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Abstract

Robotic systems offer auspicious solutions for many real life applications,
where robots can replace humans in many dangerous and critical tasks.
A promising branch of robotic systems is swarm robotics. This branch
has stimulated a significant interest by researchers belonging to different

fields such as biology, mathematics, computer science and robotics.

A swarm robotics system consists of a large number of simple robots,
which can vary between hundreds and thousands. These systems are
able to execute complex tasks, which are beyond the capability of a
single robot system. They offer a range of advantages including: fault
tolerance, flexibility and scalability. The high level of fault tolerance of-
fered by swarm robotics is due to their large size, as functioning robots
can substitute malfunctioning or even broken robots. Swarm robotics is
a flexible system which is evinced by its ability to be involved in a large
spectrum of applications without the need to modify the robots’ hard-
ware. Furthermore, it is a scalable system, where changing the number of
robots does not affect the algorithm of the solution. Tasks which require
massive parallelism, redundancy or to be executed in complex environ-
ments, are good examples where swarm robotics can provide appropriate

solutions.

This thesis focuses on a special category of tasks, referred to as time-
constrained tasks. In time-constrained tasks a specific amount of work
should be accomplished on the task within a given deadline. Since tasks
with time constraints represent a large category of the real-world applica-

tions, swarm robotics will have the need to participate often on executing



such tasks. Our work concentrates on developing task allocation strate-
gies which are supposed to assign robots swarms to time-constrained

tasks under the condition of the task deadlines.

Designing swarm robotics systems can be performed following a bottom-
up paradigm, which is referred to as a microscopic-macroscopic design.
It starts from designing the single robot behavior and aims to achieve a
desired global behavior. Another paradigm which can be used in design-
ing swarm robotics systems is the top-down one, which is referred to as
the macroscopic-microscopic design. It starts from designing the swarm
behavior and ends with designing the behavior of the single robots. Se-
lecting between the two paradigms depends on the goal of the study in

addition to the focus of the swarm application.

In this thesis, global constraints, namely the task deadlines, are required
to be fulfilled. Therefore, designing the system starts from the global
level and aims to achieve individual robots design that satisfies the global
requirements. Hence, the design paradigm used in this thesis, is the

macroscopic-microscopic one.
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Chapter 1

Introduction

Start by doing what’s necessary; then do
what’s possible; and suddenly you are

doing the impossible.
- Francis of Assisi

In this chapter, we introduce the work presented in this thesis, formulate the problem

of interest, list the contributions of the thesis and present the organization of the

work.

|
1



Robots have been developed and introduced in the last decades to replace humans
in many dangerous, critical or routine tasks. A robot is a physical or virtual agent,
which is programmed to perform specific operations or tasks. Mobile robotics sys-
tems appeared in the 1960's with the first mobile robot Shakey (Nilsson, 1984)
Figure 1.1 (a). After that, in the 1970's other mobile robots came up such as: Hi-
lare (Meystel, 1991) Figure 1.1 (b) and Stanford Cart (Moravec, 1990) Figure 1.1
(c). Mobile robots were used initially in the form of single-robot systems, where
one robot was responsible to participate in the task. Later on, multi-robot systems
showed up where Cooperation or Competition among robots were introduced.

The use of multi-robot systems offers significant advantages, among which are over-
coming the single point of failure problem existing in single robot systems and having
the ability to execute tasks which are beyond the capabilities of a single robot. In
addition, multi-robot systems are able to deal with tasks which need to be executed
in parallel.

G. Beni and J. Wang have introduced swarm robotics systems in Beni (1988); Beni
& Wang (1990a), first under the term of Cellular Robotic Systems. It changed later
by a comment of Alex Meystel during one of the Ciocco conferences to the term of
Swarm Robotics (Beni & Wang, 1990b).

(a) Shakey (© Computer (b) Hilare (©2003-2005 (¢) Stanford Cart © By Les
History Museum. CNRS-LAAS. Earnest.

Figure 1.1 — Early mobile robots.

A swarm robotics system is a subset of mobile robotics systems. It is a multi-robot


Introduction/IntroductionFigs/EPS/shakey.eps
Introduction/IntroductionFigs/EPS/Hilare.eps
Introduction/IntroductionFigs/EPS/stanfordCart.eps

system with a high density of robots, which have generally limited sensing and
communication capabilities. Swarm robotics systems are inspired by social insect
colonies and animal societies, therefore, it consists of a large number of robots which
may vary between hundreds to thousands of participating robots. The large number
of robots allows swarm robotics to offer several advantages including fault-tolerance,
which is considered as one of the main advantages of these systems. Moreover, the
low cost of individual robots allows for the construction of large swarms and makes
swarm robotics a preferable system to be involved in several applications. Another
advantage is flexibility, which expresses the possibility to integrate swarm robotics in
many kinds of applications without having the need to modify the robots hardware.
In addition, swarm robotics is a scalable system, where the size of the swarm can
be increased or decreased without to affect the algorithm of the solution. These
represent some of the features which make swarm robotics an attractive approach
for research and a promising solution for many practical applications.

Tasks which swarm robotics executes can be categorized, based on the interrelation
among robots, into cooperative and competitive tasks. Cooperative tasks are tasks
where robots work together to achieve a common goal, whereas competitive tasks
are tasks where robots work against each other for individual profit. A cooperative
relation is always defined among individual robots. However, a competitive relation
can be constructed among individual robots or among robot groups as we can see in
robot teams playing soccer. An example is the world-wide competition Robocup!,
where our university (university of Paderborn) used to participate since 20012, In
this thesis, we focus only on cooperative tasks. Another tasks category represents
tasks with temporal constraints, which swarm robotics will need to confront as soon
as they are integrated in real-world applications. The correctness of these tasks
does not depend only on the logical correctness of the results but also on the time
at which the results are delivered. These tasks are referred to as real-time tasks or
time-constrained tasks.

The goal of this thesis is to design self-organized and autonomous task allocation
strategies which are able to assign swarms of homogeneous robots to execute a

set of time-constrained tasks. Swarm robotics system could be designed following a

'http://wuw.robocup.org
*http://paderkicker.upb.de


http://www.robocup.org
http://paderkicker.upb.de

1.1 Problem Statement

microscopic-macroscopic paradigm where local mechanisms are identified to produce
a desired global behavior, or a macroscopic-microscopic paradigm, where the design
start from the swarm level down to reach the design of the single robot behavior. In
this thesis, a global behavior is required to be guaranteed, namely the execution of
the task within its deadline. Since it is particularly difficult to start from the level
of designing and analyzing the individual behaviors to end up with a desired global
behavior, thus, a macroscopic-microscopic paradigm is followed to achieve the goal
of this thesis. We start by designing the global behavior of the swarm based on the
time constraints of the tasks, before being able to derive the design of individual
robot behaviors.

The rest of this chapter is organized as follows, Section 1.1 defines the problem of
interest. Section 1.2 lists the scientific contributions of the thesis and Section 1.3

illustrates the organization of the work.

1.1 Problem Statement

In this thesis, we focus on the problem of assigning a swarm of homogeneous robots
to a set of tasks under the constraint that they have to meet some deadlines. The
problem represents a particular case of the general task allocation problem, where
the task deadline represents the time point up to which the task should be executed.
The tasks, we are considering in this thesis, consist of discrete sub-tasks referred
to as parts, which can be executed in parallel. A single robot is enough to execute
an individual part of any of the considered tasks. However, the number of parts
required to be accomplished is much larger than what a single robot can accomplish
within the task deadline. Therefore, cooperation among robots is necessary. Each
time a part is executed, a new part is generated. The task is characterized by
its deadline and by its size, which represents the number of parts that should be
accomplished up to its deadline. Accomplishing a task is achieved when the number
of executed parts within the task deadline is equal to or greater than the task size.
In other words, when the time of executing the task is smaller than or equal to the
task deadline. An example is the foraging task where robots are required to retrieve

a specific number of parts back to the nest up to a specific deadline.



1.1 Problem Statement

The task deadlines can be categorized mainly into hard-deadlines where missing the
deadline affects the correctness of the results and soft-deadlines, where finishing the
task after its deadline is associated with specific costs. The problem we focus on in

this thesis, is defined for both categories of deadlines:

e Problem description for hard-deadline tasks: Since missing a hard-
deadline is counted as a failed execution of the task, the main focus, here,
is to find out the set of tasks that can be executed within their deadlines and
which is referred to as the set of executable tasks. The set of executable tasks
is a subset of the task set. In addition to the set of executable tasks, the
related assignment of the robots to the different executable tasks is designed.
For a stochastic system such as swarm robotics the categorization of the task
as executable cannot performed in a deterministic manner. Therefore, it is
verified probabilistically using the ezecution probability of the task. The exe-
cution probability of any task is the probability of executing the task within

its deadline.

e Problem description for soft-deadline tasks: Since missing a soft-deadline
is associated with specific costs, the main focus, here, is to minimize the costs
resulting from the task part which remains unprocessed at the deadline. The
costs are calculated in terms of the difference between the task size and the
executed part of the task at the task deadline. This represents the number of
parts remain unprocessed at the deadline. The proper assignment of robots to

the soft-deadline tasks is the assignment which minimizes the described costs.

When the tasks are located on different physical sites, the robots will need to travel
between the different sites when task switching is applied. The time required by
a robot to travel between its current task and its next task is referred to as the
switching cost. This time is the time between stopping the execution of the current
task and starting the execution of the next task. Since the execution of the tasks
we consider in this thesis is evaluated under their time constraints, the time lost in
switching among the tasks plays a main role in planning the successful execution of
these tasks. In this thesis, we differentiate between tasks with negligible switching
costs, such as tasks located on the same physical site and tasks with high switching

costs. The problem of interest is described for both kinds of tasks:



1.2 Scientific Contribution

e Problem description for static allocation: Static allocation is the tech-
nique used when the switching costs among tasks are high. It is based on
preventing the robots to switch their tasks which they select at the beginning
of the execution. The main focus, here, is on finding out the proper assignment
of the robots to the different time-constrained tasks. This assignment is used

by the robots only once at the beginning of the execution.

e Problem description for dynamic allocation: Dynamic allocation is the
technique used when the switching costs among tasks are negligible. It allows
the robots to switch among tasks during their execution time. The main focus,
here, is to find out the proper switching probabilities, which can be used by

the robots to switch among the tasks with respect to the task deadlines.

1.2 Scientific Contribution

The main contribution of this thesis can be summarized as follows: The development
of autonomous non-communicative allocation strategies that assign robot swarms to
parallel time-constrained tasks with respect to their deadlines (hard and soft). The
tasks can have negligible as well as high switching costs.

This main contributions are:

e Mathematical modeling of swarm performance: This contribution includes
the definition of the swarm performance for static and dynamic allocations
in general and under the consideration of task deadline. After that, different
mathematical techniques were investigated to model the swarm performance
as defined for both static and dynamic allocations. The applied models are
used later to design the robots’ assignments to execute the tasks under their

time constraints.

e Task allocation strategies: This contribution is associated with the develop-
ment of different allocation strategies to be applied autonomously by the robots
of the swarm in order to execute time-constrained tasks. The allocation strate-

gies are developed to be used with both hard and soft deadlines and under
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both static and dynamic allocation techniques, see Section 1.1. The alloca-
tion strategies developed in this thesis require no communication among the
robots. Consequently, possible conflicts which may arise among the robots on
performing the same task parts are not within the scope of this work. How-
ever, in case the robot-to-robot communication is exploited, such conflicts can
be solved easily by implementing simple local rules such as “the nearest robot
to the part executes it" or “the robot with the smallest ID executes the task

part”.

e Verification of task allocation strategies: The other important contribution
of this thesis is the verification of the developed allocation strategies. This
verification is performed mainly by comparing the theoretical results out of
the allocation strategies with the simulated results. For the simulations two
techniques were used: Monte-Carlo simulations using Matlab software! and
physics-based simulations using the ARGoS robotic simulator (Pinciroli et al.,
2012).

1.3 Organization of the Thesis

This thesis is organized as follows:

e Chapter 2 is divided into swarm background and mathematical background.
Swarm background describes the swarm intelligence term starting from its
origin in the nature moving to the kind of intelligence inspired by biological
swarms and then to the swarm robotics systems. Mathematical background
is dedicated to introduce and define, in summary, the mathematical models

used throughout this thesis.

e Chapter 3 introduces the related work conducted mainly in the fields of mathe-
matical modeling of swarm robotics systems and task allocation in multi-robot
systems. The mathematical modeling of swarm robotics systems is presented
as the thesis introduces novel methods of modeling the swarm performance,

mathematically. Since, the main problem considered in this thesis is about the

"http://www.mathworks.com
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1.3 Organization of the Thesis

development of efficient task allocation strategies for time-constrained tasks,
an overview of the literature in task allocation for multi-robot systems is pre-

sented.

Chapter 4 presents the mathematical framework to model the swarm perfor-
mance for both hard and soft deadlines under both static and dynamic allo-
cations. In this chapter, we derive the execution probability of the task based
on the mathematical modeling of the swarm performance. This is used later
in designing the allocation of hard-deadline tasks. In addition, we derive the
expected swarm performance at the task deadlines, which is used in designing

the allocation for soft-deadline tasks.

Chapter 5 presents the task allocation strategies developed for both hard and
soft deadlines under both static and dynamic allocation techniques. The chap-
ter describes the mechanisms used by each task allocation strategy to handle
the particular case it is developed for. In addition, it includes a set of Monte-
Carlo simulations implemented in Matlab to verify the performance of the

developed allocation strategies.

Chapter 6 presents a simple version of the bio-inspired foraging task for swarm
robotics, where different scenarios of foraging are introduced under the dif-
ferent kinds of tasks and deadlines discussed in Section 1.1. Physics-based
simulations are performed in this chapter to evaluate the performance of the

allocation strategies developed in chapter 5.

Chapter 7 concludes the thesis presenting a summary of the main contribu-
tions. In addition, it proposes future directions for improving and expanding

of the conducted work.



Chapter 2

Background

Everything has been said before, but
since nobody listens we have to keep

going back and beginning all over again.

- Andre” Gide

|
In this chapter we present a brief background concerning the swarm intelligence and
the mathematical modeling techniques used in this thesis. For swarm intelligence,
we go through its origin starting from the nature. After that, we present how the
biological intelligence was imported by artificial systems and investigated in two main
fields, namely, optimization and robotics.

Under the mathematical background we briefly present several techniques, which are
used in this thesis, including: a general background of useful probability distributions

and Markov processes especially the Poisson process.
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2.1 Swarm Background

2.1.1 Swarm Intelligence in Nature

Swarm intelligence is a form of collective intelligence that can be observed in nature.
A remarkable example of swarm intelligence is the foraging behavior observed in
social insect colonies such as bees and ants. This colony behavior is performed with
a high level of intelligence that allows to select the richest food source or the shortest
path to the food. Ants, for example, use a communication mechanism through the
chemical pheromone trails in order to find out the shortest path to the food source.
On the other hand, in bee colonies, a bee becomes a forager only when being 3 weeks
old and it becomes able to fly up to 3 miles searching for food sources and amazingly
coming back to the same hive. In case it has found some food sources during its
search, it communicates with the other bees conveying two pieces of information,
namely, the direction of the food source and the distance to it. This information
is announced through a special kind of dance performed by the bee, referred to as
"waggle dance". The information is encoded in the movements and the sounds of
the bee.

Another example of swarm intelligence is moving in groups. This example presents
not only the way insects or fish move together, but the way many other kinds
of intelligent species do including humans. Determining the movement direction
represents the main question, specially in large groups where collision probabilities
are considerably high. The movement direction can be determined normally in two
ways: Either all individuals participate on the decision (Griinbaum, 1998) ,(Berthold
et al., 1992) or some called "leaders" guide the majority (Swaney et al., 2001),
(Reebs, 2000). The question remains how the guiding information is transferred
in case of a leader strategy and how a consensus is achieved when all individuals
participate. There are two theories presented: the first one states that the leaders
are faster than other individuals, thus they steer the group when others try to align
with their neighborhood. The second theory states that it is enough for the informed
individuals to have preferable directions of movement to steer the group. On the

other hand, when no leaders exist and all group members should contribute to reach
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2.1 Swarm Background

a consensus, there should be a minimum (threshold) number of members which are

aligned initially together.
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(a) Locusts in Mauritania - Photograph by (b) Flock of starlings - Photograph by the
Jean-Frangois Hellio and Nicolas Van In- La Sapienza team - (©)StarFlag.
gen, (© National Geographic Society.

Figure 2.1 — Swarm in nature.

An additional example of swarm intelligence which can be observed in nature is nest
building, where sophisticated architectures are achieved in a self-organized manner
with no control. Bees build their combs consisting of almost exact hexagonal cells,
which hold nectar, breed and pollen. Thompson et al. (1942) has explained this
phenomena as a pattern formed by the physical forces that are applied to all layers
of bubbles. In case of a bee’s comb, the soft wax causes the bubbles to be formed
in cells.

Division of labour or task allocation is another significant example of natural swarm
intelligence. It describes the methodology applied by the species to allocate them-
selves to the different tasks they should execute. They perform this division in a
self-organized way using a "threshold-response" mechanism. Based on this mecha-
nism, an increasing stimuli increases the probability of the individual to participate
in the task.

Other examples of nature swarm intelligence, are: brood sorting, cooperative trans-

port and clustering.
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2.1 Swarm Background

2.1.2 Swarm Intelligence in Artificial Systems

Swarm intelligence in its different forms that can be witnessed in nature, has fas-
cinated a large number of researchers to inspire them for many artificial systems.
Many mechanisms that have been revealed recently and which describe the complex
behaviors which could be seen in biologically systems, have been used as inspiration.
The main goal was to be able to build intelligent large distributed and self-organized
systems starting from a large set of simple individuals. A global collective behavior
should emerge from local rules and interactions.

Swarm intelligence was first inspired by Beni (Beni & Wang, 1993), under the con-
cept of cellular robotics systems. After that, swarm intelligence started to find its
way successfully in the area of optimization. In the following we present a brief
background concerning swarm intelligence inspiration in both fields of optimization

and robotics.

2.1.2.1 Swarm Intelligence in Optimization

Optimization techniques inspired by biologically swarm intelligence have gained a
significant interest and have become popular in the recent years. Their advantages
of being self-organized, distributed, flexible and robust allowed them to outperform
a large set of traditional techniques.

We present in this section two of the most successful and most applied techniques:

A) Ant colony optimization ACO: this technique was introduced by Marco
Dorigo and his colleagues in the early 1990. It is inspired by the biological
foraging within ant colonies. The core of this technique is associated with the
indirect communication among the ants, namely the "pheromone trails". In
the foraging task, ants start exploring the area by random search and they leave
pheromone along the paths to the food sources. The pheromone represents a
chemical material that can be smelled by other ants. They will follow the

paths marked with the more intensive amount of pheromone.

