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Zusammenfassung

Die vorliegende Arbeit leistet einen Beitrag zu verschiedenen Gebieten der arith-
metischen algebraischen Geometrie. Motivation für viele der behandelten Fragestel-
lungen ist der Vergleich der Newton-Stratifizierung und der Ekedahl-Oort-Stratifi-
zierung auf der speziellen Faser von glatten Modellen für Shimuravarietäten vom
Hodge-Typ ShK(G, X) an Primstellen p von guter Reduktion. Hier bezeichnet G
eine zusammenhängende reduktive Gruppe über Q und K ⊆ G(Af ) eine geeignete
Untergruppe der adelwertigen Punkte von G. Das Studium von glatten Modellen
SK(G, X) solcher Shimuravarietäten spielt eine wichtige Rolle in der Behandlung
von bekannten Fällen der lokalen und globalen Langlands-Korrespondenz (siehe etwa
Harris-Taylor [HT] und Scholze [Sch]).

Per Konstruktion parametrisieren diese Modelle SK(G, X) eine Familie A von
abelschen Varietäten mit gewissen Zusatzstrukturen, im Fall von PEL-Shimura-
varietäten erlauben sie sogar eine explizite Realisierung als Modulräume solcher
abelscher Varietäten. Dies führt auf die Definition der Newton-Stratifizierung und
Ekedahl-Oort-Stratifizierung auf ihrer speziellen Faser durch Betrachtung der p-
divisiblen Gruppen Ax̂[p∞] in geometrischen Punkten x̂, in Analogie zu den klassis-
chen Stratifizierungen von Modulräumen abelscher Varietäten in positiver Charak-
teristik (ohne Zusatzstrukturen, siehe Oort [Oo1], [Oo2]). Die moderne Formulierung
der Stratifizierungen nutzt die gruppentheoretischen Konzepte der σ-Konjugations-
klassen und G-Zips. Dies macht es möglich, viele Fragestellungen, die sich aus dem
Vergleich von Newton- und Ekedahl-Oort-Stratifizierung ergeben, in gruppenthe-
oretische Fragestellungen zu übersetzen: Das Grundobjekt ist hier ein reduktives
Gruppenschema G über Zp mit generischer Faser GQp , die Stratifizierungen korre-

spondieren zu Zerlegungen von G(L) in Äquivalenzklassen unter σ-Konjugationen,
wobei L die Vervollständigung der maximal unverzweigten Erweiterung von Qp und
σ den Frobeniusautomorphismus von L über Qp bezeichnet. Diese Technik zum
Studium der speziellen Faser eines glatten Modells SK(G, X) ist wohlbekannt im
Fall von PEL-Shimuravarietäten, wir erläutern sie für Shimuravarietäten vom Hodge-
Typ in Kapitel II der Arbeit, basierend auf jüngeren Resultaten von Kisin [Ki1] und
Zhang [Zh1].

Zum Studium der gruppentheoretischen Fragestellungen, die sich durch dieses
Prinzip ergeben, ist es nicht notwendig - und in der Tat hinderlich - sich auf solche
Gruppenschemata G zu beschränken, die sich im Kontext von Shimuravarietäten
ergeben; sämtliche Konzepte sind sinnvoll in der allgemeineren Situation eines re-
duktiven Gruppenschemas über dem Bewertungsring eines absolut unverzweigten
lokalen Körpers, wobei auch Körper von positiver Charakteristik erlaubt sind. Dies
ist der Blickwinkel, den wir in Kapitel I einnehmen werden. Tatsächlich lassen sich
einige Fragen, etwa ob zwei vorgegebene Strata einen nichtleeren Schnitt besitzen,
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unabhängig von der Charakteristik in rein kombinatorische Aussagen übersetzen.
Im Falle positiver Charakteristik gibt es hier interessante Bezüge zur Theorie der
Schleifengruppen und affinen Deligne-Lusztig-Varietäten. Wir bestimmen in Kapi-
tel I auf diese Weise das Schnittverhalten der Stratifizierungen in einigen konkreten
Fällen, und entwickeln auch ein neues hinreichendes kombinatorisches Kriterium für
die Existenz sogenannter ”fundamentaler” Ekedahl-Oort-Strata, welche unter an-
derem die Eigenschaft haben vollständig in einem Newton-Stratum enthalten zu
sein.

Als eine Hauptanwendung der entwickelten Methoden und gruppentheoretischen
Resultate beschreiben wir den ”µ-ordinären Ort” in der speziellen Faser eines glatten
Modells SK(G, X) für eine Shimuravarietät vom Hodge-Typ: Auf einer offenen und
dichten Teilmenge der speziellen Faser ist der Isomorphietyp der zu geometrischen
Punkten assoziierten p-divisiblen Gruppen Ax̂[p∞] mit Zusatzstruktur konstant,
weiter ist er eindeutig bestimmt durch den zugehörigen Isogenietyp und auch durch
den Isomorphietyp der p-Torsionsgruppen Ax̂[p]. Die verallgemeinert bekannte Re-
sultate von Wedhorn [We1] und Moonen [Mo2] über PEL-Shimuravarietäten.
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Conclusion

The aims of the work presented here are twofold: On the one hand, we are inter-
ested in the relation of the Newton stratification and Ekedahl-Oort stratification for
special fibers of smooth models of certain types of Shimura varieties. These Shimura
varieties play an important role in the modern approaches towards the global and
local Langlands conjecture (see for example Harris-Taylor [HT] and Scholze [Sch]).
Since the very definitions of the stratifications involve reductive groups over p-adic
fields, many aspects in their comparison translate into statements about such groups.
On the other hand, these group-theoretic questions are interesting in their own right,
and can also be studied in situations which do not arise from Shimura varieties, as
well as for groups over local fields in positive characteristic. They turn out to be
closely related to the study of affine Deligne-Lusztig varieties and the structure of
affine Weyl groups (see [GHKR], [He2]). Results obtained in the group-theoretic
context may then also be translated back to Shimura varieties.

Let us roughly describe the relationship between the geometric stratifications
and the group-theoretic objects, for more details we refer to the introductions of
Chapter I and Chapter II. Classically, the Newton stratification and Ekedahl-Oort
stratification are defined for a moduli space M of polarized abelian varieties in
positive characteristic p via the classification of p-divisible groups up to isogeny,
and of BT1-groups up to isomorphism (see Oort, [Oo1], [Oo2]). Such moduli spaces
of abelian varieties arise as special fibers of smooth models of Shimura varieties
associated to the general symplectic group GSpQ.

More generally, consider a Shimura variety ShK(G, X) of PEL-type or of Hodge
type. Here G is a connected reductive group over Q, and K ⊆ G(Af ) is an open
and compact subroup of the form K = KpK

p for Kp ⊆ G(Qp) and Kp ⊆ G(Apf ). If

Kp is hyperspecial and Kp ⊆ G(Apf ) is sufficiently small, then it is known that the
Shimura variety has a smooth model SK(G, X) defined over the valuation ring of a
finite unramified extension of Zp, which naturally parametrizes a family A of abelian
varieties with certain additional structures (see Kottwitz [Ko2] and Kisin [Ki1]) - we
will make this more precise in Chapter II. This leads to analogous definitions of
stratifications for the special fiber of this model: Each x ∈ SK(G, X)(Fp) defines an
abelian variety Ax with additional structure over Fp. The classifications of the asso-
ciated p-divisible groups Ax[p∞] with extra structure up to isogeny, respectively of
their p-torsion groups Ax[p] up to isomorphism, then yield the Newton stratification
and Ekedahl-Oort stratification on SK(G, X)⊗ Fp (see Chapter II).

As Kp is hyperspecial, there exists a reductive model G over Zp for GQp such
that Kp = G(Zp). Let L be the completion of the maximal unramified extension of
Qp, let O be its ring of integers. Let σ be the Frobenius automorphism of L over Qp.
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Then the subgroup G(O), and also G(L) itself, act on G(L) by σ-twisted conjuga-
tion. Denote by [g] the orbit of g ∈ G(L) under its σ-twisted conjugation by G(L),
these sets form a decomposition of G(L) into equivalence classes. There is another
decomposition into equivalence classes [[g]], which are certain unions of σ-twisted
G(O)-conjugacy classes. These classes were introduced by Viehmann in [Vi1], see
Chapter I for the exact definition. Now the Shimura datum (G, X) determines a
cocharacter µ of G and hence a double coset G(O)µ(p)G(O) ⊆ G(L), and there is a
map (of sets)

γ : SK(G, X)(Fp) −→ G(O)µ(p)G(O)/∼ (∗)
into the set of σ-twisted G(O)-conjugacy classes in G(O)µ(p)G(O) such that γ(x) =
γ(x′) if and only if Ax[p∞] and Ax′ [p∞] are isomorphic, and further γ(x) and γ(x′)

1. lie in the same [·]-class if and only if Ax[p∞] and Ax′ [p∞] are isogeneous,

2. lie in the same [[·]]-class if and only if Ax[p] and Ax′ [p] are isomorphic,

all with respect to the additional structures. The existence of a map with these
properties is well-known for Shimura varieties of PEL-type, and does not come as
a surprise in the more general case of Hodge-type Shimura varieties which we will
explain in the second chapter (see also the introduction to Chapter II). In the PEL-
case it is known that the fibers of γ, which are then called ”leaves”, are also locally
closed in SK(G, X) ⊗ Fp (see Mantovan [Ma], Prop. 1). We expect this is to be
true for Shimura varieties of Hodge type as well.

The existence of γ allows to study aspects of the stratifications of SK(G, X)⊗Fp
on the right hand side of (∗), i.e. by studying the decompositions of G(O)µ(p)G(O)
into [·]-classes and [[·]]-classes. As the definition of these classes is a purely group-
theoretical one, they can - and should - be studied in the more general context of
reductive groups over the rings of integers in a totally unramified local field, includ-
ing fields of positive characteristics. We will take on this point of view in Chapter
I, but often with a view towards applications for Shimura varieties. It turns out
that many problems regarding the stratifications can be translated into purely com-
binatorial questions, which are independent of the characteristic. For example, in
the group-theoretical context the question of nonemptyness of intersections between
strata is closely related to the question of nonemptyness of affine Deligne-Lusztig
varieties (see [GHKR] and [GHN]), and the results obtained on this question may
also be applied to cases which arise from Shimura varieties. Another interesting
question, which asks for the existence of ”fundamental” Ekedahl-Oort strata (see
Chapter I), may be treated via a combinatorial study of the extended affine Weyl
group of G, we give a new criterion for the existence of such fundamental strata in
combinatorial terms. All results of the first chapter can also be applied in positive
characteristic, for instance to the theory of loop groups.

The results obtained on the group-theoretic side of (∗) translate back to state-
ments on Shimura varieties via γ. Our main application of this principle is the
description of the µ-ordinary locus for Shimura varieties of Hodge type: It is known
for moduli spaces of abelian varieties that there is a unique Newton stratum - the or-
dinary locus - which is open and dense. The corresponding object for SK(G, X)⊗Fp,
the µ-ordinary locus, has long been known to be open and dense in the PEL-type
(see Wedhorn, [We1]). In the Hodge-type case, as of now the Ekedahl-Oort strati-
fication is better understood than the Newton stratification, for instance we know
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that there is an open and dense Ekedahl-Oort statum by a result of Zhang [Zh1].
We show in Chapter I that this stratum coincides with the µ-ordinary locus in the
group-theoretic context, taking inverse images under γ we thus prove the density of
the µ-ordinary locus for a general Shimura variety of Hodge type (in fact we prove
more, see Chapter II for the precise statement).

We mention another application: A special case of PEL-type Shimura varieties
are ”Hilbert-Blumenthal varieties”, in this case SK(G, X) is a moduli space over
Z(p) of abelian varieties equipped with an action of the ring of integers of a finite,
totally real extension E|Q in which p is inert. For these varieties we calculate the
precise intersection pattern between Newton strata and Ekedahl-Oort strata on the
group-theoretic side. Since the map γ is known to be surjective by a result of Vie-
mann and Wedhorn in the case of PEL-type Shimura varieties (see [VW]), this result
also gives the intersection properties of the stratifications of SK(G, X)⊗ Fp.

Though the study of the Shimura varieties SK(G, X) via (∗) has its obvious
limitations, for example concerning the schematic properties of the strata and their
intersections, we expect that many interesting results will be obtained in the future
by methods similar to the ones presented here.
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Chapter I

Group-theoretic Newton
strata and Ekedahl-Oort
strata

I.1 Introduction

I.1.1 Stratifications of double cosets

In this first chapter we focus our attention on the group-theoretic manifestations of
Newton stratifications and Ekedahl-Oort stratifications. Our main object will be a
reductive group G over the valuation ring OF of some absolutely unramified local
field F . We do not suppose that G arises from a Shimura datum, and we allow
valuation rings of equal characteristics, which will provide much flexibility in the
arguments.

Throughout the chapter we will fix a maximal Torus T of G and a Borel subgroup
B containing T , which are both defined over OF . We can do so since it is known that
G is quasisplit over OF . (We warn the reader that many definitions, as for example
those of standard representatives and standard parabolic subgroups, will depend on
the choice of the pair (T,B). However, the eventual results are independent of this
choice.) Let (W,S) be the Weyl group of T , endowed with the simple reflections
given by B.

Let O be an absolutely unramified complete discrete valuation ring over OF
whose residue field k is algebraically closed. Let L be its field of fractions and
let σ be the Frobenius isomorphism of O over OF and of L over F . Write K :=
G(O) ⊆ G(L), and let K1 ⊆ K be the subgroup of elements which reduce trivially
to G(k). Let B(G) be the set of σ-conjugacy classes in G(L), i.e. of subsets of the
form [g] := {hgσ(h)−1 | h ∈ G(L)}, and denote by EO(G) the set of ”Ekedahl-Oort
classes” of the form [[g]] := {hg′σ(h)−1 | g′ ∈ K1gK1, h ∈ K}. These classes
form decompositions of G(L), we will usually denote σ-conjugacy classes by b and
Ekedahl-Oort classes by ξ. The sets B(G) and EO(G) are endowed with partial
order relations � respectively (see Sections I.2.5, I.2.6), in situations which arise
from Shimura varieties these partial orders will describe the behaviour of strata
under closures. We have a third decomposition of G(L) into K-double cosets (the
Cartan decomposition, see Section I.2.4), indexed by the cocharacters µ of T which
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8 CHAPTER I

are dominant with respect to our Borel subgroup B: Let ε be a uniformizing element
of O, then the elements εµ := µ(ε) for dominant µ form a set of representatives for
the K-double cosets in G(L). By definition, each Ekedahl-Oort class is contained in
some K-double coset.

For a dominant cocharacter µ let B(G,µ) ⊆ B(G) be the subset of classes which
meet the double coset KεµK. This set can be described concretely by the classifying
maps of σ-conjugacy classes (see Section I.3.1.1). It is known that B(G,µ) is finite
and that it contains a unique minimal and a unique maximal element with respect
to the �-order on B(G). The ”Newton stratification” of KεµK is then given by its
intersections with b ∈ B(G,µ). Secondly, let EO(G,µ) be the set of Ekedahl-Oort
classes which are contained in KεµK. These classes then form the ”Ekedahl-Oort
stratification” of KεµK. There is an explicit description of EO(G,µ) in terms of
shortest coset representatives in W , here it is known as well that this is a finite set
and that it has a unique maximal and a unique minimal element with respect to the
�-order on EO(G) (again, see Section I.3.1.1).

In the situation described in the conclusion, the stratifications of SK(G, X)⊗Fp
are exactly the inverse images of these group-theoretic strata under the map γ from
(∗), and the partial orders are known or conjectured to describe their closure relations
(see Chapter II). On the other hand, if L is of positive characteristic then KεµK
carries the topological structure of an ind-scheme. In this case the group-theoretic
strata are locally closed subsets of KεµK and again the partial orders describe their
closures, see for example [Vi1], [Vi2].

I.1.2 Main results

The question of how the two stratifications of KεµK for some dominant µ compare
to each other leads to the problem of describing the intersections ξ ∩ b ∩KεµK, or
equivalently ξ ∩ b, for ξ ∈ EO(G,µ) and b ∈ B(G,µ).

A major tool in the study of these intersections is the extended affine Weyl group
W̃ := NG(T )(L)/T (O) = X∗(T ) oW of G. The group W̃ provides representatives

for B(G), more precisely, every b ∈ B(G) contains b-short elements ωb ∈ W̃ , which
have (in addition to lying in b) many favourable properties (see Section I.2.5 for the
precise definition of b-short elements). In the case that G is split over OF these
properties determine a b-short element uniquely. Also, every ξ ∈ EO(G) has repre-

sentatives in W̃ , and in particular a standard representative w̃ξ ∈ W̃ (see Definition
I.2.18). The choice of B determines an Iwahori subgroup I of G(L), and it is known
that b ∈ B(G) intersects ξ nontrivially if and only if it intersects Iw̃ξI nontrivially
(see Section I.3.1.2). Since the σ-conjugacy classes that meet a double coset Iw̃I

(w̃ ∈ W̃ ) are determined by the structure of W̃ , this property is in fact independent
of the characteristic of L (see Section I.3.1.3). This relates the nonemptyness of in-
tersections ξ ∩ b to the nonemptyness of affine Deligne-Lusztig varieties in the affine
flag manifold, which has been extensively studied. We report on some known results
in Sections I.3.1.3 and I.3.5.1.

It is natural to attempt to study the intersections ξ∩b by using the representatives
in W̃ . For ξ ∈ EO(G,µ) let Λ(ξ) be the set of representatives for ξ in W̃ . It turns
out that all elements of Λ(ξ) lie in the same σ-conjugacy class, so we have a map
Rep: EO(G,µ) → B(G,µ) which sends ξ to this common σ-conjugacy class. In
general this map contains little information on the relation of the stratifications, in
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particular if µ is not minuscule. If µ is minuscule, then the results of Viehmann in
[Vi1] and the structure of Λ(ξ) imply that Rep: EO(G,µ) → B(G,µ) is surjective,
and that there are the following criteria for nontrivial intersections:

Criterion I.A. Let µ be dominant and minuscule, let ξ ∈ EO(G,µ).

(i) (necessary criterion) If b ∈ B(G,µ) such that ξ ∩ b 6= ∅, then there is some
ξ′ ∈ EO(G,µ) with ξ′ � ξ and Rep(ξ′) = b.

(ii) (sufficient criterion) {Rep(ξ′) | ξ′ � ξ} contains a unique maximal element b′

with respect to the �-order on B(G,µ), for this element we have ξ ∩ b′ 6= ∅.

The criteria are very similar to the ones in ([Vi1], Thm. 1.5., Cor. 1.6.), and they
rely heavily on ([Vi1], Prop. 5.5.). We remark that (i) is far from being sufficient,
however in simple cases, for example if G = GU(2, 3), it turns out to be helpful (see
Section I.3.6.2). Apart from giving these two criteria the map Rep remains rather
mysterious (see Remark I.3.16 and Example I.4.13).

It is an interesting aspect in the comparison of the two stratifications of KεµK
to decide whether every Newton stratum contains an Ekedahl-Oort stratum, that
is, whether every b ∈ B(G,µ) contains some ξ ∈ EO(G,µ). In this case, any two
elements of ξ are σ-conjugate by some element of G(L). Of special interest is the
case that this is even true for the subgroup K, in other words, that ξ is a single K-
σ-conjugacy class. We will call a ξ ∈ EO(G,µ) with this property a K-fundamental
class. In the situation of (∗) in the conclusion, being K-fundamental corresponds
to the property that for some x ∈ SK(G, X)(Fp) the isomorphism class of Ax[p∞]
(with additional structures) is determined by the isomorphism class of its p-torsion.
In this sense the question was first raised, and answered positively (but without
additional structure), by Oort in [Oo4].

A very promising strategy to find a K-fundamental class involves the extended
affine Weylgroup: w̃ ∈ W̃ will be called I-fundamental if every element of Iw̃I ⊆
G(L) is σ-conjugate to w̃ by an element of I. To show that ξ ∈ EO(G,µ) is K-

fundamental it suffices to show that its set of W̃ -representatives Λ(ξ) contains an

I-fundamental element. There are (at least) three types of elements in W̃ found in
the literature which are known to be I-fundamental (see Section I.3.3 for the precise
definitions): Straight elements in the sense of [He1], P -fundamental elements in the
sense of [Vi1] and [VW], and (J, y, σ)-fundamental elements (see [GHN]). Among
these the property of straight element is particularly easy to verify.

Let b ∈ B(G,µ). It is known ([He1], 3.5.) that there exists a straight element

w̃ ∈ W̃ which lies in b, consequently the Ekedahl-Oort class [[w̃]] is K-fundamental
and contained in b. This leaves the question whether there exists a straight w̃ such
that [[w̃]] ∈ EO(G,µ), i.e. such that w̃ ∈ WεµW . In this direction our main result
is the following:

Theorem I.B. Let µ be dominant, let b ∈ B(G,µ). Then WεµW ∩ b contains a
straight element if and only if WεµW contains a b-short element which is σ-balanced.
In this case there exists a ξ ∈ EO(G,µ) such that ξ ⊆ b is K-fundamental and w̃ξ is
straight.

Here the concept of a σ-balanced b-short element appears, which puts another
condition on b-short elements. The precise definition is a bit technical, we refer the
reader to Section I.3.4. Roughly speaking, ωb is σ-balanced if the translation parts
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of its σ-twisted products do not become ”too antidominant”. The theorem follows
from combinatorial calculations involving the Weyl group and the root system of
G. Along the way we show that the three concepts mentioned above are in fact
equivalent:

Proposition I.C. An element w̃ ∈ W̃ is straight if and only if it is P -fundamental,
if and only if it is (J, y, σ)-fundamental.

The existence of σ-balanced short elements in WεµW remains an open question.
There is some hope to find them for each b ∈ B(G,µ) in the case that µ is a minuscule
cocharacter (which includes all cases that arise from Shimura varieties). In this case
it is known that WεµW always contains some b-short element ωb. Since this element
is unique if G splits over OF and there always exists a straight element in b, Theorem
I.B gives another proof for the existence of K-fundamental Ekedahl-Oort classes for
split groups and minuscule cocharacters (see [VW], Prop. 9.9.). In general, in many
examples the condition of being σ-balanced translates into a combinatorial problem.

The unique maximal element of B(G,µ) plays a distinguished role in the context
of Shimura varieties. In accordance with the second chapter we denote it by bµ−ord

and call it the µ-ordinary element of B(G,µ). The corresponding stratum KεµK ∩
bµ−ord is then the group-theoretic equivalent of the µ-ordinary locus in a Shimura
variety. On the other hand, let ξmax be the unique maximal element of EO(G,µ).
For pairs (G,µ) which correspond to a PEL-type Shimura variety results of Moonen
(formulated for p-divisible groups with additional structures, see [Mo2], 1.3.7., 3.2.7.)
show that the µ-ordinary locus coincides with ξmax, and that this is a K-fundamental
class in the sense explained above. We show that this holds in full generality:

Theorem I.D. Let µ be dominant (not necessarily minuscule), let bµ−ord ∈ B(G,µ)
and ξmax be the unique maximal elements with respect to � respectively. Then
KεµK ∩ bµ−ord = ξmax, and ξmax is a K-fundamental Ekedahl-Oort class.

This theorem will be a major ingredience in the proof of the density of the µ-
ordinary locus for Shimura varieties of Hodge type in Chapter II.

Finally we discuss a special example which arises from a well-studied class of
Shimura varieties of PEL-type, the so called ”Hilbert-Blumenthal” varieties (see for
example [GO], [AC]). Here G is given on R-valued points as

G(R) = {g ∈ GL2(OF ′ ⊗OF R) | det(g) ∈ R×}, (HB)

where F ′|F is a finite unramified extension and OF ′ denotes the valuation ring
of F ′, and µ is a minuscule cocharacter. This case has been studied previously
by Goren and Oort in ([GO]) from the point of view of Shimura varieties, here
the authors already determined the generic Newton stratum in each Ekedahl-Oort
stratum. Our discussion of this example will be based on reduction techniques for
scalar restrictions of reductive groups and normal subgroups with abelian quotients,
which seem interesting in their own right.

To explain the results for the Hilbert-Blumenthal example, we briefly describe
the sets B(G,µ) and EO(G,µ) in this case. See Section I.4.2.2 for details. Let
d := [F ′ : F ], then

• B(G,µ) contains
[
d
2

]
+ 1 elements, it is totally ordered with respect to �.

We write M := {d2 ,
[
d+1

2

]
,
[
d+1

2

]
+ 1, . . . , d}, ordered in the obvious way, and
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identify B(G,µ) = {bm | m ∈M} (here m corresponds to the first slope of the
Newton polygon of bm).

• EO(G,µ) is as a partially ordered set isomorphic to the power set of Z/dZ,
ordered by inclusion.

In analogy to the definitions in [GO], to each ξ ∈ EO(G,µ) we associate a number
m(ξ) ∈ M (see Definition I.4.7), which determines the ”generic” σ-conjugacy class
in ξ. We now have the following description of the intersection behaviour between
the stratifications:

Theorem I.E. Let G be given as in (HB), let µ be dominant and minuscule.

(i) Let ξ ∈ EO(G,µ), let w̃ξ ∈ W̃ be its standard representative. Then ξ is of one
of the following types:

(I) w̃ξ is a straight element and ξ ⊆ bm(ξ) is K-fundamental,

(II) w̃ξ is not straight, and ξ ∩ b 6= ∅ for all b � bm(ξ).

(ii) If ξ ∈ EO(G,µ) and bm ∈ B(G,µ) with ξ∩bm 6= ∅, then there is a ξ′ � ξ of type
(I) with ξ′ ⊆ bm. In particular, every b ∈ B(G,µ) contains a K-fundamental
Ekedahl-Oort class.

(iii) If ξ ∈ EO(G,µ) is of type (I), then for every m′ < m(ξ) there exists a ξ′ � ξ
of type (II) with m(ξ′) = m′.

The theorem shows that in the Hilbert-Blumenthal case for every b ∈ B(G,µ)
the following holds:

If ξ is a minimal element in {ξ′ ∈ EO(G,µ) | ξ′ ∩ b 6= ∅},
then ξ is a K-fundamental class and w̃ξ is straight.

This is in analogy to the case that G is split over OF , where this property holds as
well (see [VW], Rem. 9.21.), and it is also true in the GU(2, 3)-example of Section
I.3.6.2. It might be interesting to investigate whether a similar statement always
holds true if µ is minuscule.

This chapter is structured as follows:
In Section I.2 we fix our notations and introduce the main objects of the theory,

we explain some of their properties and interrelations, and present techniques which
will be used later. We devote some special care to the extended affine Weyl group,
since it will be of great importance and is not treated uniformly in the literature. In
this section we present no proofs.

Section I.3 deals with different general aspects of the comparison between the
stratifications. In I.3.1 we formulate the intersection problem and explain the struc-
tures of B(G,µ) and EO(G,µ). We include some known results and methods for
further reference. In I.3.2 we study the structure of the sets Λ(ξ) and the map
Rep, and show Criterion I.A. Most of the results presented here can also be found
elsewhere, or are easy consequences of known results. In I.3.3 we discuss fundamen-
tal classes and the different approaches to I-fundamental elements, we introduce
σ-balanced elements in I.3.4 and prove Theorem I.B and Proposition I.C. In I.3.5
we discuss the behaviour of the extremal elements in B(G,µ) and EO(G,µ). We
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include the basic case for completeness, the main result here is Theorem I.D which
we prove in I.3.5.2.

In Section I.4 we discuss the situation that G is a normal subgroup of a scalar
restricition of some group G0 such that the quotient is abelian, and the special case
of the Hilbert-Blumenthal example. We explain our reduction techniques in I.4.1,
and prove Theorem I.E in I.4.2.

I.2 Preparations and main objects

I.2.1 Notations and conventions

We fix a prime number p > 0. For any perfect field κ of characteristic p we denote
by W (κ) the ring of Witt vectors over κ. Let k be an algebraically closed field
of characteristic p. Let q be a positive power of p, let Fq be the finite field with
q elements. Let F be either Qq = Frac(W (Fq)) or the field Fq((t)) of Laurent
series. We will refer to the former case as the case of mixed characteristics, and
to the latter as the equicharacteristic case. Let L be either Frac(W (k)) or k((t))
respectively. We denote by O ⊆ L and OF ⊆ F the corresponding valuation rings.
Let ε be a uniformizing element of OF (and hence of O), e.g. ε = p in the case of
mixed characteristics or ε = t in the equicharacteristic case. We denote by σ the
Frobenius isomorphism x 7→ xq of k over Fq, and also the corresponding unique lifts
to isomorphisms on O and on L.

Let G be a reductive group scheme over OF in the sense of ([SGA3], Exp. XIX,
2.7.), i.e. a smooth, affine group scheme over OF whose geometric fibers are con-
nected, reductive groups. G is then quasisplit over OF (see e.g. [VW], A4), and
splits over a finite étale extension of OF ([SGA3], Exp. XXII, 2.3.), in particular,
G is split over O. We fix a Borel pair (T,B) of G which is defined over OF . Let
X∗(T ), X∗(T ) be the groups of cocharacters and characters of T (over O). Let g be
the Lie algebra of G, let Φ ⊆ X∗(T ) be set of roots of G with respect to T , and let
∆,Φ+,Φ− be the root basis and the sets of positive and negative roots determined
by B. We call a cocharacter µ ∈ X∗(T ) dominant (with respect to B), if 〈α, µ〉 ≥ 0
for all α ∈ Φ+, and denote by X∗(T )dom ⊆ X∗(T ) the set of dominant cocharacters.

Let W := NG(T )(O)/T (O) the Weyl group of G and W̃ := NG(T )(L)/T (O) the
extended affine Weyl group of G. The choice of B endows W with a set of simple
reflections S, which is in 1− 1-correspondence with the root basis ∆.

The Frobenius σ induces actions on G(O), G(L), X∗(T ), X∗(T ) and Φ, which we
will denote by σ as well, and the canonical pairing 〈·, ·〉 : X∗(T ) × X∗(T ) → Z is
σ-equivariant. Since B is defined over OF , we have σ(Φ+) = Φ+, σ(∆) = ∆ and
σ(X∗(T )dom) = X∗(T )dom, and σ operates on (W,S) as a Coxeter automorphism.

Notation I.2.1. We will use the following notations: For any algebraic or geometric
object we denote by (·)R the base change to some ring R, respectively to SpecR.
Let Y ⊆ G(L) be any subset, then for g ∈ G(L) we write gY := {gyg−1 | y ∈ Y } and
for a subgroup H ⊆ G(L) we write H ·σ Y := {hyσ(h)−1 | y ∈ Y, h ∈ H}. We embed

W and W̃ in G(L) as follows: W̃ is a semidirect product W̃ = X∗(T )oW . For each
w ∈ W we choose a representative in NG(T )(O) and view X∗(T ) as a subgroup of
G(L) by sending λ ∈ X∗(T ) to ελ := λ(ε). We will denote the longest element of W
by w0, if WJ ⊆ W is the subgroup generated by some subset J ⊆ S then w0,J will
denote the longest element of WJ .
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I.2.2 The quasi-Coxeter structure of W̃

As explained in ([Ti], §1) and ([HR], p. 7/8), the extended affine Weyl group has a
geometric representation on the apartment for T in the Bruhat-Tits building of G
(over L):

Let V := X∗(T )R, this is a finite dimensional R-vector space. W̃ = X∗(T ) oW
acts faithfully on this vector space by affine linear transformations via (ελw)(v) :=

w(v) + λ, which are equivariant with respect to the actions of σ on W̃ and V . If

w̃ = ελw ∈ W̃ , where λ ∈ X∗(T ) and w ∈ W , then we will refer to λ as the
translation part of w̃.

Via the pairing 〈·, ·〉 : X∗(T ) × X∗(T ) → Z the roots α ∈ Φ define linear forms
〈α, ·〉 on V , for each α ∈ Φ and k ∈ Z the set Hα,k := {v ∈ V | 〈α, v〉 = k} is an
affine hyperplane in V . The connected components in the complement of the union
of the Hα,k form the alcoves in V . As the set of these hyperplanes is stable unter

the W̃ -action, W̃ acts on the set of alcoves in V . We denote by

C := {v ∈ V | 〈α, v〉 > 0, α ∈ Φ+}

the dominant Weyl chamber in V . Let a0 be the unique alcove contained in C
whose closure a0 contains the origin 0. The reflections Sa along the walls of a0

then generate the affine Weyl group Wa ⊆ W̃ of G. This is a finitely generated
Coxeter group, which acts simply transitively on the set of alcoves in V , and we
have (W,S) ⊂ (Wa, Sa). The group Wa can be identified with the extended affine

Weylgroup of the simply connected cover of the derived group of G, and W̃ is a
semidirect product W̃ = Wa o Ω, where

Ω := {w̃ ∈ W̃ | w̃(a0) = a0}

is subgroup in W̃ of elements preserving a0. ([HR], Lemma 14).

The length l(w̃) of an element w̃ ∈ W̃ is defined as the number of hyperplanes
Ha seperating a0 and w̃(a0). The subgroup Ω consists thus exactly of the elements

of length 0 in W̃ . We may calculate l(w̃) by the following formula ([IM], Prop. 1.23):

l(ελw) =
∑

α∈Φ+,w−1(α)∈Φ+

|〈α, λ〉|+
∑

α∈Φ+,w−1(α)∈Φ−

|〈α, λ〉 − 1| (1)

The restriction of l to Wa (resp. W ) is the usual length function of Wa (resp. W )
as a Coxeter group ([IM], Prop. 1.10). For w ∈W the formula simplifies to

l(w) = |{α ∈ Φ+ | w(α) ∈ Φ−}|. (2)

Thus W̃ = Wa o Ω carries the structure of a quasi-Coxeter group, i.e. the semi-
direct product of a Coxeter group and an abelian group. If w̃ ∈ W̃ then w̃ = waω for
uniquely determined wa ∈Wa, ω ∈ Ω and l(w̃) = l(wa). The Bruhat order on Wa is

extended to W̃ : If w̃1 = w1ω1, w̃2 = w2ω2 ∈ W̃ = WaoΩ, then w̃1 ≤ w̃2 if and only
ω1 = ω2 and w1 ≤ w2 in Wa. Any inner automorphism given by an element ω ∈ Ω
preserves this partial order, as well as the length of elements in W̃ .

Since σ(a0) = a0, the Frobenius action on W̃ restricts to actions on (Wa, Sa) and

on Ω and preserves the Bruhat order on W̃ and the length of elements.
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Remark I.2.2. The action of W̃ on V is not canonical. Another common definition
is (ελw)(v) := w(v)−λ. Using this definition one obtains the same results as above,
but with different groups W ′a and Ω′, and with a different Bruhat order and length
formula: The relation to the groups defined above is given by W ′a = w0Waw0 and
Ω′ = w0Ωw0. We will address the consequences of this ambiguity at the points where
they turn up.

I.2.3 Parabolic subgroups and Levi subgroups

By a parabolic subgroup of G over O we will mean a parabolic subgroup P ⊆ GO
(not necessarily defined over OF ). We call a parabolic subgroup P of G over O a
semistandard parabolic if it contains T , and a standard parabolic if it contains B. Of
course these notions depend on the choice of our Borel pair (T,B). The unique Levi
M subgroup containing T of a standard parabolic subgroup will be called a standard
Levi subgroup of G (over O).

We will use the following properties of standard parabolics and standard Levi
subgroups:

(1) Let J ⊆ S be a subset of simple reflections, let ΦJ ⊆ Φ be the roots generated
by {αs | s ∈ J} ⊆ ∆. Then there is a unique standard parabolic subgroup PJ
such that ΦJ is the root system with respect to T of its standard Levi subgroup,
which we denote by MJ . Moreover, B∩MJ is a Borel subgroup of MJ such that
the corresponding positive roots of ΦJ are given as Φ+

J = Φ+ ∩ΦJ (see [SGA3],
Exp. XXII, 5.10.1. and Exp. XXVI, 1.4., 6.1.).

