
Mächtigkeit und Komplexität

von Berechnungen mit der

ganzzahligen Division

Dissertation

zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften

dem Fakultätsrat der Fakultät

Elektrotechnik, Informatik und Mathematik

der Universität Paderborn vorgelegt von

Katharina Lürwer-Brüggemeier

Eingereicht: 15.09.2008

Erster Gutachter: Prof. Dr. Friedhelm Meyer auf der Heide

Zweiter Gutachter: Privatdozent Dr. Martin Ziegler

Inhaltsverzeichnis

1 Einleitung . 1

1.1 Die Berechnungsmodelle . 3

1.2 Überblick . 6

2 S-Berechnungsbäume für S ⊆ {+,−, ∗, ∗c, DIV, DIVc} 10

2.1 S-Berechnungsbäume im Fall n=1 . 11

2.2 S-Berechnungsbäume im Fall n>1 . 13

3 Beweise im Fall n= 1 . 18

4 Beweise im Fall n> 1 . 24

4.1 Operationsmengen mit DIVc . 24

4.2 Operationsmenge {+,−, ∗c, DIV} . 27

4.3 Operationsmenge {+,−, ∗, DIV} . 29

4.4 Separationsresultate . 37

5 Polynomauswertung . 39

5.1 Polynome mit einer Variablen . 39

5.2 Polynome mit mehreren Variablen . 43

5.3 Polynomauswertung mit bitweiser Konjunktion 46

5.4 Speichern und Extrahieren algebraischer Zahlen 51

6 Anwendungen in der Linearen Algebra . 53

6.1 Matrixmultiplikation . 55

6.2 Permanente und Determinante . 56

6.3 Potenzierung ganzzahliger Matrizen . 59

6.4 Lokale untere Schranke des ggT . 61

6.5 Primzahlbildung mit Hilfe der ganzzahligen Division 63

ii

7 Rückblick und Ausblick . 65

Abbildungsverzeichnis . 67

Literaturverzeichnis . 68

1

1 Einleitung

In dieser Arbeit wird die Mächtigkeit, d.h. was kann überhaupt berechnet wer-

den, und die Komplexität (d.h. wie schnell können die Berechnungen durchge-

führt werden) über verschiedene Operationsmengen S ⊆ {+,−, ∗, ...} mit der

Eingabemenge Zn betrachtet. Sowohl Berechnungsmächtigkeit als auch Kom-

plexität hängen stark von dem zugrundeliegenden Rechenmodell ab.

Die Turingmaschine als uniformes Rechenmodell wird allgemein als das geeig-

nete Modell für diese Art der Betrachtungen angesehen. Sie berechnet eine

Funktion f : A∗ → A∗ für ein endliches Alphabet A, i.a A = {0, 1}. Bei ihr

werden die Kosten bitweise berechnet, als eine Funktion T : N→ N mit T (n)

der Worst Case über alle Eingaben der Länge n.

Aber gerade bei der Entwicklung von Algorithmen zur Ableitung oberer Schran-

ken und insbesondere beim Beweis unterer Schranken bedient man sich häu�g

algebraischer Modelle, wie der uniformen Registermaschine RAM, die auf den

ganzen Zahlen (oder R oder Q) mit dem Einheitskostenmaÿ und nicht bitweise

operiert, d.h. bei ihr werden Funktionen f : Z∗ → Z∗(bzw. f : R∗ → R∗ oder

f : Q∗ → Q∗) berechnet und die Komplexität T (n) wird als eine Funktion

T : N→ N als Worst Case über alle Eingaben aus Zn (bzw. Qn oder Rn) be-

rechnet. Die Durchführung einer Operation entspricht in diesem Modell einem

Zeitschritt und die Laufzeit wird nur in Abhängigkeit von der Dimension der

Eingabe und nicht von der Bitlänge bestimmt.

Die Berechenbarkeit und auch die Komplexität solch einer Registermaschine

hängt stark von der Wahl der Grundoperationen ab, z.B. Inkrementation, Ad-

dition, Subtraktion, Multiplikation, Vergleiche �=� oder �<�, ganzzahlige Divi-

sion, bitweise Konjunktion �&�, Shifts �x← y = x·2y� und �x→ y = x DIV 2y�,

indirekte Adressierung usw.. Die bitweise Konjunktion und die ganzzahlige Di-

vision (wenn der Dividend kein Vielfaches des Divisors ist) gehören zwar nicht

zu den klassischen Grundoperationen, werden aber von digitalen Computern

unterstützt.

Wie sehr die Wahl der Operationsmenge die Mächtigkeit bestimmt, zeigt sich

darin, dass für RAMs mit der Eingabemenge {0, 1}∗ eine Berechnung mit der

2

Operationsmenge {+,−, ∗, =} trotz exponentiell langer Zwischenergebnisse in

RP [39] simuliert werden kann, dagegen Berechnungen mit der Operations-

menge {+,−, DIV, =} bereits ganz NP abdecken [39] und mit {+,−, ∗, &, =}

sogar PSPACE [34], vergleiche auch [4,3] und [41].

Um untere Schranken zu beweisen, werden statt der uniformen Rechenmodelle

häu�g die entsprechenden nichtuniformen Modelle betrachtet, d.h. es werden

nicht Eingaben beliebiger Länge, sondern n-stellige Eingaben betrachtet. Eine

nichtuniforme RAM über den ganzen Zahlen bestimmt für eine Eingabe x̄∈ Zn

in Abhängigkeit von n, welche RAM Mn ihr Programm auf x̄∈ Zn ausführt.

Alle bekannten unteren Schranken für uniforme RAMs über Zn gelten auch für

nichtuniforme RAMs und es gibt bisher keine unteren Schranken für uniforme

RAMs, die explizit die Uniformität ausnutzen, sich also von unteren Schranken

für nichtuniforme RAMs unterscheiden. Als adäquates nichtuniformes Rechen-

modell zum Beweis unterer Schranken dient der S- Berechnungsbaum, kurz:

S-CT (CT = computation tree). Die Berechnungsmächtigkeit für n-stellige

Eingaben bei S-RAMs und S-CTs ist identisch, jedoch sind die Komplexitä-

ten unterschiedlich. Da die Registermaschine zusätzlich die Möglichkeit der

indirekten Adressierung hat, hat der S-Berechnungsbaum zur Simulation einer

nichtuniformen S-RAM einen zusätzlichen logarithmischen Faktor [31, Lemma

1].

Ziel dieser Arbeit ist es, die Berechnungsmächtigkeit und die Komplexität von

S-Berechnungsbäumen mit der Eingabemenge Zn für n>1 für verschiedene

Operationsmengen S ⊆ {+,−, ∗, ...}, die die ganzzahlige Division oder die

ganzzahlige Division mit Konstanten enthalten, zu untersuchen und Algorith-

men zu entwickeln, die durch die Hinzunahme der ganzzahligen Division und

auch weiterer nicht klassischer Operationen wie der bitweisen Konjunktion

und dem gröÿten gemeinsamen Teiler mit dem Einheitskostenmaÿ beschleu-

nigt werden.

3

1.1 Die Berechnungsmodelle

Ein (S,C)-Berechnungsbaum, kurz ein (S, C)-CT, mit der Operationsmenge

S ⊆ {+,−, ∗, ∗c, DIVc, DIV} und Konstanten aus der Menge C, {1} ⊆ C ⊆ Q,

für Eingaben x1, . . . , xn ist ein endlicher binärer Baum. �∗c, DIVc� bezeichnen

die Multiplikation und die Division, bei denen ein Faktor oder der Divisor

konstant ist, d.h. er hängt also nicht von den Eingabewerten ab.

� Knoten v vom Grad 1 berechnen eine Funktion gv : Qn → Q. gv ist entweder

xi für ein i ∈ {1, . . . , n} oder gv ist c für ein c ∈ C oder gv ist von der Form

gv1op gv2 mit v1, v2 Knoten auf dem Weg von der Wurzel zu v, und op ∈ S.

� Knoten v vom Grad 2, die Verzweigungen, sind mit Vergleichen �g(x1, . . . , xn)

> 0� für eine Funktion g, die auf dem Weg zum Knoten v berechnet wurde,

beschriftet.

� Knoten vom Grad 0 sind die Blätter. Sie sind mit �akzeptiere� oder �ver-

werfe� beschriftet.

f1

•

•

•

•

•

••

•

•

f3

p1>0

p2 >0

f4

f2

acc rej

acc

Abbildung 1. Berechnungsbaum

Eine Eingabe x = (x1, . . . , xn) ∈ Zn folgt einem Weg von der Wurzel zu

einem Blatt. An einem Vezweigungsknoten v folgt sie dem linken Zweig, falls

�g(x1, . . . , xn) > 0" wahr ist, sonst dem rechten Zweig. Die Eingabe x wird

akzeptiert, falls sie zu einem mit �akzeptiere� beschrifteten Blatt gelangt.

Die Menge der Eingaben, die zu den mit �akzeptiere� beschrifteten Blättern

gelangen, ist die von dem Berechnungsbaum erkannte Sprache L ⊆ Zn.

Die Komplexität eines S- Berechnungsbaumes ist seine Tiefe.

4

Werden zur Tiefe nur die Verzweigungsknoten gerechnet, spricht man von der

Verzweigungstiefe des Baumes.

Der Grad eines ({+,−, ∗}, C)-CT ist der maximale Grad der Polynome, die in

seinen Knoten berechnet werden.

Die Berechnungen entlang eines Pfades im S- Berechnungsbaum, d.h. ohne

Verzweigungen, werden als Straight-Line- Programm, kurz SLP bezeichnet.

Die Familie CCn(S) der Sprachen L ⊆ Zn, die von einem Berechnungsbaum

mit der Operationsmenge S erkannt werden, bezeichnet die Berechnungsmäch-

tigkeit einer Operationsmenge S für n- dimensionale Eingaben.

Bemerkung 1 Da angenommen wird, dass {+,−} ⊆ S gilt, ist CCn(S) un-

abhängig von der Wahl von C, {1} ⊆ C ⊆ Q . Daher schreiben wir S-CTs

statt (S, C)-CTs, falls die Wahl von C nicht von Bedeutung ist.

Die Sprachen, die ein S- Berechnungsbaum für eine Operationsmenge S er-

kennt, lassen sich folgendermaÿen charakterisieren.

Eine Funktion f : Zn → Z wird als S-Funktion bezeichnet, falls sie durch

ein Straight- Line- Programm mit Operationen aus S und Konstanten aus Q

berechnet werden kann.

Bemerkung 2 Eine Sprache L ⊆ Zn kann genau dann durch einen S-CT

entschieden werden, wenn L eine Boolsche Kombination endlich vieler Mengen

{x ∈ Zn, f(x) > 0} für S-Funktionen f ist.

Dies ist bei wohlbekannten S-Funktionen eine hinreichende Charakterisierung.

Dies ist im Allgemeinen der Fall für S = {+,−, ∗c}, S = {+,−, ∗}, S =

{+,−, ∗, /} (die S-Funktionen sind lineare Funktionen, Polynome, rationale

Funktionen).

In den Aufsätzen von David DOBKIN und Richard J. LIPTON [16] und Micha-

el BEN-OR [12] werden Argumente aus der algebraischen Geometrie benutzt,

um untere Schranken für {+,−, ∗, /}-CTs mit rationalen oder reellen Eingaben

5

zu beweisen. Die Beweise basieren auf der Zahl der Zusammenhangskomponen-

ten der Sprache, die erkannt werden soll. Dies führt zu einer unteren Schranke

von z.B. Ω(n2) für das Rucksackproblem (knapsack problem). In dem Aufsatz

von Andrew YAO [42] werden diese Schranken auf eine groÿe Sprachklasse mit

ganzzahligen Eingaben übertragen, in [33], [23] und [30] werden diese Schran-

ken auf Registermaschinen, bei denen auch die indirekte Adressierung zulässig

ist, für den Fall S = {+,−} übertragen.

Falls DIV oder DIVc in S ist, ist über die S-Funktionen viel weniger bekannt,

so dass Charakterisierungen der Sprachklassen und der Komplexitäten schwie-

riger sind.

In [2] wird ein sehr allgemeines Ergebnis für ein noch strengeres Modell, in

dem DIV und andere analytische Funktionen mit konstanten Kosten berech-

net werden, vorgestellt, nämlich dass im Allgemeinen die ganzzahlige lineare

Programmierung mit n Variablen und m Ungleichungen nicht in einer nur von

n und m abhängigen Zeit, (aber nicht von der binären Eingabelänge) in diesem

Modell berechnet werden kann. Das gilt auch für die Berechnung des gröÿten

gemeinsamen Teilers ggT mit der Operationsmenge {+,−, ∗, DIV} in [27].

Aus technischen Gründen, um die Theoreme 2 und 4 zu beweisen, wird noch der

etwas künstlich anmutende Modulo-Verzweigungs- Baum (kurz: MBT=modulo

branching tree) eingeführt.

X1mod a=0

:

Xnmod a=0

…

X1mod a=i1

:

Xnmod a=in
…

X1mod a=a-1
:

Xnmod a=a-1

…

•

• •

•

• •

•

Abbildung 2. Modulo-Verzweigungs-Baum

Ein Modulo-Verzweigungs-Baum ist ein {+,−, ∗}- bzw. {+,−, ∗c}- Berech-

nungsbaum, der zu einer Eingabe x = (x1, . . . , xn) ∈ Zn zusätzliche Verzwei-

6

gungsknoten von beliebigem endlichem Grad enthält. Gelangt die Eingabe x zu

einem Knoten vom Grad an, folgt die Eingabe x genau dann dem i-ten Zweig,

falls xj mod a = ij für i = (i1, . . . , in) ∈ {0, . . . , a − 1}n, j = 1, .., n gilt. Eine

Eingabe x ∈ Zn wird akzeptiert, falls der zugehörige Pfad in einem akzeptie-

renden Blatt endet. Die Komplexität eines Modulo-Verzweigungs-Baumes ist

seine Tiefe.

1.2 Überblick

Da bei den klassischen Programmiersprachen die häu�gsten Operationen auf

den ganzen Zahlen �+,−, ∗, ∗c, DIV, DIVc� sind, wird im ersten Teil dieser

Arbeit die Berechnungsmächtigkeit und die Komplexität von Berechnungs-

bäumen mit den obigen Operationen und Verzweigungen betrachtet. DIV be-

zeichnet die ganzzahlige Division, DIVc die ganzzahlige Division durch Kon-

stanten und ∗c die Multiplikation mit Konstanten. Für die Operationsmenge

{+,−, ∗, /} ohne ganzzahlige Division sind die Berechnungsmächtigkeit und

die Komplexitäten weitestgehend bekannt, da entlang der Pfade im Berech-

nungsbaum je nach Wahl der Operationsmenge lineare Funktionen, Polynome

oder rationale Funktionen berechnet werden. Es werden für die Komplexitäts-

betrachtungen Methoden aus der algebraischen Geometrie über Zusammen-

hangskomponenten im Reellen auf diskrete Mengen übertragen [42].

Dies ist bei Hinzunahme der ganzzahligen Division nicht mehr möglich.

Die Charakterisierungen mit den daraus abgeleiteten Schranken für Berech-

nungsbäume mit einer Operationsmenge S ⊆ {+,−, ∗, ∗c, DIVc, DIV} werden

im nächsten Kapitel vorgestellt. Um den Zusammenhang zwischen den einzel-

nen Theoremen, Sätzen, Korollaren usw. zu verdeutlichen und die Lesbarkeit

zu erleichtern, werden die Beweise, da sie sehr technisch und aufwändig sind,

in den beiden folgenden Kapiteln für den eindimensionalen und mehrdimen-

sionalen Fall geführt.

Für den eindimensionalen Fall ist in [22] eine vollständige Charakterisierung

mit den daraus abgeleiteten Schranken gezeigt worden. Die Berechenbarkeit

und die Komplexität von Berechnungsbäumen mit einer Operationsmenge S ⊆

7

{+,−, ∗, ∗c, DIVc, DIV} im eindimensionalen Fall werden im ersten Teil des

nächsten Kapitels vorgestellt. Dieser Abschnitt folgt weitestgehend den Aus-

führungen in [22].

Im zweiten Teil des nächsten Kapitels werden für den mehrdimensionalen Fall

bei Hinzunahme der ganzzahligen Division durch Konstanten eine vollständige

und für die allgemeine ganzzahlige Division eine partielle Charakterisierung

angegeben. Aus diesen Charakterisierungen werden Schranken abgeleitet und

Sprachklassen unterschieden. Dies sind die ersten neuen Ergebnisse. Es wird die

Berechenbarkeit im mehrdimensionalen Fall für die ganzzahlige Division durch

Konstanten vollständig charakterisiert und es werden daraus Schranken, die

ohne ganzzahlige Division bewiesen wurden, übertragen. Bei der allgemeinen

ganzzahligen Division wird nicht wie im eindimensionalen Fall eine vollständige

Charakterisierung der Sprachklassen angegeben, sondern sie werden nur teil-

weise charakterisiert. Aber aus diesen partiellen Charakterisierungen werden

wiederum untere Schranken abgeleitet, im Fall der mächtigsten Operations-

menge S = {+,−, ∗, DIV} sogar die erste untere Schranke bei Konstanten aus

Q. Bis dahin waren nur untere Schranken bei der Konstantenmenge C = {0; 1}

bekannt. Über diese Charakterisierungen werden die Beziehungen der Sprach-

klassen CCn(S) für n>1 und Teilmengen S ⊆ {+,−, ∗, ∗c, DIVc, DIV} voll-

ständig bewiesen.

Die Beweise zu den Charakterisierungen und den Schranken im Fall n=1 folgen

in Kapitel 3 dem Aufsatz von Friedhelm MEYER AUF DER HEIDE u.a. in

[22] mit Ausnahme von dem Beweis zu Lemma 3, der den Ausführungen von

Joao MEIDANIS in [29] folgt.

In Kapitel 4 werden die Beweise zu den Charakterisierungen und den Schran-

ken im Fall n> 1 geführt und auÿerdem werden noch Sprachen angegeben, die

die Sprachklassen unterscheiden, die im eindimensionalen Fall zusammenfallen.

Aus der ersten unteren Schranke für die Operationsmenge S = {+,−, ∗, DIV}

bei Konstanten aus Q in diesem Kapitel kann gefolgert werden, dass der Al-

gorithmus von Nader BSHOUTY [6] zur Polynomauswertung über einer end-

lichen Menge in N nicht über ganz N konstant sein kann. Dieser Algorithmus

8

wertet ein univariates Polynom mit ganzzahligen Koe�zienten über einem end-

lichen Eingabebereich in 15 Schritten aus, d.h. unabhängig vom Grad des Po-

lynoms und von der Eingabe, aber durch Nutzung sehr groÿer Konstanten im

Verhältnis zum Grad und zur Eingabe.

Eine genauere Betrachtung der Komplexität der Polynomauswertung wird in

Kapitel 5 vorgenommen. Bekannt ist, dass es irreduzible Polynome vom Grad d

gibt, die über {+,−, ∗} Ω(d) Schritte zur Auswertung benötigen [8, Theorem

6.5]. Es wird gezeigt, dass bei ganzzahligen Polynomen mit kleinen Koe�-

zienten sich die Auswertung über {+,−, ∗} beschleunigen lässt. Über einem

endlichen Bereich können Polynome in konstant vielen Schritten unabhängig

von dem Grad des Polynoms ausgewertet werden. Der von Nader BSHOU-

TY geführte Beweis für univariate Polynome wird auf multivariate Polynome

übertragen.

Die Polynomauswertung über Zn kann durch die Hinzunahme der bitweisen

Konjunktion �&� als weitere Operation beschleunigt werden. Mit dieser neuen

Operationsmenge {+,−, ∗, DIV, &} kann jedes Polynom über Z in einer Va-

riablen mit einer leichten (doppellogarithmischen) Abhängigkeit von der Ein-

gabe unabhängig vom Grad des Polynoms oder aber mit einer logarithmischen

Abhängigkeit vom Grad berechnet werden. Bei Polynomen mit mehreren Va-

riablen kommt die Anzahl der Variablen als Faktor beim Aufwand hinzu. Wird

zusätzlich eine im Verhältnis zur Eingabe sehr groÿe ganze Zahl eingegeben, so

kann die Berechnung auf die Quadratwurzel der Laufzeit ohne diese Eingabe

im univariaten Fall beschleunigt werden. Im multivariaten Fall benötigt man

wiederum die Anzahl der Variablen als zusätzlichen Faktor.