ACO was applied to a large range of problems including "traveling salesman
problem" Dorigo & Gambardella (1997); Dorigo et al. (1991, 1996), schedul-
ing problems Besten et al. (2000); Blum (2005); Blum & Sampels (2004);

12
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Gagné et al. (2002); Merkle et al. (2002); Stiitzle et al. (1998), vehicle routing
problems Gambardella et al. (1999); Reimann et al. (2004), bio-informatics
problems Karpenko et al. (2005); Korb et al. (2006); Moss & Johnson (2003);
Reyes-Sierra & Coello (2006); Shmygelska et al. (2002), in addition to indus-
trial problems Bautista & Pereira (2007); Blum et al. (2006); Corry & Kozan
(2004); Gottlieb et al. (2003); Silva et al. (2002). An overview of ACO can be
found in Dorigo (2007); Dorigo & Stiitzle (2004)

Particle swarm optimization PSQO: This optimization technique was first
proposed by James Kennedy and Russell Eberhart, Kennedy & Eberhart
(2001). It was inspired by the social behavior of animal societies and in-
sect colonies for the purpose of self-protecting. It describes the way the group

members move together as a unit while avoiding potential collisions.

In PSO, a set of individuals, which is referred to as particles, move initially
in the whole search space of the problem, seeking the optimal position. They
broadcast their positions to the neighborhood. The position of each individual
solution (particle) is then adjusted according to the best position found by the
neighborhood and its best found position. As the process goes on, the particles
focus more and more on the best solution area heading towards the optimal

one.

PSO was applied to different optimization problems including: "traveling sales-
man problem" Onwubolu & Clerc (2004), neural networks Gudise & Venayag-
amoorthy (2003); Kennedy & Eberhart (2001); Mendes et al. (2002); Set-
tles et al. (2003), bio-informatics Correa et al. (2006); Georgiou et al. (2004),
multi-objective problems Coello & Lechuga (2002); Hu & Eberhart (2002b);
Li (2003); Moore & Chapman (1999); Parsopoulos & Vrahatis (2002), in addi-
tion to dynamic problems Blackwell & Branke (2004, 2006); Carlisle & Dozier
(2000); Carlisle & Dozler (2002); Eberhart & Shi (2001); Hu & Eberhart
(2002a); Janson & Middendorf (2006); Li et al. (2006); Parrott & Li (2006).
An overview of PSO can be found in Dorigo et al. (2008); Kennedy & Eberhart
(2001)
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2.1.2.2 Swarm Robotics

Swarm robotics represents the second major field, after optimization, to be based on
swarm intelligence inspired from insect colonies and animal societies. A significant
effort was paid to build robotic systems which follow the same logic. Beni (Beni &
Wang, 1993) was the first who denoted a class of cellular robots as "swarm robotics".
Swarm robotics systems provide a range of advantages starting from fault-tolerance,
where the large number of robots allows the system to operate appropriately even
in the case of malfunctioning individuals. Flexibility is another advantage of swarm
robotics that represents the ability of the system to tackle different kinds of tasks,
starting from nanoscopic tasks inside humans bodies to outer-space tasks without
having the need to apply significant changes in the robots hardware. In addition
to the advantages mentioned above, scalability belongs to the remarkable advan-
tages of swarm robotics. Scalability expresses the system ability of operating under
scalable size of the swarm without a considerable impact on the behavior and the
functionality of the system. Swarm robotics have been studied as homogeneous sys-
tems where all robots are identical as well as heterogeneous systems, where several
types of robots build up the swarm.

Sahin et al. (2008) has categorized the swarm robotic studies into 4 directions:
design, modeling and analysis, robots, and problems. Under design, the authors
have focused on the goal related to the "engineering of self-organization". The
paper highlights the importance of modeling and analyzing of swarm robotics under
two objectives: first when guarantees are needed for the performance on the system
level, second to design the optimal values of the individual behaviors. The models of
swarm robotics were categorized mainly into microscopic and macroscopic models.
The microscopic models are performed on the level of the individuals, Ijspeert et al.
(2001), whereas the macropscopic models are performed on the level of the swarm
system, Lerman et al. (2001).

This thesis focuses on a macroscopic modeling of swarm robotics system, where the
swarm performance should obey specific time constraints of the tasks.

Developing robots for swarm robotics systems is a non-trivial process. Different con-
cepts need to be taken into account during this design, including: sensing abilities,

communications, cost, power, size, and others. Designing robots under all those
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concepts is a challenging task. Thus, the design choices are made mostly under one
requirement.

From the other side, a large spectrum of problems, which are inspired mainly from
biological swarm behaviors were studied using swarm robotics systems. The exam-
ples include aggregation which refers to the self-organized aggregation of robots in
clusters (Dorigo et al., 2004), (Soysal & Sahin, 2007). Foraging, which can be seen
as mentioned above in many ant and bee colonies, where the individuals search for
food items to return them to the nest (Hamann & Worn, 2007). Foraging is the task
used to verify the task allocation strategies developed in this thesis. Self-assembly
deals with problems where individuals are meant to build chains through connecting
to each other like bridges or structures (Christensen et al., 2007), (O’Grady et al.,
2007). Other problems like connected movement (Trianni & Dorigo, 2005), (Trianni
et al., 2006) and cooperative transport (Grok et al., 2005) were also studied. An

overview of swarm robotics research can be found in Brambilla et al. (2013)

2.2 Mathematical Background

This section is dedicated to present a brief mathematical background about tech-

niques and models used throughout this thesis.

2.2.1 Probability Distribution

Probability is the measurement which describes how likely an event is to occur.
The probability distribution is the procedure of assigning a specific probability to
each measurable subset of the potential outcomes of the considered experiment. For
experiments whose sample space is discrete, their probability distribution can be
specified by a probability mass function (PMF). Let us suppose a discrete random
variable: X : § — A (A C R) which is defined on a discrete sample space S. The
probability mass function fx : A — [0, 1] for X can be defined as in the following:

fx(@)=Pr(X=2) and ) fx(z)=1 (2.1)

€A
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For random variables which are defined on continuous sample spaces, the probability
distribution is specified by a probability density function (PDF). These two functions
belong to the methods that could be used to characterize the probability distribution.
Another method of characterizing the probability distribution is by using the cumu-
lative distribution function (CDF). The cumulative distribution function describes
the probability that a random variable X which is sampled from a given probability

distribution, takes a value less than or equal to x:
Fx(z) =Pr(X < x) and Pr(a < X <b) = Fx(b) — Fx(a) (2.2)

In case of a continuous random variable, the cumulative distribution function can

be calculated as the integral of the probability density function (PDF):

Fy(z) = / " Lyt (2.3)

Some of the well-known probability distributions which are used in this thesis are

listed in the following:

e Exponential Distribution: it is a wide-used distribution, which is investi-
gated in modeling a large range of natural and physical phenomena. Examples
can be found in queuing theory, reliability theory and physics. It is a contin-

uous probability distribution with the probability density function given by:

Ae ™ if x>0
f(x, ) = ' (2.4)
0 ifx <0

where )\ is the distribution rate.

The cumulative distribution function of the exponential distribution is given
by:
l—e ™ ifz>0
F(z,\) = g (2.5)
0 if v <0

where )\ is the distribution rate.

e Truncated Exponential Distribution: this distribution is a special case of

the exponential distribution, where the random variable takes its value over
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a defined range [a,b]. It is probability density function is given as in the

following:
A ef)\m

f(SL’, )\’ a, b) ean _ efAb
0 Otherwise

<z <h
s (2.6)

where ) is the distribution rate.

e Normal (Gaussian) Distribution: This distribution counts also as one of
the wide-used distributions especially for modeling real-valued quantities that
grow linearly, like errors or offsets. Its probability density function is given by:

—(z — p)?*

1
202 (2.7)

e
o\ 2w

f(x,,u,a) =

where p is the mean and o is the standard deviation.

The cumulative distribution function of the normal distribution is given by:

F(X,p,0)= % [1 + e'r’f(x\/%)} (2.8)

where 4 is the mean and o is the standard deviation.

2.2.2 Markov Chains

A Markov process is a kind of stochastic processes, which is named after the Russian
mathematician Andrey Markov. A stochastic process, sometimes called a random
process, is a set of random variables which represent the evolution of some random
value over time. A Markov process is a stochastic process which has the property,
referred to as the Markov property or the memoryless property. It states that the
future state of the process depends only on the current state and not on any other

previous states.
Pr(X, =2,| X1 =2 1... Xo = x0) = Pr(X,, = 2,| Xp,o1 = x11) (2.9)

where X, is the n — th value of the random process.
Markov chains are categorized into discrete time Markov chains (DTMC) and con-
tinuous time Markov chains (CTMC). The discrete time Markov chain is a stochas-

tic process which visits a countable set of states over a discrete set of times. The

17



2.2 Mathematical Background

changes of the system state are called transitions and the probabilities to change
among the states are referred to as the transition probabilities, see Figure 2.2 (a).
The transition matrix, Figure 2.2 (b) is the matrix which holds the transition proba-
bilities used to switch from any state to any other state. This kind of Markov chains

describes a system which is at a specific state at each time step.

Pap
p_ Paa Pap
Ppa Ppa Ppp
(a) Markov chain. (b) Transition matriz.

Figure 2.2 — Markov chain and transition matriz.

On the other hand, a continuous time Markov chain (CTMC) is a stochastic process
which evolves over continuous time. It has the Markov property mentioned above
however over the continuous time ¢. Let tg,t1,...,t, represent the n time points at
which the continuous time process visits the following states: ig,1,...,%,, then the

Markov property can be written as in the following:

Pr(Xs, .. = Tty | Xo, = T4, - Koy = 24y) = Pr(Xe,,, = 24, | X, = 2,)  (2.10)

n ot

The continuous time Markov chain is characterized by its transition rate matrix
called Q-matriz. The Q-matrix is a matrix which holds the rate at which the Markov
chain is moving among the different states. Let I be a countable set of states, the

Q-matrix on / is a matrix Q) = (¢;; : 4, j € I) and it satisfies the following conditions:
e 0 < —qy <00 Vi
e ¢ — 0 Vi#j.
® > i1t =0 Vi

Markov chains represent a large field of study where intensive research is performed.
For more about Markov chains please refer to Norris (1998) and Ross (1992).
Markov chains were applied in several fields including: biology, queuing systems,

computer systems, telecommunication systems, economic systems, and others. In
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swarm robotics studies as a new field of research, Markov chains represent a promis-
ing technique to develop useful models for such large-scale stochastic systems. In
Brambilla et al. (2012), the authors have applied discrete time Markov chains
(DTMC) in developing a top-bottom method for verifying properties in swarm
robotic design. Lerman et al. (2005) investigated discrete time Markov chains to
develop macroscopic models for swarm robotics. Markov chains were exploited also
to model robotic systems on the microscopic level, where a robot was considered
as the system unit and its actions were the states of the Markov chain, such as in
Arkin (1998), Lerman et al. (2001) and in Goldberg & Mataric (2003). Berman
et al. (2009) has presented a decentralized strategy of dynamic task allocation of
a swarm of robots to a set of tasks which are running in parallel. The states of
the Markov chain are the distribution of the robots among the different tasks and a

desired distribution of the robots was required to be achieved.

2.2.2.1 Poisson Process

A Poisson process is a time continuous Markov chain. It is a stochastic process
which counts random events that occur over the continuous time. The process is
named after the French mathematician Siméon Denis Poisson. It was investigated
to model different systems including: radioactive decay, telephone calls, requests for
a particular document on a web server, queuing systems and others.

The inter-arrival times At; between the consecutive events, which are counted by
a Poisson process, are assumed to be independent from each other and to have an

exponential distribution with the parameter A, see Figure 2.3.

19



2.2 Mathematical Background
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Figure 2.3 — A Poisson process with its inter-arrival times.

A Poisson process is defined in Ross (1992) as in the following:
A Poisson process N (t) is a time-continuous stochastic process that counts the num-

ber of events and that has the following properties:
e N(0)=0
e {N(t),t > 0} has independent increments

e The number of events in any interval of the length ¢ has a Poisson distribution

with the mean tA, for all s,¢ > 0:

At)"
P{N(t+s)— N(s) =n} = e’“%

n!
Poisson processes can be categorized into homogeneous processes and non-homogeneous
processes. A homogeneous Poisson process is characterized by its rate A, which is
the expected number of events to occur per one time unit. The number of events
within an interval of length 7: [t,¢ + 7] has a Poisson distribution with rate A7:

e (TR

PIN(t+7) = N(t) =K = ——=  k=12,...

where N(t 4+ 7) — N(t) = k is the number of events occurred in the time interval
[t,t + T].
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In cases where the rate of the Poisson process may change over time, A(t), the
process is referred to as a non-homogeneous Poisson process. The expected number
of events, in this case, between the time ¢ = a and ¢ = b is calculated as in the

following;:
b
Nap = / M)t

For more about Poisson processes please refer to Norris (1998) and Ross (1992).

Since, mathematical modeling was not intensively investigated in studying and de-
signing swarm robotics systems so far, there exist only a few studies which apply
Poisson processes models in designing swarm robotics. Some examples are as in
Galstyan & Lerman (2005), where the authors have presented a simple stochastic
model for adaptive task allocation in a team of robots. The considered task was a
foraging of two distinct types of pucks, Red and Green scattered around the arena.
The process of encountering a puck was modeled as a Poisson process with a specific
rate for each kind of the pucks. Another example is a biologically inspired redistri-
bution of swarm robots among multiple sites in Hsich et al. (2008). The authors
have investigated the Poisson process to model the transition of agents between the
different sites in order to perform a top-down design of the system. In Hsieh et al.
(2009) the authors have studied the role of specialization while executing a set of
collaborative tasks by a swarm of robots, specially the well-known "stick-pulling"
task. They have shown how specialization is useful when external conditions change.
The individual robot dynamics were described by a set of states where all transitions
were governed by Poisson processes. The process of the roaming robot to encounter
a stick was modeled as a Poisson process whose rate represents the probability per
time unit to discover a stick. Another example is the foraging task considered in
Guerrero & Oliver (2011), where an auction strategy was discussed for performing a
task allocation of swarm robotics in real time scenarios. The arrival of new objects

to the environment was modeled as a Poisson process.
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Chapter 3

Related Work

Research is to see what everybody else
has seen, and to think what nobody else
has thought.

- Albert Szent-Gyorgyi

This chapter presents the state of the art concerning the mathematical modeling of
swarm robotics systems on its two levels: the macroscopic modeling and the micro-
scopic modeling. In addition, the chapter goes through the different studies performed
on the task allocation in multi-robot systems, swarm robotics systems and special ap-

proaches considering task allocation in swarm robotics under time constraints.
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3.1 Mathematical Modeling of Swarm Robotics

One of the main challenges when designing swarm robotics systems is to under-
stand the effect of the behavior of individual robots on the global behavior of the
swarm. Designing a large-scale, stochastic system such as swarm robotics with the
goal of obtaining a desired global behavior, is a non-trivial process. Design method-
ologies include: Real experiments, Simulations and Mathematical modeling. Real
experiments represent an expensive methodology for designing swarm robotics, as
large numbers of real robots should be used. Simulations, on the other hand, are
faster and much more reliable. However, they are mostly time consuming and gen-
eralizing their results requires an exhaustive scan of the complete parameter space.
Mathematical modeling forms an alternative method which is fast and accurate to
predict the long-term behavior of the swarm. Moreover, it can be used to select
the design parameters which optimize the system performance. This kind of model-
ing can be applied on two levels: Macroscopic modeling and Microscopic modeling.
Macroscopic models are those which consider the whole system as a unit and focus
on modeling its long-term behavior, where microscopic models treat the individual
robots as the fundamental units.

In Lerman et al. (2005), the authors have described the design difficulties associ-
ated with real experiments and simulations, before they highlight the importance of
mathematical modeling for designing systems such as swarm robotics. They have
provided a recipe for constructing macroscopic models based on rate equations. The
recipe can be summarized in two steps: First, to capture the system by a finite state
automaton (FSA). Second, to translate the model into rate equations, where each
state of the FSA becomes a dynamic variable with its own rate equation. One im-
portant remark done in this study was concerning the advantage of using Markov
processes in modeling swarm robotics systems, as the robots are assumed to have a
reactive behavior and their future actions are based only on what is sensed currently.
Martinoli & Easton (2003a) is another study where the authors have described the
microscopic and macroscopic modeling for several kinds of experiments. They fo-
cused on the experiment of pulling sticks from the ground, where two robots are

needed to pull a stick.
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Hamann et al. (2008) has introduced two macroscopic models for spatial distribu-
tion of robots over a known area. The authors have presented, on one hand a
rough distribution of the area in sub-areas, and on the other hand a continuous
representation of the space. In Lerman et al. (2001), the authors have presented a
macroscopic model of the cooperative task of pulling sticks out of ground holes. It
was assumed that a stick cannot be pulled by a single robot, thus the task repre-
sents a cooperative one. The proposed model assumed no explicit communications
among the robots. The states of the macroscopic model represented the increasing

Y

size of the robots’ group. Pulling a stick required ”g,” robots. The system starts

by exploring the sticks. When a robot finds one stick, it moves to the state called
7g1”. It waits for a random time and if no other robot arrives, the robot makes a
transition back to the searching state, otherwise to the state ”g,” and so on. When
the system reaches state ”g,”, the task can be executed successfully. The model
assumed a static environment, where the number of sticks remains constant in the
area. Another macroscopic model is to be found in Soysal & Sahin (2006). This
paper has focused on the aggregation task, which is a well-known behavior in insect
colonies where the individuals aggregate on specific locations. The three behavior
states defined for the task were: Random walk, Aggregate and Waiting. In the
random walk, the robot roams randomly in the arena for a specified period of time.
At the end of this period, the robot switches to the aggregate state in case it finds
an aggregation group. Otherwise, the robot switches to waiting state where it forms
a one-robot aggregating group. The robot leaves the wait state based on a specific
transition probability of the model. The proposed macroscopic model defined the
aggregation of m robots as m-aggregation or C,,. The states of the model were rep-
resented as the different possible aggregations: C] ...y, where N is the number of
robots. The transition probabilities were referred to by shrinking probability which
is the probability of one robot to move out of the aggregation and the probability of
growth which is the probability of a robot to join the aggregation. In Agassounon
& Martinoli (2002b), another macroscopic model for analyzing the aggregation be-
havior in swarm robotics was presented. Lerman & Galstyan (2002) has presented
a macroscopic mathematical model of the well-studied foraging task with a special
focus on physical interferences effect on the swarm performance. The model con-

sisted of states related to the robots’ behavior. It represented a series of coupled
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3.1 Mathematical Modeling of Swarm Robotics

differential equations, one for each state to describe the average number of robots at
that state. The authors were able at the end to extract several factors which affect
the swarm performance, mainly the size of the group, in addition to the complexity
of the environment and the spatial distribution of the task.

Macroscopic mathematical models were also applied for optimization purposes as
in Martinoli & Easton (2003b). In this study, the authors have presented a time-
discrete macroscopic model to derive quantitatively correct predictions about the
collaboration dynamics of a specific distributed manipulation experiment. This
model can be used as a tool to estimate optimal parameters of the robotic system
as a function of the environment or the task conditions.