(2) Conversely, if P ⊆ G is a standard parabolic subgroup over O, then there is a
unique subset J ⊆ S such that P = PJ ([SGA3], Exp. XXVI, 7.7.).

(3) Let µ ∈ X∗(T ) be dominant, then M := CentG(µ) is a standard Levi subgroup
of G, and we have M = MSµ , where Sµ := {s ∈ S | s(µ) = µ} ([SGA3], Exp.
XXVI, 1.4., 6.10.).

For any subset J ⊆ S let WJ ⊆W be the subgroup generated by J . Then (WJ , J)
is again a Coxeter group, it is exactly the Weyl group of the standard Levi subgroup
MJ with respect to the Borel pair (T,B∩MJ). The corresponding notions of length
and Bruhat order in W and WJ are compatible in the sense that if lJ denotes the
length function on WJ , then lJ(w) = l(w) for all w ∈ WJ . There is a natural
set W J := {w ∈ W | l(ws) > l(w) for all s ∈ J} of right coset representatives
for WJ . Each w ∈ W J is the unique element of shortest length in wWJ , and
l(wwJ) = l(w) + l(wJ) for all wJ ∈ WJ (see [Hu], §1.10.). Symmetrically, JW :=
{w ∈ W | l(sw) > l(w) for all s ∈ J} is a set of left coset representatives with
analogous properties (in fact JW = (W J)−1).

A similar result holds for double cosets: For any two subsets L, J ⊆ S the
elements in LW J := LW ∩ W J form a full set of representatives for the double
cosets in WL\W/WJ and each w ∈ LW J is the unique element of minimal length in
WLwWJ ([DDPW], (4.3.2)). See Section I.3.2.1 for further properties of LW J .

Recall that ΦJ ⊆ Φ is the root system generated by {αs | s ∈ J}, and that the
positive roots with respect to B ∩MJ are given by Φ+

J = ΦJ ∩ Φ+. As for example
explained in ([Hu], §1.6.), if w(αs) ∈ Φ− for some w ∈W, s ∈ S then l(ws) = l(w)−1.
This implies that for w ∈W we have:
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• If w ∈WJ , then w(Φ+ \ Φ+
J ) = Φ+ \ Φ+

J .

• w ∈W J if and only if w(Φ+
J ) ⊆ Φ+.

• w ∈ JW if and only if Φ+
J ⊆ w(Φ+). Equivalently, w lies in JW if and only if

w(α) ∈ ΦJ implies that w(α) ∈ Φ+
J , for any α ∈ Φ+.

Shortest coset representatives also exist for the finitely generated Coxeter group
Wa, and also for the quasi-Coxeter group W̃ . For example, let wa ∈Wa and ω ∈ Ω,
let w̃ = waω. Then for every J ⊆ Sa there exists a unique element wJa of short-
est length in wa(Wa)J and a unique element w̃J of shortest length in w̃(Wa)J .
These elements are related as follows: For any J ⊆ Sa we have w̃J = wJ

′

a ω, where
J ′ := ωJ ⊆ Sa. Again we have the sets of shortest right coset representatives W J

a

and W̃ J for (Wa)J , and analogously for left coset representatives and double coset
representatives.

Now suppose that J ⊆ S such that σ(J) = J . Then MJ and thus also the Borel
pair (T,B ∩MJ) are defined over OF . The extended affine Weyl group of MJ is

then given by W̃J = X∗(T )oWJ ⊆ W̃ , and the description from the last subsection

applies to this group as well: The action of W̃J on V is just the restriction of the
action of W̃ . We have a lenghth function lJ on W̃J given by a formula analogous to
(1), and the corresponding subgroup ΩJ of elements of length 0. However, lJ is not

equal the restriction of l to W̃J in general. For example, if J = ∅ then MJ = T and
W̃J = X∗(T ) = ΩJ .

I.2.4 Some group theoretic results

Notation I.2.3. We write K := G(O) ⊆ G(L). For any g ∈ K we denote by ḡ its
image under the natural projection K → G(k). We set

K1 := {g ∈ K | ḡ = 1}, I := {g ∈ K | ḡ ∈ Bopp(k)},

where Bopp is the Borel subgroup opposite of B with respect to T .

By definition, K1 ⊆ I ⊆ K are σ-invariant subgroups. With respect to the action
of G(L) on the Bruhat-Tits building of G, the group K ⊆ G(L) is hyperspecial,
namely the stabilizer of 0 ∈ V , and I is the subgroup of elements fixing a0 pointwise,
i.e. an Iwahori subgroup of G(L).

Remark I.2.4. The symmetric definition of the G(L)-action (compare I.2.2) would
lead to the description I = {g ∈ K | ḡ ∈ B(k)}, which is also common in the
literature.

Decompositions of G(L) Recall that we have the following decompositons (see
[Ti], §3):

G(L) =

◦⋃
w̃∈W̃

Iw̃I (Bruhat-Tits decomposition) (3)

G(L) =

◦⋃
µ∈X∗(T )dom

KεµK (Cartan decomposition) (4)
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In the equicharacteristic case, G(L) = G(k((t))) is the group of k-valued points
of the loop group LG of GFq , which is a group ind-scheme (see [Fa], [PR]), so G(L)
carries a topology in this case. With respect to this topology the above double cosets
are locally closed, and the following closure relations hold:

Iw̃I =
⋃
w̃′≤w̃

Iw̃′I, w̃ ∈ W̃

KεµK =
⋃
µ′�µ

Kεµ
′
K, µ ∈ X∗(T )dom,

where for two dominant cocharacters one writes µ′ � µ if and only if µ−µ′ is a sum
of positive coroots (compare (5)). These relations are for example shown in ([Ri],
Prop. 2.8.).

Change of characteristics We will sometimes use results of combinatorial nature
which were obtained in the equicharacteristic case (for example by exploiting the
above closure relations) also in the case of mixed characteristics. We may do so by
applying the following principles to both OF = Zq = W (Fq) and OF = Fq[[t]]:

(1) Consider a triple (G,T,B) over OF as in Section I.2.1, then X∗(T ),W, W̃ and
the σ-actions on these objects depend only on the reductions GFq , TFq , BFq to
the special fiber of Spec(OF ) (see for example [SGA3], Exp. X, 4.6. for X∗(T )
and Exp. XXII, 3.4. for W ).

(2) Let G0 be a reductive group over Fq with Borel subgroup B0 and maximal torus
T0 ⊆ B0. Then by ([SGA3], Exp. XXIV, 1.21.), up to isomorphism there is a
unique reductive group G over OF such that GFq is isomorphic to G0, and the
Borel pair (T0, B0) of G0 lifts to a Borel pair (T,B) of G over OF by ([SGA3],
Exp. XXII, 5.8.3.).

So for example, if (G,T,B) is defined over Zq, then there is a triple (G′, T ′, B′) over

Fq[[t]] which gives rise to the same W̃ as a σ-module.

Root subgroups and Decompositions of I For every root α ∈ Φ let Uα : Ga,O →
GO be the associated root group. For any α ∈ Φ and λ ∈ X∗(T ) we then have the
relation

ελUα(x)ε−λ = Uα(ε〈α,λ〉x) for all x ∈ L.

Let P ⊆ G be a semistandard parabolic subgroup. Let M be the unique Levi
subgroup of P containing T , let N be the unipotent radical of P and let N be
the unipotent radical of the parabolic opposite to P (with respect to T ), denote by
m, n, n ⊆ g the corresponding Lie algebras. Let ΦM ,ΦN ,ΦN ⊆ Φ be the set of roots
such that gα lies in m, n, n respectively. Then by the result of ([Ti], §3.1.), we have
the decompositions
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N(L) ∩ I =
∏
α∈ΦN

(Uα(L) ∩ I)

N(L) ∩ I =
∏
α∈ΦN

(Uα(L) ∩ I)

M(L) ∩ I = T (O) ·
∏

α∈ΦM

(Uα(L) ∩ I)

and

I = (N(L) ∩ I) · (M(L) ∩ I) · (N(L) ∩ I) (Iwahori decomposition)

Lang’s Theorem The well-known result of Lang on connected algebraic groups
over k asserts that the map G(k)→ G(k), g 7→ g−1σ(g) is surjective. The fact that
O = lim←−n→∞O/(ε

n) allows to show similar results for subgroups of K = G(O). The

following variant follows from ([Vi1], Lemma 2.1.):

Proposition I.2.5. Let H ⊆ G be a connected subgroup over O. Set Hn :=
ker[H(O)→ H(O/(εn))] ⊆ H(O) for n ≥ 0. Let g ∈ G(L) such that g

−1

Hn ⊆ σ(Hn)
for all n. Then the map H(O)→ H(O), h 7→ σ−1(g−1h−1g)h is surjective.

We will often use this result in the following form:

Corollary I.2.6. Let H ⊆ G be a connected subgroup over O, let g ∈ K such that
g−1

H ⊆ σ(H). Then the map H(O)→ H(O), h 7→ σ−1(g−1h−1g)h is surjective.

Proof. Since g ∈ K = G(O), the relation g−1

H ⊆ σ(H) implies that g
−1

Hn ⊆ σ(Hn)
for all n.

I.2.5 σ-conjugacy classes

Definition I.2.7.

(a) For an element g ∈ G(L) we write [g] := G(L) ·σ g for its G(L)-σ-conjugacy class.

(b) Let B(G) := {[g] | g ∈ G(L)}.

The structure of B(G) has been studied by Kottwitz in [Ko1], [Ko2] and by
Rapoport and Richartz in [RR]. (To be precise, these papers only consider the case
of mixed characteristics, but everything also works in the equicharacteristic case.)
It is described by two maps:

(I) Define the set of Newton points for G as

N (G) :=
(

HomL(DL, GL)/IntG(L)
)〈σ〉

=
(
(X∗(T )Q)/W

)〈σ〉
.

Here D is the diagonizable pro-algebraic group with character group Q, and
the second equality follows from the fact that for each ν ∈ HomL(DL, GL)
some multiple k · ν factors through Gm,L and is thus G(L)-conjugate to an
element of X∗(T ). In ([Ko1], §4), to each b ∈ B(G) Kottwitz assigns an
element νb ∈ N (G), this gives the Newton map of G.

νG : B(G) −→ N (G), b 7−→ νb.
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We naturally identify N (G) =
(
(X∗(T )⊗ZQ)/W

)σ
with a subset of the closed

dominant Weyl chamber C ⊆ V and call νb ∈ C the dominant Newton vector
of b.
A σ-conjugacy class b ∈ B(G) is called basic, if (any representative of) νb : DL →
GL factors through the center of G, we denote by B(G)bas ⊆ B(G) the subset
of basic elements.

(II) Secondly, let
π1(G) := X∗(T )/〈α∨ ∈ Φ∨〉

be the algebraic fundamental group of G, and let π1(G)〈σ〉 be its group of σ-
coinvariants. There is a natural surjective homomorphism ηG : G(L)→ π1(G)
which is functorial in G (called ωG in [Ko2], §7.4., see also [RR], §1). Passing
to σ-conjugacy classes, and taking σ-coinvariants on the right hand side one
obtains the Kottwitz map

κG : B(G) −→ π1(G)〈σ〉

By ([Ko1], 5.6.), the map κG induces a bijection between the set of basic
elements in B(G)bas and π1(G)〈σ〉. Further, if µ ∈ X∗(T ) is dominant such
that g ∈ KεµK (see (4)), then κG(g) is equal to the image of µ under the
natural projection map X∗(T )→ π1(G)〈σ〉.

Proposition I.2.8.

(i) (Kottwitz, [Ko3], 4.13.) The map

(νG, κG) : B(G) −→ N (G)× π1(G)〈σ〉

is injective.

(ii) (Rapoport-Richartz, [RR], 1.15.(iii)) If b, b′ ∈ B(G) such that νG(b) = νG(b′),
then κG(b)− κG(b′) ∈ (π1(G)〈σ〉)tors.

In particular, if π1(G)〈σ〉 is torsion free, then νG : B(G)→ N (G) is injective.

Of course, the same classification applies for σ-conjugacy classes of standard
Levi subgroups MJ of G, where then N (MJ) and π1(MJ) are given as in (I) and (II)
above with respect to WJ and Φ∨J . To every σ-conjugacy class in G(L) we associate
a standard Levi subgroup of G:

Definition I.2.9. For b ∈ B(G) we define its type as Jb := {s ∈ S | s(νb) = νb} ⊆ S.
We set Mb := MJb (see Section I.2.3).

In other words, Mb := CentG(r · νb) ⊆ G, where r is some integer such that r · νb is
a dominant cocharacter of T . As νb is σ-invariant, we always have σ(Jb) = Jb, and
the group Mb is defined over OF .

Example I.2.10. Let us consider the classical example of the general linear group:
Here F = Qp and G = GLn,Zp . Let T be the torus of diagonal matrices, and let B
be the Borel subgroup of upper triangular matrices in GLn. We then for example
have X∗(T ) ∼= X∗(T ) ∼= Zn, W = Sn, Φ+ = {ei − ej | 1 ≤ i < j ≤ n} ⊆ X∗(T ), and
the σ-action is trivial, the Newton points and the fundamental group are given as

N (G) ' {x ∈ Qn | x1 ≥ · · · ≥ xn}, π1(G) = π1(G)〈σ〉 ' Z.
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Since π1(G)〈σ〉 is torsion free, the Newton map νG : B(G) → N (G) is injective. It
has the following realization in this case: The assignment

g 7−→ (Ln, gσ)

for g ∈ GLn(L) induces a bijection between B(G) and the set of isomorphism classes
of isocrystals of height n over k. By the classification of Dieudonné-Manin (see for
example [Dem], Ch.IV), these isomorphism classes are described by their Newton
polygons: By definition, a Newton polygon of length n is a concave, continuous,
piecewise linear function Λ on the interval [0, n] with Λ(0) = 0 such that all break
points have integral coordinates (we warn the reader that many different conventions
regarding Newton polygons can be found in the literature). A Newton polygon Λ is
determined by its slopes in the interval (i− 1, i) for i = 1, . . . , n, which are rational
numbers. Writing these in the form (νd11 , . . . , νdmm ) with ν1 > · · · > νm (here νdii
denotes the di-fold repetition of νi ∈ Q), Λ corresponds to the isomorphism class of
the isocrystal

⊕m
i=1Ni, where Ni is isoclinic of slope νi and height di.

Now if b = [g] ∈ B(G) and Λ = (νd11 , . . . , νdmm ) is the Newton polygon of the
isomorphism class of (Ln, gσ), then

νG(b) = (νd11 , . . . , νdmm ), κG(b) =

m∑
i=1

diνi,

and we have Mb = GLd1 × · · ·GLdm

Order relation on B(G) The set B(G) carries a partial order given as follows:
For ν, ν′ ∈ N (G) ⊆ C write

ν′ � ν :⇐⇒ ν − ν′ =
∑

α∨∈(Φ∨)+

nα∨α
∨ for nα∨ ∈ R≥0. (5)

This defines a partial order on N (G), which was introduced by Rapoport and
Richartz in ([RR], §2). The order relation on B(G) is obtained by setting

b′ � b :⇐⇒ νG(b′) � νG(b). (6)

By ([RR], Thm. 3.6.), this order describes the behaviour of a map S → B(G)
associated to an isocrystal with G-structure over S under specializations. In the
above example for G = GLn we have b′ � b if and only if the Newton polygon of
b′ lies below that of b and both have the same end point, ([RR], Thm. 3.6.) is
then nothing but the ”Grothendieck specialization theorem”, which asserts that the
Newton polygons of a family of p-divisible groups go down (with our conventions
on Newton polygons) under specialization. For Shimura varieties of PEL-type it is
known that � describes the closures of Newton strata (see Section II.5.2).

Representatives in W̃ Let w̃ ∈ W̃ , then the σ-conjugacy class [w̃] does not de-
pend on the representative for w̃ in G by Proposition I.2.5 applied to H = T . On the
other hand, we will see below in I.2.15 that every σ-conjugacy class in G(L) contains

an element of W̃ . As explained in ([He2], 1.3.), in this case there is a more explicit
description of the Newton map and the Kottwitz map.
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Definition I.2.11. Let w̃ ∈ W̃ , then we set

νw̃ :=
1

r
w̃σ(w̃) · · ·σr−1(w̃) ∈ X∗(T )Q ⊆ V, (7)

where r ∈ N such that σr acts trivially on W̃ and w̃σ(w̃) · · ·σr−1(w̃) ∈ X∗(T ).

Note that this is well-defined: W is finite, and some power of σ acts trivially on
W̃ (since G splits over a finite unramified extension of OF ), so an r ∈ N as in the
definition exists. By the usual argument, the definition is independent of the choice
of r. We remark that the vector νw̃ is not dominant in general.

Now for b = [w̃], w̃ ∈ W̃ the following hold:

(1) Let w̃ = ελw for λ ∈ X∗(T ), w ∈ W , then κG(b) is equal to the projection of λ
to π1(G)〈σ〉.

(2) The dominant Newton vector νb ∈ C of b is equal to the unique dominant element
in W · νw̃. This follows from the characterization of νb in ([Ko1], 4.3).

In particular, if ω ∈ Ω then b = [ω] is basic in G: For r as in Definition I.2.11 we
have l(r · νω) = l(ωσ(ω) · · ·σr−1(ω))r · l(ω) = 0, so the length formula (1) implies
that 〈α, r · νω〉 = 0 for all α ∈ Φ, which means that r · νω is central in G.

Definition I.2.12. Let b ∈ B(G), let Jb be its type. An element ωb ∈ W̃ is called
b-short, or a short representative of b, if b = [ωb], ωb ∈ ΩJb and νb = νωb .

Remark I.2.13. In view of property (2) above one can reformulate this Definiton as
follows: Let b ∈ B(G), of type Jb, then an element ωb ∈ ΩJb is b-short if and only
if ωb ∈ b and νωb is dominant. By the classification of σ-conjugacy classes and the
definition of νωb , these conditions are satisfied if and only if κG([ωb]) = κG(b) and
ωbσ(ωb) · · ·σr−1(ωb) = r · νb for some r ∈ N.

This notion of b-short elements, which generalizes the concept of standard rep-
resentatives in the case that G is split (see [GHKR], Def. 7.2.3), was introduced by
Viehmann in ([Vi1], 5.1.), who also showed their existence:

Lemma I.2.14 (Viehmann, [Vi1], 5.3.). For every b ∈ B(G) there exists a b-short
element ωb. If G is split over OF , then ωb is uniquely determined.

By the above considerations, for any b-short element ωb the σ-conjugacy class [ωb]Mb
∈

B(Mb) is basic, so this result can be seen as a ”discrete refinement” of ([Ko1], 6.2.)
for our types of groups. If G is not split over OF then b-short elements are not
unique in general, see for example Section I.4.2.2.

Corollary I.2.15. The map W̃ → B(G), w̃ 7→ [w̃] is surjective.

Note that by the properties (1) and (2) above this map can be defined only

in terms of the structure of W̃ and its σ-action, it is therefore independent of the
characteristic of L in the sense of the last subsection.

I.2.6 Ekedahl-Oort classes

Definition I.2.16.
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(i) For g ∈ G(L) we define its Ekedahl-Oort class as

[[g]] := K ·σ (K1gK1).

(ii) Let EO(G) := {[[g]] | g ∈ G(L)}.

Since K1 is a normal subgroup of K, the sets of the form [[g]] for g ∈ G(L) form a
decomposition of G(L) into equivalence classes, which refines the Cartan decompo-
sition: If g ∈ KεµK then [[g]] ⊆ KεµK.

Standard representatives The [[·]]-classes inG(L) were first defined by Viehmann
in [Vi1], who also answered the question of a natural set of representatives, using

the alternative description of W̃ (see Remark I.2.2). Following our conventions, we
make the following definitions:
For µ ∈ X∗(T ) be dominant let Sµ := {s ∈ S | s(µ) = µ} and

xµ := w0,Sµw0, τµ = εµxµ, Jµ := σ(Sµ). (8)

Then τµ is the unique element of shortest length in WεµW , in other words τµ ∈ SW̃S ,
and l(τµw) = l(τµ) + l(w) for all w ∈W .

Proposition I.2.17 (Viehmann, [Vi1], Thm. 1.1.). Let µ ∈ X∗(T ) be dominant.

(i) The elements τµw for w ∈ W Jµ form a full set of representatives for the [[·]]-
classes in KεµK in other words,

KεµK =

◦⋃
w∈WJµ

[[τµw]].

(ii) IτµwI ⊆ [[τµw]] for each w ∈W Jµ .

Proof. Using a symmetric approximation strategy, the proof is exactly the same as
in ([Vi1], §3). Note however that our τµ differs from the one in [Vi1] (where it is
given by w0w0,Sµε

µ), by our definitions we have τµMSopp
µ
τ−1
µ = MSµ . We will also

review parts of the argument in Section I.3.2.

Definition I.2.18. Let ξ ∈ EO(G), then we write w̃ξ for the unique representative
for ξ of the form τµw for w ∈ W Jµ given by Proposition I.2.17, and call it the
standard representative of ξ.

The dual parametrization Let µ ∈ X∗(T )dom, let Jµ ⊆ S and xµ ∈W as above.
Set Lµ := Sopp

µ , then Lµ = x−1
µ Sµxµ. It is shown in ([PWZ1], Prop. 9.13., Prop.

9.14.) that there is a unique bijection

ϕ : LµW −→W Jµ

with the property that for each w ∈ LµW there is some y ∈ WLµ with ϕ(w) =
ywσ(xµy

−1x−1
µ ), and that l(ϕ(w)) = l(w) for each w ∈ LµW . It follows that for

every w ∈ LµW one has the identity [[τµw]] = [[εµxµw]] = [[εµxµϕ(w)]] = [[τµϕ(w)]],
by σ-conjugation with xµyx

−1
µ for y ∈ WLµ as above. So the elements τµw for

w ∈ LµW also give a set of representatives for the EO-classes in KεµK, we will
sometimes refer to them as the dual standard representatives of EO(G). This set
of representatives could also be obtained by a variant of the proof of Proposition
I.2.17(i) above.
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The closure relation It is shown in ([Vi1], Lemma 4.1.) that in the equichar-
acteristic case the [[·]]-classes are the k-valued points of locally closed, irreducible
subschemes of the loop group of GFq (in the sense of [Vi1], §2.4.). The closure of an

EO-class ξ in G(L) is a union of EO-classes, so the relation ξ′ � ξ :⇔ ξ′ ⊆ ξ defines
a partial order on EO(G), and thus by transfer also on the set {w̃ξ | ξ ∈ EO(G)}. By
([Vi1], Thm. 1.4.) the order relation for standard representatives is given as follows:

w̃ξ′ � w̃ξ ⇐⇒ zw̃ξ′σ(z)−1 ≤ w̃ξ for some z ∈W. (9)

(But again note that the Bruhat order considered in [Vi1] differs from ours, and that
in the proof one has to argue symmetrically.)
On the other hand, the relation given by (9) is purely group theoretical and also
meaningful in the case of mixed characteristics, and ([Vi1], Thm. 1.4.) shows that it
is a partial order on the set of standard representatives by the principles explained
in Section I.2.4. For mixed characteristics we will also write ξ � ξ′ if w̃ξ � w̃ξ′ . For
EO-classes which arise from Ekedahl-Oort strata of a Shimura variety this relation
then again describes the closure of a stratum (see Section II.6.2).

For further reference we note the following properties of �:

Remark I.2.19. Let w̃ = w̃ξ and w̃′ = w̃ξ′ be standard representatives of classes
ξ, ξ′ ∈ EO(G).

(1) If w̃′ ≤ w̃, then w̃′ � w̃.

(2) If w̃′ � w̃, then l(w̃′) ≤ l(w̃). This can be derived from (9) and the fact that w̃′

is of minimal length in its W -σ-conjugacy class (see Proposition I.3.11).

(3) If w̃′ � w̃ and l(w̃′) = l(w̃), then w̃′ = w̃: By (9), in this case w̃ = zw̃′σ(z)−1

for some z ∈W , so w̃′ ∈ ξ, which implies ξ′ = ξ and hence w̃′ = w̃ by I.2.17(i).

I.3 Relations between the decompositions

Let µ ∈ X∗(T )dom. As motivated in the introduction to this chapter, we will be
interested in the comparison of the σ-conjugacy classes and the EO-classes which
appear in KεµK. Of special relevance is the case that µ is minuscule, which will
always be the case if the pair (G,µ) arises from a Shimura datum as in Chapter II.

I.3.1 The intersection problem

Definition I.3.1. For a dominant cocharacter µ ∈ X∗(T )dom we denote

(a) B(G,µ) := {[g] | g ∈ KεµK},

(b) EO(G,µ) := {[[g]] | g ∈ KεµK}.

The study of the intersections between the ”group theoretical stratifications” of a
K-double coset KεµK can then be put as follows:

Problem I.3.2. Let µ ∈ X∗(T )dom. Given ξ ∈ EO(G,µ) and b ∈ B(G,µ), find a
description of ξ ∩ b.
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This may be considered from different points of view. A first satisfying answer would
be given by a criterion to decide whether ξ∩b is empty or nonempty. In the equichar-
acteristic case one may also ask for the topological properties of the intersection, for
example its dimension, but we did not consider this question. Another interesting
aspect is to decide whether for every b ∈ B(G,µ) there exists some ξ ⊆ b such that
ξ = K ·σ w̃ξ, we will consider this question in Section I.3.3.

In this subsection we will collect information on the sets B(G,µ) and EO(G,µ)
and report on some results that will be used in the sequel.

I.3.1.1 The sets B(G,µ) and EO(G,µ)

The set B(G,µ) is well-known, it is exactly the set of σ-conjugacy classes which meet
KεµK. Results of Kottwitz-Rapoport ([KR]), Lucarelli ([Lu]) and Gashi ([Ga]) show
that it has the following combinatorial description:

Let µ\ be the image of µ ∈ X∗(T ) under the projection map to π1(G)〈σ〉. Let
n ∈ N such that σn acts trivially on X∗(T ), and set

µ̄ :=
1

n

n−1∑
i=0

σi(µ) ∈ C,

then we have
B(G,µ) = {b ∈ B(G) | κG(b) = µ\, νG(b) � µ̄}, (10)

where � is the partial order on C explained in Section I.2.5. Note that µ̄ is exactly
the vector νµ given by the formula (7) of Definition I.2.11, and that this vector is
dominant, so we have in fact µ̄ = νG([εµ]). Since in addition µ\ = κG([εµ]), we also
have the characterization

B(G,µ) = {b ∈ B(G) | κG(b) = κG([εµ]), b � [εµ]}

with respect to the partial order on B(G) given by (6).

We note a few important properties of B(G,µ):

(1) B(G,µ) is a finite set ([RR], 2.4.).

(2) B(G,µ) contains a unique maximal element with respect to �, namely the σ-
conjugacy class [εµ].

(3) B(G,µ) contains a unique basic element, namely the one which corresponds to
µ\ under the bijection B(G)bas ' π1(G)〈σ〉 given by κG. This is also the unique
minimal element in B(G,µ) with respect to �.

The description of EO(G,µ) is given by Proposition I.2.17(i): We have a bijection
W Jµ ' EO(G,µ), where Jµ = σ(Sµ), by sending an element w ∈ W Jµ to the
standard representative τµw (see Definition I.2.18). The restriction of the �-relation
on EO(G) given by (9) to the subset EO(G,µ) transfers to W Jµ via this bijection,
by setting w′ � w :⇔ [[τµw

′]] � [[τµw]]. This order can be described as follows:

w′ � w ⇐⇒ (x−1
µ σ−1(z)xµ)w′z−1 ≤ w for some z ∈WJµ (11)

(This characterization follows from (9) by an argument completely analogous to
that in the proof of ([Vi1], Cor. 4.7.): If zτµw

′σ(z)−1 ≤ τµw for some z ∈ W , then
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zτµw
′σ(z)−1 = τµv for some v ≤ w, so τ−1

µ zτµ ∈ W , which implies that z ∈ WSµ

and a fortiori that v = (x−1
µ zxµ)wσ(z)−1.)

It follows from Remark I.2.19 that the order � on W Jµ resp. on EO(G,µ) has the
following properties.

(1) If w′ ≤ w then w′ � w. If w′ � w, then l(w′) ≤ l(w) with equality if and only if
w′ = w.

(2) W Jµ has a unique maximal element with respect to ≤ and thus also with respect
to �, namely the shortest right coset representative w0w0,Jµ of w0W

Jµ . The
element 1 ∈ W Jµ is the unique minimal element of W Jµ with respect to �.
Consequently, the classes [[τµw0w0,Jµ ]], [[τµ]] ∈ EO(G,µ) are the unique maximal
and minimal elements with respect to �.

Remark I.3.3. Instead of considering W Jµ one can also work with the dual repre-
sentatives τµw,w ∈ LµW for the classes in EO(G,µ). The partial order obtained on
LµW is then given as follows:

w′ � w ⇐⇒ zw′σ(xµz
−1x−1

µ ) ≤ w for some z ∈WLµ . (12)

This follows from ([PWZ1], Thm. 11.5.) (Note that the condition is the same as in
(11), if z ∈ WJµ then x−1

µ σ−1(z)xµ ∈ WLµ .) With respect to this order, property

(1) above holds for LµW as well. The unique maximal element of LµW with respect
to � is then w0,Lµw0 = w0w0,Sµ = x−1

µ (as we have w0,Lµ = w0w0,Sµw0).

I.3.1.2 The connection to affine Deligne-Lusztig sets

Let ξ ∈ EO(G,µ) for some µ ∈ X∗(T )dom. By Proposition I.2.17(ii), the question
whether ξ ∩ b is nonempty is equivalent to the corresponding question for the I-
double coset of its standard representative: We have Iw̃ξI ⊆ ξ = K ·σ (K1w̃ξK1) ⊆
K ·σ (Iw̃ξI), therefore

ξ ∩ b 6= ∅ ⇐⇒ Iw̃ξI ∩ b 6= ∅ (13)

for any b ∈ B(G) (of course the intersection is empty if b 6= B(G,µ), since then

b ∩KεµK = ∅). Recall that for w̃ ∈ W̃ and g ∈ G(L) the affine Deligne-Lusztig set
attached to w̃ and g is defined as

Xw̃(g) := {hI ∈ G(L)/I | h−1gσ(h) ∈ Iw̃I}. (14)

This set only depends on the σ-conjugacy class [g] up to isomorphism, if g′ =
h′gσ(h′)−1 then multiplication by h′ on the left gives Xw̃(g)

∼→ Xw̃(g′). As Xw̃(g)
is nonempty if and only if [g] ∩ Iw̃I 6= ∅, by (13) for any g ∈ G(L) we have
ξ ∩ [g] 6= ∅ ⇔ Xw̃ξ(g) 6= ∅. So the intersection pattern between EO-classes
and σ-conjugacy classes would follow from the knowledge of the intersections be-
tween I-double cosets and σ-conjugacy classes, or equivalently, the emptyness and
nonemptyness of affine Deligne-Lusztig sets. In this direction many partial results
are known, see for example ([Be], [GHN], [GH]).
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I.3.1.3 Some known techniques and results

The question whether σ-comjugacy classes and I-double cosets intersect is answered
by the following algorithm. For w̃, w̃′ ∈ W̃ write w̃ ⇀ w̃′ if there is a sequence
w̃ = w̃0, . . . , w̃k = w̃′ such that l(w̃0) ≥ · · · ≥ l(w̃k) and for each i = 0, . . . , k− 1 the
following holds: There is an s ∈ Sa such that either w̃i+1 = sw̃iσ(s) or w̃i+1 = sw̃i
and l(sw̃iσ(s)) = l(w̃i)− 2.

Proposition I.3.4 ([GHN], Thm. 4.3.2.). Let w̃ ∈ W̃ Let Dw̃ be the set of elements

ỹ ∈ W̃ such that w̃ ⇀ ỹ and ỹ is an element of minimal length in its W̃ -σ-conjugacy
class. Then the set of σ-conjugacy classes which intersect Iw̃I nontrivially is exactly
{[ỹ] | ỹ ∈ Dw̃}.

Since w̃ ⇀ w̃′ implies that l(w̃′) ≤ l(w̃), and since Sa is a finite set, the set

Dw̃ can be computed explicitly. As the σ-conjugacy class of an element ỹ ∈ W̃ can
be calculated inside the extended affine Weyl group (see Section I.2.5), this crite-
rion shows that the emptyness and nonemptyness of intersections between I-double
cosets and σ-conjugacy classes depends on nothing but the structure of W̃ and the
σ-action on W̃ . In particular, the question of nonemptyness for these intersections
is independent of the characteristic of L in the sense discussed in Section I.2.4.

The following necessary criterion for the nonemptyness of Iw̃I ∩ b will play an
important role in several arguments in this section:

Proposition I.3.5 ([Vi1], Prop. 5.5.). Let w̃ ∈ W̃ . Let b ∈ B(G), and let Jb ⊆ S
be its type in the sense of Definition I.2.9. If Iw̃I ∩ b 6= ∅, then there is a b-short
element ωb ∈ ΩJb and a y ∈ JbW such that y−1ωbσ(y) ≤ w̃.

This result is stated and proven in [Vi1] in the equicharacteristic case, but the notion

of a b-short element also only depends on the σ-action on W̃ , so by Proposition I.3.4
it holds for mixed characteristics as well.

In the equicharacteristic case it is shown in ([Vi1], Lemma 4.1.) that each [[·]]-
class ξ is irreducible, so by the Grothendieck specialization theorem ([RR], Thm.
3.6.) the set {b ∈ B(G) | ξ ∩ b 6= ∅} contains a unique maximal element with respect
to �. Again, as a consequence of Proposition I.3.4 and the equivalence (13) this also
holds true for mixed characteristics.

Definition I.3.6. For ξ ∈ EO(G) we call the maximal element of {b ∈ B(G) |
ξ ∩ b 6= ∅} the generic σ-conjugacy class in ξ.

I.3.2 Representatives of Ekedahl-Oort classes

In this subsection we explain a structure result (Proposition I.3.11) for the repre-

sentatives in W̃ of an EO-class ξ, which can be understood as a ”discrete version”
of Proposition I.2.17(i). In particular it shows a minimality property for standard
representatives which will be very useful in the sequel. The result can also be derived
from ([He1], §2, §3), we will give a short inductive proof here which shows exactly
what we need.
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I.3.2.1 Some results on Coxeter groups

In this paragraph we consider an arbitrary finitely generated Coxeter group (W,S).
We start with a few well-known results on double coset representatives.

Proposition I.3.7. Let J, L ⊆ S.

(i) (Kilmoyer, [DDPW], 4.17.) Let u ∈ LW J . Then

u−1

WL ∩WJ = Wu−1L∩J and WL ∩ uWJ = WL∩uJ .

Further, the map Wu−1L∩J →WL∩uJ , w 7→ uwu−1 is length preserving.

(ii) (Howlett, [DDPW], 4.18.) Let u ∈ LW J . Then every w ∈ WLuWJ can be

written uniquely as w = wLuwJ for wL ∈WL and wJ ∈ (u
−1
L∩J)WJ , and also

as w = w′Luw
′
J for unique w′L ∈ WL∩uJ

L and w′J ∈ WJ . These decompositions
satisfy l(w) = l(wL) + l(u) + l(wJ) and l(w) = l(w′L) + l(u) + l(w′J).

Corollary I.3.8. Let L, J ⊆ S, let u ∈ LW J . Then for w ∈WLuWJ we have

w ∈W J ⇐⇒ w = wLu for some wL ∈WL∩uJ
L .

Proof. This is an immediate consequence of the length formula in Proposition I.3.7(ii).

Now consider subsets L, J ⊆ S, and let δ : WL → WJ be an isomorphism of
Coxeter groups. In particular, δ then induces a bijection L

∼→ J . Following He (see
[He1], §3.1.), we study the partial δ-conjugation action of WL: We write w −→δ w

′,
if there is a series w = w0, w1, . . . , wk = w′ such that wi = siwi−1δ(si) for some
si ∈ L and l(wi) ≤ l(wi−1) for each i = 1, . . . , k.

