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Abstract

Modern software engineering introduces self-adaptivity features to perform au-

tomatic maintenance and make software systems more flexible and resilient.

Unfortunately, introducing the additional self-adaptivity features makes soft-

ware design bloated and complicated. As a consequence, software design

models are often prone to errors. The literature proposes constructive ap-

proaches such as MDE, patterns, etc. as well as analytical approaches such as

testing or model checking to solve the problem of complexity in general. How-

ever, there is no sufficient adaptivity-specific support throughout the engi-

neering process, i.e. no approaches that support the creation of self-adaptivity

specification models and their quality assurance.

In this thesis, we will propose an integrated modeling and quality assurance

environment for designing self-adaptive software systems. Therefore, we will

propose constructive methods (e.g., languages) and analytical methods (e.g.,

model-checking) to support the engineering of these systems. Both types of

methods are integrated into standard software engineering techniques and

tools. As a result, the designer is supported in modeling self-adaptive soft-

ware systems using concern-specific languages and receives immediate feed-

back about the quality of his models. This way, software engineering for self-

adaptive systems is getting supported starting at the early design phase lead-

ing to less errors produced, and thus, to better software, overall.
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Zusammenfassung

Moderne Softwareentwicklung nutzt Techniken der Selbstadaptation, um

Wartung von Softwaresystemen zu automatisieren und diese somit flexibler

und robuster zu gestalten. Allerdings führt die Einführung solcher Tech-

niken zu größeren und komplizierten Softwareentwürfen. Die Konsequenz

sind Fehler im Entwurf. In der Literatur werden konstruktive Methoden wie

MDE oder Patterns und analytische Methoden wie Testen oder Model Check-

ing vorgeschlagen, um das Komplexitätsproblem zu verringern. Allerdings

werden die Techniken der Selbstadaption von solchen Methoden bisher noch

wenig unterstützt, d.h. dass es wenige integrierte Ansatze für die explizite

Modellierung und Qualitätssicherung von Selbstadaptation gibt.

In dieser Arbeit schlagen wir einen integrierten Modellierungs- und Qual-

itätssicherungsansatz für den Entwurf selbstadaptiver Softwaresysteme vor.

Es werden sowohl konstruktive Methoden (z.B. Sprachen) als auch analyti-

sche Methoden (z.B. Model Checking) für die Unterstützung der Entwick-

lung solcher Systeme vorgeschlagen. Beide Typen vonMethoden sind in Stan-

dardtechniken und Werkzeuge integriert. Im Ergebnis wird der Entwickler

in der Modellierung selbstadaptiver Softwaresysteme durch den Einsatz von

adaptionsspezifischen Sprachen unterstützt. Durch die dazu passenden Qual-

itätssicherungsverfahren erhält der Entwickler unmittelbare Rückmeldung

über die Qualität seiner Modelle. Somit wird die Entwicklung selbstadaptiver

Systeme bereits in frühen Phasen des Entwicklungsprozesses unterstützt, Ent-

wurfsfehler werden vermieden und somit bessere Software gebaut.
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1
Introduction

“ It is not the strongest of the species
that survives, nor the most intelligent
that survives. It is the one that is the
most adaptable to change.”

– Charles Darwin
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1

This thesis proposes constructive and analytical methods to support the engi-
neering of self-adaptive software systems during high-level design. Both types
of methods integrate into standard software engineering techniques and tools.
As a result, the designer is supported in modeling self-adaptive software sys-
tems using concern-specific languages and receives immediate feedback about
the quality of his models. This way, Software Engineering for self-adaptive
software systems is supported during the high-level design phase leading to
less error-prone software specifications, and thus, to better software, overall.

This chapter is organized as follows: In Section 1.1 the setting and background
of this thesis is provided, Section 1.2 motivates the problems addressed in this
thesis, Section 1.3 gives a brief description of the proposed solution, Section 1.4
presents the used research approach, Section 1.5 defines the scope of this the-
sis, and finally, Section 1.7 provides an overview of the chapters in this thesis.

1.1 background

Today, in our culture it is nomore possible to imagine a lifewithout technology
and computational power in particular. It is inherent in our professional envi-
ronment aswell as in goods of every-day use, e.g. washingmachines, stove, car,
etc. Most computational power is controlled by software. Software providessoftware is

everywhere more and more new convenient functionalities which have long since become
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part of our daily lives. Examples include the smart phones, one of which al-
most everyone owns. To the same degree, the complexity of software increases
making its development, deployment, and maintenance difficult. Especially, increasing

complexitythe high demands on the software’s quality (e.g. dependability, safety, fault
tolerance, ...) lead to high complexity. These high demands require making
trade-offs with current trends of software engineering, including the distribu-
tion of systems, genericity of software for the sake of flexibility, and adaptivity
to encounter changing environments.

Distribution leads to more and more business functionality being outsourced distribution
to external service providers. Thus, neither the code is under control, nor is
the own service used by only oneself but provided to the outer world. Soft-
ware is therefore more and more relying on black box components. However,
black box components exhibit unexpected behavior and usually cannot be in-
fluenced in terms of error correction. Further, due to the increasing size and
complexity of software systems, the complexity of maintaining theses systems
rises, while errors and failures may have severe financial impacts as evident in
the news. While software tends to be more and more generic to be operated genericity
in various scenarios (and thus saving money for production; higher ROI), the
number of configurations explodes. Finally, without system adaptivity, hav-
ing a changing context (e.g., changing needs or a changing environment) that
demands for a different configuration leads to a system halt, reconfiguration,
and system restart. However, the desired operation mode is continuous oper- adaptivity
ation, that is, the system shall be configured at runtime (i.e. adapted), either
manually or automatically.

Hence, the ability of coping with distributed components, while being generic
and adaptive is key for today’s software. Software that does not exhibit these
properties suffers the so-called lack ofmovement [Par94]. Lorge Parnas defines lack of movement
the lack of movement to be the “aging caused by the failure of the products’
owners to modify it to meet changing needs”.

To encounter the lack of movement, often the wish of more flexible software
entails that adapts itself to a changing context which even might be partially
unknown. For instance, mobile applications shall flexibly adapt to different self-adaptation

neededenvironmental situations at different locations and software applications shall
automatically adapt to different customer landscapes or different customer
business workloads (e. g. by self-configuration). Software like this that is capa-
ble of adapting itself to its changing context is recently known as self-adaptive
software [WIMA12].

Self-adaptive systems have been studied in several non-computer science dis- interdisciplinary
notion of
self-adaptivity



6 Chapter 1 Introduction

ciplines such as biology, economy, and sociology [ST09]. On an abstract level,
all disciplines share a common understanding of self-adaptive systems: A sys-
tem that is able to respond to context changes in order to increase its quality of
performance (reproduction, stability, or the like). For several years, computer
science has adopted the notion of adaptivity to describe software systems that
autonomously adapt themselves to changes in their context. Within computer
science several fields have adopted the notion of self-adaptivity, being software
engineering, artificial intelligence, control theory, and network and distributed
computing [ST09].

Figure 1.1.
Annotated IBM
MAPE-K Reference
Model

Adaptation Monitor

S E

Managed Element

Monitor Execute

PlanAnalyze

Knowledge

The discipline of software engineering identified control loops to be an inte-control loops as
first class citizens gral part of self-adaptive software systems [BMSG+09]. A particular reference

model proposed by the IBM that describes these control loops in more detail
is called theMAPE-Kmodel [KC03]. It divides a control loop into four phases:mape-k feedback

loop monitor, analyze, plan, and execute. As shown in Figure 1.1 the MAPE-K
model considers a managed element that is adapted eventually. This man-
aged element is monitored through sensors. The resulting data is used for
the analysis and if necessary for the plan of adaptation. Finally, the adapta-
tion is executed through effectors. All phases read and store knowledge into
a so-called knowledge model. While the MAPE-K model is well-known and
often used in the community, several approaches combine the phases monitor
and analysis as well as plan and execute into single phases named monitor and
adaptation [WIMA12].

In the past decade few software systems were considered to be self-adaptive,
mostly in the domain of telecommunication where downtimes were not
an option and contemporary human intervention was not always possi-
ble [CGS05]. Today, self-adaptation requirements are also explicitly set for
software-intensive systems in the mobile embedded system domain and in
business information systems.
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1.2motivation

While self-adaptation capabilities to a certain degree always existed in soft-
ware systems, their increasing necessity poses new challenges to software en-
gineering. In particular, introducing self-adaptivity capabilities to the software
system results in additional complexity during design time making it hard to
show correctness of these software systems. This is mainly because a variety increasing

complexityof adaptation rules that change the system at runtime make the system behave
somewhat unpredictable. High complexity in turn often leads to errors which
must be corrected at high expense.

As an example, let us consider the scenario of a crisis management system
named bCMS.[CCG+12] The main purpose of the system is to support a fire crisis management

system scenariostation coordinator and a police station coordinator in exchanging informa-
tion related to a particular crisis and managing crisis-related tasks such as dis-
patching vehicles and planning routes. The bCMS has several requirements
regarding resilience, e.g., concerning the communication availability. If com-
munication is interrupted, the bCMS system is paused until communication is
established again or the system turns into a failsafe mode such that both coor-
dinators may proceed crisis management independent from each other. This
functionality can be considered as self-adaptive behavior while the communi-
cation availability is part of the uncertain context that has to be monitored.

During the first operationalization of the requirements, e.g. using UML use
cases and activity diagrams, this self-adaptation functionality must be wo-
ven into the software specification at many different locations which does not
only spread related information over the system but possibly hides it, too.
Compared to a system where the communication availability is considered to severe specification

flawsbe fixed, the specification of the self-adaptive bCMS exhibits increased com-
plexity which on the one hand hardens the comprehensibility and on the other
hand abets the introduction of severe specification flaws. If for example the
functionality that pauses and continues the process is insufficiently specified,
the continuous pausing and continuing of the processes for different reasons
might lead into an unstable system state.

Modern software engineering addresses this problem using model-based de- mda, csml, and dsml
sign (e. g. MDA [Obj03]) and specific modeling languages, especially concern-
specific modeling languages (CSML) that focus on a particular concern (e.g.
self-adaptivity) or domain-specific modeling languages (DSML) that focus on
one particular application domain such as rack server systems. CSMLs and
DSMLs help bridging the semantic gap between the intuition of the problem
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and programming languages like Java since they allow describing the prob-
lem on a high level of abstraction and even allow the designer to use concern-
specific terms while still being formal enough to support automated analysis.
That is, model-based design is a solution to high complexity and based on for-
mal models it helps ensuring correctness.

Model-based design, in addition, eases using the paradigm of separation of
concerns (SoC) which can be applied throughout the whole software develop-
ment process. It allows “focussing one’s attention upon some aspect” [Dij82].separation of

concerns (soc) Further, SoC allows the designer to apply concern-specific methods and lan-
guages to construct and analyze concern-specific specifications.

Another—rather basic—approach applied to master complexity during soft-
ware engineering is the use of software engineering methods (SEM). Soft-use of software

engineering methods ware engineeringmethods prescribe the use of specific concepts and languages
(i.e. specification artifacts), processes, as well as tools, and thus, make expert
knowledge available for use in a relatively intuitive way by still preserving the
genericity to be applied to various different software engineering projects.

Unfortunately, there is hardly any model-based software engineering method
available that continuously separates the concern of self-adaptivity. On re-no continuous

method for
self-adaptivity quirements level, several approaches suggest the use of goal-modeling to de-

scribe self-adaptation requirements [MPP08, CSBW09, GSB+08]. Usually, goal-
modeling approaches integrate well into standard software engineering meth-
ods that usually make use of general purpose modeling languages such as the
UML or BPMN. On low design level (i.e., platform-specific, rather technical
design), there are other approaches existing that allow the explicit and sepa-
rate specification of self-adaptivity (see e.g. [HGB10, GCH+04, AST09]). How-
ever, during high-level design (i.e., platform-independent, logical design), self-
adaptivity is either neglected or tightly interwoven with core application logic
(cf. Figure 1.2).

Figure 1.2.
Software
Development Process
– Separation of
Concerns

Adaptation
rules

Context
model ...

Strategies,
Tactics

Schedules,
Operators?

Requirements Engineering High-Level Design Low-Level Design

Self-Adaptivity

Functionality

C
on

st
ru

ct
io

n

Use Cases Architecture

Adaptation
Mechanisms

The system …
SHALL ....

The system SHALL... AS 
CLOSE AS POSSIBLE ….

Goals, Requirements 

(PIM) (PSM)
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Figure 1.2 shows a standard software development process1. The lower part of
the figure (yellow arrow) sketches the traditional software development pro-
cess. During the requirements phase of those processes, high-level goals and
requirements are identified. These requirements are refined into high-level
platform-independent use cases (for PIM cf. MDA [Obj03]). In the subsequent
phase the platform-specific model is created—typically the concrete software
architecture. High-level use cases are either mapped to components in the
platform specific model (PSM) and/or are refined to more low-level (techni-
cal) use cases [Coc00]. Finally, the low-level design model is implemented in
the construction phase using frameworks, libraries, etc.

While specifying a software system during the high-level design phase, the
core functional concerns are modeled using e.g. use cases. In fact, UML adaptivity in

high-level design
using use casesuse cases and the attached activity diagrams offer different generic means to

also model self-adaptivity, such as decision nodes or exceptions. However,
these means fail in maintaining the separation of concerns principle, i.e. self-
adaptivity and functional concerns are mixed in the model. See Figure 1.3 for
an illustration. The use case combines both application and adaptation logic
since the attached activity diagram contains actions that execute application
logic (action A) and those that adapt the system (action B) using dedicated
adaptation interfaces (green). The structural system model describes com-

Application
Logic

Adaptation
Logic

A B

useuse

core 
application 

concern

adaptation 
concern

Figure 1.3.
Mixed Concerns in SE
Models

ponents and interfaces that constitute application logic (white) and interfaces
whose main purpose is to support adaptation (green interface). Because of the mixture of concerns

in uml use casesmixture of different concerns, designers might miss important self-adaptivity
patterns, or even induce design flaws due to the increasing complexity. Fur-
thermore, model-based analysis of self-adaptivity is aggravated since extrac-
tion of the corresponding concerns from the mixed models is burdensome or
even impossible.
1Names of phases vary in the different process models.
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In this thesis, we present a model-driven engineering approach that supports
the high-level design of self-adaptive software systems and thus fills the gap
between requirements engineering and low-level design (see Figure 1.2). In
the following, we briefly discuss some requirements that a model-driven en-
gineering approach for self-adaptive software systems must fulfill.

Separation of Concerns To allow focussing on the concern of self-adaptivity
requirements for
model-driven
engineering of
Self-Adaptive
Software Systems

within a software system, this concern should be separated from the core
business logic concerns. That is, an approach should provide means to sepa-
rately specify self-adaptivity and abstracting from the rest of the system’s logic,
whereas ideally, the separated concern is still related to the rest of the system’s
logic allowing to always provide an overall model of the system’s complete
logic.

Analyzability An important benefit of separating concerns is the ability to
analyze a concern in depth. For this, however, methods and techniques must
actually support the concern-specific analysis. In particular, when building
highly complex software systems that change their behavior at run time, it is
vitally important to provide hard guarantees regarding the system’s safety and
liveness.

Integration To best leverage a method that supports the specification and
analysis of the self-adaptation concern, this method should be integrated into
existing software engineering methods. That is, ideally, if a system designer
decides to model the concern of self-adaptation explicitly and separately, she
may use the method in addition to her existing methods without any consid-
erate alignment efforts. Further, the approach should cover the complete engi-
neering process, for instance in combination with existing other approaches.

Intuitiveness To increase acceptance, the approach should be intuitive to
use, especially since early in the engineering process, non-experts might be
required to model and/or understand the self-adaptivity specification. To
support the intuitiveness, well-known techniques and paradigms should be
reused. Further, at this stage in the engineering process, the approach should
allow the specification of self-adaptivity close to the intuition of the system’s
behaviors.
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Genericity As known from general purpose languages such as the UML, the
approach shall be applicable in a variety of domains. Further, it should support
the integration with other specification approaches as known from the UML
profiling mechanism. The generic approach should support the specification
of self-adaptivity on different levels of abstraction and using different degrees
of detail.

In the following, we will give an overview of the solution that is presented in
this thesis.

1.3solution overview and research contribution

This thesis proposes a model-driven engineering approach to address the re-
quirements posed above for the high-level design phase. The model-driven
engineering approach for self-adaptive software systems provides twoways to
assure high quality in spite of complexity: constructive and analytical meth-
ods.

Constructivemethods aim at improving the quality during creation of specifi-
cation documents and code. As is widely accepted, the earlier high quality is
assured the better [Dav93] since the later errors in the system design are recog-
nized the higher the resulting costs. A common way to decrease the complex-
ity during design time is utilizing the principle of separation of concerns, e.g.
during modeling. Examples are evident in different disciplines such as perfor- separation of

concernsmance or security engineering. In the case of self-adaptive systems, the adapta-
tion concern should be separated from the business logic concern. Therefore,
separate models are needed, one for the business logic and another for the
adaptation logic (see Figure 1.4). Using concern-specific modeling languages

Application
Logic

A

A

Adaptation
Logic

AC

B

adjust

A
projection & extension

adapt
Figure 1.4.
Separated Concerns in
comparison to
Figure 1.3
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(CSML) for that purpose eases the creation ofmodels for the respective concern
and therefore usually improves the quality of models. Having high-quality
models leads to higher quality in the resulting software product since design
decisions can be validated early in the development process. Thus, in this

concern-specific
modeling language
for Self-Adaptive
Software Systems

thesis, we propose a dedicated method for specifying self-adaptive software
systems including a modeling language, theAdapt Case Modeling Language
(ACML) that allows the designer to specify adaptation in a rule-based manner
(cf. event-condition-action rules). An adaptation rule consists of a monitoring
definition that observes particular events and checks for certain conditions,
and an adaptation definition that performs the corresponding adaptation ac-
tions. The proposed language is based on the UML [Obj10b] where UML ac-
tivities are used for describing the adaptation rules (i.e., the monitoring and
adaptation definitions). Based on the UML, the ACML is easy to understand
since its visual syntax is widely known. Thereby, the ACML bridges the se-
mantic gap between requirements and low-level design phase, allowing the
easy translation of the intuition of a system into a formal language.

Analytical methods are the second way of assuring high quality in spite of
high complexity during software design. Again, the earlier the analyticalearly quality

assurance methods are applied, the better. That is, we aim at supporting analytical
quality assurance techniques already during early high-level design that de-
tect specification flaws, e.g. by the specification of two conflicting adaptation
rules (see Figure 1.5). Several static and dynamic analytical methods exist,

Figure 1.5.
Quality Assurance
during early System
Design Adaptation

Logic

AC

B

Adaptation
Logic

AC

C

conflict

including the detection of anti-patterns, testing, model checking, and simula-
tion. Since testing requires an implementation of the system to be present, it
cannot be applied in early system design phases. In contrast, model checking
allows the early quality assurance of the system to be built since it relies on the
designmodels. Furthermore, while dynamic analysis like testing allows to test
single execution paths through the system, model checking enables checking
the complete state space of the modeled system. Since model checking covers
every possible (and modeled) system state, simulation may be considered as a
subclass of model checking. Thus, we aim at supporting early model checking
of the modeled self-adaptive software system, i. e. assuring high quality of the
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modeled adaptation rules. Using model checking, safety and liveness proper-
ties may be checked. Common safety and liveness properties that are impor- model checking for

Self-Adaptive
Software Systemstant for self-adaptive software system include stability and deadlock-freedom.

However, model checking usually requires deep knowledge in formal meth-
ods which software designers usually do not have. Therefore, we propose an
integrated quality assurance approach that is based on model checking but
hides its complexity from the user.

All in all, in this thesis, we propose an integrated rule-based modeling and
analysis approach for self-adaptive software systems. With the ACML, we
propose a UML extension that allows the specification of structural and be-
havioral aspects of self-adaptive software systems. Using this extension, we
support the object-oriented modeling of self-adaptive software systems using
the de facto standard modeling language UML on the one hand, and concern-
specific concepts on the other hand. Utilizing a semantics specification lan-
guage for meta-model based languages, named DMM [Hau05], we define for-
mal semantics for our modeling language, the ACML. Based on the formal se-
mantics, we enable the quality assurance of themodeled self-adaptive software
system early during design time using a modeling workbench that provides
immediate feedback to the modeler. That is, we present a formal framework
for proving safety and liveness properties on modeled self-adaptive software
system while still providing the system designer with concern-specific, easy
understandable, and standard aligned modeling languages.

1.4thesis approach

The modeling and analysis approach for self-adaptive software systems pre-
sented in this thesis has been approached using the following steps.

1. A literature study on self-adaptive software systems from a software en-
gineering perspectivewith the goal to define the notion of self-adaptivity,
identify gaps in the engineering process of self-adaptive software sys-
tems, and a first selection of high-level concepts for specifying self-
adaptivity.

2. Identification of new high-level concepts necessary to describe the con-
cern of self-adaptivity during high-level design along with a formal defi-
nition of these high-level concepts and a high-level integration into stan-
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dard software engineering approaches.

3. Definition of artifacts necessary to specify the concern of self-adaptivity,
mapping these concepts into a concrete language that fulfills various re-
quirements (UML), and the definition of a UML extension and its formal
semantics to cover all new concepts.

4. Definition of a formal quality assurance framework based on the UML
extension, first using a naive brute-force approach to gather theoreti-
cal results, and second a performance inspection and the definition of
a multi-staged model-checking approach with focus on scalability.

5. Integration of the created artifacts and techniques into existing software
engineering methods, primarily by the definition of interfaces to other
phases.

1.5 scope and non-objectives

The scope of this thesis is the high-level design phase of a software engineering
method that addresses the concern of self-adaptivity separately. The approach
integrates between the requirements phase and the low-level platform-specific
design phase. It is intended to cover the specification of the self-adaptivity
concern during the high-level platform-independent design.

The approach aims at supporting the specification in terms of constructive
and analytical methods, i.e. the use of concern-specific languages and concern-
specific quality assurance methods to assure high-quality specification of self-
adaptivity in spite of the increasing complexity of self-adaptive software sys-
tems.

This thesis does not extensively cover the process of inferring or identifying
self-adaptivity during the requirements and design phase. Further, this thesis
does not cover the transformation of the created platform-independentmodels
to the corresponding platform-specific models.
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1.6publication overview

The approach presented in this thesis has been influenced by research in vari-
ous different disciplines. In the following, we will briefly describe the publica-
tions thatwere created in the course of this PhD thesis and how they influenced
the approach presented in this thesis.

Most importantly, there have been several publications on the topic of self-
adaptive software systems themselves, describing the Adapt Case Model-
ing Language [LNGE11, LM12], the corresponding quality assurance ap-
proach [LGSE11, LTGE12], and the holistic engineering for self-adaptive soft-
ware systems in [LE13]. Further, there is still ongoing work on performance
engineering and analysis for self-adaptive systems [BLB12, BLB13] that will be
integrated with the presented approach in future.

Our approach heavily bases on model-driven development techniques. We
extensively gathered experience while providing a model-driven approach to-
wards spreadsheet design as presented in [LEE12]. Especially, the propagation
of change on typemodels to their respective instancemodels has parallels with
adaptation on type level. A model-driven approach towards quality of prod-
uct and engineering process has been presented in [LBFW10]. Here, especially
the relation of quality to requirements has been studied.

A great part of our approach is the development of a newmodeling language.
In the course of a work about a framework modeling language [CBE+10], we
investigated language engineering foundations in terms of parameterizable
meta models. In ongoing efforts of the Comparing Modeling Approaches com-
munity, we develop a catalog of comparison criteria for modeling languages
with focus on composition techniques [GAA+13, MAA+12].

Another approach that was influencing our process adaptation techniques deals
with the comparison and merging of business processes. Particular parallels
to the presented approach are the discussion of conflicting change operations
and compound operations (for adaptation) [GL12, GKLE10, GLKE11, GLKE10,
GKLE11].

Finally, our approach is built to be integrated into standard engineering
methods. Creating a good engineering method in general has been studied
in [FBLE13] and for requirements engineering in particular in [FBGL+13] (in
German). Applying our approach for modeling self-adaptation to engineering
methods themselves has been studied in [GLE12] (in German).
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1.7 structure of this thesis

Figure 1.6.
Structure of this
Thesis
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This thesis is structured into seven main chapters as illustrated in Figure 1.6.

In Chapter 2, the foundation for the approach presented in this thesis
is laid. Self-adaptive systems will be defined in more detail, modeling
approaches will be described and the development of domain-specific
languages will be discussed including the syntax and semantics defini-
tion. The latterwill be used for the quality assurance approach presented
in this thesis.

Chapter 3 will expand on modeling self-adaptive software systems. A
section dealing with the requirements analysis for a modeling language
will be followed by the concrete description of the language.

In Chapter 4, the quality assurance approach is presented. In this section,
the formal semantics specification of themodeling language is given and
quality properties are defined. On the basis of both, the approach is de-
scribed in detail. Finally, the techniques to optimize the quality assurance
approach concerning performance is detailed.

In Chapter 5, method fragments will be sketched using the SPEM Pro-
file [Obj08] that allow the integration of the presented language and the
quality assurance techniques into a UML-based software engineering
process.

In Chapter 6, an evaluation of the overall approach is presented. The
evaluation includes an illustrative case study as well as two assessments
and two experiments .

Chapter 7 describes the workbench that has been created to assist a mod-
eler to specify self-adaptive systems. The chapter describes the editors
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for the language as well as the functionality provided for the quality as-
surance approach.

Chapter 8 concludes the thesis and discusses future work.

Related work for all topics will be discussed in the respective Chapters 3, 4,
and 5 with particular focus on the modeling language, the quality assurance
approach, and the engineering process, respectively.

Finally, the appendix starting on Page 257 describes the meta model def-
initions for the ACML. The complete language specifications can be ob-
tained from the website at [Luc13].
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Foundations and general concepts that are needed to understand the ap-
proaches presented in this thesis are elucidated in this chapter. First of all, in
Section 2.1, we will introduce the running example that will be used through-
out this thesis. In Section 2.2, we will briefly pick up the definition of self-
adaptive software systems and describe the different existing types of self-
adaptivity, i. e. the modeling dimensions of self-adaptation. In Section 2.3, we
will expand on the current state of the art in modeling-driven software engi-
neering in general and discuss its suitability for modeling self-adaptive sys-
tems in particular. Further, we describe how existing modeling languages can
be extended to define concern-specific modeling languages. Finally, in Sec-
tion 2.4, we present techniques for quality assurance in software engineering
in general.
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2.1bcms – the running example

Throughout this thesis, we will use the running example of a Crisis Man-
agement System called bCMS. The example’s foundations are taken from the
bCMS case study [CCG+12] and extended by self-adaptive features. The re-
sulting system is named bCMS-ADAPT. The initial purpose of the bCMS case

bCMS

Police Station Fire Station

PS 
coordination 
process

FS 
coordination 
process

PS DB FS DB

Communication
Channel

Figure 2.1.
bCMS: Crisis
Management System

study is to serve as modeling subject for comparing different modeling ap-
proaches at the workshop series on Comparing Modeling Approaches (CMA)
which is held at the MODELS conference regularly. As shown in Chapter 6,
this thesis’ results have been submitted to the CMA workshop for evaluation
purposes.

The bCMS system is a distributed crisis management system that is responsi- distributed crisis
management systemble for coordinating the communication between involved fire station and po-

lice station coordinators. The bCMS’s core are two small business processes—
one for each communication party—that systematically structures the different
parties’ communication (see Figure 2.1). The bCMS global coordination is the
result of the parallel composition of the two interactive business processes, one
for the police station coordinator and the other for the fire station coordinator.
Each party maintains its own local database, a central data storage does not
exist.

The bCMS starts operating when a crisis is detected and declared at both par-
ties independently. The basic use case which is focused in this case study in-
volves the establishment of communication, the exchange of crisis details, the
coordinated development of a route plan and the dispatch of vehicles on both
sides.

The specification of the bCMS is given in terms of component diagrams and specification using
the umluse case diagrams. Figure 2.2 shows a very basic use case diagram. A coordi-

nator may communicate with another coordinator. Depending onwhether the
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Figure 2.2.
bCMS: Use Cases
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(FSC), the corresponding sub use case is included describing specific actions.

Figure 2.3.
bCMS: High-Level
Component Diagram
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In Figure 2.3, a basic component diagram is shown. Themain component is the
bCMS component which contains a separate component for each party (police
and fire station) as well as two channel endpoints that connect the respective
party to the communication carrier (Comm. Carrier). The channel endpoints
implement the application specific interface ProcessConnector that allows the
synchronization of both the PSC and the FSC process. Vehicles and the crisis
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itself are modeled as separate components tagged as EnvironmentComponent to
indicate that they are out of the system scope.

Figure 2.4 gives a very high-level communication overview. Both the PSC sys-
tem and the FSC system own a behavior and use the communication carrier
(channel) for synchronization of these behaviors (processes). The process def-
inition is given in Figure 2.5.

«SystemComp»
PSC System

«SystemComp»
FSC System

«SystemComp»
Channel Endpoint

«SystemComp»
Channel Endpoint

Communication
Carrier

«SystemBehavior»
bCMS Process ⟨PSC⟩  

«SystemBehavior»
bCMS Process ⟨FSC⟩  

Figure 2.4.
bCMS:
Communication
Overview

The bCMSmain process describes the flow of the use case Communication with
other Coordinator. First, the communication is established followed by the ex-
change of crisis detail. Next the route plan is developed and the vehicles (fire
trucks and police cars) that are send to the crisis location are selected. The ac-
tivity Develop Route Plan is an abstract one since it differs for both parties as
shown in Figure 2.6.

bCMS Process Develop Route Plan

Establish 
Communication

Exchange Crisis 
Details

« abstract »
Develop Route Plan

Dispatch 
Vehicles Close Crisis

Select Vehicles

Figure 2.5.
bCMS: Main Process

The fire station coordinator creates a route and sends it over the channel (see
Figure 2.6 right). The police station coordinator retrieves the route and either
agrees on it or rejects it (see Figure 2.6 left). If rejected, the FSC creates a new
route. The activities contain UML CallOperationActions that call operations
which are defined in the component diagram shown in Figure 2.3. In parallel,
the parties select the vehicles that will be sent to the crisis.

After the route plan has been developed, the vehicles are dispatched. Themain
process defines the activitiy Dispatch Vehicles that is refined in Figure 2.7.

The activity Dispatch Vehicles obtains as a parameter a set of vehicles for each
of which the coordinator states whether it has been dispatched, arrived, and
completed its objectives. If all vehicles have completed their objectives, the
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Figure 2.6.
bCMS: Activity
Develop Route Plan
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crisis is closed. Of course, if the system is completely specified, the actions to
set the vehicles’ states have to call defined operations as well. However, while
using this scenario, we are not interested in these details and thus abstract from
them.

Figure 2.7.
bCMS: Activity
Dispatch Vehicles
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Vehicles
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State Arrived

State 
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Figure 2.5 is modeled to be a generic process having a template parameter
namedDevelop Route Plan. This parameter is bound separately for the PSC and
for the FSC as shown in Figure 2.8. As shown in Figure 2.4, these instantiated
processes are defined to be the owned behavior of the respective components:
PSC system and FSC system.

Figure 2.8.
bCMS: Instantiated
bCMS Main Process

pscProcess :bCMS Process

« bind » 
Develop Route Plan PSC

fscProcess :bCMS Process

« bind » 
Develop Route Plan FSC
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2.2the system class of self-adaptive systems

Self-adaptive software systems are an emerging class of systems that adjust
their behavior at runtime to achieve certain functional or quality of service ob-
jectives [WMA10]. Usually, self-adaptive software systems adjust their behav- adaptation to

changing contextior in response to some stimulus from their context, while context describes
any information which can be used to characterize the system’s situation, e.g.
the operating environment or the system itself. Therefore, self-adaptive soft-
ware systems usually monitor themselves and their context.

Unfortunately, despite its widely use in computer science and software en-
gineering in particular, there is still no common understanding of self-
adaptation, but rather there are several different definitions for self-adaptive
software systems. In general, systems that monitor themselves and their envi-
ronment are variously called self-adaptive, self-healing, or self-managing sys-
tems [CGS05]. Further, one distinguishes between adaptable software, adap-
tive software, and self-adaptive software. “Adaptable systems can be adapted
to a particular [context], whereas adaptive systems adapt themselves to a [par-
ticular context].” [CE00] Here “adaptive systems” seems to include the self-
adaptive software described by Oreizy et al: “Self-adaptive software modifies
its own behavior in response to changes in its [context].” [OMT98]

Based on the autonomous computing feedback model called MAPE- extended mape-k
feedback loopK [Mur04] (see Figure 1.1), we extend these definitions by explicitly including

the concepts of sensors that are used to gather context information and effec-
tors that are used to actually adjust the self-adaptive software system. Further,
we explicitly define the notion of context. The definition is given as follows:

Definition 1 A self-adaptive software system adjusts its own structure and behavior
through effectors in response to its perception of its context using sensors. Context is
any information which characterizes the state of the self-adaptive software system.

Since, self-adaptive software system are explored from various disciplines
such as control theory, autonomic computing, and software engineering, Def-
inition 1 deliberately leaves room for interpretation. That is, while on an ab-
stract level the disciplines’ definitions for self-adaptive software system nearly
equal, they strongly differ in the details, e.g. regarding the different types of
self-adaptation. This issue is addressed by creating taxonomies that describe taxonomies used for

clarificationthe various different dimensions of self-adaptation [ST09, ALMW09, HMK09,
DNGM+08].

From a modeling perspective, a self-adaptive software system has several dis-
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Figure 2.9.
Two Different
Concerns: Adaptation
and Application Logic
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tinctive concerns including the system’s adaptation logic. As shown in Fig-
ure 2.9, the system’s adaptation logic is often understood as a distinctive unit,
sitting on top of and observing and adapting the application logic. In the sensemodeling

self-adaptive systems of multi-view modeling, the adaptation logic concern should be modeled sep-
arately. However, for a distinctive modeling of the system’s self-adaptivity,
Definition 1 is still too vague. Several questions regarding the modeling of
self-adaptive systems appear. For instance, what is to be adjusted? How is the
system adjusted? What is triggering the adjustment? And what is the state
of a self-adaptive system? Hence, to be more precise on the requirements fortaxonomy for

modeling
self-adaptive systems a modeling language for self-adaptive systems, we are describing a detailed

taxonomy for the modeling dimensions of the adaptivity concern in the next
section.

2.2.1 Modeling Dimensions of the Adaptation Concern

None of the taxonomies cited above is directed towards the specification (i.e.
modeling) of self-adaptive software systems. Thus, we created our own tax-
onomy integrating the relevant parts of the referenced ones. Our taxonomy
describes different dimensions of self-adaptation from the perspective of a self-
adaptive software system modeler (i.e. designer). For instance, in our taxon-
omy, dimensions regarding the implementation types (e.g. open versus closed
adaptation) are out of scope since they reflect decisions that are either taken
during later software engineering phases or do not have an impact on the cre-
ation of specification artifacts during high-level design.

The goal of presenting this taxonomy is to precisely define the scope of self-taxonomy used for
scoping adaptation that is covered by the techniques proposed in this thesis. More pre-

cisely, wewill use the taxonomy to define the expressive power of themodeling
language proposed in Chapter 3.

As shown in Figure 2.10, we divided our taxonomy into three different root
dimensions: why, what, and how. This reflects a common schema taken e.g.
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in [DNGM+08]. The why dimension reflects reasons for adaptation that can be
addressed using a particular modeling language. The what dimension reflects
the subject of adaptation, i.e. the adaptation of what kinds of subjects can be
described using a particularmodeling language. Andfinally, the how dimension
reflects on the various adaptation mechanisms that can be described using a
particular modeling language. In the following, each root dimension will be
described in more detail.

Adaptation Reasons Self-adaptation capabilities can be introduced into a
software system for different reasons. For instance, a self-adaptive software
system might react to erroneous system states or optimize its own behavior to
perform a specific task more efficiently. These reasons can be understood as adaptation reasons

are self-* propertiesself-* properties. There are different sets of self-* properties focusing on differ-
ent system classes [ST09], e.g. self-organization for highly distributed, decen-
tralized systems that exhibit emergent functionalities. Since, we do not partic-
ularly focus on this system class but rather focus on traditional software sys-
tems that may self-adapt as described above, we use the categorization for self-
adaptive software systems as proposed in [ST09]. Figure 2.11 reflects the four
kinds of reasons, i.e. self-* properties, a designer may model self-adaptation
for.

Why:
Adaptation
Reasons

Self-Healing

Self-Configuring

Self-Protecting

Self-Optimizing Figure 2.11.
Reasons for modeled
Adaptation

Self-Optimizing Self-adaptation might be modeled for the reason of self-
optimizing a software system, e.g. minimizing the operating costs in a
cloud scenario. Self-optimizing adaptation does not require any error or
misbehavior of the system to occur.

Self-Protecting Self-protecting adaptationmight be modeled for security rea-
sons. The system undertakes some action to protect itself or the user.
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Often, self-protecting behavior requires some kind of pro-active self-
adaptation (see below).

Self-Configuring If a system is meant to flexibly adapt to different contexts,
this is usually a matter of self-configuring adaptation. For instance, a
system configures the used network connection type autonomously.

Self-Healing Self-healing adaptation requires an error or some other misbe-
havior to occur in the system itself or within its context. For instance, if a
used external service is not available any more, it could be replaced with
another one, being a self-healing adaptation action.

A language that allows the modeling of the self-adaptivity concern may be
specialized to a specific self-* property, e.g. by providing specializedmodeling
elements, or it may support a subset or even all self-* properties by providing
more generic modeling elements.

Figure 2.12.
The Subject of
modeled Adaptation
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Adaptation Subject Figure 2.12 lists different dimensions to characterize the
subject of self-adaptation that is to be specified. The scope distinguisheswhat is to be

adapted? whether the adaptation action affects the type of an encapsulation unit or a
particular instance of a type. Further, the effect of temporary adaptation ac-
tions holds only for specific instances or contexts while permanent adaptation
actions modify the software system permanently, and thus, have an effect on
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other instances and contexts. Usually, permanent adaptation is implemented
using type adaptation while temporary adaptation are applied to single in-
stances such that the adaptation is put out of order when the instance gets re-
moved. Thus, especially during modeling, temporary and instance adaptation
as well as permanent and type adaptation might coincide.

Whenmodeling a software system, the designer usually distinguishes between
structural and behavioral models (i.e.model type). This distinction can also be
made when modeling adaptation. Some modeling languages support the def-
inition of adaptation of software processes (i.e. system behavior), while others
support the definition of adaptation of the system’s structure, e.g. replacing
a particular component or service by several others. As third model type, we
consider the adaptation specification itself. That is, amodeling languagemight
support the specification of meta-adaptation or higher-order self-adaptation, i.e.
the adaptation of adaptation specifications.

The dimension of artifact & granularity distinguishes whether the modeling
language supports the adaptation specification of only parameters (e.g. vari-
able values) or the software composition (e.g. recomposition or restructuring
of software processes), too. Further, the modeling language might support
the specification of adapting the current system state, e.g. represented by state
charts.

Finally, the aspect type dimension distinguishes between languages that focus
on a specific aspect (e.g. performance or usability) or exhibit generic modeling
means that support the adaptation specification of any aspect.

Modeling Mechanisms Figures 2.13 and 2.14 show the third root dimension how to adapt?
which contains various sub dimensions distinguishing the different mecha-
nisms of self-adaptation that a language might support to model.

First, there are different locationswhere adaptation may take place. Horizon-
tally, adaptationmay either bemodeled to locallymodify the self-adaptive soft-
ware system usually with the use of only local information, or adaptation may
be modeled to globally modify the system with global information available.
Usually, global adaptation implies a separation of adaptation logic from appli-
cation logic. Vertically, the adaptation may take place on the various different
layers in a software system, where process, service, and component layer are
just example layers known from process-driven service-oriented architectures.

Considering the timing of adaptation, the modeling language might support
the specification of reactive and/or proactive adaptation. Opposed to reactive
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Figure 2.13.
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adaptation, proactive adaptation aims at predicting the future and avoiding
undesired system states. Therefore, the modeling language must support the
use of prediction models and usually the use of history data.

Further, adaptation modeling may support two different directions of adap-
tation. Forward adaptation is the standard case, where by adaptation a new
system state is generated. Backward adaptation describes the case, where adap-
tation resets the system to an old (functioning) state. Therefore, the modeling
language needs to support accessing old states.

Adaptation may be triggered in various different ways. That is, a modeling
languagemay support the specification of timed triggers or event triggers (e.g.
a change of an observed variable or the occurrence of a signal).

Finally, there might be modeling support for anticipated and/or non-
anticipated changes and adaptation actions.

As shown in Figure 2.14, another dimension is the degree of automation. That
is, a modeling languagemay support the specification of autonomous, human,
and/or interactive adaptation.
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Finally, there are different dimensions concerning the specification itself. The
specification can be implicit, that is tightly interwoven with the rest of the sys-
tem’s specification. If adaptation is specified explicitly, it may either be given
imperatively, i.e. the concrete actions to be performed are specified, or itmay be
given declaratively, i.e. the adaptation goals are specified without describing
the approach to meet the goals. Further, the adaptation concern can be spec-
ified separately from other concerns or mixed with other concerns. Finally, the
modeling languagemay focus on a specific domain, e.g. by providing domain-
specific modeling elements, or provide rather generic modeling elements that
suit every domain.

This taxonomy helps in understanding the adaptation concern in greater de- taxonomy used for
comprehension and
comparisontail. Especially, using this taxonomy, modeling approaches for self-adaptation

may be characterized and compared precisely. In Chapter 3, we will use this
taxonomy to exactly state the expressive power of the proposed modeling
language. Although this taxonomy helps understanding in which cases self-
adaptation can be modeled in which way, in some cases it is still difficult to
distinguish between adaptation and application logic, that is to draw a sharp
line between the two concerns from Figure 2.9. We will discuss this problem
in the next section.
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2.2.2 Adaptation orApplicationConcern: ADesigner’s Choice

Although there are numerous efforts to come up with an even more precise
definition of self-adaptivity, this aspect of software seems to be hardly tangi-
ble. The problem of defining a self-adaptive systems often arises while giv-
ing an example of such a system. Often, self-adaptation features are seen as
application features rather than adaptation features. For example, consider a
mobile device that adapts its connection type to the respective availability of
wireless LAN or GPRS. One might argue that this feature is a simple if-then-

line between
adaptation and
application logic is
blurry

else condition and therefore no self-adaptivity. Further, one might argue that
adapting the connection type is a core feature of a mobile device which is es-
sential for a mobile device and therefore considered as core functionality but
not as self-adaptivity. Finally, diving deeper into a possible implementation of
such a system, one might argue that there is a component which is responsible
to always maintain a network connection if possible. This component is exist-
ing for this very reason only, and therefore, the adjustment of the connection
is not self-adaptivity but application logic—the logic, the application, i. e. the
component, is designed to provide. In this manner, it is easy and hard at the
same time to argue for and against self-adaptivity.

A similar problem arises in the area of non-functional requirements. While
the compatibility of a piece of software with Windows 7 is a non-functional
requirement for one person, while another person considers this as a central
feature which is a core functionality of the software. The answer to this situ-
ation is “it depends”. Primarily, requirements classifications are meant to pro-
vide a better overview, provide particular views onto the requirements (e. g. all
performance requirements), or enable semi-automatic requirements analyses.
Usually, it depends on the final purpose of the classification how to classify a
particular requirement.

