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1
Summary

Ultrafast quantum optics is a young research field. Its focus lies at the study of quantum phe-
nomena at extreme timescales of a few hundreds of femtoseconds.

In this thesis, we investigate the intricate time-frequency (TF) structure of ultrafast quantum
states of light. This structure is of particular interest, because it is the natural basis of energy-
time entanglement, a resource for high-dimensional quantum information applications.

We study the process of parametric down-conversion (PDC) and introduce a novel measure
for energy-time entanglement which is applicable to many current PDC sources. Moreover, we
experimentally investigate the correlation time of the photon pair, a measure of the simultaneity
of the photons, and find that is independent of the spectral-temporal properties of the PDC pump.

The main work is dedicated to two novel devices for high-dimensional TF quantum networks,
the quantum pulse gate and quantum pulse shaper. Both are based on dispersion engineered
frequency conversion in nonlinear waveguides and facilitate a mode-selective operation on TF
modes of ultrafast quantum states.

We develop a theoretical framework, similar to the existing PDC description, to describe the
TF structure of our devices and identify ideal operation parameters. These are used to realise a
quantum pulse gate in the laboratory and verify its mode-selective operation.
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2
Zusammenfassung

Die Ultrakurzpuls-Quantenoptik ist ein junges Forschungsfeld. Sie beschäftigt sich vorwiegend
mit Quantenphänomenen auf ultrakurzen Zeitskalen im Bereich einiger hundert Femtosekun-
den.

In dieser Dissertation untersuchen wir die komplexe Zeit-Frequenz (ZF) Struktur von ultra-
kurzen Quantenpulsen, welche die natürliche Basis zur Beschreibung von Energie-Zeit Ver-
schränkung, einer Ressource für hochdimensionale Quanteninformations Anwendungen, ist.

Unsere Untersuchung von parametrischer Fluoreszenz (PF) führt zur Einführung eines neuen
Energie-Zeit Verschränkungsmaßes, das sich auf viele PF Quellen anwenden lässt. Darüber
hinaus bestimmen wir experimentell die Korrelationszeit von Photonenpaaren, die ein Maß für
die Gleichzeitigkeit der Photonen ist. Sie hängt nicht von den Kohärenzeigenschaften des PF
Pumplichts ab.

Der Hauptteil unserer Arbeit beschäftigt sich mit zwei neuen Bauelementen für hochdimen-
sionale ZF Quantennetzwerke, dem Quantenpulsgatter und dem Quantenpulsformer. Beide
basieren auf Frequenzkonversion in nichtlinearen Wellenleitern mit angepasster Dispersion und
ermöglichen eine modenselektive Manipulation der ZF Moden ultrakurzer Quantenpulse.

Aus der bekannten PF Beschreibung entwickeln wir eine Theorie um die ZF Struktur unserer
Bauelemente zu beschreiben und identifizieren ideale Parameter, welche wir verwenden um ein
Quantenpulsgatter experimentell zu realisieren und zu verifizieren.
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Geschrieben steht: "Im Anfang war das Wort!"
Hier stock ich schon! Wer hilft mir weiter fort?
Ich kann das Wort so hoch unmöglich schätzen,
Ich muß es anders übersetzen,
Wenn ich vom Geiste recht erleuchtet bin.
Geschrieben steht: Im Anfang war der Sinn.
Bedenke wohl die erste Zeile,
Daß deine Feder sich nicht übereile!
Ist es der Sinn, der alles wirkt und schafft?
Es sollte stehn: Im Anfang war die Kraft!
Doch, auch indem ich dieses niederschreibe,
Schon warnt mich was, daß ich dabei nicht bleibe.
Mir hilft der Geist! Auf einmal seh ich Rat
Und schreibe getrost: Im Anfang war die Tat!

Faust - Johann Wolfgang von Goethe

3
A brief history of ultrafast

quantum optics

Contents
3.1 1900 – 1950 . . . . . . . . . . . . . . . . . . . 5

3.2 1950 – 2000 . . . . . . . . . . . . . . . . . . . 6

3.3 2000 – today. . . . . . . . . . . . . . . . . . . 8

The 20th century has been the cradle of
modern physics. Discoveries like the the-
ory of relativity and quantum mechanics
have reformed our view of the world.
At the beginning of the century, matter
consisted of solid, undividable atoms and
Maxwell’s and Newton’s equations could

precisely predict the evolution of any physical system, leaving no space for probabilistic be-
haviour. In addition, the physicist was considered a mere observer who did not exert any influ-
ence on the system under investigation. Today however, our views are radically different. Here,
we present a brief timeline with selected developments, which led to our current perception of
the world and to the rise of the research field of ultrafast quantum optics, in the context of which
this thesis is embedded. Our results have contributed to promoting this young field and lay foun-
dations for future advances along the lines of high-dimensional, ultrafast quantum information
processing.

3.1 1900 – 1950: the origin of quantum mechanics
Some say that quantum mechanics started in 1900, when Max Planck presented his work ’Über
irreversible Strahlungsvorgänge’ [1]. He explained the spectrum of black body radiation by
postulating that radiation was only absorbed and emitted in discrete quanta, an idea which was
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CHAPTER 3 A brief history of ultrafast quantum optics

revisited by Albert Einstein to explain the photoelectric effect [2]. Works by Dirac, Bohr, Born,
Heisenberg and others followed and led to the establishment of quantum mechanics as a young
and fascinating theory.

The quantum mechanical framework was first put to test, when Louis de Broglie suggested
that matter particles should exhibit wavelike behaviour at small length scales [3]. At that point,
this notion was not part of the theory, and the need for a formal construct which consistently
explained all phenomena became obvious. Starting from 1925, Erwin Schrödinger and Werner
Heisenberg followed two complementary approaches towards this aim. Schrödinger introduced
the so-called wave mechanics, where a quantum state was described by a wave function which
evolved with time [4]. In contrast, Heisenberg favoured the matrix mechanics approach, where
the state itself was stationary, but the matrices describing the system were dynamic [5, 6]. This
duality posed a severe problem. If the wave function was a physical entity, as Schrödinger
claimed, then Heisenberg’s approach had to be wrong. If, however, the contrary was true, what
physical meaning could be attributed to the wave function?

In 1927, a solution to this was proposed in the Copenhagen interpretation of quantum mechan-
ics [7]. Its essential statement is that quantum mechanics was and is inherently probabilistic in
nature. The wave function is not an actual element of reality, but rather a means for predicting
the probability of a measurement outcome. Although having been refined over the years, the
Copenhagen interpretation is still the most prominent interpretation of quantum mechanics to
date.

We might note at this point that Einstein’s famous quote ’Der Alte würfelt nicht.’ nicely
reflects the fact that not all physicists were happy with the new view of the world. Oddly enough,
by trying to prove quantum mechanics wrong, Einstein, Podolsky and Rosen (EPR) involuntarily
helped to strengthen it. In their famous paper from 1935 they argued that quantum mechanics
had to be an incomplete theory, which relied on so-called hidden variables to regain determinism
[8]. Otherwise, so they claimed, it would be possible to measure the momentum and position of a
particle with arbitrary precision, which would be in disagreement with Heisenberg’s uncertainty
principle [9]. Today we know the outcome of the following discussion. Entanglement, a strictly
non-classical resource, can provide the necessary means to seemingly overcome the uncertainty
relation and is today an accepted reality. After this work it grew comparably quiet and we will
skip the next 20 years. Then, however, a groundbreaking invention was to shed new light on
quantum mechanics.

3.2 1950 – 2000: illuminating quantum optics

In 1955, Charles Townes invented the maser [10]. This device was capable of generating co-
herent microwave radiation by exploiting the process of stimulated emission [11–14] and al-
lowed experimental access to novel quantum states of radiation. Now things began to move
fast. Shortly after, in 1960, Ted Maiman implemented the first laser, which generated light
pulses from a silver coated slab of ruby pumped by a high power flash lamp [15]. In contrast
to the maser, the laser generated coherent optical radiation. During the 60s, a quantum theory
of light started to evolve around the new experimental means. Consequently, quantum optics
was established as an independent field of research. Tony Siegman et al formulated a quantum
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SECTION 3.2 1950 – 2000

mechanical description of parametric processes [16], Roy Glauber published his seminal work
on ’The quantum theory of optical coherence’ for which he was awarded the Nobel Prize in
2005 [17], and John Bell formulated his famous inequalities [18]. They were shortly thereafter
refined by Clauser, Horne, Shimony and Holt [19] and provided, for the first time, a test for
quantum mechanics which could be performed in the laboratory.

In parallel, new developments in laser technology – for instance mode locking [20] or the in-
vention of the titanium sapphire (Ti:Sapph) laser [21] – brought into reach more exotic quantum
states of light. For example, in 1970 Burnham and Weinberg realised a proposal by Zel’dovich
and Klyshko [22] for the generation of photon-pair states and demonstrated the process of para-
metric luminescence [23], which today is better known as parametric down-conversion.

Besides that, however, the 70s were the high time of photonic quantum states emitted from
atoms. In 1972, Freedman and Clauser demonstrated a clear and indisputable violation of Bell’s
inequality [24]. This experiment proved for the first time that quantum mechanics did not rely
on hidden variables, as suspected by EPR. Further experiments followed, and in 1981 Alain
Aspect and co-workers were able to perform novel types of Bell-tests with unprecedented low
statistical errors [25]. Complementing these developments, Kimble et al demonstrated for the
first time the anti-bunching behaviour of photons emitted from resonantly excited sodium atoms
[26].

With the capability of generating exotic quantum states of light in the laboratories, people
started to think seriously about applications for quantum optics during the 80s. In 1984, Charles
Bennett and Gilles Brassard suggested exploiting photons for secure communication and intro-
duced the famous BB84 protocol for quantum encryption [27]. One year later, Slusher and co-
workers demonstrated the first squeezed quantum state [28]. These states were ideally adapted
to high-precision interferometry applications, because they featured even smaller phase fluctu-
ations than coherent states. Finally, the demonstration of the interference of single photons at
a beam splitter by Hong, Ou and Mandel in 1988 [29] paved an avenue towards more complex
quantum networks and quantum computation applications [30].

In parallel to these developments, the field of ultrafast laser physics had been developing.
Since the first generation of a short, coherent pulse in 1964 [31], further techniques to generate
ever shorter pulses have emerged. The driving force behind these advances were the potential
applications in diverse fields such as physics, biology, chemistry, medical research and material
processing. In these areas, short pulses, high peak powers and especially stability and repro-
ducibility have been the major demands, which could not be fulfilled to full satisfaction until
1991. Then, the first experimental implementation of the Kerr-lens mode-locking technique in a
Ti:sapphire laser enabled the direct generation of pulses with a duration of 60 femtoseconds and
an unprecedented stability [32]. This development fostered research on the formal description
[33] and experimental characterisation [34, 35] of these pulses, a task which was, and is not,
trivial due to the limited temporal resolution of real-world detectors. These extreme pulses were
the enabling technology for an intriguing field of physics: frequency metrology. It had already
been known that trains of laser pulses from a modelocked laser formed frequency combs, which
could serve as a precise ruler in the frequency domain. This unique property and the devel-
opment of the photonic crystal fiber in 1996 [36], which facilitated the generation of so-called
supercontinua [37–39], gave fresh impetus to optical frequency metrology. Exploiting ultrafast
frequency combs with spectral widths of more than one octave allowed for the measurement
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CHAPTER 3 A brief history of ultrafast quantum optics

of frequencies with a precision of a few parts in 1018. This impressive development culmi-
nated in the Nobel Prize for Theodor Hänsch in 2005 for ’contributions to the development of
laser-based precision spectroscopy, including the optical frequency comb technique’.

On the quantum optics side, parametric down-conversion became an established tool for the
generation of photon pairs (see, for instance [40–43]) and even optical EPR states [44]. More-
over, people began to investigate the prospects of harnessing other parametric processes for
quantum applications. In 1990, Prem Kumar proposed using sum-frequency generation to ex-
change the quantum properties of two light beams at different frequencies [45]. His vision was
a frequency-tuneable source of squeezed light states for spectroscopy applications: The special
properties of these non-classical light states could improve the resolution of interferometers, but
they were only available at very specific wavelengths. Frequency conversion suggested itself as
an apt solution to this problem, and was confirmed as such in 1992 [46].

3.3 2000 – today: ultrafast quantum optics
At the beginning of this century, Tanzilli et al demonstrated for the first time a parametric down-
conversion source based on integrated nonlinear waveguide technology [47]. This source design
forced the generation of photons into discrete waveguide modes and thus decoupled the spectral
and spatial degrees of freedom. In addition, the confinement of the light inside the waveguide
led to an increased interaction length for the nonlinear process. In combination, these advances
facilitated the implementation of a photon pair source with unprecedented brightness and spatial
mode characteristics, which permitted an easy integration into fiber networks.

At the same time, considerable efforts towards merging the fields of quantum optics and
ultrafast physics were made. Novel studies on the temporal-spectral structure of parametric
down-conversion states highlighted their intrinsic ultrafast characteristics [48]. A follow-up
in-depth study revealed that three ingredients were required to gain active control over this
structure: firstly, the choice of the nonlinear material with its associated dispersion; secondly,
ways to control the spatial mode structure of the generated light; thirdly, means to control the
spectral-temporal characteristics of the photon pairs [49].

The choice of the nonlinear material was the most straightforward step. When focussing
on second order nonlinear processes, nature provides us with a range of materials with fixed
dispersion properties, and we get to choose the material which best meets our requirements. In
addition, a certain degree of control over this dispersion is provided by the quasi-phasematching
technique (see, for instance, [50]), which allows for an overall shift of the dispersion towards
the desired working point. Active control over the spatial structure of the generated light had
already been demonstrated in the waveguided parametric down-conversion source. This left
mainly the control over the spectral-temporal degree of freedom, which can be conveniently
achieved by using a spectrally broadband – or pulsed – pump.

One particularly appealing prospect of engineering parametric down-conversion was the gen-
eration of decorrelated photon pairs, which could be directly fed into quantum networks without
applying any filtering. The first realisation of this kind of source was reported by Mosley et al
in 2008. They succeeded in implementing a decorrelated parametric down-conversion in a bulk
crystal, which was pumped by ultrafast pump pulses [51]. Three years later, Thomas Gerrits and
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co-workers realised a similar source, which generated photons in the telecommunication wave-
length regime [52]. In the same year, our group demonstrated the first decorrelated photon pair
source in a nonlinear waveguide [53]. In parallel to this thesis, this source was further optimised
and now features an exceptional brightness of up to 80 generated photon pairs per pump pulse
and high coupling efficiencies to conventional fibres [54]. To date, our source is amongst the
most promising photon pair sources for integrated quantum networks and collaborating groups
are currently rebuilding it in their own laboratories.

In an alternative approach, engineering was applied to photon pair sources based on four-wave
mixing in optical fibres. For these purpose, photonic crystal fibres turned out to be particularly
appealing, because they allow for a precise tailoring of their dispersion properties. Along these
lines, our group has investigated a highly non-degenerate photonic crystal fibre source of decor-
related photon pairs [55] as well as a source based upon commercial polarisation maintaining
fibre [56]. The latter holds the promise of convenient integration into networks, whereas the for-
mer lends itself to the efficient heralding of single photons in the telecommunication wavelength
regime.

In parallel, the groups of Nicholas Treps and Claude Fabre in Paris followed a different ap-
proach towards ultrafast quantum optics. They investigated the prospects of generating quantum
frequency combs with a synchronously pumped optical parametric oscillator (SPOPO) [57, 58].
Similar to their classical counterparts, quantum frequency combs can be used for high precision
measurements. However, the ultimate limit for the precision is now given by quantum me-
chanics, hence they are expected to outperform classical frequency combs. Moreover, quantum
frequency combs carry a tremendous amount of entanglement, which makes them promising
candidates for cluster state quantum computation in the time-frequency space. For these appli-
cations, engineering of the process facilitates the generation of cluster states with a structure that
can be precisely adapted to the problem under investigation. By now, these groups have demon-
strated the simultaneous generation and characterisation of eight quantum frequency combs in
different time-frequency shapes [59].

Finally, we focus on recent results obtained on engineered sum- and difference-frequency
generation. As a result of this thesis, we succeeded in transferring the knowledge on ultrafast
parametric down-conversion and four-wave mixing present in our group to ultrafast quantum
frequency conversion processes. In 2011, we published a proposal to implement two novel de-
vices, the quantum pulse gate (QPG) and quantum pulse shaper (QPS), which facilitate a flexible
single-mode operation on the basis of ultrafast time-frequency pulse shapes [60, 61]. Thus, they
constitute de facto add/drop filters for novel high-dimensional (quantum) networks, where in-
formation is encoded onto ultrafast pulses. Our devices naturally lend themselves to the intrinsic
ultrafast characteristics of ultrafast parametric down-conversion, which smoothly integrates the
results from this thesis into the research on ultrafast quantum optics in our group. In this con-
text the works of Michael Raymer and co-workers should be highlighted, who have studied the
engineering of frequency translation in great detail, although from a different perspective [62–
69].

As concluding remark we want to emphasise that ultrafast quantum optics is an emerging
field of research. The work we have carried out during the course of this thesis has given us the
exciting opportunity to contribute to the progress of this area. To reflect the different facets of
our projects, we have structured the thesis as follows.

9



CHAPTER 3 A brief history of ultrafast quantum optics

In Chap. 4, "Fundamental theory", we introduce basic theoretical concepts from the fields of
classical nonlinear, integrated and ultrafast optics, which form a solid basis for the understand-
ing of the more advanced theory developed in later chapters. Then, in Chap. 5, "From classical
to quantum optics", we transfer this knowledge to the quantum domain. First, we focus on the
quantisation of optical fields in nonlinear waveguides. Then, we introduce a general quantum
description of three-wave mixing processes and continue with a detailed investigation of their
characteristic functions. We comment on the prospects of engineering these functions and un-
veil the intrinsic time-frequency characteristics of the processes. We conclude this chapter with
a few chosen remarks on the impact of time-ordering – a genuine quantum effect – on these
processes. Chap. 6, "Ultrafast parametric down-conversion" is concerned with particular fea-
tures of parametric down-conversion. To begin with, we briefly review the EPR formulation of
parametric down-conversion states. Then, we build a bridge between this description and the
time-frequency picture, by showing up surprising similarities. We share our thoughts about the
correlation time of engineered photon pairs and finally put our theory to an experimental test.
The main experimental work of this thesis is presented in Chap. 7, "Quantum pulse gate and
quantum pulse shaper". We revisit the theoretical concept behind the quantum pulse gate in
detail and present first numerical estimates of the performance of this device. Then, we report
on the experiments, which were required to actually implement a quantum pulse gate in the lab
and present its remarkable performance benchmarks. We conclude this chapter by introducing
the concept of our second device, the quantum pulse shaper. Finally, in Chap. 8, "Conclusion
and outlook", we conclude this thesis and highlight possible future avenues for and extensions
of our work.
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Zu wissen, was man weiß,
und zu wissen, was man tut,
das ist Wissen

Konfuzius

4
Fundamental theory

Contents
4.1 Waveguides . . . . . . . . . . . . . . . . . . . 11

4.2 Light-matter interaction . . . . . . . . . . . . 16

4.3 Ultrafast pulses . . . . . . . . . . . . . . . . . 21

Ultrafast quantum optics unifies concepts
from the fields of classical integrated, non-
linear and ultrafast optics. Understanding
these concepts is key to advancing the re-
search in this novel area. In this chapter
we briefly revisit the ideas crucial to our
work and provide a common basis of un-

derstanding for the elaborate theoretical concepts which we developed during this work, while
at the same time acquainting the reader with our notation and conventions. First, we introduce
waveguiding structures and their effect on the electromagnetic field. Then, we concentrate on
the nonlinear interaction between light and matter inside waveguides. Finally, we extend the
basic description of the electromagnetic field to incorporate broad spectra, which consequently
leads us to the field of ultrafast optics.

4.1 Waveguides
Optical waveguides are part of our daily life. The most prominent example are optical fibres,
which form the backbone of today’s communication networks. Optical waveguides are conve-
nient structures: they confine light into a small cross-section, facilitating the miniaturisation of
circuits and devices; they dictate a propagation direction, which allows us to send light along
twisted paths; and, more fundamentally, they provide us with a high degree of control over the
spatial structure of light fields, which enables the tailoring of devices for specific applications
such as the heralded generation of pure single photons without spectral filtering [51, 53, 54]. In
our group, there is long-lasting experience in the fabrication of optical waveguides in lithium
niobate (LiNbO3, LN). Moreover, we have recently begun to investigate potassium titanyl phos-
phate (KTiOPO4, KTP) as an alternative material system. During this work we have deployed
LN as well as KTP waveguides to realise different devices.

The precise modelling of the behaviour of our devices is a prerequisite step before any device
fabrication. To assess the impact of the waveguide on the light field, we start from Maxwell’s
equations for a lossless dielectric medium with a space dependent relative permittivity ε(r). Af-
ter some calculation (for more information see the appendix A.1), we retrieve two vectorial wave
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CHAPTER 4 Fundamental theory

equations which need to be solved in order to retrieve the electric field inside the waveguide:

∆E(r) +
ω2

c2
ε(r)E(r) +∇

(
E(r)

∇ε(r)

ε(r)

)
= 0, (4.1)

∆B(r) +
ω2

c2
ε(r)B(r) +

[
∇ε(r)

ε(r)
× (∇×B(r))

]
= 0. (4.2)

The constant c labels the vacuum speed of light. In general, these equations cannot be solved
analytically. However, we can make several assumptions which allow for a significant simplifi-
cation of the vectorial wave equations. In the following, we will introduce these simplifications
and briefly discuss the waveguide models, which have been used during this work.

4.1.1 Waveguide modelling

Our first approximation is that we model our waveguides as lossless media. This is justified,
because the quality of our homemade devices facilitates transmission losses below 0.1dB

cm and
we use samples with a maximum length of two centimetres. In that case we can substitute the
refractive index for the relative permittivity as ε(r) = n2(r). We then consider only waveguides
with a low and gradual space dependence of the refractive index such that ∇ε(r) ≈ 0. Finally,
we define the z-axis of our coordinate system as the waveguide axis and hence propagation
direction. This allows us to write the electric and magnetic field as E(r) = E(x, y)e−ıβz and
B(r) = B(x, y)e−ıβz , respectively, where β is the so-called propagation constant of the field.
Putting things together we find(

∆t +
ω2

c2
n2(x, y)− β2

)
E(x, y) = 0, (4.3)(

∆t +
ω2

c2
n2(x, y)− β2

)
B(x, y) = 0. (4.4)

Here ∆t = (∂2
x, ∂

2
y , 0) is the transverse Laplace operator.

Generally, there are two kinds of solutions to this equation. First, there are modes which
have the highest amplitude near the waveguide axis and decay with distance. These are called
guided modes and are distinguished by discrete propagation constants and discrete mode pro-
files E(x, y) and B(x, y). Second, there are modes that do not decay with distance from the
waveguide axis. These are called radiation modes, which are characterised by a continuous
distribution of propagation constants. For the remainder of this work, we only consider guided
modes, since radiation modes are equivalent to losses for our applications.

In the vectorial equations, there are in fact only two components that are linearly independent.
This leads to the classification of modes into two categories. On the one hand, there are modes
for which the Ey component is predominant. These are called quasi-transverse electric (QTE)
modes. On the other hand, modes with a prevalent By component are referred to as quasi-
transverse magnetic (QTM). This insight allows us to further reduce the wave equations and
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SECTION 4.1 Waveguides

Figure 4.1 – Schematics for the different waveguide models. (a) In the metallic
waveguide model, the guiding structure has a uniform refractive in-
dex and perfectly conducting edges. (b) Marcatili’s method expands
the simple model by allowing for a finite refractive index outside
the guiding area. (c) For nonuniform refractive index distributions,
involved numerical models are required.

write scalar versions as

(
∆t +

ω2

c2
n2(x, y)− β2

)
Ey(x, y) = 0, (4.5)(

∆t +
ω2

c2
n2(x, y)− β2

)
By(x, y) = 0. (4.6)

The most simplistic model for a waveguide that can be exploited to solve the scalar equations
is a rectangular or circular structure with perfectly conducting index and a uniform refractive
index distribution (see Fig. 4.1(a)). This model is referred to as the metallic waveguide model
and is formally similar to an infinitely deep potential well, the Eigenfunctions of which can be
calculated analytically. This model is helpful for a quick parameter scan, for instance waveg-
uide dimensions or refractive index, because the computation is exceptionally fast. We have
commonly used it to qualitatively deduce the impact of different experimental situations on the
measurement results.

Going one step further, we can make use of a semi-analytical approach as presented in [70].
In this model, the refractive index distribution inside the waveguide is still considered uniform,
but the surrounding material now also has a finite refractive index (see Fig.4.1(b)). This situation
corresponds to a finite potential well. Although slightly more complex than the metallic waveg-
uide model, Marcatili’s method is still manageable and was used to cross-check the results from
the metallic waveguide model at random.

For the quantitative modelling of our device performance, we deployed a full numerical model
based on the finite element method (FEM). Although computationally involved, this method was
indispensable for tailoring of the device behaviour, since the refractive index distribution n(x, y)
is not uniform in our waveguides (see Fig. 4.1(c)).
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CHAPTER 4 Fundamental theory

Figure 4.2 – Spatial intensity distributions in our standard waveguide. (a), (b)
Fundamental and first higher order mode for 775 nm radiation. (c),
(d) The same for light at 1550 nm.

4.1.2 Spatial mode considerations

In general, waveguides support several guided modes with distinct propagation constants and
spatial field distributions Ey(x, y) and By(x, y). In this section, we will use a practical example
to illustrate the influence of the spatial modes on the propagation and interaction of light in
waveguiding structures. To keep our notation concise, we will now drop the distinction between
QTE and QTM modes and label any spatial field mode with ζ(x, y). Note that we will specify
the polarisation direction where needed. For the calculations we used the finite element method
and assumed one of our standard LN waveguides with a waveguide width of 6µm.

As testbed, we chose a simple second harmonic generation (SHG) process (compare also Sec.
4.2), in which fundamental radiation at 1550 nm generates an SH field at 775 nm, corresponding
to a doubling of the fundamental frequency, and we assume both fields to be in QTM modes.
In Fig. 4.2, we display the spatial intensity distributions |ζ(x, y)|2 of the fundamental and first

14
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Mode neff nbulk b

775 nm
fundamental 2.19469

2.17872
0.57481

1st order 2.19255 0.39007

1550 nm
fundamental 2.14810

2.13788
0.21947

1st order 2.14522 -0.05194

Table 4.1 – Numeric values of the effective refractive index neff , the bulk refrac-
tive index nbulk and the normalised propagation constant b for our
SHG example. For more information see the text.

higher order modes for 775 nm (a), (b) and 1550 nm (c), (d), respectively. Note how the spatial
modes of the fundamental field are larger than the modes of the second harmonic radiation. This
can be reasoned with the help of the propagation constants β which we obtain from the scalar
wave equation. In principle, we can define an effective wavevector β, which points along the
waveguide axis and has a magnitude β given by

β = neff
ω

c
, (4.7)

where ω is the light frequency and neff is the effective refractive index that is "seen" by the field
mode. Using neff , we can calculate the so-called normalised propagation constant b, which is
defined as

b =
n2

eff − n2
bulk

n(0, 0)2 − n2
bulk

, (4.8)

where n(0, 0) is the highest refractive index in the waveguide. If we describe the waveguide as
a potential well with a normalised depth of one, the b parameter measures, how deep the mode
sits inside the potential well1. A value of b = 1 describes a perfectly guided mode, whereas
b = 0 corresponds to a radiation mode, which is not guided anymore. A negative value of b,
which might result from FEM, hints at a non-physical solution, which has to be discarded. As a
rule of thumb, modes exhibiting b ≤ 0.4 are considered to be well-guided [71].

We have collected the numeric values of the aforementioned constants in Tab. 4.1. First,
we see that the b parameter for the SH radiation is higher than for the fundamental light. This
illustrates the fact that lower wavelength light is confined more strongly in the waveguide (see
Fig. 4.2), since the refractive index difference between neff and nbulk is larger for shorter wave-
lengths. Second, the purely mathematical FEM calculation yields a negative b parameter for the
1st order mode at 1550 nm, meaning that this particular outcome is not a physical solution and
must be discarded. This behaviour originates in the careful design of our waveguides, which we
fabricate to be single-mode at telecommunication wavelengths.

1Note that for refractive indices, the waveguide corresponds to a potential hill and b measures how high the mode
climbs on that hill, as sketched in the margins.
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Summary
We have illustrated how the complicated vectorial wave equations for electromagnetic fields are re-

duced to scalar versions which are computationally manageable. Then we briefly introduced three

different waveguide models, ranging from purely analytical solutions for large parameter scans to full

numerical computations for quantitative predictions of device performance. Finally, we have high-

lighted the influence of different spatial field distributions inside the waveguide. In this context we have

introduced the effective refractive index and the b-parameter, which is a measure of how strongly a

mode is supported by the waveguide.

4.2 Light-matter interaction
When a light wave propagates through a dielectric medium, its electric field polarises the atoms
of the medium and thus induces oscillating dipole moments. These accelerated polarisation
charges in turn emit electromagnetic radiation, which interferes with the original light wave.
As long as the interaction between the light wave and the medium is weak and/or the intensity
of the light wave is low, the medium responds with harmonic oscillations and we recover the
linear effects of dispersion and absorption. However, due to the strong confinement of the light
inside our waveguides, the high light intensities regularly drive the dipole oscillations into the
anharmonic regime, where nonlinear effects emerge.

4.2.1 Nonlinear polarisation
We can relate the dipole moment per unit volume or the polarisation P of a dielectric to the
inducing electromagnetic field E:

P = ε0χE. (4.9)

The constant ε0 is the vacuum permittivity and the factor χ is the electric susceptibility of the
medium. To reveal the anharmonic contributions to the polarisation, it is advisable to expand
the polarisation into a power series of the electric field, such that

P = ε0

(
χ(1) ·E︸ ︷︷ ︸

PL

+χ(2) : EE + χ(3)...EEE + · · ·︸ ︷︷ ︸
PNL

)
. (4.10)

The χ(j) are susceptibility tensors of rank j+1 and the vectors PL and PNL label the linear and
nonlinear contributions to the polarisation, respectively. From equation (4.10) we can deduce
the units of the susceptibility tensors, when keeping in mind that the units of polarisation and
electric field are [C/m2] and [V/m]:

χ(1) is dimensionless,
[
χ(2)

]
=

m

V
,
[
χ(3)

]
=

m2

V2
. (4.11)

For common dielectric materials, χ(1)is of the order of unity2. As a rough estimate, we find
2The refractive index of any material is given by n(ω) =

√
εrµr . For most materials, µr ≈ 1 and we find

n(ω) ≈
√
χ(1) + 1.
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for lithium niobate [72, 73]

χ(2) ≈ 10−11 m

V
, (4.12)

χ(3) ≈ 10−21 m2

V2
. (4.13)

For an estimate of the order at which we can truncate the Taylor expansion of the polarisation,
we have to know the electric field strength. In this work, a typical value of the average field
amplitude is |E| ≈ 2.6 · 105 V/m (for more information see the appendix A.2). Already the
term associated with χ(3) is five orders of magnitude smaller than the second-order term, hence
we write

P ≈ ε0χ
(1)E + ε0χ

(2)EE =: PL + PNL. (4.14)

Note that here, the nonlinear polarisation depends quadratically on the original electric field.
Since the medial response leads to the generation of radiation, which interferes with the original
field, the nonlinear polarisation induces the coupling between three-electric fields. Thus, these
processes are referred to as three-wave mixing processes, which we cover in more detail in the
next section.