Ohne �&� bleibt die doppellogarithmische Lücke zwischen der oberen Schranke

O(d) und der unteren Schranke Ω(log log d). Daher stellt sich die Frage, ob

jedes Polynom vom Grad d über {+,−, ∗, DIV} in o(d) Schritten berechnet

werden kann. Die Antwort ist positiv, falls die Reihe
∞∑

n=0

2−dn2
algebraisch vom

Grad kleiner d ist. Dies ist aber ein in der Zahlentheorie ungelöstes Problem.

In Kapitel 6 werden Anwendungen in der Linearen Algebra betrachtet. Da-

zu zählen die Matrixmultiplikation und die Berechnung der Determinante, die

9

beide mit der ganzzahligen Division (aber ohne bitweise Konjunktion) eine

optimale quadratische Laufzeit haben. Das klassische Verfahren zur Matrix-

multiplikation benötigt kubische Laufzeit. Eingeleitet von Volker STRASSEN

wurde die Suche nach schnelleren Verfahren mit dem derzeitigen Rekord von

O(nω) mit ω< 2,38, aufgestellt von Don COPPERSMITH und Shmuel WINO-

GRAD, siehe [8, Abschnitt 15]. In diesem Modell werden mit dem Einheits-

kostenmaÿ die arithmetischen Operationen {+,−, ∗} benutzt, aber auch die

Hinzunahme der Division kann bewiesenermaÿen vergl. [8, Theorem 7.1] die

Laufzeit nicht verbessern. Wird aber nun die ganzzahlige Division als weite-

re Operation hinzugenommen, so wird gezeigt, dass die Matrixmultiplikation

über Z quadratische Laufzeit hat.

Über den Operationen (+,−, ∗) sind die asymptotischen Komplexitäten der

Matrixmultiplikation und der Determinantenberechnung beliebig nahe beiein-

ander [8, Abschnitt 16.4], wenn auch, wie oben erwähnt, nicht bekannt ist, wo

zwischen O(n2) und O(nω) mit ω< 2,38 die genaue Komplexität liegt. Es wird

gezeigt, dass dieser Zusammenhang zwischen den Komplexitäten von Matrix-

multiplikation und Determinantenberechnung auch gilt, wenn die ganzzahlige

Division hinzugenommen wird. Dieser Zusammenhang wird nicht durch Re-

duktion, sondern durch die Angabe expliziter Algorithmen für beide Proble-

me bewiesen. Der Algorithmus zur Matrixmultiplikation nutzt eine geschickte

Kodierung der zu multiplizierenden Matrizen und Dekodierung der Produkt-

matrix aus.

Die Determinante einer n × n Matrix A kann relativ einfach in Polynomial-

zeit O(n3) mithilfe des Gauÿschen Eliminationsverfahren berechnet werden.

Solch eine einfache Berechnung der Permanente in Polynomialzeit ist nicht

bekannt. Dieses Problem ist ValiantNP-vollständig in diesem algebraischen

Modell [8, Theorem 21.17] (und sogar #P-vollständig im Bitmodell). Wird

jedoch die ganzzahlige Division als weitere Operation hinzugenommen, kann

auch die Permanente sogar in quasi-optimaler Polynomialzeit O(n2) berechnet

werden [1, Proposition 2.4]. Die Tatsache, dass die Permanente in quadrati-

scher Laufzeit berechnet werden kann, wird zur Algorithmenentwicklung für

die Determinantenberechnung mit derselben Laufzeit verwendet.

10

Durch das k-fache wiederholte Quadrieren einer n × n Matrix erhält man die

2k-fache Potenz der Matrix und man benötigt also die k-fache quadratische

Laufzeit O(k · n2). Bei der Hinzunahme des gröÿten gemeinsamen Teilers als

weitere Operation und zusätzlicher Eingabe einer Matrix B mit groÿen, aber

nicht zu groÿen Einträgen lässt sich die 2k-fache Potenz einer Matrix mit dem
√

k−fachen Aufwand der Matrixmultiplikation durchführen.

Im folgenden Abschnitt wird gezeigt, dass es unendlich viele solcher Matrizen B

gibt, die die dort geforderten Eigenschaften für den gröÿten gemeinsamen Teiler

der Di�erenzen dieser Matrix B mit allen Matrizen, deren Einträge kleiner

als eine von k und n abhängige Konstante sind, erfüllen. Es wird eine obere

Schranke für die Gröÿe der Matrizeneinträge und eine obere Schranke für den

Aufwand zur Bildung solch einer Matrix B angegeben.

Da die Zahlen bei der Aufwandsabschätzung erheblich gröÿer sind als die obere

Schranke für die Gröÿe der Einträge, die dort als Primzahlen gewählt wurden,

stellt sich die Frage, ob die Laufzeit bei der Konstruktion von Primzahlen

durch Hinzunahme der ganzzahligen Division beschleunigt werden kann. Im

letzten Abschnitt von Kapitel 6 wird gezeigt, dass dies der Fall ist für ran-

domisierte Verfahren, aber der vorgestellte deterministische Algorithmus zur

Primzahlbildung �ndet zu einer Zahl N nur dann in O(log N) Schritten eine

Primzahl gröÿer N, falls Mills Konstante θ ∈ R algebraisch ist. Aber auch dies

ist ein ungelöstes Problem der Zahlentheorie

2 S-Berechnungsbäume für

S ⊆ {+, −, ∗, ∗c, DIV, DIVc}

In diesem Kapitel werden im ersten Abschnitt die vollständige Charakterisie-

rung der Berechnungsmächtigkeit der S-CTs im Fall n=1 und daraus abgeleite-

te untere Schranken und im zweiten Abschnitt für n>1 eine vollständige Cha-

rakterisierung der Berechnungsmächtigkeit der S-CTs für S = {+,−, DIVc}

und S = {+,−, ∗, DIVc} und eine partielle Charakterisierung der Berech-

nungsmächtigkeit der S-CTs für S = {+,−, DIV} und S = {+,−, ∗, DIV}

11

gezeigt. Auch im Fall n>1 werden aus den Charakterisierungen untere Schran-

ken abgeleitet. Die Beweise zu den Theoremen, Sätzen, Korollaren usw. dieses

Kapitels sind im Fall n=1 im 3. Kapitel und im Fall n>1 im 4. Kapitel, da sie

sehr umfangreich und technisch sind und den Lese�uss stark beeinträchtigen

würden.

2.1 S-Berechnungsbäume im Fall n=1

Im Fall einer einzigen Eingabevariable wird eine vollständige Charakterisierung

der Berechnungsmächtigkeit der S-CTs gegeben [22]. Diese Sprachklassen sind

äquivalent für {+,−, ∗, DIV} und {+,−, DIVc}; es sind genau die Sprachen

L ⊆ Z , die aus einer endlichen Menge und endlich vielen arithmetischen

Progressionen bestehen.

De�nition 1. Seien a1, a2 ∈ N, A1, A2, B ⊂ Z, A1, A2, B endlich.

L(a,A,B) := B∪{d + λa1|λ ∈ N, d ∈ A1} ∪ {d − λa2|λ ∈ N, d ∈ A2} heiÿen

AP-Sprachen (AP = arithmetische Progression).

Theorem 1. Sei L⊂Z. Folgende Aussagen sind äquivalent:

(i) L ist eine AP-Sprache.

(ii) L ist durch einen MBT entscheidbar.

(iii) L ist durch einen {+,−, DIVc}-CT entscheidbar.

(iv) L ist durch einen {+,−, ∗, DIV}-CT entscheidbar.

Aber die Komplexitäten sind verschieden: Falls die Konstanten aus Q sind,

kann jede Sprache L ⊆ Z, die überhaupt erkannt werden kann, bereits in

konstanter Zeit über {+,−, ∗c, DIV} erkannt werden. Dies folgt unmittelbar

aus der obigen Charakterisierung der Sprachklassen als AP-Sprache, da A

und B endlich sind und die Zugehörigkeit zu einer arithmetischen Progressi-

on über {+,−, ∗c, DIV} in konstanter Zeit entschieden werden kann. Aber die

aus demTheorem abgeleitete Konstante aus [22] ist abhängig von der Sprache

L. Darüber hinaus zeige ich sogar, dass erstaunlicherweise jede Sprache L in

12

CC1({+,−, ∗, DIV}, Q) in 40 Schritten, d.h. unabhängig von L, erkannt wer-

den kann. Der Beweis basiert auf dem bereits eingangs erwähnten Algorithmus

zur Polynomauswertung in 15 Schritten von Nader BSHOUTY.

Satz 1 Jede Sprache L ⊆ Z, die von einem ({+,−, ∗, DIV}, Q)-CT erkannt

wird, kann in 40 Schritten, unabhängig von L, von einem ({+,−, ∗, DIV}, Q)-

CT erkannt werden.

Auf der anderen Seite gibt es für einige Sprachen der Gröÿe n untere Schran-

ken Ω(log(n)/loglog(n)) [22], falls nur Operationen aus {+,−, DIVc} benutzt

werden, (aber immer noch beliebige Konstanten aus Q).

Satz 2 Sei L⊂ Z, #L=n. Falls L keine arithmetische Progression der Län-

ge k+1 enthält, hat ein ({+,−, DIVc}, Q)− CT, der L erkennt, die Tiefe

Ω(log n/log log n), falls k≤log n, ansonsten Ω(log n/log k).

Aus diesem Satz ergeben sich für nachstehende Beispiele untere Schranken für

({+,−, DIVc}, Q)− CTs.

Beispiel 1

� Ln := {2i, i = 1, ..., n} hat n Elemente und keine arithmetische Progression

der Länge 3, daher gilt eine untere Schranke von Ω(log n/log log n).

� Lm := {i2, i = 1, ...,m} hat m Elemente und keine Progression der Länge

4, daher gilt ebenfalls eine untere Schranke von Ω(log n/log log n).

� Ll,k := {j · (k + 1)i, i = 0, ..., l − 1; j = 1, ..., k} hat n= l·k Elemente

und keine Progression der Länge k+1, daher gilt eine untere Schranke von

Ω(log n/log k).

Weitere untere Schranken sind nur bekannt, falls die Konstanten auf {0, 1}

beschränkt werden. In diesem Fall benötigt die Berechnung des gröÿten ge-

meinsamen Teilers von zwei N -Bit Zahlen mit den Operationen {+,−, ∗, DIV}

Ω(log log N) Zeit, siehe [27], und Ω(N) mit den Operationen {+,−, ∗c, DIVc},

siehe [5].

13

2.2 S-Berechnungsbäume im Fall n>1

Es werden Sprachklassen CCn(S) mit DIV oder DIVc in S unterschieden und

untere Schranken bewiesen.

Zunächst betrachte ich die Operationsmengen {+,−, ∗, DIVc} und {+,−, ∗c, DIVc}.

Mit {+,−, ∗} können Polynome und mit {+,−, ∗c} nur lineare Funktionen be-

rechnet werden.

Für a ∈ N, b ∈ Zn bezeichne ich die Menge aZn + b = {ax + b, x ∈ Zn} als

a-Gitter. Die a-Gitter aZn + b für b ∈ {0, . . . , a−1}n bilden eine Zerlegung des

Zn in a-Gitter der Länge a.

In Z ist solch ein a-Gitter nichts anderes als eine arithmetische Progression

mit der Schrittlänge a.

Theorem 2. Sei S = {+,−, ∗, DIVc} oder S = {+,−, ∗c, DIV c}.

a) L ⊆ Zn kann genau dann durch einen S-CT D entschieden werden, wenn

es ein a ∈ N gibt, so dass der Zn in a-Gitter zerlegt werden kann, so dass L

auf jedem einzelnen a-Gitter durch einen (S − {DIVc})-CT erkannt wird.

b) Ist D ein (S, Q)-CT der Tiefe T , haben die obigen ((S − {DIVc}, Q)-CTs

die Tiefe O(T).

c) Ist D ein (S, {0, 1})-CT der Tiefe T , haben die obigen (S−{DIVc}, Q)-CTs

die Tiefe O(T), und die Schrittweite a der Gitter ist höchstens 222T
.

Das obige Ergebnis gibt eine �Normalform" für Berechnungsbäume mit DIVc:

Zunächst bestimme mit DIVc, auf welchem Gitter die Eingabe liegt. Danach

entscheide mit einem Berechnungsbaum ohne DIVc, ob die Eingabe in L liegt.

Die untere Schranke in b) zeigt, dass die Tiefe sich nur um einen konstanten

Faktor unterscheidet, falls diese Normalform benutzt wird.

In Z ist die Darstellung als AP- Sprache solch eine �Normalform", jedoch gilt

sie dort, anders als im Fall n>1, nicht nur für DIVc, sondern auch für DIV.

Als Korollar zu Theorem 1b) kann gezeigt werden, dass die untere Schranke

über die Zahl der Zusammenhangskomponenten für {+,−, ∗}-CTs in [12],

14

die in [42] auf ganzzahlige Eingaben übertragen wird, auch für ganzzahlige

Eingaben und {+,−, ∗, DIVc}-CTs gilt und daher auf eine groÿe Klasse von

Sprachen übertragen werden kann. Hierzu zählen folgende Beispiele

Korollar 1 Für ({+,−, ∗, DIVc}, Q)- CTs gelten folgende unteren Schranken:

� Ω(n log(n)) für Element Distinctness (überprüfe, ob alle Eingaben

x1, . . . , xn verschieden sind, (siehe [12]).

� Ω(n2) für das Rucksackproblem (Eingabe a1, . . . , an, b; überprü-

fe, ob es y1, . . . , yn ∈ {0, 1} gibt mit Σn
i=1aiyi = b, siehe

[16]).

� Ω(n2 log(k + 1)) für lineare diophantische Gleichungen mit k-beschränkten

Lösungen (Eingabe a1, . . . , an, b, überprüfe, ob es

y1, . . . , yn ∈ {0, . . . , k} gibt mit Σn
i=1aiyi = b, siehe [30]).

Nun komme ich zu Berechnungen mit der allgemeinen ganzzahligen Division. In

diesem Fall kann keine vollständige Charakterisierung der Sprachklassen gege-

ben werden, sondern nur eine partielle. Zunächst betrachte ich {+,−, ∗c, DIV}-

CTs.

Theorem 3.

a) Falls L ⊆ Zn von einem {+,−, ∗c, DIV}-CT D erkannt wird, gilt: Zu jeder

irrationalen Zahl β gibt es eine Pyramide P := {(x1, .., xn) ∈ Zn, c1 <

xi+1

xi
< c2, i = 2, ..., n} mit c1, c2 ∈ Q, c1 < β < c2 und a ∈ N, so dass es zu

jedem b̄ ∈ {0, . . . , a−1}n einen {+,−, ∗c}-CT gibt, der L auf (aZn + b̄)∩P

erkennt.

b) Falls D ein ({+,−, ∗c, DIV}, {0, 1})-CT der Tiefe T ist, gibt es a ∈ N und

eine Pyramide P := {(x1, .., xn) ∈ Zn, c1 < xi+1

xi
< c2, i = 2, ..., n} mit

c1, c2 ∈ Q, so dass es zu jedem b ∈ {0, . . . , a − 1}n einen ({+,−, ∗c}, Q})-

CT der Tiefe O(T) gibt, der L auf (aZn + b̄) ∩ P erkennt.

15

c) Falls D ein ({+,−, ∗c, DIV}, {0, 1})-CT der Tiefe T ist, der eine Sprache

L ⊆ Z2 erkennt, gibt es a ∈ N, a ≤ 223T
, und eine Pyramide P := {(x, y) ∈

Z2, c1 < x
y

< c2, i = 2, ..., n} mit c1, c2 ∈ Q, c1 < c2, c2− c1 ≥ 1

223T , so dass

es zu jedem b ∈ {0, . . . , a− 1}2 einen ({+,−, ∗c}, Q})-CT der Tiefe O(T)

gibt, der L auf (aZ2 + b̄) ∩ P erkennt.

x = c1y

x = c2y

x = √2 y

Abbildung 3. Pyramide

In [10] wird ein Algorithmus vorgestellt, der den ggT von 2 N -Bit Zahlen in der

Zeit O(N) berechnet. Er benutzt nur Operationen aus {+,−, DIVc}. Aus Er-

gebnissen in [5] und [22] folgt, dass für die Operationsmenge {+,−, DIVc} die

untere Schranke auch bei Ω(N) ist, d.h. eine scharfe Schranke ist. Aus Theo-

rem 2b) folgt, dass der Algorithmus aus [10] auch bei der Operationsmenge

{+,−, DIV} optimal ist.

Korollar 2 Ein ({+,−, DIV}, {0, 1})-CT, der die Teilerfremdheit von 2 N-

Bit Zahlen x, y überprüft, hat eine Tiefe von Ω(N) .

Nun komme ich zur mächtigsten Operationsmenge, nämlich {+,−, ∗, DIV}.

Wie bereits vorher erwähnt, ist es sehr schwierig, in diesem Fall untere Schran-

ken zu �nden. Es wird die erste untere Schranke bei Konstanten Q bewiesen

.

16

Theorem 4.

a) Falls L ⊆ Zn durch einen {+,−, ∗, DIV}-CT D erkannt werden kann,

gibt es für jedes c1, .., cn ∈ N Polynome pi : Zn−i → Q, i=1,...,n-1 und

k1, ..., kn, K ∈ N, so dass eingeschränkt auf {(x1, ..., xn) ∈ Nn xi ≥ xki
i+1,

xi ≡ ci mod pi(xi+1, ..., xn), i = 1, ..., n − 1, xn ≡ cn mod kn, xn > K, } L

durch einen {+,−, ∗}-CT erkannt werden kann.

b) Falls D ein ({+,−, ∗, DIV}, Q)-CT der Tiefe T ist, haben die pi einen Grad

≤ 22nT
, ki ≤ 22(n−1)T

und der ({+,−, ∗}, Q}-CT hat eine Verzweigungstiefe

O(T) und Grad O(22nT
).

Aus Teil b) kann die erste nicht-triviale untere Schranke für die Tiefe von

({+,−, ∗, DIV}, Q)-CTs abgeleitet werden. Diese Sprachklasse ist sehr mäch-

tig, wenn man daran denkt, dass auch im mehrdimensionalen Fall jede endliche

Sprache, unabhängig von der Gröÿe der Sprache, in konstanter Zeit erkannt

werden kann.

Bemerkung 3 Jede endliche Sprache L ⊆ Zn kann durch einen ({+,−, ∗,

DIV}, Q)-CT in konstanter Zeit unabhängig von L erkannt werden.

Korollar 3 Sei r : Z→ Z ein irreduzibles Polynom vom Grad d mit positivem

Leitkoe�zienten. Jeder ({+,−, ∗, DIV}, Q)-CT, der Lr = {(x, y) ∈ Z2, r(y) >

x} erkennt, hat eine Tiefe Ω(log log (d)).

Diese untere Schranke zeigt, dass anders als im eindimensionalen Fall die Aus-

sage, dass jede Sprache L, die überhaupt von einem ({+,−, ∗, DIV}, Q)-CT

erkannt werden kann, bereits in konstanter Zeit erkannt wird, im mehrdimen-

sionalen Fall nicht mehr gilt.

Ebenfalls anders als im Falle n = 1 zeigen die Teile a) der obigen drei Theo-

reme, dass nicht nur Sprachklassen mit oder ohne ganzzahlige Division unter-

schieden werden.

Eine vollständige Übersicht über die Beziehungen dieser Sprachklassen zeigt

das folgende Theorem. In diesem Theorem bedeutet ein Pfeil S → S ′ für

17

Operationsmengen S, S ′, dass CCn(S ′) ⊂6= CCn(S) für n ≥ 2 gilt. S − − − S ′

bedeutet, dass CCn(S) und CCn(S ′) nicht vergleichbar sind.