Figure 2.15.
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We adopt this point of view for self-adaptation. That is, we consider the deci-
sion of a feature to be adaptation or application logic to be a designer’s choice.
Inmany cases, the choice is rather natural, in all other cases, the designer is free
to model the feature as adaptation or application logic. In our view, the sepa-
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rate treatment of adaptation aspects during software engineering is due to the
wish to separate concerns. This in turn ismeant to help the designer tomanage a designer’s choice
complex software constructions. That is, the designer decides which feature
is adaptive and which not and may of course swap a feature from adaptation
logic to application logic and vice versa as indicated in Figure 2.15. Needless to
say that a language for modeling adaptation logic should be close to languages
to model application logic in order to ease this kind of swapping. Therefore,
it is important to understand how software systems are modeled nowadays.
In the next section, we will describe the techniques of model-driven software
engineering and discuss the use of existing techniques tomodel the adaptation
logic concern.

2.3model-driven software engineering (mdse)
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Figure 2.16.
The V-Model

Usually, software engineering methods are used to successfully accomplish-
ing large software projects. By software engineering methods we denote the
full set of elements needed to describe a software development project, in-
cluding the development process and its activities, the artifacts produced and
the tools and techniques that are employed as well as relationships between
these concepts [ES10]. Applying a software engineeringmethod creates a com-

software
engineering
processes coordinate
engineering
activities

mon understanding and coordinates the activities to perform and the creation
of artifacts. There exist several widespread software engineering methods
based on different process models (e.g. RUP [Kru03], V-Model XT [KNR05]
or Scrum [Sch97]). The V-Model is a process model for the software devel-
opment which relates early phases (left branch) to later phases (right branch)



34 Chapter 2 Foundations

using tests of the corresponding level (see Figure 2.16). It is particularly suit-
able to demonstrate traditional software engineering methods since the basic
structure is reused by themajority of usedmethods: A requirements engineer-
ing phase is followed by the creation of a high-level, platform-independent de-
sign. This design is detailed into amore technical low-level representation that
may be platform-specific, followed by the implementation. At implementation
level, unit tests are used for quality assurance. On low design level, integra-
tion tests are leveraged and on high design level, system tests are performed.
Finally, on requirements level again, the system is tested for acceptance by the
customer (validation). Of course, plenty of variations exist that, e.g., refine or
put emphasis on single phases.

2.3.1 Multi-View Modeling &
Concern-Specific Modeling Languages (CSML)

Model-driven software engineering (MDSE) is based on the usage of models
to specify artifacts, generate code and document the system. Let us briefly in-
vestigate different ways, models can be used during MDSE. This allows us to
provide a better understanding of the characteristics our approach exhibits.
According to [EG00], models consist of three different kinds of constituents,
different in nature. Model constituents are “model parts that reflect the way
one wants to separate one’s concerns” [EG00]. The first kind reflects the ele-model constituents

reflect concern
separation ments, that originally describe the system to build. These constituents reflect

exactly how the model has been constructed. The second kind of constituents
form different representations of the original model. This representation is
a different form the model takes when represented depending on a particu-
lar use. These representation are often called views. They consist of the same
type of constituents as the original model does, but differently represented.
The third kind of constituents are aspects. Aspects describe general character-
istics or concerns for the model as a whole. An example for aspects is security
that might implement a login feature that is woven into the model at different
places.

These constituents allow to model a system differently, e.g. using the corre-
sponding paradigm. Views are used in view-based modeling approaches.views
The challenge of view-based modeling is to ensure consistency of the differ-
ent viewmodels, especially, since these views may overlap and same elements
may be represented differently. Aspect-oriented modeling usually requires anaspects
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Figure 2.17.
Modeling Approaches
for Describing
Concerns

aspect weaver to be in place. Different from views, aspects do not focus on a
specific representation of the system model, but usually address single cross-
functional concerns that are defined separately and loosely coupled with the
rest of the models. The two different modeling approaches are depicted in the
top of Figure 2.17. Of course, modelers and language designers may mix the pattern
two approaches to their needs. Two other approaches to modeling are pattern-
basedmodeling and framework-basedmodeling. Similar to views, pattern may
be composed with each other to describe the system. Frameworks already de- frameworks
scribed a large portion of the system for a particular domain or concern and
may be used by specialization or implementation of hooks.

All four types of modeling approaches can be used for describing particular
concerns. Usually, the language designer decides for a particular type of mod-
eling approach that his concern-specific modeling language shall support or
use. A concern-specific modeling language (CSML) allows the modeling and
thus focus on a particular concern (such as security or self-adaptivity) opposed
to domain specific modeling languages that focus on a particular domain such
as gaming, embedded systems, process-driven service orchestrations, etc. For views and aspects

are used in our
approachthe concern of self-adaptivity, we will show in the next chapters how to create

a particular system view for self-adaptivity to describe sensors, effectors, etc.
and how adaptation rules will be specified in an aspect-like manner.
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2.3.2 Unified Modeling Language (UML)

Software engineering methods often propose the use of specific modeling lan-
guages. A language that is compatible with most methods (including the V-
Model XT) is theUnifiedModeling Language (UML) [Obj11], the de-facto stan-
dard for object-orientedmodeling. TheUMLwas createdwith the goal to uniteuml, a de-facto

standard a variety of different object-oriented modeling languages in the early 90s and
to create a common meta model [Obj00, BRJ05, Obj11].

TheUMLdistinguishes two different diagram types: structural and behavioral
diagrams. Structural diagrams, e.g. the class diagram, allow the specification
of a system’s static structure usually in terms of entities and their attributes and
relationships. Behavioral diagrams, e.g. activity diagram, allow the specifica-
tion of the system’s or an entity’s dynamic behavior. Activity diagrams allowstructural and

behavioral diagrams the description of actions that are performed in a specific order. Another be-
havioral diagram, the state chart allows the description of a system’s or entity’s
states and their transitions.

For each kind of diagrams, the UML consists of several different notations
some of which will be detailed below. Every notation serves a specific mod-
eling purpose, e.g. use cases are often used during requirements engineering
and the early high-level design. Table 2.1 gives an overview of UML notations
assigned to the software engineering phase they are most often used in. Of
course, variations exist.

Structural Diagrams

The next paragraphs briefly introduce class, component, and object diagrams
as these will be used in the following chapters.

Object Diagrams Objects are the foundation of object-orientation. Objects
are abstractions of reality that highlight single characteristics that allow their
distinction [Sha80, Boo94]. In the UML, an object is a rectangle with an under-
lined name (cf. Figure 2.18). Objects may have a state that is characterized by
the concrete value of its attributes. Attributes are given in an additional com-
partment of the object rectangle. An attribute has a name and a value divided
by an equal sign.

Objects may have relationships. They are denoted using lines, so-called links,
between two objects. These links may have an underlined name and roles.
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Phase Language
Requirements
Engineering

Use Cases are often used to describe requirements using a scenario-based
approach.

Class Diagrams are often used to model the domain model / problem do-
main.

Activity Diagrams are often used to model business processes. Sometimes,
they are already used during requirements engineering to describe
scenario flows that are attached to use cases.

High-level
Design

Use Cases are used to refine requirements and provide detailed scenarios.
Class Diagrams are used for the creation of logical systemmodels, i.e. entity

types, their relationships, attributes, and sometimes even operations.
Component Diagrams are used especially in component-based design to de-

scribe logical components and their interfaces. At this level of abstrac-
tion, components are often modeled as black-box components.

Activity Diagrams are used to describe the detailed flows of scenarios at-
tached to use cases or behavioral components.

Sequence Diagrams are used to describe the interaction of (human) actors
with the system.

State Charts are often used to describe the state model of complex entity
types (in class or component diagrams).

Low-level
Design

In the technical design phase, basically the same notations are used as in the
logical design. However, several design decisions are made that apply to a
specific platform. Thus, the diagrams created in the logical design phase are
detailed and attached with more technical information (i.e. technical identi-
fiers). Often the logical structure is slightly modified to fit the specific needs
of the concrete platform.

Implemen-
tation

On implementation level code is either generated from the models (model-
driven engineering) or the code is created manually based on the models
(model-based development). A third option on this level is to build or con-
figure model interpreters that run the created models. Therefore, the models
might need further refinements.

Table 2.1.
SE Phases and UML
Notations

car456 / car :PoliceCar

eta =  21.01.2013 17:32

car123 / car :PoliceCar

eta =  21.01.2013 17:12

/ station :PoliceStation Figure 2.18.
UML Object Diagram
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Roles are denoted at one or both ends of a link and describe the role an object
in the relationship with the other object plays. Alternatively, roles may be de-
noted right after the object identifier divided by a slash (cf. with roles station
and car in Figure 2.18). Links may further be unidirectional or bidirectional
which is denoted by arrow heads at either one or both ends. Each object de-
noted has a unique identity, i.e. even if two objects have the same attributes
with same values, they are different. However, these two objects might be of
the same type. The type of objects is described using class diagrams (see the
following section).

The relation between an object of some type and the type itself is called in-
stantiation. In the UML meta model, objects are called instance specifica-
tions. Instance specifications are a basic concept that could be applied to every
UML model element. That is, a component, an activity, a state, or an associa-
tion could be instantiated using instance specifications. Instance specifications
have slots which describe the value assignments (e.g. class attributes).

Class Diagrams As mentioned in the previous section, class diagrams de-
scribe types of objects. That is, a class subsumes the attributes, operations,
and relationships of objects that are of the same type. An object with the type
of a specific class is called an instance of that class.

As shown in Figure 2.19, a class is denoted with a named rectangle. In con-
trast to objects, class names are not underlined. Classes may have definition
of attributes, operations, and relationships (so-called associations) with other
classes. Just like objects, classes denote their attributes within a specific com-
partment. Attributes defined in classes have a name, too, but do not carry a
specific value. Instead class attributes define a specific attribute typewhich can
either be primitive (e.g. integer, float) or structured (e.g. another class from any
class diagram). Classes define operations to modify of select object attributes.
Operations are denoted within another compartment and have a name and
define the type of the return value (e.g. integer, void, a class).

Figure 2.19.
UML Class Diagram
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Associations may have a name (not underlined) and/or roles. Further, asso-
ciations may be unidirectional or bidirectional. If an association is unidirec-
tional, the association can be navigated into that particular direction, i.e. the
associated class has access to the other class. An association may also be non-
navigable which is denoted using a small x at the non-navigable end (or at
both ends). Finally, associations may have cardinalities. Cardinalities define
the lower and upper bound of the number of instances that may be associated
with one another.

Aggregations are specialized associations that define a hierarchy, while the ag-
gregating class is responsible for its aggregated classes. Aggregations are de-
noted using a diamond at the association end at the aggregating class. A spe-
cific aggregation is the composition which sometimes is described as strong
aggregation. The additional properties of compositions are that an object of
the composed class cannot exist without the composing object, the composed
object is deleted cascadedly upon deletion of the composing object, and the
composed object must only be composed by one composing object. Composi-
tions are denoted with a filled diamond at an association end.

Classes may inherit all attributes, operations, and associations from one an-
other if inheritance is specified. The inheriting class is the more specialized
class while the inherited class is called the general class. Inheritance is denoted
with an arrow between the specialized and the general class with a triangular
arrow head at the general class’s end.

Asmentioned in Section 2.3.2, an object may be of the type of a particular class.
The object is said to be the instance of the particular class. An instance of a class
is denoted just as an object with a specific type (i.e. the class name) after the
object’s name divided by a colon.

Component Diagrams UML component diagrams allow the modeling of
components with their interfaces and relationships. Components may be
structured hierarchically. The concept of UML components allows to supply
different implementations for a specific component. That is, components are
usually implementation independent and may be used to logically structure
the system to be. Figure 2.20 shows a component diagram that contains the
most important notational elements. Component FireStation realizes the inter-
face Vehicle and communicates with Component Channel. The concrete form
of communication, e.g. the used interface, is left underspecified. The Channel

in turn communicates with PoliceStation using a provided interface. Further,
it requires another component that provides the interface Vehicle.
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Figure 2.20.
Example Component
Diagram
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More precisely, components encapsulate elements and define interfaces to ac-
cess these elements. They may contain other classes and interfaces. Interfaces
may be defined to be required or provided. Interfaces may be described using
classes with an attached stereotype «interface». Components may be connected
with each other using these interfaces; a provided interfaces may be connected
to one or more required interfaces.

It is important to distinguish elements that specify a component’s interface
from those that realize it. Specifying elements, i.e. interfaces, are realized by
realizing elements, i.e. classes that are contained in the component.

Components are denoted like classes with an additional stereotype or the cor-
responding symbol in the upper right corner. Required and provided inter-
faces are denoted with a lollipop notation that may be further specified using
the interface in class-like notation.

Behavioral Diagrams

In the following, we will briefly introduce the basic notation of UML use cases
and activity diagrams.

UML Use Cases Usually, each use case is specified individually using a tab-
ular form. Use case diagrams visualize the relationships between use cases
as well as the actors. Both use cases and their diagrams are described in the
following.

Use Cases Use Case are widely accepted to be the language for requirements
engineering and the early high-level design [Coc00, Rup07]. UseCases provide
a view on the system under discussion by describing the interactions of (hu-
man) actors and the system. In particular, use cases specify how a system is
used.
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Use cases can be used on different levels of abstraction, e.g. business use cases
are often used in the very early requirements phase while system use cases
are often used during the logical design phase. The specification of the differ-
ent use case types is slightly different. For instance, business use cases have
a different scope than system use cases, while system use cases are way more
detailed.

A use case is often given in tabular form, while the table lists all use case’s
attributes and values. The most often used attributes include the following:

Attribute Description

Name / ID A short but unique identifier for the use case. It is particularly used
to refer to the use case.

Description The main description of the use case given in natural language.

Scope Describes the system or, if more detailed, the component the use case
is located in.

Actor Describes all participating actors.

Pre Condition Describes the state of the system and its environment prior the use
case’s execution.

Post Condition Describes the respective state after the use case’s execution.

Trigger Describes the event that makes the use case execute.

Standard Sce-
nario

A description of the basic flow of execution, the use case describes.

Alternative Sce-
narios

A list of alternative flows of execution that are taken at particular
condition.

Exceptional Sce-
narios

A list of flows of execution that describe the handling of exception.

The scenarios may either be given in tabular enumerative form, or be mod-
eled using activity diagrams. Usually, all three different types of scenarios
(standard, alternative, and exceptional) are modeled within a single activity
diagram.

Use Case Diagrams A UML use case diagram provides an overview of all
use cases. It shows the actors, the use cases, and the system boundary of the
system under discussion. In addition, a use case diagram specifies the rela-
tionships between actors and use cases as well as relationships between use
cases themselves. The most often used relationships between use cases are
«include» and «extend» which are briefly explained next. A higher-level use
case «include(s)» a lower-level use case if a scenario of the lower-level use
case is carried out in a scenario of the higher-level use case. The relationship is
modeled by calling the activity of the lower-level use case in at least one of the
action steps of a higher-level use case’s scenario. One use case is «extend(ed)»
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by a second use case if the second use case extends a scenario of the first use
case. The scenario of the second use case integrates into the scenario of the
first at a defined extension point.

Figure 2.21.
Example Use Case
Diagram
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Figure 2.21 shows the most important notational elements of use case dia-
grams. Use case CoordinatorProcess «includes» the use cases Negotiate Route

Plan and Report Vehicle Arrival and «extends» use case Communicate with

other Coordinator. The actor uses use case Coordinator Process. All use cases
will be provided by the system (i.e. scope).

Activity Diagrams UML activity diagrams can be used to describe flows of
actions (e.g. in a business process) using an easy visual language. As such,
they fit best to describe the scenarios of use cases. Especially, if a use case
contains a variety of alternative scenarios, an activity diagram helps to grasp a
fast understanding since alternative scenarios are integratedwith the standard
scenarios using specific language elements such as decision nodes. Thus, use
cases with high complexity, especially concerning exceptions and alternatives,
are usually modeled with activity diagrams. Activities may also be used to
describe the execution logic of operations e.g. defined in classes.

Activity diagrams are very similar to other process model languages such as
the BPMN or basic workflow graphs. Activity diagrams have a token-offer se-
mantics, which is an extended token-flow semantics [Obj11]. Further, activity
diagrams propose a variety of specialized actions to structure the model (e.g.
hierarchically) or perform specific model manipulation actions, such as calling
an operation from another UML diagram (e.g. component diagram). The basic
notational elements are shown in Figure 2.22. An activity may contain various
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actions which may call other activities again, thus allowing hierarchical struc-
turing.

bCMS Police Coordinator Process

Establish 
Communication

Exchange Crisis 
Details Propose Route

Fire
Coordinator
agreed

Dispatch 
Vehicles

Close Crisis

Figure 2.22.
Example Activity
Diagram

An activity may contain actions, control nodes, and object nodes. Actions may
simply have a namewith no explicit semantics. Additionally, the UML offers a
set of predefined actions that exhibit a particular semantics, e.g. calling another
activity or operation or setting the value of an object’s attribute. Control nodes
include decision nodes, fork nodes, final nodes, and initial nodes. Object nodes
include pins that allow to pass objects from one action to another, an parameter
nodes that allow passing parameters to an activity.

2.3.3 Adaptivity Concerns in the UML

Using the described techniques that are provided by the UML it is rather con-
venient to describe the application logic of a software system (cf. Figure 2.23).
The different diagrams provide several different views onto the system, e.g.
the class diagram provides a structural view onto the system whereas the ac-
tivity diagram provides a behavioral process view onto the system. But how
about using the UML to model the adaptation logic concern?

Adap%vity	  

Applica%on	  

Use	  
Case	  

A	  

B	  

Class	  Model	  

? 
Figure 2.23.
The use of UML for
the Application Logic
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By now, there is no explicit support for modeling self-adaptivity in the UML.
That is, adaptivity is usually modeled implicitly within the specification of the
core application logic. Of course, adaptivity can be separated in UMLmodels,no explicit support

for self-adaptivity
within the uml e.g. by creating separated activity diagrams that describe flow of adaptation

actions. However, since there is no concern-specific notation for explicit spec-
ification, the resulting models usually are hard to understand or at least often
highly bloated. Moreover, particular self-adaptation (e.g. the adaptation of the
system’s type) cannot be expressed directly using the UML, but only by lever-
aging rather complicated workarounds. Further, it is very difficult to apply
automatic quality assurance techniques specifically tomodeled self-adaptation
features, since these features are hardly distinguishable from core application
logic.

To efficiently, and even more important, effectively specify self-adaptivity, theneed for
concern-specific
extension UML needs to be extended by concern-specific modeling means. Specifically,

it must be possible to describe self-adaptivity in behavioral models or views
as well as in structural models or views. Since self-adaptivity must be consid-
ered in high-level design at the latest and down to implementation, the men-
tioned extension must support the high-level specification as well as the low-
level specification of self-adaptivity. Thus in the following section, we describe
how to define concern-specific (UML-based) modeling languages.

2.3.4 Concern-Specific Modeling Language Definition

Concern-specific and domain-specific modeling languages are usually spec-csml definition by
meta modeling ified using the technique of meta modeling. In meta modeling a modeling

language is used to describe the abstract syntax of another. Today, usually
MOF [Obj06] is used for that purpose but there are a variety of different lan-
guages, e.g. KM3 [JB06], Ecore [BBM03], MetaGME [LMB+01]. In the follow-
ing, wewill describe the basics behindmetamodeling using theMOFby exem-
plary describing the specification of the UML. In the subsequent Section 2.4,
we describe how to specify the semantics of meta model based modeling lan-
guages.

Meta Modeling

A meta model is a model of a set of models, i.e. meta models are specifi-
cations. Models are valid if they contain no false statements according to
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the meta model (i.e. they are well-formed). Typically, meta models represent
domain-specific models (real-time systems, safety critical systems, e-business)
or concern-specific models (performance, user interfaces).

The domain of meta modeling is the definition of languages. A meta model is
amodel of (i.e. specifies) some part of a language. Which part depends on how
the meta model is to be used. Parts include the syntax of a language (usually
the abstract syntax), the semantics of a language (e.g. using DMM [Hau05]),
views/diagrams, etc. Ametametamodel is amodel ofmetamodels. Reflexive
meta models are expressed by using themselves (see Figure 2.24).

Meta … Model

Meta Model

System

Model

represented by

conforms to

conforms to
Figure 2.24.
Meta Model Levels

In the domain of language definition, meta models are usually used to define
a language’s abstract syntax, i.e. the language’s concepts and their relations.
Further, a language definition consists of one ormore concrete syntaxes as well
as static and dynamic semantics. Static semantics are often given by constraint static and dynamic

semanticslanguages such as the OCL or in natural language. Dynamic semantics are
either given in natural language or using formal methods such as set theory,
process algebras, graph transformations, or the like.

The Unified Modeling Language (UML) defines a meta model and the nota-
tion. The latter has been introduced in Section 2.3.2. The UML meta model
defines the concepts of the UML and their relations. See Figure 2.25 for an ex-
ample meta model excerpt for class diagrams. It defines classes to own opera-
tions and properties (attributes). An association connects two properties. Ad-
ditional information is captured in the attributes. For instance, if isComposite is
set to true, the association turns into a composition. An instance of this meta
model (e.g. using object notation) represents a UML class model in abstract
syntax. In concrete syntax, e.g. an association object is represented using a
single line.

The UML meta model itself is an instance of the MOF (Meta-Object Facil-
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Figure 2.25.
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ity) [Obj06], a closed meta model language. That is, the MOF itself is an in-
stance of the MOF, again. The MOF itself is a very slim language that basically
uses MOF::Classes for language definition. See Figure 2.26 for the UML meta
model levels.
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Extension of Meta Model based Languages

Basically, there are two different mechanisms to extend a language: heavy-
weight and lightweight. Heavyweight extensions arbitrarily change a givenheavyweight vs.

lightweight
extension meta model (i.e. add, delete, modify elements). Thereby, given semantic con-

straints may be violated or semantics may be changed, possibly leading to un-
desired side-effects. Lightweight extensions extend the language by refining
single elements in order to apply concern-specific or domain-specific names
and properties to these elements. However, lightweight extensions do not
change the meta model and do not contradict with existing constraints and se-
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mantics. The UML defines heavyweight extensions to be first-class extension
mechanisms.

For UML, it is important to notice that heavyweight extensions require to uml profiles for
lightweight uml
extensionschange and thus know the meta model while lightweight extensions may be

defined on M1 level without any knowledge of the meta model. This is be-
cause the UML offers the concept of UML Profiles that allow the definition of
stereotypes (specializations) and tagged-values (additional properties) using
a particular UML diagram.

UML Superstructure Specification, v2.3: The profiles mecha-
nism is not a first-class extension mechanism (i.e., it does not al-
low for modifying existing metamodels). Rather, the intention of
profiles is to give a straightforward mechanism for adapting an ex-
isting metamodel with constructs that are specific to a particular
domain, platform, or method. Each such adaptation is grouped
in a profile. It is not possible to take away any of the constraints
that apply to a metamodel such as UML using a profile, but it is
possible to add new constraints that are specific to the profile. The
only other restrictions are those inherent in the profilesmechanism;
there is nothing else that is intended to limit the way in which a
metamodel is customized.

First-class extensibility is handled throughMOF,where there are
no restrictions on what you are allowed to do with a metamodel:
you can add and remove metaclasses and relationships as you find
necessary. Of course, it is then possible to impose methodology re-
strictions that you are not allowed to modify existing metamodels,
but only extend them. In this case, the mechanisms for first-class
extensibility and profiles start coalescing. [Obj11]

Common examples for UML profiles are the UMLSec [J0̈2] for modeling secu-
rity concerns and the SoaML [Obj12] for modeling services within a service-
oriented architecture.
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2.4 semantics & static quality assurance
in model-driven software engineering

In the last section, we showed howmodel-driven software engineering is sup-
ported by the UML and how the UML can be extended to address specific
concerns. The most important reasons to create models of the software system
to be build is to enable a better understanding and allow for (automated) anal-
ysis of themodeled system. In this section, we describe several techniques how
models can be formalized and analyzed automatically. Therefore, we briefly
describe the model checking approach in Section 2.4.1. In Section 2.4.2, we de-
scribe graph transformations and the model checker Groove [DDF+06] which
act as basis for Dynamic Meta Modeling (DMM), a visual language semantic
specification approach which will be described in Section 2.4.3.

2.4.1 Model Checking & CTL, LTL

Model checking is a fully automatic verification technique where a system
model is checked against a specification. That is, given a system model M
and specification h determine whether the behavior of M meets the specifica-
tion h [Eme08]. The model M may be given in several representations, e.g.,
finite automata or Labeled Transition Systems (LTS). The specification is usu-
ally given in some logic, e.g., the Computation Tree Logic (CTL) or the Linear
Time Logic (LTL). In the following, we will describe labeled transition systems
as well as CTL and LTL in detail.

Labeled Transition Systems (LTS)

A Labeled Transition System is similar to finite automata but do not have end
states. A Labeled Transition System Γ = (A, S, δ, I) defines a set of action labels
A, a set of states S, a set of start states I ⊆ S, and a state transition relation
δ ⊆ S × A × S. In software engineering, the states often represent concrete
system states that are described by instances of the created models, e.g., class
model, activities, and state charts. The transitions describe all state changes
the system may perform. Thus, the LTS describes all reachable system states.
See Figure 2.27 for a sketch of a Labeled Transition System. The states S0 and
S1 show the current system state. The transitions reflect system progress or,
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e.g., system adaptation. In real labeled transition systems, the transition labels
(here progress) differ to reflect the actual action that takes one state to another.
The figure sketches UMLmodels within states S0 and S1, that is, a state reflects
a particular system state whose change is reflected by outgoing transitions.

S0
:A

:B

a

b

c

S1
:A a

b

c

S2

progress

progress

...

Transitions

States

... ...

... ...

Figure 2.27.
Sketched Labeled
Transition System

An infinite trace s0
a0−→ s1

a1−→ . . . of Γ is defined as (s1, ai, si+1) ∈ δ for all i ≥ 0
and s0 ∈ I. A finite trace is a prefix of an infinite trace.

Computation Tree Logic (CTL)

The Computation Tree Logic (CTL) is a temporal logic that allows the speci-
fication of properties for specific system states as well as the change of these
properties in traces. The CTL is typically used with model checkers that check
whether a specificmodel, e.g. an LTS,meets the specific safety or liveness prop-
erties which are specified using the CTL. Safety properties assure that if at a safety and liveness

propertiesparticular state a starting condition is met, then on all possible future infinite
traces some undesired condition never meets. Liveness properties assure that
in all traces with an arbitrary start state a particular condition meets at some
point in time.

The Computation Tree Logic (CTL) consists of proposition logical formulas
and temporal operators and is syntactically defined as follows:
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p ∈ P atomic logical formulas
¬φ,φ∧ψ, . . . proposition logic operators
EX φ on at least one next state holds φ
AX φ on all next states holds φ
EF φ on at least one outgoing trace holds φ at least once (finally)
AF φ on all outgoing traces holds φ at least once (finally)
EG φ on at least one outgoing trace holds φ always (globally)
AG φ on all outgoing traces holds φ always (globally)
φ EU ψ on at least one outgoing trace holds φ until ψ holds finally
φ AU ψ on all outgoing traces holds φ until ψ holds finally

CTL formulas are usually applied to Kripke Structures, basically finite au-
tomata with a labeling function that labels states with atomic propositions.
It is possible to apply CTL formulas to Labeled Transition Systems while the
atomic logical formulas are matched with the transition labels instead of state
labels. Therefore, in a preprocessing step, the transition labels are move to the
preceding states as shown in Figure 2.28. The resultingmeaning is that in state
S0, transitions a1 and a2 can be taken.

Figure 2.28.
Translate Labeled
Transition System into
Kripke Structure

S0 S1

S2

a1

a2 ...

a1,a2

Linear Time Logic (LTL)

In contrast to the CTL that makes statements about trees of system states, the
Linear Time Logic (LTL) makes time related statements about single traces
within a system model. Formulas of the LTL are defined as follows:

p ∈ P atomic logical formulas
¬φ,φ∧ψ, . . . proposition logic operators
X φ φ holds in the next state
F φ φ holds at some state in the future (finally)
G φ φ holds at all state in the future (globally)
φ U ψ φ holds until ψ holds finally
φ W ψ φ holds globally unless ψ holds finally
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The LTL does not have quantifiers over paths. All formulas have an implicit
preceding “A” quantifier.

Both, CTL and LTL formulas can be used to describe common liveness and
safety properties that must be fulfilled by a software system. The sets of prop-
erties that can be described by the LTL and the CTL overlap, but are not equal.
To be able to describe the complete range of properties in our approach, we
use both the LTL and the CTL. Temporal logic formulas can be checked using
amodel checker that gets as input a labeled transition system (or Kripke Struc-
ture) and a concrete formula and delivers a counter example if the LTS does
not fulfill the formula.

To build up a labeled transition system, graph transformations can be used.
Since this technique will be used within this thesis, it is described in the next
section.

2.4.2 Graph Transformations & Groove

Graphs are often used for verification in software engineering. This is because
graphs have the advantage of a visual representation while still having a for-
mal and powerful mathematical foundation. UML models, which are heavily
used in software engineering, can be understood as highly structured graphs.
Thus it is almost obvious that the transformation of UML modeled systems,
e.g. their progress or their adaptation, can be expressed using graph transfor-
mation systems.

Graph transformation systems or graph rewriting systems are used to trans-
form (visual) graphs with (visual) transformation rules [Roz97]. Graph trans-
formation rules r have a left hand side (LHS) and a right hand side (RHS) graph
pattern: r : LHS → RHS. The LHS pattern is matched in the graph G being
transformed and replaced by the RHS pattern in place: G r−→ H. The resulting
new graph is H. Usually, more powerful graph transformation systems oper-
ate on typed, attributed, labeled graphs. That is, an additional logic is needed
to compute target attribute values such as element names or attribute values.

Groove [Ren03] is a graph transformation tool that includes a model checker
that allows the use of LTL and CTL formulas. Groove takes as input an initial
start graph and a set of graph transformation rules to explore the complete
state space. The state space (given as labeled transition system) represents
all possible variations of the start graph which are reachable by applying the
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graph transformation rules repeatedly to the start graph. To transform a UML
model and its semantics to graphs and transformation rules that can be read
byGroove, the DynamicMetaModeling (DMM) approach can be used [Sol13].
In fact, most importantly, DMM allows to formally define the UML’s semantics
using themetamodeling approach that has been used to define theUML itself.
This will be described in the next section.

2.4.3 Dynamic Meta Modeling:
Language Semantics Specification

There are several approaches to formally specify the semantics for a model-
ing language [CKTW08, BCGR09]. In the following, we will focus on Dynamic
Meta Modeling (DMM) [Hau05, Sol13] that uses graph transformations to for-
mally specify the execution semantics for meta model based languages. DMM
is a semantics specification technique which is not only formal, but also (rel-
atively) easily learnable and understandable due to its visual, object-oriented
syntax: DMM rules are basically annotated object diagrams. DMM builds di-
rectly on the language’s meta model or an extension of it.

Figure 2.29.
Overview of
DMM [Hau05]
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DMM tries to achieve maximum understandability partly by reusing object-
oriented concepts, which are expected to bewell-known by the target language
users. The DMM approach shown in Figure 2.29 consists of three major parts:
the runtime meta model, graph transformation rules, and the transition sys-
tem. The runtimemeta model is an extension of a language’s meta model with
the purpose to explicitly include runtime elements aswell as helper constructs.
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An example for a runtime element is a Token that marks an active action within
an activity diagram. The elements added for the sake of describing runtime in-
formation are described on the MOF class level and then are instantiated (i.e.,
within state graphs and rules).

The runtime meta model types the set of graph transformation rules that de-
scribe how an instance of the meta model changes through time. For instance,
for activity diagrams, a particular graph transformation rule describes under
which conditions a token moves from a source to a target action. For this, the
instances are mapped to typed graphs, i. e. graphs whose nodes and edges are
typed over classes and associations of the meta model. The operational rules
are then defined as typed graph transformation rules, working on the derived
typed graphs.

Given the complete set of DMM rules and an instance model, we are able to
compute a labeled transition system (LTS). The resulting labeled transition sys-
tem can be used with an appropriate model checker (DMM suggests the use
of Groove [Ren03]) to prove properties that are expressed using temporal logic
formulas. The LTS has concrete model instances as states exposing concrete
model objects and assigned attributes. The transitions correspond to the ap-
plied graph transformation rules (i.e. DMM rules). The LTS is computed by
using the state corresponding to the model as the initial state. On that state, all
matching rules are applied, leading to new states. This is done until no new
states are found and the complete LTS is computed. The transition system can
then be analyzed using model checking techniques [ESW07].

Thus, the DMM approach does not only allow the formal specification of a
meta model based language, but also provides the infrastructure to use the
formal semantics specification for proving certain properties. In [SE09], the
authors show how to use the DMM approach and its model checking capabil-
ities to test semantics specifications for correctness.
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Modeling of Self-Adaptive Systems

“ Intelligence is the ability to adapt to
change.”

– Stephen Hawking
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This chapter describes our approach to the modeling of self-adaptive systems.
That is, in Section 3.1, we describe the overall language engineering approach
that we have taken. Next, in Section 3.2 we define formally how we perceive
adaptivity andwhatweneed to express adaptivity. The resulting requirements
are discussed and compared to existing languages. In Section 3.3 the core con-
cepts of our modeling language approach named Adapt Case Modeling Lan-
guage (ACML) are introduced. Section 3.4 concludes this chapter.

3.1 language engineering approach

The language that is presented in this chapter was systematically derived from
several information sources. Besides the formative evaluations that are de-
scribed in Chapter 6 (i.e., evaluations that were performed throughout the lan-
guage engineering process and that highly influenced the language’s design),
themain information sourceswhere the high-level language requirements that
have been introduced in Section 1.2 and characteristics of the target concern
self-adaptation as presented in Section 2.2. The approach used for language en-
gineering is depicted in Figure 3.1.
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The figure shows the two main pillars of the approach, the concern and the
language itself.

The concern pillar describes the characteristics of a particular concern, e.g., by
using definitions, ontologies, or feature trees. In this thesis, we presented an
ontology in Section 2.2.1 that shows the concern’s different facets. Contents of
the ontology include the distinction of reactive and proactive adaptation, or
the definition of type vs. instance adaptation. As shown in the figure’s bottom
left, we refined the concern definitions by formally defining the concern’s core
elements using a formal notion (see Section 3.2.2). This formal notion helps to
develop a clear understanding of the concern on a rather abstract level. The
concern-specific ontology keeps compatible to the formal notion.

The language pillar shows the high-level requirements on its top. The high-
level requirements defined in this thesis are Separation of Concerns, Analyzabil-
ity, Integration, Intuitiveness, and Genericity as described in Section 1.2. Based
on the ontology that is defined in the concern pillar, the high-level require-
ments were refined to concern-specific requirements as shown in Section 3.2.3.
Finally, a language was defined that fulfills these requirements, refines the for-
mal notion, and implements most of the features described in the ontology.
The language is described in Section 3.3 together with a description of which
features have been implemented and which not.
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3.2 analysis

In the following, we analyze the modeling of self-adaptive software systems.
That is, we describewhere it is needed in the development cycle (Section 3.2.1),
what exactly is needed here (Section 3.2.2), i.e. we formally define a notion
of self-adaptivity to precisely state what we understand under the term, and
finally, we infer requirements for themodeling language that can be addressed
e.g. by a meta-model based language (Section 3.2.3).

3.2.1 Adaptivity in the Development Cycle

While, current research puts effort into supporting single phases such as re-
quirements engineering and implementation approaches for self-adaptive sys-
tems, the design phase, especially the early design, is rather neglected concern-
ing modeling language support and techniques for early quality assurance.
Put into the context of the OMG’s MDA, currently, the Computation Indepen-
dentModel (CIM) and the source code are covered sufficiently (see Figure 3.2).
In an MDA sense, the Platform Independent Model (PIM) and the Platform
Specific Model (PSM) are not yet covered sufficiently with engineering meth-
ods (i.e., supporting languages, engineering processes, assurance techniques,
etc.) as motivated in the following.

Figure 3.2.
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The computation independent model (CIM) describes the business setting of
a system, i. e. its environment and its requirements. Structure and pro-
cessing are undefined or hidden at this level of abstraction [Obj03]. On computation

independent modelthis level, self-adaptive systems are usually described using goal-oriented
modeling [GSB+08]. Another approach is using controlled natural lan-
guage [WSB+09] which has been integrated with goal-based modeling
in [CSBW09]. A textual requirements approach that explicitly supports the
translation of requirements into feedback loops is called theAwareness Require-
ments approach [SSLRM11]. Considering these approaches, the computation
independent model (i.e., the requirements level) is sufficiently covered with
adaptation-specific approaches.

The platform independent model (PIM) describes the system’s structure and op-
erations abstracting from a concrete technical platform. That is, the model

platform
independent and
platform specific
model

contains the information that is independent from a specific platform. At this
level, the OMG suggests to use general purpose modeling languages (e. g. the
UML) or domain-specific languages [Obj03]. The platform specific model (PSM)
enriches the platform independent model with information needed to use the
system on a specific platform. This can be operating system specific informa-
tion, information for a specific database, or the like.

Regarding modeling language support, the platform independent model and
the platform specific model are hard to distinguish since usually the same
modeling language can be used for both levels. Therefore, we refer to both
as system design. For self-adaptive software systems, there are some ap-
proaches that are targeted at system design modeling of self-adaptive sys-
tems [HGB10, FS09]. Some of these even can be translated automatically into
code. However, as shown in Section 3.2.3, they do not fulfill all of our require-
ments, e.g., they are not integrated, for instance, with the UML, there is no
quality assurance approach, or even no engineering process support.

The last step of the MDA process is the transformation of a PSM into code.
This is usually a semi-automatic process. To ease transformation and main-
tenance of the generated code, the coding language may explicitly support
self-adaptation, as well. Approaches that explicitly consider self-adaptation code level
at code level include context-oriented programming [SGP12] and frameworks
such as StarMX [AST09] and Rainbow [GCH+04]. From our perspective, in an
engineering process for self-adaptive software systems, the code level is suffi-
ciently covered with concern-specific approaches, as well.

The MDA approach suggests to create a system architecture as early as pos- architectures
sible and maintain it throughout the MDA process. There are several well-
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accepted architectures available for self-adaptive systems. Generic architectures
for self-adaptive systems such as MAPE-K [KC03] or the three layer architec-
ture [KM07] are first considered on platform-independent level. They can be
used as blueprints for creating a good systemarchitecture, however, either they
comewith nomodeling language support, or they do not provide correspond-
ing assurance techniques. Modeling languages for self-adaptive software sys-
tems used in the MDA process should support representing these generic ar-
chitectures, e.g., by including architecture specific concerns as language ele-
ments (e.g., sensors, effectors, ...).

All in all, to the best of our knowledge, for the system design in particular, and
for the whole engineering cycle in general, there is no continuous engineering
method for self-adaptive software systems. Especially the specification of self-
adaptivity during early system design combined with a corresponding qual-
ity assurance approach is hardly addressed in current research approaches.
Therefore, we aim at handling self-adaptivity as a separated concern through-
out the complete development cycle, pairedwith quality assurance approaches
allowing to find and remedy errors as early as possible.

But why defining self-adaptivity as a separated concern? Just like security, us-self-adaptivity as
separated concern ability, etc., adaptivity is a software aspect that increases in importance, es-

pecially because the requirements for software systems increase in complex-
ity. Software systems shall be flexible, dependable, etc. and must cope with
various different contexts. Thus, to cope with this increasing complexity dur-
ing software engineering, like security, usability, etc. there must be a sepa-
rated adaptivity engineering. The benefits of defining self-adaptivity as a sep-
arated concern include a better understanding of modeled adaptivity since the
model’s focus emphasizes this particular aspect. Further, due to separation of
this concern, themodels can be quality checked on their own, allowing a distin-
guished quality analysis of the adaptivity concern of a software system. This
is especially important, since self-adaptive software systems come with new
requirements such as stability which should be assured as early as possible in
the engineering process.

However, why defining yet another modeling language for self-adaptivity?
Current standard modeling languages such as the UML do not explicitly sup-why another

language? port the concern of adaptivity. Again compared to other disciplines, this
leads to shortcomings, e.g., regarding the expressiveness. That is why for
instance security engineering invented security cases (UMLSec [J0̈2]), usabil-
ity engineering introduced user stories, and systems engineering proposed
the SysML [Obj10a]. In all cases, the standard languages such as the UML
did not suffice and were extended to support the concern-specific, or aspect-
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specific, modeling. Therefore, our language, the Adapt Case Modeling Lan-
guage (ACML), is an extension to the standard language UML to introduce
the concern of adaptivity.

In the following section, wewill precisely describe our understanding of adap-
tivity that will be used in the remainder of the thesis. The formal representa-
tion does not only precisely define our understanding of self-adaptive software
systems, but also helps in defining a corresponding language meta-model that
is presented in Section 3.3.2. Finally, the formal representation will be used in
Chapter 4 to define the properties of self-adaptive systems thatmay be checked
given a suitable quality assurance approach.

3.2.2 Notion of Adaptivity

Self-adaptation is “the capability of the system to adjust its behav-
ior in response to its perception of the environment and the system
itself” [CLG+09].

This definition of adaptivity that conforms to Definition 1 on Page 25mentions
four important aspects of adaptivity: the system, the environment, adjusting,
and response to its perception. More precisely, to model system adaptivity,
we need to model how the system manipulates its behavior—which again is
described by models—in the light of some event that occurs in the system it-
self or its environment. To actually be able to perceive its own behavior and
its environment, the system must exhibit the capability of self-awareness and
context-awareness. That is, the system must be able to observe itself and its our precise

definition of
adaptivityenvironment which is known as monitoring capabilities. Note that in the fol-

lowing, we use the terms context and environment synonymously.

In the following, we will provide a formal description of our notion of self-
adaptivity in terms of an algebra. An algebra defines a set of valid terms using
a signature that in turn consists of a set of sorts, operations, and reducing or
rewriting rules. Operations operate on terms andmembers of the sorts. The re-
ducing and rewriting rules describe equality and change of terms. The algebra
that we will present in the following allows the description of a self-adaptive
system in an object-based manner on instance level. Classes as known from
object-oriented modeling are not expressible in our algebra. Moreover, the al-
gebra simplifies and abstracts from a complete formal model for self-adaptive
systems to maintain comprehension. The reason for providing this algebra
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is to precisely describe the structure (sorts and operations) and depict the se-
mantics (rewriting rules) of self-adaptive systems. In later sections within this
and subsequent chapters, the given algebra will be implemented and detailed
using meta modeling and graph transformation rules.

For the description of the algebra, we use maude syntax. Maude [CDE+03] is a
reflective programming language that supports both equational and rewriting
logic specification. Maude uses modules to define a collection of sets, opera-
tions, and their interactions, i.e., an algebra. Further, a module provides the in-
formation necessary for reducing and rewriting terms specified by the algebra.
The module that we will describe in the following is constructed as follows.

Definition 3.1
Maude Module for
Self-Adaptive
Systems

mod SAS is
protecting STRING .
protecting INT .
protecting QID .
protecting CONFIGURATION .
...

endm

The module (mod) is named SAS. Using the keyword protecting, we are import-
ing four auxiliary algebras from standard maude being STRING, INT, QID, and
CONFIGURATION. Strings and ints are used for names and values, QID provides
quoted identifiers starting with a tick mark (e.g., ’ABC), and CONFIGURATION is a
module that provides object-based specification allowing for an object-specific
type of rewriting (see [CDE+03] for more information). The following algebra
can be understood without knowing the CONFIGURATION algebra.

To describe which parts of the environment and the system have to be moni-
tored, we first need to describe the system S and the environment ENV them-
selves.

In practice, not every piece of information about the system and the environ-
ment is of interest for the concern of self-adaptation. Especially, many infor-
mation which is given in common system models (component models, class
diagrams, etc) is not necessary for the description of adaptation. On the other
hand, some information which is important for the description of adaptation
is usually not captured in common system models. Examples include the de-
scription of sensors and aggregated sensor values. Thus, to describe adapta-
tionweneed an adaptation-specific viewonto the systemand the environment.
This view is coined adaptation view model. In our algebra, we define the adap-
tation view model AVM as follows:
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sorts System Environment AVM .
op AVM : System Environment→ AVM [ctor] .