4.2.2 Three-wave mixing

In the following, we briefly sketch the results of different three-wave mixing processes inside
nonlinear optical waveguides. In the simplest case, the original electric field is a monochromatic
plain wave with frequency ω0 and amplitude E0, given by

E(t, z) = E0e
ıω0t−ıβ(ω0)z + c.c., (4.15)

where β(ω0) is the propagation constant of the lightwave inside the waveguide. Note that we
drop the explicit x− and y−dependence of the spatial field modes, to keep the notation clean.
Using this electric field, we calculate the nonlinear polarisation:

PNL(t, z) = ε0χ
(2)
(
E2

0e
ı(2ω0t−2β(ω0)z) + c.c.

)
+ ε0χ

(2)|E0|2. (4.16)

The nonlinear polarisation comprises a term, which oscillates at two-times the original fre-
quency and is referred to as the second harmonic3 of the original field. The generated second
harmonic radiation is emitted with a space dependent phase given by 2β(ω0)z, whereas it ac-
quires a phase β(2ω0)z during propagation. Generally this leads to a self-cancellation of the
generated radiation. Only if the phases of generated and propagating radiation match at every
point in the medium, that is if 2β(ω0) = β(2ω0), a coherent buildup of the generated radiation
is possible. Consequently, this condition is called the phasematching condition. The constant
term in equation (4.16) describes the process of optical rectification, which we do not consider
in this work.

3The associated process is called second harmonic generation (SHG).
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Let us now consider the more general case of two monochromatic plain waves with respec-
tive frequencies ω1 and ω2 and amplitudes E1 and E2, which interact in a dielectric medium.
Repeating the calculation of the nonlinear polarisation, we now find:

PNL(t, z) = ε0χ
(2)

(E2
1e
ı(2ω1t−2β1z) + c.c.

)
︸ ︷︷ ︸

=:ESH,1(t,z)

+
(
E2

2e
ı(2ω2t−2β2z) + c.c.

)
︸ ︷︷ ︸

=:ESH,2(t,z)

+ 2
(
E1E2e

ı(ω1+ω2)t−ı(β1+β2)z + c.c.
)

︸ ︷︷ ︸
=:ESFG(t,z)

+2
(
E1E

∗
2e
ı(ω1−ω2)t−ı(β1−β2)z + c.c.

)
︸ ︷︷ ︸

=:EDFG(t,z)

 ,
(4.17)

where we already have neglected the contributions from optical rectification. Besides the two
second harmonic fields ESH,1(t, z) and ESH,2(t, z), we obtain two additional contributions os-
cillating at ω1 + ω2 and ω1 − ω2. The processes associated with these terms are – with a char-
acteristic lack of creativity – called sum- and difference-frequency generation (SFG and DFG),
and we have labeled the corresponding electric fields ESFG(t, z) and EDFG(t, z), respectively.
Similar to the case of SHG, phasematching conditions have to be fulfilled in order for SFG and
DFG to result in a coherent field buildup. These read βSFG/DFG = β1 ± β2.

Let us point out an important subtlety in the calculation of the nonlinear polarisation. One
might have already noticed the additional factors of two in front of the SFG- and DFG-fields
in equation (4.17). These are the so-called degeneracy factors. In our Gedankenexperiment,
we have only considered the situation that field one is at frequency ω1 and field two at ω2,
respectively. However, the opposite might be true as well, which is the origin of that factor of
two.

4.2.3 More on phasematching
In principle, the choice of the nonlinear material dictates phasematched frequency tuples for
the different processes through the dispersion relation β = neff(ω)ω

c . There are however several
ways to tackle this issue. One possible approach with our material systems is to exploit their
intrinsic birefringence, a technique called birefringence phasematching. In this case, the original
and generated fields are not necessarily polarised along the same crystal axis.

Let us review our example of the SHG from Sec. 4.1.2, where fundamental radiation at
1550 nm generated SH radiation at 775 nm inside our standard LN waveguides. We define a
phase mismatch as

∆β = βTM,TE(2ω)− βTM,TE(ω)− βTM,TE(ω), (4.18)

where the index labels the polarisation direction of the field. A value of the phase mismatch
of ∆β = 0 is tantamount to perfect phasematching. Note that, depending on the nonlinear
material, not all polarisation combinations are allowed (for more information see the appendix
A.3).
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Fund. 1 Fund. 2 SH field ∆β [1/m]

TM TM TM 3.78 · 105

TE TE TM −1.48 · 105

TE TM TE 6.74 · 105

TE TE TE 4.12 · 105

Table 4.2 – Numeric values of the phase mismatch ∆β for different polarisation
combinations of fundamental and SH fields.

In Tab. 4.2 we have collected the respective phase mismatches for the supported polarisation
combinations in one of our standard lithium niobate waveguides. In columns one to three,
we indicate the polarisations of the involved field, whereas in the last column we present the
calculated phase mismatch. Although the latter changes for different polarisation combinations,
none of these processes could be phasematched by exploiting the waveguide birefringence.

A second technique to achieve phasematching at arbitrary frequency tuples is called quasi-
phasematching (QPM). This peculiar denotation originates from the modification of the phase-
matching equations. For QPM, the sign of the χ(2)-nonlinearity of the waveguide is periodi-
cally inverted. This modulation can be achieved by applying a high voltage to those regions
of the waveguide where the nonlinearity should be flipped [74]. Currently, our group is capa-
ble of fabricating poling periods as small as 4µm in LN, which required for achieving QPM
for visible wavelengths in our devices. In essence, periodic inversion transforms the uniform
χ(2)-nonlinearity into a Fourier series

χ(2) → χ(2)
∞∑

m=−∞
Gme

ımβQPMz. (4.19)

Here, βQPM = 2π
Λ is the so-called grating vector, the magnitude of which is inversely pro-

portional to the period Λ of the χ(2) modulation, and m is the so-called quasi-phasematching
order. The Fourier coefficients Gm are retrieved from the actual shape of the χ(2)-modulation
and describe the strength of the respective phasematching order. Typically, they are largest for
first-order QPM.

Consequently, we add an additional term to the phasematching equations, which then read

βSH = 2βfund ± βQPM, (4.20)

βSFG/DFG = β1 ± β2 ± βQPM (4.21)

for SHG and SFG/DFG, respectively. The sign in front of the grating vector depends on the
actual experimental settings and corresponds to the +1st and −1st phasematching order, re-
spectively. Applying the QPM technique to our SHG example, we find that a modulation with
a period of Λ = 16.63µm is required to achieve quasi-phasematching, if all fields are TM
polarised.

Finally, we want to mention a possibility of fine-tuning the phase mismatch. Generally, the
refractive index of our nonlinear materials is temperature dependent. Thus, we can change
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Figure 4.3 – Phase mismatch ∆β versus waveguide temperature. The colour
coding corresponds to different polarisation combinations of the in-
volved fields, dashed lines reflect cases in which one field resides in
a higher order spatial mode. For more information see the text.

the phase mismatch by changing the temperature of our waveguide. This is illustrated in Fig.
4.3, where we bring together our previous findings. We consider again the example SHG from
before. The colour coding reflects the polarisation combinations from Tab. 4.2 and we have
assumed a QPM period of Λ = 16.63µm to achieve phasematching for the completely TM po-
larised process. The solid lines correspond to the case that both fundamental and SH field reside
in the fundamental spatial mode. In contrast, the dashed lines correspond to the SH field being
in the first higher order spatial mode as discussed in Sec. 4.1.2. The inset shows a zoom into the
perfectly phasematched region, where we have indicated ∆β = 0 at a temperature of 197◦C.
Several insights can be gained from this figure: firstly, different processes exhibit different ∆β
and only one process at a time can be quasi-phasematched (∆β = 0) when deploying a uni-
form χ(2)-modulation, which provides only a single first-order grating vector βQPM; secondly,
the impact of different spatial modes is not as severe as the impact of changing polarisations;
finally, the impact of the temperature is weak compared to spatial modes or polarisation.

As a concluding remark we highlight that the devices used in this work rely on QPM and were
designed to support processes where all fields reside in the fundamental spatial mode. Still, the
insights from this section will become important for the analysis of the measurement results
later in this thesis.
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Summary
We have motivated that an electric field induces a polarisation response in a dielectric medium, by

introducing the image of oscillating atomic dipole moments. Inside our waveguides, these oscilla-

tions become anharmonic and nonlinear effects occur. We have discussed the processes of second

harmonic generation as well as sum- and difference-frequency generation. The efficiency of these pro-

cesses is governed by phasematching conditions, which can be adapted to different experimental

situations via quasi-phasematching. Finally we compared the impact of different spatial modes, pola-

risations and waveguide temperatures on the phase mismatch. The temperature has the least impact

on the phase mismatch and was identified as means for fine-tuning the phasematching.

4.3 Ultrafast pulses

Up to now, we have only considered monochromatic electric fields. This was a convenient
assumption, which enabled us to deploy a concise and clean notation. However, the topic of this
work is ultrafast quantum frequency conversion, which directly implies light pulses with broad
spectra and forces us to extend our description of the light field.

In general, light pulses are electromagnetic wave packets with a finite duration. As a rule
of thumb, pulses with durations shorter than one picosecond are called ultrafast or ultrashort.
They are completely described by their complex time- and space-dependent electric field. Dur-
ing this thesis we exclusively deployed pulses for which the so-called slowly varying envelope
approximation (SVEA) holds true. In this case, the spectral width of the pulse is much smaller
than its central frequency (σ � ω0) and the electric field can be separated into an envelope
function and a monochromatic carrier wave. Consequently, we express the pulse as

E+(t, z) =
1

2
E(t, z)eıω0t−ıβz, (4.22)

where E+(t, z) is the positive frequency part of the electric field. E(t, z) is the complex en-
velope function of the pulse and β is the propagation constant as defined before. The corre-
sponding frequency representation of the electric field can be obtained from equation (4.22) via
a Fourier transform, which evaluates to

E+(ω, z) =

∞∫
−∞

dtE+(t, z)e−ıωt. (4.23)

Note that in an experiment, we generally measure the real-valued electric field E(t, z), which
is constructed by adding its positive and negative frequency parts such that

E(t, z) = E+(t, z) + E−(t, z), (4.24)

where E−(t, z) = (E+(t, z))
∗.
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4.3.1 Time-bandwidth product
The time-bandwidth product (TBP) of an electromagnetic pulse describes the relation between
its spectral width σ and its duration τ . We have already emphasised that time and frequency are a
pair of Fourier variables. This dictates that σ and τ cannot be arbitrarily narrow simultaneously.
Let us illustrate this with an example. We assume a pulse with a field envelope function, which
exhibits a Gaussian shape and is centred around zero4 and – for reasons of simplicity – neglect
any spatial dependencies. This allows us to write

E(ω) = E0e
−ω

2

σ2 , (4.25)

E(t) =
E0√
2σ
e−

t2

τ2 . (4.26)

Here, σ is the 1
e−width of the spectral field envelope, E0 is its amplitude and τ = 2

σ is the
duration of the pulse, which is inversely proportional to the spectral width. Already at this stage
we can discern that a narrow spectrum implies a long duration and vice versa.

However, we can put this statement onto formal footing by defining the TBP, which comprises
the FWHMs of the spectral and temporal field intensities5 and is given by ∆ν∆τ . Performing
the calculation for our Gaussian pulse, we find

∆ω∆τ = 2π∆ν∆τ ≈ 2π · 0.441 (4.27)

We identify this situation with an ideal Gaussian pulse, that is a Gaussian pulse with a flat phase
distribution. The result exemplifies our statement from above that the spectral and temporal
distributions cannot both be arbitrarily narrow at the same time. Generally, the TBP is written as
∆ν∆τ ≥ cTBP, where the numerical value of the constant depends on the shape of the spectral
and temporal field envelopes and the equality is only fulfilled for the case of ideal pulses and
violated otherwise.

4.3.2 Chronocyclic Wigner function
As we have already pointed out, full information on the pulse is contained in the complex electric
field given in equation (4.22). However, for an intuitive visualisation of the time-frequency
structure of an ultrafast pulse, this description is not ideal. To highlight this, we exemplarily
consider a chirped pulse. A chirped pulse exhibits a time-dependent instantaneous frequency
ω(t) and is referred to as up-chirped (down-chirped) if ω(t) increases (decreases) over the pulse
duration. It is a non-ideal pulse with a TBP that is larger than the Fourier limit.

In the spectral envelope function, a chirp is associated with an additional phase factor. Chro-
matic dispersion for instance generates a phase, which varies quadratically with frequency,
hence

E(ω) = E0e
−ω

2

σ2−ıξω2

, (4.28)

where the factor ξ describes the sign and strength of the chirp. It is difficult to visualise this
envelope, since amplitude and phase have to be plotted simultaneously. Adding higher order

4This can always be realised by applying a frequency shift to a pulse centred around a frequency ω0.
5Intensity FWHM and field 1

e
-width are related via ∆ω =

√
2 ln 2σ and ∆τ =

√
2 ln 2 τ , respectively.
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chirps (for instance ∝ ω3) complicates the matter because they become hard to perceive in a
graphic.

A solution to this problem was presented in 1994 by John Paye [33]. He borrowed from a
concept known in quantum mechanics, namely the Wigner function, which is deployed to dis-
play the interplay of conjugate variables. This description can be readily translated to time and
frequency, which constitute a pair of Fourier conjugate variables. Paye called it the chrono-
cyclic Wigner function, to reflect the dependency on time6 and frequency7. It is calculated by a
Wigner transformation of the complex field envelope:

W(t, ω) =
1

2π

∞∫
−∞

ds E(ω +
s

2
)E∗(ω − s

2
)eıts. (4.29)

Note that by definition the chronocyclic Wigner function is a real-valued function and as such in
principle accessible by measurement. Another particularly useful feature is that the marginals
ofW(t, ω) are the temporal and spectral intensities

I(t) = |E(t)|2 =
1

2π

∞∫
−∞

dωW(t, ω), (4.30)

I(ω) = |E(ω)|2 =

∞∫
−∞

dtW(t, ω). (4.31)

From these equations it is obvious that the Wigner function also contains the energy of the pulse,
since

Spulse =

∞∫
−∞

dt |E(t)|2 =
1

2π

∞∫
−∞

dt dωW(t, ω), (4.32)

where Spulse labels said energy.
In figure 4.4, we compare the complex spectral field envelope and the chronocyclic Wigner

function of ultrafast pulses. Subplots (a) to (c) show the amplitude (solid lines) and phase
(dashed lines) of the complex electric field envelope E(ω) plotted against ω, whereas subplots
(d) to (f) containW(t, ω) plotted against frequency and time.

As a reference, we have chosen an ideal pulse (1st column). The complex electric field
exhibits a Gaussian amplitude and a flat phase distribution. The corresponding chronocyclic
Wigner function is a two-dimensional Gaussian centred around the origin. The next step is an
additional linear phase term in the complex electric field, corresponding to a shift in the temporal
domain. (2nd column). This is because of the Fourier relationship between frequency and time:
a linear phase term in one of the variables is tantamount to a linear shift in the other, and vice
versa. The phase term does not influence the amplitude of the complex electric field. However,
as expected, we find that W(t, ω) gets shifted along the t-axis, while maintaining its overall
shape.

6Chronos is Greek for time.
7Cyclic is reminiscent of the periodic oscillation of the electric field.
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Figure 4.4 – Visualisation of ultrafast laser pulses. (a)-(c): Amplitude (solid
lines) and phase (dashed lines) of the complex spectral envelope for
an unchirped pulse, a pulse with linear phase modulation and a pulse
with linear and quadratic phase term, respectively. Note that the
phase was manually set to zero outside the 1

e2
−width of the pulses.

(d)-(f): The chronocyclic Wigner function for the same pulses as in
(a)-(c), where bright colours correspond to large values. For more
information see the text.

Finally, we focus on an additional quadratic phase term, which is the signature of a linear
frequency chirp (3rd column). Already for this small number of phase terms, it becomes visibly
difficult to aptly read the phase of the complex electric field. In contrast, the phase terms are
well separated in the chronocyclic representation. The linear term induces a shift along the t-axis
and the quadratic term yields a tilt in the Wigner function, which reflects the temporal-spectral
correlations introduced by a frequency chirp.

The chronocyclic Wigner function has become the standard description of ultrafast laser
pulses to date, because of the intuitive access to different phenomena. From a numerical point
of view however, working with either the spectral or temporal complex envelope function is
preferable, because there is only one functional variable instead of two. Throughout this work
we will use both methods, depending on their respective applicability.
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SECTION 4.3 Ultrafast pulses

4.3.3 Pulse shaping
In this section, we focus on the control over the time-frequency shape of ultrafast pulses. To
date, there are many different ways to implement pulse shaping, which are nicely presented in
[75]. Shaped pulses are predominantly used in the field of coherent control, which is covering
applications to monitor and control system dynamics at ultrashort timescales. To highlight the
limitations of classical pulse shaping schemes, we stick to the complex field envelope descrip-
tion of ultrafast pulses, which we rewrite

E(ω) = |E(ω)|eıφ(ω). (4.33)

Here, φ(ω) denotes the phase including all higher order terms. Full control over the pulse shape
is possible, if both amplitude and phase of the electric field can be controlled independently.
This can be achieved by applying transfer functions famp(ω) and fφ(ω), such that

|E(ω)| → famp(ω)|E(ω)|, (4.34)

φ(ω)→ fφ(ω)φ(ω). (4.35)

With current experimental means, fφ(ω) can take almost arbitrary values8. However, things
are different for famp(ω). Commercial pulse shapers are passive linear devices, which do not
feed additional energy to the pulse. In practice this means that famp(ω) only takes on values
between 0 and 1, meaning full suppression or transmission of the respective frequency. This
statement enforces two main consequences: first, the input amplitude must have a sufficient
spectral width, since no new spectral components can be generated; second, pulse shaping is
inherently lossy. The latter is in fact deleterious for any quantum application, since losses in-
evitably introduce decoherence to the quantum state. Thus, quantum pulses cannot be reshaped
with conventional pulse shaping techniques. Note however, that this does not hinder the shaping
of bright, classical pulses.

Summary
We have introduced the complex field of ultrafast pulses and defined the associated time-bandwidth

product. In our case of Gaussian shaped pulses, the time-bandwidth product must fulfil the inequality

∆ω∆τ ≥ 2π · 0.441. Moreover, we have presented the chronocyclic Wigner functionW(t, ω) of ultrafast

pulses as an intuitive method to illustrate their time-frequency structure. Finally, we have motivated

that pulse shaping, being a destructive operation, typically introduces losses, which are detrimental for

quantum states.

8Particularly when taking into account the periodic nature of the phase.
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In the previous chapter, we have in-
troduced concepts from classical optics
which form the fundament for our quan-
tum description of frequency conversion
processes. In this chapter, we take three
steps to translate these results into the for-
mal language of quantum optics: first, we
derive expressions for the quantised fields

in nonlinear optical waveguides; second, we introduce a general quantum description of three-
wave mixing processes comprising one strong, classical light field and two quantum fields;
finally, we investigate two kinds of three-wave mixing processes, namely parametric down-
conversion (PDC) and sum- and difference-frequency generation (SFG/DFG) in more detail,
since they are the backbone of our experimental work. To this end, we reveal the intricate time-
frequency (TF) structure of these processes and highlight means to exert complete control over
it. We conclude this chapter with a brief detour on the genuine quantum effect of time-ordering
and assess its impact on our experiments.

5.1 Speaking quantum

It is well-known from many quantum mechanics textbooks that in order to obtain a quantum
description of a process one first has to find the Hamiltonian Ĥ(t) of the process. Then, since
we are interested in the revealing the physical implications of the Hamiltonians, we have to
solve the time-evolution equations generated by the Hamiltonian. Depending on the specific
physical situation and the personal taste, one can either deploy the Schrödinger picture to write
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CHAPTER 5 From classical to quantum optics

down the time-evolution of a quantum state

|ψ(T )〉 = T̂ exp

− ı
h̄

T∫
0

dt Ĥ(t)

 |ψ(0)〉 (5.1)

or Heisenberg’s equation of motion to express the time-evolution of the associated operators

∂tâ(t) =
ı

h̄

[
Ĥ(t), â(t)

]
. (5.2)

Here, h̄ = h
2π is the reduced Planck’s constant and T̂ is the so-called time-ordering operator,

which we ignore for the time being, in agreement with recent results [76]. Note that we will
discuss time-ordering at the end of this chapter. The angular brackets in the second equation
label the commutator between the Hamiltonian and the operator under consideration.

For our particular case of three-wave mixing processes, the Hamiltonian is given by the in-
teraction of the initial electric field with the induced nonlinear polarisation inside the nonlinear
medium and hence reads [77]

ĤTWM(t) =

∫
V

dr P̂NL(r, t)Ê(r, t), (5.3)

where the operators P̂NL(r, t) and Ê(r, t) are the quantised versions of the corresponding clas-
sical quantities from Eq. (4.14). Note that we now define P̂NL = ε0deffÊÊ, where deff is the
effective nonlinearity (for more information see the appendix A.3). Obviously, the expression
for the quantised fields is all we need in order to write down the Hamiltonian.

5.1.1 Field quantisation in waveguides
The derivation of the quantised electric fields inside weakly guiding waveguides has, to the
best of our knowledge, not been considered in detail before. Therefore, we start from very
fundamental considerations. Maxwell’s equations require that the electric and magnetic field
operators can be associated with a vector potential Â(r, t) via [78]

Ê(r, t) = −∂tÂ(r, t), B̂(r, t) = ∇× Â(r, t). (5.4)

In the following, we follow along the lines of [79], but adapt the vector potential presented
there (compare Eq. (A.12)) to accurately reflect the properties of our waveguides, in particular
the spatial modes they impose on the light field:

Â+(r, t) =

∫
dk

(
h̄vg(ω)

16π3ε0cωn(ω)

)1/2

â(k)ξ(kx, ky)e
−ıωt+ıkr. (5.5)

Note that in the remainder of this work integral boundaries are −∞ and∞ unless stated other-
wise. The quantity vg(ω) is the group velocity of the light inside the waveguide which is given
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SECTION 5.1 Speaking quantum

by vg(ω) = ∂ω
∂k . In addition, we have introduced the function ξ(kx, ky), which is calculated via

the asymmetric Fourier transform

ξ(kx, ky) =

∫
dx dy ζ(x, y)e−ıkxx−ıkyy, (5.6)

where the spatial field mode

ζ(x, y) =
1

(2π)2

∫
dkx dky ξ(kx, ky)e

ıkxx+ıkyy (5.7)

inside the waveguide is derived from classical optics as sketched in Sec. 4.1.2. Inserting this
result into Eq. (5.5), we obtain the formally one-dimensional integral

Â+(r, t) = 2πζ(x, y)

∫
dkz

(
h̄vg(ω)

4πε0cωn(ω)

)1/2

â(kz)e
−ıωt+ıkzz. (5.8)

We can translate the integration over kz into a frequency integral by substituting [79]

dkz →
dω

vg(ω)
, â(kz)→

√
vg(ω)â(ω), (5.9)

and end up with

A+(r, t) = 2πζ(x, y)

∫
dω

(
h̄

4πε0cωn(ω)

)1/2

â(ω)e−ıωt+ıkzz. (5.10)

Performing the derivation of this expression with respect to time yields the quantised electric
field operator

Ê+(r, t) = ı2πζ(x, y)

∫
dω

(
h̄ω

4πε0cn(ω)

)1/2

â(ω)e−ıωt+ıkzz. (5.11)

Since we know that different spatial field modes may be supported by our waveguides, we can
further generalise this expression and find

Ê+(r, t) = ı · 2π
∑
k

ζk(x, y)

∫
dω

√
h̄ω

4πε0cnk(ω)
âk(ω)e−ıωt+ıβkz (5.12)

which is the final expression for quantised light fields in optical waveguides as published in
[61]. Note that we have implicitly included the condition that kz can only take the values of the
propagation constants βk of the respective modes to fulfil Helmholtz’s equation. In addition,
nk(ω) now labels the effective refractive index as discussed in Sec. 4.1.

29



CHAPTER 5 From classical to quantum optics

Figure 5.1 – Illustration of three-wave mixing processes. (a) In a purely classi-
cal approach, one single input field at frequency ω (blue arrow) can
generate only SH radiation at 2ω (red arrow). (b) For the generation
of other frequency components, a second input field at ω1 (green ar-
row) is required to drive an SFG/DFG process (yellow arrow). (c) In
the quantum description (or in a semi-classical approach), vacuum
fluctuations serve as a second input field, with an infinite frequency
spectrum (grey dashed arrow). Hence, the generation of new fre-
quencies (green and yellow arrows) is possible even without a clas-
sical second input, a process referred to as parametric generation
(PG).

5.1.2 Quantum three-wave mixing
With the quantised electric fields at hand, we can now calculate the three-wave mixing Hamilto-
nian ĤTWM(t). However, before doing so we emphasise an important difference in the origin of
the nonlinear polarisation compared to the previous chapter. In our classical treatment we found
that, given a monochromatic input field only the SHG process occurred (compare Eq. (4.16)).
For an SFG/DFG process to happen, we required an input field to generate additional terms in
PNL(t, z) (compare Eq. (4.17)).

We have illustrated this in Fig. 5.1. In (a) only one input field is present and consequently
only the SH radiation emerges in agreement with Eq. (4.16). In (b), a second bright input
field facilitates SFG/DFG processes and thus the generation of new frequency components. The
situation is different in (c): the quantum approach takes into account the non-vanishing energy
content of the quantum mechanical vacuum which can seed a DFG process under the conditions
of energy conservation and phasematching9. The generation of light fields from the quantum
mechanical vacuum is commonly referred to as parametric generation (PG) in a semi-classical
theory, or parametric down-conversion (PDC) in quantum optics.

Let us now derive the three-wave mixing Hamiltonian ĤTWM(t). We assume the nonlinear
polarisation to be excited by quantum fields

Ê1(r, t) = Ê+
1 (r, t) + Ê−1 (r, t), (5.13)

Ê2(r, t) = Ê+
2 (r, t) + Ê−2 (r, t) (5.14)

and mix them with a strong pump field

Ep(r, t) = E+
p (r, t) + E−p (r, t), (5.15)

9This can be incorporated into classical theory as well. Then, all frequencies are populated with half a photon at the
input of the waveguide and thus can seed the process. Note that, due to the introduction of photons, this approach
is referred to as semi-classical.
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SECTION 5.1 Speaking quantum

Figure 5.2 – Visualisation of PDC and frequency conversion (FC) processes. For
more information see the text.

which does not get depleted during the process and is thus modelled as a classical field. Con-
sequently, we can calculate the Hamiltonian ĤTWM(t) and find (for more information see the
appendix A.4)

ĤTWM(t) = ε0

∫
V

dr

[
deffE

+
p (r, t)

(
Ê−1 (r, t)

)2
+ deffE

+
p (r, t)Ê−1 (r, t)Ê−2 (r, t)

+deffE
+
p (r, t)Ê+

1 (r, t)Ê−2 (r, t) + h.c.
]
.

(5.16)

Here, we have colour coded the different contributions with respect to the underlying physi-
cal processes and the respective effective nonlinearities deff include the degeneracy factors as
discussed before.

The orange term10 corresponds to a time-inverted SHG process, during which a pump photon
decays into a pair of photons that is emitted into the same quantum field. This process is also
referred to as type I PDC. Since it plays no role for our work11, we will not consider it further.
The red term, in contrast, describes the process of type II PDC, where the generated photons –
called signal and idler are emitted into distinguishable field modes, that is, orthogonal polarisa-
tions. The source we present in Chap. 6 is based on this process, which is why we investigate it
in more detail. Finally, the blue term describes quantum SFG/DFG processes, during which an
input photon is annihilated and an output photon is created. These processes are at the heart of
our new devices presented in Chap. 7 and are therefore also considered in detail.

A visualisation of the two types of processes is presented in Fig. 5.2. Panel (a) displays a
type II PDC process, during which photons from a bright, classical pump (blue arrow) decay
into pairs of photons, commonly labelled signal and idler (red and green disc). The strict energy
correlations are slightly relaxed due to the finite spectral bandwidth of the pump. This is illus-
trated by the blurred, grey-shaded region in the energy level diagram in the lower left. The same
holds true for the phasematching condition, which relaxes due to the finite waveguide length,
as shown on the lower right. In (b), we show SFG (left) and DFG (right), respectively. During
these processes, a green (blue) input photon interacts with the strong pump (red arrow) and is
converted into a blue (green) output. Note that both energy conservation and phasematching
10We implicitly include the associated h.c. terms in this discussion.
11There are other applications where type I PDC is indispensable, for instance the generation of squeezed light.
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diagrams have to be adapted to reflect the corresponding experimental situation. This means
in particular that in (b), the −1st and +1st QPM orders have to be utilised for SFG and DFG,
respectively, as illustrated by the different directions of the grating vectors 2π

Λ .
Taking into account all additional information, we finally find the most simplistic three-wave

mixing Hamiltonian for our work, which reads

ĤTWM(t) = ε0

∫
V

dr
[
deffE

+
p (r, t)Ê−1 (r, t)Ê−2 (r, t) + h.c.

+ deffE
+
p (r, t)Ê+

1 (r, t)Ê−2 (r, t) + h.c.
] (5.17)

5.1.3 Time-frequency representation

5.1.3.1 Joint spectral amplitude functions

Let us have a closer look at the internal structure of the three-wave mixing Hamiltonian ĤTWM

from Eq. (5.17). We know already that we can generate a unitary transformation from an input
quantum state to an output quantum state with the knowledge of the Hamiltonian using, for
instance, Eq. (5.1). To do so, we have to substitute ’realistic’ expressions for the fields and
consequently utilise the quantised fields from Eq. (5.12). The pump field is an ultrafast laser
pulse containing at least 106 photons in our experiments. As such, we again assume that it is
not depleted during the three-wave mixing and write it as a classical field

E+
p (r, t) = Apζp(x, y)

∫
dωp α(ωp)e−ıωpt+ıβpz, (5.18)

where the constantAp is the maximum amplitude of the pump and the function α(ωp) – referred
to as pump envelope function – describes its complex spectrum. Naturally, we require that the
area integral over the pump intensity Ip = 1

2cnp(ωp)ε0|Ep|2 is a power with units of [W].
Hence, we can relate the pump amplitude Ap to the pump power averaged over the duration of
the pulse Pp by12

Ap =

√
2Pp

cε0np(ωp)|
∫
dωp α(ωp)|2

. (5.19)

This result is convenient, because the pump spectrum and its temporal shape can be measured
directly. In addition, the pulse energy can be evaluated, which together with the temporal shape
allows for the calculation of Pp. Thus, Ap is accessible from experimental quantities.

