
Fakultät für Elektrotechnik, Informatik und Mathematik
Heinz Nixdorf Institut & Institut für Informatik

Fachgruppe Algorithmen und Komplexität

Dissertation

Multi-Algorithmen-Rendering
Darstellung heterogener 3-D-Szenen in Echtzeit

Ralf Petring

Paderborn, 31. Oktober 2013

Gutachter: Prof. Dr. Friedhelm Meyer auf der Heide
Prof. Dr. Gitta Domik-Kienegger

Kontakt: Ralf Petring <ralf@petring.net>

Diese Arbeit wurde teilweise finanziert durch das DFG Schwerpunktprogram 1307 Algorithm
Engineering <http://www.algorithm-engineering.de>

Zusammenfassung
Viele große virtuelle 3-D-Szenen sind nicht gleichmäßig strukturiert, z. B. weil sie eine
stark schwankende Dichteverteilung der Geometrie aufweisen. Für solche ungleichmäßig
strukturierten Szenen gibt es keinen Algorithmus, der an allen Betrachterpositionen gut
funktioniert, also für beliebige Positionen ein Bild mit guter Qualität in annehmbarer Zeit
darstellt. Für eine kleine Teilmenge dieser Szenen kann die Situation verbessert werden,
indem ein erfahrener Benutzer per Hand für einzelne Bereiche einer Szene entscheidet,
mit welchem Algorithmus diese dargestellt werden. In dieser Arbeit wird ein Verfahren
vorgestellt, welches automatisch unterschiedliche Algorithmen gleichmäßig strukturierten
Bereichen einer Szene zuordnet. Die Methode teilt dafür die Szene in brauchbare Bereiche
auf und misst das Verhalten unterschiedlicher Algorithmen auf diesen Bereichen in einem
Vorberechnungsschritt. Zur Laufzeit werden diese Daten dann genutzt, um eine Vorhersage
für die Laufzeit und den entstehenden Bildfehler der einzelnen Algorithmen auf den
Bereichen der Szene abhängig von der Position des Betrachters zu erhalten. Mittels Lösens
eines in einen Regelkreis eingebetteten Optimierungsproblems kann dann die Bildqualität
durch eine geschickte Zuordnung von Algorithmen zu Bereichen bei nahezu konstanter
Bildrate optimiert werden. In einer experimentellen Evaluierung werden sowohl Laufzeit
als auch Bildqualität unserer Methode mit denen von Standardverfahren verglichen.

Abstract
Many large virtual 3D scenes are not structured evenly, for example because they exhibit a
highly varying density distribution of their polygons. For such heterogeneous data, there is
no single algorithm that constantly performs well with any type of scene and that is able
to render the scene at each position fast with the same high image quality. For a small set
of scenes, this situation can be improved, if an experienced user is able to manually assign
different rendering algorithms to particular parts of the scene. We introduce the Multi-
Algorithm-Rendering method which automatically deploys different rendering algorithms
simultaneously for a broad range of scene types. The method divides the scene into suitable
subregions and measures the behavior of the different algorithms for each region in a
preprocessing step. During runtime, this data is utilized to compute an estimate for the
quality and running time of the available rendering algorithms from the observer’s point of
view. By solving an optimizing problem embedded in a control cycle, the image quality
can be optimized by the appropriate assignment of algorithms to regions, while keeping
the achieved frame rate almost constant. In an experimental evaluation, we compare our
method’s running time and image quality with that of standard rendering algorithms.

iii

Inhaltsverzeichnis

1 Einleitung 1
1.1 Motivation und Handlungsbedarf . 1
1.2 Ansatz des Multi-Algorithmen-Renderings 3
1.3 Ziel und eigener Beitrag . 5
1.4 Aufbau der Arbeit . 6

2 Stand der Technik 7
2.1 Begriffsdefinitionen . 7
2.2 Verwandte Arbeiten . 8
2.3 3-D-Datenstrukturen als Szenengraph . 9
2.4 Renderingverfahren . 10

2.4.1 Konservative Renderingverfahren . 10
2.4.2 Approximative Renderingverfahren 12

2.5 Bewertung der Bildqualität approximativer Darstellungsverfahren 13
2.6 Sampling . 15

3 Multi-Algorithmen-Rendering 17
3.1 Definition: heterogen & homogen . 17
3.2 Kriterien für Homogenität . 18
3.3 Beim Multi-Algorithmen-Rendering eingesetzte Verfahren 19
3.4 Analyse und Aufbereitung der Szene . 21

3.4.1 Aufteilung der Szene in Regionen . 21
3.4.2 Datenerhebung durch Sampling . 24

3.5 Der Renderingalgorithmus: Darstellung der Szene im Walkthrough 26
3.5.1 Interpolation der Messwerte aus der Vorverarbeitung 27
3.5.2 Auswahl der Algorithmen . 29
3.5.3 Regelung der Gesamtdauer der Darstellung 29

3.6 Optimierung der Laufzeit bei vorgegebener Bildqualität 31
3.7 Einsatzbereiche des Verfahrens . 31

4 Implementierung 33
4.1 PADrend . 33
4.2 Multi-Algorithmen-Rendering . 34

4.2.1 Vorverarbeitung des Multi-Algorithmen-Renderings 34
4.2.2 Multi-Algorithmen-Rendering während des Walkthroughs 34

5 Evaluierung 37
5.1 Übersicht über die untersuchten Fragestellungen 37
5.2 Messumgebung . 39

5.2.1 Verwendete Hard- und Software . 39

v

Inhaltsverzeichnis

5.2.2 Aufbau der Testszene . 39
5.2.3 Wahl des Kamerapfades . 40
5.2.4 Benutzte Algorithmen und deren Einstellung 41
5.2.5 Durchführung der Messungen . 43
5.2.6 Darstellung und Aufbereitung der Messergebnisse 43

5.3 Laufzeit und Speicherverbrauch in der Vorverarbeitung 44
5.3.1 Persistenter Speicherverbrauch . 44
5.3.2 Dauer der Vorverarbeitung . 46

5.4 Verhalten des Multi-Algorithmen-Renderings beim Walkthrough 47
5.4.1 Dauer der Bildberechnung . 47
5.4.2 Größe des Fehlers im Bild . 52
5.4.3 Die verschiedenen Interpolations- und Regelungsverfahren 54
5.4.4 Wie viele Stichproben werden benötigt? 56
5.4.5 Abweichung zwischen geschätzten und gemessenen Laufzeitwerten . 61
5.4.6 Abweichung zwischen geschätzten und gemessenen Bildfehlerwerten 66
5.4.7 Welche Algorithmen werden genutzt? 67
5.4.8 Flackern des Bildes beim Multi-Algorithmen-Rendering 70
5.4.9 Zeit zum Lösen des Optimierungsproblems 71

5.5 Evaluierung mit Hilfe von Szenen-Eigenschafts-Funktionen 72
5.5.1 Bildfehler . 73
5.5.2 Dauer der Darstellung . 76
5.5.3 Lösung des Optimierungsproblems 77
5.5.4 Verschiedene Sollwerte für die Laufzeit 77

5.6 Zusammenfassung der Ergebnisse . 81

6 Fazit und Ausblick 85

Literatur 87

vi

1 Einleitung
Die dreidimensionale Darstellung virtueller Szenen wird heutzutage in nahezu allen Be-
reichen eingesetzt. Dies geht von Computerspielen und Filmen über Präsentation und
Simulation von Fertigungsanlagen oder ganzen Städten bis hin zu Navigationsgeräten und
anderen mobilen Geräten. Zwar wird die Hardware zur Darstellung solcher Szenen stetig
besser, jedoch steigen gleichzeitig auch die Anforderungen an die Darstellungssysteme:
Die Szenen bzw. Welten werden immer größer und detaillierter, die Darstellung soll stets
noch realistischer sein, die Systeme sollen auch auf mobilen Geräten lauffähig sein etc.
Ein Ende dieses Trends ist nicht abzusehen. In allen Bereichen, wo ein Benutzer durch
die Szene navigiert, wird das Problem zusätzlich verschärft, da hier noch die Anforderung
hinzukommt, dass die Szene in Echtzeit dargestellt werden muss. Ist dies aufgrund der
Komplexität der Szene nicht möglich, kann man auf Approximationen zurückgreifen. Damit
erkauft man eine schnellere Darstellung auf Kosten der Bildqualität. Ist hingegen ein
Anwendungsfall gegeben, bei dem ein korrektes Bild benötigt wird, wie zum Beispiel bei
Anwendungen im medizinischen Bereich, so muss darauf verzichtet werden.

1.1 Motivation und Handlungsbedarf
Bei vielen Anwendungsfällen müssen Szenen dargestellt werden, die heterogen – also in
sich nicht gleichmäßig – strukturiert sind. Dies kann sich z. B. dadurch äußern, dass die
Dichteverteilung der Polygone in der Szene nicht gleichmäßig ist. Abbildung 1.1 zeigt
hierfür ein Beispiel. Nahezu alle Gebäude der Stadt sind innen leer und bestehen aus
wenigen hundert Polygonen. Allerdings gibt es sehr viele dieser Gebäude. Die beiden großen
Gebäude am Ende der Stadt sind hingegen innen detaillierter modelliert. Das Kraftwerk
enthält ein komplexes Rohrsystem und das rechte Gebäude besitzt Mobiliar. Die Statue
ist ein extrem detailliertes Einzelmodell, dessen alleinige (korrekte) Darstellung bereits
eine Grafikkarte auslasten kann. Die Struktur dieser Szene ist folglich nicht gleichmäßig,
sie enthält sowohl Bereiche mit vielen einfachen Objekten, als auch Bereiche mit wenigen
komplexen Objekten.

Solche Szenen treten in der Praxis durchaus auf, da z. B. ein Architekt, der einem Kunden
ein Haus präsentieren möchte, vermutlich das Haus detaillierter gestalten wird (Möbel etc.)
als das umliegende Gelände. Ein Städteplaner hingegen wird auf Mobiliar vermutlich kom-
plett verzichten und stattdessen die Umgebung genauer und weitläufiger modellieren. Wenn
ein industrieller Maschinenbaubetrieb seine Fertigung optimieren oder durch zusätzliche
Maschinen erweitern möchte, so könnte dazu z. B. im Vorfeld eine Materialflusssimulation
durchgeführt werden. Die dabei entstehende Szene ist im Allgemeinen ebenfalls heterogen,
da hierbei zum einen die Daten der Halle – seien sie vom Architekten zur Verfügung gestellt
oder per Hand modelliert – und zum anderen die Daten der Maschinen aufeinandertreffen.
Die Maschinendaten selbst können auch bereits heterogen sein, wenn die Daten der im
Betrieb hergestellten Maschinen aus dem eigenen CAD-System erzeugt wurden und somit
eventuell sehr genau sind, während die Daten der restlichen Maschinen weniger komplex

1

1 Einleitung

(a) Sichtposition mit Heterogenität in der Ferne.

(b) Sichtposition mit Heterogenität nahe der Kamera.

Abbildung 1.1: Beispiel für eine heterogene Szene: Eine weitläufige Stadt mit sehr vie-
len aber einfachen Objekten, darin jedoch zwei Gebäude mit komplexen
Objekten sowie eine extrem detaillierte Statue.

2

1.2 Ansatz des Multi-Algorithmen-Renderings

sind, da zu diesen im Normalfall keine CAD-Daten verfügbar sind. Sobald es darum geht
eine Szene interaktiv zu präsentieren, muss die Darstellung der Szenen in Echtzeit erfolgen,
da sonst der Benutzer nicht flüssig durch die Szene navigieren kann. Es gibt also eine
Mindestanzahl an Bildern, die pro Sekunde dargestellt werden muss, wodurch die Zeit, die
zur Darstellung eines einzelnen Bildes zur Verfügung steht, begrenzt ist.

Die sich hieraus ergebende Problemstellung ist die Darstellung dieser heterogenen Szenen
in Echtzeit mit möglichst guter Bildqualität. Die Laufzeit von Algorithmen und bei
approximativen Darstellungsalgorithmen auch die Bildqualität hängt jedoch unter anderem
von der Struktur der Szene und der Position des Betrachters ab. Das hat zur Folge, dass
den Algorithmen die optimale Darstellung einer heterogenen Szene Probleme bereitet.

1.2 Ansatz des Multi-Algorithmen-Renderings

Approximative Darstellungsalgorithmen sind nur für Bereiche geeignet, in denen die
Komplexität hoch und der durch die Approximation erzeugte Fehler im Bild klein ist,
während Algorithmen, die verdeckte Objekte der Szene bei der Darstellung auslassen, nur
für Positionen geeignet sind, an denen auch verdeckte Objekte vorhanden sind.

Des Weiteren kann es nicht nur notwendig sein, den Darstellungsalgorithmus abhängig
von der Position des Benutzers zu wählen, sondern zusätzlich während der Erzeugung
eines jeden Bildes für unterschiedlich strukturierte Bereiche der Szene den Algorithmus zu
wechseln. Für das Beispiel in Abbildung 1.1 bedeutet dies, dass es besser ist, das Kraftwerk
– obwohl es im Hintergrund ist – mit Hilfe von Verdeckungstests korrekt darzustellen,
und einen Großteil der Häuser in mittlerer Entfernung nur approximiert darzustellen. Im
ersten Bild ist es vielleicht noch möglich, die Szene mit einem einzigen Verfahren (z. B.
Approximation auf Entfernung) effizient und mit hoher Qualität darzustellen. Wenn die
Statue sich jedoch näher an der Kamera befindet, wie im rechten Bild, ist dies nicht mehr
möglich, da die Statue auf jeden Fall approximiert werden muss. Hier müsste man also
einen Spezialfall handhaben. Es ist natürlich möglich einen Algorithmus zu entwickeln,
der mit dieser Problematik zurechtkommt, jedoch ist es dann auch wiederum möglich eine
Szene zu konstruieren, in der ein anderer Spezialfall auftritt. Dies führt am Ende zu einem
Algorithmus, der extrem kompliziert ist, fast nur aus Spezialfallbehandlungen besteht und
ständig angepasst werden muss.

Selbst bei homogenen Szenen ist die Darstellung von Teilbereichen der Szene mit unter-
schiedlichen Algorithmen ab einer gewissen Komplexität sinnvoll. Ein Beispiel dafür ist
die Stadt ohne die Statue und die beiden komplexen Gebäude. Betrachtet man die beiden
Sichtpositionen in Abbildung 1.2, so treten bei der Darstellung des ersten Bildes keinerlei
Probleme auf. Solange sich die Kamera in der Stadt befindet, kann die komplette Szene mit
Hilfe von Verdeckungstests dargestellt werden. Sobald die Kamera jedoch über der Stadt
schwebt, wie im rechten Bild, sollten mehrere Algorithmen eingesetzt werden. In diesem
Beispiel: eine korrekte Darstellung im Nahbereich, eine gute Approximation (pro Objekt)
im mittleren Entfernungsbereich und eine gröbere Approximation (Objektgruppen) für
entfernte Bereiche.

3

1 Einleitung

(a) Sichtposition auf einer Straße.

(b) Sichtposition oberhalb der Stadt.

Abbildung 1.2: Beispiel für eine homogene Szene: Eine weitläufige Stadt mit sehr vielen
aber einfachen Objekten.

4

1.3 Ziel und eigener Beitrag

Abbildung 1.3: Darstellung einer Szene durch Multi-Algorithmen-Rendering. Unterschied-
lich eingefärbte Regionen wurden mit unterschiedlichen Algorithmen
dargestellt.

1.3 Ziel und eigener Beitrag
Ziel dieser Arbeit ist die Entwicklung und Evaluierung eines Meta-Renderingverfahrens
(Multi-Algorithmen-Rendering) zur Echtzeitdarstellung dreidimensionaler Szenen, welches
den im vorherigen Abschnitt beschriebenen Ansatz ausnutzt um die Bildqualität bei
vorgegebener Laufzeit zu optimieren.

Dies wird erreicht, indem in einer Vorverarbeitung die Szene zunächst halbautomatisch
in gleichmäßig strukturierte Regionen unterteilt wird, für die danach Messungen der Lauf-
zeit und Bildqualität verschiedener Algorithmen an zufälligen Positionen durchgeführt
werden. Mit Hilfe dieser Daten wird dann, während der Benutzer durch die Szene navigiert,
die Bildqualität bei einstellbarer angestrebter Laufzeit vollautomatisch optimiert. Dazu
werden für verschiedene Bereiche der Szene unterschiedliche – bereits existierende – Ren-
deringalgorithmen benutzt. Das heißt, zur Darstellung jedes einzelnen Bildes wird jeder
homogenen Region der Szene ein Algorithmus zugeordnet, mit dem die Region dargestellt
wird. Abbildung 1.3 zeigt ein Beispiel hierfür, bei dem die Regionen entsprechend der
benutzten Algorithmen eingefärbt wurden.
In dieser Arbeit ist es gelungen, den beschriebenen Ansatz auszunutzen, und ein pra-

xistaugliches Verfahren zu entwickeln. Durch das Multi-Algorithmen-Rendering ist ein
zusätzliches Spektrum an Szenen in Echtzeit darstellbar. Das Verfahren wurde imple-
mentiert und ausführlich evaluiert. Untersucht wurden unter anderem die Laufzeit und
die Bildqualität bei der Darstellung, sowie die Laufzeit und der Speicherverbrauch der
Vorverarbeitung. Dabei hat sich herausgestellt, dass das Verfahren in der Lage ist, die
Bildrate mit annehmbaren Schwankungen um einen Vorgabewert zu regeln, so dass der
Benutzer durch die Testszenen navigieren kann. Dabei wird die Qualität der Einzelbilder

5

1 Einleitung

auf Basis der in der Vorverarbeitung gemessenen Werte maximiert. Dies resultiert in Bilder,
wie sie z. B. in Abbildung 1.1 und 1.2 zu sehen sind. Allerdings kommt es, bedingt durch
das Wechseln der Algorithmen, zu störenden Flackereffekten zwischen aufeinanderfolgenden
Bildern. Diese können jedoch durch zukünftige Erweiterungen des Verfahrens reduziert
werden.

Das Hauptgerüst dieser Arbeit wurde bereits auf dem 11. Paderborner Workshop Aug-
mented & Virtual Reality in der Produktentstehung [Pet+13a] und dem 9th International
Symposium on Visual Computing (ISVC 2013) [Pet+13b] publiziert. Diese Arbeit stellt
eine ausführlichere Beschreibung des Verfahrens und seiner Umsetzung sowie eine wesent-
lich umfangreichere Evaluierung dar. Des Weiteren wurden am Verfahren nach diesen
Veröffentlichungen auch noch wesentliche Verbesserungen durchgeführt.

1.4 Aufbau der Arbeit
Im Folgenden werden zunächst in der Übersicht über den Stand der Technik (Kap. 2) die zu
dieser Arbeit verwandten Verfahren erörtert, sowie die in dieser Arbeit benutzten Verfahren
vorgestellt. Das Meta-Verfahren Multi-Algorithmen-Rendering (Kap. 3) wird daraufhin
inklusive einer Übersicht über die Implementierung (Kap. 4) detailliert vorgestellt. Danach
werden in der Evaluierung (Kap. 5) die Fragestellungen herausgearbeitet sowie die daraus
resultierenden Messungen ausgewertet und zusammengefasst. Letztlich schließt ein Ausblick
(Kap. 6) über Verbesserungsmöglichkeiten und mögliche zukünftige Erweiterungen die
Arbeit ab.

6

2 Stand der Technik

Im Folgenden werden, nach einigen Begriffsdefinitionen (2.1), zunächst zum Multi-Algo-
rithmen-Rendering verwandte Arbeiten vorgestellt (2.2). Danach werden gängige 3-D-
Datenstrukturen erörtert (2.3). Darauf folgt ein Überblick über den Stand der Technik im
Bereich Renderingalgorithmen (2.4, insbesondere über die in dieser Arbeit benutzten). Die
Bereiche Bildqualität (2.5) und Sampling (2.6) werden ebenfalls erörtert, soweit dies für
diese Arbeit notwendig ist.

2.1 Begriffsdefinitionen

Im Folgenden werden einige Begriffe definiert, welche im weiteren Verlauf dieser Arbeit
häufig benutzt werden.

Primitive: Primitive sind Elemente, welche durch die Grafikkarte direkt dargestellt werden
können. Dies sind Dreiecke, Linien und Punkte.

Objekt: Ein Objekt ist eine beliebig große unteilbare Menge an Primitiven. Gängige Größen
für die Anzahl der Primitive eines Objekts liegen im ein- bis siebenstelligen Bereich.
Der Begriff Objekt hat hierbei keine semantische Bedeutung wie Tisch, Auto, oder
ähnliches. Ein Auto kann sowohl ein Objekt sein, als auch aus vielen Objekten
bestehen, je nachdem, wie, von wem und wofür es modelliert wurde.

Szene: Die Szene ist eine dreidimensionale Anordnung von möglicherweise beweglichen
Objekten. In dieser Arbeit werden jedoch lediglich unbewegliche Objekte betrachtet.

Szenengraph Der Szenengraph ist eine 3-D-Datenstruktur zur Speicherung der Szene.
Generell ist dies ein gerichteter azyklischer Graph. Häufig wird jedoch, wie auch in
dieser Arbeit, aus technischen Gründen ein Baum verwendet. Jeder Knoten im Baum
kann dabei mit Zusatzinformationen wie Position, Farbe etc. annotiert sein, die sich
dann auf die Darstellung des entsprechenden Teilbaums auswirken.

Bounding-Volume: Das Bounding-Volume eines Knotens im Szenengraph ist eine möglichst
kleine und konvexe geometrische Form, welche alle Objekte des Knotens und seiner
Kinder umschließt. Rechtwinklige Formen werden auch als Bounding-Box bezeichnet.

Renderingverfahren: Renderingverfahren im Sinne dieser Arbeit sind Algorithmen, die
einen Szenengraphen traversieren und die darin enthaltene Szene mit Hilfe der
Grafikkarte durch Rasterisierung [AHH08] darstellen. Die Begriffe Algorithmus,
Methode und Verfahren werden in dieser Arbeit synonym verwendet. Andere
Techniken, wie z. B. Raytracing, Image-Based Rendering oder Voxelrendering, werden
in dieser Arbeit nicht betrachtet.

7

2 Stand der Technik

Meta-Renderingverfahren: Der Begriff Meta-Renderingverfahren bezeichnet in dieser Ar-
beit ein Verfahren, welches andere bereits existierende Algorithmen benutzt, um eine
Szene darzustellen. Die Darstellung der Objekte innerhalb der Szene erfolgt dabei
durch die benutzten Algorithmen und nicht durch das Meta-Verfahren selbst.

Bildrate Die Bildrate oder auch Framerate bezeichnet die Anzahl an Bildern, die von
einem Renderingverfahren pro Sekunde angezeigt werden. Sie ist also das Inverse zur
benötigten Zeit für die Berechnung eines Bildes.

Echtzeitdarstellung: Die Darstellung einer Szene erfolgt dann in Echtzeit, wenn die Bild-
rate so hoch ist, dass die Darstellung flüssig erscheint. Konkrete Ausprägungen reichen
hier von einstelligen bis hin zu dreistelligen Bildraten, je nach Anforderungen durch
die Art der Anwendung und den Benutzer.

Walkthrough: Bei einem Walkthrough bewegt ein Benutzer die Kamera frei durch eine
Szene, welche währenddessen in Echtzeit dargestellt wird.

Frustum: Das Frustum ist der Sichtbereich des Benutzers innerhalb der Szene. Es hat die
Form einer auf der Seite liegenden Pyramide mit rechteckiger Grundfläche, auf deren
Spitze sich die Kamera befindet. Die Grundfläche bildet die sogenannte „far plane“,
eine Ebene an der der Sichtbereich endet. Alle Primitive hinter dieser Ebene werden
abgeschnitten.

Optimierung: Der Begriff Optimierung wird in verschiedenen wissenschaftlichen Bereichen
unterschiedlich aufgefasst. In dieser Arbeit werden in der Vorverarbeitung Stichproben
gezogen, die Messfehlern unterliegen und abhängig von einem zur Messung von
Bildfehlern benutzten Abstandsmaß sind. Diese Werte werden zur Laufzeit für die
aktuelle Betrachterposition interpoliert. Auf Grundlage dieser interpolierten Werte
wird dann ein lineares Programm gelöst, dessen Parameter über einen Regelkreis
nachjustiert werden. Die Lösung des LPs stellt also keinesfalls eine optimale Lösung
für das Ausgangsproblem dar. Trotzdem wird der gesamte Vorgang in dieser Arbeit
als Optimierung bezeichnet.

2.2 Verwandte Arbeiten

Es gibt einige Verfahren, die man als Vorgänger zu dieser Arbeit bezeichnen kann, da sie
ebenfalls mehrere Algorithmen benutzen und die Entscheidung aufgrund einer Kosten-
Nutzen-Funktion treffen.

Funkhouser und Séquin [FS93] benutzen eine Kosten-Heuristik, welche über die Anzahl
Primitive im Objekt sowie dessen projizierte Größe die Zeit für dessen Darstellung schätzt.
Zusätzlich wird mit Hilfe einer Nutzen-Heuristik über die projizierte Größe der Objekte
noch deren Beitrag zum Bild geschätzt. Aufgrund dieser beiden Heuristiken wird dann ein
Optimierungsproblem definiert, welches bei vorgegebenen Maximalkosten den Nutzen ma-
ximiert. Dieses Optimierungsproblem wird jedoch nicht gelöst, sondern lediglich mit einem
Greedy-Ansatz approximiert, da es eine Variante des NP-vollständigen kontinuierlichen
Multiple-Choice-Rucksackproblems [Iba+78] darstellt. Dieses ist, zumindest für Instanzen
dieser Größe und auf der damaligen Hardware, nicht in Echtzeit lösbar.

8

2.3 3-D-Datenstrukturen als Szenengraph

Einen anderen Ansatz verfolgen Aliaga u. a. [Ali+99]. Sie benutzen auch mehrere Rende-
ringverfahren, allerdings mit einem weniger flexiblen Konzept, welches die Szene in Nah-
und Fernbereich unterteilt. Für den Nahbereich werden dann Culling und geometriebasierte
approximative Darstellungsverfahren eingesetzt, während für den Fernbereich bildbasierte
Verfahren eingesetzt werden, die Teile der Szene z. B. durch texturierte Quader ersetzen.

Bei Computerspielen ist die Darstellung einer Szene durch den Einsatz mehrerer Algorith-
men eine durchaus gängige Praxis. Allerdings wird hier die Zuordnung von Algorithmen zu
Regionen durch einen Experten manuell getroffen. Des Weiteren ist es hier durchaus mög-
lich, die Szene selbst anzupassen, falls sie nicht von allen Positionen aus mit ausreichender
Qualität und Geschwindigkeit dargestellt werden kann.

Verfahren, die das Problem mit Hilfe vorheriger Messung von Laufzeit und Bildqualität
und anschließender linearer Optimierung lösen, sind aber nicht bekannt.

2.3 3-D-Datenstrukturen als Szenengraph
3-D-Datenstrukturen oder genauer gesagt Bounding-Volume-Hierarchien zum Speichern
einer dreidimensionalen Szene sind hierarchische Datenstrukturen, bei denen gilt, dass das
Bounding-Volume eines Knotens alle Bounding-Volumes seines Teilbaumes enthält. Ein
Bounding-Volume ist dabei eine Struktur, die alle enthaltenen Objekte umschließt. Es sollte
möglichst einfach aufgebaut sein, um Sichtbarkeitstests, wie z. B. eine Schnittberechnung
mit dem Sichtbereich des Benutzers, effizient durchführen zu können. Andererseits sollte
es die Objekte möglichst eng umschließen, um ein möglichst genaues Testergebnis zu
erhalten. In Foundations of Multidimensional and Metric Data Structures [Sam05] wird
ein genereller Überblick über 3-D-Datenstrukturen gegeben. Für Rendering gebräuchliche
Strukturen sind z. B. (Loose-) Octrees [Hun78], k-d-trees [Ben75], BSP-trees [FKN80],
AB-trees [Fle06] und Hull-trees [Süß+11]. All diese verfolgen einen Top-Down-Ansatz
und teilen die Szene rekursiv in mehrere Teile auf. Der Unterschied liegt in der Wahl der
Schnittebenen, welche zur Aufteilung benutzt werden, und der Form der Bounding-Volumes.
Die Schnittebenen sind entweder beliebig (BSP-Trees) oder achsenparallel (Octrees, k-d-
trees, AB-trees, Hull-trees). Es wird entweder an einer (BSP-trees, k-d-trees, AB-trees)
oder gleichzeitig an mehreren (Octrees, Hull-trees) Schnittebenen geschnitten. Die Form
eines Bounding-Volumes ist stets konvex. Gängige Formen von Bounding-Volumes sind
konvexe Polyeder (Hull-tree, BSP-tree), Quader (k-d-trees, AB-trees), Würfel (Octrees)
oder Kugeln. Welche dieser Strukturen am besten geeignet ist, hängt von der jeweiligen
Eingabeszene ab. Jedoch tritt bei allen dasselbe Problem auf, wenn die Eingabe nicht
aus Punkten, sondern aus Objekten mit Volumen besteht. Die Entscheidung, in welchem
Kindknoten ein Objekt gespeichert wird, kann recht einfach über den Mittelpunkt des
Objekts getroffen werden. Nicht so einfach zu beantworten ist jedoch die Frage, was mit
Objekten passiert, die von einer Schnittebene geschnitten werden. Hierzu gibt es drei
Lösungsansätze:

• Die Objekte werden zerschnitten und die entstehenden Teile im jeweils passenden
Kindknoten gespeichert. Dies hat zur Folge, dass sich die Anzahl der Objekte mögli-
cherweise stark erhöht.

