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1 Einleitung 
Inhaltlicher Überblick . Diese Arbeit dokumentiert den Entwurf und die Analyse einer leistungsf
higen und zugleich skalierbaren, ressourceneffizienten Chip
GigaNetIC-Architektur, siehe Abbildung 
sche On-Chip-Kommunikationsinfrastruktur, die es durch ihre Modularität und Skalierbarkeit e
laubt, die Entwurfsproduktivitäts
wurfsproduktivitätslücke bezeichnet die Problematik,
Integrationsdichte auf zukünftige
kann, als in der zur Verfügung stehenden
den kann. 

Abbildung 1-1: Netzwerktechnik der nächsten Generation 

massiv parallelen Netzwerkprozessors aus Paderborn, untergebracht auf dem 20stel der Fläche eines Cents

Motivation . Das Konzept des vor
sowie die fortwährenden, dem vor 
chenden Verbesserungen in der Halbleitertechnologie erlauben im
higere Schaltungen. Die von MOORE

renden Transistoren und damit die Komplexität integrierter Schaltkreise alle 18 bis 24 Monate ve
doppeln. Abbildung 1-2 zeigt die Entwicklung von Speicher
GBits bzw. in Logiktransistoren pro Chip auf und überlagert die prognostizierte Entwicklung nach 
MOORE [1]. 

Glaubt man den Prognosen der International Semiconductor Roadmap
den Halbleiterherstellern aus der gesamten Welt verfasst wir
wicklung nach MOORE auch in den nächsten Jahren fortsetzen

1 

. Diese Arbeit dokumentiert den Entwurf und die Analyse einer leistungsf
baren, ressourceneffizienten Chip-Multiprozessor(CMP)

Abbildung 1-1. Das GigaNoC ist die zu Grunde liegen
nikationsinfrastruktur, die es durch ihre Modularität und Skalierbarkeit e

produktivitätslücke stärker zu schließen, als es bisher möglich war. Die En
wurfsproduktivitätslücke bezeichnet die Problematik, dass aufgrund der immer größer werdenden 
Integrationsdichte auf zukünftigen Halbleiterbausteinen mehr Funktionalität 

der zur Verfügung stehenden Zeit durch Entwicklerteams konstruktiv neu erzeugt we

: Netzwerktechnik der nächsten Generation - Architektur des 

massiv parallelen Netzwerkprozessors aus Paderborn, untergebracht auf dem 20stel der Fläche eines Cents

Das Konzept des vor nunmehr fast 50 Jahren entworfenen integrierten Schaltkreises 
vor mehr als 40 Jahren aufgestellten MOORE

Verbesserungen in der Halbleitertechnologie erlauben immer komplexere und 
OORE aufgestellte Regel besagt, dass sich die Anzahl der zu integri

mit die Komplexität integrierter Schaltkreise alle 18 bis 24 Monate ve
zeigt die Entwicklung von Speicher- und Prozessor

GBits bzw. in Logiktransistoren pro Chip auf und überlagert die prognostizierte Entwicklung nach 

International Semiconductor Roadmap (ITRS
den Halbleiterherstellern aus der gesamten Welt verfasst wird, so wird sich die

auch in den nächsten Jahren fortsetzen (vgl. Abbildung 

. Diese Arbeit dokumentiert den Entwurf und die Analyse einer leistungsfä-
Multiprozessor(CMP)-Architektur, der 

. Das GigaNoC ist die zu Grunde liegende hierarchi-
nikationsinfrastruktur, die es durch ihre Modularität und Skalierbarkeit er-

lücke stärker zu schließen, als es bisher möglich war. Die Ent-
dass aufgrund der immer größer werdenden 

mehr Funktionalität untergebracht werden 
Zeit durch Entwicklerteams konstruktiv neu erzeugt wer-

Architektur des  

massiv parallelen Netzwerkprozessors aus Paderborn, untergebracht auf dem 20stel der Fläche eines Cents 

entworfenen integrierten Schaltkreises 
OOREschen Gesetz gehor-

komplexere und leistungsfä-
die Anzahl der zu integrie-

mit die Komplexität integrierter Schaltkreise alle 18 bis 24 Monate ver-
und Prozessor-Modulen (MPU) in 

GBits bzw. in Logiktransistoren pro Chip auf und überlagert die prognostizierte Entwicklung nach 

ITRS) [2], die von führen-
d, so wird sich die prognostizierte Ent-

Abbildung 1-2). Dies schafft die 
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Voraussetzungen für höchst komplexe Systeme, die auf einen Chip integriert werden können (Sys-
tem-on-Chip / SoC). Nunmehr gilt es, diese technologischen Möglichkeiten sinnvoll einzusetzen 
und weiterhin beherrschbar zu halten, denn längst übersteigt die Anzahl der integrierbaren Transis-
toren die Leistungsfähigkeit vieler Schaltungsentwurfswerkzeuge. In diesem Zusammenhang 
spricht man auch, wie eingangs erwähnt, von einer Entwurfsproduktivitätslücke (Design Productivi-
ty Gap). Auch wenn die Beständigkeit des MOOREschen Gesetzes noch für die nahe Zukunft prok-
lamiert wird, stößt man in einigen Gebieten schon jetzt an Grenzen. So wird die bis heute stetige 
Erhöhung der Taktfrequenz nicht mehr allein ausreichen, um die Leistungsfähigkeit von Prozesso-
ren und Systemen angemessen zu erhöhen [3]. Vielmehr gehen die etablierten Hersteller, wie z. B. 
Intel, AMD, Sun oder IBM, bereits von allgemein verwendbaren Prozessoren (General Purpose 
CPUs) zu einer Integration mehrerer Rechenkerne auf einem Chip über [4][5]. Die ITRS prognosti-
ziert nach einem Modell der Japan Semiconductor Technology Roadmap Design Working Group 
einen 1000mal größeren Bedarf an Rechenleistung für „Consumer“-SoCs als auch „High Perfor-
mance“-SoCs in zehn Jahren, bei nahezu gleichen Anforderungen an die Leistungsaufnahme [2]. 
Auch hier geht man davon aus, dass die Lösung in parallelen Architekturen mit einer Vielzahl von 
integrierten Verarbeitungseinheiten liegt. 

Abbildung 1-2: Produkt-Technologie-Trends – Funktionen pro Chip [2] 

Durch Parallelität können in Abhängigkeit von der Anwendung die derzeitigen technischen Gren-
zen der Leistungsfähigkeit erweitert werden. Ein weiterer wesentlicher Aspekt der Verwendung von 
parallelen Einheiten ist die Möglichkeit der Reduktion bzw. Begrenzung der Leistungsaufnahme. 
Dies ist speziell für zukünftige eingebettete Systeme von großer Bedeutung, da diese mehr und 
mehr Einsatz in mobilen Bereichen finden, bei denen die Energieressourcen beschränkt sind. In die-
sem Zusammenhang steht auch die besondere Bedeutung der Ressourceneffizienz für diese Arbeit. 
Das heißt, die zu entwerfende Architektur soll, je nach Schwerpunkt der Systemspezifikation, unter 
Berücksichtigung einer Kostenfunktion eine bestmögliche Lösung bezüglich der betrachteten Kos-
tenmaße Fläche, Leistungsaufnahme, Rechenleistung und Flexibilität darstellen (vgl. Abschnitt 3.1). 
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Einbettung. Durch die thematische Einbettung dieser Dissertation in das BMBF-Projekt GigaNetIC 
[6][7][8], profitiert das hier vorgeschlagene Architekturkonzept bereits im frühen Entwurfsstadium 
von der engen interdisziplinären Arbeitsweise der drei beteiligten Projektpartner der Universität 
Paderborn und Infineon Technologies, München. Die Expertise der drei Paderborner Fachgebiete 
liegt u. a. in der Entwicklung hochintegrierter Schaltkreise (Fachgebiet Prof. Dr.-Ing. Ulrich Rück-
ert, Schaltungstechnik), in der Konzeption von Programmiersprachen und Übersetzern (Fachgebiet 
Prof. Dr. Uwe Kastens, Programmiersprachen und Übersetzer) sowie in der Entwicklung, Analyse 
und Implementierung von Kommunikationsalgorithmen (Fachgebiet Prof. Dr. math. Friedhelm 
Meyer auf der Heide, Algorithmen und Komplexität). Auf diese Weise kann bei der Konzeption der 
Systemarchitektur ein ganzheitlicher Ansatz verfolgt werden, der sowohl schaltungstechnische 
Entwurfskriterien berücksichtigt als auch compiler- und algorithmenbedingte Entwurfsent-
scheidungen im Wechselspiel miteinander vereint. 

Abbildung 1-3: Die Kernpunkte dieser Arbeit 

Die wesentlichen Beiträge dieser Arbeit (vgl. Abbildung 1-3) zur ressourceneffizienten Schaltungs-
technik eingebetteter Parallelrechner sind:  

• der Systementwurf eines massiv parallelen, skalierbaren SoC, basierend auf einem hierar-
chischen On-Chip-Netzwerk  

• eine Werkzeugkette, die einen hierarchisch gerichteten Optimierungsansatz für SoCs unters-
tützt 

• die prototypische Realisierung des Gesamtsystems als Simulationsmodell sowie als 
FPGA(Field Programmable Gate Array)- und Standardzellenimplementierung in 130-nm- 
und 90-nm-CMOS-Technologie 

• Analyse und Definition von Benchmarks sowie die Leistungsbewertung des entworfenen 
Systems für ausgewählte Anwendungsszenarien. 

Gliederung. Kapitel 2 gibt einen Überblick über eingebettete parallele Rechnerarchitekturen und 
die wesentlichen Komponenten dieser SoCs. Typische Anwendungsgebiete von On-Chip-Parallel-
rechnern werden aufgezeigt und vermitteln einen ersten Einblick in die Anforderungen, die an diese 
Systeme gestellt werden. 

Definitionen, Bewertungsmaße, Kostenfunktionen und analytische Modelle werden in Kapitel 3 zur 
Bewertung der Architektur eingeführt und im weiteren Verlauf dieser Arbeit mit den Syntheseer-
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gebnissen der Hardwareblöcke korreliert. Diese Modelle können herangezogen werden, um für zu-
künftige Technologien und Architekturvarianten im Vorfeld der Realisierung erste Bewertungen 
treffen zu können. Anhand von Kostenfunktionen können dann besonders geeignete Realisierungen 
dedizierter Anwendungsszenarien leichter ermittelt werden. Der Begriff der Ressourceneffizienz 
wird hier diskutiert und im schaltungstechnischen Kontext definiert. 

Kapitel 4 zeigt den Aufbau und die Besonderheiten des eigenen Ansatzes für ein ressourceneffizien-
tes eingebettetes System. Es soll eine flexible, skalierbare Architektur, die auf dem Konzept massi-
ver Parallelverarbeitung basiert, entwickelt werden, also ein leistungsstarker Parallelrechner auf 
einem Chip. Kernkomponenten werden eine Vielzahl homogener Verarbeitungseinheiten sein, die 
über ein hoch performantes On-Chip-Netzwerk (Network-on-Chip / NoC) miteinander verbunden 
sind. Durch die besondere Skalierbarkeit der Systemarchitektur kann eine Verwendbarkeit für viele 
Einsatzgebiete erreicht werden. Das modulare, leicht erweiterbare Konzept erlaubt die einfache In-
tegration zusätzlicher Hardwarebeschleuniger und anderer anwendungsspezifischer Funktionsein-
heiten an verschiedenen, unterschiedlich leistungsfähigen Schnittstellen im SoC. Besonders geeig-
nete Systemkonfigurationen für dedizierte Anwendungen können durch die in Kapitel 6 vorgestellte 
Werkzeugkette komfortabel bestimmt und im Sinne der Ressourceneffizienz optimiert werden. Der 
IP(Intellectual Property)-basierte Ansatz hilft, die Entwurfsproduktivitätslücke, die bei modernen 
Chipentwürfen zunehmend eine Rolle spielt, zu schließen. So kann in vielen Fällen auf bereits be-
stehende Hardwareblöcke zurückgegriffen werden, welche dann leicht mit Hilfe definierter Kapse-
lungen (Wrapper) in das SoC integriert werden können. Die Wiederverwendbarkeit wird erhöht und 
der Entwurfsaufwand reduziert sich. Weitere Vorteile dieser homogenen, skalierbaren Systemarchi-
tektur liegen in dem einheitlichen Programmiermodell und der vereinfachten Testbarkeit. 

Kapitel 5 zeigt die verschiedenen Abstraktionsebenen, die für die Simulation bzw. Emulation des 
Systems entworfen werden, auf. Eine zyklenakkurate C-basierte Simulation auf Prozessor-Cluster-
Ebene ermöglicht ein schnelles und komfortables Ausmessen der Laufzeiten einzelner Programm-
abschnitte. Die abstraktere Modellierung in SystemC liefert hingegen Aussagen zur Leistung des 
Gesamtsystems und ermöglicht eine frühe Verifizierung der Funktionsfähigkeit der Systemsoft-
ware. Durch Variation wesentlicher Systemparameter können aufgrund der hohen Simulationsge-
schwindigkeit schnell Rückschlüsse auf die zu erwartende Performanz der späteren Hardware gezo-
gen werden. Die rechenintensivere RTL(Register Transfer Level / Register-Transfer-Ebene)-
Simulation erlaubt letztendlich detaillierte Aussagen über das Verhalten der einzelnen Hardware-
Komponenten. Im Anschluss an die Verifikation auf dieser Ebene erfolgt der Test einzelner Blöcke 
und der Gesamtschaltung auf dem FPGA-basierten Rapid-Prototyping-System RAPTOR2000 
[9][10], das, verglichen mit der RTL- und SystemC-Simulation, eine um Größenordnungen schnel-
lere Emulation des Multiprozessorsystems ermöglicht und zusätzlich die Anbindung realer Netz-
werkkomponenten gestattet. 

In Kapitel 6 wird eine Methode vorgestellt, die dem Ziel dient, eine besonders effiziente Architek-
turvariante – im Sinne der Ressourceneffizienz – für ein gegebenes Anwendungsszenario zu erzie-
len. Hierbei kann die homogene Ausgangsarchitektur durch eine Reihe von Mechanismen optimiert 
werden. Der Optimierungsansatz ist hierarchisch gerichtet und sieht u. a. folgende Maßnahmen vor: 
Anpassung und Optimierung der Software, Erweiterung des Instruktionssatzes des Prozessors, Hin-
zufügen von Hardwarebeschleunigern sowie Abstimmung der On-Chip-Kommunikationsinfra-
struktur auf die zu erwartenden Datenraten und Einsatz von parallel arbeitenden Rechenclustern auf 



Kapitel 1. Einleitung 

 

5

einem Chip sowie die Optimierung der Speicherhierarchie im Hinblick auf die spätere Anwendung. 
Exemplarisch wird die in Kapitel 3 vorgestellte Methode anhand von 16 Realisierungsvarianten 
eines einfachen selbst entworfenen Netzwerkprozessors demonstriert. Mit Hilfe der Kostenfunkti-
ons-basierten Analyse wird für unterschiedliche Anwendungsszenarien die eine möglichst pareto-
optimale und damit ressourceneffiziente Lösung ermittelt.  

Kapitel 7 greift die bisherigen Ergebnisse auf und wendet sie auf konkrete Kommunikations- und 
Netzwerkanwendungen an. Hierzu werden sowohl etablierte Benchmarks verwendet als auch neue 
Benchmarks definiert. Besondere Berücksichtigung finden hier Funktionen aus dem stark wachsen-
den DSL(Digital Subscriber Line)-Segment. DSL-Access-Multiplexer (DSLAMs) realisieren die 
schnelle Datennetzanbindung der DSL-Endkunden. Für diese Netzwerkknoten, die eine Vielzahl 
von Datenströmen aggregieren und zum Internetdiensteanbieter (Internet-Service-Provider / ISP) 
weiterleiten und umgekehrt, wird ein spezifischer Benchmark entworfen und auf der GigaNetIC-
Architektur evaluiert. Netzwerksimulationen sollen Aufschluss über die zu wählende Topologie und 
den internen Aufbau des On-Chip-Netzwerks liefern und so einen maximalen Durchsatz und damit 
einhergehend eine möglichst optimale Lastverteilung auf die einzelnen Verarbeitungseinheiten ga-
rantieren. Es werden Instruktionssatzerweiterungen und spezifische Hardwarebeschleuniger vorges-
tellt, die in dieser Arbeit entstanden sind. Exemplarisch werden die Funktionsweise und die Integra-
tion eines Hardwarebeschleunigers zur Paketverarbeitung detaillierter beschrieben. 

Gegenstand von Kapitel 8 sind prototypische Realisierungen der GigaNetIC-Architektur. Das in 
Kapitel 7 untersuchte Netzwerkszenario wird als FPGA-Realisierung in einer realen Netzwerkum-
gebung in Betrieb genommen und dient zur Veranschaulichung und Verifikation des Systemkon-
zepts. Auf Basis der erfolgreichen Realisierung werden dann Implementierungen für komplexere 
Systeme in 130-nm- und 90-nm-CMOS-Standardzellentechnologie vorgestellt. Abbildung 1-1 ver-
deutlicht das in dieser Arbeit vorgestellte Konzept und die Anforderungen an die Realisierung. Wei-
tere Bewertungen der Architektur im Hinblick auf die Ressourceneffizienz schließen die prakti-
schen Betrachtungen der GigaNetIC-Chip-Multiprozessorarchitektur ab. 

Zusammenfassend soll die hier zu entwerfende GigaNetIC-Architektur als Basis für weitere CMP-
Varianten dienen und ein neues Paradigma der Prozessorarchitektur aufzeigen, das besonders durch 
Modularität, Skalierbarkeit und Ressourceneffizienz sowie einen ganzheitlichen Ansatz hervorsticht 
und prototypisch verifiziert wird. 
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2 Eingebettete parallele Rechnerarchitekturen 
Bereits 2004 zeichnete sich deutlich ein Umdenken in der Prozessorindustrie hinsichtlich paralleler 
Strukturen ab. Der Ende 2004 veröffentlichte Microprocessor-Report-Artikel „Intel Cancels 4 GHz 
P4“ [3] sah die Abkündigung der Desktop-CPU mit der bis dahin höchsten Taktfrequenz als Über-
raschung an. Tatsächlich ist ein serienmäßiger 4-GHz-Pentium bis heute nicht zu erwerben. Letz-
tendlich erkannte man das kontinuierliche Steigern der Taktfrequenz als unzureichende Maßnahme, 
und nicht nur Intel wurde gezwungen die Prozessor-Roadmap neu zu überdenken, was nicht zuletzt 
in der Entwicklung der Dual-Cores, der heutigen Core-Architektur resultierte. 

Trotz aller Hindernisse bei manchen Anwendungsszenarien ist selbst bei den namhaften Desktop- 
und Server-CPU-Herstellern wie Intel und AMD der Trend zu Dual-, Quad- oder gar Multi-Cores 
zu verzeichnen. Für Prozessoren mit noch mehr Kernen wurde bei Intel der Name „Many-Cores“ 
etabliert, um sich von den heutigen „Multi-Cores“ mit einigen wenigen Prozessorkernen noch stär-
ker abgrenzen zu können (vgl. Abschnitt 2.8.1). Nicht nur Intel plant, Architekturen zu bauen, die 
weit mehr als nur eine CPU auf einem Siliziumchip vereinen. Eines der jüngsten Beispiele für sol-
che „Mehrkern-Prozessoren“ ist der Cell-Prozessor von IBM, Sony und Toshiba, der u. a. in der 
Playstation 3 eingesetzt wird. Er wurde ab März 2001 mit einem Budget von über 400 Mio. US$ 
von einem 400 Personen umfassenden Team entwickelt [11]. Der Cell-Prozessor integriert acht mit 
3,2 GHz getaktete Recheneinheiten auf einem Die1. Die ungefähre Leistungsaufnahme dieses Sys-
tems liegt deshalb auch deutlich über 100 W [12]. Die permanente Erhöhung der Taktfrequenz, die 
eine Verringerung der Betriebsspannung nur schwerlich ermöglicht, führt wie in Abschnitt 3.1 be-
schrieben, zu einer immensen Leistungsaufnahme der CPUs, die u. a. zu hohen Kosten für Gehäuse 
und Kühlung führt. Anders kann sich dies bei parallelen Architekturen gestalten. Hier lässt sich die 
Versorgungsspannung aufgrund der geringeren Frequenz deutlich reduzieren. Aufgrund des quadra-
tischen Anteils der Versorgungsspannung an der dynamischen Verlustleistung führt dies zu einer 
drastischen Reduktion der Leistungsaufnahme des Systems, vgl. Gleichung (3.18). Weiterhin lässt 
sich die Performanz einer Prozessorarchitektur durch Maßnahmen wie Architekturoptimierung und 
Integration von Hardwarebeschleunigern deutlich erhöhen. Gleichzeitig kann eine Reduktion der 
Leistungsaufnahme verzeichnet werden (vgl. Kapitel 6). 2007 betrug in den USA der Anteil von 
Computersystemen und Peripherie am Gesamtenergiebedarf mehr als 15% [13]. Derzeit benötigen 
die Betreiber der fünf größten Suchmaschinen ca. zwei Millionen Server, die ungefähr 2,4 GW 
Leistung aufnehmen [13]. Mit permanent wachsender Serverzahl wird in Zukunft der Bedarf stei-
gen, große Serversysteme auf energieeffizienten Parallelsystemen zu virtualisieren. 

Auch AMD hat eine solche Architekturerweiterung für die zukünftigen Chip-Generationen ange-
kündigt, bei der nicht nur homogene Mehrkernprozessoren, sondern auch anwendungsspezifische 
Hardwarebeschleuniger integriert werden sollen. AMD spricht hier von der „Accelerated Proces-
sing Era“, die ab 2009 mehr und mehr an Bedeutung gewinnen werde. Diese Konstellation von so-
wohl homogenen, massiv-parallelen Rechenkernen als auch beliebig integrierbaren Hardwarebe-
schleunigern für verschiedenste Anwendungsgebiete ist bei der GigaNetIC-Architektur bereits rea-

                                                 

1 Der Die bezeichnet den zumeist rechteckigen Halbleiterblock einer integrierten Schaltung. 
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lisiert und erfolgreich getestet. Dieses neuartige Systemkonzept wurde bereits 2002 strukturell [14] 
und 2003 detailliert [6] von mir vorgestellt. Ähnliche Ansätze halten nun zunehmend weltweit Ein-
zug in Prozessorarchitekturen der nächsten Generation. Dabei ist außerdem zu berücksichtigen, dass 
zu der Architektur eines Systems nicht nur der reine Aufbau der Hardware zählt, sondern auch die 
Einbettung in ein funktionales Programmiermodell, das zusammen mit den Fachgebieten „Prog-
rammiersprachen und Übersetzer“, Prof. Uwe Kastens und „Algorithmen und Komplexität“, Prof. 
Friedhelm Meyer auf der Heide, der Universität Paderborn für die GigaNetIC-Architektur erfolg-
reich entworfen wurde. 

2.1 Leistungsabschätzungen und Prognosen für CMPs 

Der folgende Abschnitt dokumentiert einige etablierte Abschätzungen bzw. postulierte Gesetzmä-
ßigkeiten für Parallelrechner. Abschließend wird auf Prognosen zur Entwicklung von Mehrprozes-
sorsystemen und die damit verbundenen Herausforderungen eingegangen. 

2.1.1 AMDAHL s Gesetz – eine asymptotische Barriere für Parallelrechner? 

Abbildung 2-1: Anwendungsbeschleunigung durch Ausnutzung inhärenter Parallelität  

nach dem Gesetz von AMDAHL  

Eine etablierte, wenn auch sehr vereinfachte Abschätzung zur Leistungssteigerung durch Parallelität 
liefert das AMDAHLsche Gesetz [15]. Es besagt, dass Anwendungen durch parallele Ausführung nur 
zu dem Grad beschleunigt werden können, wie es die enthaltene Parallelität des sequentiellen An-
wendungsprogramms zulässt: 
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S kennzeichnet hierbei den Speedup, also die Beschleunigung der Anwendung bei der Verwendung 
von P parallel arbeitenden Verarbeitungseinheiten. Dabei ist α  mit 0 1α≤ ≤  als sequentieller An-
teil des Programms zu sehen.  

Abbildung 2-1 zeigt die mögliche Beschleunigung S eines Programms durch parallele Verarbeitung 
in Abhängigkeit von der Anzahl der Prozessoren P und dem sequentiellen Anteil α  des Prog-
ramms. Es ist deutlich zu sehen, dass bereits ab 0,1α >  eine drastische Reduktion der Beschleuni-

gung einsetzt. Die maximal erreichbare Beschleunigung bei einem sequentiellen Anteil von 1 % 
nähert sich asymptotisch dem Faktor 100. Bei 1024 Prozessoren liegt sie bei 91,18. 

Gleichung (2.1) ergibt eine begrenzte, asymptotisch verlaufende Beschleunigung durch Parallelität 
für Anwendungen mit einem üblicherweise nicht vollkommen vernachlässigbaren sequentiellen 
Anteil. Anwendungsklassen, deren Problemgröße hingegen skalierbar ist, wie z. B. bei den in Kapi-
tel 7 betrachteten Netzwerkszenarien, erfordern andere Modelle. 

2.1.2 GUSTAFSONs Gesetz – ein Ausweg für die Parallelwelt? 

Das bereits 1967 von AMDAHL  postulierte Gesetz wurde 1988 von GUSTAFSON aufgrund praktischer 
Beobachtungen an einem Parallelrechnersystem mit 1024 Prozessoren modifiziert und ging als 
GUSTAFSONS Gesetz in die Literatur [16] ein. 

Abbildung 2-2: Beschleunigung durch Parallelität nach dem Gesetz von GUSTAFSON 

GUSTAFSON beobachtete für Anwendungsklassen, deren Problemgröße skalierbar war eine deutliche 
Beschleunigung durch den Einsatz von zusätzlichen Prozessoren. Dies bedeutete eine Modifikation 
der Randbedingungen von AMDAHLs Gesetz. Er wies darauf hin, dass AMDAHLS Gesetzmäßigkeit 
diese wesentliche Komponente vieler Anwendungsszenarien außer Acht lässt: „in practice the 
problem size scales with the number of processors“. Das bedeutet, dass ein möglicher Zusammen-
hang zwischen dem parallelen Anteil der Anwendung und der Anzahl zur Verfügung stehender 
Prozessoren in AMDAHL s Formel (2.1) ignoriert wird, da Amdahl diese Art Anwendungsklasse 
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nicht untersucht hat. GUSTAFSON macht deutlich, dass man ein Problem mit bekannter Komplexität 
nicht auf einen beliebig großen Rechnerverbund auslagert, sondern versuchen wird, komplexere 
Probleme durch mehr Parallelität in endlicher Zeit zu lösen. Dies impliziert, dass eher die Laufzeit 
als konstant anzusehen ist als die Problemgröße [16]. Die modifizierte Formel hat deshalb die fol-
gende Form: 

 

( )

, 1

Mehrprozessorsystem

Einzelprozessor

sequentieller Anteil + paralleler Anteil  Prozessoren

sequentieller Anteil + paralleler Anteil

(1 )

(1 )

(1 ) lim ( )

skaliert

P

S P

P

P S P
α

α α
α α

α α
→∞ <

=

⋅=

+ − ⋅=
+ −

= + − ⋅ ⇒ = ∞

 (2.2) 

Gleichung (2.2) zeigt für Anwendungsklassen skalierbarer Problemgrößen deutlich realistischere 
Perspektiven für parallele Systeme und ihre Leistungsfähigkeit auf. Abbildung 2-2 stellt, in Abhän-
gigkeit von der Anzahl der Prozessoren P und dem sequentiellen Anteil α  des Programms, den 
linearen Verlauf der Beschleunigung nach GUSTAFSONs Gesetz dar. 

Abbildung 2-3: AMDAHL s und GUSTAFSONs Gesetz in Bezug auf Anwendungen mit skalierbarer Problemgröße 

Die Prognosen beider Ansätze in Bezug auf Anwendungen mit skalierbarer Problemgröße und die 
sich ergebende Differenz ist in Abbildung 2-3 dargestellt. Eine Missinterpretation des AMDAHL-

schen Gesetzes für diese Anwendungsklassen würde zu dramatischen Fehleinschätzungen für die 
Zukunft paralleler Systeme führen. In der Vergangenheit zeigte sich deshalb, eine häufig unbegrün-
dete, Skepsis gegenüber der Leistungsfähigkeit massiv paralleler Architekturen. 

Ein Manko der Ansätze von sowohl AMDAHL , als auch von GUSTAFSON ist die unzureichende Mo-
dellierung des Datenaustauschs zwischen den parallelen Prozessorelementen, der lediglich mit in 
den sequentiellen Anteil der Anwendung eingehen kann. 

2.1.3 Weiterführende Ansätze 

Weitere, tiefer gehende Ansätze zur Bestimmung bzw. Bewertung von massiv-parallelen Rechner-
systemen liefern CULLER [17] mit dem LogP-Modell und VALIANT  mit dem BSP(Bulk Synchronous 
Parallel)-Ansatz [18] (vgl. Abschnitt 4.5.2). Beiden Ansätzen ist gemein, dass sie versuchen, die 
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Lücke zwischen theoretischen Erkenntnissen und realen Maschinen zu schließen. In beiden Model-
len wird außerdem die Kommunikation zwischen den einzelnen Knoten berücksichtigt.  

Das LogP-Modell von CULLER wurde speziell für den praktischen Einsatz auf realen Multiprozes-
sor-Topologien entworfen. Es geht dabei von einem Multiprozessorsystem mit verteiltem Speicher 
und einer beliebigen Kommunikationsinfrastruktur mit Punkt-zu-Punkt-Verbindungen beliebiger 
Topologie aus. Die wesentlichen Parameter des Modells sind die Latenz L als obere Grenze für die 
Zeitspanne der Übertragung einer Nachricht weniger Wörter vom Sender zum Empfänger und o als 
Overhead oder Verwaltungsaufwand, mit dem ein Prozessor aktiv mit der Übertragung beschäftigt 
ist, während der er keine anderen Aufgaben erledigen kann. g definiert die Lücke Gap zwischen 
zwei aufeinander folgenden Übertragungen bzw. Empfangsvorgängen eines Prozessors. Der rezip-
roke Wert von g entspricht der Übertragungsbandbreite B, die den einzelnen Prozessoren zur Ver-
fügung steht. P beziffert die Anzahl der Prozessor-Speicher-Kombinationen. Aufgrund der als end-
lich angenommenen Kapazität der Übertragungskanäle ergibt sich die Anzahl der zeitgleich über-

tragbaren Nachrichten zu 
L

g

 
 
 

. L, o und g werden in Vielfachen eines Prozessortaktes angegeben. 

Das Modell ist auch auf „Shared Memory“-Architekturen anwendbar, wobei dann für die Kommu-
nikation zum Speicher hin und zurück ein Wert von 2 4L o+  angesetzt wird. Für eine gegebene Zeit 
T und feste Werte für L, o, g und P kann dann eine effiziente Verteilung der Aufgaben auf die Pro-
zessoren, „Computation Schedule“, und ein Zeitplan für die Nachrichtenübertragung, „Communica-
tion Schedule“, aufgestellt werden. BSP als auch LogP sind geeignete Modelle, um sowohl Compu-
ternetzwerke im Allgemeinen als auch On-Chip-Netzwerke bezüglich ihrer Leistungsfähigkeit zu 
charakterisieren. 

2.1.4 Trends bei parallelen eingebetteten Systemen 

Aufgrund der Anforderungen der von mir betrachteten Anwendungsszenarien, die eine von GUS-

TAFSON beschriebene Parallelität enthalten und nicht, wie das AMDAHLsche Gesetz (2.1) vermuten 
ließe, nur wenige Verarbeitungseinheiten ausnutzen können, werden mehr und mehr Prozessorele-
mente (PE) auf heutigen und zukünftigen Halbleiterbausteinen integriert. Diese stetige Zunahme 
wird ebenfalls in der International Technology Roadmap for Semiconductors der Semiconductor 
Industry Association [2] prognostiziert (vgl. Abbildung 2-4). Demzufolge ist ein rapider Anstieg der 
realisierbaren Anzahl von Verarbeitungseinheiten auf einem Chip bis zum Jahre 2020 zu erwarten: 
von gegenwärtig um die 20 Verarbeitungseinheiten bis zu über 870 bei einer konstant bleibenden 
Chipgröße von 64 mm² in weiteren 15 Jahren. Dies entspricht einem mehr als 40-fachen Zuwachs 
bis zum Ende der nächsten Dekade. 

Außerdem zeichnet sich der Trend ab, dass die Größe des integrierten Speichers eines SoCs stärker 
zunimmt als die Größe für Logikblöcke. Dies ist wiederum mit der bereits erwähnten Entwurfspro-
duktivitätslücke und der Wiederverwendbarkeit von Hardwareblöcken zu erklären. So lässt sich 
Speicher leichter wiederverwenden als Logikblöcke, die bei einer Wiederverwendung immer noch 
einen gewissen Entwurfsaufwand zur Integration benötigen. Bis zu 50 % des normalen Entwurfs-
aufwandes für Logikblöcke entstehen u. a. durch funktionale Erweiterung und den Aufwand für die 
physikalische Implementierung. Um die Möglichkeiten, die neue Technologien bieten, ausschöpfen 
zu können, wird aufgrund der effizienten Nutzungsmöglichkeiten mehr und mehr der zur Verfü-
gung stehenden Fläche mit Speicher ausgefüllt. Nach [2] sind allerdings insbesondere im Bereich 
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der Logikblöcke zusätzliche Anstrengungen erforderlich, um die Entwurfsproduktivität in diesem 
Bereich zu steigern. Das kann durch Instanziieren von bekannten Verarbeitungseinheiten erfolgen, 
die im Sinne von Dokumentation, Testbarkeit und Verifizierung gut erfasst sind. Dies erfordert 
dann jedoch eine leistungsfähige Kommunikationsinfrastruktur auf dem Chip, um die wiederver-
wendeten Einheiten effizient einsetzen zu können (siehe Abschnitt 4.2). Außerdem werden „High-
Level“-Modellierungsansätze auf abstrakterer Ebene, wie sie durch SystemC-Beschreibungen mög-
lich sind, unabdingbar, denn sie erlauben eine deutliche Steigerung der Entwurfsproduktivität [2]. 
Für das gesamte GigaNetIC-System wurde bereits eine solche Modellierung erstellt, von der bereits 
viele Bereiche der Soft- und Hardwareverifizierung sowie -planung profitieren (vgl. Abschnitt 5.2).  

Abbildung 2-4: System-on-Chip-Entwurfskomplexitätstrends [2] 

Ein weiterer wesentlicher Ansatz zur Steigerung der Entwurfsproduktivität liegt nach [2] u. a. in der 
Verbesserung der Entwurfsautomatismen und der damit verbundenen Entwurfswerkzeuge, die für 
die GigaNetIC-Architektur in den Kapiteln 5 und 6 ausführlich beschrieben werden. Die ITRS 
prognostiziert eine immense Erhöhung der Rechenleistungsanforderungen an „Consumer“-
Produkte, und zwar um den Faktor 200 in den nächsten 15 Jahren [2]. Die potentiellen Anwen-
dungsgebiete, die diesen Zuwachs fordern, werden in Abschnitt 2.6 kurz vorgestellt.  

CULLER und SINGH [19] veranschaulichen in einer pyramidenförmigen Aufstellung die Marktanteile 
für Prozessorsysteme (vgl. Abbildung 2-5). Bereits 1998 gab es weltweit einen Markt für mehr als 
hunderttausend Systeme mit mehr als zehn Prozessoren, die zumeist in Serveranwendungen Einsatz 
gefunden haben. Der Bedarf für Rechner mit mehr als 100 Prozessorkernen beschränkte sich auf 
wenige Tausend. Für Systeme mit mehreren 1000 CPUs war der Markt auf einige Dutzend limitiert. 
Der größte Marktanteil jedoch wurde von Uniprozessor-Systemen mit einigen Hundertmillionen 
eingenommen.  
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Die Leistung von Prozessoren verhundertfacht sich innerhalb einer Dekade bzw. steigt sogar um 
den Faktor 200, wenn LINPACK- bzw. SpecFP-Benchmarks herangezogen werden, wobei die 
Taktfrequenz von Prozessoren um den Faktor 10 bis 15 pro Dekade gesteigert wird [19]. Dies geht 
einher mit einer Verhundertfachung der Speicherkapazität von DRAM innerhalb dieser Zeitspanne 
[19]. All diese Verbesserungen werden nicht zuletzt durch die Erhöhung der Transistorzahl pro 
Chip um den Faktor 30 innerhalb von zehn Jahren ermöglicht. Ich halte es für sehr wahrscheinlich, 
dass Multicore-Systeme schon bald den Markt beherrschen werden. Sie halten schon jetzt Einzug in 
Desktop PCs und Notebooks, so dass eine Verschiebung in Richtung einer kegelförmigen Pyrami-
denstruktur zu erwarten ist, und Mehrkernprozessorsysteme den größten Marktanteil der Prozesso-
ren einnehmen werden. Unberücksichtigt sind hierbei noch die zahllosen eingebetteten Systeme z. 
B. in Mobiltelefonen oder PDAs (Personal Digital Assistants), die größtenteils ebenfalls schon heu-
te über mehrere Prozessoren verfügen und deren Bedeutung in Zukunft deutlich zunehmen wird 
(vgl. Abbildung 2-5). 

Abbildung 2-5: Marktanteile für Parallelcomputer nach [19] für 1998 und  

eigene Prognose für die kommende Dekade 

Der Weiterentwicklung dieser komplexen Systeme stehen ab einem gewissen Zeitpunkt mehrere 
potentielle Barrieren im Weg:  

• Die Ausbreitungsgeschwindigkeit von elektrischen Signalen setzt eine untere Grenze für La-
tenzzeiten. Aufgrund der Begrenzung durch die Lichtgeschwindigkeit können Signale in-
nerhalb einer Zeit von 250 ps, dies entspricht einer Taktperiode von 4 GHz, maximal eine 
Distanz von 7,5 cm (im Vakuum) überwinden. Dieser Wert ist für On-Chip-
Verbindungsleitungen mit ca. 2/3 c anzusetzen, also können im besten Falle 5 cm von einem 
Signal auf einem Chip innerhalb dieser Zeit zurückgelegt werden. 

• Eine weitere Barriere besteht in der immensen Leistungsaufnahme komplexer, hochgetakte-
ter CMOS-Systeme, die bereits heute schon mehr als 100W/cm² – im Vergleich zu einer 
Herdplatte mit 10 W/cm² – aufnehmen. 

• Die Kosten steigen mit jedem neuen Technologieschritt, so dass evtl. die Herstellung von 
Systemen mit einer Fläche des maximal technisch Machbaren nicht rentabel ist, und so mas-

Anzahl der Prozessoren
Marktanteil, Einheiten pro Jahr

Entwicklung

Stand 1998, nach Culler und Singh

1000+
Tausende

100+
Hunderttausende

10+
Millionen

1
mehrere Hundertmillionen

<10
mehrere Milliarden

Prognose für die nächste Dekade

1000+
Zehn

100+
Tausende

10+
Hunderttausende

<10
mehrere Millionen

1
mehrere Hundertmillionen
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siv parallele Systeme auf einen Chip aus Kostengründen nicht in der realisierbaren Ausprä-
gung gefertigt werden. 

• Bei einer zu erwartenden Komplexität von mehreren Milliarden Transistoren auf einem 
Chip werden Fehler sowohl beim Design als auch durch die Fertigung immer wahrscheinli-
cher. Werden nicht geeignete Konzepte zur Fehlertoleranz (vgl. Definition 33) erarbeitet, 
und integriert so dürfte die geringe Ausbeute (Yield) aus kommerzieller Sicht dem Erfolg 
dieser Systeme im Wege stehen. 

• Ungenügende Leistungsreserven der Kommunikationsinfrastruktur (vgl. LITTLEs Gesetz 
[20]) führen dazu, dass bei konkurrierenden Zugriffen und Transfers die systemimmanente 
Latenz, die durch die maximale Ausbreitungsgeschwindigkeit nach unten begrenzt ist, zu-
sätzlich erhöht wird. 

• Die Weiterentwicklung und Optimierung passender Programmiermodelle für massiv paralle-
le Systeme und die gezielte Ausbildung der Softwareentwickler für künftige parallelverar-
beitungstaugliche Anwendungen muss noch stärker vorangetrieben werden. Dies gilt für alle 
Klassen von Software: Programmiersprachen, Compiler, Betriebssysteme und Anwendun-
gen. 

Abschließend sei hier auf den bis 2007 schnellsten Supercomputer der Welt, BlueGene/L von IBM 
verwiesen, der auf massiv paralleler Verarbeitung beruht und 2005 in Betrieb genommen wurde 
[21]. Er umfasst 65.536 700-MHz-Dual-PowerPC-440-Kerne mit insgesamt 32,8 TByte Hauptspei-
cher. Die einzelnen Knoten sind in einem dreidimensionalen Torus miteinander verbunden. Seine 
maximale Systemleistung beträgt 365 TFlops. Die Hauptanwendungsgebiete liegen im Bereich der 
Erforschung biomolekularer Phänomene, hydrodynamischer Vorgänge und der Genforschung sowie 
der Simulation nuklearer Waffen. Das gesamte System ist in 64 Schaltschränken mit je 128 Sys-
templatinen auf über 230 m² untergebracht und somit noch weit von einer Ein-Chip-Lösung ent-
fernt. Seine Leistungsaufnahme beträgt ca. 1,2 MW, und die durchschnittliche Betriebszeit bis zu 
einem Ausfall wird mit etwas mehr als sechs Tagen beziffert. In den folgenden Abschnitten werden 
Techniken und Ansätze aufgezeigt, die es ermöglichen werden, derart leistungsfähige Rechensys-
teme in Zukunft auf deutlich weniger Volumen zu integrieren, als es bisher möglich war. 

2.2 Kernkomponenten eingebetteter paralleler Rechnerarchitekturen 

In den folgenden Abschnitten werden wesentliche Bestandteile von eingebetteten Parallelrechnern 
bzw. Chip-Multiprozessoren (CMPs) erläutert (vgl. Abbildung 2-6). Hierzu zählen die Verarbei-
tungseinheiten, also Prozessoren sowie Hardwarebeschleuniger jeder Art (vgl. Abschnitt 2.4). Die 
Art und Anzahl sowie die Verschaltung dieser Einheiten ist stark von der späteren Anwendung ab-
hängig und sollte im Vorfeld durch Simulation und gründliche Analyse eruiert werden. Weiterhin 
ist der Speicher (vgl. Abschnitt 2.5) eine bedeutende Komponente von Chip-Multiprozessoren, der 
je nach System zusätzlich noch hierarchisch strukturiert werden kann bzw. werden sollte. Die 
Kommunikationsinfrastruktur des Systems wird durch ein On-Chip-Netzwerk (NoC) gebildet. Die 
eigentliche Funktion des Gesamtsystems wird erst durch das Zusammenspiel aller Einzelkomponen-
ten realisiert, wobei zusätzlich spezifische Software bzw. Algorithmen benötigt werden. Zusammen 
definieren diese vier Komponenten das System, den eingebetteten Parallelrechner. 
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Abbildung 2-6: Kernkomponenten eingebetteter Parallelrechner 

Im folgenden Abschnitt wird zunächst auf das Rückgrat eines Chip-Multiprozessors, das On-Chip-
Netzwerk, eingegangen. 

2.3 On-Chip-Netzwerke 

Mit dem Fortschreiten der Strukturgrößenminimierung in der Halbleitertechnologie ist es möglich, 
Milliarden von Transistoren [2] auf einem Chip zu integrieren. Dies erlaubt mehr und mehr Funk-
tionalität auf einem Siliziumträger (Die). Neue Systemansätze werden ermöglicht, die ganze Syste-
me auf einem Die realisieren. Man spricht hier von Systems-on-Chips (SoCs). Auf einem Baustein 
können theoretisch Tausende von Modulen, wie Speicher, Verarbeitungseinheiten, Kommunikati-
onsschnittstellen und Mixed-Signal-Elemente, untergebracht werden und parallel arbeiten. Solche 
SoCs werden schon heute mit einer „Handvoll“ integrierter Module gefertigt und eingesetzt. Be-
sonders Multimedia- und Netzwerkanwendungen profitieren von den neuen Möglichkeiten, die sich 
aus der Parallelität solcher Bausteine ergeben.  

Die Auswahl der richtigen NoC-Topologie hängt entscheidend von den Anforderungen der Anwen-
dung aber auch von den Randbedingungen des Chipdesigns (Preis / Fläche, Leistungsaufnahme, 
erwartete Leistungsfähigkeit und Flexibilität) ab, vgl. Kapitel 3. Dabei ist zu beachten, dass maßge-
schneiderte Netzwerke, die speziell auf den erwarteten Durchsatz und spezifizierte Lastverteilung 
ausgelegt sind, keine erstrebenswerte Lösung sind, wenn sie keine Flexibilität gegenüber unerwarte-
ten Veränderungen des Datenaufkommens vorhalten. Um eine SoC-Architektur erfolgreich zu reali-
sieren empfiehlt sich ein flexibles und skalierfähiges (vgl. Definition 35) Netzwerk [22]. 

2.3.1 NoC-Topologien 

Eine Hauptanforderung für eine ressourceneffiziente Nutzung dieser neuen Möglichkeiten ist eine 
angemessene On-Chip-Kommunikationsinfrastruktur, über die die einzelnen Module effizient mi-
teinander kommunizieren können. Heutige Systeme verwenden häufig eine „flache“ Bus-, Multip-
lexer- oder Kreuzschienenverteiler(Crossbar)-Topologie (vgl. Abbildung 2-7 a). Solche Verbin-
dungsstrukturen eignen sich jedoch nicht für Strukturen mit Dutzenden oder gar Tausenden von 
Modulen. Sie benötigen sehr viel Fläche oder weisen eine sehr hohe Latenz auf und skalieren 
schlecht [23][24]. ZHANG et al. haben in [25] bereits erste hierarchische Verbindungsstrukturen 
vorgestellt, die die Kopplung heterogener Elemente in SoC-Strukturen unterstützen.  

Eingebettete Parallelrechner

NoC PEs

Speicher Algorithmen
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Für SoC-Kommunikationsstrukturen ergeben sich zunächst die gleichen Modelle wie für verteilte 
Multiprozessorsysteme, die im Grid- oder Clustercomputing eingesetzt werden. Die Struktur wird 
von der verwendeten Topologie und dem zugrunde liegenden Graphen geprägt. Beim SoC ist aller-
dings derzeit noch zu berücksichtigen, dass Modelle bzw. Graphen, die sich gut auf zweidimensio-
nale Strukturen abbilden lassen, von den Gegebenheiten der heutigen Halbleitertechnologie profitie-
ren. Dreidimensionale Ansätze, wie sie häufig in verteilten Computernetzen eingesetzt werden, stel-
len momentan noch nicht befriedigend lösbare Anforderungen an den Aufbau von Siliziumchips.  

Nomenklatur. Im Folgenden wird die Notation für NoC-Begrifflichkeiten, in Anlehnung an DALLY  
[22], eingeführt: 

Ein Netzwerk setzt sich aus Knoten N* und den Kanälen C, die die einzelnen Knoten miteinander 
verbinden, zusammen. Datenpakete werden durch Endknoten N ins Netzwerk injiziert und von die-

sen letztendlich auch terminiert. Hierbei ist *N N⊆ . Viele Netzwerke besitzen nur Endknoten und 

keine Weiterleitungselemente bzw. Routingknoten * \N N N+ = . In diesem Fall werden die End-
knoten ebenfalls als Knoten referenziert. Jeder Kanal ( ),c x y C= ∈  des Netzwerks verbindet einen 

Quellknoten x mit einem Zielknoten y mit *,x y N∈ 2. Ein Quellknoten wird mit sc und ein Zielkno-

ten mit dc bezeichnet. Eine Kante k des Graphen setzt sich somit zusammen aus dem Kanal cx,y und 

dem Kanal cy,x mit *,x y N∈ .  

Ein Kanal ( ),c x y= wiederum lässt sich durch seine Weite wc , also die Anzahl paralleler Leitun-

gen, seine Betriebsfrequenz fc, also die Rate, mit der Datenbits auf jeder Leitung transportiert wer-
den können, und seine Latenz Lc. bzw. tc charakterisieren. Die Latenz kennzeichnet die Zeitspanne, 
die benötigt wird, um ein Bit von Knoten x zu y zu transportieren (vgl. Definition 16). Sie resultiert 
im Allgemeinen aus der Kanallänge lc und der charakteristischen Ausbreitungsgeschwindigkeit v 

zu c
c

l
t

v
= . Die Bandbreite bc eines Kanals resultiert aus der Weite und der Betriebsfrequenz zu 

c c cb w f= ⋅ . 

Jeder Kommunikationsknoten x hat einen Satz von Kanälen x Ix OxC C C= ∪ . Mit 

{ }Ix cC c C d x= ∈ =  als Menge der Eingangskanäle und mit { }Ox cC c C s x= ∈ = als Menge der 

Ausgangskanäle. Der Grad eines Knotens x ist x xCδ = , also die Summe aus allen Eingangskanä-

len Ix IxCδ =  und Ausgangskanälen Ox OxCδ =  eines Knotens. Wenn der Grad aller *x N∈  gleich 

ist, wird im Folgenden nur von δ  als Grad gesprochen. 

Unter einem Schnitt bzw. einer Teilung C(N1, N2) wird die Aufteilung eines Netzwerks N* in zwei 
disjunkte Subnetzwerke N1 und N2 verstanden. Jeder Kanal ( )1 2,c C N N∈  hat seine Quelle in N1 

und Senke in N2 und umgekehrt. Eine Bisektion oder auch Halbierung ist wiederum eine Teilung 
des gesamten Netzwerks in zwei, wenn möglich, gleich große – im Sinne der Anzahl der Knoten – 
Subnetze: 2 1 2 1N N N≤ ≤ + . Dies gilt sowohl für die Endknoten als auch für die Routingknoten. 

Die Kanalbisektion BC eines Netzwerks bezeichnet die minimal aufzufindende Kanalanzahl aller 
möglichen Bisektionen des gesamten Netzwerks ( )1 2min ,C

Bisektionen
B C N N= . Somit ergibt sich die Bi-

                                                 

2 Beim rückläufigen Kanal kehrt sich die Notation entsprechend um, der Quellknoten ist y und x wird der Zielknoten. 
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sektionsbandbreite [26] als minimale Bandbreite aller Bisektionen des Netzwerks zu 

( )1 2min ,B
Bisektionen

B B N N= . Für Netzwerke mit gleichgearteter Kanalbandbreite b ergibt sich 

B CB b B= ⋅ . Sie kennzeichnet die minimal verfügbare Bandbreite zwischen den resultierenden zwei 

Subnetzen, unter Berücksichtigung aller möglichen Teilungen. Die Bisektionsbandbreite ist ein 
nützliches Maß, um einerseits die benötigten Ressourcen der globalen Verdrahtung eines Netzwerks 
zu bestimmen und andererseits eine Aussage über die Ausfallsicherheit bzw. Leistungsfähigkeit des 
NoCs treffen zu können. Sie gibt sozusagen den Flaschenhals der verfügbaren Bandbreite zwischen 
den Knoten zweier Subnetze an.  

Als Pfad P mit { }1 2, ,..., nP c c c= wird eine geordnete Menge von Kanälen c bezeichnet, die einen 

Quellknoten 1P cs s=  mit dem zugehörigen Zielknoten P cnd d=  verbindet. Die Länge eines Pfades, 

gleichbedeutend mit der Anzahl an Hops, ist definiert als P . Existiert für alle Quell-Ziel-

Verbindungsmöglichkeiten in einem gegebenen Netzwerk mindestens ein Pfad, unter Berücksichti-
gung des verwendeten Routingalgorithmus, so bezeichnet man das Netzwerk als verbunden. Ein 
minimaler Pfad ist gekennzeichnet durch die geringste Anzahl an benötigten Hops bei der Verbin-
dung zweier beliebiger Knoten im Netz. Die Gesamtheit aller minimalen Pfade wird zu Rxy gesetzt. 
H(x, y) ist die Anzahl an Hops eines minimalen Pfades zwischen den Knoten x und y. Der Durch-
messer D des Netzwerks ist somit bestimmt durch die maximale Anzahl an Hops über alle minima-
len Pfade zwischen allen Endknoten ( )max

,
max ,
x y N

H H x y
∈

=  (vgl. [22]). Für ein komplett verbundenes 

Netzwerk mit N Endknoten, die über Kopplungselemente mit dem Ausgangsgrad Oδ  verbunden 

sind, ergibt sich somit eine untere Grenze für die maximale Hopanzahl von max log
O

H Nδ≥ . Netz-

werke, die sich dieser unteren Schranke nähern, wie z. B. Butterfly-Netzwerke, offerieren keine 
alternativen Wege, bei ihnen sind die Routen festgelegt. Dies ist bezüglich Ausfallsicherheit und 
dynamischer Anpassung an Lastverteilungsvariationen ein großer Nachteil (vgl. [22]). Die durch-
schnittliche minimale Anzahl an Hops eines Netzwerks zwischen allen Quell- und Zielknoten ist 

definiert zu: ( )min 2
,

1
,

x y N

H H x y
N ∈

= ∑ . 

Viele NoC-Implementierungen sehen außer den minimalen Pfaden zusätzlich noch alternative Rou-
ten vor. Es sind aufgrund von dynamischen Wegewahlverfahren und aufgrund spezifischer Realisie-
rungen Szenarien denkbar, in denen es von Vorteil ist, minimale Pfade nicht zu wählen. Für diese 
Netzwerke definiert sich die durchschnittliche Hopanzahl H∅  nicht über die minimalen Pfade 

bzw. die minimale Anzahl von Hops minH , sondern über die verwendeten Pfade im Netzwerk 

minH H∅ ≥ .  

Die physikalische Distanz eines Pfades wird beschrieben durch: ( ) c
c P

D P l
∈

=∑ , wobei die Verzöge-

rung eines Pfades mit ( ) ( )D P
t P

v
=  angegeben wird. Die Konstanz der Kantenlänge ist ein Para-

meter, der speziell für die ASIC-Implementierung von Bedeutung ist, da sich unterschiedliche Sig-
nallaufzeiten aufgrund variierender Leitungslängen negativ auf die Performanz eines On-Chip-
Netzwerks und somit auf das gesamte System auswirken. 
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Betrachtet man nun die gesamte Übertragungsstrecke, also sowohl den Pfad mit den betreffenden 
Kanten als auch die involvierten Knoten, so ergibt sich eine Gesamtlatenz von: 

i igesamt c k
i P

t t t
∈

= +∑

(2.3), wobei 
ic

i P

t
∈
∑  die Latenz der benutzten Kanäle beziffert und 

ik
i P

t
∈
∑  die Latenz innerhalb der 

Routing- bzw. Endknoten darstellt. 

Symmetrie ist für ein Netzwerk ein entscheidendes Kriterium. So ermöglicht eine symmetrische 
Struktur alternative Routen für universelle Lastverteilungen. Der Wegewahlalgorithmus muss nicht 
auf spezielle Eigenarten der Struktur angepasst werden, sondern ist in allen Knoten des Netwerks, je 
nach Symmetrieform, relativ identisch anzuwenden. 

In der Literatur wird zwischen direkten und indirekten Netzwerken unterschieden. Ein Netzwerk-
knoten *x N∈  kann, wie bereits erwähnt ein Endknoten x N∈  sein, der sowohl Daten versendet 
als auch empfängt, oder aber nur, wie im Falle eines Routingknotens x N+∈ , die Daten weiterlei-
tet. Bei einem direkten Netzwerk vereint jeder Knoten beide Eigenschaften in sich: Er fungiert so-
wohl als Endknoten zur Datenverarbeitung als auch als Routingknoten zur Datenweiterleitung. Bei 
einem indirekten Netzwerk hingegen wird zwischen den End- und den Weiterleitungsknoten strikt 
getrennt. Dies ist z. B. beim Butterfly-Netzwerk der Fall (vgl. Abbildung 2-8). Im direkten Netz-
werk findet der Datenverkehr zwischen den Endknoten „direkt“ statt, wohingegen beim indirekten 
Netzwerk der Datentransport immer über zwischengeschaltete Routingknoten laufen muss. Es gibt 
auch hybride Formen, die sowohl direkte als auch indirekte Subnetzwerke beinhalten. Jedes direkte 
Netzwerk lässt sich zudem in ein indirektes transformieren, indem der Endknoten in Verarbeitungs- 
und Weiterleitungseinheit aufgeteilt wird. 

NoC-Charakteristika . Tabelle 2-1 gibt einen Überblick über die zuvor definierten Eigenschaften 
verschiedener Netztopologien bzw. Graphen für Computernetze im Allgemeinen ebenso wie für 
On-Chip-Netzwerke. Die Konstanz der Kantenlänge berücksichtigt die Möglichkeit einer effizien-
ten Realisierung in Halbleiterbausteinen und die damit einhergehende Länge der Verbindungslei-
tungen zwischen zwei Knoten. Skalierfähige dreidimensionale Topologien sind heutzutage für ein-
gebettete parallele Rechnerarchitekturen nur äußerst eingeschränkt geeignet. m stellt eine Hilfsgrö-
ße dar und dient als Berechnungsgrundlage zur Bestimmung der Knotenanzahl N*, des Durchmes-
sers D, der Bisektionsweite BC sowie des Grades δ  der jeweiligen Netztopologie. 

Tabelle 2-1: Eigenschaften verschiedener Netztopologien 

Topologie Anzahl Knoten 
N* 

Durchmesser 
D 

Bisektionsweite 
BC 

Grad der Verbindung 
δδδδ 

Kantenlänge konstant  
 

2-d Gitter m2 2(m-1) m 4 Ja 

2-d Torus m2 m-1 2m 4 Nein 

3-d Gitter m3 3(m-1) m2 6 Ja 

n-d Gitter mn n(m-1) mn-1 2n für kleine n 
Binärer 
Baum 2m-1 2(m-1) 1 3 Nein 

Hyperbaum 2m(2m+1-1) 2m 2m+1 6 Nein 

Pyramide (4m2-1)/3 2 log m 2m 9 Nein 

Butterfly (m+1) 2m 2m 2m 4 Nein 

Hypercube m2 m 2m-1 m Nein 

Für eine 2-d-Realisierung auf einem Siliziumchip qualifizieren sich nach Tabelle 2-1 zunächst das 
2-d-Gitter, der Torus, ein binärer Baum oder die Butterfly-Topologie. Ließe man die Forderung 
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nach identischen Signallaufzeiten auf den Long Lines3 außer Acht, so wäre die Bisektionsweite des 
Baumes von 1 ein Hinderungsgrund für die Realisierung einer solchen Topologie. Entweder würde 
zum Hauptknoten ein Kommunikationsflaschenhals entstehen, oder es müssten, wie z. B. beim Fat 
Tree, eine uneinheitliche Anzahl von Leitungen verwendet werden. Dies würde wiederum zu Lasten 
der Homogenität des Schaltungsentwurfs gehen. Butterfly-Strukturen bieten zunächst keine Mög-
lichkeit der Wegewahl. Es gibt jeweils einen festen Weg zum Ziel. Würde diese Option zusätzlich 
implementiert, müssten zusätzliche Stufen zu Lasten des Durchmessers eingebaut werden. Ein wei-
terer Nachteil bei Butterfly-Netzwerken ist, dass diese nicht realisiert werden können, ohne Leitun-
gen zu integrieren, die die Hälfte des Durchmessers des Netzwerks ausmachen [22]. Deshalb eignen 
sich solche Strukturen weniger gut für mittlere und große SoCs. Bei kleineren NoCs wird diese To-
pologie hingegen nicht zuletzt aufgrund des einfachen Routings häufig eingesetzt. Berücksichtigt 
man den oben erwähnten Punkt gleichlanger Verbindungsleitungen zwischen den Knoten, so redu-
ziert sich die Auswahl auf das 2-d Gitter. 

Abbildung 2-7 zeigt Varianten einfacher On-Chip-Netzwerktopologien, die für sich allein genom-
men nicht oder nur sehr eingeschränkt skalieren (vgl. Definition 35) und so für eine größere Anzahl 
Teilnehmer nicht effizient einsetzbar sind.  

Abbildung 2-7: Varianten einfacher On-Chip-Netzwerke für System-On-Chips 

Die in Abbildung 2-8 dargestellten Netzstrukturen stellen bekannte Topologien implementierter On-
Chip-Netzwerke dar. Abbildung 2-8 a) und b) zeigen die für die Hardwarerealisierung aufgrund 
ihrer vorwiegend gleich langen Verbindungen und ihrer relativ einfachen Abbildung auf zweidi-
mensionale Strukturen gut geeigneten Topologien Gitter und Torus. Würfel und Hyperwürfel Ab-
bildung 2-8 c) und d) werden häufiger in konventionellen Computernetzen eingesetzt, ebenso wie 
Baum- und Butterfly-Topologie. 

Abbildung 2-8: Topologien etablierter On-Chip-Netzwerke für System-On-Chips 

In Abbildung 2-9 werden hierarchische On-Chip-Netzwerke dargestellt. Abbildung 2-9 a) zeigt ein 
zweistufiges hierarchisches On-Chip-Netzwerk, dessen übergeordnete Hierarchieebene ein regel-
mäßiges Gitter bildet. Die an den Gitterknoten angeschlossenen Cluster bestehen aus einer variab-
len Anzahl von Modulen, die über einen lokalen Bus kommunizieren. Abbildung 2-9 b) hingegen 
stellt ein weniger streng strukturiertes, mehrere Hierarchiestufen umfassendes On-Chip-Netzwerk 
dar, das weitaus komplexer geartet ist als das aus Abbildung 2-9 a). Für besondere Anwendungsge-

                                                 

3 Long Lines sind die langen, zumeist intermodularen Verbindungsleitungen eines Chips und werden vorwiegend auf 

den höheren Metalllagen realisiert. 

b) Multiplexerb) Multiplexera) Busa) Bus c) Sternc) Stern d) Ringd) Ring e) Punkt zu Punkte) Punkt zu Punkt

a) Gittera) Gitter c) Würfelc) Würfel e) Baume) Baumb) Torusb) Torus d) Hypercube, Dim 4d) Hypercube, Dim 4 f) Butterflyf) Butterfly
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biete können solche Speziallösungen ggf. sehr effizient sein, allerdings fehlt ihnen evtl. die Flexibi-
lität, um sich auch für andere Anwendungsklassen zu eignen. Ferner sind derartige Strukturen der-
zeit mit Standard-Technologien noch nicht effizient realisierbar. 

Abbildung 2-9:Topologien von hierarchischen On-Chip-Netzwerken für System-On-Chips 

Vorteile hierarchischer On-Chip-Netzwerke. Im Folgenden werden die Vorteile von hierarchi-
schen On-Chip-Netzwerken für System-on-Chips vorgestellt und diskutiert. Hierarchische On-
Chip-Netzwerke helfen, die Performanz des Gesamtsystems zu erhöhen. Aufgrund der strukturier-
ten hierarchischen Verbindung der einzelnen Module sind verteilte Routingentscheidungen mög-
lich. Aufgrund dieser skalierbaren Dezentralität wird massiv parallele Hardware besser unterstützt. 
Daraus resultieren geringere zeitliche Arbitrierungsverluste verglichen mit zentralen Kommunikati-
onsstrukturen wie z. B. Bussen oder Multiplexern. Es ergeben sich geringere Latenzen, und je nach 
Realisierung werden weniger Pufferspeicher benötigt.  

NoCs können eine stärkere Entkopplung der einzelnen Verarbeitungseinheiten ermöglichen und 
erlauben so z. B. unterschiedliche Taktdomänen mit lokal höheren Taktraten. In diesem Zusam-
menhang spricht man auch häufig von global asynchronen, lokal synchronen (GALS) Ansätzen [27] 
[28], die einen der Forschungsschwerpunkte im NoC-Bereich bilden. Aufgrund der begrenzten 
Ausbreitungsgeschwindigkeit und der immer höheren Taktraten bei gleichzeitiger Verringerung der 
Strukturgrößen und Reduktion der Versorgungsspannung ist es mittlerweile bei großen SoCs nicht 
mehr möglich, Signale innerhalb eines Taktes über den gesamten Durchmesser des Chips zu trans-
portieren. Gatter-Verzögerungszeiten skalieren mit der Technologie, Leitungsverzögerungszeiten 
hingegen steigen nahezu exponentiell oder zumindest linear unter Zuhilfenahme von Repeatern [29] 
an. 

Nach [30][31] und [32] werden über 80 % der kritischen Pfade in ULSI(Ultra Large Scale Integra-
tion)-Schaltungen durch Verbindungsleitungen bestimmt. Deshalb müssen Systementwürfe auch 
Kommunikationsnetze [33] und verteiltes Rechnen mit berücksichtigen. Hierarchische NoCs helfen 
bei der Minimierung der Anzahl von global wires / long lines, also der globalen und damit relativ 
langsamen Verbindungsleitungen des Chips. Hierdurch wird u. a. auch der Clock Skew, die Takt-
Varianz, verringert und eine höhere Signalintegrität erreicht. Dies wiederum erhöht die Ausfallsi-
cherheit. Zusätzlich können weniger leistungsstarke Treiberstufen eingesetzt werden, wodurch die 
Leistungsaufnahme deutlich reduziert wird.  

Durch definierte Schnittstellen des NoCs und die Möglichkeit der Kapselung von IP-Blöcken durch 
so genannte „Wrapper“ (vgl. Abbildung 4-19) lassen sich Hardwarekomponenten einheitlicher in-
tegrieren. Aufgrund dieser Integrationsmöglichkeit wird eine Erhöhung der Wiederverwendbarkeit 

a) Hierarchische Gittertopologie b) Freie, hierarchische NoC-Topologie
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des Systemkonzepts basierend auf Hardware-/Software-Bibliothekselementen für nachfolgende 
Projekte erhöht. Parametrisierbare NoCs können leicht auf neue Anforderungen bezüglich Band-
breite oder Energie-/Flächenbedarf angepasst werden. Durch die Wiederverwendbarkeit erreicht 
man eine kürzere „Time-to-Market-Spanne“ sowie geringere NRE(Non-recurring Engineering)-
Kosten, d.h. die einmalig entstehenden Kosten für neue Designs werden aufgrund wiederverwertba-
rer Bestandteile reduziert. Ebenso verringert sich das Entwurfsrisiko, da auf bestehende Strukturen 
zurückgegriffen werden kann; zudem sinkt der Testaufwand. Ferner kann so die „Time-to-Volume-
Spanne“ aufgrund des geringeren Entwurfsaufwandes reduziert werden. 

Hierarchische NoCs skalieren im Gegensatz zu Bussen, Multiplexern oder Kreuzschienenverteilern 
und ermöglichen so eine deutlich größere Anzahl von Teilnehmern. Bei größeren Systemen erzielt 
man eine deutliche Flächenersparnis im Vergleich zu Bussystemen oder Kreuzschienenverteilern. 
Die Vielseitigkeit hierarchischer NoCs ermöglicht einen größtmöglichen Einsatz in unterschiedlich-
sten Systemimplementierungen. Für die System- bzw. Anwendungssoftware ergibt sich eine deut-
lich bessere Portierbarkeit auf zukünftige Systeme, da sie im Normalfall entkoppelt von der System-
Topologie implementiert werden kann. 

Für Systeme mit wenigen Teilnehmern eignen sich hierarchische NoCs in der Regel weniger, da im 
Allgemeinen ein deutlich größerer Flächenaufwand durch zusätzliche, meist unbenötigte Leis-
tungsmerkmale, zu verzeichnen ist, es sei denn, das NoC offeriert zusätzlich eine angepasste Va-
riante für Systeme geringerer Komplexität (vgl. Abschnitt 4.2). 

2.3.2 Organisation von On-Chip-Kommunikation 

In diesem Abschnitt wird die Organisation von On-Chip-Kommunikationsprotokollen im Allge-
meinen und im Hinblick auf das entworfene GigaNoC (vgl. Abschnitt 4.2) vorgestellt. 

Schichtenmodell. Eigenschaften von NoC-Architekturen definieren sich zum einen aus der Topo-
logie des On-Chip-Netzwerks und zum anderen aus dem verwendeten Protokoll oder, im Falle von 
heterogenen oder hierarchischen NoCs, den verwendeten Protokollen. NoC-Protokolle sind, in An-
lehnung an das ISO/OSI(International Organization for Standardization / Open Systems Inter-
connection)-Referenzmodell [34] typischerweise schichtenartig [35] organisiert (vgl. auch 
DIN ISO 7498). Dieses Referenzmodell vereinheitlicht und regelt den Transport von Daten in 
Kommunikationsmedien (vgl. Abbildung 2-10). So werden die verschiedenen Anwendungsbereiche 
der Kommunikation in Schichten unterteilt, die in sich geschlossen und unabhängig voneinander 
abgearbeitet werden können. Jede Schicht erfüllt eine definierte Funktionalität. Auf Sender- und 
Empfängerseite des Kommunikationskanals existieren identische Schichten, zwischen denen logi-
sche Verbindungen aufgebaut werden. Die Art und Weise, wie die Daten transportiert werden, ist in 
einem Protokoll festgelegt, das beide Teilnehmer beherrschen. Innerhalb eines Gerätes erfolgt die 
physikalische Datenweitergabe in vertikaler Weise, wobei beim Sender Paketköpfe (Header) hin-
zugefügt und beim Empfänger wieder entfernt, also Protokolle „terminiert“ werden. Die sender-
/empfängerseitigen Schichten tauschen sich horizontal über diese Protokolle aus. Der Grad der Ab-
straktion wird in Richtung der höheren Schichten immer größer. Der untersten Schicht ist die phy-
sikalische Übertragung der einzelnen Bits zugewiesen, während die oberste Schicht mit der initiie-
renden Anwendung kommuniziert und ggf. Anwenderinteraktion einbezieht. 
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Abbildung 2-10: Schichtenmodell für Netzwerk-Kommunikationskomponenten 

Beim ISO/OSI-Modell sind sieben Schichten vorgesehen, die sich üblicherweise bei On-Chip-
Netzwerken auf drei zusammenfassen lassen [35]. Zur detaillierten Definition der einzelnen Funk-
tionen der sieben Schichten des ISO/OSI-Referenzmodells sei auf die einschlägige Literatur [34] 
verwiesen. Im Folgenden werden die drei Schichten des NoC-Referenzmodells kurz vorgestellt: 
physikalische Schicht, Architektur- und Steuerungsschicht, Software-Schicht. 

Die physikalische Schicht umfasst die technische Realisierung der Kommunikationskanäle, also 
Verdrahtung sowie Treiber- und Empfängerstufen, aber auch Datenpuffer zur Zwischenspeicherung 
der Signale. 

Abbildung 2-11: Die zu versendende Nachricht dargestellt in Stufen der Paketverarbeitung 

Die Architektur- und Steuerungsschicht vereint in sich die ursprünglichen Schichten zwei bis vier 
des ISO/OSI-Referenzmodells. Die enthaltene Sicherungsschicht (Data-Link-Layer) ist für die zu-
verlässige Übertragung der Daten, z. B. durch Hinzufügen von Redundanz für fehlererkennende 
bzw. sogar fehlerkorrigierende Codes zuständig. Sie regelt außerdem den Zugriff auf das Kommu-
nikationsmedium und teilt die Daten, falls vorgesehen, in Blöcke auf. Die Aufteilung von Daten-
Telegrammen in einzelne Pakete ist besonders für die Vermeidung und Behebung von Übertra-
gungsfehlern von Vorteil, da die Absicherung der Daten hierbei durch etablierte Prüfsummenver-
fahren, z. B. zyklische Codes (CRC-Prüfsummen) blockweise geschehen kann. Abbildung 2-11 
zeigt die logischen bzw. physikalischen Formen einer zu übertragenden Nachricht auf. Die Nach-
richt kann in ein oder mehrere Pakete bzw. Telegramme aufgeteilt werden, denen Informationen in 
Form von Paket-Köpfen, auch Paket-Headern genannt, hinzugefügt werden. Die einzelnen Pakete 
wiederum werden bei vielen NoCs nochmals aufgeteilt in Flits (Flow Control Digits), die atomaren 
Übertragungseinheiten mit Paketeigenschaften. Auch die Flits bekommen einen zusätzlichen Kopf, 
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der in den meisten Fällen deutlich kleiner als bei den Paketen ausfällt und häufig nur wenige Bytes 
beansprucht. Schließlich kann es noch, je nach Implementierung, vorkommen, dass diese Flits, oder 
aber auch die Pakete direkt in Phits (Physical Units) übertragen werden. Unter einem Phit versteht 
man die Menge an Bits, die innerhalb eines Taktes über die Verbindung, auch Link genannt, zur 
Gegenstelle der Übertragungsleitung transferiert werden können. Phits haben üblicherweise keine 
eigenen Köpfe, sondern werden ggf. mit Handshake-Mechanismen kontrolliert. 

Weiterhin sind in der Architektur- und Steuerungsschicht Mechanismen enthalten, die der Netz-
werkschicht (Network Layer) zuzuordnen sind. Dies betrifft das Schalten der Verbindungen (Swit-
ching) für den Datentransport und letztendlich das Weiterleiten und die Wegsuche (Routing) der 
Pakete durch das Netzwerk.  

Switching-Verfahren. Switching bezeichnet im Hinblick auf die technische Realisierung die Art 
und Weise, wie Daten zum nächsten Knoten weitergeleitet werden. Zu den bekanntesten Switching-
Verfahren zählen u. a. das Circuit Switching(CS), das Packet- bzw. Store-And-Forward(SAF)-
Switching, das Virtual-Cut-Through(VCT)-, das Wormhole(WH)- und das Mad-Postman-Switch-
ing. 

Im Folgenden werden die oben genannten Switching-Verfahren kurz bewertet: 

• CS reserviert vor der eigentlichen Übertragung den gesamten Pfad vom Quellknoten bis zum 
Zielknoten der Übertragung. Hierzu wird häufig ein „Routing Header Flit“ zum Zielknoten 
geschickt, das den Pfad durchläuft. Nach erfolgreicher Übertragung wird eine Bestätigung 
zum Quellknoten versendet und die Verbindung zwischen den beiden Teilnehmern ist ex-
klusiv eingerichtet. Somit setzt sich die Zeit tCS aus der Zeit des Verbindungsaufbaus und 
der eigentlichen Übertragung zusammen: CS Verbindungsaufbau Datent t t= + . CS ist empfehlenswert, 

wenn Pakete relativ selten zwischen den Teilnehmern versendet werden und die Datenmen-
gen relativ umfangreich sind. Dies relativiert den zusätzlichen Aufwand des Verbindungs-
aufbaus. Ein großer Nachteil ist die Blockade von anderen Paketen, die für die Zeit der Re-
servierung keine Verbindung aufbauen können. Speziell bei stark frequentierten Übertra-
gungswegen und relativ geringen Datenmengen, also z. B. für Anwendungsszenarien von 
Single-Chip-Multiprozessoren, empfiehlt es sich meistens, das Packet-Switching-Verfahren 
vorzuziehen (vgl. [26]). 

• SAF bzw. Packet-Switching benötigt eine große Menge an Pufferspeicher in den einzelnen 
Kommunikationsknoten, da mindestens ein Paket zwischengespeichert werden muss. Zu-
sätzliche Latenz wird hinzugefügt, allerdings erlaubt dieser Switching-Algorithmus komple-
xe Routingverfahren, da für jeden Knoten Einblick in den gesamten Inhalt des Pakets be-
steht. Ein Datentelegramm wird ggf. in mehrere Pakete aufgeteilt und ohne eine feste Reser-
vierung des Kanals zu benötigen, transportiert. Jedes einzelne Paket kann gegebenenfalls 
über einen anderen Weg zum Ziel geleitet werden. Packet-Switching ist besonders bei häu-
figem Datenverkehr mit relativ geringem Datenvolumen von Vorteil. Nachteilig kann sich 
die etwaige Aufteilung des Telegramms in Pakete aufgrund des damit verbundenen Over-
heads (z. B. redundante Headerinformationen in jedem Flit etc.) auswirken.  

• VCT-Switching reduziert die absolut benötigte Speichermenge in den Routingknoten und 
verringert ggf. die Latenzzeiten, falls das Netzwerk nicht blockiert sein sollte. Ist die Gegen-
stelle allerdings nicht verfügbar, so muss auch hier im schlimmsten Fall das gesamte Paket 
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innerhalb eines Knotens zwischengespeichert werden können. Sind die Verbindungen nicht 
belegt, so wird bereits nach dem Empfang des Headers die Nachricht zum nächsten Knoten 
weitergeleitet. Dieser Mechanismus wird als „Virtual Cut-Through“-Switching bezeichnet. 
Man bezeichnet diese Art der Übertragung dann auch als Pipelining der Nachricht, da sich 
die einzelnen Segmente in aufeinanderfolgenden Routern befinden. Aufgrund der möglichen 
Blockierung der Paketentitäten verhält sich das VCT-Switching bei Überlastung des Netzes 
wie das oben erwähnte Packet-Switching.  

• Beim WH-Switching wird das Datentelegramm nicht nur in Pakete, sondern noch weiter in 
die oben genannten Flits unterteilt. Das Header-Flit enthält die Informationen, die für das 
Routing benötigt werden, alle weiteren Flits des Pakets folgen ihm über die gleichen Wege 
durchs Netz. Auch hier findet ein Pipelining der Nachrichtenübertragung statt. Vorteile bei 
diesem Verfahren sind die geringere Speichermenge, die benötigt wird, da nur wenige Flits 
pro Router gespeichert werden müssen. Weiterhin zeichnet sich WH-Switching durch die 
deutlich kleineren SAF-Latenzzeiten bei der Übertragung aus. Nachteilig kann sich die Blo-
ckierung (Blocking) eines Übertragungsweges durch eine Flit-Kette erweisen, wenn hier 
nicht durch Soft- oder Hardware Abhilfe geschaffen wird. Die Eigenschaften, die das WH-
Verfahren bietet, ermöglichen die Realisierung von flächenextensiven, kompakten und 
schnellen Routern (vgl. [26]). Die Latenz ist die gleiche wie beim VCT-Switching. 

• Eine Weiterentwicklung des VCT-Switchings in Kombination mit dem WH-Switching ist 
das „Mad Postman“-Switching. Bei diesem wird versucht, die Latenz der Paketsegmente 
nochmals zu minimieren. Ein eintreffendes Flit wird bereits während des Empfangs spekula-
tiv zum gegenüberliegenden Ausgang weitergeleitet. Speziell in 2D-Gittern kann eine solche 
Strategie die Performanz steigern, da hier häufig die Richtung eines Flits gleich bleibt. Das 
MP-Switching eignet sich vor allem für bit-serielle Übertragungen, und wenn die physikali-
sche Übertragung innerhalb des Netzwerks so geartet ist, dass sich ein Flit mehrere Zyklen 
auf der Übertragungsleitung befindet. Handelt es sich bei dem zugrunde liegenden Netzwerk 
hingegen um eine Infrastruktur, die in der Lage ist, relativ breite Flits innerhalb eines Zyklus 
zum nächsten Knoten zu transportieren, so bietet dieses Verfahren nahezu keinen Vorteil 
gegenüber dem VCT- und dem WH-Switching (vgl. [26]). 

Die Methode der virtuellen Kanäle (Virtual Channels / VC) ermöglicht es einem NoC, einen einzi-
gen physikalischen Kanal, z. B. einen Inter-Switch-Box-Link (vgl. 4.2.1), für mehrere Datenströme 
zu multiplexen und somit n virtuelle Kanäle zur Verfügung zu stellen. Dazu werden mehrere Puffer 
für einen physikalischen Kanal benötigt. Diese Methode erhöht den Ressourcenbedarf, kann jedoch 
zur Latenzminimierung einzelner Paketklassen herangezogen werden und steigert ggf. den gesam-
ten Netzwerkdurchsatz. Virtuelle Kanäle ermöglichen u. a. auch den Einsatz von Verfahren zur 
Bandbreitenkontrolle und damit Quality-of-Service(QoS)-Mechanismen. Der Einsatz einer Vielzahl 
von virtuellen Kanälen kann jedoch die Latenz, die ein Paket innerhalb eines Knotens erfährt, auf-
grund der Entscheidungsfindung über die Prioritätseinstufung erhöhen. 

Durch die Einführung von virtuellen Kanälen konnten so genannte hybride Switchingverfahren 
entwickelt werden. Zu diesen Techniken zählen u. a. das Buffered Wormhole Switching, Pipelined 
Circuit Switching sowie das Scouting Switching. Diese Verfahren sind im Gegensatz zu den oben 
genannten optimistischen Switching-Algorithmen als konservativ einzustufen und verbessern be-
sonders die Eignung des Netzwerks im Hinblick auf Fehlertoleranz. 
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Zusammenfassend ist zu sagen, dass Switching-Verfahren, neben Topologie, Routingverfahren und 
Flußkontrollmechanismen, einen großen Einfluss auf die Leistungsfähigkeit des Netzwerks haben. 
Das Switching-Verfahren bestimmt nicht zuletzt den Aufbau und damit auch die benötigten Res-
sourcen des einzelnen Routingknotens. Wormhole-Switching ist das derzeit am häufigsten verwen-
dete Verfahren bei parallelen Rechnerarchitekturen [26]. Es wurde bereits 1986 vorgestellt [36][37] 
und ermöglicht kleine und zugleich schnelle Routingknoten, die in der Lage sind, Nachrichten jeder 
Länge effizient zu übertragen. 

Wegewahl-/Routingstrategien. Routing bezeichnet die Art und Weise, wie die Wegewahl der 
Nachrichtenströme in Netzwerken entschieden wird. Bei paketvermittelten Datennetzen ist prinzipi-
ell zwischen Routing und Forwarding zu unterscheiden: Während das Routing die komplette Wahl 
des Weges durch das Netzwerk bestimmt, entscheidet das Forwarding nur über den zu wählenden 
Nachbarknoten, über den die Nachricht weitergeleitet werden soll.  

Abbildung 2-12: Übersicht über etablierte Routingmechanismen 

Beim Routing kann zwischen adaptiven und gedächtnislosen bzw. statischen Routingverfahren un-
terschieden werden. Während adaptive Verfahren auf Auslastung (Contention) und Blockade bzw. 
Überlastung (Congestion) der einzelnen Kommunikationswege reagieren können und die Wege-
wahl von solchen und anderen Parametern abhängig machen, nehmen statische bzw. gedächtnislose 
Verfahren (auch „Oblivious“ Routing genannt) keine Rücksicht auf die derzeitigen Verkehrsver-
hältnisse des Netzwerks. Beim statischen / gedächtnislosen Routing wird zwischen deterministi-
schen und stochastischen Verfahren unterschieden. Während deterministische Verfahren immer zur 
gleichen Entscheidung bezüglich des Pfades führen, wird die Wegewahl beim stochastischen Rou-
ting zufallsbasiert entschieden. Abbildung 2-12 gibt einen Überblick über etablierte Routingmecha-
nismen, die im Folgenden näher diskutiert werden. 

Gerade für nicht vorhersehbares Kommunikationsaufkommen sind zwar adaptive Verfahren zu 
empfehlen, sie benötigen jedoch für die Realisierung in NoC-Komponenten meist deutlich mehr 
Ressourcen bzw. Fläche. Die nächsthöhere Aufgabe, die von Architektur- und Steuerungsschicht 
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übernommen wird und im Allgemeinen der Transportschicht zuzuschreiben ist, ist die Segmentie-
rung von Nachrichten in Pakete und ggf. in Flits. Die Schichten, die oberhalb dieser Schicht ange-
siedelt sind, brauchen die Eigenschaften des Kommunikationsnetzes nicht in Betracht zu ziehen, da 
auf der Transportschicht eine vollständige „Ende-zu-Ende“-Kommunikation stattfindet. Aufgrund 
der häufig recht hohen Empfindlichkeit eines Netzes bezüglich der verwendeten Paketgrößen stellt 
die richtige Segmentierung oft eine Herausforderung dar. Dies beinhaltet sowohl Aspekte der Per-
formanz als auch der Leistungsaufnahme und der benötigten Fläche. 

Probleme, die sowohl beim gedächtnislosen als auch beim adaptiven Routing auftreten, sind: Dead-
lock, Livelock und Starvation. Beim Deadlock blockieren sich zwei Pakete gegenseitig im Routing-
knoten aufgrund der Belegung von ausschließlichen Ressourcen. Dies macht ein Weiterleiten der 
jeweiligen Daten für den Router unmöglich. Beim Livelock zirkuliert das Paket unendlich im Netz, 
ohne seinen Zielknoten zu erreichen. Dieses Phänomen tritt bei nicht-minimalen Routing-
Algorithmen auf. Livelock beeinträchtigt die Leistungsfähigkeit des Netzwerks und sollte durch ge-
eignete Maßnahmen, wie z. B. Reduzierung der Lebensdauer („Time To Live“-Parameter) verhin-
dert werden. Starvation bezeichnet die Situation, wenn das Netzwerk kontinuierlich Daten hoher 
Priorität transportieren muss und Pakete geringer Priorität aufgrund der vorherrschenden Sättigung 
des Netzes nicht weitergeleitet werden können. 

Im Folgenden werden einige relevante Routingstrategien näher vorgestellt. 

Gedächtnisloses / statisches Routing. Dimension-Order-Routing-Verfahren leiten ein Paket di-
mensionsweise ans Ziel. D. h. es wird der kürzeste Weg zum Zielknoten bestimmt, dann werden die 
Kanten einer Dimension nach der jeweiligen Vorschrift des Routingalgorithmus reduziert, bis letz-
tendlich das Paket beim Zielknoten angekommen ist. Im Allgemeinen haben Dimension-Order-
Verfahren keine vorteilhaften „Load-Balancing“- also Lastverteilungseigenschaften, sind allerdings 
sehr leicht und mit relativ überschaubarem Hardwareaufwand zu realisieren.  

Das XY-Routingverfahren zählt zu einem der bekanntesten Dimension-Order-Verfahren. Es eignet 
sich für zweidimensionale Topologien wie Gitter oder Tori. Hierbei werden die Pakete zunächst 
horizontal (also in X-Richtung) und anschließend vertikal (in Y-Richtung) bis zum Zielknoten wei-
tergeleitet. Bezüglich der Lastverteilung entsteht in der Mitte des Netzwerks die größte Belastung, 
welche durch geeignete, übergelagerte Algorithmen nivelliert werden kann. Bedeutender Vorteil 
beim XY-Routing ist die Tatsache, dass keine Livelocks bzw. Deadlocks in mehr als einer Dimensi-
on auftreten [38].  

Das Pseudo-Adaptive-XY-Routing arbeitet in zwei unterschiedlichen Modi, je nach Auslastung des 
Netzwerks. Bei geringer Auslastung kommt die deterministische Variante zum Tragen. Treten ge-
häuft Blockierungen des Netzes auf, so wechselt das Verfahren auf den adaptiven Modus, in dem 
weniger ausgelastete Verbindungen für die Wegewahl ausgesucht werden. Dieses Verfahren wird 
vornehmlich bei zweidimensionalen Gittern eingesetzt, bei denen die Router über 5 Ports verfügen, 
wobei vier nach Norden, Osten, Süden und Westen gerichtet sind, und der fünfte den lokalen An-
schluss anbindet. Das Pseudo-Adaptive-XY-Routingverfahren versucht im Gegensatz zum her-
kömmlichen XY-Routing die Mitte des Netzwerks zu entlasten und eine Gleichverteilung des Da-
tenverkehrs herzustellen.  

Beim Surrounding-XY-Routing besteht die Möglichkeit, Knoten als blockiert zu kennzeichnen und 
somit den Routingalgorithmus zur Wahl einer „Umleitung“ zu veranlassen. In diesem Fall unter-
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scheidet man die Ausweichmodi SH-XY- und SV-XY-Routing. Bei der ersten Variante wird die al-
ternative Wegstrecke in der Horizontalen gesucht, und bei Blockierung in vertikaler Richtung findet 
das Paket auf einer vertikalen Ausweichroute zum Ziel.  

Bei den Rotations-Routingverfahren wird vorgeschrieben, welche Richtungswechsel ein Paket bei 
der Wegewahl erfahren darf. Hier gibt es zahlreiche Implementierungen wie z. B. das North-last-
Routing oder das West-first-Routing, wobei der Name schon die Vorschrift verrät. 

Deterministische Routing-Algorithmen verwenden immer den gleichen Pfad, ohne die Auslastung 
der betreffenden Kanäle zu berücksichtigen. In blockadefreien Netzen zeichnen sie sich durch kurze 
Latenzzeiten und ihre Zuverlässigkeit aus. Deshalb sind sie besonders für Echtzeit-Anwendungen 
geeignet. Pakete treffen in der Reihenfolge ein, in der sie versendet worden sind, so dass das Prob-
lem des „Packet Reordering“ nicht auftreten kann. Im einfachsten Fall hat ein Router eine fixe Rou-
tingtabelle, die alle Routen zu seinen Nachbarknoten beinhaltet.  

Mit Hilfe dieses routingtabellenbasierten Ansatzes lassen sich verschiedene Formen des determinis-
tischen Routings realisieren. Eines der bekanntesten Verfahren ist das „Shortest Path Routing“. 
Hierbei werden die Pakete entlang des kürzesten Pfades geleitet. Zu den Varianten des Shortest-
Path-Routings zählen das Distance Vector Routing und das Link State Routing. Beim Distance Vec-
tor Routing beinhaltet die Routingtabelle des jeweiligen Knotens Informationen über die Konnekti-
vität der Nachbarschaft. Pakete werden über die jeweils kürzeste Verbindung zum Ziel geleitet. 
Beim Link State Routing wird die Routingtabelle zwischen allen Routern ausgetauscht bzw. geteilt. 
In SoCs werden die Routingtabellen schon während der Produktion voreingestellt und nur in Son-
derfällen, z. B. bei Ausfällen während des Betriebs, umprogrammiert. Beim Source Routing werden 
bereits beim Quellknoten alle Entscheidungen bezüglich der Wegewahl getroffen. Das Topologie-
adaptive Routing erweitert das deterministische Routingverfahren um die Eigenschaft, auf Verände-
rungen der Topologie einzugehen, indem die Inhalte der Routingtabellen angepasst werden können. 
Man spricht hierbei auch von Online Oblivious Routing. 

Stochastische Routingverfahren sind zum einen einfach zu realisieren und fehlertolerant, zum an-
deren brauchen sie mehr Netzwerkressourcen, als notwendig wäre. Für diese Algorithmen ist eine 
Begrenzung der Lebenszeit von Paketen unabdingbar, da es sonst zu dem Problem der Starvation 
kommen könnte. Zu den bekanntesten stochastischen Routingverfahren gehören die so genannten 
Flooding-Algorithmen. Bei der einfachsten Implementierung, dem Probabilistic Flooding, wird ein 
Paket zu allen Verbindungen weitergeleitet. Es findet somit eine „Überflutung“ des Netzwerks statt. 
Sobald eine Kopie den Zielknoten erreicht, werden alle weiteren Kopien beim Eintreffen am Ziel-
knoten gelöscht. Eine Weiterentwicklung spiegelt der Directed-Flood-Algorithmus wieder. Hierbei 
werden die Pakete in die ungefähre Richtung des Zielknotens ins Netz injiziert, somit weniger 
Netzwerkressourcen benötigt. Als weitere Einschränkung dieses Algorithmus ist das Random-Walk-
Verfahren zu nennen. Hier wird jeweils nur eine definierte Anzahl von gerichteten Paketen von je-
dem Routingknoten weitergeleitet. Dies verringert deutlich die beanspruchten Netzwerkressourcen. 
Um die hohen Belastungen an Datenaufkommen für das Netzwerk zu reduzieren, wurde der Va-
liant-Algorithmus entwickelt. Bei dieser Methode wird die Belastung des Netzes reduziert. Er eig-
net sich besonders für hoch dimensionierte Netzwerke mit einem großen Grad. Es wird zufällig ein 
Knoten im Netz ausgewählt, zu dem das Paket zunächst geroutet wird. Anschließend werden von 
diesem Knoten herkömmliche, gedächtnislose Verfahren zur Wegewahl angewendet. 
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Adaptive Routing-Algorithmen zeichnen sich dadurch aus, dass sie sich dem Zustand des Netz-
werks entsprechend ihrer Wegewahl anpassen. Zu diesen Routingverfahren zählen u. a.: Das mini-
mal adaptive Routing, das Hot-Potato-Routing, das Q-Routing, das volladaptive Routing, das Con-
gestion-Look-Ahead-Routing, die Turnaround-Routingverfahren, das Turn-Back-When-Possible-
Routing und das Odd-Even-Routing. 

Beim minimal adaptiven Routing wird immer versucht, den kürzesten Pfad zu wählen, und bei al-
ternativen Routen entscheidet sich der Algorithmus für die geringer ausgelastete Verbindung. Beim 
Hot-Potato-Routing werden Pakete ohne Aufenthalt weitergeleitet. Sollte eine Verbindung blockiert 
sein, wird das Paket wahllos in eine andere, freie Richtung geschickt, gleichsam wie eine „heiße 
Kartoffel“ weitergereicht. Bei einer Aneinanderreihung von blockierten Pfaden kann das Paket 
komplett in die entgegengesetzte Richtung transportiert werden, man spricht dann auch von „Mis-
routing“. Die Hardwareressourcen für dieses Verfahren sind bzgl. der Speichermenge relativ gering, 
da so gut wie kein Pufferspeicher in den Routern eingesetzt wird [39]. Ein Beispiel für ein Routing-
verfahren, das das Verkehrsaufkommen innerhalb des Netzwerks statistisch auswertet und die We-
gewahl basierend auf den resultierenden Ergebnissen trifft, ist das Q-Routing [40]. Hierbei werden 
Merkmale wie Latenz und Auslastung der Pfade berücksichtigt. Beim volladaptiven Routing wird 
immer der am wenigsten belastete Kanal ausgewählt, auch wenn damit ein Umweg verbunden ist. 
Allerdings wird bei unterschiedlichen Möglichkeiten die kürzeste Strecke bevorzugt gewählt. Das 
Congestion-Look-Ahead-Routing verwendet Informationen der potentiell involvierten Router über 
die Auslastung relevanter Kanäle, um so „vorausschauend“ Staus zu umgehen. Turnaround-
Routingverfahren werden bei Baum- und Butterfly-Topologien eingesetzt und zeichnen sich da-
durch aus, dass Pakete zunächst in die entgegengesetzte Richtung und dann von der entfernten 
Netzwerkseite zurück zum eigentlichen Empfänger versendet werden. Diese Methode wird durch 
das Turn-Back-When-Possible-Routing optimiert, indem die Auslastung des potentiellen Rückwe-
ges mit in die Wegewahl einbezogen wird und ggf. eine Alternative ausgesucht wird. Beim Odd-
Even-Routing wird zwischen erlaubten und nicht erlaubten Richtungswechseln von Knoten zu Kno-
ten und Spalte zu Spalte bzw. Reihe zu Reihe im Gitter unterschieden. Diese variieren und ermögli-
chen eine Deadlock-freie Wegewahl. 

Außer den hier genannten Verfahren gibt es weitere, weniger relevante Routingverfahren und Ab-
wandlungen der oben genannten Methoden. Zur Vertiefung sei auf die weiterführende Literatur 
[22][26][35][41] verwiesen. Basierend auf den bereits vorgestellten Switching- und Routingverfah-
ren können nun weiterreichende Netzwerkmechanismen eingesetzt werden, die die Leistungsfähig-
keit des NoCs für die jeweiligen Einsatzgebiete deutlich steigern können. Hierzu zählt auch die ga-
rantierte Bandbreitenzuweisung / Quality-of-Service (QoS).  

Congestion- / Flow-Control-Techniken. Um die entsprechenden Prioritäten der Datenübertragung 
und die damit verbundenen maximalen Latenzen einhalten zu können, müssen zwei grundlegende 
Phänomene erläutert werden. Die Problematik, dass Pakete um Netzwerkressourcen konkurrieren 
und damit zunächst eine hohe Auslastung (Contention) herbeiführen, die in einer Überlastung 
(Congestion) enden kann, erfordert Congestion-Control-Techniken. Ein korreliertes Problem tritt 
auf, wenn einzelne Endknoten unterschiedliche Bandbreiten injizieren bzw. absorbieren können. 
Um diese Problematik zu lösen, müssen Flow-Control(Flußkontroll)-Techniken eingesetzt werden. 
Congestion-Control-Techniken arbeiten gegen eine Überlastung des Netzwerks und seiner Rou-
tingknoten im Allgemeinen, während Flow-Control-Mechanismen den reibungslosen Datenfluss 
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zwischen Sender- und Empfängerknoten regeln. Durch Einsatz dieser beiden Techniken wird die 
Einhaltung einer minimal garantierten Bandbreite, einer garantierten maximalen Latenz und eines 
maximal zulässigen Jitters und damit QoS erst ermöglicht. 

Durch räumliche Ressourcenverwaltung, also Zuweisung von Routingkanälen und Speicher, sowie 
zeitliche Zuteilung kann eine Stauung und letztendlich Überlastung der Ressourcen vermieden wer-
den. Congestion-Control-Mechanismen können in rückgekoppelte (feedback) und offene bzw. vor-
beugende (preventive) Verfahren eingeteilt werden [42]. Außerdem kann eine Einteilung in ressour-
cenreservierende und in nicht-ressourcenreservierende Maßnahmen vorgenommen werden.  

Zu den Letzteren zählt das Verfahren, bei dem Pakete, die aufgrund von Stauungen nicht weiterge-
leitet werden können, einfach verworfen werden (dropping). Zunächst können mit nicht-ressourcen-
reservierenden Verfahren Verstopfungen aufgelöst werden, insgesamt jedoch müssen die Pakete 
erneut versendet werden, was zu einem höheren Datenaufkommen führt. Dies reduziert folglich die 
effektiv übertragene Datenmenge. Derzeit sind noch keine NoCs bekannt, die dieses in Datennetzen 
etablierte Verfahren ebenfalls anwenden [35]. Eine weitere Methode stellen dynamische Routing-
verfahren dar, die so genannte „Hot Spots“, also Punkte besonders hohen Datenaufkommens, ver-
meiden [43]. Dieses Verfahren hat jedoch den Nachteil, dass die Reihenfolge der Pakete verändert 
werden kann (Packet Reordering). Ein anderer Ansatz steuert die Paketinjektionsrate basierend auf 
statistischen Daten, die während des Betriebs ausgewertet werden [44]. BENINI charakterisiert die 
bisher erläuterten Verfahren als reaktiv, d. h. er argumentiert, dass sie erst greifen können, wenn das 
Netzwerk bereits überlastet ist [35]. Dies trifft meiner Ansicht jedoch nicht bei dynamischen Rou-
tingverfahren zu, die zufällig über die Wegewahl entscheiden. Ebenso lässt sich durch eine geeigne-
te Schwelle bei den Monitoren schon vor der Überlastung des Netzwerks eine Reduktion der Paket-
injektion einleiten und damit der Verstopfung vorbeugen. 

Ressourcenreservierende Maßnahmen teilen vor der Übertragung die Ressourcen zeitlich und ört-
lich zu. Zunächst werden alle geplanten Übertragungen festgestellt und anhand ihrer Erfordernisse 
eine Ressourcenzuteilung (Admission Control) vorgenommen. Zusätzlich zu dieser Initialisierungs-
phase (setup) wird am Ende einer Übertragung noch eine Informationsphase (tear-down) benötigt, 
in der den anderen Netzwerkknoten mitgeteilt wird, dass die Daten komplett übermittelt worden 
sind und die Ressourcen für neue Transfers zur Verfügung stehen. Sollten alle Übertragungen und 
deren Anforderungen bereits im Vorfeld bekannt sein, so ließe sich mit einem Zeit-Multiplex-
Verfahren (Time Division Multiplex / TDM) die Überlastungsfreiheit des Netzwerks garantieren. 
Globale Einplanungsverfahren (Global Scheduling), die u. a. auf dem TDM-Prinzip basieren, wer-
den in NuMesh [45], Nostrum [46] und Æthereal [47] eingesetzt. Diese globalen Einplanungsver-
fahren sind jedoch nur bedingt für einen universellen Einsatz geeignet und wenig flexibel bei nicht-
vorhersehbarem Lastaufkommen, wie dies u. a. häufig bei Netzwerkanwendungen der Fall ist. 
Nachteilig an diesem Ansatz ist die relativ hohe durchschnittliche Latenz, die ein Paket aufgrund 
der Initialisierungs- und Informationsphase erfährt. Dafür erhält man ein verstopfungsfreies (con-
gestion-free) und konkurrenzfreies (contention-free) Netzwerk.  

Ein anderer Ansatz bei ressourcenreservierenden Maßnahmen sind bandbreitenkontrollierende Ver-
fahren (rate-control schemes). Hierbei werden berechnete Injektionsraten für die Quellknoten vor-
gegeben, so dass eine obere Schranke für die Auslastung des Netzwerks und Latenz definiert ist. 
Zur Vermeidung von, bei diesem Verfahren häufiger entstehenden, Übertragungsspitzen (Bursts) 
werden zusätzliche Pufferspeicher benötigt, die sich nachteilig auf den Flächenbedarf auswirken. 
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Vorteilhaft ist die Eigenschaft, dass die durchschnittliche Latenz geringer als beim TDM-Verfahren 
ist. Einsatz finden Varianten dieser Methode z. B. beim MANGO(Message-passing Asynchronous 
Network-on-Chip providing Guaranteed services through OCP interfaces)-On-Chip-Netzwerk 
[48][49]. 

Die Flusskontrolle übernimmt die Aufgabe, dass Pakete, trotz vorhandener Auslastungskontrolle, 
nicht in Routern stecken bleiben, deren Puffer nicht entleert werden können, weil ein Endknoten 
nicht genug Bandbreite zur Verfügung stellt. Flusskontrolle dient zur Vermeidung von „Dead-
locks“, auch wenn keine Auslastungskontrolle verwendet wird. Es gibt eine Vielzahl von Algorith-
men zur Flusskontrolle. Die einfachste Art ist, Pakete, die nicht weitergeleitet werden können, zu 
verwerfen. Eine weitere Methode besteht darin, inakzeptable Pakete zum Sender zurückzuleiten, der 
diese garantiert annehmen muss. Diese beiden Methoden werden derzeit in bekannten NoCs im Ge-
gensatz zu Computernetzen nicht eingesetzt. Beim SPIN (Scalable Programmable Interconnection 
Network)-On-Chip-Netzwerk [50] wird ein Verfahren eingesetzt, bei dem bei Blockierung kurzfris-
tig Pakete zu freien Knoten weitergeleitet werden, um nach kurzer Zeit erneut zum Endknoten ge-
schickt zu werden. 

Die folgenden Mechanismen zur Flusskontrolle basieren auf der Reservierung von Ressourcen. Um 
zu garantieren, dass genügend Pufferplatz in den einzelnen Übertragungsknoten vorhanden ist, kön-
nen Ende-zu-Ende-Quittierungsmechanismen (Handshake-Verfahren) eingesetzt werden, bei denen 
ggf. bei nicht ausreichender Speichermenge die Erlaubnis zur Übertragung zum Zielknoten verzö-
gert wird, auf die der Quellknoten zu warten hat. Ein anderer Ansatz wird durch so genannte Kre-
ditpunkte-basierte (Credit-based) Ende-zu-Ende-Flusskontrollen aufgezeigt. Die Routingknoten 
verfügen über ein gewisses Kontingent an Credits, das ihrer Speichermenge entspricht. Soll ein Pa-
ket in das Netzwerk injiziert werden, so benötigt der Sender zunächst entsprechende Credits seitens 
des Empfängers. Aus diesem Grund werden regelmäßig Credits von freien Routingknoten an Nach-
barknoten versendet. Bei erfolgreicher Versendung wird im Sender der Credit-Zähler um die spei-
chermengen-entsprechende Anzahl dekrementiert und die „verbrauchten“ Credits an den Emp-
fangsknoten zurückgeschickt. Dieser zusätzliche Verkehr an „Credit-Paketen“ kann bis zu 31% der 
verfügbaren Bandbreite beanspruchen [43]. Speziell bei kleinen Datenmengen ist der Overhead be-
trächtlich und dieses Verfahren relativ ineffizient. Es gibt zahlreiche Abwandlungen dieses Verfah-
rens, um die Nachteile zu nivellieren. Æthereal, Nostrum, QNoC und SPIN verwenden u. a. Varian-
ten dieser Methode zur Flusskontrolle. Nach [35] verwenden derzeit nur wenige On-Chip-
Netzwerke sowohl Congestion- als auch Flow-Control-Mechanismen, um harte Bandbreitengaran-
tien zu gewährleisten. Hierzu zählen ebenfalls Æthereal, MANGO und das SonicsMX-On-Chip-
Netzwerk [51]. Zusammenfassend ist zu sagen, dass es neben den Vorteilen der Ressourcenreser-
vierung auch zahlreiche Nachteile dieses Verfahrens gibt. Es gilt also von Fall zu Fall abzuwägen, 
welche Maßnahmen für die Implementierung eines ressourceneffizienten On-Chip-Netzwerks zu 
treffen sind. Je flexibler ein On-Chip-Netzwerk auf Veränderungen hinsichtlich des Verkehrsauf-
kommens und der Topologie bzw. der Anzahl der Teilnehmer reagieren kann, sowohl im Betrieb, 
als auch bei der Konzeption neuer Hardware, desto effizienter wird es sich auch in zukünftige SoCs 
integrieren lassen. Zukünftig werden immer stärker Entwicklungswerkzeuge, die speziell für den 
Entwurf der Kommunikationsinfrastruktur von Systems-On-Chip konzipiert sind, in die Entwurfs-
kette komplexer digitaler Schaltkreise Einzug halten, wie sie z. B. von ARTERIS bereits vorgestellt 
wurden [52].  
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Dienstqualität. Quality-of-Service(QoS) ist für viele Anwendungsbereiche ein weiteres wichtiges 
Merkmal für Netzwerke und stellt ebenso eine Herausforderung für On-Chip-Netzwerke dar. Unter 
QoS werden Mechanismen verstanden, die es ermöglichen die Übertragungsbandbreite für unter-
schiedliche Datentypen oder zwischen einzelnen Endknoten unter Berücksichtigung spezifizierter 
Transportklassen dediziert zuzuweisen. Gerade bei limitierter Bandbreite des Netzwerks und spezi-
ell auch für „Echtzeit“-Anwendungen ist diese Funktionalität von besonderer Bedeutung. QoS er-
laubt ein priorisiertes Übertragen unterschiedlicher Datentypen, was nicht zuletzt bei heutigen 
Breitbandnetzwerkanwendungen wie „Tripple Play“, also Datenverkehr, Telefonie und multimedia-
le Video-Inhalte, von großer Bedeutung ist. Für QoS sind Mechanismen zur Überwachung des 
Transportaufkommens notwendig, die u. a. Entscheidungen über die Wegewahl und die zeitliche 
Ablaufsteuerung der Kommunikation treffen. Wenn ein Netzwerk über keine QoS-Mechanismen 
verfügt, spricht man von einem „Best-Effort-Ansatz“. Hierunter versteht man das Prinzip, dass alle 
Daten und Verbindungen gleich behandelt werden und der Transport nach den Möglichkeiten des 
Systems geschieht. Es können keine festen Zusagen bezüglich der zur Verfügung gestellten Band-
breite gemacht werden. Ein häufig eingesetztes Mittel, ein Netzwerk QoS-tauglich zu machen, be-
steht darin, das Netzwerk großzügiger bezüglich seiner Bandbreite zu dimensionieren, damit die 
anfallende Datenlast mühelos bewältigt werden kann. Hierbei sind die Wege, die das Rückgrat des 
Netzes ausmachen, so leistungsfähig zu gestalten, dass die Endknoten nicht annähernd die Daten-
menge ins Netz injizieren können, die zu einer Überlastung (Congestion) des Netzwerks führen 
könnte. Diese relativ einfache Methode wird auch Over-Provisioning genannt. Diese Form der 
QoS-Implementierung ist jedoch immer kritisch in Relation zu der Anwendung und der Art des Da-
tenaufkommens sowie der Anzahl der Teilnehmer zu sehen. Für höhere Anforderungen setzt man 
häufig auf ein Markieren der einzelnen Datenpakete im Hinblick auf ihre Anforderungen bezüglich 
Latenz, Jitter und Zuverlässigkeit ihrer Zustellung. In diesem Zusammenhang spricht man auch von 
„differenzierten Diensten“ oder auch DiffServ (Differentiated Services). Jedes Datenpaket trägt eine 
Kennung in sich, in der die Anforderungen kodiert sind. Die Knoten im Netz können dann den an-
fallenden Datenverkehr anhand ihrer Auslastung und der Kennungen innerhalb der Pakete steuern. 
Allerdings kann auch ein solches Netzwerk nur in dem Maße befriedigende Leistung bieten, als es 
physikalisch angemessen für das entsprechende Anwendungsszenario ausgelegt ist. In diesem Falle 
steigert die QoS-Fähigkeit die Performanz. 