Putting things together we obtain an expression for the three-wave mixing Hamiltonian. Note

12This corresponds to approximating the pulse with a boxcar function.
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that again, integral boundaries are taken to be −∞ and∞ unless stated otherwise:

ĤTWM(t) = ε0(2ıπ)2
∑
k,l,m

∫
V

dx dy dz

∫
dωp dωs/in dωi/out

×

[
deffζp,k(x, y)ζ∗s,l(x, y)ζ∗i,m(x, y)Ap,k

√
h̄ωs

4πcε0ns,l(ωs)

√
h̄ωi

4πcε0ni,m(ωi)

αk(ωp)e−ı(ωp−ωs−ωi)teı(βp,k−βs,l−βi,m+βQPM)zâ†l (ωs)b̂
†
m(ωi)

+ deffζp,k(x, y)ζin,l(x, y)ζ∗out,m(x, y)Ap,k

√
h̄ωin

4πcε0nin,l(ωin)

√
h̄ωout

4πcε0nout,m(ωout)

αk(ωp)e−ı(ωp±ωin∓ωout)teı(βp,k±βin,l∓βout,m+βQPM)zâl(ωin)ĉ†m(ωout) + h.c.

]
.

(5.20)

The indices k, l and m describe the spatial modes of the three fields and the operators â, b̂ and ĉ
are standard creation and annihilation operators, which operate on the spatial modes labeled in
the corresponding subscripts. We have also introduced our standard labelling for the different
processes, marking the PDC photons signal and idler as ’s’ and ’i’, and the input and output
fields of the SFG/DFG as ’in’ and ’out’, respectively. In our notation, we implicitly assume
β = β(ω) for all propagation constants. Note that we account for the fact that different spatial
pump modes k might also exhibit different pump spectra αk(ωp).

The next few steps will solely be focussed on the simplification of this Hamiltonian. First, we
apply the slowly varying envelope approximation (SVEA), which allows us to take the square
root factors and pump amplitude, which are assumed as constant in this approximation, out of
the integrals. Second, we define effective interaction areas Aklm as

1

Aklm
=


[∫

dx dyζp,k(x, y)ζ∗s,l(x, y)ζ∗i,l(x, y)
]2
,[∫

dx dyζp,k(x, y)ζin,l(x, y)ζ∗out,l(x, y)
]2
,

(5.21)

where the upper solution is for PDC, and the lower for SFG/DFG, respectively.
Third, we define a frequency and a phase mismatch

∆ωPDC = ωp − ωs − ωi, (5.22)

∆βPDC,klm = βp,k − βs,l − βi,m + βQPM, (5.23)

∆ωFC = ωp ± ωin ∓ ωout, (5.24)

∆βFC,klm = βp,k ± βin,l ∓ βout,m + βQPM, (5.25)

where FC labels a general frequency conversion process (either SFG or DFG) and the signs are
valid for SFG, respectively DFG. We recall that βQPM = 2π

Λ is the quasi-phasematching vector
which originates in the periodic poling of the waveguide.
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Fourth, we perform the z-integrations over the waveguide length L, which yields

L∫
0

dz eı∆βPDC,klmz = L sinc

(
∆βPDC,klmL

2

)
eı
∆βPDC,klmL

2︸ ︷︷ ︸
=:φPDC,klm(ωp,ωs,ωi)

, (5.26)

L∫
0

dz eı∆βFC,klmz = L sinc

(
∆βFC,klmL

2

)
eı
∆βFC,klmL

2︸ ︷︷ ︸
=:φFC,klm(ωp,ωin,ωout)

, (5.27)

where we defined the phasematching functions as φPDC,klm(ωp, ωs, ωi) and φFC,klm(ωp, ωin, ωout),
respectively. With the help of these four steps, we obtain a simplified version of ĤTWM(t):

ĤTWM(t) = ε0(2ıπ)2
∑
k,l,m

∫
dωp dωs/in dωi/out[

deffθPDC,klmαk(ωp)φPDC,klm(ωp, ωs, ωi)e
−ı∆ωPDCtâ†l (ωs)b̂

†
m(ωi)

+ deffθFC,klmαk(ωp)φFC,klm(ωp, ωin, ωout)e
−ı∆ωFCtâl(ωin)ĉ†m(ωout) + h.c.

]
,

(5.28)

where we defined new constants

θPDC =
Ap,kL√
Aklm

√
h̄ωs

4πcε0ns,l(ωs)

√
h̄ωi

4πcε0ni,m(ωi)
, (5.29)

θFC =
Ap,kL√
Aklm

√
h̄ωin

4πcε0nin,l(ωin)

√
h̄ωout

4πcε0nout,m(ωout)
. (5.30)

This looks better, but we can still improve it. Recapitulating Eq. (5.1), we find that we need
the time integrated Hamiltonian to generate our transformation from input to output state:

|ψ(T )〉 = exp

− ı
h̄

T∫
0

dtĤ(t)

 |ψ(0)〉 , (5.31)

where we explicitly neglect the time-ordering operator T̂ . First we reason that we can take the
boundaries of this integral to infinity. The input state |ψ(0)〉 will, in the absence of losses, not
change before the nonlinear interaction. This is also true for the output state |ψ(T )〉, only now
we consider the state after the interaction. Hence, we can safely integrate the time from −∞
to +∞, if t = 0 marks the state at the input facet of the waveguide and t = T the state at the
waveguide output facet. The only time-dependent terms in ĤTWM(t) are the two exponents

34



SECTION 5.1 Speaking quantum

containing the frequency mismatches. These readily evaluate to∫
dt e−ı∆ωPDCt = 2πδ(ωp − ωs − ωi), (5.32)∫
dt e−ı∆ωFCt = 2πδ(ωp ± ωin ∓ ωout). (5.33)

Hence we can directly perform the integration over the pump frequency ωp and find ωp →
ωs + ωi for PDC and ωp → ±ωout ∓ ωin for SFG/DFG, respectively. In addition we define the
joint spectral amplitude (JSA) functions

Fklm(ωs, ωi) := αk(ωs + ωi)φPDC,klm(ωs, ωi), (5.34)

Gklm(ωin, ωout) := αk(±ωout ∓ ωin)φFC,klm(ωin, ωout), (5.35)

which contain complete information over the spectral-temporal properties of the processes. With
this we present our final expression for the time-integrated three-wave mixing Hamiltonian:

− ı
h̄

∫
dt ĤTWM(t) =

∑
k,l,m

[
Bklm

∫
dωs dωi Fklm(ωs, ωi)â

†
l (ωs)b̂

†
m(ωi) + h.c.

+ Cklm
∫
dωin ωoutGklm(ωin, ωout)âl(ωin)ĉ†m(ωout) + h.c.

] (5.36)

We have merged all constants into the two overall coupling constants Bklm and Cklm and have
separated the PDC and FC parts of the Hamiltonian.

5.1.3.2 Schmidt decomposition

The next step is to apply a Schmidt decomposition [80] to the JSA functions. The idea to use
this decomposition on bipartite quantum systems was introduced by Everett in 1957 [81] and
was later advanced as a means of quantifying correlations in a general bipartite quantum system
[82]. Law, Walmsley and Eberly transferred this procedure to the TF degree of freedom of
ultrafast PDC [48] and during this thesis we have transferred this approach to FC.

A general Schmidt decomposition of a two-dimensional function f(ω1, ω2) yields two sets of
basis functions {gk} and {hk} with pairwise correlations such that

f(ω1, ω2) =
∑
k

√
κkgk(ω1)hk(ω2). (5.37)

The expansion coefficients
√
κk fulfil the normalisation condition

∑
k κk = 1. Applying this to

the JSA function from PDC, one can subsequently define so-called broadband or time-frequency
(TF) mode operators [83]:

Fklm(ωs, ωi) =
∑
j

√
κj,klmgj,klm(ωs)hj,klm(ωi) (5.38)

⇒Â†j,klm :=

∫
dωs gj,klm(ωs)â

†
l (ωs), (5.39)

⇒B̂†j,klm :=

∫
dωi hj,klm(ωi)b̂

†
m(ωi). (5.40)
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Substituting these TF mode operators into the expression for the time-integrated Hamiltonian
for PDC facilitates the reformulation:∫

dωs dωi Fklm(ωs, ωi)â
†
l (ωs)b̂

†
m(ωi) =

∑
j

√
κj,klmÂ

†
j,klmB̂

†
j,klm, (5.41)

where the correlations indicated by the Schmidt coefficients are between the generated signal
and idler. Note that the cumbersome notation is mainly due to taking into account the spatial
properties inside the waveguide. For most experiments presented later, this will be dropped
since the fields propagate in the fundamental waveguide mode.

We have reinterpreted SFG/DFG in light of the Schmidt decomposition [60, 61], and rewrite∫
dωin dωoutGklm(ωin, ωout)âl(ωin)ĉ†m(ωout) =

∑
j

√
κj,klmÂj,klmĈ

†
j,klm, (5.42)

similar to the case of PDC. We emphasise, however, that the correlations are now evaluated
between the input and output modes of a quantum process. This introduces a new notion to
the concept of the Schmidt decomposition, which before was used only to decompose quantum
systems instead of unitary quantum operations. To conclude this section, we present the unitary
transformation from input to output state in the TF mode picture:

|ψ(T )〉 =
∏

j;k,l,m

exp
[
Bj,klmÂ

†
j,klmB̂

†
j,klm + Cj,klmÂj,klmĈ

†
j,klm + h.c.

]
|ψ(0)〉 , (5.43)

where the indices k, l,m label spatial modes, the index j labels TF modes and we have included
the expansion coefficients√κj,klm into the coupling constants.

Summary
In this section we have derived the quantum description of three-wave mixing processes in the time-

frequency mode framework. We started with the field quantisation inside our nonlinear waveguides.

Then, we derived the three-wave mixing Hamiltonian and adapted it to our experimental situations,

considering only type II PDC and SFG/DFG processes. Finally, we introduced the joint spectral amplitude

functions which contain complete information on the TF structure of the processes and decomposed

them by means of Schmidt decompositions into pairwise correlated basis functions.

5.2 Understanding quantum
In this section we aim for an intuitive understanding of the time-frequency (TF) mode structure
of PDC and FC. We will introduce physical interpretations for the Schmidt modes and explain
there connection to the quantum feature of entanglement. To begin with, we concentrate on
PDC which is today well understood [48, 49, 84]. Thereafter, we present our own results on FC
[60, 61, 85], which help in understanding the similarities and differences between PDC and FC
in the framework of TF modes.
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5.2.1 Parametric down-conversion
The intricate TF mode structure of PDC paves the way towards an intuitive description of this
process. Let us clarify this by means of the PDC part of Eq. (5.43):

|ψ〉PDC =
∏

j;k,l,m

exp
[
Bj,klmÂ†j,klmB̂

†
j,klm + h.c.

]
|0〉 . (5.44)

We bear in mind that the indices k, l,m label spatial modes, whereas the index j labels the TF
modes from the Schmidt decomposition. In addition, PDC operates on the quantum mechanical
vacuum as input state.

As long as we assume small coupling constants – this is equivalent to low pump powers – we
can expand the exponential function and end up with

|ψ〉PDC ≈
∑
j;k,l,m

(
1 + Bj,klmÂ†j,klmB̂

†
j,klm + h.c.

)
|0〉 , (5.45)

which simplifies to (compare [86])

|ψ〉PDC ≈
∑
j;k,l,m

Bj,klmÂ†j,klmB̂
†
j,klm |0〉

≈
∑
k,l,m

Bklm
∫
dωs dωi Fklm(ωs, ωi)â

†
l (ωs)b̂

†
m(ωi) |0〉

(5.46)

if we only consider the photon-pair contributions and neglect the remaining vacuum. Note
that we have reverted the Schmidt decomposition in the second line to obtain the alternative
notation of the PDC state. We can interpret this state as such: the TF mode operators create
single photons in ultrafast pulse shapes defined by the corresponding Schmidt mode functions.
This means that PDC actually generates independent pairs of ultrafast pulses. The probability
to find the signal and idler in a certain pair j of pulses in a single-shot measurement is given
by the squared Schmidt coefficients κj . Note that this is a discretised way to evaluate the TF
correlations between the generated signal and idler, as introduced in [48].

It is also possible to directly evaluate the frequency information contained in the JSA function
Fj,klm(ωs, ωi) in a two-dimensional representation [86]. We recall that the JSA function is the
product of the pump envelope function αk(ωs +ωi), which reflects energy conservation, and the
phasematching function φklm(ωs, ωi). Both functions can be plotted in the (ωs, ωi) frequency
plane and correlations between the photons manifest themselves as a tilt in the resulting JSA
[49]. Note that any information on the PDC TF structure gained from the evaluation of the
Schmidt decomposition is also contained in the two-dimensional frequency representation of
the JSA function, and vice versa.

We have gathered our previous findings in Fig. 5.3. In (a), we juxtapose a standard monochro-
matic creation operator â†(ω0) (blue line), which creates a photon at one single frequency and
a TF mode operator Â† (red area), which creates a photon in an ultrafast pulse with spectrum
f(ω). The graphical representation of a PDC in (b) emphasises this. The PDC pump (blue
arrow) decays inside the waveguide into pairs of ultrafast pulses, illustrated by the red pulses
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Figure 5.3 – Roundup of the intuitive PDC interpretation in the TF mode frame-
work. (a) Graphical representation of the TF mode operators. As
opposed to a monochromatic operator, a TF mode operator creates a
photon in an ultrafast pulse shape. (b) Illustration of the PDC state.
During the process independent pairs of ultrafast pulses are gener-
ated with relative weights given by the Schmidt coefficients

√
κk. (c)

Plot of the pump envelope function, the phasematching function and
the JSA of the PDC. (d) Schmidt decomposition of the JSA above.
The retrieved signal and idler Schmidt modes are well approximated
by Hermite-Gaussian functions. For more details see the text
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in the time domain. The relative weights between different orders j are given by the Schmidt
expansion coefficients√κj , as plotted on the right.

In (c), we concentrate on the two-dimensional frequency representation of the PDC. We
plot from left to right the pump envelope function αk(ωs + ωi), the phasematching function
φklm(ωs, ωi) and the resulting JSA function Fklm(ωs, ωi) = αk(ωs + ωi)φklm(ωs, ωi), which
contains complete information on the TF structure of the generated PDC state. In the case de-
picted here, the JSA function is tilted with respect to the axes, which indicates the presence of
TF correlations between the generated signal and idler. A Schmidt decomposition of this JSA
yields, on the one hand, the Schmidt coefficients from (b) and, on the other hand, the signal and
idler TF modes shown in (d). For most PDC sources, these modes can be well-approximated by
Hermite-Gaussian functions.

5.2.2 Time-frequency correlations
We have hinted already a few times at the possibility of expressing TF correlations (or energy-
time entanglement) between PDC pair photons with the help of the Schmidt decomposition.
In [48], the authors suggest deploying the Schmidt decomposition of the PDC JSA function
Fklm(ωs, ωi) to calculate the entropy of entanglement13 [87]

S = −
N∑
j=1

κj log2 κj (5.47)

which measures the strength of the TF correlations between the generated photons. Here, N
denotes the dimensionality of the system and the κj are the squared Schmidt coefficients. Note
that for a purely two-dimensional encoding, that is N = 2, the entropy of entanglement has
a maximum value of one, which is reached for instance by the well-known Bell states. In our
example from Fig. 5.3, we find an entropy of entanglement of S ≈ 2.4, hinting already at
a dimensionality of the TF correlations of greater than two as illustrated by the three pairs of
pulses in Fig. 5.3 (b).

5.2.2.1 The Schmidt number K

Another appealing entanglement measure is the so-called cooperativity or Schmidt number K
which is defined as [88, 89]

K =
1∑
k κ

2
k

. (5.48)

The physical meaning of this number is particularly handy: it counts the effective number of
entangled modes present in the PDC state.

Let us explain this: given a separable (not-entangled) PDC state, the Schmidt decomposition
would only yield a single non-zero coefficient, which consequently would equal one. Formally
this corresponds to

Fsep(ωs, ωi) = g(ωs)h(ωi), ⇒ K = 1. (5.49)

13In classical information theory this quantity is better known as the Shannon entropy.
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Figure 5.4 – Graphic illustrating the contribution of different Schmidt modes to
the state in an intuitive manner. For more information see the text.

In contrast, a perfectly correlated PDC state (maximally TF entangled) would comprise an infi-
nite number of Schmidt modes with equal coefficients just above zero, meaning

Fmax(ωs, ωi) =
∞∑
i=0

√
κkgk(ωs)hk(ωi), ⇒ K =

1∑∞
i=0 κ

2
k

√
κk→0
−→ ∞. (5.50)

Hence, the Schmidt number takes on a minimum value of one for separable states and increases
towards∞ for perfect correlations. Note that the PDC state from Fig. 5.3 has a Schmidt number
of K ≈ 3.6, telling us that it is only weakly correlated. We can illustrate this graphically in a
very nice way suggested in [90]. Assuming a circle with a radius of one as basis, we can compare
the area of this circle to the area of a row of circles with radii given by the respective κ2

k. This
is shown in Fig. 5.4. The case of a separable state is depicted in (a). Since the only Schmidt
coefficient equals one, its circle (grey area) perfectly overlaps with the reference (blue line). In
(b), we show the situation for the nearly perfectly correlated state. All coefficients are equal and
tend towards zero, hence we find a large number of very small circles. Finally, (c) shows the
situation for the aforementioned PDC. The ratio of the area of the grey discs and the area of the
blue circle is again the Schmidt number K.

5.2.2.2 Impact of TF correlations

There are applications, for instance linear optical quantum computation [30], which heavily rely
on pure, indistinguishable single photons. In today’s laboratories, PDC sources are amongst the
most widely used sources for heralded single photons, which is the next best thing to determin-
istic single photon sources. However, TF correlations between the photons diminish the purity
of the heralded single photons14. This is depicted in Fig. 5.5. Typically, photons are detected
with non-frequency resolving detectors, for instance avalanche photo diodes (APDs) or super-
conducting detectors, which also cannot resolve Schmidt modes. Obviously, detecting a photon
in the signal arm collapses the idler photon into a mixture of all possible Schmidt modes (left).

We can also treat this issue in the two-dimensional frequency representation of the PDC state
(right). A successful detection event of one PDC photon, for instance the signal, cannot reveal
the central frequency of the corresponding idler. Hence, the heralded photon inevitably collapses
into a mixture of all possible frequency modes. This effect can be mitigated by applying spectral

14This is actually true for any kind of correlations. However, we have already taken care of the spatial degree of
freedom by utilising waveguides.
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Figure 5.5 – Schematic illustrating the collapse of an idler photon into a mixed
state upon the detection of the signal. For more information see the
text.

filtering to the herald, however only in the limit of infinitely narrow filtering will the heralded
photon be in a pure state [91]. Moreover, tight spectral filtering also imposes tremendous loss
on the PDC state and thus lowers dramatically the photon generation rate.

Note that spectral filtering is also not compatible with the general idea of ultrafast pulses,
which are based on broad spectral distributions. This issue can be overcome if photon pairs
are generated in separable states exhibiting no TF correlations (K = 1). Then, even a non-
frequency, non-mode resolved detection of one PDC photon heralds a genuine quantum pulse
in the other output arm of the PDC.

In contrast, high-dimensional systems with a large number of entangled modes are appealing
candidates for high-dimensional quantum information coding. Not only can the information
capacity of a single photon be increased when utilising high-dimensional or qudit coding, but
also the security of quantum cryptography protocols provably increases in that case [92–94].
TF modes of PDC states are notable candidates for the realisation of qudit coding schemes,
because their intrinsic pulse characteristics lend themselves to applications where synchronisa-
tion is necessary. In addition they are intrinsically compatible with existing single-mode fiber
communication networks, because the information is encoded in the TF degree of freedom.

In conclusion, detailed knowledge over the TF entanglement of a PDC state is a prerequisite
for the exploitation of the full potential of TF modes. We have introduced measures for these
correlations, in particular the Schmidt number K and briefly discussed potential applications
for high- and low-dimensional PDC states.

5.2.3 Frequency conversion
FC is different in comparison with PDC, as we have learned during this thesis. The FC conver-
sion part of Eq. (5.43) reads [60, 61]

|ψ〉out =
⊗
j;k,l,m

exp
[
Cj,klmÂj,klmĈ†j,klm + h.c.

]
|ψ〉in , (5.51)

where we recall that the TF mode operators Âj,klm and Ĉ†j,klm are obtained from the Schmidt
decomposition of the JSA function Gklm(ωin, ωout) =

∑
j
√
κjgk(ωin)hj(ωout) and that the
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coupling constant Cj,klm is a function of the pump power. Looking closely at Eq. (5.51), we
observe a surprising similarity with a standard quantum optical beamsplitter, the Hamiltonian
of which is given by

ĤBS = θâĉ† + θ∗â†ĉ. (5.52)

Here, θ denotes the so-called beamsplitter angle, which defines the transmission and reflection
ratios by means of the well-known beamsplitter input/output relations [95]

â→ cos(θ)â− ı sin(θ)ĉ, (5.53)

ĉ→ −ı sin(θ)â+ cos(θ)ĉ. (5.54)

We can see from those that T = cos2(θ) is the transmission and R = sin2(θ) is the reflection,
respectively. Hence we conclude that FC can be understood as a very peculiar kind of beam-
splitter, which connects pairs of ultrafast TF modes centred around different frequencies via the
relations

Âj,klm → cos(Cj,klm)Âj,klm − ı sin(Cj,klm)Ĉj,klm, (5.55)

Ĉj,klm → −ı sin(Cj,klm)Âj,klm + cos(Cj,klm)Ĉj,klm. (5.56)

Note that the similarity between a beamsplitter and a FC has been first noted by Raymer et al in
[62], however without the connection to TF modes.

As with PDC, we have summarised our findings in Fig. 5.6. Panel (a) schematically depicts
the complete FC process, during which an input state |ψ〉in is transformed into an output state
|ψ〉out. From left to right we depict the input state, which is expressed in terms of FC input
TF modes gj(ωin), here depicted in the temporal domain. The FC conversion process itself
is described as a series of j special beamsplitters (magnified view), which operate on the FC
TF input modes. Each mode is converted into an output mode hj(ωout) (blue pulses) with an
efficiency sin2(Cj) and the remaining part of the mode (red pulses) is transmitted. At the output,
we find light at two frequencies, illustrated in red and blue, respectively. A recombination of the
modes yields the FC output state |ψ〉out, which can be split over two frequencies, illustrated by
the upper and lower arrow. In the lower right we plot the beamsplitter reflectivity or conversion
efficiency for the first three FC TF modes j = 0, 1, 2 from dark blue to light blue.

In (b), we plot again the pump envelope function αk(ωout−ωin), the phasematching function
φklm(ωin, ωout) and the resulting JSA function Gklm(ωin, ωout). Note that, in contrast to PDC,
the pump envelope function is oriented along +45◦ in the frequency plane.

In (c), we performed a Schmidt decomposition of the JSA function from (b). The resulting
TF modes gj(ωin) and hj(ωout) for input and output are again well-approximated by Hermite-
Gaussian functions. The Schmidt coefficients√κj are shown on the lower right. As for PDC we
can calculate the Schmidt number K, which now denotes the effective number of beamsplitters
that the FC process comprises.

We want to emphasise an important result: Looking at the efficiency curves in (a) at the bot-
tom right, we find that there is no coupling constant for which every TF mode is converted with
100% efficiency. If the input state |ψ〉in is composed of several FC TF modes – in the illustration
it is three modes – it cannot be completely converted, because if any mode experiences 100%
conversion efficiency, the other modes are partly transmitted. There is a notable exception to this
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Figure 5.6 – Collected results on FC. (a) Schematic representation of the FC pro-
cess with different conversion efficiencies defined by the coupling
constants Cj . (b) Pump, phasematching and JSA functions. (c)
Schmidt modes and Schmidt coefficients. For more information see
the text.
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statement: If the FC is driven by a very narrow (quasi-cw) pump laser, then we are in the highly
multimode regime again, where every TF mode has the same very small Schmidt coefficient.
Then, complete conversion is possible (see for instance [96]), however at the cost of an increase
in required pump power compared to a mode-matched case. We will discuss the latter in detail
in Chap. 7, when we introduce the quantum pulse gate (QPG) and quantum pulse shaper (QPS).

Summary
We have presented an intuitive interpretation of the TF structure of PDC and FC. In a PDC process, the

photon pairs are generated in a plethora of pairs of so-called TF modes. These are actually ultrafast

pulses. The number of TF mode-pairs is directly correlated with the amount of TF entanglement be-

tween the generated photons via the Schmidt number K: the higher the entanglement, the more TF

modes are present in the PDC state. In contrast, FC can be understood as a series of special quan-

tum mechanical beamsplitters which connect pairs of TF modes centred at different frequencies. For

both processes, control over the TF structure is beneficial to realise energy-efficient high-dimensional

quantum applications.

5.3 Engineering quantum

We have illustrated the intricate TF structure of PDC and FC in Figs 5.3 and 5.6, respectively.
However, we have already pointed out potential applications that require very specific TF prop-
erties. The heralded generation of pure single photons strongly benefits from a TF decorrelated
PDC featuring a Schmidt number of K = 1, whereas high-dimensional quantum information
applications based on TF modes require the controlled generation of a specific number of modes.
In addition, a mode-selective manipulation with FC becomes possible only when the TF struc-
ture of the underlying process can be actively controlled.

In this section we introduce different techniques to achieve this aim with high precision, thus
allowing for a change from multimode to single-mode behaviour and vice versa. In the first part
we focus on the phasematching function φklm(ω1, ω2). Although it is mainly defined by material
parameters, a clever choice of wavelengths in conjunction with advanced fabrication techniques
grants access to a surprising degree of control. In contrast, the second part is dedicated to
engineering the pump envelope function αk(ω1, ω2). This can be conveniently accomplished
with well-established methods from the research field of coherent control [75]. We will discuss
how the shape of the pump pulses influences the TF structure of PDC and FC for selected
phasematching conditions.

5.3.1 Phasematching

The phasematching functions of PDC or FC are given by (compare Eqs. (5.26) and (5.27))

φ(ω1, ω2) = sinc

(
∆β(ω1, ω2)

L

2

)
eı∆β(ω1,ω2)L

2 , (5.57)
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where ∆β(ω1, ω2) labels the respective phase mismatch for PDC or FC and L is again the
waveguide length. Note that we have dropped the spatial mode indices to allow for a con-
cise notation. To simplify our notation, we perform a Taylor expansion of the phase mismatch
∆β(ω1, ω2) up to first order and obtain [97]

∆β(ω1, ω2) =


(
β

(1)
p − β(1)

s

)
νs +

(
β

(1)
p − β(1)

i

)
νi,

±
(
β

(1)
p − β(1)

in

)
νin ∓

(
β

(1)
p − β(1)

out

)
νout,

(5.58)

for PDC and FC, respectively. The β(1)
j are the inverse group velocities of the respective fields,

evaluated at their perfectly phasematched central frequencies Ωj such that

β
(1)
j ≡

∂βj
∂ω

∣∣∣
Ωj

=
1

v
(j)
g (Ωj)

(5.59)

and the νj are frequency offsets defined as νj = Ωj − ωj .
In this approximation, the phasematching function is a linear function with a group-velocity

angle αPM with respect to the ω1-axis that is given by

αPM =


− arctan

(
β

(1)
p −β

(1)
s

β
(1)
p −β

(1)
i

)
,

+ arctan

(
β

(1)
p −β

(1)
in

β
(1)
p −β

(1)
out

)
,

(5.60)

again for PDC and FC, respectively. Note that the expansion up to first order is only valid
for cases where vg(Ω1) 6= vg(Ω2), which is the case for our work. For a more complete
investigation of the phasematching including an expansion up to second order, we refer to [49].

We have illustrated the above formulas in Fig. 5.7 for PDC, using the more intuitive temporal
domain. In all three panels, the pump pulse (blue pulse) is our moving reference and as such
defines the zero-point in time. In (a), we illustrate the case for a typical non-engineered PDC.
Due to the material dispersion, both signal and idler (red pulses) travel faster than the pump
and exhibit different group velocities. The photon pair generation is a coherent process over the
whole waveguide length, depicted by the grey-shaded region. At the output of the waveguide,
signal and idler have relative timings of τs and τi, which are defined by the waveguide length
as well as the difference in group velocities between the photons and the pump. If we draw
a two-dimensional τs − τi-diagram, we find a curve with an increasing slope. This is reason-
able, since a later arrival of the signal photon implies a later arrival of the idler, as well. From
this diagram, we retrieve the frequency representation via a two-dimensional Fourier transform,
which conveniently boils down to a 90◦ rotation and a relabelling of the axes. Note that we have
indicated the group-velocity angle αPM, which in this case is negative.

Panel (b) shows the interesting case of so-called asymmetric group-velocity matching (AGVM),
where one photon (the signal) travels at the speed of the pump. Since this photon will always
arrive at the same time as the pump irrespective of the waveguide length, the function in the
τs − τi-diagram is aligned with one axis. Consequently the frequency representation is, too.
Please note that the alignment in the frequency representation is parallel to the frequency axis
that represents the group-velocity matched photon, in our example the signal.
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Figure 5.7 – Illustration of the relation between group velocities and group-
velocity angle αPM in PDC. In (a), the generated signal and idler,
shown as red pulses, propagate faster through the waveguide (grey-
shaded region) than the blue pump pulse. Analysing signal and idler
arrival times with respect to the pump results in a function with pos-
itive slope (left plot). In the frequency domain, this corresponds to a
negative group-velocity angle αPM with respect to the ωs-axis, due
to the Fourier relationship between time and frequency (right plot).
In (b), we illustrate asymmetric group-velocity matching, where one
photon travels at the speed of the pump. In this case, the arrival time
and phasematching curves are aligned with the respective axes. Fi-
nally, in (c), we consider symmetric group-velocity matching, where
the velocity of the pump lies in between the signal and idler veloc-
ities. In agreement with the negative slope in the arrival time his-
togram, we recover a positive group-velocity angle in the frequency
domain.
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Figure 5.8 – Group-velocity matching exploiting material birefringence. (a)
Symmetric group-velocity matching in KTP. (b) Asymmetric group-
velocity matching in LN. For more details see the text.

Finally, panel (c) depicts the case of symmetric group-velocity matching (SGVM), where one
photon travels faster than the pump, whereas its sibling is slower. We will meet this configura-
tion again in the next chapter, when we discuss our PDC source. With the same reasoning as
before, we find a negative slope in the arrival time diagram, which enforces a positive slope in
the frequency representation.

