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Kapitel 1

Einführung

Ratlosigkeit und Unzufriedenheit sind die ersten Vorbedingungen des
Fortschritts (Thomas Alva Edison)

1.1 Herausforderung Selbstoptimierung
Die Anforderungen an industrielle Erzeugnisse waren noch nie so hoch wie in der
heutigen Zeit. Dies gilt im besonderen Maße für Systeme des Maschinenbaus. Die
globalen Märkte fordern immer leistungsfähigere Produkte in immer kürzerer Folge;
gleichzeitig erlaubt der Marktdruck keine weitere Steigerung der Kosten bzw. der
Endpreise. Mit jeder Generation werden die Produkte immer komplexer – ein Bei-
spiel hierfür ist die Automobilindustrie. Jede Fahrzeuggeneration weist immer mehr
technische Funktionen auf. Während in den achtziger Jahren noch Funktionen wie
ABS, Airbag oder Klimaanlage der Oberklasse vorbehalten waren, sind dies mitt-
lerweile Ausstattungsmerkmale jeder Fahrzeugklasse bis hin zum Kleinwagen. Die
Wertschöpfung aus der Vital- und Komfortelektronik macht im PKW-Bereich inzwi-
schen bis zu 40 % der Gesamtwertschöpfung (Neuwagen) aus und wird nach einigen
Studien bis zum Jahre 2010 auf 60 % steigen [Ver04].

Auspuffanlage 2,00%
Kupplung/Getriebe 4,10%
Sonstiges 13,30%
Kraftstoffsystem 5,50%
Kühlung/Heizung/Klimaanlage 5,60%
Einspritzanlage 6,00%
Räder/Reifen 6,20%
Motor 7,70%
Zündanlage 14,60%
Allgemeine Fahrzeugelektrik 35,00%
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Abbildung 1.1: ADAC-Pannenstatistik 2005: Verteilung der Pannen (alle Baujahre)

Die Pannenstatistik des Allgemeinen Deutschen Automobilclubs (ADAC)1 über
das Jahr 2005 zeigt (Abbildung 1.1), dass mittlerweile mehr als ein Drittel aller

1http://www.adac.de
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Pannen bei Fahrzeugen der Baujahre 2000-2005 auf fehlerhafte Elektronik zurückzu-
führen sind – Tendenz steigend. Diese Entwicklung führt zu immer größeren Proble-
men für die Fahrzeughersteller. Die Fehlerrate in neuen Fahrzeugen, insbesondere
in der Karosserieelektronik, und die Kosten für die Produktpflege nehmen zu, was
sich unter anderem in zahlreichen Rückrufaktionen ausdrückt.

Offensichtlich ist es nicht mehr ohne weiteres möglich, für solche komplexen Sys-
teme alle Anforderungen und Randbedingungen schon im Entwurf exakt festzulegen.
Daraus folgt, dass die klassische 0-Fehler-Strategie bei der Entwicklung technischer
Systeme nicht länger tragbar ist; außerdem wird bei der üblichen Komponentenent-
wicklung das Zusammenspiel der Teilkomponenten nicht hinreichend berücksichtigt
[MG04]. Zwar war das Prinzip der Bildung (unabhängiger) Aggregate der Schlüssel
zur industriellen Massenfertigung [Lev02]. Auf heutige komplexe Systeme ist dieser
Ansatz jedoch nur bedingt anwendbar. Die Dynamik des Gesamtsystems und der
Einfluss der Teilkomponenten untereinander nehmen immer weiter zu. Deshalb müs-
sen moderne Systeme schon beim Entwurf in ihrer Funktion ganzheitlich betrachtet
werden.

Erste Antworten auf diese neuen Herausforderungen gibt bereits die Mechatronik.
Die dort angestrebte ganzheitliche Betrachtung von technischen Systemen führt zu
einer Aufweichung der Grenzen zwischen den verschiedenen Entwicklungsdomänen
wie Maschinenbau, Elektrotechnik und Informatik. Vom Entwickler wird erwartet,
das Zusammenspiel dieser Domänen systematisch zu nutzen.

Die Struktur technischer Systeme spielt eine große Rolle bei den heutigen Proble-
men, aber auch bei der Entwicklung von Lösungsansätzen. So kann die Struktur des
technischen Systems wichtige Hinweise auf die Strukturierung der Informationsver-
arbeitung geben. Betrachtet man technisches System und Informationsverarbeitung
ganzheitlich, ergibt sich aus der Wechselwirkung zwischen Entwurf und Strukturie-
rung die Reduktion der Gesamtkomplexität, die in konventionellen Systemen durch
Aggregation erreichbar war.

Vor diesem Hintergrund gilt es nun, Produkte zu entwickeln, die in der Lage sind,
ihre Funktionsqualität nicht nur aufrecht zu erhalten, sondern selbsttätig zu verbes-
sern und Probleme wie Fehler soweit wie möglich auch im laufenden Betrieb zu lösen
oder abzumildern. Systeme, die diese Eigenschaft aufweisen, sollen im Folgenden als
selbstoptimierende Systeme bezeichnet werden.

Selbstoptimierung kann helfen, komplexe mechatronische Systeme noch besser
auf zukünftige Herausforderungen des Marktes vorzubereiten. Diese Arbeit soll die
Entwicklung eines Paradigmas für Entwurfs- und Realisierungsansätze von selbstop-
timierenden mechatronischen Systemen anregen und unterstützen. Darüber hinaus
zeigt sie die Notwendigkeit einer ganzheitlichen Betrachtung der Selbstoptimierung
als eines Teilaspekts mechatronischer Systeme.

1.2 Umfeld dieser Arbeit

Diese Arbeit entstand im Rahmen verschiedener Forschungsarbeiten am Mechatro-
nik Laboratorium Paderborn unter der Leitung von Prof. Dr.-Ing. J. Lückel. Die
Schwerpunkte dieser Arbeiten lagen in folgenden Bereichen: systematischer Entwurf
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mechatronischer Systeme [GL00], Laufzeitplattform und Codegenerierung zur Simu-
lation mechatronischer Systeme [Uni06], [ZRL+01], [Uni98] und Entwurf agentenba-
sierter Reglersysteme im Rahmen des Sonderforschungsbereichs 614: Selbstoptimie-
rende Systeme des Maschinenbaus [GLR01]. Dem zuletzt genannten Projekt kommt
besondere Bedeutung zu, da diese Arbeit auf Forschungsergebnissen basiert, die in
diesem Projekt erarbeitet wurden. Ein weiteres Projekt, das eine Grundlage dieser
Arbeit bildet, ist die Neue Bahntechnik Paderborn [Neu06]. Es handelt sich dabei
um die Entwicklung eines neuartigen Bahnsystems, basierend auf autonomen, selbst-
fahrenden Schienentaxis, den sogenannten RailCabs . Das Projekt Neue Bahntechnik
Paderborn dient wiederum als Anwendungsszenario für den Sonderforschungsbereich
614.

Im Folgenden werden die Schwerpunkte der wichtigsten Projekte skizziert und
eingeordnet. Hierbei stehen der inhaltliche Rahmen und die Struktur im Vorder-
grund, da sie die Grundlage zur Strukturierung der vorliegenden Arbeit darstellen.

1.2.1 Sonderforschungsbereich 614

Wesentliche Teile der vorliegenden Arbeit entstanden im Rahmen des Sonderfor-
schungsbereichs 614: Selbstoptimierende Systeme des Maschinenbaus. Zielsetzung
dieses von der Deutschen Forschungsgemeinschaft geförderten Projektes ist die Ent-
wicklung von Methoden für den Entwurf und die Realisierung selbstoptimierender
mechatronischer Systeme. Schwerpunkte sind hierbei die Entwicklung und die An-
wendung von Methoden der modellbasierten, aber auch verhaltensbasierten Opti-
mierung, sowie die Untersuchung von Wirkprinzipien der Selbstoptimierung. Eines
der zentralen Teilprojekte innerhalb des SFB 614 im ersten Antragszeitraum ist
das Teilprojekt C3: Agentenbasierte Regler unter der Leitung von Prof. Dr.-Ing. J.
Lückel. In diesem Teilprojekt werden Methoden des Maschinenbaus und der Rege-
lungstechnik, wie die modellbasierte Optimierung zur System- und Reglerauslegung,
mit Methoden der Informatik, wie verhaltensbasierte Systeme, verknüpft [GLR01].

Das Projekt hat sich das ehrgeizige Ziel gesetzt, Grundlagen für Entwicklung
und Realisierung von selbstoptimierenden mechatronischen Systemen zu entwickeln,
die in der Lage sind, sich nicht nur an veränderliche Umgebungsbedingungen an-
zupassen, sondern darüber hinaus auch selbsttätig ihr Verhalten gemäß expliziten
Zielkriterien zu verbessern. So sollen solche Systeme auch mit unvorhergesehenen Si-
tuationen zurechtkommen, indem sie Parameter und innere Struktur durch ständige
Optimierung an die neue Situation anpassen. Dies schließt auch das Lösen von Pro-
blemen bei Störungen ein, um einen sicheren und stetigen Betrieb zu gewährleisten.
Das wird erst möglich durch eine komplexe, leistungsfähige Rechentechnik, welche
die mechatronischen Systeme kontrolliert, steuert und regelt. Der Entwurf solcher
Systeme unterscheidet sich wesentlich von dem konventioneller technischer Systeme,
da eine Vielzahl von Methoden angewendet werden müssen, um die Gesamtfunktion
zu realisieren.

Wie in der Mechatronik üblich, sind verschiedene Domänen an der Umsetzung
beteiligt. Es gilt darüber hinaus, neue Strukturen für die Verknüpfung dieser Metho-
den zu entwerfen – die Gesamtkomplexität wird dadurch beherrschbar.

Für die Realisierung dieser Vision werden verschiedene Aufgabenbereiche bear-
beitet. Dabei sollen Grundlagen der Selbstoptimierung untersucht werden, aus denen
sich Methoden ableiten lassen. Entwurfsverfahren und -werkzeuge werden benötigt,
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um solche neuartigen Systeme zu entwickeln. Die Realisierung solcher Systeme er-
fordert neue Ansätze in Regelungstechnik und Informationsverarbeitung, aber auch
für die Hardware. Ziel ist die Realisierung solcher selbstoptimierender Systeme, um
Methoden und Werkzeuge zu validieren und die theoretischen Arbeiten auf ein rea-
listisches Fundament zu stellen.

Zentraler Demonstrator ist die Neue Bahntechnik Paderborn [Neu06], die für die
notwendigen Tests und Realisierungen Prüfstände und Modelle zur Verfügung stellt.
Die Anwendung Bahntechnik ist deshalb so interessant, da sie Selbstoptimierung
vom kleinsten geregelten Ventil über verschiedenste Aggregate, autonome Systeme
bis hin zur Logistik möglich macht. Ein so umfassendes Szenario ist notwendig,
um dem geforderten Anspruch zu genügen. Das Projekt wird in Abschnitt 1.2.2
beschrieben.

Gemäß diesen Anforderungen wurde folgende Projekt- und Aufgabenstruktur
abgeleitet, die sich in verschiedene Projektbereiche gliedert [GLR01]:

Projektbereich A: Grundlagen und Potentiale der Selbstoptimierung

Wissenschaftliche Durchdringung und ingenieurgerechte Aufarbeitung des
Wirkparadigmas der Selbstoptimierung.

Projektbereich B: Entwurfsmethoden und -werkzeuge

Schaffung der methodischen und instrumentellen Voraussetzungen für die Ent-
wicklung von innovativen Systemen, die auf dem Wirkparadigma der Selbst-
optimierung beruhen.

Projektbereich C: Implementierungsmethoden

Realisierung der Selbstoptimierung auf Hardware-, System-, Software- und
Reglersoftwareebene.

Projektbereich D: Selbstoptimierende Produkte und Systeme

Entwurf und prototypische Realisierung neuer Baugruppen, Erzeugnisse und
Systeme, um das erarbeitete Instrumentarium zu validieren und der Sache der
Produktinnovation sichtbare Impulse zu geben.

Diese Struktur bildet die Grundlage für die Projektstruktur, die sich in verschie-
dene Teilprojekte gliedert, wie in Abbildung 1.2 dargestellt. Die Aufgaben der Teil-
projekte sind wie folgt definiert:

Im Teilprojekt A1 (Modellbasierte Selbstoptimierung) werden Prinzipien der
Selbstoptimierung, basierend auf Modellen eines gegebenen mechatronischen
Systems, unterstützt.

Das Teilprojekt A2 befasst sich mit der Bereitstellung von Selbstoptimierungs-
wissen für Situationen, die sich nicht — bzw. nicht mit vertretbarem Aufwand
— durch ein physikalisches Modell abbilden lassen.

Teilprojekt B1 entwickelt ingenieurgerechte Ausdrucksmittel für den Entwurf
verteilter intelligenter Systeme. Die vernetzten Module, aus denen die Soft-
ware selbstoptimierender Systeme aufgebaut ist, werden dabei als Multiagen-
tensystem aufgefasst. Ein wichtiger Aspekt ist auch die Entwicklung von
Spezifikations- und Modellierungstechniken, die eine Verifikation der Software
erlauben.
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Abbildung 1.2: Projektstruktur des SFB 614

Im Teilprojekt B2 sollen die Ergebnisse der anderen Teilprojekte zu einem Ent-
wurfsinstrumentarium zusammengefasst werden.

Teilprojekt B3 entwickelt und erprobt neue Interaktions-, Darstellungs- und Ana-
lysetechniken zur Konstruktion und Verifikation von s.o. mechatronischen Sys-
temen. Zur Verwendung kommen hier Methoden der virtuellen Realität.

Im Teilprojekt C1 wird die Möglichkeit der Hardware-Rekonfiguration als beson-
ders vielversprechende Realisierungstechnik für selbstoptimierende mechatro-
nische Systeme betrachtet.

Teilprojekt C2 hat ein verteiltes Realzeitbetriebssystem (RTOS) in Verbindung
mit einem Realzeitkommunikationssystem (RCOS) zum Ziel. Der verfolgte An-
satz betrachtet ein RTOS/RCOS selbst als Multiagentensystem, das dem Prin-
zip der Selbstoptimierung unterliegt.

Im Teilprojekt C3 wird ein völlig neuer Weg eingeschlagen, indem symbiotisch
die über den Bereich der Agententheorie einfließenden, sog. verhaltensbasier-
ten Ansätze mit der aus der Regelungstechnik kommenden Modellbasierung
verzahnt werden.

Im Teilprojekt D1 werden die in den Bereichen A, B und C entwickelten selbst-
optimierenden Verfahren und Methoden am aktiven Fahrwerk des Shuttles der
Neuen Bahntechnik Paderborn untersucht und verifiziert.
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Im Teilprojekt D2 werden auf der Basis der in D1 untersuchten MFM-Module
des Fahrwerks selbstoptimierende Systeme höherer Ordnung untersucht. Ne-
ben der im Teilprojekt D1 vorrangig behandelten modellgestützten Optimie-
rung wird hier auch die verhaltensorientierte Optimierung, basierend auf der
Agententechnik, angewandt.

1.2.2 Neue Bahntechnik Paderborn

Das Mechatronik Laboratorium Paderborn unter der Leitung von Prof. Dr.-Ing. J.
Lückel beschäftigte sich seit seiner Gründung gegen Ende der 70er Jahre mit dem
dynamischen Verhalten von Fahrzeugen. Ein besonderer Schwerpunkt bildete hier-
bei die Kontrolle des Bewegungsverhaltens des Aufbaus. Aus dieser Kernkompetenz
heraus erkannte Prof. Lückel nach einem Besuch der Teststrecke des Transrapid im
Emsland, dass heutige Bahnsysteme grundsätzliche konzeptionelle Mängel aufwei-
sen: Im Hintergrund auch neuer Entwicklungen, wie des Transrapid, steht nach wie
vor das Prinzip des Zuges – also eines Massenverkehrsmittels, das, durch eine Zug-
maschine angetrieben, eine große Anzahl Waggons von einem Punkt zum anderen
befördert.

Betrachtet man die Geschichte der Eisenbahn, so stellt man fest, dass die Ent-
wicklung Strecke und Fahrzeug nach diesem Prinzip weitergeführt worden ist. Ja,
man kann sogar soweit gehen, zu behaupten, dass mit der Erfindung des D-Zugs
und der Einführung fester Fahrpläne die konzeptionelle Entwicklung der Eisenbahn
abgeschlossen war. Seitdem hat es nur noch Verbesserungen der bestehenden Technik
gegeben. Sogar der Transrapid macht da keinen entscheidenden Schritt nach vorn,
auch wenn bei der Entwicklung von der klassischen Rad-Schiene-Technik abgewichen
und ein neues Antriebskonzept entwickelt wurde.

Mit dem Automobil bekam die Bahn vor mehr als hundert Jahren ernsthafte
Konkurrenz. Durch die industrielle Massenproduktion von Autos durch Henry Ford
zu Beginn des 19. Jahrhunderts begann das Zeitalter des Individualverkehrs. Der
Vorteil, zu einem beliebigen Zeitpunkt direkt ohne Umsteigen von A nach B zu
fahren, hat das Auto zu dem Verkehrsmittel des 20. Jahrhunderts gemacht. Trotz
dieser Entwicklung setzt die Bahn2 nach wie vor auf feste Fahrpläne. Zudem zeigt
die Reduzierung der Haltepunkte in den letzten Jahren zunehmend den Rückzug der
Bahn aus der Fläche an. ICE und besonders Transrapid, als letzte Entwicklungen
der Bahn, verstehen sich eher als Konkurrenz zum Nahverkehrsflugzeug denn als
Alternative zum Automobil. Das wird besonders deutlich bei der Betrachtung der
Investitionen der letzten Jahre bei der Deutschen Bahn AG. Die Neubaustrecke
Köln-Frankfurt ist nur für den Transport von Personen geeignet, nicht für den von
Gütern [Clö02], [DK07].

Jedoch gerade in der heutigen Zeit wird eine Entlastung der Straße auch im
regionalen Verkehr dringend gebraucht. Der Individualverkehr stößt immer mehr
an seine Grenzen. Das tägliche Verkehrschaos, gerade in Ballungszentren wie dem
Ruhrgebiet, zeigt, dass neue Wege gegangen werden müssen, und zwar im regionalen
Verkehr und auf Mittelstrecken. Das Beispiel des Transrapid zeigt außerdem, dass
völlig neue Trassen politisch nur schwer durchzusetzen sind. Somit bietet es sich an,
das vorhandene Schienensystem zu nutzen.

2An dieser Stelle wird nicht zwischen einzelnen Betreibergesellschaften differenziert.
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Bei einem genaueren Vergleich zwischen Auto und Bahn fällt auf, dass es auch
grundsätzliche Unterschiede in Fertigung und Lebensdauer gibt. Während Züge im-
mer noch weitgehend in Einzelfertigung hergestellt werden, sind Automobile der Mas-
senartikel schlechthin. Aufgrund der Herstellungskosten müssen Züge immer noch 30
und mehr Jahre halten. Die verbaute Elektronik muss aber schon viel früher ersetzt
werden. Autos haben im Ansatz das gleiche Problem, jedoch ist die Lebensdauer
deutlich kürzer und somit das Problem der Veralterung kleiner.

Fasst man all diese Erkenntnisse zusammen, lassen sich folgende Forderungen
ableiten:

• Nutzung des vorhandenen Schienennetzes

• Bedarfsgerechtes Bereitstellen von Transportkapazitäten

• Kleinere, in Massen gefertigte Fahrzeuge

• Transport von Gütern und Personen direkt zwischen zwei Endpunkten (ziel-
rein)

• Weitgehende Automatisierung

• Geringer Wartungsaufwand

• Emissionsfreier Antrieb

Eine Antwort auf diese Forderungen liefert das Konzept der Neuen Bahntechnik
Paderborn. Hier werden kleine autonome Fahrzeuge, sogenannte Shuttles (im Fol-
genden auch als RailCabs bezeichnet), zum Transport von Personen und Gütern
eingesetzt. Die Fahrzeuge nutzen dabei das bisherige Schienennetz, setzen beim An-
trieb aber nicht auf Rad-Schiene-Technik, sondern auf den neuartigen Linearantrieb,
wie er auch im Transrapid im Einsatz ist. In Kombination mit moderner aktiver
Feder-Neigetechnik ergibt sich ein Verkehrsmittel, das in Komfort, Kosten, Schnel-
ligkeit und Verfügbarkeit weder die Konkurrenz mit dem Auto, noch die mit der
Bahn scheuen muss.

Das Konzept sieht selbstfahrende Fahrzeuge vor, die ihre Wege selbst finden
können – ähnlich wie bei der Paketvermittlung im Internet. Deshalb wurde auch
der Begriff „Internet auf Rädern“ für die Neue Bahntechnik geprägt. Neben dem
Logistikkonzept, das auf der Planungsebene der wesentliche neue Aspekt ist, sind
auf der Ebene der Technik zwei Dinge hervorzuheben:

1. Der Linearmotor als Antrieb wie auch als Energieversorger

2. Ein integriertes Konzept zur Kontrolle der Aufbaubewegung und -dynamik

Der Linearmotor ermöglicht durch eine direkte Kopplung zwischen Antrieb und
Vortrieb eine sehr kompakte und wartungsfreundliche Bauweise der RailCabs. Die
vollständige Kontrolle der Aufbaudynamik erlaubt einen unerreichten Komfortge-
winn und eine deutliche Erhöhung der Sicherheit.

Die Neue Bahntechnik Paderborn liefert ein weites Feld für neue Entwicklun-
gen. Selbstoptimierende Systeme können hier auf verschiedenen Ebenen des Systems
zum Einsatz kommen. Angefangen von adaptiven Regelungen auf unterster Ebene,
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über Funktionen wie Energiemanagement und Komfortoptimierung, bis hin zu Lo-
gistik und Ressourcenverwaltung. Durch das Zusammenspiel verschiedener aktiver
Komponenten, zu denen neben den Shuttles auch die Schienenstrecke und die Ener-
gieversorgung zählen, sind Optimierungen des Gesamtsystems möglich. Es kommt
darauf an, die Chancen zu sehen und zu nutzen. Systeme wie das RailCab werden
in Zukunft immer häufiger Fragestellungen aufwerfen, die nur durch selbstoptimie-
rende mechatronische Systeme zu lösen sind. Die Entwicklung von Grundlagen muss
deshalb vorangetrieben werden.

1.3 Zielsetzung
Ziel dieser Arbeit ist die Darstellung von Grundlagen für die Entwicklung von selbst-
optimierenden mechatronischen Systemen. Dabei sollen folgende Teilbereiche ange-
sprochen werden:

• Ansätze für eine strukturierte Entwicklung

• Methoden der Selbstoptimierung

• Selbstoptimierung durch Rekonfiguration

• Numerische Aspekte der Simulation und der Realisierung

• Grundlagen zum Entwurf der Informationsverarbeitung

• Ausblick auf künftige selbstoptimierende Systeme

Ein übergeordnetes Ziel ist die Darstellung von Ansätzen zur strukturierten Ent-
wicklung selbstoptimierender mechatronischer Systeme unter Berücksichtigung ver-
schiedener Methoden. Dabei sollen Möglichkeiten für Entwurf und Realisierung auf-
gezeigt werden.

Aus der Struktur mechatronischer Systeme leitet sich die Rekonfiguration als ein
weiteres wichtiges Thema dieser Arbeit ab. Im Mittelpunkt stehen dabei Ansätze
zur Modellierung der Rekonfiguration in regelnder Informationsverarbeitung. Der da-
mit verbundene Ansatz zur Modellierung ist auf weitere Domänen der Mechatronik
übertragbar.

Wegen der strukturellen Veränderung der regelnden Informationsverarbeitung ist
eine Untersuchung modularer Systeme unvermeidbar. Die Arbeit soll zeigen, welche
Probleme bei der numerischen Verarbeitung modularer Systeme auftreten können,
die wiederum Voraussetzung für eine Rekonfiguration sind. Eng damit verbunden ist
der Entwurf einer Informationsverarbeitung, die in der Lage ist, solche Veränderun-
gen zu modellieren und umzusetzen. Diese Arbeit bildet dabei auch Anknüpfungs-
punkte an weitere Arbeiten, die sich mit dem Thema selbstoptimierende Systeme
befassen. Abschließend sollen mit Hilfe von einfachen Beispielen erste Ideen für die
Anwendung von Selbstoptimierung gegeben werden.
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1.4 Gliederung der Arbeit
Abbildung 1.3 zeigt schematisch die Struktur:

Abbildung 1.3: Schematische Darstellung der Gliederung der vorliegenden Arbeit

In der Einführung (1) wird das Thema der Arbeit motiviert und ein inhaltlicher
Überblick gegeben. Im Kapitel Grundlagen für die Entwicklung selbstoptimierender
Systeme (2) werden theoretische Grundlagen angesprochen, die wesentlich für das
Verständnis von Selbstoptimierung in mechatronischen Systemen sind. Grundlagen
für den Entwurf werden im Kapitel Konzept für Entwurf und Struktur selbstoptimie-
render Systeme (3) dargestellt. Dabei geht es vor allem um Ansätze zur Modellierung
solcher Systeme. Neben der Parametrierung, also den freien Systemparametern eines
Systems, kann eine Optimierung auch auf struktureller Ebene erfolgen. Dies führt
zwangsläufig zu modularen Teilsystemen. Die besonderen Aspekte der numerischen
Berechnung solcher modularen Systeme werden im Kapitel Numerische Simulation
und Ausführung von modularen Systemen (4) betrachtet. Für die Simulation und
den Betrieb von selbstoptimierenden mechatronischen Systemen ist neben der ma-
thematischen Darstellung und der numerischen Behandlung auch eine besondere
Informationsverarbeitung notwendig. Die Grundlagen werden im Kapitel Informati-
onsverarbeitung – Entwurf und Implementierung (5) behandelt. Im Kapitel Anwen-
dungsbeispiele für Selbstoptimierung (6) werden Beispiele für die Realisierung von
Selbstoptimierung an verschiedenen einfachen Anwendungen gezeigt. Eine Zusam-
menfassung sowie ein Ausblick werden im Kapitel Zusammenfassende Diskussion
und Ausblick (7) gegeben.
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Kapitel 2

Grundlagen für die Entwicklung
selbstoptimierender Systeme

Die Grenzen des Möglichen lassen sich nur dadurch bestimmen, dass
man sich ein wenig über sie hinaus ins Unmögliche wagt (Sir Arthur C.
Clarke)

2.1 Bestimmung des Begriffs Selbstoptimierung
Der Begriff Selbstoptimierung taucht im Zusammenhang mit vielen technischen Sys-
temen und Problemlösungen auf. Jedoch wird der Begriff selbst unterschiedlich auf-
gefasst und ausgelegt. Dieser Abschnitt stellt zunächst den Begriff Selbstoptimierung
vor und versucht eine Begriffsbestimmung in Anlehnung an die Ergebnisse des SFB
614 und speziell an ein veröffentlichtes Teilergebnis aus [FGK+04].

2.1.1 Adaptive Regler und Selbstoptimierung

Der Begriff Selbstoptimierung ist im Zusammenhang mit geregelten technischen Sys-
temen nicht neu. Er findet sich vor allem bei adaptiven Reglern. Nach [Web71] ist
ein adaptives Regelsystem wie folgt definiert:

„Unter einem adaptiven Regelungssystem möge im Folgenden ein solches
verstanden sein, bei dem sich bestimmte Eigenschaften des Systems (zu-
meist Struktur oder Parameter der Strecke) oder seiner Eingangssignale
in nicht vorhersagbarer Weise ändern und sich andere, gezielt beeinfluss-
bare Systemeigenschaften (zumeist Eigenschaften des Reglers, also z. B.
dessen Struktur und Parameter) selbsttätig darauf einstellen, so dass ein
gewünschter Systemzustand erhalten bleibt.“ [Web71]

Diese Definition kann auch als Basis für die Definition selbstoptimierender Regler-
systeme verwendet werden, wobei hier der Unterschied im letzten Satz der Definition
liegt: Bei adaptiven Systemen ist das Ziel, den gewünschten Systemzustand zu er-
halten. Selbstoptimierende Reglersysteme gehen darüber hinaus. Ziel ist es hier, den
Systemzustand nach bestimmten Kriterien zu verbessern und gegebenenfalls neu
auszulegen.

Die in [Web71] verwendete allgemeine Struktur eines adaptiven Regelungssys-
tems ist trotz dieses genannten Unterschieds auch auf selbstoptimierende Reglersys-
teme übertragbar.
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Entscheidungs-
prozess

IdentifikationModifikation

Regler Strecke

Abbildung 2.1: Grundfunktion eines adaptiven Regelungssystems

In Abbildung 2.1 [Web71] ist der grundsätzliche Aufbau eines adaptiven Rege-
lungssystems dargestellt. Er besteht aus dem eigentlichen klassischen Regelkreis mit
Strecke und Regler und den zusätzlichen Komponenten für die Anpassung, die aus
Identifikation, Entscheidungsprozess und Modifikation bestehen.

In [ILM92] findet sich bereits eine Definition eines sogenannten selbstoptimieren-
den Reglers. Dieser Reglertyp gehört zu den adaptiven Reglern und wird als Model
Identification Adaptive Controller (MIAC) bezeichnet, der auch self-optimizing con-
troller genannt wird (siehe Abbildung 2.2). Er hat folgende Struktur:

Über eine Prozessidentifikation wird mit Hilfe eines Prozess-Modells eine Parame-
terbestimmung durchgeführt, die zu neuen Reglerparametern führt. Dieses Modell
kommt den Forderungen an ein selbstoptimierendes System schon sehr nah.

Parameter-
bestimmung

Prozess-Modell

Prozess
-

w(k) u(k) y(k)

Prozess-
identifikation

Controller

Controller-
parameter

Legende

Mess- und Stellgrößen

Adaptionsgrößen

w(k): Systemeingangsgrößen (Sollgrößen)

u(k): Reglerausgangsgrößen (Stellgrößen)

y(k): Systemausgangsgrößen (Messgrößen)

- ößen öß

) öß öß

) öß öß

Abbildung 2.2: Modell Identification Adaptive Controller (MIAC) oder self-
optimizing controller

In der Struktur unterscheidet sich der adaptive Regler nicht von einem s. o.
Reglersystem. Der Unterschied verbirgt sich in den Komponenten. Beim adaptiven
Regler sind sie definiert als:

1. Die Identifikation (identification) oder Erkennung, durch die der zeitvariable
Zustand des Systems fortlaufend erfasst wird.
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2. Der Entscheidungsprozess (decision), in dem die durch die Identifikation gewon-
nene Information über den realen Zustand des Systems mit einem erwünschten
idealen Zustand verglichen und entschieden wird, welche Maßnahmen ange-
bracht sind, um sich auf den idealen Zustand hinzubewegen.

3. Die Modifikation (modification, actuation) des Reglers, der sich aufgrund des
Entscheidungsprozesses in vorgeschriebener Weise ändern muss [Web71].

Im Gegensatz hierzu erweitert sich der Entscheidungsprozess (2) bei s. o. Syste-
men um die Auswahl des erwünschten idealen Zustands, so dass je nach Gesamtzu-
stand von System und Umwelt auch ein anderes Reglerverhalten als ideal angesehen,
bzw. definiert wird. Hierdurch unterscheiden sich s. o. Systeme entscheidend von
adaptiven Regelungssystemen.

Die Bewertung der erreichten Reglerqualität erfolgt bei adaptiven Reglern häu-
fig durch die Betrachtung von so genannten Güteindizes (vgl. [Web71]). Diese korre-
spondieren mit einem vorbestimmten, fiktiven idealen Reglerzustand. Die Bewertung
dieser Größe(n) führt über Entscheidungsprozess und Modifikation zu einem ange-
passten Regler. Der Erfolg dieses Vorgangs kann durch erneutes Bewerten des oder
der Güteindizes bestimmt werden. Im Allgemeinen ist die Bestimmung und Bewer-
tung dieser Gütemaße fest mit dem Adaptionsalgorithmus verbunden, so dass keine
automatisierte Anpassung der Bewertung erfolgt. Dies ergibt aus Sicht der Adaption
auch keinen Sinn, da das oberste Ziel der Adaption, nämlich die Einhaltung eines
bestimmten idealen Reglerzustands, fest vorgegeben ist.

Verschiedene Verfahren zur Adaption basieren auf der Vorgabe eines idealen Re-
gelungsverhaltens durch ein Modell. Dabei wird das Verhalten des realen geregelten
Systems an das Verhalten des Modells durch Variation der Reglerparameter ange-
passt. Andere Verfahren verwenden Modelle der Strecke zur Identifikation. Hierbei
werden die Parameter eines Modells so angepasst, dass das Modellverhalten mit dem
der realen geregelten Strecke übereinstimmt. Dieses identifizierte Modell dient als
Grundlage für den Entscheidungsprozess und die Modifikation.

Verfahren, die ein Modell der Strecke oder der geregelten Strecke zur Adaption
benutzen, werden in diesem Zusammenhang oft zusammenfassend als modellbasierte
Verfahren bezeichnet. Häufig wird dabei von sogenannten self-tuning-Reglern gespro-
chen. In [Lau99] wird eine allgemeine Struktur für adaptive bzw. self-tuning-Regler
vorgestellt, jedoch auch darauf hingewiesen, dass in der Praxis die Verfahren schwer
handhabbar sind und die Verschmelzung der Regel- und der Steuerkreismodelle die
Strukturen noch komplexer machen.

Die Abbildung 2.3 zeigt die Struktur eines modellbasierten, parameteradaptiven
Reglersystems nach [Lau99]. Hierbei werden grundsätzlich eine Regelungs- und eine
Kontroll-/ Überwachungsebene unterschieden. Im Einzelnen existieren Elemente zur
Regelung, zur Änderung der Regelung bzw. der Reglerparameter (Regler-Gesetz),
zur Umschaltung zwischen verschiedenen Reglern, zur Identifikation der Strecke und
zur Überwachung, Koordination und Fehlerkorrektur. Das technische System selbst
ist auch Teil der Reglerstruktur, jedoch liegt es real und nicht als mathematische
Beschreibung vor.

Die beschriebenen Reglermodelle zeigen verschiedene Lösungsansätze für das Pro-
blem der Umgebungsanpassung von Regelungen. Allen gemeinsam ist das Einwirken
auf einen klassischen Regelungskreislauf mit Hilfe von nebenläufigen Kontrollpro-
zessen. Sie können als Grundlage für selbstoptimierende mechatronische Systeme
angesehen werden. Jedoch beschränken sich die Ansätze und Konzepte auf lokale
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Überwachung, Koordinantion und Fehlerkorrektur

Prozess-Par.
(gefiltert)

A
n
re

g
u
n
g
 (

u
)

E
in

g
ri
ff Prozess-Par.

(ungefiltert)

E
in

g
ri
ff

E
in

g
ri
ff

P
ro

z
e
s
s
-

A
n
re

g
u
n
g
 (

w
)

w(k)
Regler-Par.

Stellgröße

Regelgröße Störgröße

z(k)

u(k)

Identi-
fikation

Strecke /
Prozess

y(k)
Regler

U
m

-
s
c
h

a
lt

e
r

Regler-
Gesetz

Führungs-
größe

-

Abbildung 2.3: Struktur eines Regelkreises mit prozessabhängiger automatischer
Wahl der Reglerparameter

Lösungen. Ein Hinweis darauf, wie selbstoptimierende Reglersysteme zusammenwir-
ken können, wird nicht gegeben. Darüber hinaus muss berücksichtigt werden, dass
Selbstoptimierung im Allgemeinen nicht auf die Optimierung von Regelungsvorgän-
gen beschränkt ist, auch wenn das ein zentraler Punkt ist. Somit genügt es nicht,
allein adaptive Reglersysteme zu selbstoptimierenden Reglersystemen zu erweitern.

2.1.2 Definition der Selbstoptimierung

In [Ras05] wird Selbstoptimierung als ein Prozess aufgefasst, der durch die Realisie-
rung verschiedener Prinzipien definiert wird. Dies sind:

• Die Suche nach optimalen Lösungen, sowohl im Entwurf als auch im Betrieb,
durch Online-Modellbildung, Vorabsimulation (einer Situation) und Voraber-
mittlung neuer Entwurfsparameter (Pareto-Punkte).

• Selektion oder Auswahl einer Lösung oder eines Entwurfspunktes.

• Erweiterung des Wissens durch vorausschauende Simulation (intelligente Vor-
ausschau).

Im Mittelpunkt dieser Betrachtungen steht die Simulation. Für modellbasierte
Optimierungssysteme ist diese Definition treffend, sie grenzt jedoch viele Methoden
der Informatik aus. Deshalb wird eine weiter greifende Definition benötigt. Nach
[FGK+04] wird Selbstoptimierung wie folgt definiert:

„In einem System findet genau dann Selbstoptimierung (self-
optimization) statt, wenn durch das Zusammenwirken der enthaltenen
Elemente die folgenden drei Aktionen wiederkehrend ausgeführt werden:“

1. Analyse der Ist-Situation

2. Bestimmung der Systemziele

3. Anpassung des Systemverhaltens
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Die Ist-Situation umfasst den Zustand des Systems selbst, sowie alle möglichen
Beobachtungen3 über seine Umgebung. Beobachtungen können direkt oder indirekt
erfolgen. Direkte Beobachtungen erfolgen durch Erfassen von Parametern der Umge-
bung (in der Regel durch Messung mit Hilfe eines Sensors). Indirekte Beobachtungen
erfolgen durch Kommunikation mit anderen Systemen. Dabei spielt es zunächst kei-
ne Rolle, auf welche Art und Weise das andere System die Parameter ermittelt hat.
Weiterhin enthält der Zustand des Systems auch Informationen über zurückliegende
Ereignisse, die als Erfahrungen des Systems aufgefasst werden können.

Systemziele bezeichnen Zustände, auf die das System hinarbeitet. Im einfachsten
Fall könnte dies eine zu erreichende Führungsgröße sein. Die Ermittlung eines sol-
chen Ziels kann durch eine Auswahl aus einer Liste von Zielen erfolgen oder durch
kontinuierliche Anpassung einer Größe. Werden Ziele unabhängig von bisherigen
Zielen neu erzeugt, wird von Generierung von Zielen gesprochen.

Das Systemverhalten kann auf verschiedene Art und Weise angepasst werden.
Es kann durch die drei Aspekte Parameter, Struktur und Verhalten beschrieben
werden. Parameter sind einstellbare freie Parameter des Systems. Mit Struktur wird
der innere Aufbau eines Systems bezeichnet. Das gerichtete Ein- Ausgangsverhalten
eines Systems wird als Verhalten bezeichnet.

Umwelt

Zielsystem

Verhalten

Technisches System (z. B. Fahrwerk)

z. B. Veränderungen
des Fahrweges

Z1.1 Z1.2 Z2.1 Z2.2 Z2.3

Z1 Z2

Z

Benutzer System
z. B. geänderte
Benutzungsmuster

z. B. aufgrund
von Verschleiß

Einflüsse auf das technische System

Mathematisch-
symbolische
Beschreibung
des Verhaltens

Struktur Parameter

m:= 10
c := 15

fachbezogene Repräsen
ation der Struktur

-
t

anweisungsbezogene
Verarbeitung durch daten
technische Beschreibung

-

Abbildung 2.4: Die Aspekte Einflüsse, Ziele, Verhalten, Struktur und Parameter ei-
nes selbstoptimierenden Systems

Diese Begriffe dürfen nicht unabhängig voneinander betrachtet werden. Eine Pa-
rameteränderung führt auch zu einer Veränderung von Verhalten, und eine Verän-
derung der Struktur führt unter Umständen zu neuen Parametern. Aus Sicht eines
überlagerten Systems ist aber ggf. nur die Vorgabe eines bestimmten Verhaltens (im

3In der Regelungstechnik werden häufig Größen durch sogenannte Beobachtermodelle rekonstru-
iert. Im Kern sind dies Aufbereitungen von gemessenen Werten, mit deren Hilfe auf weitere Werte
durch spezielle Berechnungen geschlossen werden kann. An dieser Stelle sind Beobachtungen im
Sinne von Werteerfassung gemeint.
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Sinne eines vorgegebenen Teilziels) von Bedeutung, während Parameter und Struk-
tur verborgen sind. In anderen Fällen, wie kaskadierten Regelungssystemen, ist die
Vorgabe oder Optimierung von Parametern und Struktur für die Gesamtregelung
zu berücksichtigen. Das Zusammenwirken verschiedener Einflussgrößen auf und in
einem selbstoptimierenden System sind in Abbildung 2.4 [FGK+04] dargestellt.

Insgesamt kann festgestellt werden, dass Selbstoptimierung einem Prozess ent-
spricht, der in einem technischen System oder Prozess so wirkt, dass er eine Ver-
besserung des Verhaltens des Systems bewirkt. Die Richtung der Verbesserung, also
welches Verhalten als optimal angesehen wird, kann dabei wechseln. Im weitesten
Sinn wird dieses optimale Verhalten definiert, z. B. durch den Entwickler vorgegeben.
In hierarchisch verkoppelten Systemen können sich jedoch Teilziele für die unterla-
gerten Systeme ergeben, die durch das Wechselspiel der Komponenten entstehen. So
kann es sinnvoll sein, eine Komponente in ihrem Verhalten zugunsten einer anderen
Komponente zu verschlechtern (z. B. Abschaltung der Regelung der Klimaanlage
zugunsten der Motorregelung in einem PKW).

2.2 Optimierungs- und Lernverfahren
Eine klassische Definition der Optimierung findet sich beispielsweise in der
Brockhaus-Enzyklopädie:

„Aufsuchen des kleinsten (Minimierung) oder größten (Maximierung)
Wertes einer Funktion (Zielfunktion, Objektfunktion) in einem bestimm-
ten, durch Nebenbedingungen, oft in Form von Gleichungen oder Unglei-
chungen beschriebenen (zulässigem) Bereich.“ [Bro71]

Diese Definition bezieht sich auf mathematische Verfahren zum Auffinden eines
Optimums in Funktionen. Bezieht man jedoch die Informatik mit ein, so muss der
Begriff Optimierung allgemeiner gefasst werden.

Umgangssprachlich versteht man meist unter Optimierung die

„Verbesserung eines Vorgangs oder Zustands bezüglich eines Gesichts-
punktes wie zum Beispiel der Qualität, Kosten, Geschwindigkeit, Effi-
zienz und Effektivität, manchmal auch zu Lasten eines anderen Aspek-
tes“ [Wik06]

Wird diese Auffassung auf die Domänen der Mechatronik übertragen, so ist die
Optimierung eines mechatronischen Systems, die Suche nach einem optimalen Zu-
stand oder Verhalten. Dabei ist eine Unterteilung in (1) Optimierung der kinemati-
schen Funktion, (2) Optimierung der dynamischen Funktion und (3) Optimierung
der mechatronischen Funktion möglich. Für die Selbstoptimierung steht vor allem
die Optimierung der dynamischen und der mechatronischen Funktion im Vorder-
grund, da diese durch Informationsverarbeitung und Regelungstechnik im Betrieb
beeinflusst werden können.

Ein wesentliches Unterscheidungsmerkmal von Verfahren zur Optimierung ist
der Einsatz von Modellen zur Optimierung. Grundsätzlich wird zwischen modellba-
sierten und verhaltensbasierten Verfahren unterschieden.

Modellbasierte Verfahren benutzen ein Modell des zu optimierenden Systems
zur Bewertung eines Suchschrittes. Dies hat den Vorteil, dass die Optimierung
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unabhängig vom realen System erfolgen kann. Auch können potentiell unsiche-
re Optimierungsergebnisse „ausprobiert“ werden, ohne den technischen Prozess
zu gefährden. Nachteil ist jedoch, dass ein Modell benötigt wird, das die reale
Strecke oder die Umwelt allgemein, hinreichend genau abbilden muss. Des Wei-
teren ist bei einer veränderlichen Strecke oder Umwelt das Modell permanent
mit der Realität abzugleichen, was im Normalbetrieb nicht trivial ist, da nicht
mit speziellen Testfunktionen gearbeitet werden kann [DOM01]. Dies gilt be-
sonders dann, wenn stark nichtlineare Systeme betrachtet werden. Außerdem
muss bei der modellbasierten Optimierung die Art des Modells unterschieden
werden. Es wird zwischen physikalisch deutbaren Modellen und universellen
Approximatoren unterschieden [Kno01], [GLR01].

• Physikalisch deutbare Modelle beschreiben mit Hilfe von Differentialglei-
chungssystemen, die aus der Physik abgeleitet werden können, ein dy-
namisches Verhalten. Auch wird häufig von parametrierbaren Modellen
gesprochen, was die Eigenschaft dieser Modelle unterstreicht, dass sie
physikalisch deutbare Parameter wie Masse, Federkonstante, elektrischer
Widerstand, Fluss usw. aufweisen. Diese Modelle entstammen der theore-
tischen Modellbildung, die Systemkenntnis voraussetzt [HGP98]. In vielen
Fällen werden diese Modelle noch durch experimentelle Modellbildung
ergänzt oder bestätigt (Parameter, Plausibilität).

• Zu den universellen Approximatoren, die durch Trainingsfunktionen an
das reale System angepasst werden, zählen Verfahren wie neuronale Netze,
Fuzzy-Systeme oder Kolmogorov-Grabor-Polynome4 (siehe z. B. [Fer02]).
Diese Verfahren gehören auch zur experimentellen Modellbildung, setzen
aber keine physikalische Deutbarkeit voraus. Auch sind die mathema-
tischen Darstellungsformen für klassische Verfahren der Reglersynthese
nicht ohne weiteres anwendbar.

Bei der Modellierung nichtlinearer Systeme ist eine Kombination von physika-
lisch deutbaren Modellen und universellen Approximatoren üblich [Kno01].

Verhaltensbasierte Verfahren optimieren direkt am technischen Prozess – ein
Modell ist deshalb nicht nötig. Das Verhalten des technischen Prozesses wird
nach einer Veränderung (Optimierungsschritt) direkt bewertet. Viele verhal-
tensbasierte Ansätze verwenden, ähnlich modellbasierten Ansätzen zur Opti-
mierung, auch Suchverfahren. Ein häufig verwendetes Verfahren ist das Verfah-
ren des steilsten Abstiegs oder einfach Gradientenverfahren (vgl. z. B. [WJ95],
[RN03]).

Der Vorteil der verhaltensbasierten Optimierung ohne Modell liegt in der Di-
rektheit der Anwendung. Es wird weder ein Modell benötigt, noch eine Syste-
midentifikation. Fehler, die beispielsweise durch falsche Vereinfachungen oder
Annahmen bei der Modellbildung auftreten können, sind ausgeschlossen. Au-
ßerdem werden Veränderungen des Systems im Betrieb direkt wahrgenom-
men. Besonders geeignet ist die direkte Online-Optimierung als Kombination

4Andrei Nikolajewitsch Kolmogorow, russischer Wissenschaftler und Mathematiker (* 12./25.
April 1903 in Tambow; † 20. Oktober 1987 in Moskau.)
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aus modellbasierter und verhaltensbasierter Optimierung. Bei diesem Verfah-
ren wird nach einer modellbasierten Optimierung das Modell durch ein rea-
les (Teil-)System ersetzt. Gute Voraussetzungen bieten Hardware-in-the-Loop-
Prüfstände. Ein Beispiel für solch eine Optimierung am Prüfstand findet sich
in [DOM01].

Optimierung ohne Modell hat jedoch auch wesentliche Nachteile. Zum Einen
muss jeder Schritt am realen System getestet werden. Dabei darf der tech-
nische Prozess nicht so stark gestört werden, dass der Betrieb gefährdet ist.
Auch können aus dem gleichen Grund nicht beliebige Anregungsfunktionen
aufgeschaltet werden. Bei einer ungünstigen Anregungsumgebung können so-
mit nicht alle Störeinflüsse berücksichtigt werden [Lau99].

2.2.1 Modellbasierte Verfahren

In vielen technischen Entwicklungen werden mathematisch-physikalische Modelle
zur Analyse des Systemverhaltens genutzt. Solche Modelle spiegeln das Wissen über
das dynamische Verhalten eines Systems wieder. Verfahren zur Steuerung und Re-
gelung, die solche abstrakten Modelle benutzen, werden häufig auch als modellba-
sierte Verfahren bezeichnet. Das Modell spiegelt dabei ein bestimmtes gerichtetes
Ein-/Ausgangsverhalten wieder, das dem des realen Systems angenähert ist. Die
Verfahren zur Abbildung dieses Ein-/Ausgangsverhalten sind dabei sehr unterschied-
lich. Hinsichtlich des mathematischen Ansatzes unterscheidet beispielsweise [Lau99]
zwischen Signalmodellen, Prozessmodellen und wissensbasierten Ansätzen bei der
automatischen Identifikation des technischen Prozesses.

[Kno01] unterscheidet bei der Unterteilung von adaptiven Reglern zwischen ad-
aptiven Reglersystemen, basierend auf modellbasierten, nichtlinearen Modellen und
solchen, die auf universellen Approximatoren beruhen. Unter universellen Approxi-
matoren werden hierbei alle Verfahren verstanden, die ein Modellverhalten durch ei-
ne allgemeine mathematische Methode annähern, wie beispielsweise neuronale Netze
oder Fuzzy-Logik. Diese Einteilung ist jedoch unpraktisch, wenn vorausgesetzt wird,
dass ein Modell die abstrakte Darstellung eines realen Systems ist und dazu dient,

„... die als wichtig angesehenen Eigenschaften des Vorbilds auszudrücken
und nebensächliche Eigenschaften außer Acht zu lassen, um durch diese
Vereinfachung zu einem übersehbaren oder mathematisch berechenbaren
oder zu experimentellen Untersuchungen geeigneten Modell zu kommen.
...“ [Bro71]

Diese Definition schließt zweifellos die universellen Approximatoren als Grund-
lage von Modellen ein. Wichtigster Unterschied ist jedoch, dass im Gegensatz zu
den aus der physikalischen Sicht abgeleiteten Modellen universelle Approximatoren
nicht oder nur beschränkt interpretier- oder analysierbare Parameter aufweisen. Da-
durch ist eine mathematische Analyse, beispielsweise für den Nachweis der Stabilität,
aufwändig oder unmöglich.

2.2.2 Modellbasierte Optimierung

Neben der Ausnutzung für die Regelung technischer Systeme ist es auch möglich,
mathematisch-physikalische Modelle für die Optimierung zu nutzen. Dabei werden
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im Allgemeinen die Parameter des Modell-Systems so verändert, dass ein gewünsch-
tes Systemverhalten erzeugt wird. Die bestimmten Parameter werden anschließend
für den Entwurf des realen Systems genutzt.

In vielen Fällen läuft die Optimierung auf das Aufsuchen eines lokalen oder
globalen Minima bzw. Maxima hinaus. Bei nichtlinearen Problemen ist eine rein
analytische Lösung nicht möglich. Werden gleichzeitig mehrere Zielgrößen optimiert,
so kann es zu widersprechenden Zielen kommen. Eine Zielgröße kann dann nicht
mehr verbessert werden, wenn nicht gleichzeitig eine andere verschlechtert wird. Al-
le Lösungen zwischen den Optima bilden dann eine paretooptimale Lösungsmenge
[Hil01].

Grob lassen sich die wesentlichen Verfahren in (1) nichtlineare Optimierung und
(2) stochastische Optimierung unterteilen. Zu der nichtlinearen Optimierung zäh-
len die ein- und die mehrdimensionale Suche. Zu den stochastischen Verfahren zäh-
len beispielsweise Simulated Annealing, Particle Swarm Optimization, evolutionäre
Algorithmen und genetische Algorithmen. Dabei ist die nichtlineare Optimierung
wesentlich für die Online-Optimierung in mechatronischen Systemen.

2.2.2.1 Nichtlineare Optimierung

Bei der unbeschränkten nichtlinearen Optimierung wird das Minimum oder das Ma-
ximum einer skalaren Funktion f(x) des Vektors x gesucht.

min
x
{f(x)} (2.2.1)

Für die Lösung dieses Problems existieren eine Vielzahl von Verfahren. Ein häufig
verwendetes Verfahren arbeitet nach der Iterationsvorschrift :

xk+1 = xk + αkdk (2.2.2)

Ausgehend von einem Punkt xk wird ein neuer Punkt xk+1 bestimmt, wobei dk
die Richtung der Suche angibt und αk die Schrittweite [BSMM97].

