[BM," (3.7)

Im weiteren Verlauf dieser Arbeit beschranke ickcimium den Rahmen dieser Arbeit nicht zu
sprengen, bei Kostenanalysen auf die Anwendung 3.

Die Gewichtungert; sind entsprechend den Randbedingungen und Anforden an die jeweili-
gen Bewertungsmalie zu wahlen. Im weiteren Verlaaded Arbeit werden die Gewichtungen ge-
maf des Zusammenhan@c, =1 gewahlt, wobed<c <1 fir eine geringere Gewichtung von

BM; und 0« ¢ <1 fiir eine entsprechend gréRere Bedeutung des jgereiBewertungsmalfies an-
gesetzt wird.

Definition 7 Eine RandbedingungR charakterisiert spezifische Besonderheiten, diedbe
Erstellung bzw. beim Einsatz einer Systemenfitgf eines SystemS oder eineArchitek-
tur A auftreten.

Die RandbedingungeR sind bei der Spezifikation bekannt und misserdbeRealisierung einge-
halten werden.

Definition 8  Als untere Schranke S, wird eine quantitative untere Grenze und aitere
Schranke S, eine obere Grenze einer ZielfunktiatF bezeichnet, die aufgrund der spe-
ziellen Randbedingungd® zul&ssig sind:

ZF>2S, ZF< SO F (3.8)
Definition 9  Die Kostenfunktion CF ist eine gewichtete Verkniipfung der einzelnen -Ziel

funktionen ZF . Die Gewichtungera; sind hierbei ggf. subjektiv und durch die Speaifik

on bzw. Randbedingungét und Schranke® zu wéahlen (vgl. Definition 6). Fur einen ad-
ditiv gewahlten Zusammenhang der Zielfunktion&n ergibt sich:

CF=)a,ZF

0K
bzw. (3.9
CF=a,P+a,A+a;T +aF mita,OR

Hier wird ebenfalls so vorgegangen, dagsa'i =1 gesetzt wird, wobei flr besonders relevante
i

ZielfunktionenZF; bzgl. der Anforderungen des Anwendungsszendligsa, <1 angesetzt wird,
und Zielfunktionen geringerer Bedeutung i€ a; <1 gewichtet werden. Varianten, ahnlich zu
(3.5), (3.6) und (3.7) bezogen auf den Aufbau ekestenfunktion sind denkbar, werden aber im
Rahmen dieser Arbeit nicht angewendet.

Sollten die Werte der einzelnen Zielfunktionen bzir betrachteten Kostenmal3e quantitativ sehr
unterschiedlich sein, so ist eine Normierung derté&/der jeweiligen Realisierungsvariantei
hilfreich:
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, mitn= Anzah{ RY, #{1..,j (3.10)

ZF,, (K.)
ZFey (K ormient F
RV ( I)normlert maX(ZFRV (K|))

Die Normierung ist fur alle Realisierungsvarian®®¥ des betrachteten Systerf§s bzw.
der Systementitdf, fir das betreffende Kostenmd® oder auch alle Kostenmafie durch-

zufuhren.
Definition 10 Pareto-Optimierung (nach MLFREDO PARETO) bezeichnet die Losung eines
multikriteriellen Problems. Bei einer Mehrzieloptarung, bei der die Zielkriterien konku-

rieren, kann eine gemeinsame Kostenfunkti¢chh mit Gewichtung der einzelnen Zielfunk-
tionen ZF aufgestellt werden. Eine LOSur@pareto des Problems, fir gegebene Gewich-

tungen der Zielfunktionen, wird afsmreto-optimalbezeichnet, wenn eine weitere Verbesse-
rung (im Sinne einer Minimierung vo@F) eines beliebigen ZielfunktionswertesZF,

stets in einer Verschlechterung (im Sinne einemg#erung) eines anderen Zielfunktions-
wertest ZF, :n# m und somit aucht CF resultiert.

CFoareto ! D, 0 ZF = min! (3.11)
iOK
Definition 11 Der Entwurfsraum E umfasst dieRealisierungsvarianterR\, einzelner Sys-
tementitatenS,, SystemeS bzw. ArchitekturenA . Dimensionen des Entwurfsraums sind
die Kostenmal3é&K; nach Definition 5, vgl. auch Abbildung 2-14.

Definition 12 Als pareto-optimaler PunktP, ., im EntwurfsraumE wird eine Losung im

Sinne von (3.11) bezeichnet. Die Bezeichnpageto-optimaler Punkkann auf Realisie-
rungsvarianten einzelner Systementité@a miti OHW, SW auf SystemeS, oder Archi-

tekturenA, angewendet werden.

Da im weiteren Verlauf dieser Arbeit Untersuchungeter Berucksichtigung implementierter Sys-
tementitatenS, , SystemeS; und Architekturend,; angestrebt werden, die keine vollstandige Ab-
deckung des Entwurfsraums zulaséemuss an dieser Stelle eine starke EinschrankongDefi-
nition 12 getroffen werden.

Definition 13 Als diskreterpareto-optimaler PunktP,, .., gswe IM Entwurfsraumi wird ei-

ne Losung nach (3.11) bezeichnet, wobei die MemgeRealisierungsvarianten diskret und
zumeist stark eingeschrankt ist. Es kann beliel@te\pareto-optimale Punkte nach Defini-
tion 12 geben, die nicht in der betrachteten Mdreggen. Ein nur auf diese Auswahl bezo-
gener, pareto-optimaler Punkt wird datiskret pareto-optimagenannt.

Auf Basis der bisher definierten Begriffe lasshsimun eine formale Definition der Ressourceneffi-
zienz treffen:

Definition 14 RessourceneffizienZR: im Sinne des schaltungstechnischen Entwurfs eines
Chip-Multiprozessorsystems bzw. seiner Bestandteitkzur Verfeinerung der allgemeinen

1 Es handelt sich zum einen um diskrete Punkte itwénfisraum, die nicht die Gesamtheit aller moglictealisie-
rungsvarianten abdecken und zum anderen um Syetigetmisse, die fir spezielle Randbedingungenlevaieden.
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Definition 1 wird nun im Weiteren spezifiziert alRealisierung von Systementitatéy ,
SystemenS, bzw. Architekturend,, die unter Berticksichtigung der vorgegebenen $ehra

ken S bzw. RandbedingungeR, den damit verbundenen Zielfunktiongf und den daraus
resultierenden Ergebnissen der Kostenfunkiify pareto-optimale Punktd, bzw.,

areto

stark abgeschwacht, diskrete pareto-optimale PuRkfe, ;.. im EntwurfsraumE dar-

stellen. Auch der Versuch der Anndherung eineriBealing an solche Punkte kann als An-
satz einer ressourceneffizienten Implementierungeget werden.

Mit den vorangegangenen Definitionen sind nun diewvanten Begriffe, die als Basis fur die for-
male Bestimmung der Ressourceneffizi®zlienen, gepragt. Im Folgenden missen nun Kriterien
gefunden werden, die sich als Bewertungsmale figrebettete Systeme einsetzen lassen und die
Zielfunktionen bilden.

3.2 Bewertungsmalie flr Ressourceneffizienz

Zur Bewertung des Grades der Ressourceneffizieres éChip-Multiprozessorsystems muissen Be-
wertungsmal8M (auch al8enchmarkdezeichnet) gefunden werden, die als Grundkomgenen
fur die jeweiligen Zielfunktionei@F dienen. In der Literatur ist eine Vielzahl von Bawngsma-
Ben fur elektronische Schaltungen zu finden, varedam Folgenden einige relevante kurz einge-
fuhrt werden.

3.2.1 Bewertungsmalde zur Performanz

Die nachstehenden Bewertungsmalle charakterisieeeRetformanzl (eingeschréankter die Re-
chenleistung) von einzelnen Systementitaten, Systdmaw. Architekturen.

Definition 15 Taktfrequenzf [MHz] = 1/TaktperiodeT, mit der die Schaltung betrieben wer-
den kann.

Definition 16 Die LatenzL [1] einer Systementitat ist die Anzahl der Taktpden (haufig:
Takte), nach der ein Ergebnis am Ausgang der Soiahnliegt.

Im nicht-digitalen Fall wird sie einheitenbehaftds Zeitspanné. [s] angegeben, die vergeht, bis
eine Eingangssignalanderung als Ausgangssignalamglerkennbar wird.

Definition 17 Der Jitter J[s] kennzeichnet die maximale Varianz der Laténand wird im
Weiteren im digitalen Sinne verwendet, also in gahligen Taktperiodeh angegeben.

Jitter ist ein Phanomen, das z. B. aufgrund komdwender Prozesse, die auf dieselbe Ressource
zugreifen wollen und nicht immer in gleicher Wetke Zuteilung bekommen, entsteht.
Definition 18 Die AusfuhrungszeitT, =TLL [s] ist die bendtigte Zeit fur die Lésung bzw.
die Bereitstellung des Ergebnisses fur eine gegebeigabe.

Definition 19 Der Durchsatz D -1 [1/s] kennzeichnet die Anzahl der gelieferten Brgs-

ex

se bzw. Daten pro Sekunde.

Im Folgenden werden allgemeine Bewertungsmalie haraRterisierung der Leistungsfahigkeit
bzw. Performanz von Verarbeitungseinheiten und jpaz&llen von Prozessoren vorgestellt:
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Ein verbreitetes, zumeist weniger aussagekraftig@®* zur Angabe der Leistungsfahigkeit ist die
Klassifikation inMIPS (Million Instructions Per Second

Definition 20 MIPS beziffern Millionen Instruktionen bzw. Maschinefélele pro Sekunde
MIPS = Instruktionem0® 3, die durch die Verarbeitungseinheit abgearbeitten kon-
nen:.

Ahnliche BewertungsmaRe zur Angabe der Instruktigm® Sekunde sind die Angabe der Instruk-
tionen pro Takt bzw. der Kehrwert in Takten protiaktion.

Definition 21 Instruktionen pro Takf (Instructions Per Cyclé IPC) bzw. dessen Kehrwert
Instruktionen_ 1

. Es qilt
Taktzyklus  CP

Takte pro Instruktion @yclesPer Instruction/ CPI) IPC =

ferner: IPCf 10° = MIPS

Aus den bisherigen Bewertungsmal3en lasst sich muabgektiveres Mald zur Bewertung von In-
struktionssatz-basierten Prozessoren definierdn|[94]:

Definition 22 Die gemittelte Ausfihrungszeit fir Instruktionssatz-baste Prozesso-
ren Tex(PE) [s] ist die bendtigte Zeit fur die Losung und @&ereitstellung des Ergebnisses

fur eine gegebene Aufgabi€ stellt die dynamische Instruktionsanzathyrfamic Instructi-
on Coun}®®, die fiir die Abarbeitung der Aufgabe benétigt widr. CPI ist die durch-
schnittliche Anzahl der bendétigten Takte bzw. Zykkir Verarbeitung einer Instruktion der
betreffenden Prozessorarchitektur.

T..(PE) = ICCCPIOf (3.12)

Dieses Bewertungsmal ist sinnvoll, wenn die zufiyggmg stehende Entwicklungsumgebung kei-
ne zyklenakkurate Laufzeitauswertung bereitstatitl stattdessen nur die Anzahl abgearbeiteter
Instruktionen z&hlt. Die GigaNetlC-Entwicklungsurbgag hingegen erlaubt in allen Simulatoren
(vgl. Kapitel 5) eine taktgenaue Simulation und fzaitauswertung der eingebetteten Prozessoren.
Deshalb kann mit der exakten AusfuhrungsZgjtgearbeitet werden, im Gegensatz zum Ansatz

von L und MARTINEZ [96]. Die in [96] aus (3.12) gefolgerte nomineliffizienz paralleler Verar-
beitung ominal parallel efficiencywird in Definition 23 dargelegt. Es handelt sicierbei um
eine vereinfachte Formulierung des Gesetzes WBT&-SON(2.2). BeimDSLAM-System-Explorer
(vgl. Abschnitt 7.5) dient ein ahnliches Modell &sundlage fur die Hochrechnung der Leistungs-
fahigkeit GigaNetIC-basierter Parallelprozessoeys. Es verwendet allerdings die exakten Lauf-
zeiten zur Bestimmung der Leistungsfahigkeit. Zzigét findet ein einstellbarédverheadder pa-
rallelen Architektur Bertcksichtigung.

1 Aufgrund der unterschiedlichen Machtigkeit dertinktionssétze verschiedener Prozessorarchiteki@eB. RISC
vs. CISC, Abschnitt 2.4.3) lasst sich zunachst kéiektiver Vergleich auf Basis dieses Bewertundsasareffen.

12 Dieser Wert hangt stark von der zugrundeliegenflierhitektur (z. B. von dePipeline der Superskalaritét,der
Méchtigkeit der eigentlichen Instruktion etc.) afidust deshalb kein eindeutiges Mafd zur BewertwergLeistungsfa-
higkeit von verschiedenen Architekturen.

13 Diese kann u. a. von den jeweiligen Daten und®ehierarchien abhangen.
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Definition 23 Die nominelle Effizienz paralleler Verarbeitungnominal parallel efficiency
&,(N) nach [96] mitN Prozessoren ergibt sich aus dem Verhaltnis destlyen Takte ei-

nes Prozessol€; zu denen vomN ProzessorefCy (3.13). &, (N) gibt Aufschluss Uber die
Eigenschaften der Anwendung bzgl. paralleler Vesitwing mittels CMPs. Bek, (N) <1
zeigen sich Performanzeinbuf3en, z. B. verursaatthddommunikation etc. Bes, (N) >1

hingegen zeigen sich superlineare Effekte der ledeal Verarbeitung, z. B. hervorgerufen
durch Multiprozessorcaches (vgl. Abschnitte 4.4d 6.7).

gn(N) _ ICl |]:P|1

= — (3.13)
IC, [CPIn

Ein sich an diese Definitionen anschlieliendes Bewmgsmald, das vor allem fir digitale Signal-
prozessorenSP9 und im Bereich des wissenschaftlichen RechnensRalevanz ist, ist die An-
gabe der Gleitkommaoperationen eines Systems kanfle. Der Standard-Prozessor der Giga-
NetIC-Architektur, der N-Core, verfugt nicht tbane derartige Gleitkommaeinheit, weshalb de-
rartige Operationen sehr teuer emuliert werden,. b@ne Integration eines anwendungsspezifi-
schen Hardwarebeschleunigers notwendig wéare. Dandigusammenhang mit dem GigaNetIC-
CMP betrachteten Anwendungen jedoch keine relewdatevendung fur diese Operationen zeigen,
wird diesbezlglich keine Einstufung vorgenommen.

Definition 24 Gleitkommaoperationen pro Sekunddo@ating Point Operations Per Second
FLOPS), gibt die Anzahl moéglicher Berechnungen im Gleitkmabereich pro Sekunde an.

Da die Bewertung der Leistungsfahigkeit von einggelben Verarbeitungseinheiten anhand der De-
finitionen 20 bis 22 sehr fraglich ist und das Bewegsmald aus Definition 24 nicht fur die Haupt-
anwendungsgebiete der GigaNetIC-Architekur heramgerz werden kann, werden im weiteren
Verlauf dieser Arbeit komplexere Bewertungsmalle.lBenchmarksingefihrt, die eine kontext-
bezogene Einstufung der betrachteten Verarbeitimuysiéen erlauben (vgl. Kapitel 7 und 8).

3.2.2 Bewertungsmalde zur Leistungsaufnahme

Die folgenden Bewertungsmal3e werden haufig zur &arsierung von digitalen Schaltungen im
Hinblick auf ihre Leistungsaufnahme verwendet.

Definition 25 Die Leistungsaufnahmebzw. VerlustleistungP einer CMOS-Schaltung setzt
sich zusammen aus statischer Verlustleistyagund dynamischer Verlustleistuiigy,und
stellt die Umsetzung von elektrischer Energie inrM&dar:

P=PR, +P

stat dyn

(3.14)

Definition 26 Die statische Verlustleistungntsteht aufgrund von Ruhestromen. Sie setzt sich
aus den AnteilePq.e, hervorgerufen durch die Querstromgg, und ausPec, der aus den
Leckstromen ek im Halbleitermaterial resultiert, zusammen:

P =P, *P

stat — ' quer leck

(3.15)

Definition 27 Die dynamische Verlustleistungntsteht aufgrund von Schaltvorgdngen und hat
derzeit bei CMOS-basierten Schaltkreisen den llegsviden Anteil an der gesamten Ver-
lustleistung (vgl. Abbildung 3-1). Sie setzt siasammen aus der Lastumladeverlustleis-
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tung Piast, die beim Laden bzw. Entladen der Lastkapazitétgsteht und durch die Lade-
bzw. Entladestromé,s; hervorgerufen wird. Die SchaltverlustleistuRgnat entsteht bei
beiden Umladevorgangen durch die Kurzschlusssti@geg die flie3en kdnnen, wenn bei-
de Transistoren durchgeschaltet sind:

P, =P

yn — T last

+P

schali

(3.16)

Bertcksichtigt man die Schalthaufigkeitenmit denen die Lastkapazitat€h,s: umgeladen wer-
den, so ergibt sich fir die Lastumladeverlustlgigta,s; (auch haufig?,ag genannt), die bei derzei-
tigen CMOS-Schaltungen einen Grol3teil der dynaneiscWerlustleitung (ca. 80 bis 90%) aus-
macht [97][98], folgende Beziehung (3.17):

Of U, AU (3.17)

ast last

R —la[C
2
Da der SignalhulAU haufig den vollen Bereich der Versorgungsspanrgigusmacht, lasst sich
die folgende Vereinfachung treffen:
P

dyn

Of U 2, mitAU=U, (3.18)

zlamlast

2
Aufgrund des wesentlichen Anteils der dynamischenlustleistung an der Gesamtverlustleistung
digitaler Schaltkreise wird im Folgenden hauptsi&bhbn der Minimierung dieser Leistungsauf-
nahmeart im Sinne der Ressourceneffizienz (nacimiieh 14) gearbeitet. Allerdings nehmen mit
zunehmender Miniaturisierung die anderen Anteile\éerlustleistung zu [2], so dass auch hier be-
reits Lésungen zur Minimierung bzw. Optimierungsgie Effekte aufgezeigt werden [99][100].
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Abbildung 3-1: Trends der Leistungsaufnahme bei CM(®-basierten SoCs [67]

Einen Uberblick bzw. eine Prognose tiber die Entluing fur die Anteile von Logik und Speicher
an der Leistungsaufnahme fur zukinftige ,,Consuntati@ary” SoCs gibt die ITRS in [67] (vgl.
Abbildung 3-1). Es zeigt sich, dass die erwartétdische Verlustleistung, wie bereits erwahnt,
klein gegenuber der dynamischen VerlustleistungDg Leistungsaufnahme der Logik ist gegend-
ber der des Speichers deutlich grofier.

Mit Hilfe der in (3.18) gezeigten Beziehung zur dygmischen Verlustleistung ist es moglich, den
Komponenten eines Systems bzw. den Systementi@iggnDefinition 2) ihre charakteristische,
effektive Kapazitaainstelleeiner allgemeinen Lastkapazi@ts; zuzuordnen (vgl. [101]).
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Definition 28 Die charakteristischesffektive Kapazitakiner Systementitéf, bestimmt sich
zu:
2[R, (S )

Ceff (Sel) = Clast(S g) = O’[f mJBz

(3.19)

Die in den Kapiteln 5 und 6 vorgestellte GigaNeWerkzeugkette ermoglicht eine komfortable
Ermittlung vonCer bzw. der bendtigten Verlustleisturg), (S, ) der betreffenden Hard- und Soft-
ware-Systementitaten. Die ermittelten Werte kondann in die Zielfunktion bzw. letztendlich in
die Kostenfunktion und Optimierungswerkzeuge eaffén und zu neuen, ressourceneffizienteren
Systemkonstellationen fihren [102][103][104].

3.2.3 Bewertungsmalde zur Flache

Ein Mal3 anderer physikalischer Natur als Performamd Leistungsaufnahme ist die Flache, die
eine Schaltungsimplementierung benétigt. Die Flaeird zum einen beeinflusst durch die reali-
sierte Funktion und die Art der Implementierung wadh anderen durch die verwendete Technolo-
gie.
Definition 29 Die Flache A, des System§ setzt sich zusammen aus der Summe der benotig-
ten Einzelflachen sowohl aller Hardwaresystemetetitéls auch der Verbindungsstruktur:

AS = Z( ASE(HW) + '%erbindungsstruktu) (320)

Die durch Synthese und ggf. anschlie3ende Platmsruund Verdrahtungsschritte erhaltenen Fla-
chenwerte sind technologieabhangig und lassen igieln Skalierungsregeln (vgl. Definition 30)
miteinander in Beziehung setzen.

Im Rahmen dieser Arbeit werden hauptsachlich 130-mmd 90-nm-CMOS-Standardzellen-
technologien zur Schaltungsrealisierung verwendet. besonders im Hinblick auf die bendtigte
Flache Vergleiche mit Standardzellentechnologietieegr Strukturgréf3en treffen zu kénnen (vgl.
[14]), lassen sich idealisierte Skalierungsreggtéling-“Gesetze) anwenden [105][106].

Definition 30 Zwischen zwei CMOS-Standardzellentechnologien kainnkonstanteSkalie-
rungsfaktor S ermittelt werden, vgl. (3.21).
Stru ktU rg r.(.jgﬁrwendete Technologie_

Stru ktu rg rbBﬁEue Technologie

S>1 (3.21)

Der Skalierungsfakto®, mit einem entsprechenden Exponentgyewichtet, ermdglicht die Skalie-
rung eines Merkmals, insbesondere der Flache, inaf &eltechnologie anderer minimaler Struk-
turgré3e. Mit Hilfe von (3.22) lasst sich der eméxgghende Wert des jeweiligen Merkmals abschét-
zen.

Merkma!/erwendeteTechnologiDS: = Merkmal (322)

neue Technolo

Tabelle 3-1 gibt Aufschluss Uber die, den Merkmadatsprechenden, gewichteten Skalierungsfak-
toren. Hierbei wird zwischen einer linearen Skairgy bei konstantem E-Feld und einer linearen
Skalierung bei konstanter Spannung unterschiedenamlyegebenen gewichteten Skalierungsfakto-
ren sind idealisiert zu sehen, allerdings kommes derzeit der Realitat aktueller CMOS-
Technologien sehr nahe [2].
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Tabelle 3-1: Idealisierte Skalierungsregeln bei Strkturverkleinerungen von Halbleiterschaltungen

Merkmal gewichteter Skalierungsfaktor gewichteter Skalierungsfaktor
konstantes E-Feld (E = const.)| konstante Spannung (U = const.)
Flache A Ss? S?
W, L, tx st st
Upp, Ur, U st 1
Feldstarke E 1 S
Cox S S
Cox, C s* st
Ip, | s* S
Schaltzeitr st S?

Eine eng mit der Flache gekoppelte Grol3e ist deisRur die fertige Halbleiterrealisierung. Der
Preis ist zumeist direkt abhangig von der benatigiéche und zuséatzlich gekoppelt an die Techno-
logie. Die zu produzierende Stiickzahl, technoldgiéagige Fertigungskosten und die Ausbeute
(Yield) bestimmen u. a. die Kosten CMOS-basierter Schgdn.

Definition 31 Der Preis I fir eine Hardwaresystementitt . ein SystemS oder eine

Architektur A wird in € angegeben und beziffert die finanzielldittel, die am Markt fur
die besagte Komponente aufgewendet werden mussesielzu erwerben.

Der Preis kann zu Vergleichszwecken in RelationFéche in €/ mm2 angegeben werden. Hierbei
ist zu beachten, dass der Preis sich nicht immeangslaufig proportional zu den Kosten der be-
trachteten Komponente verhalt, sondern z. B. aufyjeon Alleinstellungsmerkmalen oder Grin-
den der Marktpenetration komplett von den Kostekappelt gestaltet wird.

Definition 32 Die KostenK fir eine Hardwaresystementitd . ein SystemS oder eine

Architektur A werden in € angegeben und beziffern die fur dialiRierung der betreffen-
den Komponente aufzuwendenden finanziellen Mittel.

3.2.4 Bewertungsmalde zur Zukunftssicherheit und Flexibili&t

Bewertungsmal3e zur Zukunftssicherheit bzw. Flexdbileinzelner Systementitdten oder ganzer
Systeme sind physikalisch weniger fassbar als the ldsher vorgestellten Bewertungsmal3e Per-
formanz, Leistungsaufnahme und Flache. Vielmeht sie im Kontext der Randbedingungen und
Schranken (vgl. Definitionen 7 und 8) fur das Systend die jeweilige Anwendung zu sehen, die
haufig subjektiver Formulierungen der Systemaréiatie unterliegen. Dennoch sind diese Bewer-
tungsmal3e von ebenso grol3er Bedeutung, wenn rogar zukinftig noch bedeutsamer als die
bisher genannten Mal3e. Nachstehend werden deslealinahtigsten Bewertungsmalie dieser Ka-
tegorie eingefuhrt.

Im Folgenden werden die Begriffe Fehlertoleranz Eetllerimmunitat, letztere eine noch starkere
Form der Toleranz beziiglich des Verbergens vonwso#- oder Hardwaredefekten, festgelegt.
Auch sie kénnen als Bewertungsmal3e fur das Kost@naexibilitat herangezogen werden. Da
jedoch mit der Realisierung von fehlertolerantew biehlerimmunen Systemen zuséatzlich Redun-
danz vorgesehen werden muss, erhéht sich zwangstiefoenotigte Flache (vgl. Definition 5).
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Definition 33 Die FehlertoleranzFT eines eingebetteten Systems definiere ich als memnta
Fahigkeit des Systems, auf Ausfalle oder Fehlfmktion Systementitaten (nach Definition
2) selbststandig zu reagieren und diese Fehleewisgen Grenzen zu kompensieren.

Das bedeutet, dass nach auf3en die grundséatzlieffizipete Funktionalitat des Systems erhalten

bleibt. Die MaRnahmen, die angewendet werden miisserein System fehlertolerant aufzubauen,
sind vielschichtig und umfassen alle wesentlichgst&nentitaten. Die Toleranz gegenuber auftre-
tenden Fehlern ist allerdings nicht unbeschréankt ish u. a. mit dem Grad der Redundanz der
Hardware verknupft. Die Software muss u. a. angseres Detektions- und Verriegelungsmecha-
nismen aufweisen, um Fehlertoleranz in gewissemZere zu ermdglichen. Toleriert ein System

Fehler, so muss das korrekte Verhalten nach aulzso—=zu den externen Schnittstellen — grund-
satzlich gewébhrleistet sein. Dies beinhaltet zPBitokolle und Datenkonsistenz, also die Korrek-
theit der Ergebnisse der Verarbeitung. Beziiglichl@genz, des Durchsatzes und des Jitters (vgl.
Definitionen 16, 17 und 19) hingegen kdnnen Leiga@nbulRen auftreten.

Definition 34 Als Fehlerimmunitét Fl eines eingebetteten Systems formuliere ich dierzig
schaft eines Systems, alle Anforderungen, die féiclkein fehlertolerantes System aus Defi-
nition 33 ergeben, zu erfullen. Dartber hinaus naissehlerimmunes System alle Spezi-
fikationen beziglich der Performanz einhalten.

Das bedeutet keine Reduktion des Durchsatzes (Dathition 19), keine Erhdhung der Latenz
(nach Definition 16) und keine VergroRerung deteidt(nach Definition 17). Die Erfullung dieser
Bedingungen ist nur mit massivem Einsatz von Rednondind gro3em Aufwand auf Seiten der
Software maoglich.

Definition 35 Skalierbarkeitbezeichnet die Mdglichkeit, auf Basis der bestdbanMinimal-
bzw. Grundstruktur eines Systems ein neues Sysleichgearteter Struktur zu realisieren,
welches Uber weitaus mehr Systementitaten verfiggias Ursprungssystem. Die wesentli-
chen Systemeigenschaften in Form der beschriell¢ostenmale sollten jedoch von dieser
Erweiterung weitgehend unbeeinflusst bleiben odaximal linear proportional ansteigen.

Ein Systemskaliert also, wenn ben-facher Anzahl von Verarbeitungseinheiten die rtesw@nde
Flache maximah-mal so grof3 ist, die maximale Taktfrequenz desltiesenden Systems gleich

oder zumindestlEf betragt und die Leistungsaufnahme maximal ummdihe zunimmt. Fir
n

ein Softwareprogramm bedeutet dies, dass ein Algursskaliert, wenn bei einer Erhéhung des
Eingangsproblems um den Faktodie Berechnungsdauer auf der gleichen Maschinamaduti-
near ansteigt und sonmtmal so viele Berechnungen gemacht werden mussen.

Erflllt ein erzeugtes-faches System zusatzlich die Anforderung, dasduesh Reduktion oder
Abschalten vorm Einheiten der Systemgrundstruktur auch nur emimche Herabsetzung seiner
Eigenschaften erfahrt, so ist kerunterskalierbar Diese Eigenschatft ist z. B. fir den Einsatz in
mobilen Geraten, im Falle geringerer Last, zur Ré&da der Verlustleistung und damit einherge-
hend zur Verlangerung der Betriebszeit von bes@mlé&forteil.

Im Folgenden werden einige Aussagen zur Wiedervghharkeit Reuse wiedergegeben bzw. ge-
troffen, die letztendlich zu einer Definition dissBegriffs im Hinblick auf die in dieser Arbeit eel
vante Thematik fihrten.
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Ein Ausschnitt aus der ITRS-Roadmap [2] zeigt, dagsSystem-Ebene im Bereich der Entwurfs-
anforderungen der nahen Zukurfyétem Level Design Requirements — Near-term Yaar#\n-

teil an Design Reuse, also an Wiederverwertbankait Hardwareblocken, mit fortschreitender

Strukturverkleinerung in den kommenden Jahren 0i3%tetig und insgesamt um mehr als 37 %
ansteigen muss (vgl. Tabelle 3-2). Dies zeigt deutlie Vorteile, die sich durch einen flexiblen,

NoC-basierten SoC-Entwurf ergeben werden.

Tabelle 3-2: Entwurfsanforderungen /Design Reuseler nahen und fernen Zukunft auf System-Ebene [2]

Nahe Zukunft ( Near Term ) Ferne Zukunft ( Long Term )
Jahr der Produktion 2005 3006 4007 4008 3009 3010 4011 3012 |2013|[2014|2015|2016|2017| 2018|2019} 2020
DRAM 1/2 Pitch(nm) (contacted) 80| 70| 65| 57| 50| 45| 40| 36] 32 28| 25| 22| 20| 18| 16| 14

Design Block Reuse

I 32%)| 33%| 35%]| 36%| 38%)| 40%| 41%| 42%| 44%| | 46%| 48%| 49%| 51%| 52%]| 54%| 55%
[% zur Gesamten Logikgrof3e]

Nach den Annahmen der ITRS steigert sich der Wenwfederverwendete Blécke ausgehend von
2005 um bis zu 71 % im Jahr 2020, so dass 2020 aisidie Halfte (55 %) der gesamten Logik

eines Chipentwurfs auf vorhandenen Schaltungsbibekdbaut. Diese Prognose zeigt das immer
wichtiger werdende Entwurfsparadigma tfeiBlockbasierten System-on-Chips auf, die sich durch
ihre immanenten Eigenschaften besonders fur ressoeffiziente Implementierungen eignen.

Deshalb ist auch die GigaNetlC-Architektur besoadaiédestiniert flr zuklinftige Systeme. Die

ITRS gibt folgende Berechnungsformel zur Vorhersdgg,Reuse”-Wertes an:

(1+ I:)Entwicklun(:])n
(1+ QNachstun)n

reusq 1)=1-(1- reus (3.23)

Mit reuse(n)ist die Anzahl wiederverwendeter Blécke im Jamk@m Referenzjahr gemeint. Reuse
ist einer der Hauptfaktoren, die die Entwurfspradutdt steigern und eines der Schlisselkonzepte,
die hinter dem System-Ebenen-Entwi8fétem Level DesiystehenpenwickiungSteht fir die erwar-
tete jahrliche, durchschnittliche Produktivitatswsitmsrate, ohne den Effekt von ReuSgchstum
bezeichnet die erwartete jahrliche, durchschniiili¥vachstumsrate der Entwurfskomplexitat. Die-
se Formel setzt voraus, dass die GroR3e des Entwmigkleams genauso wie die Entwurfszeit wah-
rend der betrachteten Zeitspanne konstant bleiiet.B2griindung dieser Formel liegt darin, dass
die Lucke zwischen Produktivitatswachstum und Washsrate der Entwurfskomplexitdd€sign
Productivity Gap durch Wiederverwendundréuseg ausgefillt werden muss, soll der Fortschritt im
SoC-Entwurf vollstandig genutzt werden [2]. Nebemn dnter (3.23) genannten Gleichung zur Wie-
derverwendbarkeit soll nun noch eine textuelle ieéin fur diesen Begriff gegeben werden.

Definition 36 WiederverwendbarkeitWV: Ein wiederverwendbarerHardware- oder Soft-
wareentwurf zeichnet sich dadurch aus, dass dwdfizierte Funktion, verifizierte Imple-
mentierung, bestehende Testumgebungen und gutenidwitation der Einsatz einer bereits
realisierten Systementitéat (nach Definition 2),ghehen mit einer Neuimplementierung, ei-
nen deutlich geringeren Entwurfsaufwand (maxima?b8ines Neuentwurfs) bedeutet.

Wiederverwendbarkeit ist eine essentielle Anfordgrbeutiger und zukunftiger SoC-Entwirfe, um
die Entwurfsproduktivitatslicke (vgl. Kapitel 1)rdie3en zu kénnen. Wiederverwendbare System-
entitaten helfen somit den Entwurfsprozess drdstiscverkirzen.



3.2 Bewertungsmalie fir Ressourceneffizienz 71

Im Zusammenhang mit der Zukunftssicherheit und iBl&téat ist auch die Programmierbarkeit ei-
ner Systementitat bzw. des Systems zu sehen. Biebg im Rahmen der implementierten M6g-
lichkeiten, fur Flexibilitdt gegenuber einer starreurch grof3tenteils fest verdrahtete Logikfunktio
nen definierten Funktion eines Hardwareblocks.igialtiger die Mdglichkeiten der Programmier-
barkeit ausfallen, desto flexibler kann auf verateldnforderungen seitens der Anwendung rea-
giert werden. Allerdings geht dies zumeist mit eidergré3erung der Flache einher. Je universeller
die Art der Programmierung ist, desto leichteréassich entwickelte Programme auf neue Hardwa-
revarianten portieren. Skalierbare Programmiermedeigl. Abschnitt 4.5) ermdglichen effizient
nutzbare Hardwarestrukturen. Die Programmierbatkeg&iner Hochsprache wie z. B. und die
effiziente Abbildbarkeit auf das System durch geetg Werkzeugketten (vgl. Abschnitt 5.6) erho-
hen ebenfalls die Wiederverwendbarkeit und Flei#tiles Systems.

Definition 37 Die Programmierbarkeit PGeines Systems beschreibt den Grad der Verander-
barkeit der Funktion der Schaltung durch Verdndgruon immateriellen Bestandteilen
(Software-Systementitét@e(SW) (nach Definition 2)) des Systems. Die Hardwaret&ys

entitatenS,,,,, bleiben dabei unveréandert.

W),

3.2.5 EffizienzmalRe zur Bewertung

Eine Kopplung von Bewertungsmal3en fuhrt zu kompkaxéal3en, die, zumeist bezogen auf eine
spezielle Anwendung, eine hohere Aussagefahiglesitzen. Es handelt sich hierbei um so ge-
nannte Effizienzmalie.

Definition 38 EffizienzmalRe EMsetzen unterschiedliche Bewertungsm&Bé in Relation
zueinander und ermoglichen so tiefer gehende Viefgeverschiedener Systemrealisierun-
gen in Bezug auf charakteristische Eigenschafterbd&achteten Systems.

M —em,,., miti 2k (3.24)
BM, ’

Weitere Schachtelungen von (3.24) sind mdglich. dé¢tnes sich bei Dividend und Divisor um
Bewertungsmalie der Dimension Energie, so defidi@ast sich ergebende EffizienzmalR den Wir-
kungsgrad.

Ein Effizienzmald zur Verknipfung von Performanz urestungsaufnahme ist die Anzahl der
maoglichen Millionen Operationen pro Sekunde pro WatMOPS/Watf, wobei hier nicht direkt
auf den tatsachlichen Durchsatz geschlossen wdsatem da die Anzahl der Operationen und deren
Leistungsfahigkeit nicht zwangslaufig bei jeder Witektur gleich zu bewerten sind, vgl. Abschnitt
6.2.3. Dies wird prinzipiell schon bei den Ansatzem RISC- und CISC-Architekturen deutlich.
Sicherlich aussagekréftiger ist dBurchsatz pro Wat(z. B. MBit/s/Wat), bei einer gegebenen
Anwendung, allerdings nicht so gut geeignet furagele Vergleiche. Fir Kommunikationssysteme
von besonderer Aussagekraft ist das Effizienzmeafiotigte Takte pro Datenbitvas zum einen
eine Bewertung unterschiedlicher Architekturen w@staund zum anderen eine Charakterisierung
unterschiedlicher Algorithmen ermaoglicht, vgl. Kigbi7.

Ein Effizienzmald zur Abschatzung der Zukunftssibleérist der Anteil wiederverwendeter bzw.
wiederverwendbarer Hardwareblocke an der Gesarhdlaner neuen Architekturvariante. Ent-
sprechendes lasst sich sinngemal auch fur Softestegidteile definieren.
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Zur Abschatzung der Wirtschaftlichkeit lassen diffizienzmalRe wiePreis pro Chipflacheoder
Performanz pro Chipflacheder auchH_eistungsaufnahme bezogen auf den Durchigateine ge-
gebene Anwendung einsetzen.

3.3 Die vier bestimmenden Kostenmalle der Ressourcenefénz

Im Folgenden wird die prinzipielle Vorgehensweise Bewertung und Realisierung ressourcenef-
fizienter Systeme vorgestellt. Die vier Kostenmafie,den Entwurfsraum definieren, und auf diese
wesentlich Einfluss nehmenden Faktoren werden néaakterisiert. Die zur Bewertung der Res-
sourceneffizienz nach Definition 9 aufzustellendestenfunktionCF beinhaltet folgende, von mir
fur wesentlich befundene Kostenmake LeistungsaufnahmePerformanzbzw. Rechenleistung
Chipflache bzw. Preis und Zukunftssicherheitbzw. Flexibilitat (vgl. Definition 5). Zumeist be-
steht eine diametrale Wechselwirkung zwischen dereihen Kostenmal3en, vgl. Abbildung 3-2.

Chipflache
/
Preis

Leistungs- Rechen-
aufnahme leistung

Zukunftssicherheit

Abbildung 3-2: Die vier Kostenmal3e zur Bestimmung dr Ressourceneffizienz

Zur Abschatzung der Ressourceneffizienz eines Bystalssen zunéchst die Systemanforderun-
gen und die damit verbundenen Randbedingungerefegtgverden. Diese spiegeln sich zum einen
in den Gewichtsfaktoren fur die relevanten BewertungsmaB® der jeweiligen Zielfunktionen
ZF der vier KostenmaR& wider. Zum anderen wird die Relevanz jedes eirereldostenmalies
mit Hilfe von, den Randbedingungen angepassten,ichéumgen a in der KostenfunktiorCF
nach Definition 9 berucksichtigt. Ziel ist es, #lestenfunktion, also die eigentlichen Kosten des zu
realisierenden Systems, zu minimieren, um so eameAhforderungen des Einsatzgebietes entspre-
chende, mdglichst optimale Implementierung zu émigvgl. Definition 10). Im Rahmen des Gi-
gaNetIC-Projekts geschieht dies durch die in depitéln 5 und 6 vorgestellte Werkzeugkette und
den verfolgten hierarchischen OptimierungsansatzSystemarchitektur. Abbildung 3-3 verdeut-
licht die wesentlichen Schritte und deren Reihegddur Feststellung und Bewertung der Ressour-
ceneffizienz von verschiedenen Systemkonzepten.
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Abbildung 3-3: Vorgehensweise zur Bewertung der Resurceneffizienz

Abbildung 3-4 veranschaulicht den durch diese Kiestenmal3e nach Definition 11 aufgespannten
Entwurfsraum und zeigt das wesentliche Fur und Wider der eimerelKostenmale auf. So lasst
sich z. B. dieRechenleistunglurch Steigern der Parallelitdt oder der Takteatehen. Auch eine
Optimierung der Hardware und der Software bederiten Leistungszuwachs. Allerdings erhoht
sich z. B. durch starkere Parallelitat die Flachas die diametrale Verkntpfung der einzelnen Di-
mensionen verdeutlicht. Durch Verwendung einerétftél echnologie, nicht optimierter Hardware
oder Software hingegen wird die Rechenleistungziedu Die Leistungsaufnahmeiner Multipro-
zessorarchitektur wird u. a. durch Faktoren wiehhetogie, Taktfrequenz und Flache beeinflusst.

Die Chipflacheund damit einhergehend auch deis des Bausteins kbénnen ebenfalls durch den
Grad der Parallelisierung und die Art der Kommutitkasinfrastruktur des Chips (seriell / parallel /

heterogen) variiert werden. Die Artung der Kommuatibnsinfrastruktur beeinflusst nach aul3en
hin zudem die Anzahl der Ein- und Ausgang®¢) und damit die Gehéusekosten.

Als ein eher abstraktes Kostenmalf3, das nicht sbtleu messen bzw. auch zu bewerten ist, gestal-
tet sich dieZukunftssicherheitbzw. Flexibilitdt der Architektur. Dieses neue Kostenmal3 erganzt die
bereits in der Literatur etablierten drei Kostenm#&endort oft auch Kostenfaktoren genannt). In
Zukunft wird es vermutlich eine immer wichtigerelRceinnehmen. In Zeiten, in denen die Wert-
schopfungskette nicht mehr nur in dem Verkauf deslikts allein besteht, sondern mehr und mehr
auch durch kostenpflichtige Dienste Einnahmen &raierden, kommt es besonders auf die Flexi-
bilitdt und die Erweiterbarkeit der Merkmale eif®duktes an. Nicht zuletzt auch deshalb, um das
Produkt moglichst lange am Markt zu halten und lkearhmende Anforderungen ohne Hardware-
modifikationen reagieren zu kénnen.
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Rechenleistung
Leistungsaufnahme «Steigerung der Taktrate

eHo6here Taktrate

*«GroRere Chipflache
(komplexeres Design)

*General-Purpose-Design
eTechnologie

°...
eKeine Rechenreserven
e Keine Abwartskompatibilitat
e«Unkomfortable Programmierung

«Keine Software-Update-Fahigkeit
e Keine standardisierten Schnittstellen

«Erhéhung des Parallelititsgrades
«Optimierung der Architektur

*Neue, leistungsfahigere Technologie
e Problemorientierung der Architektur
+ Optimierung der Software

Chipflache / Preis

sTechnologie

e Komplexeres Design

¢ Anwendungsspezifisches Design
eParallelisierung

eErhéhung der Pinanzahl

Zukunftssicherheit
-

eSerielle Schnittstellen
eReduzierung der Taktrate

e General Purpose Design
+Regelmaliges, leicht testbares Design

*Gute Testbarkeit
e Modularer Aufbau
« Software-Update-Fahigkeit

eProgrammierung in
Hochsprachen

e Geringere oder variable Taktrate

e Kommunikationsreduktion (Cache)
*Reduzierung der Chipflache
eTechnologieverbesserung

¢ Strukturverkleinerung

. . «Geniigend Rechenreserven
*Special Pupose Design

¢ Genormte Schnittstellen

« Kompatibilitdt folgender
Chips

eReduktion der Taktrate
¢ General-Purpose-Design

e Altere Technologie
e Standard-Software
«Keine anwendungsspezifischen Erweiterungen

Abbildung 3-4: Vier Dimensionen des Entwurfsraumsaufgespannt durch die vier Kostenmalle

3.4 Zusammenfassung

In diesem Kapitel wurden wesentliche Begriffe effipet, die zur grundlegenden Definition der
Ressourceneffizienz und zur Bewertung eingebetiaeallelrechner und ihrer Komponenten fuh-
ren. Mit Hilfe der aufgefihrten Formalismen kdnnenFolgenden die Systemimplementierungen
aus Kapitel 4 sowie die Erweiterungen und Optimmgan aus den Kapiteln 6 und 7 mit Hilfe der
ganzheitlichen GigaNetlC-Werkzeugkette (vgl. Kalpfig charakterisiert und im Sinne der unter
Definition 14 gegebenen Begrifflichkeit im Hinbliguf Ressourceneffizienz bewertet werden. Ei-
von unterschiedli¢kealisierungsvarianten zur effizienten Pa-

ne exemplarische Untersuchung

ketverarbeitung mit Hilfe der hier geschildertentMele wird in Abschnitt 6.4 vorgestellt.



4 Die GigaNetIC-Systemarchitektur

In diesem Kapitel wird ein neuartiges SystemkonZ&ptChip-Multiprozessoren vorgestellt. Die
Besonderheiten dieser Architektur sind die Skaligtbit, die hohe Flexibilitdt und der konsequent
verfolgte ganzheitliche Ansatz bei der Umsetzung Aechitekturkonzepts. So wurde nicht nur am
Entwurf und der Optimierung der Hardware gearbegenhdern in Kooperation mit den Fachgebie-
ten ,Programmiersprachen und Ubersetzter”, Profe Biastens, und ,Algorithmen und Komplexi-
tat", Prof. Friedhelm Meyer auf der Heide, der Unsitdt Paderborn eine geschlossene Werkzeug-
kette mit Compiler, Programmiermodell und Simulatogeschaffen. Diese Ganzheitlichkeit zeich-
net die GigaNetlC-Architektur in erster Linie ads man ein solch komplexes Multiprozessorsys-
tem nicht nur von einer Seite betrachten darf.

4.1 Neuartiges, ressourceneffizientes und skalierbar€SMP-Systemkonzept

BENINI et al. zeigen in [107] die Notwendigkeit der S&dbdarkeit flir zukinftige Systeme a@in-
bient IntelligencgAml), also allumgebende ,maschinelle” Intelligenz wrid von komplexen Sys-
temen, wird in Zukunft eine immer gréf3ere Rolleumserem taglichen Leben spielen. Aml erfor-
dert energieeffiziente, hoch-performante Rechepsystmit intelligenten Sensoren und Aktoren,
die in jeder Hinsicht hoch skalierbar, fir den jdigen Einsatzweck optimal konfiguriert sein mus-
sen. Sowohl Hardware, Kommunikationsstrukturenaalsh Software mussen skalierbar gehalten
sein, um die kommenden Anforderungen des Markféfiear zu konnen.

Die im Folgenden vorgestellte GigaNetlC-Architekistr konzipiert worden, um all diese Anspri-
che zu erfullen. Auch Aspekte der Hochverfugbarkalso der Fehlertoleranz und Ausfallsicher-
heit, kdnnen durch ein redundant ausgelegtes Gi@MNgystem in gewissen Grenzen realisiert
werden.

Abbildung 4-1: GigaNetlC-Architektur — 32 Prozessoen untergebracht auf einem 20tel der Flache einese@ts

Abbildung 4-1 verdeutlicht die hohe Integrationsdécund die Flachenverteilung einer Architektur-
Variante des GigaNetlC-Systems, die 32 N-Core-Rsmen (vgl. Abschnitt 4.3.1) und acht
Switch-Boxen (vgl. Abschnitt 4.2) umfasst. Dieseab®erung lasst sich in einer aktuellen 90-nm-
Technologie auf ca. einem 20tel der Flache einegsfiecks integrieren. Zusammen mit 1,3 MByte

75
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On-Chip-Speicher findet das gesamte System aufgeerals der Halfte der Flache des besagten
Geldstucks Platz. Abweichend von den Ansatzen inmkoerplexer werdender, hoch spezialisierter
Recheneinheiten der letzten Jahre (vgl. Kapiteb2),denen eine mdglichst hohe Taktfrequenz an
oberster Stelle steht, wird bei dem GigaNetIC-Systlas Prinzip einer massiv parallelen Architek-
tur verfolgt. Hierbei werden weniger "hochgezuokite€EPUs mit geringer Pipelinetiefe vielfach
instanziiert. Dies geschieht frei nach dem PrinZifeile und herrsche®, d. h. die Arbeit wird auf
eine Vielzahl relativ einfacher Verarbeitungseinémiverteilt. Allerdings ist der Erfolg dieser Me-
thode abh&ngig von der Anwendung und ihrer Paisikebarkeit”.

Die GigaNetIC-Architektur ist im Grundsatz eine J@&eal Purpose”-Systemarchitektur, also eine
zunachst universell einsetzbare Multiprozessosigiling. Bei vielen der im Folgenden vorgestell-
ten Aspekte wurde sie insbesondere fur den Eiredatietzwerkprozessor getestet, durch anwen-
dungsspezifische Hardwarebeschleuniger erweitadt aptimiert (vgl. Kapitel 6 und 7). Bei der
prototypischen Realisierung (vgl. Kapitel 8) wumrelgenfalls besonderes Augenmerk auf die Integ-
ration der Architektur in ein Netzwerkanwendungssze gelegt.

O O O D ©
» . * *
X4 AKX 4 * @ * @
X o o o .
* ’ Prozessor-
Q@ PP rot e
* * O O
.’;0’ .*;0‘ .’;0‘ .’;0‘ Wishbone- /
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On-Chip-Bus
";;‘ ‘*;; .*;; .*;; L 4 N-Core-Subsystem
* * * * * & lokaler Speicher
-
* * * * On-Chip-Netzwerk
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* * * *

Abbildung 4-2: Schematischer Aufbau der massiv panéelen GigaNetlC-Architektur

Die entworfene GigaNetIC-Architektur (vgl. Abbildgr-2) beruht auf massiv paralleler Verarbei-
tung, die durch eine Vielzahl homogener Verarbgs@mnheiten ermdglicht wird. Diese Rechen-
knoten basieren auf einem im Fachgebiet Schaltaalysik der Universitat Paderborn, Prof. Rick-
ert, entworfenen 32-Bit-RISC-Prozessorkern [108pse werden in einer hierarchischen System-
Topologie Uber eine leistungsfahige, mehrstufigemifnikationsinfrastruktur, den GigaNoC
[109][110], miteinander verbunden. Die GigaNetlICelitektur l&sst sich strukturell in drei Ebenen
[6] unterteilen:

» Prozessor-Ebene
Diese Ebene kennzeichnet die unterste Ebene desN&ig-Systems. Auf dieser Ebene
finden feingranulare Modifizierungen und Optimiegen wie z. B. Befehlssatzerweiterun-
gen des Prozessors statt (vgl. Abschnitt 6.2 uBjl Dies betrifft jeweils einzelne Module,
also alleintellectual Propert{iP)-Bldcke, die hier zum Einsatz kommen, wie z. BoZ@s-

1 vgl. hierzu die Gesetze vormdAHL (2.1) und GSTAFSON(2.2), Abschnitte 2.1.1 und 2.1.2.
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sorelementeRE), HardwarebeschleunigeH{V-Acq (vgl. Abschnitt 6.3, 7.4.2.3 und 7.7),
Speicher oder Peripherie-Blocke. Im Falle der zdetr VerarbeitungseinheiCPU) kon-
zentrieren sich hier die Aktivitaten auf den N-C{r@8][111] (vgl. auch Abschnitt 6.2).

* Cluster-Ebene

Auf dieser Ebene sind die einzelnen Module Ubeereiokalen Bus oder eine Switchmatrix
verbunden. Der verwendete Compiler [111][112] kaowohl Optimierungen auf Instrukti-
onsebenelstruction Level Parallelisnt ILP) vornehmen, als auch die Existenz von an-
wendungsspezifischen Hardwarebeschleunigern awsnutaf dieser Ebene kann bei Be-
darf ein eigens entworfener Multiprozessor-Cacmgesetzt werden [113] (vgl. auch Ab-
schnitt 4.4.2). Switch-Boxen [114] (vgl. AbschridtP.1) agieren als Hochgeschwindigkeits-
Routingknoten und entlasten die Prozessoren bzvlottialen Hardwareblocke als so ge-
nannte ,NoC Offload Engines* beim Empfangen unddgenvon Daten von bzw. zu ande-
ren Clustern bzw. externen Schnittstellen des SoCs.

* SoC(System-on-Chip)-Ebene
Rickgrat derSoC-Ebeneast die Kommunikationsinfrastruktur, die sowohledKommu-
nikation auf dem Chip als auch die Anbindung dels@iip-Speichers und der 10s gewahr-
leistet. FUr den Programmierer geschieht dies panest, da die Wegewahl und das Spei-
chermanagement von den Switch-Boxen (vgl. Abscldniitl) gesteuert werden. Zur kom-
fortablen Nutzung der Kommunikationsinfrastruktuerden spezielle intrinsische Funktio-
nen [115][109] als Software-Bibliothek zur Verfugugestellt (vgl. Abschnitt 4.2.2). Dari-
ber hinaus wurde ein globales ProgrammiermodellAisnutzung der SoC-weiten Paralle-
litat eingefuhrt (vgl. Abschnitt 4.5).

Ein Hauptziel meines Ansatzes ist, dass der reseiide Multiprozessor in Bezug auf die Anzahl
der Cluster, der pro Cluster instanziierten Prozesssowie die zur Verfigung gestellte Bandbreite
durch die Kommunikationskanale leicht parametrimersein soll. Aul3erdem sollen definierte
Schnittstellen zum einfachen Integrieren von kusgeaifischen Hardwarebeschleunigern und Pe-
ripherieblocken die Performanz und die Zukunftssibeit des Konzepts maximieren. Auf diese
Weise kann eine grof3e Wiederverwendbarkeit (vgischbitt 3.2.4, insbesondere Definition 36)
dieser Architektur durch Skalierung auf vielfaltiggnsatzgebiete gewahrleistet werden (vgl. Ab-
schnitt 3.3). Dies erhdht auch die Ressourcenefizides Systems (vgl. Abschnitt 3.1, insbesonde-
re Definition 14).

Die drei Hierarchieebenen bieten dem Entwicklerindefte Ansatzpunkte zur Optimierung bzw.
Parametrisierung des Systems in Bezug auf denrspdinsatzzweck und die damit verbundenen
Anforderungen (vgl. Kapitel 6). Dies wird zudem vder entwickelten Werkzeugkette komfortabel
unterstitzt (vgl. Kapitel 5) und erméglicht somaheelle Entwicklungszyklen. Weitere Vorteile
einer solchen homogenen Systemarchitektur liegethem einheitlichen Programmiermodell und
der vereinfachten Testbarkeit und Verifikation. ®igirkt sich ebenfalls positiv auf die Entwick-
lungszeit des Gesamtsystems aus.

Die spezielle parallele und redundant auslegbaohifaktur des GigaNetlC-Systems bietet zudem
grof3es Potential fur die Realisierung nach Debnit33 fehlertoleranter Chip-Multiprozessoren und
ermdglicht somit eine Erhéhung der ChipausbeBtedquction Yield, was zur Steigerung der Res-
sourceneffizienz beitragt. Vorausgesetzt die Hardwad die Betriebssoftware ist dafiir ausgelegt,
erreicht man sogar — in gewissen Grenzen — eineulmtéat des Systems gegeniber Fehlern (nach
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Definition 34) und damit gegebenenfalls eine weitBteigerung der Ressourceneffizienz. Mit der
zunehmenden Miniaturisierung und den hervorrageritiganschaften der GigaNetIC-Architektur
bezuglich Skalierbarkeit und Programmiermodelldnesich optimale Voraussetzungen, um in Zu-
kunft fehlertolerante bzw. sogar fehlerimmune Systeu konstruieren.

Abbildung 4-3 zeigt die Zuordnung der einzelnen &BlgtiC-Systementitaten zu dem bereits in
Abschnitt 2.3.2 vorgestellten NoC-Schichtenmod@lr physikalischen Schicht sind die Verbin-
dungsleitungen zwischen den Switch-Boxemgr-Switch-Box-LinKsund die spezifischen Puffer-
speicher fur die Flits zur Vermeidung von Blockadadvanced Buff@rzu zahlen. Die Architektur
und Steuerungsschicht umfassen die funktionalehdiien der Switch-Boxen und die vordefinier-
ten Software-Bilbliotheksfunktionen, die den Pramelementen eine komfortable Schnittstelle zu
den Funktionen des On-Chip-Netzwerks zur Verflugstegjen. Zur Schicht 3 und damit zur Soft-
wareschicht gehéren die Anwendungssoftware, wi Raketverarbeitungsalgorithmen beim Ein-
satzgebiet als Netzwerkprozessor (vgl. Kapitelung das Programmiermodell des Gesamtsystems
(vgl. Abschnitt 4.5).

NoC-Komponente
NoC-Schichten-Modell

3 Programmiermodell,
Software O Anwendungssoftware

GigaNetIC-Library-Funktionen,
Architektur und @ Switch-Box, Communication Controller,

Steuerung Speicher, 1/0-Ports, FIFO-Queues, Crossbar,
Arbiter

Physikalische Schicht o [ Advanced Buffer, Inter-Switch-Box-Links )

Abbildung 4-3: Zuordnung wesentlicher Systementitdtn zum NoC-Schichtenmodell

Im Folgenden wird der Aufbau der GigaNetIC-Archttgkim Detail beschrieben, angefangen bei
der GigaNoGOnN-Chip-Kommunikationsstruktur und dem hierfur exig entworfenen On-Chip-
Kommunikationsprotokoll [110], Gber die Anbindun@nv Verarbeitungseinheiten [108][6][111]
und IP-Blocken [116][117], die Implementierung ein&igaNetIC-konformen Multiprozessor-
Caches [113], bis hin zum Programmiermodell desa@é¢systems [6] und zu einer Werkzeugkette
zur modularen, effizienten Modellierung von Netzkarwendungen [118][119].

4.2 GigaNoC-On-Chip-Kommunikationsstruktur

Bei dem GigaNetIC-Prototypen (vgl. Kapitel 8) wureie zweidimensionales Gitter (vgl. Abbil-
dung 2-8) fur die obere Topologiehierarchiestutdiseert. Diese Topologie ist mittlerweile techno-
logisch aufgrund symmetrischer Leitungslangen uadfzeiten beherrschbar und bietet weitere
Vorteile fir On-Chip-Netzwerke (vgl. Abschnitt 2.3)ie Module innerhalb der Cluster der unteren
Hierarchiestufe werden Uber lokale Bussysteme, avid3. Wishbone oder AMBA, oder Uber
Switchmatrixen miteinander verbunden. Abbildung B}%tellt eine freie, hierarchische Topologie
dar, die keinerlei Restriktionen hinsichtlich dezrfindungen zwischen den einzelnen Clustern un-
terliegt. Die GigaNetIC-Architektur ist zwar furna solche Variante vorbereitet, technologisch
werfen sich allerdings fir derzeitige Standardzelipsse mitunter grof3e Probleme auf, so dass
eine Realisierung einer derart unregelmafigen girumomentan nicht angedacht ist.
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Fur NoCs gibt es, wie in Abbildung 2-16 gezeigtnkorrierende Faktoren, die gegeneinander ab-
gewogen werden mussen, allerdings besteht hie¥deeil, dass nicht zwangslaufig existierende
strenge Kommunikationsstandards eingehalten wemtéssen, da diese Netzwerke normalerweise
in sich abgeschlossen sind. Zu diesen Kosten zélidebereits erwahnten Faktoren Wieistungs-
aufnahmeund damit einhergehend eine mdglichst direkte Wi Als néchstes ist détachen-
bedarfzu nennen, der direkt mit der Router-Architektarknipft ist, die zudem direkt maf3geblich
die Leistungsfahigkeitier Datenubertragung bestimmt. Ein weiterer sellebtender Punkt ist die
Robustheit des Netzwerks gegeniber sich veranderdeenverkehrsverteilungen. Hier wird die
Qualitat des Netzwerks nicht zuletzt durch die \ardeten Routingalgorithmen definiert. Statische
Wegewahlverfahren eignen sich vor allem fir deteistisches Verkehrsaufkommen, wohingegen
sich adaptive, also dynamische Routingverfahreghd&iexibilitat bei veranderlichem Lastverhal-
ten auszeichnen. Durch die Wahl des Routingverfahvard deshalb di€lexibilitdt und somit die
Zukunftssicherheles NoCs definiert.

4.2.1 Switch-Boxen als zentrale Kommunikationsknoten auSoC-Ebene

System-on-Chip-EbeneAuf SoC-Ebendungieren Switch-Boxen (vgl. Abbildung 4-4) als ¢te
geschwindigkeits-Routingknoten, die die einzelndus@r des SoCs miteinander verbinden [114].
Die On-Chip-Kommunikation ist paketbasiert (vgl.g&hnitt 4.2.2).

nQO ejed

Arbiter
(mit Prioritatsenkoder)

Crossbar x

Data Out

INPUT_PORT
,,,,,

Data Out

Abbildung 4-4: Switch-Box-IP-Block mit Struktur ein es Ports und des Kreuzschienenverteilers.
Explizite Darstellung fur Eingangsport 3 und den Awsgang von Port 1.

Aufgrund der generischen Beschreibung in VHDL, diea. Variationen der Anzahl der Ports zu-
lasst, kbnnen nahezu beliebige Netzwerktopologidgedoaut werden. Fir die prototypische Reali-
sierung wird zunéchst ein Gitter implementiert. tZrdieses regelmafigen und einfachen Aufbaus
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erlaubt diese Architektur Pipelining und Parallearbeitung der Prozessorfelder. AuRerdem garan-
tiert diese Topologie gleichlange Verbindungslegeeim und damit gleichlange Signal-Laufzeiten
zwischen den Switch-Boxen. Die parallele, Switch«B®asierte Architektur erlaubt des Weiteren
eine hohe Fehler- bzw. Ausfalltoleranz. Sollte Rinzessorfeld ausfallen, so kann, sofern die Soft-
ware dies unterstltzt, ein anderer Cluster dessektienalitat tbernehmen.

Die Switch-Box besteht als aktiver Netzwerkknoteis awei Hauptteilen. Der eine Teil bildet mit
den Eingangsports und dem KreuzschienenvertéllersSbaj mit integriertem Prioritats-Enkoder-
basierten Round-Robin-Arbiter die Kommunikationsktur. Diese sorgt dafir, dass die Datenpa-
kete problemlos durch den Knoten geleitet werdeth onit der Routing-Strategie den korrekten
Ausgang der Switch-Box erreichen. Der zweite Teil 8witch-Box umfasst Kontrollstrukturen, die
als Schnittstelle zwischen dem Prozessorfeld umd @aipnetzwerk dienen. Diese Kopplung tber-
nimmt derCommunication-Controlle(CC), welcher zwischen dem Port O und dem Bussystesn de
Prozessorfeldes angeordnet ist (vgl. Abbildung.4-4)

4.2.1.1 Communication-Controller

Der Communication-Controllewird in Abbildung 4-5 detaillierter dargestellty zeinen wesentli-
chen Aufgaben z&hlen:

Die Bereitstellung der fur den lokalen Cluster lmesiten Pakete geschieht auf Anfrage der Prozes-
soren. Die Eingangsports der Switch-Box erkennass ein Flit fir den lokalen Port gedacht ist,
daran, dass die Koordinaten im Kopf eines Flitd sinld. Die Flits missen nicht zwangslaufig nach
Paketen sortiert ankommen, noch mussen die FhiesdPakets in der richtigen Reihenfolge sortiert
sein. Die Pakete werden also gegebenenfalls @ahgeordnet. Er Gbernimmt die Speicherverwal-
tung.

Switch-Box

Communication-Controller
Input-Register

Adress-FIFO Sende-FIFO

Sendekontrolle

FIFO-
Register

FIFO-
Register

FIFO-Controller

FIFO-Controller

Adress-Selektor l

Bus-Controller Speicher-Controller

Dual-Port-Speicher

&

lokaler Bus (inkl. Arbiter)

Abbildung 4-5: Der Communication-Controller, die NoC-Kommunikations-"Offload-Engine"

Eine weitere Hauptaufgabe dé€sist das Versenden von Paketen, wenn ein Prozdgsdear-
beitung seiner Daten beendet hat, und diese wel@tet werden missen. Dabei kann das Ziel ein
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anderes Prozessorfeld sein, welches zusatzlichietibnan hat, oder eine Ausgangsschnittstelle des
Chips. Zusatzlich ist vorgesehen, dass sich digrBnome, die auf den Prozessoren laufen, gegen-
seitig Nachrichten schicken konnévigssage PassingAuch zu diesem Zweck miussen Pakete ver-
schickt werden. Der Ablauf dabei ist wie folgt: Bdnozessor teilt der@C mit, dass es ein zu ver-
sendendes Paket gibt, und informiert ihn Uber diee8se, an der die Daten im Speicher beginnen.
Anschliel3end sorgt deCC dafiir, dass die Daten zu einem Paket zusammetigesteden und
organisiert deren Transport zum Eingangsport Nddin dort nehmen die Flits vollkommen auto-
matisiert ihren Weg durch die Kommunikationsstraktum gewinschten Zielort.

In der Initialisierungsphase fungiert de€ als ,Bootloader”. Er schreibt die Programmflitdlaa-
tomatisch in die entsprechenden Speicherbereiahdefi Programmcode der Prozessorelemente.
Dieses Verfahren wird selbstéandig nach ddard ResetangestofR3en. Die entsprechenden Daten
werden aus einem nichtfliichtigen, an einer Switolx-Bngeschlossenen Speicher geladen. Hierzu
wird ebenfalls die inharente Funktionalitat des abgCs genutzt. Eine Ubersicht der Befehle des
Communication-Controllers wird in Abbildung AnhaAg2 gegeben.

4.2.1.2 Topologie des Netzwerks

Wie in Abschnitt 2.3.1 ausfuhrlich erlautert eign@oh zweidimensionale Strukturen fur aktuelle
Standardzell-Technologien derzeit am besten. Deshald momentan auch beim GigaNoC eine
gitterformige Struktur praferiert, vgl. Abbildung2d Durch Parametrisierung (vgl. Abschnitt 4.7)
bzw. Anderung der Anordnung kann die Architektueraduch in komplexere Topologien lberfiihrt
werden. Hierzu kénnen auch die zusatzlichen didgonBorts der Switch-Boxen eingesetzt wer-
den, die den Grad des einzelnen Netzwerkknotens bis hin zu derzgisteigern knnen (vgl.
Abbildung 4-6).

@ * * . .

& ANRS ANg AR
AN N4 ‘e* R\
E\)
Grad 4 +1 Grad 8 +1 Grad 16 +1

Abbildung 4-6: Parametrisierbarer Grad & der Switch-Box

Ebenso sind Topologien mit mehr als zwei Hierarstoien realisierbar. D. h. dem regelmafligen
Gitter aus Abbildung 4-2 kann z. B. durch Anschiuss Switch-Boxen anstelle der lokalen Cluster
an den Port O des jeweils Ubergeordneten Knoteresveeitere Hierarchiestufe implementiert wer-
den (vgl. Abbildung 4-7). Die Abbildung zeigt eiHierarchieebenen umfassendes System, wobei
die n-te Dimension durch den lokalen Cluster reprasgntied.

Die einfache Parametrisierbarkeit des Systems laridie entsprechende Realisierung der bendtig-
ten Bandbreiten. Natirlich sind auch andere Koladiehen, z. B. wie in Abbildung 2-9 b), denk-
bar, allerdings wirden diese Topologien ggf. Eraremgen bzgl. des Routings erfordern.
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4.2.1.3 Switching-Methode

Eingangsdaten werden, solange noch Kapazitatesifréj in den Ports einer Switch-Box direkt in
eine FIFO-Warteschlang®(eu@ eingereiht. Ansonsten wird dem Quellknoten signetdt, dass
die beabsichtigte Richtung bzw. Warteschlange léotlbzw. gefillt ist. Die Ubertragung wird
dann, um eine definierte Anzahl an Takten verzggereut seitens des Quellknotens initiiert. Die
FIFO-Puffer arbeiten mit zwei unabhéangigen Zeigémden Lese- und Schreibzugriff, die von ei-
ner speziellen Kontrolleinheit gesteuert werderesisorgt dafiir, dass zum einen das FIFO-Prinzip
eingehalten wird, und zum anderen, sollte die Véathkange leer sein, die Daten nicht erst taktwei-
se durch eine Registerkette hindurchgeschleustemartissen, sondern sofort zum Ausgang gelan-
gen. Obwohl die FIFO-Struktur physikalisch am Emgsport platziert ist, handelt es sich dennoch
um eine Form de®utput QueueingsdasVirtual Output QueueindvVOQ) [120]. KARoOL et al.
[121] konnten zeigen, dass die Methode des Outmaetu€ings deutliche Vorteile gegeniber dem
Input Queueingaufweist. Nicht zuletzt deshalb wikdOQ auch beim GigaNoC eingesetzt. Da ge-
trennte Warteschlangen fiir jeden Ausgang vorharsilesh wird das Problem des so genannten
Head-of-Line-Blockinggvgl. Abschnitt 2.3) in Abhangigkeit von der Gro8es Warteraums ver-
ringert.
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nHlerarchleebenen o o . . . _._._._%, 0_“ ____________ B}

€@ Cluster (x,y,2)
Abbildung 4-7: On-Chip-Netzwerk héherer Hierarchie, basierend auf dem GigaNoC

Bei der Verbindungsart der Ports sind verschiedgiseingen wie Bussysteme, Kreuzschienenver-
teiler oder Punkt-zu-Punkt-Verbindungen denkbartzieze bieten zwar eine absolute Blockie-
rungsfreiheit, aber daftir missen an jedem Ausgaglyene Anfragen parallel verarbeitet werden.
Zusammen mit der hohen Anzahl der bendtigten Vemgen steigert dies die Kosten wesentlich.
Ein Bus hat vergleichsweise geringe Kosten, doctderealle Anfragen bis auf eine blockiert. Der

Kreuzschienenverteiler stellt ein nicht-blockiereadNetz mit mittleren Kosten und hohem Durch-
satzpotential dar. Er kommt deshalb als Verbindsingktur innerhalb der Switch-Box in einer auf

Geschwindigkeit optimierten Variante, der in [122kgestellten Form, zum Einsatz.
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Grundlegend war zu entscheiden, ob die Daten paietth durch die Knoten geleitet werdéta{
cket Switching P9, oder ob vor der Ubertragung physikalische Kamégerviert werdenQjircuit
Switching/ CS. Wie in Abschnitt 2.3.2 erlautert, bietet sich tiniverselle Multiprozessorsysteme,
bei denen die Aufgaben und Lastverteilungen nich¥orfeld genauestens bekannt sind, eine Va-
riante der Packet-Switching-Verfahren an. Deshalibde beim GigaNoC eine Form dé&ormho-
le-Switching-Verfahrenslas sich durch die in Abschnitt 2.3.2 erwéhntent&le (geringer Puffer-
bedarf, kleinereSAFLatenzzeiten, gute Eignung flr kompakte und leig&idhige Hardware-
realisierung) deutlich von anderen Switching-Veréahabsetzt, implementiert. Der Nachteil, dass
es zu Blockierungen kommen kann, wird durch dieigtle Art des bei der Switch-Box eingesetz-
ten Virtual Output Queueingsleutlich reduziert. Fur eine einfache Gitterstimkdes GigaNetIC-
CMPs ware das in Abschnitt 2.3.2 vorgestellidag PostmatfiSwitching ebenfalls eine vielver-
sprechende Methode, die sich aufgrund der Switch-Bouktur leicht in den bestehenden Entwurf
integrieren lieBe. FUr zuklinftige Realisierungemrkamit Hilfe der SiIMPLE-Entwicklungs-
umgebung (vgl. Abschnitt 5.2) im Vorfeld der Chigifgung ein Vergleich der vielversprechenden
Switching-Varianten fur das jeweilige Anwendungssz@ erfolgen, um so die Leistungsfahigkeit
der Kommunikationsinfrastruktur optimal an die Amedengsanforderungen anzupassen.

4.2.1.4 Routing

Das GigaNoC unterstitzt mehrere Routingmechanismm@nmaoglichst flexibel auf spezielle An-
wendungsszenarien oder Lastverteilungen reagiardidoznen. Standardmaliig ist d@g-Routing
(vgl. Abschnitt 2.3.2) aktiviert, da es sich, wiergits diskutiert, als gedachtnisloses, deterniinist
sches Routing besonders fur Gitter- und Tori-Togi@o eignet. Es bietet den Vorteil, dass keine
Live- bzw. Deadlocksin mehr als einer Dimension auftreten konnen. Mternative kann komfor-
tabel, mittels so genannter Instruktionsflits (Vghschnitt 4.2.1.1) auf ein adaptives Routingverfah
ren, das auf Kostentabellen in den einzelnen SvBtwken basiert, umgeschaltet werden. Zuséatz-
lich lassen sich bei Bedarf weitere anwendungsipelze Routingmechanismen integrieren. Zwi-
schen den einzelnen Verfahren kann wahrend degeBgilynamisch umgeschaltet werden.

Durch Erweiterung der Funktionalitat der Routingflkonnten Mechanismen wiroadcast(das
Weiterleiten eines Pakets an alle Teilnehmer deSd\loderMulticast (das Weiterleiten eines Pa-
kets an eine Gruppe ausgewahlter Teilnehmer desNe@lisiert werden. Ein anderer Ansatz wéare
die Erweiterung und spezielle Auswertung der Adezaagsfelder der Flits ahnlich dem Internet-
Protokoll. Beide Varianten bedeuteten Erweiterunden Switch-Box-Struktur, wobei die sich er-
gebenden neuen Mdglichkeiten sicherlich den Aufwaathtfertigten.

4.2.1.5 Flachenverteilung der Switch-Box-Komponenten basieand auf Syntheseergebnissen

Abbildung 4-8 zeigt die qualitative Flachenauftaduder wesentlichen Switch-Box-Komponenten
nach der Synthese auf Standardzellen auf. Auffédtigdass bereits bei der FIFO-Tiefe = 3 mehr als
77 % der Flache fur FIFO- und Ausgangsregister tigin@verden. Durch zuklnftigen Einsatz von

modernster SRAM-Technologie kann dieser Flacherlamgrglichen mit den derzeit verwendeten

Registerzellen, deutlich reduziert werden [110].

Abschatzung der Switch-Box-FlacheDie Gesamtflache der Switch-Bdg setzt sich zusammen
aus der Addition der Flachen der Hauptkomponem@emmunication-ControlleiAcc, Crossbar
ACrossbarund a”erlnputportSAmputportg
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ASB = ACC+ ACrossbar+ Alnputporl (41)

In der VHDL-Implementierung ist eine Vielzahl voanierbaren Parametern enthalten, durch die
das Gesamtsystem vor der Synthese flexibel geataltid damit speziell auf Anforderungen neuer
Anwendungsszenarien bzw. auf neue Technologiensabpa ist. Die wesentlichen Parameter der
Switch-Box, die teilweise direkt durch das On-CHipmmunikationsprotokoll (vgl. Abschnitt
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B FIFO-Register
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4.2.2) beeinflusst werden, sind in Anhang B aufigdfi

Abbildung 4-8: Flachenaufteilung der einzelnen Swith-Box-Komponenten bei einer FIFO-Tiefe von drei

Die Flache de€ommunication-Controllersetzt sich aus zwei wesentlichen Bestandteileamus
men. Die Flache teilt sich in Bereiche auf, diengatter abhangig von oder aber invariant gegeniber
der Flitbreite sind. Da in den FIFO-Strukturen @£3skeine vollstandigen Flits, sondern nur Spei-
cheradressen und Datenlangen gespeichert werdemgeréadiese nicht vom ParametBA-
TA_WIDTH (Gesamtbreite eines Flits, vgl. Abbildung 4-11) &uch die Speicherschnittstelle
MEMORY_CONTROLLERNd die BusanbindunGOM_BUS_ CONTROLLERind von der Flitb-
reite unabhéngig, da derzeit, unabhangig von demahAinder Datenworte eines Flits, 32 Bit breite
Schnittstellen verwendet werden. Das Ausgangsesg®Bt/TPUT BUFFERund das Eingangsre-
gisterINPUT_REGhangen hingegen als Blocke d&Ssvon der Flitbreite ab.

Alle folgenden Werte wurden fir die FlitboreDATA_WIDTH= 93 Bit anhand umfangreicher Syn-
thesen ermittelt. Die Syntheseergebnisse der S\Bitchergeben, dass der gesa@tezu 13,42 %
von der Flitbreite abhangig ist, da dieser Teilgtaéchlich aus den Registern fur die Flits besteht.
Da sich diese Registerflache linear zu der Flitereerhalt, kann fur die Gesamtflactfg. des

CCsdie Formel (4.2) aufgestellt werdeA;, ist die Flache deS§Csbei einer Flitbreite von 93 Bit.
Auc =( A ,8658 +(( A /93CDATA_WIDTHI0,134f (4.2)

Der Kreuzschienenverteiler enthalt keine Registektiren, in denen Flits zwischengespeichert
werden. Allerdings besteht seine Flache zu ca. &8aMultiplexern, die sich ahnlich wie Register
nahezu linear mit der Breite der Flits vergroRe&tar Berechnung der Flach&, ..., des Kreuz-

Crossbar

schienenverteilers wird in Analogie zu (4.2) diéidfle ded<reuzschienenverteilerg; ver-
wendet.

rosshar —

= (Ao m,18) +(( AS***"/ 93 CDATA_WIDTHI0,8} (4.3)

In den Eingangsports befinden sich &i€O-Registerder BreiteDATA_ WIDTH deren Tiefe mit
FIFO_DEPTH eingestellt wird. Die Registerflache der FIF@g., kann daher, analog zu (4.2)
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und (4.3), wie folgt angegeben werden, und zwar Ajjt™ fiir die erhaltene Flache fir eFO-
Registemit 93 Bit Breite:

Prtoreg = ( A537° 193) (DATA_WIDTHOFIFO_ DEPTH (4.4)

Jeder FIFO-Kette ist eiMDVANCED_BUFFERnachgeschaltet, der u. a. das Head-of-Line-
Blocking-Problem zusétzlich minimiert. Er ist ebaitd von der Breite®ATA_ WIDTHabhangig, so
dass sich seine Flach&,; wie durch (4.5) beschrieben ergibt, unter Eintieaigy der Flache eines
ADVANCED_BUFFERSY; .

Aus = (A 193) (DATA_WIDTH (4.5)

Sowohl FIFO-Warteschlangen als auch Puffer werdeginer Anzahl generiert, die dem Quadrat
der Anzahl der Switch-Box-Porsg entspricht. Die Syntheseergebnisse zeigen, dase dtorts

ca. 3,725% Logik enthalten, die weder VDATA_WIDTHnoch vonFIFO_DEPTH beeinflusst
wird. Hieraus folgt (4.6) fur die Flache deputports A .-

2

Anputports_ 1 OPSS372$[Q Flforeg AB) (46)
Die Annadherungsformel (4.1) zur Bestimmung der G#Bache der Switch-Box ist damit voll-
standig definiert. Abbildung 4-9 zeigt die sich alas rechnerisch ergebenden Flachen fur ausge-
wéhlte Switch-Box-Implementierungen unter Variatider beiden Paramet&FO_DEPTH und
DATA_WIDTHsowie einer Portanzahl von 5. (4.1) ist natrleh als Abschatzung zu sehen, da
durch explizite Synthesen und durch die heuriséactierfahren der Synthesewerkzeuge sowie de-
ren Optimierungsmechanismen (Flache bzw. Geschgkedi etc.) sich teilweise abweichende
Werte ergeben kdnnen. Es hat sich allerdings geakags mit (4.1) im Allgemeinen eine durchaus
akzeptable Prognose erreicht wird, die einen maeimé&ehler von bisher kleiner 3 % zwischen
Abschatzung und Synthese geliefert hat (vgl. [128Drteil dieser Abschatzung ist die immense
Zeitersparnis bei der Entwurfsraumexploration, dliechaus im Bereich von derzeit zehn Stunden
und mehr pro Synthese liegt. Im Vorfeld einer Innpéstierung, bei der Eruierung globaler Sys-
temparameter kdnnen solche relativ geringen Abvueighn im einstelligen Prozentbereich prob-
lemlos toleriert werden.

a) 130nm b) 90nm
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Flitbreite [Bit] FIFO-Tiefe Flitbreite [Bit] FIFO-Tiefe
Abbildung 4-9: Abschétzung der Switch-Box-Gesamtflahe in Abhangigkeit von Flitbreite und FIFO-Tiefe

bei einer Switch-Box-Portanzahl von finf in a) 130im- und b) 90-nm-Standardzellentechnologie

Abbildung 4-10 zeigt die Flachenabschatzung in Algingkeit der Portanzahl und der Flitbreite,
wobei die FIFO-Tiefe konstant zu drei gesetzt wBdi hoheren Portanzahlen wachst der resultie-
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rende Flachenbedarf der Switch-Box auf tber 20 mender 130-nm-Technologie bzw. 10 mm?
bei der 90-nm-Technologie an, so dass fur ASIC-Biealingen genauestens abgewogen werden
sollte, ob ein derart hoher Gradbenttigt wird. Dies lasst sich unter anderem nmigen der in
Kapitel 5 vorgestellten GigaNetIC-Simulatoren asayen.
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Abbildung 4-10: Abschéatzung der Switch-Box-Gesamtfiche in Abhangigkeit von Flitbreite und Anzahl der
Switch-Box-Ports bei einer FIFO-Tiefe von drei in & 130-nm- und b) 90-nm-Standardzellentechnologie

4.2.2 On-Chip-Kommunikationsprotokoll

Die Kommunikation auf SoC-Ebene ist paketbasieakeffe konnen maximal 16 KB grof3 sein und
werden in Flits (vgl. Abbildung 4-11) segmentiartn sie tUber das On-Chip-Netzwerk versenden
zu konnen. Flits stellen die atomare Informationkeit des GigaNoCs dar.