• Die Objekte werden in allen Kindern redundant gespeichert. Dies hat zur Folge,
dass sich zum einen der benötigte Speicherplatz erhöht und zum anderen bei der

9

2 Stand der Technik

Traversierung nicht mehr so einfach entschieden werden kann, ob ein Objekt bereits
bearbeitet wurde oder nicht.

• Die Objekte werden in dem inneren Knoten gespeichert, in dessen Bounding-Volume
sie noch hineinpassen. Dies hat zur Folge, dass auch kleine Objekte eventuell bereits
in der Wurzel des Baums gespeichert werden. Dies kann umgangen werden, indem
die Größe des Bounding-Volumes verdoppelt wird. Dann wird die Tiefe, in der das
Objekt im Baum gespeichert wird, fast (±1) nur noch durch dessen Größe bestimmt.
Allerdings sind die einzelnen Bounding-Volumes einer Ebene im Baum dann nicht
mehr disjunkt. Solch eine Loose-Datenstruktur wurde erstmals für Loose-Octrees
[Ulr00] eingeführt, ist aber auch für andere Bounding-Volume Hierarchien umsetzbar.

Es gibt unzählige Varianten dieser Datenstrukturen, die jeweils unter bestimmten Um-
ständen geringfügige Vorteile bieten. Bei Szenengraphen für beliebige (nicht in Voraus
bekannte) Szenen ist aber keine generelle Aussage darüber zu treffen, welche Datenstruktur
am geeignetsten ist. Allerdings gilt, je ungleichmäßiger eine Szene ist, desto wichtiger ist es
eine der Loose-Varianten zu wählen.
Alternativ kann man eine Bounding-Volume-Hierarchie auch mit einem Bottom-Up-

Anzatz, z. B. durch agglomeratives Clustering [Flo+51; Are08; Ack+12], berechnen. Hierbei
startet man mit einer Menge von Gruppen (eine pro Objekt), die so lange zusammengefasst
werden, bis nur noch eine Gruppe existiert. Dieser Ansatz wird jedoch aufgrund der
höheren Berechnungszeit und der nur geringfügigen Vorteile in der Praxis selten eingesetzt.
Außerdem muss hier die Datenstruktur bei dynamischen Updates jedes Mal komplett neu
berechnet werden. Bei den Top-Down-Ansätzen ist es hingegen in der Regel möglich, die
Datenstruktur zu aktualisieren.

2.4 Renderingverfahren
Renderingalgorithmen lassen sich grob aufteilen in konservative und approximative Verfah-
ren. Konservative Renderingalgorithmen sind solche, die zumindest alle sichtbaren Objekte
korrekt darstellen und keinen Fehler im resultierenden Bild erzeugen. Approximative Ren-
deringalgorithmen sind solche, die zugunsten einer besseren Laufzeit Teile der Szene nicht
korrekt oder gar nicht darstellen und dadurch eventuell einen Fehler im resultierenden
Bild erzeugen. Für eine Übersicht über verschiedene Renderingtechniken sei hier auf die
Artikel von Cohen-Or u. a. [Coh+03] sowie Gobbetti, Kasik und Yoon [GKY08] verwiesen.
Im Folgenden werden nur die für diese Arbeit relevanten Aspekte erörtert.

2.4.1 Konservative Renderingverfahren
Die einfachste Variante eines konservativen Renderingalgorithmus ist der z-Buffer-Algorith-
mus [Str74; Cat74]. Hierbei wird aus Sicht der CPU jedes Objekt genauso dargestellt, wie es
modelliert wurde; unabhängig davon ob es sichtbar ist oder nicht. Der z-Buffer-Algorithmus
selbst ist auf der Grafikkarte in Hardware implementiert und testet jedes Mal, wenn ein
Pixel beschrieben werden soll, ob der Tiefenwert des neuen Pixels vor dem des alten – also
näher zum Betrachter – liegt. Nur wenn dies der Fall ist, wird der Pixel überschrieben
und ansonsten verworfen. Beschleunigen kann man die Darstellung durch Auslassen der
nicht sichtbaren Objekte. Dieser Vorgang nennt sich Culling und kann in drei Kategorien
aufgeteilt werden:

10

2.4 Renderingverfahren

• Frustum-Culling überspringt Objekte, die sich nicht im Sichtbereich des Benutzers
befinden. Mit einer geeigneten Datenstruktur geht dies sehr schnell und sollte immer
ausgeführt werden, da sich der Aufwand nicht bemerkbar macht, selbst wenn die
komplette Szene im Sichtbereich liegt und somit kein Nutzen erzielt wird.

• Backface-Culling überspringt Dreiecke, deren Oberflächennormale dem Benutzer
abgewandt ist. Es kann auf zwei Arten genutzt werden: Auf der Grafikkarte ausgeführt
kann es lediglich ein- und ausgeschaltet werden. Ist die Darstellung eines Dreiecks
sehr einfach, so bringt es keinen Nutzen, da die Darstellung eines Dreiecks dann
nicht länger dauert als der Test, ob es sichtbar ist. Mit steigender Zeit für die
Darstellung eines Dreiecks, z. B. durch aufwendige Effekte, steigt auch der Nutzen
von Backface-Culling. Hierbei ist dann jedoch auch zu beachten, dass solche Dreiecke,
die von beiden Seiten zu sehen sein sollen, doppelt vorhanden sein müssen. Auf der
CPU ausgeführtes Backface-Culling teilt meist die Objekte in mehrere Teile auf,
welche dann die Dreiecke enthalten, deren Oberflächennormale ungefähr in die gleiche
Richtung zeigt, so dass zur Laufzeit nur noch ca. die Hälfte der Dreiecke dargestellt
werden muss.

• Occlusion-Culling ist die Art des Cullings, bei der man durch geschickte Algorithmen
am meisten erreichen kann. Hierbei werden Objekte bei der Darstellung übersprungen,
die durch andere Objekte verdeckt werden. Hierzu gibt es verschiedene Techniken,
die im Folgenden näher erläutert werden.

Die Occlusion-Culling-Verfahren kann man weiter unterteilen in Online- und Offlineverfah-
ren. Offline-Occlusion-Culling-Verfahren berechnen die Sichtbarkeit der Objekte bereits
vor dem eigentlichen Walkthrough in einem Vorverarbeitungsschritt. Die so gewonnenen
Informationen werden zur Nutzung während des Walkthroughs gespeichert. Onlineverfahren
hingegen berechnen die Sichtbarkeit der Objekte zur Laufzeit, also während die Szene
dargestellt wird. Es existieren auch Mischformen dieser beiden Ansätze, bei denen eine im
Vorfeld berechnete Menge potentiell sichtbarer Objekte zur Laufzeit weiter eingeschränkt
wird.

2.4.1.1 Offline-Occlusion-Culling-Verfahren

Die exakte Berechnung der globalen Sichtbarkeitsinformationen – also die Aufteilung des
3-D-Raums in Bereiche, aus denen jeweils immer exakt die gleiche Menge an Dreiecken
sichtbar ist – resultiert in einem Aspektgraphen [PD90], der eine Speicherplatz-Komplexität
von O(n9) hat. Dadurch ist er, selbst wenn n statt der Anzahl an Primitiven nur die
Anzahl an Objekten in der Szene bezeichnet, in der Praxis nicht einsetzbar. Es gibt jedoch
Verfahren, die eine Approximation dieses Graphen berechnen [ARBJ90; TS91]. Dazu wird
die Szene z. B. in Zellen aufgeteilt und lediglich pro Zelle die Sichtbarkeit der anderen Zellen
berechnet. Dies geschieht mit Hilfe von Portalen, welche die Zellen miteinander verbinden
und funktioniert besonders gut bei architektonischen Szenen. Dabei sind dann die Zellen
die Räume und die Portale die Türen bzw. Fenster. Die so entstehende Datenstruktur liefert
zu jeder Zelle eine Menge von möglicherweise sichtbaren Zellen bzw. deren Objekte. Diese
Menge ist ein Potentially-Visible-Set (PVS) und wird dargestellt, wenn sich der Benutzer
in der Zelle aufhält. Sie umfasst zumindest die Objekte, welche von mindestens einem
Standpunkt innerhalb der aktuellen Zelle aus sichtbar sind. Sie ist also eine Obermenge
aller vom aktuellen Standpunkt aus sichtbaren Objekte.

11

2 Stand der Technik

2.4.1.2 Online Occlusion-Culling Verfahren

Von Onlineverfahren spricht man, wenn die Entscheidung, ob ein Objekt bei der Darstellung
ausgelassen wird oder nicht, erst zur Laufzeit getroffen wird. Ein Beispiel hierfür ist ein
Verfahren, das Hierarchical-Occlusion-Maps (HOM) [Zha+97] nutzt. Hierbei wird zunächst
eine geschickt gewählte Menge von Objekten ausgewählt, welche große Teile der Szene
verdeckt (Occluder). Diese werden dann zunächst in ein Schwarz-Weiß-Bild gerendert.
Danach wird durch stufenweise Verkleinerung eine Bildpyramide erzeugt, mit Hilfe derer
dann die Sichtbarkeitstests für die übrigen Objekte (Occludees) durchgeführt werden. Stand
der Technik in diesem Bereich ist jedoch das Coherent-Hierarchical-Culling++-Verfahren
(CHC++) [MBW08], welches eine Optimierung des CHC-Verfahrens [Bit+04] ist. Hierbei
wird eine Fähigkeit neuerer Grafikkarten ausgenutzt, welche in der Lage sind zu bestimmen,
wie viele Pixel eines Objektes bei dessen Darstellung beschrieben wurden. Dieser Wert kann
abgefragt werden, sobald die Geometrie des Objekts die Grafikpipeline passiert hat. Stellt
man nun nicht das Objekt selbst dar, sondern ein einfaches Bounding-Volume, so ergibt
dies einen konservativen Sichtbarkeitstest für Objekte oder auch für ganze Teilbäume des
Szenengraphen. Der CHC++-Algorithmus führt diese Verdeckungstests sehr geschickt für
Teile der Szene durch, ohne dass dabei größere Wartezeiten auf die Ergebnisse der Tests
entstehen.

2.4.2 Approximative Renderingverfahren

An dieser Stelle sind zunächst alle konservativen Renderingverfahren erneut zu nennen, da
man jedes dieser Verfahren in ein approximatives Verfahren verwandeln kann. Hierbei lässt
man zu, dass auch Objekte, die nur zu einem kleinen Teil sichtbar sind, bei der Darstellung
ausgelassen werden. Zusätzlich gibt es noch einige approximative Culling-Verfahren, die
keine konservative Variante haben. Hierzu gehört z. B. das Spherical-Visibility-Sampling
(SVS) [Eik+13], das die Szene nicht (wie zur Berechnung von PVS häufig der Fall) in
Zellen aufteilt, sondern stattdessen eine Kugel um einen Teilbaum des Szenengraphen
legt und für beliebige Positionen außerhalb dieser Kugel abschätzt, welche der Objekte
aus dem inneren der Kugel an dieser Position sichtbar sind. Dadurch ist die Komplexität
der aufgebauten Struktur nicht von der Anzahl der Zellen abhängig, sondern nur von der
Anzahl der Knoten des Szenengraphen.

Dazu kommen dann noch die Verfahren, welche die Darstellung beschleunigen, indem sie
Objekte oder ganze Teilbäume des Szenengraphen durch einfachere, schneller darzustellen-
de Ersatzrepräsentationen austauschen. Algorithmen, die einzelne Objekte austauschen,
sind z. B. das Discrete-Level-of-Detail [Lue+03]. Hierbei wird im Vorfeld, mit Hilfe von
Meshreduktionsverfahren [GH97; GH98] eine konstante Anzahl an reduzierten Varianten
des Objekts berechnet, welche dann zur Laufzeit je nach projizierter Größe des Objekts
benutzt werden. Eine Erweiterung davon stellen Progressive-Meshes [Hop96] dar, bei denen
eine kontinuierliche, reproduzierbare Reduktion des Objekts bis auf konstante Größe vor-
berechnet wird. Dadurch steht zur Laufzeit jede benötigte Komplexitätsstufe des Objekts
zur Verfügung. Das Verfahren ist sogar bedingt in der Lage die Komplexität eines Meshes
nur in bestimmten Bereichen zu reduzieren. Des Weiteren gibt es Verfahren, welche ganze
Teilbäume des Szenengraphen ersetzen können. Ein früher Vertreter dieser Klasse von
Algorithmen ist das Color-Cubes-Verfahren [Cha+96]. Dieses ersetzt Teilbäume ab einer
konstanten projizierten Größe durch eine teilweise transparente farbige Boundingbox. Dabei

12

2.5 Bewertung der Bildqualität approximativer Darstellungsverfahren

entspricht die Farbe der Seitenflächen der Box der durchschnittlichen Pixelfarbe eines
gerenderten Bildes vom Inhalt des zu ersetzenden Knotens. Bei Objekten, deren projizierte
Größe über dem gegebenen Schwellwert liegt, wird die Originalgeometrie dargestellt. Ein
Verfahren mit ähnlicher Vorgehensweise ist Progressive-Blue-Surfels [Jäh+13], hierbei
werden jedoch die Teilbäume durch Punktwolken ersetzt. Der Begriff Surfel ist eine Kombi-
nation der Wörter Surf ace und Pixel bzw. Surf ace und element und bezeichnet Punkte
auf der Oberfläche von Objekten. Die Surfels werden hierbei ähnlich zu der von Pfister
u.a. [Pfi+00] beschriebenen Vorgehensweise erzeugt. Resultat ist in diesem Fall jedoch eine
progressive Liste von Surfels, deren Präfix der Länge k jeweils eine gute Approximation
des Teilbaums bei einer projizierten Größe von c · k bilden. Auch bei diesem Verfahren
wird die Originalgeometrie dargestellt, wenn die Anzahl verfügbarer Surfels zu klein für
die projizierte Größe eines Objektes ist.

2.5 Bewertung der Bildqualität approximativer
Darstellungsverfahren

Die Bewertung der Qualität eines gerenderten Bildes, bzw. des Fehlers in einem solchen,
geschieht, indem das approximativ dargestellte Bild mit einem konservativ dargestellten
Bild verglichen wird. Einen generellen Überblick über den Stand der Technik im Bereich
Bildqualität geben die Arbeiten von Pedersen [Ped11] bzw. Pedersen und Hardeberg
[PH12]. Abbildung 2.1 zeigt einige Beispiele inklusive der Fehlerbilder unterschiedlicher
Vergleichsverfahren. Ein dunkleres Bild bedeutet hier einen größeren Fehler, allerdings darf
man nicht Fehlerbilder unterschiedlicher Verfahren miteinander vergleichen.

Die einfachste Variante einer Bildfehlerbewertung ist ein pixelweiser Vergleich der Bilder,
bei dem die Anzahl fehlerhafter Pixel ermittelt wird. Diese Vorgehensweise unterscheidet
nicht zwischen leicht falschen und völlig falschen Pixeln. Dies bedeutet für das erste
(linke) Beispiel in der Abbildung, dass alle Pixel falsch sind (i), da im zweiten Bild (e)
alle Pixel minimal heller sind als im ersten Bild (a). Daraus ist ersichtlich, dass diese
Vorgehensweise nicht der menschlichen Wahrnehmung entspricht, da dieser Unterschied
mit dem bloßen Auge nicht zu erkennen ist und ein Mensch eine solche Approximation als
sehr gut bezeichnen würde.

Dieses Problem entsteht nicht, wenn man falsche Pixel mit dem (quadratischem) Abstand
der Farbwerte (Mean-Squared-Error, MSE) [WB09] im RGB-Raum gewichtet. Dies führt
in diesem Beispiel zu einem sehr kleinen Fehlerwert (m). Das zweite Beispiel zeigt ein
weiteres Problem auf. Hier ist im zweiten Bild (f) ein Strich vorhanden, der im ersten
Bild (b) fehlt. Der MSE-Fehlerwert (n) wäre in diesem Fall jedoch ähnlich dem aus dem
vorherigen Beispiel, obwohl ein Mensch sagen würde, dass der Fehler hier wesentlich größer
ist als zuvor.

Eine Methode, die diese und andere Problematiken beachtet, ist das Structural-Similarity-
Verfahren (SSIM) [Wan+04]. Es ist in der Lage strukturelle Unterschiede in Bildern zu
erkennen. Dazu wird, statt nur je zwei korrespondierende Pixel miteinander zu vergleichen,
auch deren Nachbarschaft in die Berechnung einbezogen. Dadurch ist es möglich auch die
Ableitung des Fehlerverlaufs innerhalb des Bildes zu bewerten. Dies hat zur Folge, dass
im zweiten Beispiel der fehlerhafte Strich bei der Bewertung (r) hervorgehoben wird und
somit stärker in die Fehlerberechnung einfließt.
Ein drittes Problem bei der Bewertung von Bildfehlern stellt Rauschen dar. Betrachtet

13

2 Stand der Technik

(a) RGB: 240,240,240 (b) Ohne Linie (c) Ohne Rauschen (d) Korrekte Darstellung

(e) RGB: 241,241,241 (f) Mit Linie (g) Mit Rauschen (h) Approximative Darstellung

(i) Fehlerhafte Pixel
(a)-(e)

(j) Fehlerhafte Pixel
(b)-(f)

(k) Fehlerhafte Pixel
(c)-(g)

(l) Fehlerhafte Pixel (d)-(h)

(m) MSE-Pyramide
(a)-(e)

(n) MSE-Pyramide
(b)-(f)

(o) MSE-Pyramide
(c)-(g)

(p) MSE-Pyramide (d)-(h)

(q) SSIM-Pyramide
(a)-(e)

(r) SSIM-Pyramide
(b)-(f)

(s) SSIM-Pyramide
(c)-(g)

(t) SSIM-Pyramide (d)-(h)

Abbildung 2.1: Beispiele für Bildfehlerbewertungen mit verschiedenen Verfahren. Zeile eins
und zwei zeigen die verglichenen Bilder, drei bis fünf die Fehlerbilder.

14

2.6 Sampling

man die Bilder im dritten Beispiel (c),(g), so sehen diese sehr ähnlich aus. Das zweite Bild ist
lediglich ein wenig verrauscht. Dies hat allerdings zur Folge, dass das SSIM-Verfahren den
Fehler im Bild (s) als sehr hoch bewertet, da er sich von Pixel zu Pixel ständig ändert. Diesem
kann man entgegenwirken, indem man beim Vergleich der Bilder eine Bildpyramide [Bur81]
aufbaut, indem man die zu vergleichenden Bilder sukzessiv verkleinert und dann paarweise
mit Hilfe eines der vorherigen Verfahren vergleicht. Der Gesamtfehler ergibt sich hierbei
dann durch eine gewichtete Aufsummierung der Einzelfehler. Diese Vorgehensweise sorgt
dafür, dass Fehler, die nur räumlich begrenzte, verteilte Bereiche des Bildes betreffen oder
stark fluktuieren, wie Rauschen, beim Verkleinern der Bilder in der Pyramide verschwinden.
So ist im dritten Beispiel (s) das Rauschen bereits nach der ersten Verkleinerung fast
verschwunden, während der Strich im zweiten Beispiel (r) jedoch erhalten bleibt. Dieses
Verfahren kann auch mit dem MSE-Verfahren kombiniert werden, der beschriebene Effekt
ist dort jedoch nur schwach zu erkennen, da dieses generell weniger anfällig für Rauschen
ist.
Das vierte Beispiel vergleicht die korrekte Darstellung einer gerenderten Szene (d) mit

einer Approximation (h). Auch hier ist zu erkennen, dass das Rauschen, welches durch die
Approximation entsteht, bereits in der zweiten Ebene der SSIM-Pyramide (t) verschwindet,
während im Gegensatz zur MSE-Pyramide (p) die Bereiche, in denen der Fehler großflächig
schwankt, länger erhalten bleiben.

Aussagekraft der Fehlerwerte
Während man beim Zählen der Pixel und beim MSE noch fragwürdige Aussagen treffen
könnte, wie „Das Bild ist zu 75% richtig.“, geht dies bei den anderen Verfahren nicht
mehr. Hier lassen sich lediglich noch Aussagen treffen, wie „Bild A ist bezgl. des benutzten
Verfahrens besser als Bild B.“, wenn man beide mit dem korrekten Bild verglichen hat. Selbst
ob ein Bild gut oder schlecht bzw. besser oder schlechter als ein anderes ist, kann nicht
entschieden werden, da dies stets eine subjektive Entscheidung des Betrachters ist. Eine
Kombination aus Bildpyramide und SSIM liefert jedoch in der Praxis brauchbare Werte
für das Multi-Algorithmen-Rendering. Eine ausführlichere Analyse der unterschiedlichen
Verfahren wurde im Rahmen einer Bachelorarbeit von Fei Teng [Ten11] durchgeführt.

2.6 Sampling
Sampling bezeichnet die Abtastung einer Funktion an stichprobenartig gewählten Positionen
– hier die Laufzeit und die Bildqualität verschiedener Algorithmen auf unterschiedlichen
Regionen in einer 3-D-Szene. Die Art und Weise in der die Positionen gewählt werden
(regelmäßig/zufällig) ist hierbei von entscheidender Bedeutung. Wählt man die Positionen
regelmäßig, so ergibt sich ein dreidimensionales Gitter. Dies bietet den Vorteil, dass die
Abdeckung des 3-D-Raums mit einer solchen Stichprobe gleichmäßig und die maximale
Distanz eines beliebigen Punktes zum nächstgelegenen Samplepunkt minimal ist. Der
Nachteil an dieser Vorgehensweise ist, dass die Abtastung einer periodischen Funktion –
also einer regelmäßigen Szene – bei einem ungünstig gewählten Abstand der Positionen
keine Aussagekraft mehr hat. Ein Beispiel hierfür ist ein Schachbrett, bei dem man bei einem
ungünstig gewählten Abstand nur die weißen Felder trifft. Dies hat zur Folge, dass man
sehr viele (je kleiner die Periode, desto mehr) Stichproben ziehen muss, um sicherzustellen,
dass die Abtastung eine Aussagekraft hat.

15

2 Stand der Technik

(a) Regelmäßig (b) Zufällig, gleichverteilt (c) Modifizierter Dart-Throwing
Algorithmus

Abbildung 2.2: Zweidimensionales Beispiel für unterschiedliche Verteilungen von jeweils ca.
1000 Sample-Positionen.

Alternativ kann man die Positionen für die Stichproben auch zufällig gleichverteilt wählen.
Dies behebt die vorgenannten Probleme, hat jedoch den Nachteil, dass die Abtastung
nicht mehr so gleichmäßig ist und man daher generell eine größere Menge an Stichproben
braucht. Diese Vorgehensweise bietet jedoch noch einen weiteren Vorteil: Sie ist iterativ,
das heißt, man kann zu einer beliebigen Menge an Stichproben stets noch eine weitere
Probe hinzufügen, ohne die globale Verteilung der Stichproben zu beeinflussen. Bei einem
Gitter muss man die Anzahl der Stichproben (im 3-D-Fall) hingegen verachtfachen, da die
Verteilung sonst nicht mehr gleichmäßig ist.

Abbildung 2.2 zeigt ein Beispiel für beide Vorgehensweisen. Bei der zufälligen Verteilung
ist deutlich sichtbar, dass einige Punkte sehr nah beieinander liegen und andererseits aber
auch große Bereiche existieren, in denen gar keine Punkte liegen. Das dritte Bild zeigt eine
Verteilung, welche die Vorteile der beiden vorgenannten Verfahren vereint. Diese Verteilung
wurde mit Hilfe eines modifizierten Dart-Throwing-Algorithmus [Mit91] erzeugt. Hierbei
werden statt einer zufälligen Position gleich mehrere (im Beispiel 100) erzeugt. Von diesen
wird diejenige benutzt, die zu allen vorherigen Stichproben den größten Abstand hat. Die
restlichen Positionen werden verworfen. Dadurch werden Positionen, die in einem bisher
nur schwach abgetasteten Bereich liegen, bevorzugt und man erhält so insgesamt eine
gleichmäßigere, jedoch nicht regelmäßige Abtastung.

16

3 Multi-Algorithmen-Rendering

Die generelle Idee des Multi-Algorithmen-Renderings besteht darin, eine Szene in Regio-
nen geeigneter Größe aufzuteilen, welche gleichmäßig strukturiert (homogen) sind. Diese
Regionen werden dann mit den jeweils am besten geeigneten Algorithmen dargestellt.
Um eine effiziente Auswahl der Algorithmen zur Laufzeit zu ermöglichen, werden vom

Multi-Algorithmen-Rendering zunächst zwei Vorverarbeitungsschritte durchgeführt. Im
ersten Schritt wird die Szene in homogene Bereiche geeigneter Größe aufgeteilt. Dazu
selektiert ein erfahrener Benutzer wiederholt Kriterien, aufgrund derer dann die Szene
unterteilt wird (Abschnitt 3.4.1). Dazu selektiert der Benutzer noch eine sinnvolle, möglichst
kleine Teilmenge der Algorithmen die in der Szene benutzt werden sollen. Danach wird im
zweiten Schritt stichprobenartig für alle Kombinationen von Algorithmen und Regionen
an einigen Positionen die Laufzeit und der Bildfehler gemessen (Abschnitt 3.4.2) und das
Ergebnis gespeichert.
Diese so ermittelten Werte werden dann zur Laufzeit genutzt um eine Zuordnung von

Algorithmen zu Regionen zu finden, welche insgesamt ein gutes Bild liefert. Dazu werden die
Stichproben aus der Vorverarbeitung für die aktuelle Position des Betrachters interpoliert
(Abschnitt 3.5.1). Die Zuordnung von Algorithmen zu Regionen wird getroffen, indem auf
Basis dieser Interpolation ein lineares Programm gelöst wird, welches den Gesamtfehler
minimiert (Abschnitt 3.5.2). Eine der Nebenbedingungen des LPs sorgt hierbei dafür, dass
die Summe der einzelnen Laufzeiten einen vorgegebenen Sollwert nicht überschreitet. Da
die Laufzeit-Messwerte aus der Vorverarbeitung aus technischen Gründen fehlerbehaftet
sind, wird das LP in einen Regelkreis eingebettet, welcher den vorgegebenen Sollwert für
die Darstellungsdauer nachjustiert (Abschnitt 3.5.3). Dadurch wird eine leicht um den
Sollwert schwankende Laufzeit erzielt.
Eine Beispielzuordnung von Algorithmen und Regionen ist in Abbildung 3.1 zu sehen.

Hier werden vier verschiedene Algorithmen benutzt, um die einzelnen Regionen der Szene
darzustellen.

In diesem Kapitel folgt zunächst die Definition von Homogen und Heterogen (3.1) sowie
eine Erläuterung praktischer Kriterien hierfür (3.2). Danach werden die aktuell für das Mul-
ti-Algorithmen-Rendering einsetzbaren Verfahren erläutert (3.3). Nach der Beschreibung
der Vorverarbeitung (3.4) und des Laufzeitalgorithmus (3.5) wird noch auf eine Umkehrung
des Verfahrens – zur Optimierung der Laufzeit bei vorgegebenem Bildfehler (3.6) – sowie
auf zusätzliche Einsatzbereiche des Verfahrens eingegangen (3.7).

3.1 Definition: heterogen & homogen

In dieser Arbeit ist die Definition des Begriffs heterogen variabel. Sie hängt von den
vom Multi-Algorithmen-Rendering benutzten Algorithmen ab. Heterogen bedeutet, dass
mindestens ein Kriterium, wie z. B. die Dichteverteilung der Polygone, welches die Laufzeit
und die Bildqualität mindestens eines der benutzten Algorithmen beeinflusst, in einem

17

3 Multi-Algorithmen-Rendering

Abbildung 3.1: Beispiel für eine Zuordnung von Algorithmen zu Bereichen der Szene: gelb
für CHC++, grün für SVS, blau für Blue-Surfels, magenta für LoD

Bereich stark schwankt. Homogen hingegen bedeutet, dass alle Kriterien nur geringfügig
schwanken.

Das heißt, wenn man zur Menge der benutzten Algorithmen einen neuen hinzufügt, dann
kann ein Bereich der Szene, der zuvor als homogen galt, nachher als heterogen gelten. Dies
passiert genau dann, wenn innerhalb des Bereiches ein Kriterium schwankt, welches die
Laufzeit oder Bildqualität der hinzugefügten Methode beeinflusst, jedoch für die bereits
vorher benutzten Algorithmen irrelevant war.