Die Software-Schicht umfasst die abstrakteren Schichten fünf bis sieben des ISO/OSI-
Referenzmodells. Diese Schicht bezieht sich sowohl auf System- als auch auf Anwendungssoft-
ware. Die Systemsoftware abstrahiert von der eigentlichen Hardware und fungiert als Hardware 
Abstraction Layer (HAL). Dies entkoppelt die Anwendungssoftware von der Hardware und gewähr-
leistet eine höchstmögliche Flexibilität. Die Systemsoftware ist eng an systemspezifische Schnitt-
stellen für Hardwarebeschleuniger (vgl. Abbildung 4-19) und IPs gebunden (vgl. Abbildung 4-4). 
Sie gestaltet sich als kontrolllastig mit geringerem Kommunikationsaufkommen. Inwieweit die Sys-
temsoftware ausgeprägt ist, also ob es sich um einzelne Aufgaben / Tasks handelt, oder ob ein 
komplettes eingebettetes Betriebssystem zum Einsatz kommt, hängt maßgeblich von der jeweiligen 
Anwendung und dem Einsatzgebiet ab. Die Anwendungssoftware sollte für ein massiv paralleles 
System einem geeigneten Programmiermodell unterliegen (vgl. Abschnitt 4.5) und ist häufig stark 
kommunikationslastig. 

Abbildung 2-13 zeigt zusammenfassend die in den vorangegangenen Abschnitten diskutierten we-
sentlichen Mechanismen zur Gestaltung und Leistungssteigerung von On-Chip-Netzwerken. In Ab-
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hängigkeit vom jeweiligen Anwendungsszenario und den damit verbundenen Anforderungen wer-
den Hardware und Protokolle unter Verwendung der vorgestellten Maßnahmen zur Optimierung 
konzipiert. 

Abbildung 2-13: Mechanismen zur Gestaltung und Leistungssteigerung von On-Chip-Netzwerken 

2.3.3 Beispiele von On-Chip-Netzwerken 

In Tabelle 2-2 werden wesentliche Merkmale etablierter NoC-Varianten vorgestellt. Die bevorzugte 
Topologie der aufgeführten Netzwerke ist das 2D-Gitter, das aufgrund seiner regelmäßigen Struktur 
relativ gut zu implementieren ist. Die Größe der Kommunikationskanäle, also die Breite der Über-
tragung, liegt zwischen 19 Bits beim Marescaux-Ansatz und 294 Bits beim Dally-NoC. Einige 
NoCs sind in dieser Hinsicht auch parametrisierbar, wie z. B. QNoC, Hermes-NoC oder auch das 
GigaNoC. Bei diesen Netzwerktopologien besteht noch Spielraum, und es kann auf Anforderungen 
seitens der Anwendung eingegangen werden, um so eine möglichst effiziente Realisierung zu tref-
fen. Die vorherrschende Routingstrategie ist das Wormhole-Switching mit XY-Routing-Ansatz. 
Beim Æthereal-NoC wird Wormhole- Switching nur für Best-Effort(BE)-Pakete verwendet und für 
Guaranteed-Throughput-Traffic(GT)-Circuit-Switching genutzt. Weitere Details zu einigen der auf-
geführten NoCs sind in [53] aufgeführt. 

Die Art der Pufferung entscheidet, wie anfällig die NoCs gegenüber dem Phänomen des Head-of-
Line-Blocking(HOL)-Problems sind. Einige Ansätze verwenden Eingangspuffer bzw. Eingangs-
FIFOs, um die eintreffenden Pakete/Flits zwischenzuspeichern, andere benutzen diese Speicherele-
mente im Ausgang. Besonders flächenintensiv sind zumeist die Varianten, die sowohl Ein- als auch 
Ausgänge mit Speicher ausrüsten. Dies schlägt sich dann allerdings positiv auf die Performanz nie-
der. Die Realisierung des Kreuzschienenverteilers innerhalb des Routers kann zum einen vollstän-
dig (voll) sein. In diesem Fall können alle virtuellen Kanäle (VC), die der Router zur Verfügung 
stellt, direkt zugewiesen werden, d. h. die Anzahl der Ein-/Ausgangsports des Kreuzschienenvertei-
lers ist gleich der Zahl der virtuellen Kanäle m multipliziert mit der Anzahl der Routerports n. Zum 
anderen kann ein Multiplexer eingesetzt werden, der die jeweiligen Verbindungen arbitriert hers-
tellt. Hierdurch entsteht ggf. ein Performanznachteil, allerdings ist die benötigte Fläche für Verbin-
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dungsleitungen geringer. Beim multiplexerbasierten Kreuzschienenverteiler entspricht die Anzahl 
der Ein- und Ausgangsverbindungen jeweils n. Diese Art der Realisierung eignet sich speziell für 
Implementierungen, die eine hohe Anzahl von virtuellen Kanälen erlauben [54].  

Tabelle 2-2: Charakteristika ausgewählter On-Chip-Netzwerke 

Netzwerk/ 
Router Topologie Kommuni-

kationskanäle 

Switching-/ 
Routing-
Strategie 

Pufferung Kreuzschienen-
verteiler 

Fluss-
kontrolle VC VC-Auswahl QoS-

Unterstützung 

Kavaldijev 
[55] 2D-Gitter NA 

Wormhole 
Source 

Input 
Queue 

Voll NA 4 TDM Ja 

QNoC  
[56] 

2D-Gitter 
regulär oder 

irregulär 

16 Datenbit 
(parametrierbar) 
+10 Kontrollbit 

Wormhole 
XY 

Input 
Queue 

Voll Credits 4 
Priorität und 

Puffer-
Verfügbarkeit 

Ja 

Dally 
[57] 

2D-gefalteter 
Torus 

256 Datenbit 
+38 Kontrollbit 

Wormhole 
XY 

Source 

Input 
Queue +1 

Output 
Position 

Multiplexer Credits 8 NA Ja 

Marescaux 
[58] 

2D-Torus 
16 Datenbit 

+3 Kontrollbit 
Wormhole 

XY 
2 Output 
Positions 

Multiplexer Handshake 2 TDM Ja 

Xpipes  
[59] 

Variabel (zur 
Entwurfszeit) 

32, 64 oder 128 
Bits 

Wormhole 
Street Sign 

Output 
Queue 

Multiplexer Handshake parametrierbar Priorität Nein 

Æthereal 
[60] 2D-Gitter 32 Bits 

Circuit 
Switching 

(GT) Worm-
hole Source 

(BE) 

Output 
Queue 

NA NA 3 Priorität Ja 

MediaWorm 
[54] 

Nicht zuord-
nungsf. 

NA Wormhole 
Input und 
Output 
Queue 

Multiplexer NA 2 Virtuelle Uhr Ja 

Hermes 
NoC  
[53] 

2D-Gitter 
16 Datenbit 

(parametrierbar) 
+6 Kontrollbit 

Wormhole 
XY / partiell 

adaptiv 

Input 
Queue 

Voll Credits 2-4 TDM-adaptiv Nein 

MANGO 
[48] 

2D-Gitter 
Clockless 

32 Datenbit 
+5 Kontrollbit 

GS und BE  
XY 

Output 
Queue 

Multiplexer 
Handshake 
/ Credits 

8 Priorität Ja 

SPIN  
[50] Fat Tree 

32 Datenbit 
+4 Kontrollbit 

Wormhole, 
adaptiv 

Input und 
Output 
Queue 

Voll 
Handshake 
/ Credits 

parametrierbar NA Ja 

Nostrum 
[46] 2D-Torus NA 

Deflective 
(Hot-Potato) 

Routing 
Wormhole 

NA NA Credits parametrierbar TDM Ja 

GigaNoC 

2D-Gitter 
regulär oder 

irregulär 
2D-Torus 

Variabel (zur 
Entwurfszeit) 

64 Datenbit 
(parametrierbar) 
+29 Kontrollbit 

Wormhole 
XY / 

adaptiv d. 
Routingtabelle 

Input 
Queues, 
Output 
Queue 

Multiplexer Handshake 
2 / 

parametrierbar 

Variabel / 
tabellen-
basiert 

Vorgesehen, 
z. Zt. nicht 

implementiert 

Die Flusskontrolle ist besonders bei VC-basierten NoCs ein weiteres Merkmal zur Differenzierung. 
Bei creditbasierter Flusskontrolle halten die Router Zähler für die zur Verfügung stehende Menge 
an Pufferspeicher vor. Sind keine Pufferressourcen mehr verfügbar, so werden eingehende Pake-
te/Flits abgelehnt und dem Sender der Credit-Stand des Empfängers über Benachrichtigungskanäle 
bei freiem Pufferspeicher mitgeteilt [22]. Bei der Handshake-Flusskontrolle wird dem Sender sei-
tens des Empfängers per dedizierter Leitung oder Protokollpaket signalisiert, ob das empfangene 
Paket verarbeitet werden kann oder verworfen wird. Hardwareseitig bedeutet dies deutlich weniger 
Aufwand, allerdings ist dieses Verfahren nicht so effizient wie das creditbasierte, da ggf. erfolglose 
Übertragungen stattfinden oder Pufferspeicher unnötig lang belegt bleiben. Zudem muss sendersei-
tig auf eine Bestätigung (Acknowledge) gewartet werden.  

Die nächsten drei Spalten von Tabelle 2-2 enthalten VC-spezifische Merkmale. Zunächst wird die 
Anzahl der möglichen virtuellen Kanäle pro Router angegeben, in der Folgespalte der Zuwei-
sungsmodus. Beim GigaNoC sind virtuelle Kanäle vorgesehen, deren Anzahl parametrisierbar ge-
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halten ist. Sie können zum einen über die Auswahl der Routingstrategie eingerichtet werden, zum 
anderen erlauben die Kommandoflits des GigaNoCs eine höherpriore Verarbeitung im Vergleich zu 
den Datenflits (vgl. Abschnitt 4.2.2.1), so dass man derzeit über eine relativ einfache Variante mit 
zwei virtuellen Kanälen verfügt. Durch eine zusätzliche Auswertung von Tabelleneinträgen kann 
dieser Wert bei Bedarf angepasst werden. Dies gilt ebenso für die Unterstützung bezüglich ver-
schiedener Qualitätsklassen der Kommunikation (Quality-of-Service / QoS). Die Mehrzahl der an-
deren NoCs sieht eine Unterstützung von Qualitätsklassen bei der Kommunikation vor. Beim Gi-
gaNoC kann dies in Abhängigkeit von der Anwendung abgewogen werden. Die Entscheidung über 
die Auswahl der VCs wird teilweise durch Zeitmultiplex (Time Division Multiplex / TDM) oder aber 
durch Prioritäten-Vergabe, wie es z. B. beim Internet-Protokoll [61] vorgesehen ist, getroffen. Beim 
MediaWorm-NoC wird die Allokation der virtuellen Kanäle mit Hilfe einer virtuellen Uhr geregelt. 
Eine globale Zeit im Zusammenhang mit einem individuellen, paketzugeordneten Zeitinkrement 
(Vtick) und einer Ankunftszeit (AuxVC) dient zur Kanalvergabe. Je kleiner der Wert von Vtick ist, 
desto schneller muss das Paket weitergeleitet werden. 

2.3.4 Anforderungen an On-Chip-Netzwerke 

Die sich ergebenden wesentlichen Anforderungen an On-Chip-Netzwerke, gilt es je nach Einsatz-
zweck und unter Berücksichtigung aller Randbedingungen, gewichtet miteinander in Beziehung zu 
setzen und eine möglichst optimale Konstellation zu wählen. Neben den für Systementwürfe be-
kannten Kriterien wie Performanz (aufgeteilt in Durchsatz, Latenz und Jitter), Leistungsaufnahme, 
Flächenbedarf und Kosten, sind weitere Faktoren von großer Relevanz. So ist speziell für große 
Systeme die Skalierbarkeit oder auch die Unterstützung unterschiedlicher Topologien sehr wichtig. 
Je nach Leistungsfähigkeit der Verarbeitungseinheiten (vgl. Abschnitt 2.4) kann auch der Funkti-
onsumfang des NoCs von Bedeutung sein. Bei nicht so leistungsfähigen Verarbeitungseinheiten 
kann ein NoC diese durch eigene Intelligenz entlasten (Communication Off-load Engines) und so 
die Gesamtperformanz des Systems steigern. Ebenso können Merkmale wie Quality of Service oder 
Fehlertoleranz in dem jeweiligen Anwendungsszenario von besonderer Wichtigkeit sein. Sehr posi-
tive Eigenschaften für eine vielseitige Verwendung eines On-Chip-Netzwerks sind Flexibilität bzw. 
Robustheit gegenüber sich ändernden Lastaufkommen bzw. Bandbreitenansprüchen einzelner 
Netzwerkpfade. In Abbildung 2-16, Abschnitt 2.7 werden die allgemeinen und NoC-spezifischen 
Anforderungen und ihre gegenseitigen Wechselwirkungen in einer Merkmalsmatrix für Chip-
Multiprozessoren gegenüber gestellt. Als weiterführende Literatur zu On-Chip-Netzwerken sei auf 
die Beiträge [22][26][41][53][62][63][64] verwiesen, die tiefer gehende Details über On-Chip-
Netzwerke liefern. 

2.4 Eingebettete Verarbeitungseinheiten 

Neben der Kommunikationsinfrastruktur stellen die eingebetteten Verarbeitungseinheiten die maß-
gebliche funktionale Einheit eines massiv-parallelen eingebetteten Systems dar. Ihre Aufgabe ist es, 
die zur Verfügung gestellten Daten möglichst effizient zu verarbeiten und in spezifizierter Form den 
Ausgangsschnittstellen zur Verfügung zu stellen.  
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2.4.1 Anforderungen an eingebettete Verarbeitungseinheiten 

Im Folgenden soll kurz auf die Anforderungen bzw. besonderen Merkmale von eingebetteten Ver-
arbeitungseinheiten (PEs) eingegangen werden. Wobei auch hier die Performanz, die Leistungsauf-
nahme und die benötigte Chipfläche bzw. die Kosten zu den allgemeinen Merkmalen bzw. Anfor-
derungen zählen, die je nach Anwendungsgebiet unterschiedliche Stellenwerte haben. Ebenso ist 
die Flexibilität bzw. die Art und Weise der Programmierbarkeit einer Verarbeitungseinheit je nach 
Einsatzzweck von entscheidender oder weniger bedeutender Rolle. Verarbeitungseinheiten z. B. in 
Funkweckern sind aufgrund des sich nicht ändernden Einsatzzweckes, des hohen Preisdrucks und 
der limitierten Ressourcen sehr unflexibel, aber zugleich klein und energieeffizient realisiert. Bei 
zentralen Verarbeitungseinheiten in PDAs hingegen spielt der Preis im Gegensatz zu Flexibilität 
und Leistungsfähigkeit eine untergeordnete Rolle, da die Anwendungsgebiete dieser Geräte sehr 
variabel ausfallen und zugleich hohe Leistungsansprüche haben können. In diesem Szenario kommt 
zusätzlich die Wiederverwendbarkeit zum Tragen, da Softwareentwicklungen auch für zukünftige 
Architekturen verwendet werden sollen. Besonders für komplexe Systeme ist die Verifizierbarkeit 
der Funktionalität von großer Bedeutung. Dies setzt eine ausgereifte, komfortable und umfangrei-
che Entwicklungsumgebung mit guten „Debug-Möglichkeiten“ voraus. Im Hinblick auf die Kosten 
spielen ebenfalls die von der Verarbeitungseinheit benötigten Ressourcen, wie z. B. Programmspei-
cher und Kommunikationsschnittstellen eine nicht zu vernachlässigende Rolle. Abbildung 2-16, 
Abschnitt 2.7 zeigt u. a. wesentliche Anforderungen an eingebettete Verarbeitungseinheiten, die es 
bei der Konzeption eines Systems zu berücksichtigen und gegeneinander abzuwägen gilt. Sich er-
gebende Wechselwirkungen mit anderen Anforderungen bei Veränderungen einzelner Merkmale 
können anhand von Trendsymbolen abgelesen werden.  

2.4.2 Klassen eingebetteter Verarbeitungseinheiten 

Abbildung 2-14 zeigt Varianten eingebetteter Verarbeitungseinheiten und gibt eine qualitative Ein-
stufung ihrer Eigenschaften bezüglich ihrer Performanz, ihrer Flexibilität und der Zeit bis zur 
Marktreife bzw. Verfügbarkeit (vgl. Kapitel 3). Mit der Zeit bis zur Verfügbarkeit ist bei anwen-
dungsspezifischen Hardwareeinheiten wie den rekonfigurierbaren FPGA-Zellen und den speziali-
sierten, meist Standardzellen-basierten Hardwarebeschleunigern der Entwurf und die Programmie-
rung bzw. Fertigung mit berücksichtigt. Bei den programmierbaren Prozessoren (Central Proces-
sing Unit / CPU ), Co-Prozessoren (Co Processing Unit / Co-PU) und anwendungsspezifischen 
Prozessoren (Application Specific Instruction Set Processor / ASIP) wird eine Abstufung bzgl. der 
Einfachheit ihrer Programmierung vorgenommen. Die Größe der Kugeln spiegelt den ungefähren 
Flächenbedarf in Bezug auf eine vergleichbare Performanz der einzelnen Verarbeitungseinheiten 
wieder. Die dargestellten Werte dienen zur groben Einstufung der durchschnittlichen Eigenschaften 
und können mitunter für Spezialfälle abweichen. 

Zu den hier vorgestellten Verarbeitungseinheiten zählen die Universal-Prozessoren (CPU), die mit-
tels einer Hochsprache sehr flexibel oder mit Hilfe einer maschinennahen Sprache bzgl. der Perfor-
manz zumeist effizienter, aber einhergehend mit deutlich größerem Zeitaufwand programmiert 
werden können. Implementierungen einer geforderten Funktionalität gestalten sich besonders bei 
Verwendung einer Hochsprache und der entsprechenden Werkzeuge wie Compiler und Linker etc. 
sehr schnell. Auch die Verifikation der programmierten Funktionalität wird häufig durch eine Viel-
zahl von Hilfswerkzeugen oder durch integrierte Entwicklungsumgebungen komfortabel unters-
tützt. 
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Abbildung 2-14: Entwurfsraum eingebetteter Verarbeitungseinheiten 

Zur Performanzsteigerung von Universal-Prozessoren werden häufig spezialisiertere Coprozessoren 
eingesetzt, die über einen eingeschränkten, zumeist anwendungsspezifischen Befehlssatz verfügen. 
Je nach Unterstützung durch die Entwicklungsumgebung muss bestehender Code umgeschrieben 
bzw. erweitert werden, um die volle Funktionalität solcher Zusatzprozessoren ausnutzen zu können. 
Dadurch erhöht sich bei ihrer Verwendung die Zeitspanne, bis eine zu realisierende Anwendung 
verfügbar ist. Sie benötigen zwangsläufig eine CPU für übergeordnete Kontrollaufgaben. Aufgrund 
ihrer zumeist eingeschränkten Funktionalität sind sie von der Fläche meist kleiner als der eigentli-
che Prozessor, erzielen dennoch eine höhere Performanz in ihrem Einsatzbereich. 

Anwendungsspezifische Prozessoren (Application-Specific Instruction Set Processors / ASIPs) 
grenzen sich von den Universal-Prozessoren in der Art ab, dass sie speziell für ausgewählte An-
wendungsgebiete konzipiert sind. Deshalb ist ihre Performanz höher, ihre Flexibilität aufgrund ei-
nes eingeschränkten / spezialisierten Befehlssatzes und ggf. weniger stark ausgeprägter Unterstüt-
zung von Hochsprachen geringer als die der Universal-Prozessoren. Ihre Programmierung gestaltet 
sich zumeist komplexer, so dass die Zeitspanne bis zur Verfügbarkeit einer Lösung in der Regel 
größer ausfällt als bei Universalprozessoren, aber mit einer höheren Performanz einhergeht. Zu der 
Klasse der ASIPs lassen sich auch Netzwerkprozessoren [65] zählen, die für spezielle Aufgaben bei 
der Datenverarbeitung in Computernetzen eingesetzt werden, vgl. Kapitel 7 und 8. 

Eingebettete rekonfigurierbare Hardware, auch FPGA(Field Programmable Gate Array)-Blöcke 
genannt, lassen sich durch Formulierungen in Hardwarebeschreibungssprachen und anschließender 
Synthese auf die Zieltechnologie in ihrer Funktionalität beliebig oft konfigurieren. Sie bieten den 
Vorteil der Möglichkeit von massiv paralleler Verarbeitung bei Betriebsfrequenzen, die derzeit be-
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reits über 500 MHz liegen können [66]. Die Realisierung und Verifikation wird ebenfalls durch 
ausgereifte Werkzeugketten unterstützt, gestaltet sich allerdings vom Zeitaufwand in der Regel um-
fangreicher als beim reinen Softwareentwurf. Dafür kann bei vielen Anwendungen aufgrund der 
realisierbaren Parallelität eine respektable Performanz erzielt werden. Die Fläche ist hingegen auf-
grund der flexibleren Strukturen höher anzusetzen. 

Die zumeist schnellste und zugleich energieeffizienteste Lösung bei geringster Fläche sind die spe-
zialisierten Hardwarebeschleuniger (HW-Acc). Sie bieten jedoch am wenigsten Flexibilität und 
benötigen die längste Implementierungszeit. Sie eignen sich für Aufgaben, deren Spezifikation sich 
nicht mehr ändert und die besonders viel Rechenleistung ohne große Flexibilitätsanforderungen 
verlangen. Die Implementierung erfolgt ebenfalls durch Modellierung in einer Hardwarebeschrei-
bungssprache und anschließende Abbildung auf die entsprechende Zieltechnologie, z. B. FPGA- 
oder Standardzellentechnologie. Bei der letzteren Zieltechnologie ist der Aufwand deutlich höher 
und damit die Zeit bis zur Verfügbarkeit verglichen mit den anderen Varianten am längsten. 

Letztendlich sollte von Fall zu Fall abgewogen werden, welche Art von Verarbeitungseinheit für 
welchen Zweck zum Einsatz kommt. Wünschenswert ist eine globale Kommunikationsinfrastruk-
tur, die eine problemlose Anbindung aller Varianten von eingebetteten Verarbeitungseinheiten zu-
lässt und für den Systemprogrammierer leicht ansprechbar integriert. 

Hardwarebeschleuniger, FPGA-Blöcke und anwendungsspezifische Prozessoren sind Einheiten, die 
zumeist kunden- bzw. anwendungsspezifisch realisiert werden. Sie finden Einsatz in sehr einge-
schränkten Anwendungsklassen mit besonderen Anforderungen an die Leistungsfähigkeit oder an 
die Kosten. Eingebettete Universal-Prozessoren zusammen mit ihren Coprozessoren bzw. Copro-
zessorschnittstellen sind nicht ausschließlich für Kontrollaufgaben geeignet, sondern werden zusätz-
lich für ein großes Spektrum von Anwendungen eingesetzt. Neben den bereits verifizierten Hardwa-
reentwürfen versprechen ausgereifte Entwicklungsumgebungen zudem eine kurze Entwurfszeit des 
Gesamtsystems. Detaillierte Analysen zu den unterschiedlichen eingebetteten Verarbeitungseinhei-
ten in Bezug auf die GigaNetIC-Architektur werden in den Kapiteln 6, 7 und 8 für dedizierte An-
wendungen aus dem Netzwerkbereich vorgestellt. 

Im Folgenden wird ein Überblick über eine Auswahl der verbreitetsten Prozessorkerne und ihre 
wesentlichen Merkmale gegeben. Selbst wenn für sehr rechenlastige Anwendungen spezielle 
Hardware Einsatz findet, so werden Universalprozessoren sehr häufig für die bereits erwähnten 
übergeordneten Kontrollaufgaben und Schnittstellenfunktionen eingesetzt, so dass aktuelle SoCs 
zumeist mehrere Prozessorkerne integrieren. 

2.4.3 Charakteristika von eingebetteten Prozessoren 

Betrachtet man die Kopplung Speicher und Prozessorkern, unterscheidet man bei den eingebetteten 
Prozessoren im Wesentlichen zwischen der Von-Neumann-Architektur und der Harvard-
Architektur. Bei der Von-Neumann-Architektur werden Daten und Instruktionen über einen ge-
meinsamen Bus transferiert. Zunächst werden die Instruktion und im Anschluss die benötigten Da-
ten geholt. Diese sequentielle Vorgehensweise kann eine gewisse Geschwindigkeitsreduktion be-
deuten, da der Prozessor ggf. erst auf die Bereitstellung der benötigten Daten warten muss. Die 
Entwicklung der letzten Jahre hat gezeigt, dass die Geschwindigkeit von Prozessoren schneller zu-
nimmt als die der Speicher und Bussysteme [67]. Man spricht in diesem Zusammenhang auch von 
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dem „Von-Neumann-Flaschenhals“, dessen Effekt durch Einsatz von Caches, also schnellen Zwi-
schenspeichern in enger räumlicher Nähe zum Prozessorkern, verringert werden kann.  

Bei der Harvard-Architektur sind getrennte Busse für Daten und Instruktionen vorgesehen. Hier-
durch wird der Ablauf nicht so stark wie bei der Von-Neumann-Architektur durch die limitierenden 
Ressourcen Bus und Speicher beeinträchtigt. Daten und Instruktionen können gleichzeitig geladen 
werden. Aus Sicherheitsgründen ist eine strikte Trennung zwischen Daten und Instruktionen eben-
falls empfehlenswert, da so die Gefahr von Schadcode, der zu Pufferüberläufen führt, reduziert 
wird. Allerdings benötigt die Implementierung der Harvard-Architektur zusätzliche Chipfläche für 
die Realisierung der beiden Bussysteme und zusätzlich benötigter Kontrolllogik. 

Bezüglich des Befehlssatzes von Prozessoren wird allgemein zwischen RISC(Reduced Instruction 
Set Computer)- und CISC(Complex Instruction Set Computer)-Architekturen unterschieden. Die 
RISC-Prozessor-Architektur ist gekennzeichnet durch einen relativ geringen Befehlsvorrat, daher 
auch der Name Reduced Instruction Set Computer. Wesentliche Eigenschaften dieser Architektur 
sind vor allem: Die enthaltenen Befehle sind weniger spezialisiert, besitzen nahezu alle die gleiche 
Länge und können meist in einem Taktzyklus abgearbeitet werden, was u. a. durch Pipelining er-
reicht wird. RISC-Prozessoren sind zumeist als Load-Store-Architektur realisiert, d. h. nur Befehle 
aus der Load/Store-Gruppe können auf den Speicher zugreifen. Alle weiteren Befehle arbeiten auf 
Registerinhalten. RISC-Kerne verfügen deshalb zumeist über eine größere Anzahl von Registern, 
da dies die beschränkten Möglichkeiten der Speicherzugriffe seitens der Befehle kompensieren 
hilft. 

CISC-Prozessor-Architekturen verfügen im Gegensatz zu RISC-CPUs über einen weitaus größeren 
Befehlsvorrat. CISC-Befehle sind in der Regel in ihrer Funktion deutlich komplexer als RISC-
Befehle. Viele der Befehle sind hochgradig spezialisiert, benötigen jedoch meist mehrere Taktzyk-
len. Es stehen mehr Adressierungsmöglichkeiten als bei RISC-Architekturen zur Verfügung. Im 
Gegensatz zu den meist „festverdrahteten“ Funktionen der RISC-Kerne liegt die Funktionalität ei-
nes CISC-Kerns häufig als Microcode in einem internen Speicher des Prozessors vor. Dieser wird 
dann in einzelne einfachere Befehle übersetzt bzw. enthält diese direkt.  

Wesentliche Vorteile der RISC-Architektur gegenüber der CISC-Architektur beim Einsatz in einge-
betteten Systemen sind die geringere Komplexität der Hardware und damit die geringere Fläche als 
auch die geringere Leistungsaufnahme. Zudem lassen sich höhere Taktraten erzielen. Die einges-
parte Fläche kann ggf. für anwendungsspezifische Hardwarebeschleuniger verwendet werden. Die 
CISC-Architektur zeichnet sich durch die makroartigen Befehle aus, die dem Softwareentwickler 
bei der Programmierung auf Assemblerebene viel Arbeit abnehmen können. Geschieht die Prog-
rammierung hingegen in einer Hochsprache, die mittels eines Übersetzers, im Weiteren auch Com-
piler genannt, auf den Prozessor übertragen wird, so entfällt dieser Vorteil. 

2.4.4 Methoden zur Erhöhung der Leistungsfähigkeit von Prozessoren 

Methoden, die auf Prozessorebene die Performanz und damit verbunden auch meist die Ressour-
ceneffizienz des Systems steigern können, gründen sich häufig auf das Ausnutzen von Parallelität. 
Hierbei kann zwischen der feingranularen Parallelität auf Instruktionsebene, man spricht hier auch 
von Instruction-Level Parallelism (ILP), und der grobgranularen Parallelität auf Funktionsebene, 
auch Task-Level Parallelism bzw. Thread-Level Parallelism (TLP) genannt, unterschieden werden. 
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ILP lässt sich unterschiedlich erfolgreich ausnutzen. Wie erfolgreich, also wie stark die Beschleuni-
gung ausfällt, hängt stark von der Anwendung ab. Allerdings trägt auch die Leistungsfähigkeit des 
Compilers zum Erfolg bei. Je nach Fähigkeit des Erkennens von Parallelität auf Instruktionsebene 
seitens des Compilers kann ein Programmablauf mehr oder weniger stark beschleunigt ausgeführt 
werden. Der Compiler versucht hierbei durch ein Überlappen bzw. auch ein Vertauschen der Rei-
henfolge der Befehle die Ressourcen der Hardware zeitlich besser einzusetzen. 

Zu den Techniken, die auf Basis der Mikroarchitektur eingesetzt werden, um ILP auszunutzen, ge-
hören: Instruktionspipelining, superskalare Ausführung, Out-of-Order-Verarbeitung, Register-
Renaming, spekulative Ausführung, Branch Prediction und Multithreading. Durch Instruktions-
pipelining wird eine teilweise Überlappung der Ausführung von Instruktionen ermöglicht. Hier-
durch kann u. a. die Taktfrequenz erhöht werden. Als Steigerung kann die superskalare Ausfüh-
rung eingesetzt werden, bei der parallele Einheiten benachbarte Instruktionen ausführen, deren 
Ausführung auch wieder im Pipelining-Verfahren stattfinden kann. Eine weitere Technik verwendet 
die Out-of-Order-Verarbeitung. Bei dieser Methode nutzt man die Existenz von Programmcode 
aus, der in keiner Datenabhängigkeit zu anderen Programmsequenzen steht, so dass dieser parallel 
ausgeführt werden kann. Die Out-of-Order-Verarbeitung ist orthogonal zum Instruktionspipelining 
und zur superskalaren Ausführung zu sehen und kann deshalb auch mit beiden Techniken kombi-
niert eingesetzt werden. Das Arbeiten mit Schattenregistern, auch Register-Renaming genannt, er-
möglicht die Vermeidung von Konflikten bei der Out-of-Order-Verarbeitung, was durch diese ver-
steckten internen Register ermöglicht wird. Die spekulative Ausführung von zukünftigen, wahr-
scheinlichen Codesequenzen mit möglichen Eingangsdaten zählt ebenso zu den Techniken zur Per-
formanzsteigerung wie die Sprungvorhersage (Branch Prediction). Bei dieser werden im Vorfeld 
mögliche Ergebnisse von zukünftigen Sprungadressen berechnet, um den potentiellen Programmab-
lauf parallel zur derzeitigen Operation spekulativ fortzusetzen. Die hier vorgestellten Techniken 
sind sowohl in Hardware realisierbar als auch mögliche Einsatzgebiete von Compilern. 

Bei der Ausnutzung von Thread-Level-Parallelität muss die Anwendung in mehrere Funktionen 
bzw. Threads einteilbar sein, die nebenläufig abgearbeitet werden können. In diesem Zusammen-
hang spricht man auch von Multithreading. Dieses Verfahren nutzt eine gröbere Granularität als die 
des ILP aus. Die immer größer werdenden Wartezeiten auf Speicher oder andere Systemressourcen 
können z. B. durch das Ausführen eines anderen Threads sinnvoll vom Prozessor genutzt werden. 
Dieses „neue“ Programmierparadigma führt zu neuen Ansätzen bei der Anwendungsprogrammie-
rung, bei der nicht mehr nur durch schnellere Prozessoren ein Leistungszuwachs erzielt wird, son-
dern zusätzlich durch Ausnutzen inhärenter Anwendungsparallelität und das damit verbundene Ein-
führen von Threads. 

2.4.5 Beispiele eingebetteter Prozessorkerne 

Im Folgenden werden einige relevante, aktuelle eingebettete Prozessorkerne vorgestellt. Tabelle 2-3 
stellt wesentliche Merkmale dieser eingebetteten Prozessorkerne gegenüber. Mit ihrer Hilfe lässt 
sich ein erster Eindruck über die Einordnung der GigaNetIC-Prozessorarchitektur gewinnen, deren 
Aufbau in Abschnitt 4.3 näher beschrieben wird. Die aufgezeigten Synthesewerte können in Kapitel 
8 nachvollzogen werden. Zu den hier aufgetragenen Charakteristika zählen u. a. die maximale Ar-
beitsfrequenz, die stark abhängig von Technologie und Architektur respektive Anzahl der Pipeline-
stufen sein kann: von 33 MHz beim MCore in 360-nm-Technologie von Freescale mit nur drei Pi-
pelinestufen bis zu 1000 MHz beim IBM Power464 in 90-nm-Technologie mit siebenstufiger Pipe-
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line. Die typische Leistungsaufnahme variiert von 0,05 mW/MHz beim GigaNetIC-N-Core bis hin 
zu 0,58 mW/MHz beim MIPS32 M24K und liegt damit um zwei bis drei Größenordnungen unter 
der heutiger Desktop-CPUs (vgl. Abschnitt 8.3.1). Der Flächenbedarf (die Die-Größe) des Prozes-
sorkerns bzw. des Kerns mit zusätzlichem Speicher in Zusammenhang mit der Technologie und der 
zu fertigenden Stückzahl entscheidet über die Herstellungskosten und damit auch über den Preis des 
Endprodukts und ist daher ebenfalls von großer Bedeutung für das Gesamtsystem. Die Größen sind 
abhängig von der Technologie, der Menge des integrierten Speichers und der zusätzlich integrierten 
Peripherie. Die angegebenen Daten liegen hier zwischen 0,1 mm² beim ARM7TDMI-S, gefertigt in 
90-nm-Technologie, und 5,8 mm² beim IBM Power 464, dem zugleich leistungsfähigsten Prozessor 
der dargestellten Auswahl. Die Performanz der Prozessoren wird in dem Bewertungsmaß (vgl. De-
finition 4) DMIPS4 [68] angegeben. Dieser bereits 1984 von WEICKER vorgestellte Benchmark gilt 
zwar seit einiger Zeit für die Bewertung von Desktop-CPUs als veraltet, wird aber im Bereich der 
eingebetteten Prozessorkerne immer noch zur Charakterisierung der Leistungsfähigkeit verwendet. 
Der Dhrystone-Benchmark ist ein synthetischer Benchmark, der die Leistungsfähigkeit bzgl. Inte-
ger- und Stringoperationen der Rechnerarchitektur bewertet. Er ist u. a. stark abhängig von der 
Architektur, vom Compiler, dessen Codeoptimierung, dem Linker, und der eingesetzten Cache-
architektur. Dies spiegelt sich auch in den aufgetragenen Werten wider. Der N-Core mit einer sehr 
einfach gehaltenen Struktur erreicht nur 0,51 DMIPS/MHz, wohingegen der flächengrößte Prozes-
sorkern Power 464 von IBM auf einen nahezu vierfach so hohen Effizienzwert (vgl. Definition 38) 
von 2 DMIPS/MHz kommt. 

Der ARM11MP-Prozessorkern ist, ebenso wie der GigaNetIC-N-Core-Prozessorkern multiprozes-
sorfähig, allerdings nur konfigurierbar mit bis zu vier Prozessoren, im Gegensatz zum GigaNetIC-
Prozessorcluster, der derzeit bis zu acht Prozessoren als eng-gekoppeltes MP-System unterstützt 
(vgl. Kapitel 4). Für die Realisierung eines massiv-parallelen Chip-Multiprozessorsystems ist eine 
kleine Die-Größe der Prozessorkerne von besonderer Bedeutung, vgl. Kapitel 8.  

Zu den bedeutendsten Prozessorkernen in eingebetteten Systemen zählen derzeit die Produkte der 
Firmen ARC, ARM, Freescale, Hitachi, MIPS und Tensilica. Im Bereich der FPGA-Softcores, also 
der für FPGAs optimierten Prozessorkerne, sind der MicroBlaze von Xilinx, wie auch der NiosII 
von Altera zu nennen, deren Die-Größen aufgrund der abweichenden Zieltechnologie in  

Tabelle 2-3 nicht aufgelistet sind. Wichtig zu erwähnen ist außerdem, dass eine Vielzahl weiterer 
Firmen als Lizenznehmer der vorgestellten Architekturen darauf aufbauende, eigene Produkte an-
bieten. Derzeit wird der Markt der eingebetteten Mikroprozessoren mit über 80 % Marktanteil von 
ARM dominiert. Mehr als 2,3 Milliarden ARM-basierte Mikroprozessordesigns werden derzeit 
jährlich gefertigt [69]. Weitere 200 Millionen integrierte Schaltkreise werden mit ARC-basierten 
Mikroprozessoren pro Jahr gefertigt [70]. Bei eingebetteten Mikrocontrollern, also Systemen, die 
zusätzlich Speicher, Peripherie und erweiterte Schnittstellen aufweisen, wird der Markt gegenwärtig 
unter 40 Herstellern, die insgesamt mit mehr als 50 Architekturvarianten vertreten sind, aufgeteilt. 

                                                 

4 DMIPS steht für Dhrystone MIPS und beziffert die Anzahl erreichter Dhrystone-Benchmark-Durchläufe die eine 

Verarbeitungseinheit pro Sekunde bewältigt, geteilt durch 1757. 1757 bezeichnet die Anzahl an Durchläufen, die eine 

VAX11/780 Maschine erzielte. Diese galt als eine Ein-MIPS(Millionen Instruktionen pro Sekunde)-Maschine. 
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Tabelle 2-3: Kenndaten ausgewählter eingebetteter Prozessorkerne 

Hersteller Typ 
CPU-

Frequenz 
[MHz] 

Pipelinestufen DMIPS 
Typische Leis-
tungsaufnahme 

[mW/MHz] 

Die-Größe 
[mm²] 

Technologie 
[nm] 

Speicher 
Flash / SRAM 

Altera NiosII 200 6 250 k. A k. A. 65 - / - 

ARC ARC 605 400 5 520 0,06 0,31 130 - / - 

ARC ARC 625D 350 5 455 0,08 0,71 130 - / - 

ARC ARC 710D 533 7 800 0,16 0,93 130 - / - 

ARM ARM7TDMI-S 245 3 220 0,09 0,1 90 - / - 

ARM 966E-S 470 5 517 0,11 0,38 90 - / - 

ARM 
ARM11MP  
(mit Cache) 

620 8 650 0,43 2,54 130 - / 16K+16K 

ARM 
ARM11MP  

(ohne Cache) 
620 8 k. A. 0,37 1,8 130 - / - 

Freescale M-Core 33 3 31 0,41 2,2 360 - / - 

IBM Power 405 400 5 608 0,19 2,0 90 0 / 32K 

IBM Power 464-H90 1000 7 2000 0,53 5,8 90 0 / 64K 

MIPS Technologies MIPS32 M4K Core 240 5 367 0,05 0,4 130 - / - 

MIPS Technologies MIPS32 M24K Core 625 8 900 0,58 2,8 130 - / - 

Renesas SH4-202 266 5 400 0,06 0,93 130 - / - 

Tensilica Diamond 108Mini 250 5 300 0,11 0,46 130 - / - 

Tensilica Diamond 570T 233 5 380 0,28 1,46 130 - / - 

Xilinx MicroBlaze 5.00 210 5 240 k. A k. A 65 - / - 

GigaNetIC N-Core 285 3 144 0,05 0,12 90 - / - 

GigaNetIC N-Core-Subsystem 285 3 144 0,2 0,96 90 - / 32K 

2.5 Speicher für eingebettete Systeme 

Der Speicher stellt neben der Kommunikationsinfrastruktur und den Verarbeitungseinheiten die 
dritte wichtige Hardwarekomponente für eingebettete parallele Systeme dar. Komplexe Systeme 
verfügen häufig nicht nur über eine Art Speicher, sondern verwenden eine besonders aufeinander 
abgestimmte Speicherstruktur. Dies liegt darin begründet, dass die einzelnen Speichervarianten un-
terschiedliche Eigenschaften und damit auch Vor- und Nachteile mit sich bringen, die es gilt mög-
lichst gut und an die potentielle Anwendung angepasst zu kombinieren.  

Abbildung 2-15: Speicher-Hierarchie bei Prozessorsystemen 

Als Grundregel lässt sich folgende Aussage treffen: Schneller Speicher benötigt viel Fläche und 
Energie, großer (im Sinne der Speicherkapazität) Speicher ist langsam und benötigt weniger Ener-
gie pro Bit. Eine effiziente Speicherhierarchie versucht die Vorteile beider Speicherarten nutzbar zu 
machen und maskiert bestenfalls deren Nachteile. Begünstigt werden diese Ansätze häufig durch 
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die Anwendungen selbst, die oft eine deutliche „Lokalität“ in ihren Daten und Instruktionen aufwei-
sen. Diese Lokalität wird u. a. auch besonders von schnellen Zwischenspeichern, den so genannten 
Caches (vgl. Abschnitt 4.4.2) ausgenutzt. Man unterscheidet zwischen räumlicher und temporaler 
Lokalität. Unter räumlicher Lokalität werden Zugriffe auf Daten bzw. Instruktionen verstanden, die 
in gleichen bzw. benachbarten Speicherbereichen liegen. Temporale Lokalität hingegen bezieht sich 
auf zeitlich nah aufeinanderfolgende Zugriffe auf gleiche Daten bzw. Instruktionen. Abbildung 2-15 
gibt Aufschluss über Kennwerte unterschiedlicher Speichervarianten und die sich hieraus ergebende 
Speicher-Hierarchie für Prozessorsysteme. 

Algorithmen sollten, wenn möglich, die Lokalität der Daten und Instruktionen ausnutzen bzw. so 
implementiert werden, dass möglichst effizient mit der vorgegebenen Speicher-Hierarchie gearbei-
tet werden kann. Z. B. kann die Verwendung mehrerer Threads helfen, Speicherlatenzen zu verde-
cken. Bei Multiprozessorsystemen ist normalerweise Kommunikation zwischen den Übergängen 
der einzelnen Hierarchiestufen bzw. zwischen verschiedenen Verarbeitungseinheiten notwendig. 
Für den Algorithmus ist in dieser Situation wichtig, abwägen zu können, wie teuer, im Sinne von 
Takten, die unterschiedlichen Speicherzugriffe bzw. die Kommunikation zu anderen Verarbeitungs-
einheiten und der Zugriff auf deren Speicher kommt. Das bedeutet, dass eine genauere Charakteri-
sierung dieser Zugriffszeiten für die spätere Anwendung und deren Realisierung von entscheidender 
Bedeutung sein kann. Allerdings sind hier Mittelwerte anzunehmen, da z. B. bei wahlfreiem Zugriff 
konkurrierende Anfragen mehrerer Verarbeitungseinheiten auftreten können. Vorteilhaft sind hier 
Simulationen im Vorfeld mit der Möglichkeit der Parametrisierung der einzelnen Komponenten 
unter Anwendung der vorgesehenen Zielapplikation, vgl. Kapitel 5. Ein auf diese Belange einges-
telltes Programmiermodell (vgl. Abschnitt 4.5) kann ebenfalls die Performanz des Gesamtsystems 
deutlich optimieren. 

2.5.1 Wesentliche Charakteristika von Speicherstrukturen 

Neben der in der Speicherhierarchie vorgestellten Einteilung in primäre, sekundäre und tertiäre 
Speicher, die durch die Distanz zur Verarbeitungseinheit definiert sind, gibt es weitere wichtige 
Merkmale für Speicher.  

Man unterscheidet zwischen flüchtigem und nicht-flüchtigem Speicher. Eine Eigenschaft, die be-
sagt, ob der Inhalt des Speichers erhalten bleibt, wenn er nicht mehr mit Spannung versorgt wird. 
Mit den immer geringer werdenden Zugriffszeiten auch für nicht-flüchtige Bausteine finden diese 
immer mehr Verwendung bei eingebetteten Systemen. Flüchtiger Speicher wird normalerweise nur 
für Primärspeicher eingesetzt, da er eine hohe Performanz bietet, allerdings auch permanent mit 
Spannung versorgt werden muss. Flüchtiger Speicher wiederum lässt sich unterteilen in die zwei 
Hauptgruppen, den statischen und den dynamischen Speicher. Statischer Speicher wird normaler-
weise mit sechs Transistoren pro Bit realisiert und muss durchgängig mit Spannung versorgt wer-
den. Dynamischer Speicher hingegen kann mit einem Transistor und einer Kapazität als speichern-
dem Element pro Bit realisiert werden. Bei diesem Speichertyp müssen allerdings die Speicherstel-
len periodisch aufgefrischt werden, was einen zusätzlichen Aufwand an Kontrolllogik bedeutet. 

Eine weitere Eigenschaft ist die Art und Weise, wie auf die Daten zugegriffen werden kann: Es 
wird grundsätzlich zwischen wahlfreiem und sequentiellem Zugriff unterschieden. Bei wahlfreiem 
Zugriff ist es möglich, beliebig oder in einem sehr großzügigen Rahmen auf Speicherzellen zuzug-
reifen. Bei sequentiellem Zugriff hingegen kann der Zugriff nur kontinuierlich in einer geordneten 
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Reihenfolge erfolgen. Ein weiteres Merkmal ist die Möglichkeit der Informationsänderung. Handelt 
es sich um einen reinen Lesespeicher, ROM (Read Only Memory), einen einmalig beschreibbaren 
Speicher, Write Once Read Many (WORM), oder aber einen einmalig programmierbaren Speicher 
(One-Time-Programmable / OTP), der z. B. schon bei der Fertigung programmiert wird. Speicher, 
der wahlfreien Zugriff gestattet, RAM (Random Access Memory), wird zusätzlich nach seiner Tech-
nologie bzw. Realisierungsform näher unterschieden: SRAM, DRAM, DDRAM, VRAM und weitere. 
Die Möglichkeiten der Adressierung sind ebenfalls von Bedeutung. So kann zwischen numerisch 
adressiertem Speicher, bei dem jede Information mit einer numerischen Adresse erreichbar ist, und 
inhaltsbasierter Adressierung unterschieden werden. Bei der inhaltsbasierten Adressierung, auch 
Content Addressable Memories (CAM) genannt, werden für die Speicherinhalte mittels einer Streu-
wertfunktion, auch als Hash-Funktion bezeichnet, fingerabdruckähnliche Identifizierungsmerkmale 
mit geringem Speicherbedarf erzeugt, mit deren Hilfe später die abgespeicherte Information wieder 
abgerufen werden kann. Diese Art der Adressierung ist besonders für spezielle Speicher in Netz-
werkkomponenten von großer Bedeutung (vgl. Abschnitt 6.5). Die Realisierung kann in Software 
unter Verwendung von herkömmlichem Speicher erfolgen. Diese Variante ist kostengünstig, aber 
langsam. Oder aber die Funktionalität wird durch Implementierung spezieller Hardware, die vor die 
Speicherzellen vorgeschaltet ist, realisiert, welches deutlich aufwändiger, aber auch wesentlich 
schneller ist. Eine weitere Möglichkeit ist die Überlagerung der numerischen, maschinenlesbaren 
Adressierung durch menschenlesbare Zuordnungen, wie es z. B. bei Dateisystemen üblich ist, die 
ggf. durch ein Betriebssystem gepflegt werden. 

Neben den bisher genannten Methoden und Technologien lassen sich Speicher auch durch messba-
re, qualitativ fassbare Parameter definieren: 

Die Speicherkapazität CM gibt die Gesamtheit der zu speichernden bzw. abrufbaren Information des 
Speichers in Bit bzw. Byte und deren Vielfachen an. Ein Bit ist die atomare Informationseinheit in 
der Digitaltechnik und repräsentiert die zweiwertige Logik durch eine logische „0“ bzw. „1“. Ein 
Nibble besteht aus vier Bits, und das Byte setzt sich aus zwei Nibbles zusammen. Die Definition, 
dass ein Byte acht Bits umfasst, gilt für alle IBM-PCs und deren Nachfolger. Grundsätzlich be-
zeichnet ein Byte die Anzahl an Bits, die notwendig sind, um ein Symbol des Basis-Symbolvorrats 
des Systems darzustellen. Die Notation größerer Speichermengen erfolgt häufig nicht SI-konform 
durch dezimale Vielfache (k, M, G, etc.), sondern durch Vielfache von Zweierpotenzen (

10 202 =1024 K, 2 M≙ ≙  etc.). 

Die Speicherdichte Mρ  wird angegeben in Speicherkapazität/Fläche, also Bit/mm². Sie ist ein gutes 

Maß, um die Flächenintensität verschiedener Speichervarianten abzuschätzen. 

Die Latenz LM ist das Maß für die Zeitspanne, die benötigt wird, um die Informationen aus einer 
bestimmten Speicherzelle auszulesen bzw. Daten in diese Speicherzelle zu schreiben. Aufgrund des 
technologiebedingten, teilweise unterschiedlichen Zeitverhaltens von Speichern beim Lesen bzw. 
Schreiben ist sinnvollerweise zwischen Lese-Latenz LM(R) und Schreib-Latenz LM(W) zu unterschei-
den. Ebenso sind minimale, maximale und durchschnittliche Latenz (min / max / avg LM(R/W)) beson-
ders bei sequentiellen Speichermedien als kennzeichnendes Leistungsmerkmal zu nennen. 

Der Durchsatz DM gibt die zur Verfügung gestellte Datenmenge in Byte pro Sekunde [B/s] an. 
Auch hier wird in Abhängigkeit von der Zugriffsart ebenso wie bei der Latenz differenziert. 
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2.5.2 Anforderungen an eingebettete Speicher 

Offensichtlich gibt es zwischen vielen der Anforderungen proportionale aber auch antiproportionale 
Wechselwirkungen. So erhöht eine deutlich größere Kapazität die Kosten, und ein höherer Durch-
satz, z. B. hervorgerufen durch eine höhere Taktfrequenz, vergrößert die Leistungsaufnahme. Diese 
konkurrierenden Anforderungen können durch Wahl einer anderen Technologie bzw. Speicherform 
ggf. umgangen bzw. verringert werden. Allerdings sind dies zumeist Kompromisslösungen, bei de-
nen nie alle Ziele optimal erreicht werden können. Die Performanz eines Speichers wird im Allge-
meinen durch seine Latenz und den erzielbaren Durchsatz definiert. Die Kosten bzw. der Preis ge-
hen einher mit der Speicherkapazität, der dafür benötigten Fläche und der verwendeten Technolo-
gie. Die Leistungsaufnahme hängt, wie bereits erwähnt, von zahlreichen Faktoren ab, wobei für 
viele Einsatzgebiete zusätzliche Funktionen wie z. B. flexibler Zugriff auf Speicherinhalte bestimm-
ter Größe, Fehlererkennungs- und Fehlerkorrekturmechanismen sowie Stromspar-Modi von beson-
derer Bedeutung sein können. Letztendlich spielen auch Eigenschaften wie Integrationsaufwand, 
also die Existenz genormter Schnittstellen, bzw. eine genaue Spezifikation des benötigten Zeitver-
haltens eine Rolle. Eine Zusammenfassung der wesentlichen Anforderungen an eigebettete Speicher 
im Kontext von Chip-Multiprozessoren wird in Abbildung 2-16, Abschnitt 2.7 gegeben. 

2.6 Anwendungsgebiete von On-Chip-Parallelrechnern 

Setzt man aus den in den vorherigen Abschnitten diskutierten Kernkomponenten On-Chip-
Netzwerk, eingebettete Verarbeitungseinheiten und Speicher, baukastenartig Systeme mit mehre-
ren Prozessorkernen zusammen und integriert diese auf einem Siliziumträger, so erhält man On-
Chip-Parallelrechner oder auch Chip-Multiprozessoren (CMP). 

Heutige Anwendungen erfordern aufgrund wachsender Anforderungen und extrem rechenintensiver 
Algorithmen in vielen Bereichen bereits parallele Verarbeitung. Dabei gestalten sich die An-
wendungsgebiete entgegen der weitläufig verbreiteten Meinung sehr vielfältig und beschränken sich 
nicht nur auf Wissenschaft und Forschung, wie es vor einer Dekade noch vorwiegend der Fall war. 
Zu den herausfordernden Einsatzgebieten für parallele Verarbeitung zählen u. a.: Berechnung glo-
baler Klimamodelle, Crashtest-Simulationen, dreidimensionale Modellierung auf Basis finiter Ele-
mente, Erdbebenvorhersage, Genforschung, militärische Forschung, quantentechnische Simulatio-
nen, Weltraumforschung, Wirtschaftsanalysen und medizinische Forschung allgemein. All diese 
Anwendungsszenarien kommen wie erwartet aus den Bereichen Wissenschaft und Forschung. Im-
mer stärker jedoch treten Gebiete aus alltäglichen Lebensbereichen in Erscheinung und fordern im-
mensen Zuwachs an Rechenleistung. Zu diesen „neuen“ potentiellen Einsatzgebieten paralleler Re-
chensysteme, die häufig kompakte, SoC-basierte Realisierungen erfordern, zählen: Computerspiele 
und Computergrafik allgemein, Multimedia-Anwendungen allgemein (z. B. Videobearbeitung in 
Echtzeit, MPEG4 etc.), Physikbeschleuniger zur Simulation komplexer physikalischer Effekte (z. 
B. in 3D-Spielen), Spracherkennung zur Computer-Maschinensteuerung etc. [71], Virtualisierung 
(Emulation vieler / verschiedener Betriebssysteme auf einer Hardware z. B. bei Web-Hostern), 
World-Wide-Web-basierte Suchmaschinen, massiv parallele Datenverarbeitung im Sinne von Netz-
werkanwendungen (z. B. Voice-over-IP, Tripple Play, Home-Video-Entertainment etc.). Diese Be-
reiche haben mittlerweile eine weitaus größere Marktmacht als die oben genannten Forschungsbe-
reiche und sind somit bereits als treibende Kräfte für die Entwicklung leistungsfähiger Parallelrech-
nerarchitekturen zu sehen. Dies wird u. a. durch die Entwicklung des bereits anfangs dieses Kapitels 
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erwähnten Cell-Prozessors deutlich, der hauptsächlich für den Home-Entertainmentbereich z. B. in 
Spielekonsolen hergestellt wird. Die Tatsache, dass mit ihm auch Supercomputer realisiert werden 
können ist aus kommerzieller Sicht zweitrangig. 

Die Fertigung von SoCs in Nanometertechnologie wird immer teurer und die NRE(Non-Recurring-
Engineering)-Kosten für solche Entwürfe übersteigen die Millionen-Euro-Grenze bei weitem. Die 
Einsetzbarkeit einer CMP-Architektur für den Massenmarkt und für viele Bereiche dieses Marktes 
sind somit für einen wirtschaftlichen Erfolg zwingend notwendig. Skalierbarkeit, Wiederverwend-
barkeit und Flexibilität gepaart mit angemessener Leistung sind hier ausschlaggebende Kriterien. 
Die weltweite Vernetzung hält mehr und mehr Einzug in unser tägliches Leben, und der damit ver-
bundene Informationsaustausch sowie die damit verbundene Informationsverarbeitung sind wesent-
liche Treiber für SoC-Designs. Folglich erscheint dieses Anwendungsgebiet als prädestiniert für 
massiv-parallele Systeme. In Kapitel 7 wird deshalb die in dieser Arbeit entworfene GigaNetIC-
Architektur speziell für Netzwerkanwendungen analysiert und optimiert. 

2.7 Anforderungen an Chip-Multiprozessoren 

Im Folgenden werden zusammenfassend die wesentlichen Anforderungsmerkmale an Chip-Multi-
prozessoren aufgezeigt (vgl. Abbildung 2-16). Die dargestellte Merkmalsmatrix setzt allgemeine 
Anforderungen an Schaltungsentwürfe sowie die speziellen Charakteristika der zuvor diskutierten 
Kernkomponenten (On-Chip-Netzwerk / NoC, Verarbeitungseinheiten / PEs und Speicher / Mems) 
und des resultierenden Chip-Multiprozessors (CMP) mit einander in Beziehung.  

Die bilateralen Abhängigkeiten der Merkmale untereinander werden dabei in fünf Kategorien unter-
teilt. Bei Änderung eines Merkmals kann sich dies proportional, antiproportional oder auch unbes-
timmt auf ein anderes Merkmal auswirken. Bei der Proportionalität wird zwischen zumeist propor-
tional/antiproportional und proportional/antiproportional unterschieden. Diese Abstufung differen-
ziert so zwischen zwei Qualitäten. Bei einer zumeist proportionalen/antiproportionalen Beziehung 
wird eine Tendenz angegeben, wohingegen bei proportionalen/antiproportionalen Zusammenhang 
in der Regel die Aussage stets zutrifft5. Beispielsweise bedeutet ein höherer Durchsatz mehr Per-
formanz und steht somit in proportionaler Beziehung mit diesem Merkmal. Besteht der gleiche Zu-
sammenhang bei umgekehrter Reihenfolge der Merkmale (Vertauschung von Ursache und Wir-
kung) ebenfalls, so wird aus Gründen der Übersichtlichkeit das entsprechende Symbol weggelassen. 
Die Felder in der rechten oberen Hälfte der Matrix sind dann grau unterlegt und „identisch“ zu ihren 
Pendant in der linken unteren Hälfte der Matrix. Bei einer nicht kommutativen Beziehung der 
Merkmale6 werden beide Hälften der Matrix zur Kennzeichnung genutzt. So bedingt z. B. ein höhe-
rer Preis nicht zwangsläufig eine höhere Performanz aber aufgrund höherer Performanz lässt sich 
am Markt ein höherer Preis vertreten.  

                                                 

5 Abbildung 2-16 zeigt die typischen Beziehungen die im allgemeinen gelten, allerdings lassen sich immer Ausnahme-

szenarien finden, für die einige Gewichtungen anders formuliert werden können. 

6 Siehe auch grafische Erläuterung in der Grafik selbst im linken oberen Bereich. 
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Abbildung 2-16: Merkmalsmatrix für Chip-Multiprozes soren 

Zu den Anforderungsmerkmalen zählen die bereits genannten Anforderungen wie Performanz, 
Leistungsaufnahme, Flächenbedarf bzw. Kosten etc., aber auch weiterführende Ansprüche der 
Hersteller und Kunden, wie z. B. Flexibilität und Skalierbarkeit. Der Implementierungsaufwand 
umfasst die Maßnahmen, die notwendig sind um, die betreffende Systementität (vgl. Definition 2, 
Kapitel 3) zu erstellen. Die Integration, hierzu zählen u. a. die Verifizierungsmöglichkeiten, Erwei-
terbarkeit und die Wiederverwendbarkeit, in ein Gesamtsystem sollte möglichst einfach sein und 
durch eine ausgereifte Werkzeugkette bestmöglich unterstützt werden. Die Programmierbarkeit ei-
nes parallelen Systems sollte auf Hochsprachen basieren und möglichst benutzerfreundlich sein. Die 
Performanz profitiert durch eine gute Ausnutzung der verschiedenen Parallelitätsgrade seitens des 
CMPs wie ILP, TLP und PE-Level-Parallelität sowie durch eine hohe Bandbreite der externen 
Schnittstellen. Letztendlich sollte der zusätzliche Verwaltungsaufwand (Overhead) durch die paral-
lele Struktur möglichst gering sein. Tiefergehende Charakterisierungen der aufgetragenen Merkma-
le werden in Kapitel 3 vorgestellt. 

� proportionale Beziehung � antiproportionale Beziehung � nicht eindeutige Beziehung
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Ein interessanter Ausspruch von HALFHILL , Microprocessor Report, lautet: „The Key to Massive 
Parallelism: Think Small“ [72]. HALFHILL  sieht dies im Zusammenhang mit dem Anwendungsge-
biet des Systems. Die Geschichte habe gezeigt, dass massiv parallele Systeme stets erfolgreich war-
en, wenn sie für eng eingegrenzte Problemstellungen verwendet wurden, anstatt den Anspruch der 
Universalität verfolgt zu haben. Bei der GigaNetIC-Architektur wird dieses Prinzip in gewisser 
Weise zweifach verfolgt, ohne jedoch den Anspruch als universelle Chip-Multiprozessor-
Architektur aufzugeben. Zum einen wird zunächst ein universell einsetzbares System entworfen 
(vgl. Kapitel 4), das dann durch die speziell entwickelte Werkzeugkette auf eine dedizierte Anwen-
dung optimiert werden kann (vgl. Kapitel 5 und 6). Zum anderen wird bei der Architekturkonzepti-
on auf überschaubare Blöcke mittlerer Komplexität geachtet. Der vorgesehene Prozessorkern ist 
absichtlich „klein“ im Sinne von Befehlssatz, Pipelinetiefe, Sprungvorhersage und spekulativer 
Ausführung etc. gehalten, um die Grundstruktur des Parallelsystems nicht zu überladen. Zusätzlich 
benötigte Funktionen oder Hardwarebeschleuniger lassen sich vor Fertigstellung des Chips leicht 
integrieren, vgl. Kapitel 6 und 7. 

2.8 Varianten eingebetteter paralleler Rechnerarchitekturen 

Im Folgenden werden ausgewählte Ansätze für CMPs vorgestellt. Kann dieser Überblick zwar nicht 
den Anspruch an Vollständigkeit erheben, da aufgrund der neuesten Paradigmenwechsel im Bereich 
von Prozessorstrukturen eine Vielzahl von Forschungsaktivitäten veröffentlicht wird, so gibt er 
doch einen repräsentativen Einblick in aktuelle Architekturen. 

Chip-Multiprozessoren werden häufig auch als Single-Chip-Multiprozessoren bezeichnet, da sie 
mehrere eigenständige Prozessoren auf einen Chip vereinen. Hierbei lassen sich verschiedene Or-
ganisationsformen bezüglich der Speicherorganisation und der Kommunikationsmöglichkeiten (In-
terconnection) der einzelnen Prozessoren untereinander unterscheiden. Die geläufigsten Organisati-
onsformen von Chip-Multiprozessoren sind der Symmetric Multiprocessor (SMP), der Distributed 
Shared Memory Multiprocessor (DSM) und der Message-Passing Shared-Nothing Multiproces-
sor (vgl. [73]). Beim SMP und DSM teilen sich die Prozessorelemente einen gemeinsamen Adress-
raum. 

Der SMP verfügt über einen globalen Hauptspeicher, der von allen Prozessoren gemeinsam genutzt 
wird. Die Speicherzugriffszeit ist für jede Adresse und für jeden Prozessor gleich, weshalb der Zu-
griff auch als Uniform Memory Access (UMA) bezeichnet wird. 

Beim DSM ist dieser Hauptspeicher auf die einzelnen Prozessoren verteilt, so dass jeder einen loka-
len Speicher besitzt, der aber in einen globalen Adressraum eingegliedert ist. Hierbei sind allerdings 
die unterschiedlichen Zugriffszeiten zu berücksichtigen, denn lokaler Speicher kann schneller er-
reicht werden als ein Speichersegment, das zu einem fremden Prozessorelement gehört. Man spricht 
hier auch von Nonuniform Memory Access (NUMA). 

Shared-Nothing-Prozessoren haben keinen gemeinsamen Adressraum und der Arbeitsspeicher ist 
physikalisch auf die einzelnen Prozessorelemente verteilt. Deshalb können die einzelnen Prozesso-
ren nur über das Message-Passing-Verfahren miteinander kommunizieren. Diese Art von Multipro-
zessor lässt sich aufgrund ihrer regelmäßigen Struktur sehr hoch integrieren, allerdings schwerer 
programmieren als die Multiprozessoren, die sich den Adressraum teilen. Abbildung 2-17 führt die 
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besprochenen Architekturen kurz ein, berücksichtigt jedoch nicht die Cache-Organisation der ein-
zelnen Prozessor-Elemente. 

Abbildung 2-17: Organisationsformen von Multiprozessoren (vgl. [73]) 

Bei CMPs werden bzgl. der Parallelität folgende Grain-Level (Granularitätsstufen) unterschieden: 

• mehrere Prozesse bzw. Anwendungen, die parallel abgearbeitet werden, 

• mehrere Threads, die zu einer Anwendung gehören und die parallel abgearbeitet werden, 

• Threads, die aus einem sequentiellen Programm extrahiert werden. 

Abbildung 2-18: Typische Varianten von SMP-Architekturen im Überblick (vgl. [73]) 

In Abbildung 2-18 werden einige typische Implementierungsformen von Shared Memory-CMPs 
gezeigt. Je nach Implementierung kann sich die gemeinsame Nutzung auf den Hauptspeicher be-
schränken oder aber bis hin zur gemeinsamen Benutzung des Primär-Caches gehen.  
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2.8.1 Beispiele zu Chip-Multiprozessoren 

Selbstverständlich sprengte eine „enzyklopädische“ Gesamtschau aller existierenden Chip-
Multiprozessoren den Rahmen dieser Arbeit. Vielmehr sollen, mit Hilfe der hier getroffenen Aus-
wahl, repräsentative Beispiele geliefert werden, die ganz besondere Charakteristika von CMPs auf-
weisen. Diese lassen sich teilweise so oder ähnlich in der entworfenen GigaNetIC-Architektur wie-
derfinden. Wie bereits in Abbildung 2-6 aufgezeigt, kann die Konzeption eines Chip-
Multiprozessors nach einem Baukastenprinzip erfolgen, bei dem jeweils aufeinander angepasste 
Komponenten das Gesamtsystem formen. Wesentlich ist, dass hier nicht die Performanz einer ein-
zelnen Kernkomponente über den Erfolg entscheidet, sondern das Zusammenspiel aller Elemente 
die Leistungsfähigkeit der Architektur definiert. 

Zahlreiche Ansätze aus der Literatur verwenden busbasierte Architekturvarianten, vgl. Abbildung 
2-7 a). Zu diesen Architekturen gehört z. B. die ATLAS Chip-Multiprozessorarchitektur [74]. OLU-

KOTUN et. al verfolgen mit ihrem vierfach-parallelen Zwei-Wege-CMP ein ähnliches Konzept [75]. 
Hier fungiert allerdings ein Kreuzschienenverteiler (ähnlich Abbildung 2-7 b)) als Schnittstelle zum 
gemeinsamen Cache und würde für eine größere Anzahl von Verarbeitungseinheiten einen Fla-
schenhals bedeuten. CMPs, bei denen die Verarbeitungseinheiten über nicht-hierarchische Topolo-
gien, sondern basierend auf Bussen, Multiplexern oder Kreuzschienenverteilern miteinander ver-
bunden sind, sind nur als vorübergehende Lösungen zu sehen. Diese Topologievarianten ohne Hie-
rarchie skalieren im Sinne von Definition 35 nicht und eignen sich nicht für massiv parallele einge-
bettete Systeme, sondern erlauben nur die effiziente Integration einiger weniger Verarbeitungsein-
heiten, siehe auch [76]. In [77] wird ein Ansatz gezeigt, wie busbasierte CMP-Ansätze mit Hilfe 
eines überlagerten „Butterfly-Fat-Tree“-Netzwerks, also einer zusätzlichen Hierarchie, zu skalier-
baren System-on-Chip-Architekturen erweitert werden können. Inwieweit dies allerdings für reale 
Systeme umsetzbar ist, wurde noch nicht gezeigt. 

Viele der in der Literatur untersuchten CMP-Architekturen sind noch nicht in Hardware realisiert, 
sondern wurden auf Basis von Simulationen und Abschätzungen untersucht, so dass eine abschlie-
ßende Verifikation dieser Systeme noch aussteht. 

2.8.2 Ansätze für Chip-Multiprozessoren mit akademischem Ursprung 

Raw, MIT. Der Raw-Chip-Multiprozessor unterteilt sich in 16 gleichförmige Kacheln, die aus ei-
nem MIPS-basierten Prozessor mit acht Pipelinestufen, einem programmierbaren Routerblock, ei-
ner vierstufigen Fließpunkt-Einheit, 32 KByte Datencache und 96 KByte Instruktionscache beste-
hen. Der Gesamtentwurf umfasst 122 Millionen Transistoren und ermöglicht eine Taktfrequenz von 
225 MHz in einer 150-nm-Technologie. Die 16 Kacheln beanspruchen insgesamt 331 mm². Die 
Leistungsaufnahme wird mit 25 W abgeschätzt [78][79]. Die in vier Richtungen gehenden Busse 
zur Verbindung der Nachbarkacheln ermöglichen die Übertragung der Daten innerhalb eines Tak-
tes. Die maximale Länge der Verbindungsleitungen zwischen den Nachbarkacheln entspricht genau 
der Kantenlänge einer Kachel. Global Wires werden somit kurz gehalten. Die Verbindungsstruktur 
bietet zwei statische und zwei dynamische (Wormhole-Switching-basierte) Routen zu den jeweili-
gen Nachbarkacheln. Die Steuerung des On-Chip-Netzwerks wird komplett in Software gelöst und 
erlaubt dem Programmierer oder dem Compiler so größtmögliche Realisierungsfreiheit. Das Rou-
ting des Ergebnisses einer Arithmetik-Berechnung zur nächsten Kachel benötigt drei Takte. Teile 
der Netzwerkverbindungen sind direkt in die Pipeline des jeweiligen Prozessors eingebunden und 
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ermöglichen so direkten Zugriff seitens des Prozessors auf Netzwerkressourcen. Der Raw-Prozessor 
ist in Hochsprachen wie C oder Java programmierbar und stellt einen eigenen Compiler zur Verfü-
gung. Extern lassen sich bis zu 64 Raw-Chips in beliebiger rechteckiger Anordnung kombinieren 
und ermöglichen so ein Konglomerat von insgesamt 1024 Kacheln bzw. Einzelprozessoren. 

Hydra, Stanford. Der Hydra-Chip-Multiprozessor ist im Rahmen eines Forschungsprojekts der 
Universität Stanford entstanden [80]. Er umfasst vier MIPS-basierte Prozessorkerne mit eigenem 
Level-1-Daten- und Instruktions-Cache und gemeinsamem Level-2-Cache. Die Verbindung ist bus-
basiert. Die Autoren skizzieren eine maximale Ausbaumöglichkeit des Systems von bis zu acht Pro-
zessoren, wobei jeder dieser Prozessorkerne einen direkt gekoppelten Coprozessor ansteuern kann. 
Sie geben allerdings zu bedenken, dass für eine größere Anzahl von Prozessoren andere, z. B. hie-
rarchische Verbindungsstrukturen zu implementieren wären. Die benötigte Fläche in einer 250-nm-
Technologie mit vier Prozessorkernen wird mit 90 mm² angegeben, mit je 8 KByte Daten- und In-
struktionscaches und 128 KByte gemeinsamem Cache. Die angestrebte Taktfrequenz wird mit 
250 MHz angegeben.  

Daytona Multiprozessor DSP. Der Daytona ist ein Vierfach-MIMD(Multiple Instruction Multiple 
Data)-DSP mit vier 64-Bit-Verarbeitungseinheiten [81]. Die vier 32-Bit-RISC-Prozessorkerne vom 
Typ Sparc V8 mit einer fünfstufigen Pipeline verfügen über DSP-Erweiterungen sowie je eine eng-
gekoppelte Coprozessoreinheit. Die Verarbeitungseinheiten sind über rekonfigurierbare Level-1-
Caches an einen Split-Transaction-Bus (STBus) angeschlossen. Als Cache-Kohärenzprotokoll wird 
ein modifiziertes MESI-Protokoll verwendet (vgl. Abschnitt 4.4.2). Ein eingebettetes RTOS (Real 
Time Operating System / Echtzeitbetriebssystem) übernimmt die Einteilung der Verarbeitungsein-
heiten auf anfallende Aufgaben. Eine Synchronisierung der Prozesse wird über Semaphore erreicht. 
Der 200 mm² große, in 250-nm-Technologie gefertigte Chip arbeitet mit 100 MHz und nimmt ca. 
4 W auf. 

PipeRench, Carnegie Mellon University. Die PipeRench-Architektur ist eine rekonfigurierbare 
Architektur, die ohne spezielle Hardwareerweiterungen an anwendungsspezifische Probleme ange-
passt werden kann [82]. Allerdings ist laut [82] der Ansatz hier anders als bei herkömmlichen 
FPGAs (Field Programmable Gate Arrays). PipeRench ist speziell für Berechnungen ausgelegt, die 
durch die „Pipeline Reconfiguration“-Technik besonders unterstützt werden. Hierunter wird eine 
Rekonfiguration der einzelnen Pipelinestufen verstanden, bei p physikalisch vorhandenen Stufen 
werden v Stufen emuliert, mit p < v. Die Konfigurationszeit beeinflusst die Verarbeitung nicht 
nachteilig und geschieht innerhalb eines Taktes. Die globale Verbindungsstruktur ist busbasiert. Die 
einzelnen Verarbeitungseinheiten sind acht Bit breit, können aber zu größeren Bitbreiten kombiniert 
werden. Wesentliche Bestandteile der Architektur sind die globalen Busse, die in Streifen angeord-
neten Verarbeitungseinheiten und Übergaberegister. Das System umfasst 256 Verarbeitungseinhei-
ten, die in 16 Streifen kaskadierbar angeordnet sind, und lässt sich in C, mit Hilfe des mitgelieferten 
Compilers, programmieren. 

Bevor sich die Diskussion der Merkmale der vorgestellten Chip-Multiprozessoren anschließt, sollen 
im Anschluss an die geschilderten Ansätze akademischer Herkunft nun weitere Ansätze für Chip-
Multiprozessoren aus der Industrie charakterisiert werden, die ebenfalls zum Vergleich mit der  
GigaNetIC-Architektur herangezogen werden. 
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2.8.3 Ansätze für Chip-Multiprozessoren aus der Industrie 

Um einen Überblick über die Anstrengungen, die im Bereich von Chip-Multiprozessoren unter-
nommen werden, zu geben, reicht es nicht aus, nur Ansätze aus dem Bereich der akademischen For-
schung zu beleuchten. Einfluss auf zukünftige Architekturen (vgl. Definition 3) werden in nächster 
Zeit besonders die ausgewählten Beispiele der großen, etablierten Universal-Prozessorhersteller wie 
Intel, AMD und IBM nehmen. Diese Unternehmen verfügen über das Kapital und die Humanres-
sourcen, um solche komplexen und extrem kostenaufwändigen Entwicklungen zu realisieren. Die 
Produktstrategien bzw. „Roadmaps“ und Architekturvarianten dieser und anderer relevanter Hers-
teller im Zusammenhang mit CMPs werden im Folgenden kurz vorgestellt. 

DRP, NEC. NEC hat mit dem Dynamically Reconfigurable Processor ein synchrones Prozessor-
feld bestehend aus bis zu 512 Verarbeitungseinheiten entwickelt [83]. Der DRP verfügt über eine 8-
Bit-Genauigkeit und ist in 150-nm-Technologie gefertigt und mit 133 MHz zu betreiben. Seine Da-
tenpfade sind innerhalb eines Taktes umkonfigurierbar. Sein Haupteinsatzgebiet sind Bereiche, in 
denen bisher DSPs (Digitale Signalverarbeitungs-Prozessoren) verwendet wurden, er lässt sich aber 
auch als Netzwerkprozessor nutzen. 

XPU128 / XPP III, PACT. Die XPU- und XPP-Serie von PACT sind rekonfigurierbare Felder mit 
einfachen Arithmetikeinheiten (ALUs), die sich besonders für Stream-Anwendungen, also z. B. 
Videoverarbeitung eignen. Die PACT-Architekturen verfügen über ein effizientes Rekonfigura-
tionsmanagement und lassen sich so auf verschiedene Anwendungsgebiete optimieren. Horizontal 
geschieht die Punkt-zu-Punkt-Verbindung der ALUs über Routingbusse, vertikal sind die ALUs 
direkt miteinander verbunden. Zusätzlich sind dedizierte Verbindungen der einzelnen Einheiten 
vorgesehen. Die Datenbreite kann zwischen 16, 24 und 32 Bit gewählt werden. Die Datenübertra-
gung innerhalb des Chips geschieht über das paketorientierte On-Chip-Netzwerk. Die XPU128 war 
im Jahr 2000 der erste einsatzbereite Chip der Firma PACT und umfasste bereits 128 ALU-
Verarbeitungseinheiten, die mit angestrebten 100 MHz in 150-nm-Technologie betrieben werden 
konnten. Die XPP-III-Architektur ist der kommerziell eingesetzte, in C programmierbare Nachfol-
ger [84][85]. 

Piranha, Compaq. Die in der Forschung von Compaq entwickelte Piranha-Architektur [86] be-
schreibt eine achtfach-parallele Struktur mit einfachen Alpha-Prozessorkernen, die über jeweils ei-
nen eigenen Daten- und Instruktions-Cache mit je 64 KByte verfügen und sich einen Level-2-Cache 
teilen, mit dem sie über einen so genannten Intra-Chip-Switch verbunden sind. Die Prozessoren 
sollen in einer 180 nm-Technologie mit 500 MHz betrieben werden können. Zur weiteren Erhöhung 
der CPU-Anzahl verfügt das System über einen integrierten Router mit zwei Protokoll-Einheiten, 
der den Anschluss weiterer Piranha-Chips übernimmt. Die von Compaq verfolgte Entwurfsmetho-
dik begann mit einer Spezifizierung des Systems in C++, dem eine Verfeinerung der einzelnen Blö-
cke in der Hardwarebeschreibungssprache Verilog folgte. 

KiloCore, Rapport. Die derzeit aktuelle Chip-Variante KC256 von Rapport basiert auf Rapports 
KiloCore-Architektur. Er umfasst 256 Prozessorkerne, die mit 8-Bit-Daten- und Befehlsbreite arbei-
ten und ist in 180-nm-Technologie realisiert [87]. Die maximal erreichbare Betriebsfrequenz wird 
mit bis zu 125 MHz angegeben. Die Leistungsaufnahme des KC256 soll Rapport zufolge unter 
500 mW liegen. Der 1025 Kerne umfassende KiloCore soll 2007 in 90-nm-Technologie realisiert 
werden. Er wird über 1024 8-Bit-Verarbeitungseinheiten verfügen, die von einem PowerPC-Kern 
kontrolliert werden. Die Architektur soll außerdem rekonfigurierbar sein, wobei die Rekonfigurati-
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on nur einen Takt benötigt. Über die Kommunikationsstruktur sind noch keine Details bekannt, al-
lerdings lässt sich eine überlagerte Busstruktur anhand der Blockdiagramme vermuten. Einsatzge-
biete sollen u. a. Videoverarbeitungsalgorithmen sein, bei denen er um den Faktor zehn schneller 
sein soll als aktuelle Prozessoren. 

GPUs, nVIDIA und ATI . nVIDIA und ATI sind namhafte Hersteller für Grafikchips für PCs und 
stellen bereits seit mehr als einer Dekade massiv parallele Coprozessoren zur Grafikbeschleunigung 
her. Die neueste Generation der nVIDIA Grafikbeschleuniger, die GeForce 8800, integriert 128 so 
genannte „StreamProzessoren“, die bei Verwendung einer 90-nm-Technologie mit bis zu 1,35 GHz 
getaktet werden [88]. nVIDIA kooperiert mit Forschungsinstituten, die die nVIDIA-Grafik-
prozessoren für komplexe Berechnungen, z. B. für medizinische Zwecke einsetzen und dadurch 
eine Beschleunigung von mehr als 25, verglichen zu herkömmlichen CPUs, erreichen. ATIs neueste 
Consumer-Grafikkarten werden in 80- bzw. 65-nm-Technologie gefertigt und vereinen bis zu 720 
Millionen Transistoren auf einem Chip, die unter anderem für 64 parallele komplexe 4-Wege-
SIMD(Single Instruction Multiple Data)-Einheiten benötigt werden [89]. 

PhysX, Ageia. Ageia hat mit dem PhysX einen speziell für die Beschleunigung physikalischer Phä-
nomene konzipierten Chip-Multiprozessor (Physikbeschleuniger) entwickelt, der über Dutzende 
von eingebetteten Prozessoren verfügt und vor allem für 3D-Computer-Spiele auf Coprozessor-
Karten eingesetzt wird [90]. Der Chip soll über 125 Millionen Transistoren integrieren und eine 
Die-Größe von 182 mm² in 130-nm-Technologie haben. Die Leistungsaufnahme beschränkt sich 
auf 25 W. 

Intels Weg vom „Single Core“ über „Multi Cores“ zu „Many Cores“. Intel hat seit der Einfüh-
rung des ersten Ein-Chip-Mikroprozessors 1971, des Intel 4004, eine Flut von Verbesserungen und 
neuartigen Prozessor-Architekturen präsentiert. Mit steigender Taktfrequenz, beim Pentium 4 der 
Netburst-Architektur bis zu 3,8 GHz, stieg jedoch auch die Leistungsaufnahme trotz neuester Tech-
nologie bis auf 115 W (Intel Pentium 4, 672) weiter an. Dies bedeutete eine Stromaufnahme von 
119 A, die von einem Die der Größe von nur 135 mm² (in 90 nm-Technologie, 165 Millionen Tran-
sistoren) aufgenommen werden musste. Die zuvor von Intel angestrebte maximale Frequenz von 
10 GHz für diese Architektur konnte aus zahlreichen technischen Gründen nicht erreicht werden, so 
dass die Entwicklung bereits bei unter 4 GHz eingestellt wurde [3]. Das von nun an verfolgte Archi-
tektur-Paradigma lautete: Mehrere Prozessoren, „Multi Cores“, bei geringerer Taktfrequenz. Es 
wurde mit der Intel-Core-Architektur erfolgreich umgesetzt. Die Core-Architektur wird auch als 
achte x86-Architektur geführt. Die Mitte 2006 eingeführte Core-2-Prozessorlinie, in 65-nm-
Technologie gefertigt und bis zu 2,93 GHz operabel, hat eine deutlich reduzierte Leistungsaufnah-
me von 65 W bei einer Chipfläche von 144 mm² und 291 Millionen Transistoren. Sie verfügt über 
zwei Prozessorkerne, 64 KByte Level-1-Cache und 4 MByte Level-2-Cache. Seit Anfang 2007 hal-
ten die ersten Vierkern-Prozessoren Einzug in Standard Desktop-PCs. Hierbei handelt es sich um 
die „Core 2 Quad“-Familie, bei der zwei einzelne Dies in einem Prozessorgehäuse untergebracht 
sind. Die Variante Q6600 arbeitet mit 2,4 GHz Kerntakt und beansprucht pro Die 143 mm² bei ei-
ner Strukturgröße von 65 nm. Die Leistungsaufnahme des gesamten Chips beziffert Intel zu 130 W. 
Der neuartige Cache wird jeweils von den beiden zugehörigen Verarbeitungseinheiten genutzt, wo-
bei die Speicherzuteilung dynamisch geschieht. Außerdem können die beiden Kerne gegenseitig 
Daten über ihn austauschen, was verglichen mit Hauptspeicherzugriffen äußerst effizient ist. Auch 
wurde hinsichtlich der Reduktion der Leistungsaufnahme eine Vielzahl von Mechanismen einge-
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baut, wie z. B. bereichsbezogene Spannungsvariation und Clock Gating sowie Abschaltung des Ca-
ches. Die Core-Architektur ist die erste vierfach-superskalare Intel-Architektur, die eine simultane 
Abarbeitung von vier Mikrooperationen ermöglicht.  

Intels zukunftsweisendes Tera-Scale-Projekt zielt auf massiv parallele Systeme mit einigen hundert 
integrierten Prozessorkernen ab. Zu den bedeutendsten Anforderungen, die durch die Tera-Scale-
Architektur erfüllt werden sollen, zählt Intel die einfache, effektive Programmierbarkeit („Prog-
rammability“) mit einem ausgereiften Programmiermodell und komfortabler Entwicklungsumge-
bung. Die nächste Anforderung ist „Adaptability“, d. h. die Plattform soll anpassbar an verschiede-
ne Aufgaben und Lastverteilungen sein. Außerdem soll die Hardware an verschiedene Umgebungen 
in Bezug auf z. B. Leistungsaufnahme und Formfaktor anpassbar sein. “Reliability” nennt Intel als 
weiteres Schlagwort. D. h. die Plattform soll trotz der großen Komplexität noch zuverlässiger als 
die bisherigen Entwürfe sein. „Trust”, also Vertrauen soll die Plattform erwecken, um so Kunden 
von dem neuen Konzept zu überzeugen. Abschließend wird „Scalability“, die Skalierbarkeit der 
Architektur in Bezug auf Hardware und Software als wesentliche Anforderung formuliert. Die sehr 
modular gehaltene Architektur integriert Hardwarebeschleuniger, optimierte Prozessorkerne und 
skalierbare On-Chip-Verbindungsstrukturen. Dieser Ansatz wird von Intel als vielversprechende 
Lösung für die Abdeckung vieler Märkte propagiert7. Als Treiber für den Kurswechsel in der Archi-
tektur gibt Intel Performanz, Leistungsaufnahme und kurze Entwicklungszyklen an. Intel stellte 
diesen neuen Ansatz erstmals 2006 der Öffentlichkeit vor [91]. Drei bzw. vier Jahre vorher postu-
lierten wir in [6] und [14] bereits sehr ähnliche Ansätze. Hieran zeigt sich, dass der von uns damals 
beschrittene Weg zukunftsweisend ist.  

Intels aktuelle 80-Prozessor-Architektur „Polaris“, die zunächst unabhängig vom Tera-Scale-
Projekt entwickelt wurde, basiert auf einem Gitter mit 8×10 identischen Verarbeitungseinheiten, 
wobei der einzelne Kern bis zu acht Instruktionen gleichzeitig verarbeiten kann [92]. Der lokale 
Speicher ist sehr klein bemessen. Jeder Kern verfügt über 2 KByte Daten- und 3 KByte Instrukti-
onsspeicher. Die Anbindung an das On-Chip-Netzwerk übernimmt ein leistungsstarker Routingkno-
ten. Er ermöglicht einen akkumulierten Durchsatz von 80 GByte/s8 bei 4 GHz. Jeder Port ist dabei 
über je 2×39 Signalleitungen mit dem Nachbarknoten verbunden. Die Struktur eines solchen Rou-
ters sieht vier Verbindungsschnittstellen (Ports) zu anderen Knoten vor und einen Port für die Ver-
bindung eines zusätzlichen SRAMs. Ein Polaris-Kern benötigt ca. 1,2 Millionen Transistoren, die 
auf einer Fläche von 3 mm² in 65 nm-Technologie Platz finden. Die Recheneinheiten beinhalten 
eine neun-stufige Pipeline. Bei der Polaris-Architektur wurden zahlreiche Optimierungen wie z. B. 
Clock Gating, bezüglich der Leistungsaufnahme vorgenommen, so dass der gesamte Chip bei 
3,16 GHz nur ca. 62 W aufnimmt. Erhöht man die Taktfrequenz auf 5,7 GHz, so nimmt die Leis-
tungsaufnahme um mehr als das Vierfache auf 265 W zu. Auch hier zeigt sich der nichtlineare Zu-
sammenhang zwischen Steigerung der Betriebsfrequenz und der resultierenden Leistungsaufnahme 
eines Chips. Der Polaris-Chip bietet auf der Fläche eines Daumennagels genauso viel Rechenleis-

                                                 

7 Intel arbeitet u. a. an Grafikchips mit dem Codenamen „Larrybee“, die über 16 eingebettete Prozessorkerne verfügen, 

die auf x86/SSE-Codebasis beruhen und den gleichen Befehlssatz wie die Tera-Scale-Architektur verwenden. 

8 Lt. Intel, nach bestehender Nomenklatur 74,51 GByte/s. 
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tung wie vor 11 Jahren in Dienst gestellte Supercomputer, die auf über 200 m² Fläche untergebracht 
werden mussten [92].  

Opteron, AMD. AMD ist seit dem Zeitalter der 386er-Prozessorgeneration Intels größter Konkur-
rent, der mal schnellere und mal weniger effiziente Architekturansätze, verglichen mit Intel, her-
vorgebracht hat. Interessant ist, dass AMD eher als Intel in Bezug auf das Streben nach immer hö-
heren Taktfrequenzen einen anderen Weg eingeschlagen hat und recht bald nicht mehr die tatsächli-
che Frequenz seiner CPUs als Verkaufsargument verwendete, sondern seine Prozessoren mit einer 
fiktiven Taktfrequenz bewarb, die mit der Leistung einer entsprechenden Intel-Architektur ver-
gleichbar waren. AMD stellte 2007 die erste, auf einem Die integrierte Vierfach-Desktop-/Server-
CPU, den Opteron Quad-Core-Prozessor vor [93]. Dieser arbeitet on-chip mit dem MOESI-
Cachekohärenzprotokoll. 

Mit der Torrenza-Initiative setzt AMD bei zukünftigen Prozessorgenerationen verstärkt auf eine 
Kopplung von wenigen Universalprozessorkernen und anwendungsspezifischen Hardwarebe-
schleunigern, um sich so gegenüber den von Intel propagierten ManyCore-Architekturen, zu be-
haupten, ein „Kern-Wettrüsten“ solle es vorerst nicht geben [93]. Allerdings setzt auch Intel auf so 
genannte Fixed Function Units [92], also ebenfalls auf Hardwarebeschleuniger, die spezielle Auf-
gaben effizienter lösen können als Universalprozessoren. 

Cell-Architektur,  IBM, Toshiba und Sony. Die Entwicklung der Cell-Architektur [12][94] wurde 
bereits zu Anfang dieses Kapitels grob skizziert. Sie integriert 241 Millionen Transistoren unter 
anfänglicher Verwendung einer 90-nm-Technologie, die recht bald durch eine 65-nm-Variante er-
setzt wurde. Es werden Frequenzen von über 4 GHz angestrebt. Motivation für die Realisierung 
dieser Chip-Multiprozessor-Architektur war die „Vision, Supercomputerleistung ins tägliche Leben 
zu bringen“ [94]. Cell umfasst einen PowerPC-Kern als Kontrollprozessor für derzeit acht zusätz-
lich integrierte „Synergistic Processor Elements (SPE)“ als spezielle Coprozessoren, die kohärente 
DMA(Direct Memory Access)-Operationen zur Verfügung haben. Die SPEs haben lokalen Speicher 
und zusätzlich einen gemeinsamen Level-2-Cache. Als On-Chip-Verbindungsstruktur dient der 
„Element Interconnect Bus“ (EIB). Außerdem besitzt der Cell-Prozessor einen eigenen Speicher-
controller, „Memory Interface Controller (MIC)“, und zwei konfigurierbare, Ein-/ Ausgangsschnitt-
stellen. Letztendlich wurde noch eine umfangreiche Monitor- und Debugeinheit implementiert. Den 
Autoren von [94] zufolge sind 40 % des Schaltungsentwurfs Syntheseergebnisse. Die dominieren-
den 60 % des Chips sind als „Full Custom Design“ entworfen worden. Dies war aufgrund der hohen 
Rechenleistungs- und Verlustleistungsanforderungen notwendig. Um eine hohe Ausbeute und Zu-
verlässigkeit garantieren zu können, wurden zahlreiche Funktionen für Build-in-Self-Test (BIST) 
und Fehlerumgehung (Array Repair Fuses) eingebaut. Insgesamt wurde auch beim Cell-Chip ver-
sucht, das Design möglichst modular zu halten. Es wurde ein immenser Simulationsaufwand mit 
mehr als zwei Millionen Stunden Simulationszeit (dies entspricht 1,5 Trillionen simulierter Takt-
zyklen) im Vorfeld der Chipfertigung getrieben [94]. Dies lässt auf eine mittlere Simulatorge-
schwindigkeit von ca. 140 Takten/Sekunde schließen. Der Cell-Architektur steht eine umfangreiche 
Werkzeugkette zur Verfügung, die verschiedene Betriebssysteme auf der Cell-Architektur unters-
tützt. Tabelle 2-4 gibt einen Überblick über ausgewählte Chip-Multiprozessoren und einiger ihrer 
wesentlichen Eigenschaften. 
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Tabelle 2-4: Charakteristika ausgewählter Chip-Multiprozessoren 

For-
schungs-
einrich-

tung, Hers-
teller  
Typ 

CPU-
Fre-

quenz 
[MHz] 

Anzahl Pro-
zessorkerne 

Leis-
tungs-

aufnah-
me 
[W] 

Chipflä-
che 

[mm²] 

Technolo-
gie 

[nm] 
Speicher PE Kommunika-

tionsstruktur  Besonderheiten 

MIT 
Raw 

225 16 25 331 150 >16*(32K+96K) 
MIPS, 

8 Pipeline-
stufen 

Busse zwi-
schen Nach-

barknoten, 
WH-Switching 

Skalierbarkeit 

Stanford  
Hydra 

250 4 k. A. 90 250 
>4*(8K+8K)+128

K 
MIPS Bus  

Daytona  
DSP 

100 4 4 200 250 >4*8K 
Sparc V8, 

5 Pipeline-
stufen 

STBus 

Gekoppelte Hardwa-
rebeschleuniger 

MESI-Cache-
Kohärenzprotokoll 

RTOS zur PE-
Kontrolle 

Ageia  
PhysX 

533 >20 PEs 25 182 130 k. A. 
Physikengi-

ne 
k. A. Physikbeschleuniger 

Intel  
Polaris 

3.160 
(bis 

5.700) 
80 

62 
(265) 

275 
(3 pro 

Kachel) 
65 >80*(2K+3K) X86 

1 Router pro 
Kachel 

1,01 Terra Flops 
(1,81 Terra Flops) 

IBM, To-
shiba und 

Sony  
Cell 

3.200 
(>4.000) 

1+8 200 221 90 
1*(32K L1 
+512K L2) 

+8*256K 

PowerPC 
+ 8 SPEs 

Element Inter-
connect Bus 

Max. 204 GByte/s 
Durchsatz des EIB 

Rapport  
KiloCore 

125 256 0,5 k. A. 180 k. A. 8-Bit-PEs k. A.  

Nvidia 
8800 Ultra / 

G80 
1.500 128 175 k. A. 90 k. A. 

Stream 
Prozessoren 

k. A. 681 Mio. Transistoren 

Compaq  
Piranha 

500 8 k. A. k. A. 180 
>8*(64K+64K) 

+L2 
Alpha CPU 

Intra Chip 
Switch 

 

GigaNetIC-
Projekt  

GigaNetIC 
285 32 1,8 43,7 90 1.280K N-Core GigaNoC 

Skalierbarkeit, Res-
sourceneffizienz 

2.8.4 Resümierender Vergleich mit dem GigaNetIC-Ansatz 

Bei dem MIT-Ansatz handelt es sich, wie bei der GigaNetIC-Architektur, ebenfalls um einen ka-
chelartigen, WH-Switching-basierten CMP, der mit seinen 16 Prozessorkernen ca. halb so viele 
Transistoren benötigt wie das in Tabelle 8-5 vorgestellte GigaNetIC-System mit 80 N-Cores. Auf-
grund der flächenmäßig überlegenen GigaNetIC-Prozessorarchitektur lässt sich mehr Parallelität 
auf einen Chip bringen, die allerdings in der Standardversion zunächst über weniger leistungsfähige 
Verarbeitungseinheiten verfügt. Diese können allerdings speziell auf ein Anwendungsgebiet hin 
optimiert werden, ohne unnötigen Flächenbedarf durch unbenötigte Funktionen zu verursachen. Ein 
kachelartiger Floorplan bietet zahlreiche Vorteile im Bezug auf heutige Fertigungstechniken und 
wird deshalb auch beim GigaNetIC-Projekt berücksichtigt (vgl. Abschnitt 8.2.3). 

Der Hydra CMP entspricht in etwa einem Cluster des GigaNetIC-Systems, wies aber seinerzeit 
kein übergeordnetes Konzept zur weiteren Skalierung auf, wie es u. a. durch das GigaNoC und 
durch die GigaNetIC-Switch-Boxen (vgl. Abschnitt 4.2) gegeben ist. 

Der Daytona CMP integriert einen konfigurierbaren Multiprozessorcache für seine vier Verarbei-
tungseinheiten, der mit einem ähnlichen Cache-Kohärenzprotokoll arbeitet, wie es beim GigaNetIC-
Multiprozessorcache zum Einsatz kommt, vgl. Abschnitt 4.4.2. Zusätzlich wurde ein Echtzeitbe-
triebssystem (RTOS) zur Steuerung der Prozessabläufe entwickelt, das die Leistungsfähigkeit eines 
CMP erheblich steigern kann. Für den GigaNetIC-CMP stehen mehrere Programmiermodelle zur 
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Auswahl, vgl. Abschnitt 4.5, allerdings wurde noch kein echtzeitfähiges Betriebssystem mit dem 
Gesamtsystem getestet. 

Der PipeRench-Ansatz ist als Konzept für eine rekonfigurierbare, compilerunterstützte Architektur, 
die ohne zusätzliche Hardwarebeschleuniger an Anwendungsszenarien angepasst werden kann, ähn-
lich dem DRP-Ansatz von NEC zu sehen. Diese Art der Systemkonfiguration kann beim GigaNet-
IC-CMP ebenfalls für einzelne Cluster umgesetzt werden (vgl. Abschnitt 4.3.3), allerdings wäre an 
dieser Stelle die GigaNetIC-Compiler-Werkzeugkette (vgl. Abschnitt 5.6) auf diese neue Konstella-
tion anzupassen, was derzeit9 noch mit nicht zu vernachlässigendem Aufwand verbunden ist. 

Der XPP-III  verfolgt einen ähnlichen, wenn auch nicht vollständig auf FPGA-Technologie basie-
rendes Konzept. Bei ihm wird zusätzlich ein paketorientiertes On-Chip-Netzwerk eingesetzt, wie es 
auch bei der GigaNetIC-Architektur durch das GigaNoC gegeben ist. 

Beim Entwurf des Piranha-CMP wurde bei Compaq bereits vor der Einführung von SystemC eine 
C++-basierte Spezifikation des Gesamtsystems vorgenommen. Die GigaNetIC-Entwicklungs-
umgebung umfasst ebenfalls für die Spezifikation und zugleich zur schnellen, SoC-umspannenden, 
zyklenakkuraten Simulation ein SystemC-Modell (vgl. Abschnitt 5.2), eine erweiterte C++-
Klassenbibliothek, die seit 2005 IEEE-Standard ist. 

Die Architektur des KiloCore verfügt mit 256 bzw. in einer weiteren Ausbaustufe mit 1024 Verar-
beitungseinheiten über die größte Anzahl integrierter Prozessorkerne in diesem Vergleich, aller-
dings handelt es sich auch um sehr einfach geartete Verarbeitungseinheiten, da sie u. a. nur über 
einen 8-Bit-breitem Datenpfad verfügen. In wieweit sich diese sehr geringe Berechnungsbandbreite, 
die nur durch einen nennenswerten Mehraufwand zu breiteren Datenpfaden konfiguriert werden 
kann, bewährt, bleibt abzuwarten. Bei dem Prozessorkern der GigaNetIC-Architektur wurde be-
wusst auf eine, zwar einfache, aber bereits 32-Bit-breite CPU gesetzt, um einen möglichst effizien-
ten Kompromiss zwischen Leistungsfähigkeit und Flächeneffizienz zu erhalten. Außerdem wird 
durch die Möglichkeit der Integration beliebiger Hardwarebeschleuniger bzw. Hardwareblöcke 
(vgl. Abschnitt 4.3.3) genügend Flexibilität gewährleistet, um auf spezielle Anforderungen seitens 
des Anwendungsgebiets reagieren zu können. 

Die stark auf Performanz optimierten Verarbeitungseinheiten der Grafikbeschleuniger / GPUs hin-
gegen sind auf eingeschränkte Anwendungsgebiete spezialisiert und bieten wenig Spielraum. Eine 
Auslegung auf möglichst geringe Fläche oder minimale Verlustleistungsaufnahme stand bei der 
Entwicklung dieser Architekturen deutlich im Hintergrund. Dies verhält sich bei der grundsätzlich 
als Universalrechner ausgelegten GigaNetIC-Architektur anders. Diese ermöglicht den Entwicklern, 
die Positionierung des späteren Systems während der Spezifikation bzgl. der vier Dimensionen des 
Entwurfsraums (vgl. Definition 11) in alle Richtungen zu variieren. Ähnlich verhält sich der Ver-
gleich mit den spezialisierten Physikbeschleuniger PhysX. 

Die Polaris-Architektur von Intel kommt der Art des GigaNetIC-Ansatzes in vielen Aspekten sehr 
nahe, nicht zuletzt werden durch Intels Tera-Scale-Projekt ähnliche Anforderungen an die Rechner-
architekturen der Zukunft definiert, wie es sie auch bei der Konzeptionierung der GigaNetIC-

                                                 

9 Die Fachgebiete Schaltungstechnik, Prof. Dr.-Ing. Ulrich Rückert und Programmiersprachen und Übersetzer, Prof. Dr. 

Uwe Kastens, forschen mittlerweile aktiv an dieser Thematik. 
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Architektur zu berücksichtigen gab. Auch hier wird eine gitterförmige, kachelbasierte Anordnung 
angewendet. Sind die Kacheln beim Polaris-Chip je 3 mm² groß und beinhalten nur einen, für Intels 
Verhältnisse wenig komplexen, Prozessor mit relativ wenig Speicher, so gestalten sich die Kacheln 
der GigaNetIC-Cluster mit 4,84 mm² in der 90-nm-Technologie in einer vergleichbaren Größenord-
nung. Skaliert man diese auf die von Intel verwendete 65-nm-Technologie (vgl. Definition 30) so 
entspräche sie einer Fläche von nur noch 2,5 mm². Allerdings beinhalten die GigaNetIC-Kacheln 
vier Prozessoren mit insgesamt 32-mal soviel Speicher (160 KB) und bereits reservierter Fläche für 
spezielle Hardwarebeschleuniger. Bzgl. der Rechenleistung liegt die Intel-Architektur um Größen-
ordnungen vorne, zumal sie je zwei Fließpunkteinheiten pro Kachel integriert, die beim GigaNetIC, 
aufgrund der betrachteten Anwendungsgebiete (vgl. Kapitel 7), derzeit nicht vorgesehen sind. Der 
Polaris-Router beherrscht einen Durchsatz von 72,51GByte/s bei 4 GHz gegenüber 26,6 GByte/s 
(Netto-Datendurchsatz) der GigaNetIC-Switch-Box mit nur 714 MHz. Nach den Skalierungsgeset-
zen ergäbe sich für die Switch-Box in der 65-nm-Technologie ein theoretischer Netto-
Datendurchsatz von 36,84 GByte/s bei 989 MHz. Diese Zahlen zeigen, dass die GigaNetIC-
Architektur in vielen Bereichen durchaus konkurrenzfähig ist. Abschließend bleibt zu erwähnen, 
dass Polaris über kein hierarchisches On-Chip-Netzwerk verfügt, sondern nur eine Hierarchieebene 
vorsieht. Durch die ausgeprägt generische Struktur der GigaNetIC-Architektur (vgl. Abschnitt 
4.2.1.2) lassen sich nahezu beliebige Topologievarianten konstruieren, welches mit der Polaris-
Router-Struktur augrund der festen Anzahl von vier Ports nicht in dem Maße zu verwirklichen ist. 
Außerdem ist nicht bekannt, in wieweit die Prozessoren durch eine, beim GigaNetIC-System vor-
handene, „Offload-Engine“ zur Koordination des On-Chip-Datenverkehrs (vgl. 4.2.1.1) entlastet 
werden. Ansonsten würde Rechenleistung der Prozessoren für die Datenübertragung benötigt. 

Bei den Opteron-Vierfach-Kernen setzt AMD bereits erfolgreich das MOESI-Cachekohärenz-
protokoll ein, das gleiche, wie es der GigaNetIC-Multiprozessorcache auf Prozessor-Cluster-Ebene 
verwendet (vgl. Abschnitt 4.4.2). Allerdings wird beim GigaNetIC-Projekt eine deutlich höhere 
Parallelität auf SoC-Ebene, als derzeit bei AMD, angestrebt. Mit der zukünftigen Torrenza-
Initiative verfolgt AMD einen Ansatz, bei dem heterogene Systeme von Prozessoren und Hardwa-
rebeschleunigern auf einem Chip größtmögliche Effizienz bieten sollen. Dies wird ebenfalls bei der 
hybriden Struktur der GigaNetIC-Architektur wirkungsvoll eingesetzt, vgl. Kapitel 7 und 8. 

Der Cell-Chip-Multiprozessor integriert derzeit die meisten Prozessorkerne der wirtschaftlich er-
folgreichen Systeme dieses Vergleichs. Die GigaNetIC-Architektur zielt auf noch höhere Paralleli-
tät ab, die nicht zuletzt durch ihre regelmäßige Struktur und der guten Abbildbarkeit auf verschie-
dene Zieltechnologien aufgrund ihrer synthetisierbaren Beschreibung ermöglicht wird. Beim Cell-
Chip sticht hingegen ein hoher Anteil an „Full Custom Design“; der bei den anderen Hochleis-
tungsprozessoren in ähnlichen Dimensionen liegen wird, ins Auge. Dies bedeutet einen Nachteil 
bzgl. einfacher Skalierbarkeit und zukünftiger, anwendungsspezifischer Erweiterungen. Dadurch 
kann kein automatisierter Synthese-Prozess greifen, geometrisches Herunterskalieren bei derartigen 
Strukturgrößen ist ebenfalls nicht ohne Weiteres möglich, deshalb bedeutet eine Portierung auf 
neuere Technologien deutlich mehr Aufwand als es bei der GigaNetIC-Architektur der Fall ist. Der 
Cell-Chip verfügt über eine integrierte, leistungsstarke „Debug“-Einheit, was für eine produktive 
Softwareentwicklung von großer Bedeutung ist. Diese Option ist bei aktuellen GigaNetIC-
Systemen nur ansatzweise vorhanden und ausbaufähig. Aufwändige Mechanismen zur Umgehung 
bzw. Feststellung von Fertigungsfehlern wurden beim Cell-Chip integriert – ebenfalls ein Punkt der 
bei der GigaNetIC-Architektur noch weiterer Anstrengungen bedarf.  
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Schlussbemerkung. Jeder der gezeigten Ansätze weist Besonderheiten und spezielle Mechanismen 
zur Ausnutzung der Parallelität auf. Die GigaNetIC-Architektur wurde ohne eine zuvor angestellte, 
tiefer gehende Analyse dieser Architekturen entworfen, um so weitestgehend unvoreingenommen 
einen neuartigen, innovativen massiv parallelen Chip-Multiprozessor zu erhalten. Diese, durch Ana-
lyse der grundlegenden Methoden und eigene Überlegungen getriebene Herangehensweise mag 
zunächst gewagt erscheinen. Der resümierende Vergleich zeigt allerdings, dass mit der GigaNetIC-
Architektur ein CMP entwickelt wurde, der zahlreiche der Besonderheiten in einem Ansatz vereint 
und teilweise neue Methoden einsetzt, um so ein möglichst ressourceneffizientes Konzept zu ver-
wirklichen. 