Das Gesamtproblem der Optimierung besteht hier für jeden Schritt aus den
Teilproblemen:

1. Finde eine Suchrichtung dk und

2. finde eine geeignete Schrittweite αk.

Ziel ist die möglichst schnelle und möglichst genaue Annäherung an das gesuchte
Minimum oder Maximum. Die Schrittweite kann durch eine Liniensuche bestimmt
werden. Die Richtung wird durch die Untersuchung der Umgebung des Punktes xk
bestimmt. Dabei benutzen viele Verfahren, wie beispielsweise das Newton-Verfahren,
die erste oder auch die zweite Ableitung der Zielfunktion f an der Stelle xk (vgl. z. B.
[Mün03]).

Aus den ersten partiellen Ableitungen ∂f
∂xi

bildet sich der Gradientenvektor oder
Gradient ∇f :

∇f =


∂f
∂x1
∂f
∂x2...
∂f
∂xn

 (2.2.3)
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Aus den zweiten Ableitungen lässt sich analog die so genannte Hesse-Matrix ∇2f
bilden. Die Hesse-Matrix5 bildet sich aus den partiellen zweiten Ableitungen einer
mehrdimensionalen Funktion f(x1, ..xn):

H(f) =

(
∂2f

∂xi∂xj

)
=


∂2f

∂x1∂x1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2∂x2

· · · ∂2f
∂x2∂xn...

... . . . ...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂xn∂xn

 (2.2.4)

Anmerkung: Die Hesse-Matrix kann auch zur Bestimmung von lokalen Minima
oder Maxima dienen. Dazu müssen zunächst die kritischen Punkte einer Abbildung
in Rn und die Definitheit der Hesse-Matrix H an diesen Punkten bestimmt werden.
Ist die Hesse-Matrix H an einer Stelle positiv definit, so liegt dort ein lokales Mini-
mum der Funktion vor. Falls H dort negativ definit ist, so handelt es sich bei diesem
Punkt um ein lokales Maximum [Hör07].

2.2.2.2 Gradientenverfahren

Das so genannte Gradientenverfahren sucht den steilsten Abstieg mit Hilfe der An-
weisung [BSMM97]:

dk = −∇f (xk) (2.2.5)

x0

d0

d1

d2

x1

x2

x3
min{f( )}x

p1

p2

Abbildung 2.5: Prinzip des Optimierungsverlaufs eines Gradientenverfahrens

Der prinzipielle Verlauf einer Optimierung mit Hilfe des Gradientenverfahrens
ist in Abbildung 2.5 zu sehen. Ausgehend von einem Punkt x0, wird mit Hilfe des
Richtungsgradienten d0 der nächste Punkt x1 bestimmt. An diesem neuen Ort wird
dann eine neue Richtung d1 bestimmt und so fort. Die Ellipsen stellen Höhenlinien
der quadratischen Zielfunktion dar [Mün03].

5nach Otto Hesse (* 22. April 1811, † 4. August 1874), deutscher Mathematiker.
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Die Nachteile des Verfahrens liegen vor allem in seiner langsamen Konvergenz.
Weiterführende Verfahren berücksichtigen die Krümmung der Zielfunktion. Eine nä-
here Betrachtung dieser verbesserten Verfahren findet sich z. B. in Bezug auf die
Optimierung von mechatronischen Systemen in [Mün01], [Mün03] und allgemein
bei [Opt07].

2.2.2.3 Mehrgrößen-Optimierung

Bei Mehrgrößenproblemen geht es, wie bereits erwähnt, um die gleichzeitige Opti-
mierung verschiedener Zielgrößen. Aus der Zielgrößenfunktion f(x) bei der nichtli-
nearen Optimierung wird ein Zielgrößenvektor f(x). Das Optimierungsproblem lässt
sich analog beschreiben mit:

min
x

{
f(x)

}
(2.2.6)

Die Optimierung läuft jedoch nicht auf einen Punkt hinaus, sondern auf eine
Lösungsmenge, die sogenannte Paretofront oder Paretomenge. Im Falle zweier Ziel-
größenfunktionen ist die Paretofront eine eindimensionale Funktion. Alle Lösungen
auf dieser Funktion sind paretooptimale Lösungen des Optimierungsproblems. Vie-
le technische Anwendungen benötigen jedoch nur eine Lösung: die Lösungsmenge.
Somit wird zusätzlich zu der Mehrgrößenoptimierung noch ein entsprechendes Se-
lektionsverfahren benötigt, das einen bestimmten Punkt auswählt. Die Bestimmung
von Paretomengen ist im Allgemeinen rechenintensiv. Eine vorab bestimmte Pa-
retomenge kann jedoch beispielsweise durch ein Online-Selektionsverfahren für die
Selbstoptimierung genutzt werden. Die Vielzahl von Verfahren zur Bestimmung ei-
ner Paretomenge soll an dieser Stelle nicht diskutiert werden.

Abbildung 2.6: Suchrichtungsbestimmung durch Kegel um Gradienten

Wird von vornherein nur ein bestimmter Punkt auf der Paretomenge gesucht,
können andere Punkte während der Annäherung ausgeschlossen werden. Ziel ist es
hier, möglichst nahe an den durch Selektion bzw. Gewichtung angestrebten Ziel-
bereich der Paretomenge heranzukommen. Auf diese Art und Weise reduziert sich
der Berechnungsaufwand erheblich. Neben der Gewichtung der Zielgrößen als ein
Kriterium für die Auswahl eines paretooptimalen Punkts existieren noch andere
Verfahren, die von vornherein nur die Berechnung eines bestimmten Paretopunk-
tes anstreben. Die Diskussion der verschiedenen Verfahren soll in dieser Arbeit nicht
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erfolgen, jedoch ist ein Verfahren besonders zu beachten, da es sich aus dem Gradien-
tenverfahren für nichtlineare Optimierung ableiten lässt. Dieses Verfahren wurde am
Mechatronik Laboratorium Paderborn für das Werkzeug MOPO (Multi-Objective
Parameter Optimization) weiterentwickelt [Kas85], [KLJS90] und [Mün01].

Kerngedanke ist die Ermittlung einer Abstiegsrichtung für alle Zielgrößen. Ist
diese gefunden, wird in dieser Richtung gesucht. Als geometrisch anschauliches Mo-
dell dient ein Kegel, der möglichst eng alle Gradienten einschließt. Die Suchrichtung
dk liegt dann genau in entgegen gesetzter Richtung der Kegelachse. Abbildung 2.6
[Mün01] stellt diesen Zusammenhang grafisch dar. Für eine weitergehende Betrach-
tung des Verfahrens wird insbesondere auf [Mün01] und [Mün03] verwiesen.

2.2.3 Verhaltensbasierte Verfahren

Während modellbasierte Verfahren aus der Regelungstechnik abgeleitet wurden,
stammen verhaltensbasierte Verfahren aus der Informatik. Verschiedene Ansätze
der künstlichen Intelligenz (KI) erwiesen sich in der Praxis als nur schwer anwend-
bar. Insbesondere bei autonomen Robotern zeigen komplexe Planungsverfahren ihre
Schwächen. Der Durchgriff zwischen Umweltreiz und Reaktion der Maschine war
nicht befriedigend. Außerdem war die Formulierung einfacher Verhaltensweisen nur
schwer umzusetzen [Ark98]. Für die Robotik wurden neue Ansätze für Abbildung
und Umsetzung von Verhalten benötigt. Betrachtet man das Verhalten von einfa-
chen Lebewesen, so lassen sich viele Verhaltensweisen durch direkte Zusammenhän-
ge zwischen Reiz und Reaktion erklären. Grundlagen hierzu stammen aus Biologie,
Verhaltensforschung und Psychologie, wie die klassische Konditionierung nach Paw-
low6 [Paw55] oder die operante Konditionierung nach Skinner7 [Ski53] (vgl. insb.
Abschnitt 2.2.5). Werden solche einfachen Verhalten mehrfach kombiniert und die
Reize gewichtet oder durch zeitabhängige Parameter verstärkt, lassen sich schein-
bar komplexe Verhalten beschreiben. Diese Grundidee liegt verhaltensbasierten Sys-
temen zugrunde. Dabei werden nach dem beschriebenen Modell Reize, die durch
Sensoren erfasst werden, mit Aktoren verbunden. Ein sehr anschauliches Beispiel ist
das sog. Braitenberg Vehicle [Ark98].

Abbildung 2.7: Braitenberg Vehicle

6Iwan Petrowitsch Pawlow (* 14. September/26. September 1849 in Rjasan; † 27. Februar 1936
in Leningrad) russischer Mediziner und Physiologe.

7Burrhus Frederic Skinner (* 20. März 1904 in Susquehanna, Pennsylvania; † 18. August 1990
in Cambridge, Massachusetts), amerikanischer Psychologe.
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Das Fahrzeug (A) besteht aus einem Sensor und einem Motor. Die Bewegung
dieses Fahrzeugs geht immer in der Richtung des Reizes (Licht), jedoch können Ein-
flüsse durch die Umwelt, die auf das Fahrzeug wirken, nicht kompensiert werden
– schon ein leichtes Rutschen oder eine raue Fahrbahn würden das Fahrzeug au-
ßer Kurs bringen. Das Fahrzeug (B) besteht aus zwei Motoren und zwei Sensoren.
Werden die Sensoren direkt mit dem Motoren verbunden, so weicht das Fahrzeug
dem Reiz aus, da die dem Licht zugewandte Seite ein stärkeres Signal produziert als
die abgewandte Seite. Werden die Sensoren über Kreuz mit den Sensoren verbun-
den, so fährt das Fahrzeug auf das Licht zu. Bewegt man die Lichtquelle im Raum,
folgt der Roboter wie eine Katze einem Wollknäuel. Dieses einfache Beispiel zeigt
anschaulich, dass durch einen einfachen Zusammenhang ein (scheinbar) komplexes
Verhalten erzeugt werden kann.

Das Problem ist allerdings nicht vollständig gelöst, da zwischen Reiz und Reakti-
on eine Verstärkung liegt, die im Allgemeinen die Dynamik des Systems berücksich-
tigen muss. Somit ist dieses System keineswegs der Ersatz einer Regelung, sondern
erzeugt vielmehr nur eine Sollgröße. Bleibt dies unberücksichtigt, so stellt sich unter
Umständen ein völlig anderes Verhalten ein, wie ursprünglich angenommen, wie die
Abbildung 2.8 [Ark98] zeigt.

Abbildung 2.8: Braitenberg Vehicle mit unbestimmten Verhalten

Das Verhalten der Roboter in Abbildung 2.8 überrascht aus regelungstechnischer
Sicht kaum. Der innere Roboter übersteuert, d. h. der Lenkwinkeleinschlag passt
nicht zur Dynamik des Systems. Ähnlich ist es beim äußeren Fahrzeug, bei dem
der Lenkwinkeleinschlag nicht ausreicht. Das Problem wird in der Praxis durch
Überlagerung von verschiedenen Verhalten gelöst. Meistens ist dazu eine weitere
Sensorgröße oder eine abgeleitete Größe nötig.

Ein weitergehender Ansatz überlagert die eingehenden Reize zu Potentialfeldern
([Ark98] aus [Lat90]). Potentialfelder werden auch als virtuelle Reize genutzt, z. B.
bei einer bekannten relativen Position zwischen zu steuerndem System und Ziel bzw.
Hindernis.
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Abbildung 2.9: Potentialfeld zur Vorgabe von Steuergrößen

Abbildung 2.9 [Ark98] zeigt beispielhaft ein solches Potentialfeld als Steuervor-
gabe. Die Pfeile geben für die jeweilige Position eines Fahrzeugs eine Richtung und
eine Geschwindigkeit vor.

Hindernis ausweichen (A) Zum Ziel fahren (B) Addierte Grundverhalten (A und B)

Abbildung 2.10: Addition von Potentialfeldern

Besonders interessant ist die Bildung von solchen Potentialfeldern. Sie werden
aus einfachen Grundverhalten zusammengesetzt. In den Abbildungen 2.10 [Ark98]
ist zu sehen, wie ein komplexeres Verhalten (2.10, rechts) durch die Addition zweier
einfacher Verhalten (2.10, links und 2.10, Mitte) erzeugt wird.

Das Ergebnis ist eine Trajektorie (siehe Abbildung 2.11 [Ark98]), die als Vorgabe
für die Bahnsteuerung eines Fahrzeugs, wie z. B. eines Roboters, dienen kann8.

8Das dargestellte Problem wird in [Ark98] noch näher diskutiert und weiter verfeinert. An dieser
Stelle soll nur das Grundprinzip als Grundlage für ein allgemeines Verständnis dargestellt werden.
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Bahntrajektorie

Hindernis

gesteuertes
Objekt

Abbildung 2.11: Bahntrajektorie durch Überlagerung von Verhalten

Aus dem Beispiel wird zum einen das mächtige Potential der verhaltensbasierten
Programmierung deutlich, das es erlaubt, durch die Superposition einfacher Grund-
verhalten zu komplexen Verhalten zu gelangen. Zum anderen wird aber auch deutlich,
dass zwar eine Rückkopplung zur Umgebung des technischen Systems vorhanden ist,
aber die Dynamik unberücksichtigt bleibt. Das Zusammenspiel zwischen Umgebung
und technischen System wird quasistatisch behandelt. Die Regelung der Dynamik
bleibt unterlagerten Systemen vorbehalten. Wie die Dynamik der Umgebung in dem
vorgestellten Ansatz mitberücksichtigt werden kann, ist noch zu untersuchen.

2.2.4 Lernverfahren – Grundlagen

Der Begriff Lernverfahren trifft im Zusammenhang mit Selbstoptimierung zwei wich-
tige Bereiche: den Bereich der Lerntheorien und den der künstlichen Intelligenz (KI).
Beide sehr umfangreiche Bereiche können hier nur in Ansätzen dargestellt werden.
Für die strukturierte Entwicklung von selbstoptimierenden mechatronischen Syste-
men sind jedoch einige Theorien von grundlegender Bedeutung. Dabei ist es notwen-
dig, die Grundlagen des Lernens an sich zu betrachten. Eine Brücke zwischen dem
Lernen beim Menschen, insbesondere bei Kindern und der Informatik bilden hier
die Arbeiten von R. M. Gagné9, der Lernen im Wesentlichen als Informationsverar-
beitung angesehen hat. Betrachtet man die verschiedenen Ansätze zu maschinellem
Lernen der KI, so wird deutlich, dass sich viele Arbeiten an denen von Gagné orien-
tiert haben.

Lernen wird von Gagné nicht als ein Phänomen aufgefasst, das durch einfache
Theorien beschrieben werden kann. Als Prinzip setzt er voraus, dass Lernen als
Phänomen genauer untersucht und tiefer verstanden werden kann, das von Wechsel-
wirkungen zwischen dem Individuum und seiner Umwelt abhängt. Lernen wird als
beobachtbarer Vorgang und nicht als Ereignis verstanden.

9Robert Mills Gagné (* 21. August 1916 in North Andover; † 28. April 2002) war ein US-
amerikanischer experimenteller Psychologe und Pädagoge.
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Für Gagné ist Lernen eine...

„... Änderung in menschlichen Dispositionen oder Fähigkeiten, die
erhalten bleibt und nicht einfach dem Reifungsprozess zuzuschreiben
ist.“ [Gag80]

Die Art des Wandels, die man Lernen nennt, zeigt sich als eine Verhaltensände-
rung, und man schließt auf Lernen, indem man vergleicht, welches Verhalten möglich
war, bevor das Individuum in eine Lernsituation gebracht wurde, und welches Ver-
halten nach einer solchen Behandlung gezeigt wird. Die Änderung kann in einer
verbesserten Fähigkeit zu einer bestimmten Leistung bestehen, und so ist es tatsäch-
lich oft. Es kann auch eine veränderte Verhaltensbereitschaft von der Art sein, die
man Einstellung, Interesse oder Wert nennt. Die Veränderung muss den Augenblick
überdauern; sie muss über eine gewisse Zeitspanne erhalten bleiben können.

Bei jedem Lernvorgang gibt es drei wesentliche Elemente: Es gibt einen Lernen-
den (1). Seine wichtigsten Teile sind in diesem Fall seine Sinnesorgane, sein zentrales
Nervensystem (ZNS) und seine Muskeln (2). Ereignisse in der Umwelt wirken auf
die Sinne des Lernenden und setzen Ketten nervöser Impulse in Gang, die durch
sein ZNS, besonders das Hirn, organisiert werden. Diese Nerventätigkeit läuft in
bestimmten Sequenzen und Mustern ab, welche die Natur des organisierenden Pro-
zesses selbst verändern, und diese Wirkung zeigt sich als Lernen. Schließlich wird
diese Nerventätigkeit in Handlung (3) übersetzt, die vielleicht als Muskelbewegung
in ausführenden Reaktionen verschiedener Art zu beobachten ist. Die Ereignisse, wel-
che die Sinne des Lernenden reizen, werden zusammenfassend als die Reizsituation
bezeichnet. Wenn ein einzelnes Ereignis zu unterscheiden ist, wird es häufig als Reiz
benannt. Die Handlung, die aus der Reizung und der nachfolgenden Nerventätigkeit
hervorgeht, wird als Reaktion bezeichnet.

Ein Lernvorgang findet also statt, wenn die Reizsituation auf den Lernenden in
einer Weise wirkt, dass sich seine Leistung von einem Zeitpunkt vor dieser Situation
zu einem Zeitpunkt nach dieser Situation ändert. Es ist die Änderung der Leistung,
die zu dem Schluss führt, dass Lernen stattgefunden hat [Gag80].

Nach Gagné werden acht Lerntypen unterschieden:

1. Signallernen: einfache reflexartige Reaktion, die als Folge auf einen wiederkeh-
renden Reiz ausgelöst wird (Pawlowsche Hund10),

2. Reiz-Reaktions-Lernen: einfache Reaktion, die durch positive Verstärkung er-
lernt wird, z. B. Belohnung bei erfolgreichem Ergebnis, Bestrafung bei nicht
erfolgreichem,

3. motorische und

4. sprachliche Kettenbildung: eine Folge von Handlungen oder anders dargestell-
ten Abläufen wird so lange wiederholt, bis sie eingeprägt ist,

5. Lernen von Unterscheidungen: Zuordnen von Eigenschaften zu Objekten oder
umgekehrt. Einordnen in Kategorien,

10Iwan Petrowitsch Pawlow, Nobelpreisträger; (* 14. September/26. September 1849 in Rjasan;
† 27. Februar 1936 in Leningrad) war ein russischer Mediziner und Physiologe. U. a. bekannt für
seine Arbeiten zur Verhaltensforschung an Tieren.
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6. Begriffslernen: ein abstrakter Zustand wird aus einer Vielfalt physikalischer
Konstellationen gelernt, z. B. der Begriff mittlerer als ein Objekt zwischen
zwei anderen,

7. Regellernen: ein Objekt dehnt sich bei Erwärmung aus: das allgemeine Prinzip
als Regel erkennen und übertragen können, und

8. Problemlösen: das Ausdenken einer abgewandelten oder neuen Regel für bisher
unbekannte Probleme.

Diese Lernarten bauen nach Gagné hierarchisch aufeinander auf. Die vorausge-
hende einfachere muss jeweils beherrscht werden, bevor man eine komplexere ange-
hen kann. Gagné hat daraus für schulisches Lernen eine Art Karte des zu lernenden
Stoffes entwickelt, wobei der Lehrer die Teilaufgaben in einer hierarchischen Sequenz
anordnet (Lernstruktur).

Die Informatik versucht mit Hilfe der künstlichen Intelligenz (KI), diese Lernty-
pen auf technische Systeme zu übertragen. Die Lerntypen Signallernen und Reiz-
Reaktions-Lernen entsprechen der klassischen Konditionierung. Ihre Entsprechung
findet diese Ebene des Lernens im sogenannten Reinforcement Learning oder selbst-
verstärkendem Lernen [KLM96], [Sto00].

Das wesentliche charakteristische Merkmal für Reinforcement Learning, das es
von anderen Lernverfahren unterscheidet, ist, dass es Trainings-Informationen nutzt
statt gegebener (Handlungs-) Anweisungen bei richtigen Aktionen. Dieses Vorgehen
benötigt eine aktive Untersuchung des Aktionsergebnises, für eine explizite Trial-and-
Error -Suche nach gutem und richtigem Verhalten. Eine rein bewertende Antwort
(evaluative feedback) zeigt, wie gut das Ergebnis einer Aktion ist, jedoch nicht, ob
es die best- oder schlechteste mögliche Aktion ist. Bewertende Antworten sind die
Basis vieler Verfahren, wie der Funktionsoptimierung (siehe auch Abschnitt 2.2.2.1
Nichtlineare Optimierung), aber auch evolutionärer Methoden. Rein instruierende
Antworten (als Handlungsanweisungen) zeigen, welche Aktion die richtige ist (oder
gewesen wäre), aber berücksichtigen nicht die aktuelle Aktion. Diese Art des Lernens
ist die Grundlage des Unterweisenden Lernens (supervised learning) und findet sich
beispielsweise beim Training von künstlichen Neuronalen Netzen.

2.2.5 Selbstverstärkendes Lernen (Reinforcement Learning)

Im deutschen Sprachraum wird für das Lernverfahren für technische Systeme der In-
formatik im Allgemeinen die Bezeichnung Reinforcement Learning verwendet. Der
Begriff selbstverstärkendes Lernen findet sich in der Psychologie und in der Pädago-
gik [Paw55], [Ski53] (i. A. Lernen durch positive/negative Erfahrung).

Im technischen Sinne sind es verschiedene Methoden, die durch Ausprobieren
(trial-and-error) das Verhalten eines technischen Systems verbessern sollen. Ein gu-
ter Weg, Reinforcement Learning zu verstehen, besteht darin, verschiedene Beispiele
und mögliche Anwendungen zu betrachten, die ihre Entwicklung geleitet haben.

• Ein Schachmeister macht einen Zug. Seine Wahl wird von zwei Bereichen beein-
flusst: zum einen von Planung, demWissen über mögliche Züge und Gegenzüge
und zum anderen durch plötzliche intuitive Regeln über bevorzugte Positionen
und Züge.
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• Ein adaptiver Regler passt die Parameter einer Raffinerie in Echtzeit an. Der
Regler optimiert den Kompromiss zwischen Ausbeute/Kosten/Qualität auf der
Basis von spezifizierten Grenzkosten, ohne sich dabei strikt an die ursprünglich
definierten Punkte zu halten.

• Ein mobiler Roboter entscheidet, ob er einen weiteren Raum betreten soll, um
dort nach Abfall zu suchen, oder ob er zurück zur Ladestation fährt. Er trifft
seine Entscheidung auf der Basis der Erfahrungen, die er in der Vergangenheit
gemacht hat, wie schnell er in der Lage war, die Ladestation zu finden.

Den Beispielen gemeinsam ist, dass Entscheidungen, die zukünftige Ereignisse
beeinflussen (der nächste Zug beim Schachspiel, der Größe der Reserve in der Raffi-
nerie, der nächste Ort des Roboters), auf der Basis von Erfahrung der Vergangenheit
getroffen wurden. Die richtigen Entscheidungen implizieren indirekt die Berücksich-
tigung von späteren Konsequenzen. Dies erfordert Voraussicht und Planung.

In den Beispielen kann die Leistung mit der Erfahrung gesteigert werden. Der
Schachmeister verfeinert seine Intuition, die er zum Überdenken der Positionen sei-
ner Figuren benötigt, der Roboter, wie viel Zeit ihm noch bleibt, bis er zum Nach-
laden fahren muss. Die mitgebrachten Erfahrungen aus vorherigen Aufgaben, un-
abhängig davon, ob sie selbst gelernt oder vorgegeben (fest programmiert) wurden,
beeinflussen das aktuelle (Lern-)Verhalten. Jedoch ist für die Verbesserung des Ver-
haltens immer eine Interaktion mit der Umgebung notwendig [SB98].

Nach [KLM96] ist Reinforcement Learning ein Problem, dem ein Agent (vgl. 2.5)
gegenübersteht, der mit Hilfe von Trial-and-error-Interaktionen mit einer dynami-
schen Umgebung ein Verhalten erlernen muss. Es besteht eine enge Verbindung mit
dem Begriff selbstverstärkendes Lernen aus der Psychologie, wenn auch der Begriff
selbstverstärkend anders verstanden werden muss.

i : Aussage über Zustand

s : Information über den Zustand der Umgebung

r : Selbstverstärkungssignal

B : Verhalten

I/R : Verstärkung/Bewertung/Signalaufbereitung

T : Zustand der Umgebung

Abbildung 2.12: Das Standardmodell für Reinforcement Learning

In Abbildung 2.12 ist das sogenannte Standardmodell für Reinforcement Lear-
ning nach [KLM96] dargestellt. Es gilt unabhängig von der eingesetzten Methode
und stellt den Zusammenhang bzw. den Ablauf des Lernens schematisch dar.

Die Darstellung ist folgendermaßen zu verstehen:
In jedem Schritt der Interaktion mit der Umgebung erhält der Agent den Eingang

i als eine Aussage über den aktuellen Zustand s der Umgebung. Daraufhin wählt
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der Agent eine Aktion a, die als Ausgang (Reaktion) umgesetzt wird. Die Aktion
verändert den Zustand der Umgebung. Der Wert dieses Zustandswechsels wird an
den Agenten als Selbstverstärkungssignal r (reinforcement signal) weitergeleitet. Das
Verhalten B (behavior) des Agenten soll Aktionen auswählen, die auf lange Sicht
zu einem Anstieg der Selbstverstärkungssignale s führen sollen. Dies kann er durch
eine systematische Anwendung von Trial-and-error erreichen. Zur Steuerung dieses
Verfahrens existieren zahlreiche, teils sehr unterschiedliche Algorithmen. Eine gute
Übersicht der verschiedenen Methoden findet sich in [KLM96].

Insgesamt lässt sich festhalten, dass das Reinforcement Learning ein Verfahren
ist, das an vielen Stellen Parallelen zu modellbasierten Verfahren zeigt. Durch die In-
teraktion mit der Umgebung ist eine Optimierung an die Wirklichkeit sichergestellt.
Jedoch ist dieses Verfahren nicht oder nur begrenzt auf Anwendungsfälle übertrag-
bar, bei denen ein Fehlerfall im Sinne von Versagen bei einem Schritt nicht erlaubt
ist, wie beispielsweise bei sicherheitskritischen Anwendungen.

2.2.6 Neuronale Netze

Künstliche neuronale Netze gehören zu den allgemeinen Approximatoren. Im eng-
lischen Sprachraum werden diese als artificial neural networks (ANN) bezeichnet
[GP89]. Sie eignen sich gut zur Abbildung von nichtlinearen Systemen, deren Struk-
tur nicht sicher bekannt ist und die deshalb nicht oder nur schwer mit parametrierba-
ren Modellen zu modellieren sind. Durch ANN können alle nichtlinearen Funktionen,
welche die Bolzano-Weiserstrass-Eigenschaft besitzen [BSMM97], beliebig genau ap-
proximiert werden. Somit ist es naheliegend, ANN auch zur Abbildung nichtlinearer
Systeme und zur nichtlinearen Regelung einzusetzen [Kno01]. Jedoch hat sich ge-
zeigt, dass sich beim Einsatz als direktes (PID-)Reglerglied neuronale Netze wie
auch Fuzzy-Logik als zu komplex erweisen [Lau95].

Abbildung 2.13: Radial-Basis-Funktionen (RBF) Netz

Die bedeutendste und meist angewandte Grundstruktur ist das mehrschichtige
Perzeptionsnetz (engl.multilayer perception (MLP)). Diese Struktur wird sowohl zur
Identifikation als auch zur Regelung nichtlinearer Systeme eingesetzt [HD99]. MLP
sind nichtlinear in den unbekannten Parametern, was sowohl beim Training des Net-
zes als auch bei der Stabilität Nachteile mit sich bringt. Aus diesem Grund gewinnen
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Radial-Basis-Funktionen-Netze (RBF) zunehmend an Bedeutung. Diese werden häu-
fig zur Identifikation von nichtlinearen Systemen eingesetzt. Die Struktur ist in Ab-
bildung 2.13 [CB92, PS92] dargestellt. Sie besteht aus einer Eingangsschicht, die den
Vektor x = [x1, x2, ...xn]T der Eingangssignale xi, i = 1, ..., n puffert, einer versteck-
ten Schicht, welche die Neuronen mit dem Vektor Φ der RBF-Aktivierungsfunktion
Φj, j = 1, ...,m enthält und einer Ausgangsschicht, in der die Aktivierungen sum-
miert werden. Die mathematische Ein-/Ausgangsbeschreibung eines RBF-Netzes ist
durch

yl(k) = w0,l +
m∑
j=1

wj,lΦj(‖x(k)− cj‖) (2.2.7)

gegeben. yl(k) ist das l-te Ausgangssignal, x(k) der Eingangsvektor, wj,l, j =
0, ...m sind die Netzgewichte, und cj sind die Zentren der RB-Funktionen. Mit
‖x(k) − cj‖ = r als Abstandsmaß eines Eingangsvektors von einem Zentrum ist
Φj(r) die RB-Funktion. Für die Anwendung von neuronalen Netzen zur Regelung
finden sich verschiedene Ansätze. Dies sind unter anderem:

• das Kopieren eines existierenden Reglers,

• die adaptive Regelung mit Vergleichsmodell,

• die Regelung mit internem Prozessmodell.

Erstere hat Nutzen bei der Regelung von Prozessen, bei denen die (nichtlineare)
Regelung bisher durch das Bedienpersonal durchgeführt wird. Dabei wird das neuro-
nale Netz, das die Regelungsaufgabe übernehmen soll, mittels eines Lernverfahrens
trainiert. Als Eingangsgröße für das Lernverfahren kann direkt der Fehler zwischen
dem Stellsignal und dem Ausgangssignal des neuronalen Netzes genutzt werden.

Abbildung 2.14: Indirekte adaptive Regelung mit Vergleichsmodell

Im zweiten Fall (Abbildung 2.14 [Kno01]) wird die Regelung durch neuronale
Netze ersetzt. Mit Hilfe eines Lernverfahrens wird das Netz so trainiert, dass der Feh-
ler zwischen Grundregelkreis und Vergleichsmodell klein wird. Da eine unbekannte
Regelstrecke zwischen Netz und Fehlersignal liegt, kann der Fehler nicht direkt er-
mittelt werden. Um den Fehler zu gewinnen, muss auch das Übertragungsverhalten
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Abbildung 2.15: Regelung mit internem Prozessmodell

der Strecke durch ein zweites Netz abgebildet werden. Über dieses Netz kann dann
der Fehler zum Netz im Regler geführt werden.

Der letzte Ansatz (Abbildung 2.15 [HSŻG92]) ist nur für stabile Regelstrecken
mit stabiler Nulldynamik geeignet. Dabei wird durch ein parallel geschaltetes Netz,
das die Streckendynamik abbildet, erreicht, dass nur die Störungen zurückgeführt
werden, so dass ohne Störung eine Steuerung vorliegt. Das als Regler vorgeschal-
tete Netz enthält das inverse Streckenmodell. Damit kann durch den Filter F das
Verhalten des geschlossenen Systems eingestellt werden.

Ein Problem bei der Anwendung von ANN ist die Abstimmung der Netzstruktur
auf das jeweilige abzubildende (Teil-)System. Sie beeinflusst die Wahl der Optimie-
rung der Netze (Verfahren), die erzielbare Reglergüte (bei Anwendung als Regler),
die Rechenzeit und die Genauigkeit. Auf die Abstimmung soll hier im Detail nicht
eingegangen werden. Es wird nur darauf hingewiesen, dass sich ein großer Teil der
Forschung im Bereich der ANN auf diese Fragestellung konzentriert. [Kno01] weist
darauf hin, dass bis heute kein Verfahren existiert, mit dem ein systematischer Ent-
wurf bezüglich der Netztopologie und der Neuronenzahl in vertretbarer Zeit möglich
ist. Eine weitere Anwendung ist der Einsatz von neuronalen Netzen zur Kompensati-
on von nichtlinearem Streckenverhalten. Grundidee ist hierbei, ein lineares Übertra-
gungsverhalten zu erzeugen, damit lineare Regler eingesetzt werden können. Dabei
wird eine nichtlineare Strecke durch ein neuronales Netz so ergänzt, dass das Ge-
samtübertragungsverhalten wieder linear ist.

Ein Beispiel für dieses Verfahren ist die Kompensation von nichtlinearen
Reibungseffekten [KHH04] in einem einfachen elektromechanischen Positioniersys-
tem [HW98].

Abbildung 2.16: Elektromechanisches Positioniersystem (EMPS)
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Das in Abbildung 2.16 [HW98] schematisch dargestellte elektromechanische Posi-
tioniersystem besteht aus einem stromgeregelten Gleichstrommotor und einer linea-
ren Positioniereinheit. Die lineare Schlittenbewegung wird durch einen spielfreien
Kugelgewindetrieb erzeugt. Für die Regelung werden die Ausgangsspannung utacho
des motorseitigen Gleichstrom-Tachogenerators sowie der Zählerausgang incr des in-
krementellen Drehgebers zur Messung der Schlittenposition verwendet. Stellgröße ist
die Eingangsspannung uservo für den Motorstromsollwert. Im System tritt trockene
Reibung durch den Kugelgewindetrieb auf, der zur Vermeidung von Lose verspannt
ist. Mit Hilfe eines Reibrades können unterschiedliche Reibbedingungen eingestellt
und untersucht werden [HW98].

Abbildung 2.17: Struktur der Regelung mit Aufschaltung

Das Konzept der Aufschaltung ist in Abbildung 2.17 [HW98] dargestellt. Die
Reglerstruktur mit Beobachter soll an dieser Stelle nicht näher betrachtet werden; sie
wird in verschiedenen Arbeiten untersucht und diskutiert, unter anderem in [HW98],
[Hen97], [HJW02].

Abbildung 2.18: Neuronale Netzwerke zur Kompensation nichtlinearer Reibung

Abbildung 2.18 [KHH04] zeigt den Aufbau der Kompensation. Als Approximato-
ren werden zwei neuronale Netze verwendet, die jeweils einen Teil des nichtlinearen
Effektes abbilden.

Insgesamt lässt sich erkennen, dass neuronale Netze als ergänzende Methode bei
nichtlinearen Problemen eingesetzt werden können. Voraussetzung ist jedoch immer
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die Trainierbarkeit des Netzes. Dazu muss der nichtlineare Teilaspekt isolierbar vor-
liegen und hinreichend reproduzierbar sein. Die direkteModellierung eines gewünsch-
ten Verhaltens, wie es beispielsweise in der klassischen analytischen Regelungstech-
nik möglich ist – z. B. durch Vorgabe eines bestimmten Übertragungsverhaltens –
ist mit neuronalen Netzen nicht möglich. Das Potential für die Selbstoptimierung
liegt vielmehr in der (automatisierten) Abbildung von nichtlinearen Verhalten. Hier
könnten ANN zur Abbildung eines Verhaltensmodells für eine Optimierung einge-
setzt werden. Auch ist der Ansatz der nichtlinearen Kompensation viel versprechend.

2.2.7 Planungsorientierte Verfahren

Für die Durchführung von komplexeren Handlungsschritten reicht eine mehr oder
weniger direkte Kopplung zwischen Sensorik und Aktorik nicht aus. Weder regelungs-
technische noch verhaltensbasierte Systeme sind in der Lage, Aktionen auf abstrak-
ter Ebene vorauszuplanen, d. h. strategisch zu handeln. Jedoch ist eine abstrakte
und somit diskrete Planung von Handlungsschritten ohne die Berücksichtigung des
technischen Systems und letzten Endes der kontinuierlichen Regelungstechnik nicht
zielführend. Einige konkrete Vorschläge für die Lösung dieses Problems finden sich
in der Agententechnik (vgl. Abschnitt 2.5) als sogenannte hybride Schichtenansätze.

Sensors

Basic Worldmodell

Sit. Classification

Group level tactics

Team-level tactics

Reactive Component Deliberativ Component

Action Selection

Abilities

Effectors

Abbildung 2.19: Hybride Architektur

Ein Beispiel für hybride Architekturen, insbesondere bei mobilen Robotern, fin-
det sich bei [DFL02] (siehe Abbildung 2.19). Die Arbeit zeigt ein Teilergebnis
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des DFG-Schwerpunktprogramms Kooperierende Teams mobiler Roboter in dyna-
mischen Umgebungen (SPP-1125) [DFG07]. Weitere Beispiele für solche Architek-
turen sind 3T [BFG+97] oder Saphira [Kon97]. Ein Beispiel für eine agentenbasierte
Steuerung des Saphira-Systems findet sich in [GCJK97].

Abbildung 2.19 [DFL02] macht auch deutlich, dass es sich bei den hybriden
Schichtenmodellen nicht um einen neuen methodischen Lösungsansatz handelt, son-
dern um eine Kombination von reaktiven und planenden Agenten. Das Schichten-
modell zeigt einen Weg, diese Methoden zu kombinieren und umzusetzen.

Ein weiteres wichtiges Modell für die Modellierung von Planungssystemen ist das
sogenannte BDI-Modell (Beliefs-Desires-Intentions) [Bra87], [RG95]. Dabei werden
drei Arten von Systemzuständen unterschieden:

• Beliefs (Modell der Umwelt)

• Desires (steuert Aktionen auf der Basis der gegenwärtigen Beliefs)

• Intentions (bezeichnet (Teil-)Pläne zur Verwirklichung von Zielen)

Ein Modell der Umwelt kann beispielsweise eine bestimmte Position in einem
Koordinatensystem sein, von dem der Roboter annimmt, dass er sich dort befindet.
Es handelt sich also nicht um ein spezifisches mathematisches Dynamikmodell, wie
es in der Mehrkörperdynamik verwendet wird, sondern allgemein um bekanntes Fak-
tenwissen über die Umgebung. In einigen Fällen wird das technische System selbst
als ein Teil des Umwelt-Modells angesehen. Die Steuerung der Aktion (Desires) gibt
die aktuelle Handlung vor. Bezogen auf das Beispiel autonomer Roboter, ist dies
beispielsweise eine zu erreichende Position. Die (Teil-)Pläne sind Handlungsfolgen,
die als Aktionen ausgeführt können. Pläne werden aktiv, wenn das Umweltmodell
neue Zustände erreicht.
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Abbildung 2.20: BDI-Architektur

Abbildung 2.20 [KK07] zeigt schematisch den Aufbau eines Agenten (vgl. Ab-
schnitt 2.5) mit BDI-Architektur. Grundsätzlich unterscheidet dieser Ansatz nicht
zwischen (eigenem) System und Umwelt (rechts). DieWahrnehmung (unten) bezieht
sich damit auf alle, beispielsweise durch Sensoren aufgenommene, Informationen.
Aktionen sind Ausgangswerte oder Ausgangsinformationen aus dem Agenten, die
direkt oder indirekt zu Tätigkeiten (z. B. Bewegung, Aktorik) führen. Der Ablauf
in der Mitte des Agenten beschreibt eine Folge von internen Berechnungen, die sich
in die Phasen (1) Wahrnehmen und Bewerten, (2) Lernen und (3) Bewertung und
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Auswahl von Aktionen gliedert. Als Grundlage für Bewertung und Auswahl von Ak-
tionen stehen Informationen aus der Wissensbasis zur Verfügung. Diese bestehen in
diesem Fall aus internen Zuständen, Weltzustand (Wissen über die Umgebung) und
dem geplanten Zustand. Für die Auswahl von Aktionen können allgemein Bedürf-
nisse, Annahmen (Erweiterung des Faktenwissens) und Ziele herangezogen werden.
Der eigentliche Lernprozess erweitert die Wissensbasis durch die Bewertung von er-
folgreichen und nicht erfolgreichen Handlungen, aber auch durch die Erweiterung
von allgemeinem Faktenwissen, wie beispielsweise der Position erkannter Hindernis-
se. Eine erste Integration eines Planungssystems auf der Basis von Faktenwissen in
die CAE-Umgebung CAMeL-View wird in [KO04] gezeigt.

2.3 Methodik zum Entwurf mechatronischer
Systeme

Vorgehensmodelle für die Entwicklung technischer Systeme erlauben eine einfachere
Strukturierung des Entwicklungsprozesses, bieten aber darüber hinaus die Chan-
ce, Informationen zu kanalisieren. Dies sind wesentliche Voraussetzungen für einen
durchgängigen und planbaren Entwicklungsprozess. Bestimmte Vorgehensmodelle
lassen sich auf die Entwicklung selbstoptimierender Systeme übertragen. Entschei-
dend ist hierbei die Nutzung des Informationsgewinns, der sich bei selbstoptimieren-
den Systemen ergibt. Im Folgenden werden zunächst, ausgehend von dem V-Modell,
die einzelnen Stufen beschrieben, die in der Entwicklung auftreten, und anschließend
ein mögliches Vorgehensmodell für selbstoptimierende Systeme skizziert.

2.3.1 V-Modell für die Entwicklung mechatronischer
Systeme

Um die einzelnen Abschnitte bei der Entwicklung technischer, insbesondere mecha-
tronischer Systeme formal beschreiben zu können, wurden im Laufe der Zeit ver-
schiedene Vorgehensschemata entworfen. Einige idealisierte Vorstellungen wie etwa
das Wasserfallmodell (vgl. [Roy87] und [Boe81]) erwiesen sich in der Praxis jedoch
als nicht anwendbar [Ehr95].

Das Wasserfallmodell geht von abgestuften Entwicklungsschritten aus, bei denen
die Information von einer Treppe zur nächsten „fließt“. Der Wasserfall symbolisiert
dabei die Durchgängigkeit der Informationsverarbeitung. Ist ein Arbeitsschritt nicht
erfolgreich, so wird zum vorherigen Schritt zurückgekehrt. Als entscheidender Er-
kenntnisgewinn formte sich mit der Zeit die Notwendigkeit von iterativen Zyklen bei
der Entwicklung heraus. Bei vielen technischen Entwicklungen sind einzelne Schrit-
te weder unabhängig parallel, noch sequentiell zu bearbeiten. Den entscheidenden
Durchbruch brachte die Überlegung, dass auch zwischen weit auseinander liegenden
Entwicklungsschritten Beziehungen existieren. Diese Beziehungen ergeben sich aus
dem Top-Down-Ansatz vieler Entwicklungskonzepte, besonders in der Informatik,
aber auch in der Konstruktionssystematik (siehe insb. [PB97]).

Beim Top-Down-Ansatz11 wird ein komplexes Gesamtproblem durch die schritt-
weise Zerlegung in immer konkretere Teilprobleme aufgeteilt, die dann nach einzelner

11Im Gegensatz zu Bottom-Up, bei dem konkrete Teillösungen am Anfang stehen, um zum einem
komplexen Ganzen zusammengefügt werden.



36 Kapitel 2

Implementierung wieder zu einer Gesamtlösung zusammengesetzt werden. Konkret
bedeutet dies, dass beispielsweise ein Programm in Module zerlegt wird, diese Modu-
le implementiert, einzeln getestet und dann zu einem Gesamtprogramm schrittweise
integriert werden.

Anforderungs-
definition

Grobentwurf

Feinentwurf

Modul-
implementation Modultest

Integrationstest

Systemtest

Abnahmetest
Anwendungsszenarien

Testfälle

Testfälle

Testfälle

Validierung

Verifikation

Abbildung 2.21: Das V-Modell der Informatik

Das V-Modell ist ein Ansatz zur Formalisierung des Top-Down-Ansatzes unter
Berücksichtigung der Erfahrungen, die sich aus dem Wasserfallmodell ergeben ha-
ben. Wie in Abbildung 2.21 dargestellt wird, erfolgt auf der rechten Seite des V-
Modells eine Zerlegung des Gesamtproblems in Teilprobleme, was einer Top-Down-
Entwicklung entspricht. Ausgehend von einem globalen abstrakten Modell, verfeinert
man dieses immer weiter, um letzten Endes zu einer Ausarbeitung der Teilaufgaben
zu gelangen. Sind diese Teilaufgaben abgearbeitet, erfolgt eine Integration der in den
Teilaufgaben entwickelten Teillösungen. Der Grad der Integration (des Systems) der
linken Seite korrespondiert dabei mit dem der rechten Seite. Diese Korrespondenz er-
laubt in beide Richtungen Rückschlüsse auf Verbesserungsmöglichkeiten bzw. dient
der Verifikation. Ein notwendiger Iterationsschritt, der zu einem überarbeiteten Er-
gebnis führt, erfolgt dabei durch horizontale Bewegung von rechts nach links im
V-Modell. Folgt man den Schritten bis zum Ausgangspunkt, ergibt sich ein Zyklus
innerhalb des V-Modells.

Für die Abbildung komplexer Entwicklungsvorgänge in der Informationsverar-
beitung ist das V-Modell gut geeignet. Jedoch beschreibt es nur unzureichend die
Reifung eines Produktes, bei dem der beschriebene Entwicklungspfad grundsätzlich
mehrfach durchlaufen wird. Beim V-Modell der Informatik wird vielmehr davon
ausgegangen, dass ein Rückschritt eine Reaktion auf eine Unzulänglichkeit ist und
nicht ein regulärer Schritt der Entwicklung. Dadurch sind teilweise Entwicklungs-
vorgänge, wie sie in der Praxis vorkommen, nicht oder nur sehr schwer abzubilden
[Ray01]. Insbesondere der Entwurf von technischen Systemen kann nicht als linearer
Prozess angesehen werden. Beispielsweise sind dynamisches Verhalten (geregeltes
System) und konkrete Gestalt eines mechatronischen Systems nicht völlig unabhän-
gig voneinander zu entwickeln, da die Gestalt wichtige Parameter wie Massen oder
Dämpferkonstanten endgültig festlegt, aber die Dynamik wiederum Anforderungen
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an die Gestalt, wie beispielsweise notwendige Festigkeiten, liefert. Somit sind vie-
le technische Lösungen nur iterativ zu entwickeln. Diese aus der Praxis gewach-
sene Erfahrung ist in den Entwicklungskreislauf der Mechatronik eingeflossen (vgl.
z. B. [HJW02, Toe02, Bec03, Nye06]). Der Entwicklungskreislauf der Mechatronik
beschreibt die Kernphasen der Mechatronikentwicklung als einen stetig zu durchlau-
fenden Kreislauf, der bei jedem Durchlauf eine Verbesserung des Produktes durch
Einfließen der Erfahrungen des vorherigen Schrittes vorsieht. In [Nau00] wird dieser
Kreislauf bereits auf die Entwicklung intelligenter vernetzter Systeme vorbereitet.
Jedoch standen bei diesem Ansatz vor allem die Einbindung in eine Entwicklungs-
umgebung und die Integration der verschiedenen Modellierungsebenen MFM, AMS
und VMS (vgl. Abschnitt 2.4.3) und nicht die Nutzung von Entwicklungsergebnissen
für eine spätere Optimierung im Vordergrund.

Eine wesentliche Ergänzung beschreibt die mechatronische Komposition als Kern-
konzept des mechatronischen Entwurfs [LTB+99]. In der Phase der Konstruktion
eines Produktes geht die Phase der mechatronischen Komposition dem technischen
Entwurf voraus. Sie besteht selbst aus den Phasen Modellbildung, Analyse und
Synthese. Sowohl die Konstruktionsphase als auch die mechatronische Komposition
können dabei mehrfach durchlaufen werden, falls die Ergebnisse der Phasen etwa die
Anforderungen an das Produkt nicht erfüllen oder neue Erkenntnisse durch die Un-
tersuchungen eine Neukonzipierung sinnvoll erscheinen lassen. Gute Erläuterungen
und Umsetzungen des Konzepts finden sich z. B. in [Toe02] und in [Bec03].

Weitere Ansätze zur Entwicklung eines Vorgehensmodells bezogen sich auf eine
Kombination verschiedener vorhandener Ansätze. Ein Ansatz ist, den mechatroni-
schen Entwicklungskreislauf in das V-Modell zu integrieren [GL00]. Dieses Vorge-
hensmodell kann als direkte Weiterentwicklung des mechatronischen Entwicklungs-
kreislaufs angesehen werden.

Bei der Entwicklung der VDI-Richtlinie 2206 [Ver03] wurden die verschiedenen
Ansätze zur strukturierten Entwicklung auf ihre Anwendbarkeit in realen Entwick-
lungsszenarien technischer Produkte hin diskutiert. Hierbei zeigte sich, dass das zy-
klische Durchlaufen verschiedener Entwicklungsphasen nicht allein auf den Mecha-
tronikentwurf beschränkt bleiben darf. Die einzelnen Entwicklungsphasen werden
durch mehrfache ineinander geschachtelte „Vs“ dargestellt. Nach jedem Durchlauf
fließt der Erkenntnisgewinn in die nächste Entwicklungsphase ein – bis zum ferti-
gen Produkt. Bei jedem Durchlauf ergeben sich neue Anforderungen an die nächste
Phase. Folgt man dieser Entwicklungsspirale weiter nach außen, wächst nach jedem
Zyklus der Reifegrad des Produkts.

Dieser Ansatz integriert alle Phasen der Produktentwicklung. Entscheidend ist
hier die Unterscheidung in sogenannte Mikro- und Makrozyklen. Ein Mikrozyklus
beschreibt die iterative Entwicklung eines technischen Aspekts bzw. das zyklische
Durchlaufen einzelner Entwicklungsschritte innerhalb des V-Modells. Ein Makrozy-
klus wird durch das vollständige Durchlaufen eines Vs gebildet – von der Produk-
tidee bis zum fertigen Produkt. Dabei ist das Ergebnis nicht zwangsläufig – wie
beim klassischen V-Modell – ein marktfähiges Produkt, sondern ein zu erreichendes
Zwischenergebnis, für das aber ein Entwicklungszyklus durchlaufen werden muss.

Das V-Modell nach [Ver03] beschreibt den Ablauf einer systematischen Entwick-
lung in mehreren Makrozyklen. Jedoch wird bei diesem Ansatz immer noch von einer
Ausarbeitung der technischen Details in separaten Domänen ausgegangen. Dieser
Entwicklungsschritt wird als domänenspezifischer Entwurf bezeichnet. Grundlage
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bildet die Überlegung, möglichst genau alle Teilfunktionen schon beim mechatroni-
schen Entwurf festzulegen, um dann in getrennten Bereichen die technischen Details
auszuarbeiten. Hierbei wird jedoch nicht berücksichtigt, dass besonders bei mechatro-
nischen Systemen eine isolierte, domänenspezifische Entwicklung von Teilfunktionen
nicht zielführend ist [PB97].
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Abbildung 2.22: Das V-Modell als Referenzmodell zur Entwicklung mechatronischer
Produkte

Abbildung 2.22 zeigt das V-Modell nach [GL00]. Die Entwicklung eines Pro-
dukts ist dabei in die Phasen Produktfindung, Produktkonzipierung, Produktent-
wurf, Produktausarbeitung, Fertigungsplanung, Fertigung und Nutzung eingeteilt.
Der mechatronische Entwicklungskreislauf umschreibt die Phasen Modellbildung
über Hardware-in-the-Loop-Simulation bis zum Prototyp.

2.3.2 Anwendung auf Selbstoptimierung

Die Betrachtung der verschiedenen Konzepte zur Formalisierung der Produktent-
wicklung zeigt eine wesentliche Gemeinsamkeit: Sie beschreiben nicht nur den for-
malen Ablauf, sondern auch den Informationsfluss. Jede Phase beschreibt eine Er-
weiterung und Verfeinerung der Erkenntnisse über ein Produkt. Während der Ent-
wicklung werden Modelle aufgebaut, verfeinert und eventuell wieder verworfen. Die
Selbstoptimierung kann diese Informationen nutzen. Insbesondere die Modellbildung
kann hier eine zentrale Rolle spielen.

Zudem wird deutlich, dass die Selbstoptimierung eines fertigen Produktes als
weitere Iterationsschleife des V-Modells aufgefasst werden kann. Somit ist es nahe-
liegend, die bisherigen Ansätze durch weitere Entwicklungszyklen, die während des
Betriebes folgen, zu erweitern.
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Abbildung 2.23: Vorschlag für ein V-Modell der Selbstoptimierung (modellbasiert)

Werden verschiedene Schritte der Selbstoptimierung auf das V-Modell übertra-
gen, gelangt man zu einem Phasenmodell für Selbstoptimierung, das sich in die
bisherigen Konzepte integrieren lässt. Abbildung 2.23 zeigt einen Vorschlag für den
Ablauf einer modellbasierten Optimierung. Das Modell ist bewusst abstrakt gehal-
ten. Im Gegensatz zum V-Modell mit dem integrierten mechatronischen Entwick-
lungskreislauf, das zur Entwicklung oder Weiterentwicklung eines Produktes dient,
bezieht sich das V-Modell bei Selbstoptimierung zunächst auf die Optimierung von
Systemverhalten durch Veränderung der Systemparameter. Eine Veränderung der
Struktur des Systems ist nur auf Ebene der (regelnden) Informationsverarbeitung
möglich, z. B. durch Austausch eines Reglers.