3.2 Kriterien für Homogenität
Im Laufe dieser Arbeit hat sich herauskristallisiert, dass Laufzeit und Bildqualität der
meisten – zumindest aller benutzten – Verfahren hauptsächlich von nur wenigen Kriterien
abhängen:

• Die Dichteverteilung der Polygone in einem Bereich bestimmt maßgeblich, wie viel
Verdeckung in einem Bereich besteht. Wenn man von realistischen Eingaben aus
Oberflächenmodellen ausgeht und konstruierte Fälle, wie n Polygone die sich in einem
Punkt schneiden und dabei alle sichtbar sind, ausschließt, dann müssen in einem
beschränkten Bereich, in dem sich sehr viele oder sehr große Polygone bzw. Objekte
befinden auch viele davon verdeckt sein. Ein Schwanken der Dichteverteilung ist
somit ein guter Indikator für den Nutzen von Occlusion-Culling-Verfahren.

• Die Zahl an Objekten bzw. Polygonen pro Objekt ist maßgeblich für die Einsetz-
barkeit von approximativen Darstellungsalgorithmen. Bei Objekten mit sehr vielen
Polygonen benötigt man Verfahren die in der Lage sind diese zu simplifizieren, wie

18

3.3 Beim Multi-Algorithmen-Rendering eingesetzte Verfahren

z. B. Meshreduktionsverfahren. Ist hingegen die Anzahl Objekte der Flaschenhals,
so werden Verfahren benötigt, die in der Lage sind viele Objekte zusammenzufassen
und mit nur wenigen Funktionsaufrufen darzustellen.

Dazu kommen noch zwei Kriterien für einen geeigneten Bereich, welche nichts mit Hetero-
genität zu tun haben: Die Größe und Komplexität eines Bereiches. In Bereichen, die zu
groß sind, kann das Multi-Algorithmen-Rendering den Algorithmus nicht wechseln. Folglich
muss dieser Bereich, wenn der Bildfehler bei einer Approximation nahe dem Betrachter sehr
groß wird, komplett korrekt dargestellt werden, obwohl dies für die entfernteren Bereiche
eigentlich nicht notwendig ist. Bei Bereichen mit zu geringer Komplexität kann es hingegen
vorkommen, dass die Kosten, die das Wechseln des Darstellungsverfahrens erzeugt, den
Gewinn bei der Darstellung übersteigen.

3.3 Beim Multi-Algorithmen-Rendering eingesetzte Verfahren

Für das Multi-Algorithmen-Rendering können prinzipiell alle Verfahren benutzt werden,
solange diese kein Budget verwenden, welches extern eingestellt werden muss. Dies wäre
beispielsweise eine Zeitvorgabe für die Darstellung einer Szene/Region. Bei Verfahren die –
wie das Multi-Algorithmen-Rendering selbst – ein solches Budget verwenden, müsste dieses
kontinuierlich angepasst werden, indem das Budget des Multi-Algorithmen-Renderings
auf die einzelnen Regionen verteilt wird, für die solche Algorithmen benutzt werden. Eine
Heuristik zu diesem Zweck ist zwar generell denkbar, wurde jedoch im Rahmen dieser
Arbeit nicht umgesetzt. Verfahren, die ein Budget benutzen, welches sich automatisch
justiert, wie etwa eine fixe Anzahl an Polygonen pro Pixel, die die Szene auf dem Bildschirm
einnimmt, stellen hingegen kein Problem dar.

Ebenfalls Probleme bereiten approximative Verfahren, welche bei der Darstellung Löcher
im Bild hinterlassen. Falls solche Verfahren im Nahbereich eingesetzt werden und dahinter
andere, die Occlusion-Culling benutzen, dann hat dies zur Folge, dass im hinteren Bereich
zusätzliche Objekte als sichtbar klassifiziert werden. Dadurch kann sich die Laufzeit für
den hinteren Bereich erhöhen. In der Regel sollte ein solcher Fall aber nicht auftreten, da
Verfahren, welche (große) Löcher im Bild verursachen, aufgrund der schlechten Bildqualität
nicht im Nahbereich eingesetzt werden.
Bei der Auswahl der Verfahren ist darauf zu achten, dass sowohl Verfahren verwendet

werden, welche ein qualitativ gutes Bild erzeugen, als auch Verfahren die in der Lage
sind jegliche Bereiche sehr schnell – mit eventuell großem Fehler – darzustellen. Solange
jeweils mindestens ein Vertreter dieser Gruppen vorhanden ist, funktioniert das Multi-Algo-
rithmen-Rendering. Zusätzliche Algorithmen können jedoch das Ergebnis deutlich positiv
beeinflussen.

Die derzeitige Menge an Algorithmen, die für das Multi-Algorithmen-Rendering benutzt
werden kann und deren Einsatzbereich, sieht wie folgt aus:

z-Buffer: Der Algorithmus stellt alle Objekte dar, die im Frustum liegen und erzeugt ein
korrektes Bild. Er ist geeignet für Bereiche, in denen nahezu alle Objekte sichtbar
sind.

Coherent-Hierarchical-Culling++: Der Algorithmus testet, ob Objekte bzw. Teilbäume
sichtbar sind, und lässt unsichtbare Teile der Szene bei der Darstellung aus. Der

19

3 Multi-Algorithmen-Rendering

Algorithmus erzeugt ein fehlerfreies Bild und ist schnell, wenn nur wenig Geometrie
sichtbar ist.

Approximate-Coherent-Hierarchical-Culling++: Eine zweite Variante des gleichen Algo-
rithmus, der allerdings Objekte, die nur zu einem kleinen Teil sichtbar sind, nicht
darstellt. Der Algorithmus wurde modifiziert, sodass er statt Objekte komplett aus-
zulassen, zumindest deren Bounding-Box darstellt. Deshalb entstehen durch das
Auslassen der Objekte keine Löcher, durch die wiederum andere Objekte sichtbar
werden können.

Spherical-Visibility-Sampling: Der Algorithmus stellt alle vermutlich sichtbaren Objekte
dar und erzeugt nur einen sehr kleinen Bildfehler. Die Laufzeit ist ähnlich der des
CHC++, bei geeigneten Situation deutlich besser, bei ungeeigneten allerdings auch
schlechter. SVS berechnet die Sichtbarkeit während einer Vorverarbeitung, weshalb
zur Laufzeit kein zusätzlicher Aufwand durch Sichtbarkeitstests entsteht.

Discrete-Level-of-Detail: Der Algorithmus reduziert die Komplexität einzelner Objekte
auf ein Maß, welches der projizierten Größe des Objekts angemessen ist. Der erzeugte
Bildfehler ist mit den verwendeten Einstellungen sehr klein. Den größten Nutzen hat
der Algorithmus bei Objekten, welche wesentlich detaillierter modelliert sind, als für
ihre projizierte Größe notwendig ist.

Progressive-Blue-Surfels: Der Algorithmus ersetzt Teilbäume des Szenengraphen durch
Surfels, sofern für die aktuelle projizierte Größe des Teilbaums genug Surfels vorhanden
sind. Ansonsten wird der Baum weiter traversiert bis ein Blatt erreicht wird. Ist auch
dieses noch zu groß, so wird die Geometrie gezeichnet. Der erzeugte Bildfehler ist für
entfernte Bereiche akzeptabel. Der Algorithmus ist sehr schnell für entfernte oder
komplexe Bereiche.

Forced-Surfels: Eine Variante des Progressive-Blue-Surfels-Algorithmus, welche bei Errei-
chen eines Blattknotens immer Surfels darstellt, auch dann, wenn die Anzahl nicht
ausreichend ist. Der Algorithmus ist immer sehr schnell, allerdings ist die Bildqualität
für nahe Bereiche mit großen, einfachen Objekten schlecht.

Color-Cubes: Der Algorithmus ersetzt Teilbäume des Szenengraphen durch farbige Würfel,
sofern die projizierte Größe des Teilgraphen kleiner einer Konstante ist. Ansonsten
wird der Baum weiter traversiert bis ein Blatt erreicht wird. Ist auch dessen projizierte
Größe noch zu groß, so wird die Geometrie gezeichnet. Der erzeugte Bildfehler ist für
entfernte Bereiche akzeptabel. Der Algorithmus ist dort schnell.
Der Algorithmus wurde an den heutigen Stand der Technik angepasst. Er arbeitet
nicht wie im Original auf Dreiecken die in einem Octree organisiert sind, sondern
auf Objekten in einer beliebigen Bounding-Volume Hierarchie. Dadurch sind die
einzelnen Knoten der Hierarchie keine disjunkten Würfel mehr sondern Quader die
sich eventuell auch schneiden können. Daher werden die Farbquader für die inneren
Knoten ebenfalls durch Rendern der Farbquader der Kindknoten erzeugt.

Forced-Cubes: Eine Variante des Color-Cubes-Algorithmus, welche bei Erreichen eines
Blattknotens immer einen Würfel darstellt, auch dann, wenn die projizierte Größe zu
groß ist. Erzeugt im Nahbereich einen großen Bildfehler.

20

3.4 Analyse und Aufbereitung der Szene

Abbildung 3.2: Die beiden Bilder zeigen eine Draufsicht auf eine 2-D-Szene bestehend aus
einfachen (Quadrate) und komplexen (Sterne) Objekten. Dargestellt ist
die Unterteilung von Regionen anhand der Dichteverteilung der Polygo-
ne. Verschiedene Schnitte (rot, bis zu 1024 pro Achse) werden berechnet.
Der Schnitt (grün), der die Varianz in den entstehenden zwei Regionen
minimiert, wird gewählt.

3.4 Analyse und Aufbereitung der Szene

Um eine effiziente Auswahl der Algorithmen zur Laufzeit zu ermöglichen, werden vom
Multi-Algorithmen-Rendering zunächst zwei Vorverarbeitungsschritte durchgeführt. Im
ersten Schritt wird die Szene in homogene Bereiche geeigneter Größe aufgeteilt. Dazu
selektiert ein erfahrener Benutzer wiederholt Kriterien, aufgrund derer dann die Szene
unterteilt wird (Abschnitt 3.4.1). Danach wird Stichprobenartig für alle Kombinationen
von Algorithmen und Regionen an einigen Positionen die Laufzeit und die Bildqualität
gemessen (Abschnitt 3.4.2). Dazu selektiert der erfahrene Benutzer noch eine sinnvolle,
möglichst kleine Teilmenge der Algorithmen die in der Szene benutzt werden sollen. Diese so
ermittelten Werte werden dann zur Laufzeit genutzt um eine Zuordnung von Algorithmen
zu Regionen zu finden, welche insgesamt ein gutes Bild liefert.

3.4.1 Aufteilung der Szene in Regionen

Die Aufteilung der Szene in Regionen geschieht halbautomatisch. Ausgangspunkt hierfür ist
eine Region, die die gesamte Szene umfasst. Diese wird dann durch eine Folge selektierter
Kriterien immer weiter unterteilt, bis der Benutzer der Meinung ist, dass die Aufteilung nur
noch homogene Regionen enthält. Die Aufteilung ist somit abhängig von den Algorithmen
die im Weiteren benutzt werden sollen. Die Software reagiert während dieses Schrittes
innerhalb weniger Sekunden. Dadurch ist die Aufteilung einer Szene innerhalb einer Minute
möglich, vorausgesetzt der Benutzer weiß genau, wie er die Szene aufteilen möchte. Folgende,
bereits genannte Kriterien stehen zur Verfügung:

21

3 Multi-Algorithmen-Rendering

Dichteverteilung der Primitive in einer Region: Die Dichteverteilung der Polygone in
einer Region. Wird dieses Kriterium ausgewählt, so wird für jede Region berechnet,
wie sich die Dichteverteilung der Polygone innerhalb der Region verhält. Dazu wird
jede Region entlang aller drei Koordinatenachsen in diskrete Scheiben geschnitten
und für jede Scheibe die Polygondichte berechnet. Dann wird für jede Achse der
optimale Schnittpunkt berechnet, so dass in den dabei entstehenden Subregionen
die (diskrete) Varianz der Dichteverteilung möglichst gering ist. Abbildung 3.2 zeigt
ein Beispiel hierfür. Der optimale Schnitt ergibt sich dann als Minimum der Werte
aller drei Achsen. Dieser Wert wird für alle Regionen berechnet und gespeichert. Die
Region mit dem besten Wert wird unterteilt. Der Benutzer muss also lediglich solange
Regionen per Klick teilen, bis das gewünschte Ergebnis erreicht ist. Die Auswahl der
zu unterteilenden Region geschieht automatisch.

Größe einer Region: Beim Teilen von Regionen anhand ihrer Größe werden diese zunächst
nur entlang der Achsen unterteilt, für die gilt, dass die Region entlang dieser Achse
um mehr als Faktor

√
2 länger ist als ihre kürzeste Seite. Sobald das Verhältnis

von kürzester und längster Seite höchstens
√

2 ist, wird an allen Achsen unterteilt.
Dadurch werden möglichst würfelförmig Regionen erzeugt. Der Benutzer hat bei
dieser Vorgehensweise zwei Möglichkeiten: Er kann sowohl eine minimale Tiefe für den
entstehenden Baum vorgeben als auch eine maximale Ausdehnung für die Regionen.
Die Unterteilung selbst geschieht automatisch.

Komplexität einer Region: Hier kann der Benutzer eine maximale Anzahl an Primitiven
pro Region vorgeben. Die Regionen werden solange unterteilt, bis alle Regionen
höchstens so viele Primitive wie vorgegeben beinhalten. Auch hierbei werden möglichst
würfelförmige Regionen erzeugt.

Diese Kriterien können in beliebiger Reihenfolge aufeinander aufbauend genutzt werden.
Die Entscheidung, welche Kriterien in welcher Reihenfolge wie oft angewendet werden,
trifft der Benutzer. Abbildung 3.3 zeigt eine Beispielaufteilung einer Szene. Hierbei wurde
zunächst die Szene regelmäßig unterteilt, bis die Kantenlängen der Regionen kleiner als
250m waren. Danach wurde die Szene noch einige Male anhand der Dichteverteilung der
Polygone gesplittet, um das komplexe Modell der Statue vom Rest der Stadt, sowie das
komplexe Rohrsystem des Kraftwerks von seiner Hülle zu separieren. Auf eine weitere
Unterteilung der Szene wurde verzichtet, um die Anzahl der Regionen gering zu halten
und somit die Größe des linearen Programms zur Laufzeit (siehe Kap. 3.5.2) zu reduzieren.
Stattdessen könnte man auch zuerst anhand der Polygondichteverteilung unterteilen und
erst danach anhand der Größe der Regionen. Dies führte allerdings auch zu mehr Regionen
und wäre somit ungünstig.

Für jede der erstellten Regionen wird eine Bounding-Volume-Hierarchie aufgebaut, um die
Teilszene zu speichern. Objekte, die über die Grenzen von Regionen hinausgehen, gehören
zu der Region, in der ihr Mittelpunkt liegt. Hierfür wurde ein Loose-Octree gewählt. An
dieser Stelle ist die Verwendung einer Loose-Datenstruktur wichtig, da ohne sie viele der
Objekte in der Szene entweder sehr weit oben im Baum lägen oder mehrfach gespeichert
werden müssten. Ob ein Octree, k-D Baum oder ähnliches gewählt wird, ist zweitrangig.
Die optimale Wahl hat nur wenig Einfluss auf die Laufzeit von Algorithmen, hängt von der
jeweiligen Szene ab und kann deshalb hier nicht getroffen werden.

22

3.4 Analyse und Aufbereitung der Szene

(a) Regelmäßige Aufteilung der Szene.

(b) Aufteilung einzelner Bereiche nach Polygondichte.

Abbildung 3.3: Unterteilung einer Szene in Regionen: zunächst anhand der Größe der
Regionen, danach weiter anhand der Dichteverteilung der Primitive in den
Regionen. Die Teilungsebenen umschließen die Statue sehr eng.

23

3 Multi-Algorithmen-Rendering

3.4.2 Datenerhebung durch Sampling

Im zweiten Schritt der Vorverarbeitung werden alle Kombinationen aus Algorithmen
und Regionen ausgemessen. Dabei werden zum einen die Laufzeit und zum anderen der
Bildfehler gemessen. Da diese Werte abhängig von der Position des Betrachters sind, werden
sie nicht nur einmalig, sondern stichprobenartig an vielen Positionen innerhalb eines durch
den Benutzer definierten Bereichs getestet. Innerhalb dieses Bereiches kann dann später
zur Laufzeit das Multi-Algorithmen-Rendering benutzt werden.

Abbildung 3.4 veranschaulicht den Ablauf beim Ziehen einer Stichprobe. Die Positionen
für die Stichproben werden mit einem modifizierten Dart-Throwing-Algorithmus innerhalb
dieses Bereiches generiert. Für jede Position wird dann ein Test gestartet, welcher zunächst
die Regionen aufsteigend nach Abstand zu dieser Position sortiert. In dieser Reihenfolge
werden dann die Regionen, bei denen ein Verdeckungstest ihrer Boundingbox das Resultat
„sichtbar“ liefert, jeweils mit allen Algorithmen getestet.

Dazu wird die Kamera an die Position der Stichprobe gesetzt und auf den Mittelpunkt
der aktuell zu testenden Region gerichtet. Sollte die Region nicht ganz ins Frustum passen,
so wird dies, nahe der aktuellen Position, auch später zur Laufzeit der Fall sein. Durch
die Ausrichtung auf den Mittelpunkt wird der schlimmste Fall angenommen, da hier ein
möglichst großer Teil der Region im Frustum ist. Dadurch werden Laufzeit und Bildfehler
der Messung nach oben abgeschätzt. Ein Fall wie in Abbildung 3.5 tritt nicht auf, da die
Regionen homogen sind. Nur wenn die Position sehr nahe am Zentrum der Region liegt,
kann es sein, dass bei flachen Regionen fehlerhafte Messergebnisse entstehen (siehe hierzu
auch Kap. 3.5.1), weil die Kamera beispielsweise in einem Stadtteil in den Himmel gerichtet
wird.

Als erstes wird nun ein Referenzbild mit dem CHC++ erzeugt. Mit diesem werden die
Bildvergleiche für die approximativen Algorithmen durchgeführt.

Danach werden alle Algorithmen jeweils dreimal getestet. Als Laufzeit wird das Minimum
der drei ermittelten Werte gespeichert. Der erste Durchlauf liefert häufig Werte, die deutlich
zu groß sind, da hier oftmals ein Overhead (z. B. durch das Hochladen von Daten in den
Grafikspeicher) entsteht. Der dritte Durchlauf sorgt dafür, dass auch Algorithmen, welche
zeitliche Kohärenz ausnutzen, korrekt gemessen werden. Mit dem letzten Bild wird dann
ein Bildvergleich (SSIM-Pyramide) mit dem Referenzbild durchgeführt, um den Bildfehler
zu bestimmen. Nachdem alle Regionen abgearbeitet sind, werden die ermittelten Laufzeit-
und Bildfehlerwerte in einem Punkt-Octree gespeichert. Für unsichtbare Regionen werden
beide Werte auf Null gesetzt.
Für jeden Test eines Algorithmus müssen alle vorher getesteten Regionen dargestellt

werden, da diese die aktuelle Region (teilweise) verdecken könnten. Dadurch können sowohl
die Laufzeit eines Algorithmus als auch der Bildfehler beeinflusst werden. So müsste
etwa die vorderste Region für alle nachfolgenden Regionen und jeweils alle Algorithmen
erneut dargestellt werden, also insgesamt Θ(|Regionen|2 · |Algorithmen|2) Mal. Diese
Kosten wären um Größenordnungen höher als die des eigentlichen Tests. Deshalb wird jede
Region, nachdem sie getestet wurde, mit dem CHC++ Algorithmus auf die Innenseiten
eines Würfels gerendert, der die Kamera umschließt. Dieser Würfel wird dann anstatt der
Regionen mit einem speziellen Shader inklusive der Tiefeninformationen in ein leeres Bild
gerendert.

24

3.4 Analyse und Aufbereitung der Szene

Generiere
Position für
Stichprobe

Aktualisiere
Würfeltexturen

(CHC++)

Sortiere Regionen
aufsteigend

nach Abstand
zur Position

Alle Algorithmen
abgearbeitet?

Lösche Bild und
zeichne Würfel

Lösche Würfel
Erstelle Referenz-
bild (CHC++)

Zeichne Region
mit aktuellem
Algorithmus
(Zeitmessung)

Alle Regionen
abgearbeitet?

Lösche Bild und
zeichne Würfel

Laufzeit dreimal
getestet?

Speichere
Ergebnis in

Datenstruktur

Positioniere
Kamera mit
Blick auf die

aktuelle Region

Vergleiche Bild
mit Referenzbild
(Fehlermessung)

Ja

Nein

Ja

Nein

Ja

Nein

Abbildung 3.4: Ablauf des Ziehens einer Stichprobe: Ermittlung von Laufzeit und Bildfehler
für alle Algorithmen für alle Regionen. Der „Würfel“ ist ein um die Kamera
positionierter, von innen texturierter Einheitswürfel, welcher die korrekten
Farb- und Tiefeninformationen aller vorhergehenden Regionen enthält.

25

3 Multi-Algorithmen-Rendering

Abbildung 3.5: Ausrichtung der Kamera auf den Mittelpunkt einer Region (blau): Hetero-
gene Regionen (links) würden zu fehlerhaften Messungen führen, wenn sie
nicht ins Frustum (grün) passen und so beim Test eine nicht repräsentative,
hier leere Teilmenge der Objekte dargestellt wird. Bei homogenen Regionen
(rechts) kann dieser Fall nicht auftreten.

Interpolation &
Filterung

Regelung der
Laufzeitschran-
ke

Lineares Pro-
gram: Opti-
mierung der
Bildqualität bei
vorgegebener
Laufzeit

Darstellung

Berechnung der
Abweichung

Stichproben

Frustum

Laufzeit:
Sollwert

Laufzeit- &
Bildfehlerwerte

Laufzeit:
Maximalwert

Zuordnung:
Algorithmen zu

Regionen

Laufzeit:
Schätzwert

Laufzeit:
Istwert

Bild

Laufzeit: Fehlschätzung

Abbildung 3.6: Schematische Darstellung der Optimierung der Bildqualität bei vorge-
gebener Bildrate durch Einbettung eines linearen Programms in einen
Regelkreis.

3.5 Der Renderingalgorithmus: Darstellung der Szene im
Walkthrough

Zur Laufzeit werden die in der Vorverarbeitung erhobenen Daten dazu genutzt, mit Hilfe
eines linearen Programms eine optimale Zuordnung von Algorithmen zu Regionen zu
finden. Dabei wird der Bildfehler bei einer vorgegebenen Laufzeit minimiert. Komplett
unsichtbare Regionen werden hierbei, wie in der Vorverarbeitung, durch einen übergeord-
neten CHC++-Algorithmus ausgefiltert. Zur Stabilisierung des Verfahrens (z. B. Ausgleich
von Messfehlern) wird das lineare Programm in einen Regelkreis eingebettet. Abbildung
3.6 stellt den kompletten Regelkreis grafisch dar. Die einzelnen Schritte werden in den
folgenden Unterkapiteln näher erläutert. Dazu bezeichnet:

• R: die Menge der Regionen.

• A: die Menge der Algorithmen.

26

3.5 Der Renderingalgorithmus: Darstellung der Szene im Walkthrough

e0,0 e0,1 e0,2 e1,0 e1,1 e1,2 e2,0 e2,1 e2,2 e3,0 e3,1 e3,2
1 1 1 0 0 0 0 0 0 0 0 0 = 1
0 0 0 1 1 1 0 0 0 0 0 0 = 1
0 0 0 0 0 0 1 1 1 0 0 0 = 1
0 0 0 0 0 0 0 0 0 1 1 1 = 1

t0,0 t0,1 t0,2 t1,0 t1,1 t1,2 t2,0 t2,1 t2,2 t3,0 t3,1 t3,2 ≤ Tmax

Abbildung 3.7: Beispielinstanz des linearen Programms zur Zuordnung von Algorithmen
zu Regionen mit vier Regionen und drei Algorithmen.

• er,a: Der bei der Darstellung von Region r mit Algorithmus a entstehende Bildfehler.

• tr,a: Die von Algorithmus a benötigte Zeit um Region r darzustellen.

• Tmax: Die vorgegebene Zeit zur Darstellung aller Regionen.

• xr,a: Entscheidungsvariablen die angeben ob Algorithmus a für Region r benutzt
wird.

Die Eingabe des LPs setzt sich aus den gemessenen Fehlerwerten (er,a), den gemessenen
Laufzeiten (tr,a) und der Vorgabe für die Gesamtlaufzeit (Tmax) zusammen. Die Ausgabe
des LPs sind die Entscheidungsvariablen (xr,a), deren Wert genau dann wahr ist, wenn
Algorithmus a für Region r benutzt werden soll. Das lineare Programm sieht wie folgt aus:

Minimiere
∑
r∈R

∑
a∈A

er,a · xr,a (3.1)

u.d.N.
∑
a∈A

xr,a = 1 ∀r ∈ R (3.2)

∑
r∈R

∑
a∈A

tr,a · xr,a ≤ Tmax (3.3)

xr,a ∈ {0, 1} (3.4)

Zeile 3.1 des LPs ist die Zielfunktion: Minimierung des Gesamtfehlers. Zeile 3.2 und
3.4 sorgen dafür, dass für jede Region genau ein Algorithmus ausgewählt wird. Zeile 3.3
sorgt für die Einhaltung Schranke für die Gesamtlaufzeit. Die Beispielinstanz des LPs in
Abbildung 3.5 lässt eine sehr einfache Struktur des LPs erkennen. Bis auf die erste Zeile
(Zielfunktion) und die letzte Zeile (Laufzeitschranke) enthält das LP nur binäre Werte.

3.5.1 Interpolation der Messwerte aus der Vorverarbeitung

Vermutlich wird sich der Benutzer zur Laufzeit nie exakt an einer Position aufhalten, an
welcher in der Vorverarbeitung eine Stichprobe gezogen wurde. Daher stellt sich die Frage,
welche Stichprobe als Eingabe für das lineare Programm benutzt wird.

Die einfachste Möglichkeit ist die Benutzung der Stichprobe, welche den kleinsten Abstand
zur aktuellen Position des Betrachters hat. Probleme entstehen, wenn die Stichprobe direkt
hinter einem Objekt liegt, der Benutzer aktuell jedoch daneben steht. Für das Beispiel in
Abbildung 3.8 bedeutet dies, dass Stichprobe s2 benutzt wird. Wenn der Benutzer nun
nach rechts schaut, dann sind die Sichtbarkeitsverhältnisse genau entgegengesetzt zu denen

27

3 Multi-Algorithmen-Rendering

s1

s2

s3
c

Abbildung 3.8: Konstruiertes schlechtes Beispiel für die Lage der zur Laufzeit benutzten
Stichproben s1, s2, s3 (rot). Für die aktuelle Position des Betrachters c (grün,
mit Frustum) sind die Stichproben ungeeignet, da an diesen Positionen, im
Gegensatz zur aktuellen Position, große Teile der Szene (grau) verdeckt
sind.

aus der Vorverarbeitung. Somit ist an dieser Stelle keine sinnvolle Ausgabe des LPs zu
erwarten, da dessen Eingabe bereits falsch ist.

Eine weitere Möglichkeit besteht darin, eine Interpolation der umliegenden Stichproben
als Eingabe für das LP zu benutzen. Interpoliert man die Stichproben gewichtete mit ihrem
Abstand zur aktuellen Position (z. B. mit Hilfe baryzentrischer Koordinaten [Möb27]), so
ändert dies nichts am Problem. Dies liegt daran, dass Sichtbarkeit keine stetige Funktion
ist, sondern insbesondere nahe an Objekten große Sprünge aufweist. Das bedeutet, dass
die nächste Stichprobe nicht zwingend besser sein muss als die zweit- oder drittnächste (in
Abbildung 3.8 wäre s3 die beste Wahl). Daher sollte eine Interpolationsmethode gewählt
werden, welche den Abstand der Stichproben zur aktuellen Position ignoriert. Im Laufe der
Arbeit hat sich herausgestellt, dass in der Praxis das Maximum der vier nächstgelegenen
Stichproben zu guten Ergebnissen führt. Diese Worst-Case-Annahme hat zur Folge, dass
durch das LP schnellere Algorithmen bevorzugt werden. Außerdem werden Bereiche, welche
in der Vorverarbeitung nur knapp verdeckt waren, so behandelt, als ob sie sichtbar wären.
Dadurch werden bereits Bereiche mit in die Berechnung einbezogen, welche durch sehr
geringe Bewegungen des Benutzers sichtbar werden.

Die benutzten, umliegenden Stichproben sollten hierbei möglichst gleichmäßig um den
Betrachter herum verteilt sein. Dies könnte man etwa erreichen indem man eine Delaunay-
Triangulierung [Del34; Sam05] über die Positionen der Stichproben berechnet. Die benutzten
Stichproben wären dann die Eckpunkte des Tetraeders, in dem sich der Betrachter aktuell
aufhält. Aufgrund der sehr gleichmäßigen Verteilung der Stichproben reicht es aber auch aus,
die nächstliegenden vier Stichproben zu benutzen. Diese sind mit großer Wahrscheinlichkeit
identisch mit denen, welche die Delaunay-Triangulierung liefern würde.

