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Chapter 1

Introduction

Don’t be afraid of the weight. It is resolvable and sometimes only attached!



2 Introduction

1.1 Resource Networks

In nowadays, computers are very powerful and commonly very well equipped
with resources like computational power and storage capacity for running appli-
cations and saving documents. Further, computers are more and more embedded
within a network. Computers without a network device in use are rather the ex-
ception than the normal case. The general distinction of these networks can be
made between local area network aka. LAN and wide area networks aka. WAN.
As their name says, LANs are locally ranged, like home networks or company
networks and the WAN is not locally ranged, but the organizing layer offers con-
nections to other LANs.

Both networks consist of personal computers or dedicated units for special
services like a printer, a mail server, file server or any other web service. Com-
monly connections to the WAN are established to access the world wide web or
internet. Several hardware techniques are available to maintain these connec-
tions. A persistent connection ensures the availability of a computer or a whole
network infrastructure. A major task within these networks is to search, access,
store or exchange information and documents. Therefor, users connect directly to
the service source offering the required resource. Independent of the kind of re-
source, there are two major problems if resources or services are offered for many
others.

In the following, an example gives the first problem. If many users try to ac-
cess in a network the same and very popular document or if many documents
on a single source are requested, then the providing source, commonly a server,
might become overloaded. The high number of requests will swamp the server
and non of the users or only a dedicated set of requests can be satisfied. Eventu-
ally, because the necessary server bandwidth is a limited resource.

The second problem is the outcome of the solution of the first. To avoid
swamped servers documents have to be distributed among several servers or
a group of servers each offering the same content. The benefit of using multiple
or/and redundant severs is clear, if a single source fails, the redundant one can
carry over its tasks. If all sources are working properly, the sum of all requests
can be balanced and distributed among all sources in such way that non of the
servers gets possibly swamped. In contrast to spreading without redundancy, the
availability of documents is increased if offered at many independent sources.

The disadvantage of redundancy or other codings is that each single source
needs administration, consumes energy and finally money. The items or seg-
ments must be distributed among the recourses in advance. Further, each server
should not handle more requests or documents he is capable of. Thus the number
of access or allocation requests should reflect the servers expected fraction over
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1.1. Resource Networks 3

all requests. Furthermore, we have to ensure that there is always a spare server in
charge if one fails. If all this is solved with respect to the heterogeneity of servers,
we obtain an efficient resource management and an increased availability of the
distributed documents.

Eventually two kinds of networks have to overcome these problems and are
of interest for us. The first are Peer to Peer Networks aka. P2P Networks. From
them we know techniques to distribute request among a dynamic set of peers ef-
ticiently, like CAN [37], Chord [48], Pastry [15], Tapestry [19], and many more. A
description of Consistent Hashing can also be found in this work in Section[2.1.3|
The second one are Storage Area Networks aka. SAN(s), because here we want
to establish such techniques and adapt them for special needs of this application
area. We will not discuss both networks in detail, but we will see and understand
the differences subjecting allocation processes, heterogeneity, balancing and the
impact of dynamics.

However, independent of P2P or SAN, each nodes participates with at least
one specific resource, like bandwidth or storage capacity. If this resource is lim-
ited the sum of all resources is it too. For this we use the following definition

Definition 1. Let V a set of nodes and ¢, = c¢(v) | v € V the resources capacity of a
node, then the network capacity is denoted by Cy = ¢(V) = Y,y c(v) .

The objective of most approaches is to disburden a node as far as possible and
doing this with respect to its capacity relative to other participating nodes. Thus,
we have to know more about the available resources within the network and the
share of a node in a network, defined in the following

Definition 2. The relative share of v € V in a network is denoted and defined by

Co Cy
S o Cy (1.1)

So if the network is of size |V| = n and the share of each node is s, = 1/n and
its capacity is Cy /n, we know that all nodes are equal.

Mainly this work considers the special needs of Storage Networks, because in
contrast to requirements of Peer to Peer Networks the storage allocation in SANs
has to deal with a strictly limited resource. Thus, it is of tremendous importance
that non of the nodes receive more than its share defines.

Sv

1.1.1 Storage Area Networks

The basic idea of SANs is to avoid the local resource concentration of single stor-
age servers. The aim is to achieve server independent storage connected via ded-
icated or shared network. Many details considering the architecture of SANSs,
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4 Introduction

currently used communication protocols, and available physical networks can be
found in several books [50] [20]. In this section, we will introduce the main parts
of a SAN, which are storage devices, and the most common distribution or allo-
cation strategies. We do not consider the connecting network here and will not
consider the network in the following chapters, because the main focus of this
work are the distribution functions and their specific properties.

The Storage Disk Model

Hence persistent memory of both networks mainly consists of storage disks, we
briefly introduce and discuss their evolution here. Today, magnetic disk drives
(HDD) mainly consist of a controller, which processes requests and data is stored
on a rotating magnetic platter. For accessing data, an arm moves a read/write
head over a specific track on a platter. This phase is often described as seek and
settle time. If, after a short waiting time above the track, the appropriate sector
appears under the head, the data can be read or written. From this a rough estima-
tion on the time to access a single data block b can be described by the summation
of the following functions

faccess(b) = [seek(b) + settle(b)] + [wait(b) + operation, ;, ()]

This clarifies why the access time of data patterns for consecutive blocks on a
track is faster compared to widely spread patterns. For more details on modeling
and access optimization on magnetic disk drives we refer to an other article [38]].
Since each mechanical action generates non negligible latencies, a request cache is
commonly embedded on a disk controller, and used for frequently accessed data.
Data stored in this cache can be accessed immediately and causes no mechanical
latency.

The current evolution of storage disks is influenced by the availability of huge,
persistent and cheep flash memory. In contrast to former disk caches, the amount
of used flash memory covers a significant fraction of available disk capacity. Fur-
ther, the cached data is still available after power-down and can be used to ac-
celerate the system booting or application start. Such a technique to include
Flash Ram is successfully used by Microsoft’s SuperFetch, ReadyBoost, ReadyDrive,
which are included in Windows Vista and accelerate the operating system in sev-
eral areas, and often referred as Hybrid Hard Drive Support [32]. Further, storing
frequently accessed data on the flash memory of Hybrid Hard Drives (HHD) will
reduce the access latency, less energy consumption and heat generation. This ef-
fect on energy consumption in a RAID system was researched by Frank Wang, et
al. [52].



1.1. Resource Networks 5

In future, mechanical parts of storage disks may be completely replaced by
flash ram, thus some currently used models and their parameters will be obso-
lete. Nevertheless, the main disadvantage of Solid State Drives (SSD) is, that after
mechanical failures data is completely lost as the cell is destroyed. While, if a
normal HDD suffers by mechanical failures the data is often recoverable using
expert help. Eventually, this might be at least one argument why HDD will not
be extinct in the near future.

RAID

Current SANs normally consist of hard drives, a limited and restricted resource.
In such a network a storage node does not decide whether it wants to store data,
like peers or users in a P2P Network do. Likewise, an allocation request, com-
pared to a read request is much more persistent. If a fraction of resource is once
allocated, it will reduce the free capacity unless it is deleted. Thus the used al-
location or distribution strategy for items should waste nothing and should not
allocate more than available on a device.

A classical and major data distribution technique in SANs is described in the
RAID level scheme [34]. Its original abbreviation was Redundant Array of Inex-
pensive Disks and developed to compensate the cost for huge and fast disks with
smaller once using parallelism. The nowadays meaning of RAID is Redundant
Array of Independent Disks. Over time aspects like fault-tolerance have been in-
cluded. It is derived by combining data segmentation aka. striping with data du-
plication aka. mirroring, data coding like XOR parity, or improved erasure codes.
However, the name change indicates the evolution of its current focus, indepen-
dency of devices. Essentially, all standard or nested RAID Levels are based upon
this independency. The placement on distinct disks is of major importance, since
mirroring is senseless, and striping does not improve the access speed. Especially
in case of inaccessibility of disks coding might not be invertible and thus inop-
erable if a failure occurs. At least the static distribution function of RAID grants
an even distribution of items among all disks. This implies that the system is bal-
anced according to capacity usage, unless the configuration of the SAN does not
change.

The distribution unit within RAID levels are typically blocks. Each physical
address of a data block is determinable by a simple function, depending on the
specific RAID Level. Let V = {vy, ..., vy_1} a set of N equal devices, where each
v € V has 2! allocable blocks, then we have N - 2¢ addresses for blocks. Basi-
cally, the subsequent allocation of blocks on alternating disks is determined by
a modulo function using the gathered address room and p, denoting the redun-
dancy or striping defined by the RAID Level. Details on this can also be found

5



6 Introduction

in many books [50]. However, the most disadvantages is that changes in V will
destroy this strict mapping order, leading to costly data movements to preserve
data consistency.

In the following we need a flexible notation defining such access patterns
among V. So we denote with ¥ an access pattern which addresses or allocates
storage among p not necessarily distinct disks.

Definition 3. Let V a set of nodes, then o € V¥ is independent, if Vi,j € {1,...,p
with i # j also 0; # 0; is true. Further, 0 can allocate at most c(9) = p - min({c(9;)
1 <i<p}).

}
|

The definition of RAID implies its need of a set of independent patterns to op-
erate reliable. In case of c(v) = c(u) forallv,u € V and |V|/p € N such patterns
are easily constructed. Therefor, we have to group V into p subsets Vi, ..., Vy,
such that for all V;NV; = @ if i # j, where each set consists of |[N/p] con-
secutively numbered devices. This we can do by using the mod operator on
integers if V is indexed like V' = {vy,...,vy|} . Thus, a suitable set of inde-
pendent patterns is defined by V := Ui<i<|v|{10 := (Y mod p),ir--++Vpi)}- BY
this, we guarantee that each device occurs only once over all patterns. Note, if
|V|/p ¢ IN, then at most p — 1 devices are left unused.

RAID and Heterogeneity

In SANs many strategies are known to distribute content among several disks,
but less are able to respect different disk capacities or bandwidths and only a few
include dynamics if the system configuration changes.

Typically, a block device system utilize n disks by defining a virtual block of
size |by|, describing the data fraction each disk derives or has to deliver if re-
quested. The original strategy was to divide such blocks in same sized pieces of
|by| %, where % = m € IN. Thus, using disks with same capacities is reasonable if
no capacity should be left unused.

Several aspects of data partitioning and load balancing in parallel disk sys-
tems are discussed in Scheuermann et al. [41]. They have discussed striping in-
cluding technical aspects like head positioning and arm movement with respect
to average request size over all files. Unfortunately they considered less devices
compared to nowadays, where a SAN system contains tens or hundreds of disks.
Nevertheless, many of their observations are still important if parallelism is an
issue.

Cortes et al. [13] presented a static solution to overcome the problem of uni-
form disks by introducing AdapRraid0. They used virtual blocks where the frac-
tion of each disk reflects its capacity ratio compared to each disk included in such
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1.1. Resource Networks 7

block. Nevertheless, they assumed that disks with higher capacities are faster
and thus the result improves the bandwidth. Zimmermann et al. [54] have used
a similar approach, but they focussed in HERA on reliability and presented a
scheme that includes redundancy based on parity information and presented an
analytical Marcow model of reliability in heterogeneous disk arrays.

If such systems using virtual blocks are changed by replacing a disk d with a
new disk d’ and c(d) < ¢(d’) the additional capacity c(d’) — c(d) is left unused
or intensive recalculations must be done to preserve consistency. Similar effects
happen if disks are added or removed. Furthermore the size of a virtual block
grows linear in the number of disks it joins, on the one hand this leads to wasted
storage if files are small and on the other hand if the block size is constant the
benefit of parallelism decreases caused by the seek time on each disk.

Di Marco et al. presented a distributed disk array architecture called DRAID
[27] accessing N + K disks in parallel. They used a gigabit Ethernet cluster infras-
tructure and improved the fault tolerance compared to RAID IV. They included
Reed-Solomon error correction organized in a two dimensional matrix. They ar-
gued that the need for such multi fault tolerance is justified by the average uptime
of systems in such an infrastructure. They have considered scaling of their system
too, but eventually adding single disks is inoperative, because of the recalculation
needed for the Reed-Solomon encoding [35]. To overcome this, they suggested to
add disks in multiples of N + K.

Hence the storage consumption is ongoing increasing, one very important is-
sue in nowadays is scaling or adaptability. Since the available capacity of devices
is still growing, changes should respect the possible device heterogeneity in a sin-
gle SAN. Furthermore, in SANSs it is of most importance to support the already
established RAID Levels without cut backs. As seen, all mentioned schemes have
restrictions or problems if disks are added or removed from the environment. Es-
pecially, if disks are different in capacity and/or bandwidth. Classical approaches
can not react efficiently and preserve data consistency, concerning data move-
ment. Brinkmann et al. [10] tried to overcome this and introduced a scheme
using consistent hashing to resolve heterogeneity for SAN purposes. More about
this method we will see in Chapter 2l An additional challenge of these newer
techniques is to achieve a balanced allocation and coevally allow to distribute
multiple instances of the same item among distinct devices. Brinkmann et. al
[8] and in an other work Mense et. al [28] have faced this problem. Both pre-
sented solutions are also capable to support all those RAID Levels which rely on
a distinct node selection.



8 Introduction

1.2 Owur Contributions and Results

The fundamentals of this work are derived by ideas first discussed in a student
project group, implementing an own Mobile Ad Hoc Network called PAMANET
[5] [42]. The PAMANET consists of three main components. First, the embed-
ding of the routing layer into IEEE 802.11 and IPv6 by using techniques used
at the ad hoc support library (aslib) by Gupta et al. Second, the routing layer
which combines a landmark routing, hierarchical clustering, consistent hashing
for providing location dependent addresses and lookup-service for the location
of nodes. Third, a Peer-to-Peer data storage system based on egoistic distributed
caches enabling hop and traffic efficient data access on replicated data partitions.

From this work we have enhanced the second key technology, called Weighted
Consistent Hashing or later Distributed Heterogeneous Hash Tables, aka DHHT,
introduced at SPAA 2005 [43]. It consists of two methods applying weighted
distributed hash tables to resolve the heterogeneity of nodes. The first method,
called Linear Method, combines the standard consistent hashing introduced by
Karger et al. [21] with a linear weighted distance measure. By using a constant
number of node copies and distinct partitions within the hash space, the balance
of this scheme approximates the fair weight relationship with high probability.
The second method, called the Logarithmic Method, uses a logarithmic weighted
distance between the nodes and the data to find the corresponding node. For dis-
tributing one data element it provides perfect weighted balance if O(log n) parti-
tions are used. Both methods provide small fragmentation, which means that the
hash space is divided into at most O(nlogn) intervals. Furthermore, there is an
efficient data structure that assigns data elements to the nodes in expected time
O(logn). If fragmentation is of no issue, one can replace the use of partitions
by a further method we call Double Hashing. This method needs O(n) steps for
assigning an element among a set of nodes. It is recommended for small node
sets, because it overcomes the negative side effects of fixed hash range segmenta-
tions. However, all methods can be used for Storage Area Networks, where the
number of nodes is small compared to Peer-to-Peer networks and where global
knowledge about nodes is typically available. Details of this wok can be found in
Chapter

Further, we have considered content delivery networks for large files, like
movies [24], [25]. There, we have combined dynamic data replication with differ-
ent capabilities of content delivery nodes. The use of redundancy, was inspired
by early results [6]. The replication was controlled by different access frequencies
on data, forecasted by an ARIMA time series model. The aim was to reduce the
delivery latency by occupying unused storage resources with replicates and fairly
share the bandwidth of content nodes. Details on ARIMA time series model, data

8



1.2. Our Contributions and Results 9

structures and algorithms can be found in an other dissertation [23]. Moreover,
the recent article in this topic was decorated with a best paper award [25].

Inspired by the advantage of parallelism we have described an efficient so-
lution for providing parallel access to multiple hard disks for popular content
[44]. In extension to previous approaches we have provided an efficient hash ta-
ble data structure for utilizing the full capacity of each data server. Concerning
the dynamics, documents as well as servers may be added or removed from the
system causing only local changes. We have considered sequential and parallel
access to data in the average case and for the average time model we presented
an optimal algorithm.

The idea of using parallelism in combination with load balancing and DHHT
was first considered and used in web computing [16]. There, we have presented
an architecture for distributed computing in a Peer-to-Peer network. In partic-
ular, we realized the Paderborn University BSP-based Web Computing Library
(PUBWCL [7]), which formerly used a centralized client-server architecture for
scheduling and load balancing, as a pure Peer-to-Peer system. By using DHHT,
the architecture was capable to feature scheduling and load balancing of tightly
coupled, massively parallel algorithms in the bulk-synchronous (BSP [51]) style
with a minimal number of migrations. Furthermore, the architecture was capable
of heterogeneous BSP programs, whereas the former version of PUBWCL could
only handle homogeneous BSP programs.

These extensions, allowing parallelism are able to break the consecutiveness
of an extent and allow parallel access on distinct nodes, see Section With-
out considerable effort, this was previously possible by using the results of a
patent we made [47]. Furthermore, load balancing and self administration by
using DHHT, finally adapted for SAN purposes was introduced as DHHT-RAID
[45]. The main topic of this work was a scaleable architecture capable to serve all
RAID Levels at any time coevally. The DHHT-RAID architecture is able to store
its meta information in its own structure, allowing to react on dynamical envi-
ronment changes without the need of central management structures. Details
and some simulation results showing the performance of DHHT-RAID can be
found in Chapter |4 Additionally, we have made some simulations showing the
impact of decomposing the hash range for nodes deterministically within DHHT.
The random node position sampling was substituted by a greedy algorithm pro-
viding a constant smoothness between ~ 1.118 < s <~ 1.809 and a linear hash
range fragmentation with a constant number of different interval lengths. Details
on the deterministic decomposition can be found in Chapter 3 [46].

9



10 Introduction

1.3 Tools

Several strategies we are referring to and some approaches we introduce are ran-
domized algorithms. For their analysis we need some tools and apply some ab-
stract concepts which are motivated by theory. These tools and concepts are the
following.

Definition 4. Let X(Xj, ..., X;,) be a function of n variables, then we say X is bounded
by O(f(n)) with constant probability (abbriviated with w.c.p.), if for any e, there
exist a ¢ such that

PrIX < c- f(n)] = Pr[X > O(f(n))] < e

Definition 5. Let X(Xq, ..., Xy) be a function of n variables, then we say X is bounded
by O(f(n)) with high probability (abbreviated with w.h.p.), if for any « > 1, there

exists a corresponding c such that
1
n*

Pr(X > c- f(n)] = Pr(X = O(f(n))] <

In the following we show a technique bounding the probability that a num-
ber of independent random variables will deviate from their expectation values,
called Cherhoff Bounds [40]. These bounds are commonly used to obtain sharper
bounds on such tail probabilities.

Theorem 1. Let { X1, ..., Xy, } a set of n independent random variablesand X = Y1 ;| X;,
where y = E[X] denotes the expectation of X, then for all 5 > 0 the following holds,

PriX > (146) - p) < e mnt®0tu
moreover, if it holds that 0 < § < 1, than
Pr[X > (1—0)-u] <e o m2

Davenport Schinzel Sequences have some geometric applications. For us they
are important, because they allow to derive method attributes subjecting the hash
range fragmentation. Therefore we consider the lower envelope of a set of func-
tions.

Definition 6. Let F = {fi,..., fu} be a collection of n real-value, continuous totally
defined functions, than the lower envelope of F is defined as

Ep(x) := min(fij(x) | f; € F),

so Er is the point wise minimum of the functions f;.

10



1.3. Tools 11

The formal definition of a Davenport Schinzel sequence, aka. DS(#, s)-sequence
is the following

Definition 7. Let n, s, m positive integers, a sequence S = (S1,...,5m) is Davenport
Schinzel Sequenze if the following conditions are true:

1. 1 <s;<nforeachi <m
2. s; # Siy1 foreach i < m, and
3. thereare no s + 2 indices 1 < iy < ip < -+ < igyp < m such that

Siy = Si3 = Si5 = "1 = 4,8 = 8, 6

and a # b.

The third conditions forbids long alternations of any pair of distinct symbols
in the sequence. Interesting is that many problems can be reduced by a geometric
interpretation of DS(s, n)—sequences. Especially the lower envelope of a set of
univariate functions. The resulting bounds on the length A, (1) of such a sequence
or envelope, where the sequence S is given by the indices of the functions, can be
attained by attributes of DS(s, n)—sequences. Details on this can be found in the
a survey [2] or accordingly in the authors book [1].

In this work most of the randomized algorithms use an unit range M = [0,1],
where some of them interpret the range as an unit ring. Therefor, we will some-
times use the following re-definition of the modular function on real values.

Definition 8. We redefine the mod function as
amod1:=a— |a]

Further, most methods in the following are using hash functions to imitated a
random like mapping into the hash range M. In the Following some assumptions
and attributes we make on these functions.

Definition 9. A hash function h : M +— N is said to be perfect for a set X C M, if for
any distinct u,v € X, h(u) # h(v).

Definition 10. A family of hash functions H C {g | ¢ : M +— N}, is said to be
k-universal with k,]1 € N H = h : M +— N, if for all | < k and pairwise distinct
mi,...,m € Mandallny,...,n € N

l
Prih(m;) = n; | Vi€ {1,...,k}] < (|1W|) (12)

11



12 Introduction

The aim of using a unit has range M in combination with hash functions be-
having like independent random variables is to transform the continuous prob-
lem into a discrete balls into bin model. This is done by random sampling of
positions in M from which we derive the size of a bin. But, even in the case that
the bins are all of same size we can observe an imbalance during the experiment.
This can be explained by the a classical problem in random theory, the Coupon
Collector Effect. Results and analysis on this classical problem can be found in
several books [31]. It considers n types of coupons and m trials of choosing one
of the coupons. The random choice of any coupon is mutually independent and
equally likely to be chosen. The part of interest is the relation between n and m,
if we ask how many trials are needed to collect at least one copy of each type.
Actually all of our presented algorithms reflect this effect, too. This can be ex-
plained and reconstructed, if we define each node as a coupon type. Further, the
hash function which imitates the random selection of nodes by distributing items
among them.

12



Chapter 2

Distributed Resource Allocation

This chapter starts with the problem introduction and a general view on specific
problem properties for an item distribution in a network among nodes with lim-
ited resources. We will discuss two specific problem variations, distinguishing
each other by their node set composition. For both variants we present general
models and former strategies, like Consistent Hashing, Share, and Sieve. We con-
tinue with the presentation of a our DHHT approach, which offers for both prob-
lem variants a solution. Since we consider our approach as a generalization and
heterogeneous extension of DHTs, we show the equality of our model in the uni-
form case. Afterwards we continue with the transformation to the heterogeneous
problem, on which we focus from then. Further, we show general properties
of our approach consisting of two distinct methods, the Linear Method and the
Logarithmic Method. As a consequence of the results and properties we enhance
the requirements of the general model. In an additional section we consider spe-
cial features of our methods, applicable for many areas, where balanced content
distribution with limited resources is an issue.

13



14 Distributed Resource Allocation

2.1 The Distribution Problem

In this section we regard solutions for distributing a set of items among a set of
servers or peers, in the following denoted as nodes. Coevally, we try to respect
certain properties of these nodes to achieve our distribution objectives. The gen-
eral model consists of three scopes, the item set D we distribute, the node set
V storing the items, and finally the distribution or mapping function f to deter-
mine the mapping of items to nodes. Altogether we denote from now on as the
environment (V, D, f).

In the following the detailed environment description. V := {vy,...,v,} de-
fines the node set which is either dynamically or statically. This means, in the
dynamic case nodes may join or leave V over time. In contrast the static case,
where the number of nodes is predefined and fixed. Furthermore, there is a set of
weighting functions W := {w; : V — R} each assigning weights w; , = w;(v) €
R to all v € V. For every node v, according to the attribute i, the function w;(v)
determines a weight.

So, this dissimilarity of nodes or heterogeneity within V is reflected by such
possibly unequal weights. This leads to a further notation, if for a fixed i and V
v,u € Vw,=uw;,is valid we say V is uniform in w;, but if there exists a any pair
(u,v) with w;, # w;, we say V is heterogeneous in w;. If we consider only one
attribute and thus |W| = 1 we say V is either uniform or heterogeneous and we use
the abbreviated notation w,.

Beyond nodes, D = {d1,...,dn} defines the set of items we want to distribute
among V. Analogous to V, we say D is either a dynamic or a static set. Addi-
tionally, we define a set of weighting functions S := {s; : D — R}. Again, each
function assigns an appropriate weight s;; = s;j(d) € R to every item d and its
attribute j. Same as before for nodes, the notation regarding the heterogeneity of
D or if |S| = 1. Further, we will say an environment (V, D, f s) is dynamic or
uniform if an attribute is true for V and D. The central and assessable environ-
ment part is the mapping function fy s(d) : D — V. It assigns items to nodes,
with respect to W or S and further defined characteristics of V and D. Finally we
denote with f~! : V — D, where f,,'(v) C D the function that determines the
stored items onanode v € V.

Summarized, we describe the mapping of items among nodes within a certain
environment (V, D, fy s). In our model we only consider nodes and items, we do
not take care about the limits of the connecting network. Our main challenge is
to find an appropriate mapping function, which achieves the desired distribution
objectives and copes the demands of its application area efficiently.