One might wonder why this is possible at all, since material dispersion enforces that longer
wavelengths travel at a faster group velocity than shorter wavelengths for the materials and
wavelength regimes considered in this work. However, many nonlinear materials exhibit bire-
fringence. If we succeed in exciting a PDC process where pump, signal and idler are not co-
polarised, then group-velocity matching becomes possible.

In Fig. 5.8 (a) we have plotted the group velocities for our PDC source from Chap. 6. In this
process, a TE-polarised pump photon at a wavelength of 775 nm decays into two orthogonally
polarised photons at 1550 nm inside a KTP waveguide. The group velocity of the pump (dashed
line) lies between the group velocities of the photons (dash-dotted lines) thanks to the material
birefringence. In contrast, panel (b) shows the case of AGVM in a LN waveguide. Here, the
TM-polarised pump light at 865 nm shares the group-velocity of the TE-polarised input light at
1535 nm, whereas the group velocity of the converted output light at 553 nm differs. We exploit
this process for the realisation of our new FC devices in Chap. 7.

Let us now briefly turn our attention towards the question of the shape of the phasematching
function. We have seen in Eqs. (5.26) and (5.27) that the phasematching function has a sinc-
shape, which originates from the Fourier transformation of the phase mismatch. This shape
is not beneficial, because, on the one hand, it prevents an efficiency analytical TF description
of parametric processes, and, on the other hand, it limits the purity of heralded single photons
to around 83% (see for instance [98]). Therefore, different approaches have been realised to
modify the shape of the phasematching function with the aim of producing a Gaussian phase-
matching.

We have illustrated the non-engineered case in Fig. 5.9 (a), where the dashed grey lines il-
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Figure 5.9 – Manipulation of the shape of the phasematching function. In (a), we
plot a uniform periodic poling, the period of which is illustrated by
the dashed grey lines, and recover the well-known sinc shape. In (b),
the poling period and hence the phase mismatch ∆β changes over
the crystal length, giving rise to a smooth phasematching function.
In contrast to that, the poling period stays constant in (c), whereas the
ratio of poled (white rectangles) and unpoled (grey) regions changes
gradually. This mimics the gradual onset and decay of the nonlinear
interaction, which again yields a smooth phasematching function.

lustrate the period of the periodic poling. As soon as light enters the waveguide (grey area),
the interaction is immediately ’on’ and the phase mismatch vanishes (left). This situation does
not change until the light leaves the waveguide again. Hence, the phase mismatch as a func-
tion of propagation distance z is a rectangular function. Consequently, the integration over the
waveguide length L yields the sinc-shaped phasematching function on the right.

There are two possible avenues to approach this issue. One method is to deploy a position-
dependent grating period [99]. This is shown in (b). When the light enters the crystal, the
phasematching condition is not fulfilled at first. This gradually changes until perfect phase-
matching is realised, which again degrades afterwards (left). If the modulation of the phase
mismatch follows a Gaussian shape, the resulting phasematching function is Gaussian as well
(right).

The second approach is based on a position-dependent duty cycle [98], as illustrated in (c).
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Here, the poling period stays constant, but the ratio between poled (white) an unpoled (grey)
regions is gradually changed from zero to one (left). Although phasematching is in principle
guaranteed over the whole crystal, the interaction strength is gradually turned ’on’ and ’off’
again, which facilitates the realisation of a Gaussian phasematching curve, too (right).

These results are very convenient, because they allow us in principle to approximate the
phasematching function with a Gaussian:

φ(ω1, ω2) ≈ e−γ(∆β(ω1,ω2)L
2 )

2

eı∆β(ω1,ω2)L
2 . (5.61)

Here, the additional factor γ is needed to adjust the widths of the functions. Using for instance
γ = 0.193 matches the FWHMs of the main peak of the sinc and the Gaussian. This result
allows us to write the JSA function as a two-dimensional Gaussian function, since both con-
stituents (pump and phasematching) are Gaussian. This simplifies calculations such that many
considerations can be performed analytically. We have, for instance, made use of this for the
four-dimensional time-frequency modelling of PDC in Chap. 6 and even Schmidt decomposi-
tions can be carried out analytically within a purely Gaussian framework [100].

5.3.2 Pump
We have learned how to manipulate the shape and the orientation of the phasematching function
φ(ω1, ω2) in the frequency plane. Yet, the JSA functions describing the nonlinear processes
comprise a second function: the pump envelope function α(ω1, ω2).

In this section we concentrate on the influence of different pump pulse shapes on the JSA
functions and their correlations for two chosen cases of phasematching configurations, namely
the cases from Fig. 5.8, which correspond to the devices presented in Chaps. 6 and 7.

As usual, we start with PDC: pump photons at 775 nm decay inside a nonlinear PPKTP
waveguide into signal and idler centred around 1550 nm. Due to the birefringence in the wave-
guide, the group velocity of the pump is in between the velocities of signal and idler (compare
Fig. 5.8), which in our case leads to a group-velocity angle αPM of +63◦. According to [49],
a positive group-velocity angle is a prerequisite for TF decorrelation, which is tantamount to a
Schmidt number of K = 1 and in turn facilitates the heralding of pure single photon pulses.

We numerically model the behaviour of this process when changing the spectral bandwidth
of the pump pulses, which can easily be accomplished with standard pulse shaping techniques,
in Fig. 5.10. In panel (a), we assumed a pump with a FWHM of 0.5 nm. In the upper plot we
see that the product of the pump envelope function (solid lines) and the phasematching function
(dashed lines) results in a frequency anti-correlated JSA function, which is governed by the
negative pump slope. Note that the plots are against wavelengths because we find this to be more
intuitive. However, the small red tick labels are the respective frequencies in PHz. In the lower
plot we show the Schmidt expansion coefficients √κj obtained via a Schmidt decomposition
of the JSA. Several coefficients are greater than zero, which is also reflected by the Schmidt
number K ≈ 1.6.

In (b), the pump bandwidth of 1.5 nm is ideally adapted to the phasematching function and
we obtain a leading Schmidt coefficient of

√
κ0 ≈ 0.9999, which is very close to the optimum

of
√
κj = 1 and most probably deviates due to numerical errors. This is formally supported by
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Figure 5.10 – JSA functions of our PDC. (a) We assume a narrow pump (solid
lines), which in conjunction with the positive phasematching
(dashed lines) function generates a frequency anti-correlated JSA
exhibiting a Schmidt number ofK ≈ 1.6. (b) In this case, the pump
bandwidth is ideally adapted to TF single-mode operation, which
is confirmed by the Schmidt number of K ≈ 1.0. (c) Too broad
a pump leads to positive frequency correlations between the gen-
erated signal and idler, which is reflected by the Schmidt number
of K ≈ 1.6 again. The lower row shows the Schmidt coefficients,
whereas the red tick labels in the upper row are the respective signal
and idler frequencies in PHz.

the Schmidt number of K ≈ 1.0, which means that signal and idler are generated in one TF
mode each. Intuitively this result can be seen by the shape of the JSA. If the JSA is aligned with
the frequency axes, there are no correlations between signal and idler and we are in the single
mode operation regime. Note that with this configuration, the heralding of pure single photons
becomes possible [49].

Finally, we model a pump with a FWHM of 4.2 nm in (c). Clearly this pump is too broad
in comparison to the phasematching function, which in turn leads to a frequency correlated
JSA function. Note that the slope of the JSA is now governed by the positive slope of the
phasematching function. Interestingly, we again find a Schmidt number of K ≈ 1.6 as in the
first example, which tells us that we cannot directly see the type of TF correlations from the
Schmidt number K.

These investigations show that a positive phasematching slope not only facilitates the gener-
ation of photon pairs without any TF correlations, but also allows for a smooth tuning of the
frequency correlations from anti-correlated to correlated. We have exploited this for our PDC
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source, as we will discuss in the next chapter.
Let us now investigate the impact of different TF shapes of the pump pulses on the PDC TF

structure. To this end we concentrate on case (b) from Fig. 5.10, which yields the cleanest
results with only one single TF mode. We plotted this once more in Fig. 5.11 (a).

In (a.1), we show a sketch of the pump pulse TF shape in the temporal domain, which trans-
lates directly into the spectrum. In (a.2), we show again the JSA function, which is the product
of the pump (solid lines) and the phasematching (dashed lines) functions. Again, a Schmidt
decomposition of the JSA yields the Schmidt coefficients in (a.3). Note that here, we have
included the more intuitive disc-diagram from Fig. 5.4, where we recall that the blue circle
describes an ideal TF single-mode state and the grey discs are the mode contributions for the
state under consideration. The almost single-mode state with K ≈ 1.0 fills the blue circle as
we would have expected. Finally, in (a.4) we plot the modulus of the signal and idler TF modes
|g(λs)| and |h(λi)|, respectively.

In (b), we considered a pump with a first-order Hermite-Gaussian shape. We find that the JSA
function in (b.2) now comprises two peaks, corresponding to the modified pump function. From
the Schmidt decomposition we obtain two Schmidt coefficients that differ from zero, as shown in
(b.3). Note that they have similar magnitudes, which is also reflected in the disc diagram where
the two grey circles have almost the same size, and in the Schmidt number of K ≈ 2.0. In (b.4),
we have plotted the signal and idler TF modes corresponding to the two non-zero coefficients.
Interestingly we find that a Gaussian signal TF mode implies a first-order Hermite-Gaussian
idler mode, and vice versa. The generated state is a close to perfect TF Bell state, that is a
maximally entangled state. Note that a group-velocity angle of +45◦ facilitates the generation
of genuine TF Bell states in this configuration with a Schmidt number of K = 2.0. However,
we rather decided to model the characteristics of the PDC source utilised in this thesis.

In (c), we increased the pump mode order one step further to a second-order Hermite-Gaussian.
As expected, the JSA function in (c.2) now exhibits three peaks and the Schmidt decomposition
yields three non-zero Schmidt coefficients, depicted in (c.3). However, in this case the magni-
tude of the coefficients differs notably, which reduces the Schmidt number to K ≈ 2.6. This
fact can be seen from the disc diagram, as well, where the three grey discs now have observably
different sizes. In (c.4), we plot the corresponding signal and idler TF modes. Again, we find
a one-to-one correspondence of a certain signal to a certain idler mode. Hence, the generated
state exhibits higher-dimensional entanglement, but further work is needed for the generation of
a generalised three-dimensional Bell state15. For a more detailed and complete study along these
lines we refer to [101], where the authors investigated an optical parametric oscillator based on
degenerate type I PDC.

We conclude this section with a brief consideration of our FC from Fig. 5.8 (a). We already
stated that in this situation we find AGVM between the photons at 1530 nm and the pump at
860 nm. Consequently, we expect that the phasematching function is aligned with the 1530 nm
axis. Actually this is confirmed by Fig. 5.12.

In (a), we consider a Gaussian TF shape of the pump pulses, as sketched in (a.1). In (a.2)
we see that the pump envelope function (solid lines) now has a positive slope. Note that the
deviation from an ideal +45◦ slope is due to the different scaling of the axes in the frequency
15This could also not be achieved with a +45◦ group-velocity angle, which only facilitates the generation of a state

with K = 2.6̄.
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Figure 5.11 – Impact of difference TF shapes of the pump on the TF structure of
our PDC source. For more information see the text.
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Figure 5.12 – Impact of different TF shapes of the pump on the TF structure of
our FC device. For more information see the text.

domain (see small blue ticks). The phasematching function (dashed lines) is now parallel to the
input axis, as we would have expected from the AGVM condition.

The width of the JSA along the input axis is roughly 10 THz, whereas the extent in the output
is only around 0.5 THz, corresponding to a bandwidth compression of a factor of 20 between
input and output. Larger values have already been reported in the literature [102], but they
were achieved with considerable experimental effort including the opposite chirping of a single
photon and an ultrafast pump pulse. In our device, we get the compression for free as a result of
the careful dispersion engineering.

From the Schmidt decomposition in (a.3) we deduce a Schmidt number of K ≈ 1.0, which
verifies the single TF mode configuration of the device. The Schmidt modes of input and output
|g0(λin)| and |h0(λout)| are shown in (a.4)

In (b), we changed the pump to a first-order Hermite-Gaussian. The JSA function in (b.2)
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again comprises two peaks, as was the case for the PDC in Fig. 5.11. However, we note that
the JSA is still oriented along the axes of the diagram. It is thus not surprising that the Schmidt
decomposition again yields K ≈ 1.0, as shown in (b.3). If we look at the Schmidt modes in
(b.4), we now find that the input mode has changed its shape, whereas the output mode is still
the same as in (a.4). From this we conclude that the TF shape of the pump defines the input
TF mode g0(λin). Consequently, the output TF mode h0(λout) must be defined solely by the
phasematching function.

We cross-check this behaviour in (c), where we assume a second order Hermite-Gaussian
pump shape. As before, we obtain a JSA function exhibiting three distinct peaks in (c.2). Again,
the Schmidt decomposition yields K ≈ 1.0, illustrated in (c.3). The Schmidt modes in (c.4)
support our conclusion, because the input mode is now a third-order Hermite-Gaussian as the
pump. The output mode, in contrast, is still a fundamental Gaussian as in cases (a) and (b). We
have discussed this behaviour in great detail in [60] and [61], and will again do so in Chap. 7
when presenting the quantum pulse gate and quantum pulse shaper.

As a final remark, we emphasise that this behaviour breaks down as soon as the pump be-
comes spectrally narrow. Then, the slope of the pump envelope function introduces again TF
correlations between input and output and single-mode operation is not given anymore. We also
find a limitation in the maximum pump bandwidth due to the curvature of the phasematching
function. We have used the complete model for ∆β(ω1, ω2) for the calculation of these plots
and find that increasing the pump bandwidth to large values, the JSA adopts the curvature of
the phasematching, leading to a Schmidt number which is larger than one. Again, this will be
discussed in Chap. 7.

Summary
We have investigated ways to engineer the TF structure of PDC and FC processes. In the first part, we

focussed on the phasematching function and discussed how the orientation in the frequency plane de-

pends on the group velocities of the involved fields. We have identified two scenarios – symmetric and

asymmetric group-velocity matching – which facilitate processes comprising only one single TF mode.

Furthermore, we have mentioned experimental approaches towards engineering the actual shape of

the phasematching function to replace the sinc with a more preferable Gaussian. In the second part,

we have considered a TF shaping of the pump pulses. We have seen that for our PDC source, we can

smoothly tune the shape and strength of the frequency correlations between the generated signal

and idler and have motivated ways to generate quantum states exhibiting a well-defined number of

TF modes. We concluded this section with a brief review of the functionality of our FC devices. Here,

the TF shape of the pump pulse defines the TF mode of the group-velocity matched field, whereas the

phasematching defines the other TF mode. Changing the pump shape does not affect the number of

modes in the process, but rather the shape of the one TF mode supported by the FC.

5.4 Time-ordering: a genuine quantum effect
So far we have neglected a small but unfriendly subtlety when considering the temporal evo-
lution of a quantum state: time-ordering. The electric field operators involved in the TWM
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processes and hence the Hamiltonians at different instants in time do not necessarily commute.
We recall Eq. (5.1), where we found the time-ordering operator T̂ , which we neglected before:

|ψ(T )〉 = T̂ exp

− ı
h̄

T∫
0

dt Ĥ(t)

 |ψ(0)〉 . (5.62)

Note that, by considering the complete time-ordered solution of this equation, we advance from
the photon-pair picture of PDC to an analysis of the complete state, including higher-order
photon numbers which become important at elevated PDC pump powers.

Unfortunately, this expression cannot be solved analytically anymore for pulsed pump light
and a numerical approach has to be considered. Note that for a cw pump, the problem has been
solved analytically in [103]. However, since our Hamiltonian is bilinear (see Eq. (5.36)), we
can also deploy the Heisenberg picture (compare Eq. (5.2)), where the solution of this problem
is a linear unitary Bogolyubov transformation given by [104–106]

â(out)(ω) =

∫
dω′ Ua(ω, ω

′)â(in)(ω′) +

∫
dω′ Va(ω, ω

′)b̂(in)†(ω′), (5.63)

b̂(out)(ω) =

∫
dω′ Uc(ω, ω

′)b̂(in)(ω′) +

∫
dω′ Vc(ω, ω

′)â(in)†(ω′), (5.64)

for PDC and

â(out)(ω) =

∫
dω′ Ua(ω, ω

′)â(in)(ω′) +

∫
dω′ Va(ω, ω

′)ĉ(in)(ω′), (5.65)

ĉ(out)(ω) =

∫
dω′ Uc(ω, ω

′)ĉ(in)(ω′)−
∫
dω′ Vc(ω, ω

′)â(in)(ω′), (5.66)

for FC, where the superscripts (in) and (out) label the operators before and after the unitary
transformation. Under the constraint that our particular transformations are canonical operator
transformations, we can reformulate them in our TF mode framework and find

Â
(out)
j = cosh(Bj)Â(in)

j + sinh(Bj)B̂(in)†
j , (5.67)

B̂
(out)
j = sinh(Bj)Â(in)†

j + cosh(Bj)B̂(in)
j , (5.68)

and

Â
(out)
j = cos(Cj)Â(in)

j + sin(Cj)Ĉ(in)
j , (5.69)

Ĉ
(out)
j = − sin(Cj)Â(in)

j + cos(Cj)Ĉ(in)
j , (5.70)

again for PDC and FC, respectively. Please note that we will not further detail the numerical
implementation of the solution of the above transformation equations, but rather refer to [76]
for extensive reading. What we will do here, however, is to discuss the impact of time-ordering
on PDC and FC. In Fig. 5.13, we compare the analytical solutions of PDC (a) - (c) and FC (d) -
(f) developed in earlier sections with the rigorous numerical solution including time-ordering.

Let us discuss PDC first. From panel (a) to (c), the pump power is increasing and we plot the
analytical JSA function Fana(ωs, ωi) (top left) as well as the rigorous JSA function Frig(ωs, ωi)
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Figure 5.13 – Impact of time-ordering on PDC (a) - (c) and FC (d) - (f). For more
information, see the text.
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(bottom left). Note that the analytical JSA function originates from the solution of the state
evolution when neglecting time-ordering, and is thus identical to our previously discussed JSA
function Fana(ωs, ωi) ≡ Fklm(ωs, ωi), when incorporating higher-order photon number contri-
butions.

In addition to the respective JSA functions, we show the gain coefficients of the different TF
modes Bj (top right) and the shape of the first pair of TF modes |g0(ωs)| and |h0(ωi)| (bottom
right). Red colour coding always refers to the analytical solution, whereas yellow denotes the
rigorous numerical approach. We recall that the Bj coefficients are connected to the Schmidt
coefficients √κj but weighted with the overall gain of the PDC. They are a measure for the
amount of generated photon pairs in the different modes. Note that the respective values for
the utilised pump power in arbitrary units are indicated in the upper right of every plot for
comparison between the cases.

We find that with increasing pump power, the shape of the TF modes changes, or more pre-
cisely broadens. In addition, the side peaks in the JSA function, which originate from the
sinc-shaped phasematching function, become less visible. Consequently, we observe a relative
increase in the weight of the first and second Bj coefficient, meaning that it is more probable
that photon pairs are generated in either the fundamental or first pair of TF modes. Addition-
ally the overall efficiency of the process increases. In essence, the process is driven towards
TF single-mode behaviour when incorporating time-ordering into the theory. Note that we have
considered the case of our PDC source from Chap. 6 (compare also Fig. 5.11) and that typical
experiments use pump power levels comparable to panel (a), where time-ordering effects may
be neglected16.

We now turn our attention towards FC, where we discuss the case of the group-velocity
matched FC introduced earlier (compare Fig. 5.12). Again, the pump power increases from
panel (d) to (f). Note that we did not use the same parameters as for the PDC, but rather adapted
the pump power to highlight the impact of time-ordering in the best possible way. Again, we
plot the JSA functions Gana(ωin, ωout) and Grig(ωin, ωout) on the left side of the panels. On the
right, we now plot the conversion efficiencies for different TF modes gj(ωin) (top), as well as the
fundamental TF modes (bottom). Colorwise yellow still marks the rigorous solution, whereas
the analytical approach is now represented by the blue shades.

For low conversion efficiencies (d) we find very good overlap between the analytical and rig-
orous solutions. First slight deviations arise, when the conversion efficiency for the fundamental
TF mode approaches unity (e). The rigorous solution shows decreased conversion efficiency for
the fundamental mode, but an increased conversion of the first order TF mode. Note that the
mode shapes however still agree fairly well for both approaches. The deviations become more
pronounced when considering even higher pump powers beyond unity conversion of the funda-
mental TF mode. In panel (f), for instance, we consider a pump power which leads to several
conversion and back-conversion processes during the propagation through the sample.

In this case we get several results: first, the shape of the TF modes changes dramatically,
even if this behaviour is more pronounced for the input mode g0(ωin), which is defined by
the shape of the ultrafast pump; second, the shape of the overall JSA function also changes
significantly; third, the conversion efficiencies develop a peculiar and, as of yet, not fully un-
16We refer to cases where 〈n〉 < 1 is the mean generated photon number in signal or idler. In this regime PDC

sources serve as heralded single photon sources with acceptable performance.
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derstood behaviour. As soon as the fundamental TF mode reaches unit conversion efficiency
in the rigorous solution, it is not back-converted. Instead, the first higher order TF mode gets
converted. After that, the second higher order mode emerges and so on. We find that panel (e),
where the conversion efficiency in the fundamental TF mode is around 87% for the rigorous
solution is the best possible scenario when including time-ordering. A further increase in pump
power introduces new TF modes to the process and destroys the single-mode character. Note
that similar results have been obtained by the group of Michael Raymer, who used a different
theoretical and numerical approach [64]. In essence, these results threaten an intrinsic limitation
to the performance of our device from Chap. 7, which has to be further investigated in future
experiments.

Summary
We have briefly spoken about the issues of time-ordering, which essentially arise from the fact that

the electric fields involved in the three-wave mixing processes do not necessarily commute in time.

We have presented the essential results of our work published in [76] and found that PDC is driven

towards single-mode behaviour when including time-ordering. In contrast, FC becomes multimode

when time-ordering effects are taken into account, which might constitute an intrinsic boundary to the

performance of our device presented in Chap. 7.
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[...] This makes the reality of P and Q depend upon the pro-
cess of measurement carried out on the first system, which
does not disturb the second system in any way. No reason-
able definition of reality could be expected to permit this.

A. Einstein, B. Podolsky and N. Rosen
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In the last two chapters, we have in-
troduced the theoretical framework which
forms the basis for the understanding of
the devices we present in this thesis.
This chapter now focusses on the process
of ultrafast parametric down-conversion17

(PDC). PDC has been first experimentally
demonstrated in 1970 [23], and has since
become the established agent of choice for
the generation of a multiplicity of quantum

optical states of light. These include heralded pure single photons [51, 53], entangled [44, 107–
109] and hyper-entangled states [110–112], high-dimensional states [59, 113–117] and cluster
states [118–122]. Naturally, a versatile theoretical framework has been developed to accurately
describe the spatial [123–125], spectral-temporal [48, 49, 86] and photon-number [126, 127]
characteristics of PDC.

In agreement with the focus of our work, we have particularly highlighted the intricate time-
frequency (TF) structure of PDC states in the last chapter. We have shown how, by controlling
the TF shape of the ultrafast pump and the waveguide dispersion, this structure can be actively
controlled as first proposed in [49]. Mosley et al first succeeded in realising this theory by
engineering an ultrafast bulk crystal PDC such that the generated signal and idler were TF
decorrelated [51]. As stated in the last chapter, this particular configuration is essential for the
efficient generation of pure heralded single photons for networking applications.

In our group, we have taken this method and combined it with waveguided PDC. This promised
three main advantages: first, waveguided PDC has been shown to be several orders of mag-
nitude more efficient than bulk PDC [47] due to the potentially long interaction lengths and

17For our work this means that we focus on waveguided type II PDC processes that are pumped by ultrafast pump
pulses. There are of course other experimental settings, however they are of no immediate interest for this thesis
and are thus largely omitted.
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the discretisation of the spatial degree of freedom into distinct waveguide modes; second, the
waveguiding structure decouples the spectral and spatial degrees of freedom, which in a bulk
crystal source can only be achieved in conjunction with considerable alignment effort; third,
waveguided sources commend themselves for an efficient integration into networking appli-
cations based on single-mode fiber. As a result, our group succeeded in implementing the first
dispersion-engineered waveguided PDC source, where the TF decorrelated signal and idler were
conveniently located in the telecom wavelength regime [53]. In parallel to this thesis, our source
was further optimised and now generates signal and idler which are not only TF decorrelated,
but also indistinguishable in all degrees of freedom except their polarisation [54].

Further work in our group has focussed on a more thorough understanding of the PDC pro-
cess. A novel type of single photon spectrometer was developed which allowed for a high-
resolution characterisation of the joint spectral intensity distribution of photon pairs at telecom
wavelengths [128]. In addition, our group has implemented a novel technique for a complete
TF quantum process tomography of PDC, which facilitates direct, phase-sensitive access to the
joint spectral amplitude (JSA) function [129]. For a better understanding of the impact of dif-
ferent spatial waveguide modes on the generated PDC state, we have conducted experimental
and theoretical studies [124, 130] that suggest that superfluous spatial modes can be easily sup-
pressed by appropriate broadband spectral filtering. In this way it becomes possible to select
specific spatial modes without influencing the spectral characteristics of the PDC state living in
the desired mode.

Note that we also focussed on elaborating on the theory for the generation of pure of single
photons heralded from TF correlated PDC states [91, 131–133]. Spectrally pure single photon
can only be heralded in the case of infinitesimally narrow spectral filtering in the presence of TF
correlations between signal and idler. This result is detrimental for any system design, where a
high photon flux has to be achieved with minimum pump power, since narrow spectral filtering
is tantamount to a large number of lost photons. Note that our work on the quantum pulse gate,
presented in Chap. 7, can serve as a solution to this problem, since the QPG facilitates quantum
coherent broadband spectral filtering.

Finally, the work of our group also covered the continuous variable (CV) description of PDC
[134–137]. We have so far not considered this picture in our general treatment of three-wave
mixing processes, since the CV description focusses on photon-number correlations and largely
neglects spectral-temporal properties. We will however briefly introduce the CV notion of PDC
states in the next section, before we turn our attention towards results achieved during this thesis,
where we merged the intuitive pictures from the CV description of PDC with our TF representa-
tion. Thereafter we discuss the important correlation time of a PDC photon pair, a quantity that
determines the simultaneity of the two photons. We develop a theory that explains the impact
of different experimental parameters on this correlation time and conclude this chapter with the
experimental verification of our theory.

6.1 Continuous variable description

Compared to our previous theoretical considerations, we change gears in this section and con-
sider the continuous variable (CV) description of PDC. But first things first: In CV quantum
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Figure 6.1 – Phase space representation of several common quantum optical
states. For more information see the text.

optics, states are commonly described by their Wigner functionW(X̂, Ŷ ), where X̂ and Ŷ are
so-called field quadratures defined as

X̂ =
(
â† + â

)
, Ŷ = ı

(
â† − â

)
. (6.1)

This representation is also referred to as phase space representation. Non-classical features are
typically associated with quadrature fluctuations that are below the quantum vacuum noise level
or negative values of the Wigner function. Note that Heisenberg’s uncertainty relation requires
that ∆2X̂∆2Ŷ ≥ 1

To provide an intuition on how quantum optical states look in the phase space, we have plotted
a selection of several common states in Fig. 6.1. In (a) the quantum mechanical vacuum state
is shown, which is centred at 〈X̂〉 = 〈Ŷ 〉 = 0. It is characterised by symmetric quadrature
fluctuations which are given by ∆2X̂ = ∆2Ŷ = 1. In (b), we sketch a coherent state. In
comparison to the vacuum state (shaded area), the coherent state is displaced from the origin of
the phase space. The amount of displacement is characterised by the coherent field amplitude
α, as indicated in the illustration. Nevertheless, it still features the same quadrature fluctuations
as the vacuum state18.

Panel (c) shows a non-classical state, namely a squeezed vacuum, which exhibits fluctuations
in one quadrature that are below the vacuum fluctuations (shaded area). Naturally, this comes at
the expense of increased fluctuations in the other quadrature. Note that in this respect, coherent
states represent minimum uncertainty states, for which the equality in the uncertainty relation is
fulfilled.

At this point, we emphasise that the CV framework focusses on the photon-number statistics
of the quantum states under investigation and neglects the temporal-spectral degree of freedom.
In this context, PDC states can be understood as special bi-partite systems with strict photon-
number correlations. They are typically described with a four dimensional Wigner function
W(X̂s, Ŷs, X̂i, Ŷi). To date it is well-known that PDC generates optical EPR states [138], which
exhibit correlations in the X̂-quadrature and anti-correlations in the Ŷ -quadrature. This means
that a certain measurement result X0 in the signal implies the same in the idler, whereas mea-
suring Y0 in the signal enforces a measurement of −Y0 in the idler.
18Notably, the vacuum state itself is also a coherent state with zero amplitude.
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Figure 6.2 – Schematic illustration of EPR correlations in the phase space of sig-
nal and idler. For more information see the text.

This is illustrated in Fig. 6.2 (a). Measuring the quadrature fluctuations of only signal or idler
results in the blue shaded areas, which are larger than vacuum fluctuations (dashed black circle).
However, when conditioning the measurement of the uncertainty along X̂i on a certain measure-
ment result in X̂s and doing the same for the Ŷ quadratures, we obtain the purple regions, which
can become smaller than the vacuum fluctuations [139]. Formally, this is expressed by

〈(X̂s − X̂i)
2〉〈(Ŷs + Ŷi)

2〉 ≤ 1, (6.2)

where the plus and minus signs reflect the quadrature correlations and anti-correlations, re-
spectively. Note that a joint squeezing of both X̂ and Ŷ quadratures can be observed when
performing joint measurements on the signal and idler modes. Therefore, PDC states are also
called two-mode squeezed states.

A remarkable attribute of these states is that, when interfering the two modes on a 50/50
beamsplitter, we find two squeezed vacuum states in the beamsplitter output ports which are
squeezed in conjugate quadratures. This behaviour is sketched in Fig. 6.2 (b). The squeezing
at the output of the beamsplitter is given by the strength of the initial EPR correlations (dashed
lines) and a perfect EPR state with ideal point-to-point correlations would imply infinite squeez-
ing19. As a side-remark we want to add that this process is reversible. Hence, interfering two
squeezed beams with correct phases on a balanced beamsplitter leads to an EPR state at the
output ports. This is a common tool in CV quantum optics experiments for the generation of
optical EPR states [140] and is remarkable, because only linear optical elements are required.

19Such a state is non-physical, since infinite squeezing is tantamount to an infinite energy content of the state.
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Summary
We have briefly introduced the continuous variable description of parametric down-conversion states,

which focusses on the photon-number correlations between the generated signal and idler and ne-

glects the spectral-temporal degree of freedom, and motivated that these states are optical EPR states.

Although we did not go into detail, we hope we brought across that the continuous variable descrip-

tion is an intuitive way of quantifying the strength of correlations, which can be graphically compared

to vacuum fluctuations.