Lemma I.3.9. Let u ∈ LW J . For every w ∈ WLuWJ there is a v ∈ WL such that
w −→δ vu, and a v′ ∈WJ such that w −→δ uv

′.

Proof. It suffices to show the first claim, since it implies the second one by considering
u−1 ∈ JWL, w−1 ∈WJu

−1WL and δ−1 : WJ →WL.
Write JL := u−1

L ∩ J . Let w = wLuwJ with wL ∈ WL, wJ ∈ JLWJ be the unique
decomposition of w from Proposition I.3.7(ii). We proceed by induction on the
length of wJ , the case l(wJ) = 0 being trivial. If l(wJ) ≥ 1, there is s ∈ J such that
l(wJs) = l(wJ)− 1. We have wJs = xw′J for some x ∈WJL , w

′
J ∈ JLWJ . Now

l(ws) = l(wLuwJs) ≤ l(wLu) + l(wJs) = l(wL) + l(u) + l(wJ)− 1 = l(w)− 1,

hence w −→δ δ
−1(s)ws, further

δ−1(s)ws = (δ−1(s)wLuxu
−1)uw′J

is the unique decomposition of δ−1(s)ws as in I.3.7(ii) (since uxu−1 ∈ WL). As
l(w′J) = l(wJs)− l(x) < l(wJ), the claim follows by induction.

Lemma I.3.10. Let w ∈W . There are L̂ ⊆ L, û ∈ L̂W J and v̂ ∈WL̂ such that

(1) ûδ(L̂) = L̂,

(2) w −→δ v̂û.
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Proof. The proof is a slight refinement of the usual inductive Bédard argument, see
for example ([PWZ1], Thm. 9.11.), where we additionally keep track of the length of
w. There is a unique u ∈ LW J with w ∈WLuWJ . By Lemma I.3.9 we find v ∈WL

such that w −→δ vu.
Now we proceed by induction on the cardinality of L. If L = uJ , then L = uδ(L)

and hence the triple (L, u, v) satisfies the properties (1) and (2).

If L 6= uJ , consider J1 := L∩uJ , L1 := δ−1(u
−1

L∩J) and δ1 := int(u)◦δ : WL1 →
WJ1 . Applying the induction hypothesis to the coxeter group WL, the isomorphism

δ1 (note that L1, J1 ⊆ L) and the element v ∈WL, we find L̂ ⊆ L1, û1 ∈ L̂W J1
L and

v̂ ∈WL̂ satisfying

(1)’ û1δ1(L̂) = L̂,

(2)’ v 7−→δ1 v̂û1.

Let û := û1u, then we have û ∈ L̂W since u ∈ LW , and we have û ∈ W J by

Corollary I.3.8, so û ∈ L̂W J . Further ûδ(L̂) = û1δ1(L̂) = L̂ by construction. Since

by Proposition I.3.7(i) the conjugation map by u gives a bijection u−1

L∩J ∼→ L∩uJ ,
property (2)’ implies that

vu −→δ v̂û1u = v̂û.

The triple (û, L̂, v̂) hence satisfies properties (1) and (2) with respect to w and δ.

I.3.2.2 Structure of Weyl representatives for EO-classes

Now we give a description of the W̃ -representatives of EO-classes. For such a class
ξ ⊆ G(L) let us write

Λ(ξ) := {w̃ ∈ W̃ | w̃ ∈ ξ}.

Consider the σ-conjugation action of W on W̃ : In analogy to the last paragraph
we write w̃ −→σ w̃

′ for w̃, w̃′ if there is a sequence w̃ = w̃0, . . . , w̃k = w̃′ such that
w̃i = siw̃i−1σ(si) for some si ∈ S and l(w̃i) ≤ l(w̃i−1) for each i = 1, . . . , k.

Proposition I.3.11. Let ξ ⊆ G(L) be an EO-class, let w̃ξ = τµw for µ ∈ X∗(T )
dominant and w ∈W Jµ . Set Lµ := Sopp

µ = w0Sµw0 and

L̂ξ :=
⋂
n≥0

ϕn(Lµ) ⊆ Lµ for ϕ := int(w) ◦ σ ◦ int(xµ).

(i) Λ(ξ) consists of the W -σ-conjugacy classes of the elements τµv̂w for v̂ ∈WL̂ξ
,

and for every w̃ ∈ Λ(ξ) there is v̂ ∈WL̂ξ
such that w̃ −→σ τµv̂w.

(ii) All elements in Λ(ξ) are K-σ-conjugate, and w̃ξ is an element of minimal
length in Λ(ξ).

Remark I.3.12. L̂ξ is the maximal subset L̂ ⊆ Lµ with the property that wσ(xµL̂) =

L̂. Since σ(xµL̂ξ) ⊆ Jµ, we have w ∈ L̂ξW Jµ .

The proof of the proposition uses the following consequence of Lang’s Theorem:

Lemma I.3.13. Let µ ∈ X∗(T ) be dominant. Let L̂ ⊆ Sopp
µ and u ∈ L̂W Jµ such that

uσ(xµL̂) = L̂. Then every element of the form τµm̂u for m̂ ∈ML̂(O) is σ-conjugate
to τµu by an element of MSµ(O).
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Proof. Recall that xµ = w0,Sµw0 and τµ = εµxµ. The condition on L̂ implies that
ML̂ = uσ(xµML̂x

−1
µ )u−1. Therefore Lang’s Theorem in the form of Corollary I.2.6

applied to m̂ ∈ ML̂(O) and g := uσ(xµ) shows that there is an m′ in ML̂(O) such
that

m̂ = σ−1(g−1(m′)−1g)m′ = x−1
µ σ−1(u−1(m′)−1u)xµm

′.

Let m̃ := σ−1(u−1m′u). Since σ−1(u
−1

L̂) = xµL̂ ⊆ xµ(Sopp
µ ) = Sµ, we have m̃ ∈

MSµ(O), so m̃ commutes with εµ and we find that

m̃τµm̂uσ(m̃)−1 = τµu.

Proof of I.3.11. We show (i) and (ii) simultanously. Let v̂ ∈ L̂ξ, then by Lemma
I.3.13 and Remark I.3.12 the element τµv̂w is K-σ-conjugate to τµw, in particular
all its W -σ-conjugates lie in [[τµw]] = ξ. On the other hand, let w̃ ∈ Λ(ξ). Then by
the Cartan decomposition (4) we must have w̃ ∈ WεµW = WτµW . We apply the
results of the preceeding subsection to w̃:

Let ω be the unique element in Ω such that τµ ∈ Wa · ω. Write S′ := ωS ⊂ Sa
and W ′ := WS′ ⊂ Wa, and let τ ∈ Wa such that τµ = τω. Then we have w̃ = waω

for wa ∈WτW ′, and τ ∈ SWS′

a . Let

δ1 := int(ω) ◦ σ : S
∼−→ S′,

then by Lemma I.3.9 there is a v′ ∈ W ′ such that wa −→δ1 τv
′. This implies that

we have w̃ −→σ τµv for v := ω−1v′ω ∈W .
Now we apply Proposition I.3.10 to v ∈W and the isomorphism

δ2 := σ ◦ int(xµ) : Lµ
∼−→ Jµ :

There are L̂ ⊆ Lµ, û ∈ L̂W Jµ and v̂ in WL̂ such that v −→δ2 v̂û and ûδ2(L̂) = L̂.
Since we have l(τµw

′) = l(τµ) + l(w′) for any w′ ∈ W , and every element of WSµ

commutes with εµ, the first property implies that τµv −→σ τµv̂û. As û ∈ L̂W Jµ ,
Lemma I.3.13 shows that the element τµv̂û is further K-σ-conjugate to τµû.

So w̃ is K-σ-conjugate to τµû, in particular w̃ ∈ [[τµû]]. By the classification of
[[·]]-classes in Proposition I.2.17 we must therefore have û = w. Going through the
argument again we have shown that there are L̂ ⊆ Lµ with wσ(xµL̂) = L̂ and v̂ ∈WL̂

such that w ∈ L̂W Jµ and w̃ −→σ τµv̂w, and that w̃ is K-σ-conjugate to τµw. These

properties finally imply that L̂ ⊆ L̂ξ and that l(w̃) ≥ l(τµv̂w) = l(τµ) + l(v̂w) ≥
l(τµ) + l(w) = l(τµw).

Corollary I.3.14. Let ξ ∈ EO(G), let w̃ ∈ Λ(ξ) be an element of minimal length.
Then we have K · (Iw̃I) = K · (Iw̃ξI).

Proof. This is a variant of ([He2], Lemma 3.1.). By Proposition I.3.11(i), there is a
v̂ ∈ WL̂ξ

such that w̃ −→σ v̂w̃ξ. Since by assumption l(w̃) = l(w̃ξ), we must have

v̂ = 1, hence w̃ −→σ w̃ξ, and consequently there is a sequence w̃ = w̃0, . . . , w̃k = w̃ξ
such that in each step we have w̃i = siw̃i−1σ(si) for some si ∈ S and l(w̃i) = l(w̃i−1).
Now the arguments in the proof of Lemma 3.1. in [He2] show that K ·σ (Iw̃iI) =
K ·σ (Iw̃i−1I) for each i = 1, . . . , k.
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I.3.2.3 The map Rep

As a consequence of Proposition I.3.11, the map W̃ → B(G), w̃ 7→ [w̃] factors via
EO(G), giving a map

Rep: EO(G) −→ B(G), [[w̃]] 7−→ [w̃], (15)

which sends ξ ∈ EO(G) to the common σ-conjugacy class of its representatives in

W̃ . Combining the Proposition I.3.11 with Viehmann’s result from Proposition I.3.5,
one may conclude the following corollary, which gives another necessary criterion for
the nonemptyness of intersections between EO-classes and σ-conjugacy classes:

Corollary I.3.15.

(i) Let ξ ∈ EO(G). If b ∈ B(G) with ξ ∩ b 6= ∅, then there is some ξ′ � ξ such that
Rep(ξ′) = b.

(ii) (compare [Vi1], Cor. 5.6.) For ξ ∈ EO(G) the generic σ-conjugacy class in ξ
is the unique maximal element in {Rep(ξ′) | ξ′ � ξ}.

Proof. Since all involved properties are independent of the chararcteristic of L (see
for example Sections I.2.4, I.2.5, I.3.1.3), we may argue in the equicharacteristic case.
(i) If ξ∩b 6= ∅, then Iw̃ξI∩b 6= ∅ by (13), so by Proposition I.3.5 there is some w̃′ ∈ b
with w̃′ ≤ w̃ξ, which means that w̃′ ∈ Iw̃ξI. Let ξ′ := [[w̃′]], then Rep(ξ′) = b by
Proposition I.3.11. Since Iw̃ξI ⊆ ξ, we have w̃′ ∈ Iw̃ξI ⊆ ξ and therefore ξ′ ∩ ξ 6= ∅,
which implies that ξ′ ⊆ ξ.
(ii) follows from (i), since the generic σ-conjugacy class in ξ is equal to the generic
σ-conjugacy class in ξ.

For each µ ∈ X∗(T )dom the restriction of (15) gives a map

Rep: EO(G,µ) −→ B(G,µ). (16)

Remark I.3.16. It is not clear whether this map allows a geometric interpretation:

(1) In general, the map Rep: EO(G,µ) → B(G,µ) is not injective and not order
preserving (see Example I.3.6.2 below).

(2) In general, Rep: EO(G,µ) → B(G,µ) is not surjective: For example, consider
G = GL2,OF , let T ⊆ B ⊆ G be the diagonal matrices and upper triangular

matrices. Let µ := (3, 0) ∈ Z2 ∼= X∗(T ), i.e. εµ =

(
ε3 0
0 1

)
. Then under

the identification between B(G) and Newton polygons (see Example I.2.10), we
have

B(G,µ) = {(3, 0), (2, 1), ((3/2)2)},

on the other hand we have Jµ = Sµ = ∅, so |EO(G,µ)| = |W | = 2. We will
revisit this example in Section I.3.6.1.

(3) In general, Rep(ξ) is not the generic σ-conjugacy class in ξ. In fact, we will see
in Section I.4.2.2 that there may exist b1, b2 ∈ B(G), different from Rep(ξ) such
that b1 � Rep(ξ) � b2 and ξ ∩ b1 6= ∅ 6= ξ ∩ b2.
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I.3.2.4 The minuscule case

Recall that a cocharacter µ is called minuscule if and only if 〈α, µ〉 ∈ {−1, 0, 1} for
all α ∈ Φ. The study of Problem I.3.2 for minuscule µ ∈ X∗(T )dom is of special
relevance, as a µ which arises from a Shimura datum will always be minuscule (see
Section II.3).

If µ ∈ X∗(T ) is dominant and minuscule, then the element τµ = εµxµ lies in Ω:
By definition, 〈α, µ〉 ∈ {0, 1} for each α ∈ Φ+, and xµ = w0w0,Jµ sends α ∈ Φ+ to
Φ− if and only if 〈α, µ〉 = 1, so l(τµ) = 0 by (1). This has the following consequences:

(a) If w̃ ∈WεµW and w̃′ ≤ w̃, then w̃′ ∈WεµW .
Indeed, writing w̃ = w1τµw2 for w1, w2 ∈W such that l(w1) + l(w2) = l(w̃), we
must have w̃′ = w′1τµw

′
2 for w′1 ≤ w1 and w′2 ≤ w2.

(b) Let ξ ∈ EO(G,µ). If ξ′ � ξ, then ξ′ ∈ EO(G,µ).
This follows from (a) and the description of � for standard representatives in
(9).

(c) The map Rep: EO(G,µ)→ B(G,µ) is surjective:
For every b ∈ B(G,µ) there is ξ ∈ EO(G,µ) with ξ ∩ b 6= ∅. By Corollary
I.3.15(i), there is ξ′ � ξ with Rep(ξ′) = b. By (b), we have ξ′ ∈ EO(G,µ).

(d) Corollary I.3.15 takes on the form of Criterion I.A of the introduction to this
chapter:
Let ξ ∈ EO(G,µ). If b ∈ B(G,µ) such that ξ∩b 6= ∅, then there is ξ′ ∈ EO(G,µ)
with ξ′ � ξ and Rep(ξ′) = b. The generic σ-conjugacy class in ξ is the maximal
element in {Rep(ξ′) | ξ′ ∈ EO(G,µ), ξ′ � ξ}.

I.3.3 Fundamental classes

We now consider the following aspects of Problem I.3.2:

Question I.3.17. Let b ∈ B(G,µ).

(1) Is there a ξ ∈ EO(G,µ) such that ξ ⊆ b?

(2) Is there a ξ ∈ EO(G,µ) such that ξ ⊆ b and ξ = K ·σ w̃ξ?

We have seen in the Remark I.3.16 that one may not expect to give a positive
answer to these questions in general. On the other hand, these properties are known
to be true if µ is minuscule and G is split, and one may hope that they also hold for
general G if µ is minuscule (cf. the remarks at the end of Section I.3.4).

If the pair (G,µ) arises from a Shimura variety as in Chapter II, then (1) cor-
responds to the question whether every Newton stratum contains an Ekedahl-Oort
stratum, and (2) asks whether there exists such a stratum which in addition equals
a single leaf in the variety.

Definition I.3.18.

(a) We say that ξ ∈ EO(G) is fundamental if ξ ⊆ Rep(ξ) = [w̃ξ].

(b) We say that ξ ∈ EO(G) is K-fundamental if ξ = K ·σ w̃ξ.

(c) We say that w̃ ∈ W̃ is I-fundamental if Iw̃I = I ·σ w̃.
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With these notions, the questions (1) and (2) ask for the existence of a fundamen-
tal resp. K-fundamental class in KεµK ∩ b. Of course, if a class ξ is K-fundamental
then it is fundamental. There is also the following sufficient criterion:

Criterion I.3.19. If ξ ∈ EO(G) contains an element of W̃ which is of minimal

length in its W̃ -σ-conjugacy class, then ξ is fundamental.

This follows from the fact that by ([He2], Thm. 3.3.), if an element w̃ ∈ W̃ is of

minimal length in its W̃ -σ-conjugacy class, then Iw̃I ⊆ [w̃].

The existence of K-fundamental classes is usually derived from the existence of
I-fundamental elements. If ξ ∈ EO(G) contains an I-fundamental element of W̃
then it is K-fundamental: Let w̃ ∈ Λ(ξ) be this element, then

ξ = [[w̃]] = K ·σ (K1w̃K1) ⊆ K ·σ (Iw̃I) = K ·σ (I ·σ w̃).

I-fundamental elements have been discussed from different points of view in the
literature, which will turn out to be essentially equivalent.

Straight elements Let w̃ ∈ W̃ , let b = [w̃], then the conjugacy class b determines
a lower bound for the length of w̃: Let νb be the dominant Newton vector of b. Recall
that in Definition I.2.11 we defined νw̃ := 1

r w̃σ(w̃) · · ·σr−1(w̃), for a certain r ∈ N,
and that νb is the dominant element in W · νw̃. Since l(σi(w̃)) = l(w̃) for all i and

the length function on W̃ is subadditive, we have rl(w̃) ≥ l(w̃σ(w̃) · · ·σr−1(w̃)) =
l(r · νw̃). Therefore, denoting as usual by 2ρ the sum of all positive roots in Φ,

l(w̃) ≥ 1

r
l(r · νw̃) =

1

r
l(r · νb) =

1

r
〈2ρ, r · νb〉 = 〈2ρ, νb〉.

Definition I.3.20. w̃ ∈ W̃ is called straight if equality in the upper equation holds,
that is, if l(w̃) = 〈2ρ, νb〉, where 2ρ is the sum over all elements in Φ+. In this case
we will call w̃ a straight representative of b = [w̃].

It is clear that w̃ is straight if and only if l(w̃σ(w̃) · · ·σk−1(w̃)) = kl(w̃) for all k ∈ N.

Example I.3.21.

(1) Every ω ∈ Ω is straight: σ acts on Ω, so ωσ(ω) · · ·σk−1(ω) ∈ Ω and hence
l(ωσ(ω) · · ·σk−1(ω)) = 0 = kl(ω) for every k ∈ N.

(2) For every µ ∈ X∗(T )dom the element εµ is straight: σ acts on X∗(T )dom, so the
length formula (1) shows that

l(εµσ(εµ) · · ·σk−1(εµ)) = l(εµ+σ(µ)+···+σk−1(µ)) =

k−1∑
i=0

l(εσ
i(µ)) = kl(εµ)

for all k ∈ N. On the other hand, if µ is not dominant and G is not split over
OF , then the element εµ is not straight in general.

By ([He2], Thm. 3.5.) straight representatives always exist, more precisely, for every

b ∈ B(G) there exists a unique W̃ -conjugacy class in W̃ which contains straight
representatives of b. Further we have:

Proposition I.3.22 ([He2], Prop. 4.5.). If w̃ ∈ W̃ is straight, then w̃ is I-
fundamental.
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P -fundamental elements In [GHKR] the authors introduced the concept of a
fundamental P -alcove in the case that G is a split group, which has since been gen-
eralized in two ways:

Let P ⊆ G be a semistandard parabolic subgroup over O. Recall that this means
that P contains T , but not necessarily B. Let M be its unique Levi subgroup which
contains T , N its unipotent radical and N the unipotent radical of the parabolic
opposite to P (with respect to T ). Set

IN := N(L) ∩ I, IM := M(L) ∩ I, IN := N(L) ∩ I.

Then an element w̃ ∈ W̃ is called P -fundamental (see [VW], Def. 9.7. resp. [Vi1],
Def. 6.1.), if one has

σ(w̃IN ) ⊆ IN , σ(w̃IN ) ⊇ IN , σ(w̃IM ) = IM .

If w̃ is P -fundamental for some semistandard parabolic P , then it is a straight
element. This can be proved by a generalization of the argument in ([GHKR],
13.1.3.), as is for example done in ([Ha], §7.3.). By Proposition I.3.22, w̃ is then I-
fundamental, which is also shown in ([Vi1] 6.3.). So the concept of a P -fundamental
element is a priori more restrictive than that of a straight element.

In [GHN] the authors give the definition (J,w, σ)-alcoves in the case of a tamely

ramified group by means of the action of W̃ on the apartment V = X∗(T )R, which
allows to prove variants of a Hodge-Newton decomposition for affine Deligne-Lusztig
varieties (see [GHN], Thm. 3.3.1.). We will only be interested in the corresponding
fundamental elements: Recall that we denote by a0 ⊆ V the unique alcove in the
dominant Weyl chamber whose closure contains 0 ∈ V .

Definition I.3.23 (cf. [GHN], §3).

(a) Let a ⊆ V be any alcove and α ∈ Φ, then we define k(α, a) ∈ Z as the unique
integer k such that 〈α, a〉 = (k − 1, k).

(b) Let J ⊆ S such that σ(J) = J , let y ∈W . We call w̃ ∈ W̃ a (J, y, σ)-fundamental
element if the following conditions hold:

(I) y−1w̃σ(y) ∈ W̃J ,

(II) k(α, w̃a0) ≥ k(α, a0) for all α ∈ y(Φ+ \ Φ+
J ),

(III) k(α, w̃a0) = k(α, a0) for all α ∈ y(Φ+
J ) or equivalently, for all α ∈ y(ΦJ).

Remark I.3.24. We can put part (a) of the definition equivalently as follows: Let

w̃ ∈ W̃ such that a = w̃a0, let Uα : GO → GO be the root group of α ∈ Φ. Then
k(α, a) is determined by the relation

Uα(L) ∩ w̃I = Uα(εk(α,a)O). (17)

For example, we have k(α, a0) = 1 for α ∈ Φ+ and k(α, a0) = 0 for α ∈ Φ−.

Lemma I.3.25. Let J ⊆ S with σ(J) = J , let y ∈ W let w̃ ∈ W̃ be a (J, y, σ)-
fundamental element. Let PJ be the standard parabolic subgroup associated to J , let
P := σ(y)PJ . Then w̃ is P -fundamental in the sense explained above. In particular,
(J, y, σ)-fundamental elements are a special case of P -fundamental elements.



I.3. RELATIONS BETWEEN THE DECOMPOSITIONS 33

Proof. Let MJ be the standard Levi subgroup of PJ , NJ its unipotent radical, let
NJ be the unipotent radical of the opposite parabolic to PJ . Then M = σ(y)MJ ,
N = σ(y)NJ , N = σ(y)NJ are the Levi subgroup and unipotent radicals associated
to P repectively, so their intersections with I are given as

IN = σ(y)NJ(L) ∩ I, IM = σ(y)MJ(L) ∩ I, IN = σ(y)NJ(L) ∩ I.

Consider the root subgroups Uα for α ∈ Φ. By Section I.2.4 we have the product
decompositions

yNJ(L) ∩ I =
∏

α∈y(Φ+\Φ+
J )

(Uα(L) ∩ I),

yNJ(L) ∩ I =
∏

α∈y(Φ−\Φ−J )

(Uα(L) ∩ I),

yMJ(L) ∩ I = T (O) ·
∏

α∈y(ΦJ )

(Uα(L) ∩ I),

The analogous decompositions also hold for the Iwahori subgroup w̃I ⊆ G(L), so for
example yN(L) ∩ w̃I =

∏
α∈y(Φ+\Φ+

J )(Uα(L) ∩ w̃I). Now in view of Remark I.3.24

the conditions (II) and (III) of Definition I.3.23(ii) are equivalent to

Uα(L) ∩ w̃I ⊆ Uα(L) ∩ I, α ∈ y(Φ+ \ Φ+
J ),

Uα(L) ∩ w̃I = Uα(L) ∩ I, α ∈ y(ΦJ),

and they imply that Uα(L)∩w̃I ⊇ Uα(L)∩I for all α ∈ y(Φ−\Φ−J ). By condition (I),

the element y−1w̃σ(y) ∈ W̃J normalizes the groups NJ , NJ and MJ , so the relations
above imply that

σ(w̃IN ) = σ(w̃σ(y)NJ(L) ∩ w̃I) = σ(yNJ(L) ∩ w̃I) ⊆ σ(yNJ(L) ∩ I) = IN ,

and in the same manner we see that σ(w̃IN ) ⊇ IN and σ(w̃IM ) = IM .

As a consequence, every (J, y, σ)-fundamental element is straight, in particular it
is I-fundamental, which was already shown in ([GHN], Prop. 3.4.3.). We sill see in
the next subsection that conversely every straight element is (J, y, σ)-fundamental
for some J and y.

I.3.4 Balanced short elements

Let µ ∈ X∗(T )dom, let b ∈ B(G,µ). We have seen that the existence of an I-
fundamental element w̃ ∈WεµW ∩ b would be sufficient to give a positive answer to
Question I.3.17(2) of the last subsection, and that an element w̃ is I-fundamental if
it is straight. We will now study the precise conditions for the existence of a straight
element in WεµW ∩ b and give a criterion in terms of b-short representatives.

Let J ⊆ S be any subset. We can give a precise description of elements in ΩJ :
Let λ ∈ X∗(T ), then we say that λ is J-dominant if 〈α, λ〉 ≥ 0 for all α ∈ Φ+

J , and
that λ is J-minuscule if |〈α, λ〉| ≤ 1 for all α ∈ ΦJ . For a J-dominant cocharacter
λ ∈ X∗(T ) set Jλ := {s ∈ J | s(λ) = λ} (this is not to be confused with the subset
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Jµ = σ(Sµ) from Definition I.2.17!). Then it follows from the length formula (1),

applied to the group W̃J = X∗(T ) oWJ , that for an element ελw ∈ W̃J we have

ελw ∈ ΩJ ⇐⇒ λ is J-dominant and J-minuscule, and w = w0,Jλw0,J . (18)

Hence the elements of ΩJ are in 1− 1-correspondence to the set of J-dominant and
J-minuscule cocharacters.

If ω ∈ W̃ is a b-short element for some b ∈ B(G), then ω ∈ ΩJ is given as in
(18) for J = Jb (where Jb is the type of b as defined in I.2.9). In this case we have
σ(J) = J , and the vector νω of Definition I.2.11 is equal to the dominant Newton
vector νb of b, which means that νb = 1

r · (ωσ(ω) · · ·σr−1(ω)) for some r ∈ N.

Definition I.3.26. Let J ⊆ S such that σ(J) = J . Let ω ∈ ΩJ be b-short for some

b ∈ B(G) of type Jb = J . Write ω = ελw for w ∈WJ . Consider δ := w◦σ ∈ W̃ o〈σ〉
as a map on X∗(T ).
We say that ω is σ-balanced, if 〈α, λ + δ(λ) + · · · δi(λ)〉 ≥ −1 for all i ≥ 0 and all
α ∈ Φ+ \ Φ+

J .

Remark I.3.27.

(1) The element δ = w ◦σ can also be considered as a bijection of Φ, it restricts to a
bijection of Φ+ \Φ+

J as w ∈WJ and σ(J) = J . For α ∈ Φ+ \Φ+
J and λ ∈ X∗(T )

we have 〈α, δ(λ)〉 = 〈δ−1(α), λ〉.

(2) Let ω = ελw ∈ ΩJ and δ as in the above definition. Then for all i ≥ 0 the
translation part of

ωσ(ω) · · ·σi(ω) = ελwσ(ελw) · · ·σi(ελw)

is exactly λ + δ(λ) + · · · + δi(λ) ∈ X∗(T ). As the element ωσ(ω) · · ·σi(ω) lies
again in ΩJ , by (18) this cocharacter is J-dominant for all i ≥ 0. Thus ω is
σ-balanced if and only if 〈α, λ + δ(λ) + · · · δi(λ)〉 ≥ −1 for all i ≥ 0 and all
α ∈ Φ+, which is a condition only for α ∈ Φ+ \ Φ+

J .
Further, there is some n ∈ N such that δn = id and

n · νb = ωσ(ω) · · ·σn−1(ω) = λ+ δ(λ) + · · ·+ δn−1(λ) ∈ X∗(T ).

Since 〈α, n · νb〉 > 0 for all α ∈ Φ+ \ Φ+
J by definition of J , in this situation the

condition of the definition needs only to be checked for i ≤ n− 1.

The starting point for our criterion is the following observation.

Lemma I.3.28. Let µ ∈ X∗(T )dom, let b ∈ B(G,µ). If w̃ ∈ WεµW is a straight
representative of b, then there exist a b-short element ωb ∈ WεµW and a y ∈ W Jb

such that w̃ = yωbσ(y)−1. Further, in this case the standard representative of [[w̃]]
is a straight representative of b.

Proof. Since w̃ ∈ b, in particular b ∩ Iw̃I 6= ∅. By Proposition I.3.5, there are a
b-short element ωb and an element y ∈W Jb such that yωbσ(y)−1 ≤ w̃ (take y as the

inverse of the element in JbW given by I.3.5). Since w̃ is of minimal length in W̃ ∩ b,
this implies that yωbσ(y)−1 = w̃, so in particular ωb ∈WεµW .

Let ξ = [[w̃]]. Then by Proposition I.3.11 we have w̃ξ ∈ b and l(w̃ξ) ≤ l(w̃).
Again, by the minimality of l(w̃) this implies that l(w̃ξ) = l(w̃), so w̃ξ is straight.
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Let us investigate the properties which ensure that conversely a b-short element
is conjugate to a straight element as in Lemma I.3.28:

Proposition I.3.29. Let b ∈ B(G), write J := Jb ⊆ S for ist type. Let ω ∈ ΩJ be a
b-short element, ω = ελw for w ∈ WJ , and let y ∈ W J . Then yωσ(y)−1 is straight
if and only if for all α ∈ Φ+ \ Φ+

J the following three conditions are satisfied:

〈α, λ〉 < 0 =⇒ 〈α, λ〉 = −1 (C0)

〈α, λ〉 = −1 =⇒ y(α) ∈ Φ− and σ(y)w−1(α) ∈ Φ+ (C1)

y(α) ∈ Φ+ and σ(y)w−1(α) ∈ Φ− =⇒ 〈α, λ〉 > 0 (C2)

Proof. Recall the length formula (1). Since ω ∈ ΩJ , we have by definition lJ(ω) = 0.
The element w ∈WJ gives a bijection of Φ+ \ Φ+

J , so we have

l(ω) = lJ(ω) +
∑

α∈Φ+\Φ+
J

|〈α, λ〉| =
∑

α∈Φ+\Φ+
J

|〈α, λ〉|. (19)

As explained in Remark I.3.27, we have

νb = νω =
1

r
· ωσ(ω) · · ·σr−1(ω) =

1

r
· (λ+ δ(λ) + · · ·+ δr−1(λ))

for some r ∈ N, where δ := w ◦ σ. Using the facts that 〈α, νb〉 = 0 for all α ∈ ΦJ
by definition of J = Jb, and that δ induces a bijection on Φ+ \Φ+

J , we find that the
length of any straight representative of b is given by

〈2ρ, νb〉 =
∑

α∈Φ+\Φ+
J

〈α, νb〉 =
1

r

∑
α∈Φ+\Φ+

J

(
r−1∑
i=0

〈α, δi(λ)〉

)

=
1

r

r−1∑
i=0

 ∑
α∈Φ+\Φ+

J

〈α, δi(λ)〉

 =
∑

α∈Φ+\Φ+
J

〈α, λ〉. (20)

Consider the ”length improvement” D := l(ω) − l(yωσ(y)−1). The element
yωσ(y)−1 is straight if and only if D = l(ω) − 〈2ρ, νb〉, and by (19) and (20) we
have

l(ω)− 〈2ρ, νb〉 =
∑

α∈Φ+\Φ+
J

(|〈α, λ〉| − 〈α, λ〉) =
∑

α∈Φ+\Φ+
J ,

〈α,λ〉<0

2|〈α, λ〉|. (21)

We may describe D using the length formula: We have yωσ(y)−1 = εy(λ)ywσ(y)−1,
therefore

l(yωσ(y)−1) =
∑
α∈Φ+,

σ(y)w−1y−1(α)∈Φ+

|〈α, y(λ)〉| +
∑
α∈Φ+,

σ(y)w−1y−1(α)∈Φ−

|〈α, y(λ)〉 − 1|

=
∑

β∈y−1(Φ+),

σ(y)w−1(β)∈Φ+

|〈β, λ〉| +
∑

β∈y−1(Φ+),

σ(y)w−1(β)∈Φ−

|〈β, λ〉 − 1|. (22)

For β ∈ y−1(Φ+) let β+ be the element of {β,−β} which lies in Φ+, so that Φ+ =
{β+ | β ∈ y−1(Φ+)}. We distinguish 3 cases for β:



36 CHAPTER I

(1) β ∈ ΦJ .
In this case, since y−1 ∈ JW we must have β ∈ Φ+

J , and since σ(y) ∈ W J we
have σ(y)w−1(β) ∈ Φ− if and only w−1(β) ∈ Φ−J (cf. Section I.2.3). So the
contribution of β to (22) is equal to the contribution of β to lJ(ω) in (19), which
is zero.

(2) β ∈ Φ \ ΦJ and σ(y)w−1(β) ∈ Φ+.
In this case, the contribution of β to (22) is equal to the contribution of β+ to
l(ω) in (19).

(3) β ∈ Φ \ ΦJ and σ(y)w−1(β) ∈ Φ−.
This happens if and only if the element β+ lies in either of the following sets:

Ψ± : = {α ∈ Φ+ \ Φ+
J | y(α) ∈ Φ+, σ(y)w−1(α) ∈ Φ−},

Ψ∓ : = {α ∈ Φ+ \ Φ+
J | y(α) ∈ Φ−, σ(y)w−1(α) ∈ Φ+}.

If β ∈ Φ+ \Φ+
J , then β+ = β ∈ Ψ± and the contribution of β to (22) is equal to

|〈β+, λ〉 − 1|. If β ∈ Φ− \Φ−J , then β+ = −β ∈ Ψ∓ and the contribution of β to
(22) is equal to |〈β+, λ〉+ 1|.

Combining (1)-(3), and renaming β+ by α, we see that

l(ω)− l(yωσ(y)−1) =
∑
α∈Ψ±

(|〈α, λ〉| − |〈α, λ〉 − 1|) +
∑
α∈Ψ∓

(|〈α, λ〉| − |〈α, λ〉+ 1|).

Thus if we define

Ψ±>0 := {α ∈ Ψ± | 〈α, λ〉 > 0}, Ψ±≤0 := {α ∈ Ψ± | 〈α, λ〉 ≤ 0},

and Ψ∓≥0,Ψ
∓
<0 in the same manner, we have

D = |Ψ±>0| − |Ψ
±
≤0| − |Ψ

∓
≥0|+ |Ψ

∓
<0|. (23)

Note that |Ψ±| = |Ψ∓|: In fact, define

Ψ̃ := {α ∈ Φ+ \ Φ+
J | y(α) ∈ Φ−, σ(y)w−1(α) ∈ Φ−},

then

Ψ± ∪̇ Ψ̃ = {α ∈ Φ+ \ Φ+
J | σ(y)w−1(α) ∈ Φ−},

Ψ∓ ∪̇ Ψ̃ = {α ∈ Φ+ \ Φ+
J | y(α) ∈ Φ−},

and as y, σ(y) ∈W J and w ∈WJ , this implies that

|Ψ±|+ |Ψ̃| = l(σ(y)) = l(y) = |Ψ∓|+ |Ψ̃|.

So we have |Ψ±>0|+ |Ψ
±
≤0| = |Ψ

∓
≥0|+ |Ψ

∓
<0|, and using (23) and (21) we obtain

D = 2 · (|Ψ∓<0| − |Ψ
±
≤0|) ≤ 2|Ψ∓<0| ≤ 2|{α ∈ Φ+ \ Φ+

J | 〈α, λ〉 < 0}|
≤ l(ω)− 〈2ρ, νb〉.

Now yωσ(y)−1 is straight if and only if equality holds everywhere in this chain. This
is the case for the first inequality if and only if Ψ±≤0 = ∅, for the second one if and

only if 〈α, λ〉 < 0 implies that α ∈ Ψ∓, and (by (21)) for the third one if and only if
〈α, λ〉 < 0 implies that 〈α, λ〉 = −1, which are exactly the conditions (C0)−(C2).
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The following probably well-known lemma will be used in the proof of the next
proposition.

