TY - THES AB - Roboter, die Schafe hüten sowie die dazu nötigen Strategien zum Bewegen von Individuen zu einem Ziel, bieten vielseitige Anwendungen wie z. B. die Rettung von Menschen aus bedrohlichen Lagen oder der Einsatz schwimmender Roboter zur Beseitigung von Ölteppichen. In dieser Arbeit nutzen wir ein Multiagentensystem als Modell der Roboter und Schafe. Wir untersuchen die Komplexität des Schafehütens und zeigen einen Greedy-Algorithmus, der in linearer Laufzeit eine fast optimale Lösung berechnet. Weiterhin analysieren wir, wie solche Strategien gelernt werden können, da maschinelles Lernen oftmals vorteilhafte Lösungen findet. Im Folgenden nutzen wir Reinforcement Learning (RL) als Lernmethode. Damit RL Agenten ihr gelerntes Wissen auch in kontinuierlichen oder sehr großen Zustandsräumen (wie im betrachteten Szenario) vorhalten können, sind Methoden zur Wissensabstraktion nötig. Unsere Methoden kombinieren RL mit adaptiven neuronalen Verfahren und erlauben dem Agenten gleichzeitig Strategien sowie Darstellungen dieses Wissens zu lernen. Beide Verfahren basieren auf dem unüberwachten Lernverfahren Growing Neural Gas, das eine Vektorquantisierung lernt, indem es neuronale Einheiten im Eingaberaums platziert und bewegt. GNG-Q gruppiert benachbarte Zustände die gleiches Verhalten erfordern (Zustandsraumapproximation); I-GNG-Q wiederum kombiniert Wissen, um eine glatte Bewertungsfunktion zu erhalten (Approximation der Bewertungsfunktion des RL-Agenten). Beide Verfahren beobachten das Verhalten des Lerners um Stellen der Approximation zu finden, die noch verfeinert werden müssen. Die Hauptvorteile unserer Verfahren sind u.a., dass sie ohne Kenntnis des Modells der Umgebung automatisch eine passende Auflösung der Approximation bestimmen. Die experimentelle Analyse unterstreicht, dass unsere Methoden sehr effiziente und effektive Strategien erzeugen. AU - Baumann, Michael CY - Paderborn DA - 2016 DP - Universität Paderborn LA - eng N1 - Tag der Verteidigung: 22.01.2016 N1 - Fakultät für Elektrotechnik, Informatik und Mathematik, Universität Paderborn, Univ., Dissertation, 2016 PB - Veröffentlichungen der Universität PY - 2016 SP - 1 Online-Ressource (x, 211 Seiten) T2 - Institut für Informatik TI - Learning shepherding behavior UR - https://nbn-resolving.org/urn:nbn:de:hbz:466:2-23984 Y2 - 2026-01-20T21:11:54 ER -