For clarity and to exemplify the model let us consider some application ar-
eas. In Storage Networks w; possibly ascertains the allocable storage capacity,
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2.1. The Distribution Problem 15

the maximal available bandwidth or other attributes of interest of each storage
node. In some cases it might be reasonable to combine node attributes. For in-
stance, a combination of capacity and bandwidth, based upon the assumption
that the average bandwidth/ throughput increases with the node capacity. Nev-
ertheless, such a combination must be done very carefully! For example, let w
describes how fast v can receive, w;, how fast v can deliver and w3, = ¢(v)
how many items v can store. Applied for Magnetic Disk Drives (HDD) w; , and
wy,, depend on the current total number of competing parallel accesses and their
distribution between w, , and w,,. In contrast, the current access distribution
behavior has no influence on w3 ;. So an explicit independent description of each
node attribute seems often to be more helpful to handle such dependancies and
to identify whether they are important for the distribution objective or not.

One possible and reasonable distribution objective is an even capacity allo-
cation over all nodes in V. So let s; ; denote the size of an item, then the used
storage capacity of a node v should be

Y. si(d) ~ _ws) Y. s1(d) < c(v) (2.1)

def; (o) Luev @) e, o)

It is of much importance that the distribution function can provide this at any
time and as close as possible, with respect to the upper right constraint. This
means, if the distribution function has to handle a dynamical environment, it has
to compensate allocation deviations by leaving or joining nodes. Further it has
to ensure that each node has to store only as much items as its capacity allows,
especially during the maintenance operations. This is an issue, because items
stored on leaving nodes should not get lost. To avoid this, a protocol based on
the distribution function or method needs to replace items in advance. As we
have seen in Section such changes in a storage environment can be fixed
for some distribution methods only inefficiently and we will see later how this
can be resolved. If a similar objective should be presumed for the item request
distribution, one has to differentiate whether items are distinct in their access
frequency or not. Independent on reading or changing the item, if not, it is the
same we have in Equation[2.1] If yes, the objective is not that simple and clear any
more and can become very complex. A reason therefor is the specific arrangement
of node and item attributes. An even item distribution might contradict the aim to
minimize the delivery time of items, and a distribution optimization for delivery
time might exceed the capacity bound of equation

In application areas like Peer-to-Peer Networks, where the transient partici-
pation of nodes aka. peers is the general case, the focus lies on the redistribution
of traffic on content. In particular, if items are very popular, this is done more or
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16 Distributed Resource Allocation

less automatically. Hence, peers are coevally sharing the content they are down-
loading, popularity gets automatically resolved by the redundancy of multiple
accesses, which results into a higher item availability. Since peers are normally
leaving the network if they have accomplished their download, it is important for
the previously connected nodes to find appropriate replacements to continue the
download with the same pace. So a fast and robust lookup structure to identify
adequate node replacements is one main target here.

Beside the specific behavior of nodes and their abilities, items are, beneath
their content, different too. They differ in the amount of memory they allocate on
a single node or their popularity. Some items are more and others are less pop-
ular and the popularity changes permanently. In Peer-to-Peer like networks the
popularity results into a varying number of redundant locations at specific time
points and the sum over all locations leads to a varying memory consumption in
the whole network. So if the access frequency for an item is high, it implies more
bandwidth consumption for the offering node, too. A possible strategy to avoid
node thrashing by this, and coevally decreases the delivering time for items is
an active creation and placement of replicates on additional nodes to discharge
them. Especially, nodes with less popular content and enough free storage ca-
pacity and bandwidth are good candidates. Actually, such an active replication
is nothing else than provider do if their web servers are offering popular sites.
They simply dynamically distribute requests among multiple web servers with
identical content. This is an approved strategy, if the aim is to obtain an evenly
spread workload over all servers during prime times [21]]. Notice, the number of
requests a server handles is not exactly the same and they are read only. This is
sufficient, if the magnitude of request is the same and finally such read requests
are not persistent. In contrast to this, if the same function is used to determine
and allocate item places, it possibly violates the restriction of Equation

Heterogeneity of items combined with node abilities is not the general ap-
proach, but if, nodes should be classified. Classification attributes might be the
number of items a nodes is responsible for, the up- and downstream bandwidth,
the maximal number of parallel connections from other peers or the connectivity
degree within the overlay network, and so on. If the organizing overlay network
offers an order respecting the heterogeneity of peers [4], such an embedded order
can enhance the major task of the network. As mentioned before, it sometimes
makes sense to combine attributes like the number of parallel accesses and the
available node bandwidth. If provided, accessing peers are able to estimate the
minimal bandwidth a peer can offer for a specific download. If a peer with a
high bandwidth offers many popular items and allows unlimited connections,
the bandwidth per connection might possibly decrease dramatically. So, to im-
prove the termination time, it could be much wiser for a peer to connect to a

16



2.1. The Distribution Problem 17

slower node which offers less other popular items or less parallel connections.
Loeser et. al [25] have used this and embedded a request forecasting system to
control the replication rate of video files. The aim was to increase the average
system output by decreasing the delivering time for popular files, if popularity
of files and capabilities of serves like capacity and bandwidth gets combined.

Within Ad-hoc Networks the size or the responsibility of a peers may grows
simultaneous with the time a peer stays within the Network [5]. So, the value is
continuously increasing over time. This kind of weighting is based upon the gen-
eral assumption that the probability for a peer to leave the system decreases the
longer it stays within the network. Eventually, this assumption helps to optimize
routing purposes.

Finally, to realize the distribution task, and to fulfill the objectives of the distri-
bution function can be very difficult. Especially, if the demands and constraints
hardly depend on the application area. Further, since fyy s determines the loca-
tion of an item, already mapped items must be relocatable after changes in V
occur. So, the number of steps needed to repair the system and obtain the distri-
bution objectives again is indirectly controlled by f s too. This aspect requires
special consideration in the design of an efficient mapping function. Eminently,
if there are costs for every repair step, preserving the mapping consistency;, this is
not negligible. A further aspect of particular importance in the design process is,
how much information about the current state of (V, D, fiy g) is used by fiy s to
determine the mapping or how many repair operations are needed to fulfill these
predefined requirements. The necessity for global information, like the current
item distribution over all nodes, to apply operations efficiently is given by f s.
Especially in the area of Peer to Peer Networks the efficient communication is
of much importance. Nodes decide and act only based upon local information,
which nevertheless should result in a good global behavior.

In this work we will focus on the description and analysis of mapping func-
tions for items to nodes. We set the following requirements for the environment
(V,D, fws). Since we are strongly related to Storage Area Networks, we consider
V as a dynamical set of nodes, where each node offers a limited storage capacity
for placing items. We normally assume that nodes can differentiate in capacity,
so |W| = 1 and for simplification use wy , = w, = w(v). Itis important to keep in
mind that the storage capacity on a node is a limited resource and placed items
are representing persistent requests on each node. However, the item set D is dy-
namically too, but because of random like item mapping we will mainly discuss
the insertion of a single item. Further, exempt from content, items are equal, so D
is homogeneous and |S| = 1, analog the simplified notation. As seen before, this
restriction is somehow artificial, but the diversity of items is not discussed here.
For further reading and comparison with other approaches we refer to another
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18 Distributed Resource Allocation

work [23]].

2.1.1 Formal Definition

As already motivated the mapping function objectives can be very different. To
allow the comparison and quality measurement of mapping functions or algo-
rithms we give the following definitions.

Definition 11. The mapping function f is marked as space balanced in an environment
(V,D, f), if foreach D' C D, any node v € V gets at most

Myo) = |0 | = D] =2 = (IDs] )

ZueV Wy Euevcu

items. Especially for distribution strategies based on an item mapping using a random
distribution process, each v € V should get at most

Mv(v)/ = Mv(v) : (1 + 6) (2.3)
items.

For random distribution strategies this equation should hold for any constant
€ > 0 and optimally very close to zero. The Definition [11| relies on the fact that
D is considered as a homogeneous set. It can be derived by the simplification
of Equation if items are considered as inseparable units. Thus s1(d) can be
substituted by 1, which i a valid assumption, since we say that each file can be
represented by multiple units of constant size. In storage devices this is typically
a Block or in lager system or networks an Extent, which is nothing else than a
fixed grouped number of blocks. The arrangement of blocks within extents can
be consecutive in the physical address room of a single device. Likewise, it can
be determined by an arbitrary bit mask, identifying the address bits of a single
device among all devices [47]. Such a bit mask typically breaks the allocation
consecutiveness of an extent on a single device.

Beneath space balance of nodes, we further consider dynamical changes in the
environment (V, D, f) and its impact. Especially changes in V are of much inter-
est. As mentioned, f is indirectly responsible for the number of steps needed to
keep the availability of items during and after such operations. Therefore, a dis-
tribution strategy without using replication has to react in advance to keep space
balance and thus to guarantee availability of items coevally. The efficiency of nec-
essary movements in advance to satisfy this aim are considered by the following
definitions.

18



2.1. The Distribution Problem 19

Definition 12. We say a distribution strategy is adaptive in the dynamical environment
(V,D, f), if it is able to achieve space balance after changes in V or D.

So, the objective of space balance combined with the need of availability leads
to adaptiveness. Since the property of adaptiveness can be achieved in many
ways, including inefficient once, we need a further quality measure. It is reason-
able to assume that the number of steps needed to achieve space balance should
be low. We assume that before the operation occurs (V, D, f) was space balanced.
For a leaving node v this implies to evacuate each item stored on it. In the follow-
ing we denote with a step such an evacuation of a single item. This implies for
the optimal number of steps if a node leaves

w(v)
EuEV w(”)

and the optimal number of steps for a node v joining the system should be the
number of item it needs to store to achieve space balance this implies for the
optimal number of steps

feaveorr(v) = | (0)] < [ 1D [<morsr e

IN

joinopr(v) u;/ f ()] - #w (2.5)

= | X 1@l se| <[ID]-so] 26)

ueV\{v}

Note, in Equation [2.5\we have presumed that joining nodes are empty and receive
their content after the insertion. However, from both equations we can see that
the optimal number of steps does not depend on the occurring operation, but
on the leaving or joining node, its capacity and the current system capacity load.
To compare the efficiency of adaptive strategies we count the number of steps
needed to achieve space balance and compare them with the minimal number
necessary.

Definition 13. We say an adaptive distribution strategy f in a dynamic environment
(V, D, f) is c-competitive, if the needed number of item movements, we count as steps,
to achieve space balance is

¢ - stepsopr = stepsy > |D'|, (2.7)

where D' C D denotes the items moved, setpsy the number of used steps and stepsopr
the optimal number of steps needed.
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20 Distributed Resource Allocation

So the best a strategy can reach is 1-competitiveness or an (1 + €)-competitive
ratio in the random case. Beneath the importance to differentiate whether the
space balance is obtained directly or if further movements were necessary to
reach the final item distribution, we also want to attest a strategy specific data
flow characteristic. Therefore, we look if an item lands directly on its final des-
tination node and if dynamic interactions between other nodes were needed to
keep the system balanced, too.

Definition 14. Let (V, D, f) be a dynamic environment and D' C D the set of items
moved after a join or before a leave operation of node v. We say that a distribution strategy
f is monoton for join or leave opetations if elements in D’ move only from or to v.

So this definition gives us the information whether items are migrating only
in cooperation with the joining or leaving node or also among other nodes.

2.1.2 The Uniform Case

In this section we consider solutions subjecting the Uniform Case. The compli-
ancy to the definitions of Section are important, if we want to evaluate so-
lutions targeting a specific case. In the environment, pictured in Figure we
assume that V' is dynamical and uniform and we consider only the storage ca-
pacity of nodes. Further, we assume that D is dynamical and items uniform.

Figure 2.1: The Uniform Case

20



2.1. The Distribution Problem 21

Each item allocates the same amount of resources on a node, so we can apply the
definitions of Section The targeted properties and requirements of an item
mapping f are summarized as follows:

Definition 15. Let (V, D, f) be a dynamical and uniform environment. A mapping
function f solves the uniform case, if the following properties are fulfilled.

1. The mapping of d € D by f must be simple. This is the case if f uses as input V
and d without the knowledge of Upcy f~1(v).

2. The mapping is space balanced or fair if for any v,u € V f~1(v) ~ f~1(u)

3. The mapping function f is adaptive in case of changes in |V'| and monotone for join
and leave operations

The requirement of Definition for f implies that an item mapping should
be independent of each other. So we should try to distribute an item without the
knowledge of the current state of (V, D, f) or future mappings of D\ U,cy f ' (0).
Further, Definition[I5]3]implies that we want to preserve all these properties after
changes in the environment have occurred.

2.1.3 The Uniform Case and some Solutions

In this section we describe methods solving the uniform distribution problem.
Such solutions can be classified globally into two types, deterministic and ran-
domized approaches. The most important deterministic approaches are discov-
ered in the application area of SANs and are defined by several RAID Levels,
see Section In this chapter, we want focus on methods which determine a
mapping by the use of random or random-like functions.

A Pure Random Model

Let us start to consider a simple random model for item distribution. Within an
uniform and dynamical environment (V, D, f) f is implemented by the following
mapping procedures:

1. insertItemp(d): chose any v € V randomly, where the probability of v to be
chosenis 1/|V| =1/n.

2. deleteNodey (v): take all items f ~1(v) and redistribute them among V' \ {v}
using the method insertItemp(d).
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22 Distributed Resource Allocation

3. insertNodey (v): ask any item d € U,cv\ (o} f~(u) if it wants to stay or
leave by random, where the decision stay has a probability of 1 —1/(n+1)
and leave 1/(n +1).

Essentially, this mapping is equivalent to a Balls into Bins model with uniform
bins and uniform items. Of most importance is that commonly |V| << |D].
Which is the case, if you consider magnetic disk drives as nodes and blocks or
extents as items. Since |D| > |V| - In|V| bins receive with heigh probability balls
in the order of the mean value. Nervertheless, there always exists a bin with

Dl , o (. /I .
v " ( V] ) 29

Since nodes with a fixed capacity can not store more balls than place is available,
it is of much importance to avoid such heavy loaded bins. A common technique
to achieve less over allocation is multiple choice. For further readings consid-
ering space-balance in balls into bins games with or without multiple choice,
we just refer to the results in [36], [30, 29], [3], [18]. We can see that the algo-
rithm deleteNodey (v) moves only balls from the existing bins to the new one and
analogous, but in the other direction, for the insertNodey (v) algorithm. A prob-
lematically behavior is embedded in insert Nodey (v), where the decision is made
whether a ball moves to the new bin or not. Therefore, the algorithm asks every
item whether it wants to stay or leave. Actually, this is the same as if the whole
experiment is repeated with 7 + 1 bins. So, asking violates the condition [I|of Def-
inition The only advantage of asking instead of reiterating is the avoidance
of additional item movements. Additionally, touching each item separately in
an distributed environment and asking independently in Bernoulli experiments
whether it wants to stay or leave means a lot of communication.

Corollary 1. The simple random model is adaptive, O(1) competitive in expectation and
monotone for leave and join operations. It does not solve the uniform problem completely,
because it violates Definition

Beside the positive attitudes of a simple random Balls into Bins games we
have to point out another disadvantage of interest. A distribution strategy for
item allocation requires in contrast to a distribution strategy for transient requests
a look up mechanism. Though, if items are thrown randomly using a random
number generator implies that the same item can possibly be assigned to every
bin. So the best one can do to overcome this, is to create an additional data lookup
structure and to store each record consisting of the item id and the assigned bin
indices. This kind of meta information uses space and if a meta data record is
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Figure 2.2: The Mapping of Consistent Hashing, including Virtual Nodes

of same size as the items we distribute, we have won nothing. The system we
have built consumes the same amount of data for managing as it offers for item.
So to do this more efficiently the item size should be much larger than the meta
data record. Further, to get a unique ID for each item one uses typically hash
functions h : X — [0,1[. We will not discuss the properties of these functions
here. However, the following approaches assume, that the hash functions behave
like independently distributed random variables. Thus the expectation for an
element in X to be mapped to a specific value in the range of [0, 1] is for all values
the same, see Section (1.3

Consistent Hashing or Distributed Hash Tables

As we have ascertained in the previous section, for an efficient item mapping cov-
ering the requirements of Definition |15 we have to consider more than balancing
and adaptivity. An approach that gets rid of the additional and external lookup
structure and keeps the positive characteristics of random experiments, was in-
troduced by Karger et al. in [21]. It is a fundamental scheme called Consistent
Hashing aka. Distributes Hash Tables often abbreviated with DHT and uses a two-
sided ranged hashing scheme for nodes and items, into some continuous range
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24 Distributed Resource Allocation

M := [0,1]. In the original setting data was to be distributed among different sets
of hosts, so called views. The goal was to avoid swamped servers, coevally de-
crease the usage of memory and to balance data requests fairly among the views.
The scheme assumes that if a node receives a fair share of data, this also implies
that requests on items are fairly distributed. According to the uniform environ-
ment nodes have equal weights and thus should receive the same amount of data
items.

In the following we always denote with & : V' — M the hash function for
nodes and with ¢ : D — M the function for items. They assumed that the
hash functions behave like independently distributed random variables. First
all nodes are mapped via h(v) into M and afterwards data elements via g(d). An
item d is assigned to the node v € V which minimizes the distance |h(v) — g(d)|,
so which is the closest to the item injection point g(d). An example of such an
assignment is pictured in Figure where v, receives d, because t = |h(vq) —
g(@d)] > [h(02) - g(d)] =s.

The major parts of Consistent Hashing are similar to our new DHHT ap-
proach, see Sections but for better differentiation we describe the DHT func-
tions too. So, how this scheme handles a dynamical and uniform environment
can be seen in the following procedure enumeration. Normally, each node is rep-
resented by k > 1 injection points or so called virtual servers, for simplification
in description we temporarily set k = 1. For a larger k the operations must be
extended to cover the impact for nodes adjacent to the copies.

1. insertItemppyr(d): determine g(d) and store d on v € V if it minimizes the
distance |h(v) — g(d)|

2. insertNodepyr(v): determine h(v) and the direct neighbors 1 and ug. Move
all items from uy within the range [i(v) — |h(v) — h(ur)|/2, h(v)[ and [h(v),
h(v) + |h(v) — h(ug)|/2[ from ug to v.

3. deleteNodepyr(v): determine the direct neighbors 1) and ug of v. Move
items in the range [h(v) — |h(v) — h(ur)|/2, h(v)] to up and in the range
[1(0), h(0) + (o) — h(ur)] /2] to ug.

Note, c(v) is limited, a condition for deleteNodepyr(v) and insertNodepyr(v) is
that no operation violates the capacity limit of any involved node. An impor-
tant observation is, that the look up feature is embedded in the DHT scheme.
Responsibility ranges of nodes for items are computable and if changes in the en-
vironment occur they are fixed locally in the neighborhood. This locality ensures
that in case of insertNodepyr(v) items are only moving to the joining or from the
leaving node in case of deleteNodepyr(v).
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2.1. The Distribution Problem 25

Beside the distribution quality of appropriate hash functions, the approach
of [21] suffers under the coupon collector problem, see Section Further, the
sampling of intervals for nodes and their lengths will deviate from the expecta-
tion and there will be nodes receiving intervals that are up to a factor of O(logn)
times higher than the average size. This is based upon an observation of the
maximal distance two nodes will have with high probability if they are placed
independently uniformly at random within an unit ring of size 1.

Lemma 1. On a hash range M interpreted as ring the distance between two node injec-
tions is at most O(k’%”), with high probability.

Proof. Sketch: Let assume that till now no inserted node is injected in a sub range
I of size % -log n. Thus, there must exist a pair of nodes with such distance. From
this it follows that the probability for a newly inserted node to hit I is - logn
and for hitting the rest of M is 1 — 1 - log n. From this it follows straight forward

n
Plnov € Vhits I] = <1—%-logn>
< o togn "
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<

From this it follows that I will be hit with high probability, and thus a distance
981 with high probability. O

between two nodes in M will be at most O(=2

The resulting problem can almost be resolved by using for every node k =
O(logn) further independent and randomly chosen injection points in M. Each
of these points behave individually as virtual servers with their own responsibil-
ity range. The reduction of the deviation from their expectation can be shown by
applying Chernoff bounds from Section [l One can show that the imbalance or
error reduces to a small factor of 1 & € for any € > 0 [21] [39]. Besides the virtual
server concept other approaches have been presented, like multiple choice [29] to
overcome the problem of imbalance. The abilities of Consistent Hashing can be
summarized in the following corollary, and follow immediately from the proofs
in the according article [21].

Corollary 2. In a dynamical uniform environment the DHT scheme is monotone, space
balanced w.h.p., adaptive and 1—competitive in expectation, if k = Q(log|V|) and at
least, the mapping is simple. Eventually, it solves the uniform problem of Definition

Finally some remarks , if we reconsider monotonicity strictly, one problem re-
mains. We have quoted out that DHTs achieve space balance with k = Q(log |V]).
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26 Distributed Resource Allocation

So, nodes are represented by k independent virtual points in M and thus each is
responsible for at most k possibly not neighbored subranges in M. For example,
if V grows, decreases continually or k alternates, it implies that each node re-
ceives or loses a virtual representative. In both cases items will be moved between
nodes, which are not involved in the join or leave operation. Eventually, this cir-
cumstance violates the monotonicity condition. To over come this behaviour we
can choose one of the following assumptions.

Assumption 1. If (D, V, f) is dynamical, the amount of join and leave operations is
nearly equal. Thus, they cause no alternation on the number of virtual nodes.

Assumption 2. If the environment (D, V, f) is dynamical we set |[V| < N € IN, where
N is fixed, but sufficiently large. Then we substitute |V | with N and set k = O(log N).

In the following we always make the Assumption [2| and accept a possibly
higher granularity and fragmentation of M than needed to achieve the balancing
qualities and take the additional overhead for managing the nodes.

Cut and Paste

The Cut and Paste Strategy introduced in [11] is similar to Consistent Hashing,
and built for an item mapping in a dynamical environment consisting of uniform
nodes. Unlike DHT, it uses the hashing scheme only to distribute items among
the nodes and not to determine the responsibility ranges for nodes. The goal
of substituting the random by a deterministic segmentation is to improve the
distribution qualities of DHTs by producing a deviation free share for each node,
and coevally preserve the adaptivity in case of dynamics. The node mapping
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Figure 2.3: The Hashing and Assimilation Phase of Cut-and-Paste
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2.1. The Distribution Problem 27

and the segmentation of M is determined with an assimilation function f,, and
basically works in the following two phases:

1. For each d € D use a pseudo-random hash function g : D — M to deter-
mine an even distribution of item injection points in M.

2. The ssimilation function f, cuts the hash range M into same sized subranges
r = [Ib, ub[ and assigns each subrange to anode v € V.

Details about f, can be found in the according articles [11] [39]. An advantage
in contrast to DHT is the deviation free transformation from the continuos range
to discrete once. The price of the optimal scattering is the order dependancy of
participating nodes, because a new node receives a subrange from any present
nodes of size 1/n(n + 1). This order dependancy leads to additional item move-
ments if nodes are removed, because the assimilation function cannot by applied
directly. Further, the assimilation function produces for n nodes a fragmentation
of n-(n—1)/2 = O(n?) and the later a node joins the higher its fused ranges
are scattered over M. Finally, the abilities of the Cut and Paste Method can be
summarized in the following corollary.

Corollary 3. In uniform and dynamical environments the Cut and Paste Strategy is
space balanced, adaptive and 1-competitive in expectation and monotone for joining nodes.
It is 2-competitive in expectation for leaving nodes. It does not solve the Uniform Problem
completely, because it violates Definition for leaving nodes .

The most difference of both presented approaches is the transformation from
the continuous hash range into discrete subranges. Of course, the deterministi-
cally segmentation of Cut and Paste has advantages, like avoiding the deviation
produced by random sampling, which is an issue if nodes have restricted re-
courses. Nevertheless, there are results proving that this distance deviation can
be kept constant, with high probability and with slightly changes in the original
DHT scheme [33]. To show this, the authors of have considered the ration of the
largest and the smallest responsibility range. They denote this ratio as smooth, if
it is constant. In a distributed environment, where DHTs are very popular the
preconditioned knowledge about the order of join and leave operations results
into communication and the order dependancy requires synchronized node op-
erations. For large networks such kind of global communication behavior might
be a disadvantage. This can be avoided by DHT, but in a SAN such global knowl-
edge is given. Finally the worse competitive ration for leaving nodes and that this
operation is not monotone, favors the DHT method. The unwanted sampling de-
viation of DHTs can be kept small with multiple choice, which is recommended
for both methods to suppress random side effects like the Coupon Collector Ef-
fect.

27



28 Distributed Resource Allocation

2.14 The Heterogeneous Case

The main insufficiency of the presented and other uniform distribution strategies
is the artificial restriction to node uniformity. Commonly, nodes are not uniform,
especially in storage environments the capacity of devices is ongoing growing
and an allocation strategy has to respect this technological progress. Currently
most allocation strategies handle heterogeneity by dividing huger devices man-
ually into smaller same sized partitions. If the partition size c(partition) is equal
for all devices, then the heterogeneity in capacity is resolved. The best can hap-
pen is that c¢(partition) is a divider of the device capacity c(v). In the worst case
the remaining capacity of v has nearly the size of c(partition) and is left unused.
Especially substituting a device by a newer one is not that easy, if the failing one
is old and the substitute should be equal. Such restrictions are inherited if the al-
location scheme uses RAID directly to utilize devices, see In this section we
consider heterogeneous node sets and strategies trying to handle heterogeneity
more flexible and efficiently than traditional approaches.