Lemma I.3.30. Let η ∈ X∗(T ) be dominant, let Sη = {s ∈ S | s(η) = η}.

(i) The assignment WSη → W · η, x 7→ x(η) is a bijection. If λ = x(η) for
x ∈WSη , then for α ∈ Φ+ we have

〈α, λ〉 < 0 ⇐⇒ x−1(α) ∈ Φ−. (*)

(ii) Let J ⊆ S be any subset. Then the bijection of (i) restricts to a bijection

JWSη → {J-dominant elements in W · η} , x 7→ x(η).

Proof. (i) Clearly, every λ ∈W ·η can be written uniquely as λ = x(η) for x ∈WSη .
In this case

〈α, λ〉 = 〈x−1(α), η〉 for all α ∈ Φ,

so the ”=⇒”-part of the equivalence is clear since η is dominant. Conversely, if
x−1(α) ∈ Φ− for some α ∈ Φ+, then x−1(α) ∈ Φ− \ Φ−Sη since x ∈ WSη , which

implies that 〈α, λ〉 < 0.
(ii) Let λ = x(η) for x ∈ WSη . If x also lies in JW then x−1(α) ∈ Φ+ for each

α ∈ Φ+
J (see Section I.2.3), so the equivalence (*) implies that λ is J-dominant. On

the other hand, if λ is J-dominant, then by (*) we must have x−1(α) ∈ Φ+ for each
α ∈ Φ+

J , which implies that x ∈ JW .

Proposition I.3.31. Let b ∈ B(G), write J := Jb. Let ω ∈ ΩJ be a b-short element.

(i) If there exists y ∈ W J such that yωσ(y)−1 is straight, then ω is σ-balanced,
and further in this case the element yωσ(y)−1 is (J, y, σ)-fundamental.

(ii) Let ω be σ-balanced. Set

Ξ := {α ∈ Φ+ \ Φ+
J | 〈α, λ+ · · ·+ δi(λ)〉 = −1 for some i ≥ 0}.

Then there is a y ∈ W J such that Ξ = {α ∈ Φ+ \ Φ+
J | y(α) ∈ Φ−}, and for

each such y the element yωσ(y)−1 is straight.

Proof. Let ω = ελw for λ ∈ X∗(T ) and w ∈WJ . We reformulate the conditions (C1)
and (C2) of Proposition I.3.29 in terms of the map δ = w ◦ σ of Definition I.3.26,
considered as a map on Φ+ \ Φ+

J :
We have σ(y)w−1(α) ∈ Φ+ if and only if σ−1(σ(y)w−1(α)) = y((w ◦ σ)−1(α)) =
y(δ−1(α)) ∈ Φ+, therefore, for each α ∈ Φ+ \ Φ+

J , the conditions of I.3.29 are
equivalent to

〈α, λ〉 < 0 =⇒ 〈α, λ〉 = −1 (C0)

〈α, λ〉 = −1 =⇒ y(α) ∈ Φ− and y(δ−1(α)) ∈ Φ+ (C1’)

y(α) ∈ Φ+ and y(δ−1(α)) ∈ Φ− =⇒ 〈α, λ〉 = 1 (C2’)

Let us prove (i). Suppose that y ∈ W J such that w̃ := yωσ(y)−1 is straight.
This implies that ω is σ-balanced: By Proposition I.3.29, the properties (C0), (C1’)
and (C2’) above hold for each α ∈ Φ+ \Φ+

J . Fix an element α ∈ Φ+ \Φ+
J . By (C0),

we have 〈α, δi(λ)〉 = 〈δ−i(α), λ〉 ≥ −1 for all i ∈ Z, so in order to show the condition
of Definition I.3.26 for α it suffices to check that the following holds:
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If 〈α, δk(λ)〉 = 〈α, δl(λ)〉 = −1 for some k < l,
then there is some k < m < l such that 〈α, δm(λ)〉 > 0.

But for such k < l we have 〈δ−kα, λ〉 = 〈δ−l(α), λ〉 = −1, therefore y(δ−k(α)) ∈ Φ−,
y(δ−k−1(α)) ∈ Φ+ and y(δ−l(α)) ∈ Φ− by (C1’), so (C2’) implies that 〈δ−m(α), λ〉 >
0 for some k < m < l.

Now we show that w̃ = yωσ(y)−1 is indeed (J, y, σ)-fundamental, using the orig-
inal properties (C0)-(C2) of Proposition I.3.29: Recall that k(α, a0) = 1 for α ∈ Φ+

and k(α, a0) = 0 for α ∈ Φ− (see Remark I.3.24). For any α ∈ Φ and any alcove
a ⊆ V we have k(α, ωa) = k(α,wa) + 〈α, λ〉. So if β ∈ y(Φ+), say β = y(α), then

k(β, w̃a0) = k(α, y−1w̃a0) = k(α, ωσ(y)−1a0)

= k(α,wσ(y)−1a0) + 〈α, λ〉
= k(σ(y)w−1(α), a0) + 〈α, λ〉. (24)

Let us check on the conditions of Definition I.3.23(b):

(I) clearly holds, as y−1w̃σ(y) = ω ∈ ΩJ ⊆ W̃J .

(II) Let β ∈ y(Φ+ \ Φ+
J ), let α = y−1(β) ∈ Φ+ \ Φ+

J .
Suppose that β ∈ Φ+. In this case we have y(α) ∈ Φ+, so the properties (C1)
and (C2) for α imply that 〈α, λ〉 ≥ 0, and that 〈α, λ〉 > 0 if σ(y)w−1(α) ∈ Φ−.
From (24) it follows that in any case k(β, w̃a0) ≥ 1 = k(β, a0).
Now suppose that β ∈ Φ−, i.e. y(α) ∈ Φ−. By the properties (C0) and (C1)
for α we then have 〈α, λ〉 ≥ −1 and σ(y)w−1(α) ∈ Φ+ if 〈α, λ〉 = −1, so (24)
shows that k(β, w̃a0) ≥ 0 = k(β, a0).

(III) Let β ∈ y(Φ+
J ), let α = y−1(β) ∈ Φ+

J .
As y ∈ W J , we then have β ∈ Φ+, so k(β, a0) = 1. Since σ(y) ∈ W J

and w−1(α) lies in ΦJ , we have k(σ(y)w−1(α), a0) = k(w−1(α), a0). Since
lJ(ω) = 0, by the length formula we have 〈α, λ〉 = 1 if w−1(α) ∈ Φ−J and
〈α, λ〉 = 0 otherwise, so in any case k(β, w̃a0) = 1 = k(β, a0) by (24).

Now we prove (ii). Suppose that y ∈ W J with Ξ = {α ∈ Φ+ \ Φ+
J | y(α) ∈ Φ−}.

Then y satisfies the conditions (C0), (C1’) and (C2’) and therefore the element
yωσ(y)−1 is straight by Proposition I.3.29:

(C0) is clear by the definition of a σ-balanced element.

(C1’) Let α ∈ Φ+ \ Φ+
J . If 〈α, λ〉 = −1, then α ∈ Ξ and hence y(α) ∈ Φ−. If δ−1(α)

were in Ξ, then we would have

−1 = 〈δ−1(α), λ+ · · ·+ δi(λ)〉 = 〈α, δ(λ) + · · ·+ δi+1(λ)〉

for some i ≥ 0. But then 〈α, λ + · · · + δi+1(λ)〉 = −2, a contradiction to
the fact that ω is σ-balanced. Hence we must have δ−1(α) 6= Ξ and thus
y(δ−1(α)) ∈ Φ+.

(C2’) If y(α) ∈ Φ+ and y(δ−1(α)) ∈ Φ−, then δ−1(α) ∈ Ξ and α /∈ Ξ, so the same
argument as above shows that 〈α, λ〉 must be > 0.
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To prove the existence of such a y ∈W J , note that, since ω is σ-balanced, the set Ξ
is a disjoint union Ξ =

⋃
j≥0 Ξj where

Ξj := {α ∈ Φ+ \ Φ+
J | 〈α, λ〉 = · · · = 〈α, δj−1(λ)〉 = 0, 〈α, δj(λ) = −1},

α ∈ Ξ lies in Ξj if and only if j is minimal with the property that 〈α, λ+· · ·+δj(λ)〉 =

−1. Further, let n ∈ N such that δn = id, then Ξ =
⋃n−1
j=0 Ξj , compare Remark

I.3.27(ii).
We set L−1 := S, y−1 := 1, and proceed by induction to show that for i ≥ 0 there

exist Li ⊆ S, yi ∈ LiW J and µi ∈ X∗(T ) such that:

(1) µi = yi(δ
i(λ)) is Li−1-dominant,

(2) Li = {s ∈ Li−1 | s(µi) = µi} ⊆ Li−1,

(3) yi = uiyi−1 for some ui ∈ LiWLi−1
,

(4) {α ∈ Φ+ \ Φ+
J | yi(α) ∈ Φ−} =

⋃i
j=0 Ξj .

The element yn has then the demanded property.

Initial step: i = 0. Let µ0 ∈ X∗(T )dom be the unique element such that λ ∈W · µ0,
let L0 := Sµ0

. Let x ∈ WL0 be the unique element such that λ = x(µ0), then
x ∈ JWL0 by Lemma I.3.30. Set y0 := x−1, then (1)−(3) hold by construction, and
(4) holds by Lemma I.3.30 (we have y(α) ∈ Φ+ for α ∈ Φ+

J , since y ∈W J).

Induction step: Suppose that elements with the properties (1)−(4) are constructed
for all 0 ≤ j ≤ i − 1. Then repeated application of (2)+(3) implies that for each
0 ≤ j ≤ i− 1 we have yi−1 = uyj for some u ∈WLj and therefore

µj = u(µj) = uyj(δ
j(λ)) = yi−1(δj(λ)) for all 0 ≤ j ≤ i− 1. (*)

Set λi := yi−1(δi(λ)) and Ji := Li−1 ∩ yi−1J . Then λi is Ji-dominant: Let α ∈ Φ+
Ji

,

then α ∈ Φ+
Lj

for all k ≤ i− 1 by (2), so

〈α, λi〉
(2)
= 〈α, λi〉+

i−1∑
j=0

〈α, µj〉
(∗)
=

i∑
j=0

〈α, yi−1(δj(λ))〉

= 〈y−1
i−1(α),

i∑
j=0

δj(λ)〉 ≥ 0,

where the last inequality holds because y−1
i−1(α) ∈ Φ+

J and
∑i
j=0 δ

j(λ) is J-dominant,
see Remark I.3.27(ii).
Now define µi as the unique Li−1-dominant element inWLi−1

·λi and define Li ⊆ Li−1

as in (2), then by Lemma I.3.30 there is an x ∈ JiWLi
Li−1

such that λi = x(µi). Set

ui := x−1 and yi := uiyi−1, then yi ∈ LiW J by Corollary I.3.8 (since ui ∈ LiW Ji
Li−1

)

and yi(δ
i(λ)) = x−1(λi) = µi. Hence the triple (Li, yi, µi) satisfies (1)−(3). As for

(4), let α ∈ Φ+ \ Φ+
J such that yi(α) = uiyi−1(α) ∈ Φ−. Since yi−1 ∈ Li−1W and

ui ∈ LiWLi−1 , we are then in exactly one of the following two cases:
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• yi−1(α) ∈ Φ− \ Φ−Li−1
.

This is equivalent to yi−1(α) ∈ Φ−, which is the case if and only if α ∈
⋃i−1
j=0 Ξj

by (4) for yi−1.

• yi−1(α) ∈ Φ+
Li−1

and uiyi−1(α) ∈ Φ−Li−1
.

This is equivalent α ∈ Ξi: Note that we have 〈α, δj(λ)〉 = 〈yi−1(α), µj〉 for
each 0 ≤ j ≤ i − 1 by (*), so yi−1(α) ∈ ΦLi−1 if and only if 〈α, δj(λ)〉 = 0
for all 0 ≤ j ≤ i − 1, and in this case automatically yi−1(α) ∈ Φ+

Li−1
. Now

if yi−1(α) ∈ Φ+
Li−1

, then Lemma I.3.30 shows that uiyi−1(α) = x−1yi−1(α) ∈
Φ−Li−1

if and only if

−1 = 〈yi−1(α), x(µi)〉 = 〈yi−1(α), λi〉 = 〈α, δi(λ)〉.

This shows property (4) for yi, which concludes the induction step and thus the
proof of (ii).

We sum up our considerations in the following theorem (cf. Theorem I.B and
Proposition I.C from the introduction):

Theorem I.3.32. Let µ ∈ X∗(T )dom, let b ∈ B(G,µ).

(i) For w̃ ∈WεµW the following are equivalent:

(1) w̃ is a straight representative for b.

(2) w̃ ∈ b and w̃ is P -fundamental for some semistandard parabolic P .

(3) w̃ ∈ b and w̃ is (J, y, σ)-fundamental for some J ⊆ S and y ∈W .

(ii) WεµW contains a straight representative for b if and only if it contains a b-short
element which is σ-balanced. Further in this case there exists a ξ ∈ EO(G,µ)
such that ξ ⊆ b is K-fundamental and w̃ξ is straight.

Proof. We have dicussed the implications (3) ⇒ (2) ⇒ (1) in the previous subsec-
tion. The implication (1)⇒ (3) follows from Lemma I.3.28 and Proposition I.3.31(i),
with J = Jb the type of b. The equivalence in (ii) follows from I.3.28 and Propo-
sition I.3.31(i)+(ii), the last statement is a consequence of Lemma I.3.28 and the
considerations in the last subsection.

Corollary I.3.33. Let b ∈ B(G), then there exists a σ-balanced b-short element in

W̃ . If all b-short elements lie in the same σ-orbit then all of them are σ-balanced.

Proof. By ([He2], Thm. 3.5.) there exists a straight representative for b in W̃ , so by
Theorem I.3.32(ii) there exists a σ-balanced element. On the other hand it is clear
that a b-short element ωb is σ-balanced if and only if σ(ωb) is σ-balanced.

If G is split over OF then for every b ∈ B(G) there is a unique b-short element in

W̃ (see I.2.14) so the last corollary asserts that in this case all b-short elements are
σ-balanced. Thus the appearance of ”unbalanced” b-short elements, as for example
in the Hilbert-Blumenthal case discussed in Section I.4.2.2 below, is a phenomenon
which only occurs in case of a nontrivial σ-action on W̃ . Note that we gave an
indirect proof of Corollary I.3.33, using the existence of straight elements. It would
be favourable to find a direct proof using Definition I.3.26.

We conclude with a few comments on the minuscule case:
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(1) Suppose that G is split over OF . Let µ ∈ X∗(T )dom be minuscule, let b ∈
B(G,µ). Then the unique b-short element lies in WεµW : This follows from
Proposition I.3.5 and I.3.2.4(a). As observed above, this b-short element is au-
tomatically σ-balanced. Therefore by Theorem I.3.32(ii) in this case WεµW
always contains a straight (thus in particular I-fundamental) representative for
b, which was already observed in ([VW], Prop. 9.9.).

(2) It follows from the description of ΩJ for J ⊆ S in (18) that Theorem I.3.32 also
implies the following criterion for the existence of straight elements.

Criterion I.3.34. Let µ ∈ X∗(T )dom be minuscule, let b ∈ B(G,µ), let J := Jb
be the type of b. The following are equivalent:

(i) There exists a straight representative of b in WεµW .

(ii) There exists a J-dominant element λ ∈ W · µ such that ελw0,Jλw0 is a
σ-balanced b-short element.

The condition of (ii) can be made very explicit and comes down to combinatorial
questions in many situations, for example if G is a scalar restriction of GLn as
considered in Section I.4. Concrete examples suggest that these combinatorial
questions might be solvable, but unfortunately we were not able to find a proof
of criterion (ii) for an interesting family of groups. See also Remark I.4.14.

(3) In ([VW], Thm. 9.18.) the authors show that for a group which arises from a
PEL-datum as described in Section II.3 the following holds: If µ ∈ X∗(T )dom is
minuscule and b ∈ B(G,µ), then there is a possibly different minuscule cochar-
acter µ′ ∈ X∗(T )dom such that Wεµ

′
W contains a P -fundamental (hence also

a straight) element. It might be interesting to try and show this property in a
more general situation, we did not consider this question.

I.3.5 The basic and the µ-ordinary case

Throughout this subsection we fix an element µ ∈ X∗(T )dom. As explained in Section
I.3.1.1, the set B(G,µ) contains the unique maximal element [εµ] with respect to �.
We also denote this element by bµ−ord and call it the µ-ordinary element of B(G,µ).
This notion is consistent with the corresponding definition for Shimura varieties in
Chapter II in the case that µ arises from a Shimura datum. Also, B(G,µ) contains a
unique basic element, which is the unique minimal element in B(G,µ) with respect
to �. We denote this element by bbas. In this subsection we discuss Problem I.3.2
for these special σ-conjugacy classes.

I.3.5.1 The basic case

Suppose that b = bbas ∈ B(G,µ) is the basic element. In the case that G is semisim-
ple the intersections between I-double cosets and b have then been investigated in
[GHN]. Here the authors give combinatorial criteria in terms of W̃ and σ for the
emptyness and nonemptyness of the intersection ([GHN], Prop. 3.6.4., Thm. 4.4.7.),
and also some variants under additional conditions. We note a consequence for
EO-classes, which is particularly easy to check:

Criterion I.3.35. Suppose that G is semisimple, and that µ is not central in G. Let
ξ ∈ EO(G,µ), let w ∈ Sopp

µ W be the unique element such that τµw ∈ ξ (see Section
I.2.6).
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(1) If the Dynkin diagram of G is σ-connected and xµw ∈
⋃
J(S,σ(J)=JWJ , then

ξ ∩ b = ∅.

(2) If τµw lies in the shrunken Weyl chambers and xµw ∈ W \
⋃
J(S,σ(J)=JWJ ,

then ξ ∩ b 6= ∅.

Here the first condition in (1) can also be put as follows: Let G1×· · ·×Gl be the
decomposition of Gad

L into simple factors. Then there is no strict subset {i1, . . . , ik}
such that Gi1 × · · · ×Gik is σ-stable. In (2), an element w̃ ∈ W̃ is said to lie in the
shrunken Weyl chambers if k(α, w̃a0) 6= k(α, a0) for every α ∈ Φ, where k(α, ·) is as
in Definition I.3.23.

Criterion I.3.35 is derived from the results of [GHN] as follows: We have l(τµw) =
l(w̃ξ), therefore ξ ∩ b 6= ∅ ⇐⇒ IτµwI ∩ b 6= ∅ by Corollary I.3.14 and (13). The

element τµ lies in SW̃S and w lies in Sopp
µ W , where Sopp

µ = S∩τ−1
µ Sτµ, which implies

that τµw ∈ SW̃ by a variant of Proposition I.3.7 for the quasi-Coxeter group W̃ . It
follows that the element ηδ(τµw) defined in ([GHN], §3.6.) is given by σ−1(xµw).
The conditions on xµw in (1), (2) are unchanged by the σ-action. So (1) follows
from ([GHN], Prop. 3.6.4.), where the additional condition on Newton vectors in
this proposition is satisfied because µ is not central, and (2) follows from (loc. cit.
Prop. 4.4.9.).

Unfortunately, the criterion (2) is of little use in the case of special interest where
µ is minuscule: In this case the only element of the form εµw for w ∈W lying in the
shrunken Weyl chambers is εµw0,Sµ , for all other elements of εµw one has to apply
the criterion from ([GHN], Thm. 4.4.7.).

Now let G be arbitrary again, and consider the unique minimal element ξmin =
[[τµ]] ∈ EO(G,µ) with respect to the closure relation on EO(G,µ). It has the
following properties:

Remark I.3.36.

(1) If µ is minuscule, then ξmin ⊆ bbas is K-fundamental.

(2) In general, ξmin ∩ bbas may be empty.

Property (1) was shown in ([VW], Prop. 9.17.). With our preparations the proof
is very simple: If µ is dominant and minuscule then τµ ∈ Ω, so τµ is straight (see
Example I.3.21) and therefore I-fundamental (Proposition I.3.22).

We give an example of a case where ξmin ∩ bbas = ∅: Let G = SL3,OF , let (T,B)
be the torus of diagonal matrices and Borel subgroup of upper triangular matrices.
In this case, Beazley has determined the intersections between σ-conjugacy classes
and I-double cosets in [Be] (but note that the author uses a different convention on
Newton polygons and that the Iwahori group considered there is the group Iopp =
w0Iw0 according to our notation). Let µ = (2, 1,−3) ∈ X∗(T ) ∼= {µ ∈ Z3 | µ1 +
µ2 + µ3 = 0}. Then we have Sµ = ∅ and hence τµ = ε(2,1,−3)w0. In this case
the basic element in B(G,µ) is also the unique basic element in B(G) (as SL3 is
simply connected), which corresponds to the Newton polygon (0, 0, 0). Using our
notation, the results of [Be] show that IτµI intersects exactly the σ-conjugacy classes
corresponding to the Newton polygons ν with (1,−1/2,−1/2) � ν � (1, 1,−2), in
particular IτµI does not intersect bbas.
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Remark I.3.37. In certain cases the structure of KεµK∩bbas determines the relation
between σ-conjugacy classes and Ekedahl-Oort classes: In [GH] the authors provide
a list of cases with semisimple G and minuscule µ for which this ”basic locus” is equal
to a union of EO-classes whose standard representatives are σ-Coxeter elements (see
[GH] §5.1.). In these cases, all Ekedahl-Oort stata which do not lie in bbas can be
shown to be K-fundamental ([GH], Thm. 5.2.1. resp. §6.1.).

I.3.5.2 The µ-ordinary case

The aim or this paragraph is to prove the following proposition, which gives a com-
plete answer to Problem I.3.2 for the maximal elements bµ−ord and ξmax and shows
Theorem I.D from the introduction.

Proposition I.3.38. Let µ ∈ X∗(T )dom, then for g ∈ G(L) the following are equiv-
alent:

(i) g ∈ KεµK ∩ [εµ],

(ii) g ∈ K ·σ εµ,

(iii) g ∈ [[εµ]].

In other words, we have the equalities [εµ] ∩KεµK = [[εµ]] = K ·σ εµ.

Remark I.3.39. Proposition I.3.38 should be understood as a generalization of ([Mo2],
Thm. 1.3.7. resp. Thm. 3.2.7.): If G arises from a PEL-type Shimura datum, then
µ is minuscule, and the element εµ ∈ G(L) takes the place of the p-divisible group
Xord defined in [Mo2].

Corollary I.3.40 (cf. Theorem I.D). Let µ ∈ X∗(T )ord, let ξmax ∈ EO(G,µ) be the
unique maximal element with respect to �. Then ξmax ⊆ bµ−ord is K-fundamental,
and ξmax = K · εµ = KεµK ∩ bµ−ord. Consequently we have

ξ ∩ bµ−ord = ∅ for all ξ ∈ EO(G,µ) \ {ξmax},
ξmax ∩ b = ∅ for all b ∈ B(G,µ) \ bµ−ord.

Proof. We have the equality bµ−ord = [εµ]. On the other hand, ξmax = [[τµwmax]]
for wmax = w0w0,Jµ , see Section I.3.1.1. Since τµ = εµw0,Sµw0, we have

[[τµwmax]] = [[εµw0,Sµw0,Jµ ]] = [[w0,Sµε
µσ(w0,Sµ)−1]] = [[εµ]],

and everything follows from Proposition I.3.38.

We will prove Proposition I.3.38 throughout the rest of the paragraph. Of course,
the implications (ii) ⇒ (i) and (ii) ⇒ (iii) are trivial. The implication (iii) ⇒ (ii)

follows from the fact that εµ ∈ W̃ is straight (see Example I.3.21) and thus I-
fundamental.

To show the remaining implication we will use the Hodge-Newton decomposition
for affine Deligne-Lusztig sets in the affine Grassmannian, which was first formulated
for unramified groups by Kottwitz and later generalized by Mantovan and Viehmann.
We will only need the former mentioned version. Let us recall the setup (cf. [Ko4],
§4.1.):
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Let λ ∈ X∗(T ) be a cocharacter (which is usually taken to be dominant) and let
g0 ∈ G(L), then the affine Deligne-Lusztig set in the affine Grassmannian associated
to these elements is defined as

XG
λ (g0) := {g ∈ G(L)/K | g−1g0σ(g) ∈ KελK}.

Let J ⊆ S such that σ(J) = J , let MJ ⊆ G be the corresponding standard Levi
subgroup of G. Then we have the Newton map and Kottwitz map for MJ

νMJ
: B(MJ) −→ (X∗(T )Q/WJ)〈σ〉, κMJ

: B(MJ) −→ π1(MJ)〈σ〉.

For every λ ∈ X∗(T ) and m0 ∈MJ(L) there is the analogous Deligne-Lusztig set

XMJ

λ (m0) = {m ∈MJ(L)/MJ(O) | m−1m0σ(m) ∈MJ(O)εµMJ(O)},

and a natural map XMJ

λ (m0)→ XG
λ (m0), which is clearly injective.

Recall that V = X∗(T )R carries compatible actions of W and of σ. Let VJ ⊆ V
be the subspace of elements which are invariant under the action of WJ and σ, and
let

V +
J := {v ∈ VJ | 〈α, v〉 > 0 for all α ∈ Φ+ \ Φ+

J }.

We fix an n ∈ N such that σn acts as the identity on V . The composition of the two
maps

v 7−→ 1

n

n−1∑
i=0

σi(v), v 7−→ 1

|WJ |
∑
w∈WJ

w(v)

gives a projection map V → VJ . The restiction of this map to X∗(T ) factors via
π1(MJ)〈σ〉, let pJ : π1(MJ)〈σ〉 → VJ be the resulting map and define

π1(MJ)+
〈σ〉 := {x ∈ π1(MJ)〈σ〉 | pJ(x) ∈ V +

J }.

Proposition I.3.41 ([Ko4], Thm. 4.1.). Let λ ∈ X∗(T ) be G-dominant, let m0 ∈
M(L) such that [m0]MJ

is basic in B(MJ). If κMJ
([m0]MJ

) equals the image of λ
in π1(MJ)〈σ〉 and κMJ

([m0]MJ
) ∈ π1(MJ)+

〈σ〉, then the natural map XMJ

λ (m0) ↪→
XG
λ (b0) is an isomorphism.

Now we show the implication (i) ⇒ (ii) of Proposition I.3.38: Consider an ele-
ment g ∈ [εµ] ∩KεµK. Then g = h−1εµσ(h) for some h ∈ G(L), we need to show
that we may replace h by some element of K. By definition, h lies in the affine
Deligne-Lusztig set XG

µ (εµ).
Recall that the dominant Newton vector of the σ-conjugacy class [εµ] is given as

µ̄ =
1

n

n−1∑
i=0

σi(µ) ∈ X∗(T )Q, (25)

where as before n ∈ N is chosen such that σn acts as the identity (cf. Section
I.3.1.1). Let J := {s ∈ S | s(µ̄) = µ̄}, then the corresponding Levi subgroup is
MJ = CentG(µ̄) := CentG(n · µ̄) ⊆ G. (J is the type of [εµ] in the sense of Definition
I.2.9.)

We claim that εµ is central in MJ : Indeed, we have

Z(MJ) =
⋂
α∈ΦJ

ker(α) ⊆ T



I.3. RELATIONS BETWEEN THE DECOMPOSITIONS 45

(see [SGA3], Exp. XXII, Cor. 4.1.6.). Let α ∈ Φ+
J . By definition, the cocharacter

n · µ̄ maps to the center of MJ , so we find that

0 = 〈α, n · µ̄〉 =

n−1∑
i=0

〈α, σi(µ)〉.

Since σ acts on the set of dominant cocharacters, every summand in the upper
equation is nonnegative, so they are all equal to zero. In particular, 〈α, µ〉 = 0 (for
every α ∈ Φ+

J ), which implies that µ is central in MJ as well.

Next, note that the pair (µ, εµ) satisfies the conditions of the Hodge-Newton
decomposition in Proposition I.3.41: εµ lies in MJ(L), and the J-dominant Newton
vector of [εµ]MJ

is also given by the formula (25), so it is equal to µ̄, which means
that [εµ]MJ

is basic in B(MJ). Clearly µ and [εµ]MJ
map to the same element in

π1(MJ)〈σ〉. Further, the image of this element in VJ under pJ is the projection of

µ ∈ V to VJ , which is again equal to µ̄, and this lies in V +
J by definition of J .

We have therefore the Hodge-Newton decomposition XMJ
µ (εµ) ∼= XG

µ (εµ), so
there is an element m ∈MJ(L) such that

mK = hK and m−1εµσ(m) ∈MJ(O)εµMJ(O).

Since εµ commutes with every element of MJ(L), the last equation implies that
m−1σ(m) ∈ MJ(O). As MJ is a connected reductive group over O, Lang’s Theo-
rem in the form of Corollary I.2.6 implies that there is an m′ ∈ MJ(O) such that
(m′)−1σ(m′) = m−1σ(m). Let c ∈ K such that h = mc, then altogether we have

g = h−1εµσ(h) = c−1(m−1εµσ(m))σ(c)

= c−1(m−1σ(m)εµ)σ(c)

= c−1((m′)−1σ(m′)εµ)σ(c)

= c−1(m′)−1εµσ(m′)σ(c) ∈ K ·σ εµ,

which was to be shown. This concludes the proof of Proposition I.3.38. �

I.3.6 Two examples

In simple examples the preceeding results allow to determine the intersection be-
haviour of σ-conjugacy classes and Ekedahl-Oort classes effectively. The GL2-case
is well-known, the example of GU(2, 3) seems to be new.

I.3.6.1 The case G = GL2

Let G = GL2,OF . In this simple case we determine the intersection between σ-
conjugacy classes and EO-classes, and also between σ-conjugacy classes and I-double
cosets. This easy example will play a crucial role in Section I.4.2.

We choose the usual Borel pair of diagonal matrices and upper triangular matrices
T ⊆ B ⊆ G. Then we have the identifications X∗(T ) ∼= Z2 and W = {1, s} ∼= Z/2Z,
and a cocharacter µ = (a, b) ∈ Z is dominant if and only if a ≥ b. As GL2 is split
over OF , the σ-operation is trivial.
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The σ-conjugacy classes in GL2(L) are completely determined by their Newton
polygons (see Example I.2.10), we identify

B(G) = {ν = (ν1, ν2) | ν1, ν2 ∈ Z, ν1 > ν2} ∪ {ν = (ν1, ν2) | ν1 = ν2 ∈
1

2
Z},

where the second set corresponds to the set of basic elements. We write bν for the
class corresponding to ν = (ν1, ν2). Then we have bν � bν′ if and only ν � ν′, if and
only ν1 + ν2 = ν′1 + ν′2 and ν1 ≤ ν′1.

Let µ = (a, b) ∈ X∗(T ) be dominant, then

B(G,µ) = {ν ∈ B(G) | a ≥ ν1 > ν2 ≥ b, ν1 + ν2 = a+ b} ∪ {
(
a+ b

2
,
a+ b

2

)
},

we have bµ−ord = bµ, and bbas corresponds to (a+b
2 , a+b

2 ).

σ-conjugacy classes and EO-classes Let µ = (a, b) ∈ X∗(T ) be dominant.
Then we are in one of the following cases:

(1) a = b.
This is the trivial case where µ is central in G. In this case Jµ = Sµ = W ,
τµ = εµ and therefore EO(G,µ) = {[[εµ]]}, and B(G,µ) consist only of the
element [εµ] = bµ = b(a,a). We have

KεµK = [[εµ]] = bµ ∩KεµK = K ·σ εµ.

(2) a > b.
In this case Jµ = Sµ = ∅, τµ = εµs, and we have EO(G,µ) = {[[τµ]], [[εµ]]}, so
KεµK = [[τµ]] ∪ [[εµ]]. Corollary I.3.40 shows that

[[εµ]] = KεµK ∩ bµ = K ·σ εµ, [[τµ]] ∩ bν 6= ∅ ⇐⇒ ν ∈ B(G,µ) \ {µ}.

σ-conjugacy classes and Iwahori double cosets Let us give an explicit de-
scription of the product W̃ = WaoΩ: The affine Weyl group is generated by s ∈W
and the affine reflection sa = ε(1,−1)s, any element in Wa is of the form ssas · · ·
or sassa · · · . The group Ω is isomorphic to Z, and the element τ := ε(1,0)s is a
generating element. We have the relations

sas = ε(1,−1), τ2 = ε(1,1), τs = ε(1,0), τsτ−1 = sa, τsaτ
−1 = s. (26)

We now reobtain the intersection properties of I-double cosets and σ-conjugacy
classes (see [Reu1], §2.3.). They are given as follows:

Example I.3.42. Let w̃ ∈ W̃ , write w̃ = waτ
d for wa ∈Wa and d ∈ Z.

(1) If l(wa) = 0, then w̃ = τd ∈ Ω is I-fundamental (see Example I.3.21), and we
have

Iw̃I = I ·σ w̃ ⊆ bν , where ν =

(
d

2
,
d

2

)
.

(2) If l(wa) > 0 and d+ l(wa) is even, then w̃ is I-fundamental and

Iw̃I = I ·σ w̃ ⊆ bν , where ν =

(
d+ l(wa)

2
,
d− l(wa)

2

)
.
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(3) If l(wa) > 0 and d+ l(wa) is odd, then

Iw̃I ∩ bν 6= ∅ ⇐⇒ ν �
(
d+ l(wa)− 1

2
,
d− l(wa) + 1

2

)
.

To see this, note that all the properties involved remain unchanged under con-
jugation by τ (which is the same as σ-conjugation by τ in this case), so by (26) we
may assume that wa = sassa · · · . Under this assumption we calculate the element
w̃ using the relations (26):

l(wa) = 0 =⇒ w̃ ∈ Ω, w̃2 = τ2d = ε(d,d),

l(wa) = 2m > 0, d = 2n =⇒ w̃ = (sas)
mτ2n = ε(n+m,n−m),

l(wa) = 2m+ 1, d = 2n+ 1 =⇒ w̃ = (sas)
msaττ

2n = ε(n+m+1,n−m),

l(wa) = 2m > 0, d = 2n+ 1 =⇒ w̃ = (sas)
mτ2nτ = ε(n+m+1,n−m) · s,

l(wa) = 2m+ 1, d = 2n =⇒ w̃ = (sas)
msaτ

2n = ε(n+m+1,n−m−1) · s.

So case (1) is clear, and the other cases may be derived from the above results on EO-
classes, using Proposition I.2.17(ii) in the form of (13): If l(wa) > 0. then w̃ is the
standard representative for its EO-class, and therefore [[w̃]]∩ b 6= ∅ ⇔ Iw̃I ∩ b 6= ∅
for any b ∈ B(G), further we know that the elements of the form εµ for dominant µ
are I-fundamental by Example I.3.21.

I.3.6.2 The case G = GU(2, 3)

Now we consider the example of a unitary group. These unitary groups arise from
a PEL-Datum as in Section II.3, where B = E is an imaginary quadratic extension
of Q such that p is inert in E, and where ∗ is the nontrivial automorphism of E over
Q. The group GO is then isomorpic to GLn,O ×Gm,O, and σ acts trivially on the
Gm,O-factor, so it can often be neglected in arguments. In this case we have

X∗(T ) ∼= Zn × Z, (W,S) ∼= (Sn, {s12, . . . , sn−1n}),

where sii+1 is the transposition (i i+ 1), and the σ-action is given as

σ((x1, . . . , xn; c)) = (c− xn, . . . , c− x1; c), σ(w) = w0ww0

(here the natural Borel pair of diagonal and upper triangular matrices is not σ-
invariant). Consequently,

N (G) ∼={(x, c) ∈ Qn ×Q | x1 ≥ · · · ≥ xn, xi + xn+1−i = c},

π1(G)〈σ〉 =

{
Z/2Z× Z, n even,

{0} × Z, n odd.

