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Abstract

The number and complexity of embedded computer systems is rapidly in-
creasing. Many of these embedded systems are real-time systems, i.e. the
functional correctness depends not only on the provided results but also on
their timeliness. Moreover, most embedded real-time systems are distributed
systems that are composed of multiple networked processing nodes cooperat-
ing on a common function or set of functions. In the design of such systems,
the given software functions have to be deployed to the different processing
nodes in the network topology. This implies a task mapping and message
mapping resulting in corresponding schedules which strongly influence each
other. Especially for large systems, the determination of a feasible deploy-
ment is a complex and time-consuming task for the designer which cannot
be performed without tool support. Therefore, in this thesis we present a de-
sign approach for distributed real-time systems that supports the designer to
determine an appropriate deployment.

Distributed systems with hard real-time constraints are so-called safety-criti-
cal systems. In safety-critical systems, missing a hard deadline may cause
catastrophic consequences on the environment or even humans. But beside
safety, the system must also reliably provide its intended functionality. Fault
tolerance enables a system to continue with safe and reliable operation even
in presence of a fault. In this thesis, we focus on the compensation of hard-
ware faults during system runtime resulting in network failures and processor
failures. All fault-tolerant techniques require additional redundant elements
integrated into the system to detect and compensate faults. Hardware redun-
dancy is perhaps the most common form of redundancy and can be catego-
rized into static and dynamic redundancy. In this thesis, we apply dynamic
redundancy by means of reconfiguration to realize fault tolerance. For this
purpose, we present concepts for a reconfigurable network topology and for
an efficient coordination of the required reconfigurations. Based on these
concepts, we extend our approach towards the design of fault-tolerant dis-
tributed real-time systems. Moreover, we describe the application of our ap-
proach to the de facto standard for automotive system design and approve its
feasibility for realistic systems by means of a real-world case study.





Kurzzusammenfassung

Die Anzahl und Komplexität eingebetteter Systeme nimmt stetig zu. Viele
dieser Systeme sind Echtzeitsysteme, deren funktionale Korrektheit nicht nur
von gelieferten Ergebnissen sondern auch von deren Pünktlichkeit abhängt.
Außerdem sind eingebettete Echtzeitsysteme oftmals verteilte Systeme aus
mehreren vernetzten Mikroprozessoren, die für eine oder mehrere Funktion-
alitäten kooperieren. Beim Entwurf solcher Systeme muss die Software-
funktionalität auf die Prozessoren im Netzwerk verteilt werden. Dies bein-
haltet Task- und Nachrichtenzuordnungen sowie die daraus resultierenden
Ablaufplanungen, die sich gegenseitig stark beeinflussen. Insbesondere bei
großen Systemen ist die Ermittlung einer passenden Verteilung eine kom-
plexe und zeitaufwändige Aufgabe für den Entwickler, die nicht ohne Werk-
zeugunterstützung durchführbar ist. Daher präsentieren wir in dieser Arbeit
einen Ansatz zum Entwurf eingebetteter Echtzeitsysteme, der den System-
entwickler bei der Ermittlung einer geeigneten Lösung unterstützt.

Verteilte Systeme mit strikten Echtzeitanforderungen sind sogenannte sicher-
heitskritische Systeme, bei denen die Verletzung einer harten Zeitschranke
der Umgebung oder sogar Menschen Schaden zufügen kann. Neben der
nötigen Sicherheit muss ein solches System aber auch zuverlässig die vorge-
sehene Funktionalität liefern. Fehlertoleranz ermöglicht eine sichere und zu-
verlässige Fortsetzung des Systembetriebs im Fehlerfall. In dieser Arbeit be-
trachten wir die Kompensation von Hardwarefehlern zur Systemlaufzeit, die
zu einem Netzwerk- oder Prozessorausfall führen können. Alle Ansätze zur
Fehlertoleranz benötigen dabei redundante Systemkomponenten zur Erken-
nung und Kompensation von Fehlern. Hardwareredundanz ist der wohl am
weitesten verbreitete Ansatz und kann in statische und dynamische Redun-
danz unterteilt werden. Zur Realisierung einer dynamischen Fehlerredun-
danz im Rahmen dieser Arbeit präsentieren wir Konzepte für eine rekonfi-
gurierbare Netzwerkarchitektur und zur effizienten Koordination der notwen-
digen Rekonfigurationen. Basierend auf diesen Konzepten erweitern wir un-
seren Ansatz zum Entwurf fehlertoleranter verteilter Echtzeitsysteme. Zu-
sätzlich beschreiben wir die Verwendung des hier vorgestellten Ansatzes im
Quasi-Standard zum Entwurf automobiler Systeme und bestätigen dabei die
praktische Anwendbarkeit anhand eines realistischen Fallbeispiels.
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Chapter 1

Introduction

This thesis presents a novel approach towards the design of fault-tolerant dis-
tributed real-time systems. Initially, this chapter introduces into the field of
distributed real-time systems and motivates the necessity for a fault-tolerant
design. Based on this motivation it presents the objectives of the thesis with
the resulting main requirements and contributions. Finally, it provides the
structure of the thesis by giving a brief description of each chapter.

1.1 Motivation

Nowadays, the number and complexity of embedded computer systems is
rapidly increasing. In contrast to a classical general-purpose PC, an embed-
ded system is a microprocessor-based system that is built into a device or
environment and is designed to control a specific function or set of functions
[Hea02]. Embedded systems range from small and simple systems like the
microprocessor within a digital TV set-top box to very large and complex sys-
tems like control systems embedded in process plants. Also the controllers
for the ABS system of a car or the operation of its engine as well as the auto-
matic pilot system of an aircraft are embedded systems. In general, by now
hardware and software systems are embedded within everyday products and
places. Today, already 90% of computing devices are in embedded systems
and not in general purpose PCs. The growth rate in embedded systems is
more than 10% per year and it is predicted that there will be over 40 bil-
lion devices worldwide by 2020. Today, 20% of the value and cost of each
car results from embedded electronics and this will increase to an average of
35-50% by 2020 [3TU10].

Many of the embedded systems are real-time systems, i.e. the correctness of
the intended functionality depends not only on the provided results but also
on the timeliness of the result provisioning by the system. This means the
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Chapter 1. Introduction

correct result must be available at a specified deadline. Moreover, nowadays
most embedded real-time systems are distributed systems [Kop11]. In con-
trast to a embedded system with a single processing unit, a distributed system
is composed of multiple networked processing nodes cooperating on a com-
mon function or set of functions [BW09]. A typical example for a large and
complex distributed real-time system is the vehicle network of a modern car
as depicted in Figure 1.1.

Figure 1.1: Vehicle network of a modern car [Eng12].

Today’s modern automotive vehicles contain up to 100 or even more dis-
tributed and networked processors which execute thousands of software func-
tions [VBK10]. The functions in a car network are associated to the sub-
systems powertrain, chassis, body, and multimedia with their corresponding
subnetworks [SZ06]. In the design of such a distributed system, the given
software functions respectively their corresponding tasks have to be deployed
to the different processing nodes in the network topology. Consequently, the
deployed tasks on the different distributed processing nodes have to exchange
data messages over the network infrastructure, e.g. a communication bus. As
described above in a distributed real-time system the timeliness of the task
executions and the data transmissions have to be ensured to guarantee a cor-
rect system behavior.

Software Architecture Hardware Topology 
Deployment 

Task Mapping Bus Mapping 

ECU Scheduling Bus Scheduling 

Figure 1.2: Design flow steps for distributed systems [SR08].
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Chapter 1. Introduction

Figure 1.2 illustrates the resulting design flow steps for distributed systems. It
shows, that the deployment implies a task mapping and message mapping re-
sulting in corresponding schedules which strongly influence each other. This
problem of mapping and scheduling tasks and messages in a distributed sys-
tem is NP-hard [Bur91]. Especially for large systems, the determination of a
feasible deployment is a complex and time-consuming task for the designer
which cannot be performed without tool support. Therefore, in this thesis we
present a design approach for distributed real-time systems that supports the
designer to determine an appropriate deployment.

Distributed systems with hard real-time constraints are also called safety-
critical systems. In a safety-critical system, missing a specified deadline may
cause catastrophic consequences on the environment or even humans. Two
of the major domains where safety and reliability are of high importance are
the avionic and the automotive domain. In a car typical safety-critical func-
tions are member of the powertrain, chassis, or partly the body subsystem,
e.g. engine control, ABS, and airbag control [ZS07]. Obviously, in safety-
critical systems the main requirement is to avoid conditions that can cause the
catastrophic consequences mentioned before. However, the system must also
reliably provide its intended functionality to be useful, as Burns and Wellings
illustrate by the following example [BW09]:

”In many ways, the only safe airplane is one that never takes off,
however, it is not very reliable.”

Hence, beside hard real-time constraints, a safety-critical system has to con-
sider further requirements and safety concepts to also ensure its reliability. A
common concept to improve reliability and safety is fault tolerance [LA90].
Fault tolerance enables a system to continue with a safe and reliable oper-
ation even in presence of a fault. This is important since due to the rising
size and complexity of embedded systems defects caused by this electronic
systems are increasing rapidly [EJ09]. In this thesis we focus on hardware
faults during system runtime. In a distributed system these faults may result
in two types of component failures: network failures and processor respec-
tively node failures [CJ97]. All fault-tolerant techniques require additional
redundant elements integrated into the system to detect and recover from
faults. Hardware redundancy is perhaps the most common form of redun-
dancy applied in systems [Pra96]. It can be distinguished between static and
dynamic redundancy. Static redundancy typically requires multiple redun-
dant instances of the hardware components, e.g. processors, whereas dy-
namic redundancy applies reconfiguration to realize fault tolerance.

Figure 1.3 illustrates a CAD model of the Steer-By-Wire system which Nis-
san installed in their current luxury car model Infiniti Q50. It shows three re-
dundant processing nodes and a mechanical steering column as an additional
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Chapter 1. Introduction

Figure 1.3: CAD model of upcoming Steer-By-Wire system from Nissan (Image: Nissan).

mechanical backup to realize fault tolerance by means of static redundancy
[Spe12]. The drawback of this kind of redundancy is that especially, in huge
distributed systems with many components the hardware overhead may result
in an inappropriate rise of cost and weight. Thus, the aim of fault tolerance
is to minimize redundancy while maximizing the reliability [BW09]. There-
fore, in this thesis we apply dynamic redundancy by means of reconfiguration
to realize fault tolerance. For dynamic redundancy, in case of a detected error
the corresponding faulty component must be detected. The faulty component
has to be removed and its functionality has to be resumed by another to re-
gain the operational status of the system, i.e. a reconfiguration has to be
performed. To offer the required redundancy, we perform task replication,
i.e. allocation of redundant task instances on the nodes. Task replication is
a fundamental method for improving the reliability of a distributed system
[Kim+11]. To enable a flexible task replication and reconfiguration for dis-
tributed real-time systems which interact with the environment, this thesis
presents concepts for a reconfigurable network topology and for an efficient
coordination of the required reconfigurations. Considering these concepts,
we extend our approach for the design of fault-tolerant distributed real-time
systems. In this way it determines the initial deployment for normal sys-
tem mode and based on that for all required reconfigurations to compensate
possible component faults.

The next section briefly summarizes the objectives and contributions of the
thesis to address the challenges described above.

1.2 Objectives of the Thesis

The main objective of this thesis is to develop an approach for the design
of fault-tolerant distributed real-time systems that supports the system de-
signer by determining feasible solutions for the required deployments. For
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this purpose we extend and refine the design flow steps for distributed sys-
tems depicted in Figure 1.2 and present further concepts to enable dynamic
redundancy by means of reconfiguration. In the following we shortly present
the resulting objectives and requirements for this thesis.

Compensation of arbitrary operational hardware faults During system
runtime, different possible operational hardware faults can be distinguished
by means of their occurrence and duration and result in different behaviors of
the faulty component. In a distributed system these faults may result in either
network or node failures. We describe that the compensation of one arbitrary
component fault is sufficient in most cases to ensure fault tolerance. Hence,
in this thesis we provide means to compensate one arbitrary component fault.

Reconfigurable distributed system topology Current distributed systems
exchange data with the environment via hardwired sensors and actuators.
This results in placement constraints for tasks which have to exchange data
with these sensors or actuators. A failure of such a hardwired processing
node cannot be compensated with dynamic redundancy by means of recon-
figuration because the required connections get lost. Therefore, we propose
a reconfigurable distributed system topology which avoids these placements
constraints and offers the necessary flexibility for our fault-tolerant design
approach.

Coordination of reconfiguration To realize fault tolerance through dy-
namic redundancy, a component which coordinates and performs the required
reconfiguration steps has to be integrated in the system. Thus, we discuss sev-
eral methods how to realize this coordination and propose a novel distributed
coordinator concept which allows the self-reconfiguration of the system by
detecting faulty components and activating redundant task instances on other
nodes to resume the functionality and regain the operational status of the sys-
tem.

Extended schedulability tests Task scheduling in distributed systems has
to cover the local level of each processor and the global scheduling, i.e.
the mapping of tasks to nodes. For local scheduling we consider RM/DM
scheduling which is still most frequently applied in many important real-
time domains and EDF scheduling which has some significant advantages
over RM/DM scheduling. To determine feasible candidates for the task map-
ping, the corresponding schedulibality tests for the local scheduling have to
be performed. To consider possibly resulting communication delays in a dis-
tributed system, we propose extended versions of the existing strategies.

5
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Modeling of system properties To perform an appropriate system design,
our approach requires information about the properties of the given soft-
ware architecture and hardware topology as well as the resulting real-time
constraints and communication properties. Thus, we define and present a
graph-based modeling of the system properties as input for our approach.
These models are annotated with the corresponding timing properties and
constraints.

Deployment and design result Fault-tolerant system deployment is an es-
sential part of our approach and shall provide a feasible design result. Hence,
we present different algorithms for the determination of feasible task and bus
mappings for the initial configuration and based on that for all necessary re-
configurations to design a fault-tolerant system. Finally, our approach returns
the resulting design as feedback for the designer. Depending on the given in-
put, our deployment approach is able to return a complete feasible solution
for all possible configurations or for a subset. Based on this feedback, the de-
signer can design the system according to the determined solution or perform
a further iteration of the design approach.

Application to the design of automotive systems Modern automotive
vehicles are a major area of application for large and complex distributed
real-time systems. AUTOSAR is the established de facto standard for the de-
velopment of automotive systems. Hence, we describe the application of our
approach to the fault-tolerant design of automotive systems and the deploy-
ment of real-time software based on AUTOSAR. Additionally, we propose a
further concept to coordinate and realize the required reconfigurations that is
based on existing AUTOSAR components.

1.3 Structure of the Thesis

This thesis is structured as follows. Chapter 2 provides the essential funda-
mentals and basic terms for the work presented in this thesis. This includes
general properties of real-time systems, an introduction to task scheduling
and communication in distributed real-time systems as well as basic con-
cepts for modeling and specification of timing constraints for such systems.
The Chapter is completed by an introduction to fault-tolerant system design.

Chapter 3 gives an overview of related work relevant for the work in this
thesis. This includes work and publications dealing with the design and con-
figuration of distributed real-time systems, an overview of publications and
techniques regarding the scheduling of real-time tasks and messages in dis-
tributed systems, and the presentation of existing concepts and approaches
for reconfigurable and fault-tolerant distributed real-time systems.

6
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In Chapter 4 our design approach for fault-tolerant distributed real-time sys-
tems is described in detail. Its main objective is the determination of feasi-
ble and flexible fault-tolerant system designs with compensation of different
usual fault types and a simultaneous reduction of required redundancy based
on a reconfigurable distributed system topology with an additional concept
for fault tolerance. Applying the presented graph-based input model of sys-
tem properties, this chapter describes the system deployment and its design
result as essential part of the approach.

In Chapter 5 we present how to utilize our approach for the design of fault-
tolerant automotive real-time systems. Therefore, this chapter describes the
application of our approach to the modeling and deployment of automo-
tive real-time software based on AUTOSAR, a well-defined and standardized
methodology for the development of automotive systems.

Chapter 6 concludes the thesis by summarizing the main contributions and
providing an outlook for future work. Finally, the publications which have
been published in the context of this thesis as basis for the presented work
are listed on page 197.

1.4 Summary

This chapter provided an introduction to the work presented in this thesis.
It motivated the necessity to develop our approach for the design of fault-
tolerant distributed real-time systems. Based on this motivation, the objec-
tives of the thesis were presented. The last section of this chapter described
the structure of this thesis and provided a brief description of each following
chapter.

7



Chapter 1. Introduction

8



Chapter 2

Fundamentals and Basic Terms

This chapter provides a detailed description of fundamental and basic terms
essential for the work presented in this thesis. It starts with properties of
real-time systems, tasks, and their scheduling. This is proceeded by an intro-
duction to task scheduling and communication in distributed real-time sys-
tems. Moreover, basic concepts for modeling and specification of timing
constraints for distributed real-time systems are presented. The fundamen-
tals are completed by an introduction to fault-tolerant system design.

2.1 Real-Time Systems

Today’s number and complexity of embedded computer systems is rapidly
increasing. In contrast to a classical general-purpose PC, an embedded sys-
tem is a microprocessor-based system designed to control a specific func-
tion or range of functions [Hea02]. An embedded system is part of a self-
contained product, e.g. an aircraft or an automobile, and generally bound to
real-time constraints. Embedded real-time systems form the most important
market segment for real-time technology and the computer industry in gen-
eral [Kop11]. The term ”real-time” means that the computer system is not
longer controlling its own time domain. For a real-time system the progress
of time of the environment (external time) defines how the internal time of the
system has to progress. This external time may be the real physical time or
also artificially generated by a surrounding environment. For the embedded
system this makes no difference.

9



Chapter 2. Fundamentals

Summarized, Kopetz defines real-time systems as [Kop11]:

”A real-time computer system is a computer system where the
correctness of the system behavior depends not only on the log-
ical results of the computations, but also on the physical instant
(time) when these results are produced. By system behavior we
mean the sequence of outputs in time of a system.”

This definition implies that in strict real-time systems a late result is also
wrong. Here the meaning of ”lateness” has to be defined dependent on the
specific application. A real-time system must respond to stimuli from its
environment in a certain way within time intervals dictated by its environment
[Tan95]. The instant when a result must be produced is called deadline. Any
given deadline has to be met under all circumstances – even the worst case.
Thus, real-time also involves predictability and determinism. It is a wide
spread myth that real-time systems have to be as fast as possible. In fact
they just have to be fast enough to meet all given deadlines, but most of
all they have to be predictable. Ensuring this determinism may even slow
down a real-time system [Ram+09]. Therefore, real-time systems can be
characterized by the strictness of their real-time restrictions [But11]:

• A hard real-time system – also called safety-critical real-time system
– must meet at least one hard deadline. Missing this deadline may
cause catastrophic consequences on the environment or people. Typical
application areas are automotive systems, like air-bag control or steer-
by-wire.

• In a firm real-time system the missing of a deadline makes the result
useless, but does not cause severe consequences. Typical application
areas are forecast systems for weather or stock exchange.

• For a soft real-time system the meeting of deadlines is desirable – e.g.
for performance or quality reasons – but missing does not cause useless
results. Here, typical areas are video and audio streaming or comfort
and body electronics in automotive vehicles.

Because of the described strictness of real-time restrictions, the design of a
hard real-time system is fundamentally different from the design of a soft
real-time system. While a hard real-time system must sustain a guaranteed
temporal behavior under all – even worst case – circumstances, it is permis-
sible for a soft real-time computer system to miss a deadline occasionally.
The focus of this thesis is on the more complex and demanding design of
safety-critical systems with hard real-time constraints.

The process of executing a functionality or an algorithm by a processing
unit is called computation or task. These computations are performed by
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the components of the real-time system. A component is a self-contained
hardware/software unit that interacts with its environment exclusively by the
exchange of messages. To be aware of the progression of time, a real-time
system contains a real-time clock. After power-up, a component enters a
ready-for-start state to wait for a triggering signal that indicates the start of
task execution. When started it reads input messages, updates its internal
state and produces output messages, until the computation gets terminated.
Afterwards, the component enters the ready-for-start state again to wait for
the next triggering signal.

A triggering signal can be associated either with the occurrence of a signif-
icant event by an event-triggered control, or with a specified point in time
by a time-triggered control [Kop11]. The significant events that form the ba-
sis of event-triggered control can be, for example, the arrival of a particular
message, the completion of an activity inside a component, or the occurrence
of an external interrupt. Time-triggered control signals are derived from the
progression of the global time in the real-time system. Time-triggered control
signals are typically cyclic. A cycle can be characterized by its period, i.e.
the real-time interval between two successive cycle starts, and by its phase,
which is the interval between the start of the period and the cycle start. We as-
sume that a cycle is associated with each time-triggered activity. To guarantee
the required predictability and determinism, safety-critical real-time systems
generally utilize time-triggered control, e.g. for sensory data acquisition or
control loops. Therefore, in this thesis we focus on cyclic and periodic tasks.

2.1.1 Properties of Real-Time Tasks

In contrast to other computational tasks, real-time tasks additionally consider
the notion of time. This implies that the correctness of the system depends not
only on logical results but also on the time when these results are produced.
Concerning the timing restrictions defined above, a real-time task Ji can be
characterized by the following properties depicted in Figure 2.1:

• Release time ri: The release time ri is the time at which Ji becomes
ready for execution. It is also called request time or arrival time, de-
noted by ai.

• Computation time Ci: The computation time Ci is the time necessary
for the execution of Ji without interruption by other tasks. For this, we
consider the worst case execution time (WCET), which has to be deter-
mined in advance for the task on the executing processor. The WCET
is the upper bound on the execution times of a task on a specific hard-
ware platform. Computing such a bound is undecidable in the general
case [Mar03]. However, different techniques exist for estimating the
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WCET. Those estimates are typically pessimistic, meaning that the es-
timated WCET is known to be higher than the real one. Consequently,
much work on WCET analysis is on reducing the pessimism and com-
puting tight bounds.1 However, estimation of WCETs is not the focus
of our work and we consider them as predetermined values.

• Deadline di (absolute) and Di (relative): The deadline is the time at
which a task has to be finished to avoid damage to the system or users.
We distinguish between absolute deadline, denoted by di and relative
deadline, denoted by Di. Absolute deadline means related to the global
time of the whole system while relative deadline means relative to the
release time ri of Ji.

• Start time si: The start time si is the time at which a task starts its
execution. A task execution cannot be started before its release time.
Furthermore, the execution can be delayed by other tasks. Therefore,
ri ≤ si always holds.

• Finishing time fi: The finishing time fi is the time at which a task
finishes its execution and can be calculated as fi = si +Ci . The least
possible value results for si = ri. But due to delays and interruptions
caused by other tasks the finishing time may be later. Nevertheless,
fi ≤ di must always hold.

Di 

Ci 

ri si fi di 

t 

Figure 2.1: Parameters of a real-time task Ji [Ram+09].

Task Dependencies and Precedence Constraints

The tasks of a given task set may be independent or dependent. In many
real-time systems the tasks cannot be executed in arbitrary order but have to
respect precedence relations resulting from task dependencies defined at sys-
tem design.2 Obviously task dependencies corresponding to synchronization
or communication among tasks introduce additional precedence constrains.
Therefore, we consider dependent task sets with precedence constraints in
this thesis.

1For instance, AbsInt offers tools for WCET analysis [Abs12].
2”From a practical point of view, results on how to schedule tasks with precedence and mutual exclusion

constraints are much more important than the analysis of the independent task model.” [Kop11].
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A task Ji depends on task Jk, if Ji cannot be started before Jk has been fin-
ished. Thus, the notion Jk → Ji specifies that Jk is a direct predecessor of
Ji. Dependencies between tasks can be defined by a task dependency graph
(TDG), which is a directed acyclic graph (DAG). In a TDG: GTDG = (V,E)
the tasks are represented by a set of vertices V and precedence relations are
represented by directed edges E. A TDG induces a partial order on the task
set. Figure 2.2 depicts an exemplary TDG with its precedence constraints,
e.g. J1→ J2 and J3→ J6.

J1 

J2 

 
J3 
 

J4 J6 J5 

J1      J2 J1      J3 

J2      J4 J2      J5 J3      J6 

Figure 2.2: Example task dependency graph with precedence constraints.

Periodic Tasks

Two main classes of tasks can be identified: periodic and aperiodic tasks.
Both types are generic, i.e. a sequence of instances is generated over time.
Usually such a task-instance is called job. Because all jobs share the same
code they have the same WCET Ci. In case of a periodic task these instances
arrive with a fixed period, denoted by Ti. The first arrival time, i.e. the re-
lease time of the first instance is usually called the phase φi of this generic
task. Periodic tasks directly reflect the ”sense-execute-act” loop in control
applications [Ram+09] and offer the required predictability and determin-
ism for safety-critical real-time systems. These periodic tasks typically arise
from sensory data acquisition or control loops which have to be executed
time-triggered and cyclically at specific rates derived from the functional re-
quirements of an application. Therefore, a real-time system may contain
tasks with different rates resulting in a so-called multirate system.

Summarized, a set Γ of periodic real-time tasks can be characterized by the
following set of parameters, which are commonly used in literature:

τi: A Generic task, where different instances of this task may
exist over time.

τi, j: The jth-instance of τi.
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Ti: The period of τi is the interval between two consecutive ar-
rivals of τi.

Ci: The computation time respectively WCET of τi is identical
for each instance.

ri, j: The release time of τi, j is an absolute value and specific for
each instance j.

φi: The phase of τi is the release time of the first instance (φi =
ri,1).

Di: The relative deadline of τi. All instances of τi have the same
relative deadline. For independent tasks this is often equal
to the period Ti. For dependent tasks the relative deadline
may be less than Ti. Summarized, Di ≤ Ti always holds.

di, j: The absolute deadline is a specific property of each task in-
stance τi, j. It can be derived from the relative deadline by
di, j = φi+( j−1) ·Ti+Di. The time interval Ψi, j = [ri, j,di, j[
defines the available execution time interval in which τi, j
must be executed.

si, j: The start time is an absolute value, which is specific for each
task instance τi, j. It holds si, j ≥ ri, j for all instances.

fi, j: The finishing time is an absolute value, which is specific for
each task instance τi, j. It holds fi, j ≤ di, j for all instances.

Based on these parameters a set of n independent periodic tasks can be de-
fined as [But11]:

Γ = {τi = (φi,Ti,Ci)| i = 1, . . . ,n}. (2.1)

The release time ri, j and absolute deadline di, j of the j-th instance then can
be calculated as:

ri, j = φi +( j−1) ·Ti,
di, j = ri, j +Ti = φi + j ·Ti.

Due to the resulting precedence constraints for dependent tasks the release
times and deadlines of task instances do not just depend on the periods, but
also on the minimum finishing times and maximum start times of the direct
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predecessors respectively successors. Consequently, these values have to be
calculated as described above. Additionally, we can define a response time
Ri, j for each task instance. This is the time – measured from the release time
– at which an instance finishes execution, i.e. it responses to the task request:

Ri, j = fi, j− ri, j.

Obviously, the response time increases if the execution of a task instance is
delayed or interrupted by other tasks. Therefore, Liu and Layland introduced
the critical instant of a task. This is the time at which a release of this task
will produce the largest response time [LL73]:

”A critical instant for any task occurs whenever the task is
requested simultaneously with requests for all higher priority
tasks.”

In any case the release time for each instance must not be larger than the
relative deadline, i.e. Ri, j ≤ Di ∀ j. If all its instances fulfill this constraint
and finish within their deadlines a periodic task τi is called feasible. A task
set Γ is called schedulable – or feasible – if all tasks in Γ are feasible.

Precedence Constraints for Periodic Tasks

If we consider a multirate system with different task periods, complex prece-
dence relationships may arise, where n successive instances of a task can
precede one instance of another task, or one instance of a task precedes m
instances of another task [Cot+02]. Figure 2.3(a) depicts an example for
communicating tasks with different periods. Task τ2 calculates the average
value of the input data provided by task τ1 over n samples and therefore has
a period of T2 = n ·T1. To facilitate the description of the precedence con-
straint problem, in [Cot+02] Cottet et. al propose to consider only simple
precedence constraints, i.e. if a task τi has to communicate the result of its
processing to another task τ j, these tasks have to be scheduled in such a way
that the execution of the k-th instance of task τi precedes the execution of the
k-th instance of task τ j. Thus, these tasks have the same period (Ti = Tj).
This means, all tasks belonging to the same connected subgraph of the TDG
must have the same period. For instance, on the TDG graph represented in
Figure 2.3(b), tasks τ1 to τ5 must have the same period and tasks τ6 to τ9 also
must have the same period. If the periods of connected tasks are different,
these tasks will run at the lowest rate sooner or later. As a consequence the
task with the shortest period will miss its deadline [Cot+02]. However, in real
world systems often functions and tasks with different periods are executed
and exchanging data resulting in complex precedence constraints. Therefore,
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our approach also supports precedence between subgraphs with different pe-
riods (cf. Section 4.2.3).

τ1 

τ2 τ3 
 

τ4 

τ5 

τ6 

τ7 

τ8 τ9 

 
τ1 

Temperature  
Measurement 

 

 

 
τ2 

Temperature  
Measurement 

 

 

T2 = n!"!T1 

(a) Example of a complex precedence relation of
two tasks with different periods.
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(b) Example of a TDG composed of two subgraphs
with simple precedence constraints.

Figure 2.3: Examples of complex (a) and simple (b) precedence relations in TDGs for periodic
tasks [Cot+02].

In [Bla76] Blazewicz stated that if we have to ensure τi → τ j, the release
times (ri,r j) and the priorities (Prioi, Prio j) of the tasks must fulfill the fol-
lowing rules:

• r j ≥ ri,

• Prioi ≥ Prio j in accordance with the scheduling algorithm.

In the following section we will present commonly used basic real-time sche-
duling algorithms where a modification of task parameters shall lead to an
execution order that respects the precedence constraints.

2.1.2 Real-Time Scheduling

In this thesis we focus on real-time systems where periodic tasks represent
the main workload. A real-time system may contain tasks with different tim-
ing constraints. For instance, tasks with different periods have to be consid-
ered and dependent tasks additionally imply precedence constraints. Sum-
marized, task executions have to be scheduled properly considering all given
constraints, to guarantee that each periodic task instance is regularly acti-
vated according to its rate and finished within its deadline. Therefore, in
this section we describe well-known and widely used basic algorithms for
periodic task scheduling: Rate Monotonic Priority Assignment (RM) respec-
tively Deadline Monotonic Priority Assignment (DM) and Earliest Deadline
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First (EDF). The descriptions also provide a schedulability analysis for each
algorithm to derive a priori guarantee tests for generic task sets.

Obviously, all these real-time scheduling algorithms strictly rely on priorities.
Thus, analogous to the priority Prioi of a generic task, the priority of a task
instance is denoted by Prioi, j. This means, that at any point in time the task
instance τi, j with the highest priority among all active instances is executed.

Rate Monotonic and Deadline Monotonic Priority Assignment

The Rate Monotonic Priority Assignment (RM) is a so-called fixed-priority
scheduling algorithm presented by Liu and Layland in [LL73]. Fixed means,
that priorities are statically assigned a priori and not modified dynamically
during system runtime. RM defines a simple rule that assigns priorities to
tasks according to their period, i.e. tasks with higher rates have higher pri-
orities. Since periods are constant, RM is a fixed-priority assignment. Here,
it is assumed that relative deadlines of tasks are identical to their periods
(Di = Ti). Consequently, RM supports the handling of tasks with different
rates in a multirate system. Since it may happen that a task instance is exe-
cuted when a new instance of a task with higher priority arrives, RM is intrin-
sically preemptive . In this case the currently running task is preempted and
the task with higher priority is executed. Figure 2.4 illustrates an example of
a RM schedule in a Gantt Chart.3

τ1 

τ2 

0 

0 

5 10 15 20 25 30 35 

35 7 14 21 28 

Figure 2.4: Example of a RM schedule for two tasks.

It contains two tasks (τ1: T1 = 5,C1 = 1; τ2: T2 = 7,C2 = 5) and shows how,
by means of RM priority assignment, the instances of τ2 are preempted by
those of τ1 with higher priority. The given task periods result in the hyperpe-
riod HΓ = 35. The hyperperiod is the minimum interval of time after which
the schedule repeats itself. For such an interval with length HΓ, the schedule
in [0,HΓ] is the same as that in [kHΓ,(k+1)HΓ] for any integer k > 0. Hence,
for n periodic tasks synchronously released at time t = 0, the hyperperiod HΓ

is given by the least common multiple of the periods [But11]:

HΓ = lcm(T1, . . . ,Tn).

3A Gantt Chart is a horizontal bar chart that represents a set of tasks. The Gantt chart displays time on the
horizontal axis and arranges tasks on the vertical axis [SCR09].

17



Chapter 2. Fundamentals

RM is optimal among all fixed-priority scheduling algorithms [But11]. This
means, that no other fixed-priority algorithm can schedule a task set that can-
not be scheduled by RM. The schedulability test for RM compares the uti-
lization factor of a given task set with the utilization factor of the worst pos-
sible task set which is still schedulable by RM. This results in the least upper
bound of utilization (Ulub) for all task sets that fully utilize the processor.

Given a set Γ of n periodic tasks, the utilization factor U is the fraction of
processor time spent in execution of the task set [LL73]. Summing over
the fractions of processor time (Ci/Ti) spent for executing each task τi, the
utilization factor for n tasks is given by:

U =
n

∑
i=1

Ci

Ti
. (2.2)

The utilization of the worst case task set is given by Ulub = n(2
1
n −1) which

converges towards Ulub = ln(2)≈ 0.69 with increasing n [But11]. Since the
number n of tasks in the given task set Γ is known a priori, the schedula-
bility test can be performed before system runtime by calculating Ulub. It
is important to note that Ulub = n(2

1
n − 1) is sufficient but not necessary to

guarantee the schedulability of a given task set. This means that for task sets
with Ulub ≤U ≤ 1 nothing about the schedulability can be said.

RM allows a task to be executed anywhere within its period, i.e. Di = Ti.
However, in some cases a more tightened deadline is necessary. For instance,
if a task has a constrained response time which is shorter than its period.
Therefore, in [LW82] the Deadline Monotonic Priority Assignment (DM)
was introduced as an extension of RM to enable scheduling of tasks with
relative deadlines less or equal to their period (Di ≤ Ti). A sufficient schedu-
lability test for DM derived from RM is given by:

n

∑
i=1

Ci

Di
≤ n(2

1
n −1). (2.3)

Nevertheless this test is just sufficient and even more pessimistic for DM than
for RM. Therefore, in [Aud+91], [Aud+93] Audsley et. al proposed an effi-
cient method for a sufficient and necessary schedulability test for DM. This
test is based on the so-called Response Time Analysis (RTA). At its critical
instant, the response time Ri of a periodic task τi, is given by the sum of its
WCET and the interference (Ii) resulting from preemption by higher-priority
tasks, i.e. Ri = Ci + Ii. To calculate Ii for all higher priority tasks τ j ( j < i,
Prio j > Prioi) we have to determine the number of interferences given by
dRi/Tje and the WCET of the respective interference C j. Based on that, Ii
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can be calculated summing up over all interrupting tasks. Therefore, Ri is
defined by:

Ri =Ci +
i−1

∑
j=1

⌈
Ri

Tj

⌉
C j. (2.4)

Since Equation 2.4 is not analytically solvable for Ri, no simple solution
exists for this equation. However, by applying an iterative algorithm we can
calculate the least fixpoint of the equation [But11]. If the calculated value is
less or equal to the relative deadline, i.e. Ri ≤ Di, the feasibility of τi can be
guaranteed. The schedulability test for a task set Γ is positive if all tasks τi
are feasible. It can also be performed a priori before system runtime.

RM and DM with Precedence Constraints

Considering precedence constraints for RM and DM the corresponding task
parameters have to be modified to realize a proper task prioritization. The
basic idea of these modifications is that a task cannot start before its prede-
cessors and cannot preempt its successors. For RM this implies that for a
precedence relation τi→ τ j the release time and priority must be modified as
[Cot+02]:

• r∗j ≥max(r j,r∗i ), where r∗i is the modified release time of τi, and

• Prioi ≥ Prio j in accordance with RM algorithm.

τ1 

τ2 

τ3 
 

τ4 

τ5 τ6 

Figure 2.5: Example TDG with a set of six tasks in two subgraphs [Cot+02].

Here it is important to note that, if all tasks of the considered TDG have
the same period, RM allows a free choice of priorities that we use to im-
pose the precedence order [Cot+02]. Figure 2.5 shows a TDG for six tasks
with simultaneous release times consisting of two subgraphs describing their
precedence relations. Table 2.2 provides an exemplary corresponding priority
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Task τ1 τ2 τ3 τ4 τ5 τ6
Priority 6 3 5 4 2 1

Table 2.2: Example of a RM-based priority assignment for the TDG in Figure 2.5 considering
precedence constrains.

mapping that considers the given precedence constraints and still schedulable
with RM.

For DM scheduling additionally to the release times the relative deadlines
have to be modified to respect the priority assignment. This means, that for
a precedence relation τi→ τ j the following parameters have to be modified
[Cot+02]:

• r∗j ≥max(r j,r∗i ), where r∗i is the modified release time of τi,

• D∗j ≥ max(D j,D∗i ), where D∗i is the modified relative deadline of τi,
and

• Prioi ≥ Prio j in accordance with DM algorithm.

Consequently, these modifications clearly ensure the preservation of the prece-
dence relations between two tasks.

Earliest Deadline First

In contrast to RM and DM, Earliest Deadline First (EDF) scheduling is a dy-
namic priority assignment approach presented by Horn [Hor74]. Here every
task instance τi, j gets a dynamically assigned priority inverse proportional to
its absolute deadline di, j. This means, that tasks with shorter deadline will
be executed with higher priorities. EDF is a dynamic priority assignment
approach, because the absolute deadline of a periodic task τi depends on the
current j-th instance as:

di, j = φi +( j−1) ·Ti +Di.

Moreover, EDF is also intrinsically preemptive, i.e. a currently executed task
is preempted if another periodic instance with shorter deadline and higher
priority gets activated. This implies that the priorities have to be recalcu-
lated and reassigned at each task release. Consequently, the priority of a task
may be changed dynamically during runtime. Since EDF does not make any
specific assumption on the periodicity of the tasks it can also be applied for
the scheduling of aperiodic tasks [But11]. Figure 2.6 depicts an example
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EDF schedule for the same two tasks used for the RM example in Figure
2.4. It shows that in contrast to the RM schedule the instances of τ2 are not
preempted that often by τ1, because the scheduling depends on the absolute
deadlines at the release times of the task. Furthermore, in case of equal abso-
lute deadlines the currently running task keeps executing as illustrated by the
last task instances of the hyperperiod.

τ1 

τ2 

0 

0 

5 10 15 20 25 30 35 

35 7 14 21 28 

Figure 2.6: Example of a EDF schedule for two tasks.

EDF is optimal among all periodic task scheduling approaches [But11]. This
means, that if EDF cannot provide a feasible schedule no other periodic task
scheduling algorithm can. A further advantage of EDF is the fact, that – for
independent tasks – it guarantees feasible schedules for utilization factors up
to 1, i.e. fully utilized processors. Therefore, the schedulability test for a task
set scheduled by EDF is given by [LL73; Spu+95]:

n

∑
i=1

Ci

Ti
≤ 1.

EDF with Precedence Constraints

In case of EDF a modification of the release times and the absolute deadlines
is necessary to handle precedence relations. This technique was originally
only proposed for aperiodic tasks with deadline and precedence constraints
in [CSB90]. It is optimal in the sense that a valid schedule can be found
for the original task set if and only if a valid schedule can be found for the
modified task set. Consequently, schedulability can be tested by applying an
EDF schedulability test on the encoded task set. The modification technique
directly applies to the case of periodic tasks with constrained deadlines and
simple precedence constraints remaining optimal [For+10].
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Summarized, for two dependent tasks τi and τ j with τi → τ j the following
modifications and conditions must be performed and satisfied to fulfill the
given precedence constraints [But11]:

Modification of release times:

s j ≥ r j: Task τ j must start its execution not earlier than
its release time.

s j ≥ ri +Ci: Furthermore, task τ j must start its execution not
earlier than the minimum finishing time of τi.

Therefore, the modified release time r∗j can be set to the maximum of r j and
ri +Ci:

r∗j = max(r j,ri +Ci).

Modification of deadlines:

fi ≤ di: Task τi must finish its execution within its deadline.

fi ≤ d j−C j: Furthermore, task τi must finish its execution not later
than the maximum start time of τ j.

Therefore, the modified deadline d∗i can be set to the minimum of di and
d j−C j:

d∗i = min(di,d j−C j).

By means of these modifications of timing parameters a given set Γ of de-
pendent tasks gets transformed to a corresponding independent task set Γ∗

[CSB90]. Because of these modifications EDF with precedence constraints
is also called EDF*. Figure 2.7 provides an example for the modifications
of task parameters. Here, the release time and the deadline of τ2 have to be
modified.

The modification of the absolute deadlines results in di ≤ Ti for the tasks in
Γ∗. Hence, similar to DM, the schedulability analysis becomes more complex
for EDF*. Therefore, Baruah, Rosier, and Howell introduced the processor
demand criterion (PDC) [BHR90]. It says that if relative deadlines are no
longer than periods and periodic tasks are simultaneously activated at time
t = 0 – i.e., φi = 0 for all the tasks – then the number of instances ηi con-
tributing to the demand in a time interval [0,L] is given by [But11]:

ηi(0,L) =
⌊

L+Ti−Di

Ti

⌋
.
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τ1 τ2 τ3 
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2 d2 d*
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t 

Figure 2.7: Modifications of task parameters for EDF with precedence constraints [Cot+02].

Thus, the processor demand g in the time interval [0,L] can be calculated as:

g(0,L) =
n

∑
i=1

⌊
L+Ti−Di

Ti

⌋
·Ci.

Consequently, the schedulability test for a synchronous periodic task set with
relative deadlines less than or equal to task periods is given by:

∀L > 0
n

∑
i=1

⌊
L+Ti−Di

Ti

⌋
·Ci ≤ L. (2.5)

For a reduced complexity, the number of intervals in which the schedulability
test has to be checked can be decreased significantly. For this we make use
of three observations:

1. Since the tasks are periodic and simultaneously activated at time t = 0,
the schedule repeats itself after the hyperperiod HΓ and the schedula-
bility test needs to be checked only for intervals with L≤ HΓ.

2. The processor demand g(0,L) is a step function which remains con-
stant if L lies between to deadlines dk and dk+1. This implies, that if
g(0,L)< L holds for L = dk, then it also holds for all L with dk ≤ L <
dk+1. Consequently, the schedulability test needs to be checked only
for values L = dk.

3. Since in any case for the utilization factor U < 1 holds, the demand is
trivially satisfied after some time instant L∗. It can be shown that the
value for L∗ can be derived and calculated as [But11]:

L∗ =
∑

n
i=1(Ti−Di)Ui

1−U
.
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Summarizing these observations and considering that it must be checked at
least until the largest relative deadline Dmax, this results in the following
schedulability test based on Equation 2.5:

∀L ∈ D
n
∑

i=1

⌊
L+Ti−Di

Ti

⌋
·Ci ≤ L,

with
D = {dk|dk ≤min[HΓ,max(Dmax,L∗)]}.

(2.6)

A comparison of EDF and RM respectively DM shows that EDF allows a
higher processor utilization because RM can only guarantee feasibility for
task sets with utilization U ≤ 0.69. Moreover, in spite of the additional com-
putation needed by EDF for updating the absolute deadline at each job activa-
tion, EDF introduces less runtime overhead than RM. Specifically, to enforce
the fixed priority order, the number of preemptions utilizing RM is typically
much higher than applying EDF. Despite this big advantages the fixed prior-
ity algorithms still are widely spread in many real-time systems [Ram+09].
Beside other arguments it is often argued that EDF is more complicated to im-
plement because it dynamically assigns priorities during runtime. However,
it has been shown that most of those arguments are not relevant in practical
systems [But05].

2.2 Distributed Real-Time Systems

In the previous section we considered real-time systems consisting of a single
processing unit. However, nowadays most embedded real-time systems are
so-called distributed real-time systems [Kop11]. A distributed system is de-
fined to be a system of multiple networked processing elements – generally
referred to as nodes – cooperating on a common function or set of functions
[BW09]. In general, distributed systems have a number of advantages over
centralized systems [SZ06]:

Spatial Distribution: The functionality of a embedded system utilizes input
data from and generates output data for the environment. This data ex-
change with the environment is realized through sensors and actuators.
For instance, in the vehicle body of a car these sensors and actuators
for common functions are often spread widely. In contrast to a central-
ized component, a spatial distribution of processing elements near to
the involved sensors and actuators can reduce the cabling effort signif-
icantly.