Definition 3.2
Adaptation View
Model AVM

Using the keyword sorts, we define several new sorts divided by blanks. The
keyword op is used to define operations over these sorts with the given signa-
ture. The information given in the brackets further characterizes the operation,
e.g., ctormeans constructor, commmeans commutative, assocmeans associative,
and the like. The constructor AVM takes as input a system description and an
environment description and produces a result of sort AVM.

As shown in Definition 3.3, we understand a system S to consist of a structural
description ST and a behavioral description B that operates on the structural
description.

sorts Structure Behavior .
op S : Structure Behavior→ System [ctor] .

sorts SysComp . ∗∗∗ System Component
subsorts SysComp < Object .
op <_||_,_> : Oid NameAttr ValueAttr→ SysComp [ctor object] .
op ST : SysComp→ Structure [ctor] .
op B : Action→ Behavior [ctor] .

Definition 3.3
System S ( ST, B )

The structural description ST consists of a set of objects of sort SysComp (i.e., sys-
tem component). Such an object has a unique identifier Oid, a name attribute
and a value attribute. The object’s constructor syntax <_||_,_> contains three
holes indicated by the underscore _. The holes may carry values of the respec-
tive kind that is given after the colon in the same order. The behavioral de-
scription B consists of a set of actions that operate on the system components
(see below). See the following listing (Figure 3.3) for an example.

S (
ST ( < 's−001 || Name : "Comp−A", Value : 10 > ),
B ( ACT ( 'a, 's−001, 1 ) ACT ( 'b, 's−001, 2 ) ACT ( 'c, 's−001, 3 ) )

)

Figure 3.3.
Example System
Definition

The system’s structure description contains a single system component with id
’s-001, name “Comp-A”, and value 10. The behavior description contains three
actions each of which changes the system component’s value to 1, 2, and 3,
respectively (details about actions are given below). Of course, this is a very
simplified system description. For instance, in a more complete formal model,
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a system component could have an arbitrary amount of attributes with arbi-
trary names. However, for our purpose this simplification suffices.

Name and value attributes are defined as follows.

Definition 3.4
Name and Value
Attributes

sorts NameAttr ValueAttr .
subsorts NameAttr ValueAttr < Attribute .
op Name :_ : String→ NameAttr [ctor] .
op Value :_ : Int→ ValueAttr [ctor] .

These two attributes are now built-in attributes in our algebra. Especially, the
attributes’ names are predefined. In amore complete algebra, an attribute con-
structor would have two arguments, one of which being the attribute’s name,
the other being the attribute’s value of arbitrary kind.

The next definition shows system behavior. The system’s behavioral descrip-
tion B may be described by any available auxiliary algebra that orchestrates a
set of actions ACT. Actions are defined as follows.

Definition 3.5
Actions ACT used as
System Behavior B

sorts Action Aid .
subsorts GID < Aid < Oid .
op ACT : Aid Oid Int→ Action [ctor] .
op none :→ Action [ctor] .
op __ : Action Action→ Action [ctor config assoc comm id: none] .

The actions defined here simply may change a value of system components.
An action has an id Aid, the id of the target system component Oid and the
new value that will bewritten. The last operation allows to specify an arbitrary
amount of actions with none being the identity element.

Similarly to the system, the environment ENV consists of a structure description
as shown in Definition 3.6. In addition, the environment may send events EV.

Definition 3.6
Environment ENV sorts EnvStructure Events .

op ENV : EnvStructure Events→ Environment [ctor] .

sorts EnvComp .
subsorts EnvComp < Object .
op <_||_,_> : Oid NameAttr OpenAttr→ EnvComp [ctor object] .
op ENVST : EnvComp→ EnvStructure [ctor] .

The environment’s structure is given by a set of environment components.
They are very similar to system components but have an open attribute instead
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of a value (Definition 3.7).

sorts OpenAttr .
subsorts OpenAttr < Attribute .
op Open :__ : Int Range→ OpenAttr .

Definition 3.7
Open Attributes

The open attribute has a value, and additionally, a range for its value. Open
attributes may change in the given range. This change may be simulated as
shown with the following two rewriting rules.

crl [openAttrIncr] : Open : v [ l ; u ]⇒ Open : v + 1 [ l ; u ] if v < u .
crl [openAttrDecr] : Open : v [ l ; u ]⇒ Open : v − 1 [ l ; u ] if v > l .

Definition 3.8
Rewriting Rules for
Open Attributes

A rewriting rule is defined using the keyword rl for rule or crl for conditioned
rule. The term on the left-hand side (before⇒) is matched and replaced by the
term on the right-hand side. The first rule increases an open value by one of
the value does not exceed the upper boundary. The second rule decreases an
open value, accordingly. Defining a range for open attributes might abstract
from reality but is necessary for avoiding infinite system state spaces.

The following listing shows the definition of events. Events may be of different
type Signal, Change, or Time. A signal event may be thrown by any environ-
ment component. A change event occurs whenever a particular variable in the
environment changes, and a time event occurs after a predefined amount of
time. The specific creation of events is not defined in our algebra. Instead, an
event of any type has a unique id, the type, a name, and a boolean that indicates
whether the event is active or not.

sorts Event EtId .
subsorts Event < Object .
subsorts EtId < Cid .
ops Signal Change Time :→ EtId [ctor] .
op <_:_|_|_> : Oid EtId NameAttr Bool→ Event [ctor object] .
op EV : Event→ Events [ctor] .

Definition 3.9
Events EV

If an event is active, the self-adaptive system might react to the event and de-
activate it (described by rewriting rules below). The rewriting rule given in
Definition 3.10 arbitrarily activates events. Note that events are objects as well.
In maude, objects may form arbitrary large sets. That is, two or more objects
together again are of sort Object. Therefore, the operation EV given in Defini-
tion 3.9 may be passed an arbitrary amount of events.
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Definition 3.10
Rewriting Rule for
Creating Events

rl [createEvent] :
< evid : et | Name : t | false >⇒ < evid : et | Name : t | true > .

Now, that we have described the adaptation viewmodel AVM, we will proceed
with the adaptation rules that are described using a model named adapt case
model (ACM). As shown in the following definition, an ACM consists of a set of
adaptation rules AR.

Definition 3.11
Adaptation Rule AR sorts ACM AR .

op ACM : AR→ ACM [ctor] .

sorts MonitoringActivity AdaptationActivity .
subsorts Action < AdaptationActivity .
op AR : MonitoringActivity AdaptationActivity→ AR [ctor] .
op none :→ AR [ctor] .
op __ : AR AR→ AR [ctor config assoc comm id: none] .

An adaptation rule in turn consists of a monitoring activity and an adaptation
activity. An adaptation activity is a super sort of Action. Hence, an adaptation
activity is an arbitrary large set of actions.

Definition 3.12
Monitoring Activity
MON

op MON : Corridor Aid→MonitoringActivity [ctor] .
op MON : EtId String Aid→MonitoringActivity [ctor] . ∗∗∗ String = event name

sorts Corridor .
op CORR : Oid Range→ Corridor [ctor] . ∗∗∗ monitors attribute "Value"
op none :→ Corridor [ctor] .
op __ : Corridor Corridor→ Corridor [ctor config assoc comm id: none] .

sorts Range .
op [_;_] : Int Int→ Range [ctor] .

msg trigger_ : Aid→Msg .
op noMsg :→Msg .

As shown in Definition 3.12, a monitoring activity may have two different
forms. First, it may consist of a corridor definition CORR to monitor a spe-
cific value of an environment component or a system component. The corridor
specifies the unique id of the system or environment component that is moni-
tored and the range in which its value is allowed to reside. A range is given by
a lower and an upper bound. Second, the monitoring activity may consists of
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a three tuple describing an event that is monitored by defining the event’s type
and name. In both cases, the monitor contains the action’s id that is triggered
if the monitor observed negatively, i..e., the specified event is active, or the ob-
served component’s value is outside the specified range. The triggering of the
adaptation activity is done by the trigger message (msg) that carries the id of
the triggered action.

Finally, adaptation view model AVM and adapt case model ACM together with
a set of message form the ACML model.

sorts ACML .
op ACML : AVM ACM Msg→ ACML [ctor] .

Definition 3.13
Adapt Case Modeling
Language Model ACML

After having defined the complete ACML model, we can define the rewriting
rules, i.e., the dynamic semantics for adaptation in our algebra. The following
definition shows the rewriting rule monitorSystem. Most of the rule is used
for pattern matching, i.e., there must be at least one system component and a
monitoring activity that monitors this system component defined with a corri-
dor. If the system component’s value is lower than the corridor’s lower bound
or higher than its upper bound and if the corresponding adaptation activity
has not yet been triggered, a triggering message (trigger aid) is appended to
the end of the term.

crl [monitorSystem] :
ACML (

AVM ( S ( ST ( c1 < sid || n , Value : v > ), b ), env ),
ACM ( ar AR ( MON ( cor CORR ( sid, [ l ; u ] ), aid ), a1 ) ), m )

⇒ ACML (
AVM ( S ( ST ( c1 < sid || n , Value : v > ), b ), env ),
ACM ( ar AR ( MON ( cor CORR ( sid, [ l ; u ] ), aid ), a1 ) ),

m trigger aid )
if v < l or v > u and not trigger aid in m .

Definition 3.14
Rewriting Rule for
Monitoring the
System

Maude uses this and similar rules to construct a transition system. Applying
this rule to a term in ACML yields in another term in ACML. These terms are
considered as states of the transition system, the applications of rewriting rules
are considered as transitions labeled with the rules’ name.

The following two rules are very similar. The monitorEnvironment rule (Def-
inition 3.15) monitors an environment component instead of a system compo-
nent. Other than that, the rule is identical to the monitorSystem rule.

The monitorEvents rule (Definition 3.16) is applied if an event is activated
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Definition 3.15
Rewriting Rule for
Monitoring the
Environment

crl [monitorEnvironment] :
ACML (

AVM ( sys, ENV ( ENVST ( c1 < envid || n , Open : v r > ), es ) ),
ACM ( ar AR ( MON ( cor CORR ( envid, [ l ; u ] ), aid ), a1 )), m )

⇒ ACML (
AVM ( sys, ENV ( ENVST ( c1 < envid || n , Open : v r > ), es) ),
ACM ( ar AR ( MON ( cor CORR ( envid, [ l ; u ] ), aid ), a1 ) ),

m trigger aid )
if v < l or v > u and not trigger aid in m .

that is currently monitored as well. In this case, the event is deactivated (set to
false) and a triggering message is added to the message heap.

Definition 3.16
Rewriting Rule for
Monitoring Events

crl [monitorEvents] :
ACML (

AVM ( sys, ENV (envst, EV ( < evid : et | Name : t | true >) ) ),
ACM ( ar AR ( MON ( et, t, aid ), a1 ) ), m )

⇒ ACML (
AVM ( sys, ENV (envst, EV ( < evid : et | Name : t | false > ) ) ),
ACM ( ar AR ( MON ( et, t, aid ), a1 ) ),

m trigger aid )
if not trigger aid in m .

Finally, the last rewriting rule executes the adaptation activity by applying the
contained action. If a triggering message for the action exists, the rule applies
and sets the system component’s value to the action’s value.

Definition 3.17
Rewriting Rule for
Adapting a System S

rl [adaptSystem] :
ACML (

AVM ( S ( ST ( c1 < sid || Name : t, Value : v > ), b), env ),
ACM ( ar AR ( mon, ACT ( aid, sid, c ) ) ), m trigger aid )

⇒ ACML (
AVM ( S ( ST ( c1 < sid || Name : t, Value : c > ), b ), env ),
ACM ( ar AR ( mon, ACT ( aid, sid, c ) ) ), m ) .

A similar rule exists for adapting environment components.

The listing in Figure 3.4 shows an example definition of a self-adaptive sys-
tem using our algebra. The adaptation view model AVM defines a system with
a single component and an environment with a single environment compo-
nent. The environment component has an open value that ranges from 1 to 5.
Further, the environment defines a signal event named “CompNA” that is cur-
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rently activated. The adapt case model ACM defines three adaptation rules.
The first monitors the system component, the second monitors the environ-
ment component and the third monitors a signal event named “CompNA”. The
correspondingly triggered adaptation actions adapt the value of system com-
ponent ’s-001.

ACML (
AVM (

S (
ST ( < 's−001 || Name : "Comp−A", Value : 10 > ),
B ( ACT ( 'a, 's−001, 1 ) ACT ( 'b, 's−001, 2 ) ACT ( 'c, 's−001, 3 ) )

) ,
ENV (

ENVST ( < 'e−001 || Name : "Extern", Open : 4 [ 1 ; 5 ] > ),
EV ( < 'ev−001 : Signal | Name : "CompNA" | true > )

)
),
ACM (

AR (
MON ( CORR ( 's−001, [ 1 ; 8 ] ), 'a−001 ),
ACT ( 'a−001, 's−001, 5 )

)
AR (

MON ( CORR ( 'e−001, [ 1 ; 4 ] ), 'a−002 ),
ACT ( 'a−002, 's−001, 6 )

)
AR (

MON ( Signal, "CompNA", 'a−003 ),
ACT ( 'a−003, 's−001, 12 )

)
),
noMsg

) .

Figure 3.4.
Complete Example of
a Self-Adaptive
System defined in our
Algebra

It already has been noted that this algebra by far does not express all the neces-
sary concepts thatwe need formodeling self-adaptive systems. However, most
missing concepts are specializations of the concepts included in the algebra.
Thus, the presented algebra is a sufficient abstraction to precisely describe our
notion of self-adaptivity, i.e., the constituents of the adaptation view model,
the rule descriptions in the adapt case model, and their interrelation in terms
of rewriting rules.

Type Adaptation In Section 2.2, we motivated the need for adaptation on
type level. Since the provided algebra is meant to only precisely describe our
notion of self-adaptive systems, we do not go into detail of formally defining
type adaptation here. However, this could easily be included into our algebra.
For each object, a class has to be added. Further, we need to add constructors
for classes, and finally, we need to add adaptation actions that may change class
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definitions and propagate changes to objects as well. In the course of this the-
sis, we will add type adaptation in the algebra’s more detailed version using
meta models and graph transformations.

Relation to MAPE-K Based on our notion of self-adaptivity, we slightly
customize and detail the MAPE-K reference model that has been introduced
in Section 1. See Figure 3.5 for details. We divide the adaptation rule into
two partitions, the monitor and adaptation parts. Further, we introduce the
Adaptation View Model that is a view onto the system and its environment.
The Adaptation ViewModel describes both the structure and behavior of sys-
tem and environment. The second major component of the Adaptation View
Model is the Knowledge that may define corridors, aggregations, constraints,
invariants, histories, etc. The Adaptation ViewModel also defines sensors and
effectors (dashed arrows labeled with S and E) that allow the systematic defi-
nition of access points for the system and the environment.

Figure 3.5.
Customized MAPE-K
Model
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Based on our notion of self-adaptivity, we will identify requirements and ana-
lyze existing modeling languages for self-adaptive systems.
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3.2.3 Requirements & Related Work

Wedivide the requirements for amodeling language into two sets. The first set
of requirements describes the required language principles and the language
structure that can be inferred from the high-level requirements fromSection 1.2
and the formal notion of self-adaptivity as described in Section 3.2.2. These
requirements constrain the basic language design, e.g. used principles and
first-class elements, but do not constrain specific modeling elements or the
language’s expressiveness. We use this set of requirements to compare dif-
ferent approaches to each other and our ACML. On the other hand, the second
set of requirements describes the required language features, i.e. requirements
on the language’s scope and expressiveness. The language features describe
the language’s scope and expressiveness. For instance, a feature describes
whether or not the language supports the description of adaptation on type
level. Further, language features may describe which kinds of adaptation ac-
tions are allowed. The language features have been described in an taxonomy
in Section 2.2.1. After we have described our language’s core elements in Sec-
tion 3.3.2, we will discuss the language features our language supports in Sec-
tion 3.3.3.

In the following, we describe the requirements concerning language principles
& structure.

Requirements concerning Language Principles & Structure

Based on the high-level requirements (Separation of Concerns, Analyzability,
Integrated, Intuitiveness, and Genericity) and the concern description (cf. Sec-
tion 2.2), we derive requirements for a modeling language for self-adaptive
software systems:

Separation of Concerns Dealing with concerns (self-adaptivity, application
logic) separately, allows to focus on one particular aspect more closely.
For our modeling language, we infer the following requirements:

MR01: The languagemust support the separation of self-adaptation
logic concerns from core application logic concerns. That is, lan-
guage elements should include concern-specific means to describe
self-adaptivity (e.g. monitoring, adaptation activity specification).

MR02: The language must contain an adaptation view model with
structure and behavior description of the system and its environ-
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ment that enables selection of relevant information and projection e. g.
to aggregated values.

MR03: The language must contain an adaptation rule model that al-
lows to model the monitoring and adaptation activities separately
from each other while enabling the adaptation on instance and type
level.

The opposite of separation of concerns is composition. That is, each ap-
proach that supports the separation of concerns should allow the compo-
sition of the created model artifacts with the remaining system specifica-
tion. That does not necessarily include the merging of these models but
at least a the definition of proper relationships between the two models.
Therefore, we infer an additional requirement as follows:

MR04: The language must support the composition of the self-
adaptation logic concern models with models of the core applica-
tion logic concerns.

Analyzability The easiest way to define a language that is semantically unam-
biguous, is to base the language on a formal model. Besides being most
precise, formal models usually allow formal analysis and thus quality
assurance. For our modeling language, we infer the following require-
ments:

MR05: The language must be based on a formal model that allows
for unambiguous semantic specification and, eventually, verifica-
tion.

MR06: The language must support the definition of constraints,
properties, and other means to allow for formal analysis.

Integrated A method for the specification of self-adaptive software sys-
tems should be integrated into existing software engineering methods.
State of the art in software engineering is the usage of model-driven ap-
proaches. That is, models are first-class entities in the engineering cy-
cle and often transformed and enriched automatically. Therefore, a lan-
guage should be prepared to be part of amodel-driven environment, e.g.,
by the introduction of a new concern-specific view. For our modeling
language, we infer the following requirements:

MR07: The language must be prepared for model-driven ap-
proaches, that is, use a technology that is capable of being integrated
into model-driven approaches (e.g. EMF/Ecore).
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Additionally, since an overall goal for a new language or language exten-
sion is acceptance and usability, the language should follow the state of
the art. Considering self-adaptive systems, the state of the art is using
control loops as first-class entities. Thus the language should support
this paradigm. For our modeling language, we infer the following re-
quirement:

MR08: The language must have control loops as first-class entities.

Further, relying on standards, increases the acceptance and usability of
languages since standard languages, such as the UML, are usually well-
known and well tool supported. For our modeling language, we infer
the following requirement:

MR09: The language must be based on standard modeling lan-
guages.

Intuitiveness Since the language is used very early in the design phase, the
users may be technically untalented. Therefore, a language must target
a layman audience. For our modeling language, we infer the following
requirement:

MR10: The language must not be too technical, or technical details
can be hidden. The language should be aligned to other laymen-
friendly approaches, such as use case specification or business pro-
cess languages.

Genericity While on the one hand the language should be specific to the par-
ticular concern of self-adaptivity, on the other hand it should be generic
considering the domain of application. That is, it should be usable for
embedded systems as well as business information systems. For our
modeling language, we infer the following requirement:

MR11: The language must not focus on one particular domain (em-
bedded, BIS) but be as generic as possible.

In Table 3.1 the requirements are listed in the columns and used to compare
the different approaches listed in the table’s rows. For each requirement, in the
followingwewill briefly discuss some possible implementation alternatives as
well as the technique that will be used in our approach.

Since the adaptation concern’s root phase is the early design, the related
work analysis considers approaches that allow for platform-independent and
platform-specific design. The phases requirements engineering and imple-
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mentation are deliberately left out here. The relation of theACML to preceding
and succeeding phases is discussed in Chapter 5.

Table 3.1.
Modeling Approaches
compared to
Requirements

Design Approaches M
R0

1

M
R0

2

M
R0

3

M
R0

4

M
R0

5

M
R0

6

M
R0

7

M
R0

8

M
R0

9

M
R1

0

M
R1

1

Use Cases [Obj10b] ◦ × × X ◦ X X × X X X
Cheng, 2006 [ZC06] X × ◦ × X X × × × × X
Giese, 2007 [Gie07] X × X X X X X × X ◦ ×
Fleurey, 2009 [FS09] X ◦ ◦ × X X X ◦ × × ◦
Hebig, 2010 [HGB10] X X × X × × X X X X X
Garlan, 2012 [CG12] X × X × X × ◦ X × × X
Vogel, 2012 [VG12] X × X × X × X X × ◦ X

ACML, 2013 [LE13] X X X X X X X X X X X

MR01: Separation of Concerns The separation of concerns can be achieved
by several different means. For instance, Fleurey et al. [FS09] define a
separate independent meta-model that allows the specification of adap-
tivity related concerns using concern-specific concepts such as variants
or context variables. Another approach towards separation of concerns
is the extension of an existing language, e.g. by introducing a concern-
specific view. As shown in the subsequent section, the ACML uses this
approach by introducing two new adaptation-specific diagram types to
the UML.

MR02: Adaptation View Model The requirement for a separated adaptation
view model refines requirement MR01. An adaptation view model
may be achieved, e.g., by decorating an existing system model. The
UML [Obj10b] supports this kind of view by the concept of UMLProfiles.
A UML Profile allows the definition of particular tags for classes and
associations, called stereotypes. Stereotyped elements may be equipped
with further semantics. Hebig et al. [HGB10] make use of the UML Pro-
filing concept to define so-called strands which indicate the information
and dependency flow between UML interfaces that are used as sensors
and effectors. While UML Profiling is known to be a light-weight exten-
sion mechanism, the ACML uses a heavy-weight approach to extend the
UML directly on meta-model level. Thereby, the ACML provides addi-
tional adaptivity-specific concepts such as sensors, effectors, and knowl-
edge that can be used to decorate existing UML diagrams.

MR03: Adaptation Rule Model The requirement for a separated adaptation
rule model refines requirement MR01, too. The explicit separation of the
adaptation rules not only allows to further focus on a subset of the over-
all specification, but also enables easy reuse of adaptation rule pattern.
Further, the distinction of the monitoring and the adaptation part within
a single rule takes into account the current state of the art and under-
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standing of self-adaptivity [CLG+09]. It fosters the clear separation of
the WHEN (monitor) from the HOW (adaptation). Fleurey et al. [FS09]
do not explicitly separate the adaptation rules from the remaining sys-
tem specification on meta model level, but rather provide a specific tab-
ular adaptation rule view onto the model. The UML does not provide
a specific rule view at all. The two approaches by Garlan [CG12] and
Vogel [VG12] define separate (textual) languages for the specification of
adaptation rules following the MAPE-K pattern. The ACML defines a
specific adaptation rule model, named Adapt Case Model (ACM), that is
separated and decoupled on meta model as well as on concrete model
level using the notion of UML interfaces (sensor and effector interfaces).

MR04: Composition Composition is the opposite of separation of concerns.
To be easily usable in an engineering process, a language that separates
a specific concern should allow to compose this separated models with
other systemmodels. While the UML provides specific relationships, in-
heritance and other mechanisms to compose models with each other, the
language provided by Fleurey et al. [FS09] is rather isolated and cannot
be composedwith other existing systemmodels out of the box. Same ap-
plies to the approach proposed by Cheng et al. [ZC06] unless the other
models are given as petri nets. Since the ACML is an extension of the
UML, all composition mechanisms of the UML are inherited as well.

MR05: Formal Semantics Definition Approaches such as the one of Fleurey
et al. [FS09] and of Cheng et al. [ZC06] rely on formal models such as
Alloy [Jac02] or petri nets. Thereby, the semantics of the language are
precisely defined. Other approaches rely on graph transformations or
even provide an interpreter for their language [VG12] where the formal
semantics are given by, e.g., the Java semantics. The UML does not de-
fine its semantics formally, but rather rigorous using natural text. The
ACML uses the semantics specification language Dynamic Meta Model-
ing (DMM) [Hau05] to formally define its semantics and thus allow for
formal analysis.

MR06: Constraints, Properties, and other Means for Analysis The UML
uses the Object Constraint Language [RG02] to define constraints
that may validate a model as well as properties. Fleurey et al. [FS09]
include a small constraints language within their approach that may
validate their respective models. Cheng et al. [ZC06] use temporal logic
expressions to constraints. The ACML uses a specific language that is
provided by the DMM approach and is translated into temporal logic
expressions as well. Further, the ACML allows to define invariants and
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other constraints that validate a model. Finally, the ACML provides the
mechanism of history knowledge that allows to not only reason about
the current state but also about past states and predict future states.

MR07: Ready for Model-Driven Engineering TheUML is fully implemented
by the Eclipse Modeling Framework (EMF) [BBM03] that is used by
Fleureys [FS09] and Vogels [VG12] approaches as well. This provides
the necessary basis to be used within in common MDE approaches. The
ACML is implemented using this framework as well and further allows
the translation of models into labeled transition systems (LTS) to allow
for further formal analysis using the DMM framework. Of course, even
the petri nets used by Cheng et al. [ZC06] may be used for model-driven
engineering if suitable transformations are used or defined.

MR08: Control Loops as First-Class Entity While Fleurey et al. [FS09] hide
the control loops within their models, Hebig et al. [HGB10] explicitly
specify control loops by the use of Strands that relate sensor and effector
interfaces to each other. The ACML takes this idea even further by im-
plementing the architectural structure that has been proposed with the
MAPE-K Feedback Control Loop [Mur04]. The MAPE-K loop explicitly
defines a control loop to consist of the four phases monitor, analyze, plan,
and execute that use sensors, effectors, as well as a shared knowledge. The
approaches by Garlan [CG12] and Vogel [VG12] are heavily based on the
MAPE-K loop, too.

MR09: Based on Standard Modeling Languages While the approaches pre-
sented by Hebig et al. [HGB10] and Giese [Gie07] are based on the UML
using the UML Profiling mechanism, the ACML extends the UML in a
heavy-weight manner. Both approaches allow the corresponding lan-
guage to be based on the standard modeling language UML. In contrast,
the approach by Fleurey et al. [FS09] does not use any standardmodeling
notation.

MR10: Laymen-Friendly Whereas the UML is known to be laymen-friendly,
and thus are the approach from Hebig et al. and the ACML, the use of
petri nets is not suitable for laymen. Even the approach presented by
Fleurey et al. [FS09] may be more difficult to be used by laymen since it
provides completely new concepts and syntactical representation.

MR11: General-Purpose Language The approach presented by Fleurey et
al. [FS09] has been development and presented for the use with robotic
systems, i.e. embedded systems. Thus, the language might be less suit-
able to be used for business information systems that tend to be more
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complex since less local. Giese proposes an approach directed towards
mechatronic systems [Gie07]. However, basically all approaches may be
used for any domain. Languages such as the UML and the ACML ex-
plicitly have been defined to be general purpose languages. Thus, no
domain-specific elements are included within the language.

In the next section, we will present our concern-specific modeling language
that aims at fulfilling all requirements listed above.

3.3acml: a concern-specific modeling language
for self-adaptive systems

In this section, we present the Adapt Case Modeling Language (ACML) that
allows modeling self-adaptive software systems. In Section 3.3.1, we will de-
scribe where in the engineering process for self-adaptive software systems, the
ACML can be used. In Section 3.3 we will describe the language’s core prin-
ciples followed by the language’s features in Section 3.3.3 and a placement of
the ACML within the meta model layers in Section 3.3.4.

3.3.1 ACML in the Engineering Process

Asmotivated in Chapter 1, to develop self-adaptive systems of high quality, we
use constructive aswell as analytical methods during the software engineering
process.

Analysis + DesignRequirements Specification

Use Case Diagram,
Activity Diagram

Sequence Diagram,
Analysis Class

Diagram

ACML:
High-Level

Adaptation View,
Adapt Cases

Requirements,
Problem Domain 

Model
Component Diagram,
State Chart Diagram

ACML:
Low-Level

Adaptation View,
Adapt Cases

Business
Logic

Concerns

Adaptation
Logic
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Figure 3.6.
Development Process
of Self-Adaptive
Systems

The constructive methods includemodeling the system using concern-specific
modeling languages within an MDA [Obj03] process with strong emphasis on
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the principle separation of concerns. Based on separated models, we then use
analytical methods to check the models for high quality.

Figure 3.6 shows the first two phases of a typical software development pro-
cess: Requirements Specification and Analysis & Design. The standard de-
velopment process shown at the bottom (using the UML for specification),
includes the formulation of textual requirements in the beginning usually ac-
companied by a problem domainmodel which relates important concepts that
occur in the respective domain. From these requirements, use cases are in-
ferred which are refined by flows, e.g., in terms of activity diagrams. In the
next step, the use cases are further refined with sequence charts describing
the interaction with the system and finally result in an analysis class diagram
which models and relates the concepts of the software system that is to be im-
plemented. In the last shown phase, an architecture is designed (e.g., using
component diagrams) and the life cycle of important objects is modeled using
state charts. Of course, different development processes may vary in terms of
terminology and ordering of the described tasks. Especially the architecture
design (by the use of components) is often performed earlier in the process,
e.g. in the light of component-based development.

The concern of self-adaptation needs to be considered in every engineering
phase. That is, beginning with the requirements elicitation, self-adaptation
needs to be considered. Currently, self-adaptation is rather neglected in prac-
tical software engineering. That is, although some adaptation features are
included in today’s software, they are not explicitly modeled. To make self-
adaptation more explicit, practical approaches need to be developed that al-
low expressing or preparing adaptivity during requirements engineering, the
logical and technical design, and implementation phase.

While for requirements, goal-driven modeling approaches are adopted, thecontinuous support
for self-adaptation
necessary models for logical design are hardly user-friendly, i. e. the user is meant to

model with computer science techniques such as petri nets, model checking,
etc. For the phase of technical design, languages have been developed. Exam-
ples include strands [HGB10] and the rainbow component model [GCH+04].
Even later in the implementation phase, dedicated frameworks (e. g. spring)
and programming languages (e. g. Context Erlang) are proposed to support
the development of self-adaptive systems. In order to support a continuous
development process for self-adaptive systems, the aspect of self-adaptive sys-
tems needs to be a) supported within each engineering phase, and b) seam-
lessly supported throughout the different phases.

For the separate specification of the system’s self-adaptation logic (see the top
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of Figure 3.6), we propose to use a concern-specific modeling language, called
Adapt Case Modeling Language (ACML) that uses the architectural style of
control loops (cf. Requirement MR08) and integrates with the UML [Obj10b]
(cf. Requirement MR09). The ACML consists of an Adapt Case Model that adapt case modeling

language (acml)describes adaptation rules with an extended Activity Diagram, as well as an
Adaptation View Model (cf. requirements MR03 and MR02). The Adaptation
ViewModel is a viewon the designed software systemparticularly focusing on
aspects that are important for adaptation (cf. Figure 3.7). Examples include the
specification of sensors, effectors, and adaptation knowledge (e.g., aggregated
values).

The Adaptation View Model reuses the standard component specifications
that are specified during business logic specification and attaches necessary
sensors, effectors, value aggregations, etc. In fact, the Adaptation ViewModel
is a decorating view onto the business logic component diagram. Since Adapt
Cases operate on the Adaptation View only, the Adaptation View provides the
interface between the business logic and the adaptation logic. This allows a
clean separation of the two tasks of specifying the business logic and specify-
ing the adaptation logic. For instance, in the development process, the business
logic can be changed without considering the adaptation logic and vice versa.

Adaptation Logic

Adapt Cases

Core Business Logic

Adaptation View

operate on

Figure 3.7.
Adaptation Logic
operating on the
Adaptation View

The two process actions at the top of Figure 3.6 describe the usage of theACML high-level adapt
casesto describe self-adaptive systems. First, high-level Adapt Cases are used to

model the adaptation requirements on a high level of abstraction. These high-
level Adapt Cases correspond to high-level use cases (or business use cases)
and are usually given by a name and a natural text description, only. In UML-
based development processes, use cases and Adapt Cases are used to provide
a first (textual) operationalization of functional requirements, including adap-
tation requirements. High-level Adapt Cases are supported by a high-level
Adaptation ViewModel that defines first sensors and effectors as well as envi-
ronment components. Often at this level, the Adaptation View consists of only
one single system component and zero to many environment components.
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Figure 3.8.
High-Level ACML
Model

«EnvironmentComp»
Comm. Carrier

«Signal»
CommNotAvail

«Signal»
CommAvail

«throw»«throw»

«SystemComp»
bCMS

«sensor»
bCMS Process

«effector»
bCMS Process

«sensor»
Communication

use ▶

«use»

«use»

«use» «use»

«use»
«signal»

cna: CommNotAvail

« Adapt Case »
Communication

Not Available

«signal»
ca: CommAvail

« Adapt Case »
Communication 

Restore

Let’s consider Figure 3.8 as an example of a high-level ACML model that re-
flects the scenario from Section 2.1. The figure shows the high-level Adapta-
tionViewModelwith two high-level Adapt Cases. Themodel has been created
during late requirements engineering and will be refined later during the de-
sign phase. The model defines the bCMS system and a communication carrier
which is used for the communication of the two parties FSC and PSC. Further,
the model defines three adaptation interfaces, namely two sensors for sens-
ing the system’s communication and the bCMS process (state, number of in-
stances, etc.) and one effector for manipulating the bCMS process (pause pro-
cesses, continue processes, etc.). Further, the model shows two signals that are
sent from the environment component, the communication carrier. In turn, the
two Adapt Cases are defined to observe and receive these signals. Finally, the
model shows which Adapt Case uses which adaptation interface (sensors and
effectors) for monitoring and adapting the system and its environment. On
this abstraction level, the Adapt Cases are described using natural language
text as known from use cases.

Next, these high-level models are refined to low-level Adapt Cases with con-low-level adapt
cases crete monitoring and adaptation routines which relate to the refined Adapta-

tion ViewModel (cf. Figure 3.6 top right). Themonitoring and adaptation rou-
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tines are specified using specific UML activities as described in Section 3.3.2.
TheAdaptation ViewModel is refinedwith detailed interface descriptions and
knowledge.

Since both the Adapt Case Model and the Adaptation ViewModel are heavily
UMLbased, andmoreover, are strongly alignedwithUMLmodeling practices,
the ACML can be used with any UML based software development process,
and in particular, standard well-known UML refinement approaches may be
used (cf. [Coc00] for use case techniques).

Let us look at the single concepts of the ACML in detail in the next section.

3.3.2 ACML Core Principles and Modeling Concepts

In this section, the core concepts of the Adapt Case Modeling Language are
presented, mainly in concrete syntax. All concepts are precisely defined in the
appendix with meta modeling techniques where the concrete syntax is picked
up again (see Section A.1 and Section A.2). Some of the findings presented in
this section are based on master theses [Bec11, Mut12].

With the Adapt Case Modeling Language, an adaptation specification is di-
structural
description by
adaptation view
model

vided into two parts, a structural description and a behavioral description. The
structural description is a view onto the system and its environment. It de-
scribes all adaptation-relevant elements, such as components, interfaces (sen-
sors and effectors), or adaptation operations that actually change the system
under consideration. The behavioral description defines the adaptation rules
that consists of a monitoring activity and an adaptation activity. Basically, the
behavioral description is an orchestration of sensing and effecting adaptation
operation calls.

Technically, the structural description, named Adaptation ViewModel (AVM),
is an annotated excerpt of the system model. That is, the AVM selects
adaptation-relevant parts (e.g. components) from the system model and adds
additional information that is needed for adaptation:

Adaptation interfaces (e.g. sensors and effectors)

Aggregated informations (e.g. value computations)

Constraints, invariants, histories, etc.
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As illustrated in Figure 3.9, the system model remains unchanged and is only
decorated by the adaptation view model (please note the mapping to the for-
mal notion in the right column of the figure). Of course single information can
be moved from the AVM to the system model and vice versa.

Figure 3.9.
Adaptation View
Model, System Model,
and Adapt Case
Model

System Model

Adaptation View Model

Environment

se
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ct
 &
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e

Adapt Case 
Model

us
e

apply(AR) :: AVM→ AVM

AVM(S, ENV)

S, ENV

The behavioral description, named Adapt Case Model (ACM), is a rule-based
description of adaptation behavior. It consists of a definition of what and howbehavioral

description by adapt
case model to monitor using sensors and knowledge information from the AVM (e.g. his-

tories for pro-active adaptation), a definition of the analysis of gathered data,
and a definition of the planing and actual execution of appropriate adaptation
actions. The range of adaptation actions that are supported is almost arbitrary
since all UML actions can be used, while additionally, specific helper actions
further support adaptation-specific behavior (especially for type adaptation).

The AVM relies on component-based modeling, i.e. major functional units are
encapsulated in components that expose interfaces for accessing them. Bycomponent-based

modeling the use of components, application logic that is not relevant for adaptation
is hidden or not even specified allowing a clear separation of concerns (cf.
Requirement MR01). Further, components and their exposed interfaces nat-
urally provide mechanisms for model composition which allows to precisely
relate the adaptation logic concerns to application logic concerns (cf. Require-
ment MR04). Components may have behavior that orchestrate the compo-
nents’ functionality (see SystemBehavior in Figure 3.10). As such, a component
is an independent functional unit that exposes a particular structure and be-
havior. If a component-based system has an orchestrating root behavior, this
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behavior may be encapsulated by a specific component with its root task to
orchestrate its subcomponents. If no components are used at all, a single com-
ponent named “system” might be appropriate. Thereby, every system might
be described using component-orientation allowing to utilize the paradigm’s
benefits. In general, every SystemBehavior that is specified for a specific com-
ponent is adaptable. SystemBehavior is representing the system’s core business
logic anddoes not perform any adaptations. The set of system components cor-
responds to the system description S that consists of a behavioral description B

(the SystemBehavior) and a structural description ST (the SystemComponents and
their relations).

«SystemComponent»
Component Name

«SystemBehavior»
MainActivity
SubActivity

S(ST, B)

Figure 3.10.
SystemComponent
with SystemBehaviors

The AVM decorates components by adding additional adaptation behavior
(see AdaptationBehavior in Figure 3.11). This adaptation behavior defines
concrete changes of the component’s internals (e.g. properties or actions and
flows in SystemBehavior, etc. . . ). Changes may be applied to the component’s
structure or behavior. Adaptation behavior may also define sensing behav-
ior which is needed for adaptation. Usually, the adaptation behavior is very
specific to the concrete domain and can (indirectly) be reused by different
adaptation rules. AdaptationBehavior represents a system’s adaptation logic
with its main purpose to adapt the systems structure and adaptable behavior.
AdaptationBehavior contains adaptation actionswhich are specializedUMLac-
tions allowing the manipulation of type and instance models.

«SystemComponent»
Component Name

«SystemBehavior»
MainActivity
SubActivity

«AdaptationBehavior»
Adaptation1
Adaptation2

S(ST, B)

indirectly used by
AR(MON,ACT)

Figure 3.11.
SystemComponent
with
AdaptationBehavior

As shown in Figure 3.12, the AVM further decorates components with adap-
tation interfaces, i.e. sensor and effector interfaces, which provide external ac-
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cess to the adaptation behavior by means of operation definitions. That is,
the effector operation deactivateServer()may be implemented by one of the two
behaviors Adaptation1 or Adaptation2. The sensor and effector definitions are
used by theMonitoringMON and the Adaptation ACT that are part of the Adap-
tation Rule AR (cf. Page 66). While the monitor uses only sensor interfaces to
observe and analyze the system and the environment, the adaptation activity
may use both the sensors and the effectors to plan and execute an adaptation.
The distinction of interface and implementation separates the interface defi-
nition from its implementation (cf. Requirement MR01) and further allows us
to define underspecified sensors and effectors, i.e. adaptation interfaces that
are not yet implemented. Sensors and effectors may further define proper-
ties which may have a computation specification. The defined sensors and
effectors are used as an interface for the Adapt Case Model allowing to clearly
separate the adaptation rule specification from the adaptation view model (cf.
Requirement MR01). Finally, the usage of sensors and effectors fulfill Require-
ment MR08 as they are an integral part of the control loop architecture.

Figure 3.12.
SystemComponent
with
AdaptationInterfaces
(Sensors, Effectors)
and Properties

«SystemComponent»
Component Name

«SystemBehavior»
MainActivity
SubActivity

«AdaptationBehavior»
Adaptation1
Adaptation2

«sensor»
Sensor Name

«Property»
var1: Integer = 2 [0..10; 5]
var2: Integer = ref.value*2

«effector»
Effector Name

«Operation»
deactivateServer(): Void

The AVM allows to add additional knowledge to the model. Knowledge can
be

constraints (invariants, pre and post conditions, etc.) as shown in Fig-
ure 3.13

histories of property changes

histories of instance and type adaptations

computations ranging over sensors and history, i.e. inferred knowledge

reusable policies, i.e. activities that may be reused everywhere in the
model

The support for constraints and histories fulfill Requirement MR06 that de-
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mands for means to validate the model using formal analysis. The history icon
shown in Figure 3.13 defines that for property var2 every former value is pre-
served and can be accessed for adaptation or analysis purpose. The invariant
shown in the figure is checked during analysis and provides application spe-
cific design-time guarantees. As such, invariants correspond to mathematical
formulas which range over the Adaptation ViewModel AVM or the adaptation
rules AR.

«sensor»
Sensor Name

«Property»
var2: Integer = ref.value*2

«invariant»
Invariant Name

self.var2 < 100
6

12
39

Figure 3.13.
Sensor with attached
Invariant and History

The AVM distinguishes between environment and system components. Sys-
tem components describe the system to be built (and may be decorated as de-
scribed above). Environment components describe the environment ENV (cf.
Page 64). They are black box components that cannot be changed by adapta-
tion, though they may provide sensor and effector interfaces and might send
signals, which correspond to events EV. Other events, such as change events
may be specified by special UML AcceptEventActions. Figure 3.14 shows an
EnvironmentComponent that exposes a sensor and defines that it may throw a
signal. Again, the definition of signals allows to further decouple the AVM
from the ACM and thus allows to separate different concerns (cf. Require-
ment MR01).

«Signal»
Signal Name

var1: Integer

«EnvironmentComponent»
Component Name

«sensor»
Sensor Name

«Property»
var1: Integer = 2 [0..10; 5]
var2: Integer = ref.value*2

«throw»

Figure 3.14.
EnvironmentComponent
with Sensor and
Signal

The Adapt Case Model (ACM) defines adaptation rules (Adapt Cases) that
make use of sensors and effectors. Adapt Cases define a monitoring activity
(or more) which makes use of sensors to observe the system and the environ-
ment as shown in Figure 3.15 (cf. Requirement MR03 and MR08). By the use
of specialized UML activities for the monitoring definition, we achieve a very
generic specification mechanism. Since arbitrary UML actions may be used
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in connection with specialized adaptation actions, almost arbitrary adaptation
routines are imaginable. Thereby we fulfill the requirement for a general pur-
pose language (MR11). Further, since for activity diagrams, precise formal se-
mantics already exist (cf. [ESW07]) which have been extended for the special-
ized adaptation actions, the use of activities (for any behavior that is specified
with the ACML) meets the requirement to enable formal analysis (cf. Require-
ment MR05).

Figure 3.15.
Adapt Case with
Monitoring Activity

« Adapt Case »
Adapt Case Name

Monitor Activity Namemon

Action 
Name

A

[guard]

MON (event, idACT) or
MON (CORR, idACT)
CORR (corridors) are guards

that access sensors
properties, aggregations,
computations, etc.

The Adapt Case may also retrieve signals which are broadcasted to both Mon-
itoring and Adaptation Activity. These signals are defined as shown in Fig-
ure 3.16. The figure also shows how to define arbitrary conditions that must
hold when the Adapt Case applies. Using the features of activity modeling,
the monitor may analyze the data gathered from sensors or signals and decide
to start an adaptation activity.