Die erkennbaren Parallelen deuten darauf hin, dass es das Ziel bei der Entwick-
lung von selbstoptimierenden Systemen sein muss, ingenieurwissenschaftliches Vor-
gehen im Rechner abzubilden. Dieser Weg geht damit über die bisherigen Ansätze
der Informatik, wie sie im Rahmen der verhaltensbasierten Systeme und der Künst-
lichen Intelligenz entstanden sind, hinaus.

2.3.3 Vorgehen beim modellbasierten Systementwurf

Für die Entwicklung komplexer technischer Systeme ist die Modellbildung ein wich-
tiges Hilfsmittel, um Eigenschaften des späteren Produktes festzulegen und zu tes-
ten. Grob lassen sich Modelle in reale und virtuelle Modelle (z. B. mathematisch
und/oder rechnergestützt) unterteilen. Reale Modelle zählen zu den ältesten Hilfs-
mitteln für die Entwicklung von technischen Geräten. Heute gewinnen jedoch virtu-
elle Modelle zunehmend an Bedeutung, zu denen im Maschinenbau vor allem ma-
thematisch formulierte, physikalische Modelle gehören, die im Rechner mit Hilfe von
Software abgebildet werden. Da der Bau von realen Prototypen zeit- und kostenin-
tensiv ist, bestehen Bestrebungen, die Anzahl der physikalischen Prototypen auf ein
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Minimum zu beschränken. Der Einsatz von virtuellen Prototypen kann dies, durch
die Analyse im Rechner, wirkungsvoll unterstützen. Als Erweiterung des so genann-
ten Digital Mock-Up, der die 3D-Gestaltmodelle und die Produktstruktur umfasst,
werden beim virtuellen Prototypen zusätzliche Aspekte wie Kinematik, Dynamik,
Festigkeit, etc. berücksichtigt. Das Beispiel der Boeing 777, die als erstes Flugzeug
vollständig mit 3D-CAD-Systemen einschließlich des virtuellen Zusammenbaus ent-
wickelt wurde, zeigt die Leistungsfähigkeit der virtuellen Betrachtung [GEK01].

Eine wichtige Voraussetzung dieser Vorgehensweise ist, dass die simulierten Ei-
genschaften mit der Realität, also mit dem zu entwickelnden oder vorliegenden Sys-
tem hinreichend genau übereinstimmen. Diese Überprüfung ist jedoch insbesondere
bei Neukonstruktionen besonders in den frühen Phasen nicht immer realisierbar.
Die Anwendung der Modellbildung und der Simulation erfordert deshalb eine stän-
dige Überprüfung der Plausibilität und eine kritische Grundhaltung der Entwickler
gegenüber den Simulationsergebnissen.
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Abbildung 2.24: Vorgehen beim modellbasierten Systementwurf

Abbildung 2.24 beschreibt die Phasen Zielformulierung, Modellbildung, Model-
lanalyse, Systemsynthese und Systemanalyse beim modellbasierten Systementwurf
[Ver03].
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Zielformulierung: Der erste Schritt ist die Festlegung von Untersuchungszielen
und -aufgaben. Daraus ergeben sich geeignete Methoden und Modellierungs-
verfahren. Folgende Gründe können eine Modellbildung motivieren:

• Prinzipuntersuchungen an neu zu entwickelnden Systemen

• Zielgerichtete Reglerauslegung

• Analyse und Optimierung bestehender Systeme

• Ergänzung oder Bestimmung von schwer messbaren Daten

• Zu hoher (Kosten-) Aufwand oder Risiko (für Mensch oder Technik) für
experimentelle Untersuchungen

• Zu hoher Zeitaufwand bei experimentellen Untersuchungen oder Blick in
die Zukunft (Verschleiß, Alterung, dynamische Belastung).

• Reduktion des Prototypenaufwands (schrittweise Realisierung von Teil-
komponenten)

• Hardware-in-the-Loop-Simulation zur Funktionsverifikation von Teilkom-
ponenten

Modellbildung: Es werden schrittweise physikalisch-mathematische Modelle mit
Hilfe von geeigneten Entwicklungsumgebungen entworfen. In vielen Fällen ge-
hen Skizzen oder erste mathematische Abschätzungen der Implementierung
im Rechner voraus.

Modellanalyse: Auf Basis des Modells werden die Eigenschaften und das (dynami-
sche) Verhalten des zu untersuchenden Systems analysiert. Diese Phase liefert
Erkenntnisse für die nachfolgende Systemsynthese.

Systemsynthese: In der Synthese werden die Erkenntnisse und Ergebnisse der
Modellanalyse auf das zu entwickelnde System übertragen. Lösungselemente
werden ergänzt und mit vorhandenen Wirkprinzipien verfeinert und optimiert.

Systemanalyse: Das entwickelte System wird nun analysiert und bewertet. Da-
bei werden die Entwicklungsziele mit dem Ergebnis verglichen. Gegebenen-
falls sind Rücksprünge in vorhergehende Entwicklungsschritte notwendig. Mit
welcher Effizienz Mängel identifiziert und durch iteratives Durchlaufen der
Entwicklungsschritte behoben werden, hängt wesentlich von der Wahl des Mo-
dells ab (zugrunde gelegte Mathematik/Physik, Modellierungstiefe, Vernach-
lässigungen/Detaillierungen etc.).

Wird dieses Vorgehensmodell auf und in selbstoptimierende Systeme übertragen,
zeigen sich folgende Parallelen:

Zielformulierung entspricht im Kontext der selbstoptimierenden Systeme der Be-
stimmung der Systemziele.

Modellbildung und Modellanalyse entsprechen der Analyse der Ist-Situation
z. B. durch Online-Identifikation des System- und Umgebungszustandes. Der
automatisierte Aufbau von physikalisch deutbaren Modellen ist nach bisheri-
gem Kenntnisstand zwar nicht möglich, jedoch die Bildung von Modellen mit
Hilfe von universellen Approximatoren (vgl. Abschnitt 2.3.4).
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Systemsynthese und Systemanalyse entsprechen der Anpassung des System-
verhaltens.

Damit entsprechen wesentliche Phasen des modellbasierten Entwurfs den Phasen
die für selbstoptimierende Systeme definiert sind, wie in Abschnitt 2.1.2 beschrieben
wurde. Somit ist eine wesentliche Eigenschaft von selbstoptimierenden Systemen, zu-
mindest Teile des ingenieurwissenschaftlichen Vorgehens beim modellbasierten Syste-
mentwurf im Rechner abzubilden. Werden physikalische deutbare Modelle eingesetzt
ist der Nutzen für eine spätere Weiterentwicklung von Modellen im modellbasierten
Entwurf nicht zu unterschätzen. Selbstoptimierende Systeme haben dadurch das
Potential den Aufbau von Erfahrungswissen zu unterstützen, der in den Phasen
Produktentwurf und Produktausarbeitung gemacht werden kann.

2.3.4 Modellbildung mechatronischer Systeme

Reale Modelle bildeten schon seit jeher die Grundlage physikalischer Experimente.
Der haptische Umgang mit Modellen, die an das zu lösende Problem angepasst sind,
erlaubt die Untersuchung bestimmter physikalischer Wirkzusammenhänge, unabhän-
gig von der Gesamtkomplexität eines technischen Systems.

Seit Entwicklung des Mikrorechners ist es möglich, physikalisches Verhalten voll-
ständig im Rechner zu simulieren. Grundlage bildet hier die mathematische Abbil-
dung physikalischer Vorgänge. Dadurch ist es dem Entwickler möglich, schon weit vor
dem ersten Prototypen das Verhalten des späteren realen Systems abzuschätzen und
Optimierungen durchzuführen. Viele der Mechanismen, die in der modellbasierten
Optimierung eingesetzt werden, sind auf selbstoptimierende Systeme übertragbar
(vgl. Abschnitt 2.2).

Damit ist die modellbasierte Optimierung zur Laufzeit eine wichtige Komponente
der Selbstoptimierung von mechatronischen Systemen, die nur mit Hilfe geeigneter
rechnergestützter Modelle möglich ist. Da eine Optimierung parallel zur realen Zeit
erfolgen muss, gegebenenfalls sogar schneller als die reale Zeit, sind geeignete Simu-
lationsverfahren erforderlich, die diesen Anforderungen genügen. Dies Thema wird
im Kapitel 4 vertieft.

Darüber hinaus sind Modelle gegebenenfalls mit realen Systemen gekoppelt,
was zu sog. Hardware-in-the-Loop (HiL) Simulationen führt. Die Kopplung digi-
taler Reglersysteme mit technischen Systemen stellt dabei ähnliche Anforderun-
gen wie Hardware-in-the-Loop. Somit spielt es aus Anforderungssicht keine Rolle,
ob ein (Teil-)Modell für Hil-Simulation, Echtzeit-Beobachtermodelle oder Echtzeit-
Optimierung eingesetzt wird.

Bei der Simulation mechatronischer Systeme muss neben dem Verhalten der Teil-
systeme auch ihr Einfluss untereinander betrachtet werden. Erschwerend kommt
hinzu, dass sich die Systemelemente oft nicht einer wissenschaftlichen Disziplin zu-
ordnen lassen; sie enthalten Funktionen mindestens zweier Disziplinen und bilden
Schnittstellen zwischen den beteiligten Teilsystemen, z. B. Hydraulikzylinder oder
elektrische Gleichstrommotoren. Aufgrund dieser Heterogenität sind vielfältige IT-
Werkzeuge im Einsatz, um die Simulation eines mechatronischen Gesamtsystems
durchzuführen: beispielsweise Werkzeuge, die möglichst viele Wissensdomänen ab-
decken, Import von Modellen anderer Werkzeuge in ein Simulationsprogramm oder
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getrennte Simulation der Teilsysteme mit verschiedenen Werkzeugen und anschlie-
ßendem Ergebnisaustausch [Dür99]. Die Herausforderung besteht darin, die relevan-
ten IT-Werkzeuge zu einer Entwicklungsumgebung zusammenzuführen und das Zu-
sammenspiel der Werkzeuge modell-, system-, prozess- und verfahrenstechnisch zu
unterstützen.

4. Zustandsdarstellung 

x

Abbildung 2.25: Abstraktionsebenen im Modellbildungsprozess

Nach [Ver03] werden vier Abstraktionsebenen des Modellbildungsprozesses unter-
schieden, die aufeinander aufbauen (vgl. Abbildung 2.25). Aus diesem Aufbau lässt
sich ein allgemeiner Ablauf für den modellbasierten Entwurf ableiten. Dies wird
im folgenden Abschnitt 2.3.5 näher erläutert. In Abbildung 2.25 ist zu erkennen,
dass ein Modell aus verschiedenen Abstraktionsebenen besteht und sich schrittweise
entwickeln lässt, wobei jede Ebene über eine eigene, spezifische Darstellungsform
verfügt.

Eine Anwendung findet sich bereits in [Hah99] für das CAS-System CAMeL-
View. Die Ebenen topologisches Modell und physikalisches Modell sind jedoch zusam-
mengefasst. Daraus abgeleitet ist das objektorientierte Mechatronikmodell (vgl. Ab-
schnitt 2.3.6).

2.3.5 Abstraktionsebenen in der Modellbildung

Grundsätzlich bestimmen das Ziel der Modellbildung und die Beschaffenheit des rea-
len Systems die Art des Modells und die Modellierungstiefe12. Für Neuentwicklungen
sind andere Modellierungsansätze zu wählen als für Optimierungen an bestehenden
Produkten. Für eine ganzheitliche Vorgehensweise ist die Verbindung domänenspe-
zifischer Teilmodelle erforderlich. Dabei ist jedoch zu beachten, dass die mathema-
tische Darstellung der Teilmodelle kompatibel sein muss, sonst kann es zu schwer
erkennbaren oder schwer deutbaren Effekten kommen [SS01].

12Modellierungstiefe bezeichnet im Allgemeinen den Detaillierungsgrad eines Modells
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In den letzten Jahren wurden jedoch verschiedene Anstrengungen unternommen,
die Probleme bei der Kopplung von Modellen auf Modell- und Simulationsebene zu
lösen (siehe z. B. [LDHS01], [SS01]).

Einen Ausweg bieten hier eine Normierung der mathematischen Darstellung und
eine Kopplung der Teilmodelle auf topologischer oder physikalischer Ebene. Insbe-
sondere für die Darstellung dynamischer Effekte bietet sich das Vorgehen nach einem
vierstufigen Modellabstraktionsprozess an.
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Hierarchie

z. B. Massenmodell,
physikalische Komponenten

Domänenunabhängige
Beschreibung des Verhaltens

Ausführbare, rechnernahe
Darstellung

Verhalten bestimmende
Parameter festlegen

Simulation, Verifikation
Analyse und Vergleich

mit Messdaten

Abstraktionsebenen

Modellgüte
ausreichend ?

Modellbildung beendet

Nein

Modellanpassung

Ja

Beginn der Modellbildung

1

2

3

4

Abbildung 2.26: Modellabstraktionsebenen im Modellbildungsprozess

Abbildung 2.26 [GL00] zeigt die Ebenen, nach denen eine Modellintegration er-
folgen kann. Es zeigt außerdem den Ablauf bei der Modellbildung. Die Darstellung
hat vor allem bei der Modellierung dynamischer mechatronischer Systeme große Be-
deutung. Die Ebenen bilden verschiedene Abstraktionslevel, auf denen das System
als Modell repräsentiert wird. Jede Ebene leitet sich aus der nächst höheren ab, ab-
strahiert diese zum Teil und ergänzt neue Eigenschaften, die auf der höheren Ebene
nicht darstellbar waren.

Das topologische Modell dient der Modellierung der Systemtopologie, also der
Anordnung und Verknüpfung von Funktionselementen (Baugruppen, Module,
Aggregate, Lösungselemente etc.). Dabei repräsentiert ein Element im Allge-
meinen die drei Basisfunktionen kinematische Funktion, dynamische Funktion
und mechatronische Funktion.

Die kinematische Funktion kann im Allgemeinen zunächst unabhängig vom
weiteren Verhalten des Gesamtsystems entworfen werden. Dies sind beispiels-
weise die Stellwege einer Hydraulik, die sich aus Bauweise und Anordnung der
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Zylinder ergeben, oder die Freiheitsgrade und Bewegungsmöglichkeiten eines
Handhabungsgerätes. Die dynamische Funktion basiert auf dem Entwurf der
Kinematik. Die Dynamik legt das Bewegungsverhalten von bewegten Massen
fest. Erst in diesem Schritt können konkrete Aussagen zur notwendigen Leis-
tung und Bandbreite von Antrieben bestimmt werden. Auch die Bewegungs-
gleichungen des Systems lassen sich nun bestimmen. Ist das dynamische Verhal-
ten bestimmt, so wird das System durch die mechatronische Funktion ergänzt.
Für die Kontrolle der Dynamik wird hier eine Regelung benötigt. Aber auch
weitere Funktionen, die zur Kontrolle des Systems dienen, etwa Bahnsteuerun-
gen, sind gegebenenfalls Teil der mechatronischen Funktion. Diese drei Phasen
des Entwurfs können weiter untergliedert sein.

Das topologische Modell repräsentiert darüber hinaus die Beziehungen und
Verkopplungen der verschiedenen Teilfunktionen und Komponenten, auch und
insbesondere auf informationstechnischer Ebene.

Das physikalische Modell ergibt sich zum Teil automatisch aus dem topologi-
schen Modell. Beispielsweise lassen sich aus der Kinematik und den bekannten
Masseverhältnissen die dynamischen Bewegungsgleichungen des ungeregelten
Systems ableiten.

Das mathematische Modell beschreibt im Wesentlichen das Verhalten des Sys-
tems. Dazu wird das physikalische Modell in eine abstrakte, domänenunab-
hängige Darstellung überführt. Die physikalischen Eigenschaften werden durch
mathematische Funktionen beschrieben.

Das numerische Modell stellt zugleich ein im Rechner simulierbares Modell dar.
Im einfachsten Fall ist es eine Aufbereitung des mathematischen Modells, so
dass es algorithmisch behandelt werden kann. Die Simulationsergebnisse hän-
gen dabei auch vom verwendeten Lösungsverfahren ab. Welche Verfahren zur
Lösung verwendet werden können, hängt dabei vor allem von der mathemati-
schen Darstellung ab, die letzten Endes auch über Echtzeitfähigkeit und die
Möglichkeit zu Hardware-in-the-Loop-Simulationen entscheidet.

Erst alle vier Ebenen bilden gemeinsam das Gesamtmodell ab. Eine Änderung
auf einer Ebene hat zwangsläufig Auswirkungen auf die darunterliegenden Ebenen.

Für die Modellbildung schließen sich weitere Schritte nach der Erstellung des Mo-
dells an. So muss das Modell parametriert werden. Dies kann durch eine Identifikati-
on des realen Systems erfolgen. Durch Verifikation und Validierung wird abschließend
sichergestellt, dass das Modell korrekt ist und die Wirklichkeit hinreichend genau
abbildet. Bei einer konkreten Entwicklung würden diese Phasen nach dem V-Modell
und dem Entwicklungskreislauf der Mechatronik mehrfach durchlaufen.

Durch die Darstellung in vier Modellebenen kann das Optimierungspotential für
die Selbstoptimierung auch für realisierte Systeme erfasst werden. Eine Verbesserung
des Systems ist demnach auf allen Ebenen denkbar. Je höher die Ebene (Topologie
als höchste Ebene), umso größer sind jedoch der Änderungsaufwand und der Prüf-
aufwand zur Sicherstellung der Funktion vor der Änderung im laufenden Betrieb.

Die vier Ebenen lassen auf das folgende Optimierungspotential schließen:

Topologie Auf dieser Ebene ist eine strukturelle Optimierung denkbar. Durch Re-
konfiguration und Rekombination von Elementen können die Funktionsweise
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und das Verhalten verändert werden. Hierzu gehört auch das Austauschen
eines Reglers.

Physik In dieser Ebene werden zur Topologie Wirkelemente beschrieben. Ein Sys-
temelement, wie z. B. die Erzeugung einer Kraft, wird hier konkretisiert. Eine
Optimierung muss an dieser Stelle an der physikalischen Wirkweise ansetzen.
Dabei spielt das komplexe Zusammenspiel zwischen Komponenten eine Rolle.
Ein Beispiel für eine Optimierung auf dieser Ebene ist die Veränderung der
Lastverteilung zwischen verschiedenen Motoren eines Roboterarms.

Mathematik Die mathematische Darstellung eines Systems leitet sich im Allge-
meinen aus der physikalisch-topologischen Sicht ab. Für rein mathematische
Elemente, wie eine Regelung (analoge Regler ausgenommen), ist eine Optimie-
rung auf Ebene der Mathematik möglich. Dazu gehört der innere Aufbau eines
Regler(-systems), aber auch andere Elemente, die auf dieser Ebene modelliert
werden.

Numerik Auf der untersten Ebene wird das System ausgewertet. Für ein realisier-
tes System ist dies der ausführbare Code der Informationsverarbeitung. Sind
(Teil-)Modelle vorhanden, z. B. bei Hardware-in-the-Loop-Simulationen oder
dem Einsatz von simulierten Modellen zur Optimierung, ergibt sich weiteres
Optimierungspotential. Je nach numerischen Verfahren sind die Ergebnisse
entweder genau oder liegen schneller vor. Für die Auswertung werden mehr
oder weniger Rechenressourcen benötigt. Weiterhin bergen die Verteilung der
Ausführung und das Zusammenspiel der Teilsysteme weiteres Optimierungs-
potential.

2.3.6 Objektorientiertes Mechatronikmodell (OMM)

Die in Abschnitt 2.3.5 dargestellten Grundlagen können auf eine objektorientierte
Modellbildung übertragen werden. Unterstützend für die Wiederverwertbarkeit von
Modellen oder Modellkomponenten und zur Reduktion der Gesamtkomplexität ist
eine modulare, objektorientierte Sicht nötig. Für die Beschreibung von komplexen
mechatronischen Systemen ist offensichtlich eine objektorientierte Beschreibung not-
wendig, die sich an der Physik des Systems anlehnt. Dabei ist die Modellierung auf
der Ebene einer physikalisch-topologischen Darstellung sinnvoll. Jedoch müssen auf
diese Weise beschriebene Modelle auch ausführbar sein und durch mathematische
Funktionen ergänzbar, die keine Physik abbilden, wie die Informationsverarbeitung
und die Regelungstechnik.

Für eine Transformation der physikalisch-topologisch beschriebenen physikali-
schen Zusammenhänge in mathematische Funktionen existieren verschiedene Ab-
leitungsformalismen. Für eine Transformation in ausführbaren Code sind weitere
Übersetzungsschritte notwendig, um letztlich zu einer numerisch auswertbaren und
ausführbaren Darstellung zu gelangen.

In [Hah99] werden die allgemeinen Anforderungen an ein objektorientiertes Me-
chatronikmodell beschrieben (siehe Abbildung 2.27). Dabei wird von einer domänen-
spezifischen Beschreibung auf einer topologisch-physikalischen Ebene ausgegangen.
Die fachspezifische Struktur wird in der Beschreibungsform Objective-DSS13 aufge-
baut bzw. in sie umgewandelt. Im nächsten Schritt wird diese Darstellung in eine

13DSS – Dynamic System Structure
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Abbildung 2.27: Objektorientiertes Mechatronikmodell (OMM)

mathematische Form transformiert (Objective-DSL14). Auf mathematischer Ebene
können weitere Eigenschaften und Funktionen ergänzt werden, die sich nicht aus
der physikalisch-technischen Darstellung ableiten lassen, wie beispielsweise die ma-
thematische Beschreibung von Reglern. Die einheitliche, normierende Darstellung
auf der mathematischen Ebene kann vollständig in eine ausführbare Form (DSC15)
transformiert werden. Hierbei ist zu beachten, dass bei einer Simulation im Rechner
weitere Effekte durch die numerische, quasi-kontinuierliche Auswertung hinzukom-
men, die das zu modellierende System-Verhalten verfälschen können. Daher müssen
für eine Simulation die Randbedingungen, welche die beschreibende Mathematik
als Resultat der zu beschreibenden Physik vorgibt, berücksichtigt werden. Dies sind
beispielsweise die Steifheit des Systems, die Einfluss sowohl auf die Wahl der Schritt-
weite, als auch auf das Auswertungsverfahren hat [Stu96].

Deutlich wird bei dieser Systemmodellrepräsentation, dass die Entwicklung des
Systemmodells in verschiedenen Phasen ablaufen muss, da die mathematische Ebene
erst betreten werden kann, wenn die Topologie festgelegt wurde, und weiterhin eine
Verarbeitung erst nach Festlegung der mathematischen Ebene erfolgen kann. Auf
den ersten Blick erscheint dies ein Vorgehen nach dem Wasserfallmodell zu erzwin-
gen. Jedoch ist, durch die Unterstützung der Entwicklungsumgebung CAMeL-View,
welche dieses Modell verwendet, ein mehrfaches Durchlaufen der Entwicklungsket-
te möglich. Dadurch wird das V-Modell des Mechatronikentwurfs voll unterstützt
(vgl. 2.3.1).

14DSL – Dynamic System Language
15DSC – Dynamic System Code
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2.3.7 Rechnergestützte Simulation

Modelle im Rechner sind zumeist mathematisch formulierte Abbildungen der Rea-
lität. Viele Eigenschaften können durch Anwendung von mathematischen Gleichun-
gen oder anderen Formalismen auf diese Modelle ermittelt werden. Dies sind zum
Beispiel die Ermittlung von Stabilitätseigenschaften in der Regelungstechnik oder
die Erreichbarkeit von Zuständen bei Modellen, die endliche Automaten abbilden.
In vielen Fällen ist es aber nützlich, das Verhalten eines Systems über die Zeit
in einer vorbestimmten Umgebung zu untersuchen. Der Entwickler gewinnt einen
„plastischen“ Eindruck vom späteren Verhalten des realen Systems, das er gerade
entwickelt.

Die rechnergestützte Simulation technischer Systeme ist in der Mechatronik
längst eins der wichtigsten Hilfsmittel zur Abschätzung des Verhaltens eines zu ent-
werfenden Systems geworden. In dieser Arbeit steht die Simulation dynamischer
Vorgänge im Vordergrund, da wir zum einen selbstoptimierende Systeme zunächst
auf mechatronische Systeme beschränken, und zum anderen, weil die Betrachtung
aller heute praktisch relevante Simulationsbereiche den Rahmen dieser Arbeit bei
Weitem sprengen würde. Jedoch lässt sich, ohne Anspruch auf Vollständigkeit, die
Simulation allgemein in verschiedene Bereiche einteilen:

Nicht echtzeitfähige Simulationen 16 spielen bei der Entwicklung und der Er-
probung von mechatronischen Modellen, sowie bei der Reglersynthese eine
wichtige Rolle. Vor allem die nicht verteilten Simulationen sind leicht zu nut-
zen und sowohl im kommerziellen wie auch im nichtkommerziellen Bereich in
vielfältigen Varianten vertreten. Wichtige Vertreter im Bereich Mehrkörpersi-
mulation und rechnergestützte Modellbildung sind Matlab/Simulink [Mat06],
ADAMS [MSC06] und CAMeL-View [iXt06]. Verteilte, nicht echtzeitfähige Si-
mulationen sind am MLaP im Rahmen von IPANEMA entstanden [Hon98],
[Sto04].

Verteilte Simulationen sind Anwendungen, die auf verschiedene Prozessoren
oder Rechnersysteme aufgeteilt ausgeführt werden. Das Spektrum der Kopp-
lung reicht hierbei von sehr enger Kopplung der Rechenkerne (z. B. Integrator-
kopplung oder Zentralintegration) bis hin zu gelegentlichem Datenaustausch
über Dateien. Der Grad der Kopplung hängt dabei wesentlich vom verwende-
ten mathematischen Modell ab. Eine weit verbreitete Art der Kopplung ist
die sog. Simulatorkopplung, bei der Zwischendaten ausgetauscht werden. Der
Begriff ist jedoch nicht klar abgegrenzt.

Ein Problem bei der Kopplung verschiedener Simulationssysteme ist häufig
die Nichtbeachtung der Kompatibilität des mathematischen Lösungsverfahrens
oder des mathematischen Modells, so dass Ergebnisse verfälscht werden kön-
nen. So ist beispielsweise eine Kopplung zwischen Mehrkörpersystemmodellen
und Finite-Elemente-Modelle nur bedingt möglich, wenn Oberschwingungen
des einen Modellteils im anderen nicht berücksichtigt werden können. Weitere
Probleme ergeben sich durch die Kopplung unterschiedlicher Lösungsverfah-
ren (vgl. 4.3). Am MLaP wurden seit Ende der 80er Jahre Simulationen mit
massiv-parallelen Maschinen auf Transputer-Basis durchgeführt (siehe z. B.
[Hon98], [Sto04]).

16Der Begriff der Echtzeitfähigkeit wird in Abschnitt 3.4.2.2 näher diskutiert
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Echtzeitsimulationen lassen die interne Berechnungszeit synchron zur realen Zeit
laufen. Im technischen Bereich ist diese Art von Simulationen vor allem für die
Abschätzung von technischen Vorgängen wichtig. Große Bedeutung hat sie heu-
te vor allem mit einer angekoppelten Visualisierung. Ein weiterer Zweig sind
Echtzeitsimulationen zur Unterhaltung (Echtzeitspiele). Viele der mathemati-
schen Modelle und Lösungsverfahren sind heute sowohl im Bereich der Spiele
als auch für Anwendungen im Ingenieurbereich gebräuchlich, wenn auch mit
anderem Anspruch.

Eine spezielle Form der Echtzeitsimulation ist die Hardware-in-the-Loop-
Simulation.

Hardware-in-the-Loop-Simulationen koppeln ein Modell im Rechner mit einem
realen technischen (Teil-)System. Das technische System wird durch eine ent-
sprechende Aktorik mit realen physikalischen Größen beaufschlagt (z. B. Kräf-
te, Momente, elektrische Energie etc.). Die Rückkopplung erfolgt durch Senso-
ren, welche die Reaktion des technischen Systems erfassen. Weil das System in
die Berechnungsschleife der Simulation eingebunden ist, wird von Hardware-
in-the-Loop gesprochen.

Abbildung 2.28: Hardware-in-the-Loop: Feder-Neigetechnik-Prüfstand der Neuen
Bahntechnik Paderborn

Hardware-in-the-Loop-Simulationen gehören zu den Echtzeitsimulationen. Sie
dienen vor allem der Ermittlung von Daten über das Verhalten eines Prototyps
oder einer Teilkomponente ohne eine reale Umgebung oder ohne ein vollstän-
diges Gesamtsystem. Im letzteren Fall simuliert der Rechner einen Teil des
technischen Systems, im ersten Fall nur die Umgebung [Hon98].

Abbildung 2.28 zeigt den Hardware-in-the-Loop-Prüfstand der Neuen Bahntech-
nik Paderborn. Links ist die Leistungselektronik mit entsprechender Echtzeithard-
ware zu sehen (Schaltschrank). Im Hintergrund befindet sich der Rahmen des Prüf-
stands, der durch eine eigene Hydraulik aktuiert werden kann [LHLJ00b].
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2.4 Struktur mechatronischer Systeme
Die Frage nach der Struktur eines Systems zielt in den meisten Fällen auf ein abstrak-
tes Verständnis der Wirkzusammenhänge innerhalb des betrachteten System hin. Bei
mechatronischen Systemen und den darauf aufbauenden selbstoptimierenden Syste-
men gibt die Struktur des Systems wichtige Hinweise auf die Struktur der zugehöri-
gen Informationsverarbeitung. Darüber hinaus bildet die reduzierte Darstellung der
Struktur die Grundlage für das Topologische Modell, mit der die objektorientierte
Modellbildung beginnt. Der Kreis schließt sich bei den selbstoptimierenden Syste-
men bei der Frage nach der Rekonfiguration der Struktur, die zu rekonfigurierbaren
Systemen führt (vgl. Abschnitt 3.2). Zunächst steht hier jedoch der Systembegriff
im Vordergrund, um zu wichtigen Strukturierungsansätzen zu gelangen.

2.4.1 Systembegriff

Der Begriff System bezeichnet im Allgemeinen eine Anordnung von Gebilden. Es
können reale oder imaginäre Gebilde als System aufgefasst werden. Die Definition
dessen, was zu einem System gehört (Systemgrenzen), hängt wesentlich vom Be-
trachter und dessen Intentionen ab. Meist gibt das Untersuchungsziel die Art der
Modellierung und die Systemgrenzen vor.

In der Regelungstechnik wird ein dynamisches System als ein Gebilde angese-
hen, auf das verschiedene Größen einwirken. Das dynamische System wird in diesem
Zusammenhang häufig als Prozess oder Strecke bezeichnet (vgl. [Föl94]). Systeme
lassen sich in Teil- und Subsysteme gliedern und können ihrerseits in übergeordnete
Systeme eingebettet sein. Diese Hierarchisierung bildet die Grundlage für die ab-
strakte Darstellung komplexer technischer Anlagen, Prozesse, Vorgänge, aber auch
Softwaresysteme. Der Systembegriff erlaubt auch die Abbildung von Beziehungen
zwischen Systemen unterschiedlicher Domänen, wie beispielsweise in der Regelungs-
technik, bei der mechanische Teilsysteme mit elektrischen oder informationstechni-
schen Systemen vernetzt sind.

BeziehungElement

AusgangEingang Systemgrenze

Systemumgebung

Abbildung 2.29: Definition des Begriffs System

Der Grundbaustein eines Systems ist das Element, das auch als Teil, Komponen-
te oder Gebilde bezeichnet werden kann. Ein Element kann wiederum ein System
sein. Die Elemente sind durch Beziehungen miteinander oder mit ihrer Umgebung
verknüpft und stehen dadurch in Wechselwirkung zueinander. Beziehungen können
gerichtet oder ungerichtet ausgeprägt sein. Gerichtete Beziehungen zwischen Ele-
menten oder der Umgebung werden als Eingänge oder Ausgänge des Elements oder
Systems bezeichnet. Bei Beziehungen kann es sich um Stoff-, Energie- oder Informa-
tionsflüsse handeln. Abbildung 2.29 [FGK+04] verdeutlicht diesen Zusammenhang.



Grundlagen für die Entwicklung selbstoptimierender Systeme 51

Technisches
System

Stoff

Energie

Information

Stoff

Energie

Information

Eingang Ausgang

Abbildung 2.30: Allgemeine Systemdarstellung

Wie Abbildung 2.30 [HHK+03] zeigt, sind Energie-, Stoff- und Informationsfluss
als gerichtete Verbindungen angelegt. Werden spezielle Wechselwirkungen betrach-
tet, wie beispielsweise bei mechanisch gekoppelten Systemen, müssen gerichtete Ver-
bindungen durch ungerichtete Beziehungen oder Kopplungen ersetzt werden. Insbe-
sondere in der Mehrkörperdarstellung sind ungerichtete Verbindungen für die Mo-
dellierung vorteilhaft, da hierbei physikalische Zusammenhänge nicht frühzeitig in
mathematische Größen umgewandelt werden müssen (vgl. [Hah99]).

Die Beziehungen der Elemente und die Elemente selbst bilden insgesamt die
Struktur eines Systems ab. Die Systemgrenze eines Systems trennt es von seiner Um-
gebung. Die Grenze muss dabei nicht physikalisch vorhanden sein, sondern kann als
gedanklich gezogene Grenze definiert sein. Entscheidend für die Grenze ist letztlich
der Nutzen für eine sinnvolle Strukturierung. Je nach Standpunkt des Betrachters
ist alles, was außerhalb dieser Systemgrenze liegt, die Umgebung des Systems.

Da Elemente nach der vorliegenden Definition wieder Teile eines Elementes sein
und Elemente wiederum als (Teil-)System aufgefasst werden können, ist es möglich,
beliebige Hierarchien aufzubauen. Dabei spielt die Ebene, auf der sich das Element
befindet, zunächst keine Rolle.

Nach DIN 40150 ist eine konkrete Unterteilung für technische Systeme definiert
[HHK+03]:

System Einrichtung Gruppe Element

Gesamtheit
der Einrichtungen
zur Auftragserfüllung

selbständig
verwendbare
Einheit innerhalb
eines Systems

noch nicht selbstständig
verwendbare
Einheit innerhalb
einer Einrichtung

kleinste, unterteil-
bare Einheit
in einer Gruppe

Abbildung 2.31: Unterteilung von technischen Systemen nach DIN 40150

Gut anwendbar ist diese Einteilung auf bestimmte technische Systeme wie bei-
spielsweise Kraftfahrzeuge. Problematisch wird es, wenn informationstechnische Sys-
teme, aber auch Regelungen, die viele Hierarchieebenen aufweisen, hinzukommen.
Darüber hinaus ist an einer so konsequenten Struktur nur schwer festzuhalten, wenn
technische Hilfseinrichtungen, die mehrere Hierarchieebenen berücksichtigen, hinzu-
kommen.
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Abgas, Abrieb, ...

Bewegungsenergie, ...

Geschwindigkeit,
Öltemperatur, ...

Treibstoff, Öl, ...

Energie im Treibstoff, ...

gewünschte Fahrtrichtung
und Geschwindigkeit, ...

System

Einrichtungen
aus dem
System Kfz

Gruppen aus
der Einrichtung
Triebwerk

Elemente aus
der Gruppe
Getriebe

Kfz

Motor Triebwerk Karosserie

Kupplung Getriebe

Zahnrad Welle

Abbildung 2.32: Unterteilung nach DIN 40150 am Beispiel eines Kfz

Wie Abbildung 2.32 [HHK+03] deutlich macht, ist die Hierarchisierung nach
DIN 40150 für die Gliederung und die Modellierung technischer Systeme gut ge-
eignet, erlaubt aber keine beliebige Erweiterung der Hierarchisierungstiefe, wie sie
für die Modellierung selbstoptimierender mechatronischer Systeme nötig ist. Aus
diesem Grund muss ein anderes Hierarchisierungsparadigma, in Anlehnung an den
oben dargestellten Systembegriff, entwickelt werden, das diesen neuen Anforderun-
gen entspricht.

2.4.2 Funktionsorientierte Modellierung und Strukturierung

Betrachtet man die Unterteilung in Abbildung 2.32, so ergibt sich offensichtlich aus
der technischen Struktur des Systems eine „Ist-Teil-Von“-Hierarchie. Jede Kompo-
nente enthält weitere Komponenten und ist wiederum in andere eingebettet. Auf
der obersten Ebene befindet sich das Produkt.

Wird das konkrete technische System in den Hintergrund gestellt und seine ab-
strakte Funktion in den Vordergrund, so ergibt sich eine Funktionsstruktur, die der
technischen Struktur des Systems entspricht.

In dem gezeigten Beispiel wurde das technische System abstrahiert – dadurch
wurde seine Funktionsstruktur, also das Zusammenwirken von verschiedenen Einzel-
funktionen, sichtbar. Wird der Prozess umgekehrt, kann, ausgehend von der Funk-
tion und der Funktionsstruktur, die Struktur des technischen Systems hergeleitet
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werden. Durch eine Konkretisierung der Teilfunktionen durch reale technische Gerä-
te, Aggregate und Komponenten lassen sich auf diese Weise technische Systeme aus
ihrer Funktion heraus entwerfen. Diese Vorgehensweise wird auch als Funktionsori-
entierter Entwurf verstanden [LK03], [Wal03] bzw. [PB97].

Für selbstoptimierende Systeme hat diese Art der Modellierung einen entschei-
denden Vorteil: Hier wird von einer abstrakten Eigenschaft auf eine konkrete tech-
nische Lösung geschlossen und nicht von einer konkreten Teillösung auf ein Gesamt-
system. Weiterhin sind Systemstruktur und Funktionsstruktur weitgehend identisch.
Somit sind eine Modellierung der Systemeigenschaften und die Zuordnung von Wir-
kursachen leichter. Verbindet man dies mit dem zuvor dargestellten Systembegriff,
ergibt sich ein erster Ansatz für die Darstellung selbstoptimierender Systeme.

2.4.3 Modular-hierarchische Bauteilstruktur

Modulbildung und Hierarchien unterstützen den Entwurf von komplexen technischen
Systemen. Sie reduzieren die Komplexität des Gesamtsystems auf viele einfache-
re Teilsysteme. Im Maschinenbau ist die konkrete Ausprägung dieses Ansatzes die
Bildung von technischen Aggregaten im Sinne von Funktionseinheiten. Grundidee
ist dabei, Baugruppen losgelöst vom Gesamtsystem entwerfen, entwickeln, testen
und fertigen zu können. Durch diesen Ansatz werden Entwicklung und Fertigung
von Produkten, angefangen von Haushaltsgeräten über das Auto bis zu modernen
Flugzeugen, durch mehrere Arbeitsgruppen und durch verschiedene Zulieferer erst
möglich.

Auch ein Aggregat kann ein mechatronisches System mit eigener Aktorik, Sen-
sorik und Regelungstechnik sein. Wird dieses Teilsystem in ein Gesamtsystem mit
einer Regelung eingebaut, ergibt sich eine kaskadierte Regelung. Kaskadenregler ha-
ben ihre Vorteile gegenüber komplexen Mehrgrößenreglern insbesondere in Entwurf,
Auslegung und Inbetriebnahme. Hier führt es zu einer Vereinfachung der Verfahren.
Ist ein mechatronisches System aus mechatronischen Aggregaten aufgebaut, so ist
die regelungstechnische Kaskade eine inhärente Eigenschaft dieses Systems.

Im Sinne der Objektorientierung handelt es sich bei der Bildung von Aggregaten
um eine Objekthierarchie, also um eine Gliederung im Sinne von ist Teil von. Ein
PKW besteht beispielsweise aus Karosserie, Antriebsstrang, Bremssystem, Fahrwerk
etc. Der Antriebsstrang besteht wiederum aus Motor, Getriebe, Kardan, Differential
etc. Diese Gliederung lässt sich beliebig bis zur kleinsten Schraube fortsetzen – es
ist eine Zerlegung in Bauteile (vgl. Abbildung 2.32).

Eine Objekthierarchie, die sich aus der Funktionsorientierung ableitet, bildet
Funktionsgruppen, von denen sich Baugruppen (Aggregate) ableiten lassen. Aggre-
gate können primär Aktorik und Sensorik anbinden, sie können jedoch auch unterla-
gerte Aggregate als Aktorik oder Aktor-Sensor-Gruppen enthalten. Solche primären
Aggregate sind mechatronische Funktionseinheiten oder Funktionsmodule. Sie beste-
hen aus Aktorik, Sensorik und Mikroelektronik, welche die mechatronische Funktion,
etwa die Regelung, realisiert. Ein solches mechatronisches Funktionsmodul (MFM)
kann auch hierarchisiert werden; dann besteht die Aktorik aus einem oder mehreren
unterlagerten MFM.

Ein mechatronisches Gesamtsystem unterscheidet sich von seinen Baugruppen
dadurch, dass es autonom betrieben werden kann. Die Tragstruktur verbindet alle
Aggregate zu einem Gesamtsystem. Durch die Verbindung zum Gesamtsystem wer-
den neue überlagerte Funktionen möglich, die nicht einem speziellen Aggregat bzw.
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MFM zugeordnet werden können. Es sind Funktionen der Objektebene des autono-
men Systems. Ein Beispiel für eine Funktion auf dieser Ebene ist das elektronische
Stabilitätsprogramm ESP in Kfz, das die Fahrzeugstabilität durch Eingriff in das
unterlagerte Bremssystem realisiert. Das Gesamtsystem bildet somit ein autonomes
mechatronisches System (AMS).

Wenn mechatronische Systeme autonom sind, heißt dies nicht zwangsläufig, dass
sie auch autonom im Sinne der Hauptgebrauchsfunktion der Funktionsorientierung
handeln können. Für das Beispiel Fahrzeug ist die Hauptgebrauchsfunktion der
Transport von Personen oder Gütern zwischen zwei Punkten. Ein konventionelles
Kfz benötigt immer noch einen Fahrer, der Fahrziel, Fahrweg, Geschwindigkeit etc.
festlegt bzw. steuert. Auch wenn es alltäglich erscheint, ist dies ein höchst komple-
xer Prozess! Ein Überholvorgang beispielsweise erfordert die Berücksichtigung des
übrigen Verkehrs. Der Fahrer muss hierfür (stellvertretend) für das autonome mecha-
tronische System in Interaktion mit anderen Verkehrsteilnehmern und der Umwelt
treten.

Informations-
verarbeitung

VMS

V M Sernetztes echatronisches ystem

AMSAMS

Informations-
verarbeitung

A M Sutonomes echatronisches ystem

MFM
MFM

MFM

MFM

Informations-
verarbeitung
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Abbildung 2.33: Modular-hierarchische Bauteilstruktur

Es gibt aber auch autonom handelnde Systeme, die selbstständig Ziele verfol-
gen. Moderne Flurförderfahrzeuge transportieren eine Last ohne Fahrer von einem
Punkt zu einem anderen. Die Steuerung kann zentral durch eine Leitwarte erfolgen
oder dezentral, d. h. jedes Fahrzeug ermittelt seine Fahrstrecke selbstständig und
interagiert mit der Umwelt und anderen Fahrzeugen.

Wenn mechatronische Systeme autonom handeln und in Interaktion mit anderen
mechatronischen Systemen treten müssen, werden Funktionen wie Kommunikation
oder Koordination (auch für gemeinsame Planung) benötigt. Regelungstechnische
Funktionen, wie die Abstandsregelung in einer Kolonne, können auf dieser Funkti-
onsebene ebenfalls realisiert werden. Da sich diese Funktionen nicht einem einzelnen
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autonomen System zuordnen lassen, wird eine Ebene in der Objekthierarchie benö-
tigt, die eine Vernetzung autonomer mechatronischer Systeme ermöglicht. Auf dieser
Ebene der vernetzten mechatronischen Systeme (VMS) existieren nur noch informa-
tionstechnische Kopplungen zwischen den einzelnen Teilsystemen, die aus AMS oder
anderen VMS bestehen können.

Die Abbildung 2.33 illustriert die Beziehungen zwischen MFM, AMS und VMS
[LHLH01], [GO03]. Wie das Beispiel zeigt, können auf jeder Ebene verschiedene
Module existieren, die untereinander verkoppelt sind. Auch eine weitere Hierarchi-
sierung ist möglich. Aufgrund der guten Skalierbarkeit ist die modular-hierarchische
Bauteilstruktur ohne weiteres auf selbstoptimierende mechatronische Systeme über-
tragbar. Die Informationsverarbeitung einer Komponente (MFM, AMS, VMS)
wird jedoch durch das Operator-Controller-Modul (OCM) konkretisiert (vgl. Ab-
schnitt 3.4).

2.5 Agententechnik als Entwurfsparadigma für
proaktive Informationsverarbeitung

Die Objektorientierung als ein Paradigma für die Entwicklung von informationstech-
nischen Systemen brachte nach der prozedualen Programmierung einen neuen An-
satz, der es erlaubt, mit der zunehmenden Komplexität der Programmentwicklung
fertig zu werden. Nachdem Softwarekomponenten als Objekte aufgefasst wurden,
fiel es leichter, auch große Projekte mit vielfältigen Funktionen umzusetzen. Im Ma-
schinenbau ist der Weg zu Modulen und Komponenten schon vor mehr als einem
Jahrhundert begonnen worden. Heute werden mechatronische Produkte ganz selbst-
verständlich aus aktiven Komponenten zusammengesetzt. Der Weg von Komponen-
ten zu Aggregaten kann verglichen werden mit dem Weg vom Objekt zum Agent.
Wird ein Objekt aktiv, so dass es aus sich selbst heraus handelt und Ziele verfolgt,
so wird von einem (Software-)Agenten gesprochen. Dies vereinfacht den Entwurf von
Systemen mit vielen parallel ablaufenden und einander beeinflussenden Teilkompo-
nenten. Die Agententechnik ist somit ein Paradigma, das es erleichtert komplexe,
informationstechnische Systeme zu entwerfen.

2.5.1 Einführung

Der Begriff der Agententechnik ist nur schwer in eine allgemeingültige Definition zu
fassen – jedoch sind eine Anzahl von Arbeiten in diesem Bereich hervorzuheben. Ins-
besondere die Arbeiten von Ferber [Fer99], Wooldridge und Jennings [WJ95], [JW98]
sind weithin anerkannt. Allgemein ist die Agententechnik ein abstraktes Paradigma
zum Entwurf von komplexen Software-Systemen. Grundlage bildet die Objektorien-
tierung. Während ein Objekt jedoch passiv ist und nur durch einen Impuls von außen
aktiv wird, ist ein Agent ein aktives Objekt, das selbsttätig Handlungen aufgrund
seines inneren Zustands ausführt.
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Methoden
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Objekt Agent

Dienste

Ziele

Sprechakte

Sprechakte

Abbildung 2.34: Unterschied zwischen Objekt und Agent

Ferber [Fer99] unterscheidet Objekt und Agent nach der inneren Struktur (Abbil-
dung 2.34). Ein Objekt antwortet auf eine Anfrage mittels Methoden direkt (Abbil-
dung 2.34, links), während ein Agent in Dialog mit seiner Umwelt bzw. mit anderen
Agenten tritt. Die Kommunikation wird quasi durch Methoden gefiltert. Dadurch
sind die inneren Dienste von der Außenwelt gekapselt. Die Aktionen, die Agenten
ausführen, sind dabei nicht nur Antworten auf Anfragen von außen, sondern werden
außerdem von eigenen Zielen stimuliert (Abbildung 2.34, rechts).

Für die Strukturierung der Informationsverarbeitung in selbstoptimierenden Sys-
temen bietet sich die Agententechnik zur Bildung von selbsttätig optimierenden
Funktionselementen an, die auch als selbstoptimierende Agenten bezeichnet wer-
den können. Hierbei ist der Agent zunächst nicht selbstoptimierend, sondern führt
selbsttätig Handlungen aus, die zur Optimierung eines technischen (Regler-)Systems
führen. Insbesondere die strikte Kapselung der Dienste erlaubt die Anwendung viel-
fältiger Methoden aus der KI, die insbesondere die Planung und die Bewertung von
Zielen für eine modellbasierte Optimierung ermöglichen. Dementsprechend wird in
[GLR01] ein Agent wie folgt definiert:

„Ein Agent ist ein autonomes, proaktives, kooperatives und hochgradig
adaptives Funktionsmodul. Autonom impliziert eine eigenständige Kon-
trolle, die von sich aus Aktionen initiiert (proaktiv). Agenten werden als
Funktionsmodule angesehen, die in Kooperation oder Konkurrenz zuein-
ander handeln. Adaptiv bezeichnet ein zur Laufzeit generisches Verhalten,
das beispielsweise auch Lernfähigkeit beinhalten kann. Ein Funktionsmo-
dul wird als heterogenes Teilsystem mit elektronischen, mechanischen
und informationstechnischen Komponenten verstanden.“ [GLR01]

Daraus lassen sich folgende Grundeigenschaften ableiten:
• Unabhängiges Handeln (Autonomie)
• Selbsttätige Verfolgung von Zielen (Proaktivität)
• Kommunikation mit anderen Agenten (Kooperativität)
• Anpassung an Veränderungen (Anpassungsfähigkeit)

Führt man sich vor Augen, dass es sich um Softwarekomponenten handelt, kann
man feststellen, dass diese Eigenschaften von einer ganzen Reihe klassischer Sys-
teme erfüllt werden. Beispielsweise sind adaptive Reglersysteme in gewisser Weise
autonom, da sie ohne Zutun von außen Messwerte vom technischen Prozess aufneh-
men, verarbeiten und entsprechende Ausgangswerte aufschalten (Autonomie). An-
passungsfähig sind solche Systeme durch entsprechende Adaptionsalgorithmen (An-
passungsfähigkeit). Bei einer Reglerkaskade werden kontinuierlich Werte zwischen



Grundlagen für die Entwicklung selbstoptimierender Systeme 57

verschiedenen Reglerebenen ausgetauscht, was als eine einfache Form der Koopera-
tion gedeutet werden kann. Auch wenn eine Regelung die eindeutige Aufgabe der
Beeinflussung der Dynamik des technischen Systems oder Prozess hat, fällt es schwer,
Proaktivität in eine adaptive Regelung hinein zu interpretieren. Dazu fehlt die Wahl-
freiheit bei den auszuführenden Aktionen. Des Weiteren darf nicht vergessen werden,
dass ein Agent auch alle Forderungen der Objektorientierung zu erfüllen hat, etwa
die nach Abgeschlossenheit.

Ein anschauliches Beispiel für die Anwendung der Agententechnik im Gegensatz
zur Objektorientierung ist die Digitale Fabrik nach [Rit07]. Die Teilsysteme, die
am Produktionsprozess beteiligt sind, werden als Agenten aufgefasst. Deutlich wird
das am Beispiel eines Transportauftrages für einen Flurförderer: während in der
Objektorientierung ein freier Flurförderer vom System gesucht werden muss und
daraufhin der Transportauftrag zugeteilt, bietet im Ansatz der Agententechnik ein
frei werdender Flurförderer seine Transporttätigkeit an. Auf diese Weise wird keine
zentrale Stelle mehr benötigt, die Transportaufträge zuteilt.

Das Beispiel zeigt, wie auch in technischen Problemstellungen die Agententech-
nik als ein Entwurfsparadigma wirken kann, das zu dezentralen Architekturen führen
kann. Selbsttätigkeit und Autonomie der Agenten führen zu selbstorganisierenden
Systemen. Die Selbstorganisation ist vor allem auf den höheren Ebenen selbstop-
timierender Systeme anwendbar, nämlich dann, wenn verschiedene autonome me-
chatronische Systeme (AMS) auf Ebene der vernetzten mechatronischen Systeme
(VMS) zusammenwirken. Bei der Regelung von Prozessen auf der Ebene der Mecha-
tronischen Funktionsmodule (MFM), bei der die Dynamik des Systems eine größere
Rolle spielt, müssen strengere Maßgaben, z. B. bei der Einhaltung von Zeitschranken,
angewendet werden, als es die Selbstorganisation vorgibt.