Microscopic modeling is the other modeling level of swarm robotics systems (Gal-
styan et al., 2005). As mentioned above, the main difficulty in designing such systems
is to understand the relation between the individual behaviors and the overall global
behavior of the system. The authors highlighted the goal of evaluating the design
trade-off(s) for robots in poorly characterized environments like for nano-robotic
systems. They modeled the system on the agent level, where they assumed that
agents interact with the environment through stigmergy. The transition between
the states didn’t depend only on the states but on the spatial coordination and
concentration of the chemical field used for the stigmergy communications. The
robots’ behaviors were described by transition rates. In Ijspeert et al. (2001), the
authors were able to predict the collaboration dynamics, namely, the rate of suc-
cessful robots’ collaboration in a stick pulling experiment using a microscopic model
of the system. The designed microscopic model described the finite state automata
(FSA) of the robot’s controller. Another study is Jeanson et al. (2005), where the
behavior of the cockroaches was studied and the authors tried to prove that the
global aggregation emerges from the local interactions. Experiments were carried
out to measure important parameters like the probability to stop in an aggregation
or the probability to move. After that, the measured probabilities were exploited in
the developed model. Although the real experiments didn’t agree with the numer-
ical model, the authors claimed that it provides an evidence that aggregation can
be represented in terms of local interactions among individuals. A time-discrete,
incremental methodology was presented for modeling manipulation experiments in

Martinoli et al. (2004). First, a specific time unit was defined for the model, after
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that the transition probabilities between the states were calculated per time unit
using real-robots experiments.

As noticed from the above listed works, most of the mathematical modeling applied
in swarm robotics systems focus on the robot actions as a stochastic process on
the microscopic level and on the average number of robots (swarm) in the different
system states on the macroscopic level. To our best knowledge, no mathematical
modeling was applied to designing a swarm robotics system in order to satisfy a

global performance property or constraint.

3.2 Task Allocation in Multi-robot Systems

3.2.1 General Task Allocation

Task allocation represents a main focus in multi-robot systems, which gained a lot
of interest in the last years. Nonetheless, most of the efforts have concentrated
on finding efficient heuristics and allocation strategies such as in Chevaleyre et al.
(2006) and in Endriss et al. (2005), while theoretical and probabilistic studies were
rare in comparison to the experimental studies. One probabilistic analysis has been
presented in Lerman et al. (2006).

Task allocation can be observed in nature, as by ant and bee colonies (Bonabeau
et al., 1998). In such colonies, we can notice how the members allocate themselves to
different tasks. For example a part of the colony can perform foraging while another
part looks after the larvae and they get specialized over time on their tasks, which
improves the performance.

Solutions proposed in the literature for task allocation in multi-robotic systems
in general, can be classified into three broad categories: centralized, negotiation-
based and self-organized. Centralized techniques assume the presence of a central
coordinator responsible for the allocation of the agents (robots) to the tasks. The
single point of control causes problems related to the robustness of the solution
and to the availability of such a central control over any application environment.
Self-organized systems, on the contrary, are constituted by peers that take decisions
autonomously, through limited negotiations with other peers and without any central

point of control. This kind of systems are generally less prone to catastrophic failures

26



3.2 Task Allocation in Multi-robot Systems

and are considered as a better approach, when rapid adaptation to changes in the
environment, is required. Most of these studies tackle simple scenarios without
task interdependencies (Dahl et al., 2009). Negotiation-based approaches, generally
based on auction-based strategies, are the compromise solution between centralized
and self-organized systems (Dias et al., 2005; Gerkey & Mataric, 2002; Zheng et al.,
2006). In auction-based strategies, the robots bid on the announced tasks according
to the task characteristics and to their relative capabilities. Robots with the highest
bid win the allocation to the announced task. One of the criticizing points of this
approach is the assumption that robots have a fully connected network among each
other to negotiate and that robots possess complete communication abilities. In
many real-world applications, individual robots are not aware of the whole system
and can only communicate with their neighborhood.

Classical robotic systems handle task allocation as an optimization problem, where
one robot or more come up with an optimal plan for allocating robots to tasks
(Gerkey & Mataric, 2003; Goldberg et al., 2003). A comparison between the auction-
based approaches and the self-organized ones based on the threshold mechanism can
be found in Kalra & Martinoli (2006). This study has shown that the auction-based
approaches outperform the self-organized ones when accurate information about the
tasks and the self-state is available. On the other hand, if such information is not
available accurately, the self-organized approaches perform almost as good as the
auction-based ones.

A general taxonomy of task allocation strategies in robotics systems has been pre-
sented in Gerkey & Mataric (2004) along three main comparisons: single-task robots
(ST) vs. multi-task robots (MT), where single and multiple robots are able to per-
form only one task at a time; single-robot tasks (SR) vs. multi-robot tasks(MR),
where each task needs one robot or more, and the instantaneous assignment (IA)
vs. time-extended assignment (TA) where it was assumed that the robots and the
environment allow only for an instantaneous task allocation with no future planning.
In swarm robotics, response-threshold mechanisms are relatively common (Ducatelle
et al., 2009a,b; Nouyan et al., 2005). Following the response-threshold approach,
each robot is programmed to react to the stimuli associated with the different tasks,
and to start the execution of the task when the level of a stimulus exceeds a pre-
defined threshold. Similar to the task allocation studied in Krieger & Billeter (2000),
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Agassounon & Martinoli (2002a) has introduced a task allocation for the swarm task
foraging. The only difference was that the probability to switch between foraging
and resting was a function of the success associated with the last foraging trial, also
of the frequency with which other robots were encountered while foraging, or of the
perceived density of prey. Another threshold-based algorithm for allocating workers
to a given task whose demand evolves dynamically over time was presented in Agas-
sounon et al. (2001). Sequentially interdependent tasks which are common in nature
were considered in swarm robotics systems, where a self-organised task allocation
was developed in Brutschy et al. (2012). In Liu et al. (2007) a mathematical model
for a similar task allocation behavior was introduced. Some works combined the
common swarm response-threshold approach with a kind of communication proto-
col to avoid the need for a central unit as we can find in Zhang et al. (2007). Very
few works, to our best knowledge, have assumed a target distribution for the robots
over the considered tasks to be reached as in McLurkin & Yamins (2005). Here, the
authors have investigated different strategies to achieve the target distribution. The
main focus of this study, was on evaluating the communication density that results
from each of the applied strategies.

In Ferreira-Jr et al. (2008), the problem of distributed task allocation was addressed
using the distributed constraint optimization problem (DCOP) formalism. Approx-
imate solutions were designed based on theoretical models of division of labour in
social insect colonies and an algorithm called Swarm-GAP was proposed. In this
context, however, no deadlines were considered and the design of the algorithm
was based on the empirical determination of stimulus thresholds associated to the
possible decisions of the robots. Results were validated experimentally but no prob-

abilistic considerations were derived.

3.2.2 Task Allocation under Deadlines and Priority Constraints

Only few authors did concentrate on task allocation in multi-robot systems including
swarm robotics systems under temporal constraints. Jose Guerrero and Gabriel
Oliver are two of the authors who worked intensively on that problem. They have
introduced a series of articles related to task allocation in multi-robot system based

on the auction strategy, which was designed to respect the time constraints and
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the priorities of the considered tasks. In Guerrero & Oliver (2011), the authors
have introduced three approaches. The first approach was called, SBPA, in which
an auction process was launched as soon as a new task appears or when a robot
becomes free of work. The second approach was referred to as EDFA, in which the
well-known scheduling algorithm EDF was exploited to order the tasks based on
their deadlines. Thus, when new tasks arrive or a robot becomes free, a new auction
round was launched after ordering the tasks based on EDF. The third presented
approach was referred to as SUA, where the tasks were ordered according to the
rule first in, first out FIFO. Furthermore, they have discussed a swarm approach,
where robots select their tasks based on their distances to the different tasks without
applying any kind of negotiations among them.

In Guerrero & Oliver (2007), the same authors have discussed the task allocation
in heterogeneous swarm robotics system for tasks labelled with priorities. The work
differentiated between pre-emptive and non-pre-emptive allocation. First, it was
assumed that each task is controlled by a leader. The leader estimates the work
required to accomplish the task and lets the robots bit with their capabilities to
participate on the task. The leader of the task, decides on the size of the group
should work on the task based on the task priority, on the estimated size of the task
and on the capacity of the robots. After that, the leader launches an auction process
to select the required group. In the pre-emptive version of the approach, the leaders
of the different tasks were allowed to negotiate, which can lead to exchanging robots
between them. The leader is allowed to negotiate with leaders of other tasks, which
have a similar or lower priority, in order to obtain additional robots. Exchanging
robots can also have the benefit of reducing the density of robots in the overcrowded
tasks, which reduces in turn the potential physical interferences between the working
robots. Guerrero & Oliver (2010) is a work based on the previous one in Guerrero &
Oliver (2007), where the priorities of the tasks were translated in terms of deadlines
and the goal was to find the optimal number of robots to allocate to the considered
tasks.

From a completely different perspective, tasks with time constraints were discussed
in Acebo & de-la Rosa (2008), where a new heuristic, different from the traditional
auction process, was introduced. The system was developed to transport containers

by a robotic system from a set of starting points to a set of destination points. The
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system simulated the waitress work in a bar where they pay more attention to the
clients that shout lauder and more intensive. Tasks in this scenario represented the
clients and robots represented the waitresses. This approach applied an attraction
linear function, in which the tasks become more attractive when their deadlines
become nearer or when their distances to the destination points are larger.

In Schneider et al. (2005) and Jones et al. (2007), market-based task allocation
strategies were introduced, where time was the critical constraint. This was consid-
ered together with a reward mechanism associated to tasks which were successfully

completed.
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Chapter 4

Swarm Performance Modeling

As far as the laws of mathematics refer
to reality, they are not certain, and as far
as they are certain, they do not refer to
reality.

- Albert Einstein

|
In this chapter we present a significant part of the main contribution of this thesis.
As mentioned in the previous chapters, the goal of the thesis is to design task al-
location strategies for swarm robotics systems which allow these systems to execute
tasks with respect to their temporal constraints. In other words, the robots should
be assigned to the time-constrained tasks such that a specific required performance is
achieved on each task up to its deadline.

The concept of swarm performance is defined and introduced under the influence of
the spatial interferences among robots. After that, and based on the switching costs
between tasks, two kinds of task allocation techniques are presented: Static alloca-
tion and Dynamic allocation.

The static allocation technique is proposed for tasks which are characterized by their
high switching costs. The core idea of this technique is to avoid the costs associated
with switching tasks by assigning the robots once at the beginning of the execution.

The robots allocate themselves to the different tasks autonomously and independently,
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where each robot dedicates a random working time to its selected task, referred to as
the robot’s activity time. The minimum threshold of the total time that should be
dedicated to the task up to its deadline represents the constraint of the swarm perfor-
mance. On the other hand, when switching costs among the tasks can be considered
as negligible, a dynamic allocation technique is proposed. The dynamic allocation al-
lows the robots to switch among the tasks during their execution time, which relaxes
the constraint of continuing to work on the same task. The minimum amount of
work that should be accomplished up to the task deadline, represents the constraint
associated with the swarm performance.

For both static and dynamic allocation techniques, a probabilistic analysis for the
constrained swarm performance is carried out, in addition to an estimation of the
variance that may occur between the required performance and the expected one to be
achieved at the task deadline. These are applied later in designing the task allocation
strategies.

Figure 4.1 illustrates the main terms associated with the swarm performance, when
designing the robots allocation is required to be performed under the time constraints
of the tasks.

Expected [Swarm Performance]

/

Expected Value of Performance Variance

S

Constrained [Swarm Performance]

\

/

Probability [Constrained [Swarm Performance]]

Figure 4.1 — The swarm performance terms.
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4.1 Chapter Notations

® N: the number of robots used in the swarm (the swarm size).

® N,;: the number of robots assigned to task T;.

® T;: the i-th task of the task set which is required to be executed by the swarm.
® D;: the deadline of task Tj;.

® S;: the size of task T;. It represents the number of parts that are required to be executed up

to the task deadline.
® R;: the j-th robot in the swarm.
® ATj;: the activity time dedicated by robot R; to task Tj.

® AT;;(D;): the part of robot R;'s activity time, which is dedicated to task T; up to its deadline
D;.

® («;: It is used under static allocation technique and refers to the minimum threshold of the total

time that should be dedicated to task T; by the robots.
® 7;: the total time dedicated by a swarm of N; robots to task T;.
® 7,(t): the total time dedicated by a swarm of N; robots to task 7T; during the time period [0, ¢].
e 7,(D;): the total time dedicated by a swarm of N; robots to task T; up to the deadline, D;.
® 7,(S;): the time required to accomplish S; parts of the task T;.
® ;i;: the mean time required by the swarm to accomplished one part of the task T;.
® q;(t): the number of robots which are still active working on task T; at the time point ¢.
® tp;: the time point at which the k-th robot has left task 7;.

® 0,(D;): the total amount of work accomplished on task T; up to the deadline D;. It represents

the number of parts executed up to the deadline D;.

® ;.. the k-th contribution on task T; that represents the performing of the k-th part on task T;.
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® 1);: The variance in the swarm performance that represents the difference between the swarm
performance required to be achieved at the deadline of task T; and the performance expected

to be achieved at that deadline.
® /i;: the mean time required by a single robot to accomplish one part of task T;.

® 7;: the standard deviation of the random time required by a single robot to accomplish one part

of task T;.
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4.2 Swarm Performance

The Performance in swarm robotics systems is defined based on the criteria and
goals associated with the tasks on which the performance is measured. For example
in foraging, if the task is to "collect as many objects as possible during 10 minutes”,
the performance is measured in terms of the number of objects that will be collected
during the 10 minutes deadline. On the other hand, if the task is to "collect 5 objects
as quickly as possible”, the performance is measured in terms of the time that will
be required to retrieve the 5 objects (Balch, 1998). Generally, we can introduce two
kinds of metrics in which the swarm performance can be expressed, the quantitative
metric and the temporal metric.

In coverage tasks for example, the goal is normally to cover the largest possible area.
The quantitative metric used to measure the swarm performance is related to the
area covered by the robots during a given time (Fazli et al., 2012; Wong et al., 2002).
In the literature, two classes of coverage problems have been discussed: The single
coverage, where the goal is to cover all the points of interest by one visit at least,
while minimizing the required time, the distance of travel, and the number of visits
to the points. The other class is known as the repeated coverage, where the goal is to
cover all points of interest repeatedly over the time while maximizing the frequency
of visiting points and minimizing the sum of the length of the robot tours. Here, we
can consider two metrics to measure the swarm performance: A quantitative metric
which is related to the number of visited points and the distance traveled by the
robots, and a temporal metric which can be defined as the time required to cover a
specific area.

Another example is given by navigation tasks which aim to control the robots’
travel paths between start and destination points, exploiting the robots’ sensing
system to compute the next motion. In Ceballos et al. (2010) the authors have
listed the performance criteria related to the navigation tasks including: the number
of successful missions, the path length, the number of collisions per mission, per
distance or per time, the mean distance to obstacle, the number of narrow passages
which are passed successfully, the smoothness of the trajectory, and the time taken

to accomplish the task. As we can notice, all the mentioned criteria represent

35
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quantitative metrics to measure the robots’ performance except the time needed to
accomplish the task which represents a temporal metric.

Foraging is one of the intensively studied tasks in swarm robotics systems. As
explained in Chapter 2, Section 2.1.1, foraging is inspired by social insects, where
the individuals search for food resources to retrieve food back to an area referred
to as the home. Foraging can be mapped to several real-world applications among
them are: mining operations, explosive ordnance disposal, foraging for recycling
of materials, and specimen collection in hazardous environments (Balch, 1999a).
Swarm performance on foraging tasks can be measured, using quantitative metrics
as well as temporal ones. The quantitative metric is associated with the number of
items retrieved per time unit, whereas the temporal metric is associated with the
time required to retrieve a specific number of items. In Balch (1999a), the authors
have studied different strategies of multi-foraging scenarios to evaluate the swarm
performance associated with each strategy. Multi-foraging is defined as the task in
which robots are responsible to retrieve different types of items. They applied first
the strategy of simple foraging, where all robots are allowed to retrieve from any
type of the available items. After that, they employed the specialization strategy,
where different groups of robots specialize to retrieve from specific types of items.
Finally, they tried a strategy referred to as territorial foraging, where all robots work
in searching and retrieving tasks except for one robot, which waits at the home
region to pick the retrieved items which are dropped on the border of the home
and transports them inside the home. This technique aims to reduce the influence
of physical interferences among robots in the home region. The paper studied the
performance under diversity (size of the robot group) and the performance expressed
in its quantitative term, which represents the number of retrieved items. In other
foraging studies, the performance was measured using other metrics such as the
energy cost of foraging. However, these metrics represented indirect measurement
of the number of retrieved objects as it is calculated in Winfield (2009).

In Balch (1998), the authors have introduced two taxonomies, one to characterize
the multi-robot tasks and another to characterize the multi-robot reward. They
stated that the reward function can be defined as performance if and only if the
maximum reward implies optimal performance. They discussed the possible relation

between reward and performance such as the task of docking a boat. In such a task
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the performance was defined as P = —elapsed time and it was considered as an
appropriate performance-based reward task because the reward was maximized if
and only if the performance was maximized. On the other hand, for tasks such as
foraging where the reward does not represent a direct result of the performance,
they introduced the concept of heuristic rewards. Heuristic rewards are based on
the intuition of the value of a robot action in particular states.

In this thesis, we focus on the performance achieved by a swarm of robots under
specific time constraints. This perspective of the swarm performance combines the
two metrics defined above for measuring the performance, namely the quantitative
and the temporal. We don’t aim to maximize the quantity within a particular time
period, such as the number of points to visit or the number of objects to retrieve.
Neither do we want to minimize the time required by the swarm to achieve a specific
quantity of performance. But rather our goal is to achieve a specific quantity of the
performance within a defined time period referred to as the deadline. This kind of

performance is referred to, here, as the time-constrained performance of the swarm.

4.3 Swarm Performance under Spatial Interferences

Spatial interferences are the interferences caused by the competition among robots
to occupy a shared physical area or space where they are operating. A high density
of spacial interferences can be observed in swarm robotics systems according to the
large number of robots which typically build up these systems. Several types of
interferences in multi-robotic systems have been defined in Goldberg (2001). The
work presented the interactions among robots working together in a common area as
the main type of robots interactions. The authors have proposed two techniques to
arbitrate the impact of interactions. First, by making sure that robots are working
in different areas and second, by scheduling the access to the shared areas. The first
proposal was further investigated under the term bucket-brigade examples can be
found in Shell & Mataric (2006), Lein & Vaughan (2008a), and Ostergaard et al.
(2001). In addition to Lein & Vaughan (2008b), where the approach was extended
to consider adaptive working areas.

The influence of the spacial interferences in swarm robotics systems is observed

on both single robot performance and global swarm performance. In Lerman &
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Galstyan (2002), the authors have presented a mathematical model of the foraging
task in swarm robotics through which they have characterized the performance of
the single robot and the swarm under spacial interferences.

