

FAKULTÄT FÜR

ELEKTROTECHNIK,

INFORMATIK UND

MATHEMATIK

Ressourceneffiziente Schaltungstechnik
eingebetteter Parallelrechner

–
GigaNetIC

Zur Erlangung des akademischen Grades

DOKTORINGENIEUR (Dr.-Ing.)

der Fakultät für Elektrotechnik, Informatik und Mathematik
der Universität Paderborn

vorgelegte Dissertation
von

Dipl.-Ing. Jörg-Christian Niemann

Bad Pyrmont

 Referent: Prof. Dr.-Ing. Ulrich Rückert
 Korreferent: Prof. Dr. Klaus Waldschmidt

 Tag der mündlichen Prüfung: 17.12.2008

Paderborn, den 19.12.2008

Diss. EIM-E/247

für Andrea und Max & Moritz

i

Inhaltsverzeichnis

1 Einleitung ... 1

2 Eingebettete parallele Rechnerarchitekturen ... 7

2.1 Leistungsabschätzungen und Prognosen für CMPs .. 8

2.1.1 AMDAHLs Gesetz – eine asymptotische Barriere für Parallelrechner? 8

2.1.2 GUSTAFSONs Gesetz – ein Ausweg für die Parallelwelt? .. 9

2.1.3 Weiterführende Ansätze .. 10

2.1.4 Trends bei parallelen eingebetteten Systemen .. 11

2.2 Kernkomponenten eingebetteter paralleler Rechnerarchitekturen ... 14

2.3 On-Chip-Netzwerke .. 15

2.3.1 NoC-Topologien.. 15

2.3.2 Organisation von On-Chip-Kommunikation ... 21

2.3.3 Beispiele von On-Chip-Netzwerken ... 32

2.3.4 Anforderungen an On-Chip-Netzwerke .. 34

2.4 Eingebettete Verarbeitungseinheiten .. 34

2.4.1 Anforderungen an eingebettete Verarbeitungseinheiten ... 35

2.4.2 Klassen eingebetteter Verarbeitungseinheiten .. 35

2.4.3 Charakteristika von eingebetteten Prozessoren ... 37

2.4.4 Methoden zur Erhöhung der Leistungsfähigkeit von Prozessoren................................ 38

2.4.5 Beispiele eingebetteter Prozessorkerne ... 39

2.5 Speicher für eingebettete Systeme .. 41

2.5.1 Wesentliche Charakteristika von Speicherstrukturen ... 42

2.5.2 Anforderungen an eingebettete Speicher .. 44

2.6 Anwendungsgebiete von On-Chip-Parallelrechnern .. 44

2.7 Anforderungen an Chip-Multiprozessoren ... 45

2.8 Varianten eingebetteter paralleler Rechnerarchitekturen ... 47

2.8.1 Beispiele zu Chip-Multiprozessoren ... 49

2.8.2 Ansätze für Chip-Multiprozessoren mit akademischem Ursprung 49

2.8.3 Ansätze für Chip-Multiprozessoren aus der Industrie... 51

Inhaltsverzeichnis

ii

2.8.4 Resümierender Vergleich mit dem GigaNetIC-Ansatz ... 55

2.9 Zusammenfassung .. 58

3 Charakterisierung und analytische Modellierung ... 59

3.1 Ressourceneffizienz eingebetteter Systeme .. 59

3.2 Bewertungsmaße für Ressourceneffizienz ... 63

3.2.1 Bewertungsmaße zur Performanz ... 63

3.2.2 Bewertungsmaße zur Leistungsaufnahme ... 65

3.2.3 Bewertungsmaße zur Fläche ... 67

3.2.4 Bewertungsmaße zur Zukunftssicherheit und Flexibilität .. 68

3.2.5 Effizienzmaße zur Bewertung ... 71

3.3 Die vier bestimmenden Kostenmaße der Ressourceneffizienz .. 72

3.4 Zusammenfassung .. 74

4 Die GigaNetIC-Systemarchitektur .. 75

4.1 Neuartiges, ressourceneffizientes und skalierbares CMP-Systemkonzept 75

4.2 GigaNoC-On-Chip-Kommunikationsstruktur .. 78

4.2.1 Switch-Boxen als zentrale Kommunikationsknoten auf SoC-Ebene 79

4.2.2 On-Chip-Kommunikationsprotokoll ... 86

4.2.3 Performanzanalyse der Kommunikationsinfrastruktur ... 89

4.2.4 Bussysteme auf Cluster-Ebene .. 93

4.3 Verarbeitungseinheiten auf PE-, Cluster- und SoC-Ebene ... 94

4.3.1 Prozessorkern .. 95

4.3.2 Systemerweiterungen und Peripherie – das Prozessorsubsystem 97

4.3.3 Hardwarebeschleuniger ... 100

4.3.4 Sonstige IP-Blöcke .. 102

4.4 Speicher .. 103

4.4.1 Lokaler Speicher auf Cluster-Ebene ... 103

4.4.2 Cache-Speicher auf Cluster-Ebene.. 104

4.4.3 Hauptspeicher .. 108

4.5 Programmiermodell .. 109

4.5.1 Programmiermodell auf Clusterebene ... 110

Inhaltsverzeichnis

iii

4.5.2 Programmiermodell auf SoC-Ebene – Bulk Synchronous Parallel 111

4.5.3 Programmiermodell auf SoC-Ebene – Zentraler Kontrollprozessor 113

4.6 Diskussion von Topologie und Routingverfahren .. 114

4.7 Skalierung des Systems durch Variation von Systemparametern .. 117

4.8 Zusammenfassung .. 118

5 Analyse und funktionale Verifikation des Chip-Multi prozessorsystems 121

5.1 C-basierter Cluster-Simulator zur Simulation und Profilierung ... 123

5.2 Modellierung des GigaNetIC-Chip-Multiprozessors in SystemC .. 126

5.3 HDL-basierte Simulation auf Register-Transfer-Ebene ... 127

5.4 MultiSim – Parametervariation zur gezielten Entwurfsraumexploration 132

5.5 Systememulation mit einem Rapid-Prototyping-System.. 133

5.6 Einheitliche Übersetzer-Werkzeugkette ... 134

5.7 Zusammenfassung .. 136

6 Optimierung der Multiprozessorarchitektur ... 137

6.1 Optimierungsmethodik ... 137

6.2 Optimierung auf Prozessorebene .. 140

6.2.1 Compilerbasierter Entwurfsprozess zur Prozessoroptimierung 141

6.2.2 Hardwarebasierter Entwurfsprozess zur Prozessoroptimierung 143

6.2.3 Optimierungspotential von Befehlssatzerweiterungen – ein Beispiel......................... 145

6.2.4 Implementierte anwendungsspezifische Instruktionen ... 148

6.3 Optimierung: Hardwarebeschleuniger auf Cluster- und SoC-Ebene 149

6.3.1 Optimierungspotential von Hardwarebeschleunigern – ein Beispiel 150

6.4 Kostenanalyse am Beispiel einer Netzwerkanwendung ... 163

6.5 Implementierte anwendungsspezifische Hardwarebeschleuniger .. 169

6.6 Optimierungspotential der Kommunikationsinfrastruktur ... 170

6.7 Optimierung im Hinblick auf die Speicherhierarchie ... 172

6.8 Optimierung auf SoC-Ebene – Einsatz paralleler Prozessorfelder 177

6.8.1 Optimierung der System- und Anwendungssoftware ... 177

6.8.2 Optimierung der Aufgabenverteilung und Interprozesskommunikation 178

6.9 Zusammenfassung .. 181

Inhaltsverzeichnis

iv

7 Performanzanalyse skalierbarer GigaNetIC-Netzwerkprozessoren 183

7.1 Einsatzgebiet im Zugangsnetzwerk – DSLAM .. 184

7.2 Definition eines IP-DSLAM-Benchmarks auf Systemebene ... 186

7.2.1 Funktionelle Spezifikation .. 187

7.2.2 Implementierung ... 188

7.2.3 Verkehrsmodell ... 188

7.2.4 Bewertungsmethode zum Vergleich unterschiedlicher Architekturen 189

7.2.5 DSLAM-Benchmarkanalysen für skalierbare GigaNetIC-CMPs 190

7.3 Instruktionssatzerweiterungen zur optimierten Protokollverarbeitung 192

7.4 Modulare, effiziente Modellierung von Netzwerkanwendungen ... 194

7.4.1 Erweiterung des DSLAM-Benchmarks zum Referenzbenchmark 196

7.4.2 IP-DSLAM-Referenzbenchmark – Ergebnisse ... 197

7.5 Visualisierungswerkzeug zur Entwurfsraumexploration .. 203

7.5.1 Vergleich eingebetteter Prozessorkerne – DSLAM-System-Explorer I 204

7.5.2 Einbeziehung von HW-Erweiterungen – DSLAM-System-Explorer II 207

7.6 Einsatz GigaNetIC-basierter Netzwerkprozessoren als Router .. 210

7.7 Analyse der Anschlussarten von Hardwarebeschleunigern im GigaNoC 211

7.8 Zusammenfassung .. 215

8 Prototypische Implementierung des Systems ... 217

8.1 FPGA-Realisierung – GigaNetIC-Prototyping-Plattform .. 217

8.1.1 Aufbau und Syntheseergebnisse.. 218

8.1.2 GigaNetIC-Demonstrator – Einsatz in einem realen Netzwerkszenario 220

8.2 ASIC-Realisierung in CMOS-Standardzellen .. 223

8.2.1 GigaNetIC-Architektur mit SRAM-basiertem L1-Speicher 223

8.2.2 GigaNetIC-Architektur mit integrierten Multiprozessorcaches 226

8.2.3 „Floorplan“ – ressourceneffiziente, kachelförmige Flächenaufteilung 227

8.3 Bewertung der Ressourceneffizienz ... 230

8.3.1 Einheitliche, werkzeugbasierte Performanzbewertung ... 231

8.3.2 Universalbenchmarks zur Bewertung der GigaNetIC-Architektur 232

8.3.3 Netzwerkbenchmark zur Bewertung der GigaNetIC-Architektur 233

Inhaltsverzeichnis

v

8.4 Zukünftige Architekturen ... 236

8.5 Zusammenfassung .. 237

9 Zusammenfassung und Ausblick ... 239

Verzeichnis verwendeter Formelzeichen und Abkürzungen ... 245

Literaturverzeichnis... 251

Eigene Veröffentlichungen .. 263

Anhang A (GigaNetIC-C-Bibliotheksfunktionen) ... 267

Anhang B (Parametrisierbarkeit der GigaNetIC-Architektur) 269

Anhang C (Ablauf der Kommunikation auf Switch-Box-Ebene) .. 273

Anhang D (Instruktionssatz des N-Cores) ... 275

Anhang E (Details zum IP-Headercheck-Hardwarebeschleuniger) 279

Anhang F (IP-DSLAM-Referenzbenchmark) ... 281

1 Einleitung
Inhaltlicher Überblick . Diese Arbeit dokumentiert den Entwurf und die Analyse einer leistungsf
higen und zugleich skalierbaren, ressourceneffizienten Chip
GigaNetIC-Architektur, siehe Abbildung
sche On-Chip-Kommunikationsinfrastruktur, die es durch ihre Modularität und Skalierbarkeit e
laubt, die Entwurfsproduktivitäts
wurfsproduktivitätslücke bezeichnet die Problematik,
Integrationsdichte auf zukünftige
kann, als in der zur Verfügung stehenden
den kann.

Abbildung 1-1: Netzwerktechnik der nächsten Generation

massiv parallelen Netzwerkprozessors aus Paderborn, untergebracht auf dem 20stel der Fläche eines Cents

Motivation . Das Konzept des vor
sowie die fortwährenden, dem vor
chenden Verbesserungen in der Halbleitertechnologie erlauben im
higere Schaltungen. Die von MOORE

renden Transistoren und damit die Komplexität integrierter Schaltkreise alle 18 bis 24 Monate ve
doppeln. Abbildung 1-2 zeigt die Entwicklung von Speicher
GBits bzw. in Logiktransistoren pro Chip auf und überlagert die prognostizierte Entwicklung nach
MOORE [1].

Glaubt man den Prognosen der International Semiconductor Roadmap
den Halbleiterherstellern aus der gesamten Welt verfasst wir
wicklung nach MOORE auch in den nächsten Jahren fortsetzen

1

. Diese Arbeit dokumentiert den Entwurf und die Analyse einer leistungsf
baren, ressourceneffizienten Chip-Multiprozessor(CMP)

Abbildung 1-1. Das GigaNoC ist die zu Grunde liegen
nikationsinfrastruktur, die es durch ihre Modularität und Skalierbarkeit e

produktivitätslücke stärker zu schließen, als es bisher möglich war. Die En
wurfsproduktivitätslücke bezeichnet die Problematik, dass aufgrund der immer größer werdenden
Integrationsdichte auf zukünftigen Halbleiterbausteinen mehr Funktionalität

der zur Verfügung stehenden Zeit durch Entwicklerteams konstruktiv neu erzeugt we

: Netzwerktechnik der nächsten Generation - Architektur des

massiv parallelen Netzwerkprozessors aus Paderborn, untergebracht auf dem 20stel der Fläche eines Cents

Das Konzept des vor nunmehr fast 50 Jahren entworfenen integrierten Schaltkreises
vor mehr als 40 Jahren aufgestellten MOORE

Verbesserungen in der Halbleitertechnologie erlauben immer komplexere und
OORE aufgestellte Regel besagt, dass sich die Anzahl der zu integri

mit die Komplexität integrierter Schaltkreise alle 18 bis 24 Monate ve
zeigt die Entwicklung von Speicher- und Prozessor

GBits bzw. in Logiktransistoren pro Chip auf und überlagert die prognostizierte Entwicklung nach

International Semiconductor Roadmap (ITRS
den Halbleiterherstellern aus der gesamten Welt verfasst wird, so wird sich die

auch in den nächsten Jahren fortsetzen (vgl. Abbildung

. Diese Arbeit dokumentiert den Entwurf und die Analyse einer leistungsfä-
Multiprozessor(CMP)-Architektur, der

. Das GigaNoC ist die zu Grunde liegende hierarchi-
nikationsinfrastruktur, die es durch ihre Modularität und Skalierbarkeit er-

lücke stärker zu schließen, als es bisher möglich war. Die Ent-
dass aufgrund der immer größer werdenden

mehr Funktionalität untergebracht werden
Zeit durch Entwicklerteams konstruktiv neu erzeugt wer-

Architektur des

massiv parallelen Netzwerkprozessors aus Paderborn, untergebracht auf dem 20stel der Fläche eines Cents

entworfenen integrierten Schaltkreises
OOREschen Gesetz gehor-

komplexere und leistungsfä-
die Anzahl der zu integrie-

mit die Komplexität integrierter Schaltkreise alle 18 bis 24 Monate ver-
und Prozessor-Modulen (MPU) in

GBits bzw. in Logiktransistoren pro Chip auf und überlagert die prognostizierte Entwicklung nach

ITRS) [2], die von führen-
d, so wird sich die prognostizierte Ent-

Abbildung 1-2). Dies schafft die

Kapitel 1. Einleitung

2

Voraussetzungen für höchst komplexe Systeme, die auf einen Chip integriert werden können (Sys-
tem-on-Chip / SoC). Nunmehr gilt es, diese technologischen Möglichkeiten sinnvoll einzusetzen
und weiterhin beherrschbar zu halten, denn längst übersteigt die Anzahl der integrierbaren Transis-
toren die Leistungsfähigkeit vieler Schaltungsentwurfswerkzeuge. In diesem Zusammenhang
spricht man auch, wie eingangs erwähnt, von einer Entwurfsproduktivitätslücke (Design Productivi-
ty Gap). Auch wenn die Beständigkeit des MOOREschen Gesetzes noch für die nahe Zukunft prok-
lamiert wird, stößt man in einigen Gebieten schon jetzt an Grenzen. So wird die bis heute stetige
Erhöhung der Taktfrequenz nicht mehr allein ausreichen, um die Leistungsfähigkeit von Prozesso-
ren und Systemen angemessen zu erhöhen [3]. Vielmehr gehen die etablierten Hersteller, wie z. B.
Intel, AMD, Sun oder IBM, bereits von allgemein verwendbaren Prozessoren (General Purpose
CPUs) zu einer Integration mehrerer Rechenkerne auf einem Chip über [4][5]. Die ITRS prognosti-
ziert nach einem Modell der Japan Semiconductor Technology Roadmap Design Working Group
einen 1000mal größeren Bedarf an Rechenleistung für „Consumer“-SoCs als auch „High Perfor-
mance“-SoCs in zehn Jahren, bei nahezu gleichen Anforderungen an die Leistungsaufnahme [2].
Auch hier geht man davon aus, dass die Lösung in parallelen Architekturen mit einer Vielzahl von
integrierten Verarbeitungseinheiten liegt.

Abbildung 1-2: Produkt-Technologie-Trends – Funktionen pro Chip [2]

Durch Parallelität können in Abhängigkeit von der Anwendung die derzeitigen technischen Gren-
zen der Leistungsfähigkeit erweitert werden. Ein weiterer wesentlicher Aspekt der Verwendung von
parallelen Einheiten ist die Möglichkeit der Reduktion bzw. Begrenzung der Leistungsaufnahme.
Dies ist speziell für zukünftige eingebettete Systeme von großer Bedeutung, da diese mehr und
mehr Einsatz in mobilen Bereichen finden, bei denen die Energieressourcen beschränkt sind. In die-
sem Zusammenhang steht auch die besondere Bedeutung der Ressourceneffizienz für diese Arbeit.
Das heißt, die zu entwerfende Architektur soll, je nach Schwerpunkt der Systemspezifikation, unter
Berücksichtigung einer Kostenfunktion eine bestmögliche Lösung bezüglich der betrachteten Kos-
tenmaße Fläche, Leistungsaufnahme, Rechenleistung und Flexibilität darstellen (vgl. Abschnitt 3.1).

Flash Bits / Chip [GBit]
Single-Level-Cell (SLC)

Flash Bits / Chip [GBit]
Multi-Level-Cell (MLC)

DRAM-Bits / Chip [GBit]

MPU GTransistoren / Chip
High-Performance (HP)

MPU GTransistoren / Chip
Cost-Performance (CP)

Durchschnittliches
„Mooresches Gesetz“
bez. auf die Industrie

Jahr der Produktion

1995 2000 2005 2010 2015 2020

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

F
un

kt
io

ne
n

/ C
hi

p
[G

B
it,

 T
ra

ns
is

to
re

n]

Industrieller
Durchschnitt des

„Mooreschen Gesetzes“
zwischen 1970 und 2020:

Verdopplung der
Funktionen / Chip,

alle 2 Jahre

Flash Bits / Chip [GBit]
Single-Level-Cell (SLC)

Flash Bits / Chip [GBit]
Multi-Level-Cell (MLC)

DRAM-Bits / Chip [GBit]

MPU GTransistoren / Chip
High-Performance (HP)

MPU GTransistoren / Chip
Cost-Performance (CP)

Durchschnittliches
„Mooresches Gesetz“
bez. auf die Industrie

Jahr der Produktion

1995 2000 2005 2010 2015 20201995 2000 2005 2010 2015 2020

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

F
un

kt
io

ne
n

/ C
hi

p
[G

B
it,

 T
ra

ns
is

to
re

n]

Industrieller
Durchschnitt des

„Mooreschen Gesetzes“
zwischen 1970 und 2020:

Verdopplung der
Funktionen / Chip,

alle 2 Jahre

Kapitel 1. Einleitung

3

Einbettung. Durch die thematische Einbettung dieser Dissertation in das BMBF-Projekt GigaNetIC
[6][7][8], profitiert das hier vorgeschlagene Architekturkonzept bereits im frühen Entwurfsstadium
von der engen interdisziplinären Arbeitsweise der drei beteiligten Projektpartner der Universität
Paderborn und Infineon Technologies, München. Die Expertise der drei Paderborner Fachgebiete
liegt u. a. in der Entwicklung hochintegrierter Schaltkreise (Fachgebiet Prof. Dr.-Ing. Ulrich Rück-
ert, Schaltungstechnik), in der Konzeption von Programmiersprachen und Übersetzern (Fachgebiet
Prof. Dr. Uwe Kastens, Programmiersprachen und Übersetzer) sowie in der Entwicklung, Analyse
und Implementierung von Kommunikationsalgorithmen (Fachgebiet Prof. Dr. math. Friedhelm
Meyer auf der Heide, Algorithmen und Komplexität). Auf diese Weise kann bei der Konzeption der
Systemarchitektur ein ganzheitlicher Ansatz verfolgt werden, der sowohl schaltungstechnische
Entwurfskriterien berücksichtigt als auch compiler- und algorithmenbedingte Entwurfsent-
scheidungen im Wechselspiel miteinander vereint.

Abbildung 1-3: Die Kernpunkte dieser Arbeit

Die wesentlichen Beiträge dieser Arbeit (vgl. Abbildung 1-3) zur ressourceneffizienten Schaltungs-
technik eingebetteter Parallelrechner sind:

• der Systementwurf eines massiv parallelen, skalierbaren SoC, basierend auf einem hierar-
chischen On-Chip-Netzwerk

• eine Werkzeugkette, die einen hierarchisch gerichteten Optimierungsansatz für SoCs unters-
tützt

• die prototypische Realisierung des Gesamtsystems als Simulationsmodell sowie als
FPGA(Field Programmable Gate Array)- und Standardzellenimplementierung in 130-nm-
und 90-nm-CMOS-Technologie

• Analyse und Definition von Benchmarks sowie die Leistungsbewertung des entworfenen
Systems für ausgewählte Anwendungsszenarien.

Gliederung. Kapitel 2 gibt einen Überblick über eingebettete parallele Rechnerarchitekturen und
die wesentlichen Komponenten dieser SoCs. Typische Anwendungsgebiete von On-Chip-Parallel-
rechnern werden aufgezeigt und vermitteln einen ersten Einblick in die Anforderungen, die an diese
Systeme gestellt werden.

Definitionen, Bewertungsmaße, Kostenfunktionen und analytische Modelle werden in Kapitel 3 zur
Bewertung der Architektur eingeführt und im weiteren Verlauf dieser Arbeit mit den Syntheseer-

System-
entwurf /

Optimierung

Leistungs-
bewertung

Prototypische
Realisierung

R
es

so
ur

ce
ne

ffi
zie

nt
e Schaltungstechnik eingebetteter Parallelrechner

Kapitel 1. Einleitung

4

gebnissen der Hardwareblöcke korreliert. Diese Modelle können herangezogen werden, um für zu-
künftige Technologien und Architekturvarianten im Vorfeld der Realisierung erste Bewertungen
treffen zu können. Anhand von Kostenfunktionen können dann besonders geeignete Realisierungen
dedizierter Anwendungsszenarien leichter ermittelt werden. Der Begriff der Ressourceneffizienz
wird hier diskutiert und im schaltungstechnischen Kontext definiert.

Kapitel 4 zeigt den Aufbau und die Besonderheiten des eigenen Ansatzes für ein ressourceneffizien-
tes eingebettetes System. Es soll eine flexible, skalierbare Architektur, die auf dem Konzept massi-
ver Parallelverarbeitung basiert, entwickelt werden, also ein leistungsstarker Parallelrechner auf
einem Chip. Kernkomponenten werden eine Vielzahl homogener Verarbeitungseinheiten sein, die
über ein hoch performantes On-Chip-Netzwerk (Network-on-Chip / NoC) miteinander verbunden
sind. Durch die besondere Skalierbarkeit der Systemarchitektur kann eine Verwendbarkeit für viele
Einsatzgebiete erreicht werden. Das modulare, leicht erweiterbare Konzept erlaubt die einfache In-
tegration zusätzlicher Hardwarebeschleuniger und anderer anwendungsspezifischer Funktionsein-
heiten an verschiedenen, unterschiedlich leistungsfähigen Schnittstellen im SoC. Besonders geeig-
nete Systemkonfigurationen für dedizierte Anwendungen können durch die in Kapitel 6 vorgestellte
Werkzeugkette komfortabel bestimmt und im Sinne der Ressourceneffizienz optimiert werden. Der
IP(Intellectual Property)-basierte Ansatz hilft, die Entwurfsproduktivitätslücke, die bei modernen
Chipentwürfen zunehmend eine Rolle spielt, zu schließen. So kann in vielen Fällen auf bereits be-
stehende Hardwareblöcke zurückgegriffen werden, welche dann leicht mit Hilfe definierter Kapse-
lungen (Wrapper) in das SoC integriert werden können. Die Wiederverwendbarkeit wird erhöht und
der Entwurfsaufwand reduziert sich. Weitere Vorteile dieser homogenen, skalierbaren Systemarchi-
tektur liegen in dem einheitlichen Programmiermodell und der vereinfachten Testbarkeit.

Kapitel 5 zeigt die verschiedenen Abstraktionsebenen, die für die Simulation bzw. Emulation des
Systems entworfen werden, auf. Eine zyklenakkurate C-basierte Simulation auf Prozessor-Cluster-
Ebene ermöglicht ein schnelles und komfortables Ausmessen der Laufzeiten einzelner Programm-
abschnitte. Die abstraktere Modellierung in SystemC liefert hingegen Aussagen zur Leistung des
Gesamtsystems und ermöglicht eine frühe Verifizierung der Funktionsfähigkeit der Systemsoft-
ware. Durch Variation wesentlicher Systemparameter können aufgrund der hohen Simulationsge-
schwindigkeit schnell Rückschlüsse auf die zu erwartende Performanz der späteren Hardware gezo-
gen werden. Die rechenintensivere RTL(Register Transfer Level / Register-Transfer-Ebene)-
Simulation erlaubt letztendlich detaillierte Aussagen über das Verhalten der einzelnen Hardware-
Komponenten. Im Anschluss an die Verifikation auf dieser Ebene erfolgt der Test einzelner Blöcke
und der Gesamtschaltung auf dem FPGA-basierten Rapid-Prototyping-System RAPTOR2000
[9][10], das, verglichen mit der RTL- und SystemC-Simulation, eine um Größenordnungen schnel-
lere Emulation des Multiprozessorsystems ermöglicht und zusätzlich die Anbindung realer Netz-
werkkomponenten gestattet.

In Kapitel 6 wird eine Methode vorgestellt, die dem Ziel dient, eine besonders effiziente Architek-
turvariante – im Sinne der Ressourceneffizienz – für ein gegebenes Anwendungsszenario zu erzie-
len. Hierbei kann die homogene Ausgangsarchitektur durch eine Reihe von Mechanismen optimiert
werden. Der Optimierungsansatz ist hierarchisch gerichtet und sieht u. a. folgende Maßnahmen vor:
Anpassung und Optimierung der Software, Erweiterung des Instruktionssatzes des Prozessors, Hin-
zufügen von Hardwarebeschleunigern sowie Abstimmung der On-Chip-Kommunikationsinfra-
struktur auf die zu erwartenden Datenraten und Einsatz von parallel arbeitenden Rechenclustern auf

Kapitel 1. Einleitung

5

einem Chip sowie die Optimierung der Speicherhierarchie im Hinblick auf die spätere Anwendung.
Exemplarisch wird die in Kapitel 3 vorgestellte Methode anhand von 16 Realisierungsvarianten
eines einfachen selbst entworfenen Netzwerkprozessors demonstriert. Mit Hilfe der Kostenfunkti-
ons-basierten Analyse wird für unterschiedliche Anwendungsszenarien die eine möglichst pareto-
optimale und damit ressourceneffiziente Lösung ermittelt.

Kapitel 7 greift die bisherigen Ergebnisse auf und wendet sie auf konkrete Kommunikations- und
Netzwerkanwendungen an. Hierzu werden sowohl etablierte Benchmarks verwendet als auch neue
Benchmarks definiert. Besondere Berücksichtigung finden hier Funktionen aus dem stark wachsen-
den DSL(Digital Subscriber Line)-Segment. DSL-Access-Multiplexer (DSLAMs) realisieren die
schnelle Datennetzanbindung der DSL-Endkunden. Für diese Netzwerkknoten, die eine Vielzahl
von Datenströmen aggregieren und zum Internetdiensteanbieter (Internet-Service-Provider / ISP)
weiterleiten und umgekehrt, wird ein spezifischer Benchmark entworfen und auf der GigaNetIC-
Architektur evaluiert. Netzwerksimulationen sollen Aufschluss über die zu wählende Topologie und
den internen Aufbau des On-Chip-Netzwerks liefern und so einen maximalen Durchsatz und damit
einhergehend eine möglichst optimale Lastverteilung auf die einzelnen Verarbeitungseinheiten ga-
rantieren. Es werden Instruktionssatzerweiterungen und spezifische Hardwarebeschleuniger vorges-
tellt, die in dieser Arbeit entstanden sind. Exemplarisch werden die Funktionsweise und die Integra-
tion eines Hardwarebeschleunigers zur Paketverarbeitung detaillierter beschrieben.

Gegenstand von Kapitel 8 sind prototypische Realisierungen der GigaNetIC-Architektur. Das in
Kapitel 7 untersuchte Netzwerkszenario wird als FPGA-Realisierung in einer realen Netzwerkum-
gebung in Betrieb genommen und dient zur Veranschaulichung und Verifikation des Systemkon-
zepts. Auf Basis der erfolgreichen Realisierung werden dann Implementierungen für komplexere
Systeme in 130-nm- und 90-nm-CMOS-Standardzellentechnologie vorgestellt. Abbildung 1-1 ver-
deutlicht das in dieser Arbeit vorgestellte Konzept und die Anforderungen an die Realisierung. Wei-
tere Bewertungen der Architektur im Hinblick auf die Ressourceneffizienz schließen die prakti-
schen Betrachtungen der GigaNetIC-Chip-Multiprozessorarchitektur ab.

Zusammenfassend soll die hier zu entwerfende GigaNetIC-Architektur als Basis für weitere CMP-
Varianten dienen und ein neues Paradigma der Prozessorarchitektur aufzeigen, das besonders durch
Modularität, Skalierbarkeit und Ressourceneffizienz sowie einen ganzheitlichen Ansatz hervorsticht
und prototypisch verifiziert wird.

7

2 Eingebettete parallele Rechnerarchitekturen
Bereits 2004 zeichnete sich deutlich ein Umdenken in der Prozessorindustrie hinsichtlich paralleler
Strukturen ab. Der Ende 2004 veröffentlichte Microprocessor-Report-Artikel „Intel Cancels 4 GHz
P4“ [3] sah die Abkündigung der Desktop-CPU mit der bis dahin höchsten Taktfrequenz als Über-
raschung an. Tatsächlich ist ein serienmäßiger 4-GHz-Pentium bis heute nicht zu erwerben. Letz-
tendlich erkannte man das kontinuierliche Steigern der Taktfrequenz als unzureichende Maßnahme,
und nicht nur Intel wurde gezwungen die Prozessor-Roadmap neu zu überdenken, was nicht zuletzt
in der Entwicklung der Dual-Cores, der heutigen Core-Architektur resultierte.

Trotz aller Hindernisse bei manchen Anwendungsszenarien ist selbst bei den namhaften Desktop-
und Server-CPU-Herstellern wie Intel und AMD der Trend zu Dual-, Quad- oder gar Multi-Cores
zu verzeichnen. Für Prozessoren mit noch mehr Kernen wurde bei Intel der Name „Many-Cores“
etabliert, um sich von den heutigen „Multi-Cores“ mit einigen wenigen Prozessorkernen noch stär-
ker abgrenzen zu können (vgl. Abschnitt 2.8.1). Nicht nur Intel plant, Architekturen zu bauen, die
weit mehr als nur eine CPU auf einem Siliziumchip vereinen. Eines der jüngsten Beispiele für sol-
che „Mehrkern-Prozessoren“ ist der Cell-Prozessor von IBM, Sony und Toshiba, der u. a. in der
Playstation 3 eingesetzt wird. Er wurde ab März 2001 mit einem Budget von über 400 Mio. US$
von einem 400 Personen umfassenden Team entwickelt [11]. Der Cell-Prozessor integriert acht mit
3,2 GHz getaktete Recheneinheiten auf einem Die1. Die ungefähre Leistungsaufnahme dieses Sys-
tems liegt deshalb auch deutlich über 100 W [12]. Die permanente Erhöhung der Taktfrequenz, die
eine Verringerung der Betriebsspannung nur schwerlich ermöglicht, führt wie in Abschnitt 3.1 be-
schrieben, zu einer immensen Leistungsaufnahme der CPUs, die u. a. zu hohen Kosten für Gehäuse
und Kühlung führt. Anders kann sich dies bei parallelen Architekturen gestalten. Hier lässt sich die
Versorgungsspannung aufgrund der geringeren Frequenz deutlich reduzieren. Aufgrund des quadra-
tischen Anteils der Versorgungsspannung an der dynamischen Verlustleistung führt dies zu einer
drastischen Reduktion der Leistungsaufnahme des Systems, vgl. Gleichung (3.18). Weiterhin lässt
sich die Performanz einer Prozessorarchitektur durch Maßnahmen wie Architekturoptimierung und
Integration von Hardwarebeschleunigern deutlich erhöhen. Gleichzeitig kann eine Reduktion der
Leistungsaufnahme verzeichnet werden (vgl. Kapitel 6). 2007 betrug in den USA der Anteil von
Computersystemen und Peripherie am Gesamtenergiebedarf mehr als 15% [13]. Derzeit benötigen
die Betreiber der fünf größten Suchmaschinen ca. zwei Millionen Server, die ungefähr 2,4 GW
Leistung aufnehmen [13]. Mit permanent wachsender Serverzahl wird in Zukunft der Bedarf stei-
gen, große Serversysteme auf energieeffizienten Parallelsystemen zu virtualisieren.

Auch AMD hat eine solche Architekturerweiterung für die zukünftigen Chip-Generationen ange-
kündigt, bei der nicht nur homogene Mehrkernprozessoren, sondern auch anwendungsspezifische
Hardwarebeschleuniger integriert werden sollen. AMD spricht hier von der „Accelerated Proces-
sing Era“, die ab 2009 mehr und mehr an Bedeutung gewinnen werde. Diese Konstellation von so-
wohl homogenen, massiv-parallelen Rechenkernen als auch beliebig integrierbaren Hardwarebe-
schleunigern für verschiedenste Anwendungsgebiete ist bei der GigaNetIC-Architektur bereits rea-

1 Der Die bezeichnet den zumeist rechteckigen Halbleiterblock einer integrierten Schaltung.

Kapitel 2. Eingebettete parallele Rechnerarchitekturen

8

lisiert und erfolgreich getestet. Dieses neuartige Systemkonzept wurde bereits 2002 strukturell [14]
und 2003 detailliert [6] von mir vorgestellt. Ähnliche Ansätze halten nun zunehmend weltweit Ein-
zug in Prozessorarchitekturen der nächsten Generation. Dabei ist außerdem zu berücksichtigen, dass
zu der Architektur eines Systems nicht nur der reine Aufbau der Hardware zählt, sondern auch die
Einbettung in ein funktionales Programmiermodell, das zusammen mit den Fachgebieten „Prog-
rammiersprachen und Übersetzer“, Prof. Uwe Kastens und „Algorithmen und Komplexität“, Prof.
Friedhelm Meyer auf der Heide, der Universität Paderborn für die GigaNetIC-Architektur erfolg-
reich entworfen wurde.

2.1 Leistungsabschätzungen und Prognosen für CMPs

Der folgende Abschnitt dokumentiert einige etablierte Abschätzungen bzw. postulierte Gesetzmä-
ßigkeiten für Parallelrechner. Abschließend wird auf Prognosen zur Entwicklung von Mehrprozes-
sorsystemen und die damit verbundenen Herausforderungen eingegangen.

2.1.1 AMDAHL s Gesetz – eine asymptotische Barriere für Parallelrechner?

Abbildung 2-1: Anwendungsbeschleunigung durch Ausnutzung inhärenter Parallelität

nach dem Gesetz von AMDAHL

Eine etablierte, wenn auch sehr vereinfachte Abschätzung zur Leistungssteigerung durch Parallelität
liefert das AMDAHLsche Gesetz [15]. Es besagt, dass Anwendungen durch parallele Ausführung nur
zu dem Grad beschleunigt werden können, wie es die enthaltene Parallelität des sequentiellen An-
wendungsprogramms zulässt:

1 1

() lim ()
1 P

S P S P

P

α αα →∞
= ⇒ ≤−+

 (2.1)

0
0.2

0.4
0.6

0.8
0

200
400

600
800

1000

0

10

20

30

40

50

60

70

80

90

Anzahl der Prozessoren Psequentieller Anteil α

B
es

ch
le

un
ig

un
g

S

2.1 Leistungsabschätzungen und Prognosen für CMPs

9

S kennzeichnet hierbei den Speedup, also die Beschleunigung der Anwendung bei der Verwendung
von P parallel arbeitenden Verarbeitungseinheiten. Dabei ist α mit 0 1α≤ ≤ als sequentieller An-
teil des Programms zu sehen.

Abbildung 2-1 zeigt die mögliche Beschleunigung S eines Programms durch parallele Verarbeitung
in Abhängigkeit von der Anzahl der Prozessoren P und dem sequentiellen Anteil α des Prog-
ramms. Es ist deutlich zu sehen, dass bereits ab 0,1α > eine drastische Reduktion der Beschleuni-

gung einsetzt. Die maximal erreichbare Beschleunigung bei einem sequentiellen Anteil von 1 %
nähert sich asymptotisch dem Faktor 100. Bei 1024 Prozessoren liegt sie bei 91,18.

Gleichung (2.1) ergibt eine begrenzte, asymptotisch verlaufende Beschleunigung durch Parallelität
für Anwendungen mit einem üblicherweise nicht vollkommen vernachlässigbaren sequentiellen
Anteil. Anwendungsklassen, deren Problemgröße hingegen skalierbar ist, wie z. B. bei den in Kapi-
tel 7 betrachteten Netzwerkszenarien, erfordern andere Modelle.

2.1.2 GUSTAFSONs Gesetz – ein Ausweg für die Parallelwelt?

Das bereits 1967 von AMDAHL postulierte Gesetz wurde 1988 von GUSTAFSON aufgrund praktischer
Beobachtungen an einem Parallelrechnersystem mit 1024 Prozessoren modifiziert und ging als
GUSTAFSONS Gesetz in die Literatur [16] ein.

Abbildung 2-2: Beschleunigung durch Parallelität nach dem Gesetz von GUSTAFSON

GUSTAFSON beobachtete für Anwendungsklassen, deren Problemgröße skalierbar war eine deutliche
Beschleunigung durch den Einsatz von zusätzlichen Prozessoren. Dies bedeutete eine Modifikation
der Randbedingungen von AMDAHLs Gesetz. Er wies darauf hin, dass AMDAHLS Gesetzmäßigkeit
diese wesentliche Komponente vieler Anwendungsszenarien außer Acht lässt: „in practice the
problem size scales with the number of processors“. Das bedeutet, dass ein möglicher Zusammen-
hang zwischen dem parallelen Anteil der Anwendung und der Anzahl zur Verfügung stehender
Prozessoren in AMDAHL s Formel (2.1) ignoriert wird, da Amdahl diese Art Anwendungsklasse

0
0.2

0.4
0.6

0.8
1

200

400

600

800

1000

200

400

600

800

1000

sequentieller Anteil αAnzahl der Prozessoren P

B
es

ch
le

un
ig

un
g

S

Kapitel 2. Eingebettete parallele Rechnerarchitekturen

10

nicht untersucht hat. GUSTAFSON macht deutlich, dass man ein Problem mit bekannter Komplexität
nicht auf einen beliebig großen Rechnerverbund auslagert, sondern versuchen wird, komplexere
Probleme durch mehr Parallelität in endlicher Zeit zu lösen. Dies impliziert, dass eher die Laufzeit
als konstant anzusehen ist als die Problemgröße [16]. Die modifizierte Formel hat deshalb die fol-
gende Form:

()

, 1

Mehrprozessorsystem

Einzelprozessor

sequentieller Anteil + paralleler Anteil Prozessoren

sequentieller Anteil + paralleler Anteil

(1)

(1)

(1) lim ()

skaliert

P

S P

P

P S P
α

α α
α α

α α
→∞ <

=

⋅=

+ − ⋅=
+ −

= + − ⋅ ⇒ = ∞

 (2.2)

Gleichung (2.2) zeigt für Anwendungsklassen skalierbarer Problemgrößen deutlich realistischere
Perspektiven für parallele Systeme und ihre Leistungsfähigkeit auf. Abbildung 2-2 stellt, in Abhän-
gigkeit von der Anzahl der Prozessoren P und dem sequentiellen Anteil α des Programms, den
linearen Verlauf der Beschleunigung nach GUSTAFSONs Gesetz dar.

Abbildung 2-3: AMDAHL s und GUSTAFSONs Gesetz in Bezug auf Anwendungen mit skalierbarer Problemgröße

Die Prognosen beider Ansätze in Bezug auf Anwendungen mit skalierbarer Problemgröße und die
sich ergebende Differenz ist in Abbildung 2-3 dargestellt. Eine Missinterpretation des AMDAHL-

schen Gesetzes für diese Anwendungsklassen würde zu dramatischen Fehleinschätzungen für die
Zukunft paralleler Systeme führen. In der Vergangenheit zeigte sich deshalb, eine häufig unbegrün-
dete, Skepsis gegenüber der Leistungsfähigkeit massiv paralleler Architekturen.

Ein Manko der Ansätze von sowohl AMDAHL , als auch von GUSTAFSON ist die unzureichende Mo-
dellierung des Datenaustauschs zwischen den parallelen Prozessorelementen, der lediglich mit in
den sequentiellen Anteil der Anwendung eingehen kann.

2.1.3 Weiterführende Ansätze

Weitere, tiefer gehende Ansätze zur Bestimmung bzw. Bewertung von massiv-parallelen Rechner-
systemen liefern CULLER [17] mit dem LogP-Modell und VALIANT mit dem BSP(Bulk Synchronous
Parallel)-Ansatz [18] (vgl. Abschnitt 4.5.2). Beiden Ansätzen ist gemein, dass sie versuchen, die

0.5
1

1
500

1000
1

250

500

750

1000

α

a) Amdahl

P

B
e

sc
h

le
u

n
ig

u
n

g
 S

0.5
1

1
500

1000
1

250

500

750

1000

α

b) Gustafson

P

B
e

sc
h

le
u

n
ig

u
n

g
 S

0.5
1

1
500

1000
1

250

500

750

1000

α

c) Differenz

PD
iff

e
re

n
z

b
e

id
er

 B
e

sc
h

le
u

n
ig

u
n

ge
n

 ∆
 S

2.1 Leistungsabschätzungen und Prognosen für CMPs

11

Lücke zwischen theoretischen Erkenntnissen und realen Maschinen zu schließen. In beiden Model-
len wird außerdem die Kommunikation zwischen den einzelnen Knoten berücksichtigt.

Das LogP-Modell von CULLER wurde speziell für den praktischen Einsatz auf realen Multiprozes-
sor-Topologien entworfen. Es geht dabei von einem Multiprozessorsystem mit verteiltem Speicher
und einer beliebigen Kommunikationsinfrastruktur mit Punkt-zu-Punkt-Verbindungen beliebiger
Topologie aus. Die wesentlichen Parameter des Modells sind die Latenz L als obere Grenze für die
Zeitspanne der Übertragung einer Nachricht weniger Wörter vom Sender zum Empfänger und o als
Overhead oder Verwaltungsaufwand, mit dem ein Prozessor aktiv mit der Übertragung beschäftigt
ist, während der er keine anderen Aufgaben erledigen kann. g definiert die Lücke Gap zwischen
zwei aufeinander folgenden Übertragungen bzw. Empfangsvorgängen eines Prozessors. Der rezip-
roke Wert von g entspricht der Übertragungsbandbreite B, die den einzelnen Prozessoren zur Ver-
fügung steht. P beziffert die Anzahl der Prozessor-Speicher-Kombinationen. Aufgrund der als end-
lich angenommenen Kapazität der Übertragungskanäle ergibt sich die Anzahl der zeitgleich über-

tragbaren Nachrichten zu
L

g

 
 
 

. L, o und g werden in Vielfachen eines Prozessortaktes angegeben.

Das Modell ist auch auf „Shared Memory“-Architekturen anwendbar, wobei dann für die Kommu-
nikation zum Speicher hin und zurück ein Wert von 2 4L o+ angesetzt wird. Für eine gegebene Zeit
T und feste Werte für L, o, g und P kann dann eine effiziente Verteilung der Aufgaben auf die Pro-
zessoren, „Computation Schedule“, und ein Zeitplan für die Nachrichtenübertragung, „Communica-
tion Schedule“, aufgestellt werden. BSP als auch LogP sind geeignete Modelle, um sowohl Compu-
ternetzwerke im Allgemeinen als auch On-Chip-Netzwerke bezüglich ihrer Leistungsfähigkeit zu
charakterisieren.

2.1.4 Trends bei parallelen eingebetteten Systemen

Aufgrund der Anforderungen der von mir betrachteten Anwendungsszenarien, die eine von GUS-

TAFSON beschriebene Parallelität enthalten und nicht, wie das AMDAHLsche Gesetz (2.1) vermuten
ließe, nur wenige Verarbeitungseinheiten ausnutzen können, werden mehr und mehr Prozessorele-
mente (PE) auf heutigen und zukünftigen Halbleiterbausteinen integriert. Diese stetige Zunahme
wird ebenfalls in der International Technology Roadmap for Semiconductors der Semiconductor
Industry Association [2] prognostiziert (vgl. Abbildung 2-4). Demzufolge ist ein rapider Anstieg der
realisierbaren Anzahl von Verarbeitungseinheiten auf einem Chip bis zum Jahre 2020 zu erwarten:
von gegenwärtig um die 20 Verarbeitungseinheiten bis zu über 870 bei einer konstant bleibenden
Chipgröße von 64 mm² in weiteren 15 Jahren. Dies entspricht einem mehr als 40-fachen Zuwachs
bis zum Ende der nächsten Dekade.

Außerdem zeichnet sich der Trend ab, dass die Größe des integrierten Speichers eines SoCs stärker
zunimmt als die Größe für Logikblöcke. Dies ist wiederum mit der bereits erwähnten Entwurfspro-
duktivitätslücke und der Wiederverwendbarkeit von Hardwareblöcken zu erklären. So lässt sich
Speicher leichter wiederverwenden als Logikblöcke, die bei einer Wiederverwendung immer noch
einen gewissen Entwurfsaufwand zur Integration benötigen. Bis zu 50 % des normalen Entwurfs-
aufwandes für Logikblöcke entstehen u. a. durch funktionale Erweiterung und den Aufwand für die
physikalische Implementierung. Um die Möglichkeiten, die neue Technologien bieten, ausschöpfen
zu können, wird aufgrund der effizienten Nutzungsmöglichkeiten mehr und mehr der zur Verfü-
gung stehenden Fläche mit Speicher ausgefüllt. Nach [2] sind allerdings insbesondere im Bereich

Kapitel 2. Eingebettete parallele Rechnerarchitekturen

12

der Logikblöcke zusätzliche Anstrengungen erforderlich, um die Entwurfsproduktivität in diesem
Bereich zu steigern. Das kann durch Instanziieren von bekannten Verarbeitungseinheiten erfolgen,
die im Sinne von Dokumentation, Testbarkeit und Verifizierung gut erfasst sind. Dies erfordert
dann jedoch eine leistungsfähige Kommunikationsinfrastruktur auf dem Chip, um die wiederver-
wendeten Einheiten effizient einsetzen zu können (siehe Abschnitt 4.2). Außerdem werden „High-
Level“-Modellierungsansätze auf abstrakterer Ebene, wie sie durch SystemC-Beschreibungen mög-
lich sind, unabdingbar, denn sie erlauben eine deutliche Steigerung der Entwurfsproduktivität [2].
Für das gesamte GigaNetIC-System wurde bereits eine solche Modellierung erstellt, von der bereits
viele Bereiche der Soft- und Hardwareverifizierung sowie -planung profitieren (vgl. Abschnitt 5.2).

Abbildung 2-4: System-on-Chip-Entwurfskomplexitätstrends [2]

Ein weiterer wesentlicher Ansatz zur Steigerung der Entwurfsproduktivität liegt nach [2] u. a. in der
Verbesserung der Entwurfsautomatismen und der damit verbundenen Entwurfswerkzeuge, die für
die GigaNetIC-Architektur in den Kapiteln 5 und 6 ausführlich beschrieben werden. Die ITRS
prognostiziert eine immense Erhöhung der Rechenleistungsanforderungen an „Consumer“-
Produkte, und zwar um den Faktor 200 in den nächsten 15 Jahren [2]. Die potentiellen Anwen-
dungsgebiete, die diesen Zuwachs fordern, werden in Abschnitt 2.6 kurz vorgestellt.

CULLER und SINGH [19] veranschaulichen in einer pyramidenförmigen Aufstellung die Marktanteile
für Prozessorsysteme (vgl. Abbildung 2-5). Bereits 1998 gab es weltweit einen Markt für mehr als
hunderttausend Systeme mit mehr als zehn Prozessoren, die zumeist in Serveranwendungen Einsatz
gefunden haben. Der Bedarf für Rechner mit mehr als 100 Prozessorkernen beschränkte sich auf
wenige Tausend. Für Systeme mit mehreren 1000 CPUs war der Markt auf einige Dutzend limitiert.
Der größte Marktanteil jedoch wurde von Uniprozessor-Systemen mit einigen Hundertmillionen
eingenommen.

Anzahl PEs
(rechte Y-Achse)

Gesamtlogikgröße
(rel. zu 2005, linke Y-Achse)

Gesamtspeichermenge
(rel. zu 2005, linke Y-Achse)

Lo
gi

kg
rö

ß
e,

 S
p

ei
ch

er
gr

öß
e

(r
el

at
iv

 z
u

20
05

)

A
nz

ah
l d

er
 V

er
ar

b
ei

tu
n

gs
ei

n
h

ei
te

n
(P

E
s)

0

200

400

600

800

1000

1200

0

200

400

600

800

1000

1200

0

10

20

30

40

50

60

0

10

20

30

40

50

60

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 20188 2019 20202005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 20188 2019 2020

2.1 Leistungsabschätzungen und Prognosen für CMPs

13

Die Leistung von Prozessoren verhundertfacht sich innerhalb einer Dekade bzw. steigt sogar um
den Faktor 200, wenn LINPACK- bzw. SpecFP-Benchmarks herangezogen werden, wobei die
Taktfrequenz von Prozessoren um den Faktor 10 bis 15 pro Dekade gesteigert wird [19]. Dies geht
einher mit einer Verhundertfachung der Speicherkapazität von DRAM innerhalb dieser Zeitspanne
[19]. All diese Verbesserungen werden nicht zuletzt durch die Erhöhung der Transistorzahl pro
Chip um den Faktor 30 innerhalb von zehn Jahren ermöglicht. Ich halte es für sehr wahrscheinlich,
dass Multicore-Systeme schon bald den Markt beherrschen werden. Sie halten schon jetzt Einzug in
Desktop PCs und Notebooks, so dass eine Verschiebung in Richtung einer kegelförmigen Pyrami-
denstruktur zu erwarten ist, und Mehrkernprozessorsysteme den größten Marktanteil der Prozesso-
ren einnehmen werden. Unberücksichtigt sind hierbei noch die zahllosen eingebetteten Systeme z.
B. in Mobiltelefonen oder PDAs (Personal Digital Assistants), die größtenteils ebenfalls schon heu-
te über mehrere Prozessoren verfügen und deren Bedeutung in Zukunft deutlich zunehmen wird
(vgl. Abbildung 2-5).

Abbildung 2-5: Marktanteile für Parallelcomputer nach [19] für 1998 und

eigene Prognose für die kommende Dekade

Der Weiterentwicklung dieser komplexen Systeme stehen ab einem gewissen Zeitpunkt mehrere
potentielle Barrieren im Weg:

• Die Ausbreitungsgeschwindigkeit von elektrischen Signalen setzt eine untere Grenze für La-
tenzzeiten. Aufgrund der Begrenzung durch die Lichtgeschwindigkeit können Signale in-
nerhalb einer Zeit von 250 ps, dies entspricht einer Taktperiode von 4 GHz, maximal eine
Distanz von 7,5 cm (im Vakuum) überwinden. Dieser Wert ist für On-Chip-
Verbindungsleitungen mit ca. 2/3 c anzusetzen, also können im besten Falle 5 cm von einem
Signal auf einem Chip innerhalb dieser Zeit zurückgelegt werden.

• Eine weitere Barriere besteht in der immensen Leistungsaufnahme komplexer, hochgetakte-
ter CMOS-Systeme, die bereits heute schon mehr als 100W/cm² – im Vergleich zu einer
Herdplatte mit 10 W/cm² – aufnehmen.

• Die Kosten steigen mit jedem neuen Technologieschritt, so dass evtl. die Herstellung von
Systemen mit einer Fläche des maximal technisch Machbaren nicht rentabel ist, und so mas-

Anzahl der Prozessoren
Marktanteil, Einheiten pro Jahr

Entwicklung

Stand 1998, nach Culler und Singh

1000+
Tausende

100+
Hunderttausende

10+
Millionen

1
mehrere Hundertmillionen

<10
mehrere Milliarden

Prognose für die nächste Dekade

1000+
Zehn

100+
Tausende

10+
Hunderttausende

<10
mehrere Millionen

1
mehrere Hundertmillionen

Kapitel 2. Eingebettete parallele Rechnerarchitekturen

14

siv parallele Systeme auf einen Chip aus Kostengründen nicht in der realisierbaren Ausprä-
gung gefertigt werden.

• Bei einer zu erwartenden Komplexität von mehreren Milliarden Transistoren auf einem
Chip werden Fehler sowohl beim Design als auch durch die Fertigung immer wahrscheinli-
cher. Werden nicht geeignete Konzepte zur Fehlertoleranz (vgl. Definition 33) erarbeitet,
und integriert so dürfte die geringe Ausbeute (Yield) aus kommerzieller Sicht dem Erfolg
dieser Systeme im Wege stehen.

• Ungenügende Leistungsreserven der Kommunikationsinfrastruktur (vgl. LITTLEs Gesetz
[20]) führen dazu, dass bei konkurrierenden Zugriffen und Transfers die systemimmanente
Latenz, die durch die maximale Ausbreitungsgeschwindigkeit nach unten begrenzt ist, zu-
sätzlich erhöht wird.

• Die Weiterentwicklung und Optimierung passender Programmiermodelle für massiv paralle-
le Systeme und die gezielte Ausbildung der Softwareentwickler für künftige parallelverar-
beitungstaugliche Anwendungen muss noch stärker vorangetrieben werden. Dies gilt für alle
Klassen von Software: Programmiersprachen, Compiler, Betriebssysteme und Anwendun-
gen.

Abschließend sei hier auf den bis 2007 schnellsten Supercomputer der Welt, BlueGene/L von IBM
verwiesen, der auf massiv paralleler Verarbeitung beruht und 2005 in Betrieb genommen wurde
[21]. Er umfasst 65.536 700-MHz-Dual-PowerPC-440-Kerne mit insgesamt 32,8 TByte Hauptspei-
cher. Die einzelnen Knoten sind in einem dreidimensionalen Torus miteinander verbunden. Seine
maximale Systemleistung beträgt 365 TFlops. Die Hauptanwendungsgebiete liegen im Bereich der
Erforschung biomolekularer Phänomene, hydrodynamischer Vorgänge und der Genforschung sowie
der Simulation nuklearer Waffen. Das gesamte System ist in 64 Schaltschränken mit je 128 Sys-
templatinen auf über 230 m² untergebracht und somit noch weit von einer Ein-Chip-Lösung ent-
fernt. Seine Leistungsaufnahme beträgt ca. 1,2 MW, und die durchschnittliche Betriebszeit bis zu
einem Ausfall wird mit etwas mehr als sechs Tagen beziffert. In den folgenden Abschnitten werden
Techniken und Ansätze aufgezeigt, die es ermöglichen werden, derart leistungsfähige Rechensys-
teme in Zukunft auf deutlich weniger Volumen zu integrieren, als es bisher möglich war.

2.2 Kernkomponenten eingebetteter paralleler Rechnerarchitekturen

In den folgenden Abschnitten werden wesentliche Bestandteile von eingebetteten Parallelrechnern
bzw. Chip-Multiprozessoren (CMPs) erläutert (vgl. Abbildung 2-6). Hierzu zählen die Verarbei-
tungseinheiten, also Prozessoren sowie Hardwarebeschleuniger jeder Art (vgl. Abschnitt 2.4). Die
Art und Anzahl sowie die Verschaltung dieser Einheiten ist stark von der späteren Anwendung ab-
hängig und sollte im Vorfeld durch Simulation und gründliche Analyse eruiert werden. Weiterhin
ist der Speicher (vgl. Abschnitt 2.5) eine bedeutende Komponente von Chip-Multiprozessoren, der
je nach System zusätzlich noch hierarchisch strukturiert werden kann bzw. werden sollte. Die
Kommunikationsinfrastruktur des Systems wird durch ein On-Chip-Netzwerk (NoC) gebildet. Die
eigentliche Funktion des Gesamtsystems wird erst durch das Zusammenspiel aller Einzelkomponen-
ten realisiert, wobei zusätzlich spezifische Software bzw. Algorithmen benötigt werden. Zusammen
definieren diese vier Komponenten das System, den eingebetteten Parallelrechner.

2.3 On-Chip-Netzwerke

15

Abbildung 2-6: Kernkomponenten eingebetteter Parallelrechner

Im folgenden Abschnitt wird zunächst auf das Rückgrat eines Chip-Multiprozessors, das On-Chip-
Netzwerk, eingegangen.

2.3 On-Chip-Netzwerke

Mit dem Fortschreiten der Strukturgrößenminimierung in der Halbleitertechnologie ist es möglich,
Milliarden von Transistoren [2] auf einem Chip zu integrieren. Dies erlaubt mehr und mehr Funk-
tionalität auf einem Siliziumträger (Die). Neue Systemansätze werden ermöglicht, die ganze Syste-
me auf einem Die realisieren. Man spricht hier von Systems-on-Chips (SoCs). Auf einem Baustein
können theoretisch Tausende von Modulen, wie Speicher, Verarbeitungseinheiten, Kommunikati-
onsschnittstellen und Mixed-Signal-Elemente, untergebracht werden und parallel arbeiten. Solche
SoCs werden schon heute mit einer „Handvoll“ integrierter Module gefertigt und eingesetzt. Be-
sonders Multimedia- und Netzwerkanwendungen profitieren von den neuen Möglichkeiten, die sich
aus der Parallelität solcher Bausteine ergeben.

Die Auswahl der richtigen NoC-Topologie hängt entscheidend von den Anforderungen der Anwen-
dung aber auch von den Randbedingungen des Chipdesigns (Preis / Fläche, Leistungsaufnahme,
erwartete Leistungsfähigkeit und Flexibilität) ab, vgl. Kapitel 3. Dabei ist zu beachten, dass maßge-
schneiderte Netzwerke, die speziell auf den erwarteten Durchsatz und spezifizierte Lastverteilung
ausgelegt sind, keine erstrebenswerte Lösung sind, wenn sie keine Flexibilität gegenüber unerwarte-
ten Veränderungen des Datenaufkommens vorhalten. Um eine SoC-Architektur erfolgreich zu reali-
sieren empfiehlt sich ein flexibles und skalierfähiges (vgl. Definition 35) Netzwerk [22].

2.3.1 NoC-Topologien

Eine Hauptanforderung für eine ressourceneffiziente Nutzung dieser neuen Möglichkeiten ist eine
angemessene On-Chip-Kommunikationsinfrastruktur, über die die einzelnen Module effizient mi-
teinander kommunizieren können. Heutige Systeme verwenden häufig eine „flache“ Bus-, Multip-
lexer- oder Kreuzschienenverteiler(Crossbar)-Topologie (vgl. Abbildung 2-7 a). Solche Verbin-
dungsstrukturen eignen sich jedoch nicht für Strukturen mit Dutzenden oder gar Tausenden von
Modulen. Sie benötigen sehr viel Fläche oder weisen eine sehr hohe Latenz auf und skalieren
schlecht [23][24]. ZHANG et al. haben in [25] bereits erste hierarchische Verbindungsstrukturen
vorgestellt, die die Kopplung heterogener Elemente in SoC-Strukturen unterstützen.

Eingebettete Parallelrechner

NoC PEs

Speicher Algorithmen

Kapitel 2. Eingebettete parallele Rechnerarchitekturen

16

Für SoC-Kommunikationsstrukturen ergeben sich zunächst die gleichen Modelle wie für verteilte
Multiprozessorsysteme, die im Grid- oder Clustercomputing eingesetzt werden. Die Struktur wird
von der verwendeten Topologie und dem zugrunde liegenden Graphen geprägt. Beim SoC ist aller-
dings derzeit noch zu berücksichtigen, dass Modelle bzw. Graphen, die sich gut auf zweidimensio-
nale Strukturen abbilden lassen, von den Gegebenheiten der heutigen Halbleitertechnologie profitie-
ren. Dreidimensionale Ansätze, wie sie häufig in verteilten Computernetzen eingesetzt werden, stel-
len momentan noch nicht befriedigend lösbare Anforderungen an den Aufbau von Siliziumchips.

Nomenklatur. Im Folgenden wird die Notation für NoC-Begrifflichkeiten, in Anlehnung an DALLY
[22], eingeführt:

Ein Netzwerk setzt sich aus Knoten N* und den Kanälen C, die die einzelnen Knoten miteinander
verbinden, zusammen. Datenpakete werden durch Endknoten N ins Netzwerk injiziert und von die-

sen letztendlich auch terminiert. Hierbei ist *N N⊆ . Viele Netzwerke besitzen nur Endknoten und

keine Weiterleitungselemente bzw. Routingknoten * \N N N+ = . In diesem Fall werden die End-
knoten ebenfalls als Knoten referenziert. Jeder Kanal (),c x y C= ∈ des Netzwerks verbindet einen

Quellknoten x mit einem Zielknoten y mit *,x y N∈ 2. Ein Quellknoten wird mit sc und ein Zielkno-

ten mit dc bezeichnet. Eine Kante k des Graphen setzt sich somit zusammen aus dem Kanal cx,y und

dem Kanal cy,x mit *,x y N∈ .

Ein Kanal (),c x y= wiederum lässt sich durch seine Weite wc , also die Anzahl paralleler Leitun-

gen, seine Betriebsfrequenz fc, also die Rate, mit der Datenbits auf jeder Leitung transportiert wer-
den können, und seine Latenz Lc. bzw. tc charakterisieren. Die Latenz kennzeichnet die Zeitspanne,
die benötigt wird, um ein Bit von Knoten x zu y zu transportieren (vgl. Definition 16). Sie resultiert
im Allgemeinen aus der Kanallänge lc und der charakteristischen Ausbreitungsgeschwindigkeit v

zu c
c

l
t

v
= . Die Bandbreite bc eines Kanals resultiert aus der Weite und der Betriebsfrequenz zu

c c cb w f= ⋅ .

Jeder Kommunikationsknoten x hat einen Satz von Kanälen x Ix OxC C C= ∪ . Mit

{ }Ix cC c C d x= ∈ = als Menge der Eingangskanäle und mit { }Ox cC c C s x= ∈ = als Menge der

Ausgangskanäle. Der Grad eines Knotens x ist x xCδ = , also die Summe aus allen Eingangskanä-

len Ix IxCδ = und Ausgangskanälen Ox OxCδ = eines Knotens. Wenn der Grad aller *x N∈ gleich

ist, wird im Folgenden nur von δ als Grad gesprochen.

Unter einem Schnitt bzw. einer Teilung C(N1, N2) wird die Aufteilung eines Netzwerks N* in zwei
disjunkte Subnetzwerke N1 und N2 verstanden. Jeder Kanal ()1 2,c C N N∈ hat seine Quelle in N1

und Senke in N2 und umgekehrt. Eine Bisektion oder auch Halbierung ist wiederum eine Teilung
des gesamten Netzwerks in zwei, wenn möglich, gleich große – im Sinne der Anzahl der Knoten –
Subnetze: 2 1 2 1N N N≤ ≤ + . Dies gilt sowohl für die Endknoten als auch für die Routingknoten.

Die Kanalbisektion BC eines Netzwerks bezeichnet die minimal aufzufindende Kanalanzahl aller
möglichen Bisektionen des gesamten Netzwerks ()1 2min ,C

Bisektionen
B C N N= . Somit ergibt sich die Bi-

2 Beim rückläufigen Kanal kehrt sich die Notation entsprechend um, der Quellknoten ist y und x wird der Zielknoten.

2.3 On-Chip-Netzwerke

17

sektionsbandbreite [26] als minimale Bandbreite aller Bisektionen des Netzwerks zu

()1 2min ,B
Bisektionen

B B N N= . Für Netzwerke mit gleichgearteter Kanalbandbreite b ergibt sich

B CB b B= ⋅ . Sie kennzeichnet die minimal verfügbare Bandbreite zwischen den resultierenden zwei

Subnetzen, unter Berücksichtigung aller möglichen Teilungen. Die Bisektionsbandbreite ist ein
nützliches Maß, um einerseits die benötigten Ressourcen der globalen Verdrahtung eines Netzwerks
zu bestimmen und andererseits eine Aussage über die Ausfallsicherheit bzw. Leistungsfähigkeit des
NoCs treffen zu können. Sie gibt sozusagen den Flaschenhals der verfügbaren Bandbreite zwischen
den Knoten zweier Subnetze an.

Als Pfad P mit { }1 2, ,..., nP c c c= wird eine geordnete Menge von Kanälen c bezeichnet, die einen

Quellknoten 1P cs s= mit dem zugehörigen Zielknoten P cnd d= verbindet. Die Länge eines Pfades,

gleichbedeutend mit der Anzahl an Hops, ist definiert als P . Existiert für alle Quell-Ziel-

Verbindungsmöglichkeiten in einem gegebenen Netzwerk mindestens ein Pfad, unter Berücksichti-
gung des verwendeten Routingalgorithmus, so bezeichnet man das Netzwerk als verbunden. Ein
minimaler Pfad ist gekennzeichnet durch die geringste Anzahl an benötigten Hops bei der Verbin-
dung zweier beliebiger Knoten im Netz. Die Gesamtheit aller minimalen Pfade wird zu Rxy gesetzt.
H(x, y) ist die Anzahl an Hops eines minimalen Pfades zwischen den Knoten x und y. Der Durch-
messer D des Netzwerks ist somit bestimmt durch die maximale Anzahl an Hops über alle minima-
len Pfade zwischen allen Endknoten ()max

,
max ,
x y N

H H x y
∈

= (vgl. [22]). Für ein komplett verbundenes

Netzwerk mit N Endknoten, die über Kopplungselemente mit dem Ausgangsgrad Oδ verbunden

sind, ergibt sich somit eine untere Grenze für die maximale Hopanzahl von max log
O

H Nδ≥ . Netz-

werke, die sich dieser unteren Schranke nähern, wie z. B. Butterfly-Netzwerke, offerieren keine
alternativen Wege, bei ihnen sind die Routen festgelegt. Dies ist bezüglich Ausfallsicherheit und
dynamischer Anpassung an Lastverteilungsvariationen ein großer Nachteil (vgl. [22]). Die durch-
schnittliche minimale Anzahl an Hops eines Netzwerks zwischen allen Quell- und Zielknoten ist

definiert zu: ()min 2
,

1
,

x y N

H H x y
N ∈

= ∑ .

Viele NoC-Implementierungen sehen außer den minimalen Pfaden zusätzlich noch alternative Rou-
ten vor. Es sind aufgrund von dynamischen Wegewahlverfahren und aufgrund spezifischer Realisie-
rungen Szenarien denkbar, in denen es von Vorteil ist, minimale Pfade nicht zu wählen. Für diese
Netzwerke definiert sich die durchschnittliche Hopanzahl H∅ nicht über die minimalen Pfade

bzw. die minimale Anzahl von Hops minH , sondern über die verwendeten Pfade im Netzwerk

minH H∅ ≥ .

Die physikalische Distanz eines Pfades wird beschrieben durch: () c
c P

D P l
∈

=∑ , wobei die Verzöge-

rung eines Pfades mit () ()D P
t P

v
= angegeben wird. Die Konstanz der Kantenlänge ist ein Para-

meter, der speziell für die ASIC-Implementierung von Bedeutung ist, da sich unterschiedliche Sig-
nallaufzeiten aufgrund variierender Leitungslängen negativ auf die Performanz eines On-Chip-
Netzwerks und somit auf das gesamte System auswirken.

Kapitel 2. Eingebettete parallele Rechnerarchitekturen

18

Betrachtet man nun die gesamte Übertragungsstrecke, also sowohl den Pfad mit den betreffenden
Kanten als auch die involvierten Knoten, so ergibt sich eine Gesamtlatenz von:

i igesamt c k
i P

t t t
∈

= +∑

(2.3), wobei
ic

i P

t
∈
∑ die Latenz der benutzten Kanäle beziffert und

ik
i P

t
∈
∑ die Latenz innerhalb der

Routing- bzw. Endknoten darstellt.

Symmetrie ist für ein Netzwerk ein entscheidendes Kriterium. So ermöglicht eine symmetrische
Struktur alternative Routen für universelle Lastverteilungen. Der Wegewahlalgorithmus muss nicht
auf spezielle Eigenarten der Struktur angepasst werden, sondern ist in allen Knoten des Netwerks, je
nach Symmetrieform, relativ identisch anzuwenden.

In der Literatur wird zwischen direkten und indirekten Netzwerken unterschieden. Ein Netzwerk-
knoten *x N∈ kann, wie bereits erwähnt ein Endknoten x N∈ sein, der sowohl Daten versendet
als auch empfängt, oder aber nur, wie im Falle eines Routingknotens x N+∈ , die Daten weiterlei-
tet. Bei einem direkten Netzwerk vereint jeder Knoten beide Eigenschaften in sich: Er fungiert so-
wohl als Endknoten zur Datenverarbeitung als auch als Routingknoten zur Datenweiterleitung. Bei
einem indirekten Netzwerk hingegen wird zwischen den End- und den Weiterleitungsknoten strikt
getrennt. Dies ist z. B. beim Butterfly-Netzwerk der Fall (vgl. Abbildung 2-8). Im direkten Netz-
werk findet der Datenverkehr zwischen den Endknoten „direkt“ statt, wohingegen beim indirekten
Netzwerk der Datentransport immer über zwischengeschaltete Routingknoten laufen muss. Es gibt
auch hybride Formen, die sowohl direkte als auch indirekte Subnetzwerke beinhalten. Jedes direkte
Netzwerk lässt sich zudem in ein indirektes transformieren, indem der Endknoten in Verarbeitungs-
und Weiterleitungseinheit aufgeteilt wird.

NoC-Charakteristika . Tabelle 2-1 gibt einen Überblick über die zuvor definierten Eigenschaften
verschiedener Netztopologien bzw. Graphen für Computernetze im Allgemeinen ebenso wie für
On-Chip-Netzwerke. Die Konstanz der Kantenlänge berücksichtigt die Möglichkeit einer effizien-
ten Realisierung in Halbleiterbausteinen und die damit einhergehende Länge der Verbindungslei-
tungen zwischen zwei Knoten. Skalierfähige dreidimensionale Topologien sind heutzutage für ein-
gebettete parallele Rechnerarchitekturen nur äußerst eingeschränkt geeignet. m stellt eine Hilfsgrö-
ße dar und dient als Berechnungsgrundlage zur Bestimmung der Knotenanzahl N*, des Durchmes-
sers D, der Bisektionsweite BC sowie des Grades δ der jeweiligen Netztopologie.

Tabelle 2-1: Eigenschaften verschiedener Netztopologien

Topologie Anzahl Knoten
N*

Durchmesser
D

Bisektionsweite
BC

Grad der Verbindung
δδδδ

Kantenlänge konstant

2-d Gitter m2 2(m-1) m 4 Ja

2-d Torus m2 m-1 2m 4 Nein

3-d Gitter m3 3(m-1) m2 6 Ja

n-d Gitter mn n(m-1) mn-1 2n für kleine n
Binärer
Baum 2m-1 2(m-1) 1 3 Nein

Hyperbaum 2m(2m+1-1) 2m 2m+1 6 Nein

Pyramide (4m2-1)/3 2 log m 2m 9 Nein

Butterfly (m+1) 2m 2m 2m 4 Nein

Hypercube m2 m 2m-1 m Nein

Für eine 2-d-Realisierung auf einem Siliziumchip qualifizieren sich nach Tabelle 2-1 zunächst das
2-d-Gitter, der Torus, ein binärer Baum oder die Butterfly-Topologie. Ließe man die Forderung

2.3 On-Chip-Netzwerke

19

nach identischen Signallaufzeiten auf den Long Lines3 außer Acht, so wäre die Bisektionsweite des
Baumes von 1 ein Hinderungsgrund für die Realisierung einer solchen Topologie. Entweder würde
zum Hauptknoten ein Kommunikationsflaschenhals entstehen, oder es müssten, wie z. B. beim Fat
Tree, eine uneinheitliche Anzahl von Leitungen verwendet werden. Dies würde wiederum zu Lasten
der Homogenität des Schaltungsentwurfs gehen. Butterfly-Strukturen bieten zunächst keine Mög-
lichkeit der Wegewahl. Es gibt jeweils einen festen Weg zum Ziel. Würde diese Option zusätzlich
implementiert, müssten zusätzliche Stufen zu Lasten des Durchmessers eingebaut werden. Ein wei-
terer Nachteil bei Butterfly-Netzwerken ist, dass diese nicht realisiert werden können, ohne Leitun-
gen zu integrieren, die die Hälfte des Durchmessers des Netzwerks ausmachen [22]. Deshalb eignen
sich solche Strukturen weniger gut für mittlere und große SoCs. Bei kleineren NoCs wird diese To-
pologie hingegen nicht zuletzt aufgrund des einfachen Routings häufig eingesetzt. Berücksichtigt
man den oben erwähnten Punkt gleichlanger Verbindungsleitungen zwischen den Knoten, so redu-
ziert sich die Auswahl auf das 2-d Gitter.

Abbildung 2-7 zeigt Varianten einfacher On-Chip-Netzwerktopologien, die für sich allein genom-
men nicht oder nur sehr eingeschränkt skalieren (vgl. Definition 35) und so für eine größere Anzahl
Teilnehmer nicht effizient einsetzbar sind.

Abbildung 2-7: Varianten einfacher On-Chip-Netzwerke für System-On-Chips

Die in Abbildung 2-8 dargestellten Netzstrukturen stellen bekannte Topologien implementierter On-
Chip-Netzwerke dar. Abbildung 2-8 a) und b) zeigen die für die Hardwarerealisierung aufgrund
ihrer vorwiegend gleich langen Verbindungen und ihrer relativ einfachen Abbildung auf zweidi-
mensionale Strukturen gut geeigneten Topologien Gitter und Torus. Würfel und Hyperwürfel Ab-
bildung 2-8 c) und d) werden häufiger in konventionellen Computernetzen eingesetzt, ebenso wie
Baum- und Butterfly-Topologie.

Abbildung 2-8: Topologien etablierter On-Chip-Netzwerke für System-On-Chips

In Abbildung 2-9 werden hierarchische On-Chip-Netzwerke dargestellt. Abbildung 2-9 a) zeigt ein
zweistufiges hierarchisches On-Chip-Netzwerk, dessen übergeordnete Hierarchieebene ein regel-
mäßiges Gitter bildet. Die an den Gitterknoten angeschlossenen Cluster bestehen aus einer variab-
len Anzahl von Modulen, die über einen lokalen Bus kommunizieren. Abbildung 2-9 b) hingegen
stellt ein weniger streng strukturiertes, mehrere Hierarchiestufen umfassendes On-Chip-Netzwerk
dar, das weitaus komplexer geartet ist als das aus Abbildung 2-9 a). Für besondere Anwendungsge-

3 Long Lines sind die langen, zumeist intermodularen Verbindungsleitungen eines Chips und werden vorwiegend auf

den höheren Metalllagen realisiert.

b) Multiplexerb) Multiplexera) Busa) Bus c) Sternc) Stern d) Ringd) Ring e) Punkt zu Punkte) Punkt zu Punkt

a) Gittera) Gitter c) Würfelc) Würfel e) Baume) Baumb) Torusb) Torus d) Hypercube, Dim 4d) Hypercube, Dim 4 f) Butterflyf) Butterfly

Kapitel 2. Eingebettete parallele Rechnerarchitekturen

20

biete können solche Speziallösungen ggf. sehr effizient sein, allerdings fehlt ihnen evtl. die Flexibi-
lität, um sich auch für andere Anwendungsklassen zu eignen. Ferner sind derartige Strukturen der-
zeit mit Standard-Technologien noch nicht effizient realisierbar.

Abbildung 2-9:Topologien von hierarchischen On-Chip-Netzwerken für System-On-Chips

Vorteile hierarchischer On-Chip-Netzwerke. Im Folgenden werden die Vorteile von hierarchi-
schen On-Chip-Netzwerken für System-on-Chips vorgestellt und diskutiert. Hierarchische On-
Chip-Netzwerke helfen, die Performanz des Gesamtsystems zu erhöhen. Aufgrund der strukturier-
ten hierarchischen Verbindung der einzelnen Module sind verteilte Routingentscheidungen mög-
lich. Aufgrund dieser skalierbaren Dezentralität wird massiv parallele Hardware besser unterstützt.
Daraus resultieren geringere zeitliche Arbitrierungsverluste verglichen mit zentralen Kommunikati-
onsstrukturen wie z. B. Bussen oder Multiplexern. Es ergeben sich geringere Latenzen, und je nach
Realisierung werden weniger Pufferspeicher benötigt.

NoCs können eine stärkere Entkopplung der einzelnen Verarbeitungseinheiten ermöglichen und
erlauben so z. B. unterschiedliche Taktdomänen mit lokal höheren Taktraten. In diesem Zusam-
menhang spricht man auch häufig von global asynchronen, lokal synchronen (GALS) Ansätzen [27]
[28], die einen der Forschungsschwerpunkte im NoC-Bereich bilden. Aufgrund der begrenzten
Ausbreitungsgeschwindigkeit und der immer höheren Taktraten bei gleichzeitiger Verringerung der
Strukturgrößen und Reduktion der Versorgungsspannung ist es mittlerweile bei großen SoCs nicht
mehr möglich, Signale innerhalb eines Taktes über den gesamten Durchmesser des Chips zu trans-
portieren. Gatter-Verzögerungszeiten skalieren mit der Technologie, Leitungsverzögerungszeiten
hingegen steigen nahezu exponentiell oder zumindest linear unter Zuhilfenahme von Repeatern [29]
an.

Nach [30][31] und [32] werden über 80 % der kritischen Pfade in ULSI(Ultra Large Scale Integra-
tion)-Schaltungen durch Verbindungsleitungen bestimmt. Deshalb müssen Systementwürfe auch
Kommunikationsnetze [33] und verteiltes Rechnen mit berücksichtigen. Hierarchische NoCs helfen
bei der Minimierung der Anzahl von global wires / long lines, also der globalen und damit relativ
langsamen Verbindungsleitungen des Chips. Hierdurch wird u. a. auch der Clock Skew, die Takt-
Varianz, verringert und eine höhere Signalintegrität erreicht. Dies wiederum erhöht die Ausfallsi-
cherheit. Zusätzlich können weniger leistungsstarke Treiberstufen eingesetzt werden, wodurch die
Leistungsaufnahme deutlich reduziert wird.

Durch definierte Schnittstellen des NoCs und die Möglichkeit der Kapselung von IP-Blöcken durch
so genannte „Wrapper“ (vgl. Abbildung 4-19) lassen sich Hardwarekomponenten einheitlicher in-
tegrieren. Aufgrund dieser Integrationsmöglichkeit wird eine Erhöhung der Wiederverwendbarkeit

a) Hierarchische Gittertopologie b) Freie, hierarchische NoC-Topologie

2.3 On-Chip-Netzwerke

21

des Systemkonzepts basierend auf Hardware-/Software-Bibliothekselementen für nachfolgende
Projekte erhöht. Parametrisierbare NoCs können leicht auf neue Anforderungen bezüglich Band-
breite oder Energie-/Flächenbedarf angepasst werden. Durch die Wiederverwendbarkeit erreicht
man eine kürzere „Time-to-Market-Spanne“ sowie geringere NRE(Non-recurring Engineering)-
Kosten, d.h. die einmalig entstehenden Kosten für neue Designs werden aufgrund wiederverwertba-
rer Bestandteile reduziert. Ebenso verringert sich das Entwurfsrisiko, da auf bestehende Strukturen
zurückgegriffen werden kann; zudem sinkt der Testaufwand. Ferner kann so die „Time-to-Volume-
Spanne“ aufgrund des geringeren Entwurfsaufwandes reduziert werden.

Hierarchische NoCs skalieren im Gegensatz zu Bussen, Multiplexern oder Kreuzschienenverteilern
und ermöglichen so eine deutlich größere Anzahl von Teilnehmern. Bei größeren Systemen erzielt
man eine deutliche Flächenersparnis im Vergleich zu Bussystemen oder Kreuzschienenverteilern.
Die Vielseitigkeit hierarchischer NoCs ermöglicht einen größtmöglichen Einsatz in unterschiedlich-
sten Systemimplementierungen. Für die System- bzw. Anwendungssoftware ergibt sich eine deut-
lich bessere Portierbarkeit auf zukünftige Systeme, da sie im Normalfall entkoppelt von der System-
Topologie implementiert werden kann.

Für Systeme mit wenigen Teilnehmern eignen sich hierarchische NoCs in der Regel weniger, da im
Allgemeinen ein deutlich größerer Flächenaufwand durch zusätzliche, meist unbenötigte Leis-
tungsmerkmale, zu verzeichnen ist, es sei denn, das NoC offeriert zusätzlich eine angepasste Va-
riante für Systeme geringerer Komplexität (vgl. Abschnitt 4.2).

2.3.2 Organisation von On-Chip-Kommunikation

In diesem Abschnitt wird die Organisation von On-Chip-Kommunikationsprotokollen im Allge-
meinen und im Hinblick auf das entworfene GigaNoC (vgl. Abschnitt 4.2) vorgestellt.

Schichtenmodell. Eigenschaften von NoC-Architekturen definieren sich zum einen aus der Topo-
logie des On-Chip-Netzwerks und zum anderen aus dem verwendeten Protokoll oder, im Falle von
heterogenen oder hierarchischen NoCs, den verwendeten Protokollen. NoC-Protokolle sind, in An-
lehnung an das ISO/OSI(International Organization for Standardization / Open Systems Inter-
connection)-Referenzmodell [34] typischerweise schichtenartig [35] organisiert (vgl. auch
DIN ISO 7498). Dieses Referenzmodell vereinheitlicht und regelt den Transport von Daten in
Kommunikationsmedien (vgl. Abbildung 2-10). So werden die verschiedenen Anwendungsbereiche
der Kommunikation in Schichten unterteilt, die in sich geschlossen und unabhängig voneinander
abgearbeitet werden können. Jede Schicht erfüllt eine definierte Funktionalität. Auf Sender- und
Empfängerseite des Kommunikationskanals existieren identische Schichten, zwischen denen logi-
sche Verbindungen aufgebaut werden. Die Art und Weise, wie die Daten transportiert werden, ist in
einem Protokoll festgelegt, das beide Teilnehmer beherrschen. Innerhalb eines Gerätes erfolgt die
physikalische Datenweitergabe in vertikaler Weise, wobei beim Sender Paketköpfe (Header) hin-
zugefügt und beim Empfänger wieder entfernt, also Protokolle „terminiert“ werden. Die sender-
/empfängerseitigen Schichten tauschen sich horizontal über diese Protokolle aus. Der Grad der Ab-
straktion wird in Richtung der höheren Schichten immer größer. Der untersten Schicht ist die phy-
sikalische Übertragung der einzelnen Bits zugewiesen, während die oberste Schicht mit der initiie-
renden Anwendung kommuniziert und ggf. Anwenderinteraktion einbezieht.

Kapitel 2. Eingebettete parallele Rechnerarchitekturen

22

Abbildung 2-10: Schichtenmodell für Netzwerk-Kommunikationskomponenten

Beim ISO/OSI-Modell sind sieben Schichten vorgesehen, die sich üblicherweise bei On-Chip-
Netzwerken auf drei zusammenfassen lassen [35]. Zur detaillierten Definition der einzelnen Funk-
tionen der sieben Schichten des ISO/OSI-Referenzmodells sei auf die einschlägige Literatur [34]
verwiesen. Im Folgenden werden die drei Schichten des NoC-Referenzmodells kurz vorgestellt:
physikalische Schicht, Architektur- und Steuerungsschicht, Software-Schicht.

Die physikalische Schicht umfasst die technische Realisierung der Kommunikationskanäle, also
Verdrahtung sowie Treiber- und Empfängerstufen, aber auch Datenpuffer zur Zwischenspeicherung
der Signale.

Abbildung 2-11: Die zu versendende Nachricht dargestellt in Stufen der Paketverarbeitung

Die Architektur- und Steuerungsschicht vereint in sich die ursprünglichen Schichten zwei bis vier
des ISO/OSI-Referenzmodells. Die enthaltene Sicherungsschicht (Data-Link-Layer) ist für die zu-
verlässige Übertragung der Daten, z. B. durch Hinzufügen von Redundanz für fehlererkennende
bzw. sogar fehlerkorrigierende Codes zuständig. Sie regelt außerdem den Zugriff auf das Kommu-
nikationsmedium und teilt die Daten, falls vorgesehen, in Blöcke auf. Die Aufteilung von Daten-
Telegrammen in einzelne Pakete ist besonders für die Vermeidung und Behebung von Übertra-
gungsfehlern von Vorteil, da die Absicherung der Daten hierbei durch etablierte Prüfsummenver-
fahren, z. B. zyklische Codes (CRC-Prüfsummen) blockweise geschehen kann. Abbildung 2-11
zeigt die logischen bzw. physikalischen Formen einer zu übertragenden Nachricht auf. Die Nach-
richt kann in ein oder mehrere Pakete bzw. Telegramme aufgeteilt werden, denen Informationen in
Form von Paket-Köpfen, auch Paket-Headern genannt, hinzugefügt werden. Die einzelnen Pakete
wiederum werden bei vielen NoCs nochmals aufgeteilt in Flits (Flow Control Digits), die atomaren
Übertragungseinheiten mit Paketeigenschaften. Auch die Flits bekommen einen zusätzlichen Kopf,

H
e

a
d

e
r-

A
d

d
iti

o
n

H
e

a
d

e
r-

R
e

d
u

kt
io

n

K
o

p
f

K
o

p
f

K
o

p
f

K
o

p
f

K
o

p
f

K
o

p
f

K
o

p
f

2.3 On-Chip-Netzwerke

23

der in den meisten Fällen deutlich kleiner als bei den Paketen ausfällt und häufig nur wenige Bytes
beansprucht. Schließlich kann es noch, je nach Implementierung, vorkommen, dass diese Flits, oder
aber auch die Pakete direkt in Phits (Physical Units) übertragen werden. Unter einem Phit versteht
man die Menge an Bits, die innerhalb eines Taktes über die Verbindung, auch Link genannt, zur
Gegenstelle der Übertragungsleitung transferiert werden können. Phits haben üblicherweise keine
eigenen Köpfe, sondern werden ggf. mit Handshake-Mechanismen kontrolliert.

Weiterhin sind in der Architektur- und Steuerungsschicht Mechanismen enthalten, die der Netz-
werkschicht (Network Layer) zuzuordnen sind. Dies betrifft das Schalten der Verbindungen (Swit-
ching) für den Datentransport und letztendlich das Weiterleiten und die Wegsuche (Routing) der
Pakete durch das Netzwerk.

Switching-Verfahren. Switching bezeichnet im Hinblick auf die technische Realisierung die Art
und Weise, wie Daten zum nächsten Knoten weitergeleitet werden. Zu den bekanntesten Switching-
Verfahren zählen u. a. das Circuit Switching(CS), das Packet- bzw. Store-And-Forward(SAF)-
Switching, das Virtual-Cut-Through(VCT)-, das Wormhole(WH)- und das Mad-Postman-Switch-
ing.

Im Folgenden werden die oben genannten Switching-Verfahren kurz bewertet:

• CS reserviert vor der eigentlichen Übertragung den gesamten Pfad vom Quellknoten bis zum
Zielknoten der Übertragung. Hierzu wird häufig ein „Routing Header Flit“ zum Zielknoten
geschickt, das den Pfad durchläuft. Nach erfolgreicher Übertragung wird eine Bestätigung
zum Quellknoten versendet und die Verbindung zwischen den beiden Teilnehmern ist ex-
klusiv eingerichtet. Somit setzt sich die Zeit tCS aus der Zeit des Verbindungsaufbaus und
der eigentlichen Übertragung zusammen: CS Verbindungsaufbau Datent t t= + . CS ist empfehlenswert,

wenn Pakete relativ selten zwischen den Teilnehmern versendet werden und die Datenmen-
gen relativ umfangreich sind. Dies relativiert den zusätzlichen Aufwand des Verbindungs-
aufbaus. Ein großer Nachteil ist die Blockade von anderen Paketen, die für die Zeit der Re-
servierung keine Verbindung aufbauen können. Speziell bei stark frequentierten Übertra-
gungswegen und relativ geringen Datenmengen, also z. B. für Anwendungsszenarien von
Single-Chip-Multiprozessoren, empfiehlt es sich meistens, das Packet-Switching-Verfahren
vorzuziehen (vgl. [26]).

• SAF bzw. Packet-Switching benötigt eine große Menge an Pufferspeicher in den einzelnen
Kommunikationsknoten, da mindestens ein Paket zwischengespeichert werden muss. Zu-
sätzliche Latenz wird hinzugefügt, allerdings erlaubt dieser Switching-Algorithmus komple-
xe Routingverfahren, da für jeden Knoten Einblick in den gesamten Inhalt des Pakets be-
steht. Ein Datentelegramm wird ggf. in mehrere Pakete aufgeteilt und ohne eine feste Reser-
vierung des Kanals zu benötigen, transportiert. Jedes einzelne Paket kann gegebenenfalls
über einen anderen Weg zum Ziel geleitet werden. Packet-Switching ist besonders bei häu-
figem Datenverkehr mit relativ geringem Datenvolumen von Vorteil. Nachteilig kann sich
die etwaige Aufteilung des Telegramms in Pakete aufgrund des damit verbundenen Over-
heads (z. B. redundante Headerinformationen in jedem Flit etc.) auswirken.

• VCT-Switching reduziert die absolut benötigte Speichermenge in den Routingknoten und
verringert ggf. die Latenzzeiten, falls das Netzwerk nicht blockiert sein sollte. Ist die Gegen-
stelle allerdings nicht verfügbar, so muss auch hier im schlimmsten Fall das gesamte Paket

Kapitel 2. Eingebettete parallele Rechnerarchitekturen

24

innerhalb eines Knotens zwischengespeichert werden können. Sind die Verbindungen nicht
belegt, so wird bereits nach dem Empfang des Headers die Nachricht zum nächsten Knoten
weitergeleitet. Dieser Mechanismus wird als „Virtual Cut-Through“-Switching bezeichnet.
Man bezeichnet diese Art der Übertragung dann auch als Pipelining der Nachricht, da sich
die einzelnen Segmente in aufeinanderfolgenden Routern befinden. Aufgrund der möglichen
Blockierung der Paketentitäten verhält sich das VCT-Switching bei Überlastung des Netzes
wie das oben erwähnte Packet-Switching.

• Beim WH-Switching wird das Datentelegramm nicht nur in Pakete, sondern noch weiter in
die oben genannten Flits unterteilt. Das Header-Flit enthält die Informationen, die für das
Routing benötigt werden, alle weiteren Flits des Pakets folgen ihm über die gleichen Wege
durchs Netz. Auch hier findet ein Pipelining der Nachrichtenübertragung statt. Vorteile bei
diesem Verfahren sind die geringere Speichermenge, die benötigt wird, da nur wenige Flits
pro Router gespeichert werden müssen. Weiterhin zeichnet sich WH-Switching durch die
deutlich kleineren SAF-Latenzzeiten bei der Übertragung aus. Nachteilig kann sich die Blo-
ckierung (Blocking) eines Übertragungsweges durch eine Flit-Kette erweisen, wenn hier
nicht durch Soft- oder Hardware Abhilfe geschaffen wird. Die Eigenschaften, die das WH-
Verfahren bietet, ermöglichen die Realisierung von flächenextensiven, kompakten und
schnellen Routern (vgl. [26]). Die Latenz ist die gleiche wie beim VCT-Switching.

• Eine Weiterentwicklung des VCT-Switchings in Kombination mit dem WH-Switching ist
das „Mad Postman“-Switching. Bei diesem wird versucht, die Latenz der Paketsegmente
nochmals zu minimieren. Ein eintreffendes Flit wird bereits während des Empfangs spekula-
tiv zum gegenüberliegenden Ausgang weitergeleitet. Speziell in 2D-Gittern kann eine solche
Strategie die Performanz steigern, da hier häufig die Richtung eines Flits gleich bleibt. Das
MP-Switching eignet sich vor allem für bit-serielle Übertragungen, und wenn die physikali-
sche Übertragung innerhalb des Netzwerks so geartet ist, dass sich ein Flit mehrere Zyklen
auf der Übertragungsleitung befindet. Handelt es sich bei dem zugrunde liegenden Netzwerk
hingegen um eine Infrastruktur, die in der Lage ist, relativ breite Flits innerhalb eines Zyklus
zum nächsten Knoten zu transportieren, so bietet dieses Verfahren nahezu keinen Vorteil
gegenüber dem VCT- und dem WH-Switching (vgl. [26]).

Die Methode der virtuellen Kanäle (Virtual Channels / VC) ermöglicht es einem NoC, einen einzi-
gen physikalischen Kanal, z. B. einen Inter-Switch-Box-Link (vgl. 4.2.1), für mehrere Datenströme
zu multiplexen und somit n virtuelle Kanäle zur Verfügung zu stellen. Dazu werden mehrere Puffer
für einen physikalischen Kanal benötigt. Diese Methode erhöht den Ressourcenbedarf, kann jedoch
zur Latenzminimierung einzelner Paketklassen herangezogen werden und steigert ggf. den gesam-
ten Netzwerkdurchsatz. Virtuelle Kanäle ermöglichen u. a. auch den Einsatz von Verfahren zur
Bandbreitenkontrolle und damit Quality-of-Service(QoS)-Mechanismen. Der Einsatz einer Vielzahl
von virtuellen Kanälen kann jedoch die Latenz, die ein Paket innerhalb eines Knotens erfährt, auf-
grund der Entscheidungsfindung über die Prioritätseinstufung erhöhen.

Durch die Einführung von virtuellen Kanälen konnten so genannte hybride Switchingverfahren
entwickelt werden. Zu diesen Techniken zählen u. a. das Buffered Wormhole Switching, Pipelined
Circuit Switching sowie das Scouting Switching. Diese Verfahren sind im Gegensatz zu den oben
genannten optimistischen Switching-Algorithmen als konservativ einzustufen und verbessern be-
sonders die Eignung des Netzwerks im Hinblick auf Fehlertoleranz.

2.3 On-Chip-Netzwerke

25

Zusammenfassend ist zu sagen, dass Switching-Verfahren, neben Topologie, Routingverfahren und
Flußkontrollmechanismen, einen großen Einfluss auf die Leistungsfähigkeit des Netzwerks haben.
Das Switching-Verfahren bestimmt nicht zuletzt den Aufbau und damit auch die benötigten Res-
sourcen des einzelnen Routingknotens. Wormhole-Switching ist das derzeit am häufigsten verwen-
dete Verfahren bei parallelen Rechnerarchitekturen [26]. Es wurde bereits 1986 vorgestellt [36][37]
und ermöglicht kleine und zugleich schnelle Routingknoten, die in der Lage sind, Nachrichten jeder
Länge effizient zu übertragen.

Wegewahl-/Routingstrategien. Routing bezeichnet die Art und Weise, wie die Wegewahl der
Nachrichtenströme in Netzwerken entschieden wird. Bei paketvermittelten Datennetzen ist prinzipi-
ell zwischen Routing und Forwarding zu unterscheiden: Während das Routing die komplette Wahl
des Weges durch das Netzwerk bestimmt, entscheidet das Forwarding nur über den zu wählenden
Nachbarknoten, über den die Nachricht weitergeleitet werden soll.

Abbildung 2-12: Übersicht über etablierte Routingmechanismen

Beim Routing kann zwischen adaptiven und gedächtnislosen bzw. statischen Routingverfahren un-
terschieden werden. Während adaptive Verfahren auf Auslastung (Contention) und Blockade bzw.
Überlastung (Congestion) der einzelnen Kommunikationswege reagieren können und die Wege-
wahl von solchen und anderen Parametern abhängig machen, nehmen statische bzw. gedächtnislose
Verfahren (auch „Oblivious“ Routing genannt) keine Rücksicht auf die derzeitigen Verkehrsver-
hältnisse des Netzwerks. Beim statischen / gedächtnislosen Routing wird zwischen deterministi-
schen und stochastischen Verfahren unterschieden. Während deterministische Verfahren immer zur
gleichen Entscheidung bezüglich des Pfades führen, wird die Wegewahl beim stochastischen Rou-
ting zufallsbasiert entschieden. Abbildung 2-12 gibt einen Überblick über etablierte Routingmecha-
nismen, die im Folgenden näher diskutiert werden.

Gerade für nicht vorhersehbares Kommunikationsaufkommen sind zwar adaptive Verfahren zu
empfehlen, sie benötigen jedoch für die Realisierung in NoC-Komponenten meist deutlich mehr
Ressourcen bzw. Fläche. Die nächsthöhere Aufgabe, die von Architektur- und Steuerungsschicht

Routingverfahren

Adaptive Verfahren

Statische Verfahren

Deterministische
Verfahren

Stochastische
Verfahren

Dimension-Order-
Verfahren

XY-Routing
Pseudo-Adaptive-

XY-Routing
Surrounding-XY-

Routing
Rotations-Routing

Shortest Path
Routing

Distance Vector
Routing

Link State RoutingSource Routing
Topologie-

adaptives Routing

Flooding-Algorithmen

Probabilistic
Flooding

Directed Flooding Random-Walk

minimal-adaptives
Routing

Hot-Potato-
Routing

Q-Routing
volladaptives

Routing
Congestion-Look-

Ahead-Routing
Turnaround-

Routing
Turn-Back-When-
Possible-Routing

Odd-Even-
Routing

Kapitel 2. Eingebettete parallele Rechnerarchitekturen

26

übernommen wird und im Allgemeinen der Transportschicht zuzuschreiben ist, ist die Segmentie-
rung von Nachrichten in Pakete und ggf. in Flits. Die Schichten, die oberhalb dieser Schicht ange-
siedelt sind, brauchen die Eigenschaften des Kommunikationsnetzes nicht in Betracht zu ziehen, da
auf der Transportschicht eine vollständige „Ende-zu-Ende“-Kommunikation stattfindet. Aufgrund
der häufig recht hohen Empfindlichkeit eines Netzes bezüglich der verwendeten Paketgrößen stellt
die richtige Segmentierung oft eine Herausforderung dar. Dies beinhaltet sowohl Aspekte der Per-
formanz als auch der Leistungsaufnahme und der benötigten Fläche.

Probleme, die sowohl beim gedächtnislosen als auch beim adaptiven Routing auftreten, sind: Dead-
lock, Livelock und Starvation. Beim Deadlock blockieren sich zwei Pakete gegenseitig im Routing-
knoten aufgrund der Belegung von ausschließlichen Ressourcen. Dies macht ein Weiterleiten der
jeweiligen Daten für den Router unmöglich. Beim Livelock zirkuliert das Paket unendlich im Netz,
ohne seinen Zielknoten zu erreichen. Dieses Phänomen tritt bei nicht-minimalen Routing-
Algorithmen auf. Livelock beeinträchtigt die Leistungsfähigkeit des Netzwerks und sollte durch ge-
eignete Maßnahmen, wie z. B. Reduzierung der Lebensdauer („Time To Live“-Parameter) verhin-
dert werden. Starvation bezeichnet die Situation, wenn das Netzwerk kontinuierlich Daten hoher
Priorität transportieren muss und Pakete geringer Priorität aufgrund der vorherrschenden Sättigung
des Netzes nicht weitergeleitet werden können.

Im Folgenden werden einige relevante Routingstrategien näher vorgestellt.

Gedächtnisloses / statisches Routing. Dimension-Order-Routing-Verfahren leiten ein Paket di-
mensionsweise ans Ziel. D. h. es wird der kürzeste Weg zum Zielknoten bestimmt, dann werden die
Kanten einer Dimension nach der jeweiligen Vorschrift des Routingalgorithmus reduziert, bis letz-
tendlich das Paket beim Zielknoten angekommen ist. Im Allgemeinen haben Dimension-Order-
Verfahren keine vorteilhaften „Load-Balancing“- also Lastverteilungseigenschaften, sind allerdings
sehr leicht und mit relativ überschaubarem Hardwareaufwand zu realisieren.

Das XY-Routingverfahren zählt zu einem der bekanntesten Dimension-Order-Verfahren. Es eignet
sich für zweidimensionale Topologien wie Gitter oder Tori. Hierbei werden die Pakete zunächst
horizontal (also in X-Richtung) und anschließend vertikal (in Y-Richtung) bis zum Zielknoten wei-
tergeleitet. Bezüglich der Lastverteilung entsteht in der Mitte des Netzwerks die größte Belastung,
welche durch geeignete, übergelagerte Algorithmen nivelliert werden kann. Bedeutender Vorteil
beim XY-Routing ist die Tatsache, dass keine Livelocks bzw. Deadlocks in mehr als einer Dimensi-
on auftreten [38].

Das Pseudo-Adaptive-XY-Routing arbeitet in zwei unterschiedlichen Modi, je nach Auslastung des
Netzwerks. Bei geringer Auslastung kommt die deterministische Variante zum Tragen. Treten ge-
häuft Blockierungen des Netzes auf, so wechselt das Verfahren auf den adaptiven Modus, in dem
weniger ausgelastete Verbindungen für die Wegewahl ausgesucht werden. Dieses Verfahren wird
vornehmlich bei zweidimensionalen Gittern eingesetzt, bei denen die Router über 5 Ports verfügen,
wobei vier nach Norden, Osten, Süden und Westen gerichtet sind, und der fünfte den lokalen An-
schluss anbindet. Das Pseudo-Adaptive-XY-Routingverfahren versucht im Gegensatz zum her-
kömmlichen XY-Routing die Mitte des Netzwerks zu entlasten und eine Gleichverteilung des Da-
tenverkehrs herzustellen.

Beim Surrounding-XY-Routing besteht die Möglichkeit, Knoten als blockiert zu kennzeichnen und
somit den Routingalgorithmus zur Wahl einer „Umleitung“ zu veranlassen. In diesem Fall unter-

2.3 On-Chip-Netzwerke

27

scheidet man die Ausweichmodi SH-XY- und SV-XY-Routing. Bei der ersten Variante wird die al-
ternative Wegstrecke in der Horizontalen gesucht, und bei Blockierung in vertikaler Richtung findet
das Paket auf einer vertikalen Ausweichroute zum Ziel.

Bei den Rotations-Routingverfahren wird vorgeschrieben, welche Richtungswechsel ein Paket bei
der Wegewahl erfahren darf. Hier gibt es zahlreiche Implementierungen wie z. B. das North-last-
Routing oder das West-first-Routing, wobei der Name schon die Vorschrift verrät.

Deterministische Routing-Algorithmen verwenden immer den gleichen Pfad, ohne die Auslastung
der betreffenden Kanäle zu berücksichtigen. In blockadefreien Netzen zeichnen sie sich durch kurze
Latenzzeiten und ihre Zuverlässigkeit aus. Deshalb sind sie besonders für Echtzeit-Anwendungen
geeignet. Pakete treffen in der Reihenfolge ein, in der sie versendet worden sind, so dass das Prob-
lem des „Packet Reordering“ nicht auftreten kann. Im einfachsten Fall hat ein Router eine fixe Rou-
tingtabelle, die alle Routen zu seinen Nachbarknoten beinhaltet.

Mit Hilfe dieses routingtabellenbasierten Ansatzes lassen sich verschiedene Formen des determinis-
tischen Routings realisieren. Eines der bekanntesten Verfahren ist das „Shortest Path Routing“.
Hierbei werden die Pakete entlang des kürzesten Pfades geleitet. Zu den Varianten des Shortest-
Path-Routings zählen das Distance Vector Routing und das Link State Routing. Beim Distance Vec-
tor Routing beinhaltet die Routingtabelle des jeweiligen Knotens Informationen über die Konnekti-
vität der Nachbarschaft. Pakete werden über die jeweils kürzeste Verbindung zum Ziel geleitet.
Beim Link State Routing wird die Routingtabelle zwischen allen Routern ausgetauscht bzw. geteilt.
In SoCs werden die Routingtabellen schon während der Produktion voreingestellt und nur in Son-
derfällen, z. B. bei Ausfällen während des Betriebs, umprogrammiert. Beim Source Routing werden
bereits beim Quellknoten alle Entscheidungen bezüglich der Wegewahl getroffen. Das Topologie-
adaptive Routing erweitert das deterministische Routingverfahren um die Eigenschaft, auf Verände-
rungen der Topologie einzugehen, indem die Inhalte der Routingtabellen angepasst werden können.
Man spricht hierbei auch von Online Oblivious Routing.

Stochastische Routingverfahren sind zum einen einfach zu realisieren und fehlertolerant, zum an-
deren brauchen sie mehr Netzwerkressourcen, als notwendig wäre. Für diese Algorithmen ist eine
Begrenzung der Lebenszeit von Paketen unabdingbar, da es sonst zu dem Problem der Starvation
kommen könnte. Zu den bekanntesten stochastischen Routingverfahren gehören die so genannten
Flooding-Algorithmen. Bei der einfachsten Implementierung, dem Probabilistic Flooding, wird ein
Paket zu allen Verbindungen weitergeleitet. Es findet somit eine „Überflutung“ des Netzwerks statt.
Sobald eine Kopie den Zielknoten erreicht, werden alle weiteren Kopien beim Eintreffen am Ziel-
knoten gelöscht. Eine Weiterentwicklung spiegelt der Directed-Flood-Algorithmus wieder. Hierbei
werden die Pakete in die ungefähre Richtung des Zielknotens ins Netz injiziert, somit weniger
Netzwerkressourcen benötigt. Als weitere Einschränkung dieses Algorithmus ist das Random-Walk-
Verfahren zu nennen. Hier wird jeweils nur eine definierte Anzahl von gerichteten Paketen von je-
dem Routingknoten weitergeleitet. Dies verringert deutlich die beanspruchten Netzwerkressourcen.
Um die hohen Belastungen an Datenaufkommen für das Netzwerk zu reduzieren, wurde der Va-
liant-Algorithmus entwickelt. Bei dieser Methode wird die Belastung des Netzes reduziert. Er eig-
net sich besonders für hoch dimensionierte Netzwerke mit einem großen Grad. Es wird zufällig ein
Knoten im Netz ausgewählt, zu dem das Paket zunächst geroutet wird. Anschließend werden von
diesem Knoten herkömmliche, gedächtnislose Verfahren zur Wegewahl angewendet.

Kapitel 2. Eingebettete parallele Rechnerarchitekturen

28

Adaptive Routing-Algorithmen zeichnen sich dadurch aus, dass sie sich dem Zustand des Netz-
werks entsprechend ihrer Wegewahl anpassen. Zu diesen Routingverfahren zählen u. a.: Das mini-
mal adaptive Routing, das Hot-Potato-Routing, das Q-Routing, das volladaptive Routing, das Con-
gestion-Look-Ahead-Routing, die Turnaround-Routingverfahren, das Turn-Back-When-Possible-
Routing und das Odd-Even-Routing.

Beim minimal adaptiven Routing wird immer versucht, den kürzesten Pfad zu wählen, und bei al-
ternativen Routen entscheidet sich der Algorithmus für die geringer ausgelastete Verbindung. Beim
Hot-Potato-Routing werden Pakete ohne Aufenthalt weitergeleitet. Sollte eine Verbindung blockiert
sein, wird das Paket wahllos in eine andere, freie Richtung geschickt, gleichsam wie eine „heiße
Kartoffel“ weitergereicht. Bei einer Aneinanderreihung von blockierten Pfaden kann das Paket
komplett in die entgegengesetzte Richtung transportiert werden, man spricht dann auch von „Mis-
routing“. Die Hardwareressourcen für dieses Verfahren sind bzgl. der Speichermenge relativ gering,
da so gut wie kein Pufferspeicher in den Routern eingesetzt wird [39]. Ein Beispiel für ein Routing-
verfahren, das das Verkehrsaufkommen innerhalb des Netzwerks statistisch auswertet und die We-
gewahl basierend auf den resultierenden Ergebnissen trifft, ist das Q-Routing [40]. Hierbei werden
Merkmale wie Latenz und Auslastung der Pfade berücksichtigt. Beim volladaptiven Routing wird
immer der am wenigsten belastete Kanal ausgewählt, auch wenn damit ein Umweg verbunden ist.
Allerdings wird bei unterschiedlichen Möglichkeiten die kürzeste Strecke bevorzugt gewählt. Das
Congestion-Look-Ahead-Routing verwendet Informationen der potentiell involvierten Router über
die Auslastung relevanter Kanäle, um so „vorausschauend“ Staus zu umgehen. Turnaround-
Routingverfahren werden bei Baum- und Butterfly-Topologien eingesetzt und zeichnen sich da-
durch aus, dass Pakete zunächst in die entgegengesetzte Richtung und dann von der entfernten
Netzwerkseite zurück zum eigentlichen Empfänger versendet werden. Diese Methode wird durch
das Turn-Back-When-Possible-Routing optimiert, indem die Auslastung des potentiellen Rückwe-
ges mit in die Wegewahl einbezogen wird und ggf. eine Alternative ausgesucht wird. Beim Odd-
Even-Routing wird zwischen erlaubten und nicht erlaubten Richtungswechseln von Knoten zu Kno-
ten und Spalte zu Spalte bzw. Reihe zu Reihe im Gitter unterschieden. Diese variieren und ermögli-
chen eine Deadlock-freie Wegewahl.

Außer den hier genannten Verfahren gibt es weitere, weniger relevante Routingverfahren und Ab-
wandlungen der oben genannten Methoden. Zur Vertiefung sei auf die weiterführende Literatur
[22][26][35][41] verwiesen. Basierend auf den bereits vorgestellten Switching- und Routingverfah-
ren können nun weiterreichende Netzwerkmechanismen eingesetzt werden, die die Leistungsfähig-
keit des NoCs für die jeweiligen Einsatzgebiete deutlich steigern können. Hierzu zählt auch die ga-
rantierte Bandbreitenzuweisung / Quality-of-Service (QoS).

Congestion- / Flow-Control-Techniken. Um die entsprechenden Prioritäten der Datenübertragung
und die damit verbundenen maximalen Latenzen einhalten zu können, müssen zwei grundlegende
Phänomene erläutert werden. Die Problematik, dass Pakete um Netzwerkressourcen konkurrieren
und damit zunächst eine hohe Auslastung (Contention) herbeiführen, die in einer Überlastung
(Congestion) enden kann, erfordert Congestion-Control-Techniken. Ein korreliertes Problem tritt
auf, wenn einzelne Endknoten unterschiedliche Bandbreiten injizieren bzw. absorbieren können.
Um diese Problematik zu lösen, müssen Flow-Control(Flußkontroll)-Techniken eingesetzt werden.
Congestion-Control-Techniken arbeiten gegen eine Überlastung des Netzwerks und seiner Rou-
tingknoten im Allgemeinen, während Flow-Control-Mechanismen den reibungslosen Datenfluss

2.3 On-Chip-Netzwerke

29

zwischen Sender- und Empfängerknoten regeln. Durch Einsatz dieser beiden Techniken wird die
Einhaltung einer minimal garantierten Bandbreite, einer garantierten maximalen Latenz und eines
maximal zulässigen Jitters und damit QoS erst ermöglicht.

Durch räumliche Ressourcenverwaltung, also Zuweisung von Routingkanälen und Speicher, sowie
zeitliche Zuteilung kann eine Stauung und letztendlich Überlastung der Ressourcen vermieden wer-
den. Congestion-Control-Mechanismen können in rückgekoppelte (feedback) und offene bzw. vor-
beugende (preventive) Verfahren eingeteilt werden [42]. Außerdem kann eine Einteilung in ressour-
cenreservierende und in nicht-ressourcenreservierende Maßnahmen vorgenommen werden.

Zu den Letzteren zählt das Verfahren, bei dem Pakete, die aufgrund von Stauungen nicht weiterge-
leitet werden können, einfach verworfen werden (dropping). Zunächst können mit nicht-ressourcen-
reservierenden Verfahren Verstopfungen aufgelöst werden, insgesamt jedoch müssen die Pakete
erneut versendet werden, was zu einem höheren Datenaufkommen führt. Dies reduziert folglich die
effektiv übertragene Datenmenge. Derzeit sind noch keine NoCs bekannt, die dieses in Datennetzen
etablierte Verfahren ebenfalls anwenden [35]. Eine weitere Methode stellen dynamische Routing-
verfahren dar, die so genannte „Hot Spots“, also Punkte besonders hohen Datenaufkommens, ver-
meiden [43]. Dieses Verfahren hat jedoch den Nachteil, dass die Reihenfolge der Pakete verändert
werden kann (Packet Reordering). Ein anderer Ansatz steuert die Paketinjektionsrate basierend auf
statistischen Daten, die während des Betriebs ausgewertet werden [44]. BENINI charakterisiert die
bisher erläuterten Verfahren als reaktiv, d. h. er argumentiert, dass sie erst greifen können, wenn das
Netzwerk bereits überlastet ist [35]. Dies trifft meiner Ansicht jedoch nicht bei dynamischen Rou-
tingverfahren zu, die zufällig über die Wegewahl entscheiden. Ebenso lässt sich durch eine geeigne-
te Schwelle bei den Monitoren schon vor der Überlastung des Netzwerks eine Reduktion der Paket-
injektion einleiten und damit der Verstopfung vorbeugen.

Ressourcenreservierende Maßnahmen teilen vor der Übertragung die Ressourcen zeitlich und ört-
lich zu. Zunächst werden alle geplanten Übertragungen festgestellt und anhand ihrer Erfordernisse
eine Ressourcenzuteilung (Admission Control) vorgenommen. Zusätzlich zu dieser Initialisierungs-
phase (setup) wird am Ende einer Übertragung noch eine Informationsphase (tear-down) benötigt,
in der den anderen Netzwerkknoten mitgeteilt wird, dass die Daten komplett übermittelt worden
sind und die Ressourcen für neue Transfers zur Verfügung stehen. Sollten alle Übertragungen und
deren Anforderungen bereits im Vorfeld bekannt sein, so ließe sich mit einem Zeit-Multiplex-
Verfahren (Time Division Multiplex / TDM) die Überlastungsfreiheit des Netzwerks garantieren.
Globale Einplanungsverfahren (Global Scheduling), die u. a. auf dem TDM-Prinzip basieren, wer-
den in NuMesh [45], Nostrum [46] und Æthereal [47] eingesetzt. Diese globalen Einplanungsver-
fahren sind jedoch nur bedingt für einen universellen Einsatz geeignet und wenig flexibel bei nicht-
vorhersehbarem Lastaufkommen, wie dies u. a. häufig bei Netzwerkanwendungen der Fall ist.
Nachteilig an diesem Ansatz ist die relativ hohe durchschnittliche Latenz, die ein Paket aufgrund
der Initialisierungs- und Informationsphase erfährt. Dafür erhält man ein verstopfungsfreies (con-
gestion-free) und konkurrenzfreies (contention-free) Netzwerk.

Ein anderer Ansatz bei ressourcenreservierenden Maßnahmen sind bandbreitenkontrollierende Ver-
fahren (rate-control schemes). Hierbei werden berechnete Injektionsraten für die Quellknoten vor-
gegeben, so dass eine obere Schranke für die Auslastung des Netzwerks und Latenz definiert ist.
Zur Vermeidung von, bei diesem Verfahren häufiger entstehenden, Übertragungsspitzen (Bursts)
werden zusätzliche Pufferspeicher benötigt, die sich nachteilig auf den Flächenbedarf auswirken.

Kapitel 2. Eingebettete parallele Rechnerarchitekturen

30

Vorteilhaft ist die Eigenschaft, dass die durchschnittliche Latenz geringer als beim TDM-Verfahren
ist. Einsatz finden Varianten dieser Methode z. B. beim MANGO(Message-passing Asynchronous
Network-on-Chip providing Guaranteed services through OCP interfaces)-On-Chip-Netzwerk
[48][49].

Die Flusskontrolle übernimmt die Aufgabe, dass Pakete, trotz vorhandener Auslastungskontrolle,
nicht in Routern stecken bleiben, deren Puffer nicht entleert werden können, weil ein Endknoten
nicht genug Bandbreite zur Verfügung stellt. Flusskontrolle dient zur Vermeidung von „Dead-
locks“, auch wenn keine Auslastungskontrolle verwendet wird. Es gibt eine Vielzahl von Algorith-
men zur Flusskontrolle. Die einfachste Art ist, Pakete, die nicht weitergeleitet werden können, zu
verwerfen. Eine weitere Methode besteht darin, inakzeptable Pakete zum Sender zurückzuleiten, der
diese garantiert annehmen muss. Diese beiden Methoden werden derzeit in bekannten NoCs im Ge-
gensatz zu Computernetzen nicht eingesetzt. Beim SPIN (Scalable Programmable Interconnection
Network)-On-Chip-Netzwerk [50] wird ein Verfahren eingesetzt, bei dem bei Blockierung kurzfris-
tig Pakete zu freien Knoten weitergeleitet werden, um nach kurzer Zeit erneut zum Endknoten ge-
schickt zu werden.

Die folgenden Mechanismen zur Flusskontrolle basieren auf der Reservierung von Ressourcen. Um
zu garantieren, dass genügend Pufferplatz in den einzelnen Übertragungsknoten vorhanden ist, kön-
nen Ende-zu-Ende-Quittierungsmechanismen (Handshake-Verfahren) eingesetzt werden, bei denen
ggf. bei nicht ausreichender Speichermenge die Erlaubnis zur Übertragung zum Zielknoten verzö-
gert wird, auf die der Quellknoten zu warten hat. Ein anderer Ansatz wird durch so genannte Kre-
ditpunkte-basierte (Credit-based) Ende-zu-Ende-Flusskontrollen aufgezeigt. Die Routingknoten
verfügen über ein gewisses Kontingent an Credits, das ihrer Speichermenge entspricht. Soll ein Pa-
ket in das Netzwerk injiziert werden, so benötigt der Sender zunächst entsprechende Credits seitens
des Empfängers. Aus diesem Grund werden regelmäßig Credits von freien Routingknoten an Nach-
barknoten versendet. Bei erfolgreicher Versendung wird im Sender der Credit-Zähler um die spei-
chermengen-entsprechende Anzahl dekrementiert und die „verbrauchten“ Credits an den Emp-
fangsknoten zurückgeschickt. Dieser zusätzliche Verkehr an „Credit-Paketen“ kann bis zu 31% der
verfügbaren Bandbreite beanspruchen [43]. Speziell bei kleinen Datenmengen ist der Overhead be-
trächtlich und dieses Verfahren relativ ineffizient. Es gibt zahlreiche Abwandlungen dieses Verfah-
rens, um die Nachteile zu nivellieren. Æthereal, Nostrum, QNoC und SPIN verwenden u. a. Varian-
ten dieser Methode zur Flusskontrolle. Nach [35] verwenden derzeit nur wenige On-Chip-
Netzwerke sowohl Congestion- als auch Flow-Control-Mechanismen, um harte Bandbreitengaran-
tien zu gewährleisten. Hierzu zählen ebenfalls Æthereal, MANGO und das SonicsMX-On-Chip-
Netzwerk [51]. Zusammenfassend ist zu sagen, dass es neben den Vorteilen der Ressourcenreser-
vierung auch zahlreiche Nachteile dieses Verfahrens gibt. Es gilt also von Fall zu Fall abzuwägen,
welche Maßnahmen für die Implementierung eines ressourceneffizienten On-Chip-Netzwerks zu
treffen sind. Je flexibler ein On-Chip-Netzwerk auf Veränderungen hinsichtlich des Verkehrsauf-
kommens und der Topologie bzw. der Anzahl der Teilnehmer reagieren kann, sowohl im Betrieb,
als auch bei der Konzeption neuer Hardware, desto effizienter wird es sich auch in zukünftige SoCs
integrieren lassen. Zukünftig werden immer stärker Entwicklungswerkzeuge, die speziell für den
Entwurf der Kommunikationsinfrastruktur von Systems-On-Chip konzipiert sind, in die Entwurfs-
kette komplexer digitaler Schaltkreise Einzug halten, wie sie z. B. von ARTERIS bereits vorgestellt
wurden [52].

2.3 On-Chip-Netzwerke

31

Dienstqualität. Quality-of-Service(QoS) ist für viele Anwendungsbereiche ein weiteres wichtiges
Merkmal für Netzwerke und stellt ebenso eine Herausforderung für On-Chip-Netzwerke dar. Unter
QoS werden Mechanismen verstanden, die es ermöglichen die Übertragungsbandbreite für unter-
schiedliche Datentypen oder zwischen einzelnen Endknoten unter Berücksichtigung spezifizierter
Transportklassen dediziert zuzuweisen. Gerade bei limitierter Bandbreite des Netzwerks und spezi-
ell auch für „Echtzeit“-Anwendungen ist diese Funktionalität von besonderer Bedeutung. QoS er-
laubt ein priorisiertes Übertragen unterschiedlicher Datentypen, was nicht zuletzt bei heutigen
Breitbandnetzwerkanwendungen wie „Tripple Play“, also Datenverkehr, Telefonie und multimedia-
le Video-Inhalte, von großer Bedeutung ist. Für QoS sind Mechanismen zur Überwachung des
Transportaufkommens notwendig, die u. a. Entscheidungen über die Wegewahl und die zeitliche
Ablaufsteuerung der Kommunikation treffen. Wenn ein Netzwerk über keine QoS-Mechanismen
verfügt, spricht man von einem „Best-Effort-Ansatz“. Hierunter versteht man das Prinzip, dass alle
Daten und Verbindungen gleich behandelt werden und der Transport nach den Möglichkeiten des
Systems geschieht. Es können keine festen Zusagen bezüglich der zur Verfügung gestellten Band-
breite gemacht werden. Ein häufig eingesetztes Mittel, ein Netzwerk QoS-tauglich zu machen, be-
steht darin, das Netzwerk großzügiger bezüglich seiner Bandbreite zu dimensionieren, damit die
anfallende Datenlast mühelos bewältigt werden kann. Hierbei sind die Wege, die das Rückgrat des
Netzes ausmachen, so leistungsfähig zu gestalten, dass die Endknoten nicht annähernd die Daten-
menge ins Netz injizieren können, die zu einer Überlastung (Congestion) des Netzwerks führen
könnte. Diese relativ einfache Methode wird auch Over-Provisioning genannt. Diese Form der
QoS-Implementierung ist jedoch immer kritisch in Relation zu der Anwendung und der Art des Da-
tenaufkommens sowie der Anzahl der Teilnehmer zu sehen. Für höhere Anforderungen setzt man
häufig auf ein Markieren der einzelnen Datenpakete im Hinblick auf ihre Anforderungen bezüglich
Latenz, Jitter und Zuverlässigkeit ihrer Zustellung. In diesem Zusammenhang spricht man auch von
„differenzierten Diensten“ oder auch DiffServ (Differentiated Services). Jedes Datenpaket trägt eine
Kennung in sich, in der die Anforderungen kodiert sind. Die Knoten im Netz können dann den an-
fallenden Datenverkehr anhand ihrer Auslastung und der Kennungen innerhalb der Pakete steuern.
Allerdings kann auch ein solches Netzwerk nur in dem Maße befriedigende Leistung bieten, als es
physikalisch angemessen für das entsprechende Anwendungsszenario ausgelegt ist. In diesem Falle
steigert die QoS-Fähigkeit die Performanz.