DATA_WIDTH

92 89|88 8584 8079 6968 6463 3231 0
X Y CMD Flit ID Flow ID Datenwort 1 Datenwort 2

8 83 82 80
Type Port

| Flitkopf | Flitrumpf ——————
Abbildung 4-11: Flitaufbau — On-Chip-Kommunikationsrahmen

4.2.2.1 Aufbau der Pakete/Flits

In einem Flit sind alle Daten, die die Switch-Boxamd dieCommunication-Controllezum Rou-
ting bendtigen, sowie eine parametrisierbare Anxzahl 32-Bit-Datenwoértern enthalten. Flits, die
zu dem gleichen Paket gehdren, nehmen alle dems®lUsg durch das On-Chip-Netzwerk, ver-
gleichbar dem Wormhole-Switching. Die Flitfeld¢rY undPort bilden die Zielkoordinaten. Aus-
gehend von einer Gitterstruktur geben die Wettand Y den Zielknoten relativ zur sendenden
Switch-Box an. Die 4-Bit-breiten Koordinaten sinishdr kodiert und vorzeichenbehaftet, d. h. das
hdchstwertige Bit NISB legt eine positive ISB=0) bzw. negativeMSB=1) X- oderY-Richtung
fest. Mit den restlichen 3 Bits der Koordinatenél&#dnnen die Flits daher bis zu 23 = 8 Kommuni-
kationsknoten in jede Richtun,(Y) geschickt werden. Dies ist mehr als ausreichéndlie 2x4-
Gitterstruktur des GigaNetIC-Systems. Werden gélSsteme als 8x8-Gitter bendétigt, lasst sich
dies aufgrund der generischen Struktur leicht &ndeie dritte ZielkoordinateRort) ist 3 Bit breit
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und gibt den Ausgangsport am Zielknoten an. Dieléwtlit ID undFlow ID dienen zur ldentifika-
tion eines Flits. Jeder Kommunikationsknoten im aBlgtiC-Netzwerk besitzt eine eindeutige
Kennnummer. Diese wird bei einer DateniibertragaméeldFlow ID eingetragen, um die Datenf-
lits im Empfangsknoten dem entsprechenden Datengakes Sendeknotens zuordnen zu kdnnen.
Damit die richtige Reihenfolge der Datenflits ethalbleibt und der Empfanger das Ende einer Da-
tendbertragung erkennt, werden die Flits durchnurame Dies geschieht im 11-Bit-breitdlit-
ID-Feld, das die maximale PaketgréRe in der reaksievariante auf 2 x 64 Bit = 16 KB be-
grenzt.

a) | Flitkopf | Flitrumpf ———————
92 8988 8584 8079 69 |68 64 |63 32 |31 0
CMD Flit ID Flow ID Datenwort 1 Datenwort 2

Kommandoflit ‘ X 01 xxx N XXXXX 1. Datenwort 2. Datenwort ‘
1. Datenflit | X Y | 00 xxx 1 XXXXX 3. Datenwort 4. Datenwort |
(N-2). Datenflit‘ X Y 00 xxx N-2 XXXXX (2N-3). Datenwort | (2N-2). Datenwort ‘
(N-1). Datenflit\ X Y 00 xxx N-1 XXXXX (2N-1). Datenwort | (2N). Datenwort \
b) | Flitkopf | Flitrumpf ————————
92 8988 8584 8079 69 |68 64 |63 32 |31 0

X Y CMD Flit ID Flow ID Datenwort 1 Datenwort 2 ‘

Kommandofiit \ 0010|1001 | 01000 | 00000000100 | 00110 1. Datenwort 2. Datenwort \
1. Datenflit \ 0010|1001 | 00 000 | 00000000001 | 00110 3. Datenwort 4. Datenwort \
2. Datenflit \ 0010|1001 | 00 000 | 00000000010 | 00110 5. Datenwort 6. Datenwort \
3. Datenflit \ 0010|1001 | 00 000 | 00000000011 | 00110 7. Datenwort 8. Datenwort \

Abbildung 4-12: Struktur eines Pakets:
a) Aufbau eines Pakets mit der allgemeinen FlitanZd N; b) Beispiel eines Pakets miN=4

Zu Beginn einer Datenuibertragung wird jeweils engenannte&Kommandoflit gesendet, das die
AnzahlN der insgesamt zu ubertragenden Flits im FildiD angibt. Bei jedem Transfer der dar-
auf folgendenDatenflits wird dasFlit ID-Feld vonN =1 beginnend inkrementiert, so dass der
Empfanger das Ubertragungsenéit(ID = N - 1) erkennen kann. Ein Flit kann auRer der reinen
Datenubertragung noch zusatzliche Aufgaben erflillas TypeFeld gibt die jeweilige Funktion
eines Flits an. Neben den bereits erwahkiemmandoflitaund Datenflits existieren noctnstruk-
tionsflits und Programmiflits

Mit einemInstruktionsflitkobnnen Befehle direkt an eine Switch-Box lbergaberden. Z. B. kann
durch ein Instruktionsflit das Verfahren der WegbivéRouting-Strategie) geandert werden. Im
GigaNetIC-System ist standardméaRig das X-Y-Rougiast-Routing in der Switch-Box aktiviert.
Hierbei werden die Flits zun&chst in X-Richtung mweiligen Zielspalte des Gitternetzwerks ge-
leitet und anschlie3end in Y-Richtung dem Zielknategefthrt.

Mit Hilfe der Programmflitskann auf die Speicherbereiche der Prozessorelemaegegriffen wer-
den. Nach einerResetdes GigaNetlC-Systems wird so jedem Prozessorelesedn Instruktions-



88 Kapitel 4. Die GigaNetIC-Systemarchitektur

code Ubermittelt. Das erste 32-Bit-Datenwort eiResgrammflits wird hierbei als Adresse genutzt,
an die das zweite 32-Bit-Datenwort geschrieben wird

Flit-Typen im Detail. Im Folgenden werden beispielhaft die einzelnereRgen und deren Seg-
mentierung in die entsprechenden Flits aufgezeigt.

Ein Datenpaket wird segmentiert zu einem Kommairtdofid einer variablen Anzahl von Datenf-
lits ngjis-1, wobei sich die Gesamtzahl der benétigten Flies fwigt errechnen lasst:

o { Paketdatef B]t—l “.7)

8Bit A4V,

Flit

Wrie gibt hierbei die ganzzahlige Anzahl der 32-Bit-®atorte an, die in einem Flit enthalten sind.
Sollten die Paketdaten nicht ein ganzzahliges ¥oklés von 32 sein, so wird seitens der Hardware
der Rest der Flitdatenbits mit Nullen gefullt. B&n weiteren Betrachtungen wird, soweit nicht
anders erwahnig;;=2 gesetzt. In der Hardwarebeschreibung des GigaNg&y&Iems und in den
entsprechenden Simulatoren ist dies ein Paranmageryariiert werden kann, um so die Ressour-
ceneffizienz fur den jeweiligen Einsatzzweck zuGésn.

In Abbildung 4-12 a) ist ein Datenpaket mit der gé&iN dargestellt. Die Koordinaten sind mit den
grof3en Buchstaben X" und ,Y“ symbolisiert. Das ikigeschriebene ,x“ markiert die Positionen,
die fur den allgemeinen Aufbau des Flits nichtvatg sind. Im unteren Teil b) der Abbildung 4-12
ist ein Datenpaket mit 256 Bit zu sehen, das folgln vier Flits segmentiert wurde. Zuerst wird
das Kommandoflit Gbertragen, zu erkennen an déolBé ,,01" im BereichCMD, wahrend bei den
folgenden Datenflits an dieser Stelle ,00* stehie Bielkoordinaten des Pakets sind vom Sender-
knoten aus gesehen zwei Gittereinheiten in posifi*®ichtung und eine Einheit in negativer Y-
Richtung. Der Senderknoten hat die Identifikatiamamer sechs, was im BereiEtow ID einget-
ragen ist.

| Flitkopf | Flitrumpf ————————

92 8988 8584 8079 69 68 64 63 32 |31 0

X Y CMD Flit ID Flow ID Datenwort 1 Datenwort 2 \

Routingflit ‘ 1011 | xxxx | 10 xxx XXXXX XXXXX XXXXX XXXXX ‘
Programmflit ‘ X Y 11 000 XXXXX XXXXX Adresse Programmdaten ‘

Abbildung 4-13: Aufbau eines Routing- und eines Prgrammiflits

Der Aufbau eines Routingflits und eines Programisit in Abbildung 4-13 dargestellt. ERou-
tingflit hat die Aufgabe, die Routing-Strategie, die im2Medrk verwendet wird, zu wechseln. Es ist
durch den Eintrag ,10“ auf den ersten zwei Bits@WD-Feld gekennzeichnet. Im X-Bereich ist
kodiert, wie das Routing-Verfahren veréandert wersielh Die zurzeit geplanten Routing-Verfahren
sind in Tabelle 4-1 aufgelistet. Das erweiteXty-Routing ist fur Switch-Box-Implementierungen
vorgesehen, die Uber mehr als vier Ports zu Nakhbgen verfiigen. Als effizientes, gut fir zwei-
dimensionale Gitterstrukturen geeignetes VerfahsemasX-Y-Routing (vgl. Abschnitt 2.3.2) als
Standardverfahren vorgesehen. Fir adaptives Rolitssg sich daKostenRouting einstellen, das
dynamisch auf Auslastungen einzelner Pfade reagika@n. Fur alle Routing-Varianten missen
die Routingflits komplett durch das Netzwerk propay also als spezielldBroadcast(vgl. Ab-
schnitt 4.6) versendet werden. Ein Routingflit tad® Implementierung zuséatzlicher Netzwerk-
kommandos bzw. Steuerbefehle aufgrund der ungamug&ereiche (mit ,.x* markiert) zu. Um die
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Leistungsaufnahme des Chips zu optimieren, lie@e &i B. ein netzwerkweiter Befehl einflhren,
der je nach Auslastung einzelne CPUs oder ganzzeBsorfelder in einen Stromsparmodus ver-
setzt, um die Leistungsaufnahme des Chips bei g@riAuslastung zu reduzieren. Auch Statusin-
formationen Uber Verkehrsaufkommen oder AuslastiorgGigaNetIC-Systementitaten kbnnten so
im Netz propagiert werden.

Tabelle 4-1: Umstellung implementierter Routing-Vefahren durch Routingflits

CMD-Feld DATA_IN[X_WIDTH] Routing-Verfahren
10xxx 1010 erweiterteX-Y-Routing
10xxx 1011 X-Y-Routing
10xxx 1100 Kosten-Routing
00XxXxX XXXX vorherige Einstellung

Nach dem Einschalten oder ein€tesetdes Systems kann der Programmcode der einzelmen Pr
zessoren durch das On-Chip-Netzwerk geleitet wer@@es geschieht durch die so genannten
Programmflits(siehe Abbildung 4-13) in der Initialisierungspbates Chips. Die Adresse fur die
CPU-eigenen Speicherbereiche wird im Flit mitgeskihiso dass unterschiedliche Programme flr
die einzelnen Prozessoren in die Instruktionssgeigeschrieben werden kénnen. Die zwei Daten-
worte enthalten die Speicheradresse fur den Pragsp@icher des betreffenden Prozessors gefolgt
vom Programmcode. Mit diesem Format ist keine Besithtigung der Reihenfolge der Prog-
rammflits notwendig. Auch eine Kennzeichnung delUGR Prozessorfeld, fir die das Flit be-
stimmt ist, ist nicht erforderlich, da die Speidbereiche durch die Adresse eindeutig festgelegt
sind.

4.2.2.2 Funktionsumfang der GigaNoC-Software-Bibliothek

Um das Empfangen und Senden von Paketen sowiesdivantrollfunktionen mdglichst einfach
fur den Programmierer zu gestalten, werden spezRibliotheksfunktionen in der GigaNetIC-
Software-Bibliothek in der Hochsprache C und inroprtem Assembler fir den eingesetzten Pro-
zessorkern alfntrinsics zur Verfigung gestellt. Sie wurden auf Geschwikeigund Platzbedarf
fur die N-Core-Architektur optimiert und sind gréfteils in C geschrieben; wenige Ausnahmen
nutzen optimierten Assemblercode, der jedoch elisnifiagleicher Funktionalitat in C vorliegt und
somit leicht auf andere eingebettete Prozessorksorterbar ist.

Im Anhang A befindet sich ein C-Codebeispiel, amhalessen die Nutzung der GigaNetIC-
Software-Bibliothek detailliert beschrieben wirdelDEinsatz dieser Funktionen gestaltet sich sehr
einfach und komfortabel fur den Softwareentwickber,dass keine nennenswerten bzw. teuren Ei-
narbeitungszeiten, und, damit verbunden, Verzéggmrbei der Softwareentwicklung fur das Gi-
gaNetIC-System entstehen.

Der prinzipielle zeitliche Ablauf einer Paketinjekt und Terminierung sowie die damit verbunde-
nen Mechanismen werden in Anhang C erlautert.
4.2.3 Performanzanalyse der Kommunikationsinfrastruktur

Der theoretisch erreichbare DurchsBig einer Switch-Box miPsg Ports und einer méglichen Be-
triebsfrequenZ lasst sich zu (4.8) bestimmen. Die Anzahl Heladerbytewird in m, und die der
Datenbytein my angegebenm, + m, umfasst somit ein komplettes Flit.
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DSB brutto[ Blt] = PSBDf BE@ m h+ m f)

. (4.8)
DSB netto[BIt] = F)SBDf Bljm f

Switch-Boxen mit finf Ports in der 90-nm-Varianteméglichen theoretische Durchsatze von
332 GBit/s (brutto) bzw. 228 GBit/s (netto), bei714 MHz. Die gleiche Variante in 130-nm-
Technologie erreicht immerhin noch 273 GBit/s (lwubzw. 188 GBit/s (netto) b&588 MHZ>.
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Abbildung 4-14: Leistungsfahigkeit der Switch-Box-lasierten On-Chip-Kommunikation

Bertcksichtigt man nun die Mechanismen, die zureBajektion und Weiterleitung von Flits sei-
tens der Switch-Box notwendig sind, so lasst sienAhzahl der Takte bzw. die Latenz, die die
Pakete erfahren, die GbbrHops zu Zielknoten geleitet werden, wie in (4.9) angehdier wird
zugrunde gelegt, dass eine beliebige Switch-Boxeteaks Netz injiziert und zugleich von anderen
Knoten injizierte Pakete weiterleite® gibt hierbei die Anzahl konkurrierender FIFO-Kettam
Eingang einer Switch-Box an, die Uber den Kreuzsutmverteiler Pakete auf den gleichen Aus-
gangsport leiten wollen. Im Falle einer konkurreein Nutzung der Ports ergibt sich fgrein
Wert von 1 fur die Verzégerung beirten Knoten. Sollte®; Eingangsports auf den gleichen Aus-
gangsport zugreifen wollen, iStentsprechend gleid® zu setzen.

Latenz,.| #:11+iz:“ g3 Q + Uﬂ}_g 0 (4.9)

Kommandoflit

Datenflits, wenn™- > 1]
mg

Abbildung 4-14 zeigt den Durchsatz pro Port eingit@-Box in GBit/s bezogen auf die Grol3e der
versendeten Pakete. Die Resultate beziehen sicti@unioglichen Betriebsfrequenzen der Switch-
Box fir die beiden Standardzellentechnologien it 48 (588 MHz) und 90 nm (714 MHz). Die
Leistungsfahigkeit wird hier fir unterschiedliclspeziell fir Netzwerkanwendungsszenarien rele-
vante Paketgrof3en untersucht. Zum einen wird dett@®@Durchsatz angegeben, der dhbt-
Headermit einbezieht, und zum anderen der reine Netttethatenanteil. Es wird deutlich, dass der
Durchsatz bei groéReren Paketen deutlich Uber derkleieeren Paketgrol3en liegt. Dies ist begrin-

15 Diesem Beispiel liegen die Wem=3,625 undchy =8 zugrunde.
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det durch den geringeren Verwaltungsaufwand autymeniger Kommandoflits, die den Datenpa-
keten jeweils vorangehen. Daraus resultiert eiredg8tung der effektiven Ubertragungsleistung.
Der Nettodatendurchsatz liegt zwischen 12,7 bist &Bit/s pro Port (90 nm) bzw. 10,5 bis
37,4 GBit/s pro Port (130 nm).

Abbildung 4-15 zeigt drei wesentliche Verkehrsbelagsfélle einer Switch-Box, die Daten Uber
einen beliebigen PoR® zu einem benachbarten Knoten verselfd&ei der dargestellten Analyse

wird explizit die Paketgréf3e und damit einhergehdigdAnzahl der zusammengehdrigen Flits er-
hoht, bis schliel3lich maximal groRe Pakete von Btk versendet werden.

‘ —e— Bester Fall —s— Typischer Fall —a— Schlechtester Fall ‘
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Abbildung 4-15: Datendurchsatz einer Switch-Box furunterschiedliche Verkehrsmodelle

Es zeigt sich in allen drei Fallen, dass mit zunehader Paketgrof3e der Datendurchsatz merklich
gesteigert werden kann. Der erste Fall ,Bester‘aschreibt ein Szenario, in dem, wie bereits in
Abbildung 4-14 geschildert, keine konkurrierendemgiffe seitens der Eingangsports auftreten.
Die Daten kénnen ungehindert das Ziel erreicheer drgeben sich Ubertragungsraten von uber
45 GBit/s. Der zweite Fall , Typischer Fall* bescitmteinsofern ein eher typisches Szenario fur das
Verkehrsaufkommen einer Switch-Box, als noch zweiteve Datenstrome auf die Ausgangsports
geleitet werden, die sich somit die Bandbreiteeteintissen. Aufgrund dieses Umstands verlauft
die Durchsatzkurve deutlich flacher und néahert sispmptotisch an 15,2 GBit/s an. Der dritte Fall
spiegelt den ,Schlechtesten Fall* wider, bei deta &ilnf Ports der Switch-Box um den Ausgangs-
port konkurrieren und so das maximale vorfindbasteDaufkommen darstellen. Hier verlauft die

18 Auch hier wird die Konfiguration wie bei Abbildurgr14 verwendet, jedoch wird nur die 90-nm-Realisig be-
trachtet, die 130-nm-Variante verhdlt sich analdg Kennwerte lauten somit:= 714 MHz, Rg =5, SBro.Tiefe = 5,

m, = 3,625 undry = 8, Sgester Fal= 1, Srypischer Fai= 3, Sschiechtester Fa- . Betrachtet werden ferner nur die Nutzdaten, so
dass der Nettodurchsatz dargestellt ist.
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Kurve noch flacher und nahert sich schnell dem makierreichbaren Nutzdatendurchsatz von
9,1 GBit/s an.

Fazit. Fur kleine Pakete kann in allen Verkehrsbelastidtigs, solange keine Blockade durch Puf-
ferlberlauf eintritt, ein Durchsatz von ca. 5 G8igrreicht werden (vgl. Abbildung 4-13). Grol3e
Pakete profitieren mehr von gering ausgelasteteticByBoxen, so dass eine Verdreifachung des
Datendurchsatzes gegenuber einem ,vollkonkurriegeh&zenario zu beobachten ist. Wesentlich
ist, dass kleine Pakete mit sehr geringer Latentevgeleitet werden kénnen, allerdings aufgrund
der Protokollstruktur einen gewissen Verwaltungsraefwand bedeuten. Grol3e Pakete, z. B.
Hauptspeicherzugriffe im Sinne vddursts profitieren von konkurrenzfreien Ubertragungeig d
durch Ausnutzen der Routingtabellen der Switch-Boggf. ermoglicht werden kénnen. Die Giga-
NetlIC-Architektur verflgt folglich Gber ein auf3edentlich leistungsfahiges On-Chip-Netzwerk,
welches fur eine Vielzahl von Anwendungsgebietemyesetzt werden und ggf. zielgerichtet para-
metrisiert (vgl. Abschnitt 4.7) werden kann.

Ubertragungseffizienz Nach Definition 38 wird die Ubertragungseffiziengebildet aus:

Nettodatenmeng. Trotz der weitreichenden Madoglichkeiten des Gigd®léOn-Chip-
Bruttadatenmeng

Kommunikationsprotokolls ist der Verwaltungsaufwanrdrglichen z. B. mit dem Internet-Proto-

koll (IP) [61], das fur Computernetze allgemein entworfemde, signifikant geringer. Zwar ist das

Internetprotokoll deutlich umfangreicher bzgl. ssiMdglichkeiten, ware aber sicherlich fir ein

On-Chip-Netzwerk derzeit funktional Uberdimensiohi&s liel3e sich zudem keine derart kompak-
te und zugleich leistungsfahige Hardware realisiedée mit dem gleichen Flachenaufwand wie die
Switch-Box das Internet-Protokoll unterstiitzen kénn

Tr

Allein die Grof3e fur den Paketkopf von 20 Byte ggkelt mit den zuséatzlichen Paketinformationen
der Netzzugangsschicht (z. B. Ethernet von mindest8 Byte) bedeutete einen zusatzlichser-
headbei der Flitibertragung von 38 Byte pro Paket. Mgahan das Internet-Protokoll-basierte Da-
tenpaket zudem innerhalb eines Taktes Ubertragekérme man unter Berticksichtigung einer mi-
nimalen Framelange des Internet-Protokoll-Pakets 4® Byte auf 512 parallele Datenleitungen.
Die Ubertragungseffizienz liegt bei 40,6 % vergéomit 68,8 % beim GigaNetIC-Protokoll. Ware
die Parallelitdt von deutlich mehr Leitungen teslehi unproblematisch, so lief3e sich fir ein Paket
maximaler Lange (1500 Byte) ein merklich besseregh#ltnis von Kopfdaten zu Nutzdaten (Uber-
tragungseffizienz = 97,5 %) erzielen. Jedoch spekiell bei vielen Anwendungen haufig Pakete
minimaler Lange zu verzeichnen. Dies wird auch den heutigen Lastmodellen (vgMix, Ab-
schnitt 7.2.3) berucksichtigt.

Zukunftig sind durchaus Szenarien denkbar, in desiEmdie Ubergange von diskreten Netzwerken
(wie z. B. desWorld Wide Wepzum Chip flieRend gestalten und aufgrund derniscien Mog-
lichkeiten keine Unterschiede zwischen On-Chip- @ifiChip-Protokollen gemacht werden mus-
sen. In nicht allzu ferner Zukunft wird es mogliskin, On-Chip-Netzwerkknoten mit mehr als
12.000 Intra-Chip-Verbindungen miteinander zu veden, diese Anzahl wirde eine Weiterleitung
ganzer IP-Pakete maximaler Lange innerhalb einéssTexrlauben. Alternativ dazu sind auch be-
sonders schnelle serielle Verbindungen denkbarbeiesehr hohen Taktfrequenzen eine derartige
Ubertragung ebenfalls moglich machen kénnten. Diehiggegen stellen die weniger als 200 Intra-
Chip-Verbindungen (Full-Duplexverbindung) zwischbanachbarten Switch-Boxen einen guten
Kompromiss zwischen Parallelitat und Machbarkeitisol aktfrequenz und Durchsatz dar.
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4.2.4 Bussysteme auf Cluster-Ebene

Innerhalb der Cluster werden derzeit Busstrukturan Anbindung der Verarbeitungseinheiten
(PE9 eingesetzt (vgl. Abbildung 4-2). Prinzipiell urggitzt die GigaNetlC-Architektur nahezu alle
verfugbaren Bussysteme aufgrund der parametrigsmb&chnittstellen des Communication-
Controllers. Bei den Daten- und Adressleitungenseiidediglich die Bitbreiten angepasst und das
erforderliche Zeitverhalten nachgebildet werden. d@a Communication-Controller als passiver
Teilnehmer in das Bussystem integriert wird, simgnd die Voraussetzungen zur Integration des
Busses in die GigaNetIC-Struktur erfullt. Derzednk beim GigaNetlC-System zwischen dem
Wishbone-Busund einer von uns implementiert&MBA-AHB-Bus-Variante [113] sowie einer
AMBA-Switch-Matrix gewéahlt werden. Die beiden Bus-Realisierungereddfen in ihren Eigen-
schaften und empfehlen sich daher fiir unterscluieellEinsatzgebiete, die AMBA-Switch-Matrix
findet u. a. Verwendung beim GigaNetIC-Multiprozassiche, vgl. Abschnitt 4.4.2.

Im Falle der Verwendung des Wishbone-Busses kahria@ stetig steigende Anzahl von frei ver-
fugbaren IP-Cores, die dieser weit verbreitetenn@itellenspezifikation folgen, zurtickgegriffen
werdert’. Hardwareblécke, die der AMBA-Spezifikation geniigend groRtenteils kostenpflichtige
Module. Dies erfordert wahrend der Spezifikatios &ystems eine genaue Analyse der bendtigten
Komponenten. Je nach Verflugbarkeit und Kostenbukigyeh die passende Auswahl getroffen wer-
den. Natdrlich ist es fur beide Bussysteme mogkitene IP-Blocke zu erstellen, sollten dies die
zur Verflgung stehenden Ressourcen (EntwicklungskpsHumankapital, Time-To-Market-
Spanne etc.) erlauben. Fir beide Busvarianten dtellGigaNetIC-Architektur die bendtigtdutas-

ter- bzw. SlaveSchnittstellen bereits zur Verfiigung.

Der Wishbone-Bus [124] zeichnet sich durch eine [akte, relativ einfache Implementierung aus.
Er benétigt im Durchschnitt 10 % weniger Flachediés AMBA-Realisierung [125]. Die AMBA-
AHB-Realisierung hingegen zeichnet sich durch éangtungsfahigere Architektur mit einer weit
verbreiteten Standardschnittstelle aus, derensieddare Taktfrequenz ca. 5 % hoher als die des
Wishbone-Systems liegt. Die AMBA-Implementierungnmit etwas mehr Flache in Anspruch und
erlaubt geringflgig hohere Systemtaktfrequenzee. IRistungsaufnahme liegt bei beiden Imple-
mentierungen bei einer Konfiguration fur vier Véraitungseinheiten bei ca. 9,5 uyW/MHz in 130-
nm-Technologie und bei 8,6 pW/MHz in der 90-nm-Trexhgie™.

Im Falle der Realisierung als AMBA-AHB-Interconniect-Matrix sind sogar zeitgleiche, disjunkte
Zugriffe mehrerer Master moglich, was bei einerfaghen Busrealisierung wie z. B. bei unserer
Wishbone-Bus-Realisierung [117] nicht moglich Btir die Integration eines angepassten Multi-
prozessorcaches (vgl. Abschnitt 4.4.2) wird die AMBnplementierung durch einen Snooping-
Bus erweitert [113]. Wesentliche Merkmale der beidérbindungsstrukturen, die beim Giga-
NetlC-System derzeit auf Clusterebene zum Einsatanken, fasst Tabelle 4-2 zusammen.

750 gibt es z. B. aufitp://www.opencores.orStand: Juni 2007) eine groRe Anzahl unterschibsier Wishbone-IP-

Blocke zur freien Verfligung.

18 Alle technologiespezifischen Angaben fiir Standalldn-Implementierungen beziehen sich, wenn nigptizt ge-
kennzeichnet, auf Realisierungen und Syntheseeiggbifiir normale Betriebsbedingungen der jeweitsabhteten
CMOS-TechnologieTypical Casg
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Tabelle 4-2: Eigenschaften der realisierten Bussyasine, der derzeitigen GigaNetIC-Architektur

Kriterium Wishbone AMBA-AHB
Bandbreite: Kein Adress-Pipelining-®geringe Takt-
Adress-Pipelining, frequenzen), geringe Busbreite, Parallel-
Busbreite, Ubertragung bei der Verwendung vor - .
Verzicht auf Tristate-Busse, Kreuzschienen-Verteilern oder Datent Vgrz\i\;::gtlr{geeritrzggmgtiz Er]ec!) ;:i?:rh
Parallel-Ubertragungen fluss-Verbindungen, Multicasting und
Broadcasting von Schreib-Zugriffen
moglich
II\_/Iagﬁpfgchzugriﬁe (Bursts) Bursts werden unterstiitzt Bursts werden unterstiitzt
Flache & Verlustleistung geringfugig mehr als bei Wish-
relativ gering bone-Realisierung mit gleicher
Anzahl Teilnehmer
Multimasterféahig Ja Ja
Kosten:
Lizenz-,
Versicherungs-, gering mittel
Entwicklungs- &
Anpassungskosten
Wiederverwendbarkeit: Ja Ja
Technologie-Unabhéangigkeit, (Soft-Core)
Snooping Ja (Schreibzugriffe) Nein
Besonderheiten Benutzerdefinierbare Tags Bursts fe;ter Lénge, sehr hohe
usbreiten
Sonstige Einschréankungen keine atomaren Operationen; kein
keine vorzeitiger Abbruch von Bursts
fester Lange durch den Master
Flache (System mit 4 PEs) [mm?]
130 /90 nm 0,05/0,02 0,044 /0,018
Taktfrequenz (System mit 4 PEs) [MHz] 211/ 290 292 /303
130/90 nm
Leistungsaufnahme (System mit 4 PEs)
[MW/MHZ] 0,0095 / 0,0086 0,0095 / 0,0086
130/90 nm

In der zusammen mit Infineon Technologies entwitgteNova-Architektur [126], die ebenfalls auf
dem modularen GigaNetlC-Konzept basiert, kommt@EP(Open Core ProtocpiBus auf Clus-
ter-Ebene nebst N-Core- bzw. MIPS-4k-Prozessorem Einsatz. Aufgrund der Modularitat kann
auf alle weiteren Funktionen der GigaNetIC-Architelauf SoC-Ebene zugegriffen werden.

Mit den beiden implementierten Bussystemen bzw. Id&rconnection-Matrix kann die Giga-
NetlIC-Architektur auf spezifische Anwendungsgebiategepasst werden, je nach deren Anforde-
rungen kann eine flachensparende oder aber penfivendd Variante fiir die lokale Verbindungs-
struktur auf Cluster-Ebene integriert werden.

4.3 Verarbeitungseinheiten auf PE-, Cluster- und SoC-Eéne

Die GigaNetIC-Architektur ermdglicht ein flexiblesnschlie3en von Verarbeitungseinheiten auf
allen Hierarchie-Ebenen. Die generischen Schnligstseitens der Bussysteme und des Communi-
cation-Controllers erlauben die Integration einegiten Menge von fertigelP(Intellectual Proper-

9 Der nominelle Durchsatz der implementierten Bussye wird an dieser Stelle nicht quantitativ angege da dieser
zu sehr vom jeweiligen Anwendungsszenario, von Aterder Verarbeitungseinheiten und der Paramettisig der

Systeme abhangt, als dass eine fundierte Aussageffen ware. In Kapitel 7 werden fiir speziellewtandungen und
Konfigurationen detaillierte Ergebnisse vorgestellt
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ty)-Blocken, bieten damit ein hohes Potential an Zdiesicherheit und helfen, die Entwurfs-
Produktivitatslicke@esign Productivity Gapzu schliel3en.

Derzeit sind bereits zwei Prozessortypen erfolgrancdas GigaNetlC-System integriert worden.
Hauptbestandteil der an der Universitat Paderbangesetzten Architekturvariante ist ein am
Fachgebiet Schaltungstechnik entwickelter Proz&ssor der N-Core [108][127][111], der im Fol-
genden (vgl. Abschnitt 4.3.1) naher beschrieben.whul3erdem wurden seitens Infineon Techno-
logies MIPS-Prozessorkerne auf Cluster-Ebene imgiiert [126].

Neben den CPUs und den lokalen Speichern konneterediP-Blocke in das System integriert
werden. Haufig unterstitzen bereits die Prozessaeh PE-Ebene lber eine Coprozessor-
Schnittstelle die Anbindung von Hardwarebeschleaimmgwie z. B. auch der von uns entworfene
N-Core. Soll ein Beschleuniger mehreren ProzesspuerVerfigung stehen, so kann dieser auf
Cluster-Ebene Uber den lokalen Bus angekoppeltemerdiese eng an das jeweilige Prozessorfeld
gekoppelten IP-Blocke werden Uber zusatzliche Mitve-Schnittstellen des lokalen Bussystems
eingegliedert und z. B. tb&lemory-Mapped-I/Cangesprochen. Neben Hardwarebeschleunigern
kénnen aber auch zusatzliche Module wie zUBRTS (Universal Asynchronous Receiver Trans-
mitter) fur Debuggingzwecke in die lokalen Cluster integrwerden. Diese ermoglichen dann ein
Interagieren mit den Prozessoren (z. T®uchscreensvie beim RAPTOR2000-basierten Giga-
NetIC-Demonstrator, vgl. Abbildung 8-2).

Auf SoC-Ebene kdnnen autonomere bzw. global vediglblardwarebeschleuniger und IP-Blocke
Uber das GigaNoC-On-Chip-Netzwerk angeschlossedemeDies konnen lose gekoppelte Hard-
warebeschleuniger sein, die im Datenpfad eingemngdniden, wie z. B. Verschlisselungs- oder
Checksummen-Prifmodule, vgl. Abschnitt 6.3.1.1.kBanen aber auch Einheiten sein, die die
Verbindungen nach auf3en realisieren, wie z. B. cBeetontroller fir externen Speicher oder
Ethernetcontroller (vgl. Abschnitte 8.1 und 8.2 die Anbindung an das externe Netzwerk tber-
nehmen. Diese Einheiten kdnnen theoretisch anlhgée Stelle des On-Chip-Netzwerks ange-
schlossen werden, Ublicherweise jedoch an den Réués Gitters, um die Hopanzahl zu den Pads
des Chips so gering wie moglich zu halten. Zurdragon auf SoC-Ebene wird lediglich eine In-
stanz des bereits vorgestellt@ommunication-Controller an die jeweilige Komponente ange-
schlossen. Er tbernimmt die Konvertierung der Datestas GigaNoC-Flit-Protokoll bzw. die Ter-
minierung des Protokolls und stellt die Daten féndHardwarebeschleuniger zur Verfiigung. Auf-
grund dieser Anschlussart sind die Einheiten useleeinsetzbar und erlauben eine leichte Adapti-
on des Systems fur neue Einsatzgebiete.

Im Folgenden werden der von uns entworfene unditaxte Prozessorkern, Systemerweiterungen
des Prozessorsubsystems sowie Hardwarebeschleumgemveitere IP-Blocke des GigaNetIC-
Systems vorgestellt.

4.3.1 Prozessorkern

Weitere Kernkomponenten des Systems neben ders#ax sind die Prozessorkerne. Am Fach-
gebiet Schaltungstechnik wurde ein 32-Bit-RISC-Bssbrkern in der Hardwarebeschreibungs-
sprache VHDL Yery High Scale IQHardware Description Languageentwickelt und in einer
aktuellen Standardzellentechnologie implementiedr Vorganger des aktuellen Prozessorkerns,
der S-Core, konnte bereits bei einer Taktrate V@ NMHz erfolgreich getestet (Infineon, 130 nm,
0,18 mm?2) werden [108][127]. Er ist binarkompatibem Motorola M-Core [128] gehalten, um die
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Softwarewerkzeuge wie z. B. Compiler, Linker, Asbéan und Simulator der GNU-Compiler-Ent-
wicklungswerkzeuge, GCC [129], nutzen zu kdnnemrmZieitpunkt der Entstehung des S-Cores
gab es noch keine derart enge Kooperation mit daohdebiet von Prof. Dr. Kastens, Program-
miersprachen und Ubersetzer, so dass eine eigenkz&gkette fehlte und somit auf 6ffentlich
verfiigbare Quellen zuriickgegriffen werden mussteVerlauf des GigaNetlC-Projekts wurde eine
ausgereifte Entwicklungsumgebung realisiert, diezsgl auf die Eigenschaften des S-Core-
Nachfolgers abgestimmt ist und schnell auf Erwaitgen und Optimierungen der Hardware ange-
passt werden kann (vgl. Abschnitt 5.6). Neben diés®mnen aber auch weiterhin die aktuellen
GCC M-Core-Werkzeuge zur Erzeugung des Programnsooelgvendet werden, allerdings bleiben
dann die Befehlssatzerweiterungen der neuen Akthitengenutzt.

Der N-Core ist die Weiterentwicklung des S-Cored der derzeitige Standardprozessorkern der
GigaNetIC-Architektur [117][111][130][131][113][110 Er wurde ebenfalls als Soft-Core in
VHDL realisiert und kann frei nach den Bedurfnissks jeweiligen Einsatzgebietes, unterstitzt
durch die Paderborner Werkzeugkette, angepassewekin weiterer Vorteil einer Eigenentwick-
lung ist die freie Verwendung und Vervielfaltiguees solchen Kerns anstelle von etwaigen Li-
zenzgebuhren, die bei kommerziellen Produkten eteftr konnen. Je nach Geschaftsmodell kann
hier u. a. die Anzahl der verwendeten Kerne ale@&®amungsgrundlage dienen, was flr ein massiv
paralleles System ggf. sehr kostspielig werden té&nn

Der N-Core ist eine Zwei-Address-Maschine mit eitgrschenLoad-StoreArchitektur. Er hat
eine dreistufige Pipelind-etch Decodeund Execut¢ und besitzt zwei Registerbanke mit je 16 32-
Bit-Registern und 13 zusatzliche Spezialregister. Unterstiitzung von normalen und bevorzugten
Interruptquellen wurde ein spezieller Interruptcolier realisiert. In Verbindung mit dem zweiten
Registersatz konnen auf diese Weise sehr schmderdptbehandlungen unterstitzt werden. Au-
Rerdem verfugt der N-Core Uber ein so genani@esbél Control Registef GCR und ein globales
Status-RegisterGlobal Status RegistdrGSH, mit deren Hilfe direkt Daten ausgegeben bzw. im
letzteren Fall eingelesen werden kénnen. Hierdkamen sehr schnell Informationen speicher-
unabhangig kommuniziert werden. Der schematischibaudes N-Cores ist in Abbildung 4-16
dargestellt.
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Abbildung 4-16: Schematischer Aufbau des N-Core-Pessorkerns
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Die Instruktionen haben eine feste Breite von 16 Bodurch eine hohe Codedichte erreicht wird.
Dies ist bei eingebetteten Systemen mit limitiefSgeicherressourcen von besonderer Bedeutung.
Der Befehlssatz lasst sich durch zusétzliche Iktmen erweitern, da noch 11% an freiem Opco-
de zur Verfugung stehen (vgl. Kapitel 6 und 7). idiin stellt der N-Core eine Coprozessor-
schnittstelle fir Hardwarebeschleuniger zur VerfigguDer N-Core unterstitzt eine byteweise Ad-
ressierung des Speicherinhalts und arbeiteBigiEndian-Format was besonders flr Netzwerk-
applikationen von Bedeutung und vorteilhaft iste Ddehrzahl aller verfigbaren Instruktionen be-
notigt zur Ausfihrung einen Takt, Speicherbefeneizbzw. mehr bei groRerer Speicherlatenz.
Ohne spezialisierte Multiplikations- und Divisioresichleuniger kbnnen Multiplikationen bis zu 18
und Divisionen bis zu 37 Takte beanspruchen.

Tabelle 4-3: Kenndaten der urspriinglichen S-Core-Ralisierung [108]

Technologie Flache Taktfrequenz Verlustleistung Versorgungsspannung
[mm?] bzw. [Slices] [MHZ] [MW/MHZ] V]
Standardzellen
Infineon 130 nm 0,25 160 0,165 12
AMS 600 nm 30 61 23 5,0
FPGA
Xilinx V|rte>(<212%0r(])r-n4) 3727 (von 12288 12 25 25

Die Komplexitat des S-Core-Prozessorkerns entspeizh23.000 Gatteraquivalent@mind umfasst
ca. 7300 kommentierte VHDL-Codezeilen in 24 Datel@er originale Motorola M-Core-Prozessor
bendétigt in der 0,36 um- bzw. in der 0,25 um-Tedbgie 2,2 mm?2 bzw. 1,6 mm?2 Chipflache. Die
wesentlichen Kenndaten der Ursprungsversion deerg-§ind in Tabelle 4-3 dargestellt [108].

Die wesentlichen Daten der aktuellen N-Core-Impletieeung [118] ohne Spezialinstruktionen,
unter Berilicksichtigung einer aktuellen 90-nm-Stadisllentechnologie zeigt Tabelle 4-4 auf. De-
taillierte Informationen zu den einzelnen Optimmgan und Instruktionssatzerweiterungen des N-
Cores werden in Kapitel 6 gegeben. Hier wird dar war entworfene, hierarchisch gerichtete Op-
timierungsansatz zur GigaNetIC-Architektur fur gegee Anwendungsszenarien vorgestellt.

Tabelle 4-4;: Kenndaten des aktuellen N-Core-Prozesskerns der GigaNetlC-Architektur [118]

Technologie Flache Taktfrequenz | Leistungsaufnahme | Versorgungsspannung
[mm?)/[slices] [MHZ] [MW/MHZ] V]
Standardzellen
UMC 130 nm 0,158 204 0,04p 1/2
90 nm 0,127 284 0,032 1,2
FPGA
Xilinx V'”ix('l'fgﬂ?];) 3206 (von 46592 17,5 k A. 1,5 Kern /3,3 |0

4.3.2 Systemerweiterungen und Peripherie — das Prozessaotsystem

Der S-Core-/N-Core-Prozessorkern allein ware nieffizient einsetzbar im GigaNetIC-Chip-
Multiprozessorsystem, deshalb wurden Systemerweitgan und Schnittstellen fir Peripherieblo-
cke integriert und so ein leistungsfahiges Prozassbsystem geschaffen, vgl. Abbildung 4-17.

2 Hierunter wird die Anzahl des Flachenaquivalenis Standard-NAND2-Gattern der entsprechenden CMOS-
Standardzellen-Technologie verstanden, also diehEl&er Realisierung, ausgedrickt in der Anzahl NIRND2-
Gatter, die auf dieser untergebracht werden kénnen.
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Bei der Realisierung des Prozessorsubsystems vdend8-Core zundchst zum Net-S-Core erwei-
tert. Der Net-S-Core verfugt Uber Erweiterungen wileen programmierbarefimerblock einen
programmierbareinterruptcontroller, integriertePerformanzbewerteund einen erweiterteAd-
ressdekoder der die komfortable Ansteuerung von Hardwarebesehgern tber Memory-
Mapped-1O-Zugriffe gestattet. Die Integration akser Komponenten zusammen mit d&ishbo-

ne- bzw. AMBA-Busschnittstelleand die Anbindung von lokalem Dual-Port-Speichesaammen
mit den anwendungsspezifischen Optimierungen wigwendung der geschlossenen Software-
Werkzeugkette (vgl. Kapitel 5 und 6) formen letztiech den N-Core [111][117].

Wishbone-Slave

Wishbone-Master

\ 4

Wishbone-Briicke Speicheranbindung DP-RAM

=~ T =~
| Buscontroller
Adressdekoder < Prozessorsystembus
I
~~ ¢ ~~
> Timer-Modul Programmierbarer
Interruptcontroller
I
S

Interr:

Abbildung 4-17: Das Prozessorsubsystem des N-Con Beispiel der
Wishbone-Bus-Implementierung

Mit Hilfe der Wishbone-/AMBA-Bridgé#isst sich dadl-Core-Prozessorsubsystean den jeweili-
gen lokalen Bus des GigaNetIC-Systems ankoppeln DPeRAM-Blockermaglicht gleichzeitiges
Lesen bzw. Schreiben vom Prozessorkern bzw. vomaBas Die Kontrolle des Prozessorsystem-
busses Ubernimmt dé&-Core-Buscontrollerder ebenfalls auf etwaige Adressverletzungereseit
der Software reagiert und entsprechende Ausnahraatikimgsroutinengxception}y auslost.

Der N-Core kann 32-Bit-breit adressieren, dies gt einem Speicherbereich von theoretisch
4 GByte. Dies erscheint fur eingebettete Prozessoeezeit mehr als ausreichend, so dass ein Teil
des Adressraums fur weitere Zwecke genutzt werdaen.kDerAdressdekodeiungiert als zentrale
Steuereinheit der Buszugriffe seitens des Prozes&orgeneriert Selektionssignale fiir angespro-
chene Hardwareblécke und Gbernimmt die Adressitzensg. Die Anzahl der zu verwaltenden
Komponenten und die Grof3en der einzelnen Speicteache sind generisch anpassbar, so dass
leicht zusatzliche Einheiten an den Prozessorsymisrangeschlossen werden kénnen und flexibel
auf anwendungsspezifische Anforderungen reagiertievekann. Die Speicherbereiche auf Clus-
terebene sowie die Adressierung der beiden zusk¢rii Hardwareeinheiten Timer und program-
mierbarer Interruptcontroller des Prozessorsubsystnd in Abbildung 4-18 dargestellt.
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Der programmierbare InterruptcontrollePIC) ermdglicht eine Priorisierung und Auswahl der
Interruptsignale. Der N-Core differenziert zwisch@ormalen itormal interrupt nint) und hoch-
prioren Interruptsfést interrupt fint). Die hochprioren Interrupts verwenden den zweRewgister-
satz des Prozessorkerns und ersparen so das SieheRegisterinhalte auf den Stapgetach. Das
Normal Interrupt Enable RegistéNIER) bestimmt, welche 32-Bit-Signale einen normaletenn
rupt auslosen. Analog entscheidet der Inhalt Feeest Interrupt Enable Registe(&IER), welche
hochprioren Interrupts zum Prozessor geleitet wertligerzu werden die externen Signale mit den
Registerinhalten bitweise UND-verknlpft. Eine Wdéa#ung des Interrupts geschieht nur, wenn
diese Verknupfung eine logische Eins ergibt. Selieei Interrupts gleichzeitig anliegen dominiert
einfint gegentber demint, aul3erdem entscheidet innerhalb der Interruptitadge Wertigkeit des
Bits Uber den Vorrang der Abarbeitung.

OXFFFFFFFF
0x80000000 SWITCH_BOX
O0x7FFFFFFF
— 0x100'001FF y . 0x40000000 PACKET_MEM
3 ngenutz Ox3FFFFFEF
s} . X
E 0x10000108 OxFFFFFFFE WISHBONE 0x30000000 | SRAMWB
& | 0x10000104 FIER . Briicke 0x2FFFFFFF UART TOP
0x10000100 NIER 0x11000000 0x20000000 -
. O0x10FFFFFF Ox1FFFFFFF
Adressierung PIC-Modul . Ungenutzt 0x1F000000 NCORE_WB(15)
0x10000300 Ox1nFFFFFE
0x100002FF 0x100002FF | L.~ ; NCORE_WB(n)
3 : Ungenutzt 0x10000200 0x1n000000
2| 0x10000210 0x100001FF | o0 ppoy Ox12FFFEEF | \\cORE WB(2)
D — 0x10000100 0x12000000
| 0x1000020C | divider_reg 0%x100000FF Ox11FFFFFF
g 0x10000208 count_reg 0%10000000 Reserviert 0%11000000 NCORE_WB(1)
| 0x10000204 modulo_reg OxOFFFFFFF 0x10FFFFFF
0x10000200 ctrl_reg . ; .
Speicher R iert
Adressierung Timer-Modul y (max. 256 MB) y esene
9 0x00000000 0x00000000
Lokale Module Prozessorsubsystem Prozessorfeld

Abbildung 4-18: Adressierungen und Speicherbereichen GigaNetlC-System auf Clusterebene

Das Timer-Modul stellt die Funktionalitat eines grammierbaren Zahlers und Zeitgebers. So kon-
nen z. B. Zeitstempel fur Pakete im Anwendungsbhreer Netzwerkdatenverarbeitung etc. er-
zeugt werden. AulRerdem kann das Modul als konfgoarer Taktzahler zur Performanzmessung
genutzt werden.

Im Falle der Wishbone-Bus-Realisierung wird unteemd Adressraum 0x11000000 bis
OxFFFFFFFF die Wishbone-Bricke angesprochen. Seenitomt die Protokollumsetzung zwi-
schen N-Core und Wishbone-Standard. Da die WishiSpazifikation prinzipiell nur 32-Bit-breite
Wortzugriffe gestattet, werden zusatzlic®electSignale des Wishbone-Busses zur byteweisen Ad-
ressierung verwendet, damit der volle Funktionsugfdes N-Core-Prozessorsubsystems genutzt
werden kann. Im Idealfall und ohne Arbitrierungsuste benétigen Schreib- und Lesezugriffe Uber
den Wishbone-Bus drei Takte. Detailllierte Analysam Performanz der Wishbone-Implemen-
tierung werden in [109][131] und Kapitel 7 gegeben.

Zur einfachen Maoglichkeit der Interaktion und fueluggingzwecke wurde aul3erdem eine serielle
Schnittstelle YART) als IP-Block integriert (vgl. Abbildung 8-3). D& ishbone-basierte Cluster
erlaubt eine maximale Anzahl von 15 N-Cores sowagtere Verarbeitungseinheiten und Speicher,
siehe Abbildung 4-18.
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Fur das Prozessorsubsystem des N-Core wurde zal&nh multiprozessorfahiger Cache imple-
mentiert [113], der die Verarbeitung zahlreicherw®mdungen beschleunigt. Die Architektur des
Caches wird in Abschnitt 4.4.2 vorgestellt, Redalder Performanzsteigerung werden in Kapitel 6
und 7 dargeleqt.

4.3.3 Hardwarebeschleuniger

Hardwarebeschleuniger sind neben den Prozessorkeiese GigaNetlC-Systems die wichtigsten
Verarbeitungseinheiten. Sie Ubernehmen anwenduegéisghe Aufgaben, die sie effizienter bear-
beiten kdonnen, als es den weniger spezialisierteivdisalprozessoren des Systems maoglich ist.
Durch die Verlagerung besonders rechenintensivdgahen auf diese Spezialeinheiten und die
Verwendung der Prozessorkerne fir deutlich mehxilbileat erfordernde Kontrollaufgaben wird
eine besonders effiziente Symbiose von hoch-pedaten und hoch-flexiblen Systementitaten
geschaffen. Die GigaNetlC-Architektur erfordert zvimicht zwingend den Einsatz von Hardware-
beschleunigern, da die N-Core-Prozessoren fur\éiglezahl von Problemen geniigend Rechenleis-
tung zur Verfigung stellen, und aufgrund der palatl Struktur der Architektur ggf. eine zusatzli-
che Beschleunigung erreichbar ist (vgl. Kapitel S9llte das Einsatzgebiet jedoch im Vorfeld der
Implementierung genauer spezifiziert sein, werdem &ystemarchitekten eine Vielzahl von Inte-
grationsmdglichkeiten zur Auswahl gegeben. Im weiteSinne sind auch integrierbare FPGA-
Zellen als ,flexible* Hardwarebeschleuniger zu sehdie wahrend der Laufzeit, compilergestitzt,
konfiguriert werden kdnnen.

Die ITRS [2] gibt an, dass HardwarebeschleunigeMiengleich zu Universalprozessoren derzeit
bis zu vier GréRenordnungen effizienter (z. B. imn® von GOPS/mW) arbeiten. Zudem vergro-
Bert sich diese Lucke zunehmend, so dass Univeogakgsoren noch starker einem Wettstreit mit
anwendungsspezifischer oder auch rekonfigurierddeedware ausgesetzt sein werden. In Kapitel
6.3 wird dieser Trend anhand von eigenen Impleraemgen und Analysen von dedizierten Hard-
warebeschleunigern fur das GigaNetIC-System unteemaEs gilt, je nach Einsatzgebiet und des-
sen Anforderungen im Hinblick auf die Ressourceanieifiz nach Definition 14, einen geeigneten
Kompromiss zwischen Flexibilitat und Leistungsa#izz zu finden (vgl. Kapitel 8.3).

Auch AMD setzt u. a. in der ,Torrenza“-Initiativeebden zuklnftigen Prozessorgenerationen ver-
starkt auf eine Kopplung von wenigen Universalpssoekernen und anwendungsspezifischen
Hardwarebeschleunigern, um sich so gegeniber denintel propagierten Architekturen, die
schwerpunktméanRig auf homogene, parallele Prozesderfsetzen, zu behaupten [93].

Das GigaNetIC-Architekturkonzept hingegen vereiide Ansatze. Zur Anbindung der Hardware-
beschleuniger stellt das GigaNoC unterschiedlichiglMhkeiten zur Verfugung. Der jeweilige
Anknupfungspunkt im On-Chip-Netzwerk hangt von eiNélzahl von Parametern ab, die es im
Vorfeld einer ASIC- bzw. auch FPGA-Implementierungeruieren gilt. Hierzu zahlen:

» die Beschleunigung des Hardwaremoduls

» der Funktionsumfang des Beschleunigers (Grad desramie)

» die gewlnschte Verfligbarkeit / Erreichbarkeit fiidere SoC-Komponenten
» der Speicherbandbreitebedarf und die benotigtecBpenenge

» etwaige Flachenrestriktionen (z. B. gemeinsameloksler Speicher)
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Abbildung 4-19 zeigt die verschiedenen Anbindungginbikeiten fur Hardwarebeschleuniger und
IP-Blocke im GigaNetIC-System. Dabei kénnen diezeinen Wrappét entweder am lokalen Bus
auf Clusterebene oder aber an einen beliebigeanfrieort einer Switch-Box unter Zuhilfenahme
eines angepassten Communication-Controllers anlgsseim werden.

Kontrollsignale
«-bus request
—bus wait ——m
o T w-
3 3 L
E z addr start in
2 Hardware- 3 |
hw acc data in
hw acc data out Hardware-
Controller / Universal-CPU FSM Beschleuniger
A4 Wrapper NV Wrapper
a) b)
T rw
data in
I/l: hw acc addr out
data out
[3) hw acc data in
2 7
> Dual- hw acc data out
a Port-
Speicher
Kontrollsignale >
Hardware-
FSM addr start in Beschleuniger
A4 Wrapper
<)

Abbildung 4-19: Unterschiedliche Anbindungsmdéglichleiten von Hardwarebeschleunigern

Abbildung 4-19 a) stellt eineng-gekoppeltdntegration eines Hardwarebeschleunigers bzw. IP-
Blocks dar, der direkt mit einem Prozessorkern weden ist und ggf. direkt Uber dessen Coprozes-
sorschnittstelle angesteuert wird. Bei dieser \faeiast nicht zwangslaufig dedizierter Speicher
notwendig. Abbildung 4-19 b) zeigt eineemi-eng-gekoppelterlardwarebeschleuniger bzw. IP-
Block, der auf Cluster-Ebene als eigenstandigetdflnehmer angeschlossen ist. Er hat Zugriff auf
den gemeinsamen Speicher des Clusters und kanHilfieitvon Kontrollregistern und tber einen
dedizierten Adressraum von anderen Teilnehmern spmgehen werden. Die Abarbeitung des
Problems erfolgt dann zumeist autonom und entkopjoeh auftraggebenden Prozessorkern. Ab-
bildung 4-19 c) veranschaulicht eilese Kopplung eines Hardwarebeschleunigers. Bei dieser Art
der Kopplung verfigt der vom GigaNoC zur Verfugugestellte Wrapper sowohl tber einen Zu-
standsautomaterFifite State Maching FSM), der die notwendigen Kontrollfunktionen tber-
nimmt, als auch Uber eine parametrisierbare Meaolgalén Speichers, der in der Regel als Dual-
Port-RAM ausgelegt ist. Diese Variante der loseopglelten Hardwarebeschleuniger wird vorwie-
gend an dedizierten Ports von ausgewahlten SwitoteB eingesetzt. Sie eignet sich vor allem fur
IP-Blocke, die Uber einen hohen Grad an Autononeieder Verarbeitung verfiigen und ein ange-

2L Unter dem BegriffWrapperwird eine Umhiillung bzw. Einhiillung einer gegebeiSystementitat verstanden, die
diese in ein bestehendes System mdglichst effiziedttransparent fir die weiteren Systementitateyriert.



102 Kapitel 4. Die GigaNetIC-Systemarchitektur

messenes Verhaltnis zwischen Berechnungszeit umehi{mikation der Daten tber das Netz auf-
zeigen. Besonders Verarbeitungseinheiten, die giob&ystem zur Verfiigung stehen sollen, aber
zahlenm&Rig nur gering eingesetzt werden (evtigranfl einer nicht unerheblichen Flache, oder
aber weil sie eine Uberaus hohe Verarbeitungsgesdigkeit aufweisen), bieten sich fur diese
Kopplung besonders an. Detalllierte Analysen deppongsarten flir gegebene Hardwarebe-
schleuniger werden in [109][131] und in Kapitel argestellt.

Naturlich lassen sich die vorgestellten Kopplungerw die entwickelten Wrapper nicht nur fur
Hardwarebeschleuniger einsetzen, sondern erlauben gie Integration beliebiger IP-Blocke, die
zwar keine Beschleunigerfunktionalitat zur Verfugigtellen, aber andere bendgtigte Dienste, wie z.
B. Ethernetschnittstellen, integrieren (vgl. Absth#.3.4). Der sich ergebende Flachenbedarf der
einzelnen GigaNoC-Wrapper wird in Tabelle 4-5 anéjgt™

Tabelle 4-5: Flachenbedarf der GigaNoC-Wrapper zurAnkopplung beliebiger 32-Bit-IP-Blécke @250MHz

. Flache [mm?]
Technologie
PE-Ebene | Cluster-Ebene EoC-Ebene
130 nm 0,0097 0,0039 0,6389
90 nm 0,0068 0,0036 0,5449

Die derzeit fur das GigaNetlC-System realisiertenrdwarebeschleuniger finden im Anwendungs-
bereich der Netzwerkverarbeitung Einsatz und wenddtapitel 6 und 7 detaillierter vorgestellt.

4.3.4 Sonstige IP-Bloécke

Neben Hardwarebeschleunigern kdnnen auch belidiiy&ontrolleinheiten, wie z. B. Speicher-
controller oder Ethernetschnittstellen an die obeschriebenen Schnittstellen des GigaNoCs ange-
schlossen werden. Auch hier entscheiden letzthemAdiforderungen der Anwendung in Form von
Durchsatz und Verfugbarkeit der entsprechendenFl@ktionalitat fur das gesamte SoC, welche
Kopplung verwendet werden sollte. Aufgrund des Imofieansportvermdgens der Switch-Boxen
und der einheitlichen Schnittstelle bietet sich fi@chperformante Einheiten in vielen Fallen der
Anschluss Uber einen freien Port einer Switch-Box(\al. Abbildung 4-19 c)). Dies ist z. B. bei
den im Rahmen des GigaNetlC-Projektes entwickefifrernetschnittstellen [110][109][131] der
Fall. Fir Debugging- und Interaktionszwecke wurthe eserielle Schnittstelle realisiert, die derzeit
als Wishbonebusteilnehmer auf Clusterebene integsie[109]. Der lokale Anschluss ermdglicht
eine flacheneffiziente Integration, die den relageringen Bandbreiteansprichen dieser 1/O-
Schnittstellen mehr als genugt.

Speicherschnittstellen sind hingegen auf Clusted auf SoC-Ebene fir das GigaNetlC-System
verfuigbar. Die Kopplung hangt hier sehr stark vowezk und von der Lokalitdt der Daten ab. So
werden die N-Core-Programmabbilder z. B. in eindob@ erreichbaren externen oder auch inter-
nen EEPROM abgelegt und bei Inbetriebnahme dessGhipHilfe des On-Chip-Netzwerks (vgl.
Abschnitt 4.2.2) zu den einzelnen lokalen Speiclies N-Cores transportiert.

%2 Die zugrunde liegenden Implementierungen erladtskifrequenzen die sich deutlich iiber der hier unde liegen-
den 250-MHz-Synthese-Einstellung bewegen. Der Waajgt aufgrund seiner geringen Logiktiefe nictg Blaschen-
hals zu sehen. Die Betriebsfrequenz bestimmt ledtitch der Hardwarebeschleuniger bzw. das On-ClépeiNerk. Die
SoC-Ebenen-Anbindung verfugt in der angegebeneiaiar bereits Gber 16 KByte Dual-Port-Speicher. &ieeren
beiden Wrapper greifen standardmafig auf gemeins&peicher zu, der nicht in die Flachenangabeiefifl
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Details zur Implementierung der Ethernetcontrollad zu den Mdglichkeiten der Interaktion mit
dem GigaNetIC-Prototypen, die durch die seriellehrigtstellen und die angeschlossenen berih-
rungssensitiven Anzeigen gegeben sind, werden pité&le8 dargestellt.

4.4 Speicher

Neben einer leistungsfahigen Kommunikationsinfradtir sowie flexiblen und leistungsfahigen
Verarbeitungseinheiten gehort der Speicher zu desemtlichen Komponenten eines Chip-
Multiprozessors. Die GigaNetIC-Architektur untetgtidas in Abschnitt 2.5 vorgestellte Konzept
einer mehrschichtigen Speicherhierarchie. Die Kiiagsrung der einzelnen Speicherstufen fur das
GigaNetIC-System in der momentanen Ausbaustufe evend Tabelle 4-6 gezeigt. Zu beachten ist,
dass bei Zugriffen auf entfernten Speicher die hatufgrund der Flitkonfiguration fur 64 Bit Da-
ten anstatt 32 Bit angegeben wird.

Tabelle 4-6: Speicherhierarchien der GigaNetIC-Arclitektur

Hierarchie " Speicher Zugriffszeit [Takte]
CPU |[Register 1
L1 ||lLokaler Prozessorspeicher bzw. Cache 2
Minimum: 4 bis 5 bei freier Ressource (je nach Arbiter-Zustand),
L2 ||Gemeinsamer Speicher auf Clusterebene Maximum abhé&ngig von Anzahl der Busteilnehmer (min + (n-1)) und / oder|
der maximal zulassigen Burstléange|
L3 ||[Entfernter Speicher anderer Cluster am lokalen Bus 2 x Paketlatenz, nach Formel (4.9) + L2-Latenz
L4 ||Externer Speicher DRAM / SRAM etc. 2 x Paketlatenz, nach Formel (4.9) + Latenz des Speichercontrollers
+ Latenz des externen Speichers|

Fur den Anschluss der Speicher stehen u. a. dAbsthnitt 4.3.3 vorgestellten Kopplungsmag-
lichkeiten zur Verfigung. Fur den Anschluss extef®peicherbausteine kommen modifizierte In-
stanzen des Communication-Controllers (vgl. AbsithhP.1.1), die Uber die benétigte Kontrolllo-
gik zur Ansteuerung des jeweiligen Speichertypdingen, zum Einsatz. Fiur lokalen, SRAM-
basierten Speicher stehen Wishbone- bzw. AMBA-Stdiallen zur Verfligung. Fur andere Spei-
chertechnologien kann entweder auf standardisiértBlocke zurlckgegriffen oder es kdnnen
wahlweise eigene Lésungen integriert werden.

4.4.1 Lokaler Speicher auf Cluster-Ebene

Zum lokalen Speicher des GigaNetIC-Systems gehértLd-Speicher des einzelnen Prozessor-
kerns (Prozessorspeicher). Dieser ist zunachstamrjeweiligen Prozessor adressierbar und stellt
Instruktionen und Daten zur Verfigung. Hierbei kamsich um normalen SRAM handeln oder
aber um Cache- bzw. multiprozessorfahigen CacheBgre der im folgenden Abschnitt ndher
vorgestellt wird. Aul3erdem ist der gemeinsame L2iSper auf Cluster-Ebene noch zum lokalen
Speicher zu zahlen. Seine Zugriffslatenz liegt zilaer der des eng-gekoppelten Prozessorspei-
chers, ist aber verglichen mit den Latenzen ddesrieren Speicher immer noch gering.

Die Grol3e des Prozessorspeichers ist, wie auctiediggemeinsamen Cluster-Speichers, parametri-
sierbar und derzeit bei der Wishbone-basiertenistealng mit je 32 KByte vorgesehen. Es handelt
sich in beiden Fallen um Dualport-Speicher, derHatle des Prozessorspeichers zum einen vom
Prozessor uber den Prozessorbus gelesen und lebsrhriverden kann. Zum anderen ist dieser
Speicher Uber eine Wishbone-Slave-Schnittstellelzitialisierung oder zum Austausch gemein-
samer Variablen von anderen Wishbone-Bus-Teilnehradressierbar (vgl. Abbildung 4-17). Der
L2-Speicher auf Clusterebene dient u. a. als Ppé&ietser zur Terminierung von GigaNoC-
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basierten Paketen bzw. zu deren Inauftraggabe nje#tion tber den Communication-Controller
ins GigaNoC. AulRerdem kdnnen Uber ihn Daten mieeemd Prozessoren des Clusters ausgetauscht
werden, was je nach Programmiermodell (vgl. Abgtib) von Bedeutung sein kann. Zusétzlich
zu diesem Dualport-L2-Speicher ist eine Schnitistiélr ein ggf. externes SRAM-Modul vorgese-
hen, welches gréf3ere Datenmengen zur gemeinsantenriDézung halten kann [109]. Abbildung
4-20 zeigt die Wishbone-Bus-Realisierung der GigéDiarchitektur auf Cluster-Ebene und die
unterschiedlichen Speichermodule auf L1- und L2r€be

GigaNetIC-Cluster

Switch-Box

Port 1 >

Paket- UART
speicher
JC I

Wishbone-Bus

N-Core- N-Core- N-Core- N-Core-

Subsystem Subsystem Subsystem Subsystem

=~
Abbildung 4-20: Wishbone-Bus-basierte GigaNetIC-Arbitektur auf Cluster-Ebene

4.4.2 Cache-Speicher auf Cluster-Ebene

Fur viele Anwendungen empfiehlt sich der Einsata @ache-Speichern, die nach dem Lokalitats-
prinzip die Daten puffern und so die Ausflihrungleibher Programme beschleunigen, da Daten
bzw. Speicherseiten, auf die haufig zugegriffendwiicht jedes Mal neu, zeitaufwandig aus dem
Hauptspeicher geholt werden missen.

Fur das GigaNetIC-System wurde ein spezieller Mudzessor-Cache entwickelt [113], der die
Systemleistung fuir eine Vielzahl von Anwendungeutligh steigern kann (vgl. Abschnitt 6.7). Er
ist ebenso wie die GigaNetlC-Architektur in viekrHinsicht parametrisierbar und somit flexibel
an die Anforderungen des entsprechenden Anwendzegssos anpassbar. Aul3erdem lasst er sich
aufgrund seiner flexiblen Struktur mit anderen Bssoren kombinieren und in andere Multiprozes-
sorsysteme integrieren. Abbildung 4-21 zeigt diezipielle Realisierung des Multiprozessor-
caches am Beispiel eines GigaNetlC-Clusters mit Mie€Core-Prozessoren. Die Prozessoren sind
mittels einer AMBA-Switchmatrix (vgl. Abschnitt 448 und tber die Caches miteinander und mit
der Switch-Box verbunden. Zusatzlich ist ein soagerier Snooping-Bus integriert worden, der die
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Cache-Kontrolllogik Uber die Transaktionen der elnen Caches in Kenntnis setzt und fur Daten-
koharenz sorgt. Der GigaNetIC-Multiprozessorcachevendet das MOESI-Koharenzmod&tur
Sicherstellung der Datenintegritat [132]. In [138fd eine Teilnehmerzahl von vier fir MESI-
protokollbasierteéSnoopingBusse bzw. Realisierungen mit &hnlichen Protokodlks leistungsfahi-
ge Busstruktur charakterisiert und empfohlen. Di¢lil3] und im Folgenden erlauterten zusatzli-
chen Merkmale der AHB-Switchmatrix-basierten undctiuden dedizierten Snooping-Bus erwei-
terten GigaNetIC-Multiprozessorsysteme erhthen idig133] beschriebene Leistungsfahigkeit
nochmals.

Switch-Box

Snooping
- Slave

L1- L1-
Cache Cache
(#2) ()]
COM- COM- COM- COM-
Buffer Buffer Buffer Buffer

Abbildung 4-21: Integration des Multiprozessor-Cacles auf Cluster-Ebene

Der GigaNetIC-Multiprozessor-Cache bietet vielerotiudie VHDL-Beschreibung gegebene Frei-
heitsgrade der Parametrisierung. Der Cache ist nighals Multiprozessorvariante fur bis zu acht
Prozessoren nutzbar, sondern auch als Uniprozest@émplementierbar. Es kann zwischen einer
Split oderUnified-Architektur gewahlt werden, so dass optionalabtfir Instruktionen und Daten
separate Speicher verwendet werden oder nichtABseziativitat ist zwischen 2 bis 32 wahlbar,
wobei pro Weg die Anzahl d€achelineszwischen 8 bis theoretisci°2.inesmit einer Weite von

4 bis 128 Byte eingestellt werden kann. EbensdlistSystembusschnittstellenweite zwischen 32
und 1024 Bit Breite parametrisierbar, so dass dieh@-Struktur auf andere Bussysteme und Pro-
zessortypen leicht adaptiert werden kann. Abbilddw&p zeigt die wesentlichen Freiheitsgrade der
Parametrisierung auf. Viele dieser Parametrisiezangirken sich sowohl auf die bendtigten Fla-
chenressourcen als auch auf die Leistungsfahigkesit Haufig steht der Performanzgewinn in di-
rekter Abhangigkeit zu den jeweiligen Anwendungaun3erdem spielen die Zugriffszeiten zu den
verwendeten L3- und L4-Speichern eine nicht unwiisee Rolle. Detaillierte Aussagen hierzu
sind in [113] verdffentlicht. Aufgrund dieser Umstie sollten im Vorfeld, falls die Anwendungen

% Hierbei bezeichnet der Begriff MOESI die einzelirstande, die eine Cacheline innehaben kituified Owned
Exclusive Sharedund Invalid. Das MOESI-Koharenzprotokoll findet u. a. in deMB64-Architektur Verwendung
[134].



Kapitel 4. Die GigaNetIC-Systemarchitektur
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bereits bekannt sind, tiefergehende Analysen logglParameterwahl angestellt werden. Die entwi-
ckelte Werkzeugkette stellt hierzu eine umfassdiadiling-Umgebung zur Verfigung (vgl. Ab-

schnitt 6.7).
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Abbildung 4-22: Wesentliche Freiheitsgrade beim GigNetlC-Multiprozessorcache

Abbildung 4-23 zeigt die innere Struktur des Gigd@eViultiprozessorcaches. In der Standardrea-

lisierung wird eineSplit-CacheStruktur mit einem relativ einfachen Block fir derstruktionsca-
che und mit einem komplexeren Teil fir den Dateheagerwendet. Uber deBommunication-

Bufferkénnen innerhalb weniger Takte und unter UmgetldesgCaches Daten mit anderen Prozes-
sorsubsystemen oder der Switch-Box des Clustergetaisscht werden. Es handelt sich um eine
Write-BackArchitektur, die die Skalierbarkeit des Clustereéht und die Prozessoren vom Sys-
tembus entkoppelt. Die parametrisierbare satzesboziset-associativie Struktur erleichtert die

Realisierung geeigneter Kompromisse (bzw. paretovagper Punkte, nach Definition 12 und 13)

zwischen Flachenbedarf und Trefferrdig-(ate).
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Abbildung 4-23: Prinzipieller Aufbau des multiprozessorfahigen GigaNetIC-Caches

Der derzeit eingestellt€rue-LRUVerdrangungsmechanismus erlaubt eine hohe Trateeund ist
zudem mit Uberschaubarem Aufwand in Hardware zlisre@n. Bei Verwendung des BSP-
Programmiermodells (vgl. Abschnitt 4.5.2) basieats dSystem auf schwacher Datenkonsistenz,

weshalb der Cache softwareinitiierte Barrierensymisationen unterstitzt, die z. B. automatisch
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vom Compiler hinzugefuigt werden kdnnen. Hierdurgtdwein hoher Grad an Programmierbarkeit
mit geringer Komplexitat ermdglicht. In diesem Hadinn der Communication-Buffer zur schnellen
NachrichtentbermittlungMessage Passingingesetzt werden. Ein zusatzlicthémcached Access
Bufferdient als Zwischenspeicher fiir optionale, ,ungabetZugriffe.

Der Cache unterstitzt eine Vielzahl von spezieltathebefehlen, die entweder manuell, z. B.
Software-basiert durch den Prozessor, oder ab@ensoh VVorfeld vom Compiler angestol3en wer-
den konnen. Hierzu z&hlen u. Rrefetching also das Laden von Speicherbereichen, bevor diese
vom Prozessor fir die Verarbeitung bendétigt werdkastschreibenLpcking oder FreigebenUn-
locking) einer Cacheline, Invalidierungnfsaldiation) einer Cacheline, Aufheben der Koharenz
durch Exkludieren von Zeilen aus der Kohérenzvemwng etc. Weitere Details zu den Merkmalen
des Caches sind [113] zu entnehmen.

Der GigaNetIC-Multiprozessorcache unterstitzt mitfeHdes MOESI-ProtokollsDirect-Data-
Intervention(direkten Daten-Eingriff). Dies bezeichnet die Mdigkeit, Daten von einem Cache zu
einem anderen Cache des Clusters transportierédrmen (ohne einen Zwischenschritt Gber den
Hauptspeicher). Dies bedeutet einen deutlicheroRe&nzvorteil fur den Fall, dass andere Caches
Daten schneller liefern kdnnen als der Hauptspeiche

Da der lokale Speicher des Clusters fur einige Arduagsklassen verhaltnismanig klein konzipiert
sein wird, und die Hauptspeicheranbindung durch recht grof3es globales Kommunikations-
netzwerk bzw. durch die verwendete Speicherteclgmlggf. eine nicht zu vernachléassigende La-
tenz aufweisen wird, ist Direct-Data-Interventioneegute Méglichkeit, solche Latenzen zu ver-
meiden. Durch Direct-Data-Intervention wird so dféektiv zur Verfligung stehende Speichermen-
ge des Clusters ggf. erhdht, was bei der ansonslkativ geringen L1- und L2-Speichergrol3e einen
weiteren positiven Effekt bedeutet.

Tabelle 4-7: Synthesewerte fir Varianten des GigaNkE-Multiprozessorcaches
in 90-nm-Standardzellentechnologie

) ) Line -GroRe | Tiefe | Assoziativitdt $plit-Cache Héche Taktperiode Leistungsaufnahme
Konfiguration [Bit] [um?] [ns] @250MHz [mW]
kurze Cachelines 64] 256 2 Nein| 0,61 4,16 136,79
Split Cache 128] 256 2 Ja| 1,11 4,08 276,13
hohe Assoziativitét 128| 256 4 Nein| 1,31 4,48 376,18
weniger Cachelines 128] 128] 2 Nein 0,58 3,92 164,87
Standard 128| 256 2 Nein| 0,73 4.1 180,99

Tabelle 4-7 zeigt die wesentlichen Syntheseergebriis ausgewahlte Cachevarianten in einer 90-
nm-Standardzellentechnologie. Hierbei werden jesvdie Daten fir einen Cache angegeben, so
dass Flache und Leistungsaufnahme fur die Clugpéementierung mit der Anzahl der instanziier-
ten Prozessoren pro Cluster multipliziert werdersseia, um die Flache bzw. die Leistungsaufnah-
me des ,eigentlichen” Multiprozessorcaches zu ¢éehalvgl. Tabelle 8-4). Bzgl. der Leistungsauf-
nahme sei bemerkt, dass es sich hier um sehr katiser Abschatzungen seitens des Synthese-
werkzeugs handelt, das eine Schaltwahrscheinlithkai 50 % annimmt und nicht die als deutlich
geringer anzunehmenden Werte des realen Verhal@nSchaltung ansetzt. Hierzu kann die ers-
tellte Werkzeugkette deutlich genauere Werte lirefdre auf den tatsachlichen Schaltaktivitaten der
Komponenten wéahrend der Verarbeitung basieren [116] (vgl. Kapitel 5 und 6).

Aus Tabelle 4-7 wird ersichtlich, dass der GigaReflache in der Standardkonfiguration mit
8 KByte und einer Flache von 0,73 mm? verglichehaem normalen L1-Speicher der Wishbone-
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Realisierung (32 KByte Dual-Port-Speicher, 0,8753nra. 3,3 mal so viel Flache pro KByte beno-
tigt. Zudem erlaubt er derzeit eine nur halb soehafaximale Betriebsfrequenz, was allerdings
durch den langsameren N-Core nicht ins Gewicht. ftotz der deutlich hbheren Kosten des Ca-
ches im Sinne von Flachenbedarf bzw. Leistungsaufieaist von Fall zu Fall, d. h. respektive des
Anwendungszenarios und der definierten Randbedpgunabzuwégen, ob sich sein Einsatz den-
noch rentiert — gerade vor dem Hintergrund der iteesrwéhnten, Komplexitatsspriinge von zu-
kunftigen SoCs aufgrund der immens wachsenden iBtarsahlen. Wir konnten in [113] zeigen,
dass unsere Cache-Implementierung flr ausgewéamveeAdungen Performanzsteigerungen von
Faktor 23 bzw. sogar eine Reduzierung der bendtigteergie von bis zu 89 %, verglichen mit ei-
ner Implementierung mit normalem lokalen Speickanoglicht, vgl. auch Abschnitt 6.7.

Die nachste eigenstandige Speicherhierarchie rst4Speicher oder auch Hauptspeicher, der im
folgenden Abschnitt diskutiert wird.

4.4.3 Hauptspeicher

Der Hauptspeicher des GigaNetIC-Systems kann,ge Aawendungsgebiet, als Pufferspeicher fir
Netzwerkdaten oder Anwendungsdaten eingesetzt wekiekann je nach Chipgrof3e und Techno-
logie direkt auf dem Die integriert werden und t&ssh, wie oben beschrieben, tber Switch-Box-
Ports oder clusterbasiert adressieren. Die Adregale und der Adressraum kdnnen hierbei von
den Kontrolleinheiten der modifizierten CommunioatiController bernommen werden. Sollen
standardisierte Off-Chip-Speichermodule eingesetaten, stellen die Communication-Controller
die Schnittstelle nach au3en zur Verfiigung. DuiebedKopplungsart, unabhéangig ob der Speicher
on oder off-chip positioniert ist, erlaubt die GigaNetlC-Architektaine gute Skalierbarkeit der
Speichergrof3e. Zur Ansteuerung von SDRAS/richronous Dynamic Random Access Memory
kann auf einen im Fachgebiet Schaltungstechnik @fiéwen IP-Block zurtickgegriffen werden.

Die etwaige Umsynchronisierung auf die Taktfrequdez Chip-Multiprozessors kann von den an-
gepassten Communication-Controllern durchgefuhmdes, da nicht grundsatzlich von gleichen
Taktraten auf Speicher- und CMP-Seite auszugeheDies Bandbreite, die seitens der GigaNetIC-
Architektur zur Verfigung gestellt werden muss, lutigen Speichermodulen gerecht werden zu
kénnen, betrdgt bei den derzeit schnellsten PCeBeri, den DDR3-1600-PC3-12800-
Speichermodulen, 12,8 GB/s bei 800 MHz, und beizelertiblichen PC-Speicherriegeln, den
DDR2-667 PC2-5300 mit 333 MHz, 5,3 GB/s. Diese Speiriegel sind mit einer 64-Bit-breiten
Datenanbindung bereits passend fur die derzeiestetite Flitdatenbreite eines Switch-Box-Ports.
Wie in Abbildung 4-15 gezeigt, ermdglicht ein Peimer Switch-Box in der derzeitigen Realisie-
rung bereits bis zu 5,7 GB/s Netto-Datendurchsatzdamit schon heute die volle Bandbreitenaus-
nutzung gangiger externer Speichermodule. Im Raile h6heren Speicherbandbreiten kann ggf.
mit Hilfe einer Portbtindelung der Switch-Boxen dewlinschte Performanz erzielt werden.

Um die in den letzten Abschnitten vorgestellten nkemponenten eines Chip-Multiprozessor-
systems wie dem GigaNetIC effizient einsetzen zonk®, bedarf es zusatzlich zu den Hardware-
Komponenten noch eines angepassten Programmiensoael einer leistungsfahigen Werkzeug-

kette. In Abschnitt 4.5 werden zundchst anwendEnagrammiermodelle fir das GigaNetlIC-

System vorgestellt; die im Rahmen des Projektgd@amigne Werkzeugkette wird ausfihrlich in den
Kapiteln 5 und 6 behandelt.
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4.5 Programmiermodell

Aul3er den physikalisch greifbaren SystementitéaemGigaNetIC-Chip-Multiprozessorarchitektur
gibt es noch die bereits erwahnten immateriellest®8elteile, die eine Multiprozessorarchitektur
ausmachen. Hierzu zahlt das Programmiermodellletatendlich festlegt, nach welchen Regeln
die einzelnen Komponenten des Systems ihre Arlggrichten und wie ihnen diese zugeteilt wird,
und damit verbunden der systemweite Austausch \aaarbund Zustandsinformationen.

Programmiermodelle fur parallele Systeme musses ¥ialzahl von Faktoren bertcksichtigen, zu
deren wichtigsten Merkmalen z&hlen:

* Kontrolle: Wie wird die Parallelitat zur Verfigung gestaiihd wie werden die Einheiten
synchronisiert?

» Daten Welche Daten sind lokale und welche sind gemenesBaten? Wie kbnnen gemein-
same Daten erreicht bzw. Gbermittelt werden?

» Operationen Welche atomaren Operationen werden vom SysteriWerdtigung gestellt?
» Kosten Mit welchen Kosten kénnen die obigen Faktoreregelverden?

Es gibt eine Vielzahl von Programmiermodellen fargllele Systeme, wihared MemoryMes-
sage Passingpder Data Parallel Allen Modellen gemeinsam sind die vier Phasen Alewen-
dungsabbildung vgl. Abbildung 4-24, in denen diem&ndung zunachst in passende Aufgaben
bzw. Tasks gentigender Granularitat aufgeteilt witkrbei ist ein Kompromiss zwischen genu-
gend Nebenlaufigkeit und dem daraus resultiereM#gwaltungsaufwand zu finden. Im Anschluss
missen diese Tasks zu geeigneten Prozessen bzsadfhzugeordnet werden. Dabei ist auf eine
maoglichst ausgewogene Verteilung der Aufgaben aukohzelnen Verarbeitungseinheiten zu acht-
en. Dieser Vorgang muss in der Art geschehen, di@sBrozesse mdglichst effizient und auf die
architekturspezifischen Gegebenheiten angepassinaitder kommunizieren kénnen. Ziel hierbei
ist eine korrekte Abbildung der parallelen Veratlweg auch im Hinblick auf inharente Datenab-
hangigkeiten des Algorithmus. In Abhangigkeit var geweiligen Kostenfunktion sind die einzel-
nen Mal3e wie Kommunikation, Haufigkeit der Synclisationen und Verwaltungsaufwand durch
die parallele Losung gegeneinander abzuwagen.