Extensibility and Scalability: In a distributed system the extension with ad-
ditional components and functions is much easier. This can be realized
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by connecting additional processing elements instead of replacing a
whole centralized system. As a result, this enables scalability and ef-
ficient composition of a overall system by combining modular subsys-
tems which implement different functions.

Fault Tolerance: The availability of multiple processors enables the appli-
cation to become tolerant to processor failures by avoiding a Single-
Point-of-Failure4 (SPOF). The system design should enable the imple-
mented functionality to exploit this redundancy [BW09]. Fault toler-
ance is an important attribute for the reliability and safety of a (dis-
tributed) system. In Section 2.3.1 these aspects of system design are
described in more detail.

There are two ways of viewing a distributed system: defined by the physical
system components (physical model) and defined from the view of processing
or computation (logical model) [Jal94]. The logical model defines the func-
tionality whose correct behavior must be ensured. For a real-time system the
correct behavior also depends on timing. The physical model describes the
distributed components on which the computations are performed. Beside
the advantages described above distributed systems also introduce new chal-
lenges. In the following we consider distributed real-time systems requiring
a schedulability analysis which has to consider communication delays to ful-
fill timing constraints of communicating tasks. Moreover, fault tolerance gets
more complex, which makes the problem of tolerating faults while respect-
ing timing constraints even more difficult [Cot+02]. Although the availability
of multiple processors enables the application to become tolerant of proces-
sor failures by avoiding a SPOF, it also introduces the possibility of more
faults occurring in the system which would not occur in a centralized single-
processor system. These faults are associated with partial system failure and
the logical model must either be shielded from them, or be able to tolerate
them [BW09]. Therefore, the goal of our work is a fault-tolerant design of
distributed real-time systems preserving the correct behavior – including tim-
ing constraints – in the logical model despite the failure of components in the
physical system.

It is useful to classify distributed systems as either tightly coupled, i.e. nodes,
have access to a common memory, and loosely coupled, i.e. they do not
[BW09]. In a tightly coupled system synchronization and communication
can be realized by techniques based on the use of shared variables, whereas
in a loosely coupled system some form of message communication is in-
dispensable. In this thesis the term ”distributed system” refers to a loosely
coupled topology communicating over a network. Furthermore, we assume
that each node has its own clock and that these clocks are synchronized for

4Any single component within a system whose failure will lead to a failure of the system is called a Single-
Point-Of-Failure [Pra96].
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real-time issues. The manner in which the different nodes in a system are
connected is called the network topology [Jal94]. A quite popular topology
of distributed systems is a bus, to which all the different networks are con-
nected, instead of a point-to-point communication network. An additional
classification of a distributed system can be based on the variety of proces-
sors in the network topology. In a homogeneous system all processors are of
the same type; a heterogeneous system contains processors of different types
[BW09]. As we show in Chapter 4 our approach supports homogeneous as
well as heterogeneous systems to a certain extent.

2.2.1 Task Scheduling in Distributed Real-Time Systems

Task scheduling in distributed systems has to deal with two levels. The local
scheduling on the local level of each processor and the global scheduling on
the level of the allocation of tasks to the processors [Cot+02]. Task allocation
is often also called task mapping. Local scheduling means the assignment of
the processor to tasks. For a real-time system this implies the fulfillment of
timing constraints. Therefore, scheduling algorithms like the ones described
in Section 2.1.2 can be utilized. Global scheduling means the allocation of
tasks to the processors composing the distributed system. Obviously, the
task mapping must be performed in such a way that the local scheduling
can guarantee the fulfillment of the tasks timing constraints. In general, the
problem of finding an optimal feasible allocation of n tasks to p processors
is known to be NP-hard [Bur91]. Therefore, this problem is often addressed
by searching for solutions which respect the initial constraints as much as
possible, and then choosing the best solution, if several solutions are found
[Cot+02].

Task mapping can be performed as static allocation or dynamic allocation.
At static allocation, there cannot be any additional allocation or reallocation
of tasks during system runtime, i.e. the initial allocation of tasks is fixed.
At dynamic allocation the scheduling strategy assigns a node to a task guar-
anteeing the timing constraints when a task arrives. Dynamic allocation can
increase the fault tolerance of a distributed system, e.g. in case of a node
failure [Cot+02]. However, it can also lead to non-determinism or missing
of timing constraints if the allocation is performed at runtime. For instance,
the global scheduling algorithm finds no feasible solution because of its addi-
tionally required computation time. Our approach combines the advantages
of both allocation concepts. On the one hand it keeps the determinism of the
static allocation and guarantees the timing constraints; on the other hand it in-
creases the fault tolerance by including possible reallocations in the predeter-
mined solution to compensate node failures. Additionally, global scheduling
may partition the computation of one task to different processors by utilizing
task migration, i.e. a task can change node during its execution. Task migra-
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tion consists of transferring its context5, which continuously changes during
execution, and, if required, its code6, which does not change [Cot+02]. To
minimize the migration time, the code of the tasks can be replicated on the
nodes on which it shall be executed. Thus, in the case of migration, only the
context must be transmitted.

2.2.2 Communication in Distributed Real-Time Systems

In addition to reliability and determinism, the timeliness of transmitted data
has to be ensured for distributed real-time systems. This is the most important
difference between a real-time communication system and a non-real-time
communication system. Consequently, the real-time communication infras-
tructure utilized in such a system has to fulfill numerous requirements:

Reliability: To improve the communication reliability for distributed real-
time systems several different techniques are utilized. For instance, the
use of robust channel encoding, the use of error-correcting codes for
forward error correction, or the transmission of replicated messages
over redundant communication channels. In many non-real-time com-
munication systems, reliability is achieved by time redundancy, i.e. re-
transmission of a lost message. However, this strategy is mostly in-
appropriate especially for hard real-time systems. If you consider a
scenario, where a sensor component sends periodically, e.g. every mil-
lisecond, a message with sensory data to a control component. In case
the message is corrupted or lost, it makes more sense to wait for the
next message that contains a more recent observation than to retrans-
mit the lost message with the outdated observation [Kop11].

Determinism: Determinism is a major property of a real-time system. There-
fore the communication behavior must be deterministic, too. This
means, that the order of messages must be the same on all commu-
nication channels and the arrival times of replicated messages over re-
dundant channels are similar or at least close together.

Short Transmission Latency: A distributed real-time transaction generally
starts with the reading of an input value via sensor and terminates with
the output of the results to an actuator [Kop11]. The duration of such
a distributed real-time transaction results from the time needed for the
computations within the components and the time needed for the mes-
sage transmission between the involved components. This duration
is called end-to-end delay because it starts at one end of the system
(source) and ends at the other end (destination) [Cot+02]. Since the

5Data, processor registers, etc.
6Instructions composing the task program
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end-to-end delay should be as small as possible, the worst case trans-
mission latency of a message should be small for real-time communi-
cation. The transmission latency is also called transmission delay or
communication delay.

Clock Synchronization: In a distributed system, the temporal accuracy can
only be checked if the duration between the time of the input value ac-
quisition observed by the sensor node, and the data output determined
by the actuator node, can be measured. This requires the availability
of a global time base of proper precision among all involved nodes.
Consequently, the communication system must establish such a global
time and synchronize the nodes.

Real-Time Messages

Similar to the definition of tasks two main classes of messages can be de-
fined for real-time communication: periodic and aperiodic messages. An
aperiodic, also called asynchronous message mi is generated by an aperiodic
task and is just characterized by its length Li and its deadline Di. Periodic,
also called synchronous messages are generated and consumed by periodic
tasks. Their characteristics are similar to the characteristics of their respec-
tive source tasks [Cot+02]. Hence, a setM of periodic real-time messages
can be characterized by the following set of parameters illustrated in Figure
2.8:

mi: A generic message, where different instances of this mes-
sage may exist over time. A message can also be notated as
m(τtx,τrx). This notation contains the sender task τtx and the
receiver task τrx of a message mi.

mi, j: The j-instance of mi.

Tmi: The period of mi at which instances of a message mi are gen-
erated. Thereby, this period depends directly on the period
of the sender task.

Lmi: The data length of mi which represents the original data
of mi. This means that additional overhead depending on
the communication protocol has to be considered for the
transmission time and the required payload length of mi.
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rmi, j : The release time of mi, j is an absolute value and specific
for each instance. We define that a sender task τtx must
finish its computations before a message can be released.
Consequently, rmi, j = ftx, the finishing time of τrx, always
holds.

dmi, j : The absolute deadline of mi, j is a specific value for each
instance. We define that mi must be transmitted before the
receiver task τrx can start it execution. Therefore, dmi, j = srx,
the start time of τrx, always holds.

Dmi, j : The relative deadline of mi, j represents the time interval
ϒmi, j = [rmi, j ,dmi, j [= [ ftx,srx[, i.e. the available transmission
time interval for mi, j.

smi, j : The transmission start time of mi, j with smi, j ≥ rmi, j is an
absolute value, which is specific for each instance.

fmi, j : The transmission finishing time of mi, j with fmi, j ≤ dmi, j is
an absolute value, which is specific for each instance.

Dmi

!send

rmi

fsend

dmi

t

!rcv

srcv
t

tmi

smi fmi

Lmi

Figure 2.8: Parameters of a periodic real-time communication message.

The tasks executed within a distributed real-time system are spread over the
different nodes in the network. Depending on their distribution, these tasks
exchange data by means of either local intra-node communication or remote
inter-node communication. Consequently, the resulting communication de-
lay of a message between two tasks depends on their placement. The trans-
mission delay between two tasks placed on the same machine is often con-
sidered to be negligible, since it just implies access a data structure shared by
the communicating tasks, i.e. shared variables or similar concepts. The com-
munication delay between distant tasks, i.e. tasks placed on different nodes
depends on the message scheduling and the properties of the message and the
given communication infrastructure, e.g. message size and transmission rate
[Cot+02].
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Similar to the occurrence of triggering signals and depending on the tem-
poral properties of the communication infrastructure messages can also be
distinguished as event-triggered and time-triggered [Kop11]:

Event-Triggered Messages: The messages are produced sporadically when-
ever a significant event occurs at the sender. There is no minimum time
between messages established. Furthermore, no temporal guarantees
about the delay between sending a message and receiving a message
can be given. If the sender produces more messages than the commu-
nication system can handle messages may get lost.

Time-Triggered Messages: Sender and receiver agree a priori on the exact
instants (points in time) when messages are sent and received. There-
fore, an appropriate communication system must establish a global
time base and synchronize the nodes. Consequently, the communi-
cation infrastructure guarantees that the messages will be delivered at
the specified instant based on the global time.

Scheduling of Real-Time Messages

The scheduling of real-time messages shall allocate the medium between
several nodes in such a way that the timing constraints of messages are re-
spected. Thus, according to the system properties and the timing constraints
of a given message set we can distinguish three different scheduling strategies
[Cot+02]:

Guarantee Strategy: If no failure of the communication system occurs, any
message accepted for transmission is sent by respecting its timing con-
straints. Therefore, it is also called deterministic strategy. A deter-
ministic strategy is generally applied for messages with critical timing
constraints.

Probabilistic Strategy: The timing constraints of messages are guaranteed
at a probability known a priori. With this strategy, the messages can
miss their deadlines. Hence, it is utilized for messages with firm timing
constraints whose missing of deadlines have no serious consequences.

Best-effort Strategy: Here, no guarantee is provided for the delivery of mes-
sages. The communication system will try to do its best to guarantee
the timing constraints of the messages. This strategy is applied to mes-
sages with soft timing constraints or without timing constraints.

In this thesis we focus on safety-critical systems with hard real-time con-
straints. Best-effort and probabilistic strategies cannot be applied in such
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systems, since the uncontrollable delay or loss of messages must be avoided.
Hence, we have to consider a communication infrastructure which offers a
guarantee-based scheduling strategy. Time-triggered communication is de-
terministic and supports such a strategy. Moreover, it is well suited for the
implementation of fault tolerance [Kop11]. For this, time-triggered proto-
cols establish a global time base among all communicating nodes. Based on
this global time a time interval called slot is assigned to every message. The
start of transmission of a message is triggered exactly when the global time
reaches the start of the assigned slot. This means, that for this time slot the
communication system is an exclusive resource for the sender node. This
avoids collision of messages and guarantees determinism for the communi-
cation. Consequently, in the avionic and automotive domain, where safety
is of high importance, time-triggered protocols are utilized for communica-
tion in distributed systems to fulfill hard real-time constraints. For instance,
the Time Triggered Protocol (TTP) [KG94] is deployed in the A 380 and the
Boeing 787 aircraft and other aerospace and industrial control applications
[Kop11]. In the automotive domain, the FlexRay protocol [Fle05a], which
shares similar basic concepts with TTP, is the emerging standard for safety-
critical systems. Compared to FlexRay, TTP provides no flexibility regarding
the multiple transmission slots for a single sender node [Par07]. However, we
need a high flexibility for the transmission assignment in our design approach
we present in Chapter 4. Furthermore, we apply it to the automotive domain
in Chapter 5. Therefore, we utilize the FlexRay protocol for our work in this
thesis.

2.2.3 FlexRay Communication Protocol

The FlexRay protocol is a communication protocol for distributed real-time
systems. It was developed by the FlexRay consortium which was founded
in 1999. Initially, it was introduced exclusively for the automotive domain.
However, there are efforts to introduce FlexRay also for other industrial ap-
plications [SJ08]. The aim was to develop a flexible and fault-tolerant com-
munication protocol. A FlexRay network consists of several FlexRay nodes,
connected to a communication bus7. Such a network is called FlexRay clus-
ter and represents a distributed real-time system. A FlexRay cluster has one
(single-channel) or two communication channels (dual-channel). Each chan-
nel provides transmission rates up to 10 Mbit/s8. The current version (V3.0.1)
of the protocol specification added the support of 2.5 and 5 Mbit/s [Fle10].
In a dual-channel topology, each node can be connected to either one or both
channels. Since we want to increase fault tolerance, we consider a bus topol-

7Beside a bus topology, FlexRay also supports star and hybrid topology. However, in this thesis we focus on
bus topology.

8Due to two additional protocol bits per byte, the transmission of 1 byte needs 1µs at a transmission rate of 10
Mbit/s.
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ogy with a dual-channel redundant system. This means, in the following, we
assume that every FlexRay node is connected to both channels of the bus to
enable concurrent transmission of redundant data, in case that one of the two
channels fails.

FlexRay Node

As shown in Figure 2.9, a FlexRay node basically consist of a host, a com-
munication controller (CC) and one or two bus drivers. A host is a micro-
controller hosting one or more applications outside the scope of FlexRay
using the FlexRay communication system to communicate with other appli-
cations. Since FlexRay originates from the automotive domain a FlexRay
node is also often called electronic control unit (ECU) which is a hardware
component containing a host processor to execute application software and
a communication module [Fle05b]. Therefore, we use these terms synony-
mous in this thesis. The communication controller includes the FlexRay pro-
tocol engine that implements the majority of the FlexRay protocol including
transmitting and receiving frames, maintaining clock synchronization with
other nodes in the cluster, and error-detection. Moreover, it provides the con-
troller host interface (CHI) for the host to configure, control, and monitor
the protocol engine and exchange message data and status between the ap-
plication and the protocol engine. A FlexRay node contains a bus driver for
each implemented channel providing physical access to the bus. The purpose
of a bus driver is to transmit and receive data over the bus. Thus, several
manufacturers also call it FlexRay transceiver [Sem12], [Vec12]. Here, we
consider nodes with dual-channel redundancy, i.e. one driver for channel
A and one for channel B. To increase fault tolerance we also consider bus
guardians which are optional in a FlexRay node. Bus guardians are small
devices, which are placed between the communication controller and the bus
driver. They avoid so-called babbling-idiot failures, where a certain defect
node ignores the given slot assignments, transmits all the time and poten-
tially consumes all slots [Fle05c].

Another important component we make use of for our work are the message
buffers. Message buffers are implemented as shared memory between the
host and the communication controller in the node as depicted in Figure 2.9.
The message buffer concept essentially enables the application associated
with a FlexRay node to [RS06]:

• Put data to be transmitted into a region of shared memory (transmit
buffer) and be sure that the corresponding FlexRay frame will be trans-
mitted on the FlexRay bus in its assigned slot.
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Figure 2.9: Structure of a FlexRay node (ECU).

• Get notified that a valid FlexRay frame has been received and retrieve
the corresponding data from its assigned region in the shared memory
(receive buffer).

Summarized the message buffer functionality of FlexRay can be described as
[RS06]:

”In a FlexRay node, message buffers are the means by which the
application can decouple its message transmission and reception
from the actual FlexRay protocol, allowing asynchronous opera-
tion of the application with respect to the timing of FlexRay bus.”

This means, that the message buffer concept of FlexRay allows to transmit
and receive a message in any available slot within the available transmission
time interval of a message. The data will be stored by the sender task in the
transmit buffer of the sender node until the slot starts. After the reception by
the receiver node it will be stored in the receive buffer until the receiver task
starts and retrieves the data. As we present in Chapter 4, this decoupling of
application and communication increases the flexibility of our approach.

Message Scheduling

The FlexRay protocol applies a time-triggered message scheduling. There-
fore, the bus write access is scheduled by a time-division multiple access
(TDMA) scheme, which means that write accesses are only allowed in ex-
actly specified and pre-defined time slots. Each node has a configurable
amount of assigned slots in which it is allowed to transmit a message. This
slot-to-node (slot-to-ECU) assignment is fixed for the whole system runtime
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and cannot be changed without a bus restart. This ensures a static and de-
terministic timing behavior of the communication. Obviously, the read ac-
cess to a slot does not influence the scheduling. Thus the number of receiver
nodes reading from one slot can be configured freely as required. The writing
and reading accesses can be summarized in a communication matrix (COM
matrix) that clarifies the slot-to-node assignments for the whole schedule
[SZ06]. Table 2.4 gives an example of a COM matrix for a FlexRay clus-
ter with four ECUs. It illustrates the assignment of each slot for transmission
to just one sender (tx) and the arbitrary number of assigned receivers per slot
(rx). For instance, in slot s1 a message is transmitted by ECU 1 and received
by ECU 2 and ECU 3 while ECU 4 is not involved in this communication.
From such a COM matrix the FlexRay schedule can directly be derived.

Slot s1 s2 s3 s4 ...
ECU 1 tx rx rx - ...
ECU 2 rx tx rx - ...
ECU 3 rx - tx rx ...
ECU 4 - rx - tx ...

Table 2.4: Example of a communication matrix.

Communication Cycle

Similar to the hyperperiod at periodic task set scheduling the FlexRay mes-
sage schedule repeats itself over time. Therefore, the FlexRay protocol makes
use of a recurring communication cycle. More specifically, FlexRay commu-
nication is based on a recurring sequence of 64 communication cycles num-
bered from 0 to 63. Each node in the cluster keeps track of the current cycle
count independently in a local variable which counts from 0 to 63, then re-
sets to 0 and increments again. Although each node tracks the cycle count
independently, the current cycle count is the same for all nodes in the clus-
ter. The length of a communication cycle is initially configured and fixed. It
must be between 10µs and 16 ms. Figure 2.10 illustrates the basic segments
of a communication cycle. It contains a static segment, an optional dynamic
segment, an optional symbol window, and a network idle time (NIT) which
are described in the following.

Optional 

Symbol Window Dynamic Segment Static Segment 

Slot 1 Slot 2 ... Slot n 

NIT 

Communication Cycle 

Figure 2.10: FlexRay Communication Cycle.
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Static Segment The static segment is present in every communication cy-
cle and realizes the TDMA-based communication scheme based on statically
assigned communication slots. It consists of a fixed initially defined number
of equally sized static slots. Consequently, the length of the static segment
depends on the configured number and size of the slots. The number of slots
in the static segment must be at least 2 and at most 1023. There are always
at least two static slots in the static segment because a cluster has at least
two nodes which must be able to exchange messages for start-up and clock
synchronization. The maximum of 1023 was defined and results from the
relation of maximum cycle length (16.000µs) to minimum slot length. Theo-
retically, considering a payload of zero, the minimum slot size would be 12µs
resulting in 1333 static slots. Practically, the slot length must be configured
to be at least 13µs to compensate clock drifts and signal delays. This would
allow a maximum of 1230 slots. However, communication with no payload
is useless and higher payload results in longer slots and less slots per cycle.
Considering a payload size of 4 bytes the allowed number of slots is reduced
to less than 1000. Therefore, the defined maximum of 1023 static slots is
reasonable. Moreover, considering a transmission rate of 10 Mbit/s, this also
defines the maximum available payload per slot θ as [Rau08]:

maxPayload(θ) = size(θ)−13 bytes.

In general, the payload size for each slot can be between 0 and 254 bytes and
every slot has the same payload length. Similar to the cycle count, each node
in the cluster keeps track of the current slot count to keep synchronous. In
the static segment, the current slot count is always the same for channel A
and channel B, since the number of slots and slot time duration are the same
for each channel [RS06]. Due to its deterministic timing behavior the static
segment is very well applicable to safety-critical real-time systems.

Dynamic Segment The dynamic segment is optional in the communication
cycle and is used for event-triggered communication. In contrast to the static
segment there is no fixed slot-to-node assignment in the dynamic segment.
The bus write access is scheduled by a flexible time-division multiple access
(FTDMA) scheme based on minislots. Therefore, the dynamic segment also
consists of a fixed initially defined number of equally sized minislots. How-
ever, minislots are much smaller than static slots. Hence, there are up to 7986
minislots allowed. Minislots can be combined to dynamic slots to transmit
frames with variable length. Their numbering continues from the last slot
number in the static segment and they are assigned to frames by means of
their ID. For this purpose all nodes compare their internal slot counter to the
present frame-IDs. If both values match a dynamic communication starts
within the current minislot. Obviously, the length of a dynamic slot depends
on the size of the payload in the associated frame. The maximum payload
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length in the dynamic segment is 254 bytes, too. However, the actual trans-
mitted payload length may vary from one dynamic slot to another [RS06].
The comparison of slot counter and frame-ID implements a prioritization of
frames. A frame with a lower ID will be transmitted with a higher probability
than a frame with a higher ID. This means that the dynamic segment realizes
a probabilistic scheduling strategy which is not applicable for safety-critical
systems with hard real-time constraints. Thus, we consider a pure static con-
figuration, i.e. a FlexRay cycle without dynamic segment, for our work in
this thesis [Fle05b].

Symbol Window The symbol window is also optional in the communica-
tion cycle and is used to transmit FlexRay-defined symbols. Symbols are
communication elements with protocol internal information. They are used
to exchange information about the status and functionality of the nodes in
the cluster without interfering the message communication. There are three
different symbols defined in FlexRay [Rau08]:

• Collision avoidance symbol (CAS),

• Media test symbol (MTS), and

• Wake-up symbol.

The CAS and the wake-up symbol are exclusively used at the start-up re-
spectively wake-up phase. Media test symbols are transmitted to test bus
guardians.

Network Idle Time The NIT is a communication-free period at the end
of the communication cycle and is basically used by each node to calculate
and apply necessary local clock corrections to keep the clocks synchronized
[Fle05b]. Since no communication is performed during the NIT it can also be
used for other internal cluster and communication cycle related operations.
Depending on the configuration of the FlexRay bus, the duration of the NIT
may be between 2µs and 4830µs [Fle05a]. To increase the available band-
width and flexibility for our approach we keep the NIT as long as necessary,
but also as short as possible.

The allowed number of slots in a communication cycle is limited. Moreover,
their number and size is initially defined and fixed. To increase the flexibil-
ity and the utilization of the FlexRay bus cycle multiplexing can be applied,
as proposed in [AUT13j]. Cycle multiplexing means, that an associated node
may transmit different frames in different cycles. The cycle multiplexing of a
frame is defined by the base cycle and the cycle repetition. The base cycle de-
fines the offset in cycles for the first occurrence of the respective frame. The
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cycle repetition denotes the recurrence of a frame in the multiplexing. Ini-
tially, the value of the cycle repetition was defined to be 2n with n∈ {0, . . . ,6}
to allow a periodic occurrence in the 64 cycles [Luk+09]. Thus, for a given
base cycle B and cycle repetition Rep, the cycle numbers where a frame is
transmitted can be calculated as a so-called cycle count filter:

cycle number = (B+n ·Rep)mod 64, with n ∈ N0, B < Rep.

Cycle multiplexing significantly increases the flexibility of the communica-
tion system. For instance, it can be applied if there are tasks that have longer
message transmission periods than the configured cycle length. Considering
a cycle length of 2 ms, a task with a period of 8 ms could transmit its message
each fourth cycle.

The current protocol specification of FlexRay further increases the flexibil-
ity for the message scheduling by adding slot multiplexing and extending the
possible cycle repetitions by the values of 5, 10, 20, 40, and 50 [Fle10]. Cy-
cle multiplexing combined with slot multiplexing does not only support the
transmission of different frames from the same node but also the assignment
of a slot to different nodes in different communication cycles. In that regard,
however, the configuration of the slot-to-node assignments must ensure that
the transmissions in the cluster are conflict-free to guarantee a deterministic
communication behavior. The utilization of cycle and slot multiplexing re-
sults in an advanced COM matrix. Table 2.5 gives an example of a COM
matrix with cycle and slot multiplexing. In this example cycle multiplexing
is utilized to transmit different frames from ECU 1 in slot 0, i.e frame a in
cycle 0 and frame e in cycle 1. Slot multiplexing is utilized for slot 2. In
cycle 0 it is assigned to ECU 3 and in cycle 1 to ECU 4.

Cycle 0 1 ...
Slot 0 1 2 3 ... 0 1 2 3 ... ...
ECU 1 tx:a rx rx - ... tx:e rx rx - ... ...
ECU 2 rx tx:b rx - ... rx tx:b rx - ... ...
ECU 3 rx - tx:c rx ... rx - - rx ... ...
ECU 4 - rx - tx:d ... - rx tx:f tx:d ... ...

Table 2.5: Example of a communication matrix with cycle and slot multiplexing.

Frame Format

Figure 2.11 gives an overview of the FlexRay frame format. The frame con-
sists of three segments, namely header segment, payload segment, and trailer
segment. In the following we provide a brief description of these segments.
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3 Bytes 0...254 Bytes 5 Bytes 

Trailer Segment Payload Segment Header Segment 

Data 0 Protocol Information Data 1 Data 2 ... Error Detection (CRC)  Data n 

FlexRay Frame 

Figure 2.11: FlexRay Frame Format.

Header Segment The header segment consists of 5 bytes with protocol
relevant information. These bytes contain several control bits like null frame
indicator, sync frame indicator, and startup frame indicator. Another protocol
relevant information in the header segment is the frame ID. The unique frame
ID determines the slot in which a frame (contained in a message buffer) will
be transmitted on the FlexRay bus [RS06]. Furthermore, a cycle count field
is present in the header segment. The cycle count indicates the transmitting
node’s view of the value of the cycle counter at the time of frame transmission
[Fle05a]. This information can be used for the avoidance of errors due to
asynchronous local cycle counts of nodes. Additionally the header contains
information about the length of the payload segment and a cyclic redundancy
check code (CRC) for error detection. For a complete and detailed description
of the control bits and the other parts of the header segment refer to [Fle05a].

Payload Segment The payload segment consists of 0 to 254 bytes, or more
precisely 0 to 127 two-byte words of data. Since the payload length in the
header segment is given as number of two-byte words, the payload segment
always contains an even number of bytes. The bytes of the payload segment
are identified numerically, starting at 0 for the first byte after the header seg-
ment and increasing by one with each subsequent byte. The individual bytes
are referred to as ”Data 0”, ”Data 1”, ”Data 2”, etc. up to the configured
number of bytes. Each slot respectively frame in the static segment has the
same payload size. Thus, FlexRay utilizes padding bytes9 to fill the remain-
ing bytes, if the message to transmit is smaller than the configured payload
size. This is also applied for null frames which are utilized by the protocol
and contain just zeros and no application-relevant data.

Trailer Segment The FlexRay trailer segment contains a single field 24-bit
(3 bytes) CRC for the frame. This cyclic redundancy check code is com-
puted over the header segment and the payload segment of the frame for
transmission error detection. The Frame CRC calculation is done inside the
communication controller before transmission or after reception of a frame.
When a communication controller receives a frame it shall perform the frame
CRC computations based on the header and payload field values received and
check the computed value against the frame CRC value received in the frame.

9This means, that the remaining words are set to the padding pattern ”0x00” [Fle05a].
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If both values match the error check passes, otherwise it fails. For a complete
and detailed description of the error detection refer to [Fle05a].

2.2.4 Timing Constraints for Distributed Real-Time Systems

As described in Section 2.1 the execution of a real-time system functionality
is triggered by its environment. Thereby, the triggering signal is associated
with an event occurrence. In time-triggered real-time systems these trigger-
ing signals respectively events occur at specified periodic points in time. A
distributed real-time transaction typically starts with the event of periodic
data acquisition from sensors and ends with the event of data output to actu-
ators. The duration between these two events is called end-to-end delay (cf.
Section 2.2.2). To guarantee a correct behavior a distributed real-time system
has to fulfill hard timing constraints regarding event occurrences and delays.
Thus, the modeling and analysis of timing is an important part of the design.

The ITEA2 project TIMMO and its follow-up TIMMO-2-USE10 developed
solutions for timing modeling and analysis in automotive system design. Al-
though these projects were initially addressing the automotive domain, their
results are generally applicable for embedded real-time systems. A major re-
sult of these projects is the Timing Augmented Description Language (TADL)
respectively its extension TADL2 that offers capabilities for the modeling of
timing information and constraints [Per+12b]. In [Klo+09] and [Klo+10b]
we applied this language to model and analyze timing properties of a Steer-
By-Wire system which we designed and implemented for the validation of
the TIMMO and TIMMO-2-USE project results.

TADL2 is a language for imposing timing constraints on events and their
occurrences in structural system models on different levels of abstraction
[Per+12b]. Beside events, TADL2 also defines the event chain which indi-
cates causal relationship between a stimulus and a response event [Blo+12a].
It offers several basic and derived timing constraints for events and event
chains. Since we consider time-triggered real-time systems in this thesis we
focus on the periodic constraint and particularly on the delay constraint. A
periodic constraint describes an event that occurs periodically and constrains
the distance of its occurrences. An example for that is the periodic activa-
tion of a task. A delay constraint imposes limits between the occurrences of
a source event and a target event [Per+12b]. For instance, in a distributed
real-time system the data input can be modeled as a source event and the
data output as a target event. These events also represent the stimulus and
response event of an event chain. Based on that, we can constrain the delay
defining a maximum end-to-end delay to guarantee a correct system behavior.

10TIMing MOdel - TOols, algorithms, languages, methodology, and USE cases [Con12].
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In the following we provide exemplary TADL2 timing constraints for the
Brake-By-Wire system we defined in [Blo+12b]. Beside other timing con-
straints, the authors define a periodic constraint TrPosition for the peri-
odic reading of the wheel position by a task WheelCtrl and a delay con-
straint for the subsequent sending of a data value SpeedFactor by the tasks
TransmissionCtrl and Adapter. TADL2 defines formal timing specifica-
tions representing internal time bases based on a common external physical
time dimension [Blo+12a].

1 TimingSpecification ts1 {
2 Dimension physicalTime {
3 Units {
4 micros{factor 1.0 offset 0.0},
5 ms{factor 1000.0 offset 0.0 reference micros}
6 second{factor 1000000.0 offset 0.0 reference micros}
7 }
8 }
9 TimeBase universal_time {

10 dimension physicalTime
11 precisionFactor 0.1
12 precisionUnit micros
13 }
14 }

Listing 2.1: Example of a TADL2 timing specification.

Listing 2.1 provides an exemplary dimension declaration in TADL2 from
[Blo+12a]. A list of units and attributes for the conversion between microsec-
ond (micros), millisecond (ms) and second (second) in the physicalTime
dimension are given. A time base universal time is specified which is the
internal reference time base for the whole system. The precisionFactor
and precisionUnit define that universal time is able to specify values
with a precision of 0.1µs. Based on this, timing constraints are formalized.

1 Event PositionRecvByWheelCtrl {
2 //Wheel position received by WheelCtrl task event
3 }
4
5 PeriodicConstraint TrPosition {
6 //Periodic constraint for reading of wheel position
7 event PositionRecvByWheelCtrl
8 period = 2.0 ms on universal_time
9 minimum = 0

10 jitter = 0
11 }

Listing 2.2: Example of a TADL2 periodic constraint.
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Listing 2.2 shows the periodic constraint TrPosition for the WheelCtrl
task. It defines that the distance between repeated occurrences of the event
PositionRecvByWheelCtrl may be up to 2ms, i.e. the wheel position has
to be read periodically every 2ms. The lower limit minimum, which is also
possible to specify, defaults to 0 if not present [Per+12b]. Also the parameter
jitter is set to 0 which means that no allowed value for the deviation of the
period is defined.

1 Event SpeedFactorSentByTransmCtrl {
2 //SpeedFactor sent by TransmCtrl task event
3 }
4
5 Event SpeedFactorRecvByAdapter {
6 //SpeedFactor sent by TransmCtrl task event
7 }
8
9 Event SpeedFactorSentByAdapter {

10 //SpeedFactor sent by Adapter task event
11 }
12
13 DelayConstraint SpeedFactorDelay {
14 //Delay constraint between source/stimulus

(SpeedFactorSentByTransmCtrl) and target/response
(SpeedFactorSentByAdapter) events

15 source SpeedFactorSentByTransm
16 target SpeedFactorSentByAdapter
17 lower = 0
18 upper = 1.0 ms on universal_time
19 }

Listing 2.3: Example of a TADL2 delay constraint.

Listing 2.3 shows a delay constraint SpeedFactorDelay for a source event
SpeedFactorSentByTransm and target event SpeedFactorSentByAdapter.
The events are also the stimulus and response of an event chain which is a
composition of two included event chains. A sequence of event chains is
constructed such that the response event of the first event chain is the stimu-
lus of the second one [Blo+12a]. The delay constraint defines that the delay
between the sending of the data value SpeedFactor including the reception
by the Adapter task may not exceed 1ms. Here, the value for lower is also
not specified.

The examples above show the capabilities of TADL2 to define timing con-
straints on structural models of distributed real-time systems. We utilize it to
specify timing constraints for the software architecture model by augmenting
the TDG as input for our design approach in Section 4.2.3.
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2.3 Fault-Tolerant System Design

Beside many functional and performance objectives the design of a safety-
critical real-time system must satisfy further requirements. Fault tolerance is
an important system attribute, which is utilized to fulfill such requirements.
This section provides a description of the fundamental terms concerning de-
pendability, fault types, and means for fault-tolerant system design.

2.3.1 Main Attributes of Dependable Systems

The dependability of a system defines the quality of service provided by this
system. It encapsulates different concepts to quantify the dependability of
a system. These concepts are reliability, availability, saftey, maintainability,
performability, and testability [Pra96]. For safety-critical systems, the main
attributes for the dependability are reliability and safety. In [RLT78] Randall
et al. defined the reliability of a system as:

”A measure of the success with which the system conforms to
some authoritative specification of its behavior.”

In the ideal case this specifications should be complete, consistent, compre-
hensible, and unambiguous [BW09]. Furthermore, timing constraints are an
important part of the specification for a real-time system. When the actual
behavior of a system deviates from the specifications, this is called a system
failure [RLT78].

Failures result from unexpected problems within the system which eventually
imply an undesired and unexpected external behavior of the system. These
(internal) problems are called errors and their mechanical, electronic, or al-
gorithmic (external) causes are termed as faults [BW09]. Because systems
are often composed of components which are themselves sub-systems, a fail-
ure of one sub-system may imply a chain reaction – i.e. failure → fault →
error→ failure→ fault – finally resulting in a malfunction of the whole sys-
tem. Figure 2.12 depicts these impairments potentially negatively influencing
the dependability of a system. Beside reliability ensuring the fulfillment of
the specified functionality, safety issues are a very important aspect for the
dependability of a system.
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Safety can be defined as [Lev86]:

”Freedom from those conditions that can cause death, injury,
occupational illness, damage to (or loss of) equipment (or
property), or environmental harm.”

However, this definition considers most systems as unsafe which have an
element of risk associated with their usage [BW09]. Therefore, the safety
of a system is often considered in terms of mishaps. A mishap is an un-
planned event or series of events that may result in one or more of the con-
ditions mentioned above. To improve safety, a system should be free from
these conditions, because they can cause damages, accidents, injuries, or even
death. Summarized, safety defines the probability for the non-occurrence of
(catastrophic) conditions leading to mishaps, whether the intended function
is performed correctly or not [BW09].
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Figure 2.12: Main attributes of a dependable system with potential impairments and means.

2.3.2 Fault Types

Different fault types can be distinguished by means of their occurrence and
their duration in a system [BW09]:

Transient faults: This fault occurs at a particular point in time, remains in
the system for some unspecific time period and disappears. For in-
stance, hardware components which have an adverse reaction to ra-
dioactivity may have transient faults.

Intermittent faults: These faults are a special kind of transient faults that
occur from time to time. For example, this kind of fault can be ob-
served at hardware components that are heat sensitive. They work cor-
rectly, stop working when overheating, cool down for a while and start
working again. This scenario can repeat over and over again.
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Permanent faults: A fault is called permanent fault, if it stays in the system
even until a shutdown. Even after a restart this fault remains in the
system, if it does not get repaired. Often, these are hardware faults,
like broken wires or defect sensors.

To create a dependable system all these types of faults must be prevented
from causing erroneous system behavior, i.e. failures, and conditions lead-
ing to mishaps possibly causing damages, accidents, injuries, or even death.
Faults can also be distinguished by the phase in which they are introduced
[LAK92]. The faults mentioned above are operational faults which occur
during system lifetime and are caused by physical impact; design faults are
introduced already at system design or during system modification. Design
faults are much harder to detect and tolerate and require different means than
operational faults [Jal94]. Moreover, operational faults may occur even if
design faults are prevented. In the next section we describe different means
for dependable systems and clarify why we focus on operational faults in this
thesis.

2.3.3 Means for Dependable Systems

Figure 2.12 also provides means to increase the dependability of a system by
a decreased level of susceptibility to faults. There are two major means to
protect a system against the impairments described above and improve reli-
ability and safety [LA90]. On the one hand fault prevention shall eliminate
any possibility of faults in a system design before it goes operational; on the
other hand fault tolerance shall enable a system to continue with a reliable
and safe operation even in the presence of a fault.

Fault Prevention There are two stages to realize fault prevention: fault
avoidance and fault removal [BW09]. Fault avoidance shall avoid or at least
limit the introduction of potentially faulty components during system design.
For hardware components this can be realized by [RLT78]:

• using the most reliable components within the given cost and perfor-
mance constraints,

• applying thoroughly-refined techniques for interconnection of compo-
nents and assembly of subsystems, and

• protecting the hardware from expected forms of interference.

In software components faults can be avoided or at least limited by rigor-
ous or even formal requirement specifications and the use of proven design
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methodologies. In spite of these concepts for avoidance, design faults will
very likely be present in the hardware and software components after their
construction. Therefore, fault removal can be applied as second stage of fault
prevention. Although this includes concepts for finding and removing the
causes of errors, like design reviews and program verification, usually sys-
tem testing is performed. However, testing has some major limitations and
will very likely not remove all potential faults. A test can only prove the
presence of faults, not their absence. Furthermore, it is sometimes impos-
sible to test under realistic conditions; most tests are simulations and it is
difficult to guarantee that these are accurate. The purpose of verification is a
consistency check of an implementation model against its specifications. Ver-
ification can be performed multiple times during design and development of a
system until the required quality is achieved. A common technique is formal
verification which proves the consistency between model aspects and for-
mal specifications analytically [Kru09]. Formal verification approaches are
for instance symbolic model checking and equivalence checking. Symbolic
model checking verifies the validity of a property specification expressed by
a temporal logic formula with respect to a synchronous finite state machine
model [CGP99]. Equivalence checking proves the behavioral equivalence of
two design models [KSL95], [Kue+02]. Nevertheless, despite testing and
verification techniques hardware components may still fail caused by op-
erational faults. Because of this fact and the described limitations of fault
prevention, system designers should consider fault tolerance [BW09].

Fault Tolerance Fault tolerance is the ability of a system to continue per-
forming its tasks after the occurrence of a fault. Fault masking can be applied
which prevents faults within a system from introducing errors resulting in a
failure [Pra96]. In other words, the goal of fault tolerance is the avoidance
of a system failure even if a fault is present. In this context, it is impor-
tant to note that the overall system cannot be made fault tolerant against its
own failures, but against the failure of its components. Thus, fault tolerance
masks the failure of a subsystem to prevent a failure of the whole system
[Jal94]. Another efficient technique for fault tolerance is reconfiguration.
Reconfiguration detects and locates a fault and reconfigures the system to re-
move or rather replace a faulty component. This technique consists of four
steps: Fault detection, fault location, fault containment and fault recovery.
As a first step, fault detection recognizes the occurrence of a fault. This is the
necessary to perform the next steps. Once a fault is detected, fault location
determines where the fault arises to identify an appropriate recovery strategy.
Fault containment is required in all fault-tolerant designs, because it isolates
the fault to avoid its propagation possibly resulting in a failure of the overall
system. As the final step, fault recovery ensures that even in the presence of a
fault, the system remains operational or regains operational status by means
of reconfiguration [Pra96].
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Generally, three different levels of fault tolerance can be realized for a system
[BW09]:

• Fail Safe: The system maintains its integrity while accepting a tempo-
rary stopping of its operation.

• Fail Soft: The system continues to operate in the presence of errors and
accepts a partial degradation of functionality or performance during the
time needed for recovery or repair.

• Full Fault Tolerance: The system continues to operate in the presence
of faults – at least for a limited time period – with no significant loss of
functionality or performance.

The required level of fault tolerance of a system depends on the application.
In practice fail soft is sufficient for some distributed systems, however most
safety-critical systems require full fault tolerance [BW09]. Since we focus
on safety-critical real-time systems, our approach realizes full fault tolerance
by means of reconfiguration.

Redundancy All fault-tolerant techniques require additional elements inte-
grated into the system to detect and recover from faults [BW09]. Since these
components are not required for normal system operation they are called
redundant components. Based on this so-called protective redundancy in
[BW09] Burns and Wellings define the aim of fault tolerance as:

”The aim of fault tolerance is to minimize redundancy while
maximizing the reliability provided, subject to the cost and size
constraints of the system.”

Hardware redundancy is perhaps the most common form of redundancy ap-
plied in systems [Pra96]. It can be distinguished between static (passive)
and dynamic (active) redundancy [LA90]. Static redundancy utilizes vot-
ing mechanisms to mask fault occurrences. A widely spread form of static
hardware redundancy is Triple Modular Redundancy (TMR). TMR consist
of triplicated hardware components, e.g. a processor, and a majority voting
component to determine the correct output and masking the fault of a single
processor. To mask faults from more than one component more redundancy
is necessary. Here, N Modular Redundancy (NMR) can be applied. Ob-
viously, the voting mechanism is the primary disadvantage with TMR and
NMR because it is a SPOF. To overcome possible voter failures this compo-
nent can also be multiplied, e.g. triplicated. Nevertheless, particularly for
a distributed system with many ECUs these redundancy concepts result in a
significant rise of complexity, size, and cost. Dynamic redundancy applies
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reconfiguration to realize fault tolerance. It does not realize a fault masking,
i.e. it does not prevent faults from producing errors within a system. These
errors and the corresponding faults can be detected. Clearly, if a fault and
its produced errors remain undetected this will probably result in a system
failure. Thus, the error must be detected to locate its source, i.e. the faulty
component. The faulty component has to be removed and its functionality
has to be resumed by another to regain the operational status of the system.
This clarifies the importance of appropriate fault detection and location ca-
pabilities for dynamic redundancy. Dynamic redundancy is best applied for
applications where temporary faults and errors are acceptable as long as the
system regains its operational status in a sufficiently short period of time.
However, it is usually preferable to apply dynamic redundancy than provid-
ing the large quantities of additional hardware to achieve static redundancy
[Pra96].

2.4 Summary

This chapter presented fundamentals and basic terms required for the design
of fault-tolerant systems. The fundamentals of real-time systems in general
contain the characteristics of tasks and their scheduling. Based on these basic
terms, the fundamentals of distributed real-time systems presented additional
properties and constraints for communication and timing issues. Finally, the
basic terminology and major concepts for fault-tolerant system design were
introduced.
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Related Work

In Chapter 1 we motivated the work presented in this thesis by describing the
increasing importance and complexity of distributed real-time systems. Due
to the growing importance of distributed real-time systems, there exists a lot
of related work in this context. Therefore, this chapter provides an overview
of the most relevant publications related to the work presented in this the-
sis. It starts with existing work dealing with the design and configuration
of distributed real-time systems. Afterwards, it presents a broad overview
of publications regarding the scheduling of real-time tasks and messages in
distributed systems. Since this thesis presents a design approach for fault-
tolerant distributed real-time systems, this chapter concludes with the pre-
sentation of existing approaches for fault tolerance in distributed real-time
systems.