Die Software-Schicht umfasst die abstrakteren Schichten fünf bis sieben des ISO/OSI-
Referenzmodells. Diese Schicht bezieht sich sowohl auf System- als auch auf Anwendungssoft-
ware. Die Systemsoftware abstrahiert von der eigentlichen Hardware und fungiert als Hardware
Abstraction Layer (HAL). Dies entkoppelt die Anwendungssoftware von der Hardware und gewähr-
leistet eine höchstmögliche Flexibilität. Die Systemsoftware ist eng an systemspezifische Schnitt-
stellen für Hardwarebeschleuniger (vgl. Abbildung 4-19) und IPs gebunden (vgl. Abbildung 4-4).
Sie gestaltet sich als kontrolllastig mit geringerem Kommunikationsaufkommen. Inwieweit die Sys-
temsoftware ausgeprägt ist, also ob es sich um einzelne Aufgaben / Tasks handelt, oder ob ein
komplettes eingebettetes Betriebssystem zum Einsatz kommt, hängt maßgeblich von der jeweiligen
Anwendung und dem Einsatzgebiet ab. Die Anwendungssoftware sollte für ein massiv paralleles
System einem geeigneten Programmiermodell unterliegen (vgl. Abschnitt 4.5) und ist häufig stark
kommunikationslastig.

Abbildung 2-13 zeigt zusammenfassend die in den vorangegangenen Abschnitten diskutierten we-
sentlichen Mechanismen zur Gestaltung und Leistungssteigerung von On-Chip-Netzwerken. In Ab-

Kapitel 2. Eingebettete parallele Rechnerarchitekturen

32

hängigkeit vom jeweiligen Anwendungsszenario und den damit verbundenen Anforderungen wer-
den Hardware und Protokolle unter Verwendung der vorgestellten Maßnahmen zur Optimierung
konzipiert.

Abbildung 2-13: Mechanismen zur Gestaltung und Leistungssteigerung von On-Chip-Netzwerken

2.3.3 Beispiele von On-Chip-Netzwerken

In Tabelle 2-2 werden wesentliche Merkmale etablierter NoC-Varianten vorgestellt. Die bevorzugte
Topologie der aufgeführten Netzwerke ist das 2D-Gitter, das aufgrund seiner regelmäßigen Struktur
relativ gut zu implementieren ist. Die Größe der Kommunikationskanäle, also die Breite der Über-
tragung, liegt zwischen 19 Bits beim Marescaux-Ansatz und 294 Bits beim Dally-NoC. Einige
NoCs sind in dieser Hinsicht auch parametrisierbar, wie z. B. QNoC, Hermes-NoC oder auch das
GigaNoC. Bei diesen Netzwerktopologien besteht noch Spielraum, und es kann auf Anforderungen
seitens der Anwendung eingegangen werden, um so eine möglichst effiziente Realisierung zu tref-
fen. Die vorherrschende Routingstrategie ist das Wormhole-Switching mit XY-Routing-Ansatz.
Beim Æthereal-NoC wird Wormhole- Switching nur für Best-Effort(BE)-Pakete verwendet und für
Guaranteed-Throughput-Traffic(GT)-Circuit-Switching genutzt. Weitere Details zu einigen der auf-
geführten NoCs sind in [53] aufgeführt.

Die Art der Pufferung entscheidet, wie anfällig die NoCs gegenüber dem Phänomen des Head-of-
Line-Blocking(HOL)-Problems sind. Einige Ansätze verwenden Eingangspuffer bzw. Eingangs-
FIFOs, um die eintreffenden Pakete/Flits zwischenzuspeichern, andere benutzen diese Speicherele-
mente im Ausgang. Besonders flächenintensiv sind zumeist die Varianten, die sowohl Ein- als auch
Ausgänge mit Speicher ausrüsten. Dies schlägt sich dann allerdings positiv auf die Performanz nie-
der. Die Realisierung des Kreuzschienenverteilers innerhalb des Routers kann zum einen vollstän-
dig (voll) sein. In diesem Fall können alle virtuellen Kanäle (VC), die der Router zur Verfügung
stellt, direkt zugewiesen werden, d. h. die Anzahl der Ein-/Ausgangsports des Kreuzschienenvertei-
lers ist gleich der Zahl der virtuellen Kanäle m multipliziert mit der Anzahl der Routerports n. Zum
anderen kann ein Multiplexer eingesetzt werden, der die jeweiligen Verbindungen arbitriert hers-
tellt. Hierdurch entsteht ggf. ein Performanznachteil, allerdings ist die benötigte Fläche für Verbin-

P
ro

to
k
o
ll
-
u
n
d

H
a
rd

w
a
re
s
p
e
zi
fi
k
a
ti
o
n

2.3 On-Chip-Netzwerke

33

dungsleitungen geringer. Beim multiplexerbasierten Kreuzschienenverteiler entspricht die Anzahl
der Ein- und Ausgangsverbindungen jeweils n. Diese Art der Realisierung eignet sich speziell für
Implementierungen, die eine hohe Anzahl von virtuellen Kanälen erlauben [54].

Tabelle 2-2: Charakteristika ausgewählter On-Chip-Netzwerke

Netzwerk/
Router Topologie Kommuni-

kationskanäle

Switching-/
Routing-
Strategie

Pufferung Kreuzschienen-
verteiler

Fluss-
kontrolle VC VC-Auswahl QoS-

Unterstützung

Kavaldijev
[55] 2D-Gitter NA

Wormhole
Source

Input
Queue

Voll NA 4 TDM Ja

QNoC
[56]

2D-Gitter
regulär oder

irregulär

16 Datenbit
(parametrierbar)
+10 Kontrollbit

Wormhole
XY

Input
Queue

Voll Credits 4
Priorität und

Puffer-
Verfügbarkeit

Ja

Dally
[57]

2D-gefalteter
Torus

256 Datenbit
+38 Kontrollbit

Wormhole
XY

Source

Input
Queue +1

Output
Position

Multiplexer Credits 8 NA Ja

Marescaux
[58]

2D-Torus
16 Datenbit

+3 Kontrollbit
Wormhole

XY
2 Output
Positions

Multiplexer Handshake 2 TDM Ja

Xpipes
[59]

Variabel (zur
Entwurfszeit)

32, 64 oder 128
Bits

Wormhole
Street Sign

Output
Queue

Multiplexer Handshake parametrierbar Priorität Nein

Æthereal
[60] 2D-Gitter 32 Bits

Circuit
Switching

(GT) Worm-
hole Source

(BE)

Output
Queue

NA NA 3 Priorität Ja

MediaWorm
[54]

Nicht zuord-
nungsf.

NA Wormhole
Input und
Output
Queue

Multiplexer NA 2 Virtuelle Uhr Ja

Hermes
NoC
[53]

2D-Gitter
16 Datenbit

(parametrierbar)
+6 Kontrollbit

Wormhole
XY / partiell

adaptiv

Input
Queue

Voll Credits 2-4 TDM-adaptiv Nein

MANGO
[48]

2D-Gitter
Clockless

32 Datenbit
+5 Kontrollbit

GS und BE
XY

Output
Queue

Multiplexer
Handshake
/ Credits

8 Priorität Ja

SPIN
[50] Fat Tree

32 Datenbit
+4 Kontrollbit

Wormhole,
adaptiv

Input und
Output
Queue

Voll
Handshake
/ Credits

parametrierbar NA Ja

Nostrum
[46] 2D-Torus NA

Deflective
(Hot-Potato)

Routing
Wormhole

NA NA Credits parametrierbar TDM Ja

GigaNoC

2D-Gitter
regulär oder

irregulär
2D-Torus

Variabel (zur
Entwurfszeit)

64 Datenbit
(parametrierbar)
+29 Kontrollbit

Wormhole
XY /

adaptiv d.
Routingtabelle

Input
Queues,
Output
Queue

Multiplexer Handshake
2 /

parametrierbar

Variabel /
tabellen-
basiert

Vorgesehen,
z. Zt. nicht

implementiert

Die Flusskontrolle ist besonders bei VC-basierten NoCs ein weiteres Merkmal zur Differenzierung.
Bei creditbasierter Flusskontrolle halten die Router Zähler für die zur Verfügung stehende Menge
an Pufferspeicher vor. Sind keine Pufferressourcen mehr verfügbar, so werden eingehende Pake-
te/Flits abgelehnt und dem Sender der Credit-Stand des Empfängers über Benachrichtigungskanäle
bei freiem Pufferspeicher mitgeteilt [22]. Bei der Handshake-Flusskontrolle wird dem Sender sei-
tens des Empfängers per dedizierter Leitung oder Protokollpaket signalisiert, ob das empfangene
Paket verarbeitet werden kann oder verworfen wird. Hardwareseitig bedeutet dies deutlich weniger
Aufwand, allerdings ist dieses Verfahren nicht so effizient wie das creditbasierte, da ggf. erfolglose
Übertragungen stattfinden oder Pufferspeicher unnötig lang belegt bleiben. Zudem muss sendersei-
tig auf eine Bestätigung (Acknowledge) gewartet werden.

Die nächsten drei Spalten von Tabelle 2-2 enthalten VC-spezifische Merkmale. Zunächst wird die
Anzahl der möglichen virtuellen Kanäle pro Router angegeben, in der Folgespalte der Zuwei-
sungsmodus. Beim GigaNoC sind virtuelle Kanäle vorgesehen, deren Anzahl parametrisierbar ge-

Kapitel 2. Eingebettete parallele Rechnerarchitekturen

34

halten ist. Sie können zum einen über die Auswahl der Routingstrategie eingerichtet werden, zum
anderen erlauben die Kommandoflits des GigaNoCs eine höherpriore Verarbeitung im Vergleich zu
den Datenflits (vgl. Abschnitt 4.2.2.1), so dass man derzeit über eine relativ einfache Variante mit
zwei virtuellen Kanälen verfügt. Durch eine zusätzliche Auswertung von Tabelleneinträgen kann
dieser Wert bei Bedarf angepasst werden. Dies gilt ebenso für die Unterstützung bezüglich ver-
schiedener Qualitätsklassen der Kommunikation (Quality-of-Service / QoS). Die Mehrzahl der an-
deren NoCs sieht eine Unterstützung von Qualitätsklassen bei der Kommunikation vor. Beim Gi-
gaNoC kann dies in Abhängigkeit von der Anwendung abgewogen werden. Die Entscheidung über
die Auswahl der VCs wird teilweise durch Zeitmultiplex (Time Division Multiplex / TDM) oder aber
durch Prioritäten-Vergabe, wie es z. B. beim Internet-Protokoll [61] vorgesehen ist, getroffen. Beim
MediaWorm-NoC wird die Allokation der virtuellen Kanäle mit Hilfe einer virtuellen Uhr geregelt.
Eine globale Zeit im Zusammenhang mit einem individuellen, paketzugeordneten Zeitinkrement
(Vtick) und einer Ankunftszeit (AuxVC) dient zur Kanalvergabe. Je kleiner der Wert von Vtick ist,
desto schneller muss das Paket weitergeleitet werden.

2.3.4 Anforderungen an On-Chip-Netzwerke

Die sich ergebenden wesentlichen Anforderungen an On-Chip-Netzwerke, gilt es je nach Einsatz-
zweck und unter Berücksichtigung aller Randbedingungen, gewichtet miteinander in Beziehung zu
setzen und eine möglichst optimale Konstellation zu wählen. Neben den für Systementwürfe be-
kannten Kriterien wie Performanz (aufgeteilt in Durchsatz, Latenz und Jitter), Leistungsaufnahme,
Flächenbedarf und Kosten, sind weitere Faktoren von großer Relevanz. So ist speziell für große
Systeme die Skalierbarkeit oder auch die Unterstützung unterschiedlicher Topologien sehr wichtig.
Je nach Leistungsfähigkeit der Verarbeitungseinheiten (vgl. Abschnitt 2.4) kann auch der Funkti-
onsumfang des NoCs von Bedeutung sein. Bei nicht so leistungsfähigen Verarbeitungseinheiten
kann ein NoC diese durch eigene Intelligenz entlasten (Communication Off-load Engines) und so
die Gesamtperformanz des Systems steigern. Ebenso können Merkmale wie Quality of Service oder
Fehlertoleranz in dem jeweiligen Anwendungsszenario von besonderer Wichtigkeit sein. Sehr posi-
tive Eigenschaften für eine vielseitige Verwendung eines On-Chip-Netzwerks sind Flexibilität bzw.
Robustheit gegenüber sich ändernden Lastaufkommen bzw. Bandbreitenansprüchen einzelner
Netzwerkpfade. In Abbildung 2-16, Abschnitt 2.7 werden die allgemeinen und NoC-spezifischen
Anforderungen und ihre gegenseitigen Wechselwirkungen in einer Merkmalsmatrix für Chip-
Multiprozessoren gegenüber gestellt. Als weiterführende Literatur zu On-Chip-Netzwerken sei auf
die Beiträge [22][26][41][53][62][63][64] verwiesen, die tiefer gehende Details über On-Chip-
Netzwerke liefern.

2.4 Eingebettete Verarbeitungseinheiten

Neben der Kommunikationsinfrastruktur stellen die eingebetteten Verarbeitungseinheiten die maß-
gebliche funktionale Einheit eines massiv-parallelen eingebetteten Systems dar. Ihre Aufgabe ist es,
die zur Verfügung gestellten Daten möglichst effizient zu verarbeiten und in spezifizierter Form den
Ausgangsschnittstellen zur Verfügung zu stellen.

2.4 Eingebettete Verarbeitungseinheiten

35

2.4.1 Anforderungen an eingebettete Verarbeitungseinheiten

Im Folgenden soll kurz auf die Anforderungen bzw. besonderen Merkmale von eingebetteten Ver-
arbeitungseinheiten (PEs) eingegangen werden. Wobei auch hier die Performanz, die Leistungsauf-
nahme und die benötigte Chipfläche bzw. die Kosten zu den allgemeinen Merkmalen bzw. Anfor-
derungen zählen, die je nach Anwendungsgebiet unterschiedliche Stellenwerte haben. Ebenso ist
die Flexibilität bzw. die Art und Weise der Programmierbarkeit einer Verarbeitungseinheit je nach
Einsatzzweck von entscheidender oder weniger bedeutender Rolle. Verarbeitungseinheiten z. B. in
Funkweckern sind aufgrund des sich nicht ändernden Einsatzzweckes, des hohen Preisdrucks und
der limitierten Ressourcen sehr unflexibel, aber zugleich klein und energieeffizient realisiert. Bei
zentralen Verarbeitungseinheiten in PDAs hingegen spielt der Preis im Gegensatz zu Flexibilität
und Leistungsfähigkeit eine untergeordnete Rolle, da die Anwendungsgebiete dieser Geräte sehr
variabel ausfallen und zugleich hohe Leistungsansprüche haben können. In diesem Szenario kommt
zusätzlich die Wiederverwendbarkeit zum Tragen, da Softwareentwicklungen auch für zukünftige
Architekturen verwendet werden sollen. Besonders für komplexe Systeme ist die Verifizierbarkeit
der Funktionalität von großer Bedeutung. Dies setzt eine ausgereifte, komfortable und umfangrei-
che Entwicklungsumgebung mit guten „Debug-Möglichkeiten“ voraus. Im Hinblick auf die Kosten
spielen ebenfalls die von der Verarbeitungseinheit benötigten Ressourcen, wie z. B. Programmspei-
cher und Kommunikationsschnittstellen eine nicht zu vernachlässigende Rolle. Abbildung 2-16,
Abschnitt 2.7 zeigt u. a. wesentliche Anforderungen an eingebettete Verarbeitungseinheiten, die es
bei der Konzeption eines Systems zu berücksichtigen und gegeneinander abzuwägen gilt. Sich er-
gebende Wechselwirkungen mit anderen Anforderungen bei Veränderungen einzelner Merkmale
können anhand von Trendsymbolen abgelesen werden.

2.4.2 Klassen eingebetteter Verarbeitungseinheiten

Abbildung 2-14 zeigt Varianten eingebetteter Verarbeitungseinheiten und gibt eine qualitative Ein-
stufung ihrer Eigenschaften bezüglich ihrer Performanz, ihrer Flexibilität und der Zeit bis zur
Marktreife bzw. Verfügbarkeit (vgl. Kapitel 3). Mit der Zeit bis zur Verfügbarkeit ist bei anwen-
dungsspezifischen Hardwareeinheiten wie den rekonfigurierbaren FPGA-Zellen und den speziali-
sierten, meist Standardzellen-basierten Hardwarebeschleunigern der Entwurf und die Programmie-
rung bzw. Fertigung mit berücksichtigt. Bei den programmierbaren Prozessoren (Central Proces-
sing Unit / CPU), Co-Prozessoren (Co Processing Unit / Co-PU) und anwendungsspezifischen
Prozessoren (Application Specific Instruction Set Processor / ASIP) wird eine Abstufung bzgl. der
Einfachheit ihrer Programmierung vorgenommen. Die Größe der Kugeln spiegelt den ungefähren
Flächenbedarf in Bezug auf eine vergleichbare Performanz der einzelnen Verarbeitungseinheiten
wieder. Die dargestellten Werte dienen zur groben Einstufung der durchschnittlichen Eigenschaften
und können mitunter für Spezialfälle abweichen.

Zu den hier vorgestellten Verarbeitungseinheiten zählen die Universal-Prozessoren (CPU), die mit-
tels einer Hochsprache sehr flexibel oder mit Hilfe einer maschinennahen Sprache bzgl. der Perfor-
manz zumeist effizienter, aber einhergehend mit deutlich größerem Zeitaufwand programmiert
werden können. Implementierungen einer geforderten Funktionalität gestalten sich besonders bei
Verwendung einer Hochsprache und der entsprechenden Werkzeuge wie Compiler und Linker etc.
sehr schnell. Auch die Verifikation der programmierten Funktionalität wird häufig durch eine Viel-
zahl von Hilfswerkzeugen oder durch integrierte Entwicklungsumgebungen komfortabel unters-
tützt.

Kapitel 2. Eingebettete parallele Rechnerarchitekturen

36

Abbildung 2-14: Entwurfsraum eingebetteter Verarbeitungseinheiten

Zur Performanzsteigerung von Universal-Prozessoren werden häufig spezialisiertere Coprozessoren
eingesetzt, die über einen eingeschränkten, zumeist anwendungsspezifischen Befehlssatz verfügen.
Je nach Unterstützung durch die Entwicklungsumgebung muss bestehender Code umgeschrieben
bzw. erweitert werden, um die volle Funktionalität solcher Zusatzprozessoren ausnutzen zu können.
Dadurch erhöht sich bei ihrer Verwendung die Zeitspanne, bis eine zu realisierende Anwendung
verfügbar ist. Sie benötigen zwangsläufig eine CPU für übergeordnete Kontrollaufgaben. Aufgrund
ihrer zumeist eingeschränkten Funktionalität sind sie von der Fläche meist kleiner als der eigentli-
che Prozessor, erzielen dennoch eine höhere Performanz in ihrem Einsatzbereich.

Anwendungsspezifische Prozessoren (Application-Specific Instruction Set Processors / ASIPs)
grenzen sich von den Universal-Prozessoren in der Art ab, dass sie speziell für ausgewählte An-
wendungsgebiete konzipiert sind. Deshalb ist ihre Performanz höher, ihre Flexibilität aufgrund ei-
nes eingeschränkten / spezialisierten Befehlssatzes und ggf. weniger stark ausgeprägter Unterstüt-
zung von Hochsprachen geringer als die der Universal-Prozessoren. Ihre Programmierung gestaltet
sich zumeist komplexer, so dass die Zeitspanne bis zur Verfügbarkeit einer Lösung in der Regel
größer ausfällt als bei Universalprozessoren, aber mit einer höheren Performanz einhergeht. Zu der
Klasse der ASIPs lassen sich auch Netzwerkprozessoren [65] zählen, die für spezielle Aufgaben bei
der Datenverarbeitung in Computernetzen eingesetzt werden, vgl. Kapitel 7 und 8.

Eingebettete rekonfigurierbare Hardware, auch FPGA(Field Programmable Gate Array)-Blöcke
genannt, lassen sich durch Formulierungen in Hardwarebeschreibungssprachen und anschließender
Synthese auf die Zieltechnologie in ihrer Funktionalität beliebig oft konfigurieren. Sie bieten den
Vorteil der Möglichkeit von massiv paralleler Verarbeitung bei Betriebsfrequenzen, die derzeit be-

2.4 Eingebettete Verarbeitungseinheiten

37

reits über 500 MHz liegen können [66]. Die Realisierung und Verifikation wird ebenfalls durch
ausgereifte Werkzeugketten unterstützt, gestaltet sich allerdings vom Zeitaufwand in der Regel um-
fangreicher als beim reinen Softwareentwurf. Dafür kann bei vielen Anwendungen aufgrund der
realisierbaren Parallelität eine respektable Performanz erzielt werden. Die Fläche ist hingegen auf-
grund der flexibleren Strukturen höher anzusetzen.

Die zumeist schnellste und zugleich energieeffizienteste Lösung bei geringster Fläche sind die spe-
zialisierten Hardwarebeschleuniger (HW-Acc). Sie bieten jedoch am wenigsten Flexibilität und
benötigen die längste Implementierungszeit. Sie eignen sich für Aufgaben, deren Spezifikation sich
nicht mehr ändert und die besonders viel Rechenleistung ohne große Flexibilitätsanforderungen
verlangen. Die Implementierung erfolgt ebenfalls durch Modellierung in einer Hardwarebeschrei-
bungssprache und anschließende Abbildung auf die entsprechende Zieltechnologie, z. B. FPGA-
oder Standardzellentechnologie. Bei der letzteren Zieltechnologie ist der Aufwand deutlich höher
und damit die Zeit bis zur Verfügbarkeit verglichen mit den anderen Varianten am längsten.

Letztendlich sollte von Fall zu Fall abgewogen werden, welche Art von Verarbeitungseinheit für
welchen Zweck zum Einsatz kommt. Wünschenswert ist eine globale Kommunikationsinfrastruk-
tur, die eine problemlose Anbindung aller Varianten von eingebetteten Verarbeitungseinheiten zu-
lässt und für den Systemprogrammierer leicht ansprechbar integriert.

Hardwarebeschleuniger, FPGA-Blöcke und anwendungsspezifische Prozessoren sind Einheiten, die
zumeist kunden- bzw. anwendungsspezifisch realisiert werden. Sie finden Einsatz in sehr einge-
schränkten Anwendungsklassen mit besonderen Anforderungen an die Leistungsfähigkeit oder an
die Kosten. Eingebettete Universal-Prozessoren zusammen mit ihren Coprozessoren bzw. Copro-
zessorschnittstellen sind nicht ausschließlich für Kontrollaufgaben geeignet, sondern werden zusätz-
lich für ein großes Spektrum von Anwendungen eingesetzt. Neben den bereits verifizierten Hardwa-
reentwürfen versprechen ausgereifte Entwicklungsumgebungen zudem eine kurze Entwurfszeit des
Gesamtsystems. Detaillierte Analysen zu den unterschiedlichen eingebetteten Verarbeitungseinhei-
ten in Bezug auf die GigaNetIC-Architektur werden in den Kapiteln 6, 7 und 8 für dedizierte An-
wendungen aus dem Netzwerkbereich vorgestellt.

Im Folgenden wird ein Überblick über eine Auswahl der verbreitetsten Prozessorkerne und ihre
wesentlichen Merkmale gegeben. Selbst wenn für sehr rechenlastige Anwendungen spezielle
Hardware Einsatz findet, so werden Universalprozessoren sehr häufig für die bereits erwähnten
übergeordneten Kontrollaufgaben und Schnittstellenfunktionen eingesetzt, so dass aktuelle SoCs
zumeist mehrere Prozessorkerne integrieren.

2.4.3 Charakteristika von eingebetteten Prozessoren

Betrachtet man die Kopplung Speicher und Prozessorkern, unterscheidet man bei den eingebetteten
Prozessoren im Wesentlichen zwischen der Von-Neumann-Architektur und der Harvard-
Architektur. Bei der Von-Neumann-Architektur werden Daten und Instruktionen über einen ge-
meinsamen Bus transferiert. Zunächst werden die Instruktion und im Anschluss die benötigten Da-
ten geholt. Diese sequentielle Vorgehensweise kann eine gewisse Geschwindigkeitsreduktion be-
deuten, da der Prozessor ggf. erst auf die Bereitstellung der benötigten Daten warten muss. Die
Entwicklung der letzten Jahre hat gezeigt, dass die Geschwindigkeit von Prozessoren schneller zu-
nimmt als die der Speicher und Bussysteme [67]. Man spricht in diesem Zusammenhang auch von

Kapitel 2. Eingebettete parallele Rechnerarchitekturen

38

dem „Von-Neumann-Flaschenhals“, dessen Effekt durch Einsatz von Caches, also schnellen Zwi-
schenspeichern in enger räumlicher Nähe zum Prozessorkern, verringert werden kann.

Bei der Harvard-Architektur sind getrennte Busse für Daten und Instruktionen vorgesehen. Hier-
durch wird der Ablauf nicht so stark wie bei der Von-Neumann-Architektur durch die limitierenden
Ressourcen Bus und Speicher beeinträchtigt. Daten und Instruktionen können gleichzeitig geladen
werden. Aus Sicherheitsgründen ist eine strikte Trennung zwischen Daten und Instruktionen eben-
falls empfehlenswert, da so die Gefahr von Schadcode, der zu Pufferüberläufen führt, reduziert
wird. Allerdings benötigt die Implementierung der Harvard-Architektur zusätzliche Chipfläche für
die Realisierung der beiden Bussysteme und zusätzlich benötigter Kontrolllogik.

Bezüglich des Befehlssatzes von Prozessoren wird allgemein zwischen RISC(Reduced Instruction
Set Computer)- und CISC(Complex Instruction Set Computer)-Architekturen unterschieden. Die
RISC-Prozessor-Architektur ist gekennzeichnet durch einen relativ geringen Befehlsvorrat, daher
auch der Name Reduced Instruction Set Computer. Wesentliche Eigenschaften dieser Architektur
sind vor allem: Die enthaltenen Befehle sind weniger spezialisiert, besitzen nahezu alle die gleiche
Länge und können meist in einem Taktzyklus abgearbeitet werden, was u. a. durch Pipelining er-
reicht wird. RISC-Prozessoren sind zumeist als Load-Store-Architektur realisiert, d. h. nur Befehle
aus der Load/Store-Gruppe können auf den Speicher zugreifen. Alle weiteren Befehle arbeiten auf
Registerinhalten. RISC-Kerne verfügen deshalb zumeist über eine größere Anzahl von Registern,
da dies die beschränkten Möglichkeiten der Speicherzugriffe seitens der Befehle kompensieren
hilft.

CISC-Prozessor-Architekturen verfügen im Gegensatz zu RISC-CPUs über einen weitaus größeren
Befehlsvorrat. CISC-Befehle sind in der Regel in ihrer Funktion deutlich komplexer als RISC-
Befehle. Viele der Befehle sind hochgradig spezialisiert, benötigen jedoch meist mehrere Taktzyk-
len. Es stehen mehr Adressierungsmöglichkeiten als bei RISC-Architekturen zur Verfügung. Im
Gegensatz zu den meist „festverdrahteten“ Funktionen der RISC-Kerne liegt die Funktionalität ei-
nes CISC-Kerns häufig als Microcode in einem internen Speicher des Prozessors vor. Dieser wird
dann in einzelne einfachere Befehle übersetzt bzw. enthält diese direkt.

Wesentliche Vorteile der RISC-Architektur gegenüber der CISC-Architektur beim Einsatz in einge-
betteten Systemen sind die geringere Komplexität der Hardware und damit die geringere Fläche als
auch die geringere Leistungsaufnahme. Zudem lassen sich höhere Taktraten erzielen. Die einges-
parte Fläche kann ggf. für anwendungsspezifische Hardwarebeschleuniger verwendet werden. Die
CISC-Architektur zeichnet sich durch die makroartigen Befehle aus, die dem Softwareentwickler
bei der Programmierung auf Assemblerebene viel Arbeit abnehmen können. Geschieht die Prog-
rammierung hingegen in einer Hochsprache, die mittels eines Übersetzers, im Weiteren auch Com-
piler genannt, auf den Prozessor übertragen wird, so entfällt dieser Vorteil.

2.4.4 Methoden zur Erhöhung der Leistungsfähigkeit von Prozessoren

Methoden, die auf Prozessorebene die Performanz und damit verbunden auch meist die Ressour-
ceneffizienz des Systems steigern können, gründen sich häufig auf das Ausnutzen von Parallelität.
Hierbei kann zwischen der feingranularen Parallelität auf Instruktionsebene, man spricht hier auch
von Instruction-Level Parallelism (ILP), und der grobgranularen Parallelität auf Funktionsebene,
auch Task-Level Parallelism bzw. Thread-Level Parallelism (TLP) genannt, unterschieden werden.

2.4 Eingebettete Verarbeitungseinheiten

39

ILP lässt sich unterschiedlich erfolgreich ausnutzen. Wie erfolgreich, also wie stark die Beschleuni-
gung ausfällt, hängt stark von der Anwendung ab. Allerdings trägt auch die Leistungsfähigkeit des
Compilers zum Erfolg bei. Je nach Fähigkeit des Erkennens von Parallelität auf Instruktionsebene
seitens des Compilers kann ein Programmablauf mehr oder weniger stark beschleunigt ausgeführt
werden. Der Compiler versucht hierbei durch ein Überlappen bzw. auch ein Vertauschen der Rei-
henfolge der Befehle die Ressourcen der Hardware zeitlich besser einzusetzen.

Zu den Techniken, die auf Basis der Mikroarchitektur eingesetzt werden, um ILP auszunutzen, ge-
hören: Instruktionspipelining, superskalare Ausführung, Out-of-Order-Verarbeitung, Register-
Renaming, spekulative Ausführung, Branch Prediction und Multithreading. Durch Instruktions-
pipelining wird eine teilweise Überlappung der Ausführung von Instruktionen ermöglicht. Hier-
durch kann u. a. die Taktfrequenz erhöht werden. Als Steigerung kann die superskalare Ausfüh-
rung eingesetzt werden, bei der parallele Einheiten benachbarte Instruktionen ausführen, deren
Ausführung auch wieder im Pipelining-Verfahren stattfinden kann. Eine weitere Technik verwendet
die Out-of-Order-Verarbeitung. Bei dieser Methode nutzt man die Existenz von Programmcode
aus, der in keiner Datenabhängigkeit zu anderen Programmsequenzen steht, so dass dieser parallel
ausgeführt werden kann. Die Out-of-Order-Verarbeitung ist orthogonal zum Instruktionspipelining
und zur superskalaren Ausführung zu sehen und kann deshalb auch mit beiden Techniken kombi-
niert eingesetzt werden. Das Arbeiten mit Schattenregistern, auch Register-Renaming genannt, er-
möglicht die Vermeidung von Konflikten bei der Out-of-Order-Verarbeitung, was durch diese ver-
steckten internen Register ermöglicht wird. Die spekulative Ausführung von zukünftigen, wahr-
scheinlichen Codesequenzen mit möglichen Eingangsdaten zählt ebenso zu den Techniken zur Per-
formanzsteigerung wie die Sprungvorhersage (Branch Prediction). Bei dieser werden im Vorfeld
mögliche Ergebnisse von zukünftigen Sprungadressen berechnet, um den potentiellen Programmab-
lauf parallel zur derzeitigen Operation spekulativ fortzusetzen. Die hier vorgestellten Techniken
sind sowohl in Hardware realisierbar als auch mögliche Einsatzgebiete von Compilern.

Bei der Ausnutzung von Thread-Level-Parallelität muss die Anwendung in mehrere Funktionen
bzw. Threads einteilbar sein, die nebenläufig abgearbeitet werden können. In diesem Zusammen-
hang spricht man auch von Multithreading. Dieses Verfahren nutzt eine gröbere Granularität als die
des ILP aus. Die immer größer werdenden Wartezeiten auf Speicher oder andere Systemressourcen
können z. B. durch das Ausführen eines anderen Threads sinnvoll vom Prozessor genutzt werden.
Dieses „neue“ Programmierparadigma führt zu neuen Ansätzen bei der Anwendungsprogrammie-
rung, bei der nicht mehr nur durch schnellere Prozessoren ein Leistungszuwachs erzielt wird, son-
dern zusätzlich durch Ausnutzen inhärenter Anwendungsparallelität und das damit verbundene Ein-
führen von Threads.

2.4.5 Beispiele eingebetteter Prozessorkerne

Im Folgenden werden einige relevante, aktuelle eingebettete Prozessorkerne vorgestellt. Tabelle 2-3
stellt wesentliche Merkmale dieser eingebetteten Prozessorkerne gegenüber. Mit ihrer Hilfe lässt
sich ein erster Eindruck über die Einordnung der GigaNetIC-Prozessorarchitektur gewinnen, deren
Aufbau in Abschnitt 4.3 näher beschrieben wird. Die aufgezeigten Synthesewerte können in Kapitel
8 nachvollzogen werden. Zu den hier aufgetragenen Charakteristika zählen u. a. die maximale Ar-
beitsfrequenz, die stark abhängig von Technologie und Architektur respektive Anzahl der Pipeline-
stufen sein kann: von 33 MHz beim MCore in 360-nm-Technologie von Freescale mit nur drei Pi-
pelinestufen bis zu 1000 MHz beim IBM Power464 in 90-nm-Technologie mit siebenstufiger Pipe-

Kapitel 2. Eingebettete parallele Rechnerarchitekturen

40

line. Die typische Leistungsaufnahme variiert von 0,05 mW/MHz beim GigaNetIC-N-Core bis hin
zu 0,58 mW/MHz beim MIPS32 M24K und liegt damit um zwei bis drei Größenordnungen unter
der heutiger Desktop-CPUs (vgl. Abschnitt 8.3.1). Der Flächenbedarf (die Die-Größe) des Prozes-
sorkerns bzw. des Kerns mit zusätzlichem Speicher in Zusammenhang mit der Technologie und der
zu fertigenden Stückzahl entscheidet über die Herstellungskosten und damit auch über den Preis des
Endprodukts und ist daher ebenfalls von großer Bedeutung für das Gesamtsystem. Die Größen sind
abhängig von der Technologie, der Menge des integrierten Speichers und der zusätzlich integrierten
Peripherie. Die angegebenen Daten liegen hier zwischen 0,1 mm² beim ARM7TDMI-S, gefertigt in
90-nm-Technologie, und 5,8 mm² beim IBM Power 464, dem zugleich leistungsfähigsten Prozessor
der dargestellten Auswahl. Die Performanz der Prozessoren wird in dem Bewertungsmaß (vgl. De-
finition 4) DMIPS4 [68] angegeben. Dieser bereits 1984 von WEICKER vorgestellte Benchmark gilt
zwar seit einiger Zeit für die Bewertung von Desktop-CPUs als veraltet, wird aber im Bereich der
eingebetteten Prozessorkerne immer noch zur Charakterisierung der Leistungsfähigkeit verwendet.
Der Dhrystone-Benchmark ist ein synthetischer Benchmark, der die Leistungsfähigkeit bzgl. Inte-
ger- und Stringoperationen der Rechnerarchitektur bewertet. Er ist u. a. stark abhängig von der
Architektur, vom Compiler, dessen Codeoptimierung, dem Linker, und der eingesetzten Cache-
architektur. Dies spiegelt sich auch in den aufgetragenen Werten wider. Der N-Core mit einer sehr
einfach gehaltenen Struktur erreicht nur 0,51 DMIPS/MHz, wohingegen der flächengrößte Prozes-
sorkern Power 464 von IBM auf einen nahezu vierfach so hohen Effizienzwert (vgl. Definition 38)
von 2 DMIPS/MHz kommt.

Der ARM11MP-Prozessorkern ist, ebenso wie der GigaNetIC-N-Core-Prozessorkern multiprozes-
sorfähig, allerdings nur konfigurierbar mit bis zu vier Prozessoren, im Gegensatz zum GigaNetIC-
Prozessorcluster, der derzeit bis zu acht Prozessoren als eng-gekoppeltes MP-System unterstützt
(vgl. Kapitel 4). Für die Realisierung eines massiv-parallelen Chip-Multiprozessorsystems ist eine
kleine Die-Größe der Prozessorkerne von besonderer Bedeutung, vgl. Kapitel 8.

Zu den bedeutendsten Prozessorkernen in eingebetteten Systemen zählen derzeit die Produkte der
Firmen ARC, ARM, Freescale, Hitachi, MIPS und Tensilica. Im Bereich der FPGA-Softcores, also
der für FPGAs optimierten Prozessorkerne, sind der MicroBlaze von Xilinx, wie auch der NiosII
von Altera zu nennen, deren Die-Größen aufgrund der abweichenden Zieltechnologie in

Tabelle 2-3 nicht aufgelistet sind. Wichtig zu erwähnen ist außerdem, dass eine Vielzahl weiterer
Firmen als Lizenznehmer der vorgestellten Architekturen darauf aufbauende, eigene Produkte an-
bieten. Derzeit wird der Markt der eingebetteten Mikroprozessoren mit über 80 % Marktanteil von
ARM dominiert. Mehr als 2,3 Milliarden ARM-basierte Mikroprozessordesigns werden derzeit
jährlich gefertigt [69]. Weitere 200 Millionen integrierte Schaltkreise werden mit ARC-basierten
Mikroprozessoren pro Jahr gefertigt [70]. Bei eingebetteten Mikrocontrollern, also Systemen, die
zusätzlich Speicher, Peripherie und erweiterte Schnittstellen aufweisen, wird der Markt gegenwärtig
unter 40 Herstellern, die insgesamt mit mehr als 50 Architekturvarianten vertreten sind, aufgeteilt.

4 DMIPS steht für Dhrystone MIPS und beziffert die Anzahl erreichter Dhrystone-Benchmark-Durchläufe die eine

Verarbeitungseinheit pro Sekunde bewältigt, geteilt durch 1757. 1757 bezeichnet die Anzahl an Durchläufen, die eine

VAX11/780 Maschine erzielte. Diese galt als eine Ein-MIPS(Millionen Instruktionen pro Sekunde)-Maschine.

2.5 Speicher für eingebettete Systeme

41

Tabelle 2-3: Kenndaten ausgewählter eingebetteter Prozessorkerne

Hersteller Typ
CPU-

Frequenz
[MHz]

Pipelinestufen DMIPS
Typische Leis-
tungsaufnahme

[mW/MHz]

Die-Größe
[mm²]

Technologie
[nm]

Speicher
Flash / SRAM

Altera NiosII 200 6 250 k. A k. A. 65 - / -

ARC ARC 605 400 5 520 0,06 0,31 130 - / -

ARC ARC 625D 350 5 455 0,08 0,71 130 - / -

ARC ARC 710D 533 7 800 0,16 0,93 130 - / -

ARM ARM7TDMI-S 245 3 220 0,09 0,1 90 - / -

ARM 966E-S 470 5 517 0,11 0,38 90 - / -

ARM
ARM11MP
(mit Cache)

620 8 650 0,43 2,54 130 - / 16K+16K

ARM
ARM11MP

(ohne Cache)
620 8 k. A. 0,37 1,8 130 - / -

Freescale M-Core 33 3 31 0,41 2,2 360 - / -

IBM Power 405 400 5 608 0,19 2,0 90 0 / 32K

IBM Power 464-H90 1000 7 2000 0,53 5,8 90 0 / 64K

MIPS Technologies MIPS32 M4K Core 240 5 367 0,05 0,4 130 - / -

MIPS Technologies MIPS32 M24K Core 625 8 900 0,58 2,8 130 - / -

Renesas SH4-202 266 5 400 0,06 0,93 130 - / -

Tensilica Diamond 108Mini 250 5 300 0,11 0,46 130 - / -

Tensilica Diamond 570T 233 5 380 0,28 1,46 130 - / -

Xilinx MicroBlaze 5.00 210 5 240 k. A k. A 65 - / -

GigaNetIC N-Core 285 3 144 0,05 0,12 90 - / -

GigaNetIC N-Core-Subsystem 285 3 144 0,2 0,96 90 - / 32K

2.5 Speicher für eingebettete Systeme

Der Speicher stellt neben der Kommunikationsinfrastruktur und den Verarbeitungseinheiten die
dritte wichtige Hardwarekomponente für eingebettete parallele Systeme dar. Komplexe Systeme
verfügen häufig nicht nur über eine Art Speicher, sondern verwenden eine besonders aufeinander
abgestimmte Speicherstruktur. Dies liegt darin begründet, dass die einzelnen Speichervarianten un-
terschiedliche Eigenschaften und damit auch Vor- und Nachteile mit sich bringen, die es gilt mög-
lichst gut und an die potentielle Anwendung angepasst zu kombinieren.

Abbildung 2-15: Speicher-Hierarchie bei Prozessorsystemen

Als Grundregel lässt sich folgende Aussage treffen: Schneller Speicher benötigt viel Fläche und
Energie, großer (im Sinne der Speicherkapazität) Speicher ist langsam und benötigt weniger Ener-
gie pro Bit. Eine effiziente Speicherhierarchie versucht die Vorteile beider Speicherarten nutzbar zu
machen und maskiert bestenfalls deren Nachteile. Begünstigt werden diese Ansätze häufig durch

Kapitel 2. Eingebettete parallele Rechnerarchitekturen

42

die Anwendungen selbst, die oft eine deutliche „Lokalität“ in ihren Daten und Instruktionen aufwei-
sen. Diese Lokalität wird u. a. auch besonders von schnellen Zwischenspeichern, den so genannten
Caches (vgl. Abschnitt 4.4.2) ausgenutzt. Man unterscheidet zwischen räumlicher und temporaler
Lokalität. Unter räumlicher Lokalität werden Zugriffe auf Daten bzw. Instruktionen verstanden, die
in gleichen bzw. benachbarten Speicherbereichen liegen. Temporale Lokalität hingegen bezieht sich
auf zeitlich nah aufeinanderfolgende Zugriffe auf gleiche Daten bzw. Instruktionen. Abbildung 2-15
gibt Aufschluss über Kennwerte unterschiedlicher Speichervarianten und die sich hieraus ergebende
Speicher-Hierarchie für Prozessorsysteme.

Algorithmen sollten, wenn möglich, die Lokalität der Daten und Instruktionen ausnutzen bzw. so
implementiert werden, dass möglichst effizient mit der vorgegebenen Speicher-Hierarchie gearbei-
tet werden kann. Z. B. kann die Verwendung mehrerer Threads helfen, Speicherlatenzen zu verde-
cken. Bei Multiprozessorsystemen ist normalerweise Kommunikation zwischen den Übergängen
der einzelnen Hierarchiestufen bzw. zwischen verschiedenen Verarbeitungseinheiten notwendig.
Für den Algorithmus ist in dieser Situation wichtig, abwägen zu können, wie teuer, im Sinne von
Takten, die unterschiedlichen Speicherzugriffe bzw. die Kommunikation zu anderen Verarbeitungs-
einheiten und der Zugriff auf deren Speicher kommt. Das bedeutet, dass eine genauere Charakteri-
sierung dieser Zugriffszeiten für die spätere Anwendung und deren Realisierung von entscheidender
Bedeutung sein kann. Allerdings sind hier Mittelwerte anzunehmen, da z. B. bei wahlfreiem Zugriff
konkurrierende Anfragen mehrerer Verarbeitungseinheiten auftreten können. Vorteilhaft sind hier
Simulationen im Vorfeld mit der Möglichkeit der Parametrisierung der einzelnen Komponenten
unter Anwendung der vorgesehenen Zielapplikation, vgl. Kapitel 5. Ein auf diese Belange einges-
telltes Programmiermodell (vgl. Abschnitt 4.5) kann ebenfalls die Performanz des Gesamtsystems
deutlich optimieren.

2.5.1 Wesentliche Charakteristika von Speicherstrukturen

Neben der in der Speicherhierarchie vorgestellten Einteilung in primäre, sekundäre und tertiäre
Speicher, die durch die Distanz zur Verarbeitungseinheit definiert sind, gibt es weitere wichtige
Merkmale für Speicher.

Man unterscheidet zwischen flüchtigem und nicht-flüchtigem Speicher. Eine Eigenschaft, die be-
sagt, ob der Inhalt des Speichers erhalten bleibt, wenn er nicht mehr mit Spannung versorgt wird.
Mit den immer geringer werdenden Zugriffszeiten auch für nicht-flüchtige Bausteine finden diese
immer mehr Verwendung bei eingebetteten Systemen. Flüchtiger Speicher wird normalerweise nur
für Primärspeicher eingesetzt, da er eine hohe Performanz bietet, allerdings auch permanent mit
Spannung versorgt werden muss. Flüchtiger Speicher wiederum lässt sich unterteilen in die zwei
Hauptgruppen, den statischen und den dynamischen Speicher. Statischer Speicher wird normaler-
weise mit sechs Transistoren pro Bit realisiert und muss durchgängig mit Spannung versorgt wer-
den. Dynamischer Speicher hingegen kann mit einem Transistor und einer Kapazität als speichern-
dem Element pro Bit realisiert werden. Bei diesem Speichertyp müssen allerdings die Speicherstel-
len periodisch aufgefrischt werden, was einen zusätzlichen Aufwand an Kontrolllogik bedeutet.

Eine weitere Eigenschaft ist die Art und Weise, wie auf die Daten zugegriffen werden kann: Es
wird grundsätzlich zwischen wahlfreiem und sequentiellem Zugriff unterschieden. Bei wahlfreiem
Zugriff ist es möglich, beliebig oder in einem sehr großzügigen Rahmen auf Speicherzellen zuzug-
reifen. Bei sequentiellem Zugriff hingegen kann der Zugriff nur kontinuierlich in einer geordneten

2.5 Speicher für eingebettete Systeme

43

Reihenfolge erfolgen. Ein weiteres Merkmal ist die Möglichkeit der Informationsänderung. Handelt
es sich um einen reinen Lesespeicher, ROM (Read Only Memory), einen einmalig beschreibbaren
Speicher, Write Once Read Many (WORM), oder aber einen einmalig programmierbaren Speicher
(One-Time-Programmable / OTP), der z. B. schon bei der Fertigung programmiert wird. Speicher,
der wahlfreien Zugriff gestattet, RAM (Random Access Memory), wird zusätzlich nach seiner Tech-
nologie bzw. Realisierungsform näher unterschieden: SRAM, DRAM, DDRAM, VRAM und weitere.
Die Möglichkeiten der Adressierung sind ebenfalls von Bedeutung. So kann zwischen numerisch
adressiertem Speicher, bei dem jede Information mit einer numerischen Adresse erreichbar ist, und
inhaltsbasierter Adressierung unterschieden werden. Bei der inhaltsbasierten Adressierung, auch
Content Addressable Memories (CAM) genannt, werden für die Speicherinhalte mittels einer Streu-
wertfunktion, auch als Hash-Funktion bezeichnet, fingerabdruckähnliche Identifizierungsmerkmale
mit geringem Speicherbedarf erzeugt, mit deren Hilfe später die abgespeicherte Information wieder
abgerufen werden kann. Diese Art der Adressierung ist besonders für spezielle Speicher in Netz-
werkkomponenten von großer Bedeutung (vgl. Abschnitt 6.5). Die Realisierung kann in Software
unter Verwendung von herkömmlichem Speicher erfolgen. Diese Variante ist kostengünstig, aber
langsam. Oder aber die Funktionalität wird durch Implementierung spezieller Hardware, die vor die
Speicherzellen vorgeschaltet ist, realisiert, welches deutlich aufwändiger, aber auch wesentlich
schneller ist. Eine weitere Möglichkeit ist die Überlagerung der numerischen, maschinenlesbaren
Adressierung durch menschenlesbare Zuordnungen, wie es z. B. bei Dateisystemen üblich ist, die
ggf. durch ein Betriebssystem gepflegt werden.

Neben den bisher genannten Methoden und Technologien lassen sich Speicher auch durch messba-
re, qualitativ fassbare Parameter definieren:

Die Speicherkapazität CM gibt die Gesamtheit der zu speichernden bzw. abrufbaren Information des
Speichers in Bit bzw. Byte und deren Vielfachen an. Ein Bit ist die atomare Informationseinheit in
der Digitaltechnik und repräsentiert die zweiwertige Logik durch eine logische „0“ bzw. „1“. Ein
Nibble besteht aus vier Bits, und das Byte setzt sich aus zwei Nibbles zusammen. Die Definition,
dass ein Byte acht Bits umfasst, gilt für alle IBM-PCs und deren Nachfolger. Grundsätzlich be-
zeichnet ein Byte die Anzahl an Bits, die notwendig sind, um ein Symbol des Basis-Symbolvorrats
des Systems darzustellen. Die Notation größerer Speichermengen erfolgt häufig nicht SI-konform
durch dezimale Vielfache (k, M, G, etc.), sondern durch Vielfache von Zweierpotenzen (

10 202 =1024 K, 2 M≙ ≙ etc.).

Die Speicherdichte Mρ wird angegeben in Speicherkapazität/Fläche, also Bit/mm². Sie ist ein gutes

Maß, um die Flächenintensität verschiedener Speichervarianten abzuschätzen.

Die Latenz LM ist das Maß für die Zeitspanne, die benötigt wird, um die Informationen aus einer
bestimmten Speicherzelle auszulesen bzw. Daten in diese Speicherzelle zu schreiben. Aufgrund des
technologiebedingten, teilweise unterschiedlichen Zeitverhaltens von Speichern beim Lesen bzw.
Schreiben ist sinnvollerweise zwischen Lese-Latenz LM(R) und Schreib-Latenz LM(W) zu unterschei-
den. Ebenso sind minimale, maximale und durchschnittliche Latenz (min / max / avg LM(R/W)) beson-
ders bei sequentiellen Speichermedien als kennzeichnendes Leistungsmerkmal zu nennen.

Der Durchsatz DM gibt die zur Verfügung gestellte Datenmenge in Byte pro Sekunde [B/s] an.
Auch hier wird in Abhängigkeit von der Zugriffsart ebenso wie bei der Latenz differenziert.

Kapitel 2. Eingebettete parallele Rechnerarchitekturen

44

2.5.2 Anforderungen an eingebettete Speicher

Offensichtlich gibt es zwischen vielen der Anforderungen proportionale aber auch antiproportionale
Wechselwirkungen. So erhöht eine deutlich größere Kapazität die Kosten, und ein höherer Durch-
satz, z. B. hervorgerufen durch eine höhere Taktfrequenz, vergrößert die Leistungsaufnahme. Diese
konkurrierenden Anforderungen können durch Wahl einer anderen Technologie bzw. Speicherform
ggf. umgangen bzw. verringert werden. Allerdings sind dies zumeist Kompromisslösungen, bei de-
nen nie alle Ziele optimal erreicht werden können. Die Performanz eines Speichers wird im Allge-
meinen durch seine Latenz und den erzielbaren Durchsatz definiert. Die Kosten bzw. der Preis ge-
hen einher mit der Speicherkapazität, der dafür benötigten Fläche und der verwendeten Technolo-
gie. Die Leistungsaufnahme hängt, wie bereits erwähnt, von zahlreichen Faktoren ab, wobei für
viele Einsatzgebiete zusätzliche Funktionen wie z. B. flexibler Zugriff auf Speicherinhalte bestimm-
ter Größe, Fehlererkennungs- und Fehlerkorrekturmechanismen sowie Stromspar-Modi von beson-
derer Bedeutung sein können. Letztendlich spielen auch Eigenschaften wie Integrationsaufwand,
also die Existenz genormter Schnittstellen, bzw. eine genaue Spezifikation des benötigten Zeitver-
haltens eine Rolle. Eine Zusammenfassung der wesentlichen Anforderungen an eigebettete Speicher
im Kontext von Chip-Multiprozessoren wird in Abbildung 2-16, Abschnitt 2.7 gegeben.

2.6 Anwendungsgebiete von On-Chip-Parallelrechnern

Setzt man aus den in den vorherigen Abschnitten diskutierten Kernkomponenten On-Chip-
Netzwerk, eingebettete Verarbeitungseinheiten und Speicher, baukastenartig Systeme mit mehre-
ren Prozessorkernen zusammen und integriert diese auf einem Siliziumträger, so erhält man On-
Chip-Parallelrechner oder auch Chip-Multiprozessoren (CMP).

Heutige Anwendungen erfordern aufgrund wachsender Anforderungen und extrem rechenintensiver
Algorithmen in vielen Bereichen bereits parallele Verarbeitung. Dabei gestalten sich die An-
wendungsgebiete entgegen der weitläufig verbreiteten Meinung sehr vielfältig und beschränken sich
nicht nur auf Wissenschaft und Forschung, wie es vor einer Dekade noch vorwiegend der Fall war.
Zu den herausfordernden Einsatzgebieten für parallele Verarbeitung zählen u. a.: Berechnung glo-
baler Klimamodelle, Crashtest-Simulationen, dreidimensionale Modellierung auf Basis finiter Ele-
mente, Erdbebenvorhersage, Genforschung, militärische Forschung, quantentechnische Simulatio-
nen, Weltraumforschung, Wirtschaftsanalysen und medizinische Forschung allgemein. All diese
Anwendungsszenarien kommen wie erwartet aus den Bereichen Wissenschaft und Forschung. Im-
mer stärker jedoch treten Gebiete aus alltäglichen Lebensbereichen in Erscheinung und fordern im-
mensen Zuwachs an Rechenleistung. Zu diesen „neuen“ potentiellen Einsatzgebieten paralleler Re-
chensysteme, die häufig kompakte, SoC-basierte Realisierungen erfordern, zählen: Computerspiele
und Computergrafik allgemein, Multimedia-Anwendungen allgemein (z. B. Videobearbeitung in
Echtzeit, MPEG4 etc.), Physikbeschleuniger zur Simulation komplexer physikalischer Effekte (z.
B. in 3D-Spielen), Spracherkennung zur Computer-Maschinensteuerung etc. [71], Virtualisierung
(Emulation vieler / verschiedener Betriebssysteme auf einer Hardware z. B. bei Web-Hostern),
World-Wide-Web-basierte Suchmaschinen, massiv parallele Datenverarbeitung im Sinne von Netz-
werkanwendungen (z. B. Voice-over-IP, Tripple Play, Home-Video-Entertainment etc.). Diese Be-
reiche haben mittlerweile eine weitaus größere Marktmacht als die oben genannten Forschungsbe-
reiche und sind somit bereits als treibende Kräfte für die Entwicklung leistungsfähiger Parallelrech-
nerarchitekturen zu sehen. Dies wird u. a. durch die Entwicklung des bereits anfangs dieses Kapitels

2.7 Anforderungen an Chip-Multiprozessoren

45

erwähnten Cell-Prozessors deutlich, der hauptsächlich für den Home-Entertainmentbereich z. B. in
Spielekonsolen hergestellt wird. Die Tatsache, dass mit ihm auch Supercomputer realisiert werden
können ist aus kommerzieller Sicht zweitrangig.

Die Fertigung von SoCs in Nanometertechnologie wird immer teurer und die NRE(Non-Recurring-
Engineering)-Kosten für solche Entwürfe übersteigen die Millionen-Euro-Grenze bei weitem. Die
Einsetzbarkeit einer CMP-Architektur für den Massenmarkt und für viele Bereiche dieses Marktes
sind somit für einen wirtschaftlichen Erfolg zwingend notwendig. Skalierbarkeit, Wiederverwend-
barkeit und Flexibilität gepaart mit angemessener Leistung sind hier ausschlaggebende Kriterien.
Die weltweite Vernetzung hält mehr und mehr Einzug in unser tägliches Leben, und der damit ver-
bundene Informationsaustausch sowie die damit verbundene Informationsverarbeitung sind wesent-
liche Treiber für SoC-Designs. Folglich erscheint dieses Anwendungsgebiet als prädestiniert für
massiv-parallele Systeme. In Kapitel 7 wird deshalb die in dieser Arbeit entworfene GigaNetIC-
Architektur speziell für Netzwerkanwendungen analysiert und optimiert.

2.7 Anforderungen an Chip-Multiprozessoren

Im Folgenden werden zusammenfassend die wesentlichen Anforderungsmerkmale an Chip-Multi-
prozessoren aufgezeigt (vgl. Abbildung 2-16). Die dargestellte Merkmalsmatrix setzt allgemeine
Anforderungen an Schaltungsentwürfe sowie die speziellen Charakteristika der zuvor diskutierten
Kernkomponenten (On-Chip-Netzwerk / NoC, Verarbeitungseinheiten / PEs und Speicher / Mems)
und des resultierenden Chip-Multiprozessors (CMP) mit einander in Beziehung.

Die bilateralen Abhängigkeiten der Merkmale untereinander werden dabei in fünf Kategorien unter-
teilt. Bei Änderung eines Merkmals kann sich dies proportional, antiproportional oder auch unbes-
timmt auf ein anderes Merkmal auswirken. Bei der Proportionalität wird zwischen zumeist propor-
tional/antiproportional und proportional/antiproportional unterschieden. Diese Abstufung differen-
ziert so zwischen zwei Qualitäten. Bei einer zumeist proportionalen/antiproportionalen Beziehung
wird eine Tendenz angegeben, wohingegen bei proportionalen/antiproportionalen Zusammenhang
in der Regel die Aussage stets zutrifft5. Beispielsweise bedeutet ein höherer Durchsatz mehr Per-
formanz und steht somit in proportionaler Beziehung mit diesem Merkmal. Besteht der gleiche Zu-
sammenhang bei umgekehrter Reihenfolge der Merkmale (Vertauschung von Ursache und Wir-
kung) ebenfalls, so wird aus Gründen der Übersichtlichkeit das entsprechende Symbol weggelassen.
Die Felder in der rechten oberen Hälfte der Matrix sind dann grau unterlegt und „identisch“ zu ihren
Pendant in der linken unteren Hälfte der Matrix. Bei einer nicht kommutativen Beziehung der
Merkmale6 werden beide Hälften der Matrix zur Kennzeichnung genutzt. So bedingt z. B. ein höhe-
rer Preis nicht zwangsläufig eine höhere Performanz aber aufgrund höherer Performanz lässt sich
am Markt ein höherer Preis vertreten.

5 Abbildung 2-16 zeigt die typischen Beziehungen die im allgemeinen gelten, allerdings lassen sich immer Ausnahme-

szenarien finden, für die einige Gewichtungen anders formuliert werden können.

6 Siehe auch grafische Erläuterung in der Grafik selbst im linken oberen Bereich.

Kapitel 2. Eingebettete parallele Rechnerarchitekturen

46

Abbildung 2-16: Merkmalsmatrix für Chip-Multiprozes soren

Zu den Anforderungsmerkmalen zählen die bereits genannten Anforderungen wie Performanz,
Leistungsaufnahme, Flächenbedarf bzw. Kosten etc., aber auch weiterführende Ansprüche der
Hersteller und Kunden, wie z. B. Flexibilität und Skalierbarkeit. Der Implementierungsaufwand
umfasst die Maßnahmen, die notwendig sind um, die betreffende Systementität (vgl. Definition 2,
Kapitel 3) zu erstellen. Die Integration, hierzu zählen u. a. die Verifizierungsmöglichkeiten, Erwei-
terbarkeit und die Wiederverwendbarkeit, in ein Gesamtsystem sollte möglichst einfach sein und
durch eine ausgereifte Werkzeugkette bestmöglich unterstützt werden. Die Programmierbarkeit ei-
nes parallelen Systems sollte auf Hochsprachen basieren und möglichst benutzerfreundlich sein. Die
Performanz profitiert durch eine gute Ausnutzung der verschiedenen Parallelitätsgrade seitens des
CMPs wie ILP, TLP und PE-Level-Parallelität sowie durch eine hohe Bandbreite der externen
Schnittstellen. Letztendlich sollte der zusätzliche Verwaltungsaufwand (Overhead) durch die paral-
lele Struktur möglichst gering sein. Tiefergehende Charakterisierungen der aufgetragenen Merkma-
le werden in Kapitel 3 vorgestellt.

� proportionale Beziehung � antiproportionale Beziehung � nicht eindeutige Beziehung

� zumeist proportionale Beziehung � zumeist antiproportionale Beziehung identische Beziehung

 P
er

fo
rm

an
z

 D
ur

ch
sa

tz

 E
ch

tz
ei

tf
äh

ig
ke

it

 L
ei

st
un

gs
au

fn
ah

m
e

 E
ne

rg
ie

sp
ar

fu
nk

tio
ne

n

 F
lä

ch
en

be
da

rf

 V
er

r.
 d

.T
ec

hn
ol

og
ie

st
ru

kt
ur

gr
öß

e

 K
os

te
n

 P
re

is

 F
le

xi
bi

lit
ät

 F
un

kt
io

ns
um

fa
ng

 W
ie

de
rv

er
w

en
db

ar
ke

it

 S
ka

lie
rb

ar
ke

it

 E
rw

ei
te

rb
ar

ke
it

 F
eh

le
re

rk
en

nu
ng

 /
-t

ol
er

an
z

 I
m

pl
em

en
tie

ru
ng

sa
uf

w
an

d

 I
nt

eg
ra

tio
ns

au
fw

an
d

 L
at

en
z

 J
itt

er

 Q
oS

-U
nt

er
st

üt
zu

ng

 T
op

ol
og

ie
va

ria
nt

en

 E
nt

w
ic

kl
un

gs
um

ge
bu

ng

 D
eb

ug
m

ög
lic

hk
ei

te
n

 P
ro

gr
am

m
ie

rb
ar

ke
it

 K
ap

az
itä

t

 F
le

xi
bl

e
Z

ug
rif

fs
ar

t

 P
ro

gr
am

m
ie

rm
od

el
lfu

nk
tio

ne
n

 P
ar

al
le

lit
ät

so
ve

rh
ea

d

 G
ra

nu
la

rit
ät

sa
us

nu
tz

un
g

 G
üt

e
de

r
W

er
kz

eu
gk

et
te

 L
as

tb
al

an
ci

er
un

g

 S
yn

ch
ro

ni
si

er
un

gs
m

ec
ha

ni
sm

en

Performanz � � � � � � � � � � � �

Durchsatz � � � � � � � � � �

Echtzeitfähigkeit � � � � � � � �

Leistungsaufnahme �

Energiesparfunktionen � � � � � � � � �

Flächenbedarf �

Verr. d.Technologiestrukturgröße �

Kosten �

Preis � � � � � � � � � �

Flexibilität � � � � � � � � � � � � � � � � �

Funktionsumfang � � � � � � � � � � � � �

Wiederverwendbarkeit � � � � � � � � � � � �

Skalierbarkeit � � � � � � � � � � � � �

Erweiterbarkeit �

Fehlererkennung / -toleranz � � � � � � � � � � � � � � � � �

Implementierungsaufwand � � � � � � � � � � � � � � � �

Integrationsaufwand �

Latenz �

Jitter �

QoS-Unterstützung �

Topologievarianten �

Entwicklungsumgebung �

Debugmöglichkeiten �

Programmierbarkeit �

Kapazität �

Flexible Zugriffsart �

Programmiermodellfunktionen �

Parallelitätsoverhead �

Granularitätsausnutzung �

Güte der Gesamtwerkzeugkette �

Lastbalancierung �

Synchronisierungsmechanismen �

A
nf

or
de

ru
ng

en
 a

n
C

hi
p-

M
ul

tip
ro

ze
ss

or
en

C
M

P
M

em
P

E
s

N
oC

A
llg

em
ei

n
Anforderungen an Chip-Multiprozessoren

CMPAllgemein NoC PEs Mem

2.8 Varianten eingebetteter paralleler Rechnerarchitekturen

47

Ein interessanter Ausspruch von HALFHILL , Microprocessor Report, lautet: „The Key to Massive
Parallelism: Think Small“ [72]. HALFHILL sieht dies im Zusammenhang mit dem Anwendungsge-
biet des Systems. Die Geschichte habe gezeigt, dass massiv parallele Systeme stets erfolgreich war-
en, wenn sie für eng eingegrenzte Problemstellungen verwendet wurden, anstatt den Anspruch der
Universalität verfolgt zu haben. Bei der GigaNetIC-Architektur wird dieses Prinzip in gewisser
Weise zweifach verfolgt, ohne jedoch den Anspruch als universelle Chip-Multiprozessor-
Architektur aufzugeben. Zum einen wird zunächst ein universell einsetzbares System entworfen
(vgl. Kapitel 4), das dann durch die speziell entwickelte Werkzeugkette auf eine dedizierte Anwen-
dung optimiert werden kann (vgl. Kapitel 5 und 6). Zum anderen wird bei der Architekturkonzepti-
on auf überschaubare Blöcke mittlerer Komplexität geachtet. Der vorgesehene Prozessorkern ist
absichtlich „klein“ im Sinne von Befehlssatz, Pipelinetiefe, Sprungvorhersage und spekulativer
Ausführung etc. gehalten, um die Grundstruktur des Parallelsystems nicht zu überladen. Zusätzlich
benötigte Funktionen oder Hardwarebeschleuniger lassen sich vor Fertigstellung des Chips leicht
integrieren, vgl. Kapitel 6 und 7.

2.8 Varianten eingebetteter paralleler Rechnerarchitekturen

Im Folgenden werden ausgewählte Ansätze für CMPs vorgestellt. Kann dieser Überblick zwar nicht
den Anspruch an Vollständigkeit erheben, da aufgrund der neuesten Paradigmenwechsel im Bereich
von Prozessorstrukturen eine Vielzahl von Forschungsaktivitäten veröffentlicht wird, so gibt er
doch einen repräsentativen Einblick in aktuelle Architekturen.

Chip-Multiprozessoren werden häufig auch als Single-Chip-Multiprozessoren bezeichnet, da sie
mehrere eigenständige Prozessoren auf einen Chip vereinen. Hierbei lassen sich verschiedene Or-
ganisationsformen bezüglich der Speicherorganisation und der Kommunikationsmöglichkeiten (In-
terconnection) der einzelnen Prozessoren untereinander unterscheiden. Die geläufigsten Organisati-
onsformen von Chip-Multiprozessoren sind der Symmetric Multiprocessor (SMP), der Distributed
Shared Memory Multiprocessor (DSM) und der Message-Passing Shared-Nothing Multiproces-
sor (vgl. [73]). Beim SMP und DSM teilen sich die Prozessorelemente einen gemeinsamen Adress-
raum.

Der SMP verfügt über einen globalen Hauptspeicher, der von allen Prozessoren gemeinsam genutzt
wird. Die Speicherzugriffszeit ist für jede Adresse und für jeden Prozessor gleich, weshalb der Zu-
griff auch als Uniform Memory Access (UMA) bezeichnet wird.

Beim DSM ist dieser Hauptspeicher auf die einzelnen Prozessoren verteilt, so dass jeder einen loka-
len Speicher besitzt, der aber in einen globalen Adressraum eingegliedert ist. Hierbei sind allerdings
die unterschiedlichen Zugriffszeiten zu berücksichtigen, denn lokaler Speicher kann schneller er-
reicht werden als ein Speichersegment, das zu einem fremden Prozessorelement gehört. Man spricht
hier auch von Nonuniform Memory Access (NUMA).

Shared-Nothing-Prozessoren haben keinen gemeinsamen Adressraum und der Arbeitsspeicher ist
physikalisch auf die einzelnen Prozessorelemente verteilt. Deshalb können die einzelnen Prozesso-
ren nur über das Message-Passing-Verfahren miteinander kommunizieren. Diese Art von Multipro-
zessor lässt sich aufgrund ihrer regelmäßigen Struktur sehr hoch integrieren, allerdings schwerer
programmieren als die Multiprozessoren, die sich den Adressraum teilen. Abbildung 2-17 führt die

Kapitel 2. Eingebettete parallele Rechnerarchitekturen

48

besprochenen Architekturen kurz ein, berücksichtigt jedoch nicht die Cache-Organisation der ein-
zelnen Prozessor-Elemente.

Abbildung 2-17: Organisationsformen von Multiprozessoren (vgl. [73])

Bei CMPs werden bzgl. der Parallelität folgende Grain-Level (Granularitätsstufen) unterschieden:

• mehrere Prozesse bzw. Anwendungen, die parallel abgearbeitet werden,

• mehrere Threads, die zu einer Anwendung gehören und die parallel abgearbeitet werden,

• Threads, die aus einem sequentiellen Programm extrahiert werden.

Abbildung 2-18: Typische Varianten von SMP-Architekturen im Überblick (vgl. [73])

In Abbildung 2-18 werden einige typische Implementierungsformen von Shared Memory-CMPs
gezeigt. Je nach Implementierung kann sich die gemeinsame Nutzung auf den Hauptspeicher be-
schränken oder aber bis hin zur gemeinsamen Benutzung des Primär-Caches gehen.

Verbindungsstruktur

Prozessor

gemeinsamer Speicher

Prozessor

(SMP) Symmetric Multiprozessor

Prozessor Prozessor

(DSM) Distributed-Shared-Memory
Multiprozessor

Prozessor Prozessor

Message-Passing
(shared-nothing) Multiprozessor

Globaler Speicher Physikalisch verteilter Speicher

G
e
m
e
in
s
a
m
e
r
A
d
re
s
s
ra
u
m

V
e
rt
e
il
te
r
A
d
re
s
s
ra
u
m

Senden Empfangen

Verbindungsstruktur

Verbindungsstruktur

Lokaler
Speicher

Lokaler
Speicher

Lokaler
Speicher

Lokaler
Speicher

2.8 Varianten eingebetteter paralleler Rechnerarchitekturen

49

2.8.1 Beispiele zu Chip-Multiprozessoren

Selbstverständlich sprengte eine „enzyklopädische“ Gesamtschau aller existierenden Chip-
Multiprozessoren den Rahmen dieser Arbeit. Vielmehr sollen, mit Hilfe der hier getroffenen Aus-
wahl, repräsentative Beispiele geliefert werden, die ganz besondere Charakteristika von CMPs auf-
weisen. Diese lassen sich teilweise so oder ähnlich in der entworfenen GigaNetIC-Architektur wie-
derfinden. Wie bereits in Abbildung 2-6 aufgezeigt, kann die Konzeption eines Chip-
Multiprozessors nach einem Baukastenprinzip erfolgen, bei dem jeweils aufeinander angepasste
Komponenten das Gesamtsystem formen. Wesentlich ist, dass hier nicht die Performanz einer ein-
zelnen Kernkomponente über den Erfolg entscheidet, sondern das Zusammenspiel aller Elemente
die Leistungsfähigkeit der Architektur definiert.

Zahlreiche Ansätze aus der Literatur verwenden busbasierte Architekturvarianten, vgl. Abbildung
2-7 a). Zu diesen Architekturen gehört z. B. die ATLAS Chip-Multiprozessorarchitektur [74]. OLU-

KOTUN et. al verfolgen mit ihrem vierfach-parallelen Zwei-Wege-CMP ein ähnliches Konzept [75].
Hier fungiert allerdings ein Kreuzschienenverteiler (ähnlich Abbildung 2-7 b)) als Schnittstelle zum
gemeinsamen Cache und würde für eine größere Anzahl von Verarbeitungseinheiten einen Fla-
schenhals bedeuten. CMPs, bei denen die Verarbeitungseinheiten über nicht-hierarchische Topolo-
gien, sondern basierend auf Bussen, Multiplexern oder Kreuzschienenverteilern miteinander ver-
bunden sind, sind nur als vorübergehende Lösungen zu sehen. Diese Topologievarianten ohne Hie-
rarchie skalieren im Sinne von Definition 35 nicht und eignen sich nicht für massiv parallele einge-
bettete Systeme, sondern erlauben nur die effiziente Integration einiger weniger Verarbeitungsein-
heiten, siehe auch [76]. In [77] wird ein Ansatz gezeigt, wie busbasierte CMP-Ansätze mit Hilfe
eines überlagerten „Butterfly-Fat-Tree“-Netzwerks, also einer zusätzlichen Hierarchie, zu skalier-
baren System-on-Chip-Architekturen erweitert werden können. Inwieweit dies allerdings für reale
Systeme umsetzbar ist, wurde noch nicht gezeigt.

Viele der in der Literatur untersuchten CMP-Architekturen sind noch nicht in Hardware realisiert,
sondern wurden auf Basis von Simulationen und Abschätzungen untersucht, so dass eine abschlie-
ßende Verifikation dieser Systeme noch aussteht.

2.8.2 Ansätze für Chip-Multiprozessoren mit akademischem Ursprung

Raw, MIT. Der Raw-Chip-Multiprozessor unterteilt sich in 16 gleichförmige Kacheln, die aus ei-
nem MIPS-basierten Prozessor mit acht Pipelinestufen, einem programmierbaren Routerblock, ei-
ner vierstufigen Fließpunkt-Einheit, 32 KByte Datencache und 96 KByte Instruktionscache beste-
hen. Der Gesamtentwurf umfasst 122 Millionen Transistoren und ermöglicht eine Taktfrequenz von
225 MHz in einer 150-nm-Technologie. Die 16 Kacheln beanspruchen insgesamt 331 mm². Die
Leistungsaufnahme wird mit 25 W abgeschätzt [78][79]. Die in vier Richtungen gehenden Busse
zur Verbindung der Nachbarkacheln ermöglichen die Übertragung der Daten innerhalb eines Tak-
tes. Die maximale Länge der Verbindungsleitungen zwischen den Nachbarkacheln entspricht genau
der Kantenlänge einer Kachel. Global Wires werden somit kurz gehalten. Die Verbindungsstruktur
bietet zwei statische und zwei dynamische (Wormhole-Switching-basierte) Routen zu den jeweili-
gen Nachbarkacheln. Die Steuerung des On-Chip-Netzwerks wird komplett in Software gelöst und
erlaubt dem Programmierer oder dem Compiler so größtmögliche Realisierungsfreiheit. Das Rou-
ting des Ergebnisses einer Arithmetik-Berechnung zur nächsten Kachel benötigt drei Takte. Teile
der Netzwerkverbindungen sind direkt in die Pipeline des jeweiligen Prozessors eingebunden und

Kapitel 2. Eingebettete parallele Rechnerarchitekturen

50

ermöglichen so direkten Zugriff seitens des Prozessors auf Netzwerkressourcen. Der Raw-Prozessor
ist in Hochsprachen wie C oder Java programmierbar und stellt einen eigenen Compiler zur Verfü-
gung. Extern lassen sich bis zu 64 Raw-Chips in beliebiger rechteckiger Anordnung kombinieren
und ermöglichen so ein Konglomerat von insgesamt 1024 Kacheln bzw. Einzelprozessoren.

Hydra, Stanford. Der Hydra-Chip-Multiprozessor ist im Rahmen eines Forschungsprojekts der
Universität Stanford entstanden [80]. Er umfasst vier MIPS-basierte Prozessorkerne mit eigenem
Level-1-Daten- und Instruktions-Cache und gemeinsamem Level-2-Cache. Die Verbindung ist bus-
basiert. Die Autoren skizzieren eine maximale Ausbaumöglichkeit des Systems von bis zu acht Pro-
zessoren, wobei jeder dieser Prozessorkerne einen direkt gekoppelten Coprozessor ansteuern kann.
Sie geben allerdings zu bedenken, dass für eine größere Anzahl von Prozessoren andere, z. B. hie-
rarchische Verbindungsstrukturen zu implementieren wären. Die benötigte Fläche in einer 250-nm-
Technologie mit vier Prozessorkernen wird mit 90 mm² angegeben, mit je 8 KByte Daten- und In-
struktionscaches und 128 KByte gemeinsamem Cache. Die angestrebte Taktfrequenz wird mit
250 MHz angegeben.

Daytona Multiprozessor DSP. Der Daytona ist ein Vierfach-MIMD(Multiple Instruction Multiple
Data)-DSP mit vier 64-Bit-Verarbeitungseinheiten [81]. Die vier 32-Bit-RISC-Prozessorkerne vom
Typ Sparc V8 mit einer fünfstufigen Pipeline verfügen über DSP-Erweiterungen sowie je eine eng-
gekoppelte Coprozessoreinheit. Die Verarbeitungseinheiten sind über rekonfigurierbare Level-1-
Caches an einen Split-Transaction-Bus (STBus) angeschlossen. Als Cache-Kohärenzprotokoll wird
ein modifiziertes MESI-Protokoll verwendet (vgl. Abschnitt 4.4.2). Ein eingebettetes RTOS (Real
Time Operating System / Echtzeitbetriebssystem) übernimmt die Einteilung der Verarbeitungsein-
heiten auf anfallende Aufgaben. Eine Synchronisierung der Prozesse wird über Semaphore erreicht.
Der 200 mm² große, in 250-nm-Technologie gefertigte Chip arbeitet mit 100 MHz und nimmt ca.
4 W auf.

PipeRench, Carnegie Mellon University. Die PipeRench-Architektur ist eine rekonfigurierbare
Architektur, die ohne spezielle Hardwareerweiterungen an anwendungsspezifische Probleme ange-
passt werden kann [82]. Allerdings ist laut [82] der Ansatz hier anders als bei herkömmlichen
FPGAs (Field Programmable Gate Arrays). PipeRench ist speziell für Berechnungen ausgelegt, die
durch die „Pipeline Reconfiguration“-Technik besonders unterstützt werden. Hierunter wird eine
Rekonfiguration der einzelnen Pipelinestufen verstanden, bei p physikalisch vorhandenen Stufen
werden v Stufen emuliert, mit p < v. Die Konfigurationszeit beeinflusst die Verarbeitung nicht
nachteilig und geschieht innerhalb eines Taktes. Die globale Verbindungsstruktur ist busbasiert. Die
einzelnen Verarbeitungseinheiten sind acht Bit breit, können aber zu größeren Bitbreiten kombiniert
werden. Wesentliche Bestandteile der Architektur sind die globalen Busse, die in Streifen angeord-
neten Verarbeitungseinheiten und Übergaberegister. Das System umfasst 256 Verarbeitungseinhei-
ten, die in 16 Streifen kaskadierbar angeordnet sind, und lässt sich in C, mit Hilfe des mitgelieferten
Compilers, programmieren.

Bevor sich die Diskussion der Merkmale der vorgestellten Chip-Multiprozessoren anschließt, sollen
im Anschluss an die geschilderten Ansätze akademischer Herkunft nun weitere Ansätze für Chip-
Multiprozessoren aus der Industrie charakterisiert werden, die ebenfalls zum Vergleich mit der
GigaNetIC-Architektur herangezogen werden.

2.8 Varianten eingebetteter paralleler Rechnerarchitekturen

51

2.8.3 Ansätze für Chip-Multiprozessoren aus der Industrie

Um einen Überblick über die Anstrengungen, die im Bereich von Chip-Multiprozessoren unter-
nommen werden, zu geben, reicht es nicht aus, nur Ansätze aus dem Bereich der akademischen For-
schung zu beleuchten. Einfluss auf zukünftige Architekturen (vgl. Definition 3) werden in nächster
Zeit besonders die ausgewählten Beispiele der großen, etablierten Universal-Prozessorhersteller wie
Intel, AMD und IBM nehmen. Diese Unternehmen verfügen über das Kapital und die Humanres-
sourcen, um solche komplexen und extrem kostenaufwändigen Entwicklungen zu realisieren. Die
Produktstrategien bzw. „Roadmaps“ und Architekturvarianten dieser und anderer relevanter Hers-
teller im Zusammenhang mit CMPs werden im Folgenden kurz vorgestellt.

DRP, NEC. NEC hat mit dem Dynamically Reconfigurable Processor ein synchrones Prozessor-
feld bestehend aus bis zu 512 Verarbeitungseinheiten entwickelt [83]. Der DRP verfügt über eine 8-
Bit-Genauigkeit und ist in 150-nm-Technologie gefertigt und mit 133 MHz zu betreiben. Seine Da-
tenpfade sind innerhalb eines Taktes umkonfigurierbar. Sein Haupteinsatzgebiet sind Bereiche, in
denen bisher DSPs (Digitale Signalverarbeitungs-Prozessoren) verwendet wurden, er lässt sich aber
auch als Netzwerkprozessor nutzen.

XPU128 / XPP III, PACT. Die XPU- und XPP-Serie von PACT sind rekonfigurierbare Felder mit
einfachen Arithmetikeinheiten (ALUs), die sich besonders für Stream-Anwendungen, also z. B.
Videoverarbeitung eignen. Die PACT-Architekturen verfügen über ein effizientes Rekonfigura-
tionsmanagement und lassen sich so auf verschiedene Anwendungsgebiete optimieren. Horizontal
geschieht die Punkt-zu-Punkt-Verbindung der ALUs über Routingbusse, vertikal sind die ALUs
direkt miteinander verbunden. Zusätzlich sind dedizierte Verbindungen der einzelnen Einheiten
vorgesehen. Die Datenbreite kann zwischen 16, 24 und 32 Bit gewählt werden. Die Datenübertra-
gung innerhalb des Chips geschieht über das paketorientierte On-Chip-Netzwerk. Die XPU128 war
im Jahr 2000 der erste einsatzbereite Chip der Firma PACT und umfasste bereits 128 ALU-
Verarbeitungseinheiten, die mit angestrebten 100 MHz in 150-nm-Technologie betrieben werden
konnten. Die XPP-III-Architektur ist der kommerziell eingesetzte, in C programmierbare Nachfol-
ger [84][85].

Piranha, Compaq. Die in der Forschung von Compaq entwickelte Piranha-Architektur [86] be-
schreibt eine achtfach-parallele Struktur mit einfachen Alpha-Prozessorkernen, die über jeweils ei-
nen eigenen Daten- und Instruktions-Cache mit je 64 KByte verfügen und sich einen Level-2-Cache
teilen, mit dem sie über einen so genannten Intra-Chip-Switch verbunden sind. Die Prozessoren
sollen in einer 180 nm-Technologie mit 500 MHz betrieben werden können. Zur weiteren Erhöhung
der CPU-Anzahl verfügt das System über einen integrierten Router mit zwei Protokoll-Einheiten,
der den Anschluss weiterer Piranha-Chips übernimmt. Die von Compaq verfolgte Entwurfsmetho-
dik begann mit einer Spezifizierung des Systems in C++, dem eine Verfeinerung der einzelnen Blö-
cke in der Hardwarebeschreibungssprache Verilog folgte.

KiloCore, Rapport. Die derzeit aktuelle Chip-Variante KC256 von Rapport basiert auf Rapports
KiloCore-Architektur. Er umfasst 256 Prozessorkerne, die mit 8-Bit-Daten- und Befehlsbreite arbei-
ten und ist in 180-nm-Technologie realisiert [87]. Die maximal erreichbare Betriebsfrequenz wird
mit bis zu 125 MHz angegeben. Die Leistungsaufnahme des KC256 soll Rapport zufolge unter
500 mW liegen. Der 1025 Kerne umfassende KiloCore soll 2007 in 90-nm-Technologie realisiert
werden. Er wird über 1024 8-Bit-Verarbeitungseinheiten verfügen, die von einem PowerPC-Kern
kontrolliert werden. Die Architektur soll außerdem rekonfigurierbar sein, wobei die Rekonfigurati-

Kapitel 2. Eingebettete parallele Rechnerarchitekturen

52

on nur einen Takt benötigt. Über die Kommunikationsstruktur sind noch keine Details bekannt, al-
lerdings lässt sich eine überlagerte Busstruktur anhand der Blockdiagramme vermuten. Einsatzge-
biete sollen u. a. Videoverarbeitungsalgorithmen sein, bei denen er um den Faktor zehn schneller
sein soll als aktuelle Prozessoren.

GPUs, nVIDIA und ATI . nVIDIA und ATI sind namhafte Hersteller für Grafikchips für PCs und
stellen bereits seit mehr als einer Dekade massiv parallele Coprozessoren zur Grafikbeschleunigung
her. Die neueste Generation der nVIDIA Grafikbeschleuniger, die GeForce 8800, integriert 128 so
genannte „StreamProzessoren“, die bei Verwendung einer 90-nm-Technologie mit bis zu 1,35 GHz
getaktet werden [88]. nVIDIA kooperiert mit Forschungsinstituten, die die nVIDIA-Grafik-
prozessoren für komplexe Berechnungen, z. B. für medizinische Zwecke einsetzen und dadurch
eine Beschleunigung von mehr als 25, verglichen zu herkömmlichen CPUs, erreichen. ATIs neueste
Consumer-Grafikkarten werden in 80- bzw. 65-nm-Technologie gefertigt und vereinen bis zu 720
Millionen Transistoren auf einem Chip, die unter anderem für 64 parallele komplexe 4-Wege-
SIMD(Single Instruction Multiple Data)-Einheiten benötigt werden [89].

PhysX, Ageia. Ageia hat mit dem PhysX einen speziell für die Beschleunigung physikalischer Phä-
nomene konzipierten Chip-Multiprozessor (Physikbeschleuniger) entwickelt, der über Dutzende
von eingebetteten Prozessoren verfügt und vor allem für 3D-Computer-Spiele auf Coprozessor-
Karten eingesetzt wird [90]. Der Chip soll über 125 Millionen Transistoren integrieren und eine
Die-Größe von 182 mm² in 130-nm-Technologie haben. Die Leistungsaufnahme beschränkt sich
auf 25 W.

Intels Weg vom „Single Core“ über „Multi Cores“ zu „Many Cores“. Intel hat seit der Einfüh-
rung des ersten Ein-Chip-Mikroprozessors 1971, des Intel 4004, eine Flut von Verbesserungen und
neuartigen Prozessor-Architekturen präsentiert. Mit steigender Taktfrequenz, beim Pentium 4 der
Netburst-Architektur bis zu 3,8 GHz, stieg jedoch auch die Leistungsaufnahme trotz neuester Tech-
nologie bis auf 115 W (Intel Pentium 4, 672) weiter an. Dies bedeutete eine Stromaufnahme von
119 A, die von einem Die der Größe von nur 135 mm² (in 90 nm-Technologie, 165 Millionen Tran-
sistoren) aufgenommen werden musste. Die zuvor von Intel angestrebte maximale Frequenz von
10 GHz für diese Architektur konnte aus zahlreichen technischen Gründen nicht erreicht werden, so
dass die Entwicklung bereits bei unter 4 GHz eingestellt wurde [3]. Das von nun an verfolgte Archi-
tektur-Paradigma lautete: Mehrere Prozessoren, „Multi Cores“, bei geringerer Taktfrequenz. Es
wurde mit der Intel-Core-Architektur erfolgreich umgesetzt. Die Core-Architektur wird auch als
achte x86-Architektur geführt. Die Mitte 2006 eingeführte Core-2-Prozessorlinie, in 65-nm-
Technologie gefertigt und bis zu 2,93 GHz operabel, hat eine deutlich reduzierte Leistungsaufnah-
me von 65 W bei einer Chipfläche von 144 mm² und 291 Millionen Transistoren. Sie verfügt über
zwei Prozessorkerne, 64 KByte Level-1-Cache und 4 MByte Level-2-Cache. Seit Anfang 2007 hal-
ten die ersten Vierkern-Prozessoren Einzug in Standard Desktop-PCs. Hierbei handelt es sich um
die „Core 2 Quad“-Familie, bei der zwei einzelne Dies in einem Prozessorgehäuse untergebracht
sind. Die Variante Q6600 arbeitet mit 2,4 GHz Kerntakt und beansprucht pro Die 143 mm² bei ei-
ner Strukturgröße von 65 nm. Die Leistungsaufnahme des gesamten Chips beziffert Intel zu 130 W.
Der neuartige Cache wird jeweils von den beiden zugehörigen Verarbeitungseinheiten genutzt, wo-
bei die Speicherzuteilung dynamisch geschieht. Außerdem können die beiden Kerne gegenseitig
Daten über ihn austauschen, was verglichen mit Hauptspeicherzugriffen äußerst effizient ist. Auch
wurde hinsichtlich der Reduktion der Leistungsaufnahme eine Vielzahl von Mechanismen einge-

2.8 Varianten eingebetteter paralleler Rechnerarchitekturen

53

baut, wie z. B. bereichsbezogene Spannungsvariation und Clock Gating sowie Abschaltung des Ca-
ches. Die Core-Architektur ist die erste vierfach-superskalare Intel-Architektur, die eine simultane
Abarbeitung von vier Mikrooperationen ermöglicht.

Intels zukunftsweisendes Tera-Scale-Projekt zielt auf massiv parallele Systeme mit einigen hundert
integrierten Prozessorkernen ab. Zu den bedeutendsten Anforderungen, die durch die Tera-Scale-
Architektur erfüllt werden sollen, zählt Intel die einfache, effektive Programmierbarkeit („Prog-
rammability“) mit einem ausgereiften Programmiermodell und komfortabler Entwicklungsumge-
bung. Die nächste Anforderung ist „Adaptability“, d. h. die Plattform soll anpassbar an verschiede-
ne Aufgaben und Lastverteilungen sein. Außerdem soll die Hardware an verschiedene Umgebungen
in Bezug auf z. B. Leistungsaufnahme und Formfaktor anpassbar sein. “Reliability” nennt Intel als
weiteres Schlagwort. D. h. die Plattform soll trotz der großen Komplexität noch zuverlässiger als
die bisherigen Entwürfe sein. „Trust”, also Vertrauen soll die Plattform erwecken, um so Kunden
von dem neuen Konzept zu überzeugen. Abschließend wird „Scalability“, die Skalierbarkeit der
Architektur in Bezug auf Hardware und Software als wesentliche Anforderung formuliert. Die sehr
modular gehaltene Architektur integriert Hardwarebeschleuniger, optimierte Prozessorkerne und
skalierbare On-Chip-Verbindungsstrukturen. Dieser Ansatz wird von Intel als vielversprechende
Lösung für die Abdeckung vieler Märkte propagiert7. Als Treiber für den Kurswechsel in der Archi-
tektur gibt Intel Performanz, Leistungsaufnahme und kurze Entwicklungszyklen an. Intel stellte
diesen neuen Ansatz erstmals 2006 der Öffentlichkeit vor [91]. Drei bzw. vier Jahre vorher postu-
lierten wir in [6] und [14] bereits sehr ähnliche Ansätze. Hieran zeigt sich, dass der von uns damals
beschrittene Weg zukunftsweisend ist.

Intels aktuelle 80-Prozessor-Architektur „Polaris“, die zunächst unabhängig vom Tera-Scale-
Projekt entwickelt wurde, basiert auf einem Gitter mit 8×10 identischen Verarbeitungseinheiten,
wobei der einzelne Kern bis zu acht Instruktionen gleichzeitig verarbeiten kann [92]. Der lokale
Speicher ist sehr klein bemessen. Jeder Kern verfügt über 2 KByte Daten- und 3 KByte Instrukti-
onsspeicher. Die Anbindung an das On-Chip-Netzwerk übernimmt ein leistungsstarker Routingkno-
ten. Er ermöglicht einen akkumulierten Durchsatz von 80 GByte/s8 bei 4 GHz. Jeder Port ist dabei
über je 2×39 Signalleitungen mit dem Nachbarknoten verbunden. Die Struktur eines solchen Rou-
ters sieht vier Verbindungsschnittstellen (Ports) zu anderen Knoten vor und einen Port für die Ver-
bindung eines zusätzlichen SRAMs. Ein Polaris-Kern benötigt ca. 1,2 Millionen Transistoren, die
auf einer Fläche von 3 mm² in 65 nm-Technologie Platz finden. Die Recheneinheiten beinhalten
eine neun-stufige Pipeline. Bei der Polaris-Architektur wurden zahlreiche Optimierungen wie z. B.
Clock Gating, bezüglich der Leistungsaufnahme vorgenommen, so dass der gesamte Chip bei
3,16 GHz nur ca. 62 W aufnimmt. Erhöht man die Taktfrequenz auf 5,7 GHz, so nimmt die Leis-
tungsaufnahme um mehr als das Vierfache auf 265 W zu. Auch hier zeigt sich der nichtlineare Zu-
sammenhang zwischen Steigerung der Betriebsfrequenz und der resultierenden Leistungsaufnahme
eines Chips. Der Polaris-Chip bietet auf der Fläche eines Daumennagels genauso viel Rechenleis-

7 Intel arbeitet u. a. an Grafikchips mit dem Codenamen „Larrybee“, die über 16 eingebettete Prozessorkerne verfügen,

die auf x86/SSE-Codebasis beruhen und den gleichen Befehlssatz wie die Tera-Scale-Architektur verwenden.

8 Lt. Intel, nach bestehender Nomenklatur 74,51 GByte/s.

Kapitel 2. Eingebettete parallele Rechnerarchitekturen

54

tung wie vor 11 Jahren in Dienst gestellte Supercomputer, die auf über 200 m² Fläche untergebracht
werden mussten [92].

Opteron, AMD. AMD ist seit dem Zeitalter der 386er-Prozessorgeneration Intels größter Konkur-
rent, der mal schnellere und mal weniger effiziente Architekturansätze, verglichen mit Intel, her-
vorgebracht hat. Interessant ist, dass AMD eher als Intel in Bezug auf das Streben nach immer hö-
heren Taktfrequenzen einen anderen Weg eingeschlagen hat und recht bald nicht mehr die tatsächli-
che Frequenz seiner CPUs als Verkaufsargument verwendete, sondern seine Prozessoren mit einer
fiktiven Taktfrequenz bewarb, die mit der Leistung einer entsprechenden Intel-Architektur ver-
gleichbar waren. AMD stellte 2007 die erste, auf einem Die integrierte Vierfach-Desktop-/Server-
CPU, den Opteron Quad-Core-Prozessor vor [93]. Dieser arbeitet on-chip mit dem MOESI-
Cachekohärenzprotokoll.

Mit der Torrenza-Initiative setzt AMD bei zukünftigen Prozessorgenerationen verstärkt auf eine
Kopplung von wenigen Universalprozessorkernen und anwendungsspezifischen Hardwarebe-
schleunigern, um sich so gegenüber den von Intel propagierten ManyCore-Architekturen, zu be-
haupten, ein „Kern-Wettrüsten“ solle es vorerst nicht geben [93]. Allerdings setzt auch Intel auf so
genannte Fixed Function Units [92], also ebenfalls auf Hardwarebeschleuniger, die spezielle Auf-
gaben effizienter lösen können als Universalprozessoren.

Cell-Architektur, IBM, Toshiba und Sony. Die Entwicklung der Cell-Architektur [12][94] wurde
bereits zu Anfang dieses Kapitels grob skizziert. Sie integriert 241 Millionen Transistoren unter
anfänglicher Verwendung einer 90-nm-Technologie, die recht bald durch eine 65-nm-Variante er-
setzt wurde. Es werden Frequenzen von über 4 GHz angestrebt. Motivation für die Realisierung
dieser Chip-Multiprozessor-Architektur war die „Vision, Supercomputerleistung ins tägliche Leben
zu bringen“ [94]. Cell umfasst einen PowerPC-Kern als Kontrollprozessor für derzeit acht zusätz-
lich integrierte „Synergistic Processor Elements (SPE)“ als spezielle Coprozessoren, die kohärente
DMA(Direct Memory Access)-Operationen zur Verfügung haben. Die SPEs haben lokalen Speicher
und zusätzlich einen gemeinsamen Level-2-Cache. Als On-Chip-Verbindungsstruktur dient der
„Element Interconnect Bus“ (EIB). Außerdem besitzt der Cell-Prozessor einen eigenen Speicher-
controller, „Memory Interface Controller (MIC)“, und zwei konfigurierbare, Ein-/ Ausgangsschnitt-
stellen. Letztendlich wurde noch eine umfangreiche Monitor- und Debugeinheit implementiert. Den
Autoren von [94] zufolge sind 40 % des Schaltungsentwurfs Syntheseergebnisse. Die dominieren-
den 60 % des Chips sind als „Full Custom Design“ entworfen worden. Dies war aufgrund der hohen
Rechenleistungs- und Verlustleistungsanforderungen notwendig. Um eine hohe Ausbeute und Zu-
verlässigkeit garantieren zu können, wurden zahlreiche Funktionen für Build-in-Self-Test (BIST)
und Fehlerumgehung (Array Repair Fuses) eingebaut. Insgesamt wurde auch beim Cell-Chip ver-
sucht, das Design möglichst modular zu halten. Es wurde ein immenser Simulationsaufwand mit
mehr als zwei Millionen Stunden Simulationszeit (dies entspricht 1,5 Trillionen simulierter Takt-
zyklen) im Vorfeld der Chipfertigung getrieben [94]. Dies lässt auf eine mittlere Simulatorge-
schwindigkeit von ca. 140 Takten/Sekunde schließen. Der Cell-Architektur steht eine umfangreiche
Werkzeugkette zur Verfügung, die verschiedene Betriebssysteme auf der Cell-Architektur unters-
tützt. Tabelle 2-4 gibt einen Überblick über ausgewählte Chip-Multiprozessoren und einiger ihrer
wesentlichen Eigenschaften.

2.8 Varianten eingebetteter paralleler Rechnerarchitekturen

55

Tabelle 2-4: Charakteristika ausgewählter Chip-Multiprozessoren

For-
schungs-
einrich-

tung, Hers-
teller
Typ

CPU-
Fre-

quenz
[MHz]

Anzahl Pro-
zessorkerne

Leis-
tungs-

aufnah-
me
[W]

Chipflä-
che

[mm²]

Technolo-
gie

[nm]
Speicher PE Kommunika-

tionsstruktur Besonderheiten

MIT
Raw

225 16 25 331 150 >16*(32K+96K)
MIPS,

8 Pipeline-
stufen

Busse zwi-
schen Nach-

barknoten,
WH-Switching

Skalierbarkeit

Stanford
Hydra

250 4 k. A. 90 250
>4*(8K+8K)+128

K
MIPS Bus

Daytona
DSP

100 4 4 200 250 >4*8K
Sparc V8,

5 Pipeline-
stufen

STBus

Gekoppelte Hardwa-
rebeschleuniger

MESI-Cache-
Kohärenzprotokoll

RTOS zur PE-
Kontrolle

Ageia
PhysX

533 >20 PEs 25 182 130 k. A.
Physikengi-

ne
k. A. Physikbeschleuniger

Intel
Polaris

3.160
(bis

5.700)
80

62
(265)

275
(3 pro

Kachel)
65 >80*(2K+3K) X86

1 Router pro
Kachel

1,01 Terra Flops
(1,81 Terra Flops)

IBM, To-
shiba und

Sony
Cell

3.200
(>4.000)

1+8 200 221 90
1*(32K L1
+512K L2)

+8*256K

PowerPC
+ 8 SPEs

Element Inter-
connect Bus

Max. 204 GByte/s
Durchsatz des EIB

Rapport
KiloCore

125 256 0,5 k. A. 180 k. A. 8-Bit-PEs k. A.

Nvidia
8800 Ultra /

G80
1.500 128 175 k. A. 90 k. A.

Stream
Prozessoren

k. A. 681 Mio. Transistoren

Compaq
Piranha

500 8 k. A. k. A. 180
>8*(64K+64K)

+L2
Alpha CPU

Intra Chip
Switch

GigaNetIC-
Projekt

GigaNetIC
285 32 1,8 43,7 90 1.280K N-Core GigaNoC

Skalierbarkeit, Res-
sourceneffizienz

2.8.4 Resümierender Vergleich mit dem GigaNetIC-Ansatz

Bei dem MIT-Ansatz handelt es sich, wie bei der GigaNetIC-Architektur, ebenfalls um einen ka-
chelartigen, WH-Switching-basierten CMP, der mit seinen 16 Prozessorkernen ca. halb so viele
Transistoren benötigt wie das in Tabelle 8-5 vorgestellte GigaNetIC-System mit 80 N-Cores. Auf-
grund der flächenmäßig überlegenen GigaNetIC-Prozessorarchitektur lässt sich mehr Parallelität
auf einen Chip bringen, die allerdings in der Standardversion zunächst über weniger leistungsfähige
Verarbeitungseinheiten verfügt. Diese können allerdings speziell auf ein Anwendungsgebiet hin
optimiert werden, ohne unnötigen Flächenbedarf durch unbenötigte Funktionen zu verursachen. Ein
kachelartiger Floorplan bietet zahlreiche Vorteile im Bezug auf heutige Fertigungstechniken und
wird deshalb auch beim GigaNetIC-Projekt berücksichtigt (vgl. Abschnitt 8.2.3).

Der Hydra CMP entspricht in etwa einem Cluster des GigaNetIC-Systems, wies aber seinerzeit
kein übergeordnetes Konzept zur weiteren Skalierung auf, wie es u. a. durch das GigaNoC und
durch die GigaNetIC-Switch-Boxen (vgl. Abschnitt 4.2) gegeben ist.

Der Daytona CMP integriert einen konfigurierbaren Multiprozessorcache für seine vier Verarbei-
tungseinheiten, der mit einem ähnlichen Cache-Kohärenzprotokoll arbeitet, wie es beim GigaNetIC-
Multiprozessorcache zum Einsatz kommt, vgl. Abschnitt 4.4.2. Zusätzlich wurde ein Echtzeitbe-
triebssystem (RTOS) zur Steuerung der Prozessabläufe entwickelt, das die Leistungsfähigkeit eines
CMP erheblich steigern kann. Für den GigaNetIC-CMP stehen mehrere Programmiermodelle zur

Kapitel 2. Eingebettete parallele Rechnerarchitekturen

56

Auswahl, vgl. Abschnitt 4.5, allerdings wurde noch kein echtzeitfähiges Betriebssystem mit dem
Gesamtsystem getestet.

Der PipeRench-Ansatz ist als Konzept für eine rekonfigurierbare, compilerunterstützte Architektur,
die ohne zusätzliche Hardwarebeschleuniger an Anwendungsszenarien angepasst werden kann, ähn-
lich dem DRP-Ansatz von NEC zu sehen. Diese Art der Systemkonfiguration kann beim GigaNet-
IC-CMP ebenfalls für einzelne Cluster umgesetzt werden (vgl. Abschnitt 4.3.3), allerdings wäre an
dieser Stelle die GigaNetIC-Compiler-Werkzeugkette (vgl. Abschnitt 5.6) auf diese neue Konstella-
tion anzupassen, was derzeit9 noch mit nicht zu vernachlässigendem Aufwand verbunden ist.

Der XPP-III verfolgt einen ähnlichen, wenn auch nicht vollständig auf FPGA-Technologie basie-
rendes Konzept. Bei ihm wird zusätzlich ein paketorientiertes On-Chip-Netzwerk eingesetzt, wie es
auch bei der GigaNetIC-Architektur durch das GigaNoC gegeben ist.

Beim Entwurf des Piranha-CMP wurde bei Compaq bereits vor der Einführung von SystemC eine
C++-basierte Spezifikation des Gesamtsystems vorgenommen. Die GigaNetIC-Entwicklungs-
umgebung umfasst ebenfalls für die Spezifikation und zugleich zur schnellen, SoC-umspannenden,
zyklenakkuraten Simulation ein SystemC-Modell (vgl. Abschnitt 5.2), eine erweiterte C++-
Klassenbibliothek, die seit 2005 IEEE-Standard ist.

Die Architektur des KiloCore verfügt mit 256 bzw. in einer weiteren Ausbaustufe mit 1024 Verar-
beitungseinheiten über die größte Anzahl integrierter Prozessorkerne in diesem Vergleich, aller-
dings handelt es sich auch um sehr einfach geartete Verarbeitungseinheiten, da sie u. a. nur über
einen 8-Bit-breitem Datenpfad verfügen. In wieweit sich diese sehr geringe Berechnungsbandbreite,
die nur durch einen nennenswerten Mehraufwand zu breiteren Datenpfaden konfiguriert werden
kann, bewährt, bleibt abzuwarten. Bei dem Prozessorkern der GigaNetIC-Architektur wurde be-
wusst auf eine, zwar einfache, aber bereits 32-Bit-breite CPU gesetzt, um einen möglichst effizien-
ten Kompromiss zwischen Leistungsfähigkeit und Flächeneffizienz zu erhalten. Außerdem wird
durch die Möglichkeit der Integration beliebiger Hardwarebeschleuniger bzw. Hardwareblöcke
(vgl. Abschnitt 4.3.3) genügend Flexibilität gewährleistet, um auf spezielle Anforderungen seitens
des Anwendungsgebiets reagieren zu können.

Die stark auf Performanz optimierten Verarbeitungseinheiten der Grafikbeschleuniger / GPUs hin-
gegen sind auf eingeschränkte Anwendungsgebiete spezialisiert und bieten wenig Spielraum. Eine
Auslegung auf möglichst geringe Fläche oder minimale Verlustleistungsaufnahme stand bei der
Entwicklung dieser Architekturen deutlich im Hintergrund. Dies verhält sich bei der grundsätzlich
als Universalrechner ausgelegten GigaNetIC-Architektur anders. Diese ermöglicht den Entwicklern,
die Positionierung des späteren Systems während der Spezifikation bzgl. der vier Dimensionen des
Entwurfsraums (vgl. Definition 11) in alle Richtungen zu variieren. Ähnlich verhält sich der Ver-
gleich mit den spezialisierten Physikbeschleuniger PhysX.

Die Polaris-Architektur von Intel kommt der Art des GigaNetIC-Ansatzes in vielen Aspekten sehr
nahe, nicht zuletzt werden durch Intels Tera-Scale-Projekt ähnliche Anforderungen an die Rechner-
architekturen der Zukunft definiert, wie es sie auch bei der Konzeptionierung der GigaNetIC-

9 Die Fachgebiete Schaltungstechnik, Prof. Dr.-Ing. Ulrich Rückert und Programmiersprachen und Übersetzer, Prof. Dr.

Uwe Kastens, forschen mittlerweile aktiv an dieser Thematik.

2.8 Varianten eingebetteter paralleler Rechnerarchitekturen

57

Architektur zu berücksichtigen gab. Auch hier wird eine gitterförmige, kachelbasierte Anordnung
angewendet. Sind die Kacheln beim Polaris-Chip je 3 mm² groß und beinhalten nur einen, für Intels
Verhältnisse wenig komplexen, Prozessor mit relativ wenig Speicher, so gestalten sich die Kacheln
der GigaNetIC-Cluster mit 4,84 mm² in der 90-nm-Technologie in einer vergleichbaren Größenord-
nung. Skaliert man diese auf die von Intel verwendete 65-nm-Technologie (vgl. Definition 30) so
entspräche sie einer Fläche von nur noch 2,5 mm². Allerdings beinhalten die GigaNetIC-Kacheln
vier Prozessoren mit insgesamt 32-mal soviel Speicher (160 KB) und bereits reservierter Fläche für
spezielle Hardwarebeschleuniger. Bzgl. der Rechenleistung liegt die Intel-Architektur um Größen-
ordnungen vorne, zumal sie je zwei Fließpunkteinheiten pro Kachel integriert, die beim GigaNetIC,
aufgrund der betrachteten Anwendungsgebiete (vgl. Kapitel 7), derzeit nicht vorgesehen sind. Der
Polaris-Router beherrscht einen Durchsatz von 72,51GByte/s bei 4 GHz gegenüber 26,6 GByte/s
(Netto-Datendurchsatz) der GigaNetIC-Switch-Box mit nur 714 MHz. Nach den Skalierungsgeset-
zen ergäbe sich für die Switch-Box in der 65-nm-Technologie ein theoretischer Netto-
Datendurchsatz von 36,84 GByte/s bei 989 MHz. Diese Zahlen zeigen, dass die GigaNetIC-
Architektur in vielen Bereichen durchaus konkurrenzfähig ist. Abschließend bleibt zu erwähnen,
dass Polaris über kein hierarchisches On-Chip-Netzwerk verfügt, sondern nur eine Hierarchieebene
vorsieht. Durch die ausgeprägt generische Struktur der GigaNetIC-Architektur (vgl. Abschnitt
4.2.1.2) lassen sich nahezu beliebige Topologievarianten konstruieren, welches mit der Polaris-
Router-Struktur augrund der festen Anzahl von vier Ports nicht in dem Maße zu verwirklichen ist.
Außerdem ist nicht bekannt, in wieweit die Prozessoren durch eine, beim GigaNetIC-System vor-
handene, „Offload-Engine“ zur Koordination des On-Chip-Datenverkehrs (vgl. 4.2.1.1) entlastet
werden. Ansonsten würde Rechenleistung der Prozessoren für die Datenübertragung benötigt.

Bei den Opteron-Vierfach-Kernen setzt AMD bereits erfolgreich das MOESI-Cachekohärenz-
protokoll ein, das gleiche, wie es der GigaNetIC-Multiprozessorcache auf Prozessor-Cluster-Ebene
verwendet (vgl. Abschnitt 4.4.2). Allerdings wird beim GigaNetIC-Projekt eine deutlich höhere
Parallelität auf SoC-Ebene, als derzeit bei AMD, angestrebt. Mit der zukünftigen Torrenza-
Initiative verfolgt AMD einen Ansatz, bei dem heterogene Systeme von Prozessoren und Hardwa-
rebeschleunigern auf einem Chip größtmögliche Effizienz bieten sollen. Dies wird ebenfalls bei der
hybriden Struktur der GigaNetIC-Architektur wirkungsvoll eingesetzt, vgl. Kapitel 7 und 8.

Der Cell-Chip-Multiprozessor integriert derzeit die meisten Prozessorkerne der wirtschaftlich er-
folgreichen Systeme dieses Vergleichs. Die GigaNetIC-Architektur zielt auf noch höhere Paralleli-
tät ab, die nicht zuletzt durch ihre regelmäßige Struktur und der guten Abbildbarkeit auf verschie-
dene Zieltechnologien aufgrund ihrer synthetisierbaren Beschreibung ermöglicht wird. Beim Cell-
Chip sticht hingegen ein hoher Anteil an „Full Custom Design“; der bei den anderen Hochleis-
tungsprozessoren in ähnlichen Dimensionen liegen wird, ins Auge. Dies bedeutet einen Nachteil
bzgl. einfacher Skalierbarkeit und zukünftiger, anwendungsspezifischer Erweiterungen. Dadurch
kann kein automatisierter Synthese-Prozess greifen, geometrisches Herunterskalieren bei derartigen
Strukturgrößen ist ebenfalls nicht ohne Weiteres möglich, deshalb bedeutet eine Portierung auf
neuere Technologien deutlich mehr Aufwand als es bei der GigaNetIC-Architektur der Fall ist. Der
Cell-Chip verfügt über eine integrierte, leistungsstarke „Debug“-Einheit, was für eine produktive
Softwareentwicklung von großer Bedeutung ist. Diese Option ist bei aktuellen GigaNetIC-
Systemen nur ansatzweise vorhanden und ausbaufähig. Aufwändige Mechanismen zur Umgehung
bzw. Feststellung von Fertigungsfehlern wurden beim Cell-Chip integriert – ebenfalls ein Punkt der
bei der GigaNetIC-Architektur noch weiterer Anstrengungen bedarf.

Kapitel 2. Eingebettete parallele Rechnerarchitekturen

58

Schlussbemerkung. Jeder der gezeigten Ansätze weist Besonderheiten und spezielle Mechanismen
zur Ausnutzung der Parallelität auf. Die GigaNetIC-Architektur wurde ohne eine zuvor angestellte,
tiefer gehende Analyse dieser Architekturen entworfen, um so weitestgehend unvoreingenommen
einen neuartigen, innovativen massiv parallelen Chip-Multiprozessor zu erhalten. Diese, durch Ana-
lyse der grundlegenden Methoden und eigene Überlegungen getriebene Herangehensweise mag
zunächst gewagt erscheinen. Der resümierende Vergleich zeigt allerdings, dass mit der GigaNetIC-
Architektur ein CMP entwickelt wurde, der zahlreiche der Besonderheiten in einem Ansatz vereint
und teilweise neue Methoden einsetzt, um so ein möglichst ressourceneffizientes Konzept zu ver-
wirklichen.

2.9 Zusammenfassung

In diesem Kapitel wurden grundlegende Abschätzungen zur Leistungssteigerung durch paralleles
Rechnen und die damit verbundenen Anforderungen an die Systeme aufgezeigt. Es wurden elemen-
tare Grundlagen zu den Kernkomponenten eingebetteter Parallelrechner vorgestellt. Hierzu zählen
die On-Chip-Netzwerke und die in diesem Zusammenhang relevanten Methoden, die eine mög-
lichst effiziente Verbindung eingebetteter Verarbeitungseinheiten gewährleisten. Mit Hilfe dieser
Kommunikationsinfrastruktur, durch die Integration einer angepassten Speicherhierarchie und
unter Einbeziehung angepasster Algorithmen und für die Parallelverarbeitung geeigneter Anwen-
dungen wird so eine funktionale Parallelverarbeitung mittels der eingebetteten Verarbeitungsein-
heiten möglich (vgl. Abbildung 2-6). Anhand von Prognosen und den vorgestellten Anwendungs-
szenarien zeigt sich ein immer größer werdender Bedarf an solch leistungsfähigen Architekturen.
So prognostiziert die ITRS bereits für das Jahr 2020 eine Beherrschbarkeit von Chip-Multipro-
zessoren mit mehr als 800 Prozessorkernen [2].

Beispielhaft wurden innovative Ansätze aus Wissenschaft und Industrie zu On-Chip-Netzwerken,
Verarbeitungseinheiten und Chip-Multiprozessoren aufgezeigt und diskutiert. Hieraus wird das der-
zeit technisch Mögliche ersichtlich. Zukünftige Trends werden abgeleitet. Diese Entwicklungen
bedeuten Herausforderungen, die es auch im GigaNetIC-Projekt ganzheitlich zu lösen galt. Unter-
schiede und Gemeinsamkeiten der vorgestellten Ansätze im Hinblick auf die GigaNetIC-
Architektur wurden in einem Resümee herausgearbeitet und geben so bereits einen ersten Eindruck
über die von mir entworfene Systemarchitektur. Die Charakterisierung und analytische Modellie-
rung eines skalierbaren, ressourceneffizienten massiv parallelen eingebetteten Prozessorsystems
sowie dessen praktische Umsetzung sind Bestandteil der folgenden Kapitel.

59

3 Charakterisierung und analytische Modellierung
Im Verlauf dieses Kapitels wird eine analytische Modellierung des Gesamtsystems entwickelt.
Hierbei wird auf Größen wie Flächenbedarf, Leistungsaufnahme, Performanz und Zukunftssicher-
heit der jeweiligen Systemkomponenten und letztendlich des gesamten SoCs eingegangen. Anhand
dieser Charakterisierungen wird mit Hilfe von definierten Kostenfunktionen ein Modell entwickelt,
das zur Bewertung von Chip-Multiprozessorsystemen speziell auch im Hinblick auf ihre Ressour-
ceneffizienz herangezogen werden kann. Die in diesem Kapitel erarbeiteten Bewertungsmaßstäbe
finden in den Folgekapiteln Einsatz zur Bewertung und Optimierung der GigaNetIC-Architektur in
Bezug auf dedizierte Anwendungsgebiete.

3.1 Ressourceneffizienz eingebetteter Systeme

Thema dieser Arbeit ist die „Ressourceneffiziente Schaltungstechnik eingebetteter Parallelrechner“.
Was aber ist unter diesem Leitgedanken genau zu verstehen? Schaltungstechnik, also der Entwurf
von analogen und digitalen Halbleiterschaltungen, hier im Speziellen basierend auf CMOS-
Standardzellentechnologie, ist in der heutigen Elektrotechnik eine etablierte und wohl erklärte
Technik. Eingebettete Parallelrechner, die im vorigen Kapitel bereits diskutiert wurden, sind be-
grifflich ebenfalls etabliert. Wie aber lässt sich das Kompositum Ressourceneffizienz für System-
on-Chip-Entwürfe definieren, und welche wesentlichen Kriterien gilt es zu beachten?

Das Wort Ressource kommt aus dem Französischen und meint laut Duden Hilfsmittel, Rohstoffe
bzw. Grundlagen oder Geldmittel. Im öffentlichen Leben wird der Begriff meist mit Vernunft, Ethik
und einem langfristigen Ökonomieverständnis in Verbindung gebracht. Der Brockhaus unterschei-
det zwischen zwei fachsprachlichen Verwendungsweisen. In den Wirtschaftswissenschaften diene
Ressource der Bezeichnung „im weiteren Sinne von Produktionsfaktoren (Arbeit, Boden und Kapi-
tal)“ und bezeichne „im engeren Sinne Rohstoffe (natürliche Ressourcen)“. Der zweite Bereich, für
den der Brockhaus den Begriff definiert, die Datenverarbeitung, ist treffender für die Thematik die-
ser Arbeit. Der Brockhaus formuliert: „Ressourcen, Mittel die genutzt werden können. Die Res-
sourcen eines PCs sind: 1. die inneren (Prozessorleistung, Arbeitsspeicher, Massenspeicher) und 2.
die äußeren (Peripheriegeräte). In einem Netzwerk werden alle gemeinsam nutzbaren Mittel als
Ressourcen bezeichnet, auch Software (Anwendungsprogramme, Datenbestände)“.

Der zweite Bestandteil ist Effizienz (lateinisch efficientia: Wirksamkeit), unter dem der Brockhaus
„etwas besonders Wirksames und Wirtschaftliches bzw. etwas besonders Leistungsfähiges“ ver-
steht. Der Duden beschränkt sich auf die Bedeutung „wirksam und wirtschaftlich“.

Schlösse man nun aus diesen Definitionen auf eine möglichst treffende Interpretation des Begriffes
Ressourceneffizienz für die Schaltungstechnik eingebetteter Parallelrechner, so ergäbe sich folgen-
de Begrifflichkeit:

Definition 1 Unter ressourceneffizienter Schaltungstechnik wird – im Allgemeinen und un-
ter Zuhilfenahme der allgemeinen Definitionen der beiden Wortbestandteile Ressource und
Effizienz – eine im Hinblick auf die nutzbaren Mittel und Grundlagen besonders leistungs-
fähige, wirtschaftliche Realisierung eines Halbleiterbausteins verstanden.

Kapitel 3. Charakterisierung und analytische Modellierung

60

Im Folgenden werden weitere Begriffsdefinitionen gegeben, die im Rahmen meiner Charakterisie-
rung eingebetteter Parallelrechner hinsichtlich ihrer Ressourceneffizienz essentiell sind. Es wird
ferner eine formale Beschreibung vorgestellt, die die Bewertung der Ressourceneffizienz solcher
Systeme ermöglicht.

Definition 2 Als Systementität
ie
S wird eine zum System S gehörige Einheit bezeichnet, die

funktional in sich geschlossen ist und einen wesentlichen Bestandteil des Systems in mate-
rieller oder auch immaterieller Hinsicht darstellt.

ie

⊇S S (3.1)

Definition 3 Die Architektur A definiert sich aus der Gesamtheit aller Bestandteile des
Chip-Multiprozessors. Hierunter werden zum einen die Hardware-Systementitäten und de-
ren Verschaltung ()i

e HWS und zum anderen alle nichtmateriellen Systementitäten ()i
e SWS ver-

standen.

 () ()i i
e HW e SW⊃ ∪A S S (3.2)

Zu den Hardware-Systementitäten (vgl. Abschnitte 4.2 bis 4.4) ()i
e HWS zählen z. B. Prozessorele-

mente, Hardwarebeschleuniger, Speicher, Caches, On-Chip-Netzwerke sowie Peripherieblöcke.

Die nichtmateriellen Komponenten ()i
e SWS sind z. B. der Compiler auf Clusterebene (vgl. Abschnitt

4.5), der zugehörige Assembler, das On-Chip-Kommunikationsprotokoll (vgl. Abschnitt 4.2.2), das
übergeordnete Programmiermodell sowie die Entwurfswerkzeuge und die Zielapplikationen (vgl.
Kapitel 5, 6 und 7).

Definition 4 Ein Bewertungsmaß BM ist ein charakteristisches Maß, das zur Bewertung von
Systementitäten

ie
S bzw. Systemen iS oder auch Architekturen iA herangezogen werden

kann.

Definition 5 Kostenmaße K definieren Obermengen ausgewählter und thematisch verwand-
ter Bewertungsmaße BM.

 ()i n iBM⊃K (3.3)

Im weiteren Verlauf dieser Arbeit werden die Kostenmaße Leistungsaufnahme P, Flächenbedarf A,
(Rechen-)Leistung/Performanz T und Zukunftssicherheit bzw. Flexibilität F verwendet,

=K { P, A, T, F}. Kostenmaße sind nicht zwangsläufig invariant gegenüber einander, vielmehr ste-
hen sie häufig in diametraler Wechselwirkung miteinander, vgl. Abbildung 3-2.

Definition 6 Die Zielfunktion ZF beinhaltet ausgewählte, mit einem Gewichtungsfaktor ic

gewichtete Bewertungsmaße BMi eines Kostenmaßes iK .

 1 1 ... n nZF c BM c BM= + + (3.4)

Es sind auch andere Zusammenhänge der einzelnen Bewertungsmaße denkbar, wie z. B. die Ver-
wendung eines multiplikativen Zusammenhangs:

 1 1 ... n nZF c BM c BM= ⋅ ⋅ (3.5)

Auch exponentielle Gewichtsfaktoren zur Differenzierung der Bewertungsmaße sind denkbar:

3.1 Ressourceneffizienz eingebetteter Systeme

61

 1
1 ... ncc

nZF BM BM= + + (3.6)

bzw.

 1
1 ... ncc

nZF BM BM= ⋅ ⋅ (3.7)

Im weiteren Verlauf dieser Arbeit beschränke ich mich, um den Rahmen dieser Arbeit nicht zu
sprengen, bei Kostenanalysen auf die Anwendung von (3.4).

Die Gewichtungen cí sind entsprechend den Randbedingungen und Anforderungen an die jeweili-
gen Bewertungsmaße zu wählen. Im weiteren Verlauf dieser Arbeit werden die Gewichtungen ge-
mäß des Zusammenhangs 1i

i

c =∑ gewählt, wobei0 1ic≤ ≪ für eine geringere Gewichtung von

BMi und 0 1ic ≤≪ für eine entsprechend größere Bedeutung des jeweiligen Bewertungsmaßes an-

gesetzt wird.

Definition 7 Eine Randbedingung R charakterisiert spezifische Besonderheiten, die bei der
Erstellung bzw. beim Einsatz einer Systementität eS , eines Systems S oder einer Architek-

tur A auftreten.

Die Randbedingungen Ri sind bei der Spezifikation bekannt und müssen bei der Realisierung einge-
halten werden.

Definition 8 Als untere Schranke uS wird eine quantitative untere Grenze und als obere

Schranke oS eine obere Grenze einer Zielfunktion ZF bezeichnet, die aufgrund der spe-

ziellen Randbedingungen Ri zulässig sind:

! !

,u o iZF S ZF S R≥ ≤ ∀ (3.8)

Definition 9 Die Kostenfunktion CF ist eine gewichtete Verknüpfung der einzelnen Ziel-
funktionen iZF . Die Gewichtungen iα sind hierbei ggf. subjektiv und durch die Spezifikati-

on bzw. Randbedingungen Ri und Schranken S zu wählen (vgl. Definition 6). Für einen ad-
ditiv gewählten Zusammenhang der Zielfunktionen iZF ergibt sich:

 bzw.

 mit

i i
i

P A T F i

CF ZF

CF

α

α α α α α

∈

=

= + + + ∈

∑

P A T F

K

R

 (3.9)

Hier wird ebenfalls so vorgegangen, dass 1i
i

α =∑ gesetzt wird, wobei für besonders relevante

Zielfunktionen ZFi bzgl. der Anforderungen des Anwendungsszenarios 0 1iα ≤≪ angesetzt wird,

und Zielfunktionen geringerer Bedeutung mit 0 1iα≤ ≪ gewichtet werden. Varianten, ähnlich zu

(3.5), (3.6) und (3.7) bezogen auf den Aufbau einer Kostenfunktion sind denkbar, werden aber im
Rahmen dieser Arbeit nicht angewendet.