2 A‘ g T
=] o SO c
g e 5 2
5 & @ S >
< B N 5

& @ 2

Gesamte Tasks geniigender Prozesse/ Prozesse/ Prozessoren
Anwendung Granularitat Threads Threads

Abbildung 4-24: Schritte der Anwendungsabbildung

Die fur die GigaNetIC-Architektur vorgesehenen RPamgmiermodelle basieren, ebenso wie die
GigaNetlC-Hardware, auf einem hierarchischen Ansaid Clusterebene wird ein speziell auf die
eingesetzten Verarbeitungseinheiten optimiertes,aner eigens fiur das GigaNetIC-System entwi-
ckelten Werkzeugkette generierter Compiler eing¢d4é84][135][6][111][112][136]. Programme
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werden in der Hochsprache C verfasst und auf dizeé@soren des Clusters abgebildet (vgl. Ab-
schnitt 4.5.1). Sollten keine Ubergeordneten Kdimrechanismen zur Ausfiihrung benétigt werden,
so kann dieser einfache Ansatz bereits ausreieclmrgas System die gestellten Aufgaben effektiv
bearbeiten zu lassen. Andernfalls dient das cloasserte Programmiermodell als untere Hierar-
chie, auf der eines der beiden Programmiermodedle SbC-Hierarchie aufsetzt (vgl. Abschnitt

4.5.2 und 4.5.3).

clusterbasiert BSP, clusterbasiert Kontrollprozessor an
beliebiger Stelle im SoC
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Abbildung 4-25: Drei wesentliche Programmiermodellades GigaNetlC-Systems:
a) dezentrales Cluster-Modell, b) globales SoC-BSMeodell und c) zentrales SoC-Modell

Auf Systemebene kann auf das etablidBidk-Synchronous-Parallel-Programmiermodelach
VALIANT [18] fur Parallelrechner zurtickgegriffen werdenir FAnwendungsklassen geringerer
Komplexitat kann das leicht zu implementierendetrzdé® SoC-Programmiermodell eingesetzt
werden, das einen zentralen Kontrollprozessor hladfsteuerung einsetzt. Beiden Programmier-
modellen gemein ist die Moglichkeit der komfortableNutzung der GigaNoC-Software-
Systembibliothek (vgl. Abschnitt 4.2.2), in dereafunktionalitaten, die das On-Chip-Netzwerk zur
Verfugung stellt, enthalten sind. Abbildung 4-25gtealie drei derzeit eingesetzten Programmier-
modelle, die im Folgenden naher erlautert werden.

4.5.1 Programmiermodell auf Clusterebene

Der vom Fachgebiet Kastens zur Verfiigung gestElttepiler kann automatisch Befehlssatzerwei-
terungen und eng-gekoppelte HardwarebeschleunggiClusters berticksichtigen und mit in die
Code-Abbildung einbeziehen. Fir Anwendungen, dib besonders fir eine feingranulare Paralle-
lisierung auf Instruktionsebend_P) (vgl. Abschnitt 2.4.4) eignen, kann zusatzlicheeKompilie-
rung des Programms fur mehrere oder alle Prozessi@® Clusters angestol3en werden. Fir diesen
parallelisierenden Compiler wurde das GigaNetlCt&wsdurch zusatzliche konfigurierbare Hard-
wareblocke erweitert, die es ermdglichen, die fiégr Slynchronisierung der Prozessoren erforderli-
chen Barrieremechanismen innerhalb eines Taktesisgtzen [6]. Abbildung 4-26 zeigt den Ab-
lauf einer solchen Synchronisierung, die immer daoiwvendig ist, wenn auf Variablen bzw. Daten
zugegriffen wird, die von anderen Verarbeitungseitgm modifiziert wurden. Die Barrieren wer-
den vom Compiler als eigenstandiger, parametresi@efehl dahin gehend, welche PEs synchroni-
siert werden mussen, in den Programmablauf inteégiée Hardware Gbernimmt die Synchronisa-
tion, also das Anhalten und Fortsetzen der Befebfg@rung der betreffenden Prozessoren. Fur
welche Anwendungsszenarien sich diese feingrantarallelisierung besonders effizient einset-
zen lasst ist noch Bestandteil aktueller Forschange
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Abbildung 4-26: Synchronisierungsmechanismus auf @kter-Ebene

Das Zusammenspiel der Compiler-Werkzeugkette mitHerdware-Entwicklungsumgebung fir
den am Fachgebiet entwickelten N-Core-RISC-Prozksso [108][111] (vgl. Abschnitt 4.3.1)
wird in Kapitel 5 und 6 detailliert beschrieben.

Wird dieses Programmiermodell ohne Zuhilfenahmesoter beiden fir die SoC-Ebene konzipier-
ten Ansatze eingesetzt, dann sind die Cluster Bpgar die einzelnen Prozessoren allein fur die
Ausfuhrung der Anwendung zustandig. Eine Synchreniag mit anderen Blocken des SoCs kann
nur Uber vorbestimmte Nachrichten geschehen. DAesder Programmierung eignet sich fir rela-
tiv einfache Anwendungsklassen, die vollstandigeanzelne Cluster bzw. Prozessorkerne abgebil-
det werden kénnen. Dies kénnen z. B. einfache Ratkateitungsprozesse sein, bei denen die pa-
rallele Architektur auf unkorrelierten parallelerat®enstromen arbeitet (vgl. Abschnitt 8.1). Fur
komplexere Anwendungsklassen stehen UbergeordnetgaPmiermodelle zur Verfigung, die in
den néchsten beiden Abschnitten vorgestellt werden.

4.5.2 Programmiermodell auf SoC-Ebene -Bulk Synchronous Parallel

Das BSP-Modell von XLIANT [18][6] ist ein Ansatz, der versucht die beidernt&eeines Multi-

prozessorsystems, Software und Hardware, kombimiennodellieren. Zum einen dient es dem
Systemarchitekten als Modell fur die parallele Vieedtung und die Auswirkungen der Hardware-
architektur auf die Systemleistung. Zum anderersstin Programmiermodell fur die Algorithmen-
Entwickler. Es soll als gemeinsamer Standard dienenmdoglichst effiziente Systeme zu entwi-
ckeln, bei denen das Zusammenspiel zwischen HalSoftware gut aufeinander abgestimmt ist.

Das Modell besteht aus drei Teilen: Die Charakienisg der Hardware, das Programmiermodell
als solches und das Kostenmodell zur Abschatzungaigzeit der BSP-Algorithmen. Ein Compu-

ter bzw. ein Chip-Multiprozessor besteht aus Sddd BSP-Modells auB Prozessoren, die Uber

lokalen Speicher verfigen und Uber ein beliebigeszWerk miteinander Uber Punkt-zu-Punkt-
Verbindungen kommunizieren kdnnen. Zudem muss dade® eine Barrierensynchronisation

(&hnlich Abbildung 4-26) unterstiitzen. BSP machtéahst keine Unterscheidung bzgl. der Topo-
logie oder Lokalitat der Daten. Das auszufuhrenagfmm wird in mehrere sequentiell aufeinan-
der folgende Teile, so genanr8eaperstepzerlegt (vgl. Abbildung 4-27). Wahrend der Supepst
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kann jeder Prozessor lokale Berechnungen durchitanel Nachrichten zu anderen Prozessoren
schicken. Am Ende des Supersteps wird eine Synieomngsfunktion aufgerufen. Haben alle
Prozessoren diese ,Barriere” erreicht, werden daiehxichten innerhalb des folgenden Supersteps
ausgewertet bzw. verarbeitet. Die Art und Weisgofithmen so zu beschreiben hat u. a. folgende
Vorteile: Aufgrund der einseitigen Kommunikationhrne Anforderungs-/Bestatigungsmecha-
nismus, vermeidet man Blockaden, die z. B. durtdchainitiierte Anforderungsnachrichten verur-
sacht werden konnten. Ein weiterer Vortell ist @ss der Ablauf deterministisch und unabhangig
von der Latenz des Netzwerks ist, bzw. die ReiHgefan der die Nachrichten bei ihren Empfan-
gern eintreffen, ist irrelevant. Abbildung 4-27 gteden prinzipiellen Ablauf eines Supersteps im
BSP-Modell und die damit verbundenen Kosten auf.

PE, PE,
111

lokale Verarbeitung

Wmax l ‘
Kommunikation Superschritt
heg t

Barriere

lokale Verarbeitung Superschritt
l * l t+1

Abbildung 4-27: Ablauf und Kosten beim BSP-Modell

Die Gesamtkosten eines Supersteps. setzen sich aus dem Maximum der gesendeten bzp+. em
fangenen Dateh der Prozessoren multipliziert nit der Liickegap die durch die Ubertragung
durch das Netzwerk entsteht, und der Laterfir die Barrierensynchronisation zusammgnst
von mehreren Parametern abhangig wie z. B. vorideter verwendeten Netzwerkprotokolle und
von der Art und Weise, wie Nachrichten ins Netaziejt werden kénnen. Die Routingstrategie
beeinflusst das Zeitverhalten der Kommunikation isoglas Mal3 wie effektiv das Speichermana-
gement im Prozessor und im Netzwerk ist. Zuletttnech der Overhead durch die BSP-
Implementierung zu beriicksichtigemwird bei realen Systemen meist durch Messungetintras
und bezieht sich auf die Ubertragungszeit fiir éilaehricht einfacher Lange unter kontinuierli-
chem Netzwerkverkehr des Systems.

T

superstep— Max Berechnungszeit m# ommunikation = Syocisierungszei

=mag,(w)  +maf(h)  +L

Die Kosten fur den gesamten Algorithmus miProzessoren unfl Supersteps lassen sich somit
wie folgt berechnen:

(4.10)

Toecam= W+ Hg+ SL:Z W+ iZ h+ S (4.11)
s=1 s=1

Die existierende Paderborner BSP-Bibliothek furkaite Multiprozessoren [137] wurde vom
Fachgebiet von Prof. Friedhelm Meyer auf der Heidédie N-Core-Architektur portiert und fir
diese optimiert. Die BSP-Bibliothek ist in C implentiert und setzt hierarchisch gesehen oberhalb
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des N-Core-Compilers an und kann somit von allezigfien Funktionen (ILP, spezielle Instruk-

tionen, Hardwarebeschleunigeransteuerung etc.Cdewpilers profitieren. Besonderheiten der Gi-
gaNetIC-Architektur in Bezug auf das BSP-Modelldsspezifische, sehr schnelle Synchronisie-
rungsmechanismen, die zu sehr kurzen Latenzweiiteb fihren, sowie die sehr geringen Kom-

munikationskosten, verglichen mit Grid- oder Cludwultiprozessorsystemen. Daher kann das
sonst eher fur grobgranulare Parallelitat verwemd&togrammiermodell auch in Anwendungen
eingesetzt werden, die starker durch feingranitarallelitat profitieren.

In [115] wurden von mir folgende Werte fur die GigtIC-Architektur im Hinblick auf die BSP-
Kosten ermittelt:

f

Taktg,. ..,/ Paket 3[{ Hl)#mmw (4.12)

TakiE o ecerrad PakeE 30 R R 1)0 FIFOTieE%mﬂw (4.13)

f

In (4.12) sind die Kosten bzw. Takte angegebengttidPakeM, bestehend aus Bytes bendtigt,

um von einem Cluster zu einemHops entfernten Cluster im GigaNetlC-System zuzi#gen.

Die Anzahl der Datenbyte pro Flit wird i angegeben. Im besten Fall sind alle FIFO-Ketten des
betreffenden Pfades leer, dann ergibt sich die Andar bendtigten Takte zur Ubertragung zu
(4.12). Als schlechtester Fall wird hingegen angemen, dass alle FIFO-Ketten entlang des Uber-
tragungsweges geflllt und die anderefl) Ports der entsprechenden Switch-Boxen ebenfalls u
die betreffenden Ausgangswarteschlangen konkumriet@nn ergibt sich die Anzahl der bendtigten
Takte zu (4.13).

Die Takte der entsprechenden Funktionen, die aidgdet werden mussen, um ein Paket seitens
eines Prozessors ins Netzwerk zu injizieren sin@ifh4) aufgefiuhrt. Sie resultieren aus den Aus-
fuhrungszeiten der entsprechenden Funktionen dgEaN&iC-Softwarebibliothek.

96 42 9

PE,.../ Paketinjektior= net send data net get ack netef packe (4.14)

Zusatzlich gibt es eine Funktias _bsp_synchronizatiomie innerhalb von 50 Takten feststellt, ob
ein eingetroffenes Paket eine BSP-Barrieren-Symibations-Nachricht eines anderen Clusters ist.

In [115] wurden, mit Hilfe der zur GigaNetlC-Arcbktur gewonnenen BSP-Parameter, Analysen
zu einem erweiterten BSP-Modell vorgestellt, aef ldier nicht naher eingegangen werden kann.

4.5.3 Programmiermodell auf SoC-Ebene — Zentraler Kontrolprozessor

Fur weniger komplexe Algorithmen, die besondereofgérungen an den Ablauf oder das Zeitver-
halten der Ausfihrung, aber weniger Inter-Prozesskanikation beinhalten, wie es z. B. bei eini-
gen Netzwerkanwendungsszenarien der Fall ist, le@annveiteres Programmiermodell auf SoC-
Ebene zum Einsatz kommen. In diesem Fall wird nighé beim BSP-Modell (vgl. Abschnitt
4.5.2), versucht, das Programm durch Partitionigrauf mehre Verarbeitungseinheiten aufzuteilen
und die Synchronisierung durch Barrieren, wie irb#dung 4-27 gezeigt, zu realisieren. Statt des-
sen wird die globale Kontrolle von einem zentraR¥nzessor ibernommen. Dabei kann im Prinzip
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ein beliebiger Prozessor eines beliebigen ClustessSystems diese Aufgabe zugeteilt bekommen.
Allerdings sind die anwendungsspezifischen Lastauiken zu berlcksichtigen, die ggf. eine zent-
rale Position im Gitter oder an einer der Kantamj damit nah an den externen Schnittstellen des
Chips, begunstigen kdnnen. Dieser Kontrollprozegbarwacht die Zustande der einzelnen Cluster
und Prozessorkerne und steuert das Verhalten desn@&ystems. Er kann u. a. als Lastverteiler
(Load balancey fungieren, indem er die eintreffenden paralldfaketstrome, je nach Auslastungs-
grad, den einzelnen Clustern und damit den zuggéidiswitch-Boxen zuweist.

Dieses Modell ist relativ einfach zu implementietard eignet sich fir Prozesse, die aufgrund ihrer
Komplexitat nicht auf mehrere Prozessoren aufgetsrden missen, sondern bei denen die Viel-
zahl der Prozessoren zur Bearbeitung gleicharAgégaben auf verschiedenen Daten genutzt wird.

In [102][103][104] stellen wir zusatzlich eine Meille und die dazugehorige Werkzeugkette Ne-
tAMap (Network Application Mappéor, mit der wir in der Lage sind, taskbasiertenvendungen
auf Multiprozessorsystemen unterschiedlicher Aaudiliilden. Hierbei kbnnen Applikationen abge-
bildet werden, deren Bandbreitebedarf, Rechenlast Werarbeitungsschritte wahrend der Kon-
zeption bereits bekannt sind und sich wahrend dtseBs deterministisch verhalten. Diese Eigen-
schaft ist allerdings eine starke Einschrankung tufitl nur fir spezielle Anwendungsszenarien zu
und gilt nicht fir Netzwerkanwendungen allgemeiredDkénnen z. B. Protokollverarbeitungspro-
zesse fir selbst konzipierte mobile Ad-Hoc-Netzweskin, z. B. fir autonome Miniroboter [138],
deren Struktur speziell auf die Abbildungsmethodgepasst ist. Diese Art der Anwendungsszena-
rien liegt nicht im Mittelpunkt der in Kapitel 7 tersuchten Einsatzgebiete der GigaNetIC-
Architektur, weshalb an dieser Stelle, um den Rahdieser Arbeit nicht zu sprengen, auf die ge-
nannten Veroffentlichungen lediglich verwiesen sei.

4.6 Diskussion von Topologie und Routingverfahren

In [6] wurden bereits verschiedene 2D-Topologieztgéich ihrer Routingeigenschaften unter-
sucht. Wesentliche Kriterien wie hoher Durchsatzoggelt mit moglichst geringer Latenz sind fur
die GigaNetlC-Architektur von grofRer Bedeutung. Dsoll mdglichst nicht auf Kosten einer zu
grof3en Flache bzw. einer zu hohen Leistungsaufn@ehist werden.

Abbildung 4-28 stellt das zeitliche Verhalten und édufenthaltsdauer im NoC von Paketen fir
zwei unterschiedliche Routingverfahren und mehf&iteervarianten dar. Die dargestellten Werte
wurden durch Simulationen ermittelt. Das zugrundgdnde Chip-Multiprozessorsystem entspricht
dem in Abschnitt 8.2 realisierten ersten ASIC-Piyjien des GigaNetIC-Systems mit 32 Prozesso-
ren und 8 Switch-Boxen als On-Chip-Routingknotels Routingverfahren wurde dasr-Routing

und eine Form des dynamischen Routings eingessiztin Abschnitt 4.2.1.4 bereits vorgestellt
wurden. Der Simulation zugrunde liegt ein Pakektigmsalgorithmus mit zufallsbasiertem Ziel im
NoC. Jeder Prozessor eines Clusters verschicldder jRunde ein Paket an einen wahllos ausge-
suchten Zielknoten im GigaNoC. Die Simulation isehdet, wenn nach Ablauf der Injektionsrun-
den alle Pakete ihr Ziel erreicht haben.
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Abbildung 4-28: Performanzanalyse verschiedener Rdingverfahren
in Verbindung mit unterschiedlichen Gitter-Topologien

Bei der unidirektionalen Variante kann jeder InBavitch-Box-Link nur ein Paket in eine Richtung
weiterleiten. Dies kénnte z. B. der Fall sein, waicht genligend Flache fur bidirektionale Verbin-
dungen zwischen den Switch-Boxen vorhanden wareidsem Fall verhalt sich das dynamische
Routing vorteilhafter als daXY-Routing. Im Gesamtvergleich bendtigen jedoch ba&idefahren
deutlich mehr Zeit zur Bewaltigung des Datenaufk@nmals die anderen Varianten. Verwendet
man hingegen bidirektionale Verbindungen, entiddt Vorteil des dynamischen Routings und die
Performanz ist nahezu um eine Gréf3enordnung besser.

Ein Problem bei dem >R-Gitter ist die geringe BisektionsbandbreBsg (vgl. Abschnitt 2.3.1).
Congestionauf den beiden zentralen Verbindungskanalen d&3sNeduziert die Leistungsfahig-
keit des Systems deutlich. Neben den in Abschit22genannten Routingverfahren, die z. T. er-
heblichen Hardwareaufwand bedeuten, lassen sichegserungen um mehr als eine Grofl3enord-
nung in diesem Fall z. B. durch einfache Topologidifikationen erreichen:

Ist mit sehr hohem Datenaufkommen innerhalb desCBip-Netzwerks zu rechnen, so kdnnen
Verbindungen doppelter Bandbreite, z. B. durchmethend angepasste Switch-Box-Ports einen
deutlichen Geschwindigkeitsvorteil liefern. Diesteingsfahigste Variante stellt so genanm@p-
aroundVerbindungen, also umlaufende Verbindungen zufieemg und bildet damit die Struktur
eines halbverbundenen Torus (vgl. Abbildung 2-8) der oberen Hierarchie nach. Sie bedeuten
grundsatzlich eine Performanzsteigerung, verringge doch den Durchmesser des On-Chip-
Netzwerks. Allerdings ist die Realisierung einedcken Topologie, mit derzeitigen CMOS-
Prozessen, mit Schwierigkeiten verbunden, da diewienden Kanten deutlich langer als die bri-
gen Verbindungen sind. Dies fuhrt zu Laufzeiturdeisden und damit zur Leistungsreduktion des
Gesamtsystems. Diesem Phanomen wird mit einertlalofpewandelten Topologie entgegengetre-
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ten, bei denRepeaterzwischengeschaltet sind, die die Laufzeitunteestdiegalisieren und so die
langeren Verbindungen zwischen Nord- und Sudknti@msparent erscheinen lassen. Allerdings
wird hierdurch eine zuséatzliche Latenz eingebradit, mit einem ,virtuellen Knoten* Rechnung
getragen wird. Auffallig ist die dennoch gute Perfanz trotz dieser zusétzlichen Latenz. Je nach
Betriebsfrequenz eignet sich eine solche Topologdfikation auch fur fertige ASICs des Giga-
NetlC-Systems, die aldoard-Ebene dann mit solchen Verbindungen ggf. zu eifierns erweitert
werden konnen.

b) Durchschnittliche Hopanzahl der Systeme
a) Durchmesser D in Hops fir die jeweilige Dimension bei kompletter Synchronisierung

-~ ///r\\

Hops
Hops

Knoten in Y-Richtung Knoten in X-Richtung Knoten in Y-Richtung Knoten in X-Richtung

d) Gesamtzahl an Hops eines Knotens bei einer
c) Gesamtzahl der benétigten Hops zur kompletten Synchronisierung vollstdndigen Synchronisierung in einem 10x10-Gitter

Hops
Hops

Knoten in Y-Richtung Knoten in X-Richtung Position in Y-Richtung Position in X-Richtung

Abbildung 4-29: Anzahl benétigter Hops bei Multicagszenarien,
in Abhangigkeit von der GittergréRe und der Lage de Quellknotens

Je nach Bandbreitebedarf und Verkehrsmuster deiinftigen Anwendungen sollte abgewogen
werden, ob zusatzliche Modifikationen der 2D-Gttipologie erforderlich sind oder zusatzliche
optimierte Routingverfahren bendtigt werden. Eintares Kriterium, mit besonderer Bedeutung
fur nachrichtenbasierte Programmiermodelle, istAtigahl der benétigten Zyklen bzw. Hops, um
von einem Knoten alle weiteren Knoten des Netzwekskontaktieren. Handelt es sich hierbei
stets um die gleiche Nachricht, so kénnte MulticastMechanismus der Switch-Boxen zur Ver-
vielfaltigung der Nachricht herangezogen werdendass sich der Aufwand des Senderknotens auf
ein Minimum beschrénken lasst. Hierbei wirde etessides Quellknotens ausreichen, éfsti-
castNachricht an die lokale Switch-Box auszusendean, glif. die beabsichtigte Reichweite des
Multicastsbeinhaltet. Die maximale Latenz einer Nachricig,den entferntesten Knoten innerhalb
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eines Netzwerks erreicht, ergibt sich aus dem DuedseD der Topologie (vgl. Definitionen aus
Abschnitt 2.3.1) und der Lage des Quellknotens.

Abbildung 4-29 a) veranschaulicht den linearen Ausanhang dieses Sachverhalts fur gitterfor-
mige GigaNetlC-Systeme von bis zu zehn Knoten paot&. Bei einer Topologie mit %00 Kno-

ten benétigen die Eckknoten 18 Hops flr eine Ddiertiagung. Nach (4.9) bedeutet dies im bes-
ten Falle 65 Takte fir die Ubertragung eines Komuoélits mit acht Datenbyte, 66 Takte fiir 16
Datenbyte etc. Handelt es sich hingegen um dispaXachrichten, sozusagen eine vollstandige
Synchronisierung aller Prozessoren untereinandebesleutet dies, dass eine zur Gesamtzahl der
Prozessoren bzw. Cluster proportionale Latenz iGkesamtheit der Ubertragung aller Nachrich-
ten angesetzt werden kann. Die resultierende, dahetittliche Hopanzahl fiir einen solchen Multi-
cast flr gegebene Gittergro3en zeigt Abbildung 428uf. Fir zweidimensionale Gitter ergibt sich

diese zu%[«L/W, mit N Knoten im Gitter.

Die Gesamtheit der zu bewaltigenden Hops fir dgeartlisparate Multicasts stellt Abbildung
4-29 ¢) dar. FUr ein X10-Gitter werden 66.000 Hops fur eine vollstandenkt-zu-Punkt-
Kommunikation aller Knoten bendtigt. Zu beachten dass diese Zahl nicht mit der fur die Syn-
chronisation benétigten Zeit gleichzusetzen isteitaGroRteil der Ubertragungen parallel ablauft.
Unter der Vorraussetzung, dass jeder Cluster m@ Machricht pro Zeiteinheit absetzen kann, er-
gibt sich hieraus fur ein ¥0-Gitter eine Zeitdauer von mindestens 18 Hops. [B8&vTakten im
besten Fall, wenn das Netzwerk nicht aus- bzw.léset ist. Im schlechtesten Fall, wenn z. B.
immer nur ein Knoten die Synchronisierung durchtéilhum so Stauungen im Netzwerk vollstandig
zu vermeiden, ergaben sid®0D9= 9.90CUbertragungen. Dies resultierte in einer Synchatitis
onszeit von 9.914 Takten, wenn die Ubertragungedezuentfernteren Knoten zu Anfang gestartet
wurden. Bei einer Taktfrequenz von 714 MHz (vgl.sébnitt 4.2.3) ware eine vollstandige Syn-
chronisation von 100 Knoten bzw. maximal 800 Prsae=n in 13,9 us abgeschlossen. Dies ist al-
lerdings eine &ulRerst konservative Abschatzungindder Realitat zweifelsohne deutlich geringer
ausfallen wird, da die parallelen Transfers inemeFéllen blockadefrei ablaufen. Abbildung 4-29
d) zeigt die Hopanzahl, die sich ergibt, wenn emoten disparate Nachrichten an alle anderen
Knoten im Netzwerk schickt. Hierbei variiert dieliZan Abhangigkeit von der Position im Gitter.
Fur zentrale Knoten belauft sich der Wert fir eirdmrartigen Multicast auf 500 akkumulierte
Hops, wohingegen die Eckknoten mit 900 Hops 80 %rrhendtigen.

4.7 Skalierung des Systems durch Variation von Systempametern

Da Flexibilitat und Skalierbarkeit eine besondershtige Rolle beim GigaNetIC-System und beim
GigaNoC-On-Chip-Netzwerk einnehmen, wurden allevahten Parameter der Hardwarebeschrei-
bung generisch implementiert und in zentrdbasignpackagegehalten, so dass durch geringsten
Aufwand neue Varianten des On-Chip-Netzwerks bzws gesamten GigaNetIC-Systems erzeugt
werden kénnen. Abbildung 4-30 zeigt wesentlicheifaiésgrade und die sich daraus ergebende
Flexibilitdt der Architektur, die der Systemarchitdei der Realisierung eines GigaNetIC-Systems
in der Entwurfsphase hat. Die wesentlichen Parameie das generische GigaNetlC-Design aus-
machen, sind in Anhang B aufgelistet und werdert Horz erlautert. Diese Parametrisierung ist
ebenfalls fur die im folgenden Kapitel vorgesteallt8imulatoren und Rapid-Prototyping-Modelle
konsequent im jeweiligen Rahmen bericksichtigt ward
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Abbildung 4-30: Freiheitsgrade bei der Skalierung ér GigaNetIC-Systemarchitektur

Zukunftige Realisierungen, die auf Weiterentwicldan der GigaNetIC-Architektur beruhen, wer-
den zusatzlich tUber Mechanismen verfligen, die wihder Laufzeit Veranderungen der Hardware
erlauben. Hierzu zahlen sowohl Adaption der Bantirend der aktiven Routingkanale an die je-
weiligen Erfordernisse, Mal3hahmen zur aktiven lueigsaufnahmereduktion wie z. Blockgating

fur nichtbenutzte Einheiten, als auch Madoglichkeitdar Ausschépfung von/oltage-Scaling
Techniken bei der Reduktion der Taktrate. Hardwasebleuniger kdnnten wéhrend der Laufzeit
durch Integration rekonfigurierbarer Strukturen m&edarf geladen werden. Genauso ware das
Nachladen von speziellen Instruktionsséatzen bzeMdiriation von CPU-Ressourcen wie z. B. der
Registerbreite und der Anzahl auf Prozessorebenkbde. Die GigaNetIC-Architektur ist grund-

satzlich vorbereitet fir diese neuen Méglichkeiten.

4.8 Zusammenfassung

In diesem Kapitel wurde eine neuartige, skalierd@hgp-Multiprozessor-Architektur vorgestellt,
die aufgrund einer sehr flexibel gestalteten, patasierbaren Hardwarestruktur an verschiedenste
Anforderungen angepasst werden kann, um so eine Dafinition 14 moglichst ressourceneffi-
ziente LOsung zu erhalten. Alle Bestandteile, diree CMP ausmachen, wurden eigens fur diese
Architektur implementiert bzw. angepasst. So wugle neuartiges, hierarchisches On-Chip-
Netzwerk namens GigaNoC zusammen mit einem umfdsselonzept zur Kopplung unterschied-
lichster Verarbeitungseinheiten an den verschiet&wC-Ebenen entworfen. Bei der Speicherwahl
kann zwischen normalem SRAM oder einem spezielvieRelten Multiprozessorcache gewahlt
werden. Durch die spezielle Konstruktion der OngeRputingknoten der Switch-Boxen ist nicht
nur eine gute Skalierbarkeit auf Chip-Ebene wahaeslEntwurfs gegeben, sondern auch die Mog-
lichkeit einer spateren Kombination von GigaNetl&sierten CMPs auf Chip-Ebene, indem
Switch-Box-Ports nach auf3en gefuhrt und mit denhRarchips verbunden werden. Dies erlaubt
auf Board-Ebene eine deutlich grol3ere Anzahl vabwedenen Knoten, als es derzeit auf einem

Chip moglich ware.
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Das in diesem Kapitel vorgestellte Hardwaremodetl @igaNetIC-Systemarchitektur wurde in der
Hardwarebeschreibungssprache VHDL realisiert undassh tber 161.000 Zeilen kommentierten
VHDL-Code in insgesamt mehr als 470 Dateien.

Da das GigaNetlC-System als Basis fiur weitere Fansgsvorhaben der Universitdt Paderborn
dient, wurden zur weiteren Nutzung und Erweiterimden erfolgreich beantragten Folgeprojekten
(wie z. B. PlaNet%, MxMobile?®, EasyG® oder auch DFG sowie in den DFG-Sonderforschungs-
bereichen SFB 376 ,Massive Parallelitat: Algoritméntwurfsmethoden, Anwendungen® und
SFB 614 "Selbstoptimierende Systeme des Maschinshpalle projektrelevanten Quellen und
Dokumentationen in ein eigens angelegtes Versionaleingssystem eingepflegt. Aul3erdem
wurde eine GigaNetIC-Linux-Live-CD, auf der alldenanten Daten enthalten sind, erstellt. Sie
dient als eigenstandige, bootfahige linuxbasiemévwreplattform, die nahezu auf jedem PC-
System dem Anwender eine vorkonfigurierte GigaNdEt@wicklungsumgebung zur Verfliigung
stellt.

Zusammen mit der GigaNetIC-Architektur entstanadaistungsstarke Werkzeugkette, die von der

Projektierung und Systemdimensionierung tUber Sitotga auf verschiedener Abstraktionsebene

bis hin zu einer hierarchisch gerichteten Optirmgamethode zur Verbesserung der Systemeigen-
schaften fur beliebige Anwendungen alle wesenttickemponenten beinhaltet. Diese Werkzeug-

kette und deren Einsatz sowie die Resultate werddan Folgekapiteln 5 und 6 beschrieben.

Der Einsatz der GigaNetIC-Architektur und Leistungsertungen fir dedizierte Anwendungen
finden ausfihrliche Behandlung in im Kapitel 7. ueototypische Realisierung auf FPGA- und
Standardzellentechnologien bildet mit Kapitel 8 @drschluss der Vorstellung dieser massiv paral-
lelen, skalierbaren, ressourceneffizienten Chiptjrdzessor-Architektur.

%4 Das vom Bundesministerium fiir Bildung und ForsahBMBF) finanzierte ProjektNGN-Platforms for Networ-
ked Services" (NGN-PlaNetS) soll dazu beitragen, dass eliropaischen Blrger einen leistungsfahigen Baei-
Internet-Zugang bekommen.

% Das BMBF-Projekt MxMobile ist eine Kooperation sashen verschiedenen Industrieunternehmen und Uitideem
und erforscht, entwickelt und demonstriert Schilkesaponenten von programmierbaren Plattformen #m &1ulti-
band-Multistandard-Betrieb von Terminals und Basaigsnen. Die Arbeiten der Universitéat Paderbordnen sich in
den Teilbereich ,Modellierung und Verifikation d8ystemarchitektur” ein.

% Das BMBF charakterisiert das Projekt wie folgtigZder Forschungsaktivitaten im EASY-C-Verbundwatsbn ist
es, Schlusseltechnologien fur die nachste Generatia zellularen Mobilfunknetzen voranzutreiben, dim Entwick-
lung von neuen Echtzeit-Applikationen mit hohen dbaiiten zu unterstiitzen. Diese Applikationen wi8.zVideo-
streaming und Lokalisierungsdienste stellen enoAnéorderungen an die gesamte Netzinfrastruktur ibimbch

Bandbreite, Latenz, spektraler Effizienz und Faéengegeniber allen mobilen Teilnehmern, insbeseraieden Zell-
randern.” http://www.pt-it.pt-dIr.de/de/1772.phiStand: November 2007)







5 Analyse und funktionale Verifikation des Chip-
Multiprozessorsystems

Den Erfolg einer Prozessor- bzw. Multiprozessorgegtur bestimmt nicht nur die reine Hardware,
sondern ebenfalls zu einem grof3en Teil die beglégaNerkzeugkette. Schon per Definition (vgl.
Definition 3) versteht sich die GigaNetIC-Architektals mehr als nur das im vorigen Kapitel vor-
gestellte Hardware-System. Ohne einen leistunggg&hCompiler, der aus einer Hochsprache, wie
z. B. C oder C++, effizienten Maschinencode erzesifinde die ansonsten sehr umstandliche und
zeitaufwandige Softwareentwicklung dem Erfolg ddspcMultiprozessors stark im Wege. Eine
Wiederverwendbarkeit des Codes fir Weiterentwiogkm der Prozessorkerne oder gar andere
Prozessoren ware nahezu ausgeschlossen. Zudem esnbt leistungsfahige Werkzeugkette mog-
lichst flexibel gehalten sein und auf Modifikationand Erweiterungen der Hardware schnell rea-
gieren kbénnen. Weiterhin ist eine Reihe auf unteesttiche Anforderungen angepasste Simulato-
ren winschenswert, die eine schnelle respektive adturate Simulation des Gesamtsystems oder
einzelner Systementitaten ermoglichen. Diese Sitiomlen dienen im Vorfeld der ASIC-
Realisierung eines GigaNetlC-Chip-Multiprozessarmzinen zur Verifikation der Funktion, aber
auch zum anderen der Evaluierung der Leistungsfahltiignd zur Parameterfindung (vgl. Abschnitt
4.7), um ein moglichst ressourceneffizientes Systamerwirklichen.

Zyklenakkurate Simulation / Emulation,

= HDL-basiertes Modell auf RAPTOR2000
=
= -
v
: N
S
3 Cluster- / Instruktionsebenen-Simulation
o automatisch generierter Simulator I | |
e S 1, .|,|!|,.-l.u f
.qz’ & T < o
=) S Systemebenen-Simulation e
§ ‘% SystemC - Synopsys CoCentric
Q
3 LL

Zyklenakkurate Simulation Cadence NCSim
bzw. Modelsim, HDL-basiertes Modell

e

Abbildung 5-1: Mdglichkeiten der Systemsimulation und - Verifikation
auf unterschiedlichen Abstraktionsebenen

Zusammen mit den Fachgebieten ProgrammierspracheénUbersetzer, Prof. Dr. Uwe Kastens
sowie Algorithmen und Komplexitat, Prof. Dr. maffriedhelm Meyer auf der Heide, wurde eine
mehrschichtige, auf verschiedenen Abstraktionsebegeeifende Werkzeugkette entworfen
[6][116][117]. Abbildung 5-1 zeigt im Uberblick dienterschiedlichen Abstraktionsebenen der Sys-
temsimulation bzw. -emulation auf. Jede Abstraldebene hat ihre Berechtigung und Vorteile ge-
genuber den anderen. Zu diesen Kriterien zéhlen die Simulationsgeschwindigket, gemes-
Takte:l — TsimuliertesSystem, dle Ge_

S tsimulierendes; Syster

sen in bendtigter Zeit pro simuliertem Takt deslﬂetemsvsim{
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nauigkeit bzw. Detailliertheit der Simulation, odrrch der Aufwand, den Anderungen im Simula-
tor bedeuten. Tabelle 5-1 gibt Aufschluss Uberedlizelnen Charakteristika des jeweiligen Simula-

tions- / Emulationswerkzeugs.

Tabelle 5-1: Merkmale der einzelnen Simulations- bez. Emulationsmdglichkeiten

C-Simulation SystemC- VHDL-Simulation FPGA-Emulation
Simulation
B IE,] 5! ‘il L:;I | ' » ‘ E.
[EGEOEONOE il A ]
Simulationsgeschwindigkeit ~10 MHz ~ 100 kHz ~ 100 Hz
Detaillierungsgrad relativ gering, mittel hoch
taktgenau auf
Prozessorebene
Architekturelle einfaches nur Unified- keine keine
Einschrankungen der Busmodell Multiprozessor-
Modelle Cache
Moadifizierbarkeit sehr schnell sehr schnell weniger schnell zeitaufwéndig
Simulationsumfang parametrisierbar, parametrisierbar, parametrisierbar, parametrisierbar,
auf Clusterebene auf SoC-Ebene auf SoC-Ebene auf SoC-Ebene
(abhéngig von der
FPGA-GrolRe)

Die GigaNetIC-Architektur stellt einen automatiggmerierten, C-basierten Simulator fir die Clus-
ter-Ebene zur Verfigung [6], auf dem aufbauendSismtemC-Simulato8iMPLE (SystemC integ-
rated Multiprocessor-Level Environmerjii17] von uns entworfen wurde, der zur Simulatces
gesamten Chip-Multiprozessors herangezogen werden. kZur genauen Simulation des Gesamt-
systems oder einzelner Hardwareentitaten mit héohd$detaillierungsgrad, wird die zumeist sehr
zeitaufwandige HDL-basierte Simulation unter Verdemg modernster Simulationswerkzeuge
eingesetzt [6][116]. Letztendlich steht mit dem Bathgebiet Schaltungstechnik entwickelten Ra-
pid-Prototyping-System RAPTOR2000 [139][9] eine andreiche FPGA-basierte Entwicklungs-
umgebung zur Verfigung, die in Forschung und Letugleich eingesetzt wird [140]. Das RAP-
TOR2000-System konnte bereits fur andere ASIC-Implatierungen als Evaluierungsplattform
erfolgreich genutzt werden [10]. Mit ihrer Hilfeslsen sich komplexe Chipentwiirfe im Zusammen-
spiel mit realer Hardware testén

Die grundsatzliche Vorgehensweise wahrend der Ektung und Optimierung eines GigaNetIC-
Systementwurfs unter Zuhilfenahme der erstelltetwieklungsumgebungen sieht in der Regel wie
folgt aus:

Zunachst werden grundlegende Veranderungen inaiehnt izu modifizierenden, schnellen Simula-
toren implementiert. Hierzu zahlt der Cluster-Siatat (vgl. Abschnitt 5.1) auf Prozessor- und
Cluster-Ebene, wéhrend die SystemC-basierte Simnofatmgebung SIMPLE (vgl. Abschnitt 5.2)
auf allen drei Ebenen, also auch auf der SoC-Eeeift. Diese Simulationen kénnen zum Teil
sogar automatisiert durch die von mir erstellte tMhin-Werkzeugkette ablaufen und ausgewertet
werden, was einhergehend mit der relativ hohen Ritnonsgeschwindigkeit eine hohe Abdeckung
des Entwurfsraums gewahrleistet. Die auf diesetrakiesten Ebene gewonnenen Ergebnisse ge-
ben Impulse fur die Gestaltung bzw. Parametrisigrder einzelnen Hardwareentitaten. Die hier

27vgl. mit dem GigaNetIC-Demonstrator der Cebit 200 der Hannover-Messe 2005, Abschnitt 8.1.
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anwendbaren MalRnahmen, z. B. die Optimierung dgorhmen und die Konzeption der Struktur,
besitzen in der Regel das grofite Potential zur &&sdrung der Ressourceneffizienz.

Im Anschluss werden besonders vielversprechendantan des Multiprozessorsystems in einer
synthetisierbaren Hardwarebeschreibung realisiaed mit Hilfe der weiterentwickelten PERF-
MON-Umgebung (vgl. Abschnitt 5.3) detailliert urgacht. Die hier gewonnenen Messergebnisse
beinhalten nicht nur taktgenaue Laufzeiten sondemaue Informationen Uber die zu erwartende
Leistungsaufnahme und Flache der jeweiligen Realisag. Aufgrund der sehr geringen Simulati-
onsgeschwindigkeit ist die Mdglichkeit der Vorauslvaurch die zuvor genannten Simulatoren
mehr als ratsam. Durch das in Abschnitt 5.4 besbkene MultiSim-Entwurfswerkzeug kénnen
dann, als Folgeschritt, Modifikationen in enger edigckten Grenzen bzw. fur einzelne, vielver-
sprechende Punkte des Entwurfsraums erfolgen. iE0Dpgtimierung des Systems greift dann die
im folgenden Kapitel 6 vorgestellte Methodik derefarchisch gerichteten Optimierung®.

Potentielle Realisierungen werden dann im Anschhwsslem speziell erweiterten, FPGA-basierten
Rapid-Prototyping-System RAPTOR2000 (vgl. Abschhifi) im direkten Hardwareumfeld getes-
tet. Diese Integration in ein ,reales* Anwendungsszio ermoglicht eine chipibergreifende funk-
tionale Verifikation des Systems und lasst erstesagen tber die Leistungsfahigkeit der zukunfti-
gen ASIC-Realisierung zu. Die durch Simulation kgtie Verifikation der erstellten Hardware kann
hier durch Hardwareemulation bestatigt werden. Bulie hohe Simulationsgeschwindigkeit sind
zudem weitaus komplexere Tests moglich, als esiBie-Simulationsumgebung zuliel3e.

Die vorgestellten Entwicklungsumgebungen bzw. Sataren lassen sich dartber hinaus auch
unabhangig voneinander nutzen. So kann Softwarachsh entkoppelt vom langsamen Hardware-
simulator entwickelt, getestet sowie funktional iopert und deren Laufzeit analysiert werden.
Hardwareblécke hingegen kénnen z. B. aus verfugbireBlocken integriert werden und zunéachst
in der HDL-basierten Entwicklungsumgebung evaluwegtden, ohne fir alle Simulatoren funktio-
nal realisiert werden zu missen. Eine einheitlichersetzer-Werkzeugkette komplettiert schlief3-
lich die GigaNetIC-Architektur und ermdglicht demtickler eine unkomplizierte Nutzung aller
Simulationswerkzeuge und Emulationsplattformen, &gischnitt 5.6.

Detaillierte Beschreibungen der einzelnen Simuhsidozw. Emulationswerkzeuge und deren Ein-
satz werden in den folgenden Abschnitten gegeben.

5.1 C-basierter Cluster-Simulator zur Simulation und Profilierung

Ausgangspunkt der Simulatoren ist ein aus der Clem@erkzeugkette generierter, C-basierter
Simulator, der vom Fachgebiet Programmierspracimehlbersetzer, Prof. Dr. Uwe Kastens, ent-
wickelt worden ist. Dieser zyklenakkurate Simulatstr ein vergleichsweise schneller Simulator,
der zur Simulation der Clusterebene des GigaNetl€ens (vgl. Abschnitt 4.1) eingesetzt wird.
Er ermdglicht die taktgenaue Verhaltenssimulatime® N-Cores oder aber auch des gesamten N-
Core-Clusters unter Verwendung eines einfachen Bdsits, das keine Matrixfahigkeit aufweist,
und Uber einemound-RobifMechanismus, dhnlich dem Wishbone-Bus (vgl. Abgtldn2.4) die
Busvergabe regelt. Eine Besonderheit des Simulahrmdass er nicht manuell erstellt werden muss,
sondern durch die entwickelte Werkzeugkette autisctaigeneriert wird [6], vgl. auch Abbildung
6-4. Mit ca. 300 Host-CPU-Takten pro simuliertemkiTdes GigaNetlC-Clusters erreicht dieser
Simulator eine beachtliche Simulationsgeschwindigkg. B. benétigt ein Intel Pentium 4m
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(2,2 GHz) 314 Takte fur einen simulierten N-CorddTawas einer effektiven Simulationsge-
schwindigkeit von 7,63 MHz entspricht. Eine Simigdatdes C-basierten Simulators von einer Se-
kunde wirde somit ca. 14 Stunden der hardwarensRHDL-Simulation mit einer effektiven Si-
mulationsgeschwindigkeit von 150 Hz bedeuten. Di&achverhalt zeigt sehr deutlich, dass zum
einen abgewogen werden sollte, welcher Simulatowelchem Zweck verwendet wird, und zum
anderen auch die Notwendigkeit unterschiedlicherutionswerkzeuge bzw. -methoden. So bie-
ten sich zur ersten Leistungsbewertung und Entwaufaexploration die schnellen Simulatoren an,
die in der Lage sind, rechenaufwéndige und daniiintensive Benchmarks bzw. Algorithmen in
relativ kurzer Zeit abzuarbeiten. Sie liefern wightErgebnisse zur Einstufung der Leistungsfahig-
keit der zu evaluierenden Architektur mit gentiger@enauigkeit. Im Anschluss kommen dann fir
detailliertere Analysen ggf. auch nur fiir Teilpredole, die genauen, zeitaufwandigen Simulations-
umgebungen zum Einsatz. Abschlieend kann danPm¢otyp als FPGA-Realisierung im realen
Hardwareszenario die Funktionalitat des SystemasriBeweis stellen.
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Abbildung 5-2: Exemplarische Performanzvisualisierung mit JScore
der mit dem Cluster-Simulator ermittelten Laufzeitdaten

Komplettiert wird die clusterorientierte Entwickiggumgebung durch ein leistungsfahiges Profilie-
rungswerkzeugJScore das dasrofiling auf Task- und Funktionsebene des Clusters erntitglic
[6]. So kénnen zyklenakkurate Simulationswerte auid der detaillierten Profilingmdglichkeit
komfortabel zur Ergebnisvisualisierung der gewommebaufzeitdaten herangezogen werden. Ab-
bildung 5-2 zeigt beispielhaft die Ergebnisvisualisng von Laufzeitdaten, die mit dem Cluster-
Simulator gewonnen wurden. Die Entwicklungsumgebunigrstitzt die Instrumentarisierung des
Programmcodes, dadurch ist es mdglich, Abschnitteugeilen und deren Profilingdaten separat
voneinander, in so genanntBims (also Korben), fir die beteiligten Prozessoren @iessters pro-
tokollieren zu lassen. Es werden die bendtigtentd;akie Anzahl der jeweils ausgefihrten Instruk-
tionen und der datenabhangigen InstruktionspaaBinj@usgewertet. AuRerdem werden Lade- und
Speicheroperationen protokolliert.
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Der Cluster-Simulator unterstitzt dariber hinaune @infache Einbindung von Hardwarebeschleu-
nigern mit Annotation der durch HDL-Simulation gaw@nen exakten Laufzeitdaten. Eine in C
beschriebene Funktion muss lediglich als die Fonkiitdt gekennzeichnet werden, die spéater im
realen System von einem Hardwarebeschleuniger filsgevird. Die Laufzeitdaten des realen
Hardwarebeschleunigers werden dem Werkzeug Uberge¥é&hrend der Simulation fuhrt ein Pro-
zessor den Code aus, die Laufzeitdaten werdenhediach die zuvor annotierten ersetzt. Der Vor-
teil dieser Moglichkeit ist, zun&chst die Funktibid durch schnell realisierbare Software bereit-
zustellen, um dann potentielle Funktionsblocke espdurch Hardwarebeschleuniger ersetzen zu
kénnen. Die neuen, beschleunigten Laufzeiten komiaem leicht mit in die Performanzbewertung
durch derProfiler einbezogen werden.

Fur die Cluster-Simulationswerkzeugkette wurde moneine skriptbasierte Evaluationsumgebung
geschaffen, mit deren Hilfe eine schnelle Analyss Bntwurfsraums in Bezug auf die Softwareim-
plementierung und ggf. vorhandener Hardwarebesolgeumadglich wird. Unter Verwendung die-
ser Erweiterung konnten umfangreiche SimulationeaseDSLAM-Benchmarks (vgl. Kapitel 7) in
sehr kurzer Zeit durchgefiihrt werden, die eine Bpgilon des Entwurfsraums in zumutbarer Zeit
erlaubten [141][118]. Hierbei galt es, sieben wustbredliche Benchmarkszenarien mit je ca. 20
relevanten Tasks zu untersuchen. Es wurden nachMenfvgl. Abschnitt 7.2.3) vier verschiede-
ne Pakettypen verarbeitet. Beim Simulieren wurdeer &lf verschiedene Instruktionssatzvarianten
des N-Cores (vgl. Abschnitt 6.2) iteriert, so dassich letztendlich insgesamt
308 Benchmarkkonstellationen ergaben. Jeder dideechmarks bendtigte ca. 26 Mio. N-Core-
Taktzyklen, was in einer Gesamtzahl von 8,2 Mitlem simulierten Takten resultierte. Die gesamte
Verarbeitung inklusive Kompilierung und Auswertumgnotigte auf dem P4m-System mit 2,2 GHz
nur ca. 45 Minuten Laufzeit. Abbildung 5-3 zeighemn exemplarischen Auszug aus einem der au-
tomatisch erzeugten Ergebnisprotokolle.

3049600 ldwixw

3049600 ldwxorlsls

3049600 Horldw_andshr ixwandshr orshl81624 ldwxorlslS ldwixw
3049600 Horldw andshr ixwandshr orshl81624 ldwxorlslS_ ldwixw ldwsaddi
3049600 Horldw ldwixw ldwaddi

3201000 xorldw

3352400 andshr

3352400 ixwandshr

3352400 ldwaddi

3352400 none

3352400 orshlslcezd

1,09929 Gain Min 3049600 Max 3352400 up-BM1-CheckCRC.ext.txt.sorted

Abbildung 5-3: Auszug aus einem der automatisch eearigten Ergebnisprotokolle zur DSLAM-
Benchmarkauswertung zu verschiedenen Instruktionsdavarianten

Die Zahlen geben die jeweils benotigten TaktzyKi@gnden entsprechenden Benchmark und den
instrumentierten Codeabschnitt an. Die Kurzel sidiie den simulierten Instruktionssatz. Zusam-
menfassend wird in der letzten Zeile der maximadsvi@n Gain) durch eine Instruktionssatzer-
weiterung notiert. In dem aufgefiihrten Beispielilergich eine maximale Beschleunigung um
9,92% durch diédwixw-Befehlssatzvariante gegeniber dem unmodifiziext&Pore. Nach ausgie-
bigen Simulationen kann so dennoch relativ schergichieden werden, welche Hardwarevariante
die besten Performanzsteigerungen erzielt. In ewateren Ausbaustufe dieser Werkzeugkette
kénnen zusatzlich die in der hardwarebasierten Péergkette (vgl. Kapitel 6) ermittelten Daten fr
Flache und Leistungsaufnahme der entsprechendatwidegblocke mit berltcksichtigt und ausge-
wertet werden.
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5.2 Modellierung des GigaNetlC-Chip-Multiprozessors inSystemC

Um detalillierte Aussagen uber die Leistungsfahigkisr gesamten GigaNetlC-Multiprozessor-
Architektur treffen zu kdénnen, die Uber die Ergalseizur Leistungsfahigkeit der einzelnen Prozes-
sorkerne und Hardwarebeschleuniger hinausgehemevein zyklenakkurates Modell unseres Sys-
tems namenSiIMPLEIn SystemC modelliert. Dieses entspricht in seimgondsatzlichem Aufbau
der in Abbildung 4-2 gezeigten Struktur. Zunachstde ein Prozessor basierend auf dem automa-
tisch generierten Cluster-Simulationsmodell (Abstttil) in eine in SystemC modellierte Struktur
eingebunden. Darauf aufbauend wurde ein Prozesstecimit vier N-Core-CPUs, Multiprozessor-
Cache (vgl. Abschnitt 4.4.2) und lokalem Speichmsteatit, wobei die Kommunikation Uber einen
Round-Robirarbitrierten Bus abgewickelt wird. Letztendlich nden diese Prozessorfelder tber
Switch-Boxen, die unter anderem Uber parallele F8t@kturen, Kontrolllogik zur Ansteuerung
des lokalen Prozessorclusters, RoutingmechanisraenMVeiterleitung der Pakete Uber das On-
Chip-Netzwerk und einen Kreuzschienenverteiler\zembindung der Ein- und Ausgangsports ver-
fugen, verbunden [130].

Die Simulation ist fur viele Bereiche des Systeryklenakkurat und weicht nur in einigen unwe-

sentlichen Teilen geringfigig von der Hardware @ie. ist zudem deutlich schneller als eine ver-
gleichbare Simulation auf Basis der VHDL-Beschreipuer Einzelkomponenten. Falls erforder-

lich, kbnnen die einzelnen Hardwarebeschleuniger\arifikation des Zusammenspiels mit der

Software in einer Co-Simulation als VHDL-Beschraigumit eingebunden werden. Um eine héhe-
re Simulationsgeschwindigkeit zu erreichen, werdase ansonsten durch funktionale Beschrei-
bungen in C++ bzw. SystemC ersetzt. Funktional &édich SIMPLE weitestgehend identisch zur
Hardware, so dass auch hier des Postulats eines Hobereinstimmungsgrads der unterschiedli-
chen Simulationswerkzeuge Folge geleistet wird.

Das System ist so konstruiert, dass beim Startchstdlie Instruktionsspeicher der einzelnen CPUs
mit den zuvor durch den Compiler erstellten Binatdden geladen werden, wobei diese Daten be-
reits Uber das GigaNoC-On-Chip-Netzwerk von einemtralenBootloader(vgl. Abschnitt 4.2.2)
aus an die entsprechenden Speicheradressen gesandenh. Im Anschluss wird das umgebende
System aktiviert, also z. B. Paketgeneratorenddiecigentlichen Nutzdaten an die Eingangsports
des Systems liefern. Dieser Prozess kann bei Bédéadhleunigt werden, indem die Instruktions-
speicher direkt, unter Umgehung des normalen Bogargs, bei Beginn der Simulation mit den
entsprechenden Daten initialisiert werden.

Zunachst wurde SIMPLE in der Synopsys-CoCentricaodiungsumgebung fir SystemC-
Modelle realisiert (vgl. Abbildung 5-4). Die CoCentEntwicklungsumgebung stellt eine Vielzahl
von Bibliothekselementen zur Verfiigung, so z. BchreADSL-Kandle, die zur Modellierung der
Ubertragungsstrecke der Endkunden hin zum DSLAM. (kgschnitt 7.1) dienen und in einigen
Analysen verwendet wurden. Mittlerweile ist SiIMPBEch als alleinstehende Anwendung einsetz-
bar, so dass eine Lizenz fur die Werkzeuge von ggysnicht zwingend erforderlich ist.

Mit Hilfe der SIMPLE-Systemmodellierung kénnen ledlige Anwendungsszenarien detailliert und
schnell evaluiert werden. Hard- und Software fis dasamte System lassen sich bereits im Vor-
feld, vor der ASIC-Implementierung testen und oiran.
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Prozessorfeld Switch-Box Gesamtsystem

Abbildung 5-4: SystemC-Modellierungsebenen,
eingebunden in die Simulationsumgebung CoCentric YvoSynopsys

Auch fur die SIMPLE-Simulationsumgebung wurde degdits fir den Cluster-Simulator (vgl. Ab-
schnitt 5.1) entwickelte skriptbasierte Steuersafsvzur Automatisierung der Entwurfsraumexplo-
ration weiterentwickelt. Mit ihrer Hilfe ist der 8ware- bzw. Hardwareentwickler in der Lage au-
tomatisch gesteuerte Simulationen Uber nahezwatl®/erfigung stehenden Parameter der Hard-
ware zu iterieren (vgl. Anhang B). So kdnnen Optimngspotentiale seitens der Soft- und Hard-
ware im frihen Entwicklungsstadium erkannt und @m dPrototypen integriert werden. Fehler der
Software oder funktionales Fehlverhalten der Hardafastraktion kbnnen so ohne grol3en Kosten-
aufwand beseitigt werden. Alle wahrend der Simategn gewonnenen Messergebnisse werden
protokolliert und abschlieRend zur weiteren Analysel Visualisierung fur Tabellenkalkulations-
programme als CS¥-Dateien aufbereitet. @A ET AL. [142] verwenden ein erweitertes SystemC-
Simulationsmodell zur schnellen Bestimmung der Watkistungsaufnahme eines Multiprozessor-
systems und im Speziellen des eingesetzten OnI8&ipwerks. Bei diesem Simulationsmodell
betragt die Diskrepanz zwischen den ermitteltentévieder SystemC-Simulation und den Werten
der Gate-LevelSynthese nach Aussage der Autoren maximal 9 % Bidur erste Abschatzungen
hinreichend genau und erlaubt so eine schnelle Efgvaumexploration, was auch fir die SIMP-
LE-Entwicklungsumgebung eine lohnenswerte Erweitgrware.

5.3 HDL-basierte Simulation auf Register-Transfer-Ebene

Die HDL-basierte Simulation auf Register-Transfewkl RTL) stellt die genaueste und detaillier-
teste Simulationsumgebung des GigaNetIC-SystemsSaarermoglicht zwar in Abhangigkeit von
der GroRRe des zu analysierenden Chip-Multiprozessar eine sehr geringe Simulationsgeschwin-
digkeit (vgl. Tabelle 5-1), bietet aber dafiir Bedfharkeit und Steuerbarkeit auf nahezu allen
Ebenen des Hardwaresystems und ist fir die Vetifikader Hardware unverzichtbar. Die von uns
realisierte Umgebung erlaubt neben der RTL-Simaiatiu3erdenPost-Synthes8imulationen auf
Gatterebene der verwendeten Standardzellentechaogse liefert mit Hilfe von Schaltaktivita-
tenannotationen wahrend der Ausfiihrung des Anweaggfungramms sehr genaue Daten zur Leis-
tungsaufnahme der Schaltungskomponenten.

% DasCSComma Separated Val)eSormat ist ein gebrauchliches Format fiir Datesigiat
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Zur Bestimmung von Ausfuihrungszeiten, Chipflache mergiebedarf von eingebetteten Syste-
men existiert bereits eine Vielzahl von Methodenlerings analysieren viele der etablierten
Werkzeugketten nur ein oder zwei der genannten aRtexistika. Einige experimentelle Arbeiten
beschaftigen sich mit abstrakteren Modellen detv&oe-Energiebedarfsanalyse, z. B. auf Instruk-
tionssatzebene [143][144][145], fur Softwarefunkio [146][147][148][149] und ebenso fur funk-
tionale Einheiten wie Controller und Prozessored0[151]. Viele der Verfahren bestimmen fur
die Ausfihrungszeit nur eine obere Schranke\Vdogst Case Execution Tinfd/CET), ohne mdg-
liche Daten-, Pfad- und Zustandsabhangigkeitenezxtidiksichtigen. Die im Folgenden vorgestellte
Werkzeugkette ermoglicht weitaus umfangreicherelys®n und hilft dem Entwickler bei der Fin-
dung von Flaschenhéalsen und zeigt Optimierungspaterauf.

Fur die Umsetzung und Analyse der GigaNetIC-Hareédvaschreibung wurde die PERFMON-

Werkzeugkette [116] weiterentwickelt und an die B#asse eines Multiprozessorsystems ange-
passt. Diese Weiterentwicklung unterstitzt den Wardentwickler bei der Bewertung der Res-
sourceneffizienz unterschiedlicher Architekturvaten in mehrfacher Hinsicht.
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RAPTOR2000 GigaNetIC-GUI Verarbeitungseinheit
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Abbildung 5-5: Performanz-Evaluierungsumgebung PERIMON, basierend auf HDL-Simulation

Die PERFMON-Umgebung (vgl. Abbildung 5-5) verwendahachst die in der Hardwarebeschrei-
bungssprache VHDL erstellte Modellierung des Prezesund des in Abbildung 4-17 gezeigten
Prozessorsubsystems. Je nach Art und Umfang delygema beschrankt sich das verwendete
Hardwaremodell aber nicht nur auf Prozessorebesmaesn wird bei Bedarf auf das gesamte zu
charakterisierende GigaNetlC-Multiprozessorsystesgaweitet. Die dreidimensional dargestellten
Elemente in der Grafik markieren die jeweils eratitn Kennwerte des zu analysierenden Systems.
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Als Eingang fur die PERFMON-Umgebung dient die Andengssoftware in Form von Code in
der Hochspracte C oderC++. Diese wird durch spezielle Instrumentierungenaogient (ahnlich
der Vorgehensweise beim Cluster-Simulator, Absthnit), um so die flr die Analyse relevanten
Codesegmente zu kapseln. Zusammen mit den von éek2éugkette bendtigten Priffunktionen
werden die Quellen kompiliert und ein entsprechen8peicherabbild erstellt. Je nach weiterer
Verwendung wird es dem entsprechenden Simulator. EEmulator gerecht aufbereitet. Bei der
Verwendung von PERFMON wird es in ein SRAM-Simuwasmodell des lokalen Prozessorspei-
chers geladen. Die Simulation im HDL-Simulator diefdann ein umfangreiches Profil mit hohem
Detaillierungsgrad im Hinblick auf die dynamischeaufzeiten, Codegréf3en, Speicherzugriffe und
die Auslastung des Stapelspeiche3ta¢k$ der analysierten Anwendung. Bei Algorithmen, dere
Laufzeit datenabhangig ist, werden zudem Minimunaxivhum und Mittelwert der instrumentier-
ten Codesegmente ausgewertet (vgl. Abbildung 5-6).

Wahrend der Simulation werden die Schaltaktivitatenachst auRT(Register Transf@rEbene fur

die zu analysierenden Hardwarekomponenten proiekilind abgespeichert. Diese werden im
anschlieBenden, ebenfalls automatisierten Schutginer weiteren Abschatzung der dynamischen
Verlustleistungsaufnahme herangezogen. Diese Abmamgiist in nahezu allen Fallen weitaus ge-
nauer, als die rein statistische Abschatzung destlregsaufnahme seitens des Synthesewerkzeugs.
Die hier gewonnenen Resultate bedeuten einenvgaten Kompromiss zwischen Rechenaufwand
und Genauigkeit. In der frihen Phase eines Designefs sind flr die Konzipierung des SoCs
eher die qualitativen Zusammenhange als quangtagntscheidend. Die RTL-basierte Analyse
zeigt Trends auf, die in etwa in der zu erwarten@edl3enordnung der Verlustleistungsaufnahme
des spateren Chipdesigns liegen.

Der nachste Schritt ist die Synthese des RTL-Deasigit dem Synopsys Design Compiler, dessen
Resultat, die Gatternetzliste der Zieltechnologils, Eingabe fir die nachstgenauere Verlustleis-
tungsberechnung dient die Gatterebenensimulatioe 8ericksichtigung von Verzégerungszeiten.
Anhand der protokollierten Schaltaktivitaten und @darakterisierungsinformationen der Biblio-
thekselemente der verwendeten Standardzellentemdiadtann deSynopsys Power Compilee-
reits eine deutlich genauere Abschatzung der zartewden Leistungsaufnahme treffen. Aul3erdem
ergeben sich erste Werte fir die zu erwartendemg@féen Flache und Taktfrequenz der Hardwa-
rekomponenten. Die Bestimmung der maximal moglichaktfrequenz der betreffenden Hardwa-
rekomponenten Ubernehmen Funktionsaufrufe eingptblsierten Werkzeugkette der erweiterten
GigaNetIC-PERFMON-Umgebung. Diese steuert und analydie Resultate der entsprechenden
SynopsydWerkzeuge. Hierdurch ist es moglich, ohne Inteoakisehr gute Syntheseresultate zu
erzielen, die allerdings ggf. entsprechende Reessourcen bzw. Zeit erfordéPn

Als finale Moglichkeit der Berechnung der dynamischVerlustleistung unterstitzt die PERF-
MON-Umgebung die Gatterebenensimulation unter Vaouag der sich ergebenden Schaltverz6-

2 |n Abhangigkeit vom verwendeten Compiler, dermaiterstiitzt der UPB-Compiler nur C-Code.

% Die Synthese der auf diese Weise gewonnenen Ingpigenung des N-Cores (vgl. Abschnitt 6.2) nahm einer
leistungsfahigen Workstation mit 2 GHz Prozessanaki 16 GByte Arbeitsspeicher ca. 24 Stunden isphunch.
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gerungef. Die Abschatzung kann, je nach Giite der Charal¢eting der verwendeten Gatterbib-
liotheken im einstelligen Prozentbereithiegen [152][153]. Unabhangig von der zu erreictem
Genauigkeit bzgl. der Bestimmung der Leistungsaufreg sind die relativen Unterschiede ver-
schiedener Implementierungsvarianten von entschdateBedeutung. Anhand der sich ergebenden
Tendenzen kénnen vielversprechende Realisierungsimiomt werden.

Tabelle 5-2 gibt Aufschluss Uber die Merkmale dezelnen Methoden der Schaltaktivitdtenauf-
nahme und die Qualitat der daraus gewonnenen \Wertdynamischen Verlustleistungsaufnahme
der untersuchten Hardwarebldcke.

Tabelle 5-2: Vergleich der unterschiedlichen Methodn zur Aufnahme von Schaltaktivitéaten
und die Qualitat der daraus gewonnenen Verlustleisingsabschatzung

Simulationsebene Erfasst Nicht erfasst Fir und Wider
Interne Knoten;
Korrelation, nicht Synthese
invarianter Elemente; relativ schnelle Laufzeit,
vorkommendeSlitches; geringere Genauigkeit
Zustands- und Pfadabhangigksi
ten

Register Transfer syntheseinvariante Elemente

syntheseinvariante Elemente;
Null-Verzégerung, | interne Knoten;
Gatterebene Korrelation, nicht Synthese
(Gate Level) invarianter Elemente;
gewisse Pfadabhangigkeiten
Alle Designelemente;
Korrelation, nicht Synthese
Invarianter Elemente;
Zustands- und Pfadabhangigke
ten

vorkommendeGlitches, genauer als die RTL-Simulation,
gewisse Pfadabhangigkeiten | aber deutlich langere Laufzeit

Zeitinformationen-
annotierte Gatter-
ebene
(Gate Level)

Korrelation gleichzeitig schal- | héchste Genauigkeit, einherge-
i_tender primarer Eingénge hend mit sehr langer Laufzeit

AbschlielRend werden die erzielten Ergebnisse inié&fopler Quellcode-Dateien an die entspre-
chend instrumentierten Segmente annotiert und kbaosgewertet werden.

Abbildung 5-6 zeigt beispielhaft eine Gegenubelstg) ausgewdahlter Ergebnisse einer eigenen
CRC-Implementierung in Hard- und Software, die Hilfe von PERFMON gewonnen wurden
[116]. Die CRC-Berechnung ist speziell im Bereidr tletzwerkprozessoren von besonderer Be-
deutung (vgl. Kapitel 7) und wird haufig zur Feleldeennung und Absicherung in vielen Netz-
werkprotokollen verwendet. Die Auswertung zeigtaudie datenabhangige Verarbeitungszeit bei
der Softwarerealisierung des CRC-Verfahrens, se dasimale, maximale und mittlere Werte fir
Instruktionsholzyklen und Ausfiihrungszeit gegebesrden. Die ermittelten Werte basieren auf
zufallsgenerierten Paketen mit 128 Byte Lange.Hee dargestellte Analyse bezieht sich in diesem
Fall auf das Prozessorssubsystem mit angeschlossearggekoppelten Hardwarebeschleuniger.
Die Verarbeitung erledigt der hier implementiertartivarebeschleuniger ca. 15mal schneller, wo-
bei die maximale Leistungsaufnahme des Systemsimamgeringer ausfallt, als die des rein Soft-

%1 In diesem Fall werden bei der Simulation des Vikeha der Gatternetzliste die jeweiligen Verzogegsreiten der
Gatter mitberlcksichtigt. Diese werden nach dertlsse in eineGtandard-Delay-Form@BDF)-Datei abgespeichert
und wahrend der folgenden Simulation mit bertckgith

%2 Bei der referenzierten Studie d®ki Techno Centerlag die Abweichung zwischen der zeitinformatiomsatierten
Gatterebenen-Simulation unter Zuhilfenahme der taren Schaltaktivititen und der Messung am gegtert Chip
bei 5%. Synopsys gibt Werte zwischen 10 % bis 2Afeichung im Vergleich zu einGPICESimulation an.
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ware-basierten Systems. Der Energiebedarf des haethasierten Systems ist 94 % geringer als bei
der Software-basierten Variante.

Die erweiterte PERFMON-Umgebung dient u. a. daZufiger genutzte Software-Funktionen oder
aber auch Hardwareblocke bzgl. inrer Eigenschaftecharakterisieren. Die jeweiligen gewonne-
nen Informationen werden, wie z. B. auch die desnafpezeigten CRC-Beispiels, in einer Biblio-
thek abgelegt. Automatisierte Werkzeuge wie NetANE}R2][103][104] kdnnen dann anhand die-
ser Daten eine Partitionierung der Algorithmen éldkierung der Hardwarebldocke vornehmen,
die eine moglichst ressourceneffiziente Realisigrer Gesamtanwendung erzielt.

|
Codegroile 74 100
[Byte] ﬁ 88 ‘

Statische Daten 0
100
[Byte] 0 ‘
Stapelauslastung 24
[Byte] ; 16 100
Min/ Mittel / Max 33446
A 32608 | []34102
Instruktionsholzyklen
2150
[Byte] [ 20000
Lesezugriffe 136
[Byte] 100 128
Schreibzugriffe ] 4
100
[Byte] 0 ‘ 16756
Min/ Mittel / Max 16337 [ []17084
Ausfiihrungszeit [N 1140 10000
[Zyklen]
Max Leistungsaufnahme 8.597
— 10
[mw] ‘
Max Energieverbrauch -6 734.410° 6
. 500 10
[mws] 47310 ° l
Flache 01 0.187
[mm?] : 0.201
] SoftCRC I Hard CRC

Abbildung 5-6: Beispielhafte Ergebnisse fir ein€yclic-Redundancy-ChedkCRCO)-Realisierung
in Software und Hardware

Mit Hilfe der erweiterten PERFMON-Umgebung konnte @ner Reihe von Beispielen gezeigt
werden, dass durch geeignete Malinahmen im Softwave-RTL-Design und in der Synthese ein
nicht zu vernachlassigender Anteil der dynamiscdieriustleistung fir den aktiven Betrieb einges-
part werden kann [116][102][103][111][130][117][1]{B04][109][131].

Es gibt zahlreiche Methoden zur Reduktion der ueigsaufnahme von Digitalschaltungen. U. a.
kann durch eine angepasste Feinarchitektur dakorgewerden, dass temporar ungenutzte Schal-
tungsteile von aktiven Eingangssignalen entkoppe&ltden kénnen, wodurch auch die internen
Signale dieser Blocke unveréndert bleiben, und isoV@rlustleistung dieser Einheiten merklich
reduziert werden kann. Ein sehr &hnliches Beigpialie Anwendung voi€lock-Gating das zum
Teil vom Synthesewerkzeug selbstandig eingebraenden kann. Hierbei wird das Taktsignal von
ganzen Registerb&nken oder Funktionsgruppen abgjestcivenn diese ihren Zustand nicht andern
muassen. Das Einfuhren von Variationen der Taktfeequbzw. von Bereichen unterschiedlicher
Versorgungsspannuny¢ltage Islandgsteigert ebenfalls die Ressourceneffizienz eSwraltung,

die Mdglichkeit der Anwendung ist allerdings abhi@ngpn der verwendeten Technologie.
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Auch eine Reduzierung der Chipflache und somit Kiesten liegt als teilweise konkurrierender
Faktor mit im Blickfeld der ArchitekturoptimierungeDie entwickelten Werkzeuge erlauben das
Abwagen der systemrelevanten Parameter und daerFuah pareto-optimalen Entwurfen.

5.4 MultiSim — Parametervariation zur gezielten Entwurfsraumexploration

Fur die in den vorangegangenen Abschnitten vortigesteSimulatoren und Entwicklungsumge-
bungen wurde didultiSimWerkzeugkette entwickelt [131][113], eine speadflombination aus
Skripten undTcl(Tool command languaggdnwendungen, die interagieren, und den Ablauf der
Simulationen steuern. Durch sie werden, einer Stapabeitung ahnlich, Simulationen eigenstan-
dig gestartet, analysieret im Anschluss modifiziextl, den gegebenen Parametern Folge leistend
automatisiert weitere Simulationen angestol3en. [Exgebnisse werden anschlielRend GBS\
Dateien zusammengestellt und kénnen mit Tabellénkationsanwendungen weiterverarbeitet und
visualisiert werden.

Simulatoren auf héherer
[Spezifikation der Parameter—Variationj Abstraktionsebene

¥ C-basierte, zyklenakkurate Simulation

MultiSim-Umgebung

Plattform  Ubersetzer CPU und Cluster
@ M GCC simplebus.
e generierter
Anwendung (C-Sourcen) . Ubersetzer
Spelgher—/Cache— ggf. mit ISEs
[ Kompilierung der C-Quellen ] Aufteilung Instruktionssatz

Anzahl / Art der

Verarbeitungseinheiten
)

(

Findung des bestmdglichen

(Flache bzw. Taktfrequenz)

¥

Vorgabe / Verscharfung der

Syntheseergebnisses
[ Syntheseparameter

¥

Gatterebenen-Synthese

Neln

(heuristisch) bestmogllches
Syntheseresultat wurde zuvor erzielt

E

FPGA-basiertes
Rapid Prototyping:
Cluster und CMP

130-nm-/ 90-nm-
Standardzellen-
technologie

fearearens >

L Auswahl des Speicherabbildes
1

{ automatische Modifikation ‘

der HDL-Beschreibung

[}
[ Kompilierung der HDL-Quellen j

[ Start der Simulation j
[]

Protokollierung von
Ausflihrungszeiten und Ergebnissen
¥
automatische Beendigung der
Simulation bei Erreichen der
definierten Bedingung
[}

Auswertung und Zusammenstellung
der Messergebnisse

¥

Iteration abgeschlossen?

Ja
[ Erstellung der CSV Reportdatei j

Nein

[ Auswertung vom Entwickler j Lj

SystemC-basierte, zyklenakkurate
Simulation des gesamten CMPs

RTL-Simulation:
Wishbone-Cluster und Gesamt-CMP

RTL-Simulation: AMBA-Cluster
mit Multiprozessor-Cache

Tk

T—E—E—E—E
EEEE

@ - \)/ Simulatoren auf niedriger

Abstraktionsebene

Abbildung 5-7: Funktionsweise der MultiSim-Entwicklungsumgebung
zur automatisierten Entwurfsraumexploration fur di e Hardware- und Software-Entwicklung

MultiSim ist fir die Parametervariation in einenrgegebenen Rahmen gedacht, aber auch evolu-
tionares Verhalten wéare in der Werkzeugkette maabkr und kénnte so ggf. neue Impulse bzgl.
der Findung pareto-optimaler Punkte im Entwurfsraatzen. Dies setzt natirlich je nach Simula-
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tor und Umfang der Parametervariation entsprecheistlngsfahige Rechner voraus. Abbildung
5-7 zeigt den Ablauf bei der Verwendung der MuhiSiVerkzeugkette fur die geschilderten Simu-
lationsumgebungen auf.

In [109][131] wurde der Multi-Sim-Entwurfsprozessmytzt, um die Wishbonebus-basierte Giga-
NetIC-Chip-Multiprozessorarchitektur automatisi@iit unterschiedliche Benchmarkszenarien mit
einhergehender Variation der Anzahl der lokalenaviegitungseinheiten zu analysieren. Ebenfalls
wurde die Art der Kopplung spezieller Hardwarebé&aahiger mit Hilfe von Multi-Sim untersucht.

In [113] wurde Multi-Sim eingesetzt um die Leistgfihigkeit verschiedener Multiprozessor-
Cache-Implementierungen zu analysieren. Hierbedemiinsgesamt 2.716 Simulationsdurchgange
von vier Rechnefit tiber eine Dauer von ca. vier Wochen ausgefiihmidfawurden seitens der
Hardware u. a. die Assoziativitat der Caches, dié3é der Cachelines und deren Anzahl, die
Hauptspeicherlatenz sowie die Struktur des CachescaenUnified- oder SplitCache (vgl. Ab-
schnitt 4.4.2). Auf Softwareseite fand eine Vaaatder Anwendungssoftware, also der verwende-
ten Benchmarks statt. Die gewonnenen Ergebnistetéa detaillierte Aussagen dariber, welche
der untersuchten Cachevarianten besonders effigiktdie jeweiligen Anwendungen sind.

5.5 Systememulation mit einem Rapid-Prototyping-System

Das am Fachgebiet Schaltungstechnik entwickelteA-BP&sierte Rapid-Prototyping-System RAP-
TOR2000 [9][154] erlaubt eine sehr hohe Emulati@sshpwindigkeit des spateren ASIC-Designs
oder dient als Hardwarebeschleuniger [10]. Die Etnoh ist bis zu sechs GréRenordnungen
schneller als die VHDL-Simulation. Verglichen mierdSystemC-Simulation liegt die hier erzielte
Beschleunigung bei Uber zwei Grol3enordnungen hopegentber der C-basierten Cluster-
Simulation wird noch ein Beschleunigungsfaktor varei erzielt, vgl. Tabelle 5-1.

T & 15
RAPTOR 2000 DI S

Abbildung 5-8: FPGA-basiertes Rapid-Prototyping-Sysem RAPTOR2000 zur schnellen Systememulation

Das modulare, als PCI-Bus-Teilnehmer realisiertdPRAR2000-Board (vgl. Abbildung 5-8) kann
mit bis zu sechs steckbaren Tochterplatinen ervteiterden. Die Tochterplatinen werden Uber je
zwei, 128 Kontakte umfassende SteckverbindungemeniBasisplatine verbunden. Die Integration

3 Pentium 4 3000 HT mit 3 GHz und 1 GByte Arbeitssper.
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in ein PC-System stellt zum einen eine preiswedsubhg und zum anderen eine komfortable Test-
umgebung dar. Aufgrund der umfangreichen Softwaliglthek, die fir die Einbindung des RAP-
TOR2000-Systems erstellt wurde, lassen sich allkfienen des Systems in eigene Anwendungen
leicht integrieren. Fur den FPGA-basierten GigaBldRrototypen wurde ebenfalls eine graphische
Benutzerumgebung zur Systemiberwachung und Steyemntnvorfen [131][113][110], vgl. Ab-
schnitt 8.1.

Aufgrund seiner Modularitat ermoéglicht das RAPTOB@{Bystem aber nicht nur eine hohe Simu-
lations- bzw. Emulationsgeschwindigkeit, sondefdawdst auch die Integration des HDL-basierten
Prototypen in eine "reale" Hardware-Umgebung uietzung einer Vielzahl von Schnittstellen,
die das RAPTOR2000-System mittlerweile zur Verfigustellt. So konnte im Falle des
GigaNetIC-Chip-Multiprozessors mit Hilfe dieser idatarekonfiguration die spéatere netzwerkspe-
zifische Anwendungssoftware auf realer Hardwaretatgéchlichen Daten bei einer hohen Taktrate
getestet werden (vgl. Abschnitt 8.1). Schon wahmerdPrototypenentwicklung kénnen die Anfor-
derungen der spater eingesetzten Peripheriehardwalie Verifikation des Entwurfs einbezogen
werden. Fehler bei der Schnittstellenimplementigridnnen so auf ein Minimum begrenzt wer-
den. Im weiteren Verlauf der Entwicklung kann dater standardzellenbasierte ASIC-Prototyp
schnell in eine bereits erprobte Umgebung integrerden [108]. Aufgrund vorbereiteter Vorla-
gen fur Erweiterungsplatinen des RAPTOR2000-Systentfallen lange Systementwicklungszei-
ten.

5.6 Einheitliche Ubersetzer-Werkzeugkette

Fur alle Simulatoren und Hardwareplattformen (WidyBus oder AMBA-basierter Cluster) steht
eine einheitliche Ubersetzer-Werkzeugkette zur Wprhg. Beim Wechsel von einer Simulations-
umgebung der abstrakteren Ebene zur hardwarenahenaBon oder umgekehrt, oder aber auch
bei der Erstellung der Speicherabbilder fir den AP&ler ASIC-Prototypen muss dem Werkzeug
nur ein anderes Zielsystem angegeben werden. Eicleté Portierbarkeit des Quellkodes auf die
jeweiligen Simulatoren bzw. Emulatoren ist gewékttt. Die Kompilierung und die Erstellung der
entsprechenden Speicherabbilder unter Berucksioigigler jeweiligen Adressraume und der Mo-
delleigenschaften erfolgt fiir den Entwickler traansmt>*

Die GigaNetlIC-Bibliotheksfunktionen (vgl. Anhang Ajehen bis auf einige systembedingte Aus-
nahmef in jeder Simulationsumgebung zur Verfiigung. Bittleksfunktionen kénnen sich zwar
in ihrer Realisierung je nach Simulationsumgebumnigrscheiden, die grundséatzliche Funktionalitat
wird aber eingehalten. Bei der Angabe der Zieldettiir bzw. des Zielsimulators wéhlt die von
uns gestaltete Werkzeugkette die jeweils passengkinentierung aus.