Theorem 5. Folgende Beziehungen gelten für die Sprachklassen CCn(S) für

n ≥ 2:

für n > 1

CCn{+,-}

CCn{+,-,*} CCn{+,-,divc}

CCn{+,-,*, divc} CCn{+,-,div}

CCn{+,-,*, div}

Abbildung 4. Sprachklassen für n>1

Bemerkung 4 Das obige Diagramm zerfällt in zwei Sprachklassen mit DIV

oder DIVc bzw. ohne DIV oder DIVc, falls der Fall n = 1 betrachtet wird, siehe

Theorem 1.

für n = 1

CC1{+,-} = CC1{+,-,*}

CC1{+,-,divc}= CC1{+,-,div}=
CC1{+,-, *,divc} = CC1{+,-,*,div}

Abbildung 5. Sprachklassen für n=1

18

3 Beweise im Fall n= 1

Dieses Kapitel enthält die Beweise zu Theorem 1, zu Satz 1 und zu der unteren

Schranke in Satz 2, die bis auf Lemma 4 in [29] und Satz 1 in [25] den Beweisen

in [22] folgen.

Beweis. [zu Theorem 1]

Es wird der Beweis in folgender Reihenfolge ausgeführt:

(i) ⇒(iii) ⇒(iv) ⇒(ii) ⇒ (i)

(i) ⇒(iii)

Sei L = L(a,A,B) eine AP-Sprache.

- Überprüfe durch Binärsuche, ob x ∈B gilt.

- Falls ja, akzeptiere, ansonsten überprüfe für jedes d ∈A1 oder d ∈A2, ob

x ∈ {d + λa1, λ ∈ N} oder x ∈ {d− λa2, λ ∈ N} gilt.

Dies ist durch ai ·((x - d) DIVcai) = x - d , i∈{1,2} möglich.

Da ai Konstanten sind, kann ai ·((x - d) DIVcai) ohne Multiplikation berechnet

werden.

Der obige {+,−, ∗, DIV}- CT entscheidet L. ut

(iii) ⇒(iv)

gilt trivialerweise, da {+,−, DIVc} ⊂ {+,−, ∗, DIV}. ut

(ii) ⇒ (i)

Sei T ein MBT, der eine Sprache L ⊂ Z entscheidet, υ ein akzeptierendes Blatt

von T und c(υ) die Eingabemenge, die zu υ gelangt. Da durch {+,−, ∗} nur

Polynome berechnet werden können, sind die binären Verzweigungsknoten mit

�p(x) >0� oder �p(x) ≤0� für Polynome p beschriftet, die auf dem Weg zu υ be-

rechnet wurden. Daher ist c(υ) entweder endlich oder c(υ) = Bυ∪Iυ. Bυ ist da-

bei eine endliche Menge, die alle Elemente von c(υ) enthält, die zu beschränk-

ten Zusammenhangskomponenten der Mengen {x|p(x) > (≤)0}, die von den

19

binären Verzweigungen kommen, gehören. Die Menge Iυ hat die Form Iυ=

{x|x >βυ, x mod δj= ij, j = 1,...,r}, wobei die r Modulo-Verzweigungsknoten

(kurz: MB-Knoten) auf dem Weg zu υ vom Grad δ1,...,δr sind, bei der j-ten

Verzweigung der ij-te Zweig gewählt wird und βυ= max Bυ ist.

Die Menge Iυ kann als eine einzige Progression dargestellt werden, d.h. Iυ=

{dυ + λaυ, λ ∈ N} für geeignete dυ, aυ. Sei V die Menge der Blätter, die un-

endlich viele Eingaben akzeptieren.

Dann ist I =
⋃

ν∈V IυVereinigung von endlich vielen arithmetischen Progres-

sionen.

Bekannterweise folgt aus der Zahlentheorie, dass I = B' ∪{d+λa, λ ∈ Z, d ∈ A}

für ein a ∈ Z und endliche Mengen B' und A gilt.

Sei nun B� die endliche Eingabemenge, die zu den akzeptierenden Blättern mit

endlicher Eingabemenge gelangt, und B�':=
⋃

ν∈V Bυ, B:=B' ∪B� ∪B�', dann

ist L = L(a,A,B), also eine AP-Sprache. ut

(iv) ⇒ (ii)

Diese Beweisrichtung ist die umfangreichste.

Sei T ein {+,−, ∗, DIV}- CT, der L erkennt.

Es wird gezeigt, dass die DIV-Knoten durch MB-Knoten ersetzt werden kön-

nen, so dass der so erhaltene MBT eine Sprache L' akzeptiert, die für be-

tragsmäÿig genügend groÿe x mit L übereinstimmt. Für betragsmäÿig kleine

x werden x ∈L durch Binärsuche akzeptiert, so dass man einen MBT für L

erhält.

Um die DIV-Knoten durch MB-Knoten zu ersetzen, wird das folgende Lemma

benötigt.

Lemma 1. Seien p, q :Z→ Q Polynome mit rationalen Koe�zienten, deg(p)

≥deg(q). Dann gibt es β, z ∈ N, so dass es zu jedem i ∈ {0, ..., β − 1} ein

Polynom ri :Z→ Q mit rationalen Koe�zienten gibt, so dass p(x) DIV q(x) =

ri(x) gilt.

20

Mit Hilfe dieses Lemmas wird zunächst der Beweis (iv) ⇒ (ii) beendet.

Sei υ der erste DIV-Knoten auf einem Weg von der Wurzel zu einem Blatt in

T. Dann ist dieser Knoten mit p(x) DIV q(x) beschriftet, wobei p,q Polynome

mit rationalen Koe�zienten sind, die auf dem Weg zu υ berechnet wurden.

Falls deg(p) < deg(q) gilt, wird p(x) DIV q(x) durch 0 ersetzt. Dies ist korrekt

für betragsmäÿig genügend groÿe x.

Im Folgenden sei deg(p) ≥deg(q).

Nach dem obigen Lemma gibt es β, z ∈ N, so dass es zu jedem i ∈ {0, ..., β−1}

ein Polynom ri :Z→ Q mit rationalen Koe�zienten gibt, so dass p(x) DIV q(x)

= ri(x) gilt. Es wird nun der DIV- Berechnungsknoten durch einen MB-Knoten

vom Grad β ersetzt. Für i ∈ {0, ..., β − 1} wird an den i-ten Zweig die Be-

rechnung für das Polynom ri angehängt. Eine Kopie des Teilbaumes von T

unterhalb von υ wird an die Berechnung der ri gehängt. In diesem Teilbaum

wird jeweils p(x) DIV q(x) durch ri(x) ersetzt.

Von der Wurzel zu den Blättern wird so schrittweise jeder DIV- Berechnungs-

knoten ersetzt. Der dadurch entstandene MBT erkennt eine Sprache L' mit

L′ ∩ {x ∈ Z, |x| ≥ z}= L ∩ {x ∈ Z, |x| ≥ z} für ein genügend groÿes z.

Um L zu erkennen, wird zunächst nach |x| ≥ z verzweigt. Bei positiver Ant-

wort wird der MBT durchlaufen, ansonsten wird durch Binärsuche die endliche

Sprache L ∩ {x ∈ Z, |x| < z} erkannt. ut

Beweis. [von Lemma 1]

Aus der Algebra ist bekannt, dass man durch Polynomdivision Polynome

r,s:Z→Q mit rationalen Koe�zienten und deg(s)<deg(q) mit p = r·q + s gibt.

Wähle nun β, so dass es ein Polynom r̃ :Z→ Q mit ganzzahligen Koe�zienten

und r = 1
β
r̃ gibt. Dann erhält man für p(x) DIV q(x)

p(x) DIV q(x) =

⌊
r(x) +

s(x)

q(x)

⌋
=

⌊
1

β
r̃(x) +

s(x)

q(x)

⌋

21

Da deg(s) < deg(q) gilt, ist lim
|x|→∞

s(x)
q(x)

= 0.

Das heiÿt, dass für genügend groÿes x p(x) DIV q(x) = r̃(x) DIV β gilt.

Sei nun i ∈ {0, ..., β − 1} fest und x mod β = i, d.h. x = λβ + i für ein λ ∈ Z

und r̃(x) =
∑n

j=0 ajx
j, aj ∈ Z.

Wird i als Konstante betrachtet, kann r̃(x) = r̃(λβ + i) als Polynom in λ

geschrieben werden.

r̃(x) =
∑n

j=0 bj(λβ)j mit bj ∈ Z

(bj hängt von i ab)

r̃(x) =
∑n

j=0 bj(λβ)j =b0+β · g(λ) mit g(λ) =
∑n

j=0 bjβ
j−1

λj ∈ Z

Daher erhält man für genügend groÿes x mit x mod β= i

p(x) DIV q(x) = r̃(x) DIV β = b0 DIV β + g(λ)

= b0DIV β + g((x− i)/β) = Polynom in x.

ut

Beweis. [zu Satz 1]

Sei L ⊂ Z eine Sprache, die durch einen ({+,−, ∗, DIV}, Q)-CT erkannt wird,

dann ist nach Theorem 1 L eine AP-Sprache. Jede solche AP-Sprache hat

folgende Darstellung

L(a, A,B) := B ∪ {d + λa1|λ ∈ N, d ∈ A1} ∪ {d− λa2|λ ∈ N, d ∈ A2}

Für eine Eingabe x ∈ Z entscheide, ob x ∈ B gilt. Falls x ∈ B akzeptiere,

ansonsten berechne x mod a1 = x - a1(x div a1) für x>0 und x mod a2 = x -

a1(x div a2) für x<0.

Ohne Einschränkung gelte für d ∈ Ai d div ai = ki. Entscheide, ob x mod ai +

ki ∈ Ai. Falls ja, akzeptiere, ansonsten verwerfe. Da Ai und B endlich sind,

22

können mit dem folgenden Lemma die Abfragen x ∈ B und x mod ai + ki ∈ Ai

in konstanter Zeit, unabhängig von Ai und B, entschieden werden, d.h L wird

in konstanter Zeit, unabhängig von L, erkannt. ut

Lemma 2. Sei A ⊂ Z endlich. A kann durch einen ({+,−, ∗c, DIV}, Q)-CT

in 18 Schritten, unabhängig von A, erkannt werden.

Beweis. [zu Lemma 2]

Da A endlich ist, kann A als Nullstellenmenge eines Polynoms p mit ganzzah-

ligen Koe�zienten betrachtet werden. Sei N := max{|x||x ∈ A}. Der folgende

Berechnungsbaum erkennt A.

Für eine Eingabe x ∈ Z verwerfe, falls |x| > N gilt. Ansonsten berechne p(x)

bzw. p(−x) für x < 0 und akzeptiere, falls p(x) = 0 bzw. p(−x) = 0 für x < 0,

ansonsten verwerfe. Nach Theorem 7 kann solch ein Polynom mit ganzzahligen

Koe�zienten über einer endlichen Eingabemenge in 15 Schritten, unabhängig

von p und N, in konstant vielen Schritten berechnet werden. ut

Beweis. [zu Satz 2]

T sei ein ({+,−, DIVc}, Q)− CT der Tiefe D, der eine endliche Sprache L

(#L=n), die keine arithmetische Progression der Länge k+1 enthält, erkennt.

υ sei ein Blatt von T und υ1, ..., υd = υ sei der Pfad zu υ, d≤ D. fi : Z → Q

seien die Funktionen, die an den Knoten υi berechnet werden, und c(υ) die

Menge der Eingaben, die zu υ gelangt.

Mit dem folgenden Lemma wird c(υ) charakterisiert.

Lemma 3. Es gibt ein konvexes Polytop P im Rd+1 mit

(i) x ∈ c(υ)⇔ ∃(c1, . . . , cd) ∈ Zd
:(x, c1, . . . , cd) ∈ P.

(ii) Für jedes x ∈ c(υ) gibt es genau ein (c1, . . . , cd) ∈ Zd
mit (x, c1, . . . , cd) ∈ P.

Beweis. [zu Lemma 3]

23

Von der Wurzel zu den Blättern wird jede DIVc− Operation durch eine neue

Variable cj ersetzt. Es werden höchstens d neue Variablen benötigt. Im Fol-

genden wird, falls das Ergebnis dieser DIVc− Operation als Operand benutzt

wird, statt des Ergebnisses dieser DIVc− Operation diese neue Variable be-

nutzt. An jedem Knoten υi wird nun eine Funktion gi(x, c1, . . . , cd) berechnet.

Da nur +,- als Operationen benutzt werden, sind die gi linear. I ⊂ 1, .., d sei

die Indexmenge, für die an den Knoten υi eine DIVc− Operation benutzt wird.

Wenn an dem Knoten υi, i ∈I, ai(x, c1, . . . , cd) DIVc bi berechnet wird, werden

folgende Ungleichungen de�niert.

(*)

bi · ci ≤ (≥) ai(x, c1, . . . , cd) < (>)bi(ci + 1)

Falls bi positiv ist, steht dort (≤,<) ansonsten (≥>).

Es werden noch die Ungleichungen der Verzweigungsknoten υi

(**)

gi(x, c1, . . . , cd) > (≤)0

zu dem Ungleichungssystem aus (*) hinzugefügt. Ob dort < oder ≥ steht,

richtet sich danach, ob der rechte oder linke Zweig zum Pfad gehört.

Nach der Konstruktion dieses Systems linearer Ungleichungen aus (*) und (**)

erfüllt dessen Lösungsmenge P gerade die Bedingungen (i) und (ii) und P ist

als Lösungsmenge eines linearen Ungleichungssystems ein konvexes Polytop.

ut

Sei Pυ das zum Pfad υ gehörende Polytop. Aus Lemma 2 folgt, dass #Pυ∩Zn =

#c(υ). Im Folgenden wird gezeigt, dass #Pυ ∩ Zn klein ist, falls c(υ) keine

lange arithmetische Progression enthält. Dazu benötigt man noch das folgende

Lemma. Man spricht von einer Progression der Länge k im Zn, falls es k Punkte

gibt, die in jeder Koordinate zu einer arithmetischen Progression der Länge k

gehören.

Lemma 4. Sei B die Menge der ganzzahligen Punkte in einer konvexen Teil-

menge des Rn. Falls |B| > kn gilt, enthält B eine Progression der Länge k+1.

24

Beweis. [zu Lemma4] [29]

Betrachte die Abbildung Zn→Zn
k ,

(x1, x2, . . . , xn)→ (x1 mod k, x2 mod k, . . . , xn mod k).

Da |Zn
k | = kn und |B| > kn gilt, gibt es x, y ∈B, die denselben Bildpunkt haben.

D.h. es gilt x - y = kv für einen von 0 verschiedenen Vektor v mit ganzzahligen

Koordinaten. Da B konvex ist, gehören dann aber die k + 1 auf einer Gerade

liegenden Punkte y, y + v, y + 2v, ..., y + kv = x ebenfalls zu B. ut

Mit Hilfe dieses Lemmas kann nun Satz 2 bewiesen werden.

Sei υ ein akzeptierendes Blatt. Da L keine Progression der Länge k+1 enthält,

gibt es auch in c(υ) keine Progression der Länge k+1. Daher enthält auch

#Pυ ∩ Zd+1 keine Progression der Länge k+1. Aus Lemma 4 und Lemma 7

folgt, dass #c(υ) = #Pυ ∩Zd+1 ≤ kd+1 gilt. Da T höchstens 2D akzeptierende

Blätter hat, hat L höchstens 2D · kD+1 Elemente, d.h. n ≤ 2D · kD+1.

⇔ D ≥ log n− log k

log k + 1

Hieraus folgt unmittelbar die angegebene untere Schranke. ut

4 Beweise im Fall n> 1

Dieses Kapitel folgt den Ausführungen in [25]. Die dort für den Spezialfall n=2

durchgeführten Beweise werden verallgemeinert für den Fall n≥2.

4.1 Operationsmengen mit DIVc

Dieser Abschnitt enthält die Beweise zu Theorem 2 und die aus dem Theorem

folgenden allgemeinen unteren Schranken.

Beweis. [von Theorem 2 a)]

�⇐" Sei Zn die disjunkte Vereinigung endlich vieler a-Gitter aZn + b̄, b̄ ∈

{0, . . . , a − 1}n. Auf jedem dieser Gitter kann L durch einen {+,−} bzw.

25

{+,−, ∗}-CT erkannt werden. Der folgende Algorithmus mit {+,−, DIVc}

bzw. {+,−, ∗, DIVc} als Operationsmenge erkennt L.

Entscheide, in welchem Gitter aZn + b̄ die Eingabe x liegt. Der Startwert b̄ des

Gitters wird durch bi = xi− (xi DIVca) ·a für i = 1, . . . , n berechnet. Dies geht

ohne Multiplikation, da a eine Konstante ist.

Für x̄ ∈ aZn + b̄ entscheide mit dem zugehörigen {+,−}-CT bzw. {+,−, ∗}-

CT, ob x̄ ∈ L ∩ (aZn + b̄) gilt.

�⇒" Ich führe den Beweis für S = {+,−, ∗, DIVc}. Der Beweis für S =

{+,−, DIVc} ist analog. Sei D ein {+,−, ∗, DIVc}-CT, der L erkennt. Ziel

ist es, von der Wurzel zu den Blättern jeden Knoten v mit einer DIVc Operati-

on durch einen MB-Knoten zu ersetzen. Verzweigt wird an diesen Knoten nach

allen möglichen Ergebnissen (x1 mod a, . . . , xn mod a) ∈ {0, . . . , a−1}n für ei-

ne Konstante a ∈ N. Die Ersetzung des Berechnungsbaumes mit der Operation

DIVc durch einen MB- CT wurde im eindimensionalen Fall in [22] eingeführt.

Sei v der erste Berechnungsknoten von der Wurzel zu einem Blatt, an dem die

Funktion DIVc benutzt wird. Angenommen, es wird f(x) DIVc
a
b
berechnet,

wobei f auf dem Weg zu v berechnet wurde. Da v der erste Knoten auf dem

Weg mit DIVc ist, ist f ein Polynom mit rationalen Koe�zienten. k ∈ N sei

so gewählt, dass k · f ganzzahlige Koe�zienten hat. Ersetze v durch einen

MB-Knoten, bei dem nach den Ergebnissen von (x1 mod ka, . . . xn mod ka)

verzweigt wird.

Lemma 5. Für Eingaben auf dem Gitter kaZn + c mit c ∈ {0, . . . , ka− 1}n,

kann man f(x) DIVc
a
b
durch b

a
f(x)− l

ka
, mit einer von c abhängigen Konstan-

ten l ersetzen.

Beweis. [von Lemma 5]

Für lineare Funktionen und Polynome über Z ist b ·f(x) mod a für xi mod a =

ij, i = 1, ..., n, ij ∈ {0, ..., a− 1} eine Konstante ci1,...,in für jedes (i1, ..., in) ∈

{0, ..., a− 1}n.

26

Da f(x) DIVc
a
b

= b·f(x) DIVca = b
a
f(x)− b·f(x)mod a

a
an dem mit xi mod a = ij,

i = 1, ..., n, ij ∈ {0, ..., a− 1} beschrifteten Zweig gilt, kann nach diesem Zweig

f(x) DIVc
a
b
durch b

a
f(x)− ci1,...,in

ka
ersetzt werden.

Für b · f(x) ∈ Q [x] \ Z [x] sei k der Hauptnenner der Koe�zienten von b ·

f(x), dann ist k · b · f(x) ∈ Z [x] und damit ist wie oben f(x) DIVc
a
b
durch

b
a
f(x)− ci1,...,in

ka
nach dem mit xi mod ka = ij, i = 1, ..., n, ij ∈ {0, ..., ka− 1}

beschrifteten Zweig substituierbar. ut

Im Folgenden wird f(x) DIVc
a
b
durch einen MB-Knoten vom Grad (ka)n er-

setzt. Die Zweige sind Kopien des Teilbaumes von D mit der Wurzel v, bei dem

DIVc am Knoten v durch b
a
f(x)− l

ka
wie im obigen Lemma ersetzt wird. Wenn

diese Ersetzungen von der Wurzel zu den Blättern für alle DIVc- Operationen

in dem Baum durchgeführt werden, erhält man einen Berechnungsbaum ohne

DIVc, aber mit MB- Knoten, der L erkennt.