3.1 Design of Distributed Real-Time Systems

As mentioned before, the design and configuration of distributed real-time
systems is a large research area. Two popular and often cited books of refer-
ence in this domain are [BW09] and [Kop11]. Burns and Wellings [BW09]
provide an in-depth analysis of the requirements for the design and imple-
mentation of embedded real-time systems, while Kopetz [Kop11] is consid-
ered as a reference book that explains the fundamental concepts of this field.

As described in Chapter 1, two of the major domains of distributed real-time
systems are the avionic and the automotive domain. Hence, several papers
and articles addressing the design and configuration of such systems were
published in the context of these domains. Hammett [Ham03] motivates the
necessity to reexamine the way avionics systems are built because the trend
to very highly integrated systems is leading to systems that are too complex to
be trusted. Therefore, he proposes that aerospace developers shall leverage
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the research investments of the automotive industry in distributed systems
to be able to build distributed avionics systems that provide increased func-
tionality at a manageable level of complexity and to avoid SPOFs. Navet et
al. present the current state of the art, trends, and open issues for the de-
sign of automotive distributed systems with focus on the communication in
[NNa+05]. The authors mention that in terms of criticality future automotive
X-by-wire systems can reasonably be compared with flight-by-wire systems
in the avionic field and that according to [Tea98], the probability of encoun-
tering a critical safety failure in vehicles must not exceed 5 ·10−10, but other
studies consider 10−9. Hence, they identify two main challenges: (i) to reach
such dependability with respect to cost constraints, and (ii) to develop design
methodologies adapted to the specific automotive constraints.

Scheickl and Rudorfer [SR08] emphasize the importance of model-based ap-
proaches with consideration of timing constraints for the design of automo-
tive real-time systems. Therefore, they propose a timing-augmented system
model containing different types of information about the real-time system.
The authors identify an appropriate mapping and scheduling of tasks and
messages in a distributed system as a main challenge regarding timing. Thus,
in the next section we give a broad overview of related work on this research
field. The work presented in this thesis addresses all the design issues men-
tioned above. We present a design approach for fault-tolerant distributed real-
time systems which provide the intended functionality, avoid a SPOF, and
offer cost-efficient dependability. This approach utilizes timing-augmented
system models and is also applied to a standardized design methodology re-
specting the specific constraints of the automotive domain. An appropriate
deployment with a holistic fault-tolerant mapping and scheduling of tasks
and messages that fulfills the given timing constraints is an essential part of
the design approach.

As described in Section 2.2.2, time-triggered communication is deterministic
and the time-triggered FlexRay protocol that is considered in this thesis is the
emerging standard for real-time communication in safety-critical automotive
systems. Jang et al. [Jan+11] mention that designing a FlexRay network
is a complex and difficult task because the FlexRay protocol has more than
70 configuration parameters which correlate with each other. However, they
identify two main parameters that are highly relevant to the application soft-
ware: (i) the static slot length and (ii) the communication cycle length. Park
and Sunwoo describe a parameter optimization method for these parame-
ters in [PS11] which was integrated in a design framework by Jang et al.
in [Jan+11]. The framework is predicated on principles for optimizing the
network utilization and the worst case response time (WCRT) of transmitted
frames. The method consists of two steps which determine the optimal static
slot length and the optimal communication cycle length. These steps are sup-
ported by a frame packing and a scheduling algorithm. In the first step of the
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proposed framework, the optimal static slot length is determined by means
of the network utilization and frame packing results. Based on the results
from the first step, the second step determines the optimal communication
cycle length based on the scheduling results and the WCRT analysis of the
frames. The authors mention that they do not consider multirate communi-
cation and in-cycle repetition that allows the scheduling of messages with
a lower period than the duration of one communication cycle. In contrast,
we support multirate communication and multiple instances of a message in
one communication cycle as well as cycle multiplexing to enable a flexible
configuration of these main FlexRay parameters for our design approach (cf.
Section 4.2.5).

Hagiescu et al. [Hag+07] propose a compositional framework to model
and analyze ECUs interconnected by a FlexRay bus. The authors provide
a method to analyze the performance of the FlexRay bus by means of the
maximum end-to-end delay, required amount of buffer at each comminca-
tion controller, and utilization of ECUs and bus. However, they focus on
the non-deterministic dynamic segment in the performance analysis which is
not applicable for safety-critical distributed systems we are considering here.
Pop et al. [Pop+06] present a schedulability analysis for the FlexRay commu-
nication protocol and propose a network parameter design process. Timing
properties of static messages have been established by building a static cyclic
scheduling and the FlexRay message analysis has been integrated in the con-
text of a holistic schedulability analysis that determines the timing properties
for all the tasks and messages in the system. This analysis is also the basis
for a follow-up publication proposing an optimized scheduling of FlexRay
messages that we present in the following section.

3.2 Scheduling in Distributed Real-Time Systems

Numerous authors like Ramamritham and Stankovic in [RS94] argue that
an appropriate scheduling of the performed activities to meet their timing
constraints is one major problem in real-time computing systems. Hence,
there exists numerous literature addressing this topic. The textbook [But11]
from Buttazzo is considered as reference literature that introduces the basic
concepts of real-time computing and means to design real-time systems. This
includes a detailed description of the commonly applied scheduling strategies
for periodic real-time tasks which we also consider in this thesis.

In a distributed real-time system tasks and messages have to be scheduled to
ensure their timeliness. Cottet et al. mention in [Cot+02] that task schedul-
ing in distributed systems is dealt with at two levels: (i) on the local level
of each processor and (ii) on the global level of mapping tasks to proces-
sors. Davis and Burns [DB11] provide a survey on hard real-time scheduling
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algorithms and schedulability analysis techniques for homogeneous multi-
processor systems.11 The paper also reviews the key results in this research
field. As described in Section 2.2.1, global scheduling may imply dynamic
allocation by means of migration. Therefore, the article provides a classifi-
cation of scheduling algorithms from [Car+04] according to their allocation
respectively migration properties. The authors call scheduling algorithms
where no migration is permitted partitioned and those where migration is
permitted global. Beside the additional communication loads required for
task respectively job migrations, the authors mention that from a practical
perspective, the main advantage of using a partitioning approach is that, once
an allocation of tasks to processors has been achieved, a wealth of real-time
scheduling techniques and analyses for uniprocessor systems can be applied.

The authors present the properties of several partitioning approaches which
are based on local scheduling with EDF from [Hor74] and RM from [LL73]
(cf. Section 2.1.2). In works like [DL78], [DD86], [OS95], and [Lie+95],
these strategies are examined combined with bin packing heuristics such as
first fit, next fit, best fit, and worst fit, as well as task orderings such as de-
creasing utilization for task allocation. The resulting partitioned algorithms
have been further analyzed regarding their utilization bounds for schedula-
bility analysis in publications like [ABJ01], [AJ03], and [LDG04]. Further-
more, in their publication [BF07] Baruah and Fisher present an EDF-based
algorithm based on ordering tasks by increasing relative deadline which uti-
lizes a sufficient test based on a linear upper bound for the processor de-
mand criterion to determine schedulability. Fisher et al. [FBB06] apply a
similar approach for partitioning with fixed task priority scheduling based on
DM. The resulting algorithm is based on ordering tasks by decreasing relative
deadline and uses a sufficient test based on a linear upper bound for a defined
processor request bound function to determine schedulability. However, as
mentioned above the presented strategies consider homogeneous processors
and communication delays between distributed processors are not explicitly
considered in the presented algorithms and schedulability tests. In contrast,
in Section 4.2.4 we extend the existing schedulability tests for the considered
local scheduling algorithms EDF and RM/DM to support heterogeneous sys-
tems to a certain extend and even more important explicitly integrate com-
munication delays.

The main disadvantage of the partitioning approach is that the task allocation
problem is analogous to the bin packing problem and known to be NP-Hard
[GJ79]. Moreover, Anderson and Jonsson [AJ00] describe that there are typ-
ically fewer context switches respectively preemptions when global schedul-
ing is applied because the scheduler will only preempt a task when there are

11The term multiprocessor systems encapsulates multicore systems as well as distributed systems. In the context
of scheduling, these systems differ mainly in their underlying communication infrastructure with their resulting
delays.
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no processors idle. Hence, Davis and Burns [DB11] also give an overview
about the key research results in global scheduling with dynamic allocation
and task migration. They describe that Dhall and Liu already in [DL78]
considered global scheduling of periodic task sets with implicit deadlines on
multiprocessor systems and analyzed the utilization bound of global EDF.
There exist several publications like [SB02], [GFB03], and [Bak05] which
also consider task sets with implicit deadlines and present different vari-
ants of global EDF scheduling with their corresponding utilization bounds.
Also for task sets with constraint and arbitrary deadlines different variants of
global EDF have been proposed and analyzed, e.g. in [BCL05], [BMS08],
and [BB09].

However, in general EDF is known to not be optimal for global scheduling
on multiprocessor platforms [EDB10]. Therefore, Davis and Burns also pro-
vide an overview of existing global dynamic priority scheduling algorithms
which are optimal for periodic task sets with implicit deadlines [DB11]. For
instance, Baruah et al. [Bar+96] introduce the Proportionate Fair (Pfair) al-
gorithm. Pfair scheduling divides the execution timeline into equal length
quanta and allocates tasks to processors at each time quantum. The authors
show that Pfair is optimal for periodic task sets with implicit deadlines and
has a utilization bound of m for m processors. However, in practical use
Pfair incurs very high overheads by making scheduling decisions at each time
quantum [DB11]. Numerous variants of Pfair with improved efficiency have
been introduced in publications like [AS00] and [AS01]. The Boundary Fair
(BF) algorithm presented by Zhu et al. in [ZMM03] is similar to Pfair but
it only makes scheduling decisions at period boundaries which reduces the
number of scheduling points to typically at most 50% of the number required
for Pfair. The authors prove that BF is also an optimal algorithm for periodic
task sets with implicit deadlines. Beside these articles, there are numerous
further publications regarding task scheduling on multiprocessor systems, but
their extensive discussion is beyond the scope of this thesis. Hence, for fur-
ther details, we refer to [DB11].

Even though the global dynamic priority scheduling algorithms mentioned
above are optimal for periodic task sets with implicit deadlines, there exist
no optimal online algorithms for the preemptive scheduling of sporadic task
sets on multiprocessors. Moreover, their practical use can be problematic
due to the potentially excessive overheads caused by frequent preemption
and migration [DB11]. This means, that dynamic allocation can lead to non-
determinism or missing of timing constraints if the allocation is performed
at runtime. For instance, the global scheduling algorithm finds no feasible
solution because of its additionally required computation time. However,
global scheduling is flexible regarding possible changes in the system topol-
ogy. This implies that dynamic allocation can increase the fault tolerance of
a distributed system in case of a node failure [Cot+02]. Therefore, our ap-
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proach combines the advantages of both allocation concepts. On the one hand
it keeps the determinism of the static allocation and guarantees the timing
constraints and on the other hand, it increases the fault tolerance by includ-
ing possible reallocations in the predetermined solution to compensate node
failures. This means, like in the partitioning approaches presented above, we
determine a static allocation for each configuration and based on that con-
sider EDF and RM/DM for the resulting local scheduling. Thus, according
to [Cot+02], in the following we use the term global scheduling synonymous
for the mapping of tasks to processing nodes. Furthermore, it is important to
remind that the presented allocation and scheduling strategies consider ho-
mogeneous processors and do not consider communication delays, whereas
our approach supports heterogeneous systems to a certain extend and inte-
grates resulting communication delays.

In distributed real-time systems, besides tasks also messages have to be sched-
uled to ensure their timeliness. Depending on the bus mapping and the mes-
sage scheduling, this results in a communication delay of a message respec-
tively its receiving task which should be small and deterministic for real-
time communication. As described above, we consider deterministic time-
triggered communication in this thesis. Thus, for the related work in this
field we focus on publications regarding time-triggered bus communication
and in particular FlexRay and its static segment. As described in Section
2.2.3 FlexRay has been introduced in 1999. At the same time Pop et al.
[PEP99] already presented an approach for scheduling in time-triggered em-
bedded systems based on TTP communication and applied it to an automotive
case study. This work is proceeded in [PEP00] where the authors develop dif-
ferent message scheduling policies and compare them by means of an aircraft
control system. Pop et al. [Pop+07] also propose first techniques to optimize
the FlexRay bus access, based on their analyses from [Pop+06], so that the
hard real-time deadlines are met for all tasks and messages in the system. For
this purpose the authors propose different heuristics and algorithms to opti-
mize the bus access and compared the results to reference values produced
by a simulated annealing based design space exploration. To further evaluate
the proposed techniques, they also consider a real-life example implementing
a vehicle cruise controller.

During the last years, several other papers regarding scheduling and opti-
mization in the static segment of FlexRay have been published. Amrion and
Ektebasi [AE12] provide a survey on this topic. The authors present different
approaches categorized by their scheduling techniques. One technique is bin
packing which is used with respect to the static segment of FlexRay to min-
imize the number of slots that are allocated to ECUs in order to maximize
the utilization of the bus. Lukasiewycz et al. present a two dimensional bin
packing technique for scheduling of the static segment in [Luk+09]. More-
over, the authors introduce a fast greedy heuristic algorithm as well as an
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integer linear programming approach for optimization of this bin packing.
Another applied technique are genetic algorithms. Ding et al. have initially
proposed their scheduling method based on genetic algorithms in [Din+05]
and proceed their work in [DTT08]. Besides the primary objective of meet-
ing all task deadlines, the secondary objective is defined that the schedule
can optimize communication buses to minimize hardware cost. The authors
consider different modeling paradigms and constraints we also consider in
this thesis: The software architecture is modeled as a TDG, each inter-node
message must be scheduled separately on the bus, and the periods of the
tasks in the TDG imply the end-to-end delay of the system (cf. Chapter 4).
Ding [Din10] extended this work and presents a hybrid algorithm that com-
bines a worst-fit bin packing approach with a genetic algorithm to achieve a
minimum number of used slots. The performed experiments by means of a
automotive safety system show that the hybrid algorithm is superior to the
individual algorithms.

Above, we already mentioned linear programming as an applied optimization
strategy. Schmidt and Schmidt also apply linear programming techniques in
[SS09] to solve two identified subproblems for scheduling in the static seg-
ment: (i) Data signals have to be packed into equal-size messages while using
as little bandwidth as possible and (ii) a message schedule has to be deter-
mined such that the periodic messages are transmitted with minimum jitter,
i.e. a low deviation from the periodicity. The presented frame packing and
scheduling approaches are applied to a benchmark signal set to illustrate and
analyze the results. Schmidt and Schmidt [SS10] proceed their work. Similar
to previous work, the authors seek to allocate a minimum number of frame
IDs respectively slots in the static segment. But in addition they want to
minimize the message jitter. For this purpose, they formulate a linear inte-
ger programming problem whose solution is the desired message schedule
and apply it to an example adopted from an automotive application. Zeng
et al. [Zen+11] provide solutions for a task and signal scheduling problem
based on a mixed-integer linear programming optimization framework. Like
in this thesis, the authors study the problem of the ECU and FlexRay bus
scheduling from the perspective of the designer, but interested in optimizing
the scheduling subject to timing constraints with respect to latency and exten-
sibility of the system. For evaluation the presented method has been applied
to an automotive X-by-wire system as a case study.

As described in Section 2.2.3, the FlexRay protocol has several parameters
and constraints. Sun et al. [Sun+10] present a constraint programming ap-
proach for optimization of the objective of minimizing the used static slots
through task and message scheduling. Therefore, the authors identify and de-
fine six important configuration parameters for the configuration constraints:
transmission rate, cycle length, number of channels, number of static slots,
slot length, and maximum message size. All of these parameters are also con-
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sidered in this thesis and configured according to the given system properties
and constraints (cf. Section 4.2.5 and 4.3.2). To model system properties, in
[Sun+10] the authors reuse the modeling from [Zen+09] which consists of a
task graph and a linear bus topology. These models are similar to the mod-
eling of system properties in this thesis by means of task dependency graphs
and hardware architecture graphs which we present in Section 4.3.1. How-
ever, we define additional graph-based models to represent available slots,
performed task mappings, and the whole design result. As case study, the
authors consider modified software models of real-world automotive control
applications from [KHM03].

All publications above define similar objectives for the presented approaches.
Beside the determination of a feasible scheduling which guarantees the time-
liness of the messages and meets the task deadlines, the authors want to min-
imize the number of used slots. This reduction of required slots assigned to
an ECU is even more important for our fault-tolerant design approach. Es-
pecially in huge distributed systems with many ECUs communicating over
the bus, an efficient and flexible bus mapping is required to reduce the re-
sulting communication delays and determine a feasible schedule. Therefore,
our approach analyzes the inter-ECU communication of the initial configu-
ration and all reconfigurations to perform a combined bus mapping that uti-
lizes message respectively slot reuse and frame packing for inter-ECU mes-
sages with the same sender ECU (cf. Section 4.4.2). Moreover, for evalua-
tion nearly all presented approaches were applied to case studies which are
real-world examples form the automotive or avionic domain. As mentioned
above, in Chapter 5 we also apply our approach to an automotive case study
to approve its feasibility for realistic systems.

3.3 Fault Tolerance in Distributed Real-Time Systems

In Section 2.3 we mentioned that for safety-critical systems, the main at-
tributes for dependability are reliability and safety. Fault tolerance is a com-
mon mean to increase reliability and safety in a computer system [LA90].
Several textbooks like [BW09], [Jal94], [Pra96], and [Kop11] describe basic
concepts and properties of fault tolerance.

In the previous section we mentioned numerous publications regarding the
scheduling of real-time tasks and messages in multiprocessor and distributed
systems. Additionally, there also exist several works addressing dependable,
reliable, and fault-tolerant task scheduling. Oh and Son [OS97] study the
problem of scheduling a set of real-time tasks to meet their deadlines even
in the presence of processor failures. The authors prove that the problem
of scheduling a set of non-preemptive tasks on more than two processors to
tolerate one arbitrary processor failure is NP-complete even when the tasks
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share a common deadline. They propose a heuristic algorithm to determine
a schedule that can tolerate one arbitrary processor failure in the worst case.
But the authors assume that all tasks share a common deadline which is an
unrealistic condition for a distributed system. Lauzac et al. present a task
scheduling algorithm based on Pfair that tolerates transient and permanent
faults in [LM98]. The authors show that this fault-tolerant algorithm yields a
processor utilization close to the optimal when the task set consists of many
tasks with small utilization. However, they also define strict conditions for the
task set. For instance, a task τi must be finished at least Ci time units before
its deadline di to ensure that there is enough time left for the re-execution
of the faulty task. A modified Pfair-based approach for fault-tolerant global
scheduling is presented by Liberato et al. in [Lib+99]. The authors formulate
similar conditions but introduce a recovery time Vi at which the task τi has to
be finished before di to ensure that there is enough time left for the recovery of
the faulty task. These conditions are too much restrictive and not applicable
for the design of cost-efficient distributed systems addressed in this thesis.

Further fault-tolerant scheduling algorithms for distributed systems are pre-
sented by Srinivasan and Jha in [SJ99] and by Qin et al. in [Q+99]. However,
the presented approaches are all based on homogeneous systems and con-
sider independent tasks. Therefore, Qin et al. also present a fault-tolerant al-
gorithm for heterogeneous distributed systems in [Q+00]. Qin et al. [QJS02]
extend their work and present an algorithm that addresses the issues of real-
time, fault-tolerance, reliability, heterogeneity, and precedence constraints.
Extensive simulations indicate that the presented algorithm is considerably
superior to the most relevant algorithms in the vast majority of cases. Even
though this algorithm considers precedence constraints and communication
delays, like the other presented approaches it does not address remote inter-
node message scheduling.

There also exist some publications addressing dependable and fault tolerant
communication and message scheduling. Kandasamy et al. [KHM03] ad-
dress the design of low-cost communication networks to meet performance,
timing, and fault tolerance requirements for distributed real-time systems.
The authors propose a TDMA-based multiple-bus network topology to en-
able fault-tolerant message allocation. Redundant routes are provided for
messages with specific fault-tolerance requirements, i.e. for a k-fault-tolerant
message m, k replicas or copies are allocated to separate buses. The approach
is applied to a software model case study involving some advanced automo-
tive control applications and it has been shown that sharing transmission slots
among multiple messages, i.e. frame packing, reduces bandwidth consump-
tion while preserving predictable communication. Here, we also consider
the redundant communication channel of the FlexRay bus for fault-tolerant
messages and apply frame packing to reduce unnecessary slot assignments.
Moreover, as mentioned above we also apply our design approach to soft-
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ware models from [KHM03] in Section 5.2.1. However, in contrast to our
approach, the authors do not address the fault-tolerant allocation of tasks to
processors.

Brendle et al. present fault-tolerance strategies for implementing passive
replication techniques in networked embedded systems based on FlexRay
busses in [Bre+08]. Among other things, the authors propose to replicate not
only the processes but also the messages and to reserve the required band-
width a priori at design time. Since a dynamic reconfiguration of the static
segment at runtime is not permitted in FlexRay, we also consider redundant
slot assignments in our approach. Tanasa et al. [Tan+10] present a frame-
work for generating fault-tolerant message schedules on the static segment.
The generated fault-tolerant schedules achieve the reliability goal even in the
presence of transient and intermittent faults. Moreover, their technique min-
imizes the required number of message retransmissions in reserved slots in
order to achieve fault-tolerant schedules to optimize the bandwidth utiliza-
tion. Therefore, they formulate the optimization problem in Constraint Logic
Programming (CLP), which returns optimal results and propose an efficient
heuristic. Experiments on synthetic test cases and real-world brake-by-wire
and ACC case studies show that the heuristic scales significantly better than
the CLP formulation. In contrast to our approach, the authors only utilize
one channel of FlexRay and not the optional second one for additional fault
tolerance to avoid a SPOF.

Tanasa et al. [Tan+11] extend their work by a novel frame packing method.
The authors mention that the technique proposed in [Tan+10] cannot be di-
rectly applied at a system design from scratch, i.e. when signals are the only
known units of communication. Hence, the proposed approach handles frame
packing and frame scheduling for reliable transmission over FlexRay. Their
method computes the required number of retransmissions of frames that en-
sures the specified reliability goal. The proposed frame packing method also
guarantees the timeliness of all signals and meets the desired reliability goal
to ensure fault-tolerance at the minimum bandwidth cost. As mentioned
above, our approach also applies timely frame packing to avoid unneces-
sary bandwidth utilization. Hau et al. propose a novel holistic scheduling
scheme in [HLH12] that can provide scalable fault tolerance by using flexi-
ble and dual channel communication in FlexRay. This scheme is built upon
a novel slot pilfering technique to schedule and optimize the available slots.
Hence, it offers two features: (i) Providing fault-tolerance and (ii) improv-
ing bandwidth utilization. Extensive experimental results based on synthetic
examples and a real-world brake-by-wire test case show the efficiency and
efficacy of the proposed scheme. However, in contrast to our approach all of
these publications do not address the combined fault-tolerant allocation and
scheduling of tasks and messages.
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Izosimov et al. published several papers dealing with fault tolerance in dis-
tributed systems. In [Izo+05] they present an approach for the design opti-
mization of fault-tolerant embedded systems for safety-critical applications
given a limited amount of resources. Their approach decides the mapping of
processes to processors and the assignment of fault-tolerant policies to pro-
cesses, i.e. process re-execution and replication, such that transient faults are
tolerated and the timing constraints of the application are satisfied. Several
experiments, including a real-world ACC show that the presented approach
is able to provide fault tolerance under limited resources. In [Izo+06a], the
authors extend their previous work to handle checkpointing, which provides
time-redundancy, simultaneously with replication, which provides space-re-
dundancy. They also propose a novel scheduling approach for fault-tolerant
embedded systems considering process re-execution for tolerating multiple
transient faults in [Izo+06b]. The authors mention that the main contribution
is the ability to handle performance versus transparency and memory trade-
offs imposed by the designer. Transparency means that process recovery is
performed such that the operation of other processes is not affected.

Izosimov et al. [Izo+08] present an approach to the synthesis of fault-tolerant
schedules for embedded applications with soft and hard real-time constraints.
The approach is intended to guarantee the deadlines for hard real-time pro-
cesses even in the case of faults, while maximizing the overall utilization.
Process re-execution is employed to recover from multiple faults. A single
static schedule predetermined offline is not fault-tolerant and is pessimistic
in terms of utilization, while a purely online approach, which computes a
new schedule every time a process fails or completes, incurs an unacceptable
overhead and may result in non-determinism. Thus, the authors propose a
scheduling strategy that synthesizes fault-tolerant schedules off-line which
are selected by the scheduler based on the occurrence of faults and the ac-
tual execution times of processes at runtime. This technique is similar to
our fault-tolerant design approach where we predetermine different global
scheduling reconfigurations, i.e. task mappings, which are activated at run-
time after occurrence of a processor failure to enable fault-tolerant and timely
local schedulings. However, the publications mentioned above do not address
fault-tolerant scheduling of messages and an optimization of the communi-
cation channel. Moreover, they do not cover permanent hardware faults since
a faulty task is re-executed on the same ECU whereas our approach handles
both of these aspects.

Kim et al. [KLR10] address the problem of guaranteeing reliability require-
ments on fail-stop processors, i.e. also permanent faults, in fault-tolerant
multiprocessor real-time systems. Therefore, they propose a task-partitioning
strategy and a task allocation algorithm that allocates so-called Hot Standby
and Cold Standby task replicas to meet system-level reliability requirements.
Kim et al. extend their work in [Kim+11] by integrating a novel processor as-
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signment approach into the standardized methodology for the development of
automotive systems to guarantee the end-to-end delay of the application flow
and the given reliability requirements. For our fault-tolerant deployment, we
also consider Cold Standby replicas which consume processing time only
when activated (cf. Section 4.2). Furthermore, we also apply our design ap-
proach to the design of automotive systems in Chapter 5. In contrast to the
publications above, we also provide means for a fault-tolerant and efficient
message allocation in addition to the fault-tolerant deployment of real-time
tasks.

3.4 Summary

This chapter gave an overview of related work relevant in the context of this
thesis. It started with publications dealing with the design and configura-
tion of distributed real-time systems. Afterwards, it gave a broad overview
of literature addressing the scheduling of tasks and messages in distributed
real-time systems. Finally, this chapter presented existing concepts and ap-
proaches for dependable and fault-tolerant distributed real-time systems.
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Chapter 4

Design Approach for Fault-Tolerant
Distributed Real-Time Systems

This chapter describes our design approach for fault-tolerant distributed real-
time systems. The concepts and ideas described in this chapter are based on
work we presented in [KKM11], [Klo+11], and [KMR12]. It starts with a
short overview of the design approach and presents general objectives and
the properties of our concept and the definition of important constraints. The
main objective is the determination of feasible and flexible fault-tolerant sys-
tem designs with compensation of different usual fault types and a simulta-
neous reduction of required redundancy. Therefore, we present concepts and
preconditions to enable fault tolerance by means of reconfiguration in a dis-
tributed system. This includes the proposal of a reconfigurable distributed
system topology with an additional concept for fault tolerance by means of
reconfiguration and dynamic redundancy. Afterwards, we describe concepts
and techniques to specify and configure properties and constraints for the
software architecture and the hardware topology to enable a feasible, effi-
cient, and flexible system design. Based on these results, we present our
graph-based modeling of system properties as input for our design approach.
Finally, this chapter describes the performed system deployment and its de-
sign result as essential part of the approach.

4.1 Overview

Figure 4.1 depicts an overview of the design approach for fault-tolerant dis-
tributed real-time systems. It illustrates the extension and refinement of the
design flow steps for distributed systems shown in Figure 1.2 and the result-
ing dependencies.
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Figure 4.1: Overview of the design approach for fault-tolerant distributed real-time systems.

The inputs for the design of the system are graph-based models of the given
software architecture and hardware topology. The software architecture is
derived from the intended function or set of functions controlled by the em-
bedded system. As described in Section 4.2.5 the given software architecture
implies initial constraints and requirements for the hardware topology con-
figuration including the setup of basic bus parameters. For this thesis we con-
sider the FlexRay protocol as example but our approach is also applicable to
other TDMA-based protocols (cf. Section 2.2.2). Moreover, corresponding
timing constraints for the executed functions have to be specified to guaran-
tee a correct system behavior of each configuration with respect to the given
hard real-time constraints (cf. Section 4.2.3).

Based on the input models our design approach performs the system deploy-
ment. This comprises the determination of task and bus mapping as well as
corresponding schedulings for the initial configuration and based on that for
all necessary reconfigurations to design a fault-tolerant system. During the
deployment the fulfillment of the timing constraints is analyzed to guarantee
the correct behavior of the distributed real-time system even in case of an
ECU failure.
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As final design result the approach returns the determined system deploy-
ment. Ideally, this contains feasible task and bus mappings for the initial
configuration and all required reconfigurations. Even if not for all configura-
tions a feasible solution can be found, this feedback for the system designer
can also be used as information for modifications on the input model, i.e.
mainly the hardware configuration. Based on an adjusted hardware topol-
ogy model as input, e.g. with additional or more powerful ECUs or with a
changed communication bus setup, a further iteration of the design approach
can be performed.

4.2 Objectives and Properties

The following sections provide detailed descriptions of the objectives, prop-
erties, and important constraints for our design approach. The main objective
is the design of fault-tolerant distributed real-time systems. Since we fo-
cus on safety-critical real-time systems, fault tolerance has to be realized by
means of reconfiguration, i.e. the system can continue its operation in pres-
ence of a fault – at least for a limited time period – with no significant loss of
functionality (cf. Section 2.3.3).

As mentioned in Section 2.3.2, our approach is supposed to increase fault tol-
erance by compensating different types of operational hardware faults. These
faults can be distinguished by means of their occurrence and their duration in
a system as permanent faults, intermittent faults, and transient faults which
may result in different behaviors of the faulty component. Obviously, in a
distributed system these faults may result in two types of component fail-
ures: network failures and processor respectively node failures [CJ97]. To
increase fault tolerance for the network components the FlexRay protocol al-
ready offers dual-channel redundancy and bus guardians (cf. Section 2.2.3).
Nevertheless, the failure of a single node may result in a malfunction of the
whole distributed system. Thus, to further increase fault tolerance possible
ECU faults must also be compensated [KMR12].

Any of the fault types mentioned above may result in either a fail-silent re-
spectively fail-stop failure or in a Byzantine failure of the ECU [CJ97]. On
the one hand, we consider the concept of the fail-silent failure model where
a system produces correct output and fulfills timing constraints until it fails
[BW09]. An extension of this is the fail-stop failure model [Pra96] where
a failed component is assumed to stop generating any data and a working
component can resume control by detecting the lack of output from the failed
component. The component that takes over then aims to meet the desired
deadline of the failed component [Kim+11]. Our approach supports fail-stop
failures because it allows other components to detect the fail-silent state of
a failed component [BW09]. For instance, permanent hardware faults like
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burnt out chips or processor faults may stop data output and result in a fail-
stop failures. On the other hand we also consider Byzantine failures where
the faulty component continues to run but generates incorrect output. If hard-
ware components have an adverse reaction to electromagnetic interference or
radioactivity they may be vulnerable to Byzantine failures. For instance, in
[Dri+03] the authors reference an experiment from [Siv+03] where a time-
triggered communication controller has been radiated with heavy ions. The
reported fault manifestations were bit-flips in registers and RAM locations
which can result in erroneous transmissions. In this case our approach must
detect and ignore the incorrect output and a correctly working component
resumes control. Section 4.2.2 describes the concepts we utilize for our ap-
proach to detect and compensate faults within the distributed system based
on our proposal for a reconfigurable distributed system topology which we
introduce in Section 4.2.1.

Failure mode Failure rate (FIT)
Permanent hardware failures 10–100
Non-fail-silent permanent hardware failures 1–10
Transient hardware failures (strong dependence on environment) 1000–1000000

Table 4.1: Order of magnitude of hardware failure rates [PMH98].

Table 4.1 lists orders of magnitude of typical hardware failure rates of large
VLSI chips that are used in the industrial and automotive domain [Kop11].
The numbers in the table are originating from [PMH98]. It provides the
failure rates of different hardware failure modes in the unit Failures In Time
(FIT) where 1 FIT represents one failure per 1 billion (109) device-hours
[MC89]. Table 4.1 shows that the failure rate for permanent failures of an
industrial or automotive chip is in a range between 1 and 100 FITs, whereby
the non-fail-silent failure rate is only up to 10 FITs. The failure rate for
transient failures is orders of magnitude higher with a strong dependence on
the surrounding environment, i.e. 1,000 up to 1,000,000 FITs. Considering
the fact that current luxury cars contain up to 100 ECUs, based on Table 4.1
one would expect a permanent hardware failure at most every 11.4 years, that
is:

100 ECUs ·
(

100 failures
109 device-hours

)
=

1 failure
105 hours

≈ 1 failure
11.4 years

.

Assuming a car life expectancy of 12–13 years like the authors in [NW03],
this means that a permanent hardware failure will statistically happen mostly
once in the lifetime of a car.12 However, depending on the environment,
transient hardware failure can occur at most every 10 hours:

100 ECUs ·
(

106 failures
109 device-hours

)
=

1 failure
10 hours

.

12The authors state 12–13 years as a typical car life expectancy in the UK.
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Even if we consider an orders of magnitude lower failure rate of 10,000 FIT
a transient hardware failure could be expected every 1000 hours, i.e. approx-
imately 42 days of system runtime. In particular, transient or intermittent
faults, which remain in the system for a quite long time period, will probably
result in a failure of the system. Consequently, fault tolerance is an important
issue for safety-critical distributed systems.

In Section 2.3.3 we explained that fault tolerance always requires additional
redundant components to detect faults and compensate them. An objective
of our approach is, in accordance to the definition of Burns and Wellings
[BW09], to minimize the required redundancy with respect to the cost and
size constraints of the system. Especially, in huge distributed systems with
many ECUs an unnecessary hardware overhead may result in an inappro-
priate rise of cost and weight. Obviously, in cars additional weight implies
increasing fuel consumption resulting in additional cost and environment pol-
lution and should be avoided [Ric09]. Therefore, we realize dynamic redun-
dancy instead of static redundancy which would require large quantities of
additional hardware. Furthermore, we focus on the compensation of the fail-
ure of one arbitrary ECU. This is essentially due to the following reasons. Re-
garding the dependency of component failures in a distributed system Kopetz
defines [Kop11]:

”Given proper engineering precautions concerning the power
supply and the electrical isolation of process signals have been
made, the assumption that components of a distributed system
that are physically at a distance will fail independently is realis-
tic.”

This means that if a distributed system fulfills these conditions its compo-
nents are fully independent, i.e. a failure of one component will not neces-
sarily result in a failure of other components. Since all components in a car
have the same battery as common power supply, it is not justified to assume
that the failures of the distributed ECUs are fully independent by default.
However, if the battery respectively power supply of a car fails, obviously the
whole electrical system will completely shut down. Nevertheless, the phys-
ical separation of the ECUs in a distributed system reduces the probability
for spatial proximity faults, such that a fault at a single location, e.g. impact
in case of an accident or electromagnetic interference does not affect more
than a single ECU [Kop11]. Furthermore, several FlexRay transceivers like
[Vec12] offer galvanically respectively electrically isolated interfaces which
significantly reduce the risk of connected component failures.

The failure rates in Table 4.1 are determined based on statistical time-to-
failure distributions and therefore implicitly represent the probability that the
corresponding failure can be observed in the given time interval [MC89].
Even if we consider a quite long duration of a transient fault in the distributed
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system, based on these values the probability that in this time interval another
fault occurs is very low.13 Moreover, obviously the overall fault tolerance
level of a distributed system is just as high as the lowest fault tolerance level
of the system’s components. As mentioned above beside node failures, net-
work failures are also possible. Since FlexRay offers one redundant com-
munication channel, the bus is able to compensate one network component
fault. To further increase the fault tolerance of the network another bus be-
tween all ECUs would be necessary. This again would mean an immense
wiring and hardware overhead resulting in additional cost and weight which
we aim to avoid. Furthermore, Buttazzo defines in [But11] that a real-time
system should be fault-tolerant against single hardware and software failures.
Thus, we focus on the compensation of one arbitrary component fault.

To offer the required redundancy for our fault-tolerant distributed system
topology we perform task replication, i.e. allocation of redundant task in-
stances on the ECUs. Task replication is a fundamental method for improving
the reliability of a distributed system [Kim+11]. By introducing task repli-
cas on other nodes, tasks on failed ECUs can be compensated [KLR10]. In
[KLR10] the authors define two techniques for task replication, namely Hot
Standby and Cold Standby:

Hot Standby: This approach uses two or more active replicas of a task. This
means several active instances of each task are running simultaneously.
Each replica must be executed on a different processor in order to make
sure that at least one of them is working when a processor failure oc-
curs. When a failure occurs, a replica will resume the task functionality
of a failed processor. Obviously, redundancy by means of active repli-
cas results in additional required computational resources because they
are executed simultaneously.

Cold Standby: In this case, replicas are not active and executed until a fail-
ure occurs. This means that they are inactive by default and only use
memory, but no processor resources until they are triggered and acti-
vated on demand when a failure occurs. Since Cold Standby replicas
are not running under normal conditions, only the state information
of each initial task needs to be exchanged and updated among replicas.
This is the concept of task context migration described in Section 2.2.1.
When a failure occurs, it should be detected as soon as possible and the
tasks on failed processors should be recovered using replicas within a
deterministic time interval.

As mentioned above, one objective of our approach is to reduce the required
hardware redundancy. Therefore, it utilizes the Cold Standby approach and

13In particular, the probability of two or more independent events is the product of the probabilities of the
individual events [Dev12].
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maps inactive task replicas to the ECUs of the reconfigurable distributed sys-
tem topology. Here, we consider that faults are detected as soon as possible
by our fault detection and compensation concepts which we present in Sec-
tion 4.2.2. Furthermore, like the authors in [KLR10], we assume that all
necessary task information is available in memory. Thus, the actual realiza-
tion and implementation of task context migration is beyond the scope of this
thesis.

It is important to note that our approach is a support concept for the designer
and not a fully automated solution. This means that fundamental design de-
cisions, e.g. software architecture design and hardware topology setup are
still performed by the designer. As shown in Figure 4.1 our approach is
fed with the necessary information about the software architecture and hard-
ware topology and performs a deployment trying to determine a feasible de-
sign solution. This contains task and bus mapping as well as corresponding
schedulings for the initial configuration and based on that for all necessary
reconfigurations to design a fault-tolerant system. Here, it is also important
to note that our design approach is supposed to determine a feasible solution
which fulfills the real-time constrains for the initial configuration and all pos-
sible reconfigurations. Thus, it is not intended to optimize one specific single
attribute of the system, e.g. task response time, processor utilization, or com-
munication delays. In fact it has to calculate efficient and flexible solutions
which consider and combine several different properties. However, the main
goal is the guaranteed fulfillment of the given real-time constraints to ensure
a correct system behavior. This means, that the necessary timing properties
and constraints have to be part of the input for our approach. Section 4.2.3
describes how we annotate the tasks and messages of the TDG representing
the given software architecture with their corresponding timing information
as part of the input model described in Section 4.3.1.

As described in Section 2.2.1 task scheduling in distributed systems implies
global scheduling, i.e. task-to-ECU mapping, and local scheduling on the
node. One main part of our design approach is the task mapping described
in Section 4.4.1 which realizes redundancy by means of dynamic allocation.
Particularly, it combines the advantages of both allocation concepts. On the
one hand, it keeps the determinism of the static allocation to guarantee the
given timing constraints. On the other hand, it increases the fault tolerance
by including possible reallocations in the predetermined design solutions to
provide the required redundancy and compensate node failures. Obviously,
the global scheduling for every solution must be performed in such a way that
the local scheduling can fulfill the given timing constraints for each task. In
this context it has to be taken into account, that depending on the performed
task mappings the required inter-node communication may result in addi-
tional communication delays for the task executions. These delays are part
of the the task response times and have to be considered by the applied local
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task scheduling strategy. Thus, in Section 4.2.4 we introduce our extensions
for the schedulability tests of the commonly used real-time scheduling algo-
rithms EDF and RM which integrate the resulting communication delays.

Beside an appropriate task mapping and scheduling the deployment of a dis-
tributed system also includes a corresponding bus mapping and scheduling.
Therefore, an adequate bus mapping is another main objective of our design
approach which is described in Section 4.4.2. Obviously, the given hard-
ware topology has a great impact on the system deployment and has to be
considered for the task mapping as well as for the bus mapping (cf. Fig-
ure 4.1). Hence, in Section 4.2.1 we provide important properties and con-
straints to support a system designer at the configuration of an appropriate
hardware topology. These properties are used as part of the input model
for our design approach which we describe in Section 4.3.1. This includes
the node configuration which must ensure sufficient computational resources
and communication capabilities, as well as the FlexRay bus setup. Espe-
cially the message mapping is influenced by the configuration of the FlexRay
bus. Since the FlexRay protocol applies a cyclic slot-based time-triggered
message scheduling, the message-to-slot mapping and the resulting commu-
nication delay heavily depend on the configuration of the bus parameters.
Based on these configurations as part of the hardware topology input model,
our approach performs bus mappings for the initial configuration and all pos-
sible reconfigurations. To further increase the efficiency and flexibility of the
bus mapping and reduce the resulting communication delays, it also applies
existing concepts for combined message-to-slot mappings which we describe
in Section 4.2.6. As mentioned above, the implementation of task context mi-
gration is beyond the scope of this thesis. However, the remaining available
communication capacities could be utilized for this purpose in future works.

4.2.1 Reconfigurable Distributed System Topology

As described in Section 2.2 a distributed system is composed of multiple net-
worked processing nodes or ECUs cooperating on a common function or set
of functions and exchanging data with the environment through sensors and
actuators. Though, in current distributed systems one or more of these ECUs
are, beside hosting functions, hardwired to sensors or actuators to exchange
input/output (I/O) with the environment. This results in so-called placement
constraints for functional tasks which have to exchange data with sensors or
actuators because they have to be executed on the ECUs which are connected
to the corresponding I/O. Consequently, a failure of a hardwired node can-
not readily be compensated with dynamic redundancy and reconfiguration
because connections to the peripherals and required I/O data might get lost.
Hence, as fundamental part of our design approach we utilize the modified
distributed system topology which we proposed and presented in [KKM11],
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[Klo+11], and [KMR12] to avoid I/O-related placement constraints and en-
able fault-tolerant reconfiguration. In this reconfigurable distributed system
topology we distinguish between two different types of nodes. We consider
nodes, we call peripheral interface nodes. These nodes are hardwired to
the sensors and the actuators of the embedded system and provide the re-
quired connection to the I/O. They solely read and write I/O data from and
to the bus and do not execute any other function of the distributed system.
Since peripheral interface nodes do not execute any complex task, they only
require low hardware capacities. Therefore, static hardware redundancy is
cost-efficiently applicable for these components. However, in this thesis we
focus on the ECUs which execute the actual functionality of the distributed
system and exchange there data over the communication network, e.g. the
FlexRay bus. These functional nodes offer the necessary flexibility for our
approach and can be utilized for dynamic redundancy with reconfiguration.
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Figure 4.2: Concept for a reconfigurable distributed system topology.

Figure 4.2 depicts the schematic layout of the proposed reconfigurable dis-
tributed system topology. It contains peripheral interfaces which are com-
posed of redundant interface nodes offering fault-tolerant exchange of I/O
data with the sensors and actuators necessary for the interaction with the en-
vironment. Particularly with regard to our approach it offers functional nodes
providing flexible and reconfigurable resources for the execution of the de-
sired distributed system functionality. The number of ECUs depends on the
number and performance requirements of the given functional tasks (cf. Sec-
tion 4.2.5).