Sollten die Werte der einzelnen Zielfunktionen bzgl. der betrachteten Kostenmaße quantitativ sehr
unterschiedlich sein, so ist eine Normierung der Werte der jeweiligen Realisierungsvarianten RVi
hilfreich:

Kapitel 3. Charakterisierung und analytische Modellierung

62

 () ()
()() { } { }: , mit , 1,...,

max
i

i

RV i
RV i normiert

RV i

ZF
ZF n Anzahl RV i n

ZF
= =

K
K

K
 (3.10)

Die Normierung ist für alle Realisierungsvarianten RVi des betrachteten Systems S bzw.
der Systementität eS für das betreffende Kostenmaß iK oder auch alle Kostenmaße durch-

zuführen.

Definition 10 Pareto-Optimierung (nach VILFREDO PARETO) bezeichnet die Lösung eines
multikriteriellen Problems. Bei einer Mehrzieloptimierung, bei der die Zielkriterien konku-
rieren, kann eine gemeinsame Kostenfunktion CF mit Gewichtung der einzelnen Zielfunk-
tionen iZF aufgestellt werden. Eine Lösung CFpareto des Problems, für gegebene Gewich-

tungen der Zielfunktionen, wird als pareto-optimal bezeichnet, wenn eine weitere Verbesse-
rung (im Sinne einer Minimierung von CF) eines beliebigen Zielfunktionswertes mZF↓

stets in einer Verschlechterung (im Sinne einer Vergrößerung) eines anderen Zielfunktions-
wertes :nZF n m↑ ≠ und somit auch CF↑ resultiert.

 : pareto i i
i

CF ZFα
∈

=∑ min!
K

 (3.11)

Definition 11 Der Entwurfsraum E umfasst die Realisierungsvarianten RVi einzelner Sys-
tementitäten eS , Systeme S bzw. Architekturen A . Dimensionen des Entwurfsraums sind

die Kostenmaße iK nach Definition 5, vgl. auch Abbildung 2-14.

Definition 12 Als pareto-optimaler Punkt paretoP im Entwurfsraum E wird eine Lösung im

Sinne von (3.11) bezeichnet. Die Bezeichnung pareto-optimaler Punkt kann auf Realisie-
rungsvarianten einzelner Systementitäten () mit ,e i i HW SW∈S auf Systeme iS oder Archi-

tekturen iA angewendet werden.

Da im weiteren Verlauf dieser Arbeit Untersuchungen unter Berücksichtigung implementierter Sys-
tementitäten

ie
S , Systeme iS und Architekturen iA angestrebt werden, die keine vollständige Ab-

deckung des Entwurfsraums zulassen10, muss an dieser Stelle eine starke Einschränkung von Defi-
nition 12 getroffen werden.

Definition 13 Als diskreter pareto-optimaler Punkt ,pareto diskretP im Entwurfsraum E wird ei-

ne Lösung nach (3.11) bezeichnet, wobei die Menge der Realisierungsvarianten diskret und
zumeist stark eingeschränkt ist. Es kann beliebig viele pareto-optimale Punkte nach Defini-
tion 12 geben, die nicht in der betrachteten Menge liegen. Ein nur auf diese Auswahl bezo-
gener, pareto-optimaler Punkt wird dann diskret pareto-optimal genannt.

Auf Basis der bisher definierten Begriffe lässt sich nun eine formale Definition der Ressourceneffi-
zienz treffen:

Definition 14 Ressourceneffizienz RE im Sinne des schaltungstechnischen Entwurfs eines
Chip-Multiprozessorsystems bzw. seiner Bestandteile und zur Verfeinerung der allgemeinen

10 Es handelt sich zum einen um diskrete Punkte im Entwurfsraum, die nicht die Gesamtheit aller möglichen Realisie-

rungsvarianten abdecken und zum anderen um Syntheseergebnisse, die für spezielle Randbedingungen erzielt wurden.

3.2 Bewertungsmaße für Ressourceneffizienz

63

Definition 1 wird nun im Weiteren spezifiziert als: Realisierung von Systementitäten
ie
S ,

Systemen iS bzw. Architekturen iA , die unter Berücksichtigung der vorgegebenen Schran-

ken S bzw. Randbedingungen R, den damit verbundenen Zielfunktionen ZF und den daraus
resultierenden Ergebnissen der Kostenfunktion CF, pareto-optimale Punkte paretoP bzw.,

stark abgeschwächt, diskrete pareto-optimale Punkte ,pareto diskretP im Entwurfsraum E dar-

stellen. Auch der Versuch der Annäherung einer Realisierung an solche Punkte kann als An-
satz einer ressourceneffizienten Implementierung gewertet werden.

Mit den vorangegangenen Definitionen sind nun die relevanten Begriffe, die als Basis für die for-
male Bestimmung der Ressourceneffizienz RE dienen, geprägt. Im Folgenden müssen nun Kriterien
gefunden werden, die sich als Bewertungsmaße für eingebettete Systeme einsetzen lassen und die
Zielfunktionen bilden.

3.2 Bewertungsmaße für Ressourceneffizienz

Zur Bewertung des Grades der Ressourceneffizienz eines Chip-Multiprozessorsystems müssen Be-
wertungsmaße BM (auch als Benchmarks bezeichnet) gefunden werden, die als Grundkomponenten
für die jeweiligen Zielfunktionen ZF dienen. In der Literatur ist eine Vielzahl von Bewertungsma-
ßen für elektronische Schaltungen zu finden, von denen im Folgenden einige relevante kurz einge-
führt werden.

3.2.1 Bewertungsmaße zur Performanz

Die nachstehenden Bewertungsmaße charakterisieren die Performanz T (eingeschränkter die Re-
chenleistung) von einzelnen Systementitäten, Systemen bzw. Architekturen.

Definition 15 Taktfrequenz f [MHz] = 1/Taktperiode T, mit der die Schaltung betrieben wer-
den kann.

Definition 16 Die Latenz L [1] einer Systementität ist die Anzahl der Taktperioden (häufig:
Takte), nach der ein Ergebnis am Ausgang der Schaltung anliegt.

Im nicht-digitalen Fall wird sie einheitenbehaftet als Zeitspanne L [s] angegeben, die vergeht, bis
eine Eingangssignaländerung als Ausgangssignaländerung erkennbar wird.

Definition 17 Der Jitter J [s] kennzeichnet die maximale Varianz der Latenz L und wird im
Weiteren im digitalen Sinne verwendet, also in ganzzahligen Taktperioden T angegeben.

Jitter ist ein Phänomen, das z. B. aufgrund konkurrierender Prozesse, die auf dieselbe Ressource
zugreifen wollen und nicht immer in gleicher Weise die Zuteilung bekommen, entsteht.

Definition 18 Die Ausführungszeit exT T L= ⋅ [s] ist die benötigte Zeit für die Lösung bzw.

die Bereitstellung des Ergebnisses für eine gegebene Aufgabe.

Definition 19 Der Durchsatz
1

ex

D
T

= [1/s] kennzeichnet die Anzahl der gelieferten Ergebnis-

se bzw. Daten pro Sekunde.

Im Folgenden werden allgemeine Bewertungsmaße zur Charakterisierung der Leistungsfähigkeit
bzw. Performanz von Verarbeitungseinheiten und im Speziellen von Prozessoren vorgestellt:

Kapitel 3. Charakterisierung und analytische Modellierung

64

Ein verbreitetes, zumeist weniger aussagekräftiges Maß11 zur Angabe der Leistungsfähigkeit ist die
Klassifikation in MIPS (Million Instructions Per Second).

Definition 20 MIPS beziffern Millionen Instruktionen bzw. Maschinenbefehle pro Sekunde
6 110MIPS Instruktionen s− −= ⋅ , die durch die Verarbeitungseinheit abgearbeitet werden kön-

nen:.

Ähnliche Bewertungsmaße zur Angabe der Instruktionen pro Sekunde sind die Angabe der Instruk-
tionen pro Takt bzw. der Kehrwert in Takten pro Instruktion.

Definition 21 Instruktionen pro Takt12 (Instructions Per Cycle / IPC) bzw. dessen Kehrwert

Takte pro Instruktion (Cycles Per Instruction / CPI)
1Instruktionen

IPC
Taktzyklus CPI

= = . Es gilt

ferner: 610IPC f MIPS−⋅ ⋅ =

Aus den bisherigen Bewertungsmaßen lässt sich nun ein objektiveres Maß zur Bewertung von In-
struktionssatz-basierten Prozessoren definieren, vgl. [95]:

Definition 22 Die gemittelte Ausführungszeit für Instruktionssatz-basierte Prozesso-
ren ()exT PE [s] ist die benötigte Zeit für die Lösung und die Bereitstellung des Ergebnisses

für eine gegebene Aufgabe. IC stellt die dynamische Instruktionsanzahl (dynamic Instructi-

on Count)13, die für die Abarbeitung der Aufgabe benötigt wird, dar. CPI ist die durch-
schnittliche Anzahl der benötigten Takte bzw. Zyklen zur Verarbeitung einer Instruktion der
betreffenden Prozessorarchitektur.

 () 1
exT PE IC CPI f−= ⋅ ⋅ (3.12)

Dieses Bewertungsmaß ist sinnvoll, wenn die zur Verfügung stehende Entwicklungsumgebung kei-
ne zyklenakkurate Laufzeitauswertung bereitstellt und stattdessen nur die Anzahl abgearbeiteter
Instruktionen zählt. Die GigaNetIC-Entwicklungsumgebung hingegen erlaubt in allen Simulatoren
(vgl. Kapitel 5) eine taktgenaue Simulation und Laufzeitauswertung der eingebetteten Prozessoren.
Deshalb kann mit der exakten Ausführungszeit exT gearbeitet werden, im Gegensatz zum Ansatz

von LI und MARTÍNEZ [96]. Die in [96] aus (3.12) gefolgerte nominelle Effizienz paralleler Verar-
beitung (nominal parallel efficiency) wird in Definition 23 dargelegt. Es handelt sich hierbei um
eine vereinfachte Formulierung des Gesetzes von GUSTAFSON (2.2). Beim DSLAM-System-Explorer
(vgl. Abschnitt 7.5) dient ein ähnliches Modell als Grundlage für die Hochrechnung der Leistungs-
fähigkeit GigaNetIC-basierter Parallelprozessorsysteme. Es verwendet allerdings die exakten Lauf-
zeiten zur Bestimmung der Leistungsfähigkeit. Zusätzlich findet ein einstellbarer Overhead der pa-
rallelen Architektur Berücksichtigung.

11 Aufgrund der unterschiedlichen Mächtigkeit der Instruktionssätze verschiedener Prozessorarchitekturen (z. B. RISC

vs. CISC, Abschnitt 2.4.3) lässt sich zunächst kein objektiver Vergleich auf Basis dieses Bewertungsmaßes treffen.

12 Dieser Wert hängt stark von der zugrundeliegenden Architektur (z. B. von der Pipeline, der Superskalarität, der

Mächtigkeit der eigentlichen Instruktion etc.) ab und ist deshalb kein eindeutiges Maß zur Bewertung der Leistungsfä-

higkeit von verschiedenen Architekturen.

13 Diese kann u. a. von den jeweiligen Daten und Speicherhierarchien abhängen.

3.2 Bewertungsmaße für Ressourceneffizienz

65

Definition 23 Die nominelle Effizienz paralleler Verarbeitung (nominal parallel efficiency)
()n Nε nach [96] mit N Prozessoren ergibt sich aus dem Verhältnis der benötigten Takte ei-

nes Prozessors IC1 zu denen von N Prozessoren ICN (3.13). ()n Nε gibt Aufschluss über die

Eigenschaften der Anwendung bzgl. paralleler Verarbeitung mittels CMPs. Bei () 1n Nε <

zeigen sich Performanzeinbußen, z. B. verursacht durch Kommunikation etc. Bei () 1n Nε >

hingegen zeigen sich superlineare Effekte der parallelen Verarbeitung, z. B. hervorgerufen
durch Multiprozessorcaches (vgl. Abschnitte 4.4.2 und 6.7).

 () 11
n

NN

IC CPI
N

IC CPI
ε ⋅=

⋅
 (3.13)

Ein sich an diese Definitionen anschließendes Bewertungsmaß, das vor allem für digitale Signal-
prozessoren (DSPs) und im Bereich des wissenschaftlichen Rechnens von Relevanz ist, ist die An-
gabe der Gleitkommaoperationen eines Systems pro Sekunde. Der Standard-Prozessor der Giga-
NetIC-Architektur, der N-Core, verfügt nicht über eine derartige Gleitkommaeinheit, weshalb de-
rartige Operationen sehr teuer emuliert werden, bzw. eine Integration eines anwendungsspezifi-
schen Hardwarebeschleunigers notwendig wäre. Da die im Zusammenhang mit dem GigaNetIC-
CMP betrachteten Anwendungen jedoch keine relevante Verwendung für diese Operationen zeigen,
wird diesbezüglich keine Einstufung vorgenommen.

Definition 24 Gleitkommaoperationen pro Sekunde (Floating Point Operations Per Second /
FLOPS), gibt die Anzahl möglicher Berechnungen im Gleitkommabereich pro Sekunde an.

Da die Bewertung der Leistungsfähigkeit von eingebetteten Verarbeitungseinheiten anhand der De-
finitionen 20 bis 22 sehr fraglich ist und das Bewertungsmaß aus Definition 24 nicht für die Haupt-
anwendungsgebiete der GigaNetIC-Architekur herangezogen werden kann, werden im weiteren
Verlauf dieser Arbeit komplexere Bewertungsmaße bzw. Benchmarks eingeführt, die eine kontext-
bezogene Einstufung der betrachteten Verarbeitungseinheiten erlauben (vgl. Kapitel 7 und 8).

3.2.2 Bewertungsmaße zur Leistungsaufnahme

Die folgenden Bewertungsmaße werden häufig zur Charakterisierung von digitalen Schaltungen im
Hinblick auf ihre Leistungsaufnahme verwendet.

Definition 25 Die Leistungsaufnahme bzw. Verlustleistung P einer CMOS-Schaltung setzt
sich zusammen aus statischer Verlustleistung Pstat und dynamischer Verlustleistung Pdyn und
stellt die Umsetzung von elektrischer Energie in Wärme dar:

 stat dynP P P= + (3.14)

Definition 26 Die statische Verlustleistung entsteht aufgrund von Ruheströmen. Sie setzt sich
aus den Anteilen Pquer, hervorgerufen durch die Querströme Iquer, und aus Pleck, der aus den
Leckströmen I leck im Halbleitermaterial resultiert, zusammen:

 stat quer leckP P P= + (3.15)

Definition 27 Die dynamische Verlustleistung entsteht aufgrund von Schaltvorgängen und hat
derzeit bei CMOS-basierten Schaltkreisen den überwiegenden Anteil an der gesamten Ver-
lustleistung (vgl. Abbildung 3-1). Sie setzt sich zusammen aus der Lastumladeverlustleis-

Kapitel 3. Charakterisierung und analytische Modellierung

66

tung Plast, die beim Laden bzw. Entladen der Lastkapazitäten entsteht und durch die Lade-
bzw. Entladeströme I last hervorgerufen wird. Die Schaltverlustleistung Pschalt entsteht bei
beiden Umladevorgängen durch die Kurzschlussströme Ischalt, die fließen können, wenn bei-
de Transistoren durchgeschaltet sind:

 dyn last schaltP P P= + (3.16)

Berücksichtigt man die Schalthäufigkeiten α, mit denen die Lastkapazitäten Clast umgeladen wer-
den, so ergibt sich für die Lastumladeverlustleistung Plast (auch häufig Pload genannt), die bei derzei-
tigen CMOS-Schaltungen einen Großteil der dynamischen Verlustleitung (ca. 80 bis 90%) aus-
macht [97][98], folgende Beziehung (3.17):

1

2last last BP C f U Uα= ⋅ ⋅ ⋅ ⋅∆ (3.17)

Da der Signalhub U∆ häufig den vollen Bereich der Versorgungsspannung UB ausmacht, lässt sich
die folgende Vereinfachung treffen:

 21
,

2dyn last B BP C f U mit U Uα= ⋅ ⋅ ⋅ ∆ = (3.18)

Aufgrund des wesentlichen Anteils der dynamischen Verlustleistung an der Gesamtverlustleistung
digitaler Schaltkreise wird im Folgenden hauptsächlich an der Minimierung dieser Leistungsauf-
nahmeart im Sinne der Ressourceneffizienz (nach Definition 14) gearbeitet. Allerdings nehmen mit
zunehmender Miniaturisierung die anderen Anteile der Verlustleistung zu [2], so dass auch hier be-
reits Lösungen zur Minimierung bzw. Optimierung dieser Effekte aufgezeigt werden [99][100].

Abbildung 3-1: Trends der Leistungsaufnahme bei CMOS-basierten SoCs [67]

Einen Überblick bzw. eine Prognose über die Entwicklung für die Anteile von Logik und Speicher
an der Leistungsaufnahme für zukünftige „Consumer Stationary“ SoCs gibt die ITRS in [67] (vgl.
Abbildung 3-1). Es zeigt sich, dass die erwartete statische Verlustleistung, wie bereits erwähnt,
klein gegenüber der dynamischen Verlustleistung ist. Die Leistungsaufnahme der Logik ist gegenü-
ber der des Speichers deutlich größer.

Mit Hilfe der in (3.18) gezeigten Beziehung zur dynamischen Verlustleistung ist es möglich, den
Komponenten eines Systems bzw. den Systementitäten (vgl. Definition 2) ihre charakteristische,
effektive Kapazität anstelle einer allgemeinen Lastkapazität Clast zuzuordnen (vgl. [101]).

Le
is

tu
ng

sa
uf

na
hm

e
[W

]

Dyn. Leistung, Logik
Statische Leistung, Logik

Dyn. Leistung, Speicher
Statische Leistung, Speicher

3.2 Bewertungsmaße für Ressourceneffizienz

67

Definition 28 Die charakteristische, effektive Kapazität einer Systementität
ieS bestimmt sich

zu:

 2

2 ()
() () i

i i

dyn e
eff e last e

B

P
C C

f Uα
⋅

= =
⋅ ⋅
S

S S (3.19)

Die in den Kapiteln 5 und 6 vorgestellte GigaNetIC-Werkzeugkette ermöglicht eine komfortable
Ermittlung von Ceff bzw. der benötigten Verlustleistung ()

idyn eP S der betreffenden Hard- und Soft-

ware-Systementitäten. Die ermittelten Werte können dann in die Zielfunktion bzw. letztendlich in
die Kostenfunktion und Optimierungswerkzeuge einfließen und zu neuen, ressourceneffizienteren
Systemkonstellationen führen [102][103][104].

3.2.3 Bewertungsmaße zur Fläche

Ein Maß anderer physikalischer Natur als Performanz und Leistungsaufnahme ist die Fläche, die
eine Schaltungsimplementierung benötigt. Die Fläche wird zum einen beeinflusst durch die reali-
sierte Funktion und die Art der Implementierung und zum anderen durch die verwendete Technolo-
gie.

Definition 29 Die Fläche A
S
 des Systems S setzt sich zusammen aus der Summe der benötig-

ten Einzelflächen sowohl aller Hardwaresystementitäten als auch der Verbindungsstruktur:

()()e HW VerbindungsstrukturA A A= +∑S S

 (3.20)

Die durch Synthese und ggf. anschließende Platzierungs- und Verdrahtungsschritte erhaltenen Flä-
chenwerte sind technologieabhängig und lassen sich über Skalierungsregeln (vgl. Definition 30)
miteinander in Beziehung setzen.

Im Rahmen dieser Arbeit werden hauptsächlich 130-nm- und 90-nm-CMOS-Standardzellen-
technologien zur Schaltungsrealisierung verwendet. Um besonders im Hinblick auf die benötigte
Fläche Vergleiche mit Standardzellentechnologien anderer Strukturgrößen treffen zu können (vgl.
[14]), lassen sich idealisierte Skalierungsregeln („Scaling-“Gesetze) anwenden [105][106].

Definition 30 Zwischen zwei CMOS-Standardzellentechnologien kann ein konstanter Skalie-
rungsfaktor S ermittelt werden, vgl. (3.21).

 verwendete Technologie

neue Technologie

1
Strukturgröße

S
Strukturgröße

= > (3.21)

Der Skalierungsfaktor S, mit einem entsprechenden Exponenten c gewichtet, ermöglicht die Skalie-
rung eines Merkmals, insbesondere der Fläche, auf eine Zieltechnologie anderer minimaler Struk-
turgröße. Mit Hilfe von (3.22) lässt sich der entsprechende Wert des jeweiligen Merkmals abschät-
zen.

 verwendete Technologie neue Technologie
cMerkmal S Merkmal⋅ = (3.22)

Tabelle 3-1 gibt Aufschluss über die, den Merkmalen entsprechenden, gewichteten Skalierungsfak-
toren. Hierbei wird zwischen einer linearen Skalierung bei konstantem E-Feld und einer linearen
Skalierung bei konstanter Spannung unterschieden. Die angegebenen gewichteten Skalierungsfakto-
ren sind idealisiert zu sehen, allerdings kommen sie derzeit der Realität aktueller CMOS-
Technologien sehr nahe [2].

Kapitel 3. Charakterisierung und analytische Modellierung

68

Tabelle 3-1: Idealisierte Skalierungsregeln bei Strukturverkleinerungen von Halbleiterschaltungen

Merkmal
gewichteter Skalierungsfaktor
konstantes E-Feld (E = const.)

gewichteter Skalierungsfaktor
konstante Spannung (U = const.)

Fläche A S-2 S-2

W, L, tox S-1 S-1

UDD, UT, U S-1 1

Feldstärke E 1 S

cox S S

Cox, C S-1 S-1

ID, I S-1 S

Schaltzeit τ S-1 S-2

Eine eng mit der Fläche gekoppelte Größe ist der Preis für die fertige Halbleiterrealisierung. Der
Preis ist zumeist direkt abhängig von der benötigten Fläche und zusätzlich gekoppelt an die Techno-
logie. Die zu produzierende Stückzahl, technologieabhängige Fertigungskosten und die Ausbeute
(Yield) bestimmen u. a. die Kosten CMOS-basierter Schaltungen.

Definition 31 Der Preis P für eine Hardwaresystementität ()e HWS , ein System S oder eine

Architektur A wird in € angegeben und beziffert die finanziellen Mittel, die am Markt für
die besagte Komponente aufgewendet werden müssen, um sie zu erwerben.

Der Preis kann zu Vergleichszwecken in Relation zur Fläche in €/mm² angegeben werden. Hierbei
ist zu beachten, dass der Preis sich nicht immer zwangsläufig proportional zu den Kosten der be-
trachteten Komponente verhält, sondern z. B. aufgrund von Alleinstellungsmerkmalen oder Grün-
den der Marktpenetration komplett von den Kosten entkoppelt gestaltet wird.

Definition 32 Die Kosten K für eine Hardwaresystementität ()e HWS , ein System S oder eine

Architektur A werden in € angegeben und beziffern die für die Realisierung der betreffen-
den Komponente aufzuwendenden finanziellen Mittel.

3.2.4 Bewertungsmaße zur Zukunftssicherheit und Flexibilität

Bewertungsmaße zur Zukunftssicherheit bzw. Flexibilität einzelner Systementitäten oder ganzer
Systeme sind physikalisch weniger fassbar als die drei bisher vorgestellten Bewertungsmaße Per-
formanz, Leistungsaufnahme und Fläche. Vielmehr sind sie im Kontext der Randbedingungen und
Schranken (vgl. Definitionen 7 und 8) für das System und die jeweilige Anwendung zu sehen, die
häufig subjektiver Formulierungen der Systemarchitekten unterliegen. Dennoch sind diese Bewer-
tungsmaße von ebenso großer Bedeutung, wenn nicht sogar zukünftig noch bedeutsamer als die
bisher genannten Maße. Nachstehend werden deshalb die wichtigsten Bewertungsmaße dieser Ka-
tegorie eingeführt.

Im Folgenden werden die Begriffe Fehlertoleranz und Fehlerimmunität, letztere eine noch stärkere
Form der Toleranz bezüglich des Verbergens von Software- oder Hardwaredefekten, festgelegt.
Auch sie können als Bewertungsmaße für das Kostenmaß Flexibilität herangezogen werden. Da
jedoch mit der Realisierung von fehlertoleranten bzw. fehlerimmunen Systemen zusätzlich Redun-
danz vorgesehen werden muss, erhöht sich zwangsläufig die benötigte Fläche (vgl. Definition 5).

3.2 Bewertungsmaße für Ressourceneffizienz

69

Definition 33 Die Fehlertoleranz FT eines eingebetteten Systems definiere ich als immanente
Fähigkeit des Systems, auf Ausfälle oder Fehlfunktion von Systementitäten (nach Definition
2) selbstständig zu reagieren und diese Fehler in gewissen Grenzen zu kompensieren.

Das bedeutet, dass nach außen die grundsätzlich spezifizierte Funktionalität des Systems erhalten
bleibt. Die Maßnahmen, die angewendet werden müssen, um ein System fehlertolerant aufzubauen,
sind vielschichtig und umfassen alle wesentlichen Systementitäten. Die Toleranz gegenüber auftre-
tenden Fehlern ist allerdings nicht unbeschränkt und ist u. a. mit dem Grad der Redundanz der
Hardware verknüpft. Die Software muss u. a. angemessene Detektions- und Verriegelungsmecha-
nismen aufweisen, um Fehlertoleranz in gewissen Grenzen zu ermöglichen. Toleriert ein System
Fehler, so muss das korrekte Verhalten nach außen – also zu den externen Schnittstellen – grund-
sätzlich gewährleistet sein. Dies beinhaltet z. B. Protokolle und Datenkonsistenz, also die Korrek-
theit der Ergebnisse der Verarbeitung. Bezüglich der Latenz, des Durchsatzes und des Jitters (vgl.
Definitionen 16, 17 und 19) hingegen können Leistungseinbußen auftreten.

Definition 34 Als Fehlerimmunität FI eines eingebetteten Systems formuliere ich die Eigen-
schaft eines Systems, alle Anforderungen, die sich für ein fehlertolerantes System aus Defi-
nition 33 ergeben, zu erfüllen. Darüber hinaus muss ein fehlerimmunes System alle Spezi-
fikationen bezüglich der Performanz einhalten.

Das bedeutet keine Reduktion des Durchsatzes (nach Definition 19), keine Erhöhung der Latenz
(nach Definition 16) und keine Vergrößerung des Jitters (nach Definition 17). Die Erfüllung dieser
Bedingungen ist nur mit massivem Einsatz von Redundanz und großem Aufwand auf Seiten der
Software möglich.

Definition 35 Skalierbarkeit bezeichnet die Möglichkeit, auf Basis der bestehenden Minimal-
bzw. Grundstruktur eines Systems ein neues System gleichgearteter Struktur zu realisieren,
welches über weitaus mehr Systementitäten verfügt als das Ursprungssystem. Die wesentli-
chen Systemeigenschaften in Form der beschriebenen Kostenmaße sollten jedoch von dieser
Erweiterung weitgehend unbeeinflusst bleiben oder maximal linear proportional ansteigen.

Ein System skaliert also, wenn bei n-facher Anzahl von Verarbeitungseinheiten die resultierende
Fläche maximal n-mal so groß ist, die maximale Taktfrequenz des resultierenden Systems gleich

oder zumindest
1

f
n

⋅ beträgt und die Leistungsaufnahme maximal um das n-fache zunimmt. Für

ein Softwareprogramm bedeutet dies, dass ein Algorithmus skaliert, wenn bei einer Erhöhung des
Eingangsproblems um den Faktor n die Berechnungsdauer auf der gleichen Maschine maximal li-
near ansteigt und somit n-mal so viele Berechnungen gemacht werden müssen.
Erfüllt ein erzeugtes n-faches System zusätzlich die Anforderung, dass es durch Reduktion oder
Abschalten von m Einheiten der Systemgrundstruktur auch nur eine m-fache Herabsetzung seiner
Eigenschaften erfährt, so ist es herunterskalierbar. Diese Eigenschaft ist z. B. für den Einsatz in
mobilen Geräten, im Falle geringerer Last, zur Reduktion der Verlustleistung und damit einherge-
hend zur Verlängerung der Betriebszeit von besonderem Vorteil.

Im Folgenden werden einige Aussagen zur Wiederverwertbarkeit (Reuse) wiedergegeben bzw. ge-
troffen, die letztendlich zu einer Definition dieses Begriffs im Hinblick auf die in dieser Arbeit rele-
vante Thematik führten.

Kapitel 3. Charakterisierung und analytische Modellierung

70

Ein Ausschnitt aus der ITRS-Roadmap [2] zeigt, dass auf System-Ebene im Bereich der Entwurfs-
anforderungen der nahen Zukunft (System Level Design Requirements — Near-term Years) der An-
teil an Design Reuse, also an Wiederverwertbarkeit von Hardwareblöcken, mit fortschreitender
Strukturverkleinerung in den kommenden Jahren bis 2013 stetig und insgesamt um mehr als 37 %
ansteigen muss (vgl. Tabelle 3-2). Dies zeigt deutlich die Vorteile, die sich durch einen flexiblen,
NoC-basierten SoC-Entwurf ergeben werden.

Tabelle 3-2: Entwurfsanforderungen / Design Reuse der nahen und fernen Zukunft auf System-Ebene [2]

Nach den Annahmen der ITRS steigert sich der Wert für wiederverwendete Blöcke ausgehend von
2005 um bis zu 71 % im Jahr 2020, so dass 2020 mehr als die Hälfte (55 %) der gesamten Logik
eines Chipentwurfs auf vorhandenen Schaltungsblöcken aufbaut. Diese Prognose zeigt das immer
wichtiger werdende Entwurfsparadigma der IP-Block-basierten System-on-Chips auf, die sich durch
ihre immanenten Eigenschaften besonders für ressourceneffiziente Implementierungen eignen.
Deshalb ist auch die GigaNetIC-Architektur besonders prädestiniert für zukünftige Systeme. Die
ITRS gibt folgende Berechnungsformel zur Vorhersage des „Reuse“-Wertes an:

 () () ()
()
1

1 1
1

n

Entwicklung

n

Wachstum

p
reuse n reuse

c

 +
 = − − ⋅
 +
 

 (3.23)

Mit reuse(n) ist die Anzahl wiederverwendeter Blöcke im Jahre n vom Referenzjahr gemeint. Reuse
ist einer der Hauptfaktoren, die die Entwurfsproduktivität steigern und eines der Schlüsselkonzepte,
die hinter dem System-Ebenen-Entwurf (System Level Design) stehen. pEntwicklung steht für die erwar-
tete jährliche, durchschnittliche Produktivitätswachstumsrate, ohne den Effekt von Reuse. cWachstum
bezeichnet die erwartete jährliche, durchschnittliche Wachstumsrate der Entwurfskomplexität. Die-
se Formel setzt voraus, dass die Größe des Entwicklungsteams genauso wie die Entwurfszeit wäh-
rend der betrachteten Zeitspanne konstant bleibt. Die Begründung dieser Formel liegt darin, dass
die Lücke zwischen Produktivitätswachstum und Wachstumsrate der Entwurfskomplexität (Design
Productivity Gap) durch Wiederverwendung (Reuse) ausgefüllt werden muss, soll der Fortschritt im
SoC-Entwurf vollständig genutzt werden [2]. Neben der unter (3.23) genannten Gleichung zur Wie-
derverwendbarkeit soll nun noch eine textuelle Definition für diesen Begriff gegeben werden.

Definition 36 Wiederverwendbarkeit WV: Ein wiederverwendbarer Hardware- oder Soft-
wareentwurf zeichnet sich dadurch aus, dass durch verifizierte Funktion, verifizierte Imple-
mentierung, bestehende Testumgebungen und gute Dokumentation der Einsatz einer bereits
realisierten Systementität (nach Definition 2), verglichen mit einer Neuimplementierung, ei-
nen deutlich geringeren Entwurfsaufwand (maximal 50 % eines Neuentwurfs) bedeutet.

Wiederverwendbarkeit ist eine essentielle Anforderung heutiger und zukünftiger SoC-Entwürfe, um
die Entwurfsproduktivitätslücke (vgl. Kapitel 1) schließen zu können. Wiederverwendbare System-
entitäten helfen somit den Entwurfsprozess drastisch zu verkürzen.

Jahr der Produktion 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

DRAM 1/2 Pitch(nm) (contacted) 80 70 65 57 50 45 40 36 32 28 25 22 20 18 16 14

Design Block Reuse
[% zur Gesamten Logikgröße]

32% 33% 35% 36% 38% 40% 41% 42% 44% 46% 48% 49% 51% 52% 54% 55%

Nahe Zukunft (Near Term) Ferne Zukunft (Long Term)

3.2 Bewertungsmaße für Ressourceneffizienz

71

Im Zusammenhang mit der Zukunftssicherheit und Flexibilität ist auch die Programmierbarkeit ei-
ner Systementität bzw. des Systems zu sehen. Diese steht, im Rahmen der implementierten Mög-
lichkeiten, für Flexibilität gegenüber einer starren, durch größtenteils fest verdrahtete Logikfunktio-
nen definierten Funktion eines Hardwareblocks. Je vielfältiger die Möglichkeiten der Programmier-
barkeit ausfallen, desto flexibler kann auf veränderte Anforderungen seitens der Anwendung rea-
giert werden. Allerdings geht dies zumeist mit einer Vergrößerung der Fläche einher. Je universeller
die Art der Programmierung ist, desto leichter lassen sich entwickelte Programme auf neue Hardwa-
revarianten portieren. Skalierbare Programmiermodelle (vgl. Abschnitt 4.5) ermöglichen effizient
nutzbare Hardwarestrukturen. Die Programmierbarkeit in einer Hochsprache wie z. B. C und die
effiziente Abbildbarkeit auf das System durch geeignete Werkzeugketten (vgl. Abschnitt 5.6) erhö-
hen ebenfalls die Wiederverwendbarkeit und Flexibilität des Systems.

Definition 37 Die Programmierbarkeit PG eines Systems beschreibt den Grad der Veränder-
barkeit der Funktion der Schaltung durch Veränderung von immateriellen Bestandteilen
(Software-Systementitäten ()i

e SWS (nach Definition 2)) des Systems. Die Hardware-System-

entitäten ()i
e HWS bleiben dabei unverändert.

3.2.5 Effizienzmaße zur Bewertung

Eine Kopplung von Bewertungsmaßen führt zu komplexeren Maßen, die, zumeist bezogen auf eine
spezielle Anwendung, eine höhere Aussagefähigkeit besitzen. Es handelt sich hierbei um so ge-
nannte Effizienzmaße.

Definition 38 Effizienzmaße EM setzen unterschiedliche Bewertungsmaße BM in Relation
zueinander und ermöglichen so tiefer gehende Vergleiche verschiedener Systemrealisierun-
gen in Bezug auf charakteristische Eigenschaften des betrachteten Systems.

 , , mit i
i k

k

BM
EM i k

BM
= ≠ (3.24)

Weitere Schachtelungen von (3.24) sind möglich. Handelt es sich bei Dividend und Divisor um
Bewertungsmaße der Dimension Energie, so definiert das sich ergebende Effizienzmaß den Wir-
kungsgrad.

Ein Effizienzmaß zur Verknüpfung von Performanz und Leistungsaufnahme ist die Anzahl der
möglichen „Millionen Operationen pro Sekunde pro Watt“ (MOPS/Watt), wobei hier nicht direkt
auf den tatsächlichen Durchsatz geschlossen werden kann, da die Anzahl der Operationen und deren
Leistungsfähigkeit nicht zwangsläufig bei jeder Architektur gleich zu bewerten sind, vgl. Abschnitt
6.2.3. Dies wird prinzipiell schon bei den Ansätzen von RISC- und CISC-Architekturen deutlich.
Sicherlich aussagekräftiger ist der Durchsatz pro Watt (z. B. MBit/s/Watt), bei einer gegebenen
Anwendung, allerdings nicht so gut geeignet für generelle Vergleiche. Für Kommunikationssysteme
von besonderer Aussagekraft ist das Effizienzmaß benötigte Takte pro Datenbit, was zum einen
eine Bewertung unterschiedlicher Architekturen erlaubt und zum anderen eine Charakterisierung
unterschiedlicher Algorithmen ermöglicht, vgl. Kapitel 7.

Ein Effizienzmaß zur Abschätzung der Zukunftssicherheit ist der Anteil wiederverwendeter bzw.
wiederverwendbarer Hardwareblöcke an der Gesamtfläche einer neuen Architekturvariante. Ent-
sprechendes lässt sich sinngemäß auch für Softwarebestandteile definieren.

Kapitel 3. Charakterisierung und analytische Modellierung

72

Zur Abschätzung der Wirtschaftlichkeit lassen sich Effizienzmaße wie Preis pro Chipfläche oder
Performanz pro Chipfläche oder auch Leistungsaufnahme bezogen auf den Durchsatz für eine ge-
gebene Anwendung einsetzen.

3.3 Die vier bestimmenden Kostenmaße der Ressourceneffizienz

Im Folgenden wird die prinzipielle Vorgehensweise zur Bewertung und Realisierung ressourcenef-
fizienter Systeme vorgestellt. Die vier Kostenmaße, die den Entwurfsraum definieren, und auf diese
wesentlich Einfluss nehmenden Faktoren werden näher charakterisiert. Die zur Bewertung der Res-
sourceneffizienz nach Definition 9 aufzustellende Kostenfunktion CF beinhaltet folgende, von mir
für wesentlich befundene Kostenmaße K : Leistungsaufnahme, Performanz bzw. Rechenleistung,
Chipfläche bzw. Preis und Zukunftssicherheit bzw. Flexibilität (vgl. Definition 5). Zumeist be-
steht eine diametrale Wechselwirkung zwischen den einzelnen Kostenmaßen, vgl. Abbildung 3-2.

Abbildung 3-2: Die vier Kostenmaße zur Bestimmung der Ressourceneffizienz

Zur Abschätzung der Ressourceneffizienz eines Systems müssen zunächst die Systemanforderun-
gen und die damit verbundenen Randbedingungen festgelegt werden. Diese spiegeln sich zum einen
in den Gewichtsfaktoren c für die relevanten Bewertungsmaße BM der jeweiligen Zielfunktionen
ZF der vier Kostenmaße K wider. Zum anderen wird die Relevanz jedes einzelnen Kostenmaßes
mit Hilfe von, den Randbedingungen angepassten, Gewichtungen α in der Kostenfunktion CF
nach Definition 9 berücksichtigt. Ziel ist es, die Kostenfunktion, also die eigentlichen Kosten des zu
realisierenden Systems, zu minimieren, um so eine den Anforderungen des Einsatzgebietes entspre-
chende, möglichst optimale Implementierung zu erzielen (vgl. Definition 10). Im Rahmen des Gi-
gaNetIC-Projekts geschieht dies durch die in den Kapiteln 5 und 6 vorgestellte Werkzeugkette und
den verfolgten hierarchischen Optimierungsansatz der Systemarchitektur. Abbildung 3-3 verdeut-
licht die wesentlichen Schritte und deren Reihenfolge zur Feststellung und Bewertung der Ressour-
ceneffizienz von verschiedenen Systemkonzepten.

Chipfläche
/

Preis

Leistungs-
aufnahme

Rechen-
leistung

Zukunftssicherheit

Kostenfunktion

3.3 Die vier bestimmenden Kostenmaße der Ressourceneffizienz

73

Abbildung 3-3: Vorgehensweise zur Bewertung der Ressourceneffizienz

Abbildung 3-4 veranschaulicht den durch diese vier Kostenmaße nach Definition 11 aufgespannten
Entwurfsraum und zeigt das wesentliche Für und Wider der einzelnen Kostenmaße auf. So lässt
sich z. B. die Rechenleistung durch Steigern der Parallelität oder der Taktrate erhöhen. Auch eine
Optimierung der Hardware und der Software bedeutet einen Leistungszuwachs. Allerdings erhöht
sich z. B. durch stärkere Parallelität die Fläche, was die diametrale Verknüpfung der einzelnen Di-
mensionen verdeutlicht. Durch Verwendung einer älteren Technologie, nicht optimierter Hardware
oder Software hingegen wird die Rechenleistung reduziert. Die Leistungsaufnahme einer Multipro-
zessorarchitektur wird u. a. durch Faktoren wie Technologie, Taktfrequenz und Fläche beeinflusst.

Die Chipfläche und damit einhergehend auch der Preis des Bausteins können ebenfalls durch den
Grad der Parallelisierung und die Art der Kommunikationsinfrastruktur des Chips (seriell / parallel /
heterogen) variiert werden. Die Artung der Kommunikationsinfrastruktur beeinflusst nach außen
hin zudem die Anzahl der Ein- und Ausgänge (I/Os) und damit die Gehäusekosten.

Als ein eher abstraktes Kostenmaß, das nicht so leicht zu messen bzw. auch zu bewerten ist, gestal-
tet sich die Zukunftssicherheit bzw. Flexibilität der Architektur. Dieses neue Kostenmaß ergänzt die
bereits in der Literatur etablierten drei Kostenmaße (ebendort oft auch Kostenfaktoren genannt). In
Zukunft wird es vermutlich eine immer wichtigere Rolle einnehmen. In Zeiten, in denen die Wert-
schöpfungskette nicht mehr nur in dem Verkauf des Produkts allein besteht, sondern mehr und mehr
auch durch kostenpflichtige Dienste Einnahmen erzielt werden, kommt es besonders auf die Flexi-
bilität und die Erweiterbarkeit der Merkmale eines Produktes an. Nicht zuletzt auch deshalb, um das
Produkt möglichst lange am Markt zu halten und auf kommende Anforderungen ohne Hardware-
modifikationen reagieren zu können.

V
er
fe
in
e
ru

n
g
 d
e
s
 S
y
s
te
m
k
o
n
ze

p
ts

S B

S B

S B

S B

S B

S B

S B

S B

S B

S B

S B

S B

S B

S B

S B

S B

S B

S B

S B

S B

S B

S B

S B

S B

S B

S B

S B

S B

Kapitel 3. Charakterisierung und analytische Modellierung

74

Abbildung 3-4: Vier Dimensionen des Entwurfsraums, aufgespannt durch die vier Kostenmaße

3.4 Zusammenfassung

In diesem Kapitel wurden wesentliche Begriffe eingeführt, die zur grundlegenden Definition der
Ressourceneffizienz und zur Bewertung eingebetteter Parallelrechner und ihrer Komponenten füh-
ren. Mit Hilfe der aufgeführten Formalismen können im Folgenden die Systemimplementierungen
aus Kapitel 4 sowie die Erweiterungen und Optimierungen aus den Kapiteln 6 und 7 mit Hilfe der
ganzheitlichen GigaNetIC-Werkzeugkette (vgl. Kapitel 5) charakterisiert und im Sinne der unter
Definition 14 gegebenen Begrifflichkeit im Hinblick auf Ressourceneffizienz bewertet werden. Ei-
ne exemplarische Untersuchung von unterschiedlichen Realisierungsvarianten zur effizienten Pa-
ketverarbeitung mit Hilfe der hier geschilderten Methode wird in Abschnitt 6.4 vorgestellt.

75

4 Die GigaNetIC-Systemarchitektur
In diesem Kapitel wird ein neuartiges Systemkonzept für Chip-Multiprozessoren vorgestellt. Die
Besonderheiten dieser Architektur sind die Skalierbarkeit, die hohe Flexibilität und der konsequent
verfolgte ganzheitliche Ansatz bei der Umsetzung des Architekturkonzepts. So wurde nicht nur am
Entwurf und der Optimierung der Hardware gearbeitet, sondern in Kooperation mit den Fachgebie-
ten „Programmiersprachen und Übersetzter“, Prof. Uwe Kastens, und „Algorithmen und Komplexi-
tät“, Prof. Friedhelm Meyer auf der Heide, der Universität Paderborn eine geschlossene Werkzeug-
kette mit Compiler, Programmiermodell und Simulatoren geschaffen. Diese Ganzheitlichkeit zeich-
net die GigaNetIC-Architektur in erster Linie aus, da man ein solch komplexes Multiprozessorsys-
tem nicht nur von einer Seite betrachten darf.

4.1 Neuartiges, ressourceneffizientes und skalierbares CMP-Systemkonzept

BENINI et al. zeigen in [107] die Notwendigkeit der Skalierbarkeit für zukünftige Systeme auf. Am-
bient Intelligence (AmI), also allumgebende „maschinelle“ Intelligenz in Form von komplexen Sys-
temen, wird in Zukunft eine immer größere Rolle in unserem täglichen Leben spielen. AmI erfor-
dert energieeffiziente, hoch-performante Rechensysteme mit intelligenten Sensoren und Aktoren,
die in jeder Hinsicht hoch skalierbar, für den jeweiligen Einsatzweck optimal konfiguriert sein müs-
sen. Sowohl Hardware, Kommunikationsstrukturen als auch Software müssen skalierbar gehalten
sein, um die kommenden Anforderungen des Marktes erfüllen zu können.

Die im Folgenden vorgestellte GigaNetIC-Architektur ist konzipiert worden, um all diese Ansprü-
che zu erfüllen. Auch Aspekte der Hochverfügbarkeit, also der Fehlertoleranz und Ausfallsicher-
heit, können durch ein redundant ausgelegtes GigaNetIC-System in gewissen Grenzen realisiert
werden.

Abbildung 4-1: GigaNetIC-Architektur – 32 Prozessoren untergebracht auf einem 20tel der Fläche eines Cents

Abbildung 4-1 verdeutlicht die hohe Integrationsdichte und die Flächenverteilung einer Architektur-
Variante des GigaNetIC-Systems, die 32 N-Core-Prozessoren (vgl. Abschnitt 4.3.1) und acht
Switch-Boxen (vgl. Abschnitt 4.2) umfasst. Diese Realisierung lässt sich in einer aktuellen 90-nm-
Technologie auf ca. einem 20tel der Fläche eines Centstücks integrieren. Zusammen mit 1,3 MByte

Kapitel 4. Die GigaNetIC-Systemarchitektur

76

On-Chip-Speicher findet das gesamte System auf weniger als der Hälfte der Fläche des besagten
Geldstücks Platz. Abweichend von den Ansätzen immer komplexer werdender, hoch spezialisierter
Recheneinheiten der letzten Jahre (vgl. Kapitel 2), bei denen eine möglichst hohe Taktfrequenz an
oberster Stelle steht, wird bei dem GigaNetIC-System das Prinzip einer massiv parallelen Architek-
tur verfolgt. Hierbei werden weniger "hochgezüchtete" CPUs mit geringer Pipelinetiefe vielfach
instanziiert. Dies geschieht frei nach dem Prinzip: „Teile und herrsche“, d. h. die Arbeit wird auf
eine Vielzahl relativ einfacher Verarbeitungseinheiten verteilt. Allerdings ist der Erfolg dieser Me-
thode abhängig von der Anwendung und ihrer Parallelisierbarkeit14.

Die GigaNetIC-Architektur ist im Grundsatz eine „General Purpose“-Systemarchitektur, also eine
zunächst universell einsetzbare Multiprozessorrealisierung. Bei vielen der im Folgenden vorgestell-
ten Aspekte wurde sie insbesondere für den Einsatz als Netzwerkprozessor getestet, durch anwen-
dungsspezifische Hardwarebeschleuniger erweitert und optimiert (vgl. Kapitel 6 und 7). Bei der
prototypischen Realisierung (vgl. Kapitel 8) wurde ebenfalls besonderes Augenmerk auf die Integ-
ration der Architektur in ein Netzwerkanwendungsszenario gelegt.

Abbildung 4-2: Schematischer Aufbau der massiv parallelen GigaNetIC-Architektur

Die entworfene GigaNetIC-Architektur (vgl. Abbildung 4-2) beruht auf massiv paralleler Verarbei-
tung, die durch eine Vielzahl homogener Verarbeitungseinheiten ermöglicht wird. Diese Rechen-
knoten basieren auf einem im Fachgebiet Schaltungstechnik der Universität Paderborn, Prof. Rück-
ert, entworfenen 32-Bit-RISC-Prozessorkern [108]. Diese werden in einer hierarchischen System-
Topologie über eine leistungsfähige, mehrstufige Kommunikationsinfrastruktur, den GigaNoC
[109][110], miteinander verbunden. Die GigaNetIC-Architektur lässt sich strukturell in drei Ebenen
[6] unterteilen:

• Prozessor-Ebene
Diese Ebene kennzeichnet die unterste Ebene des GigaNetIC-Systems. Auf dieser Ebene
finden feingranulare Modifizierungen und Optimierungen wie z. B. Befehlssatzerweiterun-
gen des Prozessors statt (vgl. Abschnitt 6.2 und 7.3). Dies betrifft jeweils einzelne Module,
also alle Intellectual Property(IP)-Blöcke, die hier zum Einsatz kommen, wie z. B. Prozes-

14 Vgl. hierzu die Gesetze von AMDAHL (2.1) und GUSTAFSON (2.2), Abschnitte 2.1.1 und 2.1.2.

4.1 Neuartiges, ressourceneffizientes und skalierbares CMP-Systemkonzept

77

sorelemente (PE), Hardwarebeschleuniger (HW-Acc) (vgl. Abschnitt 6.3, 7.4.2.3 und 7.7),
Speicher oder Peripherie-Blöcke. Im Falle der zentralen Verarbeitungseinheit (CPU) kon-
zentrieren sich hier die Aktivitäten auf den N-Core [108][111] (vgl. auch Abschnitt 6.2).

• Cluster-Ebene
Auf dieser Ebene sind die einzelnen Module über einen lokalen Bus oder eine Switchmatrix
verbunden. Der verwendete Compiler [111][112] kann sowohl Optimierungen auf Instrukti-
onsebene (Instruction Level Parallelism / ILP) vornehmen, als auch die Existenz von an-
wendungsspezifischen Hardwarebeschleunigern ausnutzen. Auf dieser Ebene kann bei Be-
darf ein eigens entworfener Multiprozessor-Cache eingesetzt werden [113] (vgl. auch Ab-
schnitt 4.4.2). Switch-Boxen [114] (vgl. Abschnitt 4.2.1) agieren als Hochgeschwindigkeits-
Routingknoten und entlasten die Prozessoren bzw. die lokalen Hardwareblöcke als so ge-
nannte „NoC Offload Engines“ beim Empfangen und Senden von Daten von bzw. zu ande-
ren Clustern bzw. externen Schnittstellen des SoCs.

• SoC(System-on-Chip)-Ebene
Rückgrat der SoC-Ebene ist die Kommunikationsinfrastruktur, die sowohl die Kommu-
nikation auf dem Chip als auch die Anbindung des Off-Chip-Speichers und der IOs gewähr-
leistet. Für den Programmierer geschieht dies transparent, da die Wegewahl und das Spei-
chermanagement von den Switch-Boxen (vgl. Abschnitt 4.2.1) gesteuert werden. Zur kom-
fortablen Nutzung der Kommunikationsinfrastruktur werden spezielle intrinsische Funktio-
nen [115][109] als Software-Bibliothek zur Verfügung gestellt (vgl. Abschnitt 4.2.2). Darü-
ber hinaus wurde ein globales Programmiermodell zur Ausnutzung der SoC-weiten Paralle-
lität eingeführt (vgl. Abschnitt 4.5).

Ein Hauptziel meines Ansatzes ist, dass der resultierende Multiprozessor in Bezug auf die Anzahl
der Cluster, der pro Cluster instanziierten Prozessoren sowie die zur Verfügung gestellte Bandbreite
durch die Kommunikationskanäle leicht parametrisierbar sein soll. Außerdem sollen definierte
Schnittstellen zum einfachen Integrieren von kundenspezifischen Hardwarebeschleunigern und Pe-
ripherieblöcken die Performanz und die Zukunftssicherheit des Konzepts maximieren. Auf diese
Weise kann eine große Wiederverwendbarkeit (vgl. Abschnitt 3.2.4, insbesondere Definition 36)
dieser Architektur durch Skalierung auf vielfältige Einsatzgebiete gewährleistet werden (vgl. Ab-
schnitt 3.3). Dies erhöht auch die Ressourceneffizienz des Systems (vgl. Abschnitt 3.1, insbesonde-
re Definition 14).

Die drei Hierarchieebenen bieten dem Entwickler definierte Ansatzpunkte zur Optimierung bzw.
Parametrisierung des Systems in Bezug auf den späteren Einsatzzweck und die damit verbundenen
Anforderungen (vgl. Kapitel 6). Dies wird zudem von der entwickelten Werkzeugkette komfortabel
unterstützt (vgl. Kapitel 5) und ermöglicht somit schnelle Entwicklungszyklen. Weitere Vorteile
einer solchen homogenen Systemarchitektur liegen in dem einheitlichen Programmiermodell und
der vereinfachten Testbarkeit und Verifikation. Dies wirkt sich ebenfalls positiv auf die Entwick-
lungszeit des Gesamtsystems aus.

Die spezielle parallele und redundant auslegbare Architektur des GigaNetIC-Systems bietet zudem
großes Potential für die Realisierung nach Definition 33 fehlertoleranter Chip-Multiprozessoren und
ermöglicht somit eine Erhöhung der Chipausbeute (Production Yield), was zur Steigerung der Res-
sourceneffizienz beiträgt. Vorausgesetzt die Hardware und die Betriebssoftware ist dafür ausgelegt,
erreicht man sogar – in gewissen Grenzen – eine Immunität des Systems gegenüber Fehlern (nach

Kapitel 4. Die GigaNetIC-Systemarchitektur

78

Definition 34) und damit gegebenenfalls eine weitere Steigerung der Ressourceneffizienz. Mit der
zunehmenden Miniaturisierung und den hervorragenden Eigenschaften der GigaNetIC-Architektur
bezüglich Skalierbarkeit und Programmiermodell bieten sich optimale Voraussetzungen, um in Zu-
kunft fehlertolerante bzw. sogar fehlerimmune Systeme zu konstruieren.

Abbildung 4-3 zeigt die Zuordnung der einzelnen GigaNetIC-Systementitäten zu dem bereits in
Abschnitt 2.3.2 vorgestellten NoC-Schichtenmodell. Zur physikalischen Schicht sind die Verbin-
dungsleitungen zwischen den Switch-Boxen (Inter-Switch-Box-Links) und die spezifischen Puffer-
speicher für die Flits zur Vermeidung von Blockaden (Advanced Buffer) zu zählen. Die Architektur
und Steuerungsschicht umfassen die funktionalen Einheiten der Switch-Boxen und die vordefinier-
ten Software-Bilbliotheksfunktionen, die den Prozessorelementen eine komfortable Schnittstelle zu
den Funktionen des On-Chip-Netzwerks zur Verfügung stellen. Zur Schicht 3 und damit zur Soft-
wareschicht gehören die Anwendungssoftware, wie z. B. Paketverarbeitungsalgorithmen beim Ein-
satzgebiet als Netzwerkprozessor (vgl. Kapitel 7), und das Programmiermodell des Gesamtsystems
(vgl. Abschnitt 4.5).

Abbildung 4-3: Zuordnung wesentlicher Systementitäten zum NoC-Schichtenmodell

Im Folgenden wird der Aufbau der GigaNetIC-Architektur im Detail beschrieben, angefangen bei
der GigaNoC-On-Chip-Kommunikationsstruktur und dem hierfür eigens entworfenen On-Chip-
Kommunikationsprotokoll [110], über die Anbindung von Verarbeitungseinheiten [108][6][111]
und IP-Blöcken [116][117], die Implementierung eines GigaNetIC-konformen Multiprozessor-
Caches [113], bis hin zum Programmiermodell des Gesamtsystems [6] und zu einer Werkzeugkette
zur modularen, effizienten Modellierung von Netzwerkanwendungen [118][119].

4.2 GigaNoC-On-Chip-Kommunikationsstruktur

Bei dem GigaNetIC-Prototypen (vgl. Kapitel 8) wurde ein zweidimensionales Gitter (vgl. Abbil-
dung 2-8) für die obere Topologiehierarchiestufe realisiert. Diese Topologie ist mittlerweile techno-
logisch aufgrund symmetrischer Leitungslängen und Laufzeiten beherrschbar und bietet weitere
Vorteile für On-Chip-Netzwerke (vgl. Abschnitt 2.3). Die Module innerhalb der Cluster der unteren
Hierarchiestufe werden über lokale Bussysteme, wie z. B. Wishbone oder AMBA, oder über
Switchmatrixen miteinander verbunden. Abbildung 2-9 b) stellt eine freie, hierarchische Topologie
dar, die keinerlei Restriktionen hinsichtlich der Verbindungen zwischen den einzelnen Clustern un-
terliegt. Die GigaNetIC-Architektur ist zwar für eine solche Variante vorbereitet, technologisch
werfen sich allerdings für derzeitige Standardzellprozesse mitunter große Probleme auf, so dass
eine Realisierung einer derart unregelmäßigen Struktur momentan nicht angedacht ist.

4.2 GigaNoC-On-Chip-Kommunikationsstruktur

79

Für NoCs gibt es, wie in Abbildung 2-16 gezeigt, konkurrierende Faktoren, die gegeneinander ab-
gewogen werden müssen, allerdings besteht hier der Vorteil, dass nicht zwangsläufig existierende
strenge Kommunikationsstandards eingehalten werden müssen, da diese Netzwerke normalerweise
in sich abgeschlossen sind. Zu diesen Kosten zählen die bereits erwähnten Faktoren wie Leistungs-
aufnahme und damit einhergehend eine möglichst direkte Wegewahl. Als nächstes ist der Flächen-
bedarf zu nennen, der direkt mit der Router-Architektur verknüpft ist, die zudem direkt maßgeblich
die Leistungsfähigkeit der Datenübertragung bestimmt. Ein weiterer sehr bedeutender Punkt ist die
Robustheit des Netzwerks gegenüber sich verändernden Datenverkehrsverteilungen. Hier wird die
Qualität des Netzwerks nicht zuletzt durch die verwendeten Routingalgorithmen definiert. Statische
Wegewahlverfahren eignen sich vor allem für deterministisches Verkehrsaufkommen, wohingegen
sich adaptive, also dynamische Routingverfahren durch Flexibilität bei veränderlichem Lastverhal-
ten auszeichnen. Durch die Wahl des Routingverfahrens wird deshalb die Flexibilität und somit die
Zukunftssicherheit des NoCs definiert.

4.2.1 Switch-Boxen als zentrale Kommunikationsknoten auf SoC-Ebene

System-on-Chip-Ebene. Auf SoC-Ebene fungieren Switch-Boxen (vgl. Abbildung 4-4) als Hoch-
geschwindigkeits-Routingknoten, die die einzelnen Cluster des SoCs miteinander verbinden [114].
Die On-Chip-Kommunikation ist paketbasiert (vgl. Abschnitt 4.2.2).

Abbildung 4-4: Switch-Box-IP-Block mit Struktur ein es Ports und des Kreuzschienenverteilers.

Explizite Darstellung für Eingangsport 3 und den Ausgang von Port 1.

Aufgrund der generischen Beschreibung in VHDL, die u. a. Variationen der Anzahl der Ports zu-
lässt, können nahezu beliebige Netzwerktopologien aufgebaut werden. Für die prototypische Reali-
sierung wird zunächst ein Gitter implementiert. Trotz dieses regelmäßigen und einfachen Aufbaus

Sw
itc
h-
Bo
x

Data O
ut

Data Out

D
a

ta
 O

u
t

D
a

ta
 O

u
t

Data Out

INPUT_PORT
3FIFO 0

FIFO 2

FIFO 3

FIFO 4

FIFO 1

IN
P

U
T

_
P

O
R

T

4
F

IF
O

 0

F
IF

O
 2

F
IF

O
 3

F
IF

O
 4

F
IF

O
 1

IN
P

U
T

_
P

O
R

T

2
F

IF
O

 0

F
IF

O
 2

F
IF

O
 3

F
IF

O
 4

F
IF

O
 1

INPUT_PORT
1FIFO 0

FIFO 2

FIFO 3

FIFO 4

FIFO 1

INPUT_PORT

0
FIFO 0FIFO 2

FIFO 3
FIFO

 4

FIFO 1

M
U

X

Arbiter
(mit Prioritätsenkoder)

CrossbarSUB

Routing Input Port

FIFO 0

FIFO 1

FIFO 2

FIFO 3

FIFO 4

Input

M
U

X

Co
m
m
un
ic
at
io
n-

Co
nt
ro
lle
r

Ausgangs FIFO

Kapitel 4. Die GigaNetIC-Systemarchitektur

80

erlaubt diese Architektur Pipelining und Parallelverarbeitung der Prozessorfelder. Außerdem garan-
tiert diese Topologie gleichlange Verbindungsleitungen und damit gleichlange Signal-Laufzeiten
zwischen den Switch-Boxen. Die parallele, Switch-Box-basierte Architektur erlaubt des Weiteren
eine hohe Fehler- bzw. Ausfalltoleranz. Sollte ein Prozessorfeld ausfallen, so kann, sofern die Soft-
ware dies unterstützt, ein anderer Cluster dessen Funktionalität übernehmen.

Die Switch-Box besteht als aktiver Netzwerkknoten aus zwei Hauptteilen. Der eine Teil bildet mit
den Eingangsports und dem Kreuzschienenverteiler (Crossbar) mit integriertem Prioritäts-Enkoder-
basierten Round-Robin-Arbiter die Kommunikationsstruktur. Diese sorgt dafür, dass die Datenpa-
kete problemlos durch den Knoten geleitet werden und mit der Routing-Strategie den korrekten
Ausgang der Switch-Box erreichen. Der zweite Teil der Switch-Box umfasst Kontrollstrukturen, die
als Schnittstelle zwischen dem Prozessorfeld und dem Chipnetzwerk dienen. Diese Kopplung über-
nimmt der Communication-Controller (CC), welcher zwischen dem Port 0 und dem Bussystem des
Prozessorfeldes angeordnet ist (vgl. Abbildung 4-4).

4.2.1.1 Communication-Controller

Der Communication-Controller wird in Abbildung 4-5 detaillierter dargestellt, zu seinen wesentli-
chen Aufgaben zählen:

Die Bereitstellung der für den lokalen Cluster bestimmten Pakete geschieht auf Anfrage der Prozes-
soren. Die Eingangsports der Switch-Box erkennen, dass ein Flit für den lokalen Port gedacht ist,
daran, dass die Koordinaten im Kopf eines Flits null sind. Die Flits müssen nicht zwangsläufig nach
Paketen sortiert ankommen, noch müssen die Flits eines Pakets in der richtigen Reihenfolge sortiert
sein. Die Pakete werden also gegebenenfalls vom CC geordnet. Er übernimmt die Speicherverwal-
tung.

Abbildung 4-5: Der Communication-Controller, die NoC-Kommunikations-"Offload-Engine"

Eine weitere Hauptaufgabe des CCs ist das Versenden von Paketen, wenn ein Prozessor die Bear-
beitung seiner Daten beendet hat, und diese weitergeleitet werden müssen. Dabei kann das Ziel ein

Switch-Box

Communication-Controller

Input-Register

Bus-Controller

Output-Register
(Advanced Buffer)

lokaler Bus (inkl. Arbiter)

Dual-Port-Speicher

Speicher-Controller

Adress-FIFO

FIFO-
Register

.

.

16

Sende-FIFO

FIFO-
Register

.

.

16

Sendekontrolle

Adress-Selektor

4.2 GigaNoC-On-Chip-Kommunikationsstruktur

81

anderes Prozessorfeld sein, welches zusätzliche Funktionen hat, oder eine Ausgangsschnittstelle des
Chips. Zusätzlich ist vorgesehen, dass sich die Programme, die auf den Prozessoren laufen, gegen-
seitig Nachrichten schicken können (Message Passing). Auch zu diesem Zweck müssen Pakete ver-
schickt werden. Der Ablauf dabei ist wie folgt: Ein Prozessor teilt dem CC mit, dass es ein zu ver-
sendendes Paket gibt, und informiert ihn über die Adresse, an der die Daten im Speicher beginnen.
Anschließend sorgt der CC dafür, dass die Daten zu einem Paket zusammengestellt werden und
organisiert deren Transport zum Eingangsport Null. Von dort nehmen die Flits vollkommen auto-
matisiert ihren Weg durch die Kommunikationsstruktur zum gewünschten Zielort.

In der Initialisierungsphase fungiert der CC als „Bootloader“. Er schreibt die Programmflits vollau-
tomatisch in die entsprechenden Speicherbereiche für den Programmcode der Prozessorelemente.
Dieses Verfahren wird selbständig nach dem Hard Reset angestoßen. Die entsprechenden Daten
werden aus einem nichtflüchtigen, an einer Switch-Box angeschlossenen Speicher geladen. Hierzu
wird ebenfalls die inhärente Funktionalität des GigaNoCs genutzt. Eine Übersicht der Befehle des
Communication-Controllers wird in Abbildung Anhang A-2 gegeben.

4.2.1.2 Topologie des Netzwerks

Wie in Abschnitt 2.3.1 ausführlich erläutert eignen sich zweidimensionale Strukturen für aktuelle
Standardzell-Technologien derzeit am besten. Deshalb wird momentan auch beim GigaNoC eine
gitterförmige Struktur präferiert, vgl. Abbildung 4-2. Durch Parametrisierung (vgl. Abschnitt 4.7)
bzw. Änderung der Anordnung kann die Architektur aber auch in komplexere Topologien überführt
werden. Hierzu können auch die zusätzlichen diagonalen Ports der Switch-Boxen eingesetzt wer-
den, die den Grad δ des einzelnen Netzwerkknotens bis hin zu derzeit 16 steigern können (vgl.
Abbildung 4-6).

Abbildung 4-6: Parametrisierbarer Grad δ der Switch-Box

Ebenso sind Topologien mit mehr als zwei Hierarchiestufen realisierbar. D. h. dem regelmäßigen
Gitter aus Abbildung 4-2 kann z. B. durch Anschluss von Switch-Boxen anstelle der lokalen Cluster
an den Port 0 des jeweils übergeordneten Knotens eine weitere Hierarchiestufe implementiert wer-
den (vgl. Abbildung 4-7). Die Abbildung zeigt ein n Hierarchieebenen umfassendes System, wobei
die n-te Dimension durch den lokalen Cluster repräsentiert wird.

Die einfache Parametrisierbarkeit des Systems erlaubt die entsprechende Realisierung der benötig-
ten Bandbreiten. Natürlich sind auch andere Konstellationen, z. B. wie in Abbildung 2-9 b), denk-
bar, allerdings würden diese Topologien ggf. Erweiterungen bzgl. des Routings erfordern.

Kapitel 4. Die GigaNetIC-Systemarchitektur

82

4.2.1.3 Switching-Methode

Eingangsdaten werden, solange noch Kapazitäten frei sind, in den Ports einer Switch-Box direkt in
eine FIFO-Warteschlange (Queue) eingereiht. Ansonsten wird dem Quellknoten signalisiert, dass
die beabsichtigte Richtung bzw. Warteschlange blockiert bzw. gefüllt ist. Die Übertragung wird
dann, um eine definierte Anzahl an Takten verzögert, erneut seitens des Quellknotens initiiert. Die
FIFO-Puffer arbeiten mit zwei unabhängigen Zeigern für den Lese- und Schreibzugriff, die von ei-
ner speziellen Kontrolleinheit gesteuert werden. Diese sorgt dafür, dass zum einen das FIFO-Prinzip
eingehalten wird, und zum anderen, sollte die Warteschlange leer sein, die Daten nicht erst taktwei-
se durch eine Registerkette hindurchgeschleust werden müssen, sondern sofort zum Ausgang gelan-
gen. Obwohl die FIFO-Struktur physikalisch am Eingangsport platziert ist, handelt es sich dennoch
um eine Form des Output Queueings, das Virtual Output Queueing (VOQ) [120]. KAROL et al.
[121] konnten zeigen, dass die Methode des Output Queueings deutliche Vorteile gegenüber dem
Input Queueing aufweist. Nicht zuletzt deshalb wird VOQ auch beim GigaNoC eingesetzt. Da ge-
trennte Warteschlangen für jeden Ausgang vorhanden sind, wird das Problem des so genannten
Head-of-Line-Blockings (vgl. Abschnitt 2.3) in Abhängigkeit von der Größe des Warteraums ver-
ringert.

Abbildung 4-7: On-Chip-Netzwerk höherer Hierarchie, basierend auf dem GigaNoC

Bei der Verbindungsart der Ports sind verschiedene Lösungen wie Bussysteme, Kreuzschienenver-
teiler oder Punkt-zu-Punkt-Verbindungen denkbar. Letztere bieten zwar eine absolute Blockie-
rungsfreiheit, aber dafür müssen an jedem Ausgang mehrere Anfragen parallel verarbeitet werden.
Zusammen mit der hohen Anzahl der benötigten Verbindungen steigert dies die Kosten wesentlich.
Ein Bus hat vergleichsweise geringe Kosten, doch werden alle Anfragen bis auf eine blockiert. Der
Kreuzschienenverteiler stellt ein nicht-blockierendes Netz mit mittleren Kosten und hohem Durch-
satzpotential dar. Er kommt deshalb als Verbindungsstruktur innerhalb der Switch-Box in einer auf
Geschwindigkeit optimierten Variante, der in [122] dargestellten Form, zum Einsatz.

S B

4.2 GigaNoC-On-Chip-Kommunikationsstruktur

83

Grundlegend war zu entscheiden, ob die Daten paketbasiert durch die Knoten geleitet werden (Pa-
cket Switching / PS), oder ob vor der Übertragung physikalische Kanäle reserviert werden (Circuit
Switching / CS). Wie in Abschnitt 2.3.2 erläutert, bietet sich für universelle Multiprozessorsysteme,
bei denen die Aufgaben und Lastverteilungen nicht im Vorfeld genauestens bekannt sind, eine Va-
riante der Packet-Switching-Verfahren an. Deshalb wurde beim GigaNoC eine Form des Wormho-
le-Switching-Verfahrens, das sich durch die in Abschnitt 2.3.2 erwähnten Vorteile (geringer Puffer-
bedarf, kleinere SAF-Latenzzeiten, gute Eignung für kompakte und leistungsfähige Hardware-
realisierung) deutlich von anderen Switching-Verfahren absetzt, implementiert. Der Nachteil, dass
es zu Blockierungen kommen kann, wird durch die spezielle Art des bei der Switch-Box eingesetz-
ten Virtual Output Queueings deutlich reduziert. Für eine einfache Gitterstruktur des GigaNetIC-
CMPs wäre das in Abschnitt 2.3.2 vorgestellte „Mad Postman“-Switching ebenfalls eine vielver-
sprechende Methode, die sich aufgrund der Switch-Box-Struktur leicht in den bestehenden Entwurf
integrieren ließe. Für zukünftige Realisierungen kann mit Hilfe der SiMPLE-Entwicklungs-
umgebung (vgl. Abschnitt 5.2) im Vorfeld der Chipfertigung ein Vergleich der vielversprechenden
Switching-Varianten für das jeweilige Anwendungsszenario erfolgen, um so die Leistungsfähigkeit
der Kommunikationsinfrastruktur optimal an die Anwendungsanforderungen anzupassen.

4.2.1.4 Routing

Das GigaNoC unterstützt mehrere Routingmechanismen, um möglichst flexibel auf spezielle An-
wendungsszenarien oder Lastverteilungen reagieren zu können. Standardmäßig ist das XY-Routing
(vgl. Abschnitt 2.3.2) aktiviert, da es sich, wie bereits diskutiert, als gedächtnisloses, deterministi-
sches Routing besonders für Gitter- und Tori-Topologien eignet. Es bietet den Vorteil, dass keine
Live- bzw. Deadlocks in mehr als einer Dimension auftreten können. Als Alternative kann komfor-
tabel, mittels so genannter Instruktionsflits (vgl. Abschnitt 4.2.1.1) auf ein adaptives Routingverfah-
ren, das auf Kostentabellen in den einzelnen Switch-Boxen basiert, umgeschaltet werden. Zusätz-
lich lassen sich bei Bedarf weitere anwendungsspezifische Routingmechanismen integrieren. Zwi-
schen den einzelnen Verfahren kann während des Betriebs dynamisch umgeschaltet werden.

Durch Erweiterung der Funktionalität der Routingflits könnten Mechanismen wie Broadcast (das
Weiterleiten eines Pakets an alle Teilnehmer des NoCs) oder Multicast (das Weiterleiten eines Pa-
kets an eine Gruppe ausgewählter Teilnehmer des NoCs) realisiert werden. Ein anderer Ansatz wäre
die Erweiterung und spezielle Auswertung der Adressierungsfelder der Flits ähnlich dem Internet-
Protokoll. Beide Varianten bedeuteten Erweiterungen der Switch-Box-Struktur, wobei die sich er-
gebenden neuen Möglichkeiten sicherlich den Aufwand rechtfertigten.

4.2.1.5 Flächenverteilung der Switch-Box-Komponenten basierend auf Syntheseergebnissen

Abbildung 4-8 zeigt die qualitative Flächenaufteilung der wesentlichen Switch-Box-Komponenten
nach der Synthese auf Standardzellen auf. Auffällig ist, dass bereits bei der FIFO-Tiefe = 3 mehr als
77 % der Fläche für FIFO- und Ausgangsregister benötigt werden. Durch zukünftigen Einsatz von
modernster SRAM-Technologie kann dieser Flächenanteil, verglichen mit den derzeit verwendeten
Registerzellen, deutlich reduziert werden [110].

Abschätzung der Switch-Box-Fläche. Die Gesamtfläche der Switch-Box ASB setzt sich zusammen
aus der Addition der Flächen der Hauptkomponenten Communication-Controller ACC, Crossbar
ACrossbar und aller Inputports AInputports.

Kapitel 4. Die GigaNetIC-Systemarchitektur

84

 SB CC Crossbar InputportsA A A A= + + (4.1)

In der VHDL-Implementierung ist eine Vielzahl von variierbaren Parametern enthalten, durch die
das Gesamtsystem vor der Synthese flexibel gestaltbar und damit speziell auf Anforderungen neuer
Anwendungsszenarien bzw. auf neue Technologien anpassbar ist. Die wesentlichen Parameter der
Switch-Box, die teilweise direkt durch das On-Chip-Kommunikationsprotokoll (vgl. Abschnitt

4.2.2) beeinflusst werden, sind in Anhang B aufgeführt.

Abbildung 4-8: Flächenaufteilung der einzelnen Switch-Box-Komponenten bei einer FIFO-Tiefe von drei

Die Fläche des Communication-Controllers setzt sich aus zwei wesentlichen Bestandteilen zusam-
men. Die Fläche teilt sich in Bereiche auf, die entweder abhängig von oder aber invariant gegenüber
der Flitbreite sind. Da in den FIFO-Strukturen des CCs keine vollständigen Flits, sondern nur Spei-
cheradressen und Datenlängen gespeichert werden, hängen diese nicht vom Parameter DA-
TA_WIDTH (Gesamtbreite eines Flits, vgl. Abbildung 4-11) ab. Auch die Speicherschnittstelle
MEMORY_CONTROLLER und die Busanbindung COM_BUS_CONTROLLER sind von der Flitb-
reite unabhängig, da derzeit, unabhängig von der Anzahl der Datenworte eines Flits, 32 Bit breite
Schnittstellen verwendet werden. Das Ausgangsregister OUTPUT_BUFFER und das Eingangsre-
gister INPUT_REG hängen hingegen als Blöcke des CCs von der Flitbreite ab.

Alle folgenden Werte wurden für die Flitbreite DATA_WIDTH = 93 Bit anhand umfangreicher Syn-
thesen ermittelt. Die Syntheseergebnisse der Switch-Box ergeben, dass der gesamte CC zu 13,42 %
von der Flitbreite abhängig ist, da dieser Teil hauptsächlich aus den Registern für die Flits besteht.
Da sich diese Registerfläche linear zu der Flitbreite verhält, kann für die Gesamtfläche CCA des

CCs die Formel (4.2) aufgestellt werden. 93
CCA ist die Fläche des CCs bei einer Flitbreite von 93 Bit.

 () ()()93 930,8658 / 93 _ 0,1342CC CC
CCA A A DATA WIDTH= ⋅ + ⋅ ⋅ (4.2)

Der Kreuzschienenverteiler enthält keine Registerstrukturen, in denen Flits zwischengespeichert
werden. Allerdings besteht seine Fläche zu ca. 82 % aus Multiplexern, die sich ähnlich wie Register
nahezu linear mit der Breite der Flits vergrößern. Zur Berechnung der Fläche CrossbarA des Kreuz-

schienenverteilers wird in Analogie zu (4.2) die Fläche des Kreuzschienenverteilers 93
CrossbarA ver-

wendet.

 () ()()93 930,18 / 93 _ 0,82Crossbar Crossbar
CrossbarA A A DATA WIDTH= ⋅ + ⋅ ⋅ (4.3)

In den Eingangsports befinden sich die FIFO-Register der Breite DATA_WIDTH, deren Tiefe mit
FIFO_DEPTH eingestellt wird. Die Registerfläche der FIFOs FiforegA kann daher, analog zu (4.2)

4.6%3.5%4.2%

9.8%

40.8%

37.0%

Logik CC

Logik Crossbar

Logik Input Port

CC-Register

AB-Register

FIFO-Register

4.2 GigaNoC-On-Chip-Kommunikationsstruktur

85

und (4.3), wie folgt angegeben werden, und zwar mit 93
FiforegA für die erhaltene Fläche für ein FIFO-

Register mit 93 Bit Breite:

 ()93 / 93 _ _Fiforeg
FiforegA A DATA WIDTH FIFO DEPTH= ⋅ ⋅ (4.4)

Jeder FIFO-Kette ist ein ADVANCED_BUFFER nachgeschaltet, der u. a. das Head-of-Line-
Blocking-Problem zusätzlich minimiert. Er ist ebenfalls von der Breite DATA_WIDTH abhängig, so
dass sich seine Fläche ABA wie durch (4.5) beschrieben ergibt, unter Einbeziehung der Fläche eines

ADVANCED_BUFFERS 93
ABA .

 ()93 / 93 _AB
ABA A DATA WIDTH= ⋅ (4.5)

Sowohl FIFO-Warteschlangen als auch Puffer werden in einer Anzahl generiert, die dem Quadrat
der Anzahl der Switch-Box-Ports PSB entspricht. Die Syntheseergebnisse zeigen, dass diese Ports
ca. 3,725% Logik enthalten, die weder von DATA_WIDTH noch von FIFO_DEPTH beeinflusst
wird. Hieraus folgt (4.6) für die Fläche der Inputports inputportsA .

() ()

2

1 0,03725
SB

inputports Fiforeg AB

P
A A A= ⋅ +

−
 (4.6)

Die Annäherungsformel (4.1) zur Bestimmung der Gesamtfläche der Switch-Box ist damit voll-
ständig definiert. Abbildung 4-9 zeigt die sich daraus rechnerisch ergebenden Flächen für ausge-
wählte Switch-Box-Implementierungen unter Variation der beiden Parameter FIFO_DEPTH und
DATA_WIDTH sowie einer Portanzahl von 5. (4.1) ist natürlich nur als Abschätzung zu sehen, da
durch explizite Synthesen und durch die heuristischen Verfahren der Synthesewerkzeuge sowie de-
ren Optimierungsmechanismen (Fläche bzw. Geschwindigkeit etc.) sich teilweise abweichende
Werte ergeben können. Es hat sich allerdings gezeigt, dass mit (4.1) im Allgemeinen eine durchaus
akzeptable Prognose erreicht wird, die einen maximalen Fehler von bisher kleiner 3 % zwischen
Abschätzung und Synthese geliefert hat (vgl. [123]). Vorteil dieser Abschätzung ist die immense
Zeitersparnis bei der Entwurfsraumexploration, die durchaus im Bereich von derzeit zehn Stunden
und mehr pro Synthese liegt. Im Vorfeld einer Implementierung, bei der Eruierung globaler Sys-
temparameter können solche relativ geringen Abweichungen im einstelligen Prozentbereich prob-
lemlos toleriert werden.

Abbildung 4-9: Abschätzung der Switch-Box-Gesamtfläche in Abhängigkeit von Flitbreite und FIFO-Tiefe

bei einer Switch-Box-Portanzahl von fünf in a) 130-nm- und b) 90-nm-Standardzellentechnologie

Abbildung 4-10 zeigt die Flächenabschätzung in Abhängigkeit der Portanzahl und der Flitbreite,
wobei die FIFO-Tiefe konstant zu drei gesetzt wird. Bei höheren Portanzahlen wächst der resultie-

1 3 5 7 9 12
326496128196256

0

2

4

6

FIFO-Tiefe

a) 130nm

Flitbreite [Bit]

F
lä

ch
e

[m
m

²]

1 3 5 7 9 12
326496128196256

0

2

4

6

FIFO-Tiefe

b) 90nm

Flitbreite [Bit]

F
lä

ch
e

[m
m

²]

Kapitel 4. Die GigaNetIC-Systemarchitektur

86

rende Flächenbedarf der Switch-Box auf über 20 mm² bei der 130-nm-Technologie bzw. 10 mm²
bei der 90-nm-Technologie an, so dass für ASIC-Realisierungen genauestens abgewogen werden
sollte, ob ein derart hoher Grad δ benötigt wird. Dies lässt sich unter anderem mit einigen der in
Kapitel 5 vorgestellten GigaNetIC-Simulatoren analysieren.

Abbildung 4-10: Abschätzung der Switch-Box-Gesamtfläche in Abhängigkeit von Flitbreite und Anzahl der

Switch-Box-Ports bei einer FIFO-Tiefe von drei in a) 130-nm- und b) 90-nm-Standardzellentechnologie

4.2.2 On-Chip-Kommunikationsprotokoll

Die Kommunikation auf SoC-Ebene ist paketbasiert. Pakete können maximal 16 KB groß sein und
werden in Flits (vgl. Abbildung 4-11) segmentiert, um sie über das On-Chip-Netzwerk versenden
zu können. Flits stellen die atomare Informationseinheit des GigaNoCs dar.

Abbildung 4-11: Flitaufbau – On-Chip-Kommunikationsrahmen

4.2.2.1 Aufbau der Pakete/Flits

In einem Flit sind alle Daten, die die Switch-Boxen und die Communication-Controller zum Rou-
ting benötigen, sowie eine parametrisierbare Anzahl von 32-Bit-Datenwörtern enthalten. Flits, die
zu dem gleichen Paket gehören, nehmen alle denselben Weg durch das On-Chip-Netzwerk, ver-
gleichbar dem Wormhole-Switching. Die Flitfelder X, Y und Port bilden die Zielkoordinaten. Aus-
gehend von einer Gitterstruktur geben die Werte X und Y den Zielknoten relativ zur sendenden
Switch-Box an. Die 4-Bit-breiten Koordinaten sind binär kodiert und vorzeichenbehaftet, d. h. das
höchstwertige Bit (MSB) legt eine positive (MSB=0) bzw. negative (MSB=1) X- oder Y-Richtung
fest. Mit den restlichen 3 Bits der Koordinatenfelder können die Flits daher bis zu 2³ = 8 Kommuni-
kationsknoten in jede Richtung (X, Y) geschickt werden. Dies ist mehr als ausreichend für die 2×4-
Gitterstruktur des GigaNetIC-Systems. Werden größere Systeme als 8×8-Gitter benötigt, lässt sich
dies aufgrund der generischen Struktur leicht ändern. Die dritte Zielkoordinate (Port) ist 3 Bit breit

FLIT
_ID

_W
ID

TH

CO
M

M
AND_W

ID
TH

FLO
W

_ID
_W

ID
TH

X_W
ID

TH

Y_W
ID

TH

5 8 12 16
326496128196256

0

10

20

30

Anzahl Ports

a) 130nm

Flitbreite [Bit]

F
lä

ch
e

[m
m

²]

5 8 12 16
326496128196256

0

10

20

30

Anzahl Ports

b) 90nm

Flitbreite [Bit]

F
lä

ch
e

[m
m

²]

4.2 GigaNoC-On-Chip-Kommunikationsstruktur

87

und gibt den Ausgangsport am Zielknoten an. Die Felder Flit ID und Flow ID dienen zur Identifika-
tion eines Flits. Jeder Kommunikationsknoten im GigaNetIC-Netzwerk besitzt eine eindeutige
Kennnummer. Diese wird bei einer Datenübertragung im Feld Flow ID eingetragen, um die Datenf-
lits im Empfangsknoten dem entsprechenden Datenpaket eines Sendeknotens zuordnen zu können.
Damit die richtige Reihenfolge der Datenflits erhalten bleibt und der Empfänger das Ende einer Da-
tenübertragung erkennt, werden die Flits durchnummeriert. Dies geschieht im 11-Bit-breiten Flit-
ID-Feld, das die maximale Paketgröße in der realisierten Variante auf 211 × 64 Bit = 16 KB be-
grenzt.

Abbildung 4-12: Struktur eines Pakets:

a) Aufbau eines Pakets mit der allgemeinen Flitanzahl N; b) Beispiel eines Pakets mit N=4

Zu Beginn einer Datenübertragung wird jeweils ein so genanntes Kommandoflit gesendet, das die
Anzahl N der insgesamt zu übertragenden Flits im Feld Flit ID angibt. Bei jedem Transfer der dar-
auf folgenden Datenflits wird das Flit ID -Feld von N = 1 beginnend inkrementiert, so dass der
Empfänger das Übertragungsende (Flit ID = N - 1) erkennen kann. Ein Flit kann außer der reinen
Datenübertragung noch zusätzliche Aufgaben erfüllen. Das Type-Feld gibt die jeweilige Funktion
eines Flits an. Neben den bereits erwähnten Kommandoflits und Datenflits existieren noch Instruk-
tionsflits und Programmflits.

Mit einem Instruktionsflit können Befehle direkt an eine Switch-Box übergeben werden. Z. B. kann
durch ein Instruktionsflit das Verfahren der Wegewahl (Routing-Strategie) geändert werden. Im
GigaNetIC-System ist standardmäßig das X-Y-Routing (Fast-Routing) in der Switch-Box aktiviert.
Hierbei werden die Flits zunächst in X-Richtung zur jeweiligen Zielspalte des Gitternetzwerks ge-
leitet und anschließend in Y-Richtung dem Zielknoten zugeführt.

Mit Hilfe der Programmflits kann auf die Speicherbereiche der Prozessorelemente zugegriffen wer-
den. Nach einem Reset des GigaNetIC-Systems wird so jedem Prozessorelement sein Instruktions-

Kapitel 4. Die GigaNetIC-Systemarchitektur

88

code übermittelt. Das erste 32-Bit-Datenwort eines Programmflits wird hierbei als Adresse genutzt,
an die das zweite 32-Bit-Datenwort geschrieben wird.

Flit-Typen im Detail. Im Folgenden werden beispielhaft die einzelnen Pakettypen und deren Seg-
mentierung in die entsprechenden Flits aufgezeigt.

Ein Datenpaket wird segmentiert zu einem Kommandoflit und einer variablen Anzahl von Datenf-
lits nFlits-1, wobei sich die Gesamtzahl der benötigten Flits wie folgt errechnen lässt:

[]

8 4Flits
Flit

Paketdaten Bit
n

Bit W

 
=  ⋅ ⋅ 

 (4.7)

WFlit gibt hierbei die ganzzahlige Anzahl der 32-Bit-Datenworte an, die in einem Flit enthalten sind.
Sollten die Paketdaten nicht ein ganzzahliges Vielfaches von 32 sein, so wird seitens der Hardware
der Rest der Flitdatenbits mit Nullen gefüllt. Bei den weiteren Betrachtungen wird, soweit nicht
anders erwähnt, WFlit=2 gesetzt. In der Hardwarebeschreibung des GigaNetIC-Systems und in den
entsprechenden Simulatoren ist dies ein Parameter, der variiert werden kann, um so die Ressour-
ceneffizienz für den jeweiligen Einsatzzweck zu erhöhen.

In Abbildung 4-12 a) ist ein Datenpaket mit der Länge N dargestellt. Die Koordinaten sind mit den
großen Buchstaben „X“ und „Y“ symbolisiert. Das kleingeschriebene „x“ markiert die Positionen,
die für den allgemeinen Aufbau des Flits nicht relevant sind. Im unteren Teil b) der Abbildung 4-12
ist ein Datenpaket mit 256 Bit zu sehen, das folglich in vier Flits segmentiert wurde. Zuerst wird
das Kommandoflit übertragen, zu erkennen an der Bitfolge „01“ im Bereich CMD, während bei den
folgenden Datenflits an dieser Stelle „00“ steht. Die Zielkoordinaten des Pakets sind vom Sender-
knoten aus gesehen zwei Gittereinheiten in positiver X-Richtung und eine Einheit in negativer Y-
Richtung. Der Senderknoten hat die Identifikationsnummer sechs, was im Bereich Flow ID einget-
ragen ist.

Abbildung 4-13: Aufbau eines Routing- und eines Programmflits

Der Aufbau eines Routingflits und eines Programmflits ist in Abbildung 4-13 dargestellt. Ein Rou-
tingflit hat die Aufgabe, die Routing-Strategie, die im Netzwerk verwendet wird, zu wechseln. Es ist
durch den Eintrag „10“ auf den ersten zwei Bits im CMD-Feld gekennzeichnet. Im X-Bereich ist
kodiert, wie das Routing-Verfahren verändert werden soll. Die zurzeit geplanten Routing-Verfahren
sind in Tabelle 4-1 aufgelistet. Das erweiterte X-Y-Routing ist für Switch-Box-Implementierungen
vorgesehen, die über mehr als vier Ports zu Nachbarknoten verfügen. Als effizientes, gut für zwei-
dimensionale Gitterstrukturen geeignetes Verfahren ist das X-Y-Routing (vgl. Abschnitt 2.3.2) als
Standardverfahren vorgesehen. Für adaptives Routing lässt sich das Kosten-Routing einstellen, das
dynamisch auf Auslastungen einzelner Pfade reagieren kann. Für alle Routing-Varianten müssen
die Routingflits komplett durch das Netzwerk propagiert, also als spezieller Broadcast (vgl. Ab-
schnitt 4.6) versendet werden. Ein Routingflit lässt die Implementierung zusätzlicher Netzwerk-
kommandos bzw. Steuerbefehle aufgrund der ungenutzten Bereiche (mit „x“ markiert) zu. Um die

4.2 GigaNoC-On-Chip-Kommunikationsstruktur

89

Leistungsaufnahme des Chips zu optimieren, ließe sich z. B. ein netzwerkweiter Befehl einführen,
der je nach Auslastung einzelne CPUs oder ganze Prozessorfelder in einen Stromsparmodus ver-
setzt, um die Leistungsaufnahme des Chips bei geringer Auslastung zu reduzieren. Auch Statusin-
formationen über Verkehrsaufkommen oder Auslastung von GigaNetIC-Systementitäten könnten so
im Netz propagiert werden.

Tabelle 4-1: Umstellung implementierter Routing-Verfahren durch Routingflits

CMD-Feld DATA_IN[X_WIDTH] Routing-Verfahren
10xxx 1010 erweitertes X-Y-Routing
10xxx 1011 X-Y-Routing
10xxx 1100 Kosten-Routing
00xxx xxxx vorherige Einstellung

Nach dem Einschalten oder einem Reset des Systems kann der Programmcode der einzelnen Pro-
zessoren durch das On-Chip-Netzwerk geleitet werden. Dies geschieht durch die so genannten
Programmflits (siehe Abbildung 4-13) in der Initialisierungsphase des Chips. Die Adresse für die
CPU-eigenen Speicherbereiche wird im Flit mitgeschickt, so dass unterschiedliche Programme für
die einzelnen Prozessoren in die Instruktionsspeicher geschrieben werden können. Die zwei Daten-
worte enthalten die Speicheradresse für den Programmspeicher des betreffenden Prozessors gefolgt
vom Programmcode. Mit diesem Format ist keine Berücksichtigung der Reihenfolge der Prog-
rammflits notwendig. Auch eine Kennzeichnung der CPU im Prozessorfeld, für die das Flit be-
stimmt ist, ist nicht erforderlich, da die Speicherbereiche durch die Adresse eindeutig festgelegt
sind.

4.2.2.2 Funktionsumfang der GigaNoC-Software-Bibliothek

Um das Empfangen und Senden von Paketen sowie diverse Kontrollfunktionen möglichst einfach
für den Programmierer zu gestalten, werden spezielle Bibliotheksfunktionen in der GigaNetIC-
Software-Bibliothek in der Hochsprache C und in optimiertem Assembler für den eingesetzten Pro-
zessorkern als Intrinsics zur Verfügung gestellt. Sie wurden auf Geschwindigkeit und Platzbedarf
für die N-Core-Architektur optimiert und sind größtenteils in C geschrieben; wenige Ausnahmen
nutzen optimierten Assemblercode, der jedoch ebenfalls in gleicher Funktionalität in C vorliegt und
somit leicht auf andere eingebettete Prozessorkerne portierbar ist.

Im Anhang A befindet sich ein C-Codebeispiel, anhand dessen die Nutzung der GigaNetIC-
Software-Bibliothek detailliert beschrieben wird. Der Einsatz dieser Funktionen gestaltet sich sehr
einfach und komfortabel für den Softwareentwickler, so dass keine nennenswerten bzw. teuren Ei-
narbeitungszeiten, und, damit verbunden, Verzögerungen bei der Softwareentwicklung für das Gi-
gaNetIC-System entstehen.

Der prinzipielle zeitliche Ablauf einer Paketinjektion und Terminierung sowie die damit verbunde-
nen Mechanismen werden in Anhang C erläutert.

4.2.3 Performanzanalyse der Kommunikationsinfrastruktur

Der theoretisch erreichbare Durchsatz DSB einer Switch-Box mit PSB Ports und einer möglichen Be-
triebsfrequenz f lässt sich zu (4.8) bestimmen. Die Anzahl der Headerbyte wird in mh und die der
Datenbyte in mf angegeben, h fm m+ umfasst somit ein komplettes Flit.

Kapitel 4. Die GigaNetIC-Systemarchitektur

90

[] ()
[]

,

,

8

8

SB brutto SB h f

SB netto SB f

D Bit P f m m

D Bit P f m

= ⋅ ⋅ ⋅ +

= ⋅ ⋅ ⋅
 (4.8)

Switch-Boxen mit fünf Ports in der 90-nm-Variante ermöglichen theoretische Durchsätze von
332 GBit/s (brutto) bzw. 228 GBit/s (netto), bei f=714 MHz. Die gleiche Variante in 130-nm-
Technologie erreicht immerhin noch 273 GBit/s (brutto) bzw. 188 GBit/s (netto) bei f=588 MHz15.

Abbildung 4-14: Leistungsfähigkeit der Switch-Box-basierten On-Chip-Kommunikation

Berücksichtigt man nun die Mechanismen, die zur Paketinjektion und Weiterleitung von Flits sei-
tens der Switch-Box notwendig sind, so lässt sich die Anzahl der Takte bzw. die Latenz, die die
Pakete erfahren, die über h Hops zu Zielknoten geleitet werden, wie in (4.9) angeben. Hier wird
zugrunde gelegt, dass eine beliebige Switch-Box Pakete ins Netz injiziert und zugleich von anderen
Knoten injizierte Pakete weiterleitet. S gibt hierbei die Anzahl konkurrierender FIFO-Ketten am
Eingang einer Switch-Box an, die über den Kreuzschienenverteiler Pakete auf den gleichen Aus-
gangsport leiten wollen. Im Falle einer konkurrenzfreien Nutzung der Ports ergibt sich für Si ein
Wert von 1 für die Verzögerung beim i-ten Knoten. Sollten Pi Eingangsports auf den gleichen Aus-
gangsport zugreifen wollen, ist Si entsprechend gleich Pi zu setzen.

 [] ()�
1

Kommandoflit

Datenflits, wenn 1

11 3 1 1

f

h

Paket i
i f

m

m

m
Latenz s S f

m=

>

   
 = + ⋅ ⋅ + − ⋅       
 
 
 

∑
�����

 (4.9)

Abbildung 4-14 zeigt den Durchsatz pro Port einer Switch-Box in GBit/s bezogen auf die Größe der
versendeten Pakete. Die Resultate beziehen sich auf die möglichen Betriebsfrequenzen der Switch-
Box für die beiden Standardzellentechnologien in 130 nm (588 MHz) und 90 nm (714 MHz). Die
Leistungsfähigkeit wird hier für unterschiedliche, speziell für Netzwerkanwendungsszenarien rele-
vante Paketgrößen untersucht. Zum einen wird der Brutto-Durchsatz angegeben, der die Flit-
Header mit einbezieht, und zum anderen der reine Netto-Nutzdatenanteil. Es wird deutlich, dass der
Durchsatz bei größeren Paketen deutlich über dem der kleineren Paketgrößen liegt. Dies ist begrün-

15 Diesem Beispiel liegen die Werte mh=3,625 und mf =8 zugrunde.

10
,5

31
,7 35

,1 37
,4

15
,2

46
,0 51

,0 54
,3

12
,7

38
,5 42

,6 45
,4

18
,4

55
,9 61

,9 66
,0

0

10

20

30

40

50

60

70

40 552 1500 16384

Paketgröße [Byte]

D
ur

ch
sa

tz
 p

ro
 P

or
t [

G
B

it/
s]

130nm netto

130nm brutto

90nm netto

90nm brutto

4.2 GigaNoC-On-Chip-Kommunikationsstruktur

91

det durch den geringeren Verwaltungsaufwand aufgrund weniger Kommandoflits, die den Datenpa-
keten jeweils vorangehen. Daraus resultiert eine Steigerung der effektiven Übertragungsleistung.
Der Nettodatendurchsatz liegt zwischen 12,7 bis 45,4 GBit/s pro Port (90 nm) bzw. 10,5 bis
37,4 GBit/s pro Port (130 nm).

Abbildung 4-15 zeigt drei wesentliche Verkehrsbelastungsfälle einer Switch-Box, die Daten über
einen beliebigen Port P zu einem benachbarten Knoten versendet16. Bei der dargestellten Analyse
wird explizit die Paketgröße und damit einhergehend die Anzahl der zusammengehörigen Flits er-
höht, bis schließlich maximal große Pakete von 16 KByte versendet werden.

Abbildung 4-15: Datendurchsatz einer Switch-Box für unterschiedliche Verkehrsmodelle

Es zeigt sich in allen drei Fällen, dass mit zunehmender Paketgröße der Datendurchsatz merklich
gesteigert werden kann. Der erste Fall „Bester Fall“ beschreibt ein Szenario, in dem, wie bereits in
Abbildung 4-14 geschildert, keine konkurrierenden Zugriffe seitens der Eingangsports auftreten.
Die Daten können ungehindert das Ziel erreichen. Hier ergeben sich Übertragungsraten von über
45 GBit/s. Der zweite Fall „Typischer Fall“ beschreibt insofern ein eher typisches Szenario für das
Verkehrsaufkommen einer Switch-Box, als noch zwei weitere Datenströme auf die Ausgangsports
geleitet werden, die sich somit die Bandbreite teilen müssen. Aufgrund dieses Umstands verläuft
die Durchsatzkurve deutlich flacher und nähert sich asymptotisch an 15,2 GBit/s an. Der dritte Fall
spiegelt den „Schlechtesten Fall“ wider, bei dem alle fünf Ports der Switch-Box um den Ausgangs-
port konkurrieren und so das maximale vorfindbare Datenaufkommen darstellen. Hier verläuft die

16 Auch hier wird die Konfiguration wie bei Abbildung 4-14 verwendet, jedoch wird nur die 90-nm-Realisierung be-

trachtet, die 130-nm-Variante verhält sich analog. Die Kennwerte lauten somit: f = 714 MHz, PSB = 5, SBFIFO-Tiefe = 5,

mh = 3,625 und mf = 8, SBester Fall = 1, STypischer Fall = 3, SSchlechtester Fall = 5. Betrachtet werden ferner nur die Nutzdaten, so

dass der Nettodurchsatz dargestellt ist.

0

5

10

15

20

25

30

35

40

45

50

2 4 8 16 32 64 128 256 512 1024 2048

Anzahl der Flits

D
at

en
du

rc
hs

at
z

[G
B

it/
s]

Bester Fall Typischer Fall Schlechtester Fall

Kapitel 4. Die GigaNetIC-Systemarchitektur

92

Kurve noch flacher und nähert sich schnell dem maximal erreichbaren Nutzdatendurchsatz von
9,1 GBit/s an.

Fazit. Für kleine Pakete kann in allen Verkehrsbelastungsfällen, solange keine Blockade durch Puf-
ferüberlauf eintritt, ein Durchsatz von ca. 5 GBit/s erreicht werden (vgl. Abbildung 4-13). Große
Pakete profitieren mehr von gering ausgelasteten Switch-Boxen, so dass eine Verdreifachung des
Datendurchsatzes gegenüber einem „vollkonkurrierenden“ Szenario zu beobachten ist. Wesentlich
ist, dass kleine Pakete mit sehr geringer Latenz weitergeleitet werden können, allerdings aufgrund
der Protokollstruktur einen gewissen Verwaltungsmehraufwand bedeuten. Große Pakete, z. B.
Hauptspeicherzugriffe im Sinne von Bursts, profitieren von konkurrenzfreien Übertragungen, die
durch Ausnutzen der Routingtabellen der Switch-Boxen ggf. ermöglicht werden können. Die Giga-
NetIC-Architektur verfügt folglich über ein außerordentlich leistungsfähiges On-Chip-Netzwerk,
welches für eine Vielzahl von Anwendungsgebieten eingesetzt werden und ggf. zielgerichtet para-
metrisiert (vgl. Abschnitt 4.7) werden kann.

Übertragungseffizienz. Nach Definition 38 wird die Übertragungseffizienz gebildet aus:

Tr

Nettodatenmenge

Bruttadatenmenge
ε = . Trotz der weitreichenden Möglichkeiten des GigaNetIC-On-Chip-

Kommunikationsprotokolls ist der Verwaltungsaufwand, verglichen z. B. mit dem Internet-Proto-
koll (IP) [61], das für Computernetze allgemein entworfen wurde, signifikant geringer. Zwar ist das
Internetprotokoll deutlich umfangreicher bzgl. seiner Möglichkeiten, wäre aber sicherlich für ein
On-Chip-Netzwerk derzeit funktional überdimensioniert. Es ließe sich zudem keine derart kompak-
te und zugleich leistungsfähige Hardware realisieren, die mit dem gleichen Flächenaufwand wie die
Switch-Box das Internet-Protokoll unterstützen könnte.

Allein die Größe für den Paketkopf von 20 Byte gekoppelt mit den zusätzlichen Paketinformationen
der Netzzugangsschicht (z. B. Ethernet von mindestens 18 Byte) bedeutete einen zusätzlichen Over-
head bei der Flitübertragung von 38 Byte pro Paket. Wollte man das Internet-Protokoll-basierte Da-
tenpaket zudem innerhalb eines Taktes übertragen, so käme man unter Berücksichtigung einer mi-
nimalen Framelänge des Internet-Protokoll-Pakets von 46 Byte auf 512 parallele Datenleitungen.
Die Übertragungseffizienz liegt bei 40,6 % verglichen mit 68,8 % beim GigaNetIC-Protokoll. Wäre
die Parallelität von deutlich mehr Leitungen technisch unproblematisch, so ließe sich für ein Paket
maximaler Länge (1500 Byte) ein merklich besseres Verhältnis von Kopfdaten zu Nutzdaten (Über-
tragungseffizienz = 97,5 %) erzielen. Jedoch sind speziell bei vielen Anwendungen häufig Pakete
minimaler Länge zu verzeichnen. Dies wird auch bei den heutigen Lastmodellen (vgl. iMix, Ab-
schnitt 7.2.3) berücksichtigt.

Zukünftig sind durchaus Szenarien denkbar, in denen sich die Übergänge von diskreten Netzwerken
(wie z. B. des World Wide Web) zum Chip fließend gestalten und aufgrund der technischen Mög-
lichkeiten keine Unterschiede zwischen On-Chip- und Off-Chip-Protokollen gemacht werden müs-
sen. In nicht allzu ferner Zukunft wird es möglich sein, On-Chip-Netzwerkknoten mit mehr als
12.000 Intra-Chip-Verbindungen miteinander zu verbinden, diese Anzahl würde eine Weiterleitung
ganzer IP-Pakete maximaler Länge innerhalb eines Takts erlauben. Alternativ dazu sind auch be-
sonders schnelle serielle Verbindungen denkbar, die bei sehr hohen Taktfrequenzen eine derartige
Übertragung ebenfalls möglich machen könnten. Derzeit hingegen stellen die weniger als 200 Intra-
Chip-Verbindungen (Full-Duplexverbindung) zwischen benachbarten Switch-Boxen einen guten
Kompromiss zwischen Parallelität und Machbarkeit sowie Taktfrequenz und Durchsatz dar.

4.2 GigaNoC-On-Chip-Kommunikationsstruktur

93

4.2.4 Bussysteme auf Cluster-Ebene

Innerhalb der Cluster werden derzeit Busstrukturen zur Anbindung der Verarbeitungseinheiten
(PEs) eingesetzt (vgl. Abbildung 4-2). Prinzipiell unterstützt die GigaNetIC-Architektur nahezu alle
verfügbaren Bussysteme aufgrund der parametrisierbaren Schnittstellen des Communication-
Controllers. Bei den Daten- und Adressleitungen müssen lediglich die Bitbreiten angepasst und das
erforderliche Zeitverhalten nachgebildet werden. Da der Communication-Controller als passiver
Teilnehmer in das Bussystem integriert wird, sind damit die Voraussetzungen zur Integration des
Busses in die GigaNetIC-Struktur erfüllt. Derzeit kann beim GigaNetIC-System zwischen dem
Wishbone-Bus und einer von uns implementierten AMBA-AHB-Bus-Variante [113] sowie einer
AMBA-Switch-Matrix gewählt werden. Die beiden Bus-Realisierungen differieren in ihren Eigen-
schaften und empfehlen sich daher für unterschiedliche Einsatzgebiete, die AMBA-Switch-Matrix
findet u. a. Verwendung beim GigaNetIC-Multiprozessorcache, vgl. Abschnitt 4.4.2.

Im Falle der Verwendung des Wishbone-Busses kann auf eine stetig steigende Anzahl von frei ver-
fügbaren IP-Cores, die dieser weit verbreiteten Schnittstellenspezifikation folgen, zurückgegriffen
werden17. Hardwareblöcke, die der AMBA-Spezifikation genügen sind größtenteils kostenpflichtige
Module. Dies erfordert während der Spezifikation des Systems eine genaue Analyse der benötigten
Komponenten. Je nach Verfügbarkeit und Kostenbudget kann die passende Auswahl getroffen wer-
den. Natürlich ist es für beide Bussysteme möglich, eigene IP-Blöcke zu erstellen, sollten dies die
zur Verfügung stehenden Ressourcen (Entwicklungskosten, Humankapital, Time-To-Market-
Spanne etc.) erlauben. Für beide Busvarianten stellt die GigaNetIC-Architektur die benötigten Mas-
ter- bzw. Slave-Schnittstellen bereits zur Verfügung.

Der Wishbone-Bus [124] zeichnet sich durch eine kompakte, relativ einfache Implementierung aus.
Er benötigt im Durchschnitt 10 % weniger Fläche als die AMBA-Realisierung [125]. Die AMBA-
AHB-Realisierung hingegen zeichnet sich durch eine leistungsfähigere Architektur mit einer weit
verbreiteten Standardschnittstelle aus, deren realisierbare Taktfrequenz ca. 5 % höher als die des
Wishbone-Systems liegt. Die AMBA-Implementierung nimmt etwas mehr Fläche in Anspruch und
erlaubt geringfügig höhere Systemtaktfrequenzen. Die Leistungsaufnahme liegt bei beiden Imple-
mentierungen bei einer Konfiguration für vier Verarbeitungseinheiten bei ca. 9,5 µW/MHz in 130-
nm-Technologie und bei 8,6 µW/MHz in der 90-nm-Technologie18.

Im Falle der Realisierung als AMBA-AHB-Interconnection-Matrix sind sogar zeitgleiche, disjunkte
Zugriffe mehrerer Master möglich, was bei einer einfachen Busrealisierung wie z. B. bei unserer
Wishbone-Bus-Realisierung [117] nicht möglich ist. Für die Integration eines angepassten Multi-
prozessorcaches (vgl. Abschnitt 4.4.2) wird die AMBA-Implementierung durch einen Snooping-
Bus erweitert [113]. Wesentliche Merkmale der beiden Verbindungsstrukturen, die beim Giga-
NetIC-System derzeit auf Clusterebene zum Einsatz kommen, fasst Tabelle 4-2 zusammen.

17 So gibt es z. B. auf http://www.opencores.org (Stand: Juni 2007) eine große Anzahl unterschiedlichster Wishbone-IP-

Blöcke zur freien Verfügung.

18 Alle technologiespezifischen Angaben für Standardzellen-Implementierungen beziehen sich, wenn nicht explizit ge-

kennzeichnet, auf Realisierungen und Syntheseergebnisse für normale Betriebsbedingungen der jeweils betrachteten

CMOS-Technologie (Typical Case).

Kapitel 4. Die GigaNetIC-Systemarchitektur

94

Tabelle 4-2: Eigenschaften der realisierten Bussysteme, der derzeitigen GigaNetIC-Architektur

Kriterium Wishbone AMBA-AHB
Bandbreite:
Adress-Pipelining,
Busbreite,
Verzicht auf Tristate-Busse,
Parallel-Übertragungen

Kein Adress-Pipelining (�geringe Takt-
frequenzen), geringe Busbreite, Parallel-
Übertragung bei der Verwendung von
Kreuzschienen-Verteilern oder Daten-
fluss-Verbindungen, Multicasting und
Broadcasting von Schreib-Zugriffen

möglich

Parallel-Übertragungen bei der
Verwendung einer Matrix möglich

Latenz:
Mehrfachzugriffe (Bursts)

Bursts werden unterstützt Bursts werden unterstützt

Fläche & Verlustleistung
relativ gering

geringfügig mehr als bei Wish-
bone-Realisierung mit gleicher

Anzahl Teilnehmer
Multimasterfähig Ja Ja
Kosten:
Lizenz-,
Versicherungs-,
Entwicklungs- &
Anpassungskosten

gering mittel

Wiederverwendbarkeit:
Technologie-Unabhängigkeit, (Soft-Core)

Ja Ja

Snooping Ja (Schreibzugriffe) Nein
Besonderheiten Benutzerdefinierbare Tags

Bursts fester Länge, sehr hohe
Busbreiten

Sonstige Einschränkungen
keine

keine atomaren Operationen; kein
vorzeitiger Abbruch von Bursts
fester Länge durch den Master

Fläche (System mit 4 PEs) [mm²]
130 / 90 nm

0,05 / 0,02 0,044 / 0,018

Taktfrequenz (System mit 4 PEs) [MHz]
130 / 90 nm

211 / 290 222 / 303

Leistungsaufnahme (System mit 4 PEs)
[mW/MHz]
130 / 90 nm

0,0095 / 0,0086 0,0095 / 0,0086

In der zusammen mit Infineon Technologies entwickelten Nova-Architektur [126], die ebenfalls auf
dem modularen GigaNetIC-Konzept basiert, kommt der OCP(Open Core Protocol)-Bus auf Clus-
ter-Ebene nebst N-Core- bzw. MIPS-4k-Prozessoren zum Einsatz. Aufgrund der Modularität kann
auf alle weiteren Funktionen der GigaNetIC-Architektur auf SoC-Ebene zugegriffen werden.

Mit den beiden implementierten Bussystemen bzw. der Interconnection-Matrix kann die Giga-
NetIC-Architektur auf spezifische Anwendungsgebiete angepasst werden, je nach deren Anforde-
rungen kann eine flächensparende oder aber performantere19 Variante für die lokale Verbindungs-
struktur auf Cluster-Ebene integriert werden.

4.3 Verarbeitungseinheiten auf PE-, Cluster- und SoC-Ebene

Die GigaNetIC-Architektur ermöglicht ein flexibles Anschließen von Verarbeitungseinheiten auf
allen Hierarchie-Ebenen. Die generischen Schnittstellen seitens der Bussysteme und des Communi-
cation-Controllers erlauben die Integration einer breiten Menge von fertigen IP(Intellectual Proper-

19 Der nominelle Durchsatz der implementierten Bussysteme wird an dieser Stelle nicht quantitativ angegeben, da dieser

zu sehr vom jeweiligen Anwendungsszenario, von der Art der Verarbeitungseinheiten und der Parametrisierung der

Systeme abhängt, als dass eine fundierte Aussage zu treffen wäre. In Kapitel 7 werden für spezielle Anwendungen und

Konfigurationen detaillierte Ergebnisse vorgestellt.

4.3 Verarbeitungseinheiten auf PE-, Cluster- und SoC-Ebene

95

ty)-Blöcken, bieten damit ein hohes Potential an Zukunftssicherheit und helfen, die Entwurfs-
Produktivitätslücke (Design Productivity Gap) zu schließen.

Derzeit sind bereits zwei Prozessortypen erfolgreich in das GigaNetIC-System integriert worden.
Hauptbestandteil der an der Universität Paderborn eingesetzten Architekturvariante ist ein am
Fachgebiet Schaltungstechnik entwickelter Prozessorkern, der N-Core [108][127][111], der im Fol-
genden (vgl. Abschnitt 4.3.1) näher beschrieben wird. Außerdem wurden seitens Infineon Techno-
logies MIPS-Prozessorkerne auf Cluster-Ebene implementiert [126].

Neben den CPUs und den lokalen Speichern können weitere IP-Blöcke in das System integriert
werden. Häufig unterstützen bereits die Prozessoren auf PE-Ebene über eine Coprozessor-
Schnittstelle die Anbindung von Hardwarebeschleunigern, wie z. B. auch der von uns entworfene
N-Core. Soll ein Beschleuniger mehreren Prozessoren zur Verfügung stehen, so kann dieser auf
Cluster-Ebene über den lokalen Bus angekoppelt werden. Diese eng an das jeweilige Prozessorfeld
gekoppelten IP-Blöcke werden über zusätzliche Master/Slave-Schnittstellen des lokalen Bussystems
eingegliedert und z. B. über Memory-Mapped-I/O angesprochen. Neben Hardwarebeschleunigern
können aber auch zusätzliche Module wie z. B. UARTs (Universal Asynchronous Receiver Trans-
mitter) für Debuggingzwecke in die lokalen Cluster integriert werden. Diese ermöglichen dann ein
Interagieren mit den Prozessoren (z. B. Touchscreens wie beim RAPTOR2000-basierten Giga-
NetIC-Demonstrator, vgl. Abbildung 8-2).

Auf SoC-Ebene können autonomere bzw. global verfügbare Hardwarebeschleuniger und IP-Blöcke
über das GigaNoC-On-Chip-Netzwerk angeschlossen werden. Dies können lose gekoppelte Hard-
warebeschleuniger sein, die im Datenpfad eingereiht werden, wie z. B. Verschlüsselungs- oder
Checksummen-Prüfmodule, vgl. Abschnitt 6.3.1.1. Es können aber auch Einheiten sein, die die
Verbindungen nach außen realisieren, wie z. B. Speichercontroller für externen Speicher oder
Ethernetcontroller (vgl. Abschnitte 8.1 und 8.2), die die Anbindung an das externe Netzwerk über-
nehmen. Diese Einheiten können theoretisch an beliebiger Stelle des On-Chip-Netzwerks ange-
schlossen werden, üblicherweise jedoch an den Rändern des Gitters, um die Hopanzahl zu den Pads
des Chips so gering wie möglich zu halten. Zur Integration auf SoC-Ebene wird lediglich eine In-
stanz des bereits vorgestellten Communication-Controllers an die jeweilige Komponente ange-
schlossen. Er übernimmt die Konvertierung der Daten in das GigaNoC-Flit-Protokoll bzw. die Ter-
minierung des Protokolls und stellt die Daten für den Hardwarebeschleuniger zur Verfügung. Auf-
grund dieser Anschlussart sind die Einheiten universell einsetzbar und erlauben eine leichte Adapti-
on des Systems für neue Einsatzgebiete.

Im Folgenden werden der von uns entworfene und erweiterte Prozessorkern, Systemerweiterungen
des Prozessorsubsystems sowie Hardwarebeschleuniger und weitere IP-Blöcke des GigaNetIC-
Systems vorgestellt.

4.3.1 Prozessorkern

Weitere Kernkomponenten des Systems neben der Switch-Box sind die Prozessorkerne. Am Fach-
gebiet Schaltungstechnik wurde ein 32-Bit-RISC-Prozessorkern in der Hardwarebeschreibungs-
sprache VHDL (Very High Scale IC (Hardware) Description Language) entwickelt und in einer
aktuellen Standardzellentechnologie implementiert. Der Vorgänger des aktuellen Prozessorkerns,
der S-Core, konnte bereits bei einer Taktrate von 160 MHz erfolgreich getestet (Infineon, 130 nm,
0,18 mm²) werden [108][127]. Er ist binärkompatibel zum Motorola M-Core [128] gehalten, um die

Kapitel 4. Die GigaNetIC-Systemarchitektur

96

Softwarewerkzeuge wie z. B. Compiler, Linker, Assembler und Simulator der GNU-Compiler-Ent-
wicklungswerkzeuge, GCC [129], nutzen zu können. Zum Zeitpunkt der Entstehung des S-Cores
gab es noch keine derart enge Kooperation mit dem Fachgebiet von Prof. Dr. Kastens, Program-
miersprachen und Übersetzer, so dass eine eigene Werkzeugkette fehlte und somit auf öffentlich
verfügbare Quellen zurückgegriffen werden musste. Im Verlauf des GigaNetIC-Projekts wurde eine
ausgereifte Entwicklungsumgebung realisiert, die speziell auf die Eigenschaften des S-Core-
Nachfolgers abgestimmt ist und schnell auf Erweiterungen und Optimierungen der Hardware ange-
passt werden kann (vgl. Abschnitt 5.6). Neben dieser können aber auch weiterhin die aktuellen
GCC M-Core-Werkzeuge zur Erzeugung des Programmcodes verwendet werden, allerdings bleiben
dann die Befehlssatzerweiterungen der neuen Architektur ungenutzt.

Der N-Core ist die Weiterentwicklung des S-Cores und der derzeitige Standardprozessorkern der
GigaNetIC-Architektur [117][111][130][131][113][110]. Er wurde ebenfalls als Soft-Core in
VHDL realisiert und kann frei nach den Bedürfnissen des jeweiligen Einsatzgebietes, unterstützt
durch die Paderborner Werkzeugkette, angepasst werden. Ein weiterer Vorteil einer Eigenentwick-
lung ist die freie Verwendung und Vervielfältigung eines solchen Kerns anstelle von etwaigen Li-
zenzgebühren, die bei kommerziellen Produkten auftreten können. Je nach Geschäftsmodell kann
hier u. a. die Anzahl der verwendeten Kerne als Berechnungsgrundlage dienen, was für ein massiv
paralleles System ggf. sehr kostspielig werden könnte.

Der N-Core ist eine Zwei-Address-Maschine mit einer typischen Load-Store-Architektur. Er hat
eine dreistufige Pipeline (Fetch, Decode und Execute) und besitzt zwei Registerbänke mit je 16 32-
Bit-Registern und 13 zusätzliche Spezialregister. Zur Unterstützung von normalen und bevorzugten
Interruptquellen wurde ein spezieller Interruptcontroller realisiert. In Verbindung mit dem zweiten
Registersatz können auf diese Weise sehr schnelle Interruptbehandlungen unterstützt werden. Au-
ßerdem verfügt der N-Core über ein so genanntes (Global Control Register / GCR) und ein globales
Status-Register (Global Status Register / GSR), mit deren Hilfe direkt Daten ausgegeben bzw. im
letzteren Fall eingelesen werden können. Hierdurch können sehr schnell Informationen speicher-
unabhängig kommuniziert werden. Der schematische Aufbau des N-Cores ist in Abbildung 4-16
dargestellt.

Abbildung 4-16: Schematischer Aufbau des N-Core-Prozessorkerns

Dekoder ALU

PC

Adress-

berechnung

FETCH

EXECUTE

DECODE

Adressen

A B

X Y

Ergebnis

Imm./Konst.

Adressoffsets

Reg.Shifts

Opcodes

PC
Reg. Adressen

AdressoffsetsOpcodes

Reg.

I/O

Zugriffsfehler

IRQs

Bus-
kontroller

Exception-
dekoder

4.3 Verarbeitungseinheiten auf PE-, Cluster- und SoC-Ebene

97

Die Instruktionen haben eine feste Breite von 16 Bit, wodurch eine hohe Codedichte erreicht wird.
Dies ist bei eingebetteten Systemen mit limitierten Speicherressourcen von besonderer Bedeutung.
Der Befehlssatz lässt sich durch zusätzliche Instruktionen erweitern, da noch 11% an freiem Opco-
de zur Verfügung stehen (vgl. Kapitel 6 und 7). Weiterhin stellt der N-Core eine Coprozessor-
schnittstelle für Hardwarebeschleuniger zur Verfügung. Der N-Core unterstützt eine byteweise Ad-
ressierung des Speicherinhalts und arbeitet im Big-Endian-Format, was besonders für Netzwerk-
applikationen von Bedeutung und vorteilhaft ist. Die Mehrzahl aller verfügbaren Instruktionen be-
nötigt zur Ausführung einen Takt, Speicherbefehle zwei bzw. mehr bei größerer Speicherlatenz.
Ohne spezialisierte Multiplikations- und Divisionsbeschleuniger können Multiplikationen bis zu 18
und Divisionen bis zu 37 Takte beanspruchen.

Tabelle 4-3: Kenndaten der ursprünglichen S-Core-Realisierung [108]

Technologie Fläche
[mm²] bzw. [Slices]

Taktfrequenz
[MHz]

Verlustleistung
[mW/MHz]

Versorgungsspannung
[V]

Standardzellen
Infineon 130 nm 0,25 160 0,165 1,2

AMS 600 nm 30 61 20 5,0
FPGA

Xilinx Virtex 1000-4
(220 nm)

3727 (von 12288) 12 25 2,5

Die Komplexität des S-Core-Prozessorkerns entspricht ca. 23.000 Gatteräquivalenten20 und umfasst
ca. 7300 kommentierte VHDL-Codezeilen in 24 Dateien. Der originale Motorola M-Core-Prozessor
benötigt in der 0,36 µm- bzw. in der 0,25 µm-Technologie 2,2 mm² bzw. 1,6 mm² Chipfläche. Die
wesentlichen Kenndaten der Ursprungsversion des S-Core sind in Tabelle 4-3 dargestellt [108].

Die wesentlichen Daten der aktuellen N-Core-Implementierung [118] ohne Spezialinstruktionen,
unter Berücksichtigung einer aktuellen 90-nm-Standardzellentechnologie zeigt Tabelle 4-4 auf. De-
taillierte Informationen zu den einzelnen Optimierungen und Instruktionssatzerweiterungen des N-
Cores werden in Kapitel 6 gegeben. Hier wird der von mir entworfene, hierarchisch gerichtete Op-
timierungsansatz zur GigaNetIC-Architektur für gegebene Anwendungsszenarien vorgestellt.

