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1 Einleitung

In dieser Arbeit wird die Méchtigkeit, d.h. was kann iiberhaupt berechnet wer-
den, und die Komplexitét (d.h. wie schnell kénnen die Berechnungen durchge-
fithrt werden) iiber verschiedene Operationsmengen S C {+, —, *,...} mit der
Eingabemenge Z" betrachtet. Sowohl Berechnungsmichtigkeit als auch Kom-

plexitdt hangen stark von dem zugrundeliegenden Rechenmodell ab.

Die Turingmaschine als uniformes Rechenmodell wird allgemein als das geeig-
nete Modell fiir diese Art der Betrachtungen angesehen. Sie berechnet eine
Funktion f : A* — A* fiir ein endliches Alphabet A, i.a A = {0,1}. Bei ihr
werden die Kosten bitweise berechnet, als eine Funktion 7': N — N mit 7'(n)

der Worst Case iiber alle Eingaben der Linge n.

Aber gerade bei der Entwicklung von Algorithmen zur Ableitung oberer Schran-
ken und insbesondere beim Beweis unterer Schranken bedient man sich héufig
algebraischer Modelle, wie der uniformen Registermaschine RAM, die auf den
ganzen Zahlen (oder R oder Q) mit dem Einheitskostenmaf und nicht bitweise
operiert, d.h. bei ihr werden Funktionen f : Z* — Z*(bzw. f : R* — R* oder
f Q" — Q") berechnet und die Komplexitit 7'(n) wird als eine Funktion
T : N — N als Worst Case iiber alle Eingaben aus Z" (bzw. Q" oder R") be-
rechnet. Die Durchfiihrung einer Operation entspricht in diesem Modell einem
Zeitschritt und die Laufzeit wird nur in Abhéngigkeit von der Dimension der

Eingabe und nicht von der Bitldnge bestimmt.

Die Berechenbarkeit und auch die Komplexitit solch einer Registermaschine
héngt stark von der Wahl der Grundoperationen ab, z.B. Inkrementation, Ad-
dition, Subtraktion, Multiplikation, Vergleiche ,=" oder ,,<”, ganzzahlige Divi-
sion, bitweise Konjunktion ,&”, Shifts ,x «— y = z-2¥” und ,,x — y = £ DIV 2¥”,
indirekte Adressierung usw.. Die bitweise Konjunktion und die ganzzahlige Di-
vision (wenn der Dividend kein Vielfaches des Divisors ist) gehoren zwar nicht
zu den klassischen Grundoperationen, werden aber von digitalen Computern

unterstiitzt.

Wie sehr die Wahl der Operationsmenge die Méchtigkeit bestimmt, zeigt sich
darin, dass fiir RAMs mit der Eingabemenge {0, 1}* eine Berechnung mit der



Operationsmenge {+, —, *, =} trotz exponentiell langer Zwischenergebnisse in
RP [39] simuliert werden kann, dagegen Berechnungen mit der Operations-
menge {+, —, DIV, =} bereits ganz NP abdecken [39] und mit {+, —, x, &, =}
sogar PSPACE [34], vergleiche auch [4,3] und [41].

Um untere Schranken zu beweisen, werden statt der uniformen Rechenmodelle
haufig die entsprechenden nichtuniformen Modelle betrachtet, d.h. es werden
nicht Eingaben beliebiger Linge, sondern n-stellige Eingaben betrachtet. Eine
nichtuniforme RAM {iber den ganzen Zahlen bestimmt fiir eine Eingabe z€ Z"»

in Abhéngigkeit von n, welche RAM M,, ihr Programm auf z€ Z" ausfiihrt.

Alle bekannten unteren Schranken fiir uniforme RAMs iiber Z" gelten auch fiir
nichtuniforme RAMs und es gibt bisher keine unteren Schranken fiir uniforme
RAMs, die explizit die Uniformitédt ausnutzen, sich also von unteren Schranken
fiir nichtuniforme RAMs unterscheiden. Als addquates nichtuniformes Rechen-
modell zum Beweis unterer Schranken dient der S- Berechnungsbaum, kurz:
S-CT (CT = computation tree). Die Berechnungsméchtigkeit fiir n-stellige
Eingaben bei S-RAMs und S-CTs ist identisch, jedoch sind die Komplexita-
ten unterschiedlich. Da die Registermaschine zusédtzlich die Md&glichkeit der
indirekten Adressierung hat, hat der S-Berechnungsbaum zur Simulation einer
nichtuniformen S-RAM einen zusétzlichen logarithmischen Faktor [31, Lemma

1].

Ziel dieser Arbeit ist es, die Berechnungsméchtigkeit und die Komplexitit von
S-Berechnungsbdumen mit der Eingabemenge Z" fiir n>1 fiir verschiedene
Operationsmengen S C {4, — *,...}, die die ganzzahlige Division oder die
ganzzahlige Division mit Konstanten enthalten, zu untersuchen und Algorith-
men zu entwickeln, die durch die Hinzunahme der ganzzahligen Division und
auch weiterer nicht klassischer Operationen wie der bitweisen Konjunktion
und dem groften gemeinsamen Teiler mit dem Einheitskostenmaf beschleu-

nigt werden.



1.1 Die Berechnungsmodelle

Ein (S,C)-Berechnungsbaum, kurz ein (S,C)-CT, mit der Operationsmenge
S C {+, —, *, *., DIV, DIV} und Konstanten aus der Menge C, {1} C C' C Q,
fiir Eingaben x4, ..., z, ist ein endlicher bindrer Baum. ,*., DIV.” bezeichnen
die Multiplikation und die Division, bei denen ein Faktor oder der Divisor

konstant ist, d.h. er hingt also nicht von den Eingabewerten ab.

— Knoten v vom Grad 1 berechnen eine Funktion g, : Q" — Q. g, ist entweder
x; firein i € {1,...,n} oder g, ist c fiir ein ¢ € C oder g, ist von der Form
Gv, 0P G, Mit v1, v Knoten auf dem Weg von der Wurzel zu v, und op € S.

— Knoten v vom Grad 2, die Verzweigungen, sind mit Vergleichen ,,g(z1, ..., x,)
> (7 fiir eine Funktion g, die auf dem Weg zum Knoten v berechnet wurde,
beschriftet.

— Knoten vom Grad 0 sind die Blatter. Sie sind mit ,akzeptiere” oder ,yer-

werfe” beschriftet.

acc

Abbildung 1. Berechnungsbaum

Eine Eingabe T = (z1,...,z,) € Z" folgt einem Weg von der Wurzel zu
einem Blatt. An einem Vezweigungsknoten v folgt sie dem linken Zweig, falls
»9(1,...,x,) > 0" wahr ist, sonst dem rechten Zweig. Die Eingabe T wird

akzeptiert, falls sie zu einem mit ,akzeptiere” beschrifteten Blatt gelangt.

Die Menge der Eingaben, die zu den mit ,akzeptiere” beschrifteten Blattern

gelangen, ist die von dem Berechnungsbaum erkannte Sprache L C Z".

Die Komplezitit eines S- Berechnungsbaumes ist seine Tiefe.



Werden zur Tiefe nur die Verzweigungsknoten gerechnet, spricht man von der

Verzweigungstiefe des Baumes.

Der Grad eines ({+, —, x}, C)-CT ist der maximale Grad der Polynome, die in

seinen Knoten berechnet werden.

Die Berechnungen entlang eines Pfades im S- Berechnungsbaum, d.h. ohne

Verzweigungen, werden als Straight-Line- Programm, kurz SLP bezeichnet.

Die Familie CC,,(S) der Sprachen L C Z", die von einem Berechnungsbaum
mit der Operationsmenge S erkannt werden, bezeichnet die Berechnungsmdch-

tigkeit einer Operationsmenge S fiir n- dimensionale Eingaben.

Bemerkung 1 Da angenommen wird, dass {+,—} C S gilt, ist CC,(S) un-
abhdngig von der Wahl von C, {1} C C C Q . Daher schreiben wir S-CTs
statt (S, C)-CTs, falls die Wahl von C' nicht von Bedeutung ist.

Die Sprachen, die ein S- Berechnungsbaum fiir eine Operationsmenge S er-

kennt, lassen sich folgendermafsen charakterisieren.

Eine Funktion f : Z" — 7Z wird als S-Funktion bezeichnet, falls sie durch
ein Straight- Line- Programm mit Operationen aus S und Konstanten aus Q

berechnet werden kann.

Bemerkung 2 FEine Sprache L C Z" kann genau dann durch einen S-CT
entschieden werden, wenn L eine Boolsche Kombination endlich vieler Mengen

{T €Z", f(T) > 0} fiir S-Funktionen f ist.

Dies ist bei wohlbekannten S-Funktionen eine hinreichende Charakterisierung.
Dies ist im Allgemeinen der Fall fir S = {+,— .}, S = {+,—, %}, S =
{+,—,%,/} (die S-Funktionen sind lineare Funktionen, Polynome, rationale

Funktionen).

In den Aufsitzen von David DOBKIN und Richard J. LIPTON 16| und Micha-
el BEN-OR [12] werden Argumente aus der algebraischen Geometrie benutzt,

um untere Schranken fiir {+, —, %, /}-CTs mit rationalen oder reellen Eingaben



zu beweisen. Die Beweise basieren auf der Zahl der Zusammenhangskomponen-
ten der Sprache, die erkannt werden soll. Dies fiihrt zu einer unteren Schranke
von z.B. 2(n?) fiir das Rucksackproblem (knapsack problem). In dem Aufsatz
von Andrew YAO [42] werden diese Schranken auf eine grofe Sprachklasse mit
ganzzahligen Eingaben iibertragen, in [33], [23] und [30] werden diese Schran-
ken auf Registermaschinen, bei denen auch die indirekte Adressierung zulissig

ist, fiir den Fall S = {4+, —} tibertragen.

Falls DIV oder DIV, in S ist, ist iiber die S-Funktionen viel weniger bekannt,
so dass Charakterisierungen der Sprachklassen und der Komplexititen schwie-

riger sind.

In [2] wird ein sehr allgemeines Ergebnis fiir ein noch strengeres Modell, in
dem DIV und andere analytische Funktionen mit konstanten Kosten berech-
net werden, vorgestellt, ndmlich dass im Allgemeinen die ganzzahlige lineare
Programmierung mit n Variablen und m Ungleichungen nicht in einer nur von
n und m abhéngigen Zeit, (aber nicht von der binéren Eingabeldnge) in diesem
Modell berechnet werden kann. Das gilt auch fiir die Berechnung des grofsten

gemeinsamen Teilers ggT mit der Operationsmenge {+, —, *, DIV} in [27].

Aus technischen Griinden, um die Theoreme 2 und 4 zu beweisen, wird noch der
etwas kiinstlich anmutende Modulo-Verzweigungs- Baum (kurz: MBT=modulo

branching tree) eingefiihrt.

X,mod a=a-1

X,mod a=a-1

Abbildung 2. Modulo-Verzweigungs-Baum

Ein Modulo-Verzweigungs-Baum ist ein {+, —, x}- bzw. {4+, —, *.}- Berech-

nungsbaum, der zu einer Eingabe T = (xy,...,2,) € Z" zusitzliche Verzwei-



gungsknoten von beliebigem endlichem Grad enthilt. Gelangt die Eingabe 7 zu
einem Knoten vom Grad a, folgt die Eingabe T genau dann dem i-ten Zweig,
falls z; mod a = i; fir i = (i1,...,i,) € {0,...,a—1}",5 = 1,..,n gilt. Eine
Eingabe T € Z™ wird akzeptiert, falls der zugehdrige Pfad in einem akzeptie-
renden Blatt endet. Die Komplezitit eines Modulo-Verzweigungs-Baumes ist

seine Tiefe.

1.2 Uberblick

Da bei den klassischen Programmiersprachen die hiufigsten Operationen auf
den ganzen Zahlen ,,+, —, x, *., DIV, DIV.” sind, wird im ersten Teil dieser
Arbeit die Berechnungsméchtigkeit und die Komplexitdt von Berechnungs-
baumen mit den obigen Operationen und Verzweigungen betrachtet. DIV be-
zeichnet die ganzzahlige Division, DIV, die ganzzahlige Division durch Kon-
stanten und *. die Multiplikation mit Konstanten. Fiir die Operationsmenge
{+,—,*,/} ohne ganzzahlige Division sind die Berechnungsmichtigkeit und
die Komplexitiaten weitestgehend bekannt, da entlang der Pfade im Berech-
nungsbaum je nach Wahl der Operationsmenge lineare Funktionen, Polynome
oder rationale Funktionen berechnet werden. Es werden fiir die Komplexitéits-
betrachtungen Methoden aus der algebraischen (GGeometrie iiber Zusammen-

hangskomponenten im Reellen auf diskrete Mengen iibertragen [42].

Dies ist bei Hinzunahme der ganzzahligen Division nicht mehr moglich.

Die Charakterisierungen mit den daraus abgeleiteten Schranken fiir Berech-
nungsbidume mit einer Operationsmenge S C {4, —, %, *., DIV, DIV} werden
im ndchsten Kapitel vorgestellt. Um den Zusammenhang zwischen den einzel-
nen Theoremen, Sitzen, Korollaren usw. zu verdeutlichen und die Lesbarkeit
zu erleichtern, werden die Beweise, da sie sehr technisch und aufwindig sind,
in den beiden folgenden Kapiteln fiir den eindimensionalen und mehrdimen-

sionalen Fall gefiihrt.

Fiir den eindimensionalen Fall ist in [22] eine vollstdndige Charakterisierung
mit den daraus abgeleiteten Schranken gezeigt worden. Die Berechenbarkeit

und die Komplexitit von Berechnungsbaumen mit einer Operationsmenge S C



{+, —, %, %, DIV, DIV} im eindimensionalen Fall werden im ersten Teil des
nichsten Kapitels vorgestellt. Dieser Abschnitt folgt weitestgehend den Aus-
fithrungen in [22].

Im zweiten Teil des ndchsten Kapitels werden fiir den mehrdimensionalen Fall
bei Hinzunahme der ganzzahligen Division durch Konstanten eine vollstandige
und fiir die allgemeine ganzzahlige Division eine partielle Charakterisierung
angegeben. Aus diesen Charakterisierungen werden Schranken abgeleitet und
Sprachklassen unterschieden. Dies sind die ersten neuen Ergebnisse. Es wird die
Berechenbarkeit im mehrdimensionalen Fall fiir die ganzzahlige Division durch
Konstanten vollstindig charakterisiert und es werden daraus Schranken, die
ohne ganzzahlige Division bewiesen wurden, iibertragen. Bei der allgemeinen
ganzzahligen Division wird nicht wie im eindimensionalen Fall eine vollstandige
Charakterisierung der Sprachklassen angegeben, sondern sie werden nur teil-
weise charakterisiert. Aber aus diesen partiellen Charakterisierungen werden
wiederum untere Schranken abgeleitet, im Fall der méchtigsten Operations-
menge S = {+, —, %, DIV} sogar die erste untere Schranke bei Konstanten aus
Q. Bis dahin waren nur untere Schranken bei der Konstantenmenge C' = {0;1}
bekannt. Uber diese Charakterisierungen werden die Beziehungen der Sprach-
klassen C'C,,(S) fiir n>1 und Teilmengen S C {4+, —, *, x., DIV, DIV} voll-

stindig bewiesen.

Die Beweise zu den Charakterisierungen und den Schranken im Fall n=1 folgen
in Kapitel 3 dem Aufsatz von Friedhelm MEYER AUF DER HEIDE u.a. in
[22] mit Ausnahme von dem Beweis zu Lemma 3, der den Ausfithrungen von

Joao MEIDANIS in [29] folgt.

In Kapitel 4 werden die Beweise zu den Charakterisierungen und den Schran-
ken im Fall n> 1 gefiihrt und aufserdem werden noch Sprachen angegeben, die

die Sprachklassen unterscheiden, die im eindimensionalen Fall zusammenfallen.

Aus der ersten unteren Schranke fiir die Operationsmenge S = {+, —, %, DIV}
bei Konstanten aus Q in diesem Kapitel kann gefolgert werden, dass der Al-
gorithmus von Nader BSHOUTY [6] zur Polynomauswertung iiber einer end-

lichen Menge in N nicht iiber ganz N konstant sein kann. Dieser Algorithmus



wertet ein univariates Polynom mit ganzzahligen Koeffizienten iiber einem end-
lichen Eingabebereich in 15 Schritten aus, d.h. unabhéngig vom Grad des Po-
lynoms und von der Eingabe, aber durch Nutzung sehr grofer Konstanten im

Verhéltnis zum Grad und zur Eingabe.

Eine genauere Betrachtung der Komplexitit der Polynomauswertung wird in
Kapitel 5 vorgenommen. Bekannt ist, dass es irreduzible Polynome vom Grad d
gibt, die iiber {+, —, x} 2(d) Schritte zur Auswertung benotigen [8, Theorem
6.5]. Es wird gezeigt, dass bei ganzzahligen Polynomen mit kleinen Koeffi-
zienten sich die Auswertung iiber {+, —, *} beschleunigen liisst. Uber einem
endlichen Bereich kénnen Polynome in konstant vielen Schritten unabhéngig
von dem Grad des Polynoms ausgewertet werden. Der von Nader BSHOU-
TY gefiihrte Beweis fiir univariate Polynome wird auf multivariate Polynome

iibertragen.

Die Polynomauswertung iiber Z" kann durch die Hinzunahme der bitweisen
Konjunktion ,,&” als weitere Operation beschleunigt werden. Mit dieser neuen
Operationsmenge {+, —, *, DIV, &} kann jedes Polynom iiber Z in einer Va-
riablen mit einer leichten (doppellogarithmischen) Abhéngigkeit von der Ein-
gabe unabhingig vom Grad des Polynoms oder aber mit einer logarithmischen
Abhéngigkeit vom Grad berechnet werden. Bei Polynomen mit mehreren Va-
riablen kommt die Anzahl der Variablen als Faktor beim Aufwand hinzu. Wird
zusitzlich eine im Verhéltnis zur Eingabe sehr grofe ganze Zahl eingegeben, so
kann die Berechnung auf die Quadratwurzel der Laufzeit ohne diese Eingabe
im univariaten Fall beschleunigt werden. Im multivariaten Fall bendtigt man

wiederum die Anzahl der Variablen als zusitzlichen Faktor.