6.2 Chronocyclic representation of PDC states
During the work leading to this thesis, we have borrowed from the concepts of CV quantum
optics introduced in the last section, and combined them with the intuitive chronocyclic repre-
sentation associated with ultrafast light pulses (compare Chap. 4). It turns out that a behaviour
similar to two-mode squeezing can be found in the TF structure of PDC, as we have published
in [84]. This is reasonable, since just as amplitude and phase, time and frequency constitute
a pair of (Fourier) conjugate variables. However, we emphasise that CV quantum optics and
the TF description of PDC are two fundamentally different frameworks: whereas CV quantum
optics focusses on the photon-number degree of freedom and largely neglects spectral-temporal
properties, the TF description of PDC is often restricted to the photon-pair regime and evaluates
time-frequency correlations.

We have seen in the last chapter that PDC can be interpreted such that signal and idler are gen-
erated in a plethora of ultrafast pulses. This suggests a TF description of PDC which utilises the
framework of chronocyclic Wigner functions. For a PDC state, the chronocyclic Wigner func-
tion is a four-dimensional function, which can be calculated from the JSA function F (ωs, ωi)
via a two-dimensional Wigner transformation such that [84]

W(ωs, ωi, τs, τi) =
1

(2π)2

∫
dω′ dω′′ eıω

′τs+ıω′′τi

×
〈
ωs −

ω′

2
, ωi −

ω′′

2

∣∣∣∣ ρ̂PDC

∣∣∣∣ωs +
ω′

2
, ωi +

ω′′

2

〉
.

(6.3)

Here, ρ̂PDC = |ψ〉PDC 〈ψ|PDC is the PDC density operator and τs and τi are the signal and
idler timings with respect to the moving reference frame of the pump pulses, respectively. We
deploy the PDC state from Eq. (5.46) given by

|ψ〉PDC = B
∫
dωs dωi F (ωs, ωi)â

†(ωs)b̂
†(ωi) |0〉 , (6.4)

where we neglect the spatial mode indices in order to keep the notation as clean as possible. For
these considerations, we assumed a JSA

F (ωs, ωi) = exp

[
−∆ω

2

2σ2
− ıa∆ω2

]
︸ ︷︷ ︸

:=α(ωs+ωi)

exp

[
−γ
(
L

2
∆β

)]
eı
L
2
∆β︸ ︷︷ ︸

=:φ(ωs,ωi)

. (6.5)
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We modelled the pump as an ultrafast pulse with spectral width σ and accounted for a
quadratic chirp characterised by the chirp parameter a. In addition, we abbreviated ∆ω =

ω
(0)
p − (ωs + ωi), where ω(0)

p is the central pump frequency. The phase mismatch given by
∆β = βp(ωs + ωi)− βs(ωs)− βi(ωi) + βQPM is the standard expression from Chap. 5 and we
used the Gaussian phasematching approximation. The factor γ is a numerical factor to match
the FWHM of the phasematching to the width of the original sinc function. Again, we approxi-
mate ∆β with a first-order Taylor expansion (compare Eq. (5.58)) and rewrite the JSA function
in terms of frequency offsets νs and νi from the perfectly phasematched frequencies ω(0)

s and
ω

(0)
i :

F (νs, νi) = exp

[
−(νs + νi)

2

2σ2
− γL2

4c2
(npsνs + npiνi)

2

]
× exp

[
−ıa(νs + νi)

2 + ı
L

2c
(npsνs + npiνi)

]
,

(6.6)

where we defined nij = n
(g)
i − n

(g)
j for i, j = {p, s, i} as the difference in group refractive

indices20 and explicitly used the dispersion relation β(ω) = neff(ω)ω
c , with c denoting again the

speed of light. A straightforward – though admittedly tedious – calculation yields an analytical
expression for the four-dimensional chronocyclic Wigner function of a PDC state

W(νs, νi,τs, τi) =

√
2

γ

|B|2cσ
Lπ|nsi|

e−1/2γ

× exp

[
− 1

σ2
(νs + νi)

2 − γL2

2c2
(npsνs + npiνi)

2 − 4a2σ2(νs + νi)
2

]
× exp

[
− 2c2

γL2n2
si

(τs − τi)
2 − σ2

n2
si

(npiτs − npsτi)
2 +

2c

γLnsi
(τs − τi)

]
× exp

[
4aσ2

nsi
(νs + νi)(npiτs − npsτi)

]
.

(6.7)

What can we learn from this expression? First of all we note that we can obtain the joint spec-
tral and temporal intensity distributions (JSI / JTI) of the PDC from tracing out the remaining
degrees of freedom:

|F (νs, νi)|2 =

∫
dτs dτi,W(νs, νi, τs, τi), (6.8)

|F̃ (τs, τi)|2 =

∫
dνs dνiW(νs, νi, τs, τi). (6.9)

Second, we have a closer look at the different components of the chronocyclic PDC Wigner
function. The first line in Eq. (6.7) contains only constants. Note however that we encounter the
limitations of our first-order phasematching approximation here: if the group refractive indices
of signal and idler become similar, nsi tends towards zero. Hence, the Wigner function diverges.

20The group refractive index is defined as n(g)(ω) = n(ω) + ω∂ωn(ω)
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SECTION 6.2 Chronocyclic representation of PDC states

Figure 6.3 – Joint spectral and temporal intensity distributions of a TF correlated
PDC. For more information see the text.

Still, this issue can be overcome by numerical methods, which include the full dispersion rela-
tion of the waveguide.

The second line of Eq. (6.7) contains only spectral terms, whereas the third line contains the
temporal contributions. The interesting part, however is the exponential term in the last line.
Here we see that a non-vanishing pump chirp a 6= 0 inevitably introduces a coupling of spectral
and temporal degree of freedom. We will show in the following how this contribution influences
the TF correlations between signal and idler.

Before we present the formal derivation of a novel TF entanglement measure inspired by CV
quantum optics, we motivate our approach with a qualitative discussion of the spectral-temporal
properties of a PDC pair. We consider a case similar to the one in Fig. 5.10 with an anti-
correlated spectral distribution function. In Fig. 6.3 (a) we plot the JSI of the PDC, which
was obtained from W(νs, νi, τs, τi) by tracing out over the temporal degrees of freedom. The
plotted spectra are, on the one hand, the projection of the JSI onto the νs-axis, that is the signal
marginal distribution (red area), and on the other hand, it is the cut through the JSI indicated by
the black plane (black area). Note that the latter corresponds to a conditioned signal spectrum21,
when conditioning on a specific idler frequency ν(0)

i . Notably, the conditioned signal spectrum
is narrower than the width of the marginal distribution.

In panel (b) we plot the JTI of the PDC, retrieved from the chronocyclic Wigner function by
tracing out over the frequencies. The projections onto the τs-axis show the signal arrival time
marginal distribution (green area) as well as the conditioned distribution (black area), when con-
ditioning on a certain idler arrival time τ (0)

i . Again, the conditioned distribution is significantly
narrower than the marginal function.

21Experimentally this means that we have to place a narrow spectral filter in the idler arm of the PDC.

65



CHAPTER 6 Ultrafast parametric down-conversion

Figure 6.4 – The unconditioned (a) and conditioned (b) chronocyclic Wigner
functions for the PDC from Fig. 6.3. Solid black lines illustrate
Fourier-limited pulses.

At this point we find a surprising analog to two-mode squeezing: the intrinsic spectral broad-
band nature of the ultrafast PDC leads to accordingly broad spectral marginal distributions,
whereas the uncertainty in the exact generation position of the photon pair enforces the cor-
responding broad temporal marginals. However, knowledge of either idler frequency or arrival
time immediately reveal the corresponding quantity for signal with very low uncertainty. Hence,
TF correlations enforce an effect similar to two-mode squeezing, which we call time-frequency
squeezing.

For two-mode quadrature squeezing we could see that EPR correlations between signal and
idler can lead to joint quadrature fluctuations which overcome an apparent Heisenberg’s uncer-
tainty relation. Remarkably, there is an equivalent quantity for time and frequency: the time-
bandwidth product (TPB), which is bound from below such that ∆ν∆τ ≥ 0.441 for Gaussian
shaped pulses. Note that the TBP was introduced as a purely classical limitation. It has, how-
ever, been shown that in quantum mechanics an energy-time-uncertainty relation exists [141],
similar to the original formulation of Heisenberg’s uncertainty relation in space and momentum.

A rough estimate for the TBP from the plots in Fig. 6.3 yields

∆ν∆τ ≈ 1

2π
1 · 1012 Hz · 1.5 · 10−12 s ≈ 0.239 < 0.441 (6.10)

and we actually find a violation of the Fourier limit, which is tantamount to finding TF en-
tanglement. Note that for a perfectly TF decorrelated PDC, the two photons are generated in
Fourier-limited pulses and thus the conditioned TBP exactly equals 0.441 [84].

In the following we will put this result onto more formal footing. From the chronocyclic PDC
Wigner function, we retrieve the reduced single-photon Wigner functions (SPWFs) of the signal
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field

W(u)
s (νs, τs) =

∫
dνi dτiW(νs, νi, τs, τi), (6.11)

W(c)
s (νs, τs) =W(νs, τs; νi = ν

(0)
i , τi = τ

(0)
i ), (6.12)

where the superscripts (u) and (c) label the unconditioned and conditioned case, respectively.
Note that the SPWF has been investigated in [142–144], however without the full implications
resulting from our analysis of the complete four-dimensional PDC Wigner function. We plot
the two SPWFs corresponding to the JSI and JTI from Fig. 6.3 in Fig. 6.4. Panel (a) shows
W(u)

s (νs, τs). The solid black lines illustrate the SPWF of a Fourier-limited quantum pulse
exhibiting a TBP of ∆ν∆τ = 0.441. As expected, the unconditioned SPWF is broader than the
Fourier-limited function in both, frequency and time. For a comparison we plot the conditioned
SPWF in panel (b). Notably, this function is narrower than the Fourier-limited pulse in the
spectral as well as the temporal degree of freedom, which confirms our rough estimate from
above. Note that the position of the maximum of the conditioned SPWF depends on the exact
values of the parameters ν(0)

i and τ (0)
i , the choice of which does not influence the shape of the

SPWF as long as they are chosen from inside the respective idler marginal distributions.
Finally, we performed a more thorough study of the TF correlations of a PDC. Again, we de-

ployed our PDC process from Fig. 5.10 but now calculated the normalised, inverse conditioned-
TBP δTBP, which is defined as

δTBP =
0.441

∆ν(c)∆τ (c)
. (6.13)

Given the analytical expression forW(νs, νi, τs, τi) we can calculate δTBP and obtain

δTBP =

√
n2

pi + n2
ps

n2
si

+
γ(Lσnpinps)2

2(cnsi)2
+

2c2(1 + 4a2σ2)

γ(Lσnsi)2
. (6.14)

With our current knowledge, we expect δTBP to equal one for a TF decorrelated PDC. As
soon as signal and idler become correlated, however, the conditioned TBP decreases and we
consequently expect δTBP to increase. We have studied this behaviour for two different cases:
first, we consider the case of unchirped pump pulses with a = 0; second, we investigate the case
of chirped pump pulses with a = 3 · 105 fs2. Typically, in an experiment the pump pulse passes
several optical elements before the PDC, which are dispersive and thus chirp the pulse. Note
that our value is comparably high and we have chosen it to emphasise the impact of a pump
chirp on the TF correlations. Lower values of pump chirp decrease these effects, but do not
completely suppress them.

As we aim for introducing δTBP as a new TF entanglement measure, we have to compare
it against existing quantities and have chosen the Schmidt number K as such. The latter can
either be obtained from the experiment or from numerical calculations. Typically, one measures
the JSI |F (ωs, ωi)|2 in the experiment [51, 53]. Thus, by analysing measurement results, one
neglects any phase information of the original JSA. For assessing the impact of this, we compare
both the Schmidt number from the JSI and JSA with δTBP.

In Fig. 6.5 (a) we consider the case of Fourier-limited pump pulses. On the x-axis we plot the
spectral bandwidth of the pump by which the TF correlations can be tuned. On the left y-axis
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CHAPTER 6 Ultrafast parametric down-conversion

Figure 6.5 – Comparison between the inverse conditioned TBP δTBP and the
Schmidt number K introduced in Chap. 5. In (a), the pump pulse
is Fourier-limited, whereas in (b) it exhibits a frequency chirp with
a chirp parameter of a = 3 · 105 fs2. For more information see the
text.

68



SECTION 6.2 Chronocyclic representation of PDC states

we indicate the Schmidt number K and on the right y-axis the value of δTBP. The insets show
the JSI (red) and the JTI (green) for three values of the spectral pump bandwidth that corre-
spond to spectral anti-correlations, decorrelation and correlations. They were calculated from
the chronocyclic Wigner function to reflect the information contained in our model (compare
Fig. 6.3). The offset of the JTI functions from the centre of the diagram highlights the situa-
tion of asymmetric group-velocity matching in our PDC, where one photon travels faster than
the pump whereas the other one is slower. The solid black line at K = 1 is the boundary for
spectrally decorrelated PDC and poses a lower limit to the Schmidt number.

Remarkably, the Schmidt numbers and δTBP are exactly the same, even in their numerical
values. We observe the expected behaviour of decreasing TF entanglement when approaching
TF decorrelation and increasing entanglement beyond. Please note that – for Fourier limited
pump pulses – frequency decorrelation is tantamount to temporal decorrelation.

The situation changes as soon as the pump pulses exhibit a non-vanishing chirp, as shown in
Fig. 6.5 (b). First of all, the Schmidt number from the JSI does not fit to the other two quantities
anymore. This is reasonable: a chirp of the pump pulse manifests itself in the phase of the
JSA and thus its impact is lost when considering the JSI. Interestingly, the K number from
the JSA and δTBP are still equal. This shows that our model of the PDC TF structure which
exploits the chronocyclic Wigner function formalism contains the complete information on the
PDC. The next thing which becomes obvious is that the minimum value of δTBP is above one,
meaning that perfect TF decorrelation is not possible. Looking at the insets we find that, even
for a spectrally decorrelated JSI, τs and τi are correlated as an effect of the pump chirp. Note
that the minimal TF correlations are also shifted towards smaller pump bandwidths. This comes
from the fact that spectral anti-correlations can partially compensate for temporal correlations
induced by a chirp, as shown in the leftmost inset.

Why are these results important? When using PDC to generate heralded, pure single pho-
tons, perfect TF decorrelation is required. From our analysis we find that an engineered process
without a pump chirp exhibits no hidden correlations in either the temporal or spectral degree of
freedom. However, in general a characterisation of either the spectral or temporal intensity dis-
tribution of a PDC state – as is the common procedure [51, 53, 145] – is insufficient for revealing
the TF correlations. Contrariwise, a spectral and temporal characterisation or a phase-sensitive
analysis of either degree of freedom provide complete knowledge on the TF structure of a PDC.
Although we have recently succeeded in implementing a direct, phase-sensitive measurement
of the JSA of a PDC [129], a method based only on intensity measurements is still appealing
because of its relative simplicity.

We have introduced a simple method to evaluate TF correlations in PDC. Measuring δTBP

allows for a complete reconstruction of the amount of TF entanglement, which makes it superior
to the Schmidt number K, since the latter can be misleading. Hence, the next step along this
line is the investigation of novel temporal detection methods which allow for a high temporal
resolution in conjunction with single-photon sensitivity.

In addition, our analytical expression for the chronocyclic PDC Wigner functionW(νs, νi, τs, τi)
provides a versatile analysis tool for most PDC processes and allows a quick assessment of the
impact of different experimental settings on the generated photon pairs. Furthermore, the in-
verse TBP δTBP as a novel TF entanglement measure bridges the gap between the seemingly
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disparate TF and CV descriptions of PDC.

Summary
We have introduced the four-dimensional chronocyclic representation of a PDC state, which unites

concepts from continuous variable quantum optics and ultrafast physics. The resulting chronocyclic

PDC Wigner function provides a complete description of the TF structure of a photon pair state. In

addition, it allows to define a novel measure of TF entanglement - the normalised, inverse conditioned

time-bandwidth product δTBP - that behaves exactly the same as the Schmidt number K of the JSA,

which can only be obtained with considerable experimental effort. This is not the case for our new

measure, which accurately reflects the TF correlations between signal and idler even for unfavourable

experimental settings but, on the downside, poses stringent requirements on the detector’s temporal

resolution.

6.3 On the correlation time of ultrafast biphotons
Following along our path to explore not only the spectral but also the temporal characteristics
of PDC, we came across another important time-constant, the correlation time Tc of the photon
pair, which essentially tells us, during which time span an idler will be detected after the detec-
tion of an associated signal. Note that the experiments presented here have been carried out by
Vahid Ansari, in the course of this Master’s thesis. The supervision of this thesis were part of
our work.

Typically in the order of a few hundreds of femtoseconds, the correlation time is not only
a measure of the simultaneity of the generated photons but also reflects the maximum timing
information that can be extracted from a PDC state. It is therefore the benchmarking limitation
to the achievable precision of quantum-enhanced applications such as quantum clock synchro-
nisation [146, 147], quantum optical coherence tomography [148] and quantum interferometric
optical lithography [149].

Still we find that the underlying physics of the correlation time are not yet fully understood.
Naively one would think that Tc is directly influenced by the coherence properties of the pump
light. This seems sensible under the assumption that the photon pair generation is an instanta-
neous process, hence signal and idler photon have to be generated inside the coherence length
of the pump. We will show in the following, however, that the correlation time Tc is completely
independent of the properties of the pump light. Indeed we will even present cases where Tc is
larger than the pump’s coherence time, which can be associated with a loss of timing information
during the PDC process [150].

Unfortunately, Tc is typically a few hundreds of femtoseconds and thus cannot directly be
measured with state-of-the-art detectors, which have timing jitters in the order of a few tens of
picoseconds. This problem has first been circumvented by Hong, Ou and Mandel (HOM) in their
seminal work in 1987 [29], where they succeeded in measuring sub-picosecond time intervals
by exploiting quantum interference of single photons at a beamsplitter. They generated PDC
photon pairs and sent the two photons into the two input ports of a balanced beamsplitter. In the
following we briefly sketch what happens, if both photons are indistinguishable: the operators ĉ
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Figure 6.6 – (a) Schematic of a HOM interference. If the two photons are in-
distinguishable, the two possible cases where one photon ends up in
each output port cancel out and the photons bunch. (b) General setup
for measuring HOM interference with a PDC source. Essentially,
the interference measures the overlap of the JSA function under ex-
change of signal and idler, as sketched on the right.

and d̂ associated with the output ports of a balanced beamsplitter can be expressed in terms of
the operators â and b̂ at the input (see also Fig. 6.6).

ĉ =
1√
2

(
â+ b̂

)
, d̂ =

1√
2

(
â− b̂

)
. (6.15)

Thus, the input state |ψ〉in = â†b̂† |0〉 is trasnformed into

|ψ〉out =
1

2

(
ĉ† + d̂†

)(
ĉ† − d̂†

)
|0〉 =

1

2

(
(ĉ†)2 − (d̂†)2 − ĉ†d̂† + d̂†ĉ†

)
|0〉 . (6.16)

If the two photons in input ports a and b are indistinguishable in all degrees of freedom (spectral-
temporal, spatial, polarisation), the last two terms in the above expression cancel out and we find
the state

|ψ〉out =
1

2

(
(ĉ†)2 − (d̂†)2

)
|0〉 =

1√
2

(|2〉c |0〉d − |0〉c |2〉d) (6.17)

at the output of the beamsplitter. This behaviour is called bunching and is a genuinely quantum
behaviour since it is founded on the interference of quantum mechanical probability amplitudes
[29].

From an experimental point of view this means that, for perfectly indistinguishable photons,
we will not measure any coincidence events between the output ports of the beamsplitter. How-
ever, when introducing a temporal delay τ between the two photons, we can gradually make
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them distinguishable. In particular for the case of photons generated from PDC, the expected
coincidence rate between the ports c and d as a function of time delay is given by [86]

Rc(τ) ∝ 1−
∫
dω1 dω2e

ı(ω1−ω2)τF (ω1, ω2)F ∗(ω2, ω1). (6.18)

Note that the drop in the expected coincidence rate is proportional to the symmetry of the JSA
function under exchange of signal and idler [151], as sketched in Fig. 6.6. In contrast, the width
of the interference pattern is given by the correlation time Tc of the photon pair, which is the
average amount of time required to destroy the simultaneous arrival of the photons at the beam-
splitter. Hence, the HOM interference provides an established means of probing the correlation
time of a photon pair in the laboratory, even with insufficient detector timing resolution.

We have investigated the shape of the HOM interference dip analytically by deploying the
JSA function from Eq. (6.6). Note that we have neglected the linear phase terms arising from
the phasematching function, since they only impose an overall shift in the absolute timings of
signal and idler. Using this, the coincidence rate Rc(τ) can be written as

Rc(τ) ∝ 1−
∫
dνs dνie

ı(νs−νi)τe−(Aν2
s +Aν2

i +Bνsνi), (6.19)

where we have defined the abbreviations

A =
1

σ2
+
γL2

4c2
(n2

ps + n2
pi), B =

2

σ2
+
γL2

c2
npsnpi. (6.20)

We recall that σ is the spectral pump bandwidth, L is the waveguide length and nij = n
(g)
i −n

(g)
j

is the difference in group-refractive index. After some straightforward calculations we obtain

Rc(τ) ∝ 1−A(σ, L, nps, npi) exp

− τ2

2 · γL
2n2

si
4c2

 . (6.21)

Here, the parameterA depends on the pump as well as on the waveguide parameters and dictates
the drop in coincidence rate, whereas the width of the exponential function given by σHOM =√
γLnsi

2c only depends on the waveguide parameters. In fact, we can reformulate this parameter
and find

σHOM =
√
γ
L

2

(
1

v
(g)
s

− 1

v
(g)
i

)
, (6.22)

where v(g)
j labels the group velocities of signal and idler inside the waveguide. Finally, we can

define the correlation time Tc as the FWHM of the HOM interference pattern and obtain

Tc =
√

8γ ln(2)
L

2

(
1

v
(g)
s

− 1

v
(g)
i

)
. (6.23)

This result facilitates an elegant and intuitive interpretation of the correlation time. Analysing
a large ensemble of PDC processes, we find that the generation of a photon pair occurs most fre-
quently at the centre of the waveguide. Then, the generated signal and idler propagate through
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Figure 6.7 – Illustration of the physics underlying the correlation time of PDC
photon pairs. On average, the photons, sketched as red pulses, are
generated at the centre of the waveguide and then propagate the re-
maining distance at their respective group velocities. The time dif-
ference they acquire at the output of the waveguide is referred to as
correlation time Tc. Note that the coherence time of the pump (blue
pulse) τp does not affect Tc.

the remaining half of the waveguide at their respective group velocities and acquire an corre-
sponding time difference, as illustrated in Fig. 6.7. In this picture, the decay happens instanta-
neous. If a pump photon passes the ’decay point’ it can generate a photon pair, regardless of the
coherence properties of the overall pump field.

However, we emphasise at this point that the PDC process of course happens coherently over
the whole waveguide length, and the increased decay probability in the centre of the waveguide
is a result of interference between pump, signal and idler. It is possible to calculate back to the
’decay point’ from a measurement result, however only because the quantum mechanical mea-
surement collapses the PDC wavefunction into a single result. Hence, it is not possible to predict
the exact time and position of the next decay, as might come across from our interpretation.

To support our analytical solution, we have carried out full numerical studies of the HOM
interference of photon pairs from generic PDC processes. The results are shown in Fig. 6.8.
Note that we utilised a phasematching function with a positive slope, as is the case for our PDC
source. However, our statements are general and valid for any PDC process.

In the left column, we plot the pump envelope function α(νs + νi) (blue shaded region),
the phasematching function φ(νs, νi) (red shaded region) and the resulting modulus of the JSA
function |F (νs, νi)| (black solid line). We have also indicated the values of the spectral pump
width σ and the waveguide length L for each case. In the right column, you find the coincidence
rate Rc(τ) at the output of the beamsplitter, plotted against the time delay τ between the signal
and idler. The yellow shaded regions highlight the FWHMs of the interference dip, which
correspond to the photon pair correlation time Tc.

In (a) to (c), we have kept the waveguide length constant and varied the spectral pump width.
This is the typical situation that can easily be achieved in the laboratory. We find that although
the shape of the JSA function changes significantly, the correlation time Tc is completely unaf-
fected. Only the depth of the dip changes in agreement with Eq. (6.21). In contrast we assumed
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Figure 6.8 – HOM interference dips for different generic PDC processes. In (a) to
(c), the spectral pump width σ changes while the waveguide length
L is kept constant. This does not affect the correlation time Tc. In
(c) to (e) however, we vary L for a fixed σ and see a notable impact
on Tc. For detailed information see the text.
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a fixed pump width in (c) to (e) but simulated different waveguide lengths. This time, the cor-
relation time strongly varies for different waveguide lengths. Again, this is according to our
expectations.

We can understand this by noticing that an exchange between signal and idler (compare Eq.
(6.18)) corresponds to mirroring the JSA along a +45◦ axis, as sketched in Fig. 6.6. Then,
the spectral width of the overlapping regions is along the −45◦ line that is along the pump
envelope function. Essentially, the HOM dip probes the width of the JSA along the axis given
by α(νs + νi). We find that this width indicated by the black arrows does not change in (a) to
(c), since a change in the pump shape only has an influence orthogonal to the −45◦ axis. In
contrast, in (c) to (e) this width does change due to different phasematching functions and we
find a shorter correlation time for broader spectral widths and vice versa, in agreement with the
Fourier relationship between time and frequency.

Also note that for the case of a similar amount of spectral correlations with opposing signs as
for instance in panels (a) and (e), the timing information gained from the spectrally correlated
state is worse than for the anti-correlated state. This has already been investigated theoretically
and it has been shown that, while anti-correlated states are optimal for arrival time difference
measurements as the HOM interference experiment, correlated states are apt for absolute tim-
ing measurements [146]. In addition, correlated states are highly beneficial for long-distance
fiber-based quantum communication, because they do not suffer from spectral chirp. For more
information on this see [152] and the citations therein.

Summary
We have introduced the correlation time Tc of a PDC photon pair. We motivated that this quantity

on the one hand measures the degree of simultaneity between the two photons and, on the other

hand, is tantamount to the timing information that can be gained from the PDC state. In contrast to the

common assumption that Tc must be related to the coherence properties of the pump, we have shown

that in fact only the waveguide parameters define the correlation time. We presented an analytical

and numerical study that supports our claim and facilitates a simple and efficient estimation of the

temporal information in the PDC state for particular experimental settings.

6.4 Theory put to test
In the last section, we have studied the correlation time Tc of a PDC photon pair and found that
it depends only on the parameters of the waveguide source, not on the properties of the PDC
pump. In this section we present the experimental verification of our theory. To this end, we
deployed the PDC source first published in [53] and later refined in [54].

A schematic of the experimental setup is shown in Fig. 6.9. An ultrafast Ti:Sapph oscillator
(Coherent Chameleon Ultra II) generated Fourier-limited laser pulses at a central wavelength
of λp = 768 nm with a bandwidth of ∆λTi:Sa ≈ 5 nm and a repetition rate of 80 MHz. The
maximum output power of the laser was 3.5 W cw-equivalent power, which is equivalent to a
maximum pulse energy of around 44 nJ. The laser light was attenuated with a combination of
a half-wave plate (HWP) and a polarising beamsplitter (PBS), denoted as power control in the
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Figure 6.9 – Experimental setup for the HOM measurements. Abbreviations:
HWP - half-wave plate, PBS - polarising beamsplitter, AL - aspheric
lens, WG - waveguide sample, DM - dichroic mirror, BPF - bandpass
filter, QWP - quarter-wave plate, 50/50 - fiber integrated balanced
beamsplitter, APD - avalanche photo diode. For more information
see the text.

schematic. Then, the pulses were sent through a 4-f-spectrometer consisting of two gratings, two
lenses and an adjustable slit in the centre. In agreement with the peculiar name, all elements are
placed at a distance of the focal length f = 100 mm of the lenses from each other. Note that the
slit of the grating was rotated around the beam axis, which effectively implements a Gaussian
reshaping of the pump spectrum (for more information see the appendix A.5). The maximum
resolution of our spectrometer is around 0.5 nm, as measured with an optical spectrum analyser.

After spectral shaping, the pump pulses were coupled to the KTP waveguide (WG) sam-
ple (AdvR) with an aspheric lens (AL). The waveguide has a size of 4 × 6 µm2, a length of
L = 8 mm and a poling period of Λ = 117 µm. Behind the WG, the remaining pump and
generated PDC light were collimated with another AL. A dichroic longpass filter (DM, Sem-
rock LP02-808RU-25) and a broad bandpass filter (BPF, Semrock NIR01-1535/3-25) with an
effective bandwidth of 8 nm were used to filter the remaining pump light and the broad spec-
tral background [153] from the PDC. The signal and idler photons were spatially separated at
another PBS and a temporal delay was realised with a motorised linear translation stage (PI
M-112). The generated photons were coupled to single mode fibers after their polarisation was
adjusted with two HWPs and a quarter-wave plate (QWP).

Finally, the fibers were connected to a fiber-integrated balanced beamsplitter (50/50) to guar-
antee a maximum spatial overlap and the output ports of the beamsplitter were fed into two
InGaAs avalanche photo diodes (NuCrypt CPDS-1000-4), the signals of which were analysed
using a homebuilt field programmable gate array (FPGA). Note that for the measurements of
the JSI distribution, we fed the fiber output ports into two fiber spectrometers [128] instead of
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the 50/50 splitter and directly measured the coincidence counts.
The measured Klyshko efficiencies [154–156], that is the efficiencies with which a generated

photon is also detected, are ηs = 20.5% for the signal and ηi = 15.5% for the idler, respectively
[54]. They are calculated as the ratio of measured coincidences and single counts in the other
arm as

ηs/i =
Rcoinc

Ri/s
. (6.24)

From these we can calculate back on the heralding efficiencies by factoring out the detector
losses. We find heralding efficiencies of 80% (70%) into the single-mode fibers, which is among
the highest values reported to date. This result highlights the excellent compatibility of our
source with existing single-mode fiber communication networks. A detailed analysis of the
performance benchmarks of the PDC source can be found in [54].

For measuring the HOM interference patterns, we concentrated on three scenarios corre-
sponding to the cases (a) to (c) in Fig. 6.8, since we were not able to change the length of our
sample. We measured the JSI distribution |F (ωs, ωi)|2 for three different types of spectral cor-
relations, as well as the associated HOM interference dips. The measurement results are shown
in Fig. 6.10.