Die einheitliche Ubersetzer-Werkzeugkette wurdeLiaufe des GigaNetlC-Projekts fortwéhrend
optimiert und erweitert, da ein nicht unwesentlicAateil der Gesamtperformanz durch die Soft-

3 Die Ubersetzer-Werkzeugkette wurde in Kooperatitihden Fachgebieten Programmiersprachen und Ukzerse
Prof. Dr. Uwe Kastens sowie Algorithmen und Komiitigtx Prof. Dr. math. Friedhelm Meyer auf der Heggwickelt.

% 7. B. ist der Cluster-Simulator derzeit nicht ierd.age, Befehle fiir den Communication-Controllerrkkt zu inter-
pretieren, da es diesen in dieser Simulationsumgghicht gibt.
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ware-basierten Systementitaten gepragt werden kAonoh die Benutzerfreundlichkeit und der
Funktionsumfang wurden im Laufe der Entwicklungigt@orangetrieben. Aus dem anfanglichen
GigaMake einemMakefilebasierten Ansatz, der die Wishbonebus- und die ANRRalisierung
unterstitzte entstand das umfassen8&€Compileskript. Es unterstitzt alle Varianten unmch&
latoren der GigaNetlC-Architektur. Aufgrund der 3athe, dass es sich hierbei um ein skriptbasier-
tes Steuerungswerkzeug fir den Prozess des Ubensaind Erstellens der Speicherabbilder han-
delt, eignet es sich zudem hervorragend fir darzwergestellte Multi-Sim-Entwurfsraum-
explorationswerkzeug, vgl. Abschnitt 5.4. Abbildub® veranschaulicht den Ablauf und stellt die
Zielarchitekturen fir den SCC-basierten Ubersetdenfidar.

Instrumentalisierung

main () {

) TIME (1) ;
Plattformspezifische packet_check () ;

Bibliotheken TIM‘fm ; Parameter
C-Quelicode Ubersetzer
‘ Plattform « GCC
‘ Plattformunabhéngige Ubersetzer-Werkzeugkette * %inerletrter "
; ; ) i ersetzer ggf.
GCC / generierter & erweiterter C-Compiler Speicher-ICache- o SEs 99
v Aufteilung .
Instruktionssatz

Anzahl / Art der
Verarbeitungseinheiten

1
Speicher-
abbild

RTL-Simulation: AMBA-

SystemC-basierte, C-basierte, zyklenakkurate

RTL-Simulation:

Wishbone Cluster / CMP

Cluster mit MP-Cache

zyklenakkurate Simulation

Simulation
CPU und Cluster

des gesamten CMPs

simplebus

..

Synthese

FPGA-basiertes Rapid
Prototyplng Cluster und CMP

130-nm- / 90-nm-
Standardzellentechnologie

JET B i T

ﬁlll‘
Abbildung 5-9: Einheitliche Ubersetzerwerkzeugkettefiir alle
Simulatoren und Hardwareplattformen der GigaNetlC-Architektur

Abbildung 5-10 bildet den kommandozeilenbasiertarfréf des SCC-Werkzeugs ab. Dem Ent-
wickler werden zahlreiche Optionen gegeben. So lkarrwischen dem GCC-Ubersetzer und dem
UPB-Compiler auswahlen. Durch optionale Schaltemnen beim UPB-Compiler zusatzlich vor-

handene Befehlssatzerweiterungen bertcksichtiglemer

Als Zielarchitekturentargety kénnen alle vorgestellten Simulations- und Emafksgumgebungen
ausgewahlt werden. Bei Verwendung des GigaNetlICiphozessorcaches kdnnen spezielle An-
weisungen mit dbergeben werden. Soll ein Multipsspefeld simuliert werden, wird dessen Aus-
dehnung durch Angabe von Weitgidth) und Hohe Ilgeighd in X- und Y-Richtung definiert. Die
Anzahl der vorgesehenen lokalen Prozessoren bestiiemParametaro-pes
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Nach erfolgter Ubersetzung werden die Speicherddbiutomatisch in einer entsprechenden Ver-
zeichnisstruktur angelegt, die sich nahtlos inRfede der jeweiligen Simulatoren eingliedern lasst.
Zur detaillierten Analyse dieser Speicherabbild@nrien die Werkzeuge d&CC-M-Core-Binutils

verwendet werden.

[c] tip_pktcheck» scc —help
Compile script for 3-Core architectures
SYNTAX: ~opt-mcoresbinsscc [architecture args] [additional compiler argsl

—help

——target=<{target>
clustersim
sharraysim
ubcluster
ubcluster—fpga
ambac luster

——output—format=<format>

——uwidth=<w> —height=<h>

——no—pes=<n:

—-—pCcscore

——stack-zize=<{size>

——cache-zize=<{size>

this text

simulator WG Kastens
systemc simulator
wishbone VHDL cluster
wishbone FPGA cluster
ambacluster with cache

size of the array

number of PEs per switchbox
use pcscorec instead of gcc
stack =size in bytes

cache size in bytes

Abbildung 5-10: Aufrufmdglichkeiten und Zielarchite kturen fiir das Compile-Skript SCC

5.7 Zusammenfassung

Im Verlauf dieser Arbeit ist nicht nur eine leisgsfdhige Chip-Multiprozessor-Architektur ent-
standen, sondern aul3erdem eine in sich geschlosadneeinander verzahnte Werkzeugkette: an-
gefangen beim Prozessorentwurf Uber die automatiSd¥merierung des Compilers und eines C-
basierten zyklenakkuraten Instruktionssatzsimusatbrs hin zu rickannotierteRTL(Register
Transfer LevetBeschreibungen. Letztere liefern detaillierteohnfiationen tber Leistungsaufnah-
me, Flachenbedarf und Leistungsfahigkeit der iméegn Schaltung und geben Impulse fir In-
struktionssatzerweiterungen und Hardwarebeschleusigwie fiir Systemoptimierungen allgemei-
ner Natur.

Die einheitliche GigaNetIC-Ubersetzer-Werkzeugkatteoglicht einen reibungslosen Ubergang
zwischen den einzelnen Plattformen und garantiarfumktional gleiches Verhalten des GigaNet-
IC-Systems in allen Simulatoren. Etwaige irreleeadnterschiede der einzelnen Plattformen blei-
ben fir den Systementwickler transparent.

Durch die in sich geschlossene Entwicklungsumgeburighren an die jeweiligen Erfordernisse
angepassten Simulatoren ermoéglicht die GigaNetlChikektur schnelle Hard- und Software-
Entwicklungszyklen, einhergehend mit umfangreichéerifikationsmoglichkeiten, so dass kurze
Time-to-MarketSpannen fur die zu realisierenden Multiprozesstesye garantiert werden kon-
nen. Durch den im Folgenden vorgestellten hieranthigerichteten Optimierungsansatz schliel3t
sich die Werkzeugkette und ermdglicht dem Softwatsgiekler sowie dem Systemarchitekten eine
anwendungsspezifische Anpassung und Optimierungideelnen Komponenten, so dass die Res-
sourceneffizienz des Chip-Multiprozessors im Beaufjdie jeweiligen Anforderungen und Rand-
bedingungen und Schranken ggf. noch gesteigertemeddnn.
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Bei der GigaNetIC-Architektur handelt es sich zursiaum eine universell einsetzbare Multipro-
zessorarchitektur, die durch zahlreiche Mechanisméndie unterschiedlichsten Anwendungsge-
biete angepasst bzw. optimiert werden kann. Um fdileden Softwareentwickler und den Hardwa-
rearchitekten so effizient wie méglich zu gestaltenirde fur die GigaNetlC-Architektur dariber
hinaus die Methodik der hierarchisch gerichteterti®prung entwickelt und eine entsprechende
Werkzeugkette erstellt. Die entworfene Methodik @xémplarische Analysen der jeweiligen Op-
timierungsansatze werden im Folgenden prasentiert.

6.1 Optimierungsmethodik

Prinzipiell ist zwischen der Hardware- und der #afte-Optimierung zu unterscheiden, wobei sich
zum Teil beides gegenseitig bedingt. Die GigaNdEl@wicklungsumgebung kann bei der Hardwa-
re-Optimierung nur greifen, falls noch eine Verdmagsmoglichkeit besteht, also im Falle einer
FPGA-Zieltechnologie oder falls ddapeout d. h. die finale Fertigstellung des standardnéiée
sierten ASICs, noch aussteht. Sollte letzteresitisegeschehen sein, lassen sich Hardwarebeschleu-
niger zur Beschleunigung des GigaNetlC-Systemsiouh extern, z. B. Gber nach aul3en gefuhrte
Switch-Box-Ports anschlief3en. Die Software lasst siagegen auch nach Fertigstellung des Chips
andern und ggf. optimieren, da es sich beim Instvokspeicher der Verarbeitungseinheiten in je-
dem Fall um wiederbeschreibbaren Speicher handelt.

» Optimierung / Erweiterung des Prozessorsubsystems

> Befehlssatzerweiterungen des Prozessors

» Erweiterung durch eng gekoppelte HW-Beschleuniger
» Erweiterung durch lose gekoppelte HW-Beschleuniger

» Parallele Prozessoren, innerhalb eines Clusters

> Parallele Prozessorfelder, clustertibergreifend

Abbildung 6-1: Entwurfsraumexploration — hierarchisch gerichteter Optimierungsansatz

Abbildung 6-1 zeigt die potentiellen Ansatzpunkex &ystemoptimierung und den gerichteten Ab-
lauf, in dessen Verlauf der Entwurfsaufwand, diedtigte Flache, aber auch die erzielte Beschleu-
nigung deutlich zunehmen.

137



138 Kapitel 6. Optimierung der Multiprozessorarchitektu

Die MalRnahmen zur Optimierung der Hardware der BagiC-Architektur setzen auf Prozessor-
ebene an, indem zusatzlich bendtigte Einheiten,zawiB. Interruptcontroller etc. (vgl. Abschnitt
4.3.2) in das Prozessorsubsystem eingefligt werarrso die Systemleistung zu erhéhen bzw. an-
wendungsspezifische Anforderungen zu erflllen. i#ehste Schritt ist die Optimierung des Pro-
zessorkerns selbst, durch Erweiterung des Instngsiatzes oder architekturelle Erweiterungen.
Dartber hinaus kann der Einsatz von eng an deneBsor gekoppelten Hardwarebeschleunigern
erfolgen, entweder direkt Gber die Coprozessorsisteie des Prozessors und angesteuert tber
spezielle Befehle, oder aber ins Prozessorsubsyistiegriert Gber den eigens erweiterten Prozes-
sorsystembus (vgl. Abschnitt 4.3). Erste Optimigem des Prozessors wurden bereits in [108]
durchgefuhrt, was jedoch noch ohne die heutige EEklungsumgebung vonstatten gehen musste
und sich so deutlich aufwandiger gestaltete.

Eine weitere Steigerung der Beschleunigung bietelar Regel lose gekoppelte Hardwarebe-
schleuniger, die ggf. auch bei einer deutlich héheFaktfrequenz arbeiten kdnnen als der Prozes-
sorkern. Wahrend eng-gekoppelte Hardwarebeschleummn der CPU angesteuert werden, Uber-
nehmen die lose gekoppelten Hardwarebeschleunigglohéingig vom Prozessor eine Datenvor-

verarbeitung bzw. Nachbearbeitung und kénnen nifetdies bereits vorgestellten Communication-

Controllers (vgl. Abschnitt 4.2.1.1) an einen bieigeen Port einer Switch-Box im SoC angeschlos-

sen werden.

Letztendlich eroffnet sich dem Entwickler die Optides Einsatzes mehrerer Prozessoren bzw. pa-
ralleler Prozessorfelder zur Bearbeitung der Alpomen. Dies erfordert in Abh&ngigkeit vom An-
wendungsfall sowohl gro3en Aufwand auf Seiten detviare als auch den entsprechenden Auf-
wand an Chipflache.

Die Werkzeugkette hilft dem Entwickler bereits ier dAnfangsphase des Hardwareentwurfs bei der
Abschéatzung der zur Erfullung der Spezifikationwertdigen Mal3nahmen. So unterstlitzt sie beli
der Entscheidung auf welcher Ebene der Optimieamgesetzt werden muss, um eine maglichst
ressourceneffiziente Realisierung zu erzielen. Resn bereits mit Hilfe der sehr schnellen, auf
abstrakterer Ebene arbeitenden Umgebungen wie demteGSimulator oder der SIMPLE-
SystemC-Simulationsumgebung geschehen, vgl. Abgeltil und 5.2.

Analysen im Bereich von Netzwerkanwendungen haleeeigt, dass haufig eine ausgewogene Mi-
schung all dieser Mdglichkeiten den besten Kompssnm Hinblick auf Ressourceneffizienz nach
Definition 14 bietet [111][141][130][118][109][131}gl. auch Kapitel 7. Die einfache Skalierbar-
keit des GigaNetIC-Systems erweist sich hier ellisnéds besonders forderlich, da sich fir viele
Anwendungen die Parallelisierbarkeit anbietet, umah deshalb gleichférmige Strukturen relativ
gut einsetzen kann.

Der hierarchische Ansatz erweist sich als besonaetsilhaft, wenn es darum geht, die bestehende
Grundstruktur des GigaNetIC-Systems mit moégliclesirggem Aufwand so zu erweitern, dass die
vorgegebene Spezifikation erflllt werden kann. Neitl an einem solch ,mal3geschneiderten®
Chip ist allerdings die relativ aufwandige Analysape, die sich ohne geeignete Entwicklungsum-
gebung als grol3e Herausforderung gestalten kannddBeGigaNetlC-Architektur wird durch die
Multi-Sim-Werkzeugkette und die leistungsfahigem8liatoren (vgl. Kapitel 5) eine automatisierte
und schnelle Durchfihrung dieser Analysen in vésteer Zeit ermdglicht. In Kapitel 7 werden
Ergebnisse des Ansatzes der hierarchisch gerich@mimierung am Beispiel von dedizierten
Netzwerkanwendungen dargestellt.
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Abbildung 6-2: Anwendungsorientierte Realisierung umnd Optimierung der GigaNetIC-Architektur

Abbildung 6-2 zeigt das Vorgehen bei der anwendomgstierten Realisierung und Optimierung
der GigaNetIC-Architektur. Steht das Anwendungsgerfér den zu realisierenden Chip fest, wer-
den dadurch die anzuwendenden Algorithmen speaifiziFir die Hardware werden Randbedin-
gungen aufgestellt und damit die moglichen Resswufestgelegt. Bei der Implementierung wird
zunachst auf die bestehenden IP-Blocke der Gig@Netthitektur zurtickgegriffen und unter
Verwendung der Standardhardware und einer erstéfattagen Software das Laufzeitverhalten mit
Hilfe der in Kapitel 5 vorgestellten Simulationsuahgingen analysiert. Je nach Art der Randbedin-
gungen und Analyseergebnisse erfolgen dann dieesgeitSchritte. Hierunter fallen die iterative
Optimierung von Soft- und/oder Hardware entspredh@em oben vorgestellten Modell mit ein-
hergehenden Simulationslaufen. Der Erfolg bei deftv@&reoptimierung ist durch die schnellen
Simulatoren auf abstrakterer Modellierungsebenermers zeitnah erkennbar. Bei Modifikationen
auf Hardwareseite hingegen fallen abschlie3end gsVanfig die zeitintensiveren Simulationslaufe
in der detaillierten hardwarenahen Simulationsuraggtan.

Abbildung 6-3 stellt Entwurfsschritte und Method#er Verlustleistungsanalyse und Optimierung,
die wahrend der Realisierung eines ASIC-Entwurfcldlaufen werden, dar und zeigt den zu er-
wartenden Einfluss der jeweiligen Optimierungsmé&men auf die Reduktion der Verlustleistung
auf. Ein guter Systementwurf hat den gré3ten Essflauf die Optimierung der Leistungsaufnahme
heutiger ASICs, deshalb wurde bei der Entwickluag @igaNetIC-Entwicklungsumgebung gestei-
gerter Wert auf geeignete Simulations- und Analystbiwden fur diesen Entwurfsschritt gelegt, vgl.
Kapitel 5 [116][102][103][117][104][115][113]. Didnierdurch erzielten Reduktionen kénnen im
Folgenden durch den sich anschlielRenden RTL-Entunalfdessen Optimierungspotential verbes-
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sert werden. Allerdings sind die Resultate aufeliébene, absolut gesehen, bereits deutlich gerin-
ger, aber dennoch nennenswert. Hier greifen dieiggvie PERFMON und Multi-Sim-Umgebung,
vgl. Abschnitte 5.3 und 5.4, sowie die Werkzeugketlir Instruktionssatzerweiterung des Prozes-
sorkerns der GigaNetIC-Architektur [112][111][1311[3]. Diese setzt sich deshalb aus zwei aufei-
nander abgestimmten Stufen zusammen, die im folgembschnitt naher erlautert werden. Die
weiteren Schritte versprechen ebenfalls Optimiespogential, das allerdings im Allgemeinen deut-
lich geringer ausféllt als das der bereits genanktg&wurfsschritte. Aufgrund dieser Tatsache wer-
den die Folgeschritte in dieser Arbeit nur am Rameahnt und das Hauptaugenmerk auf die we-
sentlichen Einflussquellen gesetzt.

Entwurfsschritte Analyse der Leistungsaufnahme Optimierung der Leistungsaufnahme
grobe Abschatzungen durch geschatzte Architekturoptimierung
Systementwurf Gatterzahlen und Flache sowie angenommene - parallel / seriell
Schaltaktivitaten - Skalierung der Frequenz / Versorgungsspannung
\ / - Optimierung der Kommunikationsinfrastruktur
Abschatzung basiert auf spezifizierten expertenwissenbasierte und werkzeuggestitzte
RTL-Entwurf Taktdoméanen, Gatterzahlen kombinatorischer Optimierung der Beschreibung,
Logik und der Register werden abgeschatzt, Taktabschaltung / Clockgating auf Modulebene,
Schaltaktivitaten sind bereits realistisch teilweise werkzeugunterstitzt
abschatzbar
Flachenaufteilung / Aufsummierung der Leistungsaufnahme der zuvor  Einfuhren von Spannungsinseln,
Floorplanning bestimmten Module, Vermeiden von sog. Hot-Spots durch geeignete

ggf. grobe Abschatzung der Verbindungsstruktur Platzierung der einzelnen Blocke

Vo

Leistungsanalyse auf Gatterebene basiert auf: Taktabschaltung der RTL-Realisierung,

Synthese - konkreter Gatterzahl werkzeuggestitzte Verlustleistungsoptimierung,
- realistischen Schaltaktivitaten Skalierung der Schwellspannungen / Threshold
- Verlustleistungsmodellen der Leitungen Voltage Scaling

(Wireload-Modelle)
- charakterisierten Bibliothekselementen der
Zieltechnologie

zu erwartender Einfluss der jeweiligen MaBnahme

Platzierung und Leistungsanalyse auf Gatterebene basiert auf: werkzeuggestutzte und manuelle Optimierung
Verdrahtung - konkreter Gatterzahl wahrend des Prozesses
- realistischen Schaltaktivitaten
- genauem Verlauf, Lange und Leistungsbedarf der
Leitungen
- genauesten Bibliothekselementen der
Zieltechnologie

Abbildung 6-3: Entwurfsschritte und Methoden der Verlustleistungsanalyse und Optimierung

6.2 Optimierung auf Prozessorebene

Um den immer héher werdenden Anforderungen, diberige und zukinftige eingebettete Sys-
teme gestellt werden, gerecht werden zu kénnend, \@gle Prozessoranbieter bzw. Anbieter von
Ubersetzerwerkzeugketten mit angeschlossenem Geneiaer synthetisierbaren Architekturbe-

schreibung dazu tbergegangen, dem Kunden Méglidhrkeain die Hand zu geben, den einzuset-
zenden Prozessor auf das zukunftige Anwendungddeibi&undenspezifisch zu optimieren. Auch

die GigaNetIC-Architektur bietet dem Systemarch#ekumfangreiche Mdglichkeiten zur anwen-

dungsspezifischen Optimierung des Befehlssatzebldegre-Prozessorkerns.

In Tabelle 6-1 wird ein Uberblick tiber einige derzkit verfligbaren Ansatze und deren Merkmale
in Bezug auf Umfang und Gestalt der Entwicklungs®euge gegeben. So sind sowohl Ansétze
vertreten, die auf Beschreibungssprachen wga von CoWare basieren, die mit d€oWare-
Processor-DesigneWerkzeugkette in Hardware umgesetzt werden kab][BeinML, der Rea-
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lisierung von Target Compiler Technologies [156iehs die Chess/Checker&ntwicklungs-
umgebung zur Verfiigung. Ein ahnlicher Ansatz wird der abstrakten Spezifikationssprache
UPSLA (Unified Processor Specification Languad#35] bei der GigaNetlC-Architektur verfolgt.
ARC [70] hingegen verwendet mit deARChitect Processor Configurat@ine graphische Ober-
flache zur Konfiguration seiner anwendungsspediftsc Prozessorkerne, wobei ggf. weniger
komplexe Mechanismen angewendet werden kdonnemsalsirch den Einsatz von Beschreibungs-
sprachen maoglich ware. Tensilica [157] erlaubt Bieschreibung des Prozessormodells in C/C++
und stellt zur Umwandlung in Hardware d¢RRES (Xtensa PRocessor Extension Synthesis) Com-
piler fir automatisch generierte Prozessoren zur Verfgigder eine besonders schnelle Umsetzung
der Beschreibung in Hardware gewéhrleisten solé Piozessormodelle sind kundenspezifische
Architekturen, wobei bei ARC didRGCArchitektur als Ausgangspunkt dient und Tensild=n
XtensaProzessorkern verwendet. Alle Entwicklungsumgeleanigieten eine automatisierte Gene-
rierung von Compiler und zugehdrigen Instruktiotsszimulator, wobei die Simulation bei eben-
falls allen Ansatzen zyklengenau ausfallt. BeiraNéergleichsansatzen erfolgt zu dem eine Gene-
rierung der spezifizierten Hardware. Dies ist bed @igaNetlC-Architektur zwar vorgesehen und
wird im Rahmen aktueller Forschungsprojekte denvdrsitat Paderborn weiter vorangetrieben, ist
allerdings noch nicht vergleichbar mit der Leistsiiddpigkeit der anderen Ansétze. Deshalb bauen
derzeit alle Befehlssatzerweiterungen der GigaNaétichitektur auf dem bewahrten, relativ ein-
fach gehaltenen N-Core-Prozessorkern auf, um dd stetig vollkommen neue Prozessorstruktu-
ren entwerfen und optimieren zu muissen. Nur inggesiei der verglichenen Ansatze erlauben
den iterativen Prozess der Erweiterung des bedeneBefehlssatzes, wie es auch durch die Giga-
NetlC-Werkzeugkette der Fall ist.

Tabelle 6-1: Vergleich ausgewahlter Werkzeugkettemur Optimierung konfigurierbarer Prozessorkerne

O/ &/ O
P s® \)QQ A/ &
& N\ & NS N4 N
o S & VLI
oY N & S IS/ LSS
S §° > o‘& &/ /S & )
S & & & SIS
& S & e SELTENE
Q/(\ O\ Q)Z Q\ OO %\ /ﬁ \2\’0 \)(\
LisaTek CoWare Lisa kundenspezifisch X X X X | X)
Chess/Checkers |Target Compiler Technologies [nML kundenspezifisch X X X X | X)
EXxpress Univ. of California, Irvine Expression |kundenspezifisch X X X X | (x)
ARChitect ARC GUl-basiert [ARC X X X X X
XPRES-Compiler| Tensilica GUI-basiert | Xtensa X X X X X
GigaNetIC Universitat Paderborn UPSLA kyndenspezifisch X X x | x) | x

Der im Verlauf des GigaNetIC-Projekts entwickeltejeistufige Entwurfsprozess zur anwendungs-
spezifischen Systemoptimierung auf Prozessorebenehdnstruktionssatzerweiterung (aubh
struction Set Extensiomzw.ISE) wird in den folgenden Abschnitten n&her erlayterteilt sich in
einen compilerbasierten und einen sich anschlieehdrdwarebasierten Schritt auf.

6.2.1 Compilerbasierter Entwurfsprozess zur Prozessoropthierung

Der compilerbasierte Entwurfsprozess ermégliche étmploration des Entwurfsraums in zweierlei
Hinsicht: Zum einen erlaubt er eine sehr schnelleh® von vielversprechenden Instruktionssatz-
erweiterungen auf Prozessorebene. Zum anderen mbglich, unterschiedliche Compiler mit un-
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terschiedlichen Optimierungsmethoden und Registegimungsmechanismen zu evaluiet®iie-
sem Teil des Entwurfsprozesses schliel3t sich débsthnitt 6.2.2 vorgestellte hardwarebasierte
Entwurfsprozess nahtlos an.

Zur Evaluierung des Entwurfsraums auf Prozessoeeberden zunachst die Ressourcen des Pro-
zessors abstrakt in der BeschreibungsspradP®LA (Unified Processor Specification Language
[135] spezifiziert. Dies sind im Einzelnen: Art udhzahl der Register, Funktionseinheiten, In-
struktionen, prozessorinterne Parallelitat und Yretbngsstrukturen. Im Anschluss wird mit Hilfe
dieser Spezifikation automatisch ein Compiler nélosth-performantem, zyklenakkuratem Simula-
tor (vgl. Abschnitt 5.1) generiert. Abbildung 6-digt den Ablauf und die wesentlichen Einflussfak-
toren der compilerbasierten Werkzeugkette.

Optimierungsstrategie

Stack-Layout Registerauslastung
Entwurfsraum
Funktionseinheiten

interne Parallelitat Registerbénke ﬂ Aufrufkonventionen C-Quellcode

e
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: Generator
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———+» Simulator
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Ergebnisinterpretation 7
r
X

orldw
neue ,Super-Instruktion”

Abbildung 6-4: Schritt 1 des zweistufigen Optimierungsprozesses, compilerbasierter Entwurfsprozess

Der compilerbasierte Entwurfsschritt asst sicheisfRschnef, mit veranderten Ressourcen des
Prozessors wiederholen, so dass in kurzer Zeit\éiglzahl von Mdglichkeiten untersucht werden

kann. In unserer Werkzeugkette werden die Befetzesaeiterungen fur den Anwender transpa-
rent vom Compiler ausgenutzt. Die zukinftigen, émn Hochsprache C vorliegenden Anwendungen
werden zunachst nach der Erzeugung des Compilenpikert und mit dem korrespondierenden

Simulator ausgefuihrt. Wahrend der Ausfihrung weralén relevanten, laufzeitabhangigen Daten
vom Simulator in entsprechende Statistiken Ubegtradie im Anschluss mit dem leistungsfahigen

% Dieser Teil des Entwurfsprozesses wurde vom Fdsiagerogrammiersprachen und Ubersetzer von Hewh Pr.
Uwe Kastens der Universitat Paderborn entwickelt.

3 Die Spezifikation und die Umsetzung der unter Alpiit 6.2.3 vorgestellten Befehlssatzerweiterungeanspruchen
zusammen mit der Realisierung der neuen CompilaiBitor-Werkzeugkette pro Befehl ca. zehn Minuten.
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ProfilierungswerkzeugScore u. a. auf oft wiederkehrende, datenabhéngige Bgjabre bzw.
-tripel untersucht werden kénnen [112][6]. Die Béfpaare mit dem hochsten Beschleunigungs-
potential werden anschlieBend zu so genannten fBispreiktionen®® zusammengefasst und fiir
die Realisierung in Hardware vorgeschlagen [111¢itéve Details zur Compiler-Werkzeugkette
sind u. a. [135][112][6] zu enthehmen.

Abschlie3end ist festzuhalten, dass der compileliasEntwurfsschritt somit eine Leistungsab-
schatzung des spateren Prozessors in Kombinatibileam jeweiligen Compiler ermdglicht. Die
Maoglichkeit der Veranderung und Eruierung untersdhcher Compilervarianten im Zusammen-
spiel mit der jeweiligen Prozessorarchitektur steihen grof3en Vorteil bzgl. des zu erwartenden
Resultats dar. Wirde nur eine der beiden Optimgsondglichkeiten ausgeschopft, so konnten we-
sentliche Aspekte aus Sicht der Softwareoptimiemingt betrachtet werden. Aufgrund des schal-
tungstechnischen Hintergrundes dieser Arbeit beniedich allerdings die weiteren Analysen auf
den zweiten Schritt der Optimierung auf Prozessamepden hardwarebasierten Entwurfsprozess,
dessen prinzipieller Ablauf im folgenden Abschniiher erlautert wird.

6.2.2 Hardwarebasierter Entwurfsprozess zur Prozessoropthierung

Der hardwarebasierte Entwurfsprozess schliel3tdaam compilerbasierten Entwurfsprozess an. Die
zuvor durch den ersten Schritt der GigaNetIC-Preaeptimierung spezifizierten Instruktionssatz-
erweiterungen werden bei dem Folgeschritt auf diglMhkeit einer ressourceneffizienten Hard-
wareimplementierung in den bestehenden Prozessoihkerprift. Die Implementierung in Hard-
ware und die sich anschlielRenden Analysen bentggesn deutlich hoheren Zeitaufwand als der
ibersetzerbasierte EntwurfsproZésBer erweiterte Prozessorkern wird im Anschlusdén Ana-
lyseumgebung PERFMON (vgl. Abschnitt 5.3) detaillientersucht [116][111].

Tabelle 6-2: Freie Opcodebereiche des S-Cores

freie Opcodes min max #Stellen
0000 0000 0000 0111 1 1 0
0000 0000 0000 11xx 1 4 2
0000 0000 0010 XXXX 1 16 4
0000 10xx XXXX XXXX 1 1024 10
0010 1100 001x XXXX 1 32 5
0010 1100 01xx XXXX 1 64 6
0011 0010 0000 XXXX 1 16 4
0011 0010 001x XXXX 1 32 5
0011 0010 010x XXXX 1 32 5
0011 0010 0110 XXXX 1 16 4
010x XXXX XXXX XXXX 1 8192 13
0110 Ixxx XXXX XXXX 1 2048 11
Total 12 11477 69

Der den Optimierungen zugrundeliegende S-Core-Bsazkern (vgl. Abschnitt 4.3.1) lasst durch
seine unbenutzten Opcodebereiche maximal 11.47atztiehe einfache Instruktionen ohne Para-

% Hierunter wird die Realisierung einer effizienterdisher nicht verfigbaren Einzelinstruktion besiel auf der
Funktionalitat mehrerer, bisher einzeln aufzurutamthstruktionen verstanden.

% Die aufzuwendende Zeit bei einem erfahrenen Efteidelauft sich auf einige Stunden bis hin zu reegn Tagen
oder Wochen, je nach Komplexitat und Art der Indfianssatzerweiterung.
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meterkodierung zu. Tabelle 6-2 gibt einen Uberblitler die verfiigbaren Bitkombinationen der
noch verflugbaren Befehlsworte (verfligbare Bitposin sind mit ,.x“ gekennzeichnet). ,min“ gibt
die moglichen, komplexen, parameterbehafteten Batemte und ,max“ die Anzahl einfacher Be-
fehle, die in dem aufgeflhrten Bereich realisiediad, an. ,#Stellen” beziffert die aufeinanderfol-
genden verfugbaren Binarstellen, die ggf. zur Patariibergabe des Befehlswortes genutzt werden

konnen. Eine detaillierte Auflistung aller Befeldes S-Cores und deren Aufbau werden in Anhang
D dokumentiert.
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Abbildung 6-5: Schritt 2 des zweistufigen Optimierungsprozesses, hardwarebezogener Entwurfsprozess

Abbildung 6-5 zeigt die prinzipielle Vorgehenswegss hardwarebasierten Entwurfsprozesses zur
Prozessoroptimierung. Zunachst mussen die neustrakbspezifizierten Veranderungen der be-
stehenden Prozessorbeschreibung in eine entsprecitardwarebeschreibung umgesetzt werden.
Dies kann sich z. B. auf die Register, Funktionseiten, Instruktionen, und prozessorinterne Ver-
bindungsstrukturen auswirken. Die um die neue Suogteuktion erweiterte Hardwarebeschreibung
des Prozessors wird dann in die bestehende Simnsgatngebung integriert. Da sich im Allgemei-
nen die duReren Schnittstellen des Prozessorsneeisolchen Erweiterung nicht verandern, ist der

sich hieraus ergebende Aufwand zu vernachlassgfjenSimulation werden die gleichen Software-
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guellen mit Hilfe des generierten Compilers Ubeatsehd das entsprechende Speicherabbild in den
Speicher des Simulationsmodells geladen. Anschigf¥grd der ggf. instrumentierte Code (vgl.
Abschnitt 5.3) auf dem erweiterten Prozessor albgét@t und durch die Werkzeugkette analysiert.

Die Synthese auf Standardzellen liefert u. a. wgehtnformationen tber den kritischen Pfad und

den Flachenbedarf des neuen Prozessorkerns. Har@if zu achten, dass der kritische Pfad der
Logik mdglichst nicht verlangert wird, da es somsteiner Herabsetzung der Gesamtperformanz
des Prozessors kame, und die Leistungsfahigkeitsgpgfar durch die implementierte Befehlssatz-
erweiterung insgesamt reduziert wirde. Anhand denofierung der Schaltaktivitaten bei der

Abarbeitung des Anwendungsprogramms kénnen im Rdige detaillierte Aussagen Uber die Ver-

anderung der Leistungsaufnahme und den resultierefthergiebedarf der Schaltung getroffen

werden.

Sollte das erzielte Ergebnis nicht zufriedenstellsain, wiirde eine erneute Iteration mit Verfeine-
rung / Optimierung des VHDL-Entwurfs notwendig. @esich, dass durch die ausgewéhlte Instruk-
tionssatzerweiterung ein zu langer kritischer Reatsteht, der nicht durch Optimierung beseitigt
werden kann, und alternative Instruktionssatzeewertgen ebenfalls nicht gentigend Leistungszu-
wachs versprechen, so ist zu Uberlegen, ob eitutgjsfahigerer Hardwarebeschleuniger fir diese
Aufgabe implementiert bzw. eingesetzt werden mD$s.Analyse und Charakterisierung von an-
wendungsspezifischen Hardwareblocken wird ebenfadls der Werkzeugkette unterstitzt, siehe
auch Kapitel 5. Detaillierte Ergebnisse zu diesernietsuchungen werden exemplarisch im Ab-
schnitt 6.3 und Kapitel 7 vorgestellt.

Im Allgemeinen profitieren vornehmlich verwandte wendungsklassen von einer Superinstrukti-
on, so dass nicht grundsatzlich mit einer univé&edBeschleunigung fur alle Algorithmen zu rech-
nen ist. Deshalb sollte, wenn mdglich, vor der Reslung des Systems, mit Hilfe der zur Verfu-
gung gestellten Simulations- und Analyseumgebunden Prozessorkern auf vielversprechende
Instruktionssatzerweiterungen fur den zukunftigams&tzzweck untersucht und ggf. erweitert wer-
den.

Im Folgenden werden an einem Beispiel die Mdglitekedieser Optimierungsmethode auf der
untersten Hierarchieebene der GigaNetlC-Architektufigezeigt. Es wird deutlich, dass bei einem
sehr geringen Mehraufwand an Flache deutliche Geadigkeitszuwéachse zu erzielen sind.

6.2.3 Optimierungspotential von Befehlssatzerweiterunger- ein Beispiel

Am Beispiel einer zuvor durch den compilerbasiertemwurfsablauf ermittelten, fir diéP-
SecInternet-Protocol-SecuriyProtokollsammlung [158] vielversprechenden Supsruktion
werden im Folgenden exemplarisch die Vorgehenswamskdie aus der Instruktionssatzerweite-
rung resultierenden Verbesserungen vorgestellt.

IPSecist eine Reihe von Protokollen, die di@ernet-Protokol{IP)-basierte Kommunikation mit
zusatzlichen Sicherheitsmerkmalen ausstatten. b i a. Authentifizierungs- wie auch Ver-
schliusselungsverfahren integriert, die auf denednen IP-Paketen angewendet werden. Dies ge-
schieht im Gegensatz zu andetBrSicherheitsprotokollen bereits auf d@SkSchicht 3, was die
Flexibilitdt erh6ht, da u. a. sowollCP- als auchJDP-basierte Protokolle der vierten OSI-Schicht
geschutzt werden kdnnen. Dies geht allerdings mareerhohten Komplexitat und gréRerem Re-
chenleistungsbedarf einher. Aufgrund der in derz8iation vorgesehenen Erweiterungsoptionen
dieses Standards sind Leistungsfahigkeit und Flé#ibgleichermal3en wichtig fur eine effiziente
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Verarbeitung. Aus diesem Grund sind besonders Wsaygrozessorelemente im Hinblick auf diese
Protokollkategorie untersuchenswert.

In [112] wird u. a. die Compiler-seitige Auswahlnveoielversprechenden Instruktionssatzerweite-
rungen fur IPSec vorgestellt. Eine dieser Supeauksbnen ist der BefehKkORLDW der die bei-
den EinzeloperationebDW und XORdes Originalprozessorkerns zusammenfasst. D. Wirdsin
Wort aus dem Speicher geladen und direkt im Anssh&ineXORVerknupfung mit einem weite-
ren Registerinhalt durchgefuhrt. Dieses Operatiaasgkonnte mit Hilfe der Ubersetzerbasierten
Werkzeugkette als besonders vielversprechend fifsiinmen- und Verschlisselungsverfahren
klassifiziert werden, vgl. Abbildung 6-6.
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Abbildung 6-6: Analyseergebnisse delPSecProtokollfunktion 3DESin Bezug auf vielversprechende
Superinstruktionen, mit dem LDW-XOR-Paar als Favoriten

Die schaltungstechnische Realisierung und Analyssed ,Superinstruktion® wird in [111] be-
schrieben. Zur Verwirklichung der Funktionalitatrea in diesem Fall lediglich zusatzliche Kont-
rollstrukturen im Instruktionsdekoder des N-Corgwefliigen, da die bendtigte Logik bereits im S-
Core vorhanden war. Durch diese Superinstruktioml&ine Beschleunigung von ca. 10% bei Ver-
schliusselungsverfahren [111] und von ca. 25% béfsBmmenbildungen, wie z. B. bei@RC
(Cyclic Redundancy ChecKL30], erzielt werden. Abbildung 6-7 zeigt diesaetzahl der bendtig-
ten Zyklen fiir die Abarbeitung d8DESVerschliisselungsfunktifunter Verwendung des beste-
henden Befehlssatzes, und alternativ dazu, miXd@RLDWSuperinstruktion, nebst den Haufig-

40 Der 3DEQData Encryption StandajeAlgorithmus hat mit 168 Bit eine dreimal groR&ehliisselléange als der urs-
pringlicheDES mit 56 Bit. DES und 3DES werden derzeit neldS (Advanced Encryption Standgrih vielen si-
cherheits-relevanten Anwendungen zur Verschlisgedimgesetzt.
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keiten der EinzeloperationeBDESfindet z. B. beiP-SecurityProtokollen Verwendurfg Hierbei

ist ein merklicher Ruckgang der benétigten Zyklen Zbarbeitung des Programms mit 9% zu be-
ziffern. Bezogen auf die Gesamtflache des Prozkesms beschrankt sich die zusatzlich bendtigte
Flache zur Realisierung dieses Superbefehls afoth@i 130-nm-Standardzellentechnologie bzw.
0,8 % bei 90-nm-Standardzellentechnologie, vgl. ilshing 6-9.

| 262.144
XOR 40.960

253959 | :
LDW 32775 ‘ Dynamische Instruktionsanzahl

XORLDW 221.182

L ] 3048165
Zyklen —4 2777629
1 S-Core B N-Core (XORLDW)

Abbildung 6-7: Zyklenanzahl des3DES-Algorithmus im IPSecProtokoll
vor und nach der XORLDW-Befehlssatzerweiterung

In Abbildung 6-8 wird die Reduzierung des Energadiés beider Prozessordesigns verdeutlicht.
Betrachtet man zunéchst einklikrobenchmark bei dem nur die Leistungsfahigkeit der Superin-
struktion gegenuber den urspringlichen Einzelopmrah verglichen wird, so zeigt sich bei einer
Laufzeitverkiirzung von 33,3 % eine Energieerspatnisn 20,7 %. Beim 3DES-Algorithmus las-
sen sich durch die Hinzunahme dieses einen Spefgdlls neben der Laufzeitverkiirzung um 9 %
nahezu 9% an Energie einsparen.

. 0,000222
Mlcrobenchmark:\ 0.000176
0,179
3DES h — o
““““““““ Energie mWs]

[ S-Core [ N-Core (XORLDW)
Abbildung 6-8: Energiebedarf des urspringlichen S-@res verglichen mit dem um dieXORLDW-

Superinstruktion erweiterten N-Core in Bezug auf zvei Benchmarkszenarien

Ein weiterer positiver Nebeneffekt dieser Instraksatzerweiterung ist die Reduktion der Code-
grofRe um 6% fur di@DESAnwendung. Waren es beim S-Core noch 5924 Bytesiesden beim
XORLDWerweiterten N-Core nur noch 5572 Bytes an Instomstspeicher bendtigt. Die eingespar-
ten 352 Bytes On-Chip-SRAM entsprechen einer Fladmeca. 9240um?, was wiederum dem 75-
fachen der Flache fir die Realisierung des Supehisef(bezogen auf die 130-nm-Technologie)
entspricht.

8 KB SRAM (0,21mm?) nehmen ca. 11,1 mW bei 250Midf, avas in etwa vergleichbar mit der
Leistungsaufnahme des N-Cores ist, so dass aucbdii&insparung von Instruktionsspeicher bzw.

*! Das dem Benchmark zugrundeliegende VerkehrsmddellP-Pakete entspricht dem iMIX.

*2 Die Ergebnisse basieren auf der genauen Leistufiggemeanalyse mittels Schaltaktivitatenannotatiaie, sie in
Abschnitt 5.3 vorgestellt wurde.
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bei Reduktion der Anzahl der Speicherzugriffe dessburceneffizienz des Systems zusatzlich er-
hoht werden kann.

6.2.4 Implementierte anwendungsspezifische Instruktionen

Im Rahmen der durchgefuhrten Instruktionssatzaealyszgl. der vorgestellten Netzwerkanwen-
dungen wurden weitere Superinstruktionen fir de@d¥e realisiert. Dies betrifft neben der bereits
detailliert beschriebenedORLDWSuperinstruktion die Befehlssatzerweiterung@WXORLSLS
ANDSHR [ORSHL8 ORSHL16 ORSHL24] LDWADDI, IXWANDSHRund LDWIXW, die eben-
falls aus [112] hervorgegangen sind und urspruhgsipeziell furlPSecProtokolle vorgesehen
waren. Die jeweiligen Funktionsweisen der einzel@gerationen werden in Anhang D erlautert.
Zusatzlich sei auf die detaillierte Kommentierurey ¥HDL-Beschreibung verwiesen. Die Namen
der Befehle wurden so gewahlt, dass sie bereitesnsten Eindruck von der jeweiligen Funktion
geben. Die Auswertung der Performanzsteigerunghddrese zusatzlichen Instruktionen fur An-
wendungen aus dem Netzwerkbereich erfolgt in Kapite

Idwixw 0 1561
0,1315
0,1615
ixwandshr 0,1243

Idwaddi

orshl

o 1587
andshr 0,1252
o 1593
IdwxorlsI8 0 1227
xorldw 0 1585
:0,1223
ﬁ 0,1623
N-Core 0.1360

0,1580

Prozessorvariante

S-Core

0 1213
0,02 0,04 0,06 0,08 0,10 0,12

0,14 0,16 mm?2

\D Core-Flache 90 nm W Core-Flache 130 nm \

Abbildung 6-9: Gegenulberstellung des Flachenbedarisa [mm?2] von S-Core vs. N-Core in 130- und 90-nm-
Standardzellentechnologie sowie fiir Prozessorvariaen einzelner Befehlssatzerweiterungen

Abbildung 6-9 liefert eine Gegenuberstellung deickénbedarfs von S-Core vs. N-Core (7+: um-
fasst die vorgestellten sieben Superinstruktionanl30- und 90-nm-Standardzellentechnologie
sowie Werte fur die Realisierungen der einzelnefeldssatzerweiterungen. Bei der Realisierung
wurde sichergestellt, dass der kritische Pfad degir@alprozessorkerns nicht durch die jeweiligen
Erweiterungen vergrofRert wurde. Interessant isfTdisache, dass bei der 130-nm-Realisierung die
LDWIXWVariante und bei der 90-nm-Technologie dieWADDFImplementierung geringfigig
kleiner als der unveranderte S-Core sind. Died lieglem heuristischen Vorgehen des Synthese-
werkzeugs begriindet. Aufgrund der veranderten girwles Prozessorkerns schlagt der Synopsys-
Design-Compiler eine teilweise vollkommen andereul@tr flr einige Bereiche des Prozessors
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vor, die dennoch die erforderliche Taktfrequenz 26 MHz fir 130 nm bzw. 270 MHz fir 90 nm
erfullt. Aufgrund der unterschiedlichen Herangehezise des Synthesewerkzeugs kann es so zu
diesen Flachenunterschieden im einstelligen Prbeesich kommen. Der prozentuale Flachenzu-
wachs fur alle Instruktionssatzerweiterungen bethidigdie 90-nm-Technologie 12,1 % bzw. ledig-
lich 2,7 % fur die 130-nm-Technologie verglichert dem Original-S-Core.

Fur die 130-nm-Standardzellentechnologie wurded&ir um die genannten Superinstruktionen er-
weiterten N-Core exemplarisch eine Synthese mittdief3ender Platzierung und Verdrahtung der
erforderlichen Standardzellen sowie der notwendigem Platzierungswerkzeug eingefugtah

ler Cells durchgefuhrt.

0,451 mm 0,457mm

0,45/1\mm
0,457 mm

Abbildung 6-10: GrolRenzuwachs des Prozessors durctie sieben zuséatzlichen Instruktionen fir eine 130m-
Standardzellentechnologie (Darstellung beruht auf ém erzeugten GDS-I1I-Plot?)

Abbildung 6-10 zeigt einen GrolRenzuwachs von 2,% Brozessors bei Hinzunahme der sieben
vorgestellten Instruktionssatzerweiterungen. Dieddoitet durchschnittlich 0,39% Flachenzuwachs
pro Superinstruktion. Der hier implementierte, Nr&®rozessorkern besitzt eine Kantenlange von
0,457 mm und eine Gesamtflache von 0,209 mm? in véewendeten 130-nm-Standardzellen-
technologie.

Sollte ein anderer Prozessorkern als der N-CoréPaBlock zur Verfiugung stehen und fir das ent-
sprechende Anwendungsgebiet deutlich leistungsééihsgin, kann dieser aufgrund der offenen
Schnittstellen und der Parametrisierbarkeit deraiglC-Architektur ebenfalls leicht in das Sys-
tem integriert werden. Fur besonders recheninten&ifgaben reichen Instruktionssatzerweiterun-
gen allein meist nicht aus. AnwendungsspezifischediWtarebeschleuniger kdnnen in diesem Fall
den Prozessor bzw. die Prozessoren merklich eetlaBtir diese Art der Erweiterung/Optimierung
ist die GigaNetlC-Architektur besonders vorbereitegl. Abschnitt 4.3.3. Im Folgenden wird
exemplarisch die Optimierung der GigaNetlC-Architekdurch anwendungsspezifische Hardwa-
rebeschleuniger anhand eines Beispiels ndher erfaWYeitere realisierte Hardwarebeschleuniger
werden kurz vorgestellt und bzgl. ihrer Leistunggjlieit charakterisiert.

6.3 Optimierung: Hardwarebeschleuniger auf Cluster- undSoC-Ebene

Bereits in Abschnitt 4.3.3 wurden die verschiedehtiglichkeiten, anwendungsspezifische Hard-
warebeschleuniger in das GigaNetIC-System zu irgemgr, vorgestellt. Bevor ein spezieller Hard-
warebeschleuniger implementiert wird, wird zunacahstentsprechende Anwendung, die den Ein-

3 GDS Il (Graphic Data SystejfFormat, in 2004 der de Facto Standard fiir Layatetd der Chipfertigung.
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satz einer solchen Spezialhardware ggf. erfordémte, mit einer der Simulationsumgebungen
hoherer Abstraktionsebene analysiert (vgl. Abbigi@2). Stellt sich heraus, dass die Verarbei-
tungseinheit die geforderte Leistung nicht erbrm@gann, und zeigt sich weiterhin, dass Befehls-
satzerweiterungen ebenfalls nicht genligend Leistzungachs liefern, so kann eine Spezialhardwa-
re mit der bendtigten Performanz implementiert warcHierbei wird darauf geachtet, dass diese
Hardware ebenfalls mdglichst flexibel gehalten s&t,dass sie auch fur zukinftige Anwendungen
bzw. Weiterentwicklungen bestehender Standardssetgt werden kann und somit ein Hochstmal3
an Zukunftssicherheit garantiert. Mittels der inpi€al 5 vorgestellten Entwicklungsumgebungen
kann eruiert werden, an welcher Stelle im GigaNo€ethtsprechende Hardwareerweiterung plat-
ziert werden sollte. Bandbreiten- und Rechenlegdbedarf der Anwendung bestimmen Dimensio-
nierung, Platzierung und Anzahl des jeweiligen Bésmmigers (vgl. Kapitel 7).

Im folgenden Abschnitt werden exemplarisch das kephzund der Entwurf eines Hardware-
beschleunigers zur Protokollverarbeitung dargest®kr grundsatzliche Aufbau und die Funkti-
onsweise zur Ansteuerung durch die ProzessoreiGs\etlC-Systems, die auch die Steuerung
der Lastverteilung Ubernehmen, werden hier veradtiDas vorgestellte Prinzip kann auf beliebi-
ge Hardwarebeschleuniger anderer Funktionalitattiggen werden. Die einheitlichen Schnittstel-
len und Mechanismen der GigaNetIC-Architektur vezkir so die Entwicklungszeit, erhéhen die
Wiederverwertbarkeit und steigern so letztendlighRiessourceneffizienz.

6.3.1 Optimierungspotential von Hardwarebeschleunigern -ein Beispiel

In diesem Abschnitt soll, exemplarisch fur alle lenpentierten Hardwarebeschleuniger, auf einen
flexiblen Hardwarebeschleuniger zur Verarbeitung Paketdaten und Prifsummen zum Einsatz in
kommunizierenden eingebetteten On-Chip-Systemegegamgen werden. Solche Einheiten wer-
den héaufig auch als , TCP/IP-Offload Engine“ bezaiet) da sie die Prozessoren von wesentlichen
und besonders rechenintensiven Aufgaben der Pribtekarbeitung entlasten. Der hier vorgestellte

Hardwarebeschleuniger und dessen Arbeitsweise w2088 zusammen mit Infineon Technologies

CPR ST zum Patent angemeldet [159].

In Kapitel 7 wird die Leistungsfahigkeit der GigaN&Architektur im Hinblick auf Netzwerkver-
arbeitungsszenarien untersucht. Fir besonders nmietkesive Algorithmen dieses Anwendungs-
bereichs wird die Architektur, dem hierarchischasti@ierungsansatz folgend, durch Instruktions-
satzerweiterungen und Hardwarebeschleuniger emvelfene sehr haufig auftretende und zudem
rechenintensive Funktion bei der Verarbeitung vetzWerkpaketen ist die Generierung und Uber-
prifung von Prifsummen nach dem Muster der ,Inte@reecksumme® [160]. Bei der Evaluierung
dieser Funktion im Rahmen der Definition d®SLAMDigital Subscriber Line Access Multiple-
xen-Referenzbenchmarks [141] fir Infineon Technolegidie u. a. auch als Funktion BEMBC
(Embedded Microprocessor Benchmark Consortitietzwerkbenchmark [161] vorkommt, zeigte
sich, dass Bedarf fur eine Beschleunigung diesaktranalitdt besteht. Nachdem Softwareoptimie-
rung und Befehlssatzerweiterungen allein nichtodiettigte Performanz liefern konnten, wurde die
Implementierung eines Hardwarebeschleunigers natigdth41][159][118].

6.3.1.1 Hardwarebeschleuniger zur Protokollverarbeitung — Motivation und Funktion

Vernetzte Systeme kommunizieren auf der Basis vetzwerkprotokollen Gber den Austausch von
Paketen. Pakete bestehen aus Nutzdaten und zcisétzlProtokollinformationen, die unter ande-
rem die Weiterleitung (Quell- und Zieladressen)ctigr Netzwerk ermdglichen und die Integritat



6.3 Optimierung: Hardwarebeschleuniger auf Clusiad SoC-Ebene 151

des Pakets gewahrleisten (Prufsumnieme-to-livg. Jeder Knoten im Netzwerk muss, wenn er die
Pakete verarbeiten will, diese Informationen prufer ggf. vor der Weiterleitung modifizieren.
Fur die Verarbeitung von Netzwerkdaten kommt eimgl24hl von Hardwarerealisierungen in Fra-
ge. So konnen anwendungsspezifische BaustaigeCg auf NetzwerkkartenNICs) die Verarbei-
tung Ubernehmen, aber auch Standard-CPUs werderu h@lweise verwendet. Im Laufe der letz-
ten Jahre haben sich, vor allem fir Einsatzgebmetie hoher Datenlast, spezielle Netzwerk-
ProzessorenNPUs) etabliert. Dies sind besonders auf das Anwershyetget Paketverarbeitung
spezialisierte Hochleistungseinheiten. Diese progngerbaren Bausteine erlauben eine sehr flexib-
le Gestaltung der notwendigen Verarbeitungsschridies ist im Hinblick auf den permanenten
Wandel der Datenbeschaffenheit und der verwendPretokolle und der damit verbundenen
Dienste von groRem Vorteil. Mittlerweile gibt esxeiVielzahl etablierter Protokolle und Mecha-
nismen, die aufgrund ihrer extrem haufigen Verwerydeu einem fixen Bestandteil der Netzwerk-
technologie geworden sind. Hierzu zahlen u. a. ldsernet-Protokoll Version 41Pv4) auf der
Netzwerkschichtl{ayer) 3 sowie viele der in diesem Protokoll gekapseltayer-4Protokolle (wie

z. B.. TCP, UDP, ICMP etc.). All diesen Protokollen gemein ist die vendete Prifsumme, die auf
dem 16-Bit-Einer-Komplement-Summen-Ansatz berubfo]1

Durch das Auslagern dieser Prifsummenberechnungiaemh speziell fir diese Aufgabe optimier-
ten und im Rahmen des Notwendigen variabel gehaitétardwarebeschleuniger lasst sich der
Datendurchsatz eines Netzwerkknotens steigern bmvbisher eingesetzte Verarbeitungseinheit
(CPU, NPU) entlasten oder sogar durch eine kostengunstigezriger leistungsstarke Verarbei-
tungseinheit ersetzen. Eingesetzt werden kannnalevaiteren Verlauf beschriebene Beschleuniger
also nahezu in jedem IP-verarbeitenden Netzwerldmotangefangen bei Endgerdten im
CPHCustomer Premises EquipmgBereich Firewalls, NICs etc.) bis hin zu Geraten, die im
Kernnetzwerk angesiedelt sind, wie z.Buter Die Verarbeitungsleistung bei all diesen Geraten
sollte mdglichst hoch sein, um hohe Systemlastégrand der standig steigenden Datenraten im
weltweiten IP-Verkehr Uber eine mdglichst lang&irhe-in-Market)Zeitspanne zu unterstitzen.
Hierzu bietet es sich an, besonders rechenintengvarbeitungsschritte, wie z. B. Prifsummen-
berechnungen, auf dedizierte Hardwarebl6cke augeuiaDies erlaubt eine Verarbeitung der Pa-
kete mit der erforderlichen ,LeitungsgeschwindigkéLinespeell auch in stark belasteten Netz-
werkknoten. Ein weiterer Vorteil eines HW-Beschlgens fir diese Arbeitsschritte liegt in dem
deutlich geringeren Flachenbedarf und der gerimgesstungsaufnahme und fihrt somit zu einer
Reduktion der Kosten (sowohl Initial- als auch Bdiskosten).

Abbildung 6-11 zeigt die prinzipielle Kopplung desrdwarebeschleunigers mit der Ubergeordne-
ten Kontrolleinheit NPU, CPU, Controller). Hierbei ist es grundsatzlich erst einmal unelibbb

ob der Beschleuniger selbst Gber Speicher verfidgr dieser ihm Utber eine Bus- oder Netzwerk-
on-ChipfNoQ)-Anbindung zugéanglich gemacht wird.

Ein Einsatzbereich des GigaNetlC-System-on-Chiegtlin der Verarbeitung und Weiterleitung
von Netzwerkverkehr aufayer 3(Internet Protocol und hoher, vgl. Abschnitt 8.1.2. Um eintref-
fende Paketeliigresg verarbeiten bzw. weiterleiten zu kénnen, missesedzunéchst auf Korrek-
theit, also protokollkonformes Format Uberprift demw. Dies geschieht durch den HW-
Beschleuniger, der Pakete pruft, die mit einerdarh 16-Bit-Einer-Komplement-Summen-Ansatz
beruhenden Priufsumme [160] gesichert sind. Im Ansshiibergibt er die Daten der Ubergeordne-
ten Kontrolleinheit zur weiteren Bearbeitung. Sailh Paket versendet werdeBgfess, so wird
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dem HW-Beschleuniger wiederum die Startadresseddsearbeitenden Pakets mitgeteilt, so dass
im Folgenden der HW-Beschleuniger autonom peect Memory AccesOMA) die bendtigten
Paketdaten vom Speicher anfordern und die einzendg Prifsumme berechnen kann. Das Be-
rechnen und Abspeichern der Prifsumme erfolgt oheeeres Eingreifen der Ubergeordneten
Kontrolleinheit, die so entlastet wird und so fiie dibergeordneten Kontrollaufgaben zur Verfi-
gung steht. AulRerdem erfolgt die Berechnung defsBnime durch den HW-Beschleuniger in der
Regel deutlich schneller, als dies eine Standard @leisten in der Lage ware. Des Weiteren ist
der HW-Beschleuniger in der Lage, die zuldssigeodnenszeill TL (Time-To-Livg im Netzwerk
des Pakets zu prufen und ggf. zu dekrementieres fiiveEinsatzgebiete innerhalb von Routern etc.
eine weitere Beschleunigung ermdglicht.

ingress egress

header_check

NPU / CPU / Controller

System-on-Chip

Abbildung 6-11: Grobe Darstellung des Moduls und pinzipielle Kopplung mit Systemumgebung

Der IP-Headercheck unterstitzt sowdittle- als auchBig-EndianSysteme und kann im Betrieb
auf die entsprechende Systemkonfiguration umgésteliden. Dies erhoht die Interoperabilitat, da
er mit Prozessoren unterschiedlichster Herstelidaeh zu kombinieren ist. Er prift diE-Version
und ist bereits vorbereitet all#v6 (Internet Protocol Version)d162]. Er unterstitzt variable Hea-
der- und Paketlangen sowie eine gerade und ungéraxihl von Bytes im Paketrahmen. Aufgrund
der einheitlichen und einfach gehaltenen Schniésk&nnen unterschiedlichste Busprotokolle und
proprietare Schnittstellen unterstitzt werden. Reduktion des Chip-internen Kommunikations-
aufwands kann bei der bloRen Uberpriifung der Checkse nur eine Ergebnisriickgabe der be-
rechneten Checksumme erfolgen, ohne ggf. das gedzaket (iber das NoC zurtickzuleiten.

Die Vorteile der vorgestellten Losung im Vergleizh existierenden Losungen (vgl. z. B. [163])
liegen in einer sehr performanten Realisierungheieichender Flexibilitat. Diese beschleunigte
Verarbeitung liegt zum einen an der Tatsache, dassich um anwendungsspezifisch optimierte
Hardware handelt, die hohere Taktfrequenzen im iy zu vielen Standard-Prozessoren erlaubt,
zum anderen an dem speziellen, erweiterten Beregswerfahren zur Prifsummenverarbeitung
(vgl. Abschnitt 6.3.1.2). Weiterhin lasst sich g@rgestellte Losung durch ein Steuerwort konfigu-
rieren und parametrisieren, so dass verschiedersb&tungsschritte (vgl. Abbildung 6-13) anges-
tol3en werden kénnen. Zur vereinfachten SoC-Integrast das vorliegende Modul parametrisier-
bar in Bezug auf Datenbreite und die Art der Ankapg an eine Kontrolleinheit. Die flexibel ge-
haltene Integration ins Gesamtsystem stellt eineeusell einsetzbare Plattform zur schnellen Prif-
summenprufung zur Verfigung (vgl. Abschnitt 6.3)1.4

6.3.1.2 Performanzerh6hung mittels eines Algorithmus varialter Bitbreite

Der hier entwickelte Algorithmus weicht von der B-Variante [160] ab und erlaubt die Variation
der Additionsbreite zur zusatzlichen Beschleunigdeg Verarbeitung. Die entwickelte Methode
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zur Priafsummenberechnung nutzt die Invarianz deed@mungsvorschrift gegeniber der Grolie
des verwendeten Restklassenrings. Aufgrund dehidbBenden Faltung durch fortgesetzte Additi-
on von Teilergebnissen im Restklassen@jist das Priiffsummenergebnis invariant gegeniiber der
GroRe2*® (mit n > 1) des Restklassenrings, der zur Berechnung deer§ebnisse verwendet
wurde. Diese Teilberechnungen kdénnen somit nicintmi 16-Bit-breiten Datenwértern sondern
auch mit Vielfachen von 16-Bit-breiten Datenwortelurchgefuhrt werden. Abbildung 6-12 zeigt
schematisch die Funktionsweise des Algorithmusaéer Bitbreite.

[ m/2] Iterationen, bei m - n - 16-Bit-Datenworten

n Datenworte a 16 Bit n Datenworte a 16 Bit

n'216 n'216

(n-1)-e (n -1)-Faltungen durch Addition
°

216
Reduktion auf 1 Datenwort & 16 Bit
Abbildung 6-12: Schematische Darstellung der Operatn auf Restklassenringen von ¥

Im Folgenden wird ein Realisierungsbeispiel iafTCP'UDP-Netzwerkprotokolle dargestellt, in-
dem zunéchst die Systemfunktion und im Anschlusarddie Anbindung an ein lGbergeordnetes
System beschrieben wird. Die beschriebene Losulh@mindsatzlich auch fur andere Protokolle,
die auf dem 16-Bit-Einer-Komplement-Summen-Ansamiben, d.h. z. B. auch fCMP, IGMP,
ST-ll, EGP, HMP, IRTP, OSPFE, NETBLT, ENCAR OSPFIGPund &hnliche. Dies erhdht die Wie-
derverwendbarkeit des Hardwarebeschleunigers umit dach die Ressourceneffizienz.

6.3.1.3 IP-Headercheck — Aufbau und Funktionsweise

Die wesentlichen Funktionsblocke des Hardwarebesciders fir eine 32-Bit-breite Variante
werden in Abbildung Anhang E-1 dargestellt. Der ddeairebeschleuniger umfasst eine im Befehls-
umfang und in Datenbreite parametrisierbare Arittisob/Logische EinheitALU), Ergebnisregis-

ter, Kontrollregister, Adressregister sowie diveRegister zum Zwischenspeichern temporarer
Werte. Die Datenbreite dieser Einheiten kann jehrmagsfiihrung des Hardwarebeschleunigers va-
riieren, da die in Abschnitt 6.3.1.2 vorgestellier&hnungsmethode auch andere Berechnungsbrei-
ten zulasst, wobei sich die jeweiligen Realisieemdes Hardwarebeschleunigers im prinzipiellen
Aufbau nicht von Abbildung Anhang E-1 unterscheiden

Die Ansteuerung des Hardwarebeschleunigers gedchih einen Uber ein Kontrollregister (vgl.
Abbildung 6-13), in dem die verschiedenen Operatioodi UberSteuerflagsausgewahlt werden.
Die Giultigkeit der anliegenden Steuerflags wirdridiee logische Eins voctrl_in_ensignalisiert.

Zum anderen muss die Verarbeitung der Beschleuggginheit noch durch das Signal
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check _enableaktiviert werden, das von aul3en durch eine Ubedgete Kontrolleinheit (CPU,
NPU, Zustandsmaschine) angelegt wird. Ebenso merssHW-Beschleuniger noch die Startadres-
se (im Speicher) des zu bearbeitenden Pakets (tbedtrmerden, die im Adressregister abgelegt
wird. Die fur die Prifsummenbildung bendtigte Adktauerung ist durch einen generischen Zu-
standsautomateriipite Statemachiné FSM) realisiert. Dieser tbernimmt die komplette Ansteu
rung der einzelnen Komponenten des Hardwarebesubkrs sowie die autonome Ansteuerung
der Speicher- bzw. Busschnittstelle. Ist die Vesdtng des Pakets gemald der durch die gesetzten
Kontrollflags vorgesehenen Arbeitsschritte abgessden, werden die Ergebnisse an die daflr vor-
gesehenen Speicherstellen zurtickgeschrieben. Inrddloagister werden die sich aus der Bearbei-
tung ergebenden Flags gesetzt. Das Sighatk readyzeigt der Gbergeordneten Kontrolleinheit
die Fertigstellung der Verarbeitung an, so dass @igf neues Paket zur Verarbeitung in Auftrag
gegeben werden kann.

Kontrollregister
Paketstatus

X | x [ X nicht benutzt IP TCP/UDP
LTIV T |Qlo|lo|~NjO|lw |t |®m|lN|~]|O
Db |D|D| o |p|0D|0|0|0|0|@0|@0|d|o|o

=

T | = < <

ﬁ % o0 £ ] £
G| 2le i Flg|leg|8 s|g|d
= . © X = x 3
T | o | = =] ol |lals = &=
c|lo| O c S |2 © = ©
w|  o| = [0} o 5| E|S S| E|S

Rl o 2129 |lcla|22|Q|c
K] =4 s clclo|g|aolf|o|le
= |2 = =3 [ T R B~ (O B B B~
5| o Elg | @ || Q

Q - c @ R e} ~ &2 o
< |0 | ® L o 9| |ag|0 | 8|x=
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NG I [ (N I s (s ) i (S ) ) ) p) )
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x x x x x x
x = Modifikation durch Headercheck-Einheit
X | = nur in Wishbone-Kopplung benutzt

Abbildung 6-13: Implementierung des Headercheck-Kotrollregisters

Der prinzipielle Ablauf einer Prifsummenbildung filas Internet-ProtokolL@yer 3 und ggf. ein
enkapsuliertekayer-4Protokoll ist in Abbildung Anhang E-2 dargesteWesentlich ist die Unter-
scheidung zwischen UberpriifunGhech und NeuberechnungCpmputg der Prifsummen. Der
Check-Modus kommt z. B. beim Empfang eines Pakets Einsatz, bei dem zun&chst Uberprift
werden muss, ob es sich um ein guiltiges, korrektriiliteltes Paket handelt. Die Korrektheit eines
eingegangenen Pakets wird durch eine logische &tjpacket errorAusgang angezeigt. Eine lo-
gische Eins wirde ein fehlerbehaftetes Paket kecimzen, das ggf. verworfen wird. Beim Versen-
den kdme die Neuberechnung der Prifsummen zumtEir®allten Verdnderungen an den Daten
bzw. Headerinformationen wie z. B. d&$L-Feld, das ebenfalls bei Bedarf automatisch von der
Einheit dekrementiert werden kann, vorgenommen @orgkin, ist eine Neuberechnung der Prif-
summe unabdingbar.
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>
start_addr
Metadaten &
Paketstatus GigaNoC Ziel Paket Zeiger
ERP nu IP TCP/UDP| nu X y ‘ z ‘ ID | akt. Paketspeicheradresse
3 Bit 5 Bit 4 Bit 4 Bit 3 Bit 4 Bit 4 Bit 3 Bit 2 Bit
16 Bit 16 Bit 32 Bit
64 Bit = 1 Flit
) Metadaten &
& ETH-Lange ETH-PHY-Port 2 Byte Padding | ETH-Kopf Byte 1+2 ‘ ETH-Kopf 12 Byte
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>
/ check_addr_start_in
) IP-Rahmen ‘
max. 375 Flits t
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Abbildung 6-14: Protokollrahmen zur GigaNoc-basieren Ansteuerung
des Headercheck-Hardwarebeschleunigers

Abbildung 6-14 zeigt einen GigaNoC-PaketrahmenAmsteuerung eines Headercheck-Hardware-
beschleunigers, der lose-gekoppelt tGber einen Conuation-Controller an einen Port einer
Switch-Box angeschlossen ist. Prinzipiell kann Aelauf auch auf andere Hardwarebeschleuniger
Ubertragen werden. Der zu sendende Protokollralseé&zt sich in diesem Fall aus sogenannten
Metadaten und den eigentlichen Nutzdaten zur Veranbg zusammen. Die Metadaten beinhalten
alle notwendigen Kontrolldaten zur Ansteuerung Hasdwarebeschleunigers, zur Wegewahl und
zur Speicheransteuerung. Beim Headercheck-Hardescbkeuniger bestehen die Nutzdaten aus
dem gesamtelP-Rahmen, der sowohl déR-Kopf, als auch Daten von ggf. enkapsulierten Rroto
kollen héherer Schichten beinhalten kann. Die ard& Bit der Metadaten umfassen den Paketsta-
tus, der direkt in das Kontrollregister (vgl. Alhihg 6-13) des Beschleunigers geschrieben wird.
Die folgenden zwei Byte sind die Adressierungsddierdie GigaNoC-Wegewahl. Anschliel3end
folgt der Paketzeiger mit der jeweiligen Speichezade. Zuséatzlich werden noch die Daten des
Ethernetkopfes angehéngt, so dass ein Paket, dasBeschleuniger verarbeitet worden ist, nicht
zwangslaufig zu einem Ubergeordneten Prozessoitejeleerden muss, sondern ggf. direkt zum
Communication-Controller eines integrierten Ethé&raetrollers geleitet werden kann. Ebenso
kénnen die Communication-Controller der Etherneticiier die am GigaNoC angeschlossenen
Beschleuniger direkt adressieren, ohne zwangsl&iftzessoren mit einzubeziehen. Dies hangt
von der jeweiligen Anwendung und der Funktion desdBleunigers ab. Beim IP-Headercheck-
Beschleuniger werden in diesem Fall Pakete demriiibnbrt entsprechend verarbeitet und in Ab-
hangigkeit des Ergebnisses verworfen oder weiteitgel Eine Erweiterung des Funktionsumfangs
ist auch hier moglich und hangt letztendlich von ewendung ab.

6.3.1.4 IP-Headercheck — Systemanbindung

Der IP-Headercheck-Hardwarebeschleuniger eignét fic alle in Abschnitt 4.3.3 vorgestellten
Kopplungsarten an das GigaNoC. In Abbildung 6-1&dvdie Variante der Systemanbindung mit
lokalem Speicher vorgestellt. Hierbei kann die Buiimeneinheit entweder Uber einen lokalen Bus
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oder aber Uber das On-Chip-Netzwerk mit der Ubedyexien Kontrolleinheit verbunden sein. In

diesem Fall dient ein Dualport-Speicher als lok&aketspeicher. Fir diese Kopplung wurde eine
Anbindung des Prifsummenmoduls sowohl Gber den Mdis&+Bus als auch tber ein NoC (Giga-

NoC) exemplarisch implementiert und verifiziert.eDintegration der Einheit erfolgt Uber einen

Wrapper, der die Schnittstellenkonvertierung Gbamt.

N\ .
data_out check_data_in
data_in check_data_out
rW—————
check_addr_out
dual
9 ported
z > memory
(2]
a - check_enable
——ctrl_in_en
ctrl
addr_start_in
«—packet error-
«——check_ready
FSm header_check
A4 wrapper

Abbildung 6-15: Systemanbindung Uber Bus oder NoQnit lokalem Speicher

In der zweiten Variante, in Abbildung 6-16, erfoltie Systemanbindung tber einen Bus bzw. ein
On-Chip-Netzwerk unter Verwendung eines gemeinsa8michers. Fiur die Anbindung an einen
Bus bietet der HW-Beschleuniger die Option, BigstlAngedes Buszugriffs einzustellen, so dass
fur die Bearbeitungszeit auch andere TeilnehmerRiennutzen kénnen und somit Blockierungen
weitestgehend verhindert werden kdnnen.

VAN

——check_enable—»

«—bus_request
——bus_wait_n———

—T_W

check_addr_out

check_data_in i

check_data_out

Bus / NoC

—ctr_in_en———»

ctrl P

addr_start_in >

«——packet_error

«——check_ready
FSM

header_check
N wrapper
Abbildung 6-16: Systemanbindung iber Bus oder NoGnit gemeinsamem Speicher

Die dritte Variante in Abbildung 6-17 zeigt die Andung der Beschleunigereinheit an eine tber-
geordnete CPU/Kontrolleinheit unter Verwendung gigemeinsamen Speichers. Die Steuerung
des Datenflusses wird von der Ubergeordneten Kibgitrtbeit ibernommen.
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NPU/CPU/ data_out check_data_in
Controller
check_data_out
data_in
r_w
addr check_addr_out
dual
ported
memory
——check enable
ingress ) ——ctrl_in_en
ctrl
( egress
addr_start_in
«——packet_error
controller L check_ready header_check

Abbildung 6-17: Anbindung des IP-Headercheckers lleeine eng-gekoppelte Kontrolleinheit

Tabelle 6-3 zeigt den Flachenbedarf der einzelngpldmentierungsvarianten der 32-Bit-Variante
inklusive der bendtigten Schnittstellen zur Kopglam das Gesamtsystem.

Tabelle 6-3: Flachenbedarf der 32-Bit-Variante de$P-Headercheck-Hardwarebeschleunigers in 130/90-nm-
Standardzellentechnologie, inkl. NoC-Schnittstellend 16 KB DPRAM auf SoC-Ebene

Flache [mm?]
PE-Ebene Cluster-Ebene SoC-Ebene
130 nm 90 nm 130 nm 90 nm 130 nm 90 nm
0,0357 0,0228 0,0299 0,0196 0,6649 0,5609

6.3.1.5 IP-Headercheck — Leistungsdaten

Die hier vorgestellte Ausnutzung der Tatsache, dissBerechnungsvorschrift fur die Prifsum-
menbildung invariant zu Vielfachen von 16-Bit-Rdaisenringen ist, erlaubt die Verarbei-
tung/Addition der Pakete in Vielfachen dieser 164iBalbworte und ermoglicht so einen hdheren
Durchsatz von Paketen bei gleich bleibender Taktder Verarbeitungseinheit (vgl. Abschnitt
6.3.1.2). Die Funktionalitat des HW-Beschleunigigrsgrél3ere Datenbreiten ist prinzipiell gleich,
wobei sich die Ausfiihrungszeit in erster Naheruggf.(abhéangig von der jeweiligen Hardware-
realisierung) reziprok zur Datenbreite der Hardwasmerhalf’. Die Datenbreite des HW-
Beschleunigers wird im Wesentlichen durch die Spaicbzw. Bus-Anbindung bestimmt (vgl. Ab-
schnitt 6.3.1.4).

Abbildung 6-18 zeigt die Leistungsfahigkeit fur dg2-, 64- und 128-Bit-Variante des IP-
Headercheck-Hardwarebeschleunigers fur enkapsiliéxyer-4Protokolle in Abhangigkeit von

der Paketgrof3e. Es zeigt sich bei grol3en Paketgthictiedie nahezue Verdoppelung bzw. Vervier-
fachung der Performanz gegenuber der 32-Bit-Vagidogi Verwendung der 64- bzw. 128-Bit-
breiten Implementierung. Bei minimal-groRen Paketeneiner Nutzdatenmenge von 44 Byte er-
folgt lediglich eine Reduzierung von 24 auf 18 baw.Takten durch die breitere Verarbeitung. Be-

B
** Implementierungsabhangige BerechnungsdaueDie 32-Bit-Variante benbtig[——l +13 Takte, mitB = Anzahl
4

B B
der zu verarbeitenden Bytes, die 64-Bit-VariarFte—‘ +12 und die lZB-Bit-Variante{——l +12 Takte proLayer-4
8 16

Protokollrahmen.
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zogen auf das spatere Anwendungsszenario ist vibredrdall abzuwégen, ob der Einsatz einer
leistungsfahigeren Variante des Hardwarebeschlemigotwendig ist, oder ob die Beschleuni-
gung, die durch die flaichenmallig kleinere 32-Bitisfate (vgl. Abbildung 6-20) erreicht wird, be-
reits ausreicht. Speziell Anwendungen die hauptsfciPakete minimaler Lange einsetzen, wie
VoIP (Voice over IR etc., profitieren weniger von der Leistungsfaleigkder IP-Headercheck-
Hardwarebeschleuniger gréf3erer Bitbreite. Im SieRessourceneffizienz ware hier der 32-Bit-
breite Beschleuniger ein pareto-optimaler Punk&inme von Definition 12.

450
400 f_—_’
350

300 - /
250 =&— 32-Bit-Variante

/ -~ 64-Bit-Variante
= 128-Bit-Variante

Takte

200

150 A
100 4
50 -

0

44 48 64 512 570 1500 1518
PaketgroRRe

Abbildung 6-18: Leistungsdaten des IP-Headercheck-&tdwarebeschleunigers in
Abhéngigkeit von der Verarbeitungsbreite

30
@510,2MHz
@500MHz
25 A \
@555,6MHz
w 20
o) ——32-Bit-130nm
< - 32-Bit-90nm
< 15 )
a —#- 64-Bit-130nm
o .
= 64-Bit-90nm
= 10
5 4
0

44 48 64 512 570 1500 1518
Paketgroile
Abbildung 6-19: IP-Headercheck-Hardwarebeschleunige— Performanz
32- vs. 64-Bit-Variante, bezogen auf die Synthesente

Abbildung 6-19 zeigt die, sich aus den Synthesgelmnden, realisierbaren Leistungswerte fur
eine 130-nm- und eine 90-nm-Standardzellentechmglog Abhangigkeit von der erreichbaren

Maximalfrequenz in der jeweiligen Technologie. Esdnevident, dass die 64-Bit-Varianten deut-
lich leistungsfahiger als die 32-Bit-Implementiegen sind. Beide 64-Bit-Realisierungen erlauben
Betriebsfrequenzen von iber 500 MHz und verarb&l®eri8 bzw. 28,34 Mio. Pakete a 44 Byte pro
Sekunde. Das entspricht einer Nutzdatenmenge vdm aie 1220 MByte/s. Die 32-Bit-Varianten

liegen fast 10 % hoher bei den maximal erreichbdiaktfrequenzen, als die der 64-Bit-Typen. So
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kbnnen immerhin 22,77 bzw. 23,15 Mio. Pakete pr&auBde verarbeitet werden. Die 64-Bit-
Schaltungen haben aufgrund ihrer gré3eren ALU edwaerilich langeren kritischen Pfad, der diese
Reduktion der maximal erreichbaren TaktfrequenzitiewBei der Paketgrof3e von 1518 Byte ni-
velliert sich der Anteil der fixen Berechnungskostand die 64-Bit-Varianten erzielen eine deutlich
hohere Effizienz als bei 44-Byte-Paketen. Hiertlidig pro Sekunde verarbeitbare Datenmenge bei
3757 bzw. 3834 MByte pro Sekunde, im Gegensatz146 bzw. 2110 MByte pro Sekunde, also
ca. 80 % hoher als bei der 32-Bit-Realisierung.

In [163] wird ebenfalls eine Verarbeitungseinheait Berechnung delnternet Checksurmorges-
tellt. Der beschriebene Funktionsumfang ahnelt des)hier prasentierten Ansatzes allerdings nur
zum Teill, da der GigaNetlC-Hardwarebeschleunigeamatrisierbar ist und so auch grof3ere Da-
tenbreiten als 32 Bit verarbeiten kann. Die Realisig aus [163] liegt in einer 180-nm-
Standardzellentechnologie vor und beansprucht Eldehe von mindestens 0,171 mm?2 bei einer
maoglichen Taktfrequenz von 381 MHz. Skaliert maa Biache mit Hilfe der S-Parameter (vgl.
Kapitel 3, Definition 29) z. B. auf die 130-nm-Tedtogie des GigaNetlC-Hardware-
beschleunigers, so ergabe sich eine wohlwollenésdigitzte Flache von:

0,171mn? [élgo“m
130nm
rung, mehr als dem 5,7-fachen der Flache entspr&ubel aktfrequenz ergabe nach der Skalierung

2u 38MHz i L80NM
130nm

-2
j = 0,0892mM, was, verglichen mit den 0,0157 mm?2 [118] meinealRie-

1
j = 528VIHz, was ebenfalls &uf3erst positiv geschétzt istabktet man z. B.

die Relationen zwischen den in dieser Arbeit dtstel 130-nm- und den 90-nm-Implemen-
tierungen. Gleichgesetzt mit dem Ansatz aus [16B8kicht der reine IP-Headercheck-Hardware-
beschleuniger des GigaNetIC-Systems ohne zusé&niittrappereine maximale Betriebsfrequenz
von 1,69 GHz [118]. Dies stellt einen deutlichenr§f’sung um mehr als Faktor drei dar. Betrachtet
man den erreichbaren Durchsatz beider Variantetiegbdieser nach der Notation aus [163] bei
beiden Realisierungen bei 32 Bit pro Sekunde uhdamit lediglich abh&ngig von der maximalen
Betriebsfrequenz. So resultierte daraus bei dealggiC-Variante ein Geschwindigkeitsvorteil von
ebenfalls Faktor 3,2. Angesichts dieser Werte wledtlich, dass es sich bei dem GigaNetIC-IP-
Headercheck-Hardwarebeschleuniger um eine aufessourceneffiziente Implementierung han-
delt, deren spezieller Aufbau sie derart leistusigisf macht. Ferner kann durch Verwendung der
Varianten gro3erer Datenbreite der Durchsatz notshgesteigert werden.