According to Section we adapt Definition [15] to respect environments
(V, DD, fw) consisting of heterogeneous nodes. In our case, we restrict heterogene-
ity to a single attribute, so nodes differ only in storage capacity, thus |W| = 1. For
remembrance, the weight of v € V is denoted with w, and its capacity with ¢(v).
Analog to the uniform case the main objective is the fair and balanced item al-

Figure 2.4: The Heterogeneous Case
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location on limited resources, where fairness means the relative usage of each
node at any time should be the same. Additionally, we assume that items are
having same access frequencies, thus such a allocation spreads transient requests
weighted among V. Beside capacity allocation this is good if the bandwidth of
nodes is not the bottleneck or increases analog with their capacity. An example
of such an environment consisting of different sized nodes is pictured in Figure
However, all aspects discussed at the beginning of Section [2.1| regarding het-
erogeneity are still not covered completely in this scenario, which leads us to the
following problem definition:

Definition 16. Let (V, D, fy) be a dynamical environment, where V consists of hetero-
geneous nodes and D of uniform items. A mapping function fy solves the heterogeneous
problem, if the following terms are fulfilled.

1. The mapping of d € D via fy is simple. This is the case if fyy uses as input V, W
and d without the knowledge of Uyey fiy' (0)-

Wy ~ __Wy

~ I
@ =ty 50 ¢e

2. The mapping is space balanced or fair if for any v,u € V

node receives relative to its size the same fraction of D

3. The mapping function fw is adaptive in case of changes in |V'| and monotone for
join and leave operations

Similar to Definition [16 the requirements of Definition for fiy implie that
the item mapping is independent, means we have to avoid global knowledge and
ignore the current state of (V, D, fyy) or future mappings of D. Finally, Definition
implies that all these properties should be preserved after changes in the
environment and especially in V have occurred.

2.1.5 The Heterogeneous Case and Solutions

In this section we regard existing strategies, able to solve the heterogeneous dis-
tribution problem from Definition [16| partially or completely. Further, we will in-
troduce our solution for the heterogeneous case. Hence we consider our method
as a generalization of the original DHT approach, we will also show the equality
of our model if the environment consists of uniform nodes. There are several so-
lutions we do not consider and which are coping the demands of heterogeneous
capacity allocation in a storage area or cluster networks, [54] [27]. However,
strategies we present have in common with ours that they make use of DHTs
or likewise hashing schemes. A reason for using DHTs is the aim to overcome
problems induced by dynamics, and to do this efficiently, especially in combina-
tion with heterogeneity. Unlike most strategies they can handle joining or leaving
nodes with less restrictions or costs on these operations.
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Reaching Consistency

From Section we know that DHTs are capable of handling dynamical be-
havior of nodes. Handling heterogeneity with DHTs and keeping the positive
behavior in case of dynamics would be convenient in many areas. Therefore,
we have to overcome the major restriction of DHT, nodes are considered to be
equal, in our case equipped with the same storage capacity. Anyhow, one can
provide with each uniform strategy a heterogeneous solution based on normal-
ization. The idea of such a Naive Solution is to resolve heterogeneity with multiple
uniform nodes and is described in the following theorem.

Theorem 2. Any mapping scheme which solves the Uniform Distribution Problem of
Definition [15]|can be used to solve the space balance condition of Definition

Proof. We know based upon the uniform solution each node v € V will receive
|ID|/|V]] items. So we modify V to V’ and redefine the number of nodes in such
way the each node can pick a number of virtual nodes in V' proportional to its
capacity. Than we are done. Therefore we define a normalization factor for ev-
ery node and determine the needed number of virtual nodes. For simplification
and without loss of generality we assume that Vo € V, ¢, /cyin € IN is true. Let
Cmin = min(c(u)|u € V) denote the node with the least capacity in the environ-
ment, than a normalization factor is defined by p = 1/c¢,,;,,. This leads for each
node to a virtual node counter of 1 < p, = ¢(v) - p € N. Than the sum of all
normalization counters is |V'| = & = Y ,cy po. As long as we treat each virtual
node individually, the uniform strategy guarantees that each v € V' will receive

at most 1D] items. Thus, a node owning p, virtual nodes will receive at most
X &P

D c(v
'%:Pv'cmin:%'cminzc(v)

Po

]

DHTs already make use of the virtual node concept to suppress side effects
derived by random sampling [21], see Section This concept can simply be
extended by techniques from Theorem [2| to cope heterogeneity by generating a
fitted environment. Therefore, we define V' consisting of |V'| = O(log(|V]) - «)
virtual nodes. This is needed, because each node injection is treated indepen-
dently and each node in DHTs needs at least k = O(log(n)) virtual nodes to
achieve its expectation. So, based upon the heterogeneous distribution objective
it remains that each node increases its amount of virtual nodes by p, and k.

Nevertheless, there exists a tradeoff in the determination of V’, especially in
the heterogeneous case. The smallest nodes in a naive solution using DHT will
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become overloaded if k is to small. On the other hand a larger number of virtual
servers implies a higher overhead, but less deviation. So if p, = ¢, - p - k is used,
we can expect good results with k > log(n). Additionally, because c,,;, is allowed
to change, the overhead is dominated at least by c,,;;,. All this can lead to an ineffi-
cient relation of |V | and |V’|, but optimistically only an asymptotical overhead of
O(log n) remains to organize V. Then the applicability of normalization depends
on the expected weight distribution in V.

Such a simple scheme is used in CFS [14] to balance the load among heteroge-
neous server capacities. A further load balancing scheme called Y, based upon
DHTs and virtual servers to resolve heterogeneity [17]. They have show that their
Yp protocol is able to reduce the imbalance of Chord [48] from O(logn) to less
than 4, but without increasing the number of links a node needs to maintain. For
more details on general Ball into Bins like models with heterogeneous bins we re-
fer to another articles [53] [49]. The authors have investigated the impact of multi-
ple choice, if bins are not sampled by an uniform distribution. They have shown
tight upper and lower bounds on the number of 4 choices needed to achieve a
balanced allocation. So with an adequate d and if |D| is arbitrarily lager than | V|,
the maximum load of a bin will be |D|/|V| + O(loglog |V|) + O(1), with high
probability. Eventually, if multiple choice is included the additional overhead of
the heaviest bin becomes independent on the number of thrown balls.

If we regard the normalization under the conditions of Definition [16{ we can
conclude that using DHT provides a solution which inherits all attributes from
the uniform case, with one exception. Even under the Assuption 2l we can not
guarantee the monotonicity of this mapping. While it is an issue to keep the
managing overhead for nodes as small as possible, we have to choose the nor-
malization factor as small as possible too. Since we cannot predict c,,;,,, the total
number of virtual nodes a node uses then depends on it. Finally if c,,;, changes,
the problem we have tried to overcome with Assumption [2| occurs again. The
random injection of nodes in M leads to specific adjacencies of nodes. If the num-
ber of virtual nodes for each node changes, current adjacencies will be destroyed
and items are moved in between newly created adjacencies. Finally, the number
of items moving can be large, even if the absolute change in Cy is small. All this
initiated by the change of the node defining c,,;,,!

Corollary 4. In a dynamical environment (V,D, fuorm) consisting of heterogeneous
nodes with |W| = 1, the Naive Solution based on DHTs is space balanced in expecta-
tion and adaptive, 1-competitive and monotone only if k - a is not allowed to change.

In the next section we present strategies trying to overcome the overhead de-
pendancy on the capacity distribution. The first method decrease the overhead to
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a reasonable and assessable size, but for managing the environment and resolv-
ing heterogeneity it still needs an uniform strategy.

Share

The Share strategy is one of the first methods which was capable of handling a
dynamic storage environment consisting of a node set heterogeneous in a single
attribute [12]. Share uses a DHT scheme to resolve the heterogeneous problem
by reducing it to a uniform problem. In contrast to the naive normalization the
uniform subproblems do not depend on the smallest node. So the remaining
overhead to bound heterogeneity stays in a manageable amount. Similar to DHT,
Share uses a double sided hashing scheme to transform the heterogeneous prob-
lem to a uniform one. Nodes are represented via ranges of a specific length. The
length of a node depends on its relative capacity and a stretch factor. Both to-
gether should ensure the coverage of the hash range M, which is here interpreted
as a unit ring. The starting points of the node ranges are mapped via a hash func-
tion into M. Each starting and end point of a node defines a frame of a certain
length in M with the other ranges overlapping. Within each frame the nodes are
considered to be equal. The fundamental idea is that larger nodes are participat-
ing in more frames than smaller once, which leads to the following two staged
item mapping. First an item is mapped with into M, which determines the ap-

Figure 2.5: Share, reduction to the uniform case
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propriate frame and its nodes for the further assignment. Within such a frame the
item is distributed with an uniform scheme like DHT to identify the final destina-
tion of an item. An example of this mapping scheme is pictured in Figure 2.5{and
the abilities of Share are summarized in the following corollary. The analyses are
made under the assumption that the maximal number of nodes ever existing in
such a network, denoted with N is known. Further, since Share uses a monotone
strategy to resolve the uniform problem e.g. Consistent Hashing and because of
the lazy update strategy Share is monotone. The lazy update strategy of Share
adapts the heterogeneous capacity distribution only if the changes exceed a cer-
tain constant.

Corollary 5. Within a dynamical environment consisting of heterogeneous nodes where
|W| = 1, the Share strategy for a given stretch factor s = O(In N) is space balanced,
monotone and adaptive with a (2 + €)-competitiveness for any € > 0 if a node joins or
leaves the systems.

Finally, a note on Share [12]. Since the runtime of O(1) is wanted to map an
item and DHTs are used the following space complexity results:

OQ2h+s-(n+1/6) - Spaceyniform) = O(n?) (2.9)

This can be followed by the article and argued by the space consumption of DHTs
and the number of frames crated to carry out the reduction to the uniform case.

The following strategy copes the same heterogeneous distribution problem, in
contrast to Share it resolves heterogeneity directly, without relying on an uniform
solution.

Sieve

Sieve is a further method capable of handling a dynamic storage environment,
consisting of heterogeneous nodes with |W| = 1 [12]. The main enhancement
of Sieve is to resolve heterogeneity directly, but to accomplish this it uses more
steps for an item assignment than Share. Similar to the Cut and Paste approach,
see Section it uses hash functions only to map items into a hash range M,
but not for nodes. To assign nodes to responsibility ranges M is subdivided into
consecutive disjoint subranges I; of size 1/n’ = 1/2/1°871+1 Than the nodes are
mapped uniquely and distinctively to the subranges, such that halve the sub-
ranges are free. Thus, the number of subrange a node occupies is

v/2 v
Ocounter = ’72[ o/ —‘ = ’V 0 —‘ (2.10)

logn]+1 . ZueV w, 2[logn]+2, ZueV w,
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unoccupied

partly occupied by Storage Nodes, V

Figure 2.6: Sieve, multiple hash functions

and if Vcounter - 1/1" > wy/ Y,cy Wy, v occupies one interval only partially, be-
ginning from the start point of I;. This partial assignment is necessary to keep
the comparative node size. An interesting aspect of Sieve is, that the order of the
mapping is completely irrelevant here. The continual item to node mapping is
done by L L — way independent has functions g; : D — M as follows:

1. insertltems;e,: Seti = 1 and while g;(d) hits an unoccupied I; or an unoc-
cupied area in Ij and i < L increment i. If i < L store 4 on the node owning
I;, which g;(d) has hit, else store d on the fallbacknode.

Eventually, if the mapping is not successfully after L steps the node is assigned
to a previously defined fallback or safety node vy,. Initially this is typically the
largest node in V, and may change during runtime. Important here is that the
fallback node uses an adapted weight, according to the amount of items probably
falling through the sieve. A node to subrange mapping example and the item
mapping using L hash functions, including a fall back bin, is pictured in Figure

Corollary 6. Within a dynamical environment consisting of heterogeneous nodes where
|W| = 1, the Sieve strategy is space balanced and adaptive with a (2 + €)-competitiveness
for any € > 0 if a node joins or leaves the systems, by using L = O(logn) L — way
independent hash functions.
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Finally some notes on Sieve. To manage the nodes and the item the strategy
needs O(n) plus L L — way independent hash functions. The fragmentation of
the hash range M is 2[181+1 From the algorithm we can deduce a worst case
runtime of L + 1 for an item assignment. The major advantage of Sieve is the
independence of an uniform strategy and if we slacken the requirements on the
hash functions, it is also easy to implement.

2.2 Distributed Heterogeneous Hash Tables

In this section we present our double sided weighted distributed hashing ap-
proach aka. DHHT [43]. It mainly consists of two different methods and it can be
considered as a generalization of the original Consistent Hashing approach [21],
we have presented in Section As seen, the original approach handles het-
erogeneity only if some kind of normalization is used, see Section The mo-
tivation of this method was to extent the original uniform approach in such way,
that on the one hand the two sided hashing scheme is completely persevered and
on the other hand the scheme keeps the heterogeneous representations of nodes
independent from each other. So, if for any node c(v) or if V changes, the repre-
sentation of the unchanged part in the environment should be kept untouched.
Such an attribute would be eligible for a distributed strategy, because responsibil-
ity decisions for items will not depend on the knowledge about the consistency
of V, but on the negotiating nodes only. We will see later what this means.

Remember, satisfying these requirements for resolving heterogeneity is not
self-evident. Other approaches like Sieve are using a single sided hashing and up
to L + 1 additional steps to assign an item. Share needs an additional structure to
resolve heterogeneity, which sometimes needs to be adjusted.Global dependen-
cies on the node representation are suppressed until these effects are not insignif-
icant any more and will have an impact on the space balance. In a distributed
environment fixes in the node representation mostly lead to global communica-
tion and item reassignments. Furthermore, they will make an asynchronous item
assignment difficult if a node does not know the current representation of the
environment.

2.21 An Alternative Representation of Consistent Hasing

In the following we transform the original DHT model into an alternative, but
equal representation, we denote as DHT*. The aim is to obtain an independent
representation of nodes extendable for a heterogeneous solution and to keep the
positive attributes of DHT. From now on we denote node injection points with
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ry € M and item injections with r; € M. Further, we still assume that any injec-
tion points are obtained by using an adequate hash function in the hash range M,
which is interpreted as a ring. This implies that the length of a subrange I, C M
owned by v is equal to its expectation to be hit by any further injection point. As a
reminder, the item assignment in DHT is done by choosing the closest node injec-
tion point r, to r;, and DHT resolves directly the uniform case only, see We
can assume that c¢(v) = c(u) Vo, u € V and we say there exists a globally known
constant c.

Our transformation requires the assignment of two linear functions f; , : M —
R and fr, : M — R to each nodes v € V. Additionally we claim that for all
nodes the gradient value of their functions is only distinct in sign, where the in-
dex L marks the negative gradient and f;, = fr,|y = 0 marks r,. Apparently,
the input of both functions are item injections r; € M. Further, because M is a
unit ring, if f1 , leaves the range at 0, it comes back at 1 with same gradient and
the height it left at 0. This is analogue for fr,. So Dpyr+ consists of four linear
functions, two starting from r; with gradient 1/c and —1/c, one starting at r, — 1
with 1/¢, and one starting from 1 4 r, with —1/c. This results in the following
distance function Dpyr+ : [0,1[x[0,1[— R for a node v to determine the height
of an item d:

( (rg—ro)/c ifrg>roN|rg—ry <1/2

(rg—(ro—=1)/c ifrg <ryNlrg—ry| >1/2
Dpur+(rv,14) = (2.11)
—(rg—ry)/c ifrg<ryN|rg—ry| <1/2

 —(rg—(ro+1))/c ifrg>ryA|rg—ry| >1/2

On can see that Dpyr+(ry,74) always returns the minimal positive value at po-
sition r; € M for a node owning r, and a fixed c. This leads to the following
function to determine the minimal height over all nodes and thus all functions in
M, which coevally identifies the node which is responsible for d.

Hpyr+ (d, V) = min({DDHT* (TU,T’d) | U € V}) (2.12)

This distance functions allows us to define the following DHT* algorithms to
determine a node insert or delete and an item mapping in M. We do not consider
the deletion of items.

1. insertItempyr+(d): calculate ry and store d on the v € V, where Dpyr+ (1o, 74) =
Hppr+(d, V). Note, therefor we only have to find the left and right neigh-
bored nodes vy and vy of . In case of Dpyr+(tv,,74) = Dpur (Tog, ) =
Hpyr+(d, V), choose v;.
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Figure 2.7: DHT", an Alternative Reprensentation of DHT

2. insertNodeppr+(v): calculate r, and determine the direct neighbors u; and
ug of v. Moveallitemsd € f~(u) | u € {ur, ug} tov, where Dpyr+(ry, g(d)) <
Dpyr+(ru, g(d)) is true.

3. deleteNodepyr+(v): Move all d € f~1(v) to the direct neighbor u; where
Dpur+(ur,§(d)) < Dppr+(ur,g(d)) is true and and if false to ug.

Without loss of generality, but for simplification we have not considered node
copies. This is acceptable, because node copies must be treated individually and
independently in the DHT scheme.

Different to DHT, DHT* uses values defined by Dpyr+ (v, 74), which can be
considered as the height an item d receives on a node v. This height depends on
the gradient 1/c¢ (or in the uniform case as substitute for c(v), wy) and r,. That
minimizing the height is the same as minimizing the distance in the uniform case,
shows the following lemma:

Lemma 2. DHT is equal to DHT*, since c is known Yv,u € V is true.

Proof. This follows directly by simple geometry facts. Let f; and f; be two linear
functions, one with 1/¢ and the other with —1/c as gradient.

1. f1 and f, are axially symmetric according to an axis aligned parallel to the
y-axis through their intersection point P(f1, f2).

2. If |P(f1, f2)-y| > 0, than P(f1, f).x halves the distance between x1,x, € M,

where f1(x1) = f2(x2), because L% = — 2% — 170 — 5

3. linear functions with the same gradient have no intersection, if they are not
identically.
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We know if f; and f, are owned by to different nodes u,v € V, an item 4 is
assigned to the closest node. This is, because the height of the closer node is less
than the height of the farer one. From 3. we know that the intersection with the
minimal height is caused by an adjacent node. Clearly, the domination alters at
P(f1, f2).x, which coevally halves their distance. In case of r; = P(f1, f2).x, then
D(ry,1r4) = D(ry,r4). This mapping decision can be made via definition, which
shows the equality of DHT and DHT* in the uniform case. Hence M is used as a
unit ring this holds for any intersection of f; and f, O

The geometric construction of the distance function D(ry,74), interpreted in
a ring, which builds up Hpyr+(d, V) and the conclusion of Lemma [2| can be re-
constructed from Figure The example uses only two nodes, but the effect
of halving the distance between adjacent nodes is independent in the number of
nodes. In contrast to halving, the perfect segmentation of M at any position is
only achievable up to two nodes.

Finally, some important notes on Dpyr+(toy,74) and Hppr+(d, V) if the lin-
ear functions f; and f, should be substituted by any other functions. The node
functions must have the following attributes. First, they must be continuous and
strictly monotonic, one increasing and one decreasing over M. This is needed
to get intersection points and avoid intersection ranges and thus obtain explicit
responsibility ranges. Second, they must be axially symmetric according to an
axis aligned parallel to the y-axis through r,. This is needed, because for any
pair wise distinct v, u € V with same weights f;, is parallel to f,;, and analogues
for f,, and f,;. From this it follows that f,, and f,, are also axially symmetric
according to the axis running parallel to the y-axis and through P(fy,, fu;) and
P(fo,, fug)-x halves the distance between r, and r,, which was needed to show
the equality of both models.

In the the following sections we introduce our DHHT approach, including
two methods, both capable of resolving one heterogeneous attribute of nodes in
a dynamic environment. Both variants use a double sided hashing approach and
the item to node mapping specified in DHT*. As we know from Section 2.1.5]
normalization is a disappointing opportunity to resolve heterogeneity, as long
as a managing overhead for nodes and migration of items caused by changes is
an issue. If we replace DHT with DHT", these costs are still existing. However,
DHT™* has the potential to overcome the overhead costs depending on the capac-
ity distribution and the resulting non monotone behavior.
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2.2.2 The Linear Method

In this section we present the first DHHT variant, the Linear Method, in the follow-
ing abbreviated with DHHT} ;,,. It is designed for resource allocations in dynamic
environments (V, D, fpgyr,,, ) and resolves heterogeneity of nodes according to
a single attribute, so |W| = 1. Our aim is to overcome the node dissimilarity di-
rectly, without using an uniform strategy, and to avoid global adaptions in the
node representations if the environment changes partial, and to impede item
movements otherwise. This prevention is reasonable, because under practical
considerations significant capacity changes and the domination by the smallest
are typical cases beside node failures or small capacity expansions. For instance,
a storage environment grows steadily by inserting larger devices or older and
smaller once are removed, especially if they fail and typically replaced by larger
once. So changes caused by exchanging the smallest node as well as capacity ex-
pansion will occur. In the following we show that we can resolve heterogeneity
by modifying the distance function of DHT*.

If we examine Dpy7+ and Hpyr+(d, V), one can see that the intersection of
nodes P(fu, fo, )-x is shifted away from the halve distance if individual and un-
equal node gradients are used. These shifts resize the responsibility ranges and
thus the probability to receive an item changes too. In Figure 2.8l we exemplify
this effect with two nodes, if the gradient ¢ in Dpyr+ is substituted by w, := ¢(v),
Vv € V , by using a weight relation « := w,/w, = 2. In the example the
node injection generates in M the range |[ry,1y], which is likewise subdivided
into I := [r,, “j*%2] belonging to u and I} := [*74I, r,] belonging to v, by

T+a 7
their intersection at P(fy,, fo,).x = %T’ This results into the wanted ratio of
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Figure 2.8: Perfect Segmentation with |V| =2and a =2
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I} /Il = «. This ratio is the same for the segmentation of [0, 7,] U [r,, 1] resulting
in I2 := [P(fu,, for)-X,1u) and I2 := [ry, 1] U [0, P(fu,, for)-x]. Together we have
I, := I} U2 and I, := I} U I? with |I,| /|I,| = «. Thus, the probability for a node
to receive an item randomly injected in M is

IR Y
T+ B+ 18]~ Tieque 4

c(v)

1 Yievc(i) 19
The interesting part of this substitution is that c depends directly on the attribute
we try to resolve and not on a relative system value, thus node weights and their
representation do not dependent on each other.

Note Figure 2.8 only exemplifies how segments in M are constructed and in
contrast to the uniform case, the segmentation by two nodes is not always perfect.
If r, and r, are determined by random the probability to achieve a segmentation
with properties of Equation decreases, if the ratio a increases. Assuming
wy < wy, than the scope where a placement of r, creates a perfect segmentation
is ranged by the following condition

|P(fUR'fUL)'x — Vvl — 1 .
\P(fogs fo,)-x —rul 2

which is fulfilled if the condition P(fo,, fug)-Y, P(fog, fu;)-y < P(fo,, fog)-y is true.
So, since w, > wy, then P(fyy, fo, ).y decreases with an increasing w,, which leads
to

|P(fop, for)-x — 1| ' > & (2.14)

1
-1 _ Q_ru
Wy

N =

1"” —

1
2-n

N —

So the size of the scope surrounding P(fo,, fo, )-X, where r, must fall into via
random choice, is equal to the probability of the event to occur and can be deter-
mined in the two node example by

P[r, segments optimal] = (% —ry)-2= (1 - (% - %)) 2=ua"!

Another crucial problem is the imbalance caused by dynamical changes in V and
its heterogeneity distribution. Similar to DHT the system has to handle the inser-
tion or removal of nodes over time. In our two node example a further addition
of a node will automatically cause an unwanted imbalance, this is analog, if a
previously perfect segmentation is destroyed by removing a node. Hence previ-
ously assigned items keep their positions in M some will be assigned to the new
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device or the adjacency of a removed node. In contrast to the uniform case the
amount of moved items depends on the weight ratio of adjacent nodes and not
only on the distribution quality of nodes among M. So, independent of the bal-
ance at a specific moment dynamical changes potentially destroy this quality over
time. The only way to keep the balance without increasing the model complex-
ity, is to change r, for nearly each node in such way that the distances reflect the
wanted distribution again. This reactive repairing strategy is unwanted, because
the amount of item exchanges among nodes can become very high compared to
the capacity change in the environment.

The results in following subsections will show how such a scheme can provide
a fairly balanced distribution of data elements. Further, we will see that it is
also capable of compensating dynamics and keep balance with minimal effort,
concerning data movements or system reorganization by changes.

The Basic Method

As before, given a dynamic environment (V, D, fprnr,,,) consisting of a node
set V.= {vy,...,v,} and heterogeneous according to one attribute. The node
weights are determined by Wpyyr := {w(v;) € R} reflecting the dissimilar-
ity of V. For instance, if we have one attribute, w, = w(v;) = ¢(v;). Further
we have a uniform item set D = {dy,...,d;;} we want to distribute among the
nodes. The mapping function fpyyr,, determines the rules for an item mapping.
Therefore we use the hash functions r, := h(v), v € V for the node mapping and
rg := g(d), d € D for items in M. We still assume that the hash functions be-
have like independent uniform random variables in the unit range. In contrast
to the previous section we simplify the distance function for analyzing purposes.
Instead of using two linear functions for each node, the distance function only
consists of one linear function per node, each with a positive gradient. So we do
not need the axial symmetry property of DHT* any more. Since the objective is
unchanged the modification of each node its representation should still result into
an imbalance among the nodes, reflecting the weight distribution in W. To decide
the item mapping among the nodes we first define the scaled distance function
DpunTy,, ¢ [0,1[x[0,1[xR — R. Note, we still consider M as a unit ring, so with
rq,Tv € M, this leads to

Yg—"Tvy :
b ) S ifry >ry
DHHTU” (rd/ Ty, w’()) L rtl—r
d —v
o else
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transformed to a closed form

1+rg—ro— [14+715—710]
Wy ’

DpHHT,,, (Ta, 1o, Wo) =

then by applying Definition |8, we have

(14 (rg—1rp)) mod 1
Wy

DDHHTLM (T’d, rv,wv) = (2.15)
On can see that Dpypr,,, always returns the minimal positive value at position
r4 € M for anode at r, with weight w,. Likewise DHT*, the Linear Method should
assign an item d at 74 to a node v; which minimizes the height over all nodes.
Therefore we define a function which determines the minimal height to any po-
sition r € M over all nodes. The node defining this minimal height is responsible
ford atr,.