The left column shows the measured JSI distributions, whereas the right column shows the
associated HOM interference dips. Note that error bars are smaller than the symbol size. The
yellow shaded regions reflect again the correlation time Tc of the generated photon pairs. Note
that the JSIs are not background-corrected. In panel (a), we have chosen a spectral pump FWHM
of 0.7 nm which yields a spectrally anti-correlated PDC. The correlation time of the photon pair
evaluates to 1.10 ps. Note that the Gaussian fit to the measured interference pattern (grey line)
does not fit to the data very well. This may have two reasons: first, the sinc-shape of the
phasematching function enforces a triangular HOM interference pattern [157]; second, a mis-
alignment of the pump incoupling can excite multiple spatial modes, which result in a distorted
shape of the HOM interference [158]. We also fitted a triangular function to the measurement
data, which yields a visibility of 92% and the same FWHM of 1.10 ps. This function fits better
to the data in the central part of the dip, but has larger deviations in the wings, which leads us
to the conclusion that an ideal fit is a mixture of Gaussian and triangular function. This most
probably originates from the broadband spectral filter, which cuts away part of the sinc side
lobes and thus leads to the peculiar shape of the dip.

In (b), we have adapted the pump bandwidth to the phasematching function to generate TF
decorrelated PDC states. From our intensity measurement we obtain a Schmidt number of
K ≈ 1.0. Note that the excellent indistinguishability of signal and idler is reflected by the
high visibility of the HOM interference of almost 95%. Still, the FWHM of the dip – and thus
the correlation time Tc – is 1.16 ps. Finally, we have chosen the maximum pump bandwidth
of 4.5 nm to generate spectrally correlated photon pairs. Note that for this measurement we
removed the BPF from the setup as to not cut the signal and idler marginal distributions. This
time the correlation time is evaluated to Tc = 1.21 ps.

We have wrapped up the results of these measurements in Tab. 6.3, where we listed the
measured correlation times Tc, the marginal bandwidths and durations of signal and idler ∆λs/i

and∆τs/i as retrieved form the JSI distributions, the bandwidth and duration of the pump pulses
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Figure 6.10 – Measurement results of the HOM dip experiments. The left col-
umn shows the raw JSI distributions, the right column the associ-
ated HOM interference dips, where error bars are smaller than the
symbols. From (a) to (c) we deployed an increasing pump band-
width to realise the different spectral correlations. For more details
see the text.
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Correlations Tc ∆λs/i ∆τs/i ∆λp ∆τp ∆τconv

[ps] [nm] [ps] [nm] [ps] [ps]

anti-correlated 1.10± 0.02 3.06 / 3.12 1.13 / 1.11 0.7 1.24 1.58
decorrelated 1.16± 0.01 4.30 / 5.46 0.80 / 0.63 2.0 0.43 1.02
correlated 1.21± 0.03 5.84 / 10.1 0.59 / 0.34 4.5 0.19 0.68

Table 6.3 – Summary of the measurement results of the HOM dip analysis.
Shown are the correlation type, the measured correlation time Tc,
the spectral marginal FWHM of signal and idler ∆λs/i and their cor-
responding marginal durations ∆τs/i, the spectral bandwidth of the
pump ∆λp and its duration ∆τp as well as the convoluted duration of

signal and idler marginal durations ∆τconv =
√
∆τ2

s +∆τ2
i .

∆λp and ∆τp and finally a convoluted duration ∆τconv =
√
∆τ2

s +∆τ2
i . If we assumed that

signal and idler were generated in Fourier-limited pulses – note that this corresponds to signal
and idler being in pure states after heralding – the width of the HOM interference would simply
correspond to ∆τconv.

First of all we compare the measured correlation time Tc to the theoretical value T (th)
c , which

we calculated with the analytical formula derived in the last section. We find T (th)
c = 1.22 ps,

which is in excellent agreement with the measurement results given that we do not know the
waveguide dispersion perfectly. Then, we want to point out that the pump duration changes
about a factor of six without affecting Tc, as expected from our theory. Also we find a general
agreement between Tc and ∆τconv. They are similar only for the case of decorrelated PDC,
where we can safely assume that signal and idler are generated in Fourier-limited pulses. For
the other cases, Tc and ∆τconv are clearly different, which can be understood such that the
marginal durations are characteristics of traced out subsystems of the photon pair and thus do
not contain the complete information.

Finally we want to point out that the correlation time Tc is larger than the pump pulse duration
for the decorrelated and correlated case. We can define a measure for the gain or loss of tem-
poral information by relating the correlation time to the pump duration. Obviously, temporal
information can only be gained in the case of long pump pulses, corresponding to the situation
in the original HOM paper [29]. In other cases, a direct use of the ultrafast pulses for temporal
measurements is more beneficial than utilising PDC.
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Summary
We have presented our experimental results which verify our theory on the correlation time of PDC

photon pairs. We measured the HOM interference between signal and idler for different coherence

times of the pump pulses and found that indeed the pump duration does not influence Tc, which is in

excellent agreement with the theoretically obtained value. In addition, our measurements show that

the correlation time cannot simply be reconstructed from measurements on the two subsystems of the

PDC state. Instead, a full two-dimensional characterisation is required for retrieving the photon pair

characteristics.
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It doesn’t matter how beautiful your theory is, it doesn’t
matter how smart you are. If it doesn’t agree with experi-
ment, it’s wrong.

Richard P. Feynman
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This chapter is dedicated to the main part
of this thesis: The thorough investigation
of the two novel devices quantum pulse
gate (QPG) and the quantum pulse shaper
(QPS). Both devices are based on disper-
sion engineered frequency conversion (FC)
processes and facilitate a quantum coher-
ent operation on the time-frequency (TF)

modes of ultrafast quantum states. The driving idea behind researching these devices is the
vision of future high-dimensional quantum information applications based on TF modes.

This is an interesting topic already from a fundamental point of view. In a large Hilbert space
it becomes possible to study, for instance, high-dimensional entanglement [159]. Moreover,
there are practical implications. High-dimensional quantum states facilitate a step beyond com-
mon two-dimensional encoding of quantum information in qubits. Qudit encoding becomes
possible, which provably increases the security of quantum communication protocols as well as
the amount of information per photon [92, 93]. Seeing things from a slightly different angle,
multiple TF modes could also be exploited in conjunction with common qubit encoding to serve
as orthogonal channels for information multiplexing. It has been shown that an exponential
increase in quantum channel capacity is in reach with this approach [160]. This point is partic-
ularly interesting in light of recent research on the information capacity of fiber networks. In
[161], the authors have shown that current single-mode communication networks are close to
their intrinsic maximum capacity. A possible way out of this dilemma could be energy-efficient
channel multiplexing.

Although spatial multiplexing is suggested in [162], TF mode multiplexing could play a cen-
tral role in future communication scenarios as well, if three prerequisites can be fulfilled: first,
TF modes have to be generated in a well-defined way; second, there must be a possibility to
coherently manipulate them; third, mode-selective detection schemes must exist. Concerning
points one and three, we have shown in Chap. 5 how parametric down-conversion (PDC) can be
tailored to generate specific TF modes and first results on a TF mode-selective detection of up
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to eight modes have been already reported in literature [59]. The QPG and QPS tackle the re-
maining obstacle of TF mode manipulation. But before we come to this, we want to give a brief
overview over the current state-of-the-art in high-dimensional photonic quantum information
and quantum FC.

To date, the majority of experiments on high-dimensional quantum information encode the
information in the spatial degree of freedom, most prominently in the orbital angular momentum
(OAM) of photons. Impressive results have been achieved in recent years, most notably on
the fundamental entanglement of OAM states prepared with PDC [113, 115–117, 163] and
on the increased information capacity of high-dimensional communication systems [94, 164,
165]. Naturally, this progress has been accompanied by theoretical work on the generation [123]
and experimental manipulation [125, 166] of OAM states. We emphasise that manipulation of
OAM states can be conveniently implemented with linear optical elements like spatial light
modulators. However, OAM states have a major disadvantage when it comes to real-world
applications. They are inherently incompatible with existing and well-developed single-mode
fiber communication networks and few-mode or multimode fibers have to be deployed instead.

Turning our attention towards quantum FC, we find that it has been around for almost 25
years. In 1990, Prem Kumar suggested deploying FC to exchange the quantum state of two
light beams [45]. Although squeezed states were beneficial for interferometry and precision
measurements such as spectroscopy, they could not readily be deployed for all measurements
because there were no frequency tuneable sources available. FC provided a solution to this
problem, since it allows for a frequency translation of a quantum state without affecting its
other characteristics. Thereafter, in 1992, the theoretical proposal was implemented in the lab-
oratory [46]. In their work, the authors monitored the intensity correlations of a pulsed EPR
source directly at the source output and after translating one beam to a different frequency and
succeeded in monitoring correlations in both cases.

In 2003 it was shown that FC is a so-called information-preserving unitary operation which
realises a FC of optical quantum superposition states, or qubits [167]. Also during that time,
people began to investigate FC in light of implementing efficient single-photon detectors for
telecommunication wavelengths. A lot of successful implementations of upconversion detectors
which overcome the efficiency limitations of common InGaAs single-photon detectors have
been reported since [168–174].

Another aspect of FC was highlighted in [175], where the possibility to bridge the energy gap
between flying qubits and stationary quantum memories in a quantum information network was
addressed. Again, the successful conversion of a qubit was demonstrated. This time, a fidelity
of 98% could be realised. Thinking further along the lines of possible applications in quan-
tum networks, a polarisation independent FC was implemented in [176], conversion efficiencies
of 99% for attenuated coherent pulses have been shown [96], FC has been exploited to erase
frequency distinguishability of photons [177] and single photons from a quantum dot have suc-
cessfully been converted [178]. Moreover, even entanglement-conserving FC was demonstrated
[179]. At some point, the inverse process of frequency down-conversion of single photons also
came to the focus of interest and comparable results to the up-conversion experiments have been
published [180–182].

Early in the work on this thesis, our group worked on combining dispersion and state engi-
neering techniques known from ultrafast PDC [48, 49] with FC processes. Until then, FC had

82



SECTION 7.1 Quantum pulse gate

never been studied in conjunction with ultrafast pump pulses or really broad spectra. We have
presented the results of these early investigations in Chap. 5. Ultrafast FC can be described as a
series of special quantum mechanical beamsplitters that operate on TF modes of quantum states.
The group of Michael Raymer was thinking along the same lines and published their results on
the ’Interference of two photons of different color’ in [62]. Later that year, they demonstrated the
frequency translation of single photons in a FC based on four-wave mixing in photonic crystal
fiber [183].

2011 finally was a bright year for engineered, ultrafast quantum FC. In parallel to an in depth
theoretical study on four-wave mixing FC which took into account the broadband TF nature
of the process [68] and a proposal to deploy FC for pulse shaping of quantum light [184], we
brought forward our proposals to implement two novel devices, the QPG and QPS, based on
three-wave mixing [60, 61]. In these publications we merged the knowledge on engineering of
PDC present in our group with the exciting possibility to actually manipulate the intricate TF
mode structure of ultrafast quantum states. Further studies from our side [76] and from Michael
Raymer’s group [64, 65] have highlighted possible pitfalls for the performance of our devices
(compare Sec. 5.4), but have shown that the most promising approach to TF mode-selective op-
eration in a single device is presented by the QPG and QPS instead of other proposed schemes
[185]. Note that recent results suggest overcoming time-ordering issues by deploying two suc-
cessive devices [186], which is an additional experimental difficulty that might be omitted, de-
pending on the exact requirements of the experiment.

In the following, we will introduce the QPG in detail. Thereafter we present a quantitative
estimate of the efficiency of our implemented QPG. Then, we focus on the experimental real-
isation of the QPG and present our measurement results which demonstrate a successful QPG
operation. We conclude this chapter by giving an outlook on the QPS, a device which originates
from a different treatment of the QPG theory.

7.1 Quantum pulse gate
Both of our devices are based on waveguided FC. The QPG, which facilitates the selection
of a specific TF mode which can then be singled out from an ensemble is based on sum-
frequency generation. Note, however, that only the group-velocity matching inside the de-
ployed waveguide is important. In principle, we could as well implement a QPG based on
difference-frequency generation. The QPG allows for the implementation of a drop filter for
high-dimensional TF mode networks, as we will show in the following.

7.1.1 The QPG unitary operation
Essentially, the QPG implements the process discussed in Fig. 5.12, that is a TF single mode
FC process which acts as a special quantum mechanical beamsplitter that operates only on
one single TF pulse shape. We deploy asymmetric group-velocity matching, where the input
pulse and the bright pump pulse travel at the same velocity. Then, we can switch the selected
input mode by shaping the bright pump pulses. This situation is illustrated in Fig. 7.1. One
TF mode from a set of input modes gin(ωin) is selected and converted into the output mode
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Figure 7.1 – Illustration of the QPG operation. One mode from the input mode
basis gin is selected and converted into the output mode h. All other
modes are transmitted and labeled as gout. The selected mode is
chosen by shaping of the pump envelope function α(ωp). In essence,
the QPG can be regarded as a drop filter.

h(ωout) with, in principle, unit efficiency. All other modes are simply transmitted and are
labeled with gout(ωout). The inside of the box shows the special beamsplitters corresponding
to different mode orders j. The shape of the selected mode is defined by the TF shape of the
pump envelope function α(ωp), whereas the shape of the converted mode h(ωout) is defined
by the waveguide dispersion, respectively. In (a), we show the situation for a Gaussian shaped
pump pulse, whereas in (b) we consider a first-order Hermite-Gaussian pump. Note that this
behaviour corresponds to the action of a drop filter in a TF mode network.

Let us put these statements onto more formal footing. We have seen that we can write the
unitary SFG operation in the TF framework as (compare Eq. (5.51))

ÛSFG =
⊗
j;k,l,m

exp
[
Cj,klmÂj,klmĈ†j,klm + h.c.

]
, (7.1)

where the broadband mode operators Âj,klm and Ĉ†j,klm describe the annihilation of a photon
from input mode gj,klm(ωin) and the creation of a photon in output mode hj,klm(ωout), respec-
tively. The efficiency of this operation is given by sin2(Cj,klm). Again, for the sake of simplicity,
we assume that all fields propagate in the fundamental spatial mode and omit the spatial mode
indices k, l and m.

The QPG is defined as a TF single-mode SFG process, for which only one coupling constant
Cj is unequal to zero. Using this additional information we write the QPG unitary as

ÛQPG = exp
[
CjÂjĈ† + h.c.

]
(7.2)

Here, the index j highlights that we can still choose between different selected modes, by shap-
ing the bright pump pulses, since the QPG input TF mode gj(ωin) is directly defined by the TF
shape of the pump. However, regardless of the choice of j, the output is always generated in the
mode h(ωout), associated with Ĉ†.
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7.1.2 Adding an input state
To this point we have not made any assumptions on the QPG input state |ψ〉in. The unitary
QPG operation is completely defined by the bright pump and the waveguide dispersion. In this
section, we assume a TF multimode coherent state at the input of the QPG (compare Fig. 7.1)
and derive the output state |ψ〉out. The choice of the input state is convenient, because coherent
states are well understood and can easily be generated in the laboratory.

A broadband coherent state with mean photon number 〈n̂〉 = |α|2, where α is the coherent
state amplitude, is given by

|α〉n = exp
[
αnB̂

†
n − α∗nB̂n

]
|0〉 . (7.3)

Here, B̂†n =
∫
dω Gn(ω)b̂†(ω) is a broadband creation operator, which generates one photon in

the TF mode Gn(ω).
In general, the TF mode Gn(ω) can have an arbitrary shape. However, in the scope of this

thesis, we restrict ourselves to the Hermite-Gaussian framework22, where

Gn(ω) =
1√

n!
√
π 2nσ

Hn

(
ω − ω0

σ

)
exp

[
−(ω − ω0)2

2σ2

]
. (7.4)

In this expression, Hn(x) is the n-th order Hermite polynomial, ω0 is the central frequency and
σ is the spectral width of the TF mode. With this, we define our input state |ψ〉in

|ψ〉in =
N⊗
n=0

exp
[
αB̂†n − α∗B̂n

]
|0〉 , (7.5)

where we assume the same central frequency, spectral bandwidth and coherent state amplitude
for all |α〉n.

To assess the action of the QPG on this input state, we expand B̂†n in the QPG input mode
basis {Â†j} such that

B̂†n =

∞∑
k=0

ξnkÂ
†
k. (7.6)

Here, the overlap factors

ξnk =

∣∣∣∣∫ dω Gn(ω)g∗k(ω)

∣∣∣∣ (7.7)

describe the overlap between the nth TF mode of the input and the kth QPG TF mode. Note
that we can directly retrieve these overlap factors from our measurements, as we show in the
following.

Now, we apply the QPG beamsplitter transformation which maps input TF modes to output
TF modes and find

∞∑
k=0

ξnkÂ
†
k →

∞∑
k=0

ξnk

(
cos(Ck)Â†k + sin(Ck)Ĉ†

)
. (7.8)

22Note that the Hermite-Gaussian states form a complete basis. As such, every other state can be expressed using
Hermite-Gaussian states.
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Using the condition that Ck = 0 for k 6= j, we rewrite

B̂†n → ξnj

(
cos(Cj)Â†j + sin(Cj)Ĉ†

)
+
∑
k 6=j

ξnkÂ
†
k (7.9)

and consequently obtain the QPG output state

|ψ〉out =
N⊗
n=0

exp

αξnj cos(Cj)Â†j + αξnj sin(Cj)Ĉ†j +
∑
k 6=j

ξnkÂ
†
k + h.c.

 |0〉 . (7.10)

First of all we note that this state is still a tensor product of coherent states, as expected from
a simple beamsplitter operation. We have coloured the converted part which is centred at ωout

in blue. We see that the complete input state can be converted, if ξnj = 1, that is if the input
mode Gn(ω) overlaps perfectly with the QPG TF mode g(ω). Otherwise, part of the input state
is transmitted. This provides us with a handy tool: measuring the converted output intensity for
different known input states, we can reconstruct the overlap factor ξnj , and thus gain access to
the QPG TF mode gj(ω).

7.1.3 Revealing the QPG TF structure
In this section we discuss, how the TF mode structure of the QPG can be uncovered. The idea
behind this method has been presented in 2008 in [187]: a phase space tomography of an ar-
bitrary quantum process can be realised when evaluating the action of the process on coherent
probe states. Let us be more specific about this. In general, a quantum optical process is de-
scribed by a unitary matrix. A quantum process tomography facilitates the reconstruction of the
magnitude and phase of each matrix entry. To this end, the process is probed with a complete
set of basis states and the respective results are evaluated. Notably, these basis states need not be
non-classical, but can be coherent states, which are conveniently generated as the output states
of lasers. Different basis states are realised by coherent states with different amplitudes and
phases.

A similar approach works for the QPG. The process matrix of the QPG is the JSA function
Gklm(ωin, ωout). Again, a process tomography facilitates the reconstruction of both, magnitude
and phase, of this matrix. As in the original paper [187], we deploy coherent states as basis states
for probing the QPG. Although the theoretical QPG description focusses on single photons, it
is in no way limited to low photon numbers. Thus, we have chosen the most simplistic probe
states: coherent states.

In contrast to phase space tomography, which focusses on photon number properties, we want
to investigate the spectral-temporal structure of the QPG. Hence, the amplitude of the probe
states does not matter, but we realise different basis states with different central frequencies.
Then, by measuring the intensity of the converted light for a fixed pump power and thus a fixed
coupling constant Cj , we retrieve the TF overlap factor ξnj , which allows for a reconstruction
of the QPG input TF mode gj(λin). Note that, although we measure an intensity, our method
is intrinsically phase-sensitive, as can be seen from the mathematical expression of ξnj , which
incorporates the complex-valued TF modes.
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Figure 7.2 – Overlap factors ξnj between the QPG TF mode gj(ω) and probe state
TF modes Gn(ω) for n = 0 . . . 3 and different central frequencies.
For more information see the text.

We sketch this approach with an example, which reflects the situation we will find again in the
measurements presented later in this chapter. We assume that neither the central frequency nor
the spectral bandwidth of the QPG TF mode gj(ω) or the input modes Gn(ω) is fully known.
This is a reasonable assumption for any experimental implementation of a QPG, and we will
show in the following a two-step procedure to reliably adapt the QPG TF structure to the input
state. As input state, we assume a tensor product of coherent states in the first four Hermite-
Gaussian modes, that is

|ψ〉in =
3⊗

n=0

exp
[
αB̂†n − α∗B̂

]
|0〉 , (7.11)

where we assumed the same coherent state amplitude for all four orders n = 0 . . . 3.
In Fig. 7.2 (a), we evaluate the overlap coefficient ξnj , which defines the efficiency of the
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QPG. In (a.1), we assume the QPG TF mode gj(ω) to be a fundamental Gaussian, that is j = 0,
with a spectral bandwidth that is double the bandwidth of the input TF modes Gn(ω). This
is sketched in the leftmost plot, where gj(ω), represented by the blue curve, is scanned over
Gn(ω), shown as the black Gaussian.

The bar plots show the overlap coefficients ξnj for the four different input TF modes. From
left to right, the QPG TF mode’s central frequency is smaller than, equal to and larger than
the input mode’s, respectively. For the two cases of a non-adapted central frequency (left and
right), we see that all four overlap factors are greater than zero. This means that mode-selective
operation is not possible in these configurations, and hence they are undesirable for the imple-
mentation of a genuine QPG.

In contrast, the centre bar plot shows the situation for an adapted central frequency. We see
that the overlap between the QPG TF mode and 1st and 3rd input TF modes vanishes. This
happens due to the characteristics of Hermite-Gaussian modes. If two Hermite-Gaussian modes
with different parities have the same central frequency, their overlap vanishes, regardless of their
respective spectral bandwidths. Since the QPG TF mode in this case has an order of j = 0, the
overlap to the odd-order input modes is zero. Note that the overlap between the QPG TF mode
and the input Gaussian with n = 0 does not equal one, due to their different spectral bandwidths.

In Fig. 7.2 (b), we study the situation for a different QPG with a QPG TF mode gj(ω), which
is given by a first-order Hermite-Gaussian, that is j = 1. Again, in the leftmost plot, the QPG
TF mode is the coloured curve, whereas the input is symbolised by the black Gaussian.

In this case we see that the relative weights of the overlap factors have changed in comparison
to case (a). This is reasonable, since we evaluate the overlap between different functions here.
However, we find the same qualitative behaviour. Non-adapted central frequencies suppress
mode-selective behaviour. For similar central frequencies (central bar plot), we find a vanishing
overlap between gj(ω) and the even-order input modes, in agreement to the reasoning before.

For a better agreement with the measurements, we also plotted the case for a QPG with a
second-order Hermite-Gaussian mode gj(ω) in (c) and for a QPG with a third-order Hermite-
Gaussian mode in (d), respectively. As expected, we retrieve a similar behaviour to the cases (a)
and (b). For adapted central frequencies, the overlap to modes with a different parity vanishes.

Note that in Fig. 7.2 (d), the overlap for an adapted central frequency is largest between the
QPG TF mode gj(ω) and the input mode Gn(ω) with n = 1. Ideally, we would expect the
largest overlap with the third-order input mode. Due to the non-adapted spectral bandwidths,
however, we do not recover this situation here.

In our measurements, we utilised only a single input state with a Gaussian TF mode. This
situation corresponds to the leftmost bars in each plot and we study it in more detail in Fig.
7.2 (b). Here, we plot the overlap factor ξnj between a Gaussian input Gn(ω) and the QPG
TF modes gj(ω) from above for different frequency offsets between the respective modes. The
colour-coding is the same as in (a).

Note how the ξnj follow the shape of the QPG TF mode for the different mode orders. From
this plot we find two criteria for an ideally matched central frequency: first, the overlap between
the fundamental QPG mode and the input mode is largest for zero frequency offset; second, the
overlap between the QPG TF mode and the input mode vanishes for modes of different parities.

These results are a valuable information for the experiments, because they facilitate an adap-
tion of the QPG central frequency to an unknown input state, given that the input state resides
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Figure 7.3 – Overlap factors ξnj , evaluated for QPGs with adapted central fre-
quency, but spectral bandwidths that differ from the input state
width. For more information see the text.

in the Hermite-Gaussian mode basis. In addition they highlight, that probing the QPG with
coherent states suffices to recover the QPG TF modes gj(ω). Also note that it does not mat-
ter whether we use different coherent probe states and only one QPG, or the other way round.
For our experiment, we decided to realise many different QPGs and probe them with one state,
because of experimental simplicity.

7.1.4 Optimising the QPG TF modes
Having analysed a way to adapt the central frequency of the QPG to an input state, we now turn
our attention towards optimising the spectral bandwidth of the QPG TF modes gj(ω).

In Fig. 7.3, we evaluate the overlap factors for the same input state as before, that is a
superposition of coherent states in the first four Hermite-Gaussian modes and QPGs with TF
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modes gj(ω) with j = 0 . . . 3. However, now we assume that the central frequency of the QPG
TF mode is already adapted and change the spectral bandwidth of the QPG.

In Fig. 7.3 (a), we assume a Gaussian QPG TF mode gj(ω), which is represented in the
leftmost plot by the blue curve, whereas the black Gaussian symbolises again the input state’s
TF modes Gn(ω). The arrow hints at the fact that now we analyse different bandwidths.

In the bar plots, we plot again the overlap factors ξnj between the QPG TF mode gj(ω) and
the input TF modes Gn(ω). From left to right we assume a QPG mode spectral bandwidth that
is half the input width, the same as the input width and double the input width, respectively.
For a non-adapted spectral bandwidth, we find a situation which we have already discussed in
detail for Fig. 7.2. The QPG TF mode has a non-vanishing overlap to all input modes with
the same parity. However, for an adapted QPG spectral bandwidth (central bar plot), we find
mode-selective behaviour. Only a single mode of the input overlaps with the QPG TF mode.
This mode is selected and can be converted with unit efficiency.

In Fig. 7.3 (b), we switched the QPG TF mode gj(ω) to a first-order Hermite-Gaussian, as
sketched by the red curve in the left plot. From the bar plots we see again, that mode-selective
behaviour is achieved for an adapted bandwidth. In this configuration, however, we find that the
input mode Gn(ω) with n = 1 overlaps with the QPG TF mode. Hence, a change in the QPG
TF mode really selects a different mode from the input state.

As before, we have further considered a second- and third-order Hermite-Gaussian QPG TF
mode gj(ω) in (c) and (d), respectively. The qualitative behaviour stays the same. For an adapted
bandwidth, the QPG TF mode defines the selected input mode, as can be seen by the respective
overlap coefficients ξnj , which are one for n = j.

In (b), we investigate again the situation for our measurements in more detail. The input TF
mode is a Gaussian and we evaluate the ξnj for the QPG TF modes from (a). On the x-axis,
we plot the spectral bandwidth of the QPG normalised to the bandwidth of the input. The solid
black lines at x = 0.5, x = 1.0 and x = 2.0, respectively, correspond to the bar plots in (a)
from left to right.

As expected, the overlap between the even input mode with n = 0 and the odd-order QPG
TF modes with j = 1 and j = 3 constantly vanishes, regardless of the spectral bandwidth.
However, for the second-order mode, the overlap increases first, then decreases to zero and
increases again for larger QPG bandwidths. This behaviour is also found in the measurements,
as we will show later. It facilitates the optimisation of the QPG spectral bandwidth with respect
to an unknown input state.

7.1.5 Experimental limitations
In the last two sections, we have discussed the expected behaviour of the QPG for the ideal QPG
unitary

ÛQPG = exp
[
CjÂjĈ† + h.c.

]
. (7.12)

In this section we will assess the experimental limitations, which arise from the waveguide
dispersion. To this end, we numerically simulate the QPG process we realised in the experiment.

We plot our results in Fig. 7.4. Let us first explain panel (a). The large plot shows the JSA
functionG(λin, λout) of the QPG, which comprises the phasematching function in the Gaussian
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Figure 7.4 – Estimation of the experimental limitations of our QPG. For more
information see the text.

approximation (dashed white lines) and the pump envelope function (solid white lines). The
pump envelope function has a positive slope and is assumed to be a Gaussian with a spectral
bandwidth of ∆λp = 1.81 nm, corresponding to a duration of 576 fs. The phasematching func-
tion, in contrast, is oriented along the λin-axis due to the group-velocity matching between the
input light at 1535 nm and the pump at 865 nm. One also sees the curvature of the phasematch-
ing, which is a result of the group-velocity dispersion inside the waveguide.

The small plot beneath shows the Schmidt coefficients √κj , which we retrieved from the
Schmidt decomposition of G(ωin, ωout). We indicated the Schmidt number of K ≈ 1.000,
which indicates a close to perfect TF single-mode behaviour, in agreement with our unitary
operation.

In (b), we have increased the pump bandwidth to 3.82 nm, corresponding to a duration of
288 fs. The JSA function is still oriented along the input axis, and the Schmidt decomposition
yields a Schmidt number of K ≈ 1.004, which is still close to one. However, we can already
see an increasing Schmidt coefficient at j = 1, which indicates the influence of the curved
phasematching.

A further increase in pump bandwidth, as shown in (c), finally destroys the TF single-mode
behaviour. In this case, the pump bandwidth is ∆λp = 7.64 nm, which is the maximum band-
width of our laser system at this wavelength. This corresponds to a pump pulse duration of
144 fs. Note that a distortion of the JSA function due to the curvature of the phasematching
can be seen, which is also reflected by the Schmidt number of K ≈ 1.033, which indicates
an increasing multi-mode character of the QPG. In this case, the QPG unitary is only approxi-
mately given by the expression in Eq. (7.12). Note that for our measurements, we limited the
pump bandwidth to the case investigated in (b), that is ∆λp = 3.82 nm, to guarantee genuine
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single-mode behaviour of the QPG.

Summary
In this section, we have introduced the QPG in more detail. We have defined the corresponding TF

single-mode unitary operation and discussed, how this unitary transforms an input quantum state. We

have then introduced a way to reveal the QPG TF mode structure by probing the device with coherent

states, as well as a reliable two-step method to optimise this structure with respect to a given input

state. Finally, we have briefly discussed the experimental limitations of the QPG and identified operation

parameters for the measurements.

7.2 Quantitative Hamiltonian
Before we started to fabricate samples for the QPG in our cleanroom, we first performed exten-
sive theoretical studies to pinpoint the required parameters. In this section we present our initial
considerations, which finally led to a quantitative simulation of the device performance.

The material system of our choice is lithium niobate (LN), because of its outstanding disper-
sion properties, and due to the broad background in our group we settled for titanium-indiffused
waveguides which support both polarisations. In addition, we decided on the standard waveg-
uide parameters to ensure a spatially single-mode behaviour at telecommunication wavelengths.
We modelled the waveguide dispersion properties with the full numerical FEM model intro-
duced in Chap. 4, to generate effective, temperature-dependent Sellmeier equations for both
polarisations. Then, we considered the FC part of the Hamiltonian from Eq. (5.20) to make a
quantitative prediction about the performance of our device.

The underlying parts of this Hamiltonian are sketched in Fig. 7.5. In (a), we illustrate the
general outline of the device. We utilise a LN waveguide with a length of L = 20 mm at
a sample temperature of 165◦C. The simulated waveguide dispersion in (b) tells us that a TE
polarised input at λin = 1535 nm and a TM polarised pump at λp = 865 nm are group-velocity
matched at this temperature. Consequently, the output pulse is centred around λout = 553 nm
and we find a required poling period of Λ = 4.28 µm to guarantee quasi-phasematching. Note
that poling periods around 4 µm are on the verge of what we could realise in our cleanroom.