Abbildung 6-20 zeigt die jeweils bendétigte Flach@ ie Realisierung des IP-Headercheck-
Hardwarebeschleunigers in Abhangigkeit von der giefidien Taktfrequenz und Technologie. Es
zeigt sich, wie zu erwarten war, dass, je hoherAgitorderungen an die zu realisierende Taktfre-
guenz sind, desto mehr Flache wird beanspruchtl. Beg 32-Bit-Variante in 90-nm-Technologie
z. B. entspricht dies bei einer Steigerung der &eeg um den Faktor 2,7 mehr als 68 % Flachen-
zuwachs. Die Realisierung der 32-Bit-breiten Vaeades IP-Headercheck-Hardwarebeschleu-
nigers entspricht in etwa einer Systemkomplexitit weniger als 6000 bzw. 14200 Gatteraquiva-
lenten bei der 64-Bit-breiten Implementierung.
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Abbildung 6-20: Flachenvergleich der verschiedenelP-Headercheck-Implementierungen

Die hier prasentierten Werte zeigen, dass bei tatemn der Beschleuniger in das GigaNetIC-
System abgewogen werden sollte, welche PositiordigirHardwarebeschleuniger gewahlt wird.
Bei einer genaueren Spezifikation der Zielappliatkonnen die zu erwartende Leistungsfahigkeit
des Systems sowie die erforderliche Konfiguratioit Hilfe der vorgestellten Simulations-
umgebungen (vgl. Kapitel 5) ermittelt werden. Sob#ine Kopplung an den lokalen Bus, der in der
Regel eine geringere Frequenz aufgrund der angesehrien Prozessorelemente zulasst, genigen,
so reicht die flacheneffizientere Implementierung.aErfordert die Spezifikation hingegen maxi-
malen Durchsatz, so sollte eine lose Kopplung eistungsféahigsten, aber auch flachenintensivsten
Variante angestrebt werden. In diesem Fall istBidrieb mit einer deutlich hbheren Taktfrequenz
als die der lokalen Busse moglich. Die vorgestellkapselungen\Wrappe) kénnen erforderli-
chenfalls die Umsynchronisierung auf den Takt degeachlossenen Kommunikationsmediums
ubernehmen. Zur Steigerung der Ressourceneffizemafiehlt es sich, Uberlegungen dieser Art
stets anzustellen, falls dies im Vorfeld der Impdstierung aufgrund gentigender Informationen
bzgl. des spateren Anwendungsszenarios maoglich ist.
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Abbildung 6-21: Vergleich Leistungsaufnahme der veschiedenen IP-Headercheck-Implementierungen in Ab-
hangigkeit von der Betriebsfrequenz und der entsprehenden Realisierung

Ahnlich verhalt es sich mit der Leistungsaufnahme awar aufgrund der linearen Abhangigkeit
von der Frequenz, die in die dynamische Verlugdtleig eingeht, und der zuséatzlich gréReren Fla-
che der schnelleren Varianten. Die entsprechenderne/gind in Abbildung 6-21 dargestellt. Aller-

dings ist zu bemerken, dass diese Angaben auf angaenen, statistischen Schaltwahrscheinlich-
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keiten 60%9 des Synthesewerkzeugs beruhen. Hierbei wird ®daprozentige Schaltwahrschein-
lichkeit der Eingange angenommen, deren Verhaldndann auf die Folgelogik fortpflanzt. Dies
spiegelt jedoch nicht die realen Stimuli der Sahadtwieder und kann so nur eine ungefahre Ein-
schatzung der Leistungsaufnahme liefern.
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Abbildung 6-22: Verlustleistungsanalyse (fur die 18-nm-Technologie) basierend auf statistischen Scladahr-
scheinlichkeiten (50%) der Gatter und durch Simulaton gewonnener Schaltaktivitaten AS)

Mit Hilfe der in Abschnitt 5.3 vorgestellten erwaiten PERFMON-Umgebung wurde deshalb zum
Vergleich die Leistungsaufnahme durch Annotieruag SichaltaktivitdtenAS) wahrend der Lauf-
zeit und der Bearbeitung diMix-Lastverteilung (vgl. Abschnitt 7.2.3) bestimmt.eDAnalyse be-
zieht sich auf die 130-nm-Standardzellentechnologrel die IP-Headercheck-Variante mit
200 MHz Taktfrequenz. Abbildung 6-22 stellt die gawenen Ergebnisse fir die Realisierung im
Typical-CasgTC) dar.

Die FallunterscheidungeBest CasgTypical Caseund Worst Casestellen drei unterschiedliche
Umgebungsbedingungen der 130- und 90-nm-Standédimthnologie dar, die die Eigenschaften
der Schaltung beeinflussen. Tabelle 6-4 zeigt dievanten Parameter fur die unterschiedlichen
Syntheseparameter.

Tabelle 6-4: Syntheseparameter fur unterschiedlich&lmgebungsbedingungen der Standardzellen

Versorgungsspannung [V] Umgebungstemperatur [C]

Syntheseparameter

130 nm

90 nm

130 nm

90 nm

Best Case BC

1,32

1,32

0

-40

Typical Case TC

1,2

1,2

25

27

Worst Case WC

1,08

1,08

125

125

Betrachtet man die Leistungsaufnahme fur typischey&bungsbedingungen, so zeigt sich, vergli-
chen mit dem durch0%Sermittelten Wert, bei der durohS ermittelten Leistungsaufnahme ein
doppelt so hoher Wert bzgl. der Umladevorgénge Lad#iungen. Die durch Schaltvorgéange der
Standardzellen hervorgerufene Verlustleistung mst38,9 % héher, wenn man die Werte mit Hilfe
von AS abschéatzt. Dieses Ergebnis ist dadurch zu erkld@tass durch wahllose Beschaltung der
Eingédnge bei deb0%SMethode die eigentliche Funktion des Hardwarebesiclgers nicht wie-
dergespiegelt wird und somit auch die ermitteltésiumgsaufnahme nur eine erste Abschatzung
sein kann. Die realistische, dynamische Verlustiegsaufnahme unter typischen Bedingungen, die
mit Hilfe der ASMethode ermittelt wurde, ist um 45,4 % hoéher, edsdie reine Abschatzung des
Synthesewerkzeugs zunachst vermuten lieBe. Dieustlistungsaufnahme des Hardwarebe-
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schleunigers von 1,9 mW bei 200 MHz betragt denmagtein Funftel der Leistungsaufnahme des
N-Core-Prozessorkerns.

Abschlie3end lasst sich bemerken, dass, wenn egetieind die Umstande (Anwendung muss be-
reits ausprogrammiert sein) erlauben, eh&basierte Ermittlung der dynamischen Verlustleigtun

des Systems mit Hilfe der in dieser Arbeit vorgitstie Werkzeugkette ratsam ist. Dies ist vor Al-

lem dann der Fall, wenn bereits vor der Chiprealisig Daten mit einer maximalen Abweichung
vom fertigen Chip im einstelligen Prozentbereichyl.(\MAbschnitt 5.3) bendtigt werden. Fir eine
grobe Einstufung reicht de0%SMethode jedoch aus, liefert sie immerhin noch Welie zumeist

in der gleichen GréRenordnung der spateren Schpliegen.

Abbildung 6-23 zeigt die Grol3e der 32-Bit-Varianes |IP-Headercheck-Hardwarebeschleunigers
im Vergleich zum S-Core nach der Platzierung unddk&htung der Standardzellen in 130-nm-
Technologie. Mit einer Kantenlange von nur 0,156 imeansprucht er lediglich 12 % der Flache
des Prozessorkerns, wobei seine eigentliche Ld@gké durch FullzellenF{ller Cells) um 34 %
ansteigt, im Gegensatz zu nur 10 % Flachenzuwaaihs $-Core.

0,451 mm
A

» Beschleunigung von bis zu 89,2

~
0,451 mm

12% der Flache

0,156 mm

T

IP-Header-Check S-Core

Abbildung 6-23: IP-Headercheck-Hardwarebeschleunigeim Vergleich zum S-Core
in einer 130-nm-Standardzellentechnologie (GDS-II-Bt)

Die von mir implementierte Spezialhardware bendggiglich acht Taktzyklen fur eine Uberpri-
fung deslP-Headersinklusive der Berechnung der Checksumme und kamrmmax. 1,7 GHz im
Typical Casebzw. 1,1 GHz imWorst Casebetrieben werden (130-nm-Standarzellentechnologie)
Dies ermoglicht 213 Mio. bzw. 138 Mitleadercheckpro Sekunde im Vergleich zu 921 k bzw.
2,39 Mio. Headercheckpro Sekunde, die vom S-Core-Prozessor bewaltigtlevekonnen. Dies
bedeutet somit eine rein funktionale Beschleunigumg 89,2 Typical Casg/ 57,7 (Worst Casg
bzw. 13,5, wenn die gleiche Taktfrequenz wie bemseBssor angesetzt wird [118].

Weiterfihrende Informationen zu der Leistungsfabigkles IP-Headercheck-Hardwarebeschleu-
nigers fur dedizierte Anwendungsszenarien werddfajpitel 7 und in [118][159][109][131] gege-
ben. Viele der in diesem Abschnitt angestelltenesuchungen und Methoden, wurden ebenfalls
auf die im Folgenden nur kurz vorgestellten, wemeHardwarebeschleuniger des GigaNetIC-
Systems angewendet und zeigten grof3tenteils ahpbshiive Ergebnisse bzgl. Flachenersparnis,
Leistungsaufnahmereduktion und Performanzerhdhung.
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6.4 Kostenanalyse am Beispiel einer Netzwerkanwendung

Die Vorgehensweise bei der Kostenbetrachtung umdsida ggf. anschlieBenden Systemoptimie-
rung wurde in Abbildung 3-3 vorgestellt. Im Folgendsollen die unterschiedlichen Losungen zur
Verarbeitung vonP-/Netzwerk-Paketen nach der geschilderten Vorgeteiss exemplarisch einer
Kostenbetrachtung nach Definition 9, Kapitel 3,annbgen werden, und zwar ahnlich der in Ab-
schnitt 7.7 geschilderten Anwendung und u. a. &uf zLivor realisierten Hardwarebeschleunigern
aufbauend.

Am Anfang der Kostenanalyse steht die FestlegumgZadfunktionenZF (vgl. Definition 6) der
einzelnen Kostenmal3& (vgl. Definition 5). Hierzu mussen die relevan@ewertungsmal3BM
(vgl. Definition 4) im Hinblick auf die Anwendunghd die damit verbundenen Randbedingunigen
(vgl. Definition 7) und Schranke8 (vgl. Definition 8) festgelegt werden. Diese bestien dann
sowohl die Gewichtungeg der ausgewéahlten Bewertungsmdd, in ZF als auch die Gewich-
tungen a,, a,,a; unda. der KostenmaReéK in der KostenfunktiorCF. Bei der Wahl der Ge-

wichtungen wird gemaf3 Abschnitt 3.1 folgender Zusemhang gewéhIth, :Zai =1, so dass

die relevantesten Bewertungsmd®d bzw. KostenmaR3é&K; mit dem groftem; bzw. a; bedacht

werden. Um einen einheitenlosen Kostenwert zu erhakind die Gewichtunges mit der rezip-
roken Einheit des jeweiligen BewertungsmaBbt versehen.

Die jeweiligen Werte der Bewertungsmd®d; der Realisierungsvariant&Vi (vgl. Definition 11)
missen ermittelt werden und ergeben nach Einsatzdie KostenfunktiorCFgy; letztendlich die
Kosten der jeweiligen Realisierung. Da der hierwatkelte Ansatz im Sinne dePareto-
Optimierung CF (RVi) =min! (vgl. Definition 10) eine Minimierung der Kostemngieht, ist

pareto

die Realisierung mit den geringsten Kosten alsreisprechendste Lésung anzusehen.

Zunachst gilt es also die Randbedingungen und Bangsmalie festzulegen. Im Falle der Funkiti-
on zur Prufung von Paketdaten (vgl. Abschnitt 613.3ibt es folgende Anforderungen, die nach
den vier Kostenmal3d?, A, T undF (vgl. Definition 5) aufzuschliisseln sind:

Die Anwendung ist relevant fir alle beteiligten deerkteilnehmer, sowohl mobile, als auch Hoch-
leistungssysteme im Kernnetzwerk, d. h. hier solltenn maoglich, naher definiert werden, wo das
System eingesetzt werden soll, da die Fl&&hmd die Leistungsaufnahniein Abhéngigkeit vom
Einsatzort unterschiedlich stark gewichtet werderme Priffunktion ist besonders rechenintensiv
und bearbeitet teilweise sehr zeitkritische Dasangdass die Performafiz in gewissen Grenzen
abhangig vom Einsatzort, eine wichtige Rolle eirmimDie Funktion ist fest definiert und andert
sich fur die aktuellen Protokolle nicht mehr, wasrdKostenmal3 Zukunftssicherheit bzw. Flexibili-
tat F eine geringe Gewichtung zuweist. Die Wiederventamkleit wird bei diesem Kostenmalf}
noch am starksten gewichtet, da davon ausgegangendass aufgrund der Standardisierung der
gegebenen Anwendung auch zuklnftige Systeme asd @imheiten aufbauen werden.

Beispielhaft sollen nun die Realisierungsvariarden PaketpriffunktioRV(PaketPrifung)ir ein
mobiles Endgerat fir u. a. hochpriore Datendie(std3. Voice over IP mittels der vorgestellten
Methode analysiert werden. Die Festlegung der &epeGewichtungen ist in gewissen Grenzen
sicherlich subjektiv und bedarf zumeist eingeherdieskussion seitens aller am Entwurfs- und
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Vermarktungsprozess beteiligten Stellen, dennossela sich bereits anhand grober Festlegungen
erste Abschatzungen fur potentielle Losungsvarratreffen.

Zunachst erfolgt die Festlegung der Zielfunktior®#n der einzelnen Kostenmald&, wobei die
jeweiligen Bewertungsmal®@M in additiver Form (3.4) miteinander verknupft wandéls Bewer-
tungsmalf fur die Leistungsaufnahfevird BMp = Py, gewahlt, also die dynamische Verlustleis-
tung. Die statische Verlustleistung wird in diesBusammenhang aufgrund der verwendeten Tech-
nologie vernachlassigt. Die dynamische Verlustlegt setzt sich aus den Leistungsanteilen der
eigentlichen VerarbeitungseinheRK), dem evtl. bendétigten Controlle€{rl), dem verwendeten
Speicher Mem) und der Kommunikationsstruktu€m zusammen. Es wird folgende Zielfunktion
(6.1) furP angesetzt:

ZF : P = Cdyn, PE |:F)dyn PE+ Cdyn CtrIDde,n Ctrl+ Cdyn Mepp dyn Me-r'ﬁ C dyumCD E;/n, Com+ Q.taD Fs)te
mit Cdyn, PE = O’ 7’ Cdyr; Ctrl = O' 2' Cdym Mem= C dyn Com= 0’ 05’ C & O

stat

(6.1)

Die eigentliche VerarbeitungseinheRE) geht mit der gréf3ten Gewichtung in die Zielfuoktiein,

ein evtl. zur Ansteuerung eines spezialisiertendidarebeschleuniger®E) bendtigter Controller
(Ctrl) wird weniger stark gewichtet. Er kann zusatzlichifgaben verrichten und wird deshalb
nicht zu 100 Prozent der Paketpriffunktion zugeetdim dem hier betrachteten Szenario wird der
N-Core als Controller fir den Hardwarebeschleuneiegesetzt.

Fur die Flache A wird die Zielfunktion (6.2) aufgeltt. Die FlacheA . fur die bendétigte Verarbei-

tungseinheit wird mit der hdchsten Gewichtung Vieese wohingegen sich die Flachen fur den ewtl.
bendtigten ControllerGtrl), den benétigten Speiché,,., und fir die zugrundeliegende Kommu-

Mem

nikationsinfrastrukturA . . bei diesem Szenario fiir die einzelnen Implememtigen kaum unter-

Com

scheiden und deshalb weniger stark gewichtet werden

ZF : A = CPE m\ PE + CCtrI m Ctrl + QVIemlA Mem+ CConjA Com
mit ¢, =0,8, ¢, = 0,1,G,.., = Coon= 0,05

om™

(6.2)

Fur die PerformanZ wird die Ausfihrungszeitex pe (vgl. Definition 18) der Verarbeitungseinheit
(PE) als Bewertungsmal} eingesetzt. Auch der Jittst ein relevantes Mal3 fur viele Netzwerksze-
narien, kann allerdings bei den hier vorgestelRelisierungsvarianten systembedingt vernachlas-
sigt werden. Auch der Durchsdix (vgl. Definition 19) ist ein weiteres wesentlichBewertungs-
mal} der Performanz. Er spiegelt die Leistungsfahigles gesamten Systems wider. Im Gegensatz
zu der zuvor genannten Verarbeitungszeit berickgichr zusatzlich die Leistungsfahigkeit der
Kommunikationsstruktur und die Speicherlatenz. Digst zu der in (6.3) angegebenen Zielfunkti-
on.

ZF:T:CFexPED-TexPE+CJD- fcd pmit cr,p=l, cF C5 0 (6.3)

<1

Tex

Im Zusammenhang mit dem Kostenmal3 Zukunftssichedmsv. FlexibilitatF werden folgende
BewertungsmalR8M bertcksichtigt: Die Wiederverwendbark&\V (vgl. Definition 36) ist fur
eine derart essentielle Funktion zur Prifung voteWNerkpaketen von besonderer Bedeutung. Der
Einsatz in allen Bereichen des Netzwerks heuteiméher Zukunft erfordert eine gute Portierbar-
keit der Realisierungsvariante auch auf neue Tdogiem. Aufgrund der Beschreibung in einer
Hardwarebeschreibungssprache lassen sich die datwor Hardwarebeschleuniger relativ einfach
auf andere Technologien portieren. Bei der reineftm@&reldsung Nl-Core SWist die Wiederver-
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wendbarkeit noch hoher einzustufen, da aufgrund Rlealisierung der Funktionalitat in der
Hochsprache C eine noch leichtere, plattformibéegrde Portierung maoglich ist.

Die ProgrammierbarkeG (vgl. Definition 37) nimmt in diesem Szenario ein@eniger wichti-
gen Stellenwert ein, da sich aufgrund der festegzigation des Algorithmus keine Anderungen
der Funktionalitat fur die etablierten Protokolleg&ben. Lediglich fur zukinftige Protokolle, die
ggf. zusatzliche Operationen erfordern, ware ewigges Mald an Flexibilitat vorteilhaft.

Ein weiterer Aspekt ist die Fehlertoleralfz (vgl. Definition 33), die flir massiv parallele $se

in zunehmendem MalRe an Bedeutung gewinnt, allesdiingdas hier betrachtete Szenario derzeit
noch von nur geringer Signifikanz ist. Die Fehleatanz, die das betrachtete System ermdglicht,
liegt in der softwaregestitzten Kontrollfunktionsd¥-Cores begrindet, der evtl. bei eigenem Fehl-
verhalten oder fehlender Rickmeldung seitens di@aedwarebeschleunigers eingreifen kann. Die-
se Madglichkeit ist allerdings nur ein einfaches tslit so dass keine hohe Bewertung bzgl. dieses
Gesichtspunktes gegeben werden kann. Die sichexuslilgen Betrachtungen ergebende Zielfunk-
tion ist in (6.4) definiert.

ZF :F = Gy DRy + CoglF oot ClF o mit €= 0,8, Co& 7= O (6.4)

Im Anschluss an die Definition der Zielfunktioneir fdie vier Kostenmal3e kann nun die Kosten-
funktion CFry(paketrriiungiizum oben geschilderten Anwendungsszenario aufijesterden. Die
eingesetzten Werte der Bewertungsmal3e jeder RmahgjsvariantdRV(PaketPrifung)ergeben
die spezifischen Kosten der jeweiligen Losung. Dagiante mit den geringsten Kosten reprasen-
tiert die vielversprechendste Realisierung. In Beauf die betrachteten Ansatze stellt sie eine-disk
rete pareto-optimale Auswahl (nach Definition 18j.d

Im Falle des oben geschilderten Anwendungsszenameden die Kostenfunktionen
CFRav(pakerraruny  (6-9) fur die einzelnen Realisierungsvariantergestellt. Die Festlegung der Ziel-

funktionsgewichtsfaktoren korrespondiert mit denfakderungen des Einsatzortes und priorisiert
PerformanzZT und Leistungsaufnahnt®, gefolgt von der Flach@. Die Flexibilitat F nimmt mit
einer Gewichtung von 0,05 in diesem Szenario noe eintergeordnete Rolle ein. Zusatzlich wird
aufgrund der differierenden GroRenordnungen dereémen Zielfunktionen eine Normierung aller
Zielfunktionen nach (3.10) vorgenommen.

a ZF: PRV( PaketPriifuny i a ZF: A RV _PaketPriifupg i
P . A .
Max(ZF :Pay( paketprituny ) Max€F A ry pacerprinung)

CI:RV( PaketPrifuny i:

ZF:T St ZF:F o
RV( PaketPrifuny i +a RY PaketPrufupg i (6 5)

+a. -
male: F R(/PaketPrufung)

T .
maX(ZF 'TRV( PaketPrifuny )

mita, =0,35,a,= 0,2,a;,= 0,4und.= 0,05

Tabelle 6-5 zeigt die Werte fir die genannten Béwrgysmalde der einzelnen Realisierungsvarian-
ten. Es wurden als Grundlage fur die Analyse didlischnitt 6.3.1.5 dargelegten Synthesewerte
des Hardwarebeschleunigers und die in Tabelle 8c8e 224 prasentierten Werte aller weiteren
Systemkomponenten verwendet. Ausgangspunkt desmdeedystems ist ein N-Core, entweder als
Controller Ctrl) zur Ansteuerung eines Wishbonebus-gekoppeltemaebeschleunigersMB
HW Acc vgl. Abschnitt 7.7) oder als VerarbeitungseiniBiE / N-Core SWnebst Speicher und
Wishbonebus. Angenommen wird weiterhin, dass, aujdes Anwendungsszenarios, nur ein Pro-
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zessor und ein Hardwarebeschleuniger am Bus akiilv Bs gelten somit die Werte fir Kommuni-
kation und Kalkulation aus Abbildung 7-21 a), woheidie 64-Bit-Varianten aufgrund des 32-Bit-
breiten Busses gleiche Taktzahlen fir Kommunikatadrer entsprechend geringere Werte zur Kal-
kulation angesetzt werden (vgl. Abschnitt 6.3.14).den Daten der Hardwarebeschleuniger wer-
den zusatzlich die Werte défrapper(vgl. Tabelle 4-5) hinzugezahlt, wobei zu bemerlgtndass
die 64-Bit-Variante ca. 1,5 mal so grol3 wie dieBl2Variante ausfallt. Zur Betrachtung der Ma-
ximalfrequenzen des Hardwarebeschleunigers wurgethgtisch angenommen, dass der N-Core
bei gleichem Flachenbedarf ebenfalls mit den bietneien Frequenzen betreibbar ist. In der Reali-
tat musste auf eine andere CPU als Controller kgegriffen werden, die mit der jeweiligen Fre-
guenz noch zu betreiben ist, vgl. Tabelle 2-3.

Tabelle 6-5: Auflistung der kostenfunktionsrelevanén Daten der Realisierungsvarianten
und der resultierenden Kosten

Bewertungsmaf ||
ReaIiSierungsvariante den,PE den,Ctrl den,Mem den.Com APE ACtrl AMem ACorn TTex.PE I:WV FPG FFT Kosten
MmW] | [mW] | mW] | [mW] |{[mm?] |[mm? [[mm?] |[mm?] || [us] [{[%] [[%]][%]

RV 1 32 Bit / 200 MHz|| 1,300] 10,800] 35,600] 0,010][ 0,030] 0,160] 0,466] 0,050][ 9,295]| 80] 5] 5| 0,239
RV 2 64 Bit / 200 MHz|| 2,000] 10,800] 35,600 0,010|| 0,050] 0,160] 0,466 0,050 3,675|| 80] 5] 5| 0,243
RV3 |E 32 Bit/ 333,3 MHz|[ 2,400] 17,998] 59,327] 0,010 0,031f 0,160] 0,466] 0,050| 5,578[ 80[ 5| 5| 0,271
RV 4 § 64 Bit / 333,3 MHz|[ 3,600] 17,998 59,327[ 0,010|| 0,054] 0,160] 0,466 0,050 2,205|| 80] 5] 5| 0,292
RV 5 32 Bit/ 556 MHz|[ 4,100] 29,484] 97,188] 0,010l 0,034] 0,160] 0,466] 0,050]f 3,344][ 80] 5| 5| 0,337
RV 6 64 Bit / 500 MHz|[ 5,500] 27,000] 90,780] 0,010 0,059] 0,160] 0,466] 0,050| 1,470] 80] 5] 5| 0,357
RV 7 32 Bit / 200 MHz|| 2,400] 9,000] 10,200]  0,006|| 0,020] 0,120] 0,466] 0,020 9,295|| 80] 5] 5| 0,210
RV 8 64 Bit / 200 MHz|| 3,200 9,000] 10,200 0,006|| 0,030] 0,120] 0,466] 0,020 3,675|| 80] 5| 5| 0,205
RVY |E 32 Bit / 333,3 MHz|[ 4,300] 14,999] 16,998] 0,006 0,023] 0,120] 0,466] 0,020| 5,578| 80[ 5| 5| 0,236
RV 10|18 64 Bit / 333,3 MHz|| 6,000 14,999 16,998 0,006| 0,034 0,120] 0,466 0,020] 2,205|| 80] 5] 5| 0,251
RV 11 32 Bit / 546 MHz|| 7,400] 24,570 28,356 0,006|| 0,031] 0,120] 0,466] 0,020 3,405|| 80] 5| 5| 0,298
RV 12 64 Bit / 510 MHz|| 9,800] 22,950 28,356] 0,006|l 0,053] 0,120] 0,466] 0,020 1,441] 80] 5| 5| 0,332
RV 13| [ N-Core (SW) 200 MHz|[ 10,800 0,000] 35,600]  0,010] 0,160 0] 0,466| 0,050|[97,475|[ 95]100] 10| 0,744
RV 14| S[N-Core (SW) 333,3 MHz|[ 17,998 0,000] 59,327]  0,010|| 0,160 0] 0,466] 0,050||58,491]] 95[100] 10| 0,668
RV 15|9[ N-Core (SW) 556 MHz|| 30,024] 0,000] 98,968] 0,010|[ 0,160 0] 0,466] 0,050(/35,063| 95[100] 10| 0,712
RV 16] [ N-Core (SW) 200 MHz|| 9,000] 0,000] 10,200] 0,006|[ 0,120 0] 0,466| 0,020|[97,475][ 95]100] 10| 0,667
RV 17| £[N-Core (SW) 333,3 MHz[ 14,999 0,000| 16,998] 0,006 0,120 0] 0,466| 0,02058,491] 95]100] 10| 0,568
RV 18]°[ N-Core (SW) 556 MHZ|[ 25,020 0,000] 28,356] 0,006 0,120 0] 0,466] 0,020|[35,063] 95]100] 10| 0,574

Werte beziehen sich auf maximal realisierbare Taktfrequenz der Verarbeitungseinheit (PE),
Werte des N-Cores wurden hypothetisch hochgerechnet

Abbildung 6-24 zeigt die sich nach (6.5) ergebendesten sowie deren Zusammensetzung anhand
der Anteile der einzelnen Zielfunktionen fiir alledlisierungsvarianten. Fir die oben aufgestellten
Randbedingungen zeigt sich das Systw 8als das kostenoptimale in diesem Vergleich. Auf-
grund der relativ hohen Anforderungen an Performard der zugleich geringen Leistungsaufnah-
me liefert die Kostenfunktion die geringsten Kostén ein System mit dem schnellen 64-Bit-
Hardwarebeschleuniger bei gleichzeitig geringstektffequenz von 200 MHz in der 90-nm-
Technologie. Die hoheren Taktfrequenzen erhéheikdsten fur die Verlustleistung, 32-Bit-breite
Beschleuniger liefern weniger Performanz. Die Safewvbasierten Loésungen sind sowohl in puncto
Verlustleistungsaufnahme als auch bzgl. der Pedammicht konkurrenzfahig.

Abbildung 6-25 stellt die Kosten fur ein Anwendusgsnario mit anderen Randbedingungen dar:
Die Performanz wurde hier als die dominierende @ktaristik ausgewahlt, die Gewichtungen, die
dieser Analyse zugrunde liegen, Iau'rafB =0,05, a,= 0,05,a.|_ = 0,85 urmiF = 0,. Die Ge-

wichtungen innerhalb der einzelnen Zielfunktionemreen identisch belassen. Ein derartiges An-
forderungsschema ware reprasentativ fir z. B. Korapten des Zugangsnetzwerks (vgl. Abschnitt
7.6), wobei ggf. hdhere Anforderungen an die Feébleranz bestinden. Unter den neuen Bedin-
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gungen liefert ein Kostenvergleich die RealisiesuagianteRV 10als ,pareto-optimale* Losung.
Dieses System bietet eine hohe Performanz bei ratteverlustleistung. Wirde ein System mit
nahezu maximaler Performanz gesucht und wirdenGaéiwichtungen der Kostenfunktion zu

ap=a,=ap= 0,01 unctr.l_ = 0,9(gesetzt, so qualifizierte sidkV 12als optimaler Kandidat.
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Abbildung 6-24: Kostenvergleich der unterschiedlickn Realisierungsvarianten zur Paketprifung,

bei einer Wahl der Gewichtungen zua'P =0,35, aA =0, 2,a_|_ = 0,4 undF = 0,(

Abbildung 6-26 zeigt die Ergebnisse einer andengeziikation mit den Gewichtungen der Kos-

tenfunktion ap=ar =0,49 uncb'.l_ =a,= 0,0, wie sie fur sehr zuverlassige Systeme mit be-

schrankten Ressourcen wie z. B. Satelliten odetrdiehsonden zutreffen konnten. In diesem Fall
waren Performanz und Flachenbedarf den beiden emdéostenmalden stark untergeordnet, und
die gegebenen Anforderungen wirden ¥ 16am besten erfillt, einem prozessorbasierten Sys-
tem mit geringer Frequenz in der moderneren Tedg®l Zusatzliche Impulse kdnnte die Einbe-
ziehung der Fertigungskosten fiir die jeweilige 8tadzellentechnologie geben, diese durfen aber
hier aus Grinden der Geheimhaltung nicht genanrdeme

In diesem Abschnitt wurde anhand beispielhafterlysen die Anwendung des kostenfunktionsba-
sierten Auswahlverfahrens (vgl. Kapitel 3) zur Bastung eines diskreten pareto-optimalen Sys-
tems (nach Definition 13) fur ein spezifizierteswandungsszenario vorgestellt. Die Bewertung
mit Hilfe der Kostenfunktionen unterstitzt den ®ysarchitekten, aber auch den kaufmannischen
Bereich bei der Auswahl eines ressourceneffiziefdetwurfs. In den gezeigten Untersuchungen
erscheinen die gefundenen Losungen nach kurzeugsgin bereits als die plausibelsten, dies ist
aufgrund der gewollten Einfachheit des Beispiethnanders zu erwarten. Bei komplexeren Sys-
temen, wie z. B. Chip-Multiprozessoren mit deutlinehr Komponenten und diffizileren Anforde-

rungen liegen die Losungen selten so auf der Haedade hier kann eine formale Bewertung ihre
Leistungsfahigkeit beweisen. Eine automatisiertev®&ung mit Hilfe dieser Methode ware eben-
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falls eine sinnvolle Erweiterung des in Abschnit YorgestellterDSLAM-System-Explorsr Die
Integration der notwendigen Mal3nahmen gestaltetezsidem relativ einfach.
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Abbildung 6-25: Kostenvergleich der unterschiedlicken Realisierungsvarianten zur Paketprifung,

bei einer Wahl der Gewichtungen zuaP =0, 05, aA = 0,05,a_|_ = 0,85 urmJF = 0,
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Abbildung 6-26: Kostenvergleich der unterschiedlickn Realisierungsvarianten zur Paketprifung,

bei einer Wahl der Gewichtungen zuap :a'F =0,49 uncb'_l_ = a'A: 0,0
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6.5 Implementierte anwendungsspezifische Hardwarebesakliniger

Im Folgenden werden wesentliche Erweiterungen dedWare, die im Rahmen dieser Arbeit fur
die GigaNetIC-Architektur, zumeist fur netzwerksiiszhe Anwendungsszenarien (vgl. Kapitel 7)
entwickelt wurden, kurz aufgelistet.
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Abbildung 6-27: Ubersicht der implementierten Erweterungen zur Performanzsteigerung
des GigaNetlC-Systems fir die 130-nm-Standardzelléechnologie

Abbildung 6-27 zeigt eine Auswahl der vorgenommeBemeiterungen, angefangen bei der Erwei-
terung der Prozessorkerns durch zusatzliche Furddttaten (vgl. Abschnitt 4.3.2), die zunachst
keine Beschleunigung hervorrufen, aber die Verwark#it des Systems deutlich erhéhen.

Im nachsten Schritt kommen dann die in AbschnRt\@rgestellten Instruktionssatzerweiterungen
hinzu. Diese erhéhen den Flachenbedarf nur margieaindégen aber die Leistungsfahigkeit fur die
betrachteten Anwendungen bis zu 25 % zu beschlennig

Ein weiteres Mittel zur Erhdhung der Verarbeituregmthwindigkeit stellen die eng-gekoppelten
Hardwarebeschleuniger dar. Im Rahmen dieser Avagitlen mehrere Hardwarebeschleuniger zur
Generierung und Prufung von unterschiedlich@RQCyclic Redundancy CheeRrifsummen
entwickelt. Mit der eng-gekoppelte@RGHardwareerweiterung wird eine Beschleunigung um de
Faktor 15 gegenuber einer reinen Software-Impleimentg erzielt [116]. In [118] konnte mit Hilfe
einer neuen Beschleuniger-Architektur fir CRC8 @RIC32 sogar eine Geschwindigkeitssteige-
rung gegentber der Prozessorimplementierung vdme1 sogar 437 bei loser Kopplung und ma-
ximaler Betriebsfrequenz erreicht werden.

Hardwarebeschleuniger dieser Stufe mit einer léSgpplung an das System, mit ggf. sogar deut-
lich hoherer Betriebsfrequenz, erzielen in der Regstaus grol3ere Beschleunigungen, bendétigen
jedoch auch mehr Flache und Entwicklungsaufwanérzdi zahlen einP-Filter-Modul zur Pri-
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fung spezifischer Charakteristika in IP-Paketer, lakreits im vorigen Abschnitt vorgestellte 1P-
Headercheck-Hardwarebeschleuniger, Module zur Vend Entschlisselung nach dem
AESAdvanced Encryption Standgfferfahren, die ebenso fir sicherheitsrelevantedw einge-
setzt werden wie die bereits beschriebenen Instmsgatzerweiterungen zur Beschleunigung von
IPSecProtokollen (vgl. Abschnitt 6.2.4). Schliel3lich wle noch ein inhaltsadressierbarer Speicher,
CAM (Content Addressable Memoryealisiert, der besonders zur Beschleunigung Adress-
raumzugehorigkeitsiberprifungen (Beschleunigungh280 verglichen mit einer reinen Software-
|6sung) beitragt [164].

Viele dieser weniger flexibel, jedoch hoch-perfontgan Einheiten sind im Zusammenhang mit der
Analyse des IP-DSLAM-Referenzbenchmarks [141][148{standen und dienen zur weiteren Be-
schleunigung rechenintensiver Funktionen diesezWeatkanwendung. Die Erstellung, Verifikati-
on, Optimierung und anschlielBende CharakterisiexergHardwareerweiterungen bzgl. des An-
wendungsszenarios erfolgte mit der in den Kapitelnd 6 vorgestellten GigaNetIC-Werkzeug-
kette.

Aufgrund der Vielzahl der hier gewonnenen Ergelmis$nnen in diesem Rahmen keine weiteren
Ausfuhrungen zu den einzelnen Modulen erfolgen. éinen Eindruck von der Performanzsteige-
rung durch die einzelnen Hardwarebeschleuniger demch die Erweiterungen fir das Gesamtsys-
tem vermitteln zu kénnen und Auswirkungen von Systedifikationen bzw. von Lastveranderun-
gen schnell abschatzen zu kénnen, wurde ein sfEzihalyse- und Visualisierungswerkzeug, der
DSLAM-Explorerentwickelt. Dieses Werkzeug wird in Abschnitt defaillierter vorgestellt.

Die letzte Stufe der Beschleunigung ist der Einsd¢r parallelen Struktur der GigaNetIC-
Architektur. Dies kann mehrere Prozessoren innbreates Clusters ggf. nebst dem realisierten
Multiprozessorcache (vgl. Abschnitt 6.7) bedeutater aber clustertibergreifende Parallelitat unter
Verwendung eines geeigneten Programmiermodells 4/5) und schliel3t ggf. die Nutzung parallel
instanziierter Hardwarebeschleuniger mit ein. Aesaly zu diesen Aspekten der Beschleunigung
innerhalb der GigaNetIC-Architektur werden in [1480][118][115][109][131][113], in Abschnitt
6.7 und in Kapitel 8.3 angestellt.

6.6 Optimierungspotential der Kommunikationsinfrastrukt ur

Die GigaNoC-Kommunikationsinfrastruktur der GigaKefArchitektur lasst sich ebenfalls auf das
jeweils angestrebte Anwendungsszenario hin optanieleben den allgemein tblichen Methoden
zur Verlustleistungsminimierung wie z. B. Frequennd Spannungsskalierung (vgl. Abbildung
6-3) sind auch systemspezifische MaRnahmen moditdilt das zukiinftige Anwendungszenario
besonders hohe Anforderungen an Bandbreite undhtater Ubertragungswege, so lassen sich z.
B. die Flitbreite und oder die Anzahl der Ports 8esitch-Boxen erhéhen (vgl. Kapitel 4). Auch die
FIFO-Tiefe der Eingangsports konnte deutlich erivaéitden, um etwaige Spitzen im Datenverkehr
abpuffern zu kdénnen. Auf Clusterebene kann zur Mierung der Busblockierung bzw. zur Erho-
hung des Durchsatzes sowohl bei der Wishbone-uals bei der AMBA-Realisierung die Daten-
breite erhoht werden oder bei haufiger Interprozgé@&snmunikation ggf. auf die AMBA-Switch-
Matrix-Realisierung zurtckgegriffen werden. Im Ealler Verlustleistungsreduktion ergibt sich
neben den genannten Mdglichkeiten noch eine weitheedie Anforderungen unterschiedlicher
Datenstrome innerhalb des Chip-Multiprozessors @uasnDie Uberlegung basiert auf dem Phano-
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men, dass die Signalibertragung Uber langere Qista(so genannteong Line$ mit Hilfe parallel
zueinander gefihrter Leitungen (in der Darstellatgy Bus bezeichnet) in der betrachteten Stan-
dardzellentechnologie deutlich mehr Verlustleistinegleutet bzw. Energie bendtigt, als wenn die
Daten seriell Uber eine Leitung Ubertragen werddaser Zusammenhang ist in [165] detailliert
dargelegt, wo ferner Koppelkapazitaten zwischenailerelnen Bussignalen und benachbarten Me-
talllagen sowie die eigentliche Leitungskapazititicksichtigt werden. Besonders auf den héheren
Metalllagen machen sich geometriebedingt die Kdmzitaten bei der parallelen Ubertragung
haufig besonders bemerkbar. Diese Lagen (in degeéilirten Beispiel betrifft dies vor allem die
Metalllagen 7 und 8, da diese fir dieng LinesVerwendung finden) werden fir die Inter-Switch-
Box-Verbindungen benétigt, die, wie in Kapitel 4fgereigt, massiv paralf@l ausgefiihrt sind.
Sollte es in Abhangigkeit vom jeweiligen Anwendusggnario haufig Datenpakete geben, die eine
geringere Ubertragungsgeschwindigkeit bzw. eineeh@latenz tolerieren, so konnte ein bereits
vorgesehener serieller Ubertragungsmechanismusdeimgiche Reduktion der Verlustleistung be-
deuten. Hierzu wirde eine oder eine kleinere AnzahlLeitungen verwendet, wobei bei der Ver-
wendung mehrerer Leitungen diese immer durch emnggenutzte voneinander getrennt waren, um
so die Kopplung méglichst klein zu halten. So wiwrdesderpriore Datenpakete seriell bzw. partiell
seriell Ubertragen, was gerade im Hinblick auf ldistungsfahigkeit des GigaNoCs sicherlich fur
viele Bereiche ausreichen wirde.
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Abbildung 6-28: Verlustleistungsoptimierung der Kommunikationsinfrastruktur bei der Ubertragung nieder p-
riorer Daten im Hinblick auf eine 130-nm-Standardzdlentechnologie

Abbildung 6-28 verdeutlicht die Verlustleistungsaperung der Kommunikationsinfrastruktur bei
der Ubertragung niederpriorer Daten im Hinblick a&irie 130-nm-Standardzellentechnologie. In
dem Diagramm ist der Energiebedarf fiir die Ubertragvon 64 Bit Uiber eine einfache Leitung
verglichen mit einer Ubertragung Uiber einen 64tBditen Bus mit minimal zulassigem Abstand
der Leitungen in Abh&ngigkeit von der Lange der ithagungsstrecke und der Metallebene aufget-

> Die derzeitige Implementierung verwendet ca. 2@M&leitungen zwischen zwei Ports benachbartetcwBoxen.
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ragert®. Bei der Berechnung wurden die anfallenden Kopgekitaten fiir die untersuchte Techno-
logie nach Herstellerangaben bertcksichtigt. Degrgiebedarf ist speziell im Bereich einer Lei-
tungslange von 2 bis 3 mm besonders pragnant ustthtlebesonders zu bertcksichtigen, da diese
Leitungslangen nach dem derzeitigéloorplan (vgl. Abschnitt 8.2.3) in der Grof3enordnung der
Inter-Switch-Box-Verbindungen liegen. Die Ubertragwon 64 Datenbits (iber eine parallele Bus-
struktur, wie sie derzeit beim GigaNoC vorgesels¢nbienotigt auf der obersten Metalllade(all

8) 44,58 pJ verglichen mit lediglich 10,35 pJ bei sleriellen Variante auf der gleichen Metalllage.
So lieRe sich fur niederpriore Daten bei geringeslastung des NoCs das bis zu 4,3-fache an
Energie einsparéh Betrachtet man die Energie, die notwendig ist,eimNAND2-Gatter mit ei-
ner Treiberstarke von 2 der gleichen 130-nm-Statmdientechnologie umzuladen, so liegt diese
zwischen 0,009 und 0,013 pJ. Dies liegt fast vigif@8nordnungen unter der Energie, die fur die
Ubertragung der Nettodatenmenge eines Flits undddiit verbundenen Umladevorgange der
Koppelkapazitaten der Leitungen aufgebracht werdass. Der nicht zu vernachlassigende Anteil
der Kommunikation am Gesamtenergiebedarf wird veedeutlicht.

Mit Hilfe der in Kapitel 5 vorgestellten Entwicklgsumgebungen der GigaNetlC-Architektur fir
die SoC-Ebene lassen sich die Bandbreitenanforgeruder Anwendungen komfortabel analysie-
ren. Die entsprechenden Pakettypen werden gekemmetiund kdnnen mit Hilfe dieser langsame-
ren aber energieeffizienteren Ubertragungsmettmd®, durch Setzen eines bestimmten Steuerbits,
mit Hilfe von Instruktionsflits (vgl. Abschnitt 4.2.1) transportiert werden. In [166] wird ein ahnli
cher Ansatz aufgezeigt, der eine Reduktion desdtmedarfs um mehr als 30 % ermdglicht, ohne
einen nennenswerten Verlust der Ubertragungskaiazitverzeichnen. Eine Bandbreitenreduktion
ist hingegen bei dem hier vorgestellten Ansatz lsstvgewahlt und erlaubt deshalb die weitaus
hohere Reduktion des Energiebedarfs von mehr a36.76

Eine weitere Moglichkeit, eine effizientere Kommkation zu ermdglichen, ist die Realisierung
einer global asynchronen, lokal synchron@A[LS Kommunikationsinfrastruktur, die zukunftig in
das GigaNoC-On-Chip-Netzwerk einflieRen wird. Himeh kénnen unterschiedliche Taktdoménen
sowie lokal unterschiedliche Versorgungsspannuifgettage Islandgrealisiert werden, was eben-
falls zur Verlustleistungsminimierung beitragt.

6.7 Optimierung im Hinblick auf die Speicherhierarchie

Auf Clusterebene lasst sich die GigaNetlC-ArchibeKtir eine Reihe von Anwendungen durch die
Integration des in Abschnitt 4.4.2 beschriebeneritiptozessorcaches beschleunigen. Inwieweit
sich eine Verwendung dieser Hardwareoption furjda®ilige Einsatzgebiet eignet, lasst sich mit

“® Fur die Schaltvorgange werden di¢orst-CaseBedingungen angenommen, d. h. die umzuladendematiapen
werden mit jedem neuen Takt umgeladen. Beim Buslevefir benachbarte Leitungen gegensétzliche Umtadén-
ge angesetzt, um die maximal bendétigte Energie Zransport von Nachrichten zu ermitteln.

“"In diesem Zusammenhang ist zu erwahnen, dassstleisiungsanteile der treibenden Ausgangsregisterachlas-
sigt werden, da diese im Sinne der Schalthdufigkekeinen abweichenden Beitrag liefern wirden. ¢lezti der
Mehraufwand durch die zusatzliche, allerdings dé&in ausfallende Steuerlogik wére ggf. noch in Kedkulation
einzubeziehen.
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den in Kapitel 5 vorgestellten Simulationsumgebungereits im Vorfeld komfortabel ermitteln.
Sowohl die SystemC-Umgebung SIMPLE, als auch di®©\mgebung PERFMON wurde voll-
standig fur die Analyse des Multiprozessorcachesgalegt. Ferner gibt es eine prototypische
FPGA-Realisierung fur das Rapid-Prototyping SyskaiPTOR2000 [113].

Abbildung 6-29 zeigt die Eingriffe in das Stand@ayaNetlC-System, die notwendig sind, um es
in die Multiprozessorcachevariante zu transfornrmer®uf SoC-Ebene sind keine Veranderungen
notwendig, auf Clusterebene wird das lokale Bussystiurch die leistungsfahige AHB-Switch-
matrix ersetzt, die fur die GigaNetlC-Multiprozessaches benotigt wird. Das N-Core Subsystem
verandert sich insofern, als die in Abschnitt 4daPgelegten AHB-Schnittstellen integriert werden.
Weitere Details zu den Kennwerten dieser Implensemtig werden in Abschnitt 8.2.2 gegeben.

& 0

oot
\9‘0 \)’

Abbildung 6-29: Transformation vom busbasierten GigNetIC-System zur Variante mit
GigaNetIC-Multiprozessorcache und einer AHB-Switchnatrix auf Clusterebene

Abbildung 6-30 verdeutlicht die Mdoglichkeiten zédigher Kommunikation im GigaNetIC-
Multiprozessorcachesystem. Diese parallelen Tramsterden u. a. durch den Einsatz der AMBA-
Switchmatrix ermdglicht und helfen, die lokale Ohi&Kommunikation auf Clusterebene im Ver-
gleich zu einem einfachen Bussystem deutlich zgHlesnigen. In Abbildung 6-30 sind folgende,
simultan ablaufende Transfers dargestel) kennzeichnet einerSnoopingZugriff von Ca-
che Nr. Q (2) stellt einen Zugriff vorN-Core 1auf den Communication-Controller dar, &) han-
delt es sich um einen Zugriff auf Daten, die sielelits imCache Nr. lbefinden und durcbirect-
Data-Intervention(vgl. Abschnitt 4.4.2) in de@ache Nr. Zransportiert werden, und) beschreibt
einen Lesezugriff voN-Core 3auf den gemeinsamen lokalen Speicher des Clusters.
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In [113] haben wir eine Reihe von Anwendunfeém Hinblick auf den Einsatz des Multiprozes-
sorcaches untersucht. Hierbei handelt es sich dowoHJniversalanwendungen wie dBirysto-
neBenchmark, um die SortieralgorithmeBubble und Quicksortund um einen Benchmark aus
der Netzwerkdatenverarbeitung. Im Rahmen der Aealygurde eine Vielzahl von Parametern va-
riiert. Hierzu zahlen die Art der CachearchitekiBplit oderUnified), die Assoziativitat (2, 4 und
8), die Anzahl deCachelinespro Weg (32, 64, 128 oder 256), die Weite einech@ane (32, 64,
128 oder 256 Bit) und die Zugriffslatenz auf deruptspeicher (0, 5, 10 oder 20 TaKkfeyusatz-
lich wurde zum Vergleich eine Architekturvariantane Cache ausgemessen. Die Simulationen
wurden sowohl mit SIMPLE (vgl. Abschnitt 5.2) alsca mit PERFMON (vgl. Abschnitt 5.3)
durchgefuhrt. Obwohl die Abweichungen der Ergelmiasn SiIMPLE zur exakten Ausfiihrung mit
PERFMON nur im einstelligen Prozentbereich liegearde die sehr zeitintensive HDL-Simulation
vorgezogen. Mit Hilfe der in Abschnitt 5.4 vorgdien MultiSim-Entwurfsraumexploration konn-
ten die Simulationslaufe vollautomatisch ablauf®ie ermittelten, exakten Laufzeitergebnisse
wurden auf vier Arbeitsplatzrechner (P4, 3 GHz HiT InGB Arbeitsspeicher) verteilt und benétig-
ten eine Simulationslaufzeit von ca. je 4 WocheiesP Zahlen verdeutlichen den immensen Zeit-
aufwand, der fur die detaillierte HDL-Simulationnagigt wird. Aufgrund der mittlerweile erreich-
ten Genauigkeit der SIMPLE-Umgebung werden soldwanodige Simulationen immer seltener
notwendig sein. Zur Entwurfsraumexploration wirdden meisten Fallen die SIMPLE-Umgebung
ausreichend genaue Werte liefern.

Snooping
- Slave

COM- COM COM COM
Buffer Buffer Buffer Buffer

Abbildung 6-30: Parallele Transfers in der AMBA-Matrix auf Cluster-Ebene

8 Diese Auswahl von Anwendungen wird ebenfalls beiteren Analysen der GigaNetIC-Architektur, spdziei
Hinblick auf die Ressourceneffizienz, in AbschBit® verwendet.

*9 Die Zugriffslatenz auf den Hauptspeicher ist mitdimal 20 Takten eher gering gewéhlt, allerdings @egebenhei-
ten des GigaNetlC-Systems angepasst.
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Abbildung 6-31 zeigt die Ergebnisse der detaidirrBenchmarksimulation mit PERFMON. Die
dargestellten Werte wurden auf die Standard-Cactfejoation (256 Cachelines, 128 Bit breit,
Assoziativitat von 2Unified-Cacheund ein 32-Bit-breites Businterface, 250 MHz) ni@ Zum
Vergleich sind ebenfalls Flachenbedarf und Leisswegte fiur ein System ohne Cache, aber mit
gleicher Latenz zum Hauptspeicher, in dieser Battang sind es zehn Takte, aufgetragen. Es ist zu
beachten, dass diese Variante nicht zwangslaugigndAbschnitt 4.2.4 beschriebene Wishbonebus-
Architektur widerspiegelt, da hier normalerweisie &aten im lokalen SRAM des N-Cores vorge-
halten werden und dieser eine Latenz von zwei Taktsitzt. Sollten die Daten jedoch vom Spei-
cher einer benachbarten Switch-Box geholt werdesseri, so wirde sich eine vergleichbare La-
tenz ergeben, vgl. Tabelle 4-6. Es sind jeweilsTadends fur vier weitere markante Varianten der
insgesamt 2716 untersuchten Cachekonfigurationigyeaeichnet.
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Abbildung 6-31: Flachenbedarf vs. Performanz von GjaNetIC-Cluster-Konfigurationen fur ausgewahlte
Benchmarkszenarien, normiert auf die Standardcachebnfiguration

Die angesetzten Parameter der untersuchten Vaniardgeden in Tabelle 6-6 aufgezeigt. Die konk-
reten Messwerte der in Abbildung 6-31 gezeigtereténichungen sind Tabelle 6-7 zu entnehmen.

Tabelle 6-6: Ressourcenbedarf der untersuchten Caehealisierungen in 90-nm-Standardzellentechnologie

. . Flache . .
. CachelinegréRle . e Split- . Taktperiode Leistungsaufnahme
Variante [Bit] Tiefe Assoziativitat Cache Je[n(i;czf;e ns] @250MHz [mW]
Kleine Cachelines 64 256 2 nein| 0,61 4,16 136,79
Split-Cache 128| 256 2| jal 1,114 4,08 276,13
Hohe Assoziativitat 128 256 4 nein| 1,31 4,48] 376,18
Wenige Cachelines 128| 128 2| nein 0,58} 3,92 164,87
Standard 128| 256 2| nein 0,73} 4,1 180,99

Bei den Analysen zeigt sich, dass durchweg alleaviten des GigaNetlC-Systems mit Multipro-
zessorcache deutlich leistungsfahiger sind, alsR#ialisierung ohne Cache, allerdings zu einem
nicht zu vernachlassigenden Preis in Form einashldverdopplung bis hin zu mehr als einer Ver-
dreifachung der Flache bei der Variante mit hohgsoXiativitat. Die Analysen zeigen, dass bereits
relativ geringe Variationen der Cacheparameter hobik Auswirkungen auf die Leistungsfahigkeit
und die Ausfiihrungsgeschwindigkeit einzelner Anwergen haben kdnnen. So zeigt z. B. die
Verwendung der Variante mit halbierter Anzahl dacRelines dennoch einen Geschwindigkeits-
zuwachs um den Faktor 4,5 bei der VerarbeitungBidsblesorAlgorithmus. Dies wird erreicht,
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obwohl die Flache um 11 % geringer ist als die $Standardvariante. Allerdings zahlt dg@ubble-
sort-Algorithmus wie auch ddPHC-SmalBenchmark zu den beiden untersuchten Anwendungen,
die weniger von den hier eingestellten ParametesnGhches profitieren. Bei beiden Anwendungen
ist die zeitliche Lokalitat relativ gering, d. hs enissen haufig neue Daten nachgeladen werden.
Dieses Phanomen ist bei den anderen Benchmarkgevestark ausgepragt, so dass der Geschwin-
digkeitszuwachs weit hoher liegt. So lassen sicttldulen Einsatz deBplit-CacheVariante der
QuicksortAlgorithmus und debhrystoneBenchmark um mehr als 22,8- bzw. 20,8-fach besehle
nigt verarbeiten.

Tabelle 6-7: Kosten-Nutzen-Analyse verschiedener €hekonfigurationen relativ zur Standardkonfiguration

) ) ) relative Performanz
Konfiguration Chipflache
IPHC-Small | IPHC-Medium JIPHC-Large Puicksort Hubblesort D] hrystone
Standard Cachekonfiguration 100% 100% 100% 100% 100% 100% 100%
Kleine Cachelines 91% 64% 69% 71% 98% 451% 108%
Split-Cache 130% 76% 91% 97% 104% 469% 114%
Hohe Assoziativitat 146% 110% 101%| 101% 100% 451% 98%
Wenige Cachelines 89% 100% 100% 99% 100% 451% 95%
Kein Cache, nur SRAM 43% 22% 8% 7% 5% 21% 5%

Abbildung 6-32 zeigt die Energieersparnis auf, gleh flr die einzelnen Benchmarks unter Ver-
wendung der Standard-Cachevariante erzielen lisder Standardausfihrung bendtigt die Cache-
variante teilweise 73 % weniger Energie als dagedyohne Cache. Allerdings gibt es auch An-
wendungen, wie z. BPHC-Small(+18,1 %) odeBubblesort(+13,9 %), fur die sich die Standard-
variante weniger gut eignet. Gleichwohl lassen sigbh hier weitaus héhere Performanzsteigerun-
gen und Energiereduktionen mit anderen Varianten@igaNetlC-Multiprozessorcaches erzielen,
vgl. Tabelle 6-7.
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Abbildung 6-32: Energieersparnis durch Verwendung @&s GigaNetlC-Multiprozessorcaches

fur ausgewéahlte Anwendungen

Die Analysen zeigen, dass zum einen eine interiSiaduation des zukiinftigen Anwendungsszena-
rios, sollte dies bereits vor der Chiprealisierdsgkannt sein, sehr ratsam ist. Die GigaNetIC-
Architektur stellt deshalb eine Vielzahl von Méglkeiten zur Verfigung, um durch geeignete Pa-
rametrisierung eine maoglichst optimale Systemkamfgion flr die angestrebten Einsatzzwecke
bereits in einer frihen Entwurfsphase zu erkenmgh,Kapitel 5. Zum anderen zeigen die anges-
tellten Analysen das Potential des GigaNetIC-Multggssorcaches zur Beschleunigung von An-
wendungen auf, was allerdings von Fall zu Fall deit deutlich erhdhten Flachenkosten im Sinne
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der Ressourceneffizienz abzuwagen ist. Weitere yseal und Details zur Steigerung der Ressour-
ceneffizienz durch den hier untersuchten GigaNa&fi@tprozessorcache sind [113] zu entnehmen.

6.8 Optimierung auf SoC-Ebene — Einsatz paralleler Progssorfelder

Im Rahmen der Leistungssteigerung der GigaNetlGy#ektur sind naturlich auch Aspekte der
Softwareoptimierung zu berucksichtigen. Der palallAufbau der GigaNetlC-Prozessorcluster
bietet eine leistungsfahige Struktur zur Verarbegtwielfaltiger Problemstellungen, die nach<s
TAFSON (vgl. Abschnitt 2.1.2) durch Parallelitdt beschlig verarbeitet werden kdnnen. Auf der
SoC-Ebene, die clusteribergreifend Aufgaben be@thbergeben sich mehrere potentielle Optimie-
rungsmaoglichkeiten bzgl. der effizienten Nutzung @hip-Multiprozessors. Dies betrifft zum ei-
nen die bereits in Abschnitt 6.2.1 vorgestellte pdenbasierte Werkzeugkette und den daraus re-
sultierenden Compiler, dessen Effizienz ganz erideimd fur die Performanz der hier eingesetzten
N-Core-Prozessorkerne ist. Zum anderen spielt elagils verwendete Programmiermodell (vgl.
Abschnitt 4.5) eine wesentliche Rolle bei der warken Ausnutzung der parallelen Prozessorfel-
der. Zu diesen beiden Aspekten, die sozusagen yhger8software der Architektur darstellen
kommt dann die jeweilige Anwendungssoftware, diedmn jeweiligen Prozessorkernen eingesetzt
wird. Diese Optimierungsmalinahmen seitens der &oétlelfen so auch nach Fertigstellung der
Hardware, die Ressourceneffizienz des Chip-Muliipssorsystems zu steigern.

6.8.1 Optimierung der System- und Anwendungssoftware

Durch zielgerichtete Optimierung der bei der Gigd®érchitektur eingesetzten Systemsoftware,
die die Verarbeitung durch die einzelnen Prozegsagkdes Chip-Multiprozessors koordiniert und
den korrekten Ablauf gewéhrleistet, lassen sicltludie Beschleunigungen der Verarbeitung sowie
Minimierung bzw. Optimierung der On-Chip-Kommunikat erreichen. Sind die Randbedingun-
gen und Anforderungen der zukinftigen Anwendungabhek oder lassen sich diese im Vorfeld
abschatzen, so kann dieser Teil des GigaNetlC-&oftsystems im Hinblick auf Lastverteilung,

Kommunikationsmethoden, wie z. B. Art und Anzaht 8gnchronisationsbarrieren, und Speicher-
organisation angepasst werden.

Die Ergebnisse dieser Arbeit profitieren zum eiren den erzielten Verbesserungen im Bereich
der Compileroptimierung, zum anderen von Optimigamund Erweiterungen der Simulatoren
speziell im Bereich der SimulationsgeschwindigReit

Beispielhaft sei hier die im Rahmen der in Kapiteldher diskutierten Netzwerkanwendungen im-
plementiertd P-Paket-Prifsummenfunktion als eine potentielle Ameeng der GigaNetIC-Archi-
tektur erwéhnt. Diese verwirklicht die in AbschrétB.1 beschriebene Funktionalitdt des Hardware-
beschleunigers auf dem N-Core-Prozessorkern. Raghfetkies Internet-Protokolls werden auf Kor-

0 An der Auswertung und der Verbesserung der Aspbkig. der Softwarebestandteile der GigaNetIC-Awdiiur

wird mafRgeblich an den Fachgebieten Programmiearspraund Ubersetzer, Prof. Dr. Uwe Kastens sowg@wthmen

und Komplexitat, Prof. Dr. math. Friedhelm Meyef dar Heide gearbeitet. Die Verbesserungen flossets in diese
Arbeit mit ein, finden in diesem Rahmen jedoch keimeitere Erwahnung, da hier schaltungstechniscdpekte im

Vordergrund stehen. Fir ndhere Informationen sehale auf die einschlagigen VeroffentlichungenluEiden genann-
ten Fachgebiete der Universitat Paderborn verwiesen
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rektheit und Inhalt gepruft. Bei der Evaluierungs#iriP-Headercheck-Funktion zeigte sich, dass
der Bedarf fur eine Beschleunigung der Bearbeituegjand. Zunéchst wurde eine Optimierung der
Software vorgenommen. Hierbei wurden vier Variandes Headerchecksmplementiert, die mit
16 bzw. 32 Bit breiten Daten arbeiteten. Mit einptimierten 32-Bit-Version konnte letztendlich
eine Reduktion der bendtigten Anzahl an Taktzyklen anfangs 284 auf 108 erzielt werden. Zu-
satzlich wurde nach Superinstruktionen zur Perfozeteigerung gesucht. Die Analysen zeigten,
dass in diesem Fall keine vielversprechenden Ikistmssatzerweiterungen fur den gegebenen Al-
gorithmus realisiert werden konnten. Mit den bestelen Erweiterungen (vgl. Abschnitt 6.2.4)
konnte lediglich eine Reduktion um funf Taktzykleunf 103 Takte erreicht werden. Dennoch zeigt
dieses Beispiel bereits das Potential, dass diev8adoptimierung bietet, konnte doch eine bereits
effiziente Realisierung unter Berlcksichtigung sgiér Compilereigenheiten etc. um mehr als das
2,7-fache beschleunigt werden.

Aufgrund der bendtigten Bandbreite und der Haufiigkes Funktionsaufrufs innerhalb des An-
wendungsszenarios war die hier erreichte Beschgengi dennoch nicht ausreichend, so dass, wie
in Abbildung 6-5 als Option bereits aufgezeigt, sppezieller Hardwarebeschleuniger (vgl. Ab-
schnitt 6.3.1) entwickelt werden musste. Dieseaudi die Ausfiihrung der inneren Priffunktion in
8 Takten und dies ggf. bei einer deutlich héheretribsfrequenz als die des N-Cores. Mit Hilfe
dieser anwendungsspezifischen Hardware wird somalsheine Beschleunigung von mindestens
12,8 verglichen mit der optimierten Software ernéic

Grundsatzlich wurde bei der Implementierung dedigser Arbeit entstandenen Software, stets auf
eine maglichst effiziente Realisierung geachtderdings lag das Hauptaugenmerk auf einer guten
Portierbarkeit auch auf andere Prozessorarchitekiutie ggf. anstelle des N-Cores in die GigaNet-
IC-Cluster integriert werden kdonnen. So wurde betvwgeitestgehend auf Besonderheiten des
Compilers und auf optimierten Assemblercode veteiglum die Interoperabilitat zu gewéhrleisten.

Dies bedeutet im Sinne der Ressourceneffizienmefmmpromiss zwischen Performanz und Zu-

kunftssicherheit. Im Weiteren werden nur finalet®&aferealisierungen betrachtet, wobei die wéh-
rend des Entwicklungsprozesses durchgefiuihrten @gtimgen an der System- und Anwendungs-
software unerwahnt bleiben.

6.8.2 Optimierung der Aufgabenverteilung und Interprozeskommunikation

Die Abbildung von protokollverarbeitenden Funktiartezw. von Programmen allgemein, auf Mul-
tiprozessorsysteme stellt zumeist eine zeitaufwgndind zugleich performanzentscheidende Auf-
gabe dar. Komplexe Hardwarearchitekturen wie degaSetlC-Chip-Multiprozessor beinhalten
eine Vielzahl von Parametern, wie Betriebsfrequanbatenraten, Speichertypen und -grél3en etc.,
die entweder verandert oder zumindest berlcksicitgrden missen/kénnen. Eine weitgehend
automatisierte Losung dieses Problems wirde di¢ #ei Softwareentwicklung und -parti-
tionierung deutlich verkiirzen und den Softwareeciier stark entlasten.

Der NoC-basierte Ansatz des GigaNetIC-Systemsregb#ine gute Skalierbarkeit speziell auch im
Hinblick auf zuktnftige Schaltungstechnologiendsss in naher Zukunft weitaus gréf3ere Systeme
denkbar sind, als derzeit realisierbar. Geradelblert sich ein automatisiertes Vorgehen.

In [102][103][104] haben wir eine Methodik vorgdttedie eine automatisierte Abbildung speziell
von netzwerkspezifischen Protokollverarbeitungsafeld auf Chip-Multiprozessoren zur Erhéhung
der Ressourceneffizienz durchfuhketAMap(Network Application Mappgrist das resultierende
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Werkzeug [104], das, aufbauend auf der PERFMON-Umgg [116], eine Aufteilung und zeitli-
che Planung Scheduliny der zu verarbeitenden Prozeduren und die regeidiiee Interprozess-
kommunikation durchfuhrt. Hierbei kbénnen Zielarekituren mit unterschiedlichsten On-Chip-
Netzwerken bericksichtigt werden. Der Bestandfdgtyork® im Namen des Softwarewerkzeugs
ist hier ambivalent zu sehen. Zum einen beziehli@s auf die bisher analysierten Anwendungs-
klassen aus dem Bereich der Netzwerkprozessorerzumdanderen greift es die NoC-basierte
Struktur der Zielarchitekturen auf.

(1. Einteilung des Systems in Cluster

(2. Zuordnung logischer zu physikalischen Schnittstellen

(3. Fur alle Cluster:

(a) Zuweisung aller lokalen Aufgaben zu dem lokalen Cluster

(b) Losung des ILPs fir den Cluster

(4. Losung des ILPs fur die globalen Aufgaben

A N N N AN N

(5. Fr alle Flusssegmente:

(a) Berechnung von Méglichkeiten minimaler Latenz bzw. Energie)

(b) Aktualisierung der Puffer- und Verbindungsauslastung )

(6. Bestimmung des Ressourcenbedarfs )

Abbildung 6-33: Prinzipieller Ablauf der automatisierten Anwendungsabbildung fur
Chip-Multiprozessorsysteme mit Hilfe von NetAMap

Das durchgefihrt&chedulingberuht auf dem Ansatz dé€xeneralized Processor Sharif{GP9
[167], dass u. a. eine Reduzierung des bendétigudierBpeichers in den einzelnen Knoten bewirkt.
Jedem Verarbeitungsschritt (Flusssegment bzaw Segmentwerden separat Kommunikations-
bandbreite und Berechnungszeit zugewiesen. Diasldres dem Algorithmus, individuelle Verar-
beitungsprioritaten zu berlcksichtigen und zudene dlockadefreie, deterministische Verarbei-
tung und Weiterleitung der Daten durchzuflihrensB@etzt derzeit die Kenntnis Gber die maximale
VerarbeitungszeitWorst-Case Execution TimeS®WCET) von Funktionen schon wahrend der Ent-
wurfszeit voraus, was den Einsatzbereich von NetAMaeinem gewissen Rahmen einschrankt,
durch das in [102][103][104] untersuchte, selbdinikerte MANetProtokoll aber kompensiert wur-
de.

Das Problem der Abbildung der Anwendung wird mitféedder ganzzahligen linearen Optimierung
(Integer Linear Programming ILP) gelost. Um die aus komplexitatstheoretischer tSiHR-
schwere Aufgabe in angemessener Zeit [6sen zu kjmwied hier ein hierarchischer Ansatz ge-
wahlt, der die Anzahl der Variablen klein halt [10Ries geschieht durch Partitionierung der Prob-
lemgrol3e auf einstellbare Cluster des Zielsystems.

NetAMap unterstutzt zwei Optimierungsziele: Entwed@d die Latenz, die die Pakete wahrend
der Verarbeitung erfahren, oder aber der Energaibddr die Verarbeitung minimiert. Dd&P

besteht somit aus den Kostenfunktionen und eingmt8ehnologieabhangiger Bedingungen, die u.
a. mit der PERFMON-Umgebung ermittelt werden. Dien@rfene Abbildungsmethode ermdglicht
eine einfache Softwarepartitionierung fir das So@d aine detaillierte Entwurfsraumexploration
und Bewertung potentieller Losungen. Flaschenhadgk Performanz und Durchsatz kénnen rela-
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tiv leicht lokalisiert und ggf. durch Hard- oder f&eareoptimierung behoben werden. Abbildung
6-33 zeigt den prinzipiellen Ablauf der automatitga Anwendungsabbildung auf Chip-Multipro-
zessorsysteme mit Hilfe von NetAMap.

’ : " pareto-optimal

_ nicht
‘pareto-optimal

Abbildung 6-34: Ressourcenbedarf zweier CMP-Architkturen (A = alternative Architektur, B = GigaNetIC) im
Hinblick auf pareto-optimale Punkte im Entwurfsraum bzgl. einerMANet-Anwendung [102]

In [102] haben wir NetAMap eingesetzt, um die Resseneffizienz zweier unterschiedlicher Chip-
Multiprozessorsysteme in Bezug auf ein selbst em®lies Protokoll fir mobile Ad-Hoc-
Netzwerke KMANet3 zu bestimmen. Bei beiden CMPs wird der S-Cor8]Hds Prozessorkern ge-
nutzt, die Systeme unterscheiden sich in dem vataten On-Chip-Netzwerk. Systefswerwendet
ein Netzwerk, das auf de@ircuit-SwitchedPrinzip (vgl. Abschnitt 2.3.2) aufbaut und detemnisi
tisch bzgl. der Latenz ist. An jeder Switch-Boxsdie Systems ist jeweils nur eine Verarbeitungs-
einheit angeschlossen. Die Switch-Boxen sind flaot#ig ein Drittel kleiner als die des Systems
B. Bei diesem handelt es sich um eine GigaNetIC-kektur mit vier Prozessorkernen pro Cluster.
Abbildung 6-34 zeigt die Resultate der Abbildung Aawendung mittels NetAMap auf Varianten
beider CMP-Architekturen. Die Blasen kennzeichnen Runkte im Entwurfsraum die durch die
jeweiligen Systemvarianten im Hinblick auf Flacl#9, (EnergiebedarfE) und Latenz D) erreicht
werden. Die Notation ist dabei wie folgt zu intefperen: A/B CMP-Architektur (A = Architektur
aus [102], B = GigaNetIC-Architektur) — Anzahl dastantiierten Verarbeitungseinheiten — Opti-
mierungsstrategie (D = Optimierung der Latenz, ©ptimierung des Energiebedarfs). Bei der
Analyse der Ergebnisse zeigt sich, dass, bis &¥driante mit 64 Verarbeitungseinheiten und Op-
timierung auf Energie, alle Systeme der GigaNetiChitektur pareto-optimale Punkte im Ent-
wurfsraum darstellen. Pareto-optimal bedeutet aselin Zusammenhang, dass keine der anderen
Systemkonfigurationen besser bzgl. einer der OptignoRen und jeweiligen Optimierungsstrategie
abschneidet. Den geringsten Energie- und Flachanbedigt das GigaNetIC-System mit 16 Ver-
arbeitungseinheitenB(L6E). Diese Variante hat allerdings die grof3te Latebie GigaNetIC-
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Architektur dominiert in diesem Vergleich die attative Architektur. Hier zeigte sich, dass mehre-
re Verarbeitungseinheiten pro Routingknoten flrgsigebene Anwendung vorteilhafter sind.

Weitere Details zu der hier aufgezeigten Methoderdsesourceneffizienten Abbildung von An-
wendungen auf Chip-Multiprozessoren sind [102][1034] und [168] zu entnehmen.

6.9 Zusammenfassung

In diesem Kapitel wurde eine Methode vorgestel, &k dem Entwickler ermdglicht, die zunachst
universell einsetzbare und nicht spezialisiertel&@tr des GigaNetlC-Chip-Multiprozessors flr ein
gewilnschtes Anwendungsgebiet im Hinblick auf disdearceneffizienz der Architektur zu opti-
mieren. Der hierarchisch gerichtete Ansatz bie¢et dorteil, dass, unterstttzt durch die entwickel-
te Werkzeugkette, zunachst mit vergleichsweisengen Modifikationen die Leistungsfahigkeit
bzw. der Ressourcenbedarf der Chip-Multiprozesgohifektur optimiert werden kann. Durch die
leistungsfahigen Profilierungsmdglichkeiten der &gtlC-Entwicklungsumgebung lassen sich
besonders rechenintensive Funktionen der Anwendofigygare schnell lokalisieren. Durch an-
schlieBende Analyse konnen sowohl betreffendeeBteler Software als auch, falls notwendig, die
Hardware zielgerichtet optimiert werden. Diese @prung geschieht im Regelfall hierarchisch
gerichtet, angefangen bei Instruktionssatzerweiigen, Uber eng-gekoppelte Hardwarebeschleuni-
ger bis hin zu lose gekoppelten Hardwarebeschleamid_etztendlich steht dem Softwarearchitek-
ten dann die Nutzung der parallelen Struktur zualpgen Bearbeitung einer Aufgabe zur Verfu-
gung, deren Leistungsfahigkeit ggf. durch den Geg#BtMultiprozessorcache zusatzlich erhht
werden kann.

Die aufzuwendende Zeit fur diese Optimierungsmafbreghauf Prozessorebene liegt im Bereich
von einigen Stunden bis hin zu wenigen Tagen. &olNlodifikationen auf Prozessorebene nicht
genugend Optimierungspotential fur die gegebene elalung bieten, so kann dies bereits inner-
halb der ersten Stunde mit Hilfe der Werkzeugkietségestellt werden. In diesem Fall kdnnen tief-
ergehende Optimierungen in Form der Realisieruegigpsierter Hardwarebeschleuniger durchge-
fuhrt werden. Dieser Prozess bendtigt im Allgemeideutlich mehr Zeit und Ressourcen.

Die werkzeuggestttzte Analyse des jeweiligen Anweigdszenarios liefert Aussagen sowohl tGber
den Rechenleistungsbedarf aber auch Uber die pgmdtBandbreiten der On-Chip-Kommuni-
kation. Die GigaNetIC-Architektur erdffnet, aufgaider generisch gehaltenen Struktur, zahlreiche
Mdoglichkeiten, das System anwendungsgemal? zu agemi

Geeignete Anwendungen lassen sich durch NetAMapnaatisiert auf das Chip-Multiprozessor-
system abbilden. Dies verkirzt Entwicklungszeiten @iihrt zu einer besonders effizienten Nut-
zung der parallelen Architektur. Unterstltzt dudid Werkzeugkette lasst sich fir die jeweils be-
trachtete Anwendung ein geeigneter Kompromiss zwiscLeistungszuwachs, Verlustleistungs-
aufnahme, Flachenbedarf und zusatzlich zu erwastenBntwicklungsaufwand treffen. Pareto-
optimale Punkte des Entwurfsraums kénnen so effizaagenahert werden. Anhand einer exempla-
rischen Analyse verschiedener Realisierungsvamafiie ein paketverarbeitendes System wurde
die in Kapitel 3 vorgestellte Kostenfunktionsmetlockrifiziert und deren Leistungsfahigkeit auf-
gezeigt. Mit Hilfe definierter Parameter fur dieeBunktionen der vier Kostenmal3e Leistungsauf-
nahme, Flachenbedarf, Performanz und Zukunftsdielitesowie der resultierenden Kostenfunktion
wurden in Relation zu den definierten Randbedingangareto-optimale Systeme fiir unterschiedli-
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che Einsatzgebiete ermittelt. Systemarchitekteml Wwiermit eine nutzliche Entscheidungshilfe fur
den Entwurf ressourceneffizienter Implementierungemlie Hand gegeben.

Im folgenden Kapitel werden am Beispiel von NetZaewendungen die hier vorgestellten Opti-
mierungsmaoglichkeiten auf die GigaNetlC-Architektumgewendet und detailliert diskutiert.



7 Performanzanalyse skalierbarer GigaNetIC-Netzwerkppzessoren

Eine immer groRer werdende Herausforderung derigeutinformationsverarbeitung stellt das
Verarbeiten von Daten in Sprach- und Datennetzweda. Insbesondere das Internet und die da-
mit verbundenen Dienste erfordern neue leistunggééd Architektur-Ansatze, die speziell auf die
inharente Parallelitat von Netzwerkdaten ausgedegt sollten. Fir solche Einsatzgebiete sind pa-
rallele Architekturen wie die GigaNetIC-Chip-Multgzessorarchitektur pradestiniert. Eine Viel-
zahl von Verarbeitungseinheiten kann integriertdearund die Netzwerkverarbeitung voneinander
disjunkter, unkorrelierter Netzwerkpakete durchéihrwobei sich die globale Zustandsverwaltung
haufig als einzige gemeinsame AufgalagqR darstellt, die einem der Kerne aus dem Prozessor-
Pool zugewiesen werden kann (vgl. Abschnitt 4.5.3).sBi&lasse von Anwendungsszenarien ska-
liert sehr gut (vgl. BSTAFSONSGesetz, Abschnitt 2.1.2).

Abbildung 7-1: Zunehmende Vernetzung unserer Umgelng, die durch ressourceneffiziente skalierbare,
Netzwerkknoten ermdglicht werden kann

Die von Netzwerkknoten geforderte Funktionalitahtgg immer starkerem Mal3e Uber das reine
Weiterleiten von Datenpaketen hinaus. Neben dewa&tsing der im PaketkopHgade) abgeleg-
ten Adressen, die dazu dient, Daten an den riahntifapfanger weiterzuleiten, werden zusatzliche
Informationen verarbeitet, um erweiterte Dienste& Wierschlisselung (z. B. fifirtual Private
Network3, Network Address TranslatiofNAT) oder Priorisierund@uality of ServicdQoS anzu-
bieten. Die Leistungsfahigkeit, die in Netzwerkkampnten fur diese Verarbeitungsmechanismen
zur Verfiigung gestellt werden muss, kann mit henkdichen Prozessorarchitekturen nicht erreicht
werden. In der Vergangenheit haben sich daher Afilerte Losungen etabliert, die — teilweise
unterstitzt durch RISC-Prozessoren — die gefordegtstungsfahigkeit bieten. Nachteile ASIC-
basierter Systeme sind allerdings relativ langentekiungszeiten und hohe Entwicklungs- und
Fertigungskosten. Insbesondere Anderungen der Netprotokolle sind oft mit aufwandigen und
teuren Uberarbeitunge®Rédesignsverbunden. Vor diesem Hintergrund wurden in dgrdn Jah-
ren verstarkt so genannte Netzwerkprozessoren ekeiiii Netzwerkprozessoren sind program-
mierbare Spezialbausteine fir den Aufbau von Netzkeenponenten, die den geringeren Preis und
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die Flexibilitat von RISC-Prozessoren mit der Lesgsfahigkeit und Skalierbarkeit von anwen-
dungsspezifischen Bausteinen kombinieren. Einendptung der Architektur fur die Paketverar-
beitung wird vorrangig durch drei Mechanismen ehieiModifikation des Instruktionssatzes
Hinzufiigen von Hardwarebeschleunigersowie Entwurf von On-Chip-Architekturen die Paral-
lelverarbeitung und Pipelining ausnutzen, vgl. ak@pitel 6. Obwohl Implementierungen von
Netzwerkprozessoren erst seit wenigen Jahren Jmafigind, gab es bereits im Jahre 2002 tber 30
Hersteller von kommerziellen Netzwerkprozessord®[ldie sich in ihrem Aufbau teilweise deut-
lich unterscheiden, darunter so bekannte Namenint& (IXP2800), IBM (PowerNP), Motorola
(C-5) oder Cisco (PXF).

Abbildung 7-1 zeigt wesentliche Einsatzgebiete atzwerkprozessoren auf. Augenscheinlich
wird hier, dass je nach Funktion der Netzwerkkongmde oft gleichartige Algorithmen verarbeitet
werden mussen, allerdings in deutlich unterscheadin Umfang, Zeitrahmen und bei mobilen Ge-
raten teilweise mit sehr eingeschrankten Energietgsen. Die Randbedingungen bzw. Anforde-
rungen unterscheiden sich mitunter betrachtlicim. f/Bbbiles Endgerat bendtigt weniger Rechen-
leistung als ein Router des Kernnetzwerks, vertebeinige wenige Datenstrome, hat aber auch ein
sehr limitiertes Energiebudget. Dem Router hingeged ein hoheres Kontingent zugeschrieben,
er muss jedoch eine weitaus hohere Bandbreitepymddn mit deutlich héherer Rechenleistung zur
Verfugung stellen. Mittlerweile spielt allerdingsicd bei diesen Hochleistungskomponenten des
Netzwerks die Leistungsaufnahme eine immer grof@@dende Rolle, da die Kosten fur Kihlung
und Strom bei gro3en Anlagen einen immer grol3edeveten Stellenwert einnehmen [13], vgl.
Kapitel 2. Auch die Larmbelastigung durch etwaigndtegte Lifter wird, speziell im Bereich der
Jetzten Meile”, also den Verteileranlagen im Beteider Hausanschliisse der Endkunden, immer
starker diskutiert. Kénnte man den sich hierausleegden Anforderungen mit einem ressourcenef-
fizienten Architekturkonzept gerecht werden, sodeir sich u. a. gravierende wirtschaftliche Vor-
teile im Sinne von £conomies of Scale, haufig auch als Skaleneffekt bezeichnet, ergeldard-
wareentwickler wéaren bei einer modularen, skallegén Bauweise der Netzwerkprozessor-
architektur in der Lage, eine hohe Wiederverweniaaund somit Entwurfszeitersparnisse zu er-
zielen. Verarbeitungseinheiten mit héheren Recligniegsanforderungen kénnten aus kleineren
leistungsschwacheren Verarbeitungseinheiten zusagesetzt werden und durch Parallelverarbei-
tung ihren Anforderungen ressourceneffizient gerachrden.