HDHHTLm (7’, V) = min({DDHHTLm (1’,1’@, wz,) ’ S V}) (2.16)

In contrast to the uniform case, distance functions with different gradients can
have intersections with each other and can generate a multiple alteration of the

Items, D

Figure 2.9: DHHT, the Basic Linear Method
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minimum according to a single node. Since the minimum of Dpypr,, (¥, 70, Wy)
defines the node which is responsible for the item, each intersection with this
minimum is also an alteration of the minimum. This alteration of the minimum
can be reconstructed by the domination of the left and brown colored device in
Figure Finally multiple unique ranges I; C M, i € IN can belong to one node
v. Further, the distance function of v also defines the maximal height an item
receives in this segment. In the following we will denote the intervals defining the
minimum over Dpypr;,, the lower envelope of Hpyyr,, and the set consisting
all these subranges is denoted by I;;,. Clearly, the following is true; } ¢y .17 =1
and VI,I' € Ly NI # I' : I' NI = @. Thus, the probability of v to receive an
item is determined by ) ;i .| ||, which is the size of all ranges v is responsible
for. These rules for an item assignment leads to the following operations if a node
or item is inserted or deleted:

1. insertItempppr,,, (d): determine 74 and find the range I € L, where rs €
I,. Then store d on the v, because Dpunr,,, (74,70, Wo) = HpauT,, (T4, V).

2. insertNodepunr,,, (v): determine r, and use Dpypr,, (¥, 70, wy) to identify
intersections P(u,v), u € V, where P(u,v).x in I, € I, and P(u,v).y.
Adapt the intersected intervals and remove all completely dominated. Move
all items previously assigned by removed intervals or by the changed frac-
tion of intervals to the new node v.

3. deleteNodeprpr,,, (v): VI, € I, N I, determine the lower envelope be-
tween [Ii.start, I\ .end]. Insert all new intervals to I,,;,, and resize the previ-
ously intersected by Dpynr,,, (X, 70, Wy). Remove Il € I, N Ly, from I,
Move all d € f~1(v) to the corresponding intervals of the changed areas in

Imin'

As before in DHT or DHT* inserting is nearly the same as deleting an item, be-
cause the identification of the appropriate node is major and analog part of the
operation. We assume that items are inserted and removed by their keys and the
distribution function g(d) is a perfect hash function. Thus deletion of items is
evenly distributed over M and thus the probability for nodes to lose an item is
the same as for receiving one. Note, all these operations can be implemented in
several ways, for instance a central solution can determine in advance the lower
envelope and save I, as list sorted among start and end points of intervals.
Details on efficient algorithms can be found in Section

So, we can derive our first property according to Definition One can see
that the operation insertNodepnnr,,, (v) has only an impact on those nodes re-
sponsible for a removed or changed interval part of the lower envelope. Each
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involved node moves items only to the new node, which carries over their ranges
and none among others. The same behavior we can observe for deleteNodepryT,, ().
A the leaving node only moves items to nodes covering the abandoned ranges of
the lower envelope.

Corollary 7. The Linear Method of DHHT, DHHT} ;,, is monotone concerning insert or
delete operations of nodes.

However, this monotone behavior does not depend on the heterogeneous
node representation within the model. Further, the representation of a node never
changes, because it is independent on the number of nodes leaving or joining the
environment. The heterogeneity is obtained indirectly. Remember, till here we
do not know if this heterogeneity reflects the objected weight distribution.

Let us first take a look at the distribution of the height / according to a position
r € M. This, we define in the following lemma

Lemma 3. Given n nodes and weighting functions w(i) : {1,...,n} — {wy,..., wy}.
Then the height H(r) assigned to a position r in M is distributed as follows:

P[H(r) > h] = { 10_[1'6[11](1 —h-w;), Zfeg mlnl{w,-} (2.17)

So the probability for a position and thus an item to receive a specific height
depends directly on the minimum defined by the distance function and it is 0
above. In the following theorem we proof the balancing quality of the described
mapping scheme.

Theorem 3. In a dynamic environment (V,D, fpuuT,,,) consisting of heterogeneous
nodes with |W| = 1 and positive weights w; := w(v;), the Linear Method assigns an
item d € D to anode v; € V with the probability of at most

w.
P|d assigned tov;] < ——-
dassig ! Y ev\{o;} W)
_ Wi
- v
(E]L'l wj) — wj

Proof. Let r; denote the position, where a data element is inserted. Let H; denote
the height of the data element. Note that all these random variables are indepen-
dent and uniformly distributed, since we consider only the placement of one data
element. Hence, the probability that r; is at most in the weighted distance / or the
element receives at most the height /1 from node v;, is described as follows.

1, h>2t

= w; (2.18)

PIH; < ] = { h-w; else
i .
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From this we can determine the probability, that an element receives a height in
certain range, like the interval [h, h + 6] for node v; and receives greater heights
for all other nodes. Therefore, we set h + 6 < wi and define the condition con :=

H; € [h,h—F(S]/\V]#I H]>h

P|con is true] B 3 hz g (2.19)

con is true| = .
ow; [1j+(1 — hw;) else.

Let P j,5 := 0w;1j£i(1 — hw;). Now, an upper bound on the probability that an

element is assigned to node v; is given by the sum )" ; P; 5,, 5. Note we substi-

tute h with m - § and obtain

Pi,h,(g = cSwZ- H(l —md - ZU])
j#i
< Swie MM LAY
Now leta := Yjxiwi >0 the sum of weights without v;. Further, the substitution

of h allows us to transform the sum Y/, P, 5, 5 into an integral if § tends to 0.
Then we finally obtain

(o] oo
lim Pi,(gm,(g < lim Z wiée_“‘sm
0=0, 2 =02
(o)
= wie” dx
x=0
_ Wi
a
_ Wi
Lj#iWj
which proves the statement of the theorem O

From this we have a first impression according to the distribution quality of
items, but it seems to be disappointing concerning the demanded balancing at-
tribute from Definition [16] The larger a node weight compared to other nodes is,
the more it tends to behave like a magnet for an item assignment.

The Use of Copies

In this section we take a look at the use of copies to enhance the balancing prop-
erty of DHHT};,. Using for each node a number of independent copies is equal
to the virtual node technique we already have seen in DHT. There it was used to
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ensure that each node receives its expectation, here it can help us to overcome the
intrinsic imbalance shown by Theorem

In the following each node will participates in the environment with [% +1]
copies for some € > 0. We do not formalize this property, but we have to treat
each copy separately to ensure independence among the copies. We simply note
that the number of nodes needs to be increased by this constant factor, to ensure
the following inequality foralli,j € {1,...,n}

n

1 .
Zwig(l_ie) 1Zwi§ (1+e)) w
i=1 iZ] iZ]

This inequality is needed in the theorem below to proof the upper bound of p;
for a node v;. In the following we abbreviate the sum of all weights with W,;; :=
Y.i- 1 w;. The following theorem bounds the probability p; of a node v; € V

Theorem 4. In a dynamic environment (V,D, fpuuT,,,) consisting of heterogeneous
nodes with |W| = 1, the Linear Method assigns an item d € D to a node v; € V with
probability p;, if it uses [2 + 1] copies for an € > 0, where

w;j w;
1—Ve)-——<p;<(1+¢€) —

Proof. First we proof the upper bound on p;, which can be shown by using Theo-
rem [3|in combination with the previously defined inequality. This results into

o=
L Ligiw
1 w;
< 1
1—3ed,w
< (1+e)q

W

Form here, we only have to show the lower bound. Therefore we proof the fol-
lowing lemma which uses the fact that the maximal height in M is restricted by
the biggest weight.

Lemma 4. For all i,j € [n] with € > 0 and a height h < ﬁ/{w} the following
inequality holds

o~ Wa/ (1—€) < H(l — hw;) < H(l — hw;)
i i#]
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Proof. To show this we have to remember that for any k > 1 the inequality

1 1
e< (1+ E)kH — el (1- %)k*1

is true. So, within the mapping range for any x € (0,1) we have
1—x>(1—x)Tx
So we can say for any h < w;:

. hw;

(1 —hw;) >e -hi

Note that we have previously set hw; < €’, so we have

L
[J@—hwj) > e Lj#i T,

J

V

hw;
_ , ]
e Z] 1—€l

MW/ (1 =€)

(AVARY,

which finally proofs the lemma. O

Again we say that a sufficient condition for an item assignment is con := (H; €
[h—0,h) AVj # i : Hj > h) that a data element is assigned to node v; is the
following;:

0, Jlh>1
ow; [Tj+i(1 — hw;) else

P[con is true] = { j

let P/} s == 0w;[4i(1 — hwj) for h < min{1/w;}. Now, the sum can be
transformed into an integral if 4 tends to 0, so

/

€
dmax{w; }

S = lim P!
5—0 mZ::1 1,0m,0

e

_ /hmax{wi} wi H(l - hw])dh

=0 j#i
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gives the lower bound on the probability that an element at r; is assigned to node
v;. So with the height distribution of Lemma I 3|and if we set € = €’> we have

/

Pry assigned to v > /ma"{wi} wiefhwg”/(l—e’)dh
h=0

W _ €' Wa
= (1)t (1 TeTmaxte]
all

__ e
1—¢ (1-€)e
1—6 w;
> (1-¢) !
- )Wall
> 1—(—:
o ( > all

> (1- Vo)

> <1—e>“’

all

which proofs the lower bound of the theorem. O

So the Linear Method using a sufficient number of copies can provide a bal-
ancing, such kind that the probability of a node v; to receives an item depends
proportional on W,;; and not only on W,; \ {w;}. This closes the gap, where lager
nodes tend to receive more items than objected.

The Use of Partitions

Nevertheless, the previous result of Theorem [ does not imply that every node
receives data elements according to the probability, we have determined. Based
upon the random sampling of positions in M, r, € M once assigned to a node
v never changes. So as long as none of the nodes is removed or newly inserted,
the resulting intervals assigned to each also remain the same. Finally, because
po corresponds to the size of intervals assigned to each node it is also fixed after
nodes are settled in M. Even in the balanced case, where Vo € V' |I,| = % the
Coupon Collector effect still occurs. Eventually, some nodes will receive intervals
of a size which are up to a factor of O(logn) larger than desired, which directly
results into an unwanted imbalance. One technique to resolve this is using more
copies, like DHT does, but we suggest and introduce partitions.

Therefore, we partition the hash range into O(log n) partial intervals of equal
size. For each partition we apply the node mapping of DHHT};, individually. So
thenodes V = {v4,...,v,} are mapped to each of these continuous set My, ..., My
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with M; = [(i —1)/k,i/k) and k = O(logn) including node copies. Than all
items d € D are mapped among the whole hash range [0,1) using hash function
for items.

Theorem 5. For all €,€' > 0and ¢ > 0 there exists ¢ > 0 such that when we apply
the Linear Method to n nodes using [% + 1] copies and ¢’ log n partitions, the following
holds with high probability. Every node v; € V receives all data elements with probability
pi such that

w; w;
(1—\/5—6')'W1 < pi < (1+€+€’)-WZ

Proof. This result follows by Theorem 4{and applying Chernoff bounds from The-
orem[Il O

The advantage of applying partitions in contrast of using copies is that nodes
of different partitions can not compete against each others. The partitions are
similar to independent and multiple instances of the Linear Method using copies.
On closer examination the number of partitions should not change frequently,
otherwise the monotonicity is endangered. If the partition borders are adjusted,
because of newly or collapsing subranges some nodes will need to be re injected,
followed by item reassign. This will lead to a non monotone behavior and we will
obtain similar effects as we have seen in Share or Sieve if the model adjusts. Since
we use O(logn) partitions we can keep the monotonicity if we use Assumption
or Assumption 2|and set the number of partitions to O(log N).

The Limits of the plain Linear Method

In this section we show some limits of the Linear Method and argue why it is
essential to use copies and apply partitions as introduced in the previous Subsec-
tions. To exemplify this let us consider the following weighting function w'(v;) :=
V — R for nodes with n = |V|

. 1 ,i=1
Wy, =W (v;) = )

1=, ¢€lse

and assume each node owns only one position r, € M. First one can see that

the desired share for node v; is %, if we use w’ as weight distribution. Than it
turns out that using the Linear Method v; will receive more than his fair share,
still under the condition that only one position for each node is chosen.

Theorem 6. Without copies the Linear Method for n nodes with weights w,, = 1 and

Way, - .., Wo, | = —7 assigns a data element with probability p(v1) =1 —e~! ~ 0.632

to node v1, if n tends to infinity.
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Proof. First we show that the weight distribution leads to a wanted share of 3. So
v1 should expect % - | D] of the items we distribute among the nodes:

Wy,
0 —= _
pe1) Yl wy,
1 1

1+, -4

Now we can use height distribution of Lemma 3|and reduce the probability to the
following term if n tends to infinity

1 x \"1 1
lim X <1 — ) dx = / xe *dx
n—oo Jy—Q n—1 x=0

= 1-¢ 120632
O

This shows that the Linear Method needs copies to improve the balancing
qualities. It is not enough to introduce partitions, although this leverages the size
of intervals. So, the number of copies always improves the balancing quality of
the Linear Method.

Concluding till here, we have seen in previous Subsections, with a sufficient
constant number of virtual nodes and by coevally applying partitions from Sec-
tion we can improve the balancing bounds of DHHTy;,, up to a constant
factor. Based upon Theroem 5|and the monotone behavior, we know that in case
of dynamical changes in the environment the insertion or removal of a node is
(1 + €)-competitive with high probability.

Corollary 8. In a dynamical environment (V, D, fprurt,,, ), where V consists of hetero-
geneous nodes and |W| = 1, the DHHT;,, strategy is space balanced by using [2 + 1|
and additional O(log|V|) partitions. Further, DHHT;, is adaptive and monotone with
an (1 + €) competitiveness for any € > 0 if nodes are added or removed from the envi-
ronment. So it solves the heterogeneous problem.

In the following we try to reduce the additional overhead of DHHT};,, by
substituting the linear scaled distance function with a logarithmic scaled distance
function. This modification should improve the basic balancing quality such that
the number of needed copies can be reduced.
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2.2.3 The Logarithmic Method

In this section we present the second DHHT variant, the Logarithmic Method, in
the following abbreviated with DHHTy,,. It is designed for resource allocations
in dynamic environments (V, D, fp HHTLog) and resolves heterogeneity of nodes
according to a single attribute, so |[W| = 1.

The aim of DHHTL,, is to improve the balancing quality of DHHT};, and
coevally reduce its managing overhead. The Logarithmic Method uses basically
the same techniques to assign items to appropriate nodes, but it uses logarithmic
scaled distance functions to respect the node weights. The example in Figure
shows the modified model and the mapping among nodes with such distance
function. One can see there, that the hash range range is again divided into sev-
eral responsibility subranges, but they differ in construction compared to Figure
One effect which can be observed directly is that pairwise different distance
functions can possibly intersect multiple times. In some cases this will result into
diverse responsibility ranges and thus different item assignments. The results in
following subsections will show that this scheme also provides a fairly balanced
distribution for data elements and is also capable of compensating dynamics with

.\ Storage Nodes, V
A

Figure 2.10: DHHT, the Logarithmic Method
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a minimal effort, concerning data movement in case of node insertions, removals
or system reorganization.

The Basic Method

As before, given a dynamic environment (V, D, fp HHTLog) consisting of a node
set V.= {v1,...,v,} and heterogeneous according to one attribute. The node
weights are given by Wpypt := {w(v;) € RT}, reflecting the dissimilarity of V,
similar to Further, we have a uniform item set D = {d;,...,d,} we want
to distribute. The mapping function fp HHTp, determines the rules for an item
mapping. To map nodes into M we use the hash functions r, := h(v), v € V and
r4 = g(d),d € D to map items. Further, we still assume that both hash functions
behave like independent uniform random variables in the hash range.

As mentioned, the mapping is technically the same, but instead of a using
linear scaled distance function we use a logarithmic scaled distance function
I(x) = —In(1 — x). Further on we use only one function per node to represent its
weight and the hash range M is still interpreted as unit ring. Thus, the height an
item receives on a certain node v € V is determined by these two functions

—In(1—(ry—ro)) ifry>r

Dpunt,,, (T4, 7o, Wo) 1= o ’
Log —In(1—(14r;—715)) —In(rp—14) 1

Wy _ Wy clse

both functions can be transformed by applying Definition (8| to the following
closed form

—In(1 - (ry — sp) mod 1)
Wy

DpHHT, (Ta, o, Wo) =

As specifiedin DHHT};,,, Dpy HT,,, Teturns the minimal positive value at position
r4 € M for a node v hashed to position r, with weight w,. Again, for each node v
and data element d we call the value of this function the height an item receives
at node v. Accordingly the Logarithmic Method assigns an item d at r; to a v if it
minimizes the height over all nodes. Therefore, we define the following function
which determines the minimal height according to any position r € M over all
nodes, which coevally identifies the responsible node for a given r,.

HDHHTLOg(T’, V)= min({DDHHTLOg(r,rv,wv) |v e V})

The operations resulting from the height function implementing node insertions,
node removals and item assignments are nearly identically to the operations
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listed in Section Likewise DHHT};,, each node v possibly owns multiple
ranges of the lower envelope I, so I, := {I}, | I € IL,,}. This leads to the
following operations

L. insertltemppury,, (d): determine r4 and find the range I’ € I,,;,, where ry €
Ii. Then store d on the v, because DDHHTLog (rg, 1y, Wy) = HDHHTLog(Vd/ V).

2. insertNodeDHHTLoq(v): determine r, and use DDHHTLoq(x, 1y, Wy) to identify
intersections P(u,v) | u € V, where P(u,v).x in I, € I,;, and P(u,v).y.
Adapt the intersected intervals and remove all completely dominated. Move
all items previously assigned by removed intervals or by the changed frac-
tion of intervals to the new node v.

3. deleteNodeDHHTLog(v): VI, € I, N I, determine the lower envelope be-

tween [I}.start, I}.end). Insert all new intervals to Lnin and resize the previ-
ously intersected by Dp HHTLog(x’ v, Wy). Remove I} € I, N I, from I;,.

Move all d € f~1(v) to the corresponding intervals of the changed areas in

Imin~

As before in DHHT};,, the operations needed to delete an item are equal to in-
serting one, but instead of storing the item it is simply removed from the node.
Finally, one can see that only the calculation of the minimum is substituted. Since
the substituted distance function is a strict monotonically increasing function we
can argue similar to DHHT};, if we consider the characteristics of item move-
ments in case of dynamics. The operation insertNodep HHTLog(U) has only an im-
pact on those nodes responsible for a removed or changed interval which was or
is part of the lower envelope. Each involved node moves items only to the new
node v, which carries over their ranges and takes part at the lower envelope. So
no item movements occur among other nodes. The same behavior we can ob-
serve for deleteNodep HHTLog(U)' A the leaving node only moves items to nodes
covering the abandoned ranges of the lower envelope, previously belonging to
the leaving node. With this, we derive the first property according to Definition
given in the following corollary.

Corollary 9. The Logarithmic Method of DHHT, DHHT],q is monotone concerning
insert or delete operations of nodes.

Again, this monotone behavior does not depend on the targeted balancing
attitude of such a heterogeneous node representation. However, the represen-
tation of a node never changes and it is independent on the number of leaving
or joining nodes and their weights. The aim of this model is to obtain the het-
erogeneous item distribution indirectly. Remember, till here we do not know if
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this node representation reflects the objected weight distribution or improves the
Linear Method.

In the following we proof the balancing quality of the DHHT],, mapping
scheme. Therefore we take a look at the distribution of the height /1 according to
a position r € M and define this in the following lemma

Lemma 5. Given n nodes with weights wy, ..., wy,. Then the height Hp HHTLog(r) as-
signed to a position r in M is distributed as follows:

P[HDHHTLOg(T’) > h] — ¢~ Liev Wil

We can observe that for small / this probability is close to the corresponding
probability of the Linear Method. Furthermore, the probability P[HppyT,, () >
¢] of the Linear Method tends also for larger & to this probability if we increase
the number of copies, denoted with ¢

Clim P[HDHHTL,-n (}’) > []1/C = e Liey wih

= P[Hpuur,,(r) > h]

We know that the Linear Method is fair, if the number of copies grows towards
an infinite number. This gives us an alternative proof for the following theorem

Theorem 7. In a dynamic environment (V,D, fpuur,,,) consisting of heterogeneous
nodes with |W| = 1 and positive weights w; := w(v;), the Logarithmic Method assigns
an item d € D to a node v; € V with the probability of

wi
n

P[d assigned to v;] =
j=1Wj

Proof. Hence the probability that an item receives height H; := Hpppr,, (r4) in

the interval [i — 6, h] and receives larger height than & is defined by the condition
cony = (H; > h— 30 ANH; <h A \jx H; > h) and at most

Plcony] = <e_wi(h_‘5) — e_wih> He_wfh

j#i
— e wih (ewi(s . 1) Hefwjh
j#i
_ <ewi5 _ 1) 1 L

j€(n]
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With this we show the upper-bound of the probability that an element is assigned
to node v;. This given by the following sum

o0 o0
lim (ew"k‘s — 1) e Wik > lim kéw.e~ Lic wiok
6—0 Z 1_[ T 5—0 Z !

k=1 j€ln] k=1

(ee]

= / xw;e Lijeln) WiX gy
x=0
Wi

Ljeln) W)
A sufficient condition that a data element receives height in the interval [i, h + J]

and receives larger height than # is defined by cony := (H; > hAH; < h+J A
Nj+i Hi > ) and the probability therefor is

Plcon,] = (efwxh) _ e—wth) TTe "

J#i
— e—wih <1 . e—w,-é) He—wjh
JFi
— (1 _ e—wié) H e*w]'h

j€[n]

With this we show that the probability of an element to be assigned to node v; is
lower-bounded by the following sum

o0 o0
lim (1 — e‘wik‘5> e~ Ui% < lim Y kSwse ™ Lick wiok
6—0 g H — 5—0 g !

k=1 j€[n] k=1

o
= / xw;e Lijeln) WiX gy
x=0
Wi

Ljeln] ©j
Both bounds proof the statement of the theorem O

As already mentioned to Theorem [3} the statement in Theorem [7] holds for n
nodes and the placement of one data element inserted at the same time. In this
situation, we achieve a perfect balance in expectation. If we insert more items
at the same time, then we face strong dependencies between the assignments of
the data elements. For the second element the probability that this element is
inserted at some node v; is highly dependent on whether the first element has
been inserted at this node. This follows simply by the fact, that the intervals are
fixed and their sizes determine the probability distributions.
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The Use of Partitions

The result of Section imply that we have similar effects to cope within the
Logarithmic Method. We also use random position sampling to settle nodes in
M, and once assigned, r, never changes. Finally, as long as no dynamics occur
in V the lower envelope and its range assignment to nodes is fixed. Further, in
the balanced case, where Vo € V || = vf/";l the Coupon Collector Effect occurs,
see Eventually, some nodes will receive intervals larger than desired, which
directly results into an unavoidable imbalance. However, we can overcome this
problem by using partitions again.

Therefore, we partition the hash range M into O(log 1) consecutive subranges
of equal size. For each of these partitions we apply the mapping of DHHT},, in-
dividually. So allnodes V = {vy, ..., v, } are mapped to each partition My, ..., My,
with M; = [(i —1)/k,i/k) and k = O(logn). Finally, the items are distributed
among the partitions and within M; assigned to the node which is the closest in
this sub-range according to the logarithmic weighted height function.

Theorem 8. Forall € > 0and ¢ > 0 there exists ¢’ > 0, where we apply the Logarithmic
Method with ¢’ logn partitions. Then, the following holds with high probability, i.e.
1 —n~°. Every node v; € V receives data elements with probability p; such that
Wi Wi
—e)- 2 < oy < RS
(]‘ 6) W — pl — (1+€) W

Proof. This result follows by Theorem[7|and applying Chernoff Bounds from The-
orem[I] O

The advantage of partitions are the same as before in DHHT};,,, see Subsec-
tions in In contrast to using a single hash range, partitions are independent
multiple instances of the Logarithmic Method. Copies of the same node within
a single has range possibly compete against each others, but they can not inter-
act among partitions. This independency will compensates such bad samples of
node and item positions.

Nevertheless, the restrictions considering the number of partitions and mono-
tonicity are still existing. If the monotonicity must be guaranteed all the time,
the partition number should not de- or increases continuously. The monotonic-
ity is endangered, because partition borders need to be adjusted. These adjust-
ments will produce re-injection of nodes, which is followed by item reassign-
ments. However, since we use O(logn) partitions we can keep the monotonicity
by using Assumption [Ijor Assumption [2, where we set the number of partitions
to O(log N).
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Corollary 10. In a dynamical environment (V, D, fpuur,,, ), where V consists of het-
erogeneous nodes and |W| = 1, the DHHT 4 strategy is space balanced by using ad-
ditional O(log|V|) partitions. Further, DHHTyoq is adaptive and monotone with an
(1 4 €) competitiveness for any € > 0 if nodes are added or removed from the environ-
ment. So it solves the heterogeneous problem.

2.3 Advanced Techniques and Properties of DHHT

In this section we take a look on further techniques, to emphasize the practica-
bility and expose some specific properties of DHHT. The introduced techniques
will be applicable for both DHHT variants, so we consider them in general. The
features we are describing are interesting for some application areas, like SAN
or P2P, where network bandwidth, high data availability and efficient meta data
information management is an issue.