As illustrated in Figure 4.2, our design approach determines a feasible assign-
ment of the n tasks and their redundant instances to the m functional ECUs to
offer fault tolerance by means of dynamic redundancy. As mentioned in Sec-
tion 4.2 we consider cold standby replicas for the redundant instances which
are inactive by default and only use up memory capacities but no additional
processor utilization [Kim+11]. Obviously, this reconfigurable distributed
system topology allows homogeneous as well as heterogeneous functional
nodes.
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4.2.2 Distributed Coordinator Concept

To realize fault tolerance through dynamic redundancy in a distributed sys-
tem, we have to detect errors, locate and disable faulty nodes before another
resumes the execution of the functionality. Summarized, this means that a
functionality which coordinates and performs the necessary steps for the re-
configuration has to be integrated in the system. This could be implemented
by an auxiliary dedicated node as we described in [Klo+10c]. Obviously,
the drawback of this solution is that a dedicated node is a possible SPOF.
Hence, to retain fault tolerance such a coordinator ought to be replicated for
static hardware redundancy. These required quantities of additional hard-
ware components would result in increasing cost, size, and communication
complexity of the system. Therefore, we propose a distributed coordinator
concept (DCC) which allows the self-reconfiguration of the remaining ECUs
in case of a node failure without the necessity for additional dedicated nodes.
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(a) Distributed coordinator concept implemented in
FlexRay communication controller as part of the
FlexRay protocol.
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(b) Distributed coordinator concept realized with ad-
ditional tasks.

Figure 4.3: Two possible implementations of the distributed coordinator concept.

The distributed coordination of self-reconfiguration implies the addition of
a coordinator component on each node in our proposed distributed system
topology. Figure 4.3 illustrates two different possible implementations of
the DCC. As shown in Figure 4.3(a) the coordinator component could be
implemented in the FlexRay communication controller as an extension of
the FlexRay protocol. This extension would make use of the controller host
interface and the interface between CC and message buffers to reconfigure the
task execution on the host and the corresponding transmit and receiver buffer
assignments. However, this component is not part of the current FlexRay
specification and therefore not implemented in any available FlexRay CC.

Hence, we propose another flexible and protocol-independent solution for the
implementation of the DCC firstly presented in [Klo+10a]. As shown in Fig-
ure 4.3(b) we add distributed coordinator tasks to every node of the system.
This DCC is implemented by lightweight tasks, which do not consume any
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significant resources and runtime. Each instance of the distributed coordi-
nator maintains task lists with running and redundant tasks of each node for
every possible configuration and a COM matrix which provides necessary
information about the corresponding communication dependencies. Because
the memory demand for these data structures is negligible compared to the
application data, it does not result in a mentionable hardware overhead to
maintain it on each ECU. The distributed coordinator tasks must be config-
ured to receive and monitor the messages of all relevant slots in order to
detect node failures and to coordinate the appropriate configurations of the
communication and the necessary task and slot assignments. Therefore, the
task lists and the COM matrix are generated by means of the slot-to-node
assignments and communication dependencies, determined with the deploy-
ment of our proposed design approach (cf. Section 4.4).

1 <taskLists>
2 <taskListECU1>
3 <initialConf>
4 <activeTasks>
5 <task>T_01</task>
6 <task>T_02</task>
7 <task>T_03</task>
8 <\activeTasks>
9 <redundantTasks>

10 <task>T_04</task>
11 <task>T_06</task>
12 <\redundantTasks>
13 <\initialConf>
14 <reconfFailureECU2>
15 <addActiveTasks>
16 <task>T_04</task>
17 <task>T_06</task>
18 <\addActiveTasks>
19 <\reconfFailureECU2>
20 ...
21 <\taskListECU1>
22 <taskListECU2>
23 <initialConf>
24 <activeTasks>
25 <task>T_04</task>
26 <task>T_05</task>
27 <task>T_06</task>
28 <\activeTasks>
29 <redundantTasks>
30 <task>T_02</task>
31 <task>T_n</task>
32 <\redundantTasks>
33 <\initialConf>
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34 <reconfFailureECU1>
35 <addActiveTasks>
36 <task>T_02</task>
37 <\addActiveTasks>
38 <\reconfFailureECU1>
39 ...
40 <\taskListECU2>
41 ...
42 <\taskLists>

Listing 4.1: Excerpt of exemplary task lists.

Listing 4.1 gives an excerpt of XML-based task lists for the exemplary func-
tional nodes of Figure 4.2. It shows parts of the active tasks and the inactive
redundant tasks for the initial configuration and reconfigurations on ECU1
and ECU2. The lines 2 to 20 describe the task list for ECU1 with the active
tasks τ1 (T 01), τ2 (T 02), and τ3 (T 03). Moreover, these lines define that if
ECU2 fails, the coordinator task on ECU1 must additionally activate tasks τ4
(T 04) and τ6 (T 06). Analogous to this, if ECU1 fails, ECU2 must resume
the execution of τ2 (T 02) as defined in line 36.

Since the FlexRay protocol does not allow dynamic assignments of slots to
senders during runtime (cf. Section 2.2.3), our design approach has to de-
termine a priori the necessary communication reconfigurations for compen-
sating node failures. Thus, the COM matrix contains auxiliary redundant
transmission slots assigned to the ECUs, to be utilized after a reconfigura-
tion of the communication. The total number of redundant transmission slots
|Θredundant| in a COM Matrix can be calculated from the set of additional slots
Θaddreconfi

required for a possible reconfiguration reconfi:

|Θredundant|=

∣∣∣∣∣ n⋃
i=1

Θaddreconfi

∣∣∣∣∣≤ n

∑
i=1

∣∣∣Θaddreconfi

∣∣∣ . (4.1)

Equation 4.1 states that the total sum of redundant slots is the union of addi-
tional slots required for all reconfigurations. Obviously, this number is less
or equal to the sum of additional slots per reconfiguration. Our design ap-
proach reduces the number of redundant transmission slots by applying local
intra-node communication, slot reuse14, and frame packing to decrease the
resulting communication overhead and increase the flexibility.

Figure 4.4 illustrates the determination of a COM matrix by means of an ini-
tial configuration and appropriate reconfigurations from our design approach.
It illustrates an example for a communication matrix resulting from an initial
configuration and one reconfiguration to compensate the failure of ECU2. In

14Slot reuse means that a message-to-slot assignment is reused in one or more reconfiguations.
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Figure 4.4: Example for COM matrix determination.

the initial configuration one task is assigned to each node. Thus, one trans-
mission slot is assigned to each ECU, too. To compensate the failure of
ECU2, task τ2 is resumed on ECU1. This implies the reservation of an ad-
ditional transmission slot for ECU1 in the communication matrix. Finally,
the complete communication matrix is determined considering all necessary
additional transmission slots for each reconfiguration.

Based on the determined communication matrix and the task lists each task of
the DCC performs the appropriate configuration for its hosting node. Figure
4.5 shows the flowchart of self-reconfiguration activities by means of the
DCC in case of an error detection and fault localization. As mentioned in
Section 4.2 our approach is supposed to compensate different kinds of faults
which may either result in a fail-stop failure or an arbitrary Byzantine failure
of an ECU.

Obviously to compensate a ECU fault by means of performing the self-
reconfiguration, the DCC has to detect an error and localize the correspond-
ing ECU failure. Therefore, the distributed coordinator tasks are configured
to receive and monitor the messages of all relevant slots.15 In case of a fail-

15Since there are no restrictions in the FlexRay protocol regarding the message reception of an ECU, theoreti-
cally each distributed coordinator task could receive messages from every slot.
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Figure 4.5: Self-reconfiguration activities of a distributed coordinator.

stop failure of an ECU, the payload segments of the FlexRay frames respec-
tively slots assigned to this ECU are solely filled with padding bytes (cf.
Section 2.2.3). This means that fail-stop failures are easily identifiable by
the DCC monitoring the relevant slots and detecting null frames. Byzantine
failures, where the faulty component continues to run but generates incorrect
output, are obviously more complex and troublesome to deal with because
they may result in non-predictable generation of erroneous output (cf. Sec-
tion 4.2). As described in Section 2.2.3, FlexRay nodes offer optional bus
guardians to protect the communication infrastructure against babbling-idiot
failures, where a faulty node ignores the given slot assignments, transmits all
the time and potentially consumes all slots. This mechanism ensures that a
Byzantine failure will not result in a complete failure of the FlexRay network.

However, in case of a Byzantine failure, an ECU might still generate incorrect
output and send it in its assigned slots. Therefore, we assume that the dis-
tributed coordinator tasks have the necessary information about value range
consistency for the messages and frames transmitted in their corresponding
slots. By means of these value ranges the DCC can detect strongly divergent
values and identify them as erroneous output resulting from a Byzantine fail-
ure of the sender ECU. Appropriate value ranges for messages and output
parameters heavily depend on the implemented functionality of the software
architecture and the data exchange between its distributed tasks. However,
their specification is beyond the scope of this thesis.
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Based on these concepts and assumptions, the distributed coordinator tasks
of the DCC are able to detect fail-stop and with high probability Byzantine
failures of an ECU. Since the coordinator tasks must receive and monitor all
relevant messages, they are scheduled after all functional tasks on their host-
ing ECU to ensure that they received all relevant messages before they are
executed. Thus, the coordinator task will detect a fault within the duration of
one hyperperiod HΓ by analyzing the messages on the bus.16 In the following
Section 4.2.3 we describe that the hyperperiods in real-time systems are com-
monly in the milliseconds range. This enables short times and deterministic
intervals needed for failure detection and recovery as required for the Cold
Standby approach (cf. Section 4.2).

When a failure of an ECU is detected, each coordinator task checks via task
lists and communication matrix if the necessary reconfiguration implies an
activation of one or more additional tasks on its host. If no additional task
executions on its hosting node are required, the coordinator task solely has
to reconfigure the receiving slots for the input data of the executed tasks. By
means of the task lists, each coordinator task knows for every possible re-
configuration which node(s) will resume executing the corresponding task(s)
in case of a node failure. The COM matrix contains the necessary informa-
tion of the resulting communication reconfigurations and the redundant slot
assignments for the reconfigured task-to-ECU assignments. If the node fail-
ure implies the activation of one or more additional tasks on the host, the
DCC additionally initiates the activation of the corresponding task(s) and the
assignment of their transmission slots for the reconfiguration.

4.2.3 Specification of Timing Properties for the SW Architecture

To apply our design approach, we have to consider the timing properties and
constraints of the intended functions of the distributed system. Therefore,
the TDG representing the software architecture is augmented with the corre-
sponding timing properties and constraints. To augment the graph, we apply
labeling functions f : V → A and g : E→ A to label the vertices v∈V and the
edges e ∈ E with elements of specified attributes A, where f (v) is the label
that f assigns to the corresponding vertex v ∈ V and g(e) is the label that g
assigns to the corresponding edge e ∈ E [Len90].

Figure 4.6 depicts a timing-augmented TDG GTDG = (V,E) = (Γ,M). Each
task τi is annotated with its WCET Ci by means of a labeling function:

c : Γ → R+

τi 7→ Ci.
(4.2)

16Section 4.2.5 describes in detail, how the FlexRay bus is synchronized to the hyperperiod.
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Figure 4.6: Timing-augmented TDG with split-message between two subgprahs.

As mentioned in Section 2.1.1 the software architecture of a distributed sys-
tem can be composed of subgraphs and tasks with different periods. This
example contains one with 1000µs and one with 2000µs. Each task of a sub-
graph has the same period. Like the authors in [DTT08], we define that not
only the execution of each individual task but the execution of the whole TDG
subgraph has to be finished in this time, i.e. it defines the maximum end-to-
end delay. As described in Section 2.2.4 TADL2 allows annotating timing
constraints to structural system models. Therefore, we utilize it to augment
the TDG by the definition of timing constraints to guarantee a correct system
behavior.

1 Event InputRecvByT_01 {
2 //Input received by task T_01 event
3 }
4 ...
5 Event OutputSentByT_09 {
6 //Output sent by task T_09 event
7 }
8
9 PeriodicConstraint InputT_01 {

10 //Periodic constraint for reading input of task T_01
11 event InputRecvByT_01
12 period = 2000 micros on universal_time
13 minimum = 0
14 jitter = 0
15 }
16 ...
17 PeriodicConstraint OutputT_09 {
18 //Periodic constraint for reading input of task T_09
19 event OutputSentByT_09
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20 period = 1000 micros on universal_time
21 minimum = 0
22 jitter = 0
23 }

Listing 4.2: Excerpt of TADL2 periodic constraints for TDG in Figure 4.6.

Listing 4.2 gives an excerpt of the periodic constraints for the TDG presented
in Figure 4.6. For each task the reception of input data and sending of out-
put data is modeled as an event and the event occurrences are constrained
by the corresponding periods in µs. For instance, in line 9 to 15 it defines
that task τ1 (T 01) has to read input data every 2000µs, whereas τ9 (T 09)
has to provide its output data every 1000µs. The internal reference time base
universal time was defined in Listing 2.1.

1 DelayConstraint E2E_T_01_T_05 {
2 //Delay constraint(max.E2Edelay) for input of T_01 to output of

T_05
3 source InputRecvByT_01
4 target OutputSentByT_05
5 lower = 0
6 upper = 2000 micros on universal_time
7 }
8 ...
9 DelayConstraint E2E_T_01_T_09 {

10 //Delay constraint(max.E2Edelay) for input of T_01 to output of
T_09

11 source InputRecvByT_01
12 target OutputSentByT_09
13 lower = 0
14 upper = 1000 micros on universal_time
15 }
16 ...
17 }

Listing 4.3: Excerpt of TADL2 delay constraints for TDG in Figure 4.6.

Listing 4.3 provides an excerpt of the delay constraints for the TDG shown
in Figure 4.6. It shows the end-to-end delay constraint for two different event
chains. The constraints impose the limits for the time between the input
event (stimulus) of task τ1 (T 01) and the output events (responses) of task τ5
(T 05) in line 1 to 7 respectively τ9 (T 09) in line 9 to 15. The limits of the
end-to-end delay are set to 2000µs and 1000µs corresponding to the periods
of the tasks. The event chains are composed of several included input and
output events for the involved tasks (cf. Section 2.2.4).

Figure 4.6 also illustrates the split message m7 representing the dependency
between τ3 and τ7 which are elements of two subgraphs with different peri-
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ods. Obviously, as shown in the Listings above, the scheduling of split mes-
sages implies specific timing constraints depending on the periods of sender
task τtx and receiver task τrx:

• Ttx < Trx: In this case the sender period is smaller than the receiver
period. This means that it is sufficient for the sender τtx to transmit
the message with the period of the receiver τrx. This avoids unneces-
sary messages without a receiver resulting in additional communica-
tion overhead.

• Ttx > Trx: In this case the messages are still transmitted with the sender
period because only after each execution of the sender new data is
available. Hence, this case does not influence the message schedul-
ing. However, it should be ensured that τtx can transmit the messages
soon enough to reduce obsolete data.

In [DTT08] the authors propose to constrain the possible periods for sub-
graphs and tasks to facilitate the system design. Therefore, in a system with
n tasks and a maximum task period Tmax =max{Ti|i= 1, . . . ,n}, for each task
τi it must hold:

Ti ·2xi = Tmax, with xi ∈ N0, i = 1, . . . ,n. (4.3)

This results in a so-called harmonic task set where the maximum task pe-
riod equals the hyperperiod (Tmax = HΓ). For instance, in a system with
Tmax = 4ms the other possible periods are 2ms,1ms,500µs, and so on. In real-
world applications task sets mostly have harmonic periods [Eis+10]. This re-
sults from the fact, that harmonic task sets allow higher processor utilization
for static fixed-priority scheduling strategies. More precisely, every task of
a harmonic task set scheduled with RM can meet its deadline for U ≤ 1.0
[Liu00]. Even if the whole task set Γ is not harmonic, still higher utilization
bounds are possible by identifying harmonic subsets in Γ [KM97]. The uti-
lization of harmonic periods also facilitates the scheduling of split messages
described above. Hence, we also consider the condition above as a timing
constraint of the software architecture model for our design approach, if pos-
sible. To be more flexible in the system design our approach also supports
non-harmonic task sets with Tmax 6= HΓ to a certain extend. Section 4.2.5 de-
scribes the necessary configurations and the given limitations of the FlexRay
communication for supporting this.

Moreover, each message mi of the TDG is annotated with its data length Lmi

by a labeling function:

d : M → R+

mi 7→ Lmi.
(4.4)
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Obviously, the data length of a message implies a certain time needed for
its transmission. As described in Section 2.2.3 the TDMA-based FlexRay
protocol offers a deterministic transmission and timing behavior by means
of a static slot-to-ECU assignment and a guaranteed bus scheduling strategy.
Nevertheless, in addition to the task WCETs, the transmission time of the
exchanged messages on a path from one end of the TDG to the other one is
part of the resulting end-to-end delay. Thus, to fulfill the defined maximum
end-to-end delay constraints, the resulting communication delays for inter-
node messages have to be considered and reduced if necessary (cf. Section
2.2.2).

4.2.4 Task Scheduling Strategy

Task scheduling in distributed systems has to cover the local level of each
processor and the global scheduling, i.e. the mapping of tasks to ECUs (cf.
Section 2.2.1). Our design approach combines the advantages of static and
dynamic task allocation. It keeps the determinism of the static allocation
and guarantees the timing constraints. Additionally, it increases the fault
tolerance by including possible reallocations in the predetermined reconfigu-
rations to compensate node failures. Furthermore, for a real-time system the
determined task mapping must ensure that the local scheduling strategy can
guarantee the fulfillment of the timing constraints of each task on each ECU.

As described in Section 2.2.2 distributed system tasks have to communicate
locally via intra-ECU communication or remotely over the network via inter-
ECU communication. The transmission time of a message via local com-
munication can be considered as negligible. The transmission of messages
between distant tasks may result in a communication delay, i.e. the execu-
tion of a task which receives input data from a task over the network may
be delayed by the transmission time of the message. Therefore, not only
the computation but also additionally the transmission has to be finished be-
fore the deadline of the task. In general, the time needed for the message
transmission will be distinctly smaller than the computation time of a task.
Nevertheless the remote communication may delay the task execution sig-
nificantly depending on the actual scheduling. This implies, that beside task
WCETs, for a proper schedulability test the resulting communication delays
of a task mapping have to be considered, too. Consequently, we have to ex-
tend the schedulability tests for the scheduling strategies RM/DM and EDF*
presented in Section 2.1.2 to also consider communication delays.

For EDF* scheduling we have to integrate the resulting communication delay
δi in the processor demand criterion from Equation 2.5. Therefore, we extend
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this test to the extended processor demand criterion PDC*, as we proposed
in [KMR12]:

∀L > 0
n

∑
i=1

⌊
L+Ti−Di

Ti

⌋
· (Ci +δi)≤ L. (4.5)

Considering the properties described in Section 2.1.2, this results in the PDC*
schedulability test which must be checked at least until the largest relative
deadline Dmax:

∀L ∈ D
n
∑

i=1

⌊
L+Ti−Di

Ti

⌋
· (Ci +δi)≤ L,

with
D = {dk|dk ≤min[H,max(Dmax,L∗)]}.

(4.6)

For DM scheduling we have to integrate the resulting communication delay δi
in the response time analysis from Equation 2.4. This results in the extended
response time analysis RTA*, as we proposed in [Klo+13]:

Ri = (Ci +δi)+
i−1

∑
j=1

⌈
Ri

Tj

⌉
C j. (4.7)

As mentioned above, for intra-ECU communication the delay can be consid-
ered as δi = 0. For inter-ECU messages the resulting communication delay
depends on the given schedule and its parameters. Therefore, the task τlast
scheduled last before τi on the same ECU and the set of sender tasks Γtx send-
ing inter-ECU messages to τi must be considered. Before τi can be executed,
the transmission time ψm(τ j ,τi)

of the latest input message from n senders has
to be completed. Thus, τi may start at the maximum of its release time ri, the
finishing time flast of τlast and the finishing time of the latest input message
transmitted by τ j ∈ Γtx. Considering these properties, this results in:

δi = max
(

0,max{ f j +ψm(τ j ,τi)
|τ j ∈ Γtx, j = 1, ...,n}−max{ri, flast}

)
.

(4.8)

The FlexRay protocol applies TDMA-based bus write accesses, i.e write ac-
cesses are only allowed in assigned slots (cf. Section 2.2.3). This implies a
transmission start delay ζm(τ j ,τi)

for a message m(τ j,τi). The transmission start
delay represents the time interval between the finishing time of the sender
task τ j and the start time of the assigned time slot θm(τ j ,τi)

in the FlexRay
cycle:

ζm(τ j ,τi)
= sθm(τ j ,τi)

− f j.
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Since the message data is not available for the receiving task τi until the end
of the assigned slot the transmission time also contains the duration of the
assigned slot θm(τ j ,τi)

which is equal for each slot. Summarized ψm(τ j ,τi)
is

defined as:
ψm(τ j ,τi)

= ζm(τ j ,τi)
+duration(θ). (4.9)
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Figure 4.7: Calculation of δi for different scheduling scenarios.

Figure 4.7 illustrates different examples for the determination of δi based
on the parameters defined in Equation 4.8 and 4.9. It shows how different
scheduling scenarios may influence the additional communication delay and
result in an increased response time Ri of the receiver task τi. In the example
of Figure 4.7(a) the condition f j < ri < flast holds, i.e. the execution of τi is
already delayed by τlast. This means that the additional communication delay
of si depends on flast. Thus, the communication delay is calculated as:

δi = f j +ψm(τ j ,τi)
− flast.

In Figure 4.7(b) the order of the parameters is f j < flast < ri. This means that
the execution of τi is not delayed by τlast which results in a total delay of si
relative to ri. Here, the communication delay is calculated as:

δi = f j +ψm(τ j ,τi)
− ri.
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Since f j < max(ri, flast) holds, δi < ψm(τ j ,τi)
also holds in both cases. This

implies that the message transmission is partly performed during the exe-
cution of τlast and/or before ri. If f j > max(ri, flast) holds, as in the exam-
ple shown in Figure 4.7(c), the communication delay may further increase,
even to a value of δi > ψm(τ j ,τi)

. In this case m(τ j,τi) cannot be transmit-
ted during the execution of τlast or before ri and the value of δi gets maxi-
mized. Figure 4.7(d) provides an example for the other extreme case where
f j+ψm(τ j ,τi)

≤max(ri, flast) holds. In this case the inter-ECU communication
does not imply any delay, i.e. δi = 0. As shown in the figure the complete
message transmission is performed during the execution of τ j and completed
before ri and flast and the message is buffered until τi starts.

All examples in Figure 4.7 also illustrate that the overall transmission time
is composed of the transmission start delay and the slot duration as defined
in Equation 4.9. In all examples ζm(τ j ,τi)

< duration(θ) holds because m(τ j,τi)

is transmitted in the next FlexRay slot θ after f j. If the next slot cannot be
assigned to m(τ j,τi), the transmission start delay increases by the number of
not assignable slots to:

ζm(τ j ,τi)
≥ k ·duration(θ),

where k is the number of not assignable slots after f j.

Depending on the applied local task scheduling strategy the corresponding
schedulability test, as described above, has to be fulfilled to guarantee a fea-
sible schedule for each ECU resulting in a valid task scheduling for the com-
plete distributed system. Therefore, the PDC* respectively RTA* calculation
based on the determination of the resulting values for the transmission time
ψm(τ j ,τi)

and the communication delay δi by means of the given parameters is
the basis for our task mapping approach described in Section 4.4.1.

In Section 2.1.2 we mentioned that EDF has some significant advantages over
RM/DM scheduling: EDF allows higher processor utilization and has lower
runtime overhead. A common argument contra EDF is that it is more compli-
cated to implement because of its dynamical priority assignment during run-
time. Therefore, in many important real-time domains fixed-priority schedul-
ing algorithms are still most frequently applied. For instance in the automo-
tive domain RM/DM scheduling is the most widely utilized scheduling ap-
proach [FFR12]. Hence, our approach supports EDF as well as RM/DM with
their corresponding schedulability tests as described above.
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4.2.5 Configuration of Hardware Architecture

The design of a distributed real-time system also implies the necessity for
an appropriate configuration of the hardware architecture on which the soft-
ware is executed. It must enable an execution of the system functions which
guarantees a correct system behavior including the fulfillment of the given
timing constraints. Essentially, this means that the number and performance
of computational node resources must be sufficient to execute the given set of
functional tasks with respect to the given real-time constraints. Furthermore,
the communication infrastructure must offer the required rates and capacities
to ensure a reliable, deterministic, and timely data transmission. Therefore,
our design approach considers the given functional and timing-related prop-
erties of the software architecture to derive an appropriate configuration of
the hardware topology including a node setup and a FlexRay bus setup.

Node Setup

A distributed real-time system is composed of a set of networked computa-
tional nodes. Thus, a set E of n ECUs can be defined as:

E = {ECU j| j = 1, . . . ,n}. (4.10)

As input for our design approach we model a hardware architecture graph
(HAG) representing the available ECUs in the network and their interconnec-
tion. Figure 4.8 illustrates an exemplary HAG GHAG = (V,E) = (E ,E). The
vertices V represent the set of ECUs E . The edges E represent the communi-
cation connection between these nodes. Since we consider bus communica-
tion, all ECUs are connected with each other by an undirected edge.

ECU1 
(1.0) 

ECU2 
(1.2) 

ECU3 
(1.0) 

ECU4 
(0.9) 

Figure 4.8: Exemplary hardware architecture graph.

The WCET of a task τi depends on the resources of ECU j it is executed on
and can be formalized as:

CECU j,τi. (4.11)
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In a homogeneous distributed system all nodes are of the same type, i.e. they
have equal capacities (cf. Section 2.2). Thus, in a homogeneous system the
condition:

CECU j,τi =CECU j,τi, ∀τi ∈ Γ, ECU j,ECUk ∈ E , (4.12)

holds. Equation 4.12 states, that in a homogeneous system a specified task
τi has the same WCET CECU j,τi = Ci on each ECU j. Obviously, the nodes
of a distributed real-time system must be configured such that each task of
the given software architecture can fulfill its functional and its timing con-
straints. In particular, this means that each task meets its deadline by means
of an appropriate scheduling. As described in Section 2.1.2 utilization-based
schedulability tests are sufficient and guarantee the feasibility of a task set
on an ECU. The value for Ulub depends on the scheduling strategy and on
the given task set. It is at least Ulub = 0.69 for arbitrary task sets and up
to Ulub = 1 for harmonic task sets when utilizing RM or DM. For EDF it is
also Ulub = 1. In any case, the maximum possible utilization of one ECU is
Ulub = 1.

Based on that, we can determine the lower limit of ECUs required to exe-
cute n tasks in a distributed system. Considering a homogeneous system, the
WCET CECU j,τi =Ci of a task τi is identical on each ECU. Moreover, the pe-
riod Ti of a task τi is a timing constraint which is independent from the ECU.
Thus, the lower limit m of required ECUs can be calculated as:

⌈
n

∑
i=1

CECU j,τi

Ti

⌉
≤ m ·Ulub. (4.13)

For instance, we consider a maximum utilization of Ulub = 1 and five tasks
with a common period of Ti = 1000µs. Moreover, we assume the follow-
ing WCETs for the tasks: C1 = 600µs, C2 = 300µs, C3 = 500µs, C4 =
400µs, C5 = 400µs. For this example, the summed utilization on the left
side of Equation 4.13 is U = 2.2. This results in m = 3 for the lower limit
of required ECUs. However, our fault-tolerant design approach utilizes dy-
namic redundancy to compensate the failure of an arbitrary ECU. Therefore
we have to add an additional ECU resulting in:

⌈
n

∑
i=1

CECU j,τi

Ti

⌉
≤ (m−1) ·Ulub. (4.14)

This means that for the example described above we consider m = 4 for the
lower limit of required ECUs in the initial configuration to provide sufficient
ECU resources required for the reconfigurations. Even if this additional ECU
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implies a hardware overhead, this dynamic redundancy concept significantly
reduces it compared to static hardware redundancy, particularly in huge sys-
tems with many ECUs (cf. Section 2.3.3). As described in Section 4.2.4, task
dependencies and inter-ECU communication may result in delays of task exe-
cutions. Thus, the determined number of ECUs may not be sufficient to fulfill
the timing constraints of a given task set. In this case, our approach returns
this result to the system designer, who can adjust the hardware topology for a
further iteration with additional or more powerful ECUs. Nevertheless, since
we want to reduce the resulting hardware overhead for the fault tolerance, the
determination of this lower bound for required ECUs is an adequate support
for the system designer to perform an initial hardware configuration.

Although we focus on single ECU failures in this thesis, for the sake of com-
pleteness it should be mentioned that for the compensation of multiple faulty
ECUs, the right side of Equation 4.14 can be extended to m− x with x > 1.
Obviously, this results in additional hardware overhead and unused resources
in configurations with less than x ECU failures.

Our approach also supports heterogeneous systems to a certain extend. There-
fore, each ECU in the HAG is annotated with an execution time factor by a
labeling function:

f : E → R+

ECU j 7→ f(ECU j).
(4.15)

This factor represents the performance relation between the underlying ref-
erence ECU considered for the TDG and an ECU j. To calculate the WCET
of a task τi on an ECU j, our approach takes the WCET Ci from the TDG as
reference value and divides it by the corresponding execution time factor:

CECU j,τi =
Ci

f(ECU j)
.

For instance, if ECU1 is the underlying reference ECU of the TDG and
ECU2 is 20% more performant, then the execution time factor of ECU2 is
f(ECU2) = 1.2. In this example, for task τ3 (C3 = 120µs) from the TDG in
Figure 4.6, the WCET on ECU2 is CECU2,τ3 = 100µs. Figure 4.8 shows the
execution time factors for an exemplary HAG including the reference value
f(ECU1) = 1.0.

It is important to remind that our fault-tolerant design approach supports het-
erogenous systems solely to a certain extend. Indeed we can also determine
the lower limit of required ECUs with Equation 4.14 utilizing the execution
time factors. But if the deviation of capabilities for one or more of the ECUs
is to too high, the design will get complicated and inefficient. For instance,
the remaining ECUs of a reconfiguration will probably not be able to com-
pensate the failure of an ECU with multiple capacities. Thus, this setup will
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result in a SPOF or a much higher need for redundancy capacities and hard-
ware overhead. Therefore, the level of heterogeneity in the system should not
be too high.

Besides computational resources each node also has to provide sufficient
communication capabilities for the required data transmissions. As described
in Section 2.2.3 in a FlexRay network a message buffer on each ECU imple-
ments an application-decoupled and flexible message transmission and re-
ception with respect to timing. To set up a message buffer scheme for the
network, i.e. message buffers for each node, the following steps are neces-
sary [RS06]:

• Consider the communication needs of the system, i.e. type and number
of messages that have to be transmitted between the nodes.

• Determine the characteristics of the messages, particularly the required
payload sizes.

• Configure the message buffers to offer the required functionality, i.e.
setting up the message buffer registers and allocating the required shared
memory for the message data.

Parts of the message buffer configuration can already be done at the hardware
configuration stage: For instance, the maximum number of message buffers
to be implemented and the maximum payload size to be supported. However,
most of the message buffer configuration, such as assigning message buffers
to slots and channels, selecting transmit or receive, and setting up cycle count
filtering is done during the configuration stage of the FlexRay protocol at sys-
tem design [RS06]. Consequently, for our approach we consider a message
buffer setup which allows storing messages with the maximum payload size
defined for the slots in each message buffer. Obviously, the number and size
of messages respectively slots depends on the FlexRay bus setup that we de-
scribe in the next section.

FlexRay Bus Setup

In [ASH06] the authors summarize that the FlexRay protocol specification
lists 74 parameters and their possible settings span a space of more than 1048

(theoretical) configurations. This results in an increased configuration com-
plexity for the system design. Setting up all of these parameters and con-
figuring the communication on FlexRay is a burdensome task for a system
designer and therefore addressed by numerous publications like [ASH06],
[MN08], [PS11], and [Jan+11]. Thus, in this thesis we focus on the con-
figuration of the most important parameters for the FlexRay schedule to de-
termine a fault-tolerant system by means of our design approach. However,
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many of the protocol parameters influence each other and can be derived di-
rectly or indirectly based on these basic parameters.

Bandwidth (Transmission Rate) For the bandwidth of the FlexRay bus,
we configure a transmission rate of 10 Mbit/s. Even if the current version of
the FlexRay protocol also supports rates of 5 Mbit/s and 2.5 Mbit/s, we set up
the maximum available transmission rate to reduce the resulting transmission
delays for inter-ECU communication. As mentioned in Section 2.2.3 the
transmission of 1 byte of data needs 1µs at a transmission rate of 10 Mbit/s.

Communication Cycle In this thesis we consider a pure static FlexRay cy-
cle without dynamic segment and without symbol window. Furthermore, we
consider a NIT with a length of just a few microseconds. Thus, the commu-
nication cycle Θcycle can be defined as a set of n static slots:

Θcycle = {θi| i = 1, . . . ,n}. (4.16)

As input for our design approach we model a communication graph (COMG)
representing the available static slots in a communication cycle. Figure 4.9
illustrates an exemplary COMG GCOMG = (V,E) = (Θ, /0). The vertices rep-
resent the set of available slots Θ with Θ=Θcycle. Since there is no functional
relation between the slots, we model GCOMG as a graph without edges, i.e.
E = /0.

 θ1 
[0,50[ 

 θ2 
[50,100[ 

 θ3 
[100,150[ 

  θ19 
[900,950[ 

…"

Figure 4.9: Exemplary communication graph.

Each of the n slots θi is annotated with its slot time interval by means of a
labeling function s defined as:

s : Θ → {[sθi, fθi[|1, . . . ,n}
θi 7→ [sθi, fθi[.

(4.17)

To facilitate the synchronization of task executions and message transmis-
sions and enable efficient corresponding schedulings, we set the length of the
FlexRay communication cycle to the hyperperiod HΓ of the given task set:

length(Θcycle) = HΓ.
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As defined in Equation 4.3, if Γ is a harmonic task set, Tmax = HΓ holds.
Thus, we set the cycle length for a harmonic task set to:

length(Θcycle) = Tmax.

For instance, for the TDG depicted in Figure 4.6 the cycle length would be
set to length(Θcycle) = Tmax = 2000µs. But to be more flexible, we do not
limit our approach to these harmonic task sets. Thus, we also support non-
harmonic task sets with Tmax 6= HΓ. In this case we set the communication
cycle length to the hyperperiod HΓ of the given task set which is the least
common multiple of the task periods (cf. Section 2.1.2). Nevertheless, there
are some major constraints, caused by the FlexRay specification, limiting
the support of such task sets to a certain extend. As mentioned in Section
2.2.3 the maximum length of a FlexRay communication cycle is 16ms. This
means that for the support of longer periods cycle multiplexing must be uti-
lized. However, for cycle multiplexing FlexRay solely offers cycle repeti-
tions of Rep = {5,10,20,40,50} as well as Rep ∈ {2n|n = 0, . . . ,6} (cf. Sec-
tion 2.2.3). Consequently, theoretically hyperperiods up to HΓ = 26 ·16ms =
1024ms are possible. Even for shorter hyperperiods and for harmonic task
sets cycle multiplexing can be applied. For instance, for the TDG in Figure
4.6 the cycle length can be configured as length(Θcycle) = 1000µs with a cy-
cle repetition of Rep = 2. Generalized, our approach sets the communication
cycle length to the task set hyperperiod, where the possible values for HΓ are
defined as:

HΓ = length(Θcycle) ·Rep≤ 1024ms,
with

length(Θcycle)≤ 16ms,
Rep ∈ {5,10,20,40,50,2n|n = 0, . . . ,6}.

(4.18)

As described in Section 2.2.3 a network idle time for the node clock synchro-
nization is mandatory in the communication cycle. The NIT is a communica-
tion-free period at the end of the cycle and cannot be used for message trans-
mission. This means, the duration of the NIT reduces the length of the static
segment within the communication cycle. However, a NIT duration of a few
microseconds is sufficient and the slot duration must be larger than 13µs to
transmit any payload data. Therefore, we consider a deliberately kept short
NIT duration. This results in the loss of just the last or at most a few slots for
the static segment at the end of the communication cycle.

Slots The size of the static slots within the communication cycle is config-
urable by the system designer and allows a payload in each slot between 0
and 254 bytes. As mentioned above at a transmission rate of 10 Mbit/s we
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can define that the time duration of a slot in microseconds equals the slot size
in bytes:

duration(θ) = size(θ).

Based on that, the number of slots within the communication cycle can be
calculated as:

∣∣Θcycle
∣∣= length(Θcycle)

duration(θ)
−NIT. (4.19)

As mentioned above the available time for the static slots is reduced by the
NIT which we configure as long as one slot or as integer multiple of the
configured slot duration. Obviously, the configured slot size must also be
an integer divisor of the remaining time in the communication cycle length.
Although the slot size is freely configurable under the above-mentioned con-
straints, the system designer must consider the number and size of messages
in the given software architecture. To avoid unnecessary transmission delays,
the slot size should be sufficient to transmit even the largest message within
the payload of one slot.

With Equation 4.19 the number of available slots within the COMG is cal-
culated as input for our design approach. By means of the labeling function
in Equation 4.17 each slot is annotated with its corresponding slot time inter-
val [sθi, fθi[. Obviously, the size of the slot time interval is the slot duration.
Thus, the start time of slot θi is calculated as:

sθi = (i−1) ·duration(θ), (4.20)

and the finishing time of slot θi is calculated as:

fθi = i ·duration(θ). (4.21)

Figure 4.9 depitcs the slots and slot time intervals for an exemplary COMG
resulting from the following FlexRay bus configurations:

• Communication cycle length: length(Θcycle) = 1000µs,

• Slot duration: duration(θ) = 50µs,

• Network Idle Time: NIT = duration(θ) = 50µs.

The configured cycle length would allow 20 slots with slot time interval of
50µs. Since the NIT reduces the available time by one slot duration, the
COMG contains 19 slots as shown in Figure 4.9. For instance, the slot time
interval for slot θ2 is [50µs,100µs[.
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As described in Section 2.2.3 the payload data in a FlexRay frame is stored
and addressed in two-byte words, i.e. each message needs multiples of 2
bytes in the payload segment of a FlexRay frame respectively slot. Hence,
the required payload length of a message mi with an original data length Lmi

is defined as:

Lmi ≤ payload(mi) = n ·2 bytes≤maxPayload(θ), n ∈ N0.

For instance, the largest message of the TDG in Figure 4.6 is 20 bytes. Thus,
due to the FlexRay protocol overhead, we propose to set the slot size to at
least size(θ) = 20 bytes+ 13 bytes = 33 bytes (cf. Section 2.2.3).17 Even
if this results in a larger slot size, it is often reasonable to transmit multiple
messages from one sender ECU in one slot because this can further decrease
transmission delays and communication overhead. Section 4.2.6 provides de-
tails on the concepts supported by our approach to enable combined message
transmission in one slot.

4.2.6 Protocol Data Unit Concept & Frame Packing

As described in Section 2.2.3 FlexRay utilizes padding bytes to fill the re-
maining bytes if the message to transmit is smaller than the configured pay-
load size. Depending on the given message sizes and the defined slot size, this
may result in unnecessary communication overhead for messages from the
same sender ECU transmitted in different slots. Therefore, several Flexray
communication stacks, like the one presented in [GK07], support the protocol
data unit (PDU) concept.

As shown in Figure 4.10 several PDUs can be combined within the pay-
load segment of a FlexRay frame [Rau08]. PDUs may have different sizes,
i.e. contain a variable number of two-byte data words. This implies that
it is possible to encapsulate the data exchanged between ECUs in messages
respectively PDUs [Par12]. The FlexRay communication stack gets the mes-
sage data from the host via CHI and processes the PDUs into frames and vice
versa [GK07].

PDU 1 PDU 2 ... PDU m 

Data 0 Header Data 1 Data 2 ... Trailer Data n 

FlexRay Frame 

Payload Segment 

Figure 4.10: Example for PDU concept in a FlexRay frame.

17Theoretically, it is also possible to split up a large message and transmit it in several slots. But for a higher
practicability we assume at least slot sizes sufficient to transmit the largest message.
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Since FlexRay slots are statically assigned to one sender ECU, the PDU con-
cept allows us to perform frame packing for messages sent by the set of tasks
ΓECUk hosted by ECUk. This means tasks may send different messages com-
bined in one frame if they are executed on the same ECU. This condition can
be formalized as:

ECUτi = ECUτ j , with τi 6= τ j ∈ ΓECUk ⊂ Γ.

Obviously, the summed size of the messages mi may not be larger than the
available maximum payload of the slot θ. For n different messages this con-
dition can be defined as:

n

∑
i=1

payload(mi)≤maxPayload(θ).

Figure 4.11 illustrates an example for frame packing. The tasks τ1 and τ2
are executed on the same ECU, i.e. ECUτ1 = ECUτ2 . Since the condition
payload(m1)+ payload(m2) ≤ maxPayload(θ) also holds, the messages m1
and m2 (PDU 1 and PDU 2) can be combined within the payload segment of
the same FlexRay frame.

ECU 
 
 
 
 

τ1 

τ2 
FlexRay Frame Payload 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

m1 (PDU 1) m2 (PDU 2) ... 

FlexRay Slot 

Figure 4.11: Example for frame packing.

Frame packing enables a more efficient and flexible bus scheduling of mes-
sages. Since multiple messages from one sender ECU can be combined in
one frame, less slots must be assigned to this ECU. This allows a better uti-
lization of individual payload of frames and slots which results in a decreased
communication overhead in these slots. Furthermore, it also facilitates ear-
lier transmission of messages if a message is scheduled combined with other
messages in one slot instead of being transmitted in the subsequent slots.
Consequently, this may result in shorter communication delays and response
times for the receiver tasks of messages. The reduced number of required
slots also increases the flexibility of the slot assignments. This enables our
approach to assign slots which are not already assigned to an ECU to a dif-
ferent ECU in another configuration.
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4.3 Modeling of System Properties

These sections describe the graph-based modeling of the system properties
as input for our design approach. This includes the modeling of the software
architecture and the hardware topology in Section 4.3.1 as well as the de-
termination of the resulting timing constraints and communication properties
derived from the given inputs and presented in Section 4.3.2. For a better
traceability, all model elements and performed steps of the design approach
are illustrated based on an example we published in [KMR12].

4.3.1 Software Architecture and Hardware Topology

The software architecture of a distributed real-time system offers and controls
one or more functions implemented with a number of dependent tasks. A task
set Γ of such a system with n tasks can be modeled as:

Γ = {τi = (Ti,Ci,ri,di,si, fi)| i = 1, . . . ,n} . (4.22)

As described in Section 2.1.1 each task τi defined in Equation 4.22 is charac-
terized by several parameters. This includes the period Ti and the WCET Ci,
a release time ri at which the task can be started and a deadline di at which the
execution of τi must be finished. These parameters are globally defined and
constrain the possible scheduling of the given task set to guarantee a correct
system behavior. Additionally, a task is described by a start time si and a fin-
ishing time fi. The actual execution, i.e. start and finish of a task, depends on
the performed scheduling of the task set. The applied scheduling strategy has
to guarantee that start and finishing time of each task lie within its available
execution time interval:

Ψi = [ri,di[ with ri ≤ si < fi ≤ di.

Distributed tasks in a real-time network exchange data by means of real-time
message communication. Similar to the task set a message setM of n real-
time messages can be modeled as:

M= {mi = (Tmi,Lmi,rmi,dmi,smi, fmi)| i = 1, . . . ,n} . (4.23)

Equation 4.23 defines that each message mi is characterized by a period Tmi

which directly depends on the period Ttx of the sender task τtx and the pe-
riod Trx of the receiver task τrx (cf. Section 4.2.3). Moreover, each message
mi has a data length Lmi to transmit, a release time rmi , and a deadline dmi .
As described in Section 2.2.2 we define that rmi and dmi limit the available
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transmission time interval ϒmi = [rmi,dmi[= [ ftx,srx[. This means that the
transmission of message mi can be started earliest when τtx has finished its
computation and must be finished latest when τrx is started. Therefore, the
start time smi and finishing time fmi of mi must lie within this interval:

ftx = rmi ≤ smi < fmi ≤ dmi = srx.
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(a) Software architecture modeled with
timing-augmented TDG.
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(b) Hardware topology modeled with HAG.

Figure 4.12: Graph-based modeling of system properties as input for design approach (example
from [KMR12]).

To represent the task dependencies and specify the timing properties of the
given software architecture, we model this input for our approach as a timing-
augmented task dependency graph GTDG = (Γ,M) as described in Section
4.2.3. Figure 4.12(a) depicts an example TDG from [KMR12] composed of
eight tasks Γ = {τ1, . . . ,τ8} and six messagesM= {m1, . . . ,m6}. Each task
τi is annotated with its WCET Ci and each message mi with its data length
Lmi by means of the labels c(τi) and d(mi) defined in Section 4.2.3.

According to the definition from [DTT08], we distinguish between three dif-
ferent task subsets in the TDG to reference them in the following descrip-
tions:

• Γin ⊂ Γ: The subset of tasks (vertices) in the TDG which have no pre-
decessors and incoming messages (edges).