Tabelle 4-4: Kenndaten des aktuellen N-Core-Prozessorkerns der GigaNetIC-Architektur [118]

Technologie Fläche
[mm²]/[slices]

Taktfrequenz
[MHz]

Leistungsaufnahme
[mW/MHz]

Versorgungsspannung
[V]

Standardzellen
UMC 130 nm 0,158 205 0,049 1,2

90 nm 0,127 285 0,032 1,2
FPGA

Xilinx Virtex II 8000-
4 (150 nm)

3206 (von 46592) 17,5 k. A. 1,5 Kern / 3,3 IO

4.3.2 Systemerweiterungen und Peripherie – das Prozessorsubsystem

Der S-Core-/N-Core-Prozessorkern allein wäre nicht effizient einsetzbar im GigaNetIC-Chip-
Multiprozessorsystem, deshalb wurden Systemerweiterungen und Schnittstellen für Peripherieblö-
cke integriert und so ein leistungsfähiges Prozessorsubsystem geschaffen, vgl. Abbildung 4-17.

20 Hierunter wird die Anzahl des Flächenäquivalents in Standard-NAND2-Gattern der entsprechenden CMOS-

Standardzellen-Technologie verstanden, also die Fläche der Realisierung, ausgedrückt in der Anzahl der NAND2-

Gatter, die auf dieser untergebracht werden können.

Kapitel 4. Die GigaNetIC-Systemarchitektur

98

Bei der Realisierung des Prozessorsubsystems wurde der S-Core zunächst zum Net-S-Core erwei-
tert. Der Net-S-Core verfügt über Erweiterungen wie einen programmierbaren Timerblock, einen
programmierbaren Interruptcontroller, integrierte Performanzbewerter und einen erweiterten Ad-
ressdekoder, der die komfortable Ansteuerung von Hardwarebeschleunigern über Memory-
Mapped-IO-Zugriffe gestattet. Die Integration all dieser Komponenten zusammen mit den Wishbo-
ne- bzw. AMBA-Busschnittstellen und die Anbindung von lokalem Dual-Port-Speicher zusammen
mit den anwendungsspezifischen Optimierungen unter Verwendung der geschlossenen Software-
Werkzeugkette (vgl. Kapitel 5 und 6) formen letztendlich den N-Core [111][117].

Abbildung 4-17: Das Prozessorsubsystem des N-Core, am Beispiel der

Wishbone-Bus-Implementierung

Mit Hilfe der Wishbone-/AMBA-Bridge lässt sich das N-Core-Prozessorsubsystem an den jeweili-
gen lokalen Bus des GigaNetIC-Systems ankoppeln. Der DP-RAM-Block ermöglicht gleichzeitiges
Lesen bzw. Schreiben vom Prozessorkern bzw. vom Bus aus. Die Kontrolle des Prozessorsystem-
busses übernimmt der N-Core-Buscontroller, der ebenfalls auf etwaige Adressverletzungen seitens
der Software reagiert und entsprechende Ausnahmebehandlungsroutinen (Exceptions) auslöst.

Der N-Core kann 32-Bit-breit adressieren, dies entspricht einem Speicherbereich von theoretisch
4 GByte. Dies erscheint für eingebettete Prozessoren derzeit mehr als ausreichend, so dass ein Teil
des Adressraums für weitere Zwecke genutzt werden kann. Der Adressdekoder fungiert als zentrale
Steuereinheit der Buszugriffe seitens des Prozessors. Er generiert Selektionssignale für angespro-
chene Hardwareblöcke und übernimmt die Adressübersetzung. Die Anzahl der zu verwaltenden
Komponenten und die Größen der einzelnen Speicherbereiche sind generisch anpassbar, so dass
leicht zusätzliche Einheiten an den Prozessorsystembus angeschlossen werden können und flexibel
auf anwendungsspezifische Anforderungen reagiert werden kann. Die Speicherbereiche auf Clus-
terebene sowie die Adressierung der beiden zusätzlichen Hardwareeinheiten Timer und program-
mierbarer Interruptcontroller des Prozessorsubsystems sind in Abbildung 4-18 dargestellt.

Buscontroller

N-Core

Speicheranbindung

Programmierbarer
Interruptcontroller

Prozessorsystembus

DP-RAM

In
te
rr
u
p
ts

Adressdekoder

Timer-Modul

Wishbone-Brücke

G
S
R

G
C
R

Coprozessor

W
is
h
b
o
n
e
-M
a
s
te
r

W
is
h
b
o
n
e
-S
la
v
e

4.3 Verarbeitungseinheiten auf PE-, Cluster- und SoC-Ebene

99

Der programmierbare Interruptcontroller (PIC) ermöglicht eine Priorisierung und Auswahl der
Interruptsignale. Der N-Core differenziert zwischen normalen (normal interrupt, nint) und hoch-
prioren Interrupts (fast interrupt, fint). Die hochprioren Interrupts verwenden den zweiten Register-
satz des Prozessorkerns und ersparen so das Sichern der Registerinhalte auf den Stapel (Stack). Das
Normal Interrupt Enable Register (NIER) bestimmt, welche 32-Bit-Signale einen normalen Inter-
rupt auslösen. Analog entscheidet der Inhalt der Fast Interrupt Enable Registers (FIER), welche
hochprioren Interrupts zum Prozessor geleitet werden. Hierzu werden die externen Signale mit den
Registerinhalten bitweise UND-verknüpft. Eine Weiterleitung des Interrupts geschieht nur, wenn
diese Verknüpfung eine logische Eins ergibt. Sollten zwei Interrupts gleichzeitig anliegen dominiert
ein fint gegenüber dem nint, außerdem entscheidet innerhalb der Interruptklassen die Wertigkeit des
Bits über den Vorrang der Abarbeitung.

Abbildung 4-18: Adressierungen und Speicherbereiche im GigaNetIC-System auf Clusterebene

Das Timer-Modul stellt die Funktionalität eines programmierbaren Zählers und Zeitgebers. So kön-
nen z. B. Zeitstempel für Pakete im Anwendungsbereich der Netzwerkdatenverarbeitung etc. er-
zeugt werden. Außerdem kann das Modul als konfigurierbarer Taktzähler zur Performanzmessung
genutzt werden.

Im Falle der Wishbone-Bus-Realisierung wird unter dem Adressraum 0x11000000 bis
0xFFFFFFFF die Wishbone-Brücke angesprochen. Sie übernimmt die Protokollumsetzung zwi-
schen N-Core und Wishbone-Standard. Da die Wishbone-Spezifikation prinzipiell nur 32-Bit-breite
Wortzugriffe gestattet, werden zusätzliche Select-Signale des Wishbone-Busses zur byteweisen Ad-
ressierung verwendet, damit der volle Funktionsumfang des N-Core-Prozessorsubsystems genutzt
werden kann. Im Idealfall und ohne Arbitrierungsverluste benötigen Schreib- und Lesezugriffe über
den Wishbone-Bus drei Takte. Detaillierte Analysen zur Performanz der Wishbone-Implemen-
tierung werden in [109][131] und Kapitel 7 gegeben.

Zur einfachen Möglichkeit der Interaktion und für Debuggingzwecke wurde außerdem eine serielle
Schnittstelle (UART) als IP-Block integriert (vgl. Abbildung 8-3). Der Wishbone-basierte Cluster
erlaubt eine maximale Anzahl von 15 N-Cores sowie weitere Verarbeitungseinheiten und Speicher,
siehe Abbildung 4-18.

0x00000000

0x0FFFFFFF

0x10000100

0x100001FF

0x10000200

0x100002FF

0x10000000

0x100000FF

0x10000300

0x10FFFFFF

0x11000000

0xFFFFFFFF

Speicher
(max. 256 MB)

PIC-Modul

Timer-Modul

Reserviert

Ungenutzt

WISHBONE
Brücke

0x10000100 NIER
0x10000104 FIER
0x10000108

0x100001FF

Ungenutzt

0x10000200 ctrl_reg
0x10000204 modulo_reg

0x10000210

0x100002FF

Ungenutzt

0x10000208 count_reg
0x1000020C divider_reg

0x11000000

0x11FFFFFF
NCORE_WB(1)

0x00000000

0x10FFFFFF

Reserviert

0x12000000

0x12FFFFFF
NCORE_WB(2)

0x1F000000

0x1FFFFFFF
NCORE_WB(15)

0x1n000000

0x1nFFFFFF

NCORE_WB(n)

0x20000000

0x2FFFFFFF
UART_TOP

0x30000000

0x3FFFFFFF
SRAM_WB

0x40000000

0x7FFFFFFF
PACKET_MEM

0x80000000

0xFFFFFFFF
SWITCH_BOX

Prozessorsubsystem Prozessorfeld

Adressierung Timer-Modul

Adressierung PIC-Modul

Lokale Module

Kapitel 4. Die GigaNetIC-Systemarchitektur

100

Für das Prozessorsubsystem des N-Core wurde zusätzlich ein multiprozessorfähiger Cache imple-
mentiert [113], der die Verarbeitung zahlreicher Anwendungen beschleunigt. Die Architektur des
Caches wird in Abschnitt 4.4.2 vorgestellt, Resultate der Performanzsteigerung werden in Kapitel 6
und 7 dargelegt.

4.3.3 Hardwarebeschleuniger

Hardwarebeschleuniger sind neben den Prozessorkernen des GigaNetIC-Systems die wichtigsten
Verarbeitungseinheiten. Sie übernehmen anwendungsspezifische Aufgaben, die sie effizienter bear-
beiten können, als es den weniger spezialisierten Universalprozessoren des Systems möglich ist.
Durch die Verlagerung besonders rechenintensiver Aufgaben auf diese Spezialeinheiten und die
Verwendung der Prozessorkerne für deutlich mehr Flexibilität erfordernde Kontrollaufgaben wird
eine besonders effiziente Symbiose von hoch-performanten und hoch-flexiblen Systementitäten
geschaffen. Die GigaNetIC-Architektur erfordert zwar nicht zwingend den Einsatz von Hardware-
beschleunigern, da die N-Core-Prozessoren für eine Vielzahl von Problemen genügend Rechenleis-
tung zur Verfügung stellen, und aufgrund der parallelen Struktur der Architektur ggf. eine zusätzli-
che Beschleunigung erreichbar ist (vgl. Kapitel 7). Sollte das Einsatzgebiet jedoch im Vorfeld der
Implementierung genauer spezifiziert sein, werden dem Systemarchitekten eine Vielzahl von Inte-
grationsmöglichkeiten zur Auswahl gegeben. Im weiteren Sinne sind auch integrierbare FPGA-
Zellen als „flexible“ Hardwarebeschleuniger zu sehen, die während der Laufzeit, compilergestützt,
konfiguriert werden können.

Die ITRS [2] gibt an, dass Hardwarebeschleuniger im Vergleich zu Universalprozessoren derzeit
bis zu vier Größenordnungen effizienter (z. B. im Sinne von GOPS/mW) arbeiten. Zudem vergrö-
ßert sich diese Lücke zunehmend, so dass Universalprozessoren noch stärker einem Wettstreit mit
anwendungsspezifischer oder auch rekonfigurierbarer Hardware ausgesetzt sein werden. In Kapitel
6.3 wird dieser Trend anhand von eigenen Implementierungen und Analysen von dedizierten Hard-
warebeschleunigern für das GigaNetIC-System untermauert. Es gilt, je nach Einsatzgebiet und des-
sen Anforderungen im Hinblick auf die Ressourceneffizienz nach Definition 14, einen geeigneten
Kompromiss zwischen Flexibilität und Leistungseffizienz zu finden (vgl. Kapitel 8.3).

Auch AMD setzt u. a. in der „Torrenza“-Initiative bei den zukünftigen Prozessorgenerationen ver-
stärkt auf eine Kopplung von wenigen Universalprozessorkernen und anwendungsspezifischen
Hardwarebeschleunigern, um sich so gegenüber den von Intel propagierten Architekturen, die
schwerpunktmäßig auf homogene, parallele Prozessorfelder setzen, zu behaupten [93].

Das GigaNetIC-Architekturkonzept hingegen vereint beide Ansätze. Zur Anbindung der Hardware-
beschleuniger stellt das GigaNoC unterschiedliche Möglichkeiten zur Verfügung. Der jeweilige
Anknüpfungspunkt im On-Chip-Netzwerk hängt von einer Vielzahl von Parametern ab, die es im
Vorfeld einer ASIC- bzw. auch FPGA-Implementierung zu eruieren gilt. Hierzu zählen:

• die Beschleunigung des Hardwaremoduls

• der Funktionsumfang des Beschleunigers (Grad der Autonomie)

• die gewünschte Verfügbarkeit / Erreichbarkeit für andere SoC-Komponenten

• der Speicherbandbreitebedarf und die benötigte Speichermenge

• etwaige Flächenrestriktionen (z. B. gemeinsamer vs. lokaler Speicher)

4.3 Verarbeitungseinheiten auf PE-, Cluster- und SoC-Ebene

101

Abbildung 4-19 zeigt die verschiedenen Anbindungsmöglichkeiten für Hardwarebeschleuniger und
IP-Blöcke im GigaNetIC-System. Dabei können die einzelnen Wrapper21 entweder am lokalen Bus
auf Clusterebene oder aber an einen beliebigen freien Port einer Switch-Box unter Zuhilfenahme
eines angepassten Communication-Controllers angeschlossen werden.

Abbildung 4-19: Unterschiedliche Anbindungsmöglichkeiten von Hardwarebeschleunigern

Abbildung 4-19 a) stellt eine eng-gekoppelte Integration eines Hardwarebeschleunigers bzw. IP-
Blocks dar, der direkt mit einem Prozessorkern verbunden ist und ggf. direkt über dessen Coprozes-
sorschnittstelle angesteuert wird. Bei dieser Variante ist nicht zwangsläufig dedizierter Speicher
notwendig. Abbildung 4-19 b) zeigt einen semi-eng-gekoppelten Hardwarebeschleuniger bzw. IP-
Block, der auf Cluster-Ebene als eigenständiger Busteilnehmer angeschlossen ist. Er hat Zugriff auf
den gemeinsamen Speicher des Clusters und kann mit Hilfe von Kontrollregistern und über einen
dedizierten Adressraum von anderen Teilnehmern angesprochen werden. Die Abarbeitung des
Problems erfolgt dann zumeist autonom und entkoppelt vom auftraggebenden Prozessorkern. Ab-
bildung 4-19 c) veranschaulicht eine lose Kopplung eines Hardwarebeschleunigers. Bei dieser Art
der Kopplung verfügt der vom GigaNoC zur Verfügung gestellte Wrapper sowohl über einen Zu-
standsautomaten (Finite State Machine / FSM), der die notwendigen Kontrollfunktionen über-
nimmt, als auch über eine parametrisierbare Menge lokalen Speichers, der in der Regel als Dual-
Port-RAM ausgelegt ist. Diese Variante der lose gekoppelten Hardwarebeschleuniger wird vorwie-
gend an dedizierten Ports von ausgewählten Switch-Boxen eingesetzt. Sie eignet sich vor allem für
IP-Blöcke, die über einen hohen Grad an Autonomie bei der Verarbeitung verfügen und ein ange-

21 Unter dem Begriff Wrapper wird eine Umhüllung bzw. Einhüllung einer gegebenen Systementität verstanden, die

diese in ein bestehendes System möglichst effizient und transparent für die weiteren Systementitäten integriert.

B
u
s
 /
N
o
C

B
u
s
 /
 N
o
C

B
u
s
 /
N
o
C

Kapitel 4. Die GigaNetIC-Systemarchitektur

102

messenes Verhältnis zwischen Berechnungszeit und Kommunikation der Daten über das Netz auf-
zeigen. Besonders Verarbeitungseinheiten, die global im System zur Verfügung stehen sollen, aber
zahlenmäßig nur gering eingesetzt werden (evtl. aufgrund einer nicht unerheblichen Fläche, oder
aber weil sie eine überaus hohe Verarbeitungsgeschwindigkeit aufweisen), bieten sich für diese
Kopplung besonders an. Detaillierte Analysen der Kopplungsarten für gegebene Hardwarebe-
schleuniger werden in [109][131] und in Kapitel 7 vorgestellt.

Natürlich lassen sich die vorgestellten Kopplungen und die entwickelten Wrapper nicht nur für
Hardwarebeschleuniger einsetzen, sondern erlauben auch die Integration beliebiger IP-Blöcke, die
zwar keine Beschleunigerfunktionalität zur Verfügung stellen, aber andere benötigte Dienste, wie z.
B. Ethernetschnittstellen, integrieren (vgl. Abschnitt 4.3.4). Der sich ergebende Flächenbedarf der
einzelnen GigaNoC-Wrapper wird in Tabelle 4-5 aufgezeigt22.

Tabelle 4-5: Flächenbedarf der GigaNoC-Wrapper zur Ankopplung beliebiger 32-Bit-IP-Blöcke @250MHz

Die derzeit für das GigaNetIC-System realisierten Hardwarebeschleuniger finden im Anwendungs-
bereich der Netzwerkverarbeitung Einsatz und werden in Kapitel 6 und 7 detaillierter vorgestellt.

4.3.4 Sonstige IP-Blöcke

Neben Hardwarebeschleunigern können auch beliebige I/O-Kontrolleinheiten, wie z. B. Speicher-
controller oder Ethernetschnittstellen an die oben beschriebenen Schnittstellen des GigaNoCs ange-
schlossen werden. Auch hier entscheiden letztlich die Anforderungen der Anwendung in Form von
Durchsatz und Verfügbarkeit der entsprechenden I/O-Funktionalität für das gesamte SoC, welche
Kopplung verwendet werden sollte. Aufgrund des hohen Transportvermögens der Switch-Boxen
und der einheitlichen Schnittstelle bietet sich für hochperformante Einheiten in vielen Fällen der
Anschluss über einen freien Port einer Switch-Box an (vgl. Abbildung 4-19 c)). Dies ist z. B. bei
den im Rahmen des GigaNetIC-Projektes entwickelten Ethernetschnittstellen [110][109][131] der
Fall. Für Debugging- und Interaktionszwecke wurde eine serielle Schnittstelle realisiert, die derzeit
als Wishbonebusteilnehmer auf Clusterebene integriert ist [109]. Der lokale Anschluss ermöglicht
eine flächeneffiziente Integration, die den relativ geringen Bandbreiteansprüchen dieser I/O-
Schnittstellen mehr als genügt.

Speicherschnittstellen sind hingegen auf Cluster- und auf SoC-Ebene für das GigaNetIC-System
verfügbar. Die Kopplung hängt hier sehr stark vom Zweck und von der Lokalität der Daten ab. So
werden die N-Core-Programmabbilder z. B. in einem global erreichbaren externen oder auch inter-
nen EEPROM abgelegt und bei Inbetriebnahme des Chips mit Hilfe des On-Chip-Netzwerks (vgl.
Abschnitt 4.2.2) zu den einzelnen lokalen Speichern des N-Cores transportiert.

22 Die zugrunde liegenden Implementierungen erlauben Taktfrequenzen die sich deutlich über der hier zugrunde liegen-

den 250-MHz-Synthese-Einstellung bewegen. Der Wrapper ist aufgrund seiner geringen Logiktiefe nicht als Flaschen-

hals zu sehen. Die Betriebsfrequenz bestimmt letztendlich der Hardwarebeschleuniger bzw. das On-Chip-Netzwerk. Die

SoC-Ebenen-Anbindung verfügt in der angegebenen Variante bereits über 16 KByte Dual-Port-Speicher. Die anderen

beiden Wrapper greifen standardmäßig auf gemeinsamen Speicher zu, der nicht in die Flächenangabe einfließt.

PE-Ebene Cluster-Ebene SoC-Ebene
130 nm 0,0097 0,0039 0,6389
90 nm 0,0068 0,0036 0,5449

Fläche [mm²]Technologie

4.4 Speicher

103

Details zur Implementierung der Ethernetcontroller und zu den Möglichkeiten der Interaktion mit
dem GigaNetIC-Prototypen, die durch die seriellen Schnittstellen und die angeschlossenen berüh-
rungssensitiven Anzeigen gegeben sind, werden in Kapitel 8 dargestellt.

4.4 Speicher

Neben einer leistungsfähigen Kommunikationsinfrastruktur sowie flexiblen und leistungsfähigen
Verarbeitungseinheiten gehört der Speicher zu den wesentlichen Komponenten eines Chip-
Multiprozessors. Die GigaNetIC-Architektur unterstützt das in Abschnitt 2.5 vorgestellte Konzept
einer mehrschichtigen Speicherhierarchie. Die Klassifizierung der einzelnen Speicherstufen für das
GigaNetIC-System in der momentanen Ausbaustufe werden in Tabelle 4-6 gezeigt. Zu beachten ist,
dass bei Zugriffen auf entfernten Speicher die Latenz aufgrund der Flitkonfiguration für 64 Bit Da-
ten anstatt 32 Bit angegeben wird.

Tabelle 4-6: Speicherhierarchien der GigaNetIC-Architektur

Für den Anschluss der Speicher stehen u. a. die in Abschnitt 4.3.3 vorgestellten Kopplungsmög-
lichkeiten zur Verfügung. Für den Anschluss externer Speicherbausteine kommen modifizierte In-
stanzen des Communication-Controllers (vgl. Abschnitt 4.2.1.1), die über die benötigte Kontrolllo-
gik zur Ansteuerung des jeweiligen Speichertyps verfügen, zum Einsatz. Für lokalen, SRAM-
basierten Speicher stehen Wishbone- bzw. AMBA-Schnittstellen zur Verfügung. Für andere Spei-
chertechnologien kann entweder auf standardisierte IP-Blöcke zurückgegriffen oder es können
wahlweise eigene Lösungen integriert werden.

4.4.1 Lokaler Speicher auf Cluster-Ebene

Zum lokalen Speicher des GigaNetIC-Systems gehört der L1-Speicher des einzelnen Prozessor-
kerns (Prozessorspeicher). Dieser ist zunächst nur vom jeweiligen Prozessor adressierbar und stellt
Instruktionen und Daten zur Verfügung. Hierbei kann es sich um normalen SRAM handeln oder
aber um Cache- bzw. multiprozessorfähigen Cache-Speicher, der im folgenden Abschnitt näher
vorgestellt wird. Außerdem ist der gemeinsame L2-Speicher auf Cluster-Ebene noch zum lokalen
Speicher zu zählen. Seine Zugriffslatenz liegt zwar über der des eng-gekoppelten Prozessorspei-
chers, ist aber verglichen mit den Latenzen der entfernteren Speicher immer noch gering.

Die Größe des Prozessorspeichers ist, wie auch die des gemeinsamen Cluster-Speichers, parametri-
sierbar und derzeit bei der Wishbone-basierten Realisierung mit je 32 KByte vorgesehen. Es handelt
sich in beiden Fällen um Dualport-Speicher, der im Falle des Prozessorspeichers zum einen vom
Prozessor über den Prozessorbus gelesen und beschrieben werden kann. Zum anderen ist dieser
Speicher über eine Wishbone-Slave-Schnittstelle zur Initialisierung oder zum Austausch gemein-
samer Variablen von anderen Wishbone-Bus-Teilnehmern adressierbar (vgl. Abbildung 4-17). Der
L2-Speicher auf Clusterebene dient u. a. als Paketspeicher zur Terminierung von GigaNoC-

Hierarchie Speicher Zugriffszeit [Takte]

CPU Register 1
L1 Lokaler Prozessorspeicher bzw. Cache 2

L2 Gemeinsamer Speicher auf Clusterebene
Minimum: 4 bis 5 bei freier Ressource (je nach Arbiter-Zustand),

Maximum abhängig von Anzahl der Busteilnehmer (min + (n-1)) und / oder
der maximal zulässigen Burstlänge

L3 Entfernter Speicher anderer Cluster am lokalen Bus 2 x Paketlatenz, nach Formel (4.9) + L2-Latenz

L4 Externer Speicher DRAM / SRAM etc.
2 x Paketlatenz, nach Formel (4.9) + Latenz des Speichercontrollers

+ Latenz des externen Speichers

Kapitel 4. Die GigaNetIC-Systemarchitektur

104

basierten Paketen bzw. zu deren Inauftraggabe und Injektion über den Communication-Controller
ins GigaNoC. Außerdem können über ihn Daten mit anderen Prozessoren des Clusters ausgetauscht
werden, was je nach Programmiermodell (vgl. Abschnitt 4.5) von Bedeutung sein kann. Zusätzlich
zu diesem Dualport-L2-Speicher ist eine Schnittstelle für ein ggf. externes SRAM-Modul vorgese-
hen, welches größere Datenmengen zur gemeinsamen Datennutzung halten kann [109]. Abbildung
4-20 zeigt die Wishbone-Bus-Realisierung der GigaNetIC-Architektur auf Cluster-Ebene und die
unterschiedlichen Speichermodule auf L1- und L2-Ebene.

Abbildung 4-20: Wishbone-Bus-basierte GigaNetIC-Architektur auf Cluster-Ebene

4.4.2 Cache-Speicher auf Cluster-Ebene

Für viele Anwendungen empfiehlt sich der Einsatz von Cache-Speichern, die nach dem Lokalitäts-
prinzip die Daten puffern und so die Ausführung zahlreicher Programme beschleunigen, da Daten
bzw. Speicherseiten, auf die häufig zugegriffen wird, nicht jedes Mal neu, zeitaufwändig aus dem
Hauptspeicher geholt werden müssen.

Für das GigaNetIC-System wurde ein spezieller Multiprozessor-Cache entwickelt [113], der die
Systemleistung für eine Vielzahl von Anwendungen deutlich steigern kann (vgl. Abschnitt 6.7). Er
ist ebenso wie die GigaNetIC-Architektur in vielerlei Hinsicht parametrisierbar und somit flexibel
an die Anforderungen des entsprechenden Anwendungsszenarios anpassbar. Außerdem lässt er sich
aufgrund seiner flexiblen Struktur mit anderen Prozessoren kombinieren und in andere Multiprozes-
sorsysteme integrieren. Abbildung 4-21 zeigt die prinzipielle Realisierung des Multiprozessor-
caches am Beispiel eines GigaNetIC-Clusters mit vier N-Core-Prozessoren. Die Prozessoren sind
mittels einer AMBA-Switchmatrix (vgl. Abschnitt 4.2.4) und über die Caches miteinander und mit
der Switch-Box verbunden. Zusätzlich ist ein so genannter Snooping-Bus integriert worden, der die

P
o
rt
 2

P
o
rt
 4

CC

P
or
t 0

4.4 Speicher

105

Cache-Kontrolllogik über die Transaktionen der einzelnen Caches in Kenntnis setzt und für Daten-
kohärenz sorgt. Der GigaNetIC-Multiprozessorcache verwendet das MOESI-Kohärenzmodell23 zur
Sicherstellung der Datenintegrität [132]. In [133] wird eine Teilnehmerzahl von vier für MESI-
protokollbasierte Snooping-Busse bzw. Realisierungen mit ähnlichen Protokollen als leistungsfähi-
ge Busstruktur charakterisiert und empfohlen. Die in [113] und im Folgenden erläuterten zusätzli-
chen Merkmale der AHB-Switchmatrix-basierten und durch den dedizierten Snooping-Bus erwei-
terten GigaNetIC-Multiprozessorsysteme erhöhen die in [133] beschriebene Leistungsfähigkeit
nochmals.

Abbildung 4-21: Integration des Multiprozessor-Caches auf Cluster-Ebene

Der GigaNetIC-Multiprozessor-Cache bietet viele, durch die VHDL-Beschreibung gegebene Frei-
heitsgrade der Parametrisierung. Der Cache ist nicht nur als Multiprozessorvariante für bis zu acht
Prozessoren nutzbar, sondern auch als Uniprozessorcache implementierbar. Es kann zwischen einer
Split- oder Unified-Architektur gewählt werden, so dass optional ist, ob für Instruktionen und Daten
separate Speicher verwendet werden oder nicht. Die Assoziativität ist zwischen 2 bis 32 wählbar,
wobei pro Weg die Anzahl der Cachelines zwischen 8 bis theoretisch 220 Lines mit einer Weite von
4 bis 128 Byte eingestellt werden kann. Ebenso ist die Systembusschnittstellenweite zwischen 32
und 1024 Bit Breite parametrisierbar, so dass die Cache-Struktur auf andere Bussysteme und Pro-
zessortypen leicht adaptiert werden kann. Abbildung 4-22 zeigt die wesentlichen Freiheitsgrade der
Parametrisierung auf. Viele dieser Parametrisierungen wirken sich sowohl auf die benötigten Flä-
chenressourcen als auch auf die Leistungsfähigkeit aus. Häufig steht der Performanzgewinn in di-
rekter Abhängigkeit zu den jeweiligen Anwendungen, außerdem spielen die Zugriffszeiten zu den
verwendeten L3- und L4-Speichern eine nicht unwesentliche Rolle. Detaillierte Aussagen hierzu
sind in [113] veröffentlicht. Aufgrund dieser Umstände sollten im Vorfeld, falls die Anwendungen

23 Hierbei bezeichnet der Begriff MOESI die einzelnen Zustände, die eine Cacheline innehaben kann: Modified, Owned,

Exclusive, Shared und Invalid. Das MOESI-Kohärenzprotokoll findet u. a. in der AMD64-Architektur Verwendung

[134].

AHB
S

AHB
M

AHB
S

AHB
M

AHB
S

AHB
M

AHB
S

AHB
M

AHB
S

FIFOs

AMBA Matrix

Switch-Box

AHB
S

Snooping-Bus

N-Core N-Core N-Core N-Core

COM-
Buffer

COM-
Buffer

COM-
Buffer

COM-
Buffer

L1-
Cache
(#0)

L1-
Cache
(#1)

L1-
Cache
(#2)

L1-
Cache
(#3)

Kapitel 4. Die GigaNetIC-Systemarchitektur

106

bereits bekannt sind, tiefergehende Analysen bzgl. der Parameterwahl angestellt werden. Die entwi-
ckelte Werkzeugkette stellt hierzu eine umfassende Profiling-Umgebung zur Verfügung (vgl. Ab-
schnitt 6.7).

Abbildung 4-22: Wesentliche Freiheitsgrade beim GigaNetIC-Multiprozessorcache

Abbildung 4-23 zeigt die innere Struktur des GigaNetIC-Multiprozessorcaches. In der Standardrea-
lisierung wird eine Split-Cache-Struktur mit einem relativ einfachen Block für den Instruktionsca-
che und mit einem komplexeren Teil für den Datencache verwendet. Über den Communication-
Buffer können innerhalb weniger Takte und unter Umgehung des Caches Daten mit anderen Prozes-
sorsubsystemen oder der Switch-Box des Clusters ausgetauscht werden. Es handelt sich um eine
Write-Back-Architektur, die die Skalierbarkeit des Clusters erhöht und die Prozessoren vom Sys-
tembus entkoppelt. Die parametrisierbare satzassoziative (set-associative) Struktur erleichtert die
Realisierung geeigneter Kompromisse (bzw. pareto-optimaler Punkte, nach Definition 12 und 13)
zwischen Flächenbedarf und Trefferrate (hit-rate).

Abbildung 4-23: Prinzipieller Aufbau des multiprozessorfähigen GigaNetIC-Caches

Der derzeit eingestellte True-LRU-Verdrängungsmechanismus erlaubt eine hohe Trefferrate und ist
zudem mit überschaubarem Aufwand in Hardware zu realisieren. Bei Verwendung des BSP-
Programmiermodells (vgl. Abschnitt 4.5.2) basiert das System auf schwacher Datenkonsistenz,
weshalb der Cache softwareinitiierte Barrierensynchronisationen unterstützt, die z. B. automatisch

N
-C

o
re

A
H

B
-M

a
tr

ix

Veränderungen eines Kriteriums können
Auswirkungen auf andere Kriterien haben

Kriterium A

Kriterium B

Cache-B
efehlssatz

System-Bus-Breite

Cachelin
e-W

eite

Anzahl der Prozessoren
Verd

rä
ngungsstra

tegie

Hauptspeicherzugriffs-Latenz

Vergrößerung

Verringerung als Folge

Struktur
Typ

4.4 Speicher

107

vom Compiler hinzugefügt werden können. Hierdurch wird ein hoher Grad an Programmierbarkeit
mit geringer Komplexität ermöglicht. In diesem Fall kann der Communication-Buffer zur schnellen
Nachrichtenübermittlung (Message Passing) eingesetzt werden. Ein zusätzlicher Uncached Access
Buffer dient als Zwischenspeicher für optionale, „ungecachte“ Zugriffe.

Der Cache unterstützt eine Vielzahl von speziellen Cachebefehlen, die entweder manuell, z. B.
Software-basiert durch den Prozessor, oder aber schon im Vorfeld vom Compiler angestoßen wer-
den können. Hierzu zählen u. a. Prefetching, also das Laden von Speicherbereichen, bevor diese
vom Prozessor für die Verarbeitung benötigt werden, Festschreiben (Locking) oder Freigeben (Un-
locking) einer Cacheline, Invalidierung (Invaldiation) einer Cacheline, Aufheben der Kohärenz
durch Exkludieren von Zeilen aus der Kohärenzverwaltung etc. Weitere Details zu den Merkmalen
des Caches sind [113] zu entnehmen.

Der GigaNetIC-Multiprozessorcache unterstützt mit Hilfe des MOESI-Protokolls Direct-Data-
Intervention (direkten Daten-Eingriff). Dies bezeichnet die Möglichkeit, Daten von einem Cache zu
einem anderen Cache des Clusters transportieren zu können (ohne einen Zwischenschritt über den
Hauptspeicher). Dies bedeutet einen deutlichen Performanzvorteil für den Fall, dass andere Caches
Daten schneller liefern können als der Hauptspeicher.

Da der lokale Speicher des Clusters für einige Anwendungsklassen verhältnismäßig klein konzipiert
sein wird, und die Hauptspeicheranbindung durch ein recht großes globales Kommunikations-
netzwerk bzw. durch die verwendete Speichertechnologie ggf. eine nicht zu vernachlässigende La-
tenz aufweisen wird, ist Direct-Data-Intervention eine gute Möglichkeit, solche Latenzen zu ver-
meiden. Durch Direct-Data-Intervention wird so die effektiv zur Verfügung stehende Speichermen-
ge des Clusters ggf. erhöht, was bei der ansonsten relativ geringen L1- und L2-Speichergröße einen
weiteren positiven Effekt bedeutet.

Tabelle 4-7: Synthesewerte für Varianten des GigaNetIC-Multiprozessorcaches

in 90-nm-Standardzellentechnologie

Tabelle 4-7 zeigt die wesentlichen Syntheseergebnisse für ausgewählte Cachevarianten in einer 90-
nm-Standardzellentechnologie. Hierbei werden jeweils die Daten für einen Cache angegeben, so
dass Fläche und Leistungsaufnahme für die Clusterimplementierung mit der Anzahl der instanziier-
ten Prozessoren pro Cluster multipliziert werden müssen, um die Fläche bzw. die Leistungsaufnah-
me des „eigentlichen“ Multiprozessorcaches zu erhalten (vgl. Tabelle 8-4). Bzgl. der Leistungsauf-
nahme sei bemerkt, dass es sich hier um sehr konservative Abschätzungen seitens des Synthese-
werkzeugs handelt, das eine Schaltwahrscheinlichkeit von 50 % annimmt und nicht die als deutlich
geringer anzunehmenden Werte des realen Verhaltens der Schaltung ansetzt. Hierzu kann die ers-
tellte Werkzeugkette deutlich genauere Werte liefern, die auf den tatsächlichen Schaltaktivitäten der
Komponenten während der Verarbeitung basieren [116][111] (vgl. Kapitel 5 und 6).

Aus Tabelle 4-7 wird ersichtlich, dass der GigaNetIC-Cache in der Standardkonfiguration mit
8 KByte und einer Fläche von 0,73 mm² verglichen mit dem normalen L1-Speicher der Wishbone-

Konfiguration
Line -Größe

[Bit]
Tiefe Assoziativität Split-Cache Fläche

[µm²]
Taktperiode

 [ns]
Leistungsaufnahme

@250MHz [mW]

kurze Cachelines 64 256 2 Nein 0,61 4,16 136,79
Split Cache 128 256 2 Ja 1,11 4,08 276,13
hohe Assoziativität 128 256 4 Nein 1,31 4,48 376,18
weniger Cachelines 128 128 2 Nein 0,58 3,92 164,87
Standard 128 256 2 Nein 0,73 4,1 180,99

Kapitel 4. Die GigaNetIC-Systemarchitektur

108

Realisierung (32 KByte Dual-Port-Speicher, 0,875 mm²) ca. 3,3 mal so viel Fläche pro KByte benö-
tigt. Zudem erlaubt er derzeit eine nur halb so hohe maximale Betriebsfrequenz, was allerdings
durch den langsameren N-Core nicht ins Gewicht fällt. Trotz der deutlich höheren Kosten des Ca-
ches im Sinne von Flächenbedarf bzw. Leistungsaufnahme ist von Fall zu Fall, d. h. respektive des
Anwendungszenarios und der definierten Randbedingungen, abzuwägen, ob sich sein Einsatz den-
noch rentiert – gerade vor dem Hintergrund der bereits erwähnten, Komplexitätssprünge von zu-
künftigen SoCs aufgrund der immens wachsenden Transistorzahlen. Wir konnten in [113] zeigen,
dass unsere Cache-Implementierung für ausgewählte Anwendungen Performanzsteigerungen von
Faktor 23 bzw. sogar eine Reduzierung der benötigten Energie von bis zu 89 %, verglichen mit ei-
ner Implementierung mit normalem lokalen Speicher, ermöglicht, vgl. auch Abschnitt 6.7.

Die nächste eigenständige Speicherhierarchie ist der L4-Speicher oder auch Hauptspeicher, der im
folgenden Abschnitt diskutiert wird.

4.4.3 Hauptspeicher

Der Hauptspeicher des GigaNetIC-Systems kann, je nach Anwendungsgebiet, als Pufferspeicher für
Netzwerkdaten oder Anwendungsdaten eingesetzt werden. Er kann je nach Chipgröße und Techno-
logie direkt auf dem Die integriert werden und lässt sich, wie oben beschrieben, über Switch-Box-
Ports oder clusterbasiert adressieren. Die Adressvergabe und der Adressraum können hierbei von
den Kontrolleinheiten der modifizierten Communication-Controller übernommen werden. Sollen
standardisierte Off-Chip-Speichermodule eingesetzt werden, stellen die Communication-Controller
die Schnittstelle nach außen zur Verfügung. Durch diese Kopplungsart, unabhängig ob der Speicher
on- oder off-chip positioniert ist, erlaubt die GigaNetIC-Architektur eine gute Skalierbarkeit der
Speichergröße. Zur Ansteuerung von SDRAM (Synchronous Dynamic Random Access Memory)
kann auf einen im Fachgebiet Schaltungstechnik entworfenen IP-Block zurückgegriffen werden.

Die etwaige Umsynchronisierung auf die Taktfrequenz des Chip-Multiprozessors kann von den an-
gepassten Communication-Controllern durchgeführt werden, da nicht grundsätzlich von gleichen
Taktraten auf Speicher- und CMP-Seite auszugehen ist. Die Bandbreite, die seitens der GigaNetIC-
Architektur zur Verfügung gestellt werden muss, um heutigen Speichermodulen gerecht werden zu
können, beträgt bei den derzeit schnellsten PC-Speichern, den DDR3-1600-PC3-12800-
Speichermodulen, 12,8 GB/s bei 800 MHz, und bei derzeit üblichen PC-Speicherriegeln, den
DDR2-667 PC2-5300 mit 333 MHz, 5,3 GB/s. Diese Speicherriegel sind mit einer 64-Bit-breiten
Datenanbindung bereits passend für die derzeit eingestellte Flitdatenbreite eines Switch-Box-Ports.
Wie in Abbildung 4-15 gezeigt, ermöglicht ein Port einer Switch-Box in der derzeitigen Realisie-
rung bereits bis zu 5,7 GB/s Netto-Datendurchsatz und damit schon heute die volle Bandbreitenaus-
nutzung gängiger externer Speichermodule. Im Falle von höheren Speicherbandbreiten kann ggf.
mit Hilfe einer Portbündelung der Switch-Boxen die gewünschte Performanz erzielt werden.

Um die in den letzten Abschnitten vorgestellten Kernkomponenten eines Chip-Multiprozessor-
systems wie dem GigaNetIC effizient einsetzen zu können, bedarf es zusätzlich zu den Hardware-
Komponenten noch eines angepassten Programmiermodells und einer leistungsfähigen Werkzeug-
kette. In Abschnitt 4.5 werden zunächst anwendbare Programmiermodelle für das GigaNetIC-
System vorgestellt; die im Rahmen des Projekts entstandene Werkzeugkette wird ausführlich in den
Kapiteln 5 und 6 behandelt.

4.5 Programmiermodell

109

4.5 Programmiermodell

Außer den physikalisch greifbaren Systementitäten der GigaNetIC-Chip-Multiprozessorarchitektur
gibt es noch die bereits erwähnten immateriellen Bestandteile, die eine Multiprozessorarchitektur
ausmachen. Hierzu zählt das Programmiermodell, das letztendlich festlegt, nach welchen Regeln
die einzelnen Komponenten des Systems ihre Arbeit verrichten und wie ihnen diese zugeteilt wird,
und damit verbunden der systemweite Austausch von Daten und Zustandsinformationen.

Programmiermodelle für parallele Systeme müssen eine Vielzahl von Faktoren berücksichtigen, zu
deren wichtigsten Merkmalen zählen:

• Kontrolle: Wie wird die Parallelität zur Verfügung gestellt und wie werden die Einheiten
synchronisiert?

• Daten: Welche Daten sind lokale und welche sind gemeinsame Daten? Wie können gemein-
same Daten erreicht bzw. übermittelt werden?

• Operationen: Welche atomaren Operationen werden vom System zur Verfügung gestellt?

• Kosten: Mit welchen Kosten können die obigen Faktoren belegt werden?

Es gibt eine Vielzahl von Programmiermodellen für parallele Systeme, wie Shared Memory, Mes-
sage Passing oder Data Parallel. Allen Modellen gemeinsam sind die vier Phasen der Anwen-
dungsabbildung vgl. Abbildung 4-24, in denen die Anwendung zunächst in passende Aufgaben
bzw. Tasks genügender Granularität aufgeteilt wird. Hierbei ist ein Kompromiss zwischen genü-
gend Nebenläufigkeit und dem daraus resultierenden Verwaltungsaufwand zu finden. Im Anschluss
müssen diese Tasks zu geeigneten Prozessen bzw. Threads zugeordnet werden. Dabei ist auf eine
möglichst ausgewogene Verteilung der Aufgaben auf die einzelnen Verarbeitungseinheiten zu acht-
en. Dieser Vorgang muss in der Art geschehen, dass die Prozesse möglichst effizient und auf die
architekturspezifischen Gegebenheiten angepasst miteinander kommunizieren können. Ziel hierbei
ist eine korrekte Abbildung der parallelen Verarbeitung auch im Hinblick auf inhärente Datenab-
hängigkeiten des Algorithmus. In Abhängigkeit von der jeweiligen Kostenfunktion sind die einzel-
nen Maße wie Kommunikation, Häufigkeit der Synchronisationen und Verwaltungsaufwand durch
die parallele Lösung gegeneinander abzuwägen.

Abbildung 4-24: Schritte der Anwendungsabbildung

Die für die GigaNetIC-Architektur vorgesehenen Programmiermodelle basieren, ebenso wie die
GigaNetIC-Hardware, auf einem hierarchischen Ansatz. Auf Clusterebene wird ein speziell auf die
eingesetzten Verarbeitungseinheiten optimierter, aus einer eigens für das GigaNetIC-System entwi-
ckelten Werkzeugkette generierter Compiler eingesetzt [134][135][6][111][112][136]. Programme

Gesamte
Anwendung

A
uf

te
ilu

ng

Tasks genügender
Granularität

Z
uo

rd
nu

ng

Prozesse/
Threads

In
st

ru
m

en
ta

tio
n

Prozesse/
Threads

A
bb

ild
un

g

Prozessoren

S B

S B

S B

S B

Kapitel 4. Die GigaNetIC-Systemarchitektur

110

werden in der Hochsprache C verfasst und auf die Prozessoren des Clusters abgebildet (vgl. Ab-
schnitt 4.5.1). Sollten keine übergeordneten Kontrollmechanismen zur Ausführung benötigt werden,
so kann dieser einfache Ansatz bereits ausreichen, um das System die gestellten Aufgaben effektiv
bearbeiten zu lassen. Andernfalls dient das clusterbasierte Programmiermodell als untere Hierar-
chie, auf der eines der beiden Programmiermodelle der SoC-Hierarchie aufsetzt (vgl. Abschnitt
4.5.2 und 4.5.3).

Abbildung 4-25: Drei wesentliche Programmiermodelle des GigaNetIC-Systems:

a) dezentrales Cluster-Modell, b) globales SoC-BSP-Modell und c) zentrales SoC-Modell

Auf Systemebene kann auf das etablierte Bulk-Synchronous-Parallel-Programmiermodell nach
VALIANT [18] für Parallelrechner zurückgegriffen werden. Für Anwendungsklassen geringerer
Komplexität kann das leicht zu implementierende zentrale SoC-Programmiermodell eingesetzt
werden, das einen zentralen Kontrollprozessor zur Ablaufsteuerung einsetzt. Beiden Programmier-
modellen gemein ist die Möglichkeit der komfortablen Nutzung der GigaNoC-Software-
Systembibliothek (vgl. Abschnitt 4.2.2), in der alle Funktionalitäten, die das On-Chip-Netzwerk zur
Verfügung stellt, enthalten sind. Abbildung 4-25 zeigt die drei derzeit eingesetzten Programmier-
modelle, die im Folgenden näher erläutert werden.

4.5.1 Programmiermodell auf Clusterebene

Der vom Fachgebiet Kastens zur Verfügung gestellte Compiler kann automatisch Befehlssatzerwei-
terungen und eng-gekoppelte Hardwarebeschleuniger des Clusters berücksichtigen und mit in die
Code-Abbildung einbeziehen. Für Anwendungen, die sich besonders für eine feingranulare Paralle-
lisierung auf Instruktionsebene (ILP) (vgl. Abschnitt 2.4.4) eignen, kann zusätzlich eine Kompilie-
rung des Programms für mehrere oder alle Prozessoren des Clusters angestoßen werden. Für diesen
parallelisierenden Compiler wurde das GigaNetIC-System durch zusätzliche konfigurierbare Hard-
wareblöcke erweitert, die es ermöglichen, die für die Synchronisierung der Prozessoren erforderli-
chen Barrieremechanismen innerhalb eines Taktes umzusetzen [6]. Abbildung 4-26 zeigt den Ab-
lauf einer solchen Synchronisierung, die immer dann notwendig ist, wenn auf Variablen bzw. Daten
zugegriffen wird, die von anderen Verarbeitungseinheiten modifiziert wurden. Die Barrieren wer-
den vom Compiler als eigenständiger, parametrisierter Befehl dahin gehend, welche PEs synchroni-
siert werden müssen, in den Programmablauf integriert. Die Hardware übernimmt die Synchronisa-
tion, also das Anhalten und Fortsetzen der Befehlsausführung der betreffenden Prozessoren. Für
welche Anwendungsszenarien sich diese feingranulare Parallelisierung besonders effizient einset-
zen lässt ist noch Bestandteil aktueller Forschungen.

a) b) c)

Kontrollprozessor an
beliebiger Stelle im SoC

clusterbasiert BSP, clusterbasiert

4.5 Programmiermodell

111

Abbildung 4-26: Synchronisierungsmechanismus auf Cluster-Ebene

Das Zusammenspiel der Compiler-Werkzeugkette mit der Hardware-Entwicklungsumgebung für
den am Fachgebiet entwickelten N-Core-RISC-Prozessorkern [108][111] (vgl. Abschnitt 4.3.1)
wird in Kapitel 5 und 6 detailliert beschrieben.

Wird dieses Programmiermodell ohne Zuhilfenahme eines der beiden für die SoC-Ebene konzipier-
ten Ansätze eingesetzt, dann sind die Cluster bzw. sogar die einzelnen Prozessoren allein für die
Ausführung der Anwendung zuständig. Eine Synchronisierung mit anderen Blöcken des SoCs kann
nur über vorbestimmte Nachrichten geschehen. Diese Art der Programmierung eignet sich für rela-
tiv einfache Anwendungsklassen, die vollständig auf einzelne Cluster bzw. Prozessorkerne abgebil-
det werden können. Dies können z. B. einfache Paketverarbeitungsprozesse sein, bei denen die pa-
rallele Architektur auf unkorrelierten parallelen Datenströmen arbeitet (vgl. Abschnitt 8.1). Für
komplexere Anwendungsklassen stehen übergeordnete Programmiermodelle zur Verfügung, die in
den nächsten beiden Abschnitten vorgestellt werden.

4.5.2 Programmiermodell auf SoC-Ebene – Bulk Synchronous Parallel

Das BSP-Modell von VALIANT [18][6] ist ein Ansatz, der versucht die beiden Seiten eines Multi-
prozessorsystems, Software und Hardware, kombiniert zu modellieren. Zum einen dient es dem
Systemarchitekten als Modell für die parallele Verarbeitung und die Auswirkungen der Hardware-
architektur auf die Systemleistung. Zum anderen ist es ein Programmiermodell für die Algorithmen-
Entwickler. Es soll als gemeinsamer Standard dienen, um möglichst effiziente Systeme zu entwi-
ckeln, bei denen das Zusammenspiel zwischen Hard- und Software gut aufeinander abgestimmt ist.

Das Modell besteht aus drei Teilen: Die Charakterisierung der Hardware, das Programmiermodell
als solches und das Kostenmodell zur Abschätzung der Laufzeit der BSP-Algorithmen. Ein Compu-
ter bzw. ein Chip-Multiprozessor besteht aus Sicht des BSP-Modells aus P Prozessoren, die über
lokalen Speicher verfügen und über ein beliebiges Netzwerk miteinander über Punkt-zu-Punkt-
Verbindungen kommunizieren können. Zudem muss das System eine Barrierensynchronisation
(ähnlich Abbildung 4-26) unterstützen. BSP macht zunächst keine Unterscheidung bzgl. der Topo-
logie oder Lokalität der Daten. Das auszuführende Programm wird in mehrere sequentiell aufeinan-
der folgende Teile, so genannte Supersteps zerlegt (vgl. Abbildung 4-27). Während der Supersteps

Kapitel 4. Die GigaNetIC-Systemarchitektur

112

kann jeder Prozessor lokale Berechnungen durchführen und Nachrichten zu anderen Prozessoren
schicken. Am Ende des Supersteps wird eine Synchronisierungsfunktion aufgerufen. Haben alle
Prozessoren diese „Barriere“ erreicht, werden die Nachrichten innerhalb des folgenden Supersteps
ausgewertet bzw. verarbeitet. Die Art und Weise, Algorithmen so zu beschreiben hat u. a. folgende
Vorteile: Aufgrund der einseitigen Kommunikation, ohne Anforderungs-/Bestätigungsmecha-
nismus, vermeidet man Blockaden, die z. B. durch falsch initiierte Anforderungsnachrichten verur-
sacht werden könnten. Ein weiterer Vorteil ist der, dass der Ablauf deterministisch und unabhängig
von der Latenz des Netzwerks ist, bzw. die Reihenfolge, in der die Nachrichten bei ihren Empfän-
gern eintreffen, ist irrelevant. Abbildung 4-27 zeigt den prinzipiellen Ablauf eines Supersteps im
BSP-Modell und die damit verbundenen Kosten auf.

Abbildung 4-27: Ablauf und Kosten beim BSP-Modell

Die Gesamtkosten eines Supersteps wmax setzen sich aus dem Maximum der gesendeten bzw. emp-
fangenen Daten h der Prozessoren multipliziert mit g, der Lücke gap die durch die Übertragung
durch das Netzwerk entsteht, und der Latenz L für die Barrierensynchronisation zusammen. g ist
von mehreren Parametern abhängig wie z. B. von der Art der verwendeten Netzwerkprotokolle und
von der Art und Weise, wie Nachrichten ins Netz injiziert werden können. Die Routingstrategie
beeinflusst das Zeitverhalten der Kommunikation sowie das Maß wie effektiv das Speichermana-
gement im Prozessor und im Netzwerk ist. Zuletzt ist noch der Overhead durch die BSP-
Implementierung zu berücksichtigen. g wird bei realen Systemen meist durch Messungen bestimmt
und bezieht sich auf die Übertragungszeit für eine Nachricht einfacher Länge unter kontinuierli-
chem Netzwerkverkehr des Systems.

() ()1 1

max Berechnungszeit max ommunikation Synchronisierungszeit

max max

Superstep

P P
i i i

KT

w h g L= =

+ +=

= + ⋅ +
 (4.10)

Die Kosten für den gesamten Algorithmus mit P Prozessoren und S Supersteps lassen sich somit
wie folgt berechnen:

1 1

s s

gesamt s s
s s

T W Hg SL w g h SL
= =

= + + = + ⋅ +∑ ∑ (4.11)

Die existierende Paderborner BSP-Bibliothek für diskrete Multiprozessoren [137] wurde vom
Fachgebiet von Prof. Friedhelm Meyer auf der Heide auf die N-Core-Architektur portiert und für
diese optimiert. Die BSP-Bibliothek ist in C implementiert und setzt hierarchisch gesehen oberhalb

Superschritt

t+1

Superschritt

t

Kommunikation

lokale Verarbeitung

Barriere

h • g

wmax{
{
{L

PE1 PEp• • •

lokale Verarbeitung

4.5 Programmiermodell

113

des N-Core-Compilers an und kann somit von allen speziellen Funktionen (ILP, spezielle Instruk-
tionen, Hardwarebeschleunigeransteuerung etc.) des Compilers profitieren. Besonderheiten der Gi-
gaNetIC-Architektur in Bezug auf das BSP-Modell sind spezifische, sehr schnelle Synchronisie-
rungsmechanismen, die zu sehr kurzen Latenzwerten für L führen, sowie die sehr geringen Kom-
munikationskosten, verglichen mit Grid- oder Cluster-Multiprozessorsystemen. Daher kann das
sonst eher für grobgranulare Parallelität verwendete Programmiermodell auch in Anwendungen
eingesetzt werden, die stärker durch feingranulare Parallelität profitieren.

In [115] wurden von mir folgende Werte für die GigaNetIC-Architektur im Hinblick auf die BSP-
Kosten ermittelt:

 / 3 (1)bester Fall
f

m
Takte Paket h

m

 
= ⋅ + ⋅  

  
 (4.12)

 ()/ 3 (1) 1schlechtester Fall
f

m
Takte Paket h n FIFOTiefe

m

 
= ⋅ + ⋅ − ⋅ ⋅  

  
 (4.13)

In (4.12) sind die Kosten bzw. Takte angegeben, die ein Paket M, bestehend aus m Bytes benötigt,
um von einem Cluster zu einem h Hops entfernten Cluster im GigaNetIC-System zurückzulegen.
Die Anzahl der Datenbyte pro Flit wird mit mf angegeben. Im besten Fall sind alle FIFO-Ketten des
betreffenden Pfades leer, dann ergibt sich die Anzahl der benötigten Takte zur Übertragung zu
(4.12). Als schlechtester Fall wird hingegen angenommen, dass alle FIFO-Ketten entlang des Über-
tragungsweges gefüllt und die anderen (n-1) Ports der entsprechenden Switch-Boxen ebenfalls um
die betreffenden Ausgangswarteschlangen konkurrieren, dann ergibt sich die Anzahl der benötigten
Takte zu (4.13).

Die Takte der entsprechenden Funktionen, die aufgewendet werden müssen, um ein Paket seitens
eines Prozessors ins Netzwerk zu injizieren sind in (4.14) aufgeführt. Sie resultieren aus den Aus-
führungszeiten der entsprechenden Funktionen der GigaNoC-Softwarebibliothek.

96 942

/ _ _ _ _ _ _TaktePE Paketinjektion net send data net get ack net free packet= + +
���	��
 ���	��
 ����	���

 (4.14)

Zusätzlich gibt es eine Funktion is_bsp_synchronization, die innerhalb von 50 Takten feststellt, ob
ein eingetroffenes Paket eine BSP-Barrieren-Synchronisations-Nachricht eines anderen Clusters ist.

In [115] wurden, mit Hilfe der zur GigaNetIC-Architektur gewonnenen BSP-Parameter, Analysen
zu einem erweiterten BSP-Modell vorgestellt, auf die hier nicht näher eingegangen werden kann.

4.5.3 Programmiermodell auf SoC-Ebene – Zentraler Kontrollprozessor

Für weniger komplexe Algorithmen, die besondere Anforderungen an den Ablauf oder das Zeitver-
halten der Ausführung, aber weniger Inter-Prozesskommunikation beinhalten, wie es z. B. bei eini-
gen Netzwerkanwendungsszenarien der Fall ist, kann ein weiteres Programmiermodell auf SoC-
Ebene zum Einsatz kommen. In diesem Fall wird nicht, wie beim BSP-Modell (vgl. Abschnitt
4.5.2), versucht, das Programm durch Partitionierung auf mehre Verarbeitungseinheiten aufzuteilen
und die Synchronisierung durch Barrieren, wie in Abbildung 4-27 gezeigt, zu realisieren. Statt des-
sen wird die globale Kontrolle von einem zentralen Prozessor übernommen. Dabei kann im Prinzip

Kapitel 4. Die GigaNetIC-Systemarchitektur

114

ein beliebiger Prozessor eines beliebigen Clusters des Systems diese Aufgabe zugeteilt bekommen.
Allerdings sind die anwendungsspezifischen Lastaufkommen zu berücksichtigen, die ggf. eine zent-
rale Position im Gitter oder an einer der Kanten, und damit nah an den externen Schnittstellen des
Chips, begünstigen können. Dieser Kontrollprozessor überwacht die Zustände der einzelnen Cluster
und Prozessorkerne und steuert das Verhalten des Gesamtsystems. Er kann u. a. als Lastverteiler
(Load balancer) fungieren, indem er die eintreffenden parallelen Paketströme, je nach Auslastungs-
grad, den einzelnen Clustern und damit den zugehörigen Switch-Boxen zuweist.

Dieses Modell ist relativ einfach zu implementieren und eignet sich für Prozesse, die aufgrund ihrer
Komplexität nicht auf mehrere Prozessoren aufgeteilt werden müssen, sondern bei denen die Viel-
zahl der Prozessoren zur Bearbeitung gleichartiger Aufgaben auf verschiedenen Daten genutzt wird.

In [102][103][104] stellen wir zusätzlich eine Methode und die dazugehörige Werkzeugkette Ne-
tAMap (Network Application Mapper) vor, mit der wir in der Lage sind, taskbasierte Anwendungen
auf Multiprozessorsystemen unterschiedlicher Art abzubilden. Hierbei können Applikationen abge-
bildet werden, deren Bandbreitebedarf, Rechenlast bzw. Verarbeitungsschritte während der Kon-
zeption bereits bekannt sind und sich während des Betriebs deterministisch verhalten. Diese Eigen-
schaft ist allerdings eine starke Einschränkung und trifft nur für spezielle Anwendungsszenarien zu
und gilt nicht für Netzwerkanwendungen allgemein. Dies können z. B. Protokollverarbeitungspro-
zesse für selbst konzipierte mobile Ad-Hoc-Netzwerke sein, z. B. für autonome Miniroboter [138],
deren Struktur speziell auf die Abbildungsmethode angepasst ist. Diese Art der Anwendungsszena-
rien liegt nicht im Mittelpunkt der in Kapitel 7 untersuchten Einsatzgebiete der GigaNetIC-
Architektur, weshalb an dieser Stelle, um den Rahmen dieser Arbeit nicht zu sprengen, auf die ge-
nannten Veröffentlichungen lediglich verwiesen sei.

4.6 Diskussion von Topologie und Routingverfahren

In [6] wurden bereits verschiedene 2D-Topologien bezüglich ihrer Routingeigenschaften unter-
sucht. Wesentliche Kriterien wie hoher Durchsatz gekoppelt mit möglichst geringer Latenz sind für
die GigaNetIC-Architektur von großer Bedeutung. Dies soll möglichst nicht auf Kosten einer zu
großen Fläche bzw. einer zu hohen Leistungsaufnahme gelöst werden.

Abbildung 4-28 stellt das zeitliche Verhalten und die Aufenthaltsdauer im NoC von Paketen für
zwei unterschiedliche Routingverfahren und mehrere Gittervarianten dar. Die dargestellten Werte
wurden durch Simulationen ermittelt. Das zugrunde liegende Chip-Multiprozessorsystem entspricht
dem in Abschnitt 8.2 realisierten ersten ASIC-Prototypen des GigaNetIC-Systems mit 32 Prozesso-
ren und 8 Switch-Boxen als On-Chip-Routingknoten. Als Routingverfahren wurde das XY-Routing
und eine Form des dynamischen Routings eingesetzt, die in Abschnitt 4.2.1.4 bereits vorgestellt
wurden. Der Simulation zugrunde liegt ein Paketinjektionsalgorithmus mit zufallsbasiertem Ziel im
NoC. Jeder Prozessor eines Clusters verschickt in jeder Runde ein Paket an einen wahllos ausge-
suchten Zielknoten im GigaNoC. Die Simulation ist beendet, wenn nach Ablauf der Injektionsrun-
den alle Pakete ihr Ziel erreicht haben.

4.6 Diskussion von Topologie und Routingverfahren

115

Abbildung 4-28: Performanzanalyse verschiedener Routingverfahren

in Verbindung mit unterschiedlichen Gitter-Topologien

Bei der unidirektionalen Variante kann jeder Inter-Switch-Box-Link nur ein Paket in eine Richtung
weiterleiten. Dies könnte z. B. der Fall sein, wenn nicht genügend Fläche für bidirektionale Verbin-
dungen zwischen den Switch-Boxen vorhanden wäre. In diesem Fall verhält sich das dynamische
Routing vorteilhafter als das XY-Routing. Im Gesamtvergleich benötigen jedoch beide Verfahren
deutlich mehr Zeit zur Bewältigung des Datenaufkommens als die anderen Varianten. Verwendet
man hingegen bidirektionale Verbindungen, entfällt der Vorteil des dynamischen Routings und die
Performanz ist nahezu um eine Größenordnung besser.

Ein Problem bei dem 4×2-Gitter ist die geringe Bisektionsbandbreite BB (vgl. Abschnitt 2.3.1).
Congestion auf den beiden zentralen Verbindungskanälen des NoCs reduziert die Leistungsfähig-
keit des Systems deutlich. Neben den in Abschnitt 2.3.2 genannten Routingverfahren, die z. T. er-
heblichen Hardwareaufwand bedeuten, lassen sich Verbesserungen um mehr als eine Größenord-
nung in diesem Fall z. B. durch einfache Topologiemodifikationen erreichen:

Ist mit sehr hohem Datenaufkommen innerhalb des On-Chip-Netzwerks zu rechnen, so können
Verbindungen doppelter Bandbreite, z. B. durch entsprechend angepasste Switch-Box-Ports einen
deutlichen Geschwindigkeitsvorteil liefern. Die leistungsfähigste Variante stellt so genannte Wrap-
around-Verbindungen, also umlaufende Verbindungen zur Verfügung und bildet damit die Struktur
eines halbverbundenen Torus (vgl. Abbildung 2-8) auf der oberen Hierarchie nach. Sie bedeuten
grundsätzlich eine Performanzsteigerung, verringern sie doch den Durchmesser des On-Chip-
Netzwerks. Allerdings ist die Realisierung einer solchen Topologie, mit derzeitigen CMOS-
Prozessen, mit Schwierigkeiten verbunden, da die umlaufenden Kanten deutlich länger als die übri-
gen Verbindungen sind. Dies führt zu Laufzeitunterschieden und damit zur Leistungsreduktion des
Gesamtsystems. Diesem Phänomen wird mit einer leicht abgewandelten Topologie entgegengetre-

Anzahl der Injektionsrunden [Zyklen]

XY-Routing, unidirektionale Verbindungen
Dynamisches Routing, unidirektionale Verbindungen
XY-Routing
Dynamisches Routing, kürzeste Wege
XY-Routing, doppelte Bandbreite in der Mitte
XY-Routing, umlaufende Kanten
XY-Routing, umlaufende Kanten mit doppelter Latenz

Topologie

m
a

xi
m

al
es

 A
lte

r
de

r
P

ak
et

e
[Z

yk
le

n]

Kapitel 4. Die GigaNetIC-Systemarchitektur

116

ten, bei dem Repeater zwischengeschaltet sind, die die Laufzeitunterschiede egalisieren und so die
längeren Verbindungen zwischen Nord- und Südknoten transparent erscheinen lassen. Allerdings
wird hierdurch eine zusätzliche Latenz eingebracht, der mit einem „virtuellen Knoten“ Rechnung
getragen wird. Auffällig ist die dennoch gute Performanz trotz dieser zusätzlichen Latenz. Je nach
Betriebsfrequenz eignet sich eine solche Topologiemodifikation auch für fertige ASICs des Giga-
NetIC-Systems, die auf Board-Ebene dann mit solchen Verbindungen ggf. zu einem Torus erweitert
werden können.

Abbildung 4-29: Anzahl benötigter Hops bei Multicastszenarien,

in Abhängigkeit von der Gittergröße und der Lage des Quellknotens

Je nach Bandbreitebedarf und Verkehrsmuster der zukünftigen Anwendungen sollte abgewogen
werden, ob zusätzliche Modifikationen der 2D-Gittertopologie erforderlich sind oder zusätzliche
optimierte Routingverfahren benötigt werden. Ein weiteres Kriterium, mit besonderer Bedeutung
für nachrichtenbasierte Programmiermodelle, ist die Anzahl der benötigten Zyklen bzw. Hops, um
von einem Knoten alle weiteren Knoten des Netzwerks zu kontaktieren. Handelt es sich hierbei
stets um die gleiche Nachricht, so könnte ein Multicast-Mechanismus der Switch-Boxen zur Ver-
vielfältigung der Nachricht herangezogen werden, so dass sich der Aufwand des Senderknotens auf
ein Minimum beschränken lässt. Hierbei würde es seitens des Quellknotens ausreichen, eine Multi-
cast-Nachricht an die lokale Switch-Box auszusenden, die ggf. die beabsichtigte Reichweite des
Multicasts beinhaltet. Die maximale Latenz einer Nachricht, die den entferntesten Knoten innerhalb

2
4

6
8

10

2
4

6
8

10
0

2

4

6

8

x 10
4

c) Gesamtzahl der benötigten Hops zur kompletten Synchronisierung

2
4

6
8

10

2
4

6
8

10
0

2

4

6

8

b) Durchschnittliche Hopanzahl der Systeme
 bei kompletter Synchronisierung

2
4

6
8

10

2
4

6
8

10
0

5

10

15

20

a) Durchmesser D in Hops für die jeweilige Dimension

2
4

6
8

10

2
4

6
8

10
500

600

700

800

900

1000

d) Gesamtzahl an Hops eines Knotens bei einer
vollständigen Synchronisierung in einem 10x10-Gitter

Knoten in Y-Richtung

Knoten in Y-Richtung Knoten in Y-Richtung

Position in Y-Richtung

Knoten in X-Richtung

Knoten in X-Richtung

Knoten in X-Richtung

Position in X-Richtung

H
op

s

H
op

s
H

op
s

H
op

s

4.7 Skalierung des Systems durch Variation von Systemparametern

117

eines Netzwerks erreicht, ergibt sich aus dem Durchmesser D der Topologie (vgl. Definitionen aus
Abschnitt 2.3.1) und der Lage des Quellknotens.

Abbildung 4-29 a) veranschaulicht den linearen Zusammenhang dieses Sachverhalts für gitterför-
mige GigaNetIC-Systeme von bis zu zehn Knoten pro Kante. Bei einer Topologie mit 10×10 Kno-
ten benötigen die Eckknoten 18 Hops für eine Datenübertragung. Nach (4.9) bedeutet dies im bes-
ten Falle 65 Takte für die Übertragung eines Kommandoflits mit acht Datenbyte, 66 Takte für 16
Datenbyte etc. Handelt es sich hingegen um disparate Nachrichten, sozusagen eine vollständige
Synchronisierung aller Prozessoren untereinander, so bedeutet dies, dass eine zur Gesamtzahl der
Prozessoren bzw. Cluster proportionale Latenz für die Gesamtheit der Übertragung aller Nachrich-
ten angesetzt werden kann. Die resultierende, durchschnittliche Hopanzahl für einen solchen Multi-
cast für gegebene Gittergrößen zeigt Abbildung 4-29 b) auf. Für zweidimensionale Gitter ergibt sich

diese zu
2

3
N⋅ , mit N Knoten im Gitter.

Die Gesamtheit der zu bewältigenden Hops für derartige disparate Multicasts stellt Abbildung
4-29 c) dar. Für ein 10×10-Gitter werden 66.000 Hops für eine vollständige Punkt-zu-Punkt-
Kommunikation aller Knoten benötigt. Zu beachten ist, dass diese Zahl nicht mit der für die Syn-
chronisation benötigten Zeit gleichzusetzen ist, da ein Großteil der Übertragungen parallel abläuft.
Unter der Vorraussetzung, dass jeder Cluster nur eine Nachricht pro Zeiteinheit absetzen kann, er-
gibt sich hieraus für ein 10×10-Gitter eine Zeitdauer von mindestens 18 Hops bzw. 65 Takten im
besten Fall, wenn das Netzwerk nicht aus- bzw. überlastet ist. Im schlechtesten Fall, wenn z. B.
immer nur ein Knoten die Synchronisierung durchführte, um so Stauungen im Netzwerk vollständig
zu vermeiden, ergäben sich 100 99 9.900 ⋅ = Übertragungen. Dies resultierte in einer Synchronisati-
onszeit von 9.914 Takten, wenn die Übertragungen zu den entfernteren Knoten zu Anfang gestartet
würden. Bei einer Taktfrequenz von 714 MHz (vgl. Abschnitt 4.2.3) wäre eine vollständige Syn-
chronisation von 100 Knoten bzw. maximal 800 Prozessoren in 13,9 µs abgeschlossen. Dies ist al-
lerdings eine äußerst konservative Abschätzung, die in der Realität zweifelsohne deutlich geringer
ausfallen wird, da die parallelen Transfers in vielen Fällen blockadefrei ablaufen. Abbildung 4-29
d) zeigt die Hopanzahl, die sich ergibt, wenn ein Knoten disparate Nachrichten an alle anderen
Knoten im Netzwerk schickt. Hierbei variiert die Zahl in Abhängigkeit von der Position im Gitter.
Für zentrale Knoten beläuft sich der Wert für einen derartigen Multicast auf 500 akkumulierte
Hops, wohingegen die Eckknoten mit 900 Hops 80 % mehr benötigen.

4.7 Skalierung des Systems durch Variation von Systemparametern

Da Flexibilität und Skalierbarkeit eine besonders wichtige Rolle beim GigaNetIC-System und beim
GigaNoC-On-Chip-Netzwerk einnehmen, wurden alle relevanten Parameter der Hardwarebeschrei-
bung generisch implementiert und in zentralen Designpackages gehalten, so dass durch geringsten
Aufwand neue Varianten des On-Chip-Netzwerks bzw. des gesamten GigaNetIC-Systems erzeugt
werden können. Abbildung 4-30 zeigt wesentliche Freiheitsgrade und die sich daraus ergebende
Flexibilität der Architektur, die der Systemarchitekt bei der Realisierung eines GigaNetIC-Systems
in der Entwurfsphase hat. Die wesentlichen Parameter, die das generische GigaNetIC-Design aus-
machen, sind in Anhang B aufgelistet und werden dort kurz erläutert. Diese Parametrisierung ist
ebenfalls für die im folgenden Kapitel vorgestellten Simulatoren und Rapid-Prototyping-Modelle
konsequent im jeweiligen Rahmen berücksichtigt worden.

Kapitel 4. Die GigaNetIC-Systemarchitektur

118

Abbildung 4-30: Freiheitsgrade bei der Skalierung der GigaNetIC-Systemarchitektur

Zukünftige Realisierungen, die auf Weiterentwicklungen der GigaNetIC-Architektur beruhen, wer-
den zusätzlich über Mechanismen verfügen, die während der Laufzeit Veränderungen der Hardware
erlauben. Hierzu zählen sowohl Adaption der Bandbreite und der aktiven Routingkanäle an die je-
weiligen Erfordernisse, Maßnahmen zur aktiven Leistungsaufnahmereduktion wie z. B. Clockgating
für nichtbenutzte Einheiten, als auch Möglichkeiten der Ausschöpfung von Voltage-Scaling-
Techniken bei der Reduktion der Taktrate. Hardwarebeschleuniger könnten während der Laufzeit
durch Integration rekonfigurierbarer Strukturen nach Bedarf geladen werden. Genauso wäre das
Nachladen von speziellen Instruktionssätzen bzw. die Variation von CPU-Ressourcen wie z. B. der
Registerbreite und der Anzahl auf Prozessorebene denkbar. Die GigaNetIC-Architektur ist grund-
sätzlich vorbereitet für diese neuen Möglichkeiten.

4.8 Zusammenfassung

In diesem Kapitel wurde eine neuartige, skalierbare Chip-Multiprozessor-Architektur vorgestellt,
die aufgrund einer sehr flexibel gestalteten, parametrisierbaren Hardwarestruktur an verschiedenste
Anforderungen angepasst werden kann, um so eine nach Definition 14 möglichst ressourceneffi-
ziente Lösung zu erhalten. Alle Bestandteile, die einen CMP ausmachen, wurden eigens für diese
Architektur implementiert bzw. angepasst. So wurde ein neuartiges, hierarchisches On-Chip-
Netzwerk namens GigaNoC zusammen mit einem umfassenden Konzept zur Kopplung unterschied-
lichster Verarbeitungseinheiten an den verschiedenen SoC-Ebenen entworfen. Bei der Speicherwahl
kann zwischen normalem SRAM oder einem speziell entwickelten Multiprozessorcache gewählt
werden. Durch die spezielle Konstruktion der On-Chip-Routingknoten der Switch-Boxen ist nicht
nur eine gute Skalierbarkeit auf Chip-Ebene während des Entwurfs gegeben, sondern auch die Mög-
lichkeit einer späteren Kombination von GigaNetIC-basierten CMPs auf Chip-Ebene, indem
Switch-Box-Ports nach außen geführt und mit den Nachbarchips verbunden werden. Dies erlaubt
auf Board-Ebene eine deutlich größere Anzahl von verbundenen Knoten, als es derzeit auf einem
Chip möglich wäre.

Veränderungen eines Kriteriums können
Auswirkungen auf andere Kriterien haben

Kriterium A

Kriterium B

Zusätzliche Verarbeitu
ngseinheite

n

Cache-Struktur und Größe

Art
des P

ro
zessork

ern
s

Art d
er Kopplung von HW-Beschl.

Instru
ktio

nssatz

Speicherstruktur und Größe

Programmiermodell

Algorithmen

Vergrößerung

Verringerung als Folge

Topologie
NoC
/Kommunikation

4.8 Zusammenfassung

119

Das in diesem Kapitel vorgestellte Hardwaremodell der GigaNetIC-Systemarchitektur wurde in der
Hardwarebeschreibungssprache VHDL realisiert und umfasst über 161.000 Zeilen kommentierten
VHDL-Code in insgesamt mehr als 470 Dateien.

Da das GigaNetIC-System als Basis für weitere Forschungsvorhaben der Universität Paderborn
dient, wurden zur weiteren Nutzung und Erweiterung in den erfolgreich beantragten Folgeprojekten
(wie z. B. PlaNetS24, MxMobile25, EasyC26 oder auch DFG sowie in den DFG-Sonderforschungs-
bereichen SFB 376 „Massive Parallelität: Algorithmen, Entwurfsmethoden, Anwendungen“ und
SFB 614 "Selbstoptimierende Systeme des Maschinenbaus") alle projektrelevanten Quellen und
Dokumentationen in ein eigens angelegtes Versionsverwaltungssystem eingepflegt. Außerdem
wurde eine GigaNetIC-Linux-Live-CD, auf der alle relevanten Daten enthalten sind, erstellt. Sie
dient als eigenständige, bootfähige linuxbasierte Softwareplattform, die nahezu auf jedem PC-
System dem Anwender eine vorkonfigurierte GigaNetIC-Entwicklungsumgebung zur Verfügung
stellt.

Zusammen mit der GigaNetIC-Architektur entstand eine leistungsstarke Werkzeugkette, die von der
Projektierung und Systemdimensionierung über Simulatoren auf verschiedener Abstraktionsebene
bis hin zu einer hierarchisch gerichteten Optimierungsmethode zur Verbesserung der Systemeigen-
schaften für beliebige Anwendungen alle wesentlichen Komponenten beinhaltet. Diese Werkzeug-
kette und deren Einsatz sowie die Resultate werden in den Folgekapiteln 5 und 6 beschrieben.

Der Einsatz der GigaNetIC-Architektur und Leistungsbewertungen für dedizierte Anwendungen
finden ausführliche Behandlung in im Kapitel 7. Die prototypische Realisierung auf FPGA- und
Standardzellentechnologien bildet mit Kapitel 8 den Abschluss der Vorstellung dieser massiv paral-
lelen, skalierbaren, ressourceneffizienten Chip-Multiprozessor-Architektur.

24 Das vom Bundesministerium für Bildung und Forschung (BMBF) finanzierte Projekt "NGN-Platforms for Networ-

ked Services" (NGN-PlaNetS) soll dazu beitragen, dass alle europäischen Bürger einen leistungsfähigen Breitband-

Internet-Zugang bekommen.

25 Das BMBF-Projekt MxMobile ist eine Kooperation zwischen verschiedenen Industrieunternehmen und Universitäten

und erforscht, entwickelt und demonstriert Schlüsselkomponenten von programmierbaren Plattformen für den Multi-

band-Multistandard-Betrieb von Terminals und Basisstationen. Die Arbeiten der Universität Paderborn ordnen sich in

den Teilbereich „Modellierung und Verifikation der Systemarchitektur“ ein.

26 Das BMBF charakterisiert das Projekt wie folgt: „Ziel der Forschungsaktivitäten im EASY-C-Verbundvorhaben ist

es, Schlüsseltechnologien für die nächste Generation von zellularen Mobilfunknetzen voranzutreiben, um die Entwick-

lung von neuen Echtzeit-Applikationen mit hohen Datenraten zu unterstützen. Diese Applikationen wie z. B. Video-

streaming und Lokalisierungsdienste stellen enorme Anforderungen an die gesamte Netzinfrastruktur hinsichtlich

Bandbreite, Latenz, spektraler Effizienz und Fairness gegenüber allen mobilen Teilnehmern, insbesondere an den Zell-

rändern.“ (http://www.pt-it.pt-dlr.de/de/1772.php, Stand: November 2007)

121

5 Analyse und funktionale Verifikation des Chip-
Multiprozessorsystems

Den Erfolg einer Prozessor- bzw. Multiprozessorarchitektur bestimmt nicht nur die reine Hardware,
sondern ebenfalls zu einem großen Teil die begleitende Werkzeugkette. Schon per Definition (vgl.
Definition 3) versteht sich die GigaNetIC-Architektur als mehr als nur das im vorigen Kapitel vor-
gestellte Hardware-System. Ohne einen leistungsfähigen Compiler, der aus einer Hochsprache, wie
z. B. C oder C++, effizienten Maschinencode erzeugt, stünde die ansonsten sehr umständliche und
zeitaufwändige Softwareentwicklung dem Erfolg des Chip-Multiprozessors stark im Wege. Eine
Wiederverwendbarkeit des Codes für Weiterentwicklungen der Prozessorkerne oder gar andere
Prozessoren wäre nahezu ausgeschlossen. Zudem sollte eine leistungsfähige Werkzeugkette mög-
lichst flexibel gehalten sein und auf Modifikationen und Erweiterungen der Hardware schnell rea-
gieren können. Weiterhin ist eine Reihe auf unterschiedliche Anforderungen angepasste Simulato-
ren wünschenswert, die eine schnelle respektive sehr akkurate Simulation des Gesamtsystems oder
einzelner Systementitäten ermöglichen. Diese Simulationen dienen im Vorfeld der ASIC-
Realisierung eines GigaNetIC-Chip-Multiprozessors zum einen zur Verifikation der Funktion, aber
auch zum anderen der Evaluierung der Leistungsfähigkeit und zur Parameterfindung (vgl. Abschnitt
4.7), um ein möglichst ressourceneffizientes System zu verwirklichen.

Abbildung 5-1: Möglichkeiten der Systemsimulation und - Verifikation

auf unterschiedlichen Abstraktionsebenen

Zusammen mit den Fachgebieten Programmiersprachen und Übersetzer, Prof. Dr. Uwe Kastens
sowie Algorithmen und Komplexität, Prof. Dr. math. Friedhelm Meyer auf der Heide, wurde eine
mehrschichtige, auf verschiedenen Abstraktionsebenen greifende Werkzeugkette entworfen
[6][116][117]. Abbildung 5-1 zeigt im Überblick die unterschiedlichen Abstraktionsebenen der Sys-
temsimulation bzw. -emulation auf. Jede Abstraktionsebene hat ihre Berechtigung und Vorteile ge-
genüber den anderen. Zu diesen Kriterien zählen u. a. die Simulationsgeschwindigkeit vsim, gemes-

sen in benötigter Zeit pro simuliertem Takt des Zielsystems simuliertes System
sim

simulierendes System

TTakte
v

s t
  =  

, die Ge-

G
e
n
a
u
ig
k
e
it

S
im

u
la
ti
o
n
s
g
e
s
c
h
w
in
d
ig
k
e
it

Kapitel 5. Analyse und funktionale Verifikation des Chip-Multiprozessorsystems

122

nauigkeit bzw. Detailliertheit der Simulation, oder auch der Aufwand, den Änderungen im Simula-
tor bedeuten. Tabelle 5-1 gibt Aufschluss über die einzelnen Charakteristika des jeweiligen Simula-
tions- / Emulationswerkzeugs.

Tabelle 5-1: Merkmale der einzelnen Simulations- bzw. Emulationsmöglichkeiten

Die GigaNetIC-Architektur stellt einen automatisch generierten, C-basierten Simulator für die Clus-
ter-Ebene zur Verfügung [6], auf dem aufbauend der SystemC-Simulator SiMPLE (SystemC integ-
rated Multiprocessor-Level Environment) [117] von uns entworfen wurde, der zur Simulation des
gesamten Chip-Multiprozessors herangezogen werden kann. Zur genauen Simulation des Gesamt-
systems oder einzelner Hardwareentitäten mit höchstem Detaillierungsgrad, wird die zumeist sehr
zeitaufwändige HDL-basierte Simulation unter Verwendung modernster Simulationswerkzeuge
eingesetzt [6][116]. Letztendlich steht mit dem am Fachgebiet Schaltungstechnik entwickelten Ra-
pid-Prototyping-System RAPTOR2000 [139][9] eine umfangreiche FPGA-basierte Entwicklungs-
umgebung zur Verfügung, die in Forschung und Lehre zugleich eingesetzt wird [140]. Das RAP-
TOR2000-System konnte bereits für andere ASIC-Implementierungen als Evaluierungsplattform
erfolgreich genutzt werden [10]. Mit ihrer Hilfe lassen sich komplexe Chipentwürfe im Zusammen-
spiel mit realer Hardware testen27.

Die grundsätzliche Vorgehensweise während der Entwicklung und Optimierung eines GigaNetIC-
Systementwurfs unter Zuhilfenahme der erstellten Entwicklungsumgebungen sieht in der Regel wie
folgt aus:

Zunächst werden grundlegende Veränderungen in den leicht zu modifizierenden, schnellen Simula-
toren implementiert. Hierzu zählt der Cluster-Simulator (vgl. Abschnitt 5.1) auf Prozessor- und
Cluster-Ebene, während die SystemC-basierte Simulationsumgebung SiMPLE (vgl. Abschnitt 5.2)
auf allen drei Ebenen, also auch auf der SoC-Ebene greift. Diese Simulationen können zum Teil
sogar automatisiert durch die von mir erstellte MultiSim-Werkzeugkette ablaufen und ausgewertet
werden, was einhergehend mit der relativ hohen Simulationsgeschwindigkeit eine hohe Abdeckung
des Entwurfsraums gewährleistet. Die auf dieser abstraktesten Ebene gewonnenen Ergebnisse ge-
ben Impulse für die Gestaltung bzw. Parametrisierung der einzelnen Hardwareentitäten. Die hier

27 Vgl. mit dem GigaNetIC-Demonstrator der Cebit 2005 und der Hannover-Messe 2005, Abschnitt 8.1.

parametrisierbar,
auf SoC-Ebene

(abhängig von der
FPGA-Größe)

parametrisierbar,
auf SoC-Ebene

parametrisierbar,
auf SoC-Ebene

parametrisierbar,
auf Clusterebene

Simulationsumfang

zeitaufwändigweniger schnellsehr schnellsehr schnellModifizierbarkeit

keinekeinenur Unified-
Multiprozessor-

Cache

einfaches
Busmodell

Architekturelle
Einschränkungen der
Modelle

hochhochmittelrelativ gering,
taktgenau auf

Prozessorebene

Detaillierungsgrad

~ 20 MHz~ 100 Hz~ 100 kHz~10 MHzSimulationsgeschwindigkeit

FPGA-EmulationVHDL-SimulationSystemC-
Simulation

C-Simulation

parametrisierbar,
auf SoC-Ebene

(abhängig von der
FPGA-Größe)

parametrisierbar,
auf SoC-Ebene

parametrisierbar,
auf SoC-Ebene

parametrisierbar,
auf Clusterebene

Simulationsumfang

zeitaufwändigweniger schnellsehr schnellsehr schnellModifizierbarkeit

keinekeinenur Unified-
Multiprozessor-

Cache

einfaches
Busmodell

Architekturelle
Einschränkungen der
Modelle

hochhochmittelrelativ gering,
taktgenau auf

Prozessorebene

Detaillierungsgrad

~ 20 MHz~ 100 Hz~ 100 kHz~10 MHzSimulationsgeschwindigkeit

FPGA-EmulationVHDL-SimulationSystemC-
Simulation

C-Simulation

processing engine

RAM

clock
timer

memory
access

counters

STDOUT
emulation

processor bus

copro-
cessor

main processor

N-Core

copro-
cessor

processing engine

RAM

clock
timer

memory
access

counters

STDOUT
emulation

processor bus

copro-
cessor

main processor

N-Core

copro-
cessor

5.1 C-basierter Cluster-Simulator zur Simulation und Profilierung

123

anwendbaren Maßnahmen, z. B. die Optimierung der Algorithmen und die Konzeption der Struktur,
besitzen in der Regel das größte Potential zur Verbesserung der Ressourceneffizienz.

Im Anschluss werden besonders vielversprechende Varianten des Multiprozessorsystems in einer
synthetisierbaren Hardwarebeschreibung realisiert und mit Hilfe der weiterentwickelten PERF-
MON-Umgebung (vgl. Abschnitt 5.3) detailliert untersucht. Die hier gewonnenen Messergebnisse
beinhalten nicht nur taktgenaue Laufzeiten sondern genaue Informationen über die zu erwartende
Leistungsaufnahme und Fläche der jeweiligen Realisierung. Aufgrund der sehr geringen Simulati-
onsgeschwindigkeit ist die Möglichkeit der Vorauswahl durch die zuvor genannten Simulatoren
mehr als ratsam. Durch das in Abschnitt 5.4 beschriebene MultiSim-Entwurfswerkzeug können
dann, als Folgeschritt, Modifikationen in enger abgesteckten Grenzen bzw. für einzelne, vielver-
sprechende Punkte des Entwurfsraums erfolgen. Für die Optimierung des Systems greift dann die
im folgenden Kapitel 6 vorgestellte Methodik der „hierarchisch gerichteten Optimierung“.

Potentielle Realisierungen werden dann im Anschluss auf dem speziell erweiterten, FPGA-basierten
Rapid-Prototyping-System RAPTOR2000 (vgl. Abschnitt 5.5) im direkten Hardwareumfeld getes-
tet. Diese Integration in ein „reales“ Anwendungsszenario ermöglicht eine chipübergreifende funk-
tionale Verifikation des Systems und lässt erste Aussagen über die Leistungsfähigkeit der zukünfti-
gen ASIC-Realisierung zu. Die durch Simulation erfolgte Verifikation der erstellten Hardware kann
hier durch Hardwareemulation bestätigt werden. Durch die hohe Simulationsgeschwindigkeit sind
zudem weitaus komplexere Tests möglich, als es die HDL-Simulationsumgebung zuließe.

Die vorgestellten Entwicklungsumgebungen bzw. Simulatoren lassen sich darüber hinaus auch
unabhängig voneinander nutzen. So kann Software zunächst entkoppelt vom langsamen Hardware-
simulator entwickelt, getestet sowie funktional optimiert und deren Laufzeit analysiert werden.
Hardwareblöcke hingegen können z. B. aus verfügbaren IP-Blöcken integriert werden und zunächst
in der HDL-basierten Entwicklungsumgebung evaluiert werden, ohne für alle Simulatoren funktio-
nal realisiert werden zu müssen. Eine einheitliche Übersetzer-Werkzeugkette komplettiert schließ-
lich die GigaNetIC-Architektur und ermöglicht dem Entwickler eine unkomplizierte Nutzung aller
Simulationswerkzeuge und Emulationsplattformen, vgl. Abschnitt 5.6.

Detaillierte Beschreibungen der einzelnen Simulations- bzw. Emulationswerkzeuge und deren Ein-
satz werden in den folgenden Abschnitten gegeben.

5.1 C-basierter Cluster-Simulator zur Simulation und Profilierung

Ausgangspunkt der Simulatoren ist ein aus der Compiler-Werkzeugkette generierter, C-basierter
Simulator, der vom Fachgebiet Programmiersprachen und Übersetzer, Prof. Dr. Uwe Kastens, ent-
wickelt worden ist. Dieser zyklenakkurate Simulator ist ein vergleichsweise schneller Simulator,
der zur Simulation der Clusterebene des GigaNetIC-Systems (vgl. Abschnitt 4.1) eingesetzt wird.
Er ermöglicht die taktgenaue Verhaltenssimulation eines N-Cores oder aber auch des gesamten N-
Core-Clusters unter Verwendung eines einfachen Busmodells, das keine Matrixfähigkeit aufweist,
und über einen Round-Robin-Mechanismus, ähnlich dem Wishbone-Bus (vgl. Abschnitt 4.2.4) die
Busvergabe regelt. Eine Besonderheit des Simulators ist, dass er nicht manuell erstellt werden muss,
sondern durch die entwickelte Werkzeugkette automatisch generiert wird [6], vgl. auch Abbildung
6-4. Mit ca. 300 Host-CPU-Takten pro simuliertem Takt des GigaNetIC-Clusters erreicht dieser
Simulator eine beachtliche Simulationsgeschwindigkeit. Z. B. benötigt ein Intel Pentium 4m

Kapitel 5. Analyse und funktionale Verifikation des Chip-Multiprozessorsystems

124

(2,2 GHz) 314 Takte für einen simulierten N-Core-Takt, was einer effektiven Simulationsge-
schwindigkeit von 7,63 MHz entspricht. Eine Simulation des C-basierten Simulators von einer Se-
kunde würde somit ca. 14 Stunden der hardwarenahen VHDL-Simulation mit einer effektiven Si-
mulationsgeschwindigkeit von 150 Hz bedeuten. Dieser Sachverhalt zeigt sehr deutlich, dass zum
einen abgewogen werden sollte, welcher Simulator zu welchem Zweck verwendet wird, und zum
anderen auch die Notwendigkeit unterschiedlicher Simulationswerkzeuge bzw. -methoden. So bie-
ten sich zur ersten Leistungsbewertung und Entwurfsraumexploration die schnellen Simulatoren an,
die in der Lage sind, rechenaufwändige und damit zeitintensive Benchmarks bzw. Algorithmen in
relativ kurzer Zeit abzuarbeiten. Sie liefern wichtige Ergebnisse zur Einstufung der Leistungsfähig-
keit der zu evaluierenden Architektur mit genügender Genauigkeit. Im Anschluss kommen dann für
detailliertere Analysen ggf. auch nur für Teilprobleme, die genauen, zeitaufwändigen Simulations-
umgebungen zum Einsatz. Abschließend kann dann der Prototyp als FPGA-Realisierung im realen
Hardwareszenario die Funktionalität des Systems unter Beweis stellen.

Abbildung 5-2: Exemplarische Performanzvisualisierung mit JScore

der mit dem Cluster-Simulator ermittelten Laufzeitdaten

Komplettiert wird die clusterorientierte Entwicklungsumgebung durch ein leistungsfähiges Profilie-
rungswerkzeug, JScore, das das Profiling auf Task- und Funktionsebene des Clusters ermöglicht
[6]. So können zyklenakkurate Simulationswerte aufgrund der detaillierten Profilingmöglichkeit
komfortabel zur Ergebnisvisualisierung der gewonnenen Laufzeitdaten herangezogen werden. Ab-
bildung 5-2 zeigt beispielhaft die Ergebnisvisualisierung von Laufzeitdaten, die mit dem Cluster-
Simulator gewonnen wurden. Die Entwicklungsumgebung unterstützt die Instrumentarisierung des
Programmcodes, dadurch ist es möglich, Abschnitte einzuteilen und deren Profilingdaten separat
voneinander, in so genannten Bins (also Körben), für die beteiligten Prozessoren des Clusters pro-
tokollieren zu lassen. Es werden die benötigten Takte, die Anzahl der jeweils ausgeführten Instruk-
tionen und der datenabhängigen Instruktionspaare je Bin ausgewertet. Außerdem werden Lade- und
Speicheroperationen protokolliert.

5.1 C-basierter Cluster-Simulator zur Simulation und Profilierung

125

Der Cluster-Simulator unterstützt darüber hinaus eine einfache Einbindung von Hardwarebeschleu-
nigern mit Annotation der durch HDL-Simulation gewonnenen exakten Laufzeitdaten. Eine in C
beschriebene Funktion muss lediglich als die Funktionalität gekennzeichnet werden, die später im
realen System von einem Hardwarebeschleuniger ausgeführt wird. Die Laufzeitdaten des realen
Hardwarebeschleunigers werden dem Werkzeug übergeben. Während der Simulation führt ein Pro-
zessor den Code aus, die Laufzeitdaten werden jedoch durch die zuvor annotierten ersetzt. Der Vor-
teil dieser Möglichkeit ist, zunächst die Funktionalität durch schnell realisierbare Software bereit-
zustellen, um dann potentielle Funktionsblöcke später durch Hardwarebeschleuniger ersetzen zu
können. Die neuen, beschleunigten Laufzeiten können dann leicht mit in die Performanzbewertung
durch den Profiler einbezogen werden.

Für die Cluster-Simulationswerkzeugkette wurde von mir eine skriptbasierte Evaluationsumgebung
geschaffen, mit deren Hilfe eine schnelle Analyse des Entwurfsraums in Bezug auf die Softwareim-
plementierung und ggf. vorhandener Hardwarebeschleuniger möglich wird. Unter Verwendung die-
ser Erweiterung konnten umfangreiche Simulationen eines DSLAM-Benchmarks (vgl. Kapitel 7) in
sehr kurzer Zeit durchgeführt werden, die eine Exploration des Entwurfsraums in zumutbarer Zeit
erlaubten [141][118]. Hierbei galt es, sieben unterschiedliche Benchmarkszenarien mit je ca. 20
relevanten Tasks zu untersuchen. Es wurden nach dem iMix (vgl. Abschnitt 7.2.3) vier verschiede-
ne Pakettypen verarbeitet. Beim Simulieren wurden über elf verschiedene Instruktionssatzvarianten
des N-Cores (vgl. Abschnitt 6.2) iteriert, so dass sich letztendlich insgesamt
308 Benchmarkkonstellationen ergaben. Jeder dieser Benchmarks benötigte ca. 26 Mio. N-Core-
Taktzyklen, was in einer Gesamtzahl von 8,2 Milliarden simulierten Takten resultierte. Die gesamte
Verarbeitung inklusive Kompilierung und Auswertung benötigte auf dem P4m-System mit 2,2 GHz
nur ca. 45 Minuten Laufzeit. Abbildung 5-3 zeigt einen exemplarischen Auszug aus einem der au-
tomatisch erzeugten Ergebnisprotokolle.

Abbildung 5-3: Auszug aus einem der automatisch erzeugten Ergebnisprotokolle zur DSLAM-

Benchmarkauswertung zu verschiedenen Instruktionssatzvarianten

Die Zahlen geben die jeweils benötigten Taktzyklen für den entsprechenden Benchmark und den
instrumentierten Codeabschnitt an. Die Kürzel stehen für den simulierten Instruktionssatz. Zusam-
menfassend wird in der letzten Zeile der maximale Gewinn (Gain) durch eine Instruktionssatzer-
weiterung notiert. In dem aufgeführten Beispiel ergibt sich eine maximale Beschleunigung um
9,92% durch die ldwixw-Befehlssatzvariante gegenüber dem unmodifizierten N-Core. Nach ausgie-
bigen Simulationen kann so dennoch relativ schnell entschieden werden, welche Hardwarevariante
die besten Performanzsteigerungen erzielt. In einer weiteren Ausbaustufe dieser Werkzeugkette
können zusätzlich die in der hardwarebasierten Werkzeugkette (vgl. Kapitel 6) ermittelten Daten für
Fläche und Leistungsaufnahme der entsprechenden Hardwareblöcke mit berücksichtigt und ausge-
wertet werden.

Kapitel 5. Analyse und funktionale Verifikation des Chip-Multiprozessorsystems

126

5.2 Modellierung des GigaNetIC-Chip-Multiprozessors in SystemC

Um detaillierte Aussagen über die Leistungsfähigkeit der gesamten GigaNetIC-Multiprozessor-
Architektur treffen zu können, die über die Ergebnisse zur Leistungsfähigkeit der einzelnen Prozes-
sorkerne und Hardwarebeschleuniger hinausgehen, wurde ein zyklenakkurates Modell unseres Sys-
tems namens SiMPLE in SystemC modelliert. Dieses entspricht in seinem grundsätzlichem Aufbau
der in Abbildung 4-2 gezeigten Struktur. Zunächst wurde ein Prozessor basierend auf dem automa-
tisch generierten Cluster-Simulationsmodell (Abschnitt 5.1) in eine in SystemC modellierte Struktur
eingebunden. Darauf aufbauend wurde ein Prozessorcluster mit vier N-Core-CPUs, Multiprozessor-
Cache (vgl. Abschnitt 4.4.2) und lokalem Speicher erstellt, wobei die Kommunikation über einen
Round-Robin-arbitrierten Bus abgewickelt wird. Letztendlich werden diese Prozessorfelder über
Switch-Boxen, die unter anderem über parallele FIFO-Strukturen, Kontrolllogik zur Ansteuerung
des lokalen Prozessorclusters, Routingmechanismen zur Weiterleitung der Pakete über das On-
Chip-Netzwerk und einen Kreuzschienenverteiler zur Verbindung der Ein- und Ausgangsports ver-
fügen, verbunden [130].

Die Simulation ist für viele Bereiche des Systems zyklenakkurat und weicht nur in einigen unwe-
sentlichen Teilen geringfügig von der Hardware ab. Sie ist zudem deutlich schneller als eine ver-
gleichbare Simulation auf Basis der VHDL-Beschreibung der Einzelkomponenten. Falls erforder-
lich, können die einzelnen Hardwarebeschleuniger zur Verifikation des Zusammenspiels mit der
Software in einer Co-Simulation als VHDL-Beschreibung mit eingebunden werden. Um eine höhe-
re Simulationsgeschwindigkeit zu erreichen, werden diese ansonsten durch funktionale Beschrei-
bungen in C++ bzw. SystemC ersetzt. Funktional verhält sich SiMPLE weitestgehend identisch zur
Hardware, so dass auch hier des Postulats eines hohen Übereinstimmungsgrads der unterschiedli-
chen Simulationswerkzeuge Folge geleistet wird.

Das System ist so konstruiert, dass beim Start zunächst die Instruktionsspeicher der einzelnen CPUs
mit den zuvor durch den Compiler erstellten Binär-Dateien geladen werden, wobei diese Daten be-
reits über das GigaNoC-On-Chip-Netzwerk von einem zentralen Bootloader (vgl. Abschnitt 4.2.2)
aus an die entsprechenden Speicheradressen gesendet werden. Im Anschluss wird das umgebende
System aktiviert, also z. B. Paketgeneratoren, die die eigentlichen Nutzdaten an die Eingangsports
des Systems liefern. Dieser Prozess kann bei Bedarf beschleunigt werden, indem die Instruktions-
speicher direkt, unter Umgehung des normalen Bootvorgangs, bei Beginn der Simulation mit den
entsprechenden Daten initialisiert werden.

Zunächst wurde SiMPLE in der Synopsys-CoCentric-Entwicklungsumgebung für SystemC-
Modelle realisiert (vgl. Abbildung 5-4). Die CoCentric-Entwicklungsumgebung stellt eine Vielzahl
von Bibliothekselementen zur Verfügung, so z. B. auch ADSL-Kanäle, die zur Modellierung der
Übertragungsstrecke der Endkunden hin zum DSLAM (vgl. Abschnitt 7.1) dienen und in einigen
Analysen verwendet wurden. Mittlerweile ist SiMPLE auch als alleinstehende Anwendung einsetz-
bar, so dass eine Lizenz für die Werkzeuge von Synopsys nicht zwingend erforderlich ist.

Mit Hilfe der SiMPLE-Systemmodellierung können beliebige Anwendungsszenarien detailliert und
schnell evaluiert werden. Hard- und Software für das gesamte System lassen sich bereits im Vor-
feld, vor der ASIC-Implementierung testen und optimieren.

5.3 HDL-basierte Simulation auf Register-Transfer-Ebene

127

Abbildung 5-4: SystemC-Modellierungsebenen,

eingebunden in die Simulationsumgebung CoCentric von Synopsys

Auch für die SiMPLE-Simulationsumgebung wurde die bereits für den Cluster-Simulator (vgl. Ab-
schnitt 5.1) entwickelte skriptbasierte Steuersoftware zur Automatisierung der Entwurfsraumexplo-
ration weiterentwickelt. Mit ihrer Hilfe ist der Software- bzw. Hardwareentwickler in der Lage au-
tomatisch gesteuerte Simulationen über nahezu alle zur Verfügung stehenden Parameter der Hard-
ware zu iterieren (vgl. Anhang B). So können Optimierungspotentiale seitens der Soft- und Hard-
ware im frühen Entwicklungsstadium erkannt und in den Prototypen integriert werden. Fehler der
Software oder funktionales Fehlverhalten der Hardwareabstraktion können so ohne großen Kosten-
aufwand beseitigt werden. Alle während der Simulationen gewonnenen Messergebnisse werden
protokolliert und abschließend zur weiteren Analyse und Visualisierung für Tabellenkalkulations-
programme als CSV28-Dateien aufbereitet. BONA ET AL. [142] verwenden ein erweitertes SystemC-
Simulationsmodell zur schnellen Bestimmung der Verlustleistungsaufnahme eines Multiprozessor-
systems und im Speziellen des eingesetzten On-Chip-Netzwerks. Bei diesem Simulationsmodell
beträgt die Diskrepanz zwischen den ermittelten Werten der SystemC-Simulation und den Werten
der Gate-Level-Synthese nach Aussage der Autoren maximal 9 %. Dies ist für erste Abschätzungen
hinreichend genau und erlaubt so eine schnelle Entwurfsraumexploration, was auch für die SiMP-
LE-Entwicklungsumgebung eine lohnenswerte Erweiterung wäre.

5.3 HDL-basierte Simulation auf Register-Transfer-Ebene

Die HDL-basierte Simulation auf Register-Transfer-Level (RTL) stellt die genaueste und detaillier-
teste Simulationsumgebung des GigaNetIC-Systems dar. Sie ermöglicht zwar in Abhängigkeit von
der Größe des zu analysierenden Chip-Multiprozessors nur eine sehr geringe Simulationsgeschwin-
digkeit (vgl. Tabelle 5-1), bietet aber dafür Beobachtbarkeit und Steuerbarkeit auf nahezu allen
Ebenen des Hardwaresystems und ist für die Verifikation der Hardware unverzichtbar. Die von uns
realisierte Umgebung erlaubt neben der RTL-Simulation außerdem Post-Synthese-Simulationen auf
Gatterebene der verwendeten Standardzellentechnologie. Diese liefert mit Hilfe von Schaltaktivitä-
tenannotationen während der Ausführung des Anwendungsprogramms sehr genaue Daten zur Leis-
tungsaufnahme der Schaltungskomponenten.

28 Das CSV(Comma Separated Values)-Format ist ein gebräuchliches Format für Datendateien.

Prozessorfeld Switch-Box Gesamtsystem

Kapitel 5. Analyse und funktionale Verifikation des Chip-Multiprozessorsystems

128

Zur Bestimmung von Ausführungszeiten, Chipfläche und Energiebedarf von eingebetteten Syste-
men existiert bereits eine Vielzahl von Methoden. Allerdings analysieren viele der etablierten
Werkzeugketten nur ein oder zwei der genannten Charakteristika. Einige experimentelle Arbeiten
beschäftigen sich mit abstrakteren Modellen der Software-Energiebedarfsanalyse, z. B. auf Instruk-
tionssatzebene [143][144][145], für Softwarefunktionen [146][147][148][149] und ebenso für funk-
tionale Einheiten wie Controller und Prozessoren [150][151]. Viele der Verfahren bestimmen für
die Ausführungszeit nur eine obere Schranke, die Worst Case Execution Time (WCET), ohne mög-
liche Daten-, Pfad- und Zustandsabhängigkeiten zu berücksichtigen. Die im Folgenden vorgestellte
Werkzeugkette ermöglicht weitaus umfangreichere Analysen und hilft dem Entwickler bei der Fin-
dung von Flaschenhälsen und zeigt Optimierungspotentiale auf.

Für die Umsetzung und Analyse der GigaNetIC-Hardwarebeschreibung wurde die PERFMON-
Werkzeugkette [116] weiterentwickelt und an die Bedürfnisse eines Multiprozessorsystems ange-
passt. Diese Weiterentwicklung unterstützt den Hardwareentwickler bei der Bewertung der Res-
sourceneffizienz unterschiedlicher Architekturvarianten in mehrfacher Hinsicht.

Abbildung 5-5: Performanz-Evaluierungsumgebung PERFMON, basierend auf HDL-Simulation

Die PERFMON-Umgebung (vgl. Abbildung 5-5) verwendet zunächst die in der Hardwarebeschrei-
bungssprache VHDL erstellte Modellierung des Prozessors und des in Abbildung 4-17 gezeigten
Prozessorsubsystems. Je nach Art und Umfang der Analysen beschränkt sich das verwendete
Hardwaremodell aber nicht nur auf Prozessorebene, sondern wird bei Bedarf auf das gesamte zu
charakterisierende GigaNetIC-Multiprozessorsystem ausgeweitet. Die dreidimensional dargestellten
Elemente in der Grafik markieren die jeweils ermittelten Kennwerte des zu analysierenden Systems.

Speicher-
abbild

Ausführungszeit,
Speicherbedarf,
Speicherzugriffe,

Start- / Stoppzeiten

RTL-Simulation /
Emulation

Verlustleistungs-
abschätzung

RTL-/
Gatterebenen-

simulation

Leistungs-/
Energiebedarf

Schaltaktivitäten

C-Compiler

C/C++ Quellen

Instrumentierung

PERFMON

Verarbeitungseinheit

RAM

Takt-
zähler

Speicher-
zugriffs-
zähler

STDOUT
Emulation

Prozessor Bus

Prüffunktionen

Rückannotierung

Copro-
zessor

Hauptprozessor

Copro-
zessor

Analyse mit
JScore

SystemC-Simulator
SiMPLE

Cluster-Simulator

FPGA-Emulation
RAPTOR2000

Analyse in
SiMPLE

Analyse mit
GigaNetIC-GUI

Synthese auf
Zieltechnologie

Objectcode-
Größe /

Speicherbedarf

Fläche, max. Taktfrequenz,
grobe Leisungsabschätzung

5.3 HDL-basierte Simulation auf Register-Transfer-Ebene

129

Als Eingang für die PERFMON-Umgebung dient die Anwendungssoftware in Form von Code in
der Hochsprache29 C oder C++ . Diese wird durch spezielle Instrumentierungen annotiert (ähnlich
der Vorgehensweise beim Cluster-Simulator, Abschnitt 5.1), um so die für die Analyse relevanten
Codesegmente zu kapseln. Zusammen mit den von der Werkzeugkette benötigten Prüffunktionen
werden die Quellen kompiliert und ein entsprechendes Speicherabbild erstellt. Je nach weiterer
Verwendung wird es dem entsprechenden Simulator bzw. Emulator gerecht aufbereitet. Bei der
Verwendung von PERFMON wird es in ein SRAM-Simulationsmodell des lokalen Prozessorspei-
chers geladen. Die Simulation im HDL-Simulator liefert dann ein umfangreiches Profil mit hohem
Detaillierungsgrad im Hinblick auf die dynamischen Laufzeiten, Codegrößen, Speicherzugriffe und
die Auslastung des Stapelspeichers (Stacks) der analysierten Anwendung. Bei Algorithmen, deren
Laufzeit datenabhängig ist, werden zudem Minimum, Maximum und Mittelwert der instrumentier-
ten Codesegmente ausgewertet (vgl. Abbildung 5-6).

Während der Simulation werden die Schaltaktivitäten zunächst auf RT(Register Transfer)-Ebene für
die zu analysierenden Hardwarekomponenten protokolliert und abgespeichert. Diese werden im
anschließenden, ebenfalls automatisierten Schritt, zu einer weiteren Abschätzung der dynamischen
Verlustleistungsaufnahme herangezogen. Diese Abschätzung ist in nahezu allen Fällen weitaus ge-
nauer, als die rein statistische Abschätzung der Leistungsaufnahme seitens des Synthesewerkzeugs.
Die hier gewonnenen Resultate bedeuten einen relativ guten Kompromiss zwischen Rechenaufwand
und Genauigkeit. In der frühen Phase eines Designentwurfs sind für die Konzipierung des SoCs
eher die qualitativen Zusammenhänge als quantitative entscheidend. Die RTL-basierte Analyse
zeigt Trends auf, die in etwa in der zu erwartenden Größenordnung der Verlustleistungsaufnahme
des späteren Chipdesigns liegen.

Der nächste Schritt ist die Synthese des RTL-Designs mit dem Synopsys Design Compiler, dessen
Resultat, die Gatternetzliste der Zieltechnologie, als Eingabe für die nächstgenauere Verlustleis-
tungsberechnung dient die Gatterebenensimulation ohne Berücksichtigung von Verzögerungszeiten.
Anhand der protokollierten Schaltaktivitäten und der Charakterisierungsinformationen der Biblio-
thekselemente der verwendeten Standardzellentechnologie kann der Synopsys Power Compiler be-
reits eine deutlich genauere Abschätzung der zu erwartenden Leistungsaufnahme treffen. Außerdem
ergeben sich erste Werte für die zu erwartenden Kenngrößen Fläche und Taktfrequenz der Hardwa-
rekomponenten. Die Bestimmung der maximal möglichen Taktfrequenz der betreffenden Hardwa-
rekomponenten übernehmen Funktionsaufrufe einer skriptbasierten Werkzeugkette der erweiterten
GigaNetIC-PERFMON-Umgebung. Diese steuert und analysiert die Resultate der entsprechenden
Synopsys-Werkzeuge. Hierdurch ist es möglich, ohne Interaktion sehr gute Syntheseresultate zu
erzielen, die allerdings ggf. entsprechende Rechenressourcen bzw. Zeit erfordern30.

Als finale Möglichkeit der Berechnung der dynamischen Verlustleistung unterstützt die PERF-
MON-Umgebung die Gatterebenensimulation unter Verwendung der sich ergebenden Schaltverzö-

29 In Abhängigkeit vom verwendeten Compiler, derzeit unterstützt der UPB-Compiler nur C-Code.

30 Die Synthese der auf diese Weise gewonnenen Implementierung des N-Cores (vgl. Abschnitt 6.2) nahm auf einer

leistungsfähigen Workstation mit 2 GHz Prozessortakt und 16 GByte Arbeitsspeicher ca. 24 Stunden in Anspruch.

Kapitel 5. Analyse und funktionale Verifikation des Chip-Multiprozessorsystems

130

gerungen31. Die Abschätzung kann, je nach Güte der Charakterisierung der verwendeten Gatterbib-
liotheken im einstelligen Prozentbereich32 liegen [152][153]. Unabhängig von der zu erreichenden
Genauigkeit bzgl. der Bestimmung der Leistungsaufnahme, sind die relativen Unterschiede ver-
schiedener Implementierungsvarianten von entscheidender Bedeutung. Anhand der sich ergebenden
Tendenzen können vielversprechende Realisierungen bestimmt werden.

Tabelle 5-2 gibt Aufschluss über die Merkmale der einzelnen Methoden der Schaltaktivitätenauf-
nahme und die Qualität der daraus gewonnenen Werte zur dynamischen Verlustleistungsaufnahme
der untersuchten Hardwareblöcke.

Tabelle 5-2: Vergleich der unterschiedlichen Methoden zur Aufnahme von Schaltaktivitäten

und die Qualität der daraus gewonnenen Verlustleistungsabschätzung

Simulationsebene Erfasst Nicht erfasst Für und Wider

Register Transfer syntheseinvariante Elemente

Interne Knoten;
Korrelation, nicht Synthese
invarianter Elemente;
vorkommende Glitches;
Zustands- und Pfadabhängigkei-
ten

relativ schnelle Laufzeit,
geringere Genauigkeit

Null-Verzögerung,
Gatterebene
(Gate Level)

syntheseinvariante Elemente;
interne Knoten;
Korrelation, nicht Synthese
invarianter Elemente;
gewisse Pfadabhängigkeiten

vorkommende Glitches,
gewisse Pfadabhängigkeiten

genauer als die RTL-Simulation,
aber deutlich längere Laufzeit

Zeitinformationen-
annotierte Gatter-

ebene
(Gate Level)

Alle Designelemente;
Korrelation, nicht Synthese
Invarianter Elemente;
Zustands- und Pfadabhängigkei-
ten

Korrelation gleichzeitig schal-
tender primärer Eingänge

höchste Genauigkeit, einherge-
hend mit sehr langer Laufzeit

Abschließend werden die erzielten Ergebnisse in Kopien der Quellcode-Dateien an die entspre-
chend instrumentierten Segmente annotiert und können ausgewertet werden.

Abbildung 5-6 zeigt beispielhaft eine Gegenüberstellung ausgewählter Ergebnisse einer eigenen
CRC-Implementierung in Hard- und Software, die mit Hilfe von PERFMON gewonnen wurden
[116]. Die CRC-Berechnung ist speziell im Bereich der Netzwerkprozessoren von besonderer Be-
deutung (vgl. Kapitel 7) und wird häufig zur Fehlererkennung und Absicherung in vielen Netz-
werkprotokollen verwendet. Die Auswertung zeigt u. a. die datenabhängige Verarbeitungszeit bei
der Softwarerealisierung des CRC-Verfahrens, so dass minimale, maximale und mittlere Werte für
Instruktionsholzyklen und Ausführungszeit gegeben werden. Die ermittelten Werte basieren auf
zufallsgenerierten Paketen mit 128 Byte Länge. Die hier dargestellte Analyse bezieht sich in diesem
Fall auf das Prozessorssubsystem mit angeschlossenem, enggekoppelten Hardwarebeschleuniger.
Die Verarbeitung erledigt der hier implementierte Hardwarebeschleuniger ca. 15mal schneller, wo-
bei die maximale Leistungsaufnahme des Systems marginal geringer ausfällt, als die des rein Soft-

31 In diesem Fall werden bei der Simulation des Verhaltens der Gatternetzliste die jeweiligen Verzögerungszeiten der

Gatter mitberücksichtigt. Diese werden nach der Synthese in einer Standard-Delay-Format(SDF)-Datei abgespeichert

und während der folgenden Simulation mit berücksichtigt.

32 Bei der referenzierten Studie des Oki Techno Centers lag die Abweichung zwischen der zeitinformationsannotierten

Gatterebenen-Simulation unter Zuhilfenahme der annotierten Schaltaktivitäten und der Messung am gefertigten Chip

bei 5%. Synopsys gibt Werte zwischen 10 % bis 25 % Abweichung im Vergleich zu einer SPICE-Simulation an.

5.3 HDL-basierte Simulation auf Register-Transfer-Ebene

131

ware-basierten Systems. Der Energiebedarf des hardwarebasierten Systems ist 94 % geringer als bei
der Software-basierten Variante.

Die erweiterte PERFMON-Umgebung dient u. a. dazu, häufiger genutzte Software-Funktionen oder
aber auch Hardwareblöcke bzgl. ihrer Eigenschaften zu charakterisieren. Die jeweiligen gewonne-
nen Informationen werden, wie z. B. auch die des oben gezeigten CRC-Beispiels, in einer Biblio-
thek abgelegt. Automatisierte Werkzeuge wie NetAMap [102][103][104] können dann anhand die-
ser Daten eine Partitionierung der Algorithmen und Allokierung der Hardwareblöcke vornehmen,
die eine möglichst ressourceneffiziente Realisierung der Gesamtanwendung erzielt.

Abbildung 5-6: Beispielhafte Ergebnisse für eine Cyclic-Redundancy-Check(CRC)-Realisierung

in Software und Hardware

Mit Hilfe der erweiterten PERFMON-Umgebung konnte an einer Reihe von Beispielen gezeigt
werden, dass durch geeignete Maßnahmen im Software- bzw. RTL-Design und in der Synthese ein
nicht zu vernachlässigender Anteil der dynamischen Verlustleistung für den aktiven Betrieb einges-
part werden kann [116][102][103][111][130][117][118][104][109][131].

Es gibt zahlreiche Methoden zur Reduktion der Leistungsaufnahme von Digitalschaltungen. U. a.
kann durch eine angepasste Feinarchitektur dafür gesorgt werden, dass temporär ungenutzte Schal-
tungsteile von aktiven Eingangssignalen entkoppelt werden können, wodurch auch die internen
Signale dieser Blöcke unverändert bleiben, und so die Verlustleistung dieser Einheiten merklich
reduziert werden kann. Ein sehr ähnliches Beispiel ist die Anwendung von Clock-Gating, das zum
Teil vom Synthesewerkzeug selbständig eingebracht werden kann. Hierbei wird das Taktsignal von
ganzen Registerbänken oder Funktionsgruppen abgeschaltet, wenn diese ihren Zustand nicht ändern
müssen. Das Einführen von Variationen der Taktfrequenz bzw. von Bereichen unterschiedlicher
Versorgungsspannung (Voltage Islands) steigert ebenfalls die Ressourceneffizienz einer Schaltung,
die Möglichkeit der Anwendung ist allerdings abhängig von der verwendeten Technologie.

74
88

0

24

16337
1140

17084

8.597
8.301

Soft CRC Hard CRC

0.187
0.201

Codegröße
[Byte]

Statische Daten
[Byte]

Stapelauslastung
[Byte]

Min/ Mittel / Max
 Ausführungszeit

[Zyklen]

Max Leistungsaufnahme
[mW]

Max Energieverbrauch
[mWs]

Fläche
[mm²]

2150

136

4

Min/ Mittel / Max
Instruktionsholzyklen

[Byte]

Lesezugriffe
[Byte]

Schreibzugriffe
[Byte]

128

16756

734.4 10
- 6

47.3 10
- 6

32608 34102
33446

0

0

16

100

100

100

20000

100

100

10000

10

500 10
- 6

0.1

Kapitel 5. Analyse und funktionale Verifikation des Chip-Multiprozessorsystems

132

Auch eine Reduzierung der Chipfläche und somit der Kosten liegt als teilweise konkurrierender
Faktor mit im Blickfeld der Architekturoptimierungen. Die entwickelten Werkzeuge erlauben das
Abwägen der systemrelevanten Parameter und das Finden von pareto-optimalen Entwürfen.

5.4 MultiSim – Parametervariation zur gezielten Entwurfsraumexploration

Für die in den vorangegangenen Abschnitten vorgestellten Simulatoren und Entwicklungsumge-
bungen wurde die MultiSim-Werkzeugkette entwickelt [131][113], eine spezielle Kombination aus
Skripten und Tcl(Tool command language)-Anwendungen, die interagieren, und den Ablauf der
Simulationen steuern. Durch sie werden, einer Stapelverarbeitung ähnlich, Simulationen eigenstän-
dig gestartet, analysieret im Anschluss modifiziert und, den gegebenen Parametern Folge leistend
automatisiert weitere Simulationen angestoßen. Die Ergebnisse werden anschließend in CSV-
Dateien zusammengestellt und können mit Tabellenkalkulationsanwendungen weiterverarbeitet und
visualisiert werden.

Abbildung 5-7: Funktionsweise der MultiSim-Entwicklungsumgebung

 zur automatisierten Entwurfsraumexploration für di e Hardware- und Software-Entwicklung

MultiSim ist für die Parametervariation in einem vorgegebenen Rahmen gedacht, aber auch evolu-
tionäres Verhalten wäre in der Werkzeugkette modellierbar und könnte so ggf. neue Impulse bzgl.
der Findung pareto-optimaler Punkte im Entwurfsraum setzen. Dies setzt natürlich je nach Simula-

MultiSim-Umgebung

Gatterebenen-Synthese

automatische Modifikation
der HDL-Beschreibung

Kompilierung der HDL-Quellen

Start der Simulation

Protokollierung von
Ausführungszeiten und Ergebnissen

RTL-Simulation: AMBA-Cluster
mit Multiprozessor-Cache

RTL-Simulation:
Wishbone-Cluster und Gesamt-CMP

CC

W
ishbone b

usm
em

ory

N-
Co

re

U
ART

CC

N-
C
or
e

N-
C
or
e

N
-C
or
e

CC

W
ishbone b

usm
em

oryCC

Co
re

N-
C
or
e

N -
C
or
e

automatische Beendigung der
Simulation bei Erreichen der

definierten Bedingung

Auswertung und Zusammenstellung
der Messergebnisse

Auswahl des Speicherabbildes

Iteration abgeschlossen?

Erstellung der CSV-Reportdatei

Ja

Kompilierung der C-Quellen

Plattform Übersetzer
GCC
generierter
Übersetzer
ggf. mit ISEs

Instruktionssatz
Anzahl / Art der

Verarbeitungseinheiten

Speicher-/Cache-
Aufteilung

...

Synthesevorgaben erfüllt?

Findung des bestmöglichen
Syntheseergebnisses

(Fläche bzw. Taktfrequenz)

Ja

Nein

(heuristisch) bestmögliches
Syntheseresultat wurde zuvor erzielt

Vorgabe / Verschärfung der
Syntheseparameter

Auswertung vom Entwickler

Anwendung (C-Sourcen)

Spezifikation der Parameter-Variation

C-basierte, zyklenakkurate Simulation
CPU und Cluster

N-Core

N
-C

or
e

I/
O

N-Core

N
-C

or
e

I/
O

N-Core

N
-C

or
e

I/
O

N-Core

N
-C

or
e

I/
O

simple bus

N-Core

N
-C

or
e

I/
O

SystemC-basierte, zyklenakkurate
Simulation des gesamten CMPs

Simulatoren auf höherer

Abstraktionsebene

Simulatoren auf niedriger

Abstraktionsebene

130-nm- / 90-nm-
Standardzellen-

technologie

FPGA-basiertes
Rapid Prototyping:
Cluster und CMP

Nein

5.5 Systememulation mit einem Rapid-Prototyping-System

133

tor und Umfang der Parametervariation entsprechend leistungsfähige Rechner voraus. Abbildung
5-7 zeigt den Ablauf bei der Verwendung der MultiSim-Werkzeugkette für die geschilderten Simu-
lationsumgebungen auf.