Ohne ,&” bleibt die doppellogarithmische Liicke zwischen der oberen Schranke
O(d) und der unteren Schranke (2(loglogd). Daher stellt sich die Frage, ob
jedes Polynom vom Grad d iiber {+, —, %, DIV} in o(d) Schritten berechnet

o0

werden kann. Die Antwort ist positiv, falls die Reihe Z2‘d”2algebraisch vom

n=0
Grad kleiner d ist. Dies ist aber ein in der Zahlentheorie ungelstes Problem.

In Kapitel 6 werden Anwendungen in der Linearen Algebra betrachtet. Da-

zu zihlen die Matrixmultiplikation und die Berechnung der Determinante, die



beide mit der ganzzahligen Division (aber ohne bitweise Konjunktion) eine
optimale quadratische Laufzeit haben. Das klassische Verfahren zur Matrix-
multiplikation benotigt kubische Laufzeit. Eingeleitet von Volker STRASSEN
wurde die Suche nach schnelleren Verfahren mit dem derzeitigen Rekord von
O(n¥) mit w< 2,38, aufgestellt von Don COPPERSMITH und Shmuel WINO-
GRAD, siehe [8, Abschnitt 15]. In diesem Modell werden mit dem Einheits-
kostenmaf die arithmetischen Operationen {+, —, *} benutzt, aber auch die
Hinzunahme der Division kann bewiesenermafen vergl. |8, Theorem 7.1| die
Laufzeit nicht verbessern. Wird aber nun die ganzzahlige Division als weite-
re Operation hinzugenommen, so wird gezeigt, dass die Matrixmultiplikation

iiber Z quadratische Laufzeit hat.

Uber den Operationen (4, —, %) sind die asymptotischen Komplexititen der
Matrixmultiplikation und der Determinantenberechnung beliebig nahe beiein-
ander [8, Abschnitt 16.4], wenn auch, wie oben erwihnt, nicht bekannt ist, wo
zwischen O(n?) und O(n¥) mit w< 2,38 die genaue Komplexitit liegt. Es wird
gezeigt, dass dieser Zusammenhang zwischen den Komplexitdaten von Matrix-
multiplikation und Determinantenberechnung auch gilt, wenn die ganzzahlige
Division hinzugenommen wird. Dieser Zusammenhang wird nicht durch Re-
duktion, sondern durch die Angabe expliziter Algorithmen fiir beide Proble-
me bewiesen. Der Algorithmus zur Matrixmultiplikation nutzt eine geschickte
Kodierung der zu multiplizierenden Matrizen und Dekodierung der Produkt-

matrix aus.

Die Determinante einer n x n Matrix A kann relativ einfach in Polynomial-
zeit O(n?®) mithilfe des Gaufschen Eliminationsverfahren berechnet werden.
Solch eine einfache Berechnung der Permanente in Polynomialzeit ist nicht
bekannt. Dieses Problem ist VALIANTNP-vollstindig in diesem algebraischen
Modell [8, Theorem 21.17] (und sogar #P-vollstindig im Bitmodell). Wird
jedoch die ganzzahlige Division als weitere Operation hinzugenommen, kann
auch die Permanente sogar in quasi-optimaler Polynomialzeit O(n?) berechnet
werden |1, Proposition 2.4|. Die Tatsache, dass die Permanente in quadrati-
scher Laufzeit berechnet werden kann, wird zur Algorithmenentwicklung fiir

die Determinantenberechnung mit derselben Laufzeit verwendet.
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Durch das k-fache wiederholte Quadrieren einer n x n Matrix erhdlt man die
2k_fache Potenz der Matrix und man bendtigt also die k-fache quadratische
Laufzeit O(k - n?). Bei der Hinzunahme des gréften gemeinsamen Teilers als
weitere Operation und zusitzlicher Eingabe einer Matrix B mit grofen, aber
nicht zu groken Eintrigen lisst sich die 2F-fache Potenz einer Matrix mit dem

Vk—fachen Aufwand der Matrixmultiplikation durchfiihren.

Im folgenden Abschnitt wird gezeigt, dass es unendlich viele solcher Matrizen B
gibt, die die dort geforderten Eigenschaften fiir den grofiten gemeinsamen Teiler
der Differenzen dieser Matrix B mit allen Matrizen, deren Eintrdge kleiner
als eine von k und n abhingige Konstante sind, erfiillen. Es wird eine obere
Schranke fiir die Grofe der Matrizeneintriage und eine obere Schranke fiir den

Aufwand zur Bildung solch einer Matrix B angegeben.

Da die Zahlen bei der Aufwandsabschétzung erheblich grofer sind als die obere
Schranke fiir die Grofe der Eintrige, die dort als Primzahlen gew&hlt wurden,
stellt sich die Frage, ob die Laufzeit bei der Konstruktion von Primzahlen
durch Hinzunahme der ganzzahligen Division beschleunigt werden kann. Im
letzten Abschnitt von Kapitel 6 wird gezeigt, dass dies der Fall ist fiir ran-
domisierte Verfahren, aber der vorgestellte deterministische Algorithmus zur
Primzahlbildung findet zu einer Zahl N nur dann in O(log N) Schritten eine
Primzahl gréfser N, falls Mills Konstante 6 € R algebraisch ist. Aber auch dies

ist ein ungelostes Problem der Zahlentheorie

2 S-Berechnungsbaume fiir

S C {+, —, *, *., DIV, DIV,}

In diesem Kapitel werden im ersten Abschnitt die vollstdndige Charakterisie-
rung der Berechnungsmichtigkeit der S-CTs im Fall n=1 und daraus abgeleite-
te untere Schranken und im zweiten Abschnitt fiir n>>1 eine vollstindige Cha-
rakterisierung der Berechnungsméchtigkeit der S-CTs fir S = {+, —,DIV_}
und S = {+,—,%,DIV.} und eine partielle Charakterisierung der Berech-
nungsméchtigkeit der S-CTs fir S = {+,—,DIV} und S = {4+, —, %, DIV}
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gezeigt. Auch im Fall n>1 werden aus den Charakterisierungen untere Schran-
ken abgeleitet. Die Beweise zu den Theoremen, Sitzen, Korollaren usw. dieses
Kapitels sind im Fall n=1 im 3. Kapitel und im Fall n>1 im 4. Kapitel, da sie
sehr umfangreich und technisch sind und den Lesefluss stark beeintriachtigen

wiirden.

2.1 S-Berechnungsbidume im Fall n=1

Im Fall einer einzigen Eingabevariable wird eine vollstdndige Charakterisierung
der Berechnungsméchtigkeit der S-CTs gegeben [22]. Diese Sprachklassen sind
dquivalent fiir {4, —, %, DIV} und {4, —, DIV.}; es sind genau die Sprachen
L C 7Z , die aus einer endlichen Menge und endlich vielen arithmetischen

Progressionen bestehen.

Definition 1. Seien a1,a0 € N, Ay, Ay, B C Z, Ay, Ay, B endlich.
L(a,A,B) := BU{d + Aa1|A € N;d € A1} U{d — das|\ € N,d € Ay} heiffen
AP-Sprachen (AP = arithmetische Progression).

Theorem 1. Sei LCZ. Folgende Aussagen sind dquivalent:
(i) L ist eine AP-Sprache.

(i) L ist durch einen MBT entscheidbar.

(iii) L ist durch einen {4+, —, DIV, }-CT entscheidbar.

(iv) L ist durch einen {+, —, %, DIV}-CT entscheidbar.

Aber die Komplexititen sind verschieden: Falls die Konstanten aus Q sind,
kann jede Sprache L C Z, die iiberhaupt erkannt werden kann, bereits in
konstanter Zeit iiber {+, —, *., DIV} erkannt werden. Dies folgt unmittelbar
aus der obigen Charakterisierung der Sprachklassen als AP-Sprache, da A
und B endlich sind und die Zugehorigkeit zu einer arithmetischen Progressi-
on iiber {+, —, *,, DIV} in konstanter Zeit entschieden werden kann. Aber die
aus demTheorem abgeleitete Konstante aus [22] ist abhéngig von der Sprache

L. Dariiber hinaus zeige ich sogar, dass erstaunlicherweise jede Sprache L in
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CCi({+, —,*,DIV},Q) in 40 Schritten, d.h. unabhéingig von L, erkannt wer-
den kann. Der Beweis basiert auf dem bereits eingangs erwiahnten Algorithmus

zur Polynomauswertung in 15 Schritten von Nader BSHOUTY.

Satz 1 Jede Sprache L C Z, die von einem ({+,—,*, DIV}, Q)-CT erkannt
wird, kann in 40 Schritten, unabhingig von L, von einem ({4, —,*, DIV} Q)-

CT erkannt werden.

Auf der anderen Seite gibt es fiir einige Sprachen der Gréfe n untere Schran-
ken 2(log(n)/loglog(n)) [22], falls nur Operationen aus {4, —, DIV} benutzt

werden, (aber immer noch beliebige Konstanten aus Q).

Satz 2 Sei LC Z, #L=n. Falls L keine arithmetische Progression der Ldn-
ge k+1 enthdlt, hat ein ({+,—,DIV.},Q)— CT, der L erkennt, die Tiefe
Q2(logn/loglogn), falls k<log n, ansonsten 2(logn/logk).

Aus diesem Satz ergeben sich fiir nachstehende Beispiele untere Schranken fiir

({+,—,DIV.},Q)— CTs.
Beispiel 1

— Ly :={21,i = 1,...,n} hat n Elemente und keine arithmetische Progression
der Linge 3, daher gilt eine untere Schranke von §2(logn/loglogn).

— Ly := {i?,i = 1,...,m} hat m Elemente und keine Progression der Linge
4, daher gilt ebenfalls eine untere Schranke von (2(logn/loglogn).

— Ly = {j-(k+1)4i=0,.,l—1;5 = 1,...k} hat n= l'k Elemente
und keine Progression der Lange k+1, daher gilt eine untere Schranke von

2(logn/logk).

Weitere untere Schranken sind nur bekannt, falls die Konstanten auf {0,1}
beschrinkt werden. In diesem Fall bendtigt die Berechnung des groften ge-
meinsamen Teilers von zwei N-Bit Zahlen mit den Operationen {4, —, , DIV}
2(loglog N) Zeit, siehe [27], und £2(N) mit den Operationen {+, —, x., DIV_},
siehe [5].
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2.2 S-Berechnungsbidume im Fall n>1

Es werden Sprachklassen C'C,,(S) mit DIV oder DIV, in S unterschieden und

untere Schranken bewiesen.

Zunichst betrachte ich die Operationsmengen {+, —, *, DIV} und {+, —, ., DIV_.}.
Mit {+, —, *} konnen Polynome und mit {4, —, *.} nur lineare Funktionen be-

rechnet werden.

Fiir a € N, b € Z" bezeichne ich die Menge aZ" + b = {aZT + b, x € Z"} als
a-Gitter. Die a-Gitter aZ” +b fiir b € {0,...,a— 1}" bilden eine Zerlegung des

Z" in a-Gitter der Lénge a.

In Z ist solch ein a-Gitter nichts anderes als eine arithmetische Progression

mit der Schrittldnge a.

Theorem 2. Sei S = {+, —, %, DIV.} oder S = {+, —, *., DIV .}.

a) L CZ" kann genau dann durch einen S-CT D entschieden werden, wenn
es ein a € N gibt, so dass der 7" in a-Gitter zerlegt werden kann, so dass L
auf jedem einzelnen a-Gitter durch einen (S — {DIV.})-CT erkannt wird.

b) Ist D ein (S,Q)-CT der Tiefe T, haben die obigen ((S — {DIV.},Q)-CTs
die Tiefe O(T).

¢) Ist D ein (S,{0,1})-CT der Tiefe T, haben die obigen (S—{DIV.},Q)-CTs
die Tiefe O(T), und die Schrittweite a der Gitter ist hichstens 22°" .

Das obige Ergebnis gibt eine ,Normalform" fiir Berechnungsbaume mit DIV,
Zunidchst bestimme mit DIV, auf welchem Gitter die Eingabe liegt. Danach
entscheide mit einem Berechnungsbaum ohne DIV, ob die Eingabe in L liegt.
Die untere Schranke in b) zeigt, dass die Tiefe sich nur um einen konstanten

Faktor unterscheidet, falls diese Normalform benutzt wird.

In Z ist die Darstellung als AP- Sprache solch eine ,Normalform", jedoch gilt

sie dort, anders als im Fall n>1, nicht nur fiir DIV, sondern auch fiir DIV.

Als Korollar zu Theorem 1b) kann gezeigt werden, dass die untere Schranke

tiber die Zahl der Zusammenhangskomponenten fiir {+, —, *}-CTs in [12],
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die in [42| auf ganzzahlige Eingaben iibertragen wird, auch fiir ganzzahlige
Eingaben und {4+, —, %, DIV .}-CTs gilt und daher auf eine grofe Klasse von

Sprachen iibertragen werden kann. Hierzu zéhlen folgende Beispiele

Korollar 1 Fir ({+, —,*,DIV.},Q)- CTs gelten folgende unteren Schranken:

- (nlog(n)) fir Element Distinctness (dberpriife, ob alle Eingaben
x1,...,x, verschieden sind, (siche [12]).

- 2(n?) fir das Rucksackproblem (Eingabe ay, . .., ap,b; iberpri-
fe, ob es yi,...,y, € {0,1} gibt mit X a;y; = b, siehe

[16]).

Q2(n*log(k + 1)) fiir lineare diophantische Gleichungen mit k-beschrinkten
Lésungen  (Eingabe aq,...,a,,b, fdberprife, ob es

Yty -5 Yn € {0,... k} gibt mit X a;y; = b, siehe [30]).

7

Nun komme ich zu Berechnungen mit der allgemeinen ganzzahligen Division. In
diesem Fall kann keine vollstdndige Charakterisierung der Sprachklassen gege-
ben werden, sondern nur eine partielle. Zunéchst betrachte ich {+, —, x., DIV }-

CTs.

Theorem 3.

a) Falls L C 7" von einem {+, —, %, DIV}-CT D erkannt wird, gilt: Zu jeder

irrationalen Zahl 3 gibt es eine Pyramide P = {(x1,..,2,) € Z", ¢1 <

T

;:1 <o i=2,..,n} mitc,ca €Q, ¢; < <counda €N, so dass es zu
jedem b € {0,...,a—1}" einen {+, — *.}-CT gibt, der L auf (aZ"+b)N P
erkennt.

b) Falls D ein ({+, —, *., DIV} {0,1})-CT der Tiefe T ist, gibt es a € N und
eine Pyramide P = {(xy,..,x,) € Z", ¢; < xr—tl < Coy i = 2,...,n} mit
c1,¢0 € Q, s0 dass es zu jedem b € {0,...,a — 1}" einen ({4, —, *.}, Q})-
CT der Tiefe O(T) gibt, der L auf (aZ" + b) N P erkennt.
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¢) Falls D ein ({+, —, %, DIV},{0,1})-CT der Tiefe T ist, der eine Sprache
L C 72 erkennt, gibt esa € N, a < 223T, und eine Pyramide P = {(z,y) €
72, ¢, < 5 < ey i =2,..,n} mitcy,c €Q, 1 <cg,c0—cp > 22%, so dass
es zu jedem b € {0,...,a — 1}? einen ({+, —, *.}, QY)-CT der Tiefe O(T)
gibt, der L auf (aZ*+ b) N P erkennt.

X=Cy

X =Gy

Abbildung 3. Pyramide

In [10] wird ein Algorithmus vorgestellt, der den ggT von 2 N-Bit Zahlen in der
Zeit O(N) berechnet. Er benutzt nur Operationen aus {+, —, DIV }. Aus Er-
gebnissen in [5] und [22] folgt, dass fiir die Operationsmenge {4, —, DIV.} die
untere Schranke auch bei 2(N) ist, d.h. eine scharfe Schranke ist. Aus Theo-
rem 2b) folgt, dass der Algorithmus aus [10] auch bei der Operationsmenge
{+, —, DIV} optimal ist.

Korollar 2 Ein ({+,—,DIV},{0,1})-CT, der die Teilerfremdheit von 2 N -
Bit Zahlen x,y dberprift, hat eine Tiefe von 2(N) .

Nun komme ich zur méchtigsten Operationsmenge, ndmlich {+, —, x, DIV}.

Wie bereits vorher erwéahnt, ist es sehr schwierig, in diesem Fall untere Schran-

ken zu finden. Es wird die erste untere Schranke bei Konstanten Q bewiesen
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Theorem 4.

a) Falls L C 7" durch einen {+,—,* DIV}-CT D erkannt werden kann,
gibt es fiir jedes c1,..,c, € N Polynome p; : 7" — Q, i=1,...,n-1 und
ki,....kn, K € N, so dass eingeschrinkt auf {(xy,...,x,) € N* z; > atﬁl,
x; = ¢;mod pi(xigy, ..., xp), i = 1,..,n—1, 2, = ¢, mod ky, x, > K,} L
durch einen {4+, —, *}-CT erkannt werden kann.

b) Falls D ein ({4, —, *, DIV}, Q)-CT der Tiefe T ist, haben die p; einen Grad
<22k < 227 und der ({+, —, %}, Q}-CT hat eine Verzweigungstiefe
O(T) und Grad O(2%"").