• Γout ⊂ Γ: The subset of tasks (vertices) in the TDG which have no
successors and outgoing messages (edges).
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• Γmid ⊂ Γ: Contains all tasks (vertices) in the TDG which are not el-
ement of Γin or Γout. This means, these tasks have predecessors and
successors as well as incoming and outgoing messages (edges).

Moreover, there are different approaches described in literature to define and
model the messages and data exchange in a TDG. For example, on the one
hand, the authors in [DTT08] define that each message sent by a task is differ-
ent and must therefore be scheduled separately on the bus. This corresponds
to the case illustrated in the example TDG of Figure 4.12(a) where task τ4
sends two different messages m4 and m5. On the other hand, the authors
in [KHM03] assume that one task only sends one specific message instance
which can be received by one or multiple tasks and is identical for all re-
ceivers. For the example of Figure 4.12(a) this would mean that m4 = m5
would hold. To allow and support more flexible system designs, we prin-
cipally consider and utilize the modeling with differently defined and sepa-
rately scheduled messages. However, our approach also supports the concept
of identical message instances.

Listing 4.4 provides the XML-based input for our design approach represent-
ing the TDG in Figure 4.12(a). In the lines 2 to 11 it shows how the tasks
are defined and annotated with their corresponding WCETs. Furthermore,
in the lines 12 to 31 it represents the communication dependencies between
the tasks via defining senders and receivers for each individual message and
annotates each message with its corresponding data length. For instance line
13 to 15 define message m1 (M 01) with a data length of 8 bytes to be trans-
mitted from sender task τ1 (T 01) to receiver task τ4 (T 04). This allows our
approach to directly derive the precedence constraints of the given software
architecture.

1 <TDG>
2 <tasks>
3 <task ID="T_01" WCET="100" />
4 <task ID="T_02" WCET="200" />
5 <task ID="T_03" WCET="200" />
6 <task ID="T_04" WCET="300" />
7 <task ID="T_05" WCET="300" />
8 <task ID="T_06" WCET="200" />
9 <task ID="T_07" WCET="200" />

10 <task ID="T_08" WCET="100" />
11 </tasks>
12 <messages>
13 <message ID="M_01" Payload="8" SenderID="T_01">
14 <ReceiverID>T_04</ReceiverID>
15 </message>
16 <message ID="M_02" Payload="6" SenderID="T_02">
17 <ReceiverID>T_05</ReceiverID>
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18 </message>
19 <message ID="M_03" Payload="6" SenderID="T_03">
20 <ReceiverID>T_05</ReceiverID>
21 </message>
22 <message ID="M_04" Payload="4" SenderID="T_04">
23 <ReceiverID>T_06</ReceiverID>
24 </message>
25 <message ID="M_05" Payload="4" SenderID="T_04">
26 <ReceiverID>T_07</ReceiverID>
27 </message>
28 <message ID="M_06" Payload="8" SenderID="T_05">
29 <ReceiverID>T_08</ReceiverID>
30 </message>
31 </messages>
32 </TDG>

Listing 4.4: TDG input for example in Figure 4.12(a).

The overview in Figure 4.1 shows that besides the software architecture our
design approach also needs the given hardware topology as input. Therefore,
we model it as a hardware architecture graph GHAG = (E ,E) introduced in
Section 4.2.5. In the example from [KMR12] illustrated in Figure 4.12(b),
we assume a distributed system topology with three functional nodes respec-
tively ECUs, i.e. the HAG has three vertices. These ECUs communicate over
the FlexRay bus represented by the undirected edges between the ECUs. As
described in Section 4.2.5, each ECU j is annotated with an execution time
factor by means of the label f(ECU j). However, in this example we con-
sider a homogeneous system topology resulting in an execution time factor
of 1.0 for each ECU j. Listing 4.5 gives the XML-based input for our design
approach representing the HAG in Figure 4.12(b) and shows how the ECUs
annotated with their corresponding execution time factor are defined. More-
over, for a better traceability and identification in the following concepts and
design steps, the ECUs in the example HAG are marked with different colors.

1 <HAG>
2 <ecus>
3 <ecu ID="ECU_01" ETFactor="1.0" />
4 <ecu ID="ECU_02" ETFactor="1.0" />
5 <ecu ID="ECU_03" ETFactor="1.0" />
6 </ecus>
7 </HAG>

Listing 4.5: HAG input for example in Figure 4.12(b).

In Section 4.2.2 we introduced our distributed coordinator concept to enable a
self-reconfiguration of the remaining ECUs in case of a node failure. For this
concept we have to add distributed coordinator tasks to every node of the sys-
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tem. Although, the DCC is implemented by lightweight tasks not consuming
any significant computational resources they still have to be scheduled and
therefore be considered for the schedulability test of the applied scheduling
strategy (cf. Section 4.2.4). Hence, our design approach takes the input data
from the TDG and HAG to derive an extended TDG which adds one coordi-
nator task per ECU to the given application tasks of the software architecture.
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Figure 4.13: Extended TDG based on input graphs in Figure 4.12.

Figure 4.13 depicts the resulting extended TDG for the input graphs in Fig-
ure 4.12. Since the given hardware topology is composed of three ECUs,
the extended TDG also contains the three coordinator tasks τc1 , τc2 , and τc3 .
Each coordinator task is attached to all tasks in Γout with dashed directed
edges, to specify that they will be scheduled after the last application task
on their corresponding hosting ECU. Obviously, this implies that the coordi-
nator task must also be considered on each ECU for the schedulability tests
we presented in Section 4.2.4. As depicted in Figure 4.13, we assume that
all distributed coordinator tasks have the same WCET, in this example 50µs.
Therefore, it is sufficient to add one universal generic definition of the coor-
dinator task to TDG input as shown in line 5 of Listing 4.6.

1 <TDG>
2 <tasks>
3 ...
4 <task ID="T_08" WCET="100" />
5 <task ID="T_c" WCET="50" />
6 </tasks>
7 ...
8 </TDG>

Listing 4.6: Coordinator task definition added to TDG input in Listing 4.4.
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This section presented our graph-based modeling of the software architecture
and the hardware topology as input for our design approach. In the following
section we describe how extend these input models with the additional infor-
mation about timing constraints and communication properties required for
an appropriate real-time system design.

4.3.2 Timing Constraints and Communication Properties

In Section 4.2.3 we described how we utilize TADL2 to augment a TDG by
the definition of timing constraints as input for our approach to guarantee
a correct system design and behavior. According to the exemplary TADL2
constraints shown in Listing 4.2 and 4.3 we define periodic constraints and
end-to-end delay constraints for the task execution and message transmis-
sions in the given software architecture represented by the timing-augmented
TDG. As shown in Figure 4.13 the period constraints respectively end-to-end
delay constraints for this example are defined as 1000µs.

Due to these timing and precedence constraints, the individual release time
ri and deadline di of each task τi are successively calculated by means of the
corresponding parameters of the predecessors and successors, as we initially
described in [KMR12]. The individual release times ri are calculated as:

ri =

{
0 , if τi ∈ Γin
max{r j +C j |τ j ∈ ΓdirectPrei} ,else. (4.24)

If a task τi has no predecessors, i.e. τi ∈ Γin, its available execution time
interval Ψi = [ri,di[ starts at ri = 0. For tasks with one or more predecessors,
Equation 4.24 calculates the value for ri by means of the parameters r j and
C j of the direct predecessors of τi, i.e. τ j ∈ ΓdirectPrei ⊂ Γ. This means, it
successively calculates the sum(s) of the computation times of the paths from
τi backwards to its source(s) in the TDG and assigns the maximum value of
this sum(s) to ri.

In a similar manner the individual deadlines di are calculated as:

di =

{
max end-to-end delay , if τi ∈ Γout
min{dk−Ck |τk ∈ ΓdirectSucci} ,else. (4.25)

If a task τi has no successors, i.e. τi ∈ Γout, the available execution interval
of τi ends at di = max end-to-end delay as specified in the given timing con-
straints (cf. Section 4.2.3). For tasks with one or more successors, Equation
4.25 determines the value for di based on parameters dk and Ck of the direct
successors of τi, i.e. τk ∈ ΓdirectSucci ⊂ Γ. It successively combines the com-
putation times along the paths from τi to their sink vertices and subtracts the
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sum from the constrained maximum end-to-end delay. The minimum value
of all paths is assigned to di.

As described above, we extend the given TDG by adding distributed coordi-
nator tasks for the DCC. This means that the available execution time inter-
vals for the application tasks within the constrained maximum end-to-end de-
lay are reduced by the WCET of the coordinator task. Therefore, the WCET
Cc of the coordinator task τc has to be integrated in Equation 4.25 resulting
in:

di =

{
max end-to-end delay−Cc , if τi ∈ Γout
min{dk−Ck |τk ∈ ΓdirectSucci} ,else. (4.26)

To enable a correct design and behavior of a distributed real-time system, the
determination of these boundaries is required for all tasks by means of Equa-
tion 4.24 and 4.26. Table 4.2 provides the resulting values for the example
TDG in Figure 4.13.

Task τi Release Time ri [µs] Deadline di [µs]
τ1 0 450
τ2 0 550
τ3 0 550
τ4 100 750
τ5 200 850
τ6 400 950
τ7 400 950
τ8 500 950
τc 600 1000

Table 4.2: Available execution time intervals Ψi for extended TDG in Figure 4.13.

Depending on the individual scheduling and communication of tasks the start
time si is delayed and not the whole calculated interval is available to meet
the given deadline di. For example, a task may start its execution at its release
time, i.e. si = ri, if just the tasks contained in the determined predecessor path
with the maximum computation time are scheduled to the same ECU as τi.
If other additional tasks are scheduled before τi its execution is delayed, i.e.
si > ri. The same holds for predecessors which are executed on other ECUs
because the necessary communication may also delay the start of the task
execution. Therefore, these constraints have to be considered by the global
scheduling strategy. Obviously, in a heterogeneous system these values must
be calculated individually for each ECU by means of the specific WCET
CECU j,τi depending on its execution time factor as described in Section 4.2.5.
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Beside task execution also the necessary message transmissions have to be
performed within the defined timing boundaries. Consequently, the given
communication properties have to be considered for a proper system design,
too. This includes the message properties and the bus configuration. The data
lengths are already annotated to the messages in the timing-augmented TDG
and therefore available as input for our design approach (cf. Figure 4.13). As
described in Section 4.2.5, we also model a communication graph GCOMG =
(Θ, /0) as input for our approach, which represents the bus configuration. Fig-
ure 4.14 shows the COMG for the example FlexRay network from [KMR12]
with a transmission rate of 10 Mbit/s and a NIT duration of one slot. It rep-
resents a configured cycle length of length(Θcycle) = Tmax = 1000µs and slot
duration of duration(θ) = 25µs, derived from the properties and constraints
of the TDG in Figure 4.13. The resulting slot time interval is annotated to
each slot θi of the COMG by means of the label s(θi).

At a transmission rate of 10 Mbit/s the duration of a slot in microseconds
equates to the slot size in byte. This means that in this configuration each
slot can transmit a maximum payload data of 12 bytes (cf. Section 2.2.3).
Consequently, frame packing could be utilized for several of the messages
with sizes from 4 to 8 bytes depending on the task-to-ECU mapping per-
formed by our design approach. Listing 4.5 gives the XML-based input for
our design approach representing the COMG in Figure 4.14 providing the
necessary communication properties defined above.

 θ1 
[0,25[ 

 θ2 
[25,50[ 

 θ3 
[50,75[ 

  θ39 
[950,975[ 

…"

Figure 4.14: Communication graph for example system from [KMR12].

1 <COMG>
2 <cycleLength> 1000 </cycleLength>
3 <slotLength> 25 </slotLength>
4 <slotsNIT> 1 <slotsNIT>
5 </COMG>

Listing 4.7: COMG input for example in Figure 4.14.

As described in Section 2.2.2 the properties of the message transmission also
depend on the global scheduling. After the task-to-ECU mapping, the result-
ing available transmission time interval ϒmi of a message mi is limited by the
finishing time of the sender task τtx and the start time of the receiver task
τrx.18 For intra-node messages the communication is realized by means of
shared data structures. For inter-node communication the message has to be

18Considering the message model with multiple receivers from [KHM03], the available transmission time inter-
val is limited by the receiver with the earliest start time.
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mapped to one of the FlexRay slots within the available transmission time
interval. Consequently, the available transmission time interval must be at
least one slot duration, i.e. ϒmi ≥ duration(θ), to enable a feasible message
scheduling. Therefore, the set of available slots Θmi , which is a subset of the
complete set of FlexRay slots Θcycle modeled in the COMG, has to be deter-
mined. Our design approach calculates the set of available slots Θmi for each
inter-node message mi by means of ϒmi and duration(θ) as:

Θmi =
{

θ j

∣∣∣⌈ rmi
duration(θ)

⌉
+1≤ j ≤

⌊
dmi

duration(θ)

⌋}
=

{
θ j

∣∣∣⌈ ftx
duration(θ)

⌉
+1≤ j ≤

⌊
srx

duration(θ)

⌋}
.

(4.27)

Obviously, the available slots within an available transmission time interval
are a connected subset. Figure 4.15 illustrates the relation between ϒm1 and
Θm1 for an example inter-node message m1 = m(τ1,τ2). In this example the
message m1 is released at the finishing time of task τ1, during the duration of
slot 2 (θ2) and has its deadline at the start time of task τ2, after the duration
of slot 4 (θ4). With Equation 4.27 the available slots for m1 are determined
as Θm1 = {θ3,θ4}.
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Figure 4.15: Overlapping available slots in available transmission time intervals.
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Slot Reduction and Multirate Systems

The determination of the individual available slots for inter-node messages
is very useful as input information for the bus mapping described in Sec-
tion 4.4.2. Especially in huge and complex distributed systems with many
ECUs, probably many messages will be transmitted via inter-ECU commu-
nication. However, as described in Section 2.2.3 a FlexRay slot can only be
assigned statically to one specific sender ECU. In particular, to increase the
flexibility for a feasible and correct fault-tolerant system design including all
necessary reconfigurations, our approach is supposed to reduce the number
of required slots per sender ECU. Therefore, it analyses the available slots
for message subsetsM of the inter-ECU messagesMbus

ECUtx
transmitted by a

sender ECUtx to determine overlapping available slots ΩECUtx(M). Depend-
ing on the communication properties, i.e. message data length and slot sizes,
two or even more of the messages sent by ECUtx can be combined in one of
the overlapping slots to perform an efficient bus mapping.

Figure 4.15 gives an example for overlapping available slots. The tasks τ1 and
τ3 are mapped to the same sender ECU1. The inter-node messages m1 and
m2 have the available transmission time intervals ϒm1 and ϒm2 resulting in the
available slot sets Θm1 = {θ3,θ4} and Θm2 = {θ4,θ5}. Our design approach
can identify the overlapping slot ΩECU1({m1,m2}) = θ4 for the sender ECU1.
This means, that the bus mapping may combine the messages m1 and m2
in slot 4 if frame packing is possible, i.e. payload(m1) + payload(m2) ≤
maxPayload(θ) (cf. Section 4.2.6).

In Section 4.2.3 we described that our approach supports the design of mul-
tirate systems with different periods for tasks and subgraphs. This includes
harmonic task sets with Tmax = HΓ, which are most common in real-world
applications [Eis+10]. Additionally, it also supports non-harmonic task sets
with Tmax 6= HΓ to a certain extend. For this purpose, we configure the length
of the FlexRay communication cycle to the hyperperiod of the given task set,
i.e. length(Θcycle) = HΓ (cf. Section 4.2.5). As described in Section 2.1.2
and 2.2.2, a hyperperiod contains multiple instances of task τi generating
multiple instances of a message mi, i.e. τi, j,mi, j with 1 ≤ j ≤ n, n = HΓ/Ti.
Figure 4.16 depicts an exemplary multirate TDG composed of two subgraphs
with different periods from [KHM03]. Similar to the TDG in Figure 4.13, it
is extended by the coordinator tasks considering a hardware topology with
three ECUs. The left subgraph has a period of 1500µs and the right one
of 3000µs. This means, that during the hyperperiod of HΓ = 3000µs, n =
3000µs/1500µs = 2 instances of tasks and messages for the left subgraph are
executed and transmitted.

Figure 4.16 illustrates how our approach internally models and handles such
multirate TDGs. The n instances of subgraphs respectively tasks with Ti <HΓ
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Figure 4.16: Example of an extended multirate TDG with multiple task and message instances
based on TDGs from [KHM03].

are consecutively attached. The dashed arrows between the two instances
of the left subgraph indicate their precedence relation but the corresponding
tasks are still in Γin respectively Γout. Furthermore, the necessary coordinator
tasks with the WCET Cc = 50µs are attached to the last, i.e. n-th, instance
of each subgraph. Thus, the coordinator tasks are scheduled once per hyper-
period of the given task set, i.e. Tc = HΓ, which enables the DCC to detect
a failure latest after the duration of one hyperperiod as mentioned in Sec-
tion 4.2.2. Obviously, the available execution intervals Ψi, j = [ri, j,di, j[ for a
multirate system cannot be directly determined with Equation 4.24 and 4.26
because they do not distinguish between different task instances. Therefore,
we extend these equations to calculate the individual instances release times
ri, j as:

ri, j =

{
( j−1) ·Ti , if τi ∈ Γin
max{rk, j +Ck |τk ∈ ΓdirectPrei} ,else, (4.28)

and the individual instances deadlines di, j as:

di, j =

{
j ·max end-to-end delay−Cc , if τi ∈ Γout
min{dl, j−Cl |τl ∈ ΓdirectSucci} ,else. (4.29)
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Equation 4.28 and 4.29 calculate ri, j and di, j for each instance j of a task τi
by means of the given task periods respectively maximum end-to-end delay
constraints. According to the definitions in Section 2.1, the release time of
the j-th instance of a task τi ∈ Γin is ri,1 = 0 for the first instance, and ( j−1)-
times the task period Ti for further instances, i.e. j > 1. For the example in
Figure 4.16 this results in r1,1 = 0µs and r1,2 = 1500µs. Similar to Equation
4.28 for tasks with one or more predecessors, ri, j is calculated by means of
the parameters rk, j and Ck of the j-th instances of the direct predecessors
τk ∈ ΓdirectPrei . Obviously, the deadline of the j-th instance of a task τi ∈ Γout
is j-times the maximum allowed end-to-end value which corresponds to the
task period Ti in our system architecture model specification (cf. Section
4.2.3). For tasks with one or more predecessors, di, j is calculated by means
of the parameters dl, j and Cl of the j-th instances of the direct successors
τl ∈ ΓdirectSucci .

Table 4.3 summarizes the values of the available execution timer interval
Ψi, j = [ri, j,di, j[ for each task instance of the example multirate TDG in Fig-
ure 4.16. It shows how the individual release times of different task instances
are calculated by means of their periods and precedence constraints. More-
over it shows, that even though the coordinator tasks are scheduled only once
per hyperperiod, i.e. Tc =HΓ, the deadlines di, j of all task instances are short-
ened by the WCET Cc = 50µs of the coordinator tasks as defined in Equation
4.29. This ensures that all different instances j and k of a task τi have the same
relative deadline Di = di, j− ri, j = di,k− ri,k with 1 ≤ j,k ≤ n, n = HΓ/Ti as
defined in Section 2.1. For instance, in Table 4.3 both instances of task τ1
have the same relative deadline D1 = 1000µs. This equality of relative dead-
lines for all task instances is also necessary to perform the PDC respectively
PDC* schedulability test that utilizes this parameter. Additionally, the con-
sideration of multiple task and message instances may have an impact on
the resulting communication delay δi we integrated in both schedulability
tests. As described in Section 4.2.4 one part of the communication delay for
an inter-ECU message m(τ j,τi) is the transmission start delay ζm(τ j ,τi)

which
grows if the next or more FlexRay slots after f j are not available for the
message transmission. Especially in a large system with many inter-ECU
messages this may result in different transmission start delays for k different
message instances from the sender task τ j. In this case we have to consider
the worst case transmission start delay for all message instances:

ζm(τ j ,τi)
= max

{
ζm(τ j ,τi),k

|1≤ k ≤ n
}
,

to ensure a correct schedulability test for all instances of the receiver task τi.

Moreover, it is important to note that not all instances of different messages
in a multirate system can have overlapping slots. For instance, in the multi-
rate system from Figure 4.16 with Tm1 = 1500µs and Tm6 = 3000µs where the
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Task (instance) τi, j Release Time ri, j[µs] Deadline di, j[µs]
τ1,1 0 1000
τ2,1 0 1100
τ3,1 150 1300
τ4,1 175 1350
τ5,1 450 1450
τ6,1 425 1450
τ7,1 0 2250
τ8,1 0 2250
τ9,1 0 2550
τ10,1 300 2550
τ11,1 600 2800
τ12,1 600 2750
τ13,1 850 2950
τ14,1 800 2950
τ1,2 1500 2500
τ2,2 1500 2600
τ3,2 1650 2800
τ4,2 1675 2850
τ5,2 1950 2950
τ6,2 1925 2950
τc 2100 3000

Table 4.3: Available execution time intervals Ψi, j for multirate TDG in Figure 4.16.

available slots Θm1,1 and Θm6,1 may overlap, the available slots Θm1,2 cannot
overlap with Θm6,1 . Considering the set of all inter-node message instances
mi, j ∈Mbus

ECUtx
which are sent by ECUtx within the hyperperiod HΓ, the de-

termination of overlapping slots for messages can be formalized as:

ΩECUtx : P
(
Mbus

ECUtx

)
\ /0 → P(Θcycle),

p 7→
⋂

mi, j∈p
Θmi, j .

(4.30)

Equation 4.30 defines the function ΩECUtx which assigns the power set19 of
all inter-node messages Mbus

ECUtx
sent by ECUtx in one configuration to the

power set of all slots in the FlexRay communication cycle. It maps each
element p from the power set of message instances to the intersection of
available slots for all message instances mi, j ∈ p. By means of this function
the overlapping slots for all possible message instance combinations in one
configuration are determined. This information can be used to reduce the

19Without the empty set /0.
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number of slots assigned to ECUtx by utilizing frame packing in overlapping
available slot intervals.

Communication with Environment

The resulting reduction of required slots increases the flexibility for the de-
termination of feasible slot assignments in large and complex systems with
many necessary reconfigurations. Moreover, it helps to keep slots free for
the additional bus communication which is required by our proposed recon-
figurable distributed system topology presented. As mentioned in Section
4.2.1, the data required and provided by the set of functions of the distributed
system has to be exchanged with the environment via sensors and actuators
which are hardwired to dedicated peripheral interface nodes. Even though
the actual setup and configuration of I/O and peripheral interfaces is beyond
the scope of this thesis, here we briefly describe how to consider this com-
munication in the system design approach.

Obviously, the tasks in Γin request input data and the tasks in Γout provide
output data with their corresponding periods. On the one hand, the j-th in-
stance of a task τi, j ∈ Γin needs the input at the beginning of its j-th period to
start its execution. To allow a start time of si, j = ri, j = ( j−1) ·Ti as derived
in Equation 4.28, we consider a transmission of the necessary input data by
the responsible peripheral interface node before the end of period j−1. On
the other hand, the j-th instance of a task τi, j ∈ Γout may provide its output
data until its deadline di, j = j ·max end-to-end delay−Cc which is derived
from the maximum end-to-end delay constraint, i.e. task period Ti, by Equa-
tion 4.29. Thus, it is reasonable to transmit the output data τi, j ∈ Γout to
the peripheral interface nodes in the beginning of the following period j+1.
Therefore, depending on the number of peripheral interface nodes and the
resulting number and size of messages for I/O data exchange, the required
number of slots at the beginning and the end of the periods can be blocked to
assign them to these messages and their sender nodes.

In the example of Figure 4.16 the tasks τ1,τ2 ∈ Γin require new input data
from the I/O interfaces every 1500µs and the tasks τ5,τ6 ∈ Γout provide out-
put data for the peripheral nodes with the same rate. The tasks τ7,τ8,τ9 ∈ Γin,
as well as τ13,τ14 ∈ Γout must exchange I/O data once per hyperperiod of the
TDG, i.e. HΓ = Tmax = 3000µs. As described in Section 4.2.5 we set the
FlexRay communication cycle length for this example to length(Θcycle) =
Tmax = 3000µs. Thus, the necessary slots at the beginning of the FlexRay
cycle are blocked for the messages from all tasks in Γout respectively their
hosting ECUs. Beside slot reuse also frame packing can be utilized for mes-
sages from tasks executed on the same ECU to reduce the number of blocked
slots. However, at the beginning of the FlexRay cycle the tasks in Γin will
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be executed. Therefore, the transmission of data to the peripheral interfaces
can be performed at least partly during the execution of these tasks in slots
which are not applicable for functional node communication. Similar con-
ditions hold for the end of the FlexRay cycle. Here, the necessary slots are
blocked for the messages from the peripheral interfaces to the tasks in Γin.
Slot reuse and frame packing are also applicable for these messages. For in-
stance, if several tasks need the same input data or one peripheral interface
node is hardwired to different sensors. As mentioned above, the message
transmission must be performed at the end of the FlexRay cycle where the
tasks in Γout and the coordinator tasks or even no more tasks are executed.
Thus, message transmissions from the peripheral interfaces can be performed
at least partly during or after the execution of these tasks without blocking
slots which are required for functional node communication.

Obviously, subgraphs respectively their tasks τi in Γin and Γout with a period
of Ti < HΓ must exchange data with the peripheral interfaces multiple times
within the hyperperiod of the TDG. For our example, additional slots for the
data exchange between the left subgragh and the peripheral interfaces have to
be blocked around its period of 1500µs. Consequently, the slots which are as-
signed to the interface nodes have to be blocked and are not available for the
functional node communication. The slots assigned to the ECUs hosting the
tasks τ5,τ6 ∈ Γout may only be partly used for functional node communica-
tion if frame packing is possible. Since the resulting pre-assignment of slots
to ECUs has to be considered by our design approach, the COMG input is
extended by this required information. Listing 4.8 depicts as an example how
the COMG input from Listing 4.7 is extended by information about blocked
slots. In this example the first three and the last three slots are pre-assigned
for communication with peripheral interfaces.

1 <COMG>
2 <cycleLength> 1000 </cycleLength>
3 <slotLength> 25 </slotLength>
4 <slotsNIT> 1 <slotsNIT>
5 <blockedSlotsIN>
6 <slot ID="S_37" />
7 <slot ID="S_38" />
8 <slot ID="S_39" />
9 </blockedSlotsIN>

10 <blockedSlotsOUT>
11 <slot ID="S_01" />
12 <slot ID="S_02" />
13 <slot ID="S_03" />
14 </blockedSlotsOUT>
15 </COMG>

Listing 4.8: COMG input from Listing 4.7 extended by information about pre-assigned
slots.
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In Section 4.2.3 and 4.3.1 we described the graph and XML-based represen-
tation of the TDG as input for our design approach. The TDG defines prece-
dence constraints and is annotated with timing properties, i.e. WCETs, of the
given tasks. Furthermore, in Section 4.2.3 we also presented TADL2 timing
constraints for a given TDG. These information are also part of the TDG de-
scription as input for our approach. The resulting properties of the individual
tasks in the TDG, i.e. realease time and deadline, to fulfill the given prece-
dence and timing constraints are calculated by means of Equation 4.24 and
4.25. Obviously, the timing constraints as well as the task and communica-
tion properties have to be considered for the actual system deployment we
present in the next section.

4.4 Deployment

This section describes the system deployment for fault-tolerant distributed
real-time systems as essential part of our design approach. As illustrated in
the approach overview in Figure 4.1, an appropriate deployment comprises
the determination of feasible task and bus mappings for the initial configu-
ration and based on that for all necessary reconfigurations to design a fault-
tolerant system. Therefore, the following sections 4.4.1 and 4.4.2 describe
our task and bus mapping concepts and algorithms. Additionally, for a better
traceability all deployment steps are applied to the example from [KMR12]
that we introduced above.

4.4.1 Task Mapping

To determine feasible overall task mappings, we have to ensure that all func-
tions in the distributed real-time system fulfill their timing constraints and
all tasks meet their deadlines. In Section 4.2.4 we introduced the PDC* and
RTA* schedulability tests, which combine tasks’ WCETs and possible de-
lays resulting from inter-ECU communication. Depending on the applied
local task scheduling strategy the corresponding schedulability test has to be
fulfilled to guarantee a feasible schedule for each ECU resulting in a valid
task scheduling for the complete distributed system. Therefore, the check of
the schedulability test is the necessary condition for each task assignment.
Before a task can be mapped to an ECU it has to be guaranteed that the new
task and all other tasks on this ECU will still meet their deadlines after the
assignment. Hence, to guarantee a feasible schedule the scheduling analysis
is performed for each task of the TDG before mapping, beginning with the
tasks in Γin. By means of this analysis the suitability of an ECU is checked.
Based on that test, our approach analyzes and reduces the resulting execution
delay for each task-to-ECU mapping to finally ensure minimized end-to-end
delays for all event chains from Γin to Γout.
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As mentioned in Section 4.2 our design approach it is not intended to opti-
mize one specific single attribute of the system, e.g. the task response time.
However, it is reasonable to enable parallel execution of tasks with simi-
lar available execution time intervals to reduce their response times. As de-
scribed in Section 4.3.2 the dependencies between the tasks in a given TDG
result in an available execution time interval Ψi = [ri,di[ for each task τi. To
increase the flexibility within the scheduling and the efficiency of the utiliza-
tion of the available resources, it is useful to start the execution of a task τi as
soon as possible within its available execution time interval. Therefore, we
propose the mapping of tasks with similar available execution time intervals
to different ECUs if possible to enable an at least partly parallel execution
of these tasks. In the following we describe in detail how the task mappings
within our design approach are performed to realize this.

In the example of Figure 4.13 and Table 4.2 the tasks τ4 and τ5 have the
similar available execution time intervals Ψ4 = [100µs,750µs[ and Ψ5 =
[200µs,850µs[. This means that τ4 may start its execution earliest at s4 =
r4 = 100µs, depending on the mapping of its predecessors and on the other
tasks executed on ECUτ4 . If τ5 is also mapped to ECUτ4 it may start earliest
at s5 = f4 = s4+C4 = 100µs+300µs= 400µs instead of r5 = 200µs. The ear-
liest possible finishing time of τ5 would be f5 = s5 +C5 = 400µs+300µs =
700µs. If the tasks would be mapped to different ECUs, i.e. ECUτ4 6= ECUτ5 ,
τ5 may start earliest at s5 = r5 = 200µs and therefore be partly executed par-
allel to τ4 to be finished earliest at f5 = s5 +C5 = 200µs+ 300µs = 500µs.
Summarized, by means of this approach the response time can be reduced for
at least partly in parallel executed tasks. This implies that each task waiting
for input from a task τi or other tasks scheduled after τi may start earlier. As
mentioned above, our approach performs the mapping which minimizes the
value for the resulting maximum of all end-to-end delays for all event chains
from Γin to Γout.

In Section 4.2.4 we described that the performed task mapping may have a
great impact on the resulting communication overhead. Therefore, our ap-
proach is also intended to reduce this overhead regarding different aspects.
Especially in complex distributed systems with a high number of connected
tasks exchanging messages it is desirable to reduce the number of assigned
FlexRay slots per ECU to increase the flexibility for the determination of a
feasible system design and scheduling. Therefore, our mapping approach
aims to enable message transmission via intra-ECU communication instead
of inter-ECU communication if possible. For example, if several tasks exe-
cuted on different ECUs finishing at similar points in time would need access
to the FlexRay bus it could become quite complex or in worst case impos-
sible to determine a feasible bus scheduling for the messages. This risk can
be avoided by reducing the number of needed slots.20 Thus, our approach

20Necessarily, the reduction of inter-ECU communication implies an increased number of intra-ECU messages.
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firstly considers to map a task τi to the same ECU as one or more of its direct
predecessors in ΓdirectPrei to enable intra-ECU communication. If τi has more
than one direct predecessors, our approach analyses their hosting ECUs to
determine the best candidate for the mapping of τi.

However, our approach also aims to reduce communication delays and re-
sponse times. Hence, the at least partly parallel execution of tasks with simi-
lar available execution time intervals is used to increase the flexibility of the
scheduling. Our approach implicitly checks if one or more of these ECUs
are not assigned to any task with a similar available execution time interval.
In this case, if the schedulability test is positive, τi can be mapped to ECUτ j

with τ j ∈ ΓdirectPrei resulting in a reduced communication delay and response
time for τi. For this purpose, our approach identifies the last scheduled tasks
τlast on each ECUτ j hosting direct predecessors and compares their finish-
ing times flast. If one or more of the direct predecessors of τi are last tasks,
the approach maps τi to the same ECU as the predecessor with the latest
finishing time. This results in the shortest possible delay, because it avoids
additional inter-ECU communication for the latest message input of τi. If no
direct predecessor is a last scheduled task, the approach maps τi to the ECU
with the earliest finishing time and shortest communication delay. This re-
sults in a reduction or total avoidance of the communication delay δi because
the inter-ECU message transmission can at least partly be performed during
the execution of the tasks scheduled after the direct predecessors (cf. Sec-
tion 4.2.4). Summarized, this mapping approach which results in a reduced
communication delay is not conflicting with the aim to reduce inter-ECU
messages because it avoids unnecessary inter-ECU messages.

Our approach starts the task mapping on Γin with the assignment to differ-
ent ECUs, if possible. Hence, the assignment of tasks in Γmid and Γout to
the same ECU as their direct predecessors implicitly realizes the mapping
of tasks with similar available execution time intervals to different ECUs
resulting in an at least partly parallel execution of these tasks and reduced
inter-ECU communication as mentioned above.

Inital Mapping

The task mapping approach is implemented with several algorithms. It starts
with the mapping for the initial configuration which is represented by Al-
gorithm 1 (INITIALTASKMAPPING) in pseudocode. The algorithm gets the
TDG GTDG = (Γ,M), HAG GHAG = (E ,E), and COMG GCOMG = (Θ, /0)
as input. The COMG has to be considered because it contains information
about the available slots in Θ which the algorithm has to determine for the
transmission start delays of input messages (cf. Section 4.3.2).
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Algorithm 1 INITIALTASKMAPPING

Input: TDG GTDG = (Γ,M), GHAG = (E ,E), and GCOMG = (Θ, /0).
Output: TMG GTMG = (E ,M) with TaskMapping Mτ

init : Γ 7→ E .
1: SORTBYDEADLINEANDRELEASETIME(Γ)
2: for all τi ∈ Γin do
3: Etmp← GETFEASIBLEECUS(τi,E)
4: ECUtmp← GETEARLIESTFINISH(Etmp)
5: MAPTASK(τi, ECUtmp)
6: UPDATESTARTANDFINISHTIMES(Γ)
7: end for
8: for all τi ∈ Γ\Γin do
9: Etmp← GETFEASIBLEECUS(τi,E ,Θ)

10: ECUtmp← GETMINIMUMTASKDELAY(τi,Etmp,Θ)
11: MAPTASK(τi, ECUtmp)
12: UPDATESTARTANDFINISHTIMES(Γ)
13: UPDATEAVAILABLESLOTS(Θ)
14: end for
15: return TMG GTMG = (E ,M) with TaskMapping Mτ

init : Γ 7→ E

Before the actual mapping is performed, it defines the mapping order of the
given task set Γ via sorting its tasks by deadline and release time. The al-
gorithm starts the mapping with the tasks in Γin. In the beginning of each
iteration it checks the given ECU set E for feasible candidates and deter-
mines the candidate set Etmp. This means, that the schedulability test PDC*
respectively RTA* is perfomed for each ECU including the additional task
τi to map.21 To increase the execution parallelism of tasks, in each iteration
the algorithm identifies the ECUtmp ∈ Etmp whose last executed task τlast has
the earliest finishing time flast and maps τi to this ECUtmp. By doing so, our
approach ensures that for n available ECUs the first n tasks in Γin are mapped
to empty ECUs with flast = 0. Since, the tasks are ordered by deadlines, this
guarantees that the n tasks with the earliest deadlines are mapped to differ-
ent ECUs and executed at least partly in parallel. By selecting the ECU in
each iteration as described above, the algorithm ensures that tasks with earlier
deadlines are mapped to ECUs hosting last tasks with earliest finishing times.
This improves the mapping of each task τi ∈Γin and reduces its response time
Ri. After each mapping, the start time si and finishing time fi of each task
are updated according to the resulting current schedule. Since the tasks in
Γin do not have input messages implying possible communication delays the
algorithm does not need to consider communication delays for these tasks.

21To handle multirate systems and because of the fact that there are commonly more tasks in Γin than ECUs
available, the algorithm has to perform the schedulability test already for the tasks in Γin Moreover, both schedu-
lability tests assume the critical instant of the task set Γ, i.e. synchronous activation of tasks (cf. Section 2.1.2).
Therefore, the tests consider the first instance of all tasks in Γ to be activated at ri,1 = 0 instead of the release times
calculated by Equation 4.28.
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When all tasks in Γin are mapped the algorithm continues with the tasks in
Γmid and Γout, i.e. Γ \Γin, which have predecessors. Here, in the beginning
of each iteration it also checks the given ECU set E for feasible candidates
and determines the candidate set Etmp. Now, for each task τi the commu-
nication delay δi has to be integrated in the schedulability test and the ap-
propriate task-to-ECU mapping is more complex. Therefore, Algorithm 2
(GETMINIMUMTASKDELAY) is utilized to determine the ECUtmp ∈ Etmp
with the minimum execution delay respectively response time Ri. Finally,
Algorithm 1 iteratively maps each task τi to the corresponding ECUtmp and
updates the start times si and finishing times fi, as well as the available slots
in Θ for all tasks according to the resulting current schedule.

As mentioned above the determination of the best assignable ECU for tasks
with predecessors is performed by Algorithm 2. It gets the task τi to map,
the set Etmp of feasible candidate ECUs, and the set Θ of available slots as
input. The algorithm determines the set Epre ⊆ Etmp hosting the direct pre-
decessors ΓdirectPre of τi. The set Γlast of tasks τlast last executed on these
ECUs is identified. Hence, the intersection Γcap = Γlast∩ΓdirectPre represents
the direct predecessors of τi which are scheduled and executed at last on their
corresponding hosting ECUs. This means, that if one or more of the direct
predecessors of τi are last tasks, the set Γcap will also contain one or more
elements, i.e. Γcap 6= /0. If this is the case, Algorithm 2 returns the ECU
hosting the direct predecessor with the latest finishing time for the mapping
of τi. Since τi can be executed earliest after the reception of the last input
message, this mapping results in the shortest possible execution delay for τi
because it avoids additional inter-ECU communication delay for the latest
input message.

If there are tasks mapped to all ECUs which are executed after the direct pre-
decessors, the necessary inter-ECU communication for the input messages
of τi can be performed at least partly during their execution. In this case
the candidate ECUs are compared regarding their finishing time and the re-
sulting communication delay δi for task τi. Out of the set Epre the algorithm
determines the ECUpreMin which is hosting one or more direct predecessors
with the earliest finishing time and shortest communication delay. Obviously,
the resulting communication delay of an ECU depends on the properties and
availability of the FlexRay slots for the necessary inter-ECU messages and
our approach considers the first available slot in Θ. If there are no ECUs
in the candidate set Etmp which are not hosting any direct predecessor, i.e.
Etmp \ Epre = /0, Algorithm 2 returns ECUpreMin to Algorithm 1. If there are
ECUs in E which do not host any direct predecessor, the algorithm also con-
siders these candidates for the mapping of τi. This is reasonable because,
even though a mapping to an ECU in Epre reduces the inter-ECU communi-
cation overhead, it is possible that a mapping to an ECU in E \Epre results in
a lower execution delay respectively response time of τi and our approach is
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Algorithm 2 GETMINIMUMTASKDELAY

Input: Task τi, set of candidate ECUs Etmp, and available slots Θ.
Output: ECU with minimum execution delay.

1: ΓdirectPre← GETDIRECTPREDECESSORS(τi)
2: Epre← GETHOSTECUS(ΓdirectPre, Etmp)
3: Γlast← GETLASTTASKS(Epre)
4: Γcap← Γlast∩ΓdirectPre
5: if Γcap 6= /0 then
6: ECU← GETHOSTECU(GETLATESTFINISH(Γcap,Etmp))
7: else
8: ECUpreMin← GETEARLIESTFINISHANDSHORTESTCOMDELAY(Epre,Θ)
9: if Etmp \Epre 6= /0 then

10: ECUnonPreMin← GETEARLIESTFINISHANDSHORTESTCOMDELAY(Etmp \Epre,Θ)
11: ∆← DIFF〈GETDELAY(ECUpreMin,Θ), GETDELAY(ECUnonPreMin,Θ)〉
12: if ∆ > 0 then
13: ECU← ECUnonPreMin
14: else
15: ECU← ECUpreMin
16: end if
17: else
18: ECU← ECUpreMin
19: end if
20: end if
21: return ECU

designed to reduce the resulting execution delay for each task-to-ECU map-
ping. Therefore, the algorithm determines the ECUnonPreMin in Etmp \ Epre
with the earliest finishing time and shortest communication delay, too. Con-
sequently, ECUpreMin and ECUnonPreMin are the two remaining candidates for
the mapping of τi.

These ECUs are compared by calculating the difference ∆ of the resulting
execution delays. If the delay is longer for ECUpreMin, i.e. ∆ > 0, the algo-
rithm returns ECUnonPreMin. If the delay is equal or shorter for ECUpreMin
Algorithm 2 returns this ECU to map τi to a ECU hosting one or more di-
rect predecessors avoiding additional inter-ECU communication overhead.22

Furthermore, it is also possible that none of the ECUs hosting the direct
predecessors of τi fulfills the schedulability test. In this case, the input set
Etmp of candidate ECUs passed to Algorithm 2 does not contain any ECU
hosting a direct predecessor and Epre becomes the empty set. Thus, Γlast
and Γcap become empty sets, too. Since Epre does not contain any element,

22Here it is possible to further prioritize the avoidance of inter-ECU communication overhead by setting the
corresponding threshold for the difference ∆. For instance, a high threshold, i.e. ∆ >> 0 implies that a task τi is
only mapped to an ECU in E \Epre if this would result in a much shorter execution delay.
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ECUpreMin is also not set. The set Etmp \ Epre contains all possible candi-
date ECUs for the mapping of τi. Out of this set, the algorithm determines
the ECUnonPreMin with the earliest finishing time and shortest communication
delay in Etmp \ Epre, too. The determination of the resulting execution delay
for the not set element ECUpreMin returns the value infinity which ensures that
∆ > 0 always holds. Consequently, Algorithm 2 finally returns ECUnonPreMin.

By means of Algorithm 1 and 2 our approach tries to determine a feasible
initial task mapping with shortened execution delays respectively response
times considering timing, order, and precedence constraints. Obviously, it
is also possible that no feasible solution can be found for the given inputs.
However, the algorithms always terminate, either returning a feasible initial
mapping after iterating over all tasks or with a negative result in Mτ

init. The
worst case time complexity, i.e. the worst case running time of an algo-
rithm, can be expressed by the O-notation. Thus, the O-notation is used as an
asymptotic upper bound for the time complexity of an algorithm on arbitrary
inputs [CLR90]. Algorithm 1 iterates over all tasks in Γ. In each iteration it
analyzes all ECUs in E updates the properties of all tasks and the available
slots. This results in a time complexity of O(|Γ| ·(|E|+ |Γ|+ |Θ|)). However,
in each iteration also Algorithm 2 is executed (cf. line 10). This algorithm
analyzes a set of ECUs and determines the intersection of two task sets in line
3 and 4 which results in a worst case running time of O(|Γ|2 + |E|). Further-
more, it analyzes the given set of slots for each ECU regarding their resulting
finishing times and communication delays in the lines 8 and 10. This oper-
ation has a worst case running time of O(|Θ| · |E|). Hence, each invocation
of Algorithm 2 has an entire running time of O(|Γ|2 + |E| · |Θ|). Consider-
ing this, the resulting upper bound of the time complexity for Algorithm 1 is
O(|Γ|3 + |Γ| · |E| · |Θ|).

Figure 4.17 illustrates Gantt Charts which represent the local scheduling and
task executions on the ECUs resulting from initial task mapping performed
on input TDG shown in Figure 4.13 and HAG from Figure 4.12(b). For a
better traceability, all tasks are colored as their hosting ECU in the HAG. All
Gantt Charts depict the available execution time interval Ψi for each task τi
and the FlexRay cycle with the configured size and number of slots. Figure
4.17(a) shows the resulting schedule for the initial mapping on all three avail-
able ECUs, i.e. the task mapping for the initial configuration. It illustrates
that the three tasks τ1,τ2,τ3 ∈ Γin can be started parallel without any execu-
tion delay. The task τ5 which has the two direct predecessors τ2 mapped to
ECU2 and τ3 mapped to ECU3 is also mapped to ECU2. Thus, its execution
is delayed by a communication delay of δ5 = 25µs considering the first avail-
able slot for the transmission of the inter-ECU message m3. The Figure also
shows, that τ7 is not mapped to ECU1 as its direct predecessor τ4 to reduce the
resulting response time R7. Since Algorithm 1 already mapped τ6 to ECU1,
this would result in an execution delay of s7 = f6 = f4 +C6 = f4 + 200µs.
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(c) Failure of ECU2: Inital task mapping for ECU1 and
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(d) Failure of ECU3: Inital task mapping for ECU1 and
ECU2.