Figure 3.16.
Adapt Case with
Signal and Condition

Adaptation Engine

«signal»
Signal 1: Type

«condition»
Condition 1: Type

« Adapt Case »
Adapt Case Name

As shown in Figure 3.17, Adapt Cases further define an adaptation activ-
ity (or more) which makes use of sensors and effectors to plan and execute
adaptation. The adaptation activity makes use of activity modeling to orches-
trate the use of different adaptation operations from effectors of different com-
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ponents. Thereby, applying the adaptation activity manipulates the system:
apply(ACT) :: S → S where ACT can be hierarchically nested with sub activ-
ities. Adaptation and monitoring activities both are adaptable behavior, as
well. Hence, Adapt Cases may define the adaptation of other Adapt Cases, i.e.
the definition of meta-adaptation. The use of UML activities for adaptation
activities has the same benefits as described above for the use for the monitor-
ing activity and thus several requirements are fulfilled (MR03, MR05, MR08,
and MR11).

« Adapt Case »
Adapt Case Name

Adaptation Activity Nameadapt

Action 
Name

apply(ACT) :: S→ S

Figure 3.17.
Adapt Case with
Adaptation Activity

The ACMLdefines additional actions for the use inmonitoring and adaptation
activities. These actions allow to select instances or types within the AVM.
Further, they allow to handle the history that can be built. More details about
different types of actions are given below.

Figure 3.18 shows a complete example Adaptation View Model that reflects
the example scenario from Section 2.1. The model defines a few system com-
ponents and environment that expose different sensors and effectors. For in-
stance, the bCMS system component exposes a sensor and an effector named
bCMS Process for sensing and effecting process related information and the
channel endpoint component exposes a sensor Communication for sensing the
state of the communication channel. Themodel describes the structural part of
the self-adaptive system. The behavioral part is described using Adapt Cases.

Figure 3.19 shows an Adapt Case diagram that defines an Adapt Case that
handles the breakdown of communication. Therefore, it adapts the main use
caseCommunication with other Coordinator (i.e. including all included use cases).

The basic idea is depicted in Figure 3.20. If the communication carrier (i.e. the
channel) notifies that communication is not available, the corresponding sig-
nal is recognized by the adaptation engine (containing theAdapt Cases). Here,
the signal is analyzed and eventually, an adaptation is planned and finally ex-
ecuted to cope with the non-available communication.

Figure 3.21 shows the Adapt Case that monitors the occurrence of the signal
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Figure 3.18.
AVM for bCMS Case Study
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bCMS

Communication w/ 
other Coordinator

PSC 
Process

FSC 
Process

«include» «include»

Coordinator

PSC FSC

Adaptation Engine

«signal»
cna: CommNotAvail
ca: CommAvail

« Adapt Case »
Communication 

Availability

«adapt»

Figure 3.19.
bCMS: Adapt Case
Diagram

«SystemComp»
PSC System

«SystemComp»
FSC System

«SystemComp»
Channel Endpoint

«SystemComp»
Channel Endpoint

Communication
Carrier

Adaptation Engine

1: throw Signal

2: monitor

4: adapt
3: analyze & plan

«SystemBehavior»
bCMS Process ⟨PSC⟩  

«SystemBehavior»
bCMS Process ⟨FSC⟩  

Figure 3.20.
bCMS: Overview with
Adaptivity
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CommNotAvail and triggers an adaptation if the route has not been planned yet.
If the route has been planned, the signal is ignored assuming that both parties
can proceed independently. Of course, here a notification could/should be
send to both parties. The adaptation activity pauses the process if crisis details
have already been exchanged (thus being in the route negotiation phase). Af-
ter a defined timeout of 5 minutes, it checks if the communication is available
again and continues the process again. If the communication is still not avail-
able, the processes are set to automatically plan the route. The correspond-
ing process adaptation is hidden in the definition of the setAutoRoutePlan(Int)
adaptation operation which us exposed by the effector bCMS Process. More
details on this and other adaptation operations are given in Chapter 6 that
discusses a complete model for the self-adaptive bCMS. All operations that
are used are defined in the corresponding Adaptation View Model (cf. Fig-
ure 3.18).

Figure 3.21.
Adapt Case for bCMS:
Communication Not
Available

«signal»
cna: CommNotAvail

« Adapt Case »
Communication

Not Available

Monitor Activity Namemon

Adaptation Activity Nameadapt

«signal»
cna: CommNotAvail
ca: CommAvail

« Adapt Case »
Communication 

Availability
CommNotAvail [else]

call
pauseProcesses(id)

inParam id :Int
variable timeout :Int = 300

A
id

call
setAutoRoutePlan(id)

[isDetailsExchanged(id)]

[isCommAvailable()]

[not isCommAvailable()]

[isRoutePlanned(id)]

wait timeout

call
continueProcesses(id)

[else]

Figure 3.22 shows the Adapt Case that continues the processes after the com-
munication is available again. This Adapt Case is similar to the one shown
before and in fact may interfere with the other Adapt Case possibly leading to
deadlocks, etc. We will show how to analyze the Adapt Cases’ interdependen-
cies in Chapter 4.

Sections A.1 and A.2 in the appendix precisely show how Adapt Cases relate
to the Adaptation View Model on the meta model level.

Adaptation Actions. The UML proposes a set of UML actions that allow the
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«signal»
ca: CommAvail

« Adapt Case »
Communication 

Restore

Monitor Activity Namemon

Adaptation Activity Nameadapt

«signal»
cna: CommNotAvail
ca: CommAvail

« Adapt Case »
Communication 

Availability

CommAvail [commPaused=true]

[isRoutePlanned(id)]

call
continueProcesses(id)

inParam id :Int
variable timeout :Int = 300

A
id

call
setAutoRoutePlan(id)

[isDetailsExchanged(id)]

[procDuration(id) ≤ timeout]

[else]

[else]

Figure 3.22.
Adapt Case for bCMS:
Communication
Restore

manipulation of instancemodels. For example, the UMLdefines an action that
allows the creation of a link between two InstanceSpecifications. However, the
UMLdoes not provide any action that allows themanipulation of typemodels,
nor does it provide actions to manipulate behavior such as activities. Hence,
using plainUML,most of the language features described in Section 2.2 cannot
be supported. That is why the ACML defines a set of specialized adaptation
actions that inherit from the basic UML action and allow the manipulation specialized

adaptation actionsof structure (component models) and behavior (activity models) on type and
instance level.

Referring to the formal notion of adaptivity, an adaptation activity can be an
arbitrary large set of actions: ACT ACT ACT . . . :: AdaptationActivity. Each action
ACT is an atomic or composed adaptation action that manipulates a system:
apply(ACT) :: S→ S.

Figure 3.23 shows the action groups that allow the adaptation of struc-
tural information on type level. This includes the creation of ACMLCompo-
nents, ACMLAssociations, ACMLProperties, ACMLOperations, ACMLInter-
faces, and ACMLReceptions. All of these elements may be changed as well.
That is, e.g., an action might change the multiplicity, visibility, parameters, etc.
of operations. A special sub group of actions is the reflective change group.
This groups contains actions that, e.g., set attribute values by name instead of
by reference. These actions are used whenever an attribute of an element shall
be set which itself has been created by an adaptation action and thus cannot
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be referenced, yet. The last special sub group of the structure type change ac-
tions is the adaptation history group. These actions allow to use the adaptation
history, e.g. by reverting a earlier applied adaptation.

Figure 3.23.
Adaptation Actions
for Structure on Type
Level

Structure
Type
Actions

Structure
Type
Change

Adaptation History

Reflective Change

Operation Change

Property Change

Association Change

Component Change

Structure
Type
Creation

Reception Creation

Interface Creation

Operation Creation

Property Creation

Association Creation

Component Creation

Analogously, Figure 3.24 shows the action groups that allow the adaptation of
structure on instance level. This includes the creation of objects, links, and slots
(property instances). Furthermore, the change sub groups contain actions that
allow to change objets, links, and slots, aswell as to delete single instances or all
instances of a particular type. The instance upgrade group allows the upgrade
of instances to new versions of their types if possible, e.g. by casting. Finally,
the last sub group contains actions that support the handling of adaptation
histories, e.g. to revert an earlier performed instance adaptation.

Besides actions for adapting the system’s structure on instance and type level,
there are actions for adapting the system’s behavior. In the ACML approach,
system behavior is described using activity diagrams, hence the action groups
presented in the following allow the manipulation of UML activities. Fig-
ure 3.25 shows the action groups for adapting activities on type level. This
includes the creation and the change of elements. Creation is further divided
into the creation of activities, adaptive regions, flows, adaptive regions’ chil-
dren, value elements, and event elements. Adaptive regions are structured
regions within activities which are adaptable by adaptation actions. Adaptive
regions contain arbitrary UML activity modeling elements such as forks, joins,
etc. The creation of these elements is covered by the action group AdaptiveRe-
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Structure
Instance
Actions

Structure
Instance
Change

Adaptation History

Instance Upgrade

Instance Deletion

Slot Change

Link Change

Object Change

Structure
Instance
Creation

Slot Creation

Link Creation

Object Creation Figure 3.24.
Adaptation Actions
for Structure on
Instance Level

gion Child Creation. Value elements subsume parameters, parameter sets and
nodes, and variables. Event elements subsume actions to create events and
triggers.

Behavior
Type
Actions

Activity
Type
Change

Adaptation History

Reflective Change

Node Deletion

Fragment Change

Value Element Change

Activity
Type
Creation

Event Element Creation

Value Element Creation

AdaptiveRegion Child Creation

Flow Creation

AdaptiveRegion Creation

Activity Creation Figure 3.25.
Adaptation Actions
for Behavior on Type
Level

Among others, the change group contains actions to change value elements,
i.e. change their type, multiplicity, default value, etc. Fragment change actions
are special actions that operate on single-entry-single-exit fragments, i.e. frag-
ments of actions and flows with a single entry edge and a single exit edge.
Example actions include copy, move, and parallelize. The next action group
enables the deletion of arbitrary nodes within an adaptive region. Since ele-
ments within an adaptive region are not versioned, the nearest versioned con-
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tainer (i.e. the adaptive region) is duplicated to form a new version. This way,
no unintended side effects are generated if deleting, e.g., an action within an
activity that has an existing instance. Finally, there is another group for re-
flective changes and for adaptation history actions, just like for structural type
changes.

Analogously, there are actions for adapting activities on instance level, again
divided into those that create and those that change activities. The creation of
an activity instance is simply the starting of an activity, i.e. tokens are placed
on the initial places according to the activity semantics. Activity change is
further divided into groups to change values and states, to pause, stop, and
continue an activity, as well as to upgrade an instance to a new activity type
version and to revert an instance to a state before a previous adaptation has
been performed.

Figure 3.26.
Adaptation Actions
for Behavior on
Instance Level Behavior

Instance
Actions

Activity
Instance
Change

Adaptation History

Instance Upgrade

Pause/Stop/Continue

State Change

Value Change

Activity
Instance
Creation

Type Adaptation with existing Instances. As mentioned above, the ACML
allows the adaptation on type level. For instance, an Adapt Case might for
some reason change the type of an attribute as shown in Figure 3.27. The at-
tribute Location has a complex type GPS that within the instance an object is
assigned to. If this type information is changed, the instance is not a valid in-
stance of the class any more. In this case, the value can neither be casted to the
new type nor is there any transformation rule given for propagating the type
change to its instances.

Figure 3.27.
Adaptation of Type
Information with
existing Instance
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A less complex solution for this problem is the introduction of versions. When-
ever a type is changed that has existing instances, a new version of the type is
created. Thus, the old version remains in the system and types the existing
instances which in turn never lose validity. The versioning is depicted in Fig-
ure 3.28.

crisisID: int
Location: GPS

Crisis
crisisID: int
Location: double
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crisisID = 42
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:Crisis

«instance of»
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previous
version

Figure 3.28.
Versioning of adapted
Types with Instances

The new version has a pointer to the previous version. Thereby, a chain of ver-
sions is built up, allowing for reconstructing the adaptation history and even
reverting one or more adaptation actions. New instances are always created
from the most current available version. Only the most current version may be
adapted in order to not build up version trees which would be unnecessarily
complicated. The concept of versions is described in terms of meta models in
Section A.1 in the appendix.

3.3.3 ACML Language Features (from Taxonomy)

In this section we classify the ACML using the taxonomy from Section 2.2.
Thereby, we precisely state what kind of adaptivity, the ACML can be used to
model and how single adaptation features are supported by theACML. That is,
we describe how the ACML meets the special feature requirements that have
been requested in Section 3.2.3.

Modeling Self-Adaptive Software Systems

Why:
Adaptation Reasons

What:
Adaptation Subject

How:
Modeling Mechanisms

Figure 3.29.
Taxonomy for the
Modeling of
Self-Adaptive
Software Systems

Figure 3.29 again shows the three main categories that have been described
in Section 2.2. The first category (Why) distinguishes four self-* properties:
self-optimizing, self-protecting, self-configuring, and self-healing. The ACML
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supports the adaptation specification for the sake of all four self-* properties.
This is because of the generic nature borrowed from UML activity modeling.
Basically, the monitoring and adaptation activity may use arbitrary actions to
either optimize a running system (e.g. minimizing the cost of a server farm by
de/activating servers in dependence of the load), protect a system (e.g. discon-
necting a particular user in the light of malicious actions), configure a system
(e.g. changing the system’s behavior in response to a changed environment),
and heal a system (e.g. exchanging a used web service if it fails).

The second category (What) describes the subject of modeled adaptation. Ta-
ble 3.2 describes the ACML’s classification.

Table 3.2.
What: Adaptation
Subject

Feature Supported
Scope

Instance yes
Type yes
Temporary yes
Permanent yes

Model Type
System Structure yes
System Behavior yes
Adaptation yes

Artifact & Granularity
Parametric yes
Compositional yes
State Changes yes

Aspect Type
Aspect-Specific no
Generic yes

Both, instance and type adaptation are supported using specific actions within
Adaptation Activities or Adaptation Behaviors. During modeling, the scopes
instance and temporary as well as the scopes type and permanent coincide
since a type change has an effect on every future instance and an instance
change drops away when new instances are created.

The ACML supports modeling the system’s structure (using classes and com-
ponents) as well as behavior (using activities). The adaptation of both kinds
may be specified using Adapt Cases. Further, Adapt Cases may be specified to
adapt other Adapt Cases. Thus, the ACML supports the adaptation specifica-
tion concerning all three model types.

Using specific actions within the monitoring and adaptation activities, Adapt
Cases may not only describe the adaptation of parameter changes, but also the
adaptation of the system’s composition and state.

Finally, the ACML is not specific to any particular aspect such as performance,
but is designed as a generic, general purpose language to describe adaptation
in any domain for any particular aspect.
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Considering the third category in the taxonomy (How), the ACML supports
the features described in the following (Table 3.3).

Feature Supported
Location of Adaptation

horizontal
Local only no
Global yes

vertical
Process Layer yes
Service Layer yes
Component Layer yes

Timing
Reactive yes
Proactive (with histories)

Direction
Forward (new state) yes
Backward (old state) yes

Triggering
Event Triggering yes
Time Triggering yes

Anticipation
Non-Anticipated Change no
Anticipated Change yes

Automation
Autonomous yes
Human no
Interactive no

Specification
implicit no
explicit

imperative yes
declarative no

Separation of Concerns yes
Mixed Concerns no
Genericity

Domain-specific no
Generic yes

Table 3.3.
How: Modeling
Mechanism

The adaptation specifications created with the ACML have access to global in-
formation via standard UML qualified access. Of course, models can be spec-
ified to only use locally available information to ease an implementation.

Software systems can be divided into three different layers: a component layer
that contains functionality encapsulating components, a service layer that con-
tains services that group several components to provide a logical service via
interfaces, and a process layer on top that orchestrates several services using
some kind of process notation. The ACML is designed to allow the specifica-
tion of adaptation on all three different layers. On process layer, process mod-
els can be adjusted regarding their control flow and state. On service layer,
service bindings can be monitored and adjusted. On component layer, com-
ponent internals such as classes, associations, and properties can be changed
arbitrarily.

Regarding the timing of adaptation, the ACML allows both the reactive and
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proactive adaptation. Reactive adaptation can easily be achieved by polling the
necessary information (e.g., environment properties) or by reacting to signals
or other events. Proactive adaptation can be achieved by analyzing histories
of system and environment changes, however, the ACML does not support
dedicated analysis techniques such as prediction models but only provides a
generic construction kit in terms of extended activity diagrams.

TheACML supports forward aswell as backward adaptation, that is, by adapt-
ing the system, either new system states can be generated or old system states
can be restored from history using specific adaptation actions. Adaptation can
be time and event triggered, both implemented using standard UML features.
Time triggering can be of form each x minutes or at time x. Events include sig-
nals, changed variables, exceptions, and more. The ACML is designed to al-
low the specification of anticipated adaptation. Non-anticipated adaptation is
not supported. ACML specifications allow for autonomous adaptation. Hu-
man interaction is not yet supported exceeding the standard UML features.
The adaptivity specifications created with the ACML are explicit and imper-
ative. The ACML allows for easy declarative change descriptions, however,
this is not yet supported for every diagram type. Finally, the ACML uses the
principle separation of concerns, that is mixing of adaptation and business logic
concerns is not intended. Further, the ACML is not domain-specific but a gen-
eral purpose language for any kind of self-adaptive system. A small exception
are business processes which are supported with a dedicated set of adaptation
actions.

As shown within this section, the ACML is a domain-independent adaptation
specification language which is designed to be as generic as possible while still
providing sufficient details for early and expressive quality assurance.

3.3.4 ACML on Meta-Model Layers

The Adapt Case Modeling Language (ACML) has been defined in terms of
meta models (cf. appendix). The basic concept of the definition is described in
this section.

Figure 3.30 shows the languages on the meta-model layer M2 and concrete
models on level M1. The behavioral model (Adapt Case Model) allows the spec-
ification of adaptation rules, a self-adaptive system’s behavioral part. The rule
description, called Adapt Case, is based on use case modeling and uses UML
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activity modeling to describe the manipulation of the system. For that pur-
pose, Adapt Cases refer to adaptation interfaces (to influence system and en-
vironment) and react to signals defined in the Adaptation View Model.

UML

Adapt Case Modeling Language (ACML)

Adaptation View Model
(Structure)

Adapt Case Model
(Behavior)M2

M1 Structural Model Behavioral Model

System Instance

refer to /
defined 

adaptation
ontological instance defined adaptation

Figure 3.30.
Our Models to
describe Self-Adaptive
Software Systems

A concrete system instance may be represented using an object diagram taken
from the UML. If Adapt Cases are interpreted on model level, they adapt (i. e.
manipulate) the system instance model, or in the case of type adaptation, the
structural model, respectively.

The structural model (Adaptation View Model) supports the description of the
system and its adaptation interfaces. The diagram allows specifying an adap-
tivity-specific view onto the system. That is, the model supports the definition
of adaptation interfaces that are used to sense and effect the system as well as
to sense and influence the environment. Further features include the specifi-
cation of adaptation knowledge which is used for adaptation.

The M1 layer is detailed in Figure 3.31. Adaptation-relevant parts of sys-
tem and environment are modeled using extended UML diagrams (e.g., state
machines, activities, classes, and components) using object-oriented design
with discrete states.Adaptation rules are described by Adapt Cases in event-

adaptation view
model and adapt
case model are
ontologically
instantiated

condition-action rule style using extended use cases and activities (incl. ac-
tions). Instances (still within M1) are described by UML objects (i.e., instance
specifications). An executed Adapt Case instance may adapt the system on in-
stance level or on type level. Additionally, Adapt Casesmay adapt other Adapt
Cases, known as meta adaptation.



100 Chapter 3 Modeling of Self-Adaptive Systems

Figure 3.31.
Models on M1 layer
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Type Adapt Cases vs. Instance Adapt Cases Adapt Cases can be used to
describe a wide range of different adaptation scenarios. In the following, we
want to distinguish between two different categories of adaptation scenarios
since theymay be represented differently in use case diagrams: InstanceAdapt
Cases and Type Adapt Cases.

Instance Adapt Cases describe the adaptation of some system functionality
concerning one particular instance, e. g. a user or a product.

Type Adapt Cases describe the adaptation of some system functionality for
all future usage, i. e. for all possible instances.

Instance Adapt Cases may be denoted by prefixing their abbreviation with theadaptation on type
level keeps design
clean small letter “i”. An Instance Adapt Case resembles the extends relationship

between two use cases since in the case of an Instance Adapt Case, the targeted
use case decides per instance whether or not the Adapt Case is used to adapt
the original behavior. Thus, Instance Adapt Cases can be included in the same
system as use cases. Type Adapt Cases change the internals of the targeted
original use case, i. e. they are changing the type of that use case. The execution
of a Type Adapt Case resembles a transformation of a use case. Because of
that, Type Adapt Cases should not be included in the same system, the use
cases are. They are contained in a separate system (e.g. adaptation engine) and
have a type-adapt relation to the use case they are adapting. See Figure 3.32 for
an example. The Handle Vehicle Breakdown Adapt Case reacts to some signal
and performs some action to assign a new vehicle to the crisis. Theoretically,
this Adapt Case could be completely integrated into the adapted use cases,
although of course this would violate the principle of separating concerns and
the designer would loose the ability to perform dedicated analyses.
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Figure 3.32.
Instance vs. Type
Adapt Cases

Type Adapt Cases completely change the use case they are targeted at. After
a type adaptation, the old use case cannot be found in the system any more at
all. Type Adapt Cases may be denoted by prepending a small letter “t” to their
abbreviation.

The Type Adapt Case Multiple Crises in Figure 3.32 monitors the number of
crises that are handled by the system and if a given threshold is exceeded, the
main processes is adapted such that less manual andmore automatic activities
are included. Modeling this adaptation on the instance level would heavily
bloat the complete design, while its definition on type level is clean, separated
and comparatively small.

Note that in our case the distinction of Type and Instance Adapt Cases is only
important for the diagrammatic visualization of Adapt Cases. Themetamodel
does not reflect this distinction since in the end both Type and Instance Adapt
Cases adapt some element of the adaption context. The concrete adaptation
actions, however, are divided into type adaptation and instance adaptation ac-
tions as described in Section 3.3.
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3.4 summary & discussion

In this chapter, the Adapt Case Modeling Language (ACML) has been intro-
duced. The ACML consists of two different models, the Adaptation View
Model, which allows the system model to be decorated with adaptation-
specific information (e.g., sensors and effectors), and the Adapt Case Model,
which allows the specification of the actual adaptation rules using extended
UML Activities.

In Section 1.2 we identified a few high-level requirements that must be ad-
dressed by a modeling and quality assurance approach for self-adaptive sys-
tems. In the following, we recapture the requirements considering the pre-
sented Adapt Case Modeling Language (ACML):

Separation of Concerns By providing adaptivity specific views on the sys-
tem (i.e. two new diagrams kinds), the ACML supports the separation of
concerns. The paradigm is further leveraged in the usage of interfaces for
the communication between the Adapt Cases (adaptation rules) and the
Adaptation View Model (adaptation-specific view). As an integral part
of separation of concerns, the ACML also supports the composition of
the created models with remaining system models using standard UML
features such as associations, inheritance, etc. Especially the use of UML
components as a basis for the Adaptation View model allows the com-
position of the different concerns’ views.

Analyzability TheACML is based onUMLmodel elements, such as activities,
that exhibit clear semantics. These semantics (i.e. token-offer semantics)
has been formally defined using the DMM approach. The extensions of
the UML that have been introduced by the ACML either do not break
the UML semantics or come with clear semantics extensions within the
DMM approach. Thus, the presented approach shows to be analyzable
using standard techniques such as model checking (see Chapter 4).

Integrated Since the ACML is fully integrated into the UML and enables to
create links to standard UML model elements such as use cases, classes,
components, or the like, the ACML can be used in any UML based devel-
opment process. In turn, most of thewell-known development processes
such as RUP, SCRUM, etc. are supported by the UML or derivatives such
as the SoaML.

Intuitiveness The ACML uses standard modeling techniques that are pro-
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vided by the well-known and accepted UML. The clear separation of dif-
ferent internal concerns such as Adapt Cases and the Adaptation View
Model help mastering the complexity of specifying self-adaptive soft-
ware systems. The support of reusing specification artifacts such as
Adapt Cases or sensor and effector specifications support quick success.
As will be shown in the evaluation in Chapter 6, the ACML is easy and
intuitive to use.

Genericity TheACML is designedwith genericity inmind. That is, theACML
does not contain any domain-specific modeling elements but rather pro-
vides the toolkit to create these domain-specific modeling elements from
atomic generic elements. Of course these created domain-specific el-
ements can be reused in different specifications. Since the ACML ex-
tends the UML, even UML Profiling can be applied to the ACML to cre-
ate domain-specific extensions of the ACML itself. Thus, the ACML is a
general-purpose language.

These high-level requirements have been refined in Section 3.2.3 and addressed
in detail in Section 3.3. A detailed description of the ACML in terms of meta-
models is given in the appendix (see Section A.1 and Section A.2).

On the basis of the presented ACML, we define a quality assurance framework
called QUAASY that is presented in the next chapter.
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4

Control loop focused languages such as the ACML that allow the specification
of control loops as first class entities, advise the need for analyticalmethods. In
particular, verification techniques are needed to evaluate the modeled control
loops’ behavior and detect unintended behaviors and interactions [CLG+09].analyzing

interdependences of
control loops This is especially important since the creation of highly self-adaptive software

systems implies the specification of many interacting control loops (i.e., Adapt
Cases) the correctness of which can hardly be assured without any dedicated
means. Hence, in this chapter, we will describe means to assure the quality of
a self-adaptive software system that has been modeled using the ACML.

In Section 4.1, we will discuss the analysis subject and quality properties
that are of interest for self-adaptive software systems. Further, we infer re-
quirements and discuss related work in the area of quality assurance for self-
adaptive systems. In Section 4.2 we present our approach to quality assurance
for self-adaptive software systems named QUAASY. Since our approach relies
on model checking, we have to pay special attention to the problem of state
space explosion which will be done in Section 4.3. Finally, in Section 4.4, we
summarize and discuss the chapter.
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4.1analysis

Analytical methods allow checking the quality of the modeled self-adaptive
software system in spite of high complexity. Several static and dynamic ana-
lytical methods exist, including the detection of anti-patterns, testing, model
checking, and simulation. Since dynamic analysis like testing requires an im- static analysis over

dynamic analysisplementation of the system to be present, it cannot be applied in early system
design phases. In contrast, static analysis like model checking allows the early
quality assurance of the system to be built since it relies on the design models.
Furthermore, while testing allows to test single execution paths through the
system only, model checking enables checking the complete state space of the
modeled system.

In this section, we analyze the need for static analysis methods (i.e. quality as-
surance) for self-adaptive systems. That is, we investigate what kind of prop-
erties shall be checked for modeled self-adaptive software systems, and based
on these findings and the high-level requirements defined in Section 1.2, we
infer the requirements for our approach and discuss related work.

4.1.1 Static Analysis of Self-Adaptive Systems

Dimensions

Property Type
Non-Functional Properties

Functional Properties

Property Scope
Application-Specific Properties

Generic Properties

Analysis Object
System & Environment Model

Adaptation Rule Model Figure 4.1.
Dimensions of
Properties for
Self-Adaptive
Software Systems

A self-adaptive software system can be described in terms of application and
adaptation logic. A description of the application logic comprises the system
itself and the environment the system acts in. The adaptation logic can be
described by a set of adaptation rules, e.g., using the ACML. Both kinds of de-
scriptions can be analyzed statically for various different properties. Figure 4.1
shows the dimensions of static quality assurance for self-adaptive systems:
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The Analysis Object can be distinguished between the adaptation rules
and the system & environment. That is, either the static analysis is build
to check certain properties for the adaptation rules, only, or the analysis
approach checks the system and its environment as well, e.g. whether or
not the system is still able to run after an adaptation has been applied.

The Property Scope of an approach distinguishes the kind of properties
that can be checked. Either, the properties are of generic character, that
is, they can be applied to every self-adaptive system that can be mod-
eled, or the properties are application-specific, that is, they can only be
applied to the specific software application they were defined for.

Generic properties are not application-specific, but express properties
which every self-adaptive system must assure. An example is the ab-
sence of deadlocks when adaptation rules are applied. Generic proper-
ties are defined over the meta model and are checked on instance level.

Application-specific properties are defined over a concrete system model
and assure application-specific properties, which are usually referred
to as invariants and pre/post conditions. An example for application-
specific property is that a web server’s availability must never be affected
by some adaptation actions.

Finally, the properties may be of functional or non-functional Property
Type. Functional properties include common safety and liveness prop-
erties (e.g., deadlock freedom, reaching a particular state, or never en-
tering particular states). Non-functional quality properties are usually
application-specific. That is, applied to self-adaptive systems, well-
known properties (e.g., from the ISO9126) such as robustness, reliabil-
ity (fault tolerance), availability (down times, recovery of data), and effi-
ciency must be defined using application-specific metrics. It is depend-
ing on the specific application how long the system may be down, or
which faults have to be tolerated.

In this thesis, we focus on assuring functional quality of the adaptation rule
model as well as the system and environment model using generic properties
or user-defined application-specific properties (cf. red colored-nodes in Fig-
ure 4.1). We will provide a model-checking framework for self-adaptive soft-
ware systems that allows the use of arbitrary (quality) properties that can be
expressed using temporal logic. Nonetheless, wewill describe several example
properties that are of importance for self-adaptive software systems.

For the following description of the (quality) properties, we distinguish two
classes of behavior. This will be illustrated in Figure 4.2 that extends the ma-
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chine model given in Figure 3.31 on Page 100 with a semantic domain we use
for self-adaptive software systems that have been modeled using the ACML.
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Termination

For the termination property to be true, every single behavior that is started at
some point in time has to have an option to finish at some future point in time.
We use CTL to formulate this property formally:

8r 2 A [P : AG starting(r)! EF finished(r)

The formula is true if for every state in the LTS, if there is a rule that is currently
starting, then there is a reachable state where the rule is finished.

Stability

We define two di�erent types of stability, namely the stability of single rules
and the stability of the complete rule set.

Definition 1 (Rule Stability) A single adaptation rule ↵ 2 A is stable if the LTS
does not contain paths such that ↵ is applied infinitely often, but no other rule p 2 P
or ↵0 2 A with ↵ 6= ↵0 is applied in between.

If a single rule is unstable, it might lead to situations where this rule is applied
over and over again, e.g. continuously increasing some value of the system’s
state. The above definition covers this very situation.

Definition 2 (Rule Set Stability) An adaptation rule setA is stable if the LTS does
not contain paths such that rules out ofA are applied infinitely often, but no rule p 2 P
is applied in between.

The second definition captures more complex, but still problematic situations
such as the one presented above. Note that if the rule setA is stable, it imme-
diately follows that each rule ↵ 2 A is stable.

Let us now formulate the LTL property used to verify rule stability. Let ↵ be
an arbitrary rule of our set of adaptation rules A. ↵ is stable if the following
temporal logic formula holds for our LTS:

¬ ⌃ ⇤ ↵

The interpretation of the formula is straight-forward: it is true if there is no
trace such that rule ↵ is always applied from one point in time on, realizing
our requirements formulated in Definition 1.
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The semantic domain of ACML modeled systems are labeled transition sys- labeled transition
systems as semantic
domaintems (LTS). An LTS state contains the self-adaptive system’s model (type) and

instance (i.e., classes, activities, and objects) since Adapt Cases may adapt both
the model and the instances. An instance in an LTS state is always a proper
ontological instance of the corresponding system model in the same state. An
LTS transition corresponds to executing the operational semantics (defined via
DMMgraph transformation rules) of the environment, the system, or the adap-
tation rules. For instance, the operational semantics for the environment define
that open variables may decrease or increase arbitrarily. Hence, an LTS tran-
sition (see progress arrow) might express the increase of an environment vari-
able leading into a new LTS state. If further, an Adapt Case is triggered by the
increased environment variable, this Adapt Case will be executed according
to the corresponding DMM semantics leading into a new LTS state that con-
tains the adapted system (see adapt arrow). Thus, we distinguish two different
classes of semantic behavior corresponding to the different nature of the vari-
ous LTS transitions. We use the semantics function J . KDMM :: ACML→ LTS to
denote the mapping of our notion for self-adaptive systems (cf. Section 3.2.2)
into the semantic domain of labeled transition systems. Now, the two classes
of behavior are given as follows:
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Adaptation Behavior describes the adaptation of the system in the light of a
change in the environment or the system itself. Adaptation behavior is
given by the description of Adapt Cases. We denote the set of adapta-
tion behavior withA. Essentially,A represents the semantics of a set of
adaptation rules: A := JACM KDMM.

System and Environment Progress Behavior describes the change of system
and environment. The change of the system considers every change
which occurs due to the execution of application logic or the occurrence
of errors. The change of the environment describes changing variables,
signal existences, etc. in the environment. Both types of change must be
specified if essential for the adaptation logic. Both types are specified us-
ing the Adaptation View Model. We denote the set of progress behavior
withP. Essentially,P represents a set of progress rules, i.e., rules that de-
scribed how the system and the environment changes: P := JAVM KDMM.

Please note that the systems that are modeled using the ACML are highly
parallel. More precisely, adaptation behavior and system and environment
progress behavior are performed interleaved. That is, e.g., there may be dif-
ferent adapt transitions originating from one state. Let us now describe and
define the different functional properties.

Functional (Quality) Properties of Self-Adaptive Systems

Functional quality properties checkwhether the system (including adaptation)
behaves correct according to some specification (application-specific proper-
ties). Besides the validity according to the system’s requirements, we under-
stand a self-adaptive system to be correct, if no errors, conflicts, and deadlocks
exist (generic properties). In turn, the rules must terminate, be stable, and
preserve specific safety and liveness properties. Additionally, properties such
as confluence and determinism of a self-adaptive system’s adaptation rule set
contribute to the high quality of the system. In the following, we will define
the properties in more detail.

Errors Traditionally, checking functional correctness requires the analysis ob-
ject to be syntactically correct. However, since self-adaptive systemsmay
change their syntactical representation at runtime, we have to reconsider
this definition of functional correctness. Thus, we distinguish between
semantic correctness and syntactic correctness both of which have the be
achieved in order to meet the overall goal of functional correctness.

In this thesis, errors refer to syntactical correctness, that is syntactical er-
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rors in the specification of the system, its environment, and its adapta-
tion rules. Especially, for the various kinds of adaptation actions that
can be applied to the system, it is possible to invalidate the models, e.g.
by deleting the start node of an activity or leaving dangling references.
These kinds of errors should be detected already during modeling time.

Compared to non-adaptive systems, the modeling of self-adaptivity in-
duces additional complexity concerning errors since the specification of a
model change cannot be checked by simple syntax checkers (e.g. meta
model based validation checkers) as the changed model is not at hand
during modeling time. Thus, it is important to assure that adaptation
does not invalidate the system using techniques different from standard
validation checkers.

Conflicts Conflicts are of special interest for self-adaptive systems since in our
machine model adaptivity is highly parallel to both the system progress
and to itself, i.e., multiple adaptation rules (Adapt Cases) may be exe-
cuted at the same time. Thus, adaptation rules may be in conflict with
each other orwith the system they are adapting. A set of rules is in conflict
if the rules cannot be executed at the same time. An example is an adap-
tation rule that invalidates another rule while the latter is executed. This
problem occurs especially for higher-order self-adaptive systems where
adaptation rules may adapt other adaptation rules.

Deadlocks Aset of rules is free of deadlocks if no adaptation rule puts the system
in a state where no other rules (out ofA or P) can apply. Deadlocks can
be understood as a weak form of conflicts since deadlocks can usually be
resolved by adding another subject- / application-specific rule that re-
establishes a good system state whereas conflicts would rather need low-
level application-unspecific rules that do not reflect any specific system
requirement.

Termination Termination applies to adaptation behavior as well as system &
environment behavior. Hence, termination has to be checked for every
single adaptation rule inA and progress rule in P. A rule does not ter-
minate if the system’s LTS contains any path where the rule is started but
does not finish eventually. Termination is especially important for self-
adaptive systems since the property could possibly be invalidated after
each adaptation and thus has to be checked for various different system
configurations.

Livelocks / Stability Opposed to deadlocks, a set of rules is in a livelock if
it is not blocked or waiting for anything but has an infinite loop of rule
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executions. The property of livelocks cannot be checked for environment
rules since these may occur arbitrarily, even infinitely often, and thus are
out of control. An adaptation rule however is in a livelock if, e.g., it does
not change anything but can be applied over and over again.

The instability property is a subset of the livelock property. A set of rules
is stable if no two or more rules continuously undo their adaptation ac-
tions without any changes in the environment or the system. In turn, a
system is stable and free of livelocks if it can always reach a state where
no adaptation rule is applicable.

Application-Specific Safety and Liveness Properties Application-specific
properties are defined for a specific application. Examples are invariants,
pre- and postconditions or other specific safety and liveness properties.
In general, safety properties define that something bad never happens.
Therefore, application specific bad states can be specified or described
via invariants that are checked for each state of the system’s state space.

For instance, a safety property that is specific for self-adaptive systems is
the existence of transient error states. If the system is in a transient error
states it is cured by taking some self-adaptation action. If for a specific
application, these states should never be reached, the property can be for-
mulated as a safety property. These states have to be defined specifically
for an application (application-specific property).

If for a specific application, the system is allowed to be within a transient
error state if it is able to cure itself (e.g., within a specific time frame), this
can be formulated as a liveness property. Liveness properties express
that under certain conditions something good happens eventually, that
is, e.g., if the system is within a transient error state it will leave this state
at some point in time.

Confluence The confluence property states that within a transformation rule
system there are different ways of transforming a source into a target.
The property is often referred to as the diamond. For self-adaptive sys-
tems, essentially, the property says that if more than one adaptation rules
may be applied in the same state, the choice of which adaptation rule is
applied to a particular system state does not matter. Further, as a more
special case, the order in which adaptation rules are applied does not
matter, either. Obviously, this is a desired property for a self-adaptive
system to be comprehensible.

Determinism Determinism is a rather strong property for self-adaptive sys-
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tems. However, if it holds for a system, comprehension and analysis is
eased. A self-adaptive system is deterministic if in all states there is never
more than one adaptation rule that can be applied. Obviously, if a sys-
tem is deterministic, it is confluent, too. Determinism does not require
the adaptation rules to be executed atomically, that is, if an adaptation
rule is currently executed, another one may be started without violating
the determinism property.

Wewill formalize these properties later in Section 4.2.2. In the next section, we
infer requirements for a quality assurance approach for self-adaptive software
systems with focus on functional quality and discuss related work.

4.1.2 Requirements & Related Work

In this section, we describe the requirements for a quality assurance approach
for self-adaptive software systems. The requirements are inferred from the
high-level requirements from Section 1.2 and additionally reflect the findings
from the last Section 4.1.1. The requirements will be used to compare related
work, and finally, develop a suitable quality assurance approach.

Requirements Based on the high-level requirements (Separation of Con-
cerns, Analyzability, Integrated, Intuitiveness, and Genericity) and our notion
of self-adaptivity, we derive the following requirements for a quality assurance
approach for self-adaptive software systems:

Separation of Concerns The principle of separation of concerns allows the fo-
cus on a particular software concern, and thus, enables the dedicated
quality assurance of that concern. As such, separation of concerns is the
basis for a quality assurance approach. However, when separating con-
cerns, the interdependencies between these concerns and the remaining
system must be investigated as well. Therefore, a good quality assur-
ance approach should not only analyze the concern in isolation but also
its impacts to the remaining system concerns.

For our quality assurance approach, we infer the following requirements:

QR01: The approach must allow the analysis of the adaptation rule
set.
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QR02: The approach must allow the analysis of effects and impacts
on system & environment when adaptation had been applied.

Analyzability A high-level requirement of the overall engineering approach
for self-adaptive software systems is analyzability. As described in Sec-
tion 4.1.1 there aremany facets of quality assurance for self-adaptive soft-
ware systems. We focus on the functional properties of these systems
that have been enumerated above.

Thus, for our quality assurance approach, we infer the following require-
ment:

QR03: The approach must allow the analysis of the system’s func-
tional quality (i.e., correctness).

Integrated An important requirement of both themodeling and quality assur-
ance approach is its integratability with other engineering approaches.
For the quality assurance approach this particularly affects the way the
approach is integrated in the engineering tools and how feedback is pro-
vided for the user.

For our quality assurance approach, we infer the following requirement:

QR04: The approach must support the immediate feedback during
design-time.

Intuitiveness Most important for the acceptance of a quality assurance ap-
proach is its intuitiveness during use. This is impacted by the amount
of knowledge the user has to have to be able to use the approach.

For our quality assurance approach, we infer the following requirement:

QR05: The approach must be easy to use without knowledge of
formal analysis techniques (e.g., model checking). Ideally, the user
does not get aware of the concrete formal technique used.

Genericity The genericity of a quality assurance approach has an impact on its
power. Is the approach usable within any domain and with any model
for the particular concern?

For our quality assurance approach, we infer the following requirement:

QR06: The approach must support checking generic and
application-specific properties. Generic properties can be applied
to every modeled self-adaptive software system. Application-
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specific properties are defined for a specific application.
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Figure 4.3 illustrates how the requirements cover all important parts of our
machine model (cf., Figure 4.2), being the functional correctness of adaptation
rules (Q3, Q1), their impact on the system and its environment (Q2), the di-
rect feedback for the modeler (Q4), the intuitive use of the approach by hiding
complexity (i.e., the formal methods, Q5), and the support of both, generic and
application-specific properties (Q6).

In the following, we will reflect these requirements on relevant related work
and thereby, on the one hand, show how the different requirements can be
fulfilled, and on the other hand, show why current approaches do not suffice.

Related Work Table 4.1 shows the requirements in the columns and the dif-
ferent approaches in the rows. In the following, we will describe for each re-
quirement how it can be fulfilled by referring to the respective approaches.
Additionally, we will describe how the requirement is fulfilled in our quality
assurance approach for self-adaptive systems called QUAASY.

QR01: Check Adaptation Rules Adaptation rules may be checked either in-
dependently from progress rules (or at least explicitly), or adaptation



116 Chapter 4 Quality Assurance for Self-Adaptive Systems

Table 4.1.
Modeling Approaches
compared to
Requirements

Approaches Q
R0

1

Q
R0

2

Q
R0

3

Q
R0

4

Q
R0

5

Q
R0

6

Bartels, 2011 [BK11] × ◦ X × × ◦
Cheng, 2006 [ZC06] × X X × × ◦
Fleurey, 2009 [FS09] × X X ◦ ◦ ◦
Adler, 2007 [ASSV07] X X X ◦ × X
Nafz, 2011 [NSS+11] × X X × × ◦
Weyns, 2013 [GdlIW13] X X X × × ×

QUAASY [LE13] X X X X X X

rules may be checked implicitly by checking the entire system model.
The approaches [BK11, ZC06, FS09] check whether the system behaves
correctly under adaptation. They do not check adaptation rules explic-
itly, e.g. for stability. Same applies to Nafz et al. [NSS+11] who do not
check the adaptation rules per se but the correctness of the complete sys-
tem. In contrast, Adler et al. [ASSV07] check properties for adaptation
rules, such as stability, explicitly. Due to consequently separating con-
cerns, Weyns et al. [GdlIW13] allow the independent check of adapta-
tion rules. QUAASY takes the same approach as Adler et al. [ASSV07]
and allow to check adaptation rules explicitly for generic properties such
as deadlock freedom, stability, etc.