2.3.1 Fragmentation

Fragmentation occurs in computer storage and is a kind of inefficiency, which
possibly leads to reduced storage capacity, additional management overhead, all
resulting in decreased access performance. The reason for tolerating such disad-
vantages is founded by the aim to keep allocation algorithms simple. The result-
ing fragmentation can be classified in the following groups:

e Data Fragmentation, this effect occurs whenever the allocation of memory
for a data element can not be done consecutively within the storage. This
means, if, the item needs to be split into several peaces to be stored.

o External Fragmentation, this effect occurs if free storage is split into several
peaces and is not available in one peace. High External Fragmentation leads
often to higher Data Fragmentation.

o Internal Fragmentation, this effect occurs if memory is allocated, but with-
out the intention to be used completely. This is often done for simplification
in file systems. For instance, the file system has a block size k and the file
needs to allocate ¢(d) of memory. Typically, there will be [¢(d)/k]| used,
with a waste of [¢(d) /k] — c(d) /k of memory to keep the allocation of other
tiles simple.

In case of DHHT we have to define what fragmentation means. We distribute ho-
mogeneous items which can be used as a consecutive number of physical blocks.
Since all items are of same size, we typically inherit similar effects filesystems
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have. The maximum number of consecutive physical blocks on a node is prede-
fined by c¢(d). If it is more, it was generated by random. Further, the allocation
size c(d), if ¢c(v)/c(d) € NN leads to no additional capacity waste, otherwise if
c(v)/c(d) € R the waste is at most } <y (c(v)/c(d) — [c(v) /c(d)]) for all nodes.

Beside these classical effects, DHT like approaches are using a hash range as
mapping universe, so DHHT does. Obviously the range fragmentation increases
with the number of nodes and virtual nodes. This implicates that the number of
responsibility subranges increases and therewith the node localization for item
assignments. For example, to achieve space balance a DHT based schemes needs
O(logn) virtual injection points for each node. Thus the uniform DHT model
has a hash range fragmentation of O(logn - n). Thus a balanced binary search
structure sorted among r, would need c(log(c’ - logn - n) steps. So it seems to be
reasonable to keep the hash range fragmentation as small as possible.

As we have seen in Section and our DHHT approach generates
additional fragments, caused by intersections of the distance function. The fol-
lowing theorems describe this fragmentation behavior. So we count the number
of intervals a data element can be possibly assigned to.

Theorem 9. The Linear Method with q copies and k partitions has a fragmentation of at
most 2gkn — 1 for n nodes. The Logarithmic Method using k partitions has a fragmenta-
tion of at most 2kn — 1.

Proof. This theorem follows by using results from the geometric applications of
Davenport Schinzel Sequences [2] in the context of creating lower envelopes of
totally and partially defined functions. Further we can combine these results with
the observation in case of partially defined functions that our model and its dis-
tance functions have all the same end point and beside their injections the same
entry point. [

From our previous results we can derive a standard choice of parameters for
g = O(1) and k = O(logn) to achieve constant precision with high probability.

Corollary 11. The DHHT scheme provides a fragmentation of O(nlogn), if we use a
constant number of node copies and O (log n) partitions.

A final note on this logarithmic overhead. We have to compare this fragmen-
tation with the fragmentation produced if we use the Normalization, described
in Section The complexity obtained by resolving heterogeneity with an
uniform strategy depends on the heterogeneity distribution. The higher the ra-
tion wyax / Wiy the more injection points are needed, whereas our heterogeneous
model is independent on this ratio.
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2.3.2 Node Fading and Data Migration Prediction

In some application areas it is of much importance that in case of dynamics the al-
location of further involved resources like network bandwidth is well controlled.
The aim is to avoid peak load caused by maintenance operations after node dele-
tions, insertions or capacity changes, because they might decrease the response
time of other user requests. If such changes are known in advance, they can be
handled with protocols coordinating the migration among nodes. If changes hap-
pen unexpected, redundant data encodings, like Reed Solomon [35], are used for
compensation. However, there is a tradeoff, short term migration allocates high
bandwidth, whereas long term migration allocates additional memory to keep
the data context.

In the following we introduce two DHHT attributes, both helpful to define
efficient strategies or protocols to migrate items among nodes. The attributes
are obtained from the independent and self-scaled representation of node hetero-
geneity in DHHT and on the basis of the guaranteed hash range coverage by the
distance functions

Node Fading

The first feature we point out is Node Fading, which can be applied in case of con-
trolled dynamics, where environment changes are known in advance. In the fol-

=

Ty

Figure 2.11: DHHT and Node Out Fading
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lowing we consider the capacity change of a node, because insertion or removal
are only special cases of changes. Typically, such changes and the necessary main-
tenance operations are not directly respected within distribution strategies. The
overall consumption of involved resources is dominated by the competitiveness
and especially the monotonicity of the method.

The idea of fading is to change v € V smoothly over time from wy L w),
controlled by an arbitrarily large, but finite number of k steps and migrate items
by disposing embedded information and parameters of DHHT. As we have seen,
both DHHT variants use strictly monotonic increasing functions to represent a
node v. Thus, eachd € f~!(v) receives a different height, because V d,d’ € f~1(v)
rg # vy, if d # d'. Since v stores d it must define a subrange I, € I,,;, withry € .
In the following we only consider the intervals of I,,,;;,.

So, let us assume we decrease the w, of v, then each time we set w, a step
closer to w),. Thus, according to the method, the gradient increases and the height
of all d € f~!(v), whereas competing heights on other nodes remain the same.
Regarding the lower envelope, we can observe with each step the decrement of
|Ii| and the following geometric behavior:

1. if I, is defined by [ry, P(v, u).x], than P(v, u).x shifts towards r,, where u is
the adjacent node defining the next range of I,,,;;,.

2. if I, := [P(v,u).x, P(v,u’).x] is defined by intersections, P(v, ).y increases
and P(v, u).x shifts apart r,, whereas P(v, u’).y decreases and P (v, u").x shifts
towards r,. Here u and u’ are part of the complete range adjacencies of I,
within I,,;,. Note, in case of DHHTy o u = u' is possible.

From this we can conclude, according to the mapping rules of Section and
that the items f~1(v) will migrate among a descending or among a de-
scending and ascending order of their heights and not arbitrarily. If a node is
responsible for many subranges of the lower envelope, the ordered migration oc-
curs for each subrange Ié € Iy individually. Clearly, in case of increasing w; the
ranges are increasing and the items will migrate among a sorted order from the
other nodes to v.

As mentioned only w, changes, other node weights are left untouched and
both variants use strictly monotonic increasing functions on independently and
randomly selected positions. So, based on Corollary [7Jand Corollary [9]it follows,
that, if we change w, to w),, there will be no item movements among other nodes,
which leads to the following corollary

Corollary 12. Let wy, be the current weight of v € V, than fading w, L wl | ke NT
in DHHT is monotone.
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Essentially, fading is the same as removing v with w, and insert it again at the
previously used r; with w!,. In both cases f~!(v) is equal after these operation.

A protocol handling controlled dynamics by using the observed attributes is
now derivable. Let us assume that all d € f~!(v) are sorted among their heights

and associated with I). We denote with Izi,/ the intervals belonging to v at r, with

weight w/,. The main migration steps if we reduce w;, L w!, are described in the
following;:

1. for each I’ determine Izi,/ and with it Iy g;ff 1= [Ii.start, Ifjl.start] and Irgiff 1=

[I:.end, I}’ end] and the resulting new lower envelope r.

2. determine the items groups Gg := f~!(Irgiff) and G := f ' (Irgiff)

3. sort Gg and Gy among the item heights and partition them consecutively
among the heights in k subgroups {G}, ..., Gk} and {G},..., Gk} with same
cardinality

4. in each step i migrate items from G and G;‘{H*i to the lower envelope I! ..

So, the allocation of further resources like bandwidth can now be well controlled

by k with respect to |w; — w/}| and c(f_l(IRdl-ff U Ipgifr)) and lastly whether the

migration of items in G; is done in parallel or sequentially. The protocol is ana-
logue for increasing w,, whereas the interaction of each I’ with I, is the other

way round. Note, 0 is a valid start or end weight, and by using an adequate k

the total bandwidth used for inserting or removing nodes should not exceed a

desired value.

Eventually, the reason why fading is efficiently to use is based upon two prop-
erties. The first is the self-scaling attitude, nodes are represented independently
form each other and the relative sizes of responsibility ranges are obtained indi-
rectly. The second is that insert and join operations of DHHT are monotone.

Migration Prediction

If nodes are inserted or changing their capacity and in worst case if they are fail-
ing, it would be convenient to know which data items are possibly involved in
maintenance operations. So, the second property we like to point out is Migra-
tion Prediction. Remember, the distance functions of DHHT are assigning to each
item a specific height. The height an item d receives from node v increases with
(14 (r4 — rp)) mod 1, but the more nodes we insert, the less this height can be,
because it is covered by other nodes. We have defined the height H; of a data
element 4 for finding its corresponding node. This height is proportional to the
probability that this data element is moved, if a new node arrives.
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Fact 1. If in the basic Linear Method, without copies and without partitions, a node
arrives with weight w,, then the probability that data element d with previous height Hy
is assigned to the new node is min{w,Hy,1}.

This fact follows by calculating the length of the interval describing possible
positions where the new node receives this data element. In the Logarithmic
Method the situation is similar:

Fact 2. If in the Logarithmic Method, without copies and without partitions, a node
arrives with weight w, then the probability that data element d with previous height Hy
is assigned to the new node is 1 — e~ oM

Again, we can see the relation between DHHT};, and DHHTL,, that for small

values H; < wiv, the term 1 — e~ “*H¢ can be approximated by w,H,;.

So, concluding from both facts, the probability that a data element needs to
be assigned to a new arriving node can be calculated in advance. Note that the
order of these reassignment probabilities is independent from the weight of the
arriving node. This feature can also be used for predicting the data migration of
items. This allows further optimizing data storage for this purpose.

2.3.3 Efficent Data Structure

In this section we show that there exists an efficient data structure for both meth-
ods. Independent from the presented algorithms here, there are several opportu-
nities to implement DHHT. Here we show that DHHT has a space complexity of
O(n), alookup time for items of O(logn) and inserting or removing nodes needs
the amortized time of O(1). Therefore, we use tables and some linked lists.

Theorem 10. There is an algorithm that determines for a data element the corresponding
node according the Linear Method in expected time O(logn). The data structure has size
O(n). Inserting and deleting nodes in this data structures needs amortized time O(1).

Algorithm 1 InsertNode(v, T), inserting a new node v
Require: v, T

1: sy := h(v);

2: T* := InsertTable(T*, sy, v);

3 {:= |log, w,]

4: T; := InsertTable(T}, sy, v);

5. return T;
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Proof. As proof we present the algorithms for the data structure for the plain Lin-
ear Method without copies and partitions, see Algorithm @Al The use of
partitions can be considered as multiple instances of a single variant sharing a
single hash range, whereas copies will only increase the number of nodes.

The nodes are classified into the sets ..., V_5, V_q,Vp, V4, V2, ... according to
their weights such that any node v; € V;, < |log, w;| = ¢ . For each non-empty
node-set we use a table T;[0,.., N; — 1] of N; elements, where Nj is chosen such
that N; < |V;| < 4N;. In this table we store at each entry T;[j] all nodes satisfying
sv € [j/Ni, (j+1)/N;). These sets can be stored by a linked lists. Besides this, we
provide a table T* for all nodes organized as the other tables.

Lemma 6.

1. For V; # @ a set T;[j] is empty with probability of at most 3/4. The probability
that an interval T;[j, ..., j + d| consists only of empty sets is at most (%)d.

2. The expected number of elements in the sets T;[j], . ..,
Ti[j + d] is at most 2d (even under the condition that the rightmost d/2 sets are
empty).

3. Ifadata element x has d empty entries in Ty left onwards from its position p = [y -
Nyl ie Tyjp—d+1],...,Tylp] = @ and T[p — d] # @ then the corresponding
node to x must lie in the in the sets Ty[p — 2d|,..., Ty[p — d| if it belongs to the
layer ¢.

Now let d = H2~! then the expected number of nodes in this array is at most
2d and the chances to check so many entries is at most (3/4)¢. Summing over
all d shows the expected running time to check one level T; is constant. For the
small weights w; < % max,{w, } the probability to assign a data element to such

a node is at most nl—z The probability that a data element is assigned to any such

node is therefore at most % Then, even linear time to detect this element leads to
constant expected run time. [

Algorithm 2 DeleteNode(v, T), deleting a node v
Require: v, T
1: Sy := h(v);

2: T* := DeleteTable(T*,s,,v);
3 1:= |log, wy|;

4: T; := DeleteTable(T;, sy, v);
5. return T;
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Algorithm 3 InsertTable(T, s, v), Insert a node v into a Table

Require: T,v,s, N :=size(T), S := YN 1 |T[i]|;
1: if (T is empty) then

22 N:=1;T[0] :={v};

3: else

4 if (N <S+1)then

5: N:=2N; T'[0,--- ,N—-1] :=Q;
6: for allv € Ufi/oz_l T[i]U{v} do
7: T'[|s/N]] :=T'[|s/N]]U{v};
8: end for

9: T:=T;

10:  else

11: T[|s/N]] :=T][|s/N]]U{v}

12:  endif

13: end if

14: return T;

Algorithm 4 DeleteTable(v, sy, T), deleting a node v from a table
Require: T, v, sy, N :=size(T), S := LN L T[i]| - 1;

1: T[[s/N]]:= T[[s/N]]\ {v};
2: if (S ==0) then

3. T :=empty();

4: else

5. if (S < N/4) then

6: N:=N/2;

7. for allv € U2, ! T[] do

8: T'[|s/N]] :==T'[|s/N]]U{v};
9: end for

10: T:=T;

11:  endif

12: end if

13: return T,

As said before, we have included neither partitions nor copies. By introducing
g copies and k partitions, the needed space for this data structure rises up to
O(knq), while the running time is O (log n 4 log q) for data lookup and eventually
O(gk) for inserting or deleting a node.

For the Logarithmic Method we can re-use the presented data structure of the

64



2.3. Advanced Techniques and Properties of DHHT 65

Algorithm 5 LookUp(T, d), finding appropriate node v for an item d
Require: Ly ;= max{i:V; # @}, ry:=g(d), n:=|V|;

1: H:= oo

2: while (I > ly0x —2logn — 1) do

3 p:=|rg-N|;q:=p;d:=0;
4:  while (T;[g] == @) do

5: g:=(g—1) mod N;d:=d+1;
6: end while

72 for(i:=q—d—-1,i<gq)do

8: forallv € T;[i mod Nj] do
9: Sy := h(v);

10: if (H > Dy, (r4,5,)) then
11: y:=v; H:= Dy, (14,50);
12: end if

13: end for

14: end for
15: end while

Linear Method.

Theorem 11. There is an algorithm that determines for a data element the corresponding
node according to the Logarithmic Method in expected time O(logn). The data structure
has size O(n). Inserting and deleting nodes in this data structures needs amortized time
O(1).

Proof. We can re-use the data structure presented for the Linear Method. We just
replace all occurrences of the linear height function D, by the logarithmic height
function. One can show that Lemma [f|also holds for the Logarithmic Method as
well as for the low weighted nodes, the same run time analysis is valid. O

2.3.4 Double Hashing

The idea of Double Hashing is an extension of DHHT by using multiple hash
functions. The aim is to increase the node independence and to overcome the in-
trinsic imbalance obtained by fixed node positions and the resulting lower enve-
lope. The enhancement is to increase the number of hash functions by the number
of nodes. Each node v; € V owns an individual hash function k; : M — M. With
h; anode v determines its weighted distance r; ; and thus the height H; of d indi-
vidually. Note, we still assume that all hash functions h; behave like independent
uniform random variables in the hash range M.
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The necessary steps to assign one item d to its appropriate node, in difference
to the original mapping scheme of Section and Section are described
by the following steps:

1. determine for d € D the injection point 74 by using a globally know single
hash function g(d) : D — M

2. determine for each node v; € V by using their individual hash functions

ria = hi(ra) = hi(g(d))

3. Calculate the weighted heights H, , of d for all v; € V, where Hy;,, =
"v,d4/ Wy according the Linear Method or Hy g, := —In(1 — 7, 4) /W, accord-
ing to the Logarithmic Method

4. Assigndtovif H,p, = min({H., | u € V}).

The scheme is exemplified in Figure[2.12]and shows the mapping decision for one
item d among five nodes with positive weights w, € {wy,...,ws}. The illustra-
tion uses the weighting of the Linear Method, if the Logarithmic Method should
be used Hy;, must be substituted by Hpq-

Theorem 12. The Linear Method using Double Hashing assigns data elements to all of
the n nodes with probabilities p; for each node, such that

rog =hi(e(d)| ic{1,5}

Figure 2.12: Double Hashing and DHHT;,
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The Logarithmic Method using Double Hashing assigns data elements to all of the n
nodes with probabilities p, for each node, such that

_ W
pv_w

Proof. This can be concluded by the proof of Theorem [ according to the Linear
Method and Theorem[7]according to the Logarithmic Method. Further, we use for
both variants the fact that now the heights of items are independently distributed.

[

The main advantage of this extension is its achievement of the same proba-
bility distribution as the Linear Method or respectively the Logarithmic Method,
if both are using a large number of partitions. The main drawback is the intrin-
sic linear running time to determine the appropriate node to place or find a data
element, which results into O(n). Each item assignment must be calculated indi-
vidually and can not be concluded from I,,;,. Especially in case of dynamics this
mapping scheme has a negative effect, if a node is added, removed or changes
its weight. The previously given lower envelope is missing and we cannot read
off item movements efficiently, compare Section So the steps needed to
preserve the distribution and the data integrity are the following:

e Insert Node v: Determine the hash function h,, move all items d € D to
v, where Hy,(d) < H,(d). This means each item needs to be touched and
compared with the new height, which is similar to the pure random model

in2.1.3

o Weight Change v: We distinguish two cases. First, if w, decreases, than de-
termine H, ,(d) and compare for all d € f~!(v) the newly received height
with all other nodes. If there exists a node u with H,,(d) < H.,(d),
move d to u which minimizes H, ,(d). Second, if w, increases, determine
for all d € Uyew\ (o} f~ ' (1) the height H, ,(d) and move d to v if Hyp =
min({H., | u € V}).

e Delete Node v: Determine for each item d € f~1(v) the node u € V, where
H.,(d) < H,(d) Yk € V\ {0v}. So, foreachd € f~!(v) we have to evaluate
n — 1 hash functions to determine the successor of v.

So, Double Hashing is reminiscent to the introduced Balls into Bin Model of Sec-
tion we need a lot of communication or many calculations, depending on
the capacity of each node. This is practicable in parallel, but we can still avoid
unnecessary expansive item movements and preserve the monotonicity of the
scheme. To compensate some of these runtimes it might be helpful to store with
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each item a constant number of successors. Nevertheless, this list must be kept up
to date, so the length should reflect the number of expected changes to amortize
the effort over time.

Finally Double Hashing is only reasonable if the number of nodes is compar-
atively small and the fragmentation of M is not an issue. Further, because of the
costs in case of dynamics, insertions, deletions or weight changes should not oc-
cur frequently. If this can be agreed, the Double Hashing extension is an interesting
choice for the Linear Method or the Logarithmic Method.

2.3.5 Other Distance Functions and Range Spaces

We have proposed the linear and the logarithmic height function in an one-dimensional
ring to achieve a weighted version of distributed hash tables. One might ask
which influence it has if we use different height measures or if we use two-, three-

or higher-dimensional spaces. Therefore, we shortly discuss the following mod-
ifications. It is a straight-forward observation that a polynomial height function

for some g > 0 we have

r—s P
Dy(r,s) := ( mod 1)
w
as a replacement for the linear height function does not change anything. This fol-
lows from the fact that for determining the minimum height we apply the mini-
mum function and the outcome remains the same. Of course any other monotonic
growing function applied to ~* mod 1 leads to the same situation.

On first sight the situation seems to be more interesting if we map data ele-
ments and nodes to a two-dimensional space [0, 1]> and use a distance function.
However, one can reduce the probability distribution of a node receiving a cer-
tain height to a quadratic height function in one-dimensional space. So, for the
balance we end up with the Linear Method in the one-dimensional space [0,1).
Analogously, it turns out that for every constant dimensional space and distance
measure according to the probability distribution the situation is more or less the
same as in the Linear Method.

2.3.6 Implications on the Heterogeneous Distribution Problem

The main challenge of any dynamic distribution scheme is to find a good and
simple representation of heterogeneity, as we have seen in related approaches
and our model. The probability of a node to receive an item should reflect its
share in the environment at any time. If a hashing scheme is used, this is done via
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segmentation of the hash range M in such way that the sum of segments a node
owns or is jointly responsible for is equivalent in size of the desired expectation.
If this is reached, we can assume that a weighted distribution is achieved if the
items are distributed evenly over the hash range. Finally, the distribution quality
only depends on the even item distribution among M or additional embedded
mechanisms like multiple choice to compensate imbalance possibly obtained by
random item distribution.

As long as we accept dynamic environment changes, the number of partici-
pating nodes can change permanently and the capacity of joining nodes is un-
determined in size. If the configuration of V changes, the strategy reacts and
afterwards the shares must be reflected again. Reacting means we can repair the
desired distribution by remapping items, because of adapted responsibilities in
M. Hopefully, the remapping is in the magnitude of the relative capacity change
of Cy. Afterwards, we can start over with the item distribution. For some charac-
teristics of these maintenance operations we already have measures to evaluate
their efficiency and summarized them in distribution problems, see Definition
and Definition

However, if the relative changes in V or W are significantly high, some models
have to adjust the representation of the nodes within the model. This is needed
to guarantee the continuing ability to overcome heterogeneity. For example, if
the changes are beyond a specific range, the interval lengths of Share must be
adapted. This is, because the length of an interval depends on the relative share of
anode. As long as the relative change of Cy is small nothing happens. Typically,
the smaller a node is the less is its impact on changes. For instance, Share does
this only if the diversity of the current share of a node and the representation
within the model reaches a limit, compare Section Such a slackness can
be justified, because otherwise each representation adaption possibly results in
expansive item movements. A further example, the fall back bin vy, in Sieve.
It leads to a modified representation of vy, because of its increased probability
to receive unassigned items. This probability must be recalculated if vy, gets
exchanged.

As we have observed, some of these drawbacks are reversed by features of
the DHHT scheme. The representation of nodes never changes, except the node
itself changes. If other nodes are joining or leaving, the shares are obtained in-
directly without changing the global system representation. Especially, if nodes
are leaving, the coverage of M is always guaranteed. Furthermore, in distributed
environments this ignorance of global knowledge is helpful for local decisions.
For instance, if v leaves only the nodes covering its ranges afterwards must be
known by v to decide the item migration.

This distinction to other aproaches allows us to raise the bar for the heteroge-
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neous distribution problem. This leads to the following extended definition.

Definition 17. Let (V, D, fiy) be a dynamical environment, where V consists of hetero-
geneous nodes and D of uniform items. A mapping function fw solves the distributed
heterogeneous problem, if the following terms are fulfilled.

1. The mapping of d € D via fy is simple. This is the case if fy uses as input V, W
and d without the knowledge of Uyey fiy' (0).

v ~ _ Wy

w ~~
G )

3. The mapping function fy is adaptive and monotone for join, leave and change
operations

2. The mapping is space balanced or fair if for any v,u € V

4. Forallv € V fw(d) is unique and represents v independently.

The extended problem definition has additional requirements, explained in
the following definitions

Definition 18. Let (V, D, fy) be a dynamical heterogeneous environment, a mapping
function fy(d) is unique, if after any change in V fw(d) is injective.

This should emphasize the requirement of distributed environments that the
responsibilities are always well defined. This should be the case even during
dynamics and without changing the representation of the nodes.

Definition 19. Let (V, D, fwy) be a dynamical heterogeneous environment, a node rep-
resentation is independent for any v € V if the mapping is monotone if w, changes.

This means, however an environment changes the representation of nodes,
except the changing one are fixed. So a node can change its weight and increase
its probability to receive items and coevally takes over responsibilities from exist-
ing nodes without changing the representation of others. The advantage of such
an attribute is that no additional costs can arise from adaptations and thus, there
is no advantage in suppressing them.

The advantage of a unique and independent representation can be shown in
distributed environments. The item assignment is based upon the representation
of nodes. So, if a change of a single node has an impact on other representations,
the change needs to be broadcasted within the environment, because all other
representations must be adapted. Whereas an independent representations only
changes a single node and involves those nodes taking over or giving away item
responsibilities. So, these changes get along with less communication. Further-
more, an asynchronous item assignments can be implemented easily, because the

70



2.3. Advanced Techniques and Properties of DHHT 71

assignment can be negotiated pairwise. In case of DHHT this negotiation is tran-
sitive, so if Hy(d) < H.u(d) and H, x(d) < H.,(d) than H, x(d) < Hs,(d). So,
DHHT covers Definition (18} this can be explained easily and is summerized in
the following theroem.

Theorem 13. In a dynamical environment (V, D, fpyur, ), where V consists of hetero-
geneous nodes and |W| = 1, DHHT;, and the DHHT 1,4 strategy solves the distributed
heterogeneous problem if nodes are added to, removed from or changed within the envi-
ronment.