Aus Teil b) kann die erste nicht-triviale untere Schranke fiir die Tiefe von
({4, —, %, DIV}, Q)-CTs abgeleitet werden. Diese Sprachklasse ist sehr méch-
tig, wenn man daran denkt, dass auch im mehrdimensionalen Fall jede endliche
Sprache, unabhingig von der Grofe der Sprache, in konstanter Zeit erkannt

werden kann.

Bemerkung 3 Jede endliche Sprache L C 7Z* kann durch einen ({+,—,*,
DIV}, Q)-CT in konstanter Zeit unabhdngig von L erkannt werden.

Korollar 3 Seir : Z — Z ein irreduzibles Polynom vom Grad d mit positivem
Leitkoeffizienten. Jeder ({+,—,*, DIV}, Q)-CT, der L, = {(x,y) € Z* r(y) >
x} erkennt, hat eine Tiefe £2(loglog (d)).

Diese untere Schranke zeigt, dass anders als im eindimensionalen Fall die Aus-
sage, dass jede Sprache L, die iiberhaupt von einem ({+,—,*, DIV} Q)-CT
erkannt werden kann, bereits in konstanter Zeit erkannt wird, im mehrdimen-

sionalen Fall nicht mehr gilt.

Ebenfalls anders als im Falle n = 1 zeigen die Teile a) der obigen drei Theo-
reme, dass nicht nur Sprachklassen mit oder ohne ganzzahlige Division unter-

schieden werden.

Eine vollstindige Ubersicht iiber die Beziehungen dieser Sprachklassen zeigt

das folgende Theorem. In diesem Theorem bedeutet ein Pfeil S — S’ fiir
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Operationsmengen S, S', dass CC,,(S") G CC,(9) fiir n > 2 gilt. § — — =5
bedeutet, dass CC,(S) und C'C,(S") nicht vergleichbar sind.

Theorem 5. Folgende Bezichungen gelten fir die Sprachklassen CC,(S) fir

n > 2:

CC{+-}

SN

CC{ e CC.{+,-,divc}

CC{+,-, divch— CC {+,-div}

N

CC.{+,-+, div}

Abbildung 4. Sprachklassen fiir n>>1

Bemerkung 4 Das obige Diagramm zerfillt in zwei Sprachklassen mit DIV
oder DIV, bzw. ohne DIV oder DIV,, falls der Falln = 1 betrachtet wird, siche

Theorem 1.

CCi{+,} = CCy{ +,-7}

CC{+-dive}= CC{ +-,div}=
CC1{+1_1 *1diVC} = CC1{+,',*,diV}

Abbildung 5. Sprachklassen fiir n=1
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3 Beweise im Fall n= 1

Dieses Kapitel enthélt die Beweise zu Theorem 1, zu Satz 1 und zu der unteren
Schranke in Satz 2, die bis auf Lemma 4 in [29] und Satz 1 in [25] den Beweisen
in [22] folgen.

Beweis. |zu Theorem 1|

Es wird der Beweis in folgender Reihenfolge ausgefiihrt:
(i) =(iii) =(iv) =(ii) = (i)

(i) =(iii)

Sei L = L(a,A,B) eine AP-Sprache.

- Uberpriife durch Binérsuche, ob x €B gilt.

- Falls ja, akzeptiere, ansonsten iiberpriife fiir jedes d €A; oder d €A,, ob
x € {d+ Maj, N € N} oder x € {d — Aag, A € N} gilt.

Dies ist durch a; -((x - d) DIV, a;) = x - d , i€{1,2} méglich.

Da a; Konstanten sind, kann a; -((x - d) DIV a;) ohne Multiplikation berechnet

werden.

Der obige {+, —, %, DIV}- CT entscheidet L. O

(iii) =(iv)

gilt trivialerweise, da {+, —,DIV.} C {4+, —, %, DIV }. O

(i) = (i)

Sei T ein MBT, der eine Sprache L. C Z entscheidet, v ein akzeptierendes Blatt
von T und c(v) die Eingabemenge, die zu v gelangt. Da durch {+, —, *} nur
Polynome berechnet werden kénnen, sind die bindren Verzweigungsknoten mit
»p(x) >0” oder ,p(x) <0” fiir Polynome p beschriftet, die auf dem Weg zu v be-
rechnet wurden. Daher ist ¢(v) entweder endlich oder ¢(v) = B,UI,. B, ist da-
bei eine endliche Menge, die alle Elemente von ¢(v) enthélt, die zu beschrink-

ten Zusammenhangskomponenten der Mengen {x|p(z) > (<)0}, die von den
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bindren Verzweigungen kommen, gehoren. Die Menge [, hat die Form [,—=
{x|x >B,, x mod ;= i;, j = 1,...,r}, wobei die r Modulo-Verzweigungsknoten
(kurz: MB-Knoten) auf dem Weg zu v vom Grad i,...,0, sind, bei der j-ten

Verzweigung der i;-te Zweig gewéhlt wird und (,= max B, ist.

Die Menge I, kann als eine einzige Progression dargestellt werden, d.h. [,,=
{d, + Aa,, A € N} fiir geeignete d,,, a,. Sei V die Menge der Blitter, die un-

endlich viele Eingaben akzeptieren.

Dann ist I = |, ., I, Vereinigung von endlich vielen arithmetischen Progres-

veVv

sionen.

Bekannterweise folgt aus der Zahlentheorie, dass I = B’ U{d+Xa, A € Z,d € A}
fiir ein a € Z und endliche Mengen B’ und A gilt.

Sei nun B” die endliche Eingabemenge, die zu den akzeptierenden Bléattern mit
vev Bu, B:=B” UB” UB”’, dann
ist L = L(a,A,B), also eine AP-Sprache. O

endlicher Eingabemenge gelangt, und B”:= |

(iv) = (ii)
Diese Beweisrichtung ist die umfangreichste.
Sei T ein {+, —, x, DIV}- CT, der L erkennt.

Es wird gezeigt, dass die DIV-Knoten durch MB-Knoten ersetzt werden kon-
nen, so dass der so erhaltene MBT eine Sprache L’ akzeptiert, die fiir be-
tragsmabig geniigend grofte x mit L iibereinstimmt. Fiir betragsmaéfig kleine
x werden x €L durch Bindrsuche akzeptiert, so dass man einen MBT fiir L

erhalt.

Um die DIV-Knoten durch MB-Knoten zu ersetzen, wird das folgende Lemma
bendtigt.

Lemma 1. Seien p,q :Z — Q Polynome mit rationalen Koeffizienten, deg(p)
>deg(q). Dann gibt es B,z € N, so dass es zu jedem i € {0,...,0 — 1} ein
Polynom r; :Z — Q mit rationalen Koeffizienten gibt, so dass p(z) DIV q(z) =
ri(x) gilt.
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Mit Hilfe dieses Lemmas wird zunéchst der Beweis (iv) = (ii) beendet.

Sei v der erste DIV-Knoten auf einem Weg von der Wurzel zu einem Blatt in
T. Dann ist dieser Knoten mit p(z) DIV ¢(z) beschriftet, wobei p,q Polynome
mit rationalen Koeffizienten sind, die auf dem Weg zu v berechnet wurden.
Falls deg(p) < deg(q) gilt, wird p(z) DIV ¢(z) durch 0 ersetzt. Dies ist korrekt

fiir betragsmifig geniigend grofe x.

Im Folgenden sei deg(p) >deg(q).

Nach dem obigen Lemma gibt es 3, z € N, so dass es zu jedem i € {0, ..., 5 —1}
ein Polynom r; :Z — Q mit rationalen Koeffizienten gibt, so dass p(z) DIV ¢(z)
= ri(x) gilt. Es wird nun der DIV- Berechnungsknoten durch einen MB-Knoten
vom Grad [ ersetzt. Fiir i € {0,...,3 — 1} wird an den i-ten Zweig die Be-
rechnung fiir das Polynom r; angehédngt. Eine Kopie des Teilbaumes von T
unterhalb von v wird an die Berechnung der r; gehingt. In diesem Teilbaum

wird jeweils p(x) DIV g(x) durch ri(x) ersetzt.

Von der Wurzel zu den Blattern wird so schrittweise jeder DIV- Berechnungs-
knoten ersetzt. Der dadurch entstandene MBT erkennt eine Sprache L’ mit

L'n{x€Z,|x| > z}= L N{x € Z,|x| > z} fiir ein gentigend grofes z.

Um L zu erkennen, wird zunéchst nach |z| > z verzweigt. Bei positiver Ant-
wort wird der MBT durchlaufen, ansonsten wird durch Binédrsuche die endliche

Sprache L N{z € Z, |z| < z} erkannt. 0

Beweis. [von Lemma 1|

Aus der Algebra ist bekannt, dass man durch Polynomdivision Polynome
r,5:Z—Q mit rationalen Koeffizienten und deg(s)<deg(q) mit p = r-q + s gibt.
Wiéhle nun /3, so dass es ein Polynom 7 :Z — Q mit ganzzahligen Koeffizienten

und r = =7 gibt. Dann erhélt man fiir p(z) DIV ¢(2)

1
B

p(a) DIV g(z) = {r(m) + @J = Ff(x) + S_I)J
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Da deg(s) < deg(q) gilt, ist |lim s@) _

ac|—>ooqu’

~

Das heifst, dass fiir geniigend grofes x p(x) DIV ¢(x) = 7(x) DIV 3 gilt.
Sei nun i € {0, ..., — 1} fest und zmod 8 =i, d.h. z = A\F+i fiirein A\ € Z

und 7(z) = 377 a2l a; € L.

Wird i als Konstante betrachtet, kann 7(x) = 7(AS + ¢) als Polynom in A

geschrieben werden.

Fz) =37 ob;(AB)Y  mitb; € Z

(b; héngt von i ab)

(@) = 37 b(ABY =bo+3 - g(A) mit g(A) = 37_0;8" N € Z

Daher erhélt man fiir geniigend grofses x mit x mod f=1i

p(x) DIV q(z) = 7(x) DIV 8 = by DIV (3 + g(\)

= byDIV 4+ g((x —i)/3) = Polynomin x.

Beweis. |zu Satz 1]

Sei L C Z eine Sprache, die durch einen ({+, —, %, DIV}, Q)-CT erkannt wird,
dann ist nach Theorem 1 L eine AP-Sprache. Jede solche AP-Sprache hat
folgende Darstellung

L(a,A,B) :=BU{d+ Xu|A e N;d € A1} U{d — dazx|]A € N,d € A}

Fiir eine Eingabe x € Z entscheide, ob x € B gilt. Falls x € B akzeptiere,
ansonsten berechne x mod a; = x - a;(x div ay) fiir x>0 und x mod a, = x -

a1 (x div ag) fiir x<0.

Ohne Einschrinkung gelte fiir d € A; ddiva; = k;. Entscheide, ob x mod a; +

k; € A;. Falls ja, akzeptiere, ansonsten verwerfe. Da A; und B endlich sind,
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kénnen mit dem folgenden Lemma die Abfragen x € B und x mod a; + k; € A;
in konstanter Zeit, unabhéngig von A; und B, entschieden werden, d.h L. wird

in konstanter Zeit, unabhéngig von L, erkannt. ad

Lemma 2. Sei A C Z endlich. A kann durch einen ({+, —,*., DIV}, Q)-CT

in 18 Schritten, unabhdngig von A, erkannt werden.

Beweis. |zu Lemma 2]

Da A endlich ist, kann A als Nullstellenmenge eines Polynoms p mit ganzzah-
ligen Koeffizienten betrachtet werden. Sei N := max{|z||x € A}. Der folgende

Berechnungsbaum erkennt A.

Fiir eine Eingabe x € Z verwerfe, falls || > N gilt. Ansonsten berechne p(z)
bzw. p(—x) fiir x < 0 und akzeptiere, falls p(z) = 0 bzw. p(—z) = 0 fiir z < 0,
ansonsten verwerfe. Nach Theorem 7 kann solch ein Polynom mit ganzzahligen
Koeflizienten iiber einer endlichen Eingabemenge in 15 Schritten, unabhéngig

von p und N, in konstant vielen Schritten berechnet werden. O

Beweis. |zu Satz 2]

T sei ein ({+,—,DIV.},Q)— CT der Tiefe D, der eine endliche Sprache L
(#L=n), die keine arithmetische Progression der Linge k+1 enthilt, erkennt.
v sei ein Blatt von T und vy, ...,v4 = v sei der Pfad zu v, d< D. f; : Z — Q
seien die Funktionen, die an den Knoten v; berechnet werden, und c(v) die

Menge der Eingaben, die zu v gelangt.

Mit dem folgenden Lemma wird c(v) charakterisiert.

Lemma 3. Es gibt ein konvezes Polytop P im R mit
(i) z€c(v) = ey, ... cq) €Lz, ch,. .. cq) € P.

1) Fiir jedes x € c(v) gibt es genau ein (cq,...,cq) € Z mil (x,cq,...,¢q) € P.

Beweis. |zu Lemma 3]
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Von der Wurzel zu den Blattern wird jede DIV,.— Operation durch eine neue
Variable c¢; ersetzt. Es werden hochstens d neue Variablen bendtigt. Im Fol-
genden wird, falls das Ergebnis dieser DIV,.— Operation als Operand benutzt
wird, statt des Ergebnisses dieser DIV.— Operation diese neue Variable be-
nutzt. An jedem Knoten v; wird nun eine Funktion ¢(z,c1, ..., cq) berechnet.
Da nur -+,- als Operationen benutzt werden, sind die g; linear. I C 1,..,d sei

die Indexmenge, fiir die an den Knoten v; eine DIV ,.— Operation benutzt wird.

Wenn an dem Knoten v, i €1, a;(x, cq, ..., cq) DIV.b; berechnet wird, werden
folgende Ungleichungen definiert.
(*)

bi - < (Z) ai(x, Cy,y ... ,Cd) < (>)bi(Ci + 1)

Falls b; positiv ist, steht dort (<,<) ansonsten (>>).
Es werden noch die Ungleichungen der Verzweigungsknoten v;
(**)

gi(x, ey cq) > ()0

zu dem Ungleichungssystem aus (*) hinzugefiigt. Ob dort < oder > steht,

richtet sich danach, ob der rechte oder linke Zweig zum Pfad gehort.

Nach der Konstruktion dieses Systems linearer Ungleichungen aus (*) und (**)
erfiillt dessen Losungsmenge P gerade die Bedingungen (i) und (ii) und P ist
als Losungsmenge eines linearen Ungleichungssystems ein konvexes Polytop.

O

Sei P, das zum Pfad v geh6rende Polytop. Aus Lemma 2 folgt, dass #P,NZ" =
#c(v). Im Folgenden wird gezeigt, dass # P, N Z* klein ist, falls ¢(v) keine
lange arithmetische Progression enthélt. Dazu ben6tigt man noch das folgende
Lemma. Man spricht von einer Progression der Lénge k im Z", falls es k Punkte
gibt, die in jeder Koordinate zu einer arithmetischen Progression der Lange k

gehoren.

Lemma 4. Sei B die Menge der ganzzahligen Punkte in einer konvexen Teul-

menge des R™. Falls [B] > k" gilt, enthdlt B eine Progression der Linge k+1.
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Beweis. |zu Lemmad | [29]
Betrachte die Abbildung Z"—Z},

(21,22, ...,2,) — (xymod k, xzoa mod k, ..., x, mod k).

Da |Z}| = k™ und |B| > k" gilt, gibt es x, y €B, die denselben Bildpunkt haben.

D.h. es gilt x - y = kv fiir einen von 0 verschiedenen Vektor v mit ganzzahligen
Koordinaten. Da B konvex ist, gehéren dann aber die k + 1 auf einer Gerade

liegenden Punkte y, y + v, y + 2v, ..., vy + kv = x ebenfalls zu B. O

Mit Hilfe dieses Lemmas kann nun Satz 2 bewiesen werden.

Sei v ein akzeptierendes Blatt. Da L keine Progression der Lange k+1 enthilt,
gibt es auch in c(v) keine Progression der Linge k+1. Daher enthélt auch
#P, N 73 keine Progression der Linge k+1. Aus Lemma 4 und Lemma 7
folgt, dass #c(v) = #P, NZ3T < k4T gilt. Da T hochstens 2P akzeptierende
Blitter hat, hat L hochstens 2P - kP*! Elemente, d.h. n < 2P . P+,

logn — log k

D >
Ty logk +1

Hieraus folgt unmittelbar die angegebene untere Schranke. O

4 Beweise im Fall n> 1

Dieses Kapitel folgt den Ausfithrungen in [25]. Die dort fiir den Spezialfall n=2
durchgefiihrten Beweise werden verallgemeinert fiir den Fall n>2.
4.1 Operationsmengen mit DIV,

Dieser Abschnitt enthalt die Beweise zu Theorem 2 und die aus dem Theorem

folgenden allgemeinen unteren Schranken.

Beweis. [von Theorem 2 a)]

“e" Sei Z" die disjunkte Vereinigung endlich vieler a-Gitter aZ" + b,b €
{0,...,a — 1}". Auf jedem dieser Gitter kann L durch einen {+,—} bzw.
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{+, —,%}-CT erkannt werden. Der folgende Algorithmus mit {+,—,DIV.}
bzw. {+, —, %, DIV, } als Operationsmenge erkennt L.

Entscheide, in welchem Gitter aZ" + b die Eingabe T liegt. Der Startwert b des
Gitters wird durch b; = z; — (z; DIV a) - a fiir i = 1,...,n berechnet. Dies geht

ohne Multiplikation, da a eine Konstante ist.

Fiir € aZ" + b entscheide mit dem zugehérigen {+, —}-CT bzw. {+, —, *}-
CT, ob # € LN (aZ" +b) gilt.