Ein weiteres populäres Beispiel für die Anwendung der Agententechnik beim
Entwurf und der Realisierung von mechatronischen Systemen ist die Realisierung
der Raumsonde Deep Space 1 17 der NASA, die am 24.10.1998 zum Kometen Borrelly
gestartet wurde. Wesentliche Komponenten waren dabei die Autonome Navigation
und ein Autonomous Remote Agent, als intelligenter Assistent des Bodenpersonals
an Bord der Sonde.

2.5.2 Klassifizierung von Agenten

Agenten können in verschiedene Klassen eingeteilt werden. Häufig genannt werden
dabei Reaktiver Agent (reactive agent), Verarbeitender Agent (processing agent) und
Kognitiver Agent (cognitive agent) [Att00].

Reaktiver Agent (reactive agent) Dies ist ein Agent mit der Fähigkeit, auf ex-
terne Ereignisse zu reagieren, um das Verhalten eines technischen Systems und
die Kontrolle darüber aufrechtzuerhalten oder als kontrollierender Agent an-
dere Agenten zu überwachen und die Aktivitäten zwischen einem Satz von
Agenten zu koordinieren (Kontrollinstanz in einem Multi-Agentensystem).

Verarbeitender Agent (processing agent) Die Rolle dieses Agenten ist es, Um-
wandlungen auszuführen. Dabei werden Prozesse oder Berechnungen auf einen
eingehenden Datenfluss hin ausgeführt, um einen ausgehenden Datenfluss zu

17http://nmp.jpl.nasa.gov/ds1/
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produzieren. Der Agent sichert die Ausführung eines (komplexen) Algorithmus
(operativer Teil eines Multi-Agenten-Systems).

Kognitiver Agent (cognitive agent) Dies ist ein Agent, der nicht nur Daten
und prozedurale Methoden enthält, sondern auch eine Wissensbasis. Er ist
außerdem in der Lage, Schlussfolgerungen aus seinem Wissen oder dem Wissen
anderer zu initiieren.

Die Eigenschaft eines Agenten, mit anderen Agenten in Dialog treten zu kön-
nen, ist insbesondere bei hierarchischer Optimierung nützlich, wenn verschiedene
selbstoptimierende Agenten Informationen austauschen können. Dies können etwa
Daten über das aktuelle Optimierungsziel, einfache Parameter oder komplexere In-
formationen sein. Für das Zusammenspiel von Agenten existiert eine weitere, auf der
Agententechnik aufbauende Theorie der Multiagentensysteme. Multiagentensysteme
ergeben sich dann, wenn einzelne Agenten miteinander in Aktion treten.

2.5.3 Multiagentensysteme

Nach der Agententheorie können einzelne Agenten in Interaktion mit ihrer Umge-
bung (auch Softwareumgebung) treten. Ein Sonderfall ist dabei die Interaktion zwi-
schen Agenten. Nach [WJ95] ist ein Multiagentensystem ein Informationssystem
der verteilten Wissensverarbeitung, das durch die Eigenschaften Autonomie, Kolla-
borativität, Reaktivität und Proaktivität gekennzeichnet ist. Der Begriff Autonomie
bedeutet hier vor allem selbstständiges Handeln und Entscheiden. Mit Kollaborati-
vität ist die Fähigkeit gemeint, mit anderen Agenten und ggf. mit der Umgebung
und den Menschen in Beziehung zu treten und sie in die eigene Handlung einzube-
ziehen. Die Reaktivität bezeichnet die Fähigkeit, auf Ereignisse (in der Umgebung)
zu reagieren. Der Begriff der Proaktivität ist eine wesentliche Forderung an Agenten.
Er meint in diesem Zusammenhang vor allem

„...ein frühzeitiges initiatives (handeln) im Gegensatz zu einem abwar-
tenden reaktiven Handeln...“ [Wik07]

Somit tritt ein Agent bzw. ein Multiagentensystem selbstständig in Aktion und
reagiert nicht nur auf Ereignisse. Eine andere Betrachtung geht davon aus, dass
Multiagentensysteme eine konsequente Erweiterung objektorientierter Entwurfstech-
niken darstellen [WC01].

In Multiagentensystemen werden zwei wesentliche Ebenen unterschieden: Die un-
tere Schicht beschreibt im Wesentlichen das lokale Verhalten eines Agenten und wird
als Mikrosicht bezeichnet. Die überlagerte Ebene dient der Kollaboration der Agen-
ten, wobei hier der Schwerpunkt auf Management und Kommunikation liegt. Diese
Schicht wird als Makrosicht eines Agenten bezeichnet. Interessanterweise erfordert
die Realisierung dieser Ebenen unterschiedliche Ansätze und Werkzeuge. So wird
die Mikrosicht aufgrund ihres maschinennahem Abstraktionsniveaus häufig in Spra-
chen wie C, C++, Prolog oder Lisp kodiert, während auf der Makroebene häufig
abstraktere Sprachen Anwendung finden. Definition und Bearbeitung von Zielen und
Strategien erfolgten oft auf Basis von kognitiven, deskriptiven Konzepten der BDI-
Architektur (Belief-Desire-Intention) [RG95] (vgl. 2.2.7 und insbesondere Abbildung
2.20).
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Kapitel 3

Konzept für Entwurf und Struktur
selbstoptimierender Systeme

Es kommt nicht darauf an, mit dem Kopf durch die Wand zu rennen,
sondern mit den Augen die Tür zu finden (Werner von Siemens)

In diesem Kapitel werden Ansätze zum Entwurf und zur Strukturierung selbst-
optimierender Systeme vorgestellt. Dabei bilden bekannte Methoden zur systemati-
schen Entwicklung und zur Strukturierung mechatronischer Systeme die Grundlage
für die Entwicklung und die Strukturierung selbstoptimierender Systeme.

3.1 Einführung

Die Entwicklung komplexer mechatronischer Systeme, wie etwa moderner Kraftfahr-
zeuge, ist ohne genaue Planung und systematisches Vorgehen nicht durchführbar.
Vorhandene Entwicklungsressourcen gezielt und effizient einzusetzen, ist hierbei der
entscheidende Faktor, um Produkte in kurzer Zeit mit der vom Kunden erwarteten
Qualität auf den Markt zu bringen. Entwicklungsystematiken kanalisieren hierbei
die zu leistenden Entwicklungstätigkeiten und tragen zur Modularisierung des Ent-
wicklungsprozesses bei. Für die Entwicklung selbstoptimierender mechatronischer
Systeme gilt dies in besonderem Maße, da hier der Komplexitätsgrad weiter steigt.

Jedoch gibt es keine allgemeingültige, auf alle Entwicklungen mechatronischer
Produkte zu übertragende kanonisierbare Vorgehensweise [Ver03]. Erfolgversprechen-
der sind flexible Vorgehensmodelle, die der innovativen Entwicklung technischer Pro-
dukte dort genug Freiraum lassen, wo er nötig ist.

Die klassische Methode zur Unterstützung und vor allem zur Formalisierung der
Konstruktion im Maschinenbau ist vor allem die Konstruktionssystematik [PB97].
Neben Methoden zur Entwicklung von konstruktiven Lösungsansätzen werden in
der Konstruktionssystematik auch Vorgehensmodelle betrachtet. Aufgrund der Ent-
wicklung der Mechatronik, die unterschiedliche Domänen verbindet, genügten die
Ansätze der Konstruktionssystematik nicht mehr, um moderne mechatronische Sys-
teme ganzheitlich zu entwerfen.
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3.2 Rekonfigurierbare Systeme als Grundlage
für Selbstoptimierung in mechatronischen
Systemen

Der Begriff der Rekonfiguration ist bisher in der Mechatronik noch nicht etabliert.
Er stammt vor allem aus dem Bereich der Rechentechnik (siehe z. B. [TGR+03]).
Hierbei geht es vor allem um rekonfigurierbare Schaltungen und die damit zusam-
menhängende Informationsverarbeitung.

Für technische Systeme muss der Begriff aber erst noch genauer spezifiziert wer-
den. Rekonfiguration eines Systems allgemein bedeutet: Vorhandene Komponenten
eines Ganzen werden neu zueinander angeordnet. Dies schließt alle Domänen der
Mechatronik ein. Somit kann Rekonfiguration in den Domänen der Mechanik, der
Elektrotechnik und der Informationsverarbeitung auftreten. Für die weitere Diskus-
sion wird sie wie folgt definiert:

Rekonfigurierbare Systeme sind mechatronische Systeme, die ihre innere
Struktur oder Wirkstruktur verändern können, ohne dass dabei Kompo-
nenten hinzugefügt oder ergänzt werden.

Ein einfaches Beispiel für ein rekonfigurierbares System ist die klassische Zwei-
kreisbremse (siehe Abbildungen 3.1 und 3.2, [FGH+04]). Bei Druckverlust18 in einem
Kreis der Bremsanlage wird der beschädigte hydraulische Bremskreis automatisch
verschlossen. Die Konfiguration der Komponenten verändert sich so, dass nur noch
ein Bremskreis im Eingriff bleibt. Dabei ändern sich auch die technischen Eigen-
schaften des Systems, wie Bremskraft und -wirkung und die Dynamik des Systems
insgesamt.

Abbildung 3.1: Gestufter Tandem-
hauptzylinder mit
Zentralventil

Abbildung 3.2: Schematischer Auf-
bau einer Zweikreis-
Bremsanlage

Als rekonfigurierbares System beschrieben, besteht das Zweikreis-Bremssystem
aus einer Konfiguration von mechanisch-hydraulischen Komponenten, die drei mög-
liche Konfigurationen annehmen können:

a) Zweikreisbetrieb – beide Bremskreise aktiv
18Der Verlust von Bremsflüssigkeit als Masse kann vernachlässigt werden. Die Systemkomponen-

ten ändern sich nicht in ihrer Anzahl, sondern wirken anders zusammen.
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b) Bremskreis 2 ausgefallen – Bremskreis 1 aktiv

c) Bremskreis 1 ausgefallen – Bremskreis 2 aktiv

Streng genommen müsste auch der Ausfall beider Bremskreise als mögliche Kon-
figuration betrachtet werden. Ob weitere gültige Konfigurationen mit in das Modell
eines rekonfigurierbaren Systems aufgenommen werden, ist jedoch eine Frage der
Modellierungstiefe. Für die Betrachtung des Problems sollen drei Konfigurationen
genügen.

Schematisch kann das Problem der Zweikreisbremse, stark vereinfacht, als ebenes
Blockschaltbild dargestellt werden:
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Abbildung 3.3: Grundkonfiguration

1. In der Grundkonfiguration (Abbildung 3.3) der Zweikreisbremse wirkt die Ped-
alkraft über eine mechanische Kopplung auf den Druckstangenkolben. Dieser
baut Druck auf. Über eine hydraulische Kopplung wird dieser Druck an die
Bremszylinder des 1. Bremskreises und den Zwischenkolben weitergeleitet. Der
Zwischenkolben baut wiederum Druck auf und leitet diesen über eine hydrau-
lische Kopplung an die Bremszylinder des 2. Bremskreises weiter.
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Abbildung 3.4: Bremskreis 2 ausgefallen
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2. Fällt der 2. Bremskreis aus, bewirkt der Zwischenkolben, dass der zweite Kreis
hydraulisch entkoppelt ist. Der Zwischenkolben fährt bis in die Endposition,
der 1. Kreis bleibt funktionsfähig.

Da der Zwischenkolben in dieser Konfiguration nun nicht mehr bewegt wer-
den kann, wird diese Komponente statisch, d. h. für die Beschreibung der Ei-
genschaften des Rest-Bremssystems spielen die ursprünglichen Eigenschaften
dieser Komponente (Dynamik, innere Reibung etc.) keine Rolle mehr.
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Abbildung 3.5: Bremskreis 1 ausgefallen

3. In der dritten Konfiguration ist der 1. Bremskreis ausgefallen und der 2. intakt.
Der Druckstangenkolben drückt nun direkt auf den Zwischenkolben. Aus der
hydraulischen Kopplung zwischen Druckstangenkolben und Zwischenkolben
wird eine mechanische Kopplung.

Die Eigenschaften des Druckstangenkolbens und des Zwischenkolbens ändern
sich durch den Verlust des 1. Bremskreises deutlich. Die Struktur dieser Kon-
figuration unterscheidet sich durch den Austausch einer Kopplungsart (von
hydraulisch zu mechanisch) noch deutlicher von der Ausgangskonfiguration.

Obwohl dieses Beispiel schon stark vereinfacht ist, bringt es doch die klassische
statische Beschreibung von Modellen an neue Grenzen. Bisherige Umgebungen zur
Modellbildung, die in der Lage sind Modelle auf topologischer Ebene zu beschreiben,
wie beispielsweise CAMeL-View [iXt06], ermöglichen es nicht, diesen Wechsel der
Konfigurationen durch einfache Mittel zu beschreiben. Ein Wechsel der Kopplungen
und der Eigenschaften der Komponenten ist bestenfalls auf mathematischer Ebene
möglich.

Ein allgemeiner Ansatz leitet sich aus dem Objektorientierten Mechatronikmo-
dell (OMM) ab (vgl. Abschnitt 2.3.6). Dabei wird das OMM auf allen Ebenen des
Entwurfs um diskrete Komponenten erweitert:

Wie in Abbildung 3.6 zu sehen ist, wird jede Ebene des OMM um weitere Aufga-
ben erweitert, die unabhängig von der zeitkontinuierlichen Auswertung zeitdiskret
ablaufen. Besonders hervorzuheben ist hier die Ebene der Topologiesicht, auf der
ein mechatronisches System in seinen verschiedenen Domänen entworfen wird. Ei-
ne Rekonfiguration führt zu einer Kontrolle genau dieser Ebene durch zugeordnete
Kontrollmechanismen.
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Abbildung 3.6: Erweitertes objektorientiertes Mechatronikmodell

Aus weiteren Ebenen schließen sich weitere Mechanismen an, die für die Selbst-
optimierung wichtig sind. Auf der Ebene des Verhaltens finden sich Verfahren zur
Parameteroptimierung und zur Überwachung von mathematisch zu beschreibenden
Komponenten wie Reglern (siehe auch [DO00, DOM01]). Auf der Ebene der Ver-
arbeitung wird die Auswertung selbst überwacht. Im Sinne der Selbstoptimierung
spielt hier vor allem die Wahl der richtigen Verfahren und Konfigurationen für die
numerische Auswertung eine wichtige Rolle (vgl. Kapitel 4).

Wie das Beispiel der Zweikreisbremse illustriert, ist es für die Modellierung von
rekonfigurierbaren Systemen hilfreich, die möglichen Konfigurationen separat, also
diskret voneinander zu betrachten. Der Vorteil dieser Darstellung liegt auf der Hand:
Jede Konfiguration kann nun unabhängig von den anderen modelliert und beschrie-
ben werden. Besonders umfassend wird der Begriff, wenn er auf nichtlineare Systeme
angewendet wird, die stückweise linear sind oder sich durch stückweise lineares Ver-
halten beschreiben lassen. Dies trifft auf viele nichtlineare Regelungsprobleme zu, die
stückweise linearisiert werden können. Ein Wechsel zwischen linearisierten Zustän-
den des Systems kann als Rekonfiguration dargestellt werden – ein weitreichender
Vorteil für die Entwicklung.

Rekonfiguration kann somit als Hilfsmittel für die Modellierung nichtlinearer Pro-
bleme (mechatronische Systeme) dienen. Sie bietet aber auch die Möglichkeit, Ände-
rungen in der Struktur eines Systems abzubilden, die zu einer Verhaltensänderung
führen. Die Änderung des Verhaltens ist dabei nicht auf mechanische Komponen-
ten wie im oben beschriebenen Beispiel beschränkt. Wird der Wechsel eines Reglers
oder des Teils eines Reglers als eine Rekonfiguration des Gesamtsystems beschrieben,
lässt sich dies für eine Optimierung zur Laufzeit ausnutzen, womit rekonfigurierbare
Systeme eine wichtige Grundlage für die Modellierung selbstoptimierender mecha-
tronischer Systeme bilden können.



64 Kapitel 3

Für die Modellierung rekonfigurierbarer Systeme ist es allerdings nötig, ein ge-
eignetes abstraktes Modell zu entwickeln, das die Grundlage für die Benutzersicht
späterer Werkzeuge darstellt. Dieses Modell liefern die so genannten Hybriden Kom-
ponenten, die als Grundlage für die Modellierung rekonfigurierbarer Systeme dienen
können.

3.3 Modellierung von hybriden Systemen
Die Modellierung von Systemen, die zeitdiskrete und (quasi-)zeitkontinuierliche Ei-
genschaften vereinen, ist ein beständig wiederkehrendes Problem in der Informatik.
Dabei werden verschiedene Zielsetzungen verfolgt. Auch ist der Begriff selbst nicht
eindeutig. Im Allgemeinen sind aber Systeme gemeint, die zum Teil auf analogen
technischen Systemen und zum Teil auf zeitdiskreten logischen Abfolgen basieren.

„Hybride eingebettete Systeme sind durch die Mischung von diskreter und
kontinuierlicher Dynamik gekennzeichnet, wie sie etwa bei digitaler Soft-
ware in Wechselwirkung mit einer analogen Umgebung vorkommt. Bei
dem Entwurf solcher Systeme werden unterschiedliche Zeitmodelle und
Techniken aus unterschiedlichen Disziplinen, vor allem aus der Informa-
tik und der Regelungstechnik, eingesetzt. Wenn die diskreten und kon-
tinuierlichen Anteile eines hybriden Systems bereits zu Beginn des Ent-
wicklungsprozesses isoliert betrachtet werden, und wenn zudem die Wech-
selwirkung dieser Teile nicht präzise definiert ist, so können ungeeignete
oder fehlerhafte Entwürfe entstehen.“ [Sta01]

Der Begriff hybrides System wird hier gemeinsam mit dem Begriff Gemischt
diskret-kontinuierliches System verwendet.

In der Realität hybride Systeme sehr komplex werden. Vor allem die Vermischung
von kontinuierlichen und diskreten Komponenten führt dazu, dass viele Methoden
der jeweiligen Domäne nicht mehr ohne weiteres anwendbar sind, z. B. analytische
Verfahren zum Reglerentwurf, Stabilitätsnachweis etc. [Sta01].

Das Problem der formalen Beschreibung der Informatik soll an dieser Stelle nicht
näher beleuchtet werden, da es das Problem der systematischen Entwicklung solcher
Systeme nicht deutlicher macht. Zu diesem Thema sei insbesondere auf die Arbei-
ten von Burmester [Bur06] und Stauner [Sta01] verwiesen, die sich vor allem mit
der Beschreibung hybrider Systeme aus informationstechnischer Sicht befassen. Im
Folgenden sollen wichtige Strömungen zu diesem Thema beleuchtet werden.

3.3.1 Beschreibung hybrider Systeme

Zur Unterstützung der gemischt diskret-kontinuierlichen Modellierung von hybriden
Systemen wurden in den letzten Jahren eine Reihe von Beschreibungstechniken vor-
geschlagen (z. B. [ACH+95], [Lam93], [Wie96]). Tatsächlich steht bei vielen dieser
Formalismen aber nicht die adäquate Modellierung realer Systeme, sondern eher die
Eignung zum effizienten Einsatz mathematischer Analysemethoden im Vordergrund.
Bestes Beispiel sind die (linearen) hybriden Automaten [ACH+95], die den Einsatz
von Model-Checking-Algorithmen erlauben, aber aufgrund fehlender Modularität
und nur geringer Strukturierungsmöglichkeiten zum praktischen Systementwurf we-
nig geeignet sind [MS00].
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Ausnahmen sind hier die hybride Statechart-Erweiterung von Kesten und Pnue-
li [KP92] und die Arbeiten im Rahmen des KONDISK19-Teilprojekts HYFOS von
Jähnichen und Weber [Deu07]. In diesem Projekt wurde untersucht, wie aufbau-
end auf einer hybriden objektorientierten Erweiterung der Spezifikationssprache Z
[Fri97], [FNW99] praxistaugliche hybride Beschreibungstechniken im Stil der UML-
Klassendiagramme [IBM07] entwickelt werden können. In [FNW99] werden Verwen-
dungsrichtlinien für diese Klassendiagramme als ein Teil einer Entwicklungsmetho-
dik vorgestellt. Dabei handelt es sich im Wesentlichen um eine Übertragung von
Konzepten aus der Informatik; eine Integration mit ingenieurtechnischen Vorgehens-
weisen findet hier nicht statt.

[CWM98] skizziert einige methodische Paradigmen zur Verwendung von
Statecharts beim Entwurf hybrider Systeme. Der dort verfolgte Ansatz ist stark
durch die heutige Praxis im Automobilbau geprägt und baut daher allein auf exis-
tierenden Techniken, nämlich auf Statecharts und Blockdiagrammen, und kommerzi-
ellen Werkzeugen auf. Hybride Systeme können damit erst behandelt werden, nach-
dem sie in den frühen Entwurfsphasen in rein diskrete und rein kontinuierliche Teile
zerlegt wurden. Die Durchgängigkeit der Methode ist daher nicht gegeben.

Ebenfalls interessant ist in diesem Zusammenhang das KONDISK-Teilprojekt
Funktionsbausteinsysteme als diskret-kontinuierliche Steuerungsnetzwerke – formale
Struktur und Klassifikation von Epple (RWTH Aachen). In diesem Projekt wurde
an einer Entwicklungsmethodik von Steuerungssoftware für die Prozessleittechnik
gearbeitet, die auf Funktionsbaustein-Bibliotheken basiert [Deu07].

In [Sta01] werden formale, integrierte Notationen und Entwicklungstechniken
für hybride Systeme eingeführt, die Entwicklungsprozesse unterstützen, in denen
eine Partitionierung hybrider Systeme erst in späteren Entwicklungsphasen stattfin-
det. Dies ist ein wesentlicher Schritt, um dem ingenieurwissenschaftlichen Vorgehen
entgegenzukommen. [Bur06] führt diesen Gedanken fort und erweitert ihn für die
Rekonfiguration. Die dort vorgeschlagene Notation kann als Grundlage für einen
Modellierungsansatz aus technischer bzw. mechatronischer Sicht dienen.

3.3.2 Hybride Hierarchieelemente

Dieser Abschnitt stellt die Anwendung der Blockschaltbilddarstellung für die Defini-
tion von rekonfigurierbaren Systemen vor, welche die Grundlage für strukturvariante
selbstoptimierende Systeme bilden. Blockschaltbilder dienen allgemein der abstrak-
ten Modellierung technischer Systeme. In zahlreichen CAE-Werkzeugen sind sie die
Grundlage der abstrakten Modellierung. Ursprünglich stammen Blockschaltbilder
aus der Regelungstechnik, wo sie zur graphischen Darstellung von mathematischen
Übertragungsfunktionen dienen.

Blockschaltbilder setzen sich aus Komponenten (Blöcken) zusammen, die durch
Verknüpfungen zueinander in Beziehung stehen. Ein Block kapselt eine Funktion
oder ein Verhalten. Typischerweise wird dieses Verhalten mathematisch beschrie-
ben, etwa als Differentialgleichungen in Zustandsraumdarstellung für die Beschrei-
bung der Dynamik. Darüber hinaus ist auch eine Beschreibung mit physikalischen
Beschreibungselementen, wie etwa in Mehrkörpersystemmodellen, möglich (vgl. Ab-
schnitt 2.3.6). Die Mathematik wird dabei durch Transformationsverfahren wie New-
ton oder Lagrange automatisch abgeleitet. Zwischen den einzelnen Blöcken bestehen

19KONDISK: Schwerpunktprogramm der Deutschen Forschungsgemeinschaft „Analyse und Syn-
these kontinuierlich-diskreter Systeme“ (1996–2001).
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Verknüpfungen oder Verkopplungen, die als gerichtete oder ungerichtete Verbindun-
gen ausgeprägt sein können. Im Falle der gerichteten Verkopplungen werden Daten
ausgetauscht, während ungerichtete Verkopplungen häufig funktionelle Beziehungen
oder physikalische Bindungen beschreiben, wie etwa eine Verkopplung zwischen Mas-
se und Feder in der Mehrkörpersystemdarstellung.

Dieser zunächst einfache Ansatz lässt sich durch die Einführung von Hierarchien
deutlich erweitern. Hierarchische Blockschaltbilder erlauben eine komplexere Mo-
dellierung, indem mehrere Blöcke zu Hierarchien gruppiert werden, die wiederum
andere Hierarchien enthalten können. Dies ermöglicht einen strukturierten Entwurf
und reduziert die Komplexität eines Blockschaltbilds auf der jeweiligen Ebene.

Abbildung 3.7: Blockschaltbilder in den CAE-Werkzeugen CAMeL-View und MAT-
LAB

Abbildung 3.7 zeigt Beispiele für typische Blockschaltbilder in den Werkzeugen
CAMeL-View und MATLAB. Im jeweils linken Teil der Fensters sind die Baumstruk-
turen dargestellt, während auf der rechten Seite die Topologie der jeweils aktuellen
Ebene erscheint.

Die Topologie hierarchischer Blockschaltbilder kann als Baum dargestellt wer-
den. Die Blätter dieses Baumes bilden dabei das Verhalten bzw. die Funktion ab
(als Block), während die Knoten die Verkopplungen und die Struktur des Systems
beschreiben (siehe Abbildung 3.8, [OHG04], [HOG04]).

Bei dieser allgemeinen Betrachtung fällt auf, dass in Blockschaltbildern die Struk-
tur der Verknüpfungen und der Verhaltensbeschreibungen selbst getrennt dargestellt
sind. Dies wird auch in typischen Entwurfswerkzeugen umgesetzt, wie Abbildung
3.7 zeigt. Es bietet sich daher an, die Trennung zwischen Struktur (Hierarchie) und
Funktion (Block) für rekonfigurierbare Systeme zu nutzen. Wie in Abschnitt 3.2
beschrieben, ist eine Rekonfiguration die Änderung der Struktur bzw. Teilstruktur
eines Systems. Bei einer Rekonfiguration ändert sich die Topologie des Systems, al-
so die Beziehungen zwischen den Blöcken, die das mathematische Verhalten oder
die Physik abbilden. Werden alle in einer bestimmten Konfiguration verwendbaren
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Abbildung 3.8: Hierarchische Blockschaltbilder

Funktionsblöcke als gegeben und definiert vorausgesetzt, so ändern sich bei einer Re-
konfiguration nur hierarchische Elemente. Somit bedeutet Rekonfiguration letzten
Endes die Veränderung des Topologiebaumes.
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Abbildung 3.9: Rekonfiguration auf Topologieebene

Da in der hierarchischen Blockschaltbilddarstellung eine Hierarchieebene wieder-
um als Block dargestellt wird, kann eine Rekonfiguration auch durch Austausch
von Hierarchieelementen in der Blocksicht erfolgen. Wird nur ein Teil des Systems
verändert, entspricht dies dem Austausch nur eines Teils des Topologiebaums. Eine
wichtige Randbedingung ist hierbei, dass die Schnittstellen der auszutauschenden
Hierarchieelemente kompatibel sind. Abbildung 3.9 [OHG04] zeigt das beschriebene
Prinzip des Austauschs eines Hierarchieelements. Das Element und alle unterlager-
ten Komponenten werden hierbei ausgetauscht. Die Änderung der Topologie bleibt
lokal beschränkt.

Die Randbedingung für den Austausch von Hierarchieelementen, die besagt, dass
alle umzuschaltenden Komponenten existieren und alle Schnittstellen kompatibel
sein müssen, kann nun zur Definition eines neuen Hierarchieelements genutzt wer-
den, das verschiedene Topologien beschreibt. Hierbei kann ein Hierarchieelement
verschiedene Konfigurationen in Form von Topologien und inneren Verkopplungen
enthalten, die zu unterschiedlichen Zeiten gültig sind. Die überlagerte Hierarchie
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sieht die topologische Änderung der unterlagerten Hierarchie nicht, da diese nach
außen nur durch ihre Schnittstellen beschrieben wird (Abbildung 3.10, [OHG04]).

HHE

BB BB
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BB HE HE

BBBB BB BB

BBHE

BBBB BB

Konfiguration BKonfiguration A

StateChart

A

B

Hybrides Hierarchieelement
Definiert verschiedene
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eines StateCharts

Abbildung 3.10: Hybride Hierarchieelemente

Die unterschiedlichen Topologien eines rekonfigurierbaren Hierarchieelements
können als verschiedene Zustände dieses Elements interpretiert werden. Es bietet
sich an, den Wechsel zwischen den verschiedenen Topologien durch eine Zustands-
maschine bzw. einen endlichen Automaten, zu kontrollieren. Die Beschreibung eines
solchen Automaten kann als Zustandsübergangsdiagramm (StateChart [HP87]) er-
folgen. Mit Hilfe von StateCharts ist es möglich, alle Konfigurationswechsel genau zu
spezifizieren und quasi als Schnittstelle für die Rekonfiguration zu verwenden. Wird
die Beschreibungsform StateChart mit den Hierarchieelementen von Blockschalt-
bildern kombiniert, führt dies zu speziellen hybriden Systemen, wobei die Einheit
aus rekonfigurierbarem Hierarchieelement und StateChart als hybrides Hierarchieele-
ment bezeichnet wird. Ein großer Vorteil dieses Ansatzes ist, dass klassische, nicht
rekonfigurierbare Blockschaltbilder als Sonderfall enthalten sind, nämlich als hybri-
des Hierarchieelement mit nur einem Zustand. Somit können auch rekonfigurierbare
Systeme nach bekannten Methoden entworfen werden.
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Abbildung 3.11: Struktur der Blockverschaltung ohne und mit Rekonfiguration

In Abbildung 3.11 [OHG04] sind die benötigten Elemente des Integrationsmo-
dells mit und ohne Rekonfiguration und ihre Hierarchie mit Hilfe eines UML-
Klassendiagramms [The07] beschrieben. Zu den Basisblöcken (BB) und den Hier-
archieelementen (HE) im Modell ohne Rekonfiguration (Abbildung 3.11, links) kom-
men im integrierten Modell (Abbildung 3.11, rechts) noch hybride Hierarchieelemen-
te (HHE) hinzu.

Basisblöcke können, wie oben bereits erwähnt, Verhalten als mathematische
Funktionen oder in domänenspezifischer, physikalischer Beschreibung abbilden. Dar-
über hinaus können sie aber auch Schnittstellen zu Aktoren und Sensoren bilden, wie
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beispielsweise beim Einsatz der Laufzeitumgebung IPANEMA [Hon98] (vgl. auch Ab-
schnitt 5.3). Ein Hierarchieelement verbindet eine beliebige Anzahl von Blöcken der
jeweiligen Typen und bildet somit die klassischen hierarchischen Blockschaltbilder
ab. Die zusätzlich vorhandenen hybriden Hierarchieelemente erlauben es darüber
hinaus, pro innerem, lokalem Zustand ein Hierarchieelement zu verwenden. Diese
Zustände bilden so die Rekonfiguration der Blockschaltbilder entsprechend ab. Hat
ein einfaches HHE nur untergeordnete Elemente der Typen HE und BE, entspricht
dies den üblichen Ansätzen für die Modellierung hybrider Systeme mit Differential-
gleichungen und Automaten (vgl. [HHWT95]). Durch die Möglichkeit, solche HHE-
Blöcke mehrfach zu verwenden, geht der Ansatz der hybriden Hierarchieelemente
jedoch wesentlich über die bekannten Ansätze hinaus [OHG04], [HOG04].

3.4 Operator-Controller-Modul (OCM)

Neben einem konkreten Ansatz für die Modellierung rekonfigurierbarer Systeme
durch die im vorherigen Abschnitt beschriebenen hybriden Blockschaltbilder und
den daraus resultierenden hybride Komponenten (vgl. Abschnitt 5.2.2) wird weiter-
hin ein Konzept benötigt, um die Informationsverarbeitung zu strukturieren.

3.4.1 Grundlagen zum OCM

Ausgehen sollen die Überlegungen zunächst vom Begriff des mechatronischen Funk-
tionsmoduls (MFM) (vgl. Abschnitt 2.4.3), das als Funktionseinheit aus regelnder
Informationsverarbeitung und technischer Komponente mit Aktorik und Sensorik
die vitalen Teile eines mechatronischen Gesamtsystems enthält. Das mechatronische
Funktionsmodul kombiniert im Ansatz schon für den Entwurf die verschiedenen Do-
mänen der Mechatronik in einem Aggregat. Wird diese Komponente im Kontext von
adaptiven Systemen mit diskreten Entscheidungsprozessen gesehen, gelangt man zu-
nächst zu der Darstellung nach [Nau00].

Abbildung 3.12: OCM nach Naumann

Das OCM nach Naumann [Nau00] (Abbildung 3.12) besteht aus einem Funk-
tionsmodul, das einem MFM entspricht, und einem sogenannten Operator, der in
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der Lage ist, den Regler (Controller) anzupassen. Diese Trennung hat verschiedene
Gründe:

• Der Controller arbeitet quasi-kontinuierlich, der Operator diskret (Zustands-
maschine).

• Der Controller unterliegt durch die Kopplung mit dem realen System harten
Echtzeitbedingungen, der Operator ggf. weichen Echtzeitbedingungen.

• Der Entwurf des Controllers basiert auf physikalisch-mathematisch hergeleite-
ten Differentialgleichungen oder Differenzengleichungen, der Entwurf des Ope-
rators i. A. auf üblichen Verfahren für Zustandsmaschinen wie beispielsweise
StateCharts.

Der Vorteil für Entwurf und Betrieb liegt auf der Hand: Durch die Trennung kön-
nen beide Hauptelemente des OCMmit den üblichen Verfahren der Regelungstechnik
und der Informatik entworfen werden. Im Betrieb sind für beide Module separate
Zeitschranken möglich. Für die Auswertung können jeweils Standardverfahren (vgl.
Kapitel 4) benutzt werden. Die Kopplung kann nach bekannten Verfahren, etwa wie
in der Laufzeitplattform IPANEMA (vgl. 5.3, [Hon98]) vorgesehen, erfolgen.

Das Konzept des OCM nach Naumann erlaubt eine kaskadierte Verkopplung
auf Ebene der Operatoren und der Controller. Ein Einsatz zur Online-Optimierung
ist möglich, sowohl als direkte als auch als indirekte Online-Optimierung [DO00],
[DOM01].

Jedoch bringt das OCM nach Naumann auch Einschränkungen mit sich, die beim
Entwurf von selbstoptimierenden Systemen schnell an die Grenzen des Konzeptes
führen. So bietet das OCM prinzipiell keinen Raum für eine vorausschauende Op-
timierung eines im Operator eingebetteten kontinuierlichen Modells, da eine quasi-
kontinuierliche Informationsverarbeitung hier nicht vorgesehen ist. Auch erlaubt das
OCM nur eine Optimierung der Parameter des Controllers; eine strukturelle Verän-
derung, wie sie rekonfigurierbare Systeme benötigen, ist nicht vorgesehen. Für die
Selbstoptimierung muss der Ansatz des OCM überdacht und erweitert werden.

3.4.2 Aufbau des erweiterten OCM

Im folgenden Abschnitt wird eine neue, erweiterte Struktur für ein OCM vorgestellt,
die den Anforderungen an selbstoptimierende mechatronische Systeme mehr gerecht
wird als der ursprüngliche Ansatz.

3.4.2.1 Funktionelle Anforderungen

Die Informationsverarbeitung eines selbstoptimierenden mechatronischen Systems
muss eine Vielzahl von Funktionen erfüllen. Unter anderem sind dies:

• Regeln der Bewegung bzw. Dynamik der Strecke des technischen Systems

• Überwachung der Strecke auf auftretende Fehler

• Verkopplung des regelnden Systems mit anderen Reglern

• Anpassung der Regelung an veränderte Umgebungszustände durch Adaption
der Reglerparameter
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• Anpassung der Regelung an veränderte Umgebungszustände durch Wechsel
der Reglerstruktur (Rekonfiguration)

• Optimierung der Reglerparameter durch vorausschauende Optimierung am Re-
ferenzmodell der geregelten Strecke, durch klassische Optimierungsverfahren
und verhaltensbasierte Ansätze

• Wissensbasierte Optimierung durch Austausch von Optimierungsergebnissen
anderer OCM mit gleichen Streckenverhältnissen

• Vernetzung der Überwachungs-, Kontroll- und Optimierungsfunktionen (Kas-
kadenregelung)

Die Komplexität des Gesamtsystems wird durch die Kombination der einzelnen
Teilfunktionen, die unterschiedliche Anforderungen an die Informationsverarbeitung
stellen, noch erhöht.

3.4.2.2 Echtzeitanforderungen

Eine generelle Anforderung an die Informationsverarbeitung von mechatronischen
Systemen ist die Einhaltung von Echtzeitbedingungen. Dabei wird zwischen harter
und weicher Echtzeit unterschieden. Harte Echtzeitbedingungen liegen vor, wenn Er-
gebnisse einer Berechnung zu einem bestimmten Zeitpunkt vorliegen müssen, um die
Funktion sicherzustellen. Dies gilt für digitale Regler, die in festgelegten Zeitabstän-
den die Stellwerte der Aktorik aktualisieren müssen. Werden diese Grenzen verletzt,
kann es zu einer Destabilisierung des Systems kommen, was in einem realen techni-
schen Prozess auf keinen Fall passieren darf (Beispiel: Regelung des Leitwerks bei
Flugzeugen). Weiche Echtzeitanforderungen liegen dann vor, wenn Daten zu einem
bestimmten Zeitpunkt vorliegen sollten, jedoch die Verzögerung nicht zu dramati-
schen Auswirkungen führt. Ein Beispiel ist hier die Übertragung von Überwachungs-
daten an eine Leitstelle: Werden Messwerte nicht rechtzeitig übertragen, kann es zu
einer Verzögerung der Anzeige kommen, oder im schlimmsten Fall fehlen Messwer-
te; eine Verletzung der Echtzeitschranken führt jedoch nicht zu einer unmittelbaren
Gefährdung des technischen Prozesses (vgl. auch 5.3).

Allgemein lassen sich die Anforderungen für selbstoptimierende OCM wie folgt
zusammenfassen:

• Die Regelung und alle an ihr direkt beteiligten Prozesse (Überwachungs- und
Notfallroutinen; Überblend- und Umschaltmechanismen) unterliegen harten
Echtzeitbedingungen [DOM01].

• Die Optimierung und alle an ihr beteiligten Prozesse unterliegen weichen Echt-
zeitbedingungen.

Das OCM nach Naumann führt diese Anforderungen bereits an die Grenzen des
Konzepts, da hier beispielsweise Notfallroutinen, die, wenn sie auch sehr einfache,
aber bereits diskrete Entscheidungsmechanismen erfordern, weder Controller noch
Operator zuzuordnen sind. Ebenso steht es mit Steuerungen der Konfiguration (Re-
konfiguration) oder Ablaufsteuerungen, z. B. bei Handhabungsgeräten. Auch diese
unterliegen harten Echtzeitbedingungen, basieren aber nicht zwingend auf kontinu-
ierlicher Informationsverarbeitung.
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3.4.2.3 Erweiterte Struktur des OCM für selbstoptimierende mechatro-
nische Systeme

Eine erweiterte Struktur muss das strenge Paradigma, dass diskrete Prozesse dem
Operator und kontinuierliche dem Controller vorbehalten bleiben, verfeinern. Nach
den in Abschnitt 3.4.2.2 gemachten Annahmen können die aus der Entwicklung
der Laufzeitumgebung IPANEMA gewonnenen Erfahrungen in die neue Struktur
einfließen (vgl. Abschnitt 5.3). Das dort entwickelte 3-Ebenen-Modell aus Calcu-
lator/Adaptor (harte Echtzeit), Assistant (harte/weiche Echtzeit) und Moderator
(weiche Echtzeit) lässt sich im Ansatz für die Neudefinition des OCM nutzen. Wäh-
rend beim OCM nach Naumann die Trennung zwischen weicher und harter Echtzeit
zwischen Operator und Calculator erfolgt, erfolgt bei IPANEMA diese Trennung
innerhalb des Assistant-Prozesses (Überwachung). Dies hat den Vorteil, dass sich
die Pufferung von Daten und die Weitergabe von Befehlen auf einer Zwischenebene
außerhalb des kritischen, regelnden Prozesses kontrollieren lassen.

Der erweiterte Ansatz des OCM (Abbildung 3.13) greift die Anforderungen an
selbstoptimierende Systeme auf. Sie nimmt die in [NR98] und [Nau00] vorgestell-
ten Ansätze auf und verbindet diese mit Ergebnissen aus [HBN01], [OHKK02] und
[OHG04]. Im erweiterten Ansatz besteht das OCM aus drei Hauptelementen:

Der Kognitive Operator umfasst alle Funktionen, die der Optimierung des Sys-
tems dienen und allgemein nicht harten Echtzeitbedingungen unterliegen.

Der Reflektorische Operator umfasst vor allem diskrete Funktionen, die

• der Umsetzung von Optimierungsergebnissen dienen (Parameterwechsel,
Reglerumschaltung etc.),

• Notfallfunktionen ausführen,

• weitere diskrete Abläufe steuern,

• Datenkopplung zwischen Kognitivem Operator und Controller vorneh-
men.

Der Controller enthält die regelnde Informationsverarbeitung und alle Funktio-
nen, die einen direkten Zugriff auf Aktorik und Sensorik benötigen. Alle Zu-
griffe auf den technischen Prozess bzw. das technische System erfolgen nur auf
dieser Ebene.

Die strikte Trennung in diskrete und kontinuierliche Verarbeitung wird aufgeho-
ben. Jedoch gilt weiterhin, dass der Controller keine weitreichende diskrete Verarbei-
tung enthält, wie beispielsweise Zustandsmaschinen, sondern nur für Rekonfiguration
bzw. Notfallfunktionen notwendige diskrete Teilfunktionen. Die Aufteilung erfolgt
nach den Anforderungen der Echtzeitverarbeitung, die sich wiederum aus der Art
des Durchgriffs auf das technische System ergeben.
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Abbildung 3.13: Schematischer Aufbau des erweiterten Operator-Controller-Moduls

Der Controller liegt auf der untersten Ebene des OCM. Der Informationsfluss
bildet zusammen mit dem technischen System einen inneren Kreis. In direktem
Durchgriff werden Messsignale der Sensoren ausgewertet, verarbeitet und neue
Stellsignale an die Aktorik ausgegeben. Dieser innere Kreis wird deshalb auch
als motorischer Kreis bezeichnet.

Die Informationsverarbeitung erfolgt quasi-kontinuierlich, bis auf die oben ge-
nannten Beschränkungen für die Verarbeitung von speziellen, notwendigen,
diskreten Ereignissen. Für eine Reglerumschaltung kann der Controller bereits
vorkonfigurierte Regler enthalten, zwischen denen umgeschaltet werden kann.
Die Umschaltung erfolgt zeitdiskret zwischen zwei kontinuierlichen Zeitschrit-
ten. Überblendungsvorgänge sind eigene, besondere Reglerprozesse.

Der Reflektorische Operator ist ein in diesen Ansatz neu eingeführte Kompo-
nente. In ihm sind Überwachungs- und Steuerungskomponenten zusammenge-
fasst. Der Kontrollfluss bildet einen weiteren Kreis zusammen mit dem Control-
ler, der Messwerte, aber auch allgemein Informationen über den Zustand des
regelnden Systems an den Operator weitergibt und wiederum Steuersignale,
neue Parametersätze u. ä. erhält.

Der Name des Reflektorischen Operators leitet sich vom reflexartigen Handeln
ab. Dabei soll zum Ausdruck kommen, dass auf dieser Ebene ohne lange Ver-
arbeitungsketten Informationen direkt, quasi reflexartig verarbeitet werden.
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Dazu gehören z. B. so genannte Watchdogs20, die eine einfache Prozessüber-
wachung erlauben, aber auch kontinuierliche Adaptionsalgorithmen zur Reg-
leranpassung. Die Komponenten, die direkt mit dem Controller verbunden
sind, erfordern harte Echtzeitbedingungen für die Informationsverarbeitung.

Der Reflektorische Operator dient darüber hinaus als ein Verbindungselement
zur kognitiven Informationsverarbeitung. Dieses Verbindungselement stellt
auch die Grenze zwischen harter und weicher Echtzeitverarbeitung dar. Das
Interface dient als Puffer und stellt den echtzeitfähigen Betrieb der unterla-
gerten Ebenen sicher. Weiterhin ist es denkbar, hier eine Überprüfung neuer
Vorgabewerte in Abhängigkeit vom Systemzustand durchzuführen. Beispiels-
weise dürfen im Notfallbetrieb keine neuen, optimierten Reglerparameter ge-
setzt werden.

Der Kognitive Operator bildet die oberste Ebene der Informationsverarbeitung
innerhalb des OCM. Auf dieser Ebene befinden sich alle höherwertigen Funk-
tionen der Selbstoptimierung. Die Methoden können dabei vielfältig sein. We-
sentliche Ansätze wurden in Abschnitt 2.2 behandelt. Dies sind vor allem Me-
thoden, die ohne genau vorhersehbare Zeitschranke arbeiten, wie z. B. iterative
Optimierungsverfahren. Diese Verfahren basieren häufig auf der Verwendung
von Modellen des unterlagerten Systems zur Optimierung, wie bei der modell-
basierten Optimierung und bei der modellgestützten verhaltensbasierten Op-
timierung. Darüber hinaus können auch wissensbasierte Systeme verwendet
werden, insbesondere in Kombination mit Pareto-Optimierung zur Selektion
eines konkreten Punktes auf der Paretofront. Weitere Verfahren sind Lernver-
fahren. Ein Beispiel hierfür ist das sogenannte selbstverstärkende Lernen, das
vom Formalismus her mit der nichtlinearen Optimierung verwandt ist (vgl. Ab-
schnitt 2.2).

Die optimierende Informationsverarbeitung des Kognitiven Operators kann
grob in modellbasierte und verhaltensbasierte Selbstoptimierung eingeteilt wer-
den. Diemodellbasierte Optimierung ermöglicht eine vorausschauende Optimie-
rung unabhängig vom Zustand des technischen Prozesses bzw. Systems. Die
verhaltensbasierte Optimierung enthält Funktionen zur Planung und zur Be-
wertung der aktuellen Zielvorgaben (siehe [OHKK02], [HO03], sowie [OHG04]
und [HOG04]).

Der Kognitive Operator benötigt keine engen Zeitschranken wie der Reflektori-
sche Operator und der Controller. Durch die Kopplung an den Reflektorischen
Operator, der in der Kopplung unter weichen Echtzeitbedingungen arbeitet,
unterliegen auch Teile des Kognitiven Operators weichen Echtzeitbedingungen.
Hierbei ist die Grenze durch die Verwertbarkeit der Optimierungsergebnisse
festgelegt – hat sich der Zustand des unterlagerten technischen Systems und
der Umgebung so verändert, dass die Optimierungsergebnisse nicht mehr ak-
tuell sind, ist die Zeitschranke überschritten. Eine genaue Zeitschranke, als
Verfallsdatum für den Optimierungsprozess, kann daher nicht immer vorher-
bestimmt werden.

20Der Begriff Watchdog (englisch: Wachhund) wird für eine Komponente eines Rechnersystems
verwendet, welche die Funktion anderer Komponenten überwacht. Wird dabei eine Fehlfunktion
erkannt, so wird diese entweder signalisiert, oder es werden geeignete Anweisungen zur Problembe-
handlung ausgeführt [OHG04].
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Eine Kopplung mit anderen Prozessen ist auf der Ebene des Kognitiven Opera-
tors möglich. Der Import von Optimierungsergebnissen anderer OCM ist hier
nur ein Beispiel. Ein wesentlicher Punkt ist das Empfangen und Setzen neuer
Optimierungsziele und die Kommunikation von Optimierungsergebnissen und
Systemzuständen an andere OCM.

Kognitiver Operator

Verhaltensbasierte Selbstoptimierung

Anregung

Optimierer

Regler

Strecke Gewichtung

Situationsanalyse

Planung / Bewertung

Entscheidung

Planausführung

Auswahl alternativer
Modelle

Modellbasierte Selbstoptimierung

Umgebungs-
einflüsse

Ziele

Konfigurationen

Ergebnisse (der Optimierungen)

Abbildung 3.14: Beispiel für den inneren Aufbau eines Kognitiven Operators

Ein Beispiel für den Aufbau eines Kognitiven Operators ist in Abbildung 3.14
zu sehen [OHKK02]. Der Operator ist in zwei Bereiche aufgeteilt: die Verhal-
tensbasierte Optimierung (oben) und die Modellbasierte Optimierung (unten).
Der Aufbau der verhaltensbasierten Optimierung entspricht in wesentlichen Zü-
gen dem eines Deliberativen Agenten [JW98]. Dies deutet zunächst nicht auf
einen verhaltensbasierten Ansatz hin. Da jedoch das Verhalten des simulierten
Systems und der Modellbasierten Optimierung von der Planungsebene direkt
beeinflusst werden, kann im Allgemeinen von Verhaltensbasierung gesprochen
werden.

Planung und Ausführung der Optimierung werden durch die Module/Phasen
(1) Situationsanalyse, (2) Planung/Bewertung, (3) Entscheidung und (4) Pla-
nausführung durchgeführt. In der Situationsanalyse (1) wird der Zustand des
Systems und ggf. der Umgebung erfasst. Nach der Planung/Bewertung (2),
bei welcher der Zustand bewertet wurde, wird aufgrund der Faktenlage die
Entscheidung (3) für eine konkrete Handlung getroffen. In der Phase der Plan-
ausführung (4) wird die Handlung ausgeführt; die getroffenen Entscheidungen
werden z. B. als neue Ziele und Zielgrößen der Modellbasierten Optimierung
mitgeteilt. Auch die Auswahl einer geeigneten Anregung kann darunter fallen.

Die Modellbasierte Optimierung führt daraufhin eine Simulation und eine Op-
timierung durch. Ist eine verbesserte Konfiguration des geregelten Systems



76 Kapitel 3

gefunden, werden die Ergebnisse der Modellbasierten Optimierung an den Re-
flektorischen Operator weitergeleitet, der für die Umsetzung der neuen Konfi-
guration zuständig ist. Der Prozess der Optimierung kann indessen durch den
Kognitiven Operator fortgesetzt werden.

Die gesamte Struktur orientiert sich nunmehr nicht allein an der Trennung von
diskreter und (quasi-)kontinuierlicher Informationsverarbeitung, sondern an derjeni-
gen zwischen weicher und harter Echtzeit und dem Durchgriff auf das technische
System.

Die drei Ebenen kommunizieren hierarchisch in drei Kreisen, dadurch werden die
Ebenen voneinander entkoppelt. Der Kognitive Operator hat keinen direkten Durch-
griff auf den Controller, der Reflektorische Operator keinen auf den technischen
Prozess. Auf jeder Ebene ist jedoch eine Kopplung mit anderen OCM möglich: Für
den Controller sind dies kaskadierte Regelungen, für den Reflektorischen Operator
ist dies z. B. Notfallroutinen21, für den Kognitiven Operator sind dies der Austausch
von Systemzuständen sowie Optimierungsergebnissen und -zielen mit anderen OCM.

Die genaue Aufteilung der Funktionen auf die drei Elemente Controller, Reflek-
torischer und Kognitiver Operator hängt stark von der Aufgabenstellung ab. Die
genannten Beispielfunktionen dienen nur als Anhaltspunkt.

3.4.3 Rekonfiguration mit Hilfe des OCM

Wie in Abschnitt 3.3 beschrieben wurde, lassen sich klassische Blockschaltbilder sys-
tematisch zu rekonfigurierbaren Blockschaltbildern erweitern. Für eine Realisierung
auf dieser Basis muss das Konzept auf OCM-Architekturen übertragen werden.

Jede Konfiguration eines Blockschaltbildes besteht aus einer eigenen Hierarchie
und einem definierten Wirk- und Informationsfluss, der aus quasi-kontinuierlichen
und diskreten Datenkanälen bestehen kann. Die ausgetauschten Daten beinhalten
Informationen wie Stellgrößen auf Ebene des Controllers oder Ereignisse und andere
diskrete Signale auf Ebene des Reflektorischen und des Kognitiven Operators. Neben
den gerichteten Verbindungen existieren auch bidirektionale Verbindungen zwischen
den Ein- und Ausgängen der Blöcke.