Softwareentwickler kénnten ein einheitliches Pragraermodell verwenden und die Produktivi-
tatskurve wirde aus Grinden der WiederverwendiadkeiSoftware ebenso wie bei der Hardware
deutlich gesteigert. Die GigaNetIC-Architektur dné&ft diese Mdglichkeiten, weshalb im Folgen-
den eine tiefere Analyse GigaNetIC-basierter Netkpmzessoren fur Anwendungen aus dem Zu-
gangsnetzwerkbereichA¢cess Networksund dem Kernnetzwerkbereicdre Network vorges-
tellt werden. Im Bereich mobiler AnwendungeviANet9 wurde die Leistungsfahigkeit der Giga-
NetlIC-Architektur bereits skizziert, vgl. Abschniit3.2.

7.1 Einsatzgebiet im Zugangsnetzwerk — DSLAM

Eines der Einsatzgebiete fur einen GigaNetlC-btesieNetzwerkprozessor ist die Anbindung der
Jetzten Meile“, bei der es um die Buindelung bzwerdilung vonDSL(Digital Subscriber Ling
Anschlissen geht. Die hierflr bendtigten Knotem, idi Zugangs{cces¥Bereich des Netzwerks
anzusiedeln sind, nennt m&SLAMs(DSL Access Multiplexgr Abbildung 7-2 skizziert dieses
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Anwendungsszenario, bei dem N-Core-basierte Gig&Nehip-Multiprozessor-Systeme sowohl
in dem eigentlicheidSLAM aber auch in skalierter Weise in den Routern desiketzwerks und
den EndgeraterCustomer-Premises Equipmér€PES in den Haushalten der Verbraucher einge-
setzt werden, um so eine gute Kosteneffizienz lerzieu kénnen.

Customer-Premises Equipment
]

E

E'\‘ CPECES xDSL

Fozo-l
Endkundengeréte > I Q@ I
i i
% i

2

-

ATM, Ethernet, PoS DSLAM

Router Digital Subscriber Line Access Multiplexer

Abbildung 7-2: Einsatz GigaNetIC-basierter Netzwerlprozessoren in einenDSLAM-Anwendungsszenario

Hauptkomponenten eines DSLAMs sind heute bis zu.i6écards die jeweils bis zu 96 DSL-
AnschlusseRorts) zur Verfugung stellen, und eitéplinkcard, die den Verkehr zum Netzbetreiber
(Internet Service Providef ISP) regelt. DieLinecardssind Uber eine leistungsfahige Kopplung
(Backplang mit einer oder zweUplinkcardsverbunden. Aus Kostengriinden werden diese Kom-
munikationskanale in Zukunft immer haufiger ethéasiert sein [141].

\ )

BUC_DL = mmEBxDSL_DL BU(LUL s ml:h[BxDSLﬁUL
Uplinkcard UC Uplinkcard UC
. AAh,
n I:BLC_DL Y n EB|_C7U|_
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Linecard LC Linecard LC
BLCfDL = mI:BxDSLfDL BLC_UL = ml:BxDSL_UL
hbeeed )l PTTeeettd
DL Downlink B Bandbreite
UL Uplink n Anzahl der Linecards

m Anzahl der DSL-Anschliisse

Abbildung 7-3: DSLAM-System-Komponenten

Abbildung 7-3 zeigt schematisch die Komponenten diedlogischen Datenflussrichtungen inner-
halb eines DSLAMs. Die sich ergebenden Bandbrd&tesid fir die vier unterschiedlichen Falle
eingetragen. Bei einem DSLAM unterscheidet manzgpiell zwischen zwei Flussrichtungen, den
Uplink, Gber den dieCPEsder Endkunden den Diensteanbieté&dF erreichen, und den, in den
meisten Fallen breitbandiger&ownlink tber den die Daten zu den Endkunden Ubertragen we
den. Dieser Systemaufbau erfordert in den einzekemponenten spezielle Funktionen. Diese
missen zudem mit, den auftretenden Bandbreiterpasgien, Ressourcen verarbeitet werden. Die
entsprechenden Uberlegungen zu den funktionalem,anch verkehrsmodellbedingten Anforde-
rungen an einefP(Internet Protokolj-basiertenDSLAM (kurz: IP-DSLAM werden im néchsten
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Abschnitt 7.2 in einem von uns definierten neuartid®P-DSLAM-Benchmarkormuliert [141]. Ein
herkdbmmlicherDSLAM ist nach dem OSI-Referenzmodell (vgl. Abschni&.2) auf Schicht zwei
angesiedelt und so fur d#é3-Protokoll transparent. Der moderndRRDSLAM stellt zusatzliche
Dienste zur Verfigung und kann deshalb aliebatenverkehr terminieren bzw. verarbeiten.

DSL-basierte Internetzugange, die zu den so geearBiteitbandanschlissen zahlen, haben, nicht
nur in Deutschland, in den vergangenen Jahren émeensen Zuwachs erfahren. Seit 2002 liegen
die jahrlichen Zuwachsraten der DSL-Anschlisse @ntBchland bei ca. 50 %, was Ende 2006 eine
Gesamtsumme von 14,9 Mio. Breitbandzugangen ausenfCr0]. Seit 2003 steigt das Breitband-
verkehrsvolumen in Deutschland jahrlich um ca. 3@l betrug 2006 nach Schétzungen ca.
876 Mio. GByte [170]. Diese Zahlen zeigen, dass@&8&AM-Anwendungsgebiet sowohl von der
Anzahl der bendtigten Verarbeitungseinheiten alshaaufgrund der stetig wachsenden Anfor-
derungen an die bendtigten Recheneinheiten wirtichaund wissenschaftlich interessant ist. Um
den Herausforderungen gerecht werden zu kdnnersanigkalierbare und zugleich zukunftssiche-
re Netzwerkprozessorarchitekturen im Sinne der Amuegssoftware und der Programmierbarkeit
entwickelt werden. Im Folgenden wird die Verwendde#irder GigaNetlC-Architektur fir den Ein-
satz in solchen DSLAM-Anwendungen untersucht unidspezielle Erfordernisse dieses Anwen-
dungsgebiets hin optimiert.

7.2 Definition eines IP-DSLAM-Benchmarks auf Systemebes

Um eine eingangige Bewertung der GigaNetIC-basieetzwerkprozessorarchitektur fur ¢
DSLAMAnwendungsszenario durchfiihren zu kénnen, bedasteiner genauen Charakterisierung
der Anforderungen die diese Anwendung and die Hand-Software stellt. Eine Benchmarkdefini-
tion einschlie3lich eines realistischen Verkehrsetisd(Traffic Mode) war notwendig. Zu dem
Zeitpunkt unserer Analysen waren bereits mehrerezvidekprozessorbenchmarks bekannt, von
denen wir in [141] acht der bekanntesten in Bezuigdee Anwendbarkeit auf ein IP-DSLAM-
Szenario diskutieren.

Tabelle 7-1: Charakteristika etablierter Netzwerkbenchmarks

Granularitat Quellcode Verfugbarkeit Verkehrsmodell Profilierung
CommBench Mikrobenchmark C auf Anfrage Nein Nein
EEMBC Mikrobenchmark C Mitgliedschaft Ja Ja
MiBench Mikrobenchmark C frei verflgbar Ja Nein
NPBench Mikrobenchmark C auf Anfrage Nein Nein
NetBench Mikrobgnchmarkl C frei verfligbar Ja Nein

Funktionsebene
NPF-BWG Funktionsebene Nein nur textuell Ja Ja
Intel Funktionsebene Mikro-EngineC nein k. A. Ja
LinleyBench Funktionsebene Nein Lizenz Ja Ja
GigaNetIC

IP-DSLAM-Referenz-BM Systemebene c auf Anfrage Ja Ja

Dies waren im Einzelnen: CommBench [171], EEMBC1iéMiBench [172], NetBench [173],
NPF Benchmarking Group [174], LinleyBench [175]telnCorporation Benchmark [176] und
NPBench [177]. Die wesentlichen Charakteristika gienannten Benchmarks sind in Tabelle 7-1
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aufgefuhrt. Bei der Granularitat der BenchmarksnkanischerMikro-, Funktions und Systemebe-
ne unterschieden werden. Die Mehrzahl der hier entgihBenchmarks setzt aMiikroebenean, d.

h. es kommen elementare Tasks wie CRC-Funktiondrrabellenauswertung éble Lookujpzum
Einsatz. Einige der Benchmarks setzenfFautktionsebenan, wobei die am haufigsten verwendete
Funktion im Weiterleiten von IPv4-PaketdPy4-Forwarding besteht. Allerdings setzt keiner der
Anséatze auf Systemebene an, was fur eine reahstistodellierung einedl?-DSLAM-Benchmarks
zwingend notwendig ist.

Letztendlich kamen wir bei der Analyse dieser Benatks, der zugehdrigen Verkehrsmodelle so-
wie der Profilierungsmoglichkeiten zu dem Schlwsss sie nur unzureichend fir ein IP-DSLAM-
Szenario auBystemTaskgraphebenanwendbar waren. Deshalb haben wir in [141] e&iganen
IP-DSLAM-Benchmark nebst adaptivem Verkehrsmodalwerfen, der in der Forschungsabtei-
lung von Infineon Technologies zum IP-DSLAM-Refertbanchmark ausgebaut wurde [178][119].

7.2.1 Funktionelle Spezifikation

Im Folgenden werden die fur déR-DSLAMBenchmark relevantemaskskurz erlautert. Diese
formen in Abhangigkeit von der Datenrichtung und peveiligen DSLAM-Systemkomponente
den eigentliche®ystemebeneBenchmark.

Task-A — Parser Im Task-Awird eine Gultigkeitstiberprifung des Datenpaket<chigefiihrt. Ein
Algorithmus, der die Mal3gaben, die ein gultiges4iPaket kennzeichnen, tberprift, wird in die-
sem Schritt durchlaufen. Schlagt die Uberprifurid, feird das Paket verworfen.

Task-B — IP-Header Verification Hier werden mittels eines Algorithmus aus [179] tePaket-
kopf nach den Vorgaben sowie dieHeaderprifsummeerifiziert.

Task-C — Classification Der Algorithmus [P-Filter) klassifiziert die Datenpakete unter Berlck-
sichtigung der Quell- und Ziel-IP-Adresse, dem Quehd dem Zielport und der Protokollkenn-
zeichnung. Anhand des Klassifizierungsergebnissesed funf Tupel wird ein Zugangs¢ces¥
Status ermittelt, der Gber das weitere Verfahreindem Paket entscheidet. Realisiert wird dies mit
Hilfe einer individuell anpassbaren Vergleichstédetleren Eintrage iterativ mit den jeweiligen
funf Tupeln der Pakete verglichen werden. Kann é&dinpelwert-Ubereinstimmung ermittelt wer-
den, wird das Datenpaket verworfen. Downlink kann der Zugangs-Status fur Datenvolumen-
begrenzungszweck€0Onditioning eingesetzt werden, itdplink kénnen Bandbreitenzusagee(-
vice Level AgreementSLA aufgrund des ermittelten Wertes kontrolliert bemgehalten werden.

Task-D—MC Address Mapping & DuplicationTask-Dbeschreibt die Funktionalitat der Datenpa-
ketvervielfaltigung im Sinne voNlulticastbzw. Broadcastfir Netzwerkteilnehmer.

Task-E — Policing & Conditioning. Der Task-E fungiert als Uberwachungsfunktion zum Ver-
kehrsmanagemenP¢licing) von ausgehenden DatenpaketenUplink. Im Downlink werden die
Datenraten mit Hilfe von so genannt&€oken-Bucketseguliert. Die Verwendung dies@&uckets
dient der Datenverkehrsglattung mit dem gewunschtel eine diskontinuierliche Datenverkehrs-
charakteristik so zu organisieren, dass annahewntrkiierliche Datenstréome entsteh&o(ditio-
ning/ Shaping.

Task-F — AAL5 SegmentationUm den derzeitigen Standards gerecht zu werdendenfinr die
integrierte Nutzung de&TM(Asynchronous Transfer Mod&bertragungsverfahrens, eine Segmen-
tierung der Datenpakete ATM-Zellen vorgesehen. Der Algorithmus nimmt dieser&egtbildung
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unter Mal3gabe deAAL5ATM Adaptation Layer pDienstes vor. Hierzu mussen u. a. GRCS8
fur jedeATM-Zelle als auch di€RC32fur das gesamte Paket berechnet werden.

Task-G — NPF-ML (Network Processor Forum Message Layer Protgcel Tag-Generierung
Der Einsatz dieses Algorithmus ist nur auf tiglinkcard (im Downlink gegeben und wird zur
Parametrisierung der Mehrfachzustelluggn@ll Group Multicagtder Datenpakete von deplink-
card in RichtungLinecardund dort letztendlich hin zum Endkunden verwenleilticastPakete,
die als Ziel die gleich&inecard haben, werden nicht dupliziert, sondern mit Heéfaer Liste auf
die entsprechenden Porthnummern verteilt. Hierzd dasNPF-ML-Protokoll verwendet.

Task-H — Ethernet-Encapsulation & ForwardingIn diesem Schritt wird die Ubermittlung des IP-
Pakets Uber Ethernet initiiert. Nach der Kapseldeg Datenpakets in einen so genanitrernet-
Frame erfolgt das Weiterreichen an die Bit-Ubertraguehssht. Mit Hilfe desCRC32wird die
Prifsumme unter Beriicksichtigung der Ziel- und @uieéssen, deBypeFeldes und des Ethernet-
nutzdatenbereichs gebildet. Der Nutzdatenbereiti#rdas zu transferierende Datenpaket.

Fur weitere Details zu den genannten Tasks seiemedStelle auf [141] verwiesen.

7.2.2 Implementierung

Das erstellte Anwendungsszenario beschreibt eisturgebung, die die Funktionalitat eil@s
DSLAMsunter Verwendung der oben genannten Tasks regligie eine Weiterentwicklung des
klassischen DSL-Access-Multiplexers der OSI-Schiohei darstellt. Die enthaltenen Erweiterun-
gen berlcksichtigen u. a. Aspel@®S3Quality of Servicgbasierter Datenverarbeitung der dritten
Schicht des OSI-Modells [34].

Tabelle 7-2: Taskzuordnung in Abhangigkeit von DSLAM-Komponente und Datenrichtung

Uplinkcard Downlinkcard
Tasks Uplink Downlink Uplink Downlink

Task A: Parser X X X X
Task B: Headercheck X X X X
Task C: Classification X X
Task D: MC-Duplication X X
Task E: Policing & Conditioning X X
Task F: AAL5-Segmentation X X
Task G: NPF-ML X

Task H: Ethernet Encapsulation X X

Die einzelnen Funktionalitaten dBSLAMAnwendungsszenarios wurden in der Programmierspra-
che ANSI-C implementiert und sind in die oben geman, in sich funktional geschlossenen Auf-
gaben Task$ unterteilt. Der Quellcode umfasst 37 Dateienimsgesamt 4520 Codezeilen. Tabelle
7-2 zeigt die sich in Abhangigkeit von der Datehtimg des Paketstromes und der hardwaretechni-
schen Konfiguration ergebende Zuordnung der Tamksz(flhrende Tasks sind mit einem ,x* ge-
kennzeichnet). Zur sinnvollen Verwendung dieseghstischen Benchmarks, missen mdoglichst
realitatsnahe Datenstréme generiert werden, dre derk an real auftretenden Gegebenheiten des
Anwendungsgebiets orientieren. Die Konzeption didaten wird im folgenden Abschnitt kurz
vorgestellt.

7.2.3 Verkehrsmodell

Das VerkehrsmodellTtaffic Model/ TM) definiert die imDSLAM auftretende Nutzlast und muss
drei wesentliche Kategorien abdecken: Adressbeseateilung,QoSVerteilungen und Paketgro-
Ben-Verteilungen.
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Adressbereiche.Zur Adressierung von Teilnehmergruppen im Anwendsagnario wird ein IP-
Adressraum von 224.0.0.0 bis 239.255.255.255 vateteieser entspricht einem Klasse-D-Netz,
welches zum Adressieren viMulticastgruppergenutzt wird. Im hier vorliegenden System sind 32
Gruppen mit je 96 Teilnehmern definiert. Der Antd#r zu bearbeitendeévulticastPakete belauft
sich auf 1 % bis 9 % aller Pakete. Die Ubrigen 9Bi&01 % der Pakete bilden die Menge dar-
castPakete, die nur an einen Teilnehmer gesendet wariessen. Zur Adressierung der maximal
3072 Hosts wird ein Adressrahmen von x.y.0.0 bys1?.0 gewahlt, um alle Teilnehmer erreichen
zu kénnen. Die Quell- und Ziel-IP-Adressen liegengleichen Adressbereich. Weiterhin wird fest-
gelegt, dass bis zu 16 Flusse uber den Zielhastgr 4 mdglich sind.

QoS Die zu leistende Dienstgut®¢@9 ist abhangig von der Adressvereinbarung und dgwen-
deten Regeln zur Klassifizierung der Pakete. DigsKifikationsregeln sind so ausgelegt, dass 50 %
der Pakete bevorzugt weitergeleitet werdexpedited Forwarding 36 % den vier Subklassen des
QoSentsprechend mit jeweils dreifacher Priorisierbzgl. des VerwerfensAgsured Forwarding
zugesichert verarbeitet werden und die restlichefolbei freier Bandbreite weitergeleitet werden
(Best Effor}.

PaketgrofRe.Die Paketgrof3en werden nach der etablierten 7:4rie\fung, deninternet Mix(iM-

ix) festgelegt. Er spiegelt eine durchschnittlichka®gréRenverteilung, die haufig in der Realitat zu
messen ist, wider. Das bedeutet sieben Pakete migirhange a 40 Byté die z. B. durchTCP-
Bestatigungen, aber nicht durch Nutzdaten hervafgerwerden. Weiterhin werden vier Pakete
mit 552 bzw. 576 Byte injiziert, die z. B. varCP-Implementierungen die keirdTU(Maximum
Transmission Un)tErmittlung durchfihren, herriihren. Komplettiefitdvdas reprasentative Daten-
aufkommen durch ein Paket maximaler Lange a 1508,Rlas z. B. von TCP-Implementierungen
stammt, bei denen die maximale Ubertragungsgrofgdiegt wurde. Weitere Details zur Vertei-
lung und Injektion der Pakete sind [141] zu entnehnZu beachten ist, dass diese Paketgrof3en
sich immer ohne die 18-Byte-gro3Ethernetheadeverstehen.

7.2.4 Bewertungsmethode zum Vergleich unterschiedlicher &hitekturen

Vorraussetzung zur Anwendung desDSLAMBenchmarks ist ein zyklenakkurater Simulator mit
entsprechender Werkzeugkette, was nahezu unvdarctiir den Erfolg einer Hardwarearchitektur
ist und somit durchaus gefordert werden kann. Aufdrder Benchmarkimplementierung in der
Hochsprache C ist die Portierung auf eine Vielaai Zielarchitekturen relativ einfach. Es wird
explizit keine Beschleunigung durch optimierte Asbéerroutinen angewendet oder empfohlen, da
der Benchmark die Bewertung der gesamten Architekiun Ziel hat, also auch die Compiler-
Werkzeugkette in die Performanzbewertung einbezageren soll. Dies liegt darin begriindet,
dass im untersuchten Anwendungsgebiet schnellichufiverdndernde oder zusatzliche Anforderun-
gen reagiert werden kénnen soll. Aul3erdem gebetet ressourceneffiziente Architektur im Sinne
von Definition 36 eine leichte Portierbarkeit awkinftige Systeme. Dies spricht fir eine Imple-
mentierung der Anwendungssoftware in einer HoclebraZusatzlich wird so die Wartbarkeit des
Programmcodes deutlich erhéht.

*LIn der Literatur wird teilweise auch 46 Byte afisteler 40 Byte angenommen.
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Um aussagekraftige Werte zum Vergleich untersciuleei Architekturen bzgl. der Performanz zu
erhalten, wird folgende Normalisierungsfunktion ewgndet:

> Takte
s = Performan{Taktﬂ (7.1)
#Task€sl Y| Grokg Byle Bit

plPakete

#Taskdeziffert die Anzahl der eingesetzt€asksund ist im Weiteren mit acht gleichzusetzen.

7.2.5 DSLAM-Benchmarkanalysen fir skalierbare GigaNetIC-CMPs

In diesem Abschnitt werden erste Benchmarkergebnissgestellt, die mit dem in Abschnitt 7.2
vorgestelltenlP-DSLAMBenchmark gewonnen wurden. Zunachst werden zwejebettete Pro-
zessoren untersucht, zum einen der N-Core (vglcitigt 4.3.1) und zum anderen eine speziell auf
Paketverarbeitung optimierte VerarbeitungseinigRJ-Corg, ahnlich der aus [180][181]. Beim
NPU-Core handelt es sich um einen 32-Bit-RISC-Kdar, liber eine hardwareunterstitzte Behand-
lung mehrereilhreadsverfiigt. Au3erdem erlaubt seine 6-stufigjpelineeine fast doppelt so hohe
Betriebsfrequenz wie die des N-Core. Die betraelid&L AM-Ausbaustufe entspricht der in Abbil-
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dung 7-3 vorgestellten Maximalsystemkonfiguratioib m= 64 Linecardsundm = 96xDSL-Ports

Abbildung 7-4: Anforderungen der einzelnenlP-DSLAM-Benchmarktasks
an die Rechenleistung der eingebetteten Prozessoren

Um die maximal moégliche Rechenlast zu bestimmend win Worst-CaseSzenario betrachtet, bei
dem die maximalen Bandbreiteanforderungen ausgpfichérden, vgl. (7.2).

Das zugrundeliegende Verkehrsmodell entspricht desnAbschnitt 7.2.3, wobei 2981 Pakete mit
einer Gesamtgrof3e von 0,955 MByte verarbeitet wurdébildung 7-4 zeigt die bendtigten Takte
fur die Abarbeitung der einzelnen Tasks, sowie@@samtzahl der fur den Benchmark bendtigten
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Takte, normiert auf die N-Core-TaRfeAugenscheinlich sind die besonders rechenintensiwuf-
gaben die Tasks AAL5 und Ethernet, was durch dfev@ndigen CRC-Prifsummen und Kopier-
vorgange der Pakete begrindet ist. Der N-Coreigsalf die Funktion AALS Uberall zeiteffizien-
ter, in Bezug auf die Anzahl bendtigter Takte emsdet er jedeiaskfur sich.

0,8Mbps fur ADSI
Bic u = MEhOBgg , MitBgyg =43 Mbps flrVDSL
2Mbps fur SHDSL
8Mbps flur ADSL

Bic oL = MENOByg o Mit Bpg, o =122 Mbps furVDSL
2Mbps fur SHDSL

(7.2)

Im Durchschnitt bendtigt deMdPU-Core 3,5 Takte/Paket-Bit, wohingegen der N-Core wenajser
1,3 Takte aufwenden muss. Eine grobe Analysddeksbezlglich ihrer Abbildung auf die beiden
Prozessoren zeigt schnell erste FlaschenhalseidenrPaketverarbeitungseinh@itRU-Core auf.
Der Instruktionssatz der Paketverarbeitungseinbeitoch spezialisiert fir besondere Bitoperatio-
nen, aber beinhaltet nur eine eingeschrankte Mandégniversalbefehlen.

Tabelle 7-3: Bendtigte Takte des N-Cores

N-Core _ Linecard _ l_JpIinkcard _
Downlink Uplink Downlink Uplink
Parser 74.500 74.500 74.500 74.500
Headercheck 396.373 399.353 396.373 417.233
Classification 1.358.874 - 1.358.874 -
MC Duplication 1.156.720 - 1.171.597
NPF-ML - 169.571
Policing & Conditioning 414.587 - 414.587
AALS 2.558.393 2.543.493 -
CRC Beschleuniger 4.093.931 6.024.563 99.099
Ethernet Framing - 309.920 349.886
CRC in Software 43.023.639( 63.901.032 966.966 -
Gesamt 10.053.378 9.351.829 4.034.487 491.733
Takte/Bit 1,255 1,167 1,986 0,061

Die Analysen zeigen, dass der positive Effekt di&mezialoperationen mehr als aufgehoben wird.
Der Hauptgrund dafir liegt in der Verteilung destktionshaufigkeiten. Kénnen doch nur 10 %
des Codes von den Spezialoperationen profitier@mirgegen die verbleibenden 90 % des Codes
Universalbefehle implizieren. Ein weiterer Punlkgli in dem Compiler begruindet, der weniger gut
fur die Instantiierung der Spezialbefehle geeigstetAbhilfe schaffen konnte eine vollige Restruk-
turierung des NPU-Core-Compilers, oder aber eifedudige Programmierung von Hand in Ma-
schinensprachedésembléer, was bezuglich der Wartung und Zukunftssicher@efierst bedenklich
ware” und die Ressourceneffizienz deutlich herabsetzte.

2 Da der N-Core bzgl. der maximalen Taktfrequenzhalb so schnell getaktet werden kann wieNIBt-Core wird
hier ein N-Core-Takt praktisch mit zwei NPU-Corekiemn gleichgesetzt.

*3 Die Ergebnisse dieser Studie fiihrten zu einer Ketigm Restrukturierung des Architekturansatzesdeen bisher

verwendeten NPU-Core.
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Tabelle 7-3 stellt die benttigten Takte des N-Cerezessorkerns fur eitP-DSLAM-Light
Szenario, ahnlich dem in Tabelle 7-2 vorgestellktodell, das den asymmetrischen Charakter der
Anwendung besonders deutlich macht. In diesemideadbtigt der N-Core 1,167 Takte/Bit fir den
Uplink und 1,255 Takte/Bit fir deRownlink auf derLinecard wohingegen inUplink auf derUp-
linkcard nur 0,061 Takte/Bit anfallen. Besonders rechensiteist derDownlink auf derUplink-
card mit 1,986 Takten/Bit. Um einen Eindruck von deristiengsanforderungen einkinecarc”
mit m = 96 Ports einedl®-DSLAMs(vgl. Abbildung 7-3) zu vermitteln, wird in Tabell7-4 die An-
zahl der jeweils bendétigten Verarbeitungseinheiten Hinblick auf die betrachteten DSL-
Varianten, vgl. (7.2), aufgetragen. Eine Leistumgsef3e aufgrund der Parallelverarbeitung wird
hierbei mit konstant 10 % angesetzt. Die Taktfrequdes N-Cores wurde mit 300 MHz und die
desNPU-Coresmit 600 MHz angenommen.

Tabelle 7-4: Bendttigte Verarbeitungseinheiten fur ime Linecard des jeweiligenDSLAM-Szenarios

. bendtigte N-Cores bendtigte NPU-Cores
DSL-Version Uplinkg Downlink UpIi%k Downlink
ADSL 1 2 1 5
VDSL 2 10 2 12
SHDSL 1 1 2 2

Mit 14 NPU-Cores bzw. 10 N-Cores ist d@ownlink bei VDSLbesonders rechenintensiv und kann
nur sehr teuer mit parallelen Prozessoren bewdligst@erden. In diesem Szenario muss eine Da-
tenmenge von 2,112 GBit/s prmecardverarbeitet werden.

Mit Hilfe des hier vorgestellten Benchmarks fur dasDSLAM-Szenario konnen im Anschluss die
in Kapitel 6 vorgestellten OptimierungsmalRnahmee lmstruktionssatzerweiterungen, Hardware-
beschleuniger, Anpassung der Kommunikationsinfu&sir sowie Ausnutzung von Parallelitat
greifen, deren Ergebnisse u. a. in [130][118][109¥][131][113] vorgestellt wurden.

Im folgenden Abschnitt werden u. a. die Performamagne fir die Ausfihrung des hier vorges-
telltenIP-DSLAMBenchmarks unter Verwendung der in Abschnitt 62&sentierten Instruktions-
satzerweiterungen aufgezeigt.

7.3 Instruktionssatzerweiterungen zur optimierten Protokollverarbeitung

Im Folgenden wird anhand der in Abschnitt 6.2.4spriierten Instruktionssatzerweiterungen das
Potential dieser Prozessorerweiterungen im Hinkdigk Leistungssteigerung, Reduktion des Ener-
giebedarfs und Codegréfienminimierung aufgezeigt. @@geniuberstellung der Analyseergebnisse
fur den Originalprozessof6¢Core[108]) und der erweiterten VarianteN-Core[111]) erfolgt so-
wohl fiir den im vorigen Abschnitt diskutiertéB-DSLAM-Benchmark, als auch fiir die in [112]
analysiertdPSeeProtokollsammlung [158], vgl. auch Abschnitt 6.2S® wird zum einen ein An-
wendungsgebiet aus dem Zugangsnetzwerkbereich umdanderen eine bereichsibergreifende

>4 Die Leistungsanforderungen aller Komponenten|BeBSLAMsin Abhangigkeit der Parameter: Prozessorarchitek-
tur, Taktfrequenz, Parallelisierungseinbul’e, Hardlwamponente de®SLAMs sowie Flussrichtung etc. zeigt der
DSLAM-System-Explorexuf (vgl. Abschnitt 7.5).

%5 Im Weiteren wird eine konsekutive Bearbeitungrallenchmarkszenarien mit reduzierter Paketzahhbhtet. Dies
ermoglicht eine Abschéatzung der Auswirkungen dsetrirktionssatzerweiterungen fur alSLAM-Komponenten.
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Sicherheitsanwendung bezlglich der Steigerung des®urceneffizienz durch Befehlssatzerweite-
rungen untersucht.

Tabelle 7-5: Benotigte Taktzyklen des S-Cores furid IPSec- und IP-DSLAM-Anwendung und die
Beschleunigung durch den Einsatz verschiedener Véomen des N-Cores

) Benotigte Takte Abnahme der Taktzahl
Prozessorvariante

IP-DSLAM IPSec IP-DSLAM IPSec

S-Core 2.558.959 20.010.034 0 0
N-Core

xorldw 2.390.196 17.077.996 6,59% 14,65%
andshr 2.407.230 17.126.254 5,93% 14,41%
g ixwandshr 2.407.246 16.100.200 5,93% 19,54%
8| orshig1624 2.407.236 17.977.018 5,93% 10,16%
§ ldwixw 2.309.388 15.612.431 9,75% 21,98%
Idwxorls|8,xorldw 2.356.116 18.000.664 7,93% 10,04%
Idwaddi 2.403.618 18.001.336 6,07% 10,04%
N-Core gesamt 2.288.730 15.061.131 10,56% 24,73%

Tabelle 7-5 zeigt die Ausfuhrungszeit in Takten die beiden Anwendungsszenarien und die ent-
sprechenden Prozessorvarianten auf. Der N-Coreenpirbei um jeweils eine der aufgezeigten
Instruktionen erweitert, bzw. abschlieBend wurd#e bostruktionssatzerweiterungen in den N-
Core integriert -Core gesamt Da die Instruktionssatzerweiterungen ursprumghigr die be-
reichsibergreifendd®SecAnwendung implementiert wurden, um den N-Core ibgiichst vielen
Orten des Netzwerks effizienter einsetzen zu konivgh Abbildung 7-1), verwundert es nicht,
dass die maximal erzielte Performanzsteigerungebi@éndiese Verarbeitung erzielt wird. So wird
durch Integration der sieben zusatzlichen Befellle Reduktion der zur Verarbeitung benétigten
Takte von fast 25 % erreicht. BeilR-DSLAM sind es immerhin noch mehr als 10 % Ersparnis.
Setzt man die hier gewonnenen Werte zu dem im &origoschnitt 7.2.5 skizziertd®-DSLAM
Szenario in Beziehung, so lieRe sich durch dierukEbnssatzerweiterungen z. B. B&DSL im
Downlink auf derLinecard einer von zehn N-Cores einsparen. Diese Laufzkikt@on geht bei
gleichbleibender Taktfrequenz des Prozessorkemtzeeimit einer Reduktion des Flachenbedarfs
der reinen Prozessoreinheiten von 7,6 % bei demb3Technologie bzw. einer leichten Flachen-
erhohung um 1 % bei der 90-nm-Technologie, vgl.ohbdt 6.2.4. Allerdings wirde die Reduktion
der Prozessoren eine Verringerung des zu instaeaden Speichers bedeuten, welches somit fir
beide Technologien eine deutliche FlachenreduktiorFolge hatte.

Beide Anwendungen profitieren maf3geblich von dBMWIXW Instruktionssatzerweiterung. Hier
erreicht man nur unter Verwendung dieses einentzid@én Befehls eine Laufzeitreduktion des
gesamtenP-DSLAM-Benchmarkson 9,75 % bzw. bei ddPSeeAnwendung von fast 22 %. Bei
der IPSecAnwendung liegt die Beschleunigung stets im meliigen Prozentbereich, beih-
DSLAMwerden immerhin noch Werte von durchgéangig ub#&s érreicht. Trotz der hohen Takt-
zahlreduktion durch die einzelnen Superinstruktiohegt die erreichte Gesamtreduktion deutlich
unter der Summation der Einzelreduktionen. Diesi&det sich darin, dass durch die Verwendung
einer Superinstruktion, Einsatzmoglichkeiten andémstruktionssatzerweiterungen teilweise ein-
geschrankt werden. Der Compiler ist somit gefordeite moglichst optimale Konstellation der
Zusatzbefehle zu finden [112].

Tabelle 7-6 zeigt den Energiebedarf fur die Abdthey deslPSeecBenchmarks bezogen auf die
130-nm-Standardzellentechnologierealisierung. Adéar wird die sich ergebende Codegrolde in
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Bytes fir dielPSecAnwendung angegeben, da diese ebenfalls einemaBezur Ressourceneffi-
zienz leistet, vgl. Abschnitt 6.2.3.

Tabelle 7-6: Energiebedarf bezogen auf eine 130-nfrechnologie und CodegréRRe fiir die
IPSecVerarbeitung der verschiedenen Prozessorvarianten

Prozessorvariante Energie [nWs] Hnergieabnahme Cddegré  Re [Bytes] | CodegréRenabnahme
S-Core 1,266 0% 119.288 0%
N-Core
ldwixw 0,971 30,38% 109.750 8,69%
ixwandshr 1,018 24,31% 109.626 8,81%
% xorldw 1,194 6,03% 109.470 8,97%
8] andshr 1,236 2,43% 109.922 8,52%
S| orshig1624 1,250 1,28% 110.010 8,43%
IdwxorlsI8 1,277 0,86% 110.478 7,97%
Idwaddi 1,272 0,47% 110.510 7,94%
N-Core gesamt 1,045 21,15% 108.158 10,29%

Liegt die Abnahme der Taktzahl, die durch die sdfionssatzerweiterungen erzielt wird, einheit-
lich im mehrstelligen Prozentbereich, so verhdh slie Bilanz bzgl. des Energiebedarfs der einzel-
nen Prozessorvarianten hingegen inhomogen.LD/IXW Instruktionssatzerweiterung dominiert
die Prozessorvarianten mit einer Energieabnahmenwveimr als 30 % gegenuber der Verarbeitung
mit dem Original-S-Core. Auch diIXWANDSHRErweiterung bewirkt eine Reduzierung des Ener-
giebedarfs von fast 25 %. Alle weiteren Instruksisaitzerweiterungen hingegen bewirken nur noch
Reduktionen, die grof3tenteils im unteren einstefli@rozentbereich liegen. Dies liegt in der Komp-
lexitat und Art und Nutzung der prozessoreigenegifter der jeweiligen Erweiterungen. Die Ge-
samtenergieabnahme fir den N-Core (in der Realisiewon Abschnitt 6.2.4) betragt immerhin
noch Uber 21 % und liegt fir die gesamte Ausfuhrogigl,045 mW.

Fur kiinftige Compilergenerationen waren zusatzliRkegelsatze mit Informationen bzgl. der Leis-
tungsaufnahme denkbar, die durch so genakhkeobenchmarkgvgl. Abschnitt 6.2.3) fir den
gesamten Befehlssatz ermittelt werden kénnten. lmacAluss konnte eine ressourceneffizientere
Codegenerierung im Hinblick auf die sich zur Laitfeegebende Leistungsaufnahme geschehen.

Der zweite Teil von Tabelle 7-6 fasst die erzi€idegrol3e fir den Benchmarkcode der einzelnen
Prozessorvarianten zusammen. Bei Verwendung eeiz&8operinstruktionen liegt die Abnahme
bei durchschnittlich 8,5 %. Bei Einsatz aller Ingtionssatzerweiterungen reduziert sich die beno-
tigte Speichermenge fur das Anwendungsprogramm@@a9X26 auf 108.158 Byte.

Zusammenfassend lasst sich fur déBeeBenchmark eine Beschleunigung der Verarbeitung von
fast 25 % einhergehend mit einer Abnahme des Egtmedarfs fur die Ausfihrung von 21 % gege-
niber dem Original-S-Core konstatieren. Zusatzisgthnoch eine Codegréfienabnahme von mehr
als 10 % zu verzeichnen. Diese deutliche Optimigmnvird durch eine Erweiterung des Prozessor-
kerns um sieben leistungsfahige Superinstrukticeregicht, die flr die 130-nm-Implementierung
lediglich einen Flachenzuwachs von 2,7 % bezogérdi@uurspringliche Prozessorflache ausma-
chen. Dieses Beispiel zeigt, dass sich die Resspeffizienz durch gezielte Instruktionssatzerwei-
terungen signifikant steigern lasst.

7.4 Modulare, effiziente Modellierung von Netzwerkanwexungen

Eine effiziente Erstellung der Anwendungssoftwatem Sinne der Wirtschaftlichkeit und der Res-
sourceneffizienz von groRer Bedeutung. So sind maodyehaltene Anwendungen mit definierten
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Schnittstellen leichter zu erweitern und zu pflegen[182][183][118][178][119] wird ein derarti-
ger Ansatz vorgestellt, der u. a. erfolgreich fig GigaNetIC-Architektur angewandt worden ist

[118].
'—»} ToDevice(0)
‘—»} ToDevice(1)

Abbildung 7-5: Beispielhafte Darstellung einer eirichenClick-Anwendung
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Basis dieses Ansatzes @lick, ein Werkzeug das es dem Benutzer erlaubt, einfadrsehr schnell
Netzwerkanwendungen mit Hilfe von Modulen ,zusammsticken” und damit zu beschreiben.
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Abbildung 7-6: Zusammenspiel:Click — CRACC Ablauf der Generierung von ANSI-C-Code
fur Netzwerkanwendungen aus einer abstrakten, modblasierten Beschreibung

Das Click-Softwarepaket [184][185][186][187] wurde von dear&llel-and-Distributed-Operation-
Systems-Gruppe des Massachusetts Institute of demwn [188], Mazu Networks [189], dem
I.C.I.LR. Center for Internet Research des Inteamati Computer Science Institute [190] und dem
Computer Science Department der Universitat vonifétaien [191] entwickelt. EineClick-
Verarbeitungseinheit wird aus der Verknipfung voodulen, die Elemente genannt werden, gebil-
det. Diese Elemente bestimmen die Funktion eingzwerkverarbeitungseinheit bzw. eines Rou-
ters, beginnend bei der Kommunikation mit anderetzeiNerkkomponenten, der Paketmodifikation
oder der Handhabung von Regeln zum Verwerfen begiemPakete. Die Elemente sind in der
Hochsprache C++ verfasst, was eine komfortable Eeweg bzw. Anpassung ermdglicht. Paral-
lelverarbeitung ist leicht modellierbar, und eskauf eine sehr umfangreiche Bibliothek an Netz-
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werkfunktionen zurtickgegriffen werden. Abbildund 7zeigt eine mitClick modulierte einfache
Beispielanwendung aus dem Netzwerkanwendungsbereich

Auf die Beschreibung der NetzwerkverarbeitungsetnheClick setzt der zweite Schritt in unserer
Werkzeugkette aulCRACC(Click Rapidly Adapted to C Cop§l82][183], das eine nahezu auto-
matische Umsetzung d€lick-basierten C++-Beschreibung in eine fir eingebetBtsteme effi-
zienter umsetzbare Kodierung in C tUbernimmt. Zu#tk6nnen inCRACCzur Steigerung der
Leistungsfahigkeit optimiertAssembleiRoutinen eingebunden werden. So verbinden sicVdie
teile aus schneller Anwendungserstellung aufgruerdgdol3en Anzahl bereits bestehender Module
fur die Netzwerkverarbeitung mit der Mdoglichkeitn dunktional verifiziertes Modell optimal auf
die Zielarchitektur abzubilden. Der Entwurfsablauft Hilfe der Click-CRACCGWerkzeugkette
wird in Abbildung 7-6 dargestellt.

Im Folgenden wird der in Abschnitt 7.2 vorgestelReDSLAMBenchmark mit Hilfe der hier vor-
gestellten Werkzeugkette nachgebildet und optimiert

7.4.1 Erweiterung des DSLAM-Benchmarks zum Referenzbenchirk

Aufbauend auf dem aus [141] bekannlBErDSLAMBenchmark wurde eine sehr realitdtsnahe, ge-
naue Modellierung der Ablaufe innerhalb einB#3DSLAMs mit Hilfe der Click-CRACG
Werkzeugkette realisiert [178]. Dies fuhrte zu dé¥DSLAM-Referenzbenchmaider hier nur in
aller Kuirze vorgestellt werden soll. Dieser erwegeBenchmark ermdglicht nun eine bessere Tren-
nung der Analyse der Anforderungen an die einzel®hAM-Komponenten.

Multicast w erne
4 2 5
- » Unicast |
\> 7
3 1 6

A

Uplinkcard Linecard Linecard Uplinkcard
» Downstream » Upstream

Abbildung 7-7: Die sieben Szenarien de®-DSLAM-Referenzbenchmarks

Abbildung 7-7 zeigt die sich ergebenden sieben &em desP-DSLAM-Referenzbenchmarks
Die Anzahl defTaskswurde auf 11 erhéht, um der Realitat der Anwendooch naherzukommen.
Es handelt sich hierbei unEthernet encapsulation, AAL5, IP header check,dBree address /
port verification, 5-tuple classification / destii@an lookup, Traffic policing and QoS, Multicast
duplication, Queuing, Set DiffServ codepaind Decrement TTL/HLIMDie einzelnen Tasks kon-
nen wiederum mehref€lick-Elemente umfassen. Fir eine genaue Beschreiburigudétionalitéat
dieser Tasks sei auf [178] verwiesen.

Tabelle 7-7 zeigt die Bandbreiten der verschieddd®h-Varianten, die bei der folgenden Analyse
desIP-DSLAM-Referenzbenchmandsriicksichtigt werden.

*% Die detaillierte Zuordnung der Tasks, die sichateise von denen aus Abschnitt 7.2.1 unterscheidéd, in Abbil-
dung Anhang F-1 dargestellt.
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Tabelle 7-7: Bandbreiten der untersuchten DSL-Variaten beimIP-DSLAM-Referenzbenchmark

Datenrichtung | ADSL | HDSL | SDSL | VDSL | RADSL | ADSL2+
Bandbreite [MBit/s] | Downlink 8 20,4 4 51,8 6 24
Uplink 1 20,4 4 2,3 0,64 3,6

Im Folgenden beziehen sich alle weiteren Analyseanyeit nicht anders erwahnt, auf dém
DSLAM-Referenzbenchmark

7.4.2 IP-DSLAM-Referenzbenchmark — Ergebnisse

In diesem Abschnitt werden die durch zyklenakkur@tmulation gewonnenen Ergebnisse der
GigaNetIC-Architektur fur denP-DSLAM-Referenzbenchmapkasentiert. Es wird ein &hnliches
Verkehrsmodell verwendet wie beim urspringlicher B8-Benchmark, ebenfalls mit ein@vlix-
basierten PaketgroRenverteilung.
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Abbildung 7-8: Benétigte Takte fiir die einzelnen Taks auf derUplinkcard im Downlink®’

Exemplarisch werden die Messwerte fur diglinkcard im Downlink-Betrieb (vgl. Abbildung 7-8)
und die Taktzyklen der maRRgeblichen FunktionenLdeecardim Uplink-Betrieb (vgl. Abbildung
7-9) aufgefiihrt. Es zeigt sich, dass einige werkigektionen, hierzu zahlen vor allem die CRC-
Generierungs- und Pruffunktionen (insgesamt ceb 99 der Gesamttaktzyklen) sowie die Multi-
castduplizierung im Multicastszenario (insgesamt9da8 % der Gesamttaktzyklen) einen Grof3tell
der bendétigten Rechenleistung auf sich vereinem.dBeLinecard im Uplink kommt neben den
beiden CRC-Funktionen noch die FunktiétVerifyPort mit 10,7 % zu den maf3dgebenden drei mit
insgesamt 93,9 % Anteil am Gesamtrechenbedarf hibiase ist abgeleitet aus dem vorigelas-
sification-Task und fuhrt einen tabellenbasierten Vergleigtch. ImUplink im ATM-Szenario sind
die ATM-spezifischen FunktionelP2ATM und ATM2IP, die die Umsetzung voATM-basierten
Paketen (zu vergleichen miALS5 aus [141]) mal3geblich mit 90,7 % an der Gesaméngdhl be-

*" Bezieht sich nach Mittelung divlix-Parameter auf ein theoretisch 788-Byte-groRestPake
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teiligt. Die Analyse dieser Zahlen zeigt potengedptimierungsmaoglichkeiten auf, die durch Soft-
wareoptimierung, Instruktionssatzerweiterungen wspgziell bei den hier erwahnten Funktionen,
durch den Einsatz von Hardwarebeschleunigern hgehéirt werden kbnnen.

Abschlie3end lasst sich zusammenfassen, dass ich&amitt 17,3 Takte iownlink bzw. 29,3
Takte imUplink auf derLinecardpro Bit eines Pakets zur Verarbeitung bendétigtdear Auf der
Uplinkcardsind es 28,7 Takte ildownlinkbzw. 24,3 Takte fur dedplink. Diese deutlich hoheren
Zahlen als beim ersten DSLAM-Benchmark sind u.nader aufwandigen CRC-Berechnung be-

grundet.
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Abbildung 7-9: Bendtigte Takte fur die Tasksauf der Linecard im Uplink
fir das Ethernet und ATM-Szenario’’

Fur viele der nicht mal3geblichen Funktionen deredmen Benchmarkszenarien kénnen ggf. schon
durch flachenmanig geringfugige Eingriffe, wie z.d8irch Instruktionssatzerweiterungen, zusatzli-
che Performanzgewinne und somit Entlastungen dear@eitungseinheiten erzielt werden. Diese

kbnnen dann im Weiteren zusatzliche Kontrollfunkéo auf den DSLAM-Systemkomponenten

Ubernehmen.

Im Folgenden werden die einzelnen Mallnahmen dem@pting und ihre Auswirkungen auf die
Performanz naher diskutiert. Eine interaktive Enfaraumexploration ist mit denDSLAM-
System-Explorer limoglich, der die Ergebnisse in Abh&angigkeit eillisteer Systemparameter
auswertet bzw. hochrechnet, vgl. Abschnitt 7.5.2.

7.4.2.1 Softwareoptimierung des IP-DSLAM-Referenzbenchmarks

Die Anwendungserstellung durch die abstrakte Masteihg mitClick und die automatisierte Ab-
bildung auf die Zielsysteme mitteBRACCund der jeweiligen Compiler-Werkzeugkette bietet v

le Vorteile (vgl. Abschnitt 7.4), hat jedoch audhen gewissen Preis bzgl. der erzielbaren Perfor-
manz.
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Abbildung 7-10: Vergleich der Originalversionen vs.optimierte Funktionen

Aufgrund der modularen Struktur werden haufig kostisgge Typumwandlungen und geschachtelte
Funktionsaufrufe in den automatisch generierteneCeidgebracht. Durch manuelle Optimierung
des erzeugten C-Quellcodes lasst sich eine belichehiMenge an unnétigen Taktzyklen einsparen.
Diese Optimierungen wurden fur Funktionen, die doveuf derLinecardals auch auf dddplink-
card Verwendung finden, durchgefthrt, vgl. Abbildund.@- Es lasst sich insgesamt eine deutliche
Ersparnis von 21,4 % der bendétigten Taktzyklen géber der Originalversion verzeichnen. In Be-
zug auf die Gesamtleistungssteigerung machen @esenierungen jedoch aufgrund der dominie-
renden Prifsummenoperationen letztendlich nur e@®@eschwindigkeitsvorteil von ca. 1,3 % aus.
Deshalb ist eine Suche nach Optimierungs- bzw. Eewmgsmadglichkeiten der Hardware weiter-
hin notwendig, um den Einfluss der besonders rentersiven Funktionen an der Gesamttaktzahl
zu reduzieren. Allerdings zeigt sich, dass fir Besxiseinsatz der automatisch generierte Code im
Hinblick auf die oben genannten Schwachstellenraatdt und ggf. optimiert werden sollte. Zur
Abschatzung und zum Vergleich der Leistungsfahigketerschiedlicher Zielarchitekturen ist er
dennoch ausreichend aussagefahig.

Im Weiteren werden die Untersuchungen bzgl. etwattgrdwaremodifikationen gemal Kapitel 6
durchgefuhrt.

7.4.2.2 Optimierung durch Instruktionssatzerweiterungen

In Abschnitt 6.2.4 wurden bereits einige Instrukisatzerweiterungen fir den N-Core vorgestellt.
Mit Hilfe dieser existierenden und ggf. neuer Eneringen, die unter Zuhilfenahme der vorgestell-
ten Werkzeugkette flr ddB-DSLAM Szenario implementiert werden, soll die mégliclegstungs-
steigerung durch Modifikation des Prozessorkerrigeeigt werden. Bei der Analyse der Funktio-
nen stellte sich der TasdkVerifyPort eine der rechenintensiven Aufgaben, als besondelrger-
sprechend fur die Optimierung durch Instruktionssateiterungen heraus. Nach zusatzlich erfolg-
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ter, manueller Optimierung der Funktion konnten idieAbbildung 7-11 gezeigten wesentlichen
Instruktionspaarhaufigkeiten bestimmt werden.
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Abbildung 7-11: Wesentliche Instruktionspaarhaufigkeiten bei der Funktion IPVerifyPort
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Abbildung 7-12: Wesentliche Instruktionspaarhaufigkeiten bei der Funktion IPVerifyPort
nach der Instruktionssatzerweiterung durchIXD, IXQ

Das bei den Analysen sehr haufig aufgetreteneukistnspaaisli, addy dass eine vielfach beno-
tigte Berechnung zum Vorricken in der Routingtaredtruktur ermoéglicht, wurde durch die
IXD(Index Doublg-Superinstruktion ersetzt. Sie umfasst ein logesscBchieben voRY um drei
Stellen nach links und das anschliel3ende AddieresgOffsets” auf das Ergebnis, das abschlie-
Bend in RegisteRX geschrieben wird. Aus &hnlichen Grinden wurdelmsgruktion IXQ (Index
Quad implementiert. Die Funktionsweise der beiden Bifekann in der Registerzuweisungsnota-
tion wie folgt beschrieben werden:

IXD: RX « RX + (RY < 3) (7.3)
IXQ: RX « RX + (RY < 4) (7.4)
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Abbildung 7-12 zeigt die erneute Analyse tleYerifyPortFunktion nach erfolgter Integration der
IXD-Superinstruktion. Es wird deutlich, dass durch Eifiihrung desXD-Befehls eine Verschie-
bung der resultierenden Instruktionspaare eingeirestt. Die zuvor aufgetretene Kombination von
addu und Idw wurde eliminiert, dafir konnte eine weitere Sup&rnuktionixd, Idw auf Basis der
gerade neu integriertdXD-Funktion eingebracht werden. Durch t¥-Superinstruktion, die nur
einen Takt beansprucht, konnte die Verarbeitungod&aachteten Funktion um 11,7 % beschleunigt
werden, wobei der Prozessorkern lediglich um 0,6§ré8er geworden ist.
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Abbildung 7-13: Beschleunigung des IP-DSLAM-Refererbenchmarks durch verfiigbare
Instruktionssatzerweiterungen des N-Cores fur einéMix -Verteilung

Abbildung 7-13 fasst die Resultate der Performawagge durch die Instruktionssatzerweiterungen
fur die sieben Benchmarkszenarien und eiidim-Verkehrsmodell zusammen. Es zeigt sich, dass,
auf den gesamten Benchmark bezogen, d&-Befehl nur eine Performanzsteigerung von 1 %
ermdglicht, wohingegen dieDWIXW-Erweiterung Beschleunigungen von 4 bis haufig ni8d
mehr erreicht. Auch diXORLDWErweiterung zeigt mit einer beschleunigten Verdung von 3

bis 4 % fur alle Benchmarks eine gute Leistung.

Bemerkenswert ist aul3erdem, dass durch Zuhilfenatli@elnstruktionssatzerweiterungen in funf
von sieben Fallen eine Beschleunigung von mehBd&ks im Vergleich zum Original-S-Core er-
reicht wird, obwohl die CPU-Flache des entspreckand-Cores lediglich 2,4 % groRRer ist. Die
absolut gesehen geringe Beschleunigung durchXdelnstruktion steht im Gegensatz zu der Per-
formanzsteigerung dieser Operation fur die Funkti®¥erifyPort die immerhin, wie bereits er-
wahnt bei 11,7 % liegt. Dies zeigt aber auch, dastsuktionssatzerweiterungen nicht zwangslaufig
alle Funktionen gleichermaf3en tangieren und eitgpeechende Analyse im Vorfeld der Chipreali-
sierung durchaus sinnvoll ist. Im Falle d¥®-Befehls wurde die gewtinschte Beschleunigung fur
die ausgewahlte Aufgabe erreicht. Fir die andezehanintensiven Tasks wird im Folgenden ver-
sucht, eine Beschleunigung durch spezielle Hardvesm@hleuniger zu erreichen.
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7.4.2.3 Optimierung durch Hardwarebeschleuniger

Sowohl fur die bereits als besonders rechenintendantifizierten TasksSetCRC32und
CheckCRC32m Falle derEthernetbasierten undP2ATM und ATM2IP fir die ATM-basierten
Szenarien als audRVerifyPortflur die Uplink-Szenarien auf ddrinecard (vgl. Abbildung 7-8 und
Abbildung 7-9) wurden Hardwarebeschleuniger entelickSie versprechen eine deutlich héhere
Beschleunigung, als es durch Instruktionssatzeeneigen oder, in diesem Fall, durch die Soft-
wareoptimierung maoglich ist.

Tabelle 7-8 zeigt die fur ddiP-DSLAM-Referenzbenchmairkplementierten Hardwarebeschleuni-
ger und ihre wesentlichen Charakteristika. Die BeEsmiger werden den Tasks bzw. Funktionen
des Benchmarks, in denen sie eingesetzt werderpmiiget. Der Beschleunigungsfaktor, der durch
eine enge Kopplung (vgl. Abschnitt 4.3.3) an deRdte erreicht werden kann, ist in der folgenden
Spalte aufgetragen. Durch den Einsatz der Hardwaotibeuniger ergibt sich fir alle Tasks eine
CodegrofRenreduktion von durchschnittlich 49,6 %.v8@ als positiver Nebeneffekt durch die
Verwendung der Beschleunigermodule, noch starledaich Instruktionssatzerweiterungen (vgl.
Abschnitt 6.2.3), die bendtigte Instruktionssperamenge reduziert. Aufgrund der engen Kopplung
kommt es nur zu einer durchschnittlichen Halbierdeg Codegrél3e, da der N-Core weiterhin alle
Speicheroperationen fur den jeweilig?(Intellectual Property-Block tbernimmt. Bei der Ans-
teuerung von lose-gekoppelten Hardwarebeschleunigeigegen reduziert sich der Befehlssauf-
wand auf wenige Instruktionsworter. Im Weiterendsdie Flache und maximal erreichbare Takt-
frequenz der Beschleuniger aufgetragen, gefolgtdemVerlustleistung bezogen auf 1 MHz, zum
einen ermittelt durch Schaltwahrscheinlichkeité0%S und zum anderen durch laufzeitbedingte
SchaltaktivitatenannotatiolA§ wahrend der Abarbeitung der entsprechenden Famktigl. Ab-
schnitt 6.3.1.5.

Tabelle 7-8: Charakteristika der implementierten Hardwarebeschleuniger
fur 130-nm- und 90-Standardzellentechnologien

Beschleunigung
o (relat(i:vzumN- CodegroRen- Flache Taktfrequenz |[50%S-Leistung || AS-Leistung
- Funktion ) Ofe, reduktion [mm?2] max. [MHz] [mW/MHz] [mW/MHz]
Beschleuniger bei gleicher
(0]
Frequenz),
enge Kopplung 130nm | 90nm [[130nm |90nm ([L30nm [90nm #30nm POnm
CRC CRC32 7,5 64,7%|| 0,0150] 0,0115|] 990] 1087|| 0,0061] 0,0168]|[ 0,0040] 0,0109
CAM IPVerifyPort 45,0 57,1%| 0,7186| 0,6163| 439| 380| 0,1995| 0,1815|| 0,1808| 0,1754
|l Lookup 1230,0]
IPFilter [IPFilter 6,0) 48,7%)|| 0,3814] 0,2470][ 430  523| 0,0827| 0,0759| 0,0816] 0,0746
IPFilter [lIPFilterAnno 6,0) 46,7%)|| 0,3814] 0,2470][ 430 523| 0,0827] 0,0759| 0,0816] 0,0746
IPHeaderCheck [[CheckIPHeade 12,0 30,8%|| 0,0339] 0,0329|] 546 571l 0,0060] 0,0058| 0,0075] 0,0098

Der CRGBeschleuniger wurde speziell fir dieses Szenamtwiekelt und, wie die anderen hier
aufgelisteten Hardwaremodule, fir eine direkte,eegpplung an den N-Core konzipiert. In die-
sem Betriebsmodus erzielt die€&RC-IRBlock im Vergleich zur Softwarelésung, die auf démn
Core abgebildet ist, eine Beschleunigung von 7dsf\gte er Uber eine eigene Speicherschnittstel-
le, kbnnte sogar eine Performanzsteigerung um Fdlt® erreicht werden. D&RGBIlock findet
Einsatz in den besonders rechenintensivasksSetCRC32indCheckCRC32Das speziell entwor-
fene CAM-Modul wird fir den TaskPVerifyPort verwendet, der insgesamt eine Beschleunigung
von 45 erfahrt. Die enthaltene Funktibookup die fast vollstandig durch die Hardwareerweitgrun
ersetzt wird, kommt so auf eine beschleunigte Ausfiig um den Faktor 1230. Der Blok=ilter
findet in den beiden TasK®Filter und IPFilterAnno Verwendung und erzielt jeweils eine Be-
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schleunigung von 6. Letztendlich wird der berait#\bschnitt 6.3.1 beschriebetfefHeaderCheck
Beschleuniger fur deffask ChecklPHeaderls eng an den N-Core gekoppelte Hardwareeinheit
eingesetzt. Aufgrund der alleinigen Prifung derfdninme dedP-Paketkopfes und der engen
Kopplung ergibt sich in diesem Szenario eine Besgahibung von 12. Diese Zahlen zeigen, dass
mit einem zusatzlichen Flachenaufwand fir das Ggsamessorsystem von 1,53 mmz2 (130 nm)
bzw. 1,15 mm? (90 nm), was in etwa dem ZehnfaclenFthche des N-Cores entspricht, eine ak-
kumulierte Beschleunigung von 76,5 erreicht werllann. Dies flhrt zu einer positivéilachen-
Performanzeffizienghach Definition 38) von Uber 7 (10/1 zu 77/1 #)7,

Betrachtet man die akkumulierte Verlustleistungsabiime der Hardwarebeschleuniger, so ergeben
sich Werte von 0,36 mW/MHz (130 nm) bzw. von 0,3&/fiviHz (90 nm) was in etwa dem sech-
sfachen der dynamischen Verlustleistungsaufnahrsereleen N-Core-Prozessorkerns entspricht.
Dies fuhrt zu einerVerlustleistungs-Performanzeffiziennach Definition 38) von 6/1 zu
77/1 =12,8. Diese Werte sprechen fur eine derafingegration der Hardwarebeschleuniger, er-
maoglichen sie doch ein deutlich ressourceneffigad System, als es allein mit N-Cores mdglich
ware. In [118][119][109][131] werden weitere Anadysbzgl. des hier vorgestellten Szenarios ge-
geben.

Um moglichst schnell Aussagen Uber die Auswirkungen verschiedensten Systemparametern
unter Auswahl der in den letzten Abschnitten vorgléien Optimierungsmaflinahmen treffen zu
konnen, fast debSLAM-System-Explorer tlie gewonnenen Ergebnisse zusammen und bereitet si
graphisch auf. Dieses Werkzeug wird in AbschniftZ .ndher vorgestellt und erleichtert die Ent-
wurfsraumexploration fir DSLAM-Anwendungen in vidé Hinsicht.

7.5 Visualisierungswerkzeug zur Entwurfsraumexploration

Im Rahmen der umfangreichen Analysen der Netzwerlk@zen wurde eine Vielzahl von Daten
gewonnen, die moglichst umfassend miteinander meBeing gesetzt werden sollten. Systemarchi-
tekten zukunftiger GigaNetIC-basierter Netzwerkgssoren profitieren bei einer Konzeption einer
neuen, ressourceneffizienten Systemrealisierungméglichst umfassenden Informationen durch
bereits erstellte Analysen. So entstand D8LAM-System-Explorger erlaubt eine schnelle und
Ubersichtliche Visualisierung der gesammelten Enggsle der DSLAM-Benchmarks auf einfache
Art und Weise, wie es ansonsten nur durch eine hinzan Diagrammen madglich ware. Die wich-
tigsten Systemparameter des analysierten DSLAM-&menlassen sich interaktiv, mit Hilfe von
Auswahimenuls bzw. mit Schiebereglern tUbersichtjemal den Anforderungen des Anwendungs-
gebiets einstellen. Dies erlaubt eine sofortige Iys®a des Entwurfsraums, bei der sich u. a. die
Leistungsfahigkeit bzw. die Anzahl der bendétigteardidvareeinheiten ablesen lassen. Die Anwen-
dung setzt auf eine einheitliche Datenbasis aefkdmfortabel mit einer Tabellenkalkulationssoft-
ware gepflegt und erweitert werden kann. So ldsktdie Visualisierungssoftware leicht flr andere
Anwendungsszenarien, Prozessorkerne sowie weitgtei8grollen (z. B. Flache oder Leistungs-
aufnahme) erweitern.

Im nachsten Abschnitt 7.5.1 wird zunachst auf desuRate der Analysen des urspringlictién

DSLAM-Benchmarkeingegangen, die flr den N-Core ohne Instruktiazesweiterungen (S-Core)
und drei weitere eingebettete Prozessoren ermittetden und mit Hilfe de®SLAM-System-
Explorer I visualisiert werden kénnen. In Abschnitt 7.5.2dvlann deDSLAM-System-Explorer 1l
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vorgestellt, der speziell die implementierten Haadserweiterungen fur die GigaNetlC-Architektur
(vgl. Abschnitt 7.4.2) einbezieht und deren Auswirgen auf die Performanz bzgl. dBsDSLAM-
Referenzbenchmarksifzeigt.

7.5.1 Vergleich eingebetteter Prozessorkerne — DSLAM-Sysin-Explorer |

Der DSLAM-System-Explorerdrlaubt den Vergleich der Leistungsféahigkeit venzeit vier einge-
betteten CPUs in Bezug auf den IP-DSLAM-Benchmark([d41].

m DELANM - System Explorer 6
Parameters Results
#Ports m ag - Swstem Component PP32 S-Core M | PS AR M
#linecardsn 29 « Linecard
200 MHz Required Mil. Cycles/sec Uplink.  Downlink Uplink.  Dawnlink Uplink. Diawnlink. Uplink.  Dawnlink,
{wc)
ADSL 109,927 1755,011 91,171 1079,52 52,283 555,337 35,168 432,715
Clock Frequency [MHz] YDSL 412,227 4917,029 341,891 2968681 196,062  1527,178 131,88 1189,965
L SHDSL 274,818 447,003 227,927 269,88 130,708 138,834 87,92 108,179
TR T RO Single Processar Bandwidth [Mbps]
) 139,729 85,906 168,475 142,285 293,784 276,589 436,76 354,968
Overbookingfactor O
1,1
10 B 4 3 28 17 9 7 3 2 1 1
30
Parallelism Overhead 25
20
System Component 19
Dewenstrearn Linecard « 10
S :
. : [ e—— 0
Uplink Card UC |
ADSL [Mbps] YDSL [Mbps)] SHDSL [Mbps]
HBrr:z [l SCoe I MPS ARM

needed CPUs

=2 —— o @
D5SLAM Scenario ‘ Gb. "ct lc
Exit

Abbildung 7-14: DSLAM-System-Explorer - Entwurfsraumvisualisierungssoftware fir das

GigaNetIC-System und weitere eingebettete Prozessor

Verglichen wird der in Abschnitt 7.2.5 vorgesteliipezialisierteNPU-Core (im Folgenden auch
PP32, der zum Zeitpunkt dieser Analyse mit bis zu 488z in einer 130-nm-Technologie betrie-
ben werden konnte und ca. 0,38 mm? Flache einniifetterer Testkandidat ist der N-Core ohne
spezielle Instruktionssatzerweiterungen, damit fimmial dem S-Core [108] gleichzusetzen, aller-
dings in 130-nm- und 90-nm-Technologie realisistri{vgl. Abschnitt 4.3.1 und 6.2.4). Als néchstes
wurde ein MIPS32k-basierter Prozessorkern analysier in 180-nm-Technologie zwischen 200
und 240 MHz erreicht und je nach Konfiguration zskisn 0,8 und 2,5 mm?2 an Flache beansprucht.
In 130-nm-Technologie sind 260 bis 300 MHz bei eiRkiche von 0,4 bis 1,1 mm2 mdglich. Als
letztes wurde ein ARM7-basierter Kern untersuclet, ih 180-nm-Technologie 80 bis 110 MHz
erreicht und eine Flache zwischen 0,95 und 0,53 benétigt. In 130-nm-Technologie steigert sich
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die mogliche Taktfrequenz auf 100 bis 133 MHz, wabeh die Flache auf 0,42 bis 0,26 mm?2 re-
duziert.

Abbildung 7-14 zeigt das Hauptanwendungsfenste D&tsAM-System-ExplorersAls Datenbasis
dienen Messwerte, die mit zyklenakkuraten Simukatoder untersuchten Prozessoren ermittelt
wurden. Anhand der gemessenen Takte, die zur \&tany der einzelnen Tasks bendtigt werden,
und aufgrund der Vorgaben durch die hier betraehteDSL-SzenarienADSL (0,8 MbpsUplink,

8 Mbps Downlink pro DSL-Port),VDSL (3 Mbps Uplink, 22 MbpsDownlink pro DSL-Port) und
SHDSL (2 MbpsUplink, 2 MbpsDownlink pro DSL-Port) ergeben sich die Verarbeitungsbagiebr
ten der Prozessoren.

Die veranderbaren Parameter kbnnen im linken Bereées Hauptfensters eingestellt werden. Als
Parameter kdnnen der Anwendung die Anzahl der D8&eAllisseRorts) einerLinecard die An-
zahl derLinecardsdes gesamten DSLAMs, die mit ddplinkcard verbunden sind, die Taktfre-
quenz der Verarbeitungseinheit, der Uberbuchungsfajoverbookingfactdy; der bestimmt, zu
welchem Anteil die theoretisch notwendig¥@ Bandbreite vomSP zur Verfligung gestellt wird
und schlie3lich der zusatzliche Mehraufwai@vérhead, der durch den parallelen Betrieb von
Verarbeitungseinheiten hervorgerufen wird, Gbergelerden. Dieser Mehraufwand wird im Wei-
teren mit 10 % veranschlagt, was ggf. durch gemafealysen verifiziert werden muss. Letztend-
lich kann dann noch eines der vier Szenarien d€33PAM-Benchmarks ausgewahlt werdeuspf
/Downlinkcard/ Up-/Downlink).

o Details - Tasklevel O 0 6
Databasze version: 2.1 PP32 S—Core MIPS ARM
Required cycles:
Task Upstream Downstream Upstream Downstream Upstream Downstream Upstream Downstream
A Parser 443126 443126 74350 74350 32714 32714 35700 35700
B: Headercheck 1415624 1412650 4E5010 462101 277833 280621 2B2739 262733
C: Classify : 5347252 b 2574465 3 1085057 5 1033050
D: MC_Duplication 5 3303750 E 1034343 . 513833 5 548157
E:Pal. / Cond - 1103830 - 282519 - 209532 - 174750
F: Converpath - - - - - - - -
G: AALS 3485528 3607462 2436031 2520983 733312 7333z 567525 S64615
H: CRC Accelerator 5121228 414152 E1663944 4243554 4295516 293370 2722905 1891605
I: Etheret Framing 99336 5 11263 5 110176 5 77045 :
J: CRLC in Software 53306724 33403968 53550954 40111506 43055240 23013362 ZBB03700 17345630
Aggregate 11458822 18638222 9503648 11252321 5450011 5788836 3BES914 4510616
Cycles/bit 1.431 27328 1187 1,406 0,681 0723 0,458 0,563
Code size 4376 27967 4132 11334 4358 11735 4176 9743
#0f Packets 2981 SystemEomEonen!
Linecar: - .
# of Bytes 1001324 Exit

Abbildung 7-15: Detaildarstellung der bendétigten T&tzyklen fur die einzelnen Tasks des
IP-DSLAM-Benchmarkssowie fiir die Gesamtzahl benétigter Takte auf dekinecard

Bei dem dargestellten Szenario aus Abbildung 7-itd die Linecardim Downlink betrachtet. Fur
VDSL werden z. B. 28 NPU-Cores gegenuber 7 ARM-Prozkesten zur Bewaltigung der Last
bei 200 MHz im ,schlimmsten Fafi® (Worst Casg benétigt. Durch Variieren des Schiebereglers
kann nun z. B. interaktiv bestimmt werden, bei \welcFrequenz wie viele der jeweiligen Prozesso-

%8 Der schlimmste Fall beschreibt hier den Fall, dtissvolle Bandbreite fiilp- und Downlink pro Port det.inecard
von den Teilnehmern gleichzeitig genutzt wird.
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ren bendtigt werden, um das entsprechende xDSLa$ipespezifikationsgemald bewaltigen zu
kénnen. Es zeigt sich, dass der N-Core ohne speiidtruktionssatzerweiterungen eine deutlich
hohere Leistung bietet, als der spezielle Paketveitaingsprozessor (vgl. Abschnitt 7.2.5). Auch
im Vergleich mit den etablierten eingebetteten MIBR8d ARM-Prozessorkernen ist der N-Core,
bezieht man seine geringe Flache mit ein, durcheettbewerbsfahig, bendtigt er doch deutlich
weniger als die Hélfte der Flache der kommerzieReozessoren. Die Anwendung zeigt ebenfalls
die bendtigte Anzahl an Taktzyklen fur das jeweiliszenario und die Performanz (gemessen in der
zu bewaltigenden Bandbreite in Mbps) eines einzePr®zessorkerns auf.

Abbildung 7-15 zeigt die Detailansicht, die gen&ieblicke in die Verteilung der Rechenlast auf
die einzelnen Tasks der jeweiligen Szenarien gbtwird ebenfalls deutlich, welche Tasks fir das
entsprechende Szenario bendétigt werden und welché Auch hier lasst sich die Systemkompo-
nente auswahlen. In der gezeigten Darstellung ®ezug auf did.inecardgenommen. Aul3erdem
werden Diagramme zGycles/Bitbzw. Code sizeerzeugt, die Aufschluss Uber die bendtigten Pro-
zessortakte pro Bit eines Pakets bzw. Uber die g6@e der einzelnen Tasks geben.

Abbildung 7-16 zeigt die durchschnittliche Taktzahd Bit eines Pakets. Diese liegt fur déh
DSLAM-Benchmarkir alle Szenarien und alle Prozessoren unter Ideha Deutlich wird auch
hier, dass die spezielle Paketverarbeitungseinheait aufgrund der Schwachen des Compilers (vgl.
Abschnitt 7.2.5) weitaus schlechter abschneideti@sanderen drei Prozessorkerne. MIPS und be-
sonders ARM dominieren hier bzgl. der Effizienz diggter Takte pro Bit eines Pakets. Allerdings
ist hier die deutlich komplexere Architektur diesézrne, die sich in ihrer grol3eren Flache aus-
drickt, und die teilweise geringere Taktfrequeng tisachlich kauflich erwerbbaren ARM-Pro-
zessorkerns nicht zu vernachlassigen, so dass @&rél auch bzgl. dieser Betrachtung durchaus
wettbewerbsfahig erscheint. Aus Sicht der Perfommsinhier der MIPS-Kern der leistungsfahigste,
ist doch seine maximal realisierbare Taktfrequerehmuals doppelt so hoch wie die des ARM-
Kerns.
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Abbildung 7-16: Darstellung der benétigten Takte po Paketbit zur Bearbeitung des
IP-DSLAM-Benchmarksbzgl. des jeweiligen Szenarios

Abbildung 7-17 stellt die durch den jeweiligen Calaperzeugten Codegrol3en der einzelnen Tasks
dar. Auch hier zeigt sich, dass der Paketprozgd#®t-Corg nicht Uber einen entsprechend leis-
tungsfahigen Compiler verfugt, sondern in der Raygdtels Maschinensprache von Hand prog-
rammiert wird, um entsprechend effizient zu seire Bnderen drei Prozessoren sind in etwa ver-
gleichbar, mit leichten Vorteilen auf Seiten desMJRerns. Hier zeigt sich fir den N-Core der
Vorteil der 16-Bit-Instruktionsweite, der die Codége insgesamt relativ klein halt.
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Abbildung 7-17: Darstellung der Codegréf3en der untesuchten Prozessoren
fur die einzelnenlP-DSLAM-Tasksauf der Linecard

Abschlie3end lasst sich bemerken, dass die hieestelen Analysen zeigen, dass der N-Core ver-
glichen mit etablierten Prozessorkernen bzw. Sjiemidware (NPU-Core) durchaus wettbewerbs-
fahig im Hinblick auf Leistung und insbesondere &liichenbedarf ist. Im folgenden Abschnitt
wird, um die Auswirkungen der zuséatzlich implemerien Hardwareerweiterungen fur die Giga-
NetIC-Architektur besser auswerten zu kdnnen, raih @SLAM-System-Explorer Bin leistungs-
fahiges Werkzeug vorgestellt.

7.5.2 Einbeziehung von HW-Erweiterungen — DSLAM-System-ERlorer Il

Im Folgenden wird mit Hilfe deBSLAM-System-Explorer gezeigt, inwiefern, sich die Leistungs-
fahigkeit und die Ressourceneffizienz des N-CorelddHardwareerweiterungen in Form von In-
struktionssatzerweiterungen und speziell fir dasvémdungsszenario entwickelten Hardwarebe-
schleunigern (vgl. Abschnitt 7.4.2) zusatzlich geen lasst. Hierbei dient von nun an dBr
DSLAM-Referenzbenchmaaks Abschnitt 7.4.1 als Grundlage der Analysen.

Abbildung 7-18 zeigt das HauptanwendungsfenstelD&isAM-System-Explorer.|Er beriicksich-
tigt fir sechs bereits vorgestellte xDSL-Variantéa sieben Benchmarkszenarien aus Abschnitt
7.4.1, die im rechten Bereich des Fensters tbewAhisnenis eingestellt werden konnen. Taktfre-
guenz des CMPs wie auch die Anzahl Berts undLinecardslassen sich ebenfalls konfigurieren.
Zusatzlich kann die Art der Hardwareerweiterung bdie Softwareoptimierung ausgewahlt wer-
den. Die Differenz der bendtigten Taktzyklen zunmgdal wird simultan in der Diagrammansicht
des Anwendungsfensters graphisch hervorgehobeAbbildung 7-18 werden z. B. die Unter-
schiede der Originalsoftwareimplementierung gegeniler optimierten Softwareimplementierung
aufgetragen. Der jeweilige durchschnittliche Besahlgungsfaktor wird ebenfalls zeitgleich be-
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rechnet und dargestellt. In diesem Szendragcard — Uplink — Etherne} wird z. B. eine Be-
schleunigung $peedupvon 10 % erreicht. Fir jede der DSL-Variantendndie benétigte Anzahl
an Prozessoren angezeigt. Sollten Hardwarebesopdzuausgewahlt sein, wird jeweils nur eine
dieser Spezialeinheiten bericksichtigt. In zukigefti Implementierungen wird die Anzahl der Be-
schleunigereinheiten ebenfalls parametrisierban. 80 werden z. B. fur das in Abbildung 7-18
ausgewahlte Szenario deinecardfir dasSDSL-Szenario mindestens 52 N-Core-Prozessoren mit
einer Betriebsfrequenz von 200 MHz bendtigt. Oha#iv&areoptimierung wiirden 57 N-Cores und
unter Verwendung aller Instruktionssatzerweiterumger noch 48 bendtigt. Wirden alle in Ab-
schnitt 7.4.2 vorgestellten Hardwarebeschleunigdaeh instantiiert und eng-gekoppelt eingesetzt,
so reduzierte sich die Anzahl benotigter Prozessaek auf lediglich 9. Dies entspricht einer Re-
duktion von immerhin 84,2 % im Vergleich zur Originersion. Bei einer Betriebsfrequenz von
1,57 GHz reichte eines dieser Prozessorsystemeallart Hardwarebeschleunigern ausgestattet,
aus, um die gesamte Bandbreite einer Linecartdmmk und EthernetModus furSDSLverarbei-

ten zu kdnnen.
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Abbildung 7-18: DSLAM-System-Explorer I Beriicksichtigung der Instruktionssatzerweiterunge und Hard-
warebeschleuniger fir unterschiedlichdP-DSLAM-Anwendungsszenarien
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In [118] werden detaillierte Analysen zu GigaNeti@sierten Netzwerkprozessoren vorgestellt, bei
denen mdglichst ressourceneffiziente Implementigean unter Verwendung von optimierten
Hardwarebeschleunigern angestrebt werden.

Abbildung 7-19 gibt die Detailansicht der Tasksdee In der linken Halfte werden die Funktionen
farblich hinterlegt, bei denen die zuvor ausgev&l®ptimierung eine Reduktion der bendtigten
Taktzyklen zur Folge hat. Die benétigten Taktedi@ dreiiMix-Paketgréf3en sowie das Mittel die-
ser statistischen Verteilung (788 Byte) werden efifigrt. In der rechten Halfte des Fensters, der
Diagrammansicht, wird diese ebenfalls durch zweirrisigerte Saulen dargestellt.
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15000 15000
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SethnnoByte 29 29 29 29 I
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Abbildung 7-19: Darstellung der bendtigten Taktzyken fur die einzelnen Tasks des IP-DSLAM-
Referenzbenchmarks mit Hervorhebung des Einflusseder ausgewahlten Optimierungen

Bei diesem Beispiel handelt es sich um den Vergldier optimierten Softwarevariante gegeniber
dem Einsatz aller Hardwarebeschleuniger. Es zesgtzim einen, dass nicht alle Funktionen von
den jeweiligen Optimierungen profitieren, zum amdewird deutlich, dass viele der Funktionen
invariant gegenuber der Paketgrof3e sind. Dies fidmti, dass kleine Pakete, wie sie in vielen ak-
tuellen Anwendungen genutzt werden, besondersiziait bzgl. delNutzdaten-Aufwand-Effizienz
sind. Anhand der Balkendiagramme zeigen sich bessndrastische Reduzierungen der sehr re-
chenintensiven Funktionen, so wie es in AbschnétZ’bereits angedacht war. Wird eine ausgewo-
gene Mischung zwischen Hardwarebeschleunigern uasttuktionssatzerweiterten N-Core-Pro-
zessorkernen implementiert, so kann eine deutl®tieeggerung der Ressourceneffizienz gegeniber
einem nichtoptimierten System, dass alleinig mitidrsalprozessoren ausgeristet ist, erreicht
werden. Frei werdende Rechenkapazitaten der Parkesse konnen dann fir tUbergeordnete
Kontrollaufgaben und héhere Dienstqualitat bzw.arzigche, differenzierende Eigenschaften des

Gesamtsystems genutzt werden.

Eine Erweiterung der in den letzten beiden AbsténitvorgestellterDSLAM-System-Explorer
Visualisierungswerkzeuge durch die Kostenfunktibasterte Analysemethode (vgl. Kapitel 3) wa-
re technisch relativ leicht realisierbar und erndige dem Systemarchitekten neben der Visualisie-
rung und Aufbereitung der Synthese- und Messergebrzudem eine fundierte Bewertung. Bei
einer derart grollen Menge an Szenarien und Reahgjgvarianten ware speziell im Falle des
DSLAM-System-Explorersine automatisierte Auswertung im Hinblick auf giaroptimale und
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damit ressourceneffiziente Losungen aullerst hilireDerzeit muss dies noch vom Anwender
selbst anhand von Auswertungen der generiertenr@age geleistet werden.

7.6 Einsatz GigaNetIC-basierter Netzwerkprozessoren alRouter

Als weiteres Beispiel der Vielseitigkeit der GigaKArchitektur wird im Folgenden ein Anwen-
dungsbeispiel aus dem Kernnetzwerk bzZadgeNetzwerk zur Bewertung von GigaNetIC-
Systemen, basierend auf den Leistungsdaten derrBP@ararbeitungseinheit und spezieller Hard-
warebeschleuniger, vorgestellt. Hierzu wurden ineAnung an die vom EEMBC-Benchmark-
Konsortium [161] definierten Netzwerkbenchmarksi dtearakteristische Funktionen von Routern
(OSPF-RoutingPacket-Flowund Route-Lookupmodelliert und auf die Zielarchitektur abgebildet
[130]. Diese Funktionen stellen wesentliche Aufgaletes aktuellen Routers dar, die durch zu-
satzliche Funktionalitdten wie z. Bletwork Address TranslatiofNAT) oder Quality of Service
(Qo9 erganzt werden kénnen.