28

3.5 Der Renderingalgorithmus: Darstellung der Szene im Walkthrough

3.5.2 Auswahl der Algorithmen
Theoretisch funktioniert das Verfahren, so wie es bis hier beschrieben wurde. Praktisch
ergeben sich jedoch noch einige Probleme bedingt dadurch, dass Grafikkarte und CPU
parallel arbeiten. Daher kann bei der Darstellung die CPU bereits Berechnungen für
folgende Regionen durchführen, während die Grafikkarte noch mit der Darstellung der
vorherigen Regionen beschäftigt ist. Des Weiteren arbeitet die Grafikkarte wie eine Pipeline
(Fließband), das heißt, es befinden sich immer mehrere Primitive gleichzeitig in Bearbeitung.
Während der Vorverarbeitung werden jedoch für die Laufzeitmessungen stets einzelne
Regionen dargestellt. Dazu wird eine Stoppuhr gestartet, die Region gerendert und dann die
Stoppuhr abgefragt. Die Darstellung der Region beinhaltet dabei explizit auch das Warten
auf das fertige Bild, also ein Leerlaufen der Pipeline. Wenn man nicht auf das fertige Bild
warten würde, so wären die Messwerte absolut unbrauchbar und lägen überwiegend bei
weniger als einer Millisekunde. Dieser Effekt entsteht durch die Parallelität von CPU und
Grafikkarte. Das Anstoßen der Darstellung auf der CPU geht sehr schnell, während die
Grafikkarte weitaus länger arbeiten muss. Wenn man bei der Laufzeitmessung allerdings
auf das fertige Bild wartet, so ist das Leerlaufen der Pipeline in dieser Messung enthalten.
Zur Laufzeit wird jedoch die gesamte Szene dargestellt, ohne nach jeder Region die
Pipeline leerlaufen zu lassen. Bei Regionen, deren Darstellung lange dauert, fällt dieser
konstante Overhead nicht ins Gewicht. Bei Regionen, deren Darstellung sehr schnell geht
hingegen, wie z. B. bei projiziert kleinen Regionen die stark approximiert werden, kann
dieser Mehraufwand größer sein als die eigentliche Darstellung. Dies hat zur Folge, dass
die Summe der in der Vorverarbeitung gemessenen Laufzeiten für die einzelnen Regionen
bei der Darstellung der gesamten Szene um ein Vielfaches von der wirklich benötigten Zeit
abweichen kann.

3.5.3 Regelung der Gesamtdauer der Darstellung
Zum Ausgleich dieses (leider schwankenden) Fehlers wurde das LP in einen Regelkreis
eingebettet. Dieser misst die wirklich benötigte Laufzeit Treal zur Darstellung der Szene und
passt die Laufzeitschranke Tmax (Eingabe für das LP) kontinuierlich in einem beschränkten
Bereich an. Als Schranken dienen hierbei die Summen der Laufzeiten der jeweils schnellsten
bzw. langsamsten Algorithmen pro Region. Dadurch ist sichergestellt, dass das LP zum
einen immer lösbar ist und zum anderen der Wert von Tmax nicht unnötig groß wird. Im
Folgenden ist

Testimate =
∑
r∈R

∑
a∈A

xr,a · tr,a

die Summe der Laufzeitschätzungen aus der Vorverarbeitung, welche in der Lösung des
LPs benutzt werden, also eine Schätzung für die Gesamtlaufzeit zur Darstellung der Szene.
Tuser ist der vom Benutzer eingestellte Zielwert für die Gesamtlaufzeit. Es wurden drei
unterschiedliche Regelkreise umgesetzt:

• Die erste Variante benutzt einen Korrekturfaktor Tadjust, welcher in jedem Durchlauf
angepasst wird.

Tadjust =


Tadjust · 2/3 falls Treal > Tuser · 3/2

Tadjust · 11/10 falls Treal < Tuser · 1/2

Tadjust sonst

29

3 Multi-Algorithmen-Rendering

Der Regelkreis versucht also Treal im Bereich Tuser±50 % zu stabilisieren. Als Eingabe
für das LP wird dann

Tmax = Tuser · Tadjust

benutzt. Dass der Korrekturfaktor deutlich stärker erhöht als erniedrigt wird ist hier
wichtig, da bei einer zu geringen Bildrate dieser Schritt wesentlich seltener ausgeführt
wird als bei einer zu hohen Bildrate.
Dieser Regelkreis hat ein Gedächtnis: Die Information über die Entscheidung im
letzten Durchlauf ist im aktuellen Durchlauf verfügbar. Dadurch ändert sich der
Wert von Tmax nur langsam und springt nicht (um mehr als den Faktor 2/3). Dies ist
von Vorteil, solange sich die Sichtbarkeit (und somit die Laufzeiten) innerhalb der
Szene nur langsam ändert. Ändert sich die Sichtbarkeit jedoch schlagartig, so dauert
es einige Durchläufe bis der Regelkreis die entsprechende Anpassung durchgeführt
hat. Außerdem hat er vier Parameter, die bestimmen, wann der Faktor um wie
viel erhöht bzw. erniedrigt wird und deren Einstellung schwierig ist. Des Weiteren
neigt der Regelkreis zum Schwingen an Positionen, an denen die Laufzeiten der
einzelnen Algorithmen einer Region sehr stark unterschiedlich sind, so dass Treal nie
im angestrebten Bereich liegt, sondern abwechselnd mehrmals darunter und einmal
darüber.

• Die zweite Variante berechnet das Verhältnis zwischen Testimate und Treal, also den
relativen Fehler, um den die Schätzung von der Realität abweicht. Die Eingabe für
das LP ergibt sich dann als:

Tmax = Tuser ·
Testimate

Treal

Dieser Regelkreis hat kein Gedächtnis, er beachtet ausschließlich den aktuell ge-
messenen Wert und reagiert somit direkt auf Veränderungen. Bei sehr geringen
Laufzeitwerten treten Probleme auf, da hier Messungenauigkeiten bereits zu sehr
starken Ausschlägen führen, was zu einer Oszillation des Wertes von Tmax führen
kann.

• Die dritte Variante berechnet die Differenz zwischen Testimate und Treal, also den
absoluten Fehler, um den die Schätzung von der Realität abweicht. Die Eingabe für
das LP ergibt sich dann als:

Tmax = Tuser + (Testimate − Treal)

Dieser Regelkreis hat ebenfalls kein Gedächtnis, er beachtet ausschließlich den aktuell
gemessenen Wert und reagiert somit direkt auf Veränderungen. Probleme treten
auf, falls die Laufzeitwerte aus der Vorverarbeitung eine Unterschätzung sind. Dann
könnte der Wert von Tmax negativ werden. Dies hätte zur Folge, dass aufgrund
der Beschränkung das LP zwar lösbar bliebe, jedoch immer die schnellsten Algo-
rithmen pro Region benutzt würden. Da die Werte aus der Vorverarbeitung jedoch
Überschätzungen sind, tritt dieser Fall nicht ein.

Spätestens jetzt ist klar, dass das LP für jedes Bild erneut gelöst werden muss. Das bedeutet,
dass die Berechnung des LPs genau wie die Darstellung der Szene in Echtzeit, also auch
innerhalb der vom Benutzer eingestellte Zeit, erfolgen muss.

30

3.6 Optimierung der Laufzeit bei vorgegebener Bildqualität

Nimmt man in Kauf, dass die Lösung des LPs mit einem Bild Versatz berechnet wird,
so kann das LP parallel gelöst werden. Dadurch steht zur Darstellung und zur Lösung des
LPs jeweils die eingestellte Zeit zur Verfügung.
Zusätzlich wird das LP, unabhängig von der benutzten Regelvariante, stets auf die

Regionen beschränkt, welche sich im Frustum befinden und somit potenziell sichtbar sind.
Dies beschleunigt zum einen die Lösung des LPs und führt zum anderen auch zu qualitativ
besseren Ergebnissen.

Ein Nachteil der Umsetzung als Regelkreis besteht darin, das eventuell bei jedem Bild eine
andere Zuordnung von Algorithmen zu Regionen getroffen wird. Dies wird vom Benutzer
als Flackern im Bild wahrgenommen.

3.6 Optimierung der Laufzeit bei vorgegebener Bildqualität
Prinzipiell kann man, statt bei gegebener Laufzeit die Bildqualität zu optimieren, den Vor-
gang auch umkehren und bei gegebener Bildqualität die Laufzeit optimieren. Insbesondere
bei der Erstellung von Videos und Filmen könnte dies eventuell Anwendung finden, um
Zeit und damit Kosten zu sparen. Hierbei entstehen in der Praxis jedoch neue Probleme:

• Eine sinnvolle Laufzeit (z. B. 50ms) vorzugeben ist einfach, einen sinnvollen ma-
ximalen Bildfehler vorzugeben ist hingegen sehr schwer. Dies liegt daran, dass die
verwendeten Abstandsmaße zur Berechnung der Bildqualität nur meistens und un-
gefähr der menschlichen Wahrnehmung entsprechen. Verschärft wird das Problem
dadurch, dass die Abstandsmaße nicht linear sind. Alle Fehlerwerte liegen zwar im
Intervall von null bis eins, aber wenn man versuchen würde, Begriffe wie „schlecht“
und „gut“ in dieses Intervall einzuordnen, dann sähe das ähnlich aus wie: sehr
gut(0,01); gut(0,05); mittel(0,1); akzeptabel(0,2); inverses Bild(0,5); kein Zusammen-
hang erkennbar(1,0). Dadurch ist es für einen Menschen schwierig, einen sinnvollen
Maximalwert vorzugeben.

• Die Einbettung dieses LPs in einen Regelkreis ist nicht möglich, da man dazu die
Bildqualität des dargestellten Bildes berechnen muss. Da man dafür jedoch ein
korrektes Bild bräuchte, könnte man dieses direkt zur Darstellung nutzen.

• Für die Darstellung von Szenen für Filme sind vermutlich völlig andere Algorithmen
nötig, als in dieser Arbeit betrachtet wurden. Hier ist vermutlich, wie bei Spielen,
die Anzahl der darzustellenden Primitive wesentlich geringer, währen die Darstellung
jedes einzelnen Primitives aufgrund von aufwendigen Effekten deutlich aufwendiger
ist.

3.7 Einsatzbereiche des Verfahrens
Neben der reinen Darstellung von Szenen ist das Multi-Algorithmen-Rendering auch noch
für weitere Zwecke einsetzbar:

Evaluierung neuer Renderingalgorithmen Bei der Evaluierung von neu entwickelten Dar-
stellungsalgorithmen muss stets untersucht werden, unter welchen Umständen diese
besonders gut oder schlecht funktionieren. Dies kann z.B. mit Hilfe des Multi-Al-
gorithmen-Renderings geschehen. Dazu muss lediglich das neue Verfahren als einer

31

3 Multi-Algorithmen-Rendering

der benutzten Algorithmen einbezogen werden. Dann kann über die Einfärbung der
einzelnen Algorithmen sehr leicht ermittelt werden, für welche Bereiche und bei
welchem Abstand das Multi-Algorithmen-Rendering den Algorithmus einsetzt. Somit
kann sehr leicht bestimmt werden, unter welchen Umständen das neue Verfahren den
Vergleichsalgorithmen überlegen ist.

Design von Szenen Bei der Erstellung von Szenen kann das Multi-Algorithmen-Render-
ing ebenfalls als Hilfsmittel eingesetzt werden. Hier ist die Benutzung von stark
approximierenden Methoden durch das Multi-Algorithmen-Rendering ein Indiz dafür,
dass Bereiche der Szene ungünstig gestaltet sind. Dies wäre auch bei der Gestaltung
von Welten für Computerspiele hilfreich. Hier allerdings vermutlich mit einer völlig
anderen Menge von Algorithmen.

Feste Auswahl von Algorithmen Das Multi-Algorithmen-Rendering löst das Problem, wel-
che Region mit welchem Algorithmus dargestellt wird, dynamisch zur Laufzeit. Es
könnte jedoch auch als Tool benutzt werden, um eine pro Position feste Zuordnung
von Algorithmen manuell zu treffen. Sofern der dazu erforderliche manuelle Aufwand
zu rechtfertigen ist, könnte man so die Vorteile des Multi-Algorithmen-Renderings
ohne den störenden Flackereffekt erhalten.

32

4 Implementierung
Dieses Kapitel beschreibt die Details bezüglich der Umsetzung und Implementierung des
zuvor beschriebenen Multi-Algorithmen-Rendering. Es gliedert sich in eine Beschreibung
des verwendeten Frameworks (4.1) und die verfahrensspezifischen Aspekte(4.2).

4.1 PADrend
Als Framework sowohl für die Implementierung als auch für die Evaluierung des Verfah-
rens wurde PADrend [EJP11] eingesetzt. PADrend steht für (P)latform for (A)lgorithm
(D)evelopment and (rend)ering. PADrend wurde parallel zu dieser Arbeit in Zusammenar-
beit mit Claudius Jähn und später auch Benjamin Eikel entwickelt. Des Weiteren waren
mehrere Studentische Hilfskräfte daran beteiligt. Auch Ergebnisse mehrerer Bachelor-
Diplom- und Masterarbeiten sind in die Software eingeflossen. Bedingt dadurch, dass
die Software von mehreren Benutzern benutzt und implementiert wird, läuft sie deutlich
robuster, weist einen deutlich besseren Code auf und ist auch durch andere Benutzer als
die Entwickler selbst bedienbar.
PADrend besteht aus einem in C++ implementierten Kern von Basisfunktionalitäten

und laufzeitkritischen Programmteilen, auf dem ein Script-System aufsetzt. Dies erlaubt
es Entwicklern neue Ideen sehr schnell auszuprobieren, da die meisten benötigten Da-
tenstrukturen und Algorithmen bereits in PADrend verfügbar sind. Lediglich die neuen
Aspekte müssen programmiert werden. Insbesondere das Script-System für die nicht lauf-
zeitkritischen High-Level-Funktionalitäten ist dabei sehr hilfreich. Dieses ermöglicht es dem
Entwickler, Programmteile, ohne Neustart der Software, zur Laufzeit auszutauschen.
Bei der Evaluierung von Datenstrukturen und Algorithmen ist PADrend der sonst

üblichen Spezialimplementierung ebenfalls deutlich überlegen. Zum einen sind Vergleichs-
verfahren häufig bereits vorhanden und müssen nicht extra implementiert werden. Zum
anderen basieren alle Verfahren auf der gleichen Implementierung der zugrunde liegenden
Funktionalitäten. Dadurch ist sichergestellt, dass bei einem Vergleich von Algorithmen
nicht der Unterschied in der gleichen, jedoch unterschiedlich effizient implementierten
Datenstruktur gemessen wird.

Die Kernstruktur von PADrend ist der Szenengraph. Dieser wurde als Baum realisiert und
besteht aus Knoten, welche eine Bounding-Volume-Hierarchie bilden. Knoten können mit
sogenannten States annotiert werden. Jeder State wird vor der Darstellung seines Knotens
aktiviert und danach wieder deaktiviert. Die Aktivierung eines States kann dabei ganz
einfache Dinge bewirken, wie beispielsweise eine Änderung der zur Darstellung benutzten
Farbe oder dem Einschalten einer Lichtquelle. Es können aber auch komplexe Operationen
durchgeführt werden, wie beispielsweise ein komplettes Austauschen des zur Darstellung
benutzten Algorithmus für den aktuellen Teilbaum. Des Weiteren können Knoten auch
noch mit beliebigen Attributen versehen werden. Dies sind Daten, die von den Algorithmen
benötigt werden. Dazu gehören unter anderem Informationen darüber, in welchem Frame
der Knoten zuletzt auf Sichtbarkeit getestet wurde, oder Ersatzrepräsentationen wir Surfels.

33

4 Implementierung

4.2 Multi-Algorithmen-Rendering
Die Implementierung des Multi-Algorithmen-Renderings gliedert sich in zwei Teile: zum
einen die Vorverarbeitung und zum anderen der Algorithmus, der während des Walkthroughs
ausgeführt wird.

4.2.1 Vorverarbeitung des Multi-Algorithmen-Renderings
Die Aufteilung der Szene in Regionen wurde teilweise in C++ implementiert, um Ant-
wortzeiten auf Benutzerinteraktionen im Sekundenbereich zu erzielen. Das Verfahren zur
Erhebung der Stichproben hingegen wurde nahezu komplett gescriptet, da die hier benötigte
Zeit im Bereich von Zehntelsekunden liegt. Dies ist im Vergleich zu der Zeit, die für die Dar-
stellung der Szene und die Bildvergleiche benötigt wird, vernachlässigbar. Die Verfahren zur
Aufteilung der Szene in Regionen und zur Berechnung des Bildfehlers wurden so umgesetzt,
dass die Methoden leicht austauschbar sind. Dies heißt beispielsweise für den Bildfehler,
dass jedes Verfahren einsetzbar ist, welches zu zwei gegebenen Bildern deren Abstand
liefert. Dadurch kann das Multi-Algorithmen-Rendering leicht an die Anforderungen der
jeweiligen Anwendung angepasst werden.

4.2.2 Multi-Algorithmen-Rendering während des Walkthroughs
Zur Erklärung des Laufzeitalgorithmus ist in Abbildung 4.1 ein Beispiel-Szenengraph mit
nur zwei Regionen abgebildet. Unterhalb der Wurzel gibt es zunächst für jede Region
einen Multi-Algorithmen-Rendering-Knoten. An diesen Knoten hängt jeweils der Darstel-
lungsalgorithmus (als State), der zur Darstellung dieser Region benutzt werden soll. Der
Algorithmus wird somit automatisch vor der Darstellung der Region aktiviert und hinterher
wieder deaktiviert.

Am Wurzelknoten der Szene hängt ein weiterer State. Dieser enthält den eigentlichen
Laufzeitalgorithmus: Hier wird beim Aktivieren des States berechnet, welche Multi-Algo-
rithmen-Rendering-Knoten im Frustum liegen, und die zur Position passenden Stichproben
gewählt/interpoliert. Die Berechnungen für den Regelkreis werden durchgeführt und die
Berechnung der Lösung des LPs gestartet. Aufgrund des Ergebnisses des LPs aus dem
vorherigen Frame werden an den Multi-Algorithmen-Rendering-Knoten die Algorithmen
ausgetauscht. Zuletzt wird eine Stoppuhr gestartet. Diese wird dann beim Deaktivieren
des States – nach der Darstellung der Szene – abgelesen. Danach wird noch auf die Lösung
des LPs gewartet.
Zusätzlich hängt am Wurzel-Knoten noch ein CHC++-Algorithmus, der dafür sorgt,

dass Regionen, welche komplett verdeckt sind, nicht dargestellt werden. Dieser ist für
das Multi-Algorithmen-Rendering nicht zwingend erforderlich, sorgt jedoch dafür, dass
in Bereichen mit hoher Verdeckung und bei korrekter Darstellung keine unnötige Zeit
verschwendet wird. Dies hat zur Folge, dass dort die Laufzeit weit unter dem Sollwert
bleibt, auch wenn das LP den verdeckten Regionen einen möglicherweise nicht optimalen
Algorithmus zuordnet, weil die Laufzeitschranke auf jeden Fall unterschritten wird.

34

4.2 Multi-Algorithmen-Rendering

Wurzel-
Knoten

MAR MAR

Region A Region B

Auswahl-
AlgorithmusCHC++

Darstellungs-
Algorithmus

Darstellungs-
Algorithmus

Abbildung 4.1: Darstellung eines Beispiel-Szenengraphen für das Multi-Algorithmen-Ren-
dering mit nur zwei Regionen. Knoten sind als Kreise dargestellt, States als
Rechtecke. Dreiecke repräsentieren die Teilgraphen, in denen die Regionen
gespeichert sind.

35

5 Evaluierung

Die generelle Idee des Multi-Algorithmen-Renderings beruht auf den folgenden zwei An-
nahmen:

1. Es ist möglich, für jeden Renderingalgorithmus eine heterogene, realistische Szene zu
konstruieren, die diesem Algorithmus Probleme bereitet. Das heißt, dass zumindest
bei einigen Betrachterpositionen entweder die Darstellung zu lange dauert oder der
Bildfehler zu groß wird.

2. Bei jeder homogenen, realistischen Szene gibt es für jede Betrachterposition einen
Algorithmus, der die Szene ohne diese Probleme darstellen kann. Das heißt, dass sich
sowohl Laufzeit als auch Bildfehler in einem akzeptablen Bereich befinden.

Die folgende Evaluierung soll nun zeigen, dass eine Kombination von Algorithmen, welche
jeweils nur für die für sie geeigneten homogenen Regionen einer Szene eingesetzt werden,
in der Lage ist, heterogene Szenen darzustellen, die ansonsten nicht mit ausreichender
Bildqualität in Echtzeit darstellbar wären.

Außerdem wird gezeigt, dass es mit Hilfe des Multi-Algorithmen-Renderings möglich ist,
diese Zuordnung von Algorithmen zu geeigneten Regionen der Szene vollautomatisch zu
treffen. Dazu werden verschiedene Aspekte des Multi-Algorithmen-Renderings untersucht,
deren Kombination das gewünschte Ergebnis zeigt.

Darüber hinaus werden die Aspekte des Multi-Algorithmen-Renderings untersucht (Dauer
der Vorverarbeitung, Anzahl benötigter Stichproben etc.), die für eine praktische Verwen-
dung des Verfahrens entscheidend sind.
Es folgt zunächst eine Übersicht über die untersuchten Fragestellungen (5.1). Danach

wird die Messumgebung (Hardware, Software, Szene, Kamerapfad etc.) beschrieben (5.2).
Darauf folgt die Beschreibung der einzelnen Messungen, inklusive Interpretation (5.3 und
5.4). Abschließend werden die Ergebnisse der Messungen zusammengefasst (5.6).

5.1 Übersicht über die untersuchten Fragestellungen
Die Evaluierung in dieser Arbeit teilt sich in zwei Bereiche auf: Im ersten Bereich (5.3) wird
die Vorverarbeitung des Multi-Algorithmen-Renderings bezüglich Speicherverbrauch (5.3.1)
und Laufzeit (5.3.2) untersucht. Letztere wurde auch noch aufgeschlüsselt, um zu sehen für
welche Teilschritte der Vorverarbeitung die Zeit benötigt wird. Die konkret untersuchten
Fragestellungen sind:

• Wie lange dauert das Ziehen einer Stichprobe?

• Wie verteilt sich die Laufzeit beim Ziehen einer Stichprobe?
– Wie viel Zeit benötigt die Darstellung mit den einzelnen Algorithmen?
– Wie viel Zeit benötigen die Bildvergleiche?

37

5 Evaluierung

– Wie lange dauert das Erzeugen der Referenzbilder?

• Wie viel Speicher verbrauchen die benutzten Verfahren?

• Wie viel Speicher verbrauchen die erhobenen Stichproben?

Im zweiten Bereich der Evaluierung (5.4) wird das Laufzeitverhalten des Multi-Algo-
rithmen-Renderings untersucht. Bei der Untersuchung des Verhaltens des Multi-Algorith-
men-Renderings während eines Walkthroughs gibt es zwei interessante Fragestellungen:
zum einen die Laufzeit des Verfahrens und zum anderen die Qualität der erzeugten Bilder.
Diese beiden Aspekte werden stets parallel untersucht, da eine Laufzeitmessung bei einem
approximativen Verfahren keine Aussagekraft hat, wenn nicht auch gleichzeitig der Fehler
des Verfahrens betrachtet wird. Die genauen Fragestellungen hierzu lauten:

• Wie lange dauert die Berechnung eines Bildes (5.4.1)?
– Wie lange benötigen die verwendeten Algorithmen, wenn mit ihnen die komplette

Szene dargestellt wird?
– Wie stark weicht die Laufzeit des Multi-Algorithmen-Renderings vom vorgege-

benen Sollwert ab?
– Wie stark weicht die real gemessene Laufzeit von den Werten aus der Vorverar-

beitung ab (5.4.5)?

• Wie groß ist der Bildfehler (5.4.2)?
– Wie groß ist der Bildfehler, den die benutzten Verfahren erzeugen, wenn mit

ihnen die gesamte Szene dargestellt wird?
– Wie groß ist der Bildfehler, der vom Multi-Algorithmen-Rendering erzeugt wird?
– Wie stark weicht der real gemessene Bildfehler von den Werten aus der Vorver-

arbeitung ab (5.4.6)?

Zusätzlich hierzu wurden noch Messungen zu den folgenden Fragestellungen durchgeführt:

• Welchen Einfluss haben die unterschiedlichen Interpolations- und Regelungsmethoden
die für das Multi-Algorithmen-Rendering umgesetzt wurden (5.4.3)?

• Wie häufig werden die einzelnen Algorithmen eingesetzt (5.4.7)?
– Wie viele Pixel werden mit den Algorithmen dargestellt?
– Wie viele Regionen werden mit den Algorithmen dargestellt?
– Wie groß ist der Nutzen der Algorithmen, wie ändert sich das Ergebnis wenn

bestimmte Algorithmen deaktiviert werden?

• Wie verhält sich das Multi-Algorithmen-Rendering abhängig von der Anzahl der
in der Vorverarbeitung gezogenen Stichproben und wie viele Stichproben werden
benötigt (Abschnitt 5.4.4)?

• Wie groß bzw. störend sind die bereits in Abschnitt 3.5.3 erwähnten Flacker-Effekte
beim Multi-Algorithmen-Rendering (5.4.8)?

• Wie viel Zeit wird benötigt um das Optimierungsproblem zu lösen (5.4.9)?

38

5.2 Messumgebung

Die Evaluierung des Verhaltens des Multi-Algorithmen-Renderings wird zunächst wie üb-
lich anhand eines Kamerapfades durchgeführt. Zusätzlich wird danach noch eine Analyse des
Verfahrens über die von Jähn u. a. [Jäh+13] beschriebenen Szenen-Eigenschafts-Funktionen
durchgeführt. Dies dient dazu, die Ergebnisse der ersten Analyse zu stützen und zu zeigen,
dass die Ergebnisse nicht nur für den speziell gewählten Kamerapfad gelten, sondern
auch für die anderen Teile der Szene, welche durch den Pfad nicht abgedeckt sind. Bei
dieser Analyse traten einige zusätzliche Effekte auf, die bei der Analyse mit Hilfe des
Kamerapfades übersehen wurden.

5.2 Messumgebung
Im Folgenden wird das generelle Setup für die Messungen beschrieben. Abweichungen
hiervon sind bei den einzelnen Messungen angegeben.

5.2.1 Verwendete Hard- und Software
Als Software kam PADrend (siehe Abschnitt 4.1) zum Einsatz. Zum Lösen des linearen
Programms wurde die Bibliothek lp_solve1 benutzt. Sowohl die Vorverarbeitung als auch
die Laufzeittests wurden auf folgender Hardware durchgeführt:

CPU: Intel Core i7 960; 4 × 3,2GHz
Hauptspeicher: 24GiB
Grafikkarte: NVIDIA GeForce GTX 660
Betriebssystem: Linux

Hervorzuheben ist, dass der Hauptspeicher bei allen Tests ausreichend groß war. Es wurden
keine Out-Of-Core Mechanismen benutzt.

5.2.2 Aufbau der Testszene
Die Testszene (Abbildung 5.1) ist eine Kombination von Szenen aus unterschiedlichen
Quellen:

• Eine prozedural erzeugte Stadt2 [Mül+06] bestehend aus Gebäuden und Vegetation
(Pompeji, 153.848 Objekte, ca. 63 Mio. Primitive, mit Texturen).

• Ein Modell eines Kohlekraftwerks3 (Power-Plant, 1181 Objekte, ca. 12,7 Mio. Primi-
tive).

• Ein Gebäude aus einem Architekturprogramm4 (Universität Paderborn, Gebäude
ZM1, 2417 Objekte, ca. 1,5 Mio. Primitive, mit Texturen).

• Ein durch Laserscans erzeugtes Modell einer Statue5 (Lucy, ein Objekt, ca. 28 Mio.
Primitive).

1lp_solve 5.5.2.0: http://lpsolve.sourceforge.net/
2City Engine: http://www.esri.com/software/cityengine/resources/casestudies/
3The Walkthru Project: http://gamma.cs.unc.edu/POWERPLANT/
4Design: Matern und Wäschle GbR, Architekten BDA: http://www.maternwaeschle.de/
5The Stanford 3D Scanning Repository: http://graphics.stanford.edu/data/3Dscanrep/

39

http://lpsolve.sourceforge.net/
http://www.esri.com/software/cityengine/resources/casestudies/
http://gamma.cs.unc.edu/POWERPLANT/
http://www.maternwaeschle.de/
http://graphics.stanford.edu/data/3Dscanrep/

5 Evaluierung

Abbildung 5.1: Darstellung der Szene und des zur Evaluierung benutzten Kamerapfades.

Die Szene besteht also sowohl aus hochkomplexen Einzelmodellen als auch aus einer
großen Menge sehr einfacher Objekte. Die Objekte sind teilweise mit Texturen versehen.