Wird ein komplexes mechatronisches System betrachtet, so besteht dieses aus
vielen (mechatronisch) aktiven Komponenten (z. B. MFM), die das OCM als Struk-
turansatz für die Informationsverarbeitung nutzen. Wird dieses Bild auf rekonfigu-
rierbare Systeme erweitert, so besteht die Informationsverarbeitung eines komplexen
Systems aus ggf. hierarchisch verkoppelten OCM, die eine rekonfigurierbare Baum-
struktur abbilden.

Nach [OHG04] ist die Zuordnung in die verschiedenen Komponenten des OCM
nur dann eine wohlstrukturierte Architektur, wenn gilt:

• Alle Basisblöcke und hierarchischen Blöcke, die direkt über Signale im Wirk-
fluss auf einen Aktor des OCM oder untergeordneter OCM Einfluss haben,
und nur diese, müssen dem Controller des OCM zugeordnet sein.

• Für die Trennung in Reflektorischen Operator und Kognitiven Operator muss
des Weiteren gelten, dass der Kognitive Operator nur ereignisgesteuert auf den
Reflektorischen Operator und gar nicht auf den Controller einwirken kann. Der

21Man denke an kontrollierte Notabschaltung.
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Reflektorische Operator muss jederzeit auch ohne agierenden Kognitiven Ope-
rator handlungsfähig bleiben. Dies bedeutet, dass der Reflektorische Operator
soweit autonom handlungsfähig sein muss, dass sein Verhalten ausreichend für
den sicheren Betrieb des OCM ist (siehe [GTB+03]).

• Für die Verbindungen zwischen den Komponenten der einzelnen OCM muss
darüber hinaus gelten, dass Controller nur mit Controllern des übergeordneten
und der untergeordneten OCM verbunden sind und Reflektorische Operatoren
nur mit den Reflektorische Operatoren des übergeordneten und der untergeord-
neten reaktiven Operatoren. Für die Kognitiven Operatoren ist eine ähnliche
Struktur sinnvoll, aber nicht zwingend erforderlich [OHG04], [HOG04].

Mit der beschriebenen Beschränkung auf sogenannte wohlstrukturierte Architek-
turen wird sichergestellt, dass die in Abschnitt 3.4.2 beschriebene Trennung zwischen
den einzelnen Ebenen der OCM (Controller, reflektorischer und kognitiver Operator)
auch im Falle hierarchischer Verkopplung erhalten bleibt und auch im Falle einer Re-
konfiguration kein unkontrollierter Zugriff auf den Controller durch den kognitiven
Operator möglich ist.

Darüber hinaus gilt, bedingt durch den sicherheitskritischen Charakter mecha-
tronischer Systeme, dass nur Blockschaltbilder erlaubt sind, die ein vorhersehbar
sicheres Verhalten zeigen. Folgende Eigenschaften gelten zusätzlich zur Forderung
der Wohlstrukturiertheit:

1. Um ein undefiniertes Verhalten zu vermeiden, gilt eine Konfiguration nur dann
als strukturell korrekt, wenn keine unverbundenen Ein- oder Ausgänge vorhan-
den sind.

Wenn alle möglichen Konfigurationen der hybriden Hierarchieelemente struk-
turell korrekt sind, so gelten die Konfigurationen als statisch korrekte Rekonfi-
guration.

Sind jedoch nicht alle (möglichen) Konfigurationen korrekt, sondern nur die,
welche durch die Interaktion des Systems erreichbar sind, wird von dynamisch
korrekter Rekonfiguration gesprochen.

Um einen sicheren Betrieb zu gewährleisten, muss ein System mindestens ei-
ner dynamisch korrekten Rekonfiguration entsprechen. Im Falle einer statisch
korrekten Rekonfiguration sind alle Konfigurationen sicher.

2. Speziell für den Controller gilt ergänzend, dass die Konfiguration nicht nur
mindestens einer dynamisch korrekten Rekonfiguration entsprechen muss, son-
dern dass darüber hinaus auch alle erreichbaren Zustände (z. B. verschiedene
Reglertypen und Verkopplungen, auch mit Sensorik/Aktorik) die notwendige
regelungstechnische Stabilität aufweisen müssen.

3. Sicherheitskritische Elemente, wie bestimmte Notfallverhalten, müssen in jeder
Konfiguration erreichbar sein. Dies gilt vor allem für den Controller und den
reflektorischen Operator.
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Kapitel 4

Numerische Simulation und
Ausführung von modularen
Systemen

Wir verstehen die Zahl, aber nie das Gezählte (Blaise Pascal)

In diesem Kapitel werden Verfahren vorgestellt, die für die korrekte Simulation
und Ausführung von verkoppelten Teilsystemen wesentlich sind. Solche verkoppel-
ten Teilsysteme kommen insbesondere in selbstoptimierenden mechatronischen Re-
gelungssystemen vor. Im Folgenden werden Probleme und Lösungsansätze für die
numerische Simulation und Ausführung untersucht und beschrieben, die in s.o. Sys-
temen genutzt werden können.

4.1 Mathematische Modelle

Mathematische Modelle dynamischer Systeme und kontinuierliche Regelungssyste-
me werden üblicherweise durch zeitkontinuierliche Gleichungen dargestellt, wie DAE
(Differential-Algebraic Equations) und ODE (Ordinary Differential Equations). Da
für das numerische Lösen von DAEs im Allgemeinen iterative Verfahren benötigt
werden, haben sich ODEs als Beschreibungsform für echtzeitfähige Systeme durch-
gesetzt. Bei der Betrachtung von s. o. Systemen, die auf rekonfigurierbaren Systemen
und hybriden Komponenten basieren, ergeben sich besondere Anforderungen an die
Ausführung im Rechner. Dabei spielt es zunächst keine Rolle, ob (Teil-)systeme
simuliert werden oder nur die Informationsverarbeitung des realisierten Systems be-
trachtet wird – die mathematischen Grundlagen sind die gleichen. In jedem Fall geht
es um die Lösung von gewöhnlichen Differentialgleichungen, die für die Echtzeitver-
arbeitung die größte Bedeutung haben und auf denen sowohl die Systemmodelle als
auch die Regelungstechnik basieren (vgl. 2.3.5).

4.2 Numerische Simulation mechatronischer
Systeme

Die Simulation technischer bzw. mechatronischer Systeme im Digitalrechner be-
steht im Wesentlichen aus der numerischen Integration der systembeschreibenden
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Differentialgleichungen. Dazu dienen leistungsfähige Verfahren, wie z. B. Runge-
Kutta-Methoden (Einschrittverfahren) oder die Methoden nach Adams-Bashforth
(Mehrschrittverfahren) [Stu96]. Dabei werden die Systemgleichungen zu diskreten
Zeitpunkten ausgewertet. Die Schrittweite zwischen zwei solchen Zeitpunkten wird
hauptsächlich von der Geschwindigkeit, also den Zeitkonstanten der Teilsysteme,
bestimmt. Allgemein kann man sagen, dass die Schrittweite umso kleiner gewählt
werden muss, je schneller das System ist, damit der numerische Fehler, der bei der
Berechnung gemacht wird, nicht zu groß wird.

Wie bereits im Kapitel 3 diskutiert wurde, setzen sich s. o. Systeme aus mecha-
tronischen Teilsystemen zusammen, die ggf. in ihrem Wirkzusammenhang variieren
können (Rekonfiguration). Rekonfiguration ist besonders leicht in der Informations-
verarbeitung zu realisieren. Dabei werden neue Regler umgeschaltet oder Teilmodelle
zur Optimierung ausgetauscht oder variiert.

Solche Systeme setzen sich häufig aus Teilsystemen mit stark unterschiedlichen
Zeitkonstanten zusammen. Dies ist besonders dann der Fall, wenn die Teilsysteme un-
terschiedlichen Disziplinen (Domänen) entstammen, wie beispielsweise schnelle elek-
tronische und damit verglichen langsame mechanische Teilsysteme. Dies gilt auch für
die hierarchische Verkopplung von Reglern (vgl. verallgemeinerte Kaskadenregelung
[LHLH01, Hes06]) auf unterschiedlichen Ebenen, bei denen verschiedene Zeitkon-
stanten gelten.

Wird ein einziges Integrationsverfahren zur Simulation bzw. Berechnung des Ge-
samt(regelungs)systems verwendet, muss die Schrittweite klein genug für eine hinrei-
chende Genauigkeit bei der Berechnung des schnellsten Teilsystems gewählt werden.
Entsprechend werden aber auch alle anderen Differentialgleichungen im System mit
dieser Schrittweite integriert, auch wenn diese keine so kleine Schrittweite erfordern.
Dieses Vorgehen ist nicht effizient [KR99].

Um die Effizienz der Auswertung zu verbessern, kann die modular-hierarchische
Struktur eines Gesamtsystems ausgenutzt werden. Die Gruppierungen und Kopplun-
gen, die sich aus einer an der Realität orientierenden Modellierung des technischen
Systems ergeben, führen automatisch zu Teilsystemen mit unterschiedlichen Zeitkon-
stanten. Durch eine getrennte Berechnung der Teilmodelle mit Schrittweiten, die an
die jeweiligen Zeitkonstanten angepasst sind, kann die Effizienz gesteigert werden.
So wird verhindert, dass langsame Teilsysteme, also Systeme mit großen Zeitkonstan-
ten, mit viel kleinerer Schrittweite und dadurch größerem Rechenaufwand integriert
werden, als für die geforderte Genauigkeit notwendig ist.

Für die Praxis ist also der Einsatz von Integrationsverfahren geboten, welche
die Anforderungen an die Zeitkonstanten der Teilsysteme berücksichtigen. Solche
Verfahren werden auch als Multirate-Verfahren bezeichnet [Vöc03], [OV04].

Die Regelung mechatronischer Systeme erfolgt heute praktisch ausschließlich
durch digitale Regler. In komplexen Systemen wie Kraftfahrzeugen werden die Regler
der einzelnen Teilsysteme auf Steuergeräten ausgeführt. Dabei sind die Steuergeräte
oft hierarchisch verkoppelt, d. h. ein Steuergerät bekommt Vorgabedaten von einem
anderen Steuergerät höherer Ordnung. Dies ist beispielsweise beim ESP (Electronic
Stability Program) der Fall, bei dem das Steuergerät für das ESP mit dem Steuerge-
rät für ABS (Antiblockiersystem) verkoppelt ist. In neueren ESP-Varianten werden
weitere Funktionen wie ASR (Antischlupfregelung) integriert und innerhalb eines
Steuergerätes realisiert [Rob07].

Die lokalen digitalen Regler berechnen die neuen Ausgabewerte in eigenen zeit-
lichen Abständen. Diese Schrittweiten können sich denjenigen der anderen Regler
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unterscheiden. Bei unterschiedlichen Schrittweiten kann es zu besonderen Effekten
kommen, die großen Einfluss auf das Ergebnis der Regelung haben [Vöc03], [OV04].

S. o. Systeme unterliegen durch ihre Komplexität und den Einsatz von simulier-
ten Teilsystemen ebenfalls diesen Effekten. Daher ist es sinnvoll, diese Effekte zu
modellieren und näher zu untersuchen. Für die Untersuchung bietet sich eine Mo-
dellsimulation an. Die auftretenden Effekte lassen sich stellvertretend an Multirate-
Systemen untersuchen, um Rückschlüsse auf das Verhalten von komplexen Reglersys-
temen zu gewinnen. So lassen sich sowohl die unterschiedlichen Geschwindigkeiten
der digitalen Komponenten als auch die verteilte modulare und hierarchische Struk-
tur realer Systeme abbilden. Der Prinzipaufbau eines einfachen Multirate-Systems
ist in Abbildung 4.1 dargestellt.

Teilsystem 1

Teilsystem 2

u

y1

y

y2

Koppeldaten

Gesamtsystem

Schrittweite h

Schrittweite H

Abbildung 4.1: Multirate-System mit zwei Teilsystemen

Das Gesamtsystem besteht aus zwei unterschiedlich schnellen Teilsystemen. Je-
des Teilsystem wird einzeln mit einer Schrittweite ausgewertet, die der geforderten
Genauigkeit angepasst ist. Für sich betrachtet, ergibt sich für die Berechnung der
einzelnen Teilsysteme dadurch kein Problem, wenn die jeweiligen Eingangsgrößen für
jeden Berechnungsschritt zur Verfügung stehen. Jedoch werden häufig die Ausgangs-
größen des einen Systems zur Berechnung des anderen Systems benötigt (rekursive
Verkopplung). Bei Systemen mit unterschiedlicher Schrittweite müssen diese Kopp-
lungen besonders behandelt werden.

In den folgenden Abschnitten sollen die Effekte, die zu Problemen führen können,
näher untersucht werden. Darüber hinaus werden auch Ansätze vorgestellt, die eine
Kompensation ermöglichen. Für s.o. Systeme sind dies Grundlagen, die bei jeder
Realisierung in Betracht gezogen werden müssen. Im Falle der Rekonfiguration ist
darüber hinaus die veränderte Verkopplung von Teilsystemen mit unterschiedlichen
Zeitkonstanten zu beachten.

4.2.1 Genauigkeit und Stabilität numerischer Berechnungs-
verfahren

Die Auswertung der mathematischen Gleichungen, die das System beschreiben, er-
folgt zeitdiskret. Dadurch entsteht ein numerischer Fehler, dessen Größe, Qualität
und Verwertbarkeit der Simulation bestimmt. Mit der Genauigkeit der Berechnung
steigt allerdings auch der Aufwand, im Allgemeinen der Rechenaufwand. Einen wei-
teren Einfluss hat das gewählte Integrationsverfahren. Ziel ist es, den Fehler bei
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akzeptablem Aufwand hinreichend klein zu halten. Eine Möglichkeit Aussagen über
die Qualität eines numerischen Verfahrens zu gewinnen, ist des Anwendung des so-
genannten Standard- oder Dahlquist-Test-Problems [But87], [HW91].

y′ = λy ; λ komplex
y(0) = 1

(4.2.1)

Die analytische Lösung ist bekannt:

y(x) = eλx (4.2.2)

Diese Lösung konvergiert genau dann gegen 0, wenn Re(λ) < 0 gilt. Die nu-
merischen Verfahren müssen mindestens diese Eigenschaft wiedergeben. Die häu-
fig verwendeten expliziten Runge-Kutta-Verfahren der Stufe s mit Schrittweite h,
Zwischenstufen gi und den Koeffizienten aij und bj liefern bei Anwendung auf das
Test-Problem 4.2.1:

gi = ym + hλ
i−1∑
j=1

aijgj

ym+1 = ym + hλ
s∑
j=1

bjgj

(4.2.3)

mit z = hλ und nach mehrfachem Einsetzen von gi ergibt sich:

ym+1 = R(z)ym (4.2.4)

wobei

R(z) = 1 + z
∑
j

bj + z2
∑
j,k

bjajk + z3
∑
j,k,l

bjajkakl + ... (4.2.5)

Aufgrund von Gleichung 4.2.4 muss |R(z)| < 0 gelten, damit die Eigenschaft des
Testproblems, für ein λ mit negativem Realteil gegen 0 zu konvergieren, erhalten
bleibt. Der Bereich

S = {z ∈ C; |R(z)| < 0} (4.2.6)

wird als Stabilitätsbereich des Verfahrens bezeichnet. Das numerische Integra-
tionsverfahren konvergiert gegen 0, wenn h so gewählt wird, dass z = hλ inner-
halb dieses Bereiches liegt. Beispielsweise ergibt die Anwendung eines Runge-Kutta-
Verfahrens auf ein System linearer Differentialgleichungen:

y′ = Ay (4.2.7)

mit der Stabilitätsfunktion R(z) aus Gleichung 4.2.5:

ym+1 = R(hA)ym (4.2.8)

Für den Erhalt der numerischen Stabilität muss h bei Re(λi) < 0 somit so ge-
wählt werden, dass hλi ∈ S ist. Die λi stellen die Eigenwerte der Systemmatrix A
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dar. Die Eigenwerte des Systems bestimmen die zu wählende Integrationsschrittwei-
te. Für explizite Runge-Kutta-Verfahren mit der Ordnung p, die ihrer Stufenzahl s
entspricht, lautet die Stabilitätsfunktion nach [HW91]:

R(z) = 1 + z +
z2

2
+ ...+

zs

s!
(4.2.9)

Abbildung 4.2: Stabilitätsbereiche expliziter Runge-Kutta-Verfahren

In Abbildung 4.2 [But87] sind die Stabilitätsbereiche S für explizite Runge-Kutta-
Verfahren bis zur Stufe s = 4 zu sehen, die sich durch diese Stabilitätsfunktion
ergeben.

4.2.2 Voraussetzungen für unterschiedliche Schrittweiten

Insgesamt lässt sich anhand der oben genannten Stabilitätsbedingung hλi ∈ S aussa-
gen, dass bei betragsmäßig großen Eigenwerten (schnelle Systeme) die Schrittweite
klein gewählt werden muss, um numerische Stabilität zu gewährleisten. Für kleine
Eigenwerte (langsame Systeme) darf die Schrittweite größer sein.

Wenn Systeme schnelle und langsame Anteile besitzen, also sowohl kleine als
auch große Eigenwerte aufweisen, ist der größte Eigenwert für die Wahl der Schritt-
weite h bestimmend. Sie muss so klein gewählt werden, dass für alle Eigenwerte die
Stabilitätsbedingung erfüllt wird. In der Praxis wird die Schrittweite bei nichtstei-
fen Systemen oft nicht durch die Stabilitätsbedingung beschränkt, sondern durch
Genauigkeitsforderungen, die eine Schrittweite vorgeben, mit der die Stabilitätsbe-
dingung ohnehin erfüllt ist [RSW96]. Grundidee der Multirate-Verfahren ist nun,
ein Gesamtsystem in Teilsysteme aufzuteilen, um diese mit unterschiedlichen, ih-
ren Eigenwerten entsprechenden Schrittweiten berechnen zu können. Dadurch kann
Genauigkeit oder auch Rechenleistung gewonnen werden.

4.3 Verkopplung von Teilsystemen

Besondere Aufmerksamkeit bei der Anwendung von Multirate-Verfahren ist bei der
Verkopplung von Teilsystemen gegeben. Bei einer solchen Verkopplung, wie in Abbil-
dung 4.1 dargestellt, können Teilsysteme mit unterschiedlichen Geschwindigkeiten
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verkoppelt werden. Für die Berechnung eines schnellen Teilsystems sind beispielswei-
se berechnete Werte eines langsameren Teilsystems erforderlich. Für einen Zeitschritt
des schnellen Systems stehen die für den aktuellen Zeitschritt benötigten Daten des
langsamen Systems möglicherweise aktuell nicht zur Verfügung, da zu diesem Zeit-
punkt das entsprechende Teilsystem nicht ausgewertet wurde. Zur Verfügung stehen
somit nur Daten von einem früheren Zeitpunkt, wodurch ein numerischer Fehler ent-
steht.

Im umgekehrten Fall, wenn ein langsames System Daten eines schnelleren benö-
tigt, treten ebenfalls numerische Effekte auf. Zwischen dem Schritt des langsamen
Systems berechnet das schnelle mehrere Schritte. Während eines Zwischenschrittes
ignoriert und nur der jeweils letzte Wert vom langsamen System verwendet, ent-
steht ein weiterer numerischer Fehler. Die Untersuchung dieser Effekte und die Ent-
wicklung von Maßnahmen zur Kompensation stehen im Mittelpunkt der folgenden
Abschnitte.

4.3.1 Numerische Fehler durch Aliasing

In diesem Abschnitt wird der Effekt beschrieben, der auftreten kann, wenn ein lang-
sames System Koppeldaten von einem schnellen System erhält. Nach dem Abtast-
theorem von Shannon können die Eigenschaften eines Systems verloren gehen, wenn
mit zu geringer Frequenz abgetastet (digitalisiert) wird. Dies spielt insbesondere bei
der Analog-/Digitalwandlung eine große Rolle, wobei die Theorie besagt, dass min-
destens mit der doppelten Frequenz des Systems abgetastet werden muss. Liegt die
Abtastrate zu niedrig, kann beispielsweise ein Signal mit viel niedrigerer Frequenz
entstehen. Dieser Effekt wird als Aliasing [LJ96] bezeichnet und ist kein multirate-
spezifisches Problem, sondern kann überall dort vorkommen, wo Signale abgetastet
oder nur zu diskreten Zeitpunkten ausgewertet werden (siehe auch: Abtasttheorem
von Shannon22 [Ste88]).

u (t)1 u (t)2y (t)1 y (t)2
PT 22PT 12

Abbildung 4.3: Testsystem aus zwei PT2-Gliedern

Deutlich wird das am Beispiel zweier in Serie geschalteter PT2-Systeme, wie in
Abbildung 4.3 dargestellt. Das erste hat eine hohe und das zweite eine niedrige
Eigenfrequenz. Damit die Pole des langsamen zweiten Systems im Stabilitätsbereich
des Integrationsverfahrens liegen, reicht für dieses System eine größere Schrittweite
H als für das schnelle erste System aus. Das hochfrequente Ausgangssignal y1 dieses
Systems wird bei der Simulation und der daraus resultierenden Diskretisierung vom
zweiten System zu den Zeiten t0 + nH ausgewertet. Diese Abtastfrequenz reicht
jedoch nicht aus, um die Eigenschaften von y1 hinreichend genau wiederzugeben. Es
entsteht ein völlig verändertes Eingangssignal für das zweite System.

22Claude Elwood Shannon (* 30. April 1916 in Petoskey, Michigan; † 24. Februar 2001)
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Abbildung 4.4: Aliasing-Effekt bei Multirate-Integration

Abbildung 4.4 [OV04] zeigt das Simulationsergebnis y2 exakt (gepunktete Linie)
bei Sprunganregung ohne Multirate-Verfahren, also mit gleicher hinreichend klei-
ner Integrationsschrittweite für beide Systeme, und mit unterschiedlichen Schritt-
weiten für das langsame und das schnelle System (durchgezogene Linie). Deutlich
zu erkennen sind die unterschiedlichen Verläufe des Eingangssignals in das zweite
PT2-System sowie die daraus resultierenden Unterschiede im Ausgang aus diesem
System.

Für die Modellierung der Effekte muss die Diskretisierung modelliert werden.
Dazu dient der sogenannte δ-Abtaster. Er erzeugt aus einem kontinuierlichen Signal
eine Impulsfolge. Um den abgetasteten Wert über die Schrittweite konstant zu hal-
ten, wird ein Halteglied benötigt. Die Impulsfolge des δ-Abtasters wird dadurch zu
einer Treppenfunktion. Der δ-Abtaster bildet zusammen mit dem Halteglied das
sogenannte Abtast-Halteglied.

Im oben beschriebenen Beispiel hat das erste PT2-System eine wesentlich kleinere
Zeitkonstante als das zweite Teilsystem. Zur Untersuchung der daraus resultierenden
Koppeleffekte kann es als quasi-kontinuierlich angenommen werden.

u1 y1, exakt y1, Multirate

AH-GliedPT 12

u2 y2
PT 22{

PT 2, Multirate2

Abbildung 4.5: Ersatzmodell der Serienschaltung zweier PT2-Glieder bei Kopplung
vom langsamen zum schnellen System

Der Ausgang des ersten Systems wird bei der Berechnung des zweiten Systems
aufgrund der Multirate-Integration aber nur zu diskreten Zeitpunkten berücksichtigt.
Dies wird durch ein zusätzlich eingefügtes Abtast-Halteglied berücksichtigt, wie in
Abbildung 4.5 [OV04] zu sehen ist. Die größere Schrittweite, mit der das zweite
System ausgewertet wird, geht dabei als Totzeit T in das Halteglied ein.



86 Kapitel 4

w0 w0w0 w0w0 w0 w0 w0 w0

1/T

w0

w

Amplitude

Abbildung 4.6: Spektrum des δ-Abtasters

Abbildung 4.6 [LJ96] zeigt das Spektrum eines δ-Abtasters bei einer Sinusanre-
gung mit der Frequenz ω0. Es weist unendlich viele Peaks der Höhe 1/T bei den
Frequenzen nωA ± ω0 auf.

Der Amplitudengang des Haltegliedes ergibt, multipliziert mit dem Spektrum
des Abtasters, das Gesamtspektrum des Abtast-Halteglieds, wie in Abbildung 4.7
zu sehen ist.

Abbildung 4.7: Spektrum des Abtast-Halteglieds

Das Spektrum zeigt deutlich die Oberschwingungen bei nωA ± ω0. Mit kleiner
werdendem ωA und konstantem ω0 wird die Amplitude der ersten Oberschwingung
im Verhältnis zu derjenigen der Grundschwingung immer größer. Bei ωA = 2ω0

haben die Grundschwingung und die erste Oberschwingung dieselbe Frequenz. Wenn
die Abtastfrequenz ωA noch weiter reduziert wird, tritt die erste Oberschwingung bei
einer niedrigeren Frequenz auf als die Grundschwingung. Außerdem hat sie dann eine
größere Amplitude als die Grundschwingung. Das Eingangssignal wird also völlig
verändert wiedergegeben. Nach dem Abtasttheorem von Shannon [Ste88] sollte diese
Grenze nicht überschritten werden:

„Um fähig zu sein, f(t) exakt wiederzugewinnen, muss man f(t) mit einer
Rate abtasten, die größer als das Doppelte seiner höchsten Frequenzkom-
ponente ist.“ [Ste88]
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In der Praxis wird eine doppelte Abtastrate nicht ausreichen, um das Signal
hinreichend genau wiederzugeben. Lediglich die Frequenz kann ab dieser Schwelle
korrekt wiedergegeben werden (siehe z. B. [LJ96]).

Der Effekt kann ebenfalls mit Hilfe der z-Transformation gezeigt werden. Ein
schwingungsfähiges PT2-Glied hat im Laplace-Bereich einen Nenner der Form:

N(s) = s2 + 2ζω0s+ ω2
0

= s2 + 2ζω0s+ ζ2ω2
0 − ζ2ω2

0 + ω2
0

=

s+ ζω0︸︷︷︸
a

2

+ ω2
0

(
1− ζ2

)︸ ︷︷ ︸
b2

(4.3.1)

Anhand der Polstellen (für ζ < 1) s1,2 = −ζω0 ± jω0

√
1− ζ2 lassen sich cha-

rakteristische Werte des Systems ablesen. Wesentlich sind im Allgemeinen die Ei-
genfrequenzen des gedämpften und des ungedämpften Systems sowie die Dämpfung
[Föl94]. Die Polstellen der z-transformierten Übertragungsfunktion geben, ähnlich
der laplace-transformierten Übertragungsfunktion, über wichtige Eigenschaften Aus-
kunft. Die Rücktransformation in den Zeitbereich erfolgt durch Partialbruchzerleg-
ung und Anwendung von Korrespondenztabellen. Ein komplexes Polpaar einer z-
Übertragungsfunktion ergibt einen Partialbruch mit einem Nenner der Form:

(z − α + jβ)(z − α− jβ) = z2 − 2αz + α2 + β2 (4.3.2)

Aus der Korrespondenztabelle [Fei90] ergibt sich:

N(z) = z2 − 2ze−aT cos(bT ) + e−2aT (4.3.3)

Durch Koeffizientenvergleich ergeben sich aus Gleichung 4.3.2 und 4.3.3:

e−2aT = α2 + β2 ⇒ e−aT =
√
α2β2 (4.3.4)

und

α = e−aT cos(bT ) (4.3.5)

Damit folgt nach kurzer Rechnung:

β = e−aT sin(bT ) (4.3.6)

Mit Gleichung 4.3.4 in 4.3.5 ergibt sich:

cos(bt) =
α√

α2 + β2
(4.3.7)

b =
1

T
arccos

(
α√

α2 + β2

)
(4.3.8)

Die z-Übertragungsfunktion des Nenners (Gleichung 4.3.3) korrespondiert aber
mit der Laplace-Übertragungsfunktion des Nenners (Gleichung 4.3.1), der einem
PT2-System gehört wie im oben dargestellten Beispiel. Die zugehörige Zeitfunktion
lässt sich ermitteln mit:
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e−atcos (bt) bzw.e−atsin (bt) (4.3.9)

Die in den Korrespondenztabellen enthaltenen kontinuierlichen Zeitbereichsfunk-
tionen stimmen zu den Abtastzeitpunkten nT mit den Werten der Punktfolge über-
ein. Jedoch wird über den Verlauf zwischen zwei Abtastzeitpunkten bei der Rück-
transformation keine Aussage getroffen. Somit ist die Rücktransformation in den
Zeitbereich nicht eindeutig. Wird jedoch die Abtastzeit hinreichend klein gewählt,
gibt das rücktransformierte Signal im Zeitbereich die wichtigsten Eigenschaften wie-
der.

Aus den Pollagen der z-transformierten Übertragungsfunktion lässt sich die Kreis-
frequenz b des Antwortsignals bestimmen. Der Aliasing-Effekt lässt sich dadurch er-
klären, dass cos eine periodische Funktion ist. Deshalb ist sie nicht über den ganzen
Bereich der reellen Zahlen injektiv, sondern nur intervallweise [BSMM97], [Vöc03].

Für den Übergang von 4.3.7 nach 4.3.8 muss folglich gelten: bT < π. Wird die
Abtastzeit T durch die Abtastkreisfrequenz ωA beschrieben als T = 2π/ωA, ergibt
sich die Bedingung zu:

b
2π

ωA
< π ⇔ 2b < ωA (4.3.10)

Die Kreisfrequenz b stellt nach Gleichung 4.3.8 die Eigenfrequenz der Schwin-
gung des Antwortsignals dar, was das Shannon-Theorem wiedererkennen lässt. Wird
die Bedingung 4.3.10 nicht eingehalten, entsteht durch die Abtastung eine zu einer
niedrigeren Frequenz passende Punktfolge. Durch Einsetzen von 4.3.4 und 4.3.5 in
Gleichung 4.3.8 ergibt sich:

b =
1

T
arccos(cos(bT )) (4.3.11)

Obwohl diese Gleichung auch nach 4.3.10 richtig ist, ergibt sich wegen der Mehr-
deutigkeit von cos eine niedrigere tatsächliche Kreisfrequenz ωT für das rücktrans-
formierte Signal:

ωT =
1

T
arccos(cos(bT )) (4.3.12)

Die Abbildung 4.8 zeigt den Verlauf dieser tatsächlichen Kreisfrequenz für eine
zunehmende Abtastschrittweite T bei konstanter Kreisfrequenz b = 100rad/s des
abgetasteten Signals. Zunächst stimmen ωT und b überein. Wird jedoch Bedingung
4.3.10 verletzt, nimmt mit zunehmendem T die Frequenz ωT ab. Im weiteren Ver-
lauf steigt und fällt die Funktion wieder, was an der Periodizität des cos liegt. Die
Obergrenze ergibt sich durch π/T , was durch die gestrichelte Linie dargestellt wird.
Für bT > π ist diese stets kleiner als b.

Die Darstellung in Abbildung 4.8 macht deutlich, dass sich bei zu groß gewählter
Abtastzeit T bzw. zu großer Schrittweite ein verändertes Antwortsignal ergibt. Dies
hat stets eine kleinere Frequenz als die Ausgangsfrequenz.



Numerische Simulation und Ausführung von modularen Systemen 89

0

0

20

40

60

80

100

w
T

0 0.05 0.1 0.15 0.2 T

Abbildung 4.8: Kreisfrequenzen der rücktransformierten Funktion

Aus den dargestellten Überlegungen ergibt sich nun die Frage, wie bei einem
Multirate-System, bei dem Bedingung 4.3.10 verletzt wird, trotzdem eine numerisch
stabile und hinreichend genaue Berechnung möglich gemacht werden kann. Offen-
sichtlich ist, dass Mechanismen benötigt werden, um die Effekte zu kompensieren,
die solche – streng genommen mit zu niedriger Frequenz abgetasteten und ausgewer-
teten – Signale mit sich bringen.

4.3.2 Erzeugung von Störfrequenzen durch Kopplung von
Teilsystemen

Nachdem im vorherigen Abschnitt 4.3.1 die Effekte untersucht wurden, welche die
Kopplung eines schnellen Systems mit einem langsamen mit sich bringen, soll im
Folgenden die Kopplung eines langsamen mit einem schnellen Teilsystem untersucht
werden. Als Beispiel dient wieder die Reihenschaltung zweier PT2-Systeme wie im
Abschnitt 4.3.1, jedoch besitzt diesmal das erste System die größere Zeitkonstante
und das nachfolgende die kleinere. Entsprechend ist die Integrationsschrittweite für
das erste größer als für das zweite gewählt worden. Für sich betrachtet sind beide
Teilsysteme numerisch stabil.

Der zu untersuchende Effekt ergibt sich bei diesem Multirate-System durch die
Verkopplung des Ausgangs des ersten, langsamen Systems mit dem Eingang des
schnellen: Während der Auswertung des schnellen Systems kann das Eingangssignal
nicht zu jedem Zeitschritt aktualisiert werden. Als Eingang wird der letzte bekannte
Wert benutzt. Das Ausgangssignal y1 = u2 wird für die Dauer eines Integrations-
schrittes des langsamen Systems konstant gehalten. Nach diesem großen Schritt
(Makroschritt), der mehrere Auswertungen des zweiten Systems (Mikroschritte) um-
fasst, wird ein neuer Wert für y1 berechnet. Dieser Wert wird dann für die Dauer
des nächsten Makroschrittes zur Berechnung des zweiten Systems genutzt. Aus Sicht
des schnellen Systems kommt es bei einem Makroschritt zu einer plötzlichen sprung-
haften Aktualisierung des Eingangssignals, was zu einer zusätzlichen Anregung des
schnellen Systems führen kann. Dabei kann die Frequenz der Anregung viel höher
sein als die Frequenz des Ausgangssignals des langsameren Systems.
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Abbildung 4.9: Zusätzliche hohe Frequenzanteile durch Multirate-Integration

Abbildung 4.9 [Vöc03] zeigt das Simulationsergebnis für einen Eingangssprung.
Integrationsschrittweite und Zeitkonstanten wurden dabei ungünstig gewählt, so
dass der Effekt besonders zu Tage tritt. Die Anregung erfolgt im Bereich der Ei-
genfrequenz des schnellen, schlecht gedämpften Systems, da das erste System mit
eben dieser Frequenz ausgewertet wird. Dadurch entstehen Sprünge im Ausgangssi-
gnal (gestrichelte Linie).

Abbildung 4.10: Integration ohne Multirate

Erfolgt eine Auswertung ohne Multirate mit der Schrittweite des schnellen Teil-
systems für das Gesamtsystem, liegen Eingangs- (gestrichelt) und Ausgangssignal
(durchgezogene Linie) nahezu direkt übereinander. Wie im vergrößerten Bereich in
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Abbildung 4.10 [Vöc03] deutlich zu erkennen ist, werden keine zusätzlichen Schwin-
gungen aufgebaut. Der Effekt kann dadurch erklärt werden, dass, wie schon im Ab-
schnitt 4.3.1, ein zwischengeschaltetes Abtast-Halte-Glied angenommen wird, das
den Eingang des zweiten PT2-Systems für die Dauer eines Integrationsschrittes des
ersten konstant hält. Da die Integrationsschrittweite des zweiten Systems als viel
kleiner gegenüber dem ersten angenommen wird, kann dieses Teilsystem zur Verein-
fachung als kontinuierliches System modelliert werden. Die Diskretisierung dieses
Systems wird also vernachlässigt. Das Modell ist als Blockschaltbild in Abbildung
4.11 dargestellt.

u1 y1, exakt y1, Multirate

AH-GliedPT 12

u2 y2
PT 22{

PT 1, Multirate2

Abbildung 4.11: Ersatzmodell für Multirate-Integration bei Kopplung vom schnellen
zum langsamen System

Wie in Abbildung 4.7 aus Abschnitt 4.3.1 zu sehen ist, weist es Oberschwingun-
gen bei nωA±ω0 auf, wobei ωA die Abtastfrequenz darstellt und ω0 die Anregungsfre-
quenz. Somit gibt ωA für das hier beschriebene Modell die Frequenz der Berechnung
des ersten Teilsystems an. Ist die Auswertefrequenz deutlich höher als die Frequenz
des Systems, kann ω0 für die Untersuchung der Oberschwingungen vernachlässigt
werden, deren Frequenzen im Bereich von ganzzahligen Vielfachen von ωA liegen.
Wenn die Eigenfrequenz des folgenden Systems in diesem Bereich liegt, wirkt sich
der Effekt besonders stark aus. Außerhalb können jedoch immer noch unerwünschte
Oberschwingungen auftreten.

Da das schnellere Teilsystem als zeitkontinuierlich angenommen wurde, lässt sich
die modifizierte z-Transformation [Fei90] auf dieses Problem anwenden. Sie erlaubt
unter den hier vorliegenden Bedingungen die Berechnung der Signalverläufe zwischen
den Abtastzeitpunkten.

Durch das Konstanthalten des Ausgangssignals des ersten Systems entsteht ei-
ne Treppenfunktion, die für die zusätzliche Anregung verantwortlich ist. Der Verlauf
des ursprünglichen Signals spielt dabei keine Rolle. Deshalb genügt es, das Verhalten
des zweiten PT2-Systems zu untersuchen. Das Eingangssignal wird auf ein einfaches
Rampensignal u(t) reduziert. Durch ein nachgeschaltetes Abtast-Halteglied erhält
das Signal einen treppenförmigen Verlauf uTreppe(t), der bei der Integration eines
Systems mit geringerer Schrittweite entstehen würde. Die Konfiguration ist in Ab-
bildung 4.12 zu sehen.

u(t) u (t)Treppe y (t)2
PT 22AH-Glied

Abbildung 4.12: Modell zur Anwendung der modifizierten z-Transformation

Mit Hilfe der modifizierten z-Transformation soll nun das Ausgangssignal des
angeregten zweiten PT2-Systems nach [Fei90] untersucht werden. Im ersten Schritt
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wird die z-Transformierte des Eingangssignals u(t) = t mit Hilfe einer Korrespon-
denztabelle ermittelt:

U(z) =
Tz

(z − 1)2
(4.3.13)

Die laplace-transformierte Übertragungsfunktion des PT2-Gliedes lautet:

GPT2(s) =
K

T 2
0 s

2 + 2ζT0s+ 1
=

Kω2
0

s2 + 2ζω0s+ ω2
0

(4.3.14)

mit ω0 = 1/T0 als Eigenfrequenz des ungedämpften Systems und ζ als Lehrsches
Dämpfungsmaß. Nach Umformung in eine entsprechende Form ergibt sich mit a =
ζω0 und ω = ω0

√
1− ζ2:

GPT2(s) =
Kω0

(s+ a)2 + ω2
(4.3.15)

Die Übertragungsfunktion des Haltegliedes:

FH(s) =
1− e−Ts

s
(4.3.16)

lässt sich in die Faktoren 1−e−Ts und 1/s aufteilen. Mit GPT2(s) wird der Faktor
1/s zusammengefasst zu:

G(s) =
Kω0

s((s+ a2) + ω2)
(4.3.17)

Die sich ergebende Übertragungsfunktion wird in Partialbrüche aufgeteilt:

G(s) = A
1

s
+B

(s+ a)

(s+ a)2 + ω2
+ C

ω

(s+ a)2 + ω2
(4.3.18)

Aus den Summanden lässt sich mit Hilfe einer Korrespondenztabelle die z-
Übertragungsfunktion bestimmen:

G(z, γ) = A1
z

z − 1

+B1
(zcos(ωγT )− e−aT cos((1− γ)ωT ))ze−aγT

z2 − 2ze−atcos(ωT ) + e−2aT

+ C1
(zsin(ωγT ) + e−aT sin((1− γ)ωT ))ze−aγT

z2 − 2ze−atcos(ωT ) + e−2aT

(4.3.19)

T ist die Abtastperiode. γ ∈ [0, 1] wird zur Berechnung der Werte zwischen
den Abtastzeitpunkten nT verwendet. Die z-Transformierte von 1 − e−Ts aus dem
Halteglied

1− z−1 =
z − 1

z
(4.3.20)

wird zusammen mit der Übertragungsfunktion des Eingangssignals U(z) zur Be-
rechnung des Ausgangssignals genutzt:

Y2(z, γ) = U(z)
z − 1

z
G(z, γ) (4.3.21)
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Nach Einsetzen und Rücktransformation mit Hilfe der Korrespondenztabelle er-
gibt sich der zeitliche Verlauf des Ausgangssignals zu:

y2(t) = A2

+B2kT

+ C2e
−a(kT+γT )cos(ω(kT + γT ))

+D2e
−a(kT+γT )sin(ω(kT + γT ))

(4.3.22)

mit den Koeffizienten A2, B2, C2 und D2, die von ω0, ζ, γ und T abhängen23.
Das PT2-System wird mit der Abtastperiode T = 2π/ω0 bei niedriger Dämpfung
(ζ = 0.05) genau mit seiner Eigenfrequenz zusätzlich angeregt. Das Ergebnis der
Berechnung ist in Abbildung 4.13 zu sehen. Die Auswirkungen des treppenförmigen
Eingangssignals auf das nachfolgende System stimmen mit der Simulation überein.
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Abbildung 4.13: Antwortsignal mittels modifizierter z-Transformation

Wird die Abtastzeit anders gewählt, z. B. T = (2/3) · 2π/ω0, was nicht zu einer
Anregung im Bereich der Eigenfrequenz führt, fallen die Auswirkungen geringer aus.
Zusammenfassend lässt sich sagen, dass die angestellten Überlegungen mit der Her-
leitung der Koppeleffekte aus dem Spektrum des Abtast-Haltegliedes übereinstim-
men. Besonders kritisch sind die Auswirkungen, wenn die gewählte Abtastperiode
zu Anregungen im Bereich der Eigenfrequenz oder ganzzahligen Vielfachen des ange-
regten Systems liegt. Die Tastperiode entspricht im Falle der Multirate-Integration
der Schrittweite, mit der das erste, langsame System ausgewertet wird. Eine Verän-
derung der Abtastperiode kann den Effekt zwar verringern, jedoch kann nicht ohne
Betrachtung der einzelnen Teilsysteme garantiert werden, dass diese Reduzierung
hinreichend ist. Für die Kompensation der störenden Einflüsse dieser Oberschwin-
gungen sind weitere Maßnahmen nötig. Für automatisch verkoppelte Systeme im

23Auf eine ausführliche Darstellung wurde aus Gründen der Übersichtlichkeit verzichtet, da es
sich um längere Terme handelt, die für das hier angestrebte Verständnis nicht von Bedeutung
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Falle von Rekonfiguration werden Methoden benötigt, die eine numerische Stabili-
tät sicherstellen oder zumindest eine definierte Aussage über ein späteres Verhalten
erlauben.

4.3.3 Multirate-Systeme und Multirate-Integration

Nach der Untersuchung und der Darstellung von Effekten, die bei der Kopplung
von Systemen mit unterschiedlichen Schrittweiten auftreten können, wurden zu-
nächst einzelne Effekte mit Hilfe von eingefügten Abtast-Haltegliedern untersucht.
Um ein Gesamtsystem zu untersuchen, müssen an allen Stellen, an denen Signale
zwischen unterschiedlichen Schrittweiten übergeben werden, Abtast-Halteglieder ein-
gefügt werden. Unter Vernachlässigung des numerischen Fehlers des Integrationsver-
fahrens kann der Einfluss der Auswertung unterschiedlicher Schrittweiten untersucht
werden. Dazu werden die Teilsysteme als kontinuierliche Systeme betrachtet24. Mit
Hilfe zweier Abtast-Halteglieder kann dann die Diskretisierung jedes Teilsystems
modelliert werden.
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Abbildung 4.14: Modell der Diskretisierung

In der Abbildung 4.14 ist diese Konfiguration zu sehen. Sie kann als Erweiterung
der Konfiguration aus Abbildung 4.1 betrachtet werden. In der Erweiterung besitzt
jedes Teilsystem sowohl am Eingang als auch am Ausgang ein Abtast-Halteglied.
Die zeitdiskrete Auswertung des Teilsystems wird durch das AH-Glied am Eingang
dargestellt (vgl. 4.3.1). Die Effekte, die sich aus der Diskretisierung des Ausgangs
ergeben, werden durch das nachgeschaltete AH-Glied modelliert (vgl. 4.3.2).

4.3.4 Grenzen des Modellierungsansatzes

Die bisherigen Betrachtungen konzentrierten sich auf die Untersuchung von Koppel-
effekten zwischen Teilsystemen mit unterschiedlicher Schrittweite. Die Erweiterung
durch Abtast-Halteglieder erlaubt mit Hilfe der z-Transformation Vorhersagen über
die Veränderung des Systemverhaltens bei der Simulation.

24Die betrachteten Teilsysteme sind Modelle kontinuierlicher Systeme, die zur Abbildung im
Rechner diskretisiert werden müssen (quasi-kontinuierlich). Wird diese Diskretisierung vernachläs-
sigt, gelangt man wieder zu kontinuierlichen Systemen.
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Jedoch stößt dieser Ansatz schnell an Grenzen, da zum einen selbst einfache Sys-
teme schnell so komplex werden, dass sie mit Hilfe von analytischen Beschreibungs-
formen, wie der z-Transformation nach [Fei90], zu keiner handhabbaren Darstellung
führen; zum anderen ist der Ansatz durch die z-Transformation selbst begrenzt.
Diese ist für unterschiedliche Schrittweiten nicht vorgesehen. Alle Signale müssen
zu festen Zeitpunkten t = n · T vorliegen, damit die z-Transformation überhaupt
angewendet werden darf [BSMM97]. Somit ist es nicht ohne weiteres möglich, die
z-Transformation zur vollständigen Beschreibung von Multirate-Systemen nach dem
bisher dargestellten Ansatz anzuwenden.

Für eine vollständige Beschreibung von Multirate-Systemen ist eine Erweiterung
oder Modifikation der z-Transformation notwendig, was eine Herausforderung für zu-
künftige Arbeiten darstellt. Im Sinne von selbstoptimierenden mechatronischen Sys-
temen kann eine solche Beschreibungsform einen entscheidenden Fortschritt bringen,
da damit Vorhersagen über das Systemverhalten einer bestimmten Konfiguration
schon beim Entwurf getroffen werden können. In Ergänzung der Rekonfiguration ist
es dann möglich, das Systemverhalten selbst bei unterschiedlichen Systemkonfigura-
tionen und dem Einsatz von Multirate-Verfahren vorherzusagen. So weit gehen die
bisherigen Untersuchungen in dieser Arbeit nicht. Sie zeigen aber die Notwendigkeit,
diesen Weg zu gehen.

4.4 Ansätze zur Vermeidung von Störeffekten in
Multirate-Systemen

Zur numerischen Lösung von Differentialgleichungssystemen mit unterschiedlichen
Schrittweiten werden Integrationsverfahren verwendet, die aufgrund ihrer unter-
schiedlichen Zeitkonstanten als Multirate-Verfahren bezeichnet werden. Es handelt
sich dabei um gewöhnliche Integrationsverfahren, die für diesen Zweck erweitert wur-
den. Auch Ansätze zur Kompensation der bereits dargestellten Koppeleffekte sind
in diesen Verfahren enthalten. Eine Zusammenfassung der Verfahren und Ansätze
nach [Blu78] findet sich z. B. bei [Obe98a].

In [Blu78] wird ein System von Differentialgleichungen, bestehend aus zwei Sub-
systemen, untersucht:

ẋ = f(x, y)

ẏ = g(x, y)
(4.4.1)

x stellt hier den Zustand des langsamen und y den des schnellen Teilsystems
dar. Das schnelle Teilsystem wird mit der Schrittweite h, das langsame mit dem
ganzzahligen Vielfachen H = Kh berechnet. Nach insgesamt n Schritten sind sowohl
das schnelle als auch das langsame System bis zum Zeitpunkt t = t0 + nH = t0 +
nKh ausgewertet. Ab diesem Zeitpunkt kann ein neuer Schritt H = Kh beginnen.
Dieser Schritt, zu dem beide Systeme ausgewertet wurden, wird im Folgenden als
Gesamtschritt bezeichnet. Die Betrachtung eines Gesamtschrittes genügt für die
Untersuchung der Multirate-Verfahren. Die Synchronisation nach K Teilschritten
erspart außerdem die Interpolation von Zwischenschritten ([GW84]). Ausgehend von
dem Gesamtsystem nach 4.4.1, ergibt sich das generelle Modell für ein Multirate-
Verfahren, das in Abbildung 4.15 zu sehen ist.
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Abbildung 4.15: Schema eines Multirate-Verfahrens

Zur Unterdrückung der Koppeleffekte werden die Daten des schnellen Systems
y zum langsamen System x geglättet und die Daten des langsamen Systems x zum
schnellen System y extrapoliert. Zur besseren Darstellung des Ansatzes wird ein
lineares Gesamtsystem (4.4.2) betrachtet:

ẋ = A11x+ A12

ẏ = A21x+ A22

(4.4.2)

Mit Hilfe dieses Systems werden die Erweiterungen des Euler-Verfahrens be-
schrieben. Die einfachste Form eines auf dem Euler-Verfahren beruhenden Multirate-
Verfahrens für das System aus 4.4.2 ist in 4.4.3 angegeben:

xi+1,0 = xi,0 +Kh(A11xi,0 + A12yi,0)

yi,j+1 = yi,j + h(A21xi,0 + A22yi,j); j = 1, ..., K − 1

yi+1,0 = yi,K

(4.4.3)

Die Indizes i und j bestimmen dabei den betrachteten Zeitpunkt:

ti,j = t0 + (iK + j)h; i ≥ 0; 0 ≤ j ≤ K

xi,j = x(ti,j)

yi,j = y(ti,j)

(4.4.4)

Das Verfahren beschreibt so einen Gesamtschritt von ti,0 nach ti+1,0. Das lang-
same System x wird über den Gesamtschritt berechnet. Die Ableitung ẋ wird zu
Beginn dieses Gesamtschrittes ti,0 benutzt.

Innerhalb eines Gesamtschrittes bleiben Zustandsänderungen des schnellen Sys-
tems y unberücksichtigt. Das schnelle System y wird in K Teilschritten zum Ge-
samtschritt integriert. In jedem Teilschritt von ti,j nach ti,j+1 wird zur Berechnung
der Ableitung ẏ die Änderung des schnellen Systems berücksichtigt. Da das lang-
same System nicht aktualisiert wird, wird sein Zustand als konstant angenommen.
Alle im Folgenden beschriebenen Erweiterungen basieren auf diesem grundlegenden
Verfahren.

4.4.1 Kompensation der Aliasing-Effekte durch Glättung der
Koppeldaten

Das aus Abschnitt 4.3.1 bekannte Aliasing-Problem kann durch die Glättung der
Koppeldaten vom langsamen zum schnellen System kompensiert werden. Da nach
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Gleichung 4.4.3 zur Berechnung des Gesamtschrittes des langsamen Teilsystems x
der Zustand yi,0 des schnellen Systems benutzt wird und die anderen Zwischenschrit-
te unberücksichtigt bleiben, kann es zu den bereits beschriebenen Störeffekten kom-
men. Das Ergebnis des letzten Schrittes des schnellen Systems (yi,0) allein spiegelt
nicht das gesamte Verhalten des Teilsystems während des Intervalls [ti,0, ti+1,0] wie-
der. In [Blu78] wird deshalb das Glätten der Koppeldaten des schnellen Teilsystems
vorgeschlagen. So ist es möglich, das Verhalten des schnellen Systems für das lang-
same System besser abzubilden. Der veränderte Gesamtschritt hat dann folgende
Form:

xi,j+1 = xi,0

yi,j+1 = yi,j + h(A21xi,0 + A22yi,j)
(4.4.5)

ȳi,0 = 0

ȳi,j+1 = ȳi,j; j = 0, 1, ..., K − 1
(4.4.6)

xi+1,0 = xi,0 +KhA11xi,0 + hA12ȳi,K

yi+1,0 = yi,K
(4.4.7)

Wie in Gleichung 4.4.6 zu sehen ist, werden die einzelnen Zwischenschritte des
schnellen Systems in yi,j festgehalten und aufsummiert. Im letzten Teilschritt wird
der arithmetische Mittelwert gebildet, der als Eingang in das langsame System ver-
wendet wird.