In [109][131] wurde der Multi-Sim-Entwurfsprozess genutzt, um die Wishbonebus-basierte Giga-
NetIC-Chip-Multiprozessorarchitektur automatisiert für unterschiedliche Benchmarkszenarien mit
einhergehender Variation der Anzahl der lokalen Verarbeitungseinheiten zu analysieren. Ebenfalls
wurde die Art der Kopplung spezieller Hardwarebeschleuniger mit Hilfe von Multi-Sim untersucht.
In [113] wurde Multi-Sim eingesetzt um die Leistungsfähigkeit verschiedener Multiprozessor-
Cache-Implementierungen zu analysieren. Hierbei wurden insgesamt 2.716 Simulationsdurchgänge
von vier Rechnern33 über eine Dauer von ca. vier Wochen ausgeführt. Variiert wurden seitens der
Hardware u. a. die Assoziativität der Caches, die Größe der Cachelines und deren Anzahl, die
Hauptspeicherlatenz sowie die Struktur des Caches zwischen Unified- oder Split-Cache (vgl. Ab-
schnitt 4.4.2). Auf Softwareseite fand eine Variation der Anwendungssoftware, also der verwende-
ten Benchmarks statt. Die gewonnenen Ergebnisse lieferten detaillierte Aussagen darüber, welche
der untersuchten Cachevarianten besonders effektiv für die jeweiligen Anwendungen sind.

5.5 Systememulation mit einem Rapid-Prototyping-System

Das am Fachgebiet Schaltungstechnik entwickelte FPGA-basierte Rapid-Prototyping-System RAP-
TOR2000 [9][154] erlaubt eine sehr hohe Emulationsgeschwindigkeit des späteren ASIC-Designs
oder dient als Hardwarebeschleuniger [10]. Die Emulation ist bis zu sechs Größenordnungen
schneller als die VHDL-Simulation. Verglichen mit der SystemC-Simulation liegt die hier erzielte
Beschleunigung bei über zwei Größenordnungen höher, gegenüber der C-basierten Cluster-
Simulation wird noch ein Beschleunigungsfaktor von zwei erzielt, vgl. Tabelle 5-1.

Abbildung 5-8: FPGA-basiertes Rapid-Prototyping-System RAPTOR2000 zur schnellen Systememulation

Das modulare, als PCI-Bus-Teilnehmer realisierte RAPTOR2000-Board (vgl. Abbildung 5-8) kann
mit bis zu sechs steckbaren Tochterplatinen erweitert werden. Die Tochterplatinen werden über je
zwei, 128 Kontakte umfassende Steckverbindungen mit der Basisplatine verbunden. Die Integration

33 Pentium 4 3000 HT mit 3 GHz und 1 GByte Arbeitsspeicher.

Kapitel 5. Analyse und funktionale Verifikation des Chip-Multiprozessorsystems

134

in ein PC-System stellt zum einen eine preiswerte Lösung und zum anderen eine komfortable Test-
umgebung dar. Aufgrund der umfangreichen Softwarebibliothek, die für die Einbindung des RAP-
TOR2000-Systems erstellt wurde, lassen sich alle Funktionen des Systems in eigene Anwendungen
leicht integrieren. Für den FPGA-basierten GigaNetIC-Prototypen wurde ebenfalls eine graphische
Benutzerumgebung zur Systemüberwachung und Steuerung entworfen [131][113][110], vgl. Ab-
schnitt 8.1.

Aufgrund seiner Modularität ermöglicht das RAPTOR2000-System aber nicht nur eine hohe Simu-
lations- bzw. Emulationsgeschwindigkeit, sondern erlaubt auch die Integration des HDL-basierten
Prototypen in eine "reale" Hardware-Umgebung unter Nutzung einer Vielzahl von Schnittstellen,
die das RAPTOR2000-System mittlerweile zur Verfügung stellt. So konnte im Falle des
GigaNetIC-Chip-Multiprozessors mit Hilfe dieser Hardwarekonfiguration die spätere netzwerkspe-
zifische Anwendungssoftware auf realer Hardware mit tatsächlichen Daten bei einer hohen Taktrate
getestet werden (vgl. Abschnitt 8.1). Schon während der Prototypenentwicklung können die Anfor-
derungen der später eingesetzten Peripheriehardware in die Verifikation des Entwurfs einbezogen
werden. Fehler bei der Schnittstellenimplementierung können so auf ein Minimum begrenzt wer-
den. Im weiteren Verlauf der Entwicklung kann dann der standardzellenbasierte ASIC-Prototyp
schnell in eine bereits erprobte Umgebung integriert werden [108]. Aufgrund vorbereiteter Vorla-
gen für Erweiterungsplatinen des RAPTOR2000-Systems entfallen lange Systementwicklungszei-
ten.

5.6 Einheitliche Übersetzer-Werkzeugkette

Für alle Simulatoren und Hardwareplattformen (Wishbone-Bus oder AMBA-basierter Cluster) steht
eine einheitliche Übersetzer-Werkzeugkette zur Verfügung. Beim Wechsel von einer Simulations-
umgebung der abstrakteren Ebene zur hardwarenahen Simulation oder umgekehrt, oder aber auch
bei der Erstellung der Speicherabbilder für den FPGA- oder ASIC-Prototypen muss dem Werkzeug
nur ein anderes Zielsystem angegeben werden. Eine leichte Portierbarkeit des Quellkodes auf die
jeweiligen Simulatoren bzw. Emulatoren ist gewährleistet. Die Kompilierung und die Erstellung der
entsprechenden Speicherabbilder unter Berücksichtigung der jeweiligen Adressräume und der Mo-
delleigenschaften erfolgt für den Entwickler transparent.34

Die GigaNetIC-Bibliotheksfunktionen (vgl. Anhang A) stehen bis auf einige systembedingte Aus-
nahmen35 in jeder Simulationsumgebung zur Verfügung. Bibliotheksfunktionen können sich zwar
in ihrer Realisierung je nach Simulationsumgebung unterscheiden, die grundsätzliche Funktionalität
wird aber eingehalten. Bei der Angabe der Zielarchitektur bzw. des Zielsimulators wählt die von
uns gestaltete Werkzeugkette die jeweils passende Implementierung aus.

Die einheitliche Übersetzer-Werkzeugkette wurde im Laufe des GigaNetIC-Projekts fortwährend
optimiert und erweitert, da ein nicht unwesentlicher Anteil der Gesamtperformanz durch die Soft-

34 Die Übersetzer-Werkzeugkette wurde in Kooperation mit den Fachgebieten Programmiersprachen und Übersetzer,

Prof. Dr. Uwe Kastens sowie Algorithmen und Komplexität, Prof. Dr. math. Friedhelm Meyer auf der Heide entwickelt.

35 Z. B. ist der Cluster-Simulator derzeit nicht in der Lage, Befehle für den Communication-Controller korrekt zu inter-

pretieren, da es diesen in dieser Simulationsumgebung nicht gibt.

5.6 Einheitliche Übersetzer-Werkzeugkette

135

ware-basierten Systementitäten geprägt werden kann. Auch die Benutzerfreundlichkeit und der
Funktionsumfang wurden im Laufe der Entwicklung stetig vorangetrieben. Aus dem anfänglichen
GigaMake, einem Makefile-basierten Ansatz, der die Wishbonebus- und die AMBA-Realisierung
unterstützte entstand das umfassendere SCC-Compileskript. Es unterstützt alle Varianten und Simu-
latoren der GigaNetIC-Architektur. Aufgrund der Tatsache, dass es sich hierbei um ein skriptbasier-
tes Steuerungswerkzeug für den Prozess des Übersetzens und Erstellens der Speicherabbilder han-
delt, eignet es sich zudem hervorragend für das zuvor vorgestellte Multi-Sim-Entwurfsraum-
explorationswerkzeug, vgl. Abschnitt 5.4. Abbildung 5-9 veranschaulicht den Ablauf und stellt die
Zielarchitekturen für den SCC-basierten Übersetzeraufruf dar.

Abbildung 5-9: Einheitliche Übersetzerwerkzeugkette für alle

Simulatoren und Hardwareplattformen der GigaNetIC-Architektur

Abbildung 5-10 bildet den kommandozeilenbasierten Aufruf des SCC-Werkzeugs ab. Dem Ent-
wickler werden zahlreiche Optionen gegeben. So kann er zwischen dem GCC-Übersetzer und dem
UPB-Compiler auswählen. Durch optionale Schalter können beim UPB-Compiler zusätzlich vor-
handene Befehlssatzerweiterungen berücksichtigt werden.

Als Zielarchitekturen (targets) können alle vorgestellten Simulations- und Emulationsumgebungen
ausgewählt werden. Bei Verwendung des GigaNetIC-Multiprozessorcaches können spezielle An-
weisungen mit übergeben werden. Soll ein Multiprozessorfeld simuliert werden, wird dessen Aus-
dehnung durch Angabe von Weite (width) und Höhe (height) in X- und Y-Richtung definiert. Die
Anzahl der vorgesehenen lokalen Prozessoren bestimmt der Parameter no-pes.

Speicher-
abbild

C-Quellcode

Instrumentalisierung
 main(){

 ...

TIME(1);

 packet_check();

TIME(2);

 ...}

lib

lib

lib

Plattformspezifische
Bibliotheken

Plattformunabhängige Übersetzer-Werkzeugkette
GCC / generierter & erweiterter C-Compiler

RTL-Simulation:
Wishbone Cluster / CMP

C
C

W
ishb

one b
usmem

ory

N-
Co
re

UART

C
C

N-
Co

re
N-
Co
re

N-
Co
re

C
C

W
ishb

one
busm

em
oryC

C

Co
re

N-
Co

re
N-
Co
re

SystemC-basierte,
zyklenakkurate Simulation

des gesamten CMPs

C-basierte, zyklenakkurate
Simulation

CPU und Cluster

N-Core

N
-C

or
e

 I/
O

N-Core

N
-C

or
e

 I/
O

N-Core

N
-C

or
e

 I/
O

N-Core

N
-C

or
e

 I/
O

simple bus

N-Core

N
-C

or
e

 I/
O

130-nm- / 90-nm-
Standardzellentechnologie

FPGA-basiertes Rapid
Prototyping: Cluster und CMP

RTL-Simulation: AMBA-
Cluster mit MP-Cache

Synthese

Parameter

Plattform Übersetzer
GCC
generierter
Übersetzer ggf.
mit ISEs

Instruktionssatz
Anzahl / Art der

Verarbeitungseinheiten

Speicher-/Cache-
Aufteilung

...

Kapitel 5. Analyse und funktionale Verifikation des Chip-Multiprozessorsystems

136

Nach erfolgter Übersetzung werden die Speicherabbilder automatisch in einer entsprechenden Ver-
zeichnisstruktur angelegt, die sich nahtlos in die Pfade der jeweiligen Simulatoren eingliedern lässt.
Zur detaillierten Analyse dieser Speicherabbilder können die Werkzeuge der GCC-M-Core-Binutils
verwendet werden.

Abbildung 5-10: Aufrufmöglichkeiten und Zielarchitekturen für das Compile-Skript SCC

5.7 Zusammenfassung

Im Verlauf dieser Arbeit ist nicht nur eine leistungsfähige Chip-Multiprozessor-Architektur ent-
standen, sondern außerdem eine in sich geschlossene und ineinander verzahnte Werkzeugkette: an-
gefangen beim Prozessorentwurf über die automatische Generierung des Compilers und eines C-
basierten zyklenakkuraten Instruktionssatzsimulators bis hin zu rückannotierten RTL(Register
Transfer Level)-Beschreibungen. Letztere liefern detaillierte Informationen über Leistungsaufnah-
me, Flächenbedarf und Leistungsfähigkeit der integrierten Schaltung und geben Impulse für In-
struktionssatzerweiterungen und Hardwarebeschleuniger sowie für Systemoptimierungen allgemei-
ner Natur.

Die einheitliche GigaNetIC-Übersetzer-Werkzeugkette ermöglicht einen reibungslosen Übergang
zwischen den einzelnen Plattformen und garantiert ein funktional gleiches Verhalten des GigaNet-
IC-Systems in allen Simulatoren. Etwaige irrelevante Unterschiede der einzelnen Plattformen blei-
ben für den Systementwickler transparent.

Durch die in sich geschlossene Entwicklungsumgebung mit ihren an die jeweiligen Erfordernisse
angepassten Simulatoren ermöglicht die GigaNetIC-Architektur schnelle Hard- und Software-
Entwicklungszyklen, einhergehend mit umfangreichem Verifikationsmöglichkeiten, so dass kurze
Time-to-Market-Spannen für die zu realisierenden Multiprozessorsysteme garantiert werden kön-
nen. Durch den im Folgenden vorgestellten hierarchisch gerichteten Optimierungsansatz schließt
sich die Werkzeugkette und ermöglicht dem Softwareentwickler sowie dem Systemarchitekten eine
anwendungsspezifische Anpassung und Optimierung der einzelnen Komponenten, so dass die Res-
sourceneffizienz des Chip-Multiprozessors im Bezug auf die jeweiligen Anforderungen und Rand-
bedingungen und Schranken ggf. noch gesteigert werden kann.

137

6 Optimierung der Multiprozessorarchitektur
Bei der GigaNetIC-Architektur handelt es sich zunächst um eine universell einsetzbare Multipro-
zessorarchitektur, die durch zahlreiche Mechanismen auf die unterschiedlichsten Anwendungsge-
biete angepasst bzw. optimiert werden kann. Um dies für den Softwareentwickler und den Hardwa-
rearchitekten so effizient wie möglich zu gestalten, wurde für die GigaNetIC-Architektur darüber
hinaus die Methodik der hierarchisch gerichteten Optimierung entwickelt und eine entsprechende
Werkzeugkette erstellt. Die entworfene Methodik und exemplarische Analysen der jeweiligen Op-
timierungsansätze werden im Folgenden präsentiert.

6.1 Optimierungsmethodik

Prinzipiell ist zwischen der Hardware- und der Software-Optimierung zu unterscheiden, wobei sich
zum Teil beides gegenseitig bedingt. Die GigaNetIC-Entwicklungsumgebung kann bei der Hardwa-
re-Optimierung nur greifen, falls noch eine Veränderungsmöglichkeit besteht, also im Falle einer
FPGA-Zieltechnologie oder falls das Tapeout, d. h. die finale Fertigstellung des standardzellenba-
sierten ASICs, noch aussteht. Sollte letzteres bereits geschehen sein, lassen sich Hardwarebeschleu-
niger zur Beschleunigung des GigaNetIC-Systems nur noch extern, z. B. über nach außen geführte
Switch-Box-Ports anschließen. Die Software lässt sich dagegen auch nach Fertigstellung des Chips
ändern und ggf. optimieren, da es sich beim Instruktionsspeicher der Verarbeitungseinheiten in je-
dem Fall um wiederbeschreibbaren Speicher handelt.

Abbildung 6-1: Entwurfsraumexploration – hierarchisch gerichteter Optimierungsansatz

Abbildung 6-1 zeigt die potentiellen Ansatzpunkte der Systemoptimierung und den gerichteten Ab-
lauf, in dessen Verlauf der Entwurfsaufwand, die benötigte Fläche, aber auch die erzielte Beschleu-
nigung deutlich zunehmen.

� Optimierung / Erweiterung des Prozessorsubsystems

� Befehlssatzerweiterungen des Prozessors

� Erweiterung durch eng gekoppelte HW-Beschleuniger

� Parallele Prozessoren, innerhalb eines Clusters

� Parallele Prozessorfelder, clusterübergreifend

� Erweiterung durch lose gekoppelte HW-Beschleuniger

A
uf

w
an

d
/ F

lä
ch

e
/ B

es
ch

le
un

ig
un

g

Net-
S-Core

N-Core

+

z. B. AES,
IP-Check

S-Core

S B

S B

S B

S B

Net-
S-Core

N-Core

+

z. B. AES,
IP-Check

S-Core

S B

S B

S B

S B

Kapitel 6. Optimierung der Multiprozessorarchitektur

138

Die Maßnahmen zur Optimierung der Hardware der GigaNetIC-Architektur setzen auf Prozessor-
ebene an, indem zusätzlich benötigte Einheiten, wie z. B. Interruptcontroller etc. (vgl. Abschnitt
4.3.2) in das Prozessorsubsystem eingefügt werden, um so die Systemleistung zu erhöhen bzw. an-
wendungsspezifische Anforderungen zu erfüllen. Der nächste Schritt ist die Optimierung des Pro-
zessorkerns selbst, durch Erweiterung des Instruktionssatzes oder architekturelle Erweiterungen.
Darüber hinaus kann der Einsatz von eng an den Prozessor gekoppelten Hardwarebeschleunigern
erfolgen, entweder direkt über die Coprozessorschnittstelle des Prozessors und angesteuert über
spezielle Befehle, oder aber ins Prozessorsubsystem integriert über den eigens erweiterten Prozes-
sorsystembus (vgl. Abschnitt 4.3). Erste Optimierungen des Prozessors wurden bereits in [108]
durchgeführt, was jedoch noch ohne die heutige Entwicklungsumgebung vonstatten gehen musste
und sich so deutlich aufwändiger gestaltete.

Eine weitere Steigerung der Beschleunigung bieten in der Regel lose gekoppelte Hardwarebe-
schleuniger, die ggf. auch bei einer deutlich höheren Taktfrequenz arbeiten können als der Prozes-
sorkern. Während eng-gekoppelte Hardwarebeschleuniger von der CPU angesteuert werden, über-
nehmen die lose gekoppelten Hardwarebeschleuniger unabhängig vom Prozessor eine Datenvor-
verarbeitung bzw. Nachbearbeitung und können mit Hilfe des bereits vorgestellten Communication-
Controllers (vgl. Abschnitt 4.2.1.1) an einen beliebigen Port einer Switch-Box im SoC angeschlos-
sen werden.

Letztendlich eröffnet sich dem Entwickler die Option des Einsatzes mehrerer Prozessoren bzw. pa-
ralleler Prozessorfelder zur Bearbeitung der Algorithmen. Dies erfordert in Abhängigkeit vom An-
wendungsfall sowohl großen Aufwand auf Seiten der Software als auch den entsprechenden Auf-
wand an Chipfläche.

Die Werkzeugkette hilft dem Entwickler bereits in der Anfangsphase des Hardwareentwurfs bei der
Abschätzung der zur Erfüllung der Spezifikation notwendigen Maßnahmen. So unterstützt sie bei
der Entscheidung auf welcher Ebene der Optimierung angesetzt werden muss, um eine möglichst
ressourceneffiziente Realisierung zu erzielen. Dies kann bereits mit Hilfe der sehr schnellen, auf
abstrakterer Ebene arbeitenden Umgebungen wie dem Cluster-Simulator oder der SiMPLE-
SystemC-Simulationsumgebung geschehen, vgl. Abschnitte 5.1 und 5.2.

Analysen im Bereich von Netzwerkanwendungen haben gezeigt, dass häufig eine ausgewogene Mi-
schung all dieser Möglichkeiten den besten Kompromiss im Hinblick auf Ressourceneffizienz nach
Definition 14 bietet [111][141][130][118][109][131], vgl. auch Kapitel 7. Die einfache Skalierbar-
keit des GigaNetIC-Systems erweist sich hier ebenfalls als besonders förderlich, da sich für viele
Anwendungen die Parallelisierbarkeit anbietet, und man deshalb gleichförmige Strukturen relativ
gut einsetzen kann.

Der hierarchische Ansatz erweist sich als besonders vorteilhaft, wenn es darum geht, die bestehende
Grundstruktur des GigaNetIC-Systems mit möglichst geringem Aufwand so zu erweitern, dass die
vorgegebene Spezifikation erfüllt werden kann. Nachteilig an einem solch „maßgeschneiderten“
Chip ist allerdings die relativ aufwändige Analysephase, die sich ohne geeignete Entwicklungsum-
gebung als große Herausforderung gestalten kann. Bei der GigaNetIC-Architektur wird durch die
Multi-Sim-Werkzeugkette und die leistungsfähigen Simulatoren (vgl. Kapitel 5) eine automatisierte
und schnelle Durchführung dieser Analysen in vertretbarer Zeit ermöglicht. In Kapitel 7 werden
Ergebnisse des Ansatzes der hierarchisch gerichteten Optimierung am Beispiel von dedizierten
Netzwerkanwendungen dargestellt.

6.1 Optimierungsmethodik

139

Abbildung 6-2: Anwendungsorientierte Realisierung und Optimierung der GigaNetIC-Architektur

Abbildung 6-2 zeigt das Vorgehen bei der anwendungsorientierten Realisierung und Optimierung
der GigaNetIC-Architektur. Steht das Anwendungszenario für den zu realisierenden Chip fest, wer-
den dadurch die anzuwendenden Algorithmen spezifiziert. Für die Hardware werden Randbedin-
gungen aufgestellt und damit die möglichen Ressourcen festgelegt. Bei der Implementierung wird
zunächst auf die bestehenden IP-Blöcke der GigaNetIC-Architektur zurückgegriffen und unter
Verwendung der Standardhardware und einer ersten lauffähigen Software das Laufzeitverhalten mit
Hilfe der in Kapitel 5 vorgestellten Simulationsumgebungen analysiert. Je nach Art der Randbedin-
gungen und Analyseergebnisse erfolgen dann die weiteren Schritte. Hierunter fallen die iterative
Optimierung von Soft- und/oder Hardware entsprechend dem oben vorgestellten Modell mit ein-
hergehenden Simulationsläufen. Der Erfolg bei der Softwareoptimierung ist durch die schnellen
Simulatoren auf abstrakterer Modellierungsebene besonders zeitnah erkennbar. Bei Modifikationen
auf Hardwareseite hingegen fallen abschließend zwangsläufig die zeitintensiveren Simulationsläufe
in der detaillierten hardwarenahen Simulationsumgebung an.

Abbildung 6-3 stellt Entwurfsschritte und Methoden der Verlustleistungsanalyse und Optimierung,
die während der Realisierung eines ASIC-Entwurfs durchlaufen werden, dar und zeigt den zu er-
wartenden Einfluss der jeweiligen Optimierungsmaßnahmen auf die Reduktion der Verlustleistung
auf. Ein guter Systementwurf hat den größten Einfluss auf die Optimierung der Leistungsaufnahme
heutiger ASICs, deshalb wurde bei der Entwicklung der GigaNetIC-Entwicklungsumgebung gestei-
gerter Wert auf geeignete Simulations- und Analysemethoden für diesen Entwurfsschritt gelegt, vgl.
Kapitel 5 [116][102][103][117][104][115][113]. Die hierdurch erzielten Reduktionen können im
Folgenden durch den sich anschließenden RTL-Entwurf und dessen Optimierungspotential verbes-

N-Core

N
-C

or
e

I/
O

N-Core

N
-C

or
e

I/
O

N-Core

N
-C

or
e

I/
O

N-Core

N
-C

or
e

I/
O

simple bus

N-Core

N
-C

or
e

 I/
O

Kapitel 6. Optimierung der Multiprozessorarchitektur

140

sert werden. Allerdings sind die Resultate auf dieser Ebene, absolut gesehen, bereits deutlich gerin-
ger, aber dennoch nennenswert. Hier greifen die erweiterte PERFMON und Multi-Sim-Umgebung,
vgl. Abschnitte 5.3 und 5.4, sowie die Werkzeugkette zur Instruktionssatzerweiterung des Prozes-
sorkerns der GigaNetIC-Architektur [112][111][131][113]. Diese setzt sich deshalb aus zwei aufei-
nander abgestimmten Stufen zusammen, die im folgenden Abschnitt näher erläutert werden. Die
weiteren Schritte versprechen ebenfalls Optimierungspotential, das allerdings im Allgemeinen deut-
lich geringer ausfällt als das der bereits genannten Entwurfsschritte. Aufgrund dieser Tatsache wer-
den die Folgeschritte in dieser Arbeit nur am Rande erwähnt und das Hauptaugenmerk auf die we-
sentlichen Einflussquellen gesetzt.

Abbildung 6-3: Entwurfsschritte und Methoden der Verlustleistungsanalyse und Optimierung

6.2 Optimierung auf Prozessorebene

Um den immer höher werdenden Anforderungen, die an heutige und zukünftige eingebettete Sys-
teme gestellt werden, gerecht werden zu können, sind viele Prozessoranbieter bzw. Anbieter von
Übersetzerwerkzeugketten mit angeschlossenem Generator einer synthetisierbaren Architekturbe-
schreibung dazu übergegangen, dem Kunden Möglichkeiten an die Hand zu geben, den einzuset-
zenden Prozessor auf das zukünftige Anwendungsgebiet hin kundenspezifisch zu optimieren. Auch
die GigaNetIC-Architektur bietet dem Systemarchitekten umfangreiche Möglichkeiten zur anwen-
dungsspezifischen Optimierung des Befehlssatzes des N-Core-Prozessorkerns.

In Tabelle 6-1 wird ein Überblick über einige der derzeit verfügbaren Ansätze und deren Merkmale
in Bezug auf Umfang und Gestalt der Entwicklungswerkzeuge gegeben. So sind sowohl Ansätze
vertreten, die auf Beschreibungssprachen wie Lisa von CoWare basieren, die mit der CoWare-
Processor-Designer-Werkzeugkette in Hardware umgesetzt werden kann [155]. Bei nML, der Rea-

Systementwurf

RTL-Entwurf

Flächenaufteilung /
Floorplanning

Synthese

Platzierung und
Verdrahtung

Analyse der Leistungsaufnahme Optimierung der Leistungsaufnahme

grobe Abschätzungen durch geschätzte
Gatterzahlen und Fläche sowie angenommene
Schaltaktivitäten

Architekturoptimierung
- parallel / seriell
- Skalierung der Frequenz / Versorgungsspannung
- Optimierung der Kommunikationsinfrastruktur

Abschätzung basiert auf spezifizierten
Taktdomänen, Gatterzahlen kombinatorischer
Logik und der Register werden abgeschätzt,
Schaltaktivitäten sind bereits realistisch
abschätzbar

expertenwissenbasierte und werkzeuggestützte
Optimierung der Beschreibung,
Taktabschaltung / Clockgating auf Modulebene,
teilweise werkzeugunterstützt

Entwurfsschritte

Einführen von Spannungsinseln,
Vermeiden von sog. Hot-Spots durch geeignete
Platzierung der einzelnen Blöcke

Leistungsanalyse auf Gatterebene basiert auf:
- konkreter Gatterzahl
- realistischen Schaltaktivitäten
- Verlustleistungsmodellen der Leitungen
 (Wireload-Modelle)
- charakterisierten Bibliothekselementen der
 Zieltechnologie

Aufsummierung der Leistungsaufnahme der zuvor
bestimmten Module,
ggf. grobe Abschätzung der Verbindungsstruktur

Taktabschaltung der RTL-Realisierung,
werkzeuggestützte Verlustleistungsoptimierung,
Skalierung der Schwellspannungen / Threshold
Voltage Scaling

Leistungsanalyse auf Gatterebene basiert auf:
- konkreter Gatterzahl
- realistischen Schaltaktivitäten
- genauem Verlauf, Länge und Leistungsbedarf der
 Leitungen
- genauesten Bibliothekselementen der
 Zieltechnologie

werkzeuggestützte und manuelle Optimierung
während des Prozesses

zu
 e
rw

a
rt
e
n
d
e
r
E
in
fl
u
s
s
 d
e
r
je
w
e
il
ig
e
n
 M

a
ß
n
a
h
m
e

6.2 Optimierung auf Prozessorebene

141

lisierung von Target Compiler Technologies [156], steht die Chess/Checkers-Entwicklungs-
umgebung zur Verfügung. Ein ähnlicher Ansatz wird mit der abstrakten Spezifikationssprache
UPSLA (Unified Processor Specification Language) [135] bei der GigaNetIC-Architektur verfolgt.
ARC [70] hingegen verwendet mit dem ARChitect Processor Configurator eine graphische Ober-
fläche zur Konfiguration seiner anwendungsspezifischen Prozessorkerne, wobei ggf. weniger
komplexe Mechanismen angewendet werden können, als es durch den Einsatz von Beschreibungs-
sprachen möglich wäre. Tensilica [157] erlaubt die Beschreibung des Prozessormodells in C/C++
und stellt zur Umwandlung in Hardware den XPRES (Xtensa PRocessor Extension Synthesis) Com-
piler für automatisch generierte Prozessoren zur Verfügung, der eine besonders schnelle Umsetzung
der Beschreibung in Hardware gewährleisten soll. Die Prozessormodelle sind kundenspezifische
Architekturen, wobei bei ARC die ARC-Architektur als Ausgangspunkt dient und Tensilica den
Xtensa-Prozessorkern verwendet. Alle Entwicklungsumgebungen bieten eine automatisierte Gene-
rierung von Compiler und zugehörigen Instruktionssatz-Simulator, wobei die Simulation bei eben-
falls allen Ansätzen zyklengenau ausfällt. Bei allen Vergleichsansätzen erfolgt zu dem eine Gene-
rierung der spezifizierten Hardware. Dies ist bei der GigaNetIC-Architektur zwar vorgesehen und
wird im Rahmen aktueller Forschungsprojekte der Universität Paderborn weiter vorangetrieben, ist
allerdings noch nicht vergleichbar mit der Leistungsfähigkeit der anderen Ansätze. Deshalb bauen
derzeit alle Befehlssatzerweiterungen der GigaNetIC-Architektur auf dem bewährten, relativ ein-
fach gehaltenen N-Core-Prozessorkern auf, um so nicht stetig vollkommen neue Prozessorstruktu-
ren entwerfen und optimieren zu müssen. Nur insgesamt drei der verglichenen Ansätze erlauben
den iterativen Prozess der Erweiterung des bestehenden Befehlssatzes, wie es auch durch die Giga-
NetIC-Werkzeugkette der Fall ist.

Tabelle 6-1: Vergleich ausgewählter Werkzeugketten zur Optimierung konfigurierbarer Prozessorkerne

Der im Verlauf des GigaNetIC-Projekts entwickelte, zweistufige Entwurfsprozess zur anwendungs-
spezifischen Systemoptimierung auf Prozessorebene durch Instruktionssatzerweiterung (auch In-
struction Set Extension, bzw. ISE) wird in den folgenden Abschnitten näher erläutert, er teilt sich in
einen compilerbasierten und einen sich anschließenden hardwarebasierten Schritt auf.

6.2.1 Compilerbasierter Entwurfsprozess zur Prozessoroptimierung

Der compilerbasierte Entwurfsprozess ermöglicht eine Exploration des Entwurfsraums in zweierlei
Hinsicht: Zum einen erlaubt er eine sehr schnelle Suche von vielversprechenden Instruktionssatz-
erweiterungen auf Prozessorebene. Zum anderen ist es möglich, unterschiedliche Compiler mit un-

Ent
wick

lun
gs

um
g

eb
ung

Org
an

isa
tio

n

Bes
ch

re
ibu

ng
ss

pr
ac

he

Pro
ze

ss
o rm

od
ell

Compil
er

-G
ener

ier
u ng

Sim
ula

tor
-G

en
er

ier
un

g

zy
kle

ng
en

aue S
im

ulat
ion

Har
dwar

e-
Gen

er
ier

un
g

Unt
er

tü
tzu

ng
 fü

r I
SE

LisaTek CoWare Lisa kundenspezifisch x x x x (x)

Chess/Checkers Target Compiler Technologies nML kundenspezifisch x x x x (x)

Express Univ. of California, Irvine Expression kundenspezifisch x x x x (x)

ARChitect ARC GUI-basiert ARC x x x x x

XPRES-Compiler Tensilica GUI-basiert Xtensa x x x x x
GigaNetIC Universität Paderborn UPSLA kundenspezifisch x x x (x) x

Kapitel 6. Optimierung der Multiprozessorarchitektur

142

terschiedlichen Optimierungsmethoden und Registerzuweisungsmechanismen zu evaluieren.36 Die-
sem Teil des Entwurfsprozesses schließt sich der in Abschnitt 6.2.2 vorgestellte hardwarebasierte
Entwurfsprozess nahtlos an.

Zur Evaluierung des Entwurfsraums auf Prozessorebene werden zunächst die Ressourcen des Pro-
zessors abstrakt in der Beschreibungssprache UPSLA (Unified Processor Specification Language)
[135] spezifiziert. Dies sind im Einzelnen: Art und Anzahl der Register, Funktionseinheiten, In-
struktionen, prozessorinterne Parallelität und Verbindungsstrukturen. Im Anschluss wird mit Hilfe
dieser Spezifikation automatisch ein Compiler nebst hoch-performantem, zyklenakkuratem Simula-
tor (vgl. Abschnitt 5.1) generiert. Abbildung 6-4 zeigt den Ablauf und die wesentlichen Einflussfak-
toren der compilerbasierten Werkzeugkette.

Abbildung 6-4: Schritt 1 des zweistufigen Optimierungsprozesses, compilerbasierter Entwurfsprozess

Der compilerbasierte Entwurfsschritt lässt sich äußerst schnell37, mit veränderten Ressourcen des
Prozessors wiederholen, so dass in kurzer Zeit eine Vielzahl von Möglichkeiten untersucht werden
kann. In unserer Werkzeugkette werden die Befehlssatzerweiterungen für den Anwender transpa-
rent vom Compiler ausgenutzt. Die zukünftigen, in der Hochsprache C vorliegenden Anwendungen
werden zunächst nach der Erzeugung des Compilers kompiliert und mit dem korrespondierenden
Simulator ausgeführt. Während der Ausführung werden alle relevanten, laufzeitabhängigen Daten
vom Simulator in entsprechende Statistiken übertragen, die im Anschluss mit dem leistungsfähigen

36 Dieser Teil des Entwurfsprozesses wurde vom Fachgebiet Programmiersprachen und Übersetzer von Herrn Prof. Dr.

Uwe Kastens der Universität Paderborn entwickelt.

37 Die Spezifikation und die Umsetzung der unter Abschnitt 6.2.3 vorgestellten Befehlssatzerweiterungen beanspruchen

zusammen mit der Realisierung der neuen Compiler-Simulator-Werkzeugkette pro Befehl ca. zehn Minuten.

neue „Super-Instruktion“

xorldw

C-Quellcode

Funktionseinheiten

Registerbänke

Instruktionssatz

Instruktions-
ausführungsdauer

Verbindungsstrukturen

interne Parallelität

Entwurfsraum

Optimierungsstrategie

Registerauslastung

Aufrufkonventionen

Stack-Layout

Compiler-
Generator

Simulator-
Generator

Simulator

Compiler

Ergebnisinterpretation

ggf.

formales
Prozessormodell

6.2 Optimierung auf Prozessorebene

143

Profilierungswerkzeug jScore u. a. auf oft wiederkehrende, datenabhängige Befehlspaare bzw.
-tripel untersucht werden können [112][6]. Die Befehlspaare mit dem höchsten Beschleunigungs-
potential werden anschließend zu so genannten „Superinstruktionen“38 zusammengefasst und für
die Realisierung in Hardware vorgeschlagen [111]. Weitere Details zur Compiler-Werkzeugkette
sind u. a. [135][112][6] zu entnehmen.

Abschließend ist festzuhalten, dass der compilerbasierte Entwurfsschritt somit eine Leistungsab-
schätzung des späteren Prozessors in Kombination mit dem jeweiligen Compiler ermöglicht. Die
Möglichkeit der Veränderung und Eruierung unterschiedlicher Compilervarianten im Zusammen-
spiel mit der jeweiligen Prozessorarchitektur stellt einen großen Vorteil bzgl. des zu erwartenden
Resultats dar. Würde nur eine der beiden Optimierungsmöglichkeiten ausgeschöpft, so könnten we-
sentliche Aspekte aus Sicht der Softwareoptimierung nicht betrachtet werden. Aufgrund des schal-
tungstechnischen Hintergrundes dieser Arbeit beziehen sich allerdings die weiteren Analysen auf
den zweiten Schritt der Optimierung auf Prozessorebene, den hardwarebasierten Entwurfsprozess,
dessen prinzipieller Ablauf im folgenden Abschnitt näher erläutert wird.

6.2.2 Hardwarebasierter Entwurfsprozess zur Prozessoroptimierung

Der hardwarebasierte Entwurfsprozess schließt sich dem compilerbasierten Entwurfsprozess an. Die
zuvor durch den ersten Schritt der GigaNetIC-Prozessoroptimierung spezifizierten Instruktionssatz-
erweiterungen werden bei dem Folgeschritt auf die Möglichkeit einer ressourceneffizienten Hard-
wareimplementierung in den bestehenden Prozessorkern überprüft. Die Implementierung in Hard-
ware und die sich anschließenden Analysen benötigen einen deutlich höheren Zeitaufwand als der
übersetzerbasierte Entwurfsprozess39. Der erweiterte Prozessorkern wird im Anschluss in der Ana-
lyseumgebung PERFMON (vgl. Abschnitt 5.3) detailliert untersucht [116][111].

Tabelle 6-2: Freie Opcodebereiche des S-Cores

freie Opcodes min max #Stellen

0000 0000 0000 0111 1 1 0
0000 0000 0000 11xx 1 4 2
0000 0000 0010 xxxx 1 16 4
0000 10xx xxxx xxxx 1 1024 10
0010 1100 001x xxxx 1 32 5
0010 1100 01xx xxxx 1 64 6
0011 0010 0000 xxxx 1 16 4
0011 0010 001x xxxx 1 32 5
0011 0010 010x xxxx 1 32 5
0011 0010 0110 xxxx 1 16 4
010x xxxx xxxx xxxx 1 8192 13
0110 1xxx xxxx xxxx 1 2048 11

Total 12 11477 69

Der den Optimierungen zugrundeliegende S-Core-Prozessorkern (vgl. Abschnitt 4.3.1) lässt durch
seine unbenutzten Opcodebereiche maximal 11.477 zusätzliche einfache Instruktionen ohne Para-

38 Hierunter wird die Realisierung einer effizienteren, bisher nicht verfügbaren Einzelinstruktion basierend auf der

Funktionalität mehrerer, bisher einzeln aufzurufenden Instruktionen verstanden.

39 Die aufzuwendende Zeit bei einem erfahrenen Entwickler beläuft sich auf einige Stunden bis hin zu mehreren Tagen

oder Wochen, je nach Komplexität und Art der Instruktionssatzerweiterung.

Kapitel 6. Optimierung der Multiprozessorarchitektur

144

meterkodierung zu. Tabelle 6-2 gibt einen Überblick über die verfügbaren Bitkombinationen der
noch verfügbaren Befehlsworte (verfügbare Bitpositionen sind mit „x“ gekennzeichnet). „min“ gibt
die möglichen, komplexen, parameterbehafteten Befehlsworte und „max“ die Anzahl einfacher Be-
fehle, die in dem aufgeführten Bereich realisierbar sind, an. „#Stellen“ beziffert die aufeinanderfol-
genden verfügbaren Binärstellen, die ggf. zur Parameterübergabe des Befehlswortes genutzt werden
können. Eine detaillierte Auflistung aller Befehle des S-Cores und deren Aufbau werden in Anhang
D dokumentiert.

Abbildung 6-5: Schritt 2 des zweistufigen Optimierungsprozesses, hardwarebezogener Entwurfsprozess

Abbildung 6-5 zeigt die prinzipielle Vorgehensweise des hardwarebasierten Entwurfsprozesses zur
Prozessoroptimierung. Zunächst müssen die neuen, abstrakt spezifizierten Veränderungen der be-
stehenden Prozessorbeschreibung in eine entsprechende Hardwarebeschreibung umgesetzt werden.
Dies kann sich z. B. auf die Register, Funktionseinheiten, Instruktionen, und prozessorinterne Ver-
bindungsstrukturen auswirken. Die um die neue Superinstruktion erweiterte Hardwarebeschreibung
des Prozessors wird dann in die bestehende Simulationsumgebung integriert. Da sich im Allgemei-
nen die äußeren Schnittstellen des Prozessors bei einer solchen Erweiterung nicht verändern, ist der
sich hieraus ergebende Aufwand zu vernachlässigen. Zur Simulation werden die gleichen Software-

Speicher-
abbild

Gatterebenen-Synthese

Schaltaktivitäten

generierter & erweiterter C-Compiler

Annotierung des
Verlustleistungsmodells

Verlustleistungsermittlung

RTL-Simulation

PERFMON
Verarbeitungseinheit

RAM

Takt-
zähler

Speicher-
zugriffs-
zähler

STDOUT
Emulation

Prozessor-Bus

Copro-
zessor

Hauptprozessor

N-Core

Copro-
zessor

Hauptprozessor

S-Core

Prozessormodifikation

neue „Super-Instruktion“

xorldw

HDL-Überarbeitung

C-Quellcode

Instruktionssatz-Simulator

Statistische Analyse

Verlustleistungsmodell-Erzeugung

Hauptprozessor

N-Core

Analyse / Bewertung

HW-Beschleuniger

6.2 Optimierung auf Prozessorebene

145

quellen mit Hilfe des generierten Compilers übersetzt und das entsprechende Speicherabbild in den
Speicher des Simulationsmodells geladen. Anschließend wird der ggf. instrumentierte Code (vgl.
Abschnitt 5.3) auf dem erweiterten Prozessor abgearbeitet und durch die Werkzeugkette analysiert.

Die Synthese auf Standardzellen liefert u. a. wichtige Informationen über den kritischen Pfad und
den Flächenbedarf des neuen Prozessorkerns. Es ist darauf zu achten, dass der kritische Pfad der
Logik möglichst nicht verlängert wird, da es sonst zu einer Herabsetzung der Gesamtperformanz
des Prozessors käme, und die Leistungsfähigkeit ggf. sogar durch die implementierte Befehlssatz-
erweiterung insgesamt reduziert würde. Anhand der Annotierung der Schaltaktivitäten bei der
Abarbeitung des Anwendungsprogramms können im Folgenden detaillierte Aussagen über die Ver-
änderung der Leistungsaufnahme und den resultierenden Energiebedarf der Schaltung getroffen
werden.

Sollte das erzielte Ergebnis nicht zufriedenstellend sein, würde eine erneute Iteration mit Verfeine-
rung / Optimierung des VHDL-Entwurfs notwendig. Zeigt sich, dass durch die ausgewählte Instruk-
tionssatzerweiterung ein zu langer kritischer Pfad entsteht, der nicht durch Optimierung beseitigt
werden kann, und alternative Instruktionssatzerweiterungen ebenfalls nicht genügend Leistungszu-
wachs versprechen, so ist zu überlegen, ob ein leistungsfähigerer Hardwarebeschleuniger für diese
Aufgabe implementiert bzw. eingesetzt werden muss. Die Analyse und Charakterisierung von an-
wendungsspezifischen Hardwareblöcken wird ebenfalls von der Werkzeugkette unterstützt, siehe
auch Kapitel 5. Detaillierte Ergebnisse zu diesen Untersuchungen werden exemplarisch im Ab-
schnitt 6.3 und Kapitel 7 vorgestellt.

Im Allgemeinen profitieren vornehmlich verwandte Anwendungsklassen von einer Superinstrukti-
on, so dass nicht grundsätzlich mit einer universellen Beschleunigung für alle Algorithmen zu rech-
nen ist. Deshalb sollte, wenn möglich, vor der Realisierung des Systems, mit Hilfe der zur Verfü-
gung gestellten Simulations- und Analyseumgebungen der Prozessorkern auf vielversprechende
Instruktionssatzerweiterungen für den zukünftigen Einsatzzweck untersucht und ggf. erweitert wer-
den.

Im Folgenden werden an einem Beispiel die Möglichkeiten dieser Optimierungsmethode auf der
untersten Hierarchieebene der GigaNetIC-Architektur aufgezeigt. Es wird deutlich, dass bei einem
sehr geringen Mehraufwand an Fläche deutliche Geschwindigkeitszuwächse zu erzielen sind.

6.2.3 Optimierungspotential von Befehlssatzerweiterungen – ein Beispiel

Am Beispiel einer zuvor durch den compilerbasierten Entwurfsablauf ermittelten, für die IP-
Sec(Internet-Protocol-Security)-Protokollsammlung [158] vielversprechenden Superinstruktion
werden im Folgenden exemplarisch die Vorgehensweise und die aus der Instruktionssatzerweite-
rung resultierenden Verbesserungen vorgestellt.

IPSec ist eine Reihe von Protokollen, die die Internet-Protokoll(IP)-basierte Kommunikation mit
zusätzlichen Sicherheitsmerkmalen ausstatten. Es sind u. a. Authentifizierungs- wie auch Ver-
schlüsselungsverfahren integriert, die auf den einzelnen IP-Paketen angewendet werden. Dies ge-
schieht im Gegensatz zu anderen IP-Sicherheitsprotokollen bereits auf der OSI-Schicht 3, was die
Flexibilität erhöht, da u. a. sowohl TCP- als auch UDP-basierte Protokolle der vierten OSI-Schicht
geschützt werden können. Dies geht allerdings mit einer erhöhten Komplexität und größerem Re-
chenleistungsbedarf einher. Aufgrund der in der Spezifikation vorgesehenen Erweiterungsoptionen
dieses Standards sind Leistungsfähigkeit und Flexibilität gleichermaßen wichtig für eine effiziente

Kapitel 6. Optimierung der Multiprozessorarchitektur

146

Verarbeitung. Aus diesem Grund sind besonders Universalprozessorelemente im Hinblick auf diese
Protokollkategorie untersuchenswert.

In [112] wird u. a. die Compiler-seitige Auswahl von vielversprechenden Instruktionssatzerweite-
rungen für IPSec vorgestellt. Eine dieser Superinstruktionen ist der Befehl XORLDW, der die bei-
den Einzeloperationen LDW und XOR des Originalprozessorkerns zusammenfasst. D. h. es wird ein
Wort aus dem Speicher geladen und direkt im Anschluss eine XOR-Verknüpfung mit einem weite-
ren Registerinhalt durchgeführt. Dieses Operationspaar konnte mit Hilfe der übersetzerbasierten
Werkzeugkette als besonders vielversprechend für Prüfsummen- und Verschlüsselungsverfahren
klassifiziert werden, vgl. Abbildung 6-6.

Abbildung 6-6: Analyseergebnisse der IPSec-Protokollfunktion 3DES in Bezug auf vielversprechende

Superinstruktionen, mit dem LDW-XOR-Paar als Favoriten

Die schaltungstechnische Realisierung und Analyse dieser „Superinstruktion“ wird in [111] be-
schrieben. Zur Verwirklichung der Funktionalität waren in diesem Fall lediglich zusätzliche Kont-
rollstrukturen im Instruktionsdekoder des N-Cores einzufügen, da die benötigte Logik bereits im S-
Core vorhanden war. Durch diese Superinstruktion kann eine Beschleunigung von ca. 10% bei Ver-
schlüsselungsverfahren [111] und von ca. 25% bei Prüfsummenbildungen, wie z. B. beim CRC
(Cyclic Redundancy Check) [130], erzielt werden. Abbildung 6-7 zeigt die Gesamtzahl der benötig-
ten Zyklen für die Abarbeitung der 3DES-Verschlüsselungsfunktion40 unter Verwendung des beste-
henden Befehlssatzes, und alternativ dazu, mit der XORLDW-Superinstruktion, nebst den Häufig-

40 Der 3DES(Data Encryption Standard)-Algorithmus hat mit 168 Bit eine dreimal größere Schlüssellänge als der urs-

prüngliche DES mit 56 Bit. DES und 3DES werden derzeit neben AES (Advanced Encryption Standard) in vielen si-

cherheits-relevanten Anwendungen zur Verschlüsselung eingesetzt.

ad
du

,ld
w

xo
r,

lrw

an
d,

ix
w

ix
w

,ld
w

ix
w

,m
ov

an
d,

m
ov

ld
w

,m
ov

ld
w

,x
or

lrw
,ls

ri

lrw
,m

ov

ls
i,a

dd
u

ls
i,m

ov

ls
ri,

ls
li

ls
ri,

m
ov

ls
ri,

m
ov

i

m
ov

i,a
nd

m
ov

i,i
xw

xo
r,

ls
ri

xo
r,m

ov

xo
r,m

ov
i

0

6.2 Optimierung auf Prozessorebene

147

keiten der Einzeloperationen. 3DES findet z. B. bei IP-Security-Protokollen Verwendung41. Hierbei
ist ein merklicher Rückgang der benötigten Zyklen zur Abarbeitung des Programms mit 9% zu be-
ziffern. Bezogen auf die Gesamtfläche des Prozessorkerns beschränkt sich die zusätzlich benötigte
Fläche zur Realisierung dieses Superbefehls auf 0,3 % bei 130-nm-Standardzellentechnologie bzw.
0,8 % bei 90-nm-Standardzellentechnologie, vgl. Abbildung 6-9.

Abbildung 6-7: Zyklenanzahl des 3DES-Algorithmus im IPSec-Protokoll

vor und nach der XORLDW-Befehlssatzerweiterung

In Abbildung 6-8 wird die Reduzierung des Energiebedarfs beider Prozessordesigns verdeutlicht.
Betrachtet man zunächst einen Mikrobenchmark, bei dem nur die Leistungsfähigkeit der Superin-
struktion gegenüber den ursprünglichen Einzeloperationen verglichen wird, so zeigt sich bei einer
Laufzeitverkürzung von 33,3 % eine Energieersparnis42 von 20,7 %. Beim 3DES-Algorithmus las-
sen sich durch die Hinzunahme dieses einen Spezialbefehls neben der Laufzeitverkürzung um 9 %
nahezu 9% an Energie einsparen.

Abbildung 6-8: Energiebedarf des ursprünglichen S-Cores verglichen mit dem um die XORLDW-

Superinstruktion erweiterten N-Core in Bezug auf zwei Benchmarkszenarien

Ein weiterer positiver Nebeneffekt dieser Instruktionssatzerweiterung ist die Reduktion der Code-
größe um 6% für die 3DES-Anwendung. Waren es beim S-Core noch 5924 Bytes, so werden beim
XORLDW-erweiterten N-Core nur noch 5572 Bytes an Instruktionsspeicher benötigt. Die eingespar-
ten 352 Bytes On-Chip-SRAM entsprechen einer Fläche von ca. 9240µm², was wiederum dem 75-
fachen der Fläche für die Realisierung des Superbefehls (bezogen auf die 130-nm-Technologie)
entspricht.

8 KB SRAM (0,21mm²) nehmen ca. 11,1 mW bei 250MHz auf, was in etwa vergleichbar mit der
Leistungsaufnahme des N-Cores ist, so dass auch hier bei Einsparung von Instruktionsspeicher bzw.

41 Das dem Benchmark zugrundeliegende Verkehrsmodell der IP-Pakete entspricht dem iMIX.

42 Die Ergebnisse basieren auf der genauen Leistungsaufnahmeanalyse mittels Schaltaktivitätenannotation, wie sie in

Abschnitt 5.3 vorgestellt wurde.

Kapitel 6. Optimierung der Multiprozessorarchitektur

148

bei Reduktion der Anzahl der Speicherzugriffe die Ressourceneffizienz des Systems zusätzlich er-
höht werden kann.

6.2.4 Implementierte anwendungsspezifische Instruktionen

Im Rahmen der durchgeführten Instruktionssatzanalysen bzgl. der vorgestellten Netzwerkanwen-
dungen wurden weitere Superinstruktionen für den N-Core realisiert. Dies betrifft neben der bereits
detailliert beschriebenen XORLDW-Superinstruktion die Befehlssatzerweiterungen LDWXORLSL8,
ANDSHR, [ORSHL8, ORSHL16, ORSHL24], LDWADDI, IXWANDSHR und LDWIXW, die eben-
falls aus [112] hervorgegangen sind und ursprünglich speziell für IPSec-Protokolle vorgesehen
waren. Die jeweiligen Funktionsweisen der einzelnen Operationen werden in Anhang D erläutert.
Zusätzlich sei auf die detaillierte Kommentierung der VHDL-Beschreibung verwiesen. Die Namen
der Befehle wurden so gewählt, dass sie bereits einen ersten Eindruck von der jeweiligen Funktion
geben. Die Auswertung der Performanzsteigerung durch diese zusätzlichen Instruktionen für An-
wendungen aus dem Netzwerkbereich erfolgt in Kapitel 7.

Abbildung 6-9: Gegenüberstellung des Flächenbedarfs in [mm²] von S-Core vs. N-Core in 130- und 90-nm-

Standardzellentechnologie sowie für Prozessorvarianten einzelner Befehlssatzerweiterungen

Abbildung 6-9 liefert eine Gegenüberstellung des Flächenbedarfs von S-Core vs. N-Core (7+: um-
fasst die vorgestellten sieben Superinstruktionen) in 130- und 90-nm-Standardzellentechnologie
sowie Werte für die Realisierungen der einzelnen Befehlssatzerweiterungen. Bei der Realisierung
wurde sichergestellt, dass der kritische Pfad des Originalprozessorkerns nicht durch die jeweiligen
Erweiterungen vergrößert wurde. Interessant ist die Tatsache, dass bei der 130-nm-Realisierung die
LDWIXW-Variante und bei der 90-nm-Technologie die LDWADDI-Implementierung geringfügig
kleiner als der unveränderte S-Core sind. Dies liegt in dem heuristischen Vorgehen des Synthese-
werkzeugs begründet. Aufgrund der veränderten Struktur des Prozessorkerns schlägt der Synopsys-
Design-Compiler eine teilweise vollkommen andere Struktur für einige Bereiche des Prozessors

0,1213

0,1223

0,1227

0,1252

0,1223

0,1243

0,1315

0,1623

0,1593

0,1604

0,1615

0,1173

0,1360

0,1580

0,1585

0,1587

0,1585

0,1561

0,00 0,02 0,04 0,06 0,08 0,10 0,12 0,14 0,16 0,18

S-Core

N-Core

xorldw

ldwxorlsl8

andshr

orshl

ldwaddi

ixwandshr

ldwixw

P
ro

ze
ss

or
va

ria
nt

e

Core-Fläche 90 nm Core-Fläche 130 nm

mm²

6.3 Optimierung: Hardwarebeschleuniger auf Cluster- und SoC-Ebene

149

vor, die dennoch die erforderliche Taktfrequenz von 257 MHz für 130 nm bzw. 270 MHz für 90 nm
erfüllt. Aufgrund der unterschiedlichen Herangehensweise des Synthesewerkzeugs kann es so zu
diesen Flächenunterschieden im einstelligen Prozentbereich kommen. Der prozentuale Flächenzu-
wachs für alle Instruktionssatzerweiterungen beträgt für die 90-nm-Technologie 12,1 % bzw. ledig-
lich 2,7 % für die 130-nm-Technologie verglichen mit dem Original-S-Core.

Für die 130-nm-Standardzellentechnologie wurde für den um die genannten Superinstruktionen er-
weiterten N-Core exemplarisch eine Synthese mit anschließender Platzierung und Verdrahtung der
erforderlichen Standardzellen sowie der notwendigen, vom Platzierungswerkzeug eingefügten Fil-
ler Cells, durchgeführt.

Abbildung 6-10: Größenzuwachs des Prozessors durch die sieben zusätzlichen Instruktionen für eine 130nm-

Standardzellentechnologie (Darstellung beruht auf dem erzeugten GDS-II-Plot43)

Abbildung 6-10 zeigt einen Größenzuwachs von 2,7% des Prozessors bei Hinzunahme der sieben
vorgestellten Instruktionssatzerweiterungen. Dies bedeutet durchschnittlich 0,39% Flächenzuwachs
pro Superinstruktion. Der hier implementierte, N-Core-Prozessorkern besitzt eine Kantenlänge von
0,457 mm und eine Gesamtfläche von 0,209 mm² in der verwendeten 130-nm-Standardzellen-
technologie.

Sollte ein anderer Prozessorkern als der N-Core als IP-Block zur Verfügung stehen und für das ent-
sprechende Anwendungsgebiet deutlich leistungsfähiger sein, kann dieser aufgrund der offenen
Schnittstellen und der Parametrisierbarkeit der GigaNetIC-Architektur ebenfalls leicht in das Sys-
tem integriert werden. Für besonders rechenintensive Aufgaben reichen Instruktionssatzerweiterun-
gen allein meist nicht aus. Anwendungsspezifische Hardwarebeschleuniger können in diesem Fall
den Prozessor bzw. die Prozessoren merklich entlasten. Für diese Art der Erweiterung/Optimierung
ist die GigaNetIC-Architektur besonders vorbereitet, vgl. Abschnitt 4.3.3. Im Folgenden wird
exemplarisch die Optimierung der GigaNetIC-Architektur durch anwendungsspezifische Hardwa-
rebeschleuniger anhand eines Beispiels näher erläutert. Weitere realisierte Hardwarebeschleuniger
werden kurz vorgestellt und bzgl. ihrer Leistungsfähigkeit charakterisiert.

6.3 Optimierung: Hardwarebeschleuniger auf Cluster- und SoC-Ebene

Bereits in Abschnitt 4.3.3 wurden die verschiedenen Möglichkeiten, anwendungsspezifische Hard-
warebeschleuniger in das GigaNetIC-System zu integrieren, vorgestellt. Bevor ein spezieller Hard-
warebeschleuniger implementiert wird, wird zunächst die entsprechende Anwendung, die den Ein-

43 GDS II (Graphic Data System) Format, in 2004 der de Facto Standard für Layoutdaten der Chipfertigung.

0,451 mm

0,
45

7
m

m

0,457mm

+2,7%

S-Core N-Core (7+)

0,
45

1
m

m

Kapitel 6. Optimierung der Multiprozessorarchitektur

150

satz einer solchen Spezialhardware ggf. erfordern könnte, mit einer der Simulationsumgebungen
höherer Abstraktionsebene analysiert (vgl. Abbildung 6-2). Stellt sich heraus, dass die Verarbei-
tungseinheit die geforderte Leistung nicht erbringen kann, und zeigt sich weiterhin, dass Befehls-
satzerweiterungen ebenfalls nicht genügend Leistungszuwachs liefern, so kann eine Spezialhardwa-
re mit der benötigten Performanz implementiert werden. Hierbei wird darauf geachtet, dass diese
Hardware ebenfalls möglichst flexibel gehalten ist, so dass sie auch für zukünftige Anwendungen
bzw. Weiterentwicklungen bestehender Standards eingesetzt werden kann und somit ein Höchstmaß
an Zukunftssicherheit garantiert. Mittels der in Kapitel 5 vorgestellten Entwicklungsumgebungen
kann eruiert werden, an welcher Stelle im GigaNoC die entsprechende Hardwareerweiterung plat-
ziert werden sollte. Bandbreiten- und Rechenleistungsbedarf der Anwendung bestimmen Dimensio-
nierung, Platzierung und Anzahl des jeweiligen Beschleunigers (vgl. Kapitel 7).

Im folgenden Abschnitt werden exemplarisch das Konzept und der Entwurf eines Hardware-
beschleunigers zur Protokollverarbeitung dargestellt. Der grundsätzliche Aufbau und die Funkti-
onsweise zur Ansteuerung durch die Prozessoren des GigaNetIC-Systems, die auch die Steuerung
der Lastverteilung übernehmen, werden hier verdeutlicht. Das vorgestellte Prinzip kann auf beliebi-
ge Hardwarebeschleuniger anderer Funktionalität übertragen werden. Die einheitlichen Schnittstel-
len und Mechanismen der GigaNetIC-Architektur verkürzen so die Entwicklungszeit, erhöhen die
Wiederverwertbarkeit und steigern so letztendlich die Ressourceneffizienz.

6.3.1 Optimierungspotential von Hardwarebeschleunigern – ein Beispiel

In diesem Abschnitt soll, exemplarisch für alle implementierten Hardwarebeschleuniger, auf einen
flexiblen Hardwarebeschleuniger zur Verarbeitung von Paketdaten und Prüfsummen zum Einsatz in
kommunizierenden eingebetteten On-Chip-Systemen eingegangen werden. Solche Einheiten wer-
den häufig auch als „TCP/IP-Offload Engine“ bezeichnet, da sie die Prozessoren von wesentlichen
und besonders rechenintensiven Aufgaben der Protokollverarbeitung entlasten. Der hier vorgestellte
Hardwarebeschleuniger und dessen Arbeitsweise wurde 2005 zusammen mit Infineon Technologies
CPR ST zum Patent angemeldet [159].

In Kapitel 7 wird die Leistungsfähigkeit der GigaNetIC-Architektur im Hinblick auf Netzwerkver-
arbeitungsszenarien untersucht. Für besonders rechenintensive Algorithmen dieses Anwendungs-
bereichs wird die Architektur, dem hierarchischen Optimierungsansatz folgend, durch Instruktions-
satzerweiterungen und Hardwarebeschleuniger erweitert. Eine sehr häufig auftretende und zudem
rechenintensive Funktion bei der Verarbeitung von Netzwerkpaketen ist die Generierung und Über-
prüfung von Prüfsummen nach dem Muster der „Internet Checksumme“ [160]. Bei der Evaluierung
dieser Funktion im Rahmen der Definition des DSLAM(Digital Subscriber Line Access Multiple-
xer)-Referenzbenchmarks [141] für Infineon Technologies, die u. a. auch als Funktion im EEMBC
(Embedded Microprocessor Benchmark Consortium)-Netzwerkbenchmark [161] vorkommt, zeigte
sich, dass Bedarf für eine Beschleunigung dieser Funktionalität besteht. Nachdem Softwareoptimie-
rung und Befehlssatzerweiterungen allein nicht die benötigte Performanz liefern konnten, wurde die
Implementierung eines Hardwarebeschleunigers notwendig [141][159][118].

6.3.1.1 Hardwarebeschleuniger zur Protokollverarbeitung – Motivation und Funktion

Vernetzte Systeme kommunizieren auf der Basis von Netzwerkprotokollen über den Austausch von
Paketen. Pakete bestehen aus Nutzdaten und zusätzlichen Protokollinformationen, die unter ande-
rem die Weiterleitung (Quell- und Zieladressen) durchs Netzwerk ermöglichen und die Integrität

6.3 Optimierung: Hardwarebeschleuniger auf Cluster- und SoC-Ebene

151

des Pakets gewährleisten (Prüfsummen, Time-to-live). Jeder Knoten im Netzwerk muss, wenn er die
Pakete verarbeiten will, diese Informationen prüfen und ggf. vor der Weiterleitung modifizieren.
Für die Verarbeitung von Netzwerkdaten kommt eine Vielzahl von Hardwarerealisierungen in Fra-
ge. So können anwendungsspezifische Bausteine (ASICs) auf Netzwerkkarten (NICs) die Verarbei-
tung übernehmen, aber auch Standard-CPUs werden hierzu teilweise verwendet. Im Laufe der letz-
ten Jahre haben sich, vor allem für Einsatzgebiete mit hoher Datenlast, spezielle Netzwerk-
Prozessoren (NPUs) etabliert. Dies sind besonders auf das Anwendungsgebiet Paketverarbeitung
spezialisierte Hochleistungseinheiten. Diese programmierbaren Bausteine erlauben eine sehr flexib-
le Gestaltung der notwendigen Verarbeitungsschritte. Dies ist im Hinblick auf den permanenten
Wandel der Datenbeschaffenheit und der verwendeten Protokolle und der damit verbundenen
Dienste von großem Vorteil. Mittlerweile gibt es eine Vielzahl etablierter Protokolle und Mecha-
nismen, die aufgrund ihrer extrem häufigen Verwendung zu einem fixen Bestandteil der Netzwerk-
technologie geworden sind. Hierzu zählen u. a. das Internet-Protokoll Version 4 (IPv4) auf der
Netzwerkschicht (Layer) 3 sowie viele der in diesem Protokoll gekapselten Layer-4-Protokolle (wie
z. B.: TCP, UDP, ICMP etc.). All diesen Protokollen gemein ist die verwendete Prüfsumme, die auf
dem 16-Bit-Einer-Komplement-Summen-Ansatz beruht [160].

Durch das Auslagern dieser Prüfsummenberechnung auf einen speziell für diese Aufgabe optimier-
ten und im Rahmen des Notwendigen variabel gehaltenen Hardwarebeschleuniger lässt sich der
Datendurchsatz eines Netzwerkknotens steigern bzw. die bisher eingesetzte Verarbeitungseinheit
(CPU, NPU) entlasten oder sogar durch eine kostengünstigere, weniger leistungsstarke Verarbei-
tungseinheit ersetzen. Eingesetzt werden kann der im weiteren Verlauf beschriebene Beschleuniger
also nahezu in jedem IP-verarbeitenden Netzwerkknoten, angefangen bei Endgeräten im
CPE(Customer Premises Equipment)-Bereich (Firewalls, NICs etc.) bis hin zu Geräten, die im
Kernnetzwerk angesiedelt sind, wie z. B. Router. Die Verarbeitungsleistung bei all diesen Geräten
sollte möglichst hoch sein, um hohe Systemlasten aufgrund der ständig steigenden Datenraten im
weltweiten IP-Verkehr über eine möglichst lange (Time-in-Market-)Zeitspanne zu unterstützen.
Hierzu bietet es sich an, besonders rechenintensive Verarbeitungsschritte, wie z. B. Prüfsummen-
berechnungen, auf dedizierte Hardwareblöcke auszulagern. Dies erlaubt eine Verarbeitung der Pa-
kete mit der erforderlichen „Leitungsgeschwindigkeit“ (Linespeed), auch in stark belasteten Netz-
werkknoten. Ein weiterer Vorteil eines HW-Beschleunigers für diese Arbeitsschritte liegt in dem
deutlich geringeren Flächenbedarf und der geringeren Leistungsaufnahme und führt somit zu einer
Reduktion der Kosten (sowohl Initial- als auch Betriebskosten).

Abbildung 6-11 zeigt die prinzipielle Kopplung des Hardwarebeschleunigers mit der übergeordne-
ten Kontrolleinheit (NPU, CPU, Controller). Hierbei ist es grundsätzlich erst einmal unerheblich,
ob der Beschleuniger selbst über Speicher verfügt, oder dieser ihm über eine Bus- oder Netzwerk-
on-Chip(NoC)-Anbindung zugänglich gemacht wird.

Ein Einsatzbereich des GigaNetIC-System-on-Chips liegt in der Verarbeitung und Weiterleitung
von Netzwerkverkehr auf Layer 3 (Internet Protocol) und höher, vgl. Abschnitt 8.1.2. Um eintref-
fende Pakete (Ingress) verarbeiten bzw. weiterleiten zu können, müssen diese zunächst auf Korrek-
theit, also protokollkonformes Format überprüft werden. Dies geschieht durch den HW-
Beschleuniger, der Pakete prüft, die mit einer auf dem 16-Bit-Einer-Komplement-Summen-Ansatz
beruhenden Prüfsumme [160] gesichert sind. Im Anschluss übergibt er die Daten der übergeordne-
ten Kontrolleinheit zur weiteren Bearbeitung. Soll ein Paket versendet werden (Egress), so wird

Kapitel 6. Optimierung der Multiprozessorarchitektur

152

dem HW-Beschleuniger wiederum die Startadresse des zu bearbeitenden Pakets mitgeteilt, so dass
im Folgenden der HW-Beschleuniger autonom per Direct Memory Access (DMA) die benötigten
Paketdaten vom Speicher anfordern und die einzutragende Prüfsumme berechnen kann. Das Be-
rechnen und Abspeichern der Prüfsumme erfolgt ohne weiteres Eingreifen der übergeordneten
Kontrolleinheit, die so entlastet wird und so für die übergeordneten Kontrollaufgaben zur Verfü-
gung steht. Außerdem erfolgt die Berechnung der Prüfsumme durch den HW-Beschleuniger in der
Regel deutlich schneller, als dies eine Standard CPU zu leisten in der Lage wäre. Des Weiteren ist
der HW-Beschleuniger in der Lage, die zulässige Verbleibenszeit TTL (Time-To-Live) im Netzwerk
des Pakets zu prüfen und ggf. zu dekrementieren, was für Einsatzgebiete innerhalb von Routern etc.
eine weitere Beschleunigung ermöglicht.

Abbildung 6-11: Grobe Darstellung des Moduls und prinzipielle Kopplung mit Systemumgebung

Der IP-Headercheck unterstützt sowohl Little- als auch Big-Endian-Systeme und kann im Betrieb
auf die entsprechende Systemkonfiguration umgestellt werden. Dies erhöht die Interoperabilität, da
er mit Prozessoren unterschiedlichster Hersteller einfach zu kombinieren ist. Er prüft die IP-Version
und ist bereits vorbereitet auf IPv6 (Internet Protocol Version 6) [162]. Er unterstützt variable Hea-
der- und Paketlängen sowie eine gerade und ungerade Anzahl von Bytes im Paketrahmen. Aufgrund
der einheitlichen und einfach gehaltenen Schnittstelle können unterschiedlichste Busprotokolle und
proprietäre Schnittstellen unterstützt werden. Zur Reduktion des Chip-internen Kommunikations-
aufwands kann bei der bloßen Überprüfung der Checksumme nur eine Ergebnisrückgabe der be-
rechneten Checksumme erfolgen, ohne ggf. das gesamte Paket über das NoC zurückzuleiten.

Die Vorteile der vorgestellten Lösung im Vergleich zu existierenden Lösungen (vgl. z. B. [163])
liegen in einer sehr performanten Realisierung bei hinreichender Flexibilität. Diese beschleunigte
Verarbeitung liegt zum einen an der Tatsache, dass es sich um anwendungsspezifisch optimierte
Hardware handelt, die höhere Taktfrequenzen im Vergleich zu vielen Standard-Prozessoren erlaubt,
zum anderen an dem speziellen, erweiterten Berechnungsverfahren zur Prüfsummenverarbeitung
(vgl. Abschnitt 6.3.1.2). Weiterhin lässt sich die vorgestellte Lösung durch ein Steuerwort konfigu-
rieren und parametrisieren, so dass verschiedene Verarbeitungsschritte (vgl. Abbildung 6-13) anges-
toßen werden können. Zur vereinfachten SoC-Integration ist das vorliegende Modul parametrisier-
bar in Bezug auf Datenbreite und die Art der Ankopplung an eine Kontrolleinheit. Die flexibel ge-
haltene Integration ins Gesamtsystem stellt eine universell einsetzbare Plattform zur schnellen Prüf-
summenprüfung zur Verfügung (vgl. Abschnitt 6.3.1.4).

6.3.1.2 Performanzerhöhung mittels eines Algorithmus variabler Bitbreite

Der hier entwickelte Algorithmus weicht von der 16-Bit-Variante [160] ab und erlaubt die Variation
der Additionsbreite zur zusätzlichen Beschleunigung der Verarbeitung. Die entwickelte Methode

6.3 Optimierung: Hardwarebeschleuniger auf Cluster- und SoC-Ebene

153

zur Prüfsummenberechnung nutzt die Invarianz der Berechnungsvorschrift gegenüber der Größe
des verwendeten Restklassenrings. Aufgrund der abschließenden Faltung durch fortgesetzte Additi-
on von Teilergebnissen im Restklassenring 216 ist das Prüfsummenergebnis invariant gegenüber der
Größe 216n (mit n > 1) des Restklassenrings, der zur Berechnung der Teilergebnisse verwendet
wurde. Diese Teilberechnungen können somit nicht nur mit 16-Bit-breiten Datenwörtern sondern
auch mit Vielfachen von 16-Bit-breiten Datenwörtern durchgeführt werden. Abbildung 6-12 zeigt
schematisch die Funktionsweise des Algorithmus variabler Bitbreite.

Abbildung 6-12: Schematische Darstellung der Operation auf Restklassenringen von 216

Im Folgenden wird ein Realisierungsbeispiel für IP/TCP/UDP-Netzwerkprotokolle dargestellt, in-
dem zunächst die Systemfunktion und im Anschluss daran die Anbindung an ein übergeordnetes
System beschrieben wird. Die beschriebene Lösung gilt grundsätzlich auch für andere Protokolle,
die auf dem 16-Bit-Einer-Komplement-Summen-Ansatz beruhen, d.h. z. B. auch für ICMP, IGMP,
ST-II, EGP, HMP, IRTP, OSPF, NETBLT, ENCAP, OSPFIGP und ähnliche. Dies erhöht die Wie-
derverwendbarkeit des Hardwarebeschleunigers und damit auch die Ressourceneffizienz.

6.3.1.3 IP-Headercheck – Aufbau und Funktionsweise

Die wesentlichen Funktionsblöcke des Hardwarebeschleunigers für eine 32-Bit-breite Variante
werden in Abbildung Anhang E-1 dargestellt. Der Hardwarebeschleuniger umfasst eine im Befehls-
umfang und in Datenbreite parametrisierbare Arithmetisch/Logische Einheit (ALU), Ergebnisregis-
ter, Kontrollregister, Adressregister sowie diverse Register zum Zwischenspeichern temporärer
Werte. Die Datenbreite dieser Einheiten kann je nach Ausführung des Hardwarebeschleunigers va-
riieren, da die in Abschnitt 6.3.1.2 vorgestellte Berechnungsmethode auch andere Berechnungsbrei-
ten zulässt, wobei sich die jeweiligen Realisierungen des Hardwarebeschleunigers im prinzipiellen
Aufbau nicht von Abbildung Anhang E-1 unterscheiden.

Die Ansteuerung des Hardwarebeschleunigers geschieht zum einen über ein Kontrollregister (vgl.
Abbildung 6-13), in dem die verschiedenen Operationsmodi über Steuerflags ausgewählt werden.
Die Gültigkeit der anliegenden Steuerflags wird über eine logische Eins von ctrl_in_en signalisiert.
Zum anderen muss die Verarbeitung der Beschleunigungseinheit noch durch das Signal

Kapitel 6. Optimierung der Multiprozessorarchitektur

154

check_enable aktiviert werden, das von außen durch eine übergeordnete Kontrolleinheit (CPU,
NPU, Zustandsmaschine) angelegt wird. Ebenso muss dem HW-Beschleuniger noch die Startadres-
se (im Speicher) des zu bearbeitenden Pakets übermittelt werden, die im Adressregister abgelegt
wird. Die für die Prüfsummenbildung benötigte Ablaufsteuerung ist durch einen generischen Zu-
standsautomaten (Finite Statemachine / FSM) realisiert. Dieser übernimmt die komplette Ansteue-
rung der einzelnen Komponenten des Hardwarebeschleunigers sowie die autonome Ansteuerung
der Speicher- bzw. Busschnittstelle. Ist die Verarbeitung des Pakets gemäß der durch die gesetzten
Kontrollflags vorgesehenen Arbeitsschritte abgeschlossen, werden die Ergebnisse an die dafür vor-
gesehenen Speicherstellen zurückgeschrieben. Im Kontrollregister werden die sich aus der Bearbei-
tung ergebenden Flags gesetzt. Das Signal check_ready zeigt der übergeordneten Kontrolleinheit
die Fertigstellung der Verarbeitung an, so dass ggf. ein neues Paket zur Verarbeitung in Auftrag
gegeben werden kann.

Abbildung 6-13: Implementierung des Headercheck-Kontrollregisters

Der prinzipielle Ablauf einer Prüfsummenbildung für das Internet-Protokoll (Layer 3) und ggf. ein
enkapsuliertes Layer-4-Protokoll ist in Abbildung Anhang E-2 dargestellt. Wesentlich ist die Unter-
scheidung zwischen Überprüfung (Check) und Neuberechnung (Compute) der Prüfsummen. Der
Check-Modus kommt z. B. beim Empfang eines Pakets zum Einsatz, bei dem zunächst überprüft
werden muss, ob es sich um ein gültiges, korrekt übermitteltes Paket handelt. Die Korrektheit eines
eingegangenen Pakets wird durch eine logische Null am packet_error-Ausgang angezeigt. Eine lo-
gische Eins würde ein fehlerbehaftetes Paket kennzeichnen, das ggf. verworfen wird. Beim Versen-
den käme die Neuberechnung der Prüfsummen zum Einsatz. Sollten Veränderungen an den Daten
bzw. Headerinformationen wie z. B. das TTL-Feld, das ebenfalls bei Bedarf automatisch von der
Einheit dekrementiert werden kann, vorgenommen worden sein, ist eine Neuberechnung der Prüf-
summe unabdingbar.

IP TCP/UDP

Paketstatus

Kontrollregister

nicht benutztx

x = Modifikation durch Headercheck-Einheit

x x

x = nur in Wishbone-Kopplung benutzt

6.3 Optimierung: Hardwarebeschleuniger auf Cluster- und SoC-Ebene

155

Abbildung 6-14: Protokollrahmen zur GigaNoc-basierten Ansteuerung

des Headercheck-Hardwarebeschleunigers

Abbildung 6-14 zeigt einen GigaNoC-Paketrahmen zur Ansteuerung eines Headercheck-Hardware-
beschleunigers, der lose-gekoppelt über einen Communication-Controller an einen Port einer
Switch-Box angeschlossen ist. Prinzipiell kann der Ablauf auch auf andere Hardwarebeschleuniger
übertragen werden. Der zu sendende Protokollrahmen setzt sich in diesem Fall aus sogenannten
Metadaten und den eigentlichen Nutzdaten zur Verarbeitung zusammen. Die Metadaten beinhalten
alle notwendigen Kontrolldaten zur Ansteuerung des Hardwarebeschleunigers, zur Wegewahl und
zur Speicheransteuerung. Beim Headercheck-Hardwarebeschleuniger bestehen die Nutzdaten aus
dem gesamten IP-Rahmen, der sowohl den IP-Kopf, als auch Daten von ggf. enkapsulierten Proto-
kollen höherer Schichten beinhalten kann. Die ersten 16 Bit der Metadaten umfassen den Paketsta-
tus, der direkt in das Kontrollregister (vgl. Abbildung 6-13) des Beschleunigers geschrieben wird.
Die folgenden zwei Byte sind die Adressierungsdaten für die GigaNoC-Wegewahl. Anschließend
folgt der Paketzeiger mit der jeweiligen Speicheradresse. Zusätzlich werden noch die Daten des
Ethernetkopfes angehängt, so dass ein Paket, das vom Beschleuniger verarbeitet worden ist, nicht
zwangsläufig zu einem übergeordneten Prozessor geleitet werden muss, sondern ggf. direkt zum
Communication-Controller eines integrierten Ethernetcontrollers geleitet werden kann. Ebenso
können die Communication-Controller der Ethernetcontroller die am GigaNoC angeschlossenen
Beschleuniger direkt adressieren, ohne zwangsläufig Prozessoren mit einzubeziehen. Dies hängt
von der jeweiligen Anwendung und der Funktion des Beschleunigers ab. Beim IP-Headercheck-
Beschleuniger werden in diesem Fall Pakete dem Kontrollwort entsprechend verarbeitet und in Ab-
hängigkeit des Ergebnisses verworfen oder weitergeleitet. Eine Erweiterung des Funktionsumfangs
ist auch hier möglich und hängt letztendlich von der Anwendung ab.

6.3.1.4 IP-Headercheck – Systemanbindung

Der IP-Headercheck-Hardwarebeschleuniger eignet sich für alle in Abschnitt 4.3.3 vorgestellten
Kopplungsarten an das GigaNoC. In Abbildung 6-15 wird die Variante der Systemanbindung mit
lokalem Speicher vorgestellt. Hierbei kann die Prüfsummeneinheit entweder über einen lokalen Bus

start_addr

16 Bit16 Bit 32 Bit

ETH-PHY-PortETH-Länge 2 Byte Padding ETH-Kopf Byte 1+2 ETH-Kopf 12 Byte

IP-Rahmen

64 Bit = 1 Flit = 3 Flits max. 375

check_addr_start

eingebettetes
Protokoll
(TCP

Metadaten

Paket Zeiger

IP-Rahmen

max. 375 Flits

IP-Kopf eingebettetes Protokoll (TCP, UDP ...)

check_addr_start_in

Byte

t

64 Bit = 1 Flit

Metadaten

ETH-LängeGigaNoC ZielPaketstatus

IP TCP/UDPn u n u x y z ID

2 Bit3 Bit4 Bit4 Bit3 Bit5 Bit 4 Bit 4 Bit3 Bit

Paket Zeiger

akt. Paketspeicheradresse

t

t

ERP

Kapitel 6. Optimierung der Multiprozessorarchitektur

156

oder aber über das On-Chip-Netzwerk mit der übergeordneten Kontrolleinheit verbunden sein. In
diesem Fall dient ein Dualport-Speicher als lokaler Paketspeicher. Für diese Kopplung wurde eine
Anbindung des Prüfsummenmoduls sowohl über den Wishbone-Bus als auch über ein NoC (Giga-
NoC) exemplarisch implementiert und verifiziert. Die Integration der Einheit erfolgt über einen
Wrapper, der die Schnittstellenkonvertierung übernimmt.

Abbildung 6-15: Systemanbindung über Bus oder NoC, mit lokalem Speicher

In der zweiten Variante, in Abbildung 6-16, erfolgt die Systemanbindung über einen Bus bzw. ein
On-Chip-Netzwerk unter Verwendung eines gemeinsamen Speichers. Für die Anbindung an einen
Bus bietet der HW-Beschleuniger die Option, die Burstlänge des Buszugriffs einzustellen, so dass
für die Bearbeitungszeit auch andere Teilnehmer den Bus nutzen können und somit Blockierungen
weitestgehend verhindert werden können.

Abbildung 6-16: Systemanbindung über Bus oder NoC, mit gemeinsamem Speicher

Die dritte Variante in Abbildung 6-17 zeigt die Anbindung der Beschleunigereinheit an eine über-
geordnete CPU/Kontrolleinheit unter Verwendung eines gemeinsamen Speichers. Die Steuerung
des Datenflusses wird von der übergeordneten Kontrolleinheit übernommen.

B
u
s
 /
 N

o
C

wrapper

FSM header_check

check_data_out

check_data_in

r_w

check_enable

addr_start_in

ctrl_in_en

packet_error

check_ready

ctrl

check_addr_out

B
u
s
 /
 N
o
C

bus_wait_n

bus_request

6.3 Optimierung: Hardwarebeschleuniger auf Cluster- und SoC-Ebene

157

Abbildung 6-17: Anbindung des IP-Headercheckers über eine eng-gekoppelte Kontrolleinheit

Tabelle 6-3 zeigt den Flächenbedarf der einzelnen Implementierungsvarianten der 32-Bit-Variante
inklusive der benötigten Schnittstellen zur Kopplung an das Gesamtsystem.

Tabelle 6-3: Flächenbedarf der 32-Bit-Variante des IP-Headercheck-Hardwarebeschleunigers in 130/90-nm-

Standardzellentechnologie, inkl. NoC-Schnittstelle und 16 KB DPRAM auf SoC-Ebene

6.3.1.5 IP-Headercheck – Leistungsdaten

Die hier vorgestellte Ausnutzung der Tatsache, dass die Berechnungsvorschrift für die Prüfsum-
menbildung invariant zu Vielfachen von 16-Bit-Restklassenringen ist, erlaubt die Verarbei-
tung/Addition der Pakete in Vielfachen dieser 16-Bit-Halbworte und ermöglicht so einen höheren
Durchsatz von Paketen bei gleich bleibender Taktrate der Verarbeitungseinheit (vgl. Abschnitt
6.3.1.2). Die Funktionalität des HW-Beschleunigers für größere Datenbreiten ist prinzipiell gleich,
wobei sich die Ausführungszeit in erster Näherung (ggf. abhängig von der jeweiligen Hardware-
realisierung) reziprok zur Datenbreite der Hardware verhält44. Die Datenbreite des HW-
Beschleunigers wird im Wesentlichen durch die Speicher- bzw. Bus-Anbindung bestimmt (vgl. Ab-
schnitt 6.3.1.4).

Abbildung 6-18 zeigt die Leistungsfähigkeit für die 32-, 64- und 128-Bit-Variante des IP-
Headercheck-Hardwarebeschleunigers für enkapsulierte Layer-4-Protokolle in Abhängigkeit von
der Paketgröße. Es zeigt sich bei großen Paketen deutlich die nahezue Verdoppelung bzw. Vervier-
fachung der Performanz gegenüber der 32-Bit-Variante bei Verwendung der 64- bzw. 128-Bit-
breiten Implementierung. Bei minimal-großen Paketen mit einer Nutzdatenmenge von 44 Byte er-
folgt lediglich eine Reduzierung von 24 auf 18 bzw. 15 Takten durch die breitere Verarbeitung. Be-

44 Implementierungsabhängige Berechnungsdauer: Die 32-Bit-Variante benötigt
B

+13
4

 
  

 Takte, mit B = Anzahl

der zu verarbeitenden Bytes, die 64-Bit-Variante
B

+12
8

 
  

und die 128-Bit-Variante
B

+12
16

 
  

Takte pro Layer-4-

Protokollrahmen.

130 nm 90 nm 130 nm 90 nm 130 nm 90 nm
0,0357 0,0228 0,0299 0,0196 0,6649 0,5609

Fläche [mm²]
PE-Ebene Cluster-Ebene SoC-Ebene

Kapitel 6. Optimierung der Multiprozessorarchitektur

158

zogen auf das spätere Anwendungsszenario ist von Fall zu Fall abzuwägen, ob der Einsatz einer
leistungsfähigeren Variante des Hardwarebeschleunigers notwendig ist, oder ob die Beschleuni-
gung, die durch die flächenmäßig kleinere 32-Bit-Variante (vgl. Abbildung 6-20) erreicht wird, be-
reits ausreicht. Speziell Anwendungen die hauptsächlich Pakete minimaler Länge einsetzen, wie
VoIP (Voice over IP) etc., profitieren weniger von der Leistungsfähigkeit der IP-Headercheck-
Hardwarebeschleuniger größerer Bitbreite. Im Sinne der Ressourceneffizienz wäre hier der 32-Bit-
breite Beschleuniger ein pareto-optimaler Punkt im Sinne von Definition 12.

Abbildung 6-18: Leistungsdaten des IP-Headercheck-Hardwarebeschleunigers in

Abhängigkeit von der Verarbeitungsbreite

Abbildung 6-19: IP-Headercheck-Hardwarebeschleuniger – Performanz

32- vs. 64-Bit-Variante, bezogen auf die Synthesewerte

Abbildung 6-19 zeigt die, sich aus den Synthesen ergebenden, realisierbaren Leistungswerte für
eine 130-nm- und eine 90-nm-Standardzellentechnologie, in Abhängigkeit von der erreichbaren
Maximalfrequenz in der jeweiligen Technologie. Es wird evident, dass die 64-Bit-Varianten deut-
lich leistungsfähiger als die 32-Bit-Implementierungen sind. Beide 64-Bit-Realisierungen erlauben
Betriebsfrequenzen von über 500 MHz und verarbeiten 27,78 bzw. 28,34 Mio. Pakete à 44 Byte pro
Sekunde. Das entspricht einer Nutzdatenmenge von mehr als 1220 MByte/s. Die 32-Bit-Varianten
liegen fast 10 % höher bei den maximal erreichbaren Taktfrequenzen, als die der 64-Bit-Typen. So

0

50

100

150

200

250

300

350

400

450

44 48 64 512 570 1500 1518

Paketgröße

T
ak

te

32-Bit-Variante
64-Bit-Variante
128-Bit-Variante

0

5

10

15

20

25

30

44 48 64 512 570 1500 1518

Paketgröße

M
io

. P
ak

et
e/

s

32-Bit-130nm
32-Bit-90nm
64-Bit-130nm
64-Bit-90nm

@510,2MHz
@500MHz

@555,6MHz

@546,4MHz

6.3 Optimierung: Hardwarebeschleuniger auf Cluster- und SoC-Ebene

159

können immerhin 22,77 bzw. 23,15 Mio. Pakete pro Sekunde verarbeitet werden. Die 64-Bit-
Schaltungen haben aufgrund ihrer größeren ALU einen deutlich längeren kritischen Pfad, der diese
Reduktion der maximal erreichbaren Taktfrequenz bewirkt. Bei der Paketgröße von 1518 Byte ni-
velliert sich der Anteil der fixen Berechnungskosten und die 64-Bit-Varianten erzielen eine deutlich
höhere Effizienz als bei 44-Byte-Paketen. Hier liegt die pro Sekunde verarbeitbare Datenmenge bei
3757 bzw. 3834 MByte pro Sekunde, im Gegensatz zu 2146 bzw. 2110 MByte pro Sekunde, also
ca. 80 % höher als bei der 32-Bit-Realisierung.

In [163] wird ebenfalls eine Verarbeitungseinheit zur Berechnung der Internet Checksum vorges-
tellt. Der beschriebene Funktionsumfang ähnelt dem des hier präsentierten Ansatzes allerdings nur
zum Teil, da der GigaNetIC-Hardwarebeschleuniger parametrisierbar ist und so auch größere Da-
tenbreiten als 32 Bit verarbeiten kann. Die Realisierung aus [163] liegt in einer 180-nm-
Standardzellentechnologie vor und beansprucht eine Fläche von mindestens 0,171 mm² bei einer
möglichen Taktfrequenz von 381 MHz. Skaliert man die Fläche mit Hilfe der S-Parameter (vgl.
Kapitel 3, Definition 29) z. B. auf die 130-nm-Technologie des GigaNetIC-Hardware-
beschleunigers, so ergäbe sich eine wohlwollend abgeschätzte Fläche von:

2
2 2180

0,171 0,0892
130

nm
mm mm

nm

−
 ⋅ = 
 

, was, verglichen mit den 0,0157 mm² [118] meiner Realisie-

rung, mehr als dem 5,7-fachen der Fläche entspräche. Die Taktfrequenz ergäbe nach der Skalierung

zu
1

180
381 528

130

nm
MHz MHz

nm
 ⋅ = 
 

, was ebenfalls äußerst positiv geschätzt ist, betrachtet man z. B.

die Relationen zwischen den in dieser Arbeit erstellten 130-nm- und den 90-nm-Implemen-
tierungen. Gleichgesetzt mit dem Ansatz aus [163], erreicht der reine IP-Headercheck-Hardware-
beschleuniger des GigaNetIC-Systems ohne zusätzlichem Wrapper eine maximale Betriebsfrequenz
von 1,69 GHz [118]. Dies stellt einen deutlichen Vorsprung um mehr als Faktor drei dar. Betrachtet
man den erreichbaren Durchsatz beider Varianten, so liegt dieser nach der Notation aus [163] bei
beiden Realisierungen bei 32 Bit pro Sekunde und ist damit lediglich abhängig von der maximalen
Betriebsfrequenz. So resultierte daraus bei der GigaNetIC-Variante ein Geschwindigkeitsvorteil von
ebenfalls Faktor 3,2. Angesichts dieser Werte wird deutlich, dass es sich bei dem GigaNetIC-IP-
Headercheck-Hardwarebeschleuniger um eine äußerst ressourceneffiziente Implementierung han-
delt, deren spezieller Aufbau sie derart leistungsfähig macht. Ferner kann durch Verwendung der
Varianten größerer Datenbreite der Durchsatz nochmals gesteigert werden.

Abbildung 6-20 zeigt die jeweils benötigte Fläche für die Realisierung des IP-Headercheck-
Hardwarebeschleunigers in Abhängigkeit von der geforderten Taktfrequenz und Technologie. Es
zeigt sich, wie zu erwarten war, dass, je höher die Anforderungen an die zu realisierende Taktfre-
quenz sind, desto mehr Fläche wird beansprucht. Bzgl. der 32-Bit-Variante in 90-nm-Technologie
z. B. entspricht dies bei einer Steigerung der Frequenz um den Faktor 2,7 mehr als 68 % Flächen-
zuwachs. Die Realisierung der 32-Bit-breiten Variante des IP-Headercheck-Hardwarebeschleu-
nigers entspricht in etwa einer Systemkomplexität von weniger als 6000 bzw. 14200 Gatteräquiva-
lenten bei der 64-Bit-breiten Implementierung.

Kapitel 6. Optimierung der Multiprozessorarchitektur

160

Abbildung 6-20: Flächenvergleich der verschiedenen IP-Headercheck-Implementierungen

Die hier präsentierten Werte zeigen, dass bei Integration der Beschleuniger in das GigaNetIC-
System abgewogen werden sollte, welche Position für die Hardwarebeschleuniger gewählt wird.
Bei einer genaueren Spezifikation der Zielapplikation können die zu erwartende Leistungsfähigkeit
des Systems sowie die erforderliche Konfiguration mit Hilfe der vorgestellten Simulations-
umgebungen (vgl. Kapitel 5) ermittelt werden. Sollte eine Kopplung an den lokalen Bus, der in der
Regel eine geringere Frequenz aufgrund der angeschlossenen Prozessorelemente zulässt, genügen,
so reicht die flächeneffizientere Implementierung aus. Erfordert die Spezifikation hingegen maxi-
malen Durchsatz, so sollte eine lose Kopplung der leistungsfähigsten, aber auch flächenintensivsten
Variante angestrebt werden. In diesem Fall ist der Betrieb mit einer deutlich höheren Taktfrequenz
als die der lokalen Busse möglich. Die vorgestellten Kapselungen (Wrapper) können erforderli-
chenfalls die Umsynchronisierung auf den Takt des angeschlossenen Kommunikationsmediums
übernehmen. Zur Steigerung der Ressourceneffizienz empfiehlt es sich, Überlegungen dieser Art
stets anzustellen, falls dies im Vorfeld der Implementierung aufgrund genügender Informationen
bzgl. des späteren Anwendungsszenarios möglich ist.

Abbildung 6-21: Vergleich Leistungsaufnahme der verschiedenen IP-Headercheck-Implementierungen in Ab-

hängigkeit von der Betriebsfrequenz und der entsprechenden Realisierung

Ähnlich verhält es sich mit der Leistungsaufnahme und zwar aufgrund der linearen Abhängigkeit
von der Frequenz, die in die dynamische Verlustleistung eingeht, und der zusätzlich größeren Flä-
che der schnelleren Varianten. Die entsprechenden Werte sind in Abbildung 6-21 dargestellt. Aller-
dings ist zu bemerken, dass diese Angaben auf angenommenen, statistischen Schaltwahrscheinlich-

0,
01

6

0,
01

9 0,
02

7

0,
02

6

0,
02

7

0,
03

0

0,
02

5

0,
02

9

0,
04

8

0,
04

4

0,
04

8 0,
05

3

0,000

0,010

0,020

0,030

0,040

0,050

0,060

200,0 333,3 546,4

Taktrate [MHz]

F
lä

ch
e

[m
m

²]

32 Bit / 90nm 32 Bit / 130nm 64 Bit / 90nm 64 Bit / 130nm

546 556 510 500

4,
3

4,
1

6,
0

9,
8

2,
0

7,
4

2,
4

2,
4

1,
3

3,
2

5,
5

3,
6

0,0

2,0

4,0

6,0

8,0

10,0

12,0

200,0 333,3 546,4

Taktrate [MHz]

dy
na

m
is

ch
e

V
er

lu
st

le
is

tu
ng

[m

W
]

32 Bit / 90nm 32 Bit / 130nm 64 Bit / 90nm 64 Bit / 130nm

546 556 510 500

6.3 Optimierung: Hardwarebeschleuniger auf Cluster- und SoC-Ebene

161

keiten (50%S) des Synthesewerkzeugs beruhen. Hierbei wird eine 50-prozentige Schaltwahrschein-
lichkeit der Eingänge angenommen, deren Verhalten sich dann auf die Folgelogik fortpflanzt. Dies
spiegelt jedoch nicht die realen Stimuli der Schaltung wieder und kann so nur eine ungefähre Ein-
schätzung der Leistungsaufnahme liefern.

Abbildung 6-22: Verlustleistungsanalyse (für die 130-nm-Technologie) basierend auf statistischen Schaltwahr-

scheinlichkeiten (50%) der Gatter und durch Simulation gewonnener Schaltaktivitäten (AS)

Mit Hilfe der in Abschnitt 5.3 vorgestellten erweiterten PERFMON-Umgebung wurde deshalb zum
Vergleich die Leistungsaufnahme durch Annotierung der Schaltaktivitäten (AS) während der Lauf-
zeit und der Bearbeitung der iMix-Lastverteilung (vgl. Abschnitt 7.2.3) bestimmt. Die Analyse be-
zieht sich auf die 130-nm-Standardzellentechnologie und die IP-Headercheck-Variante mit
200 MHz Taktfrequenz. Abbildung 6-22 stellt die gewonnenen Ergebnisse für die Realisierung im
Typical-Case (TC) dar.

Die Fallunterscheidungen Best Case, Typical Case und Worst Case stellen drei unterschiedliche
Umgebungsbedingungen der 130- und 90-nm-Standardzellentechnologie dar, die die Eigenschaften
der Schaltung beeinflussen. Tabelle 6-4 zeigt die relevanten Parameter für die unterschiedlichen
Syntheseparameter.

Tabelle 6-4: Syntheseparameter für unterschiedliche Umgebungsbedingungen der Standardzellen

Betrachtet man die Leistungsaufnahme für typische Umgebungsbedingungen, so zeigt sich, vergli-
chen mit dem durch 50%S ermittelten Wert, bei der durch AS ermittelten Leistungsaufnahme ein
doppelt so hoher Wert bzgl. der Umladevorgänge der Leitungen. Die durch Schaltvorgänge der
Standardzellen hervorgerufene Verlustleistung ist um 33,9 % höher, wenn man die Werte mit Hilfe
von AS abschätzt. Dieses Ergebnis ist dadurch zu erklären, dass durch wahllose Beschaltung der
Eingänge bei der 50%S-Methode die eigentliche Funktion des Hardwarebeschleunigers nicht wie-
dergespiegelt wird und somit auch die ermittelte Leistungsaufnahme nur eine erste Abschätzung
sein kann. Die realistische, dynamische Verlustleistungsaufnahme unter typischen Bedingungen, die
mit Hilfe der AS-Methode ermittelt wurde, ist um 45,4 % höher, als es die reine Abschätzung des
Synthesewerkzeugs zunächst vermuten ließe. Die Verlustleistungsaufnahme des Hardwarebe-

130 nm 90 nm 130 nm 90 nm
Best Case BC 1,32 1,32 0 -40
Typical Case TC 1,2 1,2 25 27
Worst Case WC 1,08 1,08 125 125

Versorgungsspannung [V] Umgebungstemperatur [°C]
Syntheseparameter

1,3

1,9

45,4%
1,0

1,3

33,9%

0,3

0,6

80,9%

0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8
2,0

Le
is

tu
ng

sa
uf

na
hm

e
[m

W
]

50%S AS Fehler

Verbindungsnetzwerke

Zellintern

Gesamte dynamische Verlustleistung

Kapitel 6. Optimierung der Multiprozessorarchitektur

162

schleunigers von 1,9 mW bei 200 MHz beträgt dennoch nur ein Fünftel der Leistungsaufnahme des
N-Core-Prozessorkerns.

Abschließend lässt sich bemerken, dass, wenn es die Zeit und die Umstände (Anwendung muss be-
reits ausprogrammiert sein) erlauben, eine AS-basierte Ermittlung der dynamischen Verlustleistung
des Systems mit Hilfe der in dieser Arbeit vorgestellten Werkzeugkette ratsam ist. Dies ist vor Al-
lem dann der Fall, wenn bereits vor der Chiprealisierung Daten mit einer maximalen Abweichung
vom fertigen Chip im einstelligen Prozentbereich (vgl. Abschnitt 5.3) benötigt werden. Für eine
grobe Einstufung reicht die 50%S-Methode jedoch aus, liefert sie immerhin noch Werte die zumeist
in der gleichen Größenordnung der späteren Schaltung liegen.

Abbildung 6-23 zeigt die Größe der 32-Bit-Variante des IP-Headercheck-Hardwarebeschleunigers
im Vergleich zum S-Core nach der Platzierung und Verdrahtung der Standardzellen in 130-nm-
Technologie. Mit einer Kantenlänge von nur 0,156 mm beansprucht er lediglich 12 % der Fläche
des Prozessorkerns, wobei seine eigentliche Logikfläche durch Füllzellen (Filler Cells) um 34 %
ansteigt, im Gegensatz zu nur 10 % Flächenzuwachs beim S-Core.

Abbildung 6-23: IP-Headercheck-Hardwarebeschleuniger im Vergleich zum S-Core

in einer 130-nm-Standardzellentechnologie (GDS-II-Plot)

Die von mir implementierte Spezialhardware benötigt lediglich acht Taktzyklen für eine Überprü-
fung des IP-Headers inklusive der Berechnung der Checksumme und kann mit max. 1,7 GHz im
Typical Case bzw. 1,1 GHz im Worst Case betrieben werden (130-nm-Standarzellentechnologie).
Dies ermöglicht 213 Mio. bzw. 138 Mio. Headerchecks pro Sekunde im Vergleich zu 921 k bzw.
2,39 Mio. Headerchecks pro Sekunde, die vom S-Core-Prozessor bewältigt werden können. Dies
bedeutet somit eine rein funktionale Beschleunigung von 89,2 (Typical Case) / 57,7 (Worst Case)
bzw. 13,5, wenn die gleiche Taktfrequenz wie beim Prozessor angesetzt wird [118].

Weiterführende Informationen zu der Leistungsfähigkeit des IP-Headercheck-Hardwarebeschleu-
nigers für dedizierte Anwendungsszenarien werden in Kapitel 7 und in [118][159][109][131] gege-
ben. Viele der in diesem Abschnitt angestellten Untersuchungen und Methoden, wurden ebenfalls
auf die im Folgenden nur kurz vorgestellten, weiteren Hardwarebeschleuniger des GigaNetIC-
Systems angewendet und zeigten größtenteils ähnlich positive Ergebnisse bzgl. Flächenersparnis,
Leistungsaufnahmereduktion und Performanzerhöhung.

IP-Header-Check

0,
15

6
m

m

0,156 mm

0,
45

1
m

m

0,451 mm

S-Core

� Beschleunigung von bis zu 89,2

12% der Fläche

6.4 Kostenanalyse am Beispiel einer Netzwerkanwendung

163

6.4 Kostenanalyse am Beispiel einer Netzwerkanwendung

Die Vorgehensweise bei der Kostenbetrachtung und der sich ggf. anschließenden Systemoptimie-
rung wurde in Abbildung 3-3 vorgestellt. Im Folgenden sollen die unterschiedlichen Lösungen zur
Verarbeitung von IP-/Netzwerk-Paketen nach der geschilderten Vorgehensweise exemplarisch einer
Kostenbetrachtung nach Definition 9, Kapitel 3, unterzogen werden, und zwar ähnlich der in Ab-
schnitt 7.7 geschilderten Anwendung und u. a. auf den zuvor realisierten Hardwarebeschleunigern
aufbauend.

Am Anfang der Kostenanalyse steht die Festlegung der Zielfunktionen ZF (vgl. Definition 6) der
einzelnen Kostenmaße K (vgl. Definition 5). Hierzu müssen die relevanten Bewertungsmaße BM
(vgl. Definition 4) im Hinblick auf die Anwendung und die damit verbundenen Randbedingungen R
(vgl. Definition 7) und Schranken S (vgl. Definition 8) festgelegt werden. Diese bestimmen dann
sowohl die Gewichtungen ci der ausgewählten Bewertungsmaße BMi in ZF als auch die Gewich-
tungen , , und P A T Fα α α α der Kostenmaße K in der Kostenfunktion CF. Bei der Wahl der Ge-

wichtungen wird gemäß Abschnitt 3.1 folgender Zusammenhang gewählt: 1i i
i i

c α= =∑ ∑ , so dass

die relevantesten Bewertungsmaße BMi bzw. Kostenmaße iK mit dem größten ci bzw. iα bedacht

werden. Um einen einheitenlosen Kostenwert zu erhalten, sind die Gewichtungen ci mit der rezip-
roken Einheit des jeweiligen Bewertungsmaßes BMi versehen.

Die jeweiligen Werte der Bewertungsmaße BMi der Realisierungsvarianten RVi (vgl. Definition 11)
müssen ermittelt werden und ergeben nach Einsetzen in die Kostenfunktion CFRVi letztendlich die
Kosten der jeweiligen Realisierung. Da der hier entwickelte Ansatz im Sinne der Pareto-
Optimierung ()paretoCF RVi = min! (vgl. Definition 10) eine Minimierung der Kosten vorsieht, ist

die Realisierung mit den geringsten Kosten als vielversprechendste Lösung anzusehen.

Zunächst gilt es also die Randbedingungen und Bewertungsmaße festzulegen. Im Falle der Funkti-
on zur Prüfung von Paketdaten (vgl. Abschnitt 6.3.1.1) gibt es folgende Anforderungen, die nach
den vier Kostenmaßen P, A, T und F (vgl. Definition 5) aufzuschlüsseln sind:

Die Anwendung ist relevant für alle beteiligten Netzwerkteilnehmer, sowohl mobile, als auch Hoch-
leistungssysteme im Kernnetzwerk, d. h. hier sollte, wenn möglich, näher definiert werden, wo das
System eingesetzt werden soll, da die Fläche A und die Leistungsaufnahme P in Abhängigkeit vom
Einsatzort unterschiedlich stark gewichtet werden. Die Prüffunktion ist besonders rechenintensiv
und bearbeitet teilweise sehr zeitkritische Daten, so dass die Performanz T, in gewissen Grenzen
abhängig vom Einsatzort, eine wichtige Rolle einnimmt. Die Funktion ist fest definiert und ändert
sich für die aktuellen Protokolle nicht mehr, was dem Kostenmaß Zukunftssicherheit bzw. Flexibili-
tät F eine geringe Gewichtung zuweist. Die Wiederverwendbarkeit wird bei diesem Kostenmaß
noch am stärksten gewichtet, da davon ausgegangen wird, dass aufgrund der Standardisierung der
gegebenen Anwendung auch zukünftige Systeme auf diese Einheiten aufbauen werden.

Beispielhaft sollen nun die Realisierungsvarianten der Paketprüffunktion RV(PaketPrüfung)i für ein
mobiles Endgerät für u. a. hochpriore Datendienste (z. B. Voice over IP) mittels der vorgestellten
Methode analysiert werden. Die Festlegung der einzelnen Gewichtungen ist in gewissen Grenzen
sicherlich subjektiv und bedarf zumeist eingehender Diskussion seitens aller am Entwurfs- und

Kapitel 6. Optimierung der Multiprozessorarchitektur

164

Vermarktungsprozess beteiligten Stellen, dennoch lassen sich bereits anhand grober Festlegungen
erste Abschätzungen für potentielle Lösungsvarianten treffen.

Zunächst erfolgt die Festlegung der Zielfunktionen ZF der einzelnen Kostenmaße K , wobei die
jeweiligen Bewertungsmaße BM in additiver Form (3.4) miteinander verknüpft werden. Als Bewer-
tungsmaß für die Leistungsaufnahme P wird BMP = Pdyn gewählt, also die dynamische Verlustleis-
tung. Die statische Verlustleistung wird in diesem Zusammenhang aufgrund der verwendeten Tech-
nologie vernachlässigt. Die dynamische Verlustleistung setzt sich aus den Leistungsanteilen der
eigentlichen Verarbeitungseinheit (PE), dem evtl. benötigten Controller (Ctrl), dem verwendeten
Speicher (Mem) und der Kommunikationsstruktur (Com) zusammen. Es wird folgende Zielfunktion
(6.1) für P angesetzt:

, , , , , , , ,

, , , ,

:

mit 0,7, 0,2, 0,05, 0

dyn PE dyn PE dyn Ctrl dyn Ctrl dyn Mem dyn Mem dyn Com dyn Com stat stat

dyn PE dyn Ctrl dyn Mem dyn Com stat

ZF c P c P c P c P c P

c c c c c

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅

= = = = =

P
 (6.1)

Die eigentliche Verarbeitungseinheit (PE) geht mit der größten Gewichtung in die Zielfunktion ein,
ein evtl. zur Ansteuerung eines spezialisierten Hardwarebeschleunigers (PE) benötigter Controller
(Ctrl) wird weniger stark gewichtet. Er kann zusätzliche Aufgaben verrichten und wird deshalb
nicht zu 100 Prozent der Paketprüffunktion zugeordnet. In dem hier betrachteten Szenario wird der
N-Core als Controller für den Hardwarebeschleuniger eingesetzt.

Für die Fläche A wird die Zielfunktion (6.2) aufgestellt. Die Fläche PEA für die benötigte Verarbei-

tungseinheit wird mit der höchsten Gewichtung versehen, wohingegen sich die Flächen für den evtl.
benötigten Controller (Ctrl), den benötigten Speicher MemA und für die zugrundeliegende Kommu-

nikationsinfrastruktur ComA bei diesem Szenario für die einzelnen Implementierungen kaum unter-

scheiden und deshalb weniger stark gewichtet werden.

:

mit 0,8, 0,1, 0,05
PE PE Ctrl Ctrl Mem Mem Com Com

PE Ctrl Mem Com

ZF c c c c

c c c c

= ⋅ + ⋅ + ⋅ + ⋅
= = = =

A A A A A
 (6.2)

Für die Performanz T wird die Ausführungszeit Tex,PE (vgl. Definition 18) der Verarbeitungseinheit
(PE) als Bewertungsmaß eingesetzt. Auch der Jitter J ist ein relevantes Maß für viele Netzwerksze-
narien, kann allerdings bei den hier vorgestellten Realisierungsvarianten systembedingt vernachläs-
sigt werden. Auch der Durchsatz D (vgl. Definition 19) ist ein weiteres wesentliches Bewertungs-
maß der Performanz. Er spiegelt die Leistungsfähigkeit des gesamten Systems wider. Im Gegensatz
zu der zuvor genannten Verarbeitungszeit berücksichtigt er zusätzlich die Leistungsfähigkeit der
Kommunikationsstruktur und die Speicherlatenz. Dies führt zu der in (6.3) angegebenen Zielfunkti-
on.

 , , ,: , mit 1, 0Tex PE Tex PE J J D D Tex PE J DZF c c c c c c= ⋅ + ⋅ + ⋅ = = =T T T T (6.3)

Im Zusammenhang mit dem Kostenmaß Zukunftssicherheit bzw. Flexibilität F werden folgende
Bewertungsmaße BM berücksichtigt: Die Wiederverwendbarkeit WV (vgl. Definition 36) ist für
eine derart essentielle Funktion zur Prüfung von Netzwerkpaketen von besonderer Bedeutung. Der
Einsatz in allen Bereichen des Netzwerks heute und in naher Zukunft erfordert eine gute Portierbar-
keit der Realisierungsvariante auch auf neue Technologien. Aufgrund der Beschreibung in einer
Hardwarebeschreibungssprache lassen sich die entworfenen Hardwarebeschleuniger relativ einfach
auf andere Technologien portieren. Bei der reinen Softwarelösung (N-Core SW) ist die Wiederver-

6.4 Kostenanalyse am Beispiel einer Netzwerkanwendung

165

wendbarkeit noch höher einzustufen, da aufgrund der Realisierung der Funktionalität in der
Hochsprache C eine noch leichtere, plattformübergreifende Portierung möglich ist.

Die Programmierbarkeit PG (vgl. Definition 37) nimmt in diesem Szenario einen weniger wichti-
gen Stellenwert ein, da sich aufgrund der festen Spezifikation des Algorithmus keine Änderungen
der Funktionalität für die etablierten Protokolle ergeben. Lediglich für zukünftige Protokolle, die
ggf. zusätzliche Operationen erfordern, wäre ein gewisses Maß an Flexibilität vorteilhaft.

Ein weiterer Aspekt ist die Fehlertoleranz FT (vgl. Definition 33), die für massiv parallele Systeme
in zunehmendem Maße an Bedeutung gewinnt, allerdings für das hier betrachtete Szenario derzeit
noch von nur geringer Signifikanz ist. Die Fehlertoleranz, die das betrachtete System ermöglicht,
liegt in der softwaregestützten Kontrollfunktion des N-Cores begründet, der evtl. bei eigenem Fehl-
verhalten oder fehlender Rückmeldung seitens eines Hardwarebeschleunigers eingreifen kann. Die-
se Möglichkeit ist allerdings nur ein einfaches Mittel, so dass keine hohe Bewertung bzgl. dieses
Gesichtspunktes gegeben werden kann. Die sich aus den obigen Betrachtungen ergebende Zielfunk-
tion ist in (6.4) definiert.

 : , mit 0,8, 0,1WV WV PG PG FT FT WV PG FTZF c c c c c c= ⋅ + ⋅ + ⋅ = = =F F F F (6.4)

Im Anschluss an die Definition der Zielfunktionen für die vier Kostenmaße kann nun die Kosten-
funktion CFRV(PaketPrüfung)i zum oben geschilderten Anwendungsszenario aufgestellt werden. Die
eingesetzten Werte der Bewertungsmaße jeder Realisierungsvariante RV(PaketPrüfung)i ergeben
die spezifischen Kosten der jeweiligen Lösung. Die Variante mit den geringsten Kosten repräsen-
tiert die vielversprechendste Realisierung. In Bezug auf die betrachteten Ansätze stellt sie eine disk-
rete pareto-optimale Auswahl (nach Definition 13) dar.

Im Falle des oben geschilderten Anwendungsszenarios werden die Kostenfunktionen

()RV PaketPrüfung iCF (6.5) für die einzelnen Realisierungsvarianten aufgestellt. Die Festlegung der Ziel-

funktionsgewichtsfaktoren korrespondiert mit den Anforderungen des Einsatzortes und priorisiert
Performanz T und Leistungsaufnahme P, gefolgt von der Fläche A. Die Flexibilität F nimmt mit
einer Gewichtung von 0,05 in diesem Szenario nur eine untergeordnete Rolle ein. Zusätzlich wird
aufgrund der differierenden Größenordnungen der einzelnen Zielfunktionen eine Normierung aller
Zielfunktionen nach (3.10) vorgenommen.

() ()
()

() ()

() ()

()

: :
:

max(:) max(:)

: :

max(:) max(:

RV PaketPrüfung i RV PaketPrüfung i
RV PaketPrüfung i P A

RV PaketPrüfung RV PaketPrüfung

RV PaketPrüfung i RV PaketPrüfung i
T F

RV PaketPrüfung RV

ZF ZF
CF

ZF ZF

ZF ZF

ZF ZF

α α

α α

+

+ +

P A

P A

T F

T F ()

)

mit 0,35, 0,2, 0,4 und 0,05

PaketPrüfung

P A T Fα α α α= = = =

 (6.5)

Tabelle 6-5 zeigt die Werte für die genannten Bewertungsmaße der einzelnen Realisierungsvarian-
ten. Es wurden als Grundlage für die Analyse die in Abschnitt 6.3.1.5 dargelegten Synthesewerte
des Hardwarebeschleunigers und die in Tabelle 8-3, Seite 224 präsentierten Werte aller weiteren
Systemkomponenten verwendet. Ausgangspunkt des Hardwaresystems ist ein N-Core, entweder als
Controller (Ctrl) zur Ansteuerung eines Wishbonebus-gekoppelten Hardwarebeschleunigers (WB
HW Acc, vgl. Abschnitt 7.7) oder als Verarbeitungseinheit (PE / N-Core SW) nebst Speicher und
Wishbonebus. Angenommen wird weiterhin, dass, augrund des Anwendungsszenarios, nur ein Pro-

Kapitel 6. Optimierung der Multiprozessorarchitektur

166

zessor und ein Hardwarebeschleuniger am Bus aktiv sind. Es gelten somit die Werte für Kommuni-
kation und Kalkulation aus Abbildung 7-21 a), wobei für die 64-Bit-Varianten aufgrund des 32-Bit-
breiten Busses gleiche Taktzahlen für Kommunikation, aber entsprechend geringere Werte zur Kal-
kulation angesetzt werden (vgl. Abschnitt 6.3.1.5). Zu den Daten der Hardwarebeschleuniger wer-
den zusätzlich die Werte der Wrapper (vgl. Tabelle 4-5) hinzugezählt, wobei zu bemerken ist, dass
die 64-Bit-Variante ca. 1,5 mal so groß wie die 32-Bit-Variante ausfällt. Zur Betrachtung der Ma-
ximalfrequenzen des Hardwarebeschleunigers wurde hypothetisch angenommen, dass der N-Core
bei gleichem Flächenbedarf ebenfalls mit den betreffenden Frequenzen betreibbar ist. In der Reali-
tät müsste auf eine andere CPU als Controller zurückgegriffen werden, die mit der jeweiligen Fre-
quenz noch zu betreiben ist, vgl. Tabelle 2-3.

Tabelle 6-5: Auflistung der kostenfunktionsrelevanten Daten der Realisierungsvarianten

und der resultierenden Kosten

Abbildung 6-24 zeigt die sich nach (6.5) ergebenden Kosten sowie deren Zusammensetzung anhand
der Anteile der einzelnen Zielfunktionen für alle Realisierungsvarianten. Für die oben aufgestellten
Randbedingungen zeigt sich das System RV 8 als das kostenoptimale in diesem Vergleich. Auf-
grund der relativ hohen Anforderungen an Performanz und der zugleich geringen Leistungsaufnah-
me liefert die Kostenfunktion die geringsten Kosten für ein System mit dem schnellen 64-Bit-
Hardwarebeschleuniger bei gleichzeitig geringster Taktfrequenz von 200 MHz in der 90-nm-
Technologie. Die höheren Taktfrequenzen erhöhen die Kosten für die Verlustleistung, 32-Bit-breite
Beschleuniger liefern weniger Performanz. Die Software-basierten Lösungen sind sowohl in puncto
Verlustleistungsaufnahme als auch bzgl. der Performanz nicht konkurrenzfähig.

Abbildung 6-25 stellt die Kosten für ein Anwendungsszenario mit anderen Randbedingungen dar:
Die Performanz wurde hier als die dominierende Charakteristik ausgewählt, die Gewichtungen, die
dieser Analyse zugrunde liegen, lauten 0,05, 0,05, 0,85 und 0,05

P A T F
α α α α= = = = . Die Ge-

wichtungen innerhalb der einzelnen Zielfunktionen wurden identisch belassen. Ein derartiges An-
forderungsschema wäre repräsentativ für z. B. Komponenten des Zugangsnetzwerks (vgl. Abschnitt
7.6), wobei ggf. höhere Anforderungen an die Fehlertoleranz bestünden. Unter den neuen Bedin-

Pdyn,PE

[mW]
Pdyn,Ctrl

[mW]
Pdyn,Mem

[mW]
Pdyn,Com

[mW]
APE

[mm²]
ACtrl

[mm²]
AMem

[mm²]
ACom

[mm²]
TTex,PE

[µs]
FWV

[%]
FPG

[%]
FFT

[%]

RV 1 32 Bit / 200 MHz 1,300 10,800 35,600 0,010 0,030 0,160 0,466 0,050 9,295 80 5 5 0,239
RV 2 64 Bit / 200 MHz 2,000 10,800 35,600 0,010 0,050 0,160 0,466 0,050 3,675 80 5 5 0,243
RV 3 32 Bit / 333,3 MHz 2,400 17,998 59,327 0,010 0,031 0,160 0,466 0,050 5,578 80 5 5 0,271
RV 4 64 Bit / 333,3 MHz 3,600 17,998 59,327 0,010 0,054 0,160 0,466 0,050 2,205 80 5 5 0,292
RV 5 32 Bit / 556 MHz 4,100 29,484 97,188 0,010 0,034 0,160 0,466 0,050 3,344 80 5 5 0,337
RV 6 64 Bit / 500 MHz 5,500 27,000 90,780 0,010 0,059 0,160 0,466 0,050 1,470 80 5 5 0,357
RV 7 32 Bit / 200 MHz 2,400 9,000 10,200 0,006 0,020 0,120 0,466 0,020 9,295 80 5 5 0,210
RV 8 64 Bit / 200 MHz 3,200 9,000 10,200 0,006 0,030 0,120 0,466 0,020 3,675 80 5 5 0,205
RV 9 32 Bit / 333,3 MHz 4,300 14,999 16,998 0,006 0,023 0,120 0,466 0,020 5,578 80 5 5 0,236
RV 10 64 Bit / 333,3 MHz 6,000 14,999 16,998 0,006 0,034 0,120 0,466 0,020 2,205 80 5 5 0,251
RV 11 32 Bit / 546 MHz 7,400 24,570 28,356 0,006 0,031 0,120 0,466 0,020 3,405 80 5 5 0,298
RV 12 64 Bit / 510 MHz 9,800 22,950 28,356 0,006 0,053 0,120 0,466 0,020 1,441 80 5 5 0,332
RV 13 N-Core (SW) 200 MHz 10,800 0,000 35,600 0,010 0,160 0 0,466 0,050 97,475 95 100 10 0,744
RV 14 N-Core (SW) 333,3 MHz 17,998 0,000 59,327 0,010 0,160 0 0,466 0,050 58,491 95 100 10 0,668
RV 15 N-Core (SW) 556 MHz 30,024 0,000 98,968 0,010 0,160 0 0,466 0,050 35,063 95 100 10 0,712
RV 16 N-Core (SW) 200 MHz 9,000 0,000 10,200 0,006 0,120 0 0,466 0,020 97,475 95 100 10 0,667
RV 17 N-Core (SW) 333,3 MHz 14,999 0,000 16,998 0,006 0,120 0 0,466 0,020 58,491 95 100 10 0,568
RV 18 N-Core (SW) 556 MHz 25,020 0,000 28,356 0,006 0,120 0 0,466 0,020 35,063 95 100 10 0,574

Werte des N-Cores wurden hypothetisch hochgerechnet

Realisierungsvariante
Bewertungsmaß

Werte beziehen sich auf maximal realisierbare Taktfrequenz der Verarbeitungseinheit (PE),

13
0n

m
90

nm
13

0n
m

90
nm

Kosten

6.4 Kostenanalyse am Beispiel einer Netzwerkanwendung

167

gungen liefert ein Kostenvergleich die Realisierungsvariante RV 10 als „pareto-optimale“ Lösung.
Dieses System bietet eine hohe Performanz bei moderater Verlustleistung. Würde ein System mit
nahezu maximaler Performanz gesucht und würden die Gewichtungen der Kostenfunktion zu

 0,01 und 0,97
P A F T

α α α α= = = = gesetzt, so qualifizierte sich RV 12 als optimaler Kandidat.

Abbildung 6-24: Kostenvergleich der unterschiedlichen Realisierungsvarianten zur Paketprüfung,
bei einer Wahl der Gewichtungen zu 0,35, 0, 2, 0, 4 und 0, 05

P A T F
α α α α= = = =

Abbildung 6-26 zeigt die Ergebnisse einer anderen Spezifikation mit den Gewichtungen der Kos-
tenfunktion 0,49 und 0,01

P F T A
α α α α= = = = , wie sie für sehr zuverlässige Systeme mit be-

schränkten Ressourcen wie z. B. Satelliten oder Weltraumsonden zutreffen könnten. In diesem Fall
wären Performanz und Flächenbedarf den beiden anderen Kostenmaßen stark untergeordnet, und
die gegebenen Anforderungen würden von RV 16 am besten erfüllt, einem prozessorbasierten Sys-
tem mit geringer Frequenz in der moderneren Technologie. Zusätzliche Impulse könnte die Einbe-
ziehung der Fertigungskosten für die jeweilige Standardzellentechnologie geben, diese dürfen aber
hier aus Gründen der Geheimhaltung nicht genannt werden.

In diesem Abschnitt wurde anhand beispielhafter Analysen die Anwendung des kostenfunktionsba-
sierten Auswahlverfahrens (vgl. Kapitel 3) zur Bestimmung eines diskreten pareto-optimalen Sys-
tems (nach Definition 13) für ein spezifiziertes Anwendungsszenario vorgestellt. Die Bewertung
mit Hilfe der Kostenfunktionen unterstützt den Systemarchitekten, aber auch den kaufmännischen
Bereich bei der Auswahl eines ressourceneffizienten Entwurfs. In den gezeigten Untersuchungen
erscheinen die gefundenen Lösungen nach kurzer Diskussion bereits als die plausibelsten, dies ist
aufgrund der gewollten Einfachheit des Beispiels nicht anders zu erwarten. Bei komplexeren Sys-
temen, wie z. B. Chip-Multiprozessoren mit deutlich mehr Komponenten und diffizileren Anforde-
rungen liegen die Lösungen selten so auf der Hand. Gerade hier kann eine formale Bewertung ihre
Leistungsfähigkeit beweisen. Eine automatisierte Bewertung mit Hilfe dieser Methode wäre eben-

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

K
os

te
n

RV 1 RV 2 RV 3 RV 4 RV 5 RV 6 RV 7 RV 8 RV 9 RV 10 RV 11 RV 12 RV 13 RV 14 RV 15 RV 16 RV 17 RV 18
Realisierungsvariante

F

T

A

P

Kapitel 6. Optimierung der Multiprozessorarchitektur

168

falls eine sinnvolle Erweiterung des in Abschnitt 7.5 vorgestellten DSLAM-System-Explorers. Die
Integration der notwendigen Maßnahmen gestaltete sich zudem relativ einfach.