Der Router in dem hier betrachteten Szenario (&gbildung 7-20) verfugt Uber acl@igabit-
Etherne(GE)-Schnittstellen, die im Vollduplex betrieben wendéJber den internen Aufbau des
Routers werden keine Angaben gemacht, da hier @uRdchenaufwand fur die einzelnen Algo-
rithmen untersucht werden soll, so dass von edealisierten Architektur ausgegangen wird.

Router

Packet Flow I_r’ Route Looku
(IP Header Check) P
N

GE-Ports

Abbildung 7-20: Leistungsanalyse des N-Cores und d&igaNetIC-Architektur fir einen Netzwerkrouter

Die eintreffendenlP-Pakete (eingefasst in zufallsverteilte Ethernedpakminimaler/maximaler
Lange) werden durch den Blo®acket Flowzunachst auf Korrektheit gepritP(Headercheck
und dasTTL(Time to Livg-Feld dekrementiert, da es sich um einen so geeaitop im Netzwerk
handelt. Sollte es sich um ein ungultiges Paketélan so wird es verworfen. Enthalt das Paket
Routinginformationen tber den Netzwerkstatus, wikses den©OSPF(Open Shortest Path First)
Block Ubergeben, der entsprechend dem hier eirggesélijkstra-Verfahren ggf. die Routingtabel-
le aktualisiert. Handelt es sich bei dem eingehehidePaket um ein Datenpaket, so Gbernimmt der
Route-LookugBlock anhand eine®atricia-Trie-Algorithmus die Zuordnung des Ausgangsports
und das Paket wird zum nachsten Netzteilnehmeevggleitet. Fir eine minimale Paketgrdl3e von
64 Byte und unter Einhaltung der Ubertragungssig@tibn ergeben sich 1.488.095 Pakete pro
Port. Dies bedeutet eine Gesamtpaketzahl von 11¢9 thd stellt zugleich den Fall maximalen
Rechenaufwands dar. Fur das Aktualisieren der Rgtabelle wird ein eigenstandiger N-Core-
Prozessorkern eingesetzt, der nur fur diese Fumkiowendet wird und bei einer Taktfrequenz von
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230 MHz 317 Updates der Routingtabelle pro Sekwerdsicht®. Heutige Router aktualisieren ihre
Routingtabelle bis zu 300 mal pro Sekunde [192fiesem Fall reichte hier ein N-Core zur Verar-
beitung aus.

Tabelle 7-9 zeigt die mit Hilfe der Benchmarks dtelien Leistungswerte des N-Cores fir den
Einsatz in einentdge-RouteiSzenario. Es zeigt sich, dass fur die hier geftedeachtGE-Ports

im Volllastbetrieb mindestens 26 dieser Verarbajaginheiten zur alleinigen Abwicklung des Pro-
tokollstapels bendtigt werden. Wirde man diesesidatasystem durch spezielle Hardwarebe-
schleuniger fur die beiden rechenintensiven AufgaPacket Flowund Route Lookuperweitern
(optimiertes System), so liel3e sich die Anzahl higtgr N-Cores auf drei reduzieren. Zusétzlich
waren dann zwei der bereits implementierten Hardibeschleuniger IR-Headercheck eng-
gekoppelt undCAM, eng-gekoppelt) notwendig (vgl. Abschnitt 7.4.2 B)ese kénnten zusammen
mit den drei N-Cores die gleiche Rechenleistung\arfiigung stellen wie das Standardsystem mit
26 Prozessoren. Tabelle 7-9 zeigt weiterhin dié sigrch das optimierte System ergebende Fla-
chenersparnis auf. Diese betragt insgesamt mehtOalé. Zusatzlich wird durch die Verwendung
dieser optimierten Architektur eine mit 73,6 % nidnerhebliche Verlustleistungsersparnis erzielt.
Die Verlustleistung fur diese Funktionen wurde iditfe der Annotierung der Schaltaktivitaten
(AS, wahrend der Laufzeit bestimmit.

Tabelle 7-9: Rechenleistung eines N-Core-basiert&tandardsystems und
eines optimierten GigaNetIC-Systems fur eifedge-RouterSzenario

Standardsystem Optimiertes System
Funktion Performanz | Bendtigte Bendtigte Hardware- Flachen- Verlustleistungs-

pro N-Core N-Cores N-Cores beschleuniger | ersparnis [%] [ ersparnis [%] ( SA)
Packet Flow 900.262 14 1 1 91,3% 91,8%
[Pakete/s]
Route Lookup |4 173 gog 11 1 1 49,6% 57,2%
[Lookups/s]
OSPF-Routing o o
[Updates/s] 317 1 1 0% 0%
Gesamt - 26 3 2 70,1% 73,6%

Auch in diesem Beispiel fur Netzwerkanwendungemizsich, dass die Ressourceneffizienz eines
Systems aus einem Kompromiss zwischen hoher Lgstahigkeit spezialisierter Hardware auf
der einen Seite und Flexibilitdt bzw. Zukunftssitieet von Universalprozessoren auf der anderen
Seite besteht.

7.7 Analyse der Anschlussarten von Hardwarebeschleunige im GigaNoC

In diesem Abschnitt werden die Ergebnisse von Miissn zur Software-basierten und Hardware-
beschleuniger-unterstiitzten Paketverarbeitung etetie Damit einhergehend wird eine Bewer-
tung der verschiedenen Kopplungsmoglichkeiten (¥g8.3) der Hardwarebeschleuniger vorge-
nommen. Der in Abschnitt 6.3.1.1 bereits vorgesteiardwarebeschleuniger zur Paketprifung
beschleunigt Funktionen der Netzwerkverarbeiturfgdan Netzwerkschichten 3 und 4. Dazu mus-

* Hierbei wird eine vorinitialisierte Liste von 400etzwerkknoten mit je vier Verbindungen pro Knotds Vorgabe
angenommen.
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sen die Pakete auf diesen Schichten terminiertevendnd es bedarf einer protokollkonformen Bil-
dung bzw. Prufung der Checksummen und der Pake&nahbies kann vollstandig in Software ge-
schehen, dann tUbernimmt der N-Core komplett di@sesk, oder aber: Die rechenintensive Verar-
beitung wird auf die speziell hierfur entwickeltB&mheiten ausgelagert, die somit den Universal-
prozessorRE) entlasten und mehr Rechenzeit fir zusatzliche&ttamen, wie z. BFirewall- oder
weiterreichende Paketpriffunktione®dep Packet Inspectioh DPI), schaffen (vgl. Abschnitt
8.1.2).

Bei der Evaluierung der Leistungsdaten muss zuderizahl der aktiven Verarbeitungseinheiten
am lokalen Bus berticksichtigt werden. Der Ubersidfikeit halber wird sich hier auf zwei Extrem-
falle beschréankt: Entweder ist eine Verarbeitungsei als einzige aktiv, oder aber vier PEs des
Clusters sind mit der Paketverarbeitung beschafischfalle von Software-Verarbeitung und
hardwarebeschleunigter Verarbeitung werden der ditigtichkeit dienend vernachlassigt. Auch
fur das Ubergeordnete NoC ist die Anzahl der aktiZenheiten relevant. Da hier zunachst von ei-
nem maximal 32 PE-umfassenden System mit an dagAdungsszenario angepasster Anzahl von
Hardwarebeschleunigern ausgegangen wird, fir die€zidgaNoC bereits ausreichend dimensioniert
ist, sind keine nennenswerten BeeintrachtigungerSgstems zu erwarten [118].

Zur Verarbeitung wurden Pakete charakteristischéf3& nach dem bereits erwahnbeternet-Mix
(iMix) verwendet. Dies bedeutet Ethernet-Pakete vodBd,und 1518 Byte. Der hier verwendete
32-Bit-breite Hardwarebeschleuniger erledigt didgalbe ca. 14,6 (64 Byte-Paket) bzw. bis zu 16,9
mal (1518 Byte-Paket) schneller, als der Prozedsargleicher Taktfrequenz. Die Tatsache, dass
eine deutlich hohere Taktfrequenz des Hardwarelmstigers mdoglich ware, wird hier aulRer Acht
gelassen. Die Beschleunigung ist bei gro3en Palkgileer als bei kleineren, da hier der Anteil der
fixen Operationen am Gesamtaufwand im Vergleicllenn datenabhéngigen Anteil geringer wird,
vgl. Abschnitt 6.3.1.5.
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Abbildung 7-21: Vergleich zwischen Software-basiedr Paketverarbeitung und Hardwarebeschleuniger-
basierter Verarbeitung unter Beriicksichtigung unterschiedlicher Systemanbindungen

Bei der Analyse wird zwischen KommunikatioBdmmunicatioph und BerechnungQalculation
unterschieden. Unter Kommunikation wird der Angal Zyklen verstanden, der zur Initilerung der
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Berechnung bzw. Priifung benétigt wird, also Ansteng des Hardwarebeschleunigers und Uber-
gabe der Adresszeiger und des Steuerwortes. BebSafeware-basierten Variante entfallt dieser
Anteil, da hier die CPU keine zusatzliche Kommutika mit anderen Hardwareblocken ausfiihren
muss. Unter Kalkulation wird der Anteil der Zyklgarstanden, der fur die eigentliche Prifung der
Paketdaten benotigt wird. Abbildung 7-21 gibt eitdiverblick tiber die Verteilung von Kommuni-
kation und Kalkulation bei Software-basierter Pakgdrbeitung sowie Hardwarebeschleuniger-
basierter Verarbeitung unter Berticksichtigung votetschiedlichen Systemanbindungen.

Deutlich wird, dass die busbezogene Kommunikatienener Anzahl von vier Prozessoren keinen
Flaschenhals bzw. Engpass fur die Software-basiatarbeitung bedeutet. Erst bei einer Anzahl
Uber vier Prozessoren lasst sich eine Herabsetdand/erarbeitungsgeschwindigkeit feststellen,
die aufgrund von konkurrierenden Buszugriffen zan8e kommt. Dies liegt u. a. in der Zugriffs-
zeit auf den gemeinsamen L2-Speicher von viering Takten begrindet, vgl. Abschnitt 4.4.

Ein gewisser Flaschenhals zeigt sich hingegenwehl bei dem an den lokalen Bus angeschlosse-
nen Hardwarebeschleuniga/B HW Acg. Hier macht sich die deutlich hohere Verarbeitgeg
schwindigkeit bemerkbar. So nimmt die Anzahl dendigten Zyklen von 27 (64 Byte-Paket /
1518 Byte-Paket) bei einem aktiven Prozessor denthtehende Wartezeiten aufgrund der Busar-
bitrierung auf 72 (64 Byte-Paket) bzw. 477 (1518eBpaket) bei vier Prozessoren zu. Dies ent-
spricht einer Steigerung der Kommunikationskost@n2,67 bzw. 17,67. Bei vier aktiven Prozesso-
ren am Bus liegen die Kosten der Kommunikationen gleichen Grdl3enordnung wie die Kosten
fur die Berechnung. Dies ist ebenfalls der Fall dei Ansteuerung des an einem Switch-Box-Port
angeschlossenen Beschleunig€e€ (HW Acg. Allerdings wird hier der lokale Bus starker ast

tet, und die Wartezyklen entstehen durch das Na&ShBib bietet sich diese Losung besonders flr
grof3e Systeme an, bei denen eine Vielzahl von Gk&Jsechenintensiven, fixen Tasks auf einige
wenige, spezialisierte und Uber das GigaNoC guwiadrbare Hardwarebeschleuniger, auslagert.
Der eng an den Prozessor gekoppelte Hardwarebasdie PE Coprozessgrerfordert aufgrund
der Speicherzugriffe Gber den zwischengeschaltsdt€ore (vgl. auch Abschnitt 7.4.2.3) deutlich
mehr Taktzyklen fur die Kommunikation als die beidenderen Varianten der Hardwarebeschleu-
nigerkopplung.

Bei der Software-basierten Verarbeitung wird zwesctlawei Varianten unterschieden. Bei der ers-
ten Variante $W Shared Menhbefinden sich die Daten im gemeinsamen SpeicBleared Memo-
ry) des Clusters und bedeuten somit haufige verzaBueugriffe der einzelnen Prozessoren. Bei
dieser Variante werden die Kosten der KommunikaziorNull gesetzt, da keine expliziten Daten-
transfers wie bei den anderen Alternativen notwgsdid. Die Prozessoren nehmen lediglich teure-
re L2-Speicherzugriffe vor, die jedoch mit zur Kiaiktion gezahlt werden. Bei der zweiten Varian-
te (SW Local Memhingegen werden die Daten zunachst vollstandideim lokalen Prozessorspei-
cher kopiert. Die Kosten fur die Kommunikation die¥ariante liegen in der gleichen Grof3enord-
nung wie die der eigentlichen Berechnung. DiesanFder Bearbeitung lohnt sich deshalb nur
dann, wenn weitere Folgeberechnungen auf den Raketdtattfinden und es so im Anschluss zu
gunstigen L1-Speicherzugriffen kame. Dies wirdewsiteren Verlauf den Bus bei einem Mehr-
prozessorbetrieb entlasten und kénnte dann letiternzlu einer beschleunigten Verarbeitung fiih-
ren. Beim Einsatz des GigaNetIC-Multiprozessorcachgl. Abschnitt 4.4.2) anstelle des normalen
lokalen Prozessorspeichers konnte die EinlagerengmPakete durdhrefetchingbereits wahrend
einer Bearbeitung geschehen, was den Durchsat8ydtsms zuséatzlich erhéhen wirde.
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Bei der Software-basierten Berechnung liegt dierBaitungszeit zwischen 6,1 Takte/Byte (64 By-
te-Paket) und 4,3 Takte/Byte (1518 Byte-Paket), imgdgen der Hardwarebeschleuniger nur 0,4
Takte/Byte (64 Byte-Paket) bzw. 0,3 Takte/Byte @ Ryte-Paket) bendtigt.

Abbildung 7-22 zeigt die maximal zu verarbeitend@akete pro MHz Rechentakt des Clusters.
Hierzu werden die Varianten mit einer bzw. mit védtiven CPUs fir die drei verschiedenen Pa-
ketgréf3en in die Betrachtung einbezogen. Es wsitlatlich, dass sich der maximale Durchsatz mit
den Bus- und NoC-gekoppelten Varianten erzielest.|d3er hochste Durchsatz, bei dem nur eine
CPU aktiv ist, wird bei der busgestiutzten Hardwasehleuniger-AnkopplungNB HW Act er-
zielt. Hier wird bei 1518 Byte grof3en Paketen eurdhsatz von 2,82 MByte/MHz erreicht. Die
NoC-basierte LosungCC HW Acg erreicht bei vier aktiven Prozessoren einen maiem Durch-
satz von 6,9 MByte/MHz bei 1518 Byte gro3en PakeBmrogen auf die in [109] gezeigten Syn-
thesewerte entsprache dies einem maximalen Durchsat 1,814 GByte bei einer Betriebsfre-
guenz von 263 MHz pro Cluster. Ein System dieséstuagsfahigkeit ware in der Lage, Pakete auf
Layer-3- und Layer-4-Schicht simultan fur 98MSL2+Anschlisse (16MBit/sPownlink unter
Volllast zu prifen. Bei der rein Software-basiertéariante lie3en sich noch 120 dieser DSL-
Anschlusse unter Volllast betreiben. Der in Abstth#il.2 vorgestellte FPGA-basierte Demonstra-
tor konnte bei den derzeitigen 12,5 MHz folglickchaiber 86 MByte an Daten pro Sekunde verar-
beiten bzw. 4ADSL2+Anschlisse bedienen.
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Abbildung 7-22: Bandbreite pro MHz der einzelnen Sgtemvarianten

Mit Hilfe der leistungsfahigen Analysewerkzeuge @egaNetlC-Architektur (vgl. Kapitel 5 und 6)
kann im Vorfeld einer Chiprealisierung bereits sganau bestimmt werden, welche Hardwarebe-
schleuniger mit welcher Kopplung im GigaNoC eingatien werden mussen, um madglichst res-
sourceneffizient eingesetzt werden zu kbnnen. ésaln Beispiel konnte gezeigt werden, dass lose-
gekoppelte Beschleunige€C HW Accbzw. WB HW Acc) besonders bei gro3en Systemen vor-
teilhaft eingesetzt werden kénnen. Der eng-gekapizschleunigeE-Coprozessreignet sich
ggf. in Verbindung mit dem GigaNetIC-Multiprozessache. Die Software-basierten Ansat38\(
Shared Menund SW Local Membrauchen im Gegensatz zu allen anderen Variatgatlich mehr
Taktzyklen. Lediglich die héhere Flexibilitat undilkdinftssicherheit der Softwarelésungen erschei-
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nen vorteilhaft, was allerdings bei standardisie¢gorithmen wie der hier betrachteten Paketpri-
fung von geringer Relevanz ist.

7.8 Zusammenfassung

In diesem Kapitel wurde die GigaNetIC-Architektor Hinblick auf den Einsatz fir unterschiedli-

che Netzwerkszenarien untersucht. Gerade im Nekbgegich bieten sich parallele Systeme zur
Datenverarbeitung an, da hier eine Vielzahl voraligen, zum Teil nicht korrelierten Datenstro-

men simultan von den Verarbeitungseinheiten betatiserden kann.

Im Rahmen dieses Kapitels wurde éP-DSLAM-Benchmarkzur Bewertung der GigaNetIC-
Architektur fur Zugangsnetzwerke vorgestellt. Dieidtungsfahigkeit der Architektur wurde fir
unterschiedliche Szenarien analysiert und mit adé&mnsatzen verglichen. Im Anschluss wurde
die Leistungsfahigkeit des von uns entwickeltenzBssorkerns N-Core fir relevante Funktionen
durch Optimierung der Architektur, Instruktionssatzeiterungen sowie Hinzufiigen von anwen-
dungsspezifischen Hardwarebeschleunigern deutlicbhé So konnten mit Hilfe der implemen-
tierten Instruktionssatzerweiterungen Beschleurgganvon tber 24 % bei einem marginalen Fla-
chenmehraufwand von 2,7 % fir den Prozessorkerelienzerden. Durch diese Malinahme kdnnen
zusatzlich tber 20 % an Energie eingespart werderglichen mit den eingebetteten Prozessor-
kernen ermdoglichen die realisierten Hardwarebesdlidger Beschleunigungen um teilweise mehre-
re GrolRenordnungen. Der Flachenbedarf ist hohedalsler zuséatzlichen Superinstruktionen, der
Energiebedarf der Gesamtschaltung wird jedoch idautreduziert. Fir denlP-DSLAM-
Referenzbenchmakonnte die bendtigte Energie auf weniger als eubliel reduziert werden.

Es wurde eine modulare Methode zur effizienten Neatang von Netzwerkanwendungen vorges-
tellt, mit deren Hilfe der bereits entworfelie DSLAM-Benchmarkuf Systemebene zu einem noch
realistischeren Referenzbenchmark erweitert wekdante. Diese Anwendung wurde ebenfalls auf
die GigaNetIC-Architektur portiert und analysidrh Anschluss wurde die Hardware fur besonders
rechenintensive Aufgaben der Zielapplikation opéirhiMit Hilfe eines eigens entwickelten Visua-
lisierungswerkzeugs, demMSLAM-System-Explorekénnen die Leistungsdaten des N-Cores, die
erzielten Beschleunigungen der Hardwareerweitemungpel Leistungsvergleiche mit anderen Pro-
zessorfamilien komfortabel veranschaulicht werdgés. lassen sich Hochrechnungen bzgl. des
Hardwareaufwands fir gewinschte AnforderungenlBeBSLAMANwendungsszenarios aufstel-
len, die eine gezielte Evaluierung des Entwurfsimenmdoglichen.

Eine Analyse der Leistungsfahigkeit der verschieteKopplungsarten von Hardwarebeschleuni-
gern an das GigaNoC der GigaNetIC-Architektur z¥igt- und Nachteile der einzelnen Varianten
auf. Da die Art der Kopplung und die Anzahl der thearebeschleuniger abhéngig von den Anfor-
derungen des jeweiligen Anwendungsszenarios, kommeversprechende Losungen im Hinblick
auf die Ressourceneffizienz mit Hilfe der leistuidgggen GigaNetlC-Simulationsumgebungen er-
mittelt werden.

In diesem Kapitel wurde gezeigt, dass die entwiekelkalierbare Systemarchitektur eine — durch
die Werkzeugkette unterstitzt — hierarchisch omtibare, ressourceneffiziente Plattform fir Netz-
werkanwendungen und Coprozessorsysteme darsteifgrdnd der guten Skalierbarkeit der zu-
grunde liegenden Systemarchitektur kbnnen GigaNe#sierte Systeme fur unterschiedlichste
Einsatzbereiche in Netzwerkanwendungen eingesetmtiem. Der Vorteil liegt hier u. a. in dem
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gleichbleibenden Architektur- und Programmiermagiedhtz und der sich hieraus ergebenden gu-
ten Wartbarkeit. Durch Synergieeffekte und sichuakidlierende Lernkurven der Entwickler folgen
Zeitersparnis bei der Realisierung neuer Systemntan und kirzer@ime-to-Market-Spannen
Deshalb und aufgrund der hohen Flexibilitat derhdtektur lassen sich ebenfalls lAngdiene-in-
Market-Spanneerzielen.



8 Prototypische Implementierung des Systems

Dieses Kapitel beschreibt die vollstadndige protsyipe Umsetzung der bisher konzeptionellen und
theoretischen Uberlegungen zur Gestaltung der Gij@NArchitektur der vorangegangenen Kapi-
tel. Die Realisierung geschieht zum einen in Gestaks einsatzfahigen, FPGA-basierten Systems,
unter Verwendung der RAPTOR2000-Rapid-Prototypimgaicklungsumgebung (vgl. Abschnitt
5.5), und zum anderen als Synthese auf zwei akt@OS-Standardzellentechnologien.

Fur diese beiden disparaten Zieltechnologien werdesinheitlicher skriptbasierter Syntheseablauf
entwickelt, der weitestgehend automatisiert ablddfirch Parametervariation kann er leicht an die
spezifizierte Zieltechnologie und nahezu belieb®ystemgréfien und Auspragungen des Chip-
Multiprozessors angepasst werden. Neben der sehnd&lystememulation durch den FPGA-
basierten Prototypen, die in Abschnitt 5.5 berétsahnung fand und dort u. a. die Entwicklungs-
zyklen fir umfangreichere Softwareprojekte erhdbleschleunigen half, ergeben sich zusatzlich
wertvolle Impulse zur Verbesserung bzw. zur Feldrebung der Hardwarebeschreibung. Betrach-
tet man dieNREKosten fir moderne Halbleiterprozesse im Sub-1®0Bereich ist dies ein ganz
erheblicher Vorteil gegentber rein durch Simulatienifizierten Hardwareentwtrfen. Diese liegen
mittlerweile in der Gré3enordnung von einer Milli&aro, so dass eine griuindliche Verifikation des
Entwurfs mehr als erstrebenswert ist.

Durch Analysen der Codeabdeckung wahrend der eiezelSimulationsphasen der HDL-
Beschreibung als auch durch die Einbindung des FP&@?®totypen in ein zukunftiges Anwen-
dungsszenario des GigaNetIC-Systems wird die Rehlmscheinlichkeit deutlich minimiert. Zu-
satzliche Sicherheit bzgl. der Fehlerfreiheit dardivare konnten Erweiterungen der Hardwarebe-
schreibung durch die Nutzung von eigenschaftsspeziénden Sprachen, wie z. BSL (Property
Specification Language for Assertion-Based Veriitcg, die wéhrend der Simulation das Verhal-
ten nach vorgegebenen Mustern und Regeln Uberpréfesicht werden. Letztendlich ware eine
formale Verifikation des Systems im Bezug auf eifemlerfreien Entwurf winschenswert. Auf-
grund der beschréankten Zeit im Rahmen dieser Atmminten diese beiden Verifikationsmecha-
nismen allerdings noch nicht implementiert werden.

Im folgenden Abschnitt wird auf die FPGA-Realisiegudes GigaNetlC-Systems néher eingegan-
gen, bevor in Abschnitt 8.2 die Resultate der A8Kxlisierung auf Basis zweier CMOS-
Standardzellentechnologien vorgestellt werden.

8.1 FPGA-Realisierung — GigaNetlIC-Prototyping-Plattform

Fur die funktionale Verifikation wird die RTL-Bes@hbung auf das im Fachgebiet Schaltungs-
technik entwickelteRapid Prototyping SystelRAPTOR2000 abgebildet. Auf Basis feingranular
rekonfigurierbarer Bausteine (FPGAs) ermoglichtsdge System eine Emulation des gesamten
Chip-Multiprozessors. RAPTOR2000 ist tber den PG&Bn einerHostComputer angebunden
und kann Uber diesen PC komfortabel konfiguriertdea. Die Prototypen-Umgebung integriert
neben rekonfigurierbaren Einheiten, die die Mutiggssorarchitektur emulieren, auch Speicher
und externe Schnittstellen. Auf diese Weise kanrPdetotyp in eine reale Systemumgebung integ-
riert und verifiziert werden. Die frihe Bereitsteilly des Prototyps ermdglicht neben einer Verifika-

217



218 Kapitel 8. Prototypische Implementierung des System

tion des zugrunde liegenden RTL-Modells eine effire parallele Entwicklung von Software und
Hardware. Dabei ist besonders die hohe Geschwiedigler Hardware-Emulation von grofRem
Vorteil, die um mehrere GroéRenordnungen (vgl. Keph) tber der Simulationsgeschwindigkeit
der Schaltung auRTL-Ebene liegt. Somit kdnnen auch komplexe Testprogra und Benchmarks
auf dem Prototypen in vertretbarer Zeit ausgeftitetden. Der hier zu realisierende FPGA-
Prototyp wird zunachst in Bereichen der Netzwerkde¢rarbeitung eingesetzt werden.

Grundsatzlich unterscheidet sich die FPGA-Realisigmicht von der folgenden ASIC-Implemen-
tierung in CMOS-Standardzellentechnologien. Es wlied gleiche Hardwarebeschreibung verwen-
det, lediglich die verwendete On-Chip-Speichertebbgie muss fur die jeweilige Zieltechnologie
eingestellt werden. Zur Erzielung der jeweils bessgntheseergebnisse werden fiir beide Zieltech-
nologien angepasste Steuerskripte verwendet. InGdéffe des realisierbaren Multiprozessorsys-
tems und der erreichbaren Taktfrequenz sind he&Rf@A-Technologien deutlich eingeschrankter
als ein moderner standardzellenbasierter ASIC.d8ai FPGA-basierten Prototypen wird das Sys-
tem auf zwei Cluster beschrankt im Gegensatz zu lawh. auch 20 in der ASIC-Variante. Auch
die erreichbare Taktfrequenz ist ca. 20mal gerinQennoch sind fuir eine schnelle, kostengiinstige
und zugleich detaillierte Verifikation in der spé@e Systemumgebung FPGA-basierte Prototypen
von unschatzbarem Wert.

8.1.1 Aufbau und Syntheseergebnisse

Im Folgenden werden der Aufbau und die ErgebnisseSynthese auf die verwendete FPGA-
Architektur ndher erlautert. Abbildung 8-1 zeigsdauf Basis zweier Xilinx Virtex-11 8000 FPGAs
zusammen mit einefFast-EtherneiSchnittstellentochterplatine des RAPTOR2000-Systeaali-
sierte GigaNetIC-Chip-Multiprozessorsystem.

switch box switch box

ethernet controller
19]]01U0D JoUIBY)

Abbildung 8-1: RAPTOR2000-basierter FPGA-Prototyp cer GigaNetIC-Architektur

Das System umfasst zwei Cluster mit jeweils vie€btes, die Uber einen Wishbone-Bus mit dem
Communication-Controller und dem gemeinsamen Pp&etser sowie lokaler Peripherie, in die-
sem Beispiel einen UART zum Anschluss der zur &kgon mit dem Benutzer bendtigten
Touchscreens, verbunden sind. Die beiden SwitcheB®ind miteinander Gber die Ports 1 bzw. 3
verbunden, wobei diese Verbindungen Ulber die eztednschlisse der beiden FPGAs realisiert
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sind. Da die bendétigten Anschliisse nicht in aubender Anzahl auf dem RAPTOR2000-
Mainboard zur Verfligung stehen wird bei der Ubenray die Serialisierungsfunktionalitat der
Switch-Box-Ports (vgl. Abschnitt 6.6) ausgenutzt.

Tabelle 8-1 zeigt die Syntheseergebnisse fur diéARealisierung eines GigaNetlC-Clusters. Es
ist zu beachten, dass der hier angegebene Werll4dr33 Slicesfiur eine Switch-Box mit funf
Ports und einer FIFO-Tiefe von drei gilt. In ders&mkonfiguration aus Abbildung 8-1 werden
allerdings nur drei dieser funf Ports benotigtdass sich bei gewiinschter Optimierung seitens der
Xilinx-Entwicklungsumgebung dieser Wert auf 7.986cesreduzieren lasst. Die Switch-Box in
ihrer vollstandigen Auspragung nimmt fast genaustevRessourcen in Anspruch, wie die vier N-
Core-Subsysteme mit je 3.6&2ces Dies liegt darin begriindet, dass die derzeitigplémentie-
rung Register zur Realisierung der FIFO-Ketten eset, die in der FPGA-Implementierung
59 % der bendtigteBlicesin Anspruch nehmen.

Tabelle 8-1: Syntheseergebnisse fir die FPGA-Redbsung eines GigaNetIC-Clusters

Hardware-Blocke Slices RAM16s
4 x N-Core-Subsysteme (inkl. 4 x
32 KB Speicher) 14.648 64
Switch-Box
(inkl. Communication-Controller) 14.133
Ethernet-Controller
(inkl. 2 Ethernet-Ports) 5544 32
Paketspeicher (32 KB) 58 16
SRAM-Schnittstelle 22 -
Serielle Schnittstelle (UART) 626
Wishbone-Arbiter 13 -
z 35.039 112

Die detaillierten Ergebnisse zum N-Core-Subsystaarden in Tabelle 8-2 aufgeschlusselt. Erwah-
nenswert ist die Tatsache, dass die Switch-Box zlieagrol3te Komponente des Clusters darstellt,
der kritische Pfad des Systems allerdings vom NeCar einer maximalen Taktfrequenz von
16,79 MHz bestimmt wiff. Die letztlich verwendete Taktfrequenz des Gesgstess betragt
12,5 MHz.

Tabelle 8-2: Syntheseergebnisse fir die FPGA-Red#sung des N-Core-Subsystems

Hardware-Blécke Slices RAM16s
Address-Dekoder 121 -
N-Core-Kern 3.405 16
ClockGen 6 -
Informationsregister 1
LB-Schnittstelle 110
PIC 6
RR Arbiter 13 -
z 3.662 16

Bei einer Gesamtanzahl der verfiighaBdicesdes XC2V8000' von 46.592 lastet ein GigaNetIC-
Cluster dieses FPGA zu 75 % aus. Fur die bendétigpmicherkomponenten werden BieckRAM

RessourcenRAM19 des FPGAs verwendet. Die hierbei kleinBteckRAMInstanz entspricht ei-
nem 18 KBit-groRerDual-Port-Speicher mit konfigurierbarer Datenbusbreite. Bieteementaren

€ Alle Werte beziehen sich auf Xilinx FPGAs des T#82V8000 mit dem langsamst&peedgradd.

®1 Der XC2V8000 gehérte 2005 zu den FPGAs mit derstariverfiigbaren Logikelementelice$ und ist der groRte
Baustein der Virtex Il Familie mit 8 Mio. Systemtgah bzw. 46.598lices
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Speicherblécke werden je nach Konfiguration deschpemoduls nicht immer vollstandig ausge-
nutzt.

8.1.2 GigaNetlC-Demonstrator — Einsatz in einem realen Newerkszenario

Ahnlich dem im Liberouter-Projekt [193] verfolgteAnsatz setzen wir beim GigaNetIC-
Demonstrator auf Internet-Protokoll-basierte Padetibeitung mit Hilfe von FPGAs. Allerdings
nutzen wir zunéchst Cluster von Universalprozessaie den N-Core und erweitern dann das Sys-
tem durch zusatzlich benétigte Hardwarebeschleuniarteilhaft an dem GigaNetIC-System ist
die Modularitat des RAPTOR2000-Boards. So kdonnenzhi sechs Tochterplatinen mit ggf. sechs
interoperablen FPGAs eingesetzt werden, wohingetgm monolithische Aufbau de€ombo-
Boardsdes Liberouter-Projekts nur ein FPGA integriered derzeit keine derartige Erweiterbar-
keit vorsehen.

Abbildung 8-2 zeigt den funktionsfahigen RAPTOR2@@ierten GigaNetIC-Demonstrator, der
zwei N-Core-Cluster prototypisch auf FPGAs reatisi8ei diesem Aufbau tUbernehmen die N-
Core-Cluster die komplette Paketverarbeitung erveischengeschalteten Routers und tbertragen
einenVideo-Live-Streamn Echtzeit zu einem angeschlossenen NetzwerkaClEEbenso kdnnen
die bisher gezeigten Hardwarebeschleuniger integiied zur beschleunigten Verarbeitung einge-
setzt werden. Die Auswirkungen des Hinzuschaltesss IB-Headercheck-Hardwarebeschleunigers
z. B. konnten in Form einer deutlich besseren Riddiggt der Videoubertragung des in Abbildung
8-3 beschriebenen Netzwerkszenarios beobachteewerd

Der Demonstrator wurde auf der CeBIT 2005 sowiedaufHannover-Messe 2005 auf dem fachge-
bietseigenen Messestand im Rahmen des Bereichsgfforgsland NRW* der Offentlichkeit vor-
gestellt.

Abbildung 8-2: FPGA-basierter GigaNetlC-Demonstrata,
ausgestellt am Stand Forschungsland NRW auf der C¢B 2005 und Hannover Messe 2005
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Das mit dem GigaNetlC-Demonstrator prasentiertezhMetkanwendungsszenario wird in Abbil-
dung 8-3 detailliert vorgestellt. Ein PC-basieM@ieo-Servestellt dieLivebilder einer angeschlos-
senen Webcam zum Abruf Uber das in diesem Falllgabendene, ethernetbasierte Internet zur
Verfugung. Als Zwischenstelle, sozusagen als Roufangiert hier der GigaNetIC-Chip-
Multiprozessor, realisiert als FPGA-Prototyp, bemmel auf dem RAPTOR2000-System. Hierbei
kommen zwei GigaNetlC-Cluster, wie in Abbildung 8j&zeigt, zum Einsatz. Die Datenpakete
werden Uber die Ethernetschnittstelle des GigaNéllisters in den lokalen Paketspeicher transfe-
riert. Von hier holen die N-Cores die Pakete naeim 8est-EffortPrinzip ab und fihren zunéchst
eine Checksummenprtfung nach [160] durch. Der Besmitann mit dem System Uber eine berth-
rungssensitive Anzeige interagieren. Mit Hilfe v®chaltflachen wird ihm die Mdglichkeit gegeben
die Farbe des Bildrahmens auszuwéhlen. Den N-Gurdsdieses Kommando tbermittelt, worauf-
hin sie die Datenpakete nach dem bekannten MusteRdhmenfarbe durchsucht und diese dann
durch die vom Benutzer gewahlte ersetzt. Im Anssshinerden die Daten zum Versand wieder zum
Ethernetcontroller Gber das GigaNoC geschickt. teetdlich werden sie zum anfordernden RG (
deo-Clienj geleitet, der diese innerhalb eines Webbrowderkigestreamanzeigt. Das hier reali-
sierte Netzwerkszenario demonstriert die Funktiémgikeit der GigaNetlC-Architektur. Es hat
geholfen die entworfene Architektur in einem reafémvendungsfeld zu testen und in Echtzeit ana-
lysieren zu kénnen.

/Ethernet—Netzwerkverbindung\

Video-Server — GigaNetIC-CMP —_ Video-Client
Datenbereitstellung Datenverarbeitung Datendarstellung

Live-Stream der Webi um

*Test von zwei Clustern

*Weiterleitung der Videodaten durch die
N-Core-Cluster

*Webcam zur Erfassung von

Videodaten « Auf Tas_tendruck Modifikation der Daten « Darstellung der empfangenen
«Bereitstellung dieser Daten durch die N-Core-CPUs Videodaten mit Hilfe eines Web-
zum Abruf liber das Internet « Firewall*-Anwendungsszenario Browsers auf einem dritten PC

Abbildung 8-3: GigaNetlC-Demonstrator — reales Netwerkszenario als Verifikationsbeispiel

Um mit dem FPGA-Prototypen effektiv arbeiten zu kén, wurde eine graphische Benutzerober-
flache (Graphical User Interface / GUI) fur diedragktion mit der Hardware erstellt. Diese verwen-
det die vom RAPTOR2000-System zur Verfiugung gestBILL (Dynamic Link Library, um auf
das PCl-basierte Prototypensystem vom PC aus feigrai kbnnen.

Uber die GigaNetIC-GUI (vgl. Abbildung 8-4) konneatie wesentlichen Funktionen des Chip-
Multiprozessors gesteuert bzw. abgerufen werdem.e8noglicht die einfachionfiguration der
verwendeten FPGA-Tochterplatinen mit den jeweiligétstreams, die komfortabel mit Hilfe einer
Dateivorschau von den zur Verfigung stehenden Lawkan ausgewahlt werden kénnen. Aul3er-



222 Kapitel 8. Prototypische Implementierung des System

dem werden so die jeweiligen Programmdateien derelien N-Cores zugeordnet, die auch wah-
rend des Betriebs verandert werden kénnen.

Eine weitere wichtige Funktion der Software skantrollaufgaben zur Steuerung der Hardware.
Hierzu zahlen das Starten, Stoppen und Zurticks€zese} aller oder einzelner Prozessoren sowie
das Verarbeiten der anliegenden Daten, die UbelJddRT eingehen, so z. B. die Benutzereinga-
ben Uber defMouchscreerals auch dessen Ansteuerung. Mit Hilfe dieserréldionalen Schnitt-
stelle kann komfortabel mit dem System interagieetden und so direkt auf den Programmablauf
der einzelnen N-Cores Einfluss genommen werden, avi8. beim beschriebenen GigaNetIC-
Demonstrator (vgl. Abbildung 8-3). Weiterhin kane &onfiguration der zur Verfligung stehenden
Ethernetports tiber die GigaNetIC-GUI vorgenommerdes, wie z. B. Ubertragungsgeschwindig-
keit und Verbindungsstatus.

Mit Hilfe der GigaNetlC-GUI verfugt der Entwickldaiber leistungsfahigBebuggingfunktionen

die es erlauben, graphisch auf relevante Statusimaionen zu den Prozessoren und den anderen
Blocken des Chip-Multiprozessors zuzugreifen. AdBer lassen sich alle Speicherinhalte anzeigen
und bei Bedarf abspeichern (so genamiéenory Dumps Der aktuelle Zustand des Communicati-
on-Controllers kann ebenso angezeigt wie gesteuenden. So kbnnen z. B. Pakete zu Testzwe-
cken ins GigaNoC injiziert werden.

uGigaNetIC Demonstrator GUI E
Linker GigaNet|C-Cluster Rechter Gigah et C-Chuster

RAPTOR2000 I
Demanstrator I

IR

Legende——
. s sl i UART
[]snam
B BlockraM

.N-Cote
H E EB H EEE ..

. Ethernet

[] vart
I:l Wishbone

& Rest| @ Slull "] | @ Stat eset

Abbildung 8-4: Graphische Benutzeroberflache des @aNetlC-Demonstrators

Die GigaNetIC-GUI ist adaptiv und erkennt die Haadlekonfiguration der involvierten FPGAS
automatisch. Hierzu zahlen u. a. die Anzahl veréiigb N-Cores, Ethernetports und die GréRe der
verfligbaren Speichermodule. Hardwaremodule, digrantl der jeweiligen Konfiguration des
FPGAs nicht zur Verfigung stehen, werden automatmsit einem roten ,X“ markiert und stehen
nicht zur Verfligung.

Fur die spatere ASIC-Realisierung, die zunachsh aud einer RAPTOR2000-Tochterplatine ge-
testet werden soll, kann auf viele Funktionen di&eftware zurtckgegriffen werden. Hierdurch
wird ein hoher Wiederverwendungswert erreicht undwenige Funktionen missen ggf. hinzuge-
fugt werden bzw. kénnen im Falle der Auswahl ¥amfigurationsbitstreamentfallen.
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8.2 ASIC-Realisierung in CMOS-Standardzellen

Heutige FPGA-Technologien wie die der Xilinx-Virt#xSerie, deren Verwendung im vorigen
Abschnitt beschrieben wurde, eignen sich noch rightlie Realisierung sehr komplexer bzw. sehr
groBer Systeme, wie es z. B. ein GigaNetIC-Systdtnaoht und mehr Switch-Boxen darstellt.
Derzeit besteht noch eine deutlické&chen-Funktions-Diskrepanzwischen der vorgestellten
FPGA-Technologie und aktuellen Standardzellen-Teldgien. Der Unterschied fur die benétigte
Flache fir eine gegebene Funktionalitat liegt detzei einem Faktor von ca. 40 [184]Der Un-
terschied in der maximalen Taktfrequenz zwischem@irdzellen- und FPGA-Entwurfen (schnell-
stesSpeedgradewird in [194] mit Faktor 2 bis 3 angegeben. Imr§leich dazu liegen die FPGAs
mit dem langsamsteBpeedgradea. Faktor 3 bis 4,5 unter der Leistungsfahigleit Standardzel-
lentechnologie. Das Verhaltnis bei der dynamisc¥ieriustleistung bewegt sich It. [194] zwischen
Faktor 9 und 12. Diese Angaben verdeutlichen, dassllem noch einiges an der Flacheneffizienz
der FPGAs verbessert werden muss, bevor sie atsnaliive zur Standardzellentechnologie im Be-
reich groRer Systeme in Frage kommen. Zusatzlietebidie Standardzellentechnologien bei den
angestrebten, hohen Stickzahlen im Netzwerkbes#ndn deutlichen Kostenvorteil gegeniber der
aktuellen FPGA-Technologie. Diese Umstande empifeldieshalb, trotz der hohéwREKosten,
CMOS-basierte Standardzellentechnologien als pdssefieltechnologie fur die GigaNetIC-
Architektur.

Nach erfolgreichem Test der GigaNetlC-Architektut milfe des FPGA-basierten Prototyps, so-
wie durch die Verifikation des Systems durch diblmachen Simulationen mit Hilfe der in Kapitel
5 vorgestellten Entwicklungsumgebungen schliel% sie Realisierung in der angestrebten Ziel-
technologie, moderne CMOS-basierte Standardzetbntdogien in 130 nm bzw. 90 nm an.

8.2.1 GigaNetlIC-Architektur mit SRAM-basiertem L1-Speicher

Die folgenden Tabellen zeigen die SyntheseresutlateGigaNetIC-Hauptkomponenten fir die
eben genannten Technologien auf. Bei der ASIC-Realing wird beispielhaft ein System beste-
hend aus acht Clustern, die in einer245itter angeordnet sind, betrachtet. Jeder Clusteteht
aus vier N-Cores, einer Switch-Box mit finf Portd eaner FIFO-Tiefe von drei. Als lokaler Bus
wird derzeit fur die Variante ohne Cache der Wisté8us favorisiert, aber auch der AMBA-Bus
ist denkbar und flachenmalig nahezu gleich grafgesamt bedeutet dies 32 N-Core-Prozessoren
mit 1,25 MByte On-Chip-Speicher.

Tabelle 8-3 stellt zunachst die jeweiligen Flachdoalerungen der Komponenten in beiden Tech-
nologien gegenuber. Die Gesamtgrol3e des hier vetljes Systems liegt bei 50,01 mm2 (130 nm)
bzw. 43,7 mm2 (90 nm). Die sich aus de#Parameternvgl. Definition 29) ergebende Abschat-
zung, dass sich bei einer Verkleinerung der minema&trukturgrof3e um den Fakid2 der resul-
tierende Flachenbedarf in der neuen Technologibidral bewahrheitet sich hier nicht fur alle
Komponenten. Lediglich fur die Switch-Boxen und th&alen Busse trifft diese ,Daumenregel”
zu. Die Flache des Speichers, der 70 % (130 nm) Bavwbo (90 nm) der Gesamtflache ausmacht,

62 Allen Angaben zu Grunde liegen detaillierte Analysaktueller FPGA- und Standardzellentechnologi@nzur Ab-
bildung unterschiedlicher Schaltungsentwirfe zugletst vollstandigen Abdeckung des Entwurfsrauraghgezo-
gen wurden.
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ist in der 90-nm-Technologie bis auf die dritte Nle@mmastelle identisch mit der Speicherflache
der 130-nm-Technologie. Dies liegt in der noch hiebllzogenen Optimierung der 90-nm-
Speicherzellen dieser zum Zeitpunkt der Synthesenaingefihrten Technologie begriindet. Zur
Veranschaulichung der Flachenreduktion zeigt Ahlntyi8-9 eine Hochrechnung der Clusterflache
bei einer fir Speicher eher konservativ angenommé&ialierung mitS™>. In diesem Fall redu-
zierte sich die Flache von 43,7 mm?2 auf nur noc®28%m?2, ndhme also nur noch 59,4 % der Urs-
prungsflache ein.

Tabelle 8-3: Charakteristika der GigaNetIC-Hauptkomponenten
fur 130-nm- bzw. 90-nm-Standardzellentechnologie

Flache Frequenz Verlustleistung gesamt Vgrlustle|stung
[mm?] (MHz] [mw] je IP-Block
SoC-Haupt-Komponenten [mw/MHZz]
130nm 90nm
130nm 90nm 130nm 90nm @205MHz | @285 MHz 130nm 90nm
32 N-Core 32 x 0,160 32 x0,120 205 285 352,0 410,4| 0,054 0,045
8 Switch-Boxen
[mit 5 Ports, FIFO-Tiefe 3] 8 x 1,129 8x 0,530 560 714 660,9 741,0 0,403 0,325
32 lokale Speicher (32 KB) 32 x 0,875 32 x 0,875 400 450 1165,1 465,1| 0,178 0,051
8 lokale Paketpuffer (2 x 16 KB) 8x2x0,466| 8 x 2 x 0,466 400 450|| 518,2 175,6| 0,316 0,077
8 lokale On-Chip-Busse
(Wishbone / AMBA) 8 x 0,050 8x 0,020 211 290 15,6 13,7l 0,010 0,006
Insgesamt 50,01 43,70 205 285 2711,8 1805,8 || 13,228 6,336

Die Switch-Boxen zusammen mit den lokalen Bussdémmaa als gesamte Kommunikationsinfrast-
ruktur des Chip-Multiprozessors 18,9 % (130 nm) b@y8 % (90 nm) der Gesamtflache des syn-
thetisierten SoCs ein. InADLY [57] werden ca. 10 % Flachenanteil der Kommunddegstruktur
als durchaus vertretbar angesehen. Dies entsgibehifalls den von mir in [14] auf grundlegenden
Analysen beruhenden ersten Hochrechnungen zur Agspg eines effizienten On-Chip-
Netzwerks.

Die maximal erreichbare Taktfrequenz bestimmt b&igaNetIC-System die langsamste Kompo-
nente. So lasst sich derzeit in 130-nm-Technolegie Taktrate von ca. 205 MHz im Gegensatz zu
285 MHz bei der 90-nm-Technologie erreichen. Deérfzestimmt der N-Core diese Frequenz durch
den langsten kritischen Pfad der GesamtschaltungciDweitere Optimierungen lassen sich aller-
dings noch hohere Taktfrequenzen erreichen, danwehn nicht alle Mdglichkeiten ausgeschopft
sind (vgl. Abschnitt 6.2).

Bei der Verlustleistung, die sich auf die maxinedlrsierbare Taktfrequenz bezieht, liegt der ange-
nommene Wert bei 2,7 W (130 nm) bzw. 1,8 W (90 riln¢s ist allerdings eine Abschatzung, die
auf Annahmen der Schaltwahrscheinlichkeiten seitlssSynthesewerkzeud®@6g und nicht auf
annotierten WertenAS beruht. Dies deutet auf eine eher geringere Wweggaufnahme im norma-
len Betrieb hin, da hier nicht eine Schaltwahrsahhdikeit von 50 % in jedem Takt fir alle Kom-
ponenten anzunehmen ist. Mit Hilfe der in AbschBi® vorgestellten Werkzeugkette ist es nun
maoglich fur dedizierte Anwendungen die konkreteh&twvahrscheinlichkeiten aufzuzeichnen und
so sehr genaue Werte zur Leistungsaufnahme zuesrdigl. Abschnitt 6.3.1.5). Bei der relativen
Verlustleistung, also aufgenommene mW pro MHz, ln@it sich eine deutliche Reduktion durch
die Verwendung der 90-nm-Technologie ab. Diesd &lf lediglich 47,9 % des Wertes fur die
130-nm-Technologie. Fur die 130-nm-Technologie wurdsatzlich noch die Verlustleistung der
Inter-Switch-Box-Links analysiert [115]. Hierzu wden die relevanten Charakteristika fur Leitun-
gen auf den obersten Metalllagen sieben und achtlemn Datenbuch verwendet. Hieraus kann fol-
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gende Berechnungsvorschrift fir die Leistungsaufr@hufgestellt werden:

Pter-se.Links = LinksOPortg ] Ol HD,OSl?I\TZV E—ll mit 93 Links, 4 Inter-Switch-Box-Verbindungen,
zm

einer Betriebsfrequenz von 205 MHz und einer Lakgeon 2,3 mm (vgl. Abbildung 8-7) ergibt

sich eine zusatzliche Verlustleistung von 9,1 mW dile globalen Verbindungsleitungen einer

Switch-Box bei einer Schaltwahrscheinlichkeit vah%. Bezogen auf die Gesamtverlustleistung

eines Clusters sind dies ca. 2.7 %. Dieser Argesgamit nicht ganzlich zu vernachlassigen, liegt e

doch fast in der GroRenordnung der Verlustleistanffahme eines Prozessorkerns. Dies spricht

ebenfalls fur die in Abschnitt 6.6 vorgeschlagengzZNng der energieeffizienten, serialisierten Da-

tentbertragung fur niederpriore Pakete.

Abbildung 8-5 zeigt die Anteile der drei wesentkoh Hardware-BestandteiléZ/erarbeitung
Kommunikation und Speicherder GigaNetlC-Architektur an Flache und Verlustieng des Ge-
samtsystems fur die beiden betrachteten Standéedimthnologien in 130 nm und 90 nm.

Flache [mm?] Verlustleistung [mW]
10% 9% 23% 13%
19% 0% 3504 '
62% 25%
(]
71% 81% 12%
130 nm 90 nm 130 nm 90 nm

\D Verarbeitung B Kommunikation [ Speicher\

Abbildung 8-5: Anteile der drei wesentlichen Hardwae-Bestandteile der GigaNetIC-Architektur an Flacheund
Verlustleistung fir die 130-nm- und 90-nm-Realisienng

Es féllt bei beiden Technologien auf, dass der @geidas System flachenmal3ig dominiert. Dies
geht einher mit dem in der ITRS [2] beschriebensand, immer hohere Anteile der Chipflache mit
regelmafigen Strukturen, wie z. B. Speicher zuantbie Verwendung von derart grol3en Spei-
chermengen hilft u. a., die sich ansonsten aufteidfrtwurfsproduktivitatslicke zu schlieen und
ist fur ein Chip-Multiprozessor-System essentiddl.gréRer der zur Verfugung stehende Speicher,
desto leichter lassen sich Latenzen klein halted, die Performanz erhoht sich deutlich im Ver-
gleich zum Einsatz von Off-Chip-Speicher. Bei beidgtandardzellentechnologien nehmen die
Verarbeitungseinheiten ca. 10% der GesamtflacheDeas kann abhéngig von Art und Anzahl der
verwendeten Hardwarebeschleuniger und je nach Adwegsszenario variieren. Die restlichen
19 % bzw. 10 % der Flache werden fir die Kommumidkesinfrastruktur bendétigt. Allerdings kann
hier, je nach Anforderung der Anwendung, noch eaiof3&eil der Flache durch Reduktion der FIFO-
Tiefe (vgl. Abbildung 4-9) und Optimierung der SefitBox durch den Einsatz von SRAM-
Technologie fur die Warteraume eingespart werden.

Bei der Verlustleistungsaufnahme dominiert bei @@mnm-Technologie der Speicher, wohingegen
die Verarbeitungseinheiten nur die Halfte der Leigsaufnahme der Kommunikationsinfrastruktur
und fast nur ein Funftel der des Speichers bendtiBei der 130-nm-Standardzellentechnologie ist
die Aufteilung ausgeglichener, und die Kommunikasstruktur dominiert hier das System in
punkto Verlustleistung. Dies ist zum einen auf ehen Registeranteil und die damit verbundene
relativ hohe Leistungsaufnahme dieser Komponentester 130-nm-Technologie zurlckzufihren.
Zum anderen ist die verwendete Speichertechnokmsjie ausgereift und stromsparend, so dass bei
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dieser Komponente sowohl die Flache als auch distlrggsaufnahme deutlich besser optimiert
sind als bei der 90-nm-Technologie.

8.2.2 GigaNetlC-Architektur mit integrierten Multiprozess orcaches

Tabelle 8-4 gibt Aufschluss Uber die Flachenanfardgen, moéglichen Taktfrequenzen der einzel-
nen Komponenten sowie die Leistungsaufnahme destbar Tabelle 8-3 betrachteten GigaNetIC-
Systems, das allerdings im Gegensatz zu dem dovewneleten Dual-Port-SRAM, die in Abschnitt

4.4.2 beschriebene Multiprozessor-Cache-Architeitsil.1-Speicher beinhaltet [113]. Zieltechno-
logie dieser Variante des GigaNetlC-Chip-Multiprezers ist die 90-nm-Standardzellentechno-
logie.

Tabelle 8-4: GroRenangaben des GigaNetlC-Gesamtsgsts fiir 90 nm-Standardzellentechnologie
unter Verwendung des GigaNetIC-Multiprozessorcaches

SoC-Hauptkomponenten Anzahl |Flache | Gesamtflache | Taktfrequenz | Leistungsaufnahme Gesamtleistungsaufnahme
[90nm] [mm?] [mm?] [MHz] je IP-Block@250 MHz @250 MHz
[mW] [mW]
Caches 32] 0,729 23,34 243,90 180,99 5791,68
N-Cores 32] 0,127 4,07 258,00 11,74 375,68
AMBA-Master-Schnittstellen 32] 0,008 0,24 354,61 1,11 35,52
AMBA-Slave-Schnittstellen 56] 0,001 0,04 465,12 0,15 8,40
AMBA-Matrizen 8] 0,097 0,78 265,96 25,16 201,28
Snooping-Slaves 8] 0,002 0,02 420,17 0,55 4,40
Paketpuffer 8] 0,952 7,62 250,00 35,50 284,00
Switch-Boxen (NoC) 8] 0,575 4,60 434,78 53,00 424,00
Gesamt 40,70 243,90 7124,96

Die sich aus Tabelle 8-4 ergebende Gesamtflach#afibetrachtete Referenzsystem, das auf einem
4x2-Gitter basiert, bendtigt nur 93,1 % der Flache mheTabelle 8-3 aufgezeigten Systems, das
Dual-Port-SRAM als L1-Speicher verwendet. Allerdirigt die dem einzelnen N-Core zur Verfu-
gung stehende lokale Speichermenge nur ein Visotgrol3, namlich 8 KB statt 32 KB. So umfasst
die Gesamtspeichermenge dieses Systems nur 0,5rditiader 1,25 MB Speicher des Ver-
gleichssystems. Die dennoch fast vergleichbarehEl&t in der hohen Anzahl bendétigter Register,
die zur Implementierung des Multiprozessorcachdsverdig sind, begrindet. Die in dieser Va-
riante derzeit erreichbare maximale Taktfrequenedige 243,9 MHz; sie wird durch den kritischen
Pfad des Caches bestimmt.

Flache [mm?] Verlustleistung [mW]
10% 5%  gop
@4%
7o% 90 nm 86%

\D Verarbeitung B Kommunikation OJ Speicher\

Abbildung 8-6: Anteile der drei wesentlichen Hardwae-Bestandteile der GigaNetIC-Architektur an Flacheund
Verlustleistung bei der Multiprozessorcachevarianten 90-nm-Realisierung

Abbildung 8-6 zeigt die Anteile der drei wesenteohHardware-Bestandteile der GigaNetIC-Archi-
tektur an Flache und Verlustleistung bei der Mutigessorcachevariante in der 90-nm-Reali-
sierung. Die bendttigte Flache der Kommunikatiormastiuktur bewegt sich &hnlich wie zuvor bei
ca. 14 %. Die Flache, die ohne zusatzliche Hardvemehleuniger von den N-Core-Verarbeitungs-
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einheiten beansprucht wird, ist mit einem Zehnt&dlezu identisch zu der SRAM-basierten Varian-
te des GigaNetIC Chip-Multiprozessorsystems.

Bei der Leistungsaufnahme dominiert der Speicheér8®i% der Gesamtverlustleistungsaufnahme
noch starker die anderen Komponenten, als es herater SRAM-basierten Variante der Fall war.
Bzgl. der Angaben zur Leistungsaufnahme ist zu len@f, dass es sich hier um statistische Ab-
schéatzungen seitens des Synthesewerkz&i§sg handelt, die somit als erste Einstufung zu wer-
ten sind, so dass, bei Bedarf, die Leistungsaufeatimdedizierte Anwendungen durch Analysen
mit der GigaNetlC-Werkzeugkett&$ deutlich genauer abgeschatzt werden kann (vgschitt
5.3).

Schlussbemerkung zur SyntheseAlle vorgestellten Werte beziehen sich auf dereitgvorges-
tellten Typical Casgvgl. Abschnitt 4.2.4). Selbstverstandlich wurddsenfalls Synthesen fiest

und Worst-CaseBedingungen (vgl. Tabelle 6-4) angestellt, die Bletzgrinden hier nicht ndher
Erwéhnung finden. Anhand der Realisierung des &€or der 130-nm-Infineon-Technologie ha-
ben sich die Ergebnisse deypical-CaseSyntheseabschatzung verglichen mit den am Chiggem
senen Werten als realistisch herausgestellt [K@8ilass sich fiir diese Technologie eine gute Uber-
einstimmung der Synthesewerte mit der Wirklichkeiigt. Die Synthesewerte der einzelnen Kom-
ponenten aus Tabelle 8-4 unterscheiden sich zumvdei denen aus Tabelle 8-3. Dies und die
leichten Unterschiede der verdffentlichten Zahlan den Implementierungen der GigaNetIC-
Architektur in den betreffenden Verétffentlichung¢h30][117][118][114][115][7][8][109][131]
[113][110] sind durch mehrere Umstande zu erklaZemm Teil differieren die Syntheseergebnisse
aufgrund der fortwahrend eingeflossenen Verbesgerunnd Erweiterungen bei jeder neuen Im-
plementierung. Au3erdem wurden im Laufe der ZeidMkationen an den verwendeten Standard-
zellenbibliotheken vorgenommen, was zuséatzlichatiweichende Werte sorgt. Zusatzlich wurden
stets die neuesten Synthesewerkzeuge eingesetabenfalls zahlreichen Veranderungen und Op-
timierungen unterlagen, so dass mit den hier vendiithten Werten der derzeit aktuellste Stand
der ASIC-Realisierung der GigaNetIC-Architektur deegegeben wird, der sich jedoch aufgrund
der genannten Faktoren bei zukiinftigen Synthesenfalts von den hier genannten Zahlen unter-
scheiden kann.

8.2.3 ,Floorplan“ — ressourceneffiziente, kachelférmige Fachenaufteilung

Basierend auf den prasentierten Synthese Ergebnigisd als Vorstufe fir die weitere Realisie-
rung des Chips und als Planungshilfe ein so geeaRtdorplan entworfen. Die folgenden Abbil-
dungen zeigen diese mal3stabsgetreuen Anordnungeindelnen Komponenten fiir jeweils zweli
GigaNetIC-Cluster, die als Kacheln gitterartig aagider gereiht werden kénnen [115]. Alle Kom-
ponenten eines GigaNetlC-Clusters werden hierzuiotidg flacheneffizient in einer quadratischen
Kachel angeordnet.

Diese kachelartige Anordnungsoption der GigaNetl@ster, die auch von zahlreichen anderen
Implementierungen paralleler Systeme ebenso odgeschrankt eingesetzt wird (vgl. Abschnitt
2.8.1), birgt mehrere Vorteile:

e Aufgrund der quadratischen Form sind alle globalgemgsamen” Verbindungennger-
Switch-Box-LinKgs gleich lang und verursachen somit eine nahezichgeLatenz zu allen
Nachbarn.
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* Die regelmafiige Struktur dieser Kacheln eignet besonders fur die Realisierung von an-
gepassten Systemen und tragt zu den auRergewdlunlien Eigenschaften der GigaNetIC-
Architektur im Hinblick auf Skalierbarkeit (vgl. @aition 35) bei.

* Der relativ einfache Aufbau und die Regelmaligkieit Kacheln erlauben eine gute Wie-
derverwendbarkeit (vgl. Definition 36), auch im Hiick auf eine Portierung auf eine mo-
dernere Standardzellentechnologie.

» Entwurfsfehler werden durch das Verwenden von gfieishen, bereits ausgiebig getesteten
Schaltungskonzepten reduziert.

» Testbarkeit und Fehlertoleranz kdnnen so erhdhdeve(vgl. Definition 33).

> Letztendlich tragt dieser kachelartige, makroskeipis gesehene homogene Ansatz zur
Steigerung der Ressourceneffizienei.

3,1 mm

PE Verarbeitungseinheit

HW HW (N-Core)
MEMpp Acc MEMop Acc Hardwarebeschleuniger
16KB 16KB Acc | (z. B. IP-Headercheck)

Vi Dual-Port-Speicher
N (Paket-/L2-Speicher der SB)

Dual-Port-Speicher
(L1-Speicher des Prozessors)

Switch-Box

_Bus_ lokaler Bus

3,1 mm

Inter-Switch-Box-Links

HW
Acc

2,3 mm

Abbildung 8-7: MalR3stabsgetreuerFloorplan fiir zwei GigaNetIC-Cluster-Kacheln
fur die 130-nm-Standardzellentechnologie

Abbildung 8-7 berticksichtigt hierbei die Synthegebnisse fur die 130-nm-Standardzellen-
technologie, wohingegen Abbildung 8-8 die Auftegufir die modernere 90-nm-Technologie skiz-
ziert. Eine Kachel besteht in beiden Fallen jewails vier N-Cores und einer Switch-Box (mit funf
Ports und einer internen FIFO-Tiefe von drei). BlsSpeicher kommen vier lokale SRAM-Blocke
mit je 32 KB zum Einsatz, wobei die ersten Realigigen in 130-nm-Technologie no&ingle-
Port-Speicher vorsahen, der um 6,1 % kleiner alsRiial-PortVariante in dieser Technologie
ausfallt. Weiterhin werden als L2-Speicher in alRealisierungen zwei lokalBual-Port SRAM-
Paketpuffer mit je 16 KB Speichervermbgen verwentléeiterer Bestandteil der Kachel ist das

% Die Grundstrukturen jeder Kachel sind zunéchsichleUnterschiede kénnen u. a. in der Art und Ahzi# integ-
rierten Hardwarebeschleuniger, der Variante degd3sorkerns und der Auspragung der Kommunikatifnasitnuktur
(Switch-Box und lokales Bussystem) bestehen. Sabstindlich besteht auch die Méglichkeit, Kactaine komplet-
ten GigaNetIC-Cluster in ein bestehendes Gittentagrieren. Diese kdnnten dann z. B. an einemifr&ort einer ang-
renzenden Switch-Box angeschlossen werden undziiakét Funktionalititen (Speicher, schnelle exteBeanittstel-

len etc.) zur Verfigung stellen.
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lokale Bussystem, wobei sowohl die AMBA- oder adod Wishbone-Implementierung eingesetzt
werden konnen, ohne dass der Flachenbedarf gradiéeeinflusst wird, beanspruchen beide Bus-
systeme doch weniger als 1 % der Gesamtflache lls$e@. Zusatzlich sind 3,2 % der Flache flr
optionale Hardwarebeschleuniger reserviert. Diefré-lachen kénnen u. a. zur Verdrahtung und
lokalen Kommunikation der Module genutzt werdene Qlobale Kommunikation tber dlater-
Switch-Box-Linksdie eine ungefahre Distanz von 2,3 mm bei derrif@®Variante und 2,2 mm bei
der 90-nm-Variante Uberbriicken muss, findet aufeném Metalllagen statt (vgl. Abschnitt 6.6).
Von der Kantenlange unterscheiden sich die 130ummd-die 90-nm-Realisierung nicht gravierend
voneinander, ist die Kachel der 130-nm-Variante 3yiitmm doch lediglich um 10 % langer als die
der 90-nm-Realisierung. Im rechten Cluster von Ahbiig 8-8 sind die Ausmalie der Multiprozes-
sorcachevariante des GigaNetlC-Systems innerhallleldVEMpp-Blécke skizziert. Die vier, je-
weils 32 KB-grofRen Speicherblécke wirden in diegéi durch die etwas kleiner ausfallenden
8 KB-groR3en und durch quadratische Begrenzungsligekennzeichneten Cache-Blocke ersetzt.
Der lokale Bus wirde durch die unwesentlich groeviBBA-Switchmatrix ersetzt.

2,8 mm

= = Verarbeitungseinheit

HW HW -
MEMpp PE S MEMpp ™ (N-Core) '
16KB 16KB Hardwarebeschleuniger
P P Acc | (z. B. IP-Headercheck)
V= Dual-Port-Speicher
S8 (Paket-/L2-Speicher der SB)

Inter-Switch-Box-Links Bus DuaI-Port-Speicher
\ — (L1-Speicher des Prozessors)

P PE .
MEMpp MEMpp Switch-Box
HW J= 16KB HW o= 16KB
Acc Acc
_Bus_lokaler Bus

| 2,2mm |

2,8 mm

Abbildung 8-8: Mal3stabsgetreuer Floorplan fir zweiGigaNetIC-Cluster-Kacheln (links L1-Speicher / reclts
MP-Cache, angedeutet durch Begrenzungslinien) fiirid 90-nm-Standardzellentechnologie

2,2mm
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Dual-Port-Speicher
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Abbildung 8-9: MalRstabsgetreuer Floorplan fiir zweiGigaNetIC-Cluster-Kacheln
fur die 90-nm-Standardzellentechnologie unter Verwedung neuerer Speicherzellen

Abbildung 8-9 zeigt die Realisierung eines GigaRefllusters in der 90-nm-Technologie unter
Verwendung optimierten, um den fiir Speicher ehaskovativen Skalierungsfaktor va#i” ange-

passten Speichers. Die Kantenlange reduziertedsich auf nur noch 2,2 mm und die Inter-Switch-
Box-Links waren mit ca. 1,7 mm abzuschatzen. Bamadung einer derartigen Kachel kénnten
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in einem %4-Gitter 20 Cluster und somit 80 Verarbeitungseiteme &hnlich wie bei der Polaris-
Architektur von Intel [92] auf einen Chip integri@verden. Diese Architektur bendétigte eine Flache
von weniger als 1 cm? in kachelartiger Anordnungn &olches System verfiigte tber 3 MB On-
Chip-Speicher und hatte bei lediglich 285 MHz eaggregierte Intrachip-Nettolbertragungsband-
breite von theoretisch mehr als 445 GB/®as System ware in der Lage mehr als 5,5 G lkistru
nen pro Sekunde zu verarbeiten, wobei der Chip fiatielle 8-3 theoretisch eine Leistungsauf-
nahme unter Volllast von nicht einmal 4,5 W habes deutet die Leistungsfahigkeit von paralle-
len und dennoch einfach gehaltenen Strukturen ianndAbschnitt 8.3 im Vergleich zu Standard-
prozessoren naher diskutiert wird.

YE und D= MIcHELI vertreten in [195] ebenfalls den kachelbasiefmorplanningAnsatz fir
Chip-Multiprozessoren aufgrund der inharenten Hoemitgt. Mit REGULAY stellen sie ein Werk-
zeug vor, mit dessen Hilfe hoherdimensionale Netkeveffizienter als bisher auf zweidimensiona-
le Strukturen abgebildet werden kdnnen, und zwdrdam Resultat einer deutlich kirzeren Ge-
samtverdrahtungslange der Netzwerkkanten. Einehedidethode ware auch fur ein GigaNetIC-
basiertes, hoherdimensionales Netzwerk (vgl. AbisicBr8.1), wie z. B.Cube-Connected-Cycles
oder dreidimensionale Gitter oder auch fur Switadx& mit hoherem Ausgangsgrad anwendbar
und kénnte ggf. so die Ressourceneffizienz zusiitarhohen. Bei eher geringen Taktfrequenzen
von unter oder nur wenigen 100 MHz kénnten sickdwahaus auch Chip-Multiprozessoren basie-
rend auf der GigaNetIC-Architektur mit héher-dimemslen Netzwerktopologien realisieren las-
sen. Fur weniger komplexe Netzwerkstrukturen hiegeigt die GigaNetIC-Architektur aufgrund
der Konzeption der quadratischen Kachelstruktueibefur optimale, gleichmallige Leitungslangen
ausgelegt. Basierend auf diesen geometrischen Aong#n kann spéter ein Makroblock erzeugt
werden, der, wie eine Kachel an die nachste, auidehe Weise horizontal wie vertikal aneinander-
zureihen ist. Dies ist besonders fur die Skalidiaisowie die Wiederverwendbarkeit von Vorteil.
Das finalePlace&Routedes gesamten Chips, also das Platzieren und \f'eedraowie dieClock-
treeSynthese und die sich anschlieReRdst-LayoutSimulation stehen noch aus und erfolgen im
Rahmen der bereits erwahnten Folgeprojekte ded\sit@-Projekts.

8.3 Bewertung der Ressourceneffizienz

Ressourceneffizienz ist immer in Bezug auf die Radithgungen und das jeweilige Anwendungs-
szenario zu sehen (vgl. Definition 14). In diesebséhnitt werden exemplarische Szenarien unter-
sucht sowie Varianten der ASIC-basierten GigaNe&iChitektur, die im vorigen Abschnitt naher
vorgestellt worden sind, um diese mit aktuellenvérsalprozessoren in Bezug auf Leistungsfahig-
keit und Ressourceneffizienz zu vergleichen [13lips geschieht fir Anwendungen aus dem
Desktopbereich ebenso wie fur spezielle Algorithraaa dem in Kapitel 7 vorgestellten Netzwerk-
bereich.

% Dieser Wert resultiert aus 20 Clustern mit je eiwitch-Box, in der Konfiguration mit je fiinf Psrtind jeweils 64
Datenbit bidirektional, betrieben mit 285 MHz.
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8.3.1 Einheitliche, werkzeugbasierte Performanzbewertung

Um eine fur die Desktop-CPUs mdglichst genaue Megsler Leistungsfahigkeit zu erzielen, wur-
de eine speziell den Anforderungen der Messunggepasst&noppix Live CDO” erstellt, die fiir
alle Testkandidaten gleiche Voraussetzungen bzgs Betriebssystems und der Compiler-
Werkzeug€® sowie deren Optionen garantiert. Die Messungerd@umitRootRechten der héch-
sten Prioritat durchgefihrt, und zur Auswertung ldeistung die im Prozessor integrierten Perfor-
manzregister ausgelesen, so dass keine Interfereseiens systemeigener Prozesse zu erwarten
waren. Zuséatzlich wurden die Messungen jeweils fid@iOiteriert, um etwaige Stérungen heraus-
zufiltern. Das jeweils beste Ergebnis, im Sinneimaler Taktzahl, wurde verwendet, was so zu-
satzlich den Cache der jeweiligen CPU als Systeflggii die Bewertung einfliel3en liel3. Die ge-
samte Kompilierung, das Ausfiihren der erzeugtemgramme, deren Laufzeitauswertung und die
Protokollierung geschehen vollkommen automatisehsktiptbasiert, so dass mdgliche Fehlbedie-
nungen bzw. Messwertverfalschungen nahezu ausgssehl sind. Die hierfir erstellte Werkzeug-
kette basiert ebenfalls auf dem in Abschnitt 5.4gestelltem MultiSim. Als Endergebnis werden
die Werte in eine Tabellenkalkulation zur weitefarswertung exportieff.

Tabelle 8-5 fasst die Hauptcharakteristika der nsnighten Prozessoren zusammen. Zu beachten ist,
dass bei dieser Analyse die GigaNetlC-Architektuardgen Uber keinen Cache verfiigen, sondern
in der Wishbone-Bus-basierten Realisierung (vglbiflung 4-20) untersucht wurden. Allerdings
kann der lokale Speicher der N-Cores als schnelleCache verstanden werden und wird deshalb
in Tabelle 8-5 als solcher gez&hlt. Alle im Folgenckrmittelten Werte beziehen sich auf eine ma-
ximale Taktfrequenz des GigaNetIC-Systems von 25{xMDie Werte eines GigaNetIC-Clusters
beziehen sich im Folgenden auf eine Realisierunge dithernetports, da diese Schnittstellen als
Off-Chip-Schnittstellen angesehen werden. Diestfdlaireiner Flache von ca. 5,3 mm2 fir einen auf
vier N-Cores basierenden Cluster, vgl. Abschn2t 0 dieser Cluster, in einem Gitter angeordnet
(&hnlich Abbildung 4-2), benétigen somit zunach@6 inm2, was der gemittelten Chipflache der
Vergleichsprozessoren entspricht und so als fl&dneimalente Alternative zu den betrachteten
Desktop-CPUs angesetzt wird. Setzt man allerdiregs zlivor dargestellteRloorplan voraus, so
lieRen sich zunachst nur dreizehn anstatt der gewear20 GigaNetlIC-Cluster auf einer Flache von
101,9 mm2 integrieren (vgl. Abbildung 8-8). Filltean allerdings auf Basis neuer skalierter Spei-
cherblocke mit Hilfe der GigaNetlC-Clusterkachela einer Kantenldnge von nur noch 2,2 mm
pro Cluster (vgl. Abbildung 8-9) diese Flache va@® Inmz2, so kAme man auf Uber 21 Cluster. Dies
lasst die hier getroffene Annahme von 20 gittegaatigeordneten GigaNetIC-Clustern fur eine de-
rartige Flache durchaus realistisch erscheinen.

% Es wurde als Vorlage die Knoppix 5.0 Boot-CD nent2.6.17 Kernel verwendet.

% Als Compiler-Werkzeugkette wurde der GCC 4.0.4esetzt. Die moglicheKompilierungsOptionen wurden au-
tomatisiert eingesetzt und die jeweils besten Ratukhls Messwert verwendet. Hierzu wurden sowahl@ptimie-
rungsstufen als auch die speziellen Optimierungeulie unterschiedlichen Architekturen bericksigtti

%" Der gesamte Ablauf, die ausfiihrbaren Kompilate GbjectDateien und Testergebnisse sowie deren Zusammenfas
sung und die finale Aufbereitung aller MessungenG$\¢Datei wurden auf einen jeweils zusatzlich verwdede
USB-Stickals beschreibbares Medium wahrend des automagisiéblaufs abgespeichert.
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Unter der Annahme, dass die Prozessoren bei deb&tag der Benchmarks nahezu voll ausge-
lastet sind, wurde als Verlustleistung déermal-Design-Powér DP)-Wert angenommen. Dies ist
sicherlich eine sehr konservative Abschatzung detetne in Bezug auf die Verlustleistungsauf-
nahme, zumal grol3e Teile der jeweiligen Systeme,zawB. Gleitkommaeinheiten oder die Switch-
Box-basierte Kommunikationsinfrastruktur nicht fille Tests relevant sind. 90 % der Chipflache
des Systems mit 20 N-Core-Clustern wird von Spersiken belegt, die die Gberproportional hohe
Anzahl an Transistoraquivalenten, im Vergleich &n dainderen CPUs, erklart. Die Verlustleis-
tungsangabe fiur das 20 N-Core-Cluster umfassengaNeilC-System von 14,88 W bei 250 MHz
ist unter Bertcksichtigung der in Tabelle 8-3 etelien Werte ebenfalls als eher konservativ ein-
zustufen, kdme man doch unter Verwendung der Sgeérgebnisse auf eine Verlustleistung von
lediglich 3,96 W bei 250 MHz.

Tabelle 8-5: Wesentliche Merkmale der analysiertefProzessoren

Prozessor Kerne | Name FSB | L1 Cache | L2 Cache | Taktfrequenz | Technologie | Spannung | TDP | Die-GroRe | Transistoren
MHz]| [kB] [kB] [GHZ] [nm] M MW [ [mm?] [Mil.]
Pentium 4 3000 1{Northwood 200 8 512 3,00 130 1,550| 110 146 125
Intel Pentium M 1600 1|Banias 100 16 1024 1,60 130 1,485 24 100 77
Intel Pentium M 1700 1|{Banias 100 16 1024 1,70 130 1,485 25 100 77
Intel Pentium M 2100 1|Dothan 100 64 2048 2,10 90 1,340 21 84 140
Intel Duo Core T2400 2|Yonah 166 64 2048 1,83 65 1,325 31 91 151
Intel Duo Core T2500 2|Yonah 166 64 2048 2,00 65 1,325 31 91 151
AMD Athlon 64 3000+ 1|Venice 200 128 512 1,80 90 1,400 89 83 69
AMD Athlon 64 3200+ 1[NewCastle 200 128 512 2,19 130 1,500 89 144 69
AMD Athlon 64 3700+ 1[San Diego 200 128 1024 2,20 90 1,400 89 115 105
N-Core 1|GigaNetIC 250 32 0 0,25 90 1,200| 0,05 0,96 2
N-Core-Cluster (4PEs 4|GigaNetIC 250 128 0 0,25 90 1,200| 0,74 5,30 10
20 N-Core-Cluster 80|GigaNetIC 250 2560 0 0,25 90 1,200] 14,88 106,05 200

8.3.2 Universalbenchmarks zur Bewertung der GigaNetIC-Arditektur

Die Ergebnisse der Analysen der Universalbenchmasgtslen in Abbildung 8-10 dargestellt. Ziel
des Vergleichs der einzelnen Systeme war nicht, vigwendeten Benchmark-Code jeweils auf
Assemblerebene zu optimieren, sondern vielmehLeistungsfahigkeit der gesamten Architektur
zu bewerten, wozu auch die Softwareumgebung nebstsetzer zu zahlen ist (vgl. Definition 3).
Deshalb wurde auf manuelle Optimierung bewusstieetet, zumal dies im realen Einsatz nur be-
dingt und mit relativ hohem Zeitaufwand durchgetiilerden kdnnte. Als Universalanwendungen
kamen der zwar schon etwas in die Jahre gekomniendratzdem noch heute oft fur eingebettete
Systeme verwendete Dhrystone-Benchmark zur Beunigitler Integer-Performanz und zwei Sor-
tieralgorithmef® der StanfordBenchmark-Sammlung zum Einsatz.

Als Essenz der gewonnenen Ergebnisse lasst siaidse Anwendungen, die nicht aus dem Netz-
werkbereich stammen, sagen, dass die Leistung&gihigng an die Taktfrequenz der Systeme ge-
koppelt ist. Die durchschnittliche Taktzahl, dienviben Universalprozessoren flir einen Dhrystone-
durchgang bendtigt wird, liegt bei 703 Takten, wgjgigen die deutlich einfacher gehaltene N-
Core-Architektur 1119 Takte bendtigt, also 59 % me&hktzyklen. In Anbetracht der zusatzlich

sieben- bis zehnfach héheren Taktfrequenzen deredsalprozessoren sind deren Performanzvors-
priinge von 10,3 bis 16,3 sofort nachvollziehbartrddtet man hingegen die Sortieralgorithmen,

% Hierbei wurden zum einen d&uicksort und zum anderen d&ubblesortAlgorthmus verwendet, wobei 200 Inte-
gerwerte sortiert werden mussten. Die Anzahl desattierenden Elemente wurde bewusst relativ gegetfplten, da
die GigaNetlC-Analysen mit Hilfe der sehr langsaraddL-Simulation durchgefiihrt wurden.
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so kann die N-Core-Architektur den relativen Veidtefur sich entscheiden. Der N-Core bendtigt
ca. 509 Tausend Takte bei der VerwendungBidsblesortAlgorithmus fur die Sortieraufgabe und
29 Tausend Takte beiQuicksortVerfahren, wohingegen der Durchschnitt der Uniagn®zesso-
ren 662 Tausend bzw. 41 tausend Takte aufwendes.rusliesem Fall bendtigt die einfachere
RISC-Architektur zwischen 30 % und 40 %weniger Egklen. Hieraus resultiert der geringere
Performanzvorteil der Universalprozessoren vorbis5.1,6.
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Abbildung 8-10: Leistungsvergleich zwischen Univer-CPUs und der GigaNetlC-Architektur
fur einfache Anwendungsszenarien

8.3.3 Netzwerkbenchmark zur Bewertung der GigaNetlC-Architektur

Im Folgenden wird der Bereich der Netzwerkverathedt der bereits in Kapitel 7 ausfihrlich be-
trachtet worden ist, nochmals in Bezug auf die Bas®neffizienz untersucht. Hierbei kommt die
inharente Parallelitdt der Netzwerkdaten der GigENArchitektur mit den zuschaltbaren Hardwa-
rebeschleunigern zu Gute.