Die Anwendung dieses Verfahrens auf das Beispiel zweier in Reihe geschalteter
PT2-Glieder aus Kapitel 4.3.1 ergibt gute Ergebnisse. In Abbildung 4.16 werden
die unterschiedlichen Verfahren in der Simulation zweier in Reihe geschalteter PT2-
Glieder aus Kapitel 4.3.1 verglichen. Wie zu sehen ist, sind die Unterschiede zwischen
dem System mit Multirate (durchgezogene Linie) und Multirate mit Glättung (ge-
strichelte Linie) deutlich. Das Multirate-System mit Glättung kommt der analytisch
berechneten, genauen Lösung schon sehr nahe, wie ein Vergleich der beiden Verläufe
(gepunktete und gestrichelte Linie) zeigt.

4.4.2 Extrapolation der Koppeldaten

Für die Kompensation der Oberschwingungen, die durch die Verkopplung vom lang-
samen zum schnellen System entstehen, wird in [Blu78] eine lineare Extrapolation
der Koppeldaten vorgeschlagen:

x̂i,j+1 = x̂i,j + h(A11xi,0 + A12yi,0); j = 1, ..., K − 1

xi+1,0 = x̂i,K
(4.4.8)

ŷi,j+1 = ŷi,j + h(A21x̂i,j + A22ŷi,j); j = 1, ..., K − 1

yi+1,0 = ŷi,K
(4.4.9)

Wie Gleichung 4.4.8 zeigt, wird bei der Auswertung zunächst ein Gesamtschritt
für das langsame System x ausgeführt. Dazu werden die Daten des schnellen Systems
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Abbildung 4.16: Vergleich der Systemantworten mit und ohne Glättung zum exakten
Verlauf

y aus dem Anfangszustand extrapoliert (Gleichung 4.4.8). Der Gesamtschritt ist in
K Zwischenschritte x̂i,j; j = 1, ..., K aufgeteilt, für die jedoch die Multiplikation
h(A11xi,0 + A12yi,0) nur einmal ausgeführt werden muss. Die interpolierten Werte
x̂i,j werden für die Berechnung der Zwischenschritte des schnellen Systems y benutzt.
Dadurch soll eine treppenförmige Aktualisierung der Koppeldaten (vgl. Abschnitt
4.3.2) vermieden werden.

Das Ergebnis des Verfahrens, auf das Beispiel aus Abschnitt 4.3.2 angewendet,
ist in Abbildung 4.17 zu sehen. Ohne die Extrapolation ergeben sich die bereits in
Abschnitt 4.3.2 diskutierten Oberschwingungen im Ausgang des schnellen Systems
(durchgezogene Linie). Der treppenförmige Verlauf des langsamen Systems (gestri-
chelte Linie) wird durch die Extrapolation mit zusätzlichen Zwischenwerten verse-
hen. Daraus ergibt sich ein gleichmäßiger Verlauf (gepunktete Linie), wodurch das
Entstehen von Oberschwingungen in diesem Beispiel verhindert wird. Das schnelle
System folgt dadurch dem Verlauf besser (Strichpunktlinie).

4.4.3 Gleichzeitiger Einsatz von Glättung und Extrapolation

Nach der separaten Betrachtung der Kompensationsverfahren Glättung und Extra-
polation bleibt zu klären, wie sich die Einführung der Methoden auf das Gesamtver-
halten eines rückgekoppelten Systems auswirkt. Rückkopplungen treten vor allem
bei geregelten mechatronischen Systemen auf, wie vereinfacht in Abbildung 4.1 dar-
gestellt.

Nach [Blu78] werden zur Berechnung von ŷi,j+1 aus Gleichung 4.4.7 die durch
lineare Extrapolation bestimmten Werte ŷi,j aus Gleichung 4.4.9 benutzt. Daraus
ergibt sich folgendes Verfahren:
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Abbildung 4.17: Multirate-Integration mit und ohne linearer Extrapolation

x̂i,j+1 = x̂i,j + h(A11xi,0 + A12yi,0); j = 1, ..., K − 1

ŷi,j+1 = ŷi,j + h(A21x̂i,j + A22ŷi,j); j = 1, ..., K − 1
(4.4.10)

ȳi,0 = 0

ȳi,j+1 = ȳi,j + ŷi,j; j = 0, 1, ..., K − 1
(4.4.11)

xi+1,0 = xi,0 +KhA11xi,0 + hA12ȳi,K

yi+1,0 = ŷi,K
(4.4.12)

Die extrapolierten Werte aus Gleichung 4.4.10 des langsamen Teilsystems werden
zur Berechnung der Teilschritte des schnellen Systems benutzt. In Gleichung 4.4.11
werden diese aufsummiert (ȳi,j) und zur Bildung des Durchschnitts genutzt. Schließ-
lich kann das langsame System mit geglätten Koppeldaten ausgewertet werden, wie
Gleichung 4.4.12 zeigt.

4.4.4 Aufwand und Fehler

Multirate-Verfahren sind aus der Motivation heraus entstanden, Rechenzeit einzuspa-
ren. Auch wenn bei zunehmender Rechenleistung das Problem in den Hintergrund
zu rücken scheint, darf nicht vergessen werden, dass der Aufwand nur deshalb eine
geringe Rolle spielt, weil das Verhältnis von Rechenleistung zu Aufwand – also die
Komplexität der zu berechnenden Systeme – sich günstig entwickelt hat. Sollten
jedoch verstärkt selbstoptimierende mechatronische Systeme zum Einsatz kommen,
die zur Optimierung rekonfigurierbare Regelungssysteme einsetzen, kann sich das
Verhältnis zwischen Aufwand und vorhandener Rechenleistung wieder anders dar-
stellen. Daher soll an dieser Stelle kurz der Nutzen in Bezug auf eine Ersparnis an
Berechnungen nach [Blu78] dargestellt werden.
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In [Blu78] wird der Aufwand anhand des Vergleichs der benötigten Multiplika-
toren abgeschätzt. Dazu werden Verfahren auf Basis des einfachen Eulerverfahrens
verglichen. Das Beispiel, das aus zehn langsamen Gleichungen für x und zwei schnel-
len Gleichungen für y besteht, wird mit den Integrationsschrittweiten H = Kh mit
K = 100 ausgewertet. Das Multirate-System wird zusätzlich mit den Verfahren Glät-
tung und Extrapolation ergänzt. Das Referenzsystem wird mit der Schrittweite des
schnellen Teilsystems ausgewertet. Hierbei ergibt sich ein Verhältnis des Aufwands
von Multirate zu Nicht-Multirate von 0.29.

Darüber hinaus besteht ein weiterer, nicht unerheblicher Vorteil in der Reduzie-
rung des Kommunikationsaufwands, da die Koppeldaten des langsamen Teilsystems
nicht bei jedem Schritt gesendet und empfangen werden müssen.

Leider wird in [Blu78] nicht näher auf Fehlerbetrachtungen oder Stabilitätsun-
tersuchungen eingegangen. Jedoch lässt sich der Fehler eines Integrationsverfahrens
abschätzen. Dazu wird zur Berechnung einer Näherung der yk der exakten Lösung
y(tk) nach [Sch86] eine Fehlerordnung definiert:

Ein Einschrittverfahren besitzt die Fehlerordnung p, falls für seinen loka-
len Diskretisierungsfehler dk die Abschätzung

max(1≤k≤n)|dk| ≤ D = const · hp+1 = O(hp+1) (4.4.13)

gilt, so dass der globale Diskretisierungsfehler gn... beschränkt ist durch

|gn| ≤
const

L
enhL · hp = O(hp) (4.4.14)

Der lokale Diskretisierungsfehler dk beschreibt die Abweichung der exakten Lö-
sung von dem berechneten Wert nach einem Schritt. Der globale Diskretisierungs-
fehler gn = y(tn)− yn beschreibt die Abweichung der Auswertung des numerischen
Verfahrens von der exakten Lösung an der Stelle tn. Besonders hervorzuheben ist,
dass nach [Hau83] die Extrapolation mit einem Polynom vom Grad p− 1 zu einem
zusätzlichen Fehler der Ordnung O(Kh)p führt. Die Konvergenzordnung wird somit
nur eingehalten, wenn die Verfahren zu Extrapolation und Interpolation die gleiche
Fehlerordnung aufweisen wie das verwendete Integrationsverfahren.

Dieser Zusammenhang hat erhebliche Konsequenzen: Mit der Ordnung des Inte-
grationsverfahrens steigt der Aufwand für Extrapolation und Interpolation erheblich,
so dass der Nutzen des Einsatzes von Multirate dahin sein kann [Hau83]. Aus die-
sem Grund sollte die Ordnung der Integrationsverfahren beim Einsatz von Multirate
nicht zu hoch sein.

4.4.5 Reihenfolge der Auswertung der Teilsysteme

Für die Realisierung von Multirate-Systemen im Sinne der Informationsverarbeitung
stellt sich die Frage, in welcher Reihenfolge die einzelnen Teilsysteme des Gesamt-
systems ausgewertet werden. Zwei wesentliche Strategien werden in [GW84] und
[RG94] unterschieden:

• Fastest first-Strategie: Das schnelle Teilsystem wird zuerst in K Schritten mit
der Schrittweite h über einen Gesamtschritt berechnet. Die Werte für die
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Zwischenschritte des langsamen Teilsystems werden aus dem vorangegange-
nen Zeitschritt extrapoliert. Anschließend wird das langsame Teilsystem über
einen Gesamtschritt mit der Schrittweite H integriert. Die zur Auswertung des
schnellen Systems nötigen Werte werden durch Interpolation ermittelt und ge-
gebenenfalls geglättet.

• Slowest first-Strategie: Hierbei wird das langsame Teilsystem zunächst in ei-
nem Gesamtschritt mit der Schrittweite H integriert. Die für die Berechnung
nötigen Werte aus dem schnellen Teilsystem werden mittels Extrapolation aus
dem vorherigen Zeitschritt ermittelt. Zur Berechnung des schnellen Teilsystems
werden aus dem zuvor durchgeführten Gesamtschritt des langsamen Systems
die benötigten Werte interpoliert. Das schnelle System wird in K Teilschritten
berechnet.

Die Fastest first-Strategie ist Voraussetzung für die in [Blu78] vorgestellte Glät-
tung der Koppeldaten des schnellen Teilsystems und somit auch für die Kombination
von Glättung und Extrapolation des langsamen Systems. Jedoch hat dieser Ansatz
einen entscheidenden Nachteil bei Integrationsverfahren, die mit einer Schrittwei-
tensteuerung arbeiten: Bei einer Schrittweitensteuerung wird jeder Schritt auf seine
Genauigkeit überprüft. Ist die geforderte Genauigkeit nicht erreicht, wird die Schritt-
weite verkleinert und der Schritt wiederholt.

Bei einem Multirate-Integrationsverfahren, das nach der Fastest first-Strategie ar-
beitet, ergibt sich folgende Konsequenz: Stellt sich nach der abschließenden Auswer-
tung des Gesamtschrittes für das langsame Teilsystem heraus, dass die Schrittweite
zu groß gewählt wurde, beruhen alle zuvor berechneten Zwischenschritte des schnel-
len Teilsystems auf der zuvor durchgeführten fehlerhaften Extrapolation des langsa-
men Systems und müssen ebenfalls wiederholt werden [GW84], [KR99], [Hau83].

Der Einsatz der Slowest first-Strategie resultiert aus einer Überlegung: Multirate-
Verfahren bieten sich vor allem bei Teilsystemen an, die untereinander nur schwach
verkoppelt sind [RG94]. Wird schwache Kopplung vorausgesetzt, wirken sich die
größeren Fehler durch die Extrapolation der Koppeldaten zur Berechnung des lang-
samen Systems nicht so gravierend aus. Bei Einsatz einer Schrittweitensteuerung un-
ter den getroffenen Annahmen ist dieses Verfahren somit günstig. Allerdings ist der
Einsatz einer Schrittweitensteuerung bei Echtzeitsystemen ohnehin nicht geeignet,
da dort solche Verfahren eingesetzt werden müssen, bei denen die maximale Berech-
nungsdauer für einen Zeitschritt im Voraus bestimmt werden kann. Bei Verfahren mit
Schrittweitensteuerung ist das nicht möglich, da nicht von vornherein feststeht, mit
welcher Schrittweite die geforderte Genauigkeit erreicht wird [Obe98a]. Im Zusam-
menhang mit selbstoptimierenden Systemen eignet sich die Slowest first-Strategie für
nicht echtzeitabhängige Simulationen, etwa für vorausschauende Optimierungen.

4.4.6 Erweiterung von Runge-Kutta-Verfahren zu Multirate-
Verfahren

Abschließend sollen nun Multirate-Runge-Kutta-Verfahren betrachtet werden, die
insbesondere bei nicht steifen Systemen, wie sie häufig in mechatronischen Syste-
men auftreten, von Bedeutung sind. Am Beispiel zweier expliziter Multirate-Runge-
Kutta-Verfahren nach [KR99] soll kurz skizziert werden, dass sich solche Verfahren,
basierend auf normalen Runge-Kutta-Verfahren, gut zu Multirate-Verfahren erwei-
tern lassen.
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Die in [KR99] vorgestellten Verfahren arbeiten nach der Slowest first-Strategie.
Um zu verhindern, dass für Interpolation und Extrapolation der Koppeldaten die
Daten aus dem vorhergehenden Schritt gespeichert werden müssen, werden die Kop-
peldaten aus dem aktuellen Zeitschritt heraus bestimmt. Zunächst wird das schnelle
Teilsystem über einen Gesamtschritt extrapoliert, damit die Zwischenschritte zur
Berechnung des langsamen Teilsystems vorliegen. Zur Verbesserung der Genauig-
keit und der Stabilität des Verfahrens wird in einem zweiten Verfahren vorgeschla-
gen, die Zwischenwerte mit Hilfe eines Verfahrens niedriger Ordnung zu bestim-
men; in diesem Fall das Euler-Verfahren. Damit die Ordnung des Gesamtverfahrens
nicht reduziert [Hau83] wird, schlägt [KR99] eine Modifikation dieser Vorgehens-
weise vor, mit der die Fehlerordnung des Multirate-Verfahrens voll erhalten bleibt.
Die beschriebenen Multirate-Runge-Kutta-Verfahren (MRK-Verfahren) beinhalten
eine Schrittweitensteuerung, die, wie bereits erwähnt, für eine Echtzeitverarbeitung
nicht verwendet werden kann. Jedoch ist es durchaus möglich auf den Einsatz ei-
ner Schrittweitensteuerung zu verzichten. Somit sind die Verfahren auch für eine
Berücksichtigung der Koppeleffekte gut geeignet.

Schon [Rük96] nennt Schwierigkeiten beim Nachweis von numerischer Stabilität
bei Multirate-Verfahren. Eine interessante Untersuchung der Stabilität dieser MRK-
Verfahren findet sich bei [Kvæ00].[

ẏA
ẏL

]
= A

[
yA
yL

]
; A

[
a11 a12

a21 a22

]
(4.4.15)

yA stellt ein schnelles (active) und yL ein langsames (latent) Teilsystem dar.
Dieses Testproblem ist für die Darstellung verschiedener Eigenschaften eines Diffe-
rentialgleichungssystems geeignet. Es wird durch folgende Parameter beschrieben:

γ =
a12a21

a21a22

κ =
a22

a11

(4.4.16)

Für die Parameter werden a11, a22 < 0 und γ < 1 vorausgesetzt, damit A
Eigenwerte mit negativem Realteil besitzt. g spiegelt die Stärke der Kopplung wieder.
Der Parameter κ > 1 kann als Maß für die Steifigkeit des Systems angesehen werden.
Die oben beschriebenen Verfahren werden auf dieses Testproblem angewendet. Ein
Gesamtschritt mit K Schritten der Schrittweite h zur Berechnung des schnellen
Teilsystems yA und einem Schritt der Schrittweite H für yL lässt sich dann allgemein
darstellen als: [

yA,K
yL,1

]
= Φ

[
yA,0
yL,0

]
(4.4.17)

Für das gewählte Verfahren F gilt: Es ist genau dann asymptotisch stabil, wenn
die Eigenwerte von Φ innerhalb des Einheitskreises liegen. Weiterhin müssen Metho-
den und Schrittweiten so gewählt werden, dass das MRK-Verfahren für das unverkop-
pelte System (a12 = a21 = 0) stabil ist. Das erfordert, dass die Stabilitätsfunktionen
RA(ha11) und RL(Ha22) (siehe Gleichung 4.2.5) vom Betrag her kleiner als 1 sind.
In [Kvæ00] werden Bedingungen für die Stärke der Kopplung γ und die Stabilitäts-
funktion des schnellen Teils RA hergeleitet, welche die Forderung an die Eigenwerte
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von Φ in jedem Fall erfüllen. In Abhängigkeit von der Steifigkeit κ und dem Fak-
tor zwischen den Schrittweiten K = H/h ergeben sich daraus Stabilitätsbereiche
ähnlich der Abbildung 4.2.

In Abbildung 4.18 [Kvæ00] sind im Vergleich dazu diese Stabilitätsbereiche für
ein nichtsteifes System (κ = 1) zu sehen.

Abbildung 4.18: Stabilitätsbereiche von Multirate-Runge-Kutta-Verfahren

Die Abbildung für MRKI zeigt dabei den Stabilitätsbereich der Methode, bei
der die Zwischenwerte des schnellen Teilsystems ausschließlich aus einer Extrapola-
tion des ersten Teilschritts gewonnen werden. Die Abbildung für MRKII zeigt den
Stabilitätsbereich der Methode, bei der ein Integrationsverfahren niedriger Ordnung
zur Berechnung der Zwischenwerte verwendet wurde. Erstaunlicherweise hat MR-
KI einen größeren Stabilitätsbereich als die aufwendigere MRKII. Jedoch wird in
[Kvæ00] darauf hingewiesen, dass dieses Ergebnis nicht verallgemeinert werden darf,
sondern nur für die in [KR99] gewählten Parameter gilt. Das Ergebnis zeigt jedoch
insgesamt, dass sich Runge-Kutta-Verfahren gut auf Multirate-Systeme erweitern
lassen.

4.4.7 Fazit

Zusammenfassend lässt sich sagen, dass der Einsatz von Multirate-Verfahren für
die Simulation und die Realisierung komplexer mechatronischer Systeme insbeson-
dere bei stark unterschiedlich schnellen Teilsystemen nicht nur sinnvoll, sondern
notwendig ist. Dies gilt in besonderem Maße für selbstoptimierende mechatronische
Systeme.

Weiterhin ist festzustellen, dass es hinreichende Verfahren gibt, um numerische
Stabilität abzuschätzen; für eine genaue Modellierung aller Effekte in komplexen
Systemen fehlen bisher jedoch geeignete, vor allem leicht handhabbare Methoden.
Das vorherige Kapitel zeigt jedoch Möglichkeiten und erste Ansätze für weiterge-
hende Arbeiten. Sollten Multirate-Verfahren in selbstoptimierenden Systemen mit
Rekonfiguration zum Einsatz kommen, ist eine Abschätzung jedoch unumgänglich.
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Kapitel 5

Informationsverarbeitung – Entwurf
und Implementierung

Gute Informationen sind schwer zu bekommen. Noch schwerer ist es, mit
ihnen etwas anzufangen (Sir Arthur Conan Doyle)

Für die Realisierung selbstoptimierender mechatronischer Systeme werden neben
Entwurfs- und Strukturierungsmethoden für das technische Teilsystem auch Ansät-
ze für eine geeignete Informationsverarbeitung benötigt. Dabei spielt der Ansatz
der rekonfigurierbaren Systeme und der Hybriden Komponenten [Bur06] (vgl. Kapi-
tel 3) eine wichtige Rolle. Der Entwurf solcher Systeme wurde bereits aus technisch-
mechatronischer Sicht dargestellt. Der Entwurf der Informationsverarbeitung benö-
tigt darüber hinaus formale Darstellungen, um zu einer Abbildung im Rechner zu
gelangen.

Für Selbstoptimierung auf der Ebene der Informationsverarbeitung ist es not-
wendig, Teilkomponenten zur Laufzeit auszutauschen. Da es sich hierbei um die
mathematische Abbildung mechatronischer Systeme und speziell um Reglersysteme
handelt, ist neben der formalen Beschreibung auch eine modulare Codegenerierung
erforderlich.

5.1 Modularisierung von Modellen
In diesem Abschnitt werden grundsätzliche Fragen bei der Aufteilung von Teilsyste-
men auf der Ebene der Informationsverarbeitung beleuchtet. Dabei steht der Aufbau
von Verständnis für Probleme und Lösungsansätze im Vordergrund. Es werden ver-
schiedene Strategien zur Modularisierung des Systemcodes vorgestellt, die bei der
Rekonfiguration selbstoptimierender Systeme eine Rolle spielen. Darüber hinaus sind
die Ansätze aber auch für eine effiziente Generierung nicht rekonfigurierbarer Sys-
teme interessant, insbesondere, wenn Systeme aus vorgegebenen Teilkomponenten
erstellt werden sollen.

5.1.1 Zerlegung in Teilkomponenten

Die bisherigen Überlegungen zu einer Modularisierung von Systemen und System-
modellen gingen von der modular-hierarchischen Bauteilstruktur mechatronischer
Systeme bzw. von hierarchischen Reglersystemen aus. Jedes Teilsystem wird jedoch
durch mathematische Gleichungen beschrieben, die in Bezug auf das Gesamtsystem
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nicht unabhängig voneinander sind. Bei der mathematischen Darstellung dynami-
scher Systeme in Form von gewöhnlichen Differenzialgleichungen und anschließender
Transformation in numerisch berechenbare Differenzengleichungen ergibt sich eine
bestimmte Reihenfolge für die Berechnung der Systemgleichungen, die Auswerterei-
henfolge. Fatalerweise ist diese Auswertereihenfolge abhängig von der Verkopplung
der Teilsysteme. Für rekonfigurierbare Systeme bedeutet dies, dass mit der Rekon-
figuration auch die Auswertereihenfolge neu bestimmt werden muss. Werden Teil-
systeme ohne Betrachtung der inneren Abhängigkeiten der Gleichungen verkoppelt,
kann es zu zyklischen Abhängigkeiten bei der Berechnung kommen. Diese führen zu
Verklemmungen bei der Berechnung, sogenannten Deadlocks.

Ein Beispiel für die zyklische Verkopplung zweier einfacher Teilsysteme ist in Ab-
bildung 5.1 zu sehen. Die dargestellten Teilsysteme stehen symbolisch für komplexe
Teilsysteme und sind hier zur Verdeutlichung auf ein Minimum reduziert.

y (t)=F( , ,t)1 x p x (t)=H( ,u ,t)1 3x
.

y (t)=K( ,u ,t)4 4xy (t)=G( ,u ,t)2 2x

Teilsystem 1 Teilsystem 2

Vektorielle DatenübertragungEingänge

AusgängeParameter

Rückkopplung

Ausgang

Abbildung 5.1: Gekoppelte Teilsysteme mit vektorieller Datenkopplung

Das System besteht aus zwei Teilsystemen, die durch Ein- und Ausgänge mit-
einander verkoppelt sind. Teilsystem 1 berechnet zwei Ausgangswerte y1 und y2,
Teilsystem 2 den Ausgang y4 und die Ableitung des Zustands ẋ1

25. Soll nun ein Teil-
system nach dem anderen berechnet werden, so ist dies aufgrund der Verkopplung
nicht möglich: ẋ1 ist abhängig von einem Ausgang des Teilsystems 1 und somit von
y2. Der Ausgang y2 hängt wiederum von y4 ab und dies von y1. Eine schrittweise
oder parallele Berechnung der Auswertung der Teilsysteme ist in dieser Konfigurati-
on nicht möglich.

Eine Variante, dieses Problem zu lösen, ist die Betrachtung auf Gleichungsebene.
Wird die Auswertereihenfolge unabhängig von den Teilsystemen global festgelegt,
ist eine Auswertung problemlos möglich, sofern keine zyklische Abhängigkeit auf
Gleichungsebene existiert. Dieser Ansatz führt jedoch nicht zu einer echten Modula-
risierung, da alle Teilsysteme in Kenntnis des Gesamtsystems erzeugt werden müssen.
Die Teilsysteme sind dann zwar verteilt ausführbar, jedoch nicht wieder verwendbar
und auch nicht für eine Rekonfiguration geeignet, in der sich die Auswertereihen-
folge ändert (siehe z. B. [Gam02, GOD03, GO03, Sto04]). Um Auswertereihenfolge
und Codegenerierung voneinander zu trennen, müssen die auszuwertenden Systeme
näher betrachtet werden.

5.1.2 Modularisierung der Systemgleichungen

Mit einer einfachen Überlegung kann die Abhängigkeit der Teilsysteme voneinander
sehr weitgehend gelöst werden. Die Systemgleichungen in Zustandsraumdarstellung,

25Das Szenario entspricht typischerweise einem System in Zustandsraumdarstellung.
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die zur Berechnung eines einzigen Zeitschrittes nötig sind, lassen sich in drei Gruppen
einteilen [Hon98], [GO03]:

Nichtdurchgriffscode (ND-Code) : Dazu gehören alle Gleichungen, die nur von
inneren Zuständen des Systems oder deren Parametern abhängen:

y
N

(t) = F (x, p, t) (5.1.1)

Durchgriffscode (D-Code) : Zu dieser Kategorie gehören alle Gleichungen, die
von einem Eingang abhängen und einen Ausgang (eines Teilsystems) berech-
nen:

y
D

(t) = F (x,u, p, t) (5.1.2)

Zustandscode (S-Code) : Diese Gleichungen berechnen die Zustandsgleichungen
des Systems:

ẋ(t) = F (x,u, p, t) (5.1.3)

Werden die Gleichungen der Teilsysteme entsprechend diesen Kategorien erzeugt,
lassen sich eine große Zahl von Teilsystemen ohne Verklemmung miteinander verkop-
peln. Wie die Berechnung abläuft, ist in Abbildung 5.2 illustriert.
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y (t)=F(  ,  ,t)1 x p
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y (t)=K(  ,u ,t)3 4x
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x (t)=H(  ,u ,t)1 3x
.
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Teilsystem 2

1

2

3

Abbildung 5.2: Kommunikation zweier Teilsysteme mit Aufteilung in ND-, D- und
S-Code

Zunächst werden der ND-Code berechnet und die Ausgänge (linke Seite der Glei-
chungen) an verkoppelte D-Codes anderer Teilsysteme geschickt (1). Im nächsten
Schritt werden der Durchgriffscode berechnet und das Ergebnis an andere Teilsyste-
me geschickt (2). Danach wird weiterer D-Code berechnet, sobald die Eingänge vor-
liegen. Die Ergebnisse werden an den S-Code weitergeleitet (3). Im letzten Schritt
wird der S-Code ausgewertet. Die Auswertungen des ND-Codes und des S-Codes
lassen sich ggf. parallelisieren, nur verkoppelter D-Code muss entsprechend der Aus-
wertereihenfolge sequentiell berechnet werden.

Diese Art der Aufteilung erhöht die Anzahl der Möglichkeiten, Verkopplungen
durchzuführen, ohne eine Neugenerierung der Teilsysteme vornehmen zu müssen,
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schon erheblich. Allerdings lassen sich nicht alle Kopplungsfälle lösen. Insbesondere
bei größeren Teilsystemen mit vielen Verkopplungsmöglichkeiten steigt die Wahr-
scheinlichkeit einer Verklemmung, wie Abbildung 5.3 beispielhaft zeigt.

Y (t) = F(t)1
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Teilsystem 2
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Verklemmung
(Deadlock)

1

2

3

Abbildung 5.3: Verklemmung durch eine Rückkopplung im D-Code

Mehrfachverkopplungen zwischen D-Code führen unter Umständen zu einer Ver-
klemmung. In Abbildung 5.3 ist zu sehen, dass die Kommunikation (1) kein Problem
bringt, jedoch Schritt (2) nicht vor (3) berechnet werden kann und umgekehrt.

Für die Lösung dieses Problems existieren verschiedene Ansätze. Ein Vorschlag
ist die Verwendung von Iterationsschleifen, um so die fehlenden Eingangsgrößen
zu bestimmen [Rük96]. Allerdings ist dieser Ansatz nur bei Simulationen möglich
und nicht für Echtzeitverarbeitung geeignet. Ein weiterer Weg, das Problem der
Rückkopplung zu lösen, ist der Einsatz von Filtern [Azi90]. Im einfachsten Fall wird
bei diskreter Berechnung der Wert des letzten Zeitschritts für fehlende Eingänge
verwendet. Der Einsatz von Filtern führt jedoch in jedem Fall zu einer Veränderung
des Systemverhaltens, was in einigen Fällen zu Fehlern bei der Auswertung führen
kann, die nicht zu tolerieren sind [Vöc03].

5.1.3 Modularisierung nach Ausgangsblöcken

Für eine echte Modularisierung von Teilsystemen ist ein noch weiterreichender An-
satz nötig. Ziel muss sein, Teilsysteme so zu erzeugen, dass, abgesehen von algebrai-
schen Schleifen, die sich grundsätzlich nur durch die Modellierung verhindern lassen,
beliebige Kopplungszustände zwischen Ein- und Ausgängen möglich sind.

Die bisher diskutierten Ansätze verfolgen das Ziel, über einfache, leicht zu be-
stimmende Auswertereihenfolgen das Gesamtsystem auszuwerten. Die Auswerterei-
henfolge wird dabei zum Zeitpunkt der Codegenerierung bestimmt. Im Fall von ver-
koppelten Teilsystemen werden die Teilsysteme nacheinander berechnet. Im Fall der
Modularisierung der Systemgleichungen wird die Reihenfolge ND – D – S festgelegt,
wobei bei mehreren verkoppelten D-Codes wiederum die Reihenfolge der modula-
ren Teilsysteme verwendet wird. In einem rekonfigurierbaren System kann aber die
Reihenfolge der Auswertung nicht in der Codegenerierung festgelegt werden, son-
dern erst im Betrieb und das bedeutet: zur Auswertezeit oder zumindest zwischen
(Neu-)Verkopplung und Auswertung. Deshalb wird ein neuer Ansatz benötigt, der
die Rekonfiguration berücksichtigt.
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Abbildung 5.4: Berechnung der Auswertereihenfolge nach Ausgangsblöcken

In der Abbildung 5.4 [OHD+01] sind vereinfacht die Auswertung und die Kom-
munikation zwischen zwei Teilsystemen nach Bildung von Ausgangsblöcken darge-
stellt. Dabei muss folgendes beachtet werden: Im ND-Code sind alle Gleichungen
zusammengefasst, die nur Ausgänge produzieren, nicht von Eingängen abhängen
und deshalb zu Beginn eines Zeitschrittes sofort berechnet werden können. Im S-
Code sind alle Gleichungen zusammengefasst, die keine Ausgänge produzieren und
Zustände für den nächsten Zeitschritt berechnen. Dies entspricht dem Ansatz der
Modularisierung der Systemgleichungen.

Wesentliche Änderungen finden sich in zwei Bereichen:

1. Alle Gleichungen die, einen Ausgang produzieren und von einen oder mehreren
Eingängen abhängig sind, werden in einzelnen D-Code-Blöcken zusammenge-
fasst.

2. Neben der Kommunikation der Ausgänge über Teilsystemgrenzen hinaus müs-
sen auch interne Kopplungen berücksichtigt werden, da die Gesamtauswerterei-
henfolge über alle Kopplungen zwischen Gleichungen bestimmt werden muss.

Das jeweilige Teilsystem besteht somit aus Blöcken von Gleichungen die jeweils
einen oder mehrere Ausgänge produzieren bzw. Zustände berechnen. Die Reihenfolge
der Berechnung ist nach der Erzeugung der Teilsysteme nicht festgelegt. Um eine
Berechnung durchführen zu können, müssen die Teilsysteme erst gebunden werden,
das heißt, es müssen alle Abhängigkeiten zwischen Gleichungsblöcken gesetzt und auf
der Basis des entstehenden Abhängigkeitsgraphen die Auswertereihenfolge berechnet
werden. Die geschieht unmittelbar vor der Berechnung.
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5.2 Modulare Codegenerierung und Steuerung

Nachdem verschiedene Möglichkeiten der Modularisierung beschrieben wurden, soll
im Folgenden ein Vorgehen zur Erzeugung von modularem Beschreibungscode ge-
zeigt werden. Modulare Codegenerierung muss sich im Kontext rekonfigurierbarer
Systeme zwei wesentlichen Fragen stellen:

1. Wie kann der Code geschickt partitioniert werden?

Ziel muss es sein, möglichst große zusammenhängende Gleichungen zu finden,
die jedoch ein gerichtetes Ein-Ausgangsverhalten zeigen. Mit anderen Worten:
Finde Gleichungen, die stückweise immer in der gleichen Reihenfolge zu berech-
nen sind. Dort, wo Veränderungen auftreten können, müssen die Gleichungen
zerlegt (partitioniert) werden. Dabei ist die Zuordnung zum Teilmodell zu er-
halten.

2. Wie kann modularer Code verkoppelt und effizient ausgewertet werden?

Bei Echtzeitsystemen ist eine vorhersagbare Berechnungszeit immer Grund-
voraussetzung für die Einhaltung von harten Echtzeitbedingungen. Bei einer
Rekonfiguration muss der Code in kürzester Zeit wieder auswertbar sein. Dies
erfordert entsprechende Auswertemöglichkeiten und Verfahren, welche die Aus-
wertereihenfolge schnell neu berechnen können.

Die Berechnung der Auswertereihenfolge erfolgt üblicherweise mit Hilfe eines
Auswertegraphen, der die Abhängigkeiten der einzelnen Gleichungen von einander
beschreibt. Auf Basis dieses Auswertegraphen, der sich bei jeder Rekonfiguration
mit dem System ändert, kann eine Steuerung der Auswertung erfolgen.

5.2.1 Partitionierung

Zur Erläuterung der Partitionierung soll auf das Beispiel aus [OGBG04] zurückgegrif-
fen werden. Für eine weitergehende Betrachtung des Problems sei auf verschiedene
Arbeiten verwiesen, vor allem [Bur06] und [BGGO04] sowie [GO03]. Ein Algorith-
mus für die Partitionierung findet sich in [OGBG04].

Ein Teilmodell kann im einfachsten Fall durch die Gleichungen repräsentiert wer-
den. In Anlehnung an die Beschreibungsformen der Entwicklungsumgebung CAMeL-
View [iXt06] in Zustandsraumdarstellung ist die kleinste Einheit ein Basisblock (z. B.
ein PIDT1-Regler). Dieser Basisblock enthält Gleichungen, die sein gerichtetes Ein-
/Ausgangsverhalten beschreiben. Die Variablen lassen sich in drei Klassen einteilen:

1. Eingänge (Inputs) sind Variablen, die zu jedem Zeitschritt von außen neu
besetzt werden, z. B. Verkopplungen mit Ausgängen anderer Systeme.

2. Ausgänge (Outputs) sind Variablen, die zu jedem Zeitschritt vom Teilsystem
durch die Gleichungen neu berechnet werden.

3. Zustände (States) sind die inneren Zustände des Systems.

4. Parameter (Auxiliars) sind Variablen, die als Hilfsgrößen zur Berechnung ver-
wendet werden, aber nicht mit dem Zeitschritt aktualisiert werden.
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Zu jedem Zeitschritt (Hauptschritt, vgl. 4) werden alle Eingänge ausgewertet und
neue Ausgänge sowie Zustände berechnet. Für die Verkopplung zu anderen Teilsys-
temen sind die Abhängigkeiten zwischen Ein- und Ausgängen sowie den Zuständen
interessant. Die gerichteten Abhängigkeiten können als mehrere unabhängige Teil-
graphen (Wald, englisch: forest) dargestellt werden.

Y1

Y4U4

U1

Inputs: U1, U2, U3, U4
Outputs: Y1, Y2, Y3, Y4
States: X=0;
Auxilars: a, b, c, d

a   := U1 + U2;
b   := U3;
c   := U4;
d   := 1;
X´ := X + c;
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Symbolische Sicht

Abbildung 5.5: Auswertegraph eines Basisblocks

Die Abbildung 5.5 [OGBG04] zeigt drei Schritte zur Berechnung des Auswerte-
graphen. Im ersten Schritt liegen die Systemgleichungen vor (links). Im Folgenden
(Mitte) sind die Gleichungen nach den in Abschnitt 5.1 Kategorien sortiert. Die Ab-
hängigkeiten bilden einen Wald von Teilgraphen. Im letzten Schritt liegt der Block
als Auswertegraph symbolisch vor; genau genommen als eine Vielzahl von Teilgra-
phen, die einen Wald bilden. Das Beispiel ist so gewählt, dass alle vier Grundfälle
einfach dargestellt werden. Komplexere Systeme unterscheiden sich nur noch quan-
titativ von der dargestellten Struktur.
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BB: Basisblock

HB: Hierarchischer Block

Abbildung 5.6: Auswertegraph einer Hierarchie

Wie die symbolische Sicht in Abbildung 5.5 zeigt, genügt für die Berechnung der
Auswertereihenfolge die Beziehung zwischen Eingang, Ausgang und Zustand. Alle
Gleichungen, die innerhalb eines Blockes liegen, sind für die Auswertereihenfolge der
verkoppelten Systeme uninteressant. Daraus ergibt sich eine sehr praktische Konse-
quenz für hierarchisch verkoppelte Systeme: Der Algorithmus für die Berechnung
der Auswertereihenfolge kann verallgemeinert auf hierarchische Systeme übertragen
werden. Die Berechnung erfolgt dabei von innen nach außen, d. h. ausgehend von
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Basisblöcken zu immer höher gelegenen hierarchischen Teilsystemen, bis schließlich
das Gesamtsystem ausgewertet werden kann. Dabei entstehen für jede Ebene der
Hierarchie reduzierte Auswertegraphen.

Die Abbildung 5.6 zeigt beispielhaft, wie aus einer Hierarchie von verkoppelten
Teilsystemen ein reduzierter Graph abgeleitet werden kann. Die innere Struktur ist
für die Bestimmung der Auswertereihenfolge der nächst höheren Ebene nicht von
Bedeutung, lediglich der abgeleitete reduzierte Graph wird als quasi als Extrakt
weiterhin benötigt.

5.2.2 Steuerung der Auswertung

Die Ergebnisse aus Abschnitt 5.2.1 können, in Verbindung mit den Annahmen aus
Abschnitt 3.2 für eine Steuerung der Auswertung in hierarchischen Systemen ge-
nutzt werden. Dies führt wiederum zu den in Abschnitt 3.3 beschriebenen Hybriden
Komponenten, die als Ergebnis den Auswertegraphen zur Kontrolle der Auswerte-
reihenfolge nutzen. Eine Beschreibung des Mechanismus zur Kontrolle findet sich in
[BGO04a, Boi05] und [Bur06].

5.3 Laufzeitumgebung IPANEMA

Nachdem ein Modell für die Erzeugung von modularen, rekonfigurierbaren Teilsyste-
men dargestellt worden ist, stellt sich nun die Frage, welchen Rahmen solche Systeme
benötigen, um ausgeführt werden zu können. Für die Ausführung wird eine Platt-
form benötigt, die Systeme unabhängig von der informationstechnischen Hardware
und dem Betriebssystem testen wie auch in Betrieb nehmen kann. Darüber hinaus
sind Fähigkeiten wie Echtzeitfähigkeit, verteilte (parallele) Verarbeitung und die Be-
reitstellung verschiedener numerischer Verfahren zum Lösen der ODEs unbedingt
notwendig. Eine Umgebung, die diese Anforderungen erfüllt, ist die Laufzeitplatt-
form IPANEMA.

IPANEMA wurde schon in zahlreichen Veröffentlichungen und verschiedenen
Dissertationen beschrieben und dokumentiert. Wichtige Meilensteine bilden dabei
[Scz95, Hon98, Gam02] und [Sto04].

Aufgrund der Dynamik des Projektes soll an dieser Stelle nur ein kurzer Über-
blick über Grundkonzepte und Struktur von IPANEMA und die Erweiterungen zur
Unterstützung von modularen Teilsystemen gegeben werden, soweit es für das Ver-
ständnis der Problematik nötig ist.

5.3.1 Grundkonzept

IPANEMA (Integration Platform for Networked Mechatronic Applications) wurde
primär für Ausführung, Überwachung und Simulation von kontinuierlichen Systemen
entwickelt. Ziel war die Entwicklung einer systemunabhängigen Umgebung, die in der
Lage ist, Modelle bzw. Teilmodelle mechatronischer Systeme gegebenenfalls verteilt
zu simulieren und zu überwachen. IPANEMA sollte insbesondere bei der verteilten
Simulation die Komplexität des Netzwerks, auf dem es ausgeführt wird, verbergen;
das heißt: Das Netzwerk soll für den Anwender transparent sein. Darüber hinaus
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sollte IPANEMA in der Lage sein, harte Echtzeitbedingungen zu erfüllen, auch ex-
terne Hardware ansprechen können und somit für Hardware-in-the-Loop-Simulation
geeignet sein.

Diese genannten Anforderungen lassen sich nicht allein durch die Laufzeitum-
gebung erfüllen. Darüber hinaus werden auch sowohl eine geeignete Mathematik
als auch Werkzeuge für Modellbildung und Codegenerierung benötigt. Die Topolo-
gie von IPANEMA basiert auf einem objektorientierten Ansatz, der das Gesamt-
system in kleinere spezialisierte Objekte aufteilt. Ausgehend von einer Zerlegung
des Modells in Teilkomponenten (vgl. Abschnitt 5.1.1), werden die einzelnen Kom-
ponenten des Modells auf die sogenannten Calculator -Objekte verteilt, welche die
Ausführungsebene von IPANEMA repräsentieren. Calculatoren werten die eingebet-
teten Systemgleichungen auf Basis gewöhnlicher Differentialgleichungen mit Hilfe
von numerischen Solvern aus. Die Solver arbeiten nach Runge-Kutta- und Adams-
Verfahren26.

Die Calculatoren können Daten entsprechend der Kopplungen der Teilsysteme un-
tereinander austauschen. Wird IPANEMA in der Echtzeit-Verarbeitung eingesetzt,
so unterliegen die Calculatoren harten Echtzeitbedingungen.

Ein zentraler Gedanke bei der Konzeption von IPANEMA war der Einsatz als
Umgebung für die Hardware-in-the-Loop-Simulation. Ausgehend von einer vollstän-
digen Simulation im Rechner, sollte es möglich sein, Teilsystemmodelle schrittweise
durch reale Systeme zu ersetzen. Die Kopplung zu einem realen Teilsystem wird
durch ein entsprechendes Adaptor -Objekt realisiert, das ein Calculator-Objekt er-
setzen kann. Adaptor-Objekte binden das reale Teilsystem an das (Rest)Modell
und sorgen somit für eine Kopplung zwischen Echtzeitsystem und Aktorik/Sensorik
(vgl. [Obe98b], [Sto04]).

Die Überwachung der Calculator- und Adaptor-Objekte erfolgt durch die Assi-
stant-Objekte. Pro Calculator bzw. Adaptor existiert genau ein Assistant-Objekt.
Die Aufzeichnung von Daten und die Weitergabe von Befehlen erfolgen nur über
diese Objekte, was einen ungestörten Echtzeitbetrieb der Calculatoren sicherstellen
soll.

Die Kommunikation zwischen Leitwarte und Assistant-Objekten erfolgt über
eine zentrale Komponente namens Moderator . Dieser sorgt für eine Netzwerk-
Transparenz, d. h. aus Anwendersicht ist es unerheblich, wo genau ein Calculator
tatsächlich ausgeführt wird. Auch spielt es keine Rolle, ob ein Teilsystem simuliert
wird oder real vorhanden ist. Die zentrale Datenerfassung durch den Moderator sorgt
auch hier für Transparenz.

In Abbildung 5.7 [Hon98] ist die beschriebene Struktur von IPANEMA verein-
facht dargestellt. Die Verteilung eines Gesamtsystems auf verschiedene Calculator-
Objekte ist von IPANEMA nicht streng vorgegeben und kann nach unterschiedlichen
Kriterien erfolgen. Die Aufteilung kann nach Gesichtspunkten der Modularisierung
der Teilsysteme, aber auch beispielsweise nach Optimierung der Ausführung (mini-
male Kommunikation, maximale Auswertegeschwindigkeit etc.) erfolgen.

Die modulare Realisierung ist aber ohne Zweifel der wichtigste Aspekt von
IPANEMA. Nur so ist eine schrittweise Realisierung von den durch die modular-
hierarchische Struktur vorgegebenen Teilsystemen überhaupt möglich.

Wichtige Erweiterungen und Ergänzungen fanden in [Gam02] statt. Dabei wur-
de die Modellierungsumgebung CAMeL für IPANEMA angepasst, um schon auf der

26Als echtzeitfähige Verfahren werden Solver nach Euler und Heun angeboten.
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Abbildung 5.7: Typische Objekttopologie einer IPANEMA-Anwendung

Ebene der Modellbildung die Zerlegung in Teilsysteme vorzubereiten. Weitere Arbei-
ten untersuchten die Möglichkeit von unterschiedlichen Zeitmodellen und Verfahren
zur Multirate-Simulation [Obe98a], [Vöc03], die als wichtiger Schritt zu rekonfigu-
rierbaren Systemen und somit zur Selbstoptimierung angesehen werden können.

Des weiteren wurde parallel zu der vorliegenden Arbeit IPANEMA für selbstop-
timierende Systeme vorbereitet und erweitert. Insbesondere die modulare Codegene-
rierung [GBSO04], [Boi05] wie auch die Anwendung hybrider Komponenten standen
dabei im Vordergrund [BGO04a, Bur06, BGO06].

5.4 Informationstechnische Realisierung hybrider
Komponenten

Aus mechatronischer Sicht bedeutet Rekonfiguration die Veränderung von Wirkzu-
sammenhängen (vgl. 3.2). Dies gilt für alle Teildomänen der Mechatronik. Zentraler
Ansatzpunkt für Selbstoptimierung ist jedoch die Informationsverarbeitung eines me-
chatronischen Systems, da hier am ehesten ein Eingriff zur Laufzeit möglich ist. Für
den elektrischen oder mechanischen Teil des Systems ist der Aufwand für eine solche
Rekonfiguration erheblich größer, was schon das Beispiel des Tandemhauptzylinders
(Abbildung 3.1) aus Abschnitt 3.2 deutlich macht.

Für eine Umsetzung dieses Ansatzes sind auf verschiedenen Ebenen Entwicklun-
gen zu leisten. Wird von dem Ansatz des Objektorientierten Mechatronikmodells
ausgegangen (vgl. Abschnitt 2.3.6), können drei zur Umsetzung notwendige Schritte
identifiziert werden:

1. Entwicklung einer geeigneten Modellierungsumgebung auf mechatronischer
Ebene (Entwicklersicht).

2. Entwicklung einer mathematischen Darstellungsform (Modellierung).
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3. Entwicklung eines geeigneten Laufzeitmodells (Ausführung).

Im Rahmen des Sonderforschungsbereichs 614 [GLR01] entstand im Rahmen
einer Kooperation zwischen den Arbeitsgruppen von Professor Lückel und Profes-
sor Schäfer ein neuer Ansatz für die Modellierung und die Implementierung von
Werkzeugen zur Unterstützung von rekonfigurierbarer Informationsverarbeitung für
mechatronische Systeme. In der ersten Phase wurden neben allgemeinen Grundlagen,
auf die sich diese Arbeit konzentriert, erste Schritte für eine Realisierung geleistet
(z. B. [GBSO04]). Als ein wesentlicher Schritt ist dabei die Arbeit von Burmes-
ter [Bur06] anzusehen. Sie fasst die Aspekte der Modellierung auf Laufzeitebene
mit Hilfe eines UML-Modells zusammen. Aus diesem Grund werden an dieser Stelle
nur die wesentlichen Ergebnisse zusammengefasst und aus Sicht der Mechatronik
beleuchtet. Als weiterführende Arbeit ist noch [BGM+08] zu erwähnen, hier wird
auch ein weiteres Anwendungsbeispiel gezeigt.

5.4.1 Diskussionsgrundlagen

Um den Gesamtprozess deutlicher darzustellen, wird ein einfaches Anwendungsbei-
spiel verwendet. Es handelt sich dabei um einen Prüfstand für Versuche im Rahmen
der Lehre. Das Versuchsmodell dient der Erläuterung von Grundlagen für das Ver-
ständnis der Aufbaudynamik einer Magnetbahn und der zugehörigen Regelung. Das
Experiment ist vergleichbar mit dem Simulationsmodell in Abschnitt 6.2.

Abbildung 5.8: Versuchsmodell einer Magnetbahn

Abbildung 5.8 zeigt den Versuchsstand. Er besteht im Wesentlichen aus einem
Ständer, der die beweglichen Komponenten führt, einer Aufbaumasse, einer Fahr-
werksmasse und zwei Voice-Coil-Aktuatoren, die aktives Fahrwerk und Störanregung
simulieren. Die Aufbaumasse stützt sich über eine Feder auf der Fahrwerksmasse ab.
Der untere Aktuator dient zur Einleitung von Kräften, die der Fahrwerksaktorik
und der Schienenanregung entsprechen. Der obere Aktuator leitet weitere Störanre-
gungen in die Aufbaumasse.
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Der Versuchsaufbau erlaubt die Darstellung und den Vergleich verschiedener Reg-
ler. In dem hier betrachteten Beispiel soll zwischen drei verschiedenen Reglertypen
umgeschaltet werden.
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Abbildung 5.9: Verschiedene Reglerkonfigurationen

Die verschiedenen Reglerkonfigurationen sind in Abbildung 5.9 zu sehen.

Die Reglerkonfiguration Typ (a) wird als Comfort-Regler bezeichnet. Sie
besteht aus einem Regler für die Fußpunktverstellung des Fahrwerks
(PIDT1, carriage) und einem Regler für die Aufbauposition (PIDT1, body). Die
Regler sind zu einem Kaskadenregler verschaltet. Eingänge in diese Konfigu-
ration sind die Soll-Position des Aufbaus xbody, required und die gemessenen
Ist-Positionen der Aufbaulage und des Fahrwerks in x-Richtung. Die Soll-
Position wird durch den Anwender27 vorgegeben, die Ist-Positionen werden
durch Sensoren gemessen.

Reglerkonfiguration Typ (b) geht davon aus, dass eine Benutzervorgabe nicht
vorhanden ist. In diesem Fall wird der Vorgabewert auf einen konstanten Wert
gesetzt (P-Glied).

In der Reglerkonfiguration Typ (c) ist der Messwert der Aufbauposition nicht
verfügbar. Daher wird für die Position des Fahrwerks hier ein konstanter Wert
angenommen (P-Glied). Diese Konfiguration kann auch als Rückfallebene be-
trachtet werden, falls bei einer Störung die Sensorwerte der Aufbauposition
nicht verfügbar sind.

Die verschiedenen alternativen Strukturen a, b und c sind in Abbildung 5.9 zu-
sammengefasst dargestellt. Wesentlich beim Wechsel der Konfiguration ist die Ände-
rung der Anzahl der Eingänge in das jeweilige Reglersystem. Im Falle eines Wechsels
muss Sorge getragen werden, dass die neue Konfiguration entsprechend initialisiert
wird. Die richtige Initialisierungsstrategie kann ggf. beim Entwurf bereits festgelegt
werden. In der Informationsverarbeitung muss die Möglichkeit einer Initialisierung

27Die Reglerkaskade kann im Sinne der verallgemeinerten Kaskade durch weitere Ebenen erwei-
tert werden.
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und einer Überleitung zwischen verschiedenen Reglern vorgesehen werden. Hierzu
ist ein geeigneter Modellierungsansatz für den Entwurf der Informationsverarbeitung
nötig.

z
..
z

Z ref.

abs.

X
Z, A, ref.

X
Z, B, ref.

X
Z, C, ref.

normal

“Comfort”

“SemiComfort”

failure

“Robust”

body control

common
inputs

switch control

Abbildung 5.10: Kontrolle der Überblendung mit Hilfe eines Statecharts

Die übergeordnete Struktur der Regler ist in Abbildung 5.10 schematisch darge-
stellt. In dieser Variante wird die Überblendung der Ausgänge der Regler durch ein
Statechart kontrolliert. Die drei Regler bleiben zunächst alle im Eingriff; lediglich
die Ausgänge werden manipuliert. Das angedeutete Statechart dient dabei lediglich
als ein Element, das den Ablauf steuert; der Informationsfluss aus den Reglern bleibt
weiterhin kontinuierlich.