In cases where the swarm performance is defined in terms of the amount of work
accomplished during a specific time unit, increasing the number of robots, decreases
the amount of work accomplished by the single robot. However, the amount of work
accomplished by a swarm increases up to a maximum amount before it starts to
decrease again by adding more robots. In case of the single robot, adding robots
increases the time the single robot spends in avoiding (interfering with) other robots.
This decreases, in turn, the time during which the robot is working. Consequently,
the amount of work accomplished by the robot during a specific time unit decreases.
From the swarm point of view, the amount of work accomplished during a specified
time unit keeps increasing as long as the gain of parallelizing the work among many
robots, is greater than the time cost paid in escaping from the interferences. This
amount starts to decrease as soon as the time lost by robots in avoiding each other
becomes greater than the time gained by parallelizing the work. This result was
reported, experimentally, in several studies as in Lerman & Galstyan (2002) and
Ostergaard et al. (2001). Based on the reported results, the single robot performance
under the influence of spatial interferences can be modeled mathematically using the
exponential functions. The parameters of mathematical model can be determined
through short-term experiments on the considered tasks.

Let consider an example where the single robot performance is modeled using the

following exponential function:

bx

fsingle(z) = ae™ where x is the swarm size

we set a = 50 and b = 0.05.
Swarm performance is the amount of work accomplished by the swarm during the
time unit. This performance is calculated using the single robots performance as in

the following:

fswarm<x> = xfsingle<x> (41)

bx

=1x X ae~ where x is the swarm size
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Figure 4.2 (a) shows the single robot performance when the size of swarm is increased
over the range [1, 100] robot and 4.2 (b) illustrates the calculated swarm performance
using Equation (4.1).

When the swarm performance is defined in terms of the time required to accomplish
a specific work amount, increasing the number of robots increases the time required
by a single robot to accomplish the specified amount of work. For the same reason
mentioned above, increasing the number of robots will decrease the time during
which the robot is in working mode and consequently will increase the time it requires
to accomplish the required amount of work. In the case of a swarm, the time required
to accomplish a specific amount of work decreases by increasing the robots due to
parallelizing the work until a minimum time is reached. After that, it starts to
increase as soon as the time dedicated by robots to avoid interferences becomes
greater than the time gained by parallelizing the work. Figures 4.2 (c) and 4.2 (d)
show the single robot performance and the swarm performance in terms of the time
required to accomplish one part of the work, calculated for the above example.
Since, the goal for time-constrained tasks is to achieve a specific swarm performance
at a particular deadline and as the swarm performance is directly influenced by
spatial interferences among the robots, a successful planning of the tasks execution

should take this influence into account.
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4.4 Static Task Allocation

4.4 Static Task Allocation

Reassigning robots among tasks during their execution times require the robots to
travel among the different tasks, when these are located in different physical sites.
Such tasks were introduced in Chapter 1, Section 1.1 to have high switching costs.
For time-constrained tasks, since the time at which the task is finished plays the
main role in the correctness (quality) of the results, spending the time in switching
between tasks does not provide an efficient solution. Therefore, switching costs
should be eliminated through preventing the reassignment of the robots among the
tasks during there execution time.

The allocation technique we propose, here, is referred to as static allocation. The
core idea of static allocation is to assign the robots to the different tasks at the
beginning of the execution and to prevent them from switching among the tasks
during the execution time. The problem to solve here, is two folds: First, finding
out the proper number of robots to assign to each of the considered tasks. Second,
specifying the time duration which each robot should dedicate to the task it is work-
ing on. These two parameters should be designed with respect to the constraint of
accomplishing the required size of each task up to its deadline. The time dedicated
by each individual robot to its selected task is referred to as the activity time of
the robot. This activity time represents a random time duration which is sampled
independently by the robots without any central control. It is not necessary that
each robot works on the task up to its deadline, but rather, the total time dedi-
cated to the task should respect the size of the task to execute up to its deadline.
The robot’s activity time includes the actual working time in addition to the time
spent by the robot in a non-working mode as the time spent in performing obstacle
avoidance or experiencing physical interferences with other robots. ATj; is used to
denote the activity time sampled by robot R; on task 7;. As soon as the robot
samples its activity time it starts to work on the task and becomes an active robot.
When the activity time of this robot expires the robot stops to work and becomes
an inactive robot. Figure 4.3 illustrates an example of the static allocation where
each robot samples its own activity time. At the beginning of the activity time the
robot becomes active on the selected task, it works until the end of its activity time

at which it becomes inactive.
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Figure 4.8 — Figure (a) illustrates the static allocation where the robots select their tasks from
M considered tasks. Figure (b) illustrates the work of the robots during their activity times on
task T;.

Robots’ activity times are continuous random variables which are sampled indepen-
dently by the robots under the constraint of dedicating enough time to the task up
to its deadline. On the other hand, the time required by a robot to accomplish one
part of its selected task is a continuous random variable which is influenced by sev-
eral factors including the physical interferences among robots, the distribution of the
task parts and the environment complexity. This time is averaged over short-term
robotic experiments or simulations. The mean of this random time is used later to
calculate the minimum threshold of the total time required to be dedicated to the
task up to its deadline.

In the following, we assign the proper definitions of the swarm performance terms

in Figure 4.1 for the case of static allocation:

e Swarm performance: In the context of static allocation, swarm performance is
defined as the total (cumulative) time assigned by the robots to their selected
task up to its deadline. This time is the sum of the activity times of all
robots which have selected this task to work on. Let us denote the total time

dedicated to task T; by 7;, then 7; can be calculated as follows:

N;

T, = ZA,I‘”

j=1

42


Task_Allocation_Pre-Design/Task_Allocation_Pre-Design_Figs/EPS/static_allocation_1.eps
Task_Allocation_Pre-Design/Task_Allocation_Pre-Design_Figs/EPS/static_allocation_2.eps

4.4 Static Task Allocation

where NN; is the number of the robots assigned to task 7.

The performance of interest in the case of time-constrained tasks is the per-
formance achieved by the swarm at the task deadline. This performance is the
sum of all time intervals of the robots’ activity times, which are included in
the task deadline.

The total time dedicated to task T; up to the deadline D; is calculated as:

=

i

7(D;) =

]

ATi;(D;)

1

J

Z

1

J

Constrained swarm performance: Under static allocation, the constraint of
swarm performance is associated with the total time dedicated to the task up
to its deadline. Let us use «; to denote the minimum threshold of the total
time that should be dedicated to task 7T; by the robots working on it. «;
represents the total time required to accomplish at least S; parts of task 7T; at
the deadline D;. The constraint associated with the swarm performance on

task T; can be written as:
N,

7(D;) > oy <= » AT;;(D;) > «; (4.3)
j=1
In the following, we explain how we calculate the minimum threshold «; of
the total time needed to be dedicated to task 7;. Let us denote the number
of parts accomplished by robot R; on task 7; during the robot’s activity time
AT;; by S;; and the random time required by a robot to accomplish one part
of T; by ¢;, then we have:
ATy > Sijepi

Now we can calculate the sum of the robots’” activity times as in the following;:
N; N;
2 AT 2 ) Syei
j=1 j=1

Z Qi Z Sij (4.4)
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The number of parts we aim to accomplish on task 7; up to its deadline D;

should be equal to or greater than the size S;, therefore we have:
Z Sij 2 S (4.5)

By substituting (4.5) in (4.4) we have:

N;

ZAsz > Sipi (4.6)
j=1
Therefore, the allocation strategy aims to dedicate a total time with the min-
imum threshold S;p; to task T;. By using the mean ji; of the random time ;
required by the robot to accomplish one part of task 7; when N; robots are
assigned to the task, we can approximate the minimum threshold as in the
following:
a; = Syfis(N:) (4.7)

Expected swarm performance: this calculates the expected value of the swarm
performance that will be achieved at the deadline D;. Since swarm perfor-
mance under static allocation is defined as the total time dedicated to the
task up to its deadline, the expected value of this performance is the expected

value of the random variable associated with the sum of the robots’ activity

times:
Ni Ni
E(Y ATy;) = E(ATy) (4.8)
=1 =1

Probability of the constrained swarm performance: this represents the proba-
bility of the constraint in Equation (4.3):
N;
Pr(ri(D;) > oq) = Pr()_ ATy;(Dy) > o) (4.9)
j=1
This probability will be characterized by its density function in addition to
its cumulative distribution function, see Chapter 2, Section 2.2.1 for for more

details about these two probability functions.
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e Expected variance in swarm performance: this estimates the difference be-
tween the minimum threshold of the performance required to be achieved at

the deadline D; and the expected performance to obtain at D;.

B(w) = o, ~ (Y AT,)

N;

=a;— Y E(AT}) (4.10)

j=1

Figure 4.4 illustrates the substitution of the terms definitions, which were originally

depicted in Figure 4.1 for the case of static allocation.

Expected [Swarm Performance]

E(X i) AT;;(Dy))

7 S

Expected Value of Performance Variance
E(y) = ai — B(X}%) AT;4(Dy))

\

Constrained [Swarm Performance]
E;-V:il AT,']' (Dz) > o

.

Probability [Constrained [Swarm Performance]]
Pr(Y N, ATy(D;) > o)

Figure 4.4 — Assign the proper definitions to the swarm performance terms under static

allocation.

4.4.1 Swarm Performance Modeling under Static Allocation

The robots’ activity times are, as mentioned above, random time durations, which
are sampled independently as a set of continuous independent random variables.
There are several probability distributions which can be used to model these activity

times. In the following, we list some of the suitable probability distributions used in

45


Task_Allocation_Pre-Design/Task_Allocation_Pre-Design_Figs/EPS/structure_static.eps

4.4 Static Task Allocation

this thesis to model the robot’s activity times. After that, we introduce a probability
analysis of the swarm performance under static allocation. Finally an estimation of
the performance variance as the difference between the required swarm performance

and the expected one to achieve, is performed.

A) Exponential Distribution:

The exponential distribution is a well-known distribution for modeling contin-
uous random variables such as the length of the events and the inter-arrival
times. It is widely used to model many real-world phenomena. Queuing
systems provide an important example where the exponential distribution is
investigated intensively. In queuing systems, the customer’s service times are

modeled typically as exponential random variables.

The exponential distribution can be characterized by its probability density

function which was given in Chapter 2, Section 2.2.1 by:

e M ift >0

feap(t) = ,
0 ift<0

where A is the rate parameter of the exponential distribution.

The problem of executing a set of time-constrained tasks by a swarm robotics
system, can be mapped to a queuing system, where the tasks represent the
customers who need to be served and the respective servers are the robots. The
service time which the customer spends in the server represents in our case
the time dedicated by the robot to the task, namely, the robot’s activity time.
Similarly to the distribution used to model the service time in queuing systems,
the exponential distribution counts as an appropriate distribution to model the
robots’ activity times. The rate parameter A of the exponential distribution
used to model the robot’s activity times is a task-specific parameter, which

differs among the considered tasks:
AT;; ~ Exp(N;) ie{l,...,M}

The sum of n independent exponential variables follows the Gamma distribu-

tion (Ross, 2006) and as n is an integer, the Gamma distribution is substituted
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with the Erlang distribution, whose probability density function is given by:

AG_A$<Ax)k_1

fE(,\,k)(SU) = (k — 1)

(4.11)

The cumulative distribution function of the Erlang distribution, is given by:

N

-1

Frpop(z) =1— ﬁe_)“(kx)" (4.12)

I
=)

n

When the robots’ activity times dedicated to task 7; are modeled as expo-
nentially distributed variables, the sum of these activity times is distributed

following the Erlang distribution:

N;
Z AT;; ~ Erlang(N;, N;)

j=1

A; is the rate parameter of the Erlang distribution and N; is its shape.

The probability of dedicating a total time to task T}, that is greater than the
threshold a; when the robots sample their activity times from an exponen-

tial distribution with rate \;, is calculated using the cumulative distribution

function of the Erlang distribution as in the following:

Ni Ni
PT(Z Aﬂj > Ozi) =1- PI"(Z A,I‘Z] < Ozi)
Jj=1 J=1
= 1= Fgpung (@)
N;—1 1
= ]_ — []_ — Z Ee_’\io‘i()\iai)"]
n=0 ’
Ni-l
=> ae”\io‘i()\iai)” (4.13)
n=0

Equation (4.13) calculates the probability of having the total time 7; dedicated
by N; robots to task T;, being greater than the threshold «;. Later on we will
calculate the probability of interest in Equation (4.9), namely, the probability
of having the total time 7;(D;) dedicated to T; up to the deadline D;, being
greater than the threshold «;.
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Figure 4.5 — Figure (a) illustrates the probability density function of an exponential activity

time with the mean 1/X\; = 5 time units. Figure (b) shows the probability density function of

the sum of N; = 10 exponential r.v. with mean 1/X\; =5 time unit and the simulated sum with
10000 runs of Monte-Carlo simulation.

Figure 4.5 (a) shows the probability density function of the random variable
associated with the robot’s activity time when it is sampled from an exponen-
tial distribution with the mean of 1/); = 5 time units. Figure 4.5 (b) illustrates
the probability density function of the sum of 10 activity times, calculated with
Eq (4.12), as well as the distribution obtained with a Monte-Carlo simulation
of 10000 runs.

Truncated Exponential Distribution:

The tasks we are focusing on in this thesis, are time-constrained tasks which
should be accomplished up to particular deadlines. The temporal constraints
associated with the considered tasks can be divided, as mentioned in Chapter
1, Section 1.1 into hard-deadline and soft-deadline. In the case of soft-deadlines
where robots can continue executing the task till it is finished even after its
deadline is exceeded, sampling activity times which are longer than the task
deadline is feasible. However, in the case of hard-deadlines where there is no
profit of continue executing the task after its deadline, sampling activity times
which are longer than the deadline is not feasible. Considering such cases

where the robots should stop working on the task by reaching its deadline, the
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4.4 Static Task Allocation

distribution of the robots’ activity times should be able to restrict the length

of the sampled activity times to the task deadlines.

The truncated exponential distribution is a special case of the exponential
distribution where the continuous random variable is defined over a restricted
range [a,b]. This distribution is appropriate to sample the robots’ activity
times when the robots should stop to work on the task as soon as its deadline
is reached. The robot’s activity time which is sampled from the truncated
exponential distribution defined over the range [0, D;], is restricted between 0
and D;.

The truncated exponential distribution can be characterized by its probability

density function which was given in Chapter 2, Section 2.2.1 by:

)\67)\15
—_ a1 <t <b
Friap(t) = { eda —ebr THE TS (4.14)
0 Otherwise

By substitution x = At, Equation (4.14) can be written as:

A <z<b
. —— a<z<
Jrap (@) =4 e *—e? (4.15)
0 Otherwise

where a = Aaq,b = \by.

When the activity time of individual robots is modeled as a truncated ex-
ponential variable, the probability density function of their sum is provided
in Lavender (1967) by using the properties of the characteristic function of
the sum of random variables. The main steps of the derivation are resumed
here, however, a detailed derivation is to be found in the appendix A. The
characteristic function of the probability density function f(x) of the random

variable z is defined as:

o(t) = /OO e f(z)dx (4.16)

e}
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If (t) is the characteristic function of f(x), then p(t+i)) is the characteristic

function of e~ f(z) since:

o(t+iA) = /OO TN £ () dae (4.17)

[e o]

_ / " et f(2)de

(e o]

In addition, the characteristic function associated with the distribution of the
sum of n independent variables, each with the characteristic function ¢(t) is:
[o(t)]™ (Kendall & Stuart, 1977). This property allows to establish the form
of the probability distribution function of the sum of n truncated exponential
variables from the expression related to the characteristic function of the sum
of n rectangular random variables:

(eitb o eita)n

On,U(ap)(t) = W (4.18)

The expression of the anti-transform of Equation (4.18) is calculated in Cramer
(1946):

e L (1 [s —na—k(b—a)]"!
o) = 0=y S0 () (4.19)

where na +m(b—a) <s<na+(m+1)(b—a) and m=0,1,..,n — 1.

The probability density function of the sum of n independent random variables,
each is distributed with the probability density function fy;(z), is thus given
by Equation (4.19).

The characteristic function of a truncated exponential random variable as well
as that of the sum of n independent truncated exponential random variables
are easily calculated by applying the definition:

(it—=1)b _ (it—1)a

e e
a t) = N 4.20
P1(ab) (t) e == D) (4.20)
(it—1)b _ (it—1)a\n
e e
On 1) (t) = (( ) (4.21)

e~ —e (it —1)»
The close resemblance between Equation (4.18) and Equation (4.21), allows for

the derivation of the probability density function of the sum of n independent

50



4.4 Static Task Allocation

truncated exponential random variables. In particular, by using the fact that
i(t +1i) =it — 1 we have:
it)b _ i(t+i)a\n (it—1)b _ _(it—1)a)"
, e e e e
PnUan)(t +1) = ( — © | , (4.22)

(b—a)™(i(t+1i))" (b—a)*(it — 1)™

Which is, by applying Equation (4.17), the characteristic function of g(S)e

-5

Equation (4.22) can be obtained by multiplying Equation (4.21) by a constant
factor. It follows that the anti-transform of the characteristic function of the

sum of n truncated exponential random variables that we are looking for is:

(b—a)"

(6_a—6_b
1 = w1\ [s —na—k(b—a)|" '
:m;<_l) </<;>[ (n —(1)! C(EY

where na +m(b—a) < s <na+(m+1)(b—a) and m=0,1,..,n — 1.

fur@n(S) = )ng(S)e’S (4.23)

Therefore, the sum of robots’ activity times, when these are sampled from a
truncated exponential distribution with the parameter A\ and the bounds a
and b, is distributed according to the probability density function in Equation
(4.23):

ZA ~ fa(ap)(S) (4.25)

Additional calculations lead to the expression of the cumulative distribution
function of the sum of n independent truncated random variables (Lavender,
1967):

nT(ab ZakG Yy, n, )\ (426)

Where G(y,n, ) denotes the cumulatlve distribution function of a Gamma

distribution, (Papoulis, 1984) with shape n and parameter \.

ap = (—1)’“(2) [Tk ay with ag = (A")/((1 — e2~b)™).

The cumulative distribution function in Equation (4.26) can be used to cal-
culate the probability of having the sum of the robots’ activity times greater

than the threshold «a;, when the activity times are sampled from the truncated

exponential distribution.
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Figure 4.6 — Figure (a) illustrates the probability density function of a truncated exponential

r.v.

with mean 1/X\ = 5 and bounds a = 5 and b = 10 time units. Figure (b) shows the

probability density function of the sum of N = 10 truncated exponential r.v. with the same

parameters and the simulated sum with 10000 runs of Monte-Carlo simulation.

Figure 4.6 (a) shows the probability density function of the random variable
associated with the robot’s activity time that is sampled from a truncated
exponential distribution with A = 0.2 and the bounds a = 5 and b = 10 time
units. Figure 4.6 (b) illustrates the probability density function of 10 activity
times, which are calculated with Equation (4.23), as well as the distribution

obtained with a Monte-Carlo simulation of 10000 runs.