Proof. Since DHHT fulfills the restrictions of Definition 16, we only need to show
the extension of Definition[3]and Definition 4 First the extension of Definition 3
As we have seen in Section and pointed out in Corollary [12} the fading op-
eration is monotone, too. Second the independent scaling of fyy. In both variants
the mapping is decided by minimizing the distance to all nodes and the distance
function for a node only depends on its absolute weight and not on the relative
share of a node. The reflection of the share is indirectly reached by minimization
of weighted distances. So, if v joins or leaves the environment, it has no impact on
the distance values of other nodes. Further, since both variants use strictly mono-
tonically increasing functions to represent a node, the required explicit coverage
of M can be guaranteed. O

A final note on the previously introduced Double Hashing. If we consider
the Double Hashing method using any of the DHHT variants as an own model,
we can not attest the double hashing covering the extension of the distributed
heterogeneous problem. Even in the uniform case we have declined the necessity
of asking each item whether it wants to stay or not. As we have seen, this is the
main drawback of Double Hashing, changing means touching each item. This
should be avoided in large environments storing many items, definitely!
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Chapter 3

Unit Ring Decomposition

As we have seen many DHT based data structures are using an unit range M.
With hash functions, behaving like independently distributed random variables
M gets decomposed it into several intervals. The intervals are assigned to nodes
defining responsibility ranges for items distributed among M. In this Chapter we
introduce a deterministic and greedy algorithm for unit ring decomposition. We
will show the basic steps needed to overcome dynamical changes in V and its
performance. The algorithms and the data structure are inspired by linear hash-
ing using the golden ration. It is transformed to a greedy algorithm, useable in
distributed and dynamic environments, handling node insertions, removals, and
item assignments. The major aim is to underbid the naive deterministic halving
approach. We will regard the smoothness, see Definition 23| of our algorithms
and discuss improvements reached by some changes, see Section and Sec-
tion The major aim of this is to underbid the naive deterministic halving
approach with its smoothness of 2, see[3.1.2]
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74 Unit Ring Decomposition

3.1 Unit Ring Decomposition

As we have seen in Section a very popular technique to mange a set of
nodes V is Consistent Hashing aka. DHT. It can be used for distributing any
kind of work load D among V with the aim that each node receives and expects
a workload of |D|/|V| over time. Therefore, DHT and many other related data
structures are using a unit range or unit ring as mapping universe to decide a
mapping between D and V. Commonly a double sided hashing for nodes and
item is used. Mainly the node hashing is the transition from the continuos to
the discrete space, producing a fragmentation of the unit ring we denote in the
following the decomposition of M. The main challenge is to avoid imbalances
especially caused by changes in |V | and to compensate them with as less effort as
possible. In this chapter we do not consider how to spread items evenly within
M, but we assume that the length of intervals a node is responsible for reflects
its wanted probability to receive an item. To compare and evaluate strategies we
only look at these lengths. First, we have to define the relation between the nodes,
their ranges and the injection points of nodes.

Definition 20. For v,u € V let ry,ry, € Mand r, = min({r, | r, > ry}), then v
owns I := [ry,ry[ and |I| := r, — 1y is its length. Further, I, is the set of intervals a
node v € V owns, #I its cardinality, |I| := Yrep |I| and Cpey |Io| = 1.

In the following we will denote with vy the left and with vy the right adjacent
node of any v € V. Clearly, a fragmentation of M can be obtained in several
ways. In this chapter we consider decompositions of M with specific attributes
described by the following definition.

Definition 21. We say U,cy{Io} is a M. p-decomposition or M, a-dc, if it is and gen-
erated by the algorithm A or a constant A and 1 < max({#I,}) < c. Further, we denote
a decomposition as strict, if V I, € M,z : #I, = c.

So, the fragmentation of M, 4 is at most ¢ - |V|. Since our goal is to assign to
each node the same fraction of items and the length of a range reflects this, the
following definition describes the optimum a decomposition can reach.

Definition 22. A M. 5 —decomposition or strict M. x—dc is optimal, if for each v
|Iopt| =1/n= |V|_1 = |IU|, YoeV
is true.

To measure and compare the quality of any decomposition, we introduce the
smoothness of a M A-dc.
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3.1. Unit Ring Decomposition 75

Definition 23. Let M. p-dc a decomposition of M, then the smoothness of a M. A-dc
denotes the ratio sy, := max({|L|/|Lu| | v,u € V'}).

The smoothness of M, A-dc is a really hard measure, because we will consider
it with respect to dynamics, and look at the worst ratio at any point of time.
Note, there is a trade off between smoothness and the fragmentation. We can
obtain a better smoothness if we increase the number of intervals a node owns
and consider only |I,|. This increases the unwanted fragmentation of M and thus
the managing overhead in many application areas. So, our main objection is a
low smoothness with a low fragmentation coevally.

A further challenge we have to face is to avoid readjustments of node posi-
tions r, € M during dynamics and to keep the smoothness sustainedly low. If
1y is determined once, it should never change again unless the node leaves the
network. This is motivated by the application area SAN. Such a restriction is im-
portant, because adjusting r, leads to costly item movements and to possible non
monotone behavior. In contrast, peers in Peer to Peer networks can use leave and
join operation to rebalance their expected workload. However, these self adjust-
ing leave and rejoin operations are heavily expansive in SANs.

To exemplify such costs let us consider the following simple example. Assum-
ing the strict Mj o-dc with |V| = n is optimal and for all d € D the according r,
are evenly spread among M. If we add a node u, so |V| = n+ 1, and have to
keep #I, = 1 and s My =1, then we must allow readjustments of r,. Otherwise it
will not be possible to insert u and rebalance afterwards. However, these position
shifts will lead to a chain reaction of item movements. So, if we assign the range

I, := [1— +13,1[ to u it receives ;" - f ' (1) from its adjacent node 1y, previ-
ously responsible of I, := [1 — %, 1[. Afterwards, uy itself needs to readjust too

1
n+1-
Since with each readjust an according fraction of f~!(V) is transfered, this results

in the following readjusts and item movements of all nodes

and so on for every node, until each is responsible for a range of size |I,| =

nn+1) 1
iy g

1=

-1 ! -1
SV L =)
We see, halve the items must be transfered and since node capacities in SANs
are restricted, such readjustments must possibly be done item wise or in small
portions sequentially over all nodes. One can do slightly better by inserting the
new node in the middle, but it does not change the fact that the fraction of items
moved is independent of |V|. This example shows that if #I, = 1 and sp;, = 1
is wanted it is inescapable that each subrange is involved in readjusts. So, if we
forbid such global adjustments, we have to abandon an optimal smoothness and

accept sy, , > 1.
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76 Unit Ring Decomposition

To achieve a M -decomposition we can roughly distinguished the method A
into two categories. The first category is random based and introduced shortly in
the following Section[3.1.1] The second category is a deterministic decomposition
and introduced in Section 3.1.2] where our approach belongs to, see Section 3.2]

3.1.1 Random M, r-Decomposition

Since our focus is on deterministic decomposition, we give a brief introduction
in random methods. The model for node insertion can be distinguished into sim-
ple single choice join and multiple choice join algorithms or games. As we have
already seen in Section[2.1.3|these strategies are strongly related to DHTs. The sin-
gle choice game is simply choosing the insertion point r, € M uniformly at ran-
dom, where each nodes owns one insertion point, we denote with M 1_,4n40m-
One can show that after inserting 7 nodes in M we will have with high proba-
bility for each I, € Mj1_random, @(logn/n) > |I,| > @ (-11—), which results

nlogn

to a smoothness of sy, 00 = O(log® 1), see Lemma (1| The authors in Naor
et. al [33] proposed an interesting multiple choice variant. Each node v ob-
serves k = O(logn) positions in M. Then, v choses the point which has hit the
largest range and places itself in the middle of this range. The resulting strat-
egy of placing r, in the middle, combined with k multiple choices we denote
with My randHatving- It leads with high probability to three different sized range
classes, where |I,| € {2/n,1/n,1/2n}. According to this, the resulting smooth-
ness is constant, in particular s Mg randHaloing = 4 [26],[33].

From this we can draw the following conclusion. If we use randomness and
do not want to control the smoothness by adjusting many node ranges, we have
to enlarge the number of points a node owns or positions a node potentially can
choose. Both will compensate the effect of badly chosen positions or too small
or large ranges. Especially, for a small number of nodes the managing becomes
inefficient and dominated by the number of copies. So, for a small number of
nodes communication is not that expansive. Thus, searching for good positions
by a number of choices or using broadcasts over all nodes is better than increas-
ing the number of virtual nodes. However, if we increase the number of copies
and combine this with multiple choices, we will obtain a lower smoothness. If
we only increase the number of choices, we will end up in the deterministic
greedy algorithm, we shortly introduce in the following Section Finally,
if the smoothness is high, we will need further balancing methods to compen-
sate the imbalance. This is necessary if items are stored on node a with restricted
capacities.
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3.1. Unit Ring Decomposition 77

3.1.2 Deterministic M, \-Decomposition

The dilemma of dynamic deterministic decompositions is easy to comprehend if
we require that #I, = 1 and forbid readjusts within the range. As long as we
do not predefine 1 < n = |V| and allow variations in its cardinality we can not
achieve for each n a good or optimal smoothness. So the idea is, if we make con-
tinuously slight errors, we can insert a node and coevally bound the smoothness,
especially if we want to keep it constant. Further, we are interested in decompo-
sitions without dependancies between n and the fragmentation ratio A for new
ranges. This is argued by the aim to arrange the decomposition of an appropriate
interval with local information and additionally to keep the overhead for man-
aging and finding an appropriate range small, thus #{|I| | I € M.} the number
of different interval sizes should be constant. In the following we only consider
M;-decompositions, because if we obtain a good approximation with ¢ = 1 it im-
plies a straight forward solution for multiple intervals. There we would consider
only |I,| and not the scattering of I, so sizes of responsibility ranges will only
differentiate partially. In the following we denote a decomposition by M. A-dc,
where A is an appropriate constant used in a deterministic method to generate
the decomposition.

Subdividing with 1/2

A first naive deterministic M o-dc can be obtained by using A = 1/2. A range
for new node v is created by subdividing an exiting interval I, into two ranges,
where |I,| = A - |I,| and afterwards |I,| := |I,,| — |I,|. Therefore,, we assume that
we have an algorithm getMax (M, A) and getMin(M, 5 ) returning the largest or
the smallest range with the least 7, and the appropriate node v. Further, each
node knows its adjacency vy, and vr. Note, from now on we will use this notation
equivalent to links, as an example v g = v = vgr, and vy is the left neighbor of
v its left neighbor. In the following we consider item movements only if they are
caused by dynamical changes within the decomposition and we do not reassign
any r; or change the distribution of items in M.

1. insertNode(M, %,U)
determine I, = getMax(M, %), then set r, := (Iy.start + I,.end) -  and set
I := [ry, Iy.end| and I, := [r,,1,[ . Move all items d € f_l(u) to v, where
now ry & I,.

2. deleteNode(M, %,v)

So if |I,| = 2=M°%"1 and (r;/|I,]) mod 2 = 0, move alld € f~(v) to vk
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78 Unit Ring Decomposition

and set I, := [ry, [oy.end], thus we set rp, = 1y, orif (r4/|I,|) mod 2 =1
move alld € f~1(v) to vy and set I, := [ry;, 7o, -
Otherwise, if |I,| = 27182 and log, 7 ¢ IN then delete u := getMin(ML% )

setr, :=ryand I, :== I, and move alld € f~1(v) to u.

These algorithms do not consider runtime, but they exemplify roughly the idea.
As long as we subdivide only one of the largest ranges we know 1 < #{|I| |
IeM, %} < 2and |I| € {2 Uoga(r=1)] 2=[logs(n=1)11 S0 we sustainedly have a

smoothness of SM,, = 2~ [logo(n=1)] yp—llogy(n=1)} — 2 except if log, n € IN.
2

Corollary 13. The M p-decompositions with A = 1/2 has a worst case smoothness

of 2 and the decomposition is optimal if n = 21°82"). Node insertion is monotone, but
deletion in some cases not.

Basically, we can keep a smoothness of 2 quit easily. Therefore, we have to
be careful in case of deleteNode(). For preserving smoothness, if |I,| = 210827,
it requires to chose an appropriate substitute. This substitution causes the none
monotone behavior. More freedom in choosing nodes for insertion or deletion
substitution will increase the managing overhead and will require a more com-
plex algorithms. In the following section we consider a deterministic decompo-
sition, where the managing effort is reduced by using a function for partitioning
and position choice.

Decomposing with Linear Hash Functions

The motivation of this approach is founded by a commonly known hash method
called Fibonacci Hashing. The Fibonacci Sequence fib(n) is a very popular and
well studied sequence and defined as follows

fib(0) = 0
fib(1) = 1
fib(n) = f(n—1)+ f(n—2)
An interesting attribute of the Fibonacci Number is that the ratio of two consecu-
tive Fibonacci Numbers,
lim fzb<n +1) _ 1++5
n—oo  fib(n) 2
tend to an irrational number, which is also known as the Golden Number & :=
271(1 4+ v/5) ~ 1.618. Remember, we want to obtain a decomposition that sub-
divides ranges asymmetrically, but with a constant number of distinct interval
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3.1. Unit Ring Decomposition 79

sizes. This we can describe by solving the following equation
o= o) Lo (42) o 2 — o 41

not surprisingly solved by ¢ € {®, (1 — v/5)27!}. From this we can derive the
equation . ’ ’
1/® =1/®H +1/9'2 (3.1)

This implies to split ranges recursively such that |I,| = |I,| + |I,| and |I},| /|| €
{®,®!}. Finally, if we guarantee to select and partition only getMax(M; o) , we
know 1 < #{|I| | I € M.} < 3. Further, this decomposition has a smoothness
SMyp = D? A 2.618.

This smoothness is worse than before in Section but we can decrease
managing efforts by applying Linear Hash Functions. Therefore, we set f(v) :=
h(v.key) = (vkey-®~ 1) mod 1and nodes are identified by integers in the range
of v.key € {0,n — 1} and we require Vv # u v.key # u.key. A specific attitude of
this hashing is, that it always hits one of the biggest remaining intervals [22]. This
also implies only at most 3 different classes of interval sizes. So, a smoothness
of sp,, € {71/~ (H1), @71/~ (2]} is guaranteed if we keep the key space
compact. In contrast to the algorithms in Section inserting and deleting is
quite simple, because all we have to do is to keep the used key space compact
and use the hash function to determine ;. In case of deleting, we simply use the
node with the highest key as substitute. This leads to the following algorithms
describing how to handle dynamics by coevally keeping the smoothness of My .
As before, we consider item movements only if they are caused by dynamical
changes within the decomposition and we do not reassign any r; or change the
distribution of items in M.

1. insertNode(M; s, v)

Determine n = |V| = |M;y| and compute r, := (n+1)-®"! mod 1.
Set links to vy := u where r, = max,cy({ru}) < rp, and vgr := u where
ry = ming vy ({ru}) > v and I, 1= [ry, 1o, [ and I, = [ry,, 70[. Move all

de f~Yor) tov,ifry € L.

2. deleteNode(M; s, v)
determine 7, := n-®"! mod 1 and move all d € f~1(u) to u; and set
Ly, := [ru,,ruz| and move all d € f~1(v) to u. Set ukey := v.key and r,, :=
ukey-® 1 mod 1. Setuy := vy and ug := v, thus I, := [ry, v, [ Move all
de f~1(v) tou.

To determine the nodes, we assume that we can access an additional search struc-
ture sorted over r.
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80 Unit Ring Decomposition

Corollary 14. The Mj x-decompositions with A = f(v) for n > 1 has a worst case
smoothness of ®* ~ 2.618 and a best case smoothness of ® =~ 1.618. Node insertion is
monotone, but deletion not.

We can observe that linear hashing using ® ensures that each new injection
point hits one of the largest remaining intervals. Therefore, we have to keep the
key space compact. Unfortunately, this results in unthrifty delete operations.

3.2 Deterministic Greedy Decomposition

In contrast to random sampling and subdividing with hash functions, we intro-
duce in this section deterministic and greedy decompositions, based on the the
Golden Section. Similar to Section our aim is to generate only a small and
constant number of different intervals. Further, we want to improve the smooth-
ness of the simple M 1 /,-decomposition, so we try to obtain sy, < 2.

3.2.1 The ®-Div Algorithm

The following approach is a transformation of linear hashing of Section toa
greedy algorithm using ®. We still require #I, = 1 for the M; ¢._p;,-decomposition,
so the algorithm runs without copies or any other kind of rebalancing. ®-Div has
slightly more freedom in choosing intervals for inserting nodes and finding sub-
stitutes for deleting nodes. This freedom of choice results into less managing
overhead, because we do not have to care about the compactness of a key space
as linear hashing needs to.

We assume for ®-Div listed in Algorithm [f] that each node v has a link to
the adjacent nodes vy, vg in M, owning I, I,, € M ¢-pip- The main part of
the ®-Div is to organize all intervals in My ¢.Greeqy and to select and partition
them via ®. To manage node insertions ®-Div requires three sets, where each set

1,
Orvl o0 1
Iy, Iy,
e N
0 } 1
Tvq q)_l 7L02 CI)_2
_______ foo e e S
0 / \I( \I,’ \I \1
To, o2 g o3 T o3 Ty, &4

Figure 3.1: Decomposition Example of M with ®.
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3.2. Deterministic Greedy Decomposition 81

stores references to nodes owning same sized intervals. In particular L}, refers to
nodes of size &/, L} of size & (+1) and L3 of size & (+2) These three sets are
sufficient follows directly from the ®-Div algorithm and the subsequent Lemma
These sets must be implemented in a distributed or central data structure,
which depends on the application area. We do not consider the operations or
costs to maintain these sets and the membership of nodes. The resulting ®-Div
implements a single node insertion and the necessary managing operations for
items. A decomposition example of M generated by ®-Div having fixed node
positions and a constant number of different interval is pictured in Figure

Lemma 7. If |V| > 2, then ®-Div needs to handle at most three different types of
interval lengths in Mj ¢-piy, S0

2 < |{|I'U|/I'U € M1,<I>—Div}| < 3

Proof. Assuming the greatest interval in M is of length |L,x|, before node v is
inserted. To insert v, ®-Divtakes any interval from I, € L}D, containing intervals
with |I,| = |Iuax| and creates two intervals of length 1/®*! and 1/®*2. This is
guaranteed by attributes of ®, because 1/ ® = 1/®*1 +1/D2, If after insert-
ing v an interval of length 1/®'*3 is produced the algorithm must have chosen
wrong and the size of | [jyqx| was 1/ ®d'*1 which contradicts the algorithm and the

Algorithm 6 ®-Div: Inserting a new node v into M
Require: O, LL, L%P, L%, v

1 if (55, Liy.nodeCount() == 0) then

22 1y =00 :=v0g =0, /P |L| =1%/

3 Li.add(v);

4: else

5 u:= Ly.removeAnyNode();

6: VL= U; VR = UR; UR :=0V; 0 := (To, — 1)/ D;

7.  chose /*remember one ratio, but two solutions*/
8 a)ry:=ry,+0

9:  b)ryi=ry, —9;

10:  if (a)then L3 .add(u); L3,.add(v);

11:  else L3 .add(v); L3 .add(u);

122 movealld € f~1(u) | rg € [ry, o[ to v;

13: end if

14: if L .isEmpty then

15: LY =13;1%3 = L3; L3 = LL; /* fixing the sets if L}, runs empty*/
16: end if
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82 Unit Ring Decomposition

assumption. If L} runs empty after an insertion, the set indices are redefined.
Thus, L%D and L%D can never run empty. O

Theorem 14. The M; ¢-pi,-decomposition generated by ®-Div has a smoothness of
1.618 = @ < spmygp < ®? = 1+ ® =~ 2619 for any n > 1 and the number of
steps to insert a node is constant.

Proof. By Lemma I1t follows that only intervals of size 1/ ®' 1/®1 and 1/di?2
can appear. The upper smoothness bound of ®2 occurs, as long as L}, and L3,
are not empty. The lower smoothness bound appears, if the last node v w1th
|Iy| = |Inax| in LY is subdivided. So only intervals of length 1/®"*! and 1/®'*2
are remaining. Further, because of Lemma [7]it is sufficient to take any node from
L, which can be done with the remaining steps in O(1). O

The main achievement of this algorithm is that we do not have to organize
a key space or search for an appropriate insertion point, and we do not have to
find for each delete operation a substitute. However, if ®-Div should be used in
a distributed fashion, we need an efficient membership implementation for the
sets, because a modified ®-Div will have to use broadcasts for keeping nodes up
to date if sets are relabeled.

Since we want to cope dynamics we also have to name an algorithm to re-
move nodes. Node deletions and preserving ®-Div runtime conditions will re-
quire to repair the decomposition afterwards. Therefore, we have to remap the
unassigned I, to a substitute u and join I, and I, to a single interval. In some
cases this must be done carefully. We cannot always remove v by simply select-
ing a neighbor as a substitute. This will violate the smoothness bounds if joined
intervals become to large. Further, during the decomposition it might happen
that v has an adjacency with |I,| = ]IUL| = ]IUR| Such a neighbor selection will
produce a joined interval of size 2 - &~/ # ®~ (=1 according to Lemma @ and
Equation [3.1/such a join will cause an unwanted change of ®-Div preconditions.
First, we define consecutive sequences of intervals with equal sizes generated by

any A. For simplification we consider it within a range M and not within a ring
M.

Definition 24. For any M, p decomposition we denote with Sy the set of consecutive
intervals I € M, a of size |I| and its cardinality with #S;. So

Y |[Lstart, Lend[| = |[min({Lstart} | I € S;), max({ILend} | I € Sy)||
IeS;

To bound and solve the problem caused by joining intervals of leaving nodes
and their substitutes, we have to take a look at the S; and especially #S; for each
I € M; ¢-pip- This is described by the following lemma.
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3.2. Deterministic Greedy Decomposition 83

Lemma 8. For any sequence Sy, with I € My ¢-piy, where |I| € (@, @ (i+) o (i+2)}
the following holds: If I € LYV I € L3 then #S; < 4 and if I € L3 then #S; < 2.

Proof. Firstif I € LY VI € L4: Assuming we have 2 adjacent intervals [, I' € M
with |I| = |I'| = 1/®'. Based on the freedom given in line 8 and 9 of Algorithm@
and Equation[3.T|a further insertion in I by ®-Div of 2 additional nodes implies 2
intervals of size |[1/®2| and 1 of size |1/®'*3| in I with 3 possible final interval
arrangements, and 1, where both bigger intervals are nearer to I’. This can be
done analogously, but mirrored for I’ which results in 4 successive intervals of
size |1/®'?| surrounded by 2 intervals of size [1/®"*3|. This can be used as
recursive substitution for any interval pair of equal size.

Second, if I € L‘;’,: Assume both adjacent intervals I, I, are members of L‘;’).
Based on the first part and Equation [3.1| we know that either I, or I, has an
adjacent interval of size |I|~(**3) which contradicts the assumption I € L. So

each I € L3 has an adjacent interval of size o~ (i+1), O

Note, Lemma 8| only says that by discovering the neighborhood we will find
within a constant number of steps a different sized interval. The Lemma does not
say anything about the number of steps needed to find an interval of specific size.

The algorithm to accomplish a node deletion operation is denoted by ®-Del
and the main steps and cases to distinguish are listed in the following. We regard
these operations based on the set membership of a node according to ®-Div. The
description makes use of the adjacencies bounds of Lemma [§| for removals and
Equation The principles of item reassignment afterwards are the same if we
intent to keep #I, = 1, likewise as applied in ®-Div and other algorithms of this
chapter.

1. ®-Del(v) if (v € L3,):

Chose a u € L3 adjacent to v and move alld € f~1(v) to u. Join I, and I, as
new [,, remove u from L%D and add it to Lé,. Further, remove v from L% and
set the adjacency links of u and finally, if u = vg then ry, := 7.

2. ®-Del(v) if (v € L}):
If L3 # @and {v,vg} N L3 # @, then chose u € {v;,vr} N L. Remove u
from Lfb and v from Lé. Join I, and I, as new I, and insert u in L}D. Finally,
movealld € f -1 (v) to u, set the adjacency links, if u = vg then r,, := 7.
But if L?D # @ and vy, vR ¢ L%, then chose any u € L?D and remove it with

®-Del(u). Insert u as substitute at r, by moving all d € f~!(v) to u. Finally,
set the adjacency links and the new r,,.
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84 Unit Ring Decomposition

Else if L3 = @ and {vy,og} N LY # @, then chose u € {vr,vr} NL].
Remove u from Lé, and v from Lé, join I, and I, as new I,. Relabel L%D to
L3 and L} to L2 and establish a new L}, by inserting I,, into it. Finally, move
alld € f~1(v) to u and set the adjacency links, if u = vg then r,, := 15,

But if Lf’p = @ and vy, vR ¢ Lé, then discover the neighborhood links for a
u € L%, where {ur,ug} NLY # @. Remove u with ®-Del(u) and insert u
as substitute at r, by moving all d € f~!(v) to u. Finally, set the adjacency
links and the new r,,.

3. ®-Del(v) if (v € LY):

If L3 # @, remove any node u € L3 with ®-Del(u) and insert u as substi-
tute at r, by moving all d € f~1(v) to u. Finally, set the adjacency links and
the new r,,.

All other cases are similar as before. We have to find an appropriate substi-
tute in the neighborhood or any u € L. Remove it and insert it at r, with
new adjacency links. During this items must be transferred and we have
relabeled the sets, because the removal of u has produced a new interval
class of size |I,|.

Note, if the algorithm is used in a distributed environment the search for appro-
priate substitutes can be supported by discovering the neighborhood simultane-
ous among the links v; and vg. This is reasonable, because Lemma |8 implies
that in some cases we might find a node that fits within a constant number of
hops. Eventually ®-Div and ®-Del allow us to generate a dynamical and nearly
balanced decomposition for item allocations in uniform environments. Indepen-
dent of the even item distribution, the current smoothness bound still requires
to apply further techniques to compensate this deviation. This can be done by
increasing #I,, or rebalance an item distribution with multiple choice by using
runtime information, more on using balancing in Chapter @

3.22 The ®-Div" Algorithm

As seen in Theorem ®-Div is no real opponent compared to the worst case
bounds of the naive symmetric approach from Section In this section our
major aim is to give an improved deterministic greedy algorithm, which achieves
better smoothness bounds in worst and in best case.