Abbildung 6-25: Kostenvergleich der unterschiedlichen Realisierungsvarianten zur Paketprüfung,
bei einer Wahl der Gewichtungen zu 0, 05, 0, 05, 0,85 und 0, 05

P A T F
α α α α= = = =

Abbildung 6-26: Kostenvergleich der unterschiedlichen Realisierungsvarianten zur Paketprüfung,
bei einer Wahl der Gewichtungen zu 0, 49 und 0, 01

P F T A
α α α α= = = =

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

K
os

te
n

RV 1 RV 2 RV 3 RV 4 RV 5 RV 6 RV 7 RV 8 RV 9 RV 10 RV 11 RV 12 RV 13 RV 14 RV 15 RV 16 RV 17 RV 18
Realisierungsvariante

F

T

A

P

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

K
os

te
n

RV 1 RV 2 RV 3 RV 4 RV 5 RV 6 RV 7 RV 8 RV 9 RV 10 RV 11 RV 12 RV 13 RV 14 RV 15 RV 16 RV 17 RV 18
Realisierungsvariante

F

T

A

P

6.5 Implementierte anwendungsspezifische Hardwarebeschleuniger

169

6.5 Implementierte anwendungsspezifische Hardwarebeschleuniger

Im Folgenden werden wesentliche Erweiterungen der Hardware, die im Rahmen dieser Arbeit für
die GigaNetIC-Architektur, zumeist für netzwerkspezifische Anwendungsszenarien (vgl. Kapitel 7)
entwickelt wurden, kurz aufgelistet.

Abbildung 6-27: Übersicht der implementierten Erweiterungen zur Performanzsteigerung

des GigaNetIC-Systems für die 130-nm-Standardzellentechnologie

Abbildung 6-27 zeigt eine Auswahl der vorgenommenen Erweiterungen, angefangen bei der Erwei-
terung der Prozessorkerns durch zusätzliche Funktionalitäten (vgl. Abschnitt 4.3.2), die zunächst
keine Beschleunigung hervorrufen, aber die Verwendbarkeit des Systems deutlich erhöhen.

Im nächsten Schritt kommen dann die in Abschnitt 6.2 vorgestellten Instruktionssatzerweiterungen
hinzu. Diese erhöhen den Flächenbedarf nur marginal, vermögen aber die Leistungsfähigkeit für die
betrachteten Anwendungen bis zu 25 % zu beschleunigen.

Ein weiteres Mittel zur Erhöhung der Verarbeitungsgeschwindigkeit stellen die eng-gekoppelten
Hardwarebeschleuniger dar. Im Rahmen dieser Arbeit wurden mehrere Hardwarebeschleuniger zur
Generierung und Prüfung von unterschiedlichen CRC(Cyclic Redundancy Check)-Prüfsummen
entwickelt. Mit der eng-gekoppelten CRC-Hardwareerweiterung wird eine Beschleunigung um den
Faktor 15 gegenüber einer reinen Software-Implementierung erzielt [116]. In [118] konnte mit Hilfe
einer neuen Beschleuniger-Architektur für CRC8 und CRC32 sogar eine Geschwindigkeitssteige-
rung gegenüber der Prozessorimplementierung von 81 bzw. sogar 437 bei loser Kopplung und ma-
ximaler Betriebsfrequenz erreicht werden.

Hardwarebeschleuniger dieser Stufe mit einer losen Kopplung an das System, mit ggf. sogar deut-
lich höherer Betriebsfrequenz, erzielen in der Regel weitaus größere Beschleunigungen, benötigen
jedoch auch mehr Fläche und Entwicklungsaufwand. Hierzu zählen ein IP-Filter-Modul zur Prü-

+ 0,004mm²1,11+ / 1,25*Befehlssatzerweiterungen: ldwxorlsl8, andshr,
orshl8/16/24, ldwaddi, ixwandshr, ldwixw

+ 0,0001mm²1,096XORLDW-Befehlssatzerweiterung

+ 0,001mm²1,12IXD,IXQ-Befehlssatzerweiterung

2,86mm²
/ 0,028mm²

6IP-Filter (inkl. 13kB SRAM)

+ 0,197mm²175AES-Entschlüsselung
HW-Beschleuniger

+ 0,124mm²160
AES-Verschlüsselung
HW-Beschleuniger

abhängig von der Konfiguration
und der Parallelisierbarkeit der

Anwendung
Parallelität / Multiprozessor-Cache

+16%
* +695%

1,0Net-S-Core-Architekturerweiterung

+ 0,72mm²45 / 1230Content Addressable Memory (CAM)

+ 0,033mm²13IP-Headercheck

+ 0,014mm²8 / 15 / 81 / (437)CRC-Hardwarebeschleuniger

Fläche
@130nm

Beschleunigung
@200MHz

Erweiterung

+ 0,004mm²1,11+ / 1,25*Befehlssatzerweiterungen: ldwxorlsl8, andshr,
orshl8/16/24, ldwaddi, ixwandshr, ldwixw

+ 0,0001mm²1,096XORLDW-Befehlssatzerweiterung

+ 0,001mm²1,12IXD,IXQ-Befehlssatzerweiterung

2,86mm²
/ 0,028mm²

6IP-Filter (inkl. 13kB SRAM)

+ 0,197mm²175AES-Entschlüsselung
HW-Beschleuniger

+ 0,124mm²160
AES-Verschlüsselung
HW-Beschleuniger

abhängig von der Konfiguration
und der Parallelisierbarkeit der

Anwendung
Parallelität / Multiprozessor-Cache

+16%
* +695%

1,0Net-S-Core-Architekturerweiterung

+ 0,72mm²45 / 1230Content Addressable Memory (CAM)

+ 0,033mm²13IP-Headercheck

+ 0,014mm²8 / 15 / 81 / (437)CRC-Hardwarebeschleuniger

Fläche
@130nm

Beschleunigung
@200MHz

Erweiterung

ohne / * mit Speicher

+ bei DSLAM / * bei IPSec

A
uf

w
an

d
/ F

lä
ch

e
/ B

es
ch

le
un

ig
un

g
A

uf
w

an
d

/ F
lä

ch
e

/ B
es

ch
le

un
ig

un
g

Net-
S-Core

N-Core

+

HW-ACC
lose gekoppelt

S B

S B

S B

S B

HW-ACC
eng gekoppelt

ISEs

Net-
S-Core

N-Core

+

HW-ACC
lose gekoppelt

S B

S B

S B

S B

HW-ACC
eng gekoppelt

ISEs

Kapitel 6. Optimierung der Multiprozessorarchitektur

170

fung spezifischer Charakteristika in IP-Paketen, der bereits im vorigen Abschnitt vorgestellte IP-
Headercheck-Hardwarebeschleuniger, Module zur Ver- und Entschlüsselung nach dem
AES(Advanced Encryption Standard)-Verfahren, die ebenso für sicherheitsrelevante Zwecke einge-
setzt werden wie die bereits beschriebenen Instruktionssatzerweiterungen zur Beschleunigung von
IPSec-Protokollen (vgl. Abschnitt 6.2.4). Schließlich wurde noch ein inhaltsadressierbarer Speicher,
CAM (Content Addressable Memory) realisiert, der besonders zur Beschleunigung von Adress-
raumzugehörigkeitsüberprüfungen (Beschleunigung von 1230 verglichen mit einer reinen Software-
lösung) beiträgt [164].

Viele dieser weniger flexibel, jedoch hoch-performanten Einheiten sind im Zusammenhang mit der
Analyse des IP-DSLAM-Referenzbenchmarks [141][119] entstanden und dienen zur weiteren Be-
schleunigung rechenintensiver Funktionen dieser Netzwerkanwendung. Die Erstellung, Verifikati-
on, Optimierung und anschließende Charakterisierung der Hardwareerweiterungen bzgl. des An-
wendungsszenarios erfolgte mit der in den Kapiteln 5 und 6 vorgestellten GigaNetIC-Werkzeug-
kette.

Aufgrund der Vielzahl der hier gewonnenen Ergebnisse können in diesem Rahmen keine weiteren
Ausführungen zu den einzelnen Modulen erfolgen. Um einen Eindruck von der Performanzsteige-
rung durch die einzelnen Hardwarebeschleuniger bzw. durch die Erweiterungen für das Gesamtsys-
tem vermitteln zu können und Auswirkungen von Systemmodifikationen bzw. von Lastveränderun-
gen schnell abschätzen zu können, wurde ein spezielles Analyse- und Visualisierungswerkzeug, der
DSLAM-Explorer entwickelt. Dieses Werkzeug wird in Abschnitt 7.5 detaillierter vorgestellt.

Die letzte Stufe der Beschleunigung ist der Einsatz der parallelen Struktur der GigaNetIC-
Architektur. Dies kann mehrere Prozessoren innerhalb eines Clusters ggf. nebst dem realisierten
Multiprozessorcache (vgl. Abschnitt 6.7) bedeuten, oder aber clusterübergreifende Parallelität unter
Verwendung eines geeigneten Programmiermodells (vgl. 4.5) und schließt ggf. die Nutzung parallel
instanziierter Hardwarebeschleuniger mit ein. Analysen zu diesen Aspekten der Beschleunigung
innerhalb der GigaNetIC-Architektur werden in [141][130][118][115][109][131][113], in Abschnitt
6.7 und in Kapitel 8.3 angestellt.

6.6 Optimierungspotential der Kommunikationsinfrastrukt ur

Die GigaNoC-Kommunikationsinfrastruktur der GigaNetIC-Architektur lässt sich ebenfalls auf das
jeweils angestrebte Anwendungsszenario hin optimieren. Neben den allgemein üblichen Methoden
zur Verlustleistungsminimierung wie z. B. Frequenz- und Spannungsskalierung (vgl. Abbildung
6-3) sind auch systemspezifische Maßnahmen möglich. Stellt das zukünftige Anwendungszenario
besonders hohe Anforderungen an Bandbreite und Latenz der Übertragungswege, so lassen sich z.
B. die Flitbreite und oder die Anzahl der Ports der Switch-Boxen erhöhen (vgl. Kapitel 4). Auch die
FIFO-Tiefe der Eingangsports könnte deutlich erhöht werden, um etwaige Spitzen im Datenverkehr
abpuffern zu können. Auf Clusterebene kann zur Minimierung der Busblockierung bzw. zur Erhö-
hung des Durchsatzes sowohl bei der Wishbone- als auch bei der AMBA-Realisierung die Daten-
breite erhöht werden oder bei häufiger Interprozessorkommunikation ggf. auf die AMBA-Switch-
Matrix-Realisierung zurückgegriffen werden. Im Falle der Verlustleistungsreduktion ergibt sich
neben den genannten Möglichkeiten noch eine weitere, die die Anforderungen unterschiedlicher
Datenströme innerhalb des Chip-Multiprozessors ausnutzt. Die Überlegung basiert auf dem Phäno-

6.6 Optimierungspotential der Kommunikationsinfrastruktur

171

men, dass die Signalübertragung über längere Distanzen (so genannte Long Lines) mit Hilfe parallel
zueinander geführter Leitungen (in der Darstellung als Bus bezeichnet) in der betrachteten Stan-
dardzellentechnologie deutlich mehr Verlustleistung bedeutet bzw. Energie benötigt, als wenn die
Daten seriell über eine Leitung übertragen werden. Dieser Zusammenhang ist in [165] detailliert
dargelegt, wo ferner Koppelkapazitäten zwischen den einzelnen Bussignalen und benachbarten Me-
talllagen sowie die eigentliche Leitungskapazität berücksichtigt werden. Besonders auf den höheren
Metalllagen machen sich geometriebedingt die Koppelkapazitäten bei der parallelen Übertragung
häufig besonders bemerkbar. Diese Lagen (in dem aufgeführten Beispiel betrifft dies vor allem die
Metalllagen 7 und 8, da diese für die Long Lines Verwendung finden) werden für die Inter-Switch-
Box-Verbindungen benötigt, die, wie in Kapitel 4 aufgezeigt, massiv parallel45 ausgeführt sind.
Sollte es in Abhängigkeit vom jeweiligen Anwendungsszenario häufig Datenpakete geben, die eine
geringere Übertragungsgeschwindigkeit bzw. eine höhere Latenz tolerieren, so könnte ein bereits
vorgesehener serieller Übertragungsmechanismus eine deutliche Reduktion der Verlustleistung be-
deuten. Hierzu würde eine oder eine kleinere Anzahl von Leitungen verwendet, wobei bei der Ver-
wendung mehrerer Leitungen diese immer durch einige ungenutzte voneinander getrennt wären, um
so die Kopplung möglichst klein zu halten. So würden niederpriore Datenpakete seriell bzw. partiell
seriell übertragen, was gerade im Hinblick auf die Leistungsfähigkeit des GigaNoCs sicherlich für
viele Bereiche ausreichen würde.

Abbildung 6-28: Verlustleistungsoptimierung der Kommunikationsinfrastruktur bei der Übertragung nieder p-

riorer Daten im Hinblick auf eine 130-nm-Standardzellentechnologie

Abbildung 6-28 verdeutlicht die Verlustleistungsoptimierung der Kommunikationsinfrastruktur bei
der Übertragung niederpriorer Daten im Hinblick auf eine 130-nm-Standardzellentechnologie. In
dem Diagramm ist der Energiebedarf für die Übertragung von 64 Bit über eine einfache Leitung
verglichen mit einer Übertragung über einen 64-Bit-breiten Bus mit minimal zulässigem Abstand
der Leitungen in Abhängigkeit von der Länge der Übertragungsstrecke und der Metallebene aufget-

45 Die derzeitige Implementierung verwendet ca. 200 Signalleitungen zwischen zwei Ports benachbarter Switch-Boxen.

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

35

40

45

50

Länge [µm]

E
ne

rg
ie

 [p
J]

Metall 1
Metall 2
Metall 3
Metall 4
Metall 5
Metall 6
Metall 7
Metall 8

64-Bit-Bus

einfache Leitung
x 4,3

SoC

Long Lines

Kapitel 6. Optimierung der Multiprozessorarchitektur

172

ragen46. Bei der Berechnung wurden die anfallenden Koppelkapazitäten für die untersuchte Techno-
logie nach Herstellerangaben berücksichtigt. Der Energiebedarf ist speziell im Bereich einer Lei-
tungslänge von 2 bis 3 mm besonders prägnant und deshalb besonders zu berücksichtigen, da diese
Leitungslängen nach dem derzeitigen Floorplan (vgl. Abschnitt 8.2.3) in der Größenordnung der
Inter-Switch-Box-Verbindungen liegen. Die Übertragung von 64 Datenbits über eine parallele Bus-
struktur, wie sie derzeit beim GigaNoC vorgesehen ist, benötigt auf der obersten Metalllage (Metall
8) 44,58 pJ verglichen mit lediglich 10,35 pJ bei der seriellen Variante auf der gleichen Metalllage.
So ließe sich für niederpriore Daten bei geringer Auslastung des NoCs das bis zu 4,3-fache an
Energie einsparen47. Betrachtet man die Energie, die notwendig ist, um ein NAND2-Gatter mit ei-
ner Treiberstärke von 2 der gleichen 130-nm-Standardzellentechnologie umzuladen, so liegt diese
zwischen 0,009 und 0,013 pJ. Dies liegt fast vier Größenordnungen unter der Energie, die für die
Übertragung der Nettodatenmenge eines Flits und die damit verbundenen Umladevorgänge der
Koppelkapazitäten der Leitungen aufgebracht werden muss. Der nicht zu vernachlässigende Anteil
der Kommunikation am Gesamtenergiebedarf wird hier verdeutlicht.

Mit Hilfe der in Kapitel 5 vorgestellten Entwicklungsumgebungen der GigaNetIC-Architektur für
die SoC-Ebene lassen sich die Bandbreitenanforderungen der Anwendungen komfortabel analysie-
ren. Die entsprechenden Pakettypen werden gekennzeichnet und können mit Hilfe dieser langsame-
ren aber energieeffizienteren Übertragungsmethode, z. B. durch Setzen eines bestimmten Steuerbits,
mit Hilfe von Instruktionsflits (vgl. Abschnitt 4.2.2.1) transportiert werden. In [166] wird ein ähnli-
cher Ansatz aufgezeigt, der eine Reduktion des Energiebedarfs um mehr als 30 % ermöglicht, ohne
einen nennenswerten Verlust der Übertragungskapazität zu verzeichnen. Eine Bandbreitenreduktion
ist hingegen bei dem hier vorgestellten Ansatz bewusst gewählt und erlaubt deshalb die weitaus
höhere Reduktion des Energiebedarfs von mehr als 76 %.

Eine weitere Möglichkeit, eine effizientere Kommunikation zu ermöglichen, ist die Realisierung
einer global asynchronen, lokal synchronen (GALS) Kommunikationsinfrastruktur, die zukünftig in
das GigaNoC-On-Chip-Netzwerk einfließen wird. Hierdurch können unterschiedliche Taktdomänen
sowie lokal unterschiedliche Versorgungsspannungen (Voltage Islands) realisiert werden, was eben-
falls zur Verlustleistungsminimierung beiträgt.

6.7 Optimierung im Hinblick auf die Speicherhierarchie

Auf Clusterebene lässt sich die GigaNetIC-Architektur für eine Reihe von Anwendungen durch die
Integration des in Abschnitt 4.4.2 beschriebenen Multiprozessorcaches beschleunigen. Inwieweit
sich eine Verwendung dieser Hardwareoption für das jeweilige Einsatzgebiet eignet, lässt sich mit

46 Für die Schaltvorgänge werden die Worst-Case-Bedingungen angenommen, d. h. die umzuladenden Kapazitäten

werden mit jedem neuen Takt umgeladen. Beim Bus werden für benachbarte Leitungen gegensätzliche Umladevorgän-

ge angesetzt, um die maximal benötigte Energie zum Transport von Nachrichten zu ermitteln.

47 In diesem Zusammenhang ist zu erwähnen, dass Verlustleistungsanteile der treibenden Ausgangsregister vernachläs-

sigt werden, da diese im Sinne der Schalthäufigkeiten keinen abweichenden Beitrag liefern würden. Lediglich der

Mehraufwand durch die zusätzliche, allerdings sehr klein ausfallende Steuerlogik wäre ggf. noch in die Kalkulation

einzubeziehen.

6.7 Optimierung im Hinblick auf die Speicherhierarchie

173

den in Kapitel 5 vorgestellten Simulationsumgebungen bereits im Vorfeld komfortabel ermitteln.
Sowohl die SystemC-Umgebung SiMPLE, als auch die VHDL-Umgebung PERFMON wurde voll-
ständig für die Analyse des Multiprozessorcaches ausgelegt. Ferner gibt es eine prototypische
FPGA-Realisierung für das Rapid-Prototyping System RAPTOR2000 [113].

Abbildung 6-29 zeigt die Eingriffe in das Standard-GigaNetIC-System, die notwendig sind, um es
in die Multiprozessorcachevariante zu transformieren. Auf SoC-Ebene sind keine Veränderungen
notwendig, auf Clusterebene wird das lokale Bussystem durch die leistungsfähige AHB-Switch-
matrix ersetzt, die für die GigaNetIC-Multiprozessorcaches benötigt wird. Das N-Core Subsystem
verändert sich insofern, als die in Abschnitt 4.4.2 dargelegten AHB-Schnittstellen integriert werden.
Weitere Details zu den Kennwerten dieser Implementierung werden in Abschnitt 8.2.2 gegeben.

Abbildung 6-29: Transformation vom busbasierten GigaNetIC-System zur Variante mit

GigaNetIC-Multiprozessorcache und einer AHB-Switchmatrix auf Clusterebene

Abbildung 6-30 verdeutlicht die Möglichkeiten zeitgleicher Kommunikation im GigaNetIC-
Multiprozessorcachesystem. Diese parallelen Transfers werden u. a. durch den Einsatz der AMBA-
Switchmatrix ermöglicht und helfen, die lokale On-Chip-Kommunikation auf Clusterebene im Ver-
gleich zu einem einfachen Bussystem deutlich zu beschleunigen. In Abbildung 6-30 sind folgende,
simultan ablaufende Transfers dargestellt: (1) kennzeichnet einen Snooping-Zugriff von Ca-
che Nr. 0, (2) stellt einen Zugriff von N-Core 1 auf den Communication-Controller dar, bei (3) han-
delt es sich um einen Zugriff auf Daten, die sich bereits im Cache Nr. 1 befinden und durch Direct-
Data-Intervention (vgl. Abschnitt 4.4.2) in den Cache Nr. 2 transportiert werden, und (4) beschreibt
einen Lesezugriff von N-Core 3 auf den gemeinsamen lokalen Speicher des Clusters.

A
H
B

S

N
-C
or
e

C
ac
heA
H
B

M
A
H
B

S

N
-C
or
e

C
ac
heA
H
B

M
A
H
B

S

N
-C
or
e

C
ac
heA
H
B

M
A
H
B

S

N
-C
or
e

C
ac
heA
H
B

M
A
H
B

S

Lo
ca
l R
A
M

A
H
B

S
Sn
oo
pi
ng
-

Sl
av
e

Sn
oo
pi
ng
 B
us

A
M
B
A
 M
at
rix

Pa
ke
t-

sp
ei
ch
er

SR
AM

UA
R
T

N-
C
or
e-

Su
bs
ys
te
m

N
-C
or
e-

Su
bs
ys
te
m

N
-C
or
e-

Su
bs
ys
te
m

N
-C
or
e-

Su
bs
ys
te
m

W
is
hb
on
e-
B
us

Kapitel 6. Optimierung der Multiprozessorarchitektur

174

In [113] haben wir eine Reihe von Anwendungen48 im Hinblick auf den Einsatz des Multiprozes-
sorcaches untersucht. Hierbei handelt es sich sowohl um Universalanwendungen wie den Dhrysto-
ne-Benchmark4, um die Sortieralgorithmen Bubble- und Quicksort und um einen Benchmark aus
der Netzwerkdatenverarbeitung. Im Rahmen der Analysen wurde eine Vielzahl von Parametern va-
riiert. Hierzu zählen die Art der Cachearchitektur (Split oder Unified), die Assoziativität (2, 4 und
8), die Anzahl der Cachelines pro Weg (32, 64, 128 oder 256), die Weite einer Cacheline (32, 64,
128 oder 256 Bit) und die Zugriffslatenz auf den Hauptspeicher (0, 5, 10 oder 20 Takte)49. Zusätz-
lich wurde zum Vergleich eine Architekturvariante ohne Cache ausgemessen. Die Simulationen
wurden sowohl mit SiMPLE (vgl. Abschnitt 5.2) als auch mit PERFMON (vgl. Abschnitt 5.3)
durchgeführt. Obwohl die Abweichungen der Ergebnisse von SiMPLE zur exakten Ausführung mit
PERFMON nur im einstelligen Prozentbereich liegen, wurde die sehr zeitintensive HDL-Simulation
vorgezogen. Mit Hilfe der in Abschnitt 5.4 vorgestellten MultiSim-Entwurfsraumexploration konn-
ten die Simulationsläufe vollautomatisch ablaufen. Die ermittelten, exakten Laufzeitergebnisse
wurden auf vier Arbeitsplatzrechner (P4, 3 GHz HT mit 1 GB Arbeitsspeicher) verteilt und benötig-
ten eine Simulationslaufzeit von ca. je 4 Wochen. Diese Zahlen verdeutlichen den immensen Zeit-
aufwand, der für die detaillierte HDL-Simulation benötigt wird. Aufgrund der mittlerweile erreich-
ten Genauigkeit der SiMPLE-Umgebung werden solch aufwändige Simulationen immer seltener
notwendig sein. Zur Entwurfsraumexploration wird in den meisten Fällen die SiMPLE-Umgebung
ausreichend genaue Werte liefern.

Abbildung 6-30: Parallele Transfers in der AMBA-Matrix auf Cluster-Ebene

48 Diese Auswahl von Anwendungen wird ebenfalls bei weiteren Analysen der GigaNetIC-Architektur, speziell im

Hinblick auf die Ressourceneffizienz, in Abschnitt 8.3 verwendet.

49 Die Zugriffslatenz auf den Hauptspeicher ist mit maximal 20 Takten eher gering gewählt, allerdings den Gegebenhei-

ten des GigaNetIC-Systems angepasst.

AHB
S

AHB
M

AHB
S

AHB
M

AHB
S

AHB
M

AHB
S

AHB
M

AHB
S

FIFOs

AMBA Matrix

Switch-Box

AHB
S

Snooping-Bus

N-Core N-Core N-Core N-Core

COM-
Buffer

COM-
Buffer

COM-
Buffer

COM-
Buffer

L1-
Cache
(#0)

L1-
Cache
(#1)

L1-
Cache
(#2)

L1-
Cache
(#3)

42

3
1

6.7 Optimierung im Hinblick auf die Speicherhierarchie

175

Abbildung 6-31 zeigt die Ergebnisse der detaillierten Benchmarksimulation mit PERFMON. Die
dargestellten Werte wurden auf die Standard-Cachekonfiguration (256 Cachelines, 128 Bit breit,
Assoziativität von 2, Unified-Cache und ein 32-Bit-breites Businterface, 250 MHz) normiert. Zum
Vergleich sind ebenfalls Flächenbedarf und Leistungswerte für ein System ohne Cache, aber mit
gleicher Latenz zum Hauptspeicher, in dieser Betrachtung sind es zehn Takte, aufgetragen. Es ist zu
beachten, dass diese Variante nicht zwangsläufig die in Abschnitt 4.2.4 beschriebene Wishbonebus-
Architektur widerspiegelt, da hier normalerweise alle Daten im lokalen SRAM des N-Cores vorge-
halten werden und dieser eine Latenz von zwei Takten besitzt. Sollten die Daten jedoch vom Spei-
cher einer benachbarten Switch-Box geholt werden müssen, so würde sich eine vergleichbare La-
tenz ergeben, vgl. Tabelle 4-6. Es sind jeweils die Trends für vier weitere markante Varianten der
insgesamt 2716 untersuchten Cachekonfigurationen aufgezeichnet.

Abbildung 6-31: Flächenbedarf vs. Performanz von GigaNetIC-Cluster-Konfigurationen für ausgewählte

Benchmarkszenarien, normiert auf die Standardcachekonfiguration

Die angesetzten Parameter der untersuchten Varianten werden in Tabelle 6-6 aufgezeigt. Die konk-
reten Messwerte der in Abbildung 6-31 gezeigten Untersuchungen sind Tabelle 6-7 zu entnehmen.

Tabelle 6-6: Ressourcenbedarf der untersuchten Cacherealisierungen in 90-nm-Standardzellentechnologie

Bei den Analysen zeigt sich, dass durchweg alle Varianten des GigaNetIC-Systems mit Multipro-
zessorcache deutlich leistungsfähiger sind, als die Realisierung ohne Cache, allerdings zu einem
nicht zu vernachlässigenden Preis in Form einer Flächenverdopplung bis hin zu mehr als einer Ver-
dreifachung der Fläche bei der Variante mit hoher Assoziativität. Die Analysen zeigen, dass bereits
relativ geringe Variationen der Cacheparameter merkliche Auswirkungen auf die Leistungsfähigkeit
und die Ausführungsgeschwindigkeit einzelner Anwendungen haben können. So zeigt z. B. die
Verwendung der Variante mit halbierter Anzahl der Cachelines dennoch einen Geschwindigkeits-
zuwachs um den Faktor 4,5 bei der Verarbeitung des Bubblesort-Algorithmus. Dies wird erreicht,

Variante
Cachelinegröße

[Bit]
Tiefe Assoziativität

Split-
Cache

Fläche
je Cache

[mm²]

Taktperiode
[ns]

Leistungsaufnahme
@250MHz [mW]

Kleine Cachelines 64 256 2 nein 0,61 4,16 136,79
Split-Cache 128 256 2 ja 1,11 4,08 276,13
Hohe Assoziativität 128 256 4 nein 1,31 4,48 376,18
Wenige Cachelines 128 128 2 nein 0,58 3,92 164,87
Standard 128 256 2 nein 0,73 4,1 180,99

0%

50%

100%

150%

Kein
 C

ac
he

, n
ur

 S
RAM

Sta
nd

ar
d

Cac
he

ko
nf

igu
ra

tio
n

Klei
ne

 C
ac

he
lin

es

Spli
t-C

ac
he

Hoh
e

Ass
oz

iat
ivi

tä
t

W
en

ige
 C

ac
he

lin
es

B
en

ch
m

ar
k

no
rm

ie
rt

e
P

er
fo

rm
an

z

400%

450%

500%
Chipfläche [mm²]

IPHC-Small

IPHC-Medium

IPHC-Large

Quicksort

Bubblesort

Dhrystone
0

1,5

1

4

4,5

5

0,5

0

1,5

1

4

4,5

5

0,5

Kapitel 6. Optimierung der Multiprozessorarchitektur

176

obwohl die Fläche um 11 % geringer ist als die der Standardvariante. Allerdings zählt der Bubble-
sort-Algorithmus wie auch der IPHC-Small-Benchmark zu den beiden untersuchten Anwendungen,
die weniger von den hier eingestellten Parametern des Caches profitieren. Bei beiden Anwendungen
ist die zeitliche Lokalität relativ gering, d. h. es müssen häufig neue Daten nachgeladen werden.
Dieses Phänomen ist bei den anderen Benchmarks weniger stark ausgeprägt, so dass der Geschwin-
digkeitszuwachs weit höher liegt. So lassen sich durch den Einsatz der Split-Cache-Variante der
Quicksort-Algorithmus und der Dhrystone-Benchmark um mehr als 22,8- bzw. 20,8-fach beschleu-
nigt verarbeiten.

Tabelle 6-7: Kosten-Nutzen-Analyse verschiedener Cachekonfigurationen relativ zur Standardkonfiguration

Abbildung 6-32 zeigt die Energieersparnis auf, die sich für die einzelnen Benchmarks unter Ver-
wendung der Standard-Cachevariante erzielen lässt. In der Standardausführung benötigt die Cache-
variante teilweise 73 % weniger Energie als das System ohne Cache. Allerdings gibt es auch An-
wendungen, wie z. B. IPHC-Small (+18,1 %) oder Bubblesort (+13,9 %), für die sich die Standard-
variante weniger gut eignet. Gleichwohl lassen sich auch hier weitaus höhere Performanzsteigerun-
gen und Energiereduktionen mit anderen Varianten des GigaNetIC-Multiprozessorcaches erzielen,
vgl. Tabelle 6-7.

Abbildung 6-32: Energieersparnis durch Verwendung des GigaNetIC-Multiprozessorcaches

für ausgewählte Anwendungen

Die Analysen zeigen, dass zum einen eine intensive Evaluation des zukünftigen Anwendungsszena-
rios, sollte dies bereits vor der Chiprealisierung bekannt sein, sehr ratsam ist. Die GigaNetIC-
Architektur stellt deshalb eine Vielzahl von Möglichkeiten zur Verfügung, um durch geeignete Pa-
rametrisierung eine möglichst optimale Systemkonfiguration für die angestrebten Einsatzzwecke
bereits in einer frühen Entwurfsphase zu erkennen, vgl. Kapitel 5. Zum anderen zeigen die anges-
tellten Analysen das Potential des GigaNetIC-Multiprozessorcaches zur Beschleunigung von An-
wendungen auf, was allerdings von Fall zu Fall mit den deutlich erhöhten Flächenkosten im Sinne

IPHC-Small IPHC-Medium IPHC-Large Quicksort Bubblesort D hrystone
Standard Cachekonfiguration 100% 100% 100% 100% 100% 100% 100%
Kleine Cachelines 91% 64% 69% 71% 98% 451% 108%
Split-Cache 130% 76% 91% 97% 104% 469% 114%
Hohe Assoziativität 146% 110% 101% 101% 100% 451% 98%
Wenige Cachelines 89% 100% 100% 99% 100% 451% 95%
Kein Cache, nur SRAM 43% 22% 8% 7% 5% 21% 5%

relative Performanz
ChipflächeKonfiguration

0,
05 0,

11 0,
23

0,
85

67
,9

8

0,
030,

04
0,

25 0,
64

3,
24

59
,6

9

0,
12

0,01

0,10

1,00

10,00

100,00

IP
HC-S

m
all

IP
HC-M

ed
ium

IP
HC-L

ar
ge

Quic
ks

or
t

Bub
ble

so
rt

Dhr
ys

ton
e

E
ne

rg
ie

 [m
J]

+18,1%

-56,4% -63,7%

-73,8%

+13,9%

-73,9%

Mit Cache (Standard Konfiguration) Ohne Cache

6.8 Optimierung auf SoC-Ebene – Einsatz paralleler Prozessorfelder

177

der Ressourceneffizienz abzuwägen ist. Weitere Analysen und Details zur Steigerung der Ressour-
ceneffizienz durch den hier untersuchten GigaNetIC-Multiprozessorcache sind [113] zu entnehmen.

6.8 Optimierung auf SoC-Ebene – Einsatz paralleler Prozessorfelder

Im Rahmen der Leistungssteigerung der GigaNetIC-Architektur sind natürlich auch Aspekte der
Softwareoptimierung zu berücksichtigen. Der parallele Aufbau der GigaNetIC-Prozessorcluster
bietet eine leistungsfähige Struktur zur Verarbeitung vielfältiger Problemstellungen, die nach GUS-

TAFSON (vgl. Abschnitt 2.1.2) durch Parallelität beschleunigt verarbeitet werden können. Auf der
SoC-Ebene, die clusterübergreifend Aufgaben bearbeitet, ergeben sich mehrere potentielle Optimie-
rungsmöglichkeiten bzgl. der effizienten Nutzung des Chip-Multiprozessors. Dies betrifft zum ei-
nen die bereits in Abschnitt 6.2.1 vorgestellte compilerbasierte Werkzeugkette und den daraus re-
sultierenden Compiler, dessen Effizienz ganz entscheidend für die Performanz der hier eingesetzten
N-Core-Prozessorkerne ist. Zum anderen spielt das jeweils verwendete Programmiermodell (vgl.
Abschnitt 4.5) eine wesentliche Rolle bei der wirksamen Ausnutzung der parallelen Prozessorfel-
der. Zu diesen beiden Aspekten, die sozusagen die Systemsoftware der Architektur darstellen
kommt dann die jeweilige Anwendungssoftware, die auf den jeweiligen Prozessorkernen eingesetzt
wird. Diese Optimierungsmaßnahmen seitens der Software helfen so auch nach Fertigstellung der
Hardware, die Ressourceneffizienz des Chip-Multiprozessorsystems zu steigern.

6.8.1 Optimierung der System- und Anwendungssoftware

Durch zielgerichtete Optimierung der bei der GigaNetIC-Architektur eingesetzten Systemsoftware,
die die Verarbeitung durch die einzelnen Prozessorkerne des Chip-Multiprozessors koordiniert und
den korrekten Ablauf gewährleistet, lassen sich deutliche Beschleunigungen der Verarbeitung sowie
Minimierung bzw. Optimierung der On-Chip-Kommunikation erreichen. Sind die Randbedingun-
gen und Anforderungen der zukünftigen Anwendung bekannt, oder lassen sich diese im Vorfeld
abschätzen, so kann dieser Teil des GigaNetIC-Softwaresystems im Hinblick auf Lastverteilung,
Kommunikationsmethoden, wie z. B. Art und Anzahl der Synchronisationsbarrieren, und Speicher-
organisation angepasst werden.

Die Ergebnisse dieser Arbeit profitieren zum einen von den erzielten Verbesserungen im Bereich
der Compileroptimierung, zum anderen von Optimierungen und Erweiterungen der Simulatoren
speziell im Bereich der Simulationsgeschwindigkeit50.

Beispielhaft sei hier die im Rahmen der in Kapitel 7 näher diskutierten Netzwerkanwendungen im-
plementierte IP-Paket-Prüfsummenfunktion als eine potentielle Anwendung der GigaNetIC-Archi-
tektur erwähnt. Diese verwirklicht die in Abschnitt 6.3.1 beschriebene Funktionalität des Hardware-
beschleunigers auf dem N-Core-Prozessorkern. Paketköpfe des Internet-Protokolls werden auf Kor-

50 An der Auswertung und der Verbesserung der Aspekte bzgl. der Softwarebestandteile der GigaNetIC-Architektur

wird maßgeblich an den Fachgebieten Programmiersprachen und Übersetzer, Prof. Dr. Uwe Kastens sowie Algorithmen

und Komplexität, Prof. Dr. math. Friedhelm Meyer auf der Heide gearbeitet. Die Verbesserungen flossen stets in diese

Arbeit mit ein, finden in diesem Rahmen jedoch keine weitere Erwähnung, da hier schaltungstechnische Aspekte im

Vordergrund stehen. Für nähere Informationen sei deshalb auf die einschlägigen Veröffentlichungen der beiden genann-

ten Fachgebiete der Universität Paderborn verwiesen.

Kapitel 6. Optimierung der Multiprozessorarchitektur

178

rektheit und Inhalt geprüft. Bei der Evaluierung dieser IP-Headercheck-Funktion zeigte sich, dass
der Bedarf für eine Beschleunigung der Bearbeitung bestand. Zunächst wurde eine Optimierung der
Software vorgenommen. Hierbei wurden vier Varianten des Headerchecks implementiert, die mit
16 bzw. 32 Bit breiten Daten arbeiteten. Mit einer optimierten 32-Bit-Version konnte letztendlich
eine Reduktion der benötigten Anzahl an Taktzyklen von anfangs 284 auf 108 erzielt werden. Zu-
sätzlich wurde nach Superinstruktionen zur Performanzsteigerung gesucht. Die Analysen zeigten,
dass in diesem Fall keine vielversprechenden Instruktionssatzerweiterungen für den gegebenen Al-
gorithmus realisiert werden konnten. Mit den bestehenden Erweiterungen (vgl. Abschnitt 6.2.4)
konnte lediglich eine Reduktion um fünf Taktzyklen auf 103 Takte erreicht werden. Dennoch zeigt
dieses Beispiel bereits das Potential, dass die Softwareoptimierung bietet, konnte doch eine bereits
effiziente Realisierung unter Berücksichtigung spezieller Compilereigenheiten etc. um mehr als das
2,7-fache beschleunigt werden.

Aufgrund der benötigten Bandbreite und der Häufigkeit des Funktionsaufrufs innerhalb des An-
wendungsszenarios war die hier erreichte Beschleunigung dennoch nicht ausreichend, so dass, wie
in Abbildung 6-5 als Option bereits aufgezeigt, ein spezieller Hardwarebeschleuniger (vgl. Ab-
schnitt 6.3.1) entwickelt werden musste. Dieser erlaubt die Ausführung der inneren Prüffunktion in
8 Takten und dies ggf. bei einer deutlich höheren Betriebsfrequenz als die des N-Cores. Mit Hilfe
dieser anwendungsspezifischen Hardware wird so nochmals eine Beschleunigung von mindestens
12,8 verglichen mit der optimierten Software erreicht.

Grundsätzlich wurde bei der Implementierung der in dieser Arbeit entstandenen Software, stets auf
eine möglichst effiziente Realisierung geachtet, allerdings lag das Hauptaugenmerk auf einer guten
Portierbarkeit auch auf andere Prozessorarchitekturen, die ggf. anstelle des N-Cores in die GigaNet-
IC-Cluster integriert werden können. So wurde bewusst weitestgehend auf Besonderheiten des
Compilers und auf optimierten Assemblercode verzichtet, um die Interoperabilität zu gewährleisten.
Dies bedeutet im Sinne der Ressourceneffizienz einen Kompromiss zwischen Performanz und Zu-
kunftssicherheit. Im Weiteren werden nur finale Softwarerealisierungen betrachtet, wobei die wäh-
rend des Entwicklungsprozesses durchgeführten Optimierungen an der System- und Anwendungs-
software unerwähnt bleiben.

6.8.2 Optimierung der Aufgabenverteilung und Interprozesskommunikation

Die Abbildung von protokollverarbeitenden Funktionen bzw. von Programmen allgemein, auf Mul-
tiprozessorsysteme stellt zumeist eine zeitaufwändige und zugleich performanzentscheidende Auf-
gabe dar. Komplexe Hardwarearchitekturen wie der GigaNetIC-Chip-Multiprozessor beinhalten
eine Vielzahl von Parametern, wie Betriebsfrequenzen, Datenraten, Speichertypen und -größen etc.,
die entweder verändert oder zumindest berücksichtigt werden müssen/können. Eine weitgehend
automatisierte Lösung dieses Problems würde die Zeit für Softwareentwicklung und -parti-
tionierung deutlich verkürzen und den Softwareentwickler stark entlasten.

Der NoC-basierte Ansatz des GigaNetIC-Systems eröffnet eine gute Skalierbarkeit speziell auch im
Hinblick auf zukünftige Schaltungstechnologien, so dass in naher Zukunft weitaus größere Systeme
denkbar sind, als derzeit realisierbar. Gerade hier lohnt sich ein automatisiertes Vorgehen.

In [102][103][104] haben wir eine Methodik vorgestellt, die eine automatisierte Abbildung speziell
von netzwerkspezifischen Protokollverarbeitungsabläufen auf Chip-Multiprozessoren zur Erhöhung
der Ressourceneffizienz durchführt. NetAMap (Network Application Mapper) ist das resultierende

6.8 Optimierung auf SoC-Ebene – Einsatz paralleler Prozessorfelder

179

Werkzeug [104], das, aufbauend auf der PERFMON-Umgebung [116], eine Aufteilung und zeitli-
che Planung (Scheduling) der zu verarbeitenden Prozeduren und die resultierende Interprozess-
kommunikation durchführt. Hierbei können Zielarchitekturen mit unterschiedlichsten On-Chip-
Netzwerken berücksichtigt werden. Der Bestandteil „Network“ im Namen des Softwarewerkzeugs
ist hier ambivalent zu sehen. Zum einen bezieht es sich auf die bisher analysierten Anwendungs-
klassen aus dem Bereich der Netzwerkprozessoren und zum anderen greift es die NoC-basierte
Struktur der Zielarchitekturen auf.

Abbildung 6-33: Prinzipieller Ablauf der automatisierten Anwendungsabbildung für

Chip-Multiprozessorsysteme mit Hilfe von NetAMap

Das durchgeführte Scheduling beruht auf dem Ansatz des Generalized Processor Sharing (GPS)
[167], dass u. a. eine Reduzierung des benötigten Pufferspeichers in den einzelnen Knoten bewirkt.
Jedem Verarbeitungsschritt (Flusssegment bzw. Flow Segment) werden separat Kommunikations-
bandbreite und Berechnungszeit zugewiesen. Dies erlaubt es dem Algorithmus, individuelle Verar-
beitungsprioritäten zu berücksichtigen und zudem eine blockadefreie, deterministische Verarbei-
tung und Weiterleitung der Daten durchzuführen. Dies setzt derzeit die Kenntnis über die maximale
Verarbeitungszeit (Worst-Case Execution Times - WCET) von Funktionen schon während der Ent-
wurfszeit voraus, was den Einsatzbereich von NetAMap in einem gewissen Rahmen einschränkt,
durch das in [102][103][104] untersuchte, selbst definierte MANet-Protokoll aber kompensiert wur-
de.

Das Problem der Abbildung der Anwendung wird mit Hilfe der ganzzahligen linearen Optimierung
(Integer Linear Programming / ILP) gelöst. Um die aus komplexitätstheoretischer Sicht NP-
schwere Aufgabe in angemessener Zeit lösen zu können, wird hier ein hierarchischer Ansatz ge-
wählt, der die Anzahl der Variablen klein hält [102]. Dies geschieht durch Partitionierung der Prob-
lemgröße auf einstellbare Cluster des Zielsystems.

NetAMap unterstützt zwei Optimierungsziele: Entweder wird die Latenz, die die Pakete während
der Verarbeitung erfahren, oder aber der Energiebedarf für die Verarbeitung minimiert. Das ILP
besteht somit aus den Kostenfunktionen und einem Satz technologieabhängiger Bedingungen, die u.
a. mit der PERFMON-Umgebung ermittelt werden. Die entworfene Abbildungsmethode ermöglicht
eine einfache Softwarepartitionierung für das SoC und eine detaillierte Entwurfsraumexploration
und Bewertung potentieller Lösungen. Flaschenhälse bzgl. Performanz und Durchsatz können rela-

Kapitel 6. Optimierung der Multiprozessorarchitektur

180

tiv leicht lokalisiert und ggf. durch Hard- oder Softwareoptimierung behoben werden. Abbildung
6-33 zeigt den prinzipiellen Ablauf der automatisierten Anwendungsabbildung auf Chip-Multipro-
zessorsysteme mit Hilfe von NetAMap.

Abbildung 6-34: Ressourcenbedarf zweier CMP-Architekturen (A = alternative Architektur, B = GigaNetIC) im

Hinblick auf pareto-optimale Punkte im Entwurfsraum bzgl. einer MANet-Anwendung [102]

In [102] haben wir NetAMap eingesetzt, um die Ressourceneffizienz zweier unterschiedlicher Chip-
Multiprozessorsysteme in Bezug auf ein selbst entwickeltes Protokoll für mobile Ad-Hoc-
Netzwerke (MANets) zu bestimmen. Bei beiden CMPs wird der S-Core [108] als Prozessorkern ge-
nutzt, die Systeme unterscheiden sich in dem verwendeten On-Chip-Netzwerk. System A verwendet
ein Netzwerk, das auf dem Circuit-Switched-Prinzip (vgl. Abschnitt 2.3.2) aufbaut und determinis-
tisch bzgl. der Latenz ist. An jeder Switch-Box dieses Systems ist jeweils nur eine Verarbeitungs-
einheit angeschlossen. Die Switch-Boxen sind flächenmäßig ein Drittel kleiner als die des Systems
B. Bei diesem handelt es sich um eine GigaNetIC-Architektur mit vier Prozessorkernen pro Cluster.
Abbildung 6-34 zeigt die Resultate der Abbildung der Anwendung mittels NetAMap auf Varianten
beider CMP-Architekturen. Die Blasen kennzeichnen die Punkte im Entwurfsraum die durch die
jeweiligen Systemvarianten im Hinblick auf Fläche (A), Energiebedarf (E) und Latenz (D) erreicht
werden. Die Notation ist dabei wie folgt zu interpretieren: A/B CMP-Architektur (A = Architektur
aus [102], B = GigaNetIC-Architektur) – Anzahl der instantiierten Verarbeitungseinheiten – Opti-
mierungsstrategie (D = Optimierung der Latenz, E = Optimierung des Energiebedarfs). Bei der
Analyse der Ergebnisse zeigt sich, dass, bis auf die Variante mit 64 Verarbeitungseinheiten und Op-
timierung auf Energie, alle Systeme der GigaNetIC-Architektur pareto-optimale Punkte im Ent-
wurfsraum darstellen. Pareto-optimal bedeutet in diesem Zusammenhang, dass keine der anderen
Systemkonfigurationen besser bzgl. einer der Optimiergrößen und jeweiligen Optimierungsstrategie
abschneidet. Den geringsten Energie- und Flächenbedarf zeigt das GigaNetIC-System mit 16 Ver-
arbeitungseinheiten (B16E). Diese Variante hat allerdings die größte Latenz. Die GigaNetIC-

A64D
A64E

A49D

A49E

A36D

A25D

A36E

B64E

B64D

B16E

B36E

B36D

A25E

pareto-optimal

nicht
pareto-optimal

6.9 Zusammenfassung

181

Architektur dominiert in diesem Vergleich die alternative Architektur. Hier zeigte sich, dass mehre-
re Verarbeitungseinheiten pro Routingknoten für die gegebene Anwendung vorteilhafter sind.

Weitere Details zu der hier aufgezeigten Methode der ressourceneffizienten Abbildung von An-
wendungen auf Chip-Multiprozessoren sind [102][103][104] und [168] zu entnehmen.

6.9 Zusammenfassung

In diesem Kapitel wurde eine Methode vorgestellt, die es dem Entwickler ermöglicht, die zunächst
universell einsetzbare und nicht spezialisierte Struktur des GigaNetIC-Chip-Multiprozessors für ein
gewünschtes Anwendungsgebiet im Hinblick auf die Ressourceneffizienz der Architektur zu opti-
mieren. Der hierarchisch gerichtete Ansatz bietet den Vorteil, dass, unterstützt durch die entwickel-
te Werkzeugkette, zunächst mit vergleichsweise geringen Modifikationen die Leistungsfähigkeit
bzw. der Ressourcenbedarf der Chip-Multiprozessor-Architektur optimiert werden kann. Durch die
leistungsfähigen Profilierungsmöglichkeiten der GigaNetIC-Entwicklungsumgebung lassen sich
besonders rechenintensive Funktionen der Anwendungssoftware schnell lokalisieren. Durch an-
schließende Analyse können sowohl betreffende Stellen der Software als auch, falls notwendig, die
Hardware zielgerichtet optimiert werden. Diese Optimierung geschieht im Regelfall hierarchisch
gerichtet, angefangen bei Instruktionssatzerweiterungen, über eng-gekoppelte Hardwarebeschleuni-
ger bis hin zu lose gekoppelten Hardwarebeschleunigern. Letztendlich steht dem Softwarearchitek-
ten dann die Nutzung der parallelen Struktur zur parallelen Bearbeitung einer Aufgabe zur Verfü-
gung, deren Leistungsfähigkeit ggf. durch den GigaNetIC-Multiprozessorcache zusätzlich erhöht
werden kann.

Die aufzuwendende Zeit für diese Optimierungsmaßnahmen auf Prozessorebene liegt im Bereich
von einigen Stunden bis hin zu wenigen Tagen. Sollten Modifikationen auf Prozessorebene nicht
genügend Optimierungspotential für die gegebene Anwendung bieten, so kann dies bereits inner-
halb der ersten Stunde mit Hilfe der Werkzeugkette festgestellt werden. In diesem Fall können tief-
ergehende Optimierungen in Form der Realisierung spezialisierter Hardwarebeschleuniger durchge-
führt werden. Dieser Prozess benötigt im Allgemeinen deutlich mehr Zeit und Ressourcen.

Die werkzeuggestützte Analyse des jeweiligen Anwendungsszenarios liefert Aussagen sowohl über
den Rechenleistungsbedarf aber auch über die benötigten Bandbreiten der On-Chip-Kommuni-
kation. Die GigaNetIC-Architektur eröffnet, aufgrund der generisch gehaltenen Struktur, zahlreiche
Möglichkeiten, das System anwendungsgemäß zu optimieren.

Geeignete Anwendungen lassen sich durch NetAMap automatisiert auf das Chip-Multiprozessor-
system abbilden. Dies verkürzt Entwicklungszeiten und führt zu einer besonders effizienten Nut-
zung der parallelen Architektur. Unterstützt durch die Werkzeugkette lässt sich für die jeweils be-
trachtete Anwendung ein geeigneter Kompromiss zwischen Leistungszuwachs, Verlustleistungs-
aufnahme, Flächenbedarf und zusätzlich zu erwartendem Entwicklungsaufwand treffen. Pareto-
optimale Punkte des Entwurfsraums können so effizient angenähert werden. Anhand einer exempla-
rischen Analyse verschiedener Realisierungsvarianten für ein paketverarbeitendes System wurde
die in Kapitel 3 vorgestellte Kostenfunktionsmethode verifiziert und deren Leistungsfähigkeit auf-
gezeigt. Mit Hilfe definierter Parameter für die Zielfunktionen der vier Kostenmaße Leistungsauf-
nahme, Flächenbedarf, Performanz und Zukunftssicherheit sowie der resultierenden Kostenfunktion
wurden in Relation zu den definierten Randbedingungen pareto-optimale Systeme für unterschiedli-

Kapitel 6. Optimierung der Multiprozessorarchitektur

182

che Einsatzgebiete ermittelt. Systemarchitekten wird hiermit eine nützliche Entscheidungshilfe für
den Entwurf ressourceneffizienter Implementierungen an die Hand gegeben.

Im folgenden Kapitel werden am Beispiel von Netzwerkanwendungen die hier vorgestellten Opti-
mierungsmöglichkeiten auf die GigaNetIC-Architektur angewendet und detailliert diskutiert.

183

7 Performanzanalyse skalierbarer GigaNetIC-Netzwerkprozessoren
Eine immer größer werdende Herausforderung der heutigen Informationsverarbeitung stellt das
Verarbeiten von Daten in Sprach- und Datennetzwerken dar. Insbesondere das Internet und die da-
mit verbundenen Dienste erfordern neue leistungsfähigere Architektur-Ansätze, die speziell auf die
inhärente Parallelität von Netzwerkdaten ausgelegt sein sollten. Für solche Einsatzgebiete sind pa-
rallele Architekturen wie die GigaNetIC-Chip-Multiprozessorarchitektur prädestiniert. Eine Viel-
zahl von Verarbeitungseinheiten kann integriert werden und die Netzwerkverarbeitung voneinander
disjunkter, unkorrelierter Netzwerkpakete durchführen, wobei sich die globale Zustandsverwaltung
häufig als einzige gemeinsame Aufgabe (Task) darstellt, die einem der Kerne aus dem Prozessor-
Pool zugewiesen werden kann (vgl. Abschnitt 4.5.3). Diese Klasse von Anwendungsszenarien ska-
liert sehr gut (vgl. GUSTAFSONS Gesetz, Abschnitt 2.1.2).

Abbildung 7-1: Zunehmende Vernetzung unserer Umgebung, die durch ressourceneffiziente skalierbare,

Netzwerkknoten ermöglicht werden kann

Die von Netzwerkknoten geforderte Funktionalität geht in immer stärkerem Maße über das reine
Weiterleiten von Datenpaketen hinaus. Neben der Auswertung der im Paketkopf (Header) abgeleg-
ten Adressen, die dazu dient, Daten an den richtigen Empfänger weiterzuleiten, werden zusätzliche
Informationen verarbeitet, um erweiterte Dienste wie Verschlüsselung (z. B. für Virtual Private
Networks), Network Address Translation (NAT) oder Priorisierung Quality of Service (QoS) anzu-
bieten. Die Leistungsfähigkeit, die in Netzwerkkomponenten für diese Verarbeitungsmechanismen
zur Verfügung gestellt werden muss, kann mit herkömmlichen Prozessorarchitekturen nicht erreicht
werden. In der Vergangenheit haben sich daher ASIC-basierte Lösungen etabliert, die – teilweise
unterstützt durch RISC-Prozessoren – die geforderte Leistungsfähigkeit bieten. Nachteile ASIC-
basierter Systeme sind allerdings relativ lange Entwicklungszeiten und hohe Entwicklungs- und
Fertigungskosten. Insbesondere Änderungen der Netzwerkprotokolle sind oft mit aufwändigen und
teuren Überarbeitungen (Redesigns) verbunden. Vor diesem Hintergrund wurden in den letzen Jah-
ren verstärkt so genannte Netzwerkprozessoren entwickelt. Netzwerkprozessoren sind program-
mierbare Spezialbausteine für den Aufbau von Netzwerkkomponenten, die den geringeren Preis und

DSL

Internet

VPN
Mobilfunk

VoIP
Mobilfunk DSLDSL

Internet

VPNVPN
MobilfunkMobilfunk

VoIP
MobilfunkMobilfunk

Kapitel 7. Performanzanalyse skalierbarer GigaNetIC-Netzwerkprozessoren

184

die Flexibilität von RISC-Prozessoren mit der Leistungsfähigkeit und Skalierbarkeit von anwen-
dungsspezifischen Bausteinen kombinieren. Eine Optimierung der Architektur für die Paketverar-
beitung wird vorrangig durch drei Mechanismen erreicht: Modifikation des Instruktionssatzes,
Hinzufügen von Hardwarebeschleunigern sowie Entwurf von On-Chip-Architekturen, die Paral-
lelverarbeitung und Pipelining ausnutzen, vgl. auch Kapitel 6. Obwohl Implementierungen von
Netzwerkprozessoren erst seit wenigen Jahren verfügbar sind, gab es bereits im Jahre 2002 über 30
Hersteller von kommerziellen Netzwerkprozessoren [169], die sich in ihrem Aufbau teilweise deut-
lich unterscheiden, darunter so bekannte Namen wie Intel (IXP2800), IBM (PowerNP), Motorola
(C-5) oder Cisco (PXF).

Abbildung 7-1 zeigt wesentliche Einsatzgebiete für Netzwerkprozessoren auf. Augenscheinlich
wird hier, dass je nach Funktion der Netzwerkkomponente oft gleichartige Algorithmen verarbeitet
werden müssen, allerdings in deutlich unterschiedlichem Umfang, Zeitrahmen und bei mobilen Ge-
räten teilweise mit sehr eingeschränkten Energieressourcen. Die Randbedingungen bzw. Anforde-
rungen unterscheiden sich mitunter beträchtlich. Ein mobiles Endgerät benötigt weniger Rechen-
leistung als ein Router des Kernnetzwerks, verarbeitet einige wenige Datenströme, hat aber auch ein
sehr limitiertes Energiebudget. Dem Router hingegen wird ein höheres Kontingent zugeschrieben,
er muss jedoch eine weitaus höhere Bandbreite, verbunden mit deutlich höherer Rechenleistung zur
Verfügung stellen. Mittlerweile spielt allerdings auch bei diesen Hochleistungskomponenten des
Netzwerks die Leistungsaufnahme eine immer größer werdende Rolle, da die Kosten für Kühlung
und Strom bei großen Anlagen einen immer größer werdenden Stellenwert einnehmen [13], vgl.
Kapitel 2. Auch die Lärmbelästigung durch etwaig benötigte Lüfter wird, speziell im Bereich der
„letzten Meile“, also den Verteileranlagen im Bereich der Hausanschlüsse der Endkunden, immer
stärker diskutiert. Könnte man den sich hieraus ergebenden Anforderungen mit einem ressourcenef-
fizienten Architekturkonzept gerecht werden, so würden sich u. a. gravierende wirtschaftliche Vor-
teile im Sinne von – Economies of Scale –, häufig auch als Skaleneffekt bezeichnet, ergeben. Hard-
wareentwickler wären bei einer modularen, skalierfähigen Bauweise der Netzwerkprozessor-
architektur in der Lage, eine hohe Wiederverwendbarkeit und somit Entwurfszeitersparnisse zu er-
zielen. Verarbeitungseinheiten mit höheren Rechenleistungsanforderungen könnten aus kleineren
leistungsschwächeren Verarbeitungseinheiten zusammengesetzt werden und durch Parallelverarbei-
tung ihren Anforderungen ressourceneffizient gerecht werden.

Softwareentwickler könnten ein einheitliches Programmiermodell verwenden und die Produktivi-
tätskurve würde aus Gründen der Wiederverwendbarkeit der Software ebenso wie bei der Hardware
deutlich gesteigert. Die GigaNetIC-Architektur eröffnet diese Möglichkeiten, weshalb im Folgen-
den eine tiefere Analyse GigaNetIC-basierter Netzwerkprozessoren für Anwendungen aus dem Zu-
gangsnetzwerkbereich (Access Networks) und dem Kernnetzwerkbereich (Core Network) vorges-
tellt werden. Im Bereich mobiler Anwendungen (MANets) wurde die Leistungsfähigkeit der Giga-
NetIC-Architektur bereits skizziert, vgl. Abschnitt 6.8.2.

7.1 Einsatzgebiet im Zugangsnetzwerk – DSLAM

Eines der Einsatzgebiete für einen GigaNetIC-basierten Netzwerkprozessor ist die Anbindung der
„letzten Meile“, bei der es um die Bündelung bzw. Verteilung von DSL(Digital Subscriber Line)-
Anschlüssen geht. Die hierfür benötigten Knoten, die im Zugangs(Access)-Bereich des Netzwerks
anzusiedeln sind, nennt man DSLAMs (DSL Access Multiplexer). Abbildung 7-2 skizziert dieses

7.1 Einsatzgebiet im Zugangsnetzwerk – DSLAM

185

Anwendungsszenario, bei dem N-Core-basierte GigaNetIC-Chip-Multiprozessor-Systeme sowohl
in dem eigentlichen DSLAM aber auch in skalierter Weise in den Routern des Kernnetzwerks und
den Endgeräten (Customer-Premises Equipment / CPEs) in den Haushalten der Verbraucher einge-
setzt werden, um so eine gute Kosteneffizienz erzielen zu können.

Abbildung 7-2: Einsatz GigaNetIC-basierter Netzwerkprozessoren in einem DSLAM-Anwendungsszenario

Hauptkomponenten eines DSLAMs sind heute bis zu 64 Linecards, die jeweils bis zu 96 DSL-
Anschlüsse (Ports) zur Verfügung stellen, und eine Uplinkcard, die den Verkehr zum Netzbetreiber
(Internet Service Provider / ISP) regelt. Die Linecards sind über eine leistungsfähige Kopplung
(Backplane) mit einer oder zwei Uplinkcards verbunden. Aus Kostengründen werden diese Kom-
munikationskanäle in Zukunft immer häufiger ethernetbasiert sein [141].

Abbildung 7-3: DSLAM-System-Komponenten

Abbildung 7-3 zeigt schematisch die Komponenten und die logischen Datenflussrichtungen inner-
halb eines DSLAMs. Die sich ergebenden Bandbreiten B sind für die vier unterschiedlichen Fälle
eingetragen. Bei einem DSLAM unterscheidet man prinzipiell zwischen zwei Flussrichtungen, den
Uplink, über den die CPEs der Endkunden den Diensteanbieter (ISP) erreichen, und den, in den
meisten Fällen breitbandigeren Downlink, über den die Daten zu den Endkunden übertragen wer-
den. Dieser Systemaufbau erfordert in den einzelnen Komponenten spezielle Funktionen. Diese
müssen zudem mit, den auftretenden Bandbreiten angepassten, Ressourcen verarbeitet werden. Die
entsprechenden Überlegungen zu den funktionalen, wie auch verkehrsmodellbedingten Anforde-
rungen an einen IP(Internet Protokoll)-basierten DSLAM (kurz: IP-DSLAM) werden im nächsten

Line Card LC

Uplinkcard UC

Line Card LC
Linecard LC

Line Card LC

Uplinkcard UC

Line Card LC
Linecard LC

UC_DL xDSL_DLB Bm n≤ ⋅ ⋅

LC_DL xDSL_DLB Bm≤ ⋅ LC_UL xDSL_ULB Bm≤ ⋅

UC_UL xDSL_ULB Bm n≤ ⋅ ⋅

DL Downlink
UL Uplink

B Bandbreite
n Anzahl der Linecards
m Anzahl der DSL-Anschlüsse

LC_DLBn⋅ LC_ULBn ⋅

S B

S B

S B

S B

S B

S B

S B

S B

RAM

RAM

RAM

RAM

RAM

RAM

S/P P/S

RAM RAM

DSLAMDSLAM

RouterRouter

InternetInternet

Kernnetzwerk

ATM, Ethernet, PoS

xDSL

Endkundengeräte
Customer-Premises Equipment

Digital Subscriber Line Access Multiplexer

CPE

CPE

CPE

CPECPE

CPE

CPE

Kapitel 7. Performanzanalyse skalierbarer GigaNetIC-Netzwerkprozessoren

186

Abschnitt 7.2 in einem von uns definierten neuartigen IP-DSLAM-Benchmark formuliert [141]. Ein
herkömmlicher DSLAM ist nach dem OSI-Referenzmodell (vgl. Abschnitt 2.3.2) auf Schicht zwei
angesiedelt und so für das IP-Protokoll transparent. Der modernere IP-DSLAM stellt zusätzliche
Dienste zur Verfügung und kann deshalb auch IP-Datenverkehr terminieren bzw. verarbeiten.

DSL-basierte Internetzugänge, die zu den so genannten Breitbandanschlüssen zählen, haben, nicht
nur in Deutschland, in den vergangenen Jahren einen immensen Zuwachs erfahren. Seit 2002 liegen
die jährlichen Zuwachsraten der DSL-Anschlüsse in Deutschland bei ca. 50 %, was Ende 2006 eine
Gesamtsumme von 14,9 Mio. Breitbandzugängen ausmachte [170]. Seit 2003 steigt das Breitband-
verkehrsvolumen in Deutschland jährlich um ca. 30 % und betrug 2006 nach Schätzungen ca.
876 Mio. GByte [170]. Diese Zahlen zeigen, dass das DSLAM-Anwendungsgebiet sowohl von der
Anzahl der benötigten Verarbeitungseinheiten als auch aufgrund der stetig wachsenden Anfor-
derungen an die benötigten Recheneinheiten wirtschaftlich und wissenschaftlich interessant ist. Um
den Herausforderungen gerecht werden zu können, müssen skalierbare und zugleich zukunftssiche-
re Netzwerkprozessorarchitekturen im Sinne der Anwendungssoftware und der Programmierbarkeit
entwickelt werden. Im Folgenden wird die Verwendbarkeit der GigaNetIC-Architektur für den Ein-
satz in solchen DSLAM-Anwendungen untersucht und auf spezielle Erfordernisse dieses Anwen-
dungsgebiets hin optimiert.

7.2 Definition eines IP-DSLAM-Benchmarks auf Systemebene

Um eine eingängige Bewertung der GigaNetIC-basierten Netzwerkprozessorarchitektur für ein IP-
DSLAM-Anwendungsszenario durchführen zu können, bedurfte es einer genauen Charakterisierung
der Anforderungen die diese Anwendung and die Hard- und Software stellt. Eine Benchmarkdefini-
tion einschließlich eines realistischen Verkehrsmodells (Traffic Model) war notwendig. Zu dem
Zeitpunkt unserer Analysen waren bereits mehrere Netzwerkprozessorbenchmarks bekannt, von
denen wir in [141] acht der bekanntesten in Bezug auf die Anwendbarkeit auf ein IP-DSLAM-
Szenario diskutieren.

Tabelle 7-1: Charakteristika etablierter Netzwerkbenchmarks

Dies waren im Einzelnen: CommBench [171], EEMBC [161], MiBench [172], NetBench [173],
NPF Benchmarking Group [174], LinleyBench [175], Intel Corporation Benchmark [176] und
NPBench [177]. Die wesentlichen Charakteristika der genannten Benchmarks sind in Tabelle 7-1

Granularität Quellcode Verfügbarkeit Verkehrsmodell Profilierung

CommBench Mikrobenchmark C auf Anfrage Nein Nein

EEMBC Mikrobenchmark C Mitgliedschaft Ja Ja

MiBench Mikrobenchmark C frei verfügbar Ja Nein

NPBench Mikrobenchmark C auf Anfrage Nein Nein

NetBench
Mikrobenchmark/
Funktionsebene

C frei verfügbar Ja Nein

NPF-BWG Funktionsebene Nein nur textuell Ja Ja

Intel Funktionsebene Mikro-Engine-C nein k. A. Ja

LinleyBench Funktionsebene Nein Lizenz Ja Ja

GigaNetIC
IP-DSLAM-Referenz-BM

Systemebene C auf Anfrage Ja Ja

7.2 Definition eines IP-DSLAM-Benchmarks auf Systemebene

187

aufgeführt. Bei der Granularität der Benchmarks kann zwischen Mikro-, Funktions- und Systemebe-
ne unterschieden werden. Die Mehrzahl der hier erwähnten Benchmarks setzt auf Mikroebene an, d.
h. es kommen elementare Tasks wie CRC-Funktionen und Tabellenauswertung (Table Lookup) zum
Einsatz. Einige der Benchmarks setzen auf Funktionsebene an, wobei die am häufigsten verwendete
Funktion im Weiterleiten von IPv4-Paketen (IPv4-Forwarding) besteht. Allerdings setzt keiner der
Ansätze auf Systemebene an, was für eine realistische Modellierung eines IP-DSLAM-Benchmarks
zwingend notwendig ist.

Letztendlich kamen wir bei der Analyse dieser Benchmarks, der zugehörigen Verkehrsmodelle so-
wie der Profilierungsmöglichkeiten zu dem Schluss, dass sie nur unzureichend für ein IP-DSLAM-
Szenario auf System-/Taskgraphebene anwendbar waren. Deshalb haben wir in [141] einen eigenen
IP-DSLAM-Benchmark nebst adaptivem Verkehrsmodell entworfen, der in der Forschungsabtei-
lung von Infineon Technologies zum IP-DSLAM-Referenzbenchmark ausgebaut wurde [178][119].

7.2.1 Funktionelle Spezifikation

Im Folgenden werden die für den IP-DSLAM-Benchmark relevanten Tasks kurz erläutert. Diese
formen in Abhängigkeit von der Datenrichtung und der jeweiligen DSLAM-Systemkomponente
den eigentlichen Systemebenen-Benchmark.

Task-A – Parser. Im Task-A wird eine Gültigkeitsüberprüfung des Datenpakets durchgeführt. Ein
Algorithmus, der die Maßgaben, die ein gültiges IPv4-Paket kennzeichnen, überprüft, wird in die-
sem Schritt durchlaufen. Schlägt die Überprüfung fehl, wird das Paket verworfen.

Task-B – IP-Header Verification. Hier werden mittels eines Algorithmus aus [179] der IP-Paket-
kopf nach den Vorgaben sowie die IP-Headerprüfsumme verifiziert.

Task-C – Classification. Der Algorithmus (IP-Filter) klassifiziert die Datenpakete unter Berück-
sichtigung der Quell- und Ziel-IP-Adresse, dem Quell- und dem Zielport und der Protokollkenn-
zeichnung. Anhand des Klassifizierungsergebnisses dieser fünf Tupel wird ein Zugangs(Access)-
Status ermittelt, der über das weitere Verfahren mit dem Paket entscheidet. Realisiert wird dies mit
Hilfe einer individuell anpassbaren Vergleichstabelle, deren Einträge iterativ mit den jeweiligen
fünf Tupeln der Pakete verglichen werden. Kann keine Tupelwert-Übereinstimmung ermittelt wer-
den, wird das Datenpaket verworfen. Im Downlink kann der Zugangs-Status für Datenvolumen-
begrenzungszwecke (Conditioning) eingesetzt werden, im Uplink können Bandbreitenzusagen (Ser-
vice Level Agreements / SLA) aufgrund des ermittelten Wertes kontrolliert bzw. eingehalten werden.

Task-D – MC Address Mapping & Duplication. Task-D beschreibt die Funktionalität der Datenpa-
ketvervielfältigung im Sinne von Multicast bzw. Broadcast für Netzwerkteilnehmer.

Task-E – Policing & Conditioning. Der Task-E fungiert als Überwachungsfunktion zum Ver-
kehrsmanagement (Policing) von ausgehenden Datenpaketen im Uplink. Im Downlink werden die
Datenraten mit Hilfe von so genannten Token-Buckets reguliert. Die Verwendung dieser Buckets
dient der Datenverkehrsglättung mit dem gewünschten Ziel, eine diskontinuierliche Datenverkehrs-
charakteristik so zu organisieren, dass annähernd kontinuierliche Datenströme entstehen (Conditio-
ning / Shaping).

Task-F – AAL5 Segmentation. Um den derzeitigen Standards gerecht zu werden, wurde für die
integrierte Nutzung des ATM(Asynchronous Transfer Mode)-Übertragungsverfahrens, eine Segmen-
tierung der Datenpakete in ATM-Zellen vorgesehen. Der Algorithmus nimmt diese Segmentbildung

Kapitel 7. Performanzanalyse skalierbarer GigaNetIC-Netzwerkprozessoren

188

unter Maßgabe des AAL5(ATM Adaptation Layer 5)-Dienstes vor. Hierzu müssen u. a. die CRC8
für jede ATM-Zelle als auch die CRC32 für das gesamte Paket berechnet werden.

Task-G – NPF-ML (Network Processor Forum Message Layer Protocol) – Tag-Generierung.
Der Einsatz dieses Algorithmus ist nur auf der Uplinkcard (im Downlink) gegeben und wird zur
Parametrisierung der Mehrfachzustellung (Small Group Multicast) der Datenpakete von der Uplink-
card in Richtung Linecard und dort letztendlich hin zum Endkunden verwendet. Multicast-Pakete,
die als Ziel die gleiche Linecard haben, werden nicht dupliziert, sondern mit Hilfe einer Liste auf
die entsprechenden Portnummern verteilt. Hierzu wird das NPF-ML-Protokoll verwendet.

Task-H – Ethernet-Encapsulation & Forwarding. In diesem Schritt wird die Übermittlung des IP-
Pakets über Ethernet initiiert. Nach der Kapselung des Datenpakets in einen so genannten Ethernet-
Frame erfolgt das Weiterreichen an die Bit-Übertragungsschicht. Mit Hilfe des CRC32 wird die
Prüfsumme unter Berücksichtigung der Ziel- und Quelladressen, des Type-Feldes und des Ethernet-
nutzdatenbereichs gebildet. Der Nutzdatenbereich enthält das zu transferierende Datenpaket.

Für weitere Details zu den genannten Tasks sei an dieser Stelle auf [141] verwiesen.

7.2.2 Implementierung

Das erstellte Anwendungsszenario beschreibt eine Testumgebung, die die Funktionalität eines IP-
DSLAMs unter Verwendung der oben genannten Tasks realisiert und eine Weiterentwicklung des
klassischen DSL-Access-Multiplexers der OSI-Schicht zwei darstellt. Die enthaltenen Erweiterun-
gen berücksichtigen u. a. Aspekte QoS(Quality of Service)-basierter Datenverarbeitung der dritten
Schicht des OSI-Modells [34].

Tabelle 7-2: Taskzuordnung in Abhängigkeit von DSLAM-Komponente und Datenrichtung

Die einzelnen Funktionalitäten des DSLAM-Anwendungsszenarios wurden in der Programmierspra-
che ANSI-C implementiert und sind in die oben genannten, in sich funktional geschlossenen Auf-
gaben (Tasks) unterteilt. Der Quellcode umfasst 37 Dateien mit insgesamt 4520 Codezeilen. Tabelle
7-2 zeigt die sich in Abhängigkeit von der Datenrichtung des Paketstromes und der hardwaretechni-
schen Konfiguration ergebende Zuordnung der Tasks (auszuführende Tasks sind mit einem „x“ ge-
kennzeichnet). Zur sinnvollen Verwendung dieses synthetischen Benchmarks, müssen möglichst
realitätsnahe Datenströme generiert werden, die sich stark an real auftretenden Gegebenheiten des
Anwendungsgebiets orientieren. Die Konzeption dieser Daten wird im folgenden Abschnitt kurz
vorgestellt.

7.2.3 Verkehrsmodell

Das Verkehrsmodell (Traffic Model / TM) definiert die im DSLAM auftretende Nutzlast und muss
drei wesentliche Kategorien abdecken: Adressbereichsverteilung, QoS-Verteilungen und Paketgrö-
ßen-Verteilungen.

Uplink Downlink Uplink Downlink
Task A: Parser X X X X
Task B: Headercheck X X X X
Task C: Classification X X
Task D: MC-Duplication X X
Task E: Policing & Conditioning X X
Task F: AAL5-Segmentation X X
Task G: NPF-ML X
Task H: Ethernet Encapsulation X X

Tasks
Uplinkcard Downlinkcard

7.2 Definition eines IP-DSLAM-Benchmarks auf Systemebene

189

Adressbereiche. Zur Adressierung von Teilnehmergruppen im Anwendungsszenario wird ein IP-
Adressraum von 224.0.0.0 bis 239.255.255.255 verwendet. Dieser entspricht einem Klasse-D-Netz,
welches zum Adressieren von Multicastgruppen genutzt wird. Im hier vorliegenden System sind 32
Gruppen mit je 96 Teilnehmern definiert. Der Anteil der zu bearbeitenden Multicast-Pakete beläuft
sich auf 1 % bis 9 % aller Pakete. Die übrigen 99 % bis 91 % der Pakete bilden die Menge der Uni-
cast-Pakete, die nur an einen Teilnehmer gesendet werden müssen. Zur Adressierung der maximal
3072 Hosts wird ein Adressrahmen von x.y.0.0 bis x.y.12.0 gewählt, um alle Teilnehmer erreichen
zu können. Die Quell- und Ziel-IP-Adressen liegen im gleichen Adressbereich. Weiterhin wird fest-
gelegt, dass bis zu 16 Flüsse über den Zielport (Layer 4) möglich sind.

QoS. Die zu leistende Dienstgüte (QoS) ist abhängig von der Adressvereinbarung und den verwen-
deten Regeln zur Klassifizierung der Pakete. Die Klassifikationsregeln sind so ausgelegt, dass 50 %
der Pakete bevorzugt weitergeleitet werden (Expedited Forwarding), 36 % den vier Subklassen des
QoS entsprechend mit jeweils dreifacher Priorisierung bzgl. des Verwerfens (Assured Forwarding)
zugesichert verarbeitet werden und die restlichen 14 % bei freier Bandbreite weitergeleitet werden
(Best Effort).

Paketgröße. Die Paketgrößen werden nach der etablierten 7:4:1-Verteilung, dem Internet Mix (iM-
ix) festgelegt. Er spiegelt eine durchschnittliche Paketgrößenverteilung, die häufig in der Realität zu
messen ist, wider. Das bedeutet sieben Pakete minimaler Länge à 40 Byte51, die z. B. durch TCP-
Bestätigungen, aber nicht durch Nutzdaten hervorgerufen werden. Weiterhin werden vier Pakete
mit 552 bzw. 576 Byte injiziert, die z. B. von TCP-Implementierungen die keine MTU(Maximum
Transmission Unit)-Ermittlung durchführen, herrühren. Komplettiert wird das repräsentative Daten-
aufkommen durch ein Paket maximaler Länge à 1500 Byte, das z. B. von TCP-Implementierungen
stammt, bei denen die maximale Übertragungsgröße festgelegt wurde. Weitere Details zur Vertei-
lung und Injektion der Pakete sind [141] zu entnehmen. Zu beachten ist, dass diese Paketgrößen
sich immer ohne die 18-Byte-großen Ethernetheader verstehen.

7.2.4 Bewertungsmethode zum Vergleich unterschiedlicher Architekturen

Vorraussetzung zur Anwendung des IP-DSLAM-Benchmarks ist ein zyklenakkurater Simulator mit
entsprechender Werkzeugkette, was nahezu unverzichtbar für den Erfolg einer Hardwarearchitektur
ist und somit durchaus gefordert werden kann. Aufgrund der Benchmarkimplementierung in der
Hochsprache C ist die Portierung auf eine Vielzahl von Zielarchitekturen relativ einfach. Es wird
explizit keine Beschleunigung durch optimierte Assemblerroutinen angewendet oder empfohlen, da
der Benchmark die Bewertung der gesamten Architektur zum Ziel hat, also auch die Compiler-
Werkzeugkette in die Performanzbewertung einbezogen werden soll. Dies liegt darin begründet,
dass im untersuchten Anwendungsgebiet schnell auf sich verändernde oder zusätzliche Anforderun-
gen reagiert werden können soll. Außerdem gebietet eine ressourceneffiziente Architektur im Sinne
von Definition 36 eine leichte Portierbarkeit auf zukünftige Systeme. Dies spricht für eine Imple-
mentierung der Anwendungssoftware in einer Hochsprache. Zusätzlich wird so die Wartbarkeit des
Programmcodes deutlich erhöht.

51 In der Literatur wird teilweise auch 46 Byte anstelle der 40 Byte angenommen.

Kapitel 7. Performanzanalyse skalierbarer GigaNetIC-Netzwerkprozessoren

190

Um aussagekräftige Werte zum Vergleich unterschiedlicher Architekturen bzgl. der Performanz zu
erhalten, wird folgende Normalisierungsfunktion angewendet:

 []#

t
t Tasks

p
p Pakete

Takte
Takte

Performanz
Tasks Größe Byte Bit

∈

∈

 =  ⋅  

∑

∑
 (7.1)

#Tasks beziffert die Anzahl der eingesetzten Tasks und ist im Weiteren mit acht gleichzusetzen.

7.2.5 DSLAM-Benchmarkanalysen für skalierbare GigaNetIC-CMPs

In diesem Abschnitt werden erste Benchmarkergebnisse vorgestellt, die mit dem in Abschnitt 7.2
vorgestellten IP-DSLAM-Benchmark gewonnen wurden. Zunächst werden zwei eingebettete Pro-
zessoren untersucht, zum einen der N-Core (vgl. Abschnitt 4.3.1) und zum anderen eine speziell auf
Paketverarbeitung optimierte Verarbeitungseinheit (NPU-Core), ähnlich der aus [180][181]. Beim
NPU-Core handelt es sich um einen 32-Bit-RISC-Kern, der über eine hardwareunterstützte Behand-
lung mehrerer Threads verfügt. Außerdem erlaubt seine 6-stufige Pipeline eine fast doppelt so hohe
Betriebsfrequenz wie die des N-Core. Die betrachtete DSLAM-Ausbaustufe entspricht der in Abbil-

dung 7-3 vorgestellten Maximalsystemkonfiguration mit n = 64 Linecards und m = 96 xDSL-Ports.

Abbildung 7-4: Anforderungen der einzelnen IP-DSLAM-Benchmarktasks

an die Rechenleistung der eingebetteten Prozessoren

Um die maximal mögliche Rechenlast zu bestimmen, wird ein Worst-Case-Szenario betrachtet, bei
dem die maximalen Bandbreiteanforderungen ausgeschöpft werden, vgl. (7.2).

Das zugrundeliegende Verkehrsmodell entspricht dem aus Abschnitt 7.2.3, wobei 2981 Pakete mit
einer Gesamtgröße von 0,955 MByte verarbeitet wurden. Abbildung 7-4 zeigt die benötigten Takte
für die Abarbeitung der einzelnen Tasks, sowie die Gesamtzahl der für den Benchmark benötigten

74
.5

00 22
2.

01
0

39
6.

37
3

62
2.

82
0

1.
35

8.
87

4

1.
52

2.
59

4

1.
15

6.
72

0

1.
71

7.
76

9

16
9.

57
1

24
2.

90
8

41
4.

58
7

62
6.

03
8 2.

55
8.

39
3

2.
00

8.
52

0

4.
09

3.
93

1

6.
96

8.
73

0

10
.2

22
.9

49

13
.9

31
.3

89

10.000

100.000

1.000.000

10.000.000

100.000.000

Ta
kt

e
[n

or
m

ie
rt

 a
uf

 N
-C

or
e-

T
ak

te
]

Par
se

r
Hea

de
rc

he
ck

Cla
ss

ific
at

ion
M

C D
up

lic
at

ion

NPF-M
L

Poli
cin

g
& C

on
dit

ion
ing

AAL5

Eth
er

ne
t

Ges
am

t

N-Core NPU-Core

7.2 Definition eines IP-DSLAM-Benchmarks auf Systemebene

191

Takte, normiert auf die N-Core-Takte52. Augenscheinlich sind die besonders rechenintensiven Auf-
gaben die Tasks AAL5 und Ethernet, was durch die aufwändigen CRC-Prüfsummen und Kopier-
vorgänge der Pakete begründet ist. Der N-Core ist bis auf die Funktion AAL5 überall zeiteffizien-
ter, in Bezug auf die Anzahl benötigter Takte entscheidet er jeden Task für sich.

_ _ _

_ _ _

0,8

, 3

2

8

, 22

2

UC UL xDSL UL xDSL UL

UC DL xDSL DL xDSL DL

Mbps für ADSL

B m n B mit B Mbps fürVDSL

Mbps für SHDSL

Mbps für ADSL

B m n B mit B Mbps fürVDSL

Mbps für SHDSL


= ⋅ ⋅ = 




= ⋅ ⋅ = 



 (7.2)

Im Durchschnitt benötigt der NPU-Core 3,5 Takte/Paket-Bit, wohingegen der N-Core weniger als
1,3 Takte aufwenden muss. Eine grobe Analyse der Tasks bezüglich ihrer Abbildung auf die beiden
Prozessoren zeigt schnell erste Flaschenhälse der reinen Paketverarbeitungseinheit (NPU-Core) auf.
Der Instruktionssatz der Paketverarbeitungseinheit ist hoch spezialisiert für besondere Bitoperatio-
nen, aber beinhaltet nur eine eingeschränkte Menge an Universalbefehlen.

Tabelle 7-3: Benötigte Takte des N-Cores

Die Analysen zeigen, dass der positive Effekt dieser Spezialoperationen mehr als aufgehoben wird.
Der Hauptgrund dafür liegt in der Verteilung der Instruktionshäufigkeiten. Können doch nur 10 %
des Codes von den Spezialoperationen profitieren, wohingegen die verbleibenden 90 % des Codes
Universalbefehle implizieren. Ein weiterer Punkt liegt in dem Compiler begründet, der weniger gut
für die Instantiierung der Spezialbefehle geeignet ist. Abhilfe schaffen könnte eine völlige Restruk-
turierung des NPU-Core-Compilers, oder aber eine aufwändige Programmierung von Hand in Ma-
schinensprache (Assembler), was bezüglich der Wartung und Zukunftssicherheit äußerst bedenklich
wäre53 und die Ressourceneffizienz deutlich herabsetzte.

52 Da der N-Core bzgl. der maximalen Taktfrequenz nur halb so schnell getaktet werden kann wie der NPU-Core, wird

hier ein N-Core-Takt praktisch mit zwei NPU-Core-Takten gleichgesetzt.

53 Die Ergebnisse dieser Studie führten zu einer kompletten Restrukturierung des Architekturansatzes bei dem bisher

verwendeten NPU-Core.

Downlink Uplink Downlink Uplink
Parser 74.500 74.500 74.500 74.500
Headercheck 396.373 399.353 396.373 417.233
Classification 1.358.874 - 1.358.874 -
MC Duplication 1.156.720 - 1.171.597 -
NPF-ML - - 169.571 -
Policing & Conditioning 414.587 - 414.587 -
AAL5 2.558.393 2.543.493 - -
CRC Beschleuniger 4.093.931 6.024.563 99.099 -
Ethernet Framing - 309.920 349.886 -
CRC in Software 43.023.639 63.901.032 966.966 -
Gesamt 10.053.378 9.351.829 4.034.487 491.733
Takte/Bit 1,255 1,167 1,986 0,061

N-Core Linecard Uplinkcard

Kapitel 7. Performanzanalyse skalierbarer GigaNetIC-Netzwerkprozessoren

192

Tabelle 7-3 stellt die benötigten Takte des N-Core-Prozessorkerns für ein IP-DSLAM-Light-
Szenario, ähnlich dem in Tabelle 7-2 vorgestellten Modell, das den asymmetrischen Charakter der
Anwendung besonders deutlich macht. In diesem Fall benötigt der N-Core 1,167 Takte/Bit für den
Uplink und 1,255 Takte/Bit für den Downlink auf der Linecard, wohingegen im Uplink auf der Up-
linkcard nur 0,061 Takte/Bit anfallen. Besonders rechenintensiv ist der Downlink auf der Uplink-
card mit 1,986 Takten/Bit. Um einen Eindruck von den Leistungsanforderungen einer Linecard54
mit m = 96 Ports eines IP-DSLAMs (vgl. Abbildung 7-3) zu vermitteln, wird in Tabelle 7-4 die An-
zahl der jeweils benötigten Verarbeitungseinheiten im Hinblick auf die betrachteten DSL-
Varianten, vgl. (7.2), aufgetragen. Eine Leistungseinbuße aufgrund der Parallelverarbeitung wird
hierbei mit konstant 10 % angesetzt. Die Taktfrequenz des N-Cores wurde mit 300 MHz und die
des NPU-Cores mit 600 MHz angenommen.

Tabelle 7-4: Benötigte Verarbeitungseinheiten für eine Linecard des jeweiligen DSLAM-Szenarios

Mit 14 NPU-Cores bzw. 10 N-Cores ist der Downlink bei VDSL besonders rechenintensiv und kann
nur sehr teuer mit parallelen Prozessoren bewerkstelligt werden. In diesem Szenario muss eine Da-
tenmenge von 2,112 GBit/s pro Linecard verarbeitet werden.

Mit Hilfe des hier vorgestellten Benchmarks für das IP-DSLAM-Szenario können im Anschluss die
in Kapitel 6 vorgestellten Optimierungsmaßnahmen wie Instruktionssatzerweiterungen, Hardware-
beschleuniger, Anpassung der Kommunikationsinfrastruktur sowie Ausnutzung von Parallelität
greifen, deren Ergebnisse u. a. in [130][118][109][119][131][113] vorgestellt wurden.

Im folgenden Abschnitt werden u. a. die Performanzgewinne für die Ausführung des hier vorges-
tellten IP-DSLAM-Benchmarks unter Verwendung der in Abschnitt 6.2.4 präsentierten Instruktions-
satzerweiterungen aufgezeigt.

7.3 Instruktionssatzerweiterungen zur optimierten Protokollverarbeitung

Im Folgenden wird anhand der in Abschnitt 6.2.4 präsentierten Instruktionssatzerweiterungen das
Potential dieser Prozessorerweiterungen im Hinblick auf Leistungssteigerung, Reduktion des Ener-
giebedarfs und Codegrößenminimierung aufgezeigt. Die Gegenüberstellung der Analyseergebnisse
für den Originalprozessor (S-Core [108]) und der erweiterten Varianten (N-Core [111]) erfolgt so-
wohl für den im vorigen Abschnitt diskutierten IP-DSLAM-Benchmark55, als auch für die in [112]
analysierte IPSec-Protokollsammlung [158], vgl. auch Abschnitt 6.2.3. So wird zum einen ein An-
wendungsgebiet aus dem Zugangsnetzwerkbereich und zum anderen eine bereichsübergreifende

54 Die Leistungsanforderungen aller Komponenten des IP-DSLAMs in Abhängigkeit der Parameter: Prozessorarchitek-

tur, Taktfrequenz, Parallelisierungseinbuße, Hardwarekomponente des DSLAMs sowie Flussrichtung etc. zeigt der

DSLAM-System-Explorer auf (vgl. Abschnitt 7.5).

55 Im Weiteren wird eine konsekutive Bearbeitung aller Benchmarkszenarien mit reduzierter Paketzahl betrachtet. Dies

ermöglicht eine Abschätzung der Auswirkungen der Instruktionssatzerweiterungen für alle DSLAM-Komponenten.

Uplink Downlink Uplink Downlink

ADSL 1 4 1 5

VDSL 2 10 2 14
SHDSL 1 1 2 2

benötigte N-Cores benötigte NPU-Cores
DSL-Version

7.3 Instruktionssatzerweiterungen zur optimierten Protokollverarbeitung

193

Sicherheitsanwendung bezüglich der Steigerung der Ressourceneffizienz durch Befehlssatzerweite-
rungen untersucht.

Tabelle 7-5: Benötigte Taktzyklen des S-Cores für die IPSec- und IP-DSLAM-Anwendung und die

Beschleunigung durch den Einsatz verschiedener Versionen des N-Cores

Tabelle 7-5 zeigt die Ausführungszeit in Takten für die beiden Anwendungsszenarien und die ent-
sprechenden Prozessorvarianten auf. Der N-Core wurde hierbei um jeweils eine der aufgezeigten
Instruktionen erweitert, bzw. abschließend wurden alle Instruktionssatzerweiterungen in den N-
Core integriert (N-Core gesamt). Da die Instruktionssatzerweiterungen ursprünglich für die be-
reichsübergreifende IPSec-Anwendung implementiert wurden, um den N-Core in möglichst vielen
Orten des Netzwerks effizienter einsetzen zu können (vgl. Abbildung 7-1), verwundert es nicht,
dass die maximal erzielte Performanzsteigerung für ebendiese Verarbeitung erzielt wird. So wird
durch Integration der sieben zusätzlichen Befehle eine Reduktion der zur Verarbeitung benötigten
Takte von fast 25 % erreicht. Beim IP-DSLAM sind es immerhin noch mehr als 10 % Ersparnis.
Setzt man die hier gewonnenen Werte zu dem im vorigen Abschnitt 7.2.5 skizzierten IP-DSLAM-
Szenario in Beziehung, so ließe sich durch die Instruktionssatzerweiterungen z. B. bei VDSL im
Downlink auf der Linecard einer von zehn N-Cores einsparen. Diese Laufzeitreduktion geht bei
gleichbleibender Taktfrequenz des Prozessorkerns einher mit einer Reduktion des Flächenbedarfs
der reinen Prozessoreinheiten von 7,6 % bei der 130-nm-Technologie bzw. einer leichten Flächen-
erhöhung um 1 % bei der 90-nm-Technologie, vgl. Abschnitt 6.2.4. Allerdings würde die Reduktion
der Prozessoren eine Verringerung des zu instanziierenden Speichers bedeuten, welches somit für
beide Technologien eine deutliche Flächenreduktion zur Folge hätte.

Beide Anwendungen profitieren maßgeblich von der LDWIXW-Instruktionssatzerweiterung. Hier
erreicht man nur unter Verwendung dieses einen zusätzlichen Befehls eine Laufzeitreduktion des
gesamten IP-DSLAM-Benchmarks von 9,75 % bzw. bei der IPSec-Anwendung von fast 22 %. Bei
der IPSec-Anwendung liegt die Beschleunigung stets im mehrstelligen Prozentbereich, beim IP-
DSLAM werden immerhin noch Werte von durchgängig über 6 % erreicht. Trotz der hohen Takt-
zahlreduktion durch die einzelnen Superinstruktionen liegt die erreichte Gesamtreduktion deutlich
unter der Summation der Einzelreduktionen. Dies begründet sich darin, dass durch die Verwendung
einer Superinstruktion, Einsatzmöglichkeiten anderer Instruktionssatzerweiterungen teilweise ein-
geschränkt werden. Der Compiler ist somit gefordert, eine möglichst optimale Konstellation der
Zusatzbefehle zu finden [112].

Tabelle 7-6 zeigt den Energiebedarf für die Abarbeitung des IPSec-Benchmarks bezogen auf die
130-nm-Standardzellentechnologierealisierung. Außerdem wird die sich ergebende Codegröße in

IP-DSLAM IPSec IP-DSLAM IPSec
2.558.959 20.010.034 0 0

xorldw 2.390.196 17.077.996 6,59% 14,65%

andshr 2.407.230 17.126.254 5,93% 14,41%

ixwandshr 2.407.246 16.100.200 5,93% 19,54%
orshl81624 2.407.236 17.977.018 5,93% 10,16%

ldwixw 2.309.388 15.612.431 9,75% 21,98%

ldwxorlsl8,xorldw 2.356.116 18.000.664 7,93% 10,04%

ldwaddi 2.403.618 18.001.336 6,07% 10,04%

2.288.730 15.061.131 10,56% 24,73%N-Core gesamt

V
ar

ia
nt

e

N-Core

Prozessorvariante

S-Core

Benötigte Takte Abnahme der Taktzahl

Kapitel 7. Performanzanalyse skalierbarer GigaNetIC-Netzwerkprozessoren

194

Bytes für die IPSec-Anwendung angegeben, da diese ebenfalls einen Beitrag zur Ressourceneffi-
zienz leistet, vgl. Abschnitt 6.2.3.

Tabelle 7-6: Energiebedarf bezogen auf eine 130-nm-Technologie und Codegröße für die

IPSec-Verarbeitung der verschiedenen Prozessorvarianten

Liegt die Abnahme der Taktzahl, die durch die Instruktionssatzerweiterungen erzielt wird, einheit-
lich im mehrstelligen Prozentbereich, so verhält sich die Bilanz bzgl. des Energiebedarfs der einzel-
nen Prozessorvarianten hingegen inhomogen. Die LDWIXW-Instruktionssatzerweiterung dominiert
die Prozessorvarianten mit einer Energieabnahme von mehr als 30 % gegenüber der Verarbeitung
mit dem Original-S-Core. Auch die IXWANDSHR-Erweiterung bewirkt eine Reduzierung des Ener-
giebedarfs von fast 25 %. Alle weiteren Instruktionssatzerweiterungen hingegen bewirken nur noch
Reduktionen, die größtenteils im unteren einstelligen Prozentbereich liegen. Dies liegt in der Komp-
lexität und Art und Nutzung der prozessoreigenen Register der jeweiligen Erweiterungen. Die Ge-
samtenergieabnahme für den N-Core (in der Realisierung von Abschnitt 6.2.4) beträgt immerhin
noch über 21 % und liegt für die gesamte Ausführung bei 1,045 mW.

Für künftige Compilergenerationen wären zusätzliche Regelsätze mit Informationen bzgl. der Leis-
tungsaufnahme denkbar, die durch so genannte Mikrobenchmarks (vgl. Abschnitt 6.2.3) für den
gesamten Befehlssatz ermittelt werden könnten. Im Anschluss könnte eine ressourceneffizientere
Codegenerierung im Hinblick auf die sich zur Laufzeit ergebende Leistungsaufnahme geschehen.

Der zweite Teil von Tabelle 7-6 fasst die erzielte Codegröße für den Benchmarkcode der einzelnen
Prozessorvarianten zusammen. Bei Verwendung einzelner Superinstruktionen liegt die Abnahme
bei durchschnittlich 8,5 %. Bei Einsatz aller Instruktionssatzerweiterungen reduziert sich die benö-
tigte Speichermenge für das Anwendungsprogramm um 10,29 % auf 108.158 Byte.

Zusammenfassend lässt sich für den IPSec-Benchmark eine Beschleunigung der Verarbeitung von
fast 25 % einhergehend mit einer Abnahme des Energiebedarfs für die Ausführung von 21 % gege-
nüber dem Original-S-Core konstatieren. Zusätzlich ist noch eine Codegrößenabnahme von mehr
als 10 % zu verzeichnen. Diese deutliche Optimierung wird durch eine Erweiterung des Prozessor-
kerns um sieben leistungsfähige Superinstruktionen erreicht, die für die 130-nm-Implementierung
lediglich einen Flächenzuwachs von 2,7 % bezogen auf die ursprüngliche Prozessorfläche ausma-
chen. Dieses Beispiel zeigt, dass sich die Ressourceneffizienz durch gezielte Instruktionssatzerwei-
terungen signifikant steigern lässt.

7.4 Modulare, effiziente Modellierung von Netzwerkanwendungen

Eine effiziente Erstellung der Anwendungssoftware ist im Sinne der Wirtschaftlichkeit und der Res-
sourceneffizienz von großer Bedeutung. So sind modular gehaltene Anwendungen mit definierten

1,266 0% 119.288 0%

ldwixw 0,971 30,38% 109.750 8,69%
ixwandshr 1,018 24,31% 109.626 8,81%
xorldw 1,194 6,03% 109.470 8,97%
andshr 1,236 2,43% 109.922 8,52%
orshl81624 1,250 1,28% 110.010 8,43%
ldwxorlsl8 1,277 0,86% 110.478 7,97%
ldwaddi 1,272 0,47% 110.510 7,94%

1,045 21,15% 108.158 10,29%N-Core gesamt

V
ar

ia
nt

e

N-Core

S-Core

Prozessorvariante Energie [mWs] Energieabnahme Codegrö ße [Bytes] Codegrößenabnahme

7.4 Modulare, effiziente Modellierung von Netzwerkanwendungen

195

Schnittstellen leichter zu erweitern und zu pflegen. In [182][183][118][178][119] wird ein derarti-
ger Ansatz vorgestellt, der u. a. erfolgreich für die GigaNetIC-Architektur angewandt worden ist
[118].

Abbildung 7-5: Beispielhafte Darstellung einer einfachen Click-Anwendung

Basis dieses Ansatzes ist Click, ein Werkzeug das es dem Benutzer erlaubt, einfach und sehr schnell
Netzwerkanwendungen mit Hilfe von Modulen „zusammenzuklicken“ und damit zu beschreiben.

Abbildung 7-6: Zusammenspiel: Click – CRACC, Ablauf der Generierung von ANSI-C-Code

für Netzwerkanwendungen aus einer abstrakten, modulbasierten Beschreibung

Das Click-Softwarepaket [184][185][186][187] wurde von der Parallel-and-Distributed-Operation-
Systems-Gruppe des Massachusetts Institute of Technology [188], Mazu Networks [189], dem
I.C.I.R. Center for Internet Research des International Computer Science Institute [190] und dem
Computer Science Department der Universität von Kalifornien [191] entwickelt. Eine Click-
Verarbeitungseinheit wird aus der Verknüpfung von Modulen, die Elemente genannt werden, gebil-
det. Diese Elemente bestimmen die Funktion einer Netzwerkverarbeitungseinheit bzw. eines Rou-
ters, beginnend bei der Kommunikation mit anderen Netzwerkkomponenten, der Paketmodifikation
oder der Handhabung von Regeln zum Verwerfen bestimmter Pakete. Die Elemente sind in der
Hochsprache C++ verfasst, was eine komfortable Erweiterung bzw. Anpassung ermöglicht. Paral-
lelverarbeitung ist leicht modellierbar, und es kann auf eine sehr umfangreiche Bibliothek an Netz-

L
a
u
fz
e
it
a
n
a
ly
s
e

Click-
Quellcode

Netzliste

Click-Interpreter

Element-
konfiguration

Übersetzer
Click=>ANSI C

ANSI-C-
Code

Click-Elemente

Betriebssystem-
schnittstellen

CRACC-
Elemente

Zielsystem-
schnittstellen

Simulation

CRACC

Click

Kapitel 7. Performanzanalyse skalierbarer GigaNetIC-Netzwerkprozessoren

196

werkfunktionen zurückgegriffen werden. Abbildung 7-5 zeigt eine mit Click modulierte einfache
Beispielanwendung aus dem Netzwerkanwendungsbereich.

Auf die Beschreibung der Netzwerkverarbeitungseinheit in Click setzt der zweite Schritt in unserer
Werkzeugkette auf: CRACC (Click Rapidly Adapted to C Code) [182][183], das eine nahezu auto-
matische Umsetzung der Click-basierten C++-Beschreibung in eine für eingebettete Systeme effi-
zienter umsetzbare Kodierung in C übernimmt. Zusätzlich können in CRACC zur Steigerung der
Leistungsfähigkeit optimierte Assembler-Routinen eingebunden werden. So verbinden sich die Vor-
teile aus schneller Anwendungserstellung aufgrund der großen Anzahl bereits bestehender Module
für die Netzwerkverarbeitung mit der Möglichkeit, ein funktional verifiziertes Modell optimal auf
die Zielarchitektur abzubilden. Der Entwurfsablauf mit Hilfe der Click-CRACC-Werkzeugkette
wird in Abbildung 7-6 dargestellt.

Im Folgenden wird der in Abschnitt 7.2 vorgestellte IP-DSLAM-Benchmark mit Hilfe der hier vor-
gestellten Werkzeugkette nachgebildet und optimiert.

7.4.1 Erweiterung des DSLAM-Benchmarks zum Referenzbenchmark

Aufbauend auf dem aus [141] bekannten IP-DSLAM-Benchmark wurde eine sehr realitätsnahe, ge-
naue Modellierung der Abläufe innerhalb eines IP-DSLAMs mit Hilfe der Click-CRACC-
Werkzeugkette realisiert [178]. Dies führte zu dem IP-DSLAM-Referenzbenchmark, der hier nur in
aller Kürze vorgestellt werden soll. Dieser erweiterte Benchmark ermöglicht nun eine bessere Tren-
nung der Analyse der Anforderungen an die einzelnen DSLAM-Komponenten.

Abbildung 7-7: Die sieben Szenarien des IP-DSLAM-Referenzbenchmarks

Abbildung 7-7 zeigt die sich ergebenden sieben Szenarien des IP-DSLAM-Referenzbenchmarks56.
Die Anzahl der Tasks wurde auf 11 erhöht, um der Realität der Anwendung noch näherzukommen.
Es handelt sich hierbei um: Ethernet encapsulation, AAL5, IP header check, IP source address /
port verification, 5-tuple classification / destination lookup, Traffic policing and QoS, Multicast
duplication, Queuing, Set DiffServ codepoint und Decrement TTL/HLIM. Die einzelnen Tasks kön-
nen wiederum mehrere Click-Elemente umfassen. Für eine genaue Beschreibung der Funktionalität
dieser Tasks sei auf [178] verwiesen.

Tabelle 7-7 zeigt die Bandbreiten der verschiedenen DSL-Varianten, die bei der folgenden Analyse
des IP-DSLAM-Referenzbenchmarks berücksichtigt werden.

56 Die detaillierte Zuordnung der Tasks, die sich teilweise von denen aus Abschnitt 7.2.1 unterscheiden, wird in Abbil-

dung Anhang F-1 dargestellt.

7.4 Modulare, effiziente Modellierung von Netzwerkanwendungen

197

Tabelle 7-7: Bandbreiten der untersuchten DSL-Varianten beim IP-DSLAM-Referenzbenchmark

Bandbreite [MBit/s]
Datenrichtung ADSL HDSL SDSL VDSL RADSL ADSL2+
Downlink 8 20,4 4 51,8 6 24
Uplink 1 20,4 4 2,3 0,64 3,5

Im Folgenden beziehen sich alle weiteren Analysen, soweit nicht anders erwähnt, auf den IP-
DSLAM-Referenzbenchmark.

7.4.2 IP-DSLAM-Referenzbenchmark – Ergebnisse

In diesem Abschnitt werden die durch zyklenakkurate Simulation gewonnenen Ergebnisse der
GigaNetIC-Architektur für den IP-DSLAM-Referenzbenchmark präsentiert. Es wird ein ähnliches
Verkehrsmodell verwendet wie beim ursprünglichen DSLAM-Benchmark, ebenfalls mit einer iMix-
basierten Paketgrößenverteilung.

Abbildung 7-8: Benötigte Takte für die einzelnen Tasks auf der Uplinkcard im Downlink57

Exemplarisch werden die Messwerte für die Uplinkcard im Downlink-Betrieb (vgl. Abbildung 7-8)
und die Taktzyklen der maßgeblichen Funktionen der Linecard im Uplink-Betrieb (vgl. Abbildung
7-9) aufgeführt. Es zeigt sich, dass einige wenige Funktionen, hierzu zählen vor allem die CRC-
Generierungs- und Prüffunktionen (insgesamt ca. 90,6 % der Gesamttaktzyklen) sowie die Multi-
castduplizierung im Multicastszenario (insgesamt ca. 91,8 % der Gesamttaktzyklen) einen Großteil
der benötigten Rechenleistung auf sich vereinen. Bei der Linecard im Uplink kommt neben den
beiden CRC-Funktionen noch die Funktion IPVerifyPort mit 10,7 % zu den maßgebenden drei mit
insgesamt 93,9 % Anteil am Gesamtrechenbedarf hinzu. Diese ist abgeleitet aus dem vorigen Clas-
sification-Task und führt einen tabellenbasierten Vergleich durch. Im Uplink im ATM-Szenario sind
die ATM-spezifischen Funktionen IP2ATM und ATM2IP, die die Umsetzung von ATM-basierten
Paketen (zu vergleichen mit AAL5 aus [141]) maßgeblich mit 90,7 % an der Gesamtzyklenzahl be-

57 Bezieht sich nach Mittelung der iMix-Parameter auf ein theoretisch 788-Byte-großes Paket.

20
5

51
1

28
4

56 52 30
5 11

45

12
71

79 67 0 0 7920
5

51
1

28
4

56 52 30
5 11

45

12
71

79 67

71
41

79 79

19
51

8

19
51

4

19
51

8

19
51

4

0

5000

10000

15000

20000

25000

UDPEnc
ap

IP
Enc

ap

Eth
er

Enc
ap

Set
CRC32

Che
ck

CRC32
Stri

p

Set
Ann

oB
yte

Che
ck

IP
Hea

de
r

IP
Filte

r

IP
Filte

rA
nn

o

Ann
oP

ain
t

Pain
tF

ilte
r

M
ult

ica
st

Ann
oP

ain
t

Ann
oP

ain
t

T
ak

tz
yk

le
n

Unicast Multicast

Kapitel 7. Performanzanalyse skalierbarer GigaNetIC-Netzwerkprozessoren

198

teiligt. Die Analyse dieser Zahlen zeigt potentielle Optimierungsmöglichkeiten auf, die durch Soft-
wareoptimierung, Instruktionssatzerweiterungen und, speziell bei den hier erwähnten Funktionen,
durch den Einsatz von Hardwarebeschleunigern herbeigeführt werden können.

Abschließend lässt sich zusammenfassen, dass im Durchschnitt 17,3 Takte im Downlink bzw. 29,3
Takte im Uplink auf der Linecard pro Bit eines Pakets zur Verarbeitung benötigt werden. Auf der
Uplinkcard sind es 28,7 Takte im Downlink bzw. 24,3 Takte für den Uplink. Diese deutlich höheren
Zahlen als beim ersten DSLAM-Benchmark sind u. a. in der aufwändigen CRC-Berechnung be-
gründet.

Abbildung 7-9: Benötigte Takte für die Tasks auf der Linecard im Uplink

für das Ethernet- und ATM-Szenario57

Für viele der nicht maßgeblichen Funktionen der einzelnen Benchmarkszenarien können ggf. schon
durch flächenmäßig geringfügige Eingriffe, wie z. B. durch Instruktionssatzerweiterungen, zusätzli-
che Performanzgewinne und somit Entlastungen der Verarbeitungseinheiten erzielt werden. Diese
können dann im Weiteren zusätzliche Kontrollfunktionen auf den DSLAM-Systemkomponenten
übernehmen.

Im Folgenden werden die einzelnen Maßnahmen der Optimierung und ihre Auswirkungen auf die
Performanz näher diskutiert. Eine interaktive Entwurfsraumexploration ist mit dem DSLAM-
System-Explorer II möglich, der die Ergebnisse in Abhängigkeit einstellbarer Systemparameter
auswertet bzw. hochrechnet, vgl. Abschnitt 7.5.2.

7.4.2.1 Softwareoptimierung des IP-DSLAM-Referenzbenchmarks

Die Anwendungserstellung durch die abstrakte Modellierung mit Click und die automatisierte Ab-
bildung auf die Zielsysteme mittels CRACC und der jeweiligen Compiler-Werkzeugkette bietet vie-
le Vorteile (vgl. Abschnitt 7.4), hat jedoch auch einen gewissen Preis bzgl. der erzielbaren Perfor-
manz.

20
5

51
1

0 52 52 30
5

16
1

50
30

29 11
45

5220
5

51
1

56 52 52 30
5

16
1

50
30

29 11
45

52

39
13

0

34
58

8

0 28
4

19
51

4

19
51

8

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

UDPEnc
ap

IP
Enc

ap

Ether
Enc

ap

IP
2A

TM / S
etC

RC32

ATM2IP
 / C

he
ck

CRC32
Strip

SetA
nn

oB
yte

SetA
nn

oB
yte

Che
ck

IP
Hea

de
r

GetI
PAdd

res
s

IP
Ver

ify
Por

t

SetA
nn

oB
yte

IP
Filte

r

SetA
nn

oB
yte

T
ak

tz
yk

le
n

ATM
Ethernet

7.4 Modulare, effiziente Modellierung von Netzwerkanwendungen

199

Abbildung 7-10: Vergleich der Originalversionen vs. optimierte Funktionen

Aufgrund der modularen Struktur werden häufig kostspielige Typumwandlungen und geschachtelte
Funktionsaufrufe in den automatisch generierten Code eingebracht. Durch manuelle Optimierung
des erzeugten C-Quellcodes lässt sich eine beträchtliche Menge an unnötigen Taktzyklen einsparen.
Diese Optimierungen wurden für Funktionen, die sowohl auf der Linecard als auch auf der Uplink-
card Verwendung finden, durchgeführt, vgl. Abbildung 7-10. Es lässt sich insgesamt eine deutliche
Ersparnis von 21,4 % der benötigten Taktzyklen gegenüber der Originalversion verzeichnen. In Be-
zug auf die Gesamtleistungssteigerung machen diese Optimierungen jedoch aufgrund der dominie-
renden Prüfsummenoperationen letztendlich nur einen Geschwindigkeitsvorteil von ca. 1,3 % aus.
Deshalb ist eine Suche nach Optimierungs- bzw. Erweiterungsmöglichkeiten der Hardware weiter-
hin notwendig, um den Einfluss der besonders rechenintensiven Funktionen an der Gesamttaktzahl
zu reduzieren. Allerdings zeigt sich, dass für den Praxiseinsatz der automatisch generierte Code im
Hinblick auf die oben genannten Schwachstellen untersucht und ggf. optimiert werden sollte. Zur
Abschätzung und zum Vergleich der Leistungsfähigkeit unterschiedlicher Zielarchitekturen ist er
dennoch ausreichend aussagefähig.

Im Weiteren werden die Untersuchungen bzgl. etwaiger Hardwaremodifikationen gemäß Kapitel 6
durchgeführt.

7.4.2.2 Optimierung durch Instruktionssatzerweiterungen

In Abschnitt 6.2.4 wurden bereits einige Instruktionssatzerweiterungen für den N-Core vorgestellt.
Mit Hilfe dieser existierenden und ggf. neuer Erweiterungen, die unter Zuhilfenahme der vorgestell-
ten Werkzeugkette für das IP-DSLAM-Szenario implementiert werden, soll die mögliche Leistungs-
steigerung durch Modifikation des Prozessorkerns aufgezeigt werden. Bei der Analyse der Funktio-
nen stellte sich der Task IPVerifyPort, eine der rechenintensiven Aufgaben, als besonders vielver-
sprechend für die Optimierung durch Instruktionssatzerweiterungen heraus. Nach zusätzlich erfolg-

20
5

51
1

52

30
5

13
1

42
9

29

25
4

30

46

30

796779

28
4

26
9

0

100

200

300

400

500

600

UDPEnc
ap

IP
Enc

ap

Eth
er

Enc
ap

Stri
p

Set
Ann

oB
yte

Che
ck

IP
Hea

de
r

IP
Filte

r

IP
Filte

rA
nn

o

T
ak

tz
yk

le
n

original
optimiert

Kapitel 7. Performanzanalyse skalierbarer GigaNetIC-Netzwerkprozessoren

200

ter, manueller Optimierung der Funktion konnten die in Abbildung 7-11 gezeigten wesentlichen
Instruktionspaarhäufigkeiten bestimmt werden.

Abbildung 7-11: Wesentliche Instruktionspaarhäufigkeiten bei der Funktion IPVerifyPort

Abbildung 7-12: Wesentliche Instruktionspaarhäufigkeiten bei der Funktion IPVerifyPort

nach der Instruktionssatzerweiterung durch IXD, IXQ

Das bei den Analysen sehr häufig aufgetretene Instruktionspaar lsli, addu, dass eine vielfach benö-
tigte Berechnung zum Vorrücken in der Routingtabellenstruktur ermöglicht, wurde durch die
IXD(Index Double)-Superinstruktion ersetzt. Sie umfasst ein logisches Schieben von RY um drei
Stellen nach links und das anschließende Addieren eines „Offsets“ auf das Ergebnis, das abschlie-
ßend in Register RX geschrieben wird. Aus ähnlichen Gründen wurde die Instruktion IXQ (Index
Quad) implementiert. Die Funktionsweise der beiden Befehle kann in der Registerzuweisungsnota-
tion wie folgt beschrieben werden:

 IXD: RX RX + (RY 3)← ≪ (7.3)

 IXQ: RX RX + (RY 4)← ≪ (7.4)

95 96

192 192 191 194

95 96

286

96 96 96

477477

0

50

100

150

200

250

300

350

400

450

500

ad
du

,ld
w

an
d,c

m
pn

e

an
d,c

m
pn

ei
br

,bt
bt

,b
r

bt
,b

t

cm
plt

,b
t

cm
pn

e,
bt

cm
pn

ei,
bt

ldw
,an

d

ldw
,cm

pn
e

ldw
,xo

r

lsl
i,a

dd
u

xo
r,a

nd

Instruktionspaarhäufigkeiten

T
ak

tz
yk

le
n

95 96

192 192 191 194

95 96

286

96 96 99 96

477

0
50

100
150
200
250
300
350
400
450
500

an
d,c

m
pn

e

an
d,

cm
pn

ei
br

,b
t

bt
,b

r
bt

,b
t

cm
plt

,b
t

cm
pn

e,
bt

cm
pn

ei,
bt

ixd
,ld

w

ldw
,an

d

ldw
,cm

pn
e

ldw
,xo

r

m
ov

i,c
m

plt

xo
r,a

nd

Instruktionspaarhäufigkeiten

T
ak

tz
yk

le
n

7.4 Modulare, effiziente Modellierung von Netzwerkanwendungen

201

Abbildung 7-12 zeigt die erneute Analyse der IPVerifyPort-Funktion nach erfolgter Integration der
IXD-Superinstruktion. Es wird deutlich, dass durch die Einführung des IXD-Befehls eine Verschie-
bung der resultierenden Instruktionspaare eingetreten ist. Die zuvor aufgetretene Kombination von
addu und ldw wurde eliminiert, dafür könnte eine weitere Superinstruktion ixd, ldw auf Basis der
gerade neu integrierten IXD-Funktion eingebracht werden. Durch die IXD-Superinstruktion, die nur
einen Takt beansprucht, konnte die Verarbeitung der betrachteten Funktion um 11,7 % beschleunigt
werden, wobei der Prozessorkern lediglich um 0,69 % größer geworden ist.

Abbildung 7-13: Beschleunigung des IP-DSLAM-Referenzbenchmarks durch verfügbare

Instruktionssatzerweiterungen des N-Cores für eine iMix -Verteilung

Abbildung 7-13 fasst die Resultate der Performanzgewinne durch die Instruktionssatzerweiterungen
für die sieben Benchmarkszenarien und einem iMix-Verkehrsmodell zusammen. Es zeigt sich, dass,
auf den gesamten Benchmark bezogen, der IXD-Befehl nur eine Performanzsteigerung von 1 %
ermöglicht, wohingegen die LDWIXW-Erweiterung Beschleunigungen von 4 bis häufig 7 % und
mehr erreicht. Auch die XORLDW-Erweiterung zeigt mit einer beschleunigten Verarbeitung von 3
bis 4 % für alle Benchmarks eine gute Leistung.

Bemerkenswert ist außerdem, dass durch Zuhilfenahme aller Instruktionssatzerweiterungen in fünf
von sieben Fällen eine Beschleunigung von mehr als 8 % im Vergleich zum Original-S-Core er-
reicht wird, obwohl die CPU-Fläche des entsprechenden N-Cores lediglich 2,4 % größer ist. Die
absolut gesehen geringe Beschleunigung durch die IXD-Instruktion steht im Gegensatz zu der Per-
formanzsteigerung dieser Operation für die Funktion IPVerifyPort, die immerhin, wie bereits er-
wähnt bei 11,7 % liegt. Dies zeigt aber auch, dass Instruktionssatzerweiterungen nicht zwangsläufig
alle Funktionen gleichermaßen tangieren und eine entsprechende Analyse im Vorfeld der Chipreali-
sierung durchaus sinnvoll ist. Im Falle des IXD-Befehls wurde die gewünschte Beschleunigung für
die ausgewählte Aufgabe erreicht. Für die anderen rechenintensiven Tasks wird im Folgenden ver-
sucht, eine Beschleunigung durch spezielle Hardwarebeschleuniger zu erreichen.

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

ANDSHR

LD
W

IX
W

IX
W

ANDSHR

ORSHL8
16

24

XORLD
W

IX
D,IX

Q

LD
W

ADDI

all
e

IS
Es

Befehlssatzerweiterung

P
er

fo
rm

an
zg

ew
in

n Downstream 1
Downstream 2
Downstream 3
Downstream 4
Upstream 1
Upstream 2
Upstream 3

Kapitel 7. Performanzanalyse skalierbarer GigaNetIC-Netzwerkprozessoren

202

7.4.2.3 Optimierung durch Hardwarebeschleuniger

Sowohl für die bereits als besonders rechenintensiv identifizierten Tasks SetCRC32 und
CheckCRC32 im Falle der Ethernet-basierten und IP2ATM und ATM2IP für die ATM-basierten
Szenarien als auch IPVerifyPort für die Uplink-Szenarien auf der Linecard (vgl. Abbildung 7-8 und
Abbildung 7-9) wurden Hardwarebeschleuniger entwickelt. Sie versprechen eine deutlich höhere
Beschleunigung, als es durch Instruktionssatzerweiterungen oder, in diesem Fall, durch die Soft-
wareoptimierung möglich ist.

Tabelle 7-8 zeigt die für den IP-DSLAM-Referenzbenchmark implementierten Hardwarebeschleuni-
ger und ihre wesentlichen Charakteristika. Die Beschleuniger werden den Tasks bzw. Funktionen
des Benchmarks, in denen sie eingesetzt werden, zugeordnet. Der Beschleunigungsfaktor, der durch
eine enge Kopplung (vgl. Abschnitt 4.3.3) an den N-Core erreicht werden kann, ist in der folgenden
Spalte aufgetragen. Durch den Einsatz der Hardwarebeschleuniger ergibt sich für alle Tasks eine
Codegrößenreduktion von durchschnittlich 49,6 %. So wird als positiver Nebeneffekt durch die
Verwendung der Beschleunigermodule, noch stärker als durch Instruktionssatzerweiterungen (vgl.
Abschnitt 6.2.3), die benötigte Instruktionsspeichermenge reduziert. Aufgrund der engen Kopplung
kommt es nur zu einer durchschnittlichen Halbierung der Codegröße, da der N-Core weiterhin alle
Speicheroperationen für den jeweiligen IP(Intellectual Property)-Block übernimmt. Bei der Ans-
teuerung von lose-gekoppelten Hardwarebeschleunigern hingegen reduziert sich der Befehlssauf-
wand auf wenige Instruktionswörter. Im Weiteren sind die Fläche und maximal erreichbare Takt-
frequenz der Beschleuniger aufgetragen, gefolgt von der Verlustleistung bezogen auf 1 MHz, zum
einen ermittelt durch Schaltwahrscheinlichkeiten (50%S) und zum anderen durch laufzeitbedingte
Schaltaktivitätenannotation (AS) während der Abarbeitung der entsprechenden Funktion, vgl. Ab-
schnitt 6.3.1.5.