It is evident from Figures 4.5 (b) and 4.6 (b) that when the swarm is com-
posed by a large number of robots, the distribution of the sum of their ac-
tivity times can be approximated by a normal (Gaussian) distribution. More
specifically, when the individual activity times are statistically independent
and have an identical distribution (this condition can easily be released) with
finite mean p and standard deviation o, the distribution of the sum converges

to N(t; Nu, No?) whose probability density function is given by:

1 (t=Np)
all) = ———— e 4.27
f ,G( ) \/2’7T—NO' ( )

as assured by the central limit theorem (CLT), see for example Durrett (2004).

This allows many of the calculations to be simplified in the general case, as
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N — oo. Figure 4.7 shows the error of the approximation of the closed form
probability density function derived for the truncated exponential distribution
in Equation (4.23) with the Gaussian distribution, as defined by:

e= [ 1) = faclola (4.28)

When the number of robots is moderately large, which is the assumption in
swarm robotics systems, the Gaussian distribution constitutes a viable approx-

imation for many practical scenarios.

0.5
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110,601
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N9 w
(%2 w a

I
N

e
o
B o
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Number of robots

Figure 4.7 — Error in the Gaussian approzimation of Equation (4.23). As assured by the Central

Limit Theorem the distribution of the sum converges to a Gaussian distribution.

C) Arbitrary Distribution:

[The work in this section was done in collaboration with Michele Pace.]

The exponential distribution and the truncated exponential distribution, pre-
sented above, belong to the most proper distributions for modeling the random
variables associated with the robot’s activity times. However, probabilistic es-
timators can be built for cases where the robots’ activity times may follow an
arbitrary distribution with the probability density function 7(t). In the case
when N; robots are assigned to task T;, the total time dedicated to the task

will be the sum of the NV; activity times.

The probability density function of the sum of n random variables following

any distribution is, by definition, the n-fold convolution of the probability
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density function of the used distribution for the individuals. Consequently,
the probability density function of the sum of N; activity times will be the
N;-fold convolution of the density function 7 (t) (Grinstead & Snell, 1998).

On the other hand, the central limit theorem states that in case of an arbitrary
distribution with finite mean p and standard deviation o, the distribution of
the sum of n variables can be well approximated with a Gaussian distribution
of the mean p,, = nu and the standard deviation the o, = /no when n is
large enough. As an example, Figure 4.10 illustrates the error in the approx-
imation with the probability density function of Gaussian distribution of the
sum of n variables, each is distributed according to the non-standard bi-model

probability density function shown in Figure 4.8.
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Figure 4.10 — Error in Gaussian approximation of the distribution of the sum of n random

variable distributed as in Fig.4.8.

4.4.2 Probability Analysis of the Constrained Swarm Perfor-

mance under Static Allocation

[The work in this section was done in collaboration with Michele Pace.]

The results presented in section 4.4.1 characterize, probabilistically, the total time a
swarm dedicates to the task when the robots choose their activity times by sampling
them from particular probability distributions. After that, each robot works on the
selected task for the duration of its activity time before it becomes inactive. Under
the time constraints of the task, useful estimators should provide a characterization
of the probability that the total time assigned to the task up to its deadline is above
a minimum threshold.

Robots make their decisions concerning their activity times without any kind of
coordination or central control. For the purpose of probability analysis, we assume
to have N; robots assigned to task 7;. They sample their activity times at the
beginning of the execution t = 0. The probability of interest is the probability of
having the total time dedicated by the N; robots up to the deadline D; being greater
than the minimum threshold «;.

Let a;(t) denotes the number of robots which are still active at time ¢ > 0. N; —a;(t)

refers to the number of robots which have left at different time points before ¢:
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tpr < t. The total time spent by the robots on task 7; up to time ¢ is given by:

N;—a;(t

®
T(t) =a(tit+ Y ok (4.29)

The probability we are looking for, can be written as follows:

Pr(r;(D;) > a;) = 1 — Pr(r(D;) < o) (4.30)
=1 iPr(ai(Di) =) Pr(i tpr < a; — jD;)

We perform the calculation of Equation (4.30) in parts. Pr(a;(D;) = j) is the
probability that there are exactly j active robots at time t = D;, where j can take
any value over the discrete range [0, N;]. The probability that exactly j robots are
active at time D; can be calculated using the binomial distribution'. The probability
of having exactly k successes in n trials is given by the following probability mass

function:
ko) = (3 )= (431

Our success probability p here, is the probability of having the robot’s activity time
longer than the deadline D;. Let us assume that the robots’ activity times are
sampled using the exponential distribution, the probability that robot R; has sam-
pled an activity time AT;; longer than the deadline D;, can be calculated using the

cumulative distribution function of the exponential distribution as in the following;:

=1—(1—e ™)
_ G*AiDi

Consequently, the probability that j robots sample each an activity time longer than
the deadline Dj is calculated by using Equation (4.31) after substituting n by N;, k
by j and p by e *"i. based on the binomial distribution as in the following:

Pr(a;(D;) = j) = <in)einDi(1 — e NPNi (4.32)

I The binomial distribution is the discrete distribution of the number of successes in a sequence
of n independent experiments with a binary output. Each of these experiments is a Bernoulli
experiment with a success probability p and a failure probability ¢ = 1 — p.
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The second term Pr(ijgj tpr < a; — jD;) expresses the probability of having the
total time dedicated to task 7T; by the N; — j robots which have left before the
deadline D;, being smaller than a; — j7D;. This probability can be calculated using
the cumulative distribution function of the random variable associated with the
sum of the robots’ activity times. Hence, when the activity times are sampled from
the exponential distribution, we can use Equation (4.12) to calculate the second

probability term of Equation (4.30) as in the following:

=1—= Z < ’) e*j)\iDi(l _ ei)\jDi)NerE()\i,Ni)(Oéi _ ]Dz)
=0 N/
7 N ) ) Nifl 1 '
=1— [( .Z) G*JAiDi(l _ G*AiDi)Nﬁ]][l _ _G*Ai(ai*]Di)(Ai(ai _ jDz))k]
=0 \J — K

Similar considerations allow for the derivation of the probability in case the robots’
activity times are sampled from the truncated exponential distribution. The prob-
ability that a robot is still active at time a; < t < by is easily calculated from
Equation (4.14) and the probability of having the total time dedicated to a task T;
up to its deadline, being greater than the threshold «; is given by:

N ) )
S /N, =Aia1r _ o=NDi\j(p—=AiDi _ ,—=Aib1\N;—j
Pr(r(Di) > ;) = 1-) :( 4)@ e )e )

J

J=0

(4.34)
which can be approximated as well by using the result obtained when applying
the central limit theorem and substituting Fi, r(a, 5,)(0 — jD;) with the Gaussian
distribution, in case N; is large enough.

Figure 4.11 (a) and 4.11 (b) illustrate the probability of dedicating a total time equal
to or greater than the increasing threshold a; by swarms of different sizes. The robots
choose their individual activity times sampled once from an exponential distribution
with parameter \; = 0.2 and again from the truncated exponential distribution with
parameter \; = 0.2 and the range limits [a, b], where @ = 1 and b = 5 time units.
Monte-Carlo simulations are performed and the results are compared with Equation
(4.33) and Equation (4.34). Figure 4.12 compares the probability of having the

total time dedicated by swarms of different sizes being greater than the increasing

o7

(e*Aial _ ef)\ib1>N FNin(al,bl)(ai_jDi)



4.4 Static Task Allocation

o
o

Prob(Tl(Dl) > al)
o o o o
N w S ol

o
[

o

50 100 150 200 250

o

Prob(Tl(Dl) > al)

o
o

et
3]
T

N
IS

o
w
T

0.2r

0.1r

- - N=10
- --N=20
—N=30

100 150 200 250

(b)

Figure 4.11 — Probability Pr(r;(D;) > o), for D; = 15, oy € [20,250] and different number
of robots N; = {10,20,30}. Robots sample their activity times in figure (a) from an exponen-
tial distribution with parameter \; = 0.2. Model (Equation (4.33)) and in figure(b) from a
truncated exponential distribution with parameter A\; = 0.2 and bounds a = 1, b = 5. Model
(Equation (4.34)). Monte-Carlo simulation is performed with 100000 runs.

thresholds «;, when robots’ activity times are sampled once from the exponential

and again from the truncated exponential distribution.
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Figure 4.12 — Probability Pr(r;(D;) > «;), for D; = 15, a; € [20,250] and N = 20 robots are
participating on the task. Robots sample their activity times from: exponential and truncated
exponential distributions with parameter A\; = 0.2 and bounds a =1, b =5.

At the end of this section, we are able to calculate the probability associated with
the constrained swarm performance by using Equation (4.30). The first part of
this equation is calculated using the Bernoulli distribution and its second part is
related to the distribution which is used in sampling the robots’ activity times.
More precisely, the second part of the equation is calculated using the cumulative
distribution function of the random variable resulted by summing up the robots’
activity times. It is necessary to have the closed form of the cumulative distribution
function of the applied distribution in order to derive the probability analysis of the

constrained swarm performance.

This probability analysis will be applied later in Chapter 5 to design the task allo-
cation for time-constrained tasks under static allocation.

4.4.3 Performance Variance Estimation under Static Alloca-
tion

In this Section, we estimate the variance between the swarm performance required to
be achieve at the task deadline and the swarm performance expected to be achieved
at the task deadline. The performance variance on task 7T; is denoted by ; and

it represents the difference between the minimum time that should be dedicated to
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task T; and the total time dedicated. As mentioned above, the total time 7;(D;),
dedicated by N; robots up to the deadline D;, is the sum of the intervals of the robots’
activity times located within the start of the execution and the task deadline, see
Equation (4.2). Therefore, the expected value of the performance variance can be
calculated using the expected value of the continuous random variable associated

with 7;(D;) as in the following;:

a; — E(r:(Dy)) E(r(D;)) < «;

E(i) = { 0 E(r:(Dy)) > o

The distribution of the random variable 7;(D;) is determined by the distribution
of the individual activity times. By substituting the total time dedicated to the
task 7;(D;) by the sum of the activity time intervals located within the start of the
execution and the deadline D;, the expected value of the performance variance can

be written as follows:

E() = { o ~E(LL AT, (D)) E(XL ATy(D) <o
Z 0 E(310, AT;(D) 2 o

Let us consider the case, where the robots’ activity times are exponentially dis-
tributed with the rate parameter ;. In this case, the expected value of the robot’s
activity time is the expected value of an exponentially distributed variable and this
is given by:
E(AT}) = — (4.35)
Ai
Therefore, the interval of the expected robot’s activity time which is located within

the start of the execution and the deadline D; is calculated as in the following:

1 1
N o D
E(AT;;(D;)) = { 7 %
D; )\_>Di

The expected value of the time dedicated by N; robots to task T; up to its deadline

D; can be written as:

N; & i < D
(Y AT, (D) = i (4.36)
j=1 N;D; . z D;
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4.4 Static Task Allocation

The expected value of the performance variance is the difference between the perfor-
mance which is required to be achieved at the deadline and the expected performance

to obtain at the deadline. It is calculated using Equation (4.10):

N; 1
max(a; — —,0) — < Dy
E(¥;) = As A (4.37)

Figure 4.13 (a) shows the expected value of the sum of 30 activity times which are
sampled each from an exponential distribution with a rate parameter that varies
over the range [0,3]. The expected value of the robot’s activity time is calculated
theoretically using Equation (4.35). After that, it is multiplied by the number of
robots, IV; = 30, to obtain the expected value of the time dedicated by the robots to
the task. In the same figure, the total time dedicated by the robots is simulated over
100 runs of Monte-Carlo simulation. Figure 4.13 (b) illustrates the expected value
of the swarm performance, which represents the sum of the activity times intervals
located within the start of the execution and the task deadline, here D; = 5 time
units. The activity times are also sampled from an exponential distribution with a
rate parameter which varies over the range [0, 3]. The expected value of the swarm
performance is calculated theoretically using Equation (4.36) and is compared to
the simulated swarm performance over 100 runs of Monte-Carlo simulation.

Since the longest interval which a robot can dedicated to the task up to its deadline
is the deadline itself, the upper-bound of the sum of 30 activity times in our example
is 30 x 5 = 150 time unit. That what we see in Figure 4.13 (b) that illustrates the
total time dedicated to the task up to its deadline.

61



4.5 Dynamic Task Allocation

300k —Theqr_etical 300} —Theqr_etical
+ Empirical + Empirical

i

13

o
T

Expected swarm performance
(total dedicaated time)
Expected swarm performance within deadline
(total dedicaated time within deadline)

0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3

Rate parameter A Rate parameter A
(a) (b)

Figure 4.13 — Figure(a) the expected value of the sum of 30 robots’ activity times calculated
using Equation (4.35). Figure(b) the expected value of the sum of 30 robots’ activity times
intervals located within the start of the execution and the deadline D; = 5, calculated us-
ing Equation (4.36). The robots’ activity times are sampled from an exponential distribution
with the rate parameter \; € [0,3]. The results are simulated over 100 runs of Monte-Carlo

stmulation.

4.5 Dynamic Task Allocation

Dynamic task allocation is an allocation technique developed for the tasks which
can be characterized by their negligible switching costs, see Chapter 1, Section 1.1.
It allows the robots to switch among the tasks during their execution time. They
can change dynamically and independently their current task and move to work on
any other. For the kind of tasks we are considering in this thesis, where the task
is executed in discrete parts, the robot has the possibility to change its task each
time it finishes working on the current part of its task. Following dynamic allocation
technique relaxes the constraint for the robot to keep working on the same task. This
represents an efficient solution, for example, in cases where the robot may encounter
parts of different tasks on its working area, so it has the chance to switch. Dynamic
allocation provides the system with a high level of flexibility while assigning the
robots to the different tasks. However, it counts as an efficient technique under the
constraint of having negligible switching costs among the tasks. In the following are

two cases where the switching costs among tasks can be considered as negligible.

e Tasks sharing the same physical area: robots can switch among the different
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Figure 4.14 — Figure (a) illustrates the dynamic allocation where the robots are allowed to
switch among the tasks during their execution times. Figure (b) illustrates the work the robots

accomplish on task T; during their recursive visits to the task.

tasks with negligible costs when they are occupying the same physical area or
space since no additional traveling is needed. An example where this condition
is feasible is a multi-foraging task where several types of items need to be
retrieved by a swarm of robots to some home or nest. In case the items are
scattered on the same area, the robots can switch to work on any type of these

items without any extra switching costs.

e Switching times are negligible in comparison to the task execution times: In
cases where the execution times of the considered tasks are significantly longer
than the average time required to travel among the tasks, the switching costs

can be considered as negligible.

Figure 4.14 illustrates an example of the dynamic allocation, where the robots are
free to change their current task to any other task as soon as they finish accomplish-
ing the current part of their task.

In the following, we assign the proper definitions of the swarm performance terms

in Figure 4.1 for the case of dynamic allocation:

e Swarm performance: In the context of dynamic allocation, swarm performance
is defined as the amount of work accomplished on the task during a specified

time unit. For our time-constrained tasks, the swarm performance is amount
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of work accomplished up to the task deadline and it is denoted by 6;(D;)
for task T;. Let us use 7, to denote the k-th contribution on task T;.
represents the execution of the k-th part on task T;. In case () contributions
have been occurred on task T; up to its deadline D;, the swarm performance
on task T; can be calculated as the sum of all the contributions occurred up
to the deadline D;:

Q
0;(D;) = Z%‘k (4.38)

Constrained swarm performance: Under dynamic allocation, the constraint
associated with the swarm performance is associated with the amount of work
accomplished by the swarm up to the task deadline. The size of the task
represents the minimum amount of work that should be accomplished on the
task up to its deadline. This size is not necessary equal to the parts available
on the task to execute. Moreover, concerning the tasks we are considering in
this thesis, the parts of the task are regenerated continuously. The constraint

associated with the swarm performance on task 7; can be written as:

0:(D;) = S;

Q

D =S (4.39)
k=1

Expected swarm performance: this calculates the expected value of the swarm
performance that will be achieved at the deadline D;. Since swarm perfor-
mance under dynamic allocation is defined as the amount of work accomplished
by the robots up to the task deadline. The expected value of this performance
is the expected value of the discrete random variable which represents the

number of parts accomplished by the swarm up to the task deadline:
Q
E(0:(D;)) = E(Z Yik) (4.40)
k=1

Probability of the constrained swarm performance: this represents the proba-

bility of the constraint in Equation (4.39):

X
gl
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This probability will be characterized by its probability density function and

its cumulative distribution function.

e Expected variance of swarm performance: this estimates the difference be-
tween the minimum performance required to be achieved at the deadline D;,

namely the task size S; and the expected performance to obtain at D;.

E(y) = S — E(6:(D:))

Q
= 5 B> ) (4.42)

Figure 4.15 illustrates the substitution of the terms definitions, which were originally

depicted in Figure 4.1 for the case of dynamic allocation.

Expected [Swarm Performance]
E(0;(D;))

7 ~

Expected Value of Performance Variance

E(4;) = S; — E(6;(D;))

\

Constrained [Swarm Performance]

0i(D;) > Si
~

Probability [Constrained [Swarm Performance]]

Figure 4.15 — Assign the proper definitions to the swarm performance terms under dynamic

allocation.

4.5.1 Swarm Performance Modeling under Dynamic Alloca-
tion

[The work in this section was done in collaboration with Michele Pace.]

Swarm performance under dynamic allocation expresses the total amount of work
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accomplished by the swarm on the task up to its deadline. This amount of work
represents a random value which may belong to the continuous as well as to the
discrete space based on the kind of the considered task. For example, in the task
of pushing a box between two points by using a swarm of simple robots, the swarm
performance can be measured as the distance which the box has been traveled during
a specific period of time. The random value associated with the swarm performance
belongs, here, to the continuous space. However in a foraging task where items
should be retrieved by the robots, the swarm performance can be measured as
the number of retrieved items during a specific time unit. The random variable
associated with the swarm performance belongs, here, to the discrete space.

The tasks we are considering in this thesis consist of discrete parts where the size
S; represents the number of parts required to be accomplished on task 7; up to its
deadline D;. The cumulative work accomplished on any task up to its deadline will
be the sum of the individual contributions of the robots which worked on the task
up to its deadline, as defined in Section 4.5, Equation (4.38).

The time required by a single robot to accomplish one part on task 7; is a continuous
random variable, which can be characterized by a task-specific mean fi; and a task-
specific standard deviation g;. Figure 4.16 shows an example where three robots
Ry, Ry and Rj3 are working on task 7;. The random times required by each robot to
accomplish individual parts are depicted using horizontal lines associated with the
robots’ colors. Each time a robot succeeds in finishing one part, the total number
of executed parts increased by one. The increment in the number of accomplished

parts over time is depicted in the lower part of Figure 4.16.
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Figure 4.16 — The evolution of the work on task T;.