Alle Komponenten der Szene wurden so belassen, wie sie sind; es wurden keine manuellen
Schritte zur Optimierung der Eingabe durchgeführt. Dies bedeutet unter anderem, dass die
Lucy mit ihren ca. 28Mio. Polygonen nicht in mehrere Objekte unterteilt wurde, sowie dass
die einzeln modellierten Bordsteine von Pompeji nicht zusammengefasst wurden. Unter
diesen Voraussetzungen sind somit weder die Lucy noch Pompeji mit der verwendeten
Hardware korrekt in Echtzeit darstellbar. Die anderen beiden Modelle sind jedes für sich
problemlos darstellbar. Jedoch enthalten sie sehr große Objekte mit sehr wenig Primitiven,
wie beispielsweise die Dachfläche des ZM1 Modells und der Schornstein des Kraftwerks.

Man könnte die Eingabe auch manuell optimieren und/oder einen speziellen Darstel-
lungsalgorithmus entwickeln. Damit wäre es durchaus denkbar diese Szene in Echtzeit
darzustellen und dabei eine bessere Bildqualität zu erzielen als beim Multi-Algorithmen-
Rendering. Dies würde allerdings einen sehr hohen Arbeitsaufwand erzeugen, wäre sehr
unflexibel und würde Expertenwissen erfordern.

5.2.3 Wahl des Kamerapfades

Der für die folgenden Messungen benutzte Kamerapfad wird in Abbildung 5.1 gezeigt. Es ist
ein geschlossener Pfad mit 1303 Messpunkten, bei dem Position 0 und 1303 identisch sind.
Beginnend bei Punkt 0 führt er zunächst bis Punkt 471 durch die Straßen von Pompeji.
Dabei ist ab Punkt 332 das Lucy-Modell im Sichtbereich. Zwischen Punkt 500 und 772
steigt der Pfad dann nach oben über die Szene. Danach verläuft der Pfad bis Punkt 1036
auf gleichbleibender Höhe, jedoch dreht sich die Blickrichtung der Kamera dabei auf die

40

5.2 Messumgebung

Mitte der Szene. Bis Punkt 1186 steigt der Pfad dann wieder leicht an und die Kamera ist
weiterhin mittig auf die Szene gerichtet. An Punkt 1186 ist dann der überwiegende Teil
der Szene im Sichtbereich. Auf dem letzten Stück zurück zu Punkt 1303 sinkt der Pfad
dann wieder ab und die Kamera dreht sich zurück nach vorn. Der Kamerapfad wurde so
gewählt, dass alle Bereiche der Szene, die besonders gut oder schlecht zu handhaben sind,
darauf vorkommen. Dies äußert sich wie folgt:

• Der Pfad führt durch die Straßen von Pompeji. Dort stellt die Darstellung der
kompletten Szene mit dem CHC++ kein Problem dar. Somit kann hier eigentlich
immer ein korrektes Bild erzeugt werden.

• Der Pfad führt direkt an der Lucy vorbei. Hier ist ein sehr komplexes Modell direkt
vor der Kamera (projizierte Größe sehr groß). Lediglich der Discrete-Level-of-Detail-
und der Forced-Surfels-Algorithmus sind in der Lage diese Situation in Echtzeit zu
handhaben. Dabei erzeugt der Discrete-Level-of-Detail Algorithmus einen deutlich
geringeren Bildfehler.

• Der Pfad führt durch die Straßen von Pompeji, während die Lucy im Frustum liegt
und nicht komplett verdeckt ist. An dieser Stelle ist eine korrekte Darstellung aufgrund
der sichtbaren Lucy nicht möglich. Approximative Darstellungsalgorithmen, die auf
Basis von Objekten arbeiten, sind aufgrund der hohen Anzahl von Objekten im
Frustum auch zu langsam. Stellt man jedoch, wie beim Multi-Algorithmen-Rendering,
die Szene mit unterschiedlichen Algorithmen dar (Approximation für die Lucy und
korrekte Darstellung für den Rest der Stadt), dann erhält man ein nahezu korrektes
Bild in Echtzeit.

• Der Pfad führt über die Stadt, wobei große Teile der Stadt im Frustum liegen. Hier ist
eine korrekte Darstellung der Szene nicht möglich, da die Anzahl sichtbarer Objekte
zu groß ist.

5.2.4 Benutzte Algorithmen und deren Einstellung

Für das Multi-Algorithmen-Rendering selbst wurde zur Interpolation der Stichproben aus
der Vorverarbeitung das Maximum der vier nächsten Stichproben gewählt. Als Regelkreis
wurde die Variante benutzt, welche die Vorgabe für das lineare Programm mit Hilfe der
absoluten Abweichung berechnet. Diese Kombination stellt sich im Laufe der Evaluierung
als die beste heraus und wurde deshalb für alle übrigen Messungen benutzt. Der Bereich,
der mit den Stichproben abgedeckt wurde, ist in Abbildung 5.2 dargestellt. Die bereits in
den Abschnitten 2.4 und 3.3 verwendeten Algorithmen werden im Folgenden aufgelistet
und ihre Parametrisierung (sofern von der Literatur abweichend) beschrieben:

• Coherent-Hierarchical-Culling++

• z-Buffer

• Spherical-Visibility-Sampling

• Color-Cubes: Bei einer projizierten Größe von weniger als 100 Pixeln wird approxi-
miert.

41

5 Evaluierung

Abbildung 5.2: Darstellung des Bereiches (grün), innerhalb dessen in der Vorverarbeitung
die Stichproben gezogen wurden.

• Progressive-Blue-Surfels: Falls das Achtfache der projizierten Größe kleiner ist als
die Anzahl verfügbarer Samples, wird approximiert. Die Zahl an Surfels, die in der Vor-
verarbeitung erzeugt wird, ist ein Fünftel der Komplexität des zu approximierenden
Teilbaums, maximal jedoch eine Million.

• Forced-Surfels: Es wird immer approximiert. Falls die Anzahl verfügbarer Surfels
nicht ausreichend ist, wird die Größe der einzelnen Surfels auf bis zu 10× 10 Pixel
erhöht, um Löcher in der Darstellung zu vermeiden.

• Discrete-Level-of-Detail: Es wird die kleinste Detailstufe des Modells gewählt, die
mehr Primitive hat als die projizierte Größe angibt. Maximal jedoch 224 Primitive, da
bei der benutzten Grafikkarte hier die Grenze liegt ab der die Darstellungsgeschwin-
digkeit für ein einzelnes Mesh einbricht. In der Vorverarbeitung wird die Komplexität
eines jeden Modells schrittweise jeweils halbiert, bis es weniger als zwei tausend

42

5.2 Messumgebung

Primitive hat.

Der Approximate-Coherent-Hierarchical-Culling++-Algorithmus und der Forced-Cubes-
Algorithmus wurden nicht benutzt, da sich während der Entwicklung bereits herausgestellt
hat, dass diese beiden keine weitere Verbesserung mehr mit sich bringen. Auf eine spezielle
Messung hierfür wurde verzichtet.

5.2.5 Durchführung der Messungen
Die folgende Auflistung beschreibt die globalen Einstellungen, mit denen die Messungen
durchgeführt wurden.

Messungen entlang des Kamerapfades
• Messungen, die ein deterministisches Ergebnis liefern, wie z. B. die Messung des

Bildfehlers der benutzten Verfahren, wurden nur einmal durchgeführt.
• Bei Messungen, welche Schwankungen unterliegen, wurde der Kamerapfad 25-

Mal nacheinander abgelaufen. Dies sind z. B. alle Laufzeitmessungen und die
Bildfehlermessungen des Multi-Algorithmen-Renderings.

• Die während der Messung benutzte Bildauflösung betrug 1280× 720 Pixel.
• Der benutzte Kameraöffnungswinkel war 60 ° vertikal und dementsprechend ca.

90 ° horizontal.
• Für alle Bildfehlermessungen wurde das Pyramidenverfahren mit SSIM als

internem Vergleichsverfahren benutzt (siehe Abschnitt 2.5).

Messungen über Szenen-Eigenschafts-Funktionen
• Gemessen wurde der Durchschnitt aus acht Durchläufen.
• Da bei dieser Art der Messung die Kameraposition randomisiert springt, wurden

vor jeder Messung zwei Aufwärmdurchläufe ausgeführt und deren Ergebnisse
verworfen.

• Die während der Messung benutzte Bildauflösung betrug 1024× 1024 Pixel.
• Der benutzte Kameraöffnungswinkel war 90 ° sowohl vertikal als auch horizontal.
• Die Anzahl gezogener Stichproben für die Klassifizierungen betrug 5.000.
• Auch hier wurde für alle Bildfehlermessungen die Kombination aus Pyramiden-

und SSIM-Verfahren benutzt.

5.2.6 Darstellung und Aufbereitung der Messergebnisse
Bei der Darstellung der Ergebnisse werden, mit einer Ausnahme, für die verwendeten
Algorithmen die gleichen Farben verwendet, welche auch in den Bildschirmfotos zur
Hervorhebung benutzt werden. Die entsprechenden Farben sind in Tabelle 5.1 angegeben.

Messungen entlang des Kamerapfades
• Die Kurven in den Diagrammen repräsentieren den Median der Messungen.
• Halbtransparente Flächen repräsentieren den Bereich zwischen oberem und

unterem Quartil.

43

5 Evaluierung

Tabelle 5.1: Zuordnung von Darstellungsfarben zu Algorithmen. Bis auf beim z-Buffer-
Algorithmus stimmen die Farben bei Bildschirmfotos und Messkurven überein.

Algorithmus Bildschirmfoto Messkurven

z-Buffer hellgrau rot
CHC++ gelb gelb

Color-Cubes orange orange
Spherical-Visibility-Sampling grün grün

Discrete-Level-of-Detail violett violett
Progressive-Blue-Surfels hellblau hellblau

Forced-Surfels dunkelblau dunkelblau

• Die vertikale Achse der Laufzeitmessungen ist logarithmisch skaliert.

• Die vertikale Achse der Bildfehlermessungen ist linear skaliert.

• Die Skalierung in der Horizontalen ist immer linear.

Messungen über Szenen-Eigenschafts-Funktionen
• Für alle Messungen dieser Art wurde aus den gezogenen Stichproben eine

2-D-Delaunay-Triangulierung berechnet und anhand der gemessenen Werte
eingefärbt.

• Die absoluten Messwerte sind nicht mit denen der Messungen entlang des
Kamerapfades vergleichbar. Dies liegt an den abweichenden Werten für die Bild-
auflösung, den Kameraöffnungswinkel etc. Dies lässt sich bei dieser Messtechnik
leider nicht vermeiden. Der Vorteil dieser Messungen ist jedoch, dass damit
das Multi-Algorithmen-Rendering flächendeckend evaluiert wird und nicht nur
entlang eines Kamerapfades.

5.3 Laufzeit und Speicherverbrauch in der Vorverarbeitung

Für die Vorverarbeitung des Multi-Algorithmen-Renderings müssen zunächst die Vorver-
arbeitungen aller benutzten Verfahren durchgeführt werden. Das sind in diesem Fall die
Algorithmen Color-Cubes, Forced-Cubes, Progressive-Blue-Surfels, Discrete-Level-of-Detail
und Spherical-Visibility-Sampling. Dabei müssen die Surfels natürlich nur einmal berechnet
werden. Erst danach kann die Vorverarbeitung des Multi-Algorithmen-Renderings selbst
durchgeführt werden.

5.3.1 Persistenter Speicherverbrauch

Jedes Verfahren, welches eine Vorverarbeitung durchführt, um die Darstellung zur Laufzeit
zu beschleunigen, muss die gesammelten Daten speichern. Dies ist unabhängig davon, ob es
sich dabei um Sichtbarkeitsdaten, Surfels, Meshreduktionen oder, wie beim Multi-Algorith-
men-Rendering, um Laufzeit- und Bildfehlerwerte handelt. Diese Daten müssen auch zur
Laufzeit zur Verfügung stehen und belegen somit während des Walkthroughs zusätzlichen
Speicherplatz.

44

5.3 Laufzeit und Speicherverbrauch in der Vorverarbeitung

Tabelle 5.2: Persistenter Speicherverbrauch der Daten aus der Vorverarbeitung. Angegeben
sind die Werte der benutzten Algorithmen, der zusätzliche Speicherverbrauch
des Multi-Algorithmen-Renderings bei ca. 13.000 Stichproben sowie zum Ver-
gleich der Speicherverbrauch der Szene selbst.

Algorithmus Speicherverbrauch

Discrete-Level-of-Detail 2448MiB
Progressive-Blue-Surfels 908MiB
Spherical-Visibility-Sampling 512MiB
Color-Cubes 5MiB
Multi-Algorithmen-Rendering 53MiB

Σ 3926MiB

Daten der Szene 4978MiB

Tabelle 5.3: Dauer der Vorverarbeitung. Angegeben sind die Werte der benutzten Algo-
rithmen und der zusätzliche Aufwand des Multi-Algorithmen-Renderings.

Algorithmus Laufzeit (Std:Min:Sek)

Discrete-Level-of-Detail Lucy + 00:19:41
Progressive-Blue-Surfels 00:30:21
Spherical-Visibility-Sampling 00:05:16
Color-Cubes 00:00:19

Σ 00:55:37

Multi-Algorithmen-Rendering (1 Stichprobe) ca. 00:00:55
Multi-Algorithmen-Rendering (1.000 Stichproben) 15:14:28
Multi-Algorithmen-Rendering (13.000 Stichproben) ca. 198:08:04

Fragestellung Wie viel Speicher belegen die Daten, die das Multi-Algorithmen-Rendering
zusätzlich zu den benutzten Verfahren erzeugt?

Durchführung der Messung Gemessen wurde der persistente Speicherverbrauch, also die
Größe der Daten, die gespeichert und zur Laufzeit verwendet werden. Der temporäre
Speicherverbrauch liegt teilweise deutlich darüber. Insbesondere gilt dies für den
Discrete-Level-of-Detail-Algorithmus: Die Reduktion der Lucy benötigte temporär
über 32GiB Speicher. Die für die Beispielszene und die benutzten Algorithmen
ermittelten Werte sind in Tabelle 5.2 aufgeführt.

Auswertung Die Werte zeigen deutlich, dass der persistente Speicherverbrauch durch
die benutzten Verfahren bestimmt wird. Der durch das Multi-Algorithmen-Ren-
dering zusätzlich verursachte Speicherverbrauch zum Speichern der Laufzeit- und
Bildfehlerwerte für ca. 13.000 Stichproben ist sehr gering.

45

5 Evaluierung

Tabelle 5.4: Aufschlüsselung der Laufzeit des Multi-Algorithmen-Renderings nach Darstel-
lung der Szene mit einzelnen Algorithmen, durchgeführten Bildvergleichen und
Erzeugen von Referenzbildern.

Arbeitsschritt Anteil an der Laufzeit

Darstellung mit z-Buffer 19,2%
Darstellung mit Discrete-Level-of-Detail 18,5%
Darstellung mit Coherent-Hierarchical-Culling++ 13,1%
Darstellung mit Spherical-Visibility-Sampling 10,0%
Darstellung mit Color-Cubes 4,0%
Darstellung mit Progressive-Blue-Surfels 1,3%
Darstellung mit Forced-Surfels 0,9%
Berechnung von Bildfehlern 5× 3,6%
Erzeugen der Würfel-Texturen 7,6%
Erzeugen der Referenzbilder 7,3%

5.3.2 Dauer der Vorverarbeitung

Der zweite wichtige Aspekt bei einem Verfahren mit Vorverarbeitung ist die Laufzeit. Dauert
die Vorverarbeitung zu lange, so reduziert dies die Einsatzmöglichkeiten des Verfahrens.

Fragestellung Wie lange dauert die Vorverarbeitung des Multi-Algorithmen-Renderings
im Vergleich zu den benutzten Verfahren?

Durchführung der Messung Gemessen wurde für die benutzten Verfahren die komplette
Laufzeit der Vorverarbeitung für alle Regionen. Die Ergebnisse sind in Tabelle 5.3
dargestellt. Eine Ausnahme bildet das Modell der Lucy. Dessen Reduktion musste
aufgrund der hohen temporären Speicheranforderungen auf einem anderen Rechner
durchgeführt werden und nahm mehrere Stunden in Anspruch.
Für das Multi-Algorithmen-Rendering wurde die Zeit gemessen, die benötigt wurde,
um 1.000 Stichproben zu ziehen. Die beiden anderen angegebenen Werte wurden aus
dieser Zeit berechnet.

Auswertung Im Gegensatz zum Speicherverbrauch wird in dieser Messung die Gesamtzeit
deutlich vom Multi-Algorithmen-Rendering dominiert. Die Werte aller benutzten Ver-
fahren liegen im Minutenbereich, während das Multi-Algorithmen-Rendering bereits
ungefähr eine Minute pro Stichprobe benötigt. Die Gesamtlaufzeit der Vorverarbei-
tung des Multi-Algorithmen-Renderings ist abhängig von der Anzahl an Stichproben,
die benötigt werden, damit das Multi-Algorithmen-Rendering zur Laufzeit zufrieden-
stellend funktioniert. Wie hoch diese benötigte Anzahl an Stichproben ist, wird in
einer der nachfolgenden Messungen untersucht.

Zusätzlich hierzu stellt sich die Frage, wofür die Vorverarbeitung des Multi-Algorithmen-
Renderings die Zeit verbraucht.

Fragestellung Wie verteilt sich die Laufzeit beim Ziehen der Stichproben auf die einzelnen
Arbeitsschritte?

46

5.4 Verhalten des Multi-Algorithmen-Renderings beim Walkthrough

Durchführung der Messung Gemessen wurde wiederum über 1.000 Stichproben die Zeit,
die für folgende Arbeitsschritte benötigt wurde:

• Darstellung von Regionen mit den einzelnen Algorithmen
• Berechnung von Bildfehlern
• Erzeugung von Referenzbildern für die Bildfehlermessungen
• Erzeugung der Würfeltexturen zur Wiederherstellung der Ausgangslage vor

jedem Test
Die Ergebnisse der Messung sind in Tabelle 5.4 dargestellt.

Auswertung Wie zu erwarten, verbrauchen Algorithmen, die ein gutes Bild erzeugen,
mehr Zeit bei der Darstellung, als solche, die stark approximieren. Allerdings muss
pro benutztem approximativem Algorithmus ein Bildvergleich durchgeführt werden.
Der Anteil der Laufzeit, welcher auf die Berechnung von Bildfehlern entfällt, steigt
also mit der Anzahl benutzter approximativer Darstellungsalgorithmen. Der Anteil
der Laufzeit, welcher auf die Erzeugung von Referenzbildern und Würfeltexturen
entfällt, ist hingegen konstant und wird somit anteilsmäßig kleiner, wenn mehr
Algorithmen benutzt werden. Des Weiteren sind die einzelnen Darstellungszeiten
natürlich abhängig von der Szene, da beim Ziehen einer Stichprobe jede Region mit
jedem Algorithmus dreimal dargestellt wird. Gleiches gilt auch für die Erzeugung
der Würfeltexturen. Die Zeit zur Berechnung der Bildfehler ist abhängig von der
Anzahl erzeugter Regionen und der Anzahl verwendeter approximativer Algorithmen.
Auch das Erzeugen der Referenzbilder wird hierdurch beeinflusst. Die Zeit für diesen
Schritt könnte man jedoch einsparen, solange mindestens ein Algorithmus benutzt
wird, der ein korrektes Bild erzeugt, da man dieses für den Bildvergleich benutzen
kann.

5.4 Verhalten des Multi-Algorithmen-Renderings beim
Walkthrough

Zur Laufzeit sind die entscheidenden Kriterien für die Einsetzbarkeit eines approximativen
Darstellungsalgorithmus zum einen die Zeit, die benötigt wird, um ein Bild darzustellen, und
zum anderen der Bildfehler, der dabei entsteht. Ein weiterer Aspekt sind die Schwankungen
dieser Werte.

Abbildung 5.3 zeigt zunächst einige Screenshots, die einen ersten Eindruck von den durch
das Multi-Algorithmen-Rendering dargestellten Bildern liefern.

5.4.1 Dauer der Bildberechnung

Um Aussagen über die Laufzeit des Multi-Algorithmen-Renderings treffen zu können, ist
es zunächst notwendig, das Verhalten der einzelnen Algorithmen zu untersuchen. Diese
werden zwar vom Multi-Algorithmen-Rendering niemals für die Darstellung der kompletten
Szene eingesetzt, jedoch liefern diese Werte gute Anhaltspunkte für dessen Grenzen.

Fragestellung Wie verhält sich die Laufzeit der benutzten Algorithmen, wenn mit ihnen
die gesamte Szene dargestellt wird?

47

5 Evaluierung

(a) Position 0 bzw. 1303: An dieser Position wird der z-Buffer-Algorithmus eingesetzt, obwohl der
CHC++-Algorithmus deutlich schneller wäre. Dies ist jedoch irrelevant, da die vorgegebene

Laufzeit deutlich unterschritten wird.

(b) Position 365: Trotz der teilweise sichtbaren Lucy (violett) wird nahezu das gesamte Bild korrekt
dargestellt.

(c) Position 468: Im Bereich um diese Position bricht bei allen benutzten Verfahren entweder die
Laufzeit oder der Bildfehler ein.

(d) Position 560: Das einzelne Powerplant stellt für die benutzte Grafikkarte keine Herausforderung
dar. Hier spielt es keine Rolle, welche der korrekten Algorithmen eingesetzt werden.

48

5.4 Verhalten des Multi-Algorithmen-Renderings beim Walkthrough

(e) Position 698: Hier beginnt der Teil des Kamerapfades, auf dem der Bildfehler für den Benutzer
durchgehend bemerkbar wird. Es werden erstmalig Surfels eingesetzt.

(f) Position 900: Ein homogener Ausschnitt der Szene. Je weiter die Regionen von der Kamera
entfernt sind, desto stärker wird approximiert.

(g) Position 1186: Ein heterogener Ausschnitt der Szene. Entfernte Objekte werden weniger stark
approximiert als nahe.

(h) Position 1186: Gleiche Position wie zuvor. Es wird eine andere Zuordnung von Algorithmen zu
Regionen benutzt. Dies ist für den Benutzer als Flackern wahrnehmbar.

49

5 Evaluierung

(i) Nahaufnahme der Lucy. Trotz extrem großer
projizierter Größe wird das Modell

approximiert dargestellt.

(j) Überblick über die Szene mit Hervorhebung
der benutzten Algorithmen.

(k) Überblick über die Szene. Regionen, die durch Surfels dargestellt werden (blau in Abbildung (j)), sind
generell zu hell. Dies ist deutlich störender als der geometrische Fehler, der durch die Surfels erzeugt

wird.

Abbildung 5.3: Ausgewählte Bildschirmfotos entlang des Kamerapfades (mit Angabe der
Position), sowie einige zusätzliche an speziellen Positionen. Bei allen Bil-
dern wurde die vorgegebene Darstellungszeit von 100ms eingehalten bzw.
unterschritten. In Abbildung (a) bis (h) sind zu jeder Position jeweils Bilder
mit und ohne Hervorhebung der Algorithmen dargestellt.

50

5.4 Verhalten des Multi-Algorithmen-Renderings beim Walkthrough

101

102

103

0 500 1000
Kamerapfad

D
au

er
 d

er
 B

ild
be

re
ch

nu
ng

 (m
s)

Algorithmus
Blue Surfels

Force Surfels

SVS

LoD

Color Cubes

CHC++

z-Buffer

MAR

Abbildung 5.4: Die zur Darstellung der Testszene benötigten Zeit bei Einsatz des Multi-
Algorithmen-Renderings und bei ausschließlichem Einsatz der einzelnen
Algorithmen.

Durchführung der Messung Gemessen wurde die Laufzeit der benutzten Verfahren zur
Darstellung der gesamten Szene entlang des Kamerapfades. Zum Vergleich wurde
auch die Laufzeit des Multi-Algorithmen-Renderings bei optimalen Einstellungen
gemessen. Die Ergebnisse der Messung sind in Abbildung 5.4 dargestellt.

Auswertung Die Messung zeigt zunächst, dass nur der Forced-Surfels-Algorithmus – der
unter allen am stärksten approximiert – in der Lage ist die Szene durchgehend mit
100ms oder weniger darzustellen. Dies war jedoch zu erwarten, da die Szene so
aufgebaut ist, dass keiner der Algorithmen dazu geeignet ist, sie in ihrer Gänze
darzustellen.

Weiterhin erhält man durch die dargestellten Kurven einen Überblick darüber, wie
viel Zeit man mindestens benötigt, um die Szene darzustellen (Forced-Surfels) und
wie viel Zeit man höchstens dafür benötigt (z-Buffer und CHC++), um die Szene
korrekt darzustellen. So zeigt die Messung auch, dass es möglich ist die Szene mit
Hilfe des Forced-Surfels-Algorithmus in nur 50ms darzustellen. Daraus folgt, dass
dies auch mit dem Multi-Algorithmen-Rendering möglich sein sollte, da dieses die
Möglichkeit hat, genau diesen Algorithmus für die ganze Szene einzusetzen. Dies wird
in Abschnitt 5.5.4 näher untersucht.

Außerdem kann man gut erkennen, dass die Kurven mancher Algorithmen sich
schneiden. Dies gilt insbesondere für den z-Buffer-Algorithmus und den CHC++.

51

5 Evaluierung

Das heißt, selbst wenn man jegliche Approximationen ausschließt und ein korrektes
Bild darstellen möchte, so ist es sinnvoll, den Algorithmus abhängig von der Position
zu wechseln.

Des Weiteren schwankt die Kurve des Multi-Algorithmen-Renderings um die ein-
gestellte Ziellaufzeit von 100ms oder liegt darunter. Nur in Ausnahmefällen wird
dieser Wert signifikant überschritten. Betrachtet man hingegen z. B. die Kurve des
CHC++ und beachtet die logarithmische Skalierung der y-Achse des Diagramms,
so schwankt dessen Laufzeit deutlich mehr. Da das Multi-Algorithmen-Rendering
alle Algorithmen zur Darstellung einsetzt, muss dessen Laufzeit ebenfalls schwanken,
zumindest solange die Darstellung der bestimmende Faktor für die Laufzeit ist. Wie
stark diese Schwankungen sind, wird im Zuge des Vergleichs der unterschiedlichen
Interpolations- und Regelungsverfahren, in Abschnitt 5.4.3 näher untersucht.

5.4.2 Größe des Fehlers im Bild

Zusätzlich zur Laufzeit der Algorithmen muss man bei approximativen Algorithmen stets
auch die Qualität des Ergebnisses betrachten. Bei Renderingalgorithmen ist dies der Fehler
im erzeugten Bild.

Fragestellung Wie groß ist der Bildfehler, den die benutzten Algorithmen erzeugen, wenn
mit ihnen die gesamte Szene dargestellt wird?

Durchführung der Messung Gemessen wurde der Bildfehler, den die benutzten Verfahren
bei der Darstellung der gesamten Szene erzeugen, sowie zum Vergleich der Bildfehler
des Multi-Algorithmen-Renderings bei optimalen Einstellungen. Die Ergebnisse der
Messung sind in Abbildung 5.5 dargestellt.

Auswertung Die Grafik zeigt deutlich, dass der Forced-Surfels-Algorithmus, wie zu erwar-
ten, auf dem ersten Stück des Kamerapfades einen sehr großen Bildfehler erzeugt, da
hier der Abstand zwischen Kamera und Szene sehr gering ist. Des Weiteren schwankt
der Bildfehler des Discrete-Level-of-Detail auf diesem Stück ebenfalls sehr stark. Dies
liegt daran, dass der Pfad dicht an Bäumen vorbeiführt, welche nicht zusammen-
hängend modelliert sind, so dass bei einer Reduktion des Modells umgehend Blätter
verschwinden.

Weiterhin ist zu erkennen, dass der Bildfehler des Progressive-Blue-Surfels-Algorithmus
ähnlich dem des Multi-Algorithmen-Renderings ist. Da der Progressive-Blue-Surfels-
Algorithmus auch sehr schnell ist, wäre dies der Algorithmus, den man bei dieser
speziellen Szene zur Darstellung nutzen sollte, wenn man nur einen nehmen kann.
Allerdings erzeugt er genau in dem Bereich den größten Fehler, in dem er auch die
höchste Laufzeit hat. Bei der eingestellten Laufzeit von 100ms ist dies vielleicht noch
vertretbar, stellt man die Laufzeit jedoch auf z. B. 50ms ein, so wird das Multi-Algo-
rithmen-Rendering diesen Wert erreichen, der Progressive-Blue-Surfels-Algorithmus
jedoch nicht.

Des Weiteren erzeugt der Forced-Surfels, welcher in der vorherigen Laufzeitmessung
als einziger durchgehend schneller als 100ms war, auch durchgehend den mit Abstand
größten Bildfehler aller Algorithmen.

52

5.4 Verhalten des Multi-Algorithmen-Renderings beim Walkthrough

0.0

0.2

0.4

0.6

0.8

0 500 1000
Kamerapfad

G
rö

ße
 d

es
 B

ild
fe

hl
er

s

Algorithmus
MAR

Blue Surfels

Color Cubes

SVS

Force Surfels

LoD

0.000

0.025

0.050

0.075

0.100

0 500 1000
Kamerapfad

G
rö

ße
 d

es
 B

ild
fe

hl
er

s

Abbildung 5.5: Der bei der Darstellung der Testszene auftretender Bildfehler bei Ein-
satz des Multi-Algorithmen-Renderings und bei ausschließlichem Einsatz
der einzelnen Algorithmen. Oben: Gesamte Messung. Unten: Vergrößerte
Darstellung der Fehlerwerte im Bereich kleiner 0.1.