“=" Ich fithre den Beweis fiir S = {4, —,*,DIV.}. Der Beweis fiir S =
{+,—,DIV,.} ist analog. Sei D ein {+,—,*, DIV .}-CT, der L erkennt. Ziel
ist es, von der Wurzel zu den Bléttern jeden Knoten v mit einer DIV, Operati-
on durch einen MB-Knoten zu ersetzen. Verzweigt wird an diesen Knoten nach
allen méoglichen Ergebnissen (z1 mod a, ..., x, mod a) € {0,...,a—1}" fiir ei-
ne Konstante a € N. Die Ersetzung des Berechnungsbaumes mit der Operation

DIV, durch einen MB- CT wurde im eindimensionalen Fall in [22| eingefiihrt.

Sei v der erste Berechnungsknoten von der Wurzel zu einem Blatt, an dem die
Funktion DIV, benutzt wird. Angenommen, es wird f(z)DIV.§ berechnet,
wobei f auf dem Weg zu v berechnet wurde. Da v der erste Knoten auf dem
Weg mit DIV, ist, ist f ein Polynom mit rationalen Koeffizienten. £ € N sei
so gewahlt, dass k - f ganzzahlige Koeffizienten hat. Ersetze v durch einen
MB-Knoten, bei dem nach den Ergebnissen von (z; mod ka, ...z, mod ka)

verzweigt wird.

Lemma 5. Fir Eingaben auf dem Gitter kaZ™ +¢ mit ¢ € {0,..., ka — 1}",
kann man f(T)DIV.% durch L f(z) — L, mit einer von € abhingigen Konstan-

ten | erselzen.

Beweis. [von Lemma 5]

Fiir lineare Funktionen und Polynome iiber Z ist b- f(Z) mod a fiir ; mod a =
i;, 1t =1,...,n, 1 € {0,...,a — 1} eine Konstante ¢;, ;, fiir jedes (i1,...,4,) €

{0,...,a — 1}".

.....
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Da f(z) DIV.§ = b-f(Z) DIV.a = gf(f)—b'f@)%da an dem mit z; mod a = ij,
i=1,..,n,1; € {0,...,a — 1} beschrifteten Zweig gilt, kann nach diesem Zweig

f(T) DIV, durch 2 f(z) — “t= ersetzt werden.

Fir b- f(z) € Q[X] \ Z[X] sei k der Hauptnenner der Koeffizienten von b -
f(T), dann ist k- b f(T) € Z[X] und damit ist wie oben f(7)DIV.§ durch
%f(f) — C”T‘ nach dem mit z; mod ka =, i =1,...,n, i; € {0,...,ka — 1}

beschrifteten Zweig substituierbar. ad

Im Folgenden wird f(7) DIV.§ durch einen MB-Knoten vom Grad (ka)" er-
setzt. Die Zweige sind Kopien des Teilbaumes von D mit der Wurzel v, bei dem
DIV, am Knoten v durch 2 f(Z) — ;£ wie im obigen Lemma ersetzt wird. Wenn
diese Ersetzungen von der Wurzel zu den Bléttern fiir alle DIV .- Operationen

in dem Baum durchgefiihrt werden, erhilt man einen Berechnungsbaum ohne

DIV, aber mit MB- Knoten, der L erkennt.

Um zur gewiinschten Charakterisierung zu gelangen, kann hier festgestellt wer-
den, dass man einen {4, —, % }-CT erhélt, wenn man an den MB- Knoten jeweils
nur einen Ast wihlt, d.h. wenn die Eingabemenge auf den Durchschnitt der zu-
gehorigen Gitter beschriankt wird. Da dieser Durchschnitt wiederum ein Gitter
ist und man diese erhaltenen Gitter als ein weiteres Gitter mit gemeinsamer

Schrittweite angeben kann, folgt Theorem 2 a).

Theorem 2 b) folgt unmittelbar, denn die Tiefe &ndert sich nicht, da jeder
DIV- Berechnungsknoten durch einen MB- Knoten ersetzt wird und in dem

neu entstandenen S — {DIV.} — CT jeweils nur ein Ast ausgewahlt wird.

Um Theorem 2 ¢) zu beweisen, muss zusétzlich noch die Schrittweite a der
Gitter analysiert werden. Da nur die Operationen {+, —,*} zur Verfiigung
stehen, sind die Konstanten ganzzahlig. In der Tiefe t sind die durch {0, 1}
erzeugten Konstanten kleiner gleich 2%°, somit ist auch die Schrittweite in der
Tiefe t hochstens 22°. Um den Durchschnitt aller Gitter entlang aller Pfade
zu bilden, wird héchstens das Produkt all dieser Schrittweiten berechnet. Die

Schrittweite fiir den Durchschnitt der Gitter entlang eines Pfades ist kleiner
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T-1
gleich H22t < 22"und da es hochsten 27 Blitter gibt, ist die Schrittweite
=0 N
2
héchstens (22T> = 22" O

Beweis. [von Korollar 1]

Das Korollar folgt aus Theorem 2 b) und einem Ergebnis in [42] von An-
drew YAO. Er zeigt, dass Michael BEN-ORs untere Schranke iiber die Anzahl
der Zusammenhangskomponenten in [12] iiber {+, —, %, /}-CTs auch fiir einige
Sprachen gilt, die nur ganzzahlige Eingaben erlaubt. Der dort gefiihrte Beweis
gilt analog fiir Eingaben aus einem Gitter aZ"™ mit einem beliebigen a € N.
So erhilt man die unteren Schranken aus Korollar 1 durch Anwendung von

Theorem 2 b). 0

4.2 Operationsmenge {+, —, *., DIV}
Dieser Abschnitt enthilt den Beweis zu Theorem 3 und Korollar 2.

Beweis. |von Theorem 3 a)]

Sei 3 irrational, v der erste Knoten mit einer DIV-Operation auf dem Weg
von der Wurzel zu einem Blatt in einem {4, —, ., DIV }-CT D. Da nur die
Multiplikation mit Konstanten und nicht die allgemeine Multiplikation zur
Operationsmenge gehort, sind die auf dem Weg berechneten Funktionen lineare
Funktionen. An dem Knoten v wird f(z) DIV g(Z) berechnet mit f(Z) = a;x1+
ot any + anat, 9(T) = bixy 4 oo+ bpxy + bog, a0, €Q =1, n+ 1

Falls by = 0,...,b, = 0, wird f(z) DIV b,,1 berechnet, d.h. es wird nur DIV,
benotigt.

In den anderen Fillen soll wie im folgenden Lemma die Berechnung an dem

Knoten v durch endlich viele Verzweigungen ersetzt werden.

Lemma 6. Sei (8 irrational, f,qg : Z" — 7 seien lineare Funktionen mit
rationalen Koeffizienten, g nicht konstant, dann gibt es c; < 3 < ¢, so dass

f(z) DIV g(z) nur endlich viele Werte fir Eingaben aus P = {(Z) € Z",¢; <

T <y, i =1,...,n — 1} annimmt.

T
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Beweis. |[von Lemma 6]

Da g nicht konstant ist, gibt es ein j € {1,...,n},sodassb; =0fiiri =1,..,j—1
und b; # 0. Seien ¢y, c2€ Q, ¢; < B < cg 50 gewdhlt, dass bj+bj117)41...+by Y #
0 fiir jedes 5 € [c1, ¢2]. Dies ist moglich, da 3 irrational ist. Wenn fiir Eingaben

aus P die Variablen zy durch vzz;, v € [c1, o] ersetzt werden, erhélt man
f(z) DIV g(2)

= ((a1x1 + ...+ ajo1xj1) + (a5 + ajp7j41 + o+ QG Yn) T + Anyr)

DIV ((bj + bj1Yjs1-- + bn¥n)Tj + bpy1) =

Werden nun fiir Eingaben aus P die Variablen z;, durch vz, v, € [c1,¢2]

ersetzt, erhilt man

<<a17i + .+ an’)/?/l)xl + an+1)DIV(bj + bj+17;'+1--~ + bn’V;L)xl + bn+1>

Durch die Wahl von ¢y, ¢o, ist der obige Divisor von 0 verschieden, und sowohl
Dividend als auch Divisor sind auf P beschrénkt. Daher nimmt f(z) DIV g(z)

nur endlich viele Werte fiir Eingaben aus P an. O

Man kann nun nach Lemma 6 von oben nach unten jede DIV-Operation und
nach Lemma 5 jede DIV, -Operation ersetzen. Damit ist Theorem 3 a) bewie-

Serl.

Da die Konstanten cq,c0€ Q,¢; < [ < ¢y so gewahlt werden kénnen, dass
f(z) DIV g(z) nur konstant viele Werte annimmt, ist die Tiefe des {4, —, *.}-
CT O(T), wenn T die Tiefe des {+, —, *., DIV}-CT. Damit folgt Theorem 3 b).

Um Theorem 3 c¢) zu beweisen, werden die Konstanten genauer abgeschitzt.
In der Tiefe t sind die Konstanten a; und b; kleiner gleich 22" und damit sind
die Konstanten, die f(Z) DIV g(Z) ersetzen, kleiner gleich 5 - 22'. Daher sind
auch alle Konstanten in dem {+, —, *., DIV_}-CT nach Substitution der DIV-
Knoten kleiner gleich 22", Die Schrittweite in dem {+, =, *.}-CT ist somit

kleiner gleich 22°" .
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Wird wie in Teil a) fiir Eingaben aus P die Variable y durch vz, € [¢1, ¢2] C
[3.2] ersetzt, gilt dy + e # 0 und f(Z) DIV g(z) = ((ay + b)y + ¢) DIV ((dvy +
e)y+ h). Die Differenz zwischen den Polstellen zweier solcher Funktionen f und
£ mit Koeffizienten < 22*"ist > <222T>2 — 922" (*). Wird ~ so eingeschrinkt,
dass c; — ¢; > 1/227"" (**) gilt, dann nimmt f(Z) DIV g(Z) nur 2 Werte an.
Da dieser {+, —, %, DIV }-CT nun 22" (***) Blitter hat, folgt aus (*), (**),
(***) die Abschitzung fiir

1 1

—C 2 9. 92T+ 922T+1 52T+l > 9257

C2

Beweis. |von Korollar 2]

Sei P = {(z,y) € N2, kyy < x < koy, k; € Q, Nenner der k; < 222T}, p sel eine
Primzahl p < 22" 4+ 1 und p teilt nicht die Schrittweite a des Gitters.

Betrachte das Gitter, das den Punkt (p,0) enthélt. Dann gehoren alle Punkte

(kial + p,al), bei denen 1 Vielfache des Nenners von k; sind, ebenfalls zum

Gitter, d.h. [ =k - [

Wird I von p geteilt, teilt p auch den ggT(kjal + p,al) und wird !’ nicht von
p geteilt, gilt ggT(kyal + p,al) = 1.

Fiir n = 22" sind auf einem Geradenabschnitt in P N {(0, p) + (aZ)?} 2%
Punkte (x,y), bei denen abwechselnd ggT(kjal 4+ p,al) = 1 und ggT(kjal +
p,al) # 1 gilt. Daher ist die Tiefe eines {+, —}-CT auf diesem Gitter mindes-
tens log (222T) = tlog (222T+3> = zlog (n). Da nach Theorem 3 b) die Tiefe
des {+,—}-CT O(T) ist, wenn T die Tiefe des {+,—, DIV}-CT ist, ist T
ebenfalls 2(logn). O

4.3 Operationsmenge {+, —, ¥, DIV}

Dieser Abschnitt enthélt die Beweise zu Theorem 4 und die daraus folgende

spezielle untere Schranke in Korollar 2.

Folgende Bezeichnungen aus [27] fiir Polynome in 2 Variablen werden erweitert

auf Polynome in n Variablen.
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Der Grad deg, P, eines Polynoms P(xy,...,z,) in einer Variablen z; ist der

maximale Exponent von z;, der in einem Monom von P(xy,...,z,) vorkommt.

Der Mazimalgrad maxdeg P ist das Maximum der Grade deg, P, nicht zu
verwechseln mit der klassischen Definition des Grades (des Totalgrades) eines

multivariaten Polynoms.

Die Héhe ht(P) von P ist das Maximum der Absolutbetrige der Koeffizienten

von P und das Gewicht wt(P) von P ist die Summe der Absolutbetrige von P.

Es wird noch die Definition einer lexikographischen Ordnung auf der Menge

der Polynome benétigt.

Definition 2. Fiir zwei Monome cxy* -+ x'» und dzi' - - -zl gilt

crll - ain - dm{l---m{;, falls

1) 3 >j1 oder

2) esein k € {1,...,n} gibt mit 4, = j; fiir | < k und i > j; oder
3) =g furallel € {1,...,n}und | c|>|d|

Ein Polynom ist in Normalform, falls die Darstellung minimal beziiglich der
Zahl der Monome ist und diese Monome beziiglich obiger Ordnung absteigend

sortiert sind.

Das erste Monom in der Normalform eines Polynoms P(z1, ..., x,) heifit Leit-
monom von P(z,...,x,) und der Koeffizient dieses Monoms heifst Leitkoeffi-
zient von P(xq,...,2,).

Fiir zwei Polynome P(z1, ..., x,) und Q(z1, ..., x,) gilt P(x1,...,z,) = Q(x1, ..., ),
falls in den Normalformen dieser beiden Polynome fiir ein i > 1 das (i-te Mo-
nom von P)>(i-te Monom von Q) ist und alle vorhergehenden Monome gleich

sind.

Lemma 7. Zu jedem Polynom P(x1,...,x,) ¢ibt es positive ganze Zahlen

m1(P)und mo(P), so dass fir alle z € N* mit z; > xfl(P)

und x; > ma(P)
das Vorzeichen von P(x1,...,x,) mit dem Vorzeichen des Leitkoeffizienten
von P(x, ..., x,) Gbereinstimmt. Fir mi(P) und mo(P) gilt m(P) <> 7 ,d;+
1 und m(P)< 3 "‘\1/%, wobei L der Leitkoeffizient von P, M die Hohe von P

und d; der Grad von P in x; ist.
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Beweis. Sei P(xy,...,x,) :Zf:lofi(asg, e, Tp) Y mit d; = deg, P

Behauptung 1 |P(z1,...,2,) — La%' - x| < |L|z% -2 fir das Leitmo-

i1 i
nom Lx{" ---xi»

Beweis. Sei M die Hohe von P. Es gilt
|P(x1,...,2,) — L2l - 2% <
M St - Dl 4+ MO 02 e S ) <

2max {M Xt - St M S S - e }

Der erste Term beschrinkt die Summe {iber alle Monome, deren Grad in x;
gleich 7; und der zweite Term die mit einem Grad in z; kleiner 7.

Da |L|z% -z > 2M 3:“2’2 > Lo -Z;’;le% fiir z; >3 "%/2 und

|L|2% - - i > ZME“ % x{ZdQO% -Eggox{; fiir o1 > xiZ?:Q 4t ind T; >3 %

gilt, folgt daraus

|P(931>---,£Un)—Lx’f---xﬁﬂ < |L|Qj211x;n

Korollar 4 Zu zwei Polynomen P(xq,...,x,) und Q(z1,...,x,) gibt es po-
sitive ganze Zahlen w1 (P — Q)und mo(P — Q), so dass fir alle T € N" mit
x> xfl(PfQ)und x; > ma(P — Q) entweder P(xy,...,x,) <Q(z1,...,x,) oder

immer P(xy,...,x,) >Q(x1,...,2,) gilt.

Beweis. |[von Theorem 4 a)]
Sei D ein {4, —, %, DIV}-CT, der L C Z" erkennt.

Um Theorem 4 zu beweisen, sollen wiederum alle Berechnungsknoten v mit
DIV von oben nach unten durch Berechnungsknoten ohne DIV ersetzt werden,

in diesem Fall durch rationale Funktionen.

Die folgenden 3 Lemmata erlautern den Ersetzungsvorgang.
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Lemma 8. Seien P,Q € Z[zy,...,x,] Polynome. Dann gibt es Polynome
AR € Zxq,...,x,) mil

Az, 20) - Q(ay, ...
P(.Tl, . 7xn) — (1:17 71:77,) Q(xla 7$n) _I_ R(fljl, 7In)7

p(Te,. .., x,)

§ = max{-1,deg, P—deg, Q},
1)deg,. Q deg, A < maxz{0,d},
1)deg,, Q, 7> 1.

wobei Q(xy,...,1T,) = Ej;lfj(@, T
deg, R < deg,, Q, deg, R < deg, P+ (§ +
deg,. A < deg, P+ ddeg, Q , deg, p < (6 +

Beweis. des Lemmas iiber Induktion nach ¢
Der Induktionsanfang gilt fiir 6 = —1 und A(z) = 0 und R(Z) = Q()

Fiir den Induktionsschritt wird angenommen, dass die Induktionsannahme fiir
alle 6 < k fiir ein k£ > —1 gilt und es wird bewiesen, dass sie dann auch fiir k
gilt.

Seien P(7) =X%_,g;(xa, ..., 2,)} und Q(T) =2 fi(za, . ,@,)x]. Dann ist

o0=d—m

Betrachte das Polynom

S(Z) = fmlz2, ..., xn)P(Z) — X ga(zs, . .. , Tn)Q(T)

Da deg, S < deg,, P, gilt die Induktionsannahme fiir die beiden Polynome
S(z) und Q(z). Daher gilt nach Induktionsannahme fiir geeignete A, R mit

ganzzahligen Koeffizienten, deg, (R) < deg,, (Q)

A(z) - Q(z) + R(1)
(fm(x% cee axn))6 .

Ersetzt man nun fiir S(z) obigen Quotienten

S(x) =

P(z) =
AZ) - Q&) + (fmlxa, - 20)) 2k ga(s, . . ., 2,Q(T) + R(Z)
(fm(x% ce ’xn))é-i-l

A(T) - Q(x) + R(1)
(fm(x% s axn))5+1
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Fiir die Grade gelten, da deg,. S < deg, P +deg, @ und deg,. A< deg,. S+

deg,. A = max{deg,, Ao deg,. Q + deg, P} < deg, P+ ddeg, Q,

deg,, A = max{deg,, A,deg, P — deg, Q} < deg, P —deg, Q.
(

Lemma 9. Seien P,QQ € Z[xy,...,x,] Polynome. Dann gibt es Polynome

Ay € Zlxy, ... x| und Ag,p € Zlxg, ..., x,] und Konstanten m und my, so

1
[

P(@) DIV Q) = et | alteot)

dass fir alle & € N" mit x1 > z*, x1 = ¢mod p(xa, . .., x,) und x; > my

qgilt.