QR02: Check Progress Rules In contrast to checking adaptation rules (A)
only, the progress rules (P) may be checked separately, too, especially for
the effects of self-adaptation. Some approaches [BK11, GdlIW13] check
progress rules implicitly by checking the entire system for deadlocks and
livelocks. Likewise, Cheng et al. [ZC06] use temporal logic formulas to
check the correct behavior of the system. The effect of adaptation is thus
checked only implicitly. Fleurey et al. [FS09] allow to specify constraints
that may be checked with the Alloy Solver. These constraints may be
targeted at the systems progress and the effects of adaptation. Adler et
al. [ASSV07] allow to specify and check application-specific properties
for the functional behavior of the system, i.e. the system progress. Just
like the approach of Fleurey et al. [FS09] these properties may check the
effect of adaptation. Nafz et al. [NSS+11] use a theorem prover to show
functional correctness of the system, again potentially including effects of
adaptation. Besides invariants that constraint the pure system progress,
QUAASY explicitly checks for the effects of adaptation by the use of spe-
cific validation functions. For instance, these validation functions check
whether a resulting model still is well-formed and a proper instance of
its meta model. The concrete validation functions may be extended by
the language designer or even the modeler himself.

QR03: Check Functional Quality We require our approach to check func-
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tional quality. Non-functional quality assurance is not the focus of this
theses. All presented approaches [BK11, ZC06, FS09, ASSV07, NSS+11,
GdlIW13] only allow the verification of functional correctness, e.g. by us-
ing a (CSP) model checker, a solver (Alloy), or a theorem prover (KIV).
QUAASY also focuses on functional properties. Therefore, we use the
model checker Groove. However, the Adaptation View Model can be
used for performance analysis aswell. We are currentlyworking on com-
bining the QUAASY approach with SimuLizar [BLB13].

QR04: Direct Modeler Feedback Direct feedback is crucial when designing
large software systems. Therefore, it is important to yield high perfor-
mance concerning the used time. The different approaches handle feed-
back differently. Most of the approaches might provide direct feedback
to the modeler, however, a corresponding approach is not presented in
the related publications. In the CSP-based approach [BK11], the mod-
eler receives the CSP prover’s results that he has to interpret after the
complete model has been created. The modeler has to create all models
before any result can be generated. An approach for direct feedback pro-
visioning has not been given explicitly. Same applies to the approach of
Weyns er al. [GdlIW13]. Fleurey et al. [FS09] do not define a process to
provide direct feedback, either. However, theAlloy Solver easily could be
triggered during modeling. Since Adler et al. [ASSV07] use averest1, di-
rect feedback would be possible theoretically, too. However, the authors
do not show a concrete approach towards direct feedback. Moreover,
application-specific properties have to be specified manually using dif-
ferent languages (temporal logic)which further hardens the provisioning
of direct feedback. Nafz et al. [NSS+11] cannot provide direct feedback
since the models have to be proven using the manual theorem proving
using the tool KIV. QUAASY provides concepts for providing direct and
immediate feedback for the user. Themodels are translated immediately
after saving and (if executable) can be checked in the background to pro-
vide the user with feedback during modeling. Special performance op-
timizations allow to provide feedback in a timely fashion.

QR05: No Formal Knowledge Needed An important requirement is the in-
tuitiveness of the approach to enable non-experts the use of the qual-
ity assurance techniques. Unfortunately, most of the approaches require
more or less deep knowledge in formal methods. For instance, for us-
ing the CSP approach by Bartels et al. [BK11], the modeler must have
good knowledge of CSP. With Cheng et al.’s approach [ZC06], the mod-
eler must know petri nets and temporal logics. With Adler et al.’s ap-

1http://www.averest.org
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proach [ASSV07], for system modeling no formal knowledge is needed.
However, the application-specific constraints have to be specified in tem-
poral logic by the modeler. Using the approach by Nafz at al. [NSS+11],
the definition of models and constraints is given in UML and OCL.
The authors describe that common off-the-shelf constraint solvers can
be used to show correctness. However, the translation into the corre-
sponding language or the use of the theorem prover KIV requires formal
knowledge. The most intuitive approach to use is the one proposed by
Fleurey et al. [FS09] Their approach requires knowledge in simple logic
expressions, only. The translation into Alloy is done automatically, thus
no deep knowledge of formal methods is needed. QUAASY completely
hides the used model checking from the user (i.e., tool-encapsulated or
transparent model checking). Application-specific properties are given
in a simpleOCL-like language. Generic properties do not have to be spec-
ified by the modeler but come pre-packaged.

QR06: Support Generic and Application-Specific Constraints As described
above, we distinguish generic properties from application-specific con-
straints. Both kinds of constraints are useful and should be supported
by quality assurance approaches. While the CSP-based approach [BK11],
only supports generic properties, the approaches by Cheng et al. [ZC06],
Fleurey et al. [FS09], and Nafz et al. [NSS+11] only describe how to
check application-specific properties. Solely the approaches by Adler
et al. [ASSV07] and Weyns et al. [GdlIW13] support generic as well as
application-specific constraints. QUAASY supports generic properties,
such as stability, as well as application-specific constraints by enabling
the definition of invariants on model level using an OCL-like language.

All in all, there is not an existing approach that fulfills all of our requirements.
Therefore, in the next section, we will present our approach QUAASY that
is directed towards fulfilling the requirements and build upon the presented
ACML language.

4.2 quality assurance for adaptive systems (quaasy)

QUAASY is ourQUalityAssurance approach forAdaptive SYstems that fulfills
the requirements listed above. The approach relies on graph transformation
based model checking that, however, is hidden from the user. The overall goal
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is to provide a tool supported framework for modeling self-adaptive systems
with direct feedback concerning generic and application-specific properties by
checking the modeled system live in the background. QUAASY checks the
adaptation rules as well as the modeled system itself.
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The QUAASY
Approach

The basic idea of the quality assurance task is depicted in Figure 4.4. First, us- using dmm for
specifying semanticsing the presented language (i.e., ACML including the Adapt Case Model and

the Adaptation View Model introduced in Chapter 3) a concrete self-adaptive
system is modeled. The ACML semantics have been defined by means of Dy-
namic Meta Modeling (DMM) [EHHS00], a rule-based semantics specification
technique. A DMM specification together with an initial adaptation system
model give rise to a labeled transition system (LTS) describing the complete
system’s semantics. The LTS is computed by using the state corresponding to
the model as the initial state. On that state, all matching DMM rules are ap-
plied, leading to new states. This is done until no new states are found. The
LTShas concretemodel instances as states exposing concretemodel objects and
assigned attributes. Further, each state contains the models (i.e., system type)
themselves since they might change over time by adaptation. The transitions
are given by the applications of DMM rules. DMM rules describe the seman-
tics of the model using graph transformation rules, e.g., a rule might move a
token, change an attribute value, or execute an adaptation action. The transi-
tion system can then be analyzed using model checking techniques [ESW07].
Finally, we formulate our quality properties as temporal logic formulas, which
are model checked on the computed LTS using the Groove tool set [Ren03]. If
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one of our properties is violated by the model under consideration, the model
checker provides a counter example which can be used by the modeler to fix
the system model.

The DMM semantics rules are divided according to the two classes of behav-

distinguish between
adaptationA and
system &
environment
progress P

ior: adaptation DMM rules (A) and (system & environment) progress DMM
rules (P). The semantics of the Adaptation View Model (progress DMM rules)
describe how the system and its environment change over time. For instance,
open variables from the environment will be changedwithin their boundaries.
The semantics for the Adapt CaseModel (adaptation DMM rules) describe the
reaction of Adapt Cases to a change in the Adaptation View Model and the
effect of applying adaptation actions.

Figure 4.5.
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Figure 4.5 sketches a labeled transition system. The boxes are only to visually
group several states. The upper left box describes a system and its progress
without any adaptation. The transition from s0 to s1 reflects a change in the
modeled environment. The transition from state s1 to state s4 reflects a change
of the system. The complete upper left box represents a labeled transition sys-
tem that would have been generated without adaptation rules. If an adap-
tation rule applies, it takes the system into another box (cf. different boxes in
Figure 4.5). The environment and system progress is described by the Adap-
tation View Model and simulated by corresponding progress DMM rules. The
system’s adaptation is described by the Adapt Case Model and simulated by
adaptation DMM rules, i.e., rules that described the execution of an Adapt Case.

See Figure 4.6 for an illustration of the LTS transitions. Essentially, DMM rules
are graph transformation rules that are typed over a language’s meta model
and transform a language’s models to simulate their semantics conformant
change. For instance, the set of progress DMM rules that is depicted on the fig-
ure’s left side describes how an environment sensor’s property may increase:
value′ := value + step if value + step < max. The application of this progress
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DMM rule corresponds to a transition within the system’s LTS. On the other
hand, the adaptation DMM rules describe how a concrete Adapt Case may ma-
nipulate the system (cf. Chapter 3 for the description of Adapt Cases and their
semantics).
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Having formal semantics for all models allows the automated quality anal-
ysis with respect to the adaptive behavior using model checking tech-
niques [ESW07]. As described before, different kinds of quality properties ex-
ist, being application-specific properties and generic properties. These differ-
ent kinds are treated differently in the QUAASY approach. See Figure 4.7 for a
description. As stated above, the states of the LTS are (ontological) instances of
the Adaptation ViewModel and Adapt CaseModel which in turn are (linguis-
tic) instances of their respective meta models. Generic properties are defined
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over concepts of the two meta models, that is, they can be checked for every
possible Adaptation View Model and Adapt Case Model. Although generic
properties are defined over concepts of the meta model level, they are checked
on the LTS, i.e., on instance level. In contrast, application-specific properties
are specified over specific AVMs or ACMs. These properties refer to concrete
elements that are modeled with the AVM or ACM. They are checked on in-
stance level, too.

In Section 4.2.1, we exemplary show some DMM semantics definitions. In Sec-
tion 4.2.2, we provide the necessary temporal logic formulas to actually check
the functional quality properties that have been described in Section 4.1.1. In
Section 4.2.3, we describe how to provide the user with feedback that is easy
to understand for a non-expert concerning formal methods.

4.2.1 Semantics Definition for the ACML

For the semantics definition of both theAdaptation ViewModel and theAdapt
Case Model, we use Dynamic Meta Modeling (DMM) that has been described
in Section 2.4. In this section, we will describe the semantics by the use of
some representative examples. The example rules cover all relevant parts of
the AVM and the ACM and provide an impression of how the UML activity
semantic is defined. More precisely, we will present the following DMM rules:

Activity Semantics

– Token Flow Rules

Specific Adaptation Actions

– Write Property Action
– Add Action to Activity

Adapt Case Model (ACM)

– Start Monitors
– Trigger Adaptation (CallAdaptationActivity)

Adaptation View Model (AVM)

– Simulate Open Interval Properties
– Generate & Fire Signals
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Since both the AVM and the ACM heavily rely on UML activities (e.g., Moni-
toring & Adaptation Activities), we will first start with showing two rules that
define the UML token-offer flow. Next, we will show two adaptation specific
actions that allow to (a) adapt/change adaptation interface properties, and (b),
add an action to an activity. Next, wewill describe howAdapt Cases start their
monitors and howmonitorsmay trigger an adaptation activity using the corre-
sponding action. Finally, we will show how the Adaptation ViewModel simu-
lates open properties (i.e., properties that do not have a specification but only
boundaries and a step size or a set of states without attached state machine)
and how environment signals are generated and fired.

AC

ENV SYS

AC

ENV SYS

SIGAC

ENV SYS

monitor.start() signal.create()

callAdaptationActivityAction.start()

AC

ENV SYS'

writePropertyAction.start()

...

DMM Rules

AC

ENV SYS

Figure 4.8.
Sketched Transition
System shown DMM
Rule Applications

See Figure 4.8 for a sketched transition system that shows the application of
DMM rules. The states illustrate instances of the modeled self-adaptive sys-
tem. The transitions correspond to DMM rule applications. The transition
system is not complete and intermediate steps have been hidden. In a first step,
the monitor.start() rule activates the monitor (i.e., the Adapt Case). Next, a
DMM rule creates a signal instance which, in the next step, is consumed by the
Adapt Case’s monitor together with triggering the adaptation activity. The ac-
tivity’s WritePropertyAction is executed by the corresponding DMM rule and
the system SYS is adapted to SYS’. In the following sub sections, we will look
into the DMM rules in detail.

Activity Semantics

The activity semantics conform to the UML specification [Obj10b]. The UML
describes a token-offer semantics that extends the token-flow semantics that is
known from petri-nets. Details of the semantics are given in [ESW07]. In the
following two simple DMM rules are shown that illustrate the mechanisms of
UML activities.
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Figure 4.9.
action.start()#:
Starting a UML Action

Figure 4.9 describes the DMM rule that starts the execution of a UML action. If
the action has a token on every input pin anddoes not have an ActionExecution,
yet, a new ActionExecution is created and the action.executes() rule is in-
voked. This invoked rule is overloaded for each specific UML action and actu-
ally performs the action. An example will be shown in the next section.

Figure 4.10.
action.start()#:
Executing a UML
Action

Figure 4.10 is executed if an action has an ActionExecution node and a token in
its input node. This token ismoved to its output nodes and the ActionExecution
is deleted. Other rules take care of the transportation of the token to the next
action, eventually traversing several control nodes, such as decision or fork
nodes.
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Specific Adaptation Action

Let us investigate the DMM rule which specifies the semantics of a adaptation-
specific action, called WritePropertyAction, which is shown in Figure 4.11.
As described in Section 3.3.2, this action simply writes the value of an
ACMLIntervalProperty. This is denotedwith the assignment value′ := wpa.value
which is attached to the LiteralInteger. The value is taken from the
WritePropertyAction. The InstanceSpecification represents an object of some
UML type. In the case of and ACMLIntervalProperty, the type is described by a
sensor or effector.

Figure 4.11.
wpa.execute()#: DMM
Rule to execute
WritePropertyAction

Figure 4.12 shows the semantics of another adaptation-specific action. The ac-
tion allows the insertion of a new UML action within an existing control flow.
The original control flow is attached to the newly created action which in turn
is connected to the original target action. The action is configured using the
set of parameters that are given by the AddActionAction. The SpecifiedAction

is a placeholder that is replaced by the create SmallStepRule. This rule is over-
loaded for each particular type of action.

Adapt Case Model (ACM)

Monitors are constantly running. Since monitors are specific UML activities,
theymayuse activity features to influence the type of activation. For instance, a
monitoring activity may define an AcceptEventAction that listens for the occur-
rence of a specific event such as signals or variable changes. Alternatively, the
monitoring activity could use the TimeEvent to repeatedly start some monitor-
ing actions. If the monitor triggers an adaptation activity and no other tokens
are alive, it is terminated and restarted if the adaptation activity finished. See
Figure 4.13 for the corresponding DMM rule.

The DMM rule matches those Adapt Cases that have no running monitoring
and adaptation activities and activates the corresponding monitor by attach-
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Figure 4.12.
DMM Rule that adds
an Action into an
Activity

Figure 4.13.
DMM Rule that starts
Monitors
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ing an ActivityExecution. The ActivityExecution is matched by the activity
semantics which execute the corresponding activity.

The next DMM rule describes the hand-over between monitoring and adap-
tation activity. As described in Section 3.3.2, we introduced a specialized
action for that purpose. Hence, Figure 4.14 describes the semantics of
the CallAdaptationActivityAction. The rule overloads the action.executes()

SmallStepRule and simply creates an ActionExecution for the corresponding
AdaptationActivity.

Adaptation View Model (AVM)

The Adaptation View Model heavily reuses the semantics of UML class di-
agrams and activities. That is, the semantics of classes, interfaces, etc. (e.g.,
semantics of cardinalities) remain unchanged. There are, however, additional
semantic rules that define the behavior of new notational elements. Examples
include the definition of open properties, i.e. properties that have a lower and
upper bound that constrain the concrete value. These properties are meant
to simulate the uncertainty of the environment or may even be used to under-
specify the system. Therefore, the semantic rules have to increase and decrease
the value of these properties.

Figure 4.14.
ac.callAdaptation-
Activity(): Executing
CallAdaptationActiv-
ity
Action

Figure 4.15 shows the rules that increase and decrease the value of
an ACMLIntervalProperty. Therefore, they match the corresponding
InstanceSpecification and increase/decrease its value by the step size if
it is still in the allowed range given by the min and max values. Together,
the rules simulate and arbitrary increase and decrease open properties in the
environment or system.

Finally, Figure 4.16 shows the DMM rule that generates signals. The signals
that may be thrown are specified in the Adaptation View Model for environ-
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Figure 4.15.
DMM Rules that
simulate an
IntervalProperty

(a) Increase of open Value (b) Decrease of open Value

ment components. The DMM rule creates InstanceSpecifications for the sig-
nal if not yet existing. This InstanceSpecification is consumed by the DMM
rule that accepts a signal event.

Figure 4.16.
DMM Rule that
creates a new
Environment Signal

In this section, we presented a few representative DMM semantic rules that
describe (a) how theAdaptationViewModel is simulated (progress) to generate
a state space, and (b), how the Adapt CaseModel is executed (adapt) tomonitor
and adapt the Adaptation View Model. In the next section, we will describe
how the quality properties fromSection 4.1.1 are formalized and checkedusing
the GROOVE model checker [Ren03].
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4.2.2 Quality Property Formalization

In order to reach our overall goal of an integratedmodeling and analysis work-
bench for self-adaptive systems, we need to employ automatic analysis of self-
adaptive system models. That is, we need to describe how quality properties
of self-adaptive systems can be checked within our approach.

We recapture the two behavior classes of self-adaptive software system, system
and environment behavior and adaptation behavior. These two behaviors are
described by DMM rules as shown in the last section. We will use the two
sets P and A as representatives for the corresponding DMM rule sets. With
these two sets of DMM rules, we can distinguish between standard operation
of the system and its environment, and the adaptation of the system within
our temporal logic formulas.

Since all properties are checked via model checking, we further define the using the groove
model checkerlabeled transition system (LTS). Let LTS be the LTS computed from the set

of DMM rules (see Section 4.2.1) applied to the Adaptation View Model and
Adapt Case Model. Further, recall from Section 2.4 that Groove gives rise to
labeled transition systems where states are typed graphs and transitions are
applications of graph transformation rules; the transitions are labeled with the
according applied rule’s name. As a result, the Groove model checker can
process LTL formulas where the atoms are rule names. For instance, if the LTS
contains a state s with an outgoing transition labeled l, the property l is true
for s.

One consequence of this is that we can verify whether a rule out of a set of
given rules is applied by creating the disjunction over the rules’ names. We
make use of this by defining the property A := ∨α∈Aα. Given a state s, A will
be true iff at least one of the adaptation rules can be applied to s. Same applies
to progress rules p ∈ P. Here, we define P := ∨p∈P(p).

In the following sub sections, we will formally describe the properties intro-
duced in Section 4.1.1 using our notion described in Section 3.2.2. Additionally,
we will define the corresponding temporal logic formula if it significantly dif-
fers from the first formalization. Please read on for further details.

Errors

Recall that errors are checked in each possible system state. Therefore, using
the notion introduced in Section 3.2.2, a validation checker is specified as fol-
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lows:

validerr :: VR× AVM× ACM→ {0, 1} (4.1)

The set of validation rulesVR is checking a systemand environment state (AVM)
as well as the set of adaptation rules (ACM). The set of validation rules can be
user defined or static, i.e., pre-defined. Since we have another property class
which describes user-defined validation rules (see specific safety and liveness
properties), we include only static rules in the set of validation rules.

The set of validation rules VR consists of DMM property rules that, e.g., check
whether an initial node is included in an activity diagram.

Definition 1 (Errors)A system definition is free of (pre-defined) errors (i.e., success-
fully validated) iff in all states the system may be in, none of the validation rules out of
VR applies.

This definition requires the validation rules to be the negation of the desired
property. The LTL property to check errors is defined as follows:

∀r ∈ VR : � ¬ r (4.2)

The formula is true if for all rules in VR there is no trace in the LTS where r
holds in any state.

Conflicts

A set of rules does not contain conflicts iff whenever a rule α1 is running and
a second rule α2 starts, both rules are able to finish their execution.

Figure 4.17.
Lifecycle of an
Adaptation or
Progress Rule r
(r ∈ A∪P)

Starting / 
Running Running Finished

To formally describe this property, we introduce the notion of a rule’s state.
That is, each rule out of A∪ P has an own lifecycle that is depicted in Fig-
ure 4.17. In its first state, a rule is starting and running. Next, the rule may
run an arbitrary amount of time. Finally, the rule enters its finished state. To
describe the state of an adaptation rule, we define three functions (starting,
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running, finished), that take a rule r ∈ A∪P as input and return true if that
rule is in the corresponding state. In a more detailed version of our machine
model fromFigure 4.2, each transitionwould be divided into several small step
transitions with intermediate states. As a consequence, parallel execution of
Adapt Cases, the system processes, etc. is actually performed interleaved at the
level of these small step transitions. Now, we define a set of rules to be free of
conflicts iff the following holds:

Definition 2 (Conflict) A set of rules is free of conflicts iff for all system states when
one of two arbitrary rules inA is starting while another one is already running, both
rules are able to finish in some future system states.

∀αi,αk ∈ A :� running(αi)∧ starting(αk)

→ ♦ finished(αi)∧♦ finished(αk)
(4.3)

The LTL formula has to be checked for every pair of adaptation rules in A.
It is true iff the LTS does not contain any trace that contains a state where ai

is running and ak is starting and at least one of the two adaptation rules is
not finished at some future time. The three functions starting, running, and
finished are expressed using DMM property rules. As such, the above for-
mula can directly be used with our model checker.

Termination

Similarly, termination is defined as follows.

Definition 3 (Termination) For the termination property to be true, every single
behavior that is started at some point in time has to have an option to finish at some
future point in time.

We use CTL to formulate this property formally:

∀r ∈ A∪P : AG starting(r)→ EF finished(r) (4.4)

The formula is true if for every state in the LTS, there is a rule that is currently
starting, then there is a reachable state where the rule is finished.
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Stability

For the check with a model checker, we define two different types of stability,
namely the stability of single rules and the stability of the complete rule set.

Definition 4 (Rule Stability) A single adaptation rule α ∈ A is stable if the LTS
does not contain paths such that α is applied infinitely often, but no other rule p ∈ P
or α′ ∈ A with α 6= α′ is applied in between.

¬∃α ∈ A,∀p ∈ P : � running(α)∧¬p (4.5)

If a single rule is unstable, it might lead to situations where this rule is applied
over and over again, e.g. continuously increasing some value of the system’s
state. The above definition covers this situation. Similar, a set of adaptation
rules is stable according to the following definition.

Definition 5 (Rule Set Stability)An adaptation rule setA is stable if the LTS does
not contain paths such that rules out ofA are applied infinitely often, but no rule p ∈ P
is applied in between.

¬∃α ⊆ A,∀p ∈ P : � running(α)∧¬p (4.6)

The second definition captures more complex, but still problematic situations
such as the one presented above. The function running applied to a set is
defined to return the disjunction of the contained elements. Note that if the
rule setA is stable, it immediately follows that each rule α ∈ A is stable.

Let us now formulate the LTL property used to verify rule stability. Let α be
an arbitrary rule of our set of adaptation rules A. α is stable if the following
temporal logic formula holds for our LTS:

¬ ♦ � α (4.7)

The interpretation of the formula is straight-forward: it is true if there is no
trace such that rule α is always applied from one point in time on, realizing
our requirements formulated in Definition 4.

We now turn to the LTL property used to verify rule set stability. We define
A to be an arbitrary set of adaptation rules α that are connected with logical
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ors: A = α1 ∨ α2 ∨ . . . αn. A set of adaptation rules A is stable if the following
formula holds for our LTS:

¬ ♦ � A (4.8)

Here, the formula is true if there is no trace in the LTS such that from one point
in time on, only adaptation rules out of A are applied, and therefore realizes
the requirements of Definition 5.

Specific Liveness & Safety Properties

Specific safety and liveness properties are specified within the Adaptation
View Model. For checking these properties, we define the validspec function
to take as input only the AVM:

validspec :: AVM→ {0, 1} (4.9)

Properties may either be safety expressions that constrain the state of the
system or liveness execution traces that require the system state space to in-
clude specific traces for particular specified behavior. Liveness properties are
specified using ACMLConstraints in the Adaptation View Model. These con-
straints contain generic traces specified using the trace language as described
in [Sol13]. Basically, the generic traces are process patterns that are trans-
formed to LTL expressions

ffl
. Safety properties are specified using constraints,

too. However, instead of traces, these constraints contain expressions e that
have to evaluate to true to be fulfilled. Therefore, the expressions e are en-
coded in so-called safe rules SR using DMM property rules.

Definition 6 (Specific Liveness) An adaptive system model is specifically lively if
its LTS models

ffl
, i.e., LTS |= ffl .

For model checking specific liveness, the traces are simply transformed to LTL
formulas using DMM capabilities.

Definition 7 (Specific Safety) An adaptive system model is specifically safe if its
LTS contains no state s such that any safe rule is not applicable to s.

Let us now formulate the LTL property used to verify specific safety:

�
∧

sr∈SR
sr (4.10)
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The formula’s interpretation is as follows: It is true iff for all states s, the for-
mula

∨
sr∈SR(sr) is true, i.e., all rules from SR are applicable to that state.

Deadlocks

A set of rules is defined to be deadlock free iff

∀αi ∈ A,∃αk ∈ A, pk ∈ P : starting(αi)→ � ♦ αk ∨ pk (4.11)

holds, that is, if after an adaptation rule is applied either another adaptation
rule or any progress rule is applicable. Formodel checking, we slightly expand
the definition of deadlocks as follows.

Definition 8 (Deadlock) An adaptive system model contains a deadlock if its LTS
contains at least one state s such that no adaptation rule α or progress rule p is appli-
cable to any of the states reachable from s.

The LTL property to verify the absence of deadlocks is defined as follows:

� ♦
 ∨
r∈A∪P

r

 (4.12)

The formula’s interpretation is as follows: It is true iff for all states, a state is
reachable such that

∨
r∈A∪P(r) is true, i.e., at least one of the rules fromA or

P is applicable to that state. It is easy to see that this is exactly the definition of
absence of deadlockswe have seen above. Note that this includes any deadlock
the system may produce. However, since the input models are adaptation-
related models, only, the formula verifies the creation of deadlocks caused by
adaptation or adaptation-related processes.

Confluence

To describe the confluence property, let us define concrete system states to be
s0, s1, . . .. Further, let A be a set of adaptation rules α0,α1, . . . with A ⊆ A. We
denote the application of an adaptation rule α0 to a state s0 yielding a new
state s1 as s0

α0−−→ s1. If there is a set of adaptation rules A0 that transforms
some system state s0 to si, we denote this as s0

A0−−→ si. Now, we can define the
confluence property for adaptation rule sets.

A set of adaptation rules is confluent if the following holds.
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Definition 9 (Confluence) If there are two non-equal sets of adaptation rules A0 and
A1 that can be applied to a system state s0 to yield the system states si (s0

A0−−→ si) and
s j (s0

A1−−→ s j), then there is another state sk and two other sets A2 and A3 such that

si
A2−−→ sk and s j

A3−−→ sk .

∀ s0, si, s j, A0, A1 ∧ s0
A0−−→ si ∧ s0

A1−−→ s j

→ ∃ sk , A2, A3 : si
A2−−→ sk ∧ s j

A3−−→ sk

(4.13)

To specify a temporal logical formula for confluence, we first have to clarify
some prerequisites. First, we are using CTL∗ for the definition of the formula.
Second, we define an additional set of DMMrules usedwithin the formula, the
property rules ρ. Property rules do not change a particular system state but
only check for the existence of of particular state properties. The DMM seman-
tics for the ACML include property rule definitions such that each state can be
identified uniquely via the application of a specific property rule. Thereby, we
can check whether two states that are identified by the application of property
rules are the same.

Using these prerequisites, we can define the CTL∗ formula as follows.

α1 ∧ α2 ∧ α1 6= α2 → ((α1 → X EF ρ1)∧ (α2 → X EF ρ2)∧ ρ1 = ρ2) (4.14)

The formula’s interpretation is as follows: If there is a state where both α1 and
α2 may be applied and these rules are different (branch into the confluence dia-
mond), then after the application of α1 and α2 respectively, there are two states
identified via ρ1 and ρ2 that are identical (join of the confluence diamond).

Determinism

Let m(α) be the monitor of the adaptation rule α. Formally described, the de-
terminism property is defined as follows:

Definition 10 (Determinism) An ACML model is deterministic, if there is no Adap-
tation View Model AVM where more than one Adapt Case α can be applied at the same
time.
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¬∃ AVM,αi,α j : αi 6= α j ∧m(αi)(AVM)∧m(α j)(AVM) (4.15)

The CTL formula for determinism is straight-forward. Since the adaptation
rules αi are only applied in the LTS if the monitoring result was positive, we
can simply check for states where two adaptation rules match:

AG ¬ (α1 ∧ α2 ∧ α1 6= α2) (4.16)

Having defined all properties formally, we can now turn to the actual model
checking and how we use the model checkers results to support the modeler.

4.2.3 Model Checking and User Feedback

Using the formulas defined abovewe can support the designer of self-adaptivesingle steps of an
adapt case systems with direct feedback on the quality of the model at hand. However, to

use these formulas with the GROOVE model checker we have to map them to
the syntax of concrete LTSs. That is, within the formulas presented above, we
refer to single adaptation actions α while meaning the complete execution of
an Adapt Case’s adaptation activity AdaptationActivity, including several adap-
tation actions Action. However, in the LTS, the Adapt Case is separated into
several transitions as indicated in the following:

AdaptCase =Mon.start→ ...→ AA.start→ A.exec→ ...→AA. f inished

AnAdapt Case’s execution is divided into themonitor’s start following by sev-
eral transitions for the analysis. If the monitor starts an adaptation activity, the
latter executes several adaptation actions until it finally finishes and the overall
Adapt Case is finished as well.

To translate these transition sequences (traces) into the “α-terms” (e.g.,
α1,α2, . . .), we use property rules that reflect the adaptation rules’ states that
have been introduced in Figure 4.17 on Page 130.
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AdaptCase α =Mon.start→ ...︸ ︷︷ ︸
ε

→
running︷ ︸︸ ︷

AA.start︸ ︷︷ ︸
starting

→ A.exec→ ...→AA. f inished︸ ︷︷ ︸
finished

Recall that property rules are special DMM rules that may match and be ap-
plied to a particular state but do not perform any modifications. In addition,
any DMM rule may expose attributes of the matched elements, so-called em-
phasized attributes. These attributes are appended to the transition label and
thus can be matched in temporal logic formulas. If for instance the name of
the matched Adapt Case is emphasized, the LTS contains rule applications of
form starting(name1), running(name1), and finished(name1), where name1

corresponds to the name of a particular existing Adapt Case and starting,
running, and finished are the corresponding property rules. Note, that we
are not interested in the monitoring execution, thus we do not create any prop-
erty rule that capture the state ofmonitors hence ignoringmonitors completely
if we only check on property rules.

The temporal logic formulas defined in the previous section can now be trans- translation to
temporal logiclated as shown in the following.

LTL: α = starting(αname)∧ (running(αname) U finished(αname))

CTL(∗) : α = starting(αname)∧A (running(αname) U finished(αname))

The formulas interpretation is as follows. A rule α is active if it has been started
and as long it is running until it has been finished. The QUAASY tool does
automatically create these formulas for the modeled system.

For the quality properties discussed above, the feedback process works as fol-
lows:

1. The modeling environment verifies whether the complete modeled sys-
tem models the properties given in temporal logic. If this is the case, the
ruleset does not give rise to any design flaw, and we are done.

2. Otherwise, QUAASY automatically identifies the subset of rules which
cause the system to expose the undesired property (see below for details).

3. The system designer fixes the models.
4. Continue with Step 1.

In Step 2, we need to find the concrete rules which together make our system
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behave undesired. That is because the model checker returns a counterexam-
ple (i.e., a trace of rule applications) that might not be the simplest possible
counterexample making it sometimes difficult to interpret and find the error’s
source. Thus, we use another small algorithm that in case of an error may be
executed to further drill down to the error’s source. The algorithm is shown in
Figure 4.18.

Figure 4.18.
Algorithm to find
erroneous rules

LetA|i = {s ∈ 2A with |s| = i}
For i = 1..|A|

For each t ∈ A|i
if ¬ (t models properties) then
Report t to be conflicting rules

Starting with sets of adaptation rules of size 1, we verify whether one of these
rules behaves undesired. If this is not the case, we continue with the sets of
size 2 and so on. Note that since we know that the set of adaptation rules itself
behaves undesired, the algorithmwill always result in a set of erroneous rules.
However, in the worst case this will be the set of all adaptation rules. Note also
that a set of adaptation rules might contain more than one set of erroneous
rules. As such, after we have fixed the problematic rules, we will start over
the verification process again. If the set of rules we identified and fixed in the
first place was the only set of erroneous rules contained in our set of rules, and
if we have properly fixed the problematic rules, the second check will report
that the set of rules behaves as desired. Otherwise, we will continue fixing our
rules and verifying the rule set until the rule set indeed behaves as desired.

It remains to show howwe support the designer of self-adaptive software sys-using the dmm
debugger to animate
the counterexample tems with direct feedback on the quality of the model at hand: if the LTS fails

to fulfill one of our properties, the model checker will provide a counter exam-
ple (i.e., a trace of states showing which sequence of rule applications led to a
state violating the LTL property). In an integrated modeling environment for
self-adaptive systems, we will use that information to help the modeler under-
stand why the system model violates a quality property, and how the system
model can be fixed. For this, the DMM simulation capabilities [BSE11] can be
reused to simulate the counter example and thereby giving the user an intu-
ition of the problem on the same abstraction level that he modeled the system
at.
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4.3optimizing quaasy

A problem that usually occurs when applying model checking, is state space
explosion. On the one hand, in our approach the problem is less severe since
themodel checking is triggered automatically duringmodeling at design-time
and performed in the background. Therefore, a fast response time is less im-
portant. On the other hand, a fast validation response would increase the pos- the problem of state

space explosionitive user experience, and thus the usability of our approach. Hence, we took
several actions to address the state space explosion problem.

The reason for an exploding state space is themultiplication of possible system
states. Therefore, we adjusted the semantics intelligently to reduce the possible
states in the first validation iterations. For instance, in a first model checking
run, we can abstract from parallel executed adaptations. A found error in this
abstracted setting will occur in the non-abstracted setting as well and thus the
validation is stopped in the first run and provides fast feedback for the user. In
the following, wewill describe the various actions that have been performed to
encounter the state space explosion problem. Some of the findings presented
in this section are based on a master thesis [Tha12].

4.3.1 Adapt Case Intermediate Language (ACIL)

One of the core reasons for large state spaces with the ACML is the use of the
bloated UML semantics on the one hand, and the (unnecessary) multiplication
of possible ACMLProperty states on the other hand. To alleviate these prob-
lems within QUAASY, the ACML is translated into an intermediate language
which is optimized for model checking, the ACIL. Figure 4.19 sketches the set-
ting. The translation comes with no loss of information compared to model
checking the original ACML.

ACML

ACIL

LTSACML

LTSACIL

UML / ACML Semantics

ACIL Semantics

Transformation Subset

Huge

Smaller

Figure 4.19.
Adapt Case
Intermediate
Language Concept
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In particular, the ACIL abstracts from the bloated token-offer-semantics as pro-
posed by the UML and additionally separates the model into dependency
groups that are model checked separately. Details are given in the following
sections.

Figure 4.20.
Adapt Case
Intermediate
Language (ACIL)
Meta Model
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Figure 4.20 shows the ACILmetamodel. AnACILmodel contains an arbitrary
number of dependency groups. Dependency Groups in turn contain inter-
mediate Adapt Cases (IntermediateAdaptCase) and an intermediate Adaptation
View Model (IntermediateAdaptationView) the latter of which contains ACML-
Properties and constraints. ACMLProperties are simulated during model
checking, i.e., they are either computed if a sensor specification exists, or they
are simulated with arbitrary values if they are open properties with range and
step size. ACMLProperties and constraints are simply copied from the ACML
model. Intermediate Adapt Cases contain Action Sequence Automata Models
(ASAM) which are optimized automata that describe the behavior of moni-
toring and adaptation activities. Dependency groups and ASAMs are further
detailed in the following.

Dependency Groups

Dependency groups separate the AVM and ACM into several single models.

Each dependency group contains a complete model without any dangling ref-
erence. In turn, each dependency group is as small as possible, i.e., there are
no two elements in one of the groups that are not (transitively) linked to each
other. Figure 4.21 illustrates the concept of dependency groups. Adapt Case 1
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Dependency Group 3

Dependency Group 2Dependency Group 1

«sensor»
Sensor 2 « Adapt Case »

Adapt Case 1

«sensor»
Sensor 1

«sensor»
Sensor 3

«effector»
Effector 1

«use»
«use»

« Adapt Case »
Adapt Case 2

«use»

Figure 4.21.
ACIL Dependency
Groups

uses Sensor 1 and Effector 1. None of the three elements are linked to Sensor 2
or Sensor 3. Sensor 3 is not used at all by any Adapt Case. In this sketch, we end
up with three dependency groups which can be model checked separately.

The resulting benefit is depicted in Figure 4.22. While Sensor 1 produces four
possible states, Sensor 2 produces 11. If both would be combined into one de-
pendency group, we end up with 44 states in the LTS. Thus, if both sensors
are independent from each other, it makes perfectly sense to check both model
fragments separately.

44 States11 States4 States
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Figure 4.22.
ACIL Dependency
Groups Illustration

Action Sequence Automata Model

Action Sequence Automata Models (ASAM) are targeted at model checking.
Since these models are optimized to be as small as possible, they might be
hard to understand. As such, they are only a representation of adaptation be-
havior, such as monitoring or adaptation activities, but do not replace them.
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ASAMs can be compared to byte code that is an optimized and executable rep-
resentation of JAVA code.

To understand the need for ASAMs, let us look at the token-offer-semantics
that has been used by the UML for activity diagrams (and thus for monitoring
and adaptation activities) together with the corresponding LTS fragment.

Figure 4.23.
UML Token Offer
Semantics Offer Arrives

Accept Offer

Move Token

Execute Action

Produce 
Output Token

Produce Offer

LTS Activity

Figure 4.23 shows the LTS on the left and the activity on the right. As shown
in the first two and the last step, tokens are preceded by offers which can be
accepted by nodes. If an offer is accepted, the token flows to the accepting node
and is consumed which eventually includes the execution of an action. All in
all, performing a single action produces five LTS states which might be even
more complex if control nodes would be involved.

Figure 4.24.
ASAM Token Flow

Execute Action

LTS ASAM

Action

Action

In contrast, as depicted in Figure 4.24, ASAMs produce a single state which
simply executes the action and passes the token.

The meta model for ASAMs is shown in Figure 4.25. An ASAM contains a
UML state machine which describes all possible traces of actions that have
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Action Sequence
Automata Meta
Model

been modeled with the corresponding activity. Further, the ASAM adds a to-
ken node that allows the description of state machine runtime states. Finally,
a TransitionActionMapping maps a state machine transition to a UML action
which, e.g., adapts the system model by calling an effector.
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B

A B

B A

Activity ASAM

A

B

[a] [b]

A B

[a]

[b]

Figure 4.26.
Comparison of
Activities and ASAMs

Figure 4.26 shows example activities on the left and ASAMs on the right. Since
the ASAM is very close to the LTS itself, the semantics are very simple. Two
actions that are executed in parallel produce two paths in the state machine
which described the two possible orders. If two actions are executed condi-
tioned, two paths are generated as well, the first transition of each only can be
taken if the corresponding condition evaluates to true.

An ASAM is constructed as described in Figure 4.27. First, the activity dia-
gram is transformed into an LTS using DMM and an arbitrary activity seman-
tics, e.g., as given in [ESW07]. Thereby, actions are not executed, but only the
control and object flow is simulated. Next, the LTS is made more compact by
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Figure 4.27.
ASAM Construction
Process
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removing all intermediate steps that do not execute an action or evaluate con-
ditions. Candidates include token-offer-semantic transitions. The removal is
illustrated in Figure 4.28, the corresponding algorithm is straight-forward.

Figure 4.28.
Remove Activity
Intermediate Steps in
ASAMs
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After removing the intermediate steps, the LTS is transformed into an Non-
deterministic Finite Automaton (NFA) data structure that is transformed into
a Deterministic Finite Automaton (DFA) using the powerset construction
algorithm [RS59]. Next, the DFA is minimized using the Hopcraft algo-
rithm [Hop71], and finally, the DFA is transformed into an ASAM and the
original UML actions are linked to the transitions.

In the end, an ACML model has been transformed into an ACIL model that is
divided into several dependency groups andusesASAMs to describe behavior.
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In Section 4.3.3, we show the performance benefits of using the ACIL over the
ACML.

4.3.2 Multi-Staged Model Checking

The Multi-Staged Model Checking (MSMC) approach further speeds up feed-
back provisioning for the designer. Besides using the optimized ACIL for
model checking, the checking is performed in different stages as illustrated
in Figure 4.29.

co
st

 (s
pa

ce
)

model checking stage

e.g. atomic and 
boundaries only

e.g. atomic but all 
property states

complete 
state space

Figure 4.29.
Model Checking Runs
in MSMC-QUAASY

Earlier stages abstract from the original ACIL model to gain speed and reduce
costs in terms of space (i.e., for the state space). Errors or other properties
found in early stages are included in the original ACIL model as well. Thus,
the model checking may be stopped during an early stage if an error has been
found saving the time of constructing the complete state space. As depicted earlier stages run

faster but find less
errorsin Figure 4.29, the stages abstract the ACIL along different dimensions, e.g.,

treating adaptation activities atomic or checking only the boundaries of open
properties. The dimensions used may be chosen arbitrarily with the only re-
striction that the found properties have to be preserved in the non-abstracted
setting. We say the dimension is property preserving.

In this thesis, two concrete abstraction dimensions are presented for the use
withMSMC-QUAASY, the atomicity of adaptation activities and the boundary
states of open properties. They will be described in the following.
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Boundary Abstraction of open Properties

If applying boundary abstraction, open properties are only checked for their
boundaries. See Figure 4.30 for an example. The sensor “Crisis” has a prop-

Figure 4.30.
Boundary Abstraction
of open Properties «sensor»

Crisis

«Property»
severity: Int = 0

[0..9; 1]
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boundary 
states

all
states

2 states 10 states

erty named severity which ranges between 0 and 9 with a step size of 1. The
default value is 0. In the abstracted setting, this open property would generate
two states, i.e., doubling all other existing states in the dependency group (cf.
Section 4.3.1). In the non-abstracted setting, the property would generate 10
states, i.e., multiplying the number of existing states with 10. Hence, in the
abstracted setting, we reduce the number of states in the LTS by a factor of 5
for only one property. An evaluation of the benefits in terms of space is given
in Section 4.3.3.

Atomicity Abstraction

The second abstraction dimension treats adaptation activities to be atomic.

Figure 4.31.
Atomicity Abstraction
of Adaptation
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This dimensions is illustrated in Figure 4.31. On the left side, we have two
adaptation activities that belong to two different Adapt Cases. Both adapta-
tion activities have two adaptation actions, A1, A2 and B1, B2. In the origi-
nal ACML/ACIL semantics, these adaptation activities can be executed inter-
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leaved, leading to 6 traces in the LTS, as shown on the figure’s right side. If the
atomicity abstraction dimension is applied, the interleaved cases (see bottom
four traces in Figure 4.31) are ignored and A2 always follows directly after A1,
same being the case for B2 and B1. Thereby, we decrease the number of traces
to two. Since the two traces are also included in the complete LTS, errors found
in the abstracted setting will exist in the non-abstracted setting, too. Thus, the
dimension is property preserving.