In Abbildung 8-11 wird die Leistungsfahigkeit desdieser Arbeit entwickelten Systems in Bezug
auf dieses Anwendungsszenario dokumentiert. Derunaig liegende Benchmark bestand aus der
Verarbeitung von einer Million IP-Pakete naidhix-Verteilung (vgl. Abschnitt 7.2.3). Das Diag-
ramm zeigt als resultierende Hochrechnung die Andahverarbeitbaren Pakete pro Sekunde. Die
Universalprozessoren sind um den Faktor 1,7 bisr@&llschneller als ein einzelner N-Core. Ein
Cluster mit vier N-Cores ermdéglicht einen Geschwgkeitsvorteil gegeniiber dem einzelnen N-
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Core von 3,83. Eine Beschleunigung von vier isgauid von Arbitrierungslatenzen und moglicher
Busblockaden nicht realistisch. Unter Hinzunahme ideAbschnitt 6.3.1 vorgestellten Hardware-
beschleunigers Ubertrifft bereits ein GigaNetlCsdu fast alle Universalprozessoren. Es wird so-
wohl die Kopplung des Beschleunigers am lokalen @B HW Actg als auch am Port einer be-
nachbarten Switch-B8X (CC HW Ac beriicksichtigt.
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Abbildung 8-11: Leistungsvergleich zwischen Univerd-CPUs und
der GigaNetIC-Architektur fur eine Paketverarbeitun gsanwendung

Abbildung 8-12 fiihrt zwei neue Dimensionen des Emfsraums in die Betrachtung ein: den
Energiebedarf(im Hinblick auf den entsprechenden Benchmark) diedChipgrof3eder Systeme,
die durch den Flacheninhalt der Blasen symboliswnd. Das flachenmal3ig kleinste System ist der
einzelne N-Core (J), das zudem die geringste Eaaufmahme fir die Abarbeitung des Bench-
marks aufweist, allerdings ist die bendtigte Zeittadeutlich hoher als die der Universalprozesso-
ren. Die Universalprozessoren (A-1) bilden eine ern der rechten Halfte des Diagramms bzw.
Entwurfsraums, was einer Bearbeitungszeit von ca(@,7 bis 1,48 s) bei einer Energieaufnahme
von 19 bis 132 Ws entspricht. Nahezu die gleichié (Z¢6 s) bendétigt der normale N-Core-Cluster
(K), wobei sein Flachenbedarf nur ein 20stel dechkischnittlichen Universalprozessorflache aus-

% Den Messungen liegt eine Beschleunigerkopplungiaa Switch-Box zugrunde, die innerhalb einer Distaon
einem Hop liegt, so dass der Beschleuniger nichtitelbar an die Switch-Box des Clusters angesckiosverden
muss. Die Taktzahlen fir Kommunikation und Berectgan wurden in Abschnitt 7.7 naher diskutiert.
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macht. Sein Energiebedarf liegt bei 1,3 Ws, wohgegeder durch den am lokalen Bus angeschlos-
senen Hardwarebeschleuniger erweiterte Clustergeerdls 0,5 s zur Bearbeitung der gestellten
Aufgabe bendétigt und zudem noch einen deutlichngerien Energiebedarf aufweist (0,4 Ws).
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Abbildung 8-12: Ressourceneffizienz und Entwurfsramvisualisierung von Universalprozessoren verglichemit
GigaNetIC-Systemen in Bezug auf das Paketverarbeitgsszenario iMix)

Um die Mehrkernprozessoren der Intel-Core-Architelentsprechend ausnutzen zu kénnen, wurde
zusatzlich eineThreadbasierte Variante des Paketverarbeitungsbenchmagtsiert (E™, F).
Hier konnte nahezu eine Verdopplung der Verarbgaggeschwindigkeit gemessen werden (0,54 s
und 0,48 s) bei einem Energiebedarf von 16,6 Ws w8 Ws. Bei einer Erhéhung dEnreadan-
zahl tGiber zwei konnte dariber hinaus eine ReduktionLdetungsfahigkeit dieser beiden Prozes-
soren bei dem betrachteten Anwendungsszenarioefstly werden. Dies liegt in der recheninten-
siven Aufgabe begrindet, die Speicherlatenzen nategblendet und daher mehr als zwei Threads
als ineffektiv herausstellt. Das gleiche Verhaliemnte bei deHyperthreadingArchitektur von
Intel (A) beobachtet werden, bei der vidllereadsum die beschrénkte Anzahl der exzessiv genutz-
ten Funktionseinheiten konkurrieren missen undesci@vindigkeit eingebuif3t wird.

Das GigaNetlIC-Multiprozessorsystem, bestehend ukl-Zore-Clustern demonstriert, beeindru-
ckend die Ressourceneffizienz dieser Architektsb@sondere am Beispiel dieses Paketverarbei-
tungsszenarios, bei der die massiv parallele Aekhit besonders von der inharenten Parallelitat
der Aufgabe profitiert. Mit einer durchschnittligh€hipflache einer Desktop-CPU ist es mdglich,
die Aufgabe innerhalb von 0,026 s, also 28mal didmals die schnellste Desktop-CPU, zu erledi-
gen und dies bei einem Energiebedarf von nur 0,4 W.

Sicherlich handelt es sich bei dem vorgestelltencBmark um ein sehr spezielles Szenario, von
dem nicht auf allgemeine Anwendungen geschlossedenedarf, die z. B. FlieBpunktberechnun-
gen beinhalten oder groRere Speicheranforderurigbears Sehr wohl aber zeigen die gewonnenen
Zahlen das Potential der GigaNetIC-Architektur iezBg auf den immer wichtiger werdenden As-
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pekt der Ressourceneffizienz auf. Die einfache Eenwmarkeit aufgrund definierter Schnittstellen
und Protokolle sowie die Optimierungsmaoglichkeitksm GigaNetlC-Systemarchitektur (vgl. Kapi-
tel 6) erlauben die Konzeption eines angepassteallglan Systems. FiUr ausgewahlte Anwen-
dungsgebiete zeigt sich dieser Ansatz im Hinbliok @ne mdglichst hohe Ressourceneffizienz
vielversprechender alSingle-CoreArchitekturen, bei denen im Wesentlichen durchdbrdng der
Taktfrequenz steigenden Anforderungen Rechnunggetr wird.

Abschlie3end lasst sich feststellen, dass sich bmit Hilfe des GigaNoC-On-Chip-Netzwerks
und der damit verbundenen einfachen Kopplung anweggspezifischer Hardwarebeschleuniger,
als auch durch massiv parallele Verwendung rekitifach gehaltener RISC-Prozessoren wie dem
N-Core sowie durch die Kombination dieser Mal3nahimesachtliche Resultate fir gegebene An-
wendungen erreichen lassen. Sowohl im HinblickdaefLeistungsfahigkeit als auch auf den Ener-
giebedarf kann durch Parallelitat und durch didevieMdglichkeiten der Systemerweiterung eine
hohe Ressourceneffizienz erreicht werden. Die @kiaierbarkeit der Architektur ist ein weiterer
Pluspunkt der GigaNetIC-Architektur, ermdglicht digch einen effizienten Einsatz in unterschied-
lichsten Bereichen des Entwurfsraums.

8.4 Zukulnftige Architekturen

Bereits derzeitige Prozessorarchitekturen heutigbeitsplatzrechner sowie die jingsten Verof-
fentlichungen zu Aktivitaten wie der Polaris-Araktur und denTera-ScaleProjekt von Intel (vgl.
Abschnitt 2.8.1) zeigen, dass die nahe Zukunft Flarallelprozessoren gehort. Im Laufe der nach-
sten zehn Jahre wird die Zahl der integrierten &sarkerne stetig zunehmen und Architekturen
wie die GigaNetlC-Architektur werden zum Standashdyen, vgl. [2]. Die Art und Anzahl der
Verarbeitungseinheiten pro Chip wird dann hauptsdtivom jeweiligen Einsatzgebiet bestimmt
werden. Deshalb werden sich skalierbare Architektumit einheitlichem Programmiermodell nicht
nur aufgrund der fertigungstechnischen Vorteilel.(¥agpitel 4 und Abschnitt 8.2) und der damit
verbundenen Kostenvorteile besonders stark henvoixer Aspekt der Ressourceneffizienz wird
zunehmend an Bedeutung gewinnen. RREKosten flr komplexe ASICs im StrukturgroRenbe-
reich von wenigen Nanometern steigen kontinuierlikbmplexe Systeme erfordern nicht zuletzt
deshalb eine mdglichst vollstandige Verifikatioarrhal und prototypisch, um die Erfolgschancen
einer fehlerfreien Realisierung zu maximieren. Bieigende Mobilitat der Anwendungen erhéht
stetig die Anforderungen an geringstem Energielfe@atinde wie Laufzeitmaximierung mobiler
Gerate auf der einen Seite sowie die Warmeentwicklund die damit verbundenen Probleme
komplexer Systeme auf der anderen Seite erfordeenfalls die Forcierung der Entwicklung be-
sonders ressourceneffizienter Architekturen spleimeHinblick auf die Leistungsaufnahme.

Wie bereits vorgestellt, wird die Entwurfsprodulsliicke nur von annahernd regelmafiigen
Strukturen und grofRen Speicherblécken zu schlisBen Immer kleiner werdende Strukturgrof3en
stellen immer mehr Funktionalitat pro Flache zurfiigung, dies allerdings, begriindet durch die
Laufzeiten und die schwierige Synchronisierung, @inkr vergleichsweise stark eingeschréankten
Flache. Kleinere Kacheln kdnnen so lokal immer méhEaktfrequenzen erreichen. Komplexere,
flachenintensivere Hardwareblocke hingegen werddgrand der relativ gesehen grol3er werden-
den Signallaufzeiten im Vergleich zu den Schalereder Transistoren deutlich an Leistungsfahig-
keit einbufRen. Aufgrund der grolRer werdenden Diskneg zwischen stetig steigender Schaltge-
schwindigkeit der Logiktransistoren auf der einext&Sund der im Vergleich dazu geringen Ge-
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schwindigkeitszuwachse flr globale Verbindungstegen auf der anderen Seite werden in Zukunft
neue Ansatze zur Realisierung von hochperforma@esChip-Verbindungen notwendig. In die-
sem Zusammenhang konnten sich optische Signalfgbrufiir Intrachipleitungen als sehr leistung-
fahige Alternative zu den bisher verwendeten Mietidédirbahnen erweisen.

Vielleicht werden neuartige Schaltungstechnikerdén Lage sein, diese Probleme, getreu dem
MooRreschen Gesetz, aufzuldsen oder weiter in Richturlgu#ii zu verschieben. Sicherlich eroff-
nen diese ,Nano-Technologien® auch neue Perspektived Einsatzgebiete fur leistungsfahige
FPGA-Strukturen. Rekonfigurierbarkeit konnte vorr éd@hen Packungsdichte speziell bei den
Speicherzellen profitieren. Die Parallelitat konatezusatzlich durch hohe Flexibilitat erganzt wer-
den und die Entwicklung von komplexen, dynamisdonéigurierbaren Bausteinen als Alternative
zu Universalprozessoren fordern.

8.5 Zusammenfassung

In diesem Kapitel wurde die prototypische Realigigy der in Kapitel 4 beschriebenen GigaNetIC-
Architektur vorgestellt. Nach Durchlaufen allerkapitel 5 vorgestellten Entwurfsschritte zur Veri-
fikation und Optimierung wurde die GigaNetIC-Araitur als FPGA-Prototyp und in zwei aktuel-
len Standardzellentechnologien implementiert.

Basierend auf den Ergebnissen der FPGA-Realisiekang im Folgenden sehr schnell ein vorla-
genbasiertes RAPTOR2000-Tochtermodul fir den naoctealisierenden GigaNetIC-ASIC erstellt

werden. Das hier erworbene Wissen um die Systegratien kann in der Folge genutzt werden,
um den ASIC in einer bereits erstellten und ergolimgebung schnell und komfortabel testen zu
konnen. Dieses Vorgehen kann einem potentiellensin@partner die Einfihrung eines neuen Pro-
duktes erleichtern und hilft so dieme-To-MarketSpanne deutlich zu verkirzen.

Der auf dem FPGA-Prototypen basierende GigaNetl@wd@estrator konnte erfolgreich einem brei-
tem Publikum auf der Cebit 2005 und der Hannoves3de2005 auf einem fachgebietseigenen
Messestand im Rahmen des Bereichs ,Forschungsl&\W“Norasentiert werden. Dartber hinaus
hilft er, das System in einer realen Umgebung Hietdiund zugleich um GroéRenordnungen schnel-
ler, als es andere Formen der Simulation ermoghiche verifizieren.

Im Anschluss an diese positiv verlaufene Verifigatiwurde die Architektur auf zwei aktuelle

CMOS-basierte Standardzellentechnologien abgebiltet die Ergebnisse detailliert analysiert.
Basierend auf den gewonnenen Syntheseergebnissetekofundierte Aussagen uber die zu er-
wartenden Flachen- und Leistungsanforderungen iededlisierbaren Taktfrequenzen der Einzel-
komponenten und des Gesamtsystems getroffen wetiteexemplarisches System mit acht Clus-
tern zu je vier N-Core-Prozessoren und insgesa?® B SRAM benotigt weniger als 44 mm? in

der verwendeten 90-nm-Technologie. Die maximalei@sifrequenz liegt bei 285 MHz. Im Rah-

men dieser Implementierung wurde ein Konzept desaerceneffizienten Anordnung der einzelnen
Komponenten eines GigaNetIC-Clusters in Form quadtzer Kacheln vorgestellt. Auf Basis die-

ser Kacheln ist es mdglich, GigaNetIC-Systeme keffizzu skalieren und identische Signallaufzei-
ten zu gewdahren, was fur eine Maximierung der Perdnz essentiell ist.

Es konnte das grol3e Potential der skalierbarenN&ig@@-Architektur in Bezug auf Leistungsfa-
higkeit und insbesondere bezogen auf ihre Ressoefftaenz aufgezeigt werden. Beim Einsatz
eines massiv parallelen GigaNetIC-Systems, bestehes 20 Clustern mit je vier N-Cores und
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zusatzlichen Hardwarebeschleunigern und mit dechiéléeiner durchschnittlichen Desktop-CPU,
konnte ein Leistungsvorsprung um zwei GroRenordumgie einhergehendem, zusatzlich um zwei
GroRRenordnungen geringerem Energiebedarf im Vetgleiit den derzeitigen Universalprozesso-
ren festgestellt werden. Sowohl im Hinblick auf ussalanwendungen und im Besonderen bei
Netzwerkanwendungen konnte das hier entwickelt@-Ghiltiprozessorsystem seine Leistungsfa-
higkeit unter Beweis stellen. Anhand der hier atgjltsn Untersuchungen lassen sich gute Zu-
kunftschancen fur Architekturen wie die der GigdReArchitektur prognostizieren. Derartige
Architekturen sind zum einen in der Lage, die Vietedie durch die stetigen Struktur-
verkleinerungen der Halbleiterprozesse entstehemuizen. Zum anderen zeigen solche Architek-
turen Mdglichkeiten auf, die sich ergebenden Nakhie kompensieren.



9 Zusammenfassung und Ausblick

Aktuelle Forschungsarbeiten von Intel zeigen, diiesRechenleistung, die vor zehn Jahren noch
dem schnellsten Supercomputer, der ein Einfamideshhatte fullen kénnen, vorbehalten war,
mittlerweile von einem einzigen Halbleiterbausteereitgestellt werden kann. Dies geht einher mit
einer nahezu um vier GrolRenordnungen Kkleineren ugieistungsaufnahme des Chip-Multi-
prozessorsG@MP). Dieser Technologiesprung wird zum einen durehsdetig verbesserten Herstel-
lungsverfahren der Halbleiterindustrie und zum aadelurch die Ausnutzung von massiv paralle-
ler Verarbeitung in integrierten Schaltkreisen egiiait.

Zur Einordnung der hardwarebezogenen Themenberelieiser Arbeit wurden grundlegende Ab-
schéatzungen zur Leistungssteigerung durch paralRechnen und die damit verbundenen Anfor-
derungen an die Systeme aufgezeigt. Es wurden etaneeGrundlagen zu den Kernkomponenten
eingebetteter Parallelrechner vorgestel@n-Chip-Netzwerke eingebettete Verarbeitungsein-
heiten, Speicherhierarchiensowie dererAnwendungen Unterschiede und Gemeinsamkeiten exis-
tierender Ansatze im Hinblick auf die GigaNetIC-Artektur wurden herausgearbeitet und charak-
terisieren so die Besonderheiten der von mir erfemen Systemarchitektur.

Analytische Modellierung. Im Anschluss an die Definition von Ressourcenedfiz und wesentli-
cher Begriffe zur kostenfunktionsbasierten Analysa Chip-Multiprozessoren wurden Formalis-
men zur Bewertung solcher Systemimplementierungegebetteter Parallelrechner und ihrer
Komponenten eingeflhrt.

Effiziente CMP-Architektur. Im Rahmen dieser Arbeit wurde eine neuartige skai® Chip-
Multiprozessor-Architektur entworfen, die aufgrueider sehr flexibel gestalteten, parametrisierba-
ren Hardwarestruktur an verschiedenste Anfordemirayegepasst werden kann, um so fur unter-
schiedlichste Anwendungsszenarien eine moglicletorgceneffiziente Losung zu bieten. Rick-
grat dieses Chip-Multiprozessorsystems bildet dgesne flr diese Architektur entworfene neuarti-
ge hierarchische GigaNoC-On-Chip-Netzwerk. In Viedoing mit einem umfassenden Konzept zur
Kopplung unterschiedlichster Verarbeitungseinhedandie verschiedenen SoC(System-on-Chip)-
Ebenen erlaubt es einen hohen Grad an Flexibilitét Leistungsfahigkeit. Durch die spezielle
Konstruktion der On-Chip-Routingknoten der SwitcbxBn ist nicht nur eine gute Skalierbarkeit
auf Chip-Ebene wahrend des Entwurfs gegeben, sordeh die Moglichkeit einer spateren Kom-
bination von GigaNetIC-basierten CMPs auf Leitetplaebene. Je nach Anwendungsgebiet und
dessen Anforderungen kann zwischen normalem SRA& ethem eigens entwickelten Multipro-
zessorcache a8n-ChipSpeicher der Verarbeitungseinheiten gewahlt werden

Das GigaNetIC-CMP-System dient und diente als Bfisisveitere Forschungsvorhaben der Uni-
versitat Paderborn, wie z. B. fur die DFG-Sondexdbungsbereiche SFB 376 ,Massive Parallelitat:
Algorithmen, Entwurfsmethoden, Anwendungen® und $B "Selbstoptimierende Systeme des
Maschinenbaus". Es wird in den erfolgreich beamérad-olgeprojekten PlaNetS, MxMobile, Ea-
syC oder auch DFG weiterhin genutzt und erweitert.

Im Rahmen zukinftiger Arbeiten ware eine Flachemkédn der Switch-Box durch Einsatz von
SRAM anstelle von Registerzellen fur die Wartesegén sinnvoll. Die Implementierung einer
vollwertigenBroad undMulticastFunktionalitat wirde die Mdglichkeiten des On-Chptzwerks
fur einige Anwendungsszenarios zusatzlich erh6Rénsehr groRe Systeme mit einer Vielzahl von

239
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Clustern sollten zuséatzliche Elemente zur Realisigreines GALS(global asynchronen, lokal syn-
chronen)-Konzepts hinzugefligt werden. Fir den éma@austein ist deBootloader der fur die
Initialisierungsphase der Prozessoren verantwbrd&chnet, noch von der SystemC-Beschreibung
in eine synthetisierbare Form zu transferiereneE&usatzliche Erhéhung der Performanz speziell
im Bereich der Netzwerkanwendungen kénnte die hatemn eines Hardwareblocks zur Lastvertei-
lung (Loadbalancey bedeuten, der dynamisch sowohl auf sich andeltadérerteilungen als auch
auf die Auslastung der einzelnen Cluster und Pemes reagieren konnte und die Aufgaben adap-
tiv verteilt. Besonderes Augenmerk sollte in Zukumif Aspekte der Fehlertoleranz gelegt werden,
die fur derart komplexe Systeme wie dem GigaNetl@p@/ultiprozessor mit teilweise mehreren
Hundertmillionen Transistoren immer wichtiger warderhéhen sie doch die AusbeuYee{d bei

der Produktion und die Ausfallsicherheit wahrend &etriebs, was speziell in hochverfliigbaren
Netzwerkkomponenten von besonderer Bedeutung ist.

Entwicklungsumgebung — in sich geschlossene Werkagkette. Parallel zur Realisierung der
GigaNetlC-Hardwarebeschreibung wurde in Kooperatioh den Projektpartnern der Universitét
Paderborn eine geschlossene und ineinander veez®ferkzeugkette entworfen: angefangen beim
Prozessorentwurf Gber die automatische Generied@sgCompilers und eines C-basierten zykle-
nakkuraten Instruktionssatzsimulators bis hin zakainnotiertenRTL(Register-Transfer-Levgl
Beschreibungen. Letztere liefern detaillierte Infationen Uber Leistungsaufnahme, Flachenbedarf
und Leistungsfahigkeit der integrierten Schaltumgl geben Impulse fir Instruktionssatzerwei-
terungen und Hardwarebeschleuniger sowie fur Sygtémierungen allgemeiner Natur und helfen
so die Ressourceneffizienz des Systems zu steiBeenGigaNetIC-Architektur stellt Simulations-
sowie Emulationsumgebungen unterschiedlicher Akstnasstufe und unterschiedlicher Simulati-
onsgeschwindigkeiten zur Verfugung. Der C-basiéttaster-Simulator dient vornehmlich der
schnellen Simulation und Optimierung der N-Corezessorkerne und liegt bei einer Simulations-
geschwindigkeit von ca. 10 MHz. Die SystemC-Simalsumgebung SIMPLE erlaubt hingegen
die zyklenakkurate Simulation des gesamten Chiptibtalzessors mit ca. 100 kHz. Sie dient als
Plattform fur frihe Softwaretests in der Entwurfapd, aber auch als Evaluationsplattform fur neue
Hardwarekonzepte. Zukulnftig ware eine Erweiterueg &imulationsmodells durch Annotierung
der jeweiligen Verlustleistung der einzelnen Komgaten sinnvoll. So kénnten bereits im friihen
Stadium einer Entwicklung ausreichend genaue Aligahgen durch Schaltaktivitaten in deutlich
kurzerer Zeit ermittelt werden, als es derzeit d@L-Simulation erlaubt. Deutlich detaillierter,
allerdings auch weitaus langsamer mit ca. 100 Hm&itionsgeschwindigkeit ist die HDL-basierte
Simulation mit der erweiterten GigaNetlIC-PERFORM-g#hung, mit der ebenfalls die Simulation
des gesamten Chip-Multiprozessorsystems moglicibes fir die GigaNetlC-Architektur genutzte
FPGA-basierte Rapid-Prototyping-System RAPTOR20@dtdzum einen als Vorstufe zur ASIC-
Realisierung und damit als finaler Test der Hardbaschreibung, mit 20 MHz Simulationsge-
schwindigkeit zum anderen aber auch als besondbrele Plattform zur Analyse sehr zeitintensi-
ver Softwaretests auf CMP-Ebene. Zusatzlich erlalidse Plattforn es, GigaNetIC-Systeme mit
externen Schnittstellen, wie es z. B. flr die Nettkprozessor-Realisierung notwendig ist, zu tes-
ten.

Die einheitliche GigaNetIC-Ubersetzer-Werkzeugkettenoglicht einen reibungslosen Ubergang
zwischen den einzelnen Plattformen und garantiarfumktional gleiches Verhalten des GigaNet-
IC-Systems in allen Simulatoren. Etwaige irreleealdnterschiede der einzelnen Plattformen blei-
ben fir den Systementwickler transparent.
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Ohne eine derart geschlossene Werkzeugkette wéare effektive Nutzung eines Chip-
Multiprozessorsystems nur sehr eingeschrankt mégtlenn erst das Zusammenspiel von gut auf-
einander abgestimmter Hardware und Software erctitghine ressourceneffiziente Losung.

Ein weiterer Entwicklungsschritt ware eine Autorsmtiung der Werkzeugkette im Hinblick auf
eine automatische Generierung der Hardwarebescimgitbes Prozessorkerns anhand der UPSLA-
Spezifikation. Im nachsten Schritt kdnnten autosiatie Modifikationslaufe mit anschlie3ender
Auswertung der Resultate der Kostenfunktionen neffigjentere Systeme generieren.

Optimierung. Der bei der GigaNetIC-Architektur konsequent vigtie ganzheitliche Ansatz sieht
neben der reinen Simulation bzw. Emulation des C3§Btems auch eine Optimierung der Archi-
tektur im Hinblick auf Anforderungen spezieller Eatzgebiete vor. Hierbei wird ein auf die Giga-
NetlIC-Architektur angepasster hierarchisch gerient®ptimierungsansatz verfolgt, der es System-
architekten und Softwareentwicklern ermdglicht, eeinerkzeuggestiitzte anwendungsspezifische
Anpassung und Optimierung einzelner bzw. aller Kongmten vorzunehmen. Dies hilft, die Res-
sourceneffizienz des Chip-Multiprozessors im Beaud) die jeweiligen Anforderungen, Randbe-
dingungen und Schranken im Vergleich zur univeeseVariante zu steigern. Der hierarchisch ge-
richtete Ansatz bietet den Vorteil, dass, untegstdtirch die entwickelte Werkzeugkette, zunachst
mit vergleichsweise geringen Modifikationen die dtangsfahigkeit bzw. der Ressourcenbedarf der
Chip-Multiprozessor-Architektur teilweise deutlicptimiert werden kann. Durch die leistungsfa-
higen Profilierungsmoglichkeiten der GigaNetlC-Eittdungsumgebung lassen sich besonders
rechenintensive Funktionen der Anwendungssoftwahmedl lokalisieren. Dies geschieht in der
Regel hierarchisch gerichtet, angefangen bei lkBtmissatzerweiterungen, Uber eng-gekoppelte
Hardwarebeschleuniger bis hin zu lose gekoppeltardidarebeschleunigern. Letztendlich steht
dem Softwarearchitekten dann die Nutzung der peall Struktur zur parallelen Bearbeitung einer
Aufgabe zur Verfiigung, deren Leistungsfahigkeit. giifrch den GigaNetIC-Multiprozessorcache
zusatzlich erhéht werden kann. UnterschiedlichggfRrmmiermodelle des GigaNetIC-CMPs erlau-
ben eine angepasste, moglichst effiziente Nutzwergparallelen Verarbeitungseinheiten fir das
jeweilige Anwendungsszenario.

Die werkzeuggestttzte Analyse des jeweiligen Anweigdszenarios liefert Aussagen sowohl tGber
den Rechenleistungs- als auch den Energiebedastf,alcth tber die benétigten Bandbreiten der
On-Chip-Kommunikation. Die GigaNetlC-Architekturtdinet, aufgrund der generisch gehaltenen
Struktur, zahlreiche Mdglichkeiten, das System amwagsgemal zu optimieren.

Die anhand vorausgegangener werkzeuggestutzteygarakingebrachten Optimierungen erlauben
eine besonders effiziente Nutzung der parallelechi®ektur. Unterstitzt durch die Werkzeugkette
lasst sich fur die jeweils betrachtete Anwendungggeigneter Kompromiss zwischen Leistungs-
zuwachs, Verlustleistungsaufnahme, Flachenbedalfzusatzlich zu erwartendem Entwicklungs-
aufwand treffen. Pareto-optimale Punkte des Entsvaums konnen so effizient angenéhert wer-
den. Anhand anwendungsspezifischer Instruktionssatiterungen des N-Core-Prozessorkerns
konnten mit Hilfe einzelner Superinstruktionen Berfanzzuwachse von bis zu 25 % flr Netz-
werkanwendungen erzielt werden — und dies bei eiR&thenzuwachs von teilweise unter einem
Prozent, verbunden mit einer Reduktion des Eneegialis um 20 %. Die implementierten Hard-

warebeschleuniger im Bereich von Netzwerkanwenduregendglichen teilweise eine Reduktion

der Verarbeitungszeit um drei GroéRenordnungendsiglich moderater Flachenzunahme. Zusétz-
lich wurde der Energiebedarf der angepassten Sgstdentlich reduziert. Fur delf?-DSLAM-
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Referenzbenchmatonnte hier eine Reduktion der benttigten Enengremehr als Faktor 12 er-
reicht werden, so dass insgesamt eine merklichge®teng der Ressourceneffizienz erzielt wurde.

Anhand einer exemplarischen Analyse verschiedepatiserungsvarianten fur ein paketverarbei-
tendes System wurde die Kostenfunktionsmethoddiziert und deren Leistungsfahigkeit aufge-

zeigt. Mit Hilfe definierter Parameter fur die Zighktionen der vier Kostenmal3e Leistungsauf-
nahme, Flachenbedarf, Performanz und Zukunftsdielitesowie der resultierenden Kostenfunktion
wurden in Relation zu den definierten Randbedingangareto-optimale Systeme fiir unterschiedli-
che Einsatzgebiete ermittelt. Dem Systemarchitektieth hiermit eine hilfreiche Entscheidungshil-

fe fur den Entwurf ressourceneffizienter Implementngen an die Hand gegeben.

Netzwerkanwendungsszenarienim Rahmen dieser Arbeit wurde die GigaNetIC-Ardkiibe vor-
nehmlich im Hinblick auf den Einsatz in Netzwerksaeen untersucht. Gerade im Netzwerkbe-
reich bieten sich parallele Systeme zur Datenvertanbg an, da hier eine Vielzahl von parallelen,
zum Teil nicht korrelierten Datenstromen simultam\den Verarbeitungseinheiten bearbeitet wer-
den kann.

Zur Bewertung der GigaNetIC-Architektur fir Zugangswerke wurde ein neuartigér-DSLAM-
Benchmarkvorgestellt, ferner die Leistungsfahigkeit der &\gtIC-Architektur fur unterschiedli-
che Szenarien analysiert und mit anderen Ansateggliehen. Im Anschluss wurde die Leistungs-
fahigkeit des von uns entwickelten ProzessorkernSoke fiir relevante Funktionen durch Op-
timierung der Architektur, Instruktionssatzerwaitegen sowie Hinzufiigen von anwendungsspezi
fischen Hardwarebeschleunigern deutlich erhéht.

Zudem wurde eine modulare Methode zur effizienteod®llierung von Netzwerkanwendungen
vorgestellt, mit deren Hilfe der bereits entworfédReDSLAM-Benchmarlauf Systemebene zu ei-
nem noch realistischeren Referenzbenchmark enwanden konnte. Mit Hilfe eines eigens ent-
wickelten Visualisierungswerkzeugs, dddSLAM-System-Explorekonnten die Leistungsdaten
des N-Cores, die erzielten Beschleunigungen dedwtmeerweiterungen und Leistungsvergleiche
mit anderen Prozessorfamilien komfortabel verangdatt# werden. Hochrechnungen bzgl. des
Hardwareaufwands fir gewinschte Anforderungen IBeBSLAMANwendungsszenarios lassen
sich aufstellen, die eine gezielte Evaluierung Betvurfsraums ermoglichen. Die Integration der
kostenfunktionsbasierten Bewertungsmethode zurdressneffizienz ware eine wesentliche Er-
weiterung dieses Werkzeugs, die Vielzahl der Meggn@nnte neben der eigentlichen Visualisie-
rung zusatzlich zur automatisierten Bewertung aeensuchten Realisierungsvarianten herangezo-
gen werden. In zukinftigen Arbeiten kénnten aul3erdiefergehende Analysen der GigaNetIC-
Architektur mit weiteren etablierten Netzwerkproz@®n von Interesse sein, bei denen die urs-
pringlich universelle Struktur des GigaNetIC-Systemit dem hoch spezialisierten, speziell auf
Netzwerkanwendungen optimierten Aufbau dieser ASI@glichen wird. Ggf. kénnten anhand
dieser Untersuchungen weitere Optimierungspotentialr GigaNetlC-Architektur bestimmt wer-
den.

Eine Analyse der Leistungsfahigkeit der verschieteKopplungsarten von Hardwarebeschleuni-
gern an das GigaNoC der GigaNetIC-Architektur z&igt- und Nachteile der einzelnen Varianten
am Beispiel einer Netzwerkanwendung auf. Da died&rt Kopplung und die Anzahl der Hardwa-
rebeschleuniger abhangig von den Anforderungenesesligen Anwendungsszenarios ist, kbnnen
vielversprechende LOsungen im Hinblick auf die Resseneffizienz mit Hilfe der GigaNetIC-
Simulationsumgebungen ermittelt werden.
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Prototypen. Im Rahmen dieser Arbeit wurden Varianten der GigalArchitektur als FPGA-
Prototyp und in zwei aktuellen Standardzellentetdgien implementiert. Der auf dem FPGA-
Prototypen basierende GigaNetlC-Demonstrator il Chip-Multiprozessorsystem in einer rea-
len Umgebung detailliert und zugleich um Groé3enamdyen schneller, als es andere Formen der
Simulation ermdglichen, zu verifizieren.

Fur zwei aktuelle CMOS-basierte Standardzellenteldgien mit 130 nm und 90 nm Strukturgrol3e
wurde u. a. prototypisch einexZ-Gitter-Architektur abgebildet und die Ergebnisisailliert ana-
lysiert. Basierend auf den gewonnenen Syntheseeiggem konnten fundierte Aussagen Uber die
zu erwartenden Flachen- und Leistungsanforderungehdie realisierbaren Taktfrequenzen der
Einzelkomponenten und des Gesamtsystems getroéedew. Das exemplarische2tSystem mit
acht Clustern zu je vier N-Core-Prozessoren undgesamt 1,25 MB SRAM bendtigt weniger als
44 mm? in der verwendeten 90-nm-Technologie undassifca. 80 Millionen Transistoren. Die
maximale Betriebsfrequenz liegt bei 285 MHz. Im Rehn dieser Implementierung wurde ein
Konzept der ressourceneffizienten Anordnung derzedmen Komponenten eines GigaNetIC-
Clusters in Form quadratischer Kacheln vorgestallf. Basis dieser Kacheln ist es moglich, Giga-
NetIC-Systeme effizient zu skalieren und identis&ignallaufzeiten zu gewéhren, was fur eine
Maximierung der Performanz essentiell ist.

Der Vergleich eines massiv parallelen GigaNetICt&ys mit derzeitigen Universalprozessoren
zeigte fur ein spezielles Netzwerkanwendungsszeraren Leistungsvorsprung des optimierten
GigaNetIC-CMPs um zwei Grof3enordungen einhergememcinem um zwei Grélenordnungen
geringeren Energiebedarf bei einem Zehntel derhdetmittlichen Taktfrequenz. Das GigaNetIC-
System umfasste 20 Cluster mit je vier N-Cores nebséatzlichen Hardwarebeschleunigern mit
einer Gesamtflache von 106 mmz, der durchschiighc~lache der untersuchten Desktop-CPUs.

Sowohl im Hinblick auf Universalanwendungen alshaum Besonderen bei Netzwerkanwendun-
gen konnte das hier entwickelte Chip-Multiprozesgstem seine Leistungsfahigkeit unter Beweis
stellen. Anhand der angestellten Untersuchungesetasich gute Zukunftschancen fur Architektu-
ren wie die der GigaNetlC-Architektur prognostieier vorausgesetzt, dass die notwendigen Soft-
warekomponenten in diese Richtung optimiert werdsrartige Architekturen sind zum einen in
der Lage, die Vorteile, die durch die stetigen &troverkleinerungen der Halbleiterprozesse ent-
stehen, zu nutzen. Zum anderen zeigen solche A&kthren Moéglichkeiten auf, die sich ergeben-
den Nachteile zu kompensieren.
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Abkirzungen

50%S Verlustleistungsbestimmung des Synthesewegkzauf Basis statistischer Schaltwahrscheinlickkeit
AALS ATM Adaptation Layer 5
ADSL Asymmetric Digital Subscriber Line

AES Advanced Encryption Standard

ALU Arithmetic Logic Unit

Ami Ambient Intelligence

AS Annotierung der Schaltaktivitaten durch Simwati
ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Instruction Set Processor
ATM Asynchronous Transfer Mode

BC Best Case

BE Best Effort

BIST Build-in Self Test

BSP Bulk Synchronous Parallel

CAM Content Addressable Memory

CcC Communication-Controller

CIsC Complex Instruction Set Computer

CMP Chip-Multiprozessor

CPE Customer-Premises Equipment

CPU Central Processing Unit

CRACC Click Rapidly Adapted to C-Code

CRC Cyclic Redundancy Check

CS Circuit Switching

DLL Dynamic Link Library

DMA Direct Memory Access

DMIPS  Dhrystone MIPS

DSL Digital Subscriber Line

DSLAM Digital Subscriber Line Access Multiplexer
DSM Distributed Shared Memory Multiprocessor

DSP Digital Signal Processor bzw. Digitale Signedwbeitungsprozessoren
EEMBC Embedded Microprocessor Benchmark Consortium

EIB Element Interconnect Bus

FIER Fast Interrupt Enable Registers

FIFO First In First Out

FINT Fast Interrupt

Flit Flow Control Digits

FLOPS  Floating Point Operations Per Second
FPGA Field Programmable Gate Array

FSM Finite Statemachine

GALS global asynchron, lokal synchron
GDS I Graphic Data System Il

GE Gigabit Ethernet
GPS Generalized Processor Sharing
GT Guaranteed-Throughput-Traffic
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HAL Hardware Abstraction Layer
HDSL High Data Rate Digital Subscriber Line
HOL Head-of-Line-Blocking

ILP Instruction-Level Parallelism

ILP Integer Linear Programming

iMix Internet Mix

IP Intellectual Property

IP Internet Protocol

IPSec Internet Protocol Security

IPv4 Internet Protocol Version 4

Ipv6 Internet Protocol Version 6

ISE Instruction Set Extension

ISP Internet Service Provider

ITRS International Technology Roadmap for Semicahokis
MANet  Mobiles Ad-Hoc-Netzwerk

MIC Memory Interface Controller

MIPS Millionen Instruktionen pro Sekunde
MOPS Millionen Operationen pro Sekunde
MPU Memory / Processor Module

MSB Most Significant Bit

MTU Maximum Transmission Unit

NAT Network Address Translation

NIC Network Interface Card

NINT Normal Interrupt

NoC Network on Chip

NPU Network Processing Unit

NRE Non-recurring Engineering

NUMA  Nonuniform Memory Access

OCP Open Core Protocol

OTP One-Time Programmable

PC Personal Computer

PC Program Counter

PDA Personal Digital Assistant

PE Processing Element

Phit Physical Unit

PIC Programmierbarer Interruptcontroller
PS Packet Switching

QoS Quality of Service

RADSL Rate Adaptive Digital Subscriber Line
RAM Random Access Memory

RISC Reduced Instruction Set Computer
ROM Read-Only Memory

RTL Register Transfer Level
RTOS Real-Time Operating System
SAF Store and Forward

SB Switch-Box

SDRAM Synchronous Dynamic Random Access Memory
SDSL Symmetric Digital Subscriber Line

SIMD Single Instruction Multiple Data

SiP System in Package
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SLA Service Level Agreements

SMP Symmetric Multi-Processing
SoC System-on-Chip

SPE Synergistic Processor Elements
STBus Split Transaction Bus

TC Typical Case

Tcl Tool command language

TDM Time Division Multiplex

TDP Thermal Design Power

TLP Task / Thread Level Parallelism
™ Traffic Model

TTL Time to Live

UART Universal Asynchronous Receiver Transmitter
uULSI Ultra-Large Scale Integration

UMA Uniform Memory Access

UPSLA Unified Processor Specification Language

VC Virtual Channel

VCT Virtual Cut Through

VDSL Very High Data Rate Digital Subscriber Line
VHDL Very High Scale IC Hardware Description Langea

VLSI Very Large Scale Integration
VolP Voice over IP

VOQ Virtual Output Queueing
wC Worst Case

WCET Worst-Case Execution Times

Formelzeicher(®

a sequentieller Anteil eines Programms

aa Gewichtung bzw. Gewichtungsfaktor d&iZielfunktion zur Kostenfunktion

ar Gewichtung bzw. Gewichtungsfaktor deiZielfunktion zur Kostenfunktion
Gewichtungen bzw. Gewichtungsfaktoren der einzelietiunktionen einer Kosten-

a funktion

ap Gewichtung bzw. Gewichtungsfaktor deZielfunktion zur Kostenfunktion

ar Gewichtung bzw. Gewichtungsfaktor deiZielfunktion zur Kostenfunktion

o Grad eines Netzwerks

Grad eines Knotens

< (N) nominelle Effizienz paralleler Verarbeitungominal parallel efficiencyunter Verwen-
n dung vonN Prozessoren

£, Ubertragungseffizienz

T Schaltzeit

A Architektur

AL Flache de€Csbei einer Flitbreite von 93 Bit

AT Flache de&reuzschienenverteilelsei einer Flitbreite von 93 Bit

A e Registerflache der FIFOs der Switch-Box

Fiforeg
3

Registerflache der FIFOs der Switch-Box bei einébfeite von 93 Bit

0 Aufgrund der unterschiedlichen Themengebiete kesau Mehrfachverwendungen eines Formelzeichensneom
Die jeweilige Bedeutung ist dementsprechend kohtzdgen zu sehen.
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A Flache des Advanced Buffers bei einer Flitbreite 98 Bit
A Flache
Ang Flache des Advanced Buffers
Acc Flache des Communication-Controllers
Acom Flache der Kommunikationsstruktur (Com)
Acrossbar Flache des Kreuzschienenverteilers
Acir Flache eines Controllers (Ctrl) zur Ansteuerungeilardwarebeschleunigers
Anputports Flache der Eingangsports
Avtem Flache eines Speichers (Mem)
Are Flache einer Verarbeitungseinheit (PE)
Asg Flache der Switch-Box
Bg Bisektionsbandbreite
b, Bandbreite eines Kanals
Bc Kanalbisektion
Bic oL akkumulierte Downlink-Bandbreite der Linecard
Bic u akkumulierte Uplink-Bandbreite der Linecard
BM Bewertungsmalfd
BMp Bewertungsmalfie zur Leistungsaufnahme
Buc oL akkumulierte Downlink-Bandbreite der Uplinkcard
Buc uL akkumulierte Uplink-Bandbreite der Uplinkcard
C Kanale in einem Netzwerk
C(N;, Ny Schnitt bzw. Teilung eines Netzwerks
C(x,y) KanalC zwischen Quellknoter und Zielknotery
Cest effektive Kapazitat
CF Kostenfunktion
pareto-optimale Lésung = pareto-optimaler Kostekfiomswert eines Problems fir
CPpareto gegebene Gewichtungenund a,
c Gewichtungen bzw. Gewichtungsfaktoren der einzeBemnertungsmalie einer Ziel-
' funktion
Cix Menge der Eingangskanéle
Clast Lastkapazitat
Cox Menge der Ausgangskanéle
Cox flachenspezifische Oxidkapazitat
Cox Gate-Kapazitat
Cycles Per Instructiondurchschnittliche Anzahl der benétigten Takte bZyklen zur
CPI Verarbeitung einer Instruktion
Cwachstum erwartete jahrliche durchschnittliche WachstumsdateEntwurfskomplexitat
D Durchmesser
D(P) physikalische Distanz eines Pfades
D(P) Verzdgerung eines Pfades
de Zielknoten
Du Durchsatz eines Speichévs
Dsg Durchsatz einer Switch-Box
E Entwurfsraum
o hardwarebezogener Entwurfsraum
E Feldstarke
EM Effizienzmafld
F Zukunftssicherheit/Flexibilitat
f Taktfrequenz
f Betriebsfrequenz eines Kanals

o
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den ,Com
den ,Ctrl

den,Mem
den,PE

pEntwickIung

Bewertungsmalfd Fehlertoleranz zugehorig zum KostBrifhexibilitat
Fehlerimmunitat

Bewertungsmafd Programmierbarkeit zugehdrig zumefwmsald Flexibilitat
Fehlertoleranz

Bewertungsmafl Wiederverwendbarkeit zugehdrig zustédonal? Flexibilitat
Gap(Liicke zwischen zwei aufeinander folgenden Ubgtnaen)

durchschnittliche Hopanzahl

Anzahl Hops
Anzahl an Hops eines minimalen Pfades zwischerKaetenx undy

maximale Hopanzahl

durchschnittliche minimale Anzahl an Hops eineszMetrks zwischen allen Quell- und
Zielknoten

Strom

dynamische Instruktionsanzaynamic Instruction Couint
Drainstrom

Leckstrome

Querstrome

Kurzschlussstréme

Jitter

Kostenmalf3

Kante eines Graphen

Latenz

Lange des Transistor-Gates

Latenz des Datentransfers eines Pakets Uiber egstimionten Pfad des GigaNoC
Latenz eines Kanals

Lange eines Kanals

Lese-Latenz eines Speichers

Schreib-Latenz eines Speichers

Gesamtanzahl der ggf. zu segmentierenden Pakelbgseen
Paket bestehend amsByte

Anzahl der Datenbyte eines Flits

Anzahl der Headerbyte eines Flits

Endknoten eines Netzwerks

Hierarchieebenen eines GigaNetIC-Systems

Lange eines Datenpakets in Flit

Knoten eines Netzwerks

Routingknoten eines Netzwerks

Gesamtzahl der benétigten Flits fiir die Ubertrageings segmentierten Pakets
OverheadMehraufwand)

Anzahl der Hops

Anzahl paralleler Prozessoren

Pfad

Leistungsaufnahme

Preis eines Systembestandteils in €

dynamische Verlustleistung

dynamische Verlustleistung der Kommunikationsstiuk€om)
dynamische Verlustleistung eines Controllers (Ctul) Ansteuerung eines Hardwarebe-
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dynamische Verlustleistung eines Speichers (Mem)
dynamische Verlustleistung einer Verarbeitungsetr(f)
erwartete jahrliche durchschnittliche Produktistéachstumsrate
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PG Programmierbarkeit
Pinter-sB-Links Leistungsaufnahme fiir Inter-Switch-Box-Verbindungen
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Lastumladeverlustleistung

pareto-optimaler Punkt im Entwurfsraum

Anzahl der Ports einer Switch-Box

Schaltverlustleistung

statische Verlustleistung

Randbedingung

Ressourceneffizienz im Sinne des schaltungstecteisEntwurfs
Anzahl wiederverwendeter Blocke im Jahreom Referenzjahr
Realisierungsvariante eines spezifizierten Systems
Gesamtheit aller minimalen Pfade

System

Systementitat
hardwarebezogene Systementitaten

softwarebezogene Systementitaten

Schranke

Skalierungsfaktor zweier CMOS-Technologien

Anzahl konkurrierender FIFO-Ketten am Eingang eibeftch-Box
SpeedufBeschleunigung) in Abhangigkeit von der Anzahi Beozessoren
Tiefe der Switch-Box FIFO-Register-Warteschlange

Quellknoten

Anzahl konkurrierender FIFO-Ketten am Eingang miéen Switch-Box
obere Schranke

untere Schranke

Leistung bzw. Performanz

Taktperiode

Ausfiihrungszeit

Ausfiihrungszeit einer Verarbeitungseinheit (PE)

Siliziumoxiddicke

Ubertragungszeit fiir eine Nachricht einfacher Langer kontinuierlichem Netzwerk-
verkehr beim BSP-Modell

Signalhub

Spannung bzw. Spannungshub
Versorgungsspannung
Versorgungsspannung
Schwellspannung

charakteristische Ausbreitungsgeschwindigkeit eiesals
Simulationsgeschwindigkeit, gemessen in bendtigéétr pro simuliertem Takt des Ziel-
systems

Weite des Transistor-Gates

Weite eines Kanal€
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Anhang A (GigaNetIC-C-Bibliotheksfunktionen)

Die folgende Abbildung eines C-Codebeispiels zeige die GigaNoC-Funktionen nach Einbin-
dung demgiganetic.hC-Bibliothek in benutzerspezifischen Anwendungenwgzt werden kdnnen:

#include <stdio.h>

#include <giganetic.h>

int  main()

{
unsigned int *packet_addr;
unsigned int *ack;
unsigned int data;
unsigned short packet_length;
unsigned int start_time, stop_time;

/l initialisiere Zeitgeber fur Cluster 6 zum gena uen Profiling
gn_tinmer_init(6,-1);
/I warte auf Paket
packet_addr = ( unsigned int  *) gn_wai t _f or _packet ();
I erhalte Zeiger auf das zugewiesene Paket
while (!packet_addr)

packet_addr = ( unsigned int  *) gn_wai t _f or _packet ();
1 identifiziere Paketlange
packet_length = *((( volatile unsigned short *)packet_addr)+5);
/I Anweisung fur den Communication-Controller, da s Paket an einen HW-Beschleuniger zu
/I versenden. Die Adressierung enthalt bereits St euerbefehle fir den

/I "Memory Mapped-I/O"-Hardwarebeschleuniger
*packet_addr = 0x80190039;
gn_pri nt ("Sending packet to CC_HW_ACC\n");
/I Profiling-Kommando zur taktgenauen Zeitmessung
start_time = gn_timer_get_counter();
/I Versendung des Pakets Nr. 1 an einen benachbar ten Cluster
gn_send_dat a(0,-1,6,1,packet_length+14,packet_addr);
/I warte auf erfolgreiche Versendung des Pakets N r.1
ack = gn_get _ack(1);
while ('ack)
ack = gn_get _ack(1);
/I Profiling Kommando zur taktgenauen Zeitmessung
stop_time = gn_tinmer_get_counter();
/I gibt den Paketspeicher des CC des Pakets frei
gn_free_packet (packet_addr);
return  1;

}
Abbildung Anhang A-1: Codebeispiel zur Verwendung E2mentarer GigaNoC-Bibliotheksfunktionen

Die GigaNoC-Bibliotheksfunktionen sind an dem vaestelltemgn_ zu erkennen und in dem
Beispiel fett gedruckt. Alle zur Verfigung stehemdeunktionen der Bibliothek kénnen hier aus
Platzmangel nicht erlautert werden, sind aber auf@igaNetIC-Linux-Live-CD (vgl. Abschnitt
4.8) im Softwareverzeichnis enthalten und detailkemmentiert.

Abbildung Anhang A-2 zeigt den Aufbau der Befeldie seitens der Prozessorkerne an den Com-
munication-Controller der Switch-Box gesendet war#éénnen. Die Befehle sind in der Adresse
kodiert. Adressen die mits, oder ,F“ im obersten Oktett beginnen sind fur diese Komduanre-
serviert. Dies reduziert die theoretisch adresarertspeichergrol3e pro Cluster auf 3,5 GByte, was
fur den Einsatz der Architektur in Chip-Multiprozesen derzeit mehr als ausreichend ist. Bei den
Befehlen handelt es sich sowohl um Abfragklw{Befehl) seitens der Prozessoren, als auch um
Schreibzugriffe $tw-Befehl). Die Daten, die bei Lesezugriffen zuridigfert werden beinhalten
die angeforderte Information, die vom Communicaf@ontroller der anfragenden CPU ubermittelt
wird (wie z. B. Registerauslastung oder die Paketsk bei einer Empfangsabfrage). Bei Schreib-
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zugriffen wird die entsprechende Paketadresse atan Ubertragen, um so z. B. ein bestimmtes
Paket zum Zielknoten im NoC zu versenden oder dechdein Paket belegten Speicher wieder frei
zu geben. Beim Versand eines Pakets entsprict{atieerung der Zielkoordinaten dem GigaNoC-
Protokoll (vgl. Abschnitt 4.2.2). Die Auftrage zudfersenden einzelner Pakete werdenGa in
FIFO-Strukturen abgelegt und sequentiell abgeabditie drei dunkel hinterlegten Abfragen stel-
len blockierende Anfragen an den Communication-f@diet dar. Diese werden bei der Wishbone-
Bus-basierten Variante aufgrund der Spezifikatimsels Bussystems nicht unterstitzt. Bei anderen
Bussystemen, wie z. B. dem ebenfalls implementief®BA-Bus sind diese zuldassig und kénnen
genutzt werden. Bei ein@pezialabfragdhandelt es sich um eine Kombination aus Versand- u
Empfangsabfrage. Um die Performanz des Systemgiges) wird mit dieser Abfrage zum einen
Uberpruft, ob ein in Auftrag gegebenes Paket velstworden ist\ersandabfrageund zum ande-
ren ggf. eine neue Paketadresse eines zu beadmitérakets zurtickgegebdtn{pfangsabfrage

So kénnen zwei Aufgaben mit einer Transaktion egkederden. Die Fullstandsabfrage ermoglicht
den Prozessoren eine Bestandsaufnahme der dezme8igstemlast und kann flioad-balancing
Aufgaben herangezogen werden. Diese Befehle weirfderden Softwareentwickler transparent,
durch die oben gezeigten GigaNetIC-Bibliotheksfiorken aufgerufen. Die Struktur d&@C-
Kommandos lasst noch weitere Befehle fir den Conication-Controller zu, so dass auf zukunf-
tige Anforderungen flexibel reagiert werden kanmi Begativer Quittierung einer Abfrage wird
NULL, also der Null-Vektor (0x0) zuriickgegeben, @amdeutig von einer gultigen Adresse unter-
schieden werden kann, da die Basis des PaketspeicbeAdresse 0x40000000 liegt (vgl. Abbil-
dung 4-18).

Operation ‘ Adresse ‘ ‘ Daten ‘

31 | | | | | | | 0f 131 0

Fillstandabfrage | F [ o | o | o [ o | 8 [ o [ o |[ FIFO-Registerauslastung |

Spezialabfrage | F | 0 | o | o [ o | 6 [o] CPUID |[CPU_ID/Paketadresse/NULL |

Versandabfage [ F | o [ o [ o [ o [ 5 Jo] cpum || CPU_ID / NULL |

2| Empfangsabfrage [ F T o] o o[ o a4 | o o || Paketadresse / NULL |

E, - Spezialabfage || F | o | o | o | o | 3 [o]| cpuib || CPU_ID/Paketadresse |

$ Versandabfrage | F | o [ o [ o | o [ 2 Jo]| cprum || CPU_ID |

§ Empfangsabfrage | F | o | o [ o [ o [ 1 | o [ o [ Paketadresse |

z EI Speicherfreigabe [ F | 0 | o | o J o [ o [ o [ o || Paketadresse |

“y Paketversenden [[E [Po| X | V¥ | Paketlénge | cpuip ]| Paketadresse |
l—4 Bit—i3 Bit-—4 Bit—k—4 Bit—le 11 Bit e 6 Bit—i

Abbildung Anhang A-2: Befehlstibersicht des Communiation-Controllers



Anhang B (Parametrisierbarkeit der GigaNetIC-Architektur)

Die folgenden Parameter sind die wichtigsten genbrigehaltenen Konstanten des GigaNetIC-
Systems, die in deWHDL-Design-Packageder jeweiligen Design-Bibliothek enthalten sindeD
relativ grof3e Anzahl gibt bereits einen kleinendtirck von der Komplexitat, die der Entwurf eines
skalierbaren flexiblen Chip-Multiprozessors mithsharingt.

Globales GigaNetIC-System

* CLUSTER_PER_ROMANnzahl der Cluster bzw. Switch-Boxen in x-Dimearsi1 bis beliebig)

e CLUSTER_PER_COQIlAnzahl der Cluster bzw. Switch-Boxen in y-Dimeans(1 bis beliebig)

* NUM_OF_PE Legt die Anzahl der Prozessorelemente pro Cldsttr(derzeit realisierbar: 1 bis 8).
*  NUM_OF_ETH Legt die Anzahl der Ethernet-Ports pro Clustst {derzeit realisierbar: bis 4).
Switch-Box

*  NUMBER_OF_PORT.SAnzahl der I/0O-Ports der Switch-Box.

» LOG_NUMBER_OF_PORTS5anzzahliger Zweierlogarithmus des WedldMBER_OF PORTSDieser Wert
dient der generischen Dimensionierung der Stetiengen der Multiplexer.

» DATA_WIDTH:Dieser Parameter legt die physikalische Breite®iflits fest. Er ist von vielen der bereits erwéhn
ten Parameter, die das Format des Flitkopfes sdesd-litrumpfes betreffen, abhdngig (vgl. Abschift.?). Des-
halb sind die entsprechenden Regeln bei der Andedigses Wertes zu befolgen.

» FIFO_DEPTH Gibt die Tiefe der einzelnen FIFO-Ketten in deartP der Switch-Box an und bestimmt somit die
Grol3e des Warteraums.

e« COST_WIDTHBreite der Kostentabelle fiir ein entsprechendmgtiRg-Verfahren.
« COMMAND_WIDTH Breite des Kommandoteils im Flitkopf (vgl. Absdithd.2.2).

« X WIDTH Breite der X-Koordinate im Flitkopf. Sie bestehis einem Vorzeichenbit und einer binar kodierten
Zahl. Die Zahl entspricht den Netzwerkknoten, das &lit in Richtung der X-Achse durchlaufen mussi &@nem
Netzwerk von &8-Knoten ist eine Breite von 4 notwendig.

* Y_WIDTH Die Breite der Y-Koordinate, verhalt sich analngX WIDTH Sie sind unabhangig voneinander ein-
stellbar, um auch unsymmetrische Netzwerkdimensiauzulassen.

 FLIT_ID_WIDTH Kennzeichnet im Flitkopf die Identifikationshnumnaes Flits innerhalb eines Pakets. Mit dieser
Grole sind Pakete mit bis zu 16 KB Nutzdaten mbglie Bearbeitung der grof3ten auftretenden DSLefakon
9000 Byte fiithrte zu dem derzeitigen Wert 11.

« FLOW_ID_WIDTH Die Flow-ID wird benétigt, um ein Paket eindeutig zu kennzeéh Dabei genigt es, eitig
fur jeden Absender zu vergeben. Es ist also eimarer pro Switch-Box und Eingang des Netzwerks dddich.
Bei einem &4-Gitter sind das maximal 32 Absender, die in fBitfkodiert werden kénnen.

e CPU_ID_WIDTH Die ID einer CPU setzt sich aus der Nummer deSdxes und der Pakethnummer zusammen.
Damit ist ein Paket unverwechselbar in dem Sen@@®FRlesCommunication-Controllersarkiert. Die CPU kann
unter Angabe de€CPU ID erfragen, ob das Paket mit dieser Nummer vollstinersendet wurde. Der derzeitige
Wert 6 entspricht der Minimalbreite, um eine eintifgaildentifizierung zu ermdglichen.
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270 Anhang B

« ADDR_WIDTH Legt fur den CC die Grof3e des Speichers fiir digdhgspakete fest. Derzeit ist die Breite 15. Es
kénnen also 2 Flit-Nutzdaten & 8 Byte im Speicher abgelegt werd@as entspricht einer Datenmenge von
256 KByte bei einer maximalen Paketgrof3e von 16 t€By

« ADDR_FIFO_DEPTH Die eingehenden Pakete werden v@wmmmunication-Controlleim Speicher abgelegt.
Damit eine Verarbeitungseinheit mit einem Paket#em kann, muss sie eine Anfrage an @éhstellen, ob ein
Paket vorliegt. Ist dies der Fall, so erhalt sie Startadresse des Pakets, um es aus dem Spaiclesen. Diese
Anfragen der Prozessoren sind nicht deterministschlanbar. Es ist also zu erwarten, dass sidivemie mehre-
re Pakete aufstauen kdnnen. Die Startadresserr #akete legt de€C in einer FIFO-Registerkette ab, deren Tie-
fe mit ADDR_FIFO_DEPTHeingestellt wird. Um mehrere Pakete pro Prozegksichzeitig verwalten zu kénnen,
ist die Tiefe derzeit mit 16 eingestellt und erlalibi vier Prozessoren im Cluster je vier Speiclég¢zp in dem Ad-
ress-FIFO.

» SEND_FIFO_DEPTHDer Communication-Controllekann Pakete nur sequentiell verschicken, so delssv/er-
sandauftrage aufstauen kénnen. Da die Prozessodgfichst unbelastet vom Versendeprozess bleibelersol
muss ein gewisser Warteraum fir diese Auftrageegidlgtet werden. Damit wird die Gefahr reduzieessl CPUs
aufgrund einer ausgelasteten Sendeeinheit Anfrageirmals stellen missen. Die Tiefe dieses Send@d-15t
derzeit auf 16 gesetzt.

e  MEMORY_WIDTHDer Communication-Controlleist hauptsachlich mit dem Empfang und Versand Raketen
beschéftigt. Er muss also stéandig auf den Speiohgreifen. Damit er nicht permanent den Bus beiastedern
ein passiver Busteilnehmer bleibt, wird ein DuatBd-Speicher verwendet. Dieser hat zwei unabh@nBigyts,
die gleichzeitig benutzt werden kdnnen. So kanaliSlave an den Bus angeschlossen werden undnst den
Prozessoren zugénglich. Der zweite Anschluss isktdimit demCC verbunden. Die Breiten der Daten- und Ad-
ressleitungen missen nicht zwangslaufig an beidets RBbereinstimmen. Wahrend die Breite der Adréissden
Port am Bus miBUS_ADDRESS_WIDTHefiniert ist, ist fur den Anschluss dE€sein eigener Paramet®tE-
MORY_WIDTHerforderlich.

« BUS_ADDRESS_WIDTHDie Breite der Adressen, die ein Bussystem vdemakann, ist nicht zwangslaufig bei
allen Bussen gleich. Aus diesem Grund wird die @rdBr Adressweite generisch gehalten, so dass s G
NetlC-System weitestgehend unabhédngig von der tirales lokalen Busses ist. Die derzeitige Impletiretng
sieht 32-Bit-breite Busadressen, passend fur AMBA Wishbone (vgl. Abschnitt 4.2.4), vor.

¢ BUS_DATA WIDTH Stellt die Datenbreite des Busses ein und istaiezu 32 Bit gewahlt, da der N-Core-
Prozessor (vgl. Abschnitt 4.3.1) ebenfalls mit 32Beiten Daten arbeitet. Durch diesen Paramatedas Giga-
NetlC-System leicht an andere Prozessorkerne aguass

Wishbone-Bus-Deklarationen

»  WB_ADDR_WIDTHBreite des Wishbone-Adressbusses (derzeit 32).

»  WB_DATA WIDTHBreite des Wishbone-Datenbusses (derzeit 32).

e WB_SEL_ WIDTHBreite des Select-Busses zur Auswahl der Busteitrer (derzeit 4).
AMBA-Bus-Deklarationen

« AMBA_ BUS WIDTHBreite der AMBA-Daten-Busse (von 32 bis 1024).

«  NO_OF_MASTERSestimmt die Anzahl der Master im System (vonsll, je 1 Master pro Layer).

* NO_OF_SLAVEd egt die Anzahl der Slaves mit einem oder mehtdim System fest (von 1 bis 16).
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NO_OF_PORTSst die Gesamtzahl der Ports aller Slaves (vbis 116).
WRITE_BUS_WIDTHFestlegung der Breite der Write-Busse (von 8L0i4).
READ_BUS_WIDTHLegt die Breite der Read-Busse fest (von 8 b4)0

ADDR_WIDTH Definiert die Breite der Adressen im System (@nis 1024).

GigaNetlC-Multiprozessor-Cache

UNIPROCESSOR_SYSTEM(gt fest, ob ein Einprozessor-Cache oder eirtiphalzessor-Cache instantiiert wird.

SPLIT_CACHE Legt fest, ob ein Split-Cache generiert wird oéére Unified-Cache-Architektur zum Einsatz
kommt. Beim Unified-Cache wird die Datencachesuukterwendet.

D_LINE_WIDTH Gibt die Anzahl der Bits pro Daten-Cache-Line(aon 32 bis 1024).
D_ASSOCBeziffert die Assoziativitat des Daten-Cachesn(2dis 32).
D_NO_OF_LINESAnNzahl der Daten-Cache-Lines (>= 8, je mit Vieam von 4).

— Daten-Cache-GroRe [Bit] B_LINE_WIDTH * D_ASSOC * D_NO_OF_LINES
|_LINE_WIDTH Gibt die Anzahl der Bits pro Instruktions-Cachiexan (von 32 bis 1024).
|_ASSOCBerziffert die Assoziativitat des Instruktions-Gas (von 2 bis 32).
I_NO_OF_LINESANnzahl der Instruktions-Cache-Lines (>= 8, mivjelfachem von 4).

— Instruktions-Cache-GréRe [Bit] ELINE_WIDTH * |_ASSOC * |_NO_OF_LINES

N-Core

CPU_ID: 32-Bit-breite, eindeutige Identifikationsnummere diem Prozessorkern zugewiesen wird. Sie wird tirek
an den GSR-Eingangsport des Prozessors angelegstuBdstandteil des N-Core-Registersatzes. Diegglicht
einen schnellen Zugriff im Programmcode zur Felitstg der jeweiligen Prozessorinstanz.

INT_WIDTH Bestimmt die Anzahl der externen Interrupt-Signddie Breite des Interrupt-Eingangsvektors und
das PIC-Modul werden hierdurch angepasst. Derzsit kediglich der Interrupt des Timer-Moduls gertutz

RAM_WIDTH Entspricht der benétigten Breite des Speicheresglbusses und leitet sich von der verwendeten
SpeichergroRe ab. Ist das Prozessorsystem z. BBhi{tB-Speicher ausgestattet, RAM_WIDTH= 13 (2°x32
Bit = 32 KB).

MEM_FILE: Legt den Dateinamen des Speicherabbilds festwirdinur bei der Simulation ausgewertet. Zu Be-
ginn der Simulation wird diese Speicherabbilddateilnitialisierung des N-Core-Programmspeichefadgn.

Hardwarebeschleuniger

NUM_OF_HW_ACCAnNzahl der an die Switch-Box angeschlossenen Warebeschleuniger.

NUM_OF_WBM_HW_ACCAnzahl der an den lokalen Bus angeschlossenedwiéaebeschleuniger.

Speicher

PE_MEM Speicher pro CPU, beinhaltet generische Anpasdanédressleitungen etc.’(2 32 KByte).
SB_MEM Speicher der Switch-Box, generische Anpassung\degssleitungen etc. {2 32 KByte).

ETH_MEM Speicher pro CPU, generische Anpassung der Adiessyen etc. (2= 16 KByte).
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Wie bereits erwdhnt handelt es sich hier nur ure dimswahl der wichtigsten, variierbaren Parame-
ter des GigaNetlC-Systems. Fir einen vollstandigerruck ist der im Versionsverwaltungssys-
tem des Heinz Nixdorf Instituts abgelegte Quellcenrzusehen.



Anhang C (Ablauf der Kommunikation auf Switch-Box-Ebene)

Tabelle Anhang C-1 schildert den zeitlichen Ablaufer Paketinjektion seitens eines Prozessors
und die Terminierung am Zielknoten in einer benactdn Switch-Box. Abbildung Anhang C-1
zeigt die hierfir angenommene HardwarestruktuiEzl#uterung.

Tabelle Anhang C-1: Beispielhafter Ablauf einer Paktinjektion seitens eines Prozessors und dessen irgnie-
rung in einer anderen Switch-Box

Zeit Vorgang

[ —

. Takt Die Anfrage eines N-Cores wird im Sended-lfespeichert.

N

. Takt Der Sendevorgang beginnt. Die Adresse asreFlits liegt am Speicher an.

3. Takt Die Daten des ersten Flits liegen am Spgeasgang und werden an den
OUTPUT_BUFFER ausgegeben.

. Takt Das Flit steht im Eingangsregister der Bimggports der Switch-Box 5.

. Takt Das Flit wird in die FIFO-Schlange fir Aasg 3 tbernommen.

o0

. Takt Das Flit steht im Puffer hinter der FIFO#téeund wird durch die Crossbar an die
Switch-Box 6 geleitet.

. Takt Das Flit steht im Eingangsregister des &mygports in Switch-Box 6.

7
8. Takt Das Flit wurde in die FIFO-Schlange fur gasg O Ubernommen.

9. Takt Das Flit steht im Puffer hinter der FIFOtteeund wird durch die Crossbar an den
Communication-Controller geleitet.

10. Takt | Das Flit steht im Eingangsregister der CC.

11. Takt | Das Flit wird in das Adressregister dess@Bernommen, und die Daten werden im
Speicher angelegt.

Abbildung Anhang C-1: Die dem in Tabelle Anhang C-lbeschriebenen Ablauf
der Paketinjektion zugrunde liegende Hardwarestrukur
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Anhang D (Instruktionssatz des N-Cores)

Instruktionssatz

Der S-Core und folglich der N-Core verfiigen Ubereeadreistufige Pipeline. Instruktionen werden
geholt, anschlielRend dekodiert und die bendétigtegidRer adressiert. In der letzten Stufe werden
die Operationen ausgefuhrt und die Ergebnisse kgeschrieben.

Der Originalinstruktionssatz des S-Cores verfugertarithmetische und logische Instruktionen,
Befehle fur Bitoperationen, Byte-Extraktion, Scleel_ade-, Speicher- und Sprungbefehle.

Er lasst sich in drei verschiedene Instruktionstypmteilen:

1. Register-zu-Register-Instruktionen

a)

b)

d)

Bei der Ein-Registeradressierung spezifizieren drgersten vier Bit des Be-
fehlswortes 1x-Feld) das Quell-/Zielregister. Folgende Instrukéinrbedienen sich
dieses Instruktionsformatabs, asrc, brev, clrf, clrt, decf, decgt, dedé&cne, dect,
ff1, incf, inct, Islc, Isrc, mvc, mvcev, not, sex@bxth, tstnbz, xsr, zexindzexth

15/ 14 13 12 11 10 9 8 ¥ b b |4 [3 ]2 |0

Opcode rx

Dyadische Registeradressierung wird bei den Befiedudielc, andda, and, andn, asr,
bgenr, cmphs,lt,ng, ixh, ixw, Isl, Isr, mov, movf, movt, muit, rsub, subg suby tst

und xor benutzt. Dierx- undry-Felder bezeichnen dabei ein Quell- und ein weiteres
Quell- oder Zielregister.

15) 14| 13[ 12 11 10 9 8 7 b b |4 [3 |2 |D

Opcode ry rx

Einregisterbefehle mit einem funf Bit langenmediateFeld: Das vier Bit grof3e Re-
gisterfeldrx stellt das zu verwendende Quell-/Zielregister. Red Bit langeimme-
diate-Feld spezifiziert bei den Befehlemdi, asri, bclri, bgeni, bmaski, bseti, btsti,
cpmnei, Isli, Isri, rotliund rsubi den zweiten Operanden als einen vorzeichenlosen
immediateWert. Bei den Instruktioneaddi, subiundcmplti wird dieseimmediate
Wert so dekodiert, dass ein Wertebereich zwischendl32 abgedeckt wird.

15/ 14| 13 12 11 10 9 8 7 b 5 |4 [3 |2 |D

Opcode Imm5 rx

Registerbefehle mit einem sieben Bit langamediateFeld: Bei diesem Adressie-
rungsformat fur dianoviinstruktion ist das vier Bit breitex-Feld das Zielregister
und das sieben Bit grofmmediateFeld ist der vorzeichenlose Wert.

15[ 14| 13[ 12 11 10 9 8 7 b b |4 [3 |2 |D

Opcode Imm7 rx

275



276 Anhang D

e) Kontrollregisteradressierung wird bei den Befehiefier und mtcr eingesetzt. Dabei

ist das vier Bit breitex-Feld das normale Quell-/Zielregister und das fBinforeite

CRegFeld das Kontrollregister.

15[ 14] 13 12 1] 10 § 8 7 b b [+ [3]2]0
Opcode CReg rx

2. Speicherzugriffsinstruktionen mit

a) 4-Bit-immediateAdressierung: Diese wird bei désh und st-Instruktionen verwen-
det. Der Wert aus dem imx-Feld definierten Register plus den vorzeichenlosen
Wert ausimm4 ergibt die Zugriffsadresse. DasFeld ist das Quellregister fur den
Speicherbefehl bzw. das Zielregister flr den Latkie

15) 14| 13[ 12 11 10 9 8 7 b b |4 [3 |2 |D
Opcode Rz

Imm4 rx

b) Laden und Speichern eines zusammenhangenden Riegisiehs. Dasx-Feld defi-
niert den Startpunkt im Speicher, an dem die Regidtbisr7 gespeichert oder ge-
laden werden. Nur dielg- undstgqAnweisungen verwenden diesen Modus.
15[ 14| 13[ 12 11 10 9 8 7 b b |4 [3 |2 |D
Opcode rx

c) Laden und Speichern mehrerer Register. Die durshfeldeld spezifizierten Regis-
ter werden entweder ab der in Regist@rdefinierten Speicheradresse gespeichert
oder von der in Registed definierten Adresse geladen. Diesen Modus verwende
die Instruktionerldm undsdm

15/ 14] 13 12 11 10 9 8 ¥ b b [+ [3 ]2 |0
Opcode rf

d) Laden eines relativen Wortes ist mit der Instruktiov mdglich. Dazu wird der
disp8Wert um 2 Stellen nach links geschoben und zurhstaoPC-Wert hinzuad-
diert. Das Ergebnis ist die Speicheradresse, vordae Wort geladen und dann in
dasrz-Register abgelegt wird. (Regist@ undrl5 dirfen nicht verwendet werden.)

15[ 14 13 12 11 10 9 8 7 b b |4 [3 [2 |D
Opcode Rz disp8

3. Kontrollfluss-Instruktionen

a) 11-Bit-Verschiebung. Die Sprungadresse bei derrdkgsonen br, bf, btund bsr

wird wie folgt berechnet:idpl1wird durch ein Linksschieben mit zwei multiplizier

und dem Wert des nachsten Programmzahies-2) hinzuaddiert.

15[ 14 13 12 11 10 9 8 7 b b |4 [3 |2 |D
Opcode displ1




Anhang D 277

b) Registeradressierung. Bei den Instruktiojrap undjsr ist durch das 4-Bitx-Feld
die Sprungadresse vorgegeben.

15/ 14 13 12 11 10 9 8 ¥ b b |4 [3 ]2 |0
Opcode rx

c) Indirekte Adressierung. Dignpi- undjsri-Anweisungen verwenden dieses Format,
um ein 32-Bit-Wort relativ zum Programmzahler (RPQ)adressieren.

15[ 14| 13[ 12 11 10 9 8 7 b b |4 [3 |2 |D
Opcode dipl8

d) Negative 4-Bit-Verschiebung. DieoptAnweisung verwendet diese Adressierungs-
art zur Berechnung der effektiven Adresse. Dabeil wie Zieladresse mittels Addi-
tion des nachsten Werts des Programmzéhlers undefeBit langendisp4Wertes,
der zuvor mit 1 zum negativen Wert erweitert und @imBit nach links geschoben
wurde, berechnet.

15/ 14] 13 12 11 10 9 8 ¥ b b |4 [3 ]2 |0
Opcode disp4 rx

Abbildung Anhang D-1 zeigt den verbliebenen fre@mcode-Bereich des N-Core-Prozessorkerns.
Zusatzlich implementierte Superinstruktionen simmentlich aufgefiihrt und reduzieren die An-
zahl verfugbarer Befehlsworte, so dass nunmehr mexnoch 725 einfache Instruktionen, die in
zehn separaten Binarbereichen liegen, hinzugefégien konnen.

Opcode min| max| #Stellen| 1r || imm4 | 2r || 1r+imm4 | 1r+imm<4 | 1r+imm>4
0000{ 0000 0000{ 0111 1 1 0 0 0 0 0
0000{ 0000 0000| 11xx 1 4 2 0 0 0 0
0000{ 0000 0010| xxxx 1 16 4 1 0 0 0
0000| 1000 mem[RY]| RX] xorldw
0000| 1001] mem[RY]| RX| xorldwisI8
0010| 011 iiiil rrrr 1| 512 9 32 2 4 1
0010{ 1100 001x| rrrr 1 32 5 2 0 1 0
0010{ 1100 01xx| rrrr 1 64 6 4 0 1 0
0011{ 0010 0000 rrrr 1 16 4 1 0 0 0
0011{ 0010 001x| rrrr 1 32 5 2 0 1 0
0011{ 0010 010x| rrrr 1 32 5 2 0 1 0
0011{ 0010 0110] rrrr 1 16 4 1 0 0 0
010RY| RYO C| RX andshr
010RY| RY1 C| RX| ixwandshr
0110 1000 RY| RX orshl8
0110| 1001 RY| RX orshl16
0110| 1010 RY| RX orshi24
0110| 1011 RY| RX Idwixw
0110| 11 C RY| RX Idwaddi
Total 10[ 725 45 2 8 1

Abbildung Anhang D-1: Freier Opcode-Bereich und vewendeter Bereich fir die zusatzlich implementierten
Instruktionssatzerweiterungen des N-Cores
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Im Folgenden werden die Funktionsweisen der zusk&h N-Core-Befehle kurz vorgestellt:

In (9.1) wird die Funktionsweise des BefeANDSHRdargestellt, der Inhalt dé&X-Registers wird
zunadchst um eine Konstan@znach rechts geschoben und im Anschluss bitweisedemn Inhalt
von RegisteRY und-verknupft. Das Ergebnis der Operation wirdhaX zurtickgeschrieben. Die
Operation bendtigt anstatt urspringlich zwei nushneinen Takt.

ANDSHR RX — ( RX»> & AND R (9.1)

(9.2) erlautert die Instruktiol KWANSHR Der Inhalt von RegistdRX wird um C nach rechts ge-
schoben mit dem Inhalt vaRY und-verknipft, um 2 nach links geschoben und dieftd¢md mit
dem Inhalt vorR1 aufsummiert. Das Ergebnis der Operation wird raglzurickgeschrieben. Die
Operation bendtigt einen Takt. Die urspringlichekionsabfolge bendtigte drei Tatke.

IXWANDSHR  RX— B+((( RX> X AND B¥< 2 (9.2)

Bei LDWADDI (9.3)wird zu dem durcRY adressierten Speicherinhalt eine Konstahteinzuad-
diert und das Ergebnis innerhalb von zwei an Steltedrei Takten in Regist&X abgelegt.

LDWADDI: RX ~ men{ R} + (9.3)

Die LDWIXWInstruktion (9.4) ladt einen Wert der durch dienBoe desRX-Registerinhalts und
den um zwei nach links geschobenen InhaltRéfRegisters adressiert wird aus dem Speicher ins
RX-Register. Die bendtigte Taktzahl wird von urspitimdrei auf zwei Takte reduziert.

LDWIXW: RX — men) RX ( Rk 2] (9.4)

Innerhalb eines Taktes ermdglicht d@RSHLS8,16,2Befehl (9.5) eine bitweise Veroderung des
RX-Registerinhaltes mit dem um wahlweise um 8, 16r &k Bit geschobenen Inhalt d&sy-
Registers. Das Ergebnis wird einen Takt schneltema Original S-Core inRX-Register geschrie-
ben.

ORSHI8,16,24: RX —« RX O R¥ ( 8,16, (9.5)

Die in Abschnitt 6.2.3 ausfihrlicher diskutieX®©RLDWInstruktionssatzerweiterung ladt den un-
ter RY adressierten Speicherinhalt und fuhrt mit deMRegisterinhalt ein&XOROperation durch
und speichert das Resultat RX-Register innerhalb von zwei Takten. Dies entsprasher Reduk-
tion um einen Takt, im Vergleich mit dem unmodiéiten Prozessor.

XORLDW: RX — menj RY XORF (9.6)
Die LDWXORLSLS8nstruktion schiebt den Inhalt d&X-Registers um acht Stellen nach links und

fuhrt dann eineKORVerknupfung mit dem unteRY adressierten Speicherinhalt durch. Das Resul-
tat der insgesamt zwei anstatt vier Takte umfasse@peration wird in Regist&X geschrieben.

LDWXORLSB: RX— RX8 XOR mem F (9.7)



Anhang E (Details zum IP-Headercheck-Hardwarebeschleuniger)

Im Folgenden werden weitere Details zu der entwaniePrifsummenberechnungseinheit vorges-
tellt. Abbildung Anhang E-1 zeigt den internen Aadb der 32-Bit-Implementierung des IP-
Headercheck-Hardwarebeschleunigers.

reset_ n—»
Clk————»

——check_enable—»
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data_in (32 Bit)
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\ 1 L
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Abbildung Anhang E-1: Blockschaltbild der 32-Bit-Implementierung
desHeader-/Packetcheclkdardwarebeschleunigers

Abbildung Anhang E-2 stellt die prinzipielle Funktisweise des Hardwarebeschleunigers anhand
eines Ablaufplans dar.

279



280

Anhang E

Header-Check

Check-Enable

ontrol regiter
packet status
ot used »

ransfer:
Paket-Startadresse =8
Kontrollwort

IP- und/oder TCP/UDP-Verarbeitung
Endianess: Little / Big Endian

Breite der Verarbeitung

Check / Compute: Header / Paket
Riickabe: vollstandiges Paket / Ergebnis |-|=

ToPuDP

HELE

Bits
7
B
Bits
B

170 [TTL decrement

| 170 [packelinprogress

Modus:
Kontrollwort
check/compute

Check IP-Header

Checksumme korrekt?
Nein

Ja

i l

Layer 3 Protokoll

Oj

Compute IP-Header-
Checksumme

v

Eintrag im Kontrollregister

Modus:
Kontrollwort

esult/full packe 0

v

Eintrag im Kontrollregister:

Paket verwerfen Eintrag im Kontrollregister

Checksumme zur spéateren
Ausgabe zwischenspeichern

Speicherstelle mit
berechneter Checksumme
aktualisieren

Y
Modus:\
Kontrollwort

do TCP/UDP

enkapsuliertes Layer 4 Protokoll

1 0

v

TCP/UDP bzw. andere
Layer-4-Datagramm-
Protokollarten feststellen

Nein

#71

Check TCP/UDP-
Datagramm-
Checksumme

Checksumme korrekt?

Ja

Eintrag im Kontrollregister:
Paket verwerfen

Eintrag im Kontrollregister

Modus:
Kontrollwort
check/compute

"

Compute TCP/UDP-
Datagramm-
Checksumme

v

Eintrag im Kontrollregister

1

!

Modus:
Kontrollwort
result/full packet

Checksumme ggf. mit
gespeicherter IP-
Checksumme an

addr_start_in schreiben

Speicherstelle mit
berechneter Checksumme
aktualisieren

A
Ende

Abbildung Anhang E-2: Ablaufplan der Header-/Paketdeck-Funktion



Anhang F (IP-DSLAM-Referenzbenchmark)

Abbildung Anhang F-1 zeigt die Anordnung der Tad&s IP-DSLAM-Referenzbenchmarks fur die
unterschiedlichen moéglichen Szenarien (EthernefMA Linecard / Uplinkcard - Downlink / Up-
link).
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Abbildung Anhang F-1: Tasks der sieben unterschieithen IP-DSLAM-Referenzbenchmarkszenarien
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