53

5 Evaluierung

Bereits an dieser Stelle ist klar, dass das Multi-Algorithmen-Rendering funktioniert. Im
Bereich ungefähr zwischen Messpunkt 1.100 und 1.250 erreicht bis auf den Forced-Surfels-
Algorithmus kein anderer eine Laufzeit von 100ms. Das Multi-Algorithmen-Rendering
hingegen schon. Beim Multi-Algorithmen-Rendering ist der Bildfehler jedoch wesentlich
kleiner ist als beim Forced-Surfels-Algorithmus. Daher folgt, dass die Kombination von
unterschiedlichen Algorithmen für geeignete Regionen, der ausschließlichen Benutzung
einzelner Algorithmen überlegen ist.

Der ähnliche Verlauf der Kurven des Multi-Algorithmen-Renderings und des Progressive-
Blue-Surfels-Algorithmus in diesem Bereich lässt weiter vermuten, dass letzterer in diesem
Bereich überwiegend vom Multi-Algorithmen-Rendering eingesetzt wird. Dem ist jedoch
nicht so (siehe dazu Abschnitt 5.4.7)

5.4.3 Die verschiedenen Interpolations- und Regelungsverfahren
Für das Multi-Algorithmen-Rendering wurden verschiedene Methoden zur Interpolation
der Stichproben als auch zur Regelung der Laufzeit entwickelt. Um zu evaluieren, welche
Kombination dieser Methoden die beste ist, wurden Laufzeit- und Bildfehlermessungen für
alle Kombinationen aus Interpolations- und Regelungsverfahren durchgeführt.

5.4.3.1 Einfluss auf die Laufzeit

Bei der Laufzeit unterteilt sich die Fragestellung in zwei Aspekte: Wird die Bildrate im
richtigen Bereich geregelt und wie stark schwankt die Bildrate.

Fragestellung Wie verhält sich die Laufzeit des Multi-Algorithmen-Renderings auf dem
Kamerapfad bei Verwendung unterschiedlicher Kombinationen aus Regelungs- und
Interpolationsmethode?

Durchführung der Messung Gemessen wurde die Laufzeit aller Kombinationen von Rege-
lungs- und Interpolationsverfahren. Die Ergebnisse sind in Abbildung 5.6 dargestellt.

Auswertung Es ist deutlich zu erkennen, dass die relative Regelung sehr stark oszilliert.
Dabei überschreitet die Laufzeit häufig das Vierfache des eingestellten Wertes. Prak-
tisch ist diese Regelung damit unbrauchbar. Eine konstant langsame Bildrate wäre
für den Benutzer weit besser zu handhaben als eine so stark schwankende.
Des Weiteren ist ersichtlich, dass die Maximums-Interpolationsmethode weniger
Spitzen in der Messung aufweist. Da es sich hierbei um den Median der Messwerte
handelt und nicht um Ausreißer, ist dies nicht zu vernachlässigen. Diese Messspitzen
treten reproduzierbar bei fast jeder Iteration der Messung auf, allerdings nur bei
Ablaufen dieses Kamerapfades. Kommt der Benutzer aus einer anderen Richtung
oder bleibt an der entsprechenden Position stehen, so funktioniert das Multi-Algo-
rithmen-Rendering umgehend wieder flüssig.
Eine Ausnahme hierzu stellt die Spitze kurz vor Messpunkt 500 bei der Kombination
Maximum-Gedächtnis dar. Hierbei handelt es sich um mehrere aufeinanderfolgende
Messpunkte, deren Position unmittelbar vor dem Modell der Lucy liegen. Würde der
Benutzer hier stehenbleiben, würde sich das Verhalten des Multi-Algorithmen-Ren-
derings bei dieser Kombination auch nicht einpendeln, sondern abwechselnd wenige
sehr schnelle Bilder und ein sehr langsames Bild liefern. Dies liegt daran, dass der

54

5.4 Verhalten des Multi-Algorithmen-Renderings beim Walkthrough

Maximum der umliegenden Stichproben Nächste Stichprobe

101

102

103

101

102

103

101

102

103

R
elative R

egelung
R

egelung m
it G

edächtnis
A

bsolute R
egelung

0 500 1000 0 500 1000
Kamerapfad

D
au

er
 d

er
 B

ild
be

re
ch

nu
ng

 (m
s)

Abbildung 5.6: Darstellung der Laufzeit des Multi-Algorithmen-Renderings mit den ver-
schiedenen Kombinationen von Interpolations- und Regelungsverfahren.
Die rote Linie stellt den eingestellten Sollwert dar.

55

5 Evaluierung

Regelkreis den Vorgabewert für das LP langsam hoch regelt, weil die Darstellung des
Bildes schnell geht, bis das LP entscheidet, das Modell der Lucy korrekt darzustellen.
Dies dauert dann einmalig sehr lange, weshalb der Regelkreis den Vorgabewert für
das LP wieder stark reduziert.
Außerdem kann man noch sehen, dass bei den Varianten mit Gedächtnis die Regelung
der Laufzeit nicht um den Sollwert herum, sondern darunter erfolgt. Dies kann jedoch
durch eine einfache Skalierung des Sollwerts ausgeglichen werden. Daher ist dies kein
Kriterium für die Güte der Regelung.

5.4.3.2 Einfluss auf die Bildqualität

Auch bei der Bildqualität ist nicht nur die Höhe der Messkurve sondern auch deren
Schwankung interessant, da ein fluktuierender Bildfehler ebenfalls sehr störend auf den
Benutzer wirkt. Dies ist eine der Haupt schwächen des Multi-Algorithmen-Renderings und
wird in einer späteren Messung (5.4.8) gesondert untersucht.

Fragestellung Wie verhält sich der vom Multi-Algorithmen-Rendering erzeugte Bildfehler
auf dem Kamerapfad bei Verwendung unterschiedlicher Kombinationen aus Regelungs-
und Interpolationsmethode?

Durchführung der Messung Gemessen wurde der Bildfehler des durch das Multi-Algo-
rithmen-Rendering erzeugten Bildes im Vergleich zu einem durch den CHC++-
Algorithmus erzeugten Bild. Die Messkurven sind in Abbildung 5.7 dargestellt.

Auswertung Die Varianten mit Gedächtnis weisen generell einen größeren Bildfehler auf.
Dies ist allerdings aufgrund der geringeren Laufzeit allerdings auch zu erwarten und
daher wiederum kein Kriterium für die Güte der Regelung. Allerdings fluktuiert der
Bildfehler bei diesen Varianten auch stark. Dies liegt daran, dass das Verfahren mit
dieser Regelungsvariante den Sollwert kontinuierlich langsam hoch und schnell wieder
herunter regelt.
Dies ist insbesondere bei der Messung mit absoluter Regelung nicht der Fall. Diese
Weist zwar wiederum einige Messspitzen auf, allerdings liegen diese bis auf eine
in Fehlerbereichen, in denen die Variante mit Gedächtnis in großen Bereichen des
Kamerapfades schwankt. Auch hier ist es wieder so, dass bei stehender Kamera die
Spitzen nur einmalig auftreten, wohingegen die Variante mit Gedächtnis durchgehend
fluktuiert.

Insgesamt zeigt die Kombination aus absoluter Regelung und Interpolation der umliegen-
den Stichproben das beste Verhalten. Dies stimmt auch mit dem subjektiven Empfinden
während eines manuellen Walkthroughs überein. Daher wurde diese Variante für alle
folgenden Messungen benutzt, bei denen nicht explizit etwas anderes angegeben ist.

5.4.4 Wie viele Stichproben werden benötigt?

Um diese Frage beantworten zu können, ist es zunächst notwendig, das bestmögliche
Ergebnis zu kennen. Dazu wurde eine zweite Vorverarbeitung durchgeführt, bei der exakt
an den Positionen die bei der Messung auf dem Kamerapfad vorkommen jeweils eine
Stichprobe gezogen wurde.

56

5.4 Verhalten des Multi-Algorithmen-Renderings beim Walkthrough

Maximum der umliegenden Stichproben Nächste Stichprobe

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

R
elative R

egelung
R

egelung m
it G

edächtnis
A

bsolute R
egelung

0 500 1000 0 500 1000
Kamerapfad

G
rö

ße
 d

es
 B

ild
fe

hl
er

s

Abbildung 5.7: Darstellung des erzeugten Bildfehlers vom Multi-Algorithmen-Rendering
mit den verschiedenen Kombinationen von Interpolations- und Regelungs-
verfahren.

57

5 Evaluierung

102

103

0 500 1000
Kamerapfad

D
au

er
 d

er
 B

ild
be

re
ch

nu
ng

 (m
s)

MAR-Einstellung
Nächste-Absolut (exakt)

Maximum-Absolut (exakt)

Maximum-Absolut (13.000)

0.00

0.05

0.10

0.15

0.20

0 500 1000
Kamerapfad

G
rö

ße
 d

es
 B

ild
fe

hl
er

s

Abbildung 5.8: Darstellung von Laufzeit und Bildfehler bei exakten Positionen für die
Stichproben sowie zum Vergleich die gleiche Messung mit 13.000 verteilten
Stichproben.

58

5.4 Verhalten des Multi-Algorithmen-Renderings beim Walkthrough

Da diese Stichproben quasi perfekt sind, wurde bei den Messungen, zusätzlich zu der zuvor
ermittelten besten Kombination aus absoluter Regelung und Interpolation der umliegenden
Stichproben, auch wieder die ausschließliche Benutzung der nächsten Stichprobe untersucht.

Fragestellung Wie gut wird das Verfahren, wenn für die Positionen auf dem Kamerapfad
Stichproben an exakt der gleichen Position zur Verfügung stehen?

Durchführung der Messung Gemessen wurden die Laufzeit und der Bildfehler des Multi-
Algorithmen-Renderings bei absoluter Regelung mit beiden Interpolationsverfahren.
Die Messkurven sind in Abbildung 5.8 dargestellt. Zusätzlich wurde die Messkurve,
der im vorherigen Abschnitt ermittelten besten Kombination aus Interpolations- und
Regelungsverfahren, bei 13.000 verteilten Stichproben eingeblendet. Da die Kurven
sehr dicht beieinander liegen wurde auf die Darstellung der Quartile verzichtet.

Auswertung Zwischen den drei Kurven ist kein Signifikanter Unterschied zu erkennen.
Sie unterscheiden sich hauptsächlich durch die Positionen der Messspitzen auf dem
Kamerapfad und Unterschiede in der Laufzeit, die allerdings unterhalb des Sollwerts
und in Bereichen mit korrekter Bilddarstellung liegen. Somit kann man sagen, dass
13.000 gleichmäßig verteilte Stichproben bei dieser Szene ausreichend sind.

Zur Ermittlung der benötigten Anzahl Stichproben wurde nun eine zweite Messung
durchgeführt, bei der die Menge der Stichproben auf die 1.000 zuerst gezogenen Stichpro-
ben reduziert wurde. Der Wert 1.000 wurde deshalb gewählt, weil bei dieser Anzahl an
Stichproben die Vorverarbeitung eine akzeptable Laufzeit hat. Akzeptabel deshalb, weil
man die Vorverarbeitung hier zu Feierabend starten könnte und sie wäre am nächsten Tag
zu Arbeitsbeginn fertig.

Fragestellung Sind 1.000 Stichproben ausreichend?

Durchführung der Messung Gemessen wurden für beide Interpolationsvarianten sowohl
die Laufzeit als auch der Bildfehler. Die Stichproben wurden für diese Messung nicht
neu gezogen, sondern sind identisch mit den 1.000 Stichproben, die in der bestehenden
Vorverarbeitung zuerst gezogen wurden. Abbildung 5.9 zeigt die Ergebnisse.

Auswertung Es ist deutlich zu erkennen, dass bei Benutzung der nächstliegenden Stich-
probe in zwei Bereichen der Messung sowohl die Laufzeit als auch die Bildqualität
signifikant schlechter werden. Dies liegt daran, dass an diesen Stellen je eine Stichpro-
be am nächsten liegt, welche so positioniert ist, dass ein Großteil der Szene verdeckt
ist. Dies hat zur Folge, dass in der Vorverarbeitung für den CHC++ ein sehr kleiner
Laufzeitwert gemessen wurde. Dadurch wird zur Laufzeit ein Bereich der Szene, der
nun jedoch nicht verdeckt ist und dessen Darstellung mit dem CHC++ sehr lange
dauert, korrekt dargestellt, während im Nahbereich der Kamera stark approximiert
wird.

Die Maximum-Interpolationsmethode hingegen zeigt sich von der geringen Anzahl an
Stichproben völlig unbeeindruckt, da hier die geringe Laufzeit des CHC++ bei einer
Stichprobe aufgrund der Bildung des Maximums nicht beachtet wird. Insgesamt sieht
das Ergebnis hier sogar besser aus als bei der Verwendung von 13.000 Stichproben.
Dies könnte daran liegen, dass sich bei jedem Wechseln einer Stichprobe das Verhältnis

59

5 Evaluierung

1000 Stichproben 13000 Stichproben

101

102

103

101

102

103

N
ächste-A

bsolut
M

axim
um

-A
bsolut

0 500 1000 0 500 1000
Kamera Pfad

D
au

er
 d

er
 B

ild
be

re
ch

nu
ng

 (m
s)

1000 Stichproben 13000 Stichproben

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

N
ächste-A

bsolut
M

axim
um

-A
bsolut

0 500 1000 0 500 1000
Kamerapfad

G
rö

ße
 d

es
 B

ild
fe

hl
er

s

Abbildung 5.9: Darstellung von Laufzeit und Bildfehler mit unterschiedlicher Anzahl an
Stichproben und unterschiedlichen Interpolationsmethoden.

60

5.4 Verhalten des Multi-Algorithmen-Renderings beim Walkthrough

Abbildung 5.10: Seitenansicht des Bereiches (grün), innerhalb dessen in der Vorverarbeitung
die Stichproben gezogen wurden.

zwischen geschätzter und gemessener Laufzeit verändert. Dann muss das Multi-Algo-
rithmen-Rendering jedoch nachregeln um dies wieder auszugleichen (siehe Abschnitt
5.4.5).
Zunächst scheint es also so zu sein, dass 1.000 Stichproben ausreichend sind, allerdings
zeigt die Messung in Abschnitt 5.5.4.1, dass diese Aussage nicht für alle Positionen
in der Szene gilt.

Diese Messung wirft allerdings zunächst eine weitere Fragestellung auf: Bei nur 1.000
Stichproben, welche in drei Dimensionen verteilt sind, ergibt sich eine Anzahl von nur
zehn Stichproben pro Dimension. Wenn man den Bereich, in dem die Stichproben gezogen
wurden, betrachtet (Abbildung 5.10), so ist ersichtlich, dass in der Regel nicht mehr als
eine dieser zehn Stichproben innerhalb der Geometrie von Pompeji liegt. Die anderen neun
liegen oberhalb der Stadt. Dieses wird noch dadurch verschärft, dass die Ausdehnung der
Szene in der Höhe wesentlich geringer ist als in der Breite und der Länge. Dadurch werden
in der Höhe auch deutlich weniger Stichproben gezogen.
Dadurch benutzt die Maximum-Interpolationsmethode jedoch stets mindestens eine

Stichprobe, die oberhalb der Stadt liegt, welche hier vermutlich die Laufzeit- und auch die
Bildfehlerwerte der einzelnen Regionen bestimmt, und somit auch alleinig das Verhalten
des Multi-Algorithmen-Renderings. Somit wären jegliche Stichproben innerhalb der Szene
überflüssig. Weiterhin könnte die Anzahl an Stichproben oberhalb der Szene eventuell auch
noch weiter reduziert werden, da sich hier das Verhalten der einzelnen Algorithmen nicht
sprunghaft verändern kann. Bei kontinuierlichem Verhalten von Laufzeit und Bildfehler
könnte dann auch statt des Maximums eine gewichtete Interpolation der Stichproben (z. B.
mit baryzentrischen Koordinaten) sinnvoll sein. Dies gilt jedoch nur für flache Szenen, die
sich nur in der Ebene ausdehnen und nicht für Szenen, die sich auch in der Höhe ausdehnen.

5.4.5 Abweichung zwischen geschätzten und gemessenen Laufzeitwerten

Die Laufzeitwerte aus der Vorverarbeitung bilden einen Schätzwert für die zu erwartenden
realen Werte während des Walkthroughs. Technisch bedingt sind die Laufzeit-Schätzwerte
dabei stets größer als die realen Werte. Um dieses auszugleichen wurde das Multi-Algorith-
men-Rendering als Regelkreis umgesetzt. Die Regelvariante mit Gedächtnis beachtet diese
Schätzwerte nicht und regelt ausschließlich aufgrund der gemessenen Laufzeit.
Die beiden anderen Regelvarianten basieren jedoch auf diesen Schätzwerten. Sie regeln

den Sollwert für das LP aufgrund der absoluten bzw. relativen Abweichung zwischen
Schätzwert und gemessener Dauer der Bildberechnung. Daher wurde untersucht, wie sich
diese Abweichungen über den Kamerapfad verhalten, da Sprünge der Abweichung eine

61

5 Evaluierung

101

102

103

0 500 1000
Kamerapfad

Ze
ite

n
be

i M
ax

im
um

-In
te

rp
ol

at
io

n
(m

s)
Zeit

Real gemessen

Benutzervorgabe

Minimal benötigt

Maximal benötigt

Eingabe für LP

Ausgabe des LP

101

102

103

0 500 1000
Kamerapfad

Ze
ite

n
be

i n
äc

hs
te

r S
tic

hp
ro

be
 (m

s)

Zeit
Real gemessen

Benutzervorgabe

Minimal benötigt

Maximal benötigt

Eingabe für LP

Ausgabe des LP

Abbildung 5.11: Darstellung der Zeiten mit denen das Multi-Algorithmen-Rendering intern
die Gesamtlaufzeit regelt. Abgetragen ist zum einen die gemessene Laufzeit
zur Darstellung des Bildes, sowie verschiedene Summen der Werte aus der
Vorverarbeitung.

62

5.4 Verhalten des Multi-Algorithmen-Renderings beim Walkthrough

0

10

20

30

0 500 1000
Kamerapfad

R
el

at
iv

e
A

bw
ei

ch
un

g
de

r L
au

fz
ei

t

Interpolation
Maximum der umliegenden Stichproben

Nächste Stichprobe

-1000

0

1000

0 500 1000
Kamerapfad

A
bs

ol
ut

e
A

bw
ei

ch
un

g
de

r L
au

fz
ei

t

Interpolation
Maximum der umliegenden Stichproben

Nächste Stichprobe

Abbildung 5.12: Darstellung der relativen und absoluten Abweichung zwischen gemessener
Laufzeit und der auf Basis der Vorverarbeitungswerte geschätzten Laufzeit
bei Verwendung unterschiedlicher Interpolationsmethoden.

63

5 Evaluierung

Erklärung für die in den Laufzeit- und Bildfehlermessungen auftretenden Messspitzen sein
könnten.

Fragestellung Wie verhalten sich die vom Multi-Algorithmen-Rendering intern benutzten
Schätzwerte und insbesondere deren relative bzw. absolute Abweichung zu den real
gemessenen Werten?

Durchführung der Messung Gemessen wurden folgende Werte jeweils für beide Interpola-
tionsmethoden bei 1000 Stichproben:

• Als Minimum die Summe der jeweils schnellsten Algorithmen pro Region.
• Als Maximum die Summe der jeweils langsamsten Algorithmen pro Region.
• Der Wert, der als Eingabe für das LP dient.
• Die Summe der Werte der Algorithmen, die vom LP pro Region ausgewählt

wurden (Ausgabe des LP).
• Die real gemessene Laufzeit des Multi-Algorithmen-Renderings.

Die Ergebnisse dieser Messung sind in Abbildung 5.11 dargestellt. Abbildung 5.12
zeigt sowohl die relative Abweichung zwischen real gemessener Zeit und Ausgabe des
LPs als auch die absolute Abweichung der Werte.

Auswertung Bei der Maximum-Interpolation ist die Ausgabe des LP lediglich in Bereichen,
in denen ein korrektes Bild erzeugt wird, deutlich von der Eingabe zu unterscheiden.
In den Bereichen, in denen approximiert werden muss, um die Benutzervorgabe für
die Laufzeit einzuhalten, liegen die beiden Werte hingegen sehr dicht beieinander.
Daher wurde auf eine weitergehende Analyse des LPs selbst verzichtet.
Bei der Interpolation mit Hilfe der nächstgelegenen Stichprobe sind die beiden
Anomalien der Messung aus Abbildung 5.9 wiederzufinden. Bei der ersten, an der
die gemessene Laufzeit kontinuierlich zu hoch ist, sind offensichtlich die Werte der
Stichprobe für die aktuelle Kameraposition falsch. Der Regelkreis regelt (basierend
auf der Stichprobe) die Zeit auf das Minimum zurück. Dies ist jedoch an der Position
der Stichprobe eine Kombination von Algorithmen gewesen, welche an der aktuellen
Position sehr langsam ist. Im zweiten Bereich, in dem die Laufzeit sehr stark fluktuiert,
tun dies auch die Zeiten des LPs, welche wiederum gegen das Minimum schlagen.
Erkennen kann man auch, dass in diesen Bereichen die berechnete Laufzeit unter der
gemessenen liegt. Dies stellt ein generelles Problem für die Regelungsvariante mit
absolutem Fehler dar, da dadurch der Wert für die Gesamtlaufzeit, der als Eingabe für
das LP dient, negativ werden könnte, wenn er nicht durch das Minimum beschränkt
wäre.
Vergleicht man die relative bzw. absolute Abweichung der Werte in Abbildung 5.12
mit den entsprechenden Laufzeitdiagrammen in Abbildung 5.9, so stellt man fest, dass
die Positionen, an denen die Abweichung springt, überwiegend mit den Positionen
übereinstimmen, an denen in der Laufzeitmessung Spitzen auftreten.

In dieser Messung fällt vor allem der negative Peak bei Messpunkt 636 auf. Hier wird die
Laufzeit um mehr als eine Sekunde unterschätzt. Dies sollte jedoch eigentlich nicht möglich
sein. Schaut man sich die bisherigen (und folgenden) Messungen an, so kann man diese
Messspitze in sehr vielen Diagrammen wiederfinden, dort allerdings als positive Messspitze.

64

5.4 Verhalten des Multi-Algorithmen-Renderings beim Walkthrough

(a) Bild bei Messpunkt 635

(b) Bild bei Messpunkt 636

(c) Bild bei Messpunkt 637

Abbildung 5.13: Darstellung der gerenderten Bilder an den Messpunkten 635 – 637. Bei
Bild 636 tritt eine Messspitze in nahezu allen Messungen auf, für die leider
keine Erklärung gefunden wurde.

65

5 Evaluierung

Diese extrem hohe Laufzeit tritt jedoch nur dann auf, wenn exakt dieser Kamerapfad mit
exakt der in den Messungen benutzten Schrittweite abgelaufen wird. Insbesondere tritt die
Spitze bereits in allen Messungen auf, in denen nur ein Algorithmus für die gesamte Szene
benutzt wird. Daher ist es also kein Effekt des Multi-Algorithmen-Renderings, sondern ein
generelles Problem. Dieser Effekt konnte nicht durch ein manuelles Navigieren in der Szene
reproduziert werden. Selbst bei einem Ablaufen des Kamerapfades zur Laufzeit – mit hier
nicht konstanter, sondern durch die Laufzeit bestimmter Schrittweite – trat die Spitze nicht
auf. Es konnte leider keine Erklärung dafür gefunden werden. Die Bilder der Messpunkte
635 – 637 sind in Abbildung 5.13 dargestellt. Die Lucy befindet sich weit hinter der Kamera
und wird somit aufgrund des Frustum-Cullings nicht dargestellt. Die Darstellung des
Powerplants stellt kein Problem dar, unabhängig vom gewählten Algorithmus. Der Bereich
von Pompeji, der in Bild 636 zusätzlich ins Bild kommt, ist minimal, und auch in Bild 637
noch sichtbar. Es ist nichts zu erkennen, das eine solch hohe Laufzeit erklären könnte.

5.4.6 Abweichung zwischen geschätzten und gemessenen Bildfehlerwerten

0.000

0.025

0.050

0.075

0.100

0 500 1000
Kamerapfad

G
rö

ße
 d

es
 B

ild
fe

hl
er

s

Bildfehler Berechnet (um Faktor vier skaliert) Gemessen

Abbildung 5.14: Darstellung der absoluten Abweichung zwischen gemessenem Bildfehler
und dem auf Basis der Vorverarbeitungswerte geschätzten Bildfehler. Zur
besseren Vergleichbarkeit wurden die Werte des geschätzten Fehlers mit
vier multipliziert.

Der durch das Multi-Algorithmen-Rendering erzeugte Bildfehler hat im Gegensatz zur
Laufzeit keinen Einfluss auf den Regelkreis. Dies ist auch nicht möglich, da zur Berechnung
dieses Fehlers ein korrektes Bild benötigt wird. Nichts desto trotz ist dieser Fehler ein

66

5.4 Verhalten des Multi-Algorithmen-Renderings beim Walkthrough

wichtiger Punkt bei der Evaluierung, der bis hier noch nicht untersucht wurde. Es entsteht
zwar nur dann ein Bildfehler, wenn eine korrekte Darstellung nicht möglich ist, allerdings
stellt sich die Frage, ob der resultierende Bildfehler auch zu den in der Vorverarbeitung
gemessenen Werten passt, da nur dann die Aussage, dass das Multi-Algorithmen-Rendering
die Bildqualität optimiert, richtig ist.

Fragestellung Wie stark weicht der gemessene Bildfehler des gerenderten Bildes von der
Summe der Schätzwerte aus der Vorverarbeitung ab?

Durchführung der Messung Die Ergebnisse der Messung sind in Abbildung 5.14 darge-
stellt. Bei der Darstellung wurden die Schätzwerte mit vier multipliziert, um die
Ähnlichkeit der beiden Kurven besser beurteilen zu können.

Auswertung Da die dargestellten Kurven einen ähnlichen Verlauf zeigen, sind die Schätz-
werte aus der Vorverarbeitung eine Unterschätzung. Die Werte sind durchschnittlich
um Faktor vier kleiner als die gemessenen Werte im finalen Bild.
Dies liegt daran, dass das verwendete Abstandsmaß zur Bestimmung des Bildfeh-
lers großflächige Fehler stärker bewertet als flächenmäßig kleine Fehler. Daher ist
hier der Fehler aller Regionen insgesamt also größer als die Summe der Fehler der
einzelnen Regionen. Das verwendete Abstandsmaß ist also keine Metrik, da die
Dreiecksungleichung nicht gilt.
Dies sollte allerdings keinen Einfluss auf die Funktionsweise des Multi-Algorithmen-
Renderings haben, da der Verlauf der Messkurven ähnlich ist und eine reine Skalierung
der Fehlerwerte die Lösung des LPs nicht beeinflusst. Diese Änderung beeinflusst
zwar die Zielfunktion und somit auch ihren Wert, allerdings keine der Bedingungen
des LPs. Eine Skalierung der Zielfunktion um einen gleichmäßigen Faktor hat jedoch
keine Auswirkung auf die Lösung eines LPs.

5.4.7 Welche Algorithmen werden genutzt?

Hier wurde die Fragestellung betrachtet, wie häufig und für welche Regionen die einzelnen
Algorithmen eingesetzt werden. Dazu wurden zwei Messungen durchgeführt: Zum einen
wurde untersucht, für wie viele Regionen die Algorithmen pro Bild eingesetzt werden, und
zum anderen, wie viele Pixel die Algorithmen zum Bild beitragen.

Die beiden Messungen wurden aus technischen Gründen nacheinander ausgeführt. Da das
Multi-Algorithmen-Rendering eventuell im zweiten Durchlauf leicht andere Entscheidungen
getroffen hat als im ersten, kann es Abweichungen geben. Dies gilt insbesondere für das
Verhältnis zwischen dem SVS Algorithmus und dem Color-Cubes Algorithmus. Diese
Abweichungen sollten jedoch nur gering sein und die Schlussfolgerungen nicht beeinflussen.

Fragestellung Für wie viele Regionen werden die benutzten Algorithmen eingesetzt?

Durchführung der Messung Gemessen wurde die Anzahl der Regionen, die mit den Algo-
rithmen dargestellt werden. Regionen, die nicht im Frustum liegen, wurden dabei
separat gezählt. Die Ergebnisse der Messung sind in Abbildung 5.15(a) dargestellt.

Auswertung Es ist deutlich zu erkennen, dass alle Algorithmen eingesetzt werden. Des
Weiteren werden die approximativen Algorithmen, wie zu erwarten, überwiegend im

67

5 Evaluierung

0

10

20

30

40

0 500 1000
Kamerapfad

A
nz

ah
l R

eg
io

ne
n

Algorithmus
z-Buffer

CHC++

SVS

LoD

Color Cubes

Blue Surfels

Force Surfels

Außerhalb des Frustums

(a) Anzahl an Regionen, die mit den Algorithmen dargestellt wurde.