2.9 Zusammenfassung 

In diesem Kapitel wurden grundlegende Abschätzungen zur Leistungssteigerung durch paralleles 
Rechnen und die damit verbundenen Anforderungen an die Systeme aufgezeigt. Es wurden elemen-
tare Grundlagen zu den Kernkomponenten eingebetteter Parallelrechner vorgestellt. Hierzu zählen 
die On-Chip-Netzwerke und die in diesem Zusammenhang relevanten Methoden, die eine mög-
lichst effiziente Verbindung eingebetteter Verarbeitungseinheiten gewährleisten. Mit Hilfe dieser 
Kommunikationsinfrastruktur, durch die Integration einer angepassten Speicherhierarchie und 
unter Einbeziehung angepasster Algorithmen und für die Parallelverarbeitung geeigneter Anwen-
dungen wird so eine funktionale Parallelverarbeitung mittels der eingebetteten Verarbeitungsein-
heiten möglich (vgl. Abbildung 2-6). Anhand von Prognosen und den vorgestellten Anwendungs-
szenarien zeigt sich ein immer größer werdender Bedarf an solch leistungsfähigen Architekturen. 
So prognostiziert die ITRS bereits für das Jahr 2020 eine Beherrschbarkeit von Chip-Multipro-
zessoren mit mehr als 800 Prozessorkernen [2]. 

Beispielhaft wurden innovative Ansätze aus Wissenschaft und Industrie zu On-Chip-Netzwerken, 
Verarbeitungseinheiten und Chip-Multiprozessoren aufgezeigt und diskutiert. Hieraus wird das der-
zeit technisch Mögliche ersichtlich. Zukünftige Trends werden abgeleitet. Diese Entwicklungen 
bedeuten Herausforderungen, die es auch im GigaNetIC-Projekt ganzheitlich zu lösen galt. Unter-
schiede und Gemeinsamkeiten der vorgestellten Ansätze im Hinblick auf die GigaNetIC-
Architektur wurden in einem Resümee herausgearbeitet und geben so bereits einen ersten Eindruck 
über die von mir entworfene Systemarchitektur. Die Charakterisierung und analytische Modellie-
rung eines skalierbaren, ressourceneffizienten massiv parallelen eingebetteten Prozessorsystems 
sowie dessen praktische Umsetzung sind Bestandteil der folgenden Kapitel. 
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3 Charakterisierung und analytische Modellierung 
Im Verlauf dieses Kapitels wird eine analytische Modellierung des Gesamtsystems entwickelt. 
Hierbei wird auf Größen wie Flächenbedarf, Leistungsaufnahme, Performanz und Zukunftssicher-
heit der jeweiligen Systemkomponenten und letztendlich des gesamten SoCs eingegangen. Anhand 
dieser Charakterisierungen wird mit Hilfe von definierten Kostenfunktionen ein Modell entwickelt, 
das zur Bewertung von Chip-Multiprozessorsystemen speziell auch im Hinblick auf ihre Ressour-
ceneffizienz herangezogen werden kann. Die in diesem Kapitel erarbeiteten Bewertungsmaßstäbe 
finden in den Folgekapiteln Einsatz zur Bewertung und Optimierung der GigaNetIC-Architektur in 
Bezug auf dedizierte Anwendungsgebiete. 

3.1 Ressourceneffizienz eingebetteter Systeme 

Thema dieser Arbeit ist die „Ressourceneffiziente Schaltungstechnik eingebetteter Parallelrechner“. 
Was aber ist unter diesem Leitgedanken genau zu verstehen? Schaltungstechnik, also der Entwurf 
von analogen und digitalen Halbleiterschaltungen, hier im Speziellen basierend auf CMOS-
Standardzellentechnologie, ist in der heutigen Elektrotechnik eine etablierte und wohl erklärte 
Technik. Eingebettete Parallelrechner, die im vorigen Kapitel bereits diskutiert wurden, sind be-
grifflich ebenfalls etabliert. Wie aber lässt sich das Kompositum Ressourceneffizienz für System-
on-Chip-Entwürfe definieren, und welche wesentlichen Kriterien gilt es zu beachten?  

Das Wort Ressource kommt aus dem Französischen und meint laut Duden Hilfsmittel, Rohstoffe 
bzw. Grundlagen oder Geldmittel. Im öffentlichen Leben wird der Begriff meist mit Vernunft, Ethik 
und einem langfristigen Ökonomieverständnis in Verbindung gebracht. Der Brockhaus unterschei-
det zwischen zwei fachsprachlichen Verwendungsweisen. In den Wirtschaftswissenschaften diene 
Ressource der Bezeichnung „im weiteren Sinne von Produktionsfaktoren (Arbeit, Boden und Kapi-
tal)“ und bezeichne „im engeren Sinne Rohstoffe (natürliche Ressourcen)“. Der zweite Bereich, für 
den der Brockhaus den Begriff definiert, die Datenverarbeitung, ist treffender für die Thematik die-
ser Arbeit. Der Brockhaus formuliert: „Ressourcen, Mittel die genutzt werden können. Die Res-
sourcen eines PCs sind: 1. die inneren (Prozessorleistung, Arbeitsspeicher, Massenspeicher) und 2. 
die äußeren (Peripheriegeräte). In einem Netzwerk werden alle gemeinsam nutzbaren Mittel als 
Ressourcen bezeichnet, auch Software (Anwendungsprogramme, Datenbestände)“. 

Der zweite Bestandteil ist Effizienz (lateinisch efficientia: Wirksamkeit), unter dem der Brockhaus 
„etwas besonders Wirksames und Wirtschaftliches bzw. etwas besonders Leistungsfähiges“ ver-
steht. Der Duden beschränkt sich auf die Bedeutung „wirksam und wirtschaftlich“. 

Schlösse man nun aus diesen Definitionen auf eine möglichst treffende Interpretation des Begriffes 
Ressourceneffizienz für die Schaltungstechnik eingebetteter Parallelrechner, so ergäbe sich folgen-
de Begrifflichkeit:  

Definition 1 Unter ressourceneffizienter Schaltungstechnik wird – im Allgemeinen und un-
ter Zuhilfenahme der allgemeinen Definitionen der beiden Wortbestandteile Ressource und 
Effizienz – eine im Hinblick auf die nutzbaren Mittel und Grundlagen besonders leistungs-
fähige, wirtschaftliche Realisierung eines Halbleiterbausteins verstanden. 
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Im Folgenden werden weitere Begriffsdefinitionen gegeben, die im Rahmen meiner Charakterisie-
rung eingebetteter Parallelrechner hinsichtlich ihrer Ressourceneffizienz essentiell sind. Es wird 
ferner eine formale Beschreibung vorgestellt, die die Bewertung der Ressourceneffizienz solcher 
Systeme ermöglicht. 

Definition 2 Als Systementität 
ie
S wird eine zum System S  gehörige Einheit bezeichnet, die 

funktional in sich geschlossen ist und einen wesentlichen Bestandteil des Systems in mate-
rieller oder auch immaterieller Hinsicht darstellt.  

 
ie

⊇S S  (3.1) 

Definition 3 Die Architektur A  definiert sich aus der Gesamtheit aller Bestandteile des 
Chip-Multiprozessors. Hierunter werden zum einen die Hardware-Systementitäten und de-
ren Verschaltung ( )i

e HWS  und zum anderen alle nichtmateriellen Systementitäten ( )i
e SWS  ver-

standen.  

 ( ) ( )i i
e HW e SW⊃ ∪A S S  (3.2) 

Zu den Hardware-Systementitäten (vgl. Abschnitte 4.2 bis 4.4) ( )i
e HWS  zählen z. B. Prozessorele-

mente, Hardwarebeschleuniger, Speicher, Caches, On-Chip-Netzwerke sowie Peripherieblöcke.  

Die nichtmateriellen Komponenten ( )i
e SWS  sind z. B. der Compiler auf Clusterebene (vgl. Abschnitt 

4.5), der zugehörige Assembler, das On-Chip-Kommunikationsprotokoll (vgl. Abschnitt 4.2.2), das 
übergeordnete Programmiermodell sowie die Entwurfswerkzeuge und die Zielapplikationen (vgl. 
Kapitel 5, 6 und 7). 

Definition 4 Ein Bewertungsmaß BM ist ein charakteristisches Maß, das zur Bewertung von 
Systementitäten 

ie
S  bzw. Systemen iS  oder auch Architekturen iA  herangezogen werden 

kann. 

Definition 5 Kostenmaße K  definieren Obermengen ausgewählter und thematisch verwand-
ter Bewertungsmaße BM.  

 ( )i n iBM⊃K  (3.3) 

Im weiteren Verlauf dieser Arbeit werden die Kostenmaße Leistungsaufnahme P, Flächenbedarf A, 
(Rechen-)Leistung/Performanz T und Zukunftssicherheit bzw. Flexibilität F verwendet,  

=K { P, A, T, F}. Kostenmaße sind nicht zwangsläufig invariant gegenüber einander, vielmehr ste-
hen sie häufig in diametraler Wechselwirkung miteinander, vgl. Abbildung 3-2. 

Definition 6 Die Zielfunktion ZF  beinhaltet ausgewählte, mit einem Gewichtungsfaktor ic  

gewichtete Bewertungsmaße BMi eines Kostenmaßes iK .  

 1 1 ... n nZF c BM c BM= + +  (3.4) 

Es sind auch andere Zusammenhänge der einzelnen Bewertungsmaße denkbar, wie z. B. die Ver-
wendung eines multiplikativen Zusammenhangs:  

 1 1 ... n nZF c BM c BM= ⋅ ⋅  (3.5) 

Auch exponentielle Gewichtsfaktoren zur Differenzierung der Bewertungsmaße sind denkbar: 
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 1
1 ... ncc

nZF BM BM= + +  (3.6) 

bzw. 

 1
1 ... ncc

nZF BM BM= ⋅ ⋅  (3.7) 

Im weiteren Verlauf dieser Arbeit beschränke ich mich, um den Rahmen dieser Arbeit nicht zu 
sprengen, bei Kostenanalysen auf die Anwendung von (3.4). 

Die Gewichtungen cí sind entsprechend den Randbedingungen und Anforderungen an die jeweili-
gen Bewertungsmaße zu wählen. Im weiteren Verlauf dieser Arbeit werden die Gewichtungen ge-
mäß des Zusammenhangs 1i

i

c =∑  gewählt, wobei0 1ic≤ ≪  für eine geringere Gewichtung von 

BMi und 0 1ic ≤≪  für eine entsprechend größere Bedeutung des jeweiligen Bewertungsmaßes an-

gesetzt wird. 

Definition 7 Eine Randbedingung R charakterisiert spezifische Besonderheiten, die bei der 
Erstellung bzw. beim Einsatz einer Systementität eS , eines Systems S  oder einer Architek-

tur A  auftreten.  

Die Randbedingungen Ri sind bei der Spezifikation bekannt und müssen bei der Realisierung einge-
halten werden. 

Definition 8 Als untere Schranke uS  wird eine quantitative untere Grenze und als obere 

Schranke oS  eine obere Grenze einer Zielfunktion ZF  bezeichnet, die aufgrund der spe-

ziellen Randbedingungen Ri zulässig sind:  

 
! !

,u o iZF S ZF S R≥ ≤ ∀  (3.8) 

Definition 9 Die Kostenfunktion CF  ist eine gewichtete Verknüpfung der einzelnen Ziel-
funktionen iZF . Die Gewichtungen iα  sind hierbei ggf. subjektiv und durch die Spezifikati-

on bzw. Randbedingungen Ri und Schranken S zu wählen (vgl. Definition 6). Für einen ad-
ditiv gewählten Zusammenhang der Zielfunktionen iZF  ergibt sich: 

 bzw.

 mit

i i
i

P A T F i

CF ZF

CF

α

α α α α α

∈

=

= + + + ∈

∑

P A T F

K

R

 (3.9) 

Hier wird ebenfalls so vorgegangen, dass 1i
i

α =∑  gesetzt wird, wobei für besonders relevante 

Zielfunktionen ZFi bzgl. der Anforderungen des Anwendungsszenarios 0 1iα ≤≪  angesetzt wird, 

und Zielfunktionen geringerer Bedeutung mit 0 1iα≤ ≪  gewichtet werden. Varianten, ähnlich zu 

(3.5), (3.6) und (3.7) bezogen auf den Aufbau einer Kostenfunktion sind denkbar, werden aber im 
Rahmen dieser Arbeit nicht angewendet. 

Sollten die Werte der einzelnen Zielfunktionen bzgl. der betrachteten Kostenmaße quantitativ sehr 
unterschiedlich sein, so ist eine Normierung der Werte der jeweiligen Realisierungsvarianten RVi 
hilfreich:  
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 ( ) ( )
( )( ) { } { }: , mit ,  1,...,

max
i

i

RV i
RV i normiert

RV i

ZF
ZF n Anzahl RV i n

ZF
= =

K
K

K
 (3.10) 

Die Normierung ist für alle Realisierungsvarianten RVi des betrachteten Systems S  bzw. 
der Systementität eS  für das betreffende Kostenmaß iK  oder auch alle Kostenmaße durch-

zuführen. 

Definition 10 Pareto-Optimierung (nach VILFREDO PARETO) bezeichnet die Lösung eines 
multikriteriellen Problems. Bei einer Mehrzieloptimierung, bei der die Zielkriterien konku-
rieren, kann eine gemeinsame Kostenfunktion CF  mit Gewichtung der einzelnen Zielfunk-
tionen iZF  aufgestellt werden. Eine Lösung CFpareto des Problems, für gegebene Gewich-

tungen der Zielfunktionen, wird als pareto-optimal bezeichnet, wenn eine weitere Verbesse-
rung (im Sinne einer Minimierung von CF) eines beliebigen Zielfunktionswertes mZF↓  

stets in einer Verschlechterung (im Sinne einer Vergrößerung) eines anderen Zielfunktions-
wertes :nZF n m↑ ≠  und somit auch CF↑  resultiert. 

 :  pareto i i
i

CF ZFα
∈

=∑ min!
K

 (3.11) 

Definition 11 Der Entwurfsraum E  umfasst die Realisierungsvarianten RVi einzelner Sys-
tementitäten eS , Systeme S  bzw. Architekturen A . Dimensionen des Entwurfsraums sind 

die Kostenmaße iK  nach Definition 5, vgl. auch Abbildung 2-14. 

Definition 12 Als pareto-optimaler Punkt paretoP  im Entwurfsraum E  wird eine Lösung im 

Sinne von (3.11) bezeichnet. Die Bezeichnung pareto-optimaler Punkt kann auf Realisie-
rungsvarianten einzelner Systementitäten ( )  mit ,e i i HW SW∈S  auf Systeme iS  oder Archi-

tekturen iA  angewendet werden.  

Da im weiteren Verlauf dieser Arbeit Untersuchungen unter Berücksichtigung implementierter Sys-
tementitäten 

ie
S , Systeme iS  und Architekturen iA  angestrebt werden, die keine vollständige Ab-

deckung des Entwurfsraums zulassen10, muss an dieser Stelle eine starke Einschränkung von Defi-
nition 12 getroffen werden. 

Definition 13 Als diskreter pareto-optimaler Punkt ,pareto diskretP  im Entwurfsraum E  wird ei-

ne Lösung nach (3.11) bezeichnet, wobei die Menge der Realisierungsvarianten diskret und 
zumeist stark eingeschränkt ist. Es kann beliebig viele pareto-optimale Punkte nach Defini-
tion 12 geben, die nicht in der betrachteten Menge liegen. Ein nur auf diese Auswahl bezo-
gener, pareto-optimaler Punkt wird dann diskret pareto-optimal genannt. 

Auf Basis der bisher definierten Begriffe lässt sich nun eine formale Definition der Ressourceneffi-
zienz treffen: 

Definition 14 Ressourceneffizienz RE im Sinne des schaltungstechnischen Entwurfs eines 
Chip-Multiprozessorsystems bzw. seiner Bestandteile und zur Verfeinerung der allgemeinen 

                                                 

10 Es handelt sich zum einen um diskrete Punkte im Entwurfsraum, die nicht die Gesamtheit aller möglichen Realisie-

rungsvarianten abdecken und zum anderen um Syntheseergebnisse, die für spezielle Randbedingungen erzielt wurden. 



3.2 Bewertungsmaße für Ressourceneffizienz 

 

63

Definition 1 wird nun im Weiteren spezifiziert als: Realisierung von Systementitäten 
ie
S , 

Systemen iS  bzw. Architekturen iA , die unter Berücksichtigung der vorgegebenen Schran-

ken S bzw. Randbedingungen R, den damit verbundenen Zielfunktionen ZF und den daraus 
resultierenden Ergebnissen der Kostenfunktion CF, pareto-optimale Punkte paretoP  bzw., 

stark abgeschwächt, diskrete pareto-optimale Punkte ,pareto diskretP  im Entwurfsraum E  dar-

stellen. Auch der Versuch der Annäherung einer Realisierung an solche Punkte kann als An-
satz einer ressourceneffizienten Implementierung gewertet werden. 

Mit den vorangegangenen Definitionen sind nun die relevanten Begriffe, die als Basis für die for-
male Bestimmung der Ressourceneffizienz RE dienen, geprägt. Im Folgenden müssen nun Kriterien 
gefunden werden, die sich als Bewertungsmaße für eingebettete Systeme einsetzen lassen und die 
Zielfunktionen bilden. 

3.2 Bewertungsmaße für Ressourceneffizienz 

Zur Bewertung des Grades der Ressourceneffizienz eines Chip-Multiprozessorsystems müssen Be-
wertungsmaße BM (auch als Benchmarks bezeichnet) gefunden werden, die als Grundkomponenten 
für die jeweiligen Zielfunktionen ZF dienen. In der Literatur ist eine Vielzahl von Bewertungsma-
ßen für elektronische Schaltungen zu finden, von denen im Folgenden einige relevante kurz einge-
führt werden. 

3.2.1 Bewertungsmaße zur Performanz 

Die nachstehenden Bewertungsmaße charakterisieren die Performanz T (eingeschränkter die Re-
chenleistung) von einzelnen Systementitäten, Systemen bzw. Architekturen. 

Definition 15 Taktfrequenz f [MHz] = 1/Taktperiode T, mit der die Schaltung betrieben wer-
den kann. 

Definition 16 Die Latenz L [1] einer Systementität ist die Anzahl der Taktperioden (häufig: 
Takte), nach der ein Ergebnis am Ausgang der Schaltung anliegt.  

Im nicht-digitalen Fall wird sie einheitenbehaftet als Zeitspanne L [s] angegeben, die vergeht, bis 
eine Eingangssignaländerung als Ausgangssignaländerung erkennbar wird. 

Definition 17 Der Jitter J [s] kennzeichnet die maximale Varianz der Latenz L und wird im 
Weiteren im digitalen Sinne verwendet, also in ganzzahligen Taktperioden T angegeben.  

Jitter ist ein Phänomen, das z. B. aufgrund konkurrierender Prozesse, die auf dieselbe Ressource 
zugreifen wollen und nicht immer in gleicher Weise die Zuteilung bekommen, entsteht. 

Definition 18 Die Ausführungszeit exT T L= ⋅  [s] ist die benötigte Zeit für die Lösung bzw. 

die Bereitstellung des Ergebnisses für eine gegebene Aufgabe. 

Definition 19 Der Durchsatz 
1

ex

D
T

=  [1/s] kennzeichnet die Anzahl der gelieferten Ergebnis-

se bzw. Daten pro Sekunde.  

Im Folgenden werden allgemeine Bewertungsmaße zur Charakterisierung der Leistungsfähigkeit 
bzw. Performanz von Verarbeitungseinheiten und im Speziellen von Prozessoren vorgestellt: 
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Ein verbreitetes, zumeist weniger aussagekräftiges Maß11 zur Angabe der Leistungsfähigkeit ist die 
Klassifikation in MIPS (Million Instructions Per Second). 

Definition 20 MIPS beziffern Millionen Instruktionen bzw. Maschinenbefehle pro Sekunde 
6 110MIPS Instruktionen s− −= ⋅ , die durch die Verarbeitungseinheit abgearbeitet werden kön-

nen:. 

Ähnliche Bewertungsmaße zur Angabe der Instruktionen pro Sekunde sind die Angabe der Instruk-
tionen pro Takt bzw. der Kehrwert in Takten pro Instruktion.  

Definition 21 Instruktionen pro Takt12 (Instructions Per Cycle / IPC) bzw. dessen Kehrwert 

Takte pro Instruktion (Cycles Per Instruction / CPI) 
1Instruktionen

IPC
Taktzyklus CPI

= = . Es gilt 

ferner: 610IPC f MIPS−⋅ ⋅ =  

Aus den bisherigen Bewertungsmaßen lässt sich nun ein objektiveres Maß zur Bewertung von In-
struktionssatz-basierten Prozessoren definieren, vgl. [95]: 

Definition 22 Die gemittelte Ausführungszeit für Instruktionssatz-basierte Prozesso-
ren ( )exT PE  [s] ist die benötigte Zeit für die Lösung und die Bereitstellung des Ergebnisses 

für eine gegebene Aufgabe. IC stellt die dynamische Instruktionsanzahl (dynamic Instructi-

on Count)13, die für die Abarbeitung der Aufgabe benötigt wird, dar. CPI  ist die durch-
schnittliche Anzahl der benötigten Takte bzw. Zyklen zur Verarbeitung einer Instruktion der 
betreffenden Prozessorarchitektur. 

 ( ) 1
exT PE IC CPI f−= ⋅ ⋅  (3.12) 

Dieses Bewertungsmaß ist sinnvoll, wenn die zur Verfügung stehende Entwicklungsumgebung kei-
ne zyklenakkurate Laufzeitauswertung bereitstellt und stattdessen nur die Anzahl abgearbeiteter 
Instruktionen zählt. Die GigaNetIC-Entwicklungsumgebung hingegen erlaubt in allen Simulatoren 
(vgl. Kapitel 5) eine taktgenaue Simulation und Laufzeitauswertung der eingebetteten Prozessoren. 
Deshalb kann mit der exakten Ausführungszeit exT  gearbeitet werden, im Gegensatz zum Ansatz 

von LI und MARTÍNEZ [96]. Die in [96] aus (3.12) gefolgerte nominelle Effizienz paralleler Verar-
beitung (nominal parallel efficiency) wird in Definition 23 dargelegt. Es handelt sich hierbei um 
eine vereinfachte Formulierung des Gesetzes von GUSTAFSON (2.2). Beim DSLAM-System-Explorer 
(vgl. Abschnitt 7.5) dient ein ähnliches Modell als Grundlage für die Hochrechnung der Leistungs-
fähigkeit GigaNetIC-basierter Parallelprozessorsysteme. Es verwendet allerdings die exakten Lauf-
zeiten zur Bestimmung der Leistungsfähigkeit. Zusätzlich findet ein einstellbarer Overhead der pa-
rallelen Architektur Berücksichtigung. 

                                                 

11 Aufgrund der unterschiedlichen Mächtigkeit der Instruktionssätze verschiedener Prozessorarchitekturen (z. B. RISC 

vs. CISC, Abschnitt 2.4.3) lässt sich zunächst kein objektiver Vergleich auf Basis dieses Bewertungsmaßes treffen. 

12 Dieser Wert hängt stark von der zugrundeliegenden Architektur (z. B. von der Pipeline, der Superskalarität, der 

Mächtigkeit der eigentlichen Instruktion etc.) ab und ist deshalb kein eindeutiges Maß zur Bewertung der Leistungsfä-

higkeit von verschiedenen Architekturen. 

13 Diese kann u. a. von den jeweiligen Daten und Speicherhierarchien abhängen. 
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Definition 23 Die nominelle Effizienz paralleler Verarbeitung (nominal parallel efficiency) 
( )n Nε  nach [96] mit N Prozessoren ergibt sich aus dem Verhältnis der benötigten Takte ei-

nes Prozessors IC1 zu denen von N Prozessoren ICN (3.13). ( )n Nε  gibt Aufschluss über die 

Eigenschaften der Anwendung bzgl. paralleler Verarbeitung mittels CMPs. Bei ( ) 1n Nε <  

zeigen sich Performanzeinbußen, z. B. verursacht durch Kommunikation etc. Bei ( ) 1n Nε >  

hingegen zeigen sich superlineare Effekte der parallelen Verarbeitung, z. B. hervorgerufen 
durch Multiprozessorcaches (vgl. Abschnitte 4.4.2 und 6.7). 

 ( ) 11
n

NN

IC CPI
N

IC CPI
ε ⋅=

⋅
 (3.13) 

Ein sich an diese Definitionen anschließendes Bewertungsmaß, das vor allem für digitale Signal-
prozessoren (DSPs) und im Bereich des wissenschaftlichen Rechnens von Relevanz ist, ist die An-
gabe der Gleitkommaoperationen eines Systems pro Sekunde. Der Standard-Prozessor der Giga-
NetIC-Architektur, der N-Core, verfügt nicht über eine derartige Gleitkommaeinheit, weshalb de-
rartige Operationen sehr teuer emuliert werden, bzw. eine Integration eines anwendungsspezifi-
schen Hardwarebeschleunigers notwendig wäre. Da die im Zusammenhang mit dem GigaNetIC-
CMP betrachteten Anwendungen jedoch keine relevante Verwendung für diese Operationen zeigen, 
wird diesbezüglich keine Einstufung vorgenommen.  

Definition 24 Gleitkommaoperationen pro Sekunde (Floating Point Operations Per Second / 
FLOPS), gibt die Anzahl möglicher Berechnungen im Gleitkommabereich pro Sekunde an. 

Da die Bewertung der Leistungsfähigkeit von eingebetteten Verarbeitungseinheiten anhand der De-
finitionen 20 bis 22 sehr fraglich ist und das Bewertungsmaß aus Definition 24 nicht für die Haupt-
anwendungsgebiete der GigaNetIC-Architekur herangezogen werden kann, werden im weiteren 
Verlauf dieser Arbeit komplexere Bewertungsmaße bzw. Benchmarks eingeführt, die eine kontext-
bezogene Einstufung der betrachteten Verarbeitungseinheiten erlauben (vgl. Kapitel 7 und 8).  

3.2.2 Bewertungsmaße zur Leistungsaufnahme 

Die folgenden Bewertungsmaße werden häufig zur Charakterisierung von digitalen Schaltungen im 
Hinblick auf ihre Leistungsaufnahme verwendet.  

Definition 25 Die Leistungsaufnahme bzw. Verlustleistung P einer CMOS-Schaltung setzt 
sich zusammen aus statischer Verlustleistung Pstat und dynamischer Verlustleistung Pdyn und 
stellt die Umsetzung von elektrischer Energie in Wärme dar: 

 stat dynP P P= +  (3.14) 

Definition 26 Die statische Verlustleistung entsteht aufgrund von Ruheströmen. Sie setzt sich 
aus den Anteilen Pquer, hervorgerufen durch die Querströme Iquer, und aus Pleck, der aus den 
Leckströmen I leck im Halbleitermaterial resultiert, zusammen: 

 stat quer leckP P P= +  (3.15) 

Definition 27 Die dynamische Verlustleistung entsteht aufgrund von Schaltvorgängen und hat 
derzeit bei CMOS-basierten Schaltkreisen den überwiegenden Anteil an der gesamten Ver-
lustleistung (vgl. Abbildung 3-1). Sie setzt sich zusammen aus der Lastumladeverlustleis-
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tung Plast, die beim Laden bzw. Entladen der Lastkapazitäten entsteht und durch die Lade- 
bzw. Entladeströme I last hervorgerufen wird. Die Schaltverlustleistung Pschalt entsteht bei 
beiden Umladevorgängen durch die Kurzschlussströme Ischalt, die fließen können, wenn bei-
de Transistoren durchgeschaltet sind: 

 dyn last schaltP P P= +  (3.16) 

Berücksichtigt man die Schalthäufigkeiten α, mit denen die Lastkapazitäten Clast umgeladen wer-
den, so ergibt sich für die Lastumladeverlustleistung Plast (auch häufig Pload genannt), die bei derzei-
tigen CMOS-Schaltungen einen Großteil der dynamischen Verlustleitung (ca. 80 bis 90%) aus-
macht [97][98], folgende Beziehung (3.17): 

 
1

2last last BP C f U Uα= ⋅ ⋅ ⋅ ⋅∆  (3.17) 

Da der Signalhub U∆  häufig den vollen Bereich der Versorgungsspannung UB ausmacht, lässt sich 
die folgende Vereinfachung treffen: 

 21
,

2dyn last B BP C f U mit U Uα= ⋅ ⋅ ⋅ ∆ =  (3.18) 

Aufgrund des wesentlichen Anteils der dynamischen Verlustleistung an der Gesamtverlustleistung 
digitaler Schaltkreise wird im Folgenden hauptsächlich an der Minimierung dieser Leistungsauf-
nahmeart im Sinne der Ressourceneffizienz (nach Definition 14) gearbeitet. Allerdings nehmen mit 
zunehmender Miniaturisierung die anderen Anteile der Verlustleistung zu [2], so dass auch hier be-
reits Lösungen zur Minimierung bzw. Optimierung dieser Effekte aufgezeigt werden [99][100]. 

Abbildung 3-1: Trends der Leistungsaufnahme bei CMOS-basierten SoCs [67] 

Einen Überblick bzw. eine Prognose über die Entwicklung für die Anteile von Logik und Speicher 
an der Leistungsaufnahme für zukünftige „Consumer Stationary“ SoCs gibt die ITRS in [67] (vgl. 
Abbildung 3-1). Es zeigt sich, dass die erwartete statische Verlustleistung, wie bereits erwähnt, 
klein gegenüber der dynamischen Verlustleistung ist. Die Leistungsaufnahme der Logik ist gegenü-
ber der des Speichers deutlich größer.  

Mit Hilfe der in (3.18) gezeigten Beziehung zur dynamischen Verlustleistung ist es möglich, den 
Komponenten eines Systems bzw. den Systementitäten (vgl. Definition 2) ihre charakteristische, 
effektive Kapazität anstelle einer allgemeinen Lastkapazität Clast zuzuordnen (vgl. [101]). 

Le
is

tu
ng

sa
uf

na
hm

e 
[W

]

Dyn. Leistung, Logik
Statische Leistung, Logik

Dyn. Leistung, Speicher
Statische Leistung, Speicher



3.2 Bewertungsmaße für Ressourceneffizienz 

 

67

Definition 28 Die charakteristische, effektive Kapazität einer Systementität 
ieS bestimmt sich 

zu: 

 2

2 ( )
( ) ( ) i

i i

dyn e
eff e last e

B

P
C C

f Uα
⋅

= =
⋅ ⋅
S

S S  (3.19) 

Die in den Kapiteln 5 und 6 vorgestellte GigaNetIC-Werkzeugkette ermöglicht eine komfortable 
Ermittlung von Ceff bzw. der benötigten Verlustleistung ( )

idyn eP S  der betreffenden Hard- und Soft-

ware-Systementitäten. Die ermittelten Werte können dann in die Zielfunktion bzw. letztendlich in 
die Kostenfunktion und Optimierungswerkzeuge einfließen und zu neuen, ressourceneffizienteren 
Systemkonstellationen führen [102][103][104]. 

3.2.3 Bewertungsmaße zur Fläche 

Ein Maß anderer physikalischer Natur als Performanz und Leistungsaufnahme ist die Fläche, die 
eine Schaltungsimplementierung benötigt. Die Fläche wird zum einen beeinflusst durch die reali-
sierte Funktion und die Art der Implementierung und zum anderen durch die verwendete Technolo-
gie. 

Definition 29 Die Fläche A
S
 des Systems S  setzt sich zusammen aus der Summe der benötig-

ten Einzelflächen sowohl aller Hardwaresystementitäten als auch der Verbindungsstruktur: 

 
( )( )e HW VerbindungsstrukturA A A= +∑S S

 (3.20) 

Die durch Synthese und ggf. anschließende Platzierungs- und Verdrahtungsschritte erhaltenen Flä-
chenwerte sind technologieabhängig und lassen sich über Skalierungsregeln (vgl. Definition 30) 
miteinander in Beziehung setzen. 

Im Rahmen dieser Arbeit werden hauptsächlich 130-nm- und 90-nm-CMOS-Standardzellen-
technologien zur Schaltungsrealisierung verwendet. Um besonders im Hinblick auf die benötigte 
Fläche Vergleiche mit Standardzellentechnologien anderer Strukturgrößen treffen zu können (vgl. 
[14]), lassen sich idealisierte Skalierungsregeln („Scaling-“Gesetze) anwenden [105][106].  

Definition 30 Zwischen zwei CMOS-Standardzellentechnologien kann ein konstanter Skalie-
rungsfaktor S ermittelt werden, vgl. (3.21).  

  verwendete Technologie

neue Technologie

1
Strukturgröße

S
Strukturgröße

= >  (3.21) 

Der Skalierungsfaktor S, mit einem entsprechenden Exponenten c gewichtet, ermöglicht die Skalie-
rung eines Merkmals, insbesondere der Fläche, auf eine Zieltechnologie anderer minimaler Struk-
turgröße. Mit Hilfe von (3.22) lässt sich der entsprechende Wert des jeweiligen Merkmals abschät-
zen.  

 verwendete Technologie neue Technologie
cMerkmal S Merkmal⋅ =  (3.22) 

Tabelle 3-1 gibt Aufschluss über die, den Merkmalen entsprechenden, gewichteten Skalierungsfak-
toren. Hierbei wird zwischen einer linearen Skalierung bei konstantem E-Feld und einer linearen 
Skalierung bei konstanter Spannung unterschieden. Die angegebenen gewichteten Skalierungsfakto-
ren sind idealisiert zu sehen, allerdings kommen sie derzeit der Realität aktueller CMOS-
Technologien sehr nahe [2]. 
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Tabelle 3-1: Idealisierte Skalierungsregeln bei Strukturverkleinerungen von Halbleiterschaltungen  

Merkmal 
gewichteter Skalierungsfaktor 
konstantes E-Feld (E = const.) 

gewichteter Skalierungsfaktor 
konstante Spannung (U = const.) 

Fläche A S-2 S-2 

W, L, tox S-1 S-1 

UDD, UT, U S-1 1 

Feldstärke E 1 S 

cox S S 

Cox, C S-1 S-1 

ID, I S-1 S 

Schaltzeit τ S-1 S-2 

Eine eng mit der Fläche gekoppelte Größe ist der Preis für die fertige Halbleiterrealisierung. Der 
Preis ist zumeist direkt abhängig von der benötigten Fläche und zusätzlich gekoppelt an die Techno-
logie. Die zu produzierende Stückzahl, technologieabhängige Fertigungskosten und die Ausbeute 
(Yield) bestimmen u. a. die Kosten CMOS-basierter Schaltungen. 

Definition 31 Der Preis P für eine Hardwaresystementität ( )e HWS , ein System S  oder eine 

Architektur A  wird in € angegeben und beziffert die finanziellen Mittel, die am Markt für 
die besagte Komponente aufgewendet werden müssen, um sie zu erwerben. 

Der Preis kann zu Vergleichszwecken in Relation zur Fläche in €/mm² angegeben werden. Hierbei 
ist zu beachten, dass der Preis sich nicht immer zwangsläufig proportional zu den Kosten der be-
trachteten Komponente verhält, sondern z. B. aufgrund von Alleinstellungsmerkmalen oder Grün-
den der Marktpenetration komplett von den Kosten entkoppelt gestaltet wird. 

Definition 32 Die Kosten K für eine Hardwaresystementität ( )e HWS , ein System S  oder eine 

Architektur A  werden in € angegeben und beziffern die für die Realisierung der betreffen-
den Komponente aufzuwendenden finanziellen Mittel. 

3.2.4 Bewertungsmaße zur Zukunftssicherheit und Flexibilität 

Bewertungsmaße zur Zukunftssicherheit bzw. Flexibilität einzelner Systementitäten oder ganzer 
Systeme sind physikalisch weniger fassbar als die drei bisher vorgestellten Bewertungsmaße Per-
formanz, Leistungsaufnahme und Fläche. Vielmehr sind sie im Kontext der Randbedingungen und 
Schranken (vgl. Definitionen 7 und 8) für das System und die jeweilige Anwendung zu sehen, die 
häufig subjektiver Formulierungen der Systemarchitekten unterliegen. Dennoch sind diese Bewer-
tungsmaße von ebenso großer Bedeutung, wenn nicht sogar zukünftig noch bedeutsamer als die 
bisher genannten Maße. Nachstehend werden deshalb die wichtigsten Bewertungsmaße dieser Ka-
tegorie eingeführt. 

Im Folgenden werden die Begriffe Fehlertoleranz und Fehlerimmunität, letztere eine noch stärkere 
Form der Toleranz bezüglich des Verbergens von Software- oder Hardwaredefekten, festgelegt. 
Auch sie können als Bewertungsmaße für das Kostenmaß Flexibilität herangezogen werden. Da 
jedoch mit der Realisierung von fehlertoleranten bzw. fehlerimmunen Systemen zusätzlich Redun-
danz vorgesehen werden muss, erhöht sich zwangsläufig die benötigte Fläche (vgl. Definition 5).  
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Definition 33 Die Fehlertoleranz FT eines eingebetteten Systems definiere ich als immanente 
Fähigkeit des Systems, auf Ausfälle oder Fehlfunktion von Systementitäten (nach Definition 
2) selbstständig zu reagieren und diese Fehler in gewissen Grenzen zu kompensieren.  

Das bedeutet, dass nach außen die grundsätzlich spezifizierte Funktionalität des Systems erhalten 
bleibt. Die Maßnahmen, die angewendet werden müssen, um ein System fehlertolerant aufzubauen, 
sind vielschichtig und umfassen alle wesentlichen Systementitäten. Die Toleranz gegenüber auftre-
tenden Fehlern ist allerdings nicht unbeschränkt und ist u. a. mit dem Grad der Redundanz der 
Hardware verknüpft. Die Software muss u. a. angemessene Detektions- und Verriegelungsmecha-
nismen aufweisen, um Fehlertoleranz in gewissen Grenzen zu ermöglichen. Toleriert ein System 
Fehler, so muss das korrekte Verhalten nach außen – also zu den externen Schnittstellen – grund-
sätzlich gewährleistet sein. Dies beinhaltet z. B. Protokolle und Datenkonsistenz, also die Korrek-
theit der Ergebnisse der Verarbeitung. Bezüglich der Latenz, des Durchsatzes und des Jitters (vgl. 
Definitionen 16, 17 und 19) hingegen können Leistungseinbußen auftreten. 

Definition 34 Als Fehlerimmunität FI eines eingebetteten Systems formuliere ich die Eigen-
schaft eines Systems, alle Anforderungen, die sich für ein fehlertolerantes System aus Defi-
nition 33 ergeben, zu erfüllen. Darüber hinaus muss ein fehlerimmunes System alle Spezi-
fikationen bezüglich der Performanz einhalten.  

Das bedeutet keine Reduktion des Durchsatzes (nach Definition 19), keine Erhöhung der Latenz 
(nach Definition 16) und keine Vergrößerung des Jitters (nach Definition 17). Die Erfüllung dieser 
Bedingungen ist nur mit massivem Einsatz von Redundanz und großem Aufwand auf Seiten der 
Software möglich. 

Definition 35 Skalierbarkeit bezeichnet die Möglichkeit, auf Basis der bestehenden Minimal- 
bzw. Grundstruktur eines Systems ein neues System gleichgearteter Struktur zu realisieren, 
welches über weitaus mehr Systementitäten verfügt als das Ursprungssystem. Die wesentli-
chen Systemeigenschaften in Form der beschriebenen Kostenmaße sollten jedoch von dieser 
Erweiterung weitgehend unbeeinflusst bleiben oder maximal linear proportional ansteigen.  

Ein System skaliert also, wenn bei n-facher Anzahl von Verarbeitungseinheiten die resultierende 
Fläche maximal n-mal so groß ist, die maximale Taktfrequenz des resultierenden Systems gleich 

oder zumindest 
1

f
n

⋅  beträgt und die Leistungsaufnahme maximal um das n-fache zunimmt. Für 

ein Softwareprogramm bedeutet dies, dass ein Algorithmus skaliert, wenn bei einer Erhöhung des 
Eingangsproblems um den Faktor n die Berechnungsdauer auf der gleichen Maschine maximal li-
near ansteigt und somit n-mal so viele Berechnungen gemacht werden müssen.  
Erfüllt ein erzeugtes n-faches System zusätzlich die Anforderung, dass es durch Reduktion oder 
Abschalten von m Einheiten der Systemgrundstruktur auch nur eine m-fache Herabsetzung seiner 
Eigenschaften erfährt, so ist es herunterskalierbar. Diese Eigenschaft ist z. B. für den Einsatz in 
mobilen Geräten, im Falle geringerer Last, zur Reduktion der Verlustleistung und damit einherge-
hend zur Verlängerung der Betriebszeit von besonderem Vorteil. 

Im Folgenden werden einige Aussagen zur Wiederverwertbarkeit (Reuse) wiedergegeben bzw. ge-
troffen, die letztendlich zu einer Definition dieses Begriffs im Hinblick auf die in dieser Arbeit rele-
vante Thematik führten. 
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Ein Ausschnitt aus der ITRS-Roadmap [2] zeigt, dass auf System-Ebene im Bereich der Entwurfs-
anforderungen der nahen Zukunft (System Level Design Requirements — Near-term Years) der An-
teil an Design Reuse, also an Wiederverwertbarkeit von Hardwareblöcken, mit fortschreitender 
Strukturverkleinerung in den kommenden Jahren bis 2013 stetig und insgesamt um mehr als 37 % 
ansteigen muss (vgl. Tabelle 3-2). Dies zeigt deutlich die Vorteile, die sich durch einen flexiblen, 
NoC-basierten SoC-Entwurf ergeben werden. 

Tabelle 3-2: Entwurfsanforderungen / Design Reuse der nahen und fernen Zukunft auf System-Ebene [2] 

 

Nach den Annahmen der ITRS steigert sich der Wert für wiederverwendete Blöcke ausgehend von 
2005 um bis zu 71 % im Jahr 2020, so dass 2020 mehr als die Hälfte (55 %) der gesamten Logik 
eines Chipentwurfs auf vorhandenen Schaltungsblöcken aufbaut. Diese Prognose zeigt das immer 
wichtiger werdende Entwurfsparadigma der IP-Block-basierten System-on-Chips auf, die sich durch 
ihre immanenten Eigenschaften besonders für ressourceneffiziente Implementierungen eignen. 
Deshalb ist auch die GigaNetIC-Architektur besonders prädestiniert für zukünftige Systeme. Die 
ITRS gibt folgende Berechnungsformel zur Vorhersage des „Reuse“-Wertes an: 

 ( ) ( ) ( )
( )
1

1 1
1

n

Entwicklung

n

Wachstum

p
reuse n reuse

c

 +
 = − − ⋅
 +
 

 (3.23) 

Mit reuse(n) ist die Anzahl wiederverwendeter Blöcke im Jahre n vom Referenzjahr gemeint. Reuse 
ist einer der Hauptfaktoren, die die Entwurfsproduktivität steigern und eines der Schlüsselkonzepte, 
die hinter dem System-Ebenen-Entwurf (System Level Design) stehen. pEntwicklung steht für die erwar-
tete jährliche, durchschnittliche Produktivitätswachstumsrate, ohne den Effekt von Reuse. cWachstum 
bezeichnet die erwartete jährliche, durchschnittliche Wachstumsrate der Entwurfskomplexität. Die-
se Formel setzt voraus, dass die Größe des Entwicklungsteams genauso wie die Entwurfszeit wäh-
rend der betrachteten Zeitspanne konstant bleibt. Die Begründung dieser Formel liegt darin, dass 
die Lücke zwischen Produktivitätswachstum und Wachstumsrate der Entwurfskomplexität (Design 
Productivity Gap) durch Wiederverwendung (Reuse) ausgefüllt werden muss, soll der Fortschritt im 
SoC-Entwurf vollständig genutzt werden [2]. Neben der unter (3.23) genannten Gleichung zur Wie-
derverwendbarkeit soll nun noch eine textuelle Definition für diesen Begriff gegeben werden. 

Definition 36 Wiederverwendbarkeit WV: Ein wiederverwendbarer Hardware- oder Soft-
wareentwurf zeichnet sich dadurch aus, dass durch verifizierte Funktion, verifizierte Imple-
mentierung, bestehende Testumgebungen und gute Dokumentation der Einsatz einer bereits 
realisierten Systementität (nach Definition 2), verglichen mit einer Neuimplementierung, ei-
nen deutlich geringeren Entwurfsaufwand (maximal 50 % eines Neuentwurfs) bedeutet.  

Wiederverwendbarkeit ist eine essentielle Anforderung heutiger und zukünftiger SoC-Entwürfe, um 
die Entwurfsproduktivitätslücke (vgl. Kapitel 1) schließen zu können. Wiederverwendbare System-
entitäten helfen somit den Entwurfsprozess drastisch zu verkürzen. 

Jahr der Produktion 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

DRAM 1/2 Pitch(nm) (contacted) 80 70 65 57 50 45 40 36 32 28 25 22 20 18 16 14

Design Block Reuse
[% zur Gesamten Logikgröße]

32% 33% 35% 36% 38% 40% 41% 42% 44% 46% 48% 49% 51% 52% 54% 55%

Nahe Zukunft ( Near Term ) Ferne Zukunft ( Long Term )
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Im Zusammenhang mit der Zukunftssicherheit und Flexibilität ist auch die Programmierbarkeit ei-
ner Systementität bzw. des Systems zu sehen. Diese steht, im Rahmen der implementierten Mög-
lichkeiten, für Flexibilität gegenüber einer starren, durch größtenteils fest verdrahtete Logikfunktio-
nen definierten Funktion eines Hardwareblocks. Je vielfältiger die Möglichkeiten der Programmier-
barkeit ausfallen, desto flexibler kann auf veränderte Anforderungen seitens der Anwendung rea-
giert werden. Allerdings geht dies zumeist mit einer Vergrößerung der Fläche einher. Je universeller 
die Art der Programmierung ist, desto leichter lassen sich entwickelte Programme auf neue Hardwa-
revarianten portieren. Skalierbare Programmiermodelle (vgl. Abschnitt 4.5) ermöglichen effizient 
nutzbare Hardwarestrukturen. Die Programmierbarkeit in einer Hochsprache wie z. B. C und die 
effiziente Abbildbarkeit auf das System durch geeignete Werkzeugketten (vgl. Abschnitt 5.6) erhö-
hen ebenfalls die Wiederverwendbarkeit und Flexibilität des Systems. 

Definition 37 Die Programmierbarkeit PG eines Systems beschreibt den Grad der Veränder-
barkeit der Funktion der Schaltung durch Veränderung von immateriellen Bestandteilen 
(Software-Systementitäten ( )i

e SWS  (nach Definition 2)) des Systems. Die Hardware-System-

entitäten ( )i
e HWS  bleiben dabei unverändert. 

3.2.5 Effizienzmaße zur Bewertung 

Eine Kopplung von Bewertungsmaßen führt zu komplexeren Maßen, die, zumeist bezogen auf eine 
spezielle Anwendung, eine höhere Aussagefähigkeit besitzen. Es handelt sich hierbei um so ge-
nannte Effizienzmaße. 

Definition 38 Effizienzmaße EM setzen unterschiedliche Bewertungsmaße BM in Relation 
zueinander und ermöglichen so tiefer gehende Vergleiche verschiedener Systemrealisierun-
gen in Bezug auf charakteristische Eigenschaften des betrachteten Systems.  

 , ,  mit i
i k

k

BM
EM i k

BM
= ≠  (3.24) 

Weitere Schachtelungen von (3.24) sind möglich. Handelt es sich bei Dividend und Divisor um 
Bewertungsmaße der Dimension Energie, so definiert das sich ergebende Effizienzmaß den Wir-
kungsgrad.  

Ein Effizienzmaß zur Verknüpfung von Performanz und Leistungsaufnahme ist die Anzahl der 
möglichen „Millionen Operationen pro Sekunde pro Watt“ (MOPS/Watt), wobei hier nicht direkt 
auf den tatsächlichen Durchsatz geschlossen werden kann, da die Anzahl der Operationen und deren 
Leistungsfähigkeit nicht zwangsläufig bei jeder Architektur gleich zu bewerten sind, vgl. Abschnitt 
6.2.3. Dies wird prinzipiell schon bei den Ansätzen von RISC- und CISC-Architekturen deutlich. 
Sicherlich aussagekräftiger ist der Durchsatz pro Watt (z. B. MBit/s/Watt), bei einer gegebenen 
Anwendung, allerdings nicht so gut geeignet für generelle Vergleiche. Für Kommunikationssysteme 
von besonderer Aussagekraft ist das Effizienzmaß benötigte Takte pro Datenbit, was zum einen 
eine Bewertung unterschiedlicher Architekturen erlaubt und zum anderen eine Charakterisierung 
unterschiedlicher Algorithmen ermöglicht, vgl. Kapitel 7. 

Ein Effizienzmaß zur Abschätzung der Zukunftssicherheit ist der Anteil wiederverwendeter bzw. 
wiederverwendbarer Hardwareblöcke an der Gesamtfläche einer neuen Architekturvariante. Ent-
sprechendes lässt sich sinngemäß auch für Softwarebestandteile definieren. 
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Zur Abschätzung der Wirtschaftlichkeit lassen sich Effizienzmaße wie Preis pro Chipfläche oder 
Performanz pro Chipfläche oder auch Leistungsaufnahme bezogen auf den Durchsatz für eine ge-
gebene Anwendung einsetzen. 

3.3 Die vier bestimmenden Kostenmaße der Ressourceneffizienz 

Im Folgenden wird die prinzipielle Vorgehensweise zur Bewertung und Realisierung ressourcenef-
fizienter Systeme vorgestellt. Die vier Kostenmaße, die den Entwurfsraum definieren, und auf diese 
wesentlich Einfluss nehmenden Faktoren werden näher charakterisiert. Die zur Bewertung der Res-
sourceneffizienz nach Definition 9 aufzustellende Kostenfunktion CF beinhaltet folgende, von mir 
für wesentlich befundene Kostenmaße K : Leistungsaufnahme, Performanz bzw. Rechenleistung, 
Chipfläche bzw. Preis und Zukunftssicherheit bzw. Flexibilität  (vgl. Definition 5). Zumeist be-
steht eine diametrale Wechselwirkung zwischen den einzelnen Kostenmaßen, vgl. Abbildung 3-2.  

Abbildung 3-2: Die vier Kostenmaße zur Bestimmung der Ressourceneffizienz 

Zur Abschätzung der Ressourceneffizienz eines Systems müssen zunächst die Systemanforderun-
gen und die damit verbundenen Randbedingungen festgelegt werden. Diese spiegeln sich zum einen 
in den Gewichtsfaktoren c für die relevanten Bewertungsmaße BM der jeweiligen Zielfunktionen 
ZF der vier Kostenmaße K  wider. Zum anderen wird die Relevanz jedes einzelnen Kostenmaßes 
mit Hilfe von, den Randbedingungen angepassten, Gewichtungen α  in der Kostenfunktion CF 
nach Definition 9 berücksichtigt. Ziel ist es, die Kostenfunktion, also die eigentlichen Kosten des zu 
realisierenden Systems, zu minimieren, um so eine den Anforderungen des Einsatzgebietes entspre-
chende, möglichst optimale Implementierung zu erzielen (vgl. Definition 10). Im Rahmen des Gi-
gaNetIC-Projekts geschieht dies durch die in den Kapiteln 5 und 6 vorgestellte Werkzeugkette und 
den verfolgten hierarchischen Optimierungsansatz der Systemarchitektur. Abbildung 3-3 verdeut-
licht die wesentlichen Schritte und deren Reihenfolge zur Feststellung und Bewertung der Ressour-
ceneffizienz von verschiedenen Systemkonzepten.  
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Abbildung 3-3: Vorgehensweise zur Bewertung der Ressourceneffizienz 

Abbildung 3-4 veranschaulicht den durch diese vier Kostenmaße nach Definition 11 aufgespannten 
Entwurfsraum und zeigt das wesentliche Für und Wider der einzelnen Kostenmaße auf. So lässt 
sich z. B. die Rechenleistung durch Steigern der Parallelität oder der Taktrate erhöhen. Auch eine 
Optimierung der Hardware und der Software bedeutet einen Leistungszuwachs. Allerdings erhöht 
sich z. B. durch stärkere Parallelität die Fläche, was die diametrale Verknüpfung der einzelnen Di-
mensionen verdeutlicht. Durch Verwendung einer älteren Technologie, nicht optimierter Hardware 
oder Software hingegen wird die Rechenleistung reduziert. Die Leistungsaufnahme einer Multipro-
zessorarchitektur wird u. a. durch Faktoren wie Technologie, Taktfrequenz und Fläche beeinflusst.  

Die Chipfläche und damit einhergehend auch der Preis des Bausteins können ebenfalls durch den 
Grad der Parallelisierung und die Art der Kommunikationsinfrastruktur des Chips (seriell / parallel / 
heterogen) variiert werden. Die Artung der Kommunikationsinfrastruktur beeinflusst nach außen 
hin zudem die Anzahl der Ein- und Ausgänge (I/Os) und damit die Gehäusekosten.  

Als ein eher abstraktes Kostenmaß, das nicht so leicht zu messen bzw. auch zu bewerten ist, gestal-
tet sich die Zukunftssicherheit bzw. Flexibilität der Architektur. Dieses neue Kostenmaß ergänzt die 
bereits in der Literatur etablierten drei Kostenmaße (ebendort oft auch Kostenfaktoren genannt). In 
Zukunft wird es vermutlich eine immer wichtigere Rolle einnehmen. In Zeiten, in denen die Wert-
schöpfungskette nicht mehr nur in dem Verkauf des Produkts allein besteht, sondern mehr und mehr 
auch durch kostenpflichtige Dienste Einnahmen erzielt werden, kommt es besonders auf die Flexi-
bilität und die Erweiterbarkeit der Merkmale eines Produktes an. Nicht zuletzt auch deshalb, um das 
Produkt möglichst lange am Markt zu halten und auf kommende Anforderungen ohne Hardware-
modifikationen reagieren zu können. 
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Abbildung 3-4: Vier Dimensionen des Entwurfsraums, aufgespannt durch die vier Kostenmaße 

3.4 Zusammenfassung 

In diesem Kapitel wurden wesentliche Begriffe eingeführt, die zur grundlegenden Definition der 
Ressourceneffizienz und zur Bewertung eingebetteter Parallelrechner und ihrer Komponenten füh-
ren. Mit Hilfe der aufgeführten Formalismen können im Folgenden die Systemimplementierungen 
aus Kapitel 4 sowie die Erweiterungen und Optimierungen aus den Kapiteln 6 und 7 mit Hilfe der 
ganzheitlichen GigaNetIC-Werkzeugkette (vgl. Kapitel 5) charakterisiert und im Sinne der unter 
Definition 14 gegebenen Begrifflichkeit im Hinblick auf Ressourceneffizienz bewertet werden. Ei-
ne exemplarische Untersuchung von unterschiedlichen Realisierungsvarianten zur effizienten Pa-
ketverarbeitung mit Hilfe der hier geschilderten Methode wird in Abschnitt 6.4 vorgestellt. 
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4 Die GigaNetIC-Systemarchitektur 
In diesem Kapitel wird ein neuartiges Systemkonzept für Chip-Multiprozessoren vorgestellt. Die 
Besonderheiten dieser Architektur sind die Skalierbarkeit, die hohe Flexibilität und der konsequent 
verfolgte ganzheitliche Ansatz bei der Umsetzung des Architekturkonzepts. So wurde nicht nur am 
Entwurf und der Optimierung der Hardware gearbeitet, sondern in Kooperation mit den Fachgebie-
ten „Programmiersprachen und Übersetzter“, Prof. Uwe Kastens, und „Algorithmen und Komplexi-
tät“, Prof. Friedhelm Meyer auf der Heide, der Universität Paderborn eine geschlossene Werkzeug-
kette mit Compiler, Programmiermodell und Simulatoren geschaffen. Diese Ganzheitlichkeit zeich-
net die GigaNetIC-Architektur in erster Linie aus, da man ein solch komplexes Multiprozessorsys-
tem nicht nur von einer Seite betrachten darf. 

4.1 Neuartiges, ressourceneffizientes und skalierbares CMP-Systemkonzept 

BENINI et al. zeigen in [107] die Notwendigkeit der Skalierbarkeit für zukünftige Systeme auf. Am-
bient Intelligence (AmI), also allumgebende „maschinelle“ Intelligenz in Form von komplexen Sys-
temen, wird in Zukunft eine immer größere Rolle in unserem täglichen Leben spielen. AmI erfor-
dert energieeffiziente, hoch-performante Rechensysteme mit intelligenten Sensoren und Aktoren, 
die in jeder Hinsicht hoch skalierbar, für den jeweiligen Einsatzweck optimal konfiguriert sein müs-
sen. Sowohl Hardware, Kommunikationsstrukturen als auch Software müssen skalierbar gehalten 
sein, um die kommenden Anforderungen des Marktes erfüllen zu können.  

Die im Folgenden vorgestellte GigaNetIC-Architektur ist konzipiert worden, um all diese Ansprü-
che zu erfüllen. Auch Aspekte der Hochverfügbarkeit, also der Fehlertoleranz und Ausfallsicher-
heit, können durch ein redundant ausgelegtes GigaNetIC-System in gewissen Grenzen realisiert 
werden.  

Abbildung 4-1: GigaNetIC-Architektur – 32 Prozessoren untergebracht auf einem 20tel der Fläche eines Cents 

Abbildung 4-1 verdeutlicht die hohe Integrationsdichte und die Flächenverteilung einer Architektur-
Variante des GigaNetIC-Systems, die 32 N-Core-Prozessoren (vgl. Abschnitt 4.3.1) und acht 
Switch-Boxen (vgl. Abschnitt 4.2) umfasst. Diese Realisierung lässt sich in einer aktuellen 90-nm-
Technologie auf ca. einem 20tel der Fläche eines Centstücks integrieren. Zusammen mit 1,3 MByte 
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On-Chip-Speicher findet das gesamte System auf weniger als der Hälfte der Fläche des besagten 
Geldstücks Platz. Abweichend von den Ansätzen immer komplexer werdender, hoch spezialisierter 
Recheneinheiten der letzten Jahre (vgl. Kapitel 2), bei denen eine möglichst hohe Taktfrequenz an 
oberster Stelle steht, wird bei dem GigaNetIC-System das Prinzip einer massiv parallelen Architek-
tur verfolgt. Hierbei werden weniger "hochgezüchtete" CPUs mit geringer Pipelinetiefe vielfach 
instanziiert. Dies geschieht frei nach dem Prinzip: „Teile und herrsche“, d. h. die Arbeit wird auf 
eine Vielzahl relativ einfacher Verarbeitungseinheiten verteilt. Allerdings ist der Erfolg dieser Me-
thode abhängig von der Anwendung und ihrer Parallelisierbarkeit14.  

Die GigaNetIC-Architektur ist im Grundsatz eine „General Purpose“-Systemarchitektur, also eine 
zunächst universell einsetzbare Multiprozessorrealisierung. Bei vielen der im Folgenden vorgestell-
ten Aspekte wurde sie insbesondere für den Einsatz als Netzwerkprozessor getestet, durch anwen-
dungsspezifische Hardwarebeschleuniger erweitert und optimiert (vgl. Kapitel 6 und 7). Bei der 
prototypischen Realisierung (vgl. Kapitel 8) wurde ebenfalls besonderes Augenmerk auf die Integ-
ration der Architektur in ein Netzwerkanwendungsszenario gelegt.  

Abbildung 4-2: Schematischer Aufbau der massiv parallelen GigaNetIC-Architektur 

Die entworfene GigaNetIC-Architektur (vgl. Abbildung 4-2) beruht auf massiv paralleler Verarbei-
tung, die durch eine Vielzahl homogener Verarbeitungseinheiten ermöglicht wird. Diese Rechen-
knoten basieren auf einem im Fachgebiet Schaltungstechnik der Universität Paderborn, Prof. Rück-
ert, entworfenen 32-Bit-RISC-Prozessorkern [108]. Diese werden in einer hierarchischen System-
Topologie über eine leistungsfähige, mehrstufige Kommunikationsinfrastruktur, den GigaNoC 
[109][110], miteinander verbunden. Die GigaNetIC-Architektur lässt sich strukturell in drei Ebenen 
[6] unterteilen: 

• Prozessor-Ebene 
Diese Ebene kennzeichnet die unterste Ebene des GigaNetIC-Systems. Auf dieser Ebene 
finden feingranulare Modifizierungen und Optimierungen wie z. B. Befehlssatzerweiterun-
gen des Prozessors statt (vgl. Abschnitt 6.2 und 7.3). Dies betrifft jeweils einzelne Module, 
also alle Intellectual Property(IP)-Blöcke, die hier zum Einsatz kommen, wie z. B. Prozes-

                                                 

14 Vgl. hierzu die Gesetze von AMDAHL  (2.1) und GUSTAFSON (2.2), Abschnitte 2.1.1 und 2.1.2. 
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sorelemente (PE), Hardwarebeschleuniger (HW-Acc) (vgl. Abschnitt 6.3, 7.4.2.3 und 7.7), 
Speicher oder Peripherie-Blöcke. Im Falle der zentralen Verarbeitungseinheit (CPU) kon-
zentrieren sich hier die Aktivitäten auf den N-Core [108][111] (vgl. auch Abschnitt 6.2). 

• Cluster-Ebene 
Auf dieser Ebene sind die einzelnen Module über einen lokalen Bus oder eine Switchmatrix 
verbunden. Der verwendete Compiler [111][112] kann sowohl Optimierungen auf Instrukti-
onsebene (Instruction Level Parallelism / ILP) vornehmen, als auch die Existenz von an-
wendungsspezifischen Hardwarebeschleunigern ausnutzen. Auf dieser Ebene kann bei Be-
darf ein eigens entworfener Multiprozessor-Cache eingesetzt werden [113] (vgl. auch Ab-
schnitt 4.4.2). Switch-Boxen [114] (vgl. Abschnitt 4.2.1) agieren als Hochgeschwindigkeits-
Routingknoten und entlasten die Prozessoren bzw. die lokalen Hardwareblöcke als so ge-
nannte „NoC Offload Engines“ beim Empfangen und Senden von Daten von bzw. zu ande-
ren Clustern bzw. externen Schnittstellen des SoCs. 

• SoC(System-on-Chip)-Ebene 
Rückgrat der SoC-Ebene ist die Kommunikationsinfrastruktur, die sowohl die Kommu-
nikation auf dem Chip als auch die Anbindung des Off-Chip-Speichers und der IOs gewähr-
leistet. Für den Programmierer geschieht dies transparent, da die Wegewahl und das Spei-
chermanagement von den Switch-Boxen (vgl. Abschnitt 4.2.1) gesteuert werden. Zur kom-
fortablen Nutzung der Kommunikationsinfrastruktur werden spezielle intrinsische Funktio-
nen [115][109] als Software-Bibliothek zur Verfügung gestellt (vgl. Abschnitt 4.2.2). Darü-
ber hinaus wurde ein globales Programmiermodell zur Ausnutzung der SoC-weiten Paralle-
lität eingeführt (vgl. Abschnitt 4.5). 

Ein Hauptziel meines Ansatzes ist, dass der resultierende Multiprozessor in Bezug auf die Anzahl 
der Cluster, der pro Cluster instanziierten Prozessoren sowie die zur Verfügung gestellte Bandbreite 
durch die Kommunikationskanäle leicht parametrisierbar sein soll. Außerdem sollen definierte 
Schnittstellen zum einfachen Integrieren von kundenspezifischen Hardwarebeschleunigern und Pe-
ripherieblöcken die Performanz und die Zukunftssicherheit des Konzepts maximieren. Auf diese 
Weise kann eine große Wiederverwendbarkeit (vgl. Abschnitt 3.2.4, insbesondere Definition 36) 
dieser Architektur durch Skalierung auf vielfältige Einsatzgebiete gewährleistet werden (vgl. Ab-
schnitt 3.3). Dies erhöht auch die Ressourceneffizienz des Systems (vgl. Abschnitt 3.1, insbesonde-
re Definition 14).  

Die drei Hierarchieebenen bieten dem Entwickler definierte Ansatzpunkte zur Optimierung bzw. 
Parametrisierung des Systems in Bezug auf den späteren Einsatzzweck und die damit verbundenen 
Anforderungen (vgl. Kapitel 6). Dies wird zudem von der entwickelten Werkzeugkette komfortabel 
unterstützt (vgl. Kapitel 5) und ermöglicht somit schnelle Entwicklungszyklen. Weitere Vorteile 
einer solchen homogenen Systemarchitektur liegen in dem einheitlichen Programmiermodell und 
der vereinfachten Testbarkeit und Verifikation. Dies wirkt sich ebenfalls positiv auf die Entwick-
lungszeit des Gesamtsystems aus. 

Die spezielle parallele und redundant auslegbare Architektur des GigaNetIC-Systems bietet zudem 
großes Potential für die Realisierung nach Definition 33 fehlertoleranter Chip-Multiprozessoren und 
ermöglicht somit eine Erhöhung der Chipausbeute (Production Yield), was zur Steigerung der Res-
sourceneffizienz beiträgt. Vorausgesetzt die Hardware und die Betriebssoftware ist dafür ausgelegt, 
erreicht man sogar – in gewissen Grenzen – eine Immunität des Systems gegenüber Fehlern (nach 
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Definition 34) und damit gegebenenfalls eine weitere Steigerung der Ressourceneffizienz. Mit der 
zunehmenden Miniaturisierung und den hervorragenden Eigenschaften der GigaNetIC-Architektur 
bezüglich Skalierbarkeit und Programmiermodell bieten sich optimale Voraussetzungen, um in Zu-
kunft fehlertolerante bzw. sogar fehlerimmune Systeme zu konstruieren. 

Abbildung 4-3 zeigt die Zuordnung der einzelnen GigaNetIC-Systementitäten zu dem bereits in 
Abschnitt 2.3.2 vorgestellten NoC-Schichtenmodell. Zur physikalischen Schicht sind die Verbin-
dungsleitungen zwischen den Switch-Boxen (Inter-Switch-Box-Links) und die spezifischen Puffer-
speicher für die Flits zur Vermeidung von Blockaden (Advanced Buffer) zu zählen. Die Architektur 
und Steuerungsschicht umfassen die funktionalen Einheiten der Switch-Boxen und die vordefinier-
ten Software-Bilbliotheksfunktionen, die den Prozessorelementen eine komfortable Schnittstelle zu 
den Funktionen des On-Chip-Netzwerks zur Verfügung stellen. Zur Schicht 3 und damit zur Soft-
wareschicht gehören die Anwendungssoftware, wie z. B. Paketverarbeitungsalgorithmen beim Ein-
satzgebiet als Netzwerkprozessor (vgl. Kapitel 7), und das Programmiermodell des Gesamtsystems 
(vgl. Abschnitt 4.5). 

Abbildung 4-3: Zuordnung wesentlicher Systementitäten zum NoC-Schichtenmodell 

Im Folgenden wird der Aufbau der GigaNetIC-Architektur im Detail beschrieben, angefangen bei 
der GigaNoC-On-Chip-Kommunikationsstruktur und dem hierfür eigens entworfenen On-Chip-
Kommunikationsprotokoll [110], über die Anbindung von Verarbeitungseinheiten [108][6][111] 
und IP-Blöcken [116][117], die Implementierung eines GigaNetIC-konformen Multiprozessor-
Caches [113], bis hin zum Programmiermodell des Gesamtsystems [6] und zu einer Werkzeugkette 
zur modularen, effizienten Modellierung von Netzwerkanwendungen [118][119]. 

4.2 GigaNoC-On-Chip-Kommunikationsstruktur 

Bei dem GigaNetIC-Prototypen (vgl. Kapitel 8) wurde ein zweidimensionales Gitter (vgl. Abbil-
dung 2-8) für die obere Topologiehierarchiestufe realisiert. Diese Topologie ist mittlerweile techno-
logisch aufgrund symmetrischer Leitungslängen und Laufzeiten beherrschbar und bietet weitere 
Vorteile für On-Chip-Netzwerke (vgl. Abschnitt 2.3). Die Module innerhalb der Cluster der unteren 
Hierarchiestufe werden über lokale Bussysteme, wie z. B. Wishbone oder AMBA, oder über 
Switchmatrixen miteinander verbunden. Abbildung 2-9 b) stellt eine freie, hierarchische Topologie 
dar, die keinerlei Restriktionen hinsichtlich der Verbindungen zwischen den einzelnen Clustern un-
terliegt. Die GigaNetIC-Architektur ist zwar für eine solche Variante vorbereitet, technologisch 
werfen sich allerdings für derzeitige Standardzellprozesse mitunter große Probleme auf, so dass 
eine Realisierung einer derart unregelmäßigen Struktur momentan nicht angedacht ist. 
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Für NoCs gibt es, wie in Abbildung 2-16 gezeigt, konkurrierende Faktoren, die gegeneinander ab-
gewogen werden müssen, allerdings besteht hier der Vorteil, dass nicht zwangsläufig existierende 
strenge Kommunikationsstandards eingehalten werden müssen, da diese Netzwerke normalerweise 
in sich abgeschlossen sind. Zu diesen Kosten zählen die bereits erwähnten Faktoren wie Leistungs-
aufnahme und damit einhergehend eine möglichst direkte Wegewahl. Als nächstes ist der Flächen-
bedarf zu nennen, der direkt mit der Router-Architektur verknüpft ist, die zudem direkt maßgeblich 
die Leistungsfähigkeit der Datenübertragung bestimmt. Ein weiterer sehr bedeutender Punkt ist die 
Robustheit des Netzwerks gegenüber sich verändernden Datenverkehrsverteilungen. Hier wird die 
Qualität des Netzwerks nicht zuletzt durch die verwendeten Routingalgorithmen definiert. Statische 
Wegewahlverfahren eignen sich vor allem für deterministisches Verkehrsaufkommen, wohingegen 
sich adaptive, also dynamische Routingverfahren durch Flexibilität bei veränderlichem Lastverhal-
ten auszeichnen. Durch die Wahl des Routingverfahrens wird deshalb die Flexibilität und somit die 
Zukunftssicherheit des NoCs definiert. 

4.2.1 Switch-Boxen als zentrale Kommunikationsknoten auf SoC-Ebene 

System-on-Chip-Ebene. Auf SoC-Ebene fungieren Switch-Boxen (vgl. Abbildung 4-4) als Hoch-
geschwindigkeits-Routingknoten, die die einzelnen Cluster des SoCs miteinander verbinden [114]. 
Die On-Chip-Kommunikation ist paketbasiert (vgl. Abschnitt 4.2.2).  

Abbildung 4-4: Switch-Box-IP-Block mit Struktur ein es Ports und des Kreuzschienenverteilers.  

Explizite Darstellung für Eingangsport 3 und den Ausgang von Port 1. 

Aufgrund der generischen Beschreibung in VHDL, die u. a. Variationen der Anzahl der Ports zu-
lässt, können nahezu beliebige Netzwerktopologien aufgebaut werden. Für die prototypische Reali-
sierung wird zunächst ein Gitter implementiert. Trotz dieses regelmäßigen und einfachen Aufbaus 
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erlaubt diese Architektur Pipelining und Parallelverarbeitung der Prozessorfelder. Außerdem garan-
tiert diese Topologie gleichlange Verbindungsleitungen und damit gleichlange Signal-Laufzeiten 
zwischen den Switch-Boxen. Die parallele, Switch-Box-basierte Architektur erlaubt des Weiteren 
eine hohe Fehler- bzw. Ausfalltoleranz. Sollte ein Prozessorfeld ausfallen, so kann, sofern die Soft-
ware dies unterstützt, ein anderer Cluster dessen Funktionalität übernehmen. 

Die Switch-Box besteht als aktiver Netzwerkknoten aus zwei Hauptteilen. Der eine Teil bildet mit 
den Eingangsports und dem Kreuzschienenverteiler (Crossbar) mit integriertem Prioritäts-Enkoder-
basierten Round-Robin-Arbiter die Kommunikationsstruktur. Diese sorgt dafür, dass die Datenpa-
kete problemlos durch den Knoten geleitet werden und mit der Routing-Strategie den korrekten 
Ausgang der Switch-Box erreichen. Der zweite Teil der Switch-Box umfasst Kontrollstrukturen, die 
als Schnittstelle zwischen dem Prozessorfeld und dem Chipnetzwerk dienen. Diese Kopplung über-
nimmt der Communication-Controller (CC), welcher zwischen dem Port 0 und dem Bussystem des 
Prozessorfeldes angeordnet ist (vgl. Abbildung 4-4). 

4.2.1.1 Communication-Controller 

Der Communication-Controller wird in Abbildung 4-5 detaillierter dargestellt, zu seinen wesentli-
chen Aufgaben zählen: 

Die Bereitstellung der für den lokalen Cluster bestimmten Pakete geschieht auf Anfrage der Prozes-
soren. Die Eingangsports der Switch-Box erkennen, dass ein Flit für den lokalen Port gedacht ist, 
daran, dass die Koordinaten im Kopf eines Flits null sind. Die Flits müssen nicht zwangsläufig nach 
Paketen sortiert ankommen, noch müssen die Flits eines Pakets in der richtigen Reihenfolge sortiert 
sein. Die Pakete werden also gegebenenfalls vom CC geordnet. Er übernimmt die Speicherverwal-
tung.  

Abbildung 4-5: Der Communication-Controller, die NoC-Kommunikations-"Offload-Engine" 

Eine weitere Hauptaufgabe des CCs ist das Versenden von Paketen, wenn ein Prozessor die Bear-
beitung seiner Daten beendet hat, und diese weitergeleitet werden müssen. Dabei kann das Ziel ein 
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anderes Prozessorfeld sein, welches zusätzliche Funktionen hat, oder eine Ausgangsschnittstelle des 
Chips. Zusätzlich ist vorgesehen, dass sich die Programme, die auf den Prozessoren laufen, gegen-
seitig Nachrichten schicken können (Message Passing). Auch zu diesem Zweck müssen Pakete ver-
schickt werden. Der Ablauf dabei ist wie folgt: Ein Prozessor teilt dem CC mit, dass es ein zu ver-
sendendes Paket gibt, und informiert ihn über die Adresse, an der die Daten im Speicher beginnen. 
Anschließend sorgt der CC dafür, dass die Daten zu einem Paket zusammengestellt werden und 
organisiert deren Transport zum Eingangsport Null. Von dort nehmen die Flits vollkommen auto-
matisiert ihren Weg durch die Kommunikationsstruktur zum gewünschten Zielort. 

In der Initialisierungsphase fungiert der CC als „Bootloader“. Er schreibt die Programmflits vollau-
tomatisch in die entsprechenden Speicherbereiche für den Programmcode der Prozessorelemente. 
Dieses Verfahren wird selbständig nach dem Hard Reset angestoßen. Die entsprechenden Daten 
werden aus einem nichtflüchtigen, an einer Switch-Box angeschlossenen Speicher geladen. Hierzu 
wird ebenfalls die inhärente Funktionalität des GigaNoCs genutzt. Eine Übersicht der Befehle des 
Communication-Controllers wird in Abbildung Anhang A-2 gegeben. 

4.2.1.2 Topologie des Netzwerks 

Wie in Abschnitt 2.3.1 ausführlich erläutert eignen sich zweidimensionale Strukturen für aktuelle 
Standardzell-Technologien derzeit am besten. Deshalb wird momentan auch beim GigaNoC eine 
gitterförmige Struktur präferiert, vgl. Abbildung 4-2. Durch Parametrisierung (vgl. Abschnitt 4.7) 
bzw. Änderung der Anordnung kann die Architektur aber auch in komplexere Topologien überführt 
werden. Hierzu können auch die zusätzlichen diagonalen Ports der Switch-Boxen eingesetzt wer-
den, die den Grad δ  des einzelnen Netzwerkknotens bis hin zu derzeit 16 steigern können (vgl. 
Abbildung 4-6). 

Abbildung 4-6: Parametrisierbarer Grad δ der Switch-Box 

Ebenso sind Topologien mit mehr als zwei Hierarchiestufen realisierbar. D. h. dem regelmäßigen 
Gitter aus Abbildung 4-2 kann z. B. durch Anschluss von Switch-Boxen anstelle der lokalen Cluster 
an den Port 0 des jeweils übergeordneten Knotens eine weitere Hierarchiestufe implementiert wer-
den (vgl. Abbildung 4-7). Die Abbildung zeigt ein n Hierarchieebenen umfassendes System, wobei 
die n-te Dimension durch den lokalen Cluster repräsentiert wird. 

Die einfache Parametrisierbarkeit des Systems erlaubt die entsprechende Realisierung der benötig-
ten Bandbreiten. Natürlich sind auch andere Konstellationen, z. B. wie in Abbildung 2-9 b), denk-
bar, allerdings würden diese Topologien ggf. Erweiterungen bzgl. des Routings erfordern.  
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4.2.1.3 Switching-Methode 

Eingangsdaten werden, solange noch Kapazitäten frei sind, in den Ports einer Switch-Box direkt in 
eine FIFO-Warteschlange (Queue) eingereiht. Ansonsten wird dem Quellknoten signalisiert, dass 
die beabsichtigte Richtung bzw. Warteschlange blockiert bzw. gefüllt ist. Die Übertragung wird 
dann, um eine definierte Anzahl an Takten verzögert, erneut seitens des Quellknotens initiiert. Die 
FIFO-Puffer arbeiten mit zwei unabhängigen Zeigern für den Lese- und Schreibzugriff, die von ei-
ner speziellen Kontrolleinheit gesteuert werden. Diese sorgt dafür, dass zum einen das FIFO-Prinzip 
eingehalten wird, und zum anderen, sollte die Warteschlange leer sein, die Daten nicht erst taktwei-
se durch eine Registerkette hindurchgeschleust werden müssen, sondern sofort zum Ausgang gelan-
gen. Obwohl die FIFO-Struktur physikalisch am Eingangsport platziert ist, handelt es sich dennoch 
um eine Form des Output Queueings, das Virtual Output Queueing (VOQ) [120]. KAROL et al. 
[121] konnten zeigen, dass die Methode des Output Queueings deutliche Vorteile gegenüber dem 
Input Queueing aufweist. Nicht zuletzt deshalb wird VOQ auch beim GigaNoC eingesetzt. Da ge-
trennte Warteschlangen für jeden Ausgang vorhanden sind, wird das Problem des so genannten 
Head-of-Line-Blockings (vgl. Abschnitt 2.3) in Abhängigkeit von der Größe des Warteraums ver-
ringert.  

Abbildung 4-7: On-Chip-Netzwerk höherer Hierarchie, basierend auf dem GigaNoC 

Bei der Verbindungsart der Ports sind verschiedene Lösungen wie Bussysteme, Kreuzschienenver-
teiler oder Punkt-zu-Punkt-Verbindungen denkbar. Letztere bieten zwar eine absolute Blockie-
rungsfreiheit, aber dafür müssen an jedem Ausgang mehrere Anfragen parallel verarbeitet werden. 
Zusammen mit der hohen Anzahl der benötigten Verbindungen steigert dies die Kosten wesentlich. 
Ein Bus hat vergleichsweise geringe Kosten, doch werden alle Anfragen bis auf eine blockiert. Der 
Kreuzschienenverteiler stellt ein nicht-blockierendes Netz mit mittleren Kosten und hohem Durch-
satzpotential dar. Er kommt deshalb als Verbindungsstruktur innerhalb der Switch-Box in einer auf 
Geschwindigkeit optimierten Variante, der in [122] dargestellten Form, zum Einsatz. 

S B
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Grundlegend war zu entscheiden, ob die Daten paketbasiert durch die Knoten geleitet werden (Pa-
cket Switching / PS), oder ob vor der Übertragung physikalische Kanäle reserviert werden (Circuit 
Switching / CS). Wie in Abschnitt 2.3.2 erläutert, bietet sich für universelle Multiprozessorsysteme, 
bei denen die Aufgaben und Lastverteilungen nicht im Vorfeld genauestens bekannt sind, eine Va-
riante der Packet-Switching-Verfahren an. Deshalb wurde beim GigaNoC eine Form des Wormho-
le-Switching-Verfahrens, das sich durch die in Abschnitt 2.3.2 erwähnten Vorteile (geringer Puffer-
bedarf, kleinere SAF-Latenzzeiten, gute Eignung für kompakte und leistungsfähige Hardware-
realisierung) deutlich von anderen Switching-Verfahren absetzt, implementiert. Der Nachteil, dass 
es zu Blockierungen kommen kann, wird durch die spezielle Art des bei der Switch-Box eingesetz-
ten Virtual Output Queueings deutlich reduziert. Für eine einfache Gitterstruktur des GigaNetIC-
CMPs wäre das in Abschnitt 2.3.2 vorgestellte „Mad Postman“-Switching ebenfalls eine vielver-
sprechende Methode, die sich aufgrund der Switch-Box-Struktur leicht in den bestehenden Entwurf 
integrieren ließe. Für zukünftige Realisierungen kann mit Hilfe der SiMPLE-Entwicklungs-
umgebung (vgl. Abschnitt 5.2) im Vorfeld der Chipfertigung ein Vergleich der vielversprechenden 
Switching-Varianten für das jeweilige Anwendungsszenario erfolgen, um so die Leistungsfähigkeit 
der Kommunikationsinfrastruktur optimal an die Anwendungsanforderungen anzupassen.  

4.2.1.4 Routing 

Das GigaNoC unterstützt mehrere Routingmechanismen, um möglichst flexibel auf spezielle An-
wendungsszenarien oder Lastverteilungen reagieren zu können. Standardmäßig ist das XY-Routing 
(vgl. Abschnitt 2.3.2) aktiviert, da es sich, wie bereits diskutiert, als gedächtnisloses, deterministi-
sches Routing besonders für Gitter- und Tori-Topologien eignet. Es bietet den Vorteil, dass keine 
Live- bzw. Deadlocks in mehr als einer Dimension auftreten können. Als Alternative kann komfor-
tabel, mittels so genannter Instruktionsflits (vgl. Abschnitt 4.2.1.1) auf ein adaptives Routingverfah-
ren, das auf Kostentabellen in den einzelnen Switch-Boxen basiert, umgeschaltet werden. Zusätz-
lich lassen sich bei Bedarf weitere anwendungsspezifische Routingmechanismen integrieren. Zwi-
schen den einzelnen Verfahren kann während des Betriebs dynamisch umgeschaltet werden. 

Durch Erweiterung der Funktionalität der Routingflits könnten Mechanismen wie Broadcast (das 
Weiterleiten eines Pakets an alle Teilnehmer des NoCs) oder Multicast (das Weiterleiten eines Pa-
kets an eine Gruppe ausgewählter Teilnehmer des NoCs) realisiert werden. Ein anderer Ansatz wäre 
die Erweiterung und spezielle Auswertung der Adressierungsfelder der Flits ähnlich dem Internet-
Protokoll. Beide Varianten bedeuteten Erweiterungen der Switch-Box-Struktur, wobei die sich er-
gebenden neuen Möglichkeiten sicherlich den Aufwand rechtfertigten.  

4.2.1.5 Flächenverteilung der Switch-Box-Komponenten basierend auf Syntheseergebnissen 

Abbildung 4-8 zeigt die qualitative Flächenaufteilung der wesentlichen Switch-Box-Komponenten 
nach der Synthese auf Standardzellen auf. Auffällig ist, dass bereits bei der FIFO-Tiefe = 3 mehr als 
77 % der Fläche für FIFO- und Ausgangsregister benötigt werden. Durch zukünftigen Einsatz von 
modernster SRAM-Technologie kann dieser Flächenanteil, verglichen mit den derzeit verwendeten 
Registerzellen, deutlich reduziert werden [110]. 

Abschätzung der Switch-Box-Fläche. Die Gesamtfläche der Switch-Box ASB setzt sich zusammen 
aus der Addition der Flächen der Hauptkomponenten Communication-Controller ACC, Crossbar 
ACrossbar und aller Inputports AInputports. 
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 SB CC Crossbar InputportsA A A A= + +  (4.1) 

In der VHDL-Implementierung ist eine Vielzahl von variierbaren Parametern enthalten, durch die 
das Gesamtsystem vor der Synthese flexibel gestaltbar und damit speziell auf Anforderungen neuer 
Anwendungsszenarien bzw. auf neue Technologien anpassbar ist. Die wesentlichen Parameter der 
Switch-Box, die teilweise direkt durch das On-Chip-Kommunikationsprotokoll (vgl. Abschnitt 

4.2.2) beeinflusst werden, sind in Anhang B aufgeführt. 

Abbildung 4-8: Flächenaufteilung der einzelnen Switch-Box-Komponenten bei einer FIFO-Tiefe von drei 

Die Fläche des Communication-Controllers setzt sich aus zwei wesentlichen Bestandteilen zusam-
men. Die Fläche teilt sich in Bereiche auf, die entweder abhängig von oder aber invariant gegenüber 
der Flitbreite sind. Da in den FIFO-Strukturen des CCs keine vollständigen Flits, sondern nur Spei-
cheradressen und Datenlängen gespeichert werden, hängen diese nicht vom Parameter DA-
TA_WIDTH (Gesamtbreite eines Flits, vgl. Abbildung 4-11) ab. Auch die Speicherschnittstelle 
MEMORY_CONTROLLER und die Busanbindung COM_BUS_CONTROLLER sind von der Flitb-
reite unabhängig, da derzeit, unabhängig von der Anzahl der Datenworte eines Flits, 32 Bit breite 
Schnittstellen verwendet werden. Das Ausgangsregister OUTPUT_BUFFER und das Eingangsre-
gister INPUT_REG hängen hingegen als Blöcke des CCs von der Flitbreite ab. 

Alle folgenden Werte wurden für die Flitbreite DATA_WIDTH = 93 Bit anhand umfangreicher Syn-
thesen ermittelt. Die Syntheseergebnisse der Switch-Box ergeben, dass der gesamte CC zu 13,42 % 
von der Flitbreite abhängig ist, da dieser Teil hauptsächlich aus den Registern für die Flits besteht. 
Da sich diese Registerfläche linear zu der Flitbreite verhält, kann für die Gesamtfläche CCA  des 

CCs die Formel (4.2) aufgestellt werden. 93
CCA  ist die Fläche des CCs bei einer Flitbreite von 93 Bit. 

 ( ) ( )( )93 930,8658 / 93 _ 0,1342CC CC
CCA A A DATA WIDTH= ⋅ + ⋅ ⋅  (4.2) 

Der Kreuzschienenverteiler enthält keine Registerstrukturen, in denen Flits zwischengespeichert 
werden. Allerdings besteht seine Fläche zu ca. 82 % aus Multiplexern, die sich ähnlich wie Register 
nahezu linear mit der Breite der Flits vergrößern. Zur Berechnung der Fläche CrossbarA  des Kreuz-

schienenverteilers wird in Analogie zu (4.2) die Fläche des Kreuzschienenverteilers 93
CrossbarA  ver-

wendet.  

 ( ) ( )( )93 930,18 / 93 _ 0,82Crossbar Crossbar
CrossbarA A A DATA WIDTH= ⋅ + ⋅ ⋅  (4.3) 

In den Eingangsports befinden sich die FIFO-Register der Breite DATA_WIDTH, deren Tiefe mit 
FIFO_DEPTH eingestellt wird. Die Registerfläche der FIFOs FiforegA  kann daher, analog zu (4.2) 
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und (4.3), wie folgt angegeben werden, und zwar mit 93
FiforegA  für die erhaltene Fläche für ein FIFO-

Register mit 93 Bit Breite: 

 ( )93 / 93 _ _Fiforeg
FiforegA A DATA WIDTH FIFO DEPTH= ⋅ ⋅  (4.4) 

Jeder FIFO-Kette ist ein ADVANCED_BUFFER nachgeschaltet, der u. a. das Head-of-Line-
Blocking-Problem zusätzlich minimiert. Er ist ebenfalls von der Breite DATA_WIDTH abhängig, so 
dass sich seine Fläche ABA  wie durch (4.5) beschrieben ergibt, unter Einbeziehung der Fläche eines 

ADVANCED_BUFFERS 93
ABA . 

 ( )93 / 93 _AB
ABA A DATA WIDTH= ⋅  (4.5) 

Sowohl FIFO-Warteschlangen als auch Puffer werden in einer Anzahl generiert, die dem Quadrat 
der Anzahl der Switch-Box-Ports PSB entspricht. Die Syntheseergebnisse zeigen, dass diese Ports 
ca. 3,725% Logik enthalten, die weder von DATA_WIDTH noch von FIFO_DEPTH beeinflusst 
wird. Hieraus folgt (4.6) für die Fläche der Inputports inputportsA . 

 
( ) ( )

2

1 0,03725
SB

inputports Fiforeg AB

P
A A A= ⋅ +

−
 (4.6) 

Die Annäherungsformel (4.1) zur Bestimmung der Gesamtfläche der Switch-Box ist damit voll-
ständig definiert. Abbildung 4-9 zeigt die sich daraus rechnerisch ergebenden Flächen für ausge-
wählte Switch-Box-Implementierungen unter Variation der beiden Parameter FIFO_DEPTH und 
DATA_WIDTH sowie einer Portanzahl von 5. (4.1) ist natürlich nur als Abschätzung zu sehen, da 
durch explizite Synthesen und durch die heuristischen Verfahren der Synthesewerkzeuge sowie de-
ren Optimierungsmechanismen (Fläche bzw. Geschwindigkeit etc.) sich teilweise abweichende 
Werte ergeben können. Es hat sich allerdings gezeigt, dass mit (4.1) im Allgemeinen eine durchaus 
akzeptable Prognose erreicht wird, die einen maximalen Fehler von bisher kleiner 3 % zwischen 
Abschätzung und Synthese geliefert hat (vgl. [123]). Vorteil dieser Abschätzung ist die immense 
Zeitersparnis bei der Entwurfsraumexploration, die durchaus im Bereich von derzeit zehn Stunden 
und mehr pro Synthese liegt. Im Vorfeld einer Implementierung, bei der Eruierung globaler Sys-
temparameter können solche relativ geringen Abweichungen im einstelligen Prozentbereich prob-
lemlos toleriert werden. 

Abbildung 4-9: Abschätzung der Switch-Box-Gesamtfläche in Abhängigkeit von Flitbreite und FIFO-Tiefe  

bei einer Switch-Box-Portanzahl von fünf in a) 130-nm- und b) 90-nm-Standardzellentechnologie 

Abbildung 4-10 zeigt die Flächenabschätzung in Abhängigkeit der Portanzahl und der Flitbreite, 
wobei die FIFO-Tiefe konstant zu drei gesetzt wird. Bei höheren Portanzahlen wächst der resultie-
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rende Flächenbedarf der Switch-Box auf über 20 mm² bei der 130-nm-Technologie bzw. 10 mm² 
bei der 90-nm-Technologie an, so dass für ASIC-Realisierungen genauestens abgewogen werden 
sollte, ob ein derart hoher Grad δ benötigt wird. Dies lässt sich unter anderem mit einigen der in 
Kapitel 5 vorgestellten GigaNetIC-Simulatoren analysieren. 

Abbildung 4-10: Abschätzung der Switch-Box-Gesamtfläche in Abhängigkeit von Flitbreite und Anzahl der 

Switch-Box-Ports bei einer FIFO-Tiefe von drei in a) 130-nm- und b) 90-nm-Standardzellentechnologie 

4.2.2 On-Chip-Kommunikationsprotokoll 

Die Kommunikation auf SoC-Ebene ist paketbasiert. Pakete können maximal 16 KB groß sein und 
werden in Flits (vgl. Abbildung 4-11) segmentiert, um sie über das On-Chip-Netzwerk versenden 
zu können. Flits stellen die atomare Informationseinheit des GigaNoCs dar. 

Abbildung 4-11: Flitaufbau – On-Chip-Kommunikationsrahmen 

4.2.2.1 Aufbau der Pakete/Flits  

In einem Flit sind alle Daten, die die Switch-Boxen und die Communication-Controller zum Rou-
ting benötigen, sowie eine parametrisierbare Anzahl von 32-Bit-Datenwörtern enthalten. Flits, die 
zu dem gleichen Paket gehören, nehmen alle denselben Weg durch das On-Chip-Netzwerk, ver-
gleichbar dem Wormhole-Switching. Die Flitfelder X, Y und Port bilden die Zielkoordinaten. Aus-
gehend von einer Gitterstruktur geben die Werte X und Y den Zielknoten relativ zur sendenden 
Switch-Box an. Die 4-Bit-breiten Koordinaten sind binär kodiert und vorzeichenbehaftet, d. h. das 
höchstwertige Bit (MSB) legt eine positive (MSB=0) bzw. negative (MSB=1) X- oder Y-Richtung 
fest. Mit den restlichen 3 Bits der Koordinatenfelder können die Flits daher bis zu 2³ = 8 Kommuni-
kationsknoten in jede Richtung (X, Y) geschickt werden. Dies ist mehr als ausreichend für die 2×4-
Gitterstruktur des GigaNetIC-Systems. Werden größere Systeme als 8×8-Gitter benötigt, lässt sich 
dies aufgrund der generischen Struktur leicht ändern. Die dritte Zielkoordinate (Port) ist 3 Bit breit 
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und gibt den Ausgangsport am Zielknoten an. Die Felder Flit ID  und Flow ID dienen zur Identifika-
tion eines Flits. Jeder Kommunikationsknoten im GigaNetIC-Netzwerk besitzt eine eindeutige 
Kennnummer. Diese wird bei einer Datenübertragung im Feld Flow ID eingetragen, um die Datenf-
lits im Empfangsknoten dem entsprechenden Datenpaket eines Sendeknotens zuordnen zu können. 
Damit die richtige Reihenfolge der Datenflits erhalten bleibt und der Empfänger das Ende einer Da-
tenübertragung erkennt, werden die Flits durchnummeriert. Dies geschieht im 11-Bit-breiten Flit-
ID-Feld, das die maximale Paketgröße in der realisierten Variante auf 211 × 64 Bit = 16 KB be-
grenzt. 

Abbildung 4-12: Struktur eines Pakets:  

a) Aufbau eines Pakets mit der allgemeinen Flitanzahl N; b) Beispiel eines Pakets mit N=4 

Zu Beginn einer Datenübertragung wird jeweils ein so genanntes Kommandoflit gesendet, das die 
Anzahl N der insgesamt zu übertragenden Flits im Feld Flit ID  angibt. Bei jedem Transfer der dar-
auf folgenden Datenflits wird das Flit ID -Feld von N = 1 beginnend inkrementiert, so dass der 
Empfänger das Übertragungsende (Flit ID  = N - 1) erkennen kann. Ein Flit kann außer der reinen 
Datenübertragung noch zusätzliche Aufgaben erfüllen. Das Type-Feld gibt die jeweilige Funktion 
eines Flits an. Neben den bereits erwähnten Kommandoflits und Datenflits existieren noch Instruk-
tionsflits und Programmflits.  

Mit einem Instruktionsflit können Befehle direkt an eine Switch-Box übergeben werden. Z. B. kann 
durch ein Instruktionsflit das Verfahren der Wegewahl (Routing-Strategie) geändert werden. Im 
GigaNetIC-System ist standardmäßig das X-Y-Routing (Fast-Routing) in der Switch-Box aktiviert. 
Hierbei werden die Flits zunächst in X-Richtung zur jeweiligen Zielspalte des Gitternetzwerks ge-
leitet und anschließend in Y-Richtung dem Zielknoten zugeführt.  

Mit Hilfe der Programmflits kann auf die Speicherbereiche der Prozessorelemente zugegriffen wer-
den. Nach einem Reset des GigaNetIC-Systems wird so jedem Prozessorelement sein Instruktions-
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code übermittelt. Das erste 32-Bit-Datenwort eines Programmflits wird hierbei als Adresse genutzt, 
an die das zweite 32-Bit-Datenwort geschrieben wird. 

Flit-Typen im Detail. Im Folgenden werden beispielhaft die einzelnen Pakettypen und deren Seg-
mentierung in die entsprechenden Flits aufgezeigt. 

Ein Datenpaket wird segmentiert zu einem Kommandoflit und einer variablen Anzahl von Datenf-
lits nFlits-1, wobei sich die Gesamtzahl der benötigten Flits wie folgt errechnen lässt: 

 
[ ]

8 4Flits
Flit

Paketdaten Bit
n

Bit W

 
=  ⋅ ⋅ 

 (4.7) 

WFlit gibt hierbei die ganzzahlige Anzahl der 32-Bit-Datenworte an, die in einem Flit enthalten sind. 
Sollten die Paketdaten nicht ein ganzzahliges Vielfaches von 32 sein, so wird seitens der Hardware 
der Rest der Flitdatenbits mit Nullen gefüllt. Bei den weiteren Betrachtungen wird, soweit nicht 
anders erwähnt, WFlit=2 gesetzt. In der Hardwarebeschreibung des GigaNetIC-Systems und in den 
entsprechenden Simulatoren ist dies ein Parameter, der variiert werden kann, um so die Ressour-
ceneffizienz für den jeweiligen Einsatzzweck zu erhöhen. 

In Abbildung 4-12 a) ist ein Datenpaket mit der Länge N dargestellt. Die Koordinaten sind mit den 
großen Buchstaben „X“ und „Y“ symbolisiert. Das kleingeschriebene „x“ markiert die Positionen, 
die für den allgemeinen Aufbau des Flits nicht relevant sind. Im unteren Teil b) der Abbildung 4-12 
ist ein Datenpaket mit 256 Bit zu sehen, das folglich in vier Flits segmentiert wurde. Zuerst wird 
das Kommandoflit übertragen, zu erkennen an der Bitfolge „01“ im Bereich CMD, während bei den 
folgenden Datenflits an dieser Stelle „00“ steht. Die Zielkoordinaten des Pakets sind vom Sender-
knoten aus gesehen zwei Gittereinheiten in positiver X-Richtung und eine Einheit in negativer Y-
Richtung. Der Senderknoten hat die Identifikationsnummer sechs, was im Bereich Flow ID einget-
ragen ist. 

Abbildung 4-13: Aufbau eines Routing- und eines Programmflits 

Der Aufbau eines Routingflits und eines Programmflits ist in Abbildung 4-13 dargestellt. Ein Rou-
tingflit hat die Aufgabe, die Routing-Strategie, die im Netzwerk verwendet wird, zu wechseln. Es ist 
durch den Eintrag „10“ auf den ersten zwei Bits im CMD-Feld gekennzeichnet. Im X-Bereich ist 
kodiert, wie das Routing-Verfahren verändert werden soll. Die zurzeit geplanten Routing-Verfahren 
sind in Tabelle 4-1 aufgelistet. Das erweiterte X-Y-Routing ist für Switch-Box-Implementierungen 
vorgesehen, die über mehr als vier Ports zu Nachbarknoten verfügen. Als effizientes, gut für zwei-
dimensionale Gitterstrukturen geeignetes Verfahren ist das X-Y-Routing (vgl. Abschnitt 2.3.2) als 
Standardverfahren vorgesehen. Für adaptives Routing lässt sich das Kosten-Routing einstellen, das 
dynamisch auf Auslastungen einzelner Pfade reagieren kann. Für alle Routing-Varianten müssen 
die Routingflits komplett durch das Netzwerk propagiert, also als spezieller Broadcast (vgl. Ab-
schnitt 4.6) versendet werden. Ein Routingflit lässt die Implementierung zusätzlicher Netzwerk-
kommandos bzw. Steuerbefehle aufgrund der ungenutzten Bereiche (mit „x“ markiert) zu. Um die 
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Leistungsaufnahme des Chips zu optimieren, ließe sich z. B. ein netzwerkweiter Befehl einführen, 
der je nach Auslastung einzelne CPUs oder ganze Prozessorfelder in einen Stromsparmodus ver-
setzt, um die Leistungsaufnahme des Chips bei geringer Auslastung zu reduzieren. Auch Statusin-
formationen über Verkehrsaufkommen oder Auslastung von GigaNetIC-Systementitäten könnten so 
im Netz propagiert werden.  

Tabelle 4-1: Umstellung implementierter Routing-Verfahren durch Routingflits 

CMD-Feld DATA_IN[X_WIDTH] Routing-Verfahren 
10xxx 1010 erweitertes X-Y-Routing 
10xxx 1011 X-Y-Routing 
10xxx 1100 Kosten-Routing 
00xxx xxxx vorherige Einstellung 

Nach dem Einschalten oder einem Reset des Systems kann der Programmcode der einzelnen Pro-
zessoren durch das On-Chip-Netzwerk geleitet werden. Dies geschieht durch die so genannten 
Programmflits (siehe Abbildung 4-13) in der Initialisierungsphase des Chips. Die Adresse für die 
CPU-eigenen Speicherbereiche wird im Flit mitgeschickt, so dass unterschiedliche Programme für 
die einzelnen Prozessoren in die Instruktionsspeicher geschrieben werden können. Die zwei Daten-
worte enthalten die Speicheradresse für den Programmspeicher des betreffenden Prozessors gefolgt 
vom Programmcode. Mit diesem Format ist keine Berücksichtigung der Reihenfolge der Prog-
rammflits notwendig. Auch eine Kennzeichnung der CPU im Prozessorfeld, für die das Flit be-
stimmt ist, ist nicht erforderlich, da die Speicherbereiche durch die Adresse eindeutig festgelegt 
sind. 

4.2.2.2 Funktionsumfang der GigaNoC-Software-Bibliothek 

Um das Empfangen und Senden von Paketen sowie diverse Kontrollfunktionen möglichst einfach 
für den Programmierer zu gestalten, werden spezielle Bibliotheksfunktionen in der GigaNetIC-
Software-Bibliothek in der Hochsprache C und in optimiertem Assembler für den eingesetzten Pro-
zessorkern als Intrinsics zur Verfügung gestellt. Sie wurden auf Geschwindigkeit und Platzbedarf 
für die N-Core-Architektur optimiert und sind größtenteils in C geschrieben; wenige Ausnahmen 
nutzen optimierten Assemblercode, der jedoch ebenfalls in gleicher Funktionalität in C vorliegt und 
somit leicht auf andere eingebettete Prozessorkerne portierbar ist. 

Im Anhang A befindet sich ein C-Codebeispiel, anhand dessen die Nutzung der GigaNetIC-
Software-Bibliothek detailliert beschrieben wird. Der Einsatz dieser Funktionen gestaltet sich sehr 
einfach und komfortabel für den Softwareentwickler, so dass keine nennenswerten bzw. teuren Ei-
narbeitungszeiten, und, damit verbunden, Verzögerungen bei der Softwareentwicklung für das Gi-
gaNetIC-System entstehen. 

Der prinzipielle zeitliche Ablauf einer Paketinjektion und Terminierung sowie die damit verbunde-
nen Mechanismen werden in Anhang C erläutert. 

4.2.3 Performanzanalyse der Kommunikationsinfrastruktur 

Der theoretisch erreichbare Durchsatz DSB einer Switch-Box mit PSB Ports und einer möglichen Be-
triebsfrequenz f lässt sich zu (4.8) bestimmen. Die Anzahl der Headerbyte wird in mh und die der 
Datenbyte in mf angegeben, h fm m+  umfasst somit ein komplettes Flit. 
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Switch-Boxen mit fünf Ports in der 90-nm-Variante ermöglichen theoretische Durchsätze von 
332 GBit/s (brutto) bzw. 228 GBit/s (netto), bei f=714 MHz. Die gleiche Variante in 130-nm-
Technologie erreicht immerhin noch 273 GBit/s (brutto) bzw. 188 GBit/s (netto) bei f=588 MHz15. 

Abbildung 4-14: Leistungsfähigkeit der Switch-Box-basierten On-Chip-Kommunikation 

Berücksichtigt man nun die Mechanismen, die zur Paketinjektion und Weiterleitung von Flits sei-
tens der Switch-Box notwendig sind, so lässt sich die Anzahl der Takte bzw. die Latenz, die die 
Pakete erfahren, die über h Hops zu Zielknoten geleitet werden, wie in (4.9) angeben. Hier wird 
zugrunde gelegt, dass eine beliebige Switch-Box Pakete ins Netz injiziert und zugleich von anderen 
Knoten injizierte Pakete weiterleitet. S gibt hierbei die Anzahl konkurrierender FIFO-Ketten am 
Eingang einer Switch-Box an, die über den Kreuzschienenverteiler Pakete auf den gleichen Aus-
gangsport leiten wollen. Im Falle einer konkurrenzfreien Nutzung der Ports ergibt sich für Si ein 
Wert von 1 für die Verzögerung beim i-ten Knoten. Sollten Pi Eingangsports auf den gleichen Aus-
gangsport zugreifen wollen, ist Si entsprechend gleich Pi zu setzen. 
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Abbildung 4-14 zeigt den Durchsatz pro Port einer Switch-Box in GBit/s bezogen auf die Größe der 
versendeten Pakete. Die Resultate beziehen sich auf die möglichen Betriebsfrequenzen der Switch-
Box für die beiden Standardzellentechnologien in 130 nm (588 MHz) und 90 nm (714 MHz). Die 
Leistungsfähigkeit wird hier für unterschiedliche, speziell für Netzwerkanwendungsszenarien rele-
vante Paketgrößen untersucht. Zum einen wird der Brutto-Durchsatz angegeben, der die Flit-
Header mit einbezieht, und zum anderen der reine Netto-Nutzdatenanteil. Es wird deutlich, dass der 
Durchsatz bei größeren Paketen deutlich über dem der kleineren Paketgrößen liegt. Dies ist begrün-

                                                 

15 Diesem Beispiel liegen die Werte mh=3,625 und mf =8 zugrunde. 
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det durch den geringeren Verwaltungsaufwand aufgrund weniger Kommandoflits, die den Datenpa-
keten jeweils vorangehen. Daraus resultiert eine Steigerung der effektiven Übertragungsleistung. 
Der Nettodatendurchsatz liegt zwischen 12,7 bis 45,4 GBit/s pro Port (90 nm) bzw. 10,5 bis 
37,4 GBit/s pro Port (130 nm). 

Abbildung 4-15 zeigt drei wesentliche Verkehrsbelastungsfälle einer Switch-Box, die Daten über 
einen beliebigen Port P zu einem benachbarten Knoten versendet16. Bei der dargestellten Analyse 
wird explizit die Paketgröße und damit einhergehend die Anzahl der zusammengehörigen Flits er-
höht, bis schließlich maximal große Pakete von 16 KByte versendet werden.  

Abbildung 4-15: Datendurchsatz einer Switch-Box für unterschiedliche Verkehrsmodelle 

Es zeigt sich in allen drei Fällen, dass mit zunehmender Paketgröße der Datendurchsatz merklich 
gesteigert werden kann. Der erste Fall „Bester Fall“ beschreibt ein Szenario, in dem, wie bereits in 
Abbildung 4-14 geschildert, keine konkurrierenden Zugriffe seitens der Eingangsports auftreten. 
Die Daten können ungehindert das Ziel erreichen. Hier ergeben sich Übertragungsraten von über 
45 GBit/s. Der zweite Fall „Typischer Fall“ beschreibt insofern ein eher typisches Szenario für das 
Verkehrsaufkommen einer Switch-Box, als noch zwei weitere Datenströme auf die Ausgangsports 
geleitet werden, die sich somit die Bandbreite teilen müssen. Aufgrund dieses Umstands verläuft 
die Durchsatzkurve deutlich flacher und nähert sich asymptotisch an 15,2 GBit/s an. Der dritte Fall 
spiegelt den „Schlechtesten Fall“ wider, bei dem alle fünf Ports der Switch-Box um den Ausgangs-
port konkurrieren und so das maximale vorfindbare Datenaufkommen darstellen. Hier verläuft die 

                                                 

16 Auch hier wird die Konfiguration wie bei Abbildung 4-14 verwendet, jedoch wird nur die 90-nm-Realisierung be-

trachtet, die 130-nm-Variante verhält sich analog. Die Kennwerte lauten somit: f = 714 MHz, PSB = 5, SBFIFO-Tiefe = 5, 

mh = 3,625 und mf  = 8, SBester Fall = 1, STypischer Fall = 3, SSchlechtester Fall = 5. Betrachtet werden ferner nur die Nutzdaten, so 

dass der Nettodurchsatz dargestellt ist. 
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Kurve noch flacher und nähert sich schnell dem maximal erreichbaren Nutzdatendurchsatz von 
9,1 GBit/s an.  

Fazit. Für kleine Pakete kann in allen Verkehrsbelastungsfällen, solange keine Blockade durch Puf-
ferüberlauf eintritt, ein Durchsatz von ca. 5 GBit/s erreicht werden (vgl. Abbildung 4-13). Große 
Pakete profitieren mehr von gering ausgelasteten Switch-Boxen, so dass eine Verdreifachung des 
Datendurchsatzes gegenüber einem „vollkonkurrierenden“ Szenario zu beobachten ist. Wesentlich 
ist, dass kleine Pakete mit sehr geringer Latenz weitergeleitet werden können, allerdings aufgrund 
der Protokollstruktur einen gewissen Verwaltungsmehraufwand bedeuten. Große Pakete, z. B. 
Hauptspeicherzugriffe im Sinne von Bursts, profitieren von konkurrenzfreien Übertragungen, die 
durch Ausnutzen der Routingtabellen der Switch-Boxen ggf. ermöglicht werden können. Die Giga-
NetIC-Architektur verfügt folglich über ein außerordentlich leistungsfähiges On-Chip-Netzwerk, 
welches für eine Vielzahl von Anwendungsgebieten eingesetzt werden und ggf. zielgerichtet para-
metrisiert (vgl. Abschnitt 4.7) werden kann. 