The problem of the previous algorithm is that we can not avoid the existence
of three different interval sizes if we use ®. However, to improve the smoothness
we have to deal with it in a different way as we have done before. The idea is to
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3.2. Deterministic Greedy Decomposition 85

loose the ties and allow some local adjusts in the neighborhood, by changing the
interpretation of intervals. The goal of these adjustment is to decrease the size
of responsibility areas of all nodes owning a range in L}, and to increase them in
L3,. Nevertheless, we do not want to abandon the simple interval management.
To reach this we have to overcome the direct coupling of node injections and
intervals receiving items. Therefore, we establish a further virtual decomposition
layer M] 5 on top of M a-dc. This we do by placing an anchor for each node
within its I, € M. This will allow us to do some local adjusts within M ,
without changing M; A. The anchor we use is defined in the following.

Definition 25. For each I, € M; A, we denote with a, € I, the anchor of a node v in
the range I,,. Its position is determined by r, + |Iy| - a, where a € [0,1].

Note, the anchor also identifies an additional logical position for each node in
M. This definition is extendable for #I, > 1, but because of simplification and
our scenario not needed. So a, is a virtual and floatable position narrowed by
the range I,. Based on a4, we can redefine the item responsibility range of a node.
Without loss of generality we give the definition for a hash range and not within
a unit ring. The adjacency of v is still v, and vg.

Definition 26. Let My a-dc a decomposition of M and v the node owning I, € My p,
then the range I}, := [(ay + ay,) /2, (ay + Ay, ) /2] defines the responsibility range of v
and M ,-dc denotes the decomposition based on I,.

With Definition 25 and 26| we can introduce an additional dynamic decom-
position, using a virtual segmentation for an item assignment. To achieve a de-
composition we inherit the segmentation factor from ®-Div, but we reduce the
freedom in choosing r,. Compared to Algorithm|fin line 8 and 9 we only use one
solution of Equation the benefit of this we will see later in Lemma 8 From
now on we chose a segmentation in such way, that the bigger remainder after
inserting u is always left. Note, the following results will also hold if we chose
‘always right’.

Both together, the additional layer and the restricted segmentation rules of in-
tervals leads to the algorithm ®-Div™ and the resulting decomposition My ¢._pjo+-
Finally, an item d € D is mapped into the hash range at r; and stored on v if
ry4 € I.,. This implies if a node is inserted into the decomposition or removed from
the decomposition, the reassignments are decided by I/.. So it remains to deter-
mine an appropriate a for the anchor position. In our scenario we set a := 1/2 for
all nodes independent of |I|, | Io,|, or | Iy, |. This allows us to operate locally and
to border the readjustments effects in the neighborhood. The algorithm ®-Div™"
for inserting a single node is listed in Algorithm
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Algorithm 7 ®-Div" : Inserting v into M
Require: a:=1/2, P, L<11>/ Lé, L%, v
1. if (2, L}, == @) then
22 rp:=0vp:=vog:=v, //e|L|=1
Li.add(v);
else
u := LY .remove AnyNode();
UL 1= U; VR := UR; UR :=0; 0 1= (toy — 1u)/D;
ro =71y +06; // bigger is always left; v obtains the smaller side
Ay := (1o +10,)/2; // because a==1/2
I, := [(ap + av,) /2, (4 + avy) /2[ / / also adapt I}, and I,
10:  L3.add(u); L3.add(v);
11: movealld € f 1 (vy)|rg €I, tov;
122 movealld € f~1(vg) | rg € I to v;
13: end if
14: if LY .isEmpty then
15: LY =13;12 =13; L3 = ©; // fixing the sets if L}, runs empty
16: end if

In the following we take a look at the properties of the M; ¢ p;,+-dc. We
will analyze the smoothness of the virtual layer, now responsible for item as-
signments. Therefore, we first answer if the algorithm still produces only three
different interval types in the decomposition.

Lemma9. If |V| > 2, then ®-Div" needs to handle at most 3 different types of interval
lengths in My ¢-pjy+, 80

2< |{|Iv|rlv € Ml,CD—DizﬁH <3

Proof. This follows directly from Lemma [7|and the further facts. First, the addi-
tional layer has no impact on the decomposition. Second, Lemma [//holds as long
as one solution of Equation [3.1]is used. So it is valid to use always the same. [

Second, we have to check which impact the restricted injection point choice,
compare Algorithm[g|Line 8,9 with Algorithm[7|Line 7, has on #5;, I € M ¢.pjo+-
This is described in the following lemma.

Lemma 10. For any sequence Sy, with I, € M ¢.pjy+ the following holds: #S;, < 2
and only if |I,| = min({|I|,I € My ¢_pjy+}) then #Sy, = 1.
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3.2. Deterministic Greedy Decomposition 87

Proof. Assuming we have 2 adjacent interval I, I, € M; ¢_p;,+ With vg = u and
I,| = |I,|] = ®. According to ®-Divt Line 7 |I, | is either of size ®~ (1) or
@~ (+1), This is, because it is the smaller part of a previous segmentation of size
&~ (i-2), otherwise ®-Div' has chosen the wrong solution of Equation From
this we know that |I,,, | = &~ (+1),

This can also be reconstructed by building a binary tree, where the root has
the number i € IN and the left child node the number i 4+ 1 and the right i 4
2. According to ®-Divt , where the number is the negative power of ®, we
add child leafs only where the leaf has one of the smallest leaf numbers. Clearly
only three distinct numbers can occur within the leafs. If we print only the leaf
numbers during a depth search, the traversal output has the same property. Two
equal leaf numbers can only occur if both have different direct parent nodes. This
excludes sequences longer than 2.

A similar argument holds for the leaf v with the highest number i + 2. It
always has an adjacent leaf with the number i 4 1, if they have the same parent
with the number i. According to ®-Div™ it must occur at the left side. If not, and
the number on the left is equal, then both can not have the same direct parent.
Further, according to ®-Div™ the right leaf must have the number i + 3, which
contradicts the assumption that v has the highest number. O

With Lemma [9|and Lemma [I0jwe can proof the following theorem. It mainly
considers the smoothness of the additional layer, now responsible for an item
assignment. It consists of intervals I} from Definition 26| produced by ®-Div* ,
where the anchor of v is placed at a, := r, + |I,| - 1/2.

Theorem 15. For |V| > 2 each I € My ¢ pjy+, #51 < 2and 2 < #{|I|} < 3. For

Mi ®.Diy+ ¢ the smoothness is bounded by
1 1 1+ @2
. ~—4 = <sy < ~ 1.809.
1.118 D + 5 < SM1,q>-Div+ S — 1.809

Proof. First, the number of distinct intervals follows from Lemma E] and the se-
quence statement from Lemma

Note, in the following we will use the facts that 1 4 P l=0P,1+P = P?
and Equation Further we will use the binary tree representation of Lemma
The resulting cases can be retraced in Figure

Second, the lower bound: It occurs if |V| is a Fibonacci Number. Then only
two distinct numbers can be found in the binary tree leafs. One can prove this
by induction, if we count the occurrence of each number in the leafs if |V] is a
Fibonacci Number. The resulting count for both is also a Fibonacci Number. So
the largest interval I}, € Mi,@-D i+ 18 built upon subsequent intervals I, , Iy, I, €
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Figure 3.2: Smoothness Bound Construction

M, ¢ piv+, where |, | = @+ |[,| = @7, and | L, |® 7 (or |, | = @7, |I,| =
@, and |I,,|®~ ). This follows from Lemma and leads to a size of

Dyl = max({|{I5], I, € My ¢.pi+ })

B 11+1 1 N 1

29 2 \2pitl T 2
1 1

= (2414 —
4<1>1<Jr +c1>)

- 4c11>i (1+®2>

Further, the smallest interval I}, € M/ + is constructed by subsequent inter-

1,®-Div

vals Iy, , Iy, Ly € My ¢.pip+, where |I, | = @7, |I,| = &~ (+1), and |I,,|®". This
also follows from Lemma [10land leads to

‘I;nin|

min({|L,], I, € M} ¢ pi+})

1/ 1 1 1/ 1 1

2 (2<1>i + 2c1>i+1) 3 <2c1>i+1 * @)
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From this we obtain

max({|], 1, € My g i }) 1402 /20
min({|I], I, € M{ ¢ pie }) 4D /4c1>i
11
-~ 32
~ 1.118

Third, the upper bound: It occurs if three distinct numbers can be found in
the leafs. In this case the largest interval I, € M; 4 .+ is the same we have
constructed for the lower case proof. So we have

x| = max({| L], I, € M} g.pio+ })

- )

Similar as before the smallest interval I}, € M 4 .. is constructed by subse-

quent intervals I,;, I, I,y € My ¢ piy+, but now |l | = o) |L,| = d(+2),
and |I,,| = @+, This also follows from Lemma [10{and leads to

il = min({|L;], I, € M} ¢ iy })

1 1 1 1 1 1
— 2\ opitl +2q)i+2 +§ 2Pi+2 +2q)i+1

= 1 2 (l + i)
4017\ @ P?
2
49!

[T

From this we obtain
max({]l{,\,lz’, € Mi,CID-Dizﬁ}) B 1+ @2 2
min({|I|, I, € My g e })  4DT [ 4D
14 ®?

2
~ 1.809

O

In the beginning of this section we have asserted that we can handle dynam-
ics too. So we have to think about the removal of nodes. Actually, we can state
that ®-Div" generating the decomposition Mj ¢ p;,+ is one possible outcome
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of Mj ¢-pip- This is, because we only have used ®-Div in such way, that we al-
ways chose Line 8 of Algorithm [f| According to this, ®-Div™ also produces at
most 3 different types of intervals. So for removing nodes from M; ¢._pjy+, P-Del
principally would work, but needs some adaptions. Clearly, the item reassign-
ment now is decided by intervals in Mi’®_DiU+ and not as before by intervals in
M o-pip- Further, the constraint in choosing r, implies a constraint for deleting
r,. We have to find in some more cases an appropriate substitute which does not
violate the smoothness bounds of Theorem [15/and the precondition of ®-Div™ .
This is, because due to the insertion constraint we can not join intervals where
|Io,| < |Is|.- One can see this by constructing the according binary tree used in
Lemma Interval joins of two adjacent nodes are only possible if the accord-
ing leafs in the tree share the same direct parent node. With respect to this the
removal of nodes will work under the same conditions as it does in ®-Del.

Eventually, the main achievements is the compensation of imbalance caused
by leaving or joining nodes. The adjustments and their caused imbalance gets
always compensated by two nodes. Of further importance is, that the amount of
items a node receives or gets rid of is automatically weighted by the size of the
adjacent nodes. Which finally results in the advanced smoothness.

Two Final Notes On The Additional Virtual Layer

So why do we have to built such a construction using an anchor? And why do
we halve the distance between the anchors of nodes?

The first question we can answer by regarding an alternative decomposition
without using the additional anchors, commonly found in DHTs. Here the nodes
define their responsibility ranges by minimizing the distance between two in-
jection points. Actually, this is simply halving the distances between adjacent
node positions in the hash range M. So a nodes’ range in DHT is defined by I; :=
[(ro, +70)/2, (rog +70)/2[. From Lemma([I0|we know that one of the longest sub-
sequent range sequence is like | I, | = ®~ 1), || = @, and | I, | = ® . By us-
ing the range definition of I;; the node vg will receive one of the biggest range size
of |I,.| := |I,| = . Further, one of the smallest range is obtained by a range
sequence like |I,,| = ® (2 |[,| = &=+, and |I,,| = ® (+2). Applying
the range definition I} again we obtain |I*. | := |I}| = ® /2. (@ 2+ o 1) =
®~'/2. Finally, this results into a worst case of | I;,¢|/|I*. | = 2. So, by using the
anchor we are able to bridge the gab of two subsequent ranges, and it guarantees
that each v with |I,| = ®~ gets reduced, which finally results into a smoothness
below 2.

To answer the second question we first have to remember that we do not want
to care about the current range sizes in an adjacency. Each node should always
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3.2. Deterministic Greedy Decomposition 91

do the same operation to decide its responsibility for items. By choosing a differ-
ent ratio than 1/2 we have to establish a general partitioning rule like the smaller
takes from the bigger one. Further, if we do not want to endanger the smoothness
bounds during dynamics, we must ensure that the smallest and the largest se-
quence do not produce ranges with worst ratio. To ensure this for all nodes we
have to consider a v € L} surrounded by nodes in v, vg € L. Due to symme-
try we only need to look at one side leading to the following equation (for better
comprehension not simplified), which must hold for any ¢

1 (q;—(i+1) _ & (i+1) 4 <I>(i+2)> - 1 (q)—(i+2) N o (i+1) 4 q;(i+2))
2

2 C c

Since our goal is to maximize |I/,| we have chosen ¢ = 2, which leads to equality.
If we chose a ¢ > 2 then I}, defines I’ . and increases the smoothness in worst
case. Further, if |V| is a Fibonachi Number, we can observe that other constants
than 2 will increase the best case smoothness, too. Additionally, if we look at the
longest sequences. We know from Lemma [10]that same sized ranges are adjacent.
Here we can not use our general partitioning rule, so we have to establish an
additional one like in case of equality use 1/2 instead of 1/c. Finally, only using

c = 2 is the simplest and best we can do here.
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Chapter 4

Application Area SAN, DHHT
supporting RAID Architectures

Beside the domain of P2P Networks the new strategies, based upon Consistent
Hashing, have entered the application area of SANSs. In this chapter we present
an architecture, called DHHT-RAID, usable for storage allocation in huge and dy-
namical Storage Area Networks. The resulting approach is based on DHHT and
combines its features to overcome disadvantages of RAID caused by the needs of
changing SANs.

The main advantage of this architecture is its ability to handle a dynamic set of
heterogeneous devices, serving a dynamic set of data and supporting any RAID
Level at the same time. In particular, the architecture uses the Linear or Loga-
rithmic Method of DHHT and inherits all positive attributes. Furthermore, it im-
proves its balancing quality with embedded multiple choice. In addition DHHT-
RAID avoids time intensive re-stribes caused by joining or leaving devices, typi-
cally occurring in classical RAID systems.
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94 Application Area SAN, DHHT supporting RAID Architectures

4.1 Allocation Problems if RAID meets Random

Methods using random like hash functions and trying to support any RAID Level
have to overcome some problems. The main attribute of RAID is its consecutive
parallel allocation among distinct devices, which also guarantees its reliability.
Related DHT based strategies commonly distribute items somehow by random
and evenly among a set of nodes. This allocation strategy can break the consecu-
tiveness of RAID allocations, but without prevention it also endangers reliability
of RAID. For example, let us consider the placement of segments generated by
RAID encodings independently by random among all nodes. For each block or
item d € D depending on the specific RAID level, the encoding will produce a
set of redundant or striping segments D, = {dy,...,d,}. Remember, all these
segments need to be placed on distinct nodes. If the segments are distributed
independently by random among V, a RAID decoding will tend to fail in some
cases. This can easily be observed if devices are uniform in size. Let f : D, — V
such a random mapping function, then the probability P[[{f(Dp)}| < |Dp|] > 0
forany 0 < p << |V|. A strategy can not ensure the reliability of RAID, if the
probability of two elements in D, sharing the same device is grater than zero.
This effect is analog to the birthday problem for p persons, sharing the same birth-
day and can be declared by P = 1 — (n!/((n — p)! - n?) > 0. From this we can
observe that the probability of such conflicts increases the less n or the greater
p is. Eventually, none of such random distribution strategies can grant indepen-
dent allocation patterns for each D,. So to avoid such conflicts prevention or
additional efforts during the allocation process is needed.

A possible prevention is to partition or group V into p distinct subsets. To
respect RAID, each V;,V; € {Vy,...,V,} satisfies VNV, = @, if i # j, and
U, Vi =V, and ¢(V)) = c¢(V;). Than each V; is utilized individually as a sin-
gle virtual device using a strategy like Share, Sieve or DHHT, see [9]. Note, if the
strategy is capable of handling different sized devices, then V is allowed to be
heterogeneous. With these p distinct virtual devices any classical RAID level can
be applied on top without conflicts. Thus it remains to keep the capacity of all
virtual devices nearly equal and their address room consistent if changes occur.
However, such a system can never change p without radical impacts and data
allocations.

A further preventive approach to avoid conflicts is discussed later in Section
It describes the use of our DHHT approach in combination with classi-
cal approaches. Beyond the two staged combination, the subsequent introduced
DHHT-RAID of Section exemplifies the integration of RAID Levels into
DHHT. These extensions resolve conflicts not by prevention, but online. It mainly
integrates multiple choices defined by the model and runtime information among
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4.2. RAID Capacity Allocation Constraints 95

a constant number of nodes. The main improvement of DHHT-RAID is its com-
plete independency on p and the degree of capacity utilization in combination
with a parallel allocation on distinct devices.

4.2 RAID Capacity Allocation Constraints

As said, the main advantage of RAID is the improved availability and failure tol-
erance, as well as the increased access rate. These attributes can only be guaran-
teed if and only if each of the p segments is placed on a distinct and independent
device. If for instance RAID V is applied and the distinct placement is violated,
the reconstruction is in case of failing devices is endangered. Similar effects can
be observed by all other standard or nested RAID levels.

If we enforce the distinct placement of segments, we have to take a closer look
on the allocable capacity of each access pattern, especially if segments are dis-
tributed randomly. Since V consists of uniform nodes and p is defined by the
specific RAID level, ¢(7) is fixed. Unless devices are not partitioned, each device
is allowed to occur only once among all 3 € V. This circumstance changes, if de-
vices are heterogeneous in capacity. Than remaining capacities of 7 = (vy,...,vp)
is defined by ¢,(0) := Y1<j<, ¢(v;) — ¢(0). Remember, the capacity of a pattern
was p times the capacity of the smallest participating node. These capacities are
combinable with remaining capacities from other patterns to increase overall uti-
lizable storage. Naturally, only as long as at least p devices can offer none allo-
cated space.

Further, we are aiming the utilization of the maximal capacity, at best ¢(V') and
coevally preserving the efficiency such that |V| = O(|V|). Therefore, we carefully
have to select patterns out of (“;‘) possible combinations. This is necessary, since
storage can only be assigned once on a device. Concerning to the competitive
allocations of couple of patterns, many subsets of size O(|V|) can not reach the
maximal allocable capacity and others will. Furthermore, for some pattern sets
it can be reasonable to allocate less than ¢(7) on each pattern to allow additional
combinations, which will increase the utilization.

So we need an efficient method to determine V and for each ¢ € V its allo-
cation maximum. Finally, we will see in following Section that both can be
done together.

4.2.1 The Sweep Line Method

The Sweep Line Method allows us to determine the maximal allocable capacity
in a heterogeneous set of nodes. It determines an independent access pattern
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set V in O(|V|). In advance, we have to define another capacity function by
overloading Definition (3| and attache a further individually selectable parameter
for each pattern allocating space on p devices.

Definition 27. For = (vy,---,vp) with c(9) restricts ¢(7,ks) := c(v) - ks | ks €
[0, 1] the maximal allocable capacity of 0 via k; € [0, 1].

This definition enables us to restrict the allocable capacity, such that we can
determine a set of real numbers to maximize Y ;.y c(,ks) < Y ,cyc(v). This
restriction we use in following method and presumes that p is known and no
v € V violates the constraint max({c(v)}) < ¢(V)/p. This can only occur for at
most p — 1 devices and is easily testable. These devices must be trimmed such
that the constraint holds. The constraint is essential, and if not fulfilled, we will
see there exists no distribution for all D, € D allocating c¢(V). The following
steps describe the determination of p subsets V,..., V), of V resulting in V. We
start with V; and :

1. setj:=1,1:=1,and assign to Vv € V aunique indexi € {1,...,|V|}

2. if V # @, then set k such that Y5, ¢(v;) < iﬁLll c(v;) else continue
with step 6
3.if Y5 c(v;) = pil) then set V; := {v;,..., 0}, V i= V\{v;,..., 0},

j:=j+1,and [ := k + 1 continue W1th setp 2 else continue

4. partition vgyq into v 4,0}, ,, such that c(v;, ;) = % — Y% ¢(v;) and

C(vk+1) (Uk-i-l) (U;H-l)

5.set Vi = {v),..., 00,01}, Vi= 0l UV \{o,..,o0q}), =+ 1,1 =
k + 1, and continue with step 2.

6. for each V; concatenate all v; € V; sorted over the indices to a single virtual
device u; of capacity c(V;) = Yoev, c(v;) =c(V)/p.

7. set the address counter a := 0 and a1t := a
while (a < # —1,a++)

for each V; determine devices defining a and thus 0 € V1 X ... X V),
a+1—astart
c(v)

if 0 changes at a then set asyg¢ := aand V := V U {5}

if o will change at a + 1 then set k; :=
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Figure 4.1: Defining V with the Sweep Line Method

This algorithm creates p subsets equal in size, defined by the concatenation of
addresses gathered among the ordered indices of each v; € Vj, see step 6. To
keep the order during the concatenation is essential, otherwise same addresses
are potentially assigned to a partitioned device that occurs in V; and Vjy4, see
step 4. Lastly step 7 simulates a sweep line defining a new 7 each time it current
address touches a new start or end address of a physical device in any V;, compare
tigure The distances of these addresses also define k, used to restrict the
capacity of @. Finally, to keep the runtime of the algorithm in O(|V|) it will be
sufficient to consider only the start and end addresses.

Corollary 15. An environment (V, D, f) consisting of heterogeneous nodes is utilizable
with a set of p wise independent patterns V with capacity ¢(V) = ¢(V) only if

max({c(v)},v € V) < Z%C(v)

So the Sweep Line Method always determines V reaching the maximal p wise
independent allocable capacity. However, if it reaches ¢(V) = ¢(V) only depends
on the necessity of trimming devices. If this is left out but necessary, the method
will define an access pattern a which is not independent.
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4.3 DHHT Supporting RAID Level

In this section we describe how RAID goes along with DHHT. Foremost we will
consider a further opportunity, considerable as a two stage or level approach. It
combines the Sweep Line Method of Section[4.2.T|with any of the DHHT methods
of Section The second and main architecture, we denote as DHHT-RAID, is
an enhancement of the Linear or Logarithmic DHHT method. It supports any
kind of RAID Level simultaneously. Further, it manages the additional incidental
meta data in its own data structure. Finally, we will show the performance of
DHHT-RAID with some simulation results.

4.3.1 DHHT Featuring RAID

As mentioned in Section4.Tjone solution is to group V into p distinct sets and run
on top any specific RAID level. However, with the previous results, the DHHT
and the Sweep Line Method, we can describe an alternative combined solution.
The basic steps are the following

1. check whether any v € V violates c(v) < ZT’%C(U). If yes, mask out the

overcapacity of according devices such that the constraint holds.

2. apply the Sweep Line Method according to the RAID level with the adapted
V and determine V.

3. apply any DHHT Method and use V as input. Use each ¢ € V as node and
according to the chosen DHHT method choose ¢(7, k5) as weight within the
distance function.

4. distribute all D), € D among M as items. Store the encoded segments of D),
on the distinct devices behind the chosen & minimizing the hight.

This architecture simply uses DHHT and its ability to utilize any set of dynamic
heterogeneous node set. Thus all attributes form DDHT can be observed here
to. Clearly, DHHT can be substituted with any other method capable of handling
such a heterogeneous set environment like Share or Sieve. The guarantee of find-
ing distinct places for segments is given by the Sweep Line Method. Thus it only
remains to resolve the heterogeneity of access pattern capacities, which all these
methods perfectly can do. However, dynamics in this architecture compensated
by DHHT only consider join and leave operations of any & € V and not of any
veV.

So let us first consider the join operation in V. First, if we insert a single node
and then redetermine V, each 7 will at least have an adapted k; and the costly
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re-stribes are as intensive as in the classical static approach. The advantage of
this architecture can be seen if we insert a further set of nodes V’. Additionally,
nodes with remaining trimmed capacities from previously applied Sweep Line
Methods can be joined with these capacities in V’. With V' we do the same as we
have done before with V. The important part is that the followed insertion of all
9 € V' into DHHT will rebalance all 7 € V U V' with the costs of DHHT. Note, if
other methods than DHHT are used, according to their costs. Eventually, we can
merge any independently generated V together, if they were built for the same
RAID level. The disadvantage of this method is, we can only extend the capacity
if V' consists of at least p devices and for no u € V' the constraint u < ¢(V’)/p is
violated.

A leaving operation of a node v € V followed by a join of u replacing v, where
c(u) = c(v) has no impact. If c(u) > ¢(v) then c(u) — ¢(v) remains unused, un-
less it can be integrated again with remaining capacities. Basically, a leaving node
has an impact on all ¢ € V it is participating at. If we only want to lose the ca-
pacity of c¢(v), the favorable case is, if no node participates at involved patterns
with a capacity larger then (p — 1) - ¢(v)/p. Then we can determine with these
nodes a further pattern set V/ without remaining unused capacities. Otherwise
we also lose the capacities remaining after the accomplishment of the Sweep Line
Method. Furthermore, if only p — 1 nodes are involved and left we will lose the
capacity of p - ¢(v) < ¢(V). Additionally, if a leaving node is of size ¢(V)/p, V
must be redetermined completely and all items must be distributed again, be-
cause no valid 7 left. If we consider the item movements, we first have to move at
most p - ¢(v) space by the removal of involved patterns. Second if the remaining
capacities can be used completely, its integration will cost at most (p — 1) - ¢(v)
induced by the rebalancing of DHHT. Whereas an optimal strategy will only have
to move the items stored on v.