Um zur gewünschten Charakterisierung zu gelangen, kann hier festgestellt wer-

den, dass man einen {+,−, ∗}-CT erhält, wenn man an den MB- Knoten jeweils

nur einen Ast wählt, d.h. wenn die Eingabemenge auf den Durchschnitt der zu-

gehörigen Gitter beschränkt wird. Da dieser Durchschnitt wiederum ein Gitter

ist und man diese erhaltenen Gitter als ein weiteres Gitter mit gemeinsamer

Schrittweite angeben kann, folgt Theorem 2 a).

Theorem 2 b) folgt unmittelbar, denn die Tiefe ändert sich nicht, da jeder

DIV- Berechnungsknoten durch einen MB- Knoten ersetzt wird und in dem

neu entstandenen S − {DIVc} − CT jeweils nur ein Ast ausgewählt wird.

Um Theorem 2 c) zu beweisen, muss zusätzlich noch die Schrittweite a der

Gitter analysiert werden. Da nur die Operationen {+,−, ∗} zur Verfügung

stehen, sind die Konstanten ganzzahlig. In der Tiefe t sind die durch {0, 1}

erzeugten Konstanten kleiner gleich 22t
, somit ist auch die Schrittweite in der

Tiefe t höchstens 22t
. Um den Durchschnitt aller Gitter entlang aller Pfade

zu bilden, wird höchstens das Produkt all dieser Schrittweiten berechnet. Die

Schrittweite für den Durchschnitt der Gitter entlang eines Pfades ist kleiner

27

gleich
T−1∏
t=0

22t ≤ 22T
und da es höchsten 2T Blätter gibt, ist die Schrittweite

höchstens
(
22T

)2T

= 222T
. ut

Beweis. [von Korollar 1]

Das Korollar folgt aus Theorem 2 b) und einem Ergebnis in [42] von An-

drew YAO. Er zeigt, dass Michael BEN-ORs untere Schranke über die Anzahl

der Zusammenhangskomponenten in [12] über {+,−, ∗, /}-CTs auch für einige

Sprachen gilt, die nur ganzzahlige Eingaben erlaubt. Der dort geführte Beweis

gilt analog für Eingaben aus einem Gitter aZn mit einem beliebigen a ∈ N.

So erhält man die unteren Schranken aus Korollar 1 durch Anwendung von

Theorem 2 b). ut

4.2 Operationsmenge {+, −, ∗c, DIV}

Dieser Abschnitt enthält den Beweis zu Theorem 3 und Korollar 2.

Beweis. [von Theorem 3 a)]

Sei β irrational, v der erste Knoten mit einer DIV-Operation auf dem Weg

von der Wurzel zu einem Blatt in einem {+,−, ∗c, DIV }-CT D. Da nur die

Multiplikation mit Konstanten und nicht die allgemeine Multiplikation zur

Operationsmenge gehört, sind die auf demWeg berechneten Funktionen lineare

Funktionen. An dem Knoten v wird f(x̄) DIV g(x̄) berechnet mit f(x̄) = a1x1+

... + anxn + an+1, g(x̄) = b1x1 + ... + bnxn + bn+1, ai, bi ∈Q, i = 1, ..., n + 1.

Falls b1 = 0, ..., bn = 0, wird f(x̄) DIV bn+1 berechnet, d.h. es wird nur DIVc

benötigt.

In den anderen Fällen soll wie im folgenden Lemma die Berechnung an dem

Knoten v durch endlich viele Verzweigungen ersetzt werden.

Lemma 6. Sei β irrational, f, g : Zn → Z seien lineare Funktionen mit

rationalen Koe�zienten, g nicht konstant, dann gibt es c1 < β < c2, so dass

f(x̄) DIV g(x̄) nur endlich viele Werte für Eingaben aus P = {(x̄) ∈ Zn, c1 ≤
xi+1

xi
≤ c2, i = 1, ..., n− 1} annimmt.

28

Beweis. [von Lemma 6]

Da g nicht konstant ist, gibt es ein j ∈ {1, ..., n}, so dass bi = 0 für i = 1, .., j−1

und bj 6= 0. Seien c1, c2∈ Q, c1 < β < c2 so gewählt, dass bj+bj+1γj+1...+bnγn 6=

0 für jedes γk ∈ [c1, c2]. Dies ist möglich, da β irrational ist. Wenn für Eingaben

aus P die Variablen xk durch γkxj, γk ∈ [c1, c2] ersetzt werden, erhält man

f(x̄) DIV g(x̄)

= ((a1x1 + ... + aj−1xj−1) + (aj + aj+1γj+1 + ... + anγn)xj + an+1)

DIV ((bj + bj+1γj+1... + bnγn)xj + bn+1) =

Werden nun für Eingaben aus P die Variablen xk durch γ′kx1, γ′k ∈ [c1, c2]

ersetzt, erhält man

((a1γ
′
1 + ... + anγ

′
n)x1 + an+1)DIV(bj + bj+1γ

′
j+1... + bnγ

′
n)x1 + bn+1)

Durch die Wahl von c1, c2, ist der obige Divisor von 0 verschieden, und sowohl

Dividend als auch Divisor sind auf P beschränkt. Daher nimmt f(x̄) DIV g(x̄)

nur endlich viele Werte für Eingaben aus P an. ut

Man kann nun nach Lemma 6 von oben nach unten jede DIV-Operation und

nach Lemma 5 jede DIVc -Operation ersetzen. Damit ist Theorem 3 a) bewie-

sen.

Da die Konstanten c1, c2∈ Q, c1 < β < c2 so gewählt werden können, dass

f(x̄) DIV g(x̄) nur konstant viele Werte annimmt, ist die Tiefe des {+,−, ∗c}-

CTO(T), wenn T die Tiefe des {+,−, ∗c, DIV}-CT. Damit folgt Theorem 3 b).

Um Theorem 3 c) zu beweisen, werden die Konstanten genauer abgeschätzt.

In der Tiefe t sind die Konstanten aj und bj kleiner gleich 22t
und damit sind

die Konstanten, die f(x̄) DIV g(x̄) ersetzen, kleiner gleich 5 · 22t
. Daher sind

auch alle Konstanten in dem {+,−, ∗c, DIVc}-CT nach Substitution der DIV-

Knoten kleiner gleich 222T
. Die Schrittweite in dem {+,−, ∗c}-CT ist somit

kleiner gleich 223T
.

29

Wird wie in Teil a) für Eingaben aus P die Variable y durch γx, γ ∈ [c1, c2] ⊂[
1
2
, 2

]
ersetzt, gilt dγ + e 6= 0 und f(x̄) DIV g(x̄) = ((aγ + b)y + c) DIV ((dγ +

e)y+h). Die Di�erenz zwischen den Polstellen zweier solcher Funktionen f und

f' mit Koe�zienten ≤ 222T
ist ≥

(
222T

)2

= 222T+1
(*). Wird γ so eingeschränkt,

dass c2 − c1 ≥ 1/222T+4
(**) gilt, dann nimmt f(x̄) DIV g(x̄) nur 2 Werte an.

Da dieser {+,−, ∗c, DIVc}-CT nun 22T+1
(***) Blätter hat, folgt aus (*), (**),

(***) die Abschätzung für

c2 − c1 ≥
1

2 · 22T+1 · 222T+4 · 222T+1 ≥
1

223T .

ut

Beweis. [von Korollar 2]

Sei P = {(x, y) ∈ N2, k1y < x < k2y, ki ∈ Q, Nenner der ki ≤ 222T }, p sei eine

Primzahl p ≤ 222T
+ 1 und p teilt nicht die Schrittweite a des Gitters.

Betrachte das Gitter, das den Punkt (p,0) enthält. Dann gehören alle Punkte

(k1al + p, al), bei denen l Vielfache des Nenners von k1 sind, ebenfalls zum

Gitter, d.h. l = k1 · l′.

Wird l′ von p geteilt, teilt p auch den ggT(k1al + p, al) und wird l′ nicht von

p geteilt, gilt ggT(k1al + p, al) = 1.

Für n = 222T+3
sind auf einem Geradenabschnitt in P ∩ {(0, p) + (aZ)2} 222T

Punkte (x,y), bei denen abwechselnd ggT(k1al + p, al) = 1 und ggT(k1al +

p, al) 6= 1 gilt. Daher ist die Tiefe eines {+,−}-CT auf diesem Gitter mindes-

tens log
(
222T

)
= 1

8
log

(
222T+3

)
= 1

8
log (n) . Da nach Theorem 3 b) die Tiefe

des {+,−}-CT O(T) ist, wenn T die Tiefe des {+,−, DIV }-CT ist, ist T

ebenfalls Ω(log n). ut

4.3 Operationsmenge {+, −, ∗, DIV}

Dieser Abschnitt enthält die Beweise zu Theorem 4 und die daraus folgende

spezielle untere Schranke in Korollar 2.

Folgende Bezeichnungen aus [27] für Polynome in 2 Variablen werden erweitert

auf Polynome in n Variablen.

30

Der Grad degxi
P , eines Polynoms P (x1, . . . , xn) in einer Variablen xi ist der

maximale Exponent von xi, der in einem Monom von P (x1, . . . , xn) vorkommt.

Der Maximalgrad maxdeg P ist das Maximum der Grade degxi
P , nicht zu

verwechseln mit der klassischen De�nition des Grades (des Totalgrades) eines

multivariaten Polynoms.

Die Höhe ht(P) von P ist das Maximum der Absolutbeträge der Koe�zienten

von P und das Gewicht wt(P) von P ist die Summe der Absolutbeträge von P.

Es wird noch die De�nition einer lexikographischen Ordnung auf der Menge

der Polynome benötigt.

De�nition 2. Für zwei Monome cxi1
1 · · ·xin

n und dxj1
1 · · ·xjn

n gilt

cxi1
1 · · ·xin

n � dxj1
1 · · ·xjn

n , falls

1) i1 > j1 oder

2) es ein k ∈ {1, . . . , n} gibt mit il = jl für l < k und ik > jk oder

3) il = jl für alle l ∈ {1, . . . , n} und | c |>| d |

Ein Polynom ist in Normalform, falls die Darstellung minimal bezüglich der

Zahl der Monome ist und diese Monome bezüglich obiger Ordnung absteigend

sortiert sind.

Das erste Monom in der Normalform eines Polynoms P (x1, . . . , xn) heiÿt Leit-

monom von P (x1, . . . , xn) und der Koe�zient dieses Monoms heiÿt Leitkoe�-

zient von P (x1, . . . , xn).

Für zwei Polynome P (x1, ..., xn) undQ(x1, ..., xn) gilt P (x1, ..., xn) � Q(x1, ..., xn),

falls in den Normalformen dieser beiden Polynome für ein i > 1 das (i-te Mo-

nom von P)�(i-te Monom von Q) ist und alle vorhergehenden Monome gleich

sind.

Lemma 7. Zu jedem Polynom P (x1, . . . , xn) gibt es positive ganze Zahlen

π1(P)und π2(P), so dass für alle x̄ ∈ Nn mit x1 > x
π1(P)
i und xi > π2(P)

das Vorzeichen von P (x1, . . . , xn) mit dem Vorzeichen des Leitkoe�zienten

von P (x1, . . . , xn) übereinstimmt. Für π1(P) und π2(P) gilt π1(P) ≤
∑n

i=2 di+

1 und π2(P)≤ 3 n−1

√
M
L
, wobei L der Leitkoe�zient von P, M die Höhe von P

und di der Grad von P in xi ist.

31

Beweis. Sei P (x1, . . . , xn) =Σd1
i=0fi(x2, . . . , xn)xi

1 mit di = degxi
P

Behauptung 1 |P (x1, . . . , xn) − Lxi1
1 · · ·xin

n | < |L|x
i1
1 · · ·xin

n für das Leitmo-

nom Lxi1
1 · · ·xin

n

Beweis. Sei M die Höhe von P. Es gilt

|P (x1, . . . , xn)− L xi1
1 · · ·xin

n | <

M xi1
1 Σi2−1

j=0 xj
2 · · ·Σin−1

j=0 xj
n + M Σi1−1

j=0 xj
1Σ

d2
j=0x

j
2 · · ·Σdn

j=0x
j
n ≤

2max
{

M xi1
1 Σi2−1

j=0 xj
2 · · ·Σin−1

j=0 xj
n, M Σi1−1

j=0 xj
1Σ

d2
j=0x

j
2 · · ·Σdn

j=0x
j
n

}
.

Der erste Term beschränkt die Summe über alle Monome, deren Grad in x1

gleich i1 und der zweite Term die mit einem Grad in x1 kleiner i1.

Da |L|xi1
1 · · ·xin

n > 2M xi1
1 Σi2−1

j=0 xj
2 · · ·Σin−1

j=0 xj
n für xi >3 n−1

√
M
L
und

|L|xi1
1 · · ·xin

n > 2MΣi1−1
j=0 xj

1Σ
d2
j=0x

j
2 · · ·Σdn

j=0x
j
n für x1 > x

Pn
i=2 di+1

i und xi >3 n−1

√
M
L

gilt, folgt daraus

|P (x1, . . . , xn)− L xi1
1 · · ·xin

n | < |L|x
i1
1 · · ·xin

n

ut

Korollar 4 Zu zwei Polynomen P (x1, . . . , xn) und Q(x1, . . . , xn) gibt es po-

sitive ganze Zahlen π1(P − Q)und π2(P − Q), so dass für alle x̄ ∈ Nn mit

x1 > x
π1(P−Q)
i und xi > π2(P −Q) entweder P (x1, . . . , xn) <Q(x1, . . . , xn) oder

immer P (x1, . . . , xn) ≥Q(x1, . . . , xn) gilt.

Beweis. [von Theorem 4 a)]

Sei D ein {+,−, ∗, DIV}-CT, der L ⊆ Zn erkennt.

Um Theorem 4 zu beweisen, sollen wiederum alle Berechnungsknoten v mit

DIV von oben nach unten durch Berechnungsknoten ohne DIV ersetzt werden,

in diesem Fall durch rationale Funktionen.

Die folgenden 3 Lemmata erläutern den Ersetzungsvorgang.

32

Lemma 8. Seien P, Q ∈ Z[x1, . . . , xn] Polynome. Dann gibt es Polynome

A, R ∈ Z[x1, . . . , xn] mit

P (x1, . . . , xn) =
A(x1, . . . , xn) ·Q(x1, . . . , xn) + R(x1, . . . , xn)

p(x2, . . . , xn)
,

wobei Q(x1, . . . , xn) = Σd1
j=1fj(x2, . . . , xn)xj

1 , δ = max{-1,degx1
P−degx1

Q},

degx1
R < degx1

Q, degxi
R < degxi

P + (δ + 1) degxi
Q degx1

A ≤ max{0, δ},

degxi
A ≤ degxi

P + δ degxi
Q , degxi

p ≤ (δ + 1) degxi
Q, i > 1.

Beweis. des Lemmas über Induktion nach δ

Der Induktionsanfang gilt für δ = −1 und A(x̄) = 0 und R(x̄) = Q(x̄)

Für den Induktionsschritt wird angenommen, dass die Induktionsannahme für

alle δ < k für ein k > −1 gilt und es wird bewiesen, dass sie dann auch für k

gilt.

Seien P (x̄) =Σd
j=1gj(x2, . . . , xn)xj

1 und Q(x̄) =Σm
j=1fj(x2, . . . , xn)xj

1. Dann ist

δ = d−m

Betrachte das Polynom

S(x̄) = fm(x2, . . . , xn)P (x̄)− xk
1gd(x2, . . . , xn)Q(x̄)

Da degx1
S < degx1

P , gilt die Induktionsannahme für die beiden Polynome

S(x̄) und Q(x̄). Daher gilt nach Induktionsannahme für geeignete Ã, R̃ mit

ganzzahligen Koe�zienten, degx1
(R̃) < degx1

(Q)

S(x̄) =
Ã(x̄) ·Q(x̄) + R̃(x̄)

(fm(x2, . . . , xn))δ
.

Ersetzt man nun für S(x̄) obigen Quotienten

P (x̄) =

Ã(x̄) ·Q(x̄) + (fm(x2, . . . , xn))δxk
1gd(x2, . . . , xnQ(x̄) + R̃(x̄)

(fm(x2, . . . , xn))δ+1

=
A(x̄) ·Q(x̄) + R̃(x̄)

(fm(x2, . . . , xn))δ+1

33

Für die Grade gelten, da degxi
S ≤ degxi

P + degxi
Q und degxi

Ã ≤ degxi
S +

(δ − 1) degxi
Q ,

degxi
A = max{degxi

Ã, δ degxi
Q + degxi

P} ≤ degxi
P + δ degxi

Q,

degx1
A = max{degx1

Ã, degx1
P − degx1

Q} ≤ degx1
P − degx1

Q.

ut

Lemma 9. Seien P, Q ∈ Z[x1, . . . , xn] Polynome. Dann gibt es Polynome

A1 ∈ Z[x1, . . . , xn] und A2, p ∈ Z[x2, . . . , xn] und Konstanten π1 und π2, so

dass für alle x̄ ∈ Nn mit x1 > xπ1
i , x1 ≡ cmod p(x2, . . . , xn) und xi > π2

P (x̄) DIV Q(x̄) =
A1(x1, . . . , xn)

p(x2, . . . , xn)
+

⌊
A2(x2, . . . , xn)

p(x2, . . . , xn)

⌋
gilt.

Beweis. [von Lemma 9]

Nach Lemma 8 gilt

P (x1, . . . , xn) DIV Q(x1, . . . , xn) =

⌊
A(x1, . . . , xn)

p(x2, . . . , xn)
+

R(x1, . . . , xn)

p(x2, . . . , xn) ·Q(x1, . . . , xn)

⌋
.

Nun kann gefolgert werden

(i) Sei k1 =
∑n

i=2 di + 1 mit di = degxi
(Q−R).

Für x1 > xk1
j , j = 2, ..., n, konvergiert R(x1,...,xn)

(p(x2,...,xn)·Q(x1,...,xn)
gegen 0, wenn

‖ (x1, ..., xn) ‖1 gegen ∞ strebt.

(ii) Sei c ∈ Z fest. Für x ≡ c mod p(x2, . . . , xn) gilt A(x1,...,xn)
p(x2,...,xn)

= A1(x1,...,xn)
p(x2,...,xn)

+

A2(x2,...,xn)
p(x2,...,xn)

und A1(x1,...,xn)
p(x2,...,xn)

∈ Z.

(i) folgt direkt aus den De�nitionen von R, p, und k1.

(ii) kann folgendermaÿen festgestellt werden:

34

Sei x1 ≡ cmod p(x2, . . . , xn), d.h. x1 = l · p(x2, . . . , xn) + c für ein l ∈ N. Dann

gilt

A(x1, . . . , xn)

p(x2, . . . , xn)
=

d1,...,dn∑
k1,...,kn=0,

a′k1,...,kn
(x1 − c)k1xk2·...

2 xkn
n

p(x2, . . . , xn)

=

d1,...,dn∑
k1,...,kn=0,

a′k1,...,kn
(lk1(p(x2, . . . , xn))k1−1 · xk2·...

2 xkn
n

+

d2,...,dn∑
k2,...,kn=0,

a′0,k2,...,kn
xk2·...

2 xkn
n

p(x2, . . . , xn)

=:
A1(x1, . . . , xn)

p(x2, . . . , xn)
+

A2(x2, . . . , xn)

p(x2, . . . , xn)

wobei die a′k1,...,kn
von c abhängige Koe�zienten sind. ut

Mit Lemma 9 ist zwar immer noch die ganzahlige Division in dem Ausdruck,

aber nur noch als Quotient zweier Polynome mit n-1 Variablen, d.h. mit einer

Variablen weniger. Wird dieses Lemma 9 nun (n-1)-mal angewendet und in

jedem Durchgang mit einer Variablen weniger im Nennerpolynom, so erhält

man folgendes Lemma

Lemma 10. Seien P, Q ∈ Z[x1, . . . , xn] Polynome, c1, ..., cn ∈ N Konstan-

ten. Dann gibt es Konstanten ki, K ∈ N und Polynome Ai ∈ Z[x1i, . . . , xn],

Pi ∈ Z[xi+1, . . . , xn], i=1,...,n-1 ,Pn ∈ Z , so dass für alle x̄ ∈ Nn mit

xi > xki
i+1, xn > K , xi ≡ ci mod Pi+1(xi+1, . . . , xn)

P (x̄) DIV Q(x̄) =
n−1∑
i=1

Ai(xi, . . . , xn)

Pi(xi+1, . . . , xn)
+ An(xn)

gilt.