The evolution process of the amount of work accomplished on task 7; up to the
deadline D; represents a time-continuous stochastic process X (¢). At the beginning
of the task execution, the process has the value zero, X (0) = 0, since no part is ac-
complished yet. After that, it starts to have discrete increments of the total number
of parts accomplished on T; up to its deadline. This process is a counting process
of the discrete random number of parts accomplished during a specific time period
(the deadline). In addition, the increments of the number of parts accomplished in
disjoint intervals are independent from each other. If we have a look at the defini-
tion of the Poisson process in Chapter 2.1, Section 2.2.2.1, we can conclude that the
Poisson process represents an appropriate model for the work progress over time on

the tasks we are considering in this thesis.
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4.5.2 Probability Analysis of the Constrained Swarm Perfor-

mance under Dynamic Allocation

The probability of interest, here, is the probability of completing the task up to its
deadline. This probability was given above in Section 4.5, Equation (4.41) as:

Pr(0;(D;) = S;)

where 0;(D;) refers to the total number of parts (work amount) accomplished on
task T; up to its deadline D;.

The increment of the number of parts accomplished over time is modeled using
a Poisson process with a task-specific rate as described in Section 4.5.1. It is well
known that the number of events counted by a Poisson process with the rate A within
a time interval of the length ¢ follows a Poisson distribution with the parameter At.
Therefore the Probability of interest in Equation (4.41) can be calculated using the
cumulative distribution function of the Poisson distribution with the parameter \; D;

for task T; as in the following :

S
_ SN (ADi)
=1—e kz i
=0

On the other hand, the probability in Equation (4.41) is equivalent to the probability
of having the time required to accomplish S; parts being shorter than or equal to
the deadline D;. We use 7;(S;) to denote the time required to accomplish S; parts
of task T;. Hence, we can write the probability of Equation (4.41) as follows:

The Poisson process used to model the work evolution on task 7; is characterized
with its specific rate ;. Let us denote the time between two consecutive events i — 1

and i by t;. The occurrence time 7,, of the n-th event in a Poisson process is given

by (Ross, 2006):
To= t (4.45)
k=1
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It is well known that the waiting times between consecutive events (inter-arrival
times) in a Poisson process with the rate A, are exponentially distributed with the
same rate parameter \. In addition, the sum of n random variables distributed
exponentially with the parameter A, is a random variable that follows the Gamma
distribution with the shape parameter n and the rate \. The random variable 7,
in Equation (4.45) is the sum of n exponentially distributed random variables with
the parameter A\. Therefore, it will be distributed following the Gamma distribution
with the parameters n and A and because n is discrete, the Gamma distribution can

be substituted with the Erlang distribution for the same parameters.
T, ~ Erlang(n, \)

The time we are interested to analyze probabilistically, in Equation (4.44), is the oc-
currence time of the S;-th event which is the time of achieving S; parts accomplished

on task 7;. Based on Equation (4.45), this time can be written as:

7i(Si) = Ztk (4.46)
k=1
This time follows the Erlang distribution with the parameters S; and \;, where 5;
of task T; and ); is the rate of the Poisson process which models the work evolution
on task Tj;:
7(S;) ~ Erlang(S;, \;) (4.47)

Thus, the probability in Equation (4.44) represents the cumulative distribution func-
tion of the Erlang distribution and is given by:

Pr(r;(S;) < D;) =1—

S;
( ' ) —)\le (]. ]8)

k

k=0

We have presented two methods of calculating the probability in Equation (4.41)
based on the equivalence of the two probabilities in Eqaution (4.44). Both methods
have led to the same result in Equations (4.48) and (4.43).

Figure 4.17 illustrates the probability calculated by Equation (4.48) for \; = 5,
D; =25 and S; € [100, 150].
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Figure 4.17 — Probability Pr(7;(S;) < D;), for \; =5, D; =25 and S; € [100,150].

4.5.3 Performance Variance Estimation under Dynamic Al-

location

In this section, we estimate the variance between the swarm performance required to
be achieve at the task deadline and the swarm performance expected to be achieved
at the task deadline. The performance variance on task 7; is denoted by 1; and it
represents the difference between the task size and the number of parts expected
to be accomplished up to the task deadline. As mentioned in Section 4.5.1, the
work progress on the tasks is modeled using Poisson processes. It is well known
that the number of events counted by a Poisson process with a rate A is distributed
during any time interval ¢, according to a Poisson distribution with the parameter
At. Consequently, the number of parts accomplished up to the deadline will be

distributed as in the following:
0;(D;) ~ Poisson(\;D;) (4.49)

The expected value of a random variable which follows a Poisson distribution with
the parameter )\ is equal to A. Therefore, the expected value of the random variable

associated with the swarm performance, 6;(D;), is given by:

E(0:(D;)) = AiD; (4.50)
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After calculating the expected value of the swarm performance using Equation
(4.50), the expected variance can be calculated as the difference between the num-
ber of parts required to be accomplished S; and the expected number of parts to
execute. Equation (4.42) is used to calculate the expected value of the performance
variance as in the following:
E(y;) = 4.51

=1 e (4.51)
Figure 4.18 shows the expected swarm performance at the deadline D; = 10 when
the Poisson process which models the evolution of the work on the task has a varying
rate A € [1,10]. In addition, the figure shows the averaged performance over 100

runs of Monte-Carlo simulation.
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Figure 4.18 — Comparison between the expected swarm performance and the simulated one
over 100 runs of Monte-Carlo simulation, the deadline is D; = 10. The Poisson process that

models the evolution of the work on the task has its rate within the range [1,10].
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4.6 Conclusions

In this chapter, we have introduced the concept of swarm performance and the
influence of spatial interferences on it. After that, two kinds of allocations were
introduced: Static allocation and Dynamic allocation.

The static allocation is proposed to deal with tasks which are characterized by
their high switching costs. In this technique, the swarm performance on the task is
defined as the total time dedicated by the robots up to the deadline of the task. The
robots assign themselves to the different tasks at the beginning of the execution and
each robot determines, independently, the time it will dedicate to the selected task.
The constraint associated with the swarm performance is related to the minimum
threshold of the total time that should be dedicated to the task up to its deadline.
Dynamic allocation, on the other hand, allows the robots to switch among the tasks
during their execution time, as this technique is proposed for the tasks with negligible
switching costs. It provides a high level of flexibility in assigning and reassigning the
robots among the different tasks, which may improve the global performance of the
system. The swarm performance associated with the dynamic allocation is defined
as the amount of work accomplished on the task up to its deadline. Therefore,
the constraint of the performance is related to the amount of work that should be
accomplished on the task up to its deadline.

The chapter has provided a probabilistic analysis of the constrained swarm perfor-
mance in both cases of static and dynamic allocations. In addition, it has presented
an estimation of the expected variance between the swarm performance required to

achieve and the expected performance to achieve both at the task deadline.
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Chapter 5

Task Allocation Design

Better never than late.

- George Bernard Shaw

|
In this chapter we present a set of task allocation strategies, developed for executing
time-constrained tasks by swarm robotics. The task deadlines are categorized into
hard deadlines, where executing the task after its deadline has no benefit, and soft
deadlines, where continuing the execution of the task after its deadline is associated
with specific costs in terms of deteriorating performance quality.

In the previous chapter, two kinds of allocation techniques were introduced: Static
allocation for tasks with high switching costs and Dynamic allocation for tasks with
negligible switching costs. The task allocation strategies in this chapter are developed
in the context of both allocation techniques: Static and Dynamic.

The allocation strategies provide the robots of the swarm with the necessary input at
the beginning of the execution. After that, the robots assign themselves independently
and start to work fully autonomously on their selected tasks under the temporal

constraints of these tasks.
|
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5.1 Chapter Notations

® N: the number of robots used in the swarm (the swarm size).

® N,;: the number of robots assigned to task T;.

® T;: the i-th task of the task set which is required to be executed by the swarm.
® D;: the deadline of task Tj;.

® S;: the size of task T;. It represents the number of the task parts that are required to be

executed up to the task deadline.

® «;: It is used under static allocation technique and refers to the minimum threshold of the total

time that should be dedicated to task T; by the robots.

® Pr(T;): the execution probability of task T; represents the probability of finish executing the

task at its deadline.

® [3;: the priority of task T; which reflects the tightness of its temporal constraint. It increases for

tasks with larger sizes or/and with earlier deadlines.
® /i;: the mean time required by the swarm to accomplished one part of the task T;.
® ;i;: the mean time required by a single robot to accomplish one part of task 7.

® J;: the standard deviation of the random time required by a single robot to accomplish one part

of task T;.

® N, the number of robots which is associated with the highest performance can the swarm

achieve under the influence of spatial interferences on task T;.
® 0,(D;): the total amount of work accomplished on task T;.

® 0;(D;): the total amount of work accomplished on task T; up to the deadline D;. It represents

the number of parts executed up to the deadline D;.

® )\;: The rate of the Poisson process that models the work progress on task T; over time when

dynamic allocation is considered.
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Aij: The rate of the Poisson process that models the work progress on task T; over the j-th

activation period.
nj: The length of the task activation period j.
mi;: The probability used by the robots to switch from task T; to task T}.

1;: The swarm performance variance, which represents the difference between the swarm per-

formance required to be achieved and the expected performance to achieve at the task deadline.
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5.2 Hard-deadline Tasks

Based on the definition of hard-deadline tasks, the successful execution of any task
is achieved when the task is accomplished up to its deadline. In a stochastic system
such as swarm robotics, the amount of work accomplished on any task represents a
stochastic value that is influenced by a large set of factors including the number of
robots working on the task, the task specification, the task environment, and other
factors. Therefore, no deterministic answer is available for the question concerning
the possibility of finish executing the task at its deadline. Hence, the answer to the
question of finish executing the task within its deadline is performed in a probabilistic
manner, where the probability of executing the task within its deadline is referred
to as the execution probability of the task. It was introduced in Chapter 4, Equation
(4.30) for static allocation and Equation (4.48) for dynamic allocation.

In traditional real-time systems, a hard-deadline task is considered as executable if
it can be accomplished before or at its deadline. In this thesis, we categorize the
hard-deadline task as executable when its has an acceptable execution probability
that is near to one, otherwise it is categorized as un-executable. The allocation
strategies developed in this chapter for hard-deadline tasks aim to perform an allo-
cation that maximizes the number of executable tasks by maximizing the tasks with
an acceptable execution probability. An acceptable execution probability of task T;
is defined as a probability near to one Pr(7;) = 1 — ¢, where € is a design parameter
that can be defined for each task. For simplicity, we use the same value of € for
all the considered tasks. The allocation strategy deals with tasks based on their
priorities which reflect their relative importance. In this thesis, the task importance
is based on the tightness of its time constraint, where this tightness increases for
tasks with larger sizes or/and earlier deadlines. A simple way of defining such a task

priority is given by:
S;/D;

S Sk/Dy

where M is the number of tasks to execute, S; and D; are the size and the deadline

Bi (5.1)

of task Tj, respectively.
In the following, we present the allocation strategies developed for hard-deadline

tasks under both static and dynamic allocation techniques.
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5.2.1 Task Allocation for Hard-deadline Tasks under Static

Allocation

Static allocation was proposed in Chapter 4, Section 4.4 as an allocation technique
for tasks characterized with their high switching costs. The robots’ assignment is
performed at the beginning of the execution and robots are prevented to switch
among the tasks after their initial allocation. The core idea of this technique is to
dedicate enough time in order to execute the task within its deadline. The total time
which can be dedicated to the task is influenced by: First, the number of robots
assigned to the task and Second, the parameters of the distribution associated with
the robots’ the activity times, see Chapter 4, Section 4.4.1. The constraint of the
swarm performance is to have the total time dedicated to the task equal to or greater

than a minimum threshold, defined in Chapter 4, Equation (4.7) as in the following:
a; = Sifli(N;)

where S; is the size of task T;. and fi;({V;) is the mean time required by a single
robot to accomplish one part of task 7; when N; robots are working on T;.

The mean time ji; required by a single robot to accomplish one part of task 7; is
influenced by the spatial interferences among robots, as illustrated in Chapter 4,
Section 4.3. Figure 4.2 (c) in the same section, shows an example of how the time
required by a single robot to accomplish a specific amount of work varies by changing
the number of robots. When the mean time fi; changes, the minimum threshold «;
of the total time required to be dedicated to task T; changes respectively. The
mean time fi; can be estimated easily by performing short-term experiments on the
considered tasks.

The following inputs are available for the allocation strategy developed for hard-

deadline tasks under static allocation:

e The task deadlines;
e The task sizes;

e The mean time p; required to accomplish one part on task 7; by the swarm
under the spatial interferences. This mean is characterized over short-term

experiments for different swarm sizes;
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e The probability distribution of the robots’ activity times: The probability
distribution used, here, is the exponential distribution. However, other dis-
tributions including the truncated-exponential can substitute the exponential
distribution by exchanging the proper probability density function and cumu-

lative distribution function.
The output of the allocation strategy includes:
e A list of the M’ executable tasks under the hard-deadline constraints;

e The number of robots that should be assigned to each of the M’ tasks and

consequently the assignment probability;

e The distribution parameters which will be used by each robot individually to

sample its activity time on the selected task.

The allocation strategy aims to maximize the number of executable tasks according
to the task priorities.

In the following, two allocation strategies are developed for hard-deadline tasks un-
der static allocation. The strategies are developed under two different optimization

criteria.

5.2.1.1 Energy-aware Allocation for Hard-deadline Tasks under Static

Allocation

The limited life-time of robots’ batteries represents a critical restriction for executing
tasks with long-term deadlines. On the other hand, long-term deadline is a common
characteristic of robotic tasks. Under static allocation, the robots are assigned to the
tasks at the beginning of the execution and they keep working on their selected tasks
till their activity times are exceeded. Therefore, recharging their batteries during
the task execution is a non-trivial process. For this reason, energy-aware allocation
attempts to maximize the number of robots assigned to the different tasks. This
allows to reach the required threshold of the total time that should be dedicated
to the task with shorter activity times. This strategy offers two benefits: First, it
increases the probability of performing the task during the life-time of the robots’

batteries. Second, it makes the swarm faster ready for further task executions.
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As we have seen in Chapter 4, Section 4.3, by increasing the number of robots
working on the task, the swarm performance increases till a specific swarm size is
reached. After that, the swarm performance starts to decrease influenced of the
spatial interferences among robots. The swarm size associated with the maximum
swarm performance is referred to as the optimal swarm size. Based on the swarm
performance behavior under the influence of spatial interferences, the energy-aware
strategy cannot assign a larger number of robots than the optimal number which
produces the maximum swarm performance on the considered task. Figure 5.2 shows
the direction of optimizing the number of assigned robots following the energy-aware

strategy.

Optimal number of robots

Time required to accomplish one part by the swarm
under the influence of spatial interferences

Optimization direction

Number of robots

Figure 5.1 — The optimal number of robots is depicted under the influence of spatial interfer-

ence. In addition to the optimization direction in case of applying the energy-aware strategy.

The following steps of the energy-aware strategy are performed off-line in order to

obtain the necessary parameters required for the task allocation.

e Priority assignment: The tasks are assigned their priorities, which are

calculated using Equation (5.1).

e Minimaizing the task execution time: In this step, the average time re-
quired to accomplish individual parts of the task is minimized. This is done by

maximizing the number of robots assigned to the task, under two constraints:
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First, to not exceed the optimal number of robots that generates the maxi-
mum swarm performance under the influence of spatial interferences. Second,
to limit the number of assigned robots such that the sum of the robots assigned

to the different tasks doesn’t exceed the swarm size.

We assume that the average time required to perform individual parts under
spatial interferences is estimated a priori by performing short-term experi-
ments with different swarm sizes. The average time p; required to accomplish
an individual part on task 7; is a function of the number of assigned robots
N;:

i = f(NG) (5.2)

The goal is to minimize p; for the M considered tasks by increasing N; over
the range N; € [0, min(Nyp, NV)].

The problem represents a multi-objective optimization of M objective func-
tions and as NN; represents a positive integer, this optimization belongs to the
class of non-linear integer programming. Additionally, the optimization should

be performed under the constraint of not exceeding the swarm size N.

pa = f(N1)
minimize o = J(NV2)
par = f(Nur)

M
subject to: ZNZ' <N
i=1

The above M multi-objective optimization problem could be transferred into
a cumulative weighted objective function!. The weight which reflects the rel-
ative importance of each of the objective functions, here, is the priority of the

task associated with that objective function. Consequently, the optimization

L' A cumulative weighted objective function is constructed by summing up the objectives after

assigning appropriate weights to each of them based on their relative importance.
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problem can be expressed as in the following:
M
mm}vlimze Zl Bi i
M
subject to: ZNi <N
i=1

The output of this optimization for task 7; is as in the following:

— The maximum number of robots N; that can be assigned to task Tj;

— The average time y;(N;) required to accomplish one part on task 7; when

N; robots are assigned to it. It is calculated by using Equation (5.2);

— The average time i;(N;) required by a single robot to accomplish one

part on task T; when NN; robots are assigned to it;

— The minimum threshold «; of the total time required to be dedicated to
task T;. It is calculated by substituting £;(V;) in Equation (4.7).

e Calculating the parameters of the activity time distribution: After the
number of robots which should be assigned to each of the tasks is optimized
and the associated time threshold «; is calculated, the next step is to find out
the parameters related to the probability distribution of the robots’ activity

times.

This step includes two contradicting goals: First is to design the distribu-
tion parameters in order to minimize the length of the robots’ activity times,
and Second is to design the distribution parameters in order to maximize the
execution probabilities of the tasks. However, maximizing the execution prob-
ability of a task is achieved by increasing the total time dedicated to the task
up to its deadline, which is achieved by maximizing the robots’ activity times.
This contradicts the goal of the energy-aware strategy, namely, to minimize

the robots’ activity times for energy purposes.

First, the allocation strategy finds the parameters of the activity time distri-
bution that maximize the execution probability of the tasks by solving the

following optimization problem:

maximize Pr(T;) = f(\)

Ai
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The output of the optimization is:

— The set of executable tasks M’, where each task belonging to this set has

an acceptable execution probability;

— The upper/lower bound of the parameter ;. This bound is applied to
tune \; in order to minimize the expected value of the robots’ activity
times on each of the executable tasks while preserving an acceptable

execution probability.

Second, the allocation strategy tunes the parameters of the activity time dis-
tribution to minimize the expected value of the robots’ activity times under
the constraint to preserving an acceptable execution probability of the tasks.
The optimization problem to solve is the following:

minimize E(AT;) = f(\) Vie M’

2

subject to:  Pr(7;) >1—¢

The output of this step is the optimal parameters of the activity times distri-

bution.

Tasks categorization: As the energy-aware strategy attempts to maximize
the number of robots assigned to each task, some tasks may receive more
robots than they need. Consequently, other tasks may suffer from a potential
lack in the number of robots assigned to them according to their priorities. In
order to handle this assignment problem, the tasks are categorized, based on
their execution probabilities, into: Granter tasks and Withholder tasks. The
granter tasks are tasks with an acceptable execution probability (Pr(7;) >
1—¢), whereas the withholder tasks are the un-executable tasks with execution
probability (Pr(7;) < 1 —€). Since the granter tasks may have received more
robots than they need, they may be able to offer robots to other un-executable

tasks without becoming un-executable themselves.