0

250000

500000

750000

0 500 1000
Kamerapfad

A
nz

ah
l P

ix
el

Algorithmus
z-Buffer

CHC++

SVS

LoD

Color Cubes

Blue Surfels

Force Surfels

Hintergrund

(b) Anzahl an Pixeln, die durch die Algorithmen erzeugt wurde.

Abbildung 5.15: Die Grafiken visualisieren, wie häufig das Multi-Algorithmen-Rendering die
einzelnen Algorithmen einsetzt. Die Diagramme sind Stapel-Diagramme,
der Messwert entspricht also der Höhe eines farbigen Bereiches. Die Posi-
tion des Bereiches entlang der y-Achse hat keine Aussagekraft.

68

5.4 Verhalten des Multi-Algorithmen-Renderings beim Walkthrough

zweiten Teil des Pfades eingesetzt, auf dem sich die Kamera über der Szene befindet.
Im ersten Teil des Kamerapfades überwiegen hingegen die Algorithmen, die keinen
oder nur einen sehr kleinen Fehler erzeugen.

Fragestellung Wie viele Pixel werden mit den benutzten Algorithmen dargestellt?

Durchführung der Messung Gemessen wurde diesmal die Anzahl der Pixel, mit denen
die Algorithmen zum Bild beitragen. Hintergrundpixel wurden dabei separat gezählt.
Die Ergebnisse der Messung sind in Abbildung 5.15(b) dargestellt.

Auswertung Es ist wiederum zu erkennen, dass alle Algorithmen eingesetzt werden. Diese
Messung zeigt deutlich, dass auf dem ersten Teil des Kamerapfades fast ausschließlich
Algorithmen zum Bild beitragen, die keinen oder nur einen sehr kleinen Fehler
erzeugen. Selbst auf dem zweiten Teil des Pfades ist der Anteil der approximativen
Darstellungsalgorithmen deutlich geringer als bei der vorherigen Messung.

Vergleicht man die beiden Messungen miteinander, so ist auffällig, dass auf dem ersten
Teil des Pfades bei den Regionen alle Algorithmen auftauchen, während bei den Pixeln
des Bildes fast ausschließlich der CHC++ auftritt. Dies liegt daran, dass hier sehr viele
Regionen im Frustum verdeckt sind. Für diese Regionen legt das LP willkürlich Algorithmen
fest, da alle Laufzeit- und Bildfehlerwerte null sind.
Das zweite was auffällt, ist der großflächige Einsatz des z-Buffer-Algorithmus ab ca.

Messpunkt 500. Dieser Algorithmus wird hier überwiegend eingesetzt, um die Hülle des
Powerplants darzustellen, während die Geometrie innerhalb des Kraftwerks mit dem
CHC++-Verfahren dargestellt wird. Hier ist allerdings die Dauer der Darstellung unterhalb
der eingestellten Grenze. Außerdem würde die Darstellung des kompletten Powerplants
mit dem CHC++-Algorithmus nicht merklich länger dauern. Deshalb hat die Verwendung
des z-Buffer-Algorithmus vermutlich keinen Einfluss auf das Verhalten des Multi-Algorith-
men-Renderings.

Des Weiteren fällt auf, dass der Progressive-Blue-Surfels-Algorithmus nur für sehr geringe
Bereiche des Bildes benutzt wird. Schaut man sich genauer an, an welchen Stellen dies
geschieht, so erkennt man, dass der Algorithmus häufig an Stellen eingesetzt wird, an denen
er ausschließlich Surfels darstellt. Dort verhält er sich also genauso wie der Forced-Surfels-
Algorithmus.

Dies ist auf den ersten Blick verwunderlich, da der Progressive-Blue-Surfels-Algorithmus
unter allen den zum Multi-Algorithmen-Rendering ähnlichsten Bildfehlerverlauf aufweist
(siehe Abbildung 5.5) und überwiegend auch sehr schnell ist. Allerdings bildet das Mul-
ti-Algorithmen-Rendering an den meisten Positionen auch genau das Verhalten dieses
Algorithmus nach. Auch hier werden projiziert große Objekte besser dargestellt als kleine.
Der Vorteil des Multi-Algorithmen-Renderings ist hier jedoch der, dass es die Algorithmen
nicht an ungeeigneten Stellen einsetzt.
Ungeeignete Stellen sind für den Progressive-Blue-Surfels nur Positionen in der Nähe

der Lucy, sowie solche sehr knapp über der Stadt. Das heißt jedoch nicht, dass er an
allen anderen Stellen die beste Wahl ist. Für Regionen mit einer sehr großen projizierten
Größe, die aber nicht zu komplex sind (also ohne Lucy), zeigt beispielsweise das Spherical-
Visibility-Sampling ein besseres Kosten-Nutzen-Verhältnis. Daher wird dieser Algorithmus
im Nahbereich bevorzugt. Erst wenn die projizierte Größe klein wird, rechnet sich der
Aufwand des Spherical-Visibility-Sampling-Verfahrens nicht mehr. Diese Grenze wird

69

5 Evaluierung

0.00

0.01

0.02

0.03

0.04

0.05

0 500 1000
Kamerapfad

S
tä

rk
e

de
s

Fl
ac

ke
rn

s

Abbildung 5.16: Darstellung des Unterschiedes zwischen je zwei aufeinanderfolgenden Bil-
dern bei gleichem Frustum

anscheinend jedoch später erreicht als die Grenze, ab der die Progressive-Blue-Surfels-
Methode nur noch Surfels darstellt. Daher würde ein Weglassen des Progressive-Blue-Surfels-
Algorithmus vermutlich auch nicht viel am Verhalten des Multi-Algorithmen-Renderings
ändern. In diesem Fall wäre es jedoch eventuell angebracht stattdessen über eine andere
Parametrisierung des Algorithmus nachzudenken.

5.4.8 Flackern des Bildes beim Multi-Algorithmen-Rendering

Der größte Nachteil des Multi-Algorithmen-Renderings ist das Flackern des Bildes, welches
durch das ständige Wechseln der Algorithmen entsteht. Daher wurde versucht dieses
Flackern zu messen.

Fragestellung Wie groß ist der Unterschied zwischen aufeinanderfolgenden Bildern?

Durchführung der Messung Gemessen wurde der Unterschied zwischen je zwei aufein-
anderfolgenden Bildern. Damit sich hierbei nicht der Sichtbereich des Benutzers
und somit auch zwangsweise das Bild ändert, wurden hierzu an jeder Position des
Kamerapfades zwei Bilder gerendert. Mit diesen wurde dann ein Bildvergleich durch-
geführt. Das Ergebnis der Messung ist in Abbildung 5.16 dargestellt.

Auswertung Der Verlauf der Kurve sieht zunächst sehr gut aus, der Unterschied zwischen
den Bildern ist durchgehend deutlich kleiner als der Unterschied zwischen den Bildern
und einem korrekten Bild (siehe Abbildung 5.8).

70

5.4 Verhalten des Multi-Algorithmen-Renderings beim Walkthrough

Dies spiegelt jedoch absolut nicht das Empfinden eines Benutzers wieder. Der Effekt
wird deutlich störender wahrgenommen als der eigentliche Fehler im Bild, da er
dynamisch ist.
Zur Veranschaulichung des Effekts kann man sich eine Uhr vorstellen. Dazu seien
noch zwei approximative Darstellungsalgorithmen gegeben. Der erste stellt die Ziffern
und Zeiger korrekt dar und ersetzt das hübsche Gehäuse der Uhr durch eine einfarbige
Box. Dadurch entsteht ein hoher, großflächiger Bildfehler. Der zweite Algorithmus
stellt das Gehäuse korrekt dar, lässt jedoch reihum jeweils entweder die Zeiger oder je
drei aufeinanderfolgende Ziffern aus. Dadurch entstehen nur kleine lokal beschränkte
Bildfehler, die jedoch dynamisch sind. Selbst wenn man die Uhr nicht ablesen, sondern
nur anschauen möchte, ist für einen Betrachter der kleine, dynamische Fehler des
zweiten Algorithmus deutlich störender als der große, statische Fehler des ersten
Algorithmus. Dies gilt insbesondere dann, wenn der Benutzer sich eigentlich etwas
anderes ansehen möchte und kein Interesse an der Uhr selbst hat.
Der Effekt tritt beim Multi-Algorithmen-Rendering hauptsächlich dann störend in
Erscheinung, wenn zwischen den Surfel-Algorithmen und den restlichen gewechselt
wird. Dies liegt hauptsächlich daran, dass bei den zurzeit noch in der Entwicklung
befindlichen Surfel-Algorithmen die Darstellung generell ein wenig zu hell ist. Dieser
Mangel kann jedoch vermutlich in zukünftigen Versionen dieses Algorithmus behoben
werden.
Ein Verzicht auf den Forced-Surfels-Algorithmus ist hingegen nicht denkbar, solange
nicht ein anderer Algorithmus entwickelt wird, welcher ein ebenso gutes Verhältnis
von Bildfehler und Laufzeit für entfernte oder komplexe Regionen hat.

5.4.9 Zeit zum Lösen des Optimierungsproblems

Ein beschränkender Faktor für die Laufzeit des Multi-Algorithmen-Renderings könnte
die Zeit sein, die benötigt wird, um das LP zu lösen. Daher wurde untersucht, wie viel
Zeit hierfür benötigt wird und an welchen Stellen diese Zeit zu lang ist. Die Lösung des
Optimierungsproblems erfolgt zwar parallel, könnte allerdings zum beschränkenden Faktor
werden, wenn sie höher als die vom Benutzer vorgegebene Zeit zur Darstellung des Bildes
ist.

Fragestellung Wie lange dauert das Lösen des Optimierungsproblems?

Durchführung der Messung Gemessen wurde die Zeit, die benötigt wird, um eine optimale
Lösung für das LP zu berechnen. Die Ergebnisse der Messung sind in Abbildung 5.17
dargestellt.

Auswertung Die Messung zeigt deutlich, dass in diesem Fall die zur Berechnung der Lösung
benötigte Zeit durchweg unter der eingestellten Zeit von 100ms zur Darstellung der
Szene liegt. Somit ist hier das Optimierungsproblem nicht der beschränkende Faktor.
Die Messung zeigt allerdings auch, dass die benötigte Zeit an Stellen, wo beinahe
die gesamte Szene sichtbar ist und somit das LP für alle Regionen gelöst werden
muss, stark steigt. Dies lässt vermuten, dass es Bereiche innerhalb der Szene geben
könnte, an denen die Zeit noch weiter ansteigt als in dieser Messung. Insbesondere
ist zu erwarten, dass bei geringeren Vorgabewerten für die Darstellungszeit, wie

71

5 Evaluierung

0

20

40

60

0 500 1000
Kamerapfad

D
au

er
 d

er
 L

ös
un

g
de

s
LP

s
(m

s)

Abbildung 5.17: Messung der Zeit, die benötigt wird um das Optimierungsproblem zu
lösen

beispielsweise nur 50ms, die Berechnung der Lösung des Optimierungsproblems zum
beschränkenden Faktor wird. Dies wird in nachfolgenden Messungen (Abschnitt 5.5.3
und 5.5.4.3) näher untersucht.

5.5 Evaluierung mit Hilfe von Szenen-Eigenschafts-Funktionen

In der Arbeit von Jähn u. a. [Jäh+13] wird vorgeschlagen, zusätzlich zu einer Evaluie-
rung anhand eines Kamerapfades auch eine Evaluierung anhand von Szenen-Eigenschafts-
Funktionen durchzuführen. Eine Szenen-Eigenschafts-Funktion ist dabei beispielsweise die
Laufzeit eines Renderingalgorithmus. Hierbei wird ein Bereich der Szene stichprobenartig
abgetastet, um eine flächen- bzw. volumendeckende Approximation einer solchen Funktion
zu erhalten.
Im Unterschied zu einem Kamerapfad wird hierbei jedoch kein sich kontinuierlich

bewegender Benutzer simuliert, sondern stattdessen, je nach Art der Durchführung, ein
stillstehender bzw. in der Szene umherspringender Benutzer.
Im Folgenden wird diese Technik angewandt, um einen Verlauf des Bildfehlers, der

Darstellungszeit sowie der zum Lösen des LPs benötigten Zeit zu erhalten. Außerdem werden
Schlussfolgerungen bezüglich der Anzahl benötigter Stichproben in der Vorverarbeitung
des Multi-Algorithmen-Renderings gezogen.
Da ein stillstehender Benutzer in der Praxis wesentlich häufiger vorkommt, wurde

ein solcher für die nachfolgenden Messungen genutzt. Das Multi-Algorithmen-Rendering

72

5.5 Evaluierung mit Hilfe von Szenen-Eigenschafts-Funktionen

verkraftet allerdings auch ein Umherspringen des Benutzers innerhalb der Szene sehr gut.
Dies hat lediglich ein langsames und/oder ein fehlerhaftes Bild zur Folge, da der Regelkreis
sehr schnell reagiert.

Zur Simulation eines stillstehenden Betrachters wird für jede Messung das Bild zehnmal
dargestellt. Die ersten beiden Messwerte werden verworfen (Aufheizphase) und über die
restlichen acht Messwerte wird der Durchschnitt gebildet. Das Sampling-Verfahren selbst
dreht die Kamera pro Stichprobe in sechs Richtungen und bildet das Maximum. Der
Messwert ist also der durchschnittliche Wert der ungünstigsten Richtung.
In der Arbeit über Szenen-Eigenschafts-Funktionen wird weiterhin Vorgeschlagen die

Messungen mit einem vergrößerten Kameraöffnungswinkel durchzuführen. Dadurch über-
lappen sich die Frusta und Artefakte in den Messergebnissen wie in Abbildung 5.18 als
schräge Linien zu erkennen werden vermieden. Daher wurden die folgenden Messungen
zweimal durchgeführt: einmal mit einem Kameraöffnungswinkel von 90 ° und ein weiteres
Mal mit einem Kameraöffnungswinkel von 120 °.
Die vorherigen Messungen haben gezeigt, dass Bereiche in denen eine hohe Verdeckung

besteht und in denen eine korrekte Darstellung der Szene möglich ist, für eine Analyse eher
uninteressant sind. In diesen Bereichen wird fast ausnahmslos ein korrektes Bild angezeigt,
und auch das Lösen des Optimierungsproblems stellt kein Problem dar. Daher wurde für
die folgenden Messungen eine Ebene knapp über die Dächer von Pompeji gelegt, innerhalb
derer die Stichproben gezogen werden. Dort sind zum einen stets sehr viele Regionen
sichtbar und zum anderen können nahe Regionen nicht stark approximiert werden, ohne
einen großen Fehler zu erzeugen. Somit stellt diese Ebene einen Worst-Case sowohl für
Laufzeit und Bildfehler als auch für die Lösung des LPs dar.

5.5.1 Bildfehler

Zunächst wurde der Bildfehler in der untersuchten Ebene betrachtet:

Fragestellung Wie groß ist der durchschnittliche Bildfehler in der gewählten Ebene?

Durchführung der Messung Gemessen wurde der durchschnittliche Bildfehler. Die Mes-
sung wurde zweimal durchgeführt, dabei wurde der Öffnungswinkel der Kamera
variiert. Die Ergebnisse sind in Abbildung 5.18 dargestellt.

Auswertung Bei der Messung mit einem Kameraöffnungswinkel von 90 ° sind deutlich
Artefakte (diagonale Linien) zu erkennen, welche in der Messung mit 120 ° nicht
auftreten. Dies liegt daran, dass bei einem Kameraöffnungswinkel von 90 ° die Frusta
disjunkt sind, während sie sich bei 120 ° überlappen.

In der unteren Messung mit 120 ° Öffnungswinkel ist jedoch ein roter Bereich, um die
Lucy zu erkennen. Dort ist der Bildfehler signifikant größer als im Rest der Ebene.
Hier sind die Fehlerwerte auch deutlich größer als auf dem zuvor betrachteten dem
Kamerapfad. (Erklärung folgt bei der nächsten Messung)

Der restliche Bereich der Messung zeigt jedoch, dass der Bildfehler sich im gleichen
Bereich bewegt, wie bei den Messungen auf dem Kamerapfad. Wie zu erwarten ist er
über der Stadt größer als außerhalb.

73

5 Evaluierung

0,2

0,15

0,1

0,05

0,0

(a) Bildfehler bei 90° Kameraöffnungswinkel

0,2

0,15

0,1

0,05

0,0

(b) Bildfehler bei 120° Kameraöffnungswinkel

Abbildung 5.18: Verlauf des Bildfehlers innerhalb einer Ebene etwas oberhalb von Pompeji
bei verschiedenen Kameraöffnungswinkeln.

74

5.5 Evaluierung mit Hilfe von Szenen-Eigenschafts-Funktionen

150ms

120ms

100ms

80ms

60ms

(a) Darstellungsdauer bei 90° Kameraöffnungswinkel

150ms

120ms

100ms

80ms

60ms

(b) Darstellungsdauer bei 120° Kameraöffnungswinkel

Abbildung 5.19: Verlauf der Darstellungsdauer innerhalb einer Ebene etwas oberhalb von
Pompeji bei verschiedenen Kameraöffnungswinkeln.

75

5 Evaluierung

(a) Kameraöffnungswinkel 60°

(b) Kameraöffnungswinkel 90°

(c) Kameraöffnungswinkel 120°

(d) Kameraöffnungswinkel 150°

(e) Kameraöffnungswinkel 179°

Abbildung 5.20: Mit steigendem Kameraöffnungswinkel werden Objekte am Rand des
Bildes verzerrt und überproportional groß dargestellt. Alle dargestellten
Objekte sind Kugeln.

5.5.2 Dauer der Darstellung
Als zweites wurde die benötigte Zeit für die Darstellung des Bildes untersucht.

Fragestellung Wie lange dauert die Darstellung eines Bildes innerhalb der gewählten
Ebene?

Durchführung der Messung Gemessen wurde die durchschnittliche Laufzeit. Die Messung
wurde wiederum zweimal durchgeführt, dabei wurde der Öffnungswinkel der Kamera
variiert. Abbildung 5.19 stellt das Ergebnis dieser Messung dar.

Auswertung Auch diese Messung zeigt bei einem Kameraöffnungswinkel von 120 ° deutlich
einen roten Bereich um die Lucy, in dem die Laufzeit sehr hoch ist. Hier wurde die
vorgegebene Laufzeit um ein Vielfaches überschritten und liegt deutlich außerhalb
der angegebenen Skala. Das Multi-Algorithmen-Rendering war also nicht in der Lage,
die vorgegeben Zeit zur Darstellung der Szene einzuhalten, während die restlichen
Messwerte überwiegend erwartungskonform sind. Lediglich das Modell des ZM1
Gebäudes wirft einen gelben Schatten, der allerdings noch im akzeptablen Bereich
liegt. Dies liegt vermutlich daran, dass dieses Gebäude Fenster hat. Die Darstellung
transparenter Flächen wurde jedoch bei der Entwicklung des Multi-Algorithmen-
Renderings vollständig ignoriert, da auch die benutzten Algorithmen Probleme mit
solchen Objekten aufweisen.

Die beiden vorangegangenen Messungen haben deutliche Probleme des Verfahrens bei
einem Kameraöffnungswinkel von 120 ° aufgezeigt. Diese konnten zunächst nicht nachvoll-

76

5.5 Evaluierung mit Hilfe von Szenen-Eigenschafts-Funktionen

zogen werden, da der Effekt nur dann auftritt, wenn sich die Lucy am Rand des Bildes
befindet. Solange sich die Lucy in der Mitte des Bildes befindet, funktioniert das Verfahren
einwandfrei. Dies liegt daran, dass bei einem großen Kameraöffnungswinkel Objekte am
Rand des Bildes verzerrt und überproportional groß dargestellt werden. Abbildung 5.20
stellt diesen Effekt dar. Dieser hat zur Folge, dass in diesem Fall die Laufzeitwerte aus
der Vorverarbeitung für den Discrete-Level-of-Detail-Algorithmus um einen zusätzlichen
Faktor zwei von der wirklich benötigten Zeit zur Darstellung der Lucy abweichen, da
dieser Algorithmus aufgrund der übergroßen Darstellung des Objekts entscheidet, die
nächstbessere Reduktionsstufe des Modells zu verwenden. Da andere Algorithmen davon
jedoch nicht betroffen sind, weil ihre Laufzeit nicht (so stark) von der projizierten Größe
eines Objekts abhängig ist, tritt hierdurch ein Ungleichgewicht zwischen den Algorithmen
auf. Dies hat zur Folge, das beim Wechseln des Algorithmus aufgrund der hohen Laufzeit,
die Abweichung zwischen geschätzter und gemessener Laufzeit entgegengesetzt springt, was
wiederum bewirkt, dass der Algorithmus sofort wieder zurück gewechselt wird. Dadurch
entsteht im Durchschnitt sowohl eine hohe Laufzeit als auch ein hoher Bildfehler, da das
Multi-Algorithmen-Rendering aufgrund der fehlerhaften Werte unsinnige Entscheidungen
trifft.

5.5.3 Lösung des Optimierungsproblems

Als drittes wurde mit dieser Technik die zur Lösung des Optimierungsproblems benötigte
Zeit untersucht, bei der die Messungen anhand des Kamerapfades bereits nahegelegt haben,
dass die ungünstigsten Positionen nicht im Pfad enthalten sind.

Fragestellung Wie lange dauert das Lösen des Optimierungsproblems innerhalb der ge-
wählten Ebene?

Durchführung der Messung Gemessen wurde die Berechnungsdauer für eine optimale
Lösung des LPs. Die Ergebnisse sind in Abbildung 5.21 dargestellt.

Auswertung Es ist ganz klar ersichtlich, dass in dem Bereich, in dem die Lösung des LPs
am meisten Zeit beanspruchte, der Kamerapfad nicht oberhalb, sondern innerhalb der
Stadt verläuft. Somit ist der Pfad zumindest für diese Messung nicht repräsentativ
gewählt worden.
In den roten Bereichen liegen die Messwerte über 100ms und somit über der Be-
nutzervorgabe für die Darstellungszeit eines Bildes. Damit ist in diesem Bereich das
Optimierungsproblem der beschränkende Faktor für die Laufzeit des Multi-Algorith-
men-Renderings. Allerdings liegen die Werte auch hier noch in dem Bereich, in dem
die Zeit zur Darstellung der Szene schwankt. Daher liegt die Laufzeit hier noch im
akzeptablen Bereich.

5.5.4 Verschiedene Sollwerte für die Laufzeit

Bisher wurden alle Messungen mit einer Laufzeitvorgabe von 100ms für die Darstellung
des Bildes durchgeführt. Diese Zeit wird für die nachfolgenden Messungen auf 50ms
reduziert. Es werden wiederum der Bildfehler sowie die Laufzeiten zur Darstellung des
Bildes und zum Lösen des Optimierungsproblems untersucht. Allerdings wird lediglich ein
Kameraöffnungswinkel von 90 ° betrachtet.

77

5 Evaluierung

120ms

90ms

60ms

30ms

0ms

(a) Lösungsdauer bei 90° Kameraöffnungswinkel.

120ms

90ms

60ms

30ms

0ms

(b) Lösungsdauer bei 120° Kameraöffnungswinkel.

Abbildung 5.21: Verlauf der Zeit zur Lösung des LPs innerhalb einer Ebene etwas oberhalb
von Pompeji bei verschiedenen Kameraöffnungswinkeln.

78

5.5 Evaluierung mit Hilfe von Szenen-Eigenschafts-Funktionen

5.5.4.1 Darstellungsdauer

Fragestellung Wie verhält sich die Laufzeit des Multi-Algorithmen-Renderings, wenn die
Vorgabezeit zur Darstellung auf 50ms reduziert wird?

Durchführung der Messung Gemessen wurde die durchschnittliche Zeit zur Darstellung
der Szene. Die Ergebnisse sind in Abbildung 5.22(a) dargestellt.

Auswertung Erneut erkennt man einen Bereich um die Lucy, in dem die vorgegebene
Laufzeit deutlich überschritten wird. Auch hier liegen die Werte ein Vielfaches über
dem Sollwert.
Die Ursache ist in diesem Fall jedoch eine andere: Aufgrund des niedrigeren Sollwerts
wird in dieser Messung nicht der Discrete-Level-of-Detail-Algorithmus für die Lucy
benutzt, sondern der Progressive-Blue-Surfels-Algorithmus. Für die Messung wurden
die Daten der Vorverarbeitung mit nur 1.000 Stichproben benutzt. Hier liegt jedoch
keine der wenigen Stichproben dicht an der Lucy, so dass dieses Modell in der
Vorverarbeitung stets durch Surfels ersetzt wurde. Der rote Bereich in der Messung
ist allerdings der, in dem der Algorithmus aufgrund der projizierten Größe die
Originalgeometrie des Modells darstellt. Dies geschieht durchgehend, da an den
Stichprobenpositionen in der Vorverarbeitung der Algorithmus stets der schnellste
war.
In den restlichen Bereichen der Messung sind die Werte wie erwartet: Die relative
Abweichung der Laufzeit vom Sollwert unterscheidet sich nicht wesentlich von der
Messung mit 100ms.

Zur Verifizierung der angegebenen Ursache für die stark erhöhte Laufzeit, wurde die
Messung für diesen Bereich auf Grundlage der Vorverarbeitung mit 13.000 Stichproben
wiederholt.

Fragestellung Wie verhält sich die Laufzeit des Multi-Algorithmen-Renderings bei 13.000
in der Vorverarbeitung gezogenen Stichproben, wenn die Vorgabezeit zur Darstellung
auf 50ms reduziert wird?

Durchführung der Messung Gemessen wurde die durchschnittliche Zeit zur Darstellung
der Szene. Die Ergebnisse sind in Abbildung 5.22(b) dargestellt. Es wurde ausschließ-
lich der Bereich der Szene untersucht, in dem in der vorherigen Messung der rote
Bereich lag.

Auswertung Der Bereich mit der hohen Darstellungszeit ist in dieser Messung nicht mehr
vorhanden. Dies liegt daran, dass nun einige Stichproben existieren, an deren Position
für den Progressive-Blue-Surfels-Algorithmus in der Vorverarbeitung eine Laufzeit
gemessen wurde, die der Darstellung des Originalmodells der Lucy entspricht. Die
verwendete Maximum-Interpolation sorgt dafür, dass das Modell in dem besagten
Bereich nie mit diesem Algorithmus dargestellt wird. Bei ausschließlicher Benutzung
der nächstliegenden Stichprobe würde jetzt vermutlich ein verformter roter Kreis um
die Lucy entstehen.

Die beiden vorherigen Messungen haben deutlich gezeigt, dass im überwiegenden Bereich
der Szene 1.000 Stichproben ausreichend sind. Es gibt jedoch auch Bereiche, in denen

79

5 Evaluierung

80ms

60ms

50ms

40ms

30ms

(a) Darstellungsdauer bei einem Sollwert von 50ms und 1.000 Stichproben.

80ms

60ms

50ms

40ms

30ms

(b) Darstellungsdauer bei einem Sollwert von 50ms und 13.000 Stichproben.

Abbildung 5.22: Einhaltung von verschiedenen vorgegebenen Zeiten zur Darstellung der
Szene. In Bild (b) ist lediglich der Bereich der Szene dargestellt, der in
Bild (a) rot ist.

80

5.6 Zusammenfassung der Ergebnisse

es notwendig ist, mehr Stichproben zu ziehen. Daher scheint ein adaptives Verfahren
beim Ziehen der Stichproben angeraten. Dies wurde jedoch in dieser Arbeit nicht mehr
untersucht.

5.5.4.2 Bildfehler

Fragestellung Wie verändert sich der Bildfehler, wenn die Zeit zur Darstellung des Bildes
auf 50ms reduziert wird?

Durchführung der Messung Gemessen wurde der Bildfehler bei einem vorgegebenen Soll-
wert für die Darstellungszeit von 50ms. Die Ergebnisse sind in Abbildung 5.23(b)
dargestellt.

Auswertung Vergleicht man die beiden Bilder miteinander, so ist ersichtlich, dass durch
die reduzierte Darstellungsdauer der Bildfehler wie erwartet flächendeckend ansteigt.
Auch in dieser Messung verschwindet der rote Bereich um die Lucy, wenn man mehr
Stichproben benutzt.

5.5.4.3 Lösungsdauer des Optimierungsproblems

Fragestellung Wie lange dauert die Berechnung der optimalen Lösung des LPs, wenn der
Sollwert für die Dauer der Darstellung auf 50ms reduziert wird?

Durchführung der Messung Gemessen wurde die zur Lösung des Optimierungsproblems
benötigte Zeit. Abbildung 5.24(a) zeigt die Ergebnisse der Messung mit einer zu der
Messung mit 100ms identischen Skala (vgl. Abb. 5.21). Abbildung 5.24(b) zeigt die
gleichen Ergebnisse mit einer auf 50ms angepassten Skala.

Auswertung Vergleich man das obere Bild mit dem entsprechenden aus Abbildung 5.21 so
ist eine leichte Verschiebung der Werte in Richtung höherer Laufzeiten zu erkennen.
Die Lösung des Problems scheint also etwas zeitaufwendiger zu sein als zuvor.
Das untere Bild mit einer entsprechend des Sollwerts zur Dauer der Darstellung
angepassten Skala zeigt, dass jetzt in großen Bereichen der Szene die Lösung des LPs
der beschränkende Faktor ist. Das heißt, obwohl die vorherige Messung gezeigt hat,
dass das Multi-Algorithmen-Rendering in der Lage ist die Szene entsprechend schnell
darzustellen, erfolgt diese Darstellung in großen Bereichen der Szene trotzdem nur
mit zehn Bildern pro Sekunde, da zwischen den einzelnen Bildern auf die Lösung des
LPs gewartet werden muss.