Tabelle 7-8: Charakteristika der implementierten Hardwarebeschleuniger

für 130-nm- und 90-Standardzellentechnologien

Der CRC-Beschleuniger wurde speziell für dieses Szenario entwickelt und, wie die anderen hier
aufgelisteten Hardwaremodule, für eine direkte, enge Kopplung an den N-Core konzipiert. In die-
sem Betriebsmodus erzielt dieser CRC-IP-Block im Vergleich zur Softwarelösung, die auf dem N-
Core abgebildet ist, eine Beschleunigung von 7,5. Verfügte er über eine eigene Speicherschnittstel-
le, könnte sogar eine Performanzsteigerung um Faktor 49,5 erreicht werden. Der CRC-Block findet
Einsatz in den besonders rechenintensiven Tasks SetCRC32 und CheckCRC32. Das speziell entwor-
fene CAM-Modul wird für den Task IPVerifyPort verwendet, der insgesamt eine Beschleunigung
von 45 erfährt. Die enthaltene Funktion Lookup, die fast vollständig durch die Hardwareerweiterung
ersetzt wird, kommt so auf eine beschleunigte Ausführung um den Faktor 1230. Der Block IPFilter
findet in den beiden Tasks IPFilter und IPFilterAnno Verwendung und erzielt jeweils eine Be-

130nm 90nm 130nm 90nm 130nm 90nm 130nm 90nm

CRC CRC32 7,5 64,7% 0,0150 0,0115 990 1087 0,0061 0,0168 0,0040 0,0109
IPVerifyPort 45,0
 Lookup 1230,0

IPFilter IPFilter 6,0 48,7% 0,3814 0,2470 430 523 0,0827 0,0759 0,0816 0,0746
IPFilter IPFilterAnno 6,0 46,7% 0,3814 0,2470 430 523 0,0827 0,0759 0,0816 0,0746
IPHeaderCheck CheckIPHeader 12,0 30,8% 0,0339 0,0329 546 571 0,0060 0,0058 0,0075 0,0098

HW-
Beschleuniger

Funktion

AS-Leistung
[mW/MHz]

50%S-Leistung
[mW/MHz]

Taktfrequenz
max. [MHz]

Fläche
[mm²]

Codegrößen-
reduktion

[%]

Beschleunigung
(relativ zumN-

Core,
bei gleicher
Frequenz),

enge Kopplung

0,1754CAM 57,1% 0,7186 0,6163 439 380 0,1995 0,1815 0,1808

7.5 Visualisierungswerkzeug zur Entwurfsraumexploration

203

schleunigung von 6. Letztendlich wird der bereits in Abschnitt 6.3.1 beschriebene IPHeaderCheck-
Beschleuniger für den Task CheckIPHeader als eng an den N-Core gekoppelte Hardwareeinheit
eingesetzt. Aufgrund der alleinigen Prüfung der Prüfsumme des IP-Paketkopfes und der engen
Kopplung ergibt sich in diesem Szenario eine Beschleunigung von 12. Diese Zahlen zeigen, dass
mit einem zusätzlichen Flächenaufwand für das Gesamtprozessorsystem von 1,53 mm² (130 nm)
bzw. 1,15 mm² (90 nm), was in etwa dem Zehnfachen der Fläche des N-Cores entspricht, eine ak-
kumulierte Beschleunigung von 76,5 erreicht werden kann. Dies führt zu einer positiven Flächen-
Performanzeffizienz (nach Definition 38) von über 7 (10/1 zu 77/1 = 7,7).

Betrachtet man die akkumulierte Verlustleistungsaufnahme der Hardwarebeschleuniger, so ergeben
sich Werte von 0,36 mW/MHz (130 nm) bzw. von 0,35 mW/MHz (90 nm) was in etwa dem sech-
sfachen der dynamischen Verlustleistungsaufnahme des reinen N-Core-Prozessorkerns entspricht.
Dies führt zu einer Verlustleistungs-Performanzeffizienz (nach Definition 38) von 6/1 zu
77/1 = 12,8. Diese Werte sprechen für eine derartige Integration der Hardwarebeschleuniger, er-
möglichen sie doch ein deutlich ressourceneffizienteres System, als es allein mit N-Cores möglich
wäre. In [118][119][109][131] werden weitere Analysen bzgl. des hier vorgestellten Szenarios ge-
geben.

Um möglichst schnell Aussagen über die Auswirkungen von verschiedensten Systemparametern
unter Auswahl der in den letzten Abschnitten vorgestellten Optimierungsmaßnahmen treffen zu
können, fast der DSLAM-System-Explorer II die gewonnenen Ergebnisse zusammen und bereitet sie
graphisch auf. Dieses Werkzeug wird in Abschnitt 7.5.2 näher vorgestellt und erleichtert die Ent-
wurfsraumexploration für DSLAM-Anwendungen in vielerlei Hinsicht.

7.5 Visualisierungswerkzeug zur Entwurfsraumexploration

Im Rahmen der umfangreichen Analysen der Netzwerkszenarien wurde eine Vielzahl von Daten
gewonnen, die möglichst umfassend miteinander in Beziehung gesetzt werden sollten. Systemarchi-
tekten zukünftiger GigaNetIC-basierter Netzwerkprozessoren profitieren bei einer Konzeption einer
neuen, ressourceneffizienten Systemrealisierung von möglichst umfassenden Informationen durch
bereits erstellte Analysen. So entstand der DSLAM-System-Explorer, er erlaubt eine schnelle und
übersichtliche Visualisierung der gesammelten Ergebnisse der DSLAM-Benchmarks auf einfache
Art und Weise, wie es ansonsten nur durch eine Unzahl von Diagrammen möglich wäre. Die wich-
tigsten Systemparameter des analysierten DSLAM-Szenarios lassen sich interaktiv, mit Hilfe von
Auswahlmenüs bzw. mit Schiebereglern übersichtlich gemäß den Anforderungen des Anwendungs-
gebiets einstellen. Dies erlaubt eine sofortige Analyse des Entwurfsraums, bei der sich u. a. die
Leistungsfähigkeit bzw. die Anzahl der benötigten Hardwareeinheiten ablesen lassen. Die Anwen-
dung setzt auf eine einheitliche Datenbasis auf, die komfortabel mit einer Tabellenkalkulationssoft-
ware gepflegt und erweitert werden kann. So lässt sich die Visualisierungssoftware leicht für andere
Anwendungsszenarien, Prozessorkerne sowie weitere Systemgrößen (z. B. Fläche oder Leistungs-
aufnahme) erweitern.

Im nächsten Abschnitt 7.5.1 wird zunächst auf die Resultate der Analysen des ursprünglichen IP-
DSLAM-Benchmarks eingegangen, die für den N-Core ohne Instruktionssatzerweiterungen (S-Core)
und drei weitere eingebettete Prozessoren ermittelt wurden und mit Hilfe des DSLAM-System-
Explorer I visualisiert werden können. In Abschnitt 7.5.2 wird dann der DSLAM-System-Explorer II

Kapitel 7. Performanzanalyse skalierbarer GigaNetIC-Netzwerkprozessoren

204

vorgestellt, der speziell die implementierten Hardwareerweiterungen für die GigaNetIC-Architektur
(vgl. Abschnitt 7.4.2) einbezieht und deren Auswirkungen auf die Performanz bzgl. des IP-DSLAM-
Referenzbenchmarks aufzeigt.

7.5.1 Vergleich eingebetteter Prozessorkerne – DSLAM-System-Explorer I

Der DSLAM-System-Explorer I erlaubt den Vergleich der Leistungsfähigkeit von derzeit vier einge-
betteten CPUs in Bezug auf den IP-DSLAM-Benchmark aus [141].

Abbildung 7-14: DSLAM-System-Explorer I – Entwurfsraumvisualisierungssoftware für das

GigaNetIC-System und weitere eingebettete Prozessoren

Verglichen wird der in Abschnitt 7.2.5 vorgestellte spezialisierte NPU-Core (im Folgenden auch
PP32), der zum Zeitpunkt dieser Analyse mit bis zu 450 MHz in einer 130-nm-Technologie betrie-
ben werden konnte und ca. 0,38 mm² Fläche einnimmt. Weiterer Testkandidat ist der N-Core ohne
spezielle Instruktionssatzerweiterungen, damit funktional dem S-Core [108] gleichzusetzen, aller-
dings in 130-nm- und 90-nm-Technologie realisiert ist (vgl. Abschnitt 4.3.1 und 6.2.4). Als nächstes
wurde ein MIPS32k-basierter Prozessorkern analysiert, der in 180-nm-Technologie zwischen 200
und 240 MHz erreicht und je nach Konfiguration zwischen 0,8 und 2,5 mm² an Fläche beansprucht.
In 130-nm-Technologie sind 260 bis 300 MHz bei einer Fläche von 0,4 bis 1,1 mm² möglich. Als
letztes wurde ein ARM7-basierter Kern untersucht, der in 180-nm-Technologie 80 bis 110 MHz
erreicht und eine Fläche zwischen 0,95 und 0,53 mm² benötigt. In 130-nm-Technologie steigert sich

7.5 Visualisierungswerkzeug zur Entwurfsraumexploration

205

die mögliche Taktfrequenz auf 100 bis 133 MHz, wobei sich die Fläche auf 0,42 bis 0,26 mm² re-
duziert.

Abbildung 7-14 zeigt das Hauptanwendungsfenster des DSLAM-System-Explorers I. Als Datenbasis
dienen Messwerte, die mit zyklenakkuraten Simulatoren der untersuchten Prozessoren ermittelt
wurden. Anhand der gemessenen Takte, die zur Verarbeitung der einzelnen Tasks benötigt werden,
und aufgrund der Vorgaben durch die hier betrachteten xDSL-Szenarien ADSL (0,8 Mbps Uplink,
8 Mbps Downlink pro DSL-Port), VDSL (3 Mbps Uplink, 22 Mbps Downlink pro DSL-Port) und
SHDSL (2 Mbps Uplink, 2 Mbps Downlink pro DSL-Port) ergeben sich die Verarbeitungsbandbrei-
ten der Prozessoren.

Die veränderbaren Parameter können im linken Bereich des Hauptfensters eingestellt werden. Als
Parameter können der Anwendung die Anzahl der DSL-Anschlüsse (Ports) einer Linecard, die An-
zahl der Linecards des gesamten DSLAMs, die mit der Uplinkcard verbunden sind, die Taktfre-
quenz der Verarbeitungseinheit, der Überbuchungsfaktor (Overbookingfactor), der bestimmt, zu
welchem Anteil die theoretisch notwendige (WC) Bandbreite vom ISP zur Verfügung gestellt wird
und schließlich der zusätzliche Mehraufwand (Overhead), der durch den parallelen Betrieb von
Verarbeitungseinheiten hervorgerufen wird, übergeben werden. Dieser Mehraufwand wird im Wei-
teren mit 10 % veranschlagt, was ggf. durch genauere Analysen verifiziert werden muss. Letztend-
lich kann dann noch eines der vier Szenarien des IP-DSLAM-Benchmarks ausgewählt werden (Up-
/Downlinkcard / Up-/Downlink).

Abbildung 7-15: Detaildarstellung der benötigten Taktzyklen für die einzelnen Tasks des

IP-DSLAM-Benchmarks sowie für die Gesamtzahl benötigter Takte auf der Linecard

Bei dem dargestellten Szenario aus Abbildung 7-14 wird die Linecard im Downlink betrachtet. Für
VDSL werden z. B. 28 NPU-Cores gegenüber 7 ARM-Prozessorkernen zur Bewältigung der Last
bei 200 MHz im „schlimmsten Fall“58 (Worst Case) benötigt. Durch Variieren des Schiebereglers
kann nun z. B. interaktiv bestimmt werden, bei welcher Frequenz wie viele der jeweiligen Prozesso-

58 Der schlimmste Fall beschreibt hier den Fall, dass die volle Bandbreite für Up- und Downlink pro Port der Linecard

von den Teilnehmern gleichzeitig genutzt wird.

Kapitel 7. Performanzanalyse skalierbarer GigaNetIC-Netzwerkprozessoren

206

ren benötigt werden, um das entsprechende xDSL-Szenario spezifikationsgemäß bewältigen zu
können. Es zeigt sich, dass der N-Core ohne spezielle Instruktionssatzerweiterungen eine deutlich
höhere Leistung bietet, als der spezielle Paketverarbeitungsprozessor (vgl. Abschnitt 7.2.5). Auch
im Vergleich mit den etablierten eingebetteten MIPS- und ARM-Prozessorkernen ist der N-Core,
bezieht man seine geringe Fläche mit ein, durchaus wettbewerbsfähig, benötigt er doch deutlich
weniger als die Hälfte der Fläche der kommerziellen Prozessoren. Die Anwendung zeigt ebenfalls
die benötigte Anzahl an Taktzyklen für das jeweilige Szenario und die Performanz (gemessen in der
zu bewältigenden Bandbreite in Mbps) eines einzelnen Prozessorkerns auf.

Abbildung 7-15 zeigt die Detailansicht, die genaue Einblicke in die Verteilung der Rechenlast auf
die einzelnen Tasks der jeweiligen Szenarien gibt. Es wird ebenfalls deutlich, welche Tasks für das
entsprechende Szenario benötigt werden und welche nicht. Auch hier lässt sich die Systemkompo-
nente auswählen. In der gezeigten Darstellung wird Bezug auf die Linecard genommen. Außerdem
werden Diagramme zu Cycles/Bit bzw. Code size erzeugt, die Aufschluss über die benötigten Pro-
zessortakte pro Bit eines Pakets bzw. über die Codegröße der einzelnen Tasks geben.

Abbildung 7-16 zeigt die durchschnittliche Taktzahl pro Bit eines Pakets. Diese liegt für den IP-
DSLAM-Benchmark für alle Szenarien und alle Prozessoren unter 3 Takten. Deutlich wird auch
hier, dass die spezielle Paketverarbeitungseinheit u. a. aufgrund der Schwächen des Compilers (vgl.
Abschnitt 7.2.5) weitaus schlechter abschneidet als die anderen drei Prozessorkerne. MIPS und be-
sonders ARM dominieren hier bzgl. der Effizienz benötigter Takte pro Bit eines Pakets. Allerdings
ist hier die deutlich komplexere Architektur dieser Kerne, die sich in ihrer größeren Fläche aus-
drückt, und die teilweise geringere Taktfrequenz des tatsächlich käuflich erwerbbaren ARM-Pro-
zessorkerns nicht zu vernachlässigen, so dass der N-Core auch bzgl. dieser Betrachtung durchaus
wettbewerbsfähig erscheint. Aus Sicht der Performanz ist hier der MIPS-Kern der leistungsfähigste,
ist doch seine maximal realisierbare Taktfrequenz mehr als doppelt so hoch wie die des ARM-
Kerns.

Abbildung 7-16: Darstellung der benötigten Takte pro Paketbit zur Bearbeitung des

IP-DSLAM-Benchmarks bzgl. des jeweiligen Szenarios

Abbildung 7-17 stellt die durch den jeweiligen Compiler erzeugten Codegrößen der einzelnen Tasks
dar. Auch hier zeigt sich, dass der Paketprozessor (NPU-Core) nicht über einen entsprechend leis-
tungsfähigen Compiler verfügt, sondern in der Regel mittels Maschinensprache von Hand prog-
rammiert wird, um entsprechend effizient zu sein. Die anderen drei Prozessoren sind in etwa ver-
gleichbar, mit leichten Vorteilen auf Seiten des ARM-Kerns. Hier zeigt sich für den N-Core der
Vorteil der 16-Bit-Instruktionsweite, der die Codegröße insgesamt relativ klein hält.

7.5 Visualisierungswerkzeug zur Entwurfsraumexploration

207

Abbildung 7-17: Darstellung der Codegrößen der untersuchten Prozessoren

für die einzelnen IP-DSLAM-Tasks auf der Linecard

Abschließend lässt sich bemerken, dass die hier angestellten Analysen zeigen, dass der N-Core ver-
glichen mit etablierten Prozessorkernen bzw. Spezialhardware (NPU-Core) durchaus wettbewerbs-
fähig im Hinblick auf Leistung und insbesondere auf Flächenbedarf ist. Im folgenden Abschnitt
wird, um die Auswirkungen der zusätzlich implementierten Hardwareerweiterungen für die Giga-
NetIC-Architektur besser auswerten zu können, mit dem DSLAM-System-Explorer II ein leistungs-
fähiges Werkzeug vorgestellt.

7.5.2 Einbeziehung von HW-Erweiterungen – DSLAM-System-Explorer II

Im Folgenden wird mit Hilfe des DSLAM-System-Explorer II gezeigt, inwiefern, sich die Leistungs-
fähigkeit und die Ressourceneffizienz des N-Core durch Hardwareerweiterungen in Form von In-
struktionssatzerweiterungen und speziell für das Anwendungsszenario entwickelten Hardwarebe-
schleunigern (vgl. Abschnitt 7.4.2) zusätzlich steigern lässt. Hierbei dient von nun an der IP-
DSLAM-Referenzbenchmark aus Abschnitt 7.4.1 als Grundlage der Analysen.

Abbildung 7-18 zeigt das Hauptanwendungsfenster des DSLAM-System-Explorer II. Er berücksich-
tigt für sechs bereits vorgestellte xDSL-Varianten die sieben Benchmarkszenarien aus Abschnitt
7.4.1, die im rechten Bereich des Fensters über Auswahlmenüs eingestellt werden können. Taktfre-
quenz des CMPs wie auch die Anzahl der Ports und Linecards lassen sich ebenfalls konfigurieren.
Zusätzlich kann die Art der Hardwareerweiterung bzw. die Softwareoptimierung ausgewählt wer-
den. Die Differenz der benötigten Taktzyklen zum Original wird simultan in der Diagrammansicht
des Anwendungsfensters graphisch hervorgehoben. In Abbildung 7-18 werden z. B. die Unter-
schiede der Originalsoftwareimplementierung gegenüber der optimierten Softwareimplementierung
aufgetragen. Der jeweilige durchschnittliche Beschleunigungsfaktor wird ebenfalls zeitgleich be-

Kapitel 7. Performanzanalyse skalierbarer GigaNetIC-Netzwerkprozessoren

208

rechnet und dargestellt. In diesem Szenario (Linecard – Uplink – Ethernet) wird z. B. eine Be-
schleunigung (Speedup) von 10 % erreicht. Für jede der DSL-Varianten wird die benötigte Anzahl
an Prozessoren angezeigt. Sollten Hardwarebeschleuniger ausgewählt sein, wird jeweils nur eine
dieser Spezialeinheiten berücksichtigt. In zukünftigen Implementierungen wird die Anzahl der Be-
schleunigereinheiten ebenfalls parametrisierbar sein. So werden z. B. für das in Abbildung 7-18
ausgewählte Szenario der Linecard für das SDSL-Szenario mindestens 52 N-Core-Prozessoren mit
einer Betriebsfrequenz von 200 MHz benötigt. Ohne Softwareoptimierung würden 57 N-Cores und
unter Verwendung aller Instruktionssatzerweiterungen nur noch 48 benötigt. Würden alle in Ab-
schnitt 7.4.2 vorgestellten Hardwarebeschleuniger einfach instantiiert und eng-gekoppelt eingesetzt,
so reduzierte sich die Anzahl benötigter Prozessorkerne auf lediglich 9. Dies entspricht einer Re-
duktion von immerhin 84,2 % im Vergleich zur Originalversion. Bei einer Betriebsfrequenz von
1,57 GHz reichte eines dieser Prozessorsysteme, mit allen Hardwarebeschleunigern ausgestattet,
aus, um die gesamte Bandbreite einer Linecard im Uplink und Ethernet-Modus für SDSL verarbei-
ten zu können.

Abbildung 7-18: DSLAM-System-Explorer II – Berücksichtigung der Instruktionssatzerweiterungen und Hard-

warebeschleuniger für unterschiedliche IP-DSLAM-Anwendungsszenarien

7.5 Visualisierungswerkzeug zur Entwurfsraumexploration

209

In [118] werden detaillierte Analysen zu GigaNetIC-basierten Netzwerkprozessoren vorgestellt, bei
denen möglichst ressourceneffiziente Implementierungen unter Verwendung von optimierten
Hardwarebeschleunigern angestrebt werden.

Abbildung 7-19 gibt die Detailansicht der Tasks wieder. In der linken Hälfte werden die Funktionen
farblich hinterlegt, bei denen die zuvor ausgewählte Optimierung eine Reduktion der benötigten
Taktzyklen zur Folge hat. Die benötigten Takte für die drei iMix-Paketgrößen sowie das Mittel die-
ser statistischen Verteilung (788 Byte) werden aufgeführt. In der rechten Hälfte des Fensters, der
Diagrammansicht, wird diese ebenfalls durch zwei überlagerte Säulen dargestellt.

Abbildung 7-19: Darstellung der benötigten Taktzyklen für die einzelnen Tasks des IP-DSLAM-

Referenzbenchmarks mit Hervorhebung des Einflusses der ausgewählten Optimierungen

Bei diesem Beispiel handelt es sich um den Vergleich der optimierten Softwarevariante gegenüber
dem Einsatz aller Hardwarebeschleuniger. Es zeigt sich zum einen, dass nicht alle Funktionen von
den jeweiligen Optimierungen profitieren, zum anderen wird deutlich, dass viele der Funktionen
invariant gegenüber der Paketgröße sind. Dies führt dazu, dass kleine Pakete, wie sie in vielen ak-
tuellen Anwendungen genutzt werden, besonders ineffizient bzgl. der Nutzdaten-Aufwand-Effizienz
sind. Anhand der Balkendiagramme zeigen sich besonders drastische Reduzierungen der sehr re-
chenintensiven Funktionen, so wie es in Abschnitt 7.4.2 bereits angedacht war. Wird eine ausgewo-
gene Mischung zwischen Hardwarebeschleunigern und instruktionssatzerweiterten N-Core-Pro-
zessorkernen implementiert, so kann eine deutliche Steigerung der Ressourceneffizienz gegenüber
einem nichtoptimierten System, dass alleinig mit Universalprozessoren ausgerüstet ist, erreicht
werden. Frei werdende Rechenkapazitäten der Prozessorkerne können dann für übergeordnete
Kontrollaufgaben und höhere Dienstqualität bzw. zusätzliche, differenzierende Eigenschaften des
Gesamtsystems genutzt werden.

Eine Erweiterung der in den letzten beiden Abschnitten vorgestellten DSLAM-System-Explorer-
Visualisierungswerkzeuge durch die Kostenfunktions-basierte Analysemethode (vgl. Kapitel 3) wä-
re technisch relativ leicht realisierbar und ermöglichte dem Systemarchitekten neben der Visualisie-
rung und Aufbereitung der Synthese- und Messergebnisse zudem eine fundierte Bewertung. Bei
einer derart großen Menge an Szenarien und Realisierungsvarianten wäre speziell im Falle des
DSLAM-System-Explorers eine automatisierte Auswertung im Hinblick auf pareto-optimale und

Kapitel 7. Performanzanalyse skalierbarer GigaNetIC-Netzwerkprozessoren

210

damit ressourceneffiziente Lösungen äußerst hilfreich. Derzeit muss dies noch vom Anwender
selbst anhand von Auswertungen der generierten Diagramme geleistet werden.

7.6 Einsatz GigaNetIC-basierter Netzwerkprozessoren als Router

Als weiteres Beispiel der Vielseitigkeit der GigaNetIC-Architektur wird im Folgenden ein Anwen-
dungsbeispiel aus dem Kernnetzwerk bzw. Edge-Netzwerk zur Bewertung von GigaNetIC-
Systemen, basierend auf den Leistungsdaten der N-Core-Verarbeitungseinheit und spezieller Hard-
warebeschleuniger, vorgestellt. Hierzu wurden in Anlehnung an die vom EEMBC-Benchmark-
Konsortium [161] definierten Netzwerkbenchmarks drei charakteristische Funktionen von Routern
(OSPF-Routing, Packet-Flow und Route-Lookup) modelliert und auf die Zielarchitektur abgebildet
[130]. Diese Funktionen stellen wesentliche Aufgaben eines aktuellen Routers dar, die durch zu-
sätzliche Funktionalitäten wie z. B. Network Address Translation (NAT) oder Quality of Service
(QoS) ergänzt werden können.

Der Router in dem hier betrachteten Szenario (vgl. Abbildung 7-20) verfügt über acht Gigabit-
Ethernet(GE)-Schnittstellen, die im Vollduplex betrieben werden. Über den internen Aufbau des
Routers werden keine Angaben gemacht, da hier nur der Rechenaufwand für die einzelnen Algo-
rithmen untersucht werden soll, so dass von einer idealisierten Architektur ausgegangen wird.

Abbildung 7-20: Leistungsanalyse des N-Cores und der GigaNetIC-Architektur für einen Netzwerkrouter

Die eintreffenden IP-Pakete (eingefasst in zufallsverteilte Ethernetpakete minimaler/maximaler
Länge) werden durch den Block Packet Flow zunächst auf Korrektheit geprüft (IP-Headercheck)
und das TTL(Time to Live)-Feld dekrementiert, da es sich um einen so genannten Hop im Netzwerk
handelt. Sollte es sich um ein ungültiges Paket handeln, so wird es verworfen. Enthält das Paket
Routinginformationen über den Netzwerkstatus, wird dieses dem OSPF(Open Shortest Path First)-
Block übergeben, der entsprechend dem hier eingesetzten Dijkstra-Verfahren ggf. die Routingtabel-
le aktualisiert. Handelt es sich bei dem eingehenden IP-Paket um ein Datenpaket, so übernimmt der
Route-Lookup-Block anhand eines Patricia-Trie-Algorithmus die Zuordnung des Ausgangsports
und das Paket wird zum nächsten Netzteilnehmer weitergeleitet. Für eine minimale Paketgröße von
64 Byte und unter Einhaltung der Übertragungsspezifikation ergeben sich 1.488.095 Pakete pro
Port. Dies bedeutet eine Gesamtpaketzahl von 11,9 Mio. und stellt zugleich den Fall maximalen
Rechenaufwands dar. Für das Aktualisieren der Routingtabelle wird ein eigenständiger N-Core-
Prozessorkern eingesetzt, der nur für diese Funktion verwendet wird und bei einer Taktfrequenz von

7.7 Analyse der Anschlussarten von Hardwarebeschleunigern im GigaNoC

211

230 MHz 317 Updates der Routingtabelle pro Sekunde erreicht59. Heutige Router aktualisieren ihre
Routingtabelle bis zu 300 mal pro Sekunde [192], in diesem Fall reichte hier ein N-Core zur Verar-
beitung aus.

Tabelle 7-9 zeigt die mit Hilfe der Benchmarks ermittelten Leistungswerte des N-Cores für den
Einsatz in einem Edge-Router-Szenario. Es zeigt sich, dass für die hier geforderten acht GE-Ports
im Volllastbetrieb mindestens 26 dieser Verarbeitungseinheiten zur alleinigen Abwicklung des Pro-
tokollstapels benötigt werden. Würde man dieses Standardsystem durch spezielle Hardwarebe-
schleuniger für die beiden rechenintensiven Aufgaben Packet Flow und Route Lookup erweitern
(optimiertes System), so ließe sich die Anzahl benötigter N-Cores auf drei reduzieren. Zusätzlich
wären dann zwei der bereits implementierten Hardwarebeschleuniger (IP-Headercheck, eng-
gekoppelt und CAM, eng-gekoppelt) notwendig (vgl. Abschnitt 7.4.2.3). Diese könnten zusammen
mit den drei N-Cores die gleiche Rechenleistung zur Verfügung stellen wie das Standardsystem mit
26 Prozessoren. Tabelle 7-9 zeigt weiterhin die sich durch das optimierte System ergebende Flä-
chenersparnis auf. Diese beträgt insgesamt mehr als 70 %. Zusätzlich wird durch die Verwendung
dieser optimierten Architektur eine mit 73,6 % nicht unerhebliche Verlustleistungsersparnis erzielt.
Die Verlustleistung für diese Funktionen wurde mit Hilfe der Annotierung der Schaltaktivitäten
(AS), während der Laufzeit bestimmt.

Tabelle 7-9: Rechenleistung eines N-Core-basierten Standardsystems und

eines optimierten GigaNetIC-Systems für ein Edge-Router-Szenario

Auch in diesem Beispiel für Netzwerkanwendungen zeigt sich, dass die Ressourceneffizienz eines
Systems aus einem Kompromiss zwischen hoher Leistungsfähigkeit spezialisierter Hardware auf
der einen Seite und Flexibilität bzw. Zukunftssicherheit von Universalprozessoren auf der anderen
Seite besteht.

7.7 Analyse der Anschlussarten von Hardwarebeschleunigern im GigaNoC

In diesem Abschnitt werden die Ergebnisse von Messreihen zur Software-basierten und Hardware-
beschleuniger-unterstützten Paketverarbeitung vorgestellt. Damit einhergehend wird eine Bewer-
tung der verschiedenen Kopplungsmöglichkeiten (vgl. 4.3.3) der Hardwarebeschleuniger vorge-
nommen. Der in Abschnitt 6.3.1.1 bereits vorgestellte Hardwarebeschleuniger zur Paketprüfung
beschleunigt Funktionen der Netzwerkverarbeitung auf den Netzwerkschichten 3 und 4. Dazu müs-

59 Hierbei wird eine vorinitialisierte Liste von 400 Netzwerkknoten mit je vier Verbindungen pro Knoten als Vorgabe

angenommen.

Performanz
pro N-Core

Benötigte
N-Cores

Benötigte
N-Cores

Hardware-
beschleuniger

Flächen-
ersparnis [%]

Verlustleistungs-
ersparnis [%] (SA)

Packet Flow
[Pakete/s]

900.262 14 1 1 91,3% 91,8%

Route Lookup
[Lookups/s]

1.173.000 11 1 1 49,6% 57,2%

OSPF-Routing
[Updates/s]

317 1 1 - 0% 0%

Gesamt - 26 3 2 70,1% 73,6%

Optimiertes SystemStandardsystem

Funktion

Kapitel 7. Performanzanalyse skalierbarer GigaNetIC-Netzwerkprozessoren

212

sen die Pakete auf diesen Schichten terminiert werden, und es bedarf einer protokollkonformen Bil-
dung bzw. Prüfung der Checksummen und der Paketrahmen. Dies kann vollständig in Software ge-
schehen, dann übernimmt der N-Core komplett diesen Task, oder aber: Die rechenintensive Verar-
beitung wird auf die speziell hierfür entwickelten Einheiten ausgelagert, die somit den Universal-
prozessor (PE) entlasten und mehr Rechenzeit für zusätzliche Funktionen, wie z. B. Firewall- oder
weiterreichende Paketprüffunktionen (Deep Packet Inspection / DPI), schaffen (vgl. Abschnitt
8.1.2).

Bei der Evaluierung der Leistungsdaten muss zudem die Anzahl der aktiven Verarbeitungseinheiten
am lokalen Bus berücksichtigt werden. Der Übersichtlichkeit halber wird sich hier auf zwei Extrem-
fälle beschränkt: Entweder ist eine Verarbeitungseinheit als einzige aktiv, oder aber vier PEs des
Clusters sind mit der Paketverarbeitung beschäftigt. Mischfälle von Software-Verarbeitung und
hardwarebeschleunigter Verarbeitung werden der Übersichtlichkeit dienend vernachlässigt. Auch
für das übergeordnete NoC ist die Anzahl der aktiven Einheiten relevant. Da hier zunächst von ei-
nem maximal 32 PE-umfassenden System mit an das Anwendungsszenario angepasster Anzahl von
Hardwarebeschleunigern ausgegangen wird, für die das GigaNoC bereits ausreichend dimensioniert
ist, sind keine nennenswerten Beeinträchtigungen des Systems zu erwarten [118].

Zur Verarbeitung wurden Pakete charakteristischer Größe nach dem bereits erwähnten Internet-Mix
(iMix) verwendet. Dies bedeutet Ethernet-Pakete von 64, 570 und 1518 Byte. Der hier verwendete
32-Bit-breite Hardwarebeschleuniger erledigt die Aufgabe ca. 14,6 (64 Byte-Paket) bzw. bis zu 16,9
mal (1518 Byte-Paket) schneller, als der Prozessor, bei gleicher Taktfrequenz. Die Tatsache, dass
eine deutlich höhere Taktfrequenz des Hardwarebeschleunigers möglich wäre, wird hier außer Acht
gelassen. Die Beschleunigung ist bei großen Paketen höher als bei kleineren, da hier der Anteil der
fixen Operationen am Gesamtaufwand im Vergleich zu dem datenabhängigen Anteil geringer wird,
vgl. Abschnitt 6.3.1.5.

Abbildung 7-21: Vergleich zwischen Software-basierter Paketverarbeitung und Hardwarebeschleuniger-

basierter Verarbeitung unter Berücksichtigung unterschiedlicher Systemanbindungen

Bei der Analyse wird zwischen Kommunikation (Communication) und Berechnung (Calculation)
unterschieden. Unter Kommunikation wird der Anteil an Zyklen verstanden, der zur Initiierung der

SW
 (Shared M

em)

SW
 (Local M

em
)

PE Coprozessor

W
B HW

 Acc

CC HW
 Acc

SW
 (Shared M

em)

SW
 (Local M

em
)

PE Coprozessor

W
B HW

 Acc

CC HW
 Acc

SW
 (Shared M

em)

SW
 (Local M

em
)

PE Coprozessor

W
B HW

 Acc

CC HW
 Acc

0

2000

4000

6000

8000

10000

12000

14000

SW
 (Shared Mem

)

SW
 (Local M

em
)

PE Coprozessor

W
B HW

 Acc

CC HW
 Acc

SW
 (Shared Mem

)

SW
 (Local M

em
)

PE Coprozessor

W
B HW

 Acc

CC HW
 Acc

SW
 (Shared Mem

)

SW
 (Local M

em
)

PE Coprozessor

W
B HW

 Acc

CC HW
 Acc

Berechnung
Kommunikation

7.7 Analyse der Anschlussarten von Hardwarebeschleunigern im GigaNoC

213

Berechnung bzw. Prüfung benötigt wird, also Ansteuerung des Hardwarebeschleunigers und Über-
gabe der Adresszeiger und des Steuerwortes. Bei der Software-basierten Variante entfällt dieser
Anteil, da hier die CPU keine zusätzliche Kommunikation mit anderen Hardwareblöcken ausführen
muss. Unter Kalkulation wird der Anteil der Zyklen verstanden, der für die eigentliche Prüfung der
Paketdaten benötigt wird. Abbildung 7-21 gibt einen Überblick über die Verteilung von Kommuni-
kation und Kalkulation bei Software-basierter Paketverarbeitung sowie Hardwarebeschleuniger-
basierter Verarbeitung unter Berücksichtigung von unterschiedlichen Systemanbindungen.

Deutlich wird, dass die busbezogene Kommunikation bei einer Anzahl von vier Prozessoren keinen
Flaschenhals bzw. Engpass für die Software-basierte Verarbeitung bedeutet. Erst bei einer Anzahl
über vier Prozessoren lässt sich eine Herabsetzung der Verarbeitungsgeschwindigkeit feststellen,
die aufgrund von konkurrierenden Buszugriffen zu Stande kommt. Dies liegt u. a. in der Zugriffs-
zeit auf den gemeinsamen L2-Speicher von vier bis fünf Takten begründet, vgl. Abschnitt 4.4.

Ein gewisser Flaschenhals zeigt sich hingegen sehr wohl bei dem an den lokalen Bus angeschlosse-
nen Hardwarebeschleuniger (WB HW Acc). Hier macht sich die deutlich höhere Verarbeitungsge-
schwindigkeit bemerkbar. So nimmt die Anzahl der benötigten Zyklen von 27 (64 Byte-Paket /
1518 Byte-Paket) bei einem aktiven Prozessor durch entstehende Wartezeiten aufgrund der Busar-
bitrierung auf 72 (64 Byte-Paket) bzw. 477 (1518 Byte-Paket) bei vier Prozessoren zu. Dies ent-
spricht einer Steigerung der Kommunikationskosten um 2,67 bzw. 17,67. Bei vier aktiven Prozesso-
ren am Bus liegen die Kosten der Kommunikation in der gleichen Größenordnung wie die Kosten
für die Berechnung. Dies ist ebenfalls der Fall bei der Ansteuerung des an einem Switch-Box-Port
angeschlossenen Beschleunigers (CC HW Acc). Allerdings wird hier der lokale Bus stärker entlas-
tet, und die Wartezyklen entstehen durch das NoC. Deshalb bietet sich diese Lösung besonders für
große Systeme an, bei denen eine Vielzahl von CPUs die rechenintensiven, fixen Tasks auf einige
wenige, spezialisierte und über das GigaNoC gut erreichbare Hardwarebeschleuniger, auslagert.
Der eng an den Prozessor gekoppelte Hardwarebeschleuniger (PE Coprozessor) erfordert aufgrund
der Speicherzugriffe über den zwischengeschalteten N-Core (vgl. auch Abschnitt 7.4.2.3) deutlich
mehr Taktzyklen für die Kommunikation als die beiden anderen Varianten der Hardwarebeschleu-
nigerkopplung.

Bei der Software-basierten Verarbeitung wird zwischen zwei Varianten unterschieden. Bei der ers-
ten Variante (SW Shared Mem) befinden sich die Daten im gemeinsamen Speicher (Shared Memo-
ry) des Clusters und bedeuten somit häufige verzahnte Buszugriffe der einzelnen Prozessoren. Bei
dieser Variante werden die Kosten der Kommunikation zu Null gesetzt, da keine expliziten Daten-
transfers wie bei den anderen Alternativen notwendig sind. Die Prozessoren nehmen lediglich teure-
re L2-Speicherzugriffe vor, die jedoch mit zur Kalkulation gezählt werden. Bei der zweiten Varian-
te (SW Local Mem) hingegen werden die Daten zunächst vollständig in den lokalen Prozessorspei-
cher kopiert. Die Kosten für die Kommunikation dieser Variante liegen in der gleichen Größenord-
nung wie die der eigentlichen Berechnung. Diese Form der Bearbeitung lohnt sich deshalb nur
dann, wenn weitere Folgeberechnungen auf den Paketdaten stattfinden und es so im Anschluss zu
günstigen L1-Speicherzugriffen käme. Dies würde im weiteren Verlauf den Bus bei einem Mehr-
prozessorbetrieb entlasten und könnte dann letztendlich zu einer beschleunigten Verarbeitung füh-
ren. Beim Einsatz des GigaNetIC-Multiprozessorcaches (vgl. Abschnitt 4.4.2) anstelle des normalen
lokalen Prozessorspeichers könnte die Einlagerung neuer Pakete durch Prefetching bereits während
einer Bearbeitung geschehen, was den Durchsatz des Systems zusätzlich erhöhen würde.

Kapitel 7. Performanzanalyse skalierbarer GigaNetIC-Netzwerkprozessoren

214

Bei der Software-basierten Berechnung liegt die Bearbeitungszeit zwischen 6,1 Takte/Byte (64 By-
te-Paket) und 4,3 Takte/Byte (1518 Byte-Paket), wohingegen der Hardwarebeschleuniger nur 0,4
Takte/Byte (64 Byte-Paket) bzw. 0,3 Takte/Byte (1518 Byte-Paket) benötigt.

Abbildung 7-22 zeigt die maximal zu verarbeitenden Pakete pro MHz Rechentakt des Clusters.
Hierzu werden die Varianten mit einer bzw. mit vier aktiven CPUs für die drei verschiedenen Pa-
ketgrößen in die Betrachtung einbezogen. Es wird ersichtlich, dass sich der maximale Durchsatz mit
den Bus- und NoC-gekoppelten Varianten erzielen lässt. Der höchste Durchsatz, bei dem nur eine
CPU aktiv ist, wird bei der busgestützten Hardwarebeschleuniger-Ankopplung (WB HW Acc) er-
zielt. Hier wird bei 1518 Byte großen Paketen ein Durchsatz von 2,82 MByte/MHz erreicht. Die
NoC-basierte Lösung (CC HW Acc) erreicht bei vier aktiven Prozessoren einen maximalen Durch-
satz von 6,9 MByte/MHz bei 1518 Byte großen Paketen. Bezogen auf die in [109] gezeigten Syn-
thesewerte entspräche dies einem maximalen Durchsatz von 1,814 GByte bei einer Betriebsfre-
quenz von 263 MHz pro Cluster. Ein System dieser Leistungsfähigkeit wäre in der Lage, Pakete auf
Layer-3- und Layer-4-Schicht simultan für 900 ADSL2+-Anschlüsse (16MBit/s, Downlink) unter
Volllast zu prüfen. Bei der rein Software-basierten Variante ließen sich noch 120 dieser DSL-
Anschlüsse unter Volllast betreiben. Der in Abschnitt 8.1.2 vorgestellte FPGA-basierte Demonstra-
tor könnte bei den derzeitigen 12,5 MHz folglich noch über 86 MByte an Daten pro Sekunde verar-
beiten bzw. 42 ADSL2+-Anschlüsse bedienen.

Abbildung 7-22: Bandbreite pro MHz der einzelnen Systemvarianten

Mit Hilfe der leistungsfähigen Analysewerkzeuge der GigaNetIC-Architektur (vgl. Kapitel 5 und 6)
kann im Vorfeld einer Chiprealisierung bereits sehr genau bestimmt werden, welche Hardwarebe-
schleuniger mit welcher Kopplung im GigaNoC eingebunden werden müssen, um möglichst res-
sourceneffizient eingesetzt werden zu können. In diesem Beispiel konnte gezeigt werden, dass lose-
gekoppelte Beschleuniger (CC HW Acc bzw. WB HW Acc) besonders bei großen Systemen vor-
teilhaft eingesetzt werden können. Der eng-gekoppelte Beschleuniger (PE-Coprozessor) eignet sich
ggf. in Verbindung mit dem GigaNetIC-Multiprozessorcache. Die Software-basierten Ansätze (SW
Shared Mem und SW Local Mem) brauchen im Gegensatz zu allen anderen Varianten deutlich mehr
Taktzyklen. Lediglich die höhere Flexibilität und Zukunftssicherheit der Softwarelösungen erschei-

28369

9324

4545

36697

7605
3887

10230

1428 548

5747

842 324

9780

1566 607
0

5000

10000

15000

20000

25000

30000

35000

40000

64 570 1518

SW (Shared Mem)
SW (Local Mem)

PE Coprozessor
WB HW Acc

CC HW Acc

8000

3135
1502

16667

4425 18692571
357 1371441

210 812545
393 152

0

5000

10000

15000

20000

25000

30000

35000

40000

64 570 1518

SW (Shared Mem)
SW (Local Mem)

PE Coprozessor
WB HW Acc

CC HW Acc

a) 1 PE aktiv am lokalen Bus b) 4 PEs aktiv am lokalen Bus

Paketgröße [Bytes] Paketgröße [Bytes]

Pakete/MHz Pakete/MHz

7.8 Zusammenfassung

215

nen vorteilhaft, was allerdings bei standardisierten Algorithmen wie der hier betrachteten Paketprü-
fung von geringer Relevanz ist.

7.8 Zusammenfassung

In diesem Kapitel wurde die GigaNetIC-Architektur im Hinblick auf den Einsatz für unterschiedli-
che Netzwerkszenarien untersucht. Gerade im Netzwerkbereich bieten sich parallele Systeme zur
Datenverarbeitung an, da hier eine Vielzahl von parallelen, zum Teil nicht korrelierten Datenströ-
men simultan von den Verarbeitungseinheiten bearbeitet werden kann.

Im Rahmen dieses Kapitels wurde ein IP-DSLAM-Benchmark zur Bewertung der GigaNetIC-
Architektur für Zugangsnetzwerke vorgestellt. Die Leistungsfähigkeit der Architektur wurde für
unterschiedliche Szenarien analysiert und mit anderen Ansätzen verglichen. Im Anschluss wurde
die Leistungsfähigkeit des von uns entwickelten Prozessorkerns N-Core für relevante Funktionen
durch Optimierung der Architektur, Instruktionssatzerweiterungen sowie Hinzufügen von anwen-
dungsspezifischen Hardwarebeschleunigern deutlich erhöht. So konnten mit Hilfe der implemen-
tierten Instruktionssatzerweiterungen Beschleunigungen von über 24 % bei einem marginalen Flä-
chenmehraufwand von 2,7 % für den Prozessorkern erzielt werden. Durch diese Maßnahme können
zusätzlich über 20 % an Energie eingespart werden. Verglichen mit den eingebetteten Prozessor-
kernen ermöglichen die realisierten Hardwarebeschleuniger Beschleunigungen um teilweise mehre-
re Größenordnungen. Der Flächenbedarf ist höher als der der zusätzlichen Superinstruktionen, der
Energiebedarf der Gesamtschaltung wird jedoch deutlich reduziert. Für den IP-DSLAM-
Referenzbenchmark konnte die benötigte Energie auf weniger als ein Zwölftel reduziert werden.

Es wurde eine modulare Methode zur effizienten Modellierung von Netzwerkanwendungen vorges-
tellt, mit deren Hilfe der bereits entworfene IP-DSLAM-Benchmark auf Systemebene zu einem noch
realistischeren Referenzbenchmark erweitert werden konnte. Diese Anwendung wurde ebenfalls auf
die GigaNetIC-Architektur portiert und analysiert. Im Anschluss wurde die Hardware für besonders
rechenintensive Aufgaben der Zielapplikation optimiert. Mit Hilfe eines eigens entwickelten Visua-
lisierungswerkzeugs, dem DSLAM-System-Explorer, können die Leistungsdaten des N-Cores, die
erzielten Beschleunigungen der Hardwareerweiterungen und Leistungsvergleiche mit anderen Pro-
zessorfamilien komfortabel veranschaulicht werden. Es lassen sich Hochrechnungen bzgl. des
Hardwareaufwands für gewünschte Anforderungen des IP-DSLAM-Anwendungsszenarios aufstel-
len, die eine gezielte Evaluierung des Entwurfsraums ermöglichen.

Eine Analyse der Leistungsfähigkeit der verschiedenen Kopplungsarten von Hardwarebeschleuni-
gern an das GigaNoC der GigaNetIC-Architektur zeigt Vor- und Nachteile der einzelnen Varianten
auf. Da die Art der Kopplung und die Anzahl der Hardwarebeschleuniger abhängig von den Anfor-
derungen des jeweiligen Anwendungsszenarios, können vielversprechende Lösungen im Hinblick
auf die Ressourceneffizienz mit Hilfe der leistungsfähigen GigaNetIC-Simulationsumgebungen er-
mittelt werden.

In diesem Kapitel wurde gezeigt, dass die entwickelte, skalierbare Systemarchitektur eine – durch
die Werkzeugkette unterstützt – hierarchisch optimierbare, ressourceneffiziente Plattform für Netz-
werkanwendungen und Coprozessorsysteme darstellt. Aufgrund der guten Skalierbarkeit der zu-
grunde liegenden Systemarchitektur können GigaNetIC-basierte Systeme für unterschiedlichste
Einsatzbereiche in Netzwerkanwendungen eingesetzt werden. Der Vorteil liegt hier u. a. in dem

Kapitel 7. Performanzanalyse skalierbarer GigaNetIC-Netzwerkprozessoren

216

gleichbleibenden Architektur- und Programmiermodellansatz und der sich hieraus ergebenden gu-
ten Wartbarkeit. Durch Synergieeffekte und sich akkumulierende Lernkurven der Entwickler folgen
Zeitersparnis bei der Realisierung neuer Systemvarianten und kürzere Time-to-Market-Spannen.
Deshalb und aufgrund der hohen Flexibilität der Architektur lassen sich ebenfalls längere Time-in-
Market-Spannen erzielen.

217

8 Prototypische Implementierung des Systems
Dieses Kapitel beschreibt die vollständige prototypische Umsetzung der bisher konzeptionellen und
theoretischen Überlegungen zur Gestaltung der GigaNetIC-Architektur der vorangegangenen Kapi-
tel. Die Realisierung geschieht zum einen in Gestalt eines einsatzfähigen, FPGA-basierten Systems,
unter Verwendung der RAPTOR2000-Rapid-Prototyping-Entwicklungsumgebung (vgl. Abschnitt
5.5), und zum anderen als Synthese auf zwei aktuelle CMOS-Standardzellentechnologien.

Für diese beiden disparaten Zieltechnologien wurde ein einheitlicher skriptbasierter Syntheseablauf
entwickelt, der weitestgehend automatisiert abläuft. Durch Parametervariation kann er leicht an die
spezifizierte Zieltechnologie und nahezu beliebige Systemgrößen und Ausprägungen des Chip-
Multiprozessors angepasst werden. Neben der schnellen Systememulation durch den FPGA-
basierten Prototypen, die in Abschnitt 5.5 bereits Erwähnung fand und dort u. a. die Entwicklungs-
zyklen für umfangreichere Softwareprojekte erheblich beschleunigen half, ergeben sich zusätzlich
wertvolle Impulse zur Verbesserung bzw. zur Fehlerbehebung der Hardwarebeschreibung. Betrach-
tet man die NRE-Kosten für moderne Halbleiterprozesse im Sub-100-nm-Bereich ist dies ein ganz
erheblicher Vorteil gegenüber rein durch Simulation verifizierten Hardwareentwürfen. Diese liegen
mittlerweile in der Größenordnung von einer Million Euro, so dass eine gründliche Verifikation des
Entwurfs mehr als erstrebenswert ist.

Durch Analysen der Codeabdeckung während der einzelnen Simulationsphasen der HDL-
Beschreibung als auch durch die Einbindung des FPGA-Prototypen in ein zukünftiges Anwen-
dungsszenario des GigaNetIC-Systems wird die Fehlerwahrscheinlichkeit deutlich minimiert. Zu-
sätzliche Sicherheit bzgl. der Fehlerfreiheit der Hardware könnten Erweiterungen der Hardwarebe-
schreibung durch die Nutzung von eigenschaftsspezifizierenden Sprachen, wie z. B. PSL (Property
Specification Language for Assertion-Based Verification), die während der Simulation das Verhal-
ten nach vorgegebenen Mustern und Regeln überprüfen, erreicht werden. Letztendlich wäre eine
formale Verifikation des Systems im Bezug auf einen fehlerfreien Entwurf wünschenswert. Auf-
grund der beschränkten Zeit im Rahmen dieser Arbeit konnten diese beiden Verifikationsmecha-
nismen allerdings noch nicht implementiert werden.

Im folgenden Abschnitt wird auf die FPGA-Realisierung des GigaNetIC-Systems näher eingegan-
gen, bevor in Abschnitt 8.2 die Resultate der ASIC-Realisierung auf Basis zweier CMOS-
Standardzellentechnologien vorgestellt werden.

8.1 FPGA-Realisierung – GigaNetIC-Prototyping-Plattform

Für die funktionale Verifikation wird die RTL-Beschreibung auf das im Fachgebiet Schaltungs-
technik entwickelte Rapid Prototyping System RAPTOR2000 abgebildet. Auf Basis feingranular
rekonfigurierbarer Bausteine (FPGAs) ermöglicht dieses System eine Emulation des gesamten
Chip-Multiprozessors. RAPTOR2000 ist über den PCI-Bus an einen Host-Computer angebunden
und kann über diesen PC komfortabel konfiguriert werden. Die Prototypen-Umgebung integriert
neben rekonfigurierbaren Einheiten, die die Multiprozessorarchitektur emulieren, auch Speicher
und externe Schnittstellen. Auf diese Weise kann der Prototyp in eine reale Systemumgebung integ-
riert und verifiziert werden. Die frühe Bereitstellung des Prototyps ermöglicht neben einer Verifika-

Kapitel 8. Prototypische Implementierung des Systems

218

tion des zugrunde liegenden RTL-Modells eine effiziente parallele Entwicklung von Software und
Hardware. Dabei ist besonders die hohe Geschwindigkeit der Hardware-Emulation von großem
Vorteil, die um mehrere Größenordnungen (vgl. Kapitel 5) über der Simulationsgeschwindigkeit
der Schaltung auf RTL-Ebene liegt. Somit können auch komplexe Testprogramme und Benchmarks
auf dem Prototypen in vertretbarer Zeit ausgeführt werden. Der hier zu realisierende FPGA-
Prototyp wird zunächst in Bereichen der Netzwerkdatenverarbeitung eingesetzt werden.

Grundsätzlich unterscheidet sich die FPGA-Realisierung nicht von der folgenden ASIC-Implemen-
tierung in CMOS-Standardzellentechnologien. Es wird die gleiche Hardwarebeschreibung verwen-
det, lediglich die verwendete On-Chip-Speichertechnologie muss für die jeweilige Zieltechnologie
eingestellt werden. Zur Erzielung der jeweils besten Syntheseergebnisse werden für beide Zieltech-
nologien angepasste Steuerskripte verwendet. In der Größe des realisierbaren Multiprozessorsys-
tems und der erreichbaren Taktfrequenz sind heutige FPGA-Technologien deutlich eingeschränkter
als ein moderner standardzellenbasierter ASIC. Bei den FPGA-basierten Prototypen wird das Sys-
tem auf zwei Cluster beschränkt im Gegensatz zu acht bzw. auch 20 in der ASIC-Variante. Auch
die erreichbare Taktfrequenz ist ca. 20mal geringer. Dennoch sind für eine schnelle, kostengünstige
und zugleich detaillierte Verifikation in der späteren Systemumgebung FPGA-basierte Prototypen
von unschätzbarem Wert.

8.1.1 Aufbau und Syntheseergebnisse

Im Folgenden werden der Aufbau und die Ergebnisse der Synthese auf die verwendete FPGA-
Architektur näher erläutert. Abbildung 8-1 zeigt das auf Basis zweier Xilinx Virtex-II 8000 FPGAs
zusammen mit einer Fast-Ethernet-Schnittstellentochterplatine des RAPTOR2000-Systems reali-
sierte GigaNetIC-Chip-Multiprozessorsystem.

Abbildung 8-1: RAPTOR2000-basierter FPGA-Prototyp der GigaNetIC-Architektur

Das System umfasst zwei Cluster mit jeweils vier N-Cores, die über einen Wishbone-Bus mit dem
Communication-Controller und dem gemeinsamen Paketspeicher sowie lokaler Peripherie, in die-
sem Beispiel einen UART zum Anschluss der zur Interaktion mit dem Benutzer benötigten
Touchscreens, verbunden sind. Die beiden Switch-Boxen sind miteinander über die Ports 1 bzw. 3
verbunden, wobei diese Verbindungen über die externen Anschlüsse der beiden FPGAs realisiert

8.1 FPGA-Realisierung – GigaNetIC-Prototyping-Plattform

219

sind. Da die benötigten Anschlüsse nicht in ausreichender Anzahl auf dem RAPTOR2000-
Mainboard zur Verfügung stehen wird bei der Übertragung die Serialisierungsfunktionalität der
Switch-Box-Ports (vgl. Abschnitt 6.6) ausgenutzt.

Tabelle 8-1 zeigt die Syntheseergebnisse für die FPGA-Realisierung eines GigaNetIC-Clusters. Es
ist zu beachten, dass der hier angegebene Wert von 14.133 Slices für eine Switch-Box mit fünf
Ports und einer FIFO-Tiefe von drei gilt. In der Systemkonfiguration aus Abbildung 8-1 werden
allerdings nur drei dieser fünf Ports benötigt, so dass sich bei gewünschter Optimierung seitens der
Xilinx-Entwicklungsumgebung dieser Wert auf 7.946 Slices reduzieren lässt. Die Switch-Box in
ihrer vollständigen Ausprägung nimmt fast genauso viele Ressourcen in Anspruch, wie die vier N-
Core-Subsysteme mit je 3.662 Slices. Dies liegt darin begründet, dass die derzeitige Implementie-
rung Register zur Realisierung der FIFO-Ketten verwendet, die in der FPGA-Implementierung
59 % der benötigten Slices in Anspruch nehmen.

Tabelle 8-1: Syntheseergebnisse für die FPGA-Realisierung eines GigaNetIC-Clusters

Hardware-Blöcke Slices RAM16s
4 x N-Core-Subsysteme (inkl. 4 x
32 KB Speicher)

14.648 64

Switch-Box
(inkl. Communication-Controller)

14.133 -

Ethernet-Controller
(inkl. 2 Ethernet-Ports)

5.544 32

Paketspeicher (32 KB) 53 16
SRAM-Schnittstelle 22 -
Serielle Schnittstelle (UART) 626 -
Wishbone-Arbiter 13 -
ΣΣΣΣ 35.039 112

Die detaillierten Ergebnisse zum N-Core-Subsystem werden in Tabelle 8-2 aufgeschlüsselt. Erwäh-
nenswert ist die Tatsache, dass die Switch-Box zwar die größte Komponente des Clusters darstellt,
der kritische Pfad des Systems allerdings vom N-Core zu einer maximalen Taktfrequenz von
16,79 MHz bestimmt wird60. Die letztlich verwendete Taktfrequenz des Gesamtsystems beträgt
12,5 MHz.

Tabelle 8-2: Syntheseergebnisse für die FPGA-Realisierung des N-Core-Subsystems

Hardware-Blöcke Slices RAM16s
Address-Dekoder 121 -
N-Core-Kern 3.405 16
ClockGen 6 -
Informationsregister 1 -
LB-Schnittstelle 110 -
PIC 6 -
RR Arbiter 13 -
ΣΣΣΣ 3.662 16

Bei einer Gesamtanzahl der verfügbaren Slices des XC2V800061 von 46.592 lastet ein GigaNetIC-
Cluster dieses FPGA zu 75 % aus. Für die benötigten Speicherkomponenten werden die BlockRAM-
Ressourcen (RAM16) des FPGAs verwendet. Die hierbei kleinste BlockRAM-Instanz entspricht ei-
nem 18 KBit-großen Dual-Port-Speicher mit konfigurierbarer Datenbusbreite. Diese elementaren

60 Alle Werte beziehen sich auf Xilinx FPGAs des Typs XC2V8000 mit dem langsamsten Speedgrade 4.

61 Der XC2V8000 gehörte 2005 zu den FPGAs mit den meisten verfügbaren Logikelementen (Slices) und ist der größte

Baustein der Virtex II Familie mit 8 Mio. Systemgattern bzw. 46.592 Slices.

Kapitel 8. Prototypische Implementierung des Systems

220

Speicherblöcke werden je nach Konfiguration des Speichermoduls nicht immer vollständig ausge-
nutzt.

8.1.2 GigaNetIC-Demonstrator – Einsatz in einem realen Netzwerkszenario

Ähnlich dem im Liberouter-Projekt [193] verfolgten Ansatz setzen wir beim GigaNetIC-
Demonstrator auf Internet-Protokoll-basierte Paketverarbeitung mit Hilfe von FPGAs. Allerdings
nutzen wir zunächst Cluster von Universalprozessoren wie den N-Core und erweitern dann das Sys-
tem durch zusätzlich benötigte Hardwarebeschleuniger. Vorteilhaft an dem GigaNetIC-System ist
die Modularität des RAPTOR2000-Boards. So können bis zu sechs Tochterplatinen mit ggf. sechs
interoperablen FPGAs eingesetzt werden, wohingegen der monolithische Aufbau der Combo-
Boards des Liberouter-Projekts nur ein FPGA integrieren und derzeit keine derartige Erweiterbar-
keit vorsehen.

Abbildung 8-2 zeigt den funktionsfähigen RAPTOR2000-basierten GigaNetIC-Demonstrator, der
zwei N-Core-Cluster prototypisch auf FPGAs realisiert. Bei diesem Aufbau übernehmen die N-
Core-Cluster die komplette Paketverarbeitung eines zwischengeschalteten Routers und übertragen
einen Video-Live-Stream in Echtzeit zu einem angeschlossenen Netzwerk-Client. Ebenso können
die bisher gezeigten Hardwarebeschleuniger integriert und zur beschleunigten Verarbeitung einge-
setzt werden. Die Auswirkungen des Hinzuschaltens des IP-Headercheck-Hardwarebeschleunigers
z. B. konnten in Form einer deutlich besseren Bildqualität der Videoübertragung des in Abbildung
8-3 beschriebenen Netzwerkszenarios beobachtet werden.

Der Demonstrator wurde auf der CeBIT 2005 sowie auf der Hannover-Messe 2005 auf dem fachge-
bietseigenen Messestand im Rahmen des Bereichs „Forschungsland NRW“ der Öffentlichkeit vor-
gestellt.

Abbildung 8-2: FPGA-basierter GigaNetIC-Demonstrator,

ausgestellt am Stand Forschungsland NRW auf der CeBIT 2005 und Hannover Messe 2005

8.1 FPGA-Realisierung – GigaNetIC-Prototyping-Plattform

221

Das mit dem GigaNetIC-Demonstrator präsentierte Netzwerkanwendungsszenario wird in Abbil-
dung 8-3 detailliert vorgestellt. Ein PC-basierter Video-Server stellt die Livebilder einer angeschlos-
senen Webcam zum Abruf über das in diesem Fall kabelgebundene, ethernetbasierte Internet zur
Verfügung. Als Zwischenstelle, sozusagen als Router, fungiert hier der GigaNetIC-Chip-
Multiprozessor, realisiert als FPGA-Prototyp, basierend auf dem RAPTOR2000-System. Hierbei
kommen zwei GigaNetIC-Cluster, wie in Abbildung 8-1 gezeigt, zum Einsatz. Die Datenpakete
werden über die Ethernetschnittstelle des GigaNetIC-Clusters in den lokalen Paketspeicher transfe-
riert. Von hier holen die N-Cores die Pakete nach dem Best-Effort-Prinzip ab und führen zunächst
eine Checksummenprüfung nach [160] durch. Der Benutzer kann mit dem System über eine berüh-
rungssensitive Anzeige interagieren. Mit Hilfe von Schaltflächen wird ihm die Möglichkeit gegeben
die Farbe des Bildrahmens auszuwählen. Den N-Cores wird dieses Kommando übermittelt, worauf-
hin sie die Datenpakete nach dem bekannten Muster der Rahmenfarbe durchsucht und diese dann
durch die vom Benutzer gewählte ersetzt. Im Anschluss werden die Daten zum Versand wieder zum
Ethernetcontroller über das GigaNoC geschickt. Letztendlich werden sie zum anfordernden PC (Vi-
deo-Client) geleitet, der diese innerhalb eines Webbrowsers als Livestream anzeigt. Das hier reali-
sierte Netzwerkszenario demonstriert die Funktionsfähigkeit der GigaNetIC-Architektur. Es hat
geholfen die entworfene Architektur in einem realen Anwendungsfeld zu testen und in Echtzeit ana-
lysieren zu können.

Abbildung 8-3: GigaNetIC-Demonstrator – reales Netzwerkszenario als Verifikationsbeispiel

Um mit dem FPGA-Prototypen effektiv arbeiten zu können, wurde eine graphische Benutzerober-
fläche (Graphical User Interface / GUI) für die Interaktion mit der Hardware erstellt. Diese verwen-
det die vom RAPTOR2000-System zur Verfügung gestellte DLL (Dynamic Link Library), um auf
das PCI-basierte Prototypensystem vom PC aus zugreifen zu können.

Über die GigaNetIC-GUI (vgl. Abbildung 8-4) können alle wesentlichen Funktionen des Chip-
Multiprozessors gesteuert bzw. abgerufen werden. Sie ermöglicht die einfache Konfiguration der
verwendeten FPGA-Tochterplatinen mit den jeweiligen Bitstreams, die komfortabel mit Hilfe einer
Dateivorschau von den zur Verfügung stehenden Laufwerken ausgewählt werden können. Außer-

•Webcam zur Erfassung von
Videodaten

•Bereitstellung dieser Daten
zum Abruf über das Internet

• Test von zwei Clustern

• Weiterleitung der Videodaten durch die
N-Core-Cluster

• Auf Tastendruck Modifikation der Daten
durch die N-Core-CPUs

• „Firewall“-Anwendungsszenario

• Darstellung der empfangenen
Videodaten mit Hilfe eines Web-
Browsers auf einem dritten PC

Video-Server
Datenbereitstellung

Video-Server
Datenbereitstellung

GigaNetIC-CMP
Datenverarbeitung

GigaNetIC-CMP
Datenverarbeitung

Video-Client
Datendarstellung

Video-Client
Datendarstellung

Ethernet-Netzwerkverbindung

Kapitel 8. Prototypische Implementierung des Systems

222

dem werden so die jeweiligen Programmdateien den einzelnen N-Cores zugeordnet, die auch wäh-
rend des Betriebs verändert werden können.

Eine weitere wichtige Funktion der Software sind Kontrollaufgaben zur Steuerung der Hardware.
Hierzu zählen das Starten, Stoppen und Zurücksetzen (Reset) aller oder einzelner Prozessoren sowie
das Verarbeiten der anliegenden Daten, die über den UART eingehen, so z. B. die Benutzereinga-
ben über den Touchscreen als auch dessen Ansteuerung. Mit Hilfe dieser bidirektionalen Schnitt-
stelle kann komfortabel mit dem System interagiert werden und so direkt auf den Programmablauf
der einzelnen N-Cores Einfluss genommen werden, wie z. B. beim beschriebenen GigaNetIC-
Demonstrator (vgl. Abbildung 8-3). Weiterhin kann die Konfiguration der zur Verfügung stehenden
Ethernetports über die GigaNetIC-GUI vorgenommen werden, wie z. B. Übertragungsgeschwindig-
keit und Verbindungsstatus.

Mit Hilfe der GigaNetIC-GUI verfügt der Entwickler über leistungsfähige Debuggingfunktionen,
die es erlauben, graphisch auf relevante Statusinformationen zu den Prozessoren und den anderen
Blöcken des Chip-Multiprozessors zuzugreifen. Außerdem lassen sich alle Speicherinhalte anzeigen
und bei Bedarf abspeichern (so genannte Memory Dumps). Der aktuelle Zustand des Communicati-
on-Controllers kann ebenso angezeigt wie gesteuert werden. So können z. B. Pakete zu Testzwe-
cken ins GigaNoC injiziert werden.

Abbildung 8-4: Graphische Benutzeroberfläche des GigaNetIC-Demonstrators

Die GigaNetIC-GUI ist adaptiv und erkennt die Hardwarekonfiguration der involvierten FPGAs
automatisch. Hierzu zählen u. a. die Anzahl verfügbarer N-Cores, Ethernetports und die Größe der
verfügbaren Speichermodule. Hardwaremodule, die aufgrund der jeweiligen Konfiguration des
FPGAs nicht zur Verfügung stehen, werden automatisch mit einem roten „X“ markiert und stehen
nicht zur Verfügung.

Für die spätere ASIC-Realisierung, die zunächst auch auf einer RAPTOR2000-Tochterplatine ge-
testet werden soll, kann auf viele Funktionen dieser Software zurückgegriffen werden. Hierdurch
wird ein hoher Wiederverwendungswert erreicht und nur wenige Funktionen müssen ggf. hinzuge-
fügt werden bzw. können im Falle der Auswahl von Konfigurationsbitstreams entfallen.

8.2 ASIC-Realisierung in CMOS-Standardzellen

223

8.2 ASIC-Realisierung in CMOS-Standardzellen

Heutige FPGA-Technologien wie die der Xilinx-Virtex-II-Serie, deren Verwendung im vorigen
Abschnitt beschrieben wurde, eignen sich noch nicht für die Realisierung sehr komplexer bzw. sehr
großer Systeme, wie es z. B. ein GigaNetIC-System mit acht und mehr Switch-Boxen darstellt.
Derzeit besteht noch eine deutliche Flächen-Funktions-Diskrepanz zwischen der vorgestellten
FPGA-Technologie und aktuellen Standardzellen-Technologien. Der Unterschied für die benötigte
Fläche für eine gegebene Funktionalität liegt derzeit bei einem Faktor von ca. 40 [194]62. Der Un-
terschied in der maximalen Taktfrequenz zwischen Standardzellen- und FPGA-Entwürfen (schnell-
stes Speedgrade) wird in [194] mit Faktor 2 bis 3 angegeben. Im Vergleich dazu liegen die FPGAs
mit dem langsamsten Speedgrade ca. Faktor 3 bis 4,5 unter der Leistungsfähigkeit der Standardzel-
lentechnologie. Das Verhältnis bei der dynamischen Verlustleistung bewegt sich lt. [194] zwischen
Faktor 9 und 12. Diese Angaben verdeutlichen, dass vor allem noch einiges an der Flächeneffizienz
der FPGAs verbessert werden muss, bevor sie als Alternative zur Standardzellentechnologie im Be-
reich großer Systeme in Frage kommen. Zusätzlich bieten die Standardzellentechnologien bei den
angestrebten, hohen Stückzahlen im Netzwerkbereich einen deutlichen Kostenvorteil gegenüber der
aktuellen FPGA-Technologie. Diese Umstände empfehlen deshalb, trotz der hohen NRE-Kosten,
CMOS-basierte Standardzellentechnologien als passende Zieltechnologie für die GigaNetIC-
Architektur.

Nach erfolgreichem Test der GigaNetIC-Architektur mit Hilfe des FPGA-basierten Prototyps, so-
wie durch die Verifikation des Systems durch die zahlreichen Simulationen mit Hilfe der in Kapitel
5 vorgestellten Entwicklungsumgebungen schließt sich die Realisierung in der angestrebten Ziel-
technologie, moderne CMOS-basierte Standardzellentechnologien in 130 nm bzw. 90 nm an.

8.2.1 GigaNetIC-Architektur mit SRAM-basiertem L1-Speicher

Die folgenden Tabellen zeigen die Syntheseresultate der GigaNetIC-Hauptkomponenten für die
eben genannten Technologien auf. Bei der ASIC-Realisierung wird beispielhaft ein System beste-
hend aus acht Clustern, die in einem 4×2-Gitter angeordnet sind, betrachtet. Jeder Cluster besteht
aus vier N-Cores, einer Switch-Box mit fünf Ports mit einer FIFO-Tiefe von drei. Als lokaler Bus
wird derzeit für die Variante ohne Cache der Wishbone-Bus favorisiert, aber auch der AMBA-Bus
ist denkbar und flächenmäßig nahezu gleich groß. Insgesamt bedeutet dies 32 N-Core-Prozessoren
mit 1,25 MByte On-Chip-Speicher.

Tabelle 8-3 stellt zunächst die jeweiligen Flächenanforderungen der Komponenten in beiden Tech-
nologien gegenüber. Die Gesamtgröße des hier vorgestellten Systems liegt bei 50,01 mm² (130 nm)
bzw. 43,7 mm² (90 nm). Die sich aus den S-Parametern (vgl. Definition 29) ergebende Abschät-

zung, dass sich bei einer Verkleinerung der minimalen Strukturgröße um den Faktor 2 der resul-
tierende Flächenbedarf in der neuen Technologie halbiert, bewahrheitet sich hier nicht für alle
Komponenten. Lediglich für die Switch-Boxen und die lokalen Busse trifft diese „Daumenregel“
zu. Die Fläche des Speichers, der 70 % (130 nm) bzw. 81 % (90 nm) der Gesamtfläche ausmacht,

62 Allen Angaben zu Grunde liegen detaillierte Analysen aktueller FPGA- und Standardzellentechnologien, die zur Ab-

bildung unterschiedlicher Schaltungsentwürfe zur möglichst vollständigen Abdeckung des Entwurfsraums herangezo-

gen wurden.

Kapitel 8. Prototypische Implementierung des Systems

224

ist in der 90-nm-Technologie bis auf die dritte Nachkommastelle identisch mit der Speicherfläche
der 130-nm-Technologie. Dies liegt in der noch nicht vollzogenen Optimierung der 90-nm-
Speicherzellen dieser zum Zeitpunkt der Synthesen neu eingeführten Technologie begründet. Zur
Veranschaulichung der Flächenreduktion zeigt Abbildung 8-9 eine Hochrechnung der Clusterfläche
bei einer für Speicher eher konservativ angenommenen Skalierung mit 2S− . In diesem Fall redu-
zierte sich die Fläche von 43,7 mm² auf nur noch 25,97 mm², nähme also nur noch 59,4 % der Urs-
prungsfläche ein.

Tabelle 8-3: Charakteristika der GigaNetIC-Hauptkomponenten

für 130-nm- bzw. 90-nm-Standardzellentechnologie

Die Switch-Boxen zusammen mit den lokalen Bussen nehmen als gesamte Kommunikationsinfrast-
ruktur des Chip-Multiprozessors 18,9 % (130 nm) bzw. 9,3 % (90 nm) der Gesamtfläche des syn-
thetisierten SoCs ein. In DALLY [57] werden ca. 10 % Flächenanteil der Kommunikationsstruktur
als durchaus vertretbar angesehen. Dies entspricht ebenfalls den von mir in [14] auf grundlegenden
Analysen beruhenden ersten Hochrechnungen zur Ausprägung eines effizienten On-Chip-
Netzwerks.

Die maximal erreichbare Taktfrequenz bestimmt beim GigaNetIC-System die langsamste Kompo-
nente. So lässt sich derzeit in 130-nm-Technologie eine Taktrate von ca. 205 MHz im Gegensatz zu
285 MHz bei der 90-nm-Technologie erreichen. Derzeit bestimmt der N-Core diese Frequenz durch
den längsten kritischen Pfad der Gesamtschaltung. Durch weitere Optimierungen lassen sich aller-
dings noch höhere Taktfrequenzen erreichen, da hier noch nicht alle Möglichkeiten ausgeschöpft
sind (vgl. Abschnitt 6.2).

Bei der Verlustleistung, die sich auf die maximal realisierbare Taktfrequenz bezieht, liegt der ange-
nommene Wert bei 2,7 W (130 nm) bzw. 1,8 W (90 nm). Dies ist allerdings eine Abschätzung, die
auf Annahmen der Schaltwahrscheinlichkeiten seitens des Synthesewerkzeugs (50%S) und nicht auf
annotierten Werten (AS) beruht. Dies deutet auf eine eher geringere Leistungsaufnahme im norma-
len Betrieb hin, da hier nicht eine Schaltwahrscheinlichkeit von 50 % in jedem Takt für alle Kom-
ponenten anzunehmen ist. Mit Hilfe der in Abschnitt 5.3 vorgestellten Werkzeugkette ist es nun
möglich für dedizierte Anwendungen die konkreten Schaltwahrscheinlichkeiten aufzuzeichnen und
so sehr genaue Werte zur Leistungsaufnahme zu erzielen (vgl. Abschnitt 6.3.1.5). Bei der relativen
Verlustleistung, also aufgenommene mW pro MHz, zeichnet sich eine deutliche Reduktion durch
die Verwendung der 90-nm-Technologie ab. Diese fällt auf lediglich 47,9 % des Wertes für die
130-nm-Technologie. Für die 130-nm-Technologie wurde zusätzlich noch die Verlustleistung der
Inter-Switch-Box-Links analysiert [115]. Hierzu wurden die relevanten Charakteristika für Leitun-
gen auf den obersten Metalllagen sieben und acht aus dem Datenbuch verwendet. Hieraus kann fol-

130nm 90nm 130nm 90nm
130nm

@205MHz
90nm

@285 MHz
130nm 90nm

32 N-Core 32 x 0,160 32 x 0,120 205 285 352,0 410,4 0,054 0,045
8 Switch-Boxen
[mit 5 Ports, FIFO-Tiefe 3]

8 x 1,129 8 x 0,530 560 714 660,9 741,0 0,403 0,325

32 lokale Speicher (32 KB) 32 x 0,875 32 x 0,875 400 450 1165,1 465,1 0,178 0,051
8 lokale Paketpuffer (2 x 16 KB) 8 x 2 x 0,466 8 x 2 x 0,466 400 450 518,2 175,6 0,316 0,077
8 lokale On-Chip-Busse
(Wishbone / AMBA)

8 x 0,050 8 x 0,020 211 290 15,6 13,7 0,010 0,006

Insgesamt 50,01 43,70 205 285 2711,8 1805,8 13,228 6,336

Verlustleistung
je IP-Block
[mw/MHz]SoC-Haupt-Komponenten

Fläche
[mm²]

Frequenz
[MHz]

Verlustleistung gesamt
[mw]

8.2 ASIC-Realisierung in CMOS-Standardzellen

225

gende Berechnungsvorschrift für die Leistungsaufnahme aufgestellt werden:

Inter-SB-Links

1
0,0517C

mW
P Links Ports f l

MHz m
= ⋅ ⋅ ⋅ ⋅ ⋅ , mit 93 Links, 4 Inter-Switch-Box-Verbindungen,

einer Betriebsfrequenz von 205 MHz und einer Länge lC von 2,3 mm (vgl. Abbildung 8-7) ergibt
sich eine zusätzliche Verlustleistung von 9,1 mW für alle globalen Verbindungsleitungen einer
Switch-Box bei einer Schaltwahrscheinlichkeit von 50 %. Bezogen auf die Gesamtverlustleistung
eines Clusters sind dies ca. 2.7 %. Dieser Anteil ist somit nicht gänzlich zu vernachlässigen, liegt er
doch fast in der Größenordnung der Verlustleistungsaufnahme eines Prozessorkerns. Dies spricht
ebenfalls für die in Abschnitt 6.6 vorgeschlagene Nutzung der energieeffizienten, serialisierten Da-
tenübertragung für niederpriore Pakete.

Abbildung 8-5 zeigt die Anteile der drei wesentlichen Hardware-Bestandteile: Verarbeitung,
Kommunikation und Speicher der GigaNetIC-Architektur an Fläche und Verlustleistung des Ge-
samtsystems für die beiden betrachteten Standardzellentechnologien in 130 nm und 90 nm.

Abbildung 8-5: Anteile der drei wesentlichen Hardware-Bestandteile der GigaNetIC-Architektur an Fläche und

Verlustleistung für die 130-nm- und 90-nm-Realisierung

Es fällt bei beiden Technologien auf, dass der Speicher das System flächenmäßig dominiert. Dies
geht einher mit dem in der ITRS [2] beschriebenen Trend, immer höhere Anteile der Chipfläche mit
regelmäßigen Strukturen, wie z. B. Speicher zu nutzen. Die Verwendung von derart großen Spei-
chermengen hilft u. a., die sich ansonsten auftuende Entwurfsproduktivitätslücke zu schließen und
ist für ein Chip-Multiprozessor-System essentiell. Je größer der zur Verfügung stehende Speicher,
desto leichter lassen sich Latenzen klein halten, und die Performanz erhöht sich deutlich im Ver-
gleich zum Einsatz von Off-Chip-Speicher. Bei beiden Standardzellentechnologien nehmen die
Verarbeitungseinheiten ca. 10% der Gesamtfläche ein. Dies kann abhängig von Art und Anzahl der
verwendeten Hardwarebeschleuniger und je nach Anwendungsszenario variieren. Die restlichen
19 % bzw. 10 % der Fläche werden für die Kommunikationsinfrastruktur benötigt. Allerdings kann
hier, je nach Anforderung der Anwendung, noch ein Großteil der Fläche durch Reduktion der FIFO-
Tiefe (vgl. Abbildung 4-9) und Optimierung der Switch-Box durch den Einsatz von SRAM-
Technologie für die Warteräume eingespart werden.

Bei der Verlustleistungsaufnahme dominiert bei der 90-nm-Technologie der Speicher, wohingegen
die Verarbeitungseinheiten nur die Hälfte der Leistungsaufnahme der Kommunikationsinfrastruktur
und fast nur ein Fünftel der des Speichers benötigen. Bei der 130-nm-Standardzellentechnologie ist
die Aufteilung ausgeglichener, und die Kommunikationsstruktur dominiert hier das System in
punkto Verlustleistung. Dies ist zum einen auf den hohen Registeranteil und die damit verbundene
relativ hohe Leistungsaufnahme dieser Komponenten in der 130-nm-Technologie zurückzuführen.
Zum anderen ist die verwendete Speichertechnologie sehr ausgereift und stromsparend, so dass bei

10%

19%

71%

9%
10%

81%

13%

25%
62%

23%

42%

35%

Verarbeitung Kommunikation Speicher

130 nm 90 nm 130 nm 90 nm

Fläche [mm²] Verlustleistung [mW]

Kapitel 8. Prototypische Implementierung des Systems

226

dieser Komponente sowohl die Fläche als auch die Leistungsaufnahme deutlich besser optimiert
sind als bei der 90-nm-Technologie.

8.2.2 GigaNetIC-Architektur mit integrierten Multiprozess orcaches

Tabelle 8-4 gibt Aufschluss über die Flächenanforderungen, möglichen Taktfrequenzen der einzel-
nen Komponenten sowie die Leistungsaufnahme des bereits in Tabelle 8-3 betrachteten GigaNetIC-
Systems, das allerdings im Gegensatz zu dem dort verwendeten Dual-Port-SRAM, die in Abschnitt
4.4.2 beschriebene Multiprozessor-Cache-Architektur als L1-Speicher beinhaltet [113]. Zieltechno-
logie dieser Variante des GigaNetIC-Chip-Multiprozessors ist die 90-nm-Standardzellentechno-
logie.

Tabelle 8-4: Größenangaben des GigaNetIC-Gesamtsystems für 90 nm-Standardzellentechnologie

unter Verwendung des GigaNetIC-Multiprozessorcaches

Die sich aus Tabelle 8-4 ergebende Gesamtfläche für das betrachtete Referenzsystem, das auf einem
4×2-Gitter basiert, benötigt nur 93,1 % der Fläche des in Tabelle 8-3 aufgezeigten Systems, das
Dual-Port-SRAM als L1-Speicher verwendet. Allerdings ist die dem einzelnen N-Core zur Verfü-
gung stehende lokale Speichermenge nur ein Viertel so groß, nämlich 8 KB statt 32 KB. So umfasst
die Gesamtspeichermenge dieses Systems nur 0,5 MB anstatt der 1,25 MB Speicher des Ver-
gleichssystems. Die dennoch fast vergleichbare Fläche ist in der hohen Anzahl benötigter Register,
die zur Implementierung des Multiprozessorcaches notwendig sind, begründet. Die in dieser Va-
riante derzeit erreichbare maximale Taktfrequenz beträgt 243,9 MHz; sie wird durch den kritischen
Pfad des Caches bestimmt.

Abbildung 8-6: Anteile der drei wesentlichen Hardware-Bestandteile der GigaNetIC-Architektur an Fläche und

Verlustleistung bei der Multiprozessorcachevariante in 90-nm-Realisierung

Abbildung 8-6 zeigt die Anteile der drei wesentlichen Hardware-Bestandteile der GigaNetIC-Archi-
tektur an Fläche und Verlustleistung bei der Multiprozessorcachevariante in der 90-nm-Reali-
sierung. Die benötigte Fläche der Kommunikationsinfrastruktur bewegt sich ähnlich wie zuvor bei
ca. 14 %. Die Fläche, die ohne zusätzliche Hardwarebeschleuniger von den N-Core-Verarbeitungs-

SoC-Hauptkomponenten
[90nm]

Anzahl Fläche
[mm²]

Gesamtfläche
[mm²]

Taktfrequenz
[MHz]

Leistungsaufnahme
je IP-Block@250 MHz

[mW]

Gesamtleistungsaufnahme
@250 MHz

[mW]

Caches 32 0,729 23,34 243,90 180,99 5791,68
N-Cores 32 0,127 4,07 258,00 11,74 375,68
AMBA-Master-Schnittstellen 32 0,008 0,24 354,61 1,11 35,52
AMBA-Slave-Schnittstellen 56 0,001 0,04 465,12 0,15 8,40
AMBA-Matrizen 8 0,097 0,78 265,96 25,16 201,28
Snooping-Slaves 8 0,002 0,02 420,17 0,55 4,40
Paketpuffer 8 0,952 7,62 250,00 35,50 284,00
Switch-Boxen (NoC) 8 0,575 4,60 434,78 53,00 424,00
Gesamt 40,70 243,90 7124,96

10%
14%

76%

5% 9%

86%90 nm

Fläche [mm²] Verlustleistung [mW]

Verarbeitung Kommunikation Speicher

8.2 ASIC-Realisierung in CMOS-Standardzellen

227

einheiten beansprucht wird, ist mit einem Zehntel nahezu identisch zu der SRAM-basierten Varian-
te des GigaNetIC Chip-Multiprozessorsystems.

Bei der Leistungsaufnahme dominiert der Speicher mit 86 % der Gesamtverlustleistungsaufnahme
noch stärker die anderen Komponenten, als es zuvor bei der SRAM-basierten Variante der Fall war.
Bzgl. der Angaben zur Leistungsaufnahme ist zu erwähnen, dass es sich hier um statistische Ab-
schätzungen seitens des Synthesewerkzeugs (50%S) handelt, die somit als erste Einstufung zu wer-
ten sind, so dass, bei Bedarf, die Leistungsaufnahme für dedizierte Anwendungen durch Analysen
mit der GigaNetIC-Werkzeugkette (AS) deutlich genauer abgeschätzt werden kann (vgl. Abschnitt
5.3).

Schlussbemerkung zur Synthese. Alle vorgestellten Werte beziehen sich auf den bereits vorges-
tellten Typical Case (vgl. Abschnitt 4.2.4). Selbstverständlich wurden ebenfalls Synthesen für Best-
und Worst-Case-Bedingungen (vgl. Tabelle 6-4) angestellt, die aus Platzgründen hier nicht näher
Erwähnung finden. Anhand der Realisierung des S-Cores in der 130-nm-Infineon-Technologie ha-
ben sich die Ergebnisse der Typical-Case-Syntheseabschätzung verglichen mit den am Chip gemes-
senen Werten als realistisch herausgestellt [108], so dass sich für diese Technologie eine gute Über-
einstimmung der Synthesewerte mit der Wirklichkeit zeigt. Die Synthesewerte der einzelnen Kom-
ponenten aus Tabelle 8-4 unterscheiden sich zum Teil von denen aus Tabelle 8-3. Dies und die
leichten Unterschiede der veröffentlichten Zahlen zu den Implementierungen der GigaNetIC-
Architektur in den betreffenden Veröffentlichungen [130][117][118][114][115][7][8][109][131]
[113][110] sind durch mehrere Umstände zu erklären: Zum Teil differieren die Syntheseergebnisse
aufgrund der fortwährend eingeflossenen Verbesserungen und Erweiterungen bei jeder neuen Im-
plementierung. Außerdem wurden im Laufe der Zeit Modifikationen an den verwendeten Standard-
zellenbibliotheken vorgenommen, was zusätzlich für abweichende Werte sorgt. Zusätzlich wurden
stets die neuesten Synthesewerkzeuge eingesetzt, die ebenfalls zahlreichen Veränderungen und Op-
timierungen unterlagen, so dass mit den hier veröffentlichten Werten der derzeit aktuellste Stand
der ASIC-Realisierung der GigaNetIC-Architektur wiedergegeben wird, der sich jedoch aufgrund
der genannten Faktoren bei zukünftigen Synthesen ebenfalls von den hier genannten Zahlen unter-
scheiden kann.

8.2.3 „Floorplan“ – ressourceneffiziente, kachelförmige Flächenaufteilung

Basierend auf den präsentierten Synthese Ergebnissen wird als Vorstufe für die weitere Realisie-
rung des Chips und als Planungshilfe ein so genannter Floorplan entworfen. Die folgenden Abbil-
dungen zeigen diese maßstabsgetreuen Anordnungen der einzelnen Komponenten für jeweils zwei
GigaNetIC-Cluster, die als Kacheln gitterartig aneinander gereiht werden können [115]. Alle Kom-
ponenten eines GigaNetIC-Clusters werden hierzu möglichst flächeneffizient in einer quadratischen
Kachel angeordnet.

Diese kachelartige Anordnungsoption der GigaNetIC-Cluster, die auch von zahlreichen anderen
Implementierungen paralleler Systeme ebenso oder eingeschränkt eingesetzt wird (vgl. Abschnitt
2.8.1), birgt mehrere Vorteile:

• Aufgrund der quadratischen Form sind alle globalen, „langsamen“ Verbindungen (Inter-
Switch-Box-Links) gleich lang und verursachen somit eine nahezu gleiche Latenz zu allen
Nachbarn.

Kapitel 8. Prototypische Implementierung des Systems

228

• Die regelmäßige Struktur dieser Kacheln eignet sich besonders für die Realisierung von an-
gepassten Systemen und trägt zu den außergewöhnlich guten Eigenschaften der GigaNetIC-
Architektur im Hinblick auf Skalierbarkeit (vgl. Definition 35) bei.

• Der relativ einfache Aufbau und die Regelmäßigkeit der Kacheln erlauben eine gute Wie-
derverwendbarkeit (vgl. Definition 36), auch im Hinblick auf eine Portierung auf eine mo-
dernere Standardzellentechnologie.

• Entwurfsfehler werden durch das Verwenden von stets gleichen, bereits ausgiebig getesteten
Schaltungskonzepten reduziert.

• Testbarkeit und Fehlertoleranz können so erhöht werden (vgl. Definition 33).

� Letztendlich trägt dieser kachelartige, makroskopisch63 gesehene homogene Ansatz zur
Steigerung der Ressourceneffizienz bei.

Abbildung 8-7: Maßstabsgetreuer Floorplan für zwei GigaNetIC-Cluster-Kacheln

für die 130-nm-Standardzellentechnologie

Abbildung 8-7 berücksichtigt hierbei die Syntheseergebnisse für die 130-nm-Standardzellen-
technologie, wohingegen Abbildung 8-8 die Aufteilung für die modernere 90-nm-Technologie skiz-
ziert. Eine Kachel besteht in beiden Fällen jeweils aus vier N-Cores und einer Switch-Box (mit fünf
Ports und einer internen FIFO-Tiefe von drei). Als L1-Speicher kommen vier lokale SRAM-Blöcke
mit je 32 KB zum Einsatz, wobei die ersten Realisierungen in 130-nm-Technologie noch Single-
Port-Speicher vorsahen, der um 6,1 % kleiner als die Dual-Port-Variante in dieser Technologie
ausfällt. Weiterhin werden als L2-Speicher in allen Realisierungen zwei lokale Dual-Port-SRAM-
Paketpuffer mit je 16 KB Speichervermögen verwendet. Weiterer Bestandteil der Kachel ist das

63 Die Grundstrukturen jeder Kachel sind zunächst gleich, Unterschiede können u. a. in der Art und Anzahl der integ-

rierten Hardwarebeschleuniger, der Variante des Prozessorkerns und der Ausprägung der Kommunikationsinfrastruktur

(Switch-Box und lokales Bussystem) bestehen. Selbstverständlich besteht auch die Möglichkeit, Kacheln ohne komplet-

ten GigaNetIC-Cluster in ein bestehendes Gitter zu integrieren. Diese könnten dann z. B. an einen freien Port einer ang-

renzenden Switch-Box angeschlossen werden und zusätzliche Funktionalitäten (Speicher, schnelle externe Schnittstel-

len etc.) zur Verfügung stellen.

3
1

,0
0

3
,1

 m
m

PE

HW
Acc

MEMDP

16KB

MEMSP

32KB

SB

8.2 ASIC-Realisierung in CMOS-Standardzellen

229

lokale Bussystem, wobei sowohl die AMBA- oder auch die Wishbone-Implementierung eingesetzt
werden können, ohne dass der Flächenbedarf gravierend beeinflusst wird, beanspruchen beide Bus-
systeme doch weniger als 1 % der Gesamtfläche des Clusters. Zusätzlich sind 3,2 % der Fläche für
optionale Hardwarebeschleuniger reserviert. Die freien Flächen können u. a. zur Verdrahtung und
lokalen Kommunikation der Module genutzt werden. Die globale Kommunikation über die Inter-
Switch-Box-Links, die eine ungefähre Distanz von 2,3 mm bei der 130-nm-Variante und 2,2 mm bei
der 90-nm-Variante überbrücken muss, findet auf höheren Metalllagen statt (vgl. Abschnitt 6.6).
Von der Kantenlänge unterscheiden sich die 130-nm- und die 90-nm-Realisierung nicht gravierend
voneinander, ist die Kachel der 130-nm-Variante mit 3,1 mm doch lediglich um 10 % länger als die
der 90-nm-Realisierung. Im rechten Cluster von Abbildung 8-8 sind die Ausmaße der Multiprozes-
sorcachevariante des GigaNetIC-Systems innerhalb der der MEMDP-Blöcke skizziert. Die vier, je-
weils 32 KB-großen Speicherblöcke würden in diesem Fall durch die etwas kleiner ausfallenden
8 KB-großen und durch quadratische Begrenzungslinien gekennzeichneten Cache-Blöcke ersetzt.
Der lokale Bus würde durch die unwesentlich größere AMBA-Switchmatrix ersetzt.

Abbildung 8-8: Maßstabsgetreuer Floorplan für zwei GigaNetIC-Cluster-Kacheln (links L1-Speicher / rechts

MP-Cache, angedeutet durch Begrenzungslinien) für die 90-nm-Standardzellentechnologie

Abbildung 8-9: Maßstabsgetreuer Floorplan für zwei GigaNetIC-Cluster-Kacheln

für die 90-nm-Standardzellentechnologie unter Verwendung neuerer Speicherzellen

Abbildung 8-9 zeigt die Realisierung eines GigaNetIC-Clusters in der 90-nm-Technologie unter
Verwendung optimierten, um den für Speicher eher konservativen Skalierungsfaktor von 2S− ange-
passten Speichers. Die Kantenlänge reduzierte sich dann auf nur noch 2,2 mm und die Inter-Switch-
Box-Links wären mit ca. 1,7 mm abzuschätzen. Bei Verwendung einer derartigen Kachel könnten

2
8

,0
9

2
,8

 m
m

PE

HW
Acc

MEMDP

16KB

MEMSP

32KB

SB

2
2

,6
5

2
,2

 m
m

PE

HW
Acc

MEMDP

16KB

MEMSP

32KB

SB

Kapitel 8. Prototypische Implementierung des Systems

230

in einem 5×4-Gitter 20 Cluster und somit 80 Verarbeitungseinheiten, ähnlich wie bei der Polaris-
Architektur von Intel [92] auf einen Chip integriert werden. Diese Architektur benötigte eine Fläche
von weniger als 1 cm² in kachelartiger Anordnung. Ein solches System verfügte über 3 MB On-
Chip-Speicher und hätte bei lediglich 285 MHz eine aggregierte Intrachip-Nettoübertragungsband-
breite von theoretisch mehr als 445 GB/s64. Das System wäre in der Lage mehr als 5,5 G Instruktio-
nen pro Sekunde zu verarbeiten, wobei der Chip nach Tabelle 8-3 theoretisch eine Leistungsauf-
nahme unter Volllast von nicht einmal 4,5 W hätte. Dies deutet die Leistungsfähigkeit von paralle-
len und dennoch einfach gehaltenen Strukturen an, die in Abschnitt 8.3 im Vergleich zu Standard-
prozessoren näher diskutiert wird.

YE und DE M ICHELI vertreten in [195] ebenfalls den kachelbasierten Floorplanning-Ansatz für
Chip-Multiprozessoren aufgrund der inhärenten Homogenität. Mit REGULAY stellen sie ein Werk-
zeug vor, mit dessen Hilfe höherdimensionale Netzwerke effizienter als bisher auf zweidimensiona-
le Strukturen abgebildet werden können, und zwar mit dem Resultat einer deutlich kürzeren Ge-
samtverdrahtungslänge der Netzwerkkanten. Eine solche Methode wäre auch für ein GigaNetIC-
basiertes, höherdimensionales Netzwerk (vgl. Abschnitt 2.3.1), wie z. B. Cube-Connected-Cycles,
oder dreidimensionale Gitter oder auch für Switch-Boxen mit höherem Ausgangsgrad anwendbar
und könnte ggf. so die Ressourceneffizienz zusätzlich erhöhen. Bei eher geringen Taktfrequenzen
von unter oder nur wenigen 100 MHz könnten sich so durchaus auch Chip-Multiprozessoren basie-
rend auf der GigaNetIC-Architektur mit höher-dimensionalen Netzwerktopologien realisieren las-
sen. Für weniger komplexe Netzwerkstrukturen hingegen ist die GigaNetIC-Architektur aufgrund
der Konzeption der quadratischen Kachelstruktur bereits für optimale, gleichmäßige Leitungslängen
ausgelegt. Basierend auf diesen geometrischen Anordnungen kann später ein Makroblock erzeugt
werden, der, wie eine Kachel an die nächste, auf einfache Weise horizontal wie vertikal aneinander-
zureihen ist. Dies ist besonders für die Skalierbarkeit sowie die Wiederverwendbarkeit von Vorteil.
Das finale Place&Route des gesamten Chips, also das Platzieren und Verdrahten sowie die Clock-
tree-Synthese und die sich anschließende Post-Layout-Simulation stehen noch aus und erfolgen im
Rahmen der bereits erwähnten Folgeprojekte des GigaNetIC-Projekts.

8.3 Bewertung der Ressourceneffizienz

Ressourceneffizienz ist immer in Bezug auf die Randbedingungen und das jeweilige Anwendungs-
szenario zu sehen (vgl. Definition 14). In diesem Abschnitt werden exemplarische Szenarien unter-
sucht sowie Varianten der ASIC-basierten GigaNetIC-Architektur, die im vorigen Abschnitt näher
vorgestellt worden sind, um diese mit aktuellen Universalprozessoren in Bezug auf Leistungsfähig-
keit und Ressourceneffizienz zu vergleichen [131]. Dies geschieht für Anwendungen aus dem
Desktopbereich ebenso wie für spezielle Algorithmen aus dem in Kapitel 7 vorgestellten Netzwerk-
bereich.

64 Dieser Wert resultiert aus 20 Clustern mit je einer Switch-Box, in der Konfiguration mit je fünf Ports und jeweils 64

Datenbit bidirektional, betrieben mit 285 MHz.

8.3 Bewertung der Ressourceneffizienz

231

8.3.1 Einheitliche, werkzeugbasierte Performanzbewertung

Um eine für die Desktop-CPUs möglichst genaue Messung der Leistungsfähigkeit zu erzielen, wur-
de eine speziell den Anforderungen der Messungen angepasste Knoppix Live CD65 erstellt, die für
alle Testkandidaten gleiche Voraussetzungen bzgl. des Betriebssystems und der Compiler-
Werkzeuge66 sowie deren Optionen garantiert. Die Messungen wurden mit Root-Rechten der höch-
sten Priorität durchgeführt, und zur Auswertung der Leistung die im Prozessor integrierten Perfor-
manzregister ausgelesen, so dass keine Interferenzen seitens systemeigener Prozesse zu erwarten
waren. Zusätzlich wurden die Messungen jeweils 1000fach iteriert, um etwaige Störungen heraus-
zufiltern. Das jeweils beste Ergebnis, im Sinne minimaler Taktzahl, wurde verwendet, was so zu-
sätzlich den Cache der jeweiligen CPU als Systemgröße in die Bewertung einfließen ließ. Die ge-
samte Kompilierung, das Ausführen der erzeugten Programme, deren Laufzeitauswertung und die
Protokollierung geschehen vollkommen automatisch, da skriptbasiert, so dass mögliche Fehlbedie-
nungen bzw. Messwertverfälschungen nahezu ausgeschlossen sind. Die hierfür erstellte Werkzeug-
kette basiert ebenfalls auf dem in Abschnitt 5.4 vorgestelltem MultiSim. Als Endergebnis werden
die Werte in eine Tabellenkalkulation zur weiteren Auswertung exportiert67.

Tabelle 8-5 fasst die Hauptcharakteristika der untersuchten Prozessoren zusammen. Zu beachten ist,
dass bei dieser Analyse die GigaNetIC-Architekturvarianten über keinen Cache verfügen, sondern
in der Wishbone-Bus-basierten Realisierung (vgl. Abbildung 4-20) untersucht wurden. Allerdings
kann der lokale Speicher der N-Cores als schneller L1-Cache verstanden werden und wird deshalb
in Tabelle 8-5 als solcher gezählt. Alle im Folgenden ermittelten Werte beziehen sich auf eine ma-
ximale Taktfrequenz des GigaNetIC-Systems von 250 MHz. Die Werte eines GigaNetIC-Clusters
beziehen sich im Folgenden auf eine Realisierung ohne Ethernetports, da diese Schnittstellen als
Off-Chip-Schnittstellen angesehen werden. Dies führt zu einer Fläche von ca. 5,3 mm² für einen auf
vier N-Cores basierenden Cluster, vgl. Abschnitt 8.2. 20 dieser Cluster, in einem Gitter angeordnet
(ähnlich Abbildung 4-2), benötigen somit zunächst 106 mm², was der gemittelten Chipfläche der
Vergleichsprozessoren entspricht und so als flächenäquivalente Alternative zu den betrachteten
Desktop-CPUs angesetzt wird. Setzt man allerdings den zuvor dargestellten Floorplan voraus, so
ließen sich zunächst nur dreizehn anstatt der genannten 20 GigaNetIC-Cluster auf einer Fläche von
101,9 mm² integrieren (vgl. Abbildung 8-8). Füllte man allerdings auf Basis neuer skalierter Spei-
cherblöcke mit Hilfe der GigaNetIC-Clusterkacheln bei einer Kantenlänge von nur noch 2,2 mm
pro Cluster (vgl. Abbildung 8-9) diese Fläche von 106 mm², so käme man auf über 21 Cluster. Dies
lässt die hier getroffene Annahme von 20 gitterartig angeordneten GigaNetIC-Clustern für eine de-
rartige Fläche durchaus realistisch erscheinen.

65 Es wurde als Vorlage die Knoppix 5.0 Boot-CD mit dem 2.6.17 Kernel verwendet.

66 Als Compiler-Werkzeugkette wurde der GCC 4.0.4 eingesetzt. Die möglichen Kompilierungs-Optionen wurden au-

tomatisiert eingesetzt und die jeweils besten Resultate als Messwert verwendet. Hierzu wurden sowohl die Optimie-

rungsstufen als auch die speziellen Optimierungen für die unterschiedlichen Architekturen berücksichtigt.

67 Der gesamte Ablauf, die ausführbaren Kompilate, die Object-Dateien und Testergebnisse sowie deren Zusammenfas-

sung und die finale Aufbereitung aller Messungen als CSV-Datei wurden auf einen jeweils zusätzlich verwendeten

USB-Stick als beschreibbares Medium während des automatisierten Ablaufs abgespeichert.

Kapitel 8. Prototypische Implementierung des Systems

232

Unter der Annahme, dass die Prozessoren bei der Bearbeitung der Benchmarks nahezu voll ausge-
lastet sind, wurde als Verlustleistung der Thermal-Design-Power(TDP)-Wert angenommen. Dies ist
sicherlich eine sehr konservative Abschätzung der Systeme in Bezug auf die Verlustleistungsauf-
nahme, zumal große Teile der jeweiligen Systeme, wie z. B. Gleitkommaeinheiten oder die Switch-
Box-basierte Kommunikationsinfrastruktur nicht für alle Tests relevant sind. 90 % der Chipfläche
des Systems mit 20 N-Core-Clustern wird von Speicherzellen belegt, die die überproportional hohe
Anzahl an Transistoräquivalenten, im Vergleich zu den anderen CPUs, erklärt. Die Verlustleis-
tungsangabe für das 20 N-Core-Cluster umfassende GigaNetIC-System von 14,88 W bei 250 MHz
ist unter Berücksichtigung der in Tabelle 8-3 ermittelten Werte ebenfalls als eher konservativ ein-
zustufen, käme man doch unter Verwendung der Syntheseergebnisse auf eine Verlustleistung von
lediglich 3,96 W bei 250 MHz.

Tabelle 8-5: Wesentliche Merkmale der analysierten Prozessoren

8.3.2 Universalbenchmarks zur Bewertung der GigaNetIC-Architektur

Die Ergebnisse der Analysen der Universalbenchmarks werden in Abbildung 8-10 dargestellt. Ziel
des Vergleichs der einzelnen Systeme war nicht, den verwendeten Benchmark-Code jeweils auf
Assemblerebene zu optimieren, sondern vielmehr die Leistungsfähigkeit der gesamten Architektur
zu bewerten, wozu auch die Softwareumgebung nebst Übersetzer zu zählen ist (vgl. Definition 3).
Deshalb wurde auf manuelle Optimierung bewusst verzichtet, zumal dies im realen Einsatz nur be-
dingt und mit relativ hohem Zeitaufwand durchgeführt werden könnte. Als Universalanwendungen
kamen der zwar schon etwas in die Jahre gekommene aber trotzdem noch heute oft für eingebettete
Systeme verwendete Dhrystone-Benchmark zur Beurteilung der Integer-Performanz und zwei Sor-
tieralgorithmen68 der Stanford-Benchmark-Sammlung zum Einsatz.

Als Essenz der gewonnenen Ergebnisse lässt sich für diese Anwendungen, die nicht aus dem Netz-
werkbereich stammen, sagen, dass die Leistungsfähigkeit eng an die Taktfrequenz der Systeme ge-
koppelt ist. Die durchschnittliche Taktzahl, die von den Universalprozessoren für einen Dhrystone-
durchgang benötigt wird, liegt bei 703 Takten, wohingegen die deutlich einfacher gehaltene N-
Core-Architektur 1119 Takte benötigt, also 59 % mehr Taktzyklen. In Anbetracht der zusätzlich
sieben- bis zehnfach höheren Taktfrequenzen der Universalprozessoren sind deren Performanzvors-
prünge von 10,3 bis 16,3 sofort nachvollziehbar. Betrachtet man hingegen die Sortieralgorithmen,

68 Hierbei wurden zum einen der Quicksort- und zum anderen der Bubblesort-Algorthmus verwendet, wobei 200 Inte-

gerwerte sortiert werden mussten. Die Anzahl der zu sortierenden Elemente wurde bewusst relativ gering gehalten, da

die GigaNetIC-Analysen mit Hilfe der sehr langsamen HDL-Simulation durchgeführt wurden.

Prozessor
Kerne Name FSB

[MHz]
L1 Cache

[kB]
L2 Cache

[kB]
Taktfrequenz

[GHz]
Technologie

[nm]
Spannung

[V]
TDP
[W]

Die-Größe
[mm²]

Transistoren
[Mil.]

Pentium 4 3000 1 Northwood 200 8 512 3,00 130 1,550 110 146 125
Intel Pentium M 1600 1 Banias 100 16 1024 1,60 130 1,485 24 100 77
Intel Pentium M 1700 1 Banias 100 16 1024 1,70 130 1,485 25 100 77
Intel Pentium M 2100 1 Dothan 100 64 2048 2,10 90 1,340 21 84 140
Intel Duo Core T2400 2 Yonah 166 64 2048 1,83 65 1,325 31 91 151
Intel Duo Core T2500 2 Yonah 166 64 2048 2,00 65 1,325 31 91 151
AMD Athlon 64 3000+ 1 Venice 200 128 512 1,80 90 1,400 89 83 69
AMD Athlon 64 3200+ 1 NewCastle 200 128 512 2,19 130 1,500 89 144 69
AMD Athlon 64 3700+ 1 San Diego 200 128 1024 2,20 90 1,400 89 115 105
N-Core 1 GigaNetIC 250 32 0 0,25 90 1,200 0,05 0,96 2
N-Core-Cluster (4PEs) 4 GigaNetIC 250 128 0 0,25 90 1,200 0,74 5,30 10
20 N-Core-Cluster 80 GigaNetIC 250 2560 0 0,25 90 1,200 14,88 106,05 200

8.3 Bewertung der Ressourceneffizienz

233

so kann die N-Core-Architektur den relativen Vergleich für sich entscheiden. Der N-Core benötigt
ca. 509 Tausend Takte bei der Verwendung des Bubblesort-Algorithmus für die Sortieraufgabe und
29 Tausend Takte beim Quicksort-Verfahren, wohingegen der Durchschnitt der Universalprozesso-
ren 662 Tausend bzw. 41 tausend Takte aufwenden muss. In diesem Fall benötigt die einfachere
RISC-Architektur zwischen 30 % und 40 %weniger Taktzyklen. Hieraus resultiert der geringere
Performanzvorteil der Universalprozessoren von 4,5 bis 11,6.

Abbildung 8-10: Leistungsvergleich zwischen Universal-CPUs und der GigaNetIC-Architektur

für einfache Anwendungsszenarien

8.3.3 Netzwerkbenchmark zur Bewertung der GigaNetIC-Architektur

Im Folgenden wird der Bereich der Netzwerkverarbeitung, der bereits in Kapitel 7 ausführlich be-
trachtet worden ist, nochmals in Bezug auf die Ressourceneffizienz untersucht. Hierbei kommt die
inhärente Parallelität der Netzwerkdaten der GigaNetIC-Architektur mit den zuschaltbaren Hardwa-
rebeschleunigern zu Gute.

In Abbildung 8-11 wird die Leistungsfähigkeit des in dieser Arbeit entwickelten Systems in Bezug
auf dieses Anwendungsszenario dokumentiert. Der zugrunde liegende Benchmark bestand aus der
Verarbeitung von einer Million IP-Pakete nach iMix-Verteilung (vgl. Abschnitt 7.2.3). Das Diag-
ramm zeigt als resultierende Hochrechnung die Anzahl der verarbeitbaren Pakete pro Sekunde. Die
Universalprozessoren sind um den Faktor 1,7 bis 8,1 mal schneller als ein einzelner N-Core. Ein
Cluster mit vier N-Cores ermöglicht einen Geschwindigkeitsvorteil gegenüber dem einzelnen N-

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

P
er

fo
rm

an
z

no
rm

ie
rt

 a
uf

 e
in

en
 N

-C
or

e

Dhr
y sto

ne

Quick
 s

or
t

Bubble
 so

rt

N-Core 250MHz
Cluster mit 4 N-Cores 250MHz

Intel Pentium 4 CPU 3GHz
Intel Pentium M Prozessor 1.6GHz

Intel Pentium M Prozessor 1.7GHz
Intel Pentium M Prozessor 2.1GHz

Intel CPU T2400 1.83GHz
Intel CPU T2500 2GHz

AMD Athlon 64 Prozessor 3000+
AMD Athlon 64 Prozessor 3200+

AMD Athlon 64 Prozessor 3700+

Kapitel 8. Prototypische Implementierung des Systems

234

Core von 3,83. Eine Beschleunigung von vier ist aufgrund von Arbitrierungslatenzen und möglicher
Busblockaden nicht realistisch. Unter Hinzunahme des in Abschnitt 6.3.1 vorgestellten Hardware-
beschleunigers übertrifft bereits ein GigaNetIC-Cluster fast alle Universalprozessoren. Es wird so-
wohl die Kopplung des Beschleunigers am lokalen Bus (WB HW Acc) als auch am Port einer be-
nachbarten Switch-Box69 (CC HW Acc) berücksichtigt.

Abbildung 8-11: Leistungsvergleich zwischen Universal-CPUs und

der GigaNetIC-Architektur für eine Paketverarbeitun gsanwendung

Abbildung 8-12 führt zwei neue Dimensionen des Entwurfsraums in die Betrachtung ein: den
Energiebedarf (im Hinblick auf den entsprechenden Benchmark) und die Chipgröße der Systeme,
die durch den Flächeninhalt der Blasen symbolisiert wird. Das flächenmäßig kleinste System ist der
einzelne N-Core (J), das zudem die geringste Energieaufnahme für die Abarbeitung des Bench-
marks aufweist, allerdings ist die benötigte Zeit auch deutlich höher als die der Universalprozesso-
ren. Die Universalprozessoren (A-I) bilden eine Menge in der rechten Hälfte des Diagramms bzw.
Entwurfsraums, was einer Bearbeitungszeit von ca. 1 s (0,7 bis 1,48 s) bei einer Energieaufnahme
von 19 bis 132 Ws entspricht. Nahezu die gleiche Zeit (1,6 s) benötigt der normale N-Core-Cluster
(K), wobei sein Flächenbedarf nur ein 20stel der durchschnittlichen Universalprozessorfläche aus-

69 Den Messungen liegt eine Beschleunigerkopplung an eine Switch-Box zugrunde, die innerhalb einer Distanz von

einem Hop liegt, so dass der Beschleuniger nicht unmittelbar an die Switch-Box des Clusters angeschlossen werden

muss. Die Taktzahlen für Kommunikation und Berechnungen wurden in Abschnitt 7.7 näher diskutiert.

0

1.000.000

2.000.000

3.000.000

4.000.000

5.000.000

6.000.000

P
ak

et
e

/ s

40 552 1500

N-Core 250MHz
Cluster mit 4 N-Cores 250MHz

Cluster mit 4 N-Cores 250MHz + WB-HW Acc
Cluster mit 4 N-Cores 250MHz + CC-HW Acc

Intel Pentium 4 CPU 3GHz
Intel Pentium M Prozessor 1.6GHz

Intel Pentium M Prozessor 1.7GHz
Intel Pentium M Prozessor 2.1GHz

Intel CPU T2400 1.83GHz
Intel CPU T2500 2GHz

AMD Athlon 64 Prozessor 3000+
AMD Athlon 64 Prozessor 3200+

AMD Athlon 64 Prozessor 3700+

Paketgröße [Byte]

8.3 Bewertung der Ressourceneffizienz

235

macht. Sein Energiebedarf liegt bei 1,3 Ws, wohingegen der durch den am lokalen Bus angeschlos-
senen Hardwarebeschleuniger erweiterte Cluster weniger als 0,5 s zur Bearbeitung der gestellten
Aufgabe benötigt und zudem noch einen deutlich geringeren Energiebedarf aufweist (0,4 Ws).

Abbildung 8-12: Ressourceneffizienz und Entwurfsraumvisualisierung von Universalprozessoren verglichen mit

GigaNetIC-Systemen in Bezug auf das Paketverarbeitungsszenario (iMix)

Um die Mehrkernprozessoren der Intel-Core-Architektur entsprechend ausnutzen zu können, wurde
zusätzlich eine Thread-basierte Variante des Paketverarbeitungsbenchmarks realisiert (E´´, F´´).
Hier konnte nahezu eine Verdopplung der Verarbeitungsgeschwindigkeit gemessen werden (0,54 s
und 0,48 s) bei einem Energiebedarf von 16,6 Ws bzw. 14,8 Ws. Bei einer Erhöhung der Threadan-
zahl über zwei konnte darüber hinaus eine Reduktion der Leistungsfähigkeit dieser beiden Prozes-
soren bei dem betrachteten Anwendungsszenario festgestellt werden. Dies liegt in der recheninten-
siven Aufgabe begründet, die Speicherlatenzen nahezu ausblendet und daher mehr als zwei Threads
als ineffektiv herausstellt. Das gleiche Verhalten konnte bei der Hyperthreading-Architektur von
Intel (A) beobachtet werden, bei der viele Threads um die beschränkte Anzahl der exzessiv genutz-
ten Funktionseinheiten konkurrieren müssen und so Geschwindigkeit eingebüßt wird.

Das GigaNetIC-Multiprozessorsystem, bestehend aus 20 N-Core-Clustern demonstriert, beeindru-
ckend die Ressourceneffizienz dieser Architektur insbesondere am Beispiel dieses Paketverarbei-
tungsszenarios, bei der die massiv parallele Architektur besonders von der inhärenten Parallelität
der Aufgabe profitiert. Mit einer durchschnittlichen Chipfläche einer Desktop-CPU ist es möglich,
die Aufgabe innerhalb von 0,026 s, also 28mal schneller als die schnellste Desktop-CPU, zu erledi-
gen und dies bei einem Energiebedarf von nur 0,4 W.

Sicherlich handelt es sich bei dem vorgestellten Benchmark um ein sehr spezielles Szenario, von
dem nicht auf allgemeine Anwendungen geschlossen werden darf, die z. B. Fließpunktberechnun-
gen beinhalten oder größere Speicheranforderungen stellen. Sehr wohl aber zeigen die gewonnenen
Zahlen das Potential der GigaNetIC-Architektur in Bezug auf den immer wichtiger werdenden As-

0,01

0,1

1

10

0,01 0,1 1 10 100 1000

Energiebedarf [Ws]

V
er

ar
be

itu
ng

sz
ei

t f
ür

 1
 M

ill
. P

ak
et

e
(iM

ix
)

[s
]

Intel Pentium 4 CPU 3GHz

Intel Pentium M Prozessor 1.6GHz

Intel Pentium M Prozessor 1.7GHz

Intel Pentium M Prozessor 2.1GHz

Intel CPU T2400 1.83GHz

Intel CPU T2400 1.83GHz, 2 Threads

Intel CPU T2500 2GHz

Intel CPU T2500 2GHz, 2 Threads

AMD Athlon 64 Prozessor 3000+

AMD Athlon 64 Prozessor 3200+

AMD Athlon 64 Prozessor 3700+

N-Core 250MHz

Cluster mit 4 N-Cores 250MHz

Cluster mit 4 N-Cores 250MHz + WB-HW Acc

20 Cluster mit 4 N-Cores 250MHz + WB-HW Acc

Blasenfläche symbolisiert die
Chipfläche

A

M

L

K

J

B
C

D

E

F

I

H

G

F"

E"

A

B

D

C

E

E''

F''

F

G

H

 I

J

K

L

M

A

B

D

C

E

E''

F''

F

G

H

 I

J

K

L

M

Kapitel 8. Prototypische Implementierung des Systems

236

pekt der Ressourceneffizienz auf. Die einfache Erweiterbarkeit aufgrund definierter Schnittstellen
und Protokolle sowie die Optimierungsmöglichkeiten der GigaNetIC-Systemarchitektur (vgl. Kapi-
tel 6) erlauben die Konzeption eines angepassten parallelen Systems. Für ausgewählte Anwen-
dungsgebiete zeigt sich dieser Ansatz im Hinblick auf eine möglichst hohe Ressourceneffizienz
vielversprechender als Single-Core-Architekturen, bei denen im Wesentlichen durch Erhöhung der
Taktfrequenz steigenden Anforderungen Rechnung getragen wird.

Abschließend lässt sich feststellen, dass sich sowohl mit Hilfe des GigaNoC-On-Chip-Netzwerks
und der damit verbundenen einfachen Kopplung anwendungsspezifischer Hardwarebeschleuniger,
als auch durch massiv parallele Verwendung relativ einfach gehaltener RISC-Prozessoren wie dem
N-Core sowie durch die Kombination dieser Maßnahmen beachtliche Resultate für gegebene An-
wendungen erreichen lassen. Sowohl im Hinblick auf die Leistungsfähigkeit als auch auf den Ener-
giebedarf kann durch Parallelität und durch die vielen Möglichkeiten der Systemerweiterung eine
hohe Ressourceneffizienz erreicht werden. Die gute Skalierbarkeit der Architektur ist ein weiterer
Pluspunkt der GigaNetIC-Architektur, ermöglicht sie doch einen effizienten Einsatz in unterschied-
lichsten Bereichen des Entwurfsraums.

8.4 Zukünftige Architekturen

Bereits derzeitige Prozessorarchitekturen heutiger Arbeitsplatzrechner sowie die jüngsten Veröf-
fentlichungen zu Aktivitäten wie der Polaris-Architektur und dem Tera-Scale-Projekt von Intel (vgl.
Abschnitt 2.8.1) zeigen, dass die nahe Zukunft den Parallelprozessoren gehört. Im Laufe der näch-
sten zehn Jahre wird die Zahl der integrierten Prozessorkerne stetig zunehmen und Architekturen
wie die GigaNetIC-Architektur werden zum Standard gehören, vgl. [2]. Die Art und Anzahl der
Verarbeitungseinheiten pro Chip wird dann hauptsächlich vom jeweiligen Einsatzgebiet bestimmt
werden. Deshalb werden sich skalierbare Architekturen mit einheitlichem Programmiermodell nicht
nur aufgrund der fertigungstechnischen Vorteile (vgl. Kapitel 4 und Abschnitt 8.2) und der damit
verbundenen Kostenvorteile besonders stark hervortun. Der Aspekt der Ressourceneffizienz wird
zunehmend an Bedeutung gewinnen. Die NRE-Kosten für komplexe ASICs im Strukturgrößenbe-
reich von wenigen Nanometern steigen kontinuierlich. Komplexe Systeme erfordern nicht zuletzt
deshalb eine möglichst vollständige Verifikation, formal und prototypisch, um die Erfolgschancen
einer fehlerfreien Realisierung zu maximieren. Die steigende Mobilität der Anwendungen erhöht
stetig die Anforderungen an geringstem Energiebedarf. Gründe wie Laufzeitmaximierung mobiler
Geräte auf der einen Seite sowie die Wärmeentwicklung und die damit verbundenen Probleme
komplexer Systeme auf der anderen Seite erfordern ebenfalls die Forcierung der Entwicklung be-
sonders ressourceneffizienter Architekturen speziell im Hinblick auf die Leistungsaufnahme.

Wie bereits vorgestellt, wird die Entwurfsproduktivitätslücke nur von annähernd regelmäßigen
Strukturen und großen Speicherblöcken zu schließen sein. Immer kleiner werdende Strukturgrößen
stellen immer mehr Funktionalität pro Fläche zur Verfügung, dies allerdings, begründet durch die
Laufzeiten und die schwierige Synchronisierung, auf einer vergleichsweise stark eingeschränkten
Fläche. Kleinere Kacheln können so lokal immer höhere Taktfrequenzen erreichen. Komplexere,
flächenintensivere Hardwareblöcke hingegen werden aufgrund der relativ gesehen größer werden-
den Signallaufzeiten im Vergleich zu den Schaltzeiten der Transistoren deutlich an Leistungsfähig-
keit einbüßen. Aufgrund der größer werdenden Diskrepanz zwischen stetig steigender Schaltge-
schwindigkeit der Logiktransistoren auf der einen Seite und der im Vergleich dazu geringen Ge-

8.5 Zusammenfassung

237

schwindigkeitszuwächse für globale Verbindungsleitungen auf der anderen Seite werden in Zukunft
neue Ansätze zur Realisierung von hochperformanten On-Chip-Verbindungen notwendig. In die-
sem Zusammenhang könnten sich optische Signalführungen für Intrachipleitungen als sehr leistung-
fähige Alternative zu den bisher verwendeten Metallleiterbahnen erweisen.

Vielleicht werden neuartige Schaltungstechniken in der Lage sein, diese Probleme, getreu dem
MOOREschen Gesetz, aufzulösen oder weiter in Richtung Zukunft zu verschieben. Sicherlich eröff-
nen diese „Nano-Technologien“ auch neue Perspektiven und Einsatzgebiete für leistungsfähige
FPGA-Strukturen. Rekonfigurierbarkeit könnte von der hohen Packungsdichte speziell bei den
Speicherzellen profitieren. Die Parallelität könnte so zusätzlich durch hohe Flexibilität ergänzt wer-
den und die Entwicklung von komplexen, dynamisch rekonfigurierbaren Bausteinen als Alternative
zu Universalprozessoren fördern.

8.5 Zusammenfassung

In diesem Kapitel wurde die prototypische Realisierung der in Kapitel 4 beschriebenen GigaNetIC-
Architektur vorgestellt. Nach Durchlaufen aller in Kapitel 5 vorgestellten Entwurfsschritte zur Veri-
fikation und Optimierung wurde die GigaNetIC-Architektur als FPGA-Prototyp und in zwei aktuel-
len Standardzellentechnologien implementiert.

Basierend auf den Ergebnissen der FPGA-Realisierung kann im Folgenden sehr schnell ein vorla-
genbasiertes RAPTOR2000-Tochtermodul für den noch zu realisierenden GigaNetIC-ASIC erstellt
werden. Das hier erworbene Wissen um die Systemintegration kann in der Folge genutzt werden,
um den ASIC in einer bereits erstellten und erprobten Umgebung schnell und komfortabel testen zu
können. Dieses Vorgehen kann einem potentiellen Industriepartner die Einführung eines neuen Pro-
duktes erleichtern und hilft so die Time-To-Market-Spanne deutlich zu verkürzen.

Der auf dem FPGA-Prototypen basierende GigaNetIC-Demonstrator konnte erfolgreich einem brei-
tem Publikum auf der Cebit 2005 und der Hannover Messe 2005 auf einem fachgebietseigenen
Messestand im Rahmen des Bereichs „Forschungsland NRW“ präsentiert werden. Darüber hinaus
hilft er, das System in einer realen Umgebung detailliert und zugleich um Größenordnungen schnel-
ler, als es andere Formen der Simulation ermöglichen, zu verifizieren.

Im Anschluss an diese positiv verlaufene Verifikation wurde die Architektur auf zwei aktuelle
CMOS-basierte Standardzellentechnologien abgebildet und die Ergebnisse detailliert analysiert.
Basierend auf den gewonnenen Syntheseergebnissen konnten fundierte Aussagen über die zu er-
wartenden Flächen- und Leistungsanforderungen und die realisierbaren Taktfrequenzen der Einzel-
komponenten und des Gesamtsystems getroffen werden. Ein exemplarisches System mit acht Clus-
tern zu je vier N-Core-Prozessoren und insgesamt 1,25 MB SRAM benötigt weniger als 44 mm² in
der verwendeten 90-nm-Technologie. Die maximale Betriebsfrequenz liegt bei 285 MHz. Im Rah-
men dieser Implementierung wurde ein Konzept der ressourceneffizienten Anordnung der einzelnen
Komponenten eines GigaNetIC-Clusters in Form quadratischer Kacheln vorgestellt. Auf Basis die-
ser Kacheln ist es möglich, GigaNetIC-Systeme effizient zu skalieren und identische Signallaufzei-
ten zu gewähren, was für eine Maximierung der Performanz essentiell ist.