Übertragungseffizienz. Nach Definition 38 wird die Übertragungseffizienz gebildet aus: 

Tr

Nettodatenmenge

Bruttadatenmenge
ε = . Trotz der weitreichenden Möglichkeiten des GigaNetIC-On-Chip-

Kommunikationsprotokolls ist der Verwaltungsaufwand, verglichen z. B. mit dem Internet-Proto-
koll (IP) [61], das für Computernetze allgemein entworfen wurde, signifikant geringer. Zwar ist das 
Internetprotokoll deutlich umfangreicher bzgl. seiner Möglichkeiten, wäre aber sicherlich für ein 
On-Chip-Netzwerk derzeit funktional überdimensioniert. Es ließe sich zudem keine derart kompak-
te und zugleich leistungsfähige Hardware realisieren, die mit dem gleichen Flächenaufwand wie die 
Switch-Box das Internet-Protokoll unterstützen könnte.  

Allein die Größe für den Paketkopf von 20 Byte gekoppelt mit den zusätzlichen Paketinformationen 
der Netzzugangsschicht (z. B. Ethernet von mindestens 18 Byte) bedeutete einen zusätzlichen Over-
head bei der Flitübertragung von 38 Byte pro Paket. Wollte man das Internet-Protokoll-basierte Da-
tenpaket zudem innerhalb eines Taktes übertragen, so käme man unter Berücksichtigung einer mi-
nimalen Framelänge des Internet-Protokoll-Pakets von 46 Byte auf 512 parallele Datenleitungen. 
Die Übertragungseffizienz liegt bei 40,6 % verglichen mit 68,8 % beim GigaNetIC-Protokoll. Wäre 
die Parallelität von deutlich mehr Leitungen technisch unproblematisch, so ließe sich für ein Paket 
maximaler Länge (1500 Byte) ein merklich besseres Verhältnis von Kopfdaten zu Nutzdaten (Über-
tragungseffizienz = 97,5 %) erzielen. Jedoch sind speziell bei vielen Anwendungen häufig Pakete 
minimaler Länge zu verzeichnen. Dies wird auch bei den heutigen Lastmodellen (vgl. iMix, Ab-
schnitt 7.2.3) berücksichtigt. 

Zukünftig sind durchaus Szenarien denkbar, in denen sich die Übergänge von diskreten Netzwerken 
(wie z. B. des World Wide Web) zum Chip fließend gestalten und aufgrund der technischen Mög-
lichkeiten keine Unterschiede zwischen On-Chip- und Off-Chip-Protokollen gemacht werden müs-
sen. In nicht allzu ferner Zukunft wird es möglich sein, On-Chip-Netzwerkknoten mit mehr als 
12.000 Intra-Chip-Verbindungen miteinander zu verbinden, diese Anzahl würde eine Weiterleitung 
ganzer IP-Pakete maximaler Länge innerhalb eines Takts erlauben. Alternativ dazu sind auch be-
sonders schnelle serielle Verbindungen denkbar, die bei sehr hohen Taktfrequenzen eine derartige 
Übertragung ebenfalls möglich machen könnten. Derzeit hingegen stellen die weniger als 200 Intra-
Chip-Verbindungen (Full-Duplexverbindung) zwischen benachbarten Switch-Boxen einen guten 
Kompromiss zwischen Parallelität und Machbarkeit sowie Taktfrequenz und Durchsatz dar. 
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4.2.4 Bussysteme auf Cluster-Ebene 

Innerhalb der Cluster werden derzeit Busstrukturen zur Anbindung der Verarbeitungseinheiten 
(PEs) eingesetzt (vgl. Abbildung 4-2). Prinzipiell unterstützt die GigaNetIC-Architektur nahezu alle 
verfügbaren Bussysteme aufgrund der parametrisierbaren Schnittstellen des Communication-
Controllers. Bei den Daten- und Adressleitungen müssen lediglich die Bitbreiten angepasst und das 
erforderliche Zeitverhalten nachgebildet werden. Da der Communication-Controller als passiver 
Teilnehmer in das Bussystem integriert wird, sind damit die Voraussetzungen zur Integration des 
Busses in die GigaNetIC-Struktur erfüllt. Derzeit kann beim GigaNetIC-System zwischen dem 
Wishbone-Bus und einer von uns implementierten AMBA-AHB-Bus-Variante [113] sowie einer 
AMBA-Switch-Matrix gewählt werden. Die beiden Bus-Realisierungen differieren in ihren Eigen-
schaften und empfehlen sich daher für unterschiedliche Einsatzgebiete, die AMBA-Switch-Matrix 
findet u. a. Verwendung beim GigaNetIC-Multiprozessorcache, vgl. Abschnitt 4.4.2.  

Im Falle der Verwendung des Wishbone-Busses kann auf eine stetig steigende Anzahl von frei ver-
fügbaren IP-Cores, die dieser weit verbreiteten Schnittstellenspezifikation folgen, zurückgegriffen 
werden17. Hardwareblöcke, die der AMBA-Spezifikation genügen sind größtenteils kostenpflichtige 
Module. Dies erfordert während der Spezifikation des Systems eine genaue Analyse der benötigten 
Komponenten. Je nach Verfügbarkeit und Kostenbudget kann die passende Auswahl getroffen wer-
den. Natürlich ist es für beide Bussysteme möglich, eigene IP-Blöcke zu erstellen, sollten dies die 
zur Verfügung stehenden Ressourcen (Entwicklungskosten, Humankapital, Time-To-Market-
Spanne etc.) erlauben. Für beide Busvarianten stellt die GigaNetIC-Architektur die benötigten Mas-
ter- bzw. Slave-Schnittstellen bereits zur Verfügung. 

Der Wishbone-Bus [124] zeichnet sich durch eine kompakte, relativ einfache Implementierung aus. 
Er benötigt im Durchschnitt 10 % weniger Fläche als die AMBA-Realisierung [125]. Die AMBA-
AHB-Realisierung hingegen zeichnet sich durch eine leistungsfähigere Architektur mit einer weit 
verbreiteten Standardschnittstelle aus, deren realisierbare Taktfrequenz ca. 5 % höher als die des 
Wishbone-Systems liegt. Die AMBA-Implementierung nimmt etwas mehr Fläche in Anspruch und 
erlaubt geringfügig höhere Systemtaktfrequenzen. Die Leistungsaufnahme liegt bei beiden Imple-
mentierungen bei einer Konfiguration für vier Verarbeitungseinheiten bei ca. 9,5 µW/MHz in 130-
nm-Technologie und bei 8,6 µW/MHz in der 90-nm-Technologie18. 

Im Falle der Realisierung als AMBA-AHB-Interconnection-Matrix sind sogar zeitgleiche, disjunkte 
Zugriffe mehrerer Master möglich, was bei einer einfachen Busrealisierung wie z. B. bei unserer 
Wishbone-Bus-Realisierung [117] nicht möglich ist. Für die Integration eines angepassten Multi-
prozessorcaches (vgl. Abschnitt 4.4.2) wird die AMBA-Implementierung durch einen Snooping-
Bus erweitert [113]. Wesentliche Merkmale der beiden Verbindungsstrukturen, die beim Giga-
NetIC-System derzeit auf Clusterebene zum Einsatz kommen, fasst Tabelle 4-2 zusammen. 

                                                 

17 So gibt es z. B. auf http://www.opencores.org (Stand: Juni 2007) eine große Anzahl unterschiedlichster Wishbone-IP-

Blöcke zur freien Verfügung. 

18 Alle technologiespezifischen Angaben für Standardzellen-Implementierungen beziehen sich, wenn nicht explizit ge-

kennzeichnet, auf Realisierungen und Syntheseergebnisse für normale Betriebsbedingungen der jeweils betrachteten 

CMOS-Technologie (Typical Case). 
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Tabelle 4-2: Eigenschaften der realisierten Bussysteme, der derzeitigen GigaNetIC-Architektur 

Kriterium Wishbone AMBA-AHB 
Bandbreite: 
Adress-Pipelining, 
Busbreite, 
Verzicht auf Tristate-Busse, 
Parallel-Übertragungen 

Kein Adress-Pipelining (�geringe Takt-
frequenzen), geringe Busbreite, Parallel-
Übertragung bei der Verwendung von 
Kreuzschienen-Verteilern oder Daten-
fluss-Verbindungen, Multicasting und 
Broadcasting von Schreib-Zugriffen 

möglich 

Parallel-Übertragungen bei der 
Verwendung einer Matrix möglich 

Latenz: 
Mehrfachzugriffe (Bursts) 

Bursts werden unterstützt Bursts werden unterstützt 

Fläche & Verlustleistung 
relativ gering 

geringfügig mehr als bei Wish-
bone-Realisierung mit gleicher 

Anzahl Teilnehmer 
Multimasterfähig Ja Ja 
Kosten: 
Lizenz-, 
Versicherungs-, 
Entwicklungs- & 
Anpassungskosten 

gering mittel 

Wiederverwendbarkeit:  
Technologie-Unabhängigkeit, (Soft-Core) 

Ja Ja 

Snooping Ja (Schreibzugriffe) Nein 
Besonderheiten Benutzerdefinierbare Tags 

Bursts fester Länge, sehr hohe 
Busbreiten 

Sonstige Einschränkungen 
keine 

keine atomaren Operationen; kein 
vorzeitiger Abbruch von Bursts 
fester Länge durch den Master 

Fläche (System mit 4 PEs) [mm²] 
130 / 90 nm 

0,05 / 0,02 0,044 / 0,018 

Taktfrequenz (System mit 4 PEs) [MHz] 
130 / 90 nm 

211 / 290 222 / 303 

Leistungsaufnahme (System mit 4 PEs) 
[mW/MHz] 
130 / 90 nm 

0,0095 / 0,0086 0,0095 / 0,0086 

In der zusammen mit Infineon Technologies entwickelten Nova-Architektur [126], die ebenfalls auf 
dem modularen GigaNetIC-Konzept basiert, kommt der OCP(Open Core Protocol)-Bus auf Clus-
ter-Ebene nebst N-Core- bzw. MIPS-4k-Prozessoren zum Einsatz. Aufgrund der Modularität kann 
auf alle weiteren Funktionen der GigaNetIC-Architektur auf SoC-Ebene zugegriffen werden.  

Mit den beiden implementierten Bussystemen bzw. der Interconnection-Matrix kann die Giga-
NetIC-Architektur auf spezifische Anwendungsgebiete angepasst werden, je nach deren Anforde-
rungen kann eine flächensparende oder aber performantere19 Variante für die lokale Verbindungs-
struktur auf Cluster-Ebene integriert werden. 

4.3 Verarbeitungseinheiten auf PE-, Cluster- und SoC-Ebene 

Die GigaNetIC-Architektur ermöglicht ein flexibles Anschließen von Verarbeitungseinheiten auf 
allen Hierarchie-Ebenen. Die generischen Schnittstellen seitens der Bussysteme und des Communi-
cation-Controllers erlauben die Integration einer breiten Menge von fertigen IP(Intellectual Proper-

                                                 

19 Der nominelle Durchsatz der implementierten Bussysteme wird an dieser Stelle nicht quantitativ angegeben, da dieser 

zu sehr vom jeweiligen Anwendungsszenario, von der Art der Verarbeitungseinheiten und der Parametrisierung der 

Systeme abhängt, als dass eine fundierte Aussage zu treffen wäre. In Kapitel 7 werden für spezielle Anwendungen und 

Konfigurationen detaillierte Ergebnisse vorgestellt. 
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ty)-Blöcken, bieten damit ein hohes Potential an Zukunftssicherheit und helfen, die Entwurfs-
Produktivitätslücke (Design Productivity Gap) zu schließen.  

Derzeit sind bereits zwei Prozessortypen erfolgreich in das GigaNetIC-System integriert worden. 
Hauptbestandteil der an der Universität Paderborn eingesetzten Architekturvariante ist ein am 
Fachgebiet Schaltungstechnik entwickelter Prozessorkern, der N-Core [108][127][111], der im Fol-
genden (vgl. Abschnitt 4.3.1) näher beschrieben wird. Außerdem wurden seitens Infineon Techno-
logies MIPS-Prozessorkerne auf Cluster-Ebene implementiert [126]. 

Neben den CPUs und den lokalen Speichern können weitere IP-Blöcke in das System integriert 
werden. Häufig unterstützen bereits die Prozessoren auf PE-Ebene über eine Coprozessor-
Schnittstelle die Anbindung von Hardwarebeschleunigern, wie z. B. auch der von uns entworfene 
N-Core. Soll ein Beschleuniger mehreren Prozessoren zur Verfügung stehen, so kann dieser auf 
Cluster-Ebene über den lokalen Bus angekoppelt werden. Diese eng an das jeweilige Prozessorfeld 
gekoppelten IP-Blöcke werden über zusätzliche Master/Slave-Schnittstellen des lokalen Bussystems 
eingegliedert und z. B. über Memory-Mapped-I/O angesprochen. Neben Hardwarebeschleunigern 
können aber auch zusätzliche Module wie z. B. UARTs (Universal Asynchronous Receiver Trans-
mitter) für Debuggingzwecke in die lokalen Cluster integriert werden. Diese ermöglichen dann ein 
Interagieren mit den Prozessoren (z. B. Touchscreens wie beim RAPTOR2000-basierten Giga-
NetIC-Demonstrator, vgl. Abbildung 8-2). 

Auf SoC-Ebene können autonomere bzw. global verfügbare Hardwarebeschleuniger und IP-Blöcke 
über das GigaNoC-On-Chip-Netzwerk angeschlossen werden. Dies können lose gekoppelte Hard-
warebeschleuniger sein, die im Datenpfad eingereiht werden, wie z. B. Verschlüsselungs- oder 
Checksummen-Prüfmodule, vgl. Abschnitt 6.3.1.1. Es können aber auch Einheiten sein, die die 
Verbindungen nach außen realisieren, wie z. B. Speichercontroller für externen Speicher oder 
Ethernetcontroller (vgl. Abschnitte 8.1 und 8.2), die die Anbindung an das externe Netzwerk über-
nehmen. Diese Einheiten können theoretisch an beliebiger Stelle des On-Chip-Netzwerks ange-
schlossen werden, üblicherweise jedoch an den Rändern des Gitters, um die Hopanzahl zu den Pads 
des Chips so gering wie möglich zu halten. Zur Integration auf SoC-Ebene wird lediglich eine In-
stanz des bereits vorgestellten Communication-Controllers an die jeweilige Komponente ange-
schlossen. Er übernimmt die Konvertierung der Daten in das GigaNoC-Flit-Protokoll bzw. die Ter-
minierung des Protokolls und stellt die Daten für den Hardwarebeschleuniger zur Verfügung. Auf-
grund dieser Anschlussart sind die Einheiten universell einsetzbar und erlauben eine leichte Adapti-
on des Systems für neue Einsatzgebiete. 

Im Folgenden werden der von uns entworfene und erweiterte Prozessorkern, Systemerweiterungen 
des Prozessorsubsystems sowie Hardwarebeschleuniger und weitere IP-Blöcke des GigaNetIC-
Systems vorgestellt. 

4.3.1 Prozessorkern 

Weitere Kernkomponenten des Systems neben der Switch-Box sind die Prozessorkerne. Am Fach-
gebiet Schaltungstechnik wurde ein 32-Bit-RISC-Prozessorkern in der Hardwarebeschreibungs-
sprache VHDL (Very High Scale IC (Hardware) Description Language) entwickelt und in einer 
aktuellen Standardzellentechnologie implementiert. Der Vorgänger des aktuellen Prozessorkerns, 
der S-Core, konnte bereits bei einer Taktrate von 160 MHz erfolgreich getestet (Infineon, 130 nm, 
0,18 mm²) werden [108][127]. Er ist binärkompatibel zum Motorola M-Core [128] gehalten, um die 
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Softwarewerkzeuge wie z. B. Compiler, Linker, Assembler und Simulator der GNU-Compiler-Ent-
wicklungswerkzeuge, GCC [129], nutzen zu können. Zum Zeitpunkt der Entstehung des S-Cores 
gab es noch keine derart enge Kooperation mit dem Fachgebiet von Prof. Dr. Kastens, Program-
miersprachen und Übersetzer, so dass eine eigene Werkzeugkette fehlte und somit auf öffentlich 
verfügbare Quellen zurückgegriffen werden musste. Im Verlauf des GigaNetIC-Projekts wurde eine 
ausgereifte Entwicklungsumgebung realisiert, die speziell auf die Eigenschaften des S-Core-
Nachfolgers abgestimmt ist und schnell auf Erweiterungen und Optimierungen der Hardware ange-
passt werden kann (vgl. Abschnitt 5.6). Neben dieser können aber auch weiterhin die aktuellen 
GCC M-Core-Werkzeuge zur Erzeugung des Programmcodes verwendet werden, allerdings bleiben 
dann die Befehlssatzerweiterungen der neuen Architektur ungenutzt. 

Der N-Core ist die Weiterentwicklung des S-Cores und der derzeitige Standardprozessorkern der 
GigaNetIC-Architektur [117][111][130][131][113][110]. Er wurde ebenfalls als Soft-Core in 
VHDL realisiert und kann frei nach den Bedürfnissen des jeweiligen Einsatzgebietes, unterstützt 
durch die Paderborner Werkzeugkette, angepasst werden. Ein weiterer Vorteil einer Eigenentwick-
lung ist die freie Verwendung und Vervielfältigung eines solchen Kerns anstelle von etwaigen Li-
zenzgebühren, die bei kommerziellen Produkten auftreten können. Je nach Geschäftsmodell kann 
hier u. a. die Anzahl der verwendeten Kerne als Berechnungsgrundlage dienen, was für ein massiv 
paralleles System ggf. sehr kostspielig werden könnte.  

Der N-Core ist eine Zwei-Address-Maschine mit einer typischen Load-Store-Architektur. Er hat 
eine dreistufige Pipeline (Fetch, Decode und Execute) und besitzt zwei Registerbänke mit je 16 32-
Bit-Registern und 13 zusätzliche Spezialregister. Zur Unterstützung von normalen und bevorzugten 
Interruptquellen wurde ein spezieller Interruptcontroller realisiert. In Verbindung mit dem zweiten 
Registersatz können auf diese Weise sehr schnelle Interruptbehandlungen unterstützt werden. Au-
ßerdem verfügt der N-Core über ein so genanntes (Global Control Register / GCR) und ein globales 
Status-Register (Global Status Register / GSR), mit deren Hilfe direkt Daten ausgegeben bzw. im 
letzteren Fall eingelesen werden können. Hierdurch können sehr schnell Informationen speicher-
unabhängig kommuniziert werden. Der schematische Aufbau des N-Cores ist in Abbildung 4-16 
dargestellt. 

Abbildung 4-16: Schematischer Aufbau des N-Core-Prozessorkerns 
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Die Instruktionen haben eine feste Breite von 16 Bit, wodurch eine hohe Codedichte erreicht wird. 
Dies ist bei eingebetteten Systemen mit limitierten Speicherressourcen von besonderer Bedeutung. 
Der Befehlssatz lässt sich durch zusätzliche Instruktionen erweitern, da noch 11% an freiem Opco-
de zur Verfügung stehen (vgl. Kapitel 6 und 7). Weiterhin stellt der N-Core eine Coprozessor-
schnittstelle für Hardwarebeschleuniger zur Verfügung. Der N-Core unterstützt eine byteweise Ad-
ressierung des Speicherinhalts und arbeitet im Big-Endian-Format, was besonders für Netzwerk-
applikationen von Bedeutung und vorteilhaft ist. Die Mehrzahl aller verfügbaren Instruktionen be-
nötigt zur Ausführung einen Takt, Speicherbefehle zwei bzw. mehr bei größerer Speicherlatenz. 
Ohne spezialisierte Multiplikations- und Divisionsbeschleuniger können Multiplikationen bis zu 18 
und Divisionen bis zu 37 Takte beanspruchen. 

Tabelle 4-3: Kenndaten der ursprünglichen S-Core-Realisierung [108] 

Technologie Fläche 
[mm²] bzw. [Slices] 

Taktfrequenz 
[MHz] 

Verlustleistung 
[mW/MHz] 

Versorgungsspannung 
[V] 

Standardzellen     
Infineon 130 nm 0,25 160 0,165 1,2 

AMS 600 nm 30 61 20 5,0 
FPGA     

Xilinx Virtex 1000-4 
(220 nm) 

3727 (von 12288) 12 25 2,5 

Die Komplexität des S-Core-Prozessorkerns entspricht ca. 23.000 Gatteräquivalenten20 und umfasst 
ca. 7300 kommentierte VHDL-Codezeilen in 24 Dateien. Der originale Motorola M-Core-Prozessor 
benötigt in der 0,36 µm- bzw. in der 0,25 µm-Technologie 2,2 mm² bzw. 1,6 mm² Chipfläche. Die 
wesentlichen Kenndaten der Ursprungsversion des S-Core sind in Tabelle 4-3 dargestellt [108]. 

Die wesentlichen Daten der aktuellen N-Core-Implementierung [118] ohne Spezialinstruktionen, 
unter Berücksichtigung einer aktuellen 90-nm-Standardzellentechnologie zeigt Tabelle 4-4 auf. De-
taillierte Informationen zu den einzelnen Optimierungen und Instruktionssatzerweiterungen des N-
Cores werden in Kapitel 6 gegeben. Hier wird der von mir entworfene, hierarchisch gerichtete Op-
timierungsansatz zur GigaNetIC-Architektur für gegebene Anwendungsszenarien vorgestellt. 

Tabelle 4-4: Kenndaten des aktuellen N-Core-Prozessorkerns der GigaNetIC-Architektur [118] 

Technologie Fläche 
[mm²]/[slices] 

Taktfrequenz 
[MHz] 

Leistungsaufnahme 
[mW/MHz] 

Versorgungsspannung 
[V] 

Standardzellen     
UMC 130 nm 0,158 205 0,049 1,2 

90 nm 0,127 285 0,032 1,2 
FPGA     

Xilinx Virtex II 8000-
4 (150 nm) 

3206 (von 46592) 17,5 k. A. 1,5 Kern / 3,3 IO 

4.3.2 Systemerweiterungen und Peripherie – das Prozessorsubsystem 

Der S-Core-/N-Core-Prozessorkern allein wäre nicht effizient einsetzbar im GigaNetIC-Chip-
Multiprozessorsystem, deshalb wurden Systemerweiterungen und Schnittstellen für Peripherieblö-
cke integriert und so ein leistungsfähiges Prozessorsubsystem geschaffen, vgl. Abbildung 4-17. 

                                                 

20 Hierunter wird die Anzahl des Flächenäquivalents in Standard-NAND2-Gattern der entsprechenden CMOS-

Standardzellen-Technologie verstanden, also die Fläche der Realisierung, ausgedrückt in der Anzahl der NAND2-

Gatter, die auf dieser untergebracht werden können. 
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Bei der Realisierung des Prozessorsubsystems wurde der S-Core zunächst zum Net-S-Core erwei-
tert. Der Net-S-Core verfügt über Erweiterungen wie einen programmierbaren Timerblock, einen 
programmierbaren Interruptcontroller, integrierte Performanzbewerter und einen erweiterten Ad-
ressdekoder, der die komfortable Ansteuerung von Hardwarebeschleunigern über Memory-
Mapped-IO-Zugriffe gestattet. Die Integration all dieser Komponenten zusammen mit den Wishbo-
ne- bzw. AMBA-Busschnittstellen und die Anbindung von lokalem Dual-Port-Speicher zusammen 
mit den anwendungsspezifischen Optimierungen unter Verwendung der geschlossenen Software-
Werkzeugkette (vgl. Kapitel 5 und 6) formen letztendlich den N-Core [111][117].  

Abbildung 4-17: Das Prozessorsubsystem des N-Core, am Beispiel der  

Wishbone-Bus-Implementierung 

Mit Hilfe der Wishbone-/AMBA-Bridge lässt sich das N-Core-Prozessorsubsystem an den jeweili-
gen lokalen Bus des GigaNetIC-Systems ankoppeln. Der DP-RAM-Block ermöglicht gleichzeitiges 
Lesen bzw. Schreiben vom Prozessorkern bzw. vom Bus aus. Die Kontrolle des Prozessorsystem-
busses übernimmt der N-Core-Buscontroller, der ebenfalls auf etwaige Adressverletzungen seitens 
der Software reagiert und entsprechende Ausnahmebehandlungsroutinen (Exceptions) auslöst. 

Der N-Core kann 32-Bit-breit adressieren, dies entspricht einem Speicherbereich von theoretisch 
4 GByte. Dies erscheint für eingebettete Prozessoren derzeit mehr als ausreichend, so dass ein Teil 
des Adressraums für weitere Zwecke genutzt werden kann. Der Adressdekoder fungiert als zentrale 
Steuereinheit der Buszugriffe seitens des Prozessors. Er generiert Selektionssignale für angespro-
chene Hardwareblöcke und übernimmt die Adressübersetzung. Die Anzahl der zu verwaltenden 
Komponenten und die Größen der einzelnen Speicherbereiche sind generisch anpassbar, so dass 
leicht zusätzliche Einheiten an den Prozessorsystembus angeschlossen werden können und flexibel 
auf anwendungsspezifische Anforderungen reagiert werden kann. Die Speicherbereiche auf Clus-
terebene sowie die Adressierung der beiden zusätzlichen Hardwareeinheiten Timer und program-
mierbarer Interruptcontroller des Prozessorsubsystems sind in Abbildung 4-18 dargestellt. 
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Der programmierbare Interruptcontroller (PIC) ermöglicht eine Priorisierung und Auswahl der 
Interruptsignale. Der N-Core differenziert zwischen normalen (normal interrupt, nint) und hoch-
prioren Interrupts (fast interrupt, fint). Die hochprioren Interrupts verwenden den zweiten Register-
satz des Prozessorkerns und ersparen so das Sichern der Registerinhalte auf den Stapel (Stack). Das 
Normal Interrupt Enable Register (NIER) bestimmt, welche 32-Bit-Signale einen normalen Inter-
rupt auslösen. Analog entscheidet der Inhalt der Fast Interrupt Enable Registers (FIER), welche 
hochprioren Interrupts zum Prozessor geleitet werden. Hierzu werden die externen Signale mit den 
Registerinhalten bitweise UND-verknüpft. Eine Weiterleitung des Interrupts geschieht nur, wenn 
diese Verknüpfung eine logische Eins ergibt. Sollten zwei Interrupts gleichzeitig anliegen dominiert 
ein fint gegenüber dem nint, außerdem entscheidet innerhalb der Interruptklassen die Wertigkeit des 
Bits über den Vorrang der Abarbeitung. 

Abbildung 4-18: Adressierungen und Speicherbereiche im GigaNetIC-System auf Clusterebene 

Das Timer-Modul stellt die Funktionalität eines programmierbaren Zählers und Zeitgebers. So kön-
nen z. B. Zeitstempel für Pakete im Anwendungsbereich der Netzwerkdatenverarbeitung etc. er-
zeugt werden. Außerdem kann das Modul als konfigurierbarer Taktzähler zur Performanzmessung 
genutzt werden. 

Im Falle der Wishbone-Bus-Realisierung wird unter dem Adressraum 0x11000000 bis 
0xFFFFFFFF die Wishbone-Brücke angesprochen. Sie übernimmt die Protokollumsetzung zwi-
schen N-Core und Wishbone-Standard. Da die Wishbone-Spezifikation prinzipiell nur 32-Bit-breite 
Wortzugriffe gestattet, werden zusätzliche Select-Signale des Wishbone-Busses zur byteweisen Ad-
ressierung verwendet, damit der volle Funktionsumfang des N-Core-Prozessorsubsystems genutzt 
werden kann. Im Idealfall und ohne Arbitrierungsverluste benötigen Schreib- und Lesezugriffe über 
den Wishbone-Bus drei Takte. Detaillierte Analysen zur Performanz der Wishbone-Implemen-
tierung werden in [109][131] und Kapitel 7 gegeben. 

Zur einfachen Möglichkeit der Interaktion und für Debuggingzwecke wurde außerdem eine serielle 
Schnittstelle (UART) als IP-Block integriert (vgl. Abbildung 8-3). Der Wishbone-basierte Cluster 
erlaubt eine maximale Anzahl von 15 N-Cores sowie weitere Verarbeitungseinheiten und Speicher, 
siehe Abbildung 4-18. 
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Für das Prozessorsubsystem des N-Core wurde zusätzlich ein multiprozessorfähiger Cache imple-
mentiert [113], der die Verarbeitung zahlreicher Anwendungen beschleunigt. Die Architektur des 
Caches wird in Abschnitt 4.4.2 vorgestellt, Resultate der Performanzsteigerung werden in Kapitel 6 
und 7 dargelegt. 

4.3.3 Hardwarebeschleuniger 

Hardwarebeschleuniger sind neben den Prozessorkernen des GigaNetIC-Systems die wichtigsten 
Verarbeitungseinheiten. Sie übernehmen anwendungsspezifische Aufgaben, die sie effizienter bear-
beiten können, als es den weniger spezialisierten Universalprozessoren des Systems möglich ist. 
Durch die Verlagerung besonders rechenintensiver Aufgaben auf diese Spezialeinheiten und die 
Verwendung der Prozessorkerne für deutlich mehr Flexibilität erfordernde Kontrollaufgaben wird 
eine besonders effiziente Symbiose von hoch-performanten und hoch-flexiblen Systementitäten 
geschaffen. Die GigaNetIC-Architektur erfordert zwar nicht zwingend den Einsatz von Hardware-
beschleunigern, da die N-Core-Prozessoren für eine Vielzahl von Problemen genügend Rechenleis-
tung zur Verfügung stellen, und aufgrund der parallelen Struktur der Architektur ggf. eine zusätzli-
che Beschleunigung erreichbar ist (vgl. Kapitel 7). Sollte das Einsatzgebiet jedoch im Vorfeld der 
Implementierung genauer spezifiziert sein, werden dem Systemarchitekten eine Vielzahl von Inte-
grationsmöglichkeiten zur Auswahl gegeben. Im weiteren Sinne sind auch integrierbare FPGA-
Zellen als „flexible“ Hardwarebeschleuniger zu sehen, die während der Laufzeit, compilergestützt, 
konfiguriert werden können. 

Die ITRS [2] gibt an, dass Hardwarebeschleuniger im Vergleich zu Universalprozessoren derzeit 
bis zu vier Größenordnungen effizienter (z. B. im Sinne von GOPS/mW) arbeiten. Zudem vergrö-
ßert sich diese Lücke zunehmend, so dass Universalprozessoren noch stärker einem Wettstreit mit 
anwendungsspezifischer oder auch rekonfigurierbarer Hardware ausgesetzt sein werden. In Kapitel 
6.3 wird dieser Trend anhand von eigenen Implementierungen und Analysen von dedizierten Hard-
warebeschleunigern für das GigaNetIC-System untermauert. Es gilt, je nach Einsatzgebiet und des-
sen Anforderungen im Hinblick auf die Ressourceneffizienz nach Definition 14, einen geeigneten 
Kompromiss zwischen Flexibilität und Leistungseffizienz zu finden (vgl. Kapitel 8.3).  

Auch AMD setzt u. a. in der „Torrenza“-Initiative bei den zukünftigen Prozessorgenerationen ver-
stärkt auf eine Kopplung von wenigen Universalprozessorkernen und anwendungsspezifischen 
Hardwarebeschleunigern, um sich so gegenüber den von Intel propagierten Architekturen, die 
schwerpunktmäßig auf homogene, parallele Prozessorfelder setzen, zu behaupten [93]. 

Das GigaNetIC-Architekturkonzept hingegen vereint beide Ansätze. Zur Anbindung der Hardware-
beschleuniger stellt das GigaNoC unterschiedliche Möglichkeiten zur Verfügung. Der jeweilige 
Anknüpfungspunkt im On-Chip-Netzwerk hängt von einer Vielzahl von Parametern ab, die es im 
Vorfeld einer ASIC- bzw. auch FPGA-Implementierung zu eruieren gilt. Hierzu zählen: 

• die Beschleunigung des Hardwaremoduls 

• der Funktionsumfang des Beschleunigers (Grad der Autonomie) 

• die gewünschte Verfügbarkeit / Erreichbarkeit für andere SoC-Komponenten 

• der Speicherbandbreitebedarf und die benötigte Speichermenge 

• etwaige Flächenrestriktionen (z. B. gemeinsamer vs. lokaler Speicher) 
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Abbildung 4-19 zeigt die verschiedenen Anbindungsmöglichkeiten für Hardwarebeschleuniger und 
IP-Blöcke im GigaNetIC-System. Dabei können die einzelnen Wrapper21 entweder am lokalen Bus 
auf Clusterebene oder aber an einen beliebigen freien Port einer Switch-Box unter Zuhilfenahme 
eines angepassten Communication-Controllers angeschlossen werden. 

Abbildung 4-19: Unterschiedliche Anbindungsmöglichkeiten von Hardwarebeschleunigern 

Abbildung 4-19 a) stellt eine eng-gekoppelte Integration eines Hardwarebeschleunigers bzw. IP-
Blocks dar, der direkt mit einem Prozessorkern verbunden ist und ggf. direkt über dessen Coprozes-
sorschnittstelle angesteuert wird. Bei dieser Variante ist nicht zwangsläufig dedizierter Speicher 
notwendig. Abbildung 4-19 b) zeigt einen semi-eng-gekoppelten Hardwarebeschleuniger bzw. IP-
Block, der auf Cluster-Ebene als eigenständiger Busteilnehmer angeschlossen ist. Er hat Zugriff auf 
den gemeinsamen Speicher des Clusters und kann mit Hilfe von Kontrollregistern und über einen 
dedizierten Adressraum von anderen Teilnehmern angesprochen werden. Die Abarbeitung des 
Problems erfolgt dann zumeist autonom und entkoppelt vom auftraggebenden Prozessorkern. Ab-
bildung 4-19 c) veranschaulicht eine lose Kopplung eines Hardwarebeschleunigers. Bei dieser Art 
der Kopplung verfügt der vom GigaNoC zur Verfügung gestellte Wrapper sowohl über einen Zu-
standsautomaten (Finite State Machine / FSM), der die notwendigen Kontrollfunktionen über-
nimmt, als auch über eine parametrisierbare Menge lokalen Speichers, der in der Regel als Dual-
Port-RAM ausgelegt ist. Diese Variante der lose gekoppelten Hardwarebeschleuniger wird vorwie-
gend an dedizierten Ports von ausgewählten Switch-Boxen eingesetzt. Sie eignet sich vor allem für 
IP-Blöcke, die über einen hohen Grad an Autonomie bei der Verarbeitung verfügen und ein ange-

                                                 

21 Unter dem Begriff Wrapper wird eine Umhüllung bzw. Einhüllung einer gegebenen Systementität verstanden, die 

diese in ein bestehendes System möglichst effizient und transparent für die weiteren Systementitäten integriert. 
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messenes Verhältnis zwischen Berechnungszeit und Kommunikation der Daten über das Netz auf-
zeigen. Besonders Verarbeitungseinheiten, die global im System zur Verfügung stehen sollen, aber 
zahlenmäßig nur gering eingesetzt werden (evtl. aufgrund einer nicht unerheblichen Fläche, oder 
aber weil sie eine überaus hohe Verarbeitungsgeschwindigkeit aufweisen), bieten sich für diese 
Kopplung besonders an. Detaillierte Analysen der Kopplungsarten für gegebene Hardwarebe-
schleuniger werden in [109][131] und in Kapitel 7 vorgestellt. 

Natürlich lassen sich die vorgestellten Kopplungen und die entwickelten Wrapper nicht nur für 
Hardwarebeschleuniger einsetzen, sondern erlauben auch die Integration beliebiger IP-Blöcke, die 
zwar keine Beschleunigerfunktionalität zur Verfügung stellen, aber andere benötigte Dienste, wie z. 
B. Ethernetschnittstellen, integrieren (vgl. Abschnitt 4.3.4). Der sich ergebende Flächenbedarf der 
einzelnen GigaNoC-Wrapper wird in Tabelle 4-5 aufgezeigt22. 

Tabelle 4-5: Flächenbedarf der GigaNoC-Wrapper zur Ankopplung beliebiger 32-Bit-IP-Blöcke @250MHz 

 

Die derzeit für das GigaNetIC-System realisierten Hardwarebeschleuniger finden im Anwendungs-
bereich der Netzwerkverarbeitung Einsatz und werden in Kapitel 6 und 7 detaillierter vorgestellt. 

4.3.4 Sonstige IP-Blöcke 

Neben Hardwarebeschleunigern können auch beliebige I/O-Kontrolleinheiten, wie z. B. Speicher-
controller oder Ethernetschnittstellen an die oben beschriebenen Schnittstellen des GigaNoCs ange-
schlossen werden. Auch hier entscheiden letztlich die Anforderungen der Anwendung in Form von 
Durchsatz und Verfügbarkeit der entsprechenden I/O-Funktionalität für das gesamte SoC, welche 
Kopplung verwendet werden sollte. Aufgrund des hohen Transportvermögens der Switch-Boxen 
und der einheitlichen Schnittstelle bietet sich für hochperformante Einheiten in vielen Fällen der 
Anschluss über einen freien Port einer Switch-Box an (vgl. Abbildung 4-19 c)). Dies ist z. B. bei 
den im Rahmen des GigaNetIC-Projektes entwickelten Ethernetschnittstellen [110][109][131] der 
Fall. Für Debugging- und Interaktionszwecke wurde eine serielle Schnittstelle realisiert, die derzeit 
als Wishbonebusteilnehmer auf Clusterebene integriert ist [109]. Der lokale Anschluss ermöglicht 
eine flächeneffiziente Integration, die den relativ geringen Bandbreiteansprüchen dieser I/O-
Schnittstellen mehr als genügt. 

Speicherschnittstellen sind hingegen auf Cluster- und auf SoC-Ebene für das GigaNetIC-System 
verfügbar. Die Kopplung hängt hier sehr stark vom Zweck und von der Lokalität der Daten ab. So 
werden die N-Core-Programmabbilder z. B. in einem global erreichbaren externen oder auch inter-
nen EEPROM abgelegt und bei Inbetriebnahme des Chips mit Hilfe des On-Chip-Netzwerks (vgl. 
Abschnitt 4.2.2) zu den einzelnen lokalen Speichern des N-Cores transportiert. 

                                                 

22 Die zugrunde liegenden Implementierungen erlauben Taktfrequenzen die sich deutlich über der hier zugrunde liegen-

den 250-MHz-Synthese-Einstellung bewegen. Der Wrapper ist aufgrund seiner geringen Logiktiefe nicht als Flaschen-

hals zu sehen. Die Betriebsfrequenz bestimmt letztendlich der Hardwarebeschleuniger bzw. das On-Chip-Netzwerk. Die 

SoC-Ebenen-Anbindung verfügt in der angegebenen Variante bereits über 16 KByte Dual-Port-Speicher. Die anderen 

beiden Wrapper greifen standardmäßig auf gemeinsamen Speicher zu, der nicht in die Flächenangabe einfließt. 

PE-Ebene Cluster-Ebene SoC-Ebene
130 nm 0,0097 0,0039 0,6389
90 nm 0,0068 0,0036 0,5449

Fläche [mm²]Technologie
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Details zur Implementierung der Ethernetcontroller und zu den Möglichkeiten der Interaktion mit 
dem GigaNetIC-Prototypen, die durch die seriellen Schnittstellen und die angeschlossenen berüh-
rungssensitiven Anzeigen gegeben sind, werden in Kapitel 8 dargestellt. 

4.4 Speicher 

Neben einer leistungsfähigen Kommunikationsinfrastruktur sowie flexiblen und leistungsfähigen 
Verarbeitungseinheiten gehört der Speicher zu den wesentlichen Komponenten eines Chip-
Multiprozessors. Die GigaNetIC-Architektur unterstützt das in Abschnitt 2.5 vorgestellte Konzept 
einer mehrschichtigen Speicherhierarchie. Die Klassifizierung der einzelnen Speicherstufen für das 
GigaNetIC-System in der momentanen Ausbaustufe werden in Tabelle 4-6 gezeigt. Zu beachten ist, 
dass bei Zugriffen auf entfernten Speicher die Latenz aufgrund der Flitkonfiguration für 64 Bit Da-
ten anstatt 32 Bit angegeben wird.  

Tabelle 4-6: Speicherhierarchien der GigaNetIC-Architektur 

 

Für den Anschluss der Speicher stehen u. a. die in Abschnitt 4.3.3 vorgestellten Kopplungsmög-
lichkeiten zur Verfügung. Für den Anschluss externer Speicherbausteine kommen modifizierte In-
stanzen des Communication-Controllers (vgl. Abschnitt 4.2.1.1), die über die benötigte Kontrolllo-
gik zur Ansteuerung des jeweiligen Speichertyps verfügen, zum Einsatz. Für lokalen, SRAM-
basierten Speicher stehen Wishbone- bzw. AMBA-Schnittstellen zur Verfügung. Für andere Spei-
chertechnologien kann entweder auf standardisierte IP-Blöcke zurückgegriffen oder es können 
wahlweise eigene Lösungen integriert werden. 

4.4.1 Lokaler Speicher auf Cluster-Ebene 

Zum lokalen Speicher des GigaNetIC-Systems gehört der L1-Speicher des einzelnen Prozessor-
kerns (Prozessorspeicher). Dieser ist zunächst nur vom jeweiligen Prozessor adressierbar und stellt 
Instruktionen und Daten zur Verfügung. Hierbei kann es sich um normalen SRAM handeln oder 
aber um Cache- bzw. multiprozessorfähigen Cache-Speicher, der im folgenden Abschnitt näher 
vorgestellt wird. Außerdem ist der gemeinsame L2-Speicher auf Cluster-Ebene noch zum lokalen 
Speicher zu zählen. Seine Zugriffslatenz liegt zwar über der des eng-gekoppelten Prozessorspei-
chers, ist aber verglichen mit den Latenzen der entfernteren Speicher immer noch gering.  

Die Größe des Prozessorspeichers ist, wie auch die des gemeinsamen Cluster-Speichers, parametri-
sierbar und derzeit bei der Wishbone-basierten Realisierung mit je 32 KByte vorgesehen. Es handelt 
sich in beiden Fällen um Dualport-Speicher, der im Falle des Prozessorspeichers zum einen vom 
Prozessor über den Prozessorbus gelesen und beschrieben werden kann. Zum anderen ist dieser 
Speicher über eine Wishbone-Slave-Schnittstelle zur Initialisierung oder zum Austausch gemein-
samer Variablen von anderen Wishbone-Bus-Teilnehmern adressierbar (vgl. Abbildung 4-17). Der 
L2-Speicher auf Clusterebene dient u. a. als Paketspeicher zur Terminierung von GigaNoC-

Hierarchie Speicher Zugriffszeit [Takte]

CPU Register 1
L1 Lokaler Prozessorspeicher bzw. Cache 2

L2 Gemeinsamer Speicher auf Clusterebene
Minimum: 4 bis 5 bei freier Ressource (je nach Arbiter-Zustand), 

Maximum abhängig von Anzahl der Busteilnehmer (min + (n-1)) und / oder 
der maximal zulässigen Burstlänge

L3 Entfernter Speicher anderer Cluster am lokalen Bus 2 x Paketlatenz, nach Formel (4.9) + L2-Latenz

L4 Externer Speicher DRAM / SRAM etc.
2 x Paketlatenz, nach Formel (4.9) + Latenz des Speichercontrollers 

+ Latenz des externen Speichers 
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basierten Paketen bzw. zu deren Inauftraggabe und Injektion über den Communication-Controller 
ins GigaNoC. Außerdem können über ihn Daten mit anderen Prozessoren des Clusters ausgetauscht 
werden, was je nach Programmiermodell (vgl. Abschnitt 4.5) von Bedeutung sein kann. Zusätzlich 
zu diesem Dualport-L2-Speicher ist eine Schnittstelle für ein ggf. externes SRAM-Modul vorgese-
hen, welches größere Datenmengen zur gemeinsamen Datennutzung halten kann [109]. Abbildung 
4-20 zeigt die Wishbone-Bus-Realisierung der GigaNetIC-Architektur auf Cluster-Ebene und die 
unterschiedlichen Speichermodule auf L1- und L2-Ebene. 

Abbildung 4-20: Wishbone-Bus-basierte GigaNetIC-Architektur auf Cluster-Ebene 

4.4.2 Cache-Speicher auf Cluster-Ebene 

Für viele Anwendungen empfiehlt sich der Einsatz von Cache-Speichern, die nach dem Lokalitäts-
prinzip die Daten puffern und so die Ausführung zahlreicher Programme beschleunigen, da Daten 
bzw. Speicherseiten, auf die häufig zugegriffen wird, nicht jedes Mal neu, zeitaufwändig aus dem 
Hauptspeicher geholt werden müssen. 

Für das GigaNetIC-System wurde ein spezieller Multiprozessor-Cache entwickelt [113], der die 
Systemleistung für eine Vielzahl von Anwendungen deutlich steigern kann (vgl. Abschnitt 6.7). Er 
ist ebenso wie die GigaNetIC-Architektur in vielerlei Hinsicht parametrisierbar und somit flexibel 
an die Anforderungen des entsprechenden Anwendungsszenarios anpassbar. Außerdem lässt er sich 
aufgrund seiner flexiblen Struktur mit anderen Prozessoren kombinieren und in andere Multiprozes-
sorsysteme integrieren. Abbildung 4-21 zeigt die prinzipielle Realisierung des Multiprozessor-
caches am Beispiel eines GigaNetIC-Clusters mit vier N-Core-Prozessoren. Die Prozessoren sind 
mittels einer AMBA-Switchmatrix (vgl. Abschnitt 4.2.4) und über die Caches miteinander und mit 
der Switch-Box verbunden. Zusätzlich ist ein so genannter Snooping-Bus integriert worden, der die 
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Cache-Kontrolllogik über die Transaktionen der einzelnen Caches in Kenntnis setzt und für Daten-
kohärenz sorgt. Der GigaNetIC-Multiprozessorcache verwendet das MOESI-Kohärenzmodell23 zur 
Sicherstellung der Datenintegrität [132]. In [133] wird eine Teilnehmerzahl von vier für MESI-
protokollbasierte Snooping-Busse bzw. Realisierungen mit ähnlichen Protokollen als leistungsfähi-
ge Busstruktur charakterisiert und empfohlen. Die in [113] und im Folgenden erläuterten zusätzli-
chen Merkmale der AHB-Switchmatrix-basierten und durch den dedizierten Snooping-Bus erwei-
terten GigaNetIC-Multiprozessorsysteme erhöhen die in [133] beschriebene Leistungsfähigkeit 
nochmals. 

Abbildung 4-21: Integration des Multiprozessor-Caches auf Cluster-Ebene 

Der GigaNetIC-Multiprozessor-Cache bietet viele, durch die VHDL-Beschreibung gegebene Frei-
heitsgrade der Parametrisierung. Der Cache ist nicht nur als Multiprozessorvariante für bis zu acht 
Prozessoren nutzbar, sondern auch als Uniprozessorcache implementierbar. Es kann zwischen einer 
Split- oder Unified-Architektur gewählt werden, so dass optional ist, ob für Instruktionen und Daten 
separate Speicher verwendet werden oder nicht. Die Assoziativität ist zwischen 2 bis 32 wählbar, 
wobei pro Weg die Anzahl der Cachelines zwischen 8 bis theoretisch 220 Lines mit einer Weite von 
4 bis 128 Byte eingestellt werden kann. Ebenso ist die Systembusschnittstellenweite zwischen 32 
und 1024 Bit Breite parametrisierbar, so dass die Cache-Struktur auf andere Bussysteme und Pro-
zessortypen leicht adaptiert werden kann. Abbildung 4-22 zeigt die wesentlichen Freiheitsgrade der 
Parametrisierung auf. Viele dieser Parametrisierungen wirken sich sowohl auf die benötigten Flä-
chenressourcen als auch auf die Leistungsfähigkeit aus. Häufig steht der Performanzgewinn in di-
rekter Abhängigkeit zu den jeweiligen Anwendungen, außerdem spielen die Zugriffszeiten zu den 
verwendeten L3- und L4-Speichern eine nicht unwesentliche Rolle. Detaillierte Aussagen hierzu 
sind in [113] veröffentlicht. Aufgrund dieser Umstände sollten im Vorfeld, falls die Anwendungen 

                                                 

23 Hierbei bezeichnet der Begriff MOESI die einzelnen Zustände, die eine Cacheline innehaben kann: Modified, Owned, 

Exclusive, Shared und Invalid. Das MOESI-Kohärenzprotokoll findet u. a. in der AMD64-Architektur Verwendung 

[134]. 
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bereits bekannt sind, tiefergehende Analysen bzgl. der Parameterwahl angestellt werden. Die entwi-
ckelte Werkzeugkette stellt hierzu eine umfassende Profiling-Umgebung zur Verfügung (vgl. Ab-
schnitt 6.7). 

Abbildung 4-22: Wesentliche Freiheitsgrade beim GigaNetIC-Multiprozessorcache 

Abbildung 4-23 zeigt die innere Struktur des GigaNetIC-Multiprozessorcaches. In der Standardrea-
lisierung wird eine Split-Cache-Struktur mit einem relativ einfachen Block für den Instruktionsca-
che und mit einem komplexeren Teil für den Datencache verwendet. Über den Communication-
Buffer können innerhalb weniger Takte und unter Umgehung des Caches Daten mit anderen Prozes-
sorsubsystemen oder der Switch-Box des Clusters ausgetauscht werden. Es handelt sich um eine 
Write-Back-Architektur, die die Skalierbarkeit des Clusters erhöht und die Prozessoren vom Sys-
tembus entkoppelt. Die parametrisierbare satzassoziative (set-associative) Struktur erleichtert die 
Realisierung geeigneter Kompromisse (bzw. pareto-optimaler Punkte, nach Definition 12 und 13) 
zwischen Flächenbedarf und Trefferrate (hit-rate).  

Abbildung 4-23: Prinzipieller Aufbau des multiprozessorfähigen GigaNetIC-Caches 

Der derzeit eingestellte True-LRU-Verdrängungsmechanismus erlaubt eine hohe Trefferrate und ist 
zudem mit überschaubarem Aufwand in Hardware zu realisieren. Bei Verwendung des BSP-
Programmiermodells (vgl. Abschnitt 4.5.2) basiert das System auf schwacher Datenkonsistenz, 
weshalb der Cache softwareinitiierte Barrierensynchronisationen unterstützt, die z. B. automatisch 
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vom Compiler hinzugefügt werden können. Hierdurch wird ein hoher Grad an Programmierbarkeit 
mit geringer Komplexität ermöglicht. In diesem Fall kann der Communication-Buffer zur schnellen 
Nachrichtenübermittlung (Message Passing) eingesetzt werden. Ein zusätzlicher Uncached Access 
Buffer dient als Zwischenspeicher für optionale, „ungecachte“ Zugriffe. 

Der Cache unterstützt eine Vielzahl von speziellen Cachebefehlen, die entweder manuell, z. B. 
Software-basiert durch den Prozessor, oder aber schon im Vorfeld vom Compiler angestoßen wer-
den können. Hierzu zählen u. a. Prefetching, also das Laden von Speicherbereichen, bevor diese 
vom Prozessor für die Verarbeitung benötigt werden, Festschreiben (Locking) oder Freigeben (Un-
locking) einer Cacheline, Invalidierung (Invaldiation) einer Cacheline, Aufheben der Kohärenz 
durch Exkludieren von Zeilen aus der Kohärenzverwaltung etc. Weitere Details zu den Merkmalen 
des Caches sind [113] zu entnehmen.  

Der GigaNetIC-Multiprozessorcache unterstützt mit Hilfe des MOESI-Protokolls Direct-Data-
Intervention (direkten Daten-Eingriff). Dies bezeichnet die Möglichkeit, Daten von einem Cache zu 
einem anderen Cache des Clusters transportieren zu können (ohne einen Zwischenschritt über den 
Hauptspeicher). Dies bedeutet einen deutlichen Performanzvorteil für den Fall, dass andere Caches 
Daten schneller liefern können als der Hauptspeicher.  

Da der lokale Speicher des Clusters für einige Anwendungsklassen verhältnismäßig klein konzipiert 
sein wird, und die Hauptspeicheranbindung durch ein recht großes globales Kommunikations-
netzwerk bzw. durch die verwendete Speichertechnologie ggf. eine nicht zu vernachlässigende La-
tenz aufweisen wird, ist Direct-Data-Intervention eine gute Möglichkeit, solche Latenzen zu ver-
meiden. Durch Direct-Data-Intervention wird so die effektiv zur Verfügung stehende Speichermen-
ge des Clusters ggf. erhöht, was bei der ansonsten relativ geringen L1- und L2-Speichergröße einen 
weiteren positiven Effekt bedeutet. 

Tabelle 4-7: Synthesewerte für Varianten des GigaNetIC-Multiprozessorcaches  

in 90-nm-Standardzellentechnologie 

 

Tabelle 4-7 zeigt die wesentlichen Syntheseergebnisse für ausgewählte Cachevarianten in einer 90-
nm-Standardzellentechnologie. Hierbei werden jeweils die Daten für einen Cache angegeben, so 
dass Fläche und Leistungsaufnahme für die Clusterimplementierung mit der Anzahl der instanziier-
ten Prozessoren pro Cluster multipliziert werden müssen, um die Fläche bzw. die Leistungsaufnah-
me des „eigentlichen“ Multiprozessorcaches zu erhalten (vgl. Tabelle 8-4). Bzgl. der Leistungsauf-
nahme sei bemerkt, dass es sich hier um sehr konservative Abschätzungen seitens des Synthese-
werkzeugs handelt, das eine Schaltwahrscheinlichkeit von 50 % annimmt und nicht die als deutlich 
geringer anzunehmenden Werte des realen Verhaltens der Schaltung ansetzt. Hierzu kann die ers-
tellte Werkzeugkette deutlich genauere Werte liefern, die auf den tatsächlichen Schaltaktivitäten der 
Komponenten während der Verarbeitung basieren [116][111] (vgl. Kapitel 5 und 6). 

Aus Tabelle 4-7 wird ersichtlich, dass der GigaNetIC-Cache in der Standardkonfiguration mit 
8 KByte und einer Fläche von 0,73 mm² verglichen mit dem normalen L1-Speicher der Wishbone-

Konfiguration
Line -Größe

[Bit]
Tiefe Assoziativität Split-Cache Fläche

[µm²]
Taktperiode

 [ns]
Leistungsaufnahme 

@250MHz [mW]

kurze Cachelines 64 256 2 Nein 0,61 4,16 136,79
Split Cache 128 256 2 Ja 1,11 4,08 276,13
hohe Assoziativität 128 256 4 Nein 1,31 4,48 376,18
weniger Cachelines 128 128 2 Nein 0,58 3,92 164,87
Standard 128 256 2 Nein 0,73 4,1 180,99
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Realisierung (32 KByte Dual-Port-Speicher, 0,875 mm²) ca. 3,3 mal so viel Fläche pro KByte benö-
tigt. Zudem erlaubt er derzeit eine nur halb so hohe maximale Betriebsfrequenz, was allerdings 
durch den langsameren N-Core nicht ins Gewicht fällt. Trotz der deutlich höheren Kosten des Ca-
ches im Sinne von Flächenbedarf bzw. Leistungsaufnahme ist von Fall zu Fall, d. h. respektive des 
Anwendungszenarios und der definierten Randbedingungen, abzuwägen, ob sich sein Einsatz den-
noch rentiert – gerade vor dem Hintergrund der bereits erwähnten, Komplexitätssprünge von zu-
künftigen SoCs aufgrund der immens wachsenden Transistorzahlen. Wir konnten in [113] zeigen, 
dass unsere Cache-Implementierung für ausgewählte Anwendungen Performanzsteigerungen von 
Faktor 23 bzw. sogar eine Reduzierung der benötigten Energie von bis zu 89 %, verglichen mit ei-
ner Implementierung mit normalem lokalen Speicher, ermöglicht, vgl. auch Abschnitt 6.7.  

Die nächste eigenständige Speicherhierarchie ist der L4-Speicher oder auch Hauptspeicher, der im 
folgenden Abschnitt diskutiert wird. 

4.4.3 Hauptspeicher 

Der Hauptspeicher des GigaNetIC-Systems kann, je nach Anwendungsgebiet, als Pufferspeicher für 
Netzwerkdaten oder Anwendungsdaten eingesetzt werden. Er kann je nach Chipgröße und Techno-
logie direkt auf dem Die integriert werden und lässt sich, wie oben beschrieben, über Switch-Box-
Ports oder clusterbasiert adressieren. Die Adressvergabe und der Adressraum können hierbei von 
den Kontrolleinheiten der modifizierten Communication-Controller übernommen werden. Sollen 
standardisierte Off-Chip-Speichermodule eingesetzt werden, stellen die Communication-Controller 
die Schnittstelle nach außen zur Verfügung. Durch diese Kopplungsart, unabhängig ob der Speicher 
on- oder off-chip positioniert ist, erlaubt die GigaNetIC-Architektur eine gute Skalierbarkeit der 
Speichergröße. Zur Ansteuerung von SDRAM (Synchronous Dynamic Random Access Memory) 
kann auf einen im Fachgebiet Schaltungstechnik entworfenen IP-Block zurückgegriffen werden. 

Die etwaige Umsynchronisierung auf die Taktfrequenz des Chip-Multiprozessors kann von den an-
gepassten Communication-Controllern durchgeführt werden, da nicht grundsätzlich von gleichen 
Taktraten auf Speicher- und CMP-Seite auszugehen ist. Die Bandbreite, die seitens der GigaNetIC-
Architektur zur Verfügung gestellt werden muss, um heutigen Speichermodulen gerecht werden zu 
können, beträgt bei den derzeit schnellsten PC-Speichern, den DDR3-1600-PC3-12800-
Speichermodulen, 12,8 GB/s bei 800 MHz, und bei derzeit üblichen PC-Speicherriegeln, den 
DDR2-667 PC2-5300 mit 333 MHz, 5,3 GB/s. Diese Speicherriegel sind mit einer 64-Bit-breiten 
Datenanbindung bereits passend für die derzeit eingestellte Flitdatenbreite eines Switch-Box-Ports. 
Wie in Abbildung 4-15 gezeigt, ermöglicht ein Port einer Switch-Box in der derzeitigen Realisie-
rung bereits bis zu 5,7 GB/s Netto-Datendurchsatz und damit schon heute die volle Bandbreitenaus-
nutzung gängiger externer Speichermodule. Im Falle von höheren Speicherbandbreiten kann ggf. 
mit Hilfe einer Portbündelung der Switch-Boxen die gewünschte Performanz erzielt werden. 

Um die in den letzten Abschnitten vorgestellten Kernkomponenten eines Chip-Multiprozessor-
systems wie dem GigaNetIC effizient einsetzen zu können, bedarf es zusätzlich zu den Hardware-
Komponenten noch eines angepassten Programmiermodells und einer leistungsfähigen Werkzeug-
kette. In Abschnitt 4.5 werden zunächst anwendbare Programmiermodelle für das GigaNetIC-
System vorgestellt; die im Rahmen des Projekts entstandene Werkzeugkette wird ausführlich in den 
Kapiteln 5 und 6 behandelt. 
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4.5 Programmiermodell 

Außer den physikalisch greifbaren Systementitäten der GigaNetIC-Chip-Multiprozessorarchitektur 
gibt es noch die bereits erwähnten immateriellen Bestandteile, die eine Multiprozessorarchitektur 
ausmachen. Hierzu zählt das Programmiermodell, das letztendlich festlegt, nach welchen Regeln 
die einzelnen Komponenten des Systems ihre Arbeit verrichten und wie ihnen diese zugeteilt wird, 
und damit verbunden der systemweite Austausch von Daten und Zustandsinformationen. 

Programmiermodelle für parallele Systeme müssen eine Vielzahl von Faktoren berücksichtigen, zu 
deren wichtigsten Merkmalen zählen:  

• Kontrolle: Wie wird die Parallelität zur Verfügung gestellt und wie werden die Einheiten 
synchronisiert?  

• Daten: Welche Daten sind lokale und welche sind gemeinsame Daten? Wie können gemein-
same Daten erreicht bzw. übermittelt werden? 

• Operationen: Welche atomaren Operationen werden vom System zur Verfügung gestellt? 

• Kosten: Mit welchen Kosten können die obigen Faktoren belegt werden? 

Es gibt eine Vielzahl von Programmiermodellen für parallele Systeme, wie Shared Memory, Mes-
sage Passing oder Data Parallel. Allen Modellen gemeinsam sind die vier Phasen der Anwen-
dungsabbildung vgl. Abbildung 4-24, in denen die Anwendung zunächst in passende Aufgaben 
bzw. Tasks genügender Granularität aufgeteilt wird. Hierbei ist ein Kompromiss zwischen genü-
gend Nebenläufigkeit und dem daraus resultierenden Verwaltungsaufwand zu finden. Im Anschluss 
müssen diese Tasks zu geeigneten Prozessen bzw. Threads zugeordnet werden. Dabei ist auf eine 
möglichst ausgewogene Verteilung der Aufgaben auf die einzelnen Verarbeitungseinheiten zu acht-
en. Dieser Vorgang muss in der Art geschehen, dass die Prozesse möglichst effizient und auf die 
architekturspezifischen Gegebenheiten angepasst miteinander kommunizieren können. Ziel hierbei 
ist eine korrekte Abbildung der parallelen Verarbeitung auch im Hinblick auf inhärente Datenab-
hängigkeiten des Algorithmus. In Abhängigkeit von der jeweiligen Kostenfunktion sind die einzel-
nen Maße wie Kommunikation, Häufigkeit der Synchronisationen und Verwaltungsaufwand durch 
die parallele Lösung gegeneinander abzuwägen. 

Abbildung 4-24: Schritte der Anwendungsabbildung 

Die für die GigaNetIC-Architektur vorgesehenen Programmiermodelle basieren, ebenso wie die 
GigaNetIC-Hardware, auf einem hierarchischen Ansatz. Auf Clusterebene wird ein speziell auf die 
eingesetzten Verarbeitungseinheiten optimierter, aus einer eigens für das GigaNetIC-System entwi-
ckelten Werkzeugkette generierter Compiler eingesetzt [134][135][6][111][112][136]. Programme 
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werden in der Hochsprache C verfasst und auf die Prozessoren des Clusters abgebildet (vgl. Ab-
schnitt 4.5.1). Sollten keine übergeordneten Kontrollmechanismen zur Ausführung benötigt werden, 
so kann dieser einfache Ansatz bereits ausreichen, um das System die gestellten Aufgaben effektiv 
bearbeiten zu lassen. Andernfalls dient das clusterbasierte Programmiermodell als untere Hierar-
chie, auf der eines der beiden Programmiermodelle der SoC-Hierarchie aufsetzt (vgl. Abschnitt 
4.5.2 und 4.5.3).  

Abbildung 4-25: Drei wesentliche Programmiermodelle des GigaNetIC-Systems:  

a) dezentrales Cluster-Modell, b) globales SoC-BSP-Modell und c) zentrales SoC-Modell 

Auf Systemebene kann auf das etablierte Bulk-Synchronous-Parallel-Programmiermodell nach 
VALIANT  [18] für Parallelrechner zurückgegriffen werden. Für Anwendungsklassen geringerer 
Komplexität kann das leicht zu implementierende zentrale SoC-Programmiermodell eingesetzt 
werden, das einen zentralen Kontrollprozessor zur Ablaufsteuerung einsetzt. Beiden Programmier-
modellen gemein ist die Möglichkeit der komfortablen Nutzung der GigaNoC-Software-
Systembibliothek (vgl. Abschnitt 4.2.2), in der alle Funktionalitäten, die das On-Chip-Netzwerk zur 
Verfügung stellt, enthalten sind. Abbildung 4-25 zeigt die drei derzeit eingesetzten Programmier-
modelle, die im Folgenden näher erläutert werden. 

4.5.1 Programmiermodell auf Clusterebene 

Der vom Fachgebiet Kastens zur Verfügung gestellte Compiler kann automatisch Befehlssatzerwei-
terungen und eng-gekoppelte Hardwarebeschleuniger des Clusters berücksichtigen und mit in die 
Code-Abbildung einbeziehen. Für Anwendungen, die sich besonders für eine feingranulare Paralle-
lisierung auf Instruktionsebene (ILP) (vgl. Abschnitt 2.4.4) eignen, kann zusätzlich eine Kompilie-
rung des Programms für mehrere oder alle Prozessoren des Clusters angestoßen werden. Für diesen 
parallelisierenden Compiler wurde das GigaNetIC-System durch zusätzliche konfigurierbare Hard-
wareblöcke erweitert, die es ermöglichen, die für die Synchronisierung der Prozessoren erforderli-
chen Barrieremechanismen innerhalb eines Taktes umzusetzen [6]. Abbildung 4-26 zeigt den Ab-
lauf einer solchen Synchronisierung, die immer dann notwendig ist, wenn auf Variablen bzw. Daten 
zugegriffen wird, die von anderen Verarbeitungseinheiten modifiziert wurden. Die Barrieren wer-
den vom Compiler als eigenständiger, parametrisierter Befehl dahin gehend, welche PEs synchroni-
siert werden müssen, in den Programmablauf integriert. Die Hardware übernimmt die Synchronisa-
tion, also das Anhalten und Fortsetzen der Befehlsausführung der betreffenden Prozessoren. Für 
welche Anwendungsszenarien sich diese feingranulare Parallelisierung besonders effizient einset-
zen lässt ist noch Bestandteil aktueller Forschungen. 

a) b) c)

Kontrollprozessor an 
beliebiger Stelle im SoC
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Abbildung 4-26: Synchronisierungsmechanismus auf Cluster-Ebene 

Das Zusammenspiel der Compiler-Werkzeugkette mit der Hardware-Entwicklungsumgebung für 
den am Fachgebiet entwickelten N-Core-RISC-Prozessorkern [108][111] (vgl. Abschnitt 4.3.1) 
wird in Kapitel 5 und 6 detailliert beschrieben. 

Wird dieses Programmiermodell ohne Zuhilfenahme eines der beiden für die SoC-Ebene konzipier-
ten Ansätze eingesetzt, dann sind die Cluster bzw. sogar die einzelnen Prozessoren allein für die 
Ausführung der Anwendung zuständig. Eine Synchronisierung mit anderen Blöcken des SoCs kann 
nur über vorbestimmte Nachrichten geschehen. Diese Art der Programmierung eignet sich für rela-
tiv einfache Anwendungsklassen, die vollständig auf einzelne Cluster bzw. Prozessorkerne abgebil-
det werden können. Dies können z. B. einfache Paketverarbeitungsprozesse sein, bei denen die pa-
rallele Architektur auf unkorrelierten parallelen Datenströmen arbeitet (vgl. Abschnitt 8.1). Für 
komplexere Anwendungsklassen stehen übergeordnete Programmiermodelle zur Verfügung, die in 
den nächsten beiden Abschnitten vorgestellt werden. 

4.5.2 Programmiermodell auf SoC-Ebene – Bulk Synchronous Parallel 

Das BSP-Modell von VALIANT  [18][6] ist ein Ansatz, der versucht die beiden Seiten eines Multi-
prozessorsystems, Software und Hardware, kombiniert zu modellieren. Zum einen dient es dem 
Systemarchitekten als Modell für die parallele Verarbeitung und die Auswirkungen der Hardware-
architektur auf die Systemleistung. Zum anderen ist es ein Programmiermodell für die Algorithmen-
Entwickler. Es soll als gemeinsamer Standard dienen, um möglichst effiziente Systeme zu entwi-
ckeln, bei denen das Zusammenspiel zwischen Hard- und Software gut aufeinander abgestimmt ist. 

Das Modell besteht aus drei Teilen: Die Charakterisierung der Hardware, das Programmiermodell 
als solches und das Kostenmodell zur Abschätzung der Laufzeit der BSP-Algorithmen. Ein Compu-
ter bzw. ein Chip-Multiprozessor besteht aus Sicht des BSP-Modells aus P Prozessoren, die über 
lokalen Speicher verfügen und über ein beliebiges Netzwerk miteinander über Punkt-zu-Punkt-
Verbindungen kommunizieren können. Zudem muss das System eine Barrierensynchronisation 
(ähnlich Abbildung 4-26) unterstützen. BSP macht zunächst keine Unterscheidung bzgl. der Topo-
logie oder Lokalität der Daten. Das auszuführende Programm wird in mehrere sequentiell aufeinan-
der folgende Teile, so genannte Supersteps zerlegt (vgl. Abbildung 4-27). Während der Supersteps 
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kann jeder Prozessor lokale Berechnungen durchführen und Nachrichten zu anderen Prozessoren 
schicken. Am Ende des Supersteps wird eine Synchronisierungsfunktion aufgerufen. Haben alle 
Prozessoren diese „Barriere“ erreicht, werden die Nachrichten innerhalb des folgenden Supersteps 
ausgewertet bzw. verarbeitet. Die Art und Weise, Algorithmen so zu beschreiben hat u. a. folgende 
Vorteile: Aufgrund der einseitigen Kommunikation, ohne Anforderungs-/Bestätigungsmecha-
nismus, vermeidet man Blockaden, die z. B. durch falsch initiierte Anforderungsnachrichten verur-
sacht werden könnten. Ein weiterer Vorteil ist der, dass der Ablauf deterministisch und unabhängig 
von der Latenz des Netzwerks ist, bzw. die Reihenfolge, in der die Nachrichten bei ihren Empfän-
gern eintreffen, ist irrelevant. Abbildung 4-27 zeigt den prinzipiellen Ablauf eines Supersteps im 
BSP-Modell und die damit verbundenen Kosten auf. 

Abbildung 4-27: Ablauf und Kosten beim BSP-Modell 

Die Gesamtkosten eines Supersteps wmax setzen sich aus dem Maximum der gesendeten bzw. emp-
fangenen Daten h der Prozessoren multipliziert mit g, der Lücke gap die durch die Übertragung 
durch das Netzwerk entsteht, und der Latenz L für die Barrierensynchronisation zusammen. g ist 
von mehreren Parametern abhängig wie z. B. von der Art der verwendeten Netzwerkprotokolle und 
von der Art und Weise, wie Nachrichten ins Netz injiziert werden können. Die Routingstrategie 
beeinflusst das Zeitverhalten der Kommunikation sowie das Maß wie effektiv das Speichermana-
gement im Prozessor und im Netzwerk ist. Zuletzt ist noch der Overhead durch die BSP-
Implementierung zu berücksichtigen. g wird bei realen Systemen meist durch Messungen bestimmt 
und bezieht sich auf die Übertragungszeit für eine Nachricht einfacher Länge unter kontinuierli-
chem Netzwerkverkehr des Systems. 
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Die Kosten für den gesamten Algorithmus mit P Prozessoren und S Supersteps lassen sich somit 
wie folgt berechnen: 

 
1 1

s s

gesamt s s
s s

T W Hg SL w g h SL
= =

= + + = + ⋅ +∑ ∑  (4.11) 

Die existierende Paderborner BSP-Bibliothek für diskrete Multiprozessoren [137] wurde vom 
Fachgebiet von Prof. Friedhelm Meyer auf der Heide auf die N-Core-Architektur portiert und für 
diese optimiert. Die BSP-Bibliothek ist in C implementiert und setzt hierarchisch gesehen oberhalb 
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des N-Core-Compilers an und kann somit von allen speziellen Funktionen (ILP, spezielle Instruk-
tionen, Hardwarebeschleunigeransteuerung etc.) des Compilers profitieren. Besonderheiten der Gi-
gaNetIC-Architektur in Bezug auf das BSP-Modell sind spezifische, sehr schnelle Synchronisie-
rungsmechanismen, die zu sehr kurzen Latenzwerten für L führen, sowie die sehr geringen Kom-
munikationskosten, verglichen mit Grid- oder Cluster-Multiprozessorsystemen. Daher kann das 
sonst eher für grobgranulare Parallelität verwendete Programmiermodell auch in Anwendungen 
eingesetzt werden, die stärker durch feingranulare Parallelität profitieren. 

In [115] wurden von mir folgende Werte für die GigaNetIC-Architektur im Hinblick auf die BSP-
Kosten ermittelt:  

 / 3 ( 1)bester Fall
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Takte Paket h
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 
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In (4.12) sind die Kosten bzw. Takte angegeben, die ein Paket M, bestehend aus m Bytes benötigt, 
um von einem Cluster zu einem h Hops entfernten Cluster im GigaNetIC-System zurückzulegen. 
Die Anzahl der Datenbyte pro Flit wird mit mf angegeben. Im besten Fall sind alle FIFO-Ketten des 
betreffenden Pfades leer, dann ergibt sich die Anzahl der benötigten Takte zur Übertragung zu 
(4.12). Als schlechtester Fall wird hingegen angenommen, dass alle FIFO-Ketten entlang des Über-
tragungsweges gefüllt und die anderen (n-1) Ports der entsprechenden Switch-Boxen ebenfalls um 
die betreffenden Ausgangswarteschlangen konkurrieren, dann ergibt sich die Anzahl der benötigten 
Takte zu (4.13). 

Die Takte der entsprechenden Funktionen, die aufgewendet werden müssen, um ein Paket seitens 
eines Prozessors ins Netzwerk zu injizieren sind in (4.14) aufgeführt. Sie resultieren aus den Aus-
führungszeiten der entsprechenden Funktionen der GigaNoC-Softwarebibliothek.  
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 (4.14) 

Zusätzlich gibt es eine Funktion is_bsp_synchronization, die innerhalb von 50 Takten feststellt, ob 
ein eingetroffenes Paket eine BSP-Barrieren-Synchronisations-Nachricht eines anderen Clusters ist. 

In [115] wurden, mit Hilfe der zur GigaNetIC-Architektur gewonnenen BSP-Parameter, Analysen 
zu einem erweiterten BSP-Modell vorgestellt, auf die hier nicht näher eingegangen werden kann. 

4.5.3 Programmiermodell auf SoC-Ebene – Zentraler Kontrollprozessor 

Für weniger komplexe Algorithmen, die besondere Anforderungen an den Ablauf oder das Zeitver-
halten der Ausführung, aber weniger Inter-Prozesskommunikation beinhalten, wie es z. B. bei eini-
gen Netzwerkanwendungsszenarien der Fall ist, kann ein weiteres Programmiermodell auf SoC-
Ebene zum Einsatz kommen. In diesem Fall wird nicht, wie beim BSP-Modell (vgl. Abschnitt 
4.5.2), versucht, das Programm durch Partitionierung auf mehre Verarbeitungseinheiten aufzuteilen 
und die Synchronisierung durch Barrieren, wie in Abbildung 4-27 gezeigt, zu realisieren. Statt des-
sen wird die globale Kontrolle von einem zentralen Prozessor übernommen. Dabei kann im Prinzip 
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ein beliebiger Prozessor eines beliebigen Clusters des Systems diese Aufgabe zugeteilt bekommen. 
Allerdings sind die anwendungsspezifischen Lastaufkommen zu berücksichtigen, die ggf. eine zent-
rale Position im Gitter oder an einer der Kanten, und damit nah an den externen Schnittstellen des 
Chips, begünstigen können. Dieser Kontrollprozessor überwacht die Zustände der einzelnen Cluster 
und Prozessorkerne und steuert das Verhalten des Gesamtsystems. Er kann u. a. als Lastverteiler 
(Load balancer) fungieren, indem er die eintreffenden parallelen Paketströme, je nach Auslastungs-
grad, den einzelnen Clustern und damit den zugehörigen Switch-Boxen zuweist.  

Dieses Modell ist relativ einfach zu implementieren und eignet sich für Prozesse, die aufgrund ihrer 
Komplexität nicht auf mehrere Prozessoren aufgeteilt werden müssen, sondern bei denen die Viel-
zahl der Prozessoren zur Bearbeitung gleichartiger Aufgaben auf verschiedenen Daten genutzt wird. 

In [102][103][104] stellen wir zusätzlich eine Methode und die dazugehörige Werkzeugkette Ne-
tAMap (Network Application Mapper) vor, mit der wir in der Lage sind, taskbasierte Anwendungen 
auf Multiprozessorsystemen unterschiedlicher Art abzubilden. Hierbei können Applikationen abge-
bildet werden, deren Bandbreitebedarf, Rechenlast bzw. Verarbeitungsschritte während der Kon-
zeption bereits bekannt sind und sich während des Betriebs deterministisch verhalten. Diese Eigen-
schaft ist allerdings eine starke Einschränkung und trifft nur für spezielle Anwendungsszenarien zu 
und gilt nicht für Netzwerkanwendungen allgemein. Dies können z. B. Protokollverarbeitungspro-
zesse für selbst konzipierte mobile Ad-Hoc-Netzwerke sein, z. B. für autonome Miniroboter [138], 
deren Struktur speziell auf die Abbildungsmethode angepasst ist. Diese Art der Anwendungsszena-
rien liegt nicht im Mittelpunkt der in Kapitel 7 untersuchten Einsatzgebiete der GigaNetIC-
Architektur, weshalb an dieser Stelle, um den Rahmen dieser Arbeit nicht zu sprengen, auf die ge-
nannten Veröffentlichungen lediglich verwiesen sei.  

4.6 Diskussion von Topologie und Routingverfahren 

In [6] wurden bereits verschiedene 2D-Topologien bezüglich ihrer Routingeigenschaften unter-
sucht. Wesentliche Kriterien wie hoher Durchsatz gekoppelt mit möglichst geringer Latenz sind für 
die GigaNetIC-Architektur von großer Bedeutung. Dies soll möglichst nicht auf Kosten einer zu 
großen Fläche bzw. einer zu hohen Leistungsaufnahme gelöst werden.  

Abbildung 4-28 stellt das zeitliche Verhalten und die Aufenthaltsdauer im NoC von Paketen für 
zwei unterschiedliche Routingverfahren und mehrere Gittervarianten dar. Die dargestellten Werte 
wurden durch Simulationen ermittelt. Das zugrunde liegende Chip-Multiprozessorsystem entspricht 
dem in Abschnitt 8.2 realisierten ersten ASIC-Prototypen des GigaNetIC-Systems mit 32 Prozesso-
ren und 8 Switch-Boxen als On-Chip-Routingknoten. Als Routingverfahren wurde das XY-Routing 
und eine Form des dynamischen Routings eingesetzt, die in Abschnitt 4.2.1.4 bereits vorgestellt 
wurden. Der Simulation zugrunde liegt ein Paketinjektionsalgorithmus mit zufallsbasiertem Ziel im 
NoC. Jeder Prozessor eines Clusters verschickt in jeder Runde ein Paket an einen wahllos ausge-
suchten Zielknoten im GigaNoC. Die Simulation ist beendet, wenn nach Ablauf der Injektionsrun-
den alle Pakete ihr Ziel erreicht haben.  
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Abbildung 4-28: Performanzanalyse verschiedener Routingverfahren  

in Verbindung mit unterschiedlichen Gitter-Topologien 

Bei der unidirektionalen Variante kann jeder Inter-Switch-Box-Link nur ein Paket in eine Richtung 
weiterleiten. Dies könnte z. B. der Fall sein, wenn nicht genügend Fläche für bidirektionale Verbin-
dungen zwischen den Switch-Boxen vorhanden wäre. In diesem Fall verhält sich das dynamische 
Routing vorteilhafter als das XY-Routing. Im Gesamtvergleich benötigen jedoch beide Verfahren 
deutlich mehr Zeit zur Bewältigung des Datenaufkommens als die anderen Varianten. Verwendet 
man hingegen bidirektionale Verbindungen, entfällt der Vorteil des dynamischen Routings und die 
Performanz ist nahezu um eine Größenordnung besser.  

Ein Problem bei dem 4×2-Gitter ist die geringe Bisektionsbandbreite BB (vgl. Abschnitt 2.3.1). 
Congestion auf den beiden zentralen Verbindungskanälen des NoCs reduziert die Leistungsfähig-
keit des Systems deutlich. Neben den in Abschnitt 2.3.2 genannten Routingverfahren, die z. T. er-
heblichen Hardwareaufwand bedeuten, lassen sich Verbesserungen um mehr als eine Größenord-
nung in diesem Fall z. B. durch einfache Topologiemodifikationen erreichen: 

Ist mit sehr hohem Datenaufkommen innerhalb des On-Chip-Netzwerks zu rechnen, so können 
Verbindungen doppelter Bandbreite, z. B. durch entsprechend angepasste Switch-Box-Ports einen 
deutlichen Geschwindigkeitsvorteil liefern. Die leistungsfähigste Variante stellt so genannte Wrap-
around-Verbindungen, also umlaufende Verbindungen zur Verfügung und bildet damit die Struktur 
eines halbverbundenen Torus (vgl. Abbildung 2-8) auf der oberen Hierarchie nach. Sie bedeuten 
grundsätzlich eine Performanzsteigerung, verringern sie doch den Durchmesser des On-Chip-
Netzwerks. Allerdings ist die Realisierung einer solchen Topologie, mit derzeitigen CMOS-
Prozessen, mit Schwierigkeiten verbunden, da die umlaufenden Kanten deutlich länger als die übri-
gen Verbindungen sind. Dies führt zu Laufzeitunterschieden und damit zur Leistungsreduktion des 
Gesamtsystems. Diesem Phänomen wird mit einer leicht abgewandelten Topologie entgegengetre-
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ten, bei dem Repeater zwischengeschaltet sind, die die Laufzeitunterschiede egalisieren und so die 
längeren Verbindungen zwischen Nord- und Südknoten transparent erscheinen lassen. Allerdings 
wird hierdurch eine zusätzliche Latenz eingebracht, der mit einem „virtuellen Knoten“ Rechnung 
getragen wird. Auffällig ist die dennoch gute Performanz trotz dieser zusätzlichen Latenz. Je nach 
Betriebsfrequenz eignet sich eine solche Topologiemodifikation auch für fertige ASICs des Giga-
NetIC-Systems, die auf Board-Ebene dann mit solchen Verbindungen ggf. zu einem Torus erweitert 
werden können.  

Abbildung 4-29: Anzahl benötigter Hops bei Multicastszenarien,  

in Abhängigkeit von der Gittergröße und der Lage des Quellknotens 

Je nach Bandbreitebedarf und Verkehrsmuster der zukünftigen Anwendungen sollte abgewogen 
werden, ob zusätzliche Modifikationen der 2D-Gittertopologie erforderlich sind oder zusätzliche 
optimierte Routingverfahren benötigt werden. Ein weiteres Kriterium, mit besonderer Bedeutung 
für nachrichtenbasierte Programmiermodelle, ist die Anzahl der benötigten Zyklen bzw. Hops, um 
von einem Knoten alle weiteren Knoten des Netzwerks zu kontaktieren. Handelt es sich hierbei 
stets um die gleiche Nachricht, so könnte ein Multicast-Mechanismus der Switch-Boxen zur Ver-
vielfältigung der Nachricht herangezogen werden, so dass sich der Aufwand des Senderknotens auf 
ein Minimum beschränken lässt. Hierbei würde es seitens des Quellknotens ausreichen, eine Multi-
cast-Nachricht an die lokale Switch-Box auszusenden, die ggf. die beabsichtigte Reichweite des 
Multicasts beinhaltet. Die maximale Latenz einer Nachricht, die den entferntesten Knoten innerhalb 
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eines Netzwerks erreicht, ergibt sich aus dem Durchmesser D der Topologie (vgl. Definitionen aus 
Abschnitt 2.3.1) und der Lage des Quellknotens.  

Abbildung 4-29 a) veranschaulicht den linearen Zusammenhang dieses Sachverhalts für gitterför-
mige GigaNetIC-Systeme von bis zu zehn Knoten pro Kante. Bei einer Topologie mit 10×10 Kno-
ten benötigen die Eckknoten 18 Hops für eine Datenübertragung. Nach (4.9) bedeutet dies im bes-
ten Falle 65 Takte für die Übertragung eines Kommandoflits mit acht Datenbyte, 66 Takte für 16 
Datenbyte etc. Handelt es sich hingegen um disparate Nachrichten, sozusagen eine vollständige 
Synchronisierung aller Prozessoren untereinander, so bedeutet dies, dass eine zur Gesamtzahl der 
Prozessoren bzw. Cluster proportionale Latenz für die Gesamtheit der Übertragung aller Nachrich-
ten angesetzt werden kann. Die resultierende, durchschnittliche Hopanzahl für einen solchen Multi-
cast für gegebene Gittergrößen zeigt Abbildung 4-29 b) auf. Für zweidimensionale Gitter ergibt sich 

diese zu 
2

3
N⋅ , mit N Knoten im Gitter. 

Die Gesamtheit der zu bewältigenden Hops für derartige disparate Multicasts stellt Abbildung 
4-29 c) dar. Für ein 10×10-Gitter werden 66.000 Hops für eine vollständige Punkt-zu-Punkt-
Kommunikation aller Knoten benötigt. Zu beachten ist, dass diese Zahl nicht mit der für die Syn-
chronisation benötigten Zeit gleichzusetzen ist, da ein Großteil der Übertragungen parallel abläuft. 
Unter der Vorraussetzung, dass jeder Cluster nur eine Nachricht pro Zeiteinheit absetzen kann, er-
gibt sich hieraus für ein 10×10-Gitter eine Zeitdauer von mindestens 18 Hops bzw. 65 Takten im 
besten Fall, wenn das Netzwerk nicht aus- bzw. überlastet ist. Im schlechtesten Fall, wenn z. B. 
immer nur ein Knoten die Synchronisierung durchführte, um so Stauungen im Netzwerk vollständig 
zu vermeiden, ergäben sich 100 99 9.900 ⋅ = Übertragungen. Dies resultierte in einer Synchronisati-
onszeit von 9.914 Takten, wenn die Übertragungen zu den entfernteren Knoten zu Anfang gestartet 
würden. Bei einer Taktfrequenz von 714 MHz (vgl. Abschnitt 4.2.3) wäre eine vollständige Syn-
chronisation von 100 Knoten bzw. maximal 800 Prozessoren in 13,9 µs abgeschlossen. Dies ist al-
lerdings eine äußerst konservative Abschätzung, die in der Realität zweifelsohne deutlich geringer 
ausfallen wird, da die parallelen Transfers in vielen Fällen blockadefrei ablaufen. Abbildung 4-29 
d) zeigt die Hopanzahl, die sich ergibt, wenn ein Knoten disparate Nachrichten an alle anderen 
Knoten im Netzwerk schickt. Hierbei variiert die Zahl in Abhängigkeit von der Position im Gitter. 
Für zentrale Knoten beläuft sich der Wert für einen derartigen Multicast auf 500 akkumulierte 
Hops, wohingegen die Eckknoten mit 900 Hops 80 % mehr benötigen. 

4.7 Skalierung des Systems durch Variation von Systemparametern 

Da Flexibilität und Skalierbarkeit eine besonders wichtige Rolle beim GigaNetIC-System und beim 
GigaNoC-On-Chip-Netzwerk einnehmen, wurden alle relevanten Parameter der Hardwarebeschrei-
bung generisch implementiert und in zentralen Designpackages gehalten, so dass durch geringsten 
Aufwand neue Varianten des On-Chip-Netzwerks bzw. des gesamten GigaNetIC-Systems erzeugt 
werden können. Abbildung 4-30 zeigt wesentliche Freiheitsgrade und die sich daraus ergebende 
Flexibilität der Architektur, die der Systemarchitekt bei der Realisierung eines GigaNetIC-Systems 
in der Entwurfsphase hat. Die wesentlichen Parameter, die das generische GigaNetIC-Design aus-
machen, sind in Anhang B aufgelistet und werden dort kurz erläutert. Diese Parametrisierung ist 
ebenfalls für die im folgenden Kapitel vorgestellten Simulatoren und Rapid-Prototyping-Modelle 
konsequent im jeweiligen Rahmen berücksichtigt worden. 
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Abbildung 4-30: Freiheitsgrade bei der Skalierung der GigaNetIC-Systemarchitektur 

Zukünftige Realisierungen, die auf Weiterentwicklungen der GigaNetIC-Architektur beruhen, wer-
den zusätzlich über Mechanismen verfügen, die während der Laufzeit Veränderungen der Hardware 
erlauben. Hierzu zählen sowohl Adaption der Bandbreite und der aktiven Routingkanäle an die je-
weiligen Erfordernisse, Maßnahmen zur aktiven Leistungsaufnahmereduktion wie z. B. Clockgating 
für nichtbenutzte Einheiten, als auch Möglichkeiten der Ausschöpfung von Voltage-Scaling-
Techniken bei der Reduktion der Taktrate. Hardwarebeschleuniger könnten während der Laufzeit 
durch Integration rekonfigurierbarer Strukturen nach Bedarf geladen werden. Genauso wäre das 
Nachladen von speziellen Instruktionssätzen bzw. die Variation von CPU-Ressourcen wie z. B. der 
Registerbreite und der Anzahl auf Prozessorebene denkbar. Die GigaNetIC-Architektur ist grund-
sätzlich vorbereitet für diese neuen Möglichkeiten. 

4.8 Zusammenfassung 

In diesem Kapitel wurde eine neuartige, skalierbare Chip-Multiprozessor-Architektur vorgestellt, 
die aufgrund einer sehr flexibel gestalteten, parametrisierbaren Hardwarestruktur an verschiedenste 
Anforderungen angepasst werden kann, um so eine nach Definition 14 möglichst ressourceneffi-
ziente Lösung zu erhalten. Alle Bestandteile, die einen CMP ausmachen, wurden eigens für diese 
Architektur implementiert bzw. angepasst. So wurde ein neuartiges, hierarchisches On-Chip-
Netzwerk namens GigaNoC zusammen mit einem umfassenden Konzept zur Kopplung unterschied-
lichster Verarbeitungseinheiten an den verschiedenen SoC-Ebenen entworfen. Bei der Speicherwahl 
kann zwischen normalem SRAM oder einem speziell entwickelten Multiprozessorcache gewählt 
werden. Durch die spezielle Konstruktion der On-Chip-Routingknoten der Switch-Boxen ist nicht 
nur eine gute Skalierbarkeit auf Chip-Ebene während des Entwurfs gegeben, sondern auch die Mög-
lichkeit einer späteren Kombination von GigaNetIC-basierten CMPs auf Chip-Ebene, indem 
Switch-Box-Ports nach außen geführt und mit den Nachbarchips verbunden werden. Dies erlaubt 
auf Board-Ebene eine deutlich größere Anzahl von verbundenen Knoten, als es derzeit auf einem 
Chip möglich wäre. 
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Das in diesem Kapitel vorgestellte Hardwaremodell der GigaNetIC-Systemarchitektur wurde in der 
Hardwarebeschreibungssprache VHDL realisiert und umfasst über 161.000 Zeilen kommentierten 
VHDL-Code in insgesamt mehr als 470 Dateien.  

Da das GigaNetIC-System als Basis für weitere Forschungsvorhaben der Universität Paderborn 
dient, wurden zur weiteren Nutzung und Erweiterung in den erfolgreich beantragten Folgeprojekten 
(wie z. B. PlaNetS24, MxMobile25, EasyC26 oder auch DFG sowie in den DFG-Sonderforschungs-
bereichen SFB 376 „Massive Parallelität: Algorithmen, Entwurfsmethoden, Anwendungen“ und 
SFB 614 "Selbstoptimierende Systeme des Maschinenbaus") alle projektrelevanten Quellen und 
Dokumentationen in ein eigens angelegtes Versionsverwaltungssystem eingepflegt. Außerdem 
wurde eine GigaNetIC-Linux-Live-CD, auf der alle relevanten Daten enthalten sind, erstellt. Sie 
dient als eigenständige, bootfähige linuxbasierte Softwareplattform, die nahezu auf jedem PC-
System dem Anwender eine vorkonfigurierte GigaNetIC-Entwicklungsumgebung zur Verfügung 
stellt. 

Zusammen mit der GigaNetIC-Architektur entstand eine leistungsstarke Werkzeugkette, die von der 
Projektierung und Systemdimensionierung über Simulatoren auf verschiedener Abstraktionsebene 
bis hin zu einer hierarchisch gerichteten Optimierungsmethode zur Verbesserung der Systemeigen-
schaften für beliebige Anwendungen alle wesentlichen Komponenten beinhaltet. Diese Werkzeug-
kette und deren Einsatz sowie die Resultate werden in den Folgekapiteln 5 und 6 beschrieben. 

Der Einsatz der GigaNetIC-Architektur und Leistungsbewertungen für dedizierte Anwendungen 
finden ausführliche Behandlung in im Kapitel 7. Die prototypische Realisierung auf FPGA- und 
Standardzellentechnologien bildet mit Kapitel 8 den Abschluss der Vorstellung dieser massiv paral-
lelen, skalierbaren, ressourceneffizienten Chip-Multiprozessor-Architektur. 

                                                 

24 Das vom Bundesministerium für Bildung und Forschung (BMBF) finanzierte Projekt "NGN-Platforms for Networ-

ked Services" (NGN-PlaNetS) soll dazu beitragen, dass alle europäischen Bürger einen leistungsfähigen Breitband-

Internet-Zugang bekommen. 

25 Das BMBF-Projekt MxMobile ist eine Kooperation zwischen verschiedenen Industrieunternehmen und Universitäten 

und erforscht, entwickelt und demonstriert Schlüsselkomponenten von programmierbaren Plattformen für den Multi-

band-Multistandard-Betrieb von Terminals und Basisstationen. Die Arbeiten der Universität Paderborn ordnen sich in 

den Teilbereich „Modellierung und Verifikation der Systemarchitektur“ ein. 

26 Das BMBF charakterisiert das Projekt wie folgt: „Ziel der Forschungsaktivitäten im EASY-C-Verbundvorhaben ist 

es, Schlüsseltechnologien für die nächste Generation von zellularen Mobilfunknetzen voranzutreiben, um die Entwick-

lung von neuen Echtzeit-Applikationen mit hohen Datenraten zu unterstützen. Diese Applikationen wie z. B. Video-

streaming und Lokalisierungsdienste stellen enorme Anforderungen an die gesamte Netzinfrastruktur hinsichtlich 

Bandbreite, Latenz, spektraler Effizienz und Fairness gegenüber allen mobilen Teilnehmern, insbesondere an den Zell-

rändern.“ (http://www.pt-it.pt-dlr.de/de/1772.php, Stand: November 2007) 
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5 Analyse und funktionale Verifikation des Chip-
Multiprozessorsystems 

Den Erfolg einer Prozessor- bzw. Multiprozessorarchitektur bestimmt nicht nur die reine Hardware, 
sondern ebenfalls zu einem großen Teil die begleitende Werkzeugkette. Schon per Definition (vgl. 
Definition 3) versteht sich die GigaNetIC-Architektur als mehr als nur das im vorigen Kapitel vor-
gestellte Hardware-System. Ohne einen leistungsfähigen Compiler, der aus einer Hochsprache, wie 
z. B. C oder C++, effizienten Maschinencode erzeugt, stünde die ansonsten sehr umständliche und 
zeitaufwändige Softwareentwicklung dem Erfolg des Chip-Multiprozessors stark im Wege. Eine 
Wiederverwendbarkeit des Codes für Weiterentwicklungen der Prozessorkerne oder gar andere 
Prozessoren wäre nahezu ausgeschlossen. Zudem sollte eine leistungsfähige Werkzeugkette mög-
lichst flexibel gehalten sein und auf Modifikationen und Erweiterungen der Hardware schnell rea-
gieren können. Weiterhin ist eine Reihe auf unterschiedliche Anforderungen angepasste Simulato-
ren wünschenswert, die eine schnelle respektive sehr akkurate Simulation des Gesamtsystems oder 
einzelner Systementitäten ermöglichen. Diese Simulationen dienen im Vorfeld der ASIC-
Realisierung eines GigaNetIC-Chip-Multiprozessors zum einen zur Verifikation der Funktion, aber 
auch zum anderen der Evaluierung der Leistungsfähigkeit und zur Parameterfindung (vgl. Abschnitt 
4.7), um ein möglichst ressourceneffizientes System zu verwirklichen. 

Abbildung 5-1: Möglichkeiten der Systemsimulation und - Verifikation  

auf unterschiedlichen Abstraktionsebenen 

Zusammen mit den Fachgebieten Programmiersprachen und Übersetzer, Prof. Dr. Uwe Kastens 
sowie Algorithmen und Komplexität, Prof. Dr. math. Friedhelm Meyer auf der Heide, wurde eine 
mehrschichtige, auf verschiedenen Abstraktionsebenen greifende Werkzeugkette entworfen 
[6][116][117]. Abbildung 5-1 zeigt im Überblick die unterschiedlichen Abstraktionsebenen der Sys-
temsimulation bzw. -emulation auf. Jede Abstraktionsebene hat ihre Berechtigung und Vorteile ge-
genüber den anderen. Zu diesen Kriterien zählen u. a. die Simulationsgeschwindigkeit vsim, gemes-
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nauigkeit bzw. Detailliertheit der Simulation, oder auch der Aufwand, den Änderungen im Simula-
tor bedeuten. Tabelle 5-1 gibt Aufschluss über die einzelnen Charakteristika des jeweiligen Simula-
tions- / Emulationswerkzeugs. 

Tabelle 5-1: Merkmale der einzelnen Simulations- bzw. Emulationsmöglichkeiten 

 

Die GigaNetIC-Architektur stellt einen automatisch generierten, C-basierten Simulator für die Clus-
ter-Ebene zur Verfügung [6], auf dem aufbauend der SystemC-Simulator SiMPLE (SystemC integ-
rated Multiprocessor-Level Environment) [117] von uns entworfen wurde, der zur Simulation des 
gesamten Chip-Multiprozessors herangezogen werden kann. Zur genauen Simulation des Gesamt-
systems oder einzelner Hardwareentitäten mit höchstem Detaillierungsgrad, wird die zumeist sehr 
zeitaufwändige HDL-basierte Simulation unter Verwendung modernster Simulationswerkzeuge 
eingesetzt [6][116]. Letztendlich steht mit dem am Fachgebiet Schaltungstechnik entwickelten Ra-
pid-Prototyping-System RAPTOR2000 [139][9] eine umfangreiche FPGA-basierte Entwicklungs-
umgebung zur Verfügung, die in Forschung und Lehre zugleich eingesetzt wird [140]. Das RAP-
TOR2000-System konnte bereits für andere ASIC-Implementierungen als Evaluierungsplattform 
erfolgreich genutzt werden [10]. Mit ihrer Hilfe lassen sich komplexe Chipentwürfe im Zusammen-
spiel mit realer Hardware testen27.  

Die grundsätzliche Vorgehensweise während der Entwicklung und Optimierung eines GigaNetIC-
Systementwurfs unter Zuhilfenahme der erstellten Entwicklungsumgebungen sieht in der Regel wie 
folgt aus:  

Zunächst werden grundlegende Veränderungen in den leicht zu modifizierenden, schnellen Simula-
toren implementiert. Hierzu zählt der Cluster-Simulator (vgl. Abschnitt 5.1) auf Prozessor- und 
Cluster-Ebene, während die SystemC-basierte Simulationsumgebung SiMPLE (vgl. Abschnitt 5.2) 
auf allen drei Ebenen, also auch auf der SoC-Ebene greift. Diese Simulationen können zum Teil 
sogar automatisiert durch die von mir erstellte MultiSim-Werkzeugkette ablaufen und ausgewertet 
werden, was einhergehend mit der relativ hohen Simulationsgeschwindigkeit eine hohe Abdeckung 
des Entwurfsraums gewährleistet. Die auf dieser abstraktesten Ebene gewonnenen Ergebnisse ge-
ben Impulse für die Gestaltung bzw. Parametrisierung der einzelnen Hardwareentitäten. Die hier 

                                                 

27 Vgl. mit dem GigaNetIC-Demonstrator der Cebit 2005 und der Hannover-Messe 2005, Abschnitt 8.1. 
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anwendbaren Maßnahmen, z. B. die Optimierung der Algorithmen und die Konzeption der Struktur, 
besitzen in der Regel das größte Potential zur Verbesserung der Ressourceneffizienz. 

Im Anschluss werden besonders vielversprechende Varianten des Multiprozessorsystems in einer 
synthetisierbaren Hardwarebeschreibung realisiert und mit Hilfe der weiterentwickelten PERF-
MON-Umgebung (vgl. Abschnitt 5.3) detailliert untersucht. Die hier gewonnenen Messergebnisse 
beinhalten nicht nur taktgenaue Laufzeiten sondern genaue Informationen über die zu erwartende 
Leistungsaufnahme und Fläche der jeweiligen Realisierung. Aufgrund der sehr geringen Simulati-
onsgeschwindigkeit ist die Möglichkeit der Vorauswahl durch die zuvor genannten Simulatoren 
mehr als ratsam. Durch das in Abschnitt 5.4 beschriebene MultiSim-Entwurfswerkzeug können 
dann, als Folgeschritt, Modifikationen in enger abgesteckten Grenzen bzw. für einzelne, vielver-
sprechende Punkte des Entwurfsraums erfolgen. Für die Optimierung des Systems greift dann die 
im folgenden Kapitel 6 vorgestellte Methodik der „hierarchisch gerichteten Optimierung“. 

Potentielle Realisierungen werden dann im Anschluss auf dem speziell erweiterten, FPGA-basierten 
Rapid-Prototyping-System RAPTOR2000 (vgl. Abschnitt 5.5) im direkten Hardwareumfeld getes-
tet. Diese Integration in ein „reales“ Anwendungsszenario ermöglicht eine chipübergreifende funk-
tionale Verifikation des Systems und lässt erste Aussagen über die Leistungsfähigkeit der zukünfti-
gen ASIC-Realisierung zu. Die durch Simulation erfolgte Verifikation der erstellten Hardware kann 
hier durch Hardwareemulation bestätigt werden. Durch die hohe Simulationsgeschwindigkeit sind 
zudem weitaus komplexere Tests möglich, als es die HDL-Simulationsumgebung zuließe. 

Die vorgestellten Entwicklungsumgebungen bzw. Simulatoren lassen sich darüber hinaus auch 
unabhängig voneinander nutzen. So kann Software zunächst entkoppelt vom langsamen Hardware-
simulator entwickelt, getestet sowie funktional optimiert und deren Laufzeit analysiert werden. 
Hardwareblöcke hingegen können z. B. aus verfügbaren IP-Blöcken integriert werden und zunächst 
in der HDL-basierten Entwicklungsumgebung evaluiert werden, ohne für alle Simulatoren funktio-
nal realisiert werden zu müssen. Eine einheitliche Übersetzer-Werkzeugkette komplettiert schließ-
lich die GigaNetIC-Architektur und ermöglicht dem Entwickler eine unkomplizierte Nutzung aller 
Simulationswerkzeuge und Emulationsplattformen, vgl. Abschnitt 5.6. 

Detaillierte Beschreibungen der einzelnen Simulations- bzw. Emulationswerkzeuge und deren Ein-
satz werden in den folgenden Abschnitten gegeben. 

5.1 C-basierter Cluster-Simulator zur Simulation und Profilierung 

Ausgangspunkt der Simulatoren ist ein aus der Compiler-Werkzeugkette generierter, C-basierter 
Simulator, der vom Fachgebiet Programmiersprachen und Übersetzer, Prof. Dr. Uwe Kastens, ent-
wickelt worden ist. Dieser zyklenakkurate Simulator ist ein vergleichsweise schneller Simulator, 
der zur Simulation der Clusterebene des GigaNetIC-Systems (vgl. Abschnitt 4.1) eingesetzt wird. 
Er ermöglicht die taktgenaue Verhaltenssimulation eines N-Cores oder aber auch des gesamten N-
Core-Clusters unter Verwendung eines einfachen Busmodells, das keine Matrixfähigkeit aufweist, 
und über einen Round-Robin-Mechanismus, ähnlich dem Wishbone-Bus (vgl. Abschnitt 4.2.4) die 
Busvergabe regelt. Eine Besonderheit des Simulators ist, dass er nicht manuell erstellt werden muss, 
sondern durch die entwickelte Werkzeugkette automatisch generiert wird [6], vgl. auch Abbildung 
6-4. Mit ca. 300 Host-CPU-Takten pro simuliertem Takt des GigaNetIC-Clusters erreicht dieser 
Simulator eine beachtliche Simulationsgeschwindigkeit. Z. B. benötigt ein Intel Pentium 4m 
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(2,2 GHz) 314 Takte für einen simulierten N-Core-Takt, was einer effektiven Simulationsge-
schwindigkeit von 7,63 MHz entspricht. Eine Simulation des C-basierten Simulators von einer Se-
kunde würde somit ca. 14 Stunden der hardwarenahen VHDL-Simulation mit einer effektiven Si-
mulationsgeschwindigkeit von 150 Hz bedeuten. Dieser Sachverhalt zeigt sehr deutlich, dass zum 
einen abgewogen werden sollte, welcher Simulator zu welchem Zweck verwendet wird, und zum 
anderen auch die Notwendigkeit unterschiedlicher Simulationswerkzeuge bzw. -methoden. So bie-
ten sich zur ersten Leistungsbewertung und Entwurfsraumexploration die schnellen Simulatoren an, 
die in der Lage sind, rechenaufwändige und damit zeitintensive Benchmarks bzw. Algorithmen in 
relativ kurzer Zeit abzuarbeiten. Sie liefern wichtige Ergebnisse zur Einstufung der Leistungsfähig-
keit der zu evaluierenden Architektur mit genügender Genauigkeit. Im Anschluss kommen dann für 
detailliertere Analysen ggf. auch nur für Teilprobleme, die genauen, zeitaufwändigen Simulations-
umgebungen zum Einsatz. Abschließend kann dann der Prototyp als FPGA-Realisierung im realen 
Hardwareszenario die Funktionalität des Systems unter Beweis stellen. 

Abbildung 5-2: Exemplarische Performanzvisualisierung mit JScore  

der mit dem Cluster-Simulator ermittelten Laufzeitdaten 

Komplettiert wird die clusterorientierte Entwicklungsumgebung durch ein leistungsfähiges Profilie-
rungswerkzeug, JScore, das das Profiling auf Task- und Funktionsebene des Clusters ermöglicht 
[6]. So können zyklenakkurate Simulationswerte aufgrund der detaillierten Profilingmöglichkeit 
komfortabel zur Ergebnisvisualisierung der gewonnenen Laufzeitdaten herangezogen werden. Ab-
bildung 5-2 zeigt beispielhaft die Ergebnisvisualisierung von Laufzeitdaten, die mit dem Cluster-
Simulator gewonnen wurden. Die Entwicklungsumgebung unterstützt die Instrumentarisierung des 
Programmcodes, dadurch ist es möglich, Abschnitte einzuteilen und deren Profilingdaten separat 
voneinander, in so genannten Bins (also Körben), für die beteiligten Prozessoren des Clusters pro-
tokollieren zu lassen. Es werden die benötigten Takte, die Anzahl der jeweils ausgeführten Instruk-
tionen und der datenabhängigen Instruktionspaare je Bin ausgewertet. Außerdem werden Lade- und 
Speicheroperationen protokolliert. 
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Der Cluster-Simulator unterstützt darüber hinaus eine einfache Einbindung von Hardwarebeschleu-
nigern mit Annotation der durch HDL-Simulation gewonnenen exakten Laufzeitdaten. Eine in C 
beschriebene Funktion muss lediglich als die Funktionalität gekennzeichnet werden, die später im 
realen System von einem Hardwarebeschleuniger ausgeführt wird. Die Laufzeitdaten des realen 
Hardwarebeschleunigers werden dem Werkzeug übergeben. Während der Simulation führt ein Pro-
zessor den Code aus, die Laufzeitdaten werden jedoch durch die zuvor annotierten ersetzt. Der Vor-
teil dieser Möglichkeit ist, zunächst die Funktionalität durch schnell realisierbare Software bereit-
zustellen, um dann potentielle Funktionsblöcke später durch Hardwarebeschleuniger ersetzen zu 
können. Die neuen, beschleunigten Laufzeiten können dann leicht mit in die Performanzbewertung 
durch den Profiler einbezogen werden. 