Dieser Aufbau hat jedoch wesentliche Nachteile: Zum einen besteht die Gefahr,
dass ein Regler, der keinen Durchgriff auf die Ausgänge hat, „übersteuert“, d. h. er
wird numerisch instabil; zum anderen wird bei vielen parallelen Reglervarianten un-
nötig Rechenzeit verbraucht. Eine Kontrolle der Reglerumschaltung darf sich somit
nicht auf die Manipulation der Ausgänge beschränken; sie muss vielmehr die gesamte
Reglerstruktur kontrollieren und diejenigen Regler initialisieren, starten und wieder
stoppen, die aktuell benötigt werden. Dies muss weiterhin im oben angesprochenen
Modellierungsansatz ermöglicht werden.

5.4.2 Hybride Modellierung

Die Umschaltvorgänge zwischen den einzelnen Reglerkonfigurationen können durch
einen Hybriden Automaten beschrieben werden. In jedem Zustand ist eine bestimmte
Reglerkonfiguration gültig. Da bei bestimmten Wechseln Überblendungen zwischen
zwei Reglern verwendet werden, müssen auch diese Konfigurationen als separate
Zustände beschrieben werden.

Eine mögliche Konfiguration skizziert die Abbildung 5.11. Die Darstellung zeigt,
dass schon dieses einfache Beispiel zu einer komplexen Darstellung führt. Die jeweils
gültigen Reglerkonfigurationen sind in den einzelnen Zuständen angedeutet. Die
Übergänge zwischen den Zuständen sind Umschaltungen der Konfigurationen, somit
Rekonfigurationen des Reglersystems.

Ein Überblendvorgang ist hier nur ein Zustand, in dem zwei Reglerkonfiguratio-
nen für eine vorgegebene Zeit gleichzeitig existieren und durch eine Überlagerung der
Ausgangswerte miteinander verknüpft sind. Ist ein Regler aus dem Eingriff genom-
men, wird er beim Übergang zum Folgezustand mit nur einer Reglerkonfiguration
abgebaut.
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Besonders hervorzuheben ist bei der Betrachtung der Abbildung 5.11, dass die
Übergänge zwischen zwei Zuständen prinzipiell zwischen zwei Zeitschritten der dis-
kreten Auswertung des Gesamtsystems erfolgen. Daher „sieht“ das kontinuierliche
Reglersystem die Rekonfiguration nicht.

Dieser Ansatz erlaubt nun eine vollständige Beschreibung der Abläufe möglicher
Rekonfigurationen, ist jedoch in seiner Darstellung etwas unhandlich. Für eine Mo-
dellierung wird im Folgenden eine vereinfachte Darstellung vorgeschlagen [GBSO04],
[BGO04a], [BGO04b].

Abbildung 5.11 zeigt die Reglerumschaltung als Statechartmodell. Die abgerunde-
ten Kästen stellen Zustände dar, in denen eine bestimmte Reglerkonfiguration gültig
(geschaltet) ist. Die Pfeile (Kanten) sind zeitlich diskrete Übergänge zwischen zwei
Zuständen. An den Kanten stehen die Bedingungen für den Wechsel in einen ande-
ren Zustand. Der Zustandswechsel wird durch eine weitere Überwachungsebene, den
s. g. Monitor (siehe 5.12), generiert, die den Zustand der Regelung bewerten kann.
In diesem einfachen Beispiel werden nur Eingangssignale bewertet. Ist ein Eingang
nicht mehr verfügbar, z. B. durch den Ausfall eines Sensors, erzeugt der Monitor
ein Ereignis, das an den hybriden Statechart des Reglersystems weitergeleitet wird.
Ein Beispiel ist das Signal zAbsFail, das in Abbildung 5.11 oben links zu sehen ist.
Wenn der Statechart gerade im Zustand der Überblendung zwischen Robust → Se-
miComfort ist, muss beim Ausfall des Aufbausensors sofort auf Robust umgeschaltet
werden. Das Signal zAbsOk führt wiederum zu einem Wechsel auf die Überblendung,
die nach einer bestimmten Zeit d1

low ≤ t0 ≤ d1
up über den Zustandswechsel rechts

zum Zustand SemiComfort führt.
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Abbildung 5.12: Struktur des Reglersystems als Monitor

In Abbildung 5.12 ist die übergeordnete Struktur des Reglersystems dargestellt.
Aus Sicht der Reglerumschaltung ist dies die Ebene des Monitors, der den Gesamt-
zustand der Regelung überwacht und entsprechende Signale generiert. In Bezug auf
das angesprochene Beispiel wird ein möglicher Sensorausfall auf dieser Ebene er-
kannt und in das entsprechende Signal (Ereignis) umgesetzt. Im oben betrachteten
Fall ist dies das Signal zAbsFail.

Mögliche Verfahren zur Online-Überwachung der Reglerzustände und zur Regler-
umschaltung im laufenden Betrieb finden sich in [DO00] und [DOM01]. Auch werden
dort Probleme der Echtzeitverarbeitung näher diskutiert.

5.4.3 Hybride Statecharts

Das in Abbildung 5.11 dargestellte Statechart kann mit Hilfe einer abgeänderten
Darstellung übersichtlicher dargestellt werden. Hierzu ist eine Erweiterung der bis-
herigen Darstellungsregeln für Statecharts notwendig. Diese Darstellung soll den Ent-
wurf der Informationsverarbeitung für rekonfigurierbare Systeme unterstützen und
dabei weiterhin die Möglichkeit bieten, entsprechende Prüfverfahren für die forma-
le Richtigkeit des Statecharts anzuwenden. Diese Darstellungsform wird als hybride
Statecharts bezeichnet [GBSO04, BGO04a, BGO04b] und insbesondere [Bur06].

Eine vollständige Beschreibung von hybriden Statecharts findet sich bei [Bur06].
Da diese Arbeit die hybriden Statecharts ausführlich aus informationstechnischer
Sicht darstellt, soll an dieser Stelle das Thema nicht tiefer untersucht werden. Die
Bedeutung für die Modellierung von rekonfigurierbaren Systemen und selbstoptimie-
renden Systemen wird aber als hoch eingeschätzt.

Abbildung 5.13 zeigt das in Abbildung 5.11 dargestellte Statechart als hybrides
Statechart. Der Unterschied liegt in der Darstellung der Überblendvorgänge.

Da diese Überblendvorgänge grundsätzlich aus der Kombination zweier verbun-
dener statischer, also zeitlich unbefristeter Zustände gebildet werden, können sie
vereinfacht als besondere Kante zwischen zwei Zuständen beschrieben werden. Dies
wird durch die fett ausgeprägten Pfeile ausgedrückt. Es handelt sich um Zustands-
wechsel, die eine bestimmte Zeit benötigen (fading transitions). In dieser Zeit wird
der Zustand a auf den Zustand b überblendet. Die übrigen Zustandswechsel sind
wie bisher dünn gezeichnet. Sie können auch als Sonderfall der fading transitions
betrachtet werden, die für einen Wechsel keine Zeit benötigen28. Diese Übergänge
werden als atomic transitions bezeichnet.

Da für den primären Entwurf der Umschalt- und Überblendregeln als Statechart
die statischen Zustände im Vordergrund stehen, ist diese Darstellung für den Entwurf

28Real wird Zeit benötigt. Da ein Wechsel idealerweise zwischen zwei kontinuierlichen Zeitschrit-
ten erfolgt, vergeht aus Sicht der kontinuierlichen Auswertung keine Zeit.
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Abbildung 5.13: Hybride Sicht des Aufbaureglers mit Überblendung (Verhalten der
Komponente)

von rekonfigurierbaren Systemen, insbesondere rekonfigurierbaren Reglersystemen in
selbstoptimierenden Systemen, besonders zweckmäßig und überschaubarer.

5.4.4 Schnittstellen-Statecharts

Ein weiterer Schritt, bestehende Beschränkungen hybrider Systeme zu überwinden,
ist das Konzept der hybriden Statecharts auf hierarchische Systemmodelle zu er-
weitern. Bei rekonfigurierbaren Systemen, wie beim Beispiel in Abschnitt 5.4.1, ver-
ändern Teile des kontinuierlichen Teilsystems die Anzahl der Ein- und Ausgänge.
Um die Veränderung zu beschreiben, wird eine weitere Notation benötigt. Diese be-
schreibt die veränderlichen Schnittstellen eines rekonfigurierbaren Teilsystems und
die dazugehörigen Zustände. Der Vorteil liegt vor allem darin, dass mit dem Zu-
standswechsel die Verkopplung der kontinuierlichen Ein- und Ausgänge geprüft wer-
den kann. Dadurch kann die Korrektheit bezüglich offener Schnittstellen schon bei
der Modellbildung geprüft werden.
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Abbildung 5.14: Interface-Statechart der Komponente Aufbauregler
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Die Schnittstellen, die inneren Zustände und die Übergänge (Transitionen) zwi-
schen den Zuständen des Systems können durch einen Schnittstellen-Statechart (in-
terface statechart) beschrieben werden. Abbildung 5.14 zeigt einen solchen Automa-
ten. Schnittstellen (ports), die in allen Konfigurationen benötigt werden, sind hier
schwarz dargestellt. Alle anderen, die nur in bestimmten Konfigurationen benötigt
werden, sind weiß abgebildet. Für alle möglichen Zustandswechsel werden nur die
außerhalb benötigten Informationen dargestellt.

Schnittstellen-Statecharts abstrahieren die Details eines Teilsystems. Dadurch
ist es möglich, ein unterlagertes Teilsystem als hybride Komponente (vgl. Abschnitt
3.3) einzubauen, ohne Details des inneren Aufbaus zu benötigen29. Dadurch wird
die Komplexität des Entwurfs auf die aktuelle Ebene, in der sich der Entwickler
befindet, beschränkt [BGO04a]. Darüber hinaus kann das Modell auf Korrektheit
aller Konfigurationsmöglichkeiten geprüft werden [BGO04a, Bur06]. Eine Prüfung
des kontinuierlichen Anteils etwa auf Stabilität muss nach bisherigem Kenntnisstand
für jede mögliche Konfiguration separat erfolgen.

29In Bezug auf das kontinuierliche Verhalten ist eine Betrachtung der inneren Dynamik eines
Teilsystems für den Entwurf in vielen Fällen zwingend. Für die Modellierung der Zustandsmaschine
gilt dies jedoch nicht.
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Kapitel 6

Anwendungsbeispiele für
Selbstoptimierung

Wenn Du willst, dass die Leute ein Schiff bauen, dann zeige ihnen nicht,
wie man Bäume fällt, sondern erzähle ihnen von der wunderschönen Welt
auf der anderen Seite des Meeres (Antoine de Saint-Exupéry)

Die unterschiedlichen Aspekte der Selbstoptimierung aus den vorangegangenen
Kapiteln sollen im Folgenden anhand verschiedener Beispiele skizziert werden. In
Abschnitt 6.1 (Magnetbahn) werden Hierarchisierungsansätze, die für die Modellie-
rung von selbstoptimierenden mechatronischen Systemen wichtig sind, gezeigt. Ein
wichtiges Seitenthema ist dabei der Einsatz von Multirate-Verfahren für die Simula-
tion und die Ausführung. Abschnitt 6.2 (Aktives Fahrwerk) geht auf die Verwendung
von Verhaltensbasierung bei der Vorgabe von Steuerdaten ein. Das Zusammenspiel
verschiedener Komponenten in einer verteilten Optimierung wird in Abschnitt 6.3
(Trajektorienoptimierung bei schienengebundenen Fahrzeugen) dargestellt.

6.1 Ein Beispiel für Hierarchisierung und Multi-
rate: Magnetbahn

Die Kapitel 4, Numerische Simulation und Ausführung von modularen Systemen,
und 5, Informationsverarbeitung – Entwurf und Implementierung, beschäftigten
sich mit Verfahren zur Modularisierung und verteilten Multirate-Simulation und
-Ausführung von selbstoptimierenden mechatronischen Systemen. In diesem Ab-
schnitt sollen anhand des Beispielmodells einer Magnetbahn diese Themenbereiche
näher untersucht werden. Das ausgewählte Beispiel ist imWesentlichen an einem Bei-
spiel aus der Vorlesung Grundlagen der Regelungstechnik von Prof. Dr.-Ing. Lückel
[Lüc02] angelehnt. Aufgrund seiner klaren Struktur und guten Verständlichkeit wur-
de es als Beispiel für die Darstellung von angewandten Multirate-Verfahren und des
Ansatzes zur Hierarchisierung gewählt. In [Vöc03] wurden darüber hinaus an die-
sem Anwendungsbeispiel noch Umschaltstrategien untersucht, die für den Einsatz in
rekonfigurierbaren Systemen verwendet werden können. Weitere Arbeiten beschäftig-
ten sich mit grundsätzlichen Fragen zur Theorie und zur Anwendung von Multirate
[VO04], [OV04].
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6.1.1 Modellierung

Das Gesamtsystem Magnetbahn besteht im Wesentlichen aus zwei hierarchisch ver-
koppelten Teilen: dem Aufbau und dem Schlitten. Der Schlitten wird über einen
Elektromagneten geführt, der unter der Schiene angebracht ist. Die Kraft des Ma-
gneten, der den Schlitten und den Aufbau trägt, hängt zum einen vom Strom ab, der
durch die am Magneten angelegte Spannung induziert wird, zum anderen aber auch
von der Größe des Luftspaltes zwischen Schiene und Schlitten. Um den Fahrkomfort
zu erhöhen, ist der Aufbau über ein Feder-/Dämpfersystem an den Schlitten gekop-
pelt. Die Gesamtregelung besteht aus einer zweistufigen Kaskade. Auf unterer Ebene
wird zunächst die Größe des Luftspaltes geregelt, die möglichst konstant gehalten
werden soll. Außerdem dient eine übergeordnete Regelung dazu, über die Größe des
Luftspaltes Einfluss auf die Aufbaubewegungen und -beschleunigungen zu nehmen.
Als Anregung dient im Modell eine Störkraft, die von außen auf den Aufbau wirkt.

Abbildung 6.1: Modular-hierarchische Struktur des Gesamtmodells mit Regelung

In Abbildung 6.1 ist das modular-hierarchische Modell des Gesamtsystems mit
der zugehörigen Regelung dargestellt. Daran lässt sich eine Einteilung in das unter-
lagerte MFM Schlitten und das umfassende AMS Aufbau, das im Gegensatz zum
MFM keine eigene Aktorik besitzt, erkennen. Beide Teilsysteme verfügen jedoch
über eine eigene mechanische Tragstruktur und Komponenten zur Sensorik und zur
Informationsverarbeitung.

Abbildung 6.2: Gesamtmodell der Magnetbahn in CAMeL
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Abbildung 6.2 zeigt das zugehörige, mit dem Programm CAMeL-View [iXt06]
erstellte Modell. Die untergeordneten Teilmodelle werden im Folgenden näher erläu-
tert.

6.1.1.1 MFM Schlitten

Das MFM Schlitten besteht aus drei Hauptkomponenten: der Schlittenmasse ms,
dem Elektromagneten und der Spaltregelung GR zur Vorgabe eines gewünschten
Spaltabstands xs,soll. Zur Verbesserung des Einschwingverhaltens wird die Kraft Fcd,
die über das Feder-Dämpfer-Element auf den Schlitten wirkt, über eine Störgrößen-
rückführung GZ hinter dem Regler aufgeschaltet. Das zugehörige Modell in CAMeL-
View ist in Abbildung 6.3 zu sehen.

Abbildung 6.3: CAMeL-Modell des MFM Schlitten

Die mathematischen Beschreibungen der Schlittenmasse und des Elektromagne-
ten wurden aus Gründen der Übersichtlichkeit in einem eigenen Block zusammenge-
fasst. Der Block besteht aus den Bewegungsgleichungen der Masse, der Berechnung
der Magnetkraft und den Gleichungen zur Abbildung des elektrischen Schwingkrei-
ses. Das zugehörige Modell dieses Subsystems wird in Abbildung 6.4 gezeigt.

Abbildung 6.4: Modell der mechanischen und der elektromagnetischen Elemente

Die Kraft, die im Magnetspalt wirkt, lässt sich aus der im Magnetfeld gespeicher-
ten Energie ermitteln:
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Zeichen Bezeichnung Einheit Zahlenwert
xS Schlittenposition m
Fm Magnetkraft N
i Stromstärke A
u Spannung V
mS Schlittenmasse kg 500.0
µ Permeabilitätskonstante Vs/Am 0.001256
A Spulenquerschnitt m2 0.25
w Windungszahl 46
L Induktivität Vs/Am 10.0
R Ohmscher Widerstand Ω 1000.0
g Erdbeschleunigung m/s2 9.81

Tabelle 6.1: Modellgrößen und Parameter im MFM Schlitten

Fm (x, t) = kf ·
i2 (t)

x2 (t)
mit kf =

µw2A

2
(6.1.1)

Die Eigenschaften des elektrischen Schwingkreises lassen sich mit Hilfe der Kirch-
hoffschen Maschengleichung, angewandt auf die Induktivität L und den Widerstand
R des Elektromagneten, abbilden:

L · i̇ (t) +R · i (t) = u(t) (6.1.2)

Nach den Sätzen von Newton-Euler lässt sich der mechanische Teil darstellen.
Dabei wird die Erdanziehung berücksichtigt. Eine aus dem Aufbau stammende mög-
liche Störkraft Fc,d wirkt ebenfalls ein:

ms · ẍs = Fc,d +ms · g − Fm (6.1.3)

Aus der statischen Ruhelage des Systems Elektromagnet mit ẍs = ẋs = xs =
ẋA = 0 und der Voraussetzung Fc,d0 = 0 ergibt sich die erforderliche Spannung U0.
Die Magnetkraft ergibt sich durch:

Fm0 = ms · g (6.1.4)

Die elektrische Spannung U0 kann damit berechnet werden:

Fm0 = kf ·
i2(t)

x2(t)
mit kf =

µw2A

2
und x = xS0 − xs = xS0 (6.1.5)

xS0 stellt hier die Größe des Luftspalts im Ruhezustand des Schlittens dar. Weiter
gilt:

i = x ·

√
Fm0

kf
(6.1.6)

L · i̇ (t) +R ∗ i (t) = U(t) mit i̇ (t) = 0 (6.1.7)

was zur Spannung U0 führt mit:
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U0 = R · i = x ·R ·

√
Fm0

kf
(6.1.8)

Durch Linearisierung ergeben sich folgenden linearen Gleichungen des Systems:

mS · 4ẍS = −4Fm +4Fc,d (6.1.9)

4Fm = 2kf ·
i0
x2
S0

· 4i− 2kf ·
i20
x3
S0

· 4xS = ki · 4 − kS · 4xS (6.1.10)

L · 4i = −R · 4i+4u (6.1.11)

Nach der Transformation in den Laplace-Bereich ergeben sich die Gleichungen
mit:

4XS(s) = −4Fm(s)

mS · s2
+
4Fc,d(s)
mS · s2

(6.1.12)

4Fm(s) = ki · 4I(s)− kS · 4XS(s) (6.1.13)

4I(s) =
1

L · s+R
· 4U(s) (6.1.14)

Zur Regelung des Spaltabstandes dient ein PIDT1-Regler. Das Verhalten des
geregelten Systems gegenüber einer Störung lässt sich durch die Störgrößenrückfüh-
rung GZ noch verbessern. Aus den Laplace-transformierten der Gleichungen 6.1.12
bis 6.1.14 ergibt sich:

4XS(s) = − ki
(mS − kS · s2)(Ls+R)︸ ︷︷ ︸

G1(s)

4U(s) +
1

(mS − kS · s2)︸ ︷︷ ︸
G2(s)

4Fc,d(s) (6.1.15)

Um den Einfluss der Störgröße 4Fc,d auf 4XS zu kompensieren, wird sie über
GZ zurückgeführt und hinter dem Regler GR aufgeschaltet, wie in Abbildung 6.1
dargestellt. Für eine ideale Störgrößenaufschaltung gilt dann:

G̃Z(s) = G2(s)G
−1
1 (s)

=
1

(mS − kS) · s2

(mS − kS · s2)(Ls+R)

ki

=
Ls+R

ki

(6.1.16)

Diese Übertragungsfunktion ist nicht realisierbar, da der Zählergrad höher als
der Nennergrad ist. Dieses Problem wird durch die Einführung einer zusätzlichen
Nennerzeitkonstante T1 behoben. Daraus ergibt sich:

GZ(s) =
Ls+R

(T1s+ 1)ki
(6.1.17)
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6.1.1.2 AMS Aufbau

Das dem Modell des Schlitten überlagerte Modell des Aufbaus besteht aus drei
Komponenten: der Aufbaumasse, dem Feder-Dämpfer-System und dem unterlager-
ten MFM Schlitten selbst. Das Verhalten des Schlittens wird vereinfacht als ideal
angenommen, um Modellierung und Auslegung zu erleichtern. Zwischen xS, soll und
xS wird deshalb ein proportionaler Zusammenhang vorausgesetzt. Die Regelung er-
hält durch die Verstellung des Fußpunktes Einfluss auf das Aufbauverhalten. In
Abbildung 6.5 ist das mechanische Teilsystem zu sehen.

Abbildung 6.5: Mechanisches Teilsystem des AMS Aufbau

Durch die Anwendung der Sätze von Newton-Euler lassen sich auch hier wieder
die Gleichungen zur Beschreibung des mechanischen Systems ableiten. Die Tabelle
6.2 zeigt die zugehörigen Größen und Parameter des AMS Aufbau.

xA Position des Aufbaus [m]
Fc,d Feder-Dämpfer-Kraft [N]
FStoer Störkraft von außen [N]
mA Aufbaumasse [kg] 5000.0
c Federkonstante [N/m] 100000.0
d Dämpfungskonstante [Ns/m] 12000.0
g Erdbeschleunigung [m/s] 9.81

Tabelle 6.2: Modellgrößen und Parameter im AMS Aufbau

mA · ẍA = −Fc,d +mA · g + Fstoer (6.1.18)

mit der Feder-Dämpfer-Kraft Fc,d:

Fc,d = c · (xA − xS) + d · (ẋA − ẋS) + Fc,d0 (6.1.19)

Die Federvorspannung Fc,d0 ergibt sich aus der statischen Ruhelage des Systems.
Die Gleichungen 6.1.18 und 6.1.19 ergeben:

mA · ẍA = −c · (xA − xS)− d · (ẋA − ẋS)− Fc,d0 −mA · g + FStoer (6.1.20)

Aus der Voraussetzung:

ẍA = ẋA = xA = ẋs = xs = FStoer = 0 (6.1.21)
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folgt:

Fc,d0 = mA · g (6.1.22)

Die statische Kraft Fc,d0 wird benötigt, um die Gewichtskraft des Aufbaus im
unterlagerten MFM Schlitten zu berücksichtigen. Die notwendige Magnetkraft im
Ruhezustand Fm0 aus Gleichung 6.1.4 ergibt sich als:

Fm0 = mS · g +mA · g (6.1.23)

Die benötigte elektrische Spannung U0 lässt sich nach Gleichung 6.1.8 bestimmen.
Analog zu den linearisierten Gleichungen 6.1.9 bis 6.1.11 des MFM Schlitten

werden die Gleichungen zur Beschreibung des Aufbauverhaltens abgeleitet. Die Ab-
weichungen der Ruhelage lassen sich beschreiben als:

mA · 4ẍA = −4Fc,d +4FStoer (6.1.24)

4Fc,d = c · (4xA −4xS) + d · (4ẋA −4ẋS) (6.1.25)

Aufbaubeschleunigung ẍA und -geschwindigkeit ẋA werden über die Matrix R
zurückgeführt, wie auch Abbildung 6.1 zeigt. Die Aufschaltung des Wertes für xS,soll
dient zur Beeinflussung der Aufbaudynamik. Dies geschieht indirekt mit Hilfe des
unterlagerten MFM, da das AMS Aufbau keine eigene Aktorik besitzt. Die Regelung
des Aufbaus kann beispielsweise zur Verbesserung des Komforts genutzt werden.

6.1.2 Multirate-Integration

Nach der Beschreibung des Modells soll nun exemplarisch die Multirate-Integration
dargestellt werden. Besonderes Augenmerk liegt dabei auf den Eigenwerten der un-
verkoppelten Teilsysteme, die sich in dem gezeigten Modell stark unterscheiden, wie
die Tabellen 6.3 und 6.4 zeigen.

Re Im
-5.56906 3.43737
-24.0792 190.646
-200.000 0.00000
-1040.70 0.00000

Tabelle 6.3: Eigenwerte des MFM Schlitten

Re Im
-1.20000 4.30813

Tabelle 6.4: Eigenwerte des AMS Aufbau

Diese Unterschiede zeigen viele (große) dynamische Systeme, worauf bereits in
[Rük96] hingewiesen wurde. Verantwortlich für die Unterschiede sind beispielsweise
große Massendifferenzen, steife Federn oder hochfrequente Regelungen.

Werden die beiden Teilsysteme Aufbau und Schlitten verkoppelt, verschieben
sich die Pollagen des Gesamtsystems. In dem betrachteten Beispiel sind die Ver-
schiebungen allerdings klein genug, um noch die Zugehörigkeit der Eigenwerte zu
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den Teilsystemen erkennen zu lassen. Die Eigenwerte des Gesamtsystems und ihre
Zuordnung finden sich in Tabelle 6.5.

Re Im Teilsystem
-1.20242 4.30785 Aufbau
-5.10195 4.10389 Schlitten
-24.4388 226.545 Schlitten
-205.551 0.00000 Schlitten
-1059.36 0.00000 Schlitten

Tabelle 6.5: Eigenwerte des Gesamtsystems und ihre Zuordnung

Wie die Tabelle 6.5 zeigt, besitzt der Aufbau das Eigenwertepaar mit der ge-
ringsten Eigenfrequenz. Da die Aufbaumasse die größte Trägheit besitzt, war dies
zu erwarten. Die Eigenwerte der Schlittenmassen und der elektrischen Komponenten
besitzen höhere Eigenfrequenzen. Die Unterschiede zeigen, dass hier der Einsatz von
Multirate sinnvoll ist. Mit Hilfe der Erweiterungen von CAMeL-View aus [Gam02]
wird eine IPANEMA-Applikation mit zwei Calculator-Objekten erstellt. Die Calcu-
latoren arbeiten mit unterschiedlichen Schrittweiten entsprechend dem Multirate-
Ansatz.

6.1.3 Modellerweiterungen für Multirate

Für die Realisierung von Multirate ist nach Abschnitt 4.4 der Einsatz von Filtern für
Glättung und Extrapolation notwendig. Sind diese Filter nicht in der Laufzeitum-
gebung (z. B. IPANEMA) vorhanden, müssen sie mit in das Modell implementiert
werden. Nach Abschnitt 4.4 werden diese Filter im schnellen Teilsystem ergänzt, um
Ein- und Ausgangsdaten in jedem Zwischenschritt zu glätten bzw. zu extrapolieren.
Wie Abbildung 6.2 zeigt, besitzt das MFM Schlitten sowohl zwei zu extrapolierende
Eingangs- als auch zwei zu glättende Ausgangsgrößen. Das Modell wurde mit ent-
sprechenden Filtern erweitert. Die erweiterte Struktur ist in Abbildung 6.6 zu sehen.

Abbildung 6.6: Erweiterung des MFM Schlitten durch Filter

Für die Simulation wurde in diesem Fall zur Integration das explizite Euler-
Verfahren gewählt, auch, um das Verhalten im Echtzeit-Fall abschätzen zu können.
Da das Euler-Verfahren die geringste Genauigkeit pro Schritt aufweist, eignet es sich
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gut als Worst-Case-Fall. Für die modulare Multirate-Simulation müssen die höher-
wertigen Verfahren in IPANEMA angepasst werden. Hierbei wäre eine Integration
der entsprechenden Glättungs- und Extrapolationsverfahren wünschenswert. Die für
die dargestellte Simulation eingesetzten Filter entsprechen den in Abschnitt 4.4.1
und 4.4.2 erläuterten Methoden nach [Blu78].

6.1.4 Simulationsergebnisse

In einem ersten Schritt wurden beide Teilsysteme separat simuliert, um real geeig-
nete Schrittweiten der Einzelsysteme abzuschätzen. Für das langsamere Teilsystem
Aufbau erwies sich eine Schrittweite von h = 0.001s als günstig, für das schnellere
Teilsystem Schlitten war eine kleinere Schrittweite von h = 0.0001s notwendig. Wer-
den beide Teilsysteme mit der größeren Schrittweite h = 0.001s simuliert, wird das
Gesamtsystem instabil. Mit der Schrittweite h = 0.0001s ist eine stabile Simulation
möglich. Die Simulationsergebnisse beider Fälle für den Verlauf von xS sind in Ab-
bildung 6.7 dargestellt. Als Anregungsfunktion diente eine auf den Aufbau wirkende
sprungförmige Störkraft FStoer bei t = 0.1s.

Abbildung 6.7: Simulation mit gemeinsamer Schrittweite für beide Teilsysteme

Der nächste Schritt ist der Einsatz unterschiedlicher Berechnungsschrittweiten
für beide Teilsysteme. Die gewählten Schrittweiten entsprechen denen der separat
simulierten Teilsysteme, und zwar h = 0.0001s für das schnelle MFM Schlitten
und H = 0.001s für das langsamere AMS Aufbau. Das Ergebnis der Simulation
für die Spaltbreite xS ist in Abbildung 6.8 zu sehen. Dabei zeigt die durchgezogene
Linie den Verlauf für die Simulation mit Multirate (unterschiedliche Schrittweiten)
und die gepunktete Linie den Verlauf ohne Multirate (nur die kleinere Schrittweite
h = 0.0001s für beide Teilsysteme). Obwohl das langsame System im Multiratefall
nur bei jedem zehnten Teilschritt des schnellen Systems ausgewertet wird, ist der
Unterschied zwischen beiden Simulationsverläufen kaum erkennbar.
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Abbildung 6.8: Verlauf der Spaltbreitenänderung bei Multirate-Integration

Die Unterschiede zeigen sich erst in der vergrößerten Darstellung im Ausschnitt
der Abbildung 6.8. Der Einfluss des zusätzlichen numerischen Fehlers wird jetzt
sichtbar. Er ist jedoch so gering, dass auch das Multirate-System stabil arbeitet.

Der simulierte Verlauf der Aufbaubeschleunigung in Abbildung 6.9 zeigt ein ähn-
liches Bild. Auch die Größe xA unterscheidet sich im Ergebnis bei Auswertung der
beiden Teilsysteme mit unterschiedlicher Schrittweite h (durchgezogene Linie) nicht
wesentlich von dem mit gemeinsamer Schrittweite berechneten Verlauf (gepunktete
Linie).

Die Ergebnisse zeigen, dass sich die in Kapitel 4 beschriebenen Multirate-
Verfahren auf das verwendete Beispielsystem anwenden lassen. Die Verfahren zur
Glättung und zur Extrapolation der Ein- und Ausgangsdaten zeigen ebenfalls die zu
erwartenden Ergebnisse. Die Anwendung des einfachen Eulerverfahrens unterstreicht
noch einmal die Robustheit und die Übertragbarkeit auf die Echtzeit-Simulation bzw.
Hardware-in-the-Loop. Für Simulationsaufgaben sollten höherwertige Verfahren wie
Runge-Kutta 4. Ordnung noch bessere Ergebnisse liefern.

Das gewählte Beispiel hat eine klassische hierarchische (Regler-)Struktur, so dass
die Ergebnisse auf andere komplexere Systeme übertragbar sind, die sich im Wesent-
lichen nur quantitativ durch die Anzahl der Ein- und Ausgänge und der Hierar-
chiestufen unterscheiden. Besonders attraktiv ist im Gesamtbild, dass der Schnitt
der Teilsysteme, also die aus dem technischen Kontext heraus entstandene Modu-
larisierung, ohne weiteres auf die modulare Multirate-Simulation zu übertragen ist.
Im Sinne der Selbstoptimierung bedeutet dies, dass eine modulare Rekonfiguration
auch im Multirate-Fall möglich und vor allem notwendig ist. Weiterführende Unter-
suchungen sind für eine automatisierte Bestimmung der Fehlerabschätzung sinnvoll,
um im Falle der Rekonfiguration die Qualität des Ergebnisses kontrollierbar zu ma-
chen. Darüber hinaus bleibt offen, wie Schrittweiten automatisch bestimmt werden
können. Für die Überwachung solcher Systeme bieten sich Verfahren nach [DO00]
und [DOM01] an.
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Abbildung 6.9: Verlauf der Aufbaubeschleunigung bei Multirate-Integration

6.2 Ein Beispiel für Verhaltensbasierung: Aktives
Fahrwerk

Verhaltensbasierte Verfahren eignen sich vor allem für die Steuerung der Sollgrößen,
der eine Regelung folgen soll. Das folgende Beispiel skizziert die Ergebnisse aus
[OHKK02], [HO03], [MOH+04].

Aktive Fahrwerke spielen in der Fahrzeugtechnik einen zunehmende Rolle. Vor
allem in den letzten Jahren wurden aktive Fahrwerke vor allem in Sonderfahrzeugen
eingesetzt, wie Land- und Forstmaschinen, Gabelstapler, Geländefahrzeuge [SJW06]
etc. Aber auch in PKWs der Oberklasse finden sich heute aktive Fahrwerke, z. B.
Dynamic Drive der Firma BMW oder Active Body Control der Firma Daimler. Neue
Entwicklungen bringen aktive Fahrwerke in schienengebundene Fahrzeuge, wie beim
schwedischen Neigetechnikzug X2000, dem italienischen Pendolino ETR 460/ETR
470, dem Neigetechnikzug ICE-T (z. B. [Wer07]) oder dem RailCab. Beim RailCab
ist das aktive Fahrwerk zu einem integrierten Konzept zur Kontrolle der Aufbaudy-
namik geworden [LHLJ00a, Neu06], das, neben dem sekundären Federungssystem
des Mechatronic Bogie [Bom07] der Firma Bombardier, eine der wenigen Lösungen
mit mehr als nur Kompensation der Kurvenneigung darstellt.

6.2.1 Aufgabenstellung

Die Hauptaufgabe von aktiven Fahrwerken mit vertikaler Aktorik ist die Entkopp-
lung der Aufbaubewegung von der Straße oder dem Fahrweg. Idealerweise bleibt der
Aufbau in vertikaler Richtung völlig ruhig; das Fahrwerk kompensiert jedwede stö-
rende Anregung durch die Strecke[LCJR92]. Da jedoch der Fahrweg – sei es Straße
oder Schiene – nicht horizontal verläuft und die Höhenunterschiede weit größer sind
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als die Verstellwege der Fahrwerke, kommt es zwangsläufig zu einem Zielkonflikt
zwischen Folgen des Fahrweges und Reduzierung der Aufbaubeschleunigung [Hes00].

Die meisten Ansätze gehen zunächst von einer analytischen Betrachtung der vor-
liegenden Anregungsfälle aus. Betrachtet man das Problem jedoch aus einer abstrak-
ten, vereinfachten Sichtweise heraus, so kann das Fahrzeug auch als ein autonomes
Objekt modelliert werden, das durch eigenes Verhalten auf seine Umgebung reagiert.
Ähnlich wie ein Skifahrer, der durch die Bewegung der Beine die Unebenheiten der
Piste ausgleicht und so den Oberkörper ruhig hält, aber bei zu großer Auslenkung
zunehmend dem Streckenverlauf folgt, lässt sich dieser Ansatz auf die Modellierung
eines Fahrwerkes übertragen.

Fahrzeugmodell Eine Möglichkeit für die Modellierung eines einfachen Fahrzeug-
modells ist das Viertelfahrzeug. Dabei wird vereinfacht angenommen, dass das Fahr-
zeug in zwei Achsen symmetrisch ist. Bei einem vierrädrigen Fahrzeug ergibt sich
dabei jeweils ein Viertel des Fahrzeugs, bestehend aus der anteiligen Aufbaumas-
se, dem Feder-Dämpfer-System zwischen Aufbau und Lenker, der Radmasse (inkl.
Radaufhängung) und dem Reifen als Feder gegenüber der Fahrbahn.

Speicher

Ventil

Aufbau

Pumpe

Tank

Reduziertes ModellVollständiges ModellAktive Federung (Aufbau)

zA

mA

mR zR

z0

zZyl

Bm zA

z0

zZyl

Abbildung 6.10: Entwicklung eines Viertelfahrzeugmodells

Abbildung 6.10 [OHKK02], [HO03] zeigt links den beschriebenen schematischen
Aufbau eines Viertelfahrzeugs. Bei einem aktiven Fahrwerk besteht das Federbein
aus einem Öldämpfer und einer Kombination aus Feder und Zylinder. Über ein Ventil
kann mit Hilfe einer Pumpe kontrolliert Öl in den Zylinder gefördert werden. Damit
kann die Feder vorgespannt werden. Die erzeugte, zusätzliche Kraft wirkt zwischen
Aufbau und Querlenker zusätzlich zu den passiven Kräften, die im Feder-Dämpfer-
System wirken. In erster Näherung wird davon ausgegangen, dass die Verschiebung
des Zylinders (zZyl) direkt vorgegeben werden kann. Daraus ergibt sich der Ansatz,
das Fahrzeugmodell als ein passives Fahrzeug mit einer zusätzlichen parallelen akti-
ven Kraft zu modellieren.

Eine weitere Vereinfachung führt zu dem Ersatzmodell, das in Abbildung 6.10
Mitte dargestellt ist. Dabei wurden die Lenkerkinematik vereinfacht und die Aufbau-
masse über der Radmasse angeordnet. Um den Einfluss der Lenker zu berücksichti-
gen, wird ein Übersetzungsfaktor bei Federsteifigkeit und Dämpfung eingeführt. Die
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Anregung durch die Straße (z0) wird in diesem Modell über Radfeder und Radmasse
auf das Feder-Dämpfer-System übertragen, das mit der Aufbaumasse verbunden ist.
Dies erzeugt eine Rad- und Aufbaubewegung in vertikaler Richtung (zR, zA).

Wird weiterhin ein lineares Übertragungsverhalten aller Komponenten angenom-
men, so kann der Zusammenhang zwischen Straßenanregung und Aufbaubewegung
mit Hilfe einer Übertragungsfunktion von z0 nach zA dargestellt werden. Das resul-
tierende Modell 4. Ordnung besteht aus einer Radmasse und einer Aufbaumasse, die
ein Verhältnis von ca. 1:10 aufweisen30. Für die Regelung der Aufbaudynamik kann
deshalb die Radmasse vernachlässigt werden. Dies führt zu einem noch einfacheren
Modell, das in Abbildung 6.10 rechts dargestellt ist. In diesem Modell regt die Straße
direkt den Fußpunkt des Feder-Dämpfer-Systems an.

F
Aktiv

F
Aktiv

FAktiv
FAktiv

Aufbaumasse

Radmasse(n)

Straßenanregung

Abbildung 6.11: Starrkörpermodell mit Rädern

Die Kriterien, die für die Auslegung von passiven Fahrwerken gelten, sind auf
die Auslegung von aktiven Fahrwerken ebenfalls anwendbar. Es gilt, Fahrkomfort,
i. A. durch eine bewertete Insassenbeschleunigung [Ver87], und die Fahrsicherheit
durch die dynamische Radlast zu optimieren. Jedoch lässt sich kein allgemeines Op-
timum finden, da die Kriterien einander widersprechen. Durch die Reduktion des
Fahrzeugsmodells auf die Aufbaumasse nach Abbildung 6.10 rechts, entfallen die Ef-
fekte der Radmasse, und die Kriterien widersprechen einander in diesem einfachen
Fall nicht mehr. Jedoch bleibt ein Zielkonflikt erhalten: Der Aufbau muss aufgrund
des begrenzten Stellweges des Fahrwerks der Straße folgen, soll aber gleichzeitig aus
Gründen des Komforts möglichst ruhig gehalten werden. Das Problem tritt insbeson-
dere dann besonders anschaulich auf, wenn das Fahrzeug eine Rampe hinauf oder
hinab fahren soll: Im ersten Fall neigt das Fahrzeug dazu, aufzusetzen, da die Re-
gelung versucht, den Aufbau auf dem bisherigen Niveau zu halten, im anderen Fall
fährt das Fahrwerk bis zum Ende des Stellwegs hin aus. Für passive Fahrwerke ist
dies im Allgemeinen nach dem Durchfedern kein Problem. Der Fehler entsteht durch
den Versuch der Ausregelung der absoluten Aufbaubewegung. Dieser Regelungsan-
satz wird auch häufig als Skyhook bezeichnet (z. B. [Mit97]).

Für die Modellierung eines Gesamtfahrzeugs lassen sich die oben gemachten Ver-
einfachungen auf ein Gesamtfahrzeugmodell übertragen. In Abbildung 6.11 [HO03]

30z. B. 30 kg Radmasse und 300 kg anteilige Aufbaumasse.
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ist ein solches vereinfachtes Gesamtfahrzeugmodell schematisch dargestellt. Der Auf-
bau ist als ein Starrkörper modelliert. Die Radmassen können wie in Abbildung 6.10
Mitte mitmodelliert oder nach Abbildung 6.10 rechts weggelassen werden.

6.2.2 Verhaltensbasierter Ansatz

Ausgangspunkt der Überlegung ist zunächst, dass zwischen zwei Extremen bei der
Auslegung der Regelung unterschieden werden muss:

1. Die Dämpfung des Aufbaus zur Umgebung ist optimal. Das Fahrwerk gleicht
alle Unebenheiten aus, und der Aufbau erfährt keine vertikale Beschleunigung.
Dieser Ansatz entspricht einem klassischen Skyhook-Ansatz [Mit97].

2. Das aktive Fahrwerk ist ähnlich einem passiven Fahrwerk ausgelegt. Aufbau-
beschleunigung und Fahrverhalten entsprechen im Wesentlichen einem klas-
sischen Fahrwerk aus passiven Komponenten (Feder-Dämpfer-System). Der
Kontakt der Räder zur Straße wird verbessert. Der Aufbau folgt dem Verlauf
des Fahrwegs (gedämpft).

Ausgehend von diesen beiden Einstellmöglichkeiten, kann nun eine Veränderung
der Reglerparameter durch ein überlagertes Verhalten modelliert werden. Die durch
das Verhalten wählbaren Reglerparameter entsprechen paretooptimalen Einstellun-
gen (vgl. Abschnitt 2.2.2). Dieses Verhalten reagiert auf die Veränderung der Feder-
beinauslenkungen. Dazu wird der Federbeinweg in Zonen eingeteilt. In der Komfort-
zone liegt das Verhalten Komfort vor. In diesem Bereich wird der Aufbau nach der
Methode 1 optimal ruhig gehalten. Verlässt die Federbeinauslenkung diesen Komfort-
bereich nach oben oder unten, so wird durch eine einfache lineare Überlagerung je
nach Auslenkungsgrad zwischen Komfortregelung und passiver Auslegung überblen-
det. Erreicht die Auslenkung einen kritischen Bereich, so wird ganz auf die passive
Auslegung (Sicherheit) des Reglers umgeschaltet, und das Fahrzeug reagiert wie ein
passiv gedämpftes Fahrzeug.

Regelungstechnisch ist dieser Ansatz mit einem Gain-Scheduling vergleichbar
(z. B. [AW94], [Hel95]). Bei dem vorgestellten Ansatz steht jedoch die Art der Mo-
dellierung im Vordergrund. Durch eine verhaltensbasierte Modellierung kann diese
Form der Adaption leicht erweitert werden.

6.2.3 Aufbau des Operator-Controller-Moduls (OCM)

Die Struktur der Optimierung orientiert sich in wesentlichen Zügen an dem Ansatz
gemäß Abschnitt 3.4.2. Dabei wird die Konfiguration aus [HO03] betrachtet, die den
Ansatz nach [OHKK02] konkretisiert.

Aufgrund des Widerspruchs zwischen der Forderung, der Straße zu folgen, und
dem Wunsch nach Fahrkomfort kann eine Optimierung nur eine Folge von optimalen
Kompromissen als Paretomenge ergeben (vgl. Abschnitt 2.2.2.3). Aufgabe des verhal-
tensbasierten Teils des kognitiven Operators ist es, aus dieser Paretomenge den für
die augenblickliche Situation optimalen Parametersatz auszuwählen. In [HO03] wird
davon ausgegangen, dass keine Online-Identifikation des Systems erfolgt. Somit ist es
sinnvoll, die Paretomenge auf Basis eines simulierten Modells der geregelten Strecke
vorab, also offline, zu bestimmen und nur die berechnete Paretomenge zu nutzen.
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138 Kapitel 6

Die gewählte Struktur behält aber auch bei einer möglichen Online-Identifikation
und entsprechenden Online-Bestimmung der Paretomenge ihre Gültigkeit.

In Abbildung 6.12 ist die Struktur des OCMs dargestellt. Es besteht aus dem
kognitiven Operator, der mit Hilfe einer einfachen Zustandsmaschine das entspre-
chende Verhalten aus der vorab bestimmten Paretomenge bestimmt. Dies geschieht
auf Basis der aktuellen Auslenkung und Geschwindigkeit des Federbeins. Der durch
das Verhalten gewählte Parametersatz der Reglung wird durch die Umschaltung
(Rekonfigurationsmanagement) des reflektorischen Operators in die Reglerstruktur
des Controllers übertragen.

Das Verhalten kann aus drei verschiedenen Reglertypen wählen. Regler A ist auf
die Einhaltung der Relativkoordinaten optimiert, bei Regler C handelt es sich um
einen komfortoptimierten Regler und bei Regler B um einen adaptiven Regler, der
zwischen Komfort und Relativbewegung überblendet. Die Steuerung der Adaption
erfolgt über das Verhalten, das die augenblicklichen Reglerparameter des adaptiven
Reglers B verändert.

Nach [HO03] wird neben der Veränderung der Reglerparameter noch eine weitere
Technik verwendet, die komfortables Fahren auch bei wechselndem Fahrbahnniveau
ermöglicht. Hierbei wird eine Vorsteuerung verwendet, welche die Straßenanregung
in tief- und höherfrequente Anregungen aufteilt. Die tieffrequenten Anregungen wer-
den als Sollbahn vorgegeben, die höherfrequenten als Störung angesehen. Bei klassi-
schen Strukturen ist eine solche Trennung nicht ohne weiteres möglich, da die tieffre-
quenten Anregungen meist stärkere Störungen hervorrufen als die hochfrequenten.
Durch den im Beispiel aus [HO03] verwendeten Adaptionsalgorithmus wird die Eck-
frequenz jedoch verändert. Dies geschieht in Abhängigkeit zur Fähigkeit, Störungen
zu kompensieren. Ausschlaggebend ist hier die Federbeinauslenkung. Dabei wird ein
möglichst großer Frequenzbereich als Störung angesehen.

6.2.4 Kognitiver Operator: Zustandsmaschine und Verhalten

Der kognitive Operator besteht im Wesentlichen aus zwei Elementen: einem Zu-
standsautomaten, der zwischen den verschiedenen Zuständen selektiert, und einem
einfachen Verhalten, das die eigentliche Adaption ermöglicht.

Komfort Adaptiv

Relativ

Relativ
verlassen

Regler
"Relativ"

exe > exe_min

exe > exe_max

exe < exe_max

exe < exe_min

exe' < exe_vel

Regler
"Komfort"

Regler
"Adaptiv"

Regler
"Relativ"

Abbildung 6.13: Zustandsautomat der selbstoptimierenden Fahrwerksregelung

Der Zustandsautomat ist in Abbildung 6.13 [HO03] schematisch dargestellt. Er
besteht aus den vier Zuständen Komfort, Relativ, Relativ verlassen und Adaptiv. Die
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Übergangsbedingungen werden bei Über- oder Unterschreitung bestimmter Grenz-
werte aktiv.

Der Wert exemin ist hier die Obergrenze der Auslenkung, bei der vom Komfort
in den Zustand Adaptiv gewechselt wird. Bei Unterschreitung dieses Wertes wird
zurück in den Zustand Komfort gewechselt. Bei Überschreitung einer gewählten ma-
ximalen Auslenkung exemax wechselt der Zustandsautomat in den Zustand Relativ,
der auch nur über den Zustand Relativ verlassen verlassen werden kann. Durch die-
sen zusätzlichen Zustand wird sichergestellt, dass nicht sofort bei Unterschreitung
der Auslenkung in den adaptiven Regler geschaltet wird, sondern erst bei Erfüllung
der weiteren Bedingung, welche die Obergrenze für die Federbeingeschwindigkeit
exevel festlegt.

Auslenkung (exe)

exe_min

Relativzone

Adaptive Zone

Komfortzone
0

exe_max

Abbildung 6.14: Verhalten der selbstoptimierenden Fahrwerksregelung (schema-
tisch)

Der Block Verhalten modelliert durch Gleichungen die Anpassung der Regler-
bzw. Filterparameter. Das Gesamtverhalten wird zusammen mit dem Zustandsauto-
maten abgebildet. Verdeutlicht wird dieses Verhalten in Abbildung 6.14. Die Feder-
beinauslenkung ist in die drei Zonen Komfort, Adaptiv und Relativ eingeteilt. In der
Komfortzone verhält sich das Fahrzeug komfortoptimiert, d. h. die Vertikalbeschleu-
nigung des Aufbaus wird soweit wie möglich unterdrückt31. In der Zone Relativ folgt
das Fahrzeug der Straße, d. h. es verhält sich ähnlich einem Fahrzeug mit passivem
Fahrwerk. In der Zone Adaptiv werden die Parameter der Regelung über das Ver-
halten, in Abhängigkeit der Federbeinauslenkung, angepasst. Dabei sind obere und
untere Grenze der Parameterveränderungen so gewählt, dass sie je nach Grenzfall
genau dem Relativregler oder dem Komfortregler entsprechen. Beide Grenzen stellen
somit nur die Ränder der oben beschriebenen paretooptimalen Lösung dar, die mit
Hilfe der modellbasierten Optimierung vorab bestimmt wurden.

Prinzipiell können die unterschiedlichen Zonen auch als eine Überlagerung zweier
Basisverhalten interpretiert werden. Ein Verhalten versucht, dem Straßenverlauf zu
folgen und die Federbeinauslenkung zu minimieren, das andere versucht, den Aufbau
möglichst ruhig zu halten. In der Zone Relativ ist das erste Verhalten dominant,
in der Zone Komfort das zweite. In der adaptiven Zone werden beide Verhalten
überlagert.

31In realen Systemen setzt die Bandbreite der Aktorik meist die Grenze der kompensierbaren
Störanregungen.
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6.2.5 Simulationsergebnisse

Die Simulation eines Fahrversuchs zeigt nach [HO03] die in Abbildung 6.16 und 6.17
dargestellten Ergebnisse. Abbildung 6.15 zeigt die verwendete Anregungsfunktion
bzw. den modellierten Fahrweg. Er besteht aus einem Bereich sinusförmiger Anre-
gungen (links) und einer Rampe (rechts). Die Anregungsfunktion wurde bewusst
extrem gewählt, um die Effekte deutlich zu visualisieren.
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Abbildung 6.15: Anregungsfunktion der Fahrsimulation

In Abbildung 6.16 ist der Verlauf der Aufbaubeschleunigung für drei verschiedene
Regler abgebildet. Der adaptive Regler erkennt den Umgebungszustand und kann
somit die optimalen Fahreigenschaften der anderen Regler (Komfort und Relativ),
die für eine bestimmte Streckenanregung ausgelegt sind, erreichen.

Hervorzuheben ist, dass der adaptive Regler bzgl. des benötigten Federweges
günstiger als alle anderen Regler ist, wie in Abbildung 6.17 zu sehen ist. Dafür
liegen die Komfortwerte32 (Vertikalbeschleunigung, Abbildung 6.16) des adaptiven
Reglers etwas schlechter als die des Komfortreglers, jedoch sind die Federwege des
Komfortreglers viel größer, als in der Praxis möglich wäre. Der adaptive Regler hält
die Begrenzung des Federweges in jedem Fall ein.

Ein Defizit der Regelung resultiert aus der Offline-Berechnung der Pareto-
Optima. Da die Offline-Berechnung nur ein Anregungsspektrum berücksichtigt, ist
die Wahl der Reglerparameter bzgl. der tatsächlichen Anregungsspektren nicht op-
timal. Dies macht jedoch wiederum deutlich, dass mit einer Erweiterung der Online-
Optimierung weitere Verbesserungen möglich sind, und ist somit ein weiteres Argu-
ment für Selbstoptimierung in mechatronischen Systemen.