Beweis. [von Lemma 9|

Nach Lemma 8 gilt

P(z1,...,2,) DIVQ(21,...,2,) =

{A(xl,...,xn) N R(zy,...,x,) J |
p(za, .. xn)  plxe,...,xn)  Qz1,...,2y)

Nun kann gefolgert werden

(i) Seiky =3 1 ,di+ 1 mit d; = deg,,(Q — R).

k1
J

Fir z; > o', j = 2,...,n, konvergiert ( j gegen 0, wenn

P(z2,.,%n) Q(T1,,Tn
| (z1,...,2,) ||1 gegen oo strebt.

A(z1,....zn) _ Ar(x1,...,2n)

As(z2,...,xn) A1(z1,..,Zn)
p(z2,...,Tn) und P(T2,0,Tn) €Z.

(i) folgt direkt aus den Definitionen von R, p, und k;.

(i) kann folgendermafken festgestellt werden:
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Sei zy = cmod p(xa, ..., x,), d.h. 2y =1-p(za,...,x,) + ¢ fiir ein [ € N. Dann

gilt
diyeenydn
D g (o — g
Az, 2n)  kekn=0,
p(z2, ..., xy) p(za, ..., xy,)
diyeerydn
= Y o ()T
k1o kin =0
d2,erydn
ka.
Z af),kQ,...,kn5”22"'fo"
k2 k=0,
p(ﬂfg, 7‘rn)
_ A wn) | As(e, )
P2 oo) | Pl )
wobei die aj, , von c abhingige Koeffizienten sind. O
yeeyivn

Mit Lemma 9 ist zwar immer noch die ganzahlige Division in dem Ausdruck,
aber nur noch als Quotient zweier Polynome mit n-1 Variablen, d.h. mit einer
Variablen weniger. Wird dieses Lemma 9 nun (n-1)-mal angewendet und in
jedem Durchgang mit einer Variablen weniger im Nennerpolynom, so erhilt

man folgendes Lemma

Lemma 10. Seien P, Q) € Zlxy,...,x,] Polynome, c1,...,c, € N Konstan-
ten. Dann gibt es Konstanten k;, K € N und Polynome A; € Z|xy, ..., %],

P, € Zlxi,...,x,), i=1,...,n-1 P, € Z , so dass fir alle T € N" mit

x; > xfjrl, x, > K | ;= c¢;mod P (Tig1,. .., %)
i Az Tp)

P(z) DIV Q(z) = T 4 A (x,

@DV Q) = 3 gt 4o

gilt.
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Beweis. |von Lemma 10|

Nach dem (n-1). Durchgang ist bei dem letzten Summanden noch die DIV-

Operation
nz_i Ai(xiy ... ) N { Al (x,) J
i—1 -Pi(xi—l—la cee w'En) Pn—1<xn) .

Wie in Lemma 1 gezeigt, kann A/ (x) DIV P,_(z,) als Polynom A,(z,) fiir
Eingaben z, = ¢, mod P,, x,, > K, fiir geniigend grofes K geschrieben wer-

den. 0

Jede DIV-Operation in dem CT D kann nun durch die Berechnung einer ra-

tionalen Funktion ersetzt werden, wie in Lemma 10 gezeigt.

Wird nun von der Wurzel zu den Blattern jeder DIV- Berechnungsknoten durch
die rationale Funktion als Quotient zweier Polynome mit ganzzahligen Koeffi-

zienten ersetzt, bei der Addition und Subtraktion zweier rationaler Funktionen

S _ PT+(-)SQ

nach der Rechenregel g +(=)7 = —g7 und bei der Multiplikation nach

der Rechenregel g% = g—'TS wiederum als Quotient zweier Polynome mit ganz-

zahligen Koeffizienten umgeformt, so werden nur Polynome mit ganzzahligen

Koeffizienten berechnet. Wenn nun an einem Verzweigungsknoten nach g >0

verzweigt wird, wird fiir P > 0 und @ > 0 oder aber P < 0 und ) < 0 der

P

ng > 0 ist erfiillt” und ansonsten der fiir ,£ > 0 ist nicht erfiillt”

Zweig fiir "G

gewihlt.

Dies ergibt einen {+, —, x}-CT, der fiir eine wie in Theorem 4 eingeschrinkte
Eingabemenge L erkennt. Die Polynome p;(z;41,...,x,) sind die Produkte
aller Polynome P;, die als Divisor bei der Ersetzung der DIV-Operationen wie

in Lemma 10 vorkommen.

Beweis. [von Theorem 2 b)]

Durch Induktion iiber die Tiefe des Berechnungsbaumes werden die Grade der
n—1

rationalen Funktionen Z
i=1

pilretn) A (7,) = 28 und die Groge der k;

P (‘TH-L'“:xn

abgeschéatzt.
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Behauptung 2 Nach der Substitution der DIV-Operationen in den oberen t

Levels von D sind die Grade der Zihler- und Nennerpolynome der in Lemma 10

. . . n—1)(t—1
definierten rationalen Funktionen < g2l hmh,

Beweis. der Behauptung
Der Induktionsanfang fiir t = 1 ist offensichtlich.
Die Induktionsannahme gelte fiir alle k& < ¢.

Bei der Umformung der Berechnungsknoten, die mit 5(%)) + (-) :fg))) beschrif-

tet sind, zu einem Quotienten zweier Polynome verdoppelt sich der Grad der

Polynome hochstens.

Daher miissen nur noch Berechnungsknoten in der Tiefe ¢, die mit P(z)DIVQ(Z) =
n—1

H + A, (z,) = ;8 beschriftet sind, genauer betrachtet werden.

i=1

Nach Induktionsannahme gelten dort folgende Ungleichungen:
deg P < 22" deg Q < 22"V und deg P, < 227V,
Nach Lemma 8 gilt fiir 6 = max{-1,deg,, P — deg, Q}

deg,, A; <max{0,d} < 220D nd

deg,, Aj < deg, P+ (6 + 1)/ deg,, Q ,

deg,, Py < (6+ 1) deg, @ < (26)72°" "7 j>i

und degxl S < degxl Q < 22(n—1)(z—2)'

Daher gilt
n—1 n—1
deg,, T <) deg,, Py <2277 "(20)
=0 j=1
< 22(n71)(t72)(2 . 22(n71)(t72))n < 22(1171)(1571)
und ebenso deg, S < 22" """ und deg, S < 22" V7. O

Da es hochstens 2 Knoten gibt, ist der Grad des Produkts dieser Polynome

. n—1)t
hochstens 227"
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Aus der obigen Induktion und von Lemma 7 und Korollar 4 folgt unmittelbar

(n—1)t

k; < 22 i O

Das Theorem 4 b) im 2-dimensionalen Fall wird nun benutzt, um die erste
untere Schranke fiir die méchtige Operationsmenge {+, —, %, DIV} und Kon-

stanten aus Q zu beweisen.

Beweis. |von Korollar 3|
Angenommen ein ({+, —, %, DIV} Q)-CT M der Tiefe T" erkennt L.
Theorem 2 b) besagt, dass es k; und ein Polynom p(y) vom Grad < 22" gibt, so

dass es zu y € koZZ, x1(y); 22(y), 1(y) < 22(y), 22(y) — 21(y) < p(y), 21(y) <
r(y) < z2(y) gibt, so dass M A = {z1(y),y € koZ} akzeptiert und B =
{22(y),y € koZ} verwirft, d.h. r(y) trennt A von B.

Fir d < max{k;,deg(p(y))} folgt die untere Schranke direkt aus Theorem 4 b).

Fiir d > max{ky, deg(p(y))} erkennt der ({+, —, x}, Q)-CT D" aus Theorem 4 b)
L auch fiir Eingaben aus A U B. Daher berechnet D’ ein Polynom s(y), das

A von B trennt. Da s(y) € {z1(y),...,z2(y)} C {r(y) —py),...,r(y) +p(y)}
und d > deg(p(y)), hat s(y) Grad d. Da D" nur Polynome vom Grad (9(22T)

berechnet, gilt d = O(22"). O

4.4 Separationsresultate

Dieser Abschnitt enthilt die Beweise und die fehlenden Sprachen, um die

Sprachklassen zu unterscheiden.

Beweis. [von Theorem 5|
CCy{+, =}3CC{+, —, %} gilt offensichtlich, da bekannterweise L = {(z,y), z* >
y} € CC?{+a ) *} - CCQ{+7 _}

Die folgenden Unterscheidungen der Sprachklassen folgen bereits aus [22], sie

gelten schon im Fall n = 1.
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CC.({+,-}) 2 CC{+,—,DIV.}
CCu{+,—,DIV .} = CC,{+,—,*} #0
CCn{+7 I *} ; CO’H{+7 —, %, DIVC}

Aus Theorem 2 folgt:

CC{+,—, DIV} ; CCu{+,—,*, DIV, }.

Das folgende Korollar der Theoreme 4 und 2 beweist die fehlenden Beziehun-

gen.

Korollar 5

a) {(z,y) € Z*, 2% > 2y*} € CO,({+, —, *}) — CCo({+, —,DIV})
b) {(z,y) € Z* (y—1)DIVz—y DIV z < 0} € CCy({+,-, DIV })—CCy({+, —, *,
DIV.}) "

Beweis. zu a) durch Widerspruch
Nach der Definition von L gilt L € CCy({+, —, *}.

Es wird gezeigt, dass unter der Annahme, dass ein {+, —, DIV}-CT diese Spra-

che erkennt, sie bereits von einem {4+, —}-CT erkannt wird.

Nach Theorem 4 gibt es ki, ko€ Q, so dass L auf {(z,y) € N?* | kiy <
r < kay}n (aZ)?, dem Gitter, das den Nullpunkt enthilt, bereits durch einen
{+, —}-CT erkannt wird. Da v/2 ¢ Q ist, konnen ky, ko€ Q so gewiihlt werden,
dass k1 < V2 < ky gilt. Folgendermafen wird dann L durch einen {+, —}-CT

erkannt: akzeptiere, falls |z| < k; |y|, und verwerfe, falls |z| > ko |y|.

Fiir k1 |y| < |z] < ko |y| entscheide mit dem obigen {+, —}-CT, ob (a|z|,a|y|) €
L gilt. Falls ja, akzeptiere, ansonsten verwerfe. Dies ist im Widerspruch zu
L¢g CO({+, -}

zu b) durch Widerspruch

Nach der Definition von L gilt L € CCy({+, —, DIV}.

Annahme L = {(x,y) € Z?,(y — 1)DIVz — yDIVz < 0} € CCy({+, —, *,
DIV.})
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Nach Theorem 2 b) ist der Z? endliche disjunkte Vereinigung affiner Gitter
und L kann auf jedem dieser Gitter ohne DIV, entschieden werden. Dies gilt
insbesondere fiir das Gitter S, das den Nullpunkt enthélt. Nach Theorem 2 b)
gibt es einen {+, —, x}-CT, der L auf S NZ? entscheidet.

Da S den Nullpunkt enthélt, ist S = (a,0)Z+(0, a)Z.

Sei nun (x,y)€ S, d.h. (x,y)=(ax’;ay’). Da (y — 1)DIVx —yDIVz < 0 &
ymodz = 0, wird ay’ modaz’ = 0 < 3y’ modz’ = 0 ohne DIV entschieden.
Dies ist im Widerspruch zu L¢ CCy({+, —, *}).

5 Polynomauswertung

Diese beiden folgenden Kapitel entsprechen weitestgehend dem Aufsatz von
Martin ZIEGLER und mir in [26]. Anders als in den Kapiteln zu Berechenbar-
keits - und Komplexitiatsbetrachtungen von S-CTs werden in den Kapiteln 5
und 6 die einzelnen Ergebnisse direkt mit den dazugehorigen Beweisen vorge-
stellt. Es wird in diesen beiden Kapiteln vorausgesetzt, dass aufer, wenn ein
Algorithmus explizit als SLP angegeben wird, bei den vorgestellten Algorith-

men ,,<” zur Operationsmenge gehort.

Aus der unteren Schranke iiber {+, —, x, DIV} ergibt sich eine doppelexponen-
tielle Liicke zwischen oberer Schranke zur Polynomauswertung tiber {4, %} und
unterer Schranke zur Polynomauswertung iiber {4, —, %, DIV}. Daher stellt
sich in diesem Kapitel die Frage, ob die Polynomauswertung mit zuséatzlichen
nicht klassischen Grundoperationen beschleunigt werden kann, ob z.B. Po-
lynome vom Grad d iiber {+,—,*, DIV} in o(d) berechnet werden konnen.
Da gerade die Polynomauswertung in den Computerwissenschaften an vielen
Stellen benutzt wird, z.B. bei Splines oder Reed-Solomon-Codes, ist deren Be-

schleunigung wiinschenswert.

5.1 Polynome mit einer Variablen

Das klassische Verfahren zur Polynomauswertung bei univariaten Polynomen

ist das Hornerschema und benétigt O(d) Schritte, wenn d den Grad des Po-
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lynoms bezeichnet. Dieses Verfahren ist in vielen Fallen mit den Operationen
{+, —, *} optimal [8, Theorem 6.5]. Dies gilt nicht fiir ganzzahlige Polynome

mit im Verhéaltnis zum Grad kleinen Koeffizienten.

Theorem 6. Gegeben sei ein Polynom P(z) = 9 ta,a"€ Z[x] mit ag, ..., ag_1

€ Z und |a,| < P. Dann kann P(z) in O(d/log,d) Schritten iber {+,*, } be-

rechnet werden.

Beweis. Da P(x) als Differenz zweier Polynome mit positiven Koeffizienten
betrachtet werden kann, sei 0.B.d.A. P(x)€ N[x]. Zerlege P in [d/k] Polynome
¢; vom Grad kleiner gleich k. Wie dieses k in Abhéngigkeit vom Grad d und
der maximalen Groke der Koeffizienten P zu wihlen ist, wird spéater gezeigt.
Es gibt héchstens P* verschiedene Polynome vom Grad kleiner k und mit
Koeffizienten aus {0,1,..,P-1}. Mit dem Hornerschema wird jedes dieser PX
verschiedenen Polynome an der Stelle € Z in O(k) Schritten berechnet, d.h.
es werden fiir alle P¥ verschiedenen Polynome insgesamt O(k - P¥) Schritte zur

Auswertung benotigt.

Danach wird das Polynom Ei[iékW gi(x) - Y' an der Stelle Y = z" mit dem
Hornerschema in O(d/k) Schritten berechnet und erhélt so P(x).

Es werden zur Berechnung also O(d/k + k - P¥) Schritte bendtigt.
Fiir k:= log,d-2 log,log,d ist

O(d/k +k - P¥) =

O(d/(log,d — 2log,log,d) + (log,d — 2log,log,d) - Plogrd—2losploged)

= O(d/log,d)

Wird als weitere Operation die ganzzahlige Division hinzugenommen, so kann
die Berechnung eines Polynoms iiber einem endlichen Bereich beschleunigt

werden.

Satz 3 Zu X € N und Z > maxo<,<x P(z) speichere Y := Ef:o Z* . P(x).

Folgendermaflen wird fir 0 < x < X, aus den gespeicherten Werten P(x)
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berechnet: durch wiederholtes Quadrieren in O(logx) Schritten berechne Z*.

FEs gilt P(z) = (Y DIV Z%) mod Z.

Die Laufzeit ist unabhingig von deg(P) und logarithmisch in z.

Y ‘P(X) \ ‘P(x+l) ‘P(x)‘P(x—l) \ ‘P(Z) ‘P(l) ‘P(O) \
ZX zel zx o zxdl Z2 z

Y divzx [P | .. [Px+1) [PK) |
Z%x 72 Z

Ymod Z

Abbildung 6. Berechnungen im Beweis von Satz 3

Aber auch die Abh#ngigkeit von der Eingabe ist zur Berechnung nicht not-
wendig [6].

Theorem 7. Ein Polynom P(x) € Z[X] kann dber einer endlichen Menge
D C Z in 15 Schritten (unabhingig von P und D) berechnet werden.

Beweis. Fiir negative Argumente € Z berechne P(-x). Da jedes Polynom mit
ganzzahligen Koeffizienten als Differenz zweier Polynome mit natiirlichen Ko-
effizienten dargestellt werden kann, wird 0.B.d.A. der Beweis fiir Polynome mit

natiirlichen Koeffizienten und D C N gefiihrt.

Sei P(z) = Y% pir’, pi€ N, degp = d und wt(P) < P.

Behauptung 3 Fiir Z > max{X?® - P,(X% +1)- X} berechnet der folgende
Algorithmus p(z) fir || < X = maz{|z|,z € D}.

7, 7% und p(Z) sind Konstanten und werden vorher berechnet und gespeichert.

g= Z4DIV (Z — z) 2 Operationen
h=p(Z)-g 1 Operation
a = hDIV Z¢ 1 Operation

b=amodZ =a— (aDIVZ)-Z 3 Operalionen
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Zd Zd-1 7d-2 72 71 70
g L [x e | [xez [x x|
*P(2) ’ Po ‘ Py ‘ P, ‘ ‘ Pa.2 ‘ Pa.1 ‘ Pq |
Z2d Zd 70
= ’pd ‘ Pot Py X Ho... +Pgq XIL + py xd ‘ ‘plxd+p0xd'1 ‘poxd |

Abbildung 7. Berechnungen in Bshoutys Algorithmus

Beweis. Um die Korrektheit des Algorithmus zu beweisen, folge ich dem Be-

weis von Nader BSHOUTY [6].