35

Beweis. [von Lemma 10]

Nach dem (n-1). Durchgang ist bei dem letzten Summanden noch die DIV-

Operation
n−1∑
i=1

Ai(xi, . . . , xn)

Pi(xi+1, . . . , xn)
+

⌊
A′

n(xn)

Pn−1(xn)

⌋
.

Wie in Lemma 1 gezeigt, kann A′
n(x) DIV Pn−1(xn) als Polynom An(xn) für

Eingaben xn ≡ cn mod Pn, xn > K, für genügend groÿes K geschrieben wer-

den. ut

Jede DIV-Operation in dem CT D kann nun durch die Berechnung einer ra-

tionalen Funktion ersetzt werden, wie in Lemma 10 gezeigt.

Wird nun von der Wurzel zu den Blättern jeder DIV- Berechnungsknoten durch

die rationale Funktion als Quotient zweier Polynome mit ganzzahligen Koe�-

zienten ersetzt, bei der Addition und Subtraktion zweier rationaler Funktionen

nach der Rechenregel P
Q

+ (−)S
T

= PT+(−)SQ
QT

und bei der Multiplikation nach

der Rechenregel P
Q
· S

T
= P ·S

QT
wiederum als Quotient zweier Polynome mit ganz-

zahligen Koe�zienten umgeformt, so werden nur Polynome mit ganzzahligen

Koe�zienten berechnet. Wenn nun an einem Verzweigungsknoten nach P
Q

> 0

verzweigt wird, wird für P > 0 und Q > 0 oder aber P < 0 und Q < 0 der

Zweig für � P
Q

> 0 ist erfüllt� und ansonsten der für � P
Q

> 0 ist nicht erfüllt�

gewählt.

Dies ergibt einen {+,−, ∗}-CT, der für eine wie in Theorem 4 eingeschränkte

Eingabemenge L erkennt. Die Polynome pi(xi+1, . . . , xn) sind die Produkte

aller Polynome Pi, die als Divisor bei der Ersetzung der DIV-Operationen wie

in Lemma 10 vorkommen.

�

Beweis. [von Theorem 2 b)]

Durch Induktion über die Tiefe des Berechnungsbaumes werden die Grade der

rationalen Funktionen
n−1∑
i=1

Ai(xi,...,xn)
Pi(xi+1,...,xn)

+ An(xn) = S(x̄)
T (x̄)

und die Gröÿe der ki

abgeschätzt.

36

Behauptung 2 Nach der Substitution der DIV-Operationen in den oberen t

Levels von D sind die Grade der Zähler- und Nennerpolynome der in Lemma 10

de�nierten rationalen Funktionen ≤ 22(n−1)(t−1)
.

Beweis. der Behauptung

Der Induktionsanfang für t = 1 ist o�ensichtlich.

Die Induktionsannahme gelte für alle k < t.

Bei der Umformung der Berechnungsknoten, die mit P (x̄)
Q(x̄))

+ (-) S(x̄)
T (x̄))

beschrif-

tet sind, zu einem Quotienten zweier Polynome verdoppelt sich der Grad der

Polynome höchstens.

Daher müssen nur noch Berechnungsknoten in der Tiefe t, die mit P (x̄)DIVQ(x̄) =
n−1∑
i=1

Ai(xi,...,xn)
Pi(xi+1,...,xn)

+ An(xn) = S(x̄)
T (x̄)

beschriftet sind, genauer betrachtet werden.

Nach Induktionsannahme gelten dort folgende Ungleichungen:

deg P ≤ 22(n−1)(t−2)
, deg Q ≤ 22(n−1)(t−2)

und deg Pi ≤ 22(n−1)(t−2)
.

Nach Lemma 8 gilt für δ = max{-1,degx1
P − degx1

Q}

degx1
Ai ≤ max{0, δ} ≤ 22(n−1)(t−2)

und

degxi
Aj ≤ degxi

P + (δ + 1)j degxi
Q ,

degxi
Pj+1 ≤ (δ + 1)j degxi

Q ≤ (2δ)j22(n−1)(t−2)
j ≥ i

und degx1
S ≤ degx1

Q ≤ 22(n−1)(t−2)
.

Daher gilt

degxi
T ≤

n−1∑
j=0

degxi
Pj+1 ≤22(n−1)(t−2)

n−1∑
j=1

(2δ)j

≤ 22(n−1)(t−2)

(2 · 22(n−1)(t−2)

)n ≤ 22(n−1)(t−1)

und ebenso degxi
S ≤ 22(n−1)(t−1)

und degxi
S ≤ 22(n−1)(t−1)

. �

Da es höchstens 2t Knoten gibt, ist der Grad des Produkts dieser Polynome

höchstens 22(n−1)t
.

37

Aus der obigen Induktion und von Lemma 7 und Korollar 4 folgt unmittelbar

ki ≤ 22(n−1)t
. ut

Das Theorem 4 b) im 2-dimensionalen Fall wird nun benutzt, um die erste

untere Schranke für die mächtige Operationsmenge {+,−, ∗, DIV} und Kon-

stanten aus Q zu beweisen.

Beweis. [von Korollar 3]

Angenommen ein ({+,−, ∗, DIV}, Q)-CT M der Tiefe T erkennt Lr.

Theorem 2 b) besagt, dass es k2 und ein Polynom p(y) vom Grad ≤ 22T
gibt, so

dass es zu y ∈ k2Z, x1(y); x2(y), x1(y) < x2(y), x2(y) − x1(y) ≤ p(y), x1(y) <

r(y) < x2(y) gibt, so dass M A = {x1(y), y ∈ k2Z} akzeptiert und B =

{x2(y), y ∈ k2Z} verwirft, d.h. r(y) trennt A von B.

Für d ≤ max{k1, deg(p(y))} folgt die untere Schranke direkt aus Theorem 4 b).

Für d > max{k1, deg(p(y))} erkennt der ({+,−, ∗}, Q)-CTD′ aus Theorem 4 b)

L auch für Eingaben aus A ∪ B. Daher berechnet D′ ein Polynom s(y), das

A von B trennt. Da s(y) ∈ {x1(y), . . . , x2(y)} ⊆ {r(y)− p(y), . . . , r(y) + p(y)}

und d > deg(p(y)), hat s(y) Grad d. Da D′ nur Polynome vom Grad O(22T
)

berechnet, gilt d = O(22T
). ut

4.4 Separationsresultate

Dieser Abschnitt enthält die Beweise und die fehlenden Sprachen, um die

Sprachklassen zu unterscheiden.

Beweis. [von Theorem 5]

CC2{+,−}⊂6=CC2{+,−, ∗} gilt o�ensichtlich, da bekannterweise L = {(x, y), x2 >

y} ∈ CC2{+,−, ∗} − CC2{+,−}.

Die folgenden Unterscheidungen der Sprachklassen folgen bereits aus [22], sie

gelten schon im Fall n = 1.

38

CCn({+,−}) ⊂6= CCn{+,−, DIVc}

CCn{+,−, DIVc} − CCn{+,−, ∗} 6= ∅

CCn{+,−, ∗} ⊂6= CCn{+,−, ∗, DIVc}

Aus Theorem 2 folgt:

CCn{+,−, DIVc} ⊂6= CCn{+,−, ∗, DIVc}.

Das folgende Korollar der Theoreme 4 und 2 beweist die fehlenden Beziehun-

gen.

Korollar 5

a) {(x, y) ∈ Z2, x2 > 2y2} ∈ CC2({+,−, ∗})− CC2({+,−, DIV})

b) {(x, y) ∈ Z2, (y−1)DIV x−y DIV x < 0} ∈ CC2({+,-,DIV})−CC2({+,−, ∗,

DIVc}) "

Beweis. zu a) durch Widerspruch

Nach der De�nition von L gilt L ∈ CC2({+,−, ∗}.

Es wird gezeigt, dass unter der Annahme, dass ein {+,−, DIV}-CT diese Spra-

che erkennt, sie bereits von einem {+,−}-CT erkannt wird.

Nach Theorem 4 gibt es k1, k2∈ Q, so dass L auf {(x, y) ∈ N2 | k1y <

x < k2y}∩ (aZ)2, dem Gitter, das den Nullpunkt enthält, bereits durch einen

{+,−}-CT erkannt wird. Da
√

2 /∈ Q ist, können k1, k2∈ Q so gewählt werden,

dass k1 <
√

2 < k2 gilt. Folgendermaÿen wird dann L durch einen {+,−}-CT

erkannt: akzeptiere, falls |x| ≤ k1 |y|, und verwerfe, falls |x| ≥ k2 |y|.

Für k1 |y| < |x| < k2 |y| entscheide mit dem obigen {+,−}-CT, ob (a |x| , a |y|) ∈

L gilt. Falls ja, akzeptiere, ansonsten verwerfe. Dies ist im Widerspruch zu

L/∈ CC2({+,−}).

zu b) durch Widerspruch

Nach der De�nition von L gilt L ∈ CC2({+,−, DIV}.

Annahme L = {(x, y) ∈ Z2, (y − 1)DIV x − y DIV x < 0} ∈ CC2({+,−, ∗,

DIVc})

39

Nach Theorem 2 b) ist der Z2 endliche disjunkte Vereinigung a�ner Gitter

und L kann auf jedem dieser Gitter ohne DIVc entschieden werden. Dies gilt

insbesondere für das Gitter S, das den Nullpunkt enthält. Nach Theorem 2 b)

gibt es einen {+,−, ∗}-CT, der L auf S ∩ Z2 entscheidet.

Da S den Nullpunkt enthält, ist S = (a, 0)Z+(0, a)Z.

Sei nun (x,y)∈ S, d.h. (x,y)=(ax',ay'). Da (y − 1)DIV x − y DIV x < 0 ⇔

y mod x = 0, wird ay′ mod ax′ = 0 ⇔ y′ mod x′ = 0 ohne DIV entschieden.

Dies ist im Widerspruch zu L/∈ CC2({+,−, ∗}).

ut

5 Polynomauswertung

Diese beiden folgenden Kapitel entsprechen weitestgehend dem Aufsatz von

Martin ZIEGLER und mir in [26]. Anders als in den Kapiteln zu Berechenbar-

keits - und Komplexitätsbetrachtungen von S-CTs werden in den Kapiteln 5

und 6 die einzelnen Ergebnisse direkt mit den dazugehörigen Beweisen vorge-

stellt. Es wird in diesen beiden Kapiteln vorausgesetzt, dass auÿer, wenn ein

Algorithmus explizit als SLP angegeben wird, bei den vorgestellten Algorith-

men �≤� zur Operationsmenge gehört.

Aus der unteren Schranke über {+,−, ∗, DIV} ergibt sich eine doppelexponen-

tielle Lücke zwischen oberer Schranke zur Polynomauswertung über {+, ∗} und

unterer Schranke zur Polynomauswertung über {+,−, ∗, DIV}. Daher stellt

sich in diesem Kapitel die Frage, ob die Polynomauswertung mit zusätzlichen

nicht klassischen Grundoperationen beschleunigt werden kann, ob z.B. Po-

lynome vom Grad d über {+,−, ∗, DIV} in o(d) berechnet werden können.

Da gerade die Polynomauswertung in den Computerwissenschaften an vielen

Stellen benutzt wird, z.B. bei Splines oder Reed-Solomon-Codes, ist deren Be-

schleunigung wünschenswert.

5.1 Polynome mit einer Variablen

Das klassische Verfahren zur Polynomauswertung bei univariaten Polynomen

ist das Hornerschema und benötigt O(d) Schritte, wenn d den Grad des Po-

40

lynoms bezeichnet. Dieses Verfahren ist in vielen Fällen mit den Operationen

{+,−, ∗} optimal [8, Theorem 6.5]. Dies gilt nicht für ganzzahlige Polynome

mit im Verhältnis zum Grad kleinen Koe�zienten.

Theorem 6. Gegeben sei ein Polynom P (x) = Σd−1
n=0anx

n∈ Z[x] mit a0, ..., ad−1

∈ Z und |an| < P . Dann kann P(x) in O(d/logpd) Schritten über {+, ∗, } be-

rechnet werden.

Beweis. Da P(x) als Di�erenz zweier Polynome mit positiven Koe�zienten

betrachtet werden kann, sei o.B.d.A. P (x)∈ N[x]. Zerlege P in dd/ke Polynome

qi vom Grad kleiner gleich k. Wie dieses k in Abhängigkeit vom Grad d und

der maximalen Gröÿe der Koe�zienten P zu wählen ist, wird später gezeigt.

Es gibt höchstens Pk verschiedene Polynome vom Grad kleiner k und mit

Koe�zienten aus {0,1,..,P-1}. Mit dem Hornerschema wird jedes dieser Pk

verschiedenen Polynome an der Stelle x ∈ Z in O(k) Schritten berechnet, d.h.

es werden für alle Pk verschiedenen Polynome insgesamt O(k · Pk) Schritte zur

Auswertung benötigt.

Danach wird das Polynom Σ
dd/ke
i=0 qi(x) · Y i an der Stelle Y = xk mit dem

Hornerschema in O(d/k) Schritten berechnet und erhält so P(x).

Es werden zur Berechnung also O(d/k + k · Pk) Schritte benötigt.

Für k:= logpd-2 logplogpd ist

O(d/k + k · Pk) =

O(d/(logpd− 2 logplogpd) + (logpd− 2 logplogpd) · Plogpd−2 logplogpd)

= O(d/logpd)

ut

Wird als weitere Operation die ganzzahlige Division hinzugenommen, so kann

die Berechnung eines Polynoms über einem endlichen Bereich beschleunigt

werden.

Satz 3 Zu X ∈ N und Z > max0≤x≤X P (x) speichere Y :=
∑X

x=0 Zx · P (x).

Folgendermaÿen wird für 0 ≤ x ≤ X, aus den gespeicherten Werten P (x)

41

berechnet: durch wiederholtes Quadrieren in O(log x) Schritten berechne Zx.

Es gilt P (x) = (Y DIV Zx) mod Z.

Die Laufzeit ist unabhängig von deg(P) und logarithmisch in x.

Katharina Lürwer-Brüggemeier/Martin Ziegler 8

Y P(0)P(1)P(2)….P(x-1)P(x)P(x+1)…P(X)

ZZ2Zx-1ZxZx+1ZX

Y div Zx P(x)P(x+1)…P(X)

ZZ2ZX-x

Ymod Z P(x)

Abbildung 6. Berechnungen im Beweis von Satz 3

Aber auch die Abhängigkeit von der Eingabe ist zur Berechnung nicht not-

wendig [6].

Theorem 7. Ein Polynom P (x) ∈ Z [X] kann über einer endlichen Menge

D ⊂ Z in 15 Schritten (unabhängig von P und D) berechnet werden.

Beweis. Für negative Argumente x∈ Z berechne P(-x). Da jedes Polynom mit

ganzzahligen Koe�zienten als Di�erenz zweier Polynome mit natürlichen Ko-

e�zienten dargestellt werden kann, wird o.B.d.A. der Beweis für Polynome mit

natürlichen Koe�zienten und D ⊂ N geführt.

Sei P (x) =
∑d

i=0 pix
i, pi∈ N, degp = d und wt(P) ≤ P .

Behauptung 3 Für Z > max{Xd · P, (Xd+1 + 1) ·X} berechnet der folgende

Algorithmus p(x) für |x| ≤ X = max{|x| , x ∈ D}.

Z, Zd und p(Z) sind Konstanten und werden vorher berechnet und gespeichert.

g = Zd+1DIV (Z − x) 2 Operationen

h = p(Z) · g 1 Operation

a = h DIV Zd 1 Operation

b = a mod Z = a− (a DIV Z) · Z 3 Operationen

42

Katharina Lürwer-Brüggemeier/Martin Ziegler 8

Z2d

*P(Z) pdpd-1pd-2….p2p1p0

ZoZd

g xdXd-1Xd-2….X²x1

ZoZ1Z2Zd-2Zd-1Zd

= p0 xdp1 xd +po xd-1…po+ p1 x +…. +pd-1 xd-1 + pd xd…pd

Abbildung 7. Berechnungen in Bshoutys Algorithmus

Beweis. Um die Korrektheit des Algorithmus zu beweisen, folge ich dem Be-

weis von Nader BSHOUTY [6].

Für x ∈{1,...,X} gilt b=p(x)

(*)

g(x) =

⌊
Zd+1

Z − x

⌋
=

⌊
Zd

1− x
Z

⌋
=

⌊
Zd ·

∑∞
i=0

(
x
Z

)i
⌋

= d∑
i=0

Zd−i · xi

︸ ︷︷ ︸ +
∞∑

i=d+1

Zd ·
(x

Z

)i

︸ ︷︷ ︸
 =

∑d
i=0 Zd−i · xi,

∈ N = xd+1

Z−x
< 1

da laut Voraussetzung Z > (Xd+1 + 1) ·X gilt.

h(x) = p(Z)·
∑d

i=0 Zd−i · xi =

∑d
j=0 pj · Zj ·

d∑
i=0

Zd−i · xi =
d∑

i=0

(
d∑

j=0

pj · Zd−i+j) · xi

a(x) = h(x) DIV Zd =
d∑

i=0

(
d∑

j=0

pjZ
d−i+j) · xi DIV Zd =

⌊
d∑

i=0

(
d∑

j=0

pjZ
−i+j) · xi

⌋
=

d∑
i=0

(
d∑

0≤i≤j

pj · Z−i+j) · xi.

43

Da für i 6= j die Summanden ganzzahlig sind und laut Voraussetzung Z >

Xd · wt(P) ist, gilt

b(x) = a(x) mod Z =
∑d

j=0 pj · xj = p(x)

ut

Korollar 6 Mit der Operationsmenge {+,−, ∗c, DIV} kann jede endliche Fol-

ge y0, y1, . . . , yN (oder formaler die Abbildung {0, 1, . . . , N} 3 n 7→ yn) in

konstanter Zeit unabhängig von (der Länge N) der Folge erkannt werden.

Beweis. Betrachte das Interpolationspolynom p ∈ Q[X] vom Grad ≤ N + 1,

so dass p(n) = yn, n ∈ {0, . . . , N} gilt. Wähle M ∈ N, so dass M · p ∈ Z[X].

Nach Theorem 7 kann n 7→M ·p(n) in konstanter Zeit berechnet werden. Nach

ganzzahliger Division durch M erhält man p(n). ut

Aus diesem Korollar folgt für eine Sprache L ⊆ Z ebenfalls Bemerkung 2,

wenn es auf die charakteristische Folge (y0, . . . , yN) von L, die durch yn := 1

für n ∈ L und yn := 0 für n 6∈ L de�niert ist, angewendet wird.

Wie der nächste Abschnitt zeigt, gelten diese Aussagen auch für Folgen (ȳ0, . . . , ȳN)

in Zd und für endliche Sprachen L ⊆ Zd für ein festes d.

5.2 Polynome mit mehreren Variablen

Dieser Algorithmus von Nader BSHOUTY wird erweitert zu einem Algorith-

mus für multivariate Polynome.

Theorem 8. Ein Polynom P (x1, . . . , xn) ∈ Z[x1, . . . , xn] kann über einer end-

lichen Menge D ⊂ Zn in O(n) Schritten unabhängig von p und D mit der

Operationsmenge {+,−, ∗, DIV} berechnet werden.

Beweis. Um nur Polynome für nicht-negative Argumente

x̄ = (x1, . . . , xn) ∈ Nn zu berechnen, wird zu einer Eingabe x̄ ∈ Zn zunächst

44

in O(n) Schritten entschieden, welches der 2n im Allgemeinen verschiedenen

Polynome P (±x1,±x2, . . . ,±xn) an der Stelle (|x1|, |x2|, . . . , |xn|) berechnet

werden muss, um den Wert von P (x̄) zu berechnen.

Sei o.B.d.A. P (x̄) = Σd1,...,dn

i1,...,in=0pi1,...,inxi1
1 · · ·xin

n ∈ N[x1, . . . , xn], andernfalls be-

trachte wie im univariaten Fall , falls P (x̄) ∈ Z[x1, . . . , xn], P (x̄) wiederum als

Di�erenz zweier Polynome mit natürlichen Koe�zienten.