Für die Cluster-Simulationswerkzeugkette wurde von mir eine skriptbasierte Evaluationsumgebung 
geschaffen, mit deren Hilfe eine schnelle Analyse des Entwurfsraums in Bezug auf die Softwareim-
plementierung und ggf. vorhandener Hardwarebeschleuniger möglich wird. Unter Verwendung die-
ser Erweiterung konnten umfangreiche Simulationen eines DSLAM-Benchmarks (vgl. Kapitel 7) in 
sehr kurzer Zeit durchgeführt werden, die eine Exploration des Entwurfsraums in zumutbarer Zeit 
erlaubten [141][118]. Hierbei galt es, sieben unterschiedliche Benchmarkszenarien mit je ca. 20 
relevanten Tasks zu untersuchen. Es wurden nach dem iMix (vgl. Abschnitt 7.2.3) vier verschiede-
ne Pakettypen verarbeitet. Beim Simulieren wurden über elf verschiedene Instruktionssatzvarianten 
des N-Cores (vgl. Abschnitt 6.2) iteriert, so dass sich letztendlich insgesamt 
308 Benchmarkkonstellationen ergaben. Jeder dieser Benchmarks benötigte ca. 26 Mio. N-Core-
Taktzyklen, was in einer Gesamtzahl von 8,2 Milliarden simulierten Takten resultierte. Die gesamte 
Verarbeitung inklusive Kompilierung und Auswertung benötigte auf dem P4m-System mit 2,2 GHz 
nur ca. 45 Minuten Laufzeit. Abbildung 5-3 zeigt einen exemplarischen Auszug aus einem der au-
tomatisch erzeugten Ergebnisprotokolle. 

Abbildung 5-3: Auszug aus einem der automatisch erzeugten Ergebnisprotokolle zur DSLAM-

Benchmarkauswertung zu verschiedenen Instruktionssatzvarianten 

Die Zahlen geben die jeweils benötigten Taktzyklen für den entsprechenden Benchmark und den 
instrumentierten Codeabschnitt an. Die Kürzel stehen für den simulierten Instruktionssatz. Zusam-
menfassend wird in der letzten Zeile der maximale Gewinn (Gain) durch eine Instruktionssatzer-
weiterung notiert. In dem aufgeführten Beispiel ergibt sich eine maximale Beschleunigung um 
9,92% durch die ldwixw-Befehlssatzvariante gegenüber dem unmodifizierten N-Core. Nach ausgie-
bigen Simulationen kann so dennoch relativ schnell entschieden werden, welche Hardwarevariante 
die besten Performanzsteigerungen erzielt. In einer weiteren Ausbaustufe dieser Werkzeugkette 
können zusätzlich die in der hardwarebasierten Werkzeugkette (vgl. Kapitel 6) ermittelten Daten für 
Fläche und Leistungsaufnahme der entsprechenden Hardwareblöcke mit berücksichtigt und ausge-
wertet werden.  
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5.2 Modellierung des GigaNetIC-Chip-Multiprozessors in SystemC 

Um detaillierte Aussagen über die Leistungsfähigkeit der gesamten GigaNetIC-Multiprozessor-
Architektur treffen zu können, die über die Ergebnisse zur Leistungsfähigkeit der einzelnen Prozes-
sorkerne und Hardwarebeschleuniger hinausgehen, wurde ein zyklenakkurates Modell unseres Sys-
tems namens SiMPLE in SystemC modelliert. Dieses entspricht in seinem grundsätzlichem Aufbau 
der in Abbildung 4-2 gezeigten Struktur. Zunächst wurde ein Prozessor basierend auf dem automa-
tisch generierten Cluster-Simulationsmodell (Abschnitt 5.1) in eine in SystemC modellierte Struktur 
eingebunden. Darauf aufbauend wurde ein Prozessorcluster mit vier N-Core-CPUs, Multiprozessor-
Cache (vgl. Abschnitt 4.4.2) und lokalem Speicher erstellt, wobei die Kommunikation über einen 
Round-Robin-arbitrierten Bus abgewickelt wird. Letztendlich werden diese Prozessorfelder über 
Switch-Boxen, die unter anderem über parallele FIFO-Strukturen, Kontrolllogik zur Ansteuerung 
des lokalen Prozessorclusters, Routingmechanismen zur Weiterleitung der Pakete über das On-
Chip-Netzwerk und einen Kreuzschienenverteiler zur Verbindung der Ein- und Ausgangsports ver-
fügen, verbunden [130]. 

Die Simulation ist für viele Bereiche des Systems zyklenakkurat und weicht nur in einigen unwe-
sentlichen Teilen geringfügig von der Hardware ab. Sie ist zudem deutlich schneller als eine ver-
gleichbare Simulation auf Basis der VHDL-Beschreibung der Einzelkomponenten. Falls erforder-
lich, können die einzelnen Hardwarebeschleuniger zur Verifikation des Zusammenspiels mit der 
Software in einer Co-Simulation als VHDL-Beschreibung mit eingebunden werden. Um eine höhe-
re Simulationsgeschwindigkeit zu erreichen, werden diese ansonsten durch funktionale Beschrei-
bungen in C++ bzw. SystemC ersetzt. Funktional verhält sich SiMPLE weitestgehend identisch zur 
Hardware, so dass auch hier des Postulats eines hohen Übereinstimmungsgrads der unterschiedli-
chen Simulationswerkzeuge Folge geleistet wird. 

Das System ist so konstruiert, dass beim Start zunächst die Instruktionsspeicher der einzelnen CPUs 
mit den zuvor durch den Compiler erstellten Binär-Dateien geladen werden, wobei diese Daten be-
reits über das GigaNoC-On-Chip-Netzwerk von einem zentralen Bootloader (vgl. Abschnitt 4.2.2) 
aus an die entsprechenden Speicheradressen gesendet werden. Im Anschluss wird das umgebende 
System aktiviert, also z. B. Paketgeneratoren, die die eigentlichen Nutzdaten an die Eingangsports 
des Systems liefern. Dieser Prozess kann bei Bedarf beschleunigt werden, indem die Instruktions-
speicher direkt, unter Umgehung des normalen Bootvorgangs, bei Beginn der Simulation mit den 
entsprechenden Daten initialisiert werden. 

Zunächst wurde SiMPLE in der Synopsys-CoCentric-Entwicklungsumgebung für SystemC-
Modelle realisiert (vgl. Abbildung 5-4). Die CoCentric-Entwicklungsumgebung stellt eine Vielzahl 
von Bibliothekselementen zur Verfügung, so z. B. auch ADSL-Kanäle, die zur Modellierung der 
Übertragungsstrecke der Endkunden hin zum DSLAM (vgl. Abschnitt 7.1) dienen und in einigen 
Analysen verwendet wurden. Mittlerweile ist SiMPLE auch als alleinstehende Anwendung einsetz-
bar, so dass eine Lizenz für die Werkzeuge von Synopsys nicht zwingend erforderlich ist. 

Mit Hilfe der SiMPLE-Systemmodellierung können beliebige Anwendungsszenarien detailliert und 
schnell evaluiert werden. Hard- und Software für das gesamte System lassen sich bereits im Vor-
feld, vor der ASIC-Implementierung testen und optimieren. 
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Abbildung 5-4: SystemC-Modellierungsebenen,  

eingebunden in die Simulationsumgebung CoCentric von Synopsys 

Auch für die SiMPLE-Simulationsumgebung wurde die bereits für den Cluster-Simulator (vgl. Ab-
schnitt 5.1) entwickelte skriptbasierte Steuersoftware zur Automatisierung der Entwurfsraumexplo-
ration weiterentwickelt. Mit ihrer Hilfe ist der Software- bzw. Hardwareentwickler in der Lage au-
tomatisch gesteuerte Simulationen über nahezu alle zur Verfügung stehenden Parameter der Hard-
ware zu iterieren (vgl. Anhang B). So können Optimierungspotentiale seitens der Soft- und Hard-
ware im frühen Entwicklungsstadium erkannt und in den Prototypen integriert werden. Fehler der 
Software oder funktionales Fehlverhalten der Hardwareabstraktion können so ohne großen Kosten-
aufwand beseitigt werden. Alle während der Simulationen gewonnenen Messergebnisse werden 
protokolliert und abschließend zur weiteren Analyse und Visualisierung für Tabellenkalkulations-
programme als CSV28-Dateien aufbereitet. BONA ET AL. [142] verwenden ein erweitertes SystemC-
Simulationsmodell zur schnellen Bestimmung der Verlustleistungsaufnahme eines Multiprozessor-
systems und im Speziellen des eingesetzten On-Chip-Netzwerks. Bei diesem Simulationsmodell 
beträgt die Diskrepanz zwischen den ermittelten Werten der SystemC-Simulation und den Werten 
der Gate-Level-Synthese nach Aussage der Autoren maximal 9 %. Dies ist für erste Abschätzungen 
hinreichend genau und erlaubt so eine schnelle Entwurfsraumexploration, was auch für die SiMP-
LE-Entwicklungsumgebung eine lohnenswerte Erweiterung wäre. 

5.3 HDL-basierte Simulation auf Register-Transfer-Ebene 

Die HDL-basierte Simulation auf Register-Transfer-Level (RTL) stellt die genaueste und detaillier-
teste Simulationsumgebung des GigaNetIC-Systems dar. Sie ermöglicht zwar in Abhängigkeit von 
der Größe des zu analysierenden Chip-Multiprozessors nur eine sehr geringe Simulationsgeschwin-
digkeit (vgl. Tabelle 5-1), bietet aber dafür Beobachtbarkeit und Steuerbarkeit auf nahezu allen 
Ebenen des Hardwaresystems und ist für die Verifikation der Hardware unverzichtbar. Die von uns 
realisierte Umgebung erlaubt neben der RTL-Simulation außerdem Post-Synthese-Simulationen auf 
Gatterebene der verwendeten Standardzellentechnologie. Diese liefert mit Hilfe von Schaltaktivitä-
tenannotationen während der Ausführung des Anwendungsprogramms sehr genaue Daten zur Leis-
tungsaufnahme der Schaltungskomponenten. 

                                                 

28 Das CSV(Comma Separated Values)-Format ist ein gebräuchliches Format für Datendateien. 

Prozessorfeld Switch-Box Gesamtsystem
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Zur Bestimmung von Ausführungszeiten, Chipfläche und Energiebedarf von eingebetteten Syste-
men existiert bereits eine Vielzahl von Methoden. Allerdings analysieren viele der etablierten 
Werkzeugketten nur ein oder zwei der genannten Charakteristika. Einige experimentelle Arbeiten 
beschäftigen sich mit abstrakteren Modellen der Software-Energiebedarfsanalyse, z. B. auf Instruk-
tionssatzebene [143][144][145], für Softwarefunktionen [146][147][148][149] und ebenso für funk-
tionale Einheiten wie Controller und Prozessoren [150][151]. Viele der Verfahren bestimmen für 
die Ausführungszeit nur eine obere Schranke, die Worst Case Execution Time (WCET), ohne mög-
liche Daten-, Pfad- und Zustandsabhängigkeiten zu berücksichtigen. Die im Folgenden vorgestellte 
Werkzeugkette ermöglicht weitaus umfangreichere Analysen und hilft dem Entwickler bei der Fin-
dung von Flaschenhälsen und zeigt Optimierungspotentiale auf. 

Für die Umsetzung und Analyse der GigaNetIC-Hardwarebeschreibung wurde die PERFMON-
Werkzeugkette [116] weiterentwickelt und an die Bedürfnisse eines Multiprozessorsystems ange-
passt. Diese Weiterentwicklung unterstützt den Hardwareentwickler bei der Bewertung der Res-
sourceneffizienz unterschiedlicher Architekturvarianten in mehrfacher Hinsicht. 

Abbildung 5-5: Performanz-Evaluierungsumgebung PERFMON, basierend auf HDL-Simulation  

Die PERFMON-Umgebung (vgl. Abbildung 5-5) verwendet zunächst die in der Hardwarebeschrei-
bungssprache VHDL erstellte Modellierung des Prozessors und des in Abbildung 4-17 gezeigten 
Prozessorsubsystems. Je nach Art und Umfang der Analysen beschränkt sich das verwendete 
Hardwaremodell aber nicht nur auf Prozessorebene, sondern wird bei Bedarf auf das gesamte zu 
charakterisierende GigaNetIC-Multiprozessorsystem ausgeweitet. Die dreidimensional dargestellten 
Elemente in der Grafik markieren die jeweils ermittelten Kennwerte des zu analysierenden Systems. 
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Als Eingang für die PERFMON-Umgebung dient die Anwendungssoftware in Form von Code in 
der Hochsprache29 C oder C++ . Diese wird durch spezielle Instrumentierungen annotiert (ähnlich 
der Vorgehensweise beim Cluster-Simulator, Abschnitt 5.1), um so die für die Analyse relevanten 
Codesegmente zu kapseln. Zusammen mit den von der Werkzeugkette benötigten Prüffunktionen 
werden die Quellen kompiliert und ein entsprechendes Speicherabbild erstellt. Je nach weiterer 
Verwendung wird es dem entsprechenden Simulator bzw. Emulator gerecht aufbereitet. Bei der 
Verwendung von PERFMON wird es in ein SRAM-Simulationsmodell des lokalen Prozessorspei-
chers geladen. Die Simulation im HDL-Simulator liefert dann ein umfangreiches Profil mit hohem 
Detaillierungsgrad im Hinblick auf die dynamischen Laufzeiten, Codegrößen, Speicherzugriffe und 
die Auslastung des Stapelspeichers (Stacks) der analysierten Anwendung. Bei Algorithmen, deren 
Laufzeit datenabhängig ist, werden zudem Minimum, Maximum und Mittelwert der instrumentier-
ten Codesegmente ausgewertet (vgl. Abbildung 5-6).  

Während der Simulation werden die Schaltaktivitäten zunächst auf RT(Register Transfer)-Ebene für 
die zu analysierenden Hardwarekomponenten protokolliert und abgespeichert. Diese werden im 
anschließenden, ebenfalls automatisierten Schritt, zu einer weiteren Abschätzung der dynamischen 
Verlustleistungsaufnahme herangezogen. Diese Abschätzung ist in nahezu allen Fällen weitaus ge-
nauer, als die rein statistische Abschätzung der Leistungsaufnahme seitens des Synthesewerkzeugs. 
Die hier gewonnenen Resultate bedeuten einen relativ guten Kompromiss zwischen Rechenaufwand 
und Genauigkeit. In der frühen Phase eines Designentwurfs sind für die Konzipierung des SoCs 
eher die qualitativen Zusammenhänge als quantitative entscheidend. Die RTL-basierte Analyse 
zeigt Trends auf, die in etwa in der zu erwartenden Größenordnung der Verlustleistungsaufnahme 
des späteren Chipdesigns liegen. 

Der nächste Schritt ist die Synthese des RTL-Designs mit dem Synopsys Design Compiler, dessen 
Resultat, die Gatternetzliste der Zieltechnologie, als Eingabe für die nächstgenauere Verlustleis-
tungsberechnung dient die Gatterebenensimulation ohne Berücksichtigung von Verzögerungszeiten. 
Anhand der protokollierten Schaltaktivitäten und der Charakterisierungsinformationen der Biblio-
thekselemente der verwendeten Standardzellentechnologie kann der Synopsys Power Compiler be-
reits eine deutlich genauere Abschätzung der zu erwartenden Leistungsaufnahme treffen. Außerdem 
ergeben sich erste Werte für die zu erwartenden Kenngrößen Fläche und Taktfrequenz der Hardwa-
rekomponenten. Die Bestimmung der maximal möglichen Taktfrequenz der betreffenden Hardwa-
rekomponenten übernehmen Funktionsaufrufe einer skriptbasierten Werkzeugkette der erweiterten 
GigaNetIC-PERFMON-Umgebung. Diese steuert und analysiert die Resultate der entsprechenden 
Synopsys-Werkzeuge. Hierdurch ist es möglich, ohne Interaktion sehr gute Syntheseresultate zu 
erzielen, die allerdings ggf. entsprechende Rechenressourcen bzw. Zeit erfordern30. 

Als finale Möglichkeit der Berechnung der dynamischen Verlustleistung unterstützt die PERF-
MON-Umgebung die Gatterebenensimulation unter Verwendung der sich ergebenden Schaltverzö-

                                                 

29 In Abhängigkeit vom verwendeten Compiler, derzeit unterstützt der UPB-Compiler nur C-Code. 

30 Die Synthese der auf diese Weise gewonnenen Implementierung des N-Cores (vgl. Abschnitt 6.2) nahm auf einer 

leistungsfähigen Workstation mit 2 GHz Prozessortakt und 16 GByte Arbeitsspeicher ca. 24 Stunden in Anspruch. 
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gerungen31. Die Abschätzung kann, je nach Güte der Charakterisierung der verwendeten Gatterbib-
liotheken im einstelligen Prozentbereich32 liegen [152][153]. Unabhängig von der zu erreichenden 
Genauigkeit bzgl. der Bestimmung der Leistungsaufnahme, sind die relativen Unterschiede ver-
schiedener Implementierungsvarianten von entscheidender Bedeutung. Anhand der sich ergebenden 
Tendenzen können vielversprechende Realisierungen bestimmt werden. 

Tabelle 5-2 gibt Aufschluss über die Merkmale der einzelnen Methoden der Schaltaktivitätenauf-
nahme und die Qualität der daraus gewonnenen Werte zur dynamischen Verlustleistungsaufnahme 
der untersuchten Hardwareblöcke. 

Tabelle 5-2: Vergleich der unterschiedlichen Methoden zur Aufnahme von Schaltaktivitäten  

und die Qualität der daraus gewonnenen Verlustleistungsabschätzung 

Simulationsebene Erfasst Nicht erfasst Für und Wider 

Register Transfer syntheseinvariante Elemente 

Interne Knoten; 
Korrelation, nicht Synthese 
invarianter Elemente; 
vorkommende Glitches; 
Zustands- und Pfadabhängigkei-
ten 

relativ schnelle Laufzeit, 
geringere Genauigkeit 

Null-Verzögerung, 
Gatterebene 
(Gate Level) 

syntheseinvariante Elemente; 
interne Knoten; 
Korrelation, nicht Synthese 
invarianter Elemente; 
gewisse Pfadabhängigkeiten 

vorkommende Glitches, 
gewisse Pfadabhängigkeiten 

genauer als die RTL-Simulation, 
aber deutlich längere Laufzeit 

Zeitinformationen-
annotierte Gatter-

ebene 
(Gate Level) 

Alle Designelemente; 
Korrelation, nicht Synthese 
Invarianter Elemente; 
Zustands- und Pfadabhängigkei-
ten 

Korrelation gleichzeitig schal-
tender primärer Eingänge 

höchste Genauigkeit, einherge-
hend mit sehr langer Laufzeit 

Abschließend werden die erzielten Ergebnisse in Kopien der Quellcode-Dateien an die entspre-
chend instrumentierten Segmente annotiert und können ausgewertet werden. 

Abbildung 5-6 zeigt beispielhaft eine Gegenüberstellung ausgewählter Ergebnisse einer eigenen 
CRC-Implementierung in Hard- und Software, die mit Hilfe von PERFMON gewonnen wurden 
[116]. Die CRC-Berechnung ist speziell im Bereich der Netzwerkprozessoren von besonderer Be-
deutung (vgl. Kapitel 7) und wird häufig zur Fehlererkennung und Absicherung in vielen Netz-
werkprotokollen verwendet. Die Auswertung zeigt u. a. die datenabhängige Verarbeitungszeit bei 
der Softwarerealisierung des CRC-Verfahrens, so dass minimale, maximale und mittlere Werte für 
Instruktionsholzyklen und Ausführungszeit gegeben werden. Die ermittelten Werte basieren auf 
zufallsgenerierten Paketen mit 128 Byte Länge. Die hier dargestellte Analyse bezieht sich in diesem 
Fall auf das Prozessorssubsystem mit angeschlossenem, enggekoppelten Hardwarebeschleuniger. 
Die Verarbeitung erledigt der hier implementierte Hardwarebeschleuniger ca. 15mal schneller, wo-
bei die maximale Leistungsaufnahme des Systems marginal geringer ausfällt, als die des rein Soft-

                                                 

31 In diesem Fall werden bei der Simulation des Verhaltens der Gatternetzliste die jeweiligen Verzögerungszeiten der 

Gatter mitberücksichtigt. Diese werden nach der Synthese in einer Standard-Delay-Format(SDF)-Datei abgespeichert 

und während der folgenden Simulation mit berücksichtigt. 

32 Bei der referenzierten Studie des Oki Techno Centers lag die Abweichung zwischen der zeitinformationsannotierten 

Gatterebenen-Simulation unter Zuhilfenahme der annotierten Schaltaktivitäten und der Messung am gefertigten Chip 

bei 5%. Synopsys gibt Werte zwischen 10 % bis 25 % Abweichung im Vergleich zu einer SPICE-Simulation an. 
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ware-basierten Systems. Der Energiebedarf des hardwarebasierten Systems ist 94 % geringer als bei 
der Software-basierten Variante.  

Die erweiterte PERFMON-Umgebung dient u. a. dazu, häufiger genutzte Software-Funktionen oder 
aber auch Hardwareblöcke bzgl. ihrer Eigenschaften zu charakterisieren. Die jeweiligen gewonne-
nen Informationen werden, wie z. B. auch die des oben gezeigten CRC-Beispiels, in einer Biblio-
thek abgelegt. Automatisierte Werkzeuge wie NetAMap [102][103][104] können dann anhand die-
ser Daten eine Partitionierung der Algorithmen und Allokierung der Hardwareblöcke vornehmen, 
die eine möglichst ressourceneffiziente Realisierung der Gesamtanwendung erzielt. 

Abbildung 5-6: Beispielhafte Ergebnisse für eine Cyclic-Redundancy-Check(CRC)-Realisierung  

in Software und Hardware 

Mit Hilfe der erweiterten PERFMON-Umgebung konnte an einer Reihe von Beispielen gezeigt 
werden, dass durch geeignete Maßnahmen im Software- bzw. RTL-Design und in der Synthese ein 
nicht zu vernachlässigender Anteil der dynamischen Verlustleistung für den aktiven Betrieb einges-
part werden kann [116][102][103][111][130][117][118][104][109][131]. 

Es gibt zahlreiche Methoden zur Reduktion der Leistungsaufnahme von Digitalschaltungen. U. a. 
kann durch eine angepasste Feinarchitektur dafür gesorgt werden, dass temporär ungenutzte Schal-
tungsteile von aktiven Eingangssignalen entkoppelt werden können, wodurch auch die internen 
Signale dieser Blöcke unverändert bleiben, und so die Verlustleistung dieser Einheiten merklich 
reduziert werden kann. Ein sehr ähnliches Beispiel ist die Anwendung von Clock-Gating, das zum 
Teil vom Synthesewerkzeug selbständig eingebracht werden kann. Hierbei wird das Taktsignal von 
ganzen Registerbänken oder Funktionsgruppen abgeschaltet, wenn diese ihren Zustand nicht ändern 
müssen. Das Einführen von Variationen der Taktfrequenz bzw. von Bereichen unterschiedlicher 
Versorgungsspannung (Voltage Islands) steigert ebenfalls die Ressourceneffizienz einer Schaltung, 
die Möglichkeit der Anwendung ist allerdings abhängig von der verwendeten Technologie. 
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Auch eine Reduzierung der Chipfläche und somit der Kosten liegt als teilweise konkurrierender 
Faktor mit im Blickfeld der Architekturoptimierungen. Die entwickelten Werkzeuge erlauben das 
Abwägen der systemrelevanten Parameter und das Finden von pareto-optimalen Entwürfen. 

5.4 MultiSim – Parametervariation zur gezielten Entwurfsraumexploration 

Für die in den vorangegangenen Abschnitten vorgestellten Simulatoren und Entwicklungsumge-
bungen wurde die MultiSim-Werkzeugkette entwickelt [131][113], eine spezielle Kombination aus 
Skripten und Tcl(Tool command language)-Anwendungen, die interagieren, und den Ablauf der 
Simulationen steuern. Durch sie werden, einer Stapelverarbeitung ähnlich, Simulationen eigenstän-
dig gestartet, analysieret im Anschluss modifiziert und, den gegebenen Parametern Folge leistend 
automatisiert weitere Simulationen angestoßen. Die Ergebnisse werden anschließend in CSV-
Dateien zusammengestellt und können mit Tabellenkalkulationsanwendungen weiterverarbeitet und 
visualisiert werden.  

Abbildung 5-7: Funktionsweise der MultiSim-Entwicklungsumgebung 

 zur automatisierten Entwurfsraumexploration für di e Hardware- und Software-Entwicklung 

MultiSim ist für die Parametervariation in einem vorgegebenen Rahmen gedacht, aber auch evolu-
tionäres Verhalten wäre in der Werkzeugkette modellierbar und könnte so ggf. neue Impulse bzgl. 
der Findung pareto-optimaler Punkte im Entwurfsraum setzen. Dies setzt natürlich je nach Simula-
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tor und Umfang der Parametervariation entsprechend leistungsfähige Rechner voraus. Abbildung 
5-7 zeigt den Ablauf bei der Verwendung der MultiSim-Werkzeugkette für die geschilderten Simu-
lationsumgebungen auf. 

In [109][131] wurde der Multi-Sim-Entwurfsprozess genutzt, um die Wishbonebus-basierte Giga-
NetIC-Chip-Multiprozessorarchitektur automatisiert für unterschiedliche Benchmarkszenarien mit 
einhergehender Variation der Anzahl der lokalen Verarbeitungseinheiten zu analysieren. Ebenfalls 
wurde die Art der Kopplung spezieller Hardwarebeschleuniger mit Hilfe von Multi-Sim untersucht. 
In [113] wurde Multi-Sim eingesetzt um die Leistungsfähigkeit verschiedener Multiprozessor-
Cache-Implementierungen zu analysieren. Hierbei wurden insgesamt 2.716 Simulationsdurchgänge 
von vier Rechnern33 über eine Dauer von ca. vier Wochen ausgeführt. Variiert wurden seitens der 
Hardware u. a. die Assoziativität der Caches, die Größe der Cachelines und deren Anzahl, die 
Hauptspeicherlatenz sowie die Struktur des Caches zwischen Unified- oder Split-Cache (vgl. Ab-
schnitt 4.4.2). Auf Softwareseite fand eine Variation der Anwendungssoftware, also der verwende-
ten Benchmarks statt. Die gewonnenen Ergebnisse lieferten detaillierte Aussagen darüber, welche 
der untersuchten Cachevarianten besonders effektiv für die jeweiligen Anwendungen sind. 

5.5 Systememulation mit einem Rapid-Prototyping-System 

Das am Fachgebiet Schaltungstechnik entwickelte FPGA-basierte Rapid-Prototyping-System RAP-
TOR2000 [9][154] erlaubt eine sehr hohe Emulationsgeschwindigkeit des späteren ASIC-Designs 
oder dient als Hardwarebeschleuniger [10]. Die Emulation ist bis zu sechs Größenordnungen 
schneller als die VHDL-Simulation. Verglichen mit der SystemC-Simulation liegt die hier erzielte 
Beschleunigung bei über zwei Größenordnungen höher, gegenüber der C-basierten Cluster-
Simulation wird noch ein Beschleunigungsfaktor von zwei erzielt, vgl. Tabelle 5-1.  

Abbildung 5-8: FPGA-basiertes Rapid-Prototyping-System RAPTOR2000 zur schnellen Systememulation 

Das modulare, als PCI-Bus-Teilnehmer realisierte RAPTOR2000-Board (vgl. Abbildung 5-8) kann 
mit bis zu sechs steckbaren Tochterplatinen erweitert werden. Die Tochterplatinen werden über je 
zwei, 128 Kontakte umfassende Steckverbindungen mit der Basisplatine verbunden. Die Integration 

                                                 

33 Pentium 4 3000 HT mit 3 GHz und 1 GByte Arbeitsspeicher. 
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in ein PC-System stellt zum einen eine preiswerte Lösung und zum anderen eine komfortable Test-
umgebung dar. Aufgrund der umfangreichen Softwarebibliothek, die für die Einbindung des RAP-
TOR2000-Systems erstellt wurde, lassen sich alle Funktionen des Systems in eigene Anwendungen 
leicht integrieren. Für den FPGA-basierten GigaNetIC-Prototypen wurde ebenfalls eine graphische 
Benutzerumgebung zur Systemüberwachung und Steuerung entworfen [131][113][110], vgl. Ab-
schnitt 8.1. 

Aufgrund seiner Modularität ermöglicht das RAPTOR2000-System aber nicht nur eine hohe Simu-
lations- bzw. Emulationsgeschwindigkeit, sondern erlaubt auch die Integration des HDL-basierten 
Prototypen in eine "reale" Hardware-Umgebung unter Nutzung einer Vielzahl von Schnittstellen, 
die das RAPTOR2000-System mittlerweile zur Verfügung stellt. So konnte im Falle des  
GigaNetIC-Chip-Multiprozessors mit Hilfe dieser Hardwarekonfiguration die spätere netzwerkspe-
zifische Anwendungssoftware auf realer Hardware mit tatsächlichen Daten bei einer hohen Taktrate 
getestet werden (vgl. Abschnitt 8.1). Schon während der Prototypenentwicklung können die Anfor-
derungen der später eingesetzten Peripheriehardware in die Verifikation des Entwurfs einbezogen 
werden. Fehler bei der Schnittstellenimplementierung können so auf ein Minimum begrenzt wer-
den. Im weiteren Verlauf der Entwicklung kann dann der standardzellenbasierte ASIC-Prototyp 
schnell in eine bereits erprobte Umgebung integriert werden [108]. Aufgrund vorbereiteter Vorla-
gen für Erweiterungsplatinen des RAPTOR2000-Systems entfallen lange Systementwicklungszei-
ten. 

5.6 Einheitliche Übersetzer-Werkzeugkette 

Für alle Simulatoren und Hardwareplattformen (Wishbone-Bus oder AMBA-basierter Cluster) steht 
eine einheitliche Übersetzer-Werkzeugkette zur Verfügung. Beim Wechsel von einer Simulations-
umgebung der abstrakteren Ebene zur hardwarenahen Simulation oder umgekehrt, oder aber auch 
bei der Erstellung der Speicherabbilder für den FPGA- oder ASIC-Prototypen muss dem Werkzeug 
nur ein anderes Zielsystem angegeben werden. Eine leichte Portierbarkeit des Quellkodes auf die 
jeweiligen Simulatoren bzw. Emulatoren ist gewährleistet. Die Kompilierung und die Erstellung der 
entsprechenden Speicherabbilder unter Berücksichtigung der jeweiligen Adressräume und der Mo-
delleigenschaften erfolgt für den Entwickler transparent.34  

Die GigaNetIC-Bibliotheksfunktionen (vgl. Anhang A) stehen bis auf einige systembedingte Aus-
nahmen35 in jeder Simulationsumgebung zur Verfügung. Bibliotheksfunktionen können sich zwar 
in ihrer Realisierung je nach Simulationsumgebung unterscheiden, die grundsätzliche Funktionalität 
wird aber eingehalten. Bei der Angabe der Zielarchitektur bzw. des Zielsimulators wählt die von 
uns gestaltete Werkzeugkette die jeweils passende Implementierung aus.  

Die einheitliche Übersetzer-Werkzeugkette wurde im Laufe des GigaNetIC-Projekts fortwährend 
optimiert und erweitert, da ein nicht unwesentlicher Anteil der Gesamtperformanz durch die Soft-

                                                 

34 Die Übersetzer-Werkzeugkette wurde in Kooperation mit den Fachgebieten Programmiersprachen und Übersetzer, 

Prof. Dr. Uwe Kastens sowie Algorithmen und Komplexität, Prof. Dr. math. Friedhelm Meyer auf der Heide entwickelt. 

35 Z. B. ist der Cluster-Simulator derzeit nicht in der Lage, Befehle für den Communication-Controller korrekt zu inter-

pretieren, da es diesen in dieser Simulationsumgebung nicht gibt. 
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ware-basierten Systementitäten geprägt werden kann. Auch die Benutzerfreundlichkeit und der 
Funktionsumfang wurden im Laufe der Entwicklung stetig vorangetrieben. Aus dem anfänglichen 
GigaMake, einem Makefile-basierten Ansatz, der die Wishbonebus- und die AMBA-Realisierung 
unterstützte entstand das umfassendere SCC-Compileskript. Es unterstützt alle Varianten und Simu-
latoren der GigaNetIC-Architektur. Aufgrund der Tatsache, dass es sich hierbei um ein skriptbasier-
tes Steuerungswerkzeug für den Prozess des Übersetzens und Erstellens der Speicherabbilder han-
delt, eignet es sich zudem hervorragend für das zuvor vorgestellte Multi-Sim-Entwurfsraum-
explorationswerkzeug, vgl. Abschnitt 5.4. Abbildung 5-9 veranschaulicht den Ablauf und stellt die 
Zielarchitekturen für den SCC-basierten Übersetzeraufruf dar. 

Abbildung 5-9: Einheitliche Übersetzerwerkzeugkette für alle  

Simulatoren und Hardwareplattformen der GigaNetIC-Architektur 

Abbildung 5-10 bildet den kommandozeilenbasierten Aufruf des SCC-Werkzeugs ab. Dem Ent-
wickler werden zahlreiche Optionen gegeben. So kann er zwischen dem GCC-Übersetzer und dem 
UPB-Compiler auswählen. Durch optionale Schalter können beim UPB-Compiler zusätzlich vor-
handene Befehlssatzerweiterungen berücksichtigt werden. 

Als Zielarchitekturen (targets) können alle vorgestellten Simulations- und Emulationsumgebungen 
ausgewählt werden. Bei Verwendung des GigaNetIC-Multiprozessorcaches können spezielle An-
weisungen mit übergeben werden. Soll ein Multiprozessorfeld simuliert werden, wird dessen Aus-
dehnung durch Angabe von Weite (width) und Höhe (height) in X- und Y-Richtung definiert. Die 
Anzahl der vorgesehenen lokalen Prozessoren bestimmt der Parameter no-pes. 
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Nach erfolgter Übersetzung werden die Speicherabbilder automatisch in einer entsprechenden Ver-
zeichnisstruktur angelegt, die sich nahtlos in die Pfade der jeweiligen Simulatoren eingliedern lässt. 
Zur detaillierten Analyse dieser Speicherabbilder können die Werkzeuge der GCC-M-Core-Binutils 
verwendet werden. 

Abbildung 5-10: Aufrufmöglichkeiten und Zielarchitekturen für das Compile-Skript SCC 

5.7 Zusammenfassung 

Im Verlauf dieser Arbeit ist nicht nur eine leistungsfähige Chip-Multiprozessor-Architektur ent-
standen, sondern außerdem eine in sich geschlossene und ineinander verzahnte Werkzeugkette: an-
gefangen beim Prozessorentwurf über die automatische Generierung des Compilers und eines C-
basierten zyklenakkuraten Instruktionssatzsimulators bis hin zu rückannotierten RTL(Register 
Transfer Level)-Beschreibungen. Letztere liefern detaillierte Informationen über Leistungsaufnah-
me, Flächenbedarf und Leistungsfähigkeit der integrierten Schaltung und geben Impulse für In-
struktionssatzerweiterungen und Hardwarebeschleuniger sowie für Systemoptimierungen allgemei-
ner Natur. 

Die einheitliche GigaNetIC-Übersetzer-Werkzeugkette ermöglicht einen reibungslosen Übergang 
zwischen den einzelnen Plattformen und garantiert ein funktional gleiches Verhalten des GigaNet-
IC-Systems in allen Simulatoren. Etwaige irrelevante Unterschiede der einzelnen Plattformen blei-
ben für den Systementwickler transparent. 

Durch die in sich geschlossene Entwicklungsumgebung mit ihren an die jeweiligen Erfordernisse 
angepassten Simulatoren ermöglicht die GigaNetIC-Architektur schnelle Hard- und Software-
Entwicklungszyklen, einhergehend mit umfangreichem Verifikationsmöglichkeiten, so dass kurze 
Time-to-Market-Spannen für die zu realisierenden Multiprozessorsysteme garantiert werden kön-
nen. Durch den im Folgenden vorgestellten hierarchisch gerichteten Optimierungsansatz schließt 
sich die Werkzeugkette und ermöglicht dem Softwareentwickler sowie dem Systemarchitekten eine 
anwendungsspezifische Anpassung und Optimierung der einzelnen Komponenten, so dass die Res-
sourceneffizienz des Chip-Multiprozessors im Bezug auf die jeweiligen Anforderungen und Rand-
bedingungen und Schranken ggf. noch gesteigert werden kann. 
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6 Optimierung der Multiprozessorarchitektur 
Bei der GigaNetIC-Architektur handelt es sich zunächst um eine universell einsetzbare Multipro-
zessorarchitektur, die durch zahlreiche Mechanismen auf die unterschiedlichsten Anwendungsge-
biete angepasst bzw. optimiert werden kann. Um dies für den Softwareentwickler und den Hardwa-
rearchitekten so effizient wie möglich zu gestalten, wurde für die GigaNetIC-Architektur darüber 
hinaus die Methodik der hierarchisch gerichteten Optimierung entwickelt und eine entsprechende 
Werkzeugkette erstellt. Die entworfene Methodik und exemplarische Analysen der jeweiligen Op-
timierungsansätze werden im Folgenden präsentiert. 

6.1 Optimierungsmethodik 

Prinzipiell ist zwischen der Hardware- und der Software-Optimierung zu unterscheiden, wobei sich 
zum Teil beides gegenseitig bedingt. Die GigaNetIC-Entwicklungsumgebung kann bei der Hardwa-
re-Optimierung nur greifen, falls noch eine Veränderungsmöglichkeit besteht, also im Falle einer 
FPGA-Zieltechnologie oder falls das Tapeout, d. h. die finale Fertigstellung des standardzellenba-
sierten ASICs, noch aussteht. Sollte letzteres bereits geschehen sein, lassen sich Hardwarebeschleu-
niger zur Beschleunigung des GigaNetIC-Systems nur noch extern, z. B. über nach außen geführte 
Switch-Box-Ports anschließen. Die Software lässt sich dagegen auch nach Fertigstellung des Chips 
ändern und ggf. optimieren, da es sich beim Instruktionsspeicher der Verarbeitungseinheiten in je-
dem Fall um wiederbeschreibbaren Speicher handelt. 

Abbildung 6-1: Entwurfsraumexploration – hierarchisch gerichteter Optimierungsansatz 

Abbildung 6-1 zeigt die potentiellen Ansatzpunkte der Systemoptimierung und den gerichteten Ab-
lauf, in dessen Verlauf der Entwurfsaufwand, die benötigte Fläche, aber auch die erzielte Beschleu-
nigung deutlich zunehmen. 
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Die Maßnahmen zur Optimierung der Hardware der GigaNetIC-Architektur setzen auf Prozessor-
ebene an, indem zusätzlich benötigte Einheiten, wie z. B. Interruptcontroller etc. (vgl. Abschnitt 
4.3.2) in das Prozessorsubsystem eingefügt werden, um so die Systemleistung zu erhöhen bzw. an-
wendungsspezifische Anforderungen zu erfüllen. Der nächste Schritt ist die Optimierung des Pro-
zessorkerns selbst, durch Erweiterung des Instruktionssatzes oder architekturelle Erweiterungen. 
Darüber hinaus kann der Einsatz von eng an den Prozessor gekoppelten Hardwarebeschleunigern 
erfolgen, entweder direkt über die Coprozessorschnittstelle des Prozessors und angesteuert über 
spezielle Befehle, oder aber ins Prozessorsubsystem integriert über den eigens erweiterten Prozes-
sorsystembus (vgl. Abschnitt 4.3). Erste Optimierungen des Prozessors wurden bereits in [108] 
durchgeführt, was jedoch noch ohne die heutige Entwicklungsumgebung vonstatten gehen musste 
und sich so deutlich aufwändiger gestaltete.  

Eine weitere Steigerung der Beschleunigung bieten in der Regel lose gekoppelte Hardwarebe-
schleuniger, die ggf. auch bei einer deutlich höheren Taktfrequenz arbeiten können als der Prozes-
sorkern. Während eng-gekoppelte Hardwarebeschleuniger von der CPU angesteuert werden, über-
nehmen die lose gekoppelten Hardwarebeschleuniger unabhängig vom Prozessor eine Datenvor-
verarbeitung bzw. Nachbearbeitung und können mit Hilfe des bereits vorgestellten Communication-
Controllers (vgl. Abschnitt 4.2.1.1) an einen beliebigen Port einer Switch-Box im SoC angeschlos-
sen werden.  

Letztendlich eröffnet sich dem Entwickler die Option des Einsatzes mehrerer Prozessoren bzw. pa-
ralleler Prozessorfelder zur Bearbeitung der Algorithmen. Dies erfordert in Abhängigkeit vom An-
wendungsfall sowohl großen Aufwand auf Seiten der Software als auch den entsprechenden Auf-
wand an Chipfläche.  

Die Werkzeugkette hilft dem Entwickler bereits in der Anfangsphase des Hardwareentwurfs bei der 
Abschätzung der zur Erfüllung der Spezifikation notwendigen Maßnahmen. So unterstützt sie bei 
der Entscheidung auf welcher Ebene der Optimierung angesetzt werden muss, um eine möglichst 
ressourceneffiziente Realisierung zu erzielen. Dies kann bereits mit Hilfe der sehr schnellen, auf 
abstrakterer Ebene arbeitenden Umgebungen wie dem Cluster-Simulator oder der SiMPLE-
SystemC-Simulationsumgebung geschehen, vgl. Abschnitte 5.1 und 5.2. 

Analysen im Bereich von Netzwerkanwendungen haben gezeigt, dass häufig eine ausgewogene Mi-
schung all dieser Möglichkeiten den besten Kompromiss im Hinblick auf Ressourceneffizienz nach 
Definition 14 bietet [111][141][130][118][109][131], vgl. auch Kapitel 7. Die einfache Skalierbar-
keit des GigaNetIC-Systems erweist sich hier ebenfalls als besonders förderlich, da sich für viele 
Anwendungen die Parallelisierbarkeit anbietet, und man deshalb gleichförmige Strukturen relativ 
gut einsetzen kann.  

Der hierarchische Ansatz erweist sich als besonders vorteilhaft, wenn es darum geht, die bestehende 
Grundstruktur des GigaNetIC-Systems mit möglichst geringem Aufwand so zu erweitern, dass die 
vorgegebene Spezifikation erfüllt werden kann. Nachteilig an einem solch „maßgeschneiderten“ 
Chip ist allerdings die relativ aufwändige Analysephase, die sich ohne geeignete Entwicklungsum-
gebung als große Herausforderung gestalten kann. Bei der GigaNetIC-Architektur wird durch die 
Multi-Sim-Werkzeugkette und die leistungsfähigen Simulatoren (vgl. Kapitel 5) eine automatisierte 
und schnelle Durchführung dieser Analysen in vertretbarer Zeit ermöglicht. In Kapitel 7 werden 
Ergebnisse des Ansatzes der hierarchisch gerichteten Optimierung am Beispiel von dedizierten 
Netzwerkanwendungen dargestellt. 
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Abbildung 6-2: Anwendungsorientierte Realisierung und Optimierung der GigaNetIC-Architektur  

Abbildung 6-2 zeigt das Vorgehen bei der anwendungsorientierten Realisierung und Optimierung 
der GigaNetIC-Architektur. Steht das Anwendungszenario für den zu realisierenden Chip fest, wer-
den dadurch die anzuwendenden Algorithmen spezifiziert. Für die Hardware werden Randbedin-
gungen aufgestellt und damit die möglichen Ressourcen festgelegt. Bei der Implementierung wird 
zunächst auf die bestehenden IP-Blöcke der GigaNetIC-Architektur zurückgegriffen und unter 
Verwendung der Standardhardware und einer ersten lauffähigen Software das Laufzeitverhalten mit 
Hilfe der in Kapitel 5 vorgestellten Simulationsumgebungen analysiert. Je nach Art der Randbedin-
gungen und Analyseergebnisse erfolgen dann die weiteren Schritte. Hierunter fallen die iterative 
Optimierung von Soft- und/oder Hardware entsprechend dem oben vorgestellten Modell mit ein-
hergehenden Simulationsläufen. Der Erfolg bei der Softwareoptimierung ist durch die schnellen 
Simulatoren auf abstrakterer Modellierungsebene besonders zeitnah erkennbar. Bei Modifikationen 
auf Hardwareseite hingegen fallen abschließend zwangsläufig die zeitintensiveren Simulationsläufe 
in der detaillierten hardwarenahen Simulationsumgebung an.  

Abbildung 6-3 stellt Entwurfsschritte und Methoden der Verlustleistungsanalyse und Optimierung, 
die während der Realisierung eines ASIC-Entwurfs durchlaufen werden, dar und zeigt den zu er-
wartenden Einfluss der jeweiligen Optimierungsmaßnahmen auf die Reduktion der Verlustleistung 
auf. Ein guter Systementwurf hat den größten Einfluss auf die Optimierung der Leistungsaufnahme 
heutiger ASICs, deshalb wurde bei der Entwicklung der GigaNetIC-Entwicklungsumgebung gestei-
gerter Wert auf geeignete Simulations- und Analysemethoden für diesen Entwurfsschritt gelegt, vgl. 
Kapitel 5 [116][102][103][117][104][115][113]. Die hierdurch erzielten Reduktionen können im 
Folgenden durch den sich anschließenden RTL-Entwurf und dessen Optimierungspotential verbes-
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sert werden. Allerdings sind die Resultate auf dieser Ebene, absolut gesehen, bereits deutlich gerin-
ger, aber dennoch nennenswert. Hier greifen die erweiterte PERFMON und Multi-Sim-Umgebung, 
vgl. Abschnitte 5.3 und 5.4, sowie die Werkzeugkette zur Instruktionssatzerweiterung des Prozes-
sorkerns der GigaNetIC-Architektur [112][111][131][113]. Diese setzt sich deshalb aus zwei aufei-
nander abgestimmten Stufen zusammen, die im folgenden Abschnitt näher erläutert werden. Die 
weiteren Schritte versprechen ebenfalls Optimierungspotential, das allerdings im Allgemeinen deut-
lich geringer ausfällt als das der bereits genannten Entwurfsschritte. Aufgrund dieser Tatsache wer-
den die Folgeschritte in dieser Arbeit nur am Rande erwähnt und das Hauptaugenmerk auf die we-
sentlichen Einflussquellen gesetzt. 

Abbildung 6-3: Entwurfsschritte und Methoden der Verlustleistungsanalyse und Optimierung 

6.2 Optimierung auf Prozessorebene 

Um den immer höher werdenden Anforderungen, die an heutige und zukünftige eingebettete Sys-
teme gestellt werden, gerecht werden zu können, sind viele Prozessoranbieter bzw. Anbieter von 
Übersetzerwerkzeugketten mit angeschlossenem Generator einer synthetisierbaren Architekturbe-
schreibung dazu übergegangen, dem Kunden Möglichkeiten an die Hand zu geben, den einzuset-
zenden Prozessor auf das zukünftige Anwendungsgebiet hin kundenspezifisch zu optimieren. Auch 
die GigaNetIC-Architektur bietet dem Systemarchitekten umfangreiche Möglichkeiten zur anwen-
dungsspezifischen Optimierung des Befehlssatzes des N-Core-Prozessorkerns.  

In Tabelle 6-1 wird ein Überblick über einige der derzeit verfügbaren Ansätze und deren Merkmale 
in Bezug auf Umfang und Gestalt der Entwicklungswerkzeuge gegeben. So sind sowohl Ansätze 
vertreten, die auf Beschreibungssprachen wie Lisa von CoWare basieren, die mit der CoWare-
Processor-Designer-Werkzeugkette in Hardware umgesetzt werden kann [155]. Bei nML, der Rea-
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lisierung von Target Compiler Technologies [156], steht die Chess/Checkers-Entwicklungs-
umgebung zur Verfügung. Ein ähnlicher Ansatz wird mit der abstrakten Spezifikationssprache 
UPSLA (Unified Processor Specification Language) [135] bei der GigaNetIC-Architektur verfolgt. 
ARC [70] hingegen verwendet mit dem ARChitect Processor Configurator eine graphische Ober-
fläche zur Konfiguration seiner anwendungsspezifischen Prozessorkerne, wobei ggf. weniger 
komplexe Mechanismen angewendet werden können, als es durch den Einsatz von Beschreibungs-
sprachen möglich wäre. Tensilica [157] erlaubt die Beschreibung des Prozessormodells in C/C++ 
und stellt zur Umwandlung in Hardware den XPRES (Xtensa PRocessor Extension Synthesis) Com-
piler für automatisch generierte Prozessoren zur Verfügung, der eine besonders schnelle Umsetzung 
der Beschreibung in Hardware gewährleisten soll. Die Prozessormodelle sind kundenspezifische 
Architekturen, wobei bei ARC die ARC-Architektur als Ausgangspunkt dient und Tensilica den 
Xtensa-Prozessorkern verwendet. Alle Entwicklungsumgebungen bieten eine automatisierte Gene-
rierung von Compiler und zugehörigen Instruktionssatz-Simulator, wobei die Simulation bei eben-
falls allen Ansätzen zyklengenau ausfällt. Bei allen Vergleichsansätzen erfolgt zu dem eine Gene-
rierung der spezifizierten Hardware. Dies ist bei der GigaNetIC-Architektur zwar vorgesehen und 
wird im Rahmen aktueller Forschungsprojekte der Universität Paderborn weiter vorangetrieben, ist 
allerdings noch nicht vergleichbar mit der Leistungsfähigkeit der anderen Ansätze. Deshalb bauen 
derzeit alle Befehlssatzerweiterungen der GigaNetIC-Architektur auf dem bewährten, relativ ein-
fach gehaltenen N-Core-Prozessorkern auf, um so nicht stetig vollkommen neue Prozessorstruktu-
ren entwerfen und optimieren zu müssen. Nur insgesamt drei der verglichenen Ansätze erlauben 
den iterativen Prozess der Erweiterung des bestehenden Befehlssatzes, wie es auch durch die Giga-
NetIC-Werkzeugkette der Fall ist. 

Tabelle 6-1: Vergleich ausgewählter Werkzeugketten zur Optimierung konfigurierbarer Prozessorkerne 

Der im Verlauf des GigaNetIC-Projekts entwickelte, zweistufige Entwurfsprozess zur anwendungs-
spezifischen Systemoptimierung auf Prozessorebene durch Instruktionssatzerweiterung (auch In-
struction Set Extension, bzw. ISE) wird in den folgenden Abschnitten näher erläutert, er teilt sich in 
einen compilerbasierten und einen sich anschließenden hardwarebasierten Schritt auf. 

6.2.1 Compilerbasierter Entwurfsprozess zur Prozessoroptimierung 

Der compilerbasierte Entwurfsprozess ermöglicht eine Exploration des Entwurfsraums in zweierlei 
Hinsicht: Zum einen erlaubt er eine sehr schnelle Suche von vielversprechenden Instruktionssatz-
erweiterungen auf Prozessorebene. Zum anderen ist es möglich, unterschiedliche Compiler mit un-
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terschiedlichen Optimierungsmethoden und Registerzuweisungsmechanismen zu evaluieren.36 Die-
sem Teil des Entwurfsprozesses schließt sich der in Abschnitt 6.2.2 vorgestellte hardwarebasierte 
Entwurfsprozess nahtlos an. 

Zur Evaluierung des Entwurfsraums auf Prozessorebene werden zunächst die Ressourcen des Pro-
zessors abstrakt in der Beschreibungssprache UPSLA (Unified Processor Specification Language) 
[135] spezifiziert. Dies sind im Einzelnen: Art und Anzahl der Register, Funktionseinheiten, In-
struktionen, prozessorinterne Parallelität und Verbindungsstrukturen. Im Anschluss wird mit Hilfe 
dieser Spezifikation automatisch ein Compiler nebst hoch-performantem, zyklenakkuratem Simula-
tor (vgl. Abschnitt 5.1) generiert. Abbildung 6-4 zeigt den Ablauf und die wesentlichen Einflussfak-
toren der compilerbasierten Werkzeugkette.  

Abbildung 6-4: Schritt 1 des zweistufigen Optimierungsprozesses, compilerbasierter Entwurfsprozess 

Der compilerbasierte Entwurfsschritt lässt sich äußerst schnell37, mit veränderten Ressourcen des 
Prozessors wiederholen, so dass in kurzer Zeit eine Vielzahl von Möglichkeiten untersucht werden 
kann. In unserer Werkzeugkette werden die Befehlssatzerweiterungen für den Anwender transpa-
rent vom Compiler ausgenutzt. Die zukünftigen, in der Hochsprache C vorliegenden Anwendungen 
werden zunächst nach der Erzeugung des Compilers kompiliert und mit dem korrespondierenden 
Simulator ausgeführt. Während der Ausführung werden alle relevanten, laufzeitabhängigen Daten 
vom Simulator in entsprechende Statistiken übertragen, die im Anschluss mit dem leistungsfähigen 

                                                 

36 Dieser Teil des Entwurfsprozesses wurde vom Fachgebiet Programmiersprachen und Übersetzer von Herrn Prof. Dr. 

Uwe Kastens der Universität Paderborn entwickelt. 

37 Die Spezifikation und die Umsetzung der unter Abschnitt 6.2.3 vorgestellten Befehlssatzerweiterungen beanspruchen 

zusammen mit der Realisierung der neuen Compiler-Simulator-Werkzeugkette pro Befehl ca. zehn Minuten. 
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Profilierungswerkzeug jScore u. a. auf oft wiederkehrende, datenabhängige Befehlspaare bzw. 
-tripel untersucht werden können [112][6]. Die Befehlspaare mit dem höchsten Beschleunigungs-
potential werden anschließend zu so genannten „Superinstruktionen“38 zusammengefasst und für 
die Realisierung in Hardware vorgeschlagen [111]. Weitere Details zur Compiler-Werkzeugkette 
sind u. a. [135][112][6] zu entnehmen.  

Abschließend ist festzuhalten, dass der compilerbasierte Entwurfsschritt somit eine Leistungsab-
schätzung des späteren Prozessors in Kombination mit dem jeweiligen Compiler ermöglicht. Die 
Möglichkeit der Veränderung und Eruierung unterschiedlicher Compilervarianten im Zusammen-
spiel mit der jeweiligen Prozessorarchitektur stellt einen großen Vorteil bzgl. des zu erwartenden 
Resultats dar. Würde nur eine der beiden Optimierungsmöglichkeiten ausgeschöpft, so könnten we-
sentliche Aspekte aus Sicht der Softwareoptimierung nicht betrachtet werden. Aufgrund des schal-
tungstechnischen Hintergrundes dieser Arbeit beziehen sich allerdings die weiteren Analysen auf 
den zweiten Schritt der Optimierung auf Prozessorebene, den hardwarebasierten Entwurfsprozess, 
dessen prinzipieller Ablauf im folgenden Abschnitt näher erläutert wird. 

6.2.2 Hardwarebasierter Entwurfsprozess zur Prozessoroptimierung 

Der hardwarebasierte Entwurfsprozess schließt sich dem compilerbasierten Entwurfsprozess an. Die 
zuvor durch den ersten Schritt der GigaNetIC-Prozessoroptimierung spezifizierten Instruktionssatz-
erweiterungen werden bei dem Folgeschritt auf die Möglichkeit einer ressourceneffizienten Hard-
wareimplementierung in den bestehenden Prozessorkern überprüft. Die Implementierung in Hard-
ware und die sich anschließenden Analysen benötigen einen deutlich höheren Zeitaufwand als der 
übersetzerbasierte Entwurfsprozess39. Der erweiterte Prozessorkern wird im Anschluss in der Ana-
lyseumgebung PERFMON (vgl. Abschnitt 5.3) detailliert untersucht [116][111].  

Tabelle 6-2: Freie Opcodebereiche des S-Cores 

freie Opcodes min max #Stellen 

0000 0000 0000 0111 1 1 0 
0000 0000 0000 11xx 1 4 2 
0000 0000 0010 xxxx 1 16 4 
0000 10xx xxxx xxxx 1 1024 10 
0010 1100 001x xxxx 1 32 5 
0010 1100 01xx xxxx 1 64 6 
0011 0010 0000 xxxx 1 16 4 
0011 0010 001x xxxx 1 32 5 
0011 0010 010x xxxx 1 32 5 
0011 0010 0110 xxxx 1 16 4 
010x xxxx xxxx xxxx 1 8192 13 
0110 1xxx xxxx xxxx 1 2048 11 

Total 12 11477 69 

Der den Optimierungen zugrundeliegende S-Core-Prozessorkern (vgl. Abschnitt 4.3.1) lässt durch 
seine unbenutzten Opcodebereiche maximal 11.477 zusätzliche einfache Instruktionen ohne Para-

                                                 

38 Hierunter wird die Realisierung einer effizienteren, bisher nicht verfügbaren Einzelinstruktion basierend auf der 

Funktionalität mehrerer, bisher einzeln aufzurufenden Instruktionen verstanden. 

39 Die aufzuwendende Zeit bei einem erfahrenen Entwickler beläuft sich auf einige Stunden bis hin zu mehreren Tagen 

oder Wochen, je nach Komplexität und Art der Instruktionssatzerweiterung. 
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meterkodierung zu. Tabelle 6-2 gibt einen Überblick über die verfügbaren Bitkombinationen der 
noch verfügbaren Befehlsworte (verfügbare Bitpositionen sind mit „x“ gekennzeichnet). „min“ gibt 
die möglichen, komplexen, parameterbehafteten Befehlsworte und „max“ die Anzahl einfacher Be-
fehle, die in dem aufgeführten Bereich realisierbar sind, an. „#Stellen“ beziffert die aufeinanderfol-
genden verfügbaren Binärstellen, die ggf. zur Parameterübergabe des Befehlswortes genutzt werden 
können. Eine detaillierte Auflistung aller Befehle des S-Cores und deren Aufbau werden in Anhang 
D dokumentiert. 

Abbildung 6-5: Schritt 2 des zweistufigen Optimierungsprozesses, hardwarebezogener Entwurfsprozess 

Abbildung 6-5 zeigt die prinzipielle Vorgehensweise des hardwarebasierten Entwurfsprozesses zur 
Prozessoroptimierung. Zunächst müssen die neuen, abstrakt spezifizierten Veränderungen der be-
stehenden Prozessorbeschreibung in eine entsprechende Hardwarebeschreibung umgesetzt werden. 
Dies kann sich z. B. auf die Register, Funktionseinheiten, Instruktionen, und prozessorinterne Ver-
bindungsstrukturen auswirken. Die um die neue Superinstruktion erweiterte Hardwarebeschreibung 
des Prozessors wird dann in die bestehende Simulationsumgebung integriert. Da sich im Allgemei-
nen die äußeren Schnittstellen des Prozessors bei einer solchen Erweiterung nicht verändern, ist der 
sich hieraus ergebende Aufwand zu vernachlässigen. Zur Simulation werden die gleichen Software-
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quellen mit Hilfe des generierten Compilers übersetzt und das entsprechende Speicherabbild in den 
Speicher des Simulationsmodells geladen. Anschließend wird der ggf. instrumentierte Code (vgl. 
Abschnitt 5.3) auf dem erweiterten Prozessor abgearbeitet und durch die Werkzeugkette analysiert.  

Die Synthese auf Standardzellen liefert u. a. wichtige Informationen über den kritischen Pfad und 
den Flächenbedarf des neuen Prozessorkerns. Es ist darauf zu achten, dass der kritische Pfad der 
Logik möglichst nicht verlängert wird, da es sonst zu einer Herabsetzung der Gesamtperformanz 
des Prozessors käme, und die Leistungsfähigkeit ggf. sogar durch die implementierte Befehlssatz-
erweiterung insgesamt reduziert würde. Anhand der Annotierung der Schaltaktivitäten bei der 
Abarbeitung des Anwendungsprogramms können im Folgenden detaillierte Aussagen über die Ver-
änderung der Leistungsaufnahme und den resultierenden Energiebedarf der Schaltung getroffen 
werden.  

Sollte das erzielte Ergebnis nicht zufriedenstellend sein, würde eine erneute Iteration mit Verfeine-
rung / Optimierung des VHDL-Entwurfs notwendig. Zeigt sich, dass durch die ausgewählte Instruk-
tionssatzerweiterung ein zu langer kritischer Pfad entsteht, der nicht durch Optimierung beseitigt 
werden kann, und alternative Instruktionssatzerweiterungen ebenfalls nicht genügend Leistungszu-
wachs versprechen, so ist zu überlegen, ob ein leistungsfähigerer Hardwarebeschleuniger für diese 
Aufgabe implementiert bzw. eingesetzt werden muss. Die Analyse und Charakterisierung von an-
wendungsspezifischen Hardwareblöcken wird ebenfalls von der Werkzeugkette unterstützt, siehe 
auch Kapitel 5. Detaillierte Ergebnisse zu diesen Untersuchungen werden exemplarisch im Ab-
schnitt 6.3 und Kapitel 7 vorgestellt. 

Im Allgemeinen profitieren vornehmlich verwandte Anwendungsklassen von einer Superinstrukti-
on, so dass nicht grundsätzlich mit einer universellen Beschleunigung für alle Algorithmen zu rech-
nen ist. Deshalb sollte, wenn möglich, vor der Realisierung des Systems, mit Hilfe der zur Verfü-
gung gestellten Simulations- und Analyseumgebungen der Prozessorkern auf vielversprechende 
Instruktionssatzerweiterungen für den zukünftigen Einsatzzweck untersucht und ggf. erweitert wer-
den.  

Im Folgenden werden an einem Beispiel die Möglichkeiten dieser Optimierungsmethode auf der 
untersten Hierarchieebene der GigaNetIC-Architektur aufgezeigt. Es wird deutlich, dass bei einem 
sehr geringen Mehraufwand an Fläche deutliche Geschwindigkeitszuwächse zu erzielen sind.  

6.2.3 Optimierungspotential von Befehlssatzerweiterungen – ein Beispiel 

Am Beispiel einer zuvor durch den compilerbasierten Entwurfsablauf ermittelten, für die IP-
Sec(Internet-Protocol-Security)-Protokollsammlung [158] vielversprechenden Superinstruktion 
werden im Folgenden exemplarisch die Vorgehensweise und die aus der Instruktionssatzerweite-
rung resultierenden Verbesserungen vorgestellt.  

IPSec ist eine Reihe von Protokollen, die die Internet-Protokoll(IP)-basierte Kommunikation mit 
zusätzlichen Sicherheitsmerkmalen ausstatten. Es sind u. a. Authentifizierungs- wie auch Ver-
schlüsselungsverfahren integriert, die auf den einzelnen IP-Paketen angewendet werden. Dies ge-
schieht im Gegensatz zu anderen IP-Sicherheitsprotokollen bereits auf der OSI-Schicht 3, was die 
Flexibilität erhöht, da u. a. sowohl TCP- als auch UDP-basierte Protokolle der vierten OSI-Schicht 
geschützt werden können. Dies geht allerdings mit einer erhöhten Komplexität und größerem Re-
chenleistungsbedarf einher. Aufgrund der in der Spezifikation vorgesehenen Erweiterungsoptionen 
dieses Standards sind Leistungsfähigkeit und Flexibilität gleichermaßen wichtig für eine effiziente 
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Verarbeitung. Aus diesem Grund sind besonders Universalprozessorelemente im Hinblick auf diese 
Protokollkategorie untersuchenswert. 

In [112] wird u. a. die Compiler-seitige Auswahl von vielversprechenden Instruktionssatzerweite-
rungen für IPSec vorgestellt. Eine dieser Superinstruktionen ist der Befehl XORLDW, der die bei-
den Einzeloperationen LDW und XOR des Originalprozessorkerns zusammenfasst. D. h. es wird ein 
Wort aus dem Speicher geladen und direkt im Anschluss eine XOR-Verknüpfung mit einem weite-
ren Registerinhalt durchgeführt. Dieses Operationspaar konnte mit Hilfe der übersetzerbasierten 
Werkzeugkette als besonders vielversprechend für Prüfsummen- und Verschlüsselungsverfahren 
klassifiziert werden, vgl. Abbildung 6-6. 

Abbildung 6-6: Analyseergebnisse der IPSec-Protokollfunktion 3DES in Bezug auf vielversprechende  

Superinstruktionen, mit dem LDW-XOR-Paar als Favoriten 

Die schaltungstechnische Realisierung und Analyse dieser „Superinstruktion“ wird in [111] be-
schrieben. Zur Verwirklichung der Funktionalität waren in diesem Fall lediglich zusätzliche Kont-
rollstrukturen im Instruktionsdekoder des N-Cores einzufügen, da die benötigte Logik bereits im S-
Core vorhanden war. Durch diese Superinstruktion kann eine Beschleunigung von ca. 10% bei Ver-
schlüsselungsverfahren [111] und von ca. 25% bei Prüfsummenbildungen, wie z. B. beim CRC 
(Cyclic Redundancy Check) [130], erzielt werden. Abbildung 6-7 zeigt die Gesamtzahl der benötig-
ten Zyklen für die Abarbeitung der 3DES-Verschlüsselungsfunktion40 unter Verwendung des beste-
henden Befehlssatzes, und alternativ dazu, mit der XORLDW-Superinstruktion, nebst den Häufig-

                                                 

40 Der 3DES(Data Encryption Standard)-Algorithmus hat mit 168 Bit eine dreimal größere Schlüssellänge als der urs-

prüngliche DES mit 56 Bit. DES und 3DES werden derzeit neben AES (Advanced Encryption Standard) in vielen si-

cherheits-relevanten Anwendungen zur Verschlüsselung eingesetzt. 
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keiten der Einzeloperationen. 3DES findet z. B. bei IP-Security-Protokollen Verwendung41. Hierbei 
ist ein merklicher Rückgang der benötigten Zyklen zur Abarbeitung des Programms mit 9% zu be-
ziffern. Bezogen auf die Gesamtfläche des Prozessorkerns beschränkt sich die zusätzlich benötigte 
Fläche zur Realisierung dieses Superbefehls auf 0,3 % bei 130-nm-Standardzellentechnologie bzw. 
0,8 % bei 90-nm-Standardzellentechnologie, vgl. Abbildung 6-9.  

Abbildung 6-7: Zyklenanzahl des 3DES-Algorithmus im IPSec-Protokoll  

vor und nach der XORLDW-Befehlssatzerweiterung 

In Abbildung 6-8 wird die Reduzierung des Energiebedarfs beider Prozessordesigns verdeutlicht. 
Betrachtet man zunächst einen Mikrobenchmark, bei dem nur die Leistungsfähigkeit der Superin-
struktion gegenüber den ursprünglichen Einzeloperationen verglichen wird, so zeigt sich bei einer 
Laufzeitverkürzung von 33,3 % eine Energieersparnis42 von 20,7 %. Beim 3DES-Algorithmus las-
sen sich durch die Hinzunahme dieses einen Spezialbefehls neben der Laufzeitverkürzung um 9 % 
nahezu 9% an Energie einsparen.  

Abbildung 6-8: Energiebedarf des ursprünglichen S-Cores verglichen mit dem um die XORLDW-

Superinstruktion erweiterten N-Core in Bezug auf zwei Benchmarkszenarien 

Ein weiterer positiver Nebeneffekt dieser Instruktionssatzerweiterung ist die Reduktion der Code-
größe um 6% für die 3DES-Anwendung. Waren es beim S-Core noch 5924 Bytes, so werden beim 
XORLDW-erweiterten N-Core nur noch 5572 Bytes an Instruktionsspeicher benötigt. Die eingespar-
ten 352 Bytes On-Chip-SRAM entsprechen einer Fläche von ca. 9240µm², was wiederum dem 75-
fachen der Fläche für die Realisierung des Superbefehls (bezogen auf die 130-nm-Technologie) 
entspricht. 

8 KB SRAM (0,21mm²) nehmen ca. 11,1 mW bei 250MHz auf, was in etwa vergleichbar mit der 
Leistungsaufnahme des N-Cores ist, so dass auch hier bei Einsparung von Instruktionsspeicher bzw. 

                                                 

41 Das dem Benchmark zugrundeliegende Verkehrsmodell der IP-Pakete entspricht dem iMIX. 

42 Die Ergebnisse basieren auf der genauen Leistungsaufnahmeanalyse mittels Schaltaktivitätenannotation, wie sie in 

Abschnitt 5.3 vorgestellt wurde. 
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bei Reduktion der Anzahl der Speicherzugriffe die Ressourceneffizienz des Systems zusätzlich er-
höht werden kann. 

6.2.4 Implementierte anwendungsspezifische Instruktionen 

Im Rahmen der durchgeführten Instruktionssatzanalysen bzgl. der vorgestellten Netzwerkanwen-
dungen wurden weitere Superinstruktionen für den N-Core realisiert. Dies betrifft neben der bereits 
detailliert beschriebenen XORLDW-Superinstruktion die Befehlssatzerweiterungen LDWXORLSL8, 
ANDSHR, [ORSHL8, ORSHL16, ORSHL24], LDWADDI, IXWANDSHR und LDWIXW, die eben-
falls aus [112] hervorgegangen sind und ursprünglich speziell für IPSec-Protokolle vorgesehen 
waren. Die jeweiligen Funktionsweisen der einzelnen Operationen werden in Anhang D erläutert. 
Zusätzlich sei auf die detaillierte Kommentierung der VHDL-Beschreibung verwiesen. Die Namen 
der Befehle wurden so gewählt, dass sie bereits einen ersten Eindruck von der jeweiligen Funktion 
geben. Die Auswertung der Performanzsteigerung durch diese zusätzlichen Instruktionen für An-
wendungen aus dem Netzwerkbereich erfolgt in Kapitel 7. 

Abbildung 6-9: Gegenüberstellung des Flächenbedarfs in [mm²] von S-Core vs. N-Core in 130- und 90-nm-

Standardzellentechnologie sowie für Prozessorvarianten einzelner Befehlssatzerweiterungen 

Abbildung 6-9 liefert eine Gegenüberstellung des Flächenbedarfs von S-Core vs. N-Core (7+: um-
fasst die vorgestellten sieben Superinstruktionen) in 130- und 90-nm-Standardzellentechnologie 
sowie Werte für die Realisierungen der einzelnen Befehlssatzerweiterungen. Bei der Realisierung 
wurde sichergestellt, dass der kritische Pfad des Originalprozessorkerns nicht durch die jeweiligen 
Erweiterungen vergrößert wurde. Interessant ist die Tatsache, dass bei der 130-nm-Realisierung die 
LDWIXW-Variante und bei der 90-nm-Technologie die LDWADDI-Implementierung geringfügig 
kleiner als der unveränderte S-Core sind. Dies liegt in dem heuristischen Vorgehen des Synthese-
werkzeugs begründet. Aufgrund der veränderten Struktur des Prozessorkerns schlägt der Synopsys-
Design-Compiler eine teilweise vollkommen andere Struktur für einige Bereiche des Prozessors 

0,1213

0,1223

0,1227

0,1252

0,1223

0,1243

0,1315

0,1623

0,1593

0,1604

0,1615

0,1173

0,1360

0,1580

0,1585

0,1587

0,1585

0,1561

0,00 0,02 0,04 0,06 0,08 0,10 0,12 0,14 0,16 0,18

S-Core

N-Core

xorldw

ldwxorlsl8

andshr

orshl

ldwaddi

ixwandshr

ldwixw

P
ro

ze
ss

or
va

ria
nt

e

Core-Fläche 90 nm Core-Fläche 130 nm

mm²



6.3 Optimierung: Hardwarebeschleuniger auf Cluster- und SoC-Ebene 

 

149

vor, die dennoch die erforderliche Taktfrequenz von 257 MHz für 130 nm bzw. 270 MHz für 90 nm 
erfüllt. Aufgrund der unterschiedlichen Herangehensweise des Synthesewerkzeugs kann es so zu 
diesen Flächenunterschieden im einstelligen Prozentbereich kommen. Der prozentuale Flächenzu-
wachs für alle Instruktionssatzerweiterungen beträgt für die 90-nm-Technologie 12,1 % bzw. ledig-
lich 2,7 % für die 130-nm-Technologie verglichen mit dem Original-S-Core. 

Für die 130-nm-Standardzellentechnologie wurde für den um die genannten Superinstruktionen er-
weiterten N-Core exemplarisch eine Synthese mit anschließender Platzierung und Verdrahtung der 
erforderlichen Standardzellen sowie der notwendigen, vom Platzierungswerkzeug eingefügten Fil-
ler Cells, durchgeführt. 

Abbildung 6-10: Größenzuwachs des Prozessors durch die sieben zusätzlichen Instruktionen für eine 130nm-

Standardzellentechnologie (Darstellung beruht auf dem erzeugten GDS-II-Plot43) 

Abbildung 6-10 zeigt einen Größenzuwachs von 2,7% des Prozessors bei Hinzunahme der sieben 
vorgestellten Instruktionssatzerweiterungen. Dies bedeutet durchschnittlich 0,39% Flächenzuwachs 
pro Superinstruktion. Der hier implementierte, N-Core-Prozessorkern besitzt eine Kantenlänge von 
0,457 mm und eine Gesamtfläche von 0,209 mm² in der verwendeten 130-nm-Standardzellen-
technologie.  

Sollte ein anderer Prozessorkern als der N-Core als IP-Block zur Verfügung stehen und für das ent-
sprechende Anwendungsgebiet deutlich leistungsfähiger sein, kann dieser aufgrund der offenen 
Schnittstellen und der Parametrisierbarkeit der GigaNetIC-Architektur ebenfalls leicht in das Sys-
tem integriert werden. Für besonders rechenintensive Aufgaben reichen Instruktionssatzerweiterun-
gen allein meist nicht aus. Anwendungsspezifische Hardwarebeschleuniger können in diesem Fall 
den Prozessor bzw. die Prozessoren merklich entlasten. Für diese Art der Erweiterung/Optimierung 
ist die GigaNetIC-Architektur besonders vorbereitet, vgl. Abschnitt 4.3.3. Im Folgenden wird 
exemplarisch die Optimierung der GigaNetIC-Architektur durch anwendungsspezifische Hardwa-
rebeschleuniger anhand eines Beispiels näher erläutert. Weitere realisierte Hardwarebeschleuniger 
werden kurz vorgestellt und bzgl. ihrer Leistungsfähigkeit charakterisiert. 

6.3 Optimierung: Hardwarebeschleuniger auf Cluster- und SoC-Ebene 

Bereits in Abschnitt 4.3.3 wurden die verschiedenen Möglichkeiten, anwendungsspezifische Hard-
warebeschleuniger in das GigaNetIC-System zu integrieren, vorgestellt. Bevor ein spezieller Hard-
warebeschleuniger implementiert wird, wird zunächst die entsprechende Anwendung, die den Ein-

                                                 

43 GDS II (Graphic Data System) Format, in 2004 der de Facto Standard für Layoutdaten der Chipfertigung. 
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satz einer solchen Spezialhardware ggf. erfordern könnte, mit einer der Simulationsumgebungen 
höherer Abstraktionsebene analysiert (vgl. Abbildung 6-2). Stellt sich heraus, dass die Verarbei-
tungseinheit die geforderte Leistung nicht erbringen kann, und zeigt sich weiterhin, dass Befehls-
satzerweiterungen ebenfalls nicht genügend Leistungszuwachs liefern, so kann eine Spezialhardwa-
re mit der benötigten Performanz implementiert werden. Hierbei wird darauf geachtet, dass diese 
Hardware ebenfalls möglichst flexibel gehalten ist, so dass sie auch für zukünftige Anwendungen 
bzw. Weiterentwicklungen bestehender Standards eingesetzt werden kann und somit ein Höchstmaß 
an Zukunftssicherheit garantiert. Mittels der in Kapitel 5 vorgestellten Entwicklungsumgebungen 
kann eruiert werden, an welcher Stelle im GigaNoC die entsprechende Hardwareerweiterung plat-
ziert werden sollte. Bandbreiten- und Rechenleistungsbedarf der Anwendung bestimmen Dimensio-
nierung, Platzierung und Anzahl des jeweiligen Beschleunigers (vgl. Kapitel 7). 

Im folgenden Abschnitt werden exemplarisch das Konzept und der Entwurf eines Hardware-
beschleunigers zur Protokollverarbeitung dargestellt. Der grundsätzliche Aufbau und die Funkti-
onsweise zur Ansteuerung durch die Prozessoren des GigaNetIC-Systems, die auch die Steuerung 
der Lastverteilung übernehmen, werden hier verdeutlicht. Das vorgestellte Prinzip kann auf beliebi-
ge Hardwarebeschleuniger anderer Funktionalität übertragen werden. Die einheitlichen Schnittstel-
len und Mechanismen der GigaNetIC-Architektur verkürzen so die Entwicklungszeit, erhöhen die 
Wiederverwertbarkeit und steigern so letztendlich die Ressourceneffizienz.  

6.3.1 Optimierungspotential von Hardwarebeschleunigern – ein Beispiel 

In diesem Abschnitt soll, exemplarisch für alle implementierten Hardwarebeschleuniger, auf einen 
flexiblen Hardwarebeschleuniger zur Verarbeitung von Paketdaten und Prüfsummen zum Einsatz in 
kommunizierenden eingebetteten On-Chip-Systemen eingegangen werden. Solche Einheiten wer-
den häufig auch als „TCP/IP-Offload Engine“ bezeichnet, da sie die Prozessoren von wesentlichen 
und besonders rechenintensiven Aufgaben der Protokollverarbeitung entlasten. Der hier vorgestellte 
Hardwarebeschleuniger und dessen Arbeitsweise wurde 2005 zusammen mit Infineon Technologies 
CPR ST zum Patent angemeldet [159].  

In Kapitel 7 wird die Leistungsfähigkeit der GigaNetIC-Architektur im Hinblick auf Netzwerkver-
arbeitungsszenarien untersucht. Für besonders rechenintensive Algorithmen dieses Anwendungs-
bereichs wird die Architektur, dem hierarchischen Optimierungsansatz folgend, durch Instruktions-
satzerweiterungen und Hardwarebeschleuniger erweitert. Eine sehr häufig auftretende und zudem 
rechenintensive Funktion bei der Verarbeitung von Netzwerkpaketen ist die Generierung und Über-
prüfung von Prüfsummen nach dem Muster der „Internet Checksumme“ [160]. Bei der Evaluierung 
dieser Funktion im Rahmen der Definition des DSLAM(Digital Subscriber Line Access Multiple-
xer)-Referenzbenchmarks [141] für Infineon Technologies, die u. a. auch als Funktion im EEMBC 
(Embedded Microprocessor Benchmark Consortium)-Netzwerkbenchmark [161] vorkommt, zeigte 
sich, dass Bedarf für eine Beschleunigung dieser Funktionalität besteht. Nachdem Softwareoptimie-
rung und Befehlssatzerweiterungen allein nicht die benötigte Performanz liefern konnten, wurde die 
Implementierung eines Hardwarebeschleunigers notwendig [141][159][118]. 

6.3.1.1 Hardwarebeschleuniger zur Protokollverarbeitung – Motivation und Funktion 

Vernetzte Systeme kommunizieren auf der Basis von Netzwerkprotokollen über den Austausch von 
Paketen. Pakete bestehen aus Nutzdaten und zusätzlichen Protokollinformationen, die unter ande-
rem die Weiterleitung (Quell- und Zieladressen) durchs Netzwerk ermöglichen und die Integrität 
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des Pakets gewährleisten (Prüfsummen, Time-to-live). Jeder Knoten im Netzwerk muss, wenn er die 
Pakete verarbeiten will, diese Informationen prüfen und ggf. vor der Weiterleitung modifizieren. 
Für die Verarbeitung von Netzwerkdaten kommt eine Vielzahl von Hardwarerealisierungen in Fra-
ge. So können anwendungsspezifische Bausteine (ASICs) auf Netzwerkkarten (NICs) die Verarbei-
tung übernehmen, aber auch Standard-CPUs werden hierzu teilweise verwendet. Im Laufe der letz-
ten Jahre haben sich, vor allem für Einsatzgebiete mit hoher Datenlast, spezielle Netzwerk-
Prozessoren (NPUs) etabliert. Dies sind besonders auf das Anwendungsgebiet Paketverarbeitung 
spezialisierte Hochleistungseinheiten. Diese programmierbaren Bausteine erlauben eine sehr flexib-
le Gestaltung der notwendigen Verarbeitungsschritte. Dies ist im Hinblick auf den permanenten 
Wandel der Datenbeschaffenheit und der verwendeten Protokolle und der damit verbundenen 
Dienste von großem Vorteil. Mittlerweile gibt es eine Vielzahl etablierter Protokolle und Mecha-
nismen, die aufgrund ihrer extrem häufigen Verwendung zu einem fixen Bestandteil der Netzwerk-
technologie geworden sind. Hierzu zählen u. a. das Internet-Protokoll Version 4 (IPv4) auf der 
Netzwerkschicht (Layer) 3 sowie viele der in diesem Protokoll gekapselten Layer-4-Protokolle (wie 
z. B.: TCP, UDP, ICMP etc.). All diesen Protokollen gemein ist die verwendete Prüfsumme, die auf 
dem 16-Bit-Einer-Komplement-Summen-Ansatz beruht [160].  

Durch das Auslagern dieser Prüfsummenberechnung auf einen speziell für diese Aufgabe optimier-
ten und im Rahmen des Notwendigen variabel gehaltenen Hardwarebeschleuniger lässt sich der 
Datendurchsatz eines Netzwerkknotens steigern bzw. die bisher eingesetzte Verarbeitungseinheit 
(CPU, NPU) entlasten oder sogar durch eine kostengünstigere, weniger leistungsstarke Verarbei-
tungseinheit ersetzen. Eingesetzt werden kann der im weiteren Verlauf beschriebene Beschleuniger 
also nahezu in jedem IP-verarbeitenden Netzwerkknoten, angefangen bei Endgeräten im 
CPE(Customer Premises Equipment)-Bereich (Firewalls, NICs etc.) bis hin zu Geräten, die im 
Kernnetzwerk angesiedelt sind, wie z. B. Router. Die Verarbeitungsleistung bei all diesen Geräten 
sollte möglichst hoch sein, um hohe Systemlasten aufgrund der ständig steigenden Datenraten im 
weltweiten IP-Verkehr über eine möglichst lange (Time-in-Market-)Zeitspanne zu unterstützen. 
Hierzu bietet es sich an, besonders rechenintensive Verarbeitungsschritte, wie z. B. Prüfsummen-
berechnungen, auf dedizierte Hardwareblöcke auszulagern. Dies erlaubt eine Verarbeitung der Pa-
kete mit der erforderlichen „Leitungsgeschwindigkeit“ (Linespeed), auch in stark belasteten Netz-
werkknoten. Ein weiterer Vorteil eines HW-Beschleunigers für diese Arbeitsschritte liegt in dem 
deutlich geringeren Flächenbedarf und der geringeren Leistungsaufnahme und führt somit zu einer 
Reduktion der Kosten (sowohl Initial- als auch Betriebskosten).  

Abbildung 6-11 zeigt die prinzipielle Kopplung des Hardwarebeschleunigers mit der übergeordne-
ten Kontrolleinheit (NPU, CPU, Controller). Hierbei ist es grundsätzlich erst einmal unerheblich, 
ob der Beschleuniger selbst über Speicher verfügt, oder dieser ihm über eine Bus- oder Netzwerk-
on-Chip(NoC)-Anbindung zugänglich gemacht wird.  

Ein Einsatzbereich des GigaNetIC-System-on-Chips liegt in der Verarbeitung und Weiterleitung 
von Netzwerkverkehr auf Layer 3 (Internet Protocol) und höher, vgl. Abschnitt 8.1.2. Um eintref-
fende Pakete (Ingress) verarbeiten bzw. weiterleiten zu können, müssen diese zunächst auf Korrek-
theit, also protokollkonformes Format überprüft werden. Dies geschieht durch den HW-
Beschleuniger, der Pakete prüft, die mit einer auf dem 16-Bit-Einer-Komplement-Summen-Ansatz 
beruhenden Prüfsumme [160] gesichert sind. Im Anschluss übergibt er die Daten der übergeordne-
ten Kontrolleinheit zur weiteren Bearbeitung. Soll ein Paket versendet werden (Egress), so wird 
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dem HW-Beschleuniger wiederum die Startadresse des zu bearbeitenden Pakets mitgeteilt, so dass 
im Folgenden der HW-Beschleuniger autonom per Direct Memory Access (DMA) die benötigten 
Paketdaten vom Speicher anfordern und die einzutragende Prüfsumme berechnen kann. Das Be-
rechnen und Abspeichern der Prüfsumme erfolgt ohne weiteres Eingreifen der übergeordneten 
Kontrolleinheit, die so entlastet wird und so für die übergeordneten Kontrollaufgaben zur Verfü-
gung steht. Außerdem erfolgt die Berechnung der Prüfsumme durch den HW-Beschleuniger in der 
Regel deutlich schneller, als dies eine Standard CPU zu leisten in der Lage wäre. Des Weiteren ist 
der HW-Beschleuniger in der Lage, die zulässige Verbleibenszeit TTL (Time-To-Live) im Netzwerk 
des Pakets zu prüfen und ggf. zu dekrementieren, was für Einsatzgebiete innerhalb von Routern etc. 
eine weitere Beschleunigung ermöglicht. 

Abbildung 6-11: Grobe Darstellung des Moduls und prinzipielle Kopplung mit Systemumgebung 

Der IP-Headercheck unterstützt sowohl Little- als auch Big-Endian-Systeme und kann im Betrieb 
auf die entsprechende Systemkonfiguration umgestellt werden. Dies erhöht die Interoperabilität, da 
er mit Prozessoren unterschiedlichster Hersteller einfach zu kombinieren ist. Er prüft die IP-Version 
und ist bereits vorbereitet auf IPv6 (Internet Protocol Version 6) [162]. Er unterstützt variable Hea-
der- und Paketlängen sowie eine gerade und ungerade Anzahl von Bytes im Paketrahmen. Aufgrund 
der einheitlichen und einfach gehaltenen Schnittstelle können unterschiedlichste Busprotokolle und 
proprietäre Schnittstellen unterstützt werden. Zur Reduktion des Chip-internen Kommunikations-
aufwands kann bei der bloßen Überprüfung der Checksumme nur eine Ergebnisrückgabe der be-
rechneten Checksumme erfolgen, ohne ggf. das gesamte Paket über das NoC zurückzuleiten. 

Die Vorteile der vorgestellten Lösung im Vergleich zu existierenden Lösungen (vgl. z. B. [163]) 
liegen in einer sehr performanten Realisierung bei hinreichender Flexibilität. Diese beschleunigte 
Verarbeitung liegt zum einen an der Tatsache, dass es sich um anwendungsspezifisch optimierte 
Hardware handelt, die höhere Taktfrequenzen im Vergleich zu vielen Standard-Prozessoren erlaubt, 
zum anderen an dem speziellen, erweiterten Berechnungsverfahren zur Prüfsummenverarbeitung 
(vgl. Abschnitt 6.3.1.2). Weiterhin lässt sich die vorgestellte Lösung durch ein Steuerwort konfigu-
rieren und parametrisieren, so dass verschiedene Verarbeitungsschritte (vgl. Abbildung 6-13) anges-
toßen werden können. Zur vereinfachten SoC-Integration ist das vorliegende Modul parametrisier-
bar in Bezug auf Datenbreite und die Art der Ankopplung an eine Kontrolleinheit. Die flexibel ge-
haltene Integration ins Gesamtsystem stellt eine universell einsetzbare Plattform zur schnellen Prüf-
summenprüfung zur Verfügung (vgl. Abschnitt 6.3.1.4). 

6.3.1.2 Performanzerhöhung mittels eines Algorithmus variabler Bitbreite  

Der hier entwickelte Algorithmus weicht von der 16-Bit-Variante [160] ab und erlaubt die Variation 
der Additionsbreite zur zusätzlichen Beschleunigung der Verarbeitung. Die entwickelte Methode 
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zur Prüfsummenberechnung nutzt die Invarianz der Berechnungsvorschrift gegenüber der Größe 
des verwendeten Restklassenrings. Aufgrund der abschließenden Faltung durch fortgesetzte Additi-
on von Teilergebnissen im Restklassenring 216 ist das Prüfsummenergebnis invariant gegenüber der 
Größe 216n (mit n > 1) des Restklassenrings, der zur Berechnung der Teilergebnisse verwendet 
wurde. Diese Teilberechnungen können somit nicht nur mit 16-Bit-breiten Datenwörtern sondern 
auch mit Vielfachen von 16-Bit-breiten Datenwörtern durchgeführt werden. Abbildung 6-12 zeigt 
schematisch die Funktionsweise des Algorithmus variabler Bitbreite. 

Abbildung 6-12: Schematische Darstellung der Operation auf Restklassenringen von 216 

Im Folgenden wird ein Realisierungsbeispiel für IP/TCP/UDP-Netzwerkprotokolle dargestellt, in-
dem zunächst die Systemfunktion und im Anschluss daran die Anbindung an ein übergeordnetes 
System beschrieben wird. Die beschriebene Lösung gilt grundsätzlich auch für andere Protokolle, 
die auf dem 16-Bit-Einer-Komplement-Summen-Ansatz beruhen, d.h. z. B. auch für ICMP, IGMP, 
ST-II, EGP, HMP, IRTP, OSPF, NETBLT, ENCAP, OSPFIGP und ähnliche. Dies erhöht die Wie-
derverwendbarkeit des Hardwarebeschleunigers und damit auch die Ressourceneffizienz. 

6.3.1.3 IP-Headercheck – Aufbau und Funktionsweise 

Die wesentlichen Funktionsblöcke des Hardwarebeschleunigers für eine 32-Bit-breite Variante 
werden in Abbildung Anhang E-1 dargestellt. Der Hardwarebeschleuniger umfasst eine im Befehls-
umfang und in Datenbreite parametrisierbare Arithmetisch/Logische Einheit (ALU), Ergebnisregis-
ter, Kontrollregister, Adressregister sowie diverse Register zum Zwischenspeichern temporärer 
Werte. Die Datenbreite dieser Einheiten kann je nach Ausführung des Hardwarebeschleunigers va-
riieren, da die in Abschnitt 6.3.1.2 vorgestellte Berechnungsmethode auch andere Berechnungsbrei-
ten zulässt, wobei sich die jeweiligen Realisierungen des Hardwarebeschleunigers im prinzipiellen 
Aufbau nicht von Abbildung Anhang E-1 unterscheiden. 

Die Ansteuerung des Hardwarebeschleunigers geschieht zum einen über ein Kontrollregister (vgl. 
Abbildung 6-13), in dem die verschiedenen Operationsmodi über Steuerflags ausgewählt werden. 
Die Gültigkeit der anliegenden Steuerflags wird über eine logische Eins von ctrl_in_en signalisiert. 
Zum anderen muss die Verarbeitung der Beschleunigungseinheit noch durch das Signal 
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check_enable aktiviert werden, das von außen durch eine übergeordnete Kontrolleinheit (CPU, 
NPU, Zustandsmaschine) angelegt wird. Ebenso muss dem HW-Beschleuniger noch die Startadres-
se (im Speicher) des zu bearbeitenden Pakets übermittelt werden, die im Adressregister abgelegt 
wird. Die für die Prüfsummenbildung benötigte Ablaufsteuerung ist durch einen generischen Zu-
standsautomaten (Finite Statemachine / FSM) realisiert. Dieser übernimmt die komplette Ansteue-
rung der einzelnen Komponenten des Hardwarebeschleunigers sowie die autonome Ansteuerung 
der Speicher- bzw. Busschnittstelle. Ist die Verarbeitung des Pakets gemäß der durch die gesetzten 
Kontrollflags vorgesehenen Arbeitsschritte abgeschlossen, werden die Ergebnisse an die dafür vor-
gesehenen Speicherstellen zurückgeschrieben. Im Kontrollregister werden die sich aus der Bearbei-
tung ergebenden Flags gesetzt. Das Signal check_ready zeigt der übergeordneten Kontrolleinheit 
die Fertigstellung der Verarbeitung an, so dass ggf. ein neues Paket zur Verarbeitung in Auftrag 
gegeben werden kann. 

Abbildung 6-13: Implementierung des Headercheck-Kontrollregisters 

Der prinzipielle Ablauf einer Prüfsummenbildung für das Internet-Protokoll (Layer 3) und ggf. ein 
enkapsuliertes Layer-4-Protokoll ist in Abbildung Anhang E-2 dargestellt. Wesentlich ist die Unter-
scheidung zwischen Überprüfung (Check) und Neuberechnung (Compute) der Prüfsummen. Der 
Check-Modus kommt z. B. beim Empfang eines Pakets zum Einsatz, bei dem zunächst überprüft 
werden muss, ob es sich um ein gültiges, korrekt übermitteltes Paket handelt. Die Korrektheit eines 
eingegangenen Pakets wird durch eine logische Null am packet_error-Ausgang angezeigt. Eine lo-
gische Eins würde ein fehlerbehaftetes Paket kennzeichnen, das ggf. verworfen wird. Beim Versen-
den käme die Neuberechnung der Prüfsummen zum Einsatz. Sollten Veränderungen an den Daten 
bzw. Headerinformationen wie z. B. das TTL-Feld, das ebenfalls bei Bedarf automatisch von der 
Einheit dekrementiert werden kann, vorgenommen worden sein, ist eine Neuberechnung der Prüf-
summe unabdingbar. 

IP TCP/UDP

Paketstatus

Kontrollregister

nicht benutztx

x = Modifikation durch Headercheck-Einheit

x x

x = nur in Wishbone-Kopplung benutzt
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Abbildung 6-14: Protokollrahmen zur GigaNoc-basierten Ansteuerung  

des Headercheck-Hardwarebeschleunigers 

Abbildung 6-14 zeigt einen GigaNoC-Paketrahmen zur Ansteuerung eines Headercheck-Hardware-
beschleunigers, der lose-gekoppelt über einen Communication-Controller an einen Port einer 
Switch-Box angeschlossen ist. Prinzipiell kann der Ablauf auch auf andere Hardwarebeschleuniger 
übertragen werden. Der zu sendende Protokollrahmen setzt sich in diesem Fall aus sogenannten 
Metadaten und den eigentlichen Nutzdaten zur Verarbeitung zusammen. Die Metadaten beinhalten 
alle notwendigen Kontrolldaten zur Ansteuerung des Hardwarebeschleunigers, zur Wegewahl und 
zur Speicheransteuerung. Beim Headercheck-Hardwarebeschleuniger bestehen die Nutzdaten aus 
dem gesamten IP-Rahmen, der sowohl den IP-Kopf, als auch Daten von ggf. enkapsulierten Proto-
kollen höherer Schichten beinhalten kann. Die ersten 16 Bit der Metadaten umfassen den Paketsta-
tus, der direkt in das Kontrollregister (vgl. Abbildung 6-13) des Beschleunigers geschrieben wird. 
Die folgenden zwei Byte sind die Adressierungsdaten für die GigaNoC-Wegewahl. Anschließend 
folgt der Paketzeiger mit der jeweiligen Speicheradresse. Zusätzlich werden noch die Daten des 
Ethernetkopfes angehängt, so dass ein Paket, das vom Beschleuniger verarbeitet worden ist, nicht 
zwangsläufig zu einem übergeordneten Prozessor geleitet werden muss, sondern ggf. direkt zum 
Communication-Controller eines integrierten Ethernetcontrollers geleitet werden kann. Ebenso 
können die Communication-Controller der Ethernetcontroller die am GigaNoC angeschlossenen 
Beschleuniger direkt adressieren, ohne zwangsläufig Prozessoren mit einzubeziehen. Dies hängt 
von der jeweiligen Anwendung und der Funktion des Beschleunigers ab. Beim IP-Headercheck-
Beschleuniger werden in diesem Fall Pakete dem Kontrollwort entsprechend verarbeitet und in Ab-
hängigkeit des Ergebnisses verworfen oder weitergeleitet. Eine Erweiterung des Funktionsumfangs 
ist auch hier möglich und hängt letztendlich von der Anwendung ab. 

6.3.1.4 IP-Headercheck – Systemanbindung 

Der IP-Headercheck-Hardwarebeschleuniger eignet sich für alle in Abschnitt 4.3.3 vorgestellten 
Kopplungsarten an das GigaNoC. In Abbildung 6-15 wird die Variante der Systemanbindung mit 
lokalem Speicher vorgestellt. Hierbei kann die Prüfsummeneinheit entweder über einen lokalen Bus 
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oder aber über das On-Chip-Netzwerk mit der übergeordneten Kontrolleinheit verbunden sein. In 
diesem Fall dient ein Dualport-Speicher als lokaler Paketspeicher. Für diese Kopplung wurde eine 
Anbindung des Prüfsummenmoduls sowohl über den Wishbone-Bus als auch über ein NoC (Giga-
NoC) exemplarisch implementiert und verifiziert. Die Integration der Einheit erfolgt über einen 
Wrapper, der die Schnittstellenkonvertierung übernimmt. 

Abbildung 6-15: Systemanbindung über Bus oder NoC, mit lokalem Speicher 

In der zweiten Variante, in Abbildung 6-16, erfolgt die Systemanbindung über einen Bus bzw. ein 
On-Chip-Netzwerk unter Verwendung eines gemeinsamen Speichers. Für die Anbindung an einen 
Bus bietet der HW-Beschleuniger die Option, die Burstlänge des Buszugriffs einzustellen, so dass 
für die Bearbeitungszeit auch andere Teilnehmer den Bus nutzen können und somit Blockierungen 
weitestgehend verhindert werden können. 

Abbildung 6-16: Systemanbindung über Bus oder NoC, mit gemeinsamem Speicher 

Die dritte Variante in Abbildung 6-17 zeigt die Anbindung der Beschleunigereinheit an eine über-
geordnete CPU/Kontrolleinheit unter Verwendung eines gemeinsamen Speichers. Die Steuerung 
des Datenflusses wird von der übergeordneten Kontrolleinheit übernommen. 
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Abbildung 6-17: Anbindung des IP-Headercheckers über eine eng-gekoppelte Kontrolleinheit 

Tabelle 6-3 zeigt den Flächenbedarf der einzelnen Implementierungsvarianten der 32-Bit-Variante 
inklusive der benötigten Schnittstellen zur Kopplung an das Gesamtsystem. 

Tabelle 6-3: Flächenbedarf der 32-Bit-Variante des IP-Headercheck-Hardwarebeschleunigers in 130/90-nm-

Standardzellentechnologie, inkl. NoC-Schnittstelle und 16 KB DPRAM auf SoC-Ebene 

 

6.3.1.5 IP-Headercheck – Leistungsdaten 

Die hier vorgestellte Ausnutzung der Tatsache, dass die Berechnungsvorschrift für die Prüfsum-
menbildung invariant zu Vielfachen von 16-Bit-Restklassenringen ist, erlaubt die Verarbei-
tung/Addition der Pakete in Vielfachen dieser 16-Bit-Halbworte und ermöglicht so einen höheren 
Durchsatz von Paketen bei gleich bleibender Taktrate der Verarbeitungseinheit (vgl. Abschnitt 
6.3.1.2). Die Funktionalität des HW-Beschleunigers für größere Datenbreiten ist prinzipiell gleich, 
wobei sich die Ausführungszeit in erster Näherung (ggf. abhängig von der jeweiligen Hardware-
realisierung) reziprok zur Datenbreite der Hardware verhält44. Die Datenbreite des HW-
Beschleunigers wird im Wesentlichen durch die Speicher- bzw. Bus-Anbindung bestimmt (vgl. Ab-
schnitt 6.3.1.4).  

Abbildung 6-18 zeigt die Leistungsfähigkeit für die 32-, 64- und 128-Bit-Variante des IP-
Headercheck-Hardwarebeschleunigers für enkapsulierte Layer-4-Protokolle in Abhängigkeit von 
der Paketgröße. Es zeigt sich bei großen Paketen deutlich die nahezue Verdoppelung bzw. Vervier-
fachung der Performanz gegenüber der 32-Bit-Variante bei Verwendung der 64- bzw. 128-Bit-
breiten Implementierung. Bei minimal-großen Paketen mit einer Nutzdatenmenge von 44 Byte er-
folgt lediglich eine Reduzierung von 24 auf 18 bzw. 15 Takten durch die breitere Verarbeitung. Be-
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zogen auf das spätere Anwendungsszenario ist von Fall zu Fall abzuwägen, ob der Einsatz einer 
leistungsfähigeren Variante des Hardwarebeschleunigers notwendig ist, oder ob die Beschleuni-
gung, die durch die flächenmäßig kleinere 32-Bit-Variante (vgl. Abbildung 6-20) erreicht wird, be-
reits ausreicht. Speziell Anwendungen die hauptsächlich Pakete minimaler Länge einsetzen, wie 
VoIP (Voice over IP) etc., profitieren weniger von der Leistungsfähigkeit der IP-Headercheck-
Hardwarebeschleuniger größerer Bitbreite. Im Sinne der Ressourceneffizienz wäre hier der 32-Bit-
breite Beschleuniger ein pareto-optimaler Punkt im Sinne von Definition 12.  

Abbildung 6-18: Leistungsdaten des IP-Headercheck-Hardwarebeschleunigers in  

Abhängigkeit von der Verarbeitungsbreite 

Abbildung 6-19: IP-Headercheck-Hardwarebeschleuniger – Performanz 

32- vs. 64-Bit-Variante, bezogen auf die Synthesewerte 

Abbildung 6-19 zeigt die, sich aus den Synthesen ergebenden, realisierbaren Leistungswerte für 
eine 130-nm- und eine 90-nm-Standardzellentechnologie, in Abhängigkeit von der erreichbaren 
Maximalfrequenz in der jeweiligen Technologie. Es wird evident, dass die 64-Bit-Varianten deut-
lich leistungsfähiger als die 32-Bit-Implementierungen sind. Beide 64-Bit-Realisierungen erlauben 
Betriebsfrequenzen von über 500 MHz und verarbeiten 27,78 bzw. 28,34 Mio. Pakete à 44 Byte pro 
Sekunde. Das entspricht einer Nutzdatenmenge von mehr als 1220 MByte/s. Die 32-Bit-Varianten 
liegen fast 10 % höher bei den maximal erreichbaren Taktfrequenzen, als die der 64-Bit-Typen. So 
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können immerhin 22,77 bzw. 23,15 Mio. Pakete pro Sekunde verarbeitet werden. Die 64-Bit-
Schaltungen haben aufgrund ihrer größeren ALU einen deutlich längeren kritischen Pfad, der diese 
Reduktion der maximal erreichbaren Taktfrequenz bewirkt. Bei der Paketgröße von 1518 Byte ni-
velliert sich der Anteil der fixen Berechnungskosten und die 64-Bit-Varianten erzielen eine deutlich 
höhere Effizienz als bei 44-Byte-Paketen. Hier liegt die pro Sekunde verarbeitbare Datenmenge bei 
3757 bzw. 3834 MByte pro Sekunde, im Gegensatz zu 2146 bzw. 2110 MByte pro Sekunde, also 
ca. 80 % höher als bei der 32-Bit-Realisierung.  

In [163] wird ebenfalls eine Verarbeitungseinheit zur Berechnung der Internet Checksum vorges-
tellt. Der beschriebene Funktionsumfang ähnelt dem des hier präsentierten Ansatzes allerdings nur 
zum Teil, da der GigaNetIC-Hardwarebeschleuniger parametrisierbar ist und so auch größere Da-
tenbreiten als 32 Bit verarbeiten kann. Die Realisierung aus [163] liegt in einer 180-nm-
Standardzellentechnologie vor und beansprucht eine Fläche von mindestens 0,171 mm² bei einer 
möglichen Taktfrequenz von 381 MHz. Skaliert man die Fläche mit Hilfe der S-Parameter (vgl. 
Kapitel 3, Definition 29) z. B. auf die 130-nm-Technologie des GigaNetIC-Hardware-
beschleunigers, so ergäbe sich eine wohlwollend abgeschätzte Fläche von:  

2
2 2180

0,171 0,0892
130

nm
mm mm

nm

−
 ⋅ = 
 

, was, verglichen mit den 0,0157 mm² [118] meiner Realisie-

rung, mehr als dem 5,7-fachen der Fläche entspräche. Die Taktfrequenz ergäbe nach der Skalierung 

zu 
1

180
381 528

130

nm
MHz MHz

nm
 ⋅ = 
 

, was ebenfalls äußerst positiv geschätzt ist, betrachtet man z. B. 

die Relationen zwischen den in dieser Arbeit erstellten 130-nm- und den 90-nm-Implemen-
tierungen. Gleichgesetzt mit dem Ansatz aus [163], erreicht der reine IP-Headercheck-Hardware-
beschleuniger des GigaNetIC-Systems ohne zusätzlichem Wrapper eine maximale Betriebsfrequenz 
von 1,69 GHz [118]. Dies stellt einen deutlichen Vorsprung um mehr als Faktor drei dar. Betrachtet 
man den erreichbaren Durchsatz beider Varianten, so liegt dieser nach der Notation aus [163] bei 
beiden Realisierungen bei 32 Bit pro Sekunde und ist damit lediglich abhängig von der maximalen 
Betriebsfrequenz. So resultierte daraus bei der GigaNetIC-Variante ein Geschwindigkeitsvorteil von 
ebenfalls Faktor 3,2. Angesichts dieser Werte wird deutlich, dass es sich bei dem GigaNetIC-IP-
Headercheck-Hardwarebeschleuniger um eine äußerst ressourceneffiziente Implementierung han-
delt, deren spezieller Aufbau sie derart leistungsfähig macht. Ferner kann durch Verwendung der 
Varianten größerer Datenbreite der Durchsatz nochmals gesteigert werden. 

Abbildung 6-20 zeigt die jeweils benötigte Fläche für die Realisierung des IP-Headercheck-
Hardwarebeschleunigers in Abhängigkeit von der geforderten Taktfrequenz und Technologie. Es 
zeigt sich, wie zu erwarten war, dass, je höher die Anforderungen an die zu realisierende Taktfre-
quenz sind, desto mehr Fläche wird beansprucht. Bzgl. der 32-Bit-Variante in 90-nm-Technologie 
z. B. entspricht dies bei einer Steigerung der Frequenz um den Faktor 2,7 mehr als 68 % Flächen-
zuwachs. Die Realisierung der 32-Bit-breiten Variante des IP-Headercheck-Hardwarebeschleu-
nigers entspricht in etwa einer Systemkomplexität von weniger als 6000 bzw. 14200 Gatteräquiva-
lenten bei der 64-Bit-breiten Implementierung. 
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Abbildung 6-20: Flächenvergleich der verschiedenen IP-Headercheck-Implementierungen 

Die hier präsentierten Werte zeigen, dass bei Integration der Beschleuniger in das GigaNetIC-
System abgewogen werden sollte, welche Position für die Hardwarebeschleuniger gewählt wird. 
Bei einer genaueren Spezifikation der Zielapplikation können die zu erwartende Leistungsfähigkeit 
des Systems sowie die erforderliche Konfiguration mit Hilfe der vorgestellten Simulations-
umgebungen (vgl. Kapitel 5) ermittelt werden. Sollte eine Kopplung an den lokalen Bus, der in der 
Regel eine geringere Frequenz aufgrund der angeschlossenen Prozessorelemente zulässt, genügen, 
so reicht die flächeneffizientere Implementierung aus. Erfordert die Spezifikation hingegen maxi-
malen Durchsatz, so sollte eine lose Kopplung der leistungsfähigsten, aber auch flächenintensivsten 
Variante angestrebt werden. In diesem Fall ist der Betrieb mit einer deutlich höheren Taktfrequenz 
als die der lokalen Busse möglich. Die vorgestellten Kapselungen (Wrapper) können erforderli-
chenfalls die Umsynchronisierung auf den Takt des angeschlossenen Kommunikationsmediums 
übernehmen. Zur Steigerung der Ressourceneffizienz empfiehlt es sich, Überlegungen dieser Art 
stets anzustellen, falls dies im Vorfeld der Implementierung aufgrund genügender Informationen 
bzgl. des späteren Anwendungsszenarios möglich ist. 

Abbildung 6-21: Vergleich Leistungsaufnahme der verschiedenen IP-Headercheck-Implementierungen in Ab-

hängigkeit von der Betriebsfrequenz und der entsprechenden Realisierung 

Ähnlich verhält es sich mit der Leistungsaufnahme und zwar aufgrund der linearen Abhängigkeit 
von der Frequenz, die in die dynamische Verlustleistung eingeht, und der zusätzlich größeren Flä-
che der schnelleren Varianten. Die entsprechenden Werte sind in Abbildung 6-21 dargestellt. Aller-
dings ist zu bemerken, dass diese Angaben auf angenommenen, statistischen Schaltwahrscheinlich-
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keiten (50%S) des Synthesewerkzeugs beruhen. Hierbei wird eine 50-prozentige Schaltwahrschein-
lichkeit der Eingänge angenommen, deren Verhalten sich dann auf die Folgelogik fortpflanzt. Dies 
spiegelt jedoch nicht die realen Stimuli der Schaltung wieder und kann so nur eine ungefähre Ein-
schätzung der Leistungsaufnahme liefern.  