To estimate the effective interaction area of the process, we modelled the spatial field dis-
tributions of the fundamental modes inside the waveguide and plotted them in (c). Pump and
output field exhibit similar spatial distributions, whereas the input mode is considerably larger
due to the longer wavelength. The effective mode refractive indices evaluate to np = 2.184,
nin = 2.213 and nout = 2.320. Finally we studied the TF properties of this process. In
(d), we plot the JSA function G(λin, λout) calculated using the effective Sellmeier equations.
We assumed an input pulse bandwidth of ∆λin = 12 nm and an adapted pump bandwidth of
∆λp = 3.82 nm (compare Fig. 7.4) and found a Schmidt number of K = 1.02 with a leading
Schmidt coefficient of

√
κ0 = 0.996. The expected conversion efficiencies for the first two TF

modes are plotted as well. We find that for maximum conversion of the first mode, the second
mode is virtually unconverted. Hence, our process is close to TF single mode. A deviation from
perfect single-mode behaviour is caused by modelling the phasematching as a sinc-function.
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Figure 7.5 – Considerations for the quantitative prediction of the device perfor-
mance. For details see the text.
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Note that this is a worst-case assumption, since the TF characteristics benefit from a Gaussian
phasematching (compare Fig. 7.4).

With these numerical constants, we can write down the coupling constant Cj of the process
as [61]

Cj =
√
κj ·

2π2deffL

c
√
Aeff

√
2Ppωinωout

cε0np(ωp)nin(ωin)nout(ωout)|
∫
dωp α(ωp)|2

, (7.13)

where deff is the effective χ(2)-nonlinearity of the process, Pp is the averaged pump pulse power,
c is again the speed of light and ε0 is the vacuum permittivity.

Since the efficiency of the QPG operation is given by ηQPG = sin2(C), we can calculate the
required cycle-averaged pump power Pp

23 by solving C = π
2 and find for our case

Pp =

(
c |
∫
dωpα(ωp)|

4πdeffL

)2
cε0np(ωp)nin(ωin)nout(ωout)Aeff

2ωinωout
≈ 23.29 W. (7.14)

Hence we expect maximum conversion at an averaged power of around 23 W inside the waveg-
uide. If we assume a boxcar approximation of the pump pulse, which has a width similar to
the 1

e2
-width of the actual Gaussian, we retrieve a peak power of the pump pulse of around

37 W. This corresponds to an extraordinarily low pulse energy of Epulse ≈ 11.2 pJ. Our laser
system delivers pulses with a repetition rate of 80 MHz. If we assume perfect coupling into
the waveguide, we find that for complete conversion we require only 0.9 mW of laser power.
This surprising low value is only achieved because of the careful engineering of the QPG pro-
cess: first, the group-velocity matching lets the input signal experience the high peak power
of the pump over the whole interaction length; second, the mode confinement inside a waveg-
uide increases the efficiency compared to bulk crystal experiments; third, the TF single-mode
characteristics lead to an optimised efficiency, since no energy is wasted pumping empty TF
modes.

Summary
We have presented a quantitative study of our QPG, taking into account realistic experimental param-

eters. We find a surprisingly low pump power of 0.9 mW cw-equivalent power in front of the waveguide

for achieving unit conversion efficiency. This value has its origin in the careful tailoring of the QPG and

commends our device as building block for large scale applications where energy efficiency is a crucial

point.

7.3 Experiment
In this section we present our experimental setup and, in the end, demonstrate the successful
implementation of a QPG. We begin with an explanation of the operating principle of our pulse
shaper, followed by a detailed illustration of the experimental setup. We then demonstrate how
23We recall that this value corresponds to the approximation of the pump pulse with a boxcar function
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the spatial mode properties of the QPG can be controlled during the measurements and con-
clude with results on the mapping of the QPG TF mode structure and the achieved conversion
efficiencies.

7.3.1 Pulse shaping with the Dazzler
We deployed an acousto-optical pulse shaper (Fastlite Dazzler) for preparing the ultrafast pump
pulses in well-defined TF shapes. The spectral resolution of the Dazzler is limited to roughly
0.5 nm and its working principle is as follows: Light is launched into a birefringent TeO2

crystal oriented along the ordinary crystal axis. A traveling acoustic wave propagating through
the Dazzler crystal collinearly to the light induces a Bragg grating, which diffracts part of the
incoming light to the extra-ordinary crystal axis. Appropriate shaping of the acoustic waves
implements a grating that reflects different spectral components of the input light with different
efficiencies at different positions of the acoustic waves. In this way, amplitude and phase shaping
is accomplished.

We have illustrated this in Fig. 7.6 (a). The pulse train enters the crystal from the left. When a
pulse "hits" the acoustic wave, it is diffracted to the other crystal axis, continues propagating un-
der a slightly different angle and can be spatially separated at the output of the crystal. Although
the Dazzler facilitates amplitude and phase shaping of the input pulses, it shows some peculiar
characteristics that have to be understood in order to interpret measurement results correctly.

This is sketched in (b): In the upper sketch, the red laser pulse enters the crystal and is
diffracted to the extra-ordinary axis at position x. The blue pulse is the succeeding pulse and
has not entered the crystal, yet. In the lower sketch, the red pulse has propagated further on the
extra-ordinary axis through the crystal, whereas the blue pulse has entered the crystal. During
the time ∆τ between the two pulses, the acoustic wave has travelled about a distance vac∆τ ,
where vac is the sonic velocity in the crystal, and consequently the blue pulse is diffracted at
position y.

This has an impact on the optical path that each pulse has to travel, since it propagates a
longer distance along the ordinary axis compared to its predecessor. In turn, the distance on
the extra-ordinary axis is shorter. We show the outcome of this in (c), where we sketched the
pulse train at the output of the Dazzler. The vertical black lines are our reference and correspond
to the undisturbed pulse spacing. We see that the diffracted pulse train has a different spacing
and consequently a different repetition frequency frep. Note that for every acoustic wave, this
pattern is exactly reproduced when the Dazzler is synchronised to an external clock.

This result is significant for the QPG. The mode-selection only works if pump pulses and
input states have a perfect temporal overlap. Hence, only a small part of the diffracted pulse
train may be evaluated, which enforces a detection system that is capable of resolving the arrival
times of the pulses.

7.3.2 Overview over the setup
A detailed sketch of the experimental setup together with a photograph from the laboratory is
shown in Fig. 7.7. We use a Ti:Sapph oscillator (Coherent Chameleon Ultra II) and an opti-
cal parametric oscillator (OPO, APE Compact OPO) to generated two synchronised trains of

95



CHAPTER 7 Quantum pulse gate and quantum pulse shaper

Figure 7.6 – Schematics illustrating the operation principle of the Dazzler (a) and
the associated consequences (b), (c). For more details see the text.

Fourier limited pulses with a repetition frequency of 80 MHz at wavelengths of λp = 865 nm
and λin = 1535 nm, respectively. The pulses have a duration of 140 fs and 200 fs, corresponding
to spectral bandwidths of ∆λp = 7.8 nm and ∆λin = 17.3 nm, respectively. In this configura-
tion, the system delivers up to one Watt of cw-equivalent power at the pump wavelength and up
to 300mW cw-equivalent power at the input wavelength.

After rotating the polarisation of the 865 nm pump pulses with a half-wave plate (HWP) they
were fed into the Dazzler. We divided the master clock of the laser system to trigger the Dazzler
with a frequency of 20kHz, while keeping it synchronised to the pulse trains. Each acoustic
wave is capable of diffracting approximately 250 laser pulses, leading to bursts of shaped pulses.
Behind the Dazzler, the pump pulses were sent through an optical delay line consisting of a
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Figure 7.7 – Detailed sketch and photograph of the experimental QPG setup. Ab-
breviations: NDs - neutral density filters, BPF - bandpass filter, DM
- dichroic mirror, AL - aspheric lens, LPF - longpass filter, MMF -
multimode fiber, SMF - single mode fiber, APD - avalanche photo
diode.
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linear translation state and a rectangular prism and a subsequent telescope made of two AR
coated lenses. The focal widths of the lenses (f = 150 mm and f = −50 mm) were chosen to
realise a three-times magnification of the beam. Note that the mirrors in the pump beam path
were broadband anti-reflection (AR) coated for Ti:Sapph wavelengths (Thorlabs E03).

The 1535 nm input light was sent through a power control consisting of a HWP and a sub-
sequent polarising beamsplitter (PBS). Thereafter the polarisation direction was restored with
another HWP and the input was sent through a second optical delay line similar to the one for
the pump, which was added for additional flexibility. We attenuated the input light with several
neutral density (ND) filters down to the single photon level and applied a 12 nm wide spectral
bandpass filter (BPF, Thorlabs FB1540-12), which was slightly tilted to guarantee ideal trans-
mission of the 1535 nm light. After the filtering, the input pulses had a duration of 287 fs. In
correspondence to the pump beam path, we deployed broadband AR coated mirrors for telecom-
munication wavelengths (Thorlabs E04) for the input light.

Pump and input pulses were combined on a dichroic mirror (Thorlabs DMLP1180) which
featured a transmission of the input light of more than 95% while at the same time reflecting
the pump pulses with more than 97% reflectivity. A coarse temporal overlap between the pulse
trains was found by utilising fast InGaAs photo diodes with a bandwidth of 100 MHz, which
were able to resolve the pulse train. The signal of the diodes was recorded with a digital oscillo-
scope (LeCroy Wavepro 7100A) and evaluated in terms of arrival time difference. The analysis
of an arrival time histogram allowed for a temporal resolution of around 50 ps. This was precise
enough to overlap the pulses within the range of our two temporal delay stages.

Both pulse trains were coupled into the uncoated QPG waveguide sample with an uncoated
aspheric lens (AL, Thorlabs A220TM) with an effective focal length of 11 mm and a correspond-
ing working distance of roughly 8 mm. Note that we achieved mutual coupling efficiencies of
50% for the pump light and 45% for the input light, measured in front of and behind the in-
and outcoupling lenses, respectively. Taking into account the reflection losses of the lenses (4%
per lens) and the losses at the uncoated waveguide facets (14% per facet) but neglecting internal
waveguide losses, we would have expected a maximum coupling efficiency of 68% and find that
we were satisfyingly close to that value.

The waveguide sample had a length of 22 mm and was mounted in a homebuilt oven, which
was kept at a temperature of 190◦C to ensure quasi-phasematching and at the same time prevent
photorefractive effects. It was temperature stabilised with a cryogenic temperature controller
(Oxford Instruments Mercury iTC) and we achieved a long-term stability of ±75 mK over a
constant on-time of roughly 12 months.

At the output of the waveguide the light was collimated with another AL (Thorlabs A220TM)
and sent through a spectral cleaning stage, consisting of a modified 4-f-spectrometer. In our
case, we found the peculiar situation that we needed to filter out the remaining pump light at
865 nm, which was in between the input light at 1535 nm and the converted output at λout =
553 nm. In addition, we had a non-phasematched SHG background at λSGH = 432.5 nm from
the bright pump pulses.

We decided to split up the wavelengths using an equilateral N-SF11 dispersive prism (Thor-
labs PS859). For focussing the light we utilised an uncoated lens with a focal width of 200 mm.
In the focal plane, we installed two D-shaped mirrors with a gap in between. The short wave-
length mirror was AR coated for the visible light (Thorlabs BBD1-E02) and we took care to
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ensure that the SH radiation hit the black mirror mount. The remaining pump light passed
through the gap into a beam dump. The long wavelength mirror, in turn had the same broadband
AR coating as the other input mirrors (Thorlabs BBD1-E04). Then the converted output and
remaining input passed two AR coated lenses for the respective wavelengths, again with focal
widths of 200 mm, and two dispersive prisms to complete the 4-f-setup.

The unconverted input light was coupled into a standard SMF-28 single-mode fiber (SMF)
with a 10x microscope objective and sent to an InGaAs avalanche photo diode (APD, NuCrypt
CPDS-4) for photon counting. The converted light passed an additional longpass filter (LPF,
Thorlabs FEL500) to get rid of the remaining SH radiation and was coupled into a multimode
fiber (MMF), again using a 10x microscope objective. The MMF was fed into either a single-
photon sensitive CCD spectrometer (Andor iKon-M 934P-DD / Shamrock SR-303iA) or a sili-
con APD (Perkin-Elmer SPCM-AQRH-13) for photon counting.

The signals of the APDs were recorded with a time-to-digital converter (ACAM TDC-GPX)
with a temporal resolution of 81 ps, which was plenty for resolving the pulse trains. To account
for the Dazzler behaviour, we restricted the analysis to the 16 shaped pump pulses that exhibited
the largest temporal overlap to the input pulse train. In contrast, this possibility was not given
for measurements of the converted spectrum with the CCD, where we had to integrate over the
whole signal pulse burst.

7.3.3 Spatial mode adaption
For our first measurements, we deployed the CCD spectrometer and comparably high input
powers of around 15 µW cw-equivalent power at 1535 nm. We monitored the converted output
while adjusting the temporal delay stages. Once we had found a signal, we changed the shape
of the pump from a fundamental Gaussian to a first-order Hermite-Gaussian. Theory tells us
that, since our input TF mode is a Gaussian, the conversion efficiency should drop in this case.
What we measured however can be seen in Fig. 7.8 (a).

In contrast to our theory, the conversion efficiency increases when switching to the higher
order pump mode. Note that we took care to keep the pump pulse energies constant for different
TF modes, so power fluctuations can be discarded as reason for this behaviour. To explain these
results, we have to go back to Chapter 2, where we discussed the influence of different spatial
waveguide modes. We had seen (compare Tab. 4.1) that different spatial modes exhibit different
effective refractive indices in the waveguide, which leads to shifted phasematching conditions.
We investigated this in Fig. 7.9, where we deployed the metallic waveguide model to obtain
quick qualitative results.

What do we see from these plots? In the upper left corner of Fig. 7.9, we plotted the JSA
function |G(ωin, ωout)| for a Gaussian TF shape of the pump (solid white lines). The different
ellipses correspond to different spatial mode combinations. We knew that our waveguides were
single-mode for the input light. However, we considered the fundamental and first higher-order
spatial modes for the pump and the converted output, respectively. This gives a total of four
possible combinations. In addition, we assumed our input signal with a spectral bandwidth of
12 nm (dashed white lines). Only the part of the input signal that overlaps with the respective
JSA function is converted. Exactly these overlaps are plotted in the lower plot (blue lines).
We labeled the spatial modes combinations as xx,yy, where xx is the pump mode and yy the
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Figure 7.8 – First measurement result (a). The blue line shows the QPG output
light when the pump is in a fundamental Gaussian TF mode, whereas
the red line was recorded with a first-order Hermite-Gaussian pump.
Contrary to our theory, the conversion efficiency increases when
switching to the higher order pump mode. In (b) and (c), we re-
peated the measurement with higher spectral resolution and resolved
a multi-peak structure. The different peaks correspond to differ-
ent spatial mode combinations and when the incouplings are better
aligned (c), the expected behaviour occurs.

Figure 7.9 – Theoretical investigation of the impact of different spatial modes in
the waveguide on the converted output light. For more details see
the text.
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output mode, respectively. A value of 00 marks the fundamental spatial mode, whereas 10 is the
first-order mode in depth direction.

This becomes interesting when comparing it to the case of a first-order Hermite-Gaussian
TF shape of the pump. In the upper right we plotted again the JSA functions. Note how the
input signal (dotted white lines) visibly overlaps only with one lobe of the JSA function in three
cases. This is reflected in the bottom plot (red lines). We meet the special QPG conditions only
if all fields propagate in the fundamental spatial mode, which corresponds to the second peak.
Then, switching the pump TF order from j = 0 to j = 1 yields the expected drop in conversion
efficiency. For all other cases, we find an increase in conversion efficiency, corresponding to our
measurement results.

We crosschecked our theory by repeating the measurement with higher spectral resolution in
Fig. 7.8 (b). In fact we find distinct peaks which show opposite behaviour upon a change of
the pump TF mode order. The leftmost peak shows the expected decrease in conversion effi-
ciency upon a change of pump mode order from j = 0 to j = 1. In contrast the rightmost
peak shows the opposite behaviour. After optimising the incoupling to obtain the highest cou-
pling to the leftmost peak, we finally measure the expected QPG behaviour in (c), where the
dominating peak gets suppressed by around 80% when switching from a Gaussian pump to a
Hermite-Gaussian. Note that the remaining second peak is still an unfavourable spatial mode
combination, which can be eliminated through further optimisation of the incoupling.

As a result of these measurements, we defined the incoupling working point as the alignment
which yielded exactly one peak in the converted output spectrum, which showed a drop in
conversion efficiency when switching to higher order pump modes.

7.3.4 Mapping of the QPG time-frequency modes
Having found the spatial working point of our device, we moved on to characterising the QPG
operation. To do so, we deployed the approach from Sec. 7.1.2. However, for the experiment we
deployed a TF single-mode probe state, which was realised with the attenuated 1535 nm pulses
from the OPO. We recall that their spectral bandwidth is ∆λprobe = 12 nm, corresponding to a
duration of 287 fs and that they reside in a Gaussian TF mode Gn(ω) with n = 0.

Our first goal was to experimentally deduce the TF structure of the QPG unitary for different
operation conditions, that is, different TF shapes of the pump envelope function α(λp). We
fixed the pump spectral width at ∆λp ≈ 5 nm and scanned the central pump wavelength λp.
The converted 553 nm output light was recorded with the CCD spectrometer and we repeated the
measurements for four different pump TF modes gj(ω). These were the fundamental Gaussian
and the 1st to 3rd order Hermite-Gaussians.

We illustrate the measurement procedure and the results in Fig. 7.10. In (a), we sketch the
situation of a fundamental Gaussian pump (blue), which is scanned over the input Gaussian
(red). As the centre of the pump spectrum moves across the input, we record the overlap ξnj
between both, marked with the striped areas in the illustration. The expected outcome is shown
in the diagram on the right, where we have also indicated the overlap values corresponding to
the two pump positions on the left (also see Fig. 7.2).

In (b), we consider a first-order Hermite-Gaussian pump (blue). Please note that, although
we measure an output intensity, our measurement is intrinsically sensitive to the phase of the
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Figure 7.10 – Measurement of the TF mode structure of the QPG operation. For
more information see the text.

pump. If the centres of pump and input (red) are the same, the contributions from the positive
and the negative lobe of the pump pulse cancel out, and we measure zero overlap. As before,
we indicated the expected measurement result in the right diagram.

In panel (c), we plot the raw output spectra for central pump wavelengths between λp =
860 nm und λp = 875 nm. From top left to bottom right, the order of the pump TF mode
increases from the fundamental Gaussian to the third order Hermite-Gaussian. Note that the
clean spectra are a result of the careful optimisation of the incoupling; no spectral filtering was
applied to the output. The offset of the central output wavelength from the expected value of
λout = 553 nm is most probably due to an erroneous calibration of the CCD spectrometer,
which was not crosschecked prior to the measurements.

We see that, regardless of the central pump wavelength and the pump TF mode order, the
output spectrum stays the same. This is in agreement with our theory, which predicts that the
output TF mode h(λout) is solely defined by the QPG phasematching function. From the analy-
sis of the spectra, we retrieve an output bandwidth of ∆λout = 0.14 nm, which corresponds to a
duration of∆τout ≈ 3.2 ps. In comparison to the input pulse duration of∆τin = 287 fs, we find
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an increase in the pulse duration about a factor of 11. This factor can become greater for longer
waveguides, since the width of the phasematching function is proportional to 1/L. Due to the
Fourier relationship between time and frequency, this elongation enforces a compression of the
spectral bandwidth of equal size. This exciting feature brings TF modes one step closer to be-
ing compatible with narrow band quantum memories, although the bandwidth gap between the
QPG output pulses and typical quantum memory linewidths of around 1 GHz (corresponding to
roughly 500 ps) is still considerable.

Finally, in panel (d) we plot the output intensities against the central pump wavelength. We
obtained the intensities by integrating over the output spectra in the grey-shaded areas in panel
(c) and note that it follows the shape of the QPG input TF mode gj(λin) as can be seen from Eq.
(7.10). The dashed black lines in the plots in (d) are Hermite-Gaussian functions. We fitted a
fundamental Gaussian to the blue measurement points and used the obtained width to generate
the other three modes. From the fit we obtained an ideal central wavelength of λp = 865.6 nm
with a corresponding of ∆λp ≈ 5.2 nm. The measured intensities nicely follow these lines
and only deviate in the regions of sharp features, which can be attributed to the limited Dazzler
resolution of ∆λDazzler ≈ 0.5 nm.

In conclusion we succeeded in mapping both, the input and output TF mode of our QPG by
utilising a coherent probe state and only monitoring the spectrum and intensity of the converted
output light. We find that the QPG input TF modes gj(λin) are indeed defined by the TF shape
of the pump envelope function, whereas the output mode h(λout) is given by the phasematching
function and does not change for different pump parameters. The ideal pump wavelength for
our probe states evaluates to λp = 865.6 nm.

7.3.5 Adapting the QPG TF modes to an unknown input
In a realistic scenario the general shape of the QPG input states might be known – for instance
Hermite-Gaussian modes – but the exact central wavelength and width is uncertain. We have just
demonstrated that the central wavelength can be determined by scanning the pump wavelength
and monitoring the converted output spectrum. Here we adapt the pump width to an unknown
input. As before, the input state is centred at λin = 1535 nm and has a spectral width of
∆λin = 12 nm.

We have already discussed this in Fig. 7.3. However, we sketch the procedure again in
Fig. 7.11 (a.1) and (a.2). We assume a Gaussian input (red pulse), which is overlapped with a
Gaussian pump (a.1) or a first-order Hermite-Gaussian pump (a.2), respectively. From left to
right, the spectral pump width increases. This consequently leads to a drop in the height of the
pump peak, since the pump spectrum is normalised to guarantee a constant pump pulse energy.
We find that the overlap for the Gaussian pump is always positive, whereas the overlap for the
Hermite-Gaussian has a positive and negative contribution, which always exactly cancel out if
the modes have the same centre.

This is schematically drawn in (b), where we plot the overlap integral as a function of the
pump width for different pump mode shapes. The overlap for the Gaussian pump increases
until it reaches the maximum value of one. For a further increase in pump bandwidth, the
overlap decreases again. In addition, the overlap between the probe spectrum and the Hermite-
Gaussian pump is constantly zero. However, we find a peculiar situation for the second order
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Figure 7.11 – Measurement results for adapting the pump width to an unknown
input state. For more details see the text.

pump mode j = 2. First, the overlap increases. Then, it starts to decrease and completely
vanishes for an adapted pump bandwidth, due to the orthogonality of the Hermite-Gaussian
modes. A further increase of the pump bandwidth leads again to a positive overlap. Hence, we
can use the minimum overlap between the probe and the second-order Hermite-Gaussian pump
as an optimisation criterion for the pump bandwidth (compare Fig. 7.3).

Due to the characteristics of the pulse shaper, which led to a different effective number of
shaped pulses per burst for different spectral widths, we could not directly evaluate the raw
data, but we evaluated the ratios of converted output intensity for j = 0 and j = 1, 2, 3. Note
that although the shape of the expected curves changes with respect to (b), the essential charac-
teristics stay the same.

The results of this measurement are plotted in panel (c), where we show the normalised output
intensities as obtained from the measured spectra. In our plot, the mode order j refers to the
pump TF shape and the pump width ∆λp is now given in units of nanometres. For very narrow
pump bandwidths close to the Dazzler resolution limit, all conversion efficiencies are equal,
since no shaping takes place. However, when overcoming this limitation, the relative intensities
for the odd pump modes j = 1 and j = 3 drops to a low value and does not increase anymore.
In contrast, the converted intensity for the even order Hermite-Gaussian pump j = 2 exhibits a
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minimum and increases again afterwards. In correspondence to panels (a) and (b), we identify
the minimum with the ideal pump bandwidth, which evaluates to ∆λp ≈ 4 nm. The associated
pump pulse duration of ∆τp ≈ 275 fs compares outstandingly well to the known input pulse
duration of ∆τin = 287 fs.

In addition, we retrieve from the suppression of the conversion in the higher order pump
modes a raw mode-selectivity of 70%, which we calculate from the ratio of converted intensity
in j = 0 and the respective intensities in j = 1 . . . 3. Note that this value is neither corrected
for the limited resolution of the Dazzler, nor for the flat spectral background that can be seen in
Fig. 7.10 (c), and thus constitutes a lower limit to the QPG performance.

Concluding, we have shown how to adapt the QPG TF mode structure to an unknown input
state. First, the central pump wavelength must be determined. Thereafter, the ideal pump band-
width can be retrieved from measuring the converted intensity for different pump TF shapes
and spectral widths. The demonstrated capability to adapt the QPG online to an unknown input
state is a large benefit for real world applications, where the initially generated TF shapes might
be distorted during long distance transmission or due to the dispersion of optical elements in a
networking architecture.

7.3.6 Performance benchmarks

In the last experimental section, we analyse the performance benchmarks of the QPF, that is
the internal conversion efficiency of the QPG when operated with light at the single photon
level and its mode selectivity in detail. For obtaining the conversion efficiency, we attenuated
the coherent input pulses to a mean photon number of 〈n〉 ≈ 0.15 per pulse and recorded the
converted output counts with the silicon APD which was fed into the TDC. The analysis of
these measurements is complicated by the peculiar behaviour of the pulse shaper, in particular
the change of the repetition frequency of the shaped pulse train as illustrated in Fig. 7.6 (c).

We have plotted the measurement results in Fig. 7.12. In (a), we show the converted output
counts as a function of the pump pulse energyEpump. We find a maximum conversion efficiency
at an energy of Epump ≈ 16pJ in front of the incoupling lens. In the following, we want to
detail the origin of these numbers. The open circles are the measured raw counts when both,
pump and input signal, are fed into the QPG. For each value, we have additionally measured the
APD counts when blocking the input signal and attributed the remaining counts to pump induced
background. We subtracted these numbers from the raw counts and plotted the corrected counts
with green squares. The theoretical fit is given by the well-known relation for SFG efficiency,
given by

ηSFG = sin2(Cj), (7.15)

where Cj = Cj(
√
Pp) is a function of the pump pulse peak power and was defined in Eq. (7.13).

For measuring the counts, we have set a 200 ns wide time gate on the TDC, corresponding
to 16 shaped pump pulses for which we assume close to ideal temporal overlap with the input
signal. The Dazzler is triggered at a repetition frequency of fDazzler = 20 kHz and the integra-
tion time of the photon counting was set to one second. We obtain a total up-time of our system
of T = 200 ns · 20 · 103 = 4 ms, which is also the time constant shown in the plot. With the
mean photon number of 〈n〉 ≈ 0.15 of the input pulses, we find a total input photon number of
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Figure 7.12 – Measured performance benchmarks of the QPG. In (a), we plot the
converted output counts as a function of the pump pulse energy.
We find a maximum conversion at an energy of roughly Epump ≈
16 pJ and the counts follow nicely the theoretical sine-square fit.
We obtain a maximum efficiency of 87%. In (b), we analyse the
mode-selectivity of the QPG, which evaluates to 80%. Note that
this number is mainly limited by the finite resolution of the pulse
shaper.

Nin = 48 · 103 during the up-time of our device, corresponding to 16 · 20 · 103 = 3.2 · 105 input
pulses.

From this number we can retrieve the internal conversion efficiency ηint of our device by
evaluating the measured counts, since

Nmeas = Nin · ηtot = Nin · ηface1 ηint ηface2 ηarm ηMMF ηdet. (7.16)

Here ηtot is the total conversion efficiency of our setup, which evaluates to roughly ηtot ≈ 24%.
We can decompose this by evaluating the known losses in our setup. From Fresnel’s equations,
we find an input waveguide facet transmissivity for the input photons of ηface1 = 0.86 and an
output transmissivity for the converted photons of ηface2 = 0.84. The transmission through our
setup after the waveguide, including all spectral filtering, was measured to be ηarm = 0.90,
the incoupling efficiency into the multimode fiber was ηMMF = 0.70 and finally, the detector
efficiency as specified from the vendor is ηdet = 0.60. Together with the maximum number of
detected output counts of Nmeas ≈ 11500, we obtain an internal conversion efficiency of

ηint =
Nmeas

Nin · 0.273
≈ 0.877. (7.17)

This is an excellent value, in particular when considering that it is only a lower bound, because
we did not account for the propagation losses during the waveguide, which could not be reliably
measured at the output wavelength λout = 553 nm. We emphasise that this maximum efficiency
is reached at very low pump pulse energies of Epump = 15.77 pJ in front of the waveguide,
corresponding to a cw-equivalent power at 80 MHz repetition rate of only 1.26 mW. If we take
into account our coupling efficiencies, we calculate an pulse energy of roughly 12.35 pJ inside
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the waveguide. This is possible only because of the careful device engineering, which leads to
the fact that the input light experiences the pump peak power level of around 42.2 W over the
whole interaction length, due to their similar group velocities. If we compare this value to our
theoretical considerations from Eq. (7.14), where we calculated a pump peak power of around
37 W, we find an excellent agreement to the measurement. The deviations originate from the
finite propagation losses in the waveguide and from a non-perfect periodic poling. These two
factors essentially lower the effective nonlinearity deff , leading to a power which is slightly
higher than expected.

Fig. 7.12 (b) shows once more the depletion of the converted output spectrum when changing
the TF shape of the pump. The big plot shows the output spectrum as measured with the CCD
spectrometer, where we emphasise that, due to careful incoupling, only a single peak is excited
in the output, and we applied no additional spectral filtering. The blue curve corresponds to a
Gaussian pump, as shown in the upper inset, where the grey shaded area illustrates the Gaussian
input signal. Switching the pump shape to a first-order Hermite-Gaussian, represented by the
red curve in the lower inset, we record a depletion in the converted output. Note that in the
spectral plots, error bars are smaller than the symbols and the dashed lines are a guide to the
eye. We find a depletion of around 80%, when subtracting the flat background, represented by
the grey-shaded region in the main plot, and integrating over the dominating peak. We identify
this value with the mode-selectivity of our device, which is still a lower bound due to the finite
resolution of the Dazzler. Although this value is already very good, we expect to improve it in
future experiments by deploying a better pulse shaper.

Summary
In this section we have demonstrated the experimental implementation and successful characterisation

of a QPG. We have shown how the QPG TF mode structure can be revealed by probing the process

with coherent basis states and demonstrated an adaption of the QPG input TF mode gj(λin) to an

’unknown’ input state TF mode G(λin). Our measurements revealed a TF mode-selectivity of 80%, which

is limited by the finite resolution of our pulse shaper. In addition, we measured an internal conversion

efficiency of 87.8% for attenuated coherent input pulses with a mean photon number of 〈n〉 = 0.15.