Figure 4.17: Gantt Charts for local schedulings and task executions on ECUs resulting from
initial task mapping performed on input graphs shown in Figure 4.12(b) and 4.13.

Therefore, Algorithm 2 returns ECU3 with the earliest finishing time and
shortest communication delay for the inter-ECU message m5, resulting in a
much shorter execution delay with s7 = f4 +δ7 = f4 +25µs.

The considered example solely contains a TDG and tasks with the same pe-
riod, i.e. it is not representing a multirate system. Nevertheless, the task
mapping algorithm is also applicable for multirate systems. As described
in Section 4.3.2, n instances of a task τi with a period Ti = HΓ/n are ex-
ecuted within the hyperperiod of the given multirate task set. This means
that for a mapping of a task in a multirate system our approach has to ana-
lyze and reduce the resulting execution delays for multiple task instances to
meet their deadlines. The determination of feasible candidate ECUs based on
the schedulability tests PDC* and RTA* already considers multiple instances
with different periods and communication delays to guarantee the fulfillment
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of the timing constraints. However, the execution delays respectively re-
sponse times of multiple task instances may vary. Especially, for the first
instances of the tasks in Γin with ri,1 = 0, the critical instant criterion holds if
more than one task is scheduled on the same ECU, i.e. a task instance has the
longest response time if it is released simultaneously with all higher priority
tasks (cf. Section 2.1.1).

Table 4.3 provides the corresponding values for the multirate TDG with two
subgraphs in Figure 4.16. It shows that the first instances of all tasks in Γin
are released at ri,1 = 0, i.e. at the beginning of the hyperperiod. Considering
less than five ECUs at least one of these tasks will be delayed. Since the
successors of delayed tasks are also delayed this results in an increased end-
to-end delay. Therefore, the algorithm identifies the critical task instances
producing the largest response times and maps the task to the corresponding
ECU to reduce their execution delays and the resulting end-to-end delays.
Consequently, if the algorithm reduces the end-to end delays of these critical
task instances the end-to-end delays of the other instances are even shorter.
The critical task instance of each task τi is determined and considered in the
schedulability tests for feasible ECUs in the lines 3 and 9 of Algorithm 1 and
passed to Algorithm 2 in line 10.
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Figure 4.18: Task mapping (a) and resulting TMG (b) for input graphs shown in Figure 4.12(b)
and 4.13.

As a final result, after all task mappings are performed, Algorithm 1 returns
the task-to-ECU mapping Mτ

init of the initial configuration as a task mapping
graph (TMG). A TMG GTMG = (V,E) = (E ,M) ia an abstracted and com-
bined representation of the task mappings and directly provides the resulting
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inter-ECU communication. Therefore, it is used as internal representation
for our approach and as input for the bus mapping described in Section 4.4.2.
Figure 4.18 illustrates the performed task mapping and the resulting TMG
of the initial configuration for the input graphs shown in Figure 4.12(b) and
4.13. For a better traceability, in Figure 4.18(a), all tasks of the input TDG
are colored as their hosting ECU and Figure 4.18(b) depicts the output TMG
of Algorithm 1. The TMG shows that τ1,τ4,τ6 are initially mapped to ECU1
while ECU2 executes τ2,τ5,τ8 and τ3,τ7 are assigned to ECU3. This implies
the intra-ECU messages m1,m4 on ECU1 and m2,m6 on ECU3. The messages
m3 and m5 are inter-ECU messages and have to be mapped and scheduled on
the bus according to their timing constraints.

Redundancy Mapping

As described in Section 4.2 the main objective of our approach is the de-
termination of a fault-tolerant system design with the compensation of one
arbitrary component fault by means of efficient redundancy. To reduce the re-
quired hardware redundancy it utilizes the Cold Standby approach and maps
inactive task replicas to the ECUs of the reconfigurable distributed system
topology. Here, each reconfiguration respectively redundancy mapping is
based on the initial mapping performed by Algorithm 1. This means that
the initial mappings for the remaining ECUs are kept unchanged and just
the replicas for the task set initially mapped to the ECU considered to be
failed are mapped to the other nodes. However, for a network topology with
n ECUs also n redundancy task mappings have to be determined to be able
to compensate each possible node failure. As well as the initial mapping the
required redundancy mappings are determined already at the design phase.
Hence, during runtime the self-reconfiguration of the system activates the
corresponding pre-determined reconfiguration to compensate a detected ECU
failure. As described in Section 4.2.2 this ensures a short and deterministic
time interval required for a self-reconfiguration.

Algorithm 3 (REDUNDANCYTASKMAPPING) represents in pseudocode how
our design approach performs the corresponding redundancy mappings. For
each mapping the algorithm gets the set of remaining ECUs Erem, the TMG
GTMG = (E ,M) of the inital mapping Mτ

init, and the COMG GCOMG = (Θ, /0)
as input. Before the redundancy mapping is performed by means of the inital
mapping Mτ

init and the remaining ECUs, the algorithm determines the task
set Γfail which was executed on the failed ECU. Afterwards, it initializes the
redundancy mapping Mτ

red with the task mapping of the remaining ECUs kept
from Mτ

init. Figure 4.17(b) to 4.17(d) depict the resulting Gantt Charts of the
task mappings for the remaining ECUs based on the initial mapping in Figure
4.17(a). For instance, Figure 4.17(b) illustrates the initial task mapping after
a failure of ECU1. It shows, that in this case the grey colored tasks τ1,τ4,τ6 ∈
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Algorithm 3 REDUNDANCYTASKMAPPING

Input: Remaining ECUs Erem, TMG GTMG = (E ,M) of Mτ
init, and GCOMG = (Θ, /0).

Output: TMG GTMG = (E ,M) with RedundancyTaskMapping Mτ
red : Γ 7→ E .

1: Γfail← GETFAILEDECUTASKSET(Mτ
init,Erem)

2: Mτ
red← GETMAPPINGFORREMAININGECUS(Mτ

init,Erem)
3: for all τi ∈ Γfail do
4: Etmp← GETFEASIBLEECUS(τi,Erem)
5: ECUtmp← GETECUMINOVERALLE2E(τi, Etmp,Mτ

red)
6: Mτ

red←Mτ
red∪MAPTASK(τi, ECUtmp)

7: UPDATESTARTANDFINISHTIMES(Γ)
8: UPDATEAVAILABLESLOTS(Θ)
9: end for

10: return TMG GTMG = (E ,M) with RedundancyTaskMapping Mτ
red : Γ 7→ E

Γfail have to be mapped to the remaining ECUs. It also shows that τ2,τ5,τ8
remain mapped on ECU2 and τ3,τ7 on ECU3. This implies that m3 remains
an inter-ECU message from ECU3 to ECU2 as shown in the inital mapping
TMG in Figure 4.18(b). Similar conditions hold for the other possible ECU
failures shown in Figure 4.17.

Based on the corresponding input, Algorithm 3 iteratively maps the tasks in
Γfail to the remaining ECUs. Hence, in each mapping step the redundancy
mapping Mτ

red is complemented by the currently performed task mapping. In
the beginning of each iteration it checks the given set Erem for feasible can-
didates Etmp by means of the corresponding schedulability test. Out of these
candidates, Algorithm 4 (GETECUMINOVERALLE2E) determines and re-
turns the ECU resulting in the minimum overall end-to-end delay for a as-
signment of task τi. Finally, Algorithm 3 iteratively complements Mτ

red by
mapping τi to the corresponding ECUtmp and updates the start times si and
finishing times fi, as well as the available slots in Θ for all tasks according to
the resulting current schedule.

Algorithm 4 GETECUMINOVERALLE2E

Input: Task τi, set of candidate ECUs Etmp, available slots Θ, and current mapping Mτ
cur.

Output: ECU resulting in minimum overall end-to-end (E2E) delay.
1: for all ECUi ∈ Etmp do
2: Mτ

i ←Mτ
cur∪MAPTASK(τi, ECUi)

3: E2EECUi ← GETOVERALLE2EDELAYANDCOMOVERHEAD(Mτ
i ,Θ)

4: E2E← E2E∪E2EECUi

5: end for
6: ECU← ECUMINE2EANDCOMOVERHEAD(E2E)
7: return ECU
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As mentioned above, Algorithm 4 serves to determine the ECU resulting in
the minimum overall end-to-end delay. For this purpose, it gets the task τi to
map, the set Etmp of feasible candidate ECUs, the set Θ of available FlexRay
slots and the current status of the redundancy mapping Mτ

cur as input. It
analyzes each ECUi ∈ Etmp based on its current mapping status. In each
iteration it complements the current mapping Mτ

cur to Mτ
i by mapping and

inserting τi to the current schedule of ECUi preserving order and precedence
constraints by means of the given timing constraints.

The performed mapping and insertion may result in task shiftings and grow-
ing execution delays due to the constraints on one or more of the ECUs.
Therefore, the algorithm calculates the overall end-to-end delay for all event
chains implied by Mτ

i and stores it in E2EECUi referencing to ECUi. By do-
ing so, it implicitly determines the resulting communication overhead, i.e. the
inter-ECU messages, for each mapping. Here, similar to Algorithm 1 it also
considers the first available slot in Θ for resulting inter-ECU message trans-
missions. Iterating over each ECUi ∈ Etmp this results in a complete set E2E
of overall end-to-end delays, i.e. one for each possible task-to-ECU map-
ping. Finally, Algorithm 4 compares the overall end-to-end delays in E2E
and returns the ECU with the minimum value. If there is more than one ECU
with the minimum value it returns the one with the lowest communication
overhead to avoid additional inter-ECU messages.23

By means of Algorithm 3 and 4 our deployment approach tries to determine
a feasible redundancy mapping for a considered ECU failure resulting in the
shortest overall end-to-end delay for each task in Γfail. Similar to the initial
task mapping it is also possible that no feasible solution can be found for the
given inputs. However, the algorithms always terminates, either returning a
feasible redundancy mapping after iterating over all tasks or with a negative
result in Mτ

red. For the determination of the ECU with the shortest overall end-
to-end delay Algorithm 4 analyzes the assigned tasks and all slots iterating
over each given ECU (cf. line 3). This results in a worst case running time
of O(|E| · |Γ| · |Θ|). Algorithm 3 invokes Algorithm 4 for each τi ∈ Γ to
calculate the resulting end-to-end delay for the mapped task sets on all ECUs
(cf. line 5). Hence, the time complexity of Algorithm 3 is O(|Γ|2 · |E| · |Θ|).

Figure 4.19 depicts the Gantt Charts for the local schedulings and the over-
all end-to-end delays resulting from the iterative redundancy task mappings
to the different remaining ECUs in case of a failure of ECU1. Considering
the given network topology with three ECUs, the tasks τ1,τ4,τ6 ∈ Γfail can
be mapped to ECU2 or ECU3. Figure 4.19(a) and 4.19(b) illustrate the two
different options for task τ1 with the resulting local schedules and overall
end-to-end delays. A comparison of these figures shows that a mapping to

23Here it is also possible to further prioritize the avoidance of inter-ECU communication overhead by allowing
to return ECUs with longer overall end-to-end delays and setting the corresponding threshold.
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(a) Redundancy mapping of τ1 to ECU2.
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(b) Redundancy mapping of τ1 to ECU3.
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(c) Redundancy mapping of τ4 to ECU2.
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(d) Redundancy mapping of τ4 to ECU3.
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(e) Redundancy mapping of τ6 to ECU2.
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(f) Redundancy mapping of τ6 to ECU3.

Figure 4.19: Gantt Charts for local schedulings and overall end-to-end delays resulting from
redundancy task mappings to different remaining ECUs (Failure of ECU1).

ECU2 results in an overall end-to-end delay of 700µs and to ECU3 in 725µs.
Hence, Algorithm 4 returns ECU2 for the mapping of τ1. Based on the re-
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sulting schedules and the updated start and finishing times of the tasks the
approach determines the best candidate ECU for a redundancy mapping of τ4
in the next iteration step. Figure 4.19(c) shows that a mapping of τ4 to ECU2
results in a deadline miss of τ5 and its direct successor τ8. Consequently, the
algorithm returns ECU3 for the mapping of τ4, which also results in an overall
end-to-end delay of 700µs. Furthermore, this mapping implies the additional
inter-ECU message m1 from ECU2 to ECU3. The last task in Γfail to map
is τ6. Figure 4.19(e) and 4.19(f) show that both options result in an overall
end-to-end delay of 900µs. However, the mapping of τ6 to ECU2 requires the
additional inter-ECU message m4 from ECU3 to ECU2. Thus, Algorithm 4
returns ECU3 for this redundancy mapping to avoid this additional commu-
nication overhead.

Summarized, Figure 4.19 illustrates how our approach determines a feasi-
ble reconfiguration for a failure of ECU1. All deadlines, timing, order and
precedence constraints are fulfilled. Furthermore, unnecessary communica-
tion overhead is avoided by adding only one more inter-ECU message. Figure
A.1 and A.2 in Appendix A depict the Gantt Charts for the corresponding it-
erative redundancy task mappings to the different remaining ECUs in case of
a failure of ECU2 and ECU3 based on the inital mapping. These figures show
that our approach determines feasible redundancy mappings for all possible
reconfigurations of the given example. Obviously, similar to the initial map-
ping, in case of an input TDG representing a multirate system, our approach
has to analyze and compare the overall end-to-end delays of all task instances
respectively their corresponding event chains.

Finally, each redundancy mapping returns a TMG representing Mτ
red for the

corresponding reconfiguration. Figure A.3 and A.4 in Appendix A illustrate
the performed task mappings and the resulting TMGs of the three reconfigu-
rations for the input graphs shown in 4.12(b) and Figure 4.13 . For instance,
Figure A.4(a) depicts the TMG for the reconfiguration in case of a failure of
ECU1. Compared to the TMG for the initial configuration in Figure 4.18(b),
it shows that, as described above, τ1 is mapped to ECU2 while τ4 and τ6 are
mapped to ECU3. Furthermore, the comparison shows that resulting from
this mapping m1 from ECU2 to ECU3 becomes an additional inter-ECU mes-
sage while m5 becomes an intra-ECU message on ECU3.

4.4.2 Bus Mapping

The performed task mappings described above result in the necessity of inter-
ECU communication over the bus for several messages. Consequently, a
corresponding bus mapping and scheduling for these messages has to be per-
formed. Especially in huge distributed systems with many ECUs communi-
cating over the bus, an efficient and flexible bus mapping is required to re-
duce the resulting communication delays and determine a feasible schedule.
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Therefore, our approach analyzes the inter-ECU communication of the initial
configuration and all reconfigurations to perform a combined bus mapping
that utilizes message respectively slot reuse and frame packing for inter-ECU
messages with the same sender ECU.

Algorithm 5 (BUSMAPPING) represents in pseudocode how our approach re-
alizes the combined bus mapping. As input the algorithm gets the set Mτ of
task mappings, i.e. TMGs of the initial mapping and all redundancy map-
pings, HAG GHAG, and COMG GCOMG. It starts with the bus mapping for
the initial configuration. The algorithm determines the inter-ECU messages
Mbus

Mτ
init

of the initial task mapping Mτ
init ∈Mτ and the set Etx of their corre-

sponding sender ECUs. For each sender ECUi ∈ Etx it identifies the trans-
mitted inter-ECU messages m j ∈Mbus

ECUi
. To perform the bus mapping, the

algorithm iterates over all messages m j ∈Mbus
ECUi

and determines the avail-
able slots Θm j in their available transmission time intervals ϒm j .

As described in Section 4.4.1, the initial task mapping always utilizes the
first available slot for an inter-ECU message transmission. Moreover, this
mapping to the first available slot implicitly applies frame packing if possible.
Obviously, in the initial configuration frame packing is only applicable for
different inter-ECU messages sent by the same task.24 In this case, several
messages can be transmitted in the same frame respectively slot θmap if their
summed size fits in the defined available maximum slot payload (cf. Section
4.2.6). After the actual mapping the start times sm j and finishing times fm j of
all messages m j ∈Mbus

ECUi
are updated.

Algorithm 5 continues the bus mapping for each redundancy task mapping
Mτ

i ∈Mτ \ {Mτ
init}. Here it also determines the inter-ECU messages Mbus

Mτ
i

and the set Etx of their corresponding sender ECUs to identify the transmitted
inter-ECU messages mk ∈Mbus

ECU j
from sender ECU j in each task mapping

Mτ
i . Analogues to the bus mapping for the initial configuration, the algorithm

iterates over all messages mk ∈Mbus
ECU j

and determines the available slots Θmk

in their available transmission time intervals ϒmk . However, to make use slot
reuse if possible it checks if mk from ECU j was initially mapped to a slot θ∈
Θmk . If this is the case, Θmk is set to this assigned slot for reusing the message.
In each iteration the determined set of available slots Θmk complements the
set ΞECU j of available slots sets for all inter-ECU messages sent by ECU j.

Then the mapping for the determined messages is performed. Therefore, the
algorithm determines the overlapping slots ΩECU j for the sets of available
slots in ΞECU j as described in Section 4.3.2 and maps each message to the
first available overlapping slot. This implicitly realizes slot reuse and frame
packing if possible. Here, the iteration over the sender ECUs ensures that

24Considering the fact that in general the specified slot size will be smaller than the computation time of single
tasks (cf. Section 4.2.4).
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Algorithm 5 BUSMAPPING

Input: Set of TaskMappings (TMGs) Mτ, GHAG = (E ,E), and GCOMG = (Θ, /0).
Output: BusMapping Mbus : (Mbus,E) 7→Θ

1: Mτ
init← GETINITIALMAPPING(Mτ)

2: Mbus
Mτ

init
← GETINTERECUMSGS(Mτ

init)

3: Etx← GETSENDERECUS(Mbus
Mτ

init
,E)

4: for all ECUi ∈ Etx do
5: Mbus

ECUi
← GETTXMESSAGESFROMECU(Mτ

init,ECUi)
6: for all m j ∈Mbus

ECUi
do

7: Θm j ← GETSLOTSINTXINTERVAL(m j)
8: θmap← GETFIRSTAVAILABLESLOT(Θm j)
9: MAPTOSLOT(m j,θmap)

10: end for
11: UPDATESTARTANDFINISHTIMES(Mbus

ECUi
)

12: end for
13: for all Mτ

i ∈Mτ \{Mτ
init} do

14: Mbus
Mτ

i
← GETINTERECUMSGS(Mτ

i )

15: Etx← GETSENDERECUS(Mbus
Mτ

i
,E)

16: for all ECU j ∈ Etx do
17: Mbus

ECU j
← GETTXMESSAGESFROMECU(Mτ

i ,ECU j)

18: for all mk ∈Mbus
ECU j

do
19: Θmk ← GETSLOTSINTXINTERVAL(mk)
20: if CHECKFORSLOTREUSE(Θmk) = true then
21: Θmk ← GETASSIGNEDSLOT(mk)
22: end if
23: ΞECU j ← ΞECU j ∪Θmk

24: end for
25: MAPTOFIRSTAVAILABLEOVERLAPPINGSLOTS(ΞECU j)
26: UPDATESTARTANDFINISHTIMES(Mbus

ECU j
)

27: end for
28: end for
29: return Mbus : (Mbus,E) 7→Θ

only messages from the same sender are reused or combined. This means
that the same message transmitted by different sender ECUs in different con-
figurations is mapped to different slots as required by the fixed slot-to-ECU
of FlexRay message scheduling. As described above, the messages initially
mapped to a specific slot can only be mapped to the same slot, i.e. the mes-
sage is reused. Messages with overlapping sets of available slots are mapped
to the first available overlapping slot if their summed payload allows frame
packing. Otherwise, they have to be transmitted in separate slots. After the
actual mapping the algorithm updates the start times smk and finishing times
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fmk of all messages mk ∈Mbus
ECU j

. Consequently, in some cases, this update
may also implicitly update the start time srx of the receiver task τrx. Finally,
Algorithm 5 returns a combined bus mapping Mbus for all configurations. It
always terminates after iterating over all determined inter-ECU messages, ei-
ther with a feasible solution or with a negative result in Mbus. To perform the
bus mapping, the algorithm has to iterate over each transmitted inter-ECU
message from each sender ECU and analyze the slot set to determine avail-
able slots. This results in a worst case time complexity of O(|E| · |M| · |Θ|).

Table 4.4 summarizes the properties of the inter-ECU messages for the initial
configuration and reconfigurations resulting from the task and bus mappings
performed for the given example. It shows that the initial configuration re-
quires the two inter-ECU messages m3 from ECU3 to ECU2 and m5 from
ECU1 to ECU3. Since the initial task mapping utilizes the first available
slot for an inter-ECU message transmission for the given example this re-
sults in the available transmission time intervals ϒm3 = [200µs,225µs[ and
ϒm5 = [400µs,425µs[ (cf. Figure 4.17(a)). Consequently, Algorithm 5 deter-
mines the corresponding available slots and maps the messages to θ9 and θ17.
This also updates the start times and finishing times of these messages, e.g.
sm3 = sθm3

= 200µs and fm3 = fθm3
= 225µs.

Initial Configuration:

mi m(τtx,τrx) ECUτtx ECUτrx ϒmi Θmi θmi sθmi
fθmi

m3 m(τ3,τ5) ECU3 ECU2 [200µs,225µs[ {θ9} θ9 200µs 225µs
m5 m(τ4,τ7) ECU1 ECU3 [400µs,425µs[ {θ17} θ17 400µs 425µs

Reconfiguration 1 (Failure of ECU1):

mi m(τtx,τrx) ECUτtx ECUτrx ϒmi Θmi θmi sθmi
fθmi

m1 m(τ1,τ4) ECU2 ECU3 [100µs,200µs[ {θ5, . . . ,θ8} θ5 100µs 125µs
m3 m(τ3,τ5) ECU3 ECU2 [200µs,300µs[ {θ9, . . . ,θ12} θ9 200µs 225µs

Reconfiguration 2 (Failure of ECU2):

mi m(τtx,τrx) ECUτtx ECUτrx ϒmi Θmi θmi sθmi
fθmi

m5 m(τ4,τ7) ECU1 ECU3 [400µs,700µs[ {θ17, . . . ,θ28} θ17 400µs 425µs
m6 m(τ5,τ8) ECU3 ECU1 [700µs,725µs[ {θ29} θ29 700µs 725µs

Reconfiguration 3 (Failure of ECU3):

No inter-ECU messages.

Table 4.4: Properties of the inter-ECU messages for initial configuration and reconfigurations
resulting from task and bus mappings.
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In reconfiguration 1 for the compensation of a failure of ECU1 the redun-
dancy mapping also results in two inter-ECU messages. The first message
m1 from ECU2 to ECU3 can be transmitted in ϒm1 = [100µs,200µs[ respec-
tively Θm1 = {θ5, . . . ,θ8} (cf. Figure 4.19(f)). Hence, Algorithm 5 maps
the message to the first available slot θ5. Furthermore, the inter-ECU mes-
sage m3 from ECU3 to ECU2 with ϒm3 = [200µs,300µs[ respectively Θm3 =
{θ9, . . . ,θ12} must be mapped to the bus. A comparison with the message
mapping of the initial mapping shows that this message can be reused in re-
configuration 1. Therefore, the algorithm applies slot reuse in the slot θ9.
Here, it also updates the start times and finishing times of the messages to
the corresponding values. A similar situation holds for reconfiguration 2,
that compensates a failure of ECU2. The redundancy mapping for this re-
configuration implies the two inter-ECU messages m5 from ECU1 to ECU3
and m6 from ECU3 to ECU1 (cf. Figure A.1(e)). The message mapping of
m5 can be kept from the initial configuration in the reused slot θ17. As de-
scribed above, for message m6 the redundancy mapping algorithm utilizes the
first available slot to reduce the communication delay of the receiver task τ8.
This results in the available transmission time interval ϒm6 = [700µs,725µs[
of slot θ29, to which Algorithm 5 maps message m6. For reconfiguration 3,
that compensates a failure of ECU2, no bus mapping has to be performed be-
cause the redundancy mapping does not require any inter-ECU message (cf.
Figure A.2(c)).

Table 4.4 shows that for the given example no frame packing must be per-
formed because every ECU sends at most one message per configuration.
The examples presented in Chapter 5 are more complex and contain more
inter-ECU messages with overlapping slot intervals. Thus, the bus mapping
also applies frame packing on these examples. Moreover, to support multirate
systems, Algorithm 5 determines overlapping slots for each inter-ECU mes-
sage instance to utilize frame packing for the bus mappings and reduce the
number of required FlexRay slots. For this purpose, the available slots in the
transmission time interval of all instances for each message are determined
in line 19 of Algorithm 5 to enable frame packing by mapping to overlapping
slots in line 25. Furthermore, also slot reuse is applied if possible to further
decrease the number of assigned slots per ECU as described above.

By means of Algorithm 5 our design approach determines a feasible bus
mapping for the initial configuration and the reconfigurations. The combined
analysis and comparison of inter-ECU messages regarding their sender ECUs
and their available transmission intervals enables an efficient slot assignment
utilizing slot reuse and frame packing to reduce the number of required re-
dundant slots per reconfiguration. Especially for large systems with many
ECUs and inter-ECU messages, this reduction helps to determine feasible
bus mappings for a high number of required reconfigurations. As mentioned
in Section 4.2, the actual realization and implementation of task context mi-
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gration for the Cold Standby redundancy is beyond the scope of this thesis.
However, slots which are not assigned to an ECU in any of the configurations
could be utilized for this purpose in future works.

4.5 Design Result and Feedback

In the previous section we described how our approach performs the nec-
essary task and bus mappings for the design of a fault-tolerant distributed
real-time system by means of the presented algorithms. As shown in Figure
4.1, the actual deployment of our design approach implies mappings for the
initial configuration and all necessary reconfigurations and finally returns a
design result.

Algorithm 6 DEPLOYMENT

Input: TDG GTDG = (Γ,M) and GHAG = (E ,E), and GCOMG = (Θ, /0).
Output: DG GDG = (E ∪Θ,M) with TaskMapping Γ 7→ E and BusMapping (Mbus,E) 7→Θ.

1: Mτ
init← INITIALTASKMAPPING(GTDG,GHAG,GCOMG)

2: Mτ←Mτ
init

3: for all ECUi ∈ E do
4: Mτ

red← REDUNDANCYTASKMAPPING(E \{ECUi},GTMG(Mτ
init),GCOMG)

5: Mτ←Mτ∪Mτ
red

6: end for
7: Mbus← BUSMAPPING(Mτ,GHAG,GCOMG)
8: GDG← CREATEDESIGNGRAPH(Mτ,Mbus)
9: return DG GDG = (E ∪Θ,M) with TaskMapping Γ 7→ E and BusMapping (Mbus,E) 7→Θ

Algorithm 6 (DEPLOYMENT) represents in pseudocode how our approach
performs this combined deployment which includes all required mappings.
As input the deployment algorithm gets the software architecture modeled
as TDG GTDG = (Γ,M) and the network topology including the hardware
and bus configuration represented by a HAG GHAG = (E ,E) and a COMG
GCOMG = (Θ, /0). By means of this input it performs the task mapping for the
initial configuration calling Algorithm 1 which determines Mτ

init, and adds
the initial mapping to the set of task mappings Mτ. Afterwards the algorithm
determines the redundancy task mappings for all required reconfigurations.
Therefore, it iterates over all ECUi ∈ E of the HAG and calls Algorithm
3 passing the set of remaining ECUs E \ {ECUi} considering a failure of
ECUi, the initial mapping Mτ

init as TMG, and the COMG. In each iteration,
the set of task mappings Mτ is complemented by the currently performed re-
dundancy mapping Mτ

red. When all necessary task mappings are performed,
the deployment algorithm executes Algorithm 5 to perform the bus mapping
by means of the task mapping set Mτ, the HAG, and the COMG. Finally,
based on the determined task mappings Mτ and the bus mapping Mbus, Al-
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gorithm 6 creates a design graph (DG) and returns this graph as design result
with the corresponding deployment, i.e. task mapping Γ 7→ E and bus map-
ping (Mbus,E) 7→Θ, for the given system model input.
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Figure 4.20: DG for input graphs shown in 4.12(b) and Figure 4.13 .

A DG GDG = (V,E) = (E ∪Θ,M) combines the given set of TMGs for the
task mappings with the slots from the input COMG assigned to the required
inter-ECU messages by the bus mapping for all configurations. Therefore,
a DG comprises the set E and the assigned slots Θ as vertices and the mes-
sages M as edges. The corresponding annotations to the ECUs, slots, and
messages are taken from the input graphs. Figure 4.20 depicts the DG for the
given example and combines the TMG of the intial configuration shown in
Figure 4.18(b) and the three TMGs for the reconfigurations shown in Figure
A.4. Thus, beside the active tasks mapped for the initial configuration and
its coordinator task each ECU also contains the determined redundant task
replicas for the reconfigurations. For instance, ECU1 hosts the tasks τ1, τ4,
and τ6 which are active by default and the task replicas τ7 and τ8 which are
inactive by default and activated by the DCC for the corresponding reconfig-
uration in case of a ECU failure (cf. Section 4.2.2). For a better traceability,
the redundant task replicas are indicated by dotted outlines.

Furthermore, a DG combines and represents the resulting messaging for each
configuration. The messages exchanged between tasks which are active by
default, e.g. m1 from τ1 to τ4, are transmitted in the initial configuration, i.e.
in a system without an ECU failure. The messages which are sent or received
by a redundant task replica, e.g. m5 from τ4 to τ7, are only transmitted in the
corresponding reconfiguration. For the required inter-ECU messages deter-
mined by Algorithm 5, a DG also represents the corresponding information.
Therefore, beside the ECUs it comprises the assigned slot from GCOMG for
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each inter-ECU message as vertex. As summarized in Table 4.4, the com-
bined bus mapping for the given example results in four different inter-ECU
messages mapped to the slots θ5, θ9, θ17, and θ29. Each slot in the DG is con-
nected with the sender and receiver ECUs via incoming and outgoing edges
representing the mapped messages. Since a slot can only be assigned to one
sender ECU, it has only one incoming edge. However, if frame packing is
utilized for a slot, the incoming edge is annotated with the combined corre-
sponding message IDs. The number of outgoing edges from a slot depend
on the utilized message model. Here, we consider the message model from
[DTT08] where each message sent by a task must be scheduled separately
on the bus. Hence, each slot also has only one outgoing edge.25 Inter-ECU
messages exchanged between tasks which are active by default, e.g. m3 from
τ3 on ECU3 to τ5 on ECU2, are transmitted in the initial configuration and
can be reused in the reconfigurations. Inter-ECU messages exchanged be-
tween redundant task replicas, e.g. m6 from τ5 on ECU3 to τ8 on ECU1, are
transmitted in the corresponding reconfiguration.

Summarized, the DG represents the whole design result containing the com-
plete deployment for all possible configurations determined by Algorithm
6. Thus the system designer can use this feedback and perform the deter-
mined deployment. This includes the mapping of tasks to ECUs and the gen-
eration of the corresponding task lists for the distributed coordinator tasks
as described in Section 4.2.2. Moreover, for the bus mapping and message
scheduling the designer can directly derive the COM matrix to configure the
FlexRay bus accesses. Table 4.5 shows the resulting COM matrix derived
from the DG in Figure 4.20. As described in Section 4.3.2, the first three
and the last three slots of the FlexRay communication cycle are pre-assigned
for communication with the I/O over the peripheral interfaces. Slot θ5 is as-
signed to ECU2 for the transmission of m1 and ECU3 receives the message
in this slot. The slots θ9 and θ29 are assigned to ECU3 for write access while
ECU1 may transmit its inter-ECU message in slot θ17.

Slot θ1 ... θ5 ... θ9 ... θ17 ... θ29 ... θ39

ECU 1 tx:I/O ... - ... - ... tx:m5 ... rx:m6 ... -
ECU 2 - ... tx:m1 ... rx:m3 ... - ... - ... -
ECU 3 - ... rx:m1 ... tx:m3 ... rx:m5 ... tx:m6 ... rx:I/O

Table 4.5: COM matrix for input graphs shown in Figure 4.12(b) and 4.13 derived from DG in
Figure 4.20.

For the given example the deployment algorithm is able to determine feasible
task mappings for the initial configuration and all three required reconfigura-
tions as well as a feasible combined bus mapping. However, it is also possible

25If the message model with multiple receivers from [KHM03] is applied, each slot has one outgoing edge for
each receiver ECU.
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that our approach cannot determine a completely feasible solution but only
for a subset of all configurations. For instance, in a heterogeneous system it
might happen that for the failure of a powerful ECU no appropriate redun-
dancy mapping can be performed by Algorithm 3. In this case the designer
has to decide how he reacts on this feedback. On the one hand, he can de-
sign the system according to the determined solution accepting that only a
subset of possible ECU failures can be compensated. On the other hand, he
can adjust the hardware topology respectively its input model, e.g. with addi-
tional or more powerful ECUs, and perform a further iteration of the design
approach.

In any case, Algorithm 6 always terminates after iterating over all input
graphs by executing the presented algorithms for initial task mapping, redun-
dancy task mapping, and bus mapping. However, it depends on the results
of the performed mappings if it provides a complete or partly solution. The
algorithms for the initial task mapping and the bus mapping are executed
once while the redundancy task mapping is invoked |E| times for the possible
ECU failures. Summing up the running time of these algorithms the entire
time complexity of Algorithm 6 is O(|Γ|3 + |E|2 · |Γ|2 · |Θ|+ |E| · |M| · |Θ|).
This means that the deployment of our fault-tolerant design approach can be
executed in polynomial time and its runtime is obviously depending mainly
on the number of tasks and ECUs in the system. However, since our ap-
proach is performed during the design phase and can be executed on perfo-
mant general-purpose PCs instead of embedded processors, it is easily ap-
plicable for large scaled systems. To prove this point and to determine and
provide quantitative runtime values, we developed a prototypical implemen-
tation of our approach based on the pseudocode algorithms described above.

System Input: Runtime:
Software Architecture Network Topology Initial Mapping Deployment
8 tasks, 6 messages 3 ECUs ∼ 5ms ∼ 15ms

24 tasks, 18 messages 9 ECUs ∼ 10ms ∼ 170ms
72 tasks, 54 messages 27 ECUs ∼ 45ms ∼ 2,000ms

216 tasks, 162 messages 81 ECUs ∼ 400ms ∼ 80,000ms

Table 4.6: Exemplary runtimes of inital mapping and deployment algorithm.

Table 4.6 provides some exemplary runtimes of this implementation executed
on a general-purpose PC with a Intel Core i7 2.7 GHz processor and 8 GB
main memory. Based on the TDG and HAG examples presented above we
prepared additional contrived examples with multiples of tasks ans ECUs as
system input to measure the resulting runtimes for the initial mapping and
the complete fault-tolerant deployment.26 The results in Table 4.6 show that
for small systems with less than 25 tasks and 10 ECUs the complete fault-

26For each input we performed 20 runs and measured the approximate average runtime.
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tolerant deployment is determined in less than 200ms. For larger systems
with more tasks already the initial mapping requires more runtime. Obvi-
ously, a large number of ECUs implies the corresponding number of recon-
figurations which results in a rapidly increasing runtime for the fault-tolerant
deployment. For our example with 72 ECUs and 27 ECUs, it already takes
approximately 2,000ms and for the example with 216 tasks and 81 ECUs
the required runtime grows to approximately 80,000ms, i.e., 1 minute and 20
seconds.

As described in Chapter 1 even the largest and most complex distributed sys-
tems in modern automotive vehicles typically do not contain much more than
100 ECUs. Moreover, these systems are composed of different subnetworks
and only a subset of functions and components are part of safety-critical sub-
systems. Thus, it can be concluded that our approach is very scalable since
an iteration of the fault-tolerant deployment for a realistically scaled system
can be performed by the designer in less than one minute even if we consider
cross-domain dependencies and data exchange between the different subnet-
works.

4.6 Summary

This chapter presented our approach for the design of fault-tolerant distributed
real-time systems. It gave an overview of the approach and described how
it extends and refines existing design flow steps for distributed systems. The
main objectives, properties, and important constraints of our approach, which
enable a fault-tolerant design to compensate one arbitrary component fault,
were described. This includes the proposal of a reconfigurable distributed
system topology combined with the distributed coordinator concept for fault
tolerance by means of self-reconfiguration and dynamic redundancy.

Based on introduced concepts and techniques for the specification and config-
uration of system properties and constraints, the chapter presented our graph-
based modeling concept for the given software architecture and hardware
topology as input to enable a feasible, efficient, and flexible system design.
As an essential part of our fault-tolerant design approach, the system deploy-
ment and its performed task and bus mappings for the inital configuration and
necessary reconfigurations were described and applied to a comprehensible
example. Finally, this chapter provided our graph-based representation of the
whole system design result containing the complete fault-tolerant deploy-
ment for all possible configurations as feedback for the designer. Depending
on this feedback the designer can react on the returned result: Either, he can
design the system according to the determined solution or he can modify the
input model to perform a further iteration if necessary.
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Chapter 5

Application to the Design of
Automotive Real-Time Systems

Today’s modern automotive vehicles provide numerous complex electronic
features realized by means of distributed real-time systems. Many of these
systems implement and provide safety-critical functions. The fast growing
number and complexity of such features results in an increasing number of
ECUs. Safety-critical distributed functions have to fulfill hard real-time con-
straints to guarantee a dependable functionality. Furthermore, subsystems are
often developed by different partners and suppliers and have to be integrated.
Therefore, the design and development of these systems is a very complex
task. Additionally, more and more resources have to be spent on adapting
already existing solutions to different environments. As a result, some of the
main drivers in automotive electronics are the reduction of hardware costs
and the implementation of new innovative features [Fen+06].

In the previous chapter we introduced our design approach for fault-tolerant
distributed real-time systems. In this chapter we present how to utilize our
approach for the design of automotive real-time systems. Therefore, we
describe the application of our approach to the modeling and deployment
of automotive real-time software based on a well-defined and standardized
methodology for the development of automotive systems. The concepts de-
scribed in this chapter are based on work we presented in [Klo+13].

5.1 Introduction to AUTOSAR

To address the challenges mentioned above the AUTomotive Open System AR-
chitecture (AUTOSAR) development partnership was founded. AUTOSAR
is a worldwide development partnership of car manufacturers, suppliers and
other companies from the electronics, semiconductor, and software industry.
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Since 2003 more than 160 partners organized as ”core partners”, ”premium
partners”, ”associated partners”, ”development partners”, and ”attendees” are
working on the development and establishment of an open standardized soft-
ware architecture for automotive systems. The nine core partners which have
brought together their respective areas of expertise to define an automotive
open system architecture standard to support the needs of future in-car appli-
cations are: BMW, BOSCH, Continental, Daimler, Ford, GM, PSA, Toyota,
and Volkswagen. The main idea of AUTOSAR is a strong global partner-
ship that creates one common standard: ”Cooperate on standards – compete
on implementation” [AUT13a]. For this purpose, AUTOSAR addresses the
following issues [Rei09]:

• Standardization of important system functionality,

• scalability,

• reallocation of functionality within the vehicle network,

• integration, interchangeability, and reusability of software from differ-
ent manufacturers,

• support of commercial off-the-shelf software, i.e. series software with-
out individual adaption, and

• maintainability throughout the whole product life cycle.

Based on these issues the AUTOSAR development cooperation defines com-
mon standards to keep the growing complexity and costs of automotive sys-
tem development manageable and controllable. Therefore, it offers a stan-
dardization for the software architecture of automotive ECUs and defines a
methodology to support a distributed function-driven development process
[SR08]. Nowadays, AUTOSAR is established and is considered as de facto
standard. In this thesis we consider the currently latest AUTOSAR release
4.1. In the following sections we describe the basic concepts of AUTOSAR.

5.1.1 AUTOSAR Software Architecture

The AUTOSAR initiative defines a software architecture for automotive ECUs
which decouples the software from the ECU hardware. The software is com-
posed of several functional components called software components (SWCs).
These SWCs can be implemented independently – even by different devel-
opers – and combined to a complete project by means of a widely automatic
configuration process [ZS07]. The AUTOSAR Software Architecture is a
layered architecture which consists of three layers. Figure 5.1 depicts the
most abstract view on these three layers. It shows the Application Layer,
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Runtime Environment (RTE), and Basic Software (BSW) which are based on
the microcontroller of an ECU.

On top the Application Layer provides the actual application software struc-
tured by SWCs. The AUTOSAR Software Architecture enables the software
developer to design an AUTOSAR application almost independent from the
involved hardware [War09]. Since the AUTOSAR Software Architecture and
especially the RTE hide the network from the application, there is no knowl-
edge about the network required. There is also nearly no knowledge about
the used ECUs required, since the software architecture abstracts from the
specific ECU and its microcontroller [War09]. Section 5.1.2 describes the
AUTOSAR SWCs as most important structural element of the Application
Layer.

The RTE and the BSW are responsible for the abstraction between the hard-
ware and the application software [War09]. The RTE is an ECU-specific
software layer which is generated automatically at a later phase of the devel-
opment. It provides a standardized application programming interface (API)
for the application software and acts as a middleware between application
layer and the BSW of the ECU [AUT13p]. The RTE manages the commu-
nication between the different elements of the Application Layer as well as
between the hardware independent application software and the hardware-
dependent BSW layer.

Runtime Environment (RTE) 

Application Layer 

Basic Software (BSW) 

Microcontroller 

Figure 5.1: Most abstract view on layers of the AUTOSAR Software Architecture [AUT13e].

The ECU-specific BSW layer provides several interfaces called BSW mod-
ules to offer infrastructural services for the application software [AUT13m].
As depicted in Figure 5.2(a), by means of these services the BSW layer can
further be divided into three different layers, namely the Service Layer, the
ECU Abstraction Layer, and the Microcontroller Abstraction Layer. The Mi-
crocontroller Abstraction Layer offers drivers to abstract from specific con-
trollers on an ECU. Therefore, the drivers provided by the Microcontroller
Abstraction Layer offer interfaces to the ECU Abstraction Layer to enable
generalized usage of different microcontrollers of the same kind. The ECU
Abstraction Layer abstracts from the location of the controller. For layers
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above the ECU Abstraction Layer it is not necessary to know if the con-
troller is an on-chip or on-device controller. The Service Layer provides
basic services for each AUTOSAR application, e.g. for communication. An
AUTOSAR application can access these services through standardized AU-
TOSAR modules [War09].

Runtime Environment (RTE) 

Application Layer 

Complex 
Drivers 

Microcontroller 

Microcontroller Abstraction Layer 

ECU Abstraction Layer 

                        Services Layer 

(a) Different refined layers in the BSW layer.

Runtime Environment (RTE) 

Application Layer 

Complex 
Drivers 

Microcontroller 

Microcontroller Drivers 

Onboard Device 
Abstraction 

Communication 
Services 

I/O Hardware 
Abstraction 

Memory Services System Services 

Memory Drivers Communication Drivers I/O Drivers 

Memory Hardware 
Abstraction 

Communication 
Hardware Abstraction 

(b) Stacks of functionality in the BSW layer.

Figure 5.2: Refined views on BSW layer of the AUTOSAR Software Architecture [AUT13e].

As shown in Figure 5.2(b), the BSW layer can also be divided into different
stacks corresponding to the general functionality the basic software provides.
These stacks are orthogonal to the Basic Software layers and offer the follow-
ing functionality [War09]:

• The System Stack consisting of Microcontroller Drivers, Onboard De-
vice Abstraction, and System Services provides standardized services
and library functions, e.g. for timer operations or operating system
functionality. It also provides ECU-specific services like ECU state
management and watchdog management for hardware components.

• The Memory Management Stack consisting of Memory Drivers, Mem-
ory Hardware Abstraction, and Memory Services provides standard-
ized access to non-volatile memory. Through this stack each software
application component can allocate memory to maintain its internal
state. Because of the abstraction layers of the Memory Management
Stack the application component does not need to know if it is internal
or external memory. The component only requests the memory via the
standardized interface.

• The Communication Stack consisting of Communication Drivers, Com-
munication Hardware Abstraction, and Communication Services pro-
vides standardized access to the vehicle network system. Through this
stack software components can communicate with each other even if
they are located on different ECUs. The components do not use the
Communication Stack directly, but via the RTE. The RTE manages the
communication between the components corresponding to their loca-
tion. Components on the same ECU communicate directly while for
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the communication of components on different ECUs the Communica-
tion Stack is used.