Es konnte das große Potential der skalierbaren GigaNetIC-Architektur in Bezug auf Leistungsfä-
higkeit und insbesondere bezogen auf ihre Ressourceneffizienz aufgezeigt werden. Beim Einsatz
eines massiv parallelen GigaNetIC-Systems, bestehend aus 20 Clustern mit je vier N-Cores und

Kapitel 8. Prototypische Implementierung des Systems

238

zusätzlichen Hardwarebeschleunigern und mit der Fläche einer durchschnittlichen Desktop-CPU,
konnte ein Leistungsvorsprung um zwei Größenordungen mit einhergehendem, zusätzlich um zwei
Größenordnungen geringerem Energiebedarf im Vergleich mit den derzeitigen Universalprozesso-
ren festgestellt werden. Sowohl im Hinblick auf Universalanwendungen und im Besonderen bei
Netzwerkanwendungen konnte das hier entwickelte Chip-Multiprozessorsystem seine Leistungsfä-
higkeit unter Beweis stellen. Anhand der hier angestellten Untersuchungen lassen sich gute Zu-
kunftschancen für Architekturen wie die der GigaNetIC-Architektur prognostizieren. Derartige
Architekturen sind zum einen in der Lage, die Vorteile, die durch die stetigen Struktur-
verkleinerungen der Halbleiterprozesse entstehen, zu nutzen. Zum anderen zeigen solche Architek-
turen Möglichkeiten auf, die sich ergebenden Nachteile zu kompensieren.

239

9 Zusammenfassung und Ausblick
Aktuelle Forschungsarbeiten von Intel zeigen, dass die Rechenleistung, die vor zehn Jahren noch
dem schnellsten Supercomputer, der ein Einfamilienhaus hätte füllen können, vorbehalten war,
mittlerweile von einem einzigen Halbleiterbaustein bereitgestellt werden kann. Dies geht einher mit
einer nahezu um vier Größenordnungen kleineren Verlustleistungsaufnahme des Chip-Multi-
prozessors (CMP). Dieser Technologiesprung wird zum einen durch die stetig verbesserten Herstel-
lungsverfahren der Halbleiterindustrie und zum anderen durch die Ausnutzung von massiv paralle-
ler Verarbeitung in integrierten Schaltkreisen ermöglicht.

Zur Einordnung der hardwarebezogenen Themenbereiche dieser Arbeit wurden grundlegende Ab-
schätzungen zur Leistungssteigerung durch paralleles Rechnen und die damit verbundenen Anfor-
derungen an die Systeme aufgezeigt. Es wurden elementare Grundlagen zu den Kernkomponenten
eingebetteter Parallelrechner vorgestellt: On-Chip-Netzwerke, eingebettete Verarbeitungsein-
heiten, Speicherhierarchien sowie deren Anwendungen. Unterschiede und Gemeinsamkeiten exis-
tierender Ansätze im Hinblick auf die GigaNetIC-Architektur wurden herausgearbeitet und charak-
terisieren so die Besonderheiten der von mir entworfenen Systemarchitektur.

Analytische Modellierung. Im Anschluss an die Definition von Ressourceneffizienz und wesentli-
cher Begriffe zur kostenfunktionsbasierten Analyse von Chip-Multiprozessoren wurden Formalis-
men zur Bewertung solcher Systemimplementierungen eingebetteter Parallelrechner und ihrer
Komponenten eingeführt.

Effiziente CMP-Architektur. Im Rahmen dieser Arbeit wurde eine neuartige skalierbare Chip-
Multiprozessor-Architektur entworfen, die aufgrund einer sehr flexibel gestalteten, parametrisierba-
ren Hardwarestruktur an verschiedenste Anforderungen angepasst werden kann, um so für unter-
schiedlichste Anwendungsszenarien eine möglichst ressourceneffiziente Lösung zu bieten. Rück-
grat dieses Chip-Multiprozessorsystems bildet das eigens für diese Architektur entworfene neuarti-
ge hierarchische GigaNoC-On-Chip-Netzwerk. In Verbindung mit einem umfassenden Konzept zur
Kopplung unterschiedlichster Verarbeitungseinheiten an die verschiedenen SoC(System-on-Chip)-
Ebenen erlaubt es einen hohen Grad an Flexibilität und Leistungsfähigkeit. Durch die spezielle
Konstruktion der On-Chip-Routingknoten der Switch-Boxen ist nicht nur eine gute Skalierbarkeit
auf Chip-Ebene während des Entwurfs gegeben, sondern auch die Möglichkeit einer späteren Kom-
bination von GigaNetIC-basierten CMPs auf Leiterplattenebene. Je nach Anwendungsgebiet und
dessen Anforderungen kann zwischen normalem SRAM oder einem eigens entwickelten Multipro-
zessorcache als On-Chip-Speicher der Verarbeitungseinheiten gewählt werden.

Das GigaNetIC-CMP-System dient und diente als Basis für weitere Forschungsvorhaben der Uni-
versität Paderborn, wie z. B. für die DFG-Sonderforschungsbereiche SFB 376 „Massive Parallelität:
Algorithmen, Entwurfsmethoden, Anwendungen“ und SFB 614 "Selbstoptimierende Systeme des
Maschinenbaus". Es wird in den erfolgreich beantragten Folgeprojekten PlaNetS, MxMobile, Ea-
syC oder auch DFG weiterhin genutzt und erweitert.

Im Rahmen zukünftiger Arbeiten wäre eine Flächenreduktion der Switch-Box durch Einsatz von
SRAM anstelle von Registerzellen für die Warteschlangen sinnvoll. Die Implementierung einer
vollwertigen Broad- und Multicast-Funktionalität würde die Möglichkeiten des On-Chip-Netzwerks
für einige Anwendungsszenarios zusätzlich erhöhen. Für sehr große Systeme mit einer Vielzahl von

Kapitel 9. Zusammenfassung und Ausblick

240

Clustern sollten zusätzliche Elemente zur Realisierung eines GALS(global asynchronen, lokal syn-
chronen)-Konzepts hinzugefügt werden. Für den finalen Baustein ist der Bootloader, der für die
Initialisierungsphase der Prozessoren verantwortlich zeichnet, noch von der SystemC-Beschreibung
in eine synthetisierbare Form zu transferieren. Eine zusätzliche Erhöhung der Performanz speziell
im Bereich der Netzwerkanwendungen könnte die Integration eines Hardwareblocks zur Lastvertei-
lung (Loadbalancer) bedeuten, der dynamisch sowohl auf sich ändernde Lastverteilungen als auch
auf die Auslastung der einzelnen Cluster und Prozessoren reagieren könnte und die Aufgaben adap-
tiv verteilt. Besonderes Augenmerk sollte in Zukunft auf Aspekte der Fehlertoleranz gelegt werden,
die für derart komplexe Systeme wie dem GigaNetIC-Chip-Multiprozessor mit teilweise mehreren
Hundertmillionen Transistoren immer wichtiger werden, erhöhen sie doch die Ausbeute (Yield) bei
der Produktion und die Ausfallsicherheit während des Betriebs, was speziell in hochverfügbaren
Netzwerkkomponenten von besonderer Bedeutung ist.

Entwicklungsumgebung – in sich geschlossene Werkzeugkette. Parallel zur Realisierung der
GigaNetIC-Hardwarebeschreibung wurde in Kooperation mit den Projektpartnern der Universität
Paderborn eine geschlossene und ineinander verzahnte Werkzeugkette entworfen: angefangen beim
Prozessorentwurf über die automatische Generierung des Compilers und eines C-basierten zykle-
nakkuraten Instruktionssatzsimulators bis hin zu rückannotierten RTL(Register-Transfer-Level)-
Beschreibungen. Letztere liefern detaillierte Informationen über Leistungsaufnahme, Flächenbedarf
und Leistungsfähigkeit der integrierten Schaltung und geben Impulse für Instruktionssatzerwei-
terungen und Hardwarebeschleuniger sowie für Systemoptimierungen allgemeiner Natur und helfen
so die Ressourceneffizienz des Systems zu steigern. Die GigaNetIC-Architektur stellt Simulations-
sowie Emulationsumgebungen unterschiedlicher Abstraktionsstufe und unterschiedlicher Simulati-
onsgeschwindigkeiten zur Verfügung. Der C-basierte Cluster-Simulator dient vornehmlich der
schnellen Simulation und Optimierung der N-Core-Prozessorkerne und liegt bei einer Simulations-
geschwindigkeit von ca. 10 MHz. Die SystemC-Simulationsumgebung SiMPLE erlaubt hingegen
die zyklenakkurate Simulation des gesamten Chip-Multiprozessors mit ca. 100 kHz. Sie dient als
Plattform für frühe Softwaretests in der Entwurfsphase, aber auch als Evaluationsplattform für neue
Hardwarekonzepte. Zukünftig wäre eine Erweiterung des Simulationsmodells durch Annotierung
der jeweiligen Verlustleistung der einzelnen Komponenten sinnvoll. So könnten bereits im frühen
Stadium einer Entwicklung ausreichend genaue Abschätzungen durch Schaltaktivitäten in deutlich
kürzerer Zeit ermittelt werden, als es derzeit die HDL-Simulation erlaubt. Deutlich detaillierter,
allerdings auch weitaus langsamer mit ca. 100 Hz Simulationsgeschwindigkeit ist die HDL-basierte
Simulation mit der erweiterten GigaNetIC-PERFORM-Umgebung, mit der ebenfalls die Simulation
des gesamten Chip-Multiprozessorsystems möglich ist. Das für die GigaNetIC-Architektur genutzte
FPGA-basierte Rapid-Prototyping-System RAPTOR2000 dient zum einen als Vorstufe zur ASIC-
Realisierung und damit als finaler Test der Hardwarebeschreibung, mit 20 MHz Simulationsge-
schwindigkeit zum anderen aber auch als besonders schnelle Plattform zur Analyse sehr zeitintensi-
ver Softwaretests auf CMP-Ebene. Zusätzlich erlaubt diese Plattforn es, GigaNetIC-Systeme mit
externen Schnittstellen, wie es z. B. für die Netzwerkprozessor-Realisierung notwendig ist, zu tes-
ten.

Die einheitliche GigaNetIC-Übersetzer-Werkzeugkette ermöglicht einen reibungslosen Übergang
zwischen den einzelnen Plattformen und garantiert ein funktional gleiches Verhalten des GigaNet-
IC-Systems in allen Simulatoren. Etwaige irrelevante Unterschiede der einzelnen Plattformen blei-
ben für den Systementwickler transparent.

9 Zusammenfassung und Ausblick

241

Ohne eine derart geschlossene Werkzeugkette wäre eine effektive Nutzung eines Chip-
Multiprozessorsystems nur sehr eingeschränkt möglich, denn erst das Zusammenspiel von gut auf-
einander abgestimmter Hardware und Software ermöglicht eine ressourceneffiziente Lösung.

Ein weiterer Entwicklungsschritt wäre eine Automatisierung der Werkzeugkette im Hinblick auf
eine automatische Generierung der Hardwarebeschreibung des Prozessorkerns anhand der UPSLA-
Spezifikation. Im nächsten Schritt könnten automatisierte Modifikationsläufe mit anschließender
Auswertung der Resultate der Kostenfunktionen neue, effizientere Systeme generieren.

Optimierung. Der bei der GigaNetIC-Architektur konsequent verfolgte ganzheitliche Ansatz sieht
neben der reinen Simulation bzw. Emulation des CMP-Systems auch eine Optimierung der Archi-
tektur im Hinblick auf Anforderungen spezieller Einsatzgebiete vor. Hierbei wird ein auf die Giga-
NetIC-Architektur angepasster hierarchisch gerichteter Optimierungsansatz verfolgt, der es System-
architekten und Softwareentwicklern ermöglicht, eine werkzeuggestützte anwendungsspezifische
Anpassung und Optimierung einzelner bzw. aller Komponenten vorzunehmen. Dies hilft, die Res-
sourceneffizienz des Chip-Multiprozessors im Bezug auf die jeweiligen Anforderungen, Randbe-
dingungen und Schranken im Vergleich zur universellen Variante zu steigern. Der hierarchisch ge-
richtete Ansatz bietet den Vorteil, dass, unterstützt durch die entwickelte Werkzeugkette, zunächst
mit vergleichsweise geringen Modifikationen die Leistungsfähigkeit bzw. der Ressourcenbedarf der
Chip-Multiprozessor-Architektur teilweise deutlich optimiert werden kann. Durch die leistungsfä-
higen Profilierungsmöglichkeiten der GigaNetIC-Entwicklungsumgebung lassen sich besonders
rechenintensive Funktionen der Anwendungssoftware schnell lokalisieren. Dies geschieht in der
Regel hierarchisch gerichtet, angefangen bei Instruktionssatzerweiterungen, über eng-gekoppelte
Hardwarebeschleuniger bis hin zu lose gekoppelten Hardwarebeschleunigern. Letztendlich steht
dem Softwarearchitekten dann die Nutzung der parallelen Struktur zur parallelen Bearbeitung einer
Aufgabe zur Verfügung, deren Leistungsfähigkeit ggf. durch den GigaNetIC-Multiprozessorcache
zusätzlich erhöht werden kann. Unterschiedliche Programmiermodelle des GigaNetIC-CMPs erlau-
ben eine angepasste, möglichst effiziente Nutzung der parallelen Verarbeitungseinheiten für das
jeweilige Anwendungsszenario.

Die werkzeuggestützte Analyse des jeweiligen Anwendungsszenarios liefert Aussagen sowohl über
den Rechenleistungs- als auch den Energiebedarf, aber auch über die benötigten Bandbreiten der
On-Chip-Kommunikation. Die GigaNetIC-Architektur eröffnet, aufgrund der generisch gehaltenen
Struktur, zahlreiche Möglichkeiten, das System anwendungsgemäß zu optimieren.

Die anhand vorausgegangener werkzeuggestützter Analysen eingebrachten Optimierungen erlauben
eine besonders effiziente Nutzung der parallelen Architektur. Unterstützt durch die Werkzeugkette
lässt sich für die jeweils betrachtete Anwendung ein geeigneter Kompromiss zwischen Leistungs-
zuwachs, Verlustleistungsaufnahme, Flächenbedarf und zusätzlich zu erwartendem Entwicklungs-
aufwand treffen. Pareto-optimale Punkte des Entwurfsraums können so effizient angenähert wer-
den. Anhand anwendungsspezifischer Instruktionssatzerweiterungen des N-Core-Prozessorkerns
konnten mit Hilfe einzelner Superinstruktionen Performanzzuwächse von bis zu 25 % für Netz-
werkanwendungen erzielt werden – und dies bei einem Flächenzuwachs von teilweise unter einem
Prozent, verbunden mit einer Reduktion des Energiebedarfs um 20 %. Die implementierten Hard-
warebeschleuniger im Bereich von Netzwerkanwendungen ermöglichen teilweise eine Reduktion
der Verarbeitungszeit um drei Größenordnungen bei lediglich moderater Flächenzunahme. Zusätz-
lich wurde der Energiebedarf der angepassten Systeme deutlich reduziert. Für den IP-DSLAM-

Kapitel 9. Zusammenfassung und Ausblick

242

Referenzbenchmark konnte hier eine Reduktion der benötigten Energie um mehr als Faktor 12 er-
reicht werden, so dass insgesamt eine merkliche Steigerung der Ressourceneffizienz erzielt wurde.

Anhand einer exemplarischen Analyse verschiedener Realisierungsvarianten für ein paketverarbei-
tendes System wurde die Kostenfunktionsmethode verifiziert und deren Leistungsfähigkeit aufge-
zeigt. Mit Hilfe definierter Parameter für die Zielfunktionen der vier Kostenmaße Leistungsauf-
nahme, Flächenbedarf, Performanz und Zukunftssicherheit sowie der resultierenden Kostenfunktion
wurden in Relation zu den definierten Randbedingungen pareto-optimale Systeme für unterschiedli-
che Einsatzgebiete ermittelt. Dem Systemarchitekten wird hiermit eine hilfreiche Entscheidungshil-
fe für den Entwurf ressourceneffizienter Implementierungen an die Hand gegeben.

Netzwerkanwendungsszenarien. Im Rahmen dieser Arbeit wurde die GigaNetIC-Architektur vor-
nehmlich im Hinblick auf den Einsatz in Netzwerkszenarien untersucht. Gerade im Netzwerkbe-
reich bieten sich parallele Systeme zur Datenverarbeitung an, da hier eine Vielzahl von parallelen,
zum Teil nicht korrelierten Datenströmen simultan von den Verarbeitungseinheiten bearbeitet wer-
den kann.

Zur Bewertung der GigaNetIC-Architektur für Zugangsnetzwerke wurde ein neuartiger IP-DSLAM-
Benchmark vorgestellt, ferner die Leistungsfähigkeit der GigaNetIC-Architektur für unterschiedli-
che Szenarien analysiert und mit anderen Ansätzen verglichen. Im Anschluss wurde die Leistungs-
fähigkeit des von uns entwickelten Prozessorkerns N-Core für relevante Funktionen durch Op-
timierung der Architektur, Instruktionssatzerweiterungen sowie Hinzufügen von anwendungsspezi-
fischen Hardwarebeschleunigern deutlich erhöht.

Zudem wurde eine modulare Methode zur effizienten Modellierung von Netzwerkanwendungen
vorgestellt, mit deren Hilfe der bereits entworfene IP-DSLAM-Benchmark auf Systemebene zu ei-
nem noch realistischeren Referenzbenchmark erweitert werden konnte. Mit Hilfe eines eigens ent-
wickelten Visualisierungswerkzeugs, dem DSLAM-System-Explorer, konnten die Leistungsdaten
des N-Cores, die erzielten Beschleunigungen der Hardwareerweiterungen und Leistungsvergleiche
mit anderen Prozessorfamilien komfortabel veranschaulicht werden. Hochrechnungen bzgl. des
Hardwareaufwands für gewünschte Anforderungen des IP-DSLAM-Anwendungsszenarios lassen
sich aufstellen, die eine gezielte Evaluierung des Entwurfsraums ermöglichen. Die Integration der
kostenfunktionsbasierten Bewertungsmethode zur Ressourceneffizienz wäre eine wesentliche Er-
weiterung dieses Werkzeugs, die Vielzahl der Messwerte könnte neben der eigentlichen Visualisie-
rung zusätzlich zur automatisierten Bewertung der untersuchten Realisierungsvarianten herangezo-
gen werden. In zukünftigen Arbeiten könnten außerdem tiefergehende Analysen der GigaNetIC-
Architektur mit weiteren etablierten Netzwerkprozessoren von Interesse sein, bei denen die urs-
prünglich universelle Struktur des GigaNetIC-Systems mit dem hoch spezialisierten, speziell auf
Netzwerkanwendungen optimierten Aufbau dieser ASIPs verglichen wird. Ggf. könnten anhand
dieser Untersuchungen weitere Optimierungspotentiale der GigaNetIC-Architektur bestimmt wer-
den.

Eine Analyse der Leistungsfähigkeit der verschiedenen Kopplungsarten von Hardwarebeschleuni-
gern an das GigaNoC der GigaNetIC-Architektur zeigt Vor- und Nachteile der einzelnen Varianten
am Beispiel einer Netzwerkanwendung auf. Da die Art der Kopplung und die Anzahl der Hardwa-
rebeschleuniger abhängig von den Anforderungen des jeweiligen Anwendungsszenarios ist, können
vielversprechende Lösungen im Hinblick auf die Ressourceneffizienz mit Hilfe der GigaNetIC-
Simulationsumgebungen ermittelt werden.

9 Zusammenfassung und Ausblick

243

Prototypen. Im Rahmen dieser Arbeit wurden Varianten der GigaNetIC-Architektur als FPGA-
Prototyp und in zwei aktuellen Standardzellentechnologien implementiert. Der auf dem FPGA-
Prototypen basierende GigaNetIC-Demonstrator hilft, das Chip-Multiprozessorsystem in einer rea-
len Umgebung detailliert und zugleich um Größenordnungen schneller, als es andere Formen der
Simulation ermöglichen, zu verifizieren.

Für zwei aktuelle CMOS-basierte Standardzellentechnologien mit 130 nm und 90 nm Strukturgröße
wurde u. a. prototypisch eine 4×2-Gitter-Architektur abgebildet und die Ergebnisse detailliert ana-
lysiert. Basierend auf den gewonnenen Syntheseergebnissen konnten fundierte Aussagen über die
zu erwartenden Flächen- und Leistungsanforderungen und die realisierbaren Taktfrequenzen der
Einzelkomponenten und des Gesamtsystems getroffen werden. Das exemplarische 4×2-System mit
acht Clustern zu je vier N-Core-Prozessoren und insgesamt 1,25 MB SRAM benötigt weniger als
44 mm² in der verwendeten 90-nm-Technologie und umfasst ca. 80 Millionen Transistoren. Die
maximale Betriebsfrequenz liegt bei 285 MHz. Im Rahmen dieser Implementierung wurde ein
Konzept der ressourceneffizienten Anordnung der einzelnen Komponenten eines GigaNetIC-
Clusters in Form quadratischer Kacheln vorgestellt. Auf Basis dieser Kacheln ist es möglich, Giga-
NetIC-Systeme effizient zu skalieren und identische Signallaufzeiten zu gewähren, was für eine
Maximierung der Performanz essentiell ist.

Der Vergleich eines massiv parallelen GigaNetIC-Systems mit derzeitigen Universalprozessoren
zeigte für ein spezielles Netzwerkanwendungsszenario einen Leistungsvorsprung des optimierten
GigaNetIC-CMPs um zwei Größenordungen einhergehend mit einem um zwei Größenordnungen
geringeren Energiebedarf bei einem Zehntel der durchschnittlichen Taktfrequenz. Das GigaNetIC-
System umfasste 20 Cluster mit je vier N-Cores nebst zusätzlichen Hardwarebeschleunigern mit
einer Gesamtfläche von 106 mm², der durchschnittlichen Fläche der untersuchten Desktop-CPUs.

Sowohl im Hinblick auf Universalanwendungen als auch im Besonderen bei Netzwerkanwendun-
gen konnte das hier entwickelte Chip-Multiprozessorsystem seine Leistungsfähigkeit unter Beweis
stellen. Anhand der angestellten Untersuchungen lassen sich gute Zukunftschancen für Architektu-
ren wie die der GigaNetIC-Architektur prognostizieren, vorausgesetzt, dass die notwendigen Soft-
warekomponenten in diese Richtung optimiert werden. Derartige Architekturen sind zum einen in
der Lage, die Vorteile, die durch die stetigen Strukturverkleinerungen der Halbleiterprozesse ent-
stehen, zu nutzen. Zum anderen zeigen solche Architekturen Möglichkeiten auf, die sich ergeben-
den Nachteile zu kompensieren.

Hier eigene Veröffentlichungen, später unsichtbar: [139][10][138][14][108][116][6][102][103]
[111] [141] [130] [117][118][104][114][115][7][8][159][126][109][140][119][131][113][110]

245

Verzeichnis verwendeter Formelzeichen und Abkürzungen

Abkürzungen

50%S Verlustleistungsbestimmung des Synthesewerkzeugs auf Basis statistischer Schaltwahrscheinlichkeiten

AAL5 ATM Adaptation Layer 5

ADSL Asymmetric Digital Subscriber Line

AES Advanced Encryption Standard

ALU Arithmetic Logic Unit

AmI Ambient Intelligence

AS Annotierung der Schaltaktivitäten durch Simulation

ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Instruction Set Processors

ATM Asynchronous Transfer Mode

BC Best Case

BE Best Effort

BIST Build-in Self Test

BSP Bulk Synchronous Parallel

CAM Content Addressable Memory

CC Communication-Controller

CISC Complex Instruction Set Computer

CMP Chip-Multiprozessor

CPE Customer-Premises Equipment

CPU Central Processing Unit

CRACC Click Rapidly Adapted to C-Code

CRC Cyclic Redundancy Check

CS Circuit Switching

DLL Dynamic Link Library

DMA Direct Memory Access

DMIPS Dhrystone MIPS

DSL Digital Subscriber Line

DSLAM Digital Subscriber Line Access Multiplexer

DSM Distributed Shared Memory Multiprocessor

DSP Digital Signal Processor bzw. Digitale Signalverarbeitungsprozessoren

EEMBC Embedded Microprocessor Benchmark Consortium

EIB Element Interconnect Bus

FIER Fast Interrupt Enable Registers

FIFO First In First Out

FINT Fast Interrupt

Flit Flow Control Digits

FLOPS Floating Point Operations Per Second

FPGA Field Programmable Gate Array

FSM Finite Statemachine

GALS global asynchron, lokal synchron

GDS II Graphic Data System II

GE Gigabit Ethernet

GPS Generalized Processor Sharing

GT Guaranteed-Throughput-Traffic

Verzeichnis verwendeter Formelzeichen und Abkürzungen

246

HAL Hardware Abstraction Layer

HDSL High Data Rate Digital Subscriber Line

HOL Head-of-Line-Blocking

ILP Instruction-Level Parallelism

ILP Integer Linear Programming

iMix Internet Mix

IP Intellectual Property

IP Internet Protocol

IPSec Internet Protocol Security

IPv4 Internet Protocol Version 4

Ipv6 Internet Protocol Version 6

ISE Instruction Set Extension

ISP Internet Service Provider

ITRS International Technology Roadmap for Semiconductors

MANet Mobiles Ad-Hoc-Netzwerk

MIC Memory Interface Controller

MIPS Millionen Instruktionen pro Sekunde

MOPS Millionen Operationen pro Sekunde

MPU Memory / Processor Module

MSB Most Significant Bit

MTU Maximum Transmission Unit

NAT Network Address Translation

NIC Network Interface Card

NINT Normal Interrupt

NoC Network on Chip

NPU Network Processing Unit

NRE Non-recurring Engineering

NUMA Nonuniform Memory Access

OCP Open Core Protocol

OTP One-Time Programmable

PC Personal Computer

PC Program Counter

PDA Personal Digital Assistant

PE Processing Element

Phit Physical Unit

PIC Programmierbarer Interruptcontroller

PS Packet Switching

QoS Quality of Service

RADSL Rate Adaptive Digital Subscriber Line

RAM Random Access Memory

RISC Reduced Instruction Set Computer

ROM Read-Only Memory

RTL Register Transfer Level

RTOS Real-Time Operating System

SAF Store and Forward

SB Switch-Box

SDRAM Synchronous Dynamic Random Access Memory

SDSL Symmetric Digital Subscriber Line

SIMD Single Instruction Multiple Data

SiP System in Package

Verzeichnis verwendeter Formelzeichen und Abkürzungen

247

SLA Service Level Agreements

SMP Symmetric Multi-Processing

SoC System-on-Chip

SPE Synergistic Processor Elements

STBus Split Transaction Bus

TC Typical Case

Tcl Tool command language

TDM Time Division Multiplex

TDP Thermal Design Power

TLP Task / Thread Level Parallelism

TM Traffic Model

TTL Time to Live

UART Universal Asynchronous Receiver Transmitter

ULSI Ultra-Large Scale Integration

UMA Uniform Memory Access

UPSLA Unified Processor Specification Language

VC Virtual Channel

VCT Virtual Cut Through

VDSL Very High Data Rate Digital Subscriber Line

VHDL Very High Scale IC Hardware Description Language

VLSI Very Large Scale Integration

VoIP Voice over IP

VOQ Virtual Output Queueing

WC Worst Case

WCET Worst-Case Execution Times

Formelzeichen70

α sequentieller Anteil eines Programms

αA Gewichtung bzw. Gewichtungsfaktor der A-Zielfunktion zur Kostenfunktion

αF Gewichtung bzw. Gewichtungsfaktor der F-Zielfunktion zur Kostenfunktion

αi
Gewichtungen bzw. Gewichtungsfaktoren der einzelnen Zielfunktionen einer Kosten-
funktion

αP Gewichtung bzw. Gewichtungsfaktor der P-Zielfunktion zur Kostenfunktion

αT Gewichtung bzw. Gewichtungsfaktor der T-Zielfunktion zur Kostenfunktion

δ Grad eines Netzwerks

δx Grad eines Knotens x

()
n

Nε
nominelle Effizienz paralleler Verarbeitung (nominal parallel efficiency) unter Verwen-
dung von N Prozessoren

Tr
ε Übertragungseffizienz

τ Schaltzeit

A Architektur

93

CCA Fläche des CCs bei einer Flitbreite von 93 Bit

93

CrossbarA Fläche des Kreuzschienenverteilers bei einer Flitbreite von 93 Bit

Fiforeg
A Registerfläche der FIFOs der Switch-Box

93

FiforegA Registerfläche der FIFOs der Switch-Box bei einer Flitbreite von 93 Bit

70 Aufgrund der unterschiedlichen Themengebiete kann es zu Mehrfachverwendungen eines Formelzeichens kommen.

Die jeweilige Bedeutung ist dementsprechend kontextbezogen zu sehen.

Verzeichnis verwendeter Formelzeichen und Abkürzungen

248

93

ABA Fläche des Advanced Buffers bei einer Flitbreite von 93 Bit

A Fläche

AAB Fläche des Advanced Buffers

ACC Fläche des Communication-Controllers

ACom Fläche der Kommunikationsstruktur (Com)

ACrossbar Fläche des Kreuzschienenverteilers

ACtrl Fläche eines Controllers (Ctrl) zur Ansteuerung eines Hardwarebeschleunigers

AInputports Fläche der Eingangsports

AMem Fläche eines Speichers (Mem)

APE Fläche einer Verarbeitungseinheit (PE)

ASB Fläche der Switch-Box

BB Bisektionsbandbreite

bc Bandbreite eines Kanals

BC Kanalbisektion

BLC_DL akkumulierte Downlink-Bandbreite der Linecard

BLC_UL akkumulierte Uplink-Bandbreite der Linecard

BM Bewertungsmaß

BMP Bewertungsmaße zur Leistungsaufnahme

BUC_DL akkumulierte Downlink-Bandbreite der Uplinkcard

BUC_UL akkumulierte Uplink-Bandbreite der Uplinkcard

C Kanäle in einem Netzwerk

C(N1, N2) Schnitt bzw. Teilung eines Netzwerks

C(x,y) Kanal C zwischen Quellknoten x und Zielknoten y

Ceff effektive Kapazität

CF Kostenfunktion

CFpareto
pareto-optimale Lösung = pareto-optimaler Kostenfunktionswert eines Problems für

gegebene Gewichtungen ci und
i

α

cí
Gewichtungen bzw. Gewichtungsfaktoren der einzelnen Bewertungsmaße einer Ziel-
funktion

CIx Menge der Eingangskanäle

Clast Lastkapazität

COx Menge der Ausgangskanäle

cox flächenspezifische Oxidkapazität

Cox Gate-Kapazität

CPI
Cycles Per Instruction, durchschnittliche Anzahl der benötigten Takte bzw. Zyklen zur
Verarbeitung einer Instruktion

cWachstum erwartete jährliche durchschnittliche Wachstumsrate der Entwurfskomplexität

D Durchmesser

D(P) physikalische Distanz eines Pfades

D(P) Verzögerung eines Pfades

dc Zielknoten

DM Durchsatz eines Speichers M

DSB Durchsatz einer Switch-Box

E Entwurfsraum

HW
E hardwarebezogener Entwurfsraum

E Feldstärke

EM Effizienzmaß

F Zukunftssicherheit/Flexibilität

f Taktfrequenz

fc Betriebsfrequenz eines Kanals

Verzeichnis verwendeter Formelzeichen und Abkürzungen

249

FFT Bewertungsmaß Fehlertoleranz zugehörig zum Kostenmaß Flexibilität

FI Fehlerimmunität

FPG Bewertungsmaß Programmierbarkeit zugehörig zum Kostenmaß Flexibilität

FT Fehlertoleranz

FWV Bewertungsmaß Wiederverwendbarkeit zugehörig zum Kostenmaß Flexibilität

g Gap (Lücke zwischen zwei aufeinander folgenden Übertragungen)

H∅ durchschnittliche Hopanzahl

h Anzahl Hops

H(x, y) Anzahl an Hops eines minimalen Pfades zwischen den Knoten x und y

Hmax maximale Hopanzahl

Hmin
durchschnittliche minimale Anzahl an Hops eines Netzwerks zwischen allen Quell- und
Zielknoten

I Strom

IC dynamische Instruktionsanzahl (Dynamic Instruction Count)

ID Drainstrom

I leck Leckströme

Iquer Querströme

Ischalt Kurzschlussströme

J Jitter

K Kostenmaß

k Kante eines Graphen

L Latenz

L Länge des Transistor-Gates

LatenzPaket Latenz des Datentransfers eines Pakets über einen bestimmten Pfad des GigaNoC

Lc Latenz eines Kanals

lc Länge eines Kanals

LM(R) Lese-Latenz eines Speichers

LM(W) Schreib-Latenz eines Speichers

m Gesamtanzahl der ggf. zu segmentierenden Paketdatenbyte

M Paket bestehend aus m Byte

mf Anzahl der Datenbyte eines Flits

mh Anzahl der Headerbyte eines Flits

N Endknoten eines Netzwerks

n Hierarchieebenen eines GigaNetIC-Systems

N Länge eines Datenpakets in Flit

N* Knoten eines Netzwerks

N+ Routingknoten eines Netzwerks

nFLITS Gesamtzahl der benötigten Flits für die Übertragung eines segmentierten Pakets

o Overhead (Mehraufwand)

|P| Anzahl der Hops

P Anzahl paralleler Prozessoren

P Pfad

P Leistungsaufnahme

P Preis eines Systembestandteils in €

Pdyn dynamische Verlustleistung

Pdyn,Com dynamische Verlustleistung der Kommunikationsstruktur (Com)

Pdyn,Ctrl
dynamische Verlustleistung eines Controllers (Ctrl) zur Ansteuerung eines Hardwarebe-
schleunigers

Pdyn,Mem dynamische Verlustleistung eines Speichers (Mem)

Pdyn,PE dynamische Verlustleistung einer Verarbeitungseinheit (PE)

pEntwicklung erwartete jährliche durchschnittliche Produktivitätswachstumsrate

Verzeichnis verwendeter Formelzeichen und Abkürzungen

250

PG Programmierbarkeit

PInter-SB-Links Leistungsaufnahme für Inter-Switch-Box-Verbindungen

Plast bzw. Pload Lastumladeverlustleistung

Ppareto pareto-optimaler Punkt im Entwurfsraum

PSB Anzahl der Ports einer Switch-Box

Pschalt Schaltverlustleistung

Pstat statische Verlustleistung

R Randbedingung

RE Ressourceneffizienz im Sinne des schaltungstechnischen Entwurfs

reuse(n) Anzahl wiederverwendeter Blöcke im Jahre n vom Referenzjahr

RV Realisierungsvariante eines spezifizierten Systems

Rxy Gesamtheit aller minimalen Pfade

S System

e
S Systementität

()e HW
S hardwarebezogene Systementitäten

()e SW
S softwarebezogene Systementitäten

S Schranke

S Skalierungsfaktor zweier CMOS-Technologien

S Anzahl konkurrierender FIFO-Ketten am Eingang einer Switch-Box

S(P) Speedup (Beschleunigung) in Abhängigkeit von der Anzahl der Prozessoren

SBFIFO-Tiefe Tiefe der Switch-Box FIFO-Register-Warteschlange

sc Quellknoten

Sn Anzahl konkurrierender FIFO-Ketten am Eingang der n-ten Switch-Box

So obere Schranke

Su untere Schranke

T Leistung bzw. Performanz

T Taktperiode

Tex Ausführungszeit

Tex,PE Ausführungszeit einer Verarbeitungseinheit (PE)

tox Siliziumoxiddicke

Tsuperstep
Übertragungszeit für eine Nachricht einfacher Länge unter kontinuierlichem Netzwerk-
verkehr beim BSP-Modell

U∆ Signalhub

U Spannung bzw. Spannungshub

UB Versorgungsspannung

UDD Versorgungsspannung

UT Schwellspannung

v charakteristische Ausbreitungsgeschwindigkeit eines Kanals

vsim
Simulationsgeschwindigkeit, gemessen in benötigter Zeit pro simuliertem Takt des Ziel-
systems

W Weite des Transistor-Gates

wc Weite eines Kanals C

WFlit ganzzahlige Anzahl der 32-Bit-Datenworte, die in einem Flit enthalten sind

wmax Gesamtkosten eines Supersteps

WV Wiederverwendbarkeit

ZF Zielfunktion

()
()

, , ,
RV System i normiert

ZF P A T F normierte Schar von Zielfunktionen für implementierte Realisierungsvarianten eines
spezifizierten Systems

251

Literaturverzeichnis

[1] G. E. MOORE. Cramming more components onto integrated circuits. Electronics, vol. 38, pages 114–117, 1965.

[2] SEMICONDUCTOR INDUSTRY ASSOCIATION. International Technology Roadmap for Semiconductors, 2005 Edi-

tion. 2005.

[3] K. KREWELL. Intel cancels 4 GHz P4. Microprocessor Report, pages 12–14, November 2004.

[4] K. KREWELL. Multicore showdown. Multicore moving from embedded to servers to clients. Microprocessor

Report, pages 41–45, May 2005.

[5] K. KREWELL. Sun`s Niagra pours on the cores. Microprocessor Report, pages 11–13, October 2004.

[6] O. BONORDEN, N. BRÜLS, D. K. LE, U. KASTENS, F. MEYER AUF DER HEIDE, J.-C. NIEMANN , M. PORRMANN, U.

RÜCKERT, A. SLOWIK AND M. THIES. A holistic methodology for network processor design. In Proceedings of

the Workshop on High-Speed Local Networks held in conjunction with the 28th Annual IEEE Conference on

Local Computer Networks, pages 583–592, Königswinter, Germany, October 2003.

[7] J.-C. NIEMANN . GigaNetIC-Final report. Working groups of System and Circuit Technology (Prof. Rückert),

Programming Languages and Compilers (Prof. Kastens), Algorithms and Complexity (Prof. Meyer auf der

Heide) University of Paderborn, 2005.

[8] J.-C. NIEMANN , M. PORRMANN, M. THIES, D. KHOI LE, A. SLOWIK, O. BONORDEN AND G. SCHOMAKER. Giga-

NetIC-BMBF-Schlussbericht. May 2005.

[9] H. KALTE, M. PORRMANN AND U. RÜCKERT. A Prototyping Platform for Dynamically Reconfigurable System

on Chip Designs. In Proceedings of the IEEE Workshop Heterogeneous reconfigurable Systems on Chip (SoC),

Hamburg, Germany, 2002.

[10] M. PORRMANN, H. KALTE, U. WITKOWSKI, J.-C. NIEMANN AND U. RÜCKERT. A Dynamically Reconfigurable

Hardware Accelerator for Self-Organizing Feature Maps. In Proceedings of the 5th World Multi-Conference

on Systemics, Cybernetics and Informatics, SCI 2001, pages 242–247, Orlando, Florida, USA, July 2001.

[11] J. KAHLE ET AL. Introduction to the Cell multiprocessor. IBM Journal of Research and Development, vol. 49,

pages 589–604, September 2005.

[12] M. BARON. The Cell, At One. Microprocessor Report, pages 9–20, March 2006.

[13] G. LAWTON. Powering Down the Computing Infrastructure. Computer, vol. 40, pages 16–19, 2007.

[14] A. BRINKMANN , J.-C. NIEMANN , I. HEHEMANN, D. LANGEN, M. PORRMANN AND U. RÜCKERT. On-Chip Inter-

connects for Next Generation System-on-Chips. In Proc. of the 15th Annual IEEE International ASIC/SOC

Conference, pages 211–215, Rochester, NY, USA, 2002.

[15] G.M. AMDAHL . Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities.

In Proc. of the AFIPS Spring Joint Computer Conference, Atlantic City, New Jersey, USA, AFIPS Press,

Reston, Virginia, USA, pages 483–485, 1967.

[16] J. L. GUSTAFSON. Reevaluating Amdahl's law. Communications of the ACM, vol. 31, pages 532–533, 1988.

Literaturverzeichnis

252

[17] D. CULLER, R. KARP, D. PATTERSON, A. SAHAY , K.E. SCHAUSER, E. SANTOS, R. SUBRAMONIAN AND T. VON

EICKEN. LogP: towards a realistic model of parallel computation. Proceedings of the fourth ACM SIGPLAN

symposium on Principles and practice of parallel programming, pages 1–12, 1993.

[18] L. G. VALIANT . A bridging model for parallel computation. Communications of the ACM, vol. 33, pages 103–

111, 1990.

[19] D. CULLER, J. P. SINGH AND A. GUPTA. Parallel Computer Architecture: A Hardware/Software Approach.

Morgan Kaufmann Publishers, 1998.

[20] J.D.C. LITTLE. A proof of the queueing formula. Operations Research, vol. 9, pages 383–387, 1961.

[21] T. S. SITES. www.top500.org, May 2007.

[22] W.J. DALLY AND B. TOWLES. Principles and Practices of Interconnection Networks. Morgan Kaufmann, 2004.

[23] D. LANGEN, A. BRINKMANN AND U. RÜCKERT. High Level Estimation of the Area and Power Consumption of

On-Chip Interconnects. In Proceedings of the 13th Annual IEEE International ASIC/SOC Conference, pages

297–301, September 2000.

[24] Y. ZHANG, W. YE, R. OWENS AND M. IRWIN. The Power Analysis of Interconnect Structures. In Proceedings of

the ASIC'97 Conference, September 1997.

[25] Y. ZHANG, W. YE AND M. IRWIN. An Alternative Architecture for On-Chip Global Interconnects: Segmented

Bus Power Modeling. In Proceedings of the 36th Asilomar Conference on Signals, Systems, and Computers,

November 1998.

[26] J. DUATO, S. YALAMANCHILI AND L. NI. Interconnection Networks: An Engineering Approach. IEEE Computer

Society Press, Los Alamitos, CA, USA, 1997.

[27] D.M. CHAPIRO. Globally-asynchronous Locally-synchronous Systems. Stanford University, 1984.

[28] J. MUTTERSBACH, T. V ILLIGER, H. KAESLIN, N. FELBER AND W. FICHTNER. Globally-asynchronous locally-

synchronous architectures to simplify the design of on-chip systems. ASIC/SOC Conference, 1999. Proceed-

ings. Twelfth Annual IEEE International, pages 317–321, 1999.

[29] R. HO, K. W. MAI AND M. A. HOROWITZ. The Future of Wires. Proceedings Of The IEEE, vol. 89, pages 490–

504, 2001.

[30] P. KAPUR, J. MCV ITTIE AND K. SARASWAT. Technology and reliability constrained future copper interconnects.

I. Resistance modeling. IEEE Transactions on Electron Devices, vol. 49, pages 590–597, 2002.

[31] P. KAPUR, G. CHANDRA, J. MCV ITTIE AND K. SARASWAT. Technology and reliability constrained future copper

interconnects. II. Performance implications. IEEE Transactions on Electron Devices, vol. 49, pages 598–604,

2002.

[32] D. SYLVESTER AND K. KEUTZER. Impact of small process geometries on microarchitectures in systemson a

chip. Proceedings of the IEEE, vol. 89, pages 467–489, 2001.

[33] M. HOROWITZ AND W. DALLY . How scaling will change processor architecture. Solid-State Circuits Confer-

ence, 2004. Digest of Technical Papers. ISSCC. 2004 IEEE International, pages 132–133, 2004.

[34] ISO. Information Technology-Open Systems Interconnection-Basic Reference Model: The Basic Model. 7498-1

Edition, 1994.

[35] G. D. M ICHELI AND L. BENINI. Networks on Chips. Technology and Tools. Morgan Kaufmann, September 2006.

Literaturverzeichnis

253

[36] W.J. DALLY AND C.L. SEITZ. The torus routing chip. Distributed Computing, vol. 1, pages 187–196, 1986.

[37] W. DALLY AND C. SEITZ. Deadlock-free message routing in multiprocessor interconnection networks. IEEE

Transactions on Computers, vol. 36, pages 547–553, 1987.

[38] M. DEHYADGARI, M. NICKRAY , A. AFZALI-KUSHA AND Z. NAVABI . Evaluation of Pseudo Adaptive XY Routing

Using an Object Oriented Model for NOC. The 17th International Conference on Microelectronics ICM 2005,

pages 204–208, 2005.

[39] U. FEIGE AND P. RAGHAVAN . Exact analysis of hot-potato routing. Proceedings of the 33rd Annual Symposium

on Foundations of Computer Science, pages 553–562, 1992.

[40] M. MAJER, C. BOBDA, A. AHMADINIA AND J. TEICH. Packet Routing in Dynamically Changing Networks on

Chip. Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium, April 2005.

[41] A. JANTSCH AND H. TENHUNEN. Networks on Chip. Kluwer Academic Publishers, 2003.

[42] A.S. TANENBAUM . Computer Networks. Prentice Hall PTR, 2002.

[43] P. GUERRIER AND A. GREINER. A generic architecture for on-chip packet-switched interconnections. In Pro-

ceedings of the conference on Design, Automation and Test in Europe, pages 250–256, 2000.

[44] C. CIORDAS, T. BASTEN, A. RADULESCU, K. GOOSSENS AND J. VAN MEERBERGEN. An event-based monitoring

service for networks on chip. ACM Transactions on Design Automation of Electronic Systems (TODAES), vol.

10, pages 702–723, 2005.

[45] D. SHOEMAKER. An Optimized Hardware Architecture and Communication Protocol for Scheduled Communi-

cation. Massachusetts Institute of Technology, 1997.

[46] M. M ILLBERG, E. NILSSON, R. THID AND A. JANTSCH. Guaranteed bandwidth using looped containers in tem-

porally disjoint networks within the nostrum network on chip. Design, Automation and Test in Europe Confer-

ence and Exhibition, 2004. Proceedings, vol. 2, 2004.

[47] K. GOOSSENS, J. DIELISSEN AND A. RADULESCU. AEthereal network on chip: concepts, architectures, and im-

plementations. Design Test of Computers, IEEE, vol. 22, pages 414–421, 2005.

[48] T. BJERREGAARD AND J. SPARSO. A Router Architecture for Connection-Oriented Service Guarantees in the

MANGO Clockless Network-on-Chip. In DATE '05: Proceedings of the conference on Design, Automation and

Test in Europe, IEEE Computer Society, pages 1226–1231, Washington, DC, USA, 2005.

[49] T. BJERREGAARD, J. SPARSO AND D. TEKLATECH. Implementation of guaranteed services in the MANGO clock-

less network-on-chip. IEE Proceedings: Computers and Digital Techniques, vol. 153, pages 217–229, 2006.

[50] A. ADRIAHANTENAINA , H. CHARLERY, A. GREINER, L. MORTIEZ AND C. A. ZEFERINO. SPIN: A Scalable, Packet

Switched, On-Chip Micro-Network. In Proceedings of the conference on Design, Automation and Test in

Europe, IEEE Computer Society, pages 70–73, Washington, DC, USA, 2003.

[51] W. WEBER, J. CHOU, I. SWARBRICK AND D. WINGARD. A Quality-of-Service Mechanism for Interconnection

Networks in System-on-Chips. In DATE '05: Proceedings of the conference on Design, Automation and Test in

Europe, IEEE Computer Society, pages 1232–1237, Washington, DC, USA, 2005.

[52] ARTERIS-THE NETWORK-ON-CHIP COMPANY. www.arteris.com. 2007.

Literaturverzeichnis

254

[53] A. MELLO, L. TEDESCO, N. CALAZANS AND F. MORAES. Virtual channels in networks on chip: implementation

and evaluation on hermes NoC. In SBCCI '05: Proceedings of the 18th annual symposium on Integrated cir-

cuits and system design, ACM Press, pages 178–183, New York, NY, USA, 2005.

[54] K. H. YUM, E. J. K IM , C. R. DAS, M. YOUSIF AND J. DUATO. Integrated Admission and Congestion Control for

QoS Support in Clusters. In CLUSTER '02: Proceedings of the IEEE International Conference on Cluster

Computing, IEEE Computer Society, pages 325–332, Washington, DC, USA, 2002.

[55] N. KAVALDJIEV , G. SMIT AND P. JANSEN. A virtual channel router for on-chip networks. Proceedings of the

IEEE International SOC Conference, pages 289–293, 2004.

[56] E. BOLOTIN, I. CIDON, R. GINOSAR AND A. KOLODNY. QNoC: QoS architecture and design process for network

on chip. Journal of Systems Architecture, vol. 50, pages 105–128, 2004.

[57] W. J. DALLY AND B. TOWLES. Route Packets, Not Wires: On-Chip Interconnection Networks. In Proceedings of

the Design Automation Conference, pages 684–689, Las Vegas, Nevada, USA, June 2001.

[58] T. MARESCAUX, A. BARTIC, D. VERKEST, S. VERNALDE AND R. LAUWEREINS. Interconnection Networks Enable

Fine-Grain Dynamic Multi-tasking on FPGAs. In FPL '02: Proceedings of the Reconfigurable Computing Is

Going Mainstream, 12th International Conference on Field-Programmable Logic and Applications, Springer-

Verlag, pages 795–805, London, UK, 2002.

[59] D. BERTOZZI AND L. BENINI. Xpipes: a network-on-chip architecture for gigascale systems-on-chip. Circuits

and Systems Magazine, IEEE, vol. 4, pages 18–31, 2004.

[60] K. GOOSSENS, J. DIELISSEN, J. V. MEERBERGEN, P. POPLAVKO, A. RADULESCU, E. RIJPKEMA, E. WATERLANDER

AND P. WIELAGE. Guaranteeing the quality of services in networks on chip. Kluwer Academic Publishers,

pages 61–82, Networks on Chip. Edition, 2003.

[61] J. POSTEL. RFC 791, Internet Protocol: DARPA Internet Program Protocol Specification. Information Sciences

Institute, http://www. ietf. org/rfc/rfc079.txt, vol. 791, 1981.

[62] A. IVANOV AND G. D. M ICHELI. Guest Editors' Introduction: The Network-on-Chip Paradigm in Practice and

Research. Design Test of Computers, IEEE, vol. 22, pages 399–403, 2005.

[63] T. T. YE. On-Chip Multiprocessor Communication Network Design and Analysis. Stanford University, 2003.

[64] P. P. PANDE, C. GRECU, M. JONES, A. IVANOV AND R. SALEH. Performance Evaluation and Design Trade-Offs

for Network-on-Chip Interconnect Architectures. IEEE Transactions on Computers, vol. 54, pages 1025–1040,

2005.

[65] D. COMER AND L. PETERSON. Network Systems Design Using Network Processors. Prentice-Hall, Inc. Upper

Saddle River, NJ, USA, 2003.

[66] XILINX . www.xilinx.com. 2007.

[67] SEMICONDUCTOR INDUSTRY ASSOCIATION. International Technology Roadmap for Semiconductors, 2006 Up-

date. 2006.

[68] R. P. WEICKER. Dhrystone: a synthetic systems programming benchmark. Communications of the ACM, vol.

27, pages 1013–1030, 1984.

[69] J. A. BOOTH. ARM dominated MCU market is ready for change. www.electronicsweekly.com, January 2007.

[70] ARC. www.arc.com, October 2007.

Literaturverzeichnis

255

[71] L. A. BARROSO. The price of performance. Queue, vol. 3, pages 48–53, 2005.

[72] T. R. HALFHILL . Massively Parallel Digital Video. Microprocessor Report, pages 17–22, January 2006.

[73] J. SILC, B. ROBIC AND T. UNGERER. Processor Architecture. Springer New York, 1999.

[74] L. CODRESCU, D. S. WILLS AND J. D. MEINDL. Architecture of the Atlas Chip-Multiprocessor: Dynamically

Parallelizing Irregular Applications. IEEE Transactions on Computers, vol. 50, pages 67–82, 2001.

[75] K. OLUKOTUN, B. A. NAYFEH, L. HAMMOND , K. WILSON AND K. CHANG. The Case for a Single-Chip Multi-

processor. In Proc. of the Seventh International Symposium on Architectural Support for Parallel Languages

and Operating Systems, 1996.

[76] S. KUMAR, A. JANTSCH, J.-P. SOINIEN, M. FORSELL, M. M ILLBERG, J. TIENSYRJÄ AND A. HEMANI. A network on

chip architecture and design methodology. In Proc. of the IEEE Computer Society Annual Symposium on

VLSI, pages 117–124, 2002.

[77] C. GRECU, P. P. PANDE, A. IVANOV AND R. SALEH. Structured interconnect architecture: a solution for the non-

scalability of bus-based SoCs. In GLSVLSI '04: Proceedings of the 14th ACM Great Lakes symposium on

VLSI, ACM Press, pages 192–195, New York, NY, USA, 2004.

[78] E. WAINGOLD, M. TAYLOR, D. SRIKRISHNA, V. SARKAR, W. LEE, V. LEE, J. KIM , M. FRANK, P. FINCH, R. BA-

RUA AND OTHERS. Baring it all to software: Raw machines. Computer, vol. 30, pages 86–93, 1997.

[79] M. B. TAYLOR, J. K IM , J. M ILLER, D. WENTZLAFF, F. GHODRAT, B. GREENWALD, H. HOFFMAN, P. JOHNSON, J.

LEE, W. LEE, A. MA, A. SARAF, M. SENESKI, N. SHNIDMAN AND V. S. The Raw Microprocessor: A Computa-

tional Fabric for Software Circuits and General-Purpose Programs. IEEE Micro, vol. 22, pages 25–35, 2002.

[80] L. HAMMOND , B. A. HUBBERT, M. SIU, M. K. PRABHU, M. CHEN AND K. OLUKOTUN. The Stanford Hydra CMP.

IEEE Micro, vol. 20, pages 71–84, 2000.

[81] B. ACKLAND , A. ANESKO, D. BRINTHAUPT, S. DAUBERT, A. KALAVADE , J. KNOBLOCH, E. M ICCA, M. MOTURI,

C. NICOL AND J. O'NEILL. A single-chip, 1. 6-billion, 16-b MAC/s multiprocessor DSP. IEEE Journal of Solid-

State Circuits, vol. 35, pages 412–424, 2000.

[82] S. GOLDSTEIN, H. SCHMIT, M. BUDIU, S. CADAMBI , M. MOE AND R. TAYLOR. PipeRench: a reconfigurable

architecture and compiler. Computer, vol. 33, pages 70–77, 2000.

[83] N. SUZUKI, S. KUROTAKI, M. SUZUKI, N. KANEKO, Y. YAMADA , K. DEGUCHI, Y. HASEGAWA, H. AMANO, K.

ANJO, M. MOTOMURA AND OTHERS. Implementing and Evaluating Stream Applications on the Dynamically Re-

configurable Processor. Proceedings of the Field-Programmable Custom Computing Machines, 12th Annual

IEEE Symposium on (FCCM'04), pages 328–329, 2004.

[84] PACT. XPP III Processor Overview White Paper. 2006.

[85] PACT. www.pactxpp.com, Mai 2007.

[86] L. A. BARROSO, K. GHARACHORLOO, R. MCNAMARA , A. NOWATZYK, S. QADEER, B. SANO, S. SMITH , R. STETS

AND B. VERGHESE. Piranha: A Scalable Architecture Based on Single-Chip Multiprocessing. In In Proc. of the

27th Annual International Symposium on Computer Architecture, 2000.

[87] RAPPORT. www.rapportincorporated.com, Mai 2007.

[88] NVIDIA. www.nvidia.com, Mai 2007.

[89] ATI. www.ati.com, Mai 2007.

Literaturverzeichnis

256

[90] AGEIA. Ageia PhysX. www.ageia.com, Mai 2007.

[91] J. HELD, J. BAUTISTA AND S. KOEHL. From a Few Cores to Many: A Tera-scale Computing Research Over-

view. Intel, 2006.

[92] INTEL. http://www.intel.com. October 2007.

[93] AMD. www.amd.com, Mai 2007.

[94] D. PHAM , H. ANDERSON, E. BEHNEN, M. BOLLIGER, S. GUPTA, P. HOFSTEE, P. HARVEY, C. JOHNS, J. KAHLE, A.

KAMEYAMA , J. KEATY, B. LE, S. LEE, T. NGUYEN, J. PETROVICK AND MYD. Key features of the design method-

ology enabling a multi-core SoC implementation of a first-generation CELL processor. In ASP-DAC '06: Pro-

ceedings of the 2006 conference on Asia South Pacific design automation, ACM Press, pages 871–878, New

York, NY, USA, 2006.

[95] J.L. HENNESSY AND D.A. PATTERSON. Computer Architecture: A Quantitative Approach. Morgan Kaufmann,

2003.

[96] J. LI AND J. F. MARTÍNEZ. Power-performance considerations of parallel computing on chip multiprocessors.

ACM Trans. Archit. Code Optim., vol. 2, pages 397–422, 2005.

[97] H. KLAR AND W. HEIMSCH. Integrierte digitale Schaltungen MOS, BICMOS. Springer, 1996.

[98] W. WOLF AND A. JERRAYA. Multiprocessor Systems-on-Chips. Morgan Kaufmann, 2004.

[99] T. KURODA. Optimization and Control of Vdd and Vth for Low-Power, High-speed CMOS Design. In Interna-

tional Conference on Computer aided Design, pages 28–34, 2002.

[100] D. DUARTE, Y. TSAI, N. V IJAYKRISHNAN AND M. J. IRWIN. Evaluating Run-Time Techniques for Leakage

Power Reduction. In ASP-DAC, IEEE, pages 31–38, 2002.

[101] P. E. LANDMAN . Low-Power Architectural Design Methodologies. Berkeley Wireless Research Center, 1994.

[102] M. GRÜNEWALD, J.-C. NIEMANN , M. PORRMANN AND U. RÜCKERT. A framework for design space exploration

of resource efficient network processing on multiprocessor SoCs. In Proc. of the 3rd Workshop on Network

Processors & Applications, pages 87–101, Madrid, Spain, 2004.

[103] M. GRÜNEWALD, J.-C. NIEMANN , M. PORRMANN AND U. RÜCKERT. A mapping strategy for resource-efficient

network processing on multiprocessor SoCs. In Proc. of DATE: Design, Automation and Test in Europe, pages

758–763, CNIT La Défense, Paris, France, 2004.

[104] M. GRÜNEWALD, J.-C. NIEMANN , M. PORRMANN AND U. RÜCKERT. A framework for design space exploration

of resource efficient network processing on multiprocessor SoCs. In Network Processor Design: Issues and

Practices, vol.3, chapter 12, Editors: Crowley, P. and Franklin, M. A. and Hadimioglu, H. and Onufryk, P. Z.,

Morgan Kaufmann Publishers, pages 245–277, 2005.

[105] G. BACCARANI, M. WORDEMAN AND R. DENNARD. Generalized scaling theory and its application to 1/4 µm

MOSFET design. IEEE Transactions on Electron Devices, pages 452–462, 1984.

[106] T. JUHNKE. Die Soft-Error-Rate von Submikrometer-CMOS-Logikschaltungen. 2003.

[107] T. BASTEN, L. BENINI, A. CHANDRAKASAN, M. L INDWER, J. LIU, R. M IN AND F. ZHAO. Scaling into Ambient

Intelligence. In Proceedings of Design Automation and Test in Europe (DATE'03), IEEE Computer Society

Press, Los Alamitos, CA, USA, 2003, Munchen, Germany, 2003.

Literaturverzeichnis

257

[108] D. LANGEN, J.-C. NIEMANN , M. PORRMANN, H. KALTE AND U. RÜCKERT. Implementation of a RISC Processor

Core for SoC Designs – FPGA Prototype vs. ASIC Implementation. In Proc. of the IEEE-Workshop: Heteroge-

neous reconfigurable Systems on Chip (SoC), Hamburg, Germany, 2002.

[109] J.-C. NIEMANN , C. PUTTMANN , M. PORRMANN AND U. RÜCKERT. GigaNetIC – A Scalable Embedded On-Chip

Multiprocessor Architecture for Network Applications. In ARCS'06 Architecture of Computing Systems, pages

268–282, March 2006.

[110] C. PUTTMANN , J.-C. NIEMANN , M. PORRMANN AND U. RÜCKERT. GigaNoC – A Hierarchical Network-on-Chip

for Scalable Chip-Multiprocessors. In 33rd EUROMICRO Conference on Digital System Design DSD, pages

495–502, Lübeck, Germany, August 2007.

[111] M. GRÜNEWALD, U. KASTENS, D. K. LE, J.-C. NIEMANN , M. PORRMANN, U. RÜCKERT, M. THIES AND A. SLO-

WIK . Network Application Driven Instruction Set Extensions for Embedded Processing Clusters. In PARELEC

2004, International Conference on Parallel Computing in Electrical Engineering, pages 209–214, Dresden,

Germany, September 2004.

[112] U. KASTENS, D. K. LE, A. SLOWIK AND M. THIES. Feedback Driven Instruction-Set Extension. In Proceedings

of ACM SIGPLAN/SIGBED 2004 Conference on Languages, Compilers, and Tools for Embedded Systems

(LCTES'04), Washington, D.C., USA, June 2004.

[113] J.-C. NIEMANN , C. LIß, M. PORRMANN AND U. RÜCKERT. A Multiprocessor Cache for Massively Parallel SoC

Architectures. In ARCS'07 Architecture of Computing Systems, pages 83–97, Zurich, Switzerland, March

2007.

[114] R. EICKHOFF, J.-C. NIEMANN , M. PORRMANN AND U. RÜCKERT. Adaptable Switch boxes as on-chip routing

nodes for networks-on-chip. In From Specification to Embedded Systems Application, International Embedded

Systems Symposium (IESS), A. Rettberg , M. C. Zanella and F. J. Rammig Ed., pages 201–210, Manaus, Bra-

zil, August 2005.

[115] B. JÄGER, J.-C. NIEMANN AND U. RÜCKERT. Analytical approach to massively parallel architectures for

nanotechnologies. In Proceedings of the 17th International Conference on Application-Specific Systems, Ar-

chitecture and Processors (ASAP 2005), IEEE Computer Society Press, pages 268–275, 2005.

[116] M. GRÜNEWALD, J.-C. NIEMANN AND U. RÜCKERT. A performance evaluation method for optimizing embedded

applications. In Proceedings of the 3rd IEEE International Workshop on System-On-Chip for Real-Time Ap-

plications, pages 10–15, Calgary, Alberta, Canada, June 2003.

[117] J.-C. NIEMANN , M. PORRMANN AND U. RÜCKERT. A Scalable Parallel SoC Architecture for Network Proces-

sors. In IEEE Computer Society Annual Symposium on VLSI 2005 (ISVLSI 2005), IEEE Computer Society

Press, pages 311–313, Tampa, Fl., USA, May 2005.

[118] J.-C. NIEMANN , M. PORRMANN, C. SAUER AND U. RÜCKERT. An Evaluation of the Scalable GigaNetIC Archi-

tecture for Access Networks. In Advanced Networking and Communications Hardware Workshop (ANCHOR),

held in conjunction with the ISCA 2005, Madison, Wi., USA, July 2005.

[119] C. SAUER, M. GRIES, J.-C. NIEMANN , M. PORRMANN AND M. THIES. Application-driven Development of Con-

current Packet Processing Platforms. In 5th International Symposium on Parallel Computing in Electrical En-

gineering, Bialystok, Poland, 2006.

[120] K. YOSHIGOE AND K. CHRISTENSEN. A parallel-polled virtual output queued switch with a bufferedcrossbar.

High Performance Switching and Routing, 2001 IEEE Workshop on, pages 271–275, 2001.

Literaturverzeichnis

258

[121] M. KAROL, M. HLUCHYJ AND S. MORGAN. Input Versus Output Queueing on a Space-Division Packet Switch.

IEEE Transactions on Communications, vol. 35, pages 1347–1356, 1987.

[122] A. GUPTA, F. G. GUSTAVSON, M. JOSHI AND S. TOLEDO. Design and implementation of a fast crossbar sched-

uler. ACM Transactions on Mathematical Software, vol. 24, pages 74–101, 1998.

[123] U. TELLERMANN. Implementierung von aktiven Kommunikationsknoten für On-Chip-Netzwerke. Schal-

tungstechnik, Heinz Nixdorf Institut, Universität Paderborn, September 2004.

[124] SILICORE CORP. WISHBONE System-on-Chip (SoC) Interconnection Architecture for Portable IP Cores, Rev.

B.3. www.silicore.net/pdfiles/wishbone/specs/wbspec_b3.pdf, September 2002.

[125] ARM LTD. AMBA Specification (Rev. 2.0). www.arm.com/products/solutions/AMBA_Spec.html, 1999.

[126] C. SAUER, M. GRIES, S. DIRK, J.-C. NIEMANN , M. PORRMANN AND U. RÜCKERT. A Lightweight NoC for the

NOVA Packet Processing Platform. In Design, Automation and Test in Europe DATE, Future Interconnect and

Network-on-Chip (NoC) Workshop, Munich, Germany, March 2006.

[127] D. LANGEN. Abschätzung des Ressourcenbedarfs von hochintegrierten mikroelektronischen Systemen. Univer-

sität Paderborn, Heinz Nixdorf Institut, Schaltungstechnik, 2005.

[128] MOTOROLA. M-Core Reference Manual. 1998.

[129] GCC. GCC, the GNU Compiler Collection. 2007.

[130] J.-C. NIEMANN , M. PORRMANN AND U. RÜCKERT. Parallele Architekturen für Netzwerkprozessoren. In Am-

bient Intelligence, VDE Kongress, VDE Verlag, pages 105–110, Berlin, Deutschland, Oktober 2004.

[131] J.-C. NIEMANN , C. PUTTMANN , M. PORRMANN AND U. RÜCKERT. Resource Efficiency of the GigaNetIC Chip

Multiprocessor Architecture. In Journal of Systems Architecture - the Euromicro Journal, Elsevier, pages 285–

299, 2006.

[132] AMD. AMD64 Technology AMD64 Architecture Programmer’s Manual Volume 2: System Programming. Sep-

tember 2006.

[133] J. A. FISHER, P. FARABOSCHI AND C. YOUNG. Embedded computing: a VLIW approach to architecture, compil-

ers and tools. Morgan Kaufmann Publishers, 2005.

[134] E. STÜMPEL, M. THIES AND U. KASTENS. VLIW Compilation Techniques for Superscalar Architectures. In Proc.

of 7th International Conference on Compiler Construction CC'98, K. Koskimies Ed., 1998.

[135] M. THIES. UPSLA (Unified Processor Specification Language) Language Description and Reference. Univer-

sität Paderborn, 2001-2005.

[136] J. T. D. FISCHER AND R. WEPER. Efficient architecture/compiler co-exploration for ASIPs. In ACM SIG Proc.

International Conference on Compilers, Architectures, and Synthesis for Embedded Systems (CASES 2002),

pages 27–34, Grenoble, France, Oct. 2002.

[137] O. BONORDEN, B. JUURLINK, I. VON OTTE AND I. RIEPING. The Paderborn University BSP (PUB) library. Paral-

lel Computing, vol. 29, pages 187–207, 2003.

[138] J.-C. NIEMANN , U. WITKOWSKI, M. PORRMANN AND U. RÜCKERT. Extension Module for Application-Specific

Hardware on the Minirobot Khepera. In Autonomous Minirobots for Research and Edutainment (AMiRE

2001), pages 279–288, Paderborn, Germany, October 2001.

[139] J.-C. NIEMANN . RAPTOR2000 DB-VS FPGA-Modul, Datenblatt. Heinz Nixdorf Institut, 2000.

Literaturverzeichnis

259

[140] M. PORRMANN AND J.-C. NIEMANN . Teaching Reconfigurable Computing-Theory and Practice. In International

Workshop on Reconfigurable Computing Education, March 2006.

[141] G. HAGEN, J.-C. NIEMANN , M. PORRMANN, C. SAUER, A. SLOWIK AND M. THIES. Developing an IP-DSLAM

Benchmark for Network Processor Units. In ANCHOR 2004, Advanced Networking and Communications

Hardware Workshop, held in conjunction with the 31st Annual International Symposium on Computer Archi-

tecture (ISCA 2004), Munich, Germany, 2004.

[142] A. BONA, V. ZACCARIA AND R. ZAFALON. System Level Power Modeling and Simulation of High-End Indus-

trial Network-on-Chip. In DATE, IEEE Computer Society, pages 318–323, 2004.

[143] A. SINHA AND A. P. CHANDRAKASAN. JouleTrack-A Web Based Tool for Software Energy Profiling. In Pro-

ceedings of the Design Automation Conference, June 2001.

[144] M. T.-C. LEE, V. TIWARI, S. MALIK AND M. FUJITA. Power Analysis and Minimization Techniques for Embed-

ded DSP Software. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 5, March 1997.

[145] S. STEINKE, M. KNAUER, L. WEHMEYER AND P. MARWEDEL. An Accurate and Fine Grain Instruction-Level

Energy Model Supporting Software Optimizations. In Proceedings of the Internationl Workshop: Power and

Timing Modeling, Optimization and Simulation (Patmos), September 2001.

[146] T.K. TAN, A. RAGHUMATHAN , G. LAKSHMINARAYANA AND N. K. JHA. High-level Software Energy Macro-

modeling. In Proceedings of the 38th Design Automation Conference, 2001.

[147] J. FLINN AND M. SATYANARAYANAN . PowerScope: A Tool for Profiling the Energy Usage of Mobile Applica-

tion. In Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications, pages 2–10,

1999.

[148] G. QU, N. KAWABE, K. USAMI AND M. POTKONJAK. Functional-Level Power Estimation Methodology for Mi-

croprocessors. In Proceedings of the 37th Design Automation Conference, June 2000.

[149] R. MURESAN AND C. H. GEBOTYS. Current Consumption Dynamics at Instruction and Program Level for a

VLIW DSP Processor. In Proceedings of the 14th International Symposium on System Synthesis, pages 130–

135, October 2001.

[150] R. Y. CHEN AND M. J. IRWIN. Architecture-Level Power Estimation and Design Experiments. ACM Transac-

tions on Design Automation of Electronics Systems, vol. 6, pages 50–66, 2001.

[151] D. BROOKS, V. TIWARI AND M. MARTONOSI. Wattch: A Framework for Architectural-Level Power Analysis and

Optimizations. In Proceedings of the 27th International Symposium on Computer Architectures, pages 83–94,

2000.

[152] W. QIFA, T. YUJING AND X. WEI. Oki Techno Centre Design Team Achieves Lowest Power Consumption Using

Power Compiler. Compiler, Synopsys, December 2002.

[153] SYNOPSYS. Power Compiler User Guide. www.synopsys.com, 2003.

[154] H. KALTE. Einbettung dynamisch rekonfigurierbarer Hardwarearchitekturen in eine Universalprozessorumge-

bung. Universität Paderborn, Heinz Nixdorf Institut, Schaltungstechnik, 2004.

[155] COWARE. http://www.coware.com, October 2007.

[156] T. COMPILER. http://www.retarget.com, October 2007.

[157] TENSILICA. http://tensilica.com, October 2007.

Literaturverzeichnis

260

[158] S. KENT AND R. ATKINSON. RFC2401: Security Architecture for the Internet Protocol. Internet RFCs, 1998.

[159] J.-C. NIEMANN , C. SAUER, M. PORRMANN AND U. RÜCKERT. Flexibler Hardware-Beschleuniger zur Verarbei-

tung von Paketdaten und Prüfsummen zum Einsatz in kommunizierenden eingebetteten On-Chip-Systemen. Pa-

tentanmeldung, Erfindungsmeldung. München, Deutschland, Dezember 2005.

[160] R. BRADEN, D. BORMAN AND C. PARTRIDGE. RFC1071: Computing the Internet checksum. Internet RFCs,

1988.

[161] EMBEDDED M ICROPROCESSOR BENCHMARK CONSORTIUM (EEMBC). http://www.eembc.org, July 2007.

[162] S. DEERING AND R. HINDEN. RFC 2460: Internet Protocol, Version 6 (IPv6) specification. December 1998.

[163] T. HENRIKSSON, N. PERSSON AND D. L IU. VLSI Implementation of Internet Checksum Calculation for 10 Giga-

bit Ethernet. Proceedings of Design and Diagnostics of Electronics, Cricuits and Systems, pages 114–121,

2002.

[164] T. JUNGEBLUT. Implementierung ressourceneffizienter Fehlerkorrekturverfahren für die Datenübertragung in

drahtlosen Netzwerken. Schaltungstechnik, Heinz Nixdorf Institut, Universität Paderborn, March 2004.

[165] J.H. CHERN, J. HUANG, L. ARLEDGE, P.C. LI, P. YANG, T.I. INC AND T. DALLAS . Multilevel metal capacitance

models for CAD design synthesissystems. Electron Device Letters, IEEE, vol. 13, pages 32–34, 1992.

[166] N. HATTA, N.D. BARLI, C. IWAMA , L.D. HUNG, D. TASHIRO, S. SAKAI AND H. TANAKA . Bus Serialization for

Reducing Power Consumption. IPSJ Digital Courier, vol. 2, pages 165–173, 2006.

[167] A. K. PAREKH AND R. G. GALLAGER. A generalized processor sharing approach to flow control in integrated

service networks: The single node case. IEEE / ACM Transactions on Networking, vol. 1-3, pages 344–357,

1993.

[168] M. GRÜNEWALD. Protokollverarbeitung mit integrierten Multiprozessoren in drahtlosen Ad-hoc-Netzwerken.

Universität Paderborn, Heinz Nixdorf Institut, Schaltungstechnik, 2007.

[169] J. FREEMAN. An Industry Analyst’s Perspective on Network Processors. In Network Processor Design: Issues

and Practices, vol.1, chapter 9, Editors: Crowley, P. and Franklin, M.A. and Hadimioglu, H. and Onufryk, P.Z.,

Morgan Kaufmann Publishers, pages 191–218, 2002.

[170] VERBAND DER ANBIETER VON TELEKOMMUNIKATIONS- UND MEHRWERTDIENSTEN (VATM).

http://www.vatm.de, July 2007.

[171] T. WOLF AND M. FRANKLIN . CommBench-a telecommunications benchmark for network processors. IEEE

International Symposium on Performance Analysis of Systems and Software ISPASS, pages 154–162, 2000.

[172] M.R. GUTHAUS, J.S. RINGENBERG, D. ERNST, T.M. AUSTIN, T. MUDGE AND R.B. BROWN. MiBench: A free,

commercially representative embedded benchmark suite. IEEE 4th Annual Workshop on Workload Characteri-

zation, pages 83–94, 2001.

[173] G. MEMIK, W.H. MANGIONE-SMITH AND W. HU. NetBench: a benchmarking suite for network processors. Pro-

ceedings of the 2001 IEEE/ACM international conference on Computer-aided design, pages 39–42, 2001.

[174] S. AUDENAERT AND P. CHANDRA. Network processors benchmark framework. NPF Benchmarking Workgroup.

[175] THE LINLEY GROUP. LinleyBench. http://www.linleygroup.com/benchmark, July 2007.

[176] P. CHANDRA, F. HADY , R. YAVATKAR , T. BOCK, M. CABOT AND P. MATHEW. Benchmarking Network Proces-

sors. Network Processor Design: Issues and Practices, vol. 1, pages 11–25, 2002.

Literaturverzeichnis

261

[177] B. K. LEE AND L. JOHN. NpBench: a benchmark suite for control plane and data plane applications for network

processors. Proceedings of the 21st International Conference on Computer Design, pages 226–233, 2003.

[178] C. SAUER, M. GRIES, S. SONNTAG AND I. TECHNOLOGIES. Modular Reference Implementation of an IP-DSLAM.

Computers and Communications, 2005. ISCC 2005. Proceedings. 10th IEEE Symposium on, pages 191–198,

2005.

[179] F. BAKER. RFC 1812, Requirements for IP Version 4 Routers. Vol. IETF Network Working Group, June 1995.

[180] X. NIE, L. GAZSI, F. ENGEL AND G. FETTWEIS. A new network processor architecture for high-speed communi-

cations. IEEE Workshop on Signal Processing Systems, SiPS 99, pages 548–557, 1999.

[181] J. WAGNER AND R. LEUPERS. C compiler design for a network processor. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 20, pages 1302–1308, 2001.

[182] S. SONNTAG, C. SAUER AND M. GRIES. Click/CRACK-A Programming Model for NP Platforms?. In 7th NPU

Workshop, Infineon Technologies, Corporate Research, Munich, November 2004.

[183] C. SAUER, M. GRIES AND S. SONNTAG. Modular domain-specific implementation and exploration framework

for embedded software platforms. Proceedings of the 42nd annual conference on Design automation, pages

254–259, 2005.

[184] E. KOHLER, R. MORRIS, B. CHEN, J. JANNOTTI AND M. F. KAASHOEK. The Click modular router. ACM Transac-

tions on Computer Systems, vol. 18, pages 263–297, August 2000.

[185] R. MORRIS, E. KOHLER, J. JANNOTTI AND M. F. KAASHOEK. The Click modular router. In Proceedings of the

17th ACM Symposium on Operating Systems Principles (SOSP '99), pages 217–231, Kiawah Island, South

Carolina, December 1999.

[186] E. KOHLER. The Click Modular Router. Massachusetts Institute of Technology, February 2001.

[187] THE CLICK MODULAR ROUTER PROJECT. http://pdos.csail.mit.edu/click, August 2005.

[188] MASSACHUSETTS INSTITUTE OF TECHNOLOGY. http://pdos.csail.mit.edu, August 2005.

[189] MAZU NETWORKS. http://www.mazunetworks.com, August 2005.

[190] INTERNATIONAL COMPUTER SCIENCE INSTITUTE. The ICSI Networking Group. http://www.icsi.berkley.edu,

August 2005.

[191] UCLA COMPUTER SCIENCE DEPARTMENT. http://www.cs.ucla.edu, August 2005.

[192] AGILENT TECHNOLOGIES. True Router Performance Testing. Application Notes, May 2000.

[193] LIBEROUTER. CESNET Liberouter, Programmable Hardware. http://www.liberouter.org, July 2007.

[194] I. KUON AND J. ROSE. Measuring the gap between FPGAs and ASICs. Proceedings of the 2006 ACM/SIGDA

14th international symposium on Field Programmable Gate Arrays, pages 21–30, 2006.

[195] T. T. YE AND G. DE M ICHELI. Physical Planning for Multiprocessor Networks and Switch Fabrics. In Interna-

tional Conference on Application-Specific Systems, Architectures and Processors, ASAP 2003, pages 97–107,

June 2003.

263

Eigene Veröffentlichungen

Ausgewählte, chronologisch:

Buchbeiträge

[104] M. GRÜNEWALD, J.-C. NIEMANN , M. PORRMANN AND U. RÜCKERT. A framework for design space exploration of

resource efficient network processing on multiprocessor SoCs. Morgan Kaufmann Publishers, vol.3, chapter 12,

pages 245–277, 2005.

Journalbeiträge

[131] J.-C. NIEMANN , C. PUTTMANN , M. PORRMANN AND U. RÜCKERT. Resource Efficiency of the GigaNetIC Chip

Multiprocessor Architecture. In Journal of Systems Architecture - the Euromicro Journal, Elsevier, 2006.

Patente

[159] J.-C. NIEMANN , C. SAUER, M. PORRMANN AND U. RÜCKERT. Flexibler Hardware-Beschleuniger zur Verarbei-

tung von Paketdaten und Prüfsummen zum Einsatz in kommunizierenden eingebetteten On-Chip-Systemen. Pa-

tentanmeldung, Erfindungsmeldung, München, Deutschland, Dezember 2005.

Begutachtete Konferenzbeiträge, international:

[10] M. PORRMANN, H. KALTE, U. WITKOWSKI, J.-C. NIEMANN AND U. RÜCKERT. A Dynamically Reconfigurable

Hardware Accelerator for Self-Organizing Feature Maps. In Proceedings of The 5th World Multi-Conference

on Systemics, Cybernetics and Informatics, SCI 2001, pages 242–247, Orlando, Florida, USA, July 2001. Best

Paper Award

[138] J.-C. NIEMANN , U. WITKOWSKI, M. PORRMANN AND U. RÜCKERT. Extension Module for Application-Specific

Hardware on the Minirobot Khepera. In Autonomous Minirobots for Research and Edutainment (AMiRE 2001),

pages 279–288, Paderborn, Germany, 22-24 October 2001.

[14] A. BRINKMANN , J.-C. NIEMANN , I. HEHEMANN, D. LANGEN, M. PORRMANN AND U. RÜCKERT. On-Chip Inter-

connects for Next Generation System-on-Chips. In Proc. of the 15th Annual IEEE International ASIC/SOC Con-

ference, pages 211–215, Rochester, NY, USA, September 2002.

[108] D. LANGEN, J.-C. NIEMANN , M. PORRMANN, H. KALTE AND U. RÜCKERT. Implementation of a RISC Processor

Core for SoC Designs – FPGA Prototype vs. ASIC Implementation. In Proc. of the IEEE-Workshop: Heteroge-

neous reconfigurable Systems on Chip (SoC), Hamburg, Germany, 2002.

[116] M. GRÜNEWALD, J.-C. NIEMANN AND U. RÜCKERT. A performance evaluation method for optimizing embedded

applications. In Proceedings of the 3rd IEEE International Workshop on System-On-Chip for Real-Time Appli-

cations, pages 10–15, Calgary, Alberta, Canada, June 2003.

Eigene Veröffentlichungen

264

[6] O. BONORDEN, N. BRÜLS, D. K. LE, U. KASTENS, F. MEYER AUF DER HEIDE, J.-C. NIEMANN , M. PORRMANN, U.

RÜCKERT, A. SLOWIK AND M. THIES. A holistic methodology for network processor design. In Proceedings of the

Workshop on High-Speed Local Networks held in conjunction with the 28th Annual IEEE Conference on Local

Computer Networks, pages 583–592, Königswinter, Germany, 20-24 October 2003.

[102] M. GRÜNEWALD, J.-C. NIEMANN , M. PORRMANN AND U. RÜCKERT. A framework for design space exploration of

resource efficient network processing on multiprocessor SoCs. In Proc. of the 3rd Workshop on Network Proc-

essors & Applications, pages 87–101, Madrid, Spain, 2004.

[103] M. GRÜNEWALD, J.-C. NIEMANN , M. PORRMANN AND U. RÜCKERT. A mapping strategy for resource-efficient

network processing on multiprocessor SoCs. In Proc. of DATE: Design, Automation and Test in Europe, pages

758–763, CNIT La Défense, Paris, France, 2004.

[111] M. GRÜNEWALD, U. KASTENS, D. K. LE, J.-C. NIEMANN , M. PORRMANN, U. RÜCKERT, M. THIES AND A. SLOWIK.

Network Application Driven Instruction Set Extensions for Embedded Processing Clusters. In PARELEC 2004,

International Conference on Parallel Computing in Electrical Engineering, pages 209–214, Dresden, Germany,

2004.

[141] G. HAGEN, J.-C. NIEMANN , M. PORRMANN, C. SAUER, A. SLOWIK AND M. THIES. Developing an IP-DSLAM

Benchmark for Network Processor Units. In ANCHOR 2004, Advanced Networking and Communications

Hardware Workshop, held in conjunction with the 31st Annual International Symposium on Computer Architec-

ture (ISCA 2004), Munich, Germany, 2004.

[117] J.-C. NIEMANN , M. PORRMANN AND U. RÜCKERT. A Scalable Parallel SoC Architecture for Network Processors.

In IEEE Computer Society Annual Symposium on VLSI 2005 (ISVLSI 2005), IEEE Computer Society Press,

pages 311–313, Tampa, Fl., USA, 11-12 May 2005.

[118] J.-C. NIEMANN , M. PORRMANN, C. SAUER AND U. RÜCKERT. An Evaluation of the Scalable GigaNetIC Architec-

ture for Access Networks. In Advanced Networking and Communications Hardware Workshop (ANCHOR),

held in conjunction with the ISCA 2005, Madison, Wi., USA, 4-8 July 2005.

[114] R. EICKHOFF, J.-C. NIEMANN , M. PORRMANN AND U. RÜCKERT. Adaptable Switch boxes as on-chip routing

nodes for networks-on-chip. From Specification to Embedded Systems Application, International Embedded

Systems Symposium (IESS), A. Rettberg , M. C. Zanella and F. J. Rammig Ed., pages 201–210, Manaus, Brazil,

15-17 August 2005.

[115] B. JÄGER, J.-C. NIEMANN AND U. RÜCKERT. Analytical approach to massively parallel architectures for

nanotechnologies. In Proceedings of the 17th International Conference on Application-Specific Systems, Archi-

tecture and Processors (ASAP 2005), IEEE Computer Society Press, pages 268–275, 2005.

[126] C. SAUER, M. GRIES, S. DIRK, J.-C. NIEMANN , M. PORRMANN AND U. RÜCKERT. A Lightweight NoC for the

NOVA Packet Processing Platform. In Design, Automation and Test in Europe DATE, Future Interconnect and

Network-on-Chip (NoC) Workshop, Munich, Germany, 6-10 March 2006.

[109] J.-C. NIEMANN , C. PUTTMANN , M. PORRMANN AND U. RÜCKERT. GigaNetIC – A Scalable Embedded On-Chip

Multiprocessor Architecture for Network Applications. In ARCS'06 Architecture of Computing Systems, pages

268–282, 13-16 March 2006. Best Paper Award

[140] M. PORRMANN AND J.-C. NIEMANN . Teaching Reconfigurable Computing-Theory and Practice. In International

Workshop on Reconfigurable Computing Education, March 2006.

Eigene Veröffentlichungen

265

[119] C. SAUER, M. GRIES, J.-C. NIEMANN , M. PORRMANN AND M. THIES. Application-driven Development of Concur-

rent Packet Processing Platforms. In 5th International Symposium on Parallel Computing in Electrical Engineer-

ing, Bialystok, Poland, 2006.

[113] J.-C. NIEMANN , C. L Iß, M. PORRMANN AND U. RÜCKERT. A Multiprocessor Cache for Massively Parallel SoC

Architectures. In ARCS'07 Architecture of Computing Systems, pages 83–97, Zurich, Switzerland, 12-15 March

2007.

[110] C. PUTTMANN , J.-C. NIEMANN , M. PORRMANN AND U. RÜCKERT. GigaNoC – A Hierarchical Network-on-Chip

for Scalable Chip-Multiprocessors. In 33rd EUROMICRO Conference on Digital System Design DSD, pages

495–502, Lübeck, Germany, 27-31 August 2007.

Begutachtete Konferenzbeiträge, national:

[130] J.-C. NIEMANN , M. PORRMANN AND U. RÜCKERT. Parallele Architekturen für Netzwerkprozessoren. In Ambient

Intelligence, VDE Kongress, VDE Verlag, pages 105–110, Berlin, Germany, 18-20 Oktober 2004.

267

Anhang A (GigaNetIC-C-Bibliotheksfunktionen)
Die folgende Abbildung eines C-Codebeispiels zeigt, wie die GigaNoC-Funktionen nach Einbin-
dung der giganetic.h C-Bibliothek in benutzerspezifischen Anwendungen genutzt werden können:

#include <stdio.h>
#include <giganetic.h>
int main()
{
 unsigned int *packet_addr;
 unsigned int *ack;
 unsigned int data;
 unsigned short packet_length;
 unsigned int start_time, stop_time;

 // initialisiere Zeitgeber für Cluster 6 zum gena uen Profiling
 gn_timer_init(6,-1);
 // warte auf Paket
 packet_addr = (unsigned int *) gn_wait_for_packet();
 // erhalte Zeiger auf das zugewiesene Paket
 while (!packet_addr)
 packet_addr = (unsigned int *) gn_wait_for_packet();
 // identifiziere Paketlänge
 packet_length = *(((volatile unsigned short *)packet_addr)+5);
 // Anweisung für den Communication-Controller, da s Paket an einen HW-Beschleuniger zu
 // versenden. Die Adressierung enthält bereits St euerbefehle für den
 // "Memory Mapped-I/O"-Hardwarebeschleuniger
 *packet_addr = 0x80190039;
 gn_print("Sending packet to CC_HW_ACC\n");
 // Profiling-Kommando zur taktgenauen Zeitmessung
 start_time = gn_timer_get_counter();
 // Versendung des Pakets Nr. 1 an einen benachbar ten Cluster
 gn_send_data(0,-1,6,1,packet_length+14,packet_addr);
 // warte auf erfolgreiche Versendung des Pakets N r. 1
 ack = gn_get_ack(1);
 while (!ack)
 ack = gn_get_ack(1);
 // Profiling Kommando zur taktgenauen Zeitmessung
 stop_time = gn_timer_get_counter();
 // gibt den Paketspeicher des CC des Pakets frei
 gn_free_packet(packet_addr);
 return 1;
}

Abbildung Anhang A-1: Codebeispiel zur Verwendung elementarer GigaNoC-Bibliotheksfunktionen

Die GigaNoC-Bibliotheksfunktionen sind an dem vorangestelltem gn_ zu erkennen und in dem
Beispiel fett gedruckt. Alle zur Verfügung stehenden Funktionen der Bibliothek können hier aus
Platzmangel nicht erläutert werden, sind aber auf der GigaNetIC-Linux-Live-CD (vgl. Abschnitt
4.8) im Softwareverzeichnis enthalten und detailliert kommentiert.

Abbildung Anhang A-2 zeigt den Aufbau der Befehle, die seitens der Prozessorkerne an den Com-
munication-Controller der Switch-Box gesendet werden können. Die Befehle sind in der Adresse
kodiert. Adressen die mit „E“ oder „F“ im obersten Oktett beginnen sind für diese Kommandos re-
serviert. Dies reduziert die theoretisch adressierbare Speichergröße pro Cluster auf 3,5 GByte, was
für den Einsatz der Architektur in Chip-Multiprozessoren derzeit mehr als ausreichend ist. Bei den
Befehlen handelt es sich sowohl um Abfragen (ldw-Befehl) seitens der Prozessoren, als auch um
Schreibzugriffe (stw-Befehl). Die Daten, die bei Lesezugriffen zurückgeliefert werden beinhalten
die angeforderte Information, die vom Communication-Controller der anfragenden CPU übermittelt
wird (wie z. B. Registerauslastung oder die Paketadresse bei einer Empfangsabfrage). Bei Schreib-

Anhang A

268

zugriffen wird die entsprechende Paketadresse als Datum übertragen, um so z. B. ein bestimmtes
Paket zum Zielknoten im NoC zu versenden oder den durch ein Paket belegten Speicher wieder frei
zu geben. Beim Versand eines Pakets entspricht die Kodierung der Zielkoordinaten dem GigaNoC-
Protokoll (vgl. Abschnitt 4.2.2). Die Aufträge zum Versenden einzelner Pakete werden im CC in
FIFO-Strukturen abgelegt und sequentiell abgearbeitet. Die drei dunkel hinterlegten Abfragen stel-
len blockierende Anfragen an den Communication-Controller dar. Diese werden bei der Wishbone-
Bus-basierten Variante aufgrund der Spezifikation dieses Bussystems nicht unterstützt. Bei anderen
Bussystemen, wie z. B. dem ebenfalls implementierten AMBA-Bus sind diese zulässig und können
genutzt werden. Bei einer Spezialabfrage handelt es sich um eine Kombination aus Versand- und
Empfangsabfrage. Um die Performanz des Systems zu steigern wird mit dieser Abfrage zum einen
überprüft, ob ein in Auftrag gegebenes Paket versendet worden ist (Versandabfrage) und zum ande-
ren ggf. eine neue Paketadresse eines zu bearbeitenden Pakets zurückgegeben (Empfangsabfrage).
So können zwei Aufgaben mit einer Transaktion erledigt werden. Die Füllstandsabfrage ermöglicht
den Prozessoren eine Bestandsaufnahme der derzeitigen Systemlast und kann für Load-balancing-
Aufgaben herangezogen werden. Diese Befehle werden, für den Softwareentwickler transparent,
durch die oben gezeigten GigaNetIC-Bibliotheksfunktionen aufgerufen. Die Struktur der CC-
Kommandos lässt noch weitere Befehle für den Communication-Controller zu, so dass auf zukünf-
tige Anforderungen flexibel reagiert werden kann. Bei negativer Quittierung einer Abfrage wird
NULL, also der Null-Vektor (0x0) zurückgegeben, der eindeutig von einer gültigen Adresse unter-
schieden werden kann, da die Basis des Paketspeichers bei Adresse 0x40000000 liegt (vgl. Abbil-
dung 4-18).

Abbildung Anhang A-2: Befehlsübersicht des Communication-Controllers

N
-C

o
re

-B
e

fe
h

l
st

w
ld

w

269

Anhang B (Parametrisierbarkeit der GigaNetIC-Architektur)
Die folgenden Parameter sind die wichtigsten generisch gehaltenen Konstanten des GigaNetIC-
Systems, die in den VHDL-Design-Packages der jeweiligen Design-Bibliothek enthalten sind. Die
relativ große Anzahl gibt bereits einen kleinen Eindruck von der Komplexität, die der Entwurf eines
skalierbaren flexiblen Chip-Multiprozessors mit sich bringt.

Globales GigaNetIC-System

• CLUSTER_PER_ROW: Anzahl der Cluster bzw. Switch-Boxen in x-Dimension (1 bis beliebig)

• CLUSTER_PER_COL: Anzahl der Cluster bzw. Switch-Boxen in y-Dimension (1 bis beliebig)

• NUM_OF_PE: Legt die Anzahl der Prozessorelemente pro Cluster fest (derzeit realisierbar: 1 bis 8).

• NUM_OF_ETH: Legt die Anzahl der Ethernet-Ports pro Cluster fest (derzeit realisierbar: bis 4).

Switch-Box

• NUMBER_OF_PORTS: Anzahl der I/O-Ports der Switch-Box.

• LOG_NUMBER_OF_PORTS: Ganzzahliger Zweierlogarithmus des Wertes NUMBER_OF_PORTS. Dieser Wert

dient der generischen Dimensionierung der Steuerleitungen der Multiplexer.

• DATA_WIDTH: Dieser Parameter legt die physikalische Breite eines Flits fest. Er ist von vielen der bereits erwähn-

ten Parameter, die das Format des Flitkopfes sowie des Flitrumpfes betreffen, abhängig (vgl. Abschnitt 4.2.2). Des-

halb sind die entsprechenden Regeln bei der Änderung dieses Wertes zu befolgen.

• FIFO_DEPTH: Gibt die Tiefe der einzelnen FIFO-Ketten in den Ports der Switch-Box an und bestimmt somit die

Größe des Warteraums.

• COST_WIDTH: Breite der Kostentabelle für ein entsprechendes Routing-Verfahren.

• COMMAND_WIDTH: Breite des Kommandoteils im Flitkopf (vgl. Abschnitt 4.2.2).

• X_WIDTH: Breite der X-Koordinate im Flitkopf. Sie besteht aus einem Vorzeichenbit und einer binär kodierten

Zahl. Die Zahl entspricht den Netzwerkknoten, die das Flit in Richtung der X-Achse durchlaufen muss. Bei einem

Netzwerk von 8×8-Knoten ist eine Breite von 4 notwendig.

• Y_WIDTH: Die Breite der Y-Koordinate, verhält sich analog zu X_WIDTH. Sie sind unabhängig voneinander ein-

stellbar, um auch unsymmetrische Netzwerkdimensionen zuzulassen.

• FLIT_ID_WIDTH: Kennzeichnet im Flitkopf die Identifikationsnummer des Flits innerhalb eines Pakets. Mit dieser

Größe sind Pakete mit bis zu 16 KB Nutzdaten möglich. Die Bearbeitung der größten auftretenden DSL-Pakete von

9000 Byte führte zu dem derzeitigen Wert 11.

• FLOW_ID_WIDTH: Die Flow-ID wird benötigt, um ein Paket eindeutig zu kennzeichnen. Dabei genügt es, eine ID

für jeden Absender zu vergeben. Es ist also eine Nummer pro Switch-Box und Eingang des Netzwerks erforderlich.

Bei einem 4×4-Gitter sind das maximal 32 Absender, die in fünf Bit kodiert werden können.

• CPU_ID_WIDTH: Die ID einer CPU setzt sich aus der Nummer des N-Cores und der Paketnummer zusammen.

Damit ist ein Paket unverwechselbar in dem Sende-FIFO des Communication-Controllers markiert. Die CPU kann

unter Angabe der CPU ID erfragen, ob das Paket mit dieser Nummer vollständig versendet wurde. Der derzeitige

Wert 6 entspricht der Minimalbreite, um eine eindeutige Identifizierung zu ermöglichen.

Anhang B

270

• ADDR_WIDTH: Legt für den CC die Größe des Speichers für die Eingangspakete fest. Derzeit ist die Breite 15. Es

können also 215 Flit-Nutzdaten à 8 Byte im Speicher abgelegt werden. Das entspricht einer Datenmenge von

256 KByte bei einer maximalen Paketgröße von 16 KByte.

• ADDR_FIFO_DEPTH: Die eingehenden Pakete werden vom Communication-Controller im Speicher abgelegt.

Damit eine Verarbeitungseinheit mit einem Paket arbeiten kann, muss sie eine Anfrage an den CC stellen, ob ein

Paket vorliegt. Ist dies der Fall, so erhält sie die Startadresse des Pakets, um es aus dem Speicher zu lesen. Diese

Anfragen der Prozessoren sind nicht deterministisch einplanbar. Es ist also zu erwarten, dass sich zeitweise mehre-

re Pakete aufstauen können. Die Startadressen dieser Pakete legt der CC in einer FIFO-Registerkette ab, deren Tie-

fe mit ADDR_FIFO_DEPTH eingestellt wird. Um mehrere Pakete pro Prozessor gleichzeitig verwalten zu können,

ist die Tiefe derzeit mit 16 eingestellt und erlaubt bei vier Prozessoren im Cluster je vier Speicherplätze in dem Ad-

ress-FIFO.

• SEND_FIFO_DEPTH: Der Communication-Controller kann Pakete nur sequentiell verschicken, so dass sich Ver-

sandaufträge aufstauen können. Da die Prozessoren möglichst unbelastet vom Versendeprozess bleiben sollen,

muss ein gewisser Warteraum für diese Aufträge eingerichtet werden. Damit wird die Gefahr reduziert, dass CPUs

aufgrund einer ausgelasteten Sendeeinheit Anfragen mehrmals stellen müssen. Die Tiefe dieses Sende-FIFOs ist

derzeit auf 16 gesetzt.

• MEMORY_WIDTH: Der Communication-Controller ist hauptsächlich mit dem Empfang und Versand von Paketen

beschäftigt. Er muss also ständig auf den Speicher zugreifen. Damit er nicht permanent den Bus belastet, sondern

ein passiver Busteilnehmer bleibt, wird ein Dual-Ported-Speicher verwendet. Dieser hat zwei unabhängige Ports,

die gleichzeitig benutzt werden können. So kann er als Slave an den Bus angeschlossen werden und ist damit den

Prozessoren zugänglich. Der zweite Anschluss ist direkt mit dem CC verbunden. Die Breiten der Daten- und Ad-

ressleitungen müssen nicht zwangsläufig an beiden Ports übereinstimmen. Während die Breite der Adresse für den

Port am Bus mit BUS_ADDRESS_WIDTH definiert ist, ist für den Anschluss des CCs ein eigener Parameter ME-

MORY_WIDTH erforderlich.

• BUS_ADDRESS_WIDTH: Die Breite der Adressen, die ein Bussystem verwalten kann, ist nicht zwangsläufig bei

allen Bussen gleich. Aus diesem Grund wird die Größe der Adressweite generisch gehalten, so dass das Giga-

NetIC-System weitestgehend unabhängig von der Struktur des lokalen Busses ist. Die derzeitige Implementierung

sieht 32-Bit-breite Busadressen, passend für AMBA und Wishbone (vgl. Abschnitt 4.2.4), vor.

• BUS_DATA_WIDTH: Stellt die Datenbreite des Busses ein und ist derzeit zu 32 Bit gewählt, da der N-Core-

Prozessor (vgl. Abschnitt 4.3.1) ebenfalls mit 32-Bit-breiten Daten arbeitet. Durch diesen Parameter ist das Giga-

NetIC-System leicht an andere Prozessorkerne anpassbar.

Wishbone-Bus-Deklarationen

• WB_ADDR_WIDTH: Breite des Wishbone-Adressbusses (derzeit 32).

• WB_DATA_WIDTH: Breite des Wishbone-Datenbusses (derzeit 32).

• WB_SEL_WIDTH: Breite des Select-Busses zur Auswahl der Busteilnehmer (derzeit 4).

AMBA-Bus-Deklarationen

• AMBA_BUS_WIDTH: Breite der AMBA-Daten-Busse (von 32 bis 1024).

• NO_OF_MASTERS: Bestimmt die Anzahl der Master im System (von 1 bis 16, je 1 Master pro Layer).

• NO_OF_SLAVES: Legt die Anzahl der Slaves mit einem oder mehr Ports im System fest (von 1 bis 16).

Anhang B

271

• NO_OF_PORTS: Ist die Gesamtzahl der Ports aller Slaves (von 1 bis 16).

• WRITE_BUS_WIDTH: Festlegung der Breite der Write-Busse (von 8 bis 1024).

• READ_BUS_WIDTH: Legt die Breite der Read-Busse fest (von 8 bis 1024).

• ADDR_WIDTH: Definiert die Breite der Adressen im System (von 8 bis 1024).

GigaNetIC-Multiprozessor-Cache

• UNIPROCESSOR_SYSTEM: Legt fest, ob ein Einprozessor-Cache oder ein Multiprozessor-Cache instantiiert wird.

• SPLIT_CACHE: Legt fest, ob ein Split-Cache generiert wird oder eine Unified-Cache-Architektur zum Einsatz

kommt. Beim Unified-Cache wird die Datencachestruktur verwendet.

• D_LINE_WIDTH: Gibt die Anzahl der Bits pro Daten-Cache-Line an (von 32 bis 1024).

• D_ASSOC: Beziffert die Assoziativität des Daten-Caches (von 2 bis 32).

• D_NO_OF_LINES: Anzahl der Daten-Cache-Lines (>= 8, je mit Vielfachem von 4).

⇒ Daten-Cache-Größe [Bit] = D_LINE_WIDTH * D_ASSOC * D_NO_OF_LINES

• I_LINE_WIDTH: Gibt die Anzahl der Bits pro Instruktions-Cache-Line an (von 32 bis 1024).

• I_ASSOC: Beziffert die Assoziativität des Instruktions-Caches (von 2 bis 32).

• I_NO_OF_LINES: Anzahl der Instruktions-Cache-Lines (>= 8, mit je Vielfachem von 4).

⇒ Instruktions-Cache-Größe [Bit] = I_LINE_WIDTH * I_ASSOC * I_NO_OF_LINES

N-Core

• CPU_ID: 32-Bit-breite, eindeutige Identifikationsnummer, die dem Prozessorkern zugewiesen wird. Sie wird direkt

an den GSR-Eingangsport des Prozessors angelegt und ist Bestandteil des N-Core-Registersatzes. Dies ermöglicht

einen schnellen Zugriff im Programmcode zur Feststellung der jeweiligen Prozessorinstanz.

• INT_WIDTH: Bestimmt die Anzahl der externen Interrupt-Signale. Die Breite des Interrupt-Eingangsvektors und

das PIC-Modul werden hierdurch angepasst. Derzeit wird lediglich der Interrupt des Timer-Moduls genutzt.

• RAM_WIDTH: Entspricht der benötigten Breite des Speicher-Adressbusses und leitet sich von der verwendeten

Speichergröße ab. Ist das Prozessorsystem z. B. mit 32-KB-Speicher ausgestattet, ist RAM_WIDTH = 13 (213×32

Bit = 32 KB).

• MEM_FILE: Legt den Dateinamen des Speicherabbilds fest und wird nur bei der Simulation ausgewertet. Zu Be-

ginn der Simulation wird diese Speicherabbilddatei zur Initialisierung des N-Core-Programmspeichers geladen.

Hardwarebeschleuniger

• NUM_OF_HW_ACC: Anzahl der an die Switch-Box angeschlossenen Hardwarebeschleuniger.

• NUM_OF_WBM_HW_ACC: Anzahl der an den lokalen Bus angeschlossenen Hardwarebeschleuniger.

Speicher

• PE_MEM: Speicher pro CPU, beinhaltet generische Anpassung der Adressleitungen etc. (25 = 32 KByte).

• SB_MEM: Speicher der Switch-Box, generische Anpassung der Adressleitungen etc. (25 = 32 KByte).

• ETH_MEM: Speicher pro CPU, generische Anpassung der Adressleitungen etc. (24 = 16 KByte).

Anhang B

272

Wie bereits erwähnt handelt es sich hier nur um eine Auswahl der wichtigsten, variierbaren Parame-
ter des GigaNetIC-Systems. Für einen vollständigen Eindruck ist der im Versionsverwaltungssys-
tem des Heinz Nixdorf Instituts abgelegte Quellcode einzusehen.

273

Anhang C (Ablauf der Kommunikation auf Switch-Box-Ebene)
Tabelle Anhang C-1 schildert den zeitlichen Ablauf einer Paketinjektion seitens eines Prozessors
und die Terminierung am Zielknoten in einer benachbarten Switch-Box. Abbildung Anhang C-1
zeigt die hierfür angenommene Hardwarestruktur zur Erläuterung.

Tabelle Anhang C-1: Beispielhafter Ablauf einer Paketinjektion seitens eines Prozessors und dessen Terminie-

rung in einer anderen Switch-Box

Zeit Vorgang
1. Takt Die Anfrage eines N-Cores wird im Sende-FIFO gespeichert.
2. Takt Der Sendevorgang beginnt. Die Adresse des ersten Flits liegt am Speicher an.
3. Takt Die Daten des ersten Flits liegen am Speicherausgang und werden an den

OUTPUT_BUFFER ausgegeben.
4. Takt Das Flit steht im Eingangsregister der Eingangsports der Switch-Box 5.
5. Takt Das Flit wird in die FIFO-Schlange für Ausgang 3 übernommen.
6. Takt Das Flit steht im Puffer hinter der FIFO-Kette und wird durch die Crossbar an die

Switch-Box 6 geleitet.
7. Takt Das Flit steht im Eingangsregister des Eingangsports in Switch-Box 6.
8. Takt Das Flit wurde in die FIFO-Schlange für Ausgang 0 übernommen.
9. Takt Das Flit steht im Puffer hinter der FIFO-Kette und wird durch die Crossbar an den

Communication-Controller geleitet.
10. Takt Das Flit steht im Eingangsregister der CC.
11. Takt Das Flit wird in das Adressregister des CCs übernommen, und die Daten werden im

Speicher angelegt.

Abbildung Anhang C-1: Die dem in Tabelle Anhang C-1 beschriebenen Ablauf

der Paketinjektion zugrunde liegende Hardwarestruktur

CC

DATA I/O

0

CC

DATA I/O

BU
S/
SP
EI
CH
ER

BU
S/
SP
EI
CH
ER

S
W
IT
C
H
-B

O
X

S
W
IT
C
H
-B

O
X

0

275

Anhang D (Instruktionssatz des N-Cores)
Instruktionssatz

Der S-Core und folglich der N-Core verfügen über eine dreistufige Pipeline. Instruktionen werden
geholt, anschließend dekodiert und die benötigten Register adressiert. In der letzten Stufe werden
die Operationen ausgeführt und die Ergebnisse zurückgeschrieben.

Der Originalinstruktionssatz des S-Cores verfügt über arithmetische und logische Instruktionen,
Befehle für Bitoperationen, Byte-Extraktion, Schiebe-, Lade-, Speicher- und Sprungbefehle.

Er lässt sich in drei verschiedene Instruktionstypen einteilen:

1. Register-zu-Register-Instruktionen

a) Bei der Ein-Registeradressierung spezifizieren die untersten vier Bit des Be-
fehlswortes (rx-Feld) das Quell-/Zielregister. Folgende Instruktionen bedienen sich
dieses Instruktionsformats: abs, asrc, brev, clrf, clrt, decf, decgt, declt, decne, dect,
ff1, incf, inct, lslc, lsrc, mvc, mvcv, not, sextb, sexth, tstnbz, xsr, zextb und zexth.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode rx

b) Dyadische Registeradressierung wird bei den Befehlen addc, andda, and, andn, asr,
bgenr, cmp[hs,lt,ne], ixh, ixw, lsl, lsr, mov, movf, movt, mult, or, rsub, subc, subu, tst
und xor benutzt. Die rx- und ry-Felder bezeichnen dabei ein Quell- und ein weiteres
Quell- oder Zielregister.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode ry rx

c) Einregisterbefehle mit einem fünf Bit langen immediate-Feld: Das vier Bit große Re-
gisterfeld rx stellt das zu verwendende Quell-/Zielregister. Das fünf Bit lange imme-
diate-Feld spezifiziert bei den Befehlen andi, asri, bclri, bgeni, bmaski, bseti, btsti,
cpmnei, lsli, lsri, rotli und rsubi den zweiten Operanden als einen vorzeichenlosen
immediate-Wert. Bei den Instruktionen addi, subi und cmplti wird dieser immediate-
Wert so dekodiert, dass ein Wertebereich zwischen 1 und 32 abgedeckt wird.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode Imm5 rx

d) Registerbefehle mit einem sieben Bit langen immediate-Feld: Bei diesem Adressie-
rungsformat für die movi-Instruktion ist das vier Bit breite rx-Feld das Zielregister
und das sieben Bit große immediate-Feld ist der vorzeichenlose Wert.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode Imm7 rx

Anhang D

276

e) Kontrollregisteradressierung wird bei den Befehlen mfcr und mtcr eingesetzt. Dabei
ist das vier Bit breite rx-Feld das normale Quell-/Zielregister und das fünf Bit breite
CReg Feld das Kontrollregister.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode CReg rx

2. Speicherzugriffsinstruktionen mit

a) 4-Bit-immediate-Adressierung: Diese wird bei den ld- und st-Instruktionen verwen-
det. Der Wert aus dem im rx-Feld definierten Register plus den vorzeichenlosen
Wert aus imm4 ergibt die Zugriffsadresse. Das rz-Feld ist das Quellregister für den
Speicherbefehl bzw. das Zielregister für den Ladebefehl.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode Rz Imm4 rx

b) Laden und Speichern eines zusammenhängenden Registerbereichs. Das rx-Feld defi-
niert den Startpunkt im Speicher, an dem die Register r4 bis r7 gespeichert oder ge-
laden werden. Nur die ldq- und stq-Anweisungen verwenden diesen Modus.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode rx

c) Laden und Speichern mehrerer Register. Die durch das rf-Feld spezifizierten Regis-
ter werden entweder ab der in Register r0 definierten Speicheradresse gespeichert
oder von der in Register r0 definierten Adresse geladen. Diesen Modus verwenden
die Instruktionen ldm und sdm.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode rf

d) Laden eines relativen Wortes ist mit der Instruktion lrw möglich. Dazu wird der
disp8 Wert um 2 Stellen nach links geschoben und zum nächsten PC-Wert hinzuad-
diert. Das Ergebnis ist die Speicheradresse, von der das Wort geladen und dann in
das rz-Register abgelegt wird. (Register r0 und r15 dürfen nicht verwendet werden.)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode Rz disp8

3. Kontrollfluss-Instruktionen

a) 11-Bit-Verschiebung. Die Sprungadresse bei den Instruktionen br, bf, bt und bsr
wird wie folgt berechnet: disp11 wird durch ein Linksschieben mit zwei multipliziert
und dem Wert des nächsten Programmzählers (PC+2) hinzuaddiert.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode disp11

Anhang D

277

b) Registeradressierung. Bei den Instruktionen jmp und jsr ist durch das 4-Bit-rx-Feld
die Sprungadresse vorgegeben.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode rx

c) Indirekte Adressierung. Die jmpi- und jsri-Anweisungen verwenden dieses Format,
um ein 32-Bit-Wort relativ zum Programmzähler (PC) zu adressieren.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode dipl8

d) Negative 4-Bit-Verschiebung. Die loopt-Anweisung verwendet diese Adressierungs-
art zur Berechnung der effektiven Adresse. Dabei wird die Zieladresse mittels Addi-
tion des nächsten Werts des Programmzählers und des vier Bit langen disp4-Wertes,
der zuvor mit 1 zum negativen Wert erweitert und um ein Bit nach links geschoben
wurde, berechnet.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode disp4 rx

Abbildung Anhang D-1 zeigt den verbliebenen freien Opcode-Bereich des N-Core-Prozessorkerns.
Zusätzlich implementierte Superinstruktionen sind namentlich aufgeführt und reduzieren die An-
zahl verfügbarer Befehlsworte, so dass nunmehr maximal noch 725 einfache Instruktionen, die in
zehn separaten Binärbereichen liegen, hinzugefügt werden können.

Abbildung Anhang D-1: Freier Opcode-Bereich und verwendeter Bereich für die zusätzlich implementierten

Instruktionssatzerweiterungen des N-Cores

min max #Stellen 1r || imm4 2r || 1r+imm4 1r+imm<4 1r+imm>4

0000000000000000 0000000000000000 0000000000000000 0111011101110111 1111 1 0000 0 0 0 0
0000000000000000 0000000000000000 0000000000000000 11xx11xx11xx11xx 1111 4 2 0 0 0 0
0000000000000000 0000000000000000 0010001000100010 xxxxxxxxxxxxxxxx 1111 16 4 1 0 0 0
0000000000000000 1000100010001000 mem[mem[mem[mem[RYRYRYRY]]]] RXRXRXRX xorldwxorldwxorldwxorldw
0000000000000000 1001100110011001 mem[mem[mem[mem[RYRYRYRY]]]] RXRXRXRX xorldwlsl8xorldwlsl8xorldwlsl8xorldwlsl8
0010001000100010 011 i011 i011 i011 i i i i ii i i ii i i ii i i i r r r rr r r rr r r rr r r r 1111 512 9 32 2 4 1
0010001000100010 1100110011001100 001x001x001x001x r r r rr r r rr r r rr r r r 1111 32 5 2 0 1 0
0010001000100010 1100110011001100 01xx01xx01xx01xx r r r rr r r rr r r rr r r r 1111 64 6 4 0 1 0
0011001100110011 0010001000100010 0000000000000000 r r r rr r r rr r r rr r r r 1111 16 4 1 0 0 0
0011001100110011 0010001000100010 001x001x001x001x r r r rr r r rr r r rr r r r 1111 32 5 2 0 1 0
0011001100110011 0010001000100010 010x010x010x010x r r r rr r r rr r r rr r r r 1111 32 5 2 0 1 0
0011001100110011 0010001000100010 0110011001100110 r r r rr r r rr r r rr r r r 1111 16 4 1 0 0 0

010010010010RYRYRYRY RYRYRYRY 0000 CCCC RXRXRXRX andshrandshrandshrandshr
010RY010RY010RY010RY RYRYRYRY 1111 CCCC RXRXRXRX ixwandshrixwandshrixwandshrixwandshr

0110011001100110 1000100010001000 RYRYRYRY RXRXRXRX orshl8orshl8orshl8orshl8
0110011001100110 1001100110011001 RYRYRYRY RXRXRXRX orshl16orshl16orshl16orshl16
0110011001100110 1010101010101010 RYRYRYRY RXRXRXRX orshl24orshl24orshl24orshl24
0110011001100110 1011101110111011 RYRYRYRY RXRXRXRX ldwixwldwixwldwixwldwixw
0110011001100110 11 11 11 11 CCCC RYRYRYRY RXRXRXRX ldwaddildwaddildwaddildwaddi
Total 10 725 45 2 8 1

Opcode

Anhang D

278

Im Folgenden werden die Funktionsweisen der zusätzlichen N-Core-Befehle kurz vorgestellt:

In (9.1) wird die Funktionsweise des Befehls ANDSHR dargestellt, der Inhalt des RX-Registers wird
zunächst um eine Konstante C nach rechts geschoben und im Anschluss bitweise mit dem Inhalt
von Register RY und-verknüpft. Das Ergebnis der Operation wird nach RX zurückgeschrieben. Die
Operation benötigt anstatt ursprünglich zwei nur noch einen Takt.

 (): ANDSHR RX RX C AND RY← ≫ (9.1)

(9.2) erläutert die Instruktion IXWANSHR. Der Inhalt von Register RX wird um C nach rechts ge-
schoben mit dem Inhalt von RY und-verknüpft, um 2 nach links geschoben und abschließend mit
dem Inhalt von R1 aufsummiert. Das Ergebnis der Operation wird nach RX zurückgeschrieben. Die
Operation benötigt einen Takt. Die ursprüngliche Funktionsabfolge benötigte drei Tatke.

 ()()(): 1 2IXWANDSHR RX R RX C AND RY← + ≫ ≪ (9.2)

Bei LDWADDI (9.3)wird zu dem durch RY adressierten Speicherinhalt eine Konstante C hinzuad-
diert und das Ergebnis innerhalb von zwei an Stelle von drei Takten in Register RX abgelegt.

 []: LDWADDI RX mem RY C← + (9.3)

Die LDWIXW-Instruktion (9.4) lädt einen Wert der durch die Summe des RX-Registerinhalts und
den um zwei nach links geschobenen Inhalt des RY-Registers adressiert wird aus dem Speicher ins
RX-Register. Die benötigte Taktzahl wird von ursprünlich drei auf zwei Takte reduziert.

 (): 2LDWIXW RX mem RX RY← +  ≪ (9.4)

Innerhalb eines Taktes ermöglicht der ORSHL8,16,24-Befehl (9.5) eine bitweise Veroderung des
RX-Registerinhaltes mit dem um wahlweise um 8, 16 oder 24 Bit geschobenen Inhalt des RY-
Registers. Das Ergebnis wird einen Takt schneller als im Original S-Core ins RX-Register geschrie-
ben.

 ()()8,16, 24 : 8,16,24ORSHL RX RX OR RY← ≪ (9.5)

Die in Abschnitt 6.2.3 ausführlicher diskutierte XORLDW-Instruktionssatzerweiterung lädt den un-
ter RY adressierten Speicherinhalt und führt mit dem RX-Registerinhalt eine XOR-Operation durch
und speichert das Resultat im RX-Register innerhalb von zwei Takten. Dies entspricht einer Reduk-
tion um einen Takt, im Vergleich mit dem unmodifizierten Prozessor.

 []: XORLDW RX mem RY XOR RX← (9.6)

Die LDWXORLSL8-Instruktion schiebt den Inhalt des RX-Registers um acht Stellen nach links und
führt dann eine XOR-Verknüpfung mit dem unter RY adressierten Speicherinhalt durch. Das Resul-
tat der insgesamt zwei anstatt vier Takte umfassenden Operation wird in Register RX geschrieben.

 []8 : 8 LDWXORLSL RX RX XOR mem RY← ≪ (9.7)

279

Anhang E (Details zum IP-Headercheck-Hardwarebeschleuniger)
Im Folgenden werden weitere Details zu der entworfenen Prüfsummenberechnungseinheit vorges-
tellt. Abbildung Anhang E-1 zeigt den internen Aufbau der 32-Bit-Implementierung des IP-
Headercheck-Hardwarebeschleunigers.

Abbildung Anhang E-1: Blockschaltbild der 32-Bit-Implementierung

des Header-/Packetcheck-Hardwarebeschleunigers

Abbildung Anhang E-2 stellt die prinzipielle Funktionsweise des Hardwarebeschleunigers anhand
eines Ablaufplans dar.

D
A
T
A
_
R
E
G
_
1check_enable

header_check.vhd

reset_n

clk

data_in (32 Bit) ALU_IN
1

ALU_IN
2

32 Bit ALU

C
T

R
L

_
A

L
U

alu_out (32 Bit)

D
A
T
A
_
R
E
G
_
2

ipv4

packet_error

check_ready

CTRL_ALU:

NOP
ADC_T
ADC_HALF_ADD_T
ADC_HALF_NOT_T

ctrl_out (16 Bit)

C
a
rr
yDATA_CARRY_REG_OUT

ALU_CARRY_IN

ALU_CARRY_OUT

A
L
U
_
IN

1
_
M
U
X

full word or higher half-word (BE)

lower half-word (BE)

State Decoder

FSM process

r_w

bus_wait_n bus_request

ADDR_REG

+4
+8
+ variable address
 offsets

addr_start_in (32 Bit)

addr_out (32 Bit)

COUNTER_REG
counts the processed
IP and TCP/UDP or

other higher layer
protocol datagram

words

IHL_REG
holds Internet
header length

information

TEMP_REG
holds necessary
IP/TCP/UDP or

other higher layer
protocol

datagram half
words, e.g.,

TTL+PRTCL,
Urgent Pointer,

UDP length

CHKSUM_CNTR_REG
32 bit

16 bit 16 bit

4 bit

3 bit

CTRL_REG

holds control bits
and flags

IP

TCP

UDP

ctrl_in (16 Bit)

ctrl_in_en

not used

16 bit

data_out (32 Bit)

Anhang E

280

Abbildung Anhang E-2: Ablaufplan der Header-/Paketcheck-Funktion

281

Anhang F (IP-DSLAM-Referenzbenchmark)
Abbildung Anhang F-1 zeigt die Anordnung der Tasks des IP-DSLAM-Referenzbenchmarks für die
unterschiedlichen möglichen Szenarien (Ethernet / ATM - Linecard / Uplinkcard - Downlink / Up-
link).

Abbildung Anhang F-1: Tasks der sieben unterschiedlichen IP-DSLAM-Referenzbenchmarkszenarien

E
th
e
rn
e
t

S
e
tA

n
n
o
B
y
te

C
o
u
n
te
r

C
h
e
c
k
IP
H
e
a
d
e
r

G
e
tI
P
A
d
d
re
s
s

IP
V
e
ri
fy
P
o
rt

S
e
tA

n
n
o
B
y
te

IP
F
il
te
r

S
e
tA

n
n
o
B
y
te

2
2
:
B
a
n
d
w
id
th
M
e
te
r

SetAnnoByte

...

SetAnnoByte

SetAnnoByte

Queue

Queue

Queue

E
th
e
rn
e
t

A
T
M

S
e
tA

n
n
o
B
y
te

C
o
u
n
te
r

C
h
e
c
k
IP
H
e
a
d
e
r

G
e
tI
P
A
d
d
re
s
s

IP
V
e
ri
fy
P
o
rt

S
e
tA

n
n
o
B
y
te

IP
F
il
te
r

S
e
tA

n
n
o
B
y
te

2
2
:
B
a
n
d
w
id
th
M
e
te
r

SetAnnoByte

...

SetAnnoByte

SetAnnoByte

Queue

Queue

Queue

...
...

Linecard Uplink

Uplinkcard Uplink

E
th
e
rn

e
t

A
n
n
o
P
a
in
t

P
a
in
tS
w
it
c
h

...

Queue

Queue

Queue

S
e
tA

n
n
o
B
y
te

D
e
c
IP
T
T
L

E
th
e
rn

e
t

P
a
in
tT
e
e

C
h
e
c
k
P
a
in
t

E
th
e
rn

e
t

A
n
n
o
P
a
in
t

P
a
in
tF
il
te
r

M
u
lt
ic
a
s
t

A
n
n
o
P
a
in
t

P
a
in
tS
w
it
c
h

...

Queue

Queue

Queue

A
n
n
o
P
a
in
t

A
n
n
o
P
a
in
t

P
a
in
tS
w
it
c
h

...

Queue

Queue

Queue

D
e
c
IP
T
T
L

E
th
e
rn

e
t

Linecard Downlink

E
th
e
rn
e
t

S
e
tA

n
n
o
B
y
te

P
a
in
tF
il
te
r

M
u
lt
ic
a
s
t

A
n
n
o
P
a
in
t

Uplinkcard Downlink

C
h
e
c
k
IP
H
e
a
d
e
r

IP
F
il
te
r

IP
F
il
te
rA

n
n
o

Discard

A
n
n
o
P
a
in
t

A
n
n
o
P
a
in
t

P
a
in
tS
w
it
c
h

...

Queue

Queue

Queue E
th
e
rn
e
t

Multicast

Multicast