Stage Hierarchies and their Construction

Theoretically, an arbitrary number of abstraction dimensions can be used with
the MSMC approach. Some properties may have to be checked on every stage,
while for others, it might be sufficient to use an abstracted LTS. Further, an in-
creased number of dimensions leads to an increased number of model check-
ing runs. If the benefit gained from one of the dimensions is not large enough,
the average used time of the overall model checking procedure might be larger
than the originally used time. For instance, if most of the errors are found in
early stages, the used time and space is successfully reduced. If, however, most
errors are found late, e.g., because of bad chosen dimensions, there will be a
disadvantage in time.

at
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noyes
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2

2

2

3

3

3

4

2 Dimensions
4 Model Checking Runs
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Figure 4.32.
Stage Hierarchies
based on the Degree
of Abstraction

Thus, a careful selection of dimensions and planning of the stages is important
for the success of the MSMC approach. Figure 4.32 illustrates the dependency
of the number of dimensions on the number of model checking runs. On the
left hand side, we used the two dimensions atomicity and boundary stages. In
the first stage, both dimensions are applied. In the second stage, each of the
two dimensions is applied separately. In the last stage, non of the dimensions
is applied. Overall, we have four model checking runs. On the figure’s right
side, a stage hierarchy with three dimensions is illustrated. First, all three di-
mensions are applied 1 . Next, each two dimensions are applied combined
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2 , followed by each dimension applied separately 3 . Finally, the complete
LTS is generated 4 . Thus, the LTSs that are generated lose abstraction with
each step, such that the first uses less space than the second and so on. The use
of three dimensions results in 8 model checking runs. Of course, single model
checking runs could be removed if for some reason they do not make sense or
do not add value.

Figure 4.33.
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Figure 4.33 describes how the stages are constructed. The first and second row
correspond to Figure 4.19. An ACML model that would have been translated
into an LTS using DMM semantics is now first translated into an ACIL model.
The corresponding ACIL semantics produce a smaller LTS.

To implement the stage hierarchy, there are different parameters that can beparameters for stage
hierarchies changed. On the one hand, themodel can be changed or sliced. Thus, we select

only particular information from the model: σ(MACIL). An example would be
to select only particular dependency groups for a particular stage. On the other
hand, the DMM semantics can be changed themselves. First the semantics can
be sliced to simulate only a specific part of the model or a specific aspect. For
instance, adaptation activities could be deactivated for specific runs. Second,
the semantics can be altered or extended to reflect specific constraints. One of
those constraints could be an additional rule that assures that only one adapta-
tion activity is activated per time, thus implementing the atomicity dimension.
Another constraint could assure that only boundary states are generated, thus
implementing the boundary dimension. Combining these two constraints re-
sults in the semantics DMMA∩B that implements Stage 1 of the setting shown
in Figure 4.32, left.
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The more constraining semantic rules are added to the semantics rule set, the
higher the Degree of Abstraction (DoA), and the less complete the resulting
LTS.

In the next section wewill present some figures gathered during an evaluation
of the MSMC-QUAASY approach.

4.3.3 Performance Evaluation

In this section, we present an evaluation of the optimizations for QUAASY.
We will define the evaluation in terms of research questions and hypotheses,
describe its design in terms of the used scenario, present the execution results,
and interpret and discuss theses results. Finally, wewill present known threats
to validity.

Evaluation Definition

The evaluation shall provide evidence that the construction of the labeled tran-
sition systems requires less space. This is the main objective of the optimiza-
tions tackling the problem of state space explosion. The research question is
as follows.

RQ1 How large are the advantages in terms of space if the optimizations for
QUAASY are applied.

We state the hypothesis that the optimizations save more than 50% of space
compared to the naïve approach without any optimizations.

Evaluation Design

In the following, we briefly describe the scenario used for the evaluation. It is
based on the bCMS scenario given in Section 2.1.

Figure 4.34 shows the Adaptation ViewModel for the scenario. It describes an
environment component named Crisis that has one effector and two sensors.
The effector allows to assign or retract vehicles from the crisis. The Severity
sensor reflects the crisis’ severity ranging from 0 to 30 with a step size of 10.
Finally, the Balance sensor is computed from theVehicle effector and the Severity
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Figure 4.34.
Simple Adaptation
View Model for bCMS «EnvironmentComp»

Crisis

«sensor»
Severity

«Property»
sev: Int = 0

[0..30; 10]

«sensor»
Balance (Need for Action)

«Property»
balance: Int = severity.sev - vehicle.veh*10

«effector»
Vehicle

«Property»
veh: Int = 3

[0..10; 1]

severityveh

sensor and judges about the balance between the crisis’ severity and the num-
ber of vehicles that are assigned. If the balance value is positive, more vehicles
should be assigned, if it is negative, less vehicles than assigned are necessary.
It is important to notice, that each real crisis instantiates theCrisis environment
component and has separate values for sensors and effectors.

Figure 4.35.
Simple Adapt Case for
Vehicle Assignment in
bCMS

« Adapt Case »
Assign More Vehicles

Monitoring Activitymon

Adaptation Activityadapt

Assign Vehicle
CX.veh ++

A[balance ≥ 0]
5 sec

[else]

Retract Vehicle
C|X-1|.veh --

∑(C.veh) < 6

Figure 4.35 shows a simple Adapt Case that assigns more vehicles if the bal-
ance is positive. The Adapt Case’s monitor is started for each crisis. The crisis
observed is denoted with CX with X being the crisis’ number. For simplicity,
we start the monitor after each change in the system or environment. Further,
the Adapt Case assumes that no more than 6 vehicles are available. If less than
6 vehicles have been assigned, a new vehicle is assigned to the corresponding
crisis in the adaptation activity. If all 6 vehicles are already assigned, a vehicle
is retracted from another crisis before.

For the evaluation, we instantiate the system with two crises. With the de-
scribed Adapt Case, this small scenario leads into an unstable system state if
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both crises want to assign a new vehicle. This will be demonstrated in the next
section.

Evaluation Execution

Before describing the concrete scenario, let us look at Figure 4.36 that shows
the state space (LTS) for the small example with the original ACML semantics.

Monitor Executions Monitor & Adaptation

(monitoring clouds) (adaptation clouds)

Figure 4.36.
Original Transition
System - 1270 states,
2188 transitions

We observe 4 almost independent state clouds, the first three of which describe
single monitor executions and the last of which describes monitor and adap-
tation executions. The state space consists of 1270 states and 2188 transition
which is remarkable much for this rather small scenario.

Monitoring Monitoring Monitoring Monitoring & 
Adaptation

Balance
severity - vehicles*10

Vehicles
Effector Property

Severity
Sensor Property (open)

Invariants
sum(Vehicle) ≤ 6

Crisis1, Crisis2 Crisis1, Crisis2 Crisis1, Crisis2 Crisis1 Crisis2

Severity+10 Severity+10 Severity+10

-30 -20 -10 0 0

3 3 3 3-4 2-3

0 10 20 30 30

Assign Vehicle
to Crisis 1

Assign Vehicle
to Crisis 2Severity-10 Severity-10

Figure 4.37.
Sketch of the
Transition System

See Figure 4.37 for a schema that describes how the LTS is constructed. We
start with an initial system configuration of two crises that both have 3 vehi-
cles assigned and a severity of 0. Thus, the balance is −30. In the scenario
setting, we assumed that the severity of both crises increases and decreases si-
multaneously. Further, there is an invariant that in total at most 6 vehicles are
assigned. As we have seen above, the Adapt Case takes care of this invariant.
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If in a first step, the severity of the crises increases by 10 (step size), the balance
decreases to −20. After a change in the environment, we again start the mon-
itors resulting into the second small cloud. Same applies to the third cloud.
Next, if the severity increases to 30, the balance reaches 0 and the monitors
trigger the adaptation activities. Since all 6 vehicles are assigned, the Adapt
Cases retract a vehicle from the other crisis which, in turn, leads to retraction
of vehicles from the original crisis, and so on. Thus, the system reached an un-
stable system state that cannot be left since adaptation has priority over system
and environment progress.

In the following, we will show the results from the applied MSMC-QUAASY.
We use three stages. In the first stage, we use the atomicity and boundary
abstractions. In stage two, we construct two transition systems, one for the
atomicity abstraction and the other for the boundary abstraction. Finally, in
the third stage, we construct the complete state space. For all constructions,
we use the ACIL over the ACML. The stability issue can be found in all stages.

Figure 4.38.
Stage 1 LTS (Atomicity
and Boundary
Abstraction) - 98
states, 104 transitions

Monitor Execution Monitor & Adaptation

Stage 1 Transition Systems Figure 4.38 shows the state space with both ab-
stractions applied. As obvious, the state space is far smaller than the original
one that has been created using the ACML. In detail, the two remaining clouds
contain less states since the Adapt Cases are executed atomically. Additionally,
the ACIL transformation leads to smaller state spaces since UML offers are ne-
glected and dependency groups are checked separately. In addition to the size
of clouds that has decreased, the number of clouds decreased as well. This is
because of the boundary abstraction. The state space consists of 98 states and
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104 transitions.
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Figure 4.39.
The Effect of
Boundary
Abstractions

Figure 4.39 shows the LTS schema for the boundary abstraction case. Since the
severity ranges between 0 and 30 we only consider the respective cases and
neglect the intermediate steps 10 and 20. Of course, if the sensor would be
more fine-grained, e.g. ranging from 0 to 50 with a step size of 1, the benefit of
boundary abstraction would be even larger.

Stage 2 Transition Systems On Stage 2 we first apply the atomicity abstrac-
tion followed by the boundary abstraction.

Monitor Executions Monitor & Adaptation Figure 4.40.
Stage 2 LTS (ACIL,
Atomicity
Abstraction) - 134
states, 144 transitions

Figure 4.40 shows the state space for the atomicity abstraction only. Again, the
clouds are rather small but all 3 small monitor clouds exist instead of only the
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first like on Stage 1. The state space consists of 134 states and 144 transitions
which still is very small compared to the original one.

Figure 4.41.
Stage 2 LTS (ACIL,
Boundary
Abstraction) - 393
states, 683 transitions

Monitor Executions Monitor & Adaptation

Figure 4.41 shows the state space with the boundary abstraction applied only.
While the two intermediate monitor clouds are neglected again, the clouds
themselves are larger since monitoring and adaptation activities are executed
interleaved. This results in a small explosion of states. The resulting state space
consists of 393 states and 683 transition.

Figure 4.42.
Stage 3 LTS (ACIL
Complete) - 435 states,
737 transitions

Monitor Executions Monitor & Adaptation

Stage 3 Transition Systems Finally, on Stage 3, the complete state space is
constructed without any abstractions. Thus all 4 clouds exist and the clouds
are rather large in their number of states. However with 435 states and 737
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transitions it is still small compared to the original ACML state space which is
because of the use of ACIL instead of ACML.

Evaluation Results & Discussion

The results of the evaluation are quite impressive. All state spaces decreased space reduction of
more the 50%in size more than 50%. The concrete figures are listed in Table 4.2. All model

checking runs are given with the applied abstraction dimensions, the number
of resulted states and transitions, as well as the sum of states and transitions
that is used as an indicator for complexity. The last row shows the benefit (per-
centage) compared to the original model checking approach that is based on
the ACML. The original approach’s figures are given in the first column. With
no abstraction dimensions applied, the resulting state space consists of 1270
states and 2118 transitions. The next four columns describe the three stages’
resulting figures. As expected, the greatest benefit can be obtained by applying
both abstraction dimensions. This has been done in Stage 1 achieving a benefit
of 94%. Stages 2 and 3 gained a benefit of 90% and 68% respectively. Finally,
using plain ACIL without any abstraction led to a benefit of 65%. All in all,
with a minimum benefit of 65%, the results look really promising. It appears
that the atomicity abstraction results in much larger benefits than the bound-
ary abstraction. This is due to the configuration of the scenario. If the step
size of the open sensor would have been smaller or more sensors would have
been taken into account, the benefit would have been larger correspondingly.
Thus, the benefits of particular abstraction dimensions depends on the con-
crete models at hand. Of course, the MSMC approach can be equipped with
additional abstraction dimensions to form even larger stage hierarchies. Often,
the advantage of an abstraction dimension depends on the quality properties
that shall be proven.

Original
(ACML)

Stage 1
(ACIL)

Stage 2
(ACIL)

Stage 2
(ACIL)

Stage 3
(ACIL)

Abstraction
Dimension

none Atomic &
Boundary Atomic Boundary none

States 1270 98 162 393 435
Transitions 2118 104 180 683 737
Total 3388 202 342 1076 1172
cp. ACML 0 94 90 68 65

Table 4.2.
Comparison of the
different Abstraction
Dimensions
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Threats to Validity

The evaluation, designed and executed as described above, gives rise to a few
threats to validity. First, the scenario might be picked with the abstraction
dimensions in mind. This threat was approached by defining the scenario up-
front, i.e., before the MSMC approach has been developed. Also, the scenario
not only shows benefits but also disadvantages, e.g., the fact that boundary
abstraction does not give much advantage in complexity in this scenario. An-
other threat to validitymight be the scenario’s sizewhich is rather small. How-
ever, we tried to use a realistic example that already would provide valuable
results in productive use. That is, the shown scenario reveals the problem of
instability although the model size is kept within bounds.

4.3.4 Discussion

The presented techniques to tackle the problem of state space explosion areconcern-specific
optimizations concern- and language-specific. That is, we used knowledge about the se-

mantics of the language to construct smaller state spaces. Of course there
are concern and language-independent techniques to alleviate the problem of
state space explosion. Especially on the last abstraction level (Stage 3 in our
scenario), we use further techniques given by DMM and Groove themselves.
First, DMM State Graphs only contain model elements that are influenced by
some application of DMM rules. All other elements are ignored. Therefore,
DMM state graphs are usually rather small. Second, the Groove researchers
provide various techniques to reduce the size of the state space, e.g., by using
abstract shape graphs [Ren04] that are automatically obtained from arbitrary
state spaces, or (similarly) graph abstractions that “mitigate the combinatorial
explosion inherent to model checking” [ZR11]. By the use of these techniques,
we can keep the runtime of our model checking approach sufficiently small.

Nonetheless, models tend to get very large. The more powerful the language,
additional
optimization
techniques
necessary

the more sophisticated the created models. Thus, in future it will be inevitable
to come up with additional means to tackle the state space explosion prob-
lem. One solution can be the definition of additional abstraction dimension
which in our experience is not a trivial task since they should be designed to
be property preserving, i.e., errors found in early stages must be contained in
the complete state space. In the end, tackling the state space explosion problem
stays a research field on its own.
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4.4summary & discussion

In this chapter, we presented a quality assurance approach for self-adaptive
software systems that uses model checking based on the ACML. Further, we
presented how the approach can be optimized to tackle the state space explo-
sion problem. In Section 4.1 we identified several requirements for the quality
assurance approach. In the following, we will summarize how the require-
ments are met.

QR01: Check Adaptation Rules QUAASY provides formalized semantics of
explicit adaptation rules. Thus, adaptation rules can be checked for cer-
tain properties on different abstraction levels. The semantics allow to
analyze every possible interaction between adaptation rules and find un-
intended interrelations.

QR02: Check Progress Rules QUAASY defines the semantics for the system
as well. This also allows to simulate the system and the effect of adap-
tation, and thus, the interrelations between application and adaptation
logic. Further, QUAASY defines several validation routines that check
the adapted system for several properties such as well-formedness, etc.

QR03: Check Functional Quality QUAASY translates the created models
into a model checking problem. The used model checker Groove al-
lows the use of LTL and CTL for checking functional correctness of the
system and thus indicate functional quality. QUAASY defines several
generic functional quality properties such as stability and deadlock free-
dom. Application-specific functional quality properties can be defined
using ACMLConstraints.

QR04: Direct Modeler Feedback QUAASY uses techniques to offline create
parts of the state space. Further, several optimizations have been defined
to allow a very fast model checking on high abstraction levels whichmay
indicate first modeling flaws. Combining these techniques, QUAASY is
possible to provide themodeler with almost immediate quality feedback
after he is saving a consistent state of his models.

QR05: No Formal Knowledge Needed The use of the model checker Groove
and the DMM techniques is hidden from the modeler (transparent or
tool-encapsulated model checking). That is, the modeler only uses
the ACML to model the system and an OCL-like language to define
application-specific quality properties. The model checking is triggered
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transparently and the results are presented in terms of the ACML again.
Thus, no knowledge of formal techniques is required.

QR06: Support Generic and Application-Specific Constraints QUAASY
comes equipped with a range of predefined generic quality properties
such as stability. Further, QUAASY allows the modeler to define
application-specific properties using an OCL-like language within the
ACML models.

All in all, the quality assurance approach meets all requirements and thus
greatly supports the designer in modeling a self-adaptive software system. By
now, the approach only supports functional properties. Non-functional prop-
erties are not support by QUAASY. However, ongoing work investigates the
combination of ACML, QUAASY, and SimuLizar, a performance analysis ap-
proach for self-adaptive software system [BLB13].
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Engineering Self-Adaptive Systems

“Verbal and nonverbal activity is a
unified whole, and theory and method-
ology should be organized or created to
treat it as such.”

– Kenneth L. Pike
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A thoughtful development process is the basis for good software engineering.
Thus, in this chapter, we will give a brief overview of how the Adapt Case
Modeling Language can be integrated into standard development processes.
Further, using the SPEM Profile (Software Process Engineering Metamodel),
we will sketch a development processes that uses goal-oriented requirements
engineering and is based on the UML for system design.

Figure 5.1 sketches the development process that will be described in the
following. We assume that the process uses a V-Model like structure, that
is a waterfall phase for the design and implementation of the system and
a matching testing branch in the second half of the project. A project’s re-
quirements are specified using a goal-oriented requirements engineering ap-
proach (GORE, here KAOS [vL09]). Further requirements are given using con-
trolled natural language (CNL). An extension to standard CNL schemes is RE-
LAX [WSB+09] that allows relaxing requirements and thus allowing the system
to adapt within a predefined corridor. Besides KAOS, CNL, and RELAX, the
UML is used for requirements and system design.

Our particular focus is on the late requirements phase and the system design
phase which consists of two sub phases, the logical and the technical design
phase. The logical design phase is driven towards a platform-independent de-
signwhile the technical design phase is targeted at a platform-specific designs.
Of course the two sub phases gradually fade into each other. Depending on
the concrete development process paradigm, these phases are repeated itera-
tively, incrementally, or even in a waterfall kind of manner. No matter of the
chosen paradigm, the main artifacts of the two phases remain the same.

During requirements engineering, a single overall System Goal is defined in
the first step. In a second step, this goal is refined to Requirements, e.g.requirements
using a goal-oriented approach such as presented in [CSBW09]. In goal-
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oriented approaches, a goal-lattice is created that reflects the system’s pur-
pose. Usually, leaves in this lattice (i.e., goal tree) are the concrete system re-
quirements. According to [CSBW09], these requirementsmay be relaxed using
RELAX [WSB+09]. Although requirements describe the WHAT of a system
rather than the HOW, in late requirements engineering, the requirements may
include explicit adaptation requirements. This is commonly seen in practice
but still not recommended since adaptation requirements usually describe a
concrete solution for a specific situation the systemmay be in. The correct root
phase for self-adaptivity is the design, where requirements are operational-
ized. Finally, in the requirements phase a very high-level domain model is
created that describes the main entities for the target domain.

The next process activity (logical system design) contains two tasks, a) the def- logical design
inition of the core business logic and b) the definition of the adaptation logic.
The core business logic is described using use cases and UML component and
class diagrams. Use Cases are a first operational description of how require- business logic
ments can be realized. Many use cases may realize many requirements (n:m).
A class or component diagram defines a first logical structural view onto the
system (i.e., systemmodel). Often, the class or component diagram is inferred
from the domainmodel. Thus, the input for the first task are (relaxed) require-
ments and the domain model. If adaptation requirements exist, they may be
neglected here and specified in the adaptation logic. Also, specific alternatives
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or exceptions may be left for definition in the adaptation logic. Thus, the cre-
ated use cases and the system model alone might not fulfill all requirements.

The second design task is the definition of adaptation logic. Adaptation logicadaptation logic
usually refers to business logic. Thus, first the business logic has to be defined
which then may be adapted by adaptation logic. However, business logic and
adaptation is usually defined in parallel since the designer might have at least
basic adaptation rules in mind while creating the business logic.

For the definition of adaptation logic, Adapt Cases and the Adaptation View
Model are used. Adapt Cases externalize specifications of adaptation on use
case level. Indicators for adaptivity are alternative and exceptional flows in use
cases, relaxed requirements, and of course, adaptation requirements. How-
ever, as discussed in Section 2.2.2 the distinction of adaptation and application
logic is up to the designer.

The Adaptation View Model introduces several new aspects that allow to
clearly define adaptivity specific elements. Examples include Environment-
Components, SystemComponents, Sensors, Effectors, etc. The Adaptation
View Model is described in detail in Chapter 3. Usually, the Adaptation View
Model is an extended view onto the system model. That is, relevant entities
of the system model are visualized within the AVM and decorated with addi-
tional information, e.g. adaptation interface properties.

During design phase, use cases and system model are refined towards a more
detailed and technical description. In the same manner, Adapt Cases andtechnical design
Adaptation View Model are refined. Finally, Use Cases, Adapt Cases, Sys-
tem Model, and Adaptation View Model are handed over to implementation.
In rare cases, these models are interpreted directly. A concrete example is
the use of process models and related Adapt Cases in process execution en-
gines [Res12].

The design using Adapt Cases enables early quality assurance on a high-
level of abstraction. Generic quality constraints ensure the non-application-
specific correctness of the adaptation specification. Examples include stability,
deadlock-freedom, etc. Application-specific quality constraints ensure the cor-
rect realization of requirements. Application-specific quality constraints are
inferred from/take into account the requirements.

The process description given above is rather an overview of where the ACML
integrates into arbitrary UML-based processes. To give a more detailed view
of using the ACML, in the next section, we will define an engineering pro-
cess for self-adaptive systems using the Software Process Engineering Metamodel
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(SPEM) [Obj08]. The defined SPEM artifacts can be used with others that de-
scribe another process such as RUP or SCRUM and thus help to obtain a com-
plete formal method description for engineering self-adaptive software sys-
tems.

5.1a spem engineering process definition

In this section, we describe a basic engineering process for self-adaptive soft-
ware systems using the Software Process EngineeringMetamodel (SPEM). The spem = software

process engineering
metamodelSPEM was developed to enable the modeling and exchange of software en-

gineering processes. The main artifacts of SPEM are roles, tasks, and work
products as show in Figure 5.2. Roles perform special tasks that take as input
several work products and produce several work products as outputs. This
triple defines reusable tasks that can be orchestrated in arbitrary engineering
processes. Optionally, tasks may be further refined by steps. For the descrip-
tion of the steps’ ordering, activity diagrams can be used since steps inherit
fromUML actions. An engineering process is described using SPEM activities
(upper left in Figure 5.2) that inherit from UML activities. Thereby, tasks are
orchestrated by the use of UML activity notation. The orchestrated tasks are
given by Task Uses, the instantiation of task definitions.

Role Task Work Product

Step

Activity Task Use

0..*

performs

0..*

0..* input 0..*

0..* output 0..*

0..*

0..*

0..*instantiate
1

Figure 5.2.
SPEMMetamodel

For our engineering process for self-adaptive software systems, we will first
describe the definition of roles and tasks which are then orchestrated in an
engineering process. The process is based on standard engineering processes.
These standard engineering processes are reflected in the use of standard roles
such as Analyst, Architect, Designer, Developer, and Tester. To take the specific
requirements of engineering self-adaptive systems into account, an additional
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role, the Adaptation Engineer is introduced, that is divided into further sub
roles, the Adaptation Analyst, the Adaptation Architect, and the Adaptation De-
signer (cf. Figure 5.3). As known from standard engineering processes such
as the Rational Unified Process [Kru03], the analyst is responsible for require-
ments engineering, the architect creates an overall system architecture, and the
designer details the architecture, e.g., with platform-specific details, for imple-
mentation.

Figure 5.3.
Extended Role Model
for Engineering
Self-Adaptive
Software Systems Adaptation

Architect

Analyst Architect Designer Tester

Adaptation
Analyst

Domain Analyst Domain
Architect

Adaptation
Engineer

Adaptation
Designer

Domain
Designer

Developer

In the following figures, we describe the tasks the different roles are responsi-
ble for. Thereby, we focus on the tasks that were added or are vitally important
for the purpose of engineering self-adaptive software systems. The remaining
tasks are defined in standard development processes and can be obtained, e.g.,
from the Internet at http://epf.eclipse.org/wikis/openup.

Figure 5.4 describes the tasks, the domain analyst and the adaptation analyst
are responsible for. The first task is performed by the domain analyst. He elic-
its the overall project or system goals and describes the context the system acts
in. Goals and context are input for the following two tasks. The requirements
analysis performed by the domain analyst results in a set of use cases and a
set of overall system requirements, i.e., the requirements that cannot be repre-
sented by use cases, e.g., since they do not describe external system behavior.
The adaptation analyst performs a requirements analysis dedicated to the con-
cern of self-adaptation resulting in a set of Adapt Cases (i.e., high-level adap-
tation rules) and uncertainties. These uncertainties describe open variables in
the context, i.e., context variables that cannot be specified precisely, e.g., since
they are outside the system scope. Of course, it is recommended that both the
domain analyst and the adaptation analyst cooperate on their models.

Figure 5.5 details the task Adaptation Requirements Analysis with the notion of
steps. As shown in the figure, the steps are suggested to be performed in se-
quence. After having identified the uncertain context variables (i.e., open vari-
ables) they are detailed by defining a range (if known), a frequency of change

http://epf.eclipse.org/wikis/openup
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(if known), and a step size. The latter is used for simulating the open context
variable during quality assurance. The uncertainties may require certain sys-
tem functionality to be present, e.g., handling an uncertainty or constraining
the effects that might occur due to the uncertainty. This functionality must be
described using additional requirements or adjusting existing requirements.
For considering the uncertain context, the controlled natural requirements lan-
guage RELAX [WSB+09] can be used. Finally, in the last step, Adapt Cases can
be defined that describe how the uncertainties are handled on a high-level of
abstraction.

Figure 5.6.
Tasks of Domain and
Adaptation Architects

Create
Architecture

Domain
Architect

Adaptation
Architect

Architecture

Use Case Model

Requirements

Adaptive
Architecture
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Uncertainties

«input»

«input»
«output»

«performs»

«input»

«input»

«input»

«input»

«input»

«performs»

«output»

The next tasks, the domain and adaptation architects are responsible for, are
shown in Figure 5.7. The resulting artifact of the task Create Architecture per-
formedby the domain architect is a systemarchitecturewhich does not yet con-
sider any adaptation-specifics. The adaptation architect creates an adaptation
architecture using the Adaptation ViewModel (AVM). Therefore, he considers
the created architecture that must be reflected by the AVM. The AVM contains
first high-level definitions of adaptation interfaces (sensors and effectors) that
are used by the high-level Adapt Cases. Of course, this might include a feed-
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back loop with the adaptation analyst to adjust the high-level Adapt Cases.

Define
Adaptation
Interfaces
(Sensors &
Effectors)

Define Knowledge
Information (opt)

Define Adaptation
relevant Invariants

Define
Environment
Components

Define Environment
Signals

Figure 5.7.
Task: Create Adaptive
Architecture

As shown in Figure 5.7, creating an Adaptation View Model includes a) the
definition of environment components which are inferred from the context de-
scription, b) the definition of sensors and effectors as well as additional knowl-
edge such as computations, c) the definition of signals that may originate from
the environment, and finally, d) the definition of invariants that become rele-
vant when considering self-adaptation.

If an architecture has been created, it can already by analyzed using appro-
priate tools. As shown in Figure 5.8, the analysis may be performed by the
adaptation architect who does not need to be a QA specialist due to the tool-
encapsulated transparency of the quality assurance approach (cf. Chapter 4).
The analysis is performed using the QUAASY approach that needs as input
a) the Adaptation View Model and b) the Adapt Case Model and produce an
Adaptive Architecture Analysis Report that can be used to revise the adaptive ar-
chitecture. Of course, other tools can be used here, e.g. the SimuLizar tool that
allows for performance analysis of self-adaptive systems [BLB13].

Note at this place that not all tasks have been described in detail above since
in general they are very similar to the shown definitions. Especially, the de-
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Figure 5.8.
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sign tasks the domain and adaptation designers are responsible for are very
similar to the architecture tasks despite the fact that the models are detailed
for instance by using platform-specific information. If, however, all definitions
are in place, the process for self-adaptive software engineering can be defined
as shown in Figure 5.9.

Adaptive
Architecture

Adaptive
Design

Architecture Design

Requirements Adaptive
Requirements

Implementation

Figure 5.9.
Self-Adaptive
Software Engineering
Process

Figure 5.9 shows several SPEM activities that define an explicit order of the
tasks that have been defined above. While the requirements analysis of adap-
tivity is performed after standard requirements analysis, the adaptation spe-
cific activities for architecturing and designing are performed in parallel to
their corresponding domain activities. The reason is that requirements that
concern the self-adaptivity of the system already described the “How” of the
system since adaptivity is a solution for demands of (non-functional) require-
ments. Thus, requirements analysis concerning the system’s adaptivity is part
of very late requirements engineering, and hence, is defined to be an activity
subsequent to the standard requirements analysis. Obviously, feedback loops
to prior activities always exist.
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Figure 5.10.
Process Activity
Definition: Adaptive
Architecture

Finally, the detailed definition of the activities shown in Figure 5.9 are given
using activity diagrams that orchestrate the tasks defined above. An exam-
ple activity definition is given in Figure 5.10 that shows the definition of the
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process activity Adaptive Architecture. According to this definition, first the ar-
chitecture is created initially, followed by its analysis and in case of recognized
flaws it is revised and analyzed again. If nomore flaws are identified or it is de-
liberately decided to not revise the model any more, the activity is terminated
and the next process activities (i.e., Design and Adaptive Design) are executed.
Likewise, the other process activities are defined in detail.

5.2 related work

There is few research about engineering of self-adaptive software systems.
However, the closely related field of self-organizing multi-agent systems
(MAS) is more mature in providing (SPEM-based) engineering process de-
scriptions [GCGC08, DW07, DMSFR10]. Since from a process perspective self-
organizing MAS and self-adaptive software systems are very similar, in the
following we will described some of the works provided for both paradigms.

The authors of [GCGC08] propose the ADELFE process for agent-based sys-
tems. They distinguish four main work definitions prior to implementation
and test being Preliminary Requirements, Final Requirements, Analysis, and De-
sign. Similar to our approach, they first investigate requirements for context
uncertainties during Final Requirementswhich corresponds to our late require-
ments phase. In this phase, they suggest to characterize the environment by
qualifying determinism, dynamicity, unexpected situations and harmfulness
of these situations. During Analysis the ADELFE process suggests to identify
agents and their relationships. Since agents are the self-adaptive entities the
system consists of, this process task is similar to our task of defining Adapt
Cases and the Adaptation View Model with sensors, effectors, etc. Studying
the relationships between agents corresponds to our quality assurance tasks
that can be first applied in this development phase. Finally, in ADELFE’s De-
sign phase, the agents are designed in detail and first fast prototypes are cre-
ated. This phase corresponds to our design phase where detailed (platform-
specific) models are created to described the system’s self-adaptivity. All in
all, the ADELFE process that is targeted at agent-based engineering of emer-
gent systems is very similar to our process for self-adaptive software systems,
the only big difference being the paradigm chosen (agent-based systems vs.
rule-based systems).

Another approach, named MetaSelf [DMSFR10], considers a self-organizing
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system as a set of loosely coupled components that act autonomously. The
MetaSelf development process focuses on self-* requirements during require-
ments and analysis and on self-organization mechanisms that are based on
agents and policy models during design. The most important tasks within
MetaSelf considering self-adaptation are a) the definition of adaptation and
coordination mechanisms out of self-* requirements, and based thereon, b) the
definition of policy models and agent models during design. Both tasks reflect
the creation of the Adaptation View Model and the Adapt Case Model in our
presented process.

Seebach et al. [SNSR10] propose a software engineering guideline using SPEM
that helps engineering Organic Computing (OC) systems of self-x systems. Es-
pecially, their approach is directed towards resource-flow systems, i.e., several
stations within a production street which have several capabilities and may
change their state / mode based on current needs, e.g., reacting to a failure of
a particular station. The proposed process intends the modeler to first model
a non-OC-system which later on is extended to have OC capabilities. This is
different from our approach that allows both the business logic and the adap-
tation logic to be designed in parallel. Of course, this greater flexibility come
with the cost of higher efforts in synchronizing modeling activities.

Andersson et al. [ABB+13] describe more generally how traditional software
engineering processes have to be reconceptualized to distinguish between
development-time and run-time adaptation activities. They extend the SPEM
meta model to properly express the new concepts of online and offline activities
within an engineering process for self-adaptive systems. The approach allows
to describe self-adaptation activities as engineering activities at run-time us-
ing the SPEM meta model. In this chapter, we only describe offline activities
whereas online activities are described separately using the concern-specific
modeling language ACML.+

5.3summary & discussion

In this chapter we presented a basic software engineering process described
with SPEM based on the unified process. Tasks are defined as reusable units
that can be orchestrated in arbitrary engineering processes (e.g., waterfall, iter-
ative, agile, etc.). The presented process is particularly interesting in the course
of this thesis since it clarifies the use of the presented language (Chapter 3) and
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techniques (Chapter 4) within standard software engineering processes. The
presented process introduces additional concern-specific roles (e.g., adapta-
tion architect), work products (e.g., adaptive architecture), and tasks (e.g., cre-
ate adaptive architecture) which are described in detail with the use of SPEM
steps.

The definition of this process inherits several benefits. First, the process exten-
sion is not invasive at all. That is, it is easy to integrate in different kinds of
software engineering processes, e.g., agile processes like SCRUM. Second, by
the used concept of roles, the presented process does not require more peo-
ple to be employed but rather systematically structures the work for existing
employees. Of course, additional models (ACM, AVM) require additional ef-
forts, however, the benefit of early quality assurance appears, helping taming
the software’s inherent complexity. All in all, when defining a software engi-
neering method, the presented extension can be included optionally with low
efforts but high benefits when designing self-adaptive software systems.
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“True genius resides in the capacity for
evaluation of uncertain, hazardous, and
conflicting information.”

– Winston Churchill
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The last three chapters described a modeling language for self-adaptive soft-
ware systems, a corresponding quality assurance approach, and an engineer-
ing process fragment that uses both the language and the quality assurance ap-
proach. In this chapter, wewill describe the evaluation approach that has been
taken to show the approach’s suitability. The overall evaluation goal is directed
towards different dimensions including a) the language’s state of the art (lan-
guage features) regarding the target concern self-adaptivity, b) the language’s
expressiveness, usability, and applicability as well as comprehensibility com-
pared to plain UML, c) the language’s extensibility to different domains, and
d) a comparison to other languages with particular focus on composition tech-
niques.

Figure 6.1.
All Evaluation
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Therefore, the Adapt Case Modeling Language has been evaluated using a
combination of different approaches including formative evaluations that per-
form evaluation and language engineering in parallel aiming at continuous
improvement of the language. As shown in temporal order in Figure 6.1, the
evaluations include

Two Assessments in Section 6.1.1 and Section 6.1.5. An assessment is the pro-
cess of documenting characteristics of the evaluation subject using mea-
surable terms. A formative assessment is carried out throughout the sub-
ject’s engineering impacting decisions taken during engineering [Bos02].
A summative assessment is used to characterize the evaluation subject
according to defined characteristics after it has been engineered.

Two Experiments in Section 6.1.2 and Section 6.1.4. An experiment is a well-
defined, focused study for the establishment of a hypothesis [Bas07].
Human-oriented experiments make humans apply different treatments
to objects, while in technology-oriented experiments, the focus is on tech-
nical treatments instead of humans [WRH+00].

An Illustrative Case Study in Section 6.1.3. An illustrative case study utilizes
an instance of the evaluation subject to point out certain properties. Usu-
ally, case studies are aimed at establishing relationships between differ-
ent attributes. A case study is an observational study while the experi-
ment is a controlled study [WRH+00].

The first two evaluations (Section 6.1.1 and Section 6.1.2) have been carried out
in the course of a master thesis [Bis11] the results of which will be sketched
briefly with the corresponding design. The case study is described in terms of
the resulting models which are discussed to point out several interesting find-
ings. The technology-oriented experiment focuses on the comparison of using
the ACML versus using plain UML. The illustrative assessment aims at com-
paring the ACML to other languages using a questionnaire. For all evaluations
we mainly focus on the evaluation design description to enable a thorough rep-
etition of the evaluations. It is part of obligatory future work to repeat these
evaluations on a broader basis especially regarding size.
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6.1 evaluation approaches

To achieve the structure necessary for repetition of the evaluations, we estab-
lish a basic structure of the following evaluation descriptions that is based on
an article by Robert K. Yin [Yin91]. It contains the following key elements:

Evaluation Design.
– Evaluation Questions. Description of the research questions that

drive the evaluation.
– Evaluation Proposition. Description of the propositions, a state-
ment of assertion that expresses an opinion or judgment, related to
the posed research questions.

– Units of Analysis. Description of the concrete units that will be
analyzed to answer the research questions.

– Linking Data to Propositions. Description of how the resulting
data can support the propositions made.

– Interpretation Criteria. Description of the criteria used for inter-
preting the results.

Evaluation Execution. (opt) Description of the execution of the evalua-
tion and depiction of the created artifacts, models, or figures if the eval-
uation has been carried out.
Evaluation Results & Discussion. (opt) Description of the results if the
evaluation has been carried out and discussions of interpreted results.

All five evaluations are described in the following sections using this structure.

6.1.1 Formative Assessment: Language Features

The formative assessment approach was carried out as part of a master’s the-
sis [Bis11] with the goal of assessing the language regarding the current state
of the art for modeling self-adaptive software systems. In the following, we
describe the assessment’s design.

Assessment Design

Questions The assessment’s main goal is to mirror the ACML at common
sense of modeling self-adaptive software systems that has been pre-
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sented in Section 2.2 and the original source requirements as presented
in [LNGE11]. As a side goal of this assessment, basic usability criteria
were used for the assessment of the language. Therefore, the assess-
ment’s research questions are as follows.

RQ1 Does the ACMLmeet common criteria posed by the research com-
munity for modeling self-adaptive software systems [ALMW09]?

RQ2 Does the ACML meet its original source requirements posed
in [LNGE11]?

RQ3 Does the ACMLmeet common usability criteria given in [Moo09]?

Proposition The proposition is that the ACML either meets the criteria or pro-
vides good reasons for not meeting the criteria:

PR1 The ACMLmeets most criteria for modeling self-adaptive software
systems posed by literature and all its source requirements. The
ACML is usable considering common criteria.

PR2 Lack of fulfillment is due to design decisions regarding trade-offs.
PR3 Lacking features can be overcome by workarounds or may be

added in future.

Units of Analysis The ACML is checked including all of its language features,
e.g., adaptation actions. The criteria to mirror at are gathered from cur-
rent literature that describes ontologies, meta-models or the like for self-
adaptive software systems. The criteria are shown to be fulfilled by pro-
viding concrete examples.

Linkage of Data to Propositions The resulting data is the degree of require-
ment fulfillment (on a qualitative scale) with justifications given by ex-
ample and explanations. The proposition is best fulfilled if all cri-
teria are fulfilled by the ACML. Lacking fulfillments must be traced
down to trade-off decisions. Lacking features must be redeemed with
workarounds or descriptions how the feature can be included in future.

Interpretation Criteria For rating the fulfillment of criteria, we use an ordinal
5-level scale as shown in Table 6.1. Both descriptive and numeric values
can be used, starting with 2 (unacceptable) as the lowest value and 10
(excellent) as the highest value.

The criteria’s degree of satisfaction is unacceptable if a requirement cannot
be fulfilled by the ACML at all. The degree is excellent if a requirement
has been fulfilled by the ACML. If it is not fulfilled but can be fulfilled
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in future with reasonable small effort, the degree of satisfaction is accept-
able. If a requirement could be fulfilled in theory but with great effort,
the degree of satisfaction is moderate. Finally, the degree is good if the
requirement is not completely fulfilled but with small variations.

Table 6.1.
Measurement 5-level
Scale

Descriptive Numeric
Unacceptable 2
Moderate 4
Acceptable 6
Good 8
Excellent 10

Assessment Execution

The assessment was conducted during a master’s thesis. The results of the as-
sessment have been valuable for creating and updating the language’s design.
However, due to the limited time and depth of a master’s thesis, the assess-
ment is considered as an assessment sketch here, and thus, is planned to be re-
executed in future on a more thorough basis. In the following, we discuss the
assessment’s execution details followed by a discussion of results in the next
section.

The different criteria that were used to create an assessment form were taken
from three different sources. The first source are the modeling dimensions
that have been proposed by Andersson et al. [ALMW09]. This source has been
taken since themodeling dimensions are well-accepted in the SEAMS research
community that deals with self-adaptive systems. Hence, these dimensions
provide a solid base of the community’s perception of self-adaptive systems
and thus form a group of assessment criteria that judge about the adaptation
description capabilities of a language. The second source that judges about a
language’s usability is the work about different principles for designing cog-
nitively effective visual notations by Danial Moody [Moo09], a standard eval-
uation framework for usability of (visual) languages. Finally, the third source
of criteria was the original statements that were made in the first paper about
the ACML [LNGE11]. Thus, the ACML is checked against its own source re-
quirements. The following list presents an excerpt of the inferred evaluation
criteria (EC).

Criteria related to Adaptation Description These criteria origin from the
modeling dimensions proposed byAndersson et al. [ALMW09]. They concern
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the expression / modeling of self-adaptive systems. Five of the criteria are as
follows.

EC2 Flexibility. To what degree allows the ACML to describe the level of un-
certainty that is associated with system goals?

EC8 Frequency. Can the frequency of change occurrence (e.g., rare or frequent)
be described?

EC9 Anticipation. Are different types of change prediction (e.g., foreseen or
unforeseen) supported by the ACML?

EC11 Autonomy. Does the ACML allow for different degrees of outside/hu-
man intervention? (e.g., autonomous or assisted)

EC16 Triggering. Are different types of adaptation triggering supported? (e.g.,
event triggered or time triggered)

Criteria related to Language Usability These criteria stem from the cognitive
dimensions framework proposed byDanialMoody [Moo09]. They concern the
language’s usability. Two of the criteria are as follows.

EC21 Visual Expressiveness. How many different visual variables [Moo09] are
used?

EC24 Perceptual immediacy. How good is the association between concepts of
the ACML and their notation?

Criteria related to the ACML’s Source Requirements These criteria are
concerning the first original source requirements of Adapt Cases as presented
in [LNGE11]. Three of the criteria are as follows.

EC26 Separation of Concerns. To what degree does the ACML allow the sep-
arate description of adaptation logic and their relations to application
logic?

EC28 Integration / UML Consistency. To what degree is the ACML consistent
with the UML and UML-based processes?

EC29 Control Loops. To what degree are control loops expressible using the
ACML?
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Assessment Subject: Modeled Example Scenario Using these criteria or
questions, particular language featureswere evaluated using the example of an
adaptive rack server system. The main purpose of the system is to provide the
infrastructure for delivering web pages to end users. In case of resource bot-
tlenecks additional computation resources may be obtained from the cloud. A
non-functional requirement in this scenario is the operation of the rack server
system at minimum cost, i.e. in particular the number of used cloud resources
(pay-per-use) must be minimized at all times. Other requirements demand for
an automatic fan management depending on the number of used servers as
well as an automatic server management depending on the current workload.
The functionality of server management, fanmanagement, and cloud resource
integration can be considered as self-adaptive behavior, while the load that is
generated by user requests is part of the uncertain environment that has to be
monitored.

In the end, for each criterion, the answer could be equipped with a concrete
example if fulfilled or counter examples or argumentations if not fulfilled.

Assessment Results & Discussion

The results were edited and presented using spider web diagrams as depicted
in Figure 6.2. All spider web diagrams and details regarding their discussion
can be found in [Bis11]. The results’ investigation led to several findings which
were used to further improve the ACML.