• The I/O Stack consisting of I/O Drivers and I/O Hardware Abstrac-
tion provides standardized access to sensors, actuators, and other pe-
ripherals. This stack does not have a service layer since there is no
general interface for all possible sensors and actuators. Therefore, spe-
cial software components are required to access sensors and actuators,
named Sensor/Actuator Software Components. Considering the recon-
figurable distributed system topology presented in Section 4.2.1, these
components are solely required on peripheral interface nodes. They are
described in more detail in Section 5.1.2

Beside the different layers and stacks described above the BSW also provides
Complex Device Drivers [AUT13e]. The Complex Drivers Layer spans from
the hardware to the RTE and enables it to bypass the BSW layer abstraction.
It allows to integrate special purpose functionality, e.g. drivers for devices
which are not specified within AUTOSAR, with very strict timing constrains
etc., or for migration to introduce existing or new concepts into the AU-
TOSAR Software Architecture [AUT13c]. This can be useful for application
components which need direct access to the hardware devices on the ECU,
e.g. injection control or electronic valve control applications. These complex
drivers are not provided by AUTOSAR but each manufacturer which needs
those drivers has to implement them individually [War09].

This thesis shall not describe all BSW modules in detail. Hence, for a detailed
description of the BSW modules the reader is referred to [AUT13e]. For more
information on the RTE the reader is referred to [AUT13p] and [Nau09] and
details about the single modules in the Communication Stack are given in
[Gos09].

5.1.2 AUTOSAR Software Components

The Application Layer in AUTOSAR consists of interconnected SWCs that
encapsulate a complete or at least a partial functionality of an application
software. For this purpose, a SWC can basically be typed as Atomic-, Para-
meter-, or Composition-SWC. Each SWC is specified according to the AU-
TOSAR Software Component Template [AUT13f]. The specification of an
Atomic-SWC contains the description of the three parts: AtomicSoftware-
ComponentType, SwcInternalBehavior, and Implementation. This enables a
clear separation between

• the description of communication interfaces with other SWCs,

• the real-time behavior of a SWC, and
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• the concrete implementation as source or object code.

A Composition-SWC is composed of SWCs and thus provides a hierarchical
structuring of SWCs, i.e. it is a logical interconnection of other components,
either atomic or again composition. The goal of a Parameter-SWC is to make
calibration data visible for other SWCs within a Composition-SWC.

Beside these types, there exist several kinds of AUTOSAR SWCs for spe-
cial purposes [AUT13r]. For instance, as mentioned above, Sensor/Actuator-
SWCs are utilized for data exchange with the I/O. A Sensor-SWC is respon-
sible for reading sensor data and providing its data to other components. The
reading of sensor data is done through the I/O Stack of the Software Architec-
ture. An Actuator-SWC is responsible for setting the state of an actuator on
an ECU. Therefore, it can also provide an interface to other components, en-
abling these components to initiate the state setting of the actuator [War09].
Obviously, these components have to be deployed on an ECU with the cor-
responding sensors or actuators. As described in Section 4.2.1, we introduce
dedicated peripheral interface nodes for data exchange with the I/O and fo-
cus on the deployment of application software to the functional nodes of the
system. However, the software designer still needs to know which hardware
sensors and actuators are used in the software application to design an appro-
priate AUTOSAR-compliant application.

AUTOSAR Ports

To connect SWCs each component has well-defined Ports through which the
component can communicate with other SWCs or with the BSW modules.
A Port belongs to exactly one SWC and represents a point of interaction be-
tween this specific component and other components in the system. The kind
of interaction that a specific port provides, i.e. its communication semantics,
is defined by an Interface that is provided or required by that port. A Port
can either provide the service of an Interface, making it a PPort, or require
the service of an Interface, making it an RPort. AUTOSAR provides several
kinds of Interfaces for different types of data exchange [AUT13r]. However,
it defines two basic communication paradigms:

• Client-Server: This kind of Interface is commonly used for function
invocation and access to infrastructural functionality from the Applica-
tion Layer. To use a specific service, the client calls a specified oper-
ation respectively function provided by the server. A call to a method
of such an interface can be either blocking, which denotes the commu-
nication of client and server is synchronous, or non-blocking, which
means asynchronous communication. In either case the client awaits a
response from the server.
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• Sender-Receiver: Such an Interface is used for asynchronous signal
passing where a sender provides signals which can be received by one
or more receivers. All calls are non-blocking calls and the sender will
never get a response.

Figure 5.3 depicts SWCs interconnected by Ports with Sender-Receiver (a)
and Client-Server Interfaces (b). It illustrates the AUTOSAR symbols for the
different Port types [AUT13r]. The SenderSWC and the ServerSWC have
PPorts, while the ReceiverSWC and the ClientSWC have RPorts all corre-
sponding to the communication paradigm of their respective Interfaces. 
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(a) Sender-Receiver Interface.
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(b) Client-Server Interface.

Figure 5.3: Examples of SWCs interconnected by Ports with Sender-Receiver and Client-Server
Interfaces.

During the application and component design, the later distribution of the
components over the ECUs is not relevant. However, the communication
between the components already has to be defined during this design phase.
Therefore, in that phase the components communicate through the Virtual
Function Bus (VFB). More details about the VFB are given in Section 5.1.3.

Internal Behavior

As mentioned above the specification of an Atomic-SWC contains the SwcIn-
ternalBehavior and the Implementation of its executable part. The inter-
nal behavior is represented by a set of Runnable Entities (Runnables). A
Runnable represents a piece of code, e.g. a function or a controller, that is
for example implemented in a programming language like C or as a MAT-
LAB/Simulink model [The13]. Moreover, a Runnable is the smallest entity
that can be scheduled by the RTE. Thus, Runnables permit modeling of con-
currency within an Atomic-SWC.

The attribute ”Atomic” refers to the fact, that this type of SWC must be com-
pletely mapped to one ECU, i.e. all Runnables of this SWC must be mapped
to the same ECU.27 Furthermore, the unit of execution in AUTOSAR is an
Operating System task (OS task). Hence, all Runnables are mapped to such

27In contrast to an Atomic-SWC, the prototypes of a composite component do not need to be deployed on the
same ECU but can be distributed over several ECUs.

137



Chapter 5. Design of Automotive Real-Time Systems

OS tasks to be scheduled and executed. This mapping to OS tasks is per-
formed at the corresponding configuration of an ECU which is described in
more detail in [AUT13i] and [Heb09]. An OS task may contain one or more
Runnables. It is not necessary to map all Runnables of one Atomic-SWC
to the same OS task. In fact, it is reasonable to distribute the Runnables
of one component to different OS tasks to enable concurrent execution of
Runnables within one Atomic-SWC. More details about the properties of the
AUTOSAR OS are given in Section 5.1.5.

5.1.3 AUTOSAR Methodology

The AUTOSAR methodology describes several fundamental activities and
technical steps for the development of AUTOSAR projects [KF09]. There-
fore, it specifies and describes the inputs and dependencies of the activi-
ties and the resulting work products [Heb09]. The goal of the AUTOSAR
methodology is to parallelize parts of the development work and reduce the
required development time. For this purpose, the development of the overall
system is realized by means of different views. These different views are uti-
lized to coordinate the work of the different involved partners and suppliers.
Figure 5.4 depicts an abstract model of the different AUTOSAR methodol-
ogy views and their dependencies. A detailed description of the methodology
and the corresponding activities and technical steps on the particular views is
given in [AUT13b].
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Figure 5.4: Different views of the AUTOSAR methodology based on [KF09].

Each view represents a part of the overall system at a certain time of the de-
velopment process with a particular granularity. The dark grey boxes in Fig-
ure 5.4 define the application software on Component View including SWC
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View and VFB View, as well as the hardware-dependent ECU View includ-
ing the BSW Module View. They illustrate that there is no direct dependency
between these views. This modularity enables an independent specification
of the application software and the hardware-dependent software as parts of
the overall system. This allows the parallel development of different sys-
tem components by different partners at various points in time. However,
as Figure 5.4 shows, there are several dependencies between different views
which result from the exchange of work products for certain activities. In the
following we briefly describe the individual views.

Component View

The Component View defines the application software by means of two views.
The SWC View is used to describe each individual SWC and its internal be-
havior, whereas the VFB View specifies the software architecture of the sys-
tem as a composition of the SWCs.

SWC View The SWC View specifies the SwcInternalBehavior of a SWC.
As mentioned above only Atomic-SWCs have an internal behavior. The de-
scription of the SwcInternalBehavior defines which Runnables a SWC con-
tains, how they are interconnected, and which data signals they exchange via
read and write accesses. Furthermore, the real-time behavior of the Runnables
is modeled by means of so-called RteEvents, i.e. triggering events like de-
fined activation rates or data receptions.

AUTOSAR defines two different modes for the data signal exchange between
Runnables, namely explicit and implicit. Depending on the chosen mode the
corresponding RTE interface is generated to realize the data exchange.

Explicit: The Runnables communicate via explicit RTE API-calls. The re-
ceiver has a buffer which can be configured to store one or more input
messages. Depending on the buffer size, two kinds of explicit commu-
nication are distinguished. If the buffer can store only one message this
results in the ”last-is-best” behavior [KF09], i.e. data elements in the
buffer can be overwritten by the sender or read multiple times by the
receiver. If the buffer size is larger than one, data is written and read in
the FIFO principle. This avoids that data elements are overwritten or
read multiple times. The RTE also specifies error messages to indicate
and handle full and empty buffers. Details on the RTE API functions
and calls are given in [AUT13p].

Implicit: Specified data elements are also transmitted by the RTE but in con-
trast to the explicit mode, the RTE transmits the specified data after the
termination of the sender and provides it before the start of the receiver.
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This implies that during the execution of a Runnable the data keeps un-
changed.

VFB View The VFB specifies the representation of the software architec-
ture in an overall system by means of SWCs. As described in Section 5.1.2
Ports and Interfaces are utilized to interconnect SWCs for interaction. The
VFB offers standardized communication mechanisms and services to model
abstract and hardware-independent data exchange between SWCs [Fen+06].
Figure 5.5 depicts an example of three SWCs on VFB View communicating
over Ports with Sender-Receiver Interfaces. In this example SWC1 provides
data for SWC2 and SWC3.
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Figure 5.5: Example for communication modeling on VFB View.

As described in Section 5.1.1 the RTE manages the communication between
SWCs and with the BSW. This means that in a specific implementation of
a system on a hardware topology the generated RTE is responsible for the
implementation of the communication defined on VFB View.

ECU View

According to the AUTOSAR methodology, the ECU View is extracted from
the overall system description (cf. Figure 5.4). The configuration of an ECU
starts with the splitting of the system description into several descriptions,
whereas each contains all information about one single ECU. This ECU ex-
tract is the basis for the ECU Configuration step. Within the ECU Config-
uration process each single module of the AUTOSAR Architecture can be
configured for the special needs of this ECU. Because of the quite complex
AUTOSAR Architecture, modules, and their dependencies, this step is typi-
cally supported by tools [AUT13i]. In this step the SWCs have to be mapped
to the different ECUs. This implies that the abstract communication depen-
dencies specified on VFB View result in concrete communication links and
the generation of the corresponding RTE on each ECU.

BSW Module View Since the BSW Module View is ECU-specific, it is be-
yond the scope of this thesis and not described in detail. However as part
of the AUTOSAR methodology and for the sake of completeness we shortly
describe its main properties. The individual ECU-specific BSW modules are
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specified by means of the BSWModuleDescriptionTemplate [AUT13m]. Sim-
ilar to the SWCs, here the internal behavior BswInternalBehavior including
the BSW entities BswExecutbaleEntity is defined. An overview of the BSW
modules and their individual specification options is given in [AUT13e] and
[AUT13m].

System View

The System View specifies a system design with the given hardware topol-
ogy and software architecture. This system design is the output of the design
phase and corresponds to the AUTOSAR System Template [AUT13q]. The
System View represents an interface to all other views (cf. Figure 5.4). It is
utilized to comprise and manage the overall results of the development pro-
cess. This contains the description of the software architecture, the hardware
topology, and communication dependencies. Based on these descriptions,
the System View depicts the mapping of SWCs defined in the VFB View
to the given ECUs and the communication over the bus resulting from the
performed system design.
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Figure 5.6: System View of an exemplary mapping of 3 SWCs to 2 ECUs.

Figure 5.6 depicts the resulting System View for an exemplary mapping of
the SWCs from Figure 5.5 to a topology with 2 ECUs. In this example SWC1
and SWC2 are mapped to ECU1 while SWC3 is mapped to ECU2. Figure 5.6
also illustrates the intra-ECU and inter-ECU communications resulting from
the data dependencies between the SWCs specified on VFB View (cf. Fig-
ure 5.5). As described in Section 5.1, SWC1 and SWC2 are communicating
directly via RTE while for the inter-ECU message transmission from SWC1
to SWC3 the RTE utilizes the Communication Stack. The next section pro-
vides more details on the communication in AUTOSAR.
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5.1.4 AUTOSAR Communication

As described in the previous section, the data dependencies and communica-
tion between SWCs is specified on VFB View. The resulting communication
on System View depends on the actual deployment of the SWCs on the ECUs
of the given hardware topology. SWCs mapped to the same ECU communi-
cate locally while SWCs on different ECUs communicate remotely over the
network. In both cases, the RTE ensures the correct communication paths.
As a result, the extent of utilized system components depends on the SWC
distribution.

Figure 5.6 shows an example with local intra-ECU and remote inter-ECU
communication. The inter-ECU data exchange between SWC1 on ECU1 and
SWC3 on ECU2 goes through the communication bus which is accessed by
the corresponding module of the COM respectively bus driver.28 As shown
in Figure 5.2(b), the communication drivers are provided by the AUTOSAR
BSW as part of the Communication Stack. For an inter-ECU communication
the RTE exchanges signals with the COM module which is part of the Com-
munication Services. Signals are packed and unpacked by the COM module
to Interaction Layer Protocol Data Units (I-PDUs) to be transmitted and re-
ceived signals are provided to the RTE [Gos09]. The so-called PDU Router
routes the I-PDUs between the Communication Services and the Hardware
Abstraction Layer modules, i.e. the corresponding bus interface. The bus
interface puts the I-PDUs into frames and prepares them for the transmission
over the bus accessed via the corresponding bus driver. Further details on
the COM module, the PDU Router, and the different bus drivers are given in
[AUT13h] and [AUT13o].

5.1.5 AUTOSAR OS

AUTOSAR also specifies a real-time operating system called AUTOSAR OS
[AUT13n]. AUTOSAR OS is a backwards compatible superset of the oper-
ating system OSEK OS [OSE05]. OSEK OS was specified within the open
standard OSEK/VDX (Offene Systeme und deren Schnittstellen für die Elek-
tronik in Kraftfahrzeugen/Vehicle Distributed eXecutive) published by a con-
sortium founded by the automotive industry [OSE13]. OSEK OS is an event-
triggered real-time operating system. OSEK Time specifies a time-triggered
extension for OSEK OS.

AUTOSAR OS reuses the OSEK specifications and also covers the function-
ality of the time-triggered OSEK Time [ZS07]. OSEK OS utilizes a pure
event-driven priority-based multi-tasking concept. Time-triggering must be

28AUTOSAR supports several different bus protocols [AUT13h]. Here we focus on the real-time capable
FlexRay bus.
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implemented by alarms which often gets complex. Therefore, AUTOSAR
OS introduces so-called Schedule Tables which are processed by means of
corresponding OSEK counters. In the OS configuration it is specified which
task is activated at which counter value. The process starts either automat-
ically or is activated and stopped by means of calling the API-functions
StartScheduleTable...() and StopScheduleTable(). An activation pe-
riod can be set and the actual start time of a task can be delayed by an off-
set. Instead of a periodic repetition also a single processing of the Schedule
Table is possible. Calling the API-function NextScheduleTable() allows
switching between different Schedule Tables. Obviously, a Schedule Table
has different states, e.g. NOT STARTED and STARTED [AUT13n]. Figure
5.7 illustrates the Schedule Table concept with its properties.

Task A 

Offset 

StartScheduleTable...() 

Period 

Task B Task A Task C Task B ... 

... 
Counter Ticks 

Figure 5.7: Schedule Table concept of AUTOSAR OS based on [ZS07].

The main idea of the Scheduling Table corresponds to the time-triggered
scheduling concept in OSEK Time. In contrast to that in AUTOSAR OS
the tasks activated by a Scheduling Table compete for the execution with
other OS tasks. This means that a task is activated at the specified counter
value but its actual start time still depends on its priority relative to the other
activated tasks. Thus, to ensure a deterministic scheduling behavior, an ap-
propriate priority assignment for the tasks is necessary [ZS07]. As mentioned
in Section 4.2.4, Rate (Deadline) Monotonic Priority Assignment is the most
widely applied approach in AUTOSAR OS systems [FFR12].

5.1.6 AUTOSAR Timing Extensions

In earlier releases of AUTOSAR timing was not properly addressed by the
AUTOSAR specification. BMW Car IT developed an early prototype of an
extension for the AUTOSAR model that enables the specification of tim-
ing constraints for a given system [BMW13]. Finally, various AUTOSAR
partners developed and specified the so-called AUTOSAR Timing Extensions
(ARTE) [AUT13k]. Some of the partners working on ARTE were also in-
volved in the specification of TADL/TADL2 in the projects TIMMO and
TIMMO-2-USE (cf. Section 2.2.4). Thus, the specification work on both
concepts influenced each other. Since the introduction of the AUTOSAR Re-
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lease 4.0.1, ARTE is part of the AUTOSAR specifications and enables one to
express timing constraints in a standardized format [Per+12a].

Similar to TADL2, AUTOSAR timing models consist of timing descriptions
– expressed by events and event chains – and timing constraints that are im-
posed on these events and event chains. Events refer to locations in AU-
TOSAR models at which the occurrences of events are observed [Per+12a].
ARTE defines a set of predefined event types and Timings related to one of
the AUTOSAR methodology views described in Section 5.1.3 [AUT13k]:

• VFB Timing,

• SWC Timing,

• System Timing,

• BSW Module Timing, and

• ECU Timing.

In particular, these views allow to specify the reading and writing of data
from and to specific ports of software components, calling of services, and
receiving their responses on VFB Timing; the sending and receiving of data
via networks and through Communication Stacks on System Timing; acti-
vating, starting, and terminating of executable entities on SWC Timing and
calling of ECU-specific BSW services and receiving their responses on ECU
Timing and BSW Module Timing [Per+12a].

In ARTE, similar to TADL2, event chains specify a causal relationship be-
tween events and their temporal occurrences (cf. Section 2.2.4). Event chains
allow to specify the relationship between two events, for example when an
event (stimulus) A occurs then the event (response) B occurs, or in other
words, the event B occurs if and only if the event A occurred before. Event
chains can be composed of existing event chains and decomposed into so-
called event chain segments. Events also describe at which locations in this
system the occurrences are observed.

ARTE offers several timing constraints. An event triggering constraint im-
poses a constraint on the occurrences of an event, which means that it speci-
fies the way an event occurs in time. ARTE provides means to specify peri-
odic and sporadic event occurrences, as well as event occurrences that follow
a specific pattern [AUT13k]. The ARTE latency and synchronization tim-
ing constraints impose constraints on event chains. In the former case, a
constraint is used to specify a reaction and age, for instance if a stimulus
event occurs then the corresponding response event shall occur not later than
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a given amount of time. Thus the ARTE latency respectively reaction con-
straint corresponds to the TADL2 delay constraint. In the latter case, the con-
straint is used to specify that stimuli or response events must occur within a
given time interval to be said to occur simultaneous and synchronous respec-
tively [Per+12a].

As mentioned in Section 2.2.4, we focus on the periodic constraint and partic-
ularly on the delay respectively latency constraint. Furthermore, we focus on
VFB, SWC, and System Timing because the ECU-specific views are beyond
the scope of this thesis (cf. Section 5.1.3).

The VFB Timing is applicable for different system granularities. The small-
est granularity is the investigation of a single SWC without any contextual
embedding. Here, a timing description can only refer to relations between
the RPort and the PPort of the same component [AUT13k].
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Figure 5.8: Example for a latency constraint on VFB View [AUT13k].

Figure 5.8 depicts an example latency constraint for a single SWC on VFB
View [AUT13k]:

”From the point in time, where the value input is received by the
SWC, until the point in time, where the newly calculated value
output is sent, there shall be a maximum latency of 2 ms.”

This latency constraint would be attached to the timing description that refers
to the SWC.

The System Timing is used to annotate timing information to a system de-
scription. As the system description aggregates all the information about
SWCs and their corresponding internal behavior, it is possible to use the
same concepts that are available on VFB Timing and SWC Timing. The
difference is the specific system context that defines the validity of timing
information at System View. Without knowledge of the mapping of SWCs to
specific ECUs, only a generic platform independent description can be pro-
vided. Moreover, System Timing refers to the concrete communication of
SWCs that only was represented as abstract connectors in VFB Timing. As
described in Section 5.1.4, depending on the performed deployment, commu-
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nication is performed locally over the RTE or remotely over the RTE, through
the Communication Stack of the BSW and a communication bus. A system-
specific timing description thus can refer to signals (RTE), I-PDUs (COM),
and frames (communication driver and bus) [AUT13k]. Figure 5.6 depicts
possible data flows in the scope of System Timing which can be annotated
with timing constraints for the corresponding events and event chains.

5.2 Fault-Tolerant Deployment of Real-Time Software
in AUTOSAR Networks

In the previous sections we gave a briefly introduction to AUTOSAR. In this
section we present the application of our approach to the design of automotive
systems and the deployment of real-time software based on AUTOSAR. Ac-
cording to the design flow steps shown in Figure 1.2 the system design con-
tains (i) the initial definition and modeling of the given software architecture
and hardware topology and the corresponding interdependent (ii) Runnable
respectively task mappings and (iii) bus mappings. In Section 4.1 we ex-
tended and refined these design flow steps for our fault-tolerant design ap-
proach (cf. Figure 4.1).

The inputs for our approach are AUTOSAR-based models and descriptions
of the given application software architecture and hardware topology. The
application software is derived from the intended function or set of func-
tions controlled by the distributed system and modeled on VFB View. As de-
scribed in Section 4.2.5, the given application software architecture implies
initial constraints and requirements for the hardware topology configuration
including the setup of basic bus parameters. Here, we consider the real-time
capable FlexRay bus protocol supported by AUTOSAR. The corresponding
timing constraints for the executed functions to guarantee a correct system
behavior of each configuration with respect to the given hard real-time con-
straints are specified and annotated to the models by means of the AUTOSAR
Timing Extensions.

Based on this input our design approach performs the actual system deploy-
ment. This comprises the determination of Runnable respectively task and
bus mapping as well as corresponding schedulings for the initial configura-
tion and based on that for all necessary reconfigurations to design a fault-
tolerant system. As final design result the approach returns the determined
software deployment for the automotive system design. As described in Sec-
tion 5.1.3, this system design with the resulting software mappings and com-
munication dependencies modeled on System View is the output of the design
phase.
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Beside the feasible AUTOSAR-compliant software deployment for a fault-
tolerant system, the appropriate reconfiguration in case of an ECU-failure has
to be performed. This includes the detection of the failed node and the activa-
tion of the corresponding redundant tasks within the ECU network. Thus, we
also present a reconfiguration concept based on existing AUTOSAR BSW
modules.

The following sections describe in detail the integration of our design ap-
proach and reconfiguration concept to the AUTOSAR Methodology and Soft-
ware Architecture. For the fault-tolerant deployment we provide modified
versions of our algorithms presented in Section 4.4. Since for these modified
algorithms only the representation of the input changes and the performed
operations are the same, their time complexity remains unchanged. As a case
study, all steps are directly applied to real-world applications we initially pre-
sented in [Klo+13].

5.2.1 Modeling of Application Software

In AUTOSAR the functionality of application software is structured and
modeled with interconnected SWCs. This modeling contains the specifica-
tion of communication dependencies and interfaces for distributed compo-
nents as well as the representation of their functional internal behavior by
means of Runnables (cf. Section 5.1.2).

Similar to the task set in Equation 4.22, the set of n Runnables R in a AU-
TOSAR system can be modeled as:

R= {Runi = (Ti,Ci,ri,di,si, fi)| i = 1, . . . ,n} . (5.1)

Each Runnable Runi is characterized by its period Ti, WCET Ci, release time
ri and deadline di. These parameters are globally defined and constrain the
possible execution of the given Runnable to guarantee a correct system be-
havior. Consequently, each Runnable is also described by a start time si and
a finishing time fi which must lie within its available execution time interval:

ri ≤ si < fi ≤ di.

Figure 5.9 illustrates the functional components of a Traction Control (TC)
and an Adaptive Cruise Control (ACC) system model from [KHM03]. TC
and ACC are typical examples for distributed real-time systems in the auto-
motive domain. The TC system is an extension of the Antilock Braking Sys-
tem (ABS) [Rob06]. It actively stabilizes the vehicle to maintain its intended
path even under smooth or slippery road conditions and the ACC system auto-
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matically maintains a safe following distance to a detected vehicle in front.29

These applications demand timely data exchange between distributed sen-
sors, processors, and actuators, i.e., have specific end-to-end deadlines and
therefore require a dependable distributed system [KHM03].
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(a) Traction Control (TC).
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(b) Adaptive Cruise Control (ACC).

Figure 5.9: Functional components and corresponding Runnables of a TC and an ACC system
with their WCETs and data dependencies [KHM03].

Figure 5.9 depicts the individual components of these two applications with
their data dependencies and provides information about their timing require-
ments and properties, i.e. the WCETs and the common period of Ti = 3000µs
they are triggered at. Furthermore, it shows the corresponding modeling of

29More technical details and descriptions on the TC and the ACC system can be found in [Rob06] and [Rob03].
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the components by means of Runnables. Each functional component is rep-
resented by a separate Runnable.

The TC system in Figure 5.9(a) is composed of ten Runnables. The four
Runnables Run1 to Run4 represent the data acquisition and processing for
the current speed of the four vehicle wheels. Based on these input data Run5
calculates the current yaw rate of the car. Run8 determines the desired break-
ing force for the individual wheel brakes by comparing the yaw rate with the
current hand-wheel position and lateral acceleration data aquired and pro-
cessed by Run6 and Run7. Finally, the calculated desired braking force is
the input for Run9 and Run10 to process and provide the corresponding data
values for the brake actuators and the throttle actuator.

The ACC system in Figure 5.9(b) is composed of eight Runnables. Run11
performs the data acquisition and processing of distance and speed for the
currently detected vehicle in front of the car while Run12 determines the cur-
rent speed of the car itself. A comparison of these input values allows Run13
to calculate the desired speed for the car. The output of Run13 is used as in-
put data by Run16 and Run15. Run16 compares the desired speed value with
the current throttle position acquired and provided by Run14 to determine the
resulting desired throttle position while Run15 calculates the desired brake
force if necessary. Finally, Run17 and Run18 process and provide the corre-
sponding data values for the throttle actuator and brake actuators.

The structural modeling of the application software in AUTOSAR implies
placement constraints because all Runnables of an Atomic-SWC must be
mapped to the same ECU (cf. Section 5.1.2). As we mentioned before, we
want to avoid all placement constraints to maximize the flexibility for the
deployment in our fault-tolerant design approach. Thus, for an appropriate
application software modeling we put each Runnable into a separate SWC to
enable the required mapping of each Runnable to an arbitrary ECU. Conse-
quently, in the following we use the terms Runnable-to-ECU and SWC-to-
ECU mapping as synonyms.

Based on this design decision, Figure 5.10 shows the resulting model of
the TC and ACC System on VFB View. The VFB allows to model ab-
stract and hardware-independent data exchange between SWCs. Thus, this
AUTOSAR-based model represents the given application software architec-
ture with its communication dependencies independent from the given hard-
ware architecture and acts as input for the deployment in our fault-tolerant
design approach illustrated in Figure 4.1. The VFB View model in Figure
5.10 depicts that the SWCs of the TC and ACC system are connected by
Ports with Sender-Receiver Interfaces utilizing the corresponding communi-
cation paradigm. Moreover, we utilize the implicit communication mode for
the data signal exchange between the Runnables (cf. Section 5.1.3). Dashed
lines represent connections to peripheral interfaces.
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(a) VFB View model of TC system.
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(b) VFB View model of ACC system.

Figure 5.10: VFB View models of TC and ACC system in Figure 5.9.

Obviously, the communication dependencies between the Runnables imply
order and precedence constraints. However, to guarantee a correct system
behavior all Runnables must fulfill their timing constraints. In Section 4.2.3
we specified, like the authors in [DTT08], that the execution period also con-
straints the maximum end-to-end delay respectively latency of the application
software components. Since we consider a one-to-one mapping of Runnables
to SWCs, the defined timing constraints are identical for a SWC and its con-
tained Runnable. For the examples in Figure 5.9 this results in an maximum
end-to-end latency of 3000µs for the Runnables respectively SWCs of the TC
and ACC system.

AUTOSAR Timing Extensions are used to annotate timing constraints to the
VFB View model by means of events and event chains (cf. Section 5.1.6).
Figure 5.11 depicts a maximum end-to-end latency constraint for the event
chain SWC1(Run1)→SWC5(Run5)→SWC8(Run8)→SWC10(Run10) of the
TC system. This timing constraint defines that the delay between the stimu-
lus, i.e. the input on the RPort of SWC1, and the response, i.e. the output on
the PPort of SWC10, must not exceed the given maximum end-to-end latency
of 3000µs. Analogous, timing constraints are defined for each end-to-end
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event chain of the system, i.e. from SWCs with Runnables in Rin to SWCs
with Runnables inRout.
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Figure 5.11: VFB Timing event chain with latency constraint for TC system.

Similar to Equation 4.24 and 4.25, based on the timing and precedence con-
straints the available execution time interval Ψi = [ri,di[ for each Runnable
Runi can be calculated.

The corresponding release time ri is given by:

ri =

{
0 , if Runi ∈Rin
max{r j +C j |Run j ∈RdirectPrei} ,else. (5.2)

If a Runnable has no predecessors, i.e. Runi ∈ Rin, its available execution
time interval of Runi starts at ri = 0. Otherwise ri is calculated by means of
r j and C j of the direct predecessors, i.e. Run j ∈ RdirectPrei . The deadline of
Runi is calculated as:

di =

{
max end-to-end delay , if Runi ∈Rout
min{dk−Ck |Runk ∈RdirectSucci} ,else. (5.3)

If a Runnable has no successors, i.e. Runi ∈ Rout, the available execution
time interval of Runi ends at di = max end-to-end latency. Otherwise, di de-
pends on dk and Ck of the direct successors of Runi, i.e. Runk ∈RdirectSucci .

30

Table 5.1 summarizes the calculated available execution intervals Ψi for the
Runnables of the TC and ACC system. For instance, Run5 has the release
time r5 = 0µs + 200µs = 200µs and the deadline d5 = 3000µs− 200µs−
400µs = 2400µs.

Beside the properties of the Runnables, also the properties of the exchanged
data messages have to be considered to enable a feasible deployment and

30In fact, a designer could also specify earlier deadlines for runnables. However, this it not reasonable because
it would result in an over-specification without benefits for the timeliness of the functionality.
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TC System ACC System
Runi Ci [µs] ri [µs] di [µs] Runi Ci [µs] ri [µs] di [µs]
Run1 200 0 2100 Run11 300 0 2350
Run2 200 0 2100 Run12 150 0 2350
Run3 200 0 2100 Run13 300 300 2650
Run4 200 0 2100 Run14 175 0 2550
Run5 300 200 2400 Run15 200 600 2850
Run6 150 0 2400 Run16 250 600 2800
Run7 175 0 2400 Run17 200 850 3000
Run8 400 500 2800 Run18 150 800 3000
Run9 150 900 3000
Run10 200 900 3000

Table 5.1: Runnable properties for TC and ACC systems shown in Figure 5.9.

guarantee a correct system behavior. Analogous to Equation 4.23 here also a
setM of n real-time messages can be modeled as:

M= {mi = (Tmi,Lmi,rmi,dmi,smi, fmi)| i = 1, . . . ,n} . (5.4)

Equation 5.4 defines that each message mi has a period Tmi which directly
depends on the period Ttx of the sender Runnable Runtx and the period Trx of
the receiver Runnable Runrx (cf. Section 4.2.3). The data length Lmi defines
how much data message mi has to transmit. Table 5.2 summarizes the mes-
sages which are exchanged by the Runnables in the TC and ACC system and
provides their individual sizes given in [KHM03].

TC System ACC System
mi m(Runtx,Runrx) Lmi [bits] mi m(Runtx,Runrx) Lmi [bits]
m1 m(Run1,Run5) 12 m10 m(Run11,Run13) 12
m2 m(Run2,Run5) 12 m11 m(Run12,Run13) 12
m3 m(Run3,Run5) 12 m12 m(Run14,Run16) 10
m4 m(Run4,Run5) 12 m13 m(Run13,Run16) 12
m5 m(Run6,Run8) 10 m14 m(Run13,Run15) 12
m6 m(Run5,Run8) 22 m15 m(Run16,Run17) 10
m7 m(Run7,Run8) 20 m16 m(Run15,Run18) 10
m8 m(Run8,Run9) 12
m9 m(Run8,Run10) 12

Table 5.2: Message properties for TC and ACC systems shown in Figure 5.9 [KHM03].

Furthermore, each real-time message mi has a release time rmi , and a deadline
dmi . Since we consider the implicit communication mode, the transmission
of message mi can be started earliest when Runtx has finished its computation
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and must be finished latest when Runrx is started. Thus, as described in
Section 2.2.2, we define that rmi and dmi limit the available transmission time
interval ϒmi = [rmi,dmi[= [ ftx,srx[ of a message mi. Consequently, the start
time smi and finishing time fmi of mi must lie within this interval:

ftx = rmi ≤ smi < fmi ≤ dmi = srx.

Obviously, the available transmission time interval ϒmi of each message mi
depends on the performed Runnable deployment and the resulting scheduling
on the ECUs.

5.2.2 Modelling and Setup of Hardware Architecture

Beside the application software model, our AUTOSAR-based approach for
the fault-tolerant deployment of real-time software also requires information
about the given hardware architecture as input (cf. Figure 4.1). Basically,
this contains the number and properties of the networked ECUs and the con-
figuration of the communication bus, here the FlexRay bus.

Analogous to Equation 4.10, the set E of n ECUs in an automotive system
can be defined as:

E = {ECU j| j = 1, . . . ,n}. (5.5)

The TC and ACC system, which we consider as examples here, are realized
with a total of three ECUs in a typical current vehicle network [Rob06]. The
TC system is implemented with two ECUs which are directly connected to
their corresponding sensors and actuators. The TC system ECU is connected
to the four vehicle wheels and additional sensors to determine the current
wheel speeds, yaw rate, lateral acceleration, and hand-wheel position. Based
on these information, it calculates the desired braking force to process and
provide the corresponding output data to the individual wheel brake actua-
tors. Additionally, it transmits the necessary information to the engine man-
agement ECU of the vehicle which processes and provides the output data to
the connected throttle actuator [Rob06]. The ACC system utilizes one ECU
which is directly connected to the distance measurement sensor, e.g. radar or
laser setup. This ECU calculates the desired speed by means of the detected
vehicle in front and the current speed. The required information about the
current speed comes from the wheel-speed sensors via TC system ECU or
from specific engine sensors via engine management ECU. These ECUs get
the desired speed value as feedback to calculate the resulting throttle position
respectively brake force and transmit the output data to the corresponding
actuators [Rob03].

The ECUs described above are hardwired to the mentioned sensors and ac-
tuators in a current vehicle network. This results in I/O-related placement
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constraints for the application software because the specific Sensor/Actuator-
SWCs and their Runnables must be mapped to the ECU with the correspond-
ing sensors and actuators (cf. Section 5.1.2). Considering these placement
constraints, a fault-tolerant system design for the compensation of an arbi-
trary ECU failure implies one redundant component per ECU. For the de-
scribed system this would result in a total of six ECUs. Therefore, we utilize
the reconfigurable network topology presented in Section 4.2.1 for the soft-
ware deployment to avoid these placement constraints.

In Section 4.2.5 we described how we determined the lower limit of required
functional nodes for the reconfigurable network topology by means of the
utilization of the ECUs. As mentioned above the application software of the
TC and ACC system is composed of 18 Runnables with a common period
of Ti = 3000µs. Considering RM respectively DM priority assignment, this
harmonic set allows a maximum utiliaztion per ECU of Ulub = 1.0. The
summed utilization of these Runnables is U = 3900/3000 = 1.3. Inserting
these values in Equation 4.14, we can determine the lower limit of required
ECUs as m = d1.3e+ 1 = 3. Here, we consider a homogeneous network
structure. Hence, the Runnable WCETs provided in Table 5.1 are valid for
all functional nodes. Nevertheless, our approach also supports heterogeneous
ECUs as described in Section 4.2.5.

Figure 5.12 illustrates the System View model of the hardware architecture
for the TC and ACC system as input for our AUTOSAR-based design ap-
proach enabling a flexible and reconfigurable deployment without placement
constraints.
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Figure 5.12: System View of reconfigurable hardware architecture for TC and ACC system.

It is composed of the required functional nodes ECU1, ECU2, ECU3, and the
peripheral interfaces to the involved sensors and actuators described above.
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As described in Section 4.2.1, we focus on the three ECUs that are utilized to
enable dynamic redundancy with reconfiguration by means of Cold Standby
replicas. However, it is important to remember that the peripheral interfaces
provide the required connection to the I/O of the system. These nodes convert
I/O signals to FlexRay bus messages and vice versa to exchange these data
with the Runnables in Rin and Rout. Since peripheral interfaces do not exe-
cute any other complex function, they only require low hardware capacities
which allows cost-efficient static hardware redundancy. AUTOSAR defines
specific Sensor/Actuator-SWCs for the data exchange with the I/O (cf. Sec-
tion 5.1.2). Thus, in an AUTOSAR-based system these SWCs are deployed
on the corresponding peripheral interfaces.

FlexRay Bus Setup

The configuration and properties of the communication bus has a big impact
on the performed message mapping and scheduling. Thus, as described in
Section 4.2.5, we perform the configuration of the FlexRay bus and the setup
of its parameters according to the properties of the given application software
architecture. This means that we set the length of the communication cycle
to the hyperperiod of the Runnable set:

length(Θcycle) = Tmax = 3000µs.

Furthermore, we analyze the number and size of the messages exchanged
by the Runnables. Table 5.2 shows that there is a total of 16 messages ex-
changed in the TC and ACC system. It also shows that the individual mes-
sage sizes are 10 to 22 bits. Consequently, a message requires one or two
words of a FlexRay frame. For this example, we set the slot duration to
duration(θ) = 25µs which allows a maximum payload of 12 bytes respec-
tively six two-byte words in one slot (cf. Section 2.2.3). This allows frame
packing to combine several messages if applicable. Even considering pre-
assigned slots for the communication with the peripheral interfaces, as de-
scribed in Section 4.3.2, there remain more than 100 slots in the FlexRay
Cycle for the inter-ECU message transfer between the functional nodes.31

However, our deployment approach is intended to reduce the inter-ECU mes-
sages and the resulting number of required slots by means of applying slot
reuse and frame packing to determine a feasible and efficient bus mapping.

31According to Equation 4.19:
∣∣Θcycle

∣∣= length(Θcycle)/duration(θ) = 3000µs/25µs = 120.
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5.2.3 Runnable and Task Mapping

As a first step our fault-tolerant AUTOSAR-based deployment of real-time
software includes feasible mappings of SWCs respectively Runnables to the
available ECUs in the network. Thus, our approach utilizes the VFB View
model with the Runnables and their communication dependencies and timing
constraints (cf. Figure 5.10 and 5.11) and the initial System View model of
the given hardware architecture (cf. Figure 5.12) as input to perform these
Runnable-to-ECU mappings. As described in Section 4.2, the objective of
our approach is to determine a feasible combined solution for an initial soft-
ware deployment and all necessary reconfigurations and replications for the
remaining nodes of the network in case of a node failure. Thus, each configu-
ration has to fulfill the deadlines of all Runnables and the end-to-end latency
constraints for all event chains. Therefore, our approach iteratively analyzes
and reduces the resulting execution delay for each Runnable-to-ECU map-
ping to finally ensure shortened end-to-end delays for all event chains.

Initial Runnable Mapping

It starts with the initial mapping MRun
init : R 7→ E described by pseusdocode in

Algorithm 7 (INITIALTASKMAPPING) which is a modified version of Algo-
rithm 1. As described above, the AUTOSAR methodology strictly specifies
the representation of the software architecture and the hardware topology.
Hence, instead of the TDG, the HAG, and the COMG the modified algorithm
gets the setR of Runnables , the set E of ECUs, and the set Θ of FlexRay slots
as input. Nevertheless, the performed operations of the algorithm remain the
same.

The algorithm defines the mapping order of the Runnables via sorting them
by their deadlines and release times (cf. Table 5.1). Before each mapping a
schedulability test has to determine the feasible candidate ECUs in E . Since
we consider DM scheduling this, is solved by our extended response time
analysis RTA* presented in Section 4.2.4. The initial mapping begins with
the Runnables, which have no precedence constraints (Rin), and maps them
iteratively to the ECU hosting the last Runnable with the earliest finish-
ing time. Considering a network with n ECUs, this implies that the first n
Runnables will be mapped to empty ECUs.

For Runnables with predecessors the appropriate Runnable-to-ECU mapping
is more complex. Hence, Algorithm 8 (GETMINIMUMRUNNABLEDELAY)
returns the ECU with the minimum execution delay for each Runi ∈R\Rin.
This algorithm is a modification of Algorithm 2 and gets a Runnable Runi
as input instead of a task τi. It determines the direct predecessors of Runi,
their hosting ECUs Epre, and the last Runnables on these ECUs (Rlast). If one
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Algorithm 7 INITIALRUNNABLEMAPPING

Input: Set of RunnablesR, ECUs E , and slots Θ.
Output: RunnableMapping: MRun

init : R 7→ E .
1: SORTBYDEADLINEANDRELEASETIME(R)
2: for all Runi ∈Rin do
3: Etmp← GETFEASIBLEECUS(Runi,E)
4: ECUtmp← GETEARLIESTFINISH(Etmp)
5: MAPRUNNABLE(Runi, ECUtmp)
6: UPDATESTARTANDFINISHTIMES(R)
7: end for
8: for all Runi ∈R\Rin do
9: Etmp← GETFEASIBLEECUS(Runi,E ,Θ)

10: ECUtmp← GETMINIMUMRUNNABLEDELAY(Runi,Etmp,Θ)
11: MAPRUNNABLE(Runi, ECUtmp)
12: UPDATESTARTANDFINISHTIMES(R)
13: UPDATEAVAILABLESLOTS(Θ)
14: end for
15: return RunnableMapping: MRun

init : R 7→ E

or more of the direct predecessors of Runi are last Runnables, the algorithm
maps Runi to the same ECU as the predecessor with the latest finishing time.
This results in the minimum possible delay for Runi, because it avoids addi-
tional inter-ECU communication delay for the latest input of Runi. If there
are Runnables mapped to Epre after all direct predecessors, the Inter-ECU
communication for input to Runi can take place during their execution. In
this case the algorithm determines the ECUpreMin with the earliest finishing
time. If there are ECUs that do not host any of the direct predecessors of
Runi, the one with the earliest finishing time (ECUnonPreMin) is also consid-
ered. The algorithm compares the resulting execution delays and returns the
ECU resulting in the shorter delay. More details on our algorithms for the
initial mapping and the delay determination are given in Section 4.4.1.

Redundancy Runnable Mapping

By means of Algorithm 7 and Algorithm 8, our deployment approach de-
termines a feasible initial mapping with minimized execution delays con-
sidering timing, order, and precedence constraints for the Runnables. How-
ever, in a network with n ECUs it has to perform n redundancy mappings to
enable the compensation of each possible ECU failure. Thus, Algorithm 9
(REDUNDANCYRUNNABLEMAPPING) calculates the redundancy mapping
MRun

red : R 7→ E for a Runnable set of a failed ECU to the remaining ECUs.
Because of the AUTOSAR-specific input representation, this modified ver-
sion of Algorithm 3 gets an initial Runnable mapping MRun

init and the set of
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Algorithm 8 GETMINIMUMRUNNABLEDELAY

Input: Runnable Runi, set of candidate ECUs Etmp, and available slots Θ.
Output: ECU with minimum execution delay.