5.6 Zusammenfassung der Ergebnisse
Die Evaluierung der Vorverarbeitung hat ergeben, dass der durch das Multi-Algorithmen-
Rendering zusätzlich benötigte Speicher im Verhältnis zu anderen Algorithmen sehr klein
ist. Jedoch müssen beim Multi-Algorithmen-Rendering die Vorverarbeitungen sämtlicher
benutzter Verfahren durchgeführt werden. Der gesamte Speicherverbrauch aller benutzten
Verfahren liegt bei ca. 80% des Speicherverbrauchs der verwendeten Szene. Er wird
Maßgeblich bestimmt durch reduzierte Versionen der Modelle in der Szene. Diese belegen
bereits ca. 50% des zusätzlich benötigten Speichers.

81

5 Evaluierung

0,2

0,15

0,1

0,05

0,0

(a) Bildfehler bei einer Laufzeitvorgabe von 100ms.

0,2

0,15

0,1

0,05

0,0

(b) Bildfehler bei einer Laufzeitvorgabe von 50ms.

Abbildung 5.23: Bildfehler bei verschiedenen vorgegebenen Zeiten zur Darstellung der
Szene. Die Farben repräsentieren die absoluten Fehlerwerte.

82

5.6 Zusammenfassung der Ergebnisse

120ms

90ms

60ms

30ms

0ms

(a) Lösungsdauer des Optimierungsproblems bei Verwendung der gleichen Skala wie in Abbildung 5.21.

60ms

45ms

30ms

15ms

0ms

(b) Lösungsdauer des Optimierungsproblems bei einer an den Sollwert von 50ms angepassten Skala.

Abbildung 5.24: Laufzeit zur Lösung des Optimierungsproblems bei einer vorgegebener
Zeiten zur Darstellung der Szene von 50ms. Der Unterschied zwischen
den Bildern ist eine veränderte Farbskala.

83

5 Evaluierung

Die Laufzeit der Vorverarbeitung ist abhängig von der Anzahl erzeugter Regionen, der
Anzahl und Art der benutzten Verfahren sowie der Anzahl gezogener Stichproben. Im
Gegensatz zum Speicherverbrauch wird die Laufzeit maßgeblich durch das Multi-Algorith-
men-Rendering bestimmt. Im verwendeten Beispielszenario kann die Vorverarbeitung mit
1.000 Stichproben über Nacht durchgeführt werden. Daher ist das Verfahren praktisch
einsetzbar.

Beim Verhalten des Multi-Algorithmen-Renderings während des Walkthroughs hat sich
herausgestellt, dass das Multi-Algorithmen-Rendering den Anspruch der Minimierung des
Bildfehlers bei vorgegebener Laufzeit generell erfüllt. Allerdings gibt es dabei eine untere
Schranke für die vorgegebene Laufzeit. Bei geringeren Vorgaben erfolgt die Darstellung
aufgrund der zur Lösung des Optimierungsproblems benötigten Zeit nicht mehr in der
erwünschten Zeit. Die Laufzeit zur Darstellung des Bildes hält die gewählten Schranken
allerdings sehr wohl ein. Dies wird jedoch auch nur bis zu der Laufzeit so sein, die benötigt
wird um die Regionen mit dem jeweils schnellsten Algorithmus darzustellen. Die Analyse
des Bildfehlers hat ergeben, dass dieser nur dann entsteht, wenn eine korrekte Darstellung
der Szene nicht möglich ist.
Bei den verschiedenen Regelungs- und Interpolationsmethoden, die für das Multi-Algo-

rithmen-Rendering umgesetzt wurden, hat sich herausgestellt, dass die Kombination aus
Interpolation über das Maximum der umliegenden Stichproben mit absoluter Regelung
den anderen Varianten durchgängig überlegen ist.
Des Weiteren wurde festgestellt, dass 1.000 gleichmäßig verteilte Stichproben im über-

wiegenden Teil der Szene ausreichend sind. Es gibt jedoch auch Bereiche, in denen mehr
oder geschickter gewählte Stichproben benötigt werden. Daher ist eine adaptive Wahl der
Stichprobenpositionen angeraten.

Der größte Nachteil des Verfahrens ist ein, durch das Wechseln der Darstellungsalgorith-
men bedingtes, Flackern des Bildes. Dies konnte durch die Messungen nicht zufriedenstel-
lend erfasst werden. Hier passen die absoluten Werte der Messung nicht zum subjektiven
Empfinden eines Benutzers, da die Messung die Dynamik des Fehlers nicht ausreichend
widerspiegelt.

84

6 Fazit und Ausblick

Insgesamt wurde mit dem Multi-Algorithmen-Rendering ein praxistaugliches Verfahren
zur Darstellung von heterogenen (und auch homogenen) Szenen entwickelt.
Die Evaluierung der Vorverarbeitung hat ergeben, dass diese bei ca. 1.000 gezogenen

Stichproben „über Nacht“ durchgeführt werden kann. Der Speicherverbrauch ist dabei im
vergleich zu anderen Verfahren mit Vorverarbeitung sehr gering.

Das Laufzeitverhalten des Multi-Algorithmen-Renderings wurde umfassend evaluiert. Es
hat sich herausgestellt, dass das Verfahren in der Lage ist, die Laufzeit in einem akzeptablen
Bereich um den Vorgabewert zu regeln und dabei die Bildqualität optimiert. Wenn eine
korrekte Darstellung der Szene innerhalb der vorgegebenen Zeit möglich ist, so erzeugt
auch das Multi-Algorithmen-Rendering fast nie einen Bildfehler.

Das Verfahren ist nicht nur zur reinen Darstellung von Szenen, sondern auch als Hilfsmittel
bei der Evaluierung neuer Algorithmen und beim Design von Szenen einsetzbar. Dies gilt
insbesondere auch in Kombination mit den zur Evaluierung benutzten Szenen-Eigenschafts-
Funktionen.
Folgende Aspekte des Multi-Algorithmen-Renderings können in zukünftigen Arbeiten

optimiert bzw. erweitert werden:

Aufteilung der Szene in Regionen Da die Anzahl an Regionen ein maßgeblicher Faktor
für die Komplexität des Optimierungsproblems ist, ist es wünschenswert die Anzahl
an Regionen gering zu halten. Dies könnte beispielsweise erreicht werden, indem man
dem Benutzer bessere Werkzeuge zur Aufteilung zur Verfügung stellt.
Alternativ könnte man auch versuchen ein Verfahren zu entwickeln, welches in der
Lage ist, eine Szene automatisch in geeignete Regionen aufzuteilen. Dazu müsste
man jedoch zunächst die Bedeutung von „homogen“ formal exakt spezifizieren und
alle benutzen Algorithmen diesbezüglich analysieren.
Auf jeden Fall stellt eine Analyse des Einflusses unterschiedlicher Aufteilungen der
Szene in Regionen, die in dieser Arbeit ausgespart wurde, ein interessantes Thema
für nachfolgende Arbeiten dar.

Geeignete Stichproben Die Evaluierung hat gezeigt, dass in vielen Bereichen wenige
Stichproben ausreichen, in einigen jedoch nicht. Daher erscheint eine ungleichmäßige
Verteilung dieser Stichproben sinnvoll. Es sollte genauer untersucht werden, in welchen
Bereichen viele Stichproben benötigt werden. Es ist auch denkbar, dass wenige aber
geschickt platzierte Stichproben (z. B. je eine mittig über den Regionen) auch in
diesen Bereichen ausreichen.

Verringerung des Flackereffekts Das durchgehende Flackern des Bildes in Bereichen, wo
approximiert werden muss, ist der größte Mangel am Multi-Algorithmen-Rendering.
Dieses kann, wie bereits erwähnt wurde, durch eine Verbesserung der Bildqualität
der Surfel-Algorithmen verringert werden.

85

6 Fazit und Ausblick

Des Weiteren könnte man noch versuchen das Optimierungsproblem nicht ständig,
sondern nur dann neu zu lösen, wenn die Bildrate deutlich vom Sollwert abweicht. Die
hohe Schwankung der Laufzeit bei einigen benutzten Algorithmen (z. B. CHC++)
könnte hier jedoch zu Problemen führen.

Beschränkung der Größe des LPs Der Einsatz des Multi-Algorithmen-Renderings ist vor-
wiegend bei Szenen sinnvoll, welche nicht in Echtzeit korrekt darstellbar sind. Wenn
man allerdings davon ausgeht, dass jedes Bild fehlerhaft ist, dann kann man argumen-
tieren, dass es bei komplexen Regionen, welche nur wenige Pixel zum Bild beitragen,
akzeptabel ist, diese immer approximiert darzustellen. Nimmt man dies in Kauf, so
kann das LP auf einen Nahbereich um die Kamera beschränkt werden.
Da sinnvolle Regionen aus den in Abschnitt 3.4.1 beschriebenen Gründen eine sowohl
nach oben als auch nach unten beschränkte Größe haben, ist die Anzahl der Regionen
in diesem Bereich konstant. Dieser Nahbereich hätte eine Größe, die ungefähr der
in dieser Arbeit verwendeten Szene entspricht, da hier das LP zumindest bei einem
Sollwert für die Darstellungsdauer von 100ms noch schnell genug lösbar ist. Alle
Regionen, die außerhalb dieses Bereichs liegen, können Problemlos mit Hilfe des
Forced-Surfels-Algorithmus dargestellt werden. Dadurch steigt also auch die Größe,
der durch das Multi-Algorithmen-Rendering darstellbaren Szenen, um ein Vielfaches.

Beschleunigung der Vorverarbeitung Mit Hilfe der gleichen Vorgehensweise kann auch
in der Vorverarbeitung die benötigte Zeit zum Ziehen einer Stichprobe beschränkt
werden. Dies liegt daran, dass die Regionen, die nicht im Nahbereich liegen, auch
nicht getestet werden müssen.

Update der Vorverarbeitungsdaten Für einen produktiven Einsatz des Verfahrens ist
eine Implementierung der Vorverarbeitung wünschenswert, welche es erlaubt bei
einer lokal beschränkten Änderung der Szene die in der Vorverarbeitung ermittelten
Werte zu aktualisieren. Dies sollte konzeptuell keinerlei Probleme bereiten, ist jedoch
vermutlich technisch aufwendig.

Wichtige Regionen Es sind Szenarien denkbar, bei denen manche Bereiche der Szene
anwendungsbedingt wichtiger sind als andere. Durch eine entsprechende Skalierung
der Fehlerwerte könnte man erreichen, dass bestimmte Bereiche der Szene in besserer
Qualität als andere dargestellt werden.

86

Literatur

[Ack+12] Marcel R. Ackermann, Johannes Blömer, Daniel Kuntze und Christian Sohler.
„Analysis of Agglomerative Clustering“. In: Algorithmica (Dez. 2012). doi:
10.1007/s00453-012-9717-4.

[AHH08] Tomas Akenine-Möller, Eric Haines und Naty Hoffman. Real-Time Rendering.
3. Aufl. Wellesley, MA, USA: A K Peters, Ltd., 2008.

[Ali+99] Daniel Aliaga u. a. „MMR: an interactive massive model rendering system
using geometric and image-based acceleration“. In: Proceedings of the 1999
symposium on Interactive 3D graphics. (Atlanta, Georgia, USA). I3D ’99. New
York, NY, USA: ACM, 1999, S. 199–206. doi: 10.1145/300523.300554.

[ARBJ90] John M. Airey, John H. Rohlf und Frederick P. Brooks Jr. „Towards image
realism with interactive update rates in complex virtual building environments“.
In: Proceedings of the 1990 symposium on Interactive 3D graphics. (Snowbird,
Utah, United States). I3D ’90. New York, NY, USA: ACM, 1990, S. 41–50.
doi: 10.1145/91385.91416.

[Are08] Stephan Arens. „Culling unter Verwendung hierarchischer Cluster“. Diplomar-
beit. Universität Paderborn, Okt. 2008.

[Ben75] Jon Louis Bentley. „Multidimensional binary search trees used for associative
searching“. In: Communications of the ACM 18.9 (Sep. 1975), S. 509–517. doi:
10.1145/361002.361007.

[Bit+04] Jiří Bittner, Michael Wimmer, Harald Piringer und Werner Purgathofer. „Co-
herent Hierarchical Culling: Hardware Occlusion Queries Made Useful“. In:
Computer Graphics Forum 23.3 (Sep. 2004). Proceedings of Eurographics 2004,
S. 615–624. doi: 10.1111/j.1467-8659.2004.00793.x.

[Bur81] Peter J. Burt. „Fast filter transform for image processing“. In: Computer
Graphics and Image Processing 16.1 (Mai 1981), S. 20–51. doi: 10.1016/0146-
664X(81)90092-7.

[Cat74] Edwin Earl Catmull. „A subdivision algorithm for computer display of curved
surfaces“. Diss. Salt Lake City, UT, USA: Department of Computer Science,
University of Utah, Dez. 1974.

[Cha+96] Bradford Chamberlain, Tony DeRose, Dani Lischinski, David Salesin und John
Snyder. „Fast rendering of complex environments using a spatial hierarchy“.
In: Proceedings of Graphics Interface 1996. GI ’96. Toronto, Ont., Canada:
Canadian Information Processing Society, Mai 1996, S. 132–141.

[Coh+03] Daniel Cohen-Or, Yiorgos Chrysanthou, Cláudio T. Silva und Frédo Durand.
„A survey of visibility for walkthrough applications“. In: IEEE Transactions on
Visualization and Computer Graphics 9.3 (2003), S. 412–431. doi: 10.1109/
TVCG.2003.1207447.

87

http://dx.doi.org/10.1007/s00453-012-9717-4
http://dx.doi.org/10.1145/300523.300554
http://dx.doi.org/10.1145/91385.91416
http://dx.doi.org/10.1145/361002.361007
http://dx.doi.org/10.1111/j.1467-8659.2004.00793.x
http://dx.doi.org/10.1016/0146-664X(81)90092-7
http://dx.doi.org/10.1016/0146-664X(81)90092-7
http://dx.doi.org/10.1109/TVCG.2003.1207447
http://dx.doi.org/10.1109/TVCG.2003.1207447

Literatur

[Del34] Boris N. Delaunay. „Sur la sphère vide“. In: Izvestia Akademii Nauk SSSR,
Otdelenie Matematicheskikh i Estestvennykh Nauk 6 (Okt. 1934), S. 793–800.

[Eik+13] Benjamin Eikel, Claudius Jähn, Matthias Fischer und Friedhelm Meyer auf
der Heide. „Spherical Visibility Sampling“. In: Computer Graphics Forum 32.4
(Juli 2013). Proceedings of the 24th Eurographics Symposium on Rendering,
S. 49–58. doi: 10.1111/cgf.12150.

[EJP11] Benjamin Eikel, Claudius Jähn und Ralf Petring. „PADrend: Platform for
Algorithm Development and Rendering“. In: Augmented & Virtual Reality
in der Produktentstehung. Hrsg. von Jürgen Gausemeier, Michael Grafe und
Friedhelm Meyer auf der Heide. Bd. 295. HNI-Verlagsschriftenreihe. Heinz
Nixdorf Institut, Universität Paderborn, Mai 2011, S. 159–170.

[FKN80] Henry Fuchs, Zvi M. Kedem und Bruce F. Naylor. „On visible surface genera-
tion by a priori tree structures“. In: Proceedings of the 7th annual conference
on Computer graphics and interactive techniques. SIGGRAPH ’80. New York,
NY, USA: ACM, 1980, S. 124–133. doi: 10.1145/800250.807481.

[Fle06] Martin Fleisz. „Spatial Partitioning Using an Adaptive Binary Tree“. In: Hrsg.
von Michael Dickheiser. First Edition. Boston, MA, USA: Charles River Media,
2006. Kap. 5.2, S. 423–435.

[Flo+51] K. Florek, J. Lukaszewicz, J. Perkal, Hugo Steinhaus und S. Zubrzycki. „Sur
la liaison et la division des points d’un ensemble fini“. fre. In: Colloquium
Mathematicae 2.3-4 (1951), S. 282–285.

[FS93] Thomas A. Funkhouser und Carlo H. Séquin. „Adaptive display algorithm for
interactive frame rates during visualization of complex virtual environments“.
In: Proceedings of the 20th annual conference on Computer graphics and
interactive techniques. (Anaheim, CA). SIGGRAPH ’93. New York, NY, USA:
ACM, 1993, S. 247–254. doi: 10.1145/166117.166149.

[GH97] Michael Garland und Paul S. Heckbert. „Surface simplification using quadric
error metrics“. In: Proceedings of the 24th annual conference on Computer
graphics and interactive techniques. SIGGRAPH ’97. New York, NY, USA:
ACM Press/Addison-Wesley Publishing Co., 1997, S. 209–216. doi: 10.1145/
258734.258849.

[GH98] Michael Garland und Paul S. Heckbert. „Simplifying surfaces with color and
texture using quadric error metrics“. In: Proceedings of the conference on
Visualization ’98. VIS ’98. Los Alamitos, CA, USA: IEEE Computer Society
Press, Okt. 1998, S. 263–269. doi: 10.1109/VISUAL.1998.745312.

[GKY08] Enrico Gobbetti, Dave Kasik und Sung-eui Yoon. „Technical strategies for
massive model visualization“. In: Proceedings of the 2008 ACM symposium on
Solid and physical modeling. New York, NY, USA: ACM, 2008, S. 405–415.
doi: 10.1145/1364901.1364960.

[Hop96] Hugues Hoppe. „Progressive meshes“. In: Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques. SIGGRAPH ’96.
New York, NY, USA: ACM, 1996, S. 99–108. doi: 10.1145/237170.237216.

88

http://dx.doi.org/10.1111/cgf.12150
http://dx.doi.org/10.1145/800250.807481
http://dx.doi.org/10.1145/166117.166149
http://dx.doi.org/10.1145/258734.258849
http://dx.doi.org/10.1145/258734.258849
http://dx.doi.org/10.1109/VISUAL.1998.745312
http://dx.doi.org/10.1145/1364901.1364960
http://dx.doi.org/10.1145/237170.237216

Literatur

[Hun78] Gregory Michael Hunter. „Efficient computation and data structures for gra-
phics“. Diss. Princeton, NJ, USA: Department of Electrical Engineering und
Computer Science, Princeton University, 1978.

[Iba+78] Toshihide Ibaraki, Toshiharu Hasegawa, Katsumi Teranaka und Jiro Iwa-
se. „The Multiple-Choice Knapsack Problem“. In: Journal of the Operations
Research Society of Japan 21.1 (März 1978), S. 59–94.

[Jäh+13] Claudius Jähn, Benjamin Eikel, Matthias Fischer, Ralf Petring und Friedhelm
Meyer auf der Heide. „Evaluation of Rendering Algorithms using Position-
Dependent Scene Properties“. In: Advances in Visual Computing. Hrsg. von
George Bebis u. a. Bd. 8033. Lecture Notes in Computer Science. Proceedings of
the 9th International Symposium on Visual Computing (ISVC 2013). Springer
Berlin Heidelberg, 2013, S. 108–118. doi: 10.1007/978-3-642-41914-0_12.

[Lue+03] David Luebke, Martin Reddy, Jonathan d. Cohen, Amitabh Varshney, Benja-
min Watson und Robert Huebner. Level of Detail for 3D Graphics. Hrsg. von
Brian A. Barsky. The Morgan Kaufmann Series in Computer Graphics and
Geometric Modeling. San Francisco, USA: Morgan Kaufman Publishers, 2003.

[MBW08] Oliver Mattausch, Jiří Bittner und Michael Wimmer. „CHC++: Coherent
Hierarchical Culling Revisited“. In: Computer Graphics Forum 27.2 (Apr.
2008). Proceedings of Eurographics 2008, S. 221–230. doi: 10.1111/j.1467-
8659.2008.01119.x.

[Mit91] Don P. Mitchell. „Spectrally optimal sampling for distribution ray tracing“. In:
Proceedings of the 18th annual conference on Computer graphics and interactive
techniques. SIGGRAPH ’91. New York, NY, USA: ACM, 1991, S. 157–164.
doi: 10.1145/122718.122736.

[Möb27] August Ferdinand Möbius. Der barycentrische Calcul - ein neues Hülfsmittel
zur analytischen Behandlung der Geometrie. Leipzig, Germany: Verlag von
Johann Ambrosius Barth, 1827.

[PD90] Harry Plantinga und Charles R. Dyer. „Visibility, occlusion, and the aspect
graph“. In: International Journal of Computer Vision 5.2 (Nov. 1990), S. 137–
160. doi: 10.1007/BF00054919.

[Ped11] Marius. Pedersen. „Image quality metrics for the evaluation of printing work-
flows“. Diss. University of Oslo, Faculty of Mathematics und Natural Sciences,
2011.

[Pet+13a] Ralf Petring, Benjamin Eikel, Claudius Jähn, Matthias Fischer und Friedhelm
Meyer auf der Heide. „Darstellung heterogener 3-D-Szenen in Echtzeit“. In: 11.
Paderborner Workshop Augmented & Virtual Reality in der Produktentstehung.
Hrsg. von Jürgen Gausemeier, Michael Grafe und Friedhelm Meyer auf der
Heide. Bd. 311. HNI-Verlagsschriftenreihe. Heinz Nixdorf Institut, Apr. 2013,
S. 49–60.

[Pet+13b] Ralf Petring, Benjamin Eikel, Claudius Jähn, Matthias Fischer und Friedhelm
Meyer auf der Heide. „Real-Time 3D Rendering of Heterogeneous Scenes“. In:
Advances in Visual Computing. Hrsg. von George Bebis u. a. Bd. 8033. Lecture
Notes in Computer Science. Proceedings of the 9th International Symposium on

89

http://dx.doi.org/10.1007/978-3-642-41914-0_12
http://dx.doi.org/10.1111/j.1467-8659.2008.01119.x
http://dx.doi.org/10.1111/j.1467-8659.2008.01119.x
http://dx.doi.org/10.1145/122718.122736
http://dx.doi.org/10.1007/BF00054919

Literatur

Visual Computing (ISVC 2013). Springer Berlin Heidelberg, 2013, S. 448–458.
doi: 10.1007/978-3-642-41914-0_44.

[Pfi+00] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar und Markus Gross.
„Surfels: surface elements as rendering primitives“. In: Proceedings of the
27th annual conference on Computer graphics and interactive techniques. SIG-
GRAPH ’00. New York, NY, USA: ACM Press/Addison-Wesley Publishing
Co., 2000, S. 335–342. doi: 10.1145/344779.344936.

[PH12] Marius Pedersen und Jon Yngve Hardeberg. „Full-Reference Image Quality
Metrics: Classification and Evaluation“. In: Found. Trends. Comput. Graph.
Vis. 7.1 (Jan. 2012), S. 1–80. doi: 10.1561/0600000037.

[Sam05] Hanan Samet. Foundations of Multidimensional and Metric Data Structures
(The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling).
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2005.

[Str74] Wolfgang Straßer. „Schnelle Kurven- und Flächendarstellung auf graphischen
Sichtgeräten“. Diss. Berlin, Germany: TU Berlin, 1974.

[Süß+11] Tim Süß, Clemens Koch, Claudius Jähn und Matthias Fischer. „Approximative
occlusion culling using the hull tree“. In: Proceedings of Graphics Interface
2011. GI ’11. School of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada: Canadian Human-Computer Communications Society, Mai
2011, S. 79–86.

[Ten11] Fei Teng. „Image Error Evaluation“. Bachelor’s thesis. Heinz Nixdorf Institute
& Department of Computer Science, University of Paderborn, 2011.

[TS91] Seth J. Teller und Carlo H. Séquin. „Visibility preprocessing for interactive
walkthroughs“. In: Proceedings of the 18th annual conference on Computer
graphics and interactive techniques. SIGGRAPH ’91. New York, NY, USA:
ACM, 1991, S. 61–70. doi: 10.1145/122718.122725.

[Ulr00] Thatcher Ulrich. „Loose Octrees“. In: Game Programming Gems. Hrsg. von
Mark DeLoura. Game Programming Gems. Boston, MA, USA: Charles River
Media, 2000. Kap. 4.11, S. 444–453.

[Wan+04] Zhou Wang, Alan Conrad Bovik, Hamid Rahim Sheikh und Eero P. Simoncelli.
„Image quality assessment: from error visibility to structural similarity“. In:
Image Processing, IEEE Transactions on 13.4 (Apr. 2004), S. 600–612. doi:
10.1109/TIP.2003.819861.

[WB09] Zhou Wang und Alan Conrad Bovik. „Mean squared error: Love it or leave it?
A new look at Signal Fidelity Measures“. In: IEEE Signal Processing Magazine
26.1 (Jan. 2009), S. 98–117. doi: 10.1109/MSP.2008.930649.

[Zha+97] Hansong Zhang, Dinesh Manocha, Tom Hudson und Kenneth E. Hoff III.
„Visibility culling using hierarchical occlusion maps“. In: Proceedings of the
24th annual conference on Computer graphics and interactive techniques. SIG-
GRAPH ’97. New York, NY, USA: ACM Press/Addison-Wesley Publishing
Co., 1997, S. 77–88. doi: 10.1145/258734.258781.

90

http://dx.doi.org/10.1007/978-3-642-41914-0_44
http://dx.doi.org/10.1145/344779.344936
http://dx.doi.org/10.1561/0600000037
http://dx.doi.org/10.1145/122718.122725
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1109/MSP.2008.930649
http://dx.doi.org/10.1145/258734.258781

	1 Einleitung
	1.1 Motivation und Handlungsbedarf
	1.2 Ansatz des Multi-Algorithmen-Renderings
	1.3 Ziel und eigener Beitrag
	1.4 Aufbau der Arbeit

	2 Stand der Technik
	2.1 Begriffsdefinitionen
	2.2 Verwandte Arbeiten
	2.3 3-D-Datenstrukturen als Szenengraph
	2.4 Renderingverfahren
	2.4.1 Konservative Renderingverfahren
	2.4.2 Approximative Renderingverfahren

	2.5 Bewertung der Bildqualität approximativer Darstellungsverfahren
	2.6 Sampling

	3 Multi-Algorithmen-Rendering
	3.1 Definition: heterogen & homogen
	3.2 Kriterien für Homogenität
	3.3 Beim Multi-Algorithmen-Rendering eingesetzte Verfahren
	3.4 Analyse und Aufbereitung der Szene
	3.4.1 Aufteilung der Szene in Regionen
	3.4.2 Datenerhebung durch Sampling

	3.5 Der Renderingalgorithmus: Darstellung der Szene im Walkthrough
	3.5.1 Interpolation der Messwerte aus der Vorverarbeitung
	3.5.2 Auswahl der Algorithmen
	3.5.3 Regelung der Gesamtdauer der Darstellung

	3.6 Optimierung der Laufzeit bei vorgegebener Bildqualität
	3.7 Einsatzbereiche des Verfahrens

	4 Implementierung
	4.1 PADrend
	4.2 Multi-Algorithmen-Rendering
	4.2.1 Vorverarbeitung des Multi-Algorithmen-Renderings
	4.2.2 Multi-Algorithmen-Rendering während des Walkthroughs

	5 Evaluierung
	5.1 Übersicht über die untersuchten Fragestellungen
	5.2 Messumgebung
	5.2.1 Verwendete Hard- und Software
	5.2.2 Aufbau der Testszene
	5.2.3 Wahl des Kamerapfades
	5.2.4 Benutzte Algorithmen und deren Einstellung
	5.2.5 Durchführung der Messungen
	5.2.6 Darstellung und Aufbereitung der Messergebnisse

	5.3 Laufzeit und Speicherverbrauch in der Vorverarbeitung
	5.3.1 Persistenter Speicherverbrauch
	5.3.2 Dauer der Vorverarbeitung

	5.4 Verhalten des Multi-Algorithmen-Renderings beim Walkthrough
	5.4.1 Dauer der Bildberechnung
	5.4.2 Größe des Fehlers im Bild
	5.4.3 Die verschiedenen Interpolations- und Regelungsverfahren
	5.4.4 Wie viele Stichproben werden benötigt?
	5.4.5 Abweichung zwischen geschätzten und gemessenen Laufzeitwerten
	5.4.6 Abweichung zwischen geschätzten und gemessenen Bildfehlerwerten
	5.4.7 Welche Algorithmen werden genutzt?
	5.4.8 Flackern des Bildes beim Multi-Algorithmen-Rendering
	5.4.9 Zeit zum Lösen des Optimierungsproblems

	5.5 Evaluierung mit Hilfe von Szenen-Eigenschafts-Funktionen
	5.5.1 Bildfehler
	5.5.2 Dauer der Darstellung
	5.5.3 Lösung des Optimierungsproblems
	5.5.4 Verschiedene Sollwerte für die Laufzeit

	5.6 Zusammenfassung der Ergebnisse

	6 Fazit und Ausblick
	Literatur