Corollary 16. With a given p, extending V by joining V U V', results in best case to a
capacity extension of c(V') + ¢(V) = ¢(V U V") with costs of DHHT or a substitute. In
worst case the extension is impossible. In best case reducing V by setting V := V' \ {v},
we lose ¢(v). In worst case we lose p - c(v) < ¢(V). In case of losing c(v) we have to
move at most (2p — 1)c(v) space, so we are 2p — 1 competitive.

So far we can state out that the flexibility of this or other multi stage solu-
tions is not satisfactory. In both cases of dynamics we have a strong dependancy
on p inducing additional costs or unsolvable constraints induced by the capac-
ity distribution. The solution introduced in the following tries to overcome this
dependancy by combining runtime information with DHHT structures. It com-
bines multiple choices with the determination of allocation patterns, by the costs
of additional meta data for each item, to fight against these intrinsic deviations.
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4.3.2 DHHT with Embedded RAID, DHHT-RAID

In this section we introduce an architecture capable of resolving heterogeneity of
dynamical node sets and coevally supporting any RAID level. In contrast to the
previous section it overcomes costs induced by the dependancy on p by using
additional structural information from the Linear or Logarithmic Method of the
DHHT model.

As we have seen in Section 2.2 the coverage of the hash range M is always
guaranteed. If a node is removed, its successor is already defined by the fact that
it defines the 2nd minimum at the same position. This allows us to resolve one
major constraint of RAID, the need of distinct places for each item segment. So
if we use this attribute straight forward, we can describe the following. If p is
defined by the RAID level we have to select p distinct nodes. So we choose a ran-
dom position rp, in M and the node v; defining the minimal hight at rp, receives
the first segment of D, = {dy,...,d,}. By the requirements of RAID the receipt of
dy disables v1 to participate in further distributions of D,. Thus, we would have
to remove the node to exclude the chance of further p — 1 assignments. Instead of
choosing p — 1 additional positions for the remaining segments we simply reuse
rp,, but without v1. All in all we do this p times, where consecutively nodes
which have already received a segment are kept disabled. Essentially, this is the
same as if we take at p, the sorted order of heights among V' and select the first p
with the the smallest hight. On these nodes {vy, ..., v, } we store the segments of
D,. A simple example of this distinct node selection defining V' is pictured in Fig-
ure by the Linear Method of DHHT. Note, similar to the Sweep Line Method,
each 7 is associated with a range I; € M and c(7) with its length |I;|. In contrast,

Figure 4.2: V induced by Linear DHHT minimum with p = 3

100



4.3. DHHT Supporting RAID Level 101

because of DHHT and its fragmentation structure, @ can occur more than once in
M. Thus the expected capacity of 7 is reflected by all ranges associated with o.

Let us now consider dynamical changes in V. Similar to Section where
only I,,;, was modified, we require an assignment verification. The difference
is that we now have to observe the first p functions at each position in M. If
the mapping order of items among the p nodes matters, we have to respect the
order changes caused by node fading, see Section too. In the following we
consider the insertion and removal of a single node. Additionally we assume
that the mentioned order does not matter. We say v dominates u at a position
r4 or within I if the hight, according to the DHHT method, of u is less than the
hight of v. First, the insertion of v. We have to determine the ranges with their
associated patterns, where v would dominate i nodes, where 0 < i < p — 1. For
every involved pattern 7 there exists a node v’ previously dominating p — 1, and p
nodes after the insertion of v. For each of these v and D, where rp , € Is we have
to move the segments stored on v’ to v. Second, if v leaves the environment, we
have a similar situation. The node v has to transfer after its removal all segments
f~1(v) to the nodes now dominating exactly p — 1 others. The mapping is analog
to the insertion. Important is that independent of p and thus the according RAID
level, the insertion, removal or change of a single node implies the movement of
at most one d; € D), for all D, € D. Which leads to the following corollary.

Corollary 17. For a given p, a join operation is monotone and 1-competitiv if v receives

C(VC&% - |D| items. Assuming v stores c(\;&% - |D| items, then a leave operation is

monotone and 1-competitiv.

This corollary is not very strong, because we can not state out the balancing
attribute for a single node. Remember, the analyses we have made for DHHT are
considering the assignment of one item at a time. By reusing a random position
and changing the environment we can not stat out any theoretical result about
balancing qualities. By changing the model we have obtained strong dependan-
cies.

Our aim is to maximize the allocation of ¢(V), compare Figure 4.2} but during
the distribution some patterns or nodes will have no capacity left before others.
Independent on this, they are still offering themselves within M. Thus, a further
segment assignment on these nodes is not feasible and requires additional effort
to allow further item assignments. Our idea is inspired by multiple choices and
especially by the power of two choices [30]. So we include a further balancing
based on runtime information to keep the deviation from the desired share of
nodes low. Conventional multiple choice processes, for instance in DHTs, define
a certain number of k randomly chosen positions in M and take the best one as
final position. So each v € V is involved and potentially chosen at most k times.
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However, for each assignment of d € D we have to store the information which
of the choices we have made. Otherwise every time we want to access d we have
to look at k nodes. Typically these k positions are generated by using k hash
functions with corresponding attributes. So if we want to ask only one node, we
have to store for each item the information which function we have chosen. Our
idea goes a slightly different way.

In contrast to the conventual multiple choice we determine the choices with
a single random position. Therefor, we adapt the previous scheme. Instead of
choosing the first p nodes at rp, we take the first p + k nodes at rp,. This leads
to the architecture, exemphfled in Figure 4.3} which needs the followmg steps to
distribute D among V supporting any RAID level.

1. setup the environment according to the chosen Linear or Logarithmic Method.
Determine k and p according to the RAID level.

2. for each D), € D determine a random position g(D,) € M.

3. choose at rp, the first p + k nodes without their copies, denoted by barv,, ;.

4. select those p nodes from the p + k in 7, which minimize c(f~*(v))/c(v),
in case of equality choose the node minimizing the hight according to the
chosen method. These nodes are defining o.

ooption eallocated emeta data eallocation & meta data

Storage Nodes, V

Figure 4.3: DHHT with embedded RAID and Multiple Choice
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5. distribute all d; € D, among the nodes identified by o = {vy,...,v,}.

6. define a meta ticket Tp, at least storing ¢ and the physical address of each
di on v;.

7. store Tp, on v if rp, € Iy and I, € I,;, according to the chosen method.

Remember, both DHHT variants need a sufficient number of copies to achieve

their balancing quality. So step 3 is important to avoid multiple choices of same

nodes, otherwise it would endanger the independency of @. A further note to the

balancing. If the value of max({c(d)/c(v)})/ min({c(d)/c(v)}),d € D, is huge,

the single allocation on small nodes will have an huge impact on the percentage

w
clo

load. Thus, it would be better to use < . This will disburden smaller

nodes and prefer bigger ones, because it respects the node level after a potential
allocation.

Since the original DHHT only identifies the nodes, we now can use the meta
ticket Tp, for each D, € D and store additional information within the envi-
ronment. For example this might be the encoding of D;, even p can be stored
and thus possibly changed for each D, individually. Furthermore, because Tp, is
placed as usual in DHHT, the meta information will be distributed proportional
among the node capacities. Beside this we can also observe that meta information
and data is possibly stored on distinct nodes. So we have merged the data and
the meta information systems into a single model to ease requirements of central
structures.

Finally, in case of dynamical changes we can reuse the mapping idea we have
described without choices. If a node u joins we have to take all Oprk, U NOW
participates at. For each range I5,,,, u takes segments from the evicted nodes.
According to the heterogeneity of nodes the workload of u possibly exceeds the
workload of any node in appropriate 7, not storing segments of D). So u takes
items until this occurs and remaining segments of each D, are distributed bal-
anced among the other nodes not storing any segments of D,. Analog if a node
leaves, then we distribute the segments balanced among the k 4- 1 nodes not stor-
ing any segments of D,. All changes and the necessary information can be de-
posited in Tp, also. The meta tickets migrate as defined by Iy, determined by
the chosen DHHT Method.

4.3.3 Simulation Results

In this section we present some simulations picturing the performance of DHHT-
RAID. We focus on the weakest strategy, the Linear Method used with a different
number of virtual nodes, multiple choices, and parallel allocations, as proposed
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in Section Further, we will show some results, the random node position
sampling is substituted by our deterministic decomposition ®-Div. In contrast
to the our previous results we do not use partitions as recommended. The simula-
tion results will show that the embedded balancing is an appropriate substitute.
The simulation was implemented in java. Further, the random positions have
been determined by the Mersennen Twister included in the RngPack-1.1 for java.
The seed value for all experiments was equal.

The Experiment and Testing Environment

As we have said our main application area is some kind of Storage Area Network,
where participating nodes are equipped with a fixed capacity. So it is of tremen-
dous importance that a node does not receive more allocation requests than it is
capable of storing. If a strategy can not avoid this, an additional managing over-
head is needed to continue allocations. Each node dropping out this way needs
a special unwanted treatment concerning write and lookup operations for items.
Because of this, our experiment procedure is the following. We first setup the
specific environment according to the method and the given node weight dis-
tribution. Then we throw one item after another until the first node drops out,
because of over allocation. In case of parallel allocation the experiment ends if
one of the segments in D, is unplaceable. So, in best case the experiment ends be-
cause all nodes have reached their limits. However, in worst case the imbalance
of a single node leads to a very early experiment abort.

We have used the following heterogeneous environment to run our experi-
ments.

e V consists of 16.389 = 214 4+ 5 nodes.

e The capacities are distributed evenly among V out of {10, 40, 80, 100, 160,
250, 500, 750, 1000}.

e The weight unit of nodes are GigaBytes and we distribute items of size
c(d) = 100 MegaByte. Thus the overall capacity of the enviroment c(V) =
5.262.690 GigaByte.

e In case of parallel allocations, to simulate RAID, the item capacity is c(D) =

pcotc(d).
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DHHT-RAID performace

In the following you find some table figures picturing the utilization performance
of DHHT-RAID. We first show the basic performance with balancing but without
parallel item allocation and afterwards in combination with parallel allocation.

The table figures and their embedded images showing the experiment results
are explained as follows. Each image rectangle describes a single experiment with
specific parameters. The coordinate within the table identifies the used parameter
range given in the caption. In a single experiment image the y-axis denotes the
single node level in percent and the x-axis the over all allocated system capacity.
The color of each rectangle point describes how many nodes of |V| are having
the same load, in percent. Here gray means no node has this load, blue means
at least one node or a few are having the same load. The color transition from
blue to red to yellow shows the increasing node density where nodes are having
the same load. The color transition coding is also given in Figure Finally, the
white rectangle area shows the remaining not allocated capacity of c(V') because
of an early experiment abort.

The diagonal of each rectangle describes the desired share of a node during
any experiment. So nodes will paint traces like a comet trail exemplifying the
deviation concentration around the diagonal. If the experiment aborts, because
any node reaches more than 100% the painting stops and the remaining area is
left white. However, the closer these traces are to the diagonal, the better the ex-
periment is and the more capacity c¢(V') we can allocate. If this is the case the size
of the white surface will decreases. Thus the, aim is to catch those nodes paint-
ing trails with the highest or lowest trace gradient and concentrate them over the
diagonal. So the best we can expect is a completely flooded gray rectangle with a
yellow diagonal from the left bottom to the upper right top and no white surface.

Figure shows the allocation behavior of experiment runs with random
node positions, node copies between 0 < C < 2, a balancing between 0 < B <5
position for a single item, thus no parallel placements P = 0. Figure[4.6/shows ex-
periment runs similar to Figure but copies between 3 < C < 5. Experiments
considering further values for copies can be found in Figure |4.7|and Figure

Figure 4.9 shows the allocation behavior if random node position sampling
is substituted by a deterministic ®-Div decomposition. We have left out some

Figure 4.4: Linear Scaled Color Legend of Node Density;left > 0% right < 100%
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values for copies, because the tendency is observable without them. These sim-
ulations are also running without parallel allocation and a balancing between
0<B<5.

The Figure gives the overall capacity which we were able to allocate be-
fore the first node aborts in percent. The value corresponds to the fraction of the
gray area compared to the whole rectangle size of the images in the previous Fig-
ures. Figure[.1T|shows this too, but with an increasing number of items placed in
parallel on a single position rp,. We do not list the images showing the allocation
behavior of these experiments, because they look the same and because we are
only interested in the impact on c(Uycy f 1 ().
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Figure 4.5: Random Positions, P =0,0 < C<2,0<B <5
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Figure 4.6: Random Positions, P =0,3 < C <5,0< B <5
108



4.3. DHHT Supporting RAID Level 10
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Figure 4.7: Random Positions, P =0,6 < C <8,0< B <5
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Figure 4.8: Random Positions, P =0,9 < C <11,0<B <5
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C=0

Figure 4.9: ®-Div Positions, P =0,C € {0,2,5},0 < B <5
111



112

Application Area SAN, DHHT supporting RAID Architectures

allocation experiments, where r, is chosen by random

%ofc(V)[[ B=0 | B=1 | B=2 | B=3 | B=4 | B=5

C=0 6.2333 | 37.1917 | 45.9875 | 49.0520 | 52.1087 | 64.9623
C=1 18.6507 | 80.9921 | 95.3292 | 99.9315 | 99.9684 | 99.9848
C=2 24.6183 | 99.7195 | 99.9617 | 99.9883 | 99.9972 | 99.9982
C=3 24.6081 | 99.8681 | 99.9821 | 99.9972 | 99.9985 | 99.9988
C=4 27.5971 | 99.9401 | 99.9946 | 99.9980 | 99.9990 | 99.9991
C=5 29.4708 | 99.9656 | 99.9940 | 99.9982 | 99.9982 | 99.9991
C=6 31.4426 | 99.9822 | 99.9966 | 99.9975 | 99.9990 | 99.9991
C=7 37.6550 | 99.9869 | 99.9968 | 99.9981 | 99.9983 | 99.9990
C=8 34.7315 | 99.9923 | 99.9949 | 99.9984 | 99.9987 | 99.9991
C=9 33.5573 | 99.9926 | 99.9949 | 99.9984 | 99.9987 | 99.9990
C=10 39.8832 | 99.9921 | 99.9969 | 99.9987 | 99.9959 | 99.9988
C=11 39.9737 | 99.9942 | 99.9970 | 99.9988 | 99.9991 | 99.9992

allocation experiments, where r,, is chosen by ®-Div

%ofc(V)] B=0 | B=1

B=2 | B=3 | B=4 | B=5

C=0 28.8147 | 91.2449 | 93.6124 | 95.0020 | 95.6645 | 96.4933
C=2 60.5131 | 99.9805 | 99.9966 | 99.9974 | 99.9985 | 99.9988
C=5 62.4495 | 99.9941 | 99.995 | 99.9969 | 99.9982 | 99.9985

Figure 4.10: ¢(U,cy f 1 (v)) from Fig. [4.5, Fig. [4.6) Fig. |4.7] Fig. [4.8) Fig.

Since most embedded table images can only give an impression on distribu-
tion behavior, additional magnified illustrations can be found in the Attachment
in Chapter [A} for each experiment, where a node deviates significantly from its
desired share. Additionally, we show for each listed experiment the final node
level distribution among the different node weights after the experiment abort.

The major conclusion we can draw from these readings is, that the node de-
viation seems to spread similar over all weights and nodes deviate only by a
constant factor. This can be argued by the linear traces nodes are painting during
the experiment. Further, we can see that increasing balancing catches first nodes
decreasingly sorted among their weights. This can be explained by the repre-
sentation of nodes and their distance to an appropriate position rp,. However,
by choosing an sufficient number of copies we can shorten the distance of nodes
to each other. Especially, the substitution of random node positions by ®-Div
keeps the domination of small nodes by larger left neighbored nodes low. The
deterministic choice avoids too short distances, because of the fixed segmenta-
tion ratio. Further, small nodes can not be dominated too early or become too
huge, which also explains the better results if balancing is not used.
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allocation experiments, where r is chosen by random
%ofc(V) || P=1]P=3]| P=5 | P=7

C=2,B=5199.9983 | 99.9846 | 99.95622 | 99.9223
C=3,B=41 999986 | 99.9914 | 99.9655 | 99.9311
C=4,B=31 99.9984 | 99.9895 | 99.9528 | 99.9005
C=5,B=2199.9988 | 99.9781 | 99.9067 | 99.8232
C=8B=1199.998 | 99.9748 | 99.8662 | 99.7457

allocation experiments, where r; is chosen by ®-Div
%ofc(V) | P=1] P=3]| P=5 | P=7
C=2,B=>5199.9988 | 99.9974 | 99.9963 | 99.9947

C=3,B=4|99.9957 | 99.9949 | 99.9867 | 99.9877
C=4,B=399.9984 | 99.9945 | 99.9915 | 99.7823
C=5B=2/99.9978 | 99.9950 | 99.9866 | 99.9786
C=8,B=1] 999973 | 99.9938 | 99.9895 | 99.9724

Figure 4.11: Parallel Allocations, Capable to Serve RAID

The most important observation we can make for both variants is the follow-
ing. By combining copies and balancing among distinct choices we can decrease
the node deviation enormously. Further, we can find parameters below log|V|
for both to catch all dropping nodes. This behavior is still present if we allocate
items in parallel as required by RAID and proposed by DHHT-RAID. This keeps
DHHT-RAID efficiently in allocation runtime and space complexity. Especially
the need of partitions as proposed in the Linear Method of DHHT can be com-
pensated by multiple choices. Hence the Logarithmic Method is capable to run
without out partitions, we can expect a similar behavior and possibly better re-
sults with the same parameters. Finally, the results imply that we need less copies
if we embed multiple choice. Further, we need less copies and less balancing if we
choose node positions deterministically, which avoids early or late dominations
of nodes in DHHT.
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Chapter 5

Conclusion and Outlook

In this chapter we summarize our achievements discussed in the previous chap-
ters and consider unsolved problems of our main application area SAN.
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In this work we have considered the allocation of resources among a set of
nodes V by a set of items D. The focus of our strategies was the balanced alloca-
tion of limited node resources, like capacity offered by heterogeneous nodes con-
nected via unspecified network. The challenge of these distribution techniques is
to cope dynamical changes in V and D, especially if V consists of heterogeneous
nodes and to preserve the desired distribution properties coevally.

5.1 What have we done

In Chapter 2l we have seen that the main afford in distributed resource alloca-
tion was made to resole heterogeneity of a single node attribute. Under the as-
sumption that distributed units in D are uniform we believe that a fair relative
allocation is reasonable and leads to good results. We have considered resolv-
ing heterogeneity by uniform solutions and strategies like Share or Sieve. Beside
the mentioned solutions our introduced method has additional features. First,
the coverage of the hash range is always guaranteed, independent on any kind
of changes in the node set V. Furthermore, the representation of nodes within
DHHT is completely independent. This unique improvement is crucial to avoid
model adaption if many environment changes are occurring.

In Chapter 3| we have introduced a deterministic decomposition of a unit
range. The idea of this approach is to work as substitute in classical DHT ap-
proaches. The benefit of the ®-Div™ algorithm is its low worst case smoothness
and the low constant number of different sized intervals. This low fragmenta-
tion during dynamical changes is obtained by the consistent use of the golden
ratio and some additional tricks. However, this is not the best one can reach, but
the constant number of different sized intervals keeps the organization overhead
small. In case of node insertion or removal we only have to search for one interval
out of a group of intervals with a certain size.

In Chapter 4| we have combined all features of the Linear and Logarithmic
DHHT method, to support widely used RAID Levels. Additionally, inspired
by multiple choices, we have described how to apply within DHHT a balancing
method among nodes. We also have described the distribution of additional meta
data storing information about the parallelism. Further, we have seen in Section
simulation results of a simplified DHHT method in combination with par-
allelism and load balancing by involving a constant number of nodes at a single
position. Furthermore, we have seen that a substitution of the random node sam-
pling with a deterministic approach ®-Div leeds earlier to less deviation among
the nodes, considering the number of additional copies and balancing positions.
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5.2 Whatis left to do?

All seen strategies have in common that they can resolve the heterogeneity of a
single node attribute only. Beside this, some methods of the DHHT model are
capable to support RAID and guarantee its requirements, but other environment
characteristics are still left unconsidered. As we have motivated, items or tasks in
D are typically not uniform in size. Additionally, because of popularity, items are
typically different in access frequency. So we have to improve the understanding
of heterogeneity of items. Furthermore, nodes offering storage capacity are differ-
ent in bandwidth or other cumulative latencies. So one can imagine that fairness
according to capacity allocation and distribution can lead to a swamped and con-
gested environment, too. Therefore, we simply have to increase the popularity
of items stores on huge but slow nodes steadily. So the future challenge might
be a more complex combination of item and node heterogeneity by finding au-
tonomous adapting strategies, combining multiple attributes and different types
of dynamics, but coevally minimizing the delivery time of items or the processing
time of tasks with respect to their importance.
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Appendix A

Magnified Illustrations and
Additional Result Figures

In this Chapter we attach experiment illustrations previously used in compressed
table views of Section We show only those runs, where at least a single node
deviates significantly, visible as blue trace over gray. Further, for each listed cor-
responding experiment we show the final node level distribution. The notation
is the same as before in Section C denotes the number of additional virtual
nodes aka. copies, B denotes the number of additional choices for places, and de-
notes P the additional number of items allocated in parallel on distinct nodes at
one item hash value rp,. As a reminder, the color coding of each rectangle point
describes nodes with same deviation, in percent over all nodes, given in Figure

ATl

Figure A.1: Linear Scaled Color Legend of Node Density; gray= 0%, left > 0%
right < 100%, white=no value

The diagonal also describes the desired share of each node during the experi-
ment.
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122 Magnified Illustrations and Additional Result Figures

Figure A.2: From Fig. f.5\with P =0,C=0,B =0
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Figure A.3: Node level distribution of Fig.
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Figure A.4: From Fig. @5 with P =0,C=0,B =1
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Figure A.5: Node level distribution of Fig.
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Figure A.6: From Fig. f.5|with P =0,C =0,B =2
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Figure A.7: Node level distribution of Fig.
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Figure A.8: From Fig. f.5with P =0,C=0,B =3
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Figure A.9: Node level distribution of Fig.
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126 Magnified Illustrations and Additional Result Figures

Figure A.10: From Fig. f.5with P =0,C=0,B =4
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Figure A.11: Node level distribution of Fig.

126



127

Figure A.12: From Fig. f5withP =0,C=0,B=5
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Figure A.13: Node level distribution of Fig.
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Figure A.14: From Fig. f5withP=0,C=1,B=0
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Figure A.15: Node level distribution of Fig.
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Figure A.17: Node level distribution of Fig.
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Magnified Illustrations and Additional Result Figures
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Figure A.18: From Fig. f5|withP =0,C=1,B =2
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Figure A.19: Node level distribution of Fig.
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Figure A.20: From Fig. f5withP =0,C=1,B=3
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Figure A.21: Node level distribution of Fig.
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Magnified Illustrations and Additional Result Figures
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Figure A.36: From Fig. f5withP =0,C=2,B=5
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Figure A.40: From Fig. f.6lwithP =0,C =3,B =1
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Figure A.42: From Fig. f.6lwithP =0,C =3,B =2
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Figure A.44: From Fig. f.6lwithP =0,C=3,B =3

100000 - A :
10000 :
1000 4 :

100 1

10 <

0
Capacity 500 75

1000 O

Figure A.45: Node level distribution of Fig.

143

all nodes
1000 GB
750 GB
500 GB
250 GB
160 GB
100 GB
80 GB
40 GB
10 GB

Percent



144 Magnified Illustrations and Additional Result Figures

Figure A.46: From Fig. f.6lwithP =0,C=4,B =0
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Figure A.48: From Fig. f.6lwithP =0,C =4,B =1
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Figure A.50: From Fig. f.6lwithP =0,C =4,B =2
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Figure A.52: From Fig. f.6lwithP =0,C=4,B =3
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Figure A.56: From Fig. f.6lwith P =0,C =5,B =1
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Figure A.58: From Fig. f.6lwith P =0,C =5,B =2
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Figure A.62: From Fig. f.7]with P =0,C =6,B =0
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Figure A.66: From Fig. f.7]withP =0,C =6, B =2
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Figure A.70: From Fig. f.7]withP =0,C=7,B =0
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Figure A.72: From Fig. B.7withP =0,C=7,B =1
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Figure A.74: From Fig. d.7]with P =0,C=8,B =0
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Figure A.76: From Fig. f.7with P =0,C =8, B =1

+ all nodes

x 1000 GB

x 750 GB

) a 500 GB

. 250 GB

160 GB

. . 100 GB

- . - 80 GB

E + i - 40 GB

v @ v 10GB

75

Percent

Capacity 1000=0

Figure A.77: Node level distribution of Fig.

159



160 Magnified Illustrations and Additional Result Figures

Figure A.78: From Fig. f.8with P =0,C=9,B =0
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Figure A.80: From Fig. f.8withP =0,C=9,B =1
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Figure A.82: From Fig. f.8with P =0,C =10,B =0
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Figure A.84: From Fig. f.8with P =0,C=10,B =1
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Figure A.86: From Fig. f.8with P =0,C =11,B =0
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Figure A.88: From Fig. f.8with P=0,C=11,B =1
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Figure A.92: From Fig. B9 withP =0,C=0,B =1
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Figure A.94: From Fig. f9|with P =0,C=0,B =2
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Figure A.96: From Fig. B9 withP =0,C=0,B=3
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Figure A.98: From Fig. f.9|with P =0,C=0,B =4
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Figure A.100: From Fig. .9 with P =0,C =0,B =5
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Figure A.106: From Fig. .9 with P =0,C=5,B =0
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