Figure 6.2.
Spiderweb Diagram
with a subset of the
Assessment Criteria Flexibility

FrequencyAnticipation

Autonomy

Triggering

Visual Expressiveness

Perceptual
immediacy

Separation of
Concerns

Integration /
UML Consistency

Control
Loops
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All in all, the assessment andmodeling using the example scenario showed the
ACML to be expressive, usable, and fulfilling its requirements. Some short-
comings that have been identified could be eliminated during later language
engineering iterations. A concrete example for shortcomings concerned the se-
mantics of the ACML in general and the timing issues in mechatronic systems
in particular. If for example an Adapt Case activates additional fans to alle-
viate the problem of high temperature, the effect of lowering temperature is
delayed by physical properties. Using the original semantics, the Adapt Case
would have been applied over and over again. Thus, we changed the semantics
to not restart a monitoring activity before the corresponding adaptation activ-
ity has been finished. Thereby, the adaptation activity may use a time delay
action to force the Adapt Case wait for the adaptation’s effect before reapply-
ing eventually. Concerning usability, the resulting data suggested to increase
the notation’s pop-out to ease the quick distinction of different elements on
first sight. We introduced extra speaking icons for adaptation actions to fol-
low this suggestion. A more detailed discussion of the assessment’s findings
can be obtained from [Bis11].

6.1.2 Human-Oriented Experiment: Usability & Expressiveness

The second evaluation approach involved a group of 10 students who used
the ACML to model the adaptivity of a real-world web-based learning system.
Focus of this experiment is usability & expressiveness of the language.

In the following, we briefly describe the experiment’s design, execution, and
results.

Experiment Design

Questions The main goal of the experiment was to investigate the usability
and expressiveness of the ACML if applied by non-experts (knowledged
and laymen). The two research questions are as follows:

RQ1 Is the ACML sufficiently expressive to model the example system,
a web-based learning system?

RQ2 How is the usability and perceptual immediacy of the ACML
(cf. [Moo09])?
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Proposition The proposition is that the ACML is indeed applicable by non-
experts and is sufficiently expressible to model the example system:

PR1 The ACML is sufficiently expressive to easily model the example
system.

PR2 The participants are able to use the ACML without any further
teaching.

PR3 The participants correctly use the language elements.

Units of Analysis To start the experiment, the ACML and an example self-
adaptive software system, the Adaptive Learning System, are briefly de-
scribed and handed out to the participants. The participants create mod-
els for the example system. These models are the main units of analy-
sis. A supporting questionnaire about the expressiveness and usability
is filled-in by the participants after creating the models. The filled-in
questionnaires are units of analysis, too.

Linkage of Data to Propositions If the resulting models sufficiently describe
the example system in the limited amount of time, the expressiveness
andusability are said to be sufficient. Further, the filled-in questionnaires
explicitly elicit the strength and weaknesses of the ACML regarding us-
ability and expressiveness.

Interpretation Criteria Again, for rating the satisfaction of our propositions,
we use an ordinal 5-level scale that is shown in Table 6.1. Both descriptive
and numeric values can be used, starting with 2 (unacceptable) as the
lowest value and 10 (excellent) as the highest value.

The degree of satisfaction is unacceptable if the system could not be mod-
eled, at all. It ismoderate if the system was modeled but including severe
flaws and thus is not understandable without asking the modeler. The
degree of satisfaction is acceptable if the systemwasmodeled but includes
flaws that can be traced back to the ACML itself. The degree is good if the
systemwasmodeled correctly but more circuitous or complex as it could
be. Finally, the degree of satisfaction is excellent if the system was mod-
eled correctly and straight-forward.
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Experiment Execution

The experiment was performedwith a group of 10master students whowhere
recently starting a project group that dealt with the extension of the ACML for
process-oriented systems. Thus, the students had a rough knowledge of the
ACML while the level of knowledge strongly differed among the group. The
group was asked to model an adaptive learning system, a web-based system
that adapts the difficulty level of learning material according to the student’s
knowledge which can be inferred from his grades and the exercises performed
so far. After having modeled the system, the students were asked to fill out
a questionnaire that was meant to capture the students comprehension and
mood while using the ACML. Questions of the questionnaire included the fol-
lowing:

1. Is the border between functional and adaptive behavior clear?
2. Can the ACML describe time triggered adaptation?
3. Can the ACML describe event triggered adaptation?
4. Can the ACML model consequences of adaptation failures?
5. How good can the ACML model adaptivity?
6. How good can the notation be mapped to the problem world?
7. How difficult is the distinction of symbols in the ACML?
8. How difficult is it to understand models created with the ACML?

Both the models and the filled-in questionnaires were used for analysis.

Experiment Results & Discussion

Again, the language proved to be sufficient in modeling the adaptive learning
system. This experiment’smain result was that theACML’s operations seemed
to be to low-level. Therefore, we supported the creation of reusable compound
operations that reflect typical adaptation pattern. Another important find-
ing was that using the ACML was way easier when the MAPE-K pattern was
known. More precisely, teaching the modeler in the four MAPE phases helps
with the distinction of themonitoring and adaptation activities. This correlates
with finding presented in [WIS13]. A detailed report and additional findings
are given in [Bis11].
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6.1.3 Case Study CWI: Extensibility & Applicability

The CWI case study is about a car window insurance process. This case study
has been developed with an industrial partner and is closely related to one
of their projects. The CWI process was designed to be self-adaptive and was
modeled with a domain-specific extension of the ACML. Focus of this study
was the extensibility and applicability of the ACML for a specific domain, i.e.,
process-oriented service-based software.

Case Study Design

Questions Themain concern of this case study is the extensibility of theACML
towards a specific domain. In particular, this case study investigates the
modeling of process-oriented self-adaptive systems. An important fact to
investigate is whether the ACML is sufficiently generic to allow domain
specialization without breaking existing features of modeling or quality
assurance. The research questions are as follows.

RQ1 Is it possible to extend the ACML with domain-specific elements
to support a specific domain and ease specification?

RQ2 Is it possible to model a process-oriented self-adaptive system us-
ing the extended ACML?

Proposition The propositions are twofold just like the research questions and
basically are about to positively answer the questions:

PR1 It is easily possible to extend the ACML with domain-specific ele-
ments, e.g., using UML Profiling mechanisms.

PR2 The resulting language allows to model process-oriented self-
adaptive systems in a domain-specific manner.

PR3 The extension does not break any language or quality assurance
features.

The first proposition handles the generic case and is refined by the second
proposition which relates to process-oriented self-adaptive systems. The
last proposition considers the case of proper genericity of the ACML.

Units of Analysis The ACML is extended to address process-oriented self-
adaptive systems and applied to a case study, named Car Window In-
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surance (CWI). The resulting extended language and possibly extended
quality assurance techniques are subject of analysis.

Linkage of Data to Propositions The amount of changes to be made to the
original ACML must be minimal or zero to fulfill the requirement for
easy extension (PR1, RQ1). Further, extending the language should not
break any methods or techniques that have been created for the ACML.
Therefore, the existing quality assurance techniques shall be used with
the extended modeling language. If all techniques are still applicable,
proposition PR3 is fulfilled, if not, research question RQ1 must be an-
swered negatively. Finally, the createdmodels for the CarWindow Insur-
ance project may support proposition PR2 and research question RQ2.

Interpretation Criteria Research question RQ1 is positively answered if the
number of changes necessarily to be applied to the ACML is zero and the
number of ACML & QUAASY features that are broken by extension are
zero, too. Answering research question RQ2, again relies on subjective
judgment in this thesis. If the modeled system can be represented using
domain-specific means, RQ2 can be answered positively. The degree of
satisfaction requires a more extensive evaluation.

Case Study Execution

The case study was performed by the project group MEPASO in our research
group. A project group is a group of usually eight to 15 students who to-
gether conduct a project that lasts one full year. The task of the project group
MEPASO [Res12] was to create a modeling and quality assurance workbench
for self-adaptive process-based service compositions. Therefore, the students
reused and extended the ACML by domain-specific elements to model the
adaptation of the process and the service bindings. Further documents related
to the results of the project group can be obtained from the website at [Luc13].

In particular, the ACML is extended to specify the adaptation of processes, i. e.
the behavioral description of software systems. Therefore, the process mod-
eling language BPMN [Bus09] was incorporated into the ACML and Adapt
Cases were extended to allow specification of adaptation of BPMN models.
The extended Adapt Cases are named Business Process Adapt Cases (BPAC)
and basically consist of domain-specific actions that allow the manipulation
of BPMN processes. Further, the QUAASY approach was used and slightly
extended to enable the assurance of self-adaptive BPMN processes.

The realistic software project that was used for the evaluation of the ACML
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was given by one of our industrial project partners and originates from the
domain of car window insurance.

Figure 6.3 shows the business process that describes the car window insurance
system. The process contains human and automatic tasks. The human tasks
are supported by user interfaces, e.g., using a portal server. Automatic tasks
are processed by attached web services. As such, the process orchestrates the
use of several web services and input of data by human using specific portlets
within a portal server.

In case of web service failures, the self-adaptive process-based system shall au-
tomatically exchange the usedweb service. Therefore, several Business Process
Adapt Cases have been defined one of which is shown in Figure 6.4. The BPAC
accepts ServiceNA signals and checks whether the ClaimsRulesService that is at-
tached to the action Read collection status for policy is not available anymore. If
so, the adaptation activity is triggered. This activity first retries theweb service
at hand. If not successful, the service is exchanged and executed. If no other
web service is available, a human task is inserted into the process instance
instead. All actions used are domain-specific actions that have been defined
within the ACML extension BPAC specifically for adapting BPMN processes.

A more detailed description of the models created within this case study as
well as several other Business Process Adapt Cases are given in [RRM+12]
which can be found on the website at [Luc13].

Case Study Results & Discussion

The project was particularly interesting because of its large size and therefore
the findings related to the modeling complexity and the state space explosion
problem.

First of all, the case study showed that it is indeed possible to extend theACML
with domain-specific elements. In fact, the extension is not difficult at all, since
UMLprofilingmechanisms can be used and theACML is sufficiently generic to
be extended for a specific domain. Thereby, we could answer research question
RQ1 positively. Further, the models showed that it is possible to model the by
industry provided case study in a domain-specific manner. Especially, the ad-
ditionally provided domain-specific actions and the two fixed partitions (pro-
cess layer partition and service layer partition) support the creation of domain-
specific models. Thus, research question RQ2 can be answered positively, too.
However, the extension did break some of the quality assurance features of
the generic QUAASY approach, such that a few quality properties could not
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Figure 6.4.
BPAC Claims Rules
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taken from [RRM+12]
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be shown or proved anymore. Thus, the quality assurance approachQUAASY
was slightly adjusted by the project group and made even more generic later
on.

All in all, the case study provided by the project group was very success-
ful in showing the usability and extensibility of the ACML within a very
domain-specific application scenario. The two industrial partners involved in
the project group plan to utilize the results generated by the project group.

6.1.4 Technology-Oriented Experiment bCMS:
Applicability & Comprehensibility

The bCMS experiment involves creating a set of models first using the ACML
and second using plain UML. The resulting models are compared regarding
comprehensibility. When this experiment was first executed, the ACML mod-
els have been submitted as case study to the CMA workshop 2012. The in-
teresting part about this study was that originally, the bCMS system was not
explicitly defined to be self-adaptive. Hence the case study helped identifying
and defining the engineering process for self-adaptive software systems and
especially the adaptation related tasks for the case that a system specification
with mixed concerns exists. This experiment was conducted by a modeling
and language expert who is highly knowledged concerning the ACML. This is
because this experiment was designed to evaluate the language from a tech-
nology point of view where human aspects such as skill level should rather be
neglected.

Experiment Design

Questions The experiment’s main goal is to show the applicability of the
ACML to an arbitrary large software-intensive system. To a certain de-
gree, the experiment shall answer the question of efficiency the lan-
guage introduces for self-adaptivity design, i.e., its comprehensibility
over plain UML. The research questions are as follows.

RQ1 Is the ACML’s expressiveness sufficient to model a large software-
intensive system?

RQ2 Is the design of the system more easy to create, better to under-
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stand, and easier to maintain than without the ACML?

Especially the the second question RQ2 is hard to support quantitatively
and/or objectively. Nevertheless, the experiment shall give some indica-
tors why research question RQ2 can be answered positively.

Proposition The proposition is that both research questions can be answered
positively. Especially regarding question RQ2, we expect good results re-
garding increased comprehensibility of models. To support the propo-
sitions, the experiment has to provide models that use the ACML for
describing self-adaptivity features and other models that use plain UML
for description. We infer the following two propositions.

PR1 The ACML is able to model self-adaptivity features of a large
software-intensive system.

PR2 The models created with the ACML are easy to create, understand,
and maintain.

Units of Analysis The ACML is used to create models for the bCMS experi-
ment [CCG+12]. The resulting models are analyzed and compared to
plain UMLmodels that have the same meaning. Further, the models are
submitted to the Comparing Modeling Approaches (CMA) Workshop 2012,
the reviews of which are considered for analysis.

Linkage of Data to Propositions If the created models are reviewed and ac-
cepted by the CMA’12 program committee, the ACML is said to be able
to model the system easing understandability and thus maintainability.
The models created should show the difference of using or not using the
ACML, e.g., by directly comparing two versions of specifications.

Interpretation Criteria The criteria for interpretation regarding research
question RQ1 are given by the external reviews provided. The compar-
ison of models for answering RQ2 should be empirically supported on
its own. Since the ACML heavily relies on UML activities, valid met-
rics would be the complexity based on the number of decision nodes,
hierarchy levels, loops, etc. However, in this thesis, we rely on the sub-
jective judgment of the author and the CMA’12 workshop’s reviewers re-
garding the understandability of the createdmodels compared to the use
of plain UML. The use of well-known and usability-improving-accepted
paradigms such as separation of concerns and control loops [WIS13] in the
ACML further supports the positive answer of RQ2.
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Figure 6.5.
Classical Modeling: FSC Route Negotiation
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Experiment Execution

For the execution of this experiment, the bCMS experiment that was briefly
described in Section 2.1 and in [CCG+12] was extensively modeled in detail
and submitted for acceptance for the CMA’12 workshop [LM12]. The models
were formally reviewed by three reviewers and based on these reviews it was
accepted for presentation.

In the following, we will show a small subset of the submitted models to give
an intuition of their contents and to show the difference to classical modeling,
i.e., without using the ACML. The complete set of submitted models can be
obtained from [LM12] and the website at [Luc13].

Figure 6.5 schematically shows the activity that describes the route negotiation
process within the bCMS experiment from the perspective of a fire station co-
ordinator (FSC). The activity has been modeled without using the features of
the ACML and without separating adaptation and application behavior. The
activity’s main functionality is described by the black colored actions that state
the number of deployed vehicles, receive a route plan from the police station
coordinator (PSC), and either agree or disagree to that route plan. The actions
that require human interaction are contained in the lower swim lane FSCCo-
ordinator, the remainder of the activity is performed automatically. The main
functionality’s actions are contained in an interruptible region that together
with the green colored actions take care of the communication availability and
in case of a non-availability period pause and continue the process. The pur-
ple colored actions take care of the timeout requirement, i.e., they cancel the
activity if the route plan has not been agreed on within a period of 5 minutes.

As encoded with colors, this activity mixes different kinds of functionality.
Especially, the functionality of handling communication availability and time-
outs can be considered as self-adaptive behavior.

Figure 6.6 shows the core actions of the FSC route negotiation activity. The re-
maining self-adaptivity behavior has been separated using Adapt Cases, e.g.,
as shown in Figure 6.7 for communication availability. The Adapt Case waits
for communication not available signals and if received starts the adaptation ac-
tivity Switch CMS Coordination off. This activity uses a policy to pause all pro-
cesses (see [LM12] for details). Likewise, the reception of a communication avail-
able signal leads to adapting the process again, i.e., continuing the process. Ob-
viously, separating the adaptation behavior from the remaining system speci-
fication helps understanding the models.
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Experiment Results & Discussion

In general, the reviewers’ feedback for the submittedmodelswas very positive.
To give an example that reflects the reviewers’ mood, consider the following
citation of an unknown reviewer: “Adapt Cases is suited to define adaptivity
in object-oriented high-level architecture and low level design.” All three re-
views accepted the models what we interpret as a positive reaction to research
question RQ1 and partially to research question RQ2.

Concerning research question RQ2, we performed an even more thorough
comparison of using the ACML or not during a master thesis (cf. [Mut12]).
Several differences are obvious. While classical modeling mixes concerns, the
ACML allows the separation of adaptivity concerns from the remaining spec-
ification. Using the ACML, functionality description does not overlap nor
must it be weaved together at design time. Separation of adaptivity concerns
greatly reduced complexity as indicated in Figure 6.8. The different colors de-
scribe auxiliary behavior that is spread over the system description. With the
ACML, the different auxiliary behavior has been extracted and grouped to-
gether which eases comprehension of both the auxiliary behavior (i.e., adap-
tation behavior) and the core system behavior.

Besides all the advantages of using the ACML, it requires a few more steps
during the development process. That is, more models have to be created and
refined. AnAdaptation ViewModelmust be created as a view onto the system
model and an Adapt Case Model must be created to describe adaptation be-
havior. Both kinds of models must be refined and kept up to date in addition
to the classical standardmodels. In turn, however, the systemmodels decrease
in size and complexity since auxiliary functionality is now externalized.

Moreover, the behaviors defined in the ACML ease the understanding of what
is actually happening since they reflect concern-specific actions. Actions that
pause, continue, or stop a process are more easy to grasp and understand than
the same functionality expressed using signals and exceptions as it would be
without the additional ACML actions. Further, concern-specific notation such
as effectors and sensors showed to be useful to clearly specify and understand
the self-adaptive software system.

Another downside of using the ACML is the necessity of externalizing infor-
mation tomake it available for external Adapt Cases. That is, informationmust
be provided to external model units such as Adapt Cases by the use of sensor
and effector interfaces. Using the mixed version of the behavior descriptions,
this information had been just in place.
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Overall, the conclusion of this experiment is that the ACML helps to create
more readable, focused, and understandable versions of the system specifi-
cation. This is mainly due to the separation of concerns and the possibility
to easily build up adaptation action hierarchies (i.e., build high-level actions
from low-level actions) and foster reuse without losing comprehensibility. Ta-
ble 6.2 gives a short comparison of classical UML modeling and ACML mod-
eling (based on [Mut12]).

Classical Modeling ACML Approach

Development process from
high-level to low-level design

Development process from
high-level to low-level design

– Mixed definition of different
system concerns

+ Separate definition of adaptiv-
ity concern

– Distribution of concerns + Concentration of adaptivity
concern

– Only low-level generic (unin-
tuitive) modeling elements

+ Intuitive concern-specific low
and high-level modeling ele-
ments

– Additional Models
– Additional information

retrieval required

Table 6.2.
Comparison of
Classical UML
Modeling and the
ACML

6.1.5 Illustrative Assessment: Composition Techniques

This illustrative assessment was conducted for submission to the Comparing
Modeling Approaches (CMA) workshop 2012. The assessment focuses on
used composition techniques in the ACML and allows comparisonwith plenty
of other languages that have been assessed.

Assessment Design

All documents related with this assessment can be obtained from the website
at [Luc13].

Questions Themain goal of this assessment is a comparison of language char-
acteristics in general and composition features in specific. Thus, we for-
mulate our research question as follows.
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Figure 6.8.
Classically modeled
processes of the bCMS
system with color
coded functions
(green =
communication
availability, purple =
negotiation timeout,
blue = renegotiation,
red = mixed) taken
from [Mut12]
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RQ1 What are the language’s characteristics (see catalog in [GAA+13])
compared to other languages with particular focus on composition
techniques?

Units of Analysis The ACML is assessed using the comparison criteria cata-
log [GAA+13] that was developed at the Bellairs Research Workshop in
20111 and 20122. A questionnaire based on the comparison criteria cat-
alog was filled out for several different modeling languages. The results
are analyzed and compared.

Assessment Execution

The assessment lead to several tables and figures that allow the comparison of
the ACML to other languages. Figure 6.9 shows a table that characterizes the
ACML (Adapt Cases) concerning its composition operators.3 This and simi-
lar tables have been filled out for the ACML and 14 other languages for the
CMA’12 workshop.

Figure 6.10 shows the UML languages that are used by the ACML (Adapt
Cases) and the other assessed modeling languages. The ACML uses UML use
cases, components, activities, and classes as well as OCL and Ecore. The fig-
ure nicely shows how the ACML is related to other modeling languages and
where intersections can be used to merge two or more approaches.

Assessment Results & Discussion

Detailed results and discussions for this assessment have been published
in [MAA+12]. In short, the assessment allowed to group and relate the differ-
ent assessed languages to each other. Furthermore, the modeling approaches
have been contrasted with each other in terms of their software development
phases and activities, paradigms and level of formality, and their use of com-
position rules and operators. As such, the assessment provides a first good
comparison of different modeling approaches and allows to characterize the
ACML in detail. The complete process of developing the comparison criteria
and assessing the approaches took more than 2 years and greatly influenced
the design of the ACML. For more information, please refer to the documents
on the website at [Luc13].
1http://www.cs.mcgill.ca/~joerg/SEL/AOM_Bellairs_2011.html
2http://www.cs.mcgill.ca/~joerg/SEL/AOM_Bellairs_2012.html
3Please note that the Context Model in the table (Question 2.2.H) corresponds to the Adaptation
View Model.

http://www.cs.mcgill.ca/~joerg/SEL/AOM_Bellairs_2011.html
http://www.cs.mcgill.ca/~joerg/SEL/AOM_Bellairs_2012.html
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Figure 6.9.
Assessment Form
concerning
Composition
Operators

 

Adapt Case 
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2.2 Composability: composition rules and composition operators 
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Composition Rule x   D. Is the composition a: 

Composition Operator   x 
E. If the composition is a composition rule, what other compositions are used to realize the composition 
defined by the composition rule? 

(2)   

H. State the signature of 
the composition… 

Adapt) Adapt Case Model x Context Model → Context Model' 
ApplyAdaptation) Adapt Case Model x Context Model → Context Model' 

Yes     

No x x 

I. Does the result of the composition contain a modeling element that does not 
exist in the source models (i.e., does the composition add new model element(s) 
to the source models)? 

      

Yes   x J. Does the composition realize one or more composition rules? 

No x   

Explicit x x 

Pattern Matching     

K. What is the mechanism for identifying the inputs for the composition? 

Binding     

Explicit x x L. What is the mechanism for applying the composition? 

Implicit     

Symmetric     M. Is the composition: 

Asymmetric x x 

Syntax-based     N. Is the composition: 

Semantics-based x x 

Deterministic x x 

Probabilistic     

O. Is the composition: 

Fuzzy     

Commutativity     

Associativity     

P. If the composition is a binary composition operator, what algebraic proper-
ties does the composition operator provide? 

Transitivity     

Yes   x Q. If the composition specification is a composition operator, does the composi-
tion operator produce models that are closed under the operator? 

No     

Yes x x R. Is the intent of the composition to address crosscutting concerns? 

No     

Yes     S. Is it necessary for a language of the modeling approach to support an explicit 
ordering of the composition? 

No x x 

Yes     T. Is the composition itself separated from the specification of first class enti-
ties? 

No x x 

… shown with automatic layout.     

… shown without automatic layout.     

… shown by annotating the original model.     

U. How is a composed model intended to be presented to 
the modeler by a tool? The composed model is intended 
to be… 

... not shown. x x 
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Model Driven Service Engineering (MDSE)  
MDSE addresses high-level and compositional service specifica-
tion allowing for complete service behavior definitions and semi-
automatic design synthesis as well as realizability analysis. 
Resources: [48], [49], [50], [51] 

Performance from Unified Modeling Analysis for SOA 
(PUMA4SOA)  
PUMA4SOA derives performance models from UML design 
models of SOA enterprise systems to evaluate their run-time 
performance from early development phases.  
Resources: [52], [53], [54], [55], [56] 

Reusable Aspect Models (RAM)  
RAM is a reuse-oriented, multi-view modeling approach targeted 
at high-level and low-level software design with aspect-oriented 
modeling techniques for class, sequence, and state diagrams. 
Resources: [57], [58], [59], [60], [61] 

Unified Modeling Language (UML)  
UML’s activity diagrams, class diagrams, component diagrams, 
sequence diagrams, state machines, and use case diagrams are 
assessed.  
Resources: [50] 

Umple  
Umple seeks to bring modeling abstractions directly into textual 
programming languages and provides a model-editing environ-
ment with code generation as good as any compiler.  
Resources: [62], [63], [64] 

Visual Contract Language (VCL)  
VCL is a language to model software designs visually and for-
mally based on set theory and design-by-contract (pre/post-condi-
tions), while abstracting away several implementation details. 
Resources: [65], [66], [67], [68] 

The above modeling approaches cover all software development 
phases from early requirements to implementation and to a lim-
ited extend also integration and deployment as shown in Figure 

1. The modeling approaches are applicable to the software devel-
opment activities of specification/modeling, validation, verifica-
tion, evolution, analysis, and trade-off analysis as depicted in 
Figure 1. 

All of the modeling approaches are considered general purpose, 
and hence applicable not only for a specific domain but all do-
mains, with the exception of AspectSM, AT, LEAP, and arguably 
PUMA4SOA. 

AspectSM is best suited to the specific application domains of 
communication and control systems as well as embedded and 
real-time systems. AT, on the other hand, is preferably applied to 
cyber-physical systems where the humans-in-the-loop or key 
stakeholder groups may not share the same end goals, but it 
should not be applied to well-understood systems if stakeholders 
agree on end goals as AT requires considerable effort in terms of 
time. LEAP should not be applied to real-time systems but rather 
to information systems and enterprise architectures. Finally, 
PUMA4SOA is basically a general-purpose language but focuses 
on scenario-based performance analysis. 

4. RESULTS OF THE ASSESSMENTS 
In addition to the phases and activities shown in Figure 1, we 
present three major results of our analysis of the assessments in 
this section. The first is distinct relations and groupings among 
the approaches. The second relates to the paradigms embodied by 
the approaches and the relative formality of the various ap-
proaches, and the third relates to their use of composition rules 
and operators.  

The modeling approaches covered by the CMA workshops are 
not isolated from each other but relate to each other as shown in 
Figure 2. Two rather distinct groups can be observed in this fig-
ure: (i) at the top of the figure, the modeling approaches focusing 
mainly on requirements (AoURN, AT, Intentional RE, and i*) as 
well as LEAP (which deals with requirements but does also sig-
nificantly focus on downstream activities) and (ii) at the bottom 

 

Figure 2. Relationships of CMA Workshop Modeling Approaches 

Figure 6.10.
UML Languages used
by the ACML

6.2threats to validity

This section discusses the threats to the validity of the presented evalua-
tions, i.e., influencing factors that may affect the validity of the evaluations’
results. There are two different classification themes for threats to validity.
The first scheme distinguishes between internal and external threats to valid-
ity [CSGS69]. Cook et al. [CC79] further extend the two by conclusion and
construct validity. We will use the latter scheme. Before describing the four
types of threats in detail, let’s first consider the model in Figure 6.11 that de-
scribes the principles of experiments as presented in [WRH+00].

Cause 
construct

Effect 
construct

Treatment Outcome

Theory

Observation

Experiment objective

Experiment operation

cause-effect
construct

treatment-outcome
construct

1 2

3 3

4

Figure 6.11.
Principles of
Experiments
(from [WRH+00])

The figure’s upper part describes the theory of an experiment, i.e., the idea
of a cause-effect relationship. The theory about the cause-effect relationship is
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represented by defining a hypothesis. The lower part describes the experiment
that is performed to support the theory, i.e., to test the hypothesis. Therefore,
one or more treatments that represent the cause are defined and executed, and
the outcome is analyzed for its degree of matching the theoretic effect.

This construct includes several threats to the experiment’s validity each of
which can be assigned to one of the numbers that label the arrows. The num-
bers correspond to the four classes of validity that may be threatened as de-
scribed in the following [WRH+00].

1 Conclusion Validity. This validity concerns the relationship between
treatment and outcome. In an experiment we have to check that that is a
statistical relationship between the treatments that have be applied and
the corresponding outcome. Examples include the statistical test chosen
and the care taken in the measurement of an experiment.

2 Internal Validity. The conclusion validity is given, i.e., there is a statis-
tical relationship between treatment and outcome, the internal validity
makes sure that the relationship is only dependent from variables that
are under control. That is, if internal validity is given, there is not only a
relationship between treatment and outcome in the experiment, but the
treatment actually causes the outcome. An example is the compensation
of subjects or the treatment of subjects if special events occur.

3 Construct Validity. This validity is concerned with the relation between
the theory and the observation. It is given, if the treatment reflects the
cause construct and if the outcome reflects the effect construct. For exam-
ple, if as treatment for experience in a programming language the num-
ber of taken university courses is chosen, this might affect the construct
validity.

4 External Validity. External validity is concerned with the generalization
of experiment outside the scope of the study. External validity is always
given if it is generalizable to the target scope, i.e., if the target group are
students, then the external validity is perfectly given if the study subjects
are students as well. If the target group are experienced professionals
then using bachelor students as subjects might be a threat to external
validity.

In the following, we will enumerate the most important threats to validity
that were existent in our evaluations. Since the evaluation’s descriptions given
above are geared towards repetition, the following enumeration of threats can
be considered as threats that have to be taken care of when repeating the evalu-
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ations on a broader basis. The threats have been taken from [WRH+00] where
several threats are listed to be used as checklist.

Conclusion Validity

Fishing Searching or fishing for particular results is a common threat to va-
lidity. In our evaluations, we address this threat by selecting criteria that are
based on well-accepted research results and by involving third persons when
interpreting the results (e.g., reviewers of conference/workshop submissions).
Still, especially for attributes such as usability, fishing remains a risk that has
to be taken care of.

Low Statistical Power The more power a statistical test has, the more valid
are the patterns that can be found in gathered data. Low statistical power is a
high risk in how the evaluations described above were performed since hardly
any statistical test were applied. Instead, for data analysis mostly subjective
judgments were used (cf. Table 6.1). We addressed this threat by providing a
detailed scale and precise descriptions of when a particular measure shall be
taken. However, especially for the technology-oriented experiment described
in Section 6.1.4, further metrics have to be defined to measure and statistically
compare the difference between the usage of ACML over plain UML.

Reliability of Measures Conclusion validity is depending on the reliability of
measures. In our studies this is a threat of high risk since most measures were
subjective rather than objective. This negatively affects comparability and thus
repeatability.

Reliability of Treatment Implementations Another threat is the risk of hav-
ing chosen the wrong evaluation criteria, especially when applying the first
formative assessment. We addressed this threat by relying on themodeling di-
mensions that are well-known and accepted in the research community in self-
adaptive systems. Still, there is the residual risk of having picked the wrong
criteria.



206 Chapter 6 Evaluation

Internal Validity

In our evaluations we did not plan to use control groups. Hence there are no
threats of heterogeneity between study groups. On the other hand, we cannot
determine if the treatment or any other factor caused the effect. Hence, when
repeating the evaluations, it is advised to define control groups.

Instrumentation There is always a residual risk of having bad designed in-
struments such as questionnaires and the like. To address this threat, we had
several review cycle for our instruments.

Other than that, there are no other general threats to internal validity. Of
course, demoralization, rivalry, etc. has to be taken care of per experiment.

Construct Validity

Mono-operation Bias This threat concerns the amount of variables, cases,
subjects, or treatments that affect construct validity. Of only single cases are
studied, the cause construct might be underrepresented. This is an important
existing threat in the past executions of the evaluations presented above since
the number of example systems that were used for investigation (especially
within the case studies) is rather small. However, in totalwe have four different
systems that have beenmodeled using theACMLandmore are about to follow.

Hypothesis Guessing The subjects chosen in the past executions of the eval-
uations described above usually knew about the tested hypothesis. This might
affect the outcome either positively or negatively depending on their attitude
to the hypothesis. In a repetition, it should be taken care that subjects do not
know about the hypothesis and may not easily guess the hypothesis.

Experimenter Expectancies Of course, the experimenter himself might in-
fluence the experiments results, even unconsciously. In the past executions of
the described evaluations, a single person advised the different evaluation ap-
proaches. However, this threatwas addressed by not interfering toomuchwith
the ideas of the master students who prepared and executed the case studies.
Further, the bCMS experiment had been supported by three different review-
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ers and a large group of researchers during the CMA’12 workshop. Thus, this
risk is supposed to be very small.

External Validity

Interaction of Selection and Treatment This threat concerns the fact that
the subject groups may not be representative of the group we want to gener-
alize to. In out evaluation that was targeted at laymen concerning the tested
modeling language, most of the modelers already had knowledge in using the
ACML. For most of the users, there had been an introduction to the ACML be-
fore performing the evaluations. We addressed this threat by performing the
evaluations that required students to create models as early as possible and
thus had a user group where only a few students already worked with the
ACML while other solely listened to the talk about the ACML. Still, there is a
small residual risk that the user group is not representative for laymen.

Interaction of Setting and Treatment This is the threat of having picked
non-representative settings or material for experimentations. However, by
aiming at more example systems from industry, we also address the threat
of non-representativity of the chosen example systems. However, by now, the
capabilities of generalization of the results is rather limited until more (large)
systems have been modeled.

All in all, on the one hand, there are several threats to the validity of the past
executions of the described evaluations that have to be addressed with care
when repeating the experiments on a broader basis in future. On the other
hand, many other threats that are listed in [WRH+00] are already addressed
in the design of the presented evaluations.

6.3discussion & future work

Discussion The different evaluation approaches were used in a formative
manner—that is during the language’s design—to iteratively refine and en-
hance the language. As such, all evaluation greatly contributed to the lan-
guage’s design. Further, the evaluation approaches provided evidence for the
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appropriateness of the language and allow the comparison of the language
with other existing languages. Therefore, all evaluation approaches were de-
signed to be repeatable. Of course, this is not always feasible but provides a
basis for first objective and comparative evaluation results for the ACML.

Future Work The future work regarding the ACML’s evaluation should be
targeted towards a more extensive, thorough, and detailed evaluation that is
based on user feedback. Therefore, the language should be used by differ-
ent and large user groups with different background to obtain more detailed
insights in the strengths andweaknesses of the ACML. In particular, the exper-
iment construction has to be valid in terms of preoperational explication of con-
structs. That is, all constructs shown in Figure 6.2 have to be explicitly defined,
the theory has to be clear, the treatments have to be sound, and the statistical
test have to be chosen or constructed with care.
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Tool Support

“ I’m a great believer that any tool
that enhances communication has pro-
found effects in terms of how people
can learn from each other, and how they
can achieve the kind of freedoms that
they’re interested in.”

– Bill Gates
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The concepts presented in this thesis have been prototypically implemented in
various different approaches. See Figure 7.1 for an overview. In Section 7.1, we
show the graphical editors and tree editors for the ACML (cf. Section 3) and
the BPAC approach (cf. Section 6.1.3). This includes editors for specifying the
Adaptation View Model, the Adapt Case Model, business processes, service
pools and Business Process Adapt Cases (BPAC). In Section 7.2, we present the
tools that implement theQUAASY approach and the extended version that has
been implemented for the BPAC approach. Finally, in Section 7.3, we conclude
this chapter. All implemented prototypes can be downloaded from thewebsite
at [Luc13].

Figure 7.1.
Prototypical Tool
Implementations

ACML QUAASY

BPAC BPAC
Quality Assurance

ACM Editor
AVM Editor

QA Tooling
(optimized)

Process Editor
Service Pool Editor

BPAC Editor

QA Tooling
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7.1modeling of self-adaptive systems

Since the complete tooling is based on the Eclipse Modeling Frame-
work [BBM03], the generation of simple tree editors is straight-forward once
a language’s meta model has been defined using ecore. These editors can be
further configured, equipped with validations, and icons.

A sample tree editor is shown in Figure 7.2. The editor’s structure reflects the
standard EMF editor structure. The left area contains a project explorer that
contains all projects, models, and other files. The right area contains themodel
tree where new elements can be created using the context menu. The bottom
area contains the properties view where the properties of model elements can
be set. As such, all possible valid instances of the underlying ecoremetamodel
can be created using this editor.

Of course, tree editors are visually not very appealing. Further, the relation-
ships between elements are often hidden in the tree structure or even worse
in the properties view. Thus, it is very helpful to provide graphical diagram
editors as shown in the following.

Figure 7.2.
Generated and
Extended EMF Tree
Editor for Service
Pools

Graphical editors have been created for the ACML and the BPAC extension.
Both languages consist of several model kinds such as the Adapt Case Model
and the Adaptation View Model in the ACML. For both of these two model
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kinds, graphical diagram editors have been provided the first of which is de-
picted in Figure 7.3.

Figure 7.3.
Graphical Adapt Case
Model Editor

The figure only shows the diagram pane. Of course, the editor also provides
a project explorer and a properties view as shown in Figure 7.2. In addition,
graphical diagram editors usually have a palette that contains the model ele-
ments that can be instantiated by the use of drag and drop. The figure shows a
single Adapt Case that is specifiedwith amonitoring activity on the left and an
adaptation activity on the right. One Adapt Case Model diagrammay contain
several Adapt Cases. Of course, Adapt Cases may be spread in several differ-
ent diagrams. Elements from the Adaptation View Model can be referenced
by using the properties view.

The Adaptation View Model is created using the corresponding diagram edi-
tor shown in Figure 7.4. The figure shows the Adaptation ViewModel that de-
scribes the rack server system that has been described in Section 6.1.1. Again,
the palette shows the elements that may be instantiated in the diagram. Since
the underlying meta models of the Adapt Case Model and the Adaptation
View Model are linked to each other, elements that have been instantiated
within the AVM diagram can be referenced in the ACM diagram.

For the domain-specific BPAC extension of the ACML, new graphical diagram
editors were created based on the extended meta model. It would be possible
to create a UML profile for the ACM diagram editor shown in Figure 7.3, how-
ever unfortunately, this features was not available when the BPAC editors had
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Figure 7.4.
Graphical Adaptation
View Model Editor

been created. Thus, the diagram editors have been created from scratch using
the Papyrus framework [Pap13]. Of course, on meta model level, these editors
are still a valid ACML extension. Figure 7.5 shows the range of model kinds
and corresponding editors that exist for the BPAC approach.

The process model shown in Figure 7.5 is an import of a Bonita Process Model
created in Bonita, a BPMN-based modeling workbench [Bon13]. The web ser-
vice pool model allows the definition of web services with operations contain-
ing input and output parameter. The corresponding editor has been shown
in Figure 7.2 on Page 213. The process extension model allows to link process
actions that are contained in the process model to web services that have been
defined in the web service pool model. Again, the process extension model
editor is a simple tree editor that has been customized concerning icons, etc.
as shown in Figure 7.6.

Finally, the Business Process Adapt Case diagram editor that is shown in Fig-
ure 7.7 allows the graphical definition of BPACs that adapt the process model.
In contrast to the original Adapt Case diagram editor, BPACs have a different
adaptation activity that contains two partitions, the process layer partition and
the service layer partition. The respective partitions may contain actions that
either adapt the process definition (e.g., control flow, actions) or the service
bindings (i.e., bindings of process actions to concrete web services). Further,
the BPAC diagram editor contains the domain-specific model elements (e.g.,
actions) in its palette.
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Figure 7.5.
Eclipse Wizard: BPAC
Model Kinds

Figure 7.6.
EMF Tree Editor for
Extended Process
Definitions
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Figure 7.7.
Graphical Business
Process Adapt Case
Editor

7.2quality assurance for self-adaptive systems

The quality assurance (QA) approaches for both the plainACML and the BPAC
extensions have been tool supported, too. While the BPAC quality assurance
is completely supported graphically, by now the ACML quality assurance ap-
proach QUAASY uses the console for feedback provisioning. However, ba-
sically the techniques for feedback provision (i.e., the interpretation and rep-
resentation of model checkers’ counter examples) are identical, thus the BPAC
QA techniques can be reused for QUAASY. Figure 7.8 shows howmodel check-
ing is triggered for QUAASY and optimized QUAASY via the context menu.

Currently, the results shown on the console are as follows:

Counter examples found in setting: Boundary
Number of states: 61
Number of transtions: 95
Property: AFAG(’system.perform()’)
Counterexample: [s2, s3, s4, s5, s7, s11]

This is different from the BPAC QA approach. Again, the quality assurance
is triggered using the context menu or a toolbar button. However, the feed-
back is interpreted before being represented to the user. That is, the counter
example is translated back into the original model elements’ names as shown
in Figure 7.9. Two kinds of problems are shown. The first relates to a Busi-
ness Process Adapt Case and states that the contained process containing the
actions ActionB and ActionA contains a loop and therefore might not termi-



218 Chapter 7 Tool Support

Figure 7.8.
ACMLModel
Checking Integration
into Eclipse



219Conclusions

nate. The second kind of problem relates to the business process that has been
adapted. That is, after the adaptation has been applied, a loop has been de-
tected and several elements cannot be reached any more. This error message
indicates a design flaw in the BPACs.

Figure 7.9.
BPAC Quality
Assurance Results

7.3conclusions

As briefly shown in this chapter, the ACML, QUAASY, and their extensions
have been implemented prototypically to prove the concepts’ validity. While
the tools cover the languages’ complete range they may not be convenient to
use in productive environments. Thus, if the productive use of ACML and
QUAASY is targeted in future, extensive efforts have to be spent into tool sup-
port development. However, for proving the concepts presented in this thesis,
the described tools perfectly suffice.
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Conclusions & Outlook

“Enjoying success requires the ability
to adapt. Only by being open to change
will you have a true opportunity to get
the most from your talent.”

– Nolan Ryan
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8

Finally, in this chapter we conclude this thesis and discuss work that we
think should be performed in future to advance the topic of engineering self-
adaptive software systems. In Section 8.1 we discuss some general remarks on
our research. Sections 8.2 and 8.3 discuss the two main contributions of the
thesis, and finally, Section 8.4 points out future work.

8.1 general remarks

The increasing complexity of software-intensive systems is to a great portion
due to the increasing amount of uncertainty a system is expected to deal with.
In software development, uncertainty is addressed by including alternative
behavior into the software system that kicks in when the standard behavior
does not suffice any more. However, with the increasing demands for resilient
systems, these alternative behaviors are prevalent in these systems. Likewise

complexity of
engineering
software-intensive
systems increases

increases the complexity of handling all different alternative behaviors at the
same time. An approach to tackle these challenges is to separate the specifi-
cation of these alternative behaviors into so-called self-adaptation logic that
monitors and adapts the system’s standard behavior if not sufficient anymore.

Separating self-adaptation logic from domain logic has several benefits includ-
separating of
self-adaptation
logic and domain
logic

ing the one of increased possibility for focus and analysis. Especially the anal-
ysis attracts more and more importance since a self-adaptive system’s behav-
ior seems to be intelligently autonomous and difficult to comprehend and re-
enact. As a consequence, the demand for providing hard guarantees arises.
However, prerequisite for modeling and analyzing self-adaptive software sys-
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tems are languages, methods, and techniques that actually allow the separated
specification and analysis of self-adaptation logic.

In this thesis, the proposed two main contributions are (1) a modeling lan-
guage for self-adaptive software systems named Adapt Case Modeling Language
(ACML) that allows the separated specification of self-adaptation logic, and
(2) a quality assurance approach named Quality Assurance for Adaptive Sys-
tems (QUAASY) that enables the analysis of the modeled system for specific
adaptation-related design flaws.

The ACML extends the UML to create a concern-specific modeling language.
adapt case modeling
language

Extending the UML, we gain the benefit that our language integrates with
most standard software engineering processes that are compatible with the
UML-like object-oriented modeling principles. The ACML was designed
to be a general-purpose language for self-adaptive software systems, how-
ever as shown in Section 6.1.3, the language can be extended with domain-
specific means, easily. Finally, the ACML covers most modeling dimen-
sions [ALMW09] and adaptation features that are known from literature.