Fiir x €{1,....X} gilt b=p(x)

(*)

- [£5] -2 L s -

S 3 ()| ~mt
zd+1

v v~

eN = <1

d d d
Seops 203 20wt =) (3 pi ZT)
i=0 =0 j=0
d d
a(z) = h(z)DIVZ* =Y () p; 24 -2’ DIV 24 =
i=0 ;=0
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Da fiir ¢ # j die Summanden ganzzahlig sind und laut Voraussetzung Z >

X4 . wt(P) ist, gilt

b(z) = a(e)mod Z = Yy p; - 2 = plx)

Korollar 6 Mit der Operationsmenge {+, —, %, DIV} kann jede endliche Fol-
ge Yo, Y1, ---,yn (oder formaler die Abbildung {0,1,..., N} > n — y,) in

konstanter Zeit unabhéngig von (der Linge N) der Folge erkannt werden.

Beweis. Betrachte das Interpolationspolynom p € Q[X] vom Grad < N + 1,
so dass p(n) = yn, n € {0,..., N} gilt. Wihle M € N, so dass M - p € Z[X].
Nach Theorem 7 kann n — M -p(n) in konstanter Zeit berechnet werden. Nach

ganzzahliger Division durch M erhélt man p(n). O

Aus diesem Korollar folgt fiir eine Sprache L. C Z ebenfalls Bemerkung 2,
wenn es auf die charakteristische Folge (yo,...,yy) von L, die durch y, =1

fiir n € L und y, := 0 fiir n ¢ L definiert ist, angewendet wird.

Wie der ndchste Abschnitt zeigt, gelten diese Aussagen auch fiir Folgen (yo, ..., yn)

in Z und fiir endliche Sprachen L C Z fiir ein festes d.

5.2 Polynome mit mehreren Variablen

Dieser Algorithmus von Nader BSHOUTY wird erweitert zu einem Algorith-

mus fiir multivariate Polynome.

Theorem 8. FEin Polynom P(x1,...,x,) € Z[x1,. .., 2, kann Gber einer end-
lichen Menge D C Z" in O(n) Schritten unabhingig von p und D mit der
Operationsmenge {4, —, %, DIV} berechnet werden.

Beweis. Um nur Polynome fiir nicht-negative Argumente

X = (X1,...,Xy) € N* zu berechnen, wird zu einer Eingabe X € Z" zunéchst
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in O(n) Schritten entschieden, welches der 2" im Allgemeinen verschiedenen
Polynome P(+x,£xs,...,+x,) an der Stelle (|x1],|xs|,...,|x,|) berechnet
werden muss, um den Wert von P(Z) zu berechnen.

Sei 0.B.d.A. P(z) = E‘-jl""’ii"zopil ..... o, - xne N[xq, ..., xy], andernfalls be-

trachte wie im univariaten Fall , falls P(Z) € Z[xy, . ..,X,), P(Z) wiederum als

Differenz zweier Polynome mit natiirlichen Koeffizienten.

Behauptung 4 Der folgende Algorithmus berechnet f(X) = P(Z) fir z € D,
falls Z > d"-wt (P)-maz {z;i=1,..,n}"

mit d = mazx{d;i=1,..,n}+1, d; = deg,, P(Z) gilt.

9(x) =TI, 2% DIV (29" —;) 3n Operationen
W) =P(Z,2%,..,Z2"")  g(x) 1 Operation
k(%) = h(x) DIV Z4" 1 1 Operation
f(X) =k(xX)mod Z = k(x) — (k(x)DIVZ) - Z 3 Operationen

Beweis. der Behauptung

Es gilt die Gleichung (*) auf Seite 42 {ZZ—_ZJ = S0 79171 4% im univariaten
Fall fiir alle Z > 2(z¢).

Wird diese Gleichung auch auf x, und Z, := Z? angewendet, fiihrt dies zur

folgenden Gleichung

(Z£DIV (29— 23)) - (ZDIV(Z —z1)) =

d—1 d—1
2 :Zd(d—l—zg) . x;g . § :Zd—l—zl . lel _
i19=0 i1=0

d—1 ) .y . .
E g d*=1=(diz+i1) | z i
i1,i2=0

Induktiv fiir ¢ = 1, ..., n wird diese Gleichung auf z; und Z; := Za angewen-

det und man erhilt in O(n) Schritten iiber {+, —, %, DIV}

9®) =[] 2* DIV (2% ;) =

i=1



Zd_l A= (@ Vit dinin) | gin |2 | it
i1,00eyin =0 " S

Diese Summe wird nun mit der Konstanten

k1, skn=0 14eeyin=0

d—1
: : n_ o n—17. _ gn—1; . .
plz“ Zd 1 . Z(kl Zl) e Z(d kn—d Zn) . lel PPN 1‘7'"

K1 oo yit e yin=0
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Wie im Fall einer Variablen wird wiederum durch Anwendung der ganzzahligen

Division und anschliefender Restbildung P(x) extrahiert.
k(X) = h(x) DIV 29" 7! =

d—1

k1yokn i1, yin=0

d—1
{ p - 20 L g i) i J )
ki,....k

d—1
. e iygil .
{ 2o pezTn IJ:
K1,k

i1y eeesin=0
Fiir 20 ,(k; — ij)d'>0 sind die Summanden ganzzahlig.
Fiir 30 (k; — ij)d""'<0 ist die Summe dieser Summanden kleiner 1, da Z

drwt(P)-max {z;;i = 1,...,n}" gilt.

>
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d—1
. Z _ g (kj—ij)di =t iy in
— pk .Z 270( J J) .Il ...xn

k17 -~-7kn7117 eyl = 0

1o (i) =120

f(x) = k(X)mod Z =

di,...,dn dr,....d

n 5 \dI—1 3 ;
( Z § : j ZEZ:O(kJ ij)d . 5(;31 cee x:{’)modZ
k1,...,kn=0

0o (ky—ij)di=1>0
Falls k, < i, ist, gilt X" (k; —i;)d? <0 fiir j = 1,...,n, da d > k; gilt. Dies
ist im Widerspruch zu X (k; — ;)& ~1>0.
Falls k, > 1, ist, teilt Z die Summanden
pp - 28l g

Daraus kann gefolgert werden, dass

(p’;_ . ZEQ:O(kj_ij)dj71 . .Till e x;”) mod Z ;é O
nur fiir k£, = i, gilt.
In der gleichen Weise wird k; = ¢; induktiv fiir j =n — 1 bis j = 1 gezeigt.

Nach Definition von Z gilt nun

dl’“wdn

> praytay = Pa).

iy kn=0

5.3 Polynomauswertung mit bitweiser Konjunktion

Im Gegensatz zum Hornerschema erfolgt die Polynomauswertung mit dem Al-

gorithmus von Nader BSHOUTY und dessen Erweiterung auf multivariate
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Poynome nur iiber endliche Eingabebereiche. Fiir ein im Verhaltnis zur Ein-
gabe geniigend grofes Z, so dass es bei dem Produkt von Z4H1DIV (Z — x)
und P(Z) nicht zu unerwiinschten Uberlappungen kommt, wurde P(Z) als Kon-
stante vorher gespeichert. Wird die bitweise Konjunktion als weitere Opera-
tion hinzugenommen und das 7 im Verhéltnis zur Eingabe geeignet gewahlt,
lasst sich die Polynomauswertung im Vergleich zum Hornerschema deutlich

beschleunigen.

Satz 4 Sei p € N[z] ein Polynom vom Grad d, dann kann N > z — p(x) in
O(logd) Schritten iber {4, —, %, DIV, &} berechnet werden.

Beweis. Sei P(z) = Y4 p;x'e N[x| mit p; € N und p; < 2! fiir i =0, ..., d.

(2

Zu gegebenem x € N berechne durch wiederholtes Quadrieren in O(logd)

Schritten 7’ := x9%2.

Z:=27"-Y mit Y := 2 erfiillt die Bedingungen zu Satz 3.

d
P(Y) = Z p2" = P(2!) ist fiir ein festes Polynom eine Konstante und kann
i=0

vorab gespefchert werden.

d d

W .= Z Z'" und ebenso V := Z (Z' - Y)" werden in O(logd) Schritten
i=0 i=0

berechnet, indem zunichst wiederum durch sukzessives Quadrieren Z'+! bzw.

(Z'-Y)®! berechnet wird und V bzw. W werden nach der folgenden Gleichung
d d
W= Z'"=Z"DIV(Z'~1) bzw. V=Y (Z'Y)' = (ZY)H'DIV (2"
=0 i=0

Y —1) berechnet.

In der folgenden Abbildung ist zu sehen , wie P(Z) aus U, V, W und Y mit der
bitweisen Konjunktion als weiterer Operation nach den obigen Abschitzungen

in O(logd) Schritten als

berechnet wird.
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Y
Py P.p,IP

X 11 1] 1 1]
z" Z" Z'

= [Pl PPy e Pd PP [P [P [PIPIP) [P PP, P,

&l [ [[ ] oo LI ] Ll L] b
= oy L] e LWkl L] LIk ] [LI[Ip]
d

V4 Z? V4

Abbildung 8. Berechnungen im Beweis von Satz 4

d d d d
PY)-W =YY p2z0 =3 p2"z"

i=0 j=0 i=0 j=0
d -1 d -1

V=1)-V=3 > (2-Y)y2 =3} 2z
i=0 i=0 i=0 j=0

Da (Y —1) -V nur Koeffizienten # 0 bei 2!t/ fiiri = 0,...,d und j =0, ...,[ — 1
hat, sind es genau die Koeffizienten p; in bindrer Darstellung fiir ¢ = 0,...,d ,

P(Z) = (P(Y) - W)&((Y — 1) - V). 0

Nach dem obigen Beweis werden die O(logd) Schritte bendtigt, um durch

d+2 ynd Z4 zu berechnen. Alle anderen Be-

wiederholtes Quadrieren 7’ := x
rechnungen gehen in konstanter Zeit, wenn die Konstanten wie Y¢ oder P(Y)
vorher berechnet werden. Ist x<O(2%) konnen Z’ := 292 und Z4 schneller
in O(loglog |x|) Schritten berechnet werden, wenn nicht x, sondern 2¢ und

2% sukzessive quadriert werden. In diesem Fall wird auch nicht die Multiplika-

tion, sondern nur die Multiplikation mit Konstanten bendétigt.

Korollar 7 Sei p € N[z| ein Polynom vom Grad d, dann kann N > z +—
p(x) in O(loglog|z|) Schritten iber {+, —,*., DIV, &} berechnet werden.
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Ohne Einschrinkung kann der Grad des Polynoms als Zweierpotenz vorausge-
setzt werden, da ansonsten das Polynom durch Hinzufiigen von Summanden
mit den Koeffizienten Null erweitert wird. Die Laufzeit in der O-Notation
andert sich nicht dabei. Wird zusétzlich noch das schnellere Quadrieren mit
der ganzzahligen Division aus dem Aufsatz von Yishay MANSOUR, Baruch
SCHIEBER, Prasoon TIWARI |28] verallgemeinert fiir beliebige positive ganze

Zahlen, erhélt man die Zeitabschatzung in Theorem 9 zur Polynomauswertung.

Satz 5 Gegeben seien a,k € N und eine beliebige ganze Zahl b > a2, dann
lisst sich a®* iiber (+,—, %, DIV) in O(Vk) Schritten berechnen.

Beweis. Zunichst wird m mit k = m? + b mit 0 < b < 2m + 1 gesucht. Dies
geht in O(v'k) Schritten, indem nacheinander i fiir s = 1,...,m + 1 quadriert
wird, bis i? > k gilt. Da m = {\/EJ gilt, kann durch sukzessives Quadrieren
von a®" in O(Vk) Schritten a?* berechnet werden. Es bleibt zu zeigen, dass
" in O(m) = O(Vk) Schritten berechnet werden kann.

Sei by g = ab. Durch m-faches Quadrieren von b,y = ab erhilt man fiir ¢ =
1,....m
bl,i = bl,i712 = (ab)zi
Sei byp = a und berechne
bo,i = bymmod (by g — bg;_1) fiir i =1,...,m.
Es wird gezeigt, dass by; = a®"" und daher b, = ™ gilt.

Es wird ausgenutzt, dass fiir y" < (x — y)
z"mod (z —y) = ((z —y) +y) mod (z —y) =y’

2 .
gilt. Aus by, = (ab)®" und byg — bo;—1 > a®" folgt daher by; = b3;_, = a®"".

O

Ohne ganzzahlige Division bendtigt man fiir die 2%. Potenz einer natiirlichen
Zahl durch wiederholtes Quadrieren O(k) Schritte. Die zusétzliche Eingabe
von dem b kann gewissermalfsen als "Katalysator’ zur Beschleunigung betrachtet

werden, vergleiche Abschnitt 6.3.
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Theorem 9. FEin Polynom P € Z|x] vom Grad d kann an der Stelle v € Z in
O(min{log d, log log |x|}) Schritten dber {+, —,*, DIV, & } berechnet werden.

Ist zusitzlich eine natirliche Zahl y > |x|% gegeben, kann P(x) dber {+, —, *,
DIV, &} in O(y/min{log d, log log |x|}) berechnet werden.

Dieses Theorem kann wie im endlichen Fall von Poynomen mit einer Variablen

auf solche mit mehreren Variablen iibertragen werden.

Theorem 10. Ein Polynom P(zy,...,x,) € Z[xy,...,x,] mit mazimalem
Grad kleiner d kann iber Z* in O(n - min{log d, log log maz {|z;|,i =1,...,n})
Schritten mit der Operationsmenge {+, —, *, &, DIV} berechnet werden.

Ist zusdtzlich eine natiirliche Zahly > maz{|z;|,i = 1,..,n}*""" gegeben, kann

P(xy,...,2,) in O(n-y/min{log d, loglogmaz {|z;| ,i = 1,...,n}) dver {+, —, *,
&, DIV} berechnet werden.

Beweis. Sei P(Z) € Z[xy, ..., Xu]-

Wie im endlichen Fall wird in O(n) Schritten entschieden, welches der 2 Poly-
nome Py(|z1], ..., |zn|) € Z[|x1], ..., |xa|] mit P(zq, ..., 2,) = Pe(|21], ..., |2a])
fiir eine Eingabe x € Z" an der Stelle (|x1|, |z2|,...,|z,|) berechnet werden

muss, um den Wert von P(Z) zu berechnen.

Sei0.B.d.A. P(z) = X% g, it zine N[xy, ..., X,]. Andernfalls, falls

P(Z) € Z[x1, . ..,Xy], unterteile P wiederum in die Differenz zweier Polynome

mit natiirlichen Koeffizienten.

Um Theorem 8 auf eine Eingabe z € Z" anwenden zu konnen, muss wie in
Theorem 8 (Z, 2%, ..., Z%") fiir ein Z > Q(max{z;; i = 1,...,n}%") mit d :=
max{2,d; +1,...,d, + 1}; d; = deg,, P(Z) gefunden werden. Dies geht durch
wiederholtes Quadrieren von max {|z;|,i = 1, ...,n} oder von (24,24 ... 24"} in
O(n - min{log d, loglog max {|z;|,i = 1,...,n}). Bei zusétzlicher Eingabe von

y > max{|z;|,i =1,..,n}"""" kann wiederum wie in |28] das Quadrieren zu

O(n-y/min{log d,log log max {|z;| ,i = 1, ...,n}) beschleunigt werden.
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Als niichstes muss P(Z, Z%, ..., Z%" ") berechnet werden.

di,...,dn
P22 2" ) = 3 P (D) (27 =
ki,....kn=0
di,...,dn
m—1
Z Dhy.. kn(Z)ku—i-...—i-dl kn
ki,....kn=0

Da ky + ... + d" 'k, fiir ky,....k, € {0,...,d — 1} verschiedene Zahlen in d-
adischer Darstellung sind, kann P(Z, Z4, ..., Zdn_l) als ein univariates Polynom

P'(Z) mit P'(z) € N[x] und deg P’ < d" betrachtet werden.

Fiir Eingaben aus den natiirlichen Zahlen ist der Algorithmus ein SLP, bei Ein-
gaben aus den ganzen Zahlen werden als zusétzliche Operation noch Vergleiche

,<” benotigt.

5.4 Speichern und Extrahieren algebraischer Zahlen

Wenn die bitweise Konjunktion nicht hinzugenommen wird, bleibt das Hor-
nerschema das schnellste bekannte Verfahren, um ein beliebiges, aber festes
Polynom iiber ganz N mit der Operationsmenge {+, —, *, DIV} auszuwerten.
In [25] ist eine untere Schranke von {2(loglog d) fiir einige Polynome zur Poly-
nomauswertung bewiesen worden, wenn d den Grad des Polynoms bezeichnet.
Es entsteht also eine doppelexponentielle Liicke zur oberen Schranke von O(d)

des Hornerschemas iiber {4, —, x}. Damit stellt sich folgende

Frage 1 Kann jedes beliebige, aber feste Polynom p € N[X] an jeder Stelle
x € N in o(deg p) tber {+,—, *, DIV} ausgewertet werden.

Nach den Uberlegungen des letzten Abschnitts kann diese Frage positiv be-
antwortet werden, falls es moglich ist, zu x € N die Zahl p(Z) fir irgend-
ein Z > 2(z?) mit d > degp zu berechnen. Dazu wihle Z, := Y - 2" mit
Y = 2% > wt(p) und stelle die binire Erweiterung der Folge p'(Z,) = 2p(Z,)<
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Z4 wt(p) < 2B+t mit p € Nund K := k- (d + 1), wie in Satz 3 folgender-

mafien als reelle Zahl dar:

Zp L9 K+dn+1)

Um zu gegebenem z € N aus dieser reellen Zahl p'(Z,,) zu extrahieren, geniigt
es, p, bis auf eine Abweichung e < 27"(E+dn+D fiir ein n > 2(d - logz) zu

approximieren.