We now turn to the special case that n = 5, and that µ is the minuscule cochar-
acter given as (12, 03; 1) ∈ Z5 × Z. In this case we can describe the intersections of
σ-conjugacy classes and Ekedahl-Oort classes completely:

We have π1(G)〈σ〉 = 0, so an element b ∈ B(G,µ) can be identified with its
dominant Newton vector. Further, all Newton vectors will be of the form (ν; 1) for
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ν ∈ Q5, we can omit the second entry. With these conventions the set B(G,µ)
consists of the elements

νbas =
(
(1/2)5

)
, ν1 =

(
(3/4)2, (1/2), (1/4)2

)
,

ν2 =
(
1, (1/2)3, 0

)
, νµ−ord =

(
12, 1/2, 02

)
,

it is totally ordered: We have bbas ≺ b1 ≺ b2 ≺ bµ−ord for the corresponding σ-
conjugacy classes.

We have Sµ = {s12, s34, s45}, therefore Jµ = σ(Sµ) = {s12, s23, s45}. The well-
known Coxeter structure of the symmetric group W = S5 shows that

W Jµ = {π ∈ S5 | π(1) < π(2) < π(3), π(4) < π(5)} = {πij | 1 ≤ i < j ≤ 5},

where πij is determined by the property that π(4) = i and π(5) = j, so for example
π45 = id. We have l(πij) = 9− (i+ j) and πkl ≤ πij ⇔ k ≥ i and l ≥ j, the Bruhat
order on W Jµ is thus given as follows (to be read from left to right):

π15

π14 π25

π12 π13 π24 π35 π45

π23 π34

Here elements in the same column have equal length. Every relation with respect
to the Bruhat order is a relation with respect to the �-order, further we know that
two elements of equal length cannot be related under � if they are not equal (see
Section I.3.1.1).

Set ξij := [[τµπij ]] for 1 ≤ i < j ≤ 5. To calculate the map Rep: EO(G,µ) →
B(G,µ) in this case, notice that σ2 = id. Furthermore σ(µ) = (13, 02; 1), and for
each πij ∈W Jµ we have the relation

τµπijσ(τµπij) = ελ(xµπijw0)2, where λ = µ+ (xµπij)(σ(µ)),

as explained in Section I.2.5 some power of this element will determine the dominant
Newton vector of τµπij . Easy calculations now show that the map is given as follows:

ξ ξ12 ξ13 ξ14 ξ15 ξ23 ξ24 ξ25 ξ34 ξ35 ξ45

Rep(ξ) νµ−ord ν2 ν2 νbas νbas ν1 νbas νbas νbas νbas

We can now describe intersections of the ξij with the σ-conjugacy classes in B(G,µ).

(1) It follows from Corollary I.3.14(i) in the form of Section I.3.2.4 that the classes
ξ45, ξ35, ξ34, ξ25 and ξ15 are contained in bbas. The element τµ = τµπ45 is straight.

(2) We have 〈2ρ, ν1〉 = 3 = l(τµπ24). Therefore τµπ24 is straight and thus ξ24 is
contained in b1.
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(3) The variant of Corollary I.3.14(ii) from Section I.3.2.4 shows that the generic
σ-conjugacy class in ξ23 is equal to b1. Therefore ξ23 intersects bbas and b1
nontrivially.

(4) We have 〈2ρ, ν2〉 = 4 = l(τµπ14). Therefore τµπ14 is straight and ξ14 is contained
in b2. Furthermore we have τµπ13 ∈ b2, on the other hand l(τµπ13) = 5, thus the

length of every element in the W̃ -σ-conjugacy class of τµπ13 will be odd and ≥ 4.
So τµπ13 is an element of minimal length in its σ-conjugacy class and therefore
ξ13 is contained in b2 by Criterion I.3.19.

(5) We have 〈2ρ, νµ−ord〉 = 6, so τµπ12 is straight and ξ12 is contained in bµ−ord. Of
course we already knew this from Section I.3.5.2.

In particular, we see that every σ-conjugacy class contains a K-fundamental EO-class
whose standard representative is straight.

Remark I.3.43. We did not give a description of the complete � - order, since the
knowledge of the Bruhat order suffices to determine the intersections. In fact, an ex-
plicit computation using formula (11) shows that in addition to the Bruhat relations
we have π34 � π15.

I.4 Subgroups of scalar restrictions

In this section we consider the case that the group G sits inside an exact sequence

1 −→ G −→ ResOF ′/OF G0,OF ′ −→ D −→ 1, (27)

where F ′|F is a finite unramified extension, G0 is a reductive group over OF , and D
is commutative. In this case it is possible to relate the intersection problem I.3.2 for
G to a similar problem for G0, see Propositions I.4.3 and I.4.4 below. This is useful if
the group G0 better understood, for example if it is split. Situations like this arise in
the context of PEL-Shimura varieties (see [VW], §2). We will treat the particularly
simple ”Hilbert-Blumenthal” case (where G0 = GL2) using this method.

I.4.1 Two reduction steps

In the situation of (27) the question of intersections between σ-conjugacy classes and
I-double cosets in G(L) is often equivalent to a corresponding problem in G0(L).
We will explain this in two steps: In the case that G = ResOF ′/OF G0,OF ′ we reduce
completely to G0. Then we deal with the case that F ′ = F , i.e. that G ⊆ G0 is
normal and the quotient is commutative. In this case the reduction step works up
to two conditions, which can be checked in our application.

I.4.1.1 Scalar restrictions and the ”Norm map”

In this subsection we suppose that G = ResOF ′/OF G0,OF ′ for some reductive group
G0 over OF , where OF ′ is the valuation ring of an unramified extension F ′|F of
finite degree d. Over O, the group G then decomposes:

GO =
∏
γ∈Γ

G0,O,
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where Γ := HomF (F ′, L) = HomOF (OF ′ ,O). The Frobenius σ acts simultanously
on Γ and on the factors of the product. The set Γ is of order d = [F ′ : F ] and
its σ-action is transitive. We identify Γ ' Z/dZ (not canonically) such that for
g = (g(i))i∈Z/dZ ∈

∏
i∈Z/dZG0(L) we have σ(g) = (σ(g(i+1)))i∈Z/dZ.

We consider the σd-conjugacy classes B(G0, σ
d) in G0(L). Since σd is the Frobe-

nius automorphism of L over F ′, the set B(G, σd) is classified by the maps

νG0,σd : B(G0, σ
d)→ N (G0, σ

d), κG0,σd : B(G0, σ
d)→ π1(G0)〈σd〉,

defined as in Section I.2.5 with σ replaced by σd. We have a ”Norm map” (compare
[AC] §2, where this map is used to study twisted orbital integrals):

Ñ :
∏

i∈Z/dZ

G0(L) −→ G0(L). (28)

g = (g(i))i∈Z/dZ 7−→ pr(0)(gσ(g) · · ·σd−1(g))

= g(0)σ(g(1)) · · ·σd−1(g(d−1)).

For g, h ∈ G(L) =
∏

Z/dZG0(L) we have Ñ(hgσ(h)−1) = h(0)Ñ(g)σd(h(0))−1, thus

Ñ induces a map

N : B(G) −→ B(G0, σ
d), [g] 7−→ [Ñ(g)]σd . (29)

Let (T0, B0) be a Borel pair for G0 over OF , let (W0, S0) and I0 be the associated
Weyl and Iwahori group. Let (T,B) be the corresponding Borel pair for G obtained
by scalar restriction, then as above we have decompositions

TO =
∏
γ∈Γ

T0,O, BO =
∏
γ∈Γ

B0,O,

and analogously for the data X∗(T ), (W,S), W̃ and I.

We study the map N via the classification of σ-conjugacy classes: By our iden-
tifications we have

N (G) = (
∏

i∈Z/dZ

(X∗(T0)Q/W0))〈σ〉, π1(G) =
∏

i∈Z/dZ

π1(G0),

where σ acts on the products by σ((v(i))i∈Z/dZ) = (σ(v(i+1)))i∈Z/dZ.

Lemma I.4.1. We have the commutative diagrams

B(G)
N //

νG

��

B(G0, σ
r)

ν
G0,σ

d

��
N (G) �

� d·pr(0) // N (G0, σ
d),

B(G)
N //

κG

��

B(G0, σ
r)

κ
G0,σ

d

��
π1(G)〈σ〉

' // π1(G0)〈σd〉,

where the isomorphism in the second diagram is induced by the map

ϕ :
∏

i∈Z/dZ

π1(G0) −→ π1(G0), x 7−→
d−1∑
i=0

σi(x(i)).

The map N : B(G)→ B(G0, σ
d) is a bijection.
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Proof. The lower horizontal map in the first diagram is well-defined and injective:
If an element v = (v(i))i∈Z/dZ ∈ X∗(T )Q/W =

∏
i∈Z/dZ(X∗(T0)Q/W0) is σ-invariant,

then v(i) = σ−i(v(0)) for each i ∈ Z/dZ, and in particular v(0) is invariant under σd.

To show the commutativity of the first diagram, we may work with representa-
tives in W̃ : Let b ∈ B(G), then by Corollary I.2.15 we have b = [w̃] for some w̃ ∈ W̃ .

Choose r ∈ N such that σr acts trivially on W̃ and νw̃ = 1
r · (w̃σ(w̃) · · ·σr−1(w̃))

(see Definition I.2.11). If we replace w̃ by xw̃σ(x)−1 for some x ∈ W , then νw̃ gets
replaced by x(νw̃), so we may further assume that νw̃ = νG(b), i.e. that

r · νG(b) = w̃σ(w̃) · · ·σr−1(w̃). (30)

Now by definition

N(b) = [Ñ(w̃)]σd = [pr(0)(w̃σ(w̃) · · ·σd−1(w̃))]σd ,

where the element Ñ(w̃) lies in W̃0, and (σd)r acts trivially on W̃0. Since (30) implies
that

rd · νG(b) =
(
w̃ · · ·σd−1(w̃)

)
σd
(
w̃ · · ·σd−1(w̃)

)
· · ·σ(r−1)d

(
w̃ · · ·σd−1(w̃)

)
and pr(0) commutes with σd, we see that

r(d · pr(0)(νG(b))) = Ñ(w̃)σd(Ñ(w̃)) · · ·σ(r−1)d(Ñ(w̃)).

The vector d ·pr(0)(νG(b)) is dominant, so it is the dominant Newton vector of N(b),
which shows the commutativity of the first diagram.

A standard argument shows that the lower horizontal map in the second diagram
is an isomorphism: Let x, z ∈

∏
i∈Z/dZ π1(G0), then ϕ(x+(z−σ(z))) = ϕ(x)+(z(0)−

σd(z(0))). So ϕ factors via π1(G)〈σ〉, the induced map is clearly surjective. To see
injectivity, note that every element of (

∏
i∈Z/dZ π1(G0))〈σ〉 has a representative x

such that x(i) = 0 if i 6= 0 (mod d). If two such elements x, y are mapped to the
same image in π1(G0)〈σd〉, then there is z0 ∈ π1(G0) such that y = x+ (z0−σd(z0)).

Define z ∈
∏
i∈Z/dZ π1(G0) by z(i) = σd−i(z0) for i = 1, . . . , d, then y = x+(z−σ(z)),

so x and y represent the same element in π1(G′)〈σ〉.

Now the commutativity of the second diagram follows by an argument similar to
the one above (but easier), using that X∗(T )→ π(G)〈σ〉 is surjective.

The two diagrams and the classification of σ-conjugacy classes (see Proposition I.2.8)

show that N is injective. But clearly it is also surjective, since Ñ : G(L)→ G0(L) is
surjective.

Remark I.4.2. The map N is an explicit realization of the Shapiro bijection B(G) '
B(G0, σ

d) for the group G0,OF ′ (see [Ko1], §1).

Proposition I.4.3. Let w̃ ∈ W̃ , w̃ = (w̃(i))i∈Z/dZ, let b ∈ B(G). Then

Iw̃I ∩ b 6= ∅ ⇐⇒ I0w̃
(0)I0σ(w̃(1))I0 · · · I0σd−1(w̃(d−1))I0 ∩N(b) 6= ∅.
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Proof. We have Ñ(Iw̃I) = I0w̃
(0)I0σ(w̃(1))I0 · · · I0σd−1(w̃(d−1))I0. If g ∈ Iw̃I ∩ b ⊆

G(L), then by definition Ñ(g) ∈ N(b) and Ñ(g) ∈ Ñ(Iw̃I), so the ”=⇒”-implication
is clear.

Conversely, suppose that I0w̃
(0)I0σ(w̃(1))I0 · · · I0σd−1(w̃(d−1))I0∩N(b) 6= ∅, then

there is g ∈ Iw̃I such that Ñ(g) ∈ N(b), and by Lemma I.4.1 this implies that [g] = b′

in B(G).

I.4.1.2 Subgroups with abelian quotients

Now suppose that G ⊆ G′ is a normal subgroup, where G′ is connected and reductive
over OF , such that the quotient G′/G is commutative. In this situation, by ([SGA3],
Exp. XXII, 6.3.1.) we have (G′)der ⊆ G. Let (T ′, B′) be a Borel pair of G′ defined
over OF , then

T := T ′ ∩G, B := B′ ∩G

are a maximal torus and a Borel subgroup of G (see loc.cit. Exp. XXII, 6.2.8.,
6.3.4.), defined over OF . Further, since by (loc.cit. Exp. XXII 6.2.1.) the natural
homomorphism rad(G′) → G′/(G′)der is surjective, the same holds for rad(G′) →
G′/G, and consequently we have a surjective homomorphism rad(G′)×G→ G′. In
particular this implies that Z(G) = Z(G′) ∩ G, and that the natural map Gad →
(G′)ad is an isomorphism.

We consider X∗(T ), (W,S), W̃ and I with respect to (T,B), and the correspond-
ing objects for G′ with respect to (T ′, B′). The equality Gad = (G′)ad implies that
the natural map gives an isomorphism (W,S) ∼= (W ′, S′), and that we have a canon-

ical bijection between Φ and (Φ′). Further we have natural embeddings W̃ ↪→ W̃ ′

and I ↪→ I ′, and all these maps are σ-equivariant.

Let B(G) → B(G′), b 7→ b′ be the natural map given by [g] 7→ [g′]′. For any

w̃ ∈ W̃ ⊆ W̃ ′ and b ∈ B(G) we have the trivial implication Iw̃I ∩ b 6= ∅ =⇒
I ′w̃I ′ ∩ b′ 6= ∅.

Proposition I.4.4. Suppose that the map rad(G′)(O)×T (O)→ T ′(O) is surjective.

Let w̃ ∈ W̃ ⊆ W̃ ′. If b ∈ B(G) such that κG(b) = κG([w̃]), then

Iw̃I ∩ b 6= ∅ ⇐⇒ I ′w̃I ′ ∩ b′ 6= ∅.

Proof. We only have to show the ”⇐=”-implication. Suppose that g′ ∈ I ′w̃I ′ ∩ b′.
By assumption, we have T ′(O) = T (O) ·rad(G′)(O). As for any root α ∈ Φ = Φ′ the
root subgroups Uα of G and G′ coincide, the Iwasawa decomposition (see Section
I.2.4) for I and I ′ implies that I ′ = I · rad(G′)(O), since further rad(G′) ⊆ Z(G′) we
therefore have

I ′w̃I ′ = Iw̃I · rad(G′)(O).

So we may write g′ = z′g for g ∈ Iw̃I and z′ ∈ rad(G′)(O). Since rad(G′) is a
torus defined over OF , by Lang’s Theorem in the form of Corollary I.2.6 there is
y′ ∈ rad(G′)(O) such that z′ = (y′)−1σ(y′), hence g = y′g′σ(y′)−1 (as y′ is central
in G).

Thus we have found g ∈ Iw̃I such that [g]′ = [g′]′ = b′ in B(G′). Now the natural
map N (G) → N (G′) is injective, which follows from the σ-equivariant embedding
X∗(T ) ↪→ X∗(T

′) and the equality W ∼= W ′, and both νG([g]) and νG(b) are mapped
to νG′(b

′), so we have νG([g]) = νG(b). But since g ∈ Iw̃I, by assumption we also
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have κG([g]) = κG([w̃]) = κG(b), so the classification of B(G) shows that [g] = b, i.e.
g ∈ Iw̃I ∩ b.

Remark I.4.5. Let us comment on the two conditions in the last proposition:

(1) Suppose that the map π1(G)〈σ〉 → π1(G′)〈σ〉 is injective. Since N (G)→ N (G′)
is always injective, it follows that in this case the map B(G)→ B(G′) is injective,
so that the condition on κG(b) may be dropped. This is not the case in general,
as the following example shows:

Let E|F be unramified with [E : F ] = 2 and T ′ = ResOE/OF Gm,OF . Let
c : T ′ → Gm,OF be the homomorphism given by the field norm a 7→ aσ(a) of E
over F , and let T := ker(c). Then T is a torus of dimension 1, and over O the
exact sequence 1→ T → T ′ → Gm → 1 identifies with

1 −→ Gm,O −→ Gm,O ×Gm,O −→ Gm,O −→ 1

x 7−→ (x, x−1)

(y, z) 7−→ yz

The map Z ∼= X∗(T )→ X∗(T
′) ∼= Z2 is thus given by λ 7→ (λ,−λ), the Frobenius

σ acts on the right hand side by exchanging the entries and on the left hand side
by λ 7→ −λ. So we have π1(T )〈σ〉 = Z/2Z, but the map π1(T )〈σ〉 → π1(T ′)〈σ〉 is
the zero map.

(2) The surjectivity of rad(G′)(O) × T (O) → T ′(O) is used in the proof of I.4.3 to

conclude that for any b ∈ B(G) and w̃ ∈ W̃ one has

I ′w̃I ′ ∩ b′ 6= ∅ =⇒ Iw̃I ∩ b′ 6= ∅.

This property does not seem to be automatic, although we do not know of an
example where it fails.

The map rad(G′)×T → T ′ is always surjective as a morphism of group schemes,
but it is in general not surjective on O-valued points: For example, let G′ =
GLn,OF and G = SLn,OF , and let T ′ be the subgroup of diagonal matrices. In
this case T ⊆ T ′ is the subtorus of elements of determinant 1, rad(G′) is the one-
dimensional torus of scalar matrices, and the map on O-valued points identifies
with O× × T (O)→ T ′(O), (a, t) 7→ a · t, which is not surjective if p divides n.

I.4.2 The Hilbert-Blumenthal case

We now restrict our attention to a particular simple case of the situation of the last
subsection: Let F ′|F be an unramified extension of finite degree d. Define G over
OF by the cartesian diagam

G //� _

��

Gm,OF� _
nat

��
ResOF ′/OF GL2,OF ′

Res(det) // ResOF ′/OF Gm,OF ′ ,

(31)

where the right hand embedding natGm,OF ↪→ ResOF ′/OF Gm,OF ′ is given by R× →
(R⊗OF OF ′)×, r 7→ r ⊗ 1. In other words, for any OF -algebra R by definition

G(R) = {g ∈ GL2(OF ′ ⊗OF R) | det(g) ∈ R×}.
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Groups of this type arise from a PEL-datum as in Section II.3, where B = E is a
totally real extension of Q such that p is inert in E, where ∗ is the identity on E,
and where V is a vector space of dimension two over E.

Let us check that G is a reductive group over OF : We have an exact sequence
1 → ResOF ′/OF SL2,OF ′ → G → Gm,OF → 1, where kernel and cokernel have
geometrically connected fibers overOF , thus the same is true forG. So it follows from
([SGA3], Exp. XXII, 6.3.3.) that G is reductive. We are then in the situation of (27):
By definition G is normal in ResOF ′/OF GL2,OF ′ , and the quotient is commutative.

I.4.2.1 Reduction to GL2

In GL2,OF we consider the Borel pair (T0, B0) of diagonal matrices and upper trian-
gular matrices. Following I.4.1.1 and I.4.1.2, we set accordingly

T = (ResOF ′/OF T0,OF ′ ) ∩ G, B = (ResOF ′/OF B0,OF ′ ) ∩ G.

Over O everything decomposes, we then have the identification

G(O) = {(g(i))i∈Z/dZ ∈
∏
Z/dZ

GL2(O) | det(g(i)) = const},

where σ((gi)i∈Z/dZ) = (σ(g(i+1)))i∈Z/dZ. Analogous decompositions hold for G(L),
and also for B and T . We identify X∗(T0) with Z2, then

X∗(T ) = {(µi)i∈Z/dZ ∈
∏
Z/dZ

Z2 | µ(i)
1 + µ

(i)
2 = const}.

For the Weyl group of G with respect to T we have W ∼=
∏

Z/dZW0, where W0 =

S2 = {1, s}, and W̃ ⊆ W̃0 is the subgroup of those elements whose translation parts
lie in X∗(T ). A cocharacter µ = (µ(i))i∈Z/dZ ∈ X∗(T ) is dominant if and only if

µ
(i)
1 ≥ µ

(i)
2 for all i ∈ Z/dZ. Since G0 = GL2,OF is split, the σ-action on X∗(T ), W

and W̃ is simply given by cyclic shift on the entries of (·)i∈Z/dZ.

The map N (G) → N (ResOF ′/OF GL2,OF ′ ) is a bijection: X∗(T )Q/W is the
image of the diagonal embedding X∗(T0)Q/W0 ↪→

∏
Z/dZ(X∗(T0)Q/W0), and this

image is exactly the set of σ-invariant elements in
∏

Z/dZ(X∗(T0)Q/W0). We identify

N (G) ∼= N (ResOF ′/OF GL2,OF ′ )
∼= X∗(T0)Q/W0

∼= {x ∈ Q2 | x1 ≥ x2}.

Similarly, the map π1(G) → π1(ResOF ′/OF GL2,OF ′ ) identifies with the diagonal
embedding Z ↪→

∏
Z/dZ Z, where σ acts trivially on the left hand side and by

cyclic shift on the right hand side. So we have π1(G)〈σ〉 ∼= Z, and π1(G)〈σ〉 →
π1(ResOF ′/OF GL2,OF ′ )〈σ〉 is injective. By the classification of σ-conjugacy classes,
the natural map B(G)→ B(ResOF ′/OF GL2,OF ′ ) is injective as well. Precomposing
it with the norm map from Section I.4.1.1 (for the group G0 = GLn,OF ) yields an
injective map N : B(G) → B(GL2, σ

d), which is induced by the restriction of the

map Ñ :
∏

Z/dZ GL2(L) → GL2(L) of (28) to G(L). Now we have the following
reduction lemma for G:

Lemma I.4.6. Let w̃ ∈ W̃ , let b ∈ B(G), then

Iw̃I ∩ b 6= ∅ ⇐⇒ I0w̃
(0)I0w̃

(1)I0 · · · I0w̃(d−1)I0 ∩N(b) 6= ∅.



I.4. SUBGROUPS OF SCALAR RESTRICTIONS 55

Proof. First, note that the statement is independent of the residue characteristic
char(k) = p: The product on the right hand side is a disjoint union of I0-double cosets

which is determined by the combinatorial structure of W̃0. So by Proposition I.3.4
the emptyness or nonemptyness of the intersections on both sides of the equivalence
depends only on the structure of W̃ and W̃0, the σ-action on W̃ , and the maps
W̃ → B(G) and W̃0 → B(GL2, σ

d), and all these are independent of p.
So we may assume without loss of generality that p 6= 2. By Proposition I.4.3 the

intersection on the right hand side is nonempty if and only if (
∏
i∈Z/dZ I0w̃

(i)I0)∩b 6=
∅ in

∏
Z/dZ GL2(L). Now we apply Proposition I.4.4 to G ⊆ ResOF ′/OF GL2,OF ′ :

We have seen above that the corresponding map of fundamental groups is injective,
so the condition κG([w̃]) = κG(b) can be neglected (Remark I.4.5(1)). As for the
second condition, we have

rad(ResOF ′/OF GL2,OF ′ )(O) =
∏
Z/dZ

rad(GL2)(O),

T (O) = {t ∈
∏

i∈Z/dZ

(O×)2 | t(i)1 t
(i)
2 = const} ⊆

∏
Z/dZ

(O×)2 = ResOF ′/OF T0,OF ′ (O),

and rad(GL2)(O) consists of the scalar matrices associated to O×. Since the map
O× → O×, a 7→ a2 is surjective for p ≥ 3 (which is not the case if p = 2), it follows
that

∏
Z/dZ(O×)2 = (

∏
Z/dZ rad(GL2)(O)) · T (O). So Proposition I.4.4 applies and

shows that  ∏
i∈Z/dZ

I0w̃
(i)I0

 ∩ b 6= ∅ ⇐⇒ Iw̃I ∩ b 6= ∅.

I.4.2.2 Study of the minuscule case

We still use the notation of the last subsection. We now consider the dominant
cocharacter µ ∈ X∗(T ) with µ(i) = (1, 0) ∈ X∗(T0) for all i ∈ Z/dZ. This is, up to
an element of X∗(rad(G)) which only changes the situation up to a shift of Newton
vectors, the unique dominant and minuscule element in X∗(T ). The main result of
this section gives a precise description of the intersections between EO-classes and
σ-conjugacy classes in KεµK, using Lemma I.4.6 and the detailed study of the GL2-
case in Section I.3.6.1.

We determine the sets EO(G,µ) and B(G,µ) in this case:

(I) Recall that W =
∏

Z/dZW0 =
∏

Z/dZ{1, s}. We have Sµ = Jµ = {1} ⊆ W , so

W Jµ = W and

τµ = εµw0 = (τ (i)
µ )i∈Z/dZ, τ (i)

µ = ε(1,0)s for all i ∈ Z/dZ.

The set EO(G,µ) thus consists of the classes [[τµw]], w ∈ W , the order �
coincides with the Bruhat order on W . As a partially ordered set, EO(G,µ)
is isomorphic to the power set of Z/dZ oredered by inclusion.

(II) As π1(G)〈σ〉 ∼= Z is torsion free, an element of B(G) is determined by its
dominant Newton point (see Proposition I.2.8). Recall the identification

N (G) ∼= N (ResOF ′/OF GL2,OF ′ )
∼= {x ∈ Q2 | x1 ≥ x2}.
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The partial order � on N (G) is given as x � x′ ⇔ x1 ≤ x′1, x1+x2 = x′1+x′2.
The cocharacter µ is σ-invariant, so we have µ̄ = µ = (1, 0) ∈ N (G).
Note that the classification of σd-conjugacy classes in GL2(L) is exactly the
same as for σ-conjugacy classes (since σd is the Frobenius of O over OF ′).
We use the convention of Section I.3.6.1 and identify elements of B(GL2, σ

d)
with their Newton polygons. By the first diagram in Lemma I.4.1, for any
b ∈ B(G) the element d · νG(b) ∈ N (GL2,OF , σ

d) is the Newton polygon of a
σd-conjugacy class of GL2(L) and has therefore integral break points. So the
possible Newton vectors of elements in B(G,µ) = {b ∈ B(G) | νG(b) � (1, 0)}
are

νm :=

(
m

d
,
d−m
d

)
, [d/2] + 1 ≤ m ≤ d; νbas :=

(
1

2
,

1

2

)
.

It is easy to see that all these lie in the image of νG (and it will also follow
from Corollary I.4.11 and the discussion of σ-balanced elements at the end of
the section). We write

B(G,µ) = {bm | [d/2] + 1 ≤ m ≤ d} ∪ {bd/2},

where νG(bm) = νm and bd/2 = bbas is the basic element in B(G,µ) with
νG(bd/2) = νbas. With this notation we have bm � bm′ if and only if m ≤ m′,
in particular � is a total order on B(G,µ).

To desribe the intersection pattern for ξ ∈ EO(G,µ) and b ∈ B(G,µ) we use the
following notation: By an interval in Z/dZ we mean a subset of the form

[i, i+ k − 1] := {i, i+ 1, . . . , i+ k − 1} ⊆ Z/dZ, 1 ≤ k ≤ d.

We then call k the length of the interval. We use the ”parity function”

par : Z −→ {0, 1}, par(a) =

{
0, a even

1, a odd.

Definition I.4.7. Let w ∈W =
∏

Z/dZW0.

(a) A gap γ of w is an interval γ = [i, i+ k − 1] ⊆ Z/dZ such that w(i) = w(i+1) =
· · · = w(i+k−1) = 1 and w(i−1) = w(i+k) = s.

(b) Let {γ1, . . . , γt} be the gaps of w, let kj ∈ {1, . . . , d− 1} be the length of γj . We
define

m(1) :=
d

2

m(w) := d−
t∑

j=1

[
kj + 1

2

]
= d−

t∑
j=1

kj + par(kj)

2
, w 6= 1. (32)

(c) For ξ = [[τµw]] ∈ EO(G,µ) we set m(ξ) := m(w).

Example I.4.8. Let d = 7, write w ∈W =
∏

Z/7ZW0 in the form w = (w(0), . . . , w(6)).

Then the element w = (1, s, 1, s, 1, s, 1) has two gaps of length 1 and one gap of length
2, and we have m(w) = 7− 3 = 4.
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Note that by definition the elements w = 1 and w = w0 have no gaps. In the
situation of (b) for w 6= 1 we have l(w) = d−

∑t
j=1 kj , so we may write uniformly

m(w) =
d+ l(w)

2
−

t∑
j=1

par(kj)

2
for all w ∈W, (33)

the sum being zero for w = 1.

Remark I.4.9. Our definition compares to the ones of Goren and Oort as follows:
In [GO] to each Ekedahl-Oort stratum the authors associate a ”type” τ ⊆ Z/dZ
(this is not to be confused with τµ or with the element τ ∈ W̃0 which will appear in
the proof of I.4.10), and a number λ(τ) (loc. cit. Def. 5.4.8.). Going through the
definitions, one sees that if the stratum is associated to ξ = [[τµw]] ∈ EO(G,µ) for
w = (w(i))i∈Z/dZ, then the type of ξ is given as τ = {i ∈ Z/dZ | w(i) = 1}, and λ(τ)
is equal to d−m(w).

Proposition I.4.10. Let G be given as in (31), let (T,B) be as in Section I.4.2.1.
Let µ = (1, 0)d ∈ X∗(T ). Let ξ ∈ EO(G,µ), write w̃ξ = τµw for w ∈W =

∏
Z/dZW0.

If w 6= 1, let {γ1, . . . , γt} be the gaps of w, let {k1, . . . , kt} be their lengths, let
m(ξ) = m(w) be as in (32). Then exactly one of the following cases applies:

(I) w = 1 or w 6= 1 and all kj (j = 1, . . . , t) are even. Then w̃ξ is straight, ξ is
K-fundamental (in the sense of Definition I.3.18) and

ξ = K ·σ τµw ⊆ bm(w).

(II) w 6= 1 and there is some j ∈ {1, . . . , t} such that kj is odd. Then for b ∈
B(G,µ) we have

ξ ∩ b 6= ∅ ⇐⇒ b � bm(w).

Further in this case w̃ξ is not straight.

Proof. Since µ is minuscule, the statement for w = 1 is clear from Remark I.3.36.
From now on, we consider the case that w 6= 1. As a first step, we reduce to the
case that w is of a special form: We write w = (w(0), . . . , w(d−1)). As µ is σ-
invariant, we have an action of σ on EO(G,µ) by σ([[τµw]]) = [[τµσ(w)]]. Since all
the properties involved remain unchanged under this action we may assume without
loss of generality that

w = (sn1 , 1k1 , . . . , snt , 1kt) (34)

(here the exponents mean repetition of an entry), where n1, . . . , nt ≥ 1 and
∑t
j=1 nj+

kj = d. In case (II) we may further assume that kt is odd.

Next we reduce to GL2(L): By (13) and Lemma I.4.6, for any σ-conjugacy class
b ∈ B(G,µ) we have

[[τµw]] ∩ b 6= ∅ ⇐⇒ IτµwI ∩ b 6= ∅
⇐⇒ I0(τµw)(0)I0 · · · I0(τµw)(d−1)I0 ∩N(b) 6= ∅. (35)

Let us investigate the right hand side of this equivalence. We have

N(bm) = (m, d−m) for all d/2 ≤ m ≤ d
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under the identification of B(GL2, σ
d) with Newton polygons. We keep up the

notation of Section I.3.6.1: Let τ := ε(1,0)s, let sa := ε(1,−1)s be the simple affine
reflexion in Wa. So (τµw)(i) = τw(i) for all i ∈ Z/dZ. Since τI0 = I0, denoting
ϕ := int(τ) : Wa →Wa we may calculate

I0(τµw)(0)I0 · · · I0(τµw)(d−1)I0 = I0ϕ(w(0))I0 · · · I0ϕd(w(d−1))I0 · τd,

and

ϕi+1(w(i)) =


1, if w(i) = 1,

sa, if w(i) = s and i is even,

s, if w(i) = s and i is odd.

(36)

From our normalization of w in (34) it follows that

I0(τµw)(0)I0 · · · I0(τµw)(d−1)I0 = I0x1I0 · · · I0xtI0 · τd, (37)

where the xj ∈ Wa are elements of length l(xj) = nj , further by the properties of
I0-double cosets we have

I0x1I0 · · · I0xtI0 =
∐
x∈X

I0xI0 (38)

for some subset X ⊆ {y ∈Wa | y ≤ x1 · · ·xt}.

Suppose that k1 is even. Then by (36) the last letter of x1 and the first letter of
x2 are not equal and hence l(x1x2) = l(x1) + l(x2), which implies that I0x1I0x2I0 =
I0x1x2I0. On the other hand, suppose that k1 is odd, then the last letter s′ ∈ {s, sa}
of x1 is equal to the first letter of x2. In this case I0x1I0x2I0 = I0x1s

′x2I0 ∪∐
x∈X′ I0xI0 for some subset X ′ ⊆ {x ∈ Wa | x < x1sx2}, furthermore the last

letter of x1sx2 is equal to the last letter of x2. Iterating this argument, we see that
in any case the set X in (38) contains a unique element xmax of maximal length, that

l(xmax) =

t∑
j=1

nj −
t−1∑
j=1

par(kj) = d−
t−1∑
j=1

(kj + par(kj))− kt,

and that X = {xmax} if all k1, . . . , kt−1 are even.

Now we consider the cases (I) and (II):

(I) If all k1, . . . , kt are even, then by (37), (38) and the above considerations we
have

I0(τµw)(0)I0 · · · I0(τµw)(d−1)I0 = I0xmaxτ
dI0,

where l(xmax) = d−
∑t
j=1 kj . Since this implies that d+ l(xmax) is even, by

Example I.3.42(2) we have I0xmaxτ
dI0 ⊆ bν in GL2(L) for

ν =

(
2d−

∑t
j=1 kj

2
,

∑t
j=1 kj

2

)
= (m(w), d−m(w)),

which implies that [[τµw]] ⊆ bm(w) by (35). Further in this case we have

〈2ρ, νm(w)〉 = 2m(w)− d =

t∑
j=1

nj = l(w) = l(τµw),

so τµw is straight and hence [[τµw]] is K-fundamental.
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(II) Now suppose that some kj is odd. Then kt is odd by our normalization of w.
By (37), (38) and the considerations above, in this case we find

I0(τµw)(0)I0 · · · I0(τµw)(d−1)I0 ⊇ I0xmaxτ
dI0,

where l(xmax) = d −
∑t−1
j=1(kj + par(kj)) − kt. As kt is odd, we then have

l(xmax) − 1 = d −
∑t
j=1(kj + par(kj)), and further d + l(xmax) is odd. So

by Example I.3.42(3), I0xmaxτ
dI0 meets exactly the σd-conjugacy classes in

GL2(L) corresponding to

ν �
(
d+ l(xmax)− 1

2
,
d− l(xmax) + 1

2

)
= (m(w), d−m(w)).

By (35), this implies that [[τµw]] ∩ b 6= ∅ for b � bm(w). On the other hand,
for all elements x ∈ X in the decomposition (38) we have l(x) ≤ l(xmax), so
from Example I.3.42(2)+(3) it follows that [[τµw]] ∩ b = ∅ if b � bm(w).

If m(w) > d
2 then we have just seen that ξ intersects at least two σ-conjugacy

classes, so w̃ξ cannot be straight. If m(w) = d
2 then we have w̃ξ ∈ ξ ⊆ bd/2.

But 〈2ρ, νd/2〉 = 0 and l(w̃ξ) = l(w) > 0 by assumption, thus w̃ξ is not
straight.

Corollary I.4.11. Let (G,µ) be as in Proposition I.4.10.