Granting process: During this process, each granter task checks the number
of robots it can offer, without becoming un-executable. This number of robots

is assigned to the withholder tasks based on their priorities, in order to increase
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their execution probabilities. After the granting process finishes, only tasks
with acceptable execution probabilities (Pr(T;) > 1 —¢) are executed since the

considered deadlines are hard.

o Assignment Probability: After finding out the number of robots that should
be assigned to each of the executable tasks, the probability used by the robots
to assign themselves to the executable tasks, which is referred to as the as-

signment probability, is calculated as in the following:
p=2 (5.3)

The output of the energy-aware strategy includes:
e The set of executable tasks;
e The assignment probability associated with each of the executable tasks;
e The parameters of the activity times distribution;
e The execution probability of each executable task.

After obtaining the above output, the robots can start to assign themselves au-
tonomously to the tasks and each robot samples its own activity time under the
consideration of the task deadline. The robot’s activity time is a continuous ran-
dom variable sampled independently by each robot. For robot R; working on task
T;, the activity time dedicated under the task time constraint belongs to the range
AT;; € {0,min{D;, k;}}, where D; is the task deadline and &, is the time through
which robot R; can still operate and it is computed based on its current battery
level. Figure 5.2 illustrates the different steps of the energy-aware strategy, with
the inputs marked in red and the outputs marked in blue. The calculated steps
are performed off-line and the necessary part of the output to use by the robots is

marked with blue arrows.
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Swarm Size _
Task Deadlines »! Minimize v
; u, =f(N)
Task Sizes » N,.‘ Calculate a, N, a Maximize
Subject to: "la=u"(N)*S | Pr(T) = f(AT(A
Swarm performance ubject fo a=w,N)"Ss, (T) =HAT(4))
under spatial SN<=N
interferences i
b, = f(N) N A bound
i 1
y
v 3
Minimize
E(AT) =f(A.)
. Pr(T) !
Granting Process < Subject to:
Keep Pr(T) acceptable

Figure 5.2 - Energy-aware strategy for hard-deadline tasks under static allocation.

The following is the pseudo-code of the energy-aware strategy:
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Algorithm 1 Energy-aware Strategy.

Input: Si7 Dz ,N, i = f(Nz)7 €
Output: solution N; and solution A;

10:

12:
13:
14:

15:
16:

18:
19:

20

21:
22:
23:
24:
25:
26:

. M <+ tasks

Acceptable  Prob <+ 1 — ¢
S;/D;
Bi= 3 ———
2j=15/D;
fii(N;) = Nipi(N;)
for i =1 to M do
Nopt (1) = min%'vmum i
end for z
ub(N;) <= Nopt (i)

min]ivmize Zf‘il B
i

subject to: M N; < N
a; = fi;(N;)S;
for i =1 to M do

max;’\mize (Pr(T}) = f(Ni, i, Dy \y))
while Pr(7T;) > Acceptable Prob do

mmf\mize E (AT;)

subject to: Pr(7;) > Acceptable Prob

end while
end for
for i =1to M do

if Pr(T;) < Acceptable Prob then
add T; to withholder task set W

else

add T; to the granter task set G

end if

end for

> % € is a design parameter%

> % calculate the task priorities%

> % calculate the optimal robots number%

> % non-linear integer programming%

> % the time threshold for task 7;%

> % start granting process%
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27: w < size of W

28: g < size of G

29: if ((w > 0) & (g > 0)) then

30: order the withholder task set based on the task priorities

31: order the granter task set based on the task priorities
32: for j =1tow do

33: for k=1 to g do

34: while (Pr(7}) > Acceptable Prob)

35: & (Pr(7};) < Acceptable_Prob)
36 & (N; < Now(T3)) do

37: N;=N; -1

38: N, =Ny +1

39: update p;(N;), pe(Ni), o, ou

40: max)z;mize (Pr(T};) = f(N;, o, Dj, Aj))

41: max/émize (Pr(Tx) = f(Ng, ak, Di, Ax))

42: end while

43: end for

44: end for

45: end if

46: for : =1 to M do
4T: if Pr(T;) > Acceptable Prob then

48: add T; to the set of executable tasks

49: else

50: add T; to the set of un-executable tasks
51: end if

52: end for
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5.2.1.2 Robots-aware Allocation for Hard-deadline Tasks under Static
Allocation

There are scenarios where the arrival times of the tasks are unknown a priori, hence
maximizing the number of robots assigned to the known tasks does not provide an
efficient solution. In other scenarios, maximizing the number of robots assigned to
the task may lead to a potential miss in one deadline or more because of the limited
size of the swarm. Since the goal is to finish the task within its deadline and not
to speed up its execution, robots-aware strategy provides an efficient mechanism
to assign the only required number of robots to the task under its time constraint.
The required number of robots can be defined as the number of robots that allows
to obtain an acceptable execution probability of the task. This strategy results
in maximizing the number of free robots available in the swarm to participate on
newly arriving tasks. Robots-aware strategy can be applied smoothly when the life-
time of the robot’s battery is comparable to the execution time of the task or when
recharging robots during the tasks execution is possible.

The core idea of this strategy is to assign the minimum number of robots N; required
by task T; to be executed up to its deadline D;. N; is an integer which takes its value
in the range of [0, min(N,p, N)], where N,,; denotes the number of robots associated
with the maximum swarm performance under spatial interferences. Figure 5.3 shows

the direction of optimizing the number of robots under the robots-aware strategy.
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Optimal number of robots

under the influence of spatial interferences

Optimization direction

Time required to accomplish one part by the swarm

Number of robots

Figure 5.3 — The optimal number of robots is depicted under the influence of spatial inter-

ference. In addition to the optimization direction in case of robots-aware strategy.

The following steps of the robots-aware strategy are performed off-line in order to

obtain the necessary parameters required for the task allocation.

e Priority assignment: The tasks are assigned their priorities, which are

calculated using Equation (5.1).

e Maximize the task execution probability: The allocation strategy starts
with fulfilling the task needs of robots based on their priorities. Let Neyrrent
be the current number of robots available in the swarm and let T} be the task
with the highest priority. The number of robots N; assigned to task 7; is set to
min(Newrrents Nopt ), where N,y is the optimal number of robots defined above.
As soon as N; is calculated, the mean time p;(V;) required to accomplish an
individual part on task 7; when N; robots are assigned, in addition to the
threshold «; are calculated. Finally, the execution probability Pr(7;) on task
T; is maximized as a function of )\;, where \; is the parameter of the activity

times distribution.
maximize Pr(T;) = f(\)

In case the optimized execution probability is an acceptable one (Pr(7;) >

1 — ¢€), the task is categorized as executable, otherwise it is un-executable.
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e Minimize the number of assigned robots: In case of robots-aware strat-
egy, the number of robots that is assigned to an executable task is minimized
while maintaining an acceptable execution probability. Finding the required
number of robots represents an optimization problem which belongs to the
class of the integer linear programming (ILP) (Papadimitriou & Steiglitz, 1982;
Williams, 2009) and can be expressed for the executable task 7; as in the fol-
lowing:

minimize N;

subject to:  Pr(7;) > 1 —¢
The mean time required by NV; robots to accomplish an individual part of task
T; is updated for each tested N;, in addition to the time threshold «; using
Equation (4.7). after that, the execution probability of task T; is calculated

for the specified values of N; and «;.

The output of this optimization is as in the following:

— The set of executable tasks M’, where each task belonging to this set has

an acceptable execution probability;
— The minimized number of robots NN; to be assigned;

— The mean time p;(N;) which is estimated under the influence of the spa-

tial interferences among the N; robots assigned to task Tj;

— The average time i;(N;) required by a single robot to accomplish one

part on task T; when NN; robots are assigned to it;

— The minimum threshold «; of the total time required to be dedicated to
task T;. It is calculated by substituting £i;(V;) in Equation (4.7).

e C(llculating the parameter of the activity times distribution: the pa-
rameters of the activity times distribution are designed in order to maximize
the expected value of the robots’ activity times on each of the executable
tasks, while maintaining an acceptable execution probability. The optimiza-
tion problem is written as in the following;:

maximize E(AT;) = f(\;) Vie M

1

subject to:  Pr(7;) > 1—¢
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The output of this step is the optimal parameters of the activity times distri-

bution.

e Assignment Probability: After finding out the number of robots that should
be assigned to each of the executable tasks, the probability used by the robots
to assign themselves to the executable tasks, which is referred to as the as-

signment probability, is calculated as in the following:
P, =— (5.4)

The output of the robots-aware strategy includes:
e The set of executable tasks;
e The assignment probability associated with each of the executable tasks;
e The parameters of the activity times distribution;
e The execution probability of each executable task.

After obtaining the above output, the robots can start to assign themselves au-
tonomously to the tasks and each robot samples its own activity time under the
consideration of the task deadline. The robot’s activity time is a continuous ran-
dom variable sampled independently by each robot. For robot R; working on task
T;, the activity time dedicated under the task time constraint belongs to the range
AT;; € {0,min{D;, k;}}, where D; is the task deadline and x; is the time through
which robot R; can still operate and it is computed based on its current battery
level. Figure 5.4 illustrates the steps of the robots-aware strategy, with the inputs
marked in red and the outputs marked in blue. The calculated steps are performed
off-line and the necessary part of the output to use by the robots is marked with

blue arrows.
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Swarm Size
Task Deadlines
Set:
Task Sizes = mi
> Ni =min (Nopr ’ Ncurrem) ‘1,- (N,) Calculate a. N’_, a‘_
Calculate: > . N)* 'S
Swarm performance u(N) o =ui(N)*S,
under spatial o
interferences \
u, =f(N) _
o Maximize
Pr(T) =f(A,)
N/N Maximize Minimize
B —— =
i 7 E(AT,) =f(A,) N,
H i A < <
i - Subject to: - Subject to:
Pr(T) acceptable
Pr(T) acceptable

Figure 5.4 — Robots-aware strategy for hard-deadline tasks under static allocation.

The following is the pseudo-code of the robots-aware strategy:
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Algorithm 2 Robots-aware Strategy.

Input: Si7 Dz ,N, i = f(Nz)7 €
Output: solution N; and solution A;

10:
11:
12:
13:
14:

15:
16:
17:

19:
20:

22:
23:
24:
25:
26:

: M < tasks
Acceptable  Prob+ 1 — ¢ > % € is a design parameter%
Si/Di o
Bi = M/— > % calculate the task priorities%
> i=15i/D;

fii(N;) = Nipi(N;)
for i =1 to M do
Nopt (1) = min%'vmum i > % calculate the optimal robots number%
end for z
order the tasks set based on their priorities
for i =1 to M do
N; = min(Nopt(i)7 Ncurrent)
if N; > 0 then
pi(Ni) = f(Ni)
a; = Sifli(N;)
Proaz(T5) max/z\'mize Pr(T;)
if Pry,.(T;) > Acéeptable_Prob then
add T; to the set of executable tasks

minimize N;

subject to: Pr(7;) > Acceptable Prob
update £i;(N;), i, Pr(T)
maximize E (AT;)

subject to: Pr(7;) > Acceptable Prob
else
add 7; to the set of un-executable tasks
end if
end if

end for
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5.2.1.3 Scenario and Evaluation

Let us consider three tasks which are characterized by their hard deadlines D =
{100, 150,300} time units. The switching costs among the tasks are considered to
be high, hence, the static allocation technique is applied. A homogeneous swarm
of N = 100 robots is used to execute the tasks under both: energy-aware and
robots-aware strategies.

The time required to accomplish one part by the swarm is assumed to be the same
for the three tasks. Figure 5.5 (a) shows how the mean of this time changes with
increasing the number of robots working on the task. On the other hand, the mean
of the time required by a single robot to accomplish one part is calculated and
depicted 5.5 (b). It shows how the mean time increases by increasing the number

of robots working on the task.
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plish one part. complish one part.

Figure 5.5 — Swarm and single robot performance under spatial interferences.

Different variants of the task sizes are examined as listed in the below table. In the
first set, the task sizes are selected so that the three tasks have equal priorities. After
that, we start to increase the size of the first task and consequently its priority will
increase while keeping the sizes of the other two tasks constant. We keep increasing
the size of the first task until it becomes un-executable (with unacceptable execution

probability). The same is applied on the second and the third task, where we increase
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the size of each of them separately until it becomes un-executable, while keeping the

sizes of the other tasks constant.

Sizes 17 T, 13
S1: 10 15 30
S2: 20 10 10
S3: 50 10 10
S4: 1100 10 10
S5 10 30 10
S6 : 10 90 10
ST 10 120 10
S8 10 150 10
S9: 10 10 50
S10:] 10 10 150
S11:] 10 10 200
S12:\ 10 10 300

The tasks priorities are calculated using Equation (5.1) and depicted in Figure 5.6.

The task priorities sum up always to 1.

[ 1wy

o
=)

Tasks priorities
o o
e ol
T

o
w
T

o
[N}

©
[

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
Simulations over all examined variants of task sizes

Figure 5.6 — Tasks priorities calculated based on Equation (5.1) for the different variants of

task sizes.
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The optimal number of robots which is associated to the maximum swarm perfor-
mance is N, = 50 for the three tasks as we can see in Figure 5.5 (a). N, is applied
as an upper-bound for the number of robots which could be assigned to the tasks.
Since the mean time required to accomplish one part on any of the considered tasks,
varies while changing the number of robots, hence it is calculated after the number
of robots to assign is determined. This mean is used later to obtain the threshold
of the total time that should be dedicated to the task up to its deadline.

Figure 5.7 shows number of robots assigned to the different tasks. Figure 5.7 (a)
according to the energy-aware strategy and Figure 5.7 (b) according to the robots-

aware strategy.
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Simulations over all examined variants of task sizes Simulations over all examined variants of task sizes
(a) Under energy-aware strategy. (b) Under robots-aware strategy.

Figure 5.7 — The number of robots assigned to each of the 3 tasks when a swarm of N = 100
robot is used to execute the different variants of the task sizes.

For energy-aware strategy, the number of robots assigned to the task is maximized
under the upper-bound N,, = 50. In cases where the sum of the activity times
dedicated by NN, robots to task T;, is shorter than the threshold «; and consequently
is not enough to execute the task within its deadline, the task is marked as un-
executable. We can see this in Figure 5.7 when no robot is assigned to the task. For
robots-aware strategy, the number of robots assigned to the task is minimized.

Figures 5.8 and 5.9 show the threshold of the total time that should be dedicated
to each of the three tasks, under both energy-aware and robots-aware strategies,

respectively. They show how this threshold varies over the examined variants of
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task sizes as the number of assigned robots N; in addition to the size of the task S;

both change. The threshold is not depicted in the figures for un-executable tasks.
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(b) On task T.
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Figure 5.8 — The threshold «; associated with the total time required to be dedicated to the

task. It is calculated over the different variants of the task sizes under energy-aware strategy.
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Figure 5.9 — The threshold «; associated with the total time required to be dedicated to the

task. It is calculated over the different variants of the task sizes under robots-aware strategy.
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5.2 Hard-deadline Tasks

Figures 5.10 and 5.11 show the execution probability associated with each of the

three tasks over the examined variants of task sizes. The execution probability is
equal to 1 when the total time dedicated to the task up to its deadline is equal to

or greater than the minimum threshold. The execution probability is 0 otherwise.

The execution probabilities of the tasks are averaged over 1000 runs of Monte-Carlo

simulation and depicted in addition to the calculated execution probabilities in the

figures 5.10 and 5.11 for both energy-aware
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Figure 5.10 — The execution probability Pr(T;) of the three tasks for the of different variants

of the task sizes under energy-aware strategy.
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Figure 5.11 — The execution probability Pr(T;) of the three tasks for the of different variants

of the task sizes under robots-aware strategy.
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5.2 Hard-deadline Tasks

Finally we perform a comparison between the two strategies concerning the two
following criteria: First, the average time spent by the swarm operating on the
tasks before the whole swarm is free and available again. Second, the total number of
robots in operation, which refers to the sum of robots working on the different tasks.
For the comparison to be fair, we select the task sets where both strategies agree on
the execution probabilities of their tasks. From Figures 5.10 and 5.11, we can see
that the two strategies agree on the execution probabilities associated with the task
sets: {S1,52,54,55,56,58,59,510,512}. Therefore, the comparison between the
two strategies is applied over the task sets: {S1,52,54, 55,56, 58,559,510, S12}.

Figure 5.12 (a) shows how the energy-aware strategy outperforms the robots-aware
strategy, concerning the average time required to finish the complete set of exe-
cutable tasks and to have the whole swarm free again. This expresses the motiva-
tion behind developing the energy-aware strategy, namely, to cope with the limited
life-time of robots’ batteries and to make the swarm available for further tasks as
soon as possible. Figure 5.12 (b), on the other hand, shows how the robots-aware
strategy outperforms the energy-aware one, concerning the number of free robots

available continuously and ready for any new demand.
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Figure 5.12 — A comparison between energy-aware and robots-aware allocation strategies.
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5.2 Hard-deadline Tasks

5.2.2 Task Allocation for Hard-deadline Tasks under Dynamic

Allocation

As mentioned in Chapter 4, Section 4.5, dynamic allocation is the technique de-
veloped for time-constrained tasks with negligible switching costs. It provides the
system with a high level of flexibility in assigning and reassigning the robots among
the tasks during their execution time. In addition it relaxes the constraint of work-
ing on the same task, therefore, in cases where the robot may encounter parts of
different tasks it can execute them. Swarm performance under dynamic allocation,
is defined as the amount of work (the number of parts) accomplished by the swarm
during a specific time period. The progress of this performance over time is modeled
using the well-known Poisson process with a task-specific rate, see Chapter 4 Section
4.5.1.

The allocation strategy developed under dynamic allocation should govern the av-
erage number of robots working on the task in order to obtain a particular progress
rate that respects the time constraint of that task (the deadline).

We assume that the average time required to accomplish individual parts on the
considered tasks can be estimated easily via short-term experiments or computer

simulations. The inputs for the allocation strategy are:
e The task deadlines;
e The task sizes;

e The mean time p; required to accomplish one part on task 7; by the swarm
under the spatial interferences. This mean is characterized over short-term

experiments for different swarm sizes.

The output of the allocation strategy will be a probability matrix of the following

form:
P11 P12 - Pim
P21 P22 - DP2m
Pm,m = . . i .
Pmi1 Pm,2 " Pmm

where p; ; is the probability of switching from task 7T; to task 7Tj.

101



5.2 Hard-deadline Tasks

The robots use this matrix to allocate themselves to the different tasks, indepen-
dently without any central control. Following the given allocation matrix, the
progress rate on each of the considered tasks, respects the time constraint of that
task.

The allocation strategy aims to maximize the number of executable tasks according
to the task priorities.

Before explaining the details of the allocation strategy for hard-deadline tasks under
dynamic allocation, we present how the individual robot’s behavior and the global

swarm performance are modeled.