Es wird 2p(Z,,) extrahiert, da das kleinste Bit bei 2p(Z,,) eine 0 ist und sollte
es bei der Approximation durch wiederholte Ubertrige kleinerer Bits zu einem
falschen Ergebnis des kleinsten Bits von 2p(Z,,) kommen, liefert die ganzzahlige
Division durch 2 das korrekte Ergebnis p(Z,).

Lemma 11. Sei o € R algebraisch vom Grad < d. Dann kénnen zu gegebe-
nem n € N dber {+, —,*} in O(0 - logn) u,v € N berechnet werden, so dass
o —u/v| <277 gilt.

Fiir einige transzendente Zahlen wurden dhnliche Ergebnisse, obwohl mit un-

terschiedlichen Methoden, erzielt [7].

Beweis. Sei ¢ € Z[X] das Minimalpolynom von «. Mit dem Newtonschen
Néhrungsverfahren lassen sich mit quadratischer Konvergenzgeschwindigkeit
die Nullstellen eines Polynoms approximieren. Zu einem festen o € R konnen
das Minimalpolynom ¢ € Z [X], seine Ableitung ¢’ € Z [X] und ein geeigneter

Ausgangspunkt vorab als Konstanten gespeichert werden. ad

Aus diesem Lemma folgt fiir Polynome mit einer leichten Abhéngigkeit von der

Eingabe x die Antwort auf die eingangs in diesem Abschnitt gestellte Frage.

Theorem 11. Sei p € N[X] ein Polynom vom Grad <d und angenommen

22 * st algebraisch vom Grad <. Dann kann p(z) fir v € N dber {+, —

D]V} in O(6 - loglogx) Schritten berechnet werden.

Leider ist es weder bekannt, ob die Reihe ZZ‘CM algebraisch ist, noch, falls

n=0
sie algebraisch ist, von welchem Grad. Dies stellt ein ungelostes Problem in

der Zahlentheorie dar |38, Abschnitt 10.7.B, Beispiel 1, S.314, |.
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Um die zu Beginn dieses Abschnittes gestellte Frage zu beantworten, konnte
man, statt alle p(Z,) in einer Reihe zu speichern, eventuell eine linear rekurren-
te Folge von Polynomen p(Z,,) suchen, die mit einer leichten Abhéngigkeit von
x schnell berechnet werden kann. Ein Ansatz hierzu konnte durch die in [17]
beschriebenen Algorithmen bei Hinzunahme der ganzzahligen Division und in

Verbindung mit der folgenden Bemerkung gegeben sein.

Bemerkung 5 Seip € Z[x] vom Grad < d und ¢ € N. Dann ist die ganzzah-
lige Folge p(1),p(c),p(c?),...,p(c"),... linear rekurrent vom Grad d, d.h. es
gibt a, ..., aq_1,aq € Z, so dass p(c"™) = (ay-p(c”) + -+ aq-p(c""*)) /ag
fiir alle n € N gilt.

Beweis. Fiir k = d—1 haben die (d+1) Polynome p(cz), p(x), p(z/c), ..., p(zc™*)
alle einen Grad < d . Daher sind sie linear abhéngig iiber Q. qo - p(cz) + ¢1 -
p(z) + -+ @1 - plzc™®) = 0; 0.B.d.A. ¢ € Z. Falls k minimal ist, folgt
0 # 0. O

6 Anwendungen in der Linearen Algebra

Wie eingangs erwahnt und im letzten Kapitel fiir die Polynomauswertung ge-
zeigt, hangt die Berechnungsméchtigkeit und die Komplexitit einer Register-
maschine RAM stark von der zugrundeliegenden Operationsmenge ab. Im fol-
genden Kapitel geht es um ausgewihlte Probleme, deren Laufzeiten durch
diese zusétzlichen Operationen wie ganzzahlige Division usw. linear oder sogar

sublinear sind, wie auch in den folgenden Beispielen.

Beispiel 2

a) Uber {+, —,*, DIV)} ist nicht nur der Primzahltest, sondern sogar die Fak-
torisierung einer ganzen Zahl x in O(logx) Schritten mdglich, d.h. linear
in der Bindrlinge von x .

b) Uber {+,—, % DIV)} und mit indirekter Adressierung lisst sich der grop-
te gemeinsame Teiler ggT(x,y) zweier Zahlen z,y mit N = max{z,y} in
O(log N/loglog N) Schritten berechnen.

% Ich danke Riko JAcoB fiir den Hinweis auf die Punkte d) und e) in diesem Beispiel.
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¢) Uber {+,—,&,«,—} (aber ohne indirekte Adressierung wie bei Bucket
Sort) kénnen n ganze Zahlen xq, ..., x, in O(n) Schritten sortiert werden
und Gber {+, —, %, DIV} in O(n - loglog max;x;) Schritten.

d) 3SUM, die Frage, ob es 2u T1,...,Tn Y1y« 3 Yny 215 -5 2n b, J, k mit x; +
y; = 2 gibt, kann in O(n) Schritten dber {+, —, %, &} entschieden werden.

e) Die Permanente Perm(A) = > ores, Qlx(l) """ Qnr(n) €iner n X n Matriz
A kann in O(n?) Schritten iber {+,—,x, DIV} berechnet werden, d.h. in

quastoptimaler Zeit.

b) Die Laufzeit des Euklidischen Algorithmus benétigt ©(log N) fiir Fibonac-
cizahlen x = F, =N,y = F,_;.

¢) Um die Permutation von der Eingabe zur sortierten Ausgabe zu beschreiben
erfordert bereits £2(n - logn) Bits.

e) Ohne ganzzahlige Division ist Perm VALIANT-NP-vollstindig |8, Theorem
21.17], wenn das Einheitskostenmodell vorausgesetzt wird, im Bitmodell ist
Perm sogar #P-vollsténdig.

d) Auch 3SUM wird ohne DIV als ‘n*-vollstéindig’ betrachtet, vergl. [19].

Beweis. a) Siehe [40]; b) siehe [5]; ¢) siehe [24], fiir aktuellere Ergebnisse zu den
Aufwandsabschitzungen beim Sortieren mit verschiedenen Operationsmengen

siehe [20];
e) siehe [1, Proposition 2.4] und den Beweis zu Satz 6.

Die Behauptung aus d) kann von den allgemeineren Betrachtungen in [9] ab-
geleitet werden. Auf dieses Beispiel angewendet fiihrt dies zu:

Fiir 0 < ag,...,an_1,bo, .-, by_1 <2071 sei A= S0 a2 B =3, b;-24,
und C':= 3,271 2% Dann gilt

Aufgrund der obigen Kodierung kann die folgende Aussage ,,3i : a; = b;” in
konstanter Zeit iiber {+, —, &} iiberpriift werden. Diese Kodierung erhélt man
fir die doppelte Folge (z; + y;)i+n; in Linearzeit O(n) tiber {+, —, *}, vergl.

dazu den Beweis von Satz 12. O
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6.1 Matrixmultiplikation

Der derzeitige Rekord bei der Matrixmultiplikation ohne ganzzahlige Division
liegt bei O(n*) mit w< 2,38, aufgestellt von Don COPPERSMITH und Shmu-
el WINOGRAD [15], [8, Chapter 15]. Es wird in diesem Abschnitt gezeigt,
dass bei Hinzunahme der ganzzahligen Operation als weitere Operation die
Matrizen in quadratischer Zeit, d.h. quasi-optimaler Zeit, berechnet werden

konnen.

Theorem 12. Seien A € Z°" und B € Z™™ . C:= A -B € Z°™ kann diber
{+,—,%, DIV} in O((k + m)n + km) Schritten berechnet werden.

Beweis. Fiir ¢ = 1,...,k und j = 1,..,m soll ¢;; = X' a;; - b;; berechnet
werden. O.B.d.A. seien a;;, b;;> 0, ansonsten zerlege die Matrizen und multi-

pliziere nach dem nicht-kommutativen Distributivgesetz fiir Matrizen.
Z sei eine Zweierpotenz und so gewdhlt, dass Z > (max; a,;) - (max; ;b ;) - n.

Die Matrizen A und B werden folgendermafien als ganze Zahlen in O(kn) und

O(nm) Schritten kodiert.

o= Ezk:lzln:lai,l czUNrmmED g g = sz:lﬂlnzlbl’,- . ZD+2n(-)

Vorab werden alle zur Kodierung und spéteren Dekodierung bendtigten Po-

tenzen von Z in O(log (knm)) berechnet.

Wie in der folgenden Abbildung dargestellt, stehen die gesuchten Zahlen c; ;
bei dem Produkt v := « - 3 in Z-adischer Darstellung genau an den Positionen
Z2n(- DD +2nm(-1) - ©igtels ganzzahliger Division werden die ¢;; in O(km)

Schritten aus dem Produkt 7 extrahiert.

[Pul - ‘3221321! [ ! ! Pl - ‘a121a”|
Z2/7m ZZn(m-1) Z2n Zn Z
| | | | | | I
I P B oo O] P[0 ... [0
Z2nm+(n-1) Z2n(m-1)+(n-1) Z3n-1 Zn-1
| | | | | I
*lczw‘ ‘*‘*l * *|C1m‘*‘...‘*| ............ *|C1\*‘...‘*| * % *|C”‘*‘,_,‘*|

Abbildung 9. Kodierung der Matrizen A und B und Dekodierung der Matrix C
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Die Berechnungszeit wird zum Kodieren und Dekodieren der Matrizen benotigt

und die eigentliche Multiplikation erfolgt in konstanter Zeit. a

6.2 Permanente und Determinante

Dass bei Hinzunahme der ganzzahligen Division die Permanente einer Matrix
in quadratischer Zeit berechnet werden kann, wurde fiir Matrizen mit Eintra-
gen aus {0, 1} von Eric ALLENDER, Peter BURGISSER et al. in [1] gezeigt.
Dieser Beweis wird auf Matrizen mit Eintrdgen aus N iibertragen. In Verbin-
dung mit der Polynomberechnung bei multivariaten Polynomen iiber einem
endlichen Bereich lisst sich diese Laufzeit auf die Berechnung der Determi-

nante einer Matrix mit ganzzahligen Eintragen iibertragen.

Satz 6 Man kann

N 5 A — Perm(A) = Z a17(1) " Gnyr(n)

WESn

iiber {+,—,*, DIV} in O(n?) Schritten berechnen.

Beweis. Betrachte das multivariate Polynom f,.

for= Y LY =[O xiv* )

i=1 i=1 j=1
Die f,; sind Polynome mit natiirlichen Koeffizienten in n? Variablen.

Alle Y?' fiir j=1,...,n und damit auch jede Summe fiir i=1,....n lassen sich
in O(n) berechnen. Da es n Summen sind und das Produkt iiber diese Sum-
me wiederum in O(n) berechnet werden kann, ist dieses Polynom in O(n?)

Schritten iiber {+, —, %} berechenbar.

Zu einer Matrix A mit Eintrdgen a;; € N wird dieses Polynom f, fiir X, ; =
a;; und fiir ein geniigend grofies Y:Z>(max?’j:1ai’j)”3 > n" - (maxy _yaq )",
ebenfalls in O(n?) berechenbar, ausgewertet. Nach Wahl von Z ist f, 901 an
der Stelle X;; = a;; gerade die Permanente von A. Durch die ganzzahlige

Division und Restbildung lésst sich f,on_;1 aus f,(Z) extrahieren. O
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Im Folgenden wird gezeigt, dass diese quasi-optimale Polynomialzeit O(n?)
nicht nur fiir die Berechnung der Permanente, sondern auch fiir die Berechnung

der Determinante gilt.

Theorem 13. Sei A € Z™", Det(A) kann in O(n?) Schritten tiber {+, —, x,
DIV} berechnet werden.

Im Gegensatz zu Theorem 10 wird die bitweise Konjunktion ,,&” hier nicht als

weitere Operation bendotigt.

Beweis. Zunéchst wird die Matrix A € Z"*" zu einer Matrix A’ € N™*"_ deren
Determinante sich hochstens um das Vorzeichen von der Determinante von A

unterscheidet, in O(n?) Schritten umgeformt.

Sei a;,, = max{|a;;|,i,7 = 1,..,n}€ N, ansonsten, falls a,, j, negativ ist,
multipliziere die ig. Zeile mit -1. Die beiden Determinanten unterscheiden sich

dann um das Vorzeichen.

Addiere zu jeder Zeile das Doppelte der Zeile ig. In der Spalte j, haben nun
alle Eintrége dasselbe Vorzeichen wie a;, ;, und sind betragsméfig grofer als

a;, 5, und die Eintrdge in den anderen Spalten sind < 3 - a; ;-

Wird nun zu jeder Spalte das Vierfache der Spalte j, addiert, so sind alle
Eintrage positiv und haben sich betragsmifig hochstens verachtfacht. Da sich
die Determinante bei diesen Zeilen- und Spaltenumformungen nicht &ndert,

wird im Folgenden 0.B.d.A. A € N™™" angenommen.

Wird die Determinante fiir Matrizen mit natiirlichen Eintrdgen in ihren posi-

tiven Teil und ihren negativen Teil aufgeteilt,

Dety(A) = Z a17(1) " Gp(n) und

7T€Sn
sgn(m)=+

Det,(A> == Z a/l,7r(1) T an,ﬂ'(n)7

TI'ESn
sgn(m)=—

so lassen sich die Permanente und die Determinante folgendermafen aus-

driicken: Perm(A) = Det; (A) + Det_(A) und Det (A) = Det(A) — Det_(A).
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Da sowohl Det (A) als auch Det_(A) Polynome in n® Variablen x;,,;_1) =
a;; mit Maximalgrad kleiner als d := 2 (der totale Grad ist n) und Koeffizi-
enten 0,1 sind, geniigt es wie in Abschnitt 5.2 und dem Beweis von Satz 8,
die Werte von Det, = (Perm + Det)/2 und von Det_ = (Perm — Det)/2 an
der Stelle T = (xg, ..., xp2_1) == (2, 2%, 2", ..., Z’Q"%l) zu berechnen, wobei
Z':= 7Y fir Z := (maxy |xk|)2n2 und eine geeignete Konstante Y in O(n?)
Schritten berechnet werden. Nach Satz 6 kann die Permanente ebenfalls in

O(n?) Schritten berechnet werden.

Um die Determinante dieser Matrix zu berechnen, wird sie folgendermafen

umgeformt:
7! 712 g 78 gt
2" Z,2n+1 Z/2”+2 . Z/22"*1
Z/22n Z/22n+1 . . Z/237L—1
Z/23" . Z/24"*1 -
gr2n=m . Z/2”2*1
7! 712 74 718 .. mel
Z/2" (ZIZ" ) 2 (ZIQ" ) 4 (ZIZ" ) 8 (ZIZ” ) i
- 12 ( Z/22n) 2 ( Z/22n)4 ( Z/22n)8 ( 122 ) 2nt B
Z/23n (Z,23n) 2 L (Z/23n) on—1
Z/Q(nfl)n (Z/Q(’ﬂfl)n)z L . (Z,Z(nfl)n)anl

Da dies die Determinante einer Vandermondematrix ist, gilt fiir diese

SRV LR Ly N | (2’2“‘””—2’2“‘”")

1<i<j<n

Dieser Ausdruck lisst sich ebenfalls in O(n?) Schritten berechnen. O
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Frage 2 Sei P C S, eine beliebige Familie von Permutationen von [n|. Kann
auch 3 p 1110 Tisnmy in O(n?) Schritten iber {+, —,*, DIV} berechnet

werden?

6.3 Potenzierung ganzzahliger Matrizen

Bekannterweise kann a2 durch wiederholtes Quadrieren in k Schritten be-
rechnet werden. In [11] wurde gezeigt, dass bei Hinzunahme der ganzzahligen
Division als weitere Operation und einer ganzen Zahl b grofer als a® nur
O(Vk) Schritte benotigt werden. Dieses Verfahren wird auf die Potenzierung
von Matrizen iibertragen. Um eine Laufzeitverbesserung gegeniiber der Lauf-
zeit von O(k - d?) fiir die k-fache Matrixmultiplikation von d x d-Matrizen aus
dem vorherigen Abschnitt zu erzielen, ben6tigt man als zusétzliche Operation

auf den ganzen Zahlen die Bildung des gréfiten gemeinsamen Teilers gg'T.

Definition 3. Seien X,C € 794
a) ggT(C):= ggT(cy:1<i,j < d)
b) X rem C:= (z;; mod ggT(C))

¢) X=Y mod C, falls der ggT (C) jeden Fintrag ;- y; von X - Y teilt.

Dies ergibt fiir festes C eine Aquivalenzrelation auf Z%4, sogar eine zweiseitige

Kongruenzrelation ! wie das folgende Lemma zeigt.

Lemma 12. o) Falls X =Y mod C ist, gilt S-X-T=S-Y-T mod C.
b) Fir jedesn € N gilt X" = Y™ (mod (X —Y).
¢) X rem C =X (mod C).

d) Falls 0< z;; < ggT(C)ist, gilt X rem C = X.

Beweis. a) gilt nach dem Distributivgesetz fiir Matrizen.
b) folgt aus a) und dem nicht-kommutativen Binomialtheorem.

¢) und d) folgen unmittelbar aus den Definitionen. O

! Umgekehrt hat jedes zweiseitige Ideal in Z**? diese Form [21, Proposition III1.2.1]
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Theorem 14. Seien k € N, A € N™ gegeben und v := d* " - (max;a;)* .
Ferner sei noch ein B € N gegeben, so dass fiir alle C € {0,1,...,~} 9
g9T(B - C) >~ gilt, dann kann A% in O(Vk - d2) Schritten iiber {+, —, %, DIV,
ggT} berechnet werden.