(i) For all ξ ∈ EO(G,µ), the generic σ-conjugacy class in ξ is given by bm(ξ).

(ii) Let ξ ∈ EO(G,µ). If b ∈ B(G,µ) such that ξ ∩ b 6= ∅, then there is a
ξ′ ∈ EO(G,µ) which is of type (I) in the sense of Proposition I.4.10 such
that ξ′ � ξ and ξ′ ⊆ b.
In particular, every b ∈ B(G,µ) contains some K-fundamental class in EO(G,µ).

(iii) Let ξ ∈ EO(G,µ) be of type (I) in I.4.10, let m′ < m(ξ). Then there is a ξ′ � ξ
of type (II) with m(ξ′) = m′.

Together with Proposition I.4.10 this proves Theorem I.E from the introduction.

Proof of I.4.11: (i) was already obtained in ([GO], Thm. 5.4.11.), it also follows
directly from Propositon I.4.10. For (ii) and (ii), let ξ ∈ EO(G,µ), let w̃ξ = τµw
for w ∈ W , then m(ξ) = m(w) by definition. From the fromula (33) for m(w) we

see that ξ is of type (I) in Proposition I.4.10 if and only if m(w) = d+l(w)
2 and of

type (II) if and only if m(w) < d+l(w)
2 . Therefore (ii)+(iii) follow from the following

lemma:

Lemma I.4.12. Let w ∈W .

(i) If m(w) < d+l(w)
2 , then there is a w′ < w such that l(w′) = l(w) − 1 and

m(w′) = m(w).

(ii) If w 6= 1 and m(w) = d+l(w)
2 , then there is w′ < w with l(w′) = l(w) − 1 and

either m(w′) = m(w)− 1 or w′ = 1 (in this case m(w′) = m(w)− 1
2).
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Proof. To see this, it is enough to consider the case that w 6= 1. Just as in the
proof of I.4.10, after applying some power of σ we may then suppose that w =
(sn1 , 1k1 , . . . , snt , 1kt) for n1, . . . , nt ≥ 1,

∑t
j=1 nj + kj = d. By (33), we are in

the situation of (2) if and only if all k1, . . . , kt are even, otherwise we are in the
situation of (1), and in this case we may further assume w.l.o.g. that kt is odd. Set
w′ := (sn1 , 1k1 , . . . , snt−1, 1kt+1) if nt > 1 and w′ = (sn1 , 1k1 , . . . , snt−1 , 1kt−1+kt+1)
if nt = 1, then w′ < w with l(w′) = l(w)− 1, and in both cases formula (33) shows
that m(w′) has the demanded property.

We conclude this chapter by explaining some of the phenomena and concepts,
which were only mentioned before, in the situation of the Hilbert-Blumenthal exam-
ple:

The map Rep In the situation of Proposition I.4.10 we can give the following
description of the map Rep: EO(G,µ)→ B(G,µ) from Section I.3.2.3:

Let ξ ∈ EO(G,µ), let w̃ξ = [[τµw]] for w ∈ W . Then Rep(ξ) is determined
by its image under the injective map N : B(G) → B(GL2, σ

d), and by the defini-

tions made in Section I.4.1.1, N(Rep(ξ)) is the σd-conjugacy class of Ñ(τµw) =
pr(0)(τµwσ(τµw) · · ·σd−1(τµw)). This can be made more explicit by reviewing the
proof of I.4.10: If w = 1, then Rep(ξ) = bd/2 = bbas. If w 6= 1, then we may suppose

that w is normalized as in (34), in this case Ñ(τµw) is the σd-conjugacy class of

x1 · · ·xtτd ∈ W̃ , where x1, . . . , xt ∈ Wa are the elements which appear in formula
(37), they can be calculated via (36). If (m, d −m) is the Newton polygon which
corresponds to this conjugacy class, then Rep(ξ) = bm.

We now give an example which reflects the seemingly erratic behavior of the map
Rep in the case that ξ is not fundamental:

Example I.4.13. Let (G,µ) be as before, where d = 10. In this case the elemens
of B(G,µ) are the bm for m = 5, . . . , 10. Consider ξ ∈ EO(G,µ), ξ = [[τµw]] for
w ∈W = {1, s}10.

1. Let w = (s7, 1, s, 1).
Here in the notation of (34) we have t = 2 and n1 = 7, k1 = 1, n2 = 1, k2 = 1.
So m(w) = 10 − (1 + 1) = 8, and one sees easily that x1 = sassassassa and
x2 = sa. As in Section I.3.6.1 we calculate

[x1x2τ
10] = [(sas)

3τ10] = [ε(8,2)],

as this corresponds to the Newton polygon (8, 2), we have Rep(ξ) = b8.

2. Let w = (s5, 1, s3, 1).
Here we have n1 = 5, k1 = 1, n2 = 3, k2 = 1, therefore m(w) = 10− (1 + 1) = 8
and x1 = sassassa, x2 = sassa. In this case,

[x1x2τ
10] = [sasτ

10] = [ε(6,4)]

corresponds to (6, 4), so Rep(ξ) = b6.

3. Let w = (s5, 12, s2, 1).
Here n1 = 5, k1 = 2, n2 = 2, k2 = 1, so m(w) = 10 − (1 + 1) = 8 and
x1 = sassassa, x2 = ssa. In this case we have

[x1x2τ
10] = [(sas)

3saτ
10] = [ε(9,1)s],

which corresponds to the basic Newton polygon (5, 5), so Rep(ξ) = b5.
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In all three cases, by Proposition I.4.10 we have {b ∈ B(G,µ) | ξ ∩ bm 6= 0} =
{b5, b6, b7, b8}. In (1), Rep(ξ) gives the maximal element occuring in this set, while
in (3) it is the minimal element, and in (2) neither the one nor the other.

σ-balanced short elements Recall the notion of σ-balanced short elements in
Section I.3.4. In the present example we can make many of the observations from
this Section very explicit. We have seen in Corollary I.4.11 that for every b ∈ B(G,µ)
there is an EO-class ξ ∈ EO(G,µ) such that w̃ξ ∈WεµW is a straight representative
for b. Theorem I.3.32 and Criterion I.3.34 therefore predict the existence of many
σ-balanced short elements in WεµW . These elements have a very simple description:

We exclude the trivial case b = bbas. We have Φ+ =
∐

Z/dZ Φ+
0 , where Φ+

0 consist
of the unique positive root for GL2, and where σ acts via cyclic shift. Let b = bm
for d/2 < m ≤ d. Then the type of b is Jb = ∅, therefore Mb = T and we have

W̃Jb = ΩJb = X∗(T ). So b-short elements will be of the form ελ for λ ∈ X∗(T ). For
any λ = (λ(i))i∈Z/dZ ∈ X∗(T ) the dominant Newton vector of the σ-conjugacy class

[ελ] is just the dominant representative of 1
d

∑d−1
i=0 λ

(i) ∈ Q2. On the other hand we
have ελ ∈WεµW if and only if λ lies in W ·µ ⊆ X∗(T ), which is the case if and only
if λ(i) ∈ {(1, 0), (0, 1)} for each i ∈ Z/dZ.

For b = bm and λ ∈W · µ we now have

ελ for λ = (λ(i))Z/dZ is b-short ⇐⇒ |{i ∈ Z/dZ | λ(i) = (1, 0)}| = m.

Further by definition such an element is σ-balanced if and only if for each i ∈ Z/dZ
the following holds:

λ(i) =

(
0
1

)
=⇒ λ(i+1) =

(
1
0

)
. (39)

Since m > d/2, is easy to see that this condition can always be satisfied, and that
in most cases it can be satisfied in many ways, but that it is not always satisfied.

For example, let d = 6, let b = b4. Then the cocharacters

λ =
(( 1

0

)2

,

(
0
1

)
,

(
1
0

)2

,

(
0
1

))
,

λ′ =
(( 1

0

)3

,

(
0
1

)
,

(
1
0

)
,

(
0
1

))
give rise to two σ-balanced b-short elements which are not in the same σ-orbit.
Further Proposition I.3.31(ii) asserts that σ-conjugation with y = (1, 1, s, 1, 1, s),
respectively with y′ = (1, 1, 1, s, 1, s), will produce straight elements. A calculation
shows that these elements turn out to be the standard representatives τµw and τµw

′

for
w = (s, 1, 1, s, 1, 1) w′ = (s, s, 1, 1, 1, 1),

they are not in the same σ-orbit either. This phenomenon was already observed in
([VW], Ex. 9.14.). On the other hand, the cocharacter

λ′′ =
(( 1

0

)4

,

(
0
1

)2 )
will give an element which is b-short, but is not σ-balanced.
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Remark I.4.14. Observe that the combinatoric considerations above would also have
easily shown the existence of straight representatives in WεµW for each b ∈ B(G,µ)
by Criterion I.3.34, even without knowing Proposition I.4.10. Similar arguments
show that this criterion is also satisfied if G = ResOF ′/OF GL2,OF ′ and µ ∈ X∗(T )
is an arbitraty dominant and minuscule cocharacter, and also in the case that G =
ResOF ′/OF GL3,OF ′ and µ is minuscule and σ-invariant. We suspect that it might be
possible to show Criterion I.3.34 for all groups of type ResOF ′/OF GLn,OF ′ , however,
the combinatorics tend to get more complicated if the type Jb of b is nontrivial.



Chapter II

Stratifications for Shimura
varieties of Hodge type

II.1 Introduction

In this chapter we explain the Newton stratification and Ekedahl-Oort stratification
and the existence of a map γ with the properties mentioned in the conclusion for
canonical integral models of Shimura varieties of Hodge type. As a main application
the results from the first chapter allow to prove that the µ-ordinary locus for Hodge
type Shimura varieties is open and dense, and to give a precise description of its geo-
metric points, which generalizes results that were known in the case of PEL-Shimura
varieties.

Let G be a connected reductive group over Q and let X be a G(R)-conjugacy
class of homomorphisms S→ GR such that the pair (G, X) is a Shimura datum (see
Section II.3 for details). Then for any sufficiently small open and compact subgroup
K ⊆ G(Af ) the associated Shimura variety

ShK(G, X) := G(Q)\X ×G(Af )/K

is a smooth, quasi-projective complex variety and admits a canonical model over the
reflex field E of the Shimura datum (G, X).

Let p be a prime number. Suppose that Kp is a hyperspecial subgroup of G(Qp),
and let ShKp(G, X) := lim←−Kp

ShKpKp(G, X), where the limit is taken over open

compact subgroups Kp ⊆ G(Apf ). In [La] Langlands suggested that ShKp(G, X)
should have an integral canonical model SKp(G, X) over the local ring oE,(v) at any
place v of E lying above p, this conjecture was later refined by Milne in [Mi1], see
Definition II.3.2 for the precise notion of an integral canonical model. In particular,
if SKp(G, X) exists, then for any open compact K = KpK

p ⊆ G(Af ), where Kp is
sufficiently small, the quotient SK(G, X) := SKp(G, X)/Kp is a smooth model for
the Shimura variety ShK(G, X) over OE,(v).

We will consider the case that the Shimura datum is of Hodge type. In this
case the existence of integral canonical models for ShK(G, X) was shown by Kisin
in [Ki1], with some restrictions for p = 2. To explain the Newton stratification
and Ekedahl-Oort stratification we need to briefly explain the construction of these
models: There exists a symplectic vector space (V, ψ) such that there is an embedding

63
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(G, X) ↪→ (GSp(V, ψ), S±) of Shimura data (by the very definition of being of Hodge
type). As Kp is hyperspecial, there is a connected reductive group scheme G over
Zp with generic fiber GQp such that Kp = G(Zp) ⊆ G(Qp). The starting point of
the construction is the choice of a lattice Λ ⊆ V and a finite set of tensors s over
ΛZ(p)

such that G is the stabilizer of sQ in GL(V ) and G ⊆ GL(ΛZp) is the stabilizer
of sZp . The model SK(G, X) is then defined as the normalization of the closure of
ShK(G, X) in a suitable moduli space of abelian schemes over oE,(v), thus SK(G, X)
by construction naturally comes along with an abelian scheme A on it. The tensors
s can be shown to give rise to tensors sdR over H1

dR(A ⊗ E/ShK(G, X)). The
key step in the proof that the schemes SK(G, X) indeed give an integral canonical
model for ShKp(G, X) is now to show that SK(G, X) is smooth. The technique
used in [Ki1] to achieve this shows at the same time that the sdR extend to tensors
s◦dR over H1

dR(A/SK(G, X)), in a way such that for any closed or geometric point
x of SK(G, X) ⊗ κ(v) one gets induced tensors over the contravariant Dieudonné
module D(Ax[p∞]) which are Frobenius invariant and define a subgroup isomorphic
to GW (k(x)).

We make this more precise: Let Fp be an algebraic closure of Fp. For simplicity,
throughout the rest of the introduction we restrict ourselves to Fp-valued points.
(In fact, to introduce the stratifications we also need points over more general alge-
braically closed fields and points with finite residue fields. However, since all strata
will be locally closed subsets, the Fp-valued points contain all topological informa-
tions on the stratifications, once defined.) In analogy to the notations in Chapter
I set O := W (Fp) and L := Frac(O), let σ be the Frobenius automorphism of Fp,
respectively of O and L. We fix a σ-invariant Borel pair (B, T ) of G over O (which
exists since G is quasisplit). Our Shimura datum defines in the usual way a con-
jugacy class [ν] of cocharacters for G (see Definition II.3.1), and hence for G. We
define µ as the unique dominant cocharacter in X∗(T ) with respect to B such that
σ−1(µ)−1 lies in [ν]. Let Λ∗ be the dual Z-module of Λ. The tensors s can also
be viewed as tensors over Λ∗Z(p)

in a canonical way. We let G act on Λ∗Zp via the

contragredient representation

GL(Λ) −→ GL(Λ∗), g 7−→ g∨ := (g−1)∗.

Now let x be an Fp-valued point of SK(G, X), and let (Dx, F, V ) := D(Ax[p∞])
be the associated contravariant Dieudonné module, then the following hold (see
Corollary II.4.8, Lemma II.5.4):

Lemma II.A.

(1) The tensors s◦dR induce F -invariant tensors scris,x on Dx, and there is an iso-
morphism of O-modules Λ∗O ' Dx which identifies sO with scris,x.

(2) If we identify Dx with Λ∗O using an isomorphism as in (1), then F = g∨(1⊗ σ)
for some g ∈ G(O)µ(p)G(O), and this element is independent of the choice of
the isomorphism up to σ-conjugation by an element of G(O).

This is an immediate consequence of the results in [Ki1], though it is not explic-
itly stated there. See also ([Ki2], §1). The dual lattice appears here due to the fact
that we use contravariant Dieudonné theory, this is also the reason for our slightly
nonstandard definition of µ.
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This lemma implies that, writing C(G,µ) for the set of G(O)-σ-conjugacy classes
of the double coset G(O)µ(p)G(O) ⊆ G(L), we have a well-defined map

γ : SK(G, X)(Fp) −→ C(G,µ) (∗)

by sending x to the G(O)-conjugacy class of the element g, and it is easy to see that
γ(x) = γ(x′) if and only if there is an isomorphism Dx ' Dx′ compatible with scris,x

and scris,x′ (Lemma II.5.5).
The Newton stratification is easily described in this context: Let B(G) be the set

of G(L)-σ-conjugacy classes in G(L), then there is a canonical map θ̃ : C(G,µ) →
B(G). The image of θ̃ is exactly the subset B(G,µ) ⊆ B(G) which already showed
up in Chapter I (see Section I.3.1.1). Recall that it is endowed with a partial order �,
and contains a unique maximal element bµ−ord ∈ B(G,µ) with respect to this order.
The Newton strata are now given as the fibers N b = θ−1({b}) of the composite map

θ : SK(G, X)(Fp)
γ−→ C(G,µ)

θ̃−→ B(G).

Equivalently, two points x, x′ ∈ SK(G, X)(Fp) lie in the same Newton stratum if
and only if there is an isomorphism of isocrystals Dx⊗OL ' Dx′⊗OL which respects
the tensors scris,x and scris,x′ . These strata N b are in fact already defined over κ(v),
and a result of Vasiu ([Va1], 5.3.1.) shows that they are locally closed subsets of
SK(G, X)⊗ κ(v). If the Shimura variety is of PEL-type, then much more is known
(see Section II.5.2 for a more detailed discussion).

The Ekedahl-Oort stratification on SK(G, X)⊗Fp has been defined by Zhang in
[Zh1]. Just as in the case of a PEL-type Shimura variety its definition relies on the
theory of GFp -zips developed in [PWZ1], [PWZ2]. The precise construction is quite
technical, we only state the main results here and refer to Section II.5.3 for details:
Let (W,S) be the Weyl group of G with respect to (B, T ), and let J ⊆ S be the
type of the cocharacter σ(µ). Then the Ekedahl-Oort strata Sw ⊆ SK(G, X)(Fp)
are parametrized by the set JW of shortest left coset representatives for WJ in W .
The set JW carries a partial order �, which refines the Bruhat order. By the results
of [Zh1], each stratum Sw ⊆ SK(G, X)⊗Fp is locally closed, and the closure of Sw
is precisely the union of the strata Sw′ with w′ � w. Furthermore two points x, x′

lie in the same stratum if and only if there is an isomorphism of Dieudonné spaces
Dx ' Dx′ respecting the tensors on both sides.

The map γ defined in (∗) has the properties 1. and 2. mentioned in the conclu-
sion: Recall the set EO(G,µ) of [[·]]-classes contained in G(O)µ(p)G(O), as defined
in Chapter I (using a different notation, see Sections I.2.6 and I.3.1.1). By defini-
tion, every [[·]]-class is a union of G(O)-σ-conjugacy classes, we may therefore view
it as a subset of C(G,µ). In the same way every b ∈ B(G,µ) defines a subset of
C(G,µ). Now by definition we have θ = θ̃ ◦ γ, and the fiber of θ̃ over b ∈ B(G,µ) is
exactly b ∩ C(G,µ). On the other hand, the Fp-valued points of the strata Sw are
by definition the fibers of a map ζ : SK(G, X)(Fp)→ JW . We show in Proposition
II.6.6 that there is a surjective map

ζ̃ : C(G,µ) −→ JW

such that ζ = ζ̃ ◦ γ and such that the fibers of ζ̃ are exactly the classes [[·]] ∈
EO(G,µ). Further we show that the resulting bijection between EO(G,µ) and JW
identifies JW with a set of standard representatives as considered in Chapter I and is
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compatible with the �-orders on both sides (Lemma II.6.8). Consequently we have
a commutative diagram

B(G,µ)

SK(G, X)(Fp)

θ

33

γ //

ζ

++

C(G,µ)

θ̃

99

ζ̃

%%
JW

where γ(x) and γ(x′) are mapped to the same element in B(G,µ) if and only if they
lie in the same [·]-class in C(G,µ), and to the same element in JW if and only if
they lie in the same [[·]]-class in C(G,µ). We may now apply the results of the first
chapter to SK(G, X)⊗ Fp.

We define the µ-ordinary locus N µ−ord in SK(G, X)⊗κ(v) as the Newton stra-
tum associated to the maximal element bµ−ord ∈ B(G,µ). This is the natural gen-
eralization of the ordinary locus in a moduli space of abelian varieties M , which
is by definition the set of those points x ∈ M such that the p-divisible group as-
sociated to the abelian variety at a geometric point x̂ lying over x is isogenous to
a product of étale and multiplicative groups. It has been known for a long time
that this ordinary locus is a dense subset of M , see for example Koblitz’ proof in
[Kob]. For Shimura varieties of PEL-type, the µ-ordinary locus was shown to be
open and dense by Wedhorn in [We1] by a deformation theoretic argument. Moonen
gave another proof in [Mo2], where he showed that the µ-ordinary Newton stratum
coincides with the unique open Ekedahl-Oort stratum, which was by then known to
be dense (see [We2]). We follow this second approach: The set JW has a unique
maximal element wmax with respect to �, by the result of Zhang we know that the
corresponding Ekedahl-Oort stratum Swmax is open and dense. Now Theorem I.D
from the introduction of the first chapter implies the following:

Theorem II.B. The strata N µ−ord and Swmax are equal as subsets of SK(G, X)⊗
Fp. Furthermore, for any two Fp-valued points x, x′ in this set there is an isomor-
phism of Dieudonné modules Dx ' Dx′ which identifies scris,x with scris,x′ .

As a consequence, we obtain the annonced result on the µ-ordinary locus, which
proves a conjecture of Rapoport from 1996.

Theorem II.C. The µ-ordinary locus is open and dense in SK(G, X)⊗ κ(v).

We remark that these questions have also been studied by Vasiu, using a different
language, in [Va3].

As another application, the commutative diagram described above allows to
translate the combinatorial study of the Hilbert-Blumenthal case in Theorem I.E
into geometric properties of the special fiber of the corresponding PEL-Shimura va-
riety, which is a ”Hilbert moduli space” of abelian varieties endowed with the action
of (a localization of) the ring of integers of a totally real extension of Q, see Propo-
sition II.6.10.
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This Chapter is structured as follows: In Section II.2 we fix our main nota-
tions and conventions on tensors and σ-linear algebra. In Section II.3 we introduce
Shimura varieties of Hodge type and of PEL-type, and explain the notion of a canon-
ical integral model. We review the construction of integral models in the Hodge type
case and of the tensors sdR and scris in Section II.4, we strictly follow the treatment
in [Ki1] and do not claim any originality here. In Section II.5 we discuss the New-
ton and Ekedahl-Oort stratification. In Section II.6, which is the technical heart of
this chapter, we finally establish the existence of the map ζ̃ and its properties, and
explain the Theorems II.B and II.C.

II.2 Notations and conventions

II.2.1. For a perfect field k of positive characteristic p we write W (k) for the Witt
ring over k, and L(k) for its quotient field. In this chapter σ will generally denote
the Frobenius automorphism a 7→ ap of k, and also its lift to W (k) and L(k).

Let k be a perfect field of characteristic p. Let R be either k or W (k), and let
R0 ⊆ R be the subring of elements which are fixed by σ (i.e., either R0 = Fp or
R0 = Zp). For any R-module M let M (σ) := M ⊗R,σ R, and for a homomorphism
β : M → N of R-modules write β(σ) := β ⊗ 1: M (σ) → N (σ). If f : M → N is a
σ-linear map of R-modules then

M (σ) −→ N, m⊗ a 7−→ af(m)

is R-linear, and if f is σ−1-linear then

M −→ N (σ), m 7−→ f(m)⊗ 1

is R-linear. In both cases we call the resulting homomorphism the linearization of
f and denote it by f lin.

Now let M0 be an R0-module, and let M = M0 ⊗R0
R. Then σ and σ−1 act on

M via 1⊗ σ and 1⊗ σ−1 respectively. Further, there is a canonical isomorphism

M = M0 ⊗R0
R
∼−→M ⊗R0

R⊗R,σ R = M (σ), m⊗ a 7→ m⊗ 1⊗ a.

We will often use this isomorphism to identify M with M (σ). For example, if f : M →
N is σ-linear, we also write f lin : M ∼= M (σ) → N , with this notation we then have
that f = f lin ◦ (1⊗ σ).

If M0 is a finitely generated free R0-module, then σ also acts on GL(M) and on
the group of cocharacters HomR(Gm,R,GL(M)). For g ∈ GL(M) we have σ(g) =
(1 ⊗ σ) ◦ g ◦ (1 ⊗ σ−1), and for a cocharacter λ : Gm,R → GL(M) we find that
σ(λ)(a) = σ(λ(a)) for all a ∈ R.

II.2.2. Let R be any ring. If M is a finitely generated free module over R, we
denote by M⊗ the direct sum of all R-modules that arise from M by applying the
operations of taking duals, tensor products, symmetric powers and exterior powers
a finite number of times. An element of M⊗ will be called a tensor over M . We
have an obvious notion of base change for tensors. Let M∗ be the dual R-module of
M . Since there is a canonical identificaton of M⊗ with (M∗)⊗ we can view tensors
over M as tensors over M∗ as well.

Let M and M ′ be finitely generated free R-modules and let s = (si)i∈I and
s′ = (s′i)i∈I be families of tensors over M and M ′ respectively. Every isomorphism
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f : M → M ′ induces an isomorphism (f−1)∗ : (M)∗ → (M ′)∗ and thus also an
isomorphism f⊗ : M⊗ → (M ′)⊗. We will write

f : (M, s) −→ (M ′, s′)

if and only if f⊗ takes si to s′i for all i ∈ I. We say that a family of tensors (si)i∈I
over M defines the subgroup G ⊆ GL(M) if

G(R′) = {g ∈ GL(MR′) | g⊗((si)R′) = (si)R′ for all i ∈ I}

for every R-algebra R′. We have the contragredient representation

(·)∨ : GL(M) −→ GL(M∗), g 7−→ g∨ := (g−1)∗, (40)

which is in fact an isomorphism of group schemes over R. Let (si)i∈I be a family of
tensors over M , defining a subgroup G ⊆ GL(M). Then these tensors (si)i∈I , when
we consider them as tensors over M∗, define the subgroup {g∨ | g ∈ G} ⊆ GL(M∗).

II.3 Shimura varieties of Hodge type

Let G be a connected reductive group over Q and let X be a G(R)-conjugacy class
of algebraic morphisms S → GR such that (G, X) is a Shimura datum, i.e. such
that the following conditions are satisfied for each h ∈ X:

(SV1) adh defines a Hodge structure of type {(−1, 1), (0, 0), (1,−1)} on the Lie
algebra of GR.

(SV2) adh(i) is a Cartan involution of Gad
R .

(SV3) Gad has no simple factor defined over Q on which h projects trivially.

We suppose that the Shimura datum is of Hodge type, by definition this means that
there is an embedding

(G, X) ↪→ (GSp(V, ψ), S±) (41)

into a symplectic Shimura datum, which we fix once and for all. Here (V, ψ) is a
symplectic vector space over Q and S± is the associated Siegel double space, that
is, the set of homomorphisms h : S → GSp(VR, ψR) which induce a Hodge structure
of type (−1, 0), (0,−1) and give rise to a (positive or negative) definite symmetric
form (v, w) 7→ ψ(v, h(i)w) on VR. We will often simply write GSp(V ) for GSp(V, ψ)
with the symplectic pairing implied.

We will say that (G, X) is of PEL-type if it arises from a PEL-datum (B, ∗, V, ψ, h),
where

• (B, ∗) is a finite dimensional semisimple Q-algebra with positive involution,

• V is a finite dimensional Q-vector space on which B acts on the left,

• ψ is a symplectic form on V with ψ(bv, w) = ψ(v, b∗w) for all v, w ∈ V, b ∈ B,
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such that G is given by

G(R) = {g ∈ GSp(VR, ψR) | g(bv) = bg(v) for all b ∈ BR, v ∈ VR}

for every Q-algebra R, and where h : S → GR is such that its composition with
the natural embedding G ⊆ GSp(V, ψ) lies in the Siegel double space of (V, ψ). In
this case X is the G(R)-conjugacy class of h and (G, X) ↪→ (GSp(V, ψ), S±) is the
obvious embedding.

The datum (G, X) defines conjugacy classes of cocharacters for G as follows:
Every element h ∈ X defines a Hodge decomposition VC = V (−1,0)⊕ V (0,−1) via the
embedding X ↪→ S±.

Definition II.3.1. (i) We define νh to be the cocharacter of GC such that νh(z)
acts on V (−1,0) through multiplication by z and on V (0,−1) as the identity.

(ii) We denote by [ν] the unique G(C)-conjugacy class which contains all the
cocharacters νh, and by [ν−1] the conjugacy class which contains the ν−1

h .

It is an immediate consequence of the condition (SV1) on a Shimura datum that
all the cocharacters νh and ν−1

h are minuscule. The reflex field E of (G, X) is defined
as the field of definition of [ν] (or equivalently of [ν−1]), this is known to be a finite
extension of Q.

We fix a prime number p such that G is of good reduction at p. Let Kp ⊆ G(Qp)
be a hyperspecial subgroup. Consider subgroups of the type K = KpK

p ⊆ G(Af ),
where Kp ⊆ G(Apf ) is open and compact. If Kp is sufficiently small, then the double
quotient

ShK(G, X) := G(Q)\X ×G(Af )/K

(where G(Q) acts diagonally and K acts on the right factor) has a natural structure
as a smooth, quasi-projective variety over C, and further this variety has a canonical
model over the reflex field E. In the sequel we will always view ShK(G, X) as an
algebraic variety over E.

The projective limit

ShKp(G, X) := lim←−
Kp

ShKpKp(G, X),

taken over the set of open and compact subgoups of G(Apf ), carries a contiuous right

action of G(Apf ) in the sense of Deligne (see [Mi1], 2.1.):

Elements g ∈ G(Apf ) act by isomorphisms ShKp(gKpg−1)(G, X) → ShKpKp in a
way that every g ∈ Kp gives the identity map on ShKpKp(G, X) and that for ev-
ery normal subgroup K ′p ⊆ Kp the natural covering map induces an isomorphism
ShKpK′p(G, X)/(Kp/K ′p) ' ShKpKp(G, X). In particular, we have an equality
ShKpKp(G, X) = ShKp(G, X)/Kp for every open and compact Kp ⊆ G(Apf ).

We fix a place v of E over p. The existence of the hyperspecial subgroup Kp

implies that E is unramified at p ([Mi2], 4.7.). Let oE be the ring of integers in E,
and let oE,(v) be its localization at v.
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Definition II.3.2 (cf. [Mi1], §2). An integral canonical model of ShKp(G, X) over
oE,(v) is a projective system SKp(G, X) = lim←−Kp

SKpKp(G, X) of schemes over

oE,(v), indexed by the set of open and compact subgroups of G(Apf ), together with

a continuous right action of G(Apf ) such that:

(i) If Kp is sufficiently small, then SKpKp(G, X) is smooth over oE,(v) and the
map SKpK′p(G, X)→ SKpKp(G, X) is étale for every K ′p ⊆ Kp.

(ii) SKp(G, X)⊗oE,(v) E is G(Apf )-equivariantly isomorphic to ShKp(G, X).

(iii) Let Y be a regular, formally smooth oE,(v)-scheme. Then every morphism
Y ⊗oE,(v) E → SKp(G, X)⊗oE,(v) E extends to a morphism Y → SKp(G, X).

Note that in the situation of (iii) the extension Y → SKp(G, X) is automatically
unique, since Y is reduced and Y ⊗oE,(v) E is dense in Y . Hence a model in the sense
of Definition II.3.2 is unique up to canonical isomorphism which justifies the name
”canonical model”. In [Mi1] Milne conjectured that an integral canonical model of
ShKp(G, X) always exists (for a general Shimura datum, not necessarily of Hodge
type), see also the treatment in ([Mo1], §3).

Example II.3.3. Consider a Shimura datum (G, X) ↪→ (GSp(V, ψ), S±) of PEL-type,
given by a PEL-datum (B, ∗, V, ψ, h). Then p is a prime of good reduction for G if
and only if BQp is unramified. In this case it was shown in ([Ko2], §5 and §6) that a
canonical integral model exists (we suppose that G is connected, so Gad has no factor
of Dynkin type D), the schemes SKpKp(G, X) then have an explicit description as
a moduli space of abelian schemes with additional structures over oE,(v).

II.4 The integral canonical models

In this section we briefly describe the construction of the canonical integral model
for ShKp(G, X), following Kisin’s proof in [Ki1], and introduce the objects which
will be fundamental for the study of the closed fiber which follows. In the case p = 2
two restrictions arise in order for the construction to work.

II.4.1 Construction of the integral models

Let G be a reductive model of G over Zp such that Kp = G(Zp). If p = 2, we
assume that Gad has no factor of Dynkin type B. Then there is a lattice Λ ⊆ V and
a finite set of tensors s := (si) ⊂ Λ⊗Z(p)

such that G and G are identified with the

subgroups defined by sQ ⊆ V ⊗ and sZp ⊂ Λ⊗Zp respectively via our chosen embedding

G ↪→ GSp(V ) ([Ki1], 2.3.1., 2.3.2.). Possibly passing to a homothetic lattice, we may
and will further assume that the symplectic pairing ψ on V restricts to a pairing
Λ× Λ→ Z. Note however that Λ will not be self-dual with respect to ψ in general.

Let K̃p be the stabilizer of ΛZp in GSp(V )(Qp). Then Kp = K̃p ∩G(Qp). Let
Kp ⊆ G(Apf ) be an open and compact subgroup such that K := KpK

p leaves
ΛẐ stable (which is the case for all sufficiently small Kp). Then it can be shown

that there is an open and compact subgroup K̃p ⊆ GSp(V )(Apf ) which contains

Kp, such that K̃ := K̃pK̃
p also leaves ΛẐ stable and such that the natural map

ShK(G, X) → ShK̃(GSp(V ), S±) ⊗Q E is a closed embedding ([Ki1], 2.1.2., 2.3.2.),

we call a subgroup K̃p with these properties admissible for Kp. Further, if K ′p ⊆ Kp
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then there is an open and compact subgroup K̃ ′p ⊆ K̃p which is admissible for K ′p

and we obtain a commutative diagram

ShK′(G, X) �
� /

��

ShK̃′(GSp(V ), S±)⊗Q E

��
ShK(G, X) �

� / ShK̃(GSp(V ), S±)⊗Q E

(42)

where the horizontal arrows are closed embeddings.

Construction II.4.1. We denote by Λ′ the dual lattice of Λ with respect to ψ.
Let |Λ′/Λ| = d, and let dim(V ) = 2n. Let Kp ⊆ G(Apf ) be an open and compact

subgroup, and let K̃p be admissible for Kp. With respect to Λ, consider the moduli
space Mn,d,K̃p over Z(p) which parametrizes abelian schemes with a polarization of

degree d and a mod-K̃p level structure up to isomorphism (see [Ki1], 2.3.3.). By the
classical result of Mumford, Mn,d,K̃p is representable by a quasi-projective scheme

over Z(p) if K̃p is sufficiently small.

Let again K̃ = K̃pK̃
p. Due to the moduli interpretation of Shimura varieties of

Siegel type, there is an embedding

ShK̃(GSp(V ), S±) ↪→Mn,d,K̃p

of Z(p)-schemes. We give a description of this map on C-valued points, cf. ([Va1],
4.1.): Let

[h, g] ∈ ShK̃(GSp(V ), S±)(C) = GSp(V )(Q)\S± ×GSp(V )(Af )/K̃.

Let VC = V (−1,0) ⊕ V (0,−1) be the Hodge decomposition induced by h. There is a
unique Z-lattice Λg ⊂ V such that (Λg)Ẑ = g(ΛẐ) and a unique Q×-multiple ψh,g
of ψ such that g(Λ′Ẑ) is the dual lattice of g(ΛẐ) with respect to ψh,g and such that

the form (v, w) 7→ ψh,g(v, h(i)w) is positive definite on VR. Then [h, g] is mapped
to the isomorphism class of (A, λ, η), where A := V (−1,0)/Λg, endowed with the
polarization λ induced by ψh,g, is the polarized complex abelian variety associated

to (V, ψh,g,Λg, h) via Riemann’s theorem (see [Del1], 4.7.), and η is the right K̃p-
coset of

ΛẐp
gp−→ gp(ΛẐp) = (Λg)Ẑp

∼= H1(A,Z)Ẑp
∼=
∏
l 6=p

Tl(A).

Recall that v denotes a place of E over p, and oE,(v) the localization of oE at v.

Definition II.4.2. Let K = KpK
p with Kp ⊆ G(Apf ) open and compact such

that there is K̃p admissible for Kp for which Mn,d,K̃p exists as a scheme. Let

K̃ = K̃pK̃
p, and define SK(G, X) as the normalization of the closure of ShK(G, X)

in Mn,d,K̃p ⊗Z(p)
oE,(v) with respect to the embedding

ShK(G, X) ↪→ ShK̃(GSp(V ), S±)⊗Q E ↪→Mn,d,K̃p ⊗Z(p)
oE,(v).