Behauptung 4 Der folgende Algorithmus berechnet f(x̄) = P (x̄) für x̄ ∈ D,

falls Z > dn·wt (P)·max {xi; i = 1, ..., n}nd

mit d := max {di ; i = 1 , ..., n}+ 1, di = degxi
P (x̄) gilt.

g(x̄) =
∏n

i=1 Zdi
DIV (Zdi−1−xi) 3n Operationen

h(x̄) = P (Z,Zdi
, ..., Zdn−1

) · g(x̄) 1 Operation

k(x̄) = h(x̄) DIV Zdn−1 1 Operation

f(x̄) = k(x̄) mod Z = k(x̄)− (k(x̄) DIV Z) · Z 3 Operationen

Beweis. der Behauptung

Es gilt die Gleichung (*) auf Seite 42
⌊

Zd

Z−x

⌋
=

∑d−1
i=0 Zd−1−i ·xi im univariaten

Fall für alle Z > Ω(xd).

Wird diese Gleichung auch auf x2 und Z2 := Zd angewendet, führt dies zur

folgenden Gleichung(
Zd2

DIV (Zd − x2)
)
·

(
Zd DIV (Z − x1)

)
=

d−1∑
i2=0

Zd(d−1−i2) · xi2
2 ·

d−1∑
i1=0

Zd−1−i1 · xi1
1 =

∑d−1

i1,i2=0
Zd2−1−(di2+i1) · xi2

2 · xi1
1 .

Induktiv für i = 1, ..., n wird diese Gleichung auf xi und Zi := Zdi−1
angewen-

det und man erhält in O(n) Schritten über {+,−, ∗, DIV}

g(x̄) =
n∏

i=1

Zdi
DIV (Zdi−1−xi) =

45

∑d−1

i1,...,in=0
Zdn−1−(dn−1in+···+di2+i1) · xin

n · · ·x
i2
2 · xi1

1

Diese Summe wird nun mit der Konstanten

P (Z,Zd, Zd2

, . . . , Zdn−1

) =
∑d−1

i1,...,in=0
p̄i · Zi1+di2+d2i3+···+dn−1in

multipliziert.

h(x̄) = P (Z,Zdi

, ..., Zdn−1

) · g(x̄)

d−1∑
k1,...,kn=0

pk̄Z
k1+dk2+······+dn−1kn ·

d−1∑
i1,...,in=0

Zdn−1 · Z−i1 · · ·Z−dn−1in · xi1
1 · · ·xin

n

d−1∑
k1,...,kn,i1,...,in=0

pk̄ Zdn−1 · Z(k1−i1) · · ·Z(dn−1kn−dn−1in) · xi1
1 · · ·xin

n

Wie im Fall einer Variablen wird wiederum durch Anwendung der ganzzahligen

Division und anschlieÿender Restbildung P(x) extrahiert.

k(x̄) = h(x̄) DIV Zdn−1 =

(
d−1∑

k1,...,kn,i1,...,in=0

pk̄ Zdn−1 · Z(k1−i1) · · ·Zdn−1(kn−in) · xi1
1 · · ·xin

n)DIV Zdn−1 =

⌊
d−1∑

k1,...,kn,i1,...,in=0

pk̄ · Z(k1−i1) · · ·Zdn−1(kn−in) · xi1
1 · · ·xin

n

⌋
=

⌊
d−1∑

k1,...,kn,i1,...,in=0

pk̄ · ZΣn
i=0(kj−ij)d

j−1 · xi1
1 · · ·xin

n

⌋
=

Für Σn
i=0(kj − ij)d

j−1≥0 sind die Summanden ganzzahlig.

Für Σn
i=0(kj − ij)d

j−1
<0 ist die Summe dieser Summanden kleiner 1, da Z >

dn·wt(P)·max {xi; i = 1, ..., n}nd gilt.

46

=
d−1∑

k1, ..., kn, i1, ..., in = 0

Σn
i=0(kj−ij)d

j−1≥0

pk̄ · ZΣn
i=0(kj−ij)d

j−1 · xi1
1 · · ·xin

n

f(x̄) = k(x̄) mod Z =

(

d1,...,dn∑
k1,...,kn=0,

dn,...,d∑
i1, ..., in = 0

Σn
i=0(kj−ij)d

j−1≥0

pk̄ · ZΣn
i=0(kj−ij)d

j−1 · xi1
1 · · ·xin

n)mod Z

Falls kn < in ist, gilt Σn
i=0(kj − ij)d

j−1
<0 für j = 1, ..., n, da d > kj gilt. Dies

ist im Widerspruch zu Σn
i=0(kj − ij)d

j−1≥0.

Falls kn > in ist, teilt Z die Summanden

pk̄ · ZΣn
i=0(kj−ij)d

j−1 · xi1
1 · · ·xin

n

Daraus kann gefolgert werden, dass

(
pk̄ · ZΣn

i=0(kj−ij)d
j−1 · xi1

1 · · ·xin
n

)
mod Z 6= 0

nur für kn = in gilt.

In der gleichen Weise wird kj = ij induktiv für j = n− 1 bis j = 1 gezeigt.

Nach De�nition von Z gilt nun

d1,...,dn∑
k1,...,kn=0,

pk̄x
k1
1 · · ·xkn

n = P (x̄).

ut

5.3 Polynomauswertung mit bitweiser Konjunktion

Im Gegensatz zum Hornerschema erfolgt die Polynomauswertung mit dem Al-

gorithmus von Nader BSHOUTY und dessen Erweiterung auf multivariate

47

Poynome nur über endliche Eingabebereiche. Für ein im Verhältnis zur Ein-

gabe genügend groÿes Z, so dass es bei dem Produkt von Zd+1DIV (Z − x)

und P(Z) nicht zu unerwünschten Überlappungen kommt, wurde P(Z) als Kon-

stante vorher gespeichert. Wird die bitweise Konjunktion als weitere Opera-

tion hinzugenommen und das Z im Verhältnis zur Eingabe geeignet gewählt,

lässt sich die Polynomauswertung im Vergleich zum Hornerschema deutlich

beschleunigen.

Satz 4 Sei p ∈ N[x] ein Polynom vom Grad d, dann kann N 3 x 7→ p(x) in

O(log d) Schritten über {+,−, ∗, DIV, &} berechnet werden.

Beweis. Sei P (x) = Σd
i=0pix

i∈ N[x] mit pi ∈ N und pi < 2l für i = 0, ..., d.

Zu gegebenem x ∈ N berechne durch wiederholtes Quadrieren in O(log d)

Schritten Z ′ := xd+2.

Z := Z ′ · Y mit Y := 2l erfüllt die Bedingungen zu Satz 3.

P (Y) =
d∑

i=0 ,

pi2
li = P (2l) ist für ein festes Polynom eine Konstante und kann

vorab gespeichert werden.

W :=
d∑

i=0 ,

Z ′i und ebenso V :=
d∑

i=0 ,

(Z ′ · Y)i werden in O(log d) Schritten

berechnet, indem zunächst wiederum durch sukzessives Quadrieren Z ′d+1 bzw.

(Z ′ ·Y)d+1 berechnet wird und V bzw. W werden nach der folgenden Gleichung

W :=
d∑

i=0 ,

Z ′i = Z ′d+1DIV (Z ′−1) bzw. V :=
d∑

i=0 ,

(Z ′·Y)i = (Z ′·Y)d+1DIV (Z ′·

Y − 1) berechnet.

In der folgenden Abbildung ist zu sehen , wie P(Z) aus U, V, W und Y mit der

bitweisen Konjunktion als weiterer Operation nach den obigen Abschätzungen

in O(log d) Schritten als

P (Z) = (P (Y) ·W)&((Y − 1) · V)

berechnet wird.

48

Abbildung 8. Berechnungen im Beweis von Satz 4

P (Y) ·W =
d∑

i=0

d∑
j=0

pi2
liZ ′j =

d∑
i=0

d∑
j=0

pi2
liZ ′j

(Y − 1) · V =
d∑

i=0

l−1∑
i=0

(Z ′ · Y)i2j =
d∑

i=0

l−1∑
j=0

2li+jZ ′j

Da (Y −1) ·V nur Koe�zienten 6= 0 bei 2li+j für i = 0, ..., d und j = 0, ..., l−1

hat, sind es genau die Koe�zienten pi in binärer Darstellung für i = 0, ..., d ,

P (Z) = (P (Y) ·W)&((Y − 1) · V). ut

Nach dem obigen Beweis werden die O(log d) Schritte benötigt, um durch

wiederholtes Quadrieren Z ′ := xd+2 und Zd zu berechnen. Alle anderen Be-

rechnungen gehen in konstanter Zeit, wenn die Konstanten wie Yd oder P(Y)

vorher berechnet werden. Ist x<O(2d) können Z ′ := xd+2 und Zd schneller

in O(log log |x|) Schritten berechnet werden, wenn nicht x, sondern 2d und

2d2
sukzessive quadriert werden. In diesem Fall wird auch nicht die Multiplika-

tion, sondern nur die Multiplikation mit Konstanten benötigt.

Korollar 7 Sei p ∈ N[x] ein Polynom vom Grad d, dann kann N 3 x 7→

p(x) in O(log log|x|) Schritten über {+,−, ∗c, DIV, &} berechnet werden.

49

Ohne Einschränkung kann der Grad des Polynoms als Zweierpotenz vorausge-

setzt werden, da ansonsten das Polynom durch Hinzufügen von Summanden

mit den Koe�zienten Null erweitert wird. Die Laufzeit in der O-Notation

ändert sich nicht dabei. Wird zusätzlich noch das schnellere Quadrieren mit

der ganzzahligen Division aus dem Aufsatz von Yishay MANSOUR, Baruch

SCHIEBER, PrasoonTIWARI [28] verallgemeinert für beliebige positive ganze

Zahlen, erhält man die Zeitabschätzung in Theorem 9 zur Polynomauswertung.

Satz 5 Gegeben seien a, k ∈ N und eine beliebige ganze Zahl b ≥ a2k
, dann

lässt sich a2k
über (+,−, ∗, DIV) in O(

√
k) Schritten berechnen.

Beweis. Zunächst wird m mit k = m2 + b mit 0 ≤ b < 2m + 1 gesucht. Dies

geht in O(
√

k) Schritten, indem nacheinander i für i = 1, ...,m + 1 quadriert

wird, bis i2 > k gilt. Da m =
⌊√

k
⌋
gilt, kann durch sukzessives Quadrieren

von a2m2

in O(
√

k) Schritten a2k
berechnet werden. Es bleibt zu zeigen, dass

a2m2

in O(m) = O(
√

k) Schritten berechnet werden kann.

Sei b1,0 = ab. Durch m-faches Quadrieren von b1,0 = ab erhält man für i =

1, ...,m

b1,i = b1,i−1
2 = (ab)2i

Sei b0,0 = a und berechne

b0,i = b1,m mod (b1,0 − b0,i−1) für i = 1, ...,m.

Es wird gezeigt, dass b0,i = a2mi
und daher b0,m = a2m2

gilt.

Es wird ausgenutzt, dass für yr < (x− y)

xr mod (x− y) = ((x− y) + y)r mod (x− y) = yr

gilt. Aus b1,m = (ab)2m
und b1,0 − b0,i−1 > a2m2

folgt daher b0,i = b2m

0,i−1 = a2mi
.

ut

Ohne ganzzahlige Division benötigt man für die 2k. Potenz einer natürlichen

Zahl durch wiederholtes Quadrieren O(k) Schritte. Die zusätzliche Eingabe

von dem b kann gewissermaÿen als 'Katalysator' zur Beschleunigung betrachtet

werden, vergleiche Abschnitt 6.3.

50

Theorem 9. Ein Polynom P ∈ Z[x] vom Grad d kann an der Stelle x ∈ Z in

O(min{log d, log log |x|}) Schritten über {+,−, ∗, DIV, & } berechnet werden.

Ist zusätzlich eine natürliche Zahl y ≥ |x|d2
gegeben, kann P (x) über {+,−, ∗,

DIV, &} in O(
√

min{log d, log log |x|}) berechnet werden.

Dieses Theorem kann wie im endlichen Fall von Poynomen mit einer Variablen

auf solche mit mehreren Variablen übertragen werden.

Theorem 10. Ein Polynom P (x1, . . . , xn) ∈ Z[x1, . . . , xn] mit maximalem

Grad kleiner d kann über Zn in O(n ·min{log d , log log max {|xi| , i = 1, ..., n})

Schritten mit der Operationsmenge {+,−, ∗, &, DIV} berechnet werden.

Ist zusätzlich eine natürliche Zahl y ≥ max{|xi|, i = 1, ..., n}dn+1
gegeben, kann

P (x1, . . . , xn) in O(n·
√

min{log d, log log max {|xi| , i = 1, ..., n}) üver {+,−, ∗,

&, DIV} berechnet werden.

Beweis. Sei P (x̄) ∈ Z[x1, . . . , xn].

Wie im endlichen Fall wird in O(n) Schritten entschieden, welches der 2n Poly-

nome Pk(|x1|, . . . , |xn|) ∈ Z[|x1|, . . . , |xn|] mit P (x1, . . . , xn) = Pk(|x1|, . . . , |xn|)

für eine Eingabe x̄ ∈ Zn an der Stelle (|x1|, |x2|, . . . , |xn|) berechnet werden

muss, um den Wert von P (x̄) zu berechnen.

Sei o.B.d.A. P (x̄) = Σd1,...,dn

i1,...,in=0ai1,...,inxi1
1 · · ·xin

n ∈ N[x1, . . . , xn]. Andernfalls, falls

P (x̄) ∈ Z[x1, . . . , xn], unterteile P wiederum in die Di�erenz zweier Polynome

mit natürlichen Koe�zienten.

Um Theorem 8 auf eine Eingabe x̄ ∈ Zn anwenden zu können, muss wie in

Theorem 8 (Z,Zd, ..., Zdn−1
) für ein Z > Ω(max{xi; i = 1, ..., n}dn

) mit d :=

max {2, d1 + 1, ..., dn + 1}; di = degxi
P (x̄) gefunden werden. Dies geht durch

wiederholtes Quadrieren von max {|xi| , i = 1, ..., n} oder von (2d, 2d2
, ..., 2dn

) in

O(n ·min{log d, log log max {|xi| , i = 1, ..., n}). Bei zusätzlicher Eingabe von

y ≥ max{|xi|, i = 1, ..., n}dn+1
kann wiederum wie in [28] das Quadrieren zu

O(n·
√

min{log d, log log max {|xi| , i = 1, ..., n}) beschleunigt werden.

51

Als nächstes muss P (Z,Zd, ..., Zdn−1
) berechnet werden.

P (Z,Zd, ..., Zdn−1

) =

d1,...,dn∑
k1,...,kn=0,

pk1,...,kn(Z)k1 · · · (Zdn−1

)kn =

d1,...,dn∑
k1,...,kn=0,

pk1,...,kn(Z)k1+...+dn−1kn

Da k1 + ... + dn−1kn für k1, ..., kn ∈ {0, ..., d− 1} verschiedene Zahlen in d-

adischer Darstellung sind, kann P (Z,Zd, ..., Zdn−1
) als ein univariates Polynom

P ′(Z) mit P ′(x) ∈ N[x] und deg P ′ ≤ dn betrachtet werden.

ut

Für Eingaben aus den natürlichen Zahlen ist der Algorithmus ein SLP, bei Ein-

gaben aus den ganzen Zahlen werden als zusätzliche Operation noch Vergleiche

�≤� benötigt.

5.4 Speichern und Extrahieren algebraischer Zahlen

Wenn die bitweise Konjunktion nicht hinzugenommen wird, bleibt das Hor-

nerschema das schnellste bekannte Verfahren, um ein beliebiges, aber festes

Polynom über ganz N mit der Operationsmenge {+,−, ∗, DIV } auszuwerten.

In [25] ist eine untere Schranke von Ω(log log d) für einige Polynome zur Poly-

nomauswertung bewiesen worden, wenn d den Grad des Polynoms bezeichnet.

Es entsteht also eine doppelexponentielle Lücke zur oberen Schranke von O(d)

des Hornerschemas über {+,−, ∗}. Damit stellt sich folgende

Frage 1 Kann jedes beliebige, aber feste Polynom p ∈ N [X] an jeder Stelle

x ∈ N in o(deg p) über {+,−, ∗, DIV } ausgewertet werden.

Nach den Überlegungen des letzten Abschnitts kann diese Frage positiv be-

antwortet werden, falls es möglich ist, zu x ∈ N die Zahl p(Z) für irgend-

ein Z > Ω(xd) mit d > deg p zu berechnen. Dazu wähle Zn := Y · 2n mit

Y = 2k > wt(p) und stelle die binäre Erweiterung der Folge p′(Zn) = 2p(Zn)<

52

Zd
n ·wt(p) ≤ 2K+dn+1 mit n ∈ N und K := k · (d + 1), wie in Satz 3 folgender-

maÿen als reelle Zahl dar:

ρp :=
∞∑

n=0

p′(Zn) · 2−n·(K+dn+1).

Um zu gegebenem x ∈ N aus dieser reellen Zahl p′(Zn) zu extrahieren, genügt

es, ρp bis auf eine Abweichung ε < 2−n·(K+dn+1) für ein n > Ω(d · log x) zu

approximieren.

Es wird 2p(Zn) extrahiert, da das kleinste Bit bei 2p(Zn) eine 0 ist und sollte

es bei der Approximation durch wiederholte Überträge kleinerer Bits zu einem

falschen Ergebnis des kleinsten Bits von 2p(Zn) kommen, liefert die ganzzahlige

Division durch 2 das korrekte Ergebnis p(Zn).

Lemma 11. Sei α ∈ R algebraisch vom Grad < d. Dann können zu gegebe-

nem n ∈ N über {+,−, ∗} in O(δ · log n) u, v ∈ N berechnet werden, so dass

|α− u/v| ≤ 2−n gilt.

Für einige transzendente Zahlen wurden ähnliche Ergebnisse, obwohl mit un-

terschiedlichen Methoden, erzielt [7].

Beweis. Sei q ∈ Z [X] das Minimalpolynom von α. Mit dem Newtonschen

Nährungsverfahren lassen sich mit quadratischer Konvergenzgeschwindigkeit

die Nullstellen eines Polynoms approximieren. Zu einem festen α ∈ R können

das Minimalpolynom q ∈ Z [X], seine Ableitung q′ ∈ Z [X] und ein geeigneter

Ausgangspunkt vorab als Konstanten gespeichert werden. ut

Aus diesem Lemma folgt für Polynome mit einer leichten Abhängigkeit von der

Eingabe x die Antwort auf die eingangs in diesem Abschnitt gestellte Frage.

Theorem 11. Sei p ∈ N [X] ein Polynom vom Grad <d und angenommen
∞∑

n=0

2−dn2
ist algebraisch vom Grad <δ. Dann kann p(x) für x ∈ N über {+,−, ∗,

DIV } in O(δ · log log x) Schritten berechnet werden.

Leider ist es weder bekannt, ob die Reihe
∞∑

n=0

2−dn2
algebraisch ist, noch, falls

sie algebraisch ist, von welchem Grad. Dies stellt ein ungelöstes Problem in

der Zahlentheorie dar [38, Abschnitt 10.7.B, Beispiel 1, S.314,].

53

Um die zu Beginn dieses Abschnittes gestellte Frage zu beantworten, könnte

man, statt alle p(Zn) in einer Reihe zu speichern, eventuell eine linear rekurren-

te Folge von Polynomen p(Zn) suchen, die mit einer leichten Abhängigkeit von

x schnell berechnet werden kann. Ein Ansatz hierzu könnte durch die in [17]

beschriebenen Algorithmen bei Hinzunahme der ganzzahligen Division und in

Verbindung mit der folgenden Bemerkung gegeben sein.

Bemerkung 5 Sei p ∈ Z[x] vom Grad < d und c ∈ N. Dann ist die ganzzah-

lige Folge p(1), p(c), p(c2), . . . , p(cn), . . . linear rekurrent vom Grad d, d.h. es

gibt a0, . . . , ad−1, ad ∈ Z, so dass p(cn+1) =
(
a1 · p(cn) + · · ·+ ad · p(cn−d+1)

)
/a0

für alle n ∈ N gilt.