1: RdirectPre← GETDIRECTPREDECESSORS(Runi)
2: Epre← GETHOSTECUS(RdirectPre, Etmp)
3: Rlast← GETLASTRUNNABLES(Epre)
4: Rcap←Rlast∩RdirectPre
5: ifRcap 6= /0 then
6: ECU← GETHOSTECU(GETLATESTFINISH(Rcap,Etmp)
7: else
8: ECUpreMin← GETEARLIESTFINISHANDSHORTESTCOMDELAY(Epre,Θ)
9: if Etmp \Epre 6= /0 then

10: ECUnonPreMin← GETEARLIESTFINISHANDSHORTESTCOMDELAY(Etmp \Epre,Θ)
11: ∆← DIFF〈GETDELAY(ECUpreMin,Θ), GETDELAY(ECUnonPreMin,Θ)〉
12: if ∆ > 0 then
13: ECU← ECUnonPreMin
14: else
15: ECU← ECUpreMin
16: end if
17: else
18: ECU← ECUpreMin
19: end if
20: end if
21: return ECU

FlexRay slots Θ instead of a TMG and a COMG as input. However, the
performed operations are the same as in Algorithm 3.

Initially Algorithm 9 determines the Runnable set Rfail which was executed
on the failed ECU by means of the initial mapping MRun

init and the remaining
ECUs Erem. Moreover, it initializes the redundancy mapping MRun

red with the
Runnable mapping of the remaining ECUs kept from MRun

init . This allows to
combine Runnables to AUTOSAR OS tasks and the reuse of messages and
slots in different reconfigurations. Similar to the initial mapping, the algo-
rithm iteratively maps the Runnables from Rfail. Hence, in each mapping
step the redundancy mapping Mred is complemented by the currently per-
formed mapping. Obviously, the feasible candidate ECUs Etmp have to be
determined before each mapping step. Finally, Algorithm 9 returns MRun

red .

For each assignment our approach determines the Runnable-to-ECU map-
ping resulting in the minimum overall end-to-end latency of all event chains.
Thus, it utilizes Algorithm 10 (GETECUMINOVERALLE2ELATENCY) to
identify the corresponding ECU. This modified version of Algorithm 4 checks
each ECUi in Erem based on their current mapping. It complements MRun

cur
by inserting Runi preserving order and precedence constraints by means of
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Algorithm 9 REDUNDANCYRUNNABLEMAPPING

Input: Remaining ECUs Erem, InitialRunnableMapping MRun
init , and slots Θ.

Output: RedundancyRunnableMapping MRun
red : R 7→ E .

1: Rfail← GETFAILEDECUTASKSET(MRun
init ,Erem)

2: MRun
red ← GETMAPPINGFORREMAININGECUS(MRun

init ,Erem)
3: for all Runi ∈ Γfail do
4: Etmp← GETFEASIBLEECUS(Runi,Erem)
5: ECUtmp← GETECUMINOVERALLE2E(Runi, Etmp,MRun

red )
6: MRun

red ←MRun
red ∪MAPRUNNABLE(Run, ECUtmp)

7: UPDATESTARTANDFINISHTIMES(R)
8: UPDATEAVAILABLESLOTS(Θ)
9: end for

10: return RedundancyRunnableMapping MRun
red : R 7→ E

Algorithm 10 GETECUMINOVERALLE2ELATENCY

Input: Runnable Runi, candidate ECUs Etmp, available slots Θ, and current mapping MRun
cur .

Output: ECU resulting in minimum overall end-to-end (E2E) latency.
1: for all ECUi ∈ Etmp do
2: MRun

i ←MRun
cur ∪MAPTASK(Runi, ECUi)

3: E2EECUi ← GETOVERALLE2EDELAYANDCOMOVERHEAD(MRun
i ,Θ)

4: E2E← E2E∪E2EECUi

5: end for
6: ECU← ECUMINE2EANDCOMOVERHEAD(E2E)
7: return ECU

deadlines and release times. This insertion results in Runnable shiftings and
growing execution delays due to the constraints on one or more of the ECUs.
The algorithm calculates the overall end-to-end delay for all event chains im-
plied by MRun

i and stores it referencing to ECUi. This results in a set E2E of
end-to-end delays, i.e. one for each Runnable-to-ECU mapping. Finally, Al-
gorithm 10 compares the values in E2E and returns the ECU with minimum
overall end-to-end latency. A more detailed description on our algorithms for
the redundancy mapping and the overall end-to-end latency determination
are given in Section 4.4.1. The presented modified versions of the algorithms
for the initial and redundancy task mappings differ only in the representation
of their input data. Since the performed operations are the same, the time
complexity remains the same as described in Section 4.4.1.
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Runnable Mapping Result

Figure 5.13 depicts the resulting Gantt Charts for the TC and ACC systems
in the given network topology with three ECUs, i.e. one chart for the initial
mapping and one for each of the three required redundancy mappings. Addi-
tionally, Table 5.3 provides the corresponding execution orders and properties
of the Runnables for the different configurations. Figure 5.13 illustrates how
our Runnable mapping approach preserves the initial mapping of Runnables
on the remaining ECUs and inserts the required redundant Runnables for the
individual redundancy mappings. For instance, the Runnables Run1, Run4,
Run7, Run13, Run16, and Run17 are initially mapped to ECU1. This mapping
is kept in Redundacy Mapping 2 and Redundancy Mapping 3 where ECU1
is running. In each redundancy mapping the required redundant Runnables
are inserted according to their timing constraints as defined by Algorithm 9.
In Redundancy Mapping 2 the Runnable Run2 initally mapped to ECU2 is
inserted between Run4 and Run7 on ECU1.
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Figure 5.13: Gantt Charts of Runnable and task mappings for TC and ACC systems.

Furthermore, Table 5.3 shows that all Runnables in each configuration ful-
fill their timing constraints and meet their deadlines. This also implies that
the defined maximum end-to-end latency constraints for all event chains from
Runnables inRin to Runnables inRout are also fulfilled. As an example, Fig-
ure 5.13 illustrates the event chain SWC1→ SWC10 defined on VFB Timing
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(cf. Figure 5.11) for each configuration. Table 5.3 shows that the finishing
time of Run10 has a maximum value of 2175µs in the redundancy mappings.
Hence, the end-to-end latency constraint of 3000µs is clearly fulfilled for this
event chain. All other event chains have even shorter end-to-end latency. Be-
side the feasibility of the determined Runnable-to-ECU mappings this result
provides as additional feedback to the designer that he may consider ECUs
with lower computational capacities and lower cost for the functional nodes
because resulting longer WCETs probably still result in feasible deployments
(cf. Section 4.2.5).

As described in Section 5.1.3, the AUTOSAR methodology defines the Sys-
tem View to specify the system design as output of the design phase to man-
age the overall results of the development process. This includes the mod-
eling of the mapping of SWCs respectively Runnables to the ECUs and the
resulting intra-ECU and inter-ECU communication of the performed deploy-
ment. Figure 5.14 depicts the output of our AUTOSAR-based deployment
approach as System View model. It is based on the hardware architecture
input model in Figure 5.12 and illustrates the resulting mapping for the TC
and ACC system defined on VFB View (cf. Figure 5.10). The System View
model defines which SWC is mapped to which ECU for the initial config-
uration. Additionally, it depicts which SWCs are redundantly mapped to
which ECU for the individual reconfigurations. The System View model
also illustrates the resulting inter-ECU messages over the FlexRay bus for
all configurations.32 Even though our deployment approach reduces the re-
quired remote communication, the figure shows that there are still several
inter-ECU messages considering all configurations. For a complete feasible
system design our deployment approach has to perform an appropriate bus
mapping for these messages (cf. Figure 4.1). In Section 5.2.4 we describe
how this is realized.

Task Mapping

As mentioned in Section 5.1.2, the unit of execution in AUTOSAR is an OS
task. Hence, in AUTOSAR all Runnables assigned to an ECU must also be
mapped to OS tasks to be scheduled and executed. An OS task may contain
one or more Runnables. The resulting task set of an ECU is scheduled by AU-
TOSAR OS as described in Section 5.1.5. The simplest strategy would be to
assign each Runnable to an individual task. But this is not practicable mainly
due to two reasons: (i) the number of AUTOSAR OS tasks is limited and (ii)
switching between tasks is time-consuming for an OS and should be avoided
[SR08]. Therefore, we propose a more sophisticated Runnable-to-task map-
ping approach. This strategy utilizes the fact that in the reconfigurations the

32For a better recognizability the interconnections between the Runnables inRin andRout and the corresponding
peripheral interface nodes are not drawn in.
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initial mapping of Runnables to ECUs is preserved to reduce the number of
required tasks. For this purpose, Runnables that are assigned to the same
ECU and kept connected at each redundancy mapping, are encapsulated in
one task.

Algorithm 11 RUNNABLETOTASKMAPPING

Input: Set of RunnableMappings MRun and set of ECUs E .
Output: Set of task sets on ECUs E : TE .

1: MRun
init ← GETINITIALRUNNABLEMAPPING(MRun)

2: for all ECUi ∈ E do
3: MRun

ECUi
← GETREDUNDANCYMAPPINGS(MRun,ECUi)

4: Rinit
ECUi
← GETORDEREDRUNNABLES(MRun

init ,ECUi)
5: for all Run j ∈Rinit

ECUi
do

6: if CONNECTEDINALLREDUNDANCYMAPPINGS(Rtmp,Run j,M
Run
ECUi

) then
7: Rtmp←Rtmp∪Run j
8: else
9: τtmp← CREATETASK(Rtmp)

10: ΓECUi ← ΓECUi ∪ τtmp
11: Rtmp← Run j
12: end if
13: end for
14: for all MRun

k ∈MRun
ECUi

do
15: Rk

ECUi
← GETORDEREDRUNNABLES(MRun

k ,ECUi)
16: for all Run j ∈Rk

ECUi
\Rinit

ECUi
do

17: τtmp← CREATETASK(Run j)
18: ΓECUi ← ΓECUi ∪ τtmp
19: end for
20: end for
21: TE ← TE ∪ΓECUi

22: end for
23: return Set of task sets on ECUs E : TE

Algorithm 11 (RUNNABLETOTASKMAPPING) represents in pseudocode how
our Runnable-to-task mapping approach works. It gets the set MRun of all
Runnable mappings and the set of ECUs E as input. Based on that input,
it performs the Runnable-to-task mapping for each ECU and returns the re-
sulting set of task sets TE for all ECUs. As mentioned above, our approach
utilizes the preservation of the initial Runnable mapping. Thus, at first it takes
the initial mapping MRun

init from MRun before it iterates over each ECUi ∈ E to
perform their corresponding Runnable-to-task mappings.

In each iteration Algorithm 11 determines the set MRun
ECUi

of redundancy map-
pings where ECUi is running and the setRinit

ECUi
of Runnables initially mapped

to ECUi in their scheduling respectively execution order. The algorithm goes
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through all Runnables Run j ∈ Rinit
ECUi

. In each step it checks if the current
Runnable Run j is directly connected to the set Rtmp, i.e. directly follows
in the execution order, in all redundancy mappings MRun

ECUi
.33 If this is true,

Runnable Run j is added to the setRtmp. Otherwise, a task τtmp is created and
the currently determined set of connected Runnables is mapped to this task.
Task τtmp is added to the task set ΓECUi of ECUi andRtmp is reinitialized with
Run j for the next iteration.

The Runnable-to-task mapping strategy described above reduces the num-
ber of required tasks for the Runnables which are active by default in all
configurations. However, the redundant Runnable instances which are in-
active by default also have to be mapped to tasks to be scheduled by the
AUTOSAR OS in their corresponding reconfiguration. Therefore, Algo-
rithm 11 iterates over each redundancy mapping MRun

k ∈ MRun
ECUi

and de-
termines their corresponding Runnables Rk

ECUi
mapped to ECUi. For each

Runnable Run j ∈ Rk
ECUi
\Rinit

ECUi
which was not initially mapped to ECUi,

it creates a task τtmp, maps the current Runnable to this task and adds the
created task to the task set ΓECUi . When all Runnables are mapped to tasks,
the task set ΓECUi of ECUi is added to the common set of task sets TE for all
ECUs. Finally, Algorithm 11 returns the resulting set of task sets. Like the
algorithms above which are modified versions of the ones in Section 4.4, it
terminates after iterating over all ECUs and Runnables. The iteration over all
Runnables for each ECU results in a time complexity of O(|E| · |R|). Com-
pared to the performed initial and redundancy Runnable mappings this run-
ning time is negligible.

Figure 5.13 illustrates the resulting Runnable-to-task mapping for the TC and
ACC systems. The initial mapping tasks which are reused in one or more of
the reconfigurations are marked in white. The additionally required tasks for
the redundant Runnables are marked in light grey. For instance, on ECU3 the
Runnables Run12, Run6, and Run5 are mapped to task τ11. This task can be
used for the inital mapping and the two redundancy mappings where ECU3 is
also running. Beside these tasks which are active in the initial configuration
and the reconfigurations, additional inactive tasks are required for the inactive
redundant Runnable instances. For Redundancy Mapping 1, this results in the
tasks τr4, τr5, and τr6 while Redundancy Mapping 2 requires the additional
tasks τr10, τr11, and τr12.

Summarized, for the faultless system execution this results in 13 tasks for
the initial mapping instead of 18 tasks which would be required for a one-to-
one mapping. Also for the different possible reconfigurations, the number of
required tasks is reduced to 14 respectively 15. For larger and more complex
systems with a higher number of Runnables, the reduction of required tasks
probably increases.

33In the first iterationRtmp = /0 holds.
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Inital Mapping:

Runi ri [µs] di [µs] si [µs] fi [µs]
ECU1 Run1 0 2100 0 200

Run4 0 2100 200 400
Run7 0 2400 400 575
Run13 300 2650 575 875
Run16 600 2800 875 1125
Run17 850 3000 1125 1325

ECU2 Run2 0 2100 0 200
Run11 0 2350 200 500
Run14 0 2550 500 675
Run15 600 2850 900 1100
Run18 800 3000 1100 1250
Run10 900 3000 1250 1450

ECU3 Run3 0 2100 0 200
Run12 0 2350 200 350
Run6 0 2400 350 500
Run5 200 2400 500 800
Run8 500 2800 800 1200
Run9 900 3000 1200 1350

Redundancy Mapping 1 (Failure of ECU1):

Runi ri [µs] di [µs] si [µs] fi [µs]
ECU2 Run2 0 2100 0 200

Run1 0 2100 200 400
Run11 0 2350 400 700
Run7 0 2400 700 875
Run14 0 2550 875 1050
Run15 600 2850 1325 1525
Run18 800 3000 1525 1675
Run17 850 3000 1675 1875
Run10 900 3000 1975 2175

ECU3 Run3 0 2100 0 200
Run4 0 2100 200 400
Run12 0 2350 400 550
Run6 0 2400 550 700
Run5 200 2400 700 1000
Run13 300 2650 1000 1300
Run16 600 2800 1300 1550
Run8 500 2800 1550 1950
Run9 900 3000 1950 2100
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Redundancy Mapping 2 (Failure of ECU2):

Runi ri [µs] di [µs] si [µs] fi [µs]
ECU1 Run1 0 2100 0 200

Run4 0 2100 200 400
Run2 0 2100 400 600
Run7 0 2400 600 775
Run14 0 2550 775 950
Run13 300 2650 950 1250
Run16 600 2800 1250 1500
Run17 850 3000 1500 1700
Run10 900 3000 1700 1900

ECU2 Run3 0 2100 0 200
Run11 0 2350 200 500
Run12 0 2350 500 650
Run6 0 2400 650 800
Run5 200 2400 800 1100
Run8 500 2800 1100 1500
Run15 600 2850 1500 1700
Run18 800 3000 1700 1850
Run9 900 3000 1850 2000

Redundancy Mapping 3 (Failure of ECU3):

Runi ri [µs] di [µs] si [µs] fi [µs]
ECU1 Run1 0 2100 0 200

Run4 0 2100 200 400
Run12 0 2350 400 550
Run7 0 2400 550 725
Run13 300 2650 725 1025
Run8 500 2800 1175 1575
Run16 600 2800 1575 1825
Run17 850 3000 1825 2025

ECU2 Run2 0 2100 0 200
Run3 0 2100 200 400
Run11 0 2350 400 700
Run6 0 2400 700 850
Run5 200 2400 850 1150
Run14 0 2550 1150 1325
Run15 600 2850 1325 1525
Run18 800 3000 1525 1675
Run10 900 3000 1675 1875
Run9 900 3000 1875 2025

Table 5.3: Execution order and properties of Runnables resulting from initial and redundancy
mappings.
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5.2.4 Bus Mapping

As part of the fault-tolerant deployment for a feasible bus mapping the num-
ber and size of inter-ECU messages and the bus properties have to be consid-
ered. The number of inter-ECU messages depends on the Runnable mappings
and their size depends on the given software architecture. The Runnable map-
pings result in an available transmission interval ϒmi = [rmi,dmi[= [ ftx,srx[
for each inter-ECU message mi (cf. Section 5.2.1). It defines that mi may be
transmitted in a slot θ of the continuous set of slots Θi ∈ ϒmi . The number of
slots in Θi depends on the configured slot size.

Algorithm 12 (AUTOSARBUSMAPPING) presents our AUTOSAR-based
bus mapping approach in psuedocode. It is a modified version of the bus
mapping Algorithm 5. Like the Runnable mapping algorithms presented
above, this algorithm is also based on AUTOSAR-specific input but the per-
formed operations remain the same. Instead of the task mapping TMGs, the
HAG, and the COMG it gets the set MRun of determined Runnable map-
pings, the set E of ECUs, and the set Θ of FlexRay slots as input. Since only
the representation of the input changed and the performed operations are the
same as in Algorithm 5, the time complexity remains unchanged. Algorithm
12 starts with the mapping of the inter-ECU messagesMbus

MRun
init

of the initial

Runnable mapping MRun
init and the set Etx of their corresponding sender ECUs.

For each sender ECUi ∈ Etx it identifies the transmitted inter-ECU messages
m j ∈Mbus

ECUi
and their available slots Θm j for transmission. Each message m j

is mapped to the first available slot θmap and finally the resulting start times
sm j and finishing times fm j of all messages m j ∈Mbus

ECUi
are updated.

Afterwards, for each redundancy mapping Mτ
i ∈MRun \ {MRun

init }, the algo-
rithm also determines the inter-ECU messages mk ∈Mbus

ECU j
transmitted by

ECU j. It iterates over all messages mk and determines their available slots
Θmk for transmission. For possible slot reuse it checks if mk from ECU j was
initially mapped to a slot θ ∈Θmk . If this is true, the set Θmk is set to just this
assigned slot for reusing the message. In each iteration the determined set of
available slots Θmk complements the set ΞECU j of available slot sets for all
inter-ECU messages sent by ECU j. For the actual mapping, the algorithm de-
termines the overlapping slots in the sets of available slots in ΞECU j and maps
each message to the first available overlapping slot. This implicitly realizes
slot reuse and frame packing if possible. As described above, the messages
initially mapped to a specific slot can only be mapped to the same slot, i.e.
the message is reused. Messages with overlapping sets of available slots are
mapped to the first available overlapping slot if their summed payload allows
frame packing. Otherwise, they have to be transmitted in separate slots. Af-
ter the actual mapping, the algorithm updates the start times smk and finishing
times fmk of all messages mk. Finally, Algorithm 12 returns a combined bus
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Algorithm 12 AUTOSARBUSMAPPING

Input: Set of RunnableMappings MRun, ECUs E , and slots Θ.
Output: BusMapping Mbus : (Mbus,E) 7→Θ

1: MRun
init ← GETINITIALMAPPING(MRun)

2: Mbus
MRun

init
← GETINTERECUMSGS(MRun

init )

3: Etx← GETSENDERECUS(Mbus
MRun

init
,E)

4: for all ECUi ∈ Etx do
5: Mbus

ECUi
← GETTXMESSAGESFROMECU(MRun

init ,ECUi)
6: for all m j ∈Mbus

ECUi
do

7: Θm j ← GETSLOTSINTXINTERVAL(m j)
8: θmap← GETFIRSTAVAILABLESLOT(Θm j)
9: MAPTOSLOT(m j,θmap)

10: end for
11: UPDATESTARTANDFINISHTIMES(Mbus

ECUi
)

12: end for
13: for all MRun

i ∈MRun \{MRun
init } do

14: Mbus
MRun

i
← GETINTERECUMSGS(MRun

i )

15: Etx← GETSENDERECUS(Mbus
MRun

i
,E)

16: for all ECU j ∈ Etx do
17: Mbus

ECU j
← GETTXMESSAGESFROMECU(MRun

i ,ECU j)

18: for all mk ∈Mbus
ECU j

do
19: Θmk ← GETSLOTSINTXINTERVAL(mk)
20: if CHECKFORSLOTREUSE(Θmk) = true then
21: Θmk ← GETASSIGNEDSLOT(mk)
22: end if
23: ΞECU j ← ΞECU j ∪Θmk

24: end for
25: MAPTOFIRSTAVAILABLEOVERLAPPINGSLOTS(ΞECU j)
26: UPDATESTARTANDFINISHTIMES(Mbus

ECU j
)

27: end for
28: end for
29: return Mbus : (Mbus,E) 7→Θ

mapping Mbus for all configurations. More details on the single steps of our
bus mapping algorithm are given in Section 4.4.2.

The message sizes of the TC and ACC systems are 10 to 22 bit (cf. Table 5.2).
As mentioned in Section 5.2.2, for the FlexRay bus setup we consider a slot
size of θsize = 25µs. Table 5.4 summarizes the properties of the inter-ECU
messages resulting from the Runnable and bus mappings. For each message
mi in each configuration, it provides the sender Runtx and receiver Runtx
with their hosting ECUs. It shows the available transmission time interval
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ϒmi = [ ftx,srx[ and the corresponding available slot sets Θmi resulting from
the initial and redundancy mappings of the sender and receiver Runnables
(cf. Table 5.3) for each mi. Finally, it provides the slot θmi assigned to mi
with its corresponding start time sθmi

and finishing time fθmi
.

As shown in Table 5.2, all inter-ECU messages in the initial configuration are
mapped to the first available slot in Θmi . For nearly all messages, this is the
first slot of the available slot set. However, m2 is mapped to θ10 because it has
another sender ECU than m1 mapped to θ9. Based on this initial mapping the
bus mappings for the reconfigurations are performed. If possible, a message
is also mapped to the first slot in Θmi , e.g. m12 in Reconfiguration 1, m2 in
Reconfiguration 2, and m14 in Reconfiguration 3. If the first slot is already as-
signed to another sender ECU, mi is mapped to the next available slot, e.g. m7
and m10 in Reconfiguration 1. As described above, slots initially assigned to
a specific message and sender ECU are reused in the reconfigurations if pos-
sible. In this example, the slot θ9 for m1 is reused in Reconfiguration 1 and
2. Also messages in the slots θ10 and θ17 are reused in one or more reconfig-
urations. Furthermore, the bus mapping approach utilizes frame packing to
reduce the number of assigned slots if messages from the same sender ECU
can be combined in one configuration. Here, for instance, slot θ27 is used
for m10 and m11 in Reconfiguration 2 while θ47 and θ64 are used for frame
packing in Reconfiguration 3.

Summarized, Table 5.2 shows that there a is a total number of 34 inter-ECU
messages resulting from the Runnable mappings for the TC and ACC system.
Nine messages for the initial configuration and 25 for the different reconfigu-
rations. By applying slot reuse and frame packing our bus mapping approach
reduces the number of required slots for the reconfigurations from 25 to 17.
In a larger and more complex system with more inter-ECU messages, the re-
duction of required slots will probably further increase and therefore support
the system designer to determine feasible bus mappings.
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Initial Configuration:

mi m(Runtx,Runrx) ECUtx ECUrx ϒmi = [ ftx,srx[ Θmi θmi sθmi
fθmi

m1 m(Run1,Run5) ECU1 ECU3 [200µs,500µs[ {θ9, . . . ,θ20} θ9 200µs 225µs
m2 m(Run2,Run5) ECU2 ECU3 [200µs,500µs[ {θ9, . . . ,θ20} θ10 225µs 250µs
m4 m(Run4,Run5) ECU1 ECU3 [400µs,500µs[ {θ17, . . . ,θ20} θ17 400µs 425µs
m7 m(Run7,Run8) ECU1 ECU3 [575µs,800µs[ {θ24, . . . ,θ32} θ24 575µs 600µs
m9 m(Run8,Run10) ECU3 ECU2 [1200µs,1250µs[ {θ49, . . . ,θ50} θ49 1200µs 1225µs
m10 m(Run11,Run13) ECU2 ECU1 [500µs,575µs[ {θ21, . . . ,θ23} θ21 500µs 525µs
m11 m(Run12,Run13) ECU3 ECU1 [350µs,575µs[ {θ15, . . . ,θ23} θ15 350µs 375µs
m12 m(Run14,Run16) ECU2 ECU1 [675µs,875µs[ {θ28, . . . ,θ35} θ28 675µs 700µs
m14 m(Run13,Run15) ECU1 ECU2 [875µs,900µs[ {θ36} θ36 875µs 900µs

Reconfiguration 1 (Failure of ECU1):

mi m(Runtx,Runrx) ECUtx ECUrx ϒmi = [ ftx,srx[ Θmi θmi sθmi
fθmi

m1 m(Run1,Run5) ECU2 ECU3 [400µs,700µs[ {θ17, . . . ,θ28} θ18 425µs 450µs
m2 m(Run2,Run5) ECU2 ECU3 [200µs,500µs[ {θ9, . . . ,θ28} θ10 (r) 225µs 250µs
m7 m(Run7,Run8) ECU2 ECU3 [875µs,1550µs[ {θ36, . . . ,θ62} θ37 900µs 925µs
m9 m(Run8,Run10) ECU3 ECU2 [1950µs,1975µs[ {θ79} θ79 1950µs 1975µs
m10 m(Run11,Run13) ECU2 ECU3 [700µs,1000µs[ {θ29, . . . ,θ40} θ30 725µs 750µs
m12 m(Run14,Run16) ECU2 ECU3 [1050µs,1300µs[ {θ43, . . . ,θ52} θ43 1050µs 1075µs
m14 m(Run13,Run15) ECU3 ECU2 [1300µs,1325µs[ {θ53} θ53 1300µs 1325µs
m15 m(Run16,Run17) ECU3 ECU2 [1550µs,1675µs[ {θ63, . . . ,θ67} θ63 1550µs 1575µs

Reconfiguration 2 (Failure of ECU2):

mi m(Runtx,Runrx) ECUtx ECUrx ϒmi = [ ftx,srx[ Θmi θmi sθmi
fθmi

m1 m(Run1,Run5) ECU1 ECU3 [200µs,800µs[ {θ9, . . . ,θ32} θ9 (r) 200µs 225µs
m2 m(Run2,Run5) ECU1 ECU3 [600µs,800µs[ {θ25, . . . ,θ32} θ25 600µs 625µs
m4 m(Run4,Run5) ECU1 ECU3 [400µs,800µs[ {θ17, . . . ,θ32} θ17 (r) 400µs 425µs
m7 m(Run7,Run8) ECU1 ECU3 [775µs,1100µs[ {θ32, . . . ,θ44} θ32 775µs 800µs
m9 m(Run8,Run10) ECU3 ECU1 [1500µs,1700µs[ {θ61, . . . ,θ68} θ61 1500µs 1525µs
m10 m(Run11,Run13) ECU3 ECU1 [500µs,950µs[ {θ21, . . . ,θ38} θ27 (fp) 650µs 675µs
m11 m(Run12,Run13) ECU3 ECU1 [650µs,950µs[ {θ27, . . . ,θ38} θ27 (fp) 650µs 675µs
m14 m(Run13,Run15) ECU1 ECU3 [1250µs,1500µs[ {θ51, . . . ,θ60} θ51 1250µs 1275µs

Reconfiguration 3 (Failure of ECU3):

mi m(Runtx,Runrx) ECUtx ECUrx ϒmi = [ ftx,srx[ Θmi θmi sθmi
fθmi

m1 m(Run1,Run5) ECU1 ECU2 [200µs,850µs[ {θ9, . . . ,θ34} θ9 (r) 200µs 225µs
m4 m(Run4,Run5) ECU1 ECU2 [400µs,850µs[ {θ17, . . . ,θ34} θ17 (r) 400µs 425µs
m5 m(Run6,Run8) ECU2 ECU1 [850µs,1175µs[ {θ35, . . . ,θ47} θ47 (fp) 1325µs 1325µs
m6 m(Run5,Run8) ECU2 ECU1 [1150µs,1175µs[ {θ47} θ47 (fp) 1150µs 1175µs
m8 m(Run8,Run9) ECU1 ECU2 [1575µs,1875µs[ {θ64, . . . ,θ76} θ64 (fp) 1575µs 1600µs
m9 m(Run8,Run10) ECU1 ECU2 [1575µs,1675µs[ {θ64, . . . ,θ68} θ64 (fp) 1575µs 1600µs
m10 m(Run11,Run13) ECU2 ECU1 [700µs,725µs[ {θ29} θ29 700µs 725µs
m12 m(Run14,Run16) ECU1 ECU2 [1325µs,1575µs[ {θ54, . . . ,θ63} θ54 1325µs 1350µs
m14 m(Run13,Run15) ECU2 ECU1 [1025µs,1325µs[ {θ42, . . . ,θ53} θ42 1025µs 1050µs

Table 5.4: Properties of inter-ECU messages resulting from Runnable and bus mappings.
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5.2.5 Reconfiguration with AUTOSAR

After determining a feasible AUTOSAR-compliant SWC-to-ECU and Run-
nable-to-task mapping, two challenges remain to be solved for our fault-
tolerant system design approach: (i) Detect a failed ECU and (ii) activate
the appropriate redundant tasks within the ECU network according to the
fault-tolerant reconfiguration.

In Section 4.2.2 we presented our distributed coordinator concept that allows
self-reconfiguration of the remaining ECUs in case of a node failure. We de-
scribed two different generic options for the implementation of the required
coordinator component: The hardware-based extension of the FlexRay com-
munication controller and the more flexible software-based protocol-indepen-
dent solution by means of additional distributed coordinator tasks. Here, we
propose a third option for the distributed coordinator concept implementation
based on existing AUTOSAR concepts and mechanisms. This solution re-
quires no hardware extensions and no dedicated additional coordinator tasks
on Application Layer.

While AUTOSAR specifies a BSW called Watchdog Manager [AUT13l] to
manage errors of BSW modules and SWCs respectively Runnables running
on an ECU, there is no explicit specification regarding detection of failed
nodes within an ECU network. As we described in Section 5.1.1, the AU-
TOSAR Software Architecture allows to design and implement Complex
Device Drivers providing the possibility to integrate special purpose func-
tionality. This implies that a CDD module may have interfaces to standard
modules of the BSW and to SWCs via the RTE [AUT13c]. Therefore, we
propose to extend the AUTOSAR BSW by integrating a corresponding CDD
implementing the required functionality to detect failed ECUs.

Figure 5.15 depicts the integration of this CDD for reconfiguration in the
BSW of the AUTOSAR Software Architecture. It illustrates that the CDD
is connected to the FlexRay Interface within the Communication Stack. The
FlexRay Interface module is the exclusive bus specific access point to the
COM Stack and the CDD can use the standard API of the FlexRay Inter-
face modules to access the I-PDUs [AUT13c]. The bus interface puts the
I-PDUs into frames and prepares them for the transmission over the bus ac-
cessed via the corresponding bus driver (cf. Section 5.1.4). As described in
Section 4.2.2, the CDD can detect an error and localize the corresponding
ECU failure by monitoring and analyzing the received I-PDUs respectively
frames. Since the AUTOSAR FlexRay Interface specification is based on
the official standards and norms of the FlexRay consortium [AUT13j], the
protocol-specific functionality provided by the BSW of the AUTOSAR COM
Stack can be utilized to check if valid frames with correct payload data are
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Figure 5.15: Integration of CDD for reconfiguration in AUTOSAR BSW.

received. Combined with the static slot-to-sender assignment, each ECU can
identify failed ECUs (cf. Section 2.2.3).

When a failed ECU is detected, each remaining ECU has to activate its appro-
priate redundant tasks. For this purpose, we propose to utilize the Schedule
Table concept of AUTOSAR OS presented in Section 5.1.5. For each ECU,
we define one specific Schedule Table for each configuration of this ECU, i.e.
a Schedule Table activates only those tasks that are part of the correspond-
ing configuration. Utilizing the different states that each Schedule Table can
enter, the Schedule Table with the currently required configuration is started
(RUNNING) while all the others are stopped (NOT RUNNING). However,
the guarantee of a correct temporal behavior in a distributed real-time system
requires the availability of a global time base of proper precision among all
involved nodes (cf. Section 2.2.2).

Thus, the Schedule Table concept also provides a status which defines that the
Schedule Table is started and runs synchronous to a global time base (RUN-
NING AND SYNCHRONOUS) [AUT13n]. Furthermore, like the author in
[Jan07], we propose to utilize the Flexray Interface respectively FlexRay
clock to support the required synchronization of Schedule Tables running
on different ECUs within the network. As described in Section 4.2.5 for
the time-triggered periodic real-time tasks considered by our approach, the
Schedule Tables are configured to run with a periodic repetition rate syn-
chronized to the FlexRay cycle until they are stopped. It is important to
remind that tasks are only activated by Schedule Tables, i.e. tasks require an
appropriate priority assignment to ensure that they are scheduled on time. As
mentioned above, we propose to utilize the most widely applied Rate (Dead-
line) Monotonic Priority Assignment approach for this purpose.
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Having the AUTOSAR-compliant concepts to detect a failed ECU within a
network and to manage different task activation patterns on an ECU, we need
to combine these concepts. This is realized by utilizing the BSW Mode Man-
ager module [AUT13g]. AUTOSAR supports different modes for the hosting
ECU respectively vehicle. Modes are defined via ModeDeclarations. For in-
stance in the ECU state management, there may exist the ModeDeclarations
STARTUP, RUN, POST RUN, and SLEEP [AUT13d]. Mode Managers are
responsible for switching between modes to arbitrate mode requests from
other BSW modules or Application Layer SWCs [AUT13g].

For our AUTOSAR-based DCC implementation, we propose to define one
specific mode per configuration on a particular ECU. By means of these
modes, the CDD can request a mode switch from the Mode Manager when a
failed ECU is detected. Thus, the CDD for reconfiguration has an interface
to the Mode Manager module as illustrated in Figure 5.15. Via its interface to
the AUTOSAR OS, the Mode Manger performs the appropriate mode switch
which enforces that the currently running Schedule Table is stopped and,
depending on the failed ECU, the corresponding Schedule Table is started
synchronously to the global time base by means of the FlexRay Interface.

By utilizing and extending the existing AUTOSAR BSW modules and con-
cepts as described above, we are are able to realize the required reconfigu-
ration steps without any hardware modifications or additional run-time con-
suming tasks on the Application Layer.

5.3 Summary

In this chapter we presented the application of our approach to the design
of automotive real-time systems. Therefore, we presented its integration to
the modeling and deployment of automotive software based on AUTOSAR,
a well-defined and standardized methodology for the development of auto-
motive systems.

An introduction to the AUTOSAR standard provided the required informa-
tion about its basic concepts for the application of our fault-tolerant design
approach. Based on these means, the chapter described how we integrated
our design approach to perform a fault-tolerant deployment of real-time soft-
ware in AUTOSAR networks including the modeling of software and hard-
ware architecture and the appropriate mappings. Therefore, we presented
modified versions of our algorithms from Chapter 4 and applied them to
real-world examples. Finally, it was described how to realize fault tolerance
by means of reconfiguration utilizing and extending the existing AUTOSAR
BSW modules and concepts.
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Chapter 6

Conclusion and Outlook

Nowadays, there exist numerous safety-critical distributed systems with hard
real-time constraints. This means that missing of timing constraints in such
systems may cause catastrophic consequences on the environment or even
people. Hence, the main attributes for the dependability of these safety-
critical systems are reliability and safety. A common strategy to ensure relia-
bility and safety is fault tolerance. This thesis addresses the rising challenges
and presents a novel approach and concepts for the design of fault-tolerant
distributed real-time systems. This chapter concludes the thesis by summa-
rizing the main contributions and providing an outlook for future work.

6.1 Conclusion

The main objective of this thesis is to support the system designer by means
of our fault-tolerant design approach. Therefore, we extended and refined
the existing design flow steps for distributed systems introduced in Chapter 1
and provided further concepts. In the following, the main contributions and
properties of our work presented in Chapter 4 and 5 are summarized.

Compensation of arbitrary operational hardware faults Different possi-
ble operational hardware faults during system runtime can be distinguished
by means of their occurrence and duration and result in different behaviors of
the faulty component. In a distributed system, these faults may result in ei-
ther network or node failures. As described in Section 4.2, the compensation
of one arbitrary component fault is sufficient in most cases to ensure fault
tolerance. To compensate one network failure, we utilize the FlexRay proto-
col which offers one redundant communication channel. To compensate the
possible ECU failures, our approach makes use of dynamic redundancy and
reconfiguration by means of the Cold Standby task replica concept.
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Reconfigurable distributed system topology In current distributed sys-
tems ECUs are often hardwired to sensors or actuators to exchange data with
the environment. This results in placement constraints for tasks which have to
exchange data with sensors or actuators because they have to be executed on
the ECUs connected to the I/O. A failure of such an ECU cannot be compen-
sated with dynamic redundancy and reconfiguration because required con-
nections get lost. Therefore, in Section 4.2.1 we proposed a reconfigurable
distributed system topology with peripheral interfaces to the I/O and dedi-
cated nodes for functional task execution. This reconfigurable toplogy offers
the necessary flexibility for our approach.

Distributed coordinator concept To realize fault tolerance through dy-
namic redundancy, a component which coordinates and performs the re-
quired reconfiguration steps has to be integrated in the system. In Section
4.2.2, we discussed several methods how to realize this coordination and pre-
sented our advantageous distributed coordinator concept which allows the
self-reconfiguration of the system. This concept adds distributed coordinator
tasks to every node of the system which organize the required reconfiguration
by means of information about active and redundant tasks and communica-
tion properties in all possible configurations. Based on these information and
the properties of the FlexRay protocol, the distributed coordinator tasks are
able to detect arbitrary ECU failures and perform the corresponding recon-
figuration.

Extended schedulability tests Task scheduling in distributed systems has
to cover the local level of each processor and the global scheduling, i.e. the
mapping of tasks to ECUs. Moreover, tasks have to communicate locally via
intra-ECU communication or remotely over the network via inter-ECU com-
munication depending on their mapping. The transmission time of an inter-
ECU message is negligible. The transmission of inter-ECU messages may
result in a communication delay, i.e. the execution of a task which receives
input data from another task over the network may be delayed by the trans-
mission time of the message. This means, that beside the task WCETs also
the resulting communication delays have to be considered for the schedula-
bility test. In this thesis, we consider RM/DM scheduling that is still most
frequently applied in many important real-time domains and EDF scheduling
which has some significant advantages over RM/DM scheduling. Therefore,
in Section 4.2.4 we describe our extended schedulibality tests for these strate-
gies which integrate the resulting communication delays.

Modeling of system properties To perform an appropriate system design,
our approach requires information about the properties of the given software
architecture and hardware topology as well as about the resulting timing con-
straints and communication properties. In Section 4.2 and 4.3, we presented
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our graph-based modeling of the system properties as input for our approach.
We defined a task dependency graph representing the software architecture,
that is annotated with the corresponding timing properties and constraints.
For the hardware architecture we proposed a hardware architecture graph
representing the available ECUs in the network, that is annotated with the ex-
ecution time factor of the computational performance for each ECU. As final
input graph, we modeled a communication graph representing the communi-
cation cycle and its slots, that is annotated with slot time intervals resulting
from the bus setup.

Deployment and design result The fault-tolerant system deployment pre-
sented in Section 4.4 is an essential part of our approach and provides the
design result. It comprises different algorithms for the determination of fea-
sible, flexible, and efficient task and bus mappings for the initial configura-
tion and based on that for all necessary reconfigurations to design a fault-
tolerant system. Based on the model input described above, the initial and
the required redundancy task mappings as well as a combined bus mapping
are performed. Finally, our approach returns the resulting design graph rep-
resenting the combination of the mapping graphs for all configurations as
feedback for the designer. Depending on the given input, our deployment
approach is able to return a complete feasible solution for all possible config-
urations or just for a subset. Based on this feedback the designer can design
the system according to the determined solution or perform a further iteration
of the design approach (cf. Section 4.5).

Application to AUTOSAR Nowadays, AUTOSAR is the established de
facto standard for the development of automotive systems. In Section 5.2,
we described the application of our approach to the design of automotive
systems and the deployment of real-time software based on AUTOSAR. The
AUTOSAR methodology strictly specifies the representation of the software
architecture and the hardware topology. For this purpose we presented modi-
fied versions of our deployment algorithms which get this AUTOSAR-specific
representation as input and perform the same operations to determine the
corresponding Runnable, task, and bus mappings. This fault-tolerant deploy-
ment returns an AUTOSAR-compliant system model which represents the
determined initial and redundancy mappings as well as the resulting inter-
ECU messages. Additionally, we proposed a further concept to coordinate
and realize the required reconfigurations that is based on existing AUTOSAR
components and does not require hardware extensions or additional tasks.

Page 197 lists the publications [Klo+09], [Klo+10b], [Klo+10a], [Klo+10c],
[KKM11], [Klo+11], [KMR12], and [Klo+13] which we published in the
context of this thesis. These publications are the basis for the contributions
described above and the overall work presented in this thesis.
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6.2 Outlook

Even though our design approach presented in this thesis supports the system
designer to develop fault-tolerant distributed real-time systems, there are still
some open issues and improvements to be addressed in future work. Besides
our design approach to determine a feasible system deployment, we also pre-
sented novel concepts for reconfigurable distributed systems and distributed
coordination, to enable the self-reconfiguration during system runtime. How-
ever, the actual setup of such a network goes beyond the scope of this thesis.
Nevertheless, it is planned to build-up a reconfigurable network topology in
future work, to implement and extensively test the reconfiguration concepts
on real hardware components.

As mentioned above, here we focus on the compensation of one arbitrary
component fault. However, with minor modifications to the presented algo-
rithms our approach is also applicable to determine solutions for the compen-
sation of more than one ECU failure. But to compensate multiple network
failures, also the fault-tolerance of the underlying network topology has to
be further increased. Hence, especially in very large and fault-prone sys-
tems the consideration of multiple simultaneous failures is reasonable and
deserves further investigation in future research.

Moreover, we consider the well established network topology with single-
core ECUs for our distributed system design approach. Nevertheless, also
in the automotive domain multi-core processor hardware is currently arising
and seen as a solution to the problem of increasing ECU processing power
without increasing power consumption, generating heat, or producing more
electromagnetic radiation [MB09]. To address this development, our design
approach could be extended to support an efficient and flexible fault-tolerant
deployment to multi-core ECUs.

Our approach offers support for the fault-tolerant design of pure hard real-
time systems, i.e. safety-critical systems. However, only a subset of the
functionality of a complete system may be safety-critical. For instance, an
aircraft system is composed of a mixture of safety-critical and non-critical
parts as it contains a non-critical passenger entertainment system that is iso-
lated from the safety-critical flight systems. Therefore, these systems are
called mixed criticality systems. The so-called runtime robustness is a spe-
cific form of fault tolerance for mixed criticality systems that considers dif-
ferent criticality levels: If not all components can be served satisfactorily, the
system ensures that lower criticality components are denied their requested
levels of service before higher criticality components [BBD11]. By means of
this knowledge, our approach could be extended to support the fault-tolerant
design of mixed criticality systems.
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Additional Figures from Chapter 4

This appendix provides additional figures containing the Gantt Charts and
TMGs representing the corresponding task mappings for the possible recon-
figurations of the example presented in Section 4.4.
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(a) Redundancy mapping of τ2 to ECU1.
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(b) Redundancy mapping of τ2 to ECU3
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(c) Redundancy mapping of τ5 to ECU1
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(d) Redundancy mapping of τ5 to ECU3
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(e) Redundancy mapping of τ8 to ECU1
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Figure A.1: Gantt Charts for local schedulings and overall end-to-end delays resulting from
redundancy task mappings to different remaining ECUs (Failure of ECU2).
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(a) Redundancy mapping of τ3 to ECU1.
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(b) Redundancy mapping of τ3 to ECU2.
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(c) Redundancy mapping of τ7 to ECU1.
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Figure A.2: Gantt Charts for local schedulings and overall end-to-end delays resulting from
redundancy task mappings to different remaining ECUs (Failure of ECU3).
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Appendix A. Additional Figures from Chapter 4
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Figure A.3: Task mappings of all possible reconfigurations for input graphs shown in Figure
4.12(b) and 4.13 .
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