Remark II.4.3. This definition is indeed independent of the choice of K̃p: Let K̃ ′p ⊆
K̃p be an open and compact subgroup which contains Kp (it is then automatically
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admissible for Kp), then the natural map Mn,d,K̃′p →Mn,d,K̃p is finite and there is
a commutative diagram

ShK(G, X) �
� /
� v

(

Mn,d,K̃′p ⊗Z(p)
oE,(v)

��
Mn,d,K̃p ⊗Z(p)

oE,(v) .

Let Z be a component of ShK(G, X), and denote by Z
′

and Z the closures in the
oE,(v)-schemes on the right hand side of the diagram respectively. The induced map

Z
′ → Z is finite and dominant, and is an isomorphism at the generic points. Hence

the corresponding map of the respective normalizations is an isomorphism.

By definition, for every Kp the choice of an admissible K̃p gives a natural map
SK(G, X) → Mn,d,K̃ ⊗Z(p)

oE,(v), this defines an abelian scheme over SK(G, X)

which is independent of the choice of K̃p up to isomorphism by the preceeding
remark. If K ′ = KpK

′p and K = KpK
p for K ′p ⊆ Kp then we have a natural map

SK′(G, X) → SK(G, X) which is obtained by the choice of suitable admissible
subgroups K̃ ′p ⊆ K̃p in the diagram (42).

Theorem II.4.4 (Kisin, [Ki1] Theorem 2.3.8.). If p = 2, assume that Gad has no
factor of Dynkin type B, and that, for each Kp, the dual of each abelian variety
associated to a point on the special fiber of SK(G, X) has a connected p-divisible
group.
Then the following hold:

(i) SK(G, X) is a smooth oE,(v)-scheme for each Kp.

(ii) The projective limit SKp(G, X) := lim←−Kp
SK(G, X) is an integral canonical

model of ShKp(G, X) over oE,(v) in the sense of Definition II.3.2.

In particular, SKp(G, X) and hence also SK(G, X) = SKp(G, X)/Kp (for Kp suffi-
ciently small) do not depend on the choice of the embedding (G, X) ↪→ (GSp(V ), S±),
nor on the choices made during the construcion.

II.4.2 Tensors on the de Rham cohomology

Although in general it is not known whether the integral models SK(G, X) allow an
interpretation as moduli spaces of abelian schemes with additional structures, each
model is by construction naturally endowed with an abelian scheme on it, and the
tensors s ⊆ Λ⊗Z(p)

from the last subsection induce tensors on de Rham cohomology of

this abelian scheme. In this subsection we desribe the construction of these tensors
and their relation to the tensors s, still following [Ki1].

We will systematically consider the tensors s ⊂ Λ⊗Z(p)
chosen in the last subsection

as tensors over Λ∗Z(p)
and use the contragredient representation

(·)∨ : GL(Λ)
∼−→ GL(Λ∗),

as discussed in Section II.2.2.
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Notation II.4.5. In the sequel we will work with a fixed model SK := SK(G, X)
associated to some sufficiently small subgroup Kp ⊆ G(Apf ) as in Definition II.4.2.

We fix an open compact K̃p ⊆ GSp(V )(Apf ) which is admissible for Kp in the sense
of the last subsection. Note that all the constructions below are in fact independent
of the choice of K̃p. In the case p = 2 we assume that the assumptions of Theorem
II.4.4 hold, so that SK is smooth. Let π : A −→ SK be the abelian scheme defined
by the natural map SK →Mn,d,K̃p ⊗Z(p)

OE,(v). Let

V◦ := H1
dR(A/SK) and V := H1

dR(A⊗ E/ShK(G, X)).

Then V◦ and V are locally free modules over SK and SK ⊗E = ShK(G, X) respec-
tively, and V = V◦⊗E. Let∇ denote the Gauß-Manin connection on V◦ resp. V. It is
known that the Hodge spectral sequence Ep,q1 = Rqπ∗(Ω

p
A/SK

) =⇒ Hp+q
dR (A/SK)

degenerates at E1 ([BBM], 2.5.2.), giving rise to a filtration

V◦ = H1
dR(A/SK) ⊃ π∗Ω1

A/SK
=: Fil1 V◦,

the Hodge filtration on V◦.

The tensors sdR Let E′|E be any field extension which admits an embedding into
C, and let ξ ∈ SK(E′). Let E′ be an algebraic closure of E′, choose an embedding
E′ ↪→ C. We denote by ξ̄ and ξC the E′-valued and C-valued points corresponding
to ξ. From the embedding ShK(G, X) ↪→ Mn,d,K̃p used in Construction II.4.1
we have a natural isomorphism V ' H1(AξC ,Q). The dual of this isomorphism
maps sQ ⊂ (V ∗)⊗ to a set of tensors over H1(AξC ,Q), and using the comparison
isomorphisms

H1(AξC ,Q)C ∼= H1
dR(AξC/C), H1(AξC ,Q)Ql

∼= H1
ét(AξC ,Ql) ∼= H1

ét(Aξ̄,Ql)

we obtain tensors sdR,ξ on the algebraic de Rham cohomology of AξC and sét,l,ξ on
the l-adic étale cohomology of Aξ̄ for every prime number l. By a result of Deligne
([Del2], 2.11.), the family (sdR,ξ, (sét,l,ξ)) is an absolute Hodge cycle (see loc.cit. §2
for the definition of Hodge cycles and absolute Hodge cycles).

Proposition II.4.6 ([Ki1], 2.2.1., 2.2.2.).

(i) For every ξ ∈ SK(E′) as above the tensors sdR,ξ are defined over H1
dR(Aξ/E′)

and the tensors sét,l,ξ are Gal(E′|E′)-invariant for each l.

(ii) There exist global sections sdR ⊂ V⊗ defined over E, which are horizontal with
respect to the Gauß-Manin connection ∇, such that the pullback of sdR to any
ξ ∈ SK(E′) as above equals the tensors sdR,ξ ⊂ (H1

dR(Aξ/E′))⊗.

The tensors s◦dR The extension of the tensors sdR to sections of (V◦)⊗ is closely
related to the following pointwise construction: Let k be a perfect field of finite
trancendence degree over Fp. Let W (k) be the Witt ring over k and let L(k) :=
Frac(W (k)). Consider a triple (x̃, ξ, x), where x̃ is a W (k)-valued point of SK and
ξ ∈ SK(L(k)), x ∈ SK(k) are the corresponding induced points.

Let Dx be the contravariant Dieudonné module of the p-divisible group of Ax.
Recall that Dx is a free W (k)-module together with a σ-linear map F and a σ−1-
linear map V such that FV = p = V F . We have canonical isomorphisms

H1
dR(Ax̃/W (k)) ∼= H1

cris(Ax/W (k)) ∼= Dx.



74 CHAPTER II

By our assumption on k, the field L(k) can be embedded into C. The choice of an
embedding L(k) ↪→ C hence yields an absolute Hodge cycle (sdR,ξ, (sét,l,ξ)) as above.
Now there is also an isomorphism

ΛZp
∼−→ H1(AξC ,Z)Zp

∼= Tp(AξC) ∼= Tp(Aξ̄)

where, using the notations of Construction II.4.1, if the C-valued point ξC corre-
sponds to the element [h, g] ∈ ShK̃(GSp(V ), S±)(C) then the first arrow is given by

gp. Dualizing this isomorphism, and paying respect to the Gal(L(k)|L(k))-operation
on the right hand side, yields

Λ∗Zp ' Tp(Aξ̄)
∗(−1) ∼= H1

ét(Aξ̄,Zp),

which sends the tensors sZp ⊂ (Λ∗Zp)⊗ to tensors s◦ét,ξ over H1
ét(Aξ̄,Zp). Since all

the isomorphisms involved are compatible, the base change of s◦ét,ξ to tensors over

H1
ét(Aξ̄,Qp) is exactly the p-adic component sét,p,ξ of the absolute Hodge cycle de-

fined above. So Proposition II.4.6(i) implies that the s◦ét,ξ are invariant under the

action of Gal(L(k)|L(k)). Now it follows from Kisin’s theory of crystalline represen-
tations and S-modules that the images of these tensors under the p-adic comparison
isomorphism

H1
ét(Aξ̄,Zp)⊗Zp Bcris

∼−→ H1
cris(Ax/W (k))⊗W (k) Bcris

∼= Dx ⊗W (k) Bcris (43)

are F -invariant and are already defined over Dx ([Ki1], 1.3.6.(1), 1.4.3.(1)). Using
the identification Dx ∼= H1

dR(Ax̃/W (k)) we thus obtain tensors s◦dR,x̃ over V◦x̃ .

Proposition II.4.7.

(i) The tensors sdR of Proposition II.4.6 extend (uniquely) to global sections s◦dR ⊂
(V◦)⊗ which are horizontal with respect to ∇.

(ii) Let (x̃, ξ, x) be a triple as considered above. Then the tensors s◦dR,x̃ ⊂ (V◦x̃)⊗

which we obtained via the p-adic comparison isomorphism in the above con-
struction are equal to the pullback of s◦dR to x̃.

(iii) In the situation of (ii), assume in addition that k is finite or algebraically
closed. Then there is a W (k)-linear isomorphism

(Λ∗W (k), sW (k))
∼−→ (V◦x̃ , s◦dR,x̃)

Further, if β is any such isomorphism, then there is a cocharacter λ of GW (k)

such that the filtration Λ∗W (k) ⊃ β
−1(Fil1 V◦x̃) is induced by (·)∨ ◦ λ, where (·)∨

is the contragredient representation from (40).

Proof. (i) The existence of s◦dR is shown in the proof of ([Ki1], 2.3.9.). These ex-
tensions are automatically unique, since SK is in particular an integral scheme
and V◦ is locally free. By the same reasoning it follows that the s◦dR are hori-
zontal with respect to ∇, as they are so over SK ⊗ E.

(ii) If x is a closed point of SK , then this is immediately clear from the definition
of s◦dR in ([Ki1], 2.3.9.). In general, as the equality of tensors in (V◦x̃)⊗ may be
tested over ξ, the statement amounts to the fact that the p-adic comparison
isomorphism H1

ét(Aξ̄,Qp)⊗QpBdR ' H1
dR(Aξ/L(k))⊗L(k)BdR maps the p-adic
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étale component of the absolute Hodge cycle (sdR,ξ, (sét,l,ξ)) to its de Rham
component. If Aξ can be defined over a number field, this is a theorem of
Blasius and Wintenberger ([Bl], 0.3.), and Vasiu ([Va1], 5.2.16.) observed that
their result can also be extended to our more general situation.

(iii) Let D̃ be the contravariant crystal of the p-divisible group Ax̃[p∞] over W (k).
Then we have the natural identification

D̃(W (k)) ∼= Dx ∼= V◦x̃

which is compatible with the Hodge filtrations on both sides, and by (ii) the
tensors s◦dR,x̃ get identified with the images of s◦ét,ξ under the p-adic comparison
isomorphism in (43). So the first statement of (iii) follows directly from ([Ki1],
1.4.3. (2)+(3)), applied to the p-divisible group Ax̃[p∞] and the tensors s◦ét,ξ.
Likewise, the proof of (4) in loc.cit. (which proves more than what is claimed)
shows that the filtration Λ∗W (k) ⊃ β−1(Fil1 V◦x̃) is induced by a cocharacter of

the subgroup of GL(Λ∗W (k)) which is defined by the tensors sW (k) ⊆ (Λ∗W (k))
⊗.

As this subgroup is exactly the image of GW (k) under (·)∨, the last claim
follows.

We remark that the existence of the tensors s◦dR is closely related to Theorem II.4.4:
In fact, the proof of the smoothness of SK in ([Ki1], 2.3.5.) uses a variant of
Proposition II.4.7(iii) as a main ingredience, and in turn the arguments given in
that proof allow the construction of s◦dR in ([Ki1], 2.3.9.).

Corollary II.4.8. Let x ∈ SK(k), where k is either a finite extension of Fp or
algebraically closed of finite transcendence degree over Fp, and let Dx be the con-
travariant Dieudonne module of the p-divisible group Ax[p∞]. Let x̃ ∈ SK(W (k))
be a lift of x.
Then the images scris,x ⊂ (Dx)⊗ of s◦dR,x̃ via the identification H1

dR(Ax̃/W (k)) ∼= Dx
are independent of the choice of x̃. Further, the tensors scris,x are F -invariant, and
there is a W (k)-linear isomorphism (Λ∗W (k), sW (k)) ' (Dx, scris,x).

Proof. This follows immediately from (i) and (ii) of the last proposition.

Remark II.4.9. In the special case of a Shimura variety given by a PEL-datum
(B, ∗, V, ψ, h) it is known that one may choose a lattice Λ ⊂ V such that ΛZp is
selfdual with respect to ψ and a ∗-invariant Z(p)-order oB of B such that oB ⊗Zp is

a maximal order of (BQp , ∗) which acts on ΛZp . In this case the tensors s ⊂ Λ⊗Zp then
encode the action of oB on ΛZp , and Corollary II.4.8 is an analogon to the results in
([VW], §2) on p-divisible groups with PEL-structure (but note that the authors use
covariant Dieudonné theory in that article).

II.5 Stratifications of the special fiber

Let κ(v) be the residue class field of OE,(v), and let Fp be a fixed algebraic closure
of Fp. In this section we describe the Newton stratification on the special fiber
SK ⊗ κ(v) of SK and the Ekedahl-Oort stratification on SK ⊗ Fp. These stratifi-
cations arise by considering the isocristals resp. Dieudonné spaces associated to Ax
for points x as in Corollary II.4.8, while paying respect to the tensor structure. The
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stratifications will be parametrized by combinatorial data which is derived from the
Shimura datum (G, X) (and the choice of the hyperspecial subgroup Kp).

To describe the stratifications we use the group theoretic language for the re-
ductive group scheme G over Zp (compare Section I.2.1): G is quasisplit and split
over a finite étale extension of Zp. We fix a Borel pair (T,B) defined over Zp. Let
(X∗(T ),Φ, X∗(T ),Φ∨) be the root datum associated to (G,T ), and let W be the
associated Weyl group. The choice of B determines a set Φ+ ⊂ Φ of positive roots
and a set S ⊂ W of simple reflections which give (W,S) the structure of a finite
Coxeter group. A cocharacter λ ∈ X∗(T ) will be called dominant, if 〈α, λ〉 ≥ 0 for
all α ∈ Φ+ (where 〈·, ·〉 is the natural pairing between X∗(T ) and X∗(T )). The
group W naturally acts on X∗(T ), and the dominant cocharacters form a full set of
representatives for the orbits W\X∗(T ).

For any local, strictly henselian Zp-algebra R we have a realization of this data
with respect to GR. In particular we then have W ∼= NG(T )(R)/T (R) and the in-
clusion X∗(T ) ∼= HomR(Gm,R, TR) ⊆ HomR(Gm,R, GR) induces a bijection between
the quotient W\X∗(T ) and the set of conjugacy classes of cocharacters for GR. If
R → R′ is a homomorphism of local and strictly henselian Zp-algebras, then base
change to R′ yields a bijection between the sets of conjugacy classes of cocharacters
for GR and GR′ .
Putting R = C, the conjugacy class [ν−1] from Definition II.3.1 determines an ele-
ment of W\X∗(T ). On the other hand, putting R = W (k) for some algebraically
closed field k of characteristic p, we obtain an action of the Frobenius σ on X∗(T ),
W and Φ (which is independent of the choice of k). This action leaves S, Φ+ and
the set of dominant cocharacters stable, since B and T are defined over Zp.

Definition II.5.1. We define µ ∈ X∗(T ) as the unique dominant element such that
σ−1(µ) ∈ [ν−1].

As remarked in Section II.3, all cocharactes in [ν−1] are minuscule, so the same is
true for µ.

II.5.1 The Dieudonné module at a geometric point

We will use the notations and conventions on σ-linear algebra of Section II.2.1, and
especially apply them to the case that M0 = ΛZp or M0 = ΛFp . Recall that we use
the contragredient representation (·)∨ : GL(Λ)→ GL(Λ∗) to let G(R) act on Λ∗R.

Lemma II.5.2. Let k be a perfect field of finite transcendence degree over Fp, let k̄
be an algebraic closure of k. Let x̃ ∈ SK(W (k)), and suppose that there exists an
isomorphism

β : (Λ∗W (k), sW (k))
∼−→ (V◦x̃ , s◦dR,x̃).

If λ is a cocharacter of GW (k) such that (·)∨ ◦ λ induces on Λ∗W (k) the filtration

Λ∗W (k) ⊃ β
−1(Fil1 V◦x̃), then λW (k̄) ∈ [ν−1].

Proof. We may assume that k = k̄. Let ξ ∈ SK(L(k)) be the generic point of x̃, let
L(k) be an algebraic closure of L(k). We choose an embedding L(k) ↪→ C, it suffices
then to show that λC ∈ [ν−1].
Let A := AξC . There is a pair (h, g) ∈ X ×G(Af ) such that

ξC = [h, g] ∈ ShK(G, X) = G(Q)\X ×G(Af )/K.
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If VC = V (−1,0) ⊕ V (0,−1) is the Hodge decomposition given by h then, using the
notation from Construction II.4.1, we have A ' V (−1,0)/Λg, and in turn there is
an isomorphism H1(A,C) ' (Λg)C = VC. It follows from the construction of the
Riemann correspondence for complex abelian varieties that the dual isomorphism

αC : V ∗C
∼−→ H1(A,C) ∼= H1

dR(A/C) = VξC

identifies the Hodge decomposition H1
dR(A/C) = H(1,0) ⊕ H(0,1) with the decom-

position V ∗C = (V (−1,0))∗ ⊕ (V (0,−1))∗ (see e.g. [Mi3], 6.10., 7.5.), and a direct
computation shows that the cocharacter (·)∨ ◦ ν−1

h (with νh as in Definition II.3.1)
acts on (V (−1,0))∗ with weight 1 and on (V (0,−1))∗ with weight 0, in other words,

(νh(z)−1)∨|(V (−1,0))∗ = z, (νh(z)−1)∨|(V (0,−1))∗ = 1.

This means that (·)∨ ◦ ν−1
h induces on V ∗C the filtration

V ∗C ⊃ (V (−1,0))∗ = α−1
C (H(1,0)) = α−1

C (Fil1 VξC).

Further the isomorphism αC identifies sC with sdR,ξC by construction of sdR (see
Section II.4.2). On the other hand, by assumption βC also identifies sC with sdR,ξC ,
and the filtration V ∗C ⊃ β

−1
C (Fil1 VξC) is induced by (·)∨ ◦ λC. Now the isomorphism

α−1
C ◦ βC : V ∗C → V ∗C fixes the tensors sC, which means that α−1

C ◦ βC = g∨C for some
gC ∈ G(C). As we have g∨C (β−1

C (Fil1 VξC)) = α−1
C (Fil1 VξC), after conjugating λC

with gC we may therefore assume that (·)∨ ◦λC and (·)∨ ◦ ν−1
h both induce the same

filtration on V ∗C .

Let P be the stabilizer of this filtration in GC via (·)∨, that is, the subgroup of
all g̃ ∈ GC such that g̃∨ leaves the filtration stable. Then P ⊆ GC is a parabolic
subgroup, and both λC and ν−1

h factor through P . Since all maximal tori of P are
conjugate over C, after conjugation by an element of P (C) we may further assume
that both cocharacters factor via the same (automatically split) maximal torus of
P . But this implies that λC and ν−1

h also induce (via (·)∨) the same grading on V ∗C ,
and hence that they are equal.

The following construction is fundamental for the description of SK ⊗κ(v) in terms
of the group G:

Construction II.5.3. Let k be algebraically closed of finite transcendence degree
over Fp, let x ∈ SK(k). By Corollary II.4.8 the tensors s◦dR induce F -invariant

tensors scris,x ⊂ D⊗x , and we find an isomorphism β : (Λ∗W (k), sW (k))
∼→ (Dx, scris,x).

To any such β we attach an element gβ ∈ G(L(k)) as follows:

Transporting F via β, we obtain an injective σ-linear map Fβ := β−1 ◦ F ◦ β on
Λ∗W (k) = (Λ∗Zp) ⊗Zp W (k). We can write it uniquely as Fβ = F lin

β ◦ (1 ⊗ σ), where

F lin
β : Λ∗W (k) → Λ∗W (k) is linear and injective. On Λ∗L(k) this map is an automorphism

which fixes the tensors sL(k). We define gβ ∈ G(L(k)) as the unique element such

that F lin
β = g∨β , i.e. such that Fβ = g∨β ◦ (1⊗ σ).

We can also summarize the construction as follows: For each β : (Λ∗W (k), sW (k))
∼→
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(Dx, scris,x) the associated gβ ∈ G(L(k)) is the unique element such that the diagram

D(σ)
x

F lin
// Dx

Λ∗W (k)

g∨β //

β(σ)

OO

Λ∗W (k)

β

OO

commutes (where we make the usual identification (Λ∗W (k))
(σ) ∼= Λ∗W (k), see Section

II.2.1).

Lemma II.5.4. In the situation of Construction II.5.3 the following hold:

(i) Let x ∈ SK(k), let β : (Λ∗W (k), sW (k))
∼−→ (Dx, scris,x) be an isomorphism.

Then the isomorphisms between (Λ∗W (k), sW (k)) and (Dx, scris,x), are exactly

the ones of the form β′ = β ◦ h∨ for h ∈ G(W (k)), further in this case h is
uniquely determined and we have gβ′ = h−1gβσ(h).

(ii) For every x ∈ SK(k) and every isomorphism β : (Λ∗W (k), sW (k))
∼−→ (Dx, scris,x)

we have that gβ ∈ G(W (k))µ(p)G(W (k)).

Proof. (i) This is a standard argument: The automorphisms of Λ∗W (k) which fix

sW (k) are exactly the elements h∨ for h ∈ G(W (k)), so the first statements are
clear. If β′ = β ◦ h∨, then

g∨β′ ◦ (1⊗ σ) = Fβ′ = β′−1 ◦ F ◦ β′

= (h∨)−1 ◦
(
β−1 ◦ F ◦ β

)
◦ h∨

= (h∨)−1 ◦
(
g∨β ◦ (1⊗ σ)

)
◦ h∨

=
(
(h∨)−1 ◦ g∨β ◦ σ(h∨)

)
◦ (1⊗ σ),

which shows the last claim, since σ(h∨) = σ(h)∨.

(ii) By the Cartan decomposition for G(L(k)) (cf. Section I.2.4) we know that gβ
lies in a double coset G(W (k))η(p)G(W (k)) for a unique dominant cocharacter
η ∈ X∗(T ). By (i) we may further w.l.o.g. replace β by β ◦ h∨ for a suitable
h ∈ G(W (k)) to achieve that gβ ∈ G(W (k))η(p). By definition of µ in II.5.1,
in order to show that η = µ it suffices to check that the base change of σ−1(η)
to k lies in [ν−1].

Let x̃ ∈ SK(W (k)) be a lift of x, and identify Dx ∼= V◦x̃ . Consider the pullback

Λ∗W (k) ⊃ β
−1(Fil1 V◦x̃)

of the Hodge filtration on V◦x̃ . By Proposition II.4.7(iii) there is a cocharacter
λ of GW (k) such that (·)∨ ◦ λ induces this filtration, and by Lemma II.5.2 we
know that λ ∈ [ν−1]. Reducing the whole situation modulo p we obtain the
contravariant Dieudonne space (Dx, F , V ) associated to the p-torsion Ax[p] and
the isomorphism

β̄ : Λ∗k
∼−→ Dx ∼= V◦x̃ = V◦x = H1

dR(Ax/k).



II.5. STRATIFICATIONS OF THE SPECIAL FIBER 79

By a result of Oda ([Od], 5.11.), we have the equality Fil1 V◦x = ker(F ), which
implies that

β−1(Fil1 V◦x̃) = β̄−1(ker(F )) = ker(β̄−1 ◦ F ◦ β̄) = ker(Fβ).

So the filtration Λ∗k ⊇ ker(Fβ) is induced via (·)∨ by the reduction λ̄ of λ.

Since gβ = g0η(p) for some g0 ∈ G(W (k)), we have

Fβ = (g∨0 ◦ η(p)∨) ◦ (1⊗ σ) = (1⊗ σ) ◦ (σ−1(g0)∨ ◦ σ−1(η)(p)∨).

Let Λ∗W (k) =
⊕

m∈Z Λ∗m be the grading which is induced by the cocharacter

(·)∨ ◦ σ−1(η) on Λ∗W (k). The inclusions p ·Λ∗W (k) ⊆ im(Fβ) ⊆ Λ∗W (k) show that

we must have Λ∗m = (0) for m 6= 0, 1, thus Λ∗W (k) = Λ∗0 ⊕ Λ∗1. Reducing the
above description of Fβ modulo p we find that

ker(Fβ) = ker(σ−1(η)(p)∨) = Λ∗1.

This implies that the two cocharacters (·)∨ ◦ σ−1(η) and (·)∨ ◦ λ̄ induce the
same filtration on Λ∗k. Now it follows by the same argument as in the proof

of Lemma II.5.2 that σ−1(η) and λ̄ are G(k)-conjugate, which concludes the
proof.

Lemma II.5.5. Let k be algebraically closed of finite transcendence degree over Fp,
let x, x′ ∈ SK(k). Let gβ , gβ′ ∈ G(W (k)) be the elements associated to isomorphisms
β and β′ between (Λ∗W (k), sW (k)) and (Dx, scris,x) resp. (Dx′ , scris,x′) by Construction
II.5.3.
Then there is an isomorphism of Dieudonné modules Dx ' Dx′ which identifies scris,x

with scris,x′ if and only if gβ′ = hgβσ(h)−1 for some h ∈ G(W (k)).

Proof. By Construction II.5.3 the existence of an isomorphism Dx ' Dx′ which
respects the tensors on both sides is equivalent to the existence of an automorphism
δ of (Λ∗W (k), sW (k)) such that

g∨β′ ◦ (1⊗ σ) ◦ δ = δ ◦ g∨β ◦ (1⊗ σ) (*)

Every such automorphism must be of the form δ = h∨ for a unique h ∈ G(W (k)),
and an easy calculation analogous to that in the proof of II.5.4(i) shows that the
property (*) is equivalent to gβ′ = hgβσ(h)−1.

II.5.2 The Newton stratification

In order to define the Newton stratification on SK ⊗ κ(v), recall the following facts
on σ-conjugacy classes.

Let k be algebraically closed of characteristic p. Let [g] the σ-conjugacy class
of an element g ∈ G(L(k)), and let B(G) be the set of all σ-conjugacy classes in
G(L(k)) (compare I.2.5). This definition is in fact independent of k in the following
sense: If k′ is any algebraically closed field of characteristic p, then every inclusion
k ⊆ k′ induces a bijection between the σ-conjugacy classes of G(L(k)) and those of
G(L(k′)) (see [RR], 1.3.).
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We have the Newton map νG : B(G)→ N (G) and the Kottwitz map κG : B(G)→
π1(G)〈σ〉. Let µ ∈ X∗(T ) be as defined in II.5.1. Recall from Section I.3.1.1 that
the subset B(G,µ) ⊆ B(G) of σ-conjugacy classes which meet the double coset
G(W (k))µ(p)G(W (k)) is given (also independently of k in the above sense) as

B(G,µ) := {b ∈ B(G) | κG(b) = µ\, νG(b) � µ̄
}
,

where µ\ is the projection of µ to π1(G)〈σ〉, µ̄ = 1
n

∑n−1
i=0 σ

i(µ) for some n ∈ N such
that σn acts trivially on X∗(T ), and where � is the partial order on N (G) which
generalizes the ”lying above” order for Newton polygons. (Note that in the notations
of the first chapter we have G(W (k)) = K and µ(p) = pµ.)

For b′, b ∈ B(G,µ) we have b′ � b if and only if νG(b′) � νG(b). As explained in
Section I.3.1.1, B(G,µ) is a finite set and contains a unique maximal element with
respect to �, which we denote by bµ−ord. Further B(G,µ) contains a unique basic
element, which we denote by bbas, this is also the minimal element with respect to �.

Let us now define the Newton stratification on SK ⊗ κ(v): Consider a point
x ∈ SK ⊗ κ(v), let k(x) be the residue class field of SK in x. Let k be some
algebraic closure of k(x), let x̂ ∈ SK(k) be the associated geometric point, and
choose an isomorphism β : (Λ∗W (k), sW (k)) ' (Dx̂, scris,x̂). Let gβ ∈ G(L(k)) be the
corresponding element which is given by Construction II.5.3, i.e. by the property
β−1 ◦ F ◦ β = g∨β ◦ (1⊗ σ), where F is the σ-linear map on Dx̂. Lemma II.5.4 shows
that gβ ∈ G(W (k))µ(p)G(W (k)) and that its σ-conjugacy class [gβ ] is independent
of the choice of β. Further, this σ-conjugacy class only depends on x and not on the
choice of k(x) in the sense explained above. Thus we obtain a well-defined map

Newt: SK ⊗ κ(v) −→ B(G,µ), (44)

which assigns to x ∈ SK ⊗ κ(v) the σ-conjugacy class of an element gβ associated
by Construction II.5.3 to some geometric point of SK ⊗ κ(v) lying above x.

Definition II.5.6.

(i) For an element b ∈ B(G,µ) set N b := Newt−1({b}) ⊆ SK ⊗ κ(v). We call N b

the Newton stratum of b.

(ii) We set N µ−ord := N bµ−ord , and call N µ−ord the µ-ordinary locus in SK⊗κ(v).

(iii) We set N bas := N bbas , and call it the basic locus in SK ⊗ κ(v).

Remark II.5.7. The same argument as used in Lemma II.5.5 shows that two points
x1, x2 ∈ SK⊗κ(v) lie in the same Newton stratum if and only if the following holds:
If k is any algebraically closed field of finite transcendence degree over Fp such that
k(x1) and k(x2) both embed into k (such a field always exists), with associated
points x̂1, x̂2 ∈ SK(k), then there is an isomorphism of isocrystals (Dx̂1

)Q ' (Dx̂2
)Q

which identifies the tensors scris,x̂1
with scris,x̂2

.

A priori, the N b are just subsets of SK⊗κ(v). In the case of a PEL-type Shimura
datum, at each geometric point x̂ of SK ⊗ κ(v) the tensors scris,x̂ describe the addi-
tonal structure on Dx̂ (cf. Remark II.4.9), hence the Newton strata from Definition
II.5.6 agree with those considered in the PEL-case. In this case the isocrystal over
SK⊗κ(v) associated to the p-divisible group (A⊗κ(v))[p∞], with induced additional
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structure, is an isocrystal with G-strucure in the sense of Rapoport-Richartz ([RR],
§3). The ”Grothendieck specialization theorem” for isocrystals with G-structure
([RR], Thm. 3.6.) then shows that the behaviour of Newt under specializations on
SK ⊗ κ(v) is ruled by the order relation on B(G,µ):

Newt(x2) � Newt(x1) if x1 specializes to x2. (45)

It follows from this property that each N b is a locally closed subset of SK ⊗ κ(v),

and for the closures one has the relation N b ⊆
⋃
b′�bN b′ . The recent results of

Hamacher show that this last inclusion is even an equality, i.e. that

N b =
⋃
b′�b

N b′ (46)

for Shimura varieties of PEL-type, and also give a precise formula for the dimension
of N b ([Ha], Thm. 1.1.).

It is natural to ask whether the specialization property (45) also holds for a
general Shimura variety of Hodge type. To our knowledge, this result has not yet
been established, though we expect it to be true. There is, however, the following
result of Vasiu. Since A ⊗ κ(v) is in particular a polarized abelian scheme over
SK ⊗ κ(v), we have the classical stratification of SK ⊗ κ(v) by Newton polygons,
as defined by Oort. For a symmetric Newton polygon ∆ ∈ B(GSp(V )), denote the
corresponding stratum in SK ⊗ κ(v) by N∆

NP. Then by Remark II.5.7 every N b lies

in a unique stratum N∆(b)
NP , this defines a map B(G,µ) → B(GSp(V )), b 7→ ∆(b),

which should be thought of as ”forgetting the tensor structure”.

Proposition II.5.8 ([Va2], 5.3.1.(ii)). For every b ∈ B(G,µ) the stratum N b is an

open and closed subset of N∆(b)
NP .

As a consequence, since the strata N∆
NP are locally closed subsets of SK ⊗ κ(v),

the same holds true for theN b, which justifies the term ”Newton strata” in Definition
II.5.6 also for Shimura varieties of Hodge type. We endow eachN b with the structure
of a reduced subscheme of SK ⊗ κ(v).

II.5.3 The Ekedahl-Oort stratification

Recall that Fp denotes a fixed algebraic closure of Fp. We now describe the Ekedahl-
Oort stratification on SK ⊗ Fp which has been constructed and studied by Zhang
in [Zh1]. However, we give a slightly different definition, as we feel that one should
work with Λ∗ rather than with Λ, further we make the definition independent of
the choice of a cocharacter. The main results of [Zh1] remain true with the obvious
changes.

The definition of the Ekedahl-Oort stratification is based on the theory of GFp -
Zips which has been developed in [PWZ1], [PWZ2], and which we will apply to a
cocharacter in the conjugacy class [ν−1]:

If X is a scheme or a sheaf over an Fp-scheme S, denote by X(σ) its pullback
by the absolute Frobenius x 7→ xp on S, and likewise for morphisms of objects over
S. If κ is any algebraic extension of Fp then, since Gκ = G ⊗ κ is defined over Fp,
we have G

(σ)
κ
∼= Gκ canonically (compare Section II.2.1). In particular, for every

subgroup H ⊆ Gκ the pullback H(σ) is again a subgroup of Gκ.
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We view the conjugacy class [ν−1] as an element of W\X∗(T ), as explained
at the beginning of this section. The type J ⊆ S of this conjugacy class is then
given as follows: Let χdom ∈ X∗(T ) be the unique dominant element lying in [ν−1],
then J := {s ∈ S | s(χdom) = χdom}. Let JW be the set of shortest left coset
representatives for the subgroup WJ generated by J (see Section I.2.3). Let w0 and
w0,J be the longest elements of W and WJ respectively and let xJ := w0w0,J . Then
by ([PWZ1], 6.3., see also [PWZ2], §3.5.) the relation given by

w′ � w :⇐⇒ zw′σ(xJzx
−1
J ) ≤ w for some z ∈WJ (47)

is a partial order � on JW . (We will see in Section II.6.2 that this formulation of �
is consistent with the order relation on [[·]]-classes considered in the first chapter.)
This partial order induces a topology on JW : A subset U ⊂ JW is open if and only
if for any w′ ∈ U and any w ∈ JW with w′ � w one also has w ∈ U .

Let κ be algebraic over Fp, let χ be a cocharacter of Gκ such that χFp ∈ [ν−1].

Using the identification G
(σ)
κ
∼= Gκ we can then view χ(σ) as a cocharacter of Gκ as

well. Let Pχ,+, Pχ,− ⊆ Gκ be the parabolic subgroups which are characterized by
the property that Lie(P±) is the sum of the non-negative (resp. non-positive) weight
spaces with respect to the adjoint operation of χ on Lie(Gκ). Denote by Uχ,+ and
Uχ,− the corresponding unipotent radicals and by Mχ the common Levi subgroup
of Pχ,+ and Pχ,−.

Definition II.5.9 ([PWZ2], 3.1.). Let S be a scheme over κ. A GFp-zip of type χ
over S is a quadruple I = (I, I+, I−, ι), where

(1) I is a right Gκ-torsor for the fpqc-topology on S,

(2) I+ ⊆ I and I− ⊆ I are subsheaves such that I+ is a Pχ,+-torsor and I− is a

P
(σ)
χ,−-torsor,

(3) ι : I
(σ)
+ /U

(σ)
χ,+

∼−→ I−/U
(σ)
χ,− is an isomorphism of M

(σ)
χ -torsors.

A morphism I −→ I ′ of GFp -zips over S is a Gκ-equivariant map I → I ′ which maps
I+ to I ′+ and I− to I ′− and is compatible with ι and ι′.

With the natural notion of pullback theGFp -zips of type χ form a stackGFp−Zipχκ
over (Sch/κ) ([PWZ2], 3.2.).