Beweis. Für k = d−1 haben die (d+1) Polynome p(cx), p(x), p(x/c), . . . , p(xc−k)

alle einen Grad < d . Daher sind sie linear abhängig über Q. q0 · p(cx) + q1 ·

p(x) + · · · + qk+1 · p(xc−k) ≡ 0; o.B.d.A. qi ∈ Z. Falls k minimal ist, folgt

q0 6= 0. ut

6 Anwendungen in der Linearen Algebra

Wie eingangs erwähnt und im letzten Kapitel für die Polynomauswertung ge-

zeigt, hängt die Berechnungsmächtigkeit und die Komplexität einer Register-

maschine RAM stark von der zugrundeliegenden Operationsmenge ab. Im fol-

genden Kapitel geht es um ausgewählte Probleme, deren Laufzeiten durch

diese zusätzlichen Operationen wie ganzzahlige Division usw. linear oder sogar

sublinear sind, wie auch in den folgenden Beispielen.

Beispiel 2

a) Über {+,−, ∗, DIV)} ist nicht nur der Primzahltest, sondern sogar die Fak-

torisierung einer ganzen Zahl x in O(log x) Schritten möglich, d.h. linear

in der Binärlänge von x .

b) Über {+,−, ∗, DIV)} und mit indirekter Adressierung lässt sich der gröÿ-

te gemeinsame Teiler ggT(x, y) zweier Zahlen x,y mit N = max{x, y} in

O(log N/log log N) Schritten berechnen.
0 Ich danke Riko Jacob für den Hinweis auf die Punkte d) und e) in diesem Beispiel.

54

c) Über {+,−, &,←,→} (aber ohne indirekte Adressierung wie bei Bucket

Sort) können n ganze Zahlen x1, . . . , xn in O(n) Schritten sortiert werden

und über {+,−, ∗, DIV} in O(n · log log maxixi) Schritten.

d) 3SUM, die Frage, ob es zu x1, . . . , xn, y1, . . . , yn, z1, . . . , zn i, j, k mit xi +

yj = zk gibt, kann in O(n) Schritten über {+,−, ∗, &} entschieden werden.

e) Die Permanente Perm(A) =
∑

π∈Sn
a1,π(1) · · · an,π(n) einer n × n Matrix

A kann in O(n2) Schritten über {+,−, ∗, DIV} berechnet werden, d.h. in

quasioptimaler Zeit.

b) Die Laufzeit des Euklidischen Algorithmus benötigt Θ(log N) für Fibonac-

cizahlen x = Fn = N , y = Fn−1.

c) Um die Permutation von der Eingabe zur sortierten Ausgabe zu beschreiben

erfordert bereits Ω(n · log n) Bits.

e) Ohne ganzzahlige Division ist Perm VALIANT-NP-vollständig [8, Theorem

21.17], wenn das Einheitskostenmodell vorausgesetzt wird, im Bitmodell ist

Perm sogar #P-vollständig.

d) Auch 3SUM wird ohne DIV als `n2-vollständig' betrachtet, vergl. [19].

Beweis. a) Siehe [40]; b) siehe [5]; c) siehe [24], für aktuellere Ergebnisse zu den

Aufwandsabschätzungen beim Sortieren mit verschiedenen Operationsmengen

siehe [20];

e) siehe [1, Proposition 2.4] und den Beweis zu Satz 6.

Die Behauptung aus d) kann von den allgemeineren Betrachtungen in [9] ab-

geleitet werden. Auf dieses Beispiel angewendet führt dies zu:

Für 0 ≤ a0, . . . , aN−1, b0, . . . , bN−1 < 2t−1, sei A :=
∑N−1

i=0 ai ·2ti, B :=
∑

i bi ·2ti,

und C :=
∑

i 2
t−1 · 2ti. Dann gilt

∀i = 0, . . . , N − 1 : ai ≥ bi ⇔ (A + C −B)&C = C .

Aufgrund der obigen Kodierung kann die folgende Aussage �∃i : ai = bi� in

konstanter Zeit über {+,−, &} überprüft werden. Diese Kodierung erhält man

für die doppelte Folge (xi + yj)i+nj in Linearzeit O(n) über {+,−, ∗}, vergl.

dazu den Beweis von Satz 12. ut

55

6.1 Matrixmultiplikation

Der derzeitige Rekord bei der Matrixmultiplikation ohne ganzzahlige Division

liegt bei O(nω) mit ω< 2,38, aufgestellt von Don COPPERSMITH und Shmu-

el WINOGRAD [15], [8, Chapter 15]. Es wird in diesem Abschnitt gezeigt,

dass bei Hinzunahme der ganzzahligen Operation als weitere Operation die

Matrizen in quadratischer Zeit, d.h. quasi-optimaler Zeit, berechnet werden

können.

Theorem 12. Seien A ∈ Zkxn und B ∈ Znxm . C := A · B ∈ Zkxm kann über

{+,−, ∗, DIV} in O((k + m)n + km) Schritten berechnet werden.

Beweis. Für i = 1, ..., k und j = 1, ..,m soll ci,j = Σn
l=1ai,l · bl,l berechnet

werden. O.B.d.A. seien ai,l, bl,l≥ 0, ansonsten zerlege die Matrizen und multi-

pliziere nach dem nicht-kommutativen Distributivgesetz für Matrizen.

Z sei eine Zweierpotenz und so gewählt, dass Z > (maxi,lai,l) · (maxl,jbl,j) · n.

Die Matrizen A und B werden folgendermaÿen als ganze Zahlen in O(kn) und

O(nm) Schritten kodiert.

α := Σk
i=1Σ

n
l=1ai,l · Z(l-1)+2nm(i-1) und β := Σk

i=1Σ
n
l=1bl,i · Z(n-l)+2n(j-1)

Vorab werden alle zur Kodierung und späteren Dekodierung benötigten Po-

tenzen von Z in O(log (knm)) berechnet.

Wie in der folgenden Abbildung dargestellt, stehen die gesuchten Zahlen ci,j

bei dem Produkt γ := α ·β in Z-adischer Darstellung genau an den Positionen

Z2n(j-1)+(n-1)+2nm(i-1). Mittels ganzzahliger Division werden die ci,j in O(km)

Schritten aus dem Produkt γ extrahiert.

Abbildung 9. Kodierung der Matrizen A und B und Dekodierung der Matrix C

56

Die Berechnungszeit wird zum Kodieren und Dekodieren der Matrizen benötigt

und die eigentliche Multiplikation erfolgt in konstanter Zeit. ut

6.2 Permanente und Determinante

Dass bei Hinzunahme der ganzzahligen Division die Permanente einer Matrix

in quadratischer Zeit berechnet werden kann, wurde für Matrizen mit Einträ-

gen aus {0, 1} von Eric ALLENDER, Peter BÜRGISSER et al. in [1] gezeigt.

Dieser Beweis wird auf Matrizen mit Einträgen aus N übertragen. In Verbin-

dung mit der Polynomberechnung bei multivariaten Polynomen über einem

endlichen Bereich lässt sich diese Laufzeit auf die Berechnung der Determi-

nante einer Matrix mit ganzzahligen Einträgen übertragen.

Satz 6 Man kann

Nn×n 3 A 7→ Perm(A) =
∑
π∈Sn

a1,π(1) · · · an,π(n)

über {+,−, ∗, DIV } in O(n2) Schritten berechnen.

Beweis. Betrachte das multivariate Polynom fn.

fn :=
n2n−1∑
i=1

fn,iY
i =

n∏
i=1

(
n∑

j=1

Xi,jY
2j−1

)

Die fn,i sind Polynome mit natürlichen Koe�zienten in n2 Variablen.

Alle Y 2j−1
für j=1,...,n und damit auch jede Summe für i=1,...,n lassen sich

in O(n) berechnen. Da es n Summen sind und das Produkt über diese Sum-

me wiederum in O(n) berechnet werden kann, ist dieses Polynom in O(n2)

Schritten über {+,−, ∗} berechenbar.

Zu einer Matrix A mit Einträgen ai,j ∈ N wird dieses Polynom fn für Xi,j =

ai,j und für ein genügend groÿes Y=Z>(maxn
i,j=1ai,j)

n3
> nn · (maxn

i,j=1ai,j)
n,

ebenfalls in O(n2) berechenbar, ausgewertet. Nach Wahl von Z ist fn,2n−1 an

der Stelle Xi,j = ai,j gerade die Permanente von A. Durch die ganzzahlige

Division und Restbildung lässt sich fn,2n−1 aus fn(Z) extrahieren. ut

57

Im Folgenden wird gezeigt, dass diese quasi-optimale Polynomialzeit O(n2)

nicht nur für die Berechnung der Permanente, sondern auch für die Berechnung

der Determinante gilt.

Theorem 13. Sei A ∈ Zn×n, Det(A) kann in O(n2) Schritten über {+,−, ∗,

DIV} berechnet werden.

Im Gegensatz zu Theorem 10 wird die bitweise Konjunktion �&� hier nicht als

weitere Operation benötigt.

Beweis. Zunächst wird die Matrix A ∈ Zn×n zu einer Matrix A′ ∈ Nn×n, deren

Determinante sich höchstens um das Vorzeichen von der Determinante von A

unterscheidet, in O(n2) Schritten umgeformt.

Sei ai0,j0 = max{|ai,j| , i, j = 1, ..., n}∈ N, ansonsten, falls ai0,j0 negativ ist,

multipliziere die i0. Zeile mit -1. Die beiden Determinanten unterscheiden sich

dann um das Vorzeichen.

Addiere zu jeder Zeile das Doppelte der Zeile i0. In der Spalte j0 haben nun

alle Einträge dasselbe Vorzeichen wie ai0,j0 und sind betragsmäÿig gröÿer als

ai0,j0 und die Einträge in den anderen Spalten sind ≤ 3 · ai0,j0 .

Wird nun zu jeder Spalte das Vierfache der Spalte j0 addiert, so sind alle

Einträge positiv und haben sich betragsmäÿig höchstens verachtfacht. Da sich

die Determinante bei diesen Zeilen- und Spaltenumformungen nicht ändert,

wird im Folgenden o.B.d.A. A ∈ Nn×n angenommen.

Wird die Determinante für Matrizen mit natürlichen Einträgen in ihren posi-

tiven Teil und ihren negativen Teil aufgeteilt,

Det+(A) =
∑
π∈Sn

sgn(π)=+

a1,π(1) · · · an,π(n) und

Det−(A) =
∑
π∈Sn

sgn(π)=−

a1,π(1) · · · an,π(n),

so lassen sich die Permanente und die Determinante folgendermaÿen aus-

drücken: Perm(A) = Det+(A) + Det−(A) und Det (A) = Det+(A)−Det−(A).

58

Da sowohl Det+(A) als auch Det−(A) Polynome in n2 Variablen xi+n(j−1) :=

ai,j mit Maximalgrad kleiner als d := 2 (der totale Grad ist n) und Koe�zi-

enten 0, 1 sind, genügt es wie in Abschnitt 5.2 und dem Beweis von Satz 8,

die Werte von Det+ = (Perm + Det)/2 und von Det− = (Perm − Det)/2 an

der Stelle x = (x0, . . . , xn2−1) := (Z ′, Z ′2, Z ′4, . . . , Z ′2n2−1
) zu berechnen, wobei

Z ′ := Z · Y für Z := (maxk |xk|)2n2

und eine geeignete Konstante Y in O(n2)

Schritten berechnet werden. Nach Satz 6 kann die Permanente ebenfalls in

O(n2) Schritten berechnet werden.

Um die Determinante dieser Matrix zu berechnen, wird sie folgendermaÿen

umgeformt:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Z ′ Z ′2 Z ′4 Z ′8 · · · Z ′2n−1

Z ′2n
Z ′2n+1

Z ′2n+2 · · · Z ′22n−1

Z ′22n
Z ′22n+1 . . . Z ′23n−1

Z ′23n . . . Z ′24n−1

...
...

Z ′2(n−1)n · · · · · · Z ′2n2−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Z ′ Z ′2 Z ′4 Z ′8 · · · Z ′2n−1

Z ′2n (
Z ′2n)2 (

Z ′2n)4 (
Z ′2n)8 (

Z ′2n)2n−1

Z ′22n (
Z ′22n)2 (

Z ′22n)4 (
Z ′22n)8 (

Z ′22n)2n−1

Z ′23n (
Z ′23n)2 . . .

(
Z ′23n)2n−1

...
...

Z ′2(n−1)n (
Z ′2(n−1)n)2 · · · · · ·

(
Z ′2(n−1)n)2n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

Da dies die Determinante einer Vandermondematrix ist, gilt für diese

= Z ′ · Z ′2n · Z ′22n · · ·Z ′2(n−1)n ·
∏

1≤i<j≤n

(
Z ′2(j−1)n − Z ′2(i−1)n

)
.

Dieser Ausdruck lässt sich ebenfalls in O(n2) Schritten berechnen. ut

59

Frage 2 Sei P ⊆ Sn eine beliebige Familie von Permutationen von [n]. Kann

auch
∑

π∈P
∏n−1

i=0 xi+nπ′(i)) in O(n2) Schritten über {+,−, ∗, DIV } berechnet

werden?

6.3 Potenzierung ganzzahliger Matrizen

Bekannterweise kann a2k
durch wiederholtes Quadrieren in k Schritten be-

rechnet werden. In [11] wurde gezeigt, dass bei Hinzunahme der ganzzahligen

Division als weitere Operation und einer ganzen Zahl b gröÿer als a2k
nur

O(
√

k) Schritte benötigt werden. Dieses Verfahren wird auf die Potenzierung

von Matrizen übertragen. Um eine Laufzeitverbesserung gegenüber der Lauf-

zeit von O(k · d2) für die k-fache Matrixmultiplikation von d x d-Matrizen aus

dem vorherigen Abschnitt zu erzielen, benötigt man als zusätzliche Operation

auf den ganzen Zahlen die Bildung des gröÿten gemeinsamen Teilers ggT.

De�nition 3. Seien X,C ∈ Zdxd

a) ggT(C):= ggT(cij:1≤ i, j ≤ d)

b) X rem C:= (xij mod ggT(C))

c) X≡Y mod C, falls der ggT(C) jeden Eintrag xij- yij von X - Y teilt.

Dies ergibt für festes C eine Äquivalenzrelation auf Zdxd, sogar eine zweiseitige

Kongruenzrelation 1 wie das folgende Lemma zeigt.

Lemma 12. a) Falls X ≡Y mod C ist, gilt S·X·T≡S·Y·T mod C.

b) Für jedes n ∈ N gilt Xn ≡ Y n(mod (X − Y).

c) X rem C ≡X (mod C).

d) Falls 0≤ xij < ggT(C)ist, gilt X rem C = X.

Beweis. a) gilt nach dem Distributivgesetz für Matrizen.

b) folgt aus a) und dem nicht-kommutativen Binomialtheorem.

c) und d) folgen unmittelbar aus den De�nitionen. ut
1 Umgekehrt hat jedes zweiseitige Ideal in Zd×d diese Form [21, Proposition III.2.1]

60

Theorem 14. Seien k ∈ N, A ∈ Ndxd gegeben und γ := d2k−1 · (maxijaij)
2k
.

Ferner sei noch ein B ∈ Ndxd gegeben, so dass für alle C ∈ {0, 1, ..., γ} dxd

ggT(B - C) > γ gilt, dann kann A2k
in O(

√
k · d2) Schritten über {+,−, ∗, DIV,

ggT} berechnet werden.

Bemerkung 6 Nach der Wahl von B kann nicht nur A2k
in O(

√
k · d2) Schrit-

ten über {+,−, ∗, DIV, ggT} berechnet werden, sondern auch jedes A′2k′
für

jedes 0 ≤ k′ ≤ k und 0 ≤ maxij|a′ij| ≤ maxij|aij| in O(
√

k′ · d2) Schritten .

Beweis. Es genügt den Fall k=l2 zu betrachten. Nach Theorem 12 wird zu-

nächst die Matrix B2l
durch wiederholtes Quadrieren in O(l · d2) Schritten

berechnet.

Durch Anwendung von Lemma 12 auf n := 2l , X := A2l(j−1)
, Y := B2l

und

C := Y −X erhält man folgende Gleichung

(*)

A2lj

= (A2l(j−1)

)2l

= B2l

rem (B − A2l(j−1)

),

falls der ggT(B − A2l(j−1)
) gröÿer als die Einträge von A2l2

ist.

Induktiv wird für j = 1, ..., l nach Gleichung (*) A2lj
aus A2l(j−1)

jeweils in

O(d2) Schritten berechnet.

Da die m-te Potenz einer d x d-Matrix A mit Einträgen aus der Menge {0, 1, ..., s}

Einträge aus der Menge {0, 1, ..., dm-1 · sm} hat, gilt nach der Voraussetzung für

B die obige Gleichung.

Die Operation ggT wird benötigt, um den ggT(C) in O(d2) Schritten und

damit X rem C nach der obigen De�nition zu berechnen. ut

Erstaunlicherweise erhält man die Folge von Matrizen A2lj
, j = 1, ..., l nur

durch Modulo-Berechnungen der Matrizeneinträge.

Es fehlt noch der Beweis, dass es solch ein B, bei dem der ggT(B-C)>γ für

alle Matrizen C ∈ {0, 1, ..., γ} dxd ist, überhaupt gibt.

61

Im Fall d = 1 heiÿt das gerade, dass, wie in Satz 5, B=(b) gröÿer als a2l2

für

A=(a) ist, vgl. [11].

Für den Fall d>1 wird im Lemma des nächsten Abschnitts gezeigt, dass es

viele solcher B gibt, und es wird beschrieben, wie man sie erhält.

6.4 Lokale untere Schranke des ggT

Eine reelle Funktion f : Rd → R heiÿt halbstetig nach oben an der Stelle x,

wenn für alle u in einer Umgebung von x die Funktionswerte von x und u nicht

zu weit auseinander liegen, siehe [36]. Da der ggT eine diskrete Funktion ist,

sind diese topologischen Kriterien streng genommen nicht auf diese Funktion

anwendbar. Aber dennoch lassen sich auch für den gröÿten gemeinsamen Teiler

Punkte x angeben, die dem Begri� der oberen Halbstetigkeit ähnlich sind.

Lemma 13. Für alle d, r, s ∈ N gibt es x1, x2, ..., xd ∈ N, so dass für alle

v1, v2, ..., vd ∈ {0, 1, ...,s− 1} ggT(x1 + v1, ..., xd + vd)≥ r gilt.

Beweis. Man nehme paarweise teilerfremde natürliche Zahlen pv > r, v ∈

{0, 1, ...,s− 1}d, man kann im Allgemeinen die pv als Primzahlen wählen. Für

i = 1, ..., d und j = 0, ..., d−1 sei ui,j :=
∏

v,vi=j pv. Die Zahlen ui,0, ui,1, ..., ui,s−1

sind bei festem i wiederum teilerfremd. Nach dem Chinesischen Restsatz gibt es

ein xi ∈ N, so dass ui,j für alle j = 0, 1, ..., s−1 xi+j teilt. Da insbesondere alle

pv in den ui,vi
als Teiler vorkommen, teilen sie xi + vi für jedes i = 1, ..., d und

damit auch den ggT(x1+v1, ..., xd+vd). Daher muss der ggT(x1+v1, ..., xd+vd)

mindestens so groÿ sein wie pv > r . ut

Bemerkung 7 a) Die x1, x2, ..., xd ∈ N aus dem vorherigen Lemma können

so gewählt werden, dass sie zwischen 0 und (r · S)O(S) mit S:=sd liegen.

b) Über {+,−, ∗, DIV, eggT} können sie in O(S) Schritten gebildet werden

(aber nicht notwendigerweise innerhalb obiger Schranke).

�eggT� bezeichnet den erweiterten gröÿten gemeinsamen Teiler, d.h. dass es zu

gegebenen x, y ∈ N s, t ∈ Z (o.B.d.A. s, t teilerfremd) gibt mit ggT(x,y)= sx

+ty.