The overall conversion efficiency evaluated to 24% including detector losses, which is a remarkable

value, considering that our QPG converts complete ultrafast pulses. Again, this efficiency is a lower

bound since our analysis neglected any losses inside our QPG sample. Our experiments are a proof-

of-principle that our device facilitates operation on TF modes of quantum states and is thus a valuable

building block for future high-dimensional TF quantum networks.

7.4 Next steps: Quantum pulse shaper
Let us now turn our attention towards the second device we studied theoretically during this
work, the QPS. In this device, input light in the green wavelength regime is frequency down-
converted to an output at 1535 nm, by mixing it with shaped pump pulses at 865 nm. Obviously,
this process is simply the inverse of the QPG and consequently we find that pump and output
travel at the same group velocity. This implies a phasematching function that is parallel to the
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Figure 7.13 – Schematic illustrating the operation principle of a QPS. Panel (a)
depicts how a green input pulse is shaped into the TF mode defined
by the pump. If an additional signal that is in an orthogonal TF
mode compared to the pump is fed into the device (berry), the QPS
acts as an add filter. In (b) we sketch how the combination of QPS
and QPG operation can be exploited to implement a tuneable TF
mode beamsplitter. Finally, in (c.1) to (c.3) we plot the JSA func-
tion G(λin, λout) for three different shapes of pump pulses. Note
that the input mode g(λin) does not change, while the output mode
h(λout) mimics the pump shape.

ωout-axis. Formally, we find that the QPS operation is given by

ÛQPS = exp
[
C∗j ĈÂ

†
j + h.c.

]
, (7.18)

which in correspondence to our explanation is the inverse of the QPG operation ÛQPG. Note
that we also find that the input mode associated with Ĉ is fixed, whereas the output mode Â†j
can be tuned.

108



SECTION 7.4 Next steps: Quantum pulse shaper

We sketch this situation in Fig. 7.13. Panel (a) illustrates the QPS operation in a slightly
more general way than discussed before. The green pulse labeled gin is the input to the QPS at
wavelength λin, which is reshaped by interacting with the yellow pump. Again, the inside of
the box illustrates the special beamsplitters operating on the input TF modes. At the output, we
find a pulse h with wavelength λout which mimics the shape of the pump, whereas nothing is
transmitted. In addition, we can feed another pulse with wavelength λout into the QPS, which is
indicated by the dotted arrow. If we assume that this pulse is orthogonal to the pump TF mode,
it is simply transmitted. Hence, the QPS can serve as an add filter in TF mode networking
applications.

In (b) we illustrate, how a combination of QPG and QPS operation can be exploited to imple-
ment a special, tuneable TF mode beamsplitter. Feeding two adapted pulses with wavelengths
λl and λs (for long and short) into our device, both single mode SFG and DFG can occur simul-
taneously, if the input pulses overlap with the respective QPG / QPS input modes. By tuning
the pump power such that only 50% conversion efficiency is achieved, the QPG converts half of
the input pulse at λl to λs. In parallel, the QPS converts half of the pulse at λs to λl. Since QPG
and QPS are inverse operations, the input modes of the QPG correspond to the output modes
of the QPS and vice versa. Consequently, we find a perfect 50/50 TF mode beamsplitter and
succeed in realising a mode-selective interference of quantum pulses at different frequencies, as
suggested in [62].

For more details we analyse the JSA function G(λin, λout) of the QPS in (c.1) to (c.3). The
dashed white lines are the phasematching function, which in agreement to our theory is verti-
cal. The solid white lines are the pump envelope function for different TF shapes of the pump
(yellow pulses). The plots along the axes show the shape of the input and output modes g(λin)
and h(λout), respectively. In contrast to the QPG, where the output modes were fixed and the
selected input modes corresponded to the pump (see Fig. 5.12), the QPS has fixed input modes
which are defined by the phasematching. The output modes, however are defined by the shape
of the pump and we note that input and output can have very different spectral bandwidths, as
was the case for the QPG.

For a better comparison with the previous investigations, we have restricted this analysis to
TF mode shapes from the Hermite-Gaussian framework. Note however that the QPS is in no
way restricted to this. It is also possible to shape an input Gaussian into an output exponential
function, which might become beneficial in the future for the coupling of light to quantum
memories.

As a final remark we want to emphasise that, although QPG and QPS are described in a purely
quantum optical framework, both processes also work for bright light. Hence it is not unlikely
that they impact the field of ultrafast physics. A possible application would be the generation of
tuneable, ultrafast optical pulses at telecommunication wavelengths from a cw input field in the
visible, or vice versa when adapting the dispersion properties accordingly.
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Summary
We have discussed a second device, the quantum pulse shaper, which is the natural opposite of the

quantum pulse gate. Whereas the quantum pulse gate facilitates the selection of one mode from a

multimode input, the quantum pulse shaper allows for the almost arbitrary reshaping of an input TF

mode. In addition, it can be utilised to add new TF modes to an already existing state. In conjunction,

quantum pulse gate and quantum pulse shaper provide complete add/drop functionality for high-

dimensional TF mode quantum networks.
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8
Conclusion and outlook

8.1 Conclusion

This thesis gave us the possibility to study the exciting fields of ultrafast quantum optics and
to contribute to its current progress. In this comparably young research area, the properties of
ultrafast pulses are combined with the intriguing possibilities of quantum optics to pave the way
towards novel quantum applications. Of these, high-dimensional quantum information networks
based on time-frequency (TF) modes of ultrafast quantum states of light were one of the main
driving forces behind our research.

We have investigated the intricate TF structure of quantum optical states generated in the pro-
cess of ultrafast parametric down-conversion (PDC). Before this thesis, our group developed a
dispersion engineered PDC source which exhibited exceptional properties [53] like a continu-
ously tuneable number of TF modes. This source was further optimised in parallel to our work
[54] and we deployed it to study the effect of different pumping conditions on the generated pho-
ton pair. We demonstrated that, surprisingly, the temporal coherence properties of the pump do
not influence the correlation time of the photon pair, a quantity which measures the simultaneity
of the photons and is tantamount to the maximum timing information that can be extracted from
the state. In contrast, our studies revealed that the correlation time is solely defined by material
parameters of the source, a fact which we could also verify experimentally. This result allowed
us to identify operating conditions that either facilitate a gain in timing information or enforce
a loss of it. We derived an easy analytical expression directly applicable to many current PDC
sources, which will allow other groups to critically crosscheck their experimental settings in
light of these results.

In addition, we studied the TF correlations of PDC states from a more fundamental point
of view. Entanglement, one of the most fascinating features of quantum mechanics, manifests
itself in nonlocal correlations between two parties. It has been shown that parametric down-
conversion can generate optical EPR states, where the generated signal and idler have nonclas-
sical correlations between their conjugate field quadratures. We transferred this picture to the
spectral-temporal domain, by investigating TF correlations in a PDC photon pair. Interestingly,
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an apparent Fourier limit of the spectral and temporal widths can be overcome when TF correla-
tions are present in the state. We formulated a complete four-dimensional chronocyclic Wigner
theory of the spectral-temporal properties of PDC states and introduced a novel TF entangle-
ment measure, namely the inverse conditioned-time bandwidth product, which quantifies these
correlations in a way known from the treatment of optical EPR correlations [84]. With this
work, we managed to build a bridge between two seemingly disparate descriptions of PDC:
the discrete variable description on the one hand and the continuous variable description on the
other.

Moreover, we conducted a theoretical study to investigate the effects of time-ordering on ul-
trafast parametric processes [76]. As opposed to the common theoretical treatment, the Hamil-
tonians of parametric processes do not commute between two instants of time. We carried out
numerical studies and found that time-ordering drives parametric down-conversion towards a
single TF mode operation regime. On the downside, it suggests an upper limit to the operation
fidelity of our frequency conversion devices. This is a result which has to be investigated in
more detail in the future.

Finally, the main part of our work was concerned with research on ultrafast frequency trans-
lation of photons. We introduced two novel devices, the quantum pulse gate (QPG) and the
quantum pulse shaper (QPS), which facilitate a TF mode-selective operation on quantum pulses
[60, 61]. Both devices are based on group-velocity matched conversion processes in lithium
niobate waveguides. In the case of the QPG, the ultrafast pump pulses and the quantum input
pulses travel at the same velocity, whereas in the case of the QPS, it is pump and output that
share one velocity.

A detailed theoretical study of the QPS suggests that it can be used to reshape single pho-
ton pulses in a quantum coherent way without introducing losses. In addition, since the QPS
operation can be modelled with a special quantum mechanical beamsplitter, the QPS preserves
the quantum characteristics of the input photon. In contrast, we have seen that the QPG can
be deployed to select one specific TF mode from a multimode input state. The selected mode
is converted to another frequency, while the remaining modes are transmitted. Classical pulse
shaping of the ultrafast pump pulses defines the shape of the selected mode. Since every mode
is converted into the same output, interference between formerly orthogonal modes becomes
possible after the QPG operation.

During this thesis we succeeded in implementing a working QPG. We characterised our de-
vice and found a TF mode-selectivity of at least 80% together with an internal conversion effi-
ciency of 87.7%. These outstanding values were achieved with very low pump pulse energies
of only 12.4 pJ inside the waveguide, which is only possible thanks to the careful dispersion
engineering of our device. Note that these benchmarks are already satisfying for a proof-of-
principle demonstration, but we expect to improve them in future experiments by deploying
better equipment, particularly for the shaping of the ultrafast pump pulses.

8.2 Outlook
Let us now put the results of this work into a broader context and highlight possible continua-
tions of this thesis. We have discussed the QPG in light of an operation on single photons. Yet,
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our theoretical framework is also valid in the CV regime, where higher order photon numbers
are crucial. In particular, the QPG, when operated at low conversion efficiencies, can be de-
ployed to implement a mode-selective photon subtraction. This operation is a prerequisite for
CV entanglement distillation [188] as well as the generation of exotic quantum states of light
light Schrödinger cat and kitten states [189, 190].

As a result of this thesis, we are currently collaborating with the group of Nicholas Treps in
Paris to realise a CV QPG for a mode-selective operation on multimode quantum frequency
combs [59]. This is also interesting in light of measurement based quantum computation
schemes, where different nodes of a large graph state – realised for instance by a multimode
quantum frequency comb – must be connected in a distinct order. Here, the QPG can play the
role of linker to establish the connections between the different nodes.

Another natural application of the QPG technology becomes apparent, when considering the
capability of the QPG to convert any frequency inside its acceptance bandwidth to the same out-
put spectrum. This, in combination with a high-density quantum dot sample can be an appealing
approach to a deterministic single-photon source. Typically, quantum dots in an ensemble have
slightly different emission frequencies, due to their mutual interaction with the sample. This
prevents a direct use of several quantum dot sources in a quantum network, where indistin-
guishable photons are indispensable. Ways to tune single dots, for instance by a field-induced
Stark shift, have been demonstrated, but they require a fine control over many parameters for
a large number of devices. In contrast, collecting and converting the photons generated by the
quantum dots with a QPG automatically translates them to the same frequency, without the
need for controlling many parameters. Further research along these lines with a special focus on
achievable efficiencies and photon generation rates may provide interesting new technologies
and another link between the fields of semiconductor quantum optics and nonlinear quantum
optics.

A further branch of future research is the combination of a PDC source and one or more
QPGs. First, a QPG can be used to select a specific TF mode from a PDC state. Heralding on
the output of the QPG prepares a pure single-photon pulse in the chosen TF shape in the other
arm of the PDC. In this way, the generation of specific TF modes for networking applications
is feasible. The question is, how the heralded state preparation can be verified. There are
two obvious ways: first, one can simply measure the spectrum of the prepared single photons;
second, the temporal shape of the prepared photons can be analysed;

Measuring the temporal shape of the heralded photon directly is challenging due to its ultra-
short duration. Still, a possible way to achieve this is to deploy single photon sensitive streak
cameras with picosecond resolution. We are planning on doing this in the framework of a re-
search grant in collaboration with the group of Manfred Bayer from the University of Dortmund.

Another possibility is the evaluation of the photon number statistics, on the one hand directly
at the output of the PDC, and on the other hand behind the QPG. It is well-known that for a
single-mode PDC state, signal and idler exhibit thermal photon number statistics, which yield
a second-order correlation function of g(2) = 2, whereas for a multimode PDC, we obtain
g(2) = 1. Since the QPG can be described as a beamsplitter, it can only alter the photon number
statistics of light when it operates on the TF modes. Hence, measuring g(2) = 2 at the output of
the QPG, while measuring a lower g(2) directly behind the PDC proves the selection of a single
mode. These are immediate steps we are currently undertaking in our labs.
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Further steps will include the more thorough investigation of quantum states exhibiting a well-
defined number of TF modes generated with our PDC source. We have shown theoretically,
that shaping the bright PDC pump pulses directly affects the TF structure of the generated
PDC states. We plan to exploit this feature to create higher-dimensional entanglement in a
very controlled way suited to experimental work. As a first experiment, we envision our PDC
source with two successive QPGs, one in each arm of the PDC, to verify the higher-dimensional
entanglement. For this task it is beneficial that the QPG, although performing a TF single-
mode operation, not necessarily operates on only one TF mode of the input state. A clever
shaping of the pump pulses facilitates an operation on multiple input TF modes, connecting
them in arbitrary ways. Thus, we are able to measure the TF correlations in the original as
well as in a conjugate basis with our QPGs. We recall that higher-dimensional entanglement
is interesting not only for investigating fundamental questions on non-locality [159], but also
for quantum information applications, where it for instance promises an increased security in
quantum cryptography [93].

Our second device, the QPS has been theoretically shown to facilitate a quantum coherent
reshaping of single-photon pulses. However, as for the QPG, the theoretical framework is not
limited to single photons. An interesting research task will be to study the QPS as an alternative
pulse shaper for classical pulses. At the moment, pulse shaping capabilities are best developed
for Ti:Sapph wavelengths between 700 nm and 950 nm. The QPS as discussed in this thesis
facilitates the generation of shaped pulses at telecommunication wavelengths from cw input
light in the green. This could be an appealing alternative to common Ti:Sapph / OPO systems,
if the conversion efficiencies and resulting pulse energies are large enough. Given a positive
outcome of this research, we foresee a potential for the foundation of a spin-off company here.

Coming back to quantum optics, we have already shown theoretically, that the QPS can be
operated as an add-device for TF multimode quantum networks. Together with the QPG, com-
plete add/drop functionality can be implemented, paving the way towards a TF multiplexing in
quantum communication. This prospect is beneficial, since TF modes are compatible with exist-
ing single-mode fiber networks, and, due to their careful engineering, QPS and QPG are highly
energy efficient devices. In light of telecommunication applications, these features promises
a huge amount of savings compared to other approaches based on spatial multiplexing, which
require a replacement of most fibers.

The last aspect we want to highlight here is the interfacing between stationary and flying
qubits. We have demonstrated that the QPG implements a bandwidth compression from input
light to output light of more than an order of magnitude. This value can be increased by deploy-
ing longer waveguides. In contrast, the QPS facilitates a coherent reshaping of quantum pulses,
allowing for the generation of exponential pulses. It will be highly interesting to assess the
limitations of both devices and find ways to exploit them to couple photons from TF quantum
networks to narrow bandwidth quantum memories.

In conclusion, the answers we found during this thesis gave rise to even more questions. Our
results have laid a solid basis for the advancement of research on ultrafast TF modes of quantum
states of light in the single-photon as well as in the CV regime. We have identified possible
further research lines and highlighted collaborations that have emerged as a result of this thesis.

114



Th-th-th-that’s all folks!

Porky Pig

9
Acknowledgements

I’ve had the wonderful opportunity to spend several years researching a truly fascinating topic
and contributing to a young and emerging research field. Before this time I could not possibly
have imagined the thrill of doing something which has never been done before. Now, after
finishing this thesis, I find that this work would not have come to life without the help of many
outstanding and extra-ordinary people whom I want to thank.

The foremost thanks goes to my supervisor and guide Professor Christine Silberhorn. Her
guidance over the long years since I joined her group as a student helper has been, and will be,
invaluable. I very much appreciate her support during the time of our transition to Paderborn,
when she made it possible for me to spend much time with my wife on the weekends. Also I
want to thank her for the trust she put in me, both in research and administration and for never
making me regret to have chosen this path. I really enjoyed these years and am looking forward
into the future.

Sincerest thanks then goes to my wife, who never stopped supporting me. I know that I often
had science on my mind when reality would have been more appropriate, and I apologise for
that. I’m grateful to you for putting up with my work and I’m looking forward to our time
together abroad.

Onto all the great colleagues I had the pleasure working with. You guys rock! Special
thanks to Hendrik Coldenstrodt-Ronge for introducing me to the group in the first place, and
to Christoph Söller for supervising my Diploma thesis. I learned a lot from both of them.
Further thanks to Malte Avenhaus, for unveiling the mysteries of Apple and Python in a fully
non-religious sense. Thanks to Thomas Nitsche and Vahid Ansari, who both survived my super-
vision and are still carrying on with physics. Thanks heaps, Michael Stefszky, for proofreading
my thesis and for introducing me to continuous variable quantum optics. A big "Thank you!" to
Fabian Katzschmann and Stephan Krapick, simply for friendship. Many thanks Andreas Christ,
for never tiring to try to explain to me this shady thing called theory and for being around
for so long. Big thanks to Sonja Barkhofen, Matthias Bechert, Agata Brańczyk, Patrick Bron-
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Appendix

A.1 Derivation of the vectorial wave equations in
waveguides

In section 4.1 we present the vectorial wave equations of an electromagnetic wave inside a
waveguide. Here we illustrate how they are derived from Maxwell’s equations.

Maxwell’s equations for a lossless, dielectric medium with spatially varying permittivity ε(r)
are given by

∇D = 0, (A.1)

∇B = 0, (A.2)

∇×E = −ıωB, (A.3)

∇×B = ıωµ0D, (A.4)

with 1√
ε0µ0

= c, where we have used the harmonic ansatz E, B ∝ exp(−ıωt). Applying an
additional curl operator to Eq. (A.3) yields

∇× (∇×E) = −ıω(∇×B)
(A.4)
= ω2µ0D. (A.5)

By substitutingD := ε0ε(r)E, we find

∇× (∇×E) =
ω2

c2
ε(r)E. (A.6)

We replace the lefthand side of Eq. (A.6) with the identity

∇× (∇×E) = ∇(∇E)−∆E (A.7)

and rewrite with Eq. (A.1)

∇D = 0 = ∇(ε0ε(r)E) = ε0 [(∇ε(r))E + ε(r)∇E] ,

⇒ ∇E = −
(
∇ε(r)

ε(r)

)
E.

(A.8)
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Putting things together, we retrieve the wave equation from Eq. (A.6):

∆E +
ω2

c2
ε(r)E +∇

[(
∇ε(r)

ε(r)

)
E

]
= 0. (A.9)

For the second wave equation, we apply a second curl operator to Eq. (A.4):

∇× (∇×B) = ı
ω

c2
∇× (ε(r)E). (A.10)

For the lefthand side, we deploy the same identity as before. Additionally, we reuse

∇× (ε(r)E) = ε(r)(∇×E) + (∇ε(r))×E, (A.11)

which leaves us with

−∆B =
ω2

c2
ε(r)B + ı

ω

c2
(∇ε(r))×E. (A.12)

Now, we identify

ı
ω

c2
E

(A.4)
=

1

ε(r)
∇×B (A.13)

and finally end up with

∆B +
ω2

c2
ε(r)B +

[
∇ε(r)

ε(r)
× (∇×B)

]
= 0, (A.14)

which is the second vectorial wave equation.
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A.2 Calculation of the electric field strength
In equation (4.14), we truncated the Taylor expansion of the nonlinear polarisation after the
second order term. We reasoned that the third order term was several orders of magnitude
smaller, because of the given electric field strength. For the convenience of the reader, we
briefly detail how the field strength is actually calculated. Note that these calculations assume a
continuous wave laser and are only approximately correct in our case of ultrafast laser pulses.

The peak intensity of a spatially Gaussian laser beam with an 1
e -width of d and an optical

power P is given by [191]

I =
P

πd2/2
. (A.15)

Furthermore, the intensity is related to the electric field amplitude |E| by

I =
1

2
cε0n|E|2, (A.16)

where c is the speed of light, ε0 is the vacuum permittivity and n is the refractive index of the
medium. Typical parameters for our experiments are a cw-equivalent power of less than 10 mW,
a refractive index of n ≈ 2 and a beam width inside the waveguide of d ≈ 6µm. Putting things
together we obtain

|E| =
√

4P

πd2cε0n
≈ 2.58 · 105 V

m
, (A.17)

which is the value we used in the main text.
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A.3 The dielectric tensor

A.3.1 Kleinman symmetry
The χ(2)-nonlinearity is generally a tensor of rank three. Since it reflects the response of the
medium to the incoming light wave, it is essentially frequency independent as long as the light
frequency ω is much smaller than any resonance frequency ωr of the material. This assumption
is true for the transparency window of the nonlinear materials. In this case, we can also assume
a lossless medium, for which a complete permutation symmetry must be valid [50]:

χ
(2)
ijk(ω3 = ω1 + ω2) = χ

(2)
jki(ω1 = −ω2 + ω3) = χ

(2)
kij(ω2 = ω3 − ω1) =

= χ
(2)
ikj(ω3 = ω2 + ω1) = χ

(2)
jik(ω1 = ω3 − ω2) =

= χ
(2)
kji(ω2 = −ω1 + ω3).

(A.18)

However, we have just stated that the nonlinearity is frequency independent. Hence, we can
permute the frequencies without regarding the order of the indices to end up with

χ
(2)
ijk(ω3 = ω1 + ω2) = χ

(2)
jki(ω3 = ω1 + ω2) = χ

(2)
kij(ω3 = ω1 + ω2) =

= χ
(2)
ikj(ω3 = ω1 + ω2) = χ

(2)
jik(ω3 = ω1 + ω2) =

= χ
(2)
kji(ω3 = ω1 + ω2).

(A.19)

This outcome is called the Kleinman symmetry condition, which we can safely apply for our
case of light frequencies far away from any material resonance that is absorption line.

A.3.2 Nonlinear tensor and contracted notation
Given that the Kleinman symmetry condition holds, we can define a rank three tensor d = 1

2χ
(2)

[50]. With this we can formally rewrite the nonlinear polarisation:

P
(i)
NL(ωn + ωm) =

∑
jk

∑
(nm)

2dijkEj(ωn)Ek(ωm). (A.20)

In this cumbersome notation, the indices i, j, k label the coordinate axes of our reference frame
and the frequencies ωn and ωm are chosen such that ωn + ωm = const. We now assume that
dijk is symmetric in its last two indices, which is valid as long as the Kleinman symmetry holds.
This allows us to define a contracted notation according to

jk: 11 22 33 23,32 31,13 12,21
l: 1 2 3 4 5 6

(A.21)

Now, the nonlinear tensor d can be represented as a 3x6 matrix

dil =

d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

 (A.22)
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Considering closely our symmetry conditions, we find that not all elements of this tensor are
linearly independent. For instance, we see that d12 ≡ d122 = d212 ≡ d26 and finally recover
only ten independent elements. Thus we can rewrite the nonlinear tensor:

dil =

d11 d12 d13 d14 d15 d16

d16 d22 d23 d24 d14 d12

d15 d24 d33 d23 d13 d14

 (A.23)

Taking care of the degeneracy factor which distinguishes SHG and SFG/DFG, we find the non-
linear polarisation for an SHG process:

Px(2ω)
Py(2ω)
Pz(2ω)

 = 2

d11 d12 d13 d14 d15 d16

d16 d22 d23 d24 d14 d12

d15 d24 d33 d23 d13 d14




Ex(ω)2

Ey(ω)2

Ez(ω)2

2Ey(ω)Ez(ω)
2Ex(ω)Ez(ω)
2Ex(ω)Ey(ω)

 . (A.24)

In addition, we can write the nonlinear polarisation for an SFG process in which ω3 = ω1 + ω2

as

Px(ω3)
Py(ω3)
Pz(ω3)

 = 4

d11 d12 d13 d14 d15 d16

d16 d22 d23 d24 d14 d12

d15 d24 d33 d23 d13 d14




Ex(ω1)Ex(ω2)
Ey(ω1)Ey(ω2)
Ez(ω1)Ez(ω2)

Ey(ω1)Ez(ω2) + Ey(ω2)Ez(ω1)
Ex(ω1)Ez(ω2) + Ex(ω2)Ez(ω1)
Ex(ω1)Ey(ω2) + Ex(ω2)Ey(ω1)

 .
(A.25)

A.3.3 Lithium niobate and potassium titanyl phosphate
For the two nonlinear material systems used during this work, the nonlinear optical tensors are
considerably simplified. For LN we find [72]

dLN =

 0 0 0 0 d15 −d22

−d22 d22 0 d15 0 0
d31 d31 d33 0 0 0

 , (A.26)

whereas for KTP the nonlinear tensor is given by

dKTP =

 0 0 0 0 d15 0
0 0 0 d24 0 0
d31 d32 d33 0 0 0

 . (A.27)

Let us briefly explain how to understand these tensors. We assume a SFG process in KTP,
where the incoming light fields have frequencies of ω1 and ω2 and are both polarised along the
x direction. The resulting nonlinear polarisation will be only oriented along the z direction,
since only the d31 component couples to the incoming light. Similar conclusions can be drawn
for any combination of input fields.
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A.4 Three-wave mixing Hamiltonian

In Sec. 5.1.2, we present the three-wave mixing Hamiltonian ĤTWM. Here, we go into the
derivation of this Hamiltonian. To this end, we assume three quantum fields Ê1, Ê2 and Ê3 and
drop the time- and space-dependence in our notation. Using the relation

Ê = Ê+ + Ê−, (A.28)

where Ê+ comprises the annihilation operator and Ê− the creation operator, respectively, we
can perform the calculations, which yield

ĤTWM ∝
∫
V

dr
(
Ê1 + Ê2

)(
Ê1 + Ê2

)
︸ ︷︷ ︸

∝P̂NL

Ê3 =

=

∫
V

dr
(

(Ê+
1 )2 + (Ê−1 )2 + (Ê+

2 )2 + (Ê−2 )2 + 2Ê+
1 Ê
−
1 + 2Ê+

2 Ê
−
2 +

+ 2Ê+
1 Ê

+
2 + 2Ê−1 Ê

−
2 + 2Ê+

1 Ê
−
2 + 2Ê−1 Ê

+
2

)
(Ê+

3 + Ê−3 ) =

=

∫
V

dr
[

(Ê+
3 Ê
−
1 Ê
−
1 + h.c.) + (Ê+

3 Ê
−
2 Ê
−
2 + h.c.) + (2Ê+

3 Ê
−
1 Ê
−
2 + h.c.)︸ ︷︷ ︸

PG

+ (2Ê+
3 Ê
−
1 Ê

+
2 + h.c.) + (2Ê+

3 Ê
+
1 Ê
−
2 + h.c.)︸ ︷︷ ︸

SFG/DFG

+ (2Ê+
3 Ê

+
1 Ê
−
1 + h.c.) + (2Ê+

3 Ê
+
2 Ê
−
2 + h.c.)︸ ︷︷ ︸

optical Rectification

+ (Ê+
3 Ê

+
1 Ê

+
1 + h.c.) + (Ê+

3 Ê
+
2 Ê

+
2 + h.c.) + (2Ê+

3 Ê
+
1 Ê

+
2 + h.c.)︸ ︷︷ ︸

to be considered

]

(A.29)

As marked, the first line of the final expression marks parametric generation (PG) processes,
during which one photon of the field Ê3 decays into a pair of photons which can be distributed
between fields Ê1 and Ê2. Note that these terms also describe SHG, which is not present with
only quantum fields at the input. The second line describes SFG/DFG processes in agreement
to our classical considerations. The third line consists of the optical rectification terms, which
we neglect throughout this thesis and which are included here only for reasons of completeness.
This leaves us with the fourth line, which has a highly peculiar structure. It includes only terms
corresponding to the simultaneous creation or annihilation of three photons. These have to be
considered in light of the Manley-Rowe relations [50].

The Manley-Rowe relations relate the photon decay and creation rates for the different fields
in three-wave mixing processes. In short, they define three conserved quantities, which can be
written as

M1 =
〈n2〉2

ω2
+
〈n3〉2

ω3
, M2 =

〈n1〉2

ω1
+
〈n3〉2

ω3
, M3 =

〈n1〉2

ω1
− 〈n2〉2

ω2
. (A.30)
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Here, 〈nj〉2 ∝ Ij denotes the mean photon number in field j which is a measure for the field
intensity. We can learn from these quantities that the rate at which photons in field one are
created is equal to the rate at which photons in field two are created and is equal to the rate at
which photons in field three are annihilated.

Hence, we find that the last line in our Hamiltonian consists of terms which violate the
Manley-Rowe relations and thus are not physical and can be dropped. Now we can write down
a simplified version of ĤTWM, which reads

ĤTWM ∝
∫
V

dr
[
Ê+

3 (Ê−1 )2 + Ê+
3 (Ê−2 )2 + Ê+

3 Ê
−
1 Ê
−
2

+ 2Ê+
3 Ê
−
1 Ê

+
2 + 2Ê+

3 Ê
+
1 Ê
−
2 + h.c.

]
.

(A.31)

Taking advantage of our freedom to relabel the quantum fields, we can even contract this Hamil-
tonian and finally obtain

ĤTWM ∝
∫
V

dr

[
2Ê+

3

(
Ê−1

)2
+ Ê+

3 Ê
−
1 Ê
−
2 + 4Ê+

3 Ê
+
1 Ê
−
2 + h.c.

]
. (A.32)
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A.5 4-f-spectrometer with tilted slit
In our experimental PDC setup we deploy a 4-f-spectrometer to shape the spectrum of the ul-
trafast pump pulses. In this setup, we rotated the slit of the spectrometer to realise an effective
Gaussian spectral filtering [54]. We briefly sketch this situation in Fig. A.1. The plots always
show the light distribution at the slit in the centre of the spectrometer. In a 4-f-spectrometer, a
dispersive element (in our scenario a grating) maps the wavelength of the incoming light to the
propagation direction of the refracted light. A subsequent lens maps the angle degree of free-
dom to the spatial domain (in x-direction) , where it can be conveniently processed with spatial
filtering. The remaining components perform the retransformation.

In panel (a), we plot the wavelength distribution of a laser pulse at the position of the slit. The
filtering function of a common vertical slit is illustrated as light and dark shaded area. Panel (b)
shows the filtered distribution right behind the slit and the projection onto the wavelength axis
shows the processed spectral distribution with the typical flattop profile.

Already a small rotation of the slit smooths out the sharp edges in the spectrum, as shown in
(c) and (d). However, there is still a little bit of the flattop left, which completely vanishes for
larger tilt rotations (e), (f). Note however that the rotation of the slit also diminishes the spectral
resolution of the setup, hence a trade-off between spectral shape and resolution has to be made.

Figure A.1 – Illustration of the impact of different spatial orientations of the slit
in a 4-f-spectrometer on the processed output spectrum. For more
information see the text.
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