Proposition II.5.10 ([PWZ2], 3.12., 3.20., 3.21.). GFp−Zipχκ is a smooth algebraic
stack of dimension 0 over κ, and there is a homeomorphism of topological spaces

(GFp−Zipχκ)(Fp) ' JW

where JW is endowed with the topology given by the partial order � from (47).

So in particular, there is a bijection between the set of isomorphism classes of
GFp -zips of type χ over Fp and the set JW . We will give a precise description of this
bijection in II.6.5.

Construction II.5.11. Let V◦ := H1
dR(A⊗κ(v)/SK⊗κ(v)), this is just the reduc-

tion mod p of V◦. Let C := Fil1 V◦ = Fil1 V◦ be the Hodge filtration, which is a locally
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direct summand of V◦. As explained in ([MW], §7), the conjugate Hodge spectral se-
quence also gives rise to a locally direct summandD := R1π∗(H 0(Ω•A⊗κ(v)/SK⊗κ(v)))

of V◦, and the (inverse) Cartier homomorphism provides isomorphisms

φ0 : (V◦/C)(σ) ∼−→ D, φ1 : C(σ) ∼−→ V◦/D.

We now fix a cocharacter χ and a finite extension κ of κ(v) such that χ is defined
over κ and such that χFp ∈ [ν−1]. Recall that Gκ and thus also χ and χ(σ) act on

Λ∗κ via the contragredient representation (·)∨. Let

Λ∗κ = Fil0χ ⊃ Fil1χ ⊃ (0), (0) ⊂ Filχ
(σ)

0 ⊂ Filχ
(σ)

1 = Λ∗κ

be the descending resp. ascending filtration given in this way by χ and by χ(σ).
Then Pχ,+ is nothing but the stabilizer of Fil•χ in Gκ, that is,

Pχ,+ = {g ∈ Gκ | g∨(Fil1χ) = Fil1χ},

and in the same fashion P
(σ)
χ,− is the stabilizer of Filχ

(σ)

• . We denote by s̄dR the

reduction of the tensors s◦dR to V◦, and by s̄ the base change of s ⊂ (Λ∗Zp)⊗ to Λ∗κ.
Define:

I :=IsomSK⊗κ
(
(Λ∗κ, s̄)⊗OSK⊗κ, (V◦, s̄dR)⊗OSK⊗κ

)
,

I+ :=IsomSK⊗κ
(
(Λ∗κ, s̄,Fil•χ)⊗OSK⊗κ, (V◦, s̄dR,V◦ ⊃ C)⊗OSK⊗κ

)
,

I− :=IsomSK⊗κ
(
(Λ∗κ, s̄,Filχ

(σ)

• )⊗OSK⊗κ, (V◦, s̄dR,D ⊂ V◦)⊗OSK⊗κ
)
.

We have a natural right action of Gκ on I given by β · g := β ◦ g∨, and I+ and I−
inherit actions of Pχ,+ and P

(σ)
χ,−.

A crucial step in the definition of the Ekedahl-Oort stratification is now the
following result of Zhang:

Proposition II.5.12 ([Zh1], 2.4.1.). The Cartier isomorphisms induce an isomor-

phism ι : I
(σ)
+ /U

(σ)
χ,+

∼−→ I−/U
(σ)
χ,− such that the tuple I = (I, I+, I−, ι) is a GFp-zip of

type χ over SK ⊗ κ.

Proof. We give a few comments on the proof, as we have defined I, I+ and I− in a
different way than it is done in [Zh1]. Let us show for our definitions that for every
closed point x of SK ⊗ κ the fibers Ix and (I+)x are trivial torsors for Gκ and Pχ,+
respectively: Let k(x) be the residue class field of SK at x, which is a finite extension
of κ(v). Let x̃ ∈ SK(W (k(x))) be a lift of x. By Proposition II.4.7(iii) and Lemma
II.5.2 we find an isomorphism β̄ : (Λ∗k(x), sk(x))

∼−→ (V◦x, s̄dR,x) and a cocharacter λ̄

of Gk(x) which induces the filtration Λ∗k(x) ⊃ β̄−1(Cx) via (·)∨, and further we have

λ̄Fp ∈ [ν−1]. By definition, β̄ then lies in Ix(k(x)), which shows that Ix is trivial.

Moreover, λ̄ is conjugate to χ over some finite extension of k(x). This implies that
(I+)x is a Pχ,+-torsor, this torsor must be trivial since Pχ,+ is a connected group
and k(x) is finite.

Now all the arguments in the sections 2.2. - 2.4. and in the proof of 2.4.1. of
[Zh1] carry over to our definition of I, I+ and I− with the necessary adjustments.
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By Proposition II.5.12 for every scheme S over SK⊗κ one obtains a GFp -zip over
S by pulling back the GFp -zip I, in other words, I defines a morphism of algebraic
stacks

ζ : SK ⊗ κ→ GFp−Zipχκ. (48)

Theorem II.5.13 ([Zh1], 3.1.2.). The morphism ζ is smooth. In particular it in-
duces a continuous and open map of topological spaces

ζ(Fp) : SK(Fp) −→ (GFp−Zipχκ)(Fp) ' JW.

Proof. Again, the proof of ([Zh1], 3.1.2.) goes through with the obvious changes.

Remark II.5.14. Though the definition of ζ depends on the choice of a cocharacter
χ, the resulting map ζ(Fp) : SK(Fp) → JW is in fact independent of χ. This is a
consequence of the following two observations:

(1) Let κ′ be a finite extension of κ, let χ′ = χκ′ , and let I ′ be the GFp -zip of type

χ′ over SK ⊗ κ′ given by Construction II.5.11. Then we have GFp−Zip
χ′

κ′ =
(GFp−Zipχκ)⊗κ′ and the equality I ′ = I⊗κ′, which means that χ and χ′ induce

the same map ζ(Fp).

(2) Let χ′ be a cocharacter of Gκ which is conjugate to χ over κ, say χ′ = int(g) ◦χ
for some g ∈ G(κ). Let Pχ′,± ⊆ Gκ be the associated parabolic subgroups, with
common Levi subgroup Mχ′ , and again denote by I ′ the GFp -zip associated to χ′

(over κ). Applying the Propositions II.5.12 and II.5.10 to κ and χ′ one obtains
a map

ζ ′(Fp) : SK(Fp)→ (GFp−Zip
χ′

κ′ )(Fp) '
JW.

As Pχ′,± = g(Pχ,±)g−1 and consequently Uχ′,± = gUχ,±g
−1,Mχ′ = gMχg

−1,
the element g defines an isomorphism of algebraic stacks

Ξ: GFp−Zipχκ
∼−→ GFp−Zipχ

′

κ(
I, I+, I−, ι

)
7−→

(
I, (I+) · g−1, (I−) · σ(g)−1, rσ(g)−1 ◦ ι ◦ rσ(g)

)
,

where rσ(g) and rσ(g)−1 are the obvious isomorphisms given by multiplication
with σ(g) resp. σ(g)−1 on the right.
It is easy to see that Ξ(I) = I ′. Further, going through the classification of GFp -
zips in [PWZ1], [PWZ2] (see also II.6.5), a straightforward but tedious compu-
tation shows that Ξ is compatible with the homeomorphisms from Proposition
II.5.10, which implies that ζ ′(Fp) = ζ(Fp).

Due to Theorem II.5.13 and the definition of the topology on JW , the inverse images
of elements w ∈ JW under ζ(Fp) are the Fp-valued points of locally closed subsets
Sw ⊆ SK ⊗ Fp.

Definition II.5.15. For w ∈ JW we call Sw ⊆ SK ⊗ Fp the Ekedahl-Oort stratum
associated to w. We endow the strata Sw with the reduced subscheme structure.

Note that this is really a stratification of SK ⊗ Fp, in general the strata Sw are
not defined over κ(v). It is shown in ([Zh1], 3.2.8. and 3.2.9.) that two points
x, x′ ∈ SK(Fp) lie in the same Ekedahl-Oort stratum if and only if there is an
isomorphism Dx ' Dx′ which identifies s̄cris,x with s̄cris,x′ . Thus Definition II.5.15
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generalizes the definitions of Ekedahl-Oort strata in the Siegel case and in the PEL-
case. Recently, Zhang has also annonced a result which shows that the stratification
is independent from the choice of the embedding (G, X) ↪→ (GSp(V, ψ), S±) in the
very beginning of the construction (see [Zh2]).

As the Ekedahl-Oort stratification is defined by taking inverse images under
the continuous and open map ζ(Fp), it inherits many topological properties of
(GFp−Zipχκ)(Fp) ' JW :

II.5.16.

(1) Each Sw is either empty or equidimensional of dimension l(w) (see [Zh1], 3.1.6.).

(2) The Sw form a stratification of SK ⊗ Fp in the strict sense: For every w ∈ JW
we have

Sw =
⋃
w′�w

Sw.

This follows from the fact that taking inverse images under ζ commutes with
taking closures (ζ being an open map), and the structure of the topological space
JW .

(3) The set JW contains a unique maximal element with respect to �, namely
wmax := w0,Jw0, and a unique minimal element wmin := 1. By (2), the associated
Ekedahl-Oort stratum Swmax is the unique open stratum and is dense in SK⊗Fp,
and Swmin is closed and contained in the closure of each stratum Sw.

(4) In the PEL-case it is known that all Ekedahl-Oort strata are nonempty ([VW],
Thm. 10.1.). In the Hodge type case this is an open question. In view of
properties (2) and (3) the nonemptyness of all strata would follow from the fact
that Swmin is nonempty.

II.6 Comparing the stratifications

We will now restrict our attention to the geometric fiber SK⊗Fp, where the Newton
stratification and the Ekedahl-Oort stratification are both defined. The question as
to how the stratifications are related to each other can be studied by looking at
their Fp-valued points, since all strata are locally closed subvarieties of SK ⊗ Fp.
We establish the commutative diagram from the introduction of this chapter, which
allows to deduce information on the stratifications from the results of Chapter I. As
a major appliciation we prove our theorems on the µ-ordinary locus.

Throughout this section we will mainly take on the group theoretical point of
view as in Chapter I, we therefore resume many of the notations from Section I.2.1:

Notation II.6.1. We still denote by Fp a fixed algebraic closure of Fp. Let O :=
W (Fp) and L := L(Fp), write K := G(O) ⊆ G(L). The projection O → O/(p) = Fp
induces a surjective homomorphism K → G(Fp), g 7→ ḡ. The Frobenius σ of Fp
over Fp acts on K and on G(Fp), and these operations are compatible in the sense

that σ(ḡ) = σ(g). Let K1 := {g ∈ K | ḡ = 1}, this is a normal subgroup of K. For
every w ∈W we choose a representative w ∈ NG(T )(O), and denote its reduction to
NG(T )(Fp) by w as well. All constructions and definitions involving these elements
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will only depend on w ∈ W and will be independent of the particular choice of
representative. We set pλ := λ(p) ∈ G(L) for λ ∈ X∗(T ).

By abuse of notation we will frequently identify geometric objects over Fp with
their Fp-valued points. For example we denote the Fp-valued points of N b resp. of
Sw by the same symbols. With these notations we have the decompositions

SK(Fp) =

◦⋃
b∈B(G,µ)

N b, SK(Fp) =

◦⋃
w∈JW

Sw.

II.6.1 The factorization result

Recall that we write [g] for the G(L)-σ-conjugacy class of g ∈ G(L). As in Definition
I.2.16, we set

[[g]] := K ·σ (K1gK1) = {hg′σ(h)−1 | g′ ∈ K1gK1, h ∈ K}, g ∈ G(L),

further we make the following definitions:

Definition II.6.2.

(i) Write 〈g〉 := {hgσ(h)−1 | h ∈ K} for the K-σ-conjugacy class of an element
g ∈ G(L).

(ii) Set C(G,µ) := {〈g〉 | g ∈ KpµK}.

(iii) For any g′ ∈ KpµK we identify [[g′]] and [g′] with a subset of C(G,µ): We
write 〈g〉 ∈ [[g′]] if and only 〈g〉 ⊆ [[g′]] and 〈g〉 ∈ [g′] if and only 〈g′〉 ⊆ [g′].

It follows from Construction II.5.3 and Lemma II.5.4 that there is a well-defined
map

γ : SK(Fp) −→ C(G,µ) (49)

which is given as follows: If x ∈ SK(Fp) and β : (Λ∗O, sO) ' (Dx, scris,x) is an
isomorphism as in Corollary II.4.8, then

γ(x) := 〈gβ〉, where gβ ∈ G(L) with β−1 ◦ F ◦ β =: Fβ = g∨β ◦ (1⊗ σ).

Here as usual (·)∨ is the contragredient representation.

Remark II.6.3. In the case of a PEL-type Shimura variety the map γ is known to be
surjective ([VW], Thm. 11.2.). We do not know whether the surjectivity of γ holds
in general.

Consider the natural map

θ̃ : C(G,µ) −→ B(G,µ), 〈g〉 7−→ [g],

and let θ := θ̃ ◦ γ : SK(Fp)→ B(G,µ). Then by definition of the Newton stratifica-
tion in II.5.6 we have N b = θ−1({b}) for each b ∈ B(G,µ), and further we have the
following description of the fibers of θ̃:

θ̃−1({b}) = {〈g〉 | g ∈ Kµ(p)K ∩ b} = C(G,µ) ∩ b, b ∈ B(G,µ).

On the other hand, recall that for every w ∈ JW the associated Ekedahl-Oort stra-
tum is by definition given as Sw = ζ−1({w}), where we simply write ζ for the map
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ζ(Fp) : SK(Fp)→ JW from Theorem II.5.13. We will now explain that one also has

a factorization ζ̃ : C(G,µ) → JW such that ζ = ζ̃ ◦ γ, and that the inverse images
ζ̃−1({w}) for w ∈ JW are exactly given by the [[·]]-classes in KpµK.

II.6.4. We have seen in Remark II.5.14 that the map ζ does not depend on the
choice of the cocharacter χ, nor on the choice of κ in Construction II.5.11. Therefore
we may and will further assume that χ is the unique dominant cocharacter contained
in [ν−1], in other words that χ = σ−1(µ). We then have J = {s ∈ S | s(χ) = χ}.

We extend the subgroups of GFp associated to χ in the last Section to groups
over O: Let M ⊆ G be the centralizer of χ, let P+ ⊆ G be the unique parabolic
subgroup which contains M and B, let P− be the parabolic subgroup opposite to
P+ with respect to T . (In the notations of Section I.2.3 we would have M = MJ

and P+ = PJ .) Let U± be the unipotent radical of P± respectively. The fibers of
these groups over Fp are then exactly the groups Pχ,±, Uχ,±,Mχ ⊆ GFp defined in
Section II.5.3. To simplify notations, we will also write P±, U± and M for these base
changes.

II.6.5. Let us review in detail the homeomorphism (GFp−Zipχ)(Fp) ' JW from
Proposition II.5.10 in this situation. The composition of the relative Frobenius

morphism GFp → G
(σ)

Fp
with the identification G

(σ)

Fp
∼= GFp (see Section II.5.3) is an

isogeny of the algebraic group GFp , such that the induced map on Fp-valued points

coincides with the σ-action on G(Fp). By abuse of notation we denote this isogeny
also by σ. It induces a morphism

σ : P+/U+
∼= M −→M (σ) ∼= P

(σ)
− /U

(σ)
− ,

such that the tuple (GFp , P+, P
(σ)
− , σ) is an algebraic zip datum in the sense of

([PWZ1], 3.1.). The associated zip group is defined as

Eχ :=
{

(mu+, σ(m)u−) | u+ ∈ U+, u− ∈ U (σ)
− ,m ∈M

}
⊆ P+ × P (σ)

− .

It acts on GFp on the left via (p+, p−) · g = p+gp
−1
− . The homeomorphism is now

obtained in two steps.

(I) The isomorphism classes of GFp -zips of type χ over Fp are identified with the
orbits of the Eχ-action on GFp by the following construction: Every a ∈ GFp defines

a zip Ia over Fp by setting

Ia := (GFp , P+, a · P (σ)
− , ιa),

where ιa is given by multiplication with a on the left, more precisely,

ιa : P
(σ)
+ /U

(σ)
+
∼= M (σ) a·−→ a ·M (σ) ∼= a · P (σ)

− /U
(σ)
− .

A zip of this form is called a standard GFp -zip over Fp. By ([PWZ2], 3.5.), every

GFp -zip I of type χ over Fp is isomorphic to a standard zip:

If i+ ∈ I+ and i− ∈ I− such that ι(i
(σ)
+ U

(σ)
+ ) = i−U

(σ)
− ,

and if a ∈ GFp such that i− = i+ · a, then I ' Ia.
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Further, by ([PWZ2], 3.10) the assignment Ia 7→ Eχ · a is well-defined, and Ia ' Ia′
if and only if Eχ · a = Eχ · a′. This construction can be made functorial and induces

an isomorphism of stacks (GFp−Zipχ)⊗ Fp '
[
Eχ\GFp

]
([PWZ2], 3.11.).

(II) Let B− be the Borel subgroup of G which is opposite to B with respect
to T , and let y := w0,Jw0 ∈ W . Then the triple (B−, T, y) is a frame for the

zip datum (GFp , P+, P
(σ)
− , σ) in the sense of ([PWZ1], 3.6.): We have yT = T ,

y(B−) = w0,Jw0(B−) = w0,JB, and (every representative of) w0,J lies in M , so

B− ⊆ P (σ)
− , y(B−) ⊆ P+,

σ(y(B−) ∩M) = σ(w0,J (B ∩M)) = σ(B− ∩M) = B− ∩ σ(M),

σ(yT ∩M) = σ(T ) = T = T ∩ σ(M)

Here again we suppressed the (·)Fp -notation for the base changes of B− and T . Let

(W,S−) be the Weyl group with respect to the pair (B−, T ). We need to compare it to
(W,S), as for example explained in ([PWZ1], §2.3.): There is a unique isomorphism
δ : (W,S)→ (W,S−) of coxeter groups which is induced from an inner automorphism
int(g), where g ∈ G(Fp) such that gBg−1 = B− and gTg−1 = T . Since in our case
we may choose g = w0, we see that δ(w) = w0ww0 for w ∈ W . The results of
([PWZ1], §6, §7), which are formulated for the Weyl group (W,S−), thus show that
the assignment

JW −→ Eχ\GFp , w 7−→ Ow := Eχ · (yδ(w)) = Eχ · (w0,Jww0)

is bijective, and that Ow
′

is contained in the closure of Ow if and only if w′ � w (we
defined � in section II.5.3).

Together these constructions describe the homeomorphism (GFp−Zipχ)(Fp) '
JW from II.5.10: It maps the isomorphism class of Ia to the unique w ∈ JW such
that a ∈ Ow.

Proposition II.6.6. Define ζ̃ : C(G,µ)→ JW as the composition

C(G,µ) −→ Eχ\GFp ' JW.

〈h1p
µh2〉 7−→ Eχ · (σ−1(h̄2)h̄1)

The following hold:

(i) The map ζ̃ is well-defined and surjective.

(ii) We have the identity ζ = ζ̃ ◦ γ.

(iii) For g, g′ ∈ KpµK we have ζ̃(〈g〉) = ζ̃(〈g′〉)⇐⇒ [[g]] = [[g′]].

Proof. We will use the root groups Uα : Ga,O → GO, (α ∈ Φ), cf. Section I.2.4.
Recall that for every α ∈ Φ and λ ∈ X∗(T ) we have the relation

pλUα(x)p−λ = Uα(p〈α,λ〉x) for all x ∈ L. (*)

In particular, this implies that if 〈α, λ〉 > 0 then pλUα(O)p−λ ⊆ K1.
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(i) It is clear that ζ̃ is surjective, once we know that it is well-defined. To prove
this it is enough to show that the orbit Eχ · (σ−1(h̄2)h̄1) is independent of the
choice of h1 and h2 (see also [HL], where a similar result is proved in Lemma
4.1.). So let h′1, h

′
2 ∈ K (i = 1, 2) such that h1p

µh2 = h′1p
µh′2. We define

c1 := h−1
1 h′1, c̃2 := h2(h′2)−1, c2 := σ−1(c̃2).

Then c̄2(σ−1(h̄′2)h̄′1)c̄−1
1 = σ−1(h̄2)h̄1, so it suffices to show that (c̄2, c̄1) ∈ Eχ.

Since c1 = pµc̃2p
−µ and χ = σ−1(µ), we have c2 ∈ Kχ := K ∩ p−χKpχ. This

is the stabilizer of two points in the Bruhat-Tits building of GL, so we may
apply the structure theory for these groups to Kχ (again cf. Section I.2.4:
For all α ∈ Φ define Uχα := Uα(L) ∩Kχ. From (*) we see that Uχα = Uα(paO)
with a = max{0,−〈α, χ〉}. Note that Uχα ⊆ K1 if 〈α, χ〉 < 0. Now it follows
from ([Ti], 3.1.) that we may write c2 = u−u+m, where

u+ ∈
∏

〈α,χ〉>0

Uχα ⊆ U+(O), u− ∈
∏

〈α,χ〉<0

Uχα ⊆ K1, m ∈M(O)

(here we use that NGT (L) ∩Kχ ⊆M(O) which can be easily checked). Thus
we have c̄2 ∈ P+(Fp), with Levi component m̄. Using (*) and the equation
σ−1(c1) = pχc2p

−χ we now see that c1 = u′+u
′
−σ(m) with u′− ∈ σ(U−(O)) and

u′+ ∈ σ
( ∏
〈α,χ〉>0

pχUχαp
−χ
)
⊆ K1.

Hence c̄1 ∈ P (σ)
− (Fp) and has Levi component σ(m) = σ(m̄), which shows that

(c̄2, c̄1) ∈ Eχ.

(iii) Now we investigate the fibers of ζ̃ (cf. the proof of Theorem 1.1.(1) in [Vi1]).
Let 〈g〉, 〈g′〉 ∈ C(G,µ). Since everything only depends on the K-σ-conjugacy
classes we may suppose that g = hpµ and g′ = h′pµ for h, h′ ∈ K. By definition
of ζ̃ we then have to show that

Eχ · h̄ = Eχ · h̄′ ⇐⇒ [[hpµ]] = [[h′pµ]].

The implication ”⇐=” follows directly from the proof of (i). Conversely, let
(p+, p−) ∈ Eχ such that p+h̄p

−1
− = h̄′. We may choose

m ∈M(O), u+ ∈ U+(O), u− ∈ σ(U−(O))

such that p+ = ū+m̄ and p− = ū−σ(m̄). By (*) we have p−µu−1
− pµ ∈ K1 and

pµσ(u+)p−µ ∈ K1. Thus, using the fact that σ(m)−1 commutes with pµ, we
find that

[[h′pµ]] = [[u+mhσ(m)−1u−1
− pµ]] = [[u+mhσ(m)−1pµ]]

= [[mhσ(m)−1pµσ(u+)]] = [[mhσ(m)−1pµ]]

= [[mhpµσ(m)−1]] = [[hpµ]].

(ii) Finally we check that ζ = ζ̃ ◦ γ. Let I be the GFp -zip associated to χ in

Construction II.5.11. Consider a point x ∈ SK(Fp). By definition, ζ(x) is
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then the w ∈ JW which corresponds to the isomorphism class of the pullback
Ix to Fp. On the other hand, let β : (Λ∗O, sO)→ (Dx, scris,x) be an isomorphism,
and let gβ ∈ KpµK such that Fβ = g∨β ◦ (1 ⊗ σ), then γ(x) = 〈gβ〉. We may
suppose that gβ = hpµ for some h ∈ K by passing to a different β (compare
Lemma II.5.4). In view of the classification of GFp -zips over Fp (see II.6.5),

to prove that ζ̃(γ(x)) = ζ(x) we have to show that Ix is isomorphic to the
standard zip I h̄.

Let Λ∗Fp
= Λ∗χ,0⊕Λ∗χ,1 be the weight decomposition of with respect to the action

of χ on Λ∗Fp
(using, as always, the representation (·)∨), and likewise for µ.

Keeping the notations of II.5.11, by definition we have Ix = (Ix, I+,x, I−,x, ιx),
where

Ix :=IsomFp

(
(Λ∗Fp , s̄), (V◦x, s̄dR,x)

)
,

I+,x :=IsomFp

(
(Λ∗Fp , s̄,Λ

∗
Fp
⊃ Λ∗χ,1), (V◦x, s̄dR,x,V◦x ⊃ Cx)

)
,

I−,x :=IsomFp

(
(Λ∗Fp , s̄,Λ

∗
µ,0 ⊂ Λ∗Fp), (V◦x, s̄dR,x,Dx ⊂ V◦x)

)
,

the isomorphism ιx : I
(σ)
+,x/U

(σ)
+ → I−,x/U

(σ)
− is given as follows: Choose an

element η− ∈ I−,x. Then for each η+ ∈ Ix,+ the image ιx(η
(σ)
+ U

(σ)
+ ) is the

U
(σ)
− -coset of the isomorphism

Λ∗Fp = Λ∗µ,0 ⊕ Λ∗µ,1
η
(σ)
+−→ η

(σ)
+ (Λ∗µ,0)⊕ C(σ) ' (V◦(σ)

/C(σ))⊕ C(σ)

φ0⊕φ1−→ D ⊕ (V◦/D) ' D ⊕ η−(Λ∗µ,1) = V◦ (50)

(here φ0 and φ1 are the Cartier isomorphisms and we have omitted the (·)x-
subscripts), and this is in fact independent of the choice of η−.
Let (Dx, F , V ) be the reduction mod p of Dx, this is the contravariant Dieudonné
space of Ax[p] (compare the proof of Lemma II.5.4). We use the canonical
isomorphism (V◦x, s̄dR,x) ∼= (Dx, scris,x). By the result of Oda ([Od], 5.11.)
we know that Cx and Dx correspond to the subspaces ker(F ) = im(V ) and
ker(V ) = im(F ) of Dx respectively, and the isomorphisms φ0 and φ1 get iden-
tified with the maps

(
Dx/ ker(F )

)(σ) F
lin

−→ im(F ), im(V )(σ) (V
−1

)lin−→ Dx/ ker(V ).

Recall our conventions from II.2.1, and the identities F = β◦(g∨β ◦(1⊗σ))◦β−1

and F lin = β ◦ g∨β ◦ (β(σ))−1 from Construction II.5.3. In particular we have

F ◦ β = F lin ◦ β(σ) ◦ (1 ⊗ σ). As V lin : Dx → D(σ)
x is given by p · (F lin)−1,

we further have the identity (β(σ))−1 ◦ V lin ◦ β = p · (g∨β )−1. Denote by pri
the projections on the factors of the decomposition Λ∗Fp

= Λ∗µ,0 ⊕ Λ∗µ,1. The

reduction mod p of the map µ(p)∨ : Λ∗O → Λ∗O given via (·)∨ by the element
pµ = µ(p) ∈ G(L) is exactly pr0, and the reduction of the map p · (µ(p)∨)−1 is
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pr1, so we have the commutative diagrams

Dx
(σ) F

lin

// Dx

Λ∗Fp

h̄∨◦pr0 //

β̄(σ)

OO

Λ∗Fp
,

β̄

OO Dx
V

lin

// Dx
(σ)

Λ∗Fp

pr1◦(h̄
∨)−1

//

β̄

OO

Λ∗Fp
.

β̄(σ)

OO

In particular, the first diagram implies that

β̄−1(ker(F )) = (1⊗ σ−1)((β̄(σ))−1(ker(F
lin

))) = (1⊗ σ−1)(ker(pr0))

= (1⊗ σ−1)(Λ∗µ,1) = Λ∗χ,1,

β̄−1(im(F )) = β̄−1(im(F
lin

)) = h̄∨(Λ∗µ,0).

This shows that β̄ ∈ Ix,+ and β̄ · h̄ = β̄ ◦ h̄∨ ∈ Ix,−. Putting things together
and using the splittings C0 := β̄(σ)(Λ∗µ,0) and D1 := β̄(h̄∨(Λ∗µ,1)), from the
diagrams above we obtain a commutative diagram

V◦(σ) ' C0 ⊕ C(σ) φ0⊕φ1 // D ⊕D1 ' V◦

Λ∗Fp
h̄∨ //

β̄(σ)

OO

Λ∗Fp
,

β̄

OO

so (50) shows that ιx(β̄(σ)U
(σ)
+ ) = (β̄ ◦ h̄∨)U

(σ)
− , choosing η− = β̄ · h̄. Thus we

have indeed Ix ∼ I h̄ (see II.6.5(1)), which concludes the proof.

Corollary II.6.7. Let w ∈ JW . Then x ∈ Sw if and only if γ(x) ∈ [[pµσ(w0,Jww0)]].

Proof. By Proposition II.6.6(ii), x ∈ Sw = ζ−1({w}) if and only if ζ̃(γ(x)) = w.
Since by definition of ζ̃ and the description of the bijection Eχ\GFp '

JW in II.6.5(II)

we have ζ̃(〈pµσ(w0,Jww0)〉) = w, by II.6.6(iii) this is further equivalent to γ(x) ∈
[[pµσ(w0,Jww0)]].

II.6.2 Group theoretic criteria and applications

Let us summarize the results of the last subsection: The Newton strata N b and
Ekedahl-Oort strata Sw are given as the fibers of the maps θ and ζ respectively. We
have the commutative diagram

B(G,µ)

SK(Fp)

θ

33

γ //

ζ

++

C(G,µ)

θ̃

99

ζ̃

%%
JW ,
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for b ∈ B(G,µ) we have θ̃−1({b}) = C(G,µ) ∩ b, and for w ∈ JW we have
ζ̃−1({w}) = [[pµσ(w0,Jww0)]] by Corollary II.6.7.

This last result shows in particular that the [[·]]-classes in KpµK are parametrized
by elements of JW , sending w to [[pµσ(w0,Jww0)]]. In order to apply the results
from Chapter I, we need to compare this to the parametrization by standard repre-
sentatives considered there. Let us explain the relation: As in Section I.2.6, set

Sµ := {s ∈ S | s(µ) = µ}, xµ := w0,Sµw0, τµ := pµxµ.

Let Lµ := Sopp
µ = w0Sµw0, consider the ”dual parametrization” of [[·]]-classes in

KpµK given by the elements τµw for w ∈ LµW and the order relation � on LµW
induced by the partial order for [[·]]-classes, as explained in Remark I.3.3. The map

φ : W −→W, w 7−→ w0σ(w)w0 (51)

is an automorphism of W which preserves the length of elements and the Bruhat
order, and the following holds:

Lemma II.6.8.

(i) φ restricts to a bijection JW → LµW which respects the � order relations on
both sides.

(ii) For each w ∈ JW we have x ∈ Sw if and only if γ(x) ∈ [[τµφ(w)]].

Proof. In the notations of I.2.6 we have J = Sχ. On the other hand we have
µ = σ(χ), therefore φ induces a bijection J → Lµ and an isomorphism WJ →WLµ .
This immediately shows that φ : JW → LµW is a bijection. The second statement
of (i) follows from the explicit description of the respective order relations in (12)
and (47), and the fact that φ preserves the Bruhat order. Statement (ii) is just a
reformulation of Corollary II.6.7, since

pµσ(w0,Jww0) = pµw0,Sµw0(w0σ(w)w0) = τµφ(w)

for each w ∈ JW .

II.6.9. This has now the following consequences for the comparison of the two
stratifications:

(a) For b ∈ B(G,µ) and w ∈ JW there is the following necessary criterion for the
corresponding strata to intersect:

If N b ∩ Sw 6= ∅, then (C(G,µ) ∩ b) ∩ [[τµφ(w)]] = b ∩ [[τµφ(w)]] 6= ∅.

If the map γ is surjective, then this criterion is also sufficient.

(b) Let b ∈ B(G,µ), w ∈ JW . If [[τµφ(w)]] ⊆ C(G,µ) ∩ b (resp. ⊇, resp. =), then
Sw ⊆ N b (resp. ⊇, resp. =).

(c) Let w ∈ JW such that [[τµφ(w)]] is aK-fundamental class in the sense of Chapter
I. Then for any two points x, x′ ∈ Sw there is an isomorphism Dx ' Dx′ which
identifies the tensors scris,x and scris,x′ .

Here (a) and (b) are immediate, for (c) recall that being K-fundamental means that
[[τµφ(w)]] = 〈τµφ(w)〉 and apply Lemma II.5.5.
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Applications:

Consider the minimal Ekedahl-Oort stratum Swmin given by the minimal element
wmin = 1 ∈ JW : Recall that as a consequence of the properties of a Shimura datum
the cocharacter µ is minuscule. Therefore, as remarked in Section I.3.5.1, the EO-
class [[τµφ(wmin)]] = [[τµ]] is contained in the basic σ-conjugacy class bbas. Hence by
(a) we have Swmin ⊆ N bas, just as in the PEL-case.

Consider the PEL-datum (E, ∗ = id, V, ψ, h), where E|Q is a totally real extension
of degree d, dimE(V ) = 2, and where ψ is an E-linear symplectic form on V . In this
case the group G is given as

G(R) = {g ∈ GL2(E⊗Q R) | det(g) ∈ R×},

there is a unique conjugacy class X of homomorphisms S → GR such that (G, X)
is a Shimura datum of PEL-type. Let p be a prime which is inert in E, then p
is a prime of good reduction for G and the group G over Zp is of the form that
we studied in Section I.4.2. The associated Kottwitz models SK are then Hilbert
modular varieties of pricipally polarized d-dimensional abelian schemes up to prime-
to-p isogeny, endowed with an action of oE,(p) and a Kp-level structure. Since the
map γ is surjective for PEL-type Shimura varieties, by (a) and (b) we have:

Proposition II.6.10. In the situation above the intersections of Newton strata and
Ekedahl-Oort strata in SK are given as explained in Theorem I.E, in particular:

(i) For every Newton stratum N b in SK there exists a (generally non unique)
Ekedahl-Oort stratum contained in N b which is equal to a single leaf.

(ii) There exist an Ekedahl-Oort stratum which has nonempty intersection with
every Newton stratum outside the µ-ordinary locus.

In concrete terms, the statement of (i) means that every isogeny class of polarized
p-divisible groups with oE,(p)-action contains a ”minimal element” X in the follow-
ing sense: For any other p-divisible group X ′ with these structures, if X ′[p] is oE,(p)-
equivariantly isomorphic to X[p], then X ′ and X are oE,(p)-equivariantly isomorphic.

As another application we can now prove our main results on the µ-ordinary
locus in the Hodge-type case:

Theorem II.6.11 (cf. Theorem II.B). The µ-ordinary locus N µ−ord in SK ⊗ Fp
is equal to the unique open Ekedahl-Oort stratum Swmax , in particular it is open and
dense. Further, for any two Fp-valued points x, x′ in the µ-ordinary locus there is
an isomorphism (Dx, scris,x) ' (Dx′ , scris,x′).

Proof. We have wmax = w0,Jw0, so φ(wmax) = w0w0,σ(J) is the maximal element in
LµW by Lemma II.6.8. So by Corollary I.3.40 we have [[τµφ(wmax)]] = C(G,µ) ∩
bµ−ord = 〈pµ〉. Now the equality of the strata holds by observation (b) above, and
the last statement follows by (c). As we know that Swmax is open and dense in
SK ⊗ Fp (see II.5.16(3)), the same holds for the µ-ordinary locus.

Corollary II.6.12 (cf. Theorem II.C). The µ-ordinary locus in SK ⊗ κ(v) is open
and dense.
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[Mi2] J. Milne, Shimura varieties and motives, in: Motives, Proc. of Symp. in Pure
Math. 55 Part 2, AMS(1994), 447-523.

[Mi3] J. Milne, Introduction to Shimura Varieties, in: Harmonic analysis, the trace
formula, and Shimura varieties, Proc. Clay Math. Inst. 4 (2005), 265-378.

[Mo1] B. Moonen, Models of Shimura varieties in mixed characteristics, in: Ga-
lois representations in arithmetic algebraic geometry (Durham 1996), London
Math. Soc. Lecture Note Series 254 (1998), 267-350.

[Mo2] B. Moonen, Serre-Tate theory for moduli spaces of PEL-type, Ann. Sci. de
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