The quality assurance approach QUAASY reuses and extends existing tech-
quality assurance
for adaptive systems

niques to model-check object-oriented design models. That is, the UML se-
mantics proposed by the OMG are completely implemented and extended
for self-adaptive software systems. Thus, our approach allows the analysis of
self-adaptive software systems in an object-oriented paradigm using the well-
accepted semantics provided by the UML specification [Obj11].

For both contributions we will discuss the main achievements in the following
two sections.

8.2modeling approach for self-adaptive systems

The modeling language ACML is particularly interesting from the perspec-
tive of a) the adaptation concepts used and supported by the language, b) the
paradigm separation of concerns that was used all over the language, and c) the
modeling language implementation details that allow for easy integration and
reuse.
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Concepts The ACML widely uses concepts from the literature. For instance,
the first class entities, the control loops, are shown to be accepted and, most
importantly, very successful in [WIS13]. Further, as shown in Chapter 3 the
language supportsmost of themodeling dimensions for self-adaptive software
systems that have been proposed in [ALMW09]. Moreover, the language sup-
ports the various different levels of modeling languages such as adaptation of
instances and type definitions (i.e., models). Thus, on the one hand, using the
language it is possible to describe meta-adaptation, that is, adaptation rules
that described the adaptation of other adaptation rules. On the other hand,
allowing for adaptation on type level often leads to a cleaner design since al-
ternative solutions do not have to be included in the system model, at all. The
concepts, the language uses, have been evaluated and compared to the con-
cepts of different other languages as shown in Chapter 6. That way, it was
assured that the language corresponds to the current state of the art in model-
ing languages and, most importantly, addresses the users’ needs. In particular,
this was achieved by the use of proven principles and techniques such as sep-
aration of concerns and the Unified Modeling Language (UML).

Separation of Concerns According to EdsgerW. Dijkstra in 1974 [Dij82], sep-
aration of concerns (SoC) allows “focusing one’s attention upon some aspect”.
Since focusing the attention to the concern of self-adaptivity is desired to tame
complexity, we heavilymade use of this principle in the design of the language.
Thus, not only is the adaptation specification separated from the remaining
domain specification, but also the adaptation specification itself separates dif-
ferent sub concerns. As such, the adaptation rule definition (i.e., Adapt Cases)
is decoupled from the adaptation interface definition (i.e., sensors and effec-
tors within the Adaptation ViewModel). A specific challenge of applying SoC
is to have the resulting separated models composable with each other to form
a complete system model including the adaptation capabilities. Thus, com-
position or at least its specification is an important requirement for modern
language design. As shown in Chapter 6, the composition of ACML models
with the core application specification was payed special attention. Further,
using the SoC principle allows the creation of models that are specifically pre-
pared for focused analysis as shown in Chapter 4. Finally, the ACML shows
to be a language that is focusing on a particular concern (i.e., self-adaptivity)
but is generic regarding the domain it is used for. Thus, the ACML is concern-
specific but domain-independent.

Modeling Language The ACML is an extension to the UML which does not
break any features of the UML. It rather seamlessly integrates with the UML
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allowing to reuse all tools and techniques that can be used for the UML. Espe-
cially, as a UML extension, the ACML allows the application of UML profiles.
Thus, the ACML can easily be extended to a particular domain by the use of
profiles. Since the ACML heavily uses UML activities, its semantics are clearly
and unambiguously defined and correspond to the well-known token-offer se-
mantics that is known from the UML. The ACML is targeted at component-
based modeling as components are first class entities of the Adaptation View
Model. However, since the Adaptation View Model is basically extending
UML interfaces it can be used with non-component-based approaches, e.g.,
by the use with UML class diagrams. Thus, the ACML is prepared for a wide
area of application.

8.3quality assurance for self-adaptive systems

Themost important achievements of the quality assurance approachQUAASY
include the analysis’ particular features, the tool-encapsulation, and the opti-
mizations addressing the state space explosion problem.

Analysis QUAASY allows for the analysis of concern-specific quality prop-
erties. This is particularly interesting since many standard and well-known
(quality) properties get new importance and challenge because of the intro-
duction of the self-adaptation concern. In particular, this applies to global
properties that can be checked for every self-adaptive system which is being
modeled with the ACML and that come equipped with QUAASY. Further, the
approach allows for the definition of application-specific properties that allow
to ensure particular invariants in the light of self-adaptation. The use of formal
techniques such asmodel checking allows the provisioning of hard guarantees
while still usable by non-experts.

Tool Encapsulation A particular goal of software engineering research is to
provide software engineers with tools that allow sophisticated analysis with-
out knowledge of formal methods. As such, QUAASY performs the model
checking hidden from the user by encapsulating the model checking execu-
tionwithin theACMLmodelingworkbench. The resulting analysis reports are
translated back into the concrete ACML representation allowing non-experts
to analyze the models and interpret the analysis results.
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Optimization The major challenge in applying model checking is the state
space explosion problem. This problem has been addressed within QUAASY
in two different ways. First, an intermediate language optimized for model
checking (small non-verbose semantics) has been employed. The ACMLmod-
els are automatically translated into that intermediate language which is even
possible off-line after saving a particularmodel. Second, amulti-stagedmodel-
checking approach has been implemented that allows to stop model checking
early if an error has been found. Within this multi-stage approach, models
are investigated on different levels of abstractions providing different levels of
confidence regarding correctness.

8.4 future work

Although, theACML&QUAASYapproach has been defined extensively, there
is still lots of futurework thatwill further advance the approach. The fourmain
challenges include further engineering process integration, additional language
features, a thorough evaluation, and mature tool support.

Process Integration The approach needs a better integration with differ-
ent requirements engineering approaches, e.g., those that rely on goal-based
methods. Since requirements, and goals in particular, are not part of the UML,
the technical integration can only be achieved via UML profiles. However,
it remains to thoroughly investigate how requirements on goal level relate to
self-adaptation, and for instance, whether self-adaptation should already be
expressed and specified on requirements level. Another challenge regarding
the process integration of the ACML is its integration with technical imple-
mentation approaches such as Rainbow [GCH+04] or StarMX [AST09]. It has
to be investigated to what degree the ACML specifications can be translated to
the respective technical representation automatically. Finally, the integration
with non-UML-based languages such as Palladio [BKR09] has to be investi-
gated since this would open new opportunities regarding different analysis
targets (e.g., performance analysis).

Language Features The ACML is built to be generic and to support as most
adaptation scenarios as possible. This is achieved by providing a set of low-
level adaptation operations that allow every kind of change onmodel instances
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and model types. While for the BPAC extension (see Section 6.1.3), a set of
higher-level operations has been defined, this could be further advanced by
identifying common adaptation pattern and schemes and defining the corre-
sponding monitoring and adaptation actions therefore. Building on UML ac-
tions, the ACML is perfectly prepared to define high-level operations by com-
bining low-level operations in activities.

Evaluation Although, as shown in Chapter 6, the ACML and QUAASY have
been evaluated extensively using different techniques, it would be very bene-
ficial to have a large-scale thorough and sophisticated evaluation, e.g., a con-
trolled experiment with different large user groups and different case studies
or examples to further reduce the threats to validity and gather more informa-
tion for improving the approach.

Tool Support Finally, the best method is not worth it without good tool sup-
port. The tool support that was created for the ACML and QUAASY is a pro-
totypical prove of concept implementation that, unfortunately, is not suited for
productive use. Thus, futurework should include thematurization of tool sup-
port including graphical feedback support, a graphical trace language for ac-
tivities (application-specific properties), and a graphical state definition for in-
variants over system structure (application-specific properties) driven at high
usability. For best results concerning interoperability with other approaches
and tools (e.g., the full UML), the tool support should be fully included into
the Eclipse Papyrus Environment [Pap13] or the like.
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A
Meta Model Definitions

of the ACML

The following sections give a detailed description of the meta model that de-
scribes the ACML. Even more detailed information can be obtained from the
ACML specifications on the website at [Luc13].
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A.1 structural modeling with acml

The structural modeling part of the ACML allows to define an adaptation-
specific view on the system. It therefore allows the decoration of parts of the
systemmodel using specialized components and attached interfaces. This dec-
orating model is coined the Adaptation View Model (AVM).

Figures A.1 to A.26 describe the core concepts of the AVM. The figures show
a meta model which extends classes from the UML meta model. The italic
written names in the upper right of a class depict the super classes that are
not shownwith specialization arrows in the same diagram. Other than that all
following meta models are given in standard class diagram notation as known
from the UML specification.

All elements that are used from the UML meta model are specialized (sub-
typed) with a name starting with ACML, e.g., ACMLComponent specializes
the UML Component. All ACMLElements inherit from VersionedElementwhich
allows the creation of histories as described in Section A.1.3.

A.1.1 Core Elements

Figure A.1.
Meta Model: Basic
Adaptation View

Class
BasicComponents::Component

Classifier
Interfaces::
Interface

VersionedElement
ACMLComponent

VersionedElement
Adaptat ion: :

Adaptat ionInterface

EnvironmentComponent SystemComponent
Adaptation::

Sensor
Adaptation::
Effector

VersionedElement
ACMLOperation

BehavioralFeature
Kernel::Operation

BasicBehaviors: :
BehavioralFeature

VersionedElement
Behavior::ACMLActivity

FundamentalActivities::Activity

Class
BasicBehaviors: :

Behavior

Classifier
Communications::

Signal

StructuralFeature
Kernel::Property

VersionedElement
ACMLProperty

VersionedElement
ACMLInterface

/provided

{ subsets classifier,
subsets nam espace,
subsets
featuringClassifier
}

ownedAttribute

{ ordered, subsets
attribute, subsets
ownedMember}

/requiredACMLInterface

{ redefines required}
/providedACMLInteface

{ redefines provided}

source

throws

0..*

/required

method specificat ion

{ subsets
ownedAttribute}

ownedACMLOperation

0..*
{ subsets
ownedOperation}ownedACMLActivit y

0..*
{ subsets
ownedBehavior}

ACMLComponents and ACMLInterfaces. The meta model shown in Fig-
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ure A.1 depicts the core elements of an Adaptation View Model, the ACML-
Components. ACMLComponents define their behavior in terms of required
and provided ACMLInterfaces which in turn may have ACMLOperations and
ACMLProperties. An ACMLComponent is an abstract class which is special-
ized to EnvironmentComponent and SystemComponent. A SystemCompo-
nent describes any logical entity of the system. As known from the UML, a
component is a modular unit with well-defined interfaces that is replaceable
within its environment but does not provide a concrete implementation. A
system may either be described with the use of several SystemComponents
that are connected to each other via interfaces, or the systemmay be described
by a single SystemComponent (e.g., named “system”) that only exposes sev-
eral interfaces that are needed for adaptation. An EnvironmentComponent
may additionally throw signals that in turn trigger the system’s adaptation (cf.
Section A.2).

Since ACMLComponents subtype UML classes, they may have attributes and
operations, and may participate in associations and generalizations. Further,
as known from UML components, the ACMLComponents’ behavior may be
realized by a set of realizing classifiers.

An important aspect of components is their ability to be reused in different
system designs. A component is an autonomous unit within a system and is
only accessible via its provided interfaces, while all other internals are hidden.
ACMLComponents expose required or provided ACMLInterfaces. Provided
interfaces may either be realized directly by the components or by one of its
realizing classifiers. ACMLInterface is an abstract class which is specialized to
two non-abstract adaptation interfaces: Sensor and Effector. Both Sensor and
Effector may expose ACMLProperties and ACMLOperations. The main pur-
pose of Sensors is to gain information about the system and its environment.
They do not change (i.e. adapt) the system. Contrarily, the Effectors’ main pur-
pose is to change (i.e. adapt) the system. They are not used to gain information
about the system and its environment.

ACMLComponents may have attached behaviors for interfaces or the compo-
nents themselves. This behavior describes the component’s external behavior
more precisely. Behaviors such as protocol state machines usually make the
sequence of operation calls at interfaces explicit while behaviors such as activ-
ities usually describe the orchestration of the component’s composites to make
its internal behavior explicit. For self-adaptive systems, this behavioral compo-
nent specification enables the adaptation of the system’s behavior by changing
these very activities.
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ACMLProperties specialize the UML Property. They are described in detail
below. ACMLOperations specialize the UML Operation which is a UML Be-
havioralFeature. The concrete behavior of BehavioralFeatures is defined using
UMLBehaviors, whichmay, e.g. be UMLActivities. Thus, ACMLActivities are
used to define the concrete behavior of ACMLOperations.

Figure A.2.
SystemComponent
with
AdaptationInterfaces
(Sensors, Effectors)
and Properties

«SystemComponent»
Component Name

«SystemBehavior»
MainActivity
SubActivity

«AdaptationBehavior»
Adaptation1
Adaptation2

«sensor»
Sensor Name

«Property»
var1: Integer = 2 [0..10; 5]
var2: Integer = ref.value*2

«effector»
Effector Name

«Operation»
deactivateServer(): Void

The concrete syntax is aligned with the UML as shown in Figure A.2. The
system component exposes two provided adaptation interfaces, a sensor and
an effector. Further, the component has two defined system behaviors and two
adaptation behaviors, the latter of whichmay define adaptations of the former.

ACMLAssociations. Figure A.3 shows the definition of ACMLAssociations.
They are contained in ACMLComponents and may associate several subcom-
ponents to each other. They specialize standard UML Associations but also
inherit from VersionedElement.

Figure A.3.
Meta Model: ACML
Associations

Component
VersionedElement

BasicAdaptat ionView : :
ACMLComponent

VersionedElement
ACMLAssociation

Classifier
Relationship

Kernel::Association

+  isDerived  :Boolean =  false

packagesAdaptat ionAssociat ion

0..*
{ subsets
packagedElement}

Associations are denoted as known from the UML with simple lines and op-
tional name, roles, and cardinalities.

ACMLActivities. As shown in Figure A.4 the abstract class ACMLActivity is
UML Behavior and refined to AdaptationBehavior and SystemBehavior. Sys-
temBehavior is used to define the concrete behavior of ACMLOperations and
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ACMLComponents. AdaptationBehavior is used to describe the behavior that
actually modifies the system’s structure or behavior. AdaptationBehavior can
be exposed using effector interfaces. ACMLActivities contain nodes and edges
just like standard UML Activities. However to be historizable, edges are re-
fined to ACMLActivityEdge which may be an ACMLObjectFlow or an ACML-
ControlFlow. The UML semantics remain unchanged. AdaptationRegion spe-
cializesUMLStructuredActivityNode and is used to group those elements that
are meant to be adaptable. This modeling element is especially important if
modeling with multiple users since it allows the adaptation modeler to em-
phasize the adaptive part of the system.

Activit y
VersionedElement
ACMLAct iv it y

ACMLObjectFlow ACMLControlFlow

BasicActivities::
ObjectFlow BasicActivities::

ControlFlow

RedefinableElement
BasicAct iv it ies: :
Act iv it yEdge

VersionedElement
ACMLActivityEdge

VersionedElement
AdaptableRegion

ActivityGroup
ExecutableNode

Namespace
StructuredActivities::
StructuredActivityNode

AdaptationBehavior

SystemBehavior

adaptiveRegion

0..*
{ subsets group}

edge
0..*
{ subsets edge}

Figure A.4.
Meta Model: ACML
Behavior

The concrete syntax ofACMLActivities is aligned toUMLactivities. FigureA.5
shows SystemBehavior and on the left and AdaptationBehavior on the right.
Activities may be represented in diagram shape as shown at the top, and in
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activity shape as shown at the bottom of the figure. In addition to a name, each
ACMLActivity is equipped with a tag sys or adapt that allows to distinguish
both activity types.

Figure A.5.
Concrete Syntax:
ACML Behavior

System Behavior Namesys Adaptation Behavior Nameadapt

sys System Behavior Name adapt Adaptation Behavior Name
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ACMLProperties. The ACML distinguishes two different kinds of proper-
ties: interval properties and state properties. ACMLIntervalProperties are
shown in Figure A.6. They define some characteristic values being a min-
Value, a maxValue, a stepSize, and a defaultValue. These values depict the
modeler’s estimation of the property’s range. The values are vitally important
for quality assurance, since the system and the environment are simulated ac-
cording to these values, that is, the property’s value is simulated in the range
from minValue to maxValue with a step size of stepSize with an initial value of
defaultValue. Instead of these characteristic values, anACMLIntervalProperty
may be defined using an IntervalPropertySpecification, too. An IntervalProp-
ertySpecification is a UML Expression that may use the value of other ACML-
Properties to compute a particular value.

Property
VersionedElement

BasicAdaptationView::
ACMLProperty

ACMLIntervalProperty

ValueSpecificat ion
Kernel: :LiteralSpecif icat ion

ValueSpecificat ion
Kernel::OpaqueExpression

IntervalPropertySpecification

Variable
Computations::
Computation

propertySpecificat ion 0..1

0..*

relatedProperty

0..*

expression

1

defaultValue
0..1
{ subsets
defaultValue}

maxValue
0..1

stepSize
0..1

minValue
0..1

0..*

relatedComputat ion

0..*

Figure A.6.
Meta Model: ACML
Interval Properties

The concrete syntax of IntervalProperties is shown in Figure A.7. A property
has a name following by a colon and the property’s type. Following an equal
sign, the default value is given. The brackets include the range and the step
size.

«sensor»
Sensor Name

«Property»
var1: Integer = 2 [0..10; 5]
var2: Integer = ref.value*2

Figure A.7.
Concrete Syntax:
ACML Interval
Property
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The second kind of ACMLProperties is the ACMLStateProperty as shown in
Figure A.8. The ACMLStateProperty defines a set of state literals the prop-
ertymay adopt. State literals (StatePropertyLiteral) may correspond to specific
UML states that are contained within a respective UML StateMachine. Thus,
the modeler may either define an ACMLStateProperty to be an unordered set
of state literals or the modeler may define the state transitions using a UML
StateMachine.

Figure A.8.
Meta Model: ACML
State Properties

Property
VersionedElement

BasicAdaptationView::
ACMLProperty

ACMLStateProperty

DataType
Kernel::

Enumeration

Behavior
BehaviorStateMachines::

StateMachine

Namespace
RedefinableElement

Vertex
BehaviorStateMachines::State

StatePropertyEnumeration

StatePropertyLiteral

InstanceSpecificat ion
Kernel::

EnumerationLiteral
ownedLiteral

{ ordered,
subsets ownedMem ber
}

enumerat ion

{ subsets
namespace}

0..*

relatedState

0..1

ownedLiteral

1..*
{ redefines
ownedLiteral}submachineState

submachine

ownedStateMachine

0..1 0..1

0..*

type
{ redefines
type}

Figure A.9 shows the concrete syntax of ACMLStateProperties. The property
has a name followed by a colon and a set of state names. Following an equal
sign, the initial state is defined. Optionally, the name of a state machine may
be given in brackets.
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«sensor»
Sensor Name

«Property»
var1: {s1, s2, s3} = s1
var2: {s1, …} = s1 [SM1]

Figure A.9.
Concrete Syntax:
ACML State Property

ACMLPropertyHistory. It is possible to preserve all values of ACMLProper-
ties. Therefore, as shown in Figure A.10, a History is assigned to an ACML-
Property that contains a set of timedHistoryElements. These HistoryElements
may either be UML InstanceValues for ACMLIntervalProperties or StateProp-
ertyLiterals for ACMLStateProperties.

Property
VersionedElement

BasicAdaptationView::
ACMLProperty

HistoryElement
Kernel: :

NamedElement

HistoryElement

HistoryValueElement HistoryStateElement

Enumerat ionLiteral
Properties::

StatePropertyLiteral

ValueSpecificat ion
Kernel::

InstanceValue

ValueSpecificat ion
SimpleTime::
TimeExpression

tim e

element 0..*

history

0..1

Figure A.10.
Meta Model: Property
Histories

In concrete syntax, a property history is defined by using a small clock icon
next to the property’s definition as shown in Figure A.11.

«sensor»
Sensor Name

«Property»
var2: Integer = ref.value*2 6

12
39

Figure A.11.
Concrete Syntax:
ACML Property
History
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A.1.2 Instance Specifications

For several reasons it can be useful to describe instance specifications of a
AdaptationViewModel. An instance specification allows themodeling of con-
crete instances (e.g. of components or properties) and the specification of con-
crete property values. In the UML, instance specifications are primarily used
for class diagrams and modeled with so-called object diagrams. Objects are
UML InstanceSpecifications for UML Classes. An InstanceSpecification refers
to a particular UML Classifier and defines Slots for each Property the Clas-
sifier defines. A Slot defines a concrete value for a Property. In the ACML,
InstanceSpecifications are used broader, i.e. they are not only used for struc-
tural diagramelements such as classes and components, but also for behavioral
diagram elements such as activities.

FigureA.12 shows the concept of InstanceSpecifications used for structural ele-
ments of theACML. Since this concept is already extensively used by theUML,
the ACML basically specializes the correspondingUML elements. TheACML-
ClassifierInstanceSpecification redefines the classifier association to point to
VersionedElements. That is, in the ACML only VersionedElements may be in-
stantiated.

Figure A.12.
Meta Model: ACML
Instances

Namespace
RedefinableElement

Type
Kernel: :Classif ier

PackageableElement
Kernel::

InstanceSpecification
ACMLInstanceSpecification

ACMLClassifierInstanceSpecificationVersions::
VersionedElement

PackageableElement
TypedElement

Kernel: :ValueSpecif icat ion ACMLSlot

Element
Kernel::Slot

slot { subsets
ownedElement}

owningInstance { subsets owner}

slot

0..*
{ redefines
slot }

owningInstance

{ redefines
owningInstance}

ident ifier

0..1

value { ordered,
subsets ownedElem ent
}

owningSlot

{ subsets
owner}

nestedInstance 0..*

owningAdaptat ionClassifierInstanceSpecificat ion

0..*

classifier

{ redefines
classifier}

classifier

0..* 0..*

Figure A.13 shows the use of InstanceSpecifications for behavioral diagrams
within the ACML. An AdaptationActivityInstanceSpecification refers to an
ACMLActivity instead of aUMLClassifier and contains a TimeExpression that
defines the Activity’s startTime. Further, an AdaptationActivityInstanceSpeci-
fication contains an ordered set of ExecutionHistoryEntries. These entries con-



267Structural Modeling with ACML

tain the value for every parameter, variable, and object nodes, the Activity
holds. Finally, the ExecutionHistoryEntry contains a set of TokenNodes that
refer to the active ActivityNodes. A TokenNode defines the number of tokens
that reside on the particular ActivityNode, as well as a derived variable in-
dicating whether the particular ActivityNode as executing. The latter value
depends on the activity semantics that has been defined by the UML.

Instances::
ACMLInstanceSpecification

TypedElement
BasicAct iv it ies: :
ObjectNode

Multiplicit yElement
TypedElement

StructuredActivities::
Variable

Multiplicit yElement
TypedElement

Kernel::Parameter

RedefinableElement
BasicAct iv it ies: :
Act iv it yNode

PackageableElement
Kernel::

InstanceSpecification

SimpleTime::
TimeExpression

ExecutionHistoryEntry TokenNode

- /execut ing  :bool
- tokens  :int

ExecutionValueSlot

ObjectNodeValueSlotParameterValueSlot VariableValueSlot

AdaptationActivityInstanceSpecification

PackageableElement
TypedElement
Kernel: :

ValueSpecif icat ion

Activit y
VersionedElement

Behavior::
ACMLActivity

0..*

objectNode

0..*

classifier

0..*
{ redefines
classifier}

variableValue 0..*

0..*

variable

historyEnt ry 0..*
next  0..1

previos 0..1

parameterValue 0..*

value

0..*

objectNodeValue 0..*

act iveNode

0..*

0..*

act ivit yNode 0..1

startTim e

0..*

param eter

Figure A.13.
Meta Model: ACML
Behavior Instances

The concrete syntax of ACMLInstanceSpecifications uses the notation of UML
object diagrams.
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A.1.3 Knowledge

Knowledge is specific information that is usedduring adaptation of the system.
It contains history logs1 of system states, computations/aggregations and poli-
cies, and constraints all of which are described in detail below. To organize the
knowledge model, the concept of namespaces has been used. The UML imple-
ments namespaces using packages which may contain packageable elements.
These elements can be accessed globally by concatenating the package’s name,
“::”, and the packaged element’s name. To leverage this concept in the ACML,
knowledge is grouped using a hierarchy of packages, as shown in Figure A.14.
It reflects the threemain kinds of knowledge: constraints, computations&poli-
cies, and histories.

Figure A.14.
Meta Model:
Knowledge Packages

Package
Know ledgePackage

HistoryKnowledgePackage

AdaptationKnowledgePackage

ConstraintKnowledgePackage

FunctionKnowledgePackage

InstanceHistoryKnowledgePackageTypeHistoryKnowledgePackage

ComputationKnowledgePackage PolicyKnowledgePackage

nestedInstanceHistoryKnowledge
0..*

historyKnowledge 0..1

constraintKnowledge 0..1

nestedConstraintKnowledge 0..*

functionKnowledge 0..1

instanceHistoryKnowledge 0..1

nestedPolicyKnowledge 0..*

typeHistoryKnowledge 0..1

nestedTypeHistoryKnowledge
0..*

computationKnowledge 0..1

nestedComputationKnowledge 0..*

policyKnowledge 0..1

Every package serving as container for adaptation knowledge shown in the fig-
ure inherits from KnowledgePackage, a UML package. The inheritance edges
from the leave packages are omitted in the figure for reasons of readability.
The root knowledge package is the AdaptationKnowledgePackage. All kinds

1Not to confuse with adaptation histories which log the changes that have been caused by adap-
tation. System histories log the changes that have been caused by normal system progress.



269Structural Modeling with ACML

of knowledge can be grouped into the root package using a tree-like struc-
ture. The cardinalities ensure that the first two levels of the knowledge tree
are fixed. Semantic constraints assure that the different knowledge packages
contain only packages of the respective kind.

The concrete syntax is taken from UML packages. Packages may be decorated
with their type in guillemots. The package name should reflect their kind.
Figure A.15 shows the UML package notation on the right side and a tree-like
notation on the left.

   Adaptation Knowledge
Adaptation Histories
▶ Instance Adaptation Histories
▶ Type Adaptation Histories
Function Knowledge
▶ Computation Knowledge
▶ Policy Knowledge

▶ Constraint Knowledge

«adaptationKnowledge»
Adaptation Knowledge

«histories»
Adaptation Histories

«instanceHistories»
Instance Adaptation Histories

...

...

Figure A.15.
Concrete Syntax:
Knowledge Packages
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ACML Instance andTypeAdaptationHistory. Anadaptation history is used
to log the changes, which have been performed by some adaptation action.
Both, type and instance changes can be logged within a history. Therefore, a
type or instance history definition is created that refers to a particular type. If
that type is changed, a new entry is set into its type history. The type itself does
not know its history. Instead, the history refers unidirectional to a particular
type. Instance histories log every change of an instance, e.g. if instance values
are changed.

Whenever an adaptation is performed, the history of the adapted elements
are expanded by the old version. Thereby, adaptation can be reverted at all
time (backwards adaptation), or respectively, adaptation transactions can be
specified.

Figure A.16 shows the InstanceHistorySet that is contained in the Instance-
HistoryKnowledgePackage. At design-time, an InstanceHistorySet is specified
for each VersionedElement that shall be logged. For each instance of the Ver-
sionedElement, the InstanceHistorySet contains an InstanceHistory that points
at the current ACMLInstanceSpecification, and further, contains a set of In-
stanceHistoryEntries each of which points at an old ACMLInstanceSpecifica-
tion and at a containerId, the container’s id, the instance resides in. Whenever
the container of an instance is deleted, the corresponding InstanceHistory’s at-
tribute containerDeleted is set to true. This indicates that an adaptation of this
instance cannot be reverted since its container is missing. The containerId al-
lows to find the old instance’s original container. The InstanceHistoryEntry
further has an attribute instanceDeleted that is set to true if an instance has been
deleted. If a deletion is reverted, another InstanceHistoryEntry is added with
the attribute instanceDeleted set to false. Thus, deleted entries might end up
between two non-deleted entries.
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KnowledgePackage
Packages::

InstanceHistoryKnowledgePackage

Versions::
VersionedElement

PackageableElement
TypeHistory::

KnowledgeHistory

Namespace
PackageableElement
Kernel::Package

InstanceHistorySet

InstanceHistory

- containerDeleted  :bool

TypeHistory::
KnowledgeHistoryEntry

InstanceHistoryEntry

- instanceDeleted  :bool

PackageableElement
TypedElement
Kernel: :

ValueSpecif icat ion

Instances::
ACMLInstanceSpecification

SimpleTime::
TimeExpression

value
containerId 0..1

ent ry

0..*
{ ordered}

history 0..*

0..1

current Instance
0..1

0..1
type

historySet

0..*
{ redefines packagedElem ent }

tim e

0..1

Figure A.16.
Meta Model: Instance
History
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Figure A.17 shows the meta model excerpt for type histories. A TypeHisto-
ryKnowledgePackage contains a set of TypeHistories. A TypeHistory refers
to a specific VersionedElement that shall be tracked over time. Before a Ver-
sionedElement’s type is changed, the VersionedElement is copied and a new
TypeHistoryEntry is created pointing at this old version. Each TypeHistoryEn-
try is a KnowledgeHistoryEntry and thus contains a TimeExpression that spec-
ifies its creation time.

Figure A.17.
Meta Model: Type
History

ValueSpecificat ion
SimpleTime::
TimeExpression

+  firstTim e  :Boolean =  True

NamedElement
Kernel: :

PackageableElement

+  visibility  :Visibil it yKind

KnowledgePackage
Packages::

TypeHistoryKnowledgePackage

KnowledgeHistory

TypeHistoryTypeHistoryEntry

KnowledgeHistoryEntry

Versions::
VersionedElement

0..1

value

ent ry

0..*
{ ordered}

history

0..*
{ redefines packagedElem ent }

0..1

type

tim e

0..1

In concrete syntax, type and instance history definitions are shown in the
HistoryKnowledgePackages. They are listed with their name and the Ver-
sionedElement’s name and are decorated by an icon indicating whether a type
or instance history shall be created. Figure A.18 shows the concrete syntax.

The concrete semantics of type and instance histories are detailed in [Mut12].
There, special attention has been paid to deleting used elements, creating deep
copies on update, etc.
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«histories»
Adaptation Histories

«typeHistories»
Type Adaptation Histories

typeHistory1 :VersionedElementName
typeHistory2 :VersionedElementName

T
T

«instanceHistories»
Instance Adaptation Histories

instanceHistory1 :VersionedElementNameI

Figure A.18.
Concrete Syntax of
Adaptation Histories

ACMLPolicies. Policies are simply ACMLActivities that have been extracted
from concrete Operations definitions or Adapt Case definitions to allow for
reuse. As such, they may describe business rules, high-level adaptation op-
erations, complex computation behavior, or selectors for instances and types.
They can be used from within the whole Adaptation View Model as well as
from within the Adapt Case Model (see Section A.2). Policies are described in
the meta-model excerpt shown in Figure A.19.

KnowledgePackage
Packages::

PolicyKnowledgePackage

Policy Activit y
VersionedElement

Behavior::ACMLActivity

policy
0..*
{ redefines packagedElem ent }

Figure A.19.
Meta Model: Policies
Knowledge

The concrete syntax of policies is taken from UML activities with an extra tag
policy left from the policy’s name as shown in Figure A.20. Every policy is
listed in the PolicyKnowledgePackage as shown on the figure’s right side.

«policies»
Policy Knowledge

PolicyName
PolicyName2

PolicyNamepolicy Figure A.20.
Concrete Syntax of
Policy Knowledge
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ACMLConstraints. The ConstraintKnowledgePackage contains a set of UML
Constraints, i.e. invariants that have to hold throughout the complete system
lifecycle. Among others, these constraints are checked during quality assur-
ance of the models.

Figure A.21.
Meta Model:
Constraints
Knowledge

KnowledgePackage
Packages::

ConstraintKnowledgePackage

PackageableElement
Kernel::Constraint

ACMLActivity
BasicAdaptCases::
AdaptationActivity

Class
BasicBehaviors: :

Behavior

const raint 0..*

invariant

0..1

precondit ion

postcondit ion

Constraints are expressions used to determine the validity of models in the
presence if adaptation. Constraints may be pre- and postconditions or invari-
ants. These constraints can be specified for Adapt Cases, and the Adaptation
Activity. In invariant that is defined for an Adaptation Activity states that the
corresponding condition may never be violated during adaptation. Besides
invariants, pre-, and postconditions, constraints can also be included in the
ConstraintKnowledgePackage. These constraints behave like invariants aswell
andmay never be violated. Constraints are checked for validity during quality
assurance of the self-adaptive system model.

Figure A.22.
Sensor with attached
Invariant Constraint

«constraints»
Constraint Knowledge

constraint1 (OCL) = SensorName.var2 < 100
constraint2 = expression2
...

«sensor»
SensorName

«Property»
var2: Integer = ref.value*2

«invariant»
constraint1

self.var2 < 100

6

12
39

The concrete syntax of constraints is illustrated in Figure A.22. As shown on
the figure’s left side, constraints can be visualized within the Adaptation View
Model. In that case, the constraint’s context may be replaced by self. All con-
straints are collected within the constraint knowledge package that can be vi-



275Structural Modeling with ACML

sualized as depicted on the right side of Figure A.22. Here, the constraint’s
language may be given in brackets.

ACMLComputations. Finally, FigureA.23 shows themetamodel excerpt that
describes the concept of Computations. A Computation is a Variable and thus
can be accessed easily within its scope. Essentially, the Computation is a UML
OpaqueExpression that uses referenced Classifiers to compute a specific value
that is of interest for adaptation. For instance, Computations are used to cre-
ate aggregations of several Sensor values. Just like ACML Properties, a Com-
putation can be assigned a History such whenever the Computation’s value
changes, it is stored within a HistoryElement (see Figure A.10). Computations
are always contained in a ComputationKnowledgePackage. The evaluation of
computation is lazy, i.e. whenever the computation is accessed, the value is
recomputed.

Computation

KnowledgePackage
Packages::

ComputationKnowledgePackage

Multiplicit yElement
TypedElement

StructuredActivities::
Variable

Namespace
RedefinableElement

Type
Kernel: :Classif ier

+  isAbst ract   :Boolean =  false

NamedElement
History::History

ValueSpecificat ion
Kernel::OpaqueExpression

+  body [1..* ]   :St ring { ordered}
+  language [0..* ]   :St ring { ordered}

expression

1

history

0..1

computat ion

0..1

usingComputat ion 0..*

referencedClassifier

0..*

computat ion

0..*
{ redefines
packagedElement}

Figure A.23.
Meta Model:
Computation
Knowledge

The concrete syntax of computations is depicted in Figure A.24. The figure’s
left side shows a computationwithin theAdaptation ViewModel. The compu-
tation references two UML classifiers, i.e. sensors and computes a new value
that is named computation1 and has type Int. The figure’s right side shows the
computation contained in the computation knowledge package in UML pack-
age notation. The second computation defines a history log, that is, whenever
the computation’s value changes, the old value is preserved and can be used,
e.g., in monitoring definitions to initiate pro-active adaptation.
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Figure A.24.
Computation
referencing two
Classifiers (Sensors)

«computations»
Computation Knowledge
computation1 :Int = Sensor1.var2 * (2+…)
computation2 :Bool = expression2
...

«sensor»
Sensor1

«Property»
var2: Integer = ref.value*2

«invariant»
computation1 :Int

sens1.var2 * 
(2+sens2.var4)

6

12
39

«sensor»
Sensor2

«Property»
var4: Integer = 2 [0..10; 5]
var2: Integer = ref.value*2

sens1

sens2

6

12
39

A.1.4 Versions & Variables

To be able to create an adaptation history, every historized element must be
versioned. A VersionedElement has a version which is given by the current
timestamp. Using timestamps, different versions are easily sortable (e.g., to
create an overall adaptation history) and it is easy to define the most recent
version over the complete model simply being the current timestamp. Fig-
ure A.25 shows all elements that inherit from VersionedElement. Further, to
be able to determine the newest version of an element on type-level, and have
current and old versions separated from each other, a concept of legacy con-
tainment references has been introduced. That is, each owned... reference is
accompanied by a legacy... reference that contains all elements that once were
owned. Details on reasons and implementation are given in [Mut12].

VariablePins as shown in FigureA.26 are a simplification of InputPins andOut-
putPins which are defined by the UML for use in activity diagrams with ob-
ject flow. The problem with the original object flow is that several object flow
edges have to be included in more complex activity diagrams which makes
them hard to read and understand. The idea of VariableInputPins and Vari-
ableOutputPins is that they transform the original object flow into variables
that can be accessed easily within the activity. Therefore, VariablePins inherit
from Variable while a Variable can either be a concrete instance value of a type
(TypeVariable). Both Variables and TypeVariables can be used as parameters
for activities.
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Adaptat ion: :
Adaptat ionInterface

Component
BasicAdaptat ionView : :

ACMLComponent

VersionedElement

Property
BasicAdaptationView::

ACMLProperty

Operat ion
BasicAdaptationView::

ACMLOperation

Recept ion
BasicAdaptCases::
ACMLReception

Associat ion
Associations::

ACMLAssociation

ActivityEdge
Behavior::

ACMLActivityEdge

StructuredActiv it yNode
Behavior::

AdaptableRegion

Interface
BasicAdaptat ionView : :

ACMLInterface

Activit y
Behavior::ACMLActivity

ValueSpecificat ion
SimpleTime::
TimeExpression

+  firstTim e  :Boolean =  True

version

edge
0..*
{ subsets edge}

adaptiveRegion 0..*
{ subsets group}

Figure A.25.
Meta Model:
Versioned Elements

In concrete syntax, variable pins are represented as normal pins with a v inside
the pin (i.e., v ).

Pin
BasicActions::

InputPin

Pin
BasicActions::
OutputPin

Multiplicit yElement
TypedElement

StructuredActivities::
Variable

VariableInputPin VariableOutputPin

Multiplicit yElement
TypedElement

Kernel::Parameter

TypeVariableParameter

VariableParameter TypeVariable

0..*

target 0..*

0..*

source 0..*

Figure A.26.
Meta Model: Variable
Pins
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A.2 behavioral modeling with acml

In the last section, the Adaptation ViewModel (AVM) has been described. The
AVM allows the specification of the system’s adaptation-relevant structure,
e.g., relevant system and environment components and their exposed adapta-
tion interfaces, i.e. sensors and effectors. This section elaborates on the Adapt
Case Model (ACM), which allows to specify the concrete adaptation behav-
ior in terms of event-condition-action rules. These rules are described using
extended UML Activities.

Adapt Cases. Figure A.27 shows the meta model excerpt that describes the
basic concepts of Adapt Cases. An AdaptCase inherits from UML UseCases
and UML Classes. The former inheritance allows AdaptCases to be displayed
in use case diagrams and to be related to other use cases, e.g., with an «adapt»
relation, i.e. an AdaptCase adapts the behavior another use case exhibits. Be-
ing a class, an AdaptCase may receive signals which have been thrown e.g. by
environment components.

Figure A.27.
Meta Model: Basic
Adapt Cases

BehavioredClassifier
UseCases::UseCase

AdaptCase

MonitoringActivity AdaptationActivity

Activit y
VersionedElement
Behavior::

ACMLActivity

BehavioralFeature
Communications::

Reception

BehavioredClassifier
Communications::

Class

Classifier
Communications::

Signal

VersionedElement
ACMLReception

{ subsets
ownedReception}

signalownedRecept ion

{ subsets feature,
subsets
ownedMember
}

0..*
{ subsets
ownedBehavior}

0..*
{ subsets
ownedBehavior}

Figure A.28 shows an AdaptCase in the right system that may receive a signal
named Signal1 and additionally has a condition (i.e. pre or post condition) de-
fined. The AdaptCase defines an adaptation of the use case shown in the left
system.

Since an AdaptCase is a BehavioredClassifier, it may own UML Behavior, e.g.
activities. An Adapt Case contains the specialized behaviors MonitoringAc-
tivity and AdaptationActivity, both inheriting from ACMLActivity. The Mon-
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Adaptation Engine

«signal»
Signal1: Type

«condition»
Condition1: Type

« Adapt Case »
Adapt Case 1

System

Use Case 1 «adapt»

Figure A.28.
An AdaptCase with
Signals and
Conditions

itoringActivity is meant to monitor sensors and analyze the gathered data to
eventually trigger an AdaptationActivity. The AdaptationActivity plans the
adaptation, e.g., with the help of sensors and executes the adaptation using
effectors.

« Adapt Case »
Adapt Case 1

Monitor Activitymon

Adaptation Activityadapt

Action A

A

[guard]

Action B

Figure A.29.
An AdaptCase with
attached Monitoring
and Adaptation
Activities

An Adapt Case with attachedMonitoring and Adaptation Activity is shown in
Figure A.29. After the monitor has performed Action A it checks the guard. If
the guard is true, the Adaptation Activity is triggered, otherwise the monitor
just exits. Triggering the Adaptation Activity is done using a Call Adaptation
Activity which is described in the following.
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Call Adaptation Activity. To trigger a particular AdaptationActivity, a Mon-
itoringActivity may contain a CallAdaptationActivityAction that is shown in
Figure A.30. The CallAdaptationActivityAction inherits from the UML Call-
BehaviorAction and points to the specific AdaptationActivity that shall be
started. If the are multiple AdaptationActivities available, the concrete syn-
tax carries the name of the target activity.

Figure A.30.
Meta Model:
Adaptation Activity

ACMLActivity
BasicAdaptCases::
AdaptationActivity

PackageableElement
Kernel::Constraint

CallBehaviorAct ion
BasicActions::

CallAdaptationActivityAction

0..*

adaptat ionAct ivit y 1
{ redefines behavior}

invariant 0..1

Figure A.30 further shows AdaptationActivities to have an additional invari-
ant Constraint. This invariant has to hold throughout the complete execution
of the AdaptationActivity. The UML already defines pre and post conditions
for behavior. Constraints my be visualized in a separate compartment of the
Adaptation Activity as shown in Figure A.31.

Figure A.31.
An Adaptation
Activity exposing
some Constraints

Adaptation Activityadapt

Action B

«invariant» expression1
«precondition» expression2
«postcondition» expression3

Basic Adaptation Actions. Besides the CallAdaptationActivityAction, the
ACML defines several other new actions, the structure of which is shown in
Figure A.32. The figure shows the four main categories of actions that are
meant to be mainly used in effector definitions: StructureInstanceAdaptation-
Action to adapt an instance’s structure, StructureTypeAdaptationAction, to
adapt the structure on type level, ActivityInstanceAdaptation to adapt an activ-
ity on instance level (e.g., state changes), andActivityTypeAdaptationAction to
adapt an activity on type level (e.g., reordering or removing particular actions).
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NamedElement
BasicAct ions: :

Act ion

BasicActions::
CallBehaviorAction

BasicActions::
CallOperationAction

BasicAct ions: :
Invocat ionAct ion

BasicAct ions: :CallAct ion

CallAdaptationActivityAction

ACMLAction StructureAdaptationAction

BehaviorAdaptationAction

ActivityAdaptationAction ActivityInstanceAdaptationAction

ActivityTypeAdaptationAction

StructureInstanceAdaptationAction

StructureTypeAdaptationAction

Figure A.32.
Meta Model: Basic
Adaptation Actions

To adapt instance or types, they have to be addressable. Figure A.26 showed
the existence of Variables and TypeVariables that may hold concrete instances
and types. Figure A.33 shows the corresponding SelectionActions that select
an instance or type and save them into variables or type variables. The selection
is performed using a selection criteria, a concrete UML ValueSpecification.

Concrete actions and their concrete syntax have been defined in [Mut12].
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Figure A.33.
Meta Model: Adapt
Case Helper Actions
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Element
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0..*

typeVariable
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