Bemerkung 6 Nach der Wahi von B kann nicht nur A2 in O(Vk - d2) Schrit-
ten dber {+,—, %, DIV, ggT} berechnet werden, sondern auch jedes A fuir
jedes 0 < k' < k und 0 < maxjj|aj| < maxlay| in O(WX - d?) Schritten .

Beweis. Es geniigt den Fall k=1? zu betrachten. Nach Theorem 12 wird zu-
nichst die Matrix B2 durch wiederholtes Quadrieren in O(1-d?) Schritten

berechnet.

Durch Anwendung von Lemma 12 auf n := 2! |, X = AQl(j_l>, Y := B? und
C :=Y — X erhélt man folgende Gleichung

(*)
A2 = (A7) = BYrem (B — A¥Y7Y),

falls der ggT(B — A2Y™") gréfer als die Eintriige von A2 st

Induktiv wird fiir j = 1,...,1 nach Gleichung (*) A% aus AV jeweils in

O(d?) Schritten berechnet.

Da die m-te Potenz einer d x d-Matrix A mit Eintrdgen aus der Menge {0, 1, ..., s}
Eintriige aus der Menge {0, 1, ..., d™! - s™} hat, gilt nach der Voraussetzung fiir
B die obige Gleichung.

Die Operation ggT wird benétigt, um den ggT(C) in O(d?) Schritten und

damit X rem C nach der obigen Definition zu berechnen. a

Erstaunlicherweise erhédlt man die Folge von Matrizen AQU, j =1,...,0 nur

durch Modulo-Berechnungen der Matrizeneintrage.

Es fehlt noch der Beweis, dass es solch ein B, bei dem der ggT(B-C )>~ fiir
alle Matrizen C € {0,1, ..., v} ¥4 ist, iiberhaupt gibt.



61

Im Fall d = 1 heiit das gerade, dass, wie in Satz 5, B=(b) grofer als a2 fiir
A=(a) ist, vgl. [11].

Fiir den Fall d>1 wird im Lemma des nichsten Abschnitts gezeigt, dass es

viele solcher B gibt, und es wird beschrieben, wie man sie erhalt.

6.4 Lokale untere Schranke des ggT

Eine reelle Funktion f : RY — R heiRt halbstetig nach oben an der Stelle T,
wenn fiir alle 7 in einer Umgebung von ¥ die Funktionswerte von  und @ nicht
zu weit auseinander liegen, siehe [36]. Da der ggT eine diskrete Funktion ist,
sind diese topologischen Kriterien streng genommen nicht auf diese Funktion
anwendbar. Aber dennoch lassen sich auch fiir den grofsten gemeinsamen Teiler

Punkte T angeben, die dem Begriff der oberen Halbstetigkeit dhnlich sind.

Lemma 13. Fir alle d, r, s € N gibt es x1,29,...,xq4 € N, so dass fir alle

V1, V2, . Ug € 40,1, s — 1} geT (@ + vy, .o, g + vg)> 1 gilt.

Beweis. Man nehme paarweise teilerfremde natiirliche Zahlen p; > r, v €
{0,1,...,s — 1}d, man kann im Allgemeinen die p; als Primzahlen wihlen. Fiir
i=1,...,dundj =0,..,d—1seiu,; := Hmh:j pg. Die Zahlen w; g, t; 1, ..., Ui s—1
sind bei festem i wiederum teilerfremd. Nach dem Chinesischen Restsatz gibt es
ein z; € N, sodass u, j fiiralle j = 0,1, ..., s—1 ;4 teilt. Da insbesondere alle
pr in den u,,, als Teiler vorkommen, teilen sie x; 4 v; fiir jedes ¢ = 1, ..., d und
damit auch den ggT (z1+vy, ..., xg+v4). Daher muss der ggT (2141, ..., Tg+vq)

mindestens so grof sein wie pyz > r . O

Bemerkung 7 a) Die z1,x,...,x4 € N aus dem vorherigen Lemma kinnen

so gewdhlt werden, dass sie zwischen 0 und (r - S)O(S) mit S:=s% liegen.

b) Uber {+,—,* DIV, egeT} kinnen sie in O(S) Schritten gebildet werden

(aber nicht notwendigerweise innerhalb obiger Schranke).

wegg’T” bezeichnet den erweiterten grofiten gemeinsamen Teiler, d.h. dass es zu
gegebenen z,y € N s,t € Z (0.B.d.A. s, t teilerfremd) gibt mit ggT(x,y)= sx
+ty.
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Beweis. a) Nach dem Primzahltheorem hat die k-te Primzahl eine Gréfenord-
nung von O(k - logk) und es gibt hiéchstens m(n) < O(n/logn) Primzahlen,
die kleiner als n sind. Daher hat die erste Primzahl, die wenigstens so grof wie

r ist, den Index k, ;= 7w(r) < O(r/logr).

Es soll das Produkt N :=py_ - ... px, s beschrankt werden, das ist gerade der
Quotient der Primfakultiten? (r + 1)# /1# mit 7 +1 = py..s =+ (S - log ).
In |32] ist gezeigt worden, dass w(r + 1) — w(r) < 2m(l) 3gilt. Also gibt es
zwischen r und r + 1 mindestens O(l/logl) = O(S) Primzahlen und jede

dieser Primzahlen ist natiirlich nicht grofer als r + 1. Daher gilt
N = (r+0)#/r# < (r+ 105085 < (p. )05 10e8)

fiir [ = O(S - log S).

b) Die paarweise teilerfremden ganzzahligen p; > r erhiilt man folgendermafen:
p1 =71, po:=p1+1, p3:=pi-pat+1,.., pir1 :=pi-....p;+1. Durch Anwendung
des folgenden Lemmas, dem Chinesischen Restsatz mit Laufzeitabschitzungen,

folgt der Beweis zu b).

Lemma 14. (Chinesischer Restsatz) Zu gegebenen ay,as,...,a, € Z und tei-
lerfremden my,mo,....m, € N kann ein v € N mit x = a;modm; fir i =
L,....,n in O(logn - X logm;) Schritten iber {+, —,*, DIV} berechnet wer-

den. Wird der erweiterte grofite gemeinsame Teiler eggT als weitere Operation

hinzugenommen, reduziert sich die Laufzeit auf O(n)*.

Beweis. Berechne N :=my-ms-...-m, und mit der Operation egg'T berechne
siyt; € Z mit 1 = ggT(my;, N/m;) = s;m; + t;N/m;. Fir e; := t;N/my, i =
1,...,n gilt ¢, = 1modm,; und e; = Omodm,; fiir i # j. Daraus folgt, dass

x = X" a,e; die geforderten Kongruenzen erfiillt.

Uber {4, —, *, DIV} benétigt die Berechnung von eggT (m;, N/m;) O(log N) =
O(Xn logm;) Schritte fiir jedes i = 1,..,n, also eine Gesamtlaufzeit von
O(n - X logm;) = O(n - log N), falls diese n Berechnungen mit Hilfe des
"2 Bine Primfakultit (engl. primorial) p# ist das Produkt der ersten p Primzahlen.

3 Ich danke Stephan Wehmeier fiir den Hinweis auf diese Schranke.

n

Y Da my, ..., mn teilerfremd sind, gilt X7_1logm; > 2(n).
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erweiterten groften gemeinsamen Teiler nacheinander durchgefithrt werden.

Uber {+, —, %, DIV, eggT} benstigt man O(n) Schritte.

Um den Faktor n in der obigen Berechnung nach log n zu verbessern, werden
die simultanen Kongruenzen x = a; modm; fiir ¢ = 1,..,n folgendermafen in

einem Bindrbaum angeordnet:

Berechne zunéchst die simultanen Kongruenzen y; fir j = 1,...,n/2. Da-
nach berechne folgende simultane Kongruenzen x = yy;(mod my; - myj4q) und
T = yo;11(mod myjyo-majis) fiir j = 1,...,n/4. Auf der k-ten Ebene sind n /2"
simultane Kongruenzen, bei denen fiir die Berechnungen der Moduli als Pro-
dukte disjunkte k-tupel aus {my,mao, ..., m,} benutzt werden. Auf jede dieser
log n Ebenen werden O(X7_,logm;) Schritte unabhéngig vonk = 1, ...,O(log n)
benotigt, d.h. eine Gesamtlaufzeit von O(logn - X logm;). O

1

6.5 Primzahlbildung mit Hilfe der ganzzahligen Division

Die grokten der in dem Beweis zur Bermerkung 7 b) konstruierten Primzah-
len und damit aber auch die z; aus Lemma 13 sind von der Grofenordnung
2(r?*"") und damit erheblich grofer als die moglichen in Teil a) als Primzah-
len gewdéhlten p;. Es stellt sich dann natiirlich die Frage, ob die genannten
nicht klassischen Operationen die Berechnung dieser Primzahlen ermdoglicht,
d.h. kann die Suche nach einer Funktion, die als Funktionswerte nur Primzah-
len hat, mit diesen Operationen gelingen? Diese Frage wird am Anfang von

Kapitel 3 in [37] gestellt und in Abschnitt II dieses Kapitels weiter erortert.

Das Sieb des Eratosthenes findet alle Primzahlen kleiner N in O(N) Schrit-
ten iiber {4, —}. Dies kann zu O(N/loglog N) beschleunigt werden [35]. Da
nach dem Primzahltheorem es ©@(N/log N) Primzahlen kleiner N gibt, ist die-
se Schranke im Vergleich zur Ausgabe optimal. Damit lassen sich in einem

einfachen randomisierten Verfahren Primzahlen finden.

Bemerkung 8 Zu N € N rate irgendein N < n < 2N. Mit einer Wahr-
scheinlichkeit von ©(1/log N) ist n eine Primzahl. Nach O(log N) unabhdngi-

gen Versuchen hat man mit konstanter Wahrscheinlichkeit eine Primzahl ge-
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funden. Mit dem Primzahltest aus [14] fihrt dies iber {4, —, *, DIV} zu einer
Laufzeit von O(log?N).

Da das Bertrand-Chebyshev Theorem besagt, dass es stets eine Primzahl zwi-

schen N und 2 N gibt, lasst sich dieser einfache Algorithmus etwas verbessern.

Theorem 15. Zu N € N gibt es einen Algorithmus tber {+, —, %, DIV}, mit
dem man mit konstanter Wahrscheinlichkeit und in O(log®N/loglog N') Schrit-

ten eine Primzahl p > N erhdlt.

Beweis. Priife zunéchst, ob N eine Primzahl ist, indem nach Wilson‘s Theorem
gepriift wird, ob (N —1)! von N geteilt wird. Das geht iiber {+, —, %, DIV} in
O(log N) Schritten [40, Abschnitt 3.

Alle benachbarten Fakultéiten (N +k)!, k = 1,..., K konnen in konstanter Zeit
berechnet werden, d.h. nach dem Primzahltest fiir N erhoht sich in der O-
Notation fiir die Primzahltests von N +1, N +2,.... N + K fiir K := O(log N)

nichts.

Rate nun irgendeine O(log N)-Bit-Zahl M < N und teste danach wie oben in
O(log N) Schritten, ob die Zahlen N+M, N+M+1, ..., N+ M+ K Primzahlen

sind.

Behauptung 5 Mit einer Wahrscheinlichkeit von £2(loglog N/log N) wird ei-

ne Primzahl gefunden.

Nach O(log N/loglog N) unabhingigen Versuchen hat man mit konstanter

Wahrscheinlichkeit eine Primzahl gefunden.

Beweis. der Behauptung

Nach dem Primzahltheorem liegen zwischen N und 2N 2(N/log N) Primzah-
len, aufkerdem liegen in jedem Intervall der Linge K zwischen N und 2N ho6chs-
tens m(K) < O(K/log K) Primzahlen [32].

Daher besagt das Dirichletsche Schubfachprinzip, dass innerhalb dieser N/K

Intervalle mindestens {2(log K /log N) viele Intervalle wenigstens eine Primzahl

enthalten, d.h. £2(loglog N/log N) fiir K:=O(log N). O
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Einen Ansatz zu einem sogar noch schnelleren und deterministischen Weg zur

Primzahlbildung erh&lt man folgendermafien:

Bemerkung 9 1947 bewies W.H.MILLS die Ezistenz einer reellen Zahl 0 ~
1,3063789 [14], so dass p, = LHP’“J eine Folge von Primzahlen bildet mit

Pni1 > Do

Nicht bekannt ist, ob 6 rational ist. Falls 6 rational ist, kann man in O(n) =

O(log N) Schritten iiber {4, —, %, DIV} eine Primzahl p, > 3" =: N finden.

Aber wir erhalten auch diese Schranke, selbst wenn @ irrational und algebraisch

ist. Um L@NJ zu berechnen, betrachte

N
N
(9+€)N:9N+N'€N_1+Z ‘Ek_eN—k
=2 \ Kk

[\ J/
-~

<1

Aus dieser Abschétzung folgt, dass es geniigt eine rationale Approximation 6’

von 6 mit einer Abweichung von € &~ 27 /N zu berechnen.

Nach Lemma 11 geht das, falls 6 algebraisch ist, in O(log N) Schritten und
dann kann man, da [0V |=|6" | gilt, in O(log N) Schritten iiber {+, —, *, DIV}

eine Primzahl >N finden

7 Riuckblick und Ausblick

In dieser Arbeit wurden die Sprachklassen, die mit der ganzzahligen Division
erkannt werden konnen, auch fiir den n-dimensionalen Fall vollstindig unter-
schieden. Eine Charakterisierung dieser Sprachen gelang vollstindig nur fiir
die ganzzahlige Division mit Konstanten. Fiir die anderen Operationsmengen
S C {+, —, *, %, DIV, DIV} gelang eine Charakterisierung nur fiir sehr ein-
geschrinkte Eingabemengen. Es konnte im Folgenden untersucht werden, fiir
welche Sprachen sich weitere untere Schranken aus diesen Charakterisierungen
von den unteren Schranken fiir diese Sprachen mit Operationsmengen ohne

ganzzahlige Division ableiten lassen.
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Die doppellogarithmische Liicke zwischen oberer Schranke O(d) und unterer
Schranke (2(loglog(d)), falls d den Grad des Polynoms bezeichnet, zur Po-
lynomauswertung iiber dieser méchtigen Operationsmenge {+, —, *, DIV} mit
rationalen Konstanten konnte nicht geschlossen werden, sondern fiihrte zu ei-

nem seit langem offenen Problem der Zahlentheorie, ob die Reihe ZQ‘dn2

n=0
algebraisch ist, und, wenn ja, von welchem Grad. Das Ziel ist weiterhin fiir

eine unendliche Folge von Eingabewerten eine Moglichkeit zu finden, die zuge-
horigen Werte des Polynoms in o(degp) zu berechnen, so dass in Verbindung
mit dem Algorithmus von Bshouty insgesamt Polynome in o(deg p) ausgewertet
werden konnen. Eine Beschleunigung zu O(log d) gelang nur bei Hinzunahme
der bitweisen Konjunktion als weiterer Operation. Da es aber nicht bekannt
ist, ob die bitweise Konjunktion ,,&” in Polynomialzeit mit der Operations-
menge {+, —, %, DIV} simuliert werden kann, fiihrt dieser Weg nicht zu einem
Algorithmus zur Polynomauswertung in o(deg p) iiber {4, —, x, DIV}, sondern
zu der seit langem offenen Frage NP=PSPACE.

Ausgehend von diesem schnellen Algorithmus von Bshouty zur Polynomaus-
wertung iiber einem endlichen Bereich stellt sich die Frage, ob dieser Algo-
rithmus auf einem modernen Computer schneller ist als andere Algorithmen
wie z.B. das Hornerschema. Statt der maximal d Multiplikationen, wenn d der
Grad des Polynoms ist, werden 2 ganzzahlige Divisionen benutzt. Dies ist der
entgegengesetzte Weg zur Vorgehensweise in z.B. [18], bei der Multiplikationen
durch ganzzahlige Divisionen ersetzt werden. Ein Nachteil ist, dass bei diesem
Algorithmus riesige Zahlen zur Berechnung bendtigt werden und kein realer
Rechner in der Lage ist, solch grofte Zahlen in konstanter Zeit zu verarbeiten.
Heifst das von vornherein, dass dieser Algorithmus nicht praktikabel ist. In den
letzten Jahrzehnten ist der technische Fortschritt dermafsen angewachsen, dass
es in der Bandbreite der arithmetisch-logischen Einheiten (ALU=arithmetical-
logical unit) von Prozessoren einen exponentiellen Zuwachs gab. Heutige Com-
puter konnen auf 64 oder sogar 128 Bits in einer einzigen Anweisung operieren,
d.h. das Einheitskostenmodell gilt bereits fiir sehr grofse Eingaben und dieser

Bitbereich wird immer noch grofer.
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Nicht nur fiir die Polynomauswertung wurde ein Algorithmus vorgestellt, der
die ganzzahlige Division und bitweise Konjunktion zur Beschleunigung be-
nutzt, sondern es wurden auch Algorithmen entwickelt, die die ganzzahlige
Division und andere Operationen wie den gréften gemeinsamen Teiler nutzen,
um die Matrixmultiplikation und -potenzierung und zahlentheoretische Rech-
nungen zu beschleunigen. Es wurden einige Losungsansitze vorgestellt, die zu
wirklich effektiven Losungen fiihren, wenn gleichzeitig seit langem offene Fra-
gestellungen der Zahlentheorie bewiesen werden konnten. Andere Probleme
lieken sich dadurch beschleunigen, dass zusétzlich im Vergleich zur Eingabe
sehr grofse Zahlen mit eingegeben werden. Die Laufzeit dabei ist sogar kiirzer

als die informationstheoretischen unteren Schranken.

Wiirde als weitere Operation mit Einheitskosten der Linksshift «: y +— 2V
wie in [41] hinzugenommen oder sogar allgemein die Exponentiation N x N 3
(z,y) — z¥ liefen sich auch diese Zahlen, da sie doppelexponentiell grof sind,

schnell berechnen.
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