32In [HO03] wird darüber hinaus noch die Wankbeschleunigung betrachtet.
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Abbildung 6.16: Aufbaubeschleunigung bei verschiedenen Reglerkonfigurationen
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6.3 Ein Beispiel für verteilte Optimierung: Tra-
jektorienoptimierung bei schienengebundenen
Fahrzeugen

Grundlage der meisten Optimierungsverfahren sind das Durchlaufen eines Test- oder
Anregungsfalls mit anschließender Bewertung und eine darauf folgende gezielte Ver-
änderung der Systemparameter. In der Simulation werden dafür häufig Anregungs-
funktionen verwendet, die z. B. einer bestimmten zu reduzierenden Frequenz entspre-
chen. Jedoch ist das Aufschalten von Anregungsfunktionen nicht in jedem Fall mög-
lich. Dies gilt insbesondere für Hardware-in-the-Loop-Simulationen am Prüfstand
und den realen Betrieb auf der Strecke. Die Optimierung am realen System kann
jedoch signifikante Verbesserungen gegenüber einer rein auf Simulation gestützten
Optimierung bringen, insbesondere dann, wenn die Systemparameter nicht hinrei-
chend bekannt sind oder sich im Betrieb auf nicht vorhersehbare Weise verändern
[DO00, DOM01].

Eine solche Form der Selbstoptimierung ist bei wiederkehrenden oder vergleich-
baren Anregungsfällen besonders zweckmäßig. Noch weiter geht der Ansatz, ver-
gleichbare Systeme, auf die außerdem vergleichbare Anregungszustände wirken, ge-
meinsam zu optimieren. Werden die Ergebnisse jedes einzelnen Systems gemeinsam
genutzt, kann von einer verteilten Optimierung gesprochen werden.

In diesem Beispiel wird ein Szenario für eine verteilte Optimierung der Soll-
bahnvorgabe für aktive Federungen vorgestellt. Als Anwendungs-Szenario dient das
RailCab-System der Neuen Bahntechnik Paderborn, das wegen seines vollständig in
sechs Achsen aktiven Fahrwerks und der entsprechenden Leit- und Regelungstechnik
besonders geeignet ist.

6.3.1 Technischer Aufbau des Modellsystems

Das Fahrzeug entstammt der Forschungsinitiative Neue Bahntechnik Paderborn. Es
handelt sich dabei um ein ca. 1,0 t schweres und 2,5 m langes Versuchsfahrzeug, das
für die Teststrecke der Universität Paderborn entwickelt worden ist. Die Fahrzeuge
sind autonom selbstfahrend und werden durch einen besonderen Linearmotor ange-
trieben. Ein zentraler Teil des Gesamtkonzepts ist das aktive Federungssystem, mit
dem alle sechs Aufbaufreiheitsgrade vollständig kontrolliert werden können [HES03].

Damit ist eine Kontrolle von Vertikal- und Querrichtung sowie Wende-, Wank-
und Nickbewegungen des Fahrzeugs möglich. Die Längsfreiheitsgrade werden durch
vier weitere Zylinder beeinflusst, die in horizontaler Ebene angeordnet sind.

Realisierung am 1:2,5-Prototypen

Fahrwerksrahmen

Hydraulikzylinder

Luftfedern

Fahrwerksrahmen

Prinzip der aktiven Sekundärfederung

Neigetechnik-Rahmen

Abbildung 6.18: Aktive Federung des RailCab
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Abbildung 6.18 zeigt links den schematischen Aufbau des aktiven Fahrwerks. We-
sentlich für die Aufbaukontrolle in vertikaler Richtung sind die Hydraulikzylinder. Je
drei Zylinder sind vorn wie hinten mit Aufbau und Neigetechnikrahmen verbunden.
Die Führung in der Ebene wird von einer 4-Lenker-Konstruktion übernommen. Die
Luftfedern sorgen für eine Entkopplung der Rahmenkonstruktion. Die Dämpfung
des Aufbaus erfolgt aktiv durch die Hydraulikzylinder.

Für die Regelung der Federung erfassen Sensoren die Beschleunigung des Auf-
baus. Sensoren an den Zylindern und den Luftfedern ermitteln jeweils die Auslen-
kung. Die Messwerte der Wegsensoren können für eine Dämpfung zwischen Auf-
bau und Fahrwerk mittels Fußpunktverstellung genutzt werden. Aus den Beschleu-
nigungswerten des Aufbaus kann mittels einer so genannten Skyhook-Dämpfung
[Mit97] die Absolutbewegung des Aufbaus unterdrückt werden.

Für die Regelung der sechs Starrkörper-Freiheitsgrade muss als Aufbauregler ein
Mehrkörper-Regler eingesetzt werden. In [HES03] wird gezeigt, dass die dynamische
Regelung des Aufbaus mit Hilfe der Modaltransformation auf die Regelung von
Einmassen-Schwingern zurückgeführt werden kann. Für eine nähere Erläuterung
wird auf [HES03] und [HMO04] verwiesen.

6.3.2 Sollbahnoptimierung

Das Konzept der Bahnoptimierung basiert auf der Vorgabe von Führungsdaten für
die Regelung des Fahrwerks für einen bestimmten Streckenabschnitt. Dieser Stecken-
abschnitt wird vom Fahrzeug durchfahren und anschließend von ihm auch bewertet.
Dabei wird angenommen, dass das dynamische Verhalten der Fahrzeuge in etwa
gleich ist. Somit kann davon ausgegangen werden, dass eine Bewertung auch durch
verschiedene Fahrzeuge möglich ist. Dabei erhält der jeweilige Streckenabschnitt die
besondere Aufgabe, die Daten zu sammeln, zu optimieren und den Shuttles neue,
optimierte Führungsvorgaben zur Verfügung zu stellen. Diese verteilte Architektur
entspricht in ihrer Wirkweise einer Optimierung über viele Individuen.

Die Führungsvorgaben können auf verschiedene Weise dargestellt werden. Beson-
ders geeignet ist die Abbildung als Trajektorie żsoll = f(t), die kompakt durch einen
kubischen Spline angenähert werden kann. Aus praktischen Erwägungen, wie der
Berücksichtigung von Randbedingungen der Stellwegbegrenzungen des Fahrwerks,
wird zur Optimierung eine Trajektorie z = f(x) verwendet33. Die Trajektorie ż
kann wegen der Darstellung als kubischer Spline besonders leicht aus ż = v · dz/dx
berechnet werden.

Zu einer weiteren Reduzierung der Daten führt die Festlegung eines bestimmten
gleichen Abstands zwischen den Stützpunkten. Bewertet wird das Integral der qua-
dratischen Beschleunigung φ =

∫
z̈2dt, das um den jeweiligen Stützpunkt gebildet

wird. Dadurch erhält jeder Stützpunkt quasi eine einzige Maßzahl als Bewertung für
den lokalen Komfort.

Der Raum um einen Stützpunkt ist in sogenannte Segmente eingeteilt, die den
Einflussbereich eines Punktes auf die bewertete Beschleunigung festlegen. Diese Ver-
einfachung vernachlässigt die Beeinflussung benachbarter Punkte.

In Abbildung 6.19 ist das Prinzip der Trajektorienoptimierung schematisch dar-
gestellt. Die Optimierung erfolgt durch eine Veränderung der Stützpunkte. Bei der

33x entspricht der Bahnposition innerhalb eines Streckenabschnitts.
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Abbildung 6.19: Optimierung der Trajektorie

anschließenden Durchfahrt wird die Aufbaubeschleunigung aufgezeichnet und in Be-
zug auf die jeweiligen Stützstellen bewertet. Somit wird jedem Segment und so jeder
Stützstelle eine Bewertungszahl φi nach Gleichung 6.3.1 zugeordnet:

φi =

∫ Gh

Gv

z̈2dt; mit Gv / Gh – vordere/hintere Segmentgrenze (6.3.1)

Als Ergebnis werden Stützpunkte34 des Splines (zi) von der Strecke an das Fahr-
zeug gesendet, die den Verlauf der Trajektorie beschreiben. Nach der Durchfahrt
wird quasi als Antwort die Bewertung φi, die mit den Spline-Stützpunkten korre-
spondiert, von der Strecke zum Shuttle zurückgesendet.

Für eine Begrenzung des Optimierungsproblems auf einen lokalen Bereich wird
die Strecke in verschiedene logische Abschnitte (Bereiche) unterteilt, die separat
betrachtet werden. Jedem Bereich wird dabei eine sogenannte Bereichskontrolle zu-
geordnet. Von Kontrolle muss deshalb gesprochen werden, da der jeweiligen Instanz
die wichtige Aufgabe der Vorgabe von Führungsdaten für ein durchfahrendes Shutt-
le zukommt. Die Bereichskontrolle führt dabei selbstständig auf der Basis bekannter
und neu erfasster Bewertungsdaten sowie bestehender Vorgabedaten eine Optimie-
rung durch. Darüber hinaus muss sie mit benachbarten Bereichskontrollen die Opti-
mierungsergebnisse abstimmen, damit es beispielsweise nicht zu Sprüngen oder Un-
stetigkeiten an den Rändern der Splines kommt. Deshalb ist es naheliegend, diesen
Kontrollbaustein des Systems als kognitiven Agenten zu modellieren. Im Sinne der
vorgestellten Modellierungsansätze entspricht dies einem OCM, das im Wesentlichen
nur aus einem kognitivem Operator besteht.

Der Ansatz der Aufteilung in Bereiche und die Zuordnung der Informationsver-
arbeitung zeigen die konsequente Orientierung der Strukturierung der Informations-
verarbeitung an dem technischen System.

Die Grundstruktur ist in Abbildung 6.20 dargestellt. Die Bereichskontrolle (Mit-
te) verwaltet und optimiert die Führungstrajektorie für einen bestimmten, fest zuge-
ordneten Streckenabschnitt. Ein in den Bereich einfahrendes Shuttle meldet sich vor

34Eine Darstellung als geordnete Paare (xi, zi) ist nicht notwendig, wenn von Stützpunkten mit
fester Anzahl und festem Abstand ausgegangen wird.
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Abbildung 6.20: Grundstruktur der verteilten Optimierung

der Durchfahrt an. Als Antwort sendet die Bereichskontrolle die Führungstrajektorie
für die Aufbauregelung in Form von Stützstellen eines kubischen Splines. Nach der
Ausfahrt aus dem Bereich sendet das Shuttle Bewertungsdaten über das Aufbauver-
halten während der Durchfahrt in Form von Kennzahlen für alle Spline-Stützpunkte.
In diesem Beispiel wird der Komfort in vertikaler Richtung betrachtet. Die als Agent
organisierte Kontrolle führt aufgrund der neuen Daten einen Bewertungsschritt aus
und berechnet eine neue Führungsvorgabe.

Um einen sicheren Betrieb zu gewährleisten, muss es grundsätzlich möglich sein,
ohne Führungsvorgabe sicher durch den Bereich zu fahren. Falls keine Daten zur
Verfügung stehen, schaltet die Regelung auf einen Relativregler um (Abbildung 6.21,
Relativ-Anteil).

Das hier vorgestellte und getestete Szenario betrachtet nur die vertikale Aufbau-
bewegung des Shuttles. Grundsätzlich ist das Verfahren aber für alle Freiheitsgrade
denkbar, insbesondere für die Querrichtung, da hier starke, wiederkehrende Anregun-
gen bei Durchfahrt durch eine Weiche auftreten können. Auch darüber hinausgehen-
de Analysen des Durchfahrtsverhalten sind denkbar. So können stark abweichende
Bewertungen auf ein Problem des Fahrzeugs (Fahrwerk, Räder etc.) oder des Schie-
nenstrangs (Versatz/Verzug bei hohen/niedrigen Temperaturen etc.) hindeuten.

6.3.3 Regelung des Aufbaus mit Führungsvorgabe

Der Aufbau der Regelung für das betrachtete Beispiel soll nun kurz dargestellt wer-
den. Eine ausführlichere Diskussion findet sich in [HMO04]. An dieser Stelle sollen
nur die Grundlagen aufgezeigt werden, die für den Ansatz der Selbstoptimierung
und das Verständnis der Grundidee notwendig sind.

Ein klassischer Ansatz für die Regelung aktiver Fahrwerke ist der sogenannte
Skyhook-Regler. Dieser Ansatz, der sich vor allem durch seine Einfachheit und An-
schaulichkeit auszeichnet, findet sich in vielen Anwendungen wieder. Die prinzipielle
Struktur ist in Abbildung 6.21 dargestellt.

Aus dem Abstand zwischen Aufbau und Fahrwerk zrel, auch als Fahrzeugniveau
bezeichnet, und der Aufbaubeschleunigung z̈a berechnet der Regelungsalgorithmus
eine Zusatzkraft Faktiv. Durch einen nachgeschalteten Tiefpass-Filter wird die Zu-
satzkraft auf den relevanten Frequenzbereich beschränkt. Unter Umständen kann
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Abbildung 6.21: Klassischer Regelungsansatz mit Relativ- und Skyhook-Anteil

hier die Tiefpass-Charakteristik der Aktorik genutzt werden, wie in Abbildung 6.21
recht zu sehen ist. In diesem Fall wird die Charakteristik durch ein PT2-Glied mit
der Eigenfrequenz ωAkt und der Lehrschen Dämpfung DAkt dargestellt.

Der Relativanteil der Federung ist im oberen Teil von Abbildung 6.21 zu sehen.
Er hat die Wirkung eines zusätzlichen Federbeins mit der Federsteifigkeit crel und der
Dämpfungskonstante drel. Im unteren Teil der Abbildung 6.21 ist der Skyhook-Anteil
abgebildet. Er wirkt wie ein Dämpfer zur Umgebung mit der Dämpfungskonstante
ds, also quasi wie ein Dämpfer zwischen Aufbau und Himmel – daher die Bezeich-
nung Skyhook . Da die Relativgeschwindigkeit żrel in der Regel nicht zur Verfügung
steht, wird sie durch Differentation, mit der Zeitkonstante Tdiff , aus dem Niveau
berechnet. Die Aufbaugeschwindigkeit żA wird ebenfalls berechnet. Dazu dient eine
hochpassgefilterte Integration mit der Zeitkonstante THP .

Ein prinzipbedingtes Problem des Skyhook-Reglers ist der durch die Dämpfung
zur Umgebung auftretende, sogenannte Rampenfehler. Dieser Fehler tritt aufgrund
des Widerspruchs auf, dass sich auf der einen Seite der Aufbau möglichst nicht
(vertikal) bewegen soll, aber andererseits der Stellweg der Federung begrenzt ist
und auf der zu fahrenden Strecke Höhenunterschiede zu überwinden sind. Mit Hilfe
einer Hochpassfilterung lässt sich der Rampenfehler zwar nach einiger Zeit auf 0
verringern, wird aber nicht sofort ausgeglichen. Daher stellt sich die Frage, welcher
Bahn der Aufbau bei einer gegebenen Strecke idealerweise folgen muss, um einen
guten Kompromiss zwischen Komfort und reduziertem Rampenfehler zu liefern.

Die zentrale Idee des hier vorgestellten Ansatzes ist die Vorgabe einer Sollbahn,
an der entlang das Fahrzeug geführt wird (vgl. 6.3.2). Da bei diesem Ansatz der
Stellweg der Federung mit in die Berechnung der Sollbahn bzw. Führungstrajektorie
einfließt, kann hier auf eine relative Dämpfung verzichtet werden35.

Für eine hinreichend genaue Ausregelung des Fahrwerks gegenüber der Strecke
werden zum einen die Vorgabe der idealen Aufbaubewegung benötigt, zum anderen
die Störanregung der Strecke. Die Vorgabe erfolgt durch den Sollgeschwindigkeits-
verlauf żsoll, der durch einen Spline abgebildet wird. żsoll lässt sich mit Hilfe der
Gleichung żsoll = dz/dx · dx/dt = źsoll · v bestimmen. źsoll ist hier die von der Zeit
abhängige Vorgabe, im Gegensatz zu żsoll, die von der Streckenposition abhängt. Da-
bei wird vereinfachend vorausgesetzt, dass das Shuttle in einem Streckenabschnitt
seine Geschwindigkeit beibehält. Eine Vorgabe unter Berücksichtigung einer verän-
derlichen Geschwindigkeit ist noch Teil der Diskussion.

35Ein Verfahren, wie mit Hilfe von verhaltensbasierten Ansätzen die maximale Auslenkung des
Fahrwerks begrenzt werden kann, wird im Abschnitt 6.2 dargestellt.
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Aus Gründen der Vereinfachung der Optimierung können die Größen źsoll und
z̃0 zu ´̃z0 zusammengefasst werden [HMO04]. Dies ist vor allem dann sinnvoll, wenn
sowohl die ideale Bahnvorgabe als auch die Streckenanregung zunächst als nicht
bekannt angenommen werden.
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Abbildung 6.22: Regelungsstruktur mit kombinierter Sollgeschwindigkeit

Abbildung 6.22 zeigt die verwendete Regelung mit dem Fahrzeugmodell. Der
linke Teil zeigt die vereinfachte Regelungsstruktur mit kombinierter Sollvorgabe.

6.3.4 Optimierungsverfahren

Grundlage der Optimierung der Bahnvorgabe ist die Verschiebung der Stützpunkte
der Splines der Vorgabetrajektorie in vertikaler Richtung. Daher können die Positio-
nen der Stützpunkte als freie Parameter der Optimierung angesehen werden. Zentral
ist dabei die Frage, wie stark die Stützstellen voneinander entkoppelt sind. Davon
hängt ab, inwieweit Segmente für eine Teiloptimierung zusammengefasst werden kön-
nen. Da viele Segmente einen Abschnitt bilden, kann bei hinreichender Entkopplung
die Optimierung parallelisiert werden. Deshalb müssen zunächst die Entkoppelbar-
keit und der Einflussbereich einer Stützpunktverschiebung betrachtet werden.
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Abbildung 6.23: Änderung einer Splinekurve durch Verschiebung einer Stützstelle

In Abbildung 6.23 ist die Verschiebung eines Stützpunktes dargestellt. Wie die
grau hinterlegte Fläche andeutet, ist dies die Differenz zwischen den beiden Kurven
als Konsequenz der Verschiebung. Die größten Unterschiede treten in der Nähe des
Punkts 5 auf. Weitere deutliche Verschiebungen sind in der Umgebung von zwei Spli-
nepunkten links und rechts zu sehen. Augenscheinlich ist die Veränderung darüber
hinaus verschwindend gering. Jede Verschiebung einer Stützstelle hat theoretisch
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Einfluss auf den gesamten Spline. Jedoch ist für die Praxis eine genauere Untersu-
chung nicht angebracht, da der Einfluss spätestens durch die numerische Abbildung
der Zahlen ganz verschwindet.

Weiterhin muss der Einfluss auf die erste (Abbildung 6.24) und die zweite (Ab-
bildung 6.25) Ableitung untersucht werden. Auch hier zeigt sich ein ähnliches Bild.
Es sind Veränderungen in der Umgebung von bis zu 4 Stützpunkten zu erkennen.
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Abbildung 6.24: Änderung der ersten Ableitung durch Verschiebung einer Stützstel-
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Abbildung 6.25: Änderung der zweiten Ableitung durch Veränderung einer Stütz-
stelle

Damit ist deutlich, dass aus praktischer Sicht von einer Entkopplung weiter ent-
fernt liegender Stützpunkte ausgegangen werden kann. Dies lässt sich weiter im
Optimierungsalgorithmus nutzen. Dazu wird der Spline in Partitionen Pi eingeteilt,
die genau einer zu optimierenden Stützstelle xi zugeordnet sind. Die Aufteilung
der Partitionen erfolgt so, dass keine Überschneidungen auftreten. Für die Auswahl
der zu optimierenden Partitionen werden bei jedem Optimierungsschritt die Bewer-
tungszahlen φi herangezogen. Dabei werden hohe Bewertungszahlen bevorzugt. Eine
Optimierung erfolgt somit gezielt an den Stellen, wo ein erhöhter Optimierungsbe-
darf besteht.

Die Optimierung läuft nach dem Prinzip eines Hill-Climbing-Verfahrens ab. Hill-
Climbing gehört zu den Methoden der nichtlinearen globalen Optimierung [RN03].
Das Verfahren ist sehr anschaulich und leicht zu implementieren, neigt jedoch zum
Verharren in lokalen Minima. Es ist hier gut geeignet, da der Gesamtalgorithmus
ein Verharren in lokalen Optima verhindert. Die hier eingesetzte Variante ist das
Gradientenverfahren, das eine Suchrichtung (Richtung des steilsten Abstiegs oder
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Anstiegs) festlegt. Diese Methode konvergiert besser als das ursprüngliche Hill-
Climbing-Verfahren [Mün03].

Bei der Optimierung der Trajektorie werden aufgrund der beschriebenen Ent-
kopplung mit Hilfe des Hill-Climbing-Verfahrens lokale Partitionen des Splines par-
allel optimiert. Zielgrößen sind die Bewertungszahlen φi, die einer lokalen Aufbaube-
schleunigung an der Stelle entsprechen. Verändert wird jeweils nur eine Stützstelle
zi; somit lässt sich die Optimierung des Gesamtproblems auch auf die Optimierung
mehrerer eindimensionaler Probleme zurückführen. Die Kopplung der Teilprobleme
erfolgt indirekt durch den Spline und die Verschiebung bzw. Neueinteilung der Parti-
tionen. Auf diese Weise kann ein Gesamtoptimum angenähert werden. Ein Festfahren
des Algorithmus an einem dominierenden, aber nicht weiter zu verbessernden Punkt
wird durch eine sogenannte Tabu-Liste erreicht, in die alle Stützpunkte bzw. die
daraus resultierenden Partitionen aufgenommen werden, die nach mehreren Schrit-
ten keine Verbesserung mehr zeigen. Nach einer bestimmten weiteren Anzahl von
Schritten wird der Eintrag wieder aus der Liste entfernt. Der vollständige Optimie-
rungsalgorithmus wird in [HMO04] beschrieben.

Insgesamt lässt sich sagen, dass der Algorithmus nur für die Optimierung loka-
ler Probleme geeignet ist. Ein globales Optimum für einen Streckenabschnitt, wie
z. B. Energieverbrauch, ist mit diesem Verfahren nicht zu erreichen, da nur loka-
le Ziele verfolgt werden. Wie sich der Gesamtansatz auf globale Optimierungsziele
übertragen lässt, muss noch untersucht werden.

6.3.5 Struktur der Informationsverarbeitung

Die Informationsverarbeitung eines mechatronischen Systems muss eine Vielzahl von
Funktionen erfüllen: eine quasi-kontinuierlich arbeitende Regelung kontrolliert die
Dynamik der Strecke; Fehlfunktionen müssen erfasst und behandelt werden; Adap-
tionsalgorithmen passen die Regelung an veränderte Umgebungszustände an, um
nur ein paar Funktionen zu nennen. Darüber hinaus hat bei verteilten Systemen
die Kommunikation eine wichtige Funktion, insbesondere im Falle einer verteilten
Optimierung. Neben funktionellen Aspekten spielt aber auch der Entwurf eine Rol-
le. Die Inbetriebnahme erfordert einen modularen Aufbau. Dies erlaubt zum einen
eine getrennte Betrachtung der Optimierung und der vitalen Informationsverarbei-
tung (Regelung), zum anderen eine erhöhte Sicherheit, wenn zunächst Fehler bei
den sicherheitsrelevanten, die Aktorik beeinflussenden Teilen der Informationsverar-
beitung ausgeschlossen werden können.

Eine diesen Anforderungen besonders gerecht werdende Architektur stellt das
Operator-Controller-Modul (OCM) dar, das als Entwurfsschema für die Informati-
onsverarbeitung in selbstoptimierenden Systemen verwendet werden kann. Im Sinne
einer selbsttätigen Handlung auf Ebene der Optimierung kann auch das Entwurfspa-
radigma der Agententechnik berücksichtigt werden. Im Sinne der Agententechnik
stellt das OCM die Mikrostruktur eines vernetzten Multiagentensystems dar, das
sich auf Ebene der kognitiven Informationsverarbeitung (vgl. 3.4.2) aus kommuni-
zierenden OCMs ergibt (Fahrzeuge und Strecke).

Die Struktur der Informationsverarbeitung der Streckenkontrolle ist grundsätz-
lich der der Regelung ähnlich, jedoch wird die Ebene der motorischen Informati-
onsverarbeitung (Controller) nicht verwendet, da kein technisches System direkt
angekoppelt ist. Wird das OCM als akzeptierte Struktur innerhalb eines Multiagen-
tensystems angesehen, ist es sinnvoll, trotz fehlenden Controllers weiterhin an dem
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grundsätzlichen Aufbau fest zu halten. Auf der Ebene der kognitiven Informati-
onsverarbeitung verwischen die Grenzen zwischen Agent und OCM; somit ist eine
strenge Unterscheidung nicht notwendig oder sinnvoll.

Im Sinne der Agententechnik wird die globale Kommunikationsstruktur auch als
Makrostuktur bezeichnet. Die Struktur orientiert sich an der Topologie des techni-
schen Systems.

Shuttle

...

OCM

...

Agent

{Bereich

...

Agent

{
...

Agent

{
Abbildung 6.26: Makrostruktur der Informationsverarbeitung

Die schematische Struktur des Multiagentensystems ist in Abbildung 6.26 darge-
stellt. Die Strecke ist in logische Bereiche eingeteilt, die jeweils von einem Agenten
verwaltet werden. Das OCM des Shuttles kann hier als mobiler Agent aufgefasst
werden, der von Streckenabschnitt zu Streckenabschnitt weitergereicht wird. Die
Kontaktaufnahme erfolgt dabei über den kognitiven Teil des OCM. Ist die Verbin-
dung etabliert, werden die Daten für die Bahnvorgabe bzw. die Bewertungsdaten
zwischen den Operatoren ausgetauscht. Ist die Übertragung der Vorgabedaten ab-
geschlossen, werden diese Daten dem reflektorischen Operator übergeben, der diese
dann zum entsprechenden Zeitpunkt (bei der Einfahrt in den nächsten Bereich) in
der Regelung aktiviert. Die Aufzeichnung der Bewertungsdaten erfolgt im reflektori-
schen Operator, Weiterverarbeitung und Übertragung zum Streckenagenten jedoch
im kognitiven Operator. Während der Durchfahrt wird mit dem jeweiligen Strecke-
nagenten nicht kommuniziert. Prinzipiell ist auch eine Abhandlung des Datenaus-
tauschs direkt zwischen den reflektorischen Operatoren denkbar, da das Protokoll
streng formalisiert werden kann. In diesem Fall wird die Planungskomponente nur
zur Suche des nächsten Streckenagenten benötigt.

Im Gegensatz zum OCM der Shuttles, bei denen alle drei Ebenen des OCM
implementiert sind, werden für die Streckenagenten nur die Operatoren der OCM-
Architektur benötigt, da keine angekoppelte Strecke vorhanden ist. Jedoch ist es
schon allein aus Gründen der Übersichtlichkeit sinnvoll, an der OCM-Struktur fest-
zuhalten, um eine homogene Architektur zur erhalten.

Zwischen den einzelnen Strecken-Agenten wird zur Abstimmung der Vorgabeda-
ten eine direkte Kommunikation benötigt. Die Verbindungen zwischen benachbarten
Agenten können bereits zum Initialisierungszeitpunkt fest etabliert werden und er-
geben sich aus der Topologie des Schienensystems.

6.3.6 Simulationsszenario und -ergebnisse

Grundlage des Szenarios ist die Teststrecke der Neuen Bahntechnik Paderborn. Die
Höhendaten der Teststrecke wurden nach Konstruktionsdaten in einem Kennfeld
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aufgetragen. Als zusätzliche Anregung wurde bei 30 m ein 10 mm starker Schienen-
versatz eingefügt. Dies ist gegenüber der Realität zwar deutlich übertrieben, erlaubt
aber eine genauere Betrachtung des Konvergenzverhaltens bei der Entwicklung ver-
schiedener Algorithmen, die hier nicht weiter betrachtet werden.

Südring

R 40
max.

Steigung
5,3%

Gefälle 2,2%

Abbildung 6.27: Teststrecke der Neuen Bahntechnik Paderborn

Die Teststrecke ist in Abbildung 6.27 zu sehen. Die Ansicht links zeigt den sche-
matischen Streckenverlauf in der Draufsicht. Die Ansicht rechts zeigt das Leitstellen-
gebäude mit der darunter liegenden Wartungshalle, die am Ende des Bahnhofsab-
zweigs aufgestellt ist.

Aus den vorliegenden Streckendaten und dem bereits beschriebenen künstlich
eingebrachten Schienenversatz wurden Eingangsdaten für die Simulation erzeugt.
Besonders interessant ist dabei der zeitliche Verlauf im Bereich des Schienenversat-
zes.

Abbildung 6.28: Vertikalverlauf der Schiene

Abbildung 6.28 zeigt den relevanten Bereich. Das Fahrzeug erreicht den Sprung
zum Zeitpunkt t = 9957, 5 sec. Dies ist bereits eine fortgeschrittene Zeit, d. h. die
Simulation konnte bereits einige Optimierungsläufe durchführen. Die durch die Op-
timierung erzeugte Vorgabetrajektorie ist in Abbildung 6.29 zu sehen. An dieser
Stelle ist es wichtig, darauf hinzuweisen, dass die Vorgabetrajektorie bei einer rei-
nen Skyhook-Federung hier einer waagerechten Linie entspricht (vz,soll(t) = 0), was
den Fortschritt des neuen Ansatzes gegenüber der klassischen Skyhook-Federung
klar erkennbar macht.

Interessant ist, dass die Optimierung als Reaktion auf die Störung die Kurve zu-
nächst ansteigen und dann stark abfallen lässt. Das Ergebnis ist eine teilweise Kom-
pensation des Sprunges der Schiene. Dieses Verhalten findet sich in abgeschwächter
Form auch beim zweiten, kleineren Sprung.
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Abbildung 6.29: Geschwindigkeitsvorgabe des Shuttleaufbaus

Abbildung 6.30: Zeitantwort des Shuttleaufbaus

Die Zeitantwort des Shuttles ist in Abbildung 6.30 zu sehen. Auch hier zeigt sich
die Beschleunigung des Shuttles in negativer z-Richtung kurz vor dem ersten Sprung
in der Schiene. Offensichtlich bewirkt dies einen betragsmäßig kleineren Anstieg der
Beschleunigung beim Durchlaufen des Sprungs.

Besonders hervorzuheben ist darüber hinaus die Entwicklung des Zielgrößenver-
laufs während der Optimierung (Abbildung 6.31). Die Abbildung zeigt den Zielgrö-
ßenverlauf für φz̈ im betrachteten Bereich 2. Wie zu sehen ist, konnten die Zielgrö-
ßenwerte um die Stützstellen 10, 40, 70 und 100, an denen jeweils die beschriebenen
Schienenversätze eingebaut wurden, um den Faktor 5 bis 6 reduziert werden. Die
Aufbaubeschleunigung des Shuttles reduzierte sich dabei um die Hälfte.
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Abbildung 6.31: Verlauf der Zielgrößen bei Streckenabschnitt 2 zu Beginn und nach
10.000 sec

Zusammenfassend lässt sich sagen, dass sich durch die verteilte Online-
Optimierung neue Möglichkeiten für Selbstoptimierung in mechatronischen Syste-
men ergeben. Gerade bei häufig wiederkehrenden Ereignissen, die bei unterschiedli-
chen mechatronischen Systemen auftreten, was im Bereich Transport und Verkehr
besonders häufig zu erwarten ist, lässt sich das Potential voll ausschöpfen. Ein wichti-
ger Lösungsansatz ist dabei die Zusammenführung der Optimierungsdaten. Ein der
Fahrstrecke zugeordnetes Überwachungselement (hier: Bereichskontrolle) löst auch
das Problem, dass zur Optimierung die Daten gesammelt und verglichen werden müs-
sen. Eine rein dezentrale Lösung, die nur die Fahrzeuge einbezieht, benötigt deutlich
mehr Kommunikation, da für jeden Optimierungsschritt zunächst Fahrzeuge gesucht
werden müssen, die den gleichen Abschnitt in vergleichbarer Konfiguration überfah-
ren haben.

Das Szenario ist auf andere Problemfälle übertragbar. Für Anwendungen, die ein,
zumindest abschnittsweises, Optimum suchen, wie beispielsweise Energieverbrauch
für einen größeren Streckenabschnitt, sind allerdings andere Optimierungsalgorith-
men erforderlich.
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Kapitel 7

Zusammenfassende Diskussion und
Ausblick

Die höchsten Türme fangen beim Fundament an (Thomas Alva Edison)

Selbstoptimierende mechatronische Systeme sind nicht neu – sie sind die Summe
von vorhandenen Technologien und bauen darauf auf; darin liegt ihre Stärke. Metho-
den zur Verbesserung von Systemen sind zahlreich; jede Domäne der Mechatronik,
von der Mechanik bis zur Informatik, bietet eine Vielzahl von erprobten Verfahren,
die darauf warten in einem mechatronischen System vereint zu werden. Viele An-
sätze sind dabei sehr ähnlich. Ob nichtlineare Optimierung oder verhaltensbasierte
Agentensysteme – die mathematischen Grundlagen zur Suche nach einem Optimum
sind oft gleich.

Was selbstoptimierende Systeme von bisherigen Ansätzen unterscheidet, ist die
Ganzheitlichkeit. Der Entwurf solcher Systeme setzt voraus, von Anfang an das
Gesamte im Blick zu haben, ohne frühzeitig in einzelne Domänen zu flüchten. Der
Gedanke, den die Mechatronik vorgezeichnet hat, wird damit weitergeführt.

Der Entwurf spielt eine zentrale Rolle für zukünftige Entwicklungen. Systeme,
die sich in ihrer Struktur – und sei es nur in der Struktur ihrer Regelung – zur
Laufzeit verändern können, benötigen neue Ansätze zur Modellierung. Entscheidend
dabei ist, bekannte Methoden für den Entwurf, sowohl des technischen Systems als
auch der Informationsverarbeitung, weiterhin nutzen zu können. Klassische, nicht
rekonfigurierbare Systeme müssen sich mit den gleichen Werkzeugen und Methoden
entwickeln lassen wie selbstoptimierende Systeme.

Modellbildung bildet die Grundlage für den Entwurf komplexer Systeme. Simu-
lierte Systeme dienen heute der Auslegung und dem Entwurf. Es wird viel Aufwand
getrieben, um solche Modelle zu erstellen. Die Selbstoptimierung zeigt einen Weg,
durch die modellbasierte Online-Optimierung dieses ausführbare Wissen im laufen-
den Betrieb zu nutzen.

Die Ausführung der Informationsverarbeitung erfordert für selbstoptimierende
mechatronische Systeme höhere Rechenleistungen als für konventionelle Systeme.
Jedoch ist nicht allein der Rechenaufwand an sich die Herausforderung, sondern
vielmehr dasWie. Wie muss die Informationsverarbeitung beim Entwurf strukturiert
sein, um den Anforderungen an den Betrieb des technischen Systems gerecht zu
werden? Welche Anforderungen stellen sich an die numerische Verarbeitung?

Zukünftige Arbeiten müssen die beschriebenen Ansätze verfeinern und konkre-
tisieren. Ein wesentlicher Schritt wird sein, ein Werkzeug für die Modellierung von
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rekonfigurierbaren Systemen zu entwickeln. Aber auch im Bereich der Informati-
onsverarbeitung ist noch viel zu leisten. Dabei stellt sich auch die Frage nach der
richtigen Sicht für den Entwickler. Wie werden solche komplexen Systeme in Zukunft
beschrieben, und wie kann die Funktion sichergestellt werden?

Laufzeitumgebungen wie IPANEMA können als Plattformen für den Entwurf,
wie auch für die Ausführung dienen. Die entworfenen Systeme können dadurch direkt
realisiert werden. Eine Neuimplementierung nach der Laborphase ist dann nicht
mehr nötig, was die sogenannte time-to-market erheblich reduzieren kann.

Inzwischen wurden bereits verschiedene Ansätze, die in dieser Arbeit zusam-
mengefasst sind, im Sonderforschungsbereich 614 der Universität angewendet und
verfeinert. Insbesondere sind hier die Arbeiten der Herren Gambuzza, Vöcking und
Münch unter Leitung von Herrn Prof. Dr.-Ing J. Lückel hervorzuheben36. In ver-
schiedenen Arbeiten wird die Online-Optimierung der im Abschnitt 6.3 dargestell-
ten Trajektorien-Optimierung, verbunden mit den verhaltensbasierten Ansätzen aus
Abschnitt 6.2 weiter entwickelt [LMH05], [MVH05]. Neue Optimierungsansätze kom-
men hinzu.

Darüber hinaus ist die Entwicklung der Informationsverarbeitung weiter fort-
geschritten. Ein Meilenstein ist hier sicher die Integration der Werkzeuge CAMel-
View und Fujaba37, die sowohl die Ansätze der rekonfigurierbaren Systeme (vgl. Ab-
schnitt 3.2), als auch der hybriden Komponenten [Bur06] in einem ersten Schritt
verbindet [BGH+07], [BGM+08].

Ich bin glücklich und stolz meinen Beitrag für diese großen Entwicklungen geleis-
tet zu haben.

36Inzwischen werden die Arbeiten dieser Gruppe unter neuer Leitung von Herrn Prof. Dr.-Ing.
A. Trächtler weitergeführt.

37http://www.fujaba.de/
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Anhang B

Stichwortverzeichnis

Abhängigkeitsgraphen, 109
Abstiegsrichtung,

siehe Gradientenverfahren
Abstraktionsebenen, 43
Abtast-Halteglied, 85, 91, 93

Gesamtspekrum, 86
Adams-Bashforth-Verfahren, 80
Adaptionsalgorithmus, 139
Adaptiver Regler, 11
Adaptor, 113
Agent

Definition, 56
Grundeigenschaften, 56
Klassifizierung, 57

Agentenbasierte Regler
Teilprojekt, 5

Agententechnik, 55–57, 150
Beispiele, 57

Aggregate, 53
aktives Fahrwerk, 115, 134, 143
Aktor-Sensor-Gruppe, 53
Aliasing, 84

Kompensation, 96
Architektur

wohlstrukturierte ∼, 76
Assistant, 113
Aufbaubeschleunigung, 129, 133, 136

Simulation, 140
Ausgangsblock, 108
Auswertereihenfolge, 106, 107

Multirate-Verfahren, 100
autonomes mechatronisches System

(AMS), 54
Autonomie, 58

Bahnoptimierung,
siehe Trajektorienoptimierung,
144

Bahnsteuerung, 24
Basisblock (BB), 68
Basisverhalten, 140
Baumstruktur

rekonfigurierbare ∼, 76
BDI-Architektur, 34, 58
BDI-Modell, 34
Begriffslernen, siehe Lerntypen
Bereichskontrolle, 145
Blockschaltbilder, 65

hierarchische ∼, 69
Blocksicht, 67
Braitenberg Vehicle, 22

Calculator, 113
CAMeL-View, 43, 47, 66, 110
Codegenerierung

Auswertereihenfolge, 106
modulare sim, 105

Controller, 70, 73

D-Code, siehe Durchgriffscode
Dahlquist-Test-Problem, 82
Deadlock, 106
δ-Abtaster, 86
Differential-Algebraic Equations

(DAE), 79
Differentialgleichung

gewöhnliche ∼, siehe Ordinary
Differential Equations (ODE)

Digitale Fabrik, 57
Diskretisierungsfehler, 100
domänenspezifische Entwicklung, 37
DSC, 47
Durchgriffscode, 107
dynamische Funktion, 44

Echtzeit-Optimierung, 42
Echtzeitbedingungen, 71, 110, 113
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Controller, 70
Echtzeithardware, 49
Echtzeitsimulationen, 49
Eigenfrequenz, 84
Eigenwerte, 83
Eingangsschicht, siehe Radial-Basis-

Funktionen-Netze
Einschrittverfahren, siehe Runge-

Kutta-Verfahren
elektromechanisches Positioniersys-

tem, 31
Entwicklungsdomänen, 2
Entwicklungskreislauf der Mechatro-

nik, 36, 37
Euler-Verfahren, 96
evolutionäre Algorithmen, 19
Extrapolation der Koppeldaten, 97

Führungsvorgabe, 144, 146
Regelung mit ∼, 146

Fahrzeugniveau, 146
forest (Wald), siehe Vielzahl von

Teilgraphen
Funktionseinheiten, siehe Aggregate
Funktionsorientierter Entwurf, 53
Funktionsorientierung, 53
Funktionsstruktur, 52, 53
Fuzzy-Logik, siehe universelle Appro-

ximatoren
Fuzzy-Systeme, 17

Güteindizes, 13
Gagné, 25
Gain-Scheduling, 137
Gebilde, siehe System
gemischt diskret-kontinuierliches Sys-

tem, siehe hybrides
System

genetische Algorithmen, 19
gerichtete Verbindungen, 51
Gesamtauswertereihenfolge, 109
Gleichungen

zeitkontinuierliche ∼, 79
Gradient, 19
Gradientenverfahren, 17, 20, 149

Hardware-in-the-Loop-Simulation, 38,
42, 49

Hauptgebrauchsfunktion, 54
Hesse-Matrix, 20

Hierarchieebene, 67
Hierarchieelement

hybrides∼ (HHE), 68
Hierarchieelement (HE), 67, 68
Hierarchiesierung

von Systemen, 50
Hill-Climbing-Verfahren, 149
hybride Automaten, 64
hybride Blockschaltbilder, 67–69

vs. hybride Systeme, 69
hybride Komponenten, 69
hybrides Hierarchieelement, 68
hybrides System, 64

Definition, 64

informationstechnische Kopplungen,
55

Informationsverarbeitung
Entwurf, 117
Lernen, 25
rekonfigurierbare Systeme, 120
Selbstoptimierung, 105
Struktur, 50
verhaltensbasierte Optimierung,
150

Integration
Konvergenz, 82
Qualität, 82
Schrittweite, 80, 83

Internet auf Rädern, 7
IPANEMA, 48
Iterationsschleifen, 108
Iterationsvorschrift

nichtlineare Optimierung, 19

Karosserieelektronik, 2
Kaskadenregelung

verallgemeinerte ∼, 80
Kaskadenregler, 53
Kettenbildung, siehe Lerntypen
kinematische Funktion, 44
Kirchhoffsche Maschengleichung, 126
klassische Konditionierung, 22
Kognitiver Agent (cognitive agent), 58
Kolmogorov-Grabor-Polynome, 17
Komponente, siehe System
Komponentenentwicklung, 2
Konstruktionssystematik, 59

Lernen, 25
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Lerntypen, 26
Lernverfahren, 25
Linearmotor, 7

Magnetbahn, 123–131
Gesamtmodell, 124
Multirate-Integration, 130
Regelung, 127, 129
statische Ruhelage, 126

Magnetkraft
Berechnung, 125

Makrosicht, 58
Makrostruktur

Multiagentensystem, 151
Makrozyklus, 37
MATLAB, 66
mechatronische Funktion, 44
mechatronische Komposition, 37
mechatronisches Funktionsmodul

(MFM), 53, 69
mehrdimensionale Suche, 19
Mehrgrößenoptimierung, 21

Selektionsverfahren, 21
Mehrgrößenproblem,

siehe Mehrgrößenoptimierung
Mehrkörpersystemmodelle

Kopplung, 48
Mehrschrittverfahren, siehe Adams-

Bashforth-Verfahren
Mikrosicht, 58
Mikrozyklus, 37
Modell

mathematisches ∼, 45
numerisches ∼, 45
physikalisches ∼, 45
topologisches ∼, 45

Modellabstraktionsprozess, 44
Modellanalyse, 40
Modellbasierte Optimierung, 75
modellbasierte Verfahren, 16

Definition, 13
Modellbildung, 40
Modelle

mathematische ∼, 79
physikalisch deutbare ∼, 17
physikalische ∼, 39
reale ∼, 39, 42
topologische ∼, 44
virtuelle ∼, 39

Modellierungstiefe, 43
Moderator, 113
modular-hierarchische Bauteilstruktur,

55
modulare Codegenerierung, 110
Modularisierung

der Systemgleichungen, 106, 108
von Teilsystemen, 108

MOPO, 22
Multiagentensystem, 58, 151
Multirate-Integration

Beispiel Magnetbahn, 130
Gesamtschritt, 95
Koppeleffekt, 85, 95
Unterdrückung, 96

Makroschritt, 89
Mikroschritt, 89
Prinzipaufbau, 81

Multirate-Runge-Kutta-Verfahren,
101

Multirate-Systeme, 94
Multirate-Verfahren, 80

asymptotische Stabilität, 102
Aufwand, 100
Auswertereihenfolge, 100
Fehler, 100
Selbstoptimierung, 103

ND-Code, siehe Nichtdurchgriffscode
Neue Bahntechnik Paderborn, 3, 143

Hardware-in-the-Loop-Prüfstand,
49
Konzept, 7
Projekt, 6
Teststrecke, 151

neuronale Netze, 17, 29
als Kopie eines existierenden Reg-
lers, 30
Anwendungen, 30
Trainierbarkeit, 32
zur adaptiven Regelung, 30

Neuronen, 30
Nichtdurchgriffscode, 107
nichtlineare Systeme

Modellierung, 17
Notfallfunktionen, 72
Notfallroutinen, 71
Notfallverhalten, 77

Oberschwingungen
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Kompensation,
siehe Extrapolation der Koppelda-
ten

Objective-DSL, 46
Objective-DSS, 46
Objekt und Agent, 56
Objekthierarchie, 53
objektorientierte Modellbildung, 46
objektorientiertes Mechatronikmodell,

43, 46
Objektorientierung, 55
Online-Optimierung, 142

verteilte ∼, 154
Operator

Kognitiver ∼, 74
Beispiel, 75
Einteilung, 74

Reflektorischer ∼, 73
Operator-Controller-Modul (OCM),

55, 69, 151
Beispiel aktives Fahrwerk, 137
erweitertes ∼, 70–76
Hauptelemente, 72

Grundlagen, 69
nach Naumann, 69
selbstoptimierendes ∼
Anforderungen, 71

Optimierung
hierarchische ∼, 58
Definition, 16
Gradientenverfahren, 20, 149
Hill-Climbing, 149
Mehrgrößenproblem,
siehe Mehrgrößenoptimierung
modellbasierte Verfahren, 16
MOPO, 22
nichtlineare ∼, 19
ohne Modell,
siehe verhaltensbasierte Verfahren
stochastische ∼, 19
universelle Approximatoren, 17
verhaltensbasierte Verfahren, 17
Zielgrößenverlauf, 153

Ordinary Differential Equations
(ODE), 79

Pannenstatistik, 1
Pareto-Optima, 142
Pareto-Optimierung, 74

Paretofront, 21, 74
Paretomenge, 21
paretooptimale Lösungsmenge, 19
Paretopunkt, 21
Particle Swarm Optimization, 19
Pawlow, 22
Perzeptionsnetz, 29
physikalisches Modell, 43
Planausführung, 75
Planung/Bewertung, 75
planungsorientierte Verfahren, 33
Planungsverfahren, 22
Potentialfelder, 23
Proaktivität, 58
Prozessidentifikation, 12

Radial-Basis-Funktionen-Netze, 29
RailCab, 3, 7

aktive Federung, 143
Raumsonde Deep Space 1, 57
reaktiver Agent (reactive agent), 57
Regellernen, siehe Lerntypen
Regelungssystem

adaptiv, siehe Adaptive
Regler

Reinforcement Learning, 27
Beispiele, 27
Standardmodell, 28

Reiz-Reaktions-Lernen,
siehe Lerntypen

Reizsituation, 26
rekonfigurierbare Systeme

Auswertereihenfolge, 106
Beispiel, siehe Zweikreisbremse
Blockschaltbilder, 69
Definition, 60
rekonfigurierbare ∼, 60

Runge-Kutta-Verfahren, 80
Stabilitätsbereiche, 83

S-Code, siehe Zustandscode
Schrittweite, 80
Schrittweitensteuerung, 101
selbstoptimierende Systeme

Darstellung, 53
Echtzeitanforderungen, 71
Informationsverarbeitung
Anforderung an ∼, 70
Strukturierung, 56

Rekonfiguration, 105
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strukturvariante ∼,
siehe rekonfigurierbare Syste-
me

Selbstoptimierung
Begriff, 11
Definition, 14
Einflussgrößen, 16
Elemente, 15
Phasenmodell, 38
V-Modell, 38
Vorgehensmodell, 41

Selbstorganisation
von Agenten, 57

selbstverstärkendes Lernen, 27
Selbstverstärkungssignal,

siehe Reinforcement Lear-
ning

Shannon
Abtasttheorem, 84

Signallernen, siehe Lerntypen
Simulated Annealing, 19
Simulation

echtzeitfähige ∼,
siehe Echtzeitsimulation
Hardware-in-the-Loop ∼,
siehe Hardware-in-the-Loop-
Simulationen
nicht echtzeitfähige ∼, 48
rechnergestützte ∼, 48
verteilte ∼, 48

Simulationsbereiche, 48
Situationsanalyse, 75
Skinner, 22
Skyhook, 136, 147

Dämpfung, 143
Federung, 152
Regler, 146–147

Sollbahnvorgabe, 143
Sonderforschungsbereich 614, 2
Spline, 144, 145
Störanregung, 147
Störgrößenaufschaltung, 127
Stabilität

numerische sim, 83
Stabilitätsbedingung, 83
Stabilitätsbereich, 82
Stabilitätsfunktion, 83
StateChart, 68
Steuergerät, 80

Straßenanregung, 135, 139
Streckenmodell

inverses ∼, 31
Struktur

hierarchische ∼, 133
mechatronischer Systeme, 50

Subsysteme, 50
Superposition

von Verhalten, 25
System

Begriff, 50
Beziehungen, 50
dynamisches ∼, 50
Element, 50
hybrides ∼, siehe hybrides System
nach DIN 40150, 51–52
Struktur, 51
strukturvariantes sim,
siehe rekonfigurierbare
Systeme

Systemanalyse, 40
Systeme, 50

autonome mechatronische ∼, 54
dynamische ∼
Darstellung, 79

mechatronische ∼, 2, 48
Simulation, 80
Struktur, 50

Systemgleichungen, 80
Systemstruktur, 53
Systemsynthese, 40
Systemtopologie, 44
Systemverhalten, 15

Veränderung, 108
Systemziele, 15

Teststrecke, 152
Top-Down-Ansatz, 35
topologisches Modell, 43
Trajektorie, 24, 144
Trajektorienoptimierung, 144

Entkopplung, 148–149
Transrapid, 6

Umweltmodell, 34
ungerichtete Verbindungen, 51
universelle Approximatoren, 17

Definition, 18

V-Modell
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der Informatik, 36
der Mechatronik, 37
der Selbstoptimierung, 38

VDI-Richtlinie 2206, 37
Vektorfelder, siehe Potentialfelder
Verarbeitender Agent (processing

agent), 57
Verhalten

dynamisches ∼, 45
Verhaltensänderung, 26
verhaltensbasierte Programmierung,

25
verhaltensbasierte Systeme

Grundidee, 22
verhaltensbasierte Verfahren, 17, 22

Beispiel aktives Fahrwerk, 134–140
Verhaltensforschung, 22
Verklemmung, siehe Deadlock
Verkopplung von Teilsystemen, 106
vernetzte mechatronische Systeme

(VMS), 55
verteilte Optimierung

Beispiel Bahntechnik, 142–151
Grundstruktur, 145

Vielzahl von Teilgraphen, 111
Viertelfahrzeug, 134

Wald, siehe Vielzahl von Teilgraphen,
111

Wasserfallmodell, 35
Watchdog, 74
Wiederverwertbarkeit von Modellen,

46

z-Transformation, 87
modifizierte, 92

Zeitkonstanten, 80
Zeitschranken,

siehe Echtzeitbedingungen
Zeitschritt, 111
Zielformulierung, 40
Zielgröße, 21
Zielgrößenfunktion, 21
Zielgrößenvektor, 21
Zustandsübergangsdiagramm,

siehe StateChart
Zustandsautomat, 139
Zustandscode, 107
Zustandsraumdarstellung, 106
Zweikreisbremse, 60–62

zyklische Abhängigkei-
ten, siehe Deadlock
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