Abbildung 6-22: Verlustleistungsanalyse (für die 130-nm-Technologie) basierend auf statistischen Schaltwahr-

scheinlichkeiten (50%) der Gatter und durch Simulation gewonnener Schaltaktivitäten (AS) 

Mit Hilfe der in Abschnitt 5.3 vorgestellten erweiterten PERFMON-Umgebung wurde deshalb zum 
Vergleich die Leistungsaufnahme durch Annotierung der Schaltaktivitäten (AS) während der Lauf-
zeit und der Bearbeitung der iMix-Lastverteilung (vgl. Abschnitt 7.2.3) bestimmt. Die Analyse be-
zieht sich auf die 130-nm-Standardzellentechnologie und die IP-Headercheck-Variante mit 
200 MHz Taktfrequenz. Abbildung 6-22 stellt die gewonnenen Ergebnisse für die Realisierung im 
Typical-Case (TC) dar. 

Die Fallunterscheidungen Best Case, Typical Case und Worst Case stellen drei unterschiedliche 
Umgebungsbedingungen der 130- und 90-nm-Standardzellentechnologie dar, die die Eigenschaften 
der Schaltung beeinflussen. Tabelle 6-4 zeigt die relevanten Parameter für die unterschiedlichen 
Syntheseparameter. 

Tabelle 6-4: Syntheseparameter für unterschiedliche Umgebungsbedingungen der Standardzellen 

 

Betrachtet man die Leistungsaufnahme für typische Umgebungsbedingungen, so zeigt sich, vergli-
chen mit dem durch 50%S ermittelten Wert, bei der durch AS ermittelten Leistungsaufnahme ein 
doppelt so hoher Wert bzgl. der Umladevorgänge der Leitungen. Die durch Schaltvorgänge der 
Standardzellen hervorgerufene Verlustleistung ist um 33,9 % höher, wenn man die Werte mit Hilfe 
von AS abschätzt. Dieses Ergebnis ist dadurch zu erklären, dass durch wahllose Beschaltung der 
Eingänge bei der 50%S-Methode die eigentliche Funktion des Hardwarebeschleunigers nicht wie-
dergespiegelt wird und somit auch die ermittelte Leistungsaufnahme nur eine erste Abschätzung 
sein kann. Die realistische, dynamische Verlustleistungsaufnahme unter typischen Bedingungen, die 
mit Hilfe der AS-Methode ermittelt wurde, ist um 45,4 % höher, als es die reine Abschätzung des 
Synthesewerkzeugs zunächst vermuten ließe. Die Verlustleistungsaufnahme des Hardwarebe-
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schleunigers von 1,9 mW bei 200 MHz beträgt dennoch nur ein Fünftel der Leistungsaufnahme des 
N-Core-Prozessorkerns.  

Abschließend lässt sich bemerken, dass, wenn es die Zeit und die Umstände (Anwendung muss be-
reits ausprogrammiert sein) erlauben, eine AS-basierte Ermittlung der dynamischen Verlustleistung 
des Systems mit Hilfe der in dieser Arbeit vorgestellten Werkzeugkette ratsam ist. Dies ist vor Al-
lem dann der Fall, wenn bereits vor der Chiprealisierung Daten mit einer maximalen Abweichung 
vom fertigen Chip im einstelligen Prozentbereich (vgl. Abschnitt 5.3) benötigt werden. Für eine 
grobe Einstufung reicht die 50%S-Methode jedoch aus, liefert sie immerhin noch Werte die zumeist 
in der gleichen Größenordnung der späteren Schaltung liegen. 

Abbildung 6-23 zeigt die Größe der 32-Bit-Variante des IP-Headercheck-Hardwarebeschleunigers 
im Vergleich zum S-Core nach der Platzierung und Verdrahtung der Standardzellen in 130-nm-
Technologie. Mit einer Kantenlänge von nur 0,156 mm beansprucht er lediglich 12 % der Fläche 
des Prozessorkerns, wobei seine eigentliche Logikfläche durch Füllzellen (Filler Cells) um 34 % 
ansteigt, im Gegensatz zu nur 10 % Flächenzuwachs beim S-Core.  

Abbildung 6-23: IP-Headercheck-Hardwarebeschleuniger im Vergleich zum S-Core  

in einer 130-nm-Standardzellentechnologie (GDS-II-Plot) 

Die von mir implementierte Spezialhardware benötigt lediglich acht Taktzyklen für eine Überprü-
fung des IP-Headers inklusive der Berechnung der Checksumme und kann mit max. 1,7 GHz im 
Typical Case bzw. 1,1 GHz im Worst Case betrieben werden (130-nm-Standarzellentechnologie). 
Dies ermöglicht 213 Mio. bzw. 138 Mio. Headerchecks pro Sekunde im Vergleich zu 921 k bzw. 
2,39 Mio. Headerchecks pro Sekunde, die vom S-Core-Prozessor bewältigt werden können. Dies 
bedeutet somit eine rein funktionale Beschleunigung von 89,2 (Typical Case) / 57,7 (Worst Case) 
bzw. 13,5, wenn die gleiche Taktfrequenz wie beim Prozessor angesetzt wird [118].  

Weiterführende Informationen zu der Leistungsfähigkeit des IP-Headercheck-Hardwarebeschleu-
nigers für dedizierte Anwendungsszenarien werden in Kapitel 7 und in [118][159][109][131] gege-
ben. Viele der in diesem Abschnitt angestellten Untersuchungen und Methoden, wurden ebenfalls 
auf die im Folgenden nur kurz vorgestellten, weiteren Hardwarebeschleuniger des GigaNetIC-
Systems angewendet und zeigten größtenteils ähnlich positive Ergebnisse bzgl. Flächenersparnis, 
Leistungsaufnahmereduktion und Performanzerhöhung. 
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6.4 Kostenanalyse am Beispiel einer Netzwerkanwendung 

Die Vorgehensweise bei der Kostenbetrachtung und der sich ggf. anschließenden Systemoptimie-
rung wurde in Abbildung 3-3 vorgestellt. Im Folgenden sollen die unterschiedlichen Lösungen zur 
Verarbeitung von IP-/Netzwerk-Paketen nach der geschilderten Vorgehensweise exemplarisch einer 
Kostenbetrachtung nach Definition 9, Kapitel 3, unterzogen werden, und zwar ähnlich der in Ab-
schnitt 7.7 geschilderten Anwendung und u. a. auf den zuvor realisierten Hardwarebeschleunigern 
aufbauend. 

Am Anfang der Kostenanalyse steht die Festlegung der Zielfunktionen ZF (vgl. Definition 6) der 
einzelnen Kostenmaße K  (vgl. Definition 5). Hierzu müssen die relevanten Bewertungsmaße BM 
(vgl. Definition 4) im Hinblick auf die Anwendung und die damit verbundenen Randbedingungen R 
(vgl. Definition 7) und Schranken S (vgl. Definition 8) festgelegt werden. Diese bestimmen dann 
sowohl die Gewichtungen ci der ausgewählten Bewertungsmaße BMi in ZF als auch die Gewich-
tungen , ,  und P A T Fα α α α  der Kostenmaße K  in der Kostenfunktion CF. Bei der Wahl der Ge-

wichtungen wird gemäß Abschnitt 3.1 folgender Zusammenhang gewählt: 1i i
i i

c α= =∑ ∑ , so dass 

die relevantesten Bewertungsmaße BMi bzw. Kostenmaße iK  mit dem größten ci bzw. iα  bedacht 

werden. Um einen einheitenlosen Kostenwert zu erhalten, sind die Gewichtungen ci mit der rezip-
roken Einheit des jeweiligen Bewertungsmaßes BMi versehen. 

Die jeweiligen Werte der Bewertungsmaße BMi der Realisierungsvarianten RVi (vgl. Definition 11) 
müssen ermittelt werden und ergeben nach Einsetzen in die Kostenfunktion CFRVi letztendlich die 
Kosten der jeweiligen Realisierung. Da der hier entwickelte Ansatz im Sinne der Pareto-
Optimierung ( )paretoCF RVi = min!  (vgl. Definition 10) eine Minimierung der Kosten vorsieht, ist 

die Realisierung mit den geringsten Kosten als vielversprechendste Lösung anzusehen. 

Zunächst gilt es also die Randbedingungen und Bewertungsmaße festzulegen. Im Falle der Funkti-
on zur Prüfung von Paketdaten (vgl. Abschnitt 6.3.1.1) gibt es folgende Anforderungen, die nach 
den vier Kostenmaßen P, A, T und F (vgl. Definition 5) aufzuschlüsseln sind: 

Die Anwendung ist relevant für alle beteiligten Netzwerkteilnehmer, sowohl mobile, als auch Hoch-
leistungssysteme im Kernnetzwerk, d. h. hier sollte, wenn möglich, näher definiert werden, wo das 
System eingesetzt werden soll, da die Fläche A und die Leistungsaufnahme P in Abhängigkeit vom 
Einsatzort unterschiedlich stark gewichtet werden. Die Prüffunktion ist besonders rechenintensiv 
und bearbeitet teilweise sehr zeitkritische Daten, so dass die Performanz T, in gewissen Grenzen 
abhängig vom Einsatzort, eine wichtige Rolle einnimmt. Die Funktion ist fest definiert und ändert 
sich für die aktuellen Protokolle nicht mehr, was dem Kostenmaß Zukunftssicherheit bzw. Flexibili-
tät F eine geringe Gewichtung zuweist. Die Wiederverwendbarkeit wird bei diesem Kostenmaß 
noch am stärksten gewichtet, da davon ausgegangen wird, dass aufgrund der Standardisierung der 
gegebenen Anwendung auch zukünftige Systeme auf diese Einheiten aufbauen werden. 

Beispielhaft sollen nun die Realisierungsvarianten der Paketprüffunktion RV(PaketPrüfung)i für ein 
mobiles Endgerät für u. a. hochpriore Datendienste (z. B. Voice over IP) mittels der vorgestellten 
Methode analysiert werden. Die Festlegung der einzelnen Gewichtungen ist in gewissen Grenzen 
sicherlich subjektiv und bedarf zumeist eingehender Diskussion seitens aller am Entwurfs- und 
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Vermarktungsprozess beteiligten Stellen, dennoch lassen sich bereits anhand grober Festlegungen 
erste Abschätzungen für potentielle Lösungsvarianten treffen.  

Zunächst erfolgt die Festlegung der Zielfunktionen ZF der einzelnen Kostenmaße K , wobei die 
jeweiligen Bewertungsmaße BM in additiver Form (3.4) miteinander verknüpft werden. Als Bewer-
tungsmaß für die Leistungsaufnahme P wird BMP = Pdyn gewählt, also die dynamische Verlustleis-
tung. Die statische Verlustleistung wird in diesem Zusammenhang aufgrund der verwendeten Tech-
nologie vernachlässigt. Die dynamische Verlustleistung setzt sich aus den Leistungsanteilen der 
eigentlichen Verarbeitungseinheit (PE), dem evtl. benötigten Controller (Ctrl), dem verwendeten 
Speicher (Mem) und der Kommunikationsstruktur (Com) zusammen. Es wird folgende Zielfunktion 
(6.1) für P angesetzt:  

 
, , , , , , , ,

, , , ,

:

mit 0,7,  0,2,  0,05,  0

dyn PE dyn PE dyn Ctrl dyn Ctrl dyn Mem dyn Mem dyn Com dyn Com stat stat

dyn PE dyn Ctrl dyn Mem dyn Com stat

ZF c P c P c P c P c P

c c c c c

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅

= = = = =

P
 (6.1) 

Die eigentliche Verarbeitungseinheit (PE) geht mit der größten Gewichtung in die Zielfunktion ein, 
ein evtl. zur Ansteuerung eines spezialisierten Hardwarebeschleunigers (PE) benötigter Controller 
(Ctrl) wird weniger stark gewichtet. Er kann zusätzliche Aufgaben verrichten und wird deshalb 
nicht zu 100 Prozent der Paketprüffunktion zugeordnet. In dem hier betrachteten Szenario wird der 
N-Core als Controller für den Hardwarebeschleuniger eingesetzt. 

Für die Fläche A wird die Zielfunktion (6.2) aufgestellt. Die Fläche PEA  für die benötigte Verarbei-

tungseinheit wird mit der höchsten Gewichtung versehen, wohingegen sich die Flächen für den evtl. 
benötigten Controller (Ctrl), den benötigten Speicher MemA  und für die zugrundeliegende Kommu-

nikationsinfrastruktur ComA  bei diesem Szenario für die einzelnen Implementierungen kaum unter-

scheiden und deshalb weniger stark gewichtet werden. 

 
:  

mit 0,8,  0,1,  0,05
PE PE Ctrl Ctrl Mem Mem Com Com

PE Ctrl Mem Com

ZF c c c c

c c c c

= ⋅ + ⋅ + ⋅ + ⋅
= = = =

A A A A A
 (6.2) 

Für die Performanz T wird die Ausführungszeit Tex,PE (vgl. Definition 18) der Verarbeitungseinheit 
(PE) als Bewertungsmaß eingesetzt. Auch der Jitter J ist ein relevantes Maß für viele Netzwerksze-
narien, kann allerdings bei den hier vorgestellten Realisierungsvarianten systembedingt vernachläs-
sigt werden. Auch der Durchsatz D (vgl. Definition 19) ist ein weiteres wesentliches Bewertungs-
maß der Performanz. Er spiegelt die Leistungsfähigkeit des gesamten Systems wider. Im Gegensatz 
zu der zuvor genannten Verarbeitungszeit berücksichtigt er zusätzlich die Leistungsfähigkeit der 
Kommunikationsstruktur und die Speicherlatenz. Dies führt zu der in (6.3) angegebenen Zielfunkti-
on. 

 , , ,: , mit 1,  0Tex PE Tex PE J J D D Tex PE J DZF c c c c c c= ⋅ + ⋅ + ⋅ = = =T T T T  (6.3) 

Im Zusammenhang mit dem Kostenmaß Zukunftssicherheit bzw. Flexibilität F werden folgende 
Bewertungsmaße BM berücksichtigt: Die Wiederverwendbarkeit WV (vgl. Definition 36) ist für 
eine derart essentielle Funktion zur Prüfung von Netzwerkpaketen von besonderer Bedeutung. Der 
Einsatz in allen Bereichen des Netzwerks heute und in naher Zukunft erfordert eine gute Portierbar-
keit der Realisierungsvariante auch auf neue Technologien. Aufgrund der Beschreibung in einer 
Hardwarebeschreibungssprache lassen sich die entworfenen Hardwarebeschleuniger relativ einfach 
auf andere Technologien portieren. Bei der reinen Softwarelösung (N-Core SW) ist die Wiederver-
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wendbarkeit noch höher einzustufen, da aufgrund der Realisierung der Funktionalität in der 
Hochsprache C eine noch leichtere, plattformübergreifende Portierung möglich ist. 

Die Programmierbarkeit PG (vgl. Definition 37) nimmt in diesem Szenario einen weniger wichti-
gen Stellenwert ein, da sich aufgrund der festen Spezifikation des Algorithmus keine Änderungen 
der Funktionalität für die etablierten Protokolle ergeben. Lediglich für zukünftige Protokolle, die 
ggf. zusätzliche Operationen erfordern, wäre ein gewisses Maß an Flexibilität vorteilhaft.  

Ein weiterer Aspekt ist die Fehlertoleranz FT (vgl. Definition 33), die für massiv parallele Systeme 
in zunehmendem Maße an Bedeutung gewinnt, allerdings für das hier betrachtete Szenario derzeit 
noch von nur geringer Signifikanz ist. Die Fehlertoleranz, die das betrachtete System ermöglicht, 
liegt in der softwaregestützten Kontrollfunktion des N-Cores begründet, der evtl. bei eigenem Fehl-
verhalten oder fehlender Rückmeldung seitens eines Hardwarebeschleunigers eingreifen kann. Die-
se Möglichkeit ist allerdings nur ein einfaches Mittel, so dass keine hohe Bewertung bzgl. dieses 
Gesichtspunktes gegeben werden kann. Die sich aus den obigen Betrachtungen ergebende Zielfunk-
tion ist in (6.4) definiert.  

 : , mit 0,8,  0,1WV WV PG PG FT FT WV PG FTZF c c c c c c= ⋅ + ⋅ + ⋅ = = =F F F F  (6.4) 

Im Anschluss an die Definition der Zielfunktionen für die vier Kostenmaße kann nun die Kosten-
funktion CFRV(PaketPrüfung)i zum oben geschilderten Anwendungsszenario aufgestellt werden. Die 
eingesetzten Werte der Bewertungsmaße jeder Realisierungsvariante RV(PaketPrüfung)i ergeben 
die spezifischen Kosten der jeweiligen Lösung. Die Variante mit den geringsten Kosten repräsen-
tiert die vielversprechendste Realisierung. In Bezug auf die betrachteten Ansätze stellt sie eine disk-
rete pareto-optimale Auswahl (nach Definition 13) dar. 

Im Falle des oben geschilderten Anwendungsszenarios werden die Kostenfunktionen 

( )RV PaketPrüfung iCF  (6.5) für die einzelnen Realisierungsvarianten aufgestellt. Die Festlegung der Ziel-

funktionsgewichtsfaktoren korrespondiert mit den Anforderungen des Einsatzortes und priorisiert 
Performanz T und Leistungsaufnahme P, gefolgt von der Fläche A. Die Flexibilität F nimmt mit 
einer Gewichtung von 0,05 in diesem Szenario nur eine untergeordnete Rolle ein. Zusätzlich wird 
aufgrund der differierenden Größenordnungen der einzelnen Zielfunktionen eine Normierung aller 
Zielfunktionen nach (3.10) vorgenommen. 

 

( ) ( )
( )

( ) ( )

( ) ( )

( )

: :
:

max( : ) max( : )

: :

max( : ) max( :

RV PaketPrüfung i RV PaketPrüfung i
RV PaketPrüfung i P A

RV PaketPrüfung RV PaketPrüfung

RV PaketPrüfung i RV PaketPrüfung i
T F

RV PaketPrüfung RV

ZF ZF
CF

ZF ZF

ZF ZF

ZF ZF

α α

α α

+

+ +

P A

P A

T F

T F ( )

 
)

mit 0,35,  0,2,  0,4 und 0,05

PaketPrüfung

P A T Fα α α α= = = =

 (6.5) 

Tabelle 6-5 zeigt die Werte für die genannten Bewertungsmaße der einzelnen Realisierungsvarian-
ten. Es wurden als Grundlage für die Analyse die in Abschnitt 6.3.1.5 dargelegten Synthesewerte 
des Hardwarebeschleunigers und die in Tabelle 8-3, Seite 224 präsentierten Werte aller weiteren 
Systemkomponenten verwendet. Ausgangspunkt des Hardwaresystems ist ein N-Core, entweder als 
Controller (Ctrl) zur Ansteuerung eines Wishbonebus-gekoppelten Hardwarebeschleunigers (WB 
HW Acc, vgl. Abschnitt 7.7) oder als Verarbeitungseinheit (PE / N-Core SW) nebst Speicher und 
Wishbonebus. Angenommen wird weiterhin, dass, augrund des Anwendungsszenarios, nur ein Pro-
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zessor und ein Hardwarebeschleuniger am Bus aktiv sind. Es gelten somit die Werte für Kommuni-
kation und Kalkulation aus Abbildung 7-21 a), wobei für die 64-Bit-Varianten aufgrund des 32-Bit-
breiten Busses gleiche Taktzahlen für Kommunikation, aber entsprechend geringere Werte zur Kal-
kulation angesetzt werden (vgl. Abschnitt 6.3.1.5). Zu den Daten der Hardwarebeschleuniger wer-
den zusätzlich die Werte der Wrapper (vgl. Tabelle 4-5) hinzugezählt, wobei zu bemerken ist, dass 
die 64-Bit-Variante ca. 1,5 mal so groß wie die 32-Bit-Variante ausfällt. Zur Betrachtung der Ma-
ximalfrequenzen des Hardwarebeschleunigers wurde hypothetisch angenommen, dass der N-Core 
bei gleichem Flächenbedarf ebenfalls mit den betreffenden Frequenzen betreibbar ist. In der Reali-
tät müsste auf eine andere CPU als Controller zurückgegriffen werden, die mit der jeweiligen Fre-
quenz noch zu betreiben ist, vgl. Tabelle 2-3. 

Tabelle 6-5: Auflistung der kostenfunktionsrelevanten Daten der Realisierungsvarianten 

und der resultierenden Kosten 

 

Abbildung 6-24 zeigt die sich nach (6.5) ergebenden Kosten sowie deren Zusammensetzung anhand 
der Anteile der einzelnen Zielfunktionen für alle Realisierungsvarianten. Für die oben aufgestellten 
Randbedingungen zeigt sich das System RV 8 als das kostenoptimale in diesem Vergleich. Auf-
grund der relativ hohen Anforderungen an Performanz und der zugleich geringen Leistungsaufnah-
me liefert die Kostenfunktion die geringsten Kosten für ein System mit dem schnellen 64-Bit-
Hardwarebeschleuniger bei gleichzeitig geringster Taktfrequenz von 200 MHz in der 90-nm-
Technologie. Die höheren Taktfrequenzen erhöhen die Kosten für die Verlustleistung, 32-Bit-breite 
Beschleuniger liefern weniger Performanz. Die Software-basierten Lösungen sind sowohl in puncto 
Verlustleistungsaufnahme als auch bzgl. der Performanz nicht konkurrenzfähig.  

Abbildung 6-25 stellt die Kosten für ein Anwendungsszenario mit anderen Randbedingungen dar: 
Die Performanz wurde hier als die dominierende Charakteristik ausgewählt, die Gewichtungen, die 
dieser Analyse zugrunde liegen, lauten 0,05,  0,05,  0,85 und 0,05

P A T F
α α α α= = = = . Die Ge-

wichtungen innerhalb der einzelnen Zielfunktionen wurden identisch belassen. Ein derartiges An-
forderungsschema wäre repräsentativ für z. B. Komponenten des Zugangsnetzwerks (vgl. Abschnitt 
7.6), wobei ggf. höhere Anforderungen an die Fehlertoleranz bestünden. Unter den neuen Bedin-

Pdyn,PE 

[mW]
Pdyn,Ctrl 

[mW]
Pdyn,Mem 

[mW]
Pdyn,Com 

[mW]
APE 

[mm²]
ACtrl 

[mm²]
AMem 

[mm²]
ACom 

[mm²]
TTex,PE 

[µs]
FWV 

[%]
FPG 

[%]
FFT 

[%]

RV 1 32 Bit / 200 MHz 1,300 10,800 35,600 0,010 0,030 0,160 0,466 0,050 9,295 80 5 5 0,239
RV 2 64 Bit / 200 MHz 2,000 10,800 35,600 0,010 0,050 0,160 0,466 0,050 3,675 80 5 5 0,243
RV 3 32 Bit / 333,3 MHz 2,400 17,998 59,327 0,010 0,031 0,160 0,466 0,050 5,578 80 5 5 0,271
RV 4 64 Bit / 333,3 MHz 3,600 17,998 59,327 0,010 0,054 0,160 0,466 0,050 2,205 80 5 5 0,292
RV 5 32 Bit / 556 MHz 4,100 29,484 97,188 0,010 0,034 0,160 0,466 0,050 3,344 80 5 5 0,337
RV 6 64 Bit / 500 MHz 5,500 27,000 90,780 0,010 0,059 0,160 0,466 0,050 1,470 80 5 5 0,357
RV 7 32 Bit / 200 MHz 2,400 9,000 10,200 0,006 0,020 0,120 0,466 0,020 9,295 80 5 5 0,210
RV 8 64 Bit / 200 MHz 3,200 9,000 10,200 0,006 0,030 0,120 0,466 0,020 3,675 80 5 5 0,205
RV 9 32 Bit / 333,3 MHz 4,300 14,999 16,998 0,006 0,023 0,120 0,466 0,020 5,578 80 5 5 0,236
RV 10 64 Bit / 333,3 MHz 6,000 14,999 16,998 0,006 0,034 0,120 0,466 0,020 2,205 80 5 5 0,251
RV 11 32 Bit / 546 MHz 7,400 24,570 28,356 0,006 0,031 0,120 0,466 0,020 3,405 80 5 5 0,298
RV 12 64 Bit / 510 MHz 9,800 22,950 28,356 0,006 0,053 0,120 0,466 0,020 1,441 80 5 5 0,332
RV 13 N-Core (SW) 200 MHz 10,800 0,000 35,600 0,010 0,160 0 0,466 0,050 97,475 95 100 10 0,744
RV 14 N-Core (SW) 333,3 MHz 17,998 0,000 59,327 0,010 0,160 0 0,466 0,050 58,491 95 100 10 0,668
RV 15 N-Core (SW) 556 MHz 30,024 0,000 98,968 0,010 0,160 0 0,466 0,050 35,063 95 100 10 0,712
RV 16 N-Core (SW) 200 MHz 9,000 0,000 10,200 0,006 0,120 0 0,466 0,020 97,475 95 100 10 0,667
RV 17 N-Core (SW) 333,3 MHz 14,999 0,000 16,998 0,006 0,120 0 0,466 0,020 58,491 95 100 10 0,568
RV 18 N-Core (SW) 556 MHz 25,020 0,000 28,356 0,006 0,120 0 0,466 0,020 35,063 95 100 10 0,574

Werte des N-Cores wurden hypothetisch hochgerechnet

Realisierungsvariante
Bewertungsmaß

Werte beziehen sich auf maximal realisierbare Taktfrequenz der Verarbeitungseinheit (PE), 
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gungen liefert ein Kostenvergleich die Realisierungsvariante RV 10 als „pareto-optimale“ Lösung. 
Dieses System bietet eine hohe Performanz bei moderater Verlustleistung. Würde ein System mit 
nahezu maximaler Performanz gesucht und würden die Gewichtungen der Kostenfunktion zu 

 0,01 und 0,97
P A F T

α α α α= = = = gesetzt, so qualifizierte sich RV 12 als optimaler Kandidat. 

Abbildung 6-24: Kostenvergleich der unterschiedlichen Realisierungsvarianten zur Paketprüfung,  
bei einer Wahl der Gewichtungen zu 0,35,  0, 2,  0, 4 und 0, 05

P A T F
α α α α= = = =  

Abbildung 6-26 zeigt die Ergebnisse einer anderen Spezifikation mit den Gewichtungen der Kos-
tenfunktion  0,49 und 0,01

P F T A
α α α α= = = = , wie sie für sehr zuverlässige Systeme mit be-

schränkten Ressourcen wie z. B. Satelliten oder Weltraumsonden zutreffen könnten. In diesem Fall 
wären Performanz und Flächenbedarf den beiden anderen Kostenmaßen stark untergeordnet, und 
die gegebenen Anforderungen würden von RV 16 am besten erfüllt, einem prozessorbasierten Sys-
tem mit geringer Frequenz in der moderneren Technologie. Zusätzliche Impulse könnte die Einbe-
ziehung der Fertigungskosten für die jeweilige Standardzellentechnologie geben, diese dürfen aber 
hier aus Gründen der Geheimhaltung nicht genannt werden. 

In diesem Abschnitt wurde anhand beispielhafter Analysen die Anwendung des kostenfunktionsba-
sierten Auswahlverfahrens (vgl. Kapitel 3) zur Bestimmung eines diskreten pareto-optimalen Sys-
tems (nach Definition 13) für ein spezifiziertes Anwendungsszenario vorgestellt. Die Bewertung 
mit Hilfe der Kostenfunktionen unterstützt den Systemarchitekten, aber auch den kaufmännischen 
Bereich bei der Auswahl eines ressourceneffizienten Entwurfs. In den gezeigten Untersuchungen 
erscheinen die gefundenen Lösungen nach kurzer Diskussion bereits als die plausibelsten, dies ist 
aufgrund der gewollten Einfachheit des Beispiels nicht anders zu erwarten. Bei komplexeren Sys-
temen, wie z. B. Chip-Multiprozessoren mit deutlich mehr Komponenten und diffizileren Anforde-
rungen liegen die Lösungen selten so auf der Hand. Gerade hier kann eine formale Bewertung ihre 
Leistungsfähigkeit beweisen. Eine automatisierte Bewertung mit Hilfe dieser Methode wäre eben-
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falls eine sinnvolle Erweiterung des in Abschnitt 7.5 vorgestellten DSLAM-System-Explorers. Die 
Integration der notwendigen Maßnahmen gestaltete sich zudem relativ einfach. 

Abbildung 6-25: Kostenvergleich der unterschiedlichen Realisierungsvarianten zur Paketprüfung,  
bei einer Wahl der Gewichtungen zu 0, 05,  0, 05,  0,85 und 0, 05

P A T F
α α α α= = = =  

Abbildung 6-26: Kostenvergleich der unterschiedlichen Realisierungsvarianten zur Paketprüfung,  
bei einer Wahl der Gewichtungen zu  0, 49 und 0, 01

P F T A
α α α α= = = =  
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6.5 Implementierte anwendungsspezifische Hardwarebeschleuniger 

Im Folgenden werden wesentliche Erweiterungen der Hardware, die im Rahmen dieser Arbeit für 
die GigaNetIC-Architektur, zumeist für netzwerkspezifische Anwendungsszenarien (vgl. Kapitel 7) 
entwickelt wurden, kurz aufgelistet.  

Abbildung 6-27: Übersicht der implementierten Erweiterungen zur Performanzsteigerung  

des GigaNetIC-Systems für die 130-nm-Standardzellentechnologie 

Abbildung 6-27 zeigt eine Auswahl der vorgenommenen Erweiterungen, angefangen bei der Erwei-
terung der Prozessorkerns durch zusätzliche Funktionalitäten (vgl. Abschnitt 4.3.2), die zunächst 
keine Beschleunigung hervorrufen, aber die Verwendbarkeit des Systems deutlich erhöhen.  

Im nächsten Schritt kommen dann die in Abschnitt 6.2 vorgestellten Instruktionssatzerweiterungen 
hinzu. Diese erhöhen den Flächenbedarf nur marginal, vermögen aber die Leistungsfähigkeit für die 
betrachteten Anwendungen bis zu 25 % zu beschleunigen. 

Ein weiteres Mittel zur Erhöhung der Verarbeitungsgeschwindigkeit stellen die eng-gekoppelten 
Hardwarebeschleuniger dar. Im Rahmen dieser Arbeit wurden mehrere Hardwarebeschleuniger zur 
Generierung und Prüfung von unterschiedlichen CRC(Cyclic Redundancy Check)-Prüfsummen 
entwickelt. Mit der eng-gekoppelten CRC-Hardwareerweiterung wird eine Beschleunigung um den 
Faktor 15 gegenüber einer reinen Software-Implementierung erzielt [116]. In [118] konnte mit Hilfe 
einer neuen Beschleuniger-Architektur für CRC8 und CRC32 sogar eine Geschwindigkeitssteige-
rung gegenüber der Prozessorimplementierung von 81 bzw. sogar 437 bei loser Kopplung und ma-
ximaler Betriebsfrequenz erreicht werden. 

Hardwarebeschleuniger dieser Stufe mit einer losen Kopplung an das System, mit ggf. sogar deut-
lich höherer Betriebsfrequenz, erzielen in der Regel weitaus größere Beschleunigungen, benötigen 
jedoch auch mehr Fläche und Entwicklungsaufwand. Hierzu zählen ein IP-Filter-Modul zur Prü-
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fung spezifischer Charakteristika in IP-Paketen, der bereits im vorigen Abschnitt vorgestellte IP-
Headercheck-Hardwarebeschleuniger, Module zur Ver- und Entschlüsselung nach dem 
AES(Advanced Encryption Standard)-Verfahren, die ebenso für sicherheitsrelevante Zwecke einge-
setzt werden wie die bereits beschriebenen Instruktionssatzerweiterungen zur Beschleunigung von 
IPSec-Protokollen (vgl. Abschnitt 6.2.4). Schließlich wurde noch ein inhaltsadressierbarer Speicher, 
CAM (Content Addressable Memory) realisiert, der besonders zur Beschleunigung von Adress-
raumzugehörigkeitsüberprüfungen (Beschleunigung von 1230 verglichen mit einer reinen Software-
lösung) beiträgt [164].  

Viele dieser weniger flexibel, jedoch hoch-performanten Einheiten sind im Zusammenhang mit der 
Analyse des IP-DSLAM-Referenzbenchmarks [141][119] entstanden und dienen zur weiteren Be-
schleunigung rechenintensiver Funktionen dieser Netzwerkanwendung. Die Erstellung, Verifikati-
on, Optimierung und anschließende Charakterisierung der Hardwareerweiterungen bzgl. des An-
wendungsszenarios erfolgte mit der in den Kapiteln 5 und 6 vorgestellten GigaNetIC-Werkzeug-
kette. 

Aufgrund der Vielzahl der hier gewonnenen Ergebnisse können in diesem Rahmen keine weiteren 
Ausführungen zu den einzelnen Modulen erfolgen. Um einen Eindruck von der Performanzsteige-
rung durch die einzelnen Hardwarebeschleuniger bzw. durch die Erweiterungen für das Gesamtsys-
tem vermitteln zu können und Auswirkungen von Systemmodifikationen bzw. von Lastveränderun-
gen schnell abschätzen zu können, wurde ein spezielles Analyse- und Visualisierungswerkzeug, der 
DSLAM-Explorer entwickelt. Dieses Werkzeug wird in Abschnitt 7.5 detaillierter vorgestellt.  

Die letzte Stufe der Beschleunigung ist der Einsatz der parallelen Struktur der GigaNetIC-
Architektur. Dies kann mehrere Prozessoren innerhalb eines Clusters ggf. nebst dem realisierten 
Multiprozessorcache (vgl. Abschnitt 6.7) bedeuten, oder aber clusterübergreifende Parallelität unter 
Verwendung eines geeigneten Programmiermodells (vgl. 4.5) und schließt ggf. die Nutzung parallel 
instanziierter Hardwarebeschleuniger mit ein. Analysen zu diesen Aspekten der Beschleunigung 
innerhalb der GigaNetIC-Architektur werden in [141][130][118][115][109][131][113], in Abschnitt 
6.7 und in Kapitel 8.3 angestellt. 

6.6 Optimierungspotential der Kommunikationsinfrastrukt ur 

Die GigaNoC-Kommunikationsinfrastruktur der GigaNetIC-Architektur lässt sich ebenfalls auf das 
jeweils angestrebte Anwendungsszenario hin optimieren. Neben den allgemein üblichen Methoden 
zur Verlustleistungsminimierung wie z. B. Frequenz- und Spannungsskalierung (vgl. Abbildung 
6-3) sind auch systemspezifische Maßnahmen möglich. Stellt das zukünftige Anwendungszenario 
besonders hohe Anforderungen an Bandbreite und Latenz der Übertragungswege, so lassen sich z. 
B. die Flitbreite und oder die Anzahl der Ports der Switch-Boxen erhöhen (vgl. Kapitel 4). Auch die 
FIFO-Tiefe der Eingangsports könnte deutlich erhöht werden, um etwaige Spitzen im Datenverkehr 
abpuffern zu können. Auf Clusterebene kann zur Minimierung der Busblockierung bzw. zur Erhö-
hung des Durchsatzes sowohl bei der Wishbone- als auch bei der AMBA-Realisierung die Daten-
breite erhöht werden oder bei häufiger Interprozessorkommunikation ggf. auf die AMBA-Switch-
Matrix-Realisierung zurückgegriffen werden. Im Falle der Verlustleistungsreduktion ergibt sich 
neben den genannten Möglichkeiten noch eine weitere, die die Anforderungen unterschiedlicher 
Datenströme innerhalb des Chip-Multiprozessors ausnutzt. Die Überlegung basiert auf dem Phäno-
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men, dass die Signalübertragung über längere Distanzen (so genannte Long Lines) mit Hilfe parallel 
zueinander geführter Leitungen (in der Darstellung als Bus bezeichnet) in der betrachteten Stan-
dardzellentechnologie deutlich mehr Verlustleistung bedeutet bzw. Energie benötigt, als wenn die 
Daten seriell über eine Leitung übertragen werden. Dieser Zusammenhang ist in [165] detailliert 
dargelegt, wo ferner Koppelkapazitäten zwischen den einzelnen Bussignalen und benachbarten Me-
talllagen sowie die eigentliche Leitungskapazität berücksichtigt werden. Besonders auf den höheren 
Metalllagen machen sich geometriebedingt die Koppelkapazitäten bei der parallelen Übertragung 
häufig besonders bemerkbar. Diese Lagen (in dem aufgeführten Beispiel betrifft dies vor allem die 
Metalllagen 7 und 8, da diese für die Long Lines Verwendung finden) werden für die Inter-Switch-
Box-Verbindungen benötigt, die, wie in Kapitel 4 aufgezeigt, massiv parallel45 ausgeführt sind. 
Sollte es in Abhängigkeit vom jeweiligen Anwendungsszenario häufig Datenpakete geben, die eine 
geringere Übertragungsgeschwindigkeit bzw. eine höhere Latenz tolerieren, so könnte ein bereits 
vorgesehener serieller Übertragungsmechanismus eine deutliche Reduktion der Verlustleistung be-
deuten. Hierzu würde eine oder eine kleinere Anzahl von Leitungen verwendet, wobei bei der Ver-
wendung mehrerer Leitungen diese immer durch einige ungenutzte voneinander getrennt wären, um 
so die Kopplung möglichst klein zu halten. So würden niederpriore Datenpakete seriell bzw. partiell 
seriell übertragen, was gerade im Hinblick auf die Leistungsfähigkeit des GigaNoCs sicherlich für 
viele Bereiche ausreichen würde. 

Abbildung 6-28: Verlustleistungsoptimierung der Kommunikationsinfrastruktur bei der Übertragung nieder p-

riorer Daten im Hinblick auf eine 130-nm-Standardzellentechnologie 

Abbildung 6-28 verdeutlicht die Verlustleistungsoptimierung der Kommunikationsinfrastruktur bei 
der Übertragung niederpriorer Daten im Hinblick auf eine 130-nm-Standardzellentechnologie. In 
dem Diagramm ist der Energiebedarf für die Übertragung von 64 Bit über eine einfache Leitung 
verglichen mit einer Übertragung über einen 64-Bit-breiten Bus mit minimal zulässigem Abstand 
der Leitungen in Abhängigkeit von der Länge der Übertragungsstrecke und der Metallebene aufget-

                                                 

45 Die derzeitige Implementierung verwendet ca. 200 Signalleitungen zwischen zwei Ports benachbarter Switch-Boxen. 
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ragen46. Bei der Berechnung wurden die anfallenden Koppelkapazitäten für die untersuchte Techno-
logie nach Herstellerangaben berücksichtigt. Der Energiebedarf ist speziell im Bereich einer Lei-
tungslänge von 2 bis 3 mm besonders prägnant und deshalb besonders zu berücksichtigen, da diese 
Leitungslängen nach dem derzeitigen Floorplan (vgl. Abschnitt 8.2.3) in der Größenordnung der 
Inter-Switch-Box-Verbindungen liegen. Die Übertragung von 64 Datenbits über eine parallele Bus-
struktur, wie sie derzeit beim GigaNoC vorgesehen ist, benötigt auf der obersten Metalllage (Metall 
8) 44,58 pJ verglichen mit lediglich 10,35 pJ bei der seriellen Variante auf der gleichen Metalllage. 
So ließe sich für niederpriore Daten bei geringer Auslastung des NoCs das bis zu 4,3-fache an 
Energie einsparen47. Betrachtet man die Energie, die notwendig ist, um ein NAND2-Gatter mit ei-
ner Treiberstärke von 2 der gleichen 130-nm-Standardzellentechnologie umzuladen, so liegt diese 
zwischen 0,009 und 0,013 pJ. Dies liegt fast vier Größenordnungen unter der Energie, die für die 
Übertragung der Nettodatenmenge eines Flits und die damit verbundenen Umladevorgänge der 
Koppelkapazitäten der Leitungen aufgebracht werden muss. Der nicht zu vernachlässigende Anteil 
der Kommunikation am Gesamtenergiebedarf wird hier verdeutlicht. 

Mit Hilfe der in Kapitel 5 vorgestellten Entwicklungsumgebungen der GigaNetIC-Architektur für 
die SoC-Ebene lassen sich die Bandbreitenanforderungen der Anwendungen komfortabel analysie-
ren. Die entsprechenden Pakettypen werden gekennzeichnet und können mit Hilfe dieser langsame-
ren aber energieeffizienteren Übertragungsmethode, z. B. durch Setzen eines bestimmten Steuerbits, 
mit Hilfe von Instruktionsflits (vgl. Abschnitt 4.2.2.1) transportiert werden. In [166] wird ein ähnli-
cher Ansatz aufgezeigt, der eine Reduktion des Energiebedarfs um mehr als 30 % ermöglicht, ohne 
einen nennenswerten Verlust der Übertragungskapazität zu verzeichnen. Eine Bandbreitenreduktion 
ist hingegen bei dem hier vorgestellten Ansatz bewusst gewählt und erlaubt deshalb die weitaus 
höhere Reduktion des Energiebedarfs von mehr als 76 %. 

Eine weitere Möglichkeit, eine effizientere Kommunikation zu ermöglichen, ist die Realisierung 
einer global asynchronen, lokal synchronen (GALS) Kommunikationsinfrastruktur, die zukünftig in 
das GigaNoC-On-Chip-Netzwerk einfließen wird. Hierdurch können unterschiedliche Taktdomänen 
sowie lokal unterschiedliche Versorgungsspannungen (Voltage Islands) realisiert werden, was eben-
falls zur Verlustleistungsminimierung beiträgt. 

6.7 Optimierung im Hinblick auf die Speicherhierarchie 

Auf Clusterebene lässt sich die GigaNetIC-Architektur für eine Reihe von Anwendungen durch die 
Integration des in Abschnitt 4.4.2 beschriebenen Multiprozessorcaches beschleunigen. Inwieweit 
sich eine Verwendung dieser Hardwareoption für das jeweilige Einsatzgebiet eignet, lässt sich mit 

                                                 

46 Für die Schaltvorgänge werden die Worst-Case-Bedingungen angenommen, d. h. die umzuladenden Kapazitäten 

werden mit jedem neuen Takt umgeladen. Beim Bus werden für benachbarte Leitungen gegensätzliche Umladevorgän-

ge angesetzt, um die maximal benötigte Energie zum Transport von Nachrichten zu ermitteln. 

47 In diesem Zusammenhang ist zu erwähnen, dass Verlustleistungsanteile der treibenden Ausgangsregister vernachläs-

sigt werden, da diese im Sinne der Schalthäufigkeiten keinen abweichenden Beitrag liefern würden. Lediglich der 

Mehraufwand durch die zusätzliche, allerdings sehr klein ausfallende Steuerlogik wäre ggf. noch in die Kalkulation 

einzubeziehen. 
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den in Kapitel 5 vorgestellten Simulationsumgebungen bereits im Vorfeld komfortabel ermitteln. 
Sowohl die SystemC-Umgebung SiMPLE, als auch die VHDL-Umgebung PERFMON wurde voll-
ständig für die Analyse des Multiprozessorcaches ausgelegt. Ferner gibt es eine prototypische 
FPGA-Realisierung für das Rapid-Prototyping System RAPTOR2000 [113]. 

Abbildung 6-29 zeigt die Eingriffe in das Standard-GigaNetIC-System, die notwendig sind, um es 
in die Multiprozessorcachevariante zu transformieren. Auf SoC-Ebene sind keine Veränderungen 
notwendig, auf Clusterebene wird das lokale Bussystem durch die leistungsfähige AHB-Switch-
matrix ersetzt, die für die GigaNetIC-Multiprozessorcaches benötigt wird. Das N-Core Subsystem 
verändert sich insofern, als die in Abschnitt 4.4.2 dargelegten AHB-Schnittstellen integriert werden. 
Weitere Details zu den Kennwerten dieser Implementierung werden in Abschnitt 8.2.2 gegeben. 

Abbildung 6-29: Transformation vom busbasierten GigaNetIC-System zur Variante mit  

GigaNetIC-Multiprozessorcache und einer AHB-Switchmatrix auf Clusterebene 

Abbildung 6-30 verdeutlicht die Möglichkeiten zeitgleicher Kommunikation im GigaNetIC-
Multiprozessorcachesystem. Diese parallelen Transfers werden u. a. durch den Einsatz der AMBA-
Switchmatrix ermöglicht und helfen, die lokale On-Chip-Kommunikation auf Clusterebene im Ver-
gleich zu einem einfachen Bussystem deutlich zu beschleunigen. In Abbildung 6-30 sind folgende, 
simultan ablaufende Transfers dargestellt: (1) kennzeichnet einen Snooping-Zugriff von Ca-
che Nr. 0, (2) stellt einen Zugriff von N-Core 1 auf den Communication-Controller dar, bei (3) han-
delt es sich um einen Zugriff auf Daten, die sich bereits im Cache Nr. 1 befinden und durch Direct-
Data-Intervention (vgl. Abschnitt 4.4.2) in den Cache Nr. 2 transportiert werden, und (4) beschreibt 
einen Lesezugriff von N-Core 3 auf den gemeinsamen lokalen Speicher des Clusters. 
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In [113] haben wir eine Reihe von Anwendungen48 im Hinblick auf den Einsatz des Multiprozes-
sorcaches untersucht. Hierbei handelt es sich sowohl um Universalanwendungen wie den Dhrysto-
ne-Benchmark4, um die Sortieralgorithmen Bubble- und Quicksort und um einen Benchmark aus 
der Netzwerkdatenverarbeitung. Im Rahmen der Analysen wurde eine Vielzahl von Parametern va-
riiert. Hierzu zählen die Art der Cachearchitektur (Split oder Unified), die Assoziativität (2, 4 und 
8), die Anzahl der Cachelines pro Weg (32, 64, 128 oder 256), die Weite einer Cacheline (32, 64, 
128 oder 256 Bit) und die Zugriffslatenz auf den Hauptspeicher (0, 5, 10 oder 20 Takte)49. Zusätz-
lich wurde zum Vergleich eine Architekturvariante ohne Cache ausgemessen. Die Simulationen 
wurden sowohl mit SiMPLE (vgl. Abschnitt 5.2) als auch mit PERFMON (vgl. Abschnitt 5.3) 
durchgeführt. Obwohl die Abweichungen der Ergebnisse von SiMPLE zur exakten Ausführung mit 
PERFMON nur im einstelligen Prozentbereich liegen, wurde die sehr zeitintensive HDL-Simulation 
vorgezogen. Mit Hilfe der in Abschnitt 5.4 vorgestellten MultiSim-Entwurfsraumexploration konn-
ten die Simulationsläufe vollautomatisch ablaufen. Die ermittelten, exakten Laufzeitergebnisse 
wurden auf vier Arbeitsplatzrechner (P4, 3 GHz HT mit 1 GB Arbeitsspeicher) verteilt und benötig-
ten eine Simulationslaufzeit von ca. je 4 Wochen. Diese Zahlen verdeutlichen den immensen Zeit-
aufwand, der für die detaillierte HDL-Simulation benötigt wird. Aufgrund der mittlerweile erreich-
ten Genauigkeit der SiMPLE-Umgebung werden solch aufwändige Simulationen immer seltener 
notwendig sein. Zur Entwurfsraumexploration wird in den meisten Fällen die SiMPLE-Umgebung 
ausreichend genaue Werte liefern. 

Abbildung 6-30: Parallele Transfers in der AMBA-Matrix auf Cluster-Ebene 

                                                 

48 Diese Auswahl von Anwendungen wird ebenfalls bei weiteren Analysen der GigaNetIC-Architektur, speziell im 

Hinblick auf die Ressourceneffizienz, in Abschnitt 8.3 verwendet. 

49 Die Zugriffslatenz auf den Hauptspeicher ist mit maximal 20 Takten eher gering gewählt, allerdings den Gegebenhei-

ten des GigaNetIC-Systems angepasst. 
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Abbildung 6-31 zeigt die Ergebnisse der detaillierten Benchmarksimulation mit PERFMON. Die 
dargestellten Werte wurden auf die Standard-Cachekonfiguration (256 Cachelines, 128 Bit breit, 
Assoziativität von 2, Unified-Cache und ein 32-Bit-breites Businterface, 250 MHz) normiert. Zum 
Vergleich sind ebenfalls Flächenbedarf und Leistungswerte für ein System ohne Cache, aber mit 
gleicher Latenz zum Hauptspeicher, in dieser Betrachtung sind es zehn Takte, aufgetragen. Es ist zu 
beachten, dass diese Variante nicht zwangsläufig die in Abschnitt 4.2.4 beschriebene Wishbonebus-
Architektur widerspiegelt, da hier normalerweise alle Daten im lokalen SRAM des N-Cores vorge-
halten werden und dieser eine Latenz von zwei Takten besitzt. Sollten die Daten jedoch vom Spei-
cher einer benachbarten Switch-Box geholt werden müssen, so würde sich eine vergleichbare La-
tenz ergeben, vgl. Tabelle 4-6. Es sind jeweils die Trends für vier weitere markante Varianten der 
insgesamt 2716 untersuchten Cachekonfigurationen aufgezeichnet. 

Abbildung 6-31: Flächenbedarf vs. Performanz von GigaNetIC-Cluster-Konfigurationen für ausgewählte 

Benchmarkszenarien, normiert auf die Standardcachekonfiguration 

Die angesetzten Parameter der untersuchten Varianten werden in Tabelle 6-6 aufgezeigt. Die konk-
reten Messwerte der in Abbildung 6-31 gezeigten Untersuchungen sind Tabelle 6-7 zu entnehmen.  

Tabelle 6-6: Ressourcenbedarf der untersuchten Cacherealisierungen in 90-nm-Standardzellentechnologie 
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zessorcache deutlich leistungsfähiger sind, als die Realisierung ohne Cache, allerdings zu einem 
nicht zu vernachlässigenden Preis in Form einer Flächenverdopplung bis hin zu mehr als einer Ver-
dreifachung der Fläche bei der Variante mit hoher Assoziativität. Die Analysen zeigen, dass bereits 
relativ geringe Variationen der Cacheparameter merkliche Auswirkungen auf die Leistungsfähigkeit 
und die Ausführungsgeschwindigkeit einzelner Anwendungen haben können. So zeigt z. B. die 
Verwendung der Variante mit halbierter Anzahl der Cachelines dennoch einen Geschwindigkeits-
zuwachs um den Faktor 4,5 bei der Verarbeitung des Bubblesort-Algorithmus. Dies wird erreicht, 
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obwohl die Fläche um 11 % geringer ist als die der Standardvariante. Allerdings zählt der Bubble-
sort-Algorithmus wie auch der IPHC-Small-Benchmark zu den beiden untersuchten Anwendungen, 
die weniger von den hier eingestellten Parametern des Caches profitieren. Bei beiden Anwendungen 
ist die zeitliche Lokalität relativ gering, d. h. es müssen häufig neue Daten nachgeladen werden. 
Dieses Phänomen ist bei den anderen Benchmarks weniger stark ausgeprägt, so dass der Geschwin-
digkeitszuwachs weit höher liegt. So lassen sich durch den Einsatz der Split-Cache-Variante der 
Quicksort-Algorithmus und der Dhrystone-Benchmark um mehr als 22,8- bzw. 20,8-fach beschleu-
nigt verarbeiten. 

Tabelle 6-7: Kosten-Nutzen-Analyse verschiedener Cachekonfigurationen relativ zur Standardkonfiguration 

 

Abbildung 6-32 zeigt die Energieersparnis auf, die sich für die einzelnen Benchmarks unter Ver-
wendung der Standard-Cachevariante erzielen lässt. In der Standardausführung benötigt die Cache-
variante teilweise 73 % weniger Energie als das System ohne Cache. Allerdings gibt es auch An-
wendungen, wie z. B. IPHC-Small (+18,1 %) oder Bubblesort (+13,9 %), für die sich die Standard-
variante weniger gut eignet. Gleichwohl lassen sich auch hier weitaus höhere Performanzsteigerun-
gen und Energiereduktionen mit anderen Varianten des GigaNetIC-Multiprozessorcaches erzielen, 
vgl. Tabelle 6-7.  

Abbildung 6-32: Energieersparnis durch Verwendung des GigaNetIC-Multiprozessorcaches  

für ausgewählte Anwendungen 

Die Analysen zeigen, dass zum einen eine intensive Evaluation des zukünftigen Anwendungsszena-
rios, sollte dies bereits vor der Chiprealisierung bekannt sein, sehr ratsam ist. Die GigaNetIC-
Architektur stellt deshalb eine Vielzahl von Möglichkeiten zur Verfügung, um durch geeignete Pa-
rametrisierung eine möglichst optimale Systemkonfiguration für die angestrebten Einsatzzwecke 
bereits in einer frühen Entwurfsphase zu erkennen, vgl. Kapitel 5. Zum anderen zeigen die anges-
tellten Analysen das Potential des GigaNetIC-Multiprozessorcaches zur Beschleunigung von An-
wendungen auf, was allerdings von Fall zu Fall mit den deutlich erhöhten Flächenkosten im Sinne 
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der Ressourceneffizienz abzuwägen ist. Weitere Analysen und Details zur Steigerung der Ressour-
ceneffizienz durch den hier untersuchten GigaNetIC-Multiprozessorcache sind [113] zu entnehmen. 

6.8 Optimierung auf SoC-Ebene – Einsatz paralleler Prozessorfelder 

Im Rahmen der Leistungssteigerung der GigaNetIC-Architektur sind natürlich auch Aspekte der 
Softwareoptimierung zu berücksichtigen. Der parallele Aufbau der GigaNetIC-Prozessorcluster 
bietet eine leistungsfähige Struktur zur Verarbeitung vielfältiger Problemstellungen, die nach GUS-

TAFSON (vgl. Abschnitt 2.1.2) durch Parallelität beschleunigt verarbeitet werden können. Auf der 
SoC-Ebene, die clusterübergreifend Aufgaben bearbeitet, ergeben sich mehrere potentielle Optimie-
rungsmöglichkeiten bzgl. der effizienten Nutzung des Chip-Multiprozessors. Dies betrifft zum ei-
nen die bereits in Abschnitt 6.2.1 vorgestellte compilerbasierte Werkzeugkette und den daraus re-
sultierenden Compiler, dessen Effizienz ganz entscheidend für die Performanz der hier eingesetzten 
N-Core-Prozessorkerne ist. Zum anderen spielt das jeweils verwendete Programmiermodell (vgl. 
Abschnitt 4.5) eine wesentliche Rolle bei der wirksamen Ausnutzung der parallelen Prozessorfel-
der. Zu diesen beiden Aspekten, die sozusagen die Systemsoftware der Architektur darstellen 
kommt dann die jeweilige Anwendungssoftware, die auf den jeweiligen Prozessorkernen eingesetzt 
wird. Diese Optimierungsmaßnahmen seitens der Software helfen so auch nach Fertigstellung der 
Hardware, die Ressourceneffizienz des Chip-Multiprozessorsystems zu steigern. 

6.8.1 Optimierung der System- und Anwendungssoftware 

Durch zielgerichtete Optimierung der bei der GigaNetIC-Architektur eingesetzten Systemsoftware, 
die die Verarbeitung durch die einzelnen Prozessorkerne des Chip-Multiprozessors koordiniert und 
den korrekten Ablauf gewährleistet, lassen sich deutliche Beschleunigungen der Verarbeitung sowie 
Minimierung bzw. Optimierung der On-Chip-Kommunikation erreichen. Sind die Randbedingun-
gen und Anforderungen der zukünftigen Anwendung bekannt, oder lassen sich diese im Vorfeld 
abschätzen, so kann dieser Teil des GigaNetIC-Softwaresystems im Hinblick auf Lastverteilung, 
Kommunikationsmethoden, wie z. B. Art und Anzahl der Synchronisationsbarrieren, und Speicher-
organisation angepasst werden.  

Die Ergebnisse dieser Arbeit profitieren zum einen von den erzielten Verbesserungen im Bereich 
der Compileroptimierung, zum anderen von Optimierungen und Erweiterungen der Simulatoren 
speziell im Bereich der Simulationsgeschwindigkeit50.  

Beispielhaft sei hier die im Rahmen der in Kapitel 7 näher diskutierten Netzwerkanwendungen im-
plementierte IP-Paket-Prüfsummenfunktion als eine potentielle Anwendung der GigaNetIC-Archi-
tektur erwähnt. Diese verwirklicht die in Abschnitt 6.3.1 beschriebene Funktionalität des Hardware-
beschleunigers auf dem N-Core-Prozessorkern. Paketköpfe des Internet-Protokolls werden auf Kor-

                                                 

50 An der Auswertung und der Verbesserung der Aspekte bzgl. der Softwarebestandteile der GigaNetIC-Architektur 

wird maßgeblich an den Fachgebieten Programmiersprachen und Übersetzer, Prof. Dr. Uwe Kastens sowie Algorithmen 

und Komplexität, Prof. Dr. math. Friedhelm Meyer auf der Heide gearbeitet. Die Verbesserungen flossen stets in diese 

Arbeit mit ein, finden in diesem Rahmen jedoch keine weitere Erwähnung, da hier schaltungstechnische Aspekte im 

Vordergrund stehen. Für nähere Informationen sei deshalb auf die einschlägigen Veröffentlichungen der beiden genann-

ten Fachgebiete der Universität Paderborn verwiesen. 
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rektheit und Inhalt geprüft. Bei der Evaluierung dieser IP-Headercheck-Funktion zeigte sich, dass 
der Bedarf für eine Beschleunigung der Bearbeitung bestand. Zunächst wurde eine Optimierung der 
Software vorgenommen. Hierbei wurden vier Varianten des Headerchecks implementiert, die mit 
16 bzw. 32 Bit breiten Daten arbeiteten. Mit einer optimierten 32-Bit-Version konnte letztendlich 
eine Reduktion der benötigten Anzahl an Taktzyklen von anfangs 284 auf 108 erzielt werden. Zu-
sätzlich wurde nach Superinstruktionen zur Performanzsteigerung gesucht. Die Analysen zeigten, 
dass in diesem Fall keine vielversprechenden Instruktionssatzerweiterungen für den gegebenen Al-
gorithmus realisiert werden konnten. Mit den bestehenden Erweiterungen (vgl. Abschnitt 6.2.4) 
konnte lediglich eine Reduktion um fünf Taktzyklen auf 103 Takte erreicht werden. Dennoch zeigt 
dieses Beispiel bereits das Potential, dass die Softwareoptimierung bietet, konnte doch eine bereits 
effiziente Realisierung unter Berücksichtigung spezieller Compilereigenheiten etc. um mehr als das 
2,7-fache beschleunigt werden.  

Aufgrund der benötigten Bandbreite und der Häufigkeit des Funktionsaufrufs innerhalb des An-
wendungsszenarios war die hier erreichte Beschleunigung dennoch nicht ausreichend, so dass, wie 
in Abbildung 6-5 als Option bereits aufgezeigt, ein spezieller Hardwarebeschleuniger (vgl. Ab-
schnitt 6.3.1) entwickelt werden musste. Dieser erlaubt die Ausführung der inneren Prüffunktion in 
8 Takten und dies ggf. bei einer deutlich höheren Betriebsfrequenz als die des N-Cores. Mit Hilfe 
dieser anwendungsspezifischen Hardware wird so nochmals eine Beschleunigung von mindestens 
12,8 verglichen mit der optimierten Software erreicht. 

Grundsätzlich wurde bei der Implementierung der in dieser Arbeit entstandenen Software, stets auf 
eine möglichst effiziente Realisierung geachtet, allerdings lag das Hauptaugenmerk auf einer guten 
Portierbarkeit auch auf andere Prozessorarchitekturen, die ggf. anstelle des N-Cores in die GigaNet-
IC-Cluster integriert werden können. So wurde bewusst weitestgehend auf Besonderheiten des 
Compilers und auf optimierten Assemblercode verzichtet, um die Interoperabilität zu gewährleisten. 
Dies bedeutet im Sinne der Ressourceneffizienz einen Kompromiss zwischen Performanz und Zu-
kunftssicherheit. Im Weiteren werden nur finale Softwarerealisierungen betrachtet, wobei die wäh-
rend des Entwicklungsprozesses durchgeführten Optimierungen an der System- und Anwendungs-
software unerwähnt bleiben. 

6.8.2 Optimierung der Aufgabenverteilung und Interprozesskommunikation 

Die Abbildung von protokollverarbeitenden Funktionen bzw. von Programmen allgemein, auf Mul-
tiprozessorsysteme stellt zumeist eine zeitaufwändige und zugleich performanzentscheidende Auf-
gabe dar. Komplexe Hardwarearchitekturen wie der GigaNetIC-Chip-Multiprozessor beinhalten 
eine Vielzahl von Parametern, wie Betriebsfrequenzen, Datenraten, Speichertypen und -größen etc., 
die entweder verändert oder zumindest berücksichtigt werden müssen/können. Eine weitgehend 
automatisierte Lösung dieses Problems würde die Zeit für Softwareentwicklung und -parti-
tionierung deutlich verkürzen und den Softwareentwickler stark entlasten.  

Der NoC-basierte Ansatz des GigaNetIC-Systems eröffnet eine gute Skalierbarkeit speziell auch im 
Hinblick auf zukünftige Schaltungstechnologien, so dass in naher Zukunft weitaus größere Systeme 
denkbar sind, als derzeit realisierbar. Gerade hier lohnt sich ein automatisiertes Vorgehen.  

In [102][103][104] haben wir eine Methodik vorgestellt, die eine automatisierte Abbildung speziell 
von netzwerkspezifischen Protokollverarbeitungsabläufen auf Chip-Multiprozessoren zur Erhöhung 
der Ressourceneffizienz durchführt. NetAMap (Network Application Mapper) ist das resultierende 
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Werkzeug [104], das, aufbauend auf der PERFMON-Umgebung [116], eine Aufteilung und zeitli-
che Planung (Scheduling) der zu verarbeitenden Prozeduren und die resultierende Interprozess-
kommunikation durchführt. Hierbei können Zielarchitekturen mit unterschiedlichsten On-Chip-
Netzwerken berücksichtigt werden. Der Bestandteil „Network“ im Namen des Softwarewerkzeugs 
ist hier ambivalent zu sehen. Zum einen bezieht es sich auf die bisher analysierten Anwendungs-
klassen aus dem Bereich der Netzwerkprozessoren und zum anderen greift es die NoC-basierte 
Struktur der Zielarchitekturen auf.  

Abbildung 6-33: Prinzipieller Ablauf der automatisierten Anwendungsabbildung für  

Chip-Multiprozessorsysteme mit Hilfe von NetAMap 

Das durchgeführte Scheduling beruht auf dem Ansatz des Generalized Processor Sharing (GPS) 
[167], dass u. a. eine Reduzierung des benötigten Pufferspeichers in den einzelnen Knoten bewirkt. 
Jedem Verarbeitungsschritt (Flusssegment bzw. Flow Segment) werden separat Kommunikations-
bandbreite und Berechnungszeit zugewiesen. Dies erlaubt es dem Algorithmus, individuelle Verar-
beitungsprioritäten zu berücksichtigen und zudem eine blockadefreie, deterministische Verarbei-
tung und Weiterleitung der Daten durchzuführen. Dies setzt derzeit die Kenntnis über die maximale 
Verarbeitungszeit (Worst-Case Execution Times - WCET) von Funktionen schon während der Ent-
wurfszeit voraus, was den Einsatzbereich von NetAMap in einem gewissen Rahmen einschränkt, 
durch das in [102][103][104] untersuchte, selbst definierte MANet-Protokoll aber kompensiert wur-
de.  

Das Problem der Abbildung der Anwendung wird mit Hilfe der ganzzahligen linearen Optimierung 
(Integer Linear Programming / ILP) gelöst. Um die aus komplexitätstheoretischer Sicht NP-
schwere Aufgabe in angemessener Zeit lösen zu können, wird hier ein hierarchischer Ansatz ge-
wählt, der die Anzahl der Variablen klein hält [102]. Dies geschieht durch Partitionierung der Prob-
lemgröße auf einstellbare Cluster des Zielsystems. 

NetAMap unterstützt zwei Optimierungsziele: Entweder wird die Latenz, die die Pakete während 
der Verarbeitung erfahren, oder aber der Energiebedarf für die Verarbeitung minimiert. Das ILP 
besteht somit aus den Kostenfunktionen und einem Satz technologieabhängiger Bedingungen, die u. 
a. mit der PERFMON-Umgebung ermittelt werden. Die entworfene Abbildungsmethode ermöglicht 
eine einfache Softwarepartitionierung für das SoC und eine detaillierte Entwurfsraumexploration 
und Bewertung potentieller Lösungen. Flaschenhälse bzgl. Performanz und Durchsatz können rela-
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tiv leicht lokalisiert und ggf. durch Hard- oder Softwareoptimierung behoben werden. Abbildung 
6-33 zeigt den prinzipiellen Ablauf der automatisierten Anwendungsabbildung auf Chip-Multipro-
zessorsysteme mit Hilfe von NetAMap. 

Abbildung 6-34: Ressourcenbedarf zweier CMP-Architekturen (A = alternative Architektur, B = GigaNetIC)  im 

Hinblick auf pareto-optimale Punkte im Entwurfsraum bzgl. einer MANet-Anwendung [102] 

In [102] haben wir NetAMap eingesetzt, um die Ressourceneffizienz zweier unterschiedlicher Chip-
Multiprozessorsysteme in Bezug auf ein selbst entwickeltes Protokoll für mobile Ad-Hoc-
Netzwerke (MANets) zu bestimmen. Bei beiden CMPs wird der S-Core [108] als Prozessorkern ge-
nutzt, die Systeme unterscheiden sich in dem verwendeten On-Chip-Netzwerk. System A verwendet 
ein Netzwerk, das auf dem Circuit-Switched-Prinzip (vgl. Abschnitt 2.3.2) aufbaut und determinis-
tisch bzgl. der Latenz ist. An jeder Switch-Box dieses Systems ist jeweils nur eine Verarbeitungs-
einheit angeschlossen. Die Switch-Boxen sind flächenmäßig ein Drittel kleiner als die des Systems 
B. Bei diesem handelt es sich um eine GigaNetIC-Architektur mit vier Prozessorkernen pro Cluster. 
Abbildung 6-34 zeigt die Resultate der Abbildung der Anwendung mittels NetAMap auf Varianten 
beider CMP-Architekturen. Die Blasen kennzeichnen die Punkte im Entwurfsraum die durch die 
jeweiligen Systemvarianten im Hinblick auf Fläche (A), Energiebedarf (E) und Latenz (D) erreicht 
werden. Die Notation ist dabei wie folgt zu interpretieren: A/B CMP-Architektur (A = Architektur 
aus [102], B = GigaNetIC-Architektur) – Anzahl der instantiierten Verarbeitungseinheiten – Opti-
mierungsstrategie (D = Optimierung der Latenz, E = Optimierung des Energiebedarfs). Bei der 
Analyse der Ergebnisse zeigt sich, dass, bis auf die Variante mit 64 Verarbeitungseinheiten und Op-
timierung auf Energie, alle Systeme der GigaNetIC-Architektur pareto-optimale Punkte im Ent-
wurfsraum darstellen. Pareto-optimal bedeutet in diesem Zusammenhang, dass keine der anderen 
Systemkonfigurationen besser bzgl. einer der Optimiergrößen und jeweiligen Optimierungsstrategie 
abschneidet. Den geringsten Energie- und Flächenbedarf zeigt das GigaNetIC-System mit 16 Ver-
arbeitungseinheiten (B16E). Diese Variante hat allerdings die größte Latenz. Die GigaNetIC-
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Architektur dominiert in diesem Vergleich die alternative Architektur. Hier zeigte sich, dass mehre-
re Verarbeitungseinheiten pro Routingknoten für die gegebene Anwendung vorteilhafter sind. 

Weitere Details zu der hier aufgezeigten Methode der ressourceneffizienten Abbildung von An-
wendungen auf Chip-Multiprozessoren sind [102][103][104] und [168] zu entnehmen. 

6.9 Zusammenfassung 

In diesem Kapitel wurde eine Methode vorgestellt, die es dem Entwickler ermöglicht, die zunächst 
universell einsetzbare und nicht spezialisierte Struktur des GigaNetIC-Chip-Multiprozessors für ein 
gewünschtes Anwendungsgebiet im Hinblick auf die Ressourceneffizienz der Architektur zu opti-
mieren. Der hierarchisch gerichtete Ansatz bietet den Vorteil, dass, unterstützt durch die entwickel-
te Werkzeugkette, zunächst mit vergleichsweise geringen Modifikationen die Leistungsfähigkeit 
bzw. der Ressourcenbedarf der Chip-Multiprozessor-Architektur optimiert werden kann. Durch die 
leistungsfähigen Profilierungsmöglichkeiten der GigaNetIC-Entwicklungsumgebung lassen sich 
besonders rechenintensive Funktionen der Anwendungssoftware schnell lokalisieren. Durch an-
schließende Analyse können sowohl betreffende Stellen der Software als auch, falls notwendig, die 
Hardware zielgerichtet optimiert werden. Diese Optimierung geschieht im Regelfall hierarchisch 
gerichtet, angefangen bei Instruktionssatzerweiterungen, über eng-gekoppelte Hardwarebeschleuni-
ger bis hin zu lose gekoppelten Hardwarebeschleunigern. Letztendlich steht dem Softwarearchitek-
ten dann die Nutzung der parallelen Struktur zur parallelen Bearbeitung einer Aufgabe zur Verfü-
gung, deren Leistungsfähigkeit ggf. durch den GigaNetIC-Multiprozessorcache zusätzlich erhöht 
werden kann. 

Die aufzuwendende Zeit für diese Optimierungsmaßnahmen auf Prozessorebene liegt im Bereich 
von einigen Stunden bis hin zu wenigen Tagen. Sollten Modifikationen auf Prozessorebene nicht 
genügend Optimierungspotential für die gegebene Anwendung bieten, so kann dies bereits inner-
halb der ersten Stunde mit Hilfe der Werkzeugkette festgestellt werden. In diesem Fall können tief-
ergehende Optimierungen in Form der Realisierung spezialisierter Hardwarebeschleuniger durchge-
führt werden. Dieser Prozess benötigt im Allgemeinen deutlich mehr Zeit und Ressourcen.  

Die werkzeuggestützte Analyse des jeweiligen Anwendungsszenarios liefert Aussagen sowohl über 
den Rechenleistungsbedarf aber auch über die benötigten Bandbreiten der On-Chip-Kommuni-
kation. Die GigaNetIC-Architektur eröffnet, aufgrund der generisch gehaltenen Struktur, zahlreiche 
Möglichkeiten, das System anwendungsgemäß zu optimieren.  

Geeignete Anwendungen lassen sich durch NetAMap automatisiert auf das Chip-Multiprozessor-
system abbilden. Dies verkürzt Entwicklungszeiten und führt zu einer besonders effizienten Nut-
zung der parallelen Architektur. Unterstützt durch die Werkzeugkette lässt sich für die jeweils be-
trachtete Anwendung ein geeigneter Kompromiss zwischen Leistungszuwachs, Verlustleistungs-
aufnahme, Flächenbedarf und zusätzlich zu erwartendem Entwicklungsaufwand treffen. Pareto-
optimale Punkte des Entwurfsraums können so effizient angenähert werden. Anhand einer exempla-
rischen Analyse verschiedener Realisierungsvarianten für ein paketverarbeitendes System wurde 
die in Kapitel 3 vorgestellte Kostenfunktionsmethode verifiziert und deren Leistungsfähigkeit auf-
gezeigt. Mit Hilfe definierter Parameter für die Zielfunktionen der vier Kostenmaße Leistungsauf-
nahme, Flächenbedarf, Performanz und Zukunftssicherheit sowie der resultierenden Kostenfunktion 
wurden in Relation zu den definierten Randbedingungen pareto-optimale Systeme für unterschiedli-
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che Einsatzgebiete ermittelt. Systemarchitekten wird hiermit eine nützliche Entscheidungshilfe für 
den Entwurf ressourceneffizienter Implementierungen an die Hand gegeben. 

Im folgenden Kapitel werden am Beispiel von Netzwerkanwendungen die hier vorgestellten Opti-
mierungsmöglichkeiten auf die GigaNetIC-Architektur angewendet und detailliert diskutiert.  
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7 Performanzanalyse skalierbarer GigaNetIC-Netzwerkprozessoren 
Eine immer größer werdende Herausforderung der heutigen Informationsverarbeitung stellt das 
Verarbeiten von Daten in Sprach- und Datennetzwerken dar. Insbesondere das Internet und die da-
mit verbundenen Dienste erfordern neue leistungsfähigere Architektur-Ansätze, die speziell auf die 
inhärente Parallelität von Netzwerkdaten ausgelegt sein sollten. Für solche Einsatzgebiete sind pa-
rallele Architekturen wie die GigaNetIC-Chip-Multiprozessorarchitektur prädestiniert. Eine Viel-
zahl von Verarbeitungseinheiten kann integriert werden und die Netzwerkverarbeitung voneinander 
disjunkter, unkorrelierter Netzwerkpakete durchführen, wobei sich die globale Zustandsverwaltung 
häufig als einzige gemeinsame Aufgabe (Task) darstellt, die einem der Kerne aus dem Prozessor-
Pool zugewiesen werden kann (vgl. Abschnitt 4.5.3). Diese Klasse von Anwendungsszenarien ska-
liert sehr gut (vgl. GUSTAFSONS Gesetz, Abschnitt 2.1.2). 

Abbildung 7-1: Zunehmende Vernetzung unserer Umgebung, die durch ressourceneffiziente skalierbare,  

Netzwerkknoten ermöglicht werden kann 

Die von Netzwerkknoten geforderte Funktionalität geht in immer stärkerem Maße über das reine 
Weiterleiten von Datenpaketen hinaus. Neben der Auswertung der im Paketkopf (Header) abgeleg-
ten Adressen, die dazu dient, Daten an den richtigen Empfänger weiterzuleiten, werden zusätzliche 
Informationen verarbeitet, um erweiterte Dienste wie Verschlüsselung (z. B. für Virtual Private 
Networks), Network Address Translation (NAT) oder Priorisierung Quality of Service (QoS) anzu-
bieten. Die Leistungsfähigkeit, die in Netzwerkkomponenten für diese Verarbeitungsmechanismen 
zur Verfügung gestellt werden muss, kann mit herkömmlichen Prozessorarchitekturen nicht erreicht 
werden. In der Vergangenheit haben sich daher ASIC-basierte Lösungen etabliert, die – teilweise 
unterstützt durch RISC-Prozessoren – die geforderte Leistungsfähigkeit bieten. Nachteile ASIC-
basierter Systeme sind allerdings relativ lange Entwicklungszeiten und hohe Entwicklungs- und 
Fertigungskosten. Insbesondere Änderungen der Netzwerkprotokolle sind oft mit aufwändigen und 
teuren Überarbeitungen (Redesigns) verbunden. Vor diesem Hintergrund wurden in den letzen Jah-
ren verstärkt so genannte Netzwerkprozessoren entwickelt. Netzwerkprozessoren sind program-
mierbare Spezialbausteine für den Aufbau von Netzwerkkomponenten, die den geringeren Preis und 
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die Flexibilität von RISC-Prozessoren mit der Leistungsfähigkeit und Skalierbarkeit von anwen-
dungsspezifischen Bausteinen kombinieren. Eine Optimierung der Architektur für die Paketverar-
beitung wird vorrangig durch drei Mechanismen erreicht: Modifikation des Instruktionssatzes, 
Hinzufügen von Hardwarebeschleunigern sowie Entwurf von On-Chip-Architekturen, die Paral-
lelverarbeitung und Pipelining ausnutzen, vgl. auch Kapitel 6. Obwohl Implementierungen von 
Netzwerkprozessoren erst seit wenigen Jahren verfügbar sind, gab es bereits im Jahre 2002 über 30 
Hersteller von kommerziellen Netzwerkprozessoren [169], die sich in ihrem Aufbau teilweise deut-
lich unterscheiden, darunter so bekannte Namen wie Intel (IXP2800), IBM (PowerNP), Motorola 
(C-5) oder Cisco (PXF). 

Abbildung 7-1 zeigt wesentliche Einsatzgebiete für Netzwerkprozessoren auf. Augenscheinlich 
wird hier, dass je nach Funktion der Netzwerkkomponente oft gleichartige Algorithmen verarbeitet 
werden müssen, allerdings in deutlich unterschiedlichem Umfang, Zeitrahmen und bei mobilen Ge-
räten teilweise mit sehr eingeschränkten Energieressourcen. Die Randbedingungen bzw. Anforde-
rungen unterscheiden sich mitunter beträchtlich. Ein mobiles Endgerät benötigt weniger Rechen-
leistung als ein Router des Kernnetzwerks, verarbeitet einige wenige Datenströme, hat aber auch ein 
sehr limitiertes Energiebudget. Dem Router hingegen wird ein höheres Kontingent zugeschrieben, 
er muss jedoch eine weitaus höhere Bandbreite, verbunden mit deutlich höherer Rechenleistung zur 
Verfügung stellen. Mittlerweile spielt allerdings auch bei diesen Hochleistungskomponenten des 
Netzwerks die Leistungsaufnahme eine immer größer werdende Rolle, da die Kosten für Kühlung 
und Strom bei großen Anlagen einen immer größer werdenden Stellenwert einnehmen [13], vgl. 
Kapitel 2. Auch die Lärmbelästigung durch etwaig benötigte Lüfter wird, speziell im Bereich der 
„letzten Meile“, also den Verteileranlagen im Bereich der Hausanschlüsse der Endkunden, immer 
stärker diskutiert. Könnte man den sich hieraus ergebenden Anforderungen mit einem ressourcenef-
fizienten Architekturkonzept gerecht werden, so würden sich u. a. gravierende wirtschaftliche Vor-
teile im Sinne von – Economies of Scale –, häufig auch als Skaleneffekt bezeichnet, ergeben. Hard-
wareentwickler wären bei einer modularen, skalierfähigen Bauweise der Netzwerkprozessor-
architektur in der Lage, eine hohe Wiederverwendbarkeit und somit Entwurfszeitersparnisse zu er-
zielen. Verarbeitungseinheiten mit höheren Rechenleistungsanforderungen könnten aus kleineren 
leistungsschwächeren Verarbeitungseinheiten zusammengesetzt werden und durch Parallelverarbei-
tung ihren Anforderungen ressourceneffizient gerecht werden. 

Softwareentwickler könnten ein einheitliches Programmiermodell verwenden und die Produktivi-
tätskurve würde aus Gründen der Wiederverwendbarkeit der Software ebenso wie bei der Hardware 
deutlich gesteigert. Die GigaNetIC-Architektur eröffnet diese Möglichkeiten, weshalb im Folgen-
den eine tiefere Analyse GigaNetIC-basierter Netzwerkprozessoren für Anwendungen aus dem Zu-
gangsnetzwerkbereich (Access Networks) und dem Kernnetzwerkbereich (Core Network) vorges-
tellt werden. Im Bereich mobiler Anwendungen (MANets) wurde die Leistungsfähigkeit der Giga-
NetIC-Architektur bereits skizziert, vgl. Abschnitt 6.8.2. 

7.1 Einsatzgebiet im Zugangsnetzwerk – DSLAM 

Eines der Einsatzgebiete für einen GigaNetIC-basierten Netzwerkprozessor ist die Anbindung der 
„letzten Meile“, bei der es um die Bündelung bzw. Verteilung von DSL(Digital Subscriber Line)-
Anschlüssen geht. Die hierfür benötigten Knoten, die im Zugangs(Access)-Bereich des Netzwerks 
anzusiedeln sind, nennt man DSLAMs (DSL Access Multiplexer). Abbildung 7-2 skizziert dieses 
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Anwendungsszenario, bei dem N-Core-basierte GigaNetIC-Chip-Multiprozessor-Systeme sowohl 
in dem eigentlichen DSLAM aber auch in skalierter Weise in den Routern des Kernnetzwerks und 
den Endgeräten (Customer-Premises Equipment / CPEs) in den Haushalten der Verbraucher einge-
setzt werden, um so eine gute Kosteneffizienz erzielen zu können. 

Abbildung 7-2: Einsatz GigaNetIC-basierter Netzwerkprozessoren in einem DSLAM-Anwendungsszenario 

Hauptkomponenten eines DSLAMs sind heute bis zu 64 Linecards, die jeweils bis zu 96 DSL-
Anschlüsse (Ports) zur Verfügung stellen, und eine Uplinkcard, die den Verkehr zum Netzbetreiber 
(Internet Service Provider / ISP) regelt. Die Linecards sind über eine leistungsfähige Kopplung 
(Backplane) mit einer oder zwei Uplinkcards verbunden. Aus Kostengründen werden diese Kom-
munikationskanäle in Zukunft immer häufiger ethernetbasiert sein [141].  

Abbildung 7-3: DSLAM-System-Komponenten 

Abbildung 7-3 zeigt schematisch die Komponenten und die logischen Datenflussrichtungen inner-
halb eines DSLAMs. Die sich ergebenden Bandbreiten B sind für die vier unterschiedlichen Fälle 
eingetragen. Bei einem DSLAM unterscheidet man prinzipiell zwischen zwei Flussrichtungen, den 
Uplink, über den die CPEs der Endkunden den Diensteanbieter (ISP) erreichen, und den, in den 
meisten Fällen breitbandigeren Downlink, über den die Daten zu den Endkunden übertragen wer-
den. Dieser Systemaufbau erfordert in den einzelnen Komponenten spezielle Funktionen. Diese 
müssen zudem mit, den auftretenden Bandbreiten angepassten, Ressourcen verarbeitet werden. Die 
entsprechenden Überlegungen zu den funktionalen, wie auch verkehrsmodellbedingten Anforde-
rungen an einen IP(Internet Protokoll)-basierten DSLAM (kurz: IP-DSLAM) werden im nächsten 
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Abschnitt 7.2 in einem von uns definierten neuartigen IP-DSLAM-Benchmark formuliert [141]. Ein 
herkömmlicher DSLAM ist nach dem OSI-Referenzmodell (vgl. Abschnitt 2.3.2) auf Schicht zwei 
angesiedelt und so für das IP-Protokoll transparent. Der modernere IP-DSLAM stellt zusätzliche 
Dienste zur Verfügung und kann deshalb auch IP-Datenverkehr terminieren bzw. verarbeiten. 

DSL-basierte Internetzugänge, die zu den so genannten Breitbandanschlüssen zählen, haben, nicht 
nur in Deutschland, in den vergangenen Jahren einen immensen Zuwachs erfahren. Seit 2002 liegen 
die jährlichen Zuwachsraten der DSL-Anschlüsse in Deutschland bei ca. 50 %, was Ende 2006 eine 
Gesamtsumme von 14,9 Mio. Breitbandzugängen ausmachte [170]. Seit 2003 steigt das Breitband-
verkehrsvolumen in Deutschland jährlich um ca. 30 % und betrug 2006 nach Schätzungen ca. 
876 Mio. GByte [170]. Diese Zahlen zeigen, dass das DSLAM-Anwendungsgebiet sowohl von der 
Anzahl der benötigten Verarbeitungseinheiten als auch aufgrund der stetig wachsenden Anfor-
derungen an die benötigten Recheneinheiten wirtschaftlich und wissenschaftlich interessant ist. Um 
den Herausforderungen gerecht werden zu können, müssen skalierbare und zugleich zukunftssiche-
re Netzwerkprozessorarchitekturen im Sinne der Anwendungssoftware und der Programmierbarkeit 
entwickelt werden. Im Folgenden wird die Verwendbarkeit der GigaNetIC-Architektur für den Ein-
satz in solchen DSLAM-Anwendungen untersucht und auf spezielle Erfordernisse dieses Anwen-
dungsgebiets hin optimiert. 

7.2 Definition eines IP-DSLAM-Benchmarks auf Systemebene 

Um eine eingängige Bewertung der GigaNetIC-basierten Netzwerkprozessorarchitektur für ein IP-
DSLAM-Anwendungsszenario durchführen zu können, bedurfte es einer genauen Charakterisierung 
der Anforderungen die diese Anwendung and die Hard- und Software stellt. Eine Benchmarkdefini-
tion einschließlich eines realistischen Verkehrsmodells (Traffic Model) war notwendig. Zu dem 
Zeitpunkt unserer Analysen waren bereits mehrere Netzwerkprozessorbenchmarks bekannt, von 
denen wir in [141] acht der bekanntesten in Bezug auf die Anwendbarkeit auf ein IP-DSLAM-
Szenario diskutieren. 

Tabelle 7-1: Charakteristika etablierter Netzwerkbenchmarks 

 

Dies waren im Einzelnen: CommBench [171], EEMBC [161], MiBench [172], NetBench [173], 
NPF Benchmarking Group [174], LinleyBench [175], Intel Corporation Benchmark [176] und 
NPBench [177]. Die wesentlichen Charakteristika der genannten Benchmarks sind in Tabelle 7-1 

Granularität Quellcode Verfügbarkeit Verkehrsmodell Profilierung

CommBench Mikrobenchmark C auf Anfrage Nein Nein

EEMBC Mikrobenchmark C Mitgliedschaft Ja Ja

MiBench Mikrobenchmark C frei verfügbar Ja Nein

NPBench Mikrobenchmark C auf Anfrage Nein Nein

NetBench
Mikrobenchmark/
Funktionsebene

C frei verfügbar Ja Nein

NPF-BWG Funktionsebene Nein nur textuell Ja Ja

Intel Funktionsebene Mikro-Engine-C nein k. A. Ja

LinleyBench Funktionsebene Nein Lizenz Ja Ja

GigaNetIC
IP-DSLAM-Referenz-BM

Systemebene C auf Anfrage Ja Ja
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aufgeführt. Bei der Granularität der Benchmarks kann zwischen Mikro-, Funktions- und Systemebe-
ne unterschieden werden. Die Mehrzahl der hier erwähnten Benchmarks setzt auf Mikroebene an, d. 
h. es kommen elementare Tasks wie CRC-Funktionen und Tabellenauswertung (Table Lookup) zum 
Einsatz. Einige der Benchmarks setzen auf Funktionsebene an, wobei die am häufigsten verwendete 
Funktion im Weiterleiten von IPv4-Paketen (IPv4-Forwarding) besteht. Allerdings setzt keiner der 
Ansätze auf Systemebene an, was für eine realistische Modellierung eines IP-DSLAM-Benchmarks 
zwingend notwendig ist. 

Letztendlich kamen wir bei der Analyse dieser Benchmarks, der zugehörigen Verkehrsmodelle so-
wie der Profilierungsmöglichkeiten zu dem Schluss, dass sie nur unzureichend für ein IP-DSLAM-
Szenario auf System-/Taskgraphebene anwendbar waren. Deshalb haben wir in [141] einen eigenen 
IP-DSLAM-Benchmark nebst adaptivem Verkehrsmodell entworfen, der in der Forschungsabtei-
lung von Infineon Technologies zum IP-DSLAM-Referenzbenchmark ausgebaut wurde [178][119].  

7.2.1 Funktionelle Spezifikation 

Im Folgenden werden die für den IP-DSLAM-Benchmark relevanten Tasks kurz erläutert. Diese 
formen in Abhängigkeit von der Datenrichtung und der jeweiligen DSLAM-Systemkomponente 
den eigentlichen Systemebenen-Benchmark. 

Task-A – Parser. Im Task-A wird eine Gültigkeitsüberprüfung des Datenpakets durchgeführt. Ein 
Algorithmus, der die Maßgaben, die ein gültiges IPv4-Paket kennzeichnen, überprüft, wird in die-
sem Schritt durchlaufen. Schlägt die Überprüfung fehl, wird das Paket verworfen. 

Task-B – IP-Header Verification. Hier werden mittels eines Algorithmus aus [179] der IP-Paket-
kopf nach den Vorgaben sowie die IP-Headerprüfsumme verifiziert.  

Task-C – Classification. Der Algorithmus (IP-Filter) klassifiziert die Datenpakete unter Berück-
sichtigung der Quell- und Ziel-IP-Adresse, dem Quell- und dem Zielport und der Protokollkenn-
zeichnung. Anhand des Klassifizierungsergebnisses dieser fünf Tupel wird ein Zugangs(Access)-
Status ermittelt, der über das weitere Verfahren mit dem Paket entscheidet. Realisiert wird dies mit 
Hilfe einer individuell anpassbaren Vergleichstabelle, deren Einträge iterativ mit den jeweiligen 
fünf Tupeln der Pakete verglichen werden. Kann keine Tupelwert-Übereinstimmung ermittelt wer-
den, wird das Datenpaket verworfen. Im Downlink kann der Zugangs-Status für Datenvolumen-
begrenzungszwecke (Conditioning) eingesetzt werden, im Uplink können Bandbreitenzusagen (Ser-
vice Level Agreements / SLA) aufgrund des ermittelten Wertes kontrolliert bzw. eingehalten werden. 

Task-D – MC Address Mapping & Duplication. Task-D beschreibt die Funktionalität der Datenpa-
ketvervielfältigung im Sinne von Multicast bzw. Broadcast für Netzwerkteilnehmer.  

Task-E – Policing & Conditioning. Der Task-E fungiert als Überwachungsfunktion zum Ver-
kehrsmanagement (Policing) von ausgehenden Datenpaketen im Uplink. Im Downlink werden die 
Datenraten mit Hilfe von so genannten Token-Buckets reguliert. Die Verwendung dieser Buckets 
dient der Datenverkehrsglättung mit dem gewünschten Ziel, eine diskontinuierliche Datenverkehrs-
charakteristik so zu organisieren, dass annähernd kontinuierliche Datenströme entstehen (Conditio-
ning / Shaping).  

Task-F – AAL5 Segmentation. Um den derzeitigen Standards gerecht zu werden, wurde für die 
integrierte Nutzung des ATM(Asynchronous Transfer Mode)-Übertragungsverfahrens, eine Segmen-
tierung der Datenpakete in ATM-Zellen vorgesehen. Der Algorithmus nimmt diese Segmentbildung 



Kapitel 7. Performanzanalyse skalierbarer GigaNetIC-Netzwerkprozessoren 

 

188 

unter Maßgabe des AAL5(ATM Adaptation Layer 5)-Dienstes vor. Hierzu müssen u. a. die CRC8 
für jede ATM-Zelle als auch die CRC32 für das gesamte Paket berechnet werden. 

Task-G – NPF-ML  (Network Processor Forum Message Layer Protocol) – Tag-Generierung. 
Der Einsatz dieses Algorithmus ist nur auf der Uplinkcard (im Downlink) gegeben und wird zur 
Parametrisierung der Mehrfachzustellung (Small Group Multicast) der Datenpakete von der Uplink-
card in Richtung Linecard und dort letztendlich hin zum Endkunden verwendet. Multicast-Pakete, 
die als Ziel die gleiche Linecard haben, werden nicht dupliziert, sondern mit Hilfe einer Liste auf 
die entsprechenden Portnummern verteilt. Hierzu wird das NPF-ML-Protokoll verwendet.  

Task-H – Ethernet-Encapsulation & Forwarding. In diesem Schritt wird die Übermittlung des IP-
Pakets über Ethernet initiiert. Nach der Kapselung des Datenpakets in einen so genannten Ethernet-
Frame erfolgt das Weiterreichen an die Bit-Übertragungsschicht. Mit Hilfe des CRC32 wird die 
Prüfsumme unter Berücksichtigung der Ziel- und Quelladressen, des Type-Feldes und des Ethernet-
nutzdatenbereichs gebildet. Der Nutzdatenbereich enthält das zu transferierende Datenpaket.  

Für weitere Details zu den genannten Tasks sei an dieser Stelle auf [141] verwiesen. 

7.2.2 Implementierung 

Das erstellte Anwendungsszenario beschreibt eine Testumgebung, die die Funktionalität eines IP-
DSLAMs unter Verwendung der oben genannten Tasks realisiert und eine Weiterentwicklung des 
klassischen DSL-Access-Multiplexers der OSI-Schicht zwei darstellt. Die enthaltenen Erweiterun-
gen berücksichtigen u. a. Aspekte QoS(Quality of Service)-basierter Datenverarbeitung der dritten 
Schicht des OSI-Modells [34]. 

Tabelle 7-2: Taskzuordnung in Abhängigkeit von DSLAM-Komponente und Datenrichtung 

 

Die einzelnen Funktionalitäten des DSLAM-Anwendungsszenarios wurden in der Programmierspra-
che ANSI-C implementiert und sind in die oben genannten, in sich funktional geschlossenen Auf-
gaben (Tasks) unterteilt. Der Quellcode umfasst 37 Dateien mit insgesamt 4520 Codezeilen. Tabelle 
7-2 zeigt die sich in Abhängigkeit von der Datenrichtung des Paketstromes und der hardwaretechni-
schen Konfiguration ergebende Zuordnung der Tasks (auszuführende Tasks sind mit einem „x“ ge-
kennzeichnet). Zur sinnvollen Verwendung dieses synthetischen Benchmarks, müssen möglichst 
realitätsnahe Datenströme generiert werden, die sich stark an real auftretenden Gegebenheiten des 
Anwendungsgebiets orientieren. Die Konzeption dieser Daten wird im folgenden Abschnitt kurz 
vorgestellt. 

7.2.3 Verkehrsmodell 

Das Verkehrsmodell (Traffic Model / TM) definiert die im DSLAM auftretende Nutzlast und muss 
drei wesentliche Kategorien abdecken: Adressbereichsverteilung, QoS-Verteilungen und Paketgrö-
ßen-Verteilungen. 

Uplink Downlink Uplink Downlink
Task A: Parser X X X X
Task B: Headercheck X X X X
Task C: Classification X X
Task D: MC-Duplication X X
Task E: Policing & Conditioning X X
Task F: AAL5-Segmentation X X
Task G: NPF-ML X
Task H: Ethernet Encapsulation X X

Tasks
Uplinkcard Downlinkcard
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Adressbereiche. Zur Adressierung von Teilnehmergruppen im Anwendungsszenario wird ein IP-
Adressraum von 224.0.0.0 bis 239.255.255.255 verwendet. Dieser entspricht einem Klasse-D-Netz, 
welches zum Adressieren von Multicastgruppen genutzt wird. Im hier vorliegenden System sind 32 
Gruppen mit je 96 Teilnehmern definiert. Der Anteil der zu bearbeitenden Multicast-Pakete beläuft 
sich auf 1 % bis 9 % aller Pakete. Die übrigen 99 % bis 91 % der Pakete bilden die Menge der Uni-
cast-Pakete, die nur an einen Teilnehmer gesendet werden müssen. Zur Adressierung der maximal 
3072 Hosts wird ein Adressrahmen von x.y.0.0 bis x.y.12.0 gewählt, um alle Teilnehmer erreichen 
zu können. Die Quell- und Ziel-IP-Adressen liegen im gleichen Adressbereich. Weiterhin wird fest-
gelegt, dass bis zu 16 Flüsse über den Zielport (Layer 4) möglich sind. 

QoS. Die zu leistende Dienstgüte (QoS) ist abhängig von der Adressvereinbarung und den verwen-
deten Regeln zur Klassifizierung der Pakete. Die Klassifikationsregeln sind so ausgelegt, dass 50 % 
der Pakete bevorzugt weitergeleitet werden (Expedited Forwarding), 36 % den vier Subklassen des 
QoS entsprechend mit jeweils dreifacher Priorisierung bzgl. des Verwerfens (Assured Forwarding) 
zugesichert verarbeitet werden und die restlichen 14 % bei freier Bandbreite weitergeleitet werden 
(Best Effort).  

Paketgröße. Die Paketgrößen werden nach der etablierten 7:4:1-Verteilung, dem Internet Mix (iM-
ix) festgelegt. Er spiegelt eine durchschnittliche Paketgrößenverteilung, die häufig in der Realität zu 
messen ist, wider. Das bedeutet sieben Pakete minimaler Länge à 40 Byte51, die z. B. durch TCP-
Bestätigungen, aber nicht durch Nutzdaten hervorgerufen werden. Weiterhin werden vier Pakete 
mit 552 bzw. 576 Byte injiziert, die z. B. von TCP-Implementierungen die keine MTU(Maximum 
Transmission Unit)-Ermittlung durchführen, herrühren. Komplettiert wird das repräsentative Daten-
aufkommen durch ein Paket maximaler Länge à 1500 Byte, das z. B. von TCP-Implementierungen 
stammt, bei denen die maximale Übertragungsgröße festgelegt wurde. Weitere Details zur Vertei-
lung und Injektion der Pakete sind [141] zu entnehmen. Zu beachten ist, dass diese Paketgrößen 
sich immer ohne die 18-Byte-großen Ethernetheader verstehen. 

7.2.4 Bewertungsmethode zum Vergleich unterschiedlicher Architekturen 

Vorraussetzung zur Anwendung des IP-DSLAM-Benchmarks ist ein zyklenakkurater Simulator mit 
entsprechender Werkzeugkette, was nahezu unverzichtbar für den Erfolg einer Hardwarearchitektur 
ist und somit durchaus gefordert werden kann. Aufgrund der Benchmarkimplementierung in der 
Hochsprache C ist die Portierung auf eine Vielzahl von Zielarchitekturen relativ einfach. Es wird 
explizit keine Beschleunigung durch optimierte Assemblerroutinen angewendet oder empfohlen, da 
der Benchmark die Bewertung der gesamten Architektur zum Ziel hat, also auch die Compiler-
Werkzeugkette in die Performanzbewertung einbezogen werden soll. Dies liegt darin begründet, 
dass im untersuchten Anwendungsgebiet schnell auf sich verändernde oder zusätzliche Anforderun-
gen reagiert werden können soll. Außerdem gebietet eine ressourceneffiziente Architektur im Sinne 
von Definition 36 eine leichte Portierbarkeit auf zukünftige Systeme. Dies spricht für eine Imple-
mentierung der Anwendungssoftware in einer Hochsprache. Zusätzlich wird so die Wartbarkeit des 
Programmcodes deutlich erhöht. 

                                                 

51 In der Literatur wird teilweise auch 46 Byte anstelle der 40 Byte angenommen. 
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Um aussagekräftige Werte zum Vergleich unterschiedlicher Architekturen bzgl. der Performanz zu 
erhalten, wird folgende Normalisierungsfunktion angewendet: 

 [ ]#

t
t Tasks

p
p Pakete

Takte
Takte

Performanz
Tasks Größe Byte Bit

∈

∈

 =  ⋅  

∑

∑
 (7.1) 

#Tasks beziffert die Anzahl der eingesetzten Tasks und ist im Weiteren mit acht gleichzusetzen.  

7.2.5 DSLAM-Benchmarkanalysen für skalierbare GigaNetIC-CMPs 

In diesem Abschnitt werden erste Benchmarkergebnisse vorgestellt, die mit dem in Abschnitt 7.2 
vorgestellten IP-DSLAM-Benchmark gewonnen wurden. Zunächst werden zwei eingebettete Pro-
zessoren untersucht, zum einen der N-Core (vgl. Abschnitt 4.3.1) und zum anderen eine speziell auf 
Paketverarbeitung optimierte Verarbeitungseinheit (NPU-Core), ähnlich der aus [180][181]. Beim 
NPU-Core handelt es sich um einen 32-Bit-RISC-Kern, der über eine hardwareunterstützte Behand-
lung mehrerer Threads verfügt. Außerdem erlaubt seine 6-stufige Pipeline eine fast doppelt so hohe 
Betriebsfrequenz wie die des N-Core. Die betrachtete DSLAM-Ausbaustufe entspricht der in Abbil-

dung 7-3 vorgestellten Maximalsystemkonfiguration mit n = 64 Linecards und m = 96 xDSL-Ports.  

Abbildung 7-4: Anforderungen der einzelnen IP-DSLAM-Benchmarktasks  

an die Rechenleistung der eingebetteten Prozessoren 

Um die maximal mögliche Rechenlast zu bestimmen, wird ein Worst-Case-Szenario betrachtet, bei 
dem die maximalen Bandbreiteanforderungen ausgeschöpft werden, vgl. (7.2). 

Das zugrundeliegende Verkehrsmodell entspricht dem aus Abschnitt 7.2.3, wobei 2981 Pakete mit 
einer Gesamtgröße von 0,955 MByte verarbeitet wurden. Abbildung 7-4 zeigt die benötigten Takte 
für die Abarbeitung der einzelnen Tasks, sowie die Gesamtzahl der für den Benchmark benötigten 
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Takte, normiert auf die N-Core-Takte52. Augenscheinlich sind die besonders rechenintensiven Auf-
gaben die Tasks AAL5 und Ethernet, was durch die aufwändigen CRC-Prüfsummen und Kopier-
vorgänge der Pakete begründet ist. Der N-Core ist bis auf die Funktion AAL5 überall zeiteffizien-
ter, in Bezug auf die Anzahl benötigter Takte entscheidet er jeden Task für sich.  
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 (7.2) 

Im Durchschnitt benötigt der NPU-Core 3,5 Takte/Paket-Bit, wohingegen der N-Core weniger als 
1,3 Takte aufwenden muss. Eine grobe Analyse der Tasks bezüglich ihrer Abbildung auf die beiden 
Prozessoren zeigt schnell erste Flaschenhälse der reinen Paketverarbeitungseinheit (NPU-Core) auf. 
Der Instruktionssatz der Paketverarbeitungseinheit ist hoch spezialisiert für besondere Bitoperatio-
nen, aber beinhaltet nur eine eingeschränkte Menge an Universalbefehlen.  

Tabelle 7-3: Benötigte Takte des N-Cores  

 

Die Analysen zeigen, dass der positive Effekt dieser Spezialoperationen mehr als aufgehoben wird. 
Der Hauptgrund dafür liegt in der Verteilung der Instruktionshäufigkeiten. Können doch nur 10 % 
des Codes von den Spezialoperationen profitieren, wohingegen die verbleibenden 90 % des Codes 
Universalbefehle implizieren. Ein weiterer Punkt liegt in dem Compiler begründet, der weniger gut 
für die Instantiierung der Spezialbefehle geeignet ist. Abhilfe schaffen könnte eine völlige Restruk-
turierung des NPU-Core-Compilers, oder aber eine aufwändige Programmierung von Hand in Ma-
schinensprache (Assembler), was bezüglich der Wartung und Zukunftssicherheit äußerst bedenklich 
wäre53 und die Ressourceneffizienz deutlich herabsetzte. 

                                                 

52 Da der N-Core bzgl. der maximalen Taktfrequenz nur halb so schnell getaktet werden kann wie der NPU-Core, wird 

hier ein N-Core-Takt praktisch mit zwei NPU-Core-Takten gleichgesetzt. 

53 Die Ergebnisse dieser Studie führten zu einer kompletten Restrukturierung des Architekturansatzes bei dem bisher 

verwendeten NPU-Core. 

Downlink Uplink Downlink Uplink
Parser 74.500 74.500 74.500 74.500
Headercheck 396.373 399.353 396.373 417.233
Classification 1.358.874 - 1.358.874 -
MC Duplication 1.156.720 - 1.171.597 -
NPF-ML - - 169.571 -
Policing & Conditioning 414.587 - 414.587 -
AAL5 2.558.393 2.543.493 - -
CRC Beschleuniger 4.093.931 6.024.563 99.099 -
Ethernet Framing - 309.920 349.886 -
CRC in Software 43.023.639 63.901.032 966.966 -
Gesamt 10.053.378 9.351.829 4.034.487 491.733
Takte/Bit 1,255 1,167 1,986 0,061

N-Core Linecard Uplinkcard
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Tabelle 7-3 stellt die benötigten Takte des N-Core-Prozessorkerns für ein IP-DSLAM-Light-
Szenario, ähnlich dem in Tabelle 7-2 vorgestellten Modell, das den asymmetrischen Charakter der 
Anwendung besonders deutlich macht. In diesem Fall benötigt der N-Core 1,167 Takte/Bit für den 
Uplink und 1,255 Takte/Bit für den Downlink auf der Linecard, wohingegen im Uplink auf der Up-
linkcard nur 0,061 Takte/Bit anfallen. Besonders rechenintensiv ist der Downlink auf der Uplink-
card mit 1,986 Takten/Bit. Um einen Eindruck von den Leistungsanforderungen einer Linecard54 
mit m = 96 Ports eines IP-DSLAMs (vgl. Abbildung 7-3) zu vermitteln, wird in Tabelle 7-4 die An-
zahl der jeweils benötigten Verarbeitungseinheiten im Hinblick auf die betrachteten DSL-
Varianten, vgl. (7.2), aufgetragen. Eine Leistungseinbuße aufgrund der Parallelverarbeitung wird 
hierbei mit konstant 10 % angesetzt. Die Taktfrequenz des N-Cores wurde mit 300 MHz und die 
des NPU-Cores mit 600 MHz angenommen. 

Tabelle 7-4: Benötigte Verarbeitungseinheiten für eine Linecard des jeweiligen DSLAM-Szenarios 

 

Mit 14 NPU-Cores bzw. 10 N-Cores ist der Downlink bei VDSL besonders rechenintensiv und kann 
nur sehr teuer mit parallelen Prozessoren bewerkstelligt werden. In diesem Szenario muss eine Da-
tenmenge von 2,112 GBit/s pro Linecard verarbeitet werden. 

Mit Hilfe des hier vorgestellten Benchmarks für das IP-DSLAM-Szenario können im Anschluss die 
in Kapitel 6 vorgestellten Optimierungsmaßnahmen wie Instruktionssatzerweiterungen, Hardware-
beschleuniger, Anpassung der Kommunikationsinfrastruktur sowie Ausnutzung von Parallelität 
greifen, deren Ergebnisse u. a. in [130][118][109][119][131][113] vorgestellt wurden.  

Im folgenden Abschnitt werden u. a. die Performanzgewinne für die Ausführung des hier vorges-
tellten IP-DSLAM-Benchmarks unter Verwendung der in Abschnitt 6.2.4 präsentierten Instruktions-
satzerweiterungen aufgezeigt.  

7.3 Instruktionssatzerweiterungen zur optimierten Protokollverarbeitung 

Im Folgenden wird anhand der in Abschnitt 6.2.4 präsentierten Instruktionssatzerweiterungen das 
Potential dieser Prozessorerweiterungen im Hinblick auf Leistungssteigerung, Reduktion des Ener-
giebedarfs und Codegrößenminimierung aufgezeigt. Die Gegenüberstellung der Analyseergebnisse 
für den Originalprozessor (S-Core [108]) und der erweiterten Varianten (N-Core [111]) erfolgt so-
wohl für den im vorigen Abschnitt diskutierten IP-DSLAM-Benchmark55, als auch für die in [112] 
analysierte IPSec-Protokollsammlung [158], vgl. auch Abschnitt 6.2.3. So wird zum einen ein An-
wendungsgebiet aus dem Zugangsnetzwerkbereich und zum anderen eine bereichsübergreifende 

                                                 

54 Die Leistungsanforderungen aller Komponenten des IP-DSLAMs in Abhängigkeit der Parameter: Prozessorarchitek-

tur, Taktfrequenz, Parallelisierungseinbuße, Hardwarekomponente des DSLAMs sowie Flussrichtung etc. zeigt der 

DSLAM-System-Explorer auf (vgl. Abschnitt 7.5). 

55 Im Weiteren wird eine konsekutive Bearbeitung aller Benchmarkszenarien mit reduzierter Paketzahl betrachtet. Dies 

ermöglicht eine Abschätzung der Auswirkungen der Instruktionssatzerweiterungen für alle DSLAM-Komponenten. 

Uplink Downlink Uplink Downlink

ADSL 1 4 1 5

VDSL 2 10 2 14
SHDSL 1 1 2 2

benötigte N-Cores benötigte NPU-Cores
DSL-Version



7.3 Instruktionssatzerweiterungen zur optimierten Protokollverarbeitung 

 

193

Sicherheitsanwendung bezüglich der Steigerung der Ressourceneffizienz durch Befehlssatzerweite-
rungen untersucht. 