62

Beweis. a) Nach dem Primzahltheorem hat die k-te Primzahl eine Gröÿenord-

nung von O(k · log k) und es gibt höchstens π(n) ≤ O(n/log n) Primzahlen,

die kleiner als n sind. Daher hat die erste Primzahl, die wenigstens so groÿ wie

r ist, den Index kr := π(r) ≤ O(r/log r).

Es soll das Produkt N := pkr · ... · pkr+S beschränkt werden, das ist gerade der

Quotient der Primfakultäten2 (r + l)#/r# mit r + l = pkr+S = r + (S · log S).

In [32] ist gezeigt worden, dass π(r + l) − π(r) ≤ 2π(l) 3gilt. Also gibt es

zwischen r und r + l mindestens O(l/log l) = O(S) Primzahlen und jede

dieser Primzahlen ist natürlich nicht gröÿer als r + l. Daher gilt

N = (r + l) #/r# ≤ (r + l)O(S·log S) ≤ (r · l)O(S·log S)

für l = O(S · log S).

b) Die paarweise teilerfremden ganzzahligen pi ≥ r erhält man folgendermaÿen:

p1 := r, p2 := p1+1, p3 := p1 ·p2+1,..., pi+1 := p1 ·...·pi+1. Durch Anwendung

des folgenden Lemmas, dem Chinesischen Restsatz mit Laufzeitabschätzungen,

folgt der Beweis zu b).

Lemma 14. (Chinesischer Restsatz) Zu gegebenen a1, a2, ..., an ∈ Z und tei-

lerfremden m1, m2, ...,mn ∈ N kann ein x ∈ N mit x ≡ ai mod mi für i =

1, ..., n in O(log n · Σn
i=1log mi) Schritten über {+,−, ∗, DIV} berechnet wer-

den. Wird der erweiterte gröÿte gemeinsame Teiler eggT als weitere Operation

hinzugenommen, reduziert sich die Laufzeit auf O(n)4.

Beweis. Berechne N := m1 ·m2 · ... ·mn und mit der Operation eggT berechne

si, ti ∈ Z mit 1 = ggT(mi, N/mi) = simi + tiN/mi. Für ei := tiN/mi, i =

1, ..., n gilt ei ≡ 1 mod mi und ei ≡ 0 mod mj für i 6= j. Daraus folgt, dass

x := Σn
i=1aiei die geforderten Kongruenzen erfüllt.

Über {+,−, ∗, DIV} benötigt die Berechnung von eggT(mi, N/mi) O(log N) =

O(Σn
i=1log mi) Schritte für jedes i = 1, .., n, also eine Gesamtlaufzeit von

O(n · Σn
i=1log mi) = O(n · log N), falls diese n Berechnungen mit Hilfe des

2 Eine Primfakultät (engl. primorial) p# ist das Produkt der ersten p Primzahlen.
3 Ich danke Stephan Wehmeier für den Hinweis auf diese Schranke.
4 Da m1, ..., mn teilerfremd sind, gilt Σn

i=1log mi > Ω(n).

63

erweiterten gröÿten gemeinsamen Teiler nacheinander durchgeführt werden.

Über {+,−, ∗, DIV, eggT} benötigt man O(n) Schritte.

Um den Faktor n in der obigen Berechnung nach log n zu verbessern, werden

die simultanen Kongruenzen x ≡ ai mod mi für i = 1, .., n folgendermaÿen in

einem Binärbaum angeordnet:

Berechne zunächst die simultanen Kongruenzen yj für j = 1, ..., n/2. Da-

nach berechne folgende simultane Kongruenzen x ≡ y2j(mod m4j ·m4j+1) und

x ≡ y2j+1(mod m4j+2 ·m4j+3) für j = 1, ..., n/4. Auf der k-ten Ebene sind n/2k

simultane Kongruenzen, bei denen für die Berechnungen der Moduli als Pro-

dukte disjunkte k-tupel aus {m1, m2, ...,mn} benutzt werden. Auf jede dieser

log n Ebenen werdenO(Σn
i=1log mi) Schritte unabhängig von k = 1, ...,O(log n)

benötigt, d.h. eine Gesamtlaufzeit von O(log n ·Σn
i=1log mi). ut

6.5 Primzahlbildung mit Hilfe der ganzzahligen Division

Die gröÿten der in dem Beweis zur Bermerkung 7 b) konstruierten Primzah-

len und damit aber auch die xi aus Lemma 13 sind von der Gröÿenordnung

Ω(r2s−1
) und damit erheblich gröÿer als die möglichen in Teil a) als Primzah-

len gewählten pj. Es stellt sich dann natürlich die Frage, ob die genannten

nicht klassischen Operationen die Berechnung dieser Primzahlen ermöglicht,

d.h. kann die Suche nach einer Funktion, die als Funktionswerte nur Primzah-

len hat, mit diesen Operationen gelingen? Diese Frage wird am Anfang von

Kapitel 3 in [37] gestellt und in Abschnitt II dieses Kapitels weiter erörtert.

Das Sieb des Eratosthenes �ndet alle Primzahlen kleiner N in O(N) Schrit-

ten über {+,−}. Dies kann zu O(N/log log N) beschleunigt werden [35]. Da

nach dem Primzahltheorem es Θ(N/log N) Primzahlen kleiner N gibt, ist die-

se Schranke im Vergleich zur Ausgabe optimal. Damit lassen sich in einem

einfachen randomisierten Verfahren Primzahlen �nden.

Bemerkung 8 Zu N ∈ N rate irgendein N ≤ n < 2N. Mit einer Wahr-

scheinlichkeit von Θ(1/log N) ist n eine Primzahl. Nach O(log N) unabhängi-

gen Versuchen hat man mit konstanter Wahrscheinlichkeit eine Primzahl ge-

64

funden. Mit dem Primzahltest aus [14] führt dies über {+,−, ∗, DIV} zu einer

Laufzeit von O(log2N).

Da das Bertrand-Chebyshev Theorem besagt, dass es stets eine Primzahl zwi-

schen N und 2 N gibt, lässt sich dieser einfache Algorithmus etwas verbessern.

Theorem 15. Zu N ∈ N gibt es einen Algorithmus über {+,−, ∗, DIV}, mit

dem man mit konstanter Wahrscheinlichkeit und in O(log2N/log log N) Schrit-

ten eine Primzahl p ≥ N erhält.

Beweis. Prüfe zunächst, ob N eine Primzahl ist, indem nach Wilson`s Theorem

geprüft wird, ob (N − 1)! von N geteilt wird. Das geht über {+,−, ∗, DIV} in

O(log N) Schritten [40, Abschnitt 3].

Alle benachbarten Fakultäten (N + k)!, k = 1, ..., K können in konstanter Zeit

berechnet werden, d.h. nach dem Primzahltest für N erhöht sich in der O-

Notation für die Primzahltests von N +1, N +2, ..., N +K für K := O(log N)

nichts.

Rate nun irgendeine O(log N)-Bit-Zahl M ≤ N und teste danach wie oben in

O(log N) Schritten, ob die Zahlen N+M, N+M+1, ..., N+M+K Primzahlen

sind.

Behauptung 5 Mit einer Wahrscheinlichkeit von Ω(log log N/log N) wird ei-

ne Primzahl gefunden.

Nach O(log N/log log N) unabhängigen Versuchen hat man mit konstanter

Wahrscheinlichkeit eine Primzahl gefunden.

Beweis. der Behauptung

Nach dem Primzahltheorem liegen zwischen N und 2N Ω(N/log N) Primzah-

len, auÿerdem liegen in jedem Intervall der Länge K zwischen N und 2N höchs-

tens π(K) ≤ O(K/log K) Primzahlen [32].

Daher besagt das Dirichletsche Schubfachprinzip, dass innerhalb dieser N/K

Intervalle mindestens Ω(log K/log N) viele Intervalle wenigstens eine Primzahl

enthalten, d.h. Ω(log log N/log N) für K:=O(log N). ut

65

Einen Ansatz zu einem sogar noch schnelleren und deterministischen Weg zur

Primzahlbildung erhält man folgendermaÿen:

Bemerkung 9 1947 bewies W.H.MILLS die Existenz einer reellen Zahl θ ≈

1, 3063789 [14], so dass pn :=
⌊
θ3n⌋

eine Folge von Primzahlen bildet mit

pn+1 > p3
n.

Nicht bekannt ist, ob θ rational ist. Falls θ rational ist, kann man in O(n) =

O(log N) Schritten über {+,−, ∗, DIV} eine Primzahl pn > 3n =: N �nden.

Aber wir erhalten auch diese Schranke, selbst wenn θ irrational und algebraisch

ist. Um
⌊
θN

⌋
zu berechnen, betrachte

(θ + ε)N = θN + N · εN−1 +
N∑

k=2

N

k

 · εk · θN−k

︸ ︷︷ ︸
< 1

Aus dieser Abschätzung folgt, dass es genügt eine rationale Approximation θ′

von θ mit einer Abweichung von ε ≈ 2−N/N zu berechnen.

Nach Lemma 11 geht das, falls θ algebraisch ist, in O(log N) Schritten und

dann kann man, da
⌊
θN

⌋
=

⌊
θ′N

⌋
gilt, inO(log N) Schritten über {+,−, ∗, DIV}

eine Primzahl >N �nden

7 Rückblick und Ausblick

In dieser Arbeit wurden die Sprachklassen, die mit der ganzzahligen Division

erkannt werden können, auch für den n-dimensionalen Fall vollständig unter-

schieden. Eine Charakterisierung dieser Sprachen gelang vollständig nur für

die ganzzahlige Division mit Konstanten. Für die anderen Operationsmengen

S ⊆ {+,−, ∗, ∗c, DIVc, DIV} gelang eine Charakterisierung nur für sehr ein-

geschränkte Eingabemengen. Es könnte im Folgenden untersucht werden, für

welche Sprachen sich weitere untere Schranken aus diesen Charakterisierungen

von den unteren Schranken für diese Sprachen mit Operationsmengen ohne

ganzzahlige Division ableiten lassen.

66

Die doppellogarithmische Lücke zwischen oberer Schranke O(d) und unterer

Schranke Ω(log log (d)), falls d den Grad des Polynoms bezeichnet, zur Po-

lynomauswertung über dieser mächtigen Operationsmenge {+,−, ∗, DIV} mit

rationalen Konstanten konnte nicht geschlossen werden, sondern führte zu ei-

nem seit langem o�enen Problem der Zahlentheorie, ob die Reihe
∞∑

n=0

2−dn2

algebraisch ist, und, wenn ja, von welchem Grad. Das Ziel ist weiterhin für

eine unendliche Folge von Eingabewerten eine Möglichkeit zu �nden, die zuge-

hörigen Werte des Polynoms in o(deg p) zu berechnen, so dass in Verbindung

mit dem Algorithmus von Bshouty insgesamt Polynome in o(deg p) ausgewertet

werden können. Eine Beschleunigung zu O(log d) gelang nur bei Hinzunahme

der bitweisen Konjunktion als weiterer Operation. Da es aber nicht bekannt

ist, ob die bitweise Konjunktion �&� in Polynomialzeit mit der Operations-

menge {+,−, ∗, DIV} simuliert werden kann, führt dieser Weg nicht zu einem

Algorithmus zur Polynomauswertung in o(deg p) über {+,−, ∗, DIV}, sondern

zu der seit langem o�enen Frage NP=PSPACE.

Ausgehend von diesem schnellen Algorithmus von Bshouty zur Polynomaus-

wertung über einem endlichen Bereich stellt sich die Frage, ob dieser Algo-

rithmus auf einem modernen Computer schneller ist als andere Algorithmen

wie z.B. das Hornerschema. Statt der maximal d Multiplikationen, wenn d der

Grad des Polynoms ist, werden 2 ganzzahlige Divisionen benutzt. Dies ist der

entgegengesetzte Weg zur Vorgehensweise in z.B. [18], bei der Multiplikationen

durch ganzzahlige Divisionen ersetzt werden. Ein Nachteil ist, dass bei diesem

Algorithmus riesige Zahlen zur Berechnung benötigt werden und kein realer

Rechner in der Lage ist, solch groÿe Zahlen in konstanter Zeit zu verarbeiten.

Heiÿt das von vornherein, dass dieser Algorithmus nicht praktikabel ist. In den

letzten Jahrzehnten ist der technische Fortschritt dermaÿen angewachsen, dass

es in der Bandbreite der arithmetisch-logischen Einheiten (ALU=arithmetical-

logical unit) von Prozessoren einen exponentiellen Zuwachs gab. Heutige Com-

puter können auf 64 oder sogar 128 Bits in einer einzigen Anweisung operieren,

d.h. das Einheitskostenmodell gilt bereits für sehr groÿe Eingaben und dieser

Bitbereich wird immer noch gröÿer.

67

Nicht nur für die Polynomauswertung wurde ein Algorithmus vorgestellt, der

die ganzzahlige Division und bitweise Konjunktion zur Beschleunigung be-

nutzt, sondern es wurden auch Algorithmen entwickelt, die die ganzzahlige

Division und andere Operationen wie den gröÿten gemeinsamen Teiler nutzen,

um die Matrixmultiplikation und -potenzierung und zahlentheoretische Rech-

nungen zu beschleunigen. Es wurden einige Lösungsansätze vorgestellt, die zu

wirklich e�ektiven Lösungen führen, wenn gleichzeitig seit langem o�ene Fra-

gestellungen der Zahlentheorie bewiesen werden könnten. Andere Probleme

lieÿen sich dadurch beschleunigen, dass zusätzlich im Vergleich zur Eingabe

sehr groÿe Zahlen mit eingegeben werden. Die Laufzeit dabei ist sogar kürzer

als die informationstheoretischen unteren Schranken.

Würde als weitere Operation mit Einheitskosten der Linksshift ←: y 7→ 2y

wie in [41] hinzugenommen oder sogar allgemein die Exponentiation N× N 3

(x, y) 7→ xy lieÿen sich auch diese Zahlen, da sie doppelexponentiell groÿ sind,

schnell berechnen.

Abbildungsverzeichnis

1 Berechnungsbaum . 3

2 Modulo-Verzweigungs-Baum . 5

3 Pyramide . 15

4 Sprachklassen für n>1 . 17

5 Sprachklassen für n=1 . 17

6 Berechnungen im Beweis von Satz 3 . 41

7 Berechnungen in Bshoutys Algorithmus . 42

8 Berechnungen im Beweis von Satz 4 . 48

9 Kodierung der Matrizen A und B und Dekodierung der Matrix C . . . 55

68

Literatur

1. E.Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, On the complexity of numerical

analysis, 21 IEEE CCC, 331-339, 2006.

2. L. Babai, B. Just, F. Meyer auf der Heide, On the limits of computations with the �oor

function, Information and Computation 78(2), 99�107, 1988.

3. A. Bertoni, G. Mauri, N. Sabadini, A characterization of the class of functions computable

in polynomiel time on random access machines , STOC,168�176, (1981).

4. A. Bertoni, G. Mauri, N. Sabadini, Simulations among classes of Random Access Machines

and equivalence among numbers succinctly represented , Ann. Discrete Math. vol.25,65�90,

(1985).

5. N. Bshouty, Euclidean GCD algorithm is not optimal, preprint 1989.

6. N. Bshouty, private communication, 1992.

7. J. Borwein, P. Borwein, PI and the AG, Wiley (1987).

8. P.Bürgisser, M.Clausen, M.A. Shokrollah, Algebraic complexity theory, Springer 1997.

9. I. Baran, E.D. Demaine, M. Patrascu, Subquadratic algorithms for 3 SUM, 9th WADS,

Springer LNCS vol. 3608, 409�421, 2005.

10. R. Brent, H. Kung, Systolic VLSI-arrays for linear time GCD-computation, Proc.Int. Conf.

on Very Large Scale Integration. (VLSI 83, IFIP), F.Anceau and E. J. Aas(eds), 145-154, 1983.

11. N.Bshouty, Y. Mansour, B.Schieber, P.Tiwari, Fast exponentiation using the truncation

operation, computational complexity vol.2, 244�255, 1992.

12. M. Ben-Or, Lower bounds for algebraic computation trees, 15th ACM-STOC, 80�86, 1983.

13. Q. Cheng, On the ultimate complexity of factorials,20 th STACS 2003, Springer LNCS

vol.2607, 157�166, 2003.

14. C.K. Caldwell, Y. Cheng, Determing Mill's constant and a note on Honaker' problem,

Journal of Integer Sequences vol. 8, article 05.4.1, 2005.

15. D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions, Journal

of symbolic computation vol. 9, 251�280, 1990.

16. D. Dobkin, R. L. Lipton, A lower bound of 1
2
n2 on linear search programs for the knapsack

problem, JCSS 16, 417�421, 1975.

17. C.M. Fiduccia, An e�cient formula for linear recurrences, SIAM J. Comput. vol.14:1, 106�

112 , (1985).

18. T. Granlund, P.L. Montgomery, Division by invariant integers using multiplication, ACM

SIGPLAN Notices, 61�72, June 1994.

19. A. Gajentaan, M.H. Overmars, On a class of O(n2)problems in computational geometry,

Computational Geometry: Theory and Applications vol.5, 165�185, 1995.

20. Y. Han, Deterministic sorting in O(n log log n) time and linear space, Journal of algorithms

vol. 50, 96�105, 2004.

21. N. Jacobson, Structure of Rings, American Mathematical Society Colloquium Publications

vol.37 (1964).

22. B. Just, F. Meyer auf der Heide, A. Wigderson, On computations with integer division,

RAIRO Informatique Theoretique 23(1), 101�111, 1989.

23. P. Klein, F. Meyer auf der Heide, A lower bound for the knapsack problem on random

access machines, Acta Informatica 19(3), 385�396, 1983.

69

24. D. Kirkpatrick, S. Reisch, Upper bounds on sorting integers on random access machines,

Theoretical computer science 28 (3), 263�276, 1989.

25. K. Lürwer-Brüggemeier, F. Meyer auf der Heide, Capabilities and complexity of com-

putations with integer division, 10th STACS, Springer LNCS vol 665, 463�472, 1993.

26. K. Lürwer-Brüggemeier, M. Ziegler, On faster integer calculations using non-arithmetic

primitives, 7th UC, Springer LNCS vol 5204, 111�128, 2008.

27. Y. Mansur, B. Schieber, P. Tiwari, Lower bounds for integer greatest common divisor

computation, 29th IEEE FOCS, 54�63, 1988.

28. Y. Mansour, B. Schieber, P. Tiwari, The complexity of approximating the square root,

30th IEEE FOCS, 325�330, 1989.

29. J. Meidanis, private communication, 1992.

30. F. Meyer auf der Heide, Lower bounds for solving linear Diophantine equations on random

access machines, J. ACM 32(4), 929�937, 1985.

31. F. Meyer auf der Heide, On genuinely time bounded computations, 5th STACS, 1�

16,1989Nr. 285,1988

32. H.L.Montgomery, R.C. Vaughan, The large sieve, Mathematika vol. 20, 119�134, 1973.

33. W. J. Paul, J. Simon, Decision trees and random access machines, Monographie 30,

L'Enseignement Mathematique, Logique et Algorithmique, Univ. Geneva, Switzerland, 331�

340, 1992.

34. V.R. Pratt, M.O. Rabin, L.J. Stockmeyer, A Characterization of the Power of Vector

Machines, Proc. 6th Annual ACM Symposium on Theory of Computing, 122�134, (STOC

1974).

35. P. Pritchard, a sublinear additive sieve for �nding prime numbers, Communications of the

ACM, vol.24, 18�23, 1981.

36. J.F. Randolph, Basic real and abstract analysis, Academic Press, 1968.

37. P. Ribenboim, The new book of prime number records, 3rd edition springer, 1996.

38. P. Ribenboim, My numbers, my friends, Springer, 2000.

39. A.Schönhage, On the Power of Random Access Machines, Automata Languages and Pro-

gramming, 6th Colloquium, Springer LNCS vol. 71,520-529, 1979

40. A.Shamir, Factoring numbers in O(log n) arithmetic steps, Information Processing Letters

vol. 8(1), 28-31, 1979.

41. J. Simon, Division is good, 20th IEEE FOCS, 411�420, 1979.

42. A. Yao, Lower bounds for algebraic computation trees with integer inputs, 30th IEEE FOCS,

308�313, 1989.