Tabelle 7-5: Benötigte Taktzyklen des S-Cores für die IPSec- und IP-DSLAM-Anwendung und die  

Beschleunigung durch den Einsatz verschiedener Versionen des N-Cores 

 

Tabelle 7-5 zeigt die Ausführungszeit in Takten für die beiden Anwendungsszenarien und die ent-
sprechenden Prozessorvarianten auf. Der N-Core wurde hierbei um jeweils eine der aufgezeigten 
Instruktionen erweitert, bzw. abschließend wurden alle Instruktionssatzerweiterungen in den N-
Core integriert (N-Core gesamt). Da die Instruktionssatzerweiterungen ursprünglich für die be-
reichsübergreifende IPSec-Anwendung implementiert wurden, um den N-Core in möglichst vielen 
Orten des Netzwerks effizienter einsetzen zu können (vgl. Abbildung 7-1), verwundert es nicht, 
dass die maximal erzielte Performanzsteigerung für ebendiese Verarbeitung erzielt wird. So wird 
durch Integration der sieben zusätzlichen Befehle eine Reduktion der zur Verarbeitung benötigten 
Takte von fast 25 % erreicht. Beim IP-DSLAM sind es immerhin noch mehr als 10 % Ersparnis. 
Setzt man die hier gewonnenen Werte zu dem im vorigen Abschnitt 7.2.5 skizzierten IP-DSLAM-
Szenario in Beziehung, so ließe sich durch die Instruktionssatzerweiterungen z. B. bei VDSL im 
Downlink auf der Linecard einer von zehn N-Cores einsparen. Diese Laufzeitreduktion geht bei 
gleichbleibender Taktfrequenz des Prozessorkerns einher mit einer Reduktion des Flächenbedarfs 
der reinen Prozessoreinheiten von 7,6 % bei der 130-nm-Technologie bzw. einer leichten Flächen-
erhöhung um 1 % bei der 90-nm-Technologie, vgl. Abschnitt 6.2.4. Allerdings würde die Reduktion 
der Prozessoren eine Verringerung des zu instanziierenden Speichers bedeuten, welches somit für 
beide Technologien eine deutliche Flächenreduktion zur Folge hätte. 

Beide Anwendungen profitieren maßgeblich von der LDWIXW-Instruktionssatzerweiterung. Hier 
erreicht man nur unter Verwendung dieses einen zusätzlichen Befehls eine Laufzeitreduktion des 
gesamten IP-DSLAM-Benchmarks von 9,75 % bzw. bei der IPSec-Anwendung von fast 22 %. Bei 
der IPSec-Anwendung liegt die Beschleunigung stets im mehrstelligen Prozentbereich, beim IP-
DSLAM werden immerhin noch Werte von durchgängig über 6 % erreicht. Trotz der hohen Takt-
zahlreduktion durch die einzelnen Superinstruktionen liegt die erreichte Gesamtreduktion deutlich 
unter der Summation der Einzelreduktionen. Dies begründet sich darin, dass durch die Verwendung 
einer Superinstruktion, Einsatzmöglichkeiten anderer Instruktionssatzerweiterungen teilweise ein-
geschränkt werden. Der Compiler ist somit gefordert, eine möglichst optimale Konstellation der 
Zusatzbefehle zu finden [112]. 

Tabelle 7-6 zeigt den Energiebedarf für die Abarbeitung des IPSec-Benchmarks bezogen auf die 
130-nm-Standardzellentechnologierealisierung. Außerdem wird die sich ergebende Codegröße in 

IP-DSLAM IPSec IP-DSLAM IPSec
2.558.959 20.010.034 0 0

xorldw 2.390.196 17.077.996 6,59% 14,65%

andshr 2.407.230 17.126.254 5,93% 14,41%

ixwandshr 2.407.246 16.100.200 5,93% 19,54%
orshl81624 2.407.236 17.977.018 5,93% 10,16%

ldwixw 2.309.388 15.612.431 9,75% 21,98%

ldwxorlsl8,xorldw 2.356.116 18.000.664 7,93% 10,04%

ldwaddi 2.403.618 18.001.336 6,07% 10,04%

2.288.730 15.061.131 10,56% 24,73%N-Core gesamt

V
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nt

e

N-Core

Prozessorvariante

S-Core

Benötigte Takte Abnahme der Taktzahl
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Bytes für die IPSec-Anwendung angegeben, da diese ebenfalls einen Beitrag zur Ressourceneffi-
zienz leistet, vgl. Abschnitt 6.2.3. 

Tabelle 7-6: Energiebedarf bezogen auf eine 130-nm-Technologie und Codegröße für die  

IPSec-Verarbeitung der verschiedenen Prozessorvarianten  

 

Liegt die Abnahme der Taktzahl, die durch die Instruktionssatzerweiterungen erzielt wird, einheit-
lich im mehrstelligen Prozentbereich, so verhält sich die Bilanz bzgl. des Energiebedarfs der einzel-
nen Prozessorvarianten hingegen inhomogen. Die LDWIXW-Instruktionssatzerweiterung dominiert 
die Prozessorvarianten mit einer Energieabnahme von mehr als 30 % gegenüber der Verarbeitung 
mit dem Original-S-Core. Auch die IXWANDSHR-Erweiterung bewirkt eine Reduzierung des Ener-
giebedarfs von fast 25 %. Alle weiteren Instruktionssatzerweiterungen hingegen bewirken nur noch 
Reduktionen, die größtenteils im unteren einstelligen Prozentbereich liegen. Dies liegt in der Komp-
lexität und Art und Nutzung der prozessoreigenen Register der jeweiligen Erweiterungen. Die Ge-
samtenergieabnahme für den N-Core (in der Realisierung von Abschnitt 6.2.4) beträgt immerhin 
noch über 21 % und liegt für die gesamte Ausführung bei 1,045 mW.  

Für künftige Compilergenerationen wären zusätzliche Regelsätze mit Informationen bzgl. der Leis-
tungsaufnahme denkbar, die durch so genannte Mikrobenchmarks (vgl. Abschnitt 6.2.3) für den 
gesamten Befehlssatz ermittelt werden könnten. Im Anschluss könnte eine ressourceneffizientere 
Codegenerierung im Hinblick auf die sich zur Laufzeit ergebende Leistungsaufnahme geschehen.  

Der zweite Teil von Tabelle 7-6 fasst die erzielte Codegröße für den Benchmarkcode der einzelnen 
Prozessorvarianten zusammen. Bei Verwendung einzelner Superinstruktionen liegt die Abnahme 
bei durchschnittlich 8,5 %. Bei Einsatz aller Instruktionssatzerweiterungen reduziert sich die benö-
tigte Speichermenge für das Anwendungsprogramm um 10,29 % auf 108.158 Byte. 

Zusammenfassend lässt sich für den IPSec-Benchmark eine Beschleunigung der Verarbeitung von 
fast 25 % einhergehend mit einer Abnahme des Energiebedarfs für die Ausführung von 21 % gege-
nüber dem Original-S-Core konstatieren. Zusätzlich ist noch eine Codegrößenabnahme von mehr 
als 10 % zu verzeichnen. Diese deutliche Optimierung wird durch eine Erweiterung des Prozessor-
kerns um sieben leistungsfähige Superinstruktionen erreicht, die für die 130-nm-Implementierung 
lediglich einen Flächenzuwachs von 2,7 % bezogen auf die ursprüngliche Prozessorfläche ausma-
chen. Dieses Beispiel zeigt, dass sich die Ressourceneffizienz durch gezielte Instruktionssatzerwei-
terungen signifikant steigern lässt. 

7.4 Modulare, effiziente Modellierung von Netzwerkanwendungen 

Eine effiziente Erstellung der Anwendungssoftware ist im Sinne der Wirtschaftlichkeit und der Res-
sourceneffizienz von großer Bedeutung. So sind modular gehaltene Anwendungen mit definierten 

1,266 0% 119.288 0%

ldwixw 0,971 30,38% 109.750 8,69%
ixwandshr 1,018 24,31% 109.626 8,81%
xorldw 1,194 6,03% 109.470 8,97%
andshr 1,236 2,43% 109.922 8,52%
orshl81624 1,250 1,28% 110.010 8,43%
ldwxorlsl8 1,277 0,86% 110.478 7,97%
ldwaddi 1,272 0,47% 110.510 7,94%

1,045 21,15% 108.158 10,29%N-Core gesamt

V
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S-Core

Prozessorvariante Energie [mWs] Energieabnahme Codegrö ße [Bytes] Codegrößenabnahme
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Schnittstellen leichter zu erweitern und zu pflegen. In [182][183][118][178][119] wird ein derarti-
ger Ansatz vorgestellt, der u. a. erfolgreich für die GigaNetIC-Architektur angewandt worden ist 
[118].  

Abbildung 7-5: Beispielhafte Darstellung einer einfachen Click-Anwendung 

Basis dieses Ansatzes ist Click, ein Werkzeug das es dem Benutzer erlaubt, einfach und sehr schnell 
Netzwerkanwendungen mit Hilfe von Modulen „zusammenzuklicken“ und damit zu beschreiben.  

Abbildung 7-6: Zusammenspiel: Click – CRACC, Ablauf der Generierung von ANSI-C-Code  

für Netzwerkanwendungen aus einer abstrakten, modulbasierten Beschreibung 

Das Click-Softwarepaket [184][185][186][187] wurde von der Parallel-and-Distributed-Operation-
Systems-Gruppe des Massachusetts Institute of Technology [188], Mazu Networks [189], dem 
I.C.I.R. Center for Internet Research des International Computer Science Institute [190] und dem 
Computer Science Department der Universität von Kalifornien [191] entwickelt. Eine Click-
Verarbeitungseinheit wird aus der Verknüpfung von Modulen, die Elemente genannt werden, gebil-
det. Diese Elemente bestimmen die Funktion einer Netzwerkverarbeitungseinheit bzw. eines Rou-
ters, beginnend bei der Kommunikation mit anderen Netzwerkkomponenten, der Paketmodifikation 
oder der Handhabung von Regeln zum Verwerfen bestimmter Pakete. Die Elemente sind in der 
Hochsprache C++ verfasst, was eine komfortable Erweiterung bzw. Anpassung ermöglicht. Paral-
lelverarbeitung ist leicht modellierbar, und es kann auf eine sehr umfangreiche Bibliothek an Netz-
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werkfunktionen zurückgegriffen werden. Abbildung 7-5 zeigt eine mit Click modulierte einfache 
Beispielanwendung aus dem Netzwerkanwendungsbereich.  

Auf die Beschreibung der Netzwerkverarbeitungseinheit in Click setzt der zweite Schritt in unserer 
Werkzeugkette auf: CRACC (Click Rapidly Adapted to C Code) [182][183], das eine nahezu auto-
matische Umsetzung der Click-basierten C++-Beschreibung in eine für eingebettete Systeme effi-
zienter umsetzbare Kodierung in C übernimmt. Zusätzlich können in CRACC zur Steigerung der 
Leistungsfähigkeit optimierte Assembler-Routinen eingebunden werden. So verbinden sich die Vor-
teile aus schneller Anwendungserstellung aufgrund der großen Anzahl bereits bestehender Module 
für die Netzwerkverarbeitung mit der Möglichkeit, ein funktional verifiziertes Modell optimal auf 
die Zielarchitektur abzubilden. Der Entwurfsablauf mit Hilfe der Click-CRACC-Werkzeugkette 
wird in Abbildung 7-6 dargestellt.  

Im Folgenden wird der in Abschnitt 7.2 vorgestellte IP-DSLAM-Benchmark mit Hilfe der hier vor-
gestellten Werkzeugkette nachgebildet und optimiert. 

7.4.1 Erweiterung des DSLAM-Benchmarks zum Referenzbenchmark 

Aufbauend auf dem aus [141] bekannten IP-DSLAM-Benchmark wurde eine sehr realitätsnahe, ge-
naue Modellierung der Abläufe innerhalb eines IP-DSLAMs mit Hilfe der Click-CRACC-
Werkzeugkette realisiert [178]. Dies führte zu dem IP-DSLAM-Referenzbenchmark, der hier nur in 
aller Kürze vorgestellt werden soll. Dieser erweiterte Benchmark ermöglicht nun eine bessere Tren-
nung der Analyse der Anforderungen an die einzelnen DSLAM-Komponenten.  

Abbildung 7-7: Die sieben Szenarien des IP-DSLAM-Referenzbenchmarks 

Abbildung 7-7 zeigt die sich ergebenden sieben Szenarien des IP-DSLAM-Referenzbenchmarks56. 
Die Anzahl der Tasks wurde auf 11 erhöht, um der Realität der Anwendung noch näherzukommen. 
Es handelt sich hierbei um: Ethernet encapsulation, AAL5, IP header check, IP source address / 
port verification, 5-tuple classification / destination lookup, Traffic policing and QoS, Multicast 
duplication, Queuing, Set DiffServ codepoint und Decrement TTL/HLIM. Die einzelnen Tasks kön-
nen wiederum mehrere Click-Elemente umfassen. Für eine genaue Beschreibung der Funktionalität 
dieser Tasks sei auf [178] verwiesen.  

Tabelle 7-7 zeigt die Bandbreiten der verschiedenen DSL-Varianten, die bei der folgenden Analyse 
des IP-DSLAM-Referenzbenchmarks berücksichtigt werden. 

 

                                                 

56 Die detaillierte Zuordnung der Tasks, die sich teilweise von denen aus Abschnitt 7.2.1 unterscheiden, wird in Abbil-

dung Anhang F-1 dargestellt. 
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Tabelle 7-7: Bandbreiten der untersuchten DSL-Varianten beim IP-DSLAM-Referenzbenchmark 

Bandbreite [MBit/s] 
Datenrichtung ADSL HDSL SDSL VDSL RADSL ADSL2+ 
Downlink 8 20,4 4 51,8 6 24 
Uplink 1 20,4 4 2,3 0,64 3,5 

Im Folgenden beziehen sich alle weiteren Analysen, soweit nicht anders erwähnt, auf den IP-
DSLAM-Referenzbenchmark. 

7.4.2 IP-DSLAM-Referenzbenchmark – Ergebnisse 

In diesem Abschnitt werden die durch zyklenakkurate Simulation gewonnenen Ergebnisse der  
GigaNetIC-Architektur für den IP-DSLAM-Referenzbenchmark präsentiert. Es wird ein ähnliches 
Verkehrsmodell verwendet wie beim ursprünglichen DSLAM-Benchmark, ebenfalls mit einer iMix-
basierten Paketgrößenverteilung.  

Abbildung 7-8: Benötigte Takte für die einzelnen Tasks auf der Uplinkcard im Downlink57 

Exemplarisch werden die Messwerte für die Uplinkcard im Downlink-Betrieb (vgl. Abbildung 7-8) 
und die Taktzyklen der maßgeblichen Funktionen der Linecard im Uplink-Betrieb (vgl. Abbildung 
7-9) aufgeführt. Es zeigt sich, dass einige wenige Funktionen, hierzu zählen vor allem die CRC-
Generierungs- und Prüffunktionen (insgesamt ca. 90,6 % der Gesamttaktzyklen) sowie die Multi-
castduplizierung im Multicastszenario (insgesamt ca. 91,8 % der Gesamttaktzyklen) einen Großteil 
der benötigten Rechenleistung auf sich vereinen. Bei der Linecard im Uplink kommt neben den 
beiden CRC-Funktionen noch die Funktion IPVerifyPort mit 10,7 % zu den maßgebenden drei mit 
insgesamt 93,9 % Anteil am Gesamtrechenbedarf hinzu. Diese ist abgeleitet aus dem vorigen Clas-
sification-Task und führt einen tabellenbasierten Vergleich durch. Im Uplink im ATM-Szenario sind 
die ATM-spezifischen Funktionen IP2ATM und ATM2IP, die die Umsetzung von ATM-basierten 
Paketen (zu vergleichen mit AAL5 aus [141]) maßgeblich mit 90,7 % an der Gesamtzyklenzahl be-

                                                 

57 Bezieht sich nach Mittelung der iMix-Parameter auf ein theoretisch 788-Byte-großes Paket. 
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teiligt. Die Analyse dieser Zahlen zeigt potentielle Optimierungsmöglichkeiten auf, die durch Soft-
wareoptimierung, Instruktionssatzerweiterungen und, speziell bei den hier erwähnten Funktionen, 
durch den Einsatz von Hardwarebeschleunigern herbeigeführt werden können. 

Abschließend lässt sich zusammenfassen, dass im Durchschnitt 17,3 Takte im Downlink bzw. 29,3 
Takte im Uplink auf der Linecard pro Bit eines Pakets zur Verarbeitung benötigt werden. Auf der 
Uplinkcard sind es 28,7 Takte im Downlink bzw. 24,3 Takte für den Uplink. Diese deutlich höheren 
Zahlen als beim ersten DSLAM-Benchmark sind u. a. in der aufwändigen CRC-Berechnung be-
gründet. 

Abbildung 7-9: Benötigte Takte für die Tasks auf der Linecard im Uplink  

für das Ethernet- und ATM-Szenario57 

Für viele der nicht maßgeblichen Funktionen der einzelnen Benchmarkszenarien können ggf. schon 
durch flächenmäßig geringfügige Eingriffe, wie z. B. durch Instruktionssatzerweiterungen, zusätzli-
che Performanzgewinne und somit Entlastungen der Verarbeitungseinheiten erzielt werden. Diese 
können dann im Weiteren zusätzliche Kontrollfunktionen auf den DSLAM-Systemkomponenten 
übernehmen. 

Im Folgenden werden die einzelnen Maßnahmen der Optimierung und ihre Auswirkungen auf die 
Performanz näher diskutiert. Eine interaktive Entwurfsraumexploration ist mit dem DSLAM-
System-Explorer II möglich, der die Ergebnisse in Abhängigkeit einstellbarer Systemparameter 
auswertet bzw. hochrechnet, vgl. Abschnitt 7.5.2. 

7.4.2.1 Softwareoptimierung des IP-DSLAM-Referenzbenchmarks 

Die Anwendungserstellung durch die abstrakte Modellierung mit Click und die automatisierte Ab-
bildung auf die Zielsysteme mittels CRACC und der jeweiligen Compiler-Werkzeugkette bietet vie-
le Vorteile (vgl. Abschnitt 7.4), hat jedoch auch einen gewissen Preis bzgl. der erzielbaren Perfor-
manz.  
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Abbildung 7-10: Vergleich der Originalversionen vs. optimierte Funktionen 

Aufgrund der modularen Struktur werden häufig kostspielige Typumwandlungen und geschachtelte 
Funktionsaufrufe in den automatisch generierten Code eingebracht. Durch manuelle Optimierung 
des erzeugten C-Quellcodes lässt sich eine beträchtliche Menge an unnötigen Taktzyklen einsparen. 
Diese Optimierungen wurden für Funktionen, die sowohl auf der Linecard als auch auf der Uplink-
card Verwendung finden, durchgeführt, vgl. Abbildung 7-10. Es lässt sich insgesamt eine deutliche 
Ersparnis von 21,4 % der benötigten Taktzyklen gegenüber der Originalversion verzeichnen. In Be-
zug auf die Gesamtleistungssteigerung machen diese Optimierungen jedoch aufgrund der dominie-
renden Prüfsummenoperationen letztendlich nur einen Geschwindigkeitsvorteil von ca. 1,3 % aus. 
Deshalb ist eine Suche nach Optimierungs- bzw. Erweiterungsmöglichkeiten der Hardware weiter-
hin notwendig, um den Einfluss der besonders rechenintensiven Funktionen an der Gesamttaktzahl 
zu reduzieren. Allerdings zeigt sich, dass für den Praxiseinsatz der automatisch generierte Code im 
Hinblick auf die oben genannten Schwachstellen untersucht und ggf. optimiert werden sollte. Zur 
Abschätzung und zum Vergleich der Leistungsfähigkeit unterschiedlicher Zielarchitekturen ist er 
dennoch ausreichend aussagefähig. 

Im Weiteren werden die Untersuchungen bzgl. etwaiger Hardwaremodifikationen gemäß Kapitel 6 
durchgeführt. 

7.4.2.2 Optimierung durch Instruktionssatzerweiterungen 

In Abschnitt 6.2.4 wurden bereits einige Instruktionssatzerweiterungen für den N-Core vorgestellt. 
Mit Hilfe dieser existierenden und ggf. neuer Erweiterungen, die unter Zuhilfenahme der vorgestell-
ten Werkzeugkette für das IP-DSLAM-Szenario implementiert werden, soll die mögliche Leistungs-
steigerung durch Modifikation des Prozessorkerns aufgezeigt werden. Bei der Analyse der Funktio-
nen stellte sich der Task IPVerifyPort, eine der rechenintensiven Aufgaben, als besonders vielver-
sprechend für die Optimierung durch Instruktionssatzerweiterungen heraus. Nach zusätzlich erfolg-
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ter, manueller Optimierung der Funktion konnten die in Abbildung 7-11 gezeigten wesentlichen 
Instruktionspaarhäufigkeiten bestimmt werden.  

Abbildung 7-11: Wesentliche Instruktionspaarhäufigkeiten bei der Funktion IPVerifyPort 

Abbildung 7-12: Wesentliche Instruktionspaarhäufigkeiten bei der Funktion IPVerifyPort  

nach der Instruktionssatzerweiterung durch IXD, IXQ 

Das bei den Analysen sehr häufig aufgetretene Instruktionspaar lsli, addu, dass eine vielfach benö-
tigte Berechnung zum Vorrücken in der Routingtabellenstruktur ermöglicht, wurde durch die 
IXD(Index Double)-Superinstruktion ersetzt. Sie umfasst ein logisches Schieben von RY um drei 
Stellen nach links und das anschließende Addieren eines „Offsets“ auf das Ergebnis, das abschlie-
ßend in Register RX geschrieben wird. Aus ähnlichen Gründen wurde die Instruktion IXQ (Index 
Quad) implementiert. Die Funktionsweise der beiden Befehle kann in der Registerzuweisungsnota-
tion wie folgt beschrieben werden: 

 IXD:  RX RX + (RY  3)← ≪  (7.3) 

 IXQ:  RX RX + (RY  4)← ≪  (7.4) 
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Abbildung 7-12 zeigt die erneute Analyse der IPVerifyPort-Funktion nach erfolgter Integration der 
IXD-Superinstruktion. Es wird deutlich, dass durch die Einführung des IXD-Befehls eine Verschie-
bung der resultierenden Instruktionspaare eingetreten ist. Die zuvor aufgetretene Kombination von 
addu und ldw wurde eliminiert, dafür könnte eine weitere Superinstruktion ixd, ldw auf Basis der 
gerade neu integrierten IXD-Funktion eingebracht werden. Durch die IXD-Superinstruktion, die nur 
einen Takt beansprucht, konnte die Verarbeitung der betrachteten Funktion um 11,7 % beschleunigt 
werden, wobei der Prozessorkern lediglich um 0,69 % größer geworden ist. 

Abbildung 7-13: Beschleunigung des IP-DSLAM-Referenzbenchmarks durch verfügbare  

Instruktionssatzerweiterungen des N-Cores für eine iMix -Verteilung 

Abbildung 7-13 fasst die Resultate der Performanzgewinne durch die Instruktionssatzerweiterungen 
für die sieben Benchmarkszenarien und einem iMix-Verkehrsmodell zusammen. Es zeigt sich, dass, 
auf den gesamten Benchmark bezogen, der IXD-Befehl nur eine Performanzsteigerung von 1 % 
ermöglicht, wohingegen die LDWIXW-Erweiterung Beschleunigungen von 4 bis häufig 7 % und 
mehr erreicht. Auch die XORLDW-Erweiterung zeigt mit einer beschleunigten Verarbeitung von 3 
bis 4 % für alle Benchmarks eine gute Leistung.  

Bemerkenswert ist außerdem, dass durch Zuhilfenahme aller Instruktionssatzerweiterungen in fünf 
von sieben Fällen eine Beschleunigung von mehr als 8 % im Vergleich zum Original-S-Core er-
reicht wird, obwohl die CPU-Fläche des entsprechenden N-Cores lediglich 2,4 % größer ist. Die 
absolut gesehen geringe Beschleunigung durch die IXD-Instruktion steht im Gegensatz zu der Per-
formanzsteigerung dieser Operation für die Funktion IPVerifyPort, die immerhin, wie bereits er-
wähnt bei 11,7 % liegt. Dies zeigt aber auch, dass Instruktionssatzerweiterungen nicht zwangsläufig 
alle Funktionen gleichermaßen tangieren und eine entsprechende Analyse im Vorfeld der Chipreali-
sierung durchaus sinnvoll ist. Im Falle des IXD-Befehls wurde die gewünschte Beschleunigung für 
die ausgewählte Aufgabe erreicht. Für die anderen rechenintensiven Tasks wird im Folgenden ver-
sucht, eine Beschleunigung durch spezielle Hardwarebeschleuniger zu erreichen. 
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7.4.2.3 Optimierung durch Hardwarebeschleuniger 

Sowohl für die bereits als besonders rechenintensiv identifizierten Tasks SetCRC32 und 
CheckCRC32 im Falle der Ethernet-basierten und IP2ATM und ATM2IP für die ATM-basierten 
Szenarien als auch IPVerifyPort für die Uplink-Szenarien auf der Linecard (vgl. Abbildung 7-8 und 
Abbildung 7-9) wurden Hardwarebeschleuniger entwickelt. Sie versprechen eine deutlich höhere 
Beschleunigung, als es durch Instruktionssatzerweiterungen oder, in diesem Fall, durch die Soft-
wareoptimierung möglich ist. 

Tabelle 7-8 zeigt die für den IP-DSLAM-Referenzbenchmark implementierten Hardwarebeschleuni-
ger und ihre wesentlichen Charakteristika. Die Beschleuniger werden den Tasks bzw. Funktionen 
des Benchmarks, in denen sie eingesetzt werden, zugeordnet. Der Beschleunigungsfaktor, der durch 
eine enge Kopplung (vgl. Abschnitt 4.3.3) an den N-Core erreicht werden kann, ist in der folgenden 
Spalte aufgetragen. Durch den Einsatz der Hardwarebeschleuniger ergibt sich für alle Tasks eine 
Codegrößenreduktion von durchschnittlich 49,6 %. So wird als positiver Nebeneffekt durch die 
Verwendung der Beschleunigermodule, noch stärker als durch Instruktionssatzerweiterungen (vgl. 
Abschnitt 6.2.3), die benötigte Instruktionsspeichermenge reduziert. Aufgrund der engen Kopplung 
kommt es nur zu einer durchschnittlichen Halbierung der Codegröße, da der N-Core weiterhin alle 
Speicheroperationen für den jeweiligen IP(Intellectual Property)-Block übernimmt. Bei der Ans-
teuerung von lose-gekoppelten Hardwarebeschleunigern hingegen reduziert sich der Befehlssauf-
wand auf wenige Instruktionswörter. Im Weiteren sind die Fläche und maximal erreichbare Takt-
frequenz der Beschleuniger aufgetragen, gefolgt von der Verlustleistung bezogen auf 1 MHz, zum 
einen ermittelt durch Schaltwahrscheinlichkeiten (50%S) und zum anderen durch laufzeitbedingte 
Schaltaktivitätenannotation (AS) während der Abarbeitung der entsprechenden Funktion, vgl. Ab-
schnitt 6.3.1.5. 

Tabelle 7-8: Charakteristika der implementierten Hardwarebeschleuniger 

für 130-nm- und 90-Standardzellentechnologien 

 

Der CRC-Beschleuniger wurde speziell für dieses Szenario entwickelt und, wie die anderen hier 
aufgelisteten Hardwaremodule, für eine direkte, enge Kopplung an den N-Core konzipiert. In die-
sem Betriebsmodus erzielt dieser CRC-IP-Block im Vergleich zur Softwarelösung, die auf dem N-
Core abgebildet ist, eine Beschleunigung von 7,5. Verfügte er über eine eigene Speicherschnittstel-
le, könnte sogar eine Performanzsteigerung um Faktor 49,5 erreicht werden. Der CRC-Block findet 
Einsatz in den besonders rechenintensiven Tasks SetCRC32 und CheckCRC32. Das speziell entwor-
fene CAM-Modul wird für den Task IPVerifyPort verwendet, der insgesamt eine Beschleunigung 
von 45 erfährt. Die enthaltene Funktion Lookup, die fast vollständig durch die Hardwareerweiterung 
ersetzt wird, kommt so auf eine beschleunigte Ausführung um den Faktor 1230. Der Block IPFilter 
findet in den beiden Tasks IPFilter und IPFilterAnno Verwendung und erzielt jeweils eine Be-

130nm 90nm 130nm 90nm 130nm 90nm 130nm 90nm

CRC CRC32 7,5 64,7% 0,0150 0,0115 990 1087 0,0061 0,0168 0,0040 0,0109
IPVerifyPort 45,0
    Lookup 1230,0

IPFilter IPFilter 6,0 48,7% 0,3814 0,2470 430 523 0,0827 0,0759 0,0816 0,0746
IPFilter IPFilterAnno 6,0 46,7% 0,3814 0,2470 430 523 0,0827 0,0759 0,0816 0,0746
IPHeaderCheck CheckIPHeader 12,0 30,8% 0,0339 0,0329 546 571 0,0060 0,0058 0,0075 0,0098

HW-
Beschleuniger

Funktion

AS-Leistung
[mW/MHz]

50%S-Leistung
[mW/MHz]

Taktfrequenz
max. [MHz]

Fläche
[mm²]

Codegrößen-
reduktion

[%]

Beschleunigung
(relativ zumN-

Core, 
bei gleicher 
Frequenz),

enge Kopplung

0,1754CAM 57,1% 0,7186 0,6163 439 380 0,1995 0,1815 0,1808
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schleunigung von 6. Letztendlich wird der bereits in Abschnitt 6.3.1 beschriebene IPHeaderCheck-
Beschleuniger für den Task CheckIPHeader als eng an den N-Core gekoppelte Hardwareeinheit 
eingesetzt. Aufgrund der alleinigen Prüfung der Prüfsumme des IP-Paketkopfes und der engen 
Kopplung ergibt sich in diesem Szenario eine Beschleunigung von 12. Diese Zahlen zeigen, dass 
mit einem zusätzlichen Flächenaufwand für das Gesamtprozessorsystem von 1,53 mm² (130 nm) 
bzw. 1,15 mm² (90 nm), was in etwa dem Zehnfachen der Fläche des N-Cores entspricht, eine ak-
kumulierte Beschleunigung von 76,5 erreicht werden kann. Dies führt zu einer positiven Flächen-
Performanzeffizienz (nach Definition 38) von über 7 (10/1 zu 77/1 = 7,7).  

Betrachtet man die akkumulierte Verlustleistungsaufnahme der Hardwarebeschleuniger, so ergeben 
sich Werte von 0,36 mW/MHz (130 nm) bzw. von 0,35 mW/MHz (90 nm) was in etwa dem sech-
sfachen der dynamischen Verlustleistungsaufnahme des reinen N-Core-Prozessorkerns entspricht. 
Dies führt zu einer Verlustleistungs-Performanzeffizienz (nach Definition 38) von 6/1 zu 
77/1 = 12,8. Diese Werte sprechen für eine derartige Integration der Hardwarebeschleuniger, er-
möglichen sie doch ein deutlich ressourceneffizienteres System, als es allein mit N-Cores möglich 
wäre. In [118][119][109][131] werden weitere Analysen bzgl. des hier vorgestellten Szenarios ge-
geben.  

Um möglichst schnell Aussagen über die Auswirkungen von verschiedensten Systemparametern 
unter Auswahl der in den letzten Abschnitten vorgestellten Optimierungsmaßnahmen treffen zu 
können, fast der DSLAM-System-Explorer II die gewonnenen Ergebnisse zusammen und bereitet sie 
graphisch auf. Dieses Werkzeug wird in Abschnitt 7.5.2 näher vorgestellt und erleichtert die Ent-
wurfsraumexploration für DSLAM-Anwendungen in vielerlei Hinsicht. 

7.5 Visualisierungswerkzeug zur Entwurfsraumexploration 

Im Rahmen der umfangreichen Analysen der Netzwerkszenarien wurde eine Vielzahl von Daten 
gewonnen, die möglichst umfassend miteinander in Beziehung gesetzt werden sollten. Systemarchi-
tekten zukünftiger GigaNetIC-basierter Netzwerkprozessoren profitieren bei einer Konzeption einer 
neuen, ressourceneffizienten Systemrealisierung von möglichst umfassenden Informationen durch 
bereits erstellte Analysen. So entstand der DSLAM-System-Explorer, er erlaubt eine schnelle und 
übersichtliche Visualisierung der gesammelten Ergebnisse der DSLAM-Benchmarks auf einfache 
Art und Weise, wie es ansonsten nur durch eine Unzahl von Diagrammen möglich wäre. Die wich-
tigsten Systemparameter des analysierten DSLAM-Szenarios lassen sich interaktiv, mit Hilfe von 
Auswahlmenüs bzw. mit Schiebereglern übersichtlich gemäß den Anforderungen des Anwendungs-
gebiets einstellen. Dies erlaubt eine sofortige Analyse des Entwurfsraums, bei der sich u. a. die 
Leistungsfähigkeit bzw. die Anzahl der benötigten Hardwareeinheiten ablesen lassen. Die Anwen-
dung setzt auf eine einheitliche Datenbasis auf, die komfortabel mit einer Tabellenkalkulationssoft-
ware gepflegt und erweitert werden kann. So lässt sich die Visualisierungssoftware leicht für andere 
Anwendungsszenarien, Prozessorkerne sowie weitere Systemgrößen (z. B. Fläche oder Leistungs-
aufnahme) erweitern.  

Im nächsten Abschnitt 7.5.1 wird zunächst auf die Resultate der Analysen des ursprünglichen IP-
DSLAM-Benchmarks eingegangen, die für den N-Core ohne Instruktionssatzerweiterungen (S-Core) 
und drei weitere eingebettete Prozessoren ermittelt wurden und mit Hilfe des DSLAM-System-
Explorer I visualisiert werden können. In Abschnitt 7.5.2 wird dann der DSLAM-System-Explorer II 
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vorgestellt, der speziell die implementierten Hardwareerweiterungen für die GigaNetIC-Architektur 
(vgl. Abschnitt 7.4.2) einbezieht und deren Auswirkungen auf die Performanz bzgl. des IP-DSLAM-
Referenzbenchmarks aufzeigt. 

7.5.1 Vergleich eingebetteter Prozessorkerne – DSLAM-System-Explorer I 

Der DSLAM-System-Explorer I erlaubt den Vergleich der Leistungsfähigkeit von derzeit vier einge-
betteten CPUs in Bezug auf den IP-DSLAM-Benchmark aus [141].  

Abbildung 7-14: DSLAM-System-Explorer I – Entwurfsraumvisualisierungssoftware für das  

GigaNetIC-System und weitere eingebettete Prozessoren 

Verglichen wird der in Abschnitt 7.2.5 vorgestellte spezialisierte NPU-Core (im Folgenden auch 
PP32), der zum Zeitpunkt dieser Analyse mit bis zu 450 MHz in einer 130-nm-Technologie betrie-
ben werden konnte und ca. 0,38 mm² Fläche einnimmt. Weiterer Testkandidat ist der N-Core ohne 
spezielle Instruktionssatzerweiterungen, damit funktional dem S-Core [108] gleichzusetzen, aller-
dings in 130-nm- und 90-nm-Technologie realisiert ist (vgl. Abschnitt 4.3.1 und 6.2.4). Als nächstes 
wurde ein MIPS32k-basierter Prozessorkern analysiert, der in 180-nm-Technologie zwischen 200 
und 240 MHz erreicht und je nach Konfiguration zwischen 0,8 und 2,5 mm² an Fläche beansprucht. 
In 130-nm-Technologie sind 260 bis 300 MHz bei einer Fläche von 0,4 bis 1,1 mm² möglich. Als 
letztes wurde ein ARM7-basierter Kern untersucht, der in 180-nm-Technologie 80 bis 110 MHz 
erreicht und eine Fläche zwischen 0,95 und 0,53 mm² benötigt. In 130-nm-Technologie steigert sich 
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die mögliche Taktfrequenz auf 100 bis 133 MHz, wobei sich die Fläche auf 0,42 bis 0,26 mm² re-
duziert. 

Abbildung 7-14 zeigt das Hauptanwendungsfenster des DSLAM-System-Explorers I. Als Datenbasis 
dienen Messwerte, die mit zyklenakkuraten Simulatoren der untersuchten Prozessoren ermittelt 
wurden. Anhand der gemessenen Takte, die zur Verarbeitung der einzelnen Tasks benötigt werden, 
und aufgrund der Vorgaben durch die hier betrachteten xDSL-Szenarien ADSL (0,8 Mbps Uplink, 
8 Mbps Downlink pro DSL-Port), VDSL (3 Mbps Uplink, 22 Mbps Downlink pro DSL-Port) und 
SHDSL (2 Mbps Uplink, 2 Mbps Downlink pro DSL-Port) ergeben sich die Verarbeitungsbandbrei-
ten der Prozessoren.  

Die veränderbaren Parameter können im linken Bereich des Hauptfensters eingestellt werden. Als 
Parameter können der Anwendung die Anzahl der DSL-Anschlüsse (Ports) einer Linecard, die An-
zahl der Linecards des gesamten DSLAMs, die mit der Uplinkcard verbunden sind, die Taktfre-
quenz der Verarbeitungseinheit, der Überbuchungsfaktor (Overbookingfactor), der bestimmt, zu 
welchem Anteil die theoretisch notwendige (WC) Bandbreite vom ISP zur Verfügung gestellt wird 
und schließlich der zusätzliche Mehraufwand (Overhead), der durch den parallelen Betrieb von 
Verarbeitungseinheiten hervorgerufen wird, übergeben werden. Dieser Mehraufwand wird im Wei-
teren mit 10 % veranschlagt, was ggf. durch genauere Analysen verifiziert werden muss. Letztend-
lich kann dann noch eines der vier Szenarien des IP-DSLAM-Benchmarks ausgewählt werden (Up-
/Downlinkcard / Up-/Downlink).  

Abbildung 7-15: Detaildarstellung der benötigten Taktzyklen für die einzelnen Tasks des  

IP-DSLAM-Benchmarks sowie für die Gesamtzahl benötigter Takte auf der Linecard 

Bei dem dargestellten Szenario aus Abbildung 7-14 wird die Linecard im Downlink betrachtet. Für 
VDSL werden z. B. 28 NPU-Cores gegenüber 7 ARM-Prozessorkernen zur Bewältigung der Last 
bei 200 MHz im „schlimmsten Fall“58 (Worst Case) benötigt. Durch Variieren des Schiebereglers 
kann nun z. B. interaktiv bestimmt werden, bei welcher Frequenz wie viele der jeweiligen Prozesso-

                                                 

58 Der schlimmste Fall beschreibt hier den Fall, dass die volle Bandbreite für Up- und Downlink pro Port der Linecard 

von den Teilnehmern gleichzeitig genutzt wird. 
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ren benötigt werden, um das entsprechende xDSL-Szenario spezifikationsgemäß bewältigen zu 
können. Es zeigt sich, dass der N-Core ohne spezielle Instruktionssatzerweiterungen eine deutlich 
höhere Leistung bietet, als der spezielle Paketverarbeitungsprozessor (vgl. Abschnitt 7.2.5). Auch 
im Vergleich mit den etablierten eingebetteten MIPS- und ARM-Prozessorkernen ist der N-Core, 
bezieht man seine geringe Fläche mit ein, durchaus wettbewerbsfähig, benötigt er doch deutlich 
weniger als die Hälfte der Fläche der kommerziellen Prozessoren. Die Anwendung zeigt ebenfalls 
die benötigte Anzahl an Taktzyklen für das jeweilige Szenario und die Performanz (gemessen in der 
zu bewältigenden Bandbreite in Mbps) eines einzelnen Prozessorkerns auf. 

Abbildung 7-15 zeigt die Detailansicht, die genaue Einblicke in die Verteilung der Rechenlast auf 
die einzelnen Tasks der jeweiligen Szenarien gibt. Es wird ebenfalls deutlich, welche Tasks für das 
entsprechende Szenario benötigt werden und welche nicht. Auch hier lässt sich die Systemkompo-
nente auswählen. In der gezeigten Darstellung wird Bezug auf die Linecard genommen. Außerdem 
werden Diagramme zu Cycles/Bit bzw. Code size erzeugt, die Aufschluss über die benötigten Pro-
zessortakte pro Bit eines Pakets bzw. über die Codegröße der einzelnen Tasks geben. 

Abbildung 7-16 zeigt die durchschnittliche Taktzahl pro Bit eines Pakets. Diese liegt für den IP-
DSLAM-Benchmark für alle Szenarien und alle Prozessoren unter 3 Takten. Deutlich wird auch 
hier, dass die spezielle Paketverarbeitungseinheit u. a. aufgrund der Schwächen des Compilers (vgl. 
Abschnitt 7.2.5) weitaus schlechter abschneidet als die anderen drei Prozessorkerne. MIPS und be-
sonders ARM dominieren hier bzgl. der Effizienz benötigter Takte pro Bit eines Pakets. Allerdings 
ist hier die deutlich komplexere Architektur dieser Kerne, die sich in ihrer größeren Fläche aus-
drückt, und die teilweise geringere Taktfrequenz des tatsächlich käuflich erwerbbaren ARM-Pro-
zessorkerns nicht zu vernachlässigen, so dass der N-Core auch bzgl. dieser Betrachtung durchaus 
wettbewerbsfähig erscheint. Aus Sicht der Performanz ist hier der MIPS-Kern der leistungsfähigste, 
ist doch seine maximal realisierbare Taktfrequenz mehr als doppelt so hoch wie die des ARM-
Kerns. 

Abbildung 7-16: Darstellung der benötigten Takte pro Paketbit zur Bearbeitung des  

IP-DSLAM-Benchmarks bzgl. des jeweiligen Szenarios 

Abbildung 7-17 stellt die durch den jeweiligen Compiler erzeugten Codegrößen der einzelnen Tasks 
dar. Auch hier zeigt sich, dass der Paketprozessor (NPU-Core) nicht über einen entsprechend leis-
tungsfähigen Compiler verfügt, sondern in der Regel mittels Maschinensprache von Hand prog-
rammiert wird, um entsprechend effizient zu sein. Die anderen drei Prozessoren sind in etwa ver-
gleichbar, mit leichten Vorteilen auf Seiten des ARM-Kerns. Hier zeigt sich für den N-Core der 
Vorteil der 16-Bit-Instruktionsweite, der die Codegröße insgesamt relativ klein hält. 
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Abbildung 7-17: Darstellung der Codegrößen der untersuchten Prozessoren  

für die einzelnen IP-DSLAM-Tasks auf der Linecard 

Abschließend lässt sich bemerken, dass die hier angestellten Analysen zeigen, dass der N-Core ver-
glichen mit etablierten Prozessorkernen bzw. Spezialhardware (NPU-Core) durchaus wettbewerbs-
fähig im Hinblick auf Leistung und insbesondere auf Flächenbedarf ist. Im folgenden Abschnitt 
wird, um die Auswirkungen der zusätzlich implementierten Hardwareerweiterungen für die Giga-
NetIC-Architektur besser auswerten zu können, mit dem DSLAM-System-Explorer II ein leistungs-
fähiges Werkzeug vorgestellt. 

7.5.2 Einbeziehung von HW-Erweiterungen – DSLAM-System-Explorer II 

Im Folgenden wird mit Hilfe des DSLAM-System-Explorer II gezeigt, inwiefern, sich die Leistungs-
fähigkeit und die Ressourceneffizienz des N-Core durch Hardwareerweiterungen in Form von In-
struktionssatzerweiterungen und speziell für das Anwendungsszenario entwickelten Hardwarebe-
schleunigern (vgl. Abschnitt 7.4.2) zusätzlich steigern lässt. Hierbei dient von nun an der IP-
DSLAM-Referenzbenchmark aus Abschnitt 7.4.1 als Grundlage der Analysen.  

Abbildung 7-18 zeigt das Hauptanwendungsfenster des DSLAM-System-Explorer II. Er berücksich-
tigt für sechs bereits vorgestellte xDSL-Varianten die sieben Benchmarkszenarien aus Abschnitt 
7.4.1, die im rechten Bereich des Fensters über Auswahlmenüs eingestellt werden können. Taktfre-
quenz des CMPs wie auch die Anzahl der Ports und Linecards lassen sich ebenfalls konfigurieren. 
Zusätzlich kann die Art der Hardwareerweiterung bzw. die Softwareoptimierung ausgewählt wer-
den. Die Differenz der benötigten Taktzyklen zum Original wird simultan in der Diagrammansicht 
des Anwendungsfensters graphisch hervorgehoben. In Abbildung 7-18 werden z. B. die Unter-
schiede der Originalsoftwareimplementierung gegenüber der optimierten Softwareimplementierung 
aufgetragen. Der jeweilige durchschnittliche Beschleunigungsfaktor wird ebenfalls zeitgleich be-
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rechnet und dargestellt. In diesem Szenario (Linecard – Uplink – Ethernet) wird z. B. eine Be-
schleunigung (Speedup) von 10 % erreicht. Für jede der DSL-Varianten wird die benötigte Anzahl 
an Prozessoren angezeigt. Sollten Hardwarebeschleuniger ausgewählt sein, wird jeweils nur eine 
dieser Spezialeinheiten berücksichtigt. In zukünftigen Implementierungen wird die Anzahl der Be-
schleunigereinheiten ebenfalls parametrisierbar sein. So werden z. B. für das in Abbildung 7-18 
ausgewählte Szenario der Linecard für das SDSL-Szenario mindestens 52 N-Core-Prozessoren mit 
einer Betriebsfrequenz von 200 MHz benötigt. Ohne Softwareoptimierung würden 57 N-Cores und 
unter Verwendung aller Instruktionssatzerweiterungen nur noch 48 benötigt. Würden alle in Ab-
schnitt 7.4.2 vorgestellten Hardwarebeschleuniger einfach instantiiert und eng-gekoppelt eingesetzt, 
so reduzierte sich die Anzahl benötigter Prozessorkerne auf lediglich 9. Dies entspricht einer Re-
duktion von immerhin 84,2 % im Vergleich zur Originalversion. Bei einer Betriebsfrequenz von 
1,57 GHz reichte eines dieser Prozessorsysteme, mit allen Hardwarebeschleunigern ausgestattet, 
aus, um die gesamte Bandbreite einer Linecard im Uplink und Ethernet-Modus für SDSL verarbei-
ten zu können.  

Abbildung 7-18: DSLAM-System-Explorer II – Berücksichtigung der Instruktionssatzerweiterungen und Hard-

warebeschleuniger für unterschiedliche IP-DSLAM-Anwendungsszenarien 
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In [118] werden detaillierte Analysen zu GigaNetIC-basierten Netzwerkprozessoren vorgestellt, bei 
denen möglichst ressourceneffiziente Implementierungen unter Verwendung von optimierten 
Hardwarebeschleunigern angestrebt werden. 

Abbildung 7-19 gibt die Detailansicht der Tasks wieder. In der linken Hälfte werden die Funktionen 
farblich hinterlegt, bei denen die zuvor ausgewählte Optimierung eine Reduktion der benötigten 
Taktzyklen zur Folge hat. Die benötigten Takte für die drei iMix-Paketgrößen sowie das Mittel die-
ser statistischen Verteilung (788 Byte) werden aufgeführt. In der rechten Hälfte des Fensters, der 
Diagrammansicht, wird diese ebenfalls durch zwei überlagerte Säulen dargestellt.  

Abbildung 7-19: Darstellung der benötigten Taktzyklen für die einzelnen Tasks des IP-DSLAM-

Referenzbenchmarks mit Hervorhebung des Einflusses der ausgewählten Optimierungen 

Bei diesem Beispiel handelt es sich um den Vergleich der optimierten Softwarevariante gegenüber 
dem Einsatz aller Hardwarebeschleuniger. Es zeigt sich zum einen, dass nicht alle Funktionen von 
den jeweiligen Optimierungen profitieren, zum anderen wird deutlich, dass viele der Funktionen 
invariant gegenüber der Paketgröße sind. Dies führt dazu, dass kleine Pakete, wie sie in vielen ak-
tuellen Anwendungen genutzt werden, besonders ineffizient bzgl. der Nutzdaten-Aufwand-Effizienz 
sind. Anhand der Balkendiagramme zeigen sich besonders drastische Reduzierungen der sehr re-
chenintensiven Funktionen, so wie es in Abschnitt 7.4.2 bereits angedacht war. Wird eine ausgewo-
gene Mischung zwischen Hardwarebeschleunigern und instruktionssatzerweiterten N-Core-Pro-
zessorkernen implementiert, so kann eine deutliche Steigerung der Ressourceneffizienz gegenüber 
einem nichtoptimierten System, dass alleinig mit Universalprozessoren ausgerüstet ist, erreicht 
werden. Frei werdende Rechenkapazitäten der Prozessorkerne können dann für übergeordnete 
Kontrollaufgaben und höhere Dienstqualität bzw. zusätzliche, differenzierende Eigenschaften des 
Gesamtsystems genutzt werden. 

Eine Erweiterung der in den letzten beiden Abschnitten vorgestellten DSLAM-System-Explorer-
Visualisierungswerkzeuge durch die Kostenfunktions-basierte Analysemethode (vgl. Kapitel 3) wä-
re technisch relativ leicht realisierbar und ermöglichte dem Systemarchitekten neben der Visualisie-
rung und Aufbereitung der Synthese- und Messergebnisse zudem eine fundierte Bewertung. Bei 
einer derart großen Menge an Szenarien und Realisierungsvarianten wäre speziell im Falle des 
DSLAM-System-Explorers eine automatisierte Auswertung im Hinblick auf pareto-optimale und 
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damit ressourceneffiziente Lösungen äußerst hilfreich. Derzeit muss dies noch vom Anwender 
selbst anhand von Auswertungen der generierten Diagramme geleistet werden. 

7.6 Einsatz GigaNetIC-basierter Netzwerkprozessoren als Router 

Als weiteres Beispiel der Vielseitigkeit der GigaNetIC-Architektur wird im Folgenden ein Anwen-
dungsbeispiel aus dem Kernnetzwerk bzw. Edge-Netzwerk zur Bewertung von GigaNetIC-
Systemen, basierend auf den Leistungsdaten der N-Core-Verarbeitungseinheit und spezieller Hard-
warebeschleuniger, vorgestellt. Hierzu wurden in Anlehnung an die vom EEMBC-Benchmark-
Konsortium [161] definierten Netzwerkbenchmarks drei charakteristische Funktionen von Routern 
(OSPF-Routing, Packet-Flow und Route-Lookup) modelliert und auf die Zielarchitektur abgebildet 
[130]. Diese Funktionen stellen wesentliche Aufgaben eines aktuellen Routers dar, die durch zu-
sätzliche Funktionalitäten wie z. B. Network Address Translation (NAT) oder Quality of Service 
(QoS) ergänzt werden können. 

Der Router in dem hier betrachteten Szenario (vgl. Abbildung 7-20) verfügt über acht Gigabit-
Ethernet(GE)-Schnittstellen, die im Vollduplex betrieben werden. Über den internen Aufbau des 
Routers werden keine Angaben gemacht, da hier nur der Rechenaufwand für die einzelnen Algo-
rithmen untersucht werden soll, so dass von einer idealisierten Architektur ausgegangen wird. 

Abbildung 7-20: Leistungsanalyse des N-Cores und der GigaNetIC-Architektur für einen Netzwerkrouter 

Die eintreffenden IP-Pakete (eingefasst in zufallsverteilte Ethernetpakete minimaler/maximaler 
Länge) werden durch den Block Packet Flow zunächst auf Korrektheit geprüft (IP-Headercheck) 
und das TTL(Time to Live)-Feld dekrementiert, da es sich um einen so genannten Hop im Netzwerk 
handelt. Sollte es sich um ein ungültiges Paket handeln, so wird es verworfen. Enthält das Paket 
Routinginformationen über den Netzwerkstatus, wird dieses dem OSPF(Open Shortest Path First)-
Block übergeben, der entsprechend dem hier eingesetzten Dijkstra-Verfahren ggf. die Routingtabel-
le aktualisiert. Handelt es sich bei dem eingehenden IP-Paket um ein Datenpaket, so übernimmt der 
Route-Lookup-Block anhand eines Patricia-Trie-Algorithmus die Zuordnung des Ausgangsports 
und das Paket wird zum nächsten Netzteilnehmer weitergeleitet. Für eine minimale Paketgröße von 
64 Byte und unter Einhaltung der Übertragungsspezifikation ergeben sich 1.488.095 Pakete pro 
Port. Dies bedeutet eine Gesamtpaketzahl von 11,9 Mio. und stellt zugleich den Fall maximalen 
Rechenaufwands dar. Für das Aktualisieren der Routingtabelle wird ein eigenständiger N-Core-
Prozessorkern eingesetzt, der nur für diese Funktion verwendet wird und bei einer Taktfrequenz von 
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230 MHz 317 Updates der Routingtabelle pro Sekunde erreicht59. Heutige Router aktualisieren ihre 
Routingtabelle bis zu 300 mal pro Sekunde [192], in diesem Fall reichte hier ein N-Core zur Verar-
beitung aus.  

Tabelle 7-9 zeigt die mit Hilfe der Benchmarks ermittelten Leistungswerte des N-Cores für den 
Einsatz in einem Edge-Router-Szenario. Es zeigt sich, dass für die hier geforderten acht GE-Ports 
im Volllastbetrieb mindestens 26 dieser Verarbeitungseinheiten zur alleinigen Abwicklung des Pro-
tokollstapels benötigt werden. Würde man dieses Standardsystem durch spezielle Hardwarebe-
schleuniger für die beiden rechenintensiven Aufgaben Packet Flow und Route Lookup erweitern 
(optimiertes System), so ließe sich die Anzahl benötigter N-Cores auf drei reduzieren. Zusätzlich 
wären dann zwei der bereits implementierten Hardwarebeschleuniger (IP-Headercheck, eng-
gekoppelt und CAM, eng-gekoppelt) notwendig (vgl. Abschnitt 7.4.2.3). Diese könnten zusammen 
mit den drei N-Cores die gleiche Rechenleistung zur Verfügung stellen wie das Standardsystem mit 
26 Prozessoren. Tabelle 7-9 zeigt weiterhin die sich durch das optimierte System ergebende Flä-
chenersparnis auf. Diese beträgt insgesamt mehr als 70 %. Zusätzlich wird durch die Verwendung 
dieser optimierten Architektur eine mit 73,6 % nicht unerhebliche Verlustleistungsersparnis erzielt. 
Die Verlustleistung für diese Funktionen wurde mit Hilfe der Annotierung der Schaltaktivitäten 
(AS), während der Laufzeit bestimmt. 

Tabelle 7-9: Rechenleistung eines N-Core-basierten Standardsystems und  

eines optimierten GigaNetIC-Systems für ein Edge-Router-Szenario 

 

Auch in diesem Beispiel für Netzwerkanwendungen zeigt sich, dass die Ressourceneffizienz eines 
Systems aus einem Kompromiss zwischen hoher Leistungsfähigkeit spezialisierter Hardware auf 
der einen Seite und Flexibilität bzw. Zukunftssicherheit von Universalprozessoren auf der anderen 
Seite besteht. 

7.7 Analyse der Anschlussarten von Hardwarebeschleunigern im GigaNoC 

In diesem Abschnitt werden die Ergebnisse von Messreihen zur Software-basierten und Hardware-
beschleuniger-unterstützten Paketverarbeitung vorgestellt. Damit einhergehend wird eine Bewer-
tung der verschiedenen Kopplungsmöglichkeiten (vgl. 4.3.3) der Hardwarebeschleuniger vorge-
nommen. Der in Abschnitt 6.3.1.1 bereits vorgestellte Hardwarebeschleuniger zur Paketprüfung 
beschleunigt Funktionen der Netzwerkverarbeitung auf den Netzwerkschichten 3 und 4. Dazu müs-

                                                 

59 Hierbei wird eine vorinitialisierte Liste von 400 Netzwerkknoten mit je vier Verbindungen pro Knoten als Vorgabe 

angenommen. 

Performanz
pro N-Core

Benötigte
N-Cores

Benötigte
N-Cores

Hardware-
beschleuniger

Flächen-
ersparnis [%]

Verlustleistungs-
ersparnis [%] ( SA )

Packet Flow 
[Pakete/s]

900.262 14 1 1 91,3% 91,8%

Route Lookup 
[Lookups/s]

1.173.000 11 1 1 49,6% 57,2%

OSPF-Routing 
[Updates/s]

317 1 1 - 0% 0%

Gesamt - 26 3 2 70,1% 73,6%

Optimiertes SystemStandardsystem

Funktion
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sen die Pakete auf diesen Schichten terminiert werden, und es bedarf einer protokollkonformen Bil-
dung bzw. Prüfung der Checksummen und der Paketrahmen. Dies kann vollständig in Software ge-
schehen, dann übernimmt der N-Core komplett diesen Task, oder aber: Die rechenintensive Verar-
beitung wird auf die speziell hierfür entwickelten Einheiten ausgelagert, die somit den Universal-
prozessor (PE) entlasten und mehr Rechenzeit für zusätzliche Funktionen, wie z. B. Firewall- oder 
weiterreichende Paketprüffunktionen (Deep Packet Inspection / DPI), schaffen (vgl. Abschnitt 
8.1.2).  

Bei der Evaluierung der Leistungsdaten muss zudem die Anzahl der aktiven Verarbeitungseinheiten 
am lokalen Bus berücksichtigt werden. Der Übersichtlichkeit halber wird sich hier auf zwei Extrem-
fälle beschränkt: Entweder ist eine Verarbeitungseinheit als einzige aktiv, oder aber vier PEs des 
Clusters sind mit der Paketverarbeitung beschäftigt. Mischfälle von Software-Verarbeitung und 
hardwarebeschleunigter Verarbeitung werden der Übersichtlichkeit dienend vernachlässigt. Auch 
für das übergeordnete NoC ist die Anzahl der aktiven Einheiten relevant. Da hier zunächst von ei-
nem maximal 32 PE-umfassenden System mit an das Anwendungsszenario angepasster Anzahl von 
Hardwarebeschleunigern ausgegangen wird, für die das GigaNoC bereits ausreichend dimensioniert 
ist, sind keine nennenswerten Beeinträchtigungen des Systems zu erwarten [118]. 

Zur Verarbeitung wurden Pakete charakteristischer Größe nach dem bereits erwähnten Internet-Mix 
(iMix) verwendet. Dies bedeutet Ethernet-Pakete von 64, 570 und 1518 Byte. Der hier verwendete 
32-Bit-breite Hardwarebeschleuniger erledigt die Aufgabe ca. 14,6 (64 Byte-Paket) bzw. bis zu 16,9 
mal (1518 Byte-Paket) schneller, als der Prozessor, bei gleicher Taktfrequenz. Die Tatsache, dass 
eine deutlich höhere Taktfrequenz des Hardwarebeschleunigers möglich wäre, wird hier außer Acht 
gelassen. Die Beschleunigung ist bei großen Paketen höher als bei kleineren, da hier der Anteil der 
fixen Operationen am Gesamtaufwand im Vergleich zu dem datenabhängigen Anteil geringer wird, 
vgl. Abschnitt 6.3.1.5. 

Abbildung 7-21: Vergleich zwischen Software-basierter Paketverarbeitung und Hardwarebeschleuniger-

basierter Verarbeitung unter Berücksichtigung unterschiedlicher Systemanbindungen 

Bei der Analyse wird zwischen Kommunikation (Communication) und Berechnung (Calculation) 
unterschieden. Unter Kommunikation wird der Anteil an Zyklen verstanden, der zur Initiierung der 
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Berechnung bzw. Prüfung benötigt wird, also Ansteuerung des Hardwarebeschleunigers und Über-
gabe der Adresszeiger und des Steuerwortes. Bei der Software-basierten Variante entfällt dieser 
Anteil, da hier die CPU keine zusätzliche Kommunikation mit anderen Hardwareblöcken ausführen 
muss. Unter Kalkulation wird der Anteil der Zyklen verstanden, der für die eigentliche Prüfung der 
Paketdaten benötigt wird. Abbildung 7-21 gibt einen Überblick über die Verteilung von Kommuni-
kation und Kalkulation bei Software-basierter Paketverarbeitung sowie Hardwarebeschleuniger-
basierter Verarbeitung unter Berücksichtigung von unterschiedlichen Systemanbindungen.  

Deutlich wird, dass die busbezogene Kommunikation bei einer Anzahl von vier Prozessoren keinen 
Flaschenhals bzw. Engpass für die Software-basierte Verarbeitung bedeutet. Erst bei einer Anzahl 
über vier Prozessoren lässt sich eine Herabsetzung der Verarbeitungsgeschwindigkeit feststellen, 
die aufgrund von konkurrierenden Buszugriffen zu Stande kommt. Dies liegt u. a. in der Zugriffs-
zeit auf den gemeinsamen L2-Speicher von vier bis fünf Takten begründet, vgl. Abschnitt 4.4. 

Ein gewisser Flaschenhals zeigt sich hingegen sehr wohl bei dem an den lokalen Bus angeschlosse-
nen Hardwarebeschleuniger (WB HW Acc). Hier macht sich die deutlich höhere Verarbeitungsge-
schwindigkeit bemerkbar. So nimmt die Anzahl der benötigten Zyklen von 27 (64 Byte-Paket / 
1518 Byte-Paket) bei einem aktiven Prozessor durch entstehende Wartezeiten aufgrund der Busar-
bitrierung auf 72 (64 Byte-Paket) bzw. 477 (1518 Byte-Paket) bei vier Prozessoren zu. Dies ent-
spricht einer Steigerung der Kommunikationskosten um 2,67 bzw. 17,67. Bei vier aktiven Prozesso-
ren am Bus liegen die Kosten der Kommunikation in der gleichen Größenordnung wie die Kosten 
für die Berechnung. Dies ist ebenfalls der Fall bei der Ansteuerung des an einem Switch-Box-Port 
angeschlossenen Beschleunigers (CC HW Acc). Allerdings wird hier der lokale Bus stärker entlas-
tet, und die Wartezyklen entstehen durch das NoC. Deshalb bietet sich diese Lösung besonders für 
große Systeme an, bei denen eine Vielzahl von CPUs die rechenintensiven, fixen Tasks auf einige 
wenige, spezialisierte und über das GigaNoC gut erreichbare Hardwarebeschleuniger, auslagert. 
Der eng an den Prozessor gekoppelte Hardwarebeschleuniger (PE Coprozessor) erfordert aufgrund 
der Speicherzugriffe über den zwischengeschalteten N-Core (vgl. auch Abschnitt 7.4.2.3) deutlich 
mehr Taktzyklen für die Kommunikation als die beiden anderen Varianten der Hardwarebeschleu-
nigerkopplung. 

Bei der Software-basierten Verarbeitung wird zwischen zwei Varianten unterschieden. Bei der ers-
ten Variante (SW Shared Mem) befinden sich die Daten im gemeinsamen Speicher (Shared Memo-
ry) des Clusters und bedeuten somit häufige verzahnte Buszugriffe der einzelnen Prozessoren. Bei 
dieser Variante werden die Kosten der Kommunikation zu Null gesetzt, da keine expliziten Daten-
transfers wie bei den anderen Alternativen notwendig sind. Die Prozessoren nehmen lediglich teure-
re L2-Speicherzugriffe vor, die jedoch mit zur Kalkulation gezählt werden. Bei der zweiten Varian-
te (SW Local Mem) hingegen werden die Daten zunächst vollständig in den lokalen Prozessorspei-
cher kopiert. Die Kosten für die Kommunikation dieser Variante liegen in der gleichen Größenord-
nung wie die der eigentlichen Berechnung. Diese Form der Bearbeitung lohnt sich deshalb nur 
dann, wenn weitere Folgeberechnungen auf den Paketdaten stattfinden und es so im Anschluss zu 
günstigen L1-Speicherzugriffen käme. Dies würde im weiteren Verlauf den Bus bei einem Mehr-
prozessorbetrieb entlasten und könnte dann letztendlich zu einer beschleunigten Verarbeitung füh-
ren. Beim Einsatz des GigaNetIC-Multiprozessorcaches (vgl. Abschnitt 4.4.2) anstelle des normalen 
lokalen Prozessorspeichers könnte die Einlagerung neuer Pakete durch Prefetching bereits während 
einer Bearbeitung geschehen, was den Durchsatz des Systems zusätzlich erhöhen würde. 
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Bei der Software-basierten Berechnung liegt die Bearbeitungszeit zwischen 6,1 Takte/Byte (64 By-
te-Paket) und 4,3 Takte/Byte (1518 Byte-Paket), wohingegen der Hardwarebeschleuniger nur 0,4 
Takte/Byte (64 Byte-Paket) bzw. 0,3 Takte/Byte (1518 Byte-Paket) benötigt.  

Abbildung 7-22 zeigt die maximal zu verarbeitenden Pakete pro MHz Rechentakt des Clusters. 
Hierzu werden die Varianten mit einer bzw. mit vier aktiven CPUs für die drei verschiedenen Pa-
ketgrößen in die Betrachtung einbezogen. Es wird ersichtlich, dass sich der maximale Durchsatz mit 
den Bus- und NoC-gekoppelten Varianten erzielen lässt. Der höchste Durchsatz, bei dem nur eine 
CPU aktiv ist, wird bei der busgestützten Hardwarebeschleuniger-Ankopplung (WB HW Acc) er-
zielt. Hier wird bei 1518 Byte großen Paketen ein Durchsatz von 2,82 MByte/MHz erreicht. Die 
NoC-basierte Lösung (CC HW Acc) erreicht bei vier aktiven Prozessoren einen maximalen Durch-
satz von 6,9 MByte/MHz bei 1518 Byte großen Paketen. Bezogen auf die in [109] gezeigten Syn-
thesewerte entspräche dies einem maximalen Durchsatz von 1,814 GByte bei einer Betriebsfre-
quenz von 263 MHz pro Cluster. Ein System dieser Leistungsfähigkeit wäre in der Lage, Pakete auf 
Layer-3- und Layer-4-Schicht simultan für 900 ADSL2+-Anschlüsse (16MBit/s, Downlink) unter 
Volllast zu prüfen. Bei der rein Software-basierten Variante ließen sich noch 120 dieser DSL-
Anschlüsse unter Volllast betreiben. Der in Abschnitt 8.1.2 vorgestellte FPGA-basierte Demonstra-
tor könnte bei den derzeitigen 12,5 MHz folglich noch über 86 MByte an Daten pro Sekunde verar-
beiten bzw. 42 ADSL2+-Anschlüsse bedienen. 

Abbildung 7-22: Bandbreite pro MHz der einzelnen Systemvarianten 

Mit Hilfe der leistungsfähigen Analysewerkzeuge der GigaNetIC-Architektur (vgl. Kapitel 5 und 6) 
kann im Vorfeld einer Chiprealisierung bereits sehr genau bestimmt werden, welche Hardwarebe-
schleuniger mit welcher Kopplung im GigaNoC eingebunden werden müssen, um möglichst res-
sourceneffizient eingesetzt werden zu können. In diesem Beispiel konnte gezeigt werden, dass lose-
gekoppelte Beschleuniger (CC HW Acc bzw. WB HW Acc) besonders bei großen Systemen vor-
teilhaft eingesetzt werden können. Der eng-gekoppelte Beschleuniger (PE-Coprozessor) eignet sich 
ggf. in Verbindung mit dem GigaNetIC-Multiprozessorcache. Die Software-basierten Ansätze (SW 
Shared Mem und SW Local Mem) brauchen im Gegensatz zu allen anderen Varianten deutlich mehr 
Taktzyklen. Lediglich die höhere Flexibilität und Zukunftssicherheit der Softwarelösungen erschei-
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nen vorteilhaft, was allerdings bei standardisierten Algorithmen wie der hier betrachteten Paketprü-
fung von geringer Relevanz ist. 

7.8 Zusammenfassung 

In diesem Kapitel wurde die GigaNetIC-Architektur im Hinblick auf den Einsatz für unterschiedli-
che Netzwerkszenarien untersucht. Gerade im Netzwerkbereich bieten sich parallele Systeme zur 
Datenverarbeitung an, da hier eine Vielzahl von parallelen, zum Teil nicht korrelierten Datenströ-
men simultan von den Verarbeitungseinheiten bearbeitet werden kann. 

Im Rahmen dieses Kapitels wurde ein IP-DSLAM-Benchmark zur Bewertung der GigaNetIC-
Architektur für Zugangsnetzwerke vorgestellt. Die Leistungsfähigkeit der Architektur wurde für 
unterschiedliche Szenarien analysiert und mit anderen Ansätzen verglichen. Im Anschluss wurde 
die Leistungsfähigkeit des von uns entwickelten Prozessorkerns N-Core für relevante Funktionen 
durch Optimierung der Architektur, Instruktionssatzerweiterungen sowie Hinzufügen von anwen-
dungsspezifischen Hardwarebeschleunigern deutlich erhöht. So konnten mit Hilfe der implemen-
tierten Instruktionssatzerweiterungen Beschleunigungen von über 24 % bei einem marginalen Flä-
chenmehraufwand von 2,7 % für den Prozessorkern erzielt werden. Durch diese Maßnahme können 
zusätzlich über 20 % an Energie eingespart werden. Verglichen mit den eingebetteten Prozessor-
kernen ermöglichen die realisierten Hardwarebeschleuniger Beschleunigungen um teilweise mehre-
re Größenordnungen. Der Flächenbedarf ist höher als der der zusätzlichen Superinstruktionen, der 
Energiebedarf der Gesamtschaltung wird jedoch deutlich reduziert. Für den IP-DSLAM-
Referenzbenchmark konnte die benötigte Energie auf weniger als ein Zwölftel reduziert werden. 

Es wurde eine modulare Methode zur effizienten Modellierung von Netzwerkanwendungen vorges-
tellt, mit deren Hilfe der bereits entworfene IP-DSLAM-Benchmark auf Systemebene zu einem noch 
realistischeren Referenzbenchmark erweitert werden konnte. Diese Anwendung wurde ebenfalls auf 
die GigaNetIC-Architektur portiert und analysiert. Im Anschluss wurde die Hardware für besonders 
rechenintensive Aufgaben der Zielapplikation optimiert. Mit Hilfe eines eigens entwickelten Visua-
lisierungswerkzeugs, dem DSLAM-System-Explorer, können die Leistungsdaten des N-Cores, die 
erzielten Beschleunigungen der Hardwareerweiterungen und Leistungsvergleiche mit anderen Pro-
zessorfamilien komfortabel veranschaulicht werden. Es lassen sich Hochrechnungen bzgl. des 
Hardwareaufwands für gewünschte Anforderungen des IP-DSLAM-Anwendungsszenarios aufstel-
len, die eine gezielte Evaluierung des Entwurfsraums ermöglichen. 

Eine Analyse der Leistungsfähigkeit der verschiedenen Kopplungsarten von Hardwarebeschleuni-
gern an das GigaNoC der GigaNetIC-Architektur zeigt Vor- und Nachteile der einzelnen Varianten 
auf. Da die Art der Kopplung und die Anzahl der Hardwarebeschleuniger abhängig von den Anfor-
derungen des jeweiligen Anwendungsszenarios, können vielversprechende Lösungen im Hinblick 
auf die Ressourceneffizienz mit Hilfe der leistungsfähigen GigaNetIC-Simulationsumgebungen er-
mittelt werden. 

In diesem Kapitel wurde gezeigt, dass die entwickelte, skalierbare Systemarchitektur eine – durch 
die Werkzeugkette unterstützt – hierarchisch optimierbare, ressourceneffiziente Plattform für Netz-
werkanwendungen und Coprozessorsysteme darstellt. Aufgrund der guten Skalierbarkeit der zu-
grunde liegenden Systemarchitektur können GigaNetIC-basierte Systeme für unterschiedlichste 
Einsatzbereiche in Netzwerkanwendungen eingesetzt werden. Der Vorteil liegt hier u. a. in dem 
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gleichbleibenden Architektur- und Programmiermodellansatz und der sich hieraus ergebenden gu-
ten Wartbarkeit. Durch Synergieeffekte und sich akkumulierende Lernkurven der Entwickler folgen 
Zeitersparnis bei der Realisierung neuer Systemvarianten und kürzere Time-to-Market-Spannen. 
Deshalb und aufgrund der hohen Flexibilität der Architektur lassen sich ebenfalls längere Time-in-
Market-Spannen erzielen. 
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8 Prototypische Implementierung des Systems 
Dieses Kapitel beschreibt die vollständige prototypische Umsetzung der bisher konzeptionellen und 
theoretischen Überlegungen zur Gestaltung der GigaNetIC-Architektur der vorangegangenen Kapi-
tel. Die Realisierung geschieht zum einen in Gestalt eines einsatzfähigen, FPGA-basierten Systems, 
unter Verwendung der RAPTOR2000-Rapid-Prototyping-Entwicklungsumgebung (vgl. Abschnitt 
5.5), und zum anderen als Synthese auf zwei aktuelle CMOS-Standardzellentechnologien. 

Für diese beiden disparaten Zieltechnologien wurde ein einheitlicher skriptbasierter Syntheseablauf 
entwickelt, der weitestgehend automatisiert abläuft. Durch Parametervariation kann er leicht an die 
spezifizierte Zieltechnologie und nahezu beliebige Systemgrößen und Ausprägungen des Chip-
Multiprozessors angepasst werden. Neben der schnellen Systememulation durch den FPGA-
basierten Prototypen, die in Abschnitt 5.5 bereits Erwähnung fand und dort u. a. die Entwicklungs-
zyklen für umfangreichere Softwareprojekte erheblich beschleunigen half, ergeben sich zusätzlich 
wertvolle Impulse zur Verbesserung bzw. zur Fehlerbehebung der Hardwarebeschreibung. Betrach-
tet man die NRE-Kosten für moderne Halbleiterprozesse im Sub-100-nm-Bereich ist dies ein ganz 
erheblicher Vorteil gegenüber rein durch Simulation verifizierten Hardwareentwürfen. Diese liegen 
mittlerweile in der Größenordnung von einer Million Euro, so dass eine gründliche Verifikation des 
Entwurfs mehr als erstrebenswert ist.  

Durch Analysen der Codeabdeckung während der einzelnen Simulationsphasen der HDL-
Beschreibung als auch durch die Einbindung des FPGA-Prototypen in ein zukünftiges Anwen-
dungsszenario des GigaNetIC-Systems wird die Fehlerwahrscheinlichkeit deutlich minimiert. Zu-
sätzliche Sicherheit bzgl. der Fehlerfreiheit der Hardware könnten Erweiterungen der Hardwarebe-
schreibung durch die Nutzung von eigenschaftsspezifizierenden Sprachen, wie z. B. PSL (Property 
Specification Language for Assertion-Based Verification), die während der Simulation das Verhal-
ten nach vorgegebenen Mustern und Regeln überprüfen, erreicht werden. Letztendlich wäre eine 
formale Verifikation des Systems im Bezug auf einen fehlerfreien Entwurf wünschenswert. Auf-
grund der beschränkten Zeit im Rahmen dieser Arbeit konnten diese beiden Verifikationsmecha-
nismen allerdings noch nicht implementiert werden. 

Im folgenden Abschnitt wird auf die FPGA-Realisierung des GigaNetIC-Systems näher eingegan-
gen, bevor in Abschnitt 8.2 die Resultate der ASIC-Realisierung auf Basis zweier CMOS-
Standardzellentechnologien vorgestellt werden. 

8.1 FPGA-Realisierung – GigaNetIC-Prototyping-Plattform 

Für die funktionale Verifikation wird die RTL-Beschreibung auf das im Fachgebiet Schaltungs-
technik entwickelte Rapid Prototyping System RAPTOR2000 abgebildet. Auf Basis feingranular 
rekonfigurierbarer Bausteine (FPGAs) ermöglicht dieses System eine Emulation des gesamten 
Chip-Multiprozessors. RAPTOR2000 ist über den PCI-Bus an einen Host-Computer angebunden 
und kann über diesen PC komfortabel konfiguriert werden. Die Prototypen-Umgebung integriert 
neben rekonfigurierbaren Einheiten, die die Multiprozessorarchitektur emulieren, auch Speicher 
und externe Schnittstellen. Auf diese Weise kann der Prototyp in eine reale Systemumgebung integ-
riert und verifiziert werden. Die frühe Bereitstellung des Prototyps ermöglicht neben einer Verifika-
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tion des zugrunde liegenden RTL-Modells eine effiziente parallele Entwicklung von Software und 
Hardware. Dabei ist besonders die hohe Geschwindigkeit der Hardware-Emulation von großem 
Vorteil, die um mehrere Größenordnungen (vgl. Kapitel 5) über der Simulationsgeschwindigkeit 
der Schaltung auf RTL-Ebene liegt. Somit können auch komplexe Testprogramme und Benchmarks 
auf dem Prototypen in vertretbarer Zeit ausgeführt werden. Der hier zu realisierende FPGA-
Prototyp wird zunächst in Bereichen der Netzwerkdatenverarbeitung eingesetzt werden. 

Grundsätzlich unterscheidet sich die FPGA-Realisierung nicht von der folgenden ASIC-Implemen-
tierung in CMOS-Standardzellentechnologien. Es wird die gleiche Hardwarebeschreibung verwen-
det, lediglich die verwendete On-Chip-Speichertechnologie muss für die jeweilige Zieltechnologie 
eingestellt werden. Zur Erzielung der jeweils besten Syntheseergebnisse werden für beide Zieltech-
nologien angepasste Steuerskripte verwendet. In der Größe des realisierbaren Multiprozessorsys-
tems und der erreichbaren Taktfrequenz sind heutige FPGA-Technologien deutlich eingeschränkter 
als ein moderner standardzellenbasierter ASIC. Bei den FPGA-basierten Prototypen wird das Sys-
tem auf zwei Cluster beschränkt im Gegensatz zu acht bzw. auch 20 in der ASIC-Variante. Auch 
die erreichbare Taktfrequenz ist ca. 20mal geringer. Dennoch sind für eine schnelle, kostengünstige 
und zugleich detaillierte Verifikation in der späteren Systemumgebung FPGA-basierte Prototypen 
von unschätzbarem Wert. 

8.1.1 Aufbau und Syntheseergebnisse 

Im Folgenden werden der Aufbau und die Ergebnisse der Synthese auf die verwendete FPGA-
Architektur näher erläutert. Abbildung 8-1 zeigt das auf Basis zweier Xilinx Virtex-II 8000 FPGAs 
zusammen mit einer Fast-Ethernet-Schnittstellentochterplatine des RAPTOR2000-Systems reali-
sierte GigaNetIC-Chip-Multiprozessorsystem.  

Abbildung 8-1: RAPTOR2000-basierter FPGA-Prototyp der GigaNetIC-Architektur 

Das System umfasst zwei Cluster mit jeweils vier N-Cores, die über einen Wishbone-Bus mit dem 
Communication-Controller und dem gemeinsamen Paketspeicher sowie lokaler Peripherie, in die-
sem Beispiel einen UART zum Anschluss der zur Interaktion mit dem Benutzer benötigten 
Touchscreens, verbunden sind. Die beiden Switch-Boxen sind miteinander über die Ports 1 bzw. 3 
verbunden, wobei diese Verbindungen über die externen Anschlüsse der beiden FPGAs realisiert 
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sind. Da die benötigten Anschlüsse nicht in ausreichender Anzahl auf dem RAPTOR2000-
Mainboard zur Verfügung stehen wird bei der Übertragung die Serialisierungsfunktionalität der 
Switch-Box-Ports (vgl. Abschnitt 6.6) ausgenutzt. 

Tabelle 8-1 zeigt die Syntheseergebnisse für die FPGA-Realisierung eines GigaNetIC-Clusters. Es 
ist zu beachten, dass der hier angegebene Wert von 14.133 Slices für eine Switch-Box mit fünf 
Ports und einer FIFO-Tiefe von drei gilt. In der Systemkonfiguration aus Abbildung 8-1 werden 
allerdings nur drei dieser fünf Ports benötigt, so dass sich bei gewünschter Optimierung seitens der 
Xilinx-Entwicklungsumgebung dieser Wert auf 7.946 Slices reduzieren lässt. Die Switch-Box in 
ihrer vollständigen Ausprägung nimmt fast genauso viele Ressourcen in Anspruch, wie die vier N-
Core-Subsysteme mit je 3.662 Slices. Dies liegt darin begründet, dass die derzeitige Implementie-
rung Register zur Realisierung der FIFO-Ketten verwendet, die in der FPGA-Implementierung 
59 % der benötigten Slices in Anspruch nehmen. 

Tabelle 8-1: Syntheseergebnisse für die FPGA-Realisierung eines GigaNetIC-Clusters 

Hardware-Blöcke Slices RAM16s 
4 x N-Core-Subsysteme (inkl. 4 x 
32 KB Speicher) 

14.648 64 

Switch-Box  
(inkl. Communication-Controller) 

14.133 - 

Ethernet-Controller 
(inkl. 2 Ethernet-Ports) 

5.544 32 

Paketspeicher (32 KB) 53 16 
SRAM-Schnittstelle 22 - 
Serielle Schnittstelle (UART) 626 - 
Wishbone-Arbiter 13 - 
ΣΣΣΣ 35.039 112 

Die detaillierten Ergebnisse zum N-Core-Subsystem werden in Tabelle 8-2 aufgeschlüsselt. Erwäh-
nenswert ist die Tatsache, dass die Switch-Box zwar die größte Komponente des Clusters darstellt, 
der kritische Pfad des Systems allerdings vom N-Core zu einer maximalen Taktfrequenz von 
16,79 MHz bestimmt wird60. Die letztlich verwendete Taktfrequenz des Gesamtsystems beträgt 
12,5 MHz.  

Tabelle 8-2: Syntheseergebnisse für die FPGA-Realisierung des N-Core-Subsystems 

Hardware-Blöcke Slices RAM16s 
Address-Dekoder 121 - 
N-Core-Kern 3.405 16 
ClockGen 6 - 
Informationsregister 1 - 
LB-Schnittstelle 110 - 
PIC 6 - 
RR Arbiter 13 - 
ΣΣΣΣ 3.662 16 

Bei einer Gesamtanzahl der verfügbaren Slices des XC2V800061 von 46.592 lastet ein GigaNetIC-
Cluster dieses FPGA zu 75 % aus. Für die benötigten Speicherkomponenten werden die BlockRAM-
Ressourcen (RAM16) des FPGAs verwendet. Die hierbei kleinste BlockRAM-Instanz entspricht ei-
nem 18 KBit-großen Dual-Port-Speicher mit konfigurierbarer Datenbusbreite. Diese elementaren 

                                                 

60 Alle Werte beziehen sich auf Xilinx FPGAs des Typs XC2V8000 mit dem langsamsten Speedgrade 4. 

61 Der XC2V8000 gehörte 2005 zu den FPGAs mit den meisten verfügbaren Logikelementen (Slices) und ist der größte 

Baustein der Virtex II Familie mit 8 Mio. Systemgattern bzw. 46.592 Slices. 
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Speicherblöcke werden je nach Konfiguration des Speichermoduls nicht immer vollständig ausge-
nutzt. 

8.1.2 GigaNetIC-Demonstrator – Einsatz in einem realen Netzwerkszenario 

Ähnlich dem im Liberouter-Projekt [193] verfolgten Ansatz setzen wir beim GigaNetIC-
Demonstrator auf Internet-Protokoll-basierte Paketverarbeitung mit Hilfe von FPGAs. Allerdings 
nutzen wir zunächst Cluster von Universalprozessoren wie den N-Core und erweitern dann das Sys-
tem durch zusätzlich benötigte Hardwarebeschleuniger. Vorteilhaft an dem GigaNetIC-System ist 
die Modularität des RAPTOR2000-Boards. So können bis zu sechs Tochterplatinen mit ggf. sechs 
interoperablen FPGAs eingesetzt werden, wohingegen der monolithische Aufbau der Combo-
Boards des Liberouter-Projekts nur ein FPGA integrieren und derzeit keine derartige Erweiterbar-
keit vorsehen. 

Abbildung 8-2 zeigt den funktionsfähigen RAPTOR2000-basierten GigaNetIC-Demonstrator, der 
zwei N-Core-Cluster prototypisch auf FPGAs realisiert. Bei diesem Aufbau übernehmen die N-
Core-Cluster die komplette Paketverarbeitung eines zwischengeschalteten Routers und übertragen 
einen Video-Live-Stream in Echtzeit zu einem angeschlossenen Netzwerk-Client. Ebenso können 
die bisher gezeigten Hardwarebeschleuniger integriert und zur beschleunigten Verarbeitung einge-
setzt werden. Die Auswirkungen des Hinzuschaltens des IP-Headercheck-Hardwarebeschleunigers 
z. B. konnten in Form einer deutlich besseren Bildqualität der Videoübertragung des in Abbildung 
8-3 beschriebenen Netzwerkszenarios beobachtet werden. 

Der Demonstrator wurde auf der CeBIT 2005 sowie auf der Hannover-Messe 2005 auf dem fachge-
bietseigenen Messestand im Rahmen des Bereichs „Forschungsland NRW“ der Öffentlichkeit vor-
gestellt.  

Abbildung 8-2: FPGA-basierter GigaNetIC-Demonstrator,  

ausgestellt am Stand Forschungsland NRW auf der CeBIT 2005 und Hannover Messe 2005 



8.1 FPGA-Realisierung – GigaNetIC-Prototyping-Plattform 

 

221

Das mit dem GigaNetIC-Demonstrator präsentierte Netzwerkanwendungsszenario wird in Abbil-
dung 8-3 detailliert vorgestellt. Ein PC-basierter Video-Server stellt die Livebilder einer angeschlos-
senen Webcam zum Abruf über das in diesem Fall kabelgebundene, ethernetbasierte Internet zur 
Verfügung. Als Zwischenstelle, sozusagen als Router, fungiert hier der GigaNetIC-Chip-
Multiprozessor, realisiert als FPGA-Prototyp, basierend auf dem RAPTOR2000-System. Hierbei 
kommen zwei GigaNetIC-Cluster, wie in Abbildung 8-1 gezeigt, zum Einsatz. Die Datenpakete 
werden über die Ethernetschnittstelle des GigaNetIC-Clusters in den lokalen Paketspeicher transfe-
riert. Von hier holen die N-Cores die Pakete nach dem Best-Effort-Prinzip ab und führen zunächst 
eine Checksummenprüfung nach [160] durch. Der Benutzer kann mit dem System über eine berüh-
rungssensitive Anzeige interagieren. Mit Hilfe von Schaltflächen wird ihm die Möglichkeit gegeben 
die Farbe des Bildrahmens auszuwählen. Den N-Cores wird dieses Kommando übermittelt, worauf-
hin sie die Datenpakete nach dem bekannten Muster der Rahmenfarbe durchsucht und diese dann 
durch die vom Benutzer gewählte ersetzt. Im Anschluss werden die Daten zum Versand wieder zum 
Ethernetcontroller über das GigaNoC geschickt. Letztendlich werden sie zum anfordernden PC (Vi-
deo-Client) geleitet, der diese innerhalb eines Webbrowsers als Livestream anzeigt. Das hier reali-
sierte Netzwerkszenario demonstriert die Funktionsfähigkeit der GigaNetIC-Architektur. Es hat 
geholfen die entworfene Architektur in einem realen Anwendungsfeld zu testen und in Echtzeit ana-
lysieren zu können. 

Abbildung 8-3: GigaNetIC-Demonstrator – reales Netzwerkszenario als Verifikationsbeispiel 

Um mit dem FPGA-Prototypen effektiv arbeiten zu können, wurde eine graphische Benutzerober-
fläche (Graphical User Interface / GUI) für die Interaktion mit der Hardware erstellt. Diese verwen-
det die vom RAPTOR2000-System zur Verfügung gestellte DLL (Dynamic Link Library), um auf 
das PCI-basierte Prototypensystem vom PC aus zugreifen zu können.  

Über die GigaNetIC-GUI (vgl. Abbildung 8-4) können alle wesentlichen Funktionen des Chip-
Multiprozessors gesteuert bzw. abgerufen werden. Sie ermöglicht die einfache Konfiguration der 
verwendeten FPGA-Tochterplatinen mit den jeweiligen Bitstreams, die komfortabel mit Hilfe einer 
Dateivorschau von den zur Verfügung stehenden Laufwerken ausgewählt werden können. Außer-
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dem werden so die jeweiligen Programmdateien den einzelnen N-Cores zugeordnet, die auch wäh-
rend des Betriebs verändert werden können. 

Eine weitere wichtige Funktion der Software sind Kontrollaufgaben zur Steuerung der Hardware. 
Hierzu zählen das Starten, Stoppen und Zurücksetzen (Reset) aller oder einzelner Prozessoren sowie 
das Verarbeiten der anliegenden Daten, die über den UART eingehen, so z. B. die Benutzereinga-
ben über den Touchscreen als auch dessen Ansteuerung. Mit Hilfe dieser bidirektionalen Schnitt-
stelle kann komfortabel mit dem System interagiert werden und so direkt auf den Programmablauf 
der einzelnen N-Cores Einfluss genommen werden, wie z. B. beim beschriebenen GigaNetIC-
Demonstrator (vgl. Abbildung 8-3). Weiterhin kann die Konfiguration der zur Verfügung stehenden 
Ethernetports über die GigaNetIC-GUI vorgenommen werden, wie z. B. Übertragungsgeschwindig-
keit und Verbindungsstatus. 

Mit Hilfe der GigaNetIC-GUI verfügt der Entwickler über leistungsfähige Debuggingfunktionen, 
die es erlauben, graphisch auf relevante Statusinformationen zu den Prozessoren und den anderen 
Blöcken des Chip-Multiprozessors zuzugreifen. Außerdem lassen sich alle Speicherinhalte anzeigen 
und bei Bedarf abspeichern (so genannte Memory Dumps). Der aktuelle Zustand des Communicati-
on-Controllers kann ebenso angezeigt wie gesteuert werden. So können z. B. Pakete zu Testzwe-
cken ins GigaNoC injiziert werden. 

Abbildung 8-4: Graphische Benutzeroberfläche des GigaNetIC-Demonstrators 

Die GigaNetIC-GUI ist adaptiv und erkennt die Hardwarekonfiguration der involvierten FPGAs 
automatisch. Hierzu zählen u. a. die Anzahl verfügbarer N-Cores, Ethernetports und die Größe der 
verfügbaren Speichermodule. Hardwaremodule, die aufgrund der jeweiligen Konfiguration des 
FPGAs nicht zur Verfügung stehen, werden automatisch mit einem roten „X“ markiert und stehen 
nicht zur Verfügung. 

Für die spätere ASIC-Realisierung, die zunächst auch auf einer RAPTOR2000-Tochterplatine ge-
testet werden soll, kann auf viele Funktionen dieser Software zurückgegriffen werden. Hierdurch 
wird ein hoher Wiederverwendungswert erreicht und nur wenige Funktionen müssen ggf. hinzuge-
fügt werden bzw. können im Falle der Auswahl von Konfigurationsbitstreams entfallen. 
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8.2 ASIC-Realisierung in CMOS-Standardzellen 

Heutige FPGA-Technologien wie die der Xilinx-Virtex-II-Serie, deren Verwendung im vorigen 
Abschnitt beschrieben wurde, eignen sich noch nicht für die Realisierung sehr komplexer bzw. sehr 
großer Systeme, wie es z. B. ein GigaNetIC-System mit acht und mehr Switch-Boxen darstellt. 
Derzeit besteht noch eine deutliche Flächen-Funktions-Diskrepanz zwischen der vorgestellten 
FPGA-Technologie und aktuellen Standardzellen-Technologien. Der Unterschied für die benötigte 
Fläche für eine gegebene Funktionalität liegt derzeit bei einem Faktor von ca. 40 [194]62. Der Un-
terschied in der maximalen Taktfrequenz zwischen Standardzellen- und FPGA-Entwürfen (schnell-
stes Speedgrade) wird in [194] mit Faktor 2 bis 3 angegeben. Im Vergleich dazu liegen die FPGAs 
mit dem langsamsten Speedgrade ca. Faktor 3 bis 4,5 unter der Leistungsfähigkeit der Standardzel-
lentechnologie. Das Verhältnis bei der dynamischen Verlustleistung bewegt sich lt. [194] zwischen 
Faktor 9 und 12. Diese Angaben verdeutlichen, dass vor allem noch einiges an der Flächeneffizienz 
der FPGAs verbessert werden muss, bevor sie als Alternative zur Standardzellentechnologie im Be-
reich großer Systeme in Frage kommen. Zusätzlich bieten die Standardzellentechnologien bei den 
angestrebten, hohen Stückzahlen im Netzwerkbereich einen deutlichen Kostenvorteil gegenüber der 
aktuellen FPGA-Technologie. Diese Umstände empfehlen deshalb, trotz der hohen NRE-Kosten, 
CMOS-basierte Standardzellentechnologien als passende Zieltechnologie für die GigaNetIC-
Architektur. 

Nach erfolgreichem Test der GigaNetIC-Architektur mit Hilfe des FPGA-basierten Prototyps, so-
wie durch die Verifikation des Systems durch die zahlreichen Simulationen mit Hilfe der in Kapitel 
5 vorgestellten Entwicklungsumgebungen schließt sich die Realisierung in der angestrebten Ziel-
technologie, moderne CMOS-basierte Standardzellentechnologien in 130 nm bzw. 90 nm an.  

8.2.1 GigaNetIC-Architektur mit SRAM-basiertem L1-Speicher 

Die folgenden Tabellen zeigen die Syntheseresultate der GigaNetIC-Hauptkomponenten für die 
eben genannten Technologien auf. Bei der ASIC-Realisierung wird beispielhaft ein System beste-
hend aus acht Clustern, die in einem 4×2-Gitter angeordnet sind, betrachtet. Jeder Cluster besteht 
aus vier N-Cores, einer Switch-Box mit fünf Ports mit einer FIFO-Tiefe von drei. Als lokaler Bus 
wird derzeit für die Variante ohne Cache der Wishbone-Bus favorisiert, aber auch der AMBA-Bus 
ist denkbar und flächenmäßig nahezu gleich groß. Insgesamt bedeutet dies 32 N-Core-Prozessoren 
mit 1,25 MByte On-Chip-Speicher.  

Tabelle 8-3 stellt zunächst die jeweiligen Flächenanforderungen der Komponenten in beiden Tech-
nologien gegenüber. Die Gesamtgröße des hier vorgestellten Systems liegt bei 50,01 mm² (130 nm) 
bzw. 43,7 mm² (90 nm). Die sich aus den S-Parametern (vgl. Definition 29) ergebende Abschät-

zung, dass sich bei einer Verkleinerung der minimalen Strukturgröße um den Faktor 2  der resul-
tierende Flächenbedarf in der neuen Technologie halbiert, bewahrheitet sich hier nicht für alle 
Komponenten. Lediglich für die Switch-Boxen und die lokalen Busse trifft diese „Daumenregel“ 
zu. Die Fläche des Speichers, der 70 % (130 nm) bzw. 81 % (90 nm) der Gesamtfläche ausmacht, 

                                                 

62 Allen Angaben zu Grunde liegen detaillierte Analysen aktueller FPGA- und Standardzellentechnologien, die zur Ab-

bildung unterschiedlicher Schaltungsentwürfe zur möglichst vollständigen Abdeckung des Entwurfsraums herangezo-

gen wurden. 
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ist in der 90-nm-Technologie bis auf die dritte Nachkommastelle identisch mit der Speicherfläche 
der 130-nm-Technologie. Dies liegt in der noch nicht vollzogenen Optimierung der 90-nm-
Speicherzellen dieser zum Zeitpunkt der Synthesen neu eingeführten Technologie begründet. Zur 
Veranschaulichung der Flächenreduktion zeigt Abbildung 8-9 eine Hochrechnung der Clusterfläche 
bei einer für Speicher eher konservativ angenommenen Skalierung mit 2S− . In diesem Fall redu-
zierte sich die Fläche von 43,7 mm² auf nur noch 25,97 mm², nähme also nur noch 59,4 % der Urs-
prungsfläche ein. 

Tabelle 8-3: Charakteristika der GigaNetIC-Hauptkomponenten  

für 130-nm- bzw. 90-nm-Standardzellentechnologie 

 

Die Switch-Boxen zusammen mit den lokalen Bussen nehmen als gesamte Kommunikationsinfrast-
ruktur des Chip-Multiprozessors 18,9 % (130 nm) bzw. 9,3 % (90 nm) der Gesamtfläche des syn-
thetisierten SoCs ein. In DALLY  [57] werden ca. 10 % Flächenanteil der Kommunikationsstruktur 
als durchaus vertretbar angesehen. Dies entspricht ebenfalls den von mir in [14] auf grundlegenden 
Analysen beruhenden ersten Hochrechnungen zur Ausprägung eines effizienten On-Chip-
Netzwerks.  

Die maximal erreichbare Taktfrequenz bestimmt beim GigaNetIC-System die langsamste Kompo-
nente. So lässt sich derzeit in 130-nm-Technologie eine Taktrate von ca. 205 MHz im Gegensatz zu 
285 MHz bei der 90-nm-Technologie erreichen. Derzeit bestimmt der N-Core diese Frequenz durch 
den längsten kritischen Pfad der Gesamtschaltung. Durch weitere Optimierungen lassen sich aller-
dings noch höhere Taktfrequenzen erreichen, da hier noch nicht alle Möglichkeiten ausgeschöpft 
sind (vgl. Abschnitt 6.2).  

Bei der Verlustleistung, die sich auf die maximal realisierbare Taktfrequenz bezieht, liegt der ange-
nommene Wert bei 2,7 W (130 nm) bzw. 1,8 W (90 nm). Dies ist allerdings eine Abschätzung, die 
auf Annahmen der Schaltwahrscheinlichkeiten seitens des Synthesewerkzeugs (50%S) und nicht auf 
annotierten Werten (AS) beruht. Dies deutet auf eine eher geringere Leistungsaufnahme im norma-
len Betrieb hin, da hier nicht eine Schaltwahrscheinlichkeit von 50 % in jedem Takt für alle Kom-
ponenten anzunehmen ist. Mit Hilfe der in Abschnitt 5.3 vorgestellten Werkzeugkette ist es nun 
möglich für dedizierte Anwendungen die konkreten Schaltwahrscheinlichkeiten aufzuzeichnen und 
so sehr genaue Werte zur Leistungsaufnahme zu erzielen (vgl. Abschnitt 6.3.1.5). Bei der relativen 
Verlustleistung, also aufgenommene mW pro MHz, zeichnet sich eine deutliche Reduktion durch 
die Verwendung der 90-nm-Technologie ab. Diese fällt auf lediglich 47,9 % des Wertes für die 
130-nm-Technologie. Für die 130-nm-Technologie wurde zusätzlich noch die Verlustleistung der 
Inter-Switch-Box-Links analysiert [115]. Hierzu wurden die relevanten Charakteristika für Leitun-
gen auf den obersten Metalllagen sieben und acht aus dem Datenbuch verwendet. Hieraus kann fol-

130nm 90nm 130nm 90nm
130nm 

@205MHz
90nm     

@285 MHz
130nm 90nm

32 N-Core 32 x 0,160 32 x 0,120 205 285 352,0 410,4 0,054 0,045
8 Switch-Boxen
[mit 5 Ports, FIFO-Tiefe 3] 

8 x 1,129 8 x 0,530 560 714 660,9 741,0 0,403 0,325

32 lokale Speicher (32 KB) 32 x 0,875 32 x 0,875 400 450 1165,1 465,1 0,178 0,051
8 lokale Paketpuffer (2  x 16 KB) 8 x 2 x 0,466 8 x 2 x 0,466 400 450 518,2 175,6 0,316 0,077
8 lokale On-Chip-Busse
(Wishbone / AMBA)

8 x  0,050 8 x 0,020 211 290 15,6 13,7 0,010 0,006

Insgesamt 50,01 43,70 205 285 2711,8 1805,8 13,228 6,336

Verlustleistung
je IP-Block 
[mw/MHz]SoC-Haupt-Komponenten 

Fläche 
[mm²]

Frequenz 
[MHz]

Verlustleistung gesamt
[mw]
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gende Berechnungsvorschrift für die Leistungsaufnahme aufgestellt werden:   

Inter-SB-Links

1
0,0517C

mW
P Links Ports f l

MHz m
= ⋅ ⋅ ⋅ ⋅ ⋅ , mit 93 Links, 4 Inter-Switch-Box-Verbindungen, 

einer Betriebsfrequenz von 205 MHz und einer Länge lC von 2,3 mm (vgl. Abbildung 8-7) ergibt 
sich eine zusätzliche Verlustleistung von 9,1 mW für alle globalen Verbindungsleitungen einer 
Switch-Box bei einer Schaltwahrscheinlichkeit von 50 %. Bezogen auf die Gesamtverlustleistung 
eines Clusters sind dies ca. 2.7 %. Dieser Anteil ist somit nicht gänzlich zu vernachlässigen, liegt er 
doch fast in der Größenordnung der Verlustleistungsaufnahme eines Prozessorkerns. Dies spricht 
ebenfalls für die in Abschnitt 6.6 vorgeschlagene Nutzung der energieeffizienten, serialisierten Da-
tenübertragung für niederpriore Pakete.  

Abbildung 8-5 zeigt die Anteile der drei wesentlichen Hardware-Bestandteile: Verarbeitung, 
Kommunikation und Speicher der GigaNetIC-Architektur an Fläche und Verlustleistung des Ge-
samtsystems für die beiden betrachteten Standardzellentechnologien in 130 nm und 90 nm. 

Abbildung 8-5: Anteile der drei wesentlichen Hardware-Bestandteile der GigaNetIC-Architektur an Fläche und 

Verlustleistung für die 130-nm- und 90-nm-Realisierung 

Es fällt bei beiden Technologien auf, dass der Speicher das System flächenmäßig dominiert. Dies 
geht einher mit dem in der ITRS [2] beschriebenen Trend, immer höhere Anteile der Chipfläche mit 
regelmäßigen Strukturen, wie z. B. Speicher zu nutzen. Die Verwendung von derart großen Spei-
chermengen hilft u. a., die sich ansonsten auftuende Entwurfsproduktivitätslücke zu schließen und 
ist für ein Chip-Multiprozessor-System essentiell. Je größer der zur Verfügung stehende Speicher, 
desto leichter lassen sich Latenzen klein halten, und die Performanz erhöht sich deutlich im Ver-
gleich zum Einsatz von Off-Chip-Speicher. Bei beiden Standardzellentechnologien nehmen die 
Verarbeitungseinheiten ca. 10% der Gesamtfläche ein. Dies kann abhängig von Art und Anzahl der 
verwendeten Hardwarebeschleuniger und je nach Anwendungsszenario variieren. Die restlichen 
19 % bzw. 10 % der Fläche werden für die Kommunikationsinfrastruktur benötigt. Allerdings kann 
hier, je nach Anforderung der Anwendung, noch ein Großteil der Fläche durch Reduktion der FIFO-
Tiefe (vgl. Abbildung 4-9) und Optimierung der Switch-Box durch den Einsatz von SRAM-
Technologie für die Warteräume eingespart werden. 

Bei der Verlustleistungsaufnahme dominiert bei der 90-nm-Technologie der Speicher, wohingegen 
die Verarbeitungseinheiten nur die Hälfte der Leistungsaufnahme der Kommunikationsinfrastruktur 
und fast nur ein Fünftel der des Speichers benötigen. Bei der 130-nm-Standardzellentechnologie ist 
die Aufteilung ausgeglichener, und die Kommunikationsstruktur dominiert hier das System in 
punkto Verlustleistung. Dies ist zum einen auf den hohen Registeranteil und die damit verbundene 
relativ hohe Leistungsaufnahme dieser Komponenten in der 130-nm-Technologie zurückzuführen. 
Zum anderen ist die verwendete Speichertechnologie sehr ausgereift und stromsparend, so dass bei 
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81%
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25%
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dieser Komponente sowohl die Fläche als auch die Leistungsaufnahme deutlich besser optimiert 
sind als bei der 90-nm-Technologie. 

8.2.2 GigaNetIC-Architektur mit integrierten Multiprozess orcaches 

Tabelle 8-4 gibt Aufschluss über die Flächenanforderungen, möglichen Taktfrequenzen der einzel-
nen Komponenten sowie die Leistungsaufnahme des bereits in Tabelle 8-3 betrachteten GigaNetIC-
Systems, das allerdings im Gegensatz zu dem dort verwendeten Dual-Port-SRAM, die in Abschnitt 
4.4.2 beschriebene Multiprozessor-Cache-Architektur als L1-Speicher beinhaltet [113]. Zieltechno-
logie dieser Variante des GigaNetIC-Chip-Multiprozessors ist die 90-nm-Standardzellentechno-
logie. 

Tabelle 8-4: Größenangaben des GigaNetIC-Gesamtsystems für 90 nm-Standardzellentechnologie  

unter Verwendung des GigaNetIC-Multiprozessorcaches 

 

Die sich aus Tabelle 8-4 ergebende Gesamtfläche für das betrachtete Referenzsystem, das auf einem 
4×2-Gitter basiert, benötigt nur 93,1 % der Fläche des in Tabelle 8-3 aufgezeigten Systems, das 
Dual-Port-SRAM als L1-Speicher verwendet. Allerdings ist die dem einzelnen N-Core zur Verfü-
gung stehende lokale Speichermenge nur ein Viertel so groß, nämlich 8 KB statt 32 KB. So umfasst 
die Gesamtspeichermenge dieses Systems nur 0,5 MB anstatt der 1,25 MB Speicher des Ver-
gleichssystems. Die dennoch fast vergleichbare Fläche ist in der hohen Anzahl benötigter Register, 
die zur Implementierung des Multiprozessorcaches notwendig sind, begründet. Die in dieser Va-
riante derzeit erreichbare maximale Taktfrequenz beträgt 243,9 MHz; sie wird durch den kritischen 
Pfad des Caches bestimmt.  

Abbildung 8-6: Anteile der drei wesentlichen Hardware-Bestandteile der GigaNetIC-Architektur an Fläche und 

Verlustleistung bei der Multiprozessorcachevariante in 90-nm-Realisierung 

Abbildung 8-6 zeigt die Anteile der drei wesentlichen Hardware-Bestandteile der GigaNetIC-Archi-
tektur an Fläche und Verlustleistung bei der Multiprozessorcachevariante in der 90-nm-Reali-
sierung. Die benötigte Fläche der Kommunikationsinfrastruktur bewegt sich ähnlich wie zuvor bei 
ca. 14 %. Die Fläche, die ohne zusätzliche Hardwarebeschleuniger von den N-Core-Verarbeitungs-

SoC-Hauptkomponenten
[90nm]

Anzahl Fläche
[mm²]

Gesamtfläche
[mm²]

Taktfrequenz
[MHz]

Leistungsaufnahme
je IP-Block@250 MHz

[mW]

Gesamtleistungsaufnahme
@250 MHz

[mW]

Caches 32 0,729 23,34 243,90 180,99 5791,68
N-Cores 32 0,127 4,07 258,00 11,74 375,68
AMBA-Master-Schnittstellen 32 0,008 0,24 354,61 1,11 35,52
AMBA-Slave-Schnittstellen 56 0,001 0,04 465,12 0,15 8,40
AMBA-Matrizen 8 0,097 0,78 265,96 25,16 201,28
Snooping-Slaves 8 0,002 0,02 420,17 0,55 4,40
Paketpuffer 8 0,952 7,62 250,00 35,50 284,00
Switch-Boxen (NoC) 8 0,575 4,60 434,78 53,00 424,00
Gesamt 40,70 243,90 7124,96

10%
14%

76%

5% 9%

86%90 nm

Fläche [mm²] Verlustleistung [mW]

Verarbeitung Kommunikation Speicher
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einheiten beansprucht wird, ist mit einem Zehntel nahezu identisch zu der SRAM-basierten Varian-
te des GigaNetIC Chip-Multiprozessorsystems.  

Bei der Leistungsaufnahme dominiert der Speicher mit 86 % der Gesamtverlustleistungsaufnahme 
noch stärker die anderen Komponenten, als es zuvor bei der SRAM-basierten Variante der Fall war. 
Bzgl. der Angaben zur Leistungsaufnahme ist zu erwähnen, dass es sich hier um statistische Ab-
schätzungen seitens des Synthesewerkzeugs (50%S) handelt, die somit als erste Einstufung zu wer-
ten sind, so dass, bei Bedarf, die Leistungsaufnahme für dedizierte Anwendungen durch Analysen 
mit der GigaNetIC-Werkzeugkette (AS) deutlich genauer abgeschätzt werden kann (vgl. Abschnitt 
5.3). 

Schlussbemerkung zur Synthese. Alle vorgestellten Werte beziehen sich auf den bereits vorges-
tellten Typical Case (vgl. Abschnitt 4.2.4). Selbstverständlich wurden ebenfalls Synthesen für Best- 
und Worst-Case-Bedingungen (vgl. Tabelle 6-4) angestellt, die aus Platzgründen hier nicht näher 
Erwähnung finden. Anhand der Realisierung des S-Cores in der 130-nm-Infineon-Technologie ha-
ben sich die Ergebnisse der Typical-Case-Syntheseabschätzung verglichen mit den am Chip gemes-
senen Werten als realistisch herausgestellt [108], so dass sich für diese Technologie eine gute Über-
einstimmung der Synthesewerte mit der Wirklichkeit zeigt. Die Synthesewerte der einzelnen Kom-
ponenten aus Tabelle 8-4 unterscheiden sich zum Teil von denen aus Tabelle 8-3. Dies und die 
leichten Unterschiede der veröffentlichten Zahlen zu den Implementierungen der GigaNetIC-
Architektur in den betreffenden Veröffentlichungen [130][117][118][114][115][7][8][109][131] 
[113][110] sind durch mehrere Umstände zu erklären: Zum Teil differieren die Syntheseergebnisse 
aufgrund der fortwährend eingeflossenen Verbesserungen und Erweiterungen bei jeder neuen Im-
plementierung. Außerdem wurden im Laufe der Zeit Modifikationen an den verwendeten Standard-
zellenbibliotheken vorgenommen, was zusätzlich für abweichende Werte sorgt. Zusätzlich wurden 
stets die neuesten Synthesewerkzeuge eingesetzt, die ebenfalls zahlreichen Veränderungen und Op-
timierungen unterlagen, so dass mit den hier veröffentlichten Werten der derzeit aktuellste Stand 
der ASIC-Realisierung der GigaNetIC-Architektur wiedergegeben wird, der sich jedoch aufgrund 
der genannten Faktoren bei zukünftigen Synthesen ebenfalls von den hier genannten Zahlen unter-
scheiden kann. 

8.2.3 „Floorplan“ – ressourceneffiziente, kachelförmige Flächenaufteilung 

Basierend auf den präsentierten Synthese Ergebnissen wird als Vorstufe für die weitere Realisie-
rung des Chips und als Planungshilfe ein so genannter Floorplan entworfen. Die folgenden Abbil-
dungen zeigen diese maßstabsgetreuen Anordnungen der einzelnen Komponenten für jeweils zwei 
GigaNetIC-Cluster, die als Kacheln gitterartig aneinander gereiht werden können [115]. Alle Kom-
ponenten eines GigaNetIC-Clusters werden hierzu möglichst flächeneffizient in einer quadratischen 
Kachel angeordnet. 

Diese kachelartige Anordnungsoption der GigaNetIC-Cluster, die auch von zahlreichen anderen 
Implementierungen paralleler Systeme ebenso oder eingeschränkt eingesetzt wird (vgl. Abschnitt 
2.8.1), birgt mehrere Vorteile:  

• Aufgrund der quadratischen Form sind alle globalen, „langsamen“ Verbindungen (Inter-
Switch-Box-Links) gleich lang und verursachen somit eine nahezu gleiche Latenz zu allen 
Nachbarn. 
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• Die regelmäßige Struktur dieser Kacheln eignet sich besonders für die Realisierung von an-
gepassten Systemen und trägt zu den außergewöhnlich guten Eigenschaften der GigaNetIC-
Architektur im Hinblick auf Skalierbarkeit (vgl. Definition 35) bei. 

• Der relativ einfache Aufbau und die Regelmäßigkeit der Kacheln erlauben eine gute Wie-
derverwendbarkeit (vgl. Definition 36), auch im Hinblick auf eine Portierung auf eine mo-
dernere Standardzellentechnologie.  

• Entwurfsfehler werden durch das Verwenden von stets gleichen, bereits ausgiebig getesteten 
Schaltungskonzepten reduziert. 

• Testbarkeit und Fehlertoleranz können so erhöht werden (vgl. Definition 33). 

� Letztendlich trägt dieser kachelartige, makroskopisch63 gesehene homogene Ansatz zur 
Steigerung der Ressourceneffizienz bei. 

Abbildung 8-7: Maßstabsgetreuer Floorplan für zwei GigaNetIC-Cluster-Kacheln  

für die 130-nm-Standardzellentechnologie 

Abbildung 8-7 berücksichtigt hierbei die Syntheseergebnisse für die 130-nm-Standardzellen-
technologie, wohingegen Abbildung 8-8 die Aufteilung für die modernere 90-nm-Technologie skiz-
ziert. Eine Kachel besteht in beiden Fällen jeweils aus vier N-Cores und einer Switch-Box (mit fünf 
Ports und einer internen FIFO-Tiefe von drei). Als L1-Speicher kommen vier lokale SRAM-Blöcke 
mit je 32 KB zum Einsatz, wobei die ersten Realisierungen in 130-nm-Technologie noch Single-
Port-Speicher vorsahen, der um 6,1 % kleiner als die Dual-Port-Variante in dieser Technologie 
ausfällt. Weiterhin werden als L2-Speicher in allen Realisierungen zwei lokale Dual-Port-SRAM-
Paketpuffer mit je 16 KB Speichervermögen verwendet. Weiterer Bestandteil der Kachel ist das 

                                                 

63 Die Grundstrukturen jeder Kachel sind zunächst gleich, Unterschiede können u. a. in der Art und Anzahl der integ-

rierten Hardwarebeschleuniger, der Variante des Prozessorkerns und der Ausprägung der Kommunikationsinfrastruktur 

(Switch-Box und lokales Bussystem) bestehen. Selbstverständlich besteht auch die Möglichkeit, Kacheln ohne komplet-

ten GigaNetIC-Cluster in ein bestehendes Gitter zu integrieren. Diese könnten dann z. B. an einen freien Port einer ang-

renzenden Switch-Box angeschlossen werden und zusätzliche Funktionalitäten (Speicher, schnelle externe Schnittstel-

len etc.) zur Verfügung stellen. 
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lokale Bussystem, wobei sowohl die AMBA- oder auch die Wishbone-Implementierung eingesetzt 
werden können, ohne dass der Flächenbedarf gravierend beeinflusst wird, beanspruchen beide Bus-
systeme doch weniger als 1 % der Gesamtfläche des Clusters. Zusätzlich sind 3,2 % der Fläche für 
optionale Hardwarebeschleuniger reserviert. Die freien Flächen können u. a. zur Verdrahtung und 
lokalen Kommunikation der Module genutzt werden. Die globale Kommunikation über die Inter-
Switch-Box-Links, die eine ungefähre Distanz von 2,3 mm bei der 130-nm-Variante und 2,2 mm bei 
der 90-nm-Variante überbrücken muss, findet auf höheren Metalllagen statt (vgl. Abschnitt 6.6). 
Von der Kantenlänge unterscheiden sich die 130-nm- und die 90-nm-Realisierung nicht gravierend 
voneinander, ist die Kachel der 130-nm-Variante mit 3,1 mm doch lediglich um 10 % länger als die 
der 90-nm-Realisierung. Im rechten Cluster von Abbildung 8-8 sind die Ausmaße der Multiprozes-
sorcachevariante des GigaNetIC-Systems innerhalb der der MEMDP-Blöcke skizziert. Die vier, je-
weils 32 KB-großen Speicherblöcke würden in diesem Fall durch die etwas kleiner ausfallenden 
8 KB-großen und durch quadratische Begrenzungslinien gekennzeichneten Cache-Blöcke ersetzt. 
Der lokale Bus würde durch die unwesentlich größere AMBA-Switchmatrix ersetzt. 

Abbildung 8-8: Maßstabsgetreuer Floorplan für zwei GigaNetIC-Cluster-Kacheln (links L1-Speicher / rechts 

MP-Cache, angedeutet durch Begrenzungslinien) für die 90-nm-Standardzellentechnologie 

Abbildung 8-9: Maßstabsgetreuer Floorplan für zwei GigaNetIC-Cluster-Kacheln  

für die 90-nm-Standardzellentechnologie unter Verwendung neuerer Speicherzellen 

Abbildung 8-9 zeigt die Realisierung eines GigaNetIC-Clusters in der 90-nm-Technologie unter 
Verwendung optimierten, um den für Speicher eher konservativen Skalierungsfaktor von 2S− ange-
passten Speichers. Die Kantenlänge reduzierte sich dann auf nur noch 2,2 mm und die Inter-Switch-
Box-Links wären mit ca. 1,7 mm abzuschätzen. Bei Verwendung einer derartigen Kachel könnten 
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in einem 5×4-Gitter 20 Cluster und somit 80 Verarbeitungseinheiten, ähnlich wie bei der Polaris-
Architektur von Intel [92] auf einen Chip integriert werden. Diese Architektur benötigte eine Fläche 
von weniger als 1 cm² in kachelartiger Anordnung. Ein solches System verfügte über 3 MB On-
Chip-Speicher und hätte bei lediglich 285 MHz eine aggregierte Intrachip-Nettoübertragungsband-
breite von theoretisch mehr als 445 GB/s64. Das System wäre in der Lage mehr als 5,5 G Instruktio-
nen pro Sekunde zu verarbeiten, wobei der Chip nach Tabelle 8-3 theoretisch eine Leistungsauf-
nahme unter Volllast von nicht einmal 4,5 W hätte. Dies deutet die Leistungsfähigkeit von paralle-
len und dennoch einfach gehaltenen Strukturen an, die in Abschnitt 8.3 im Vergleich zu Standard-
prozessoren näher diskutiert wird. 

YE und DE M ICHELI vertreten in [195] ebenfalls den kachelbasierten Floorplanning-Ansatz für 
Chip-Multiprozessoren aufgrund der inhärenten Homogenität. Mit REGULAY stellen sie ein Werk-
zeug vor, mit dessen Hilfe höherdimensionale Netzwerke effizienter als bisher auf zweidimensiona-
le Strukturen abgebildet werden können, und zwar mit dem Resultat einer deutlich kürzeren Ge-
samtverdrahtungslänge der Netzwerkkanten. Eine solche Methode wäre auch für ein GigaNetIC-
basiertes, höherdimensionales Netzwerk (vgl. Abschnitt 2.3.1), wie z. B. Cube-Connected-Cycles, 
oder dreidimensionale Gitter oder auch für Switch-Boxen mit höherem Ausgangsgrad anwendbar 
und könnte ggf. so die Ressourceneffizienz zusätzlich erhöhen. Bei eher geringen Taktfrequenzen 
von unter oder nur wenigen 100 MHz könnten sich so durchaus auch Chip-Multiprozessoren basie-
rend auf der GigaNetIC-Architektur mit höher-dimensionalen Netzwerktopologien realisieren las-
sen. Für weniger komplexe Netzwerkstrukturen hingegen ist die GigaNetIC-Architektur aufgrund 
der Konzeption der quadratischen Kachelstruktur bereits für optimale, gleichmäßige Leitungslängen 
ausgelegt. Basierend auf diesen geometrischen Anordnungen kann später ein Makroblock erzeugt 
werden, der, wie eine Kachel an die nächste, auf einfache Weise horizontal wie vertikal aneinander-
zureihen ist. Dies ist besonders für die Skalierbarkeit sowie die Wiederverwendbarkeit von Vorteil. 
Das finale Place&Route des gesamten Chips, also das Platzieren und Verdrahten sowie die Clock-
tree-Synthese und die sich anschließende Post-Layout-Simulation stehen noch aus und erfolgen im 
Rahmen der bereits erwähnten Folgeprojekte des GigaNetIC-Projekts. 

8.3 Bewertung der Ressourceneffizienz 

Ressourceneffizienz ist immer in Bezug auf die Randbedingungen und das jeweilige Anwendungs-
szenario zu sehen (vgl. Definition 14). In diesem Abschnitt werden exemplarische Szenarien unter-
sucht sowie Varianten der ASIC-basierten GigaNetIC-Architektur, die im vorigen Abschnitt näher 
vorgestellt worden sind, um diese mit aktuellen Universalprozessoren in Bezug auf Leistungsfähig-
keit und Ressourceneffizienz zu vergleichen [131]. Dies geschieht für Anwendungen aus dem 
Desktopbereich ebenso wie für spezielle Algorithmen aus dem in Kapitel 7 vorgestellten Netzwerk-
bereich.  

                                                 

64 Dieser Wert resultiert aus 20 Clustern mit je einer Switch-Box, in der Konfiguration mit je fünf Ports und jeweils 64 

Datenbit bidirektional, betrieben mit 285 MHz.  
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8.3.1 Einheitliche, werkzeugbasierte Performanzbewertung 

Um eine für die Desktop-CPUs möglichst genaue Messung der Leistungsfähigkeit zu erzielen, wur-
de eine speziell den Anforderungen der Messungen angepasste Knoppix Live CD65 erstellt, die für 
alle Testkandidaten gleiche Voraussetzungen bzgl. des Betriebssystems und der Compiler-
Werkzeuge66 sowie deren Optionen garantiert. Die Messungen wurden mit Root-Rechten der höch-
sten Priorität durchgeführt, und zur Auswertung der Leistung die im Prozessor integrierten Perfor-
manzregister ausgelesen, so dass keine Interferenzen seitens systemeigener Prozesse zu erwarten 
waren. Zusätzlich wurden die Messungen jeweils 1000fach iteriert, um etwaige Störungen heraus-
zufiltern. Das jeweils beste Ergebnis, im Sinne minimaler Taktzahl, wurde verwendet, was so zu-
sätzlich den Cache der jeweiligen CPU als Systemgröße in die Bewertung einfließen ließ. Die ge-
samte Kompilierung, das Ausführen der erzeugten Programme, deren Laufzeitauswertung und die 
Protokollierung geschehen vollkommen automatisch, da skriptbasiert, so dass mögliche Fehlbedie-
nungen bzw. Messwertverfälschungen nahezu ausgeschlossen sind. Die hierfür erstellte Werkzeug-
kette basiert ebenfalls auf dem in Abschnitt 5.4 vorgestelltem MultiSim. Als Endergebnis werden 
die Werte in eine Tabellenkalkulation zur weiteren Auswertung exportiert67.  

Tabelle 8-5 fasst die Hauptcharakteristika der untersuchten Prozessoren zusammen. Zu beachten ist, 
dass bei dieser Analyse die GigaNetIC-Architekturvarianten über keinen Cache verfügen, sondern 
in der Wishbone-Bus-basierten Realisierung (vgl. Abbildung 4-20) untersucht wurden. Allerdings 
kann der lokale Speicher der N-Cores als schneller L1-Cache verstanden werden und wird deshalb 
in Tabelle 8-5 als solcher gezählt. Alle im Folgenden ermittelten Werte beziehen sich auf eine ma-
ximale Taktfrequenz des GigaNetIC-Systems von 250 MHz. Die Werte eines GigaNetIC-Clusters 
beziehen sich im Folgenden auf eine Realisierung ohne Ethernetports, da diese Schnittstellen als 
Off-Chip-Schnittstellen angesehen werden. Dies führt zu einer Fläche von ca. 5,3 mm² für einen auf 
vier N-Cores basierenden Cluster, vgl. Abschnitt 8.2. 20 dieser Cluster, in einem Gitter angeordnet 
(ähnlich Abbildung 4-2), benötigen somit zunächst 106 mm², was der gemittelten Chipfläche der 
Vergleichsprozessoren entspricht und so als flächenäquivalente Alternative zu den betrachteten 
Desktop-CPUs angesetzt wird. Setzt man allerdings den zuvor dargestellten Floorplan voraus, so 
ließen sich zunächst nur dreizehn anstatt der genannten 20 GigaNetIC-Cluster auf einer Fläche von 
101,9 mm² integrieren (vgl. Abbildung 8-8). Füllte man allerdings auf Basis neuer skalierter Spei-
cherblöcke mit Hilfe der GigaNetIC-Clusterkacheln bei einer Kantenlänge von nur noch 2,2 mm 
pro Cluster (vgl. Abbildung 8-9) diese Fläche von 106 mm², so käme man auf über 21 Cluster. Dies 
lässt die hier getroffene Annahme von 20 gitterartig angeordneten GigaNetIC-Clustern für eine de-
rartige Fläche durchaus realistisch erscheinen. 

                                                 

65 Es wurde als Vorlage die Knoppix 5.0 Boot-CD mit dem 2.6.17 Kernel verwendet.  

66 Als Compiler-Werkzeugkette wurde der GCC 4.0.4 eingesetzt. Die möglichen Kompilierungs-Optionen wurden au-

tomatisiert eingesetzt und die jeweils besten Resultate als Messwert verwendet. Hierzu wurden sowohl die Optimie-

rungsstufen als auch die speziellen Optimierungen für die unterschiedlichen Architekturen berücksichtigt. 

67 Der gesamte Ablauf, die ausführbaren Kompilate, die Object-Dateien und Testergebnisse sowie deren Zusammenfas-

sung und die finale Aufbereitung aller Messungen als CSV-Datei wurden auf einen jeweils zusätzlich verwendeten 

USB-Stick als beschreibbares Medium während des automatisierten Ablaufs abgespeichert. 
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Unter der Annahme, dass die Prozessoren bei der Bearbeitung der Benchmarks nahezu voll ausge-
lastet sind, wurde als Verlustleistung der Thermal-Design-Power(TDP)-Wert angenommen. Dies ist 
sicherlich eine sehr konservative Abschätzung der Systeme in Bezug auf die Verlustleistungsauf-
nahme, zumal große Teile der jeweiligen Systeme, wie z. B. Gleitkommaeinheiten oder die Switch-
Box-basierte Kommunikationsinfrastruktur nicht für alle Tests relevant sind. 90 % der Chipfläche 
des Systems mit 20 N-Core-Clustern wird von Speicherzellen belegt, die die überproportional hohe 
Anzahl an Transistoräquivalenten, im Vergleich zu den anderen CPUs, erklärt. Die Verlustleis-
tungsangabe für das 20 N-Core-Cluster umfassende GigaNetIC-System von 14,88 W bei 250 MHz 
ist unter Berücksichtigung der in Tabelle 8-3 ermittelten Werte ebenfalls als eher konservativ ein-
zustufen, käme man doch unter Verwendung der Syntheseergebnisse auf eine Verlustleistung von 
lediglich 3,96 W bei 250 MHz. 

Tabelle 8-5: Wesentliche Merkmale der analysierten Prozessoren 

 

8.3.2 Universalbenchmarks zur Bewertung der GigaNetIC-Architektur 

Die Ergebnisse der Analysen der Universalbenchmarks werden in Abbildung 8-10 dargestellt. Ziel 
des Vergleichs der einzelnen Systeme war nicht, den verwendeten Benchmark-Code jeweils auf 
Assemblerebene zu optimieren, sondern vielmehr die Leistungsfähigkeit der gesamten Architektur 
zu bewerten, wozu auch die Softwareumgebung nebst Übersetzer zu zählen ist (vgl. Definition 3). 
Deshalb wurde auf manuelle Optimierung bewusst verzichtet, zumal dies im realen Einsatz nur be-
dingt und mit relativ hohem Zeitaufwand durchgeführt werden könnte. Als Universalanwendungen 
kamen der zwar schon etwas in die Jahre gekommene aber trotzdem noch heute oft für eingebettete 
Systeme verwendete Dhrystone-Benchmark zur Beurteilung der Integer-Performanz und zwei Sor-
tieralgorithmen68 der Stanford-Benchmark-Sammlung zum Einsatz.  

Als Essenz der gewonnenen Ergebnisse lässt sich für diese Anwendungen, die nicht aus dem Netz-
werkbereich stammen, sagen, dass die Leistungsfähigkeit eng an die Taktfrequenz der Systeme ge-
koppelt ist. Die durchschnittliche Taktzahl, die von den Universalprozessoren für einen Dhrystone-
durchgang benötigt wird, liegt bei 703 Takten, wohingegen die deutlich einfacher gehaltene N-
Core-Architektur 1119 Takte benötigt, also 59 % mehr Taktzyklen. In Anbetracht der zusätzlich 
sieben- bis zehnfach höheren Taktfrequenzen der Universalprozessoren sind deren Performanzvors-
prünge von 10,3 bis 16,3 sofort nachvollziehbar. Betrachtet man hingegen die Sortieralgorithmen, 

                                                 

68 Hierbei wurden zum einen der Quicksort- und zum anderen der Bubblesort-Algorthmus verwendet, wobei 200 Inte-

gerwerte sortiert werden mussten. Die Anzahl der zu sortierenden Elemente wurde bewusst relativ gering gehalten, da 

die GigaNetIC-Analysen mit Hilfe der sehr langsamen HDL-Simulation durchgeführt wurden. 

Prozessor
Kerne Name FSB

[MHz]
L1 Cache

[kB]
L2 Cache

[kB]
Taktfrequenz

[GHz]
Technologie

[nm]
Spannung

[V]
TDP
[W]

Die-Größe
[mm²]

Transistoren
[Mil.]

Pentium 4 3000 1 Northwood 200 8 512 3,00 130 1,550 110 146 125
Intel Pentium M 1600 1 Banias 100 16 1024 1,60 130 1,485 24 100 77
Intel Pentium M 1700 1 Banias 100 16 1024 1,70 130 1,485 25 100 77
Intel Pentium M 2100 1 Dothan 100 64 2048 2,10 90 1,340 21 84 140
Intel Duo Core T2400 2 Yonah 166 64 2048 1,83 65 1,325 31 91 151
Intel Duo Core T2500 2 Yonah 166 64 2048 2,00 65 1,325 31 91 151
AMD Athlon 64 3000+ 1 Venice 200 128 512 1,80 90 1,400 89 83 69
AMD Athlon 64 3200+ 1 NewCastle 200 128 512 2,19 130 1,500 89 144 69
AMD Athlon 64 3700+ 1 San Diego 200 128 1024 2,20 90 1,400 89 115 105
N-Core 1 GigaNetIC 250 32 0 0,25 90 1,200 0,05 0,96 2
N-Core-Cluster (4PEs) 4 GigaNetIC 250 128 0 0,25 90 1,200 0,74 5,30 10
20 N-Core-Cluster 80 GigaNetIC 250 2560 0 0,25 90 1,200 14,88 106,05 200
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so kann die N-Core-Architektur den relativen Vergleich für sich entscheiden. Der N-Core benötigt 
ca. 509 Tausend Takte bei der Verwendung des Bubblesort-Algorithmus für die Sortieraufgabe und 
29 Tausend Takte beim Quicksort-Verfahren, wohingegen der Durchschnitt der Universalprozesso-
ren 662 Tausend bzw. 41 tausend Takte aufwenden muss. In diesem Fall benötigt die einfachere 
RISC-Architektur zwischen 30 % und 40 %weniger Taktzyklen. Hieraus resultiert der geringere 
Performanzvorteil der Universalprozessoren von 4,5 bis 11,6. 

Abbildung 8-10: Leistungsvergleich zwischen Universal-CPUs und der GigaNetIC-Architektur  

für einfache Anwendungsszenarien 

8.3.3 Netzwerkbenchmark zur Bewertung der GigaNetIC-Architektur 

Im Folgenden wird der Bereich der Netzwerkverarbeitung, der bereits in Kapitel 7 ausführlich be-
trachtet worden ist, nochmals in Bezug auf die Ressourceneffizienz untersucht. Hierbei kommt die 
inhärente Parallelität der Netzwerkdaten der GigaNetIC-Architektur mit den zuschaltbaren Hardwa-
rebeschleunigern zu Gute.  

In Abbildung 8-11 wird die Leistungsfähigkeit des in dieser Arbeit entwickelten Systems in Bezug 
auf dieses Anwendungsszenario dokumentiert. Der zugrunde liegende Benchmark bestand aus der 
Verarbeitung von einer Million IP-Pakete nach iMix-Verteilung (vgl. Abschnitt 7.2.3). Das Diag-
ramm zeigt als resultierende Hochrechnung die Anzahl der verarbeitbaren Pakete pro Sekunde. Die 
Universalprozessoren sind um den Faktor 1,7 bis 8,1 mal schneller als ein einzelner N-Core. Ein 
Cluster mit vier N-Cores ermöglicht einen Geschwindigkeitsvorteil gegenüber dem einzelnen N-
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Core von 3,83. Eine Beschleunigung von vier ist aufgrund von Arbitrierungslatenzen und möglicher 
Busblockaden nicht realistisch. Unter Hinzunahme des in Abschnitt 6.3.1 vorgestellten Hardware-
beschleunigers übertrifft bereits ein GigaNetIC-Cluster fast alle Universalprozessoren. Es wird so-
wohl die Kopplung des Beschleunigers am lokalen Bus (WB HW Acc) als auch am Port einer be-
nachbarten Switch-Box69 (CC HW Acc) berücksichtigt. 

Abbildung 8-11: Leistungsvergleich zwischen Universal-CPUs und  

der GigaNetIC-Architektur für eine Paketverarbeitun gsanwendung 

Abbildung 8-12 führt zwei neue Dimensionen des Entwurfsraums in die Betrachtung ein: den  
Energiebedarf (im Hinblick auf den entsprechenden Benchmark) und die Chipgröße der Systeme, 
die durch den Flächeninhalt der Blasen symbolisiert wird. Das flächenmäßig kleinste System ist der 
einzelne N-Core (J), das zudem die geringste Energieaufnahme für die Abarbeitung des Bench-
marks aufweist, allerdings ist die benötigte Zeit auch deutlich höher als die der Universalprozesso-
ren. Die Universalprozessoren (A-I) bilden eine Menge in der rechten Hälfte des Diagramms bzw. 
Entwurfsraums, was einer Bearbeitungszeit von ca. 1 s (0,7 bis 1,48 s) bei einer Energieaufnahme 
von 19 bis 132 Ws entspricht. Nahezu die gleiche Zeit (1,6 s) benötigt der normale N-Core-Cluster 
(K), wobei sein Flächenbedarf nur ein 20stel der durchschnittlichen Universalprozessorfläche aus-

                                                 

69 Den Messungen liegt eine Beschleunigerkopplung an eine Switch-Box zugrunde, die innerhalb einer Distanz von 

einem Hop liegt, so dass der Beschleuniger nicht unmittelbar an die Switch-Box des Clusters angeschlossen werden 

muss. Die Taktzahlen für Kommunikation und Berechnungen wurden in Abschnitt 7.7 näher diskutiert. 
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macht. Sein Energiebedarf liegt bei 1,3 Ws, wohingegen der durch den am lokalen Bus angeschlos-
senen Hardwarebeschleuniger erweiterte Cluster weniger als 0,5 s zur Bearbeitung der gestellten 
Aufgabe benötigt und zudem noch einen deutlich geringeren Energiebedarf aufweist (0,4 Ws).  

Abbildung 8-12: Ressourceneffizienz und Entwurfsraumvisualisierung von Universalprozessoren verglichen mit 

GigaNetIC-Systemen in Bezug auf das Paketverarbeitungsszenario (iMix)  

Um die Mehrkernprozessoren der Intel-Core-Architektur entsprechend ausnutzen zu können, wurde 
zusätzlich eine Thread-basierte Variante des Paketverarbeitungsbenchmarks realisiert (E´´, F´´). 
Hier konnte nahezu eine Verdopplung der Verarbeitungsgeschwindigkeit gemessen werden (0,54 s 
und 0,48 s) bei einem Energiebedarf von 16,6 Ws bzw. 14,8 Ws. Bei einer Erhöhung der Threadan-
zahl über zwei konnte darüber hinaus eine Reduktion der Leistungsfähigkeit dieser beiden Prozes-
soren bei dem betrachteten Anwendungsszenario festgestellt werden. Dies liegt in der recheninten-
siven Aufgabe begründet, die Speicherlatenzen nahezu ausblendet und daher mehr als zwei Threads 
als ineffektiv herausstellt. Das gleiche Verhalten konnte bei der Hyperthreading-Architektur von 
Intel (A) beobachtet werden, bei der viele Threads um die beschränkte Anzahl der exzessiv genutz-
ten Funktionseinheiten konkurrieren müssen und so Geschwindigkeit eingebüßt wird. 

Das GigaNetIC-Multiprozessorsystem, bestehend aus 20 N-Core-Clustern demonstriert, beeindru-
ckend die Ressourceneffizienz dieser Architektur insbesondere am Beispiel dieses Paketverarbei-
tungsszenarios, bei der die massiv parallele Architektur besonders von der inhärenten Parallelität 
der Aufgabe profitiert. Mit einer durchschnittlichen Chipfläche einer Desktop-CPU ist es möglich, 
die Aufgabe innerhalb von 0,026 s, also 28mal schneller als die schnellste Desktop-CPU, zu erledi-
gen und dies bei einem Energiebedarf von nur 0,4 W. 

Sicherlich handelt es sich bei dem vorgestellten Benchmark um ein sehr spezielles Szenario, von 
dem nicht auf allgemeine Anwendungen geschlossen werden darf, die z. B. Fließpunktberechnun-
gen beinhalten oder größere Speicheranforderungen stellen. Sehr wohl aber zeigen die gewonnenen 
Zahlen das Potential der GigaNetIC-Architektur in Bezug auf den immer wichtiger werdenden As-
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pekt der Ressourceneffizienz auf. Die einfache Erweiterbarkeit aufgrund definierter Schnittstellen 
und Protokolle sowie die Optimierungsmöglichkeiten der GigaNetIC-Systemarchitektur (vgl. Kapi-
tel 6) erlauben die Konzeption eines angepassten parallelen Systems. Für ausgewählte Anwen-
dungsgebiete zeigt sich dieser Ansatz im Hinblick auf eine möglichst hohe Ressourceneffizienz 
vielversprechender als Single-Core-Architekturen, bei denen im Wesentlichen durch Erhöhung der 
Taktfrequenz steigenden Anforderungen Rechnung getragen wird. 

Abschließend lässt sich feststellen, dass sich sowohl mit Hilfe des GigaNoC-On-Chip-Netzwerks 
und der damit verbundenen einfachen Kopplung anwendungsspezifischer Hardwarebeschleuniger, 
als auch durch massiv parallele Verwendung relativ einfach gehaltener RISC-Prozessoren wie dem 
N-Core sowie durch die Kombination dieser Maßnahmen beachtliche Resultate für gegebene An-
wendungen erreichen lassen. Sowohl im Hinblick auf die Leistungsfähigkeit als auch auf den Ener-
giebedarf kann durch Parallelität und durch die vielen Möglichkeiten der Systemerweiterung eine 
hohe Ressourceneffizienz erreicht werden. Die gute Skalierbarkeit der Architektur ist ein weiterer 
Pluspunkt der GigaNetIC-Architektur, ermöglicht sie doch einen effizienten Einsatz in unterschied-
lichsten Bereichen des Entwurfsraums. 

8.4 Zukünftige Architekturen 

Bereits derzeitige Prozessorarchitekturen heutiger Arbeitsplatzrechner sowie die jüngsten Veröf-
fentlichungen zu Aktivitäten wie der Polaris-Architektur und dem Tera-Scale-Projekt von Intel (vgl. 
Abschnitt 2.8.1) zeigen, dass die nahe Zukunft den Parallelprozessoren gehört. Im Laufe der näch-
sten zehn Jahre wird die Zahl der integrierten Prozessorkerne stetig zunehmen und Architekturen 
wie die GigaNetIC-Architektur werden zum Standard gehören, vgl. [2]. Die Art und Anzahl der 
Verarbeitungseinheiten pro Chip wird dann hauptsächlich vom jeweiligen Einsatzgebiet bestimmt 
werden. Deshalb werden sich skalierbare Architekturen mit einheitlichem Programmiermodell nicht 
nur aufgrund der fertigungstechnischen Vorteile (vgl. Kapitel 4 und Abschnitt 8.2) und der damit 
verbundenen Kostenvorteile besonders stark hervortun. Der Aspekt der Ressourceneffizienz wird 
zunehmend an Bedeutung gewinnen. Die NRE-Kosten für komplexe ASICs im Strukturgrößenbe-
reich von wenigen Nanometern steigen kontinuierlich. Komplexe Systeme erfordern nicht zuletzt 
deshalb eine möglichst vollständige Verifikation, formal und prototypisch, um die Erfolgschancen 
einer fehlerfreien Realisierung zu maximieren. Die steigende Mobilität der Anwendungen erhöht 
stetig die Anforderungen an geringstem Energiebedarf. Gründe wie Laufzeitmaximierung mobiler 
Geräte auf der einen Seite sowie die Wärmeentwicklung und die damit verbundenen Probleme 
komplexer Systeme auf der anderen Seite erfordern ebenfalls die Forcierung der Entwicklung be-
sonders ressourceneffizienter Architekturen speziell im Hinblick auf die Leistungsaufnahme. 

Wie bereits vorgestellt, wird die Entwurfsproduktivitätslücke nur von annähernd regelmäßigen 
Strukturen und großen Speicherblöcken zu schließen sein. Immer kleiner werdende Strukturgrößen 
stellen immer mehr Funktionalität pro Fläche zur Verfügung, dies allerdings, begründet durch die 
Laufzeiten und die schwierige Synchronisierung, auf einer vergleichsweise stark eingeschränkten 
Fläche. Kleinere Kacheln können so lokal immer höhere Taktfrequenzen erreichen. Komplexere, 
flächenintensivere Hardwareblöcke hingegen werden aufgrund der relativ gesehen größer werden-
den Signallaufzeiten im Vergleich zu den Schaltzeiten der Transistoren deutlich an Leistungsfähig-
keit einbüßen. Aufgrund der größer werdenden Diskrepanz zwischen stetig steigender Schaltge-
schwindigkeit der Logiktransistoren auf der einen Seite und der im Vergleich dazu geringen Ge-
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schwindigkeitszuwächse für globale Verbindungsleitungen auf der anderen Seite werden in Zukunft 
neue Ansätze zur Realisierung von hochperformanten On-Chip-Verbindungen notwendig. In die-
sem Zusammenhang könnten sich optische Signalführungen für Intrachipleitungen als sehr leistung-
fähige Alternative zu den bisher verwendeten Metallleiterbahnen erweisen. 

Vielleicht werden neuartige Schaltungstechniken in der Lage sein, diese Probleme, getreu dem 
MOOREschen Gesetz, aufzulösen oder weiter in Richtung Zukunft zu verschieben. Sicherlich eröff-
nen diese „Nano-Technologien“ auch neue Perspektiven und Einsatzgebiete für leistungsfähige 
FPGA-Strukturen. Rekonfigurierbarkeit könnte von der hohen Packungsdichte speziell bei den 
Speicherzellen profitieren. Die Parallelität könnte so zusätzlich durch hohe Flexibilität ergänzt wer-
den und die Entwicklung von komplexen, dynamisch rekonfigurierbaren Bausteinen als Alternative 
zu Universalprozessoren fördern. 

8.5 Zusammenfassung 

In diesem Kapitel wurde die prototypische Realisierung der in Kapitel 4 beschriebenen GigaNetIC-
Architektur vorgestellt. Nach Durchlaufen aller in Kapitel 5 vorgestellten Entwurfsschritte zur Veri-
fikation und Optimierung wurde die GigaNetIC-Architektur als FPGA-Prototyp und in zwei aktuel-
len Standardzellentechnologien implementiert. 

Basierend auf den Ergebnissen der FPGA-Realisierung kann im Folgenden sehr schnell ein vorla-
genbasiertes RAPTOR2000-Tochtermodul für den noch zu realisierenden GigaNetIC-ASIC erstellt 
werden. Das hier erworbene Wissen um die Systemintegration kann in der Folge genutzt werden, 
um den ASIC in einer bereits erstellten und erprobten Umgebung schnell und komfortabel testen zu 
können. Dieses Vorgehen kann einem potentiellen Industriepartner die Einführung eines neuen Pro-
duktes erleichtern und hilft so die Time-To-Market-Spanne deutlich zu verkürzen. 

Der auf dem FPGA-Prototypen basierende GigaNetIC-Demonstrator konnte erfolgreich einem brei-
tem Publikum auf der Cebit 2005 und der Hannover Messe 2005 auf einem fachgebietseigenen 
Messestand im Rahmen des Bereichs „Forschungsland NRW“ präsentiert werden. Darüber hinaus 
hilft er, das System in einer realen Umgebung detailliert und zugleich um Größenordnungen schnel-
ler, als es andere Formen der Simulation ermöglichen, zu verifizieren. 

Im Anschluss an diese positiv verlaufene Verifikation wurde die Architektur auf zwei aktuelle 
CMOS-basierte Standardzellentechnologien abgebildet und die Ergebnisse detailliert analysiert. 
Basierend auf den gewonnenen Syntheseergebnissen konnten fundierte Aussagen über die zu er-
wartenden Flächen- und Leistungsanforderungen und die realisierbaren Taktfrequenzen der Einzel-
komponenten und des Gesamtsystems getroffen werden. Ein exemplarisches System mit acht Clus-
tern zu je vier N-Core-Prozessoren und insgesamt 1,25 MB SRAM benötigt weniger als 44 mm² in 
der verwendeten 90-nm-Technologie. Die maximale Betriebsfrequenz liegt bei 285 MHz. Im Rah-
men dieser Implementierung wurde ein Konzept der ressourceneffizienten Anordnung der einzelnen 
Komponenten eines GigaNetIC-Clusters in Form quadratischer Kacheln vorgestellt. Auf Basis die-
ser Kacheln ist es möglich, GigaNetIC-Systeme effizient zu skalieren und identische Signallaufzei-
ten zu gewähren, was für eine Maximierung der Performanz essentiell ist. 

Es konnte das große Potential der skalierbaren GigaNetIC-Architektur in Bezug auf Leistungsfä-
higkeit und insbesondere bezogen auf ihre Ressourceneffizienz aufgezeigt werden. Beim Einsatz 
eines massiv parallelen GigaNetIC-Systems, bestehend aus 20 Clustern mit je vier N-Cores und 
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zusätzlichen Hardwarebeschleunigern und mit der Fläche einer durchschnittlichen Desktop-CPU, 
konnte ein Leistungsvorsprung um zwei Größenordungen mit einhergehendem, zusätzlich um zwei 
Größenordnungen geringerem Energiebedarf im Vergleich mit den derzeitigen Universalprozesso-
ren festgestellt werden. Sowohl im Hinblick auf Universalanwendungen und im Besonderen bei 
Netzwerkanwendungen konnte das hier entwickelte Chip-Multiprozessorsystem seine Leistungsfä-
higkeit unter Beweis stellen. Anhand der hier angestellten Untersuchungen lassen sich gute Zu-
kunftschancen für Architekturen wie die der GigaNetIC-Architektur prognostizieren. Derartige 
Architekturen sind zum einen in der Lage, die Vorteile, die durch die stetigen Struktur-
verkleinerungen der Halbleiterprozesse entstehen, zu nutzen. Zum anderen zeigen solche Architek-
turen Möglichkeiten auf, die sich ergebenden Nachteile zu kompensieren. 
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9 Zusammenfassung und Ausblick 
Aktuelle Forschungsarbeiten von Intel zeigen, dass die Rechenleistung, die vor zehn Jahren noch 
dem schnellsten Supercomputer, der ein Einfamilienhaus hätte füllen können, vorbehalten war, 
mittlerweile von einem einzigen Halbleiterbaustein bereitgestellt werden kann. Dies geht einher mit 
einer nahezu um vier Größenordnungen kleineren Verlustleistungsaufnahme des Chip-Multi-
prozessors (CMP). Dieser Technologiesprung wird zum einen durch die stetig verbesserten Herstel-
lungsverfahren der Halbleiterindustrie und zum anderen durch die Ausnutzung von massiv paralle-
ler Verarbeitung in integrierten Schaltkreisen ermöglicht. 

Zur Einordnung der hardwarebezogenen Themenbereiche dieser Arbeit wurden grundlegende Ab-
schätzungen zur Leistungssteigerung durch paralleles Rechnen und die damit verbundenen Anfor-
derungen an die Systeme aufgezeigt. Es wurden elementare Grundlagen zu den Kernkomponenten 
eingebetteter Parallelrechner vorgestellt: On-Chip-Netzwerke, eingebettete Verarbeitungsein-
heiten, Speicherhierarchien sowie deren Anwendungen. Unterschiede und Gemeinsamkeiten exis-
tierender Ansätze im Hinblick auf die GigaNetIC-Architektur wurden herausgearbeitet und charak-
terisieren so die Besonderheiten der von mir entworfenen Systemarchitektur.  

Analytische Modellierung. Im Anschluss an die Definition von Ressourceneffizienz und wesentli-
cher Begriffe zur kostenfunktionsbasierten Analyse von Chip-Multiprozessoren wurden Formalis-
men zur Bewertung solcher Systemimplementierungen eingebetteter Parallelrechner und ihrer 
Komponenten eingeführt. 

Effiziente CMP-Architektur. Im Rahmen dieser Arbeit wurde eine neuartige skalierbare Chip-
Multiprozessor-Architektur entworfen, die aufgrund einer sehr flexibel gestalteten, parametrisierba-
ren Hardwarestruktur an verschiedenste Anforderungen angepasst werden kann, um so für unter-
schiedlichste Anwendungsszenarien eine möglichst ressourceneffiziente Lösung zu bieten. Rück-
grat dieses Chip-Multiprozessorsystems bildet das eigens für diese Architektur entworfene neuarti-
ge hierarchische GigaNoC-On-Chip-Netzwerk. In Verbindung mit einem umfassenden Konzept zur 
Kopplung unterschiedlichster Verarbeitungseinheiten an die verschiedenen SoC(System-on-Chip)-
Ebenen erlaubt es einen hohen Grad an Flexibilität und Leistungsfähigkeit. Durch die spezielle 
Konstruktion der On-Chip-Routingknoten der Switch-Boxen ist nicht nur eine gute Skalierbarkeit 
auf Chip-Ebene während des Entwurfs gegeben, sondern auch die Möglichkeit einer späteren Kom-
bination von GigaNetIC-basierten CMPs auf Leiterplattenebene. Je nach Anwendungsgebiet und 
dessen Anforderungen kann zwischen normalem SRAM oder einem eigens entwickelten Multipro-
zessorcache als On-Chip-Speicher der Verarbeitungseinheiten gewählt werden.  

Das GigaNetIC-CMP-System dient und diente als Basis für weitere Forschungsvorhaben der Uni-
versität Paderborn, wie z. B. für die DFG-Sonderforschungsbereiche SFB 376 „Massive Parallelität: 
Algorithmen, Entwurfsmethoden, Anwendungen“ und SFB 614 "Selbstoptimierende Systeme des 
Maschinenbaus". Es wird in den erfolgreich beantragten Folgeprojekten PlaNetS, MxMobile, Ea-
syC oder auch DFG weiterhin genutzt und erweitert. 

Im Rahmen zukünftiger Arbeiten wäre eine Flächenreduktion der Switch-Box durch Einsatz von 
SRAM anstelle von Registerzellen für die Warteschlangen sinnvoll. Die Implementierung einer 
vollwertigen Broad- und Multicast-Funktionalität würde die Möglichkeiten des On-Chip-Netzwerks 
für einige Anwendungsszenarios zusätzlich erhöhen. Für sehr große Systeme mit einer Vielzahl von 
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Clustern sollten zusätzliche Elemente zur Realisierung eines GALS(global asynchronen, lokal syn-
chronen)-Konzepts hinzugefügt werden. Für den finalen Baustein ist der Bootloader, der für die 
Initialisierungsphase der Prozessoren verantwortlich zeichnet, noch von der SystemC-Beschreibung 
in eine synthetisierbare Form zu transferieren. Eine zusätzliche Erhöhung der Performanz speziell 
im Bereich der Netzwerkanwendungen könnte die Integration eines Hardwareblocks zur Lastvertei-
lung (Loadbalancer) bedeuten, der dynamisch sowohl auf sich ändernde Lastverteilungen als auch 
auf die Auslastung der einzelnen Cluster und Prozessoren reagieren könnte und die Aufgaben adap-
tiv verteilt. Besonderes Augenmerk sollte in Zukunft auf Aspekte der Fehlertoleranz gelegt werden, 
die für derart komplexe Systeme wie dem GigaNetIC-Chip-Multiprozessor mit teilweise mehreren 
Hundertmillionen Transistoren immer wichtiger werden, erhöhen sie doch die Ausbeute (Yield) bei 
der Produktion und die Ausfallsicherheit während des Betriebs, was speziell in hochverfügbaren 
Netzwerkkomponenten von besonderer Bedeutung ist. 

Entwicklungsumgebung – in sich geschlossene Werkzeugkette. Parallel zur Realisierung der 
GigaNetIC-Hardwarebeschreibung wurde in Kooperation mit den Projektpartnern der Universität 
Paderborn eine geschlossene und ineinander verzahnte Werkzeugkette entworfen: angefangen beim 
Prozessorentwurf über die automatische Generierung des Compilers und eines C-basierten zykle-
nakkuraten Instruktionssatzsimulators bis hin zu rückannotierten RTL(Register-Transfer-Level)-
Beschreibungen. Letztere liefern detaillierte Informationen über Leistungsaufnahme, Flächenbedarf 
und Leistungsfähigkeit der integrierten Schaltung und geben Impulse für Instruktionssatzerwei-
terungen und Hardwarebeschleuniger sowie für Systemoptimierungen allgemeiner Natur und helfen 
so die Ressourceneffizienz des Systems zu steigern. Die GigaNetIC-Architektur stellt Simulations- 
sowie Emulationsumgebungen unterschiedlicher Abstraktionsstufe und unterschiedlicher Simulati-
onsgeschwindigkeiten zur Verfügung. Der C-basierte Cluster-Simulator dient vornehmlich der 
schnellen Simulation und Optimierung der N-Core-Prozessorkerne und liegt bei einer Simulations-
geschwindigkeit von ca. 10 MHz. Die SystemC-Simulationsumgebung SiMPLE erlaubt hingegen 
die zyklenakkurate Simulation des gesamten Chip-Multiprozessors mit ca. 100 kHz. Sie dient als 
Plattform für frühe Softwaretests in der Entwurfsphase, aber auch als Evaluationsplattform für neue 
Hardwarekonzepte. Zukünftig wäre eine Erweiterung des Simulationsmodells durch Annotierung 
der jeweiligen Verlustleistung der einzelnen Komponenten sinnvoll. So könnten bereits im frühen 
Stadium einer Entwicklung ausreichend genaue Abschätzungen durch Schaltaktivitäten in deutlich 
kürzerer Zeit ermittelt werden, als es derzeit die HDL-Simulation erlaubt. Deutlich detaillierter, 
allerdings auch weitaus langsamer mit ca. 100 Hz Simulationsgeschwindigkeit ist die HDL-basierte 
Simulation mit der erweiterten GigaNetIC-PERFORM-Umgebung, mit der ebenfalls die Simulation 
des gesamten Chip-Multiprozessorsystems möglich ist. Das für die GigaNetIC-Architektur genutzte 
FPGA-basierte Rapid-Prototyping-System RAPTOR2000 dient zum einen als Vorstufe zur ASIC-
Realisierung und damit als finaler Test der Hardwarebeschreibung, mit 20 MHz Simulationsge-
schwindigkeit zum anderen aber auch als besonders schnelle Plattform zur Analyse sehr zeitintensi-
ver Softwaretests auf CMP-Ebene. Zusätzlich erlaubt diese Plattforn es, GigaNetIC-Systeme mit 
externen Schnittstellen, wie es z. B. für die Netzwerkprozessor-Realisierung notwendig ist, zu tes-
ten. 

Die einheitliche GigaNetIC-Übersetzer-Werkzeugkette ermöglicht einen reibungslosen Übergang 
zwischen den einzelnen Plattformen und garantiert ein funktional gleiches Verhalten des GigaNet-
IC-Systems in allen Simulatoren. Etwaige irrelevante Unterschiede der einzelnen Plattformen blei-
ben für den Systementwickler transparent. 
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Ohne eine derart geschlossene Werkzeugkette wäre eine effektive Nutzung eines Chip-
Multiprozessorsystems nur sehr eingeschränkt möglich, denn erst das Zusammenspiel von gut auf-
einander abgestimmter Hardware und Software ermöglicht eine ressourceneffiziente Lösung. 

Ein weiterer Entwicklungsschritt wäre eine Automatisierung der Werkzeugkette im Hinblick auf 
eine automatische Generierung der Hardwarebeschreibung des Prozessorkerns anhand der UPSLA-
Spezifikation. Im nächsten Schritt könnten automatisierte Modifikationsläufe mit anschließender 
Auswertung der Resultate der Kostenfunktionen neue, effizientere Systeme generieren. 

Optimierung. Der bei der GigaNetIC-Architektur konsequent verfolgte ganzheitliche Ansatz sieht 
neben der reinen Simulation bzw. Emulation des CMP-Systems auch eine Optimierung der Archi-
tektur im Hinblick auf Anforderungen spezieller Einsatzgebiete vor. Hierbei wird ein auf die Giga-
NetIC-Architektur angepasster hierarchisch gerichteter Optimierungsansatz verfolgt, der es System-
architekten und Softwareentwicklern ermöglicht, eine werkzeuggestützte anwendungsspezifische 
Anpassung und Optimierung einzelner bzw. aller Komponenten vorzunehmen. Dies hilft, die Res-
sourceneffizienz des Chip-Multiprozessors im Bezug auf die jeweiligen Anforderungen, Randbe-
dingungen und Schranken im Vergleich zur universellen Variante zu steigern. Der hierarchisch ge-
richtete Ansatz bietet den Vorteil, dass, unterstützt durch die entwickelte Werkzeugkette, zunächst 
mit vergleichsweise geringen Modifikationen die Leistungsfähigkeit bzw. der Ressourcenbedarf der 
Chip-Multiprozessor-Architektur teilweise deutlich optimiert werden kann. Durch die leistungsfä-
higen Profilierungsmöglichkeiten der GigaNetIC-Entwicklungsumgebung lassen sich besonders 
rechenintensive Funktionen der Anwendungssoftware schnell lokalisieren. Dies geschieht in der 
Regel hierarchisch gerichtet, angefangen bei Instruktionssatzerweiterungen, über eng-gekoppelte 
Hardwarebeschleuniger bis hin zu lose gekoppelten Hardwarebeschleunigern. Letztendlich steht 
dem Softwarearchitekten dann die Nutzung der parallelen Struktur zur parallelen Bearbeitung einer 
Aufgabe zur Verfügung, deren Leistungsfähigkeit ggf. durch den GigaNetIC-Multiprozessorcache 
zusätzlich erhöht werden kann. Unterschiedliche Programmiermodelle des GigaNetIC-CMPs erlau-
ben eine angepasste, möglichst effiziente Nutzung der parallelen Verarbeitungseinheiten für das 
jeweilige Anwendungsszenario. 

Die werkzeuggestützte Analyse des jeweiligen Anwendungsszenarios liefert Aussagen sowohl über 
den Rechenleistungs- als auch den Energiebedarf, aber auch über die benötigten Bandbreiten der 
On-Chip-Kommunikation. Die GigaNetIC-Architektur eröffnet, aufgrund der generisch gehaltenen 
Struktur, zahlreiche Möglichkeiten, das System anwendungsgemäß zu optimieren.  

Die anhand vorausgegangener werkzeuggestützter Analysen eingebrachten Optimierungen erlauben 
eine besonders effiziente Nutzung der parallelen Architektur. Unterstützt durch die Werkzeugkette 
lässt sich für die jeweils betrachtete Anwendung ein geeigneter Kompromiss zwischen Leistungs-
zuwachs, Verlustleistungsaufnahme, Flächenbedarf und zusätzlich zu erwartendem Entwicklungs-
aufwand treffen. Pareto-optimale Punkte des Entwurfsraums können so effizient angenähert wer-
den. Anhand anwendungsspezifischer Instruktionssatzerweiterungen des N-Core-Prozessorkerns 
konnten mit Hilfe einzelner Superinstruktionen Performanzzuwächse von bis zu 25 % für Netz-
werkanwendungen erzielt werden – und dies bei einem Flächenzuwachs von teilweise unter einem 
Prozent, verbunden mit einer Reduktion des Energiebedarfs um 20 %. Die implementierten Hard-
warebeschleuniger im Bereich von Netzwerkanwendungen ermöglichen teilweise eine Reduktion 
der Verarbeitungszeit um drei Größenordnungen bei lediglich moderater Flächenzunahme. Zusätz-
lich wurde der Energiebedarf der angepassten Systeme deutlich reduziert. Für den IP-DSLAM-
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Referenzbenchmark konnte hier eine Reduktion der benötigten Energie um mehr als Faktor 12 er-
reicht werden, so dass insgesamt eine merkliche Steigerung der Ressourceneffizienz erzielt wurde. 

Anhand einer exemplarischen Analyse verschiedener Realisierungsvarianten für ein paketverarbei-
tendes System wurde die Kostenfunktionsmethode verifiziert und deren Leistungsfähigkeit aufge-
zeigt. Mit Hilfe definierter Parameter für die Zielfunktionen der vier Kostenmaße Leistungsauf-
nahme, Flächenbedarf, Performanz und Zukunftssicherheit sowie der resultierenden Kostenfunktion 
wurden in Relation zu den definierten Randbedingungen pareto-optimale Systeme für unterschiedli-
che Einsatzgebiete ermittelt. Dem Systemarchitekten wird hiermit eine hilfreiche Entscheidungshil-
fe für den Entwurf ressourceneffizienter Implementierungen an die Hand gegeben. 

Netzwerkanwendungsszenarien. Im Rahmen dieser Arbeit wurde die GigaNetIC-Architektur vor-
nehmlich im Hinblick auf den Einsatz in Netzwerkszenarien untersucht. Gerade im Netzwerkbe-
reich bieten sich parallele Systeme zur Datenverarbeitung an, da hier eine Vielzahl von parallelen, 
zum Teil nicht korrelierten Datenströmen simultan von den Verarbeitungseinheiten bearbeitet wer-
den kann. 

Zur Bewertung der GigaNetIC-Architektur für Zugangsnetzwerke wurde ein neuartiger IP-DSLAM-
Benchmark vorgestellt, ferner die Leistungsfähigkeit der GigaNetIC-Architektur für unterschiedli-
che Szenarien analysiert und mit anderen Ansätzen verglichen. Im Anschluss wurde die Leistungs-
fähigkeit des von uns entwickelten Prozessorkerns N-Core für relevante Funktionen durch Op-
timierung der Architektur, Instruktionssatzerweiterungen sowie Hinzufügen von anwendungsspezi-
fischen Hardwarebeschleunigern deutlich erhöht.  

Zudem wurde eine modulare Methode zur effizienten Modellierung von Netzwerkanwendungen 
vorgestellt, mit deren Hilfe der bereits entworfene IP-DSLAM-Benchmark auf Systemebene zu ei-
nem noch realistischeren Referenzbenchmark erweitert werden konnte. Mit Hilfe eines eigens ent-
wickelten Visualisierungswerkzeugs, dem DSLAM-System-Explorer, konnten die Leistungsdaten 
des N-Cores, die erzielten Beschleunigungen der Hardwareerweiterungen und Leistungsvergleiche 
mit anderen Prozessorfamilien komfortabel veranschaulicht werden. Hochrechnungen bzgl. des 
Hardwareaufwands für gewünschte Anforderungen des IP-DSLAM-Anwendungsszenarios lassen 
sich aufstellen, die eine gezielte Evaluierung des Entwurfsraums ermöglichen. Die Integration der 
kostenfunktionsbasierten Bewertungsmethode zur Ressourceneffizienz wäre eine wesentliche Er-
weiterung dieses Werkzeugs, die Vielzahl der Messwerte könnte neben der eigentlichen Visualisie-
rung zusätzlich zur automatisierten Bewertung der untersuchten Realisierungsvarianten herangezo-
gen werden. In zukünftigen Arbeiten könnten außerdem tiefergehende Analysen der GigaNetIC-
Architektur mit weiteren etablierten Netzwerkprozessoren von Interesse sein, bei denen die urs-
prünglich universelle Struktur des GigaNetIC-Systems mit dem hoch spezialisierten, speziell auf 
Netzwerkanwendungen optimierten Aufbau dieser ASIPs verglichen wird. Ggf. könnten anhand 
dieser Untersuchungen weitere Optimierungspotentiale der GigaNetIC-Architektur bestimmt wer-
den. 

Eine Analyse der Leistungsfähigkeit der verschiedenen Kopplungsarten von Hardwarebeschleuni-
gern an das GigaNoC der GigaNetIC-Architektur zeigt Vor- und Nachteile der einzelnen Varianten 
am Beispiel einer Netzwerkanwendung auf. Da die Art der Kopplung und die Anzahl der Hardwa-
rebeschleuniger abhängig von den Anforderungen des jeweiligen Anwendungsszenarios ist, können 
vielversprechende Lösungen im Hinblick auf die Ressourceneffizienz mit Hilfe der GigaNetIC-
Simulationsumgebungen ermittelt werden. 
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Prototypen. Im Rahmen dieser Arbeit wurden Varianten der GigaNetIC-Architektur als FPGA-
Prototyp und in zwei aktuellen Standardzellentechnologien implementiert. Der auf dem FPGA-
Prototypen basierende GigaNetIC-Demonstrator hilft, das Chip-Multiprozessorsystem in einer rea-
len Umgebung detailliert und zugleich um Größenordnungen schneller, als es andere Formen der 
Simulation ermöglichen, zu verifizieren. 

Für zwei aktuelle CMOS-basierte Standardzellentechnologien mit 130 nm und 90 nm Strukturgröße 
wurde u. a. prototypisch eine 4×2-Gitter-Architektur abgebildet und die Ergebnisse detailliert ana-
lysiert. Basierend auf den gewonnenen Syntheseergebnissen konnten fundierte Aussagen über die 
zu erwartenden Flächen- und Leistungsanforderungen und die realisierbaren Taktfrequenzen der 
Einzelkomponenten und des Gesamtsystems getroffen werden. Das exemplarische 4×2-System mit 
acht Clustern zu je vier N-Core-Prozessoren und insgesamt 1,25 MB SRAM benötigt weniger als 
44 mm² in der verwendeten 90-nm-Technologie und umfasst ca. 80 Millionen Transistoren. Die 
maximale Betriebsfrequenz liegt bei 285 MHz. Im Rahmen dieser Implementierung wurde ein 
Konzept der ressourceneffizienten Anordnung der einzelnen Komponenten eines GigaNetIC-
Clusters in Form quadratischer Kacheln vorgestellt. Auf Basis dieser Kacheln ist es möglich, Giga-
NetIC-Systeme effizient zu skalieren und identische Signallaufzeiten zu gewähren, was für eine 
Maximierung der Performanz essentiell ist. 

Der Vergleich eines massiv parallelen GigaNetIC-Systems mit derzeitigen Universalprozessoren 
zeigte für ein spezielles Netzwerkanwendungsszenario einen Leistungsvorsprung des optimierten 
GigaNetIC-CMPs um zwei Größenordungen einhergehend mit einem um zwei Größenordnungen 
geringeren Energiebedarf bei einem Zehntel der durchschnittlichen Taktfrequenz. Das GigaNetIC-
System umfasste 20 Cluster mit je vier N-Cores nebst zusätzlichen Hardwarebeschleunigern mit 
einer Gesamtfläche von 106 mm², der durchschnittlichen Fläche der untersuchten Desktop-CPUs.  

Sowohl im Hinblick auf Universalanwendungen als auch im Besonderen bei Netzwerkanwendun-
gen konnte das hier entwickelte Chip-Multiprozessorsystem seine Leistungsfähigkeit unter Beweis 
stellen. Anhand der angestellten Untersuchungen lassen sich gute Zukunftschancen für Architektu-
ren wie die der GigaNetIC-Architektur prognostizieren, vorausgesetzt, dass die notwendigen Soft-
warekomponenten in diese Richtung optimiert werden. Derartige Architekturen sind zum einen in 
der Lage, die Vorteile, die durch die stetigen Strukturverkleinerungen der Halbleiterprozesse ent-
stehen, zu nutzen. Zum anderen zeigen solche Architekturen Möglichkeiten auf, die sich ergeben-
den Nachteile zu kompensieren. 

Hier eigene Veröffentlichungen, später unsichtbar: [139][10][138][14][108][116][6][102][103] 
[111] [141] [130] [117][118][104][114][115][7][8][159][126][109][140][119][131][113][110] 
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Verzeichnis verwendeter Formelzeichen und Abkürzungen 
 

Abkürzungen 

50%S Verlustleistungsbestimmung des Synthesewerkzeugs auf Basis statistischer Schaltwahrscheinlichkeiten  

AAL5 ATM Adaptation Layer 5 

ADSL Asymmetric Digital Subscriber Line 

AES Advanced Encryption Standard 

ALU Arithmetic Logic Unit 

AmI Ambient Intelligence 

AS Annotierung der Schaltaktivitäten durch Simulation 

ASIC Application-Specific Integrated Circuit 

ASIP Application-Specific Instruction Set Processors 

ATM Asynchronous Transfer Mode 

BC  Best Case 

BE Best Effort 

BIST Build-in Self Test 

BSP Bulk Synchronous Parallel 

CAM Content Addressable Memory 

CC Communication-Controller 

CISC Complex Instruction Set Computer 

CMP Chip-Multiprozessor 

CPE Customer-Premises Equipment 

CPU Central Processing Unit 

CRACC Click Rapidly Adapted to C-Code 

CRC Cyclic Redundancy Check 

CS Circuit Switching 

DLL Dynamic Link Library 

DMA Direct Memory Access 

DMIPS Dhrystone MIPS 

DSL Digital Subscriber Line 

DSLAM Digital Subscriber Line Access Multiplexer 

DSM Distributed Shared Memory Multiprocessor 

DSP Digital Signal Processor bzw. Digitale Signalverarbeitungsprozessoren 

EEMBC Embedded Microprocessor Benchmark Consortium 

EIB Element Interconnect Bus 

FIER Fast Interrupt Enable Registers 

FIFO First In First Out 

FINT Fast Interrupt 

Flit Flow Control Digits 

FLOPS Floating Point Operations Per Second 

FPGA Field Programmable Gate Array 

FSM Finite Statemachine 

GALS global asynchron, lokal synchron 

GDS II Graphic Data System II 

GE Gigabit Ethernet 

GPS Generalized Processor Sharing 

GT Guaranteed-Throughput-Traffic 
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HAL Hardware Abstraction Layer 

HDSL High Data Rate Digital Subscriber Line 

HOL Head-of-Line-Blocking 

ILP Instruction-Level Parallelism 

ILP Integer Linear Programming 

iMix Internet Mix 

IP Intellectual Property 

IP Internet Protocol 

IPSec Internet Protocol Security 

IPv4 Internet Protocol Version 4 

Ipv6 Internet Protocol Version 6 

ISE Instruction Set Extension 

ISP Internet Service Provider 

ITRS International Technology Roadmap for Semiconductors 

MANet Mobiles Ad-Hoc-Netzwerk 

MIC Memory Interface Controller 

MIPS Millionen Instruktionen pro Sekunde 

MOPS Millionen Operationen pro Sekunde 

MPU Memory / Processor Module 

MSB Most Significant Bit 

MTU Maximum Transmission Unit 

NAT Network Address Translation 

NIC Network Interface Card 

NINT Normal Interrupt 

NoC Network on Chip 

NPU Network Processing Unit 

NRE Non-recurring Engineering 

NUMA Nonuniform Memory Access 

OCP Open Core Protocol 

OTP One-Time Programmable 

PC Personal Computer 

PC Program Counter 

PDA Personal Digital Assistant 

PE Processing Element 

Phit Physical Unit 

PIC Programmierbarer Interruptcontroller 

PS Packet Switching 

QoS Quality of Service 

RADSL Rate Adaptive Digital Subscriber Line 

RAM Random Access Memory 

RISC Reduced Instruction Set Computer 

ROM Read-Only Memory 

RTL Register Transfer Level 

RTOS Real-Time Operating System 

SAF Store and Forward 

SB Switch-Box 

SDRAM Synchronous Dynamic Random Access Memory 

SDSL Symmetric Digital Subscriber Line 

SIMD Single Instruction Multiple Data 

SiP  System in Package 
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SLA Service Level Agreements 

SMP Symmetric Multi-Processing 

SoC  System-on-Chip 

SPE Synergistic Processor Elements 

STBus Split Transaction Bus 

TC Typical Case 

Tcl Tool command language 

TDM Time Division Multiplex 

TDP Thermal Design Power 

TLP Task / Thread Level Parallelism 

TM Traffic Model 

TTL Time to Live 

UART Universal Asynchronous Receiver Transmitter 

ULSI Ultra-Large Scale Integration 

UMA Uniform Memory Access 

UPSLA Unified Processor Specification Language 

VC Virtual Channel 

VCT Virtual Cut Through 

VDSL Very High Data Rate Digital Subscriber Line 

VHDL Very High Scale IC Hardware Description Language 

VLSI Very Large Scale Integration 

VoIP Voice over IP 

VOQ Virtual Output Queueing 

WC Worst Case 

WCET Worst-Case Execution Times 

Formelzeichen70 

α sequentieller Anteil eines Programms 

αA Gewichtung bzw. Gewichtungsfaktor der A-Zielfunktion zur Kostenfunktion 

αF Gewichtung bzw. Gewichtungsfaktor der F-Zielfunktion zur Kostenfunktion 

αi 
Gewichtungen bzw. Gewichtungsfaktoren der einzelnen Zielfunktionen einer Kosten-
funktion 

αP Gewichtung bzw. Gewichtungsfaktor der P-Zielfunktion zur Kostenfunktion  

αT Gewichtung bzw. Gewichtungsfaktor der T-Zielfunktion zur Kostenfunktion 

δ Grad eines Netzwerks 

δx Grad eines Knotens x 

( )
n

Nε  
nominelle Effizienz paralleler Verarbeitung (nominal parallel efficiency) unter Verwen-
dung von N Prozessoren 

Tr
ε   Übertragungseffizienz 

τ Schaltzeit 

A  Architektur  

93

CCA  Fläche des CCs bei einer Flitbreite von 93 Bit 

93

CrossbarA  Fläche des Kreuzschienenverteilers bei einer Flitbreite von 93 Bit 

Fiforeg
A  Registerfläche der FIFOs der Switch-Box 

93

FiforegA  Registerfläche der FIFOs der Switch-Box bei einer Flitbreite von 93 Bit 

                                                 

70 Aufgrund der unterschiedlichen Themengebiete kann es zu Mehrfachverwendungen eines Formelzeichens kommen. 

Die jeweilige Bedeutung ist dementsprechend kontextbezogen zu sehen. 
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93

ABA  Fläche des Advanced Buffers bei einer Flitbreite von 93 Bit 

A Fläche 

AAB Fläche des Advanced Buffers 

ACC Fläche des Communication-Controllers 

ACom Fläche der Kommunikationsstruktur (Com) 

ACrossbar Fläche des Kreuzschienenverteilers 

ACtrl Fläche eines Controllers (Ctrl) zur Ansteuerung eines Hardwarebeschleunigers 

AInputports Fläche der Eingangsports 

AMem Fläche eines Speichers (Mem) 

APE Fläche einer Verarbeitungseinheit (PE) 

ASB Fläche der Switch-Box 

BB Bisektionsbandbreite 

bc Bandbreite eines Kanals 

BC Kanalbisektion  

BLC_DL akkumulierte Downlink-Bandbreite der Linecard 

BLC_UL akkumulierte Uplink-Bandbreite der Linecard 

BM Bewertungsmaß  

BMP Bewertungsmaße zur Leistungsaufnahme 

BUC_DL akkumulierte Downlink-Bandbreite der Uplinkcard 

BUC_UL akkumulierte Uplink-Bandbreite der Uplinkcard 

C Kanäle in einem Netzwerk 

C(N1, N2) Schnitt bzw. Teilung eines Netzwerks 

C(x,y) Kanal C zwischen Quellknoten x und Zielknoten y 

Ceff effektive Kapazität  

CF Kostenfunktion 

CFpareto 
pareto-optimale Lösung = pareto-optimaler Kostenfunktionswert eines Problems für 

gegebene Gewichtungen ci und 
i

α  

cí 
Gewichtungen bzw. Gewichtungsfaktoren der einzelnen Bewertungsmaße einer Ziel-
funktion 

CIx Menge der Eingangskanäle 

Clast Lastkapazität 

COx Menge der Ausgangskanäle 

cox flächenspezifische Oxidkapazität 

Cox Gate-Kapazität 

CPI  
Cycles Per Instruction, durchschnittliche Anzahl der benötigten Takte bzw. Zyklen zur 
Verarbeitung einer Instruktion 

cWachstum erwartete jährliche durchschnittliche Wachstumsrate der Entwurfskomplexität 

D Durchmesser  

D(P) physikalische Distanz eines Pfades 

D(P) Verzögerung eines Pfades 

dc Zielknoten 

DM Durchsatz eines Speichers M 

DSB Durchsatz einer Switch-Box 

E  Entwurfsraum  

HW
E  hardwarebezogener Entwurfsraum  

E Feldstärke 

EM Effizienzmaß 

F Zukunftssicherheit/Flexibilität 

f  Taktfrequenz  

fc Betriebsfrequenz eines Kanals 
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FFT Bewertungsmaß Fehlertoleranz zugehörig zum Kostenmaß Flexibilität  

FI Fehlerimmunität  

FPG Bewertungsmaß Programmierbarkeit zugehörig zum Kostenmaß Flexibilität  

FT Fehlertoleranz  

FWV Bewertungsmaß Wiederverwendbarkeit zugehörig zum Kostenmaß Flexibilität  

g Gap (Lücke zwischen zwei aufeinander folgenden Übertragungen) 

H∅  durchschnittliche Hopanzahl  

h Anzahl Hops 

H(x, y) Anzahl an Hops eines minimalen Pfades zwischen den Knoten x und y 

Hmax maximale Hopanzahl 

Hmin 
durchschnittliche minimale Anzahl an Hops eines Netzwerks zwischen allen Quell- und 
Zielknoten 

I Strom 

IC dynamische Instruktionsanzahl (Dynamic Instruction Count) 

ID Drainstrom 

I leck Leckströme  

Iquer Querströme 

Ischalt Kurzschlussströme  

J Jitter  

K  Kostenmaß 

k Kante eines Graphen 

L Latenz 

L Länge des Transistor-Gates 

LatenzPaket Latenz des Datentransfers eines Pakets über einen bestimmten Pfad des GigaNoC 

Lc Latenz eines Kanals 

lc Länge eines Kanals 

LM(R) Lese-Latenz eines Speichers 

LM(W) Schreib-Latenz eines Speichers 

m Gesamtanzahl der ggf. zu segmentierenden Paketdatenbyte 

M Paket bestehend aus m Byte 

mf Anzahl der Datenbyte eines Flits 

mh Anzahl der Headerbyte eines Flits 

N Endknoten eines Netzwerks 

n Hierarchieebenen eines GigaNetIC-Systems 

N Länge eines Datenpakets in Flit 

N*  Knoten eines Netzwerks 

N+ Routingknoten eines Netzwerks 

nFLITS Gesamtzahl der benötigten Flits für die Übertragung eines segmentierten Pakets 

o Overhead (Mehraufwand) 

|P| Anzahl der Hops 

P Anzahl paralleler Prozessoren 

P Pfad  

P Leistungsaufnahme  

P Preis eines Systembestandteils in € 

Pdyn dynamische Verlustleistung  

Pdyn,Com dynamische Verlustleistung der Kommunikationsstruktur (Com) 

Pdyn,Ctrl 
dynamische Verlustleistung eines Controllers (Ctrl) zur Ansteuerung eines Hardwarebe-
schleunigers 

Pdyn,Mem dynamische Verlustleistung eines Speichers (Mem) 

Pdyn,PE dynamische Verlustleistung einer Verarbeitungseinheit (PE) 

pEntwicklung erwartete jährliche durchschnittliche Produktivitätswachstumsrate 
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PG Programmierbarkeit  

PInter-SB-Links Leistungsaufnahme für Inter-Switch-Box-Verbindungen 

Plast bzw. Pload Lastumladeverlustleistung  

Ppareto pareto-optimaler Punkt im Entwurfsraum 

PSB Anzahl der Ports einer Switch-Box  

Pschalt Schaltverlustleistung  

Pstat statische Verlustleistung  

R Randbedingung  

RE Ressourceneffizienz im Sinne des schaltungstechnischen Entwurfs 

reuse(n) Anzahl wiederverwendeter Blöcke im Jahre n vom Referenzjahr 

RV Realisierungsvariante eines spezifizierten Systems 

Rxy Gesamtheit aller minimalen Pfade 

S  System  

e
S  Systementität  

( )e HW
S  hardwarebezogene Systementitäten 

( )e SW
S  softwarebezogene Systementitäten 

S Schranke  

S Skalierungsfaktor zweier CMOS-Technologien 

S Anzahl konkurrierender FIFO-Ketten am Eingang einer Switch-Box 

S(P) Speedup (Beschleunigung) in Abhängigkeit von der Anzahl der Prozessoren 

SBFIFO-Tiefe  Tiefe der Switch-Box FIFO-Register-Warteschlange 

sc Quellknoten 

Sn Anzahl konkurrierender FIFO-Ketten am Eingang der n-ten Switch-Box 

So obere Schranke 

Su untere Schranke 

T Leistung bzw. Performanz 

T Taktperiode  

Tex Ausführungszeit 

Tex,PE Ausführungszeit einer Verarbeitungseinheit (PE) 

tox Siliziumoxiddicke 

Tsuperstep 
Übertragungszeit für eine Nachricht einfacher Länge unter kontinuierlichem Netzwerk-
verkehr beim BSP-Modell 

U∆  Signalhub  

U Spannung bzw. Spannungshub 

UB Versorgungsspannung  

UDD Versorgungsspannung 

UT Schwellspannung 

v charakteristische Ausbreitungsgeschwindigkeit eines Kanals 

vsim 
Simulationsgeschwindigkeit, gemessen in benötigter Zeit pro simuliertem Takt des Ziel-
systems 

W Weite des Transistor-Gates 

wc Weite eines Kanals C 

WFlit  ganzzahlige Anzahl der 32-Bit-Datenworte, die in einem Flit enthalten sind 

wmax Gesamtkosten eines Supersteps  

WV Wiederverwendbarkeit  

ZF Zielfunktion  

( )
( )

, , ,
RV System i normiert

ZF P A T F  normierte Schar von Zielfunktionen für implementierte Realisierungsvarianten eines 
spezifizierten Systems 
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Anhang A  (GigaNetIC-C-Bibliotheksfunktionen) 
Die folgende Abbildung eines C-Codebeispiels zeigt, wie die GigaNoC-Funktionen nach Einbin-
dung der giganetic.h C-Bibliothek in benutzerspezifischen Anwendungen genutzt werden können: 

#include  <stdio.h> 
#include  <giganetic.h> 
int main()  
{ 
  unsigned int  *packet_addr; 
  unsigned int  *ack; 
  unsigned int  data; 
  unsigned short  packet_length; 
  unsigned int  start_time, stop_time; 
     
  // initialisiere Zeitgeber für Cluster 6 zum gena uen Profiling 
  gn_timer_init(6,-1); 
  // warte auf Paket 
  packet_addr = ( unsigned int *) gn_wait_for_packet(); 
  // erhalte Zeiger auf das zugewiesene Paket 
  while (!packet_addr) 
    packet_addr = ( unsigned int *) gn_wait_for_packet(); 
  // identifiziere Paketlänge  
  packet_length = *((( volatile unsigned short *)packet_addr)+5); 
  // Anweisung für den Communication-Controller, da s Paket an einen HW-Beschleuniger zu 
  // versenden. Die Adressierung enthält bereits St euerbefehle für den  
  // "Memory Mapped-I/O"-Hardwarebeschleuniger 
  *packet_addr = 0x80190039; 
  gn_print("Sending packet to CC_HW_ACC\n"); 
  // Profiling-Kommando zur taktgenauen Zeitmessung  
  start_time = gn_timer_get_counter(); 
  // Versendung des Pakets Nr. 1 an einen benachbar ten Cluster 
  gn_send_data(0,-1,6,1,packet_length+14,packet_addr); 
  // warte auf erfolgreiche Versendung des Pakets N r. 1 
  ack = gn_get_ack(1); 
   while (!ack) 
     ack = gn_get_ack(1); 
  // Profiling Kommando zur taktgenauen Zeitmessung  
  stop_time = gn_timer_get_counter(); 
  // gibt den Paketspeicher des CC des Pakets frei 
  gn_free_packet(packet_addr); 
  return  1; 
} 

Abbildung Anhang A-1: Codebeispiel zur Verwendung elementarer GigaNoC-Bibliotheksfunktionen 

Die GigaNoC-Bibliotheksfunktionen sind an dem vorangestelltem gn_ zu erkennen und in dem 
Beispiel fett gedruckt. Alle zur Verfügung stehenden Funktionen der Bibliothek können hier aus 
Platzmangel nicht erläutert werden, sind aber auf der GigaNetIC-Linux-Live-CD (vgl. Abschnitt 
4.8) im Softwareverzeichnis enthalten und detailliert kommentiert. 

Abbildung Anhang A-2 zeigt den Aufbau der Befehle, die seitens der Prozessorkerne an den Com-
munication-Controller der Switch-Box gesendet werden können. Die Befehle sind in der Adresse 
kodiert. Adressen die mit „E“ oder „F“ im obersten Oktett beginnen sind für diese Kommandos re-
serviert. Dies reduziert die theoretisch adressierbare Speichergröße pro Cluster auf 3,5 GByte, was 
für den Einsatz der Architektur in Chip-Multiprozessoren derzeit mehr als ausreichend ist. Bei den 
Befehlen handelt es sich sowohl um Abfragen (ldw-Befehl) seitens der Prozessoren, als auch um 
Schreibzugriffe (stw-Befehl). Die Daten, die bei Lesezugriffen zurückgeliefert werden beinhalten 
die angeforderte Information, die vom Communication-Controller der anfragenden CPU übermittelt 
wird (wie z. B. Registerauslastung oder die Paketadresse bei einer Empfangsabfrage). Bei Schreib-
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zugriffen wird die entsprechende Paketadresse als Datum übertragen, um so z. B. ein bestimmtes 
Paket zum Zielknoten im NoC zu versenden oder den durch ein Paket belegten Speicher wieder frei 
zu geben. Beim Versand eines Pakets entspricht die Kodierung der Zielkoordinaten dem GigaNoC-
Protokoll (vgl. Abschnitt 4.2.2). Die Aufträge zum Versenden einzelner Pakete werden im CC in 
FIFO-Strukturen abgelegt und sequentiell abgearbeitet. Die drei dunkel hinterlegten Abfragen stel-
len blockierende Anfragen an den Communication-Controller dar. Diese werden bei der Wishbone-
Bus-basierten Variante aufgrund der Spezifikation dieses Bussystems nicht unterstützt. Bei anderen 
Bussystemen, wie z. B. dem ebenfalls implementierten AMBA-Bus sind diese zulässig und können 
genutzt werden. Bei einer Spezialabfrage handelt es sich um eine Kombination aus Versand- und 
Empfangsabfrage. Um die Performanz des Systems zu steigern wird mit dieser Abfrage zum einen 
überprüft, ob ein in Auftrag gegebenes Paket versendet worden ist (Versandabfrage) und zum ande-
ren ggf. eine neue Paketadresse eines zu bearbeitenden Pakets zurückgegeben (Empfangsabfrage). 
So können zwei Aufgaben mit einer Transaktion erledigt werden. Die Füllstandsabfrage ermöglicht 
den Prozessoren eine Bestandsaufnahme der derzeitigen Systemlast und kann für Load-balancing-
Aufgaben herangezogen werden. Diese Befehle werden, für den Softwareentwickler transparent, 
durch die oben gezeigten GigaNetIC-Bibliotheksfunktionen aufgerufen. Die Struktur der CC-
Kommandos lässt noch weitere Befehle für den Communication-Controller zu, so dass auf zukünf-
tige Anforderungen flexibel reagiert werden kann. Bei negativer Quittierung einer Abfrage wird 
NULL, also der Null-Vektor (0x0) zurückgegeben, der eindeutig von einer gültigen Adresse unter-
schieden werden kann, da die Basis des Paketspeichers bei Adresse 0x40000000 liegt (vgl. Abbil-
dung 4-18).  

Abbildung Anhang A-2: Befehlsübersicht des Communication-Controllers 

 

N
-C

o
re

-B
e

fe
h

l
st

w
ld

w



 

269 

 

Anhang B  (Parametrisierbarkeit der GigaNetIC-Architektur) 
Die folgenden Parameter sind die wichtigsten generisch gehaltenen Konstanten des GigaNetIC-
Systems, die in den VHDL-Design-Packages der jeweiligen Design-Bibliothek enthalten sind. Die 
relativ große Anzahl gibt bereits einen kleinen Eindruck von der Komplexität, die der Entwurf eines 
skalierbaren flexiblen Chip-Multiprozessors mit sich bringt. 

Globales GigaNetIC-System 

• CLUSTER_PER_ROW: Anzahl der Cluster bzw. Switch-Boxen in x-Dimension (1 bis beliebig) 

• CLUSTER_PER_COL: Anzahl der Cluster bzw. Switch-Boxen in y-Dimension (1 bis beliebig) 

• NUM_OF_PE: Legt die Anzahl der Prozessorelemente pro Cluster fest (derzeit realisierbar: 1 bis 8). 

• NUM_OF_ETH: Legt die Anzahl der Ethernet-Ports pro Cluster fest (derzeit realisierbar: bis 4). 

Switch-Box 

• NUMBER_OF_PORTS: Anzahl der I/O-Ports der Switch-Box.  

• LOG_NUMBER_OF_PORTS: Ganzzahliger Zweierlogarithmus des Wertes NUMBER_OF_PORTS. Dieser Wert 

dient der generischen Dimensionierung der Steuerleitungen der Multiplexer.  

• DATA_WIDTH: Dieser Parameter legt die physikalische Breite eines Flits fest. Er ist von vielen der bereits erwähn-

ten Parameter, die das Format des Flitkopfes sowie des Flitrumpfes betreffen, abhängig (vgl. Abschnitt 4.2.2). Des-

halb sind die entsprechenden Regeln bei der Änderung dieses Wertes zu befolgen. 

• FIFO_DEPTH: Gibt die Tiefe der einzelnen FIFO-Ketten in den Ports der Switch-Box an und bestimmt somit die 

Größe des Warteraums. 

• COST_WIDTH: Breite der Kostentabelle für ein entsprechendes Routing-Verfahren.  

• COMMAND_WIDTH: Breite des Kommandoteils im Flitkopf (vgl. Abschnitt 4.2.2). 

• X_WIDTH: Breite der X-Koordinate im Flitkopf. Sie besteht aus einem Vorzeichenbit und einer binär kodierten 

Zahl. Die Zahl entspricht den Netzwerkknoten, die das Flit in Richtung der X-Achse durchlaufen muss. Bei einem 

Netzwerk von 8×8-Knoten ist eine Breite von 4 notwendig.  

• Y_WIDTH: Die Breite der Y-Koordinate, verhält sich analog zu X_WIDTH. Sie sind unabhängig voneinander ein-

stellbar, um auch unsymmetrische Netzwerkdimensionen zuzulassen. 

• FLIT_ID_WIDTH: Kennzeichnet im Flitkopf die Identifikationsnummer des Flits innerhalb eines Pakets. Mit dieser 

Größe sind Pakete mit bis zu 16 KB Nutzdaten möglich. Die Bearbeitung der größten auftretenden DSL-Pakete von 

9000 Byte führte zu dem derzeitigen Wert 11.  

• FLOW_ID_WIDTH: Die Flow-ID wird benötigt, um ein Paket eindeutig zu kennzeichnen. Dabei genügt es, eine ID 

für jeden Absender zu vergeben. Es ist also eine Nummer pro Switch-Box und Eingang des Netzwerks erforderlich. 

Bei einem 4×4-Gitter sind das maximal 32 Absender, die in fünf Bit kodiert werden können. 

• CPU_ID_WIDTH: Die ID einer CPU setzt sich aus der Nummer des N-Cores und der Paketnummer zusammen. 

Damit ist ein Paket unverwechselbar in dem Sende-FIFO des Communication-Controllers markiert. Die CPU kann 

unter Angabe der CPU ID erfragen, ob das Paket mit dieser Nummer vollständig versendet wurde. Der derzeitige 

Wert 6 entspricht der Minimalbreite, um eine eindeutige Identifizierung zu ermöglichen. 
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• ADDR_WIDTH: Legt für den CC die Größe des Speichers für die Eingangspakete fest. Derzeit ist die Breite 15. Es 

können also 215 Flit-Nutzdaten à 8 Byte im Speicher abgelegt werden. Das entspricht einer Datenmenge von 

256 KByte bei einer maximalen Paketgröße von 16 KByte. 

• ADDR_FIFO_DEPTH: Die eingehenden Pakete werden vom Communication-Controller im Speicher abgelegt. 

Damit eine Verarbeitungseinheit mit einem Paket arbeiten kann, muss sie eine Anfrage an den CC stellen, ob ein 

Paket vorliegt. Ist dies der Fall, so erhält sie die Startadresse des Pakets, um es aus dem Speicher zu lesen. Diese 

Anfragen der Prozessoren sind nicht deterministisch einplanbar. Es ist also zu erwarten, dass sich zeitweise mehre-

re Pakete aufstauen können. Die Startadressen dieser Pakete legt der CC in einer FIFO-Registerkette ab, deren Tie-

fe mit ADDR_FIFO_DEPTH eingestellt wird. Um mehrere Pakete pro Prozessor gleichzeitig verwalten zu können, 

ist die Tiefe derzeit mit 16 eingestellt und erlaubt bei vier Prozessoren im Cluster je vier Speicherplätze in dem Ad-

ress-FIFO.  

• SEND_FIFO_DEPTH: Der Communication-Controller kann Pakete nur sequentiell verschicken, so dass sich Ver-

sandaufträge aufstauen können. Da die Prozessoren möglichst unbelastet vom Versendeprozess bleiben sollen, 

muss ein gewisser Warteraum für diese Aufträge eingerichtet werden. Damit wird die Gefahr reduziert, dass CPUs 

aufgrund einer ausgelasteten Sendeeinheit Anfragen mehrmals stellen müssen. Die Tiefe dieses Sende-FIFOs ist 

derzeit auf 16 gesetzt. 

• MEMORY_WIDTH: Der Communication-Controller ist hauptsächlich mit dem Empfang und Versand von Paketen 

beschäftigt. Er muss also ständig auf den Speicher zugreifen. Damit er nicht permanent den Bus belastet, sondern 

ein passiver Busteilnehmer bleibt, wird ein Dual-Ported-Speicher verwendet. Dieser hat zwei unabhängige Ports, 

die gleichzeitig benutzt werden können. So kann er als Slave an den Bus angeschlossen werden und ist damit den 

Prozessoren zugänglich. Der zweite Anschluss ist direkt mit dem CC verbunden. Die Breiten der Daten- und Ad-

ressleitungen müssen nicht zwangsläufig an beiden Ports übereinstimmen. Während die Breite der Adresse für den 

Port am Bus mit BUS_ADDRESS_WIDTH definiert ist, ist für den Anschluss des CCs ein eigener Parameter ME-

MORY_WIDTH erforderlich.  

• BUS_ADDRESS_WIDTH: Die Breite der Adressen, die ein Bussystem verwalten kann, ist nicht zwangsläufig bei 

allen Bussen gleich. Aus diesem Grund wird die Größe der Adressweite generisch gehalten, so dass das Giga-

NetIC-System weitestgehend unabhängig von der Struktur des lokalen Busses ist. Die derzeitige Implementierung 

sieht 32-Bit-breite Busadressen, passend für AMBA und Wishbone (vgl. Abschnitt 4.2.4), vor. 

• BUS_DATA_WIDTH: Stellt die Datenbreite des Busses ein und ist derzeit zu 32 Bit gewählt, da der N-Core-

Prozessor (vgl. Abschnitt 4.3.1) ebenfalls mit 32-Bit-breiten Daten arbeitet. Durch diesen Parameter ist das Giga-

NetIC-System leicht an andere Prozessorkerne anpassbar. 

Wishbone-Bus-Deklarationen  

• WB_ADDR_WIDTH: Breite des Wishbone-Adressbusses (derzeit 32). 

• WB_DATA_WIDTH: Breite des Wishbone-Datenbusses (derzeit 32). 

• WB_SEL_WIDTH: Breite des Select-Busses zur Auswahl der Busteilnehmer (derzeit 4). 

AMBA-Bus-Deklarationen 

• AMBA_BUS_WIDTH: Breite der AMBA-Daten-Busse (von 32 bis 1024). 

• NO_OF_MASTERS: Bestimmt die Anzahl der Master im System (von 1 bis 16, je 1 Master pro Layer). 

• NO_OF_SLAVES: Legt die Anzahl der Slaves mit einem oder mehr Ports im System fest (von 1 bis 16). 
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• NO_OF_PORTS: Ist die Gesamtzahl der Ports aller Slaves (von 1 bis 16). 

• WRITE_BUS_WIDTH: Festlegung der Breite der Write-Busse (von 8 bis 1024). 

• READ_BUS_WIDTH: Legt die Breite der Read-Busse fest (von 8 bis 1024). 

• ADDR_WIDTH: Definiert die Breite der Adressen im System (von 8 bis 1024). 

GigaNetIC-Multiprozessor-Cache 

• UNIPROCESSOR_SYSTEM: Legt fest, ob ein Einprozessor-Cache oder ein Multiprozessor-Cache instantiiert wird.  

• SPLIT_CACHE: Legt fest, ob ein Split-Cache generiert wird oder eine Unified-Cache-Architektur zum Einsatz 

kommt. Beim Unified-Cache wird die Datencachestruktur verwendet. 

• D_LINE_WIDTH: Gibt die Anzahl der Bits pro Daten-Cache-Line an (von 32 bis 1024). 

• D_ASSOC: Beziffert die Assoziativität des Daten-Caches (von 2 bis 32). 

• D_NO_OF_LINES: Anzahl der Daten-Cache-Lines (>= 8, je mit Vielfachem von 4). 

⇒ Daten-Cache-Größe [Bit] = D_LINE_WIDTH * D_ASSOC * D_NO_OF_LINES 

• I_LINE_WIDTH: Gibt die Anzahl der Bits pro Instruktions-Cache-Line an (von 32 bis 1024). 

• I_ASSOC: Beziffert die Assoziativität des Instruktions-Caches (von 2 bis 32). 

• I_NO_OF_LINES: Anzahl der Instruktions-Cache-Lines (>= 8, mit je Vielfachem von 4). 

⇒ Instruktions-Cache-Größe [Bit] = I_LINE_WIDTH * I_ASSOC * I_NO_OF_LINES 

N-Core 

• CPU_ID: 32-Bit-breite, eindeutige Identifikationsnummer, die dem Prozessorkern zugewiesen wird. Sie wird direkt 

an den GSR-Eingangsport des Prozessors angelegt und ist Bestandteil des N-Core-Registersatzes. Dies ermöglicht 

einen schnellen Zugriff im Programmcode zur Feststellung der jeweiligen Prozessorinstanz. 

• INT_WIDTH: Bestimmt die Anzahl der externen Interrupt-Signale. Die Breite des Interrupt-Eingangsvektors und 

das PIC-Modul werden hierdurch angepasst. Derzeit wird lediglich der Interrupt des Timer-Moduls genutzt. 

• RAM_WIDTH: Entspricht der benötigten Breite des Speicher-Adressbusses und leitet sich von der verwendeten 

Speichergröße ab. Ist das Prozessorsystem z. B. mit 32-KB-Speicher ausgestattet, ist RAM_WIDTH = 13 (213×32 

Bit = 32 KB).  

• MEM_FILE: Legt den Dateinamen des Speicherabbilds fest und wird nur bei der Simulation ausgewertet. Zu Be-

ginn der Simulation wird diese Speicherabbilddatei zur Initialisierung des N-Core-Programmspeichers geladen. 

Hardwarebeschleuniger 

• NUM_OF_HW_ACC: Anzahl der an die Switch-Box angeschlossenen Hardwarebeschleuniger. 

• NUM_OF_WBM_HW_ACC: Anzahl der an den lokalen Bus angeschlossenen Hardwarebeschleuniger. 

Speicher 

• PE_MEM: Speicher pro CPU, beinhaltet generische Anpassung der Adressleitungen etc. (25 = 32 KByte). 

• SB_MEM: Speicher der Switch-Box, generische Anpassung der Adressleitungen etc. (25 = 32 KByte). 

• ETH_MEM: Speicher pro CPU, generische Anpassung der Adressleitungen etc. (24 = 16 KByte). 
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Wie bereits erwähnt handelt es sich hier nur um eine Auswahl der wichtigsten, variierbaren Parame-
ter des GigaNetIC-Systems. Für einen vollständigen Eindruck ist der im Versionsverwaltungssys-
tem des Heinz Nixdorf Instituts abgelegte Quellcode einzusehen. 
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Anhang C  (Ablauf der Kommunikation auf Switch-Box-Ebene) 
Tabelle Anhang C-1 schildert den zeitlichen Ablauf einer Paketinjektion seitens eines Prozessors 
und die Terminierung am Zielknoten in einer benachbarten Switch-Box. Abbildung Anhang C-1 
zeigt die hierfür angenommene Hardwarestruktur zur Erläuterung. 

Tabelle Anhang C-1: Beispielhafter Ablauf einer Paketinjektion seitens eines Prozessors und dessen Terminie-

rung in einer anderen Switch-Box 

Zeit Vorgang 
1. Takt Die Anfrage eines N-Cores wird im Sende-FIFO gespeichert. 
2. Takt Der Sendevorgang beginnt. Die Adresse des ersten Flits liegt am Speicher an. 
3. Takt Die Daten des ersten Flits liegen am Speicherausgang und werden an den  

OUTPUT_BUFFER ausgegeben. 
4. Takt Das Flit steht im Eingangsregister der Eingangsports der Switch-Box 5. 
5. Takt Das Flit wird in die FIFO-Schlange für Ausgang 3 übernommen. 
6. Takt Das Flit steht im Puffer hinter der FIFO-Kette und wird durch die Crossbar an die 

Switch-Box 6 geleitet. 
7. Takt Das Flit steht im Eingangsregister des Eingangsports in Switch-Box 6. 
8. Takt Das Flit wurde in die FIFO-Schlange für Ausgang 0 übernommen. 
9. Takt Das Flit steht im Puffer hinter der FIFO-Kette und wird durch die Crossbar an den 

Communication-Controller geleitet. 
10. Takt Das Flit steht im Eingangsregister der CC. 
11. Takt Das Flit wird in das Adressregister des CCs übernommen, und die Daten werden im 

Speicher angelegt. 

 

Abbildung Anhang C-1: Die dem in Tabelle Anhang C-1 beschriebenen Ablauf  

der Paketinjektion zugrunde liegende Hardwarestruktur 
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Anhang D  (Instruktionssatz des N-Cores) 
Instruktionssatz 

Der S-Core und folglich der N-Core verfügen über eine dreistufige Pipeline. Instruktionen werden 
geholt, anschließend dekodiert und die benötigten Register adressiert. In der letzten Stufe werden 
die Operationen ausgeführt und die Ergebnisse zurückgeschrieben. 

Der Originalinstruktionssatz des S-Cores verfügt über arithmetische und logische Instruktionen, 
Befehle für Bitoperationen, Byte-Extraktion, Schiebe-, Lade-, Speicher- und Sprungbefehle.  

Er lässt sich in drei verschiedene Instruktionstypen einteilen: 

1. Register-zu-Register-Instruktionen  

a) Bei der Ein-Registeradressierung spezifizieren die untersten vier Bit des Be-
fehlswortes (rx-Feld) das Quell-/Zielregister. Folgende Instruktionen bedienen sich 
dieses Instruktionsformats: abs, asrc, brev, clrf, clrt, decf, decgt, declt, decne, dect, 
ff1, incf, inct, lslc, lsrc, mvc, mvcv, not, sextb, sexth, tstnbz, xsr, zextb und zexth. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Opcode rx 

 

b) Dyadische Registeradressierung wird bei den Befehlen addc, andda, and, andn, asr, 
bgenr, cmp[hs,lt,ne], ixh, ixw, lsl, lsr, mov, movf, movt, mult, or, rsub, subc, subu, tst 
und xor benutzt. Die rx- und ry-Felder bezeichnen dabei ein Quell- und ein weiteres 
Quell- oder Zielregister. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Opcode ry rx 

 

c) Einregisterbefehle mit einem fünf Bit langen immediate-Feld: Das vier Bit große Re-
gisterfeld rx stellt das zu verwendende Quell-/Zielregister. Das fünf Bit lange imme-
diate-Feld spezifiziert bei den Befehlen andi, asri, bclri, bgeni, bmaski, bseti, btsti, 
cpmnei, lsli, lsri, rotli und rsubi den zweiten Operanden als einen vorzeichenlosen 
immediate-Wert. Bei den Instruktionen addi, subi und cmplti wird dieser immediate-
Wert so dekodiert, dass ein Wertebereich zwischen 1 und 32 abgedeckt wird. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Opcode Imm5 rx 

 

d) Registerbefehle mit einem sieben Bit langen immediate-Feld: Bei diesem Adressie-
rungsformat für die movi-Instruktion ist das vier Bit breite rx-Feld das Zielregister 
und das sieben Bit große immediate-Feld ist der vorzeichenlose Wert.  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Opcode Imm7 rx 
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e) Kontrollregisteradressierung wird bei den Befehlen mfcr und mtcr eingesetzt. Dabei 
ist das vier Bit breite rx-Feld das normale Quell-/Zielregister und das fünf Bit breite 
CReg Feld das Kontrollregister. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Opcode CReg rx 

 

2. Speicherzugriffsinstruktionen mit 

a) 4-Bit-immediate-Adressierung: Diese wird bei den ld- und st-Instruktionen verwen-
det. Der Wert aus dem im rx-Feld definierten Register plus den vorzeichenlosen 
Wert aus imm4 ergibt die Zugriffsadresse. Das rz-Feld ist das Quellregister für den 
Speicherbefehl bzw. das Zielregister für den Ladebefehl. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Opcode Rz Imm4 rx 

 

b) Laden und Speichern eines zusammenhängenden Registerbereichs. Das rx-Feld defi-
niert den Startpunkt im Speicher, an dem die Register r4 bis r7 gespeichert oder ge-
laden werden. Nur die ldq- und stq-Anweisungen verwenden diesen Modus. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Opcode rx 

 

c) Laden und Speichern mehrerer Register. Die durch das rf-Feld spezifizierten Regis-
ter werden entweder ab der in Register r0 definierten Speicheradresse gespeichert 
oder von der in Register r0 definierten Adresse geladen. Diesen Modus verwenden 
die Instruktionen ldm und sdm. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Opcode rf  

 

d) Laden eines relativen Wortes ist mit der Instruktion lrw möglich. Dazu wird der 
disp8 Wert um 2 Stellen nach links geschoben und zum nächsten PC-Wert hinzuad-
diert. Das Ergebnis ist die Speicheradresse, von der das Wort geladen und dann in 
das rz-Register abgelegt wird. (Register r0 und r15 dürfen nicht verwendet werden.) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Opcode Rz disp8 

 

3. Kontrollfluss-Instruktionen 

a) 11-Bit-Verschiebung. Die Sprungadresse bei den Instruktionen br, bf, bt und bsr 
wird wie folgt berechnet: disp11 wird durch ein Linksschieben mit zwei multipliziert 
und dem Wert des nächsten Programmzählers (PC+2) hinzuaddiert. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Opcode disp11 
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b) Registeradressierung. Bei den Instruktionen jmp und jsr ist durch das 4-Bit-rx-Feld 
die Sprungadresse vorgegeben. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Opcode rx 

 

c) Indirekte Adressierung. Die jmpi- und jsri-Anweisungen verwenden dieses Format, 
um ein 32-Bit-Wort relativ zum Programmzähler (PC) zu adressieren. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Opcode dipl8 

 

d) Negative 4-Bit-Verschiebung. Die loopt-Anweisung verwendet diese Adressierungs-
art zur Berechnung der effektiven Adresse. Dabei wird die Zieladresse mittels Addi-
tion des nächsten Werts des Programmzählers und des vier Bit langen disp4-Wertes, 
der zuvor mit 1 zum negativen Wert erweitert und um ein Bit nach links geschoben 
wurde, berechnet. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Opcode disp4 rx 

 

Abbildung Anhang D-1 zeigt den verbliebenen freien Opcode-Bereich des N-Core-Prozessorkerns. 
Zusätzlich implementierte Superinstruktionen sind namentlich aufgeführt und reduzieren die An-
zahl verfügbarer Befehlsworte, so dass nunmehr maximal noch 725 einfache Instruktionen, die in 
zehn separaten Binärbereichen liegen, hinzugefügt werden können. 

Abbildung Anhang D-1: Freier Opcode-Bereich und verwendeter Bereich für die zusätzlich implementierten 

Instruktionssatzerweiterungen des N-Cores 

min max #Stellen 1r || imm4 2r || 1r+imm4 1r+imm<4 1r+imm>4

0000000000000000 0000000000000000 0000000000000000 0111011101110111 1111 1 0000 0 0 0 0
0000000000000000 0000000000000000 0000000000000000 11xx11xx11xx11xx 1111 4 2 0 0 0 0
0000000000000000 0000000000000000 0010001000100010 xxxxxxxxxxxxxxxx 1111 16 4 1 0 0 0
0000000000000000 1000100010001000 mem[mem[mem[mem[RYRYRYRY ]]]] RXRXRXRX xorldwxorldwxorldwxorldw
0000000000000000 1001100110011001 mem[mem[mem[mem[RYRYRYRY ]]]] RXRXRXRX xorldwlsl8xorldwlsl8xorldwlsl8xorldwlsl8
0010001000100010 011 i011 i011 i011 i i i i ii i i ii i i ii i i i r r r rr r r rr r r rr r r r 1111 512 9 32 2 4 1
0010001000100010 1100110011001100 001x001x001x001x r r r rr r r rr r r rr r r r 1111 32 5 2 0 1 0
0010001000100010 1100110011001100 01xx01xx01xx01xx r r r rr r r rr r r rr r r r 1111 64 6 4 0 1 0
0011001100110011 0010001000100010 0000000000000000 r r r rr r r rr r r rr r r r 1111 16 4 1 0 0 0
0011001100110011 0010001000100010 001x001x001x001x r r r rr r r rr r r rr r r r 1111 32 5 2 0 1 0
0011001100110011 0010001000100010 010x010x010x010x r r r rr r r rr r r rr r r r 1111 32 5 2 0 1 0
0011001100110011 0010001000100010 0110011001100110 r r r rr r r rr r r rr r r r 1111 16 4 1 0 0 0

010010010010RYRYRYRY RYRYRYRY 0000 CCCC RXRXRXRX andshrandshrandshrandshr
010RY010RY010RY010RY RYRYRYRY 1111 CCCC RXRXRXRX ixwandshrixwandshrixwandshrixwandshr

0110011001100110 1000100010001000 RYRYRYRY RXRXRXRX orshl8orshl8orshl8orshl8
0110011001100110 1001100110011001 RYRYRYRY RXRXRXRX orshl16orshl16orshl16orshl16
0110011001100110 1010101010101010 RYRYRYRY RXRXRXRX orshl24orshl24orshl24orshl24
0110011001100110 1011101110111011 RYRYRYRY RXRXRXRX ldwixwldwixwldwixwldwixw
0110011001100110 11 11 11 11 CCCC RYRYRYRY RXRXRXRX ldwaddildwaddildwaddildwaddi
Total 10 725 45 2 8 1

Opcode
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Im Folgenden werden die Funktionsweisen der zusätzlichen N-Core-Befehle kurz vorgestellt: 

In (9.1) wird die Funktionsweise des Befehls ANDSHR dargestellt, der Inhalt des RX-Registers wird 
zunächst um eine Konstante C nach rechts geschoben und im Anschluss bitweise mit dem Inhalt 
von Register RY und-verknüpft. Das Ergebnis der Operation wird nach RX zurückgeschrieben. Die 
Operation benötigt anstatt ursprünglich zwei nur noch einen Takt. 

 ( ):         ANDSHR RX RX C AND RY← ≫  (9.1) 

(9.2) erläutert die Instruktion IXWANSHR. Der Inhalt von Register RX wird um C nach rechts ge-
schoben mit dem Inhalt von RY und-verknüpft, um 2 nach links geschoben und abschließend mit 
dem Inhalt von R1 aufsummiert. Das Ergebnis der Operation wird nach RX zurückgeschrieben. Die 
Operation benötigt einen Takt. Die ursprüngliche Funktionsabfolge benötigte drei Tatke. 

 ( )( )( ):    1        2IXWANDSHR RX R RX C AND RY← + ≫ ≪  (9.2) 

Bei LDWADDI (9.3)wird zu dem durch RY adressierten Speicherinhalt eine Konstante C hinzuad-
diert und das Ergebnis innerhalb von zwei an Stelle von drei Takten in Register RX abgelegt.  

 [ ]:       LDWADDI RX mem RY C← +  (9.3) 

Die LDWIXW-Instruktion (9.4) lädt einen Wert der durch die Summe des RX-Registerinhalts und 
den um zwei nach links geschobenen Inhalt des RY-Registers adressiert wird aus dem Speicher ins 
RX-Register. Die benötigte Taktzahl wird von ursprünlich drei auf zwei Takte reduziert. 

 ( ):         2LDWIXW RX mem RX RY← +  ≪  (9.4) 

Innerhalb eines Taktes ermöglicht der ORSHL8,16,24-Befehl (9.5) eine bitweise Veroderung des 
RX-Registerinhaltes mit dem um wahlweise um 8, 16 oder 24 Bit geschobenen Inhalt des RY-
Registers. Das Ergebnis wird einen Takt schneller als im Original S-Core ins RX-Register geschrie-
ben. 

 ( )( )8,16, 24 :        8,16,24ORSHL RX RX OR RY← ≪  (9.5) 

Die in Abschnitt 6.2.3 ausführlicher diskutierte XORLDW-Instruktionssatzerweiterung lädt den un-
ter RY adressierten Speicherinhalt und führt mit dem RX-Registerinhalt eine XOR-Operation durch 
und speichert das Resultat im RX-Register innerhalb von zwei Takten. Dies entspricht einer Reduk-
tion um einen Takt, im Vergleich mit dem unmodifizierten Prozessor. 

 [ ]:       XORLDW RX mem RY XOR RX←  (9.6) 

Die LDWXORLSL8-Instruktion schiebt den Inhalt des RX-Registers um acht Stellen nach links und 
führt dann eine XOR-Verknüpfung mit dem unter RY adressierten Speicherinhalt durch. Das Resul-
tat der insgesamt zwei anstatt vier Takte umfassenden Operation wird in Register RX geschrieben.  

 [ ]8 :    8   LDWXORLSL RX RX XOR mem RY← ≪  (9.7) 
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Anhang E  (Details zum IP-Headercheck-Hardwarebeschleuniger) 
Im Folgenden werden weitere Details zu der entworfenen Prüfsummenberechnungseinheit vorges-
tellt. Abbildung Anhang E-1 zeigt den internen Aufbau der 32-Bit-Implementierung des IP-
Headercheck-Hardwarebeschleunigers. 

Abbildung Anhang E-1: Blockschaltbild der 32-Bit-Implementierung 

des Header-/Packetcheck-Hardwarebeschleunigers 

Abbildung Anhang E-2 stellt die prinzipielle Funktionsweise des Hardwarebeschleunigers anhand 
eines Ablaufplans dar. 

D
A
T
A
_
R
E
G
_
1check_enable

header_check.vhd

reset_n

clk

data_in (32 Bit) ALU_IN
1 

ALU_IN
2

32 Bit ALU

C
T

R
L

_
A

L
U

alu_out (32 Bit)

D
A
T
A
_
R
E
G
_
2

ipv4

packet_error

check_ready

CTRL_ALU:

NOP
ADC_T
ADC_HALF_ADD_T
ADC_HALF_NOT_T

ctrl_out (16 Bit)

C
a
rr
yDATA_CARRY_REG_OUT

ALU_CARRY_IN

ALU_CARRY_OUT

A
L
U
_
IN

1
_
M
U
X

full word or higher half-word (BE)

lower half-word (BE)

State Decoder

FSM process

r_w

bus_wait_n bus_request

ADDR_REG

+4
+8
+ variable address
   offsets

addr_start_in (32 Bit)

addr_out (32 Bit)

COUNTER_REG
counts the processed  
IP and TCP/UDP or 

other higher layer 
protocol datagram 

words

IHL_REG
holds Internet 
header length 

information

TEMP_REG
holds necessary  
IP/TCP/UDP or 

other higher layer 
protocol 

datagram half 
words, e.g., 

TTL+PRTCL, 
Urgent Pointer, 

UDP length

CHKSUM_CNTR_REG
32 bit

16 bit 16 bit

4 bit

3 bit

CTRL_REG

holds control bits 
and flags

IP

TCP

UDP

ctrl_in (16 Bit)

ctrl_in_en

not used

16 bit

data_out (32 Bit)



Anhang E 

 

280 

Abbildung Anhang E-2: Ablaufplan der Header-/Paketcheck-Funktion 
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Anhang F  (IP-DSLAM-Referenzbenchmark) 
Abbildung Anhang F-1 zeigt die Anordnung der Tasks des IP-DSLAM-Referenzbenchmarks für die 
unterschiedlichen möglichen Szenarien (Ethernet / ATM - Linecard / Uplinkcard - Downlink / Up-
link). 

Abbildung Anhang F-1: Tasks der sieben unterschiedlichen IP-DSLAM-Referenzbenchmarkszenarien 
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