5.2.2.1 Semi-Markov Model for Individual Robots’ Behavior

The behavior of individual robots under dynamic allocation can be described as fol-
lows: Each robot selects one of the tasks to work on. The robots starts to accomplish
parts of their selected tasks and each time the robot finishes executing one part, it
has the possibility to switch to another task or to continue on the same task. The
average time required by the robot to accomplish one part of task T;, is denoted by
{1;, and is assumed to be known a priori.

The robot with the above-described behavior can be modeled as an individual pro-
cess over M states (tasks). Each of the defined processes can visit the different
states continuously during the execution time of the tasks. It stays in the visited
task for a random time, namely, the time required to accomplish one part of that
task whose mean is known a priori. After executing one part of the current task,
the robot chooses the next task (state) to visit and the choice is made among the M
tasks including its current one. The described process associated with each robot
represents a Semi-Markov process (Ross, 2006). The robots choose the next task
based on a probability matrix referred to as the decision matriz. The decision matrix
describes the limiting probabilities or also known as the invariant measure, which
will be used by the individual robots to switch between any pair (7;,7}) of tasks as
illustrated in Figure 5.13.
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P11 P12 - Pim

P21 P22 - P2m
Pm,m = . . .

Pmi1 Pm2 " Pmm

Figure 5.13 — The Markov chain associated with the tasks and its decision matriz.

The semi-Markov process associated with the behavior of individual robots has
an invariant (limiting) probability measure, m;, which is obtained by solving the

following system:
M M
T = Z TiDji where Zﬂ'i =1 (5.5)
j=1 i=1

m; represents the proportion of transitions that take the robots into task 7;. There-
fore, the proportional time the robot spends at task T}, when fi; is the mean time
the robot spends at task T; at each visit to this task, is given by:
7TA A.
> j=1TjH;j

However, for time-constrained tasks, we are interested in the time spent by the robot
on task T; up to the deadline D;. This time is denoted by 7;(D;) and can be obtained
by using Equation (5.6) as in the following:

Zj:l TjHhj
When a swarm of N robots is used to execute the M tasks and each single robot

is modeled as a semi-Markov process with the above-described behavior, the total

time 7;(N, D;) spent on task T; up to its deadline D; can be calculated as follows:

Ti<N7 Dz’) = %Dﬂ\f (5-8)
Zj:l 5 kg
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5.2 Hard-deadline Tasks

Consequently, the number of times n;(N, D;) at which task 7; is expected to be
visited up to its deadline D; by a swarm of N robot, is given by:

T

ni(N, D;) = ———D;N (5.9)

j=1 T
The rate of visits \; to task T; within the deadline D; by the swarm of N robots
which represents at the same time the number of parts expected to be accomplished
on T; up to its deadline, is given by dividing Equation (5.9) by the duration of the

deadline:
TG

N
T M ~
Ej:l i s

N (5.10)

5.2.2.2 Poisson Model for Swarm Performance

The evolution of swarm performance under dynamic allocation over time is modeled
using the Poisson process, see Chapter 4 Section 4.5.1. The rate of the Poisson
process should be designed to respect the deadline of the task on which it models
the performance progress.

On the other hand, time-constrained tasks are marked as inactive when one of the
two following conditions is valid: when the task is executed even if the task deadline
has not been reached yet, or, when the deadline of the task is reached. Otherwise,
the task is marked as active. In case of hard deadlines, robots work on the task as
long as the task is active and they stop when it becomes inactive. Therefore, the
number of robots available to be assigned varies based on the number of current
active tasks. Hence, we divide the time between the start of the tasks execution and

the largest deadline into periods, where the length 7; of the ith period is given by:

where 1, = D;. In general, the number of active tasks decreases over consecutive
periods and consequently the number of robots available to be reassigned increases.
Therefore, the rates of the Poisson processes, which are associated with the active

tasks, change over the periods as we can see in Figure 5.14.
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Figure 5.14 — The Poisson rates over the activation periods of the tasks.

We link each rate \;; on task 7; to an individual Poisson process, which models the

progress of the swarm performance 6;; over the jth period of task 7;. Thus, we have:
8;; ~ Poisson(\i; n;)

It is well-known that the sum of Poisson processes is a Poisson process with the
rate equal to the sum of the rates associated with the summed up processes. Conse-
quently, the progress of the total amount of work accomplished on task T; is modeled
as a Poisson process with the rate equal to the sum of the rates of the individual
Poisson processes modeling the work progress 6; over the different periods of task
T

0; ~ ?Oisson(z Nij m;)  Yied{l,..., M} (5.12)

j=1

5.2.2.3 Task Allocation Strategy for Hard-deadlines under Dynamic Al-

location

Since hard-deadline tasks are tasks where the correctness of the results is associated
with accomplishing the tasks within their deadlines. The developed allocation strat-
egy aims to perform the robots’” assignment such that the number of met deadlines,
is increased. For a stochastic system such as swarm robotics, the task execution

is analyzed in terms of the execution probability, which is the probability of finish
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executing the task before or at its deadline. Consequently, the allocation strategy
aims to maximize the number of tasks with acceptable execution probability.

The allocation strategy generates a decision matrix which holds the probabilities
used by the robots to assign themselves independently among the different active
tasks in the current period. As mentioned in Section 5.2.2.2, the Poisson process
which models the swarm performance on task 7; has a rate equal to the sum of
the rates associated with the Possion processes which model the work progress on
the task over all its activation periods, Equation (5.12). Based on the definition
of the Poisson process with the rate A, the random number of events generated
within the time period, dt, follows the Poisson distribution with the parameter
Aot. Consequently, the probability of accomplishing an amount of parts equal to
or greater than S; up to the deadline D;, can be calculated using the cumulative

distribution function of the Poisson distribution:

Pr(6; > S;) =1—Pr(6; < S))
Si—l Z'.j
7=0

where z; is the rate of the Poisson process which models the work progress on task

T; and is calculated using Equation (5.12):

a= dwme  Vie{l,..., M} (5.14)
k=1

On the other hand, the rate at which the work is progressing on a specific task
was calculated in Section 5.2.2.1 using Equation (5.10). This equation is used to
calculate the rate of work progress on task 7; over any period j with the length 7);
as in the following:
Nj= =2 N Vie{l,... M}Vje{l,.. M} (5.15)
Zc:j Tejhe

By substituting Equation (5.15) in Equation (5.14) we have:

Z:Z(ZML m) N  Vie{l,..., M} (5.16)

106



5.2 Hard-deadline Tasks

Now we can substitute Equation (5.16) in Equation (5.13) to calculate the proba-

bility of accomplishing at least S; parts of task 7T; up to the deadline D;:

PI’(@Z

i
22—1(% m) N Si—1 <Ek:1 (ZM odie e | N
= Sz) =1—le Zc:k ek e Z c=k

§=0 !

(5.17)

The following steps of the developed strategy for hard-deadline tasks under dy-

namic allocation, are performed off-line in order to obtain the necessary parameters

required for the task allocation.

Priority assignment: The tasks are assigned their priorities, which are

calculated using Equation (5.1).

Calculate the decision matrices: In this step the set of executable tasks
(with execution probabilities Pr(7;) > 1 — €) is calculated, in addition to
the decision matrix (transition probability matrix for each activation period).
The allocation strategy exploits the available swarm to maximize the execu-
tion probability of each task based on its priority. The execution probability
of task T; is calculated as in Equation (5.17). Therefore, this equation rep-
resents the objective function we need to maximize for each of the M tasks.
The optimization process searches for the limiting probabilities 7;; (transition
probability) associated with task 7; over all the periods where this task is

active. The optimization problem can be written as in the following:

Pr(Ty) = f(m1)
Maximize Pr(Ty) = f(m1, 722)

Pr(Ty) = f(mars Ty - - Tarnr)

This represents a multi-objective optimization problem which can be solved
by introducing the cumulative weighted objective function. The weights re-

flect the tightness of the time constraints of the different tasks. Hence, the
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task priorities are used as the weights associated with the different objective
functions:

M
Maximize Zﬁl Pr(T;)  je[l,i
T i=1
After performing the optimization process, the tasks are categorized into: ex-
ecutable tasks with execution probability near to one and un-executable tasks

with the execution probability out of the acceptable range.

The allocation strategy starts by eliminating the un-executable task with the
lowest execution probability and repeats the step for the resulting task set.
The step is repeated until the task set includes only executable tasks or it

becomes empty.

e Minimize the number of assigned robots: After the set of executable
tasks has been found, the allocation strategy aims to minimize the number of
robots assigned to the executable tasks. This minimization has two advan-
tages: First, it reduces the spatial interferences among robots by reducing the
robots assigned to the task. Second, since the swarm size may be considerably
larger than needed, minimizing the number of operating robots allows to pre-
serve robotic resources for other purposes such as fault-tolerance or executing
new arrived tasks. Minimizing the number of robots is performed under the
constraint of maintaining an acceptable execution probability for each of the
executable tasks. This optimization problem belongs to the class of Integer

linear programming (ILP) problems. It can be expressed as in the following:

Minimize N
Pr(Ty) > 1—¢
. Pr(Tz) > 1—¢
subject to:

PI’(TM/) > 1—c¢
M’ denotes the number of the executable tasks calculated in the previous step.

The output of the allocation strategy developed for hard-deadline tasks under dy-

namic allocation includes:
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e The set of executable tasks;

e The decision matrices which hold the transition probabilities among the tasks

during all their activation periods;
e The execution probability of each executable task.

After obtaining the above output, the robots can start to assign themselves au-
tonomously to the tasks and switch among them each time they finish executing
an individual part of their current task. The initial robots’ assignment to the exe-
cutable tasks and the later decision of their next task is performed by each robot,
independently, using the decision matrix. Figure 5.15 illustrates the steps of the
strategy, with the inputs marked in red and the outputs marked in blue. The cal-
culated steps are performed off-line and the necessary part of the output to use by

the robots is marked with blue arrows.

Swarm Size >
Deadlines -

' > Maximize
Sizes — Pr ( T,) = f( ni1’ I nii)

Average time required by the
robot to execute one part -

Executable tasks
{T.T,,..T,}

P.P, - P Minimize

N
. Subject to:
PuiPusss Py Pr (T ) acceptable
For executable tasks

Figure 5.15 — The task allocation strategy for hard deadlines under dynamic allocation.

The following is the pseudo-code of the allocation strategy developed for hard-

deadline tasks under dynamic allocation:
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Algorithm 3 Strategy developed for hard-deadline tasks under dynamic allocation.

Input: S;, D; ,N, 1i; = f(V;)

Output: solution Py

10:

11:
12:
13:
14:
15:
16:
17:
18:
19:

20:
21:
22:
23:
24:
25:

: M < tasks
Acceptable  Prob <+ 1 —¢ > % € is a design parameter%
i/ Di o
B = J\f/— > % calculate the task priorities%
> i=15i/D;
n; = D; — D;_4 Vied{2,...,M} > % task activation periods%
for i =1to M do > % the rate of the Poisson process using Eq. (5.16)%
Gt = | N Vie{1,..., M}
Ec:k Tek e
J
2z Si—1 %

end for
while M is not Empty do
maxjmize Zi‘il B Pr(0; = 5;)
for z'zj: 1 to M do
if Pr(T;) > Acceptable Prob then
add T; to the set of executable tasks
else
add T; to the set of un-executable tasks
end if
end for
if M includes un-executable tasks then
Update M by removing the un-executable task with the lowest execution
probability
else
Break
end if
end while
M =M

Maximize N
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5.2.2.4 Scenario and Evaluation

Let us consider three tasks which are characterized by their hard deadlines D =
{500, 1000, 1500} time units and their negligible switching costs. Therefore, the
dynamic allocation is the proper technique to be applied. A homogeneous swarm of
N = 100 robots is used to execute the tasks. Different variants of the task sizes are
examined as listed in the below table, where each line holds a new variant of the

task sizes.

Sizes T} T T

S1: 300 600 900
S2: 450 450 750
S3: 200 1000 700
S4 250 450 1400
S5 : 750 240 350
S6 : 750 240 500
S7: | 1000 240 500
S8: | 1000 500 500
S9: | 1000 1000 500
S10:\ 1000 1000 1000

The tasks priorities are calculated for each variant of the task sizes using Equation

(5.1) and are depicted in Figure 5.16. The task priorities sum up to always to 1.

111



5.2 Hard-deadline Tasks

\-Tl [ DTs\

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
Simulations over all examined variants of task sizes

Figure 5.16 — Tasks priorities calculated based on Equation (5.1) for the different variants

of sizes.

Figure 5.17 depicts the calculated transition probabilities which are used by the
robots, independently: Figure 5.17 (a) in the first activation period [0 — 500], in
Figure 5.17 (b) in the second activation period [500 — 1000], and in Figure 5.17 (c)
in the third activation period [1000 — 1500].
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Figure 5.17 — The transition probabilities of the three tasks over their activation periods.

As we can notice in Figure 5.17, task T} is inactive over the second and the third
activation periods, therefore, the transition probability of this task in the second
and the third activation periods are zeros for all the examined variants of the task
sizes. The same applies for task T5 over the third activation period, where all robots
are assigned to task 75 and the probability to select task T5 becomes equal to 1.

The execution probabilities of the tasks are maximized by the allocation strategy as
explained in Section 5.2.2.3. The tasks with acceptable execution probabilities (near
to one), are categorized as executable tasks whereas the others as un-executable.

After that, the swarm size is minimized to reduce the robots’ interferences and to
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increase the size of free robots. The minimization is performed under the constraint
of preserving an acceptable execution probability of the executable tasks. Figure
5.18 shows the number of robots N, which are used to execute each variant of the

task sizes.
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Simulations over all examined variants of task sizes

Figure 5.18 — The swarm size optimized to be used for each set of the examined task sizes.

Finally, Monte-Carlo simulations are used to verify the robots’ allocation results,
where the calculated decision matrices of the different activation periods are used
by the robots to allocate themselves to the different tasks. After selecting task
T;, each robot requires a time with the mean fi; to perform one part of task T;
before it selects its next task based on the decision matrix of the current activation
period. The time required to accomplish an individual part is assumed to have
the mean fi; = 50 and the standard deviation g; = 0.0001. The empirical execution
probabilities are averaged over 100 runs of Monte-Carlo simulation and are compared

to the calculated probabilities in Figure 5.19 for the three considered tasks.
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Figure 5.19 — The execution probability Pr(T;) of the three tasks for the different variants of
task sizes under dynamic allocation.
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5.3 Soft-deadline Tasks

Soft-deadline tasks are such tasks where missing the deadline is not related to the
correctness of the results but to their quality. In other words, missing a soft deadline
of a specific task reduces the quality of the system performance and this is associated
normally with particular costs. The costs increase when the unprocessed part of the
task at its deadline increases.
Planning the execution of time-constrained tasks on a stochastic system such as
swarm robotics is a critical process, especially for hard deadlines as missing them
violates the correctness of the results. Soft deadlines represent a more tolerant kind
of deadlines to be executed by swarm robotics. In the case of soft deadlines, the
robots can continue working on the task even after its deadline is expired, however,
particular costs will be encountered. These costs are calculated based on the size of
task, which remains unprocessed at the task deadline.
Since swarm performance was defined differently under static and dynamic alloca-
tions, see Chapter 4, Section 4.4 and Section 4.5, therefore the costs associated with
missing a soft deadline are defined differently for static and dynamic allocations.
For static allocation, the costs are associated with the time missed to be dedicated
to the task before its deadline is reached. The expected value of this time represents
the difference between the minimum threshold of the total time that should be ded-
icated to the task up to its deadline and the expected time that will be dedicated
to the task up to its deadline D;. It was calculated in Chapter 4, Equation (4.10)
for task T as:

E(¥s) = a; — E(7:(D;))
For dynamic allocation, the costs are associated with the number of parts which
remains unprocessed at the task deadline. The expected value of this work amount
represents the difference between the task size and the expected amount of parts
which is accomplished at the task deadline. It was calculated in Chapter 4, Equation
(4.42) for task T; as:

E(¢;) = Si — E(6:(Di))

The expected values calculated above are referred to as the performance variance
and the quality of the system performance increases by decreasing this performance

variance. Consequently, the goal of the allocation strategy for soft-deadline tasks, is
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to assign the robots such that, the performance variance on all the tasks is minimized
based to their priorities. The optimal performance is achieved when no costs are
present, i.e. when the performance variance on each task is equal to zero.

In the following, we present the allocation strategies developed to allocate a swarm
of robots to a set of soft-deadline tasks under both techniques of static and dynamic

allocation.

5.3.1 Task Allocation Strategy for Soft-deadline Tasks under
Static Allocation

Under static allocation, the robots sample individual activity times and dedicate
them to the selected tasks. They work during their activity times and as soon as
these are expired, the robots become inactive. As we have seen in Chapter 4 Section
4.4.1, there are different probability distributions which can be used for the robots’
activity times. In this section, we consider the exponential distribution, however,
using any other distribution is possible by substituting with the proper probability
functions.

In the same Chapter 4 in Section 4.4.3, the expected variance in the swarm per-
formance was presented associated with the exponential distribution of the robots’

activity times and was calculated as in the following:
E(:) = A N

where «; is the minimum threshold of total time that should be dedicated to task
T; up to its deadline. N; is the number of robots assigned to task 7}, and \; is the
rate parameter of the exponential distribution used to sample the robots’ activity
times.

As mentioned above for soft deadlines, the robots can continue to execute the tasks
even after their deadlines have been exceeded. This occurs when the total time
which should be dedicated to the task is not reached within the deadline, hence,
the robots continue to work and stop only when the required time is dedicated.
Executing the task after its deadline being exceeded is associated with specific costs

which are higher for tasks with higher priorities.
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The allocation strategy, developed here, aims to assign the robots to the tasks such
that the part of time which is missed to be dedicated up to the deadline, is minimized
for all tasks based on their priorities. In other words, the goal is to minimize the

expected variance of the swarm performance which is defined in the equation above

as:
N;
E(Q/Jz) = 0y — T
) Ni
= Sifii(N;) — .

As we can notice in the above-equation, increasing the number of assigned robots
N; will increase obviously the second term of the right-side, namely )\—Z However,
i

it will also increase the first term, «;, which is calculated as «; = S;i;(N;), where
fi;(N;) represents an exponentially increasing function of N;. In order to eliminate
this contradiction while searching the solution state-space to minimize E(v);), we
could express the variance of the swarm performance as the difference between the
time required to accomplish the S; parts by the swarm and the time which the swarm
is expected to dedicate to task T;. The time required by the swarm to accomplish
S; part of task T; can be calculated as S;u;(N;), where p;(N;) is the mean time
required by the swarm of size IV; to accomplish one part of task 7;. On the other
hand, when the robots sample their activity time from an exponential distribution
with the rate \;, the time which the swarm is expected to dedicate to task T; is given
by )\i Consequently, the objective function associated with task 7; which needs to

be minimize can be written as in the following;:

E(y;) = Sipi(Ni) — )\i (5.18)

i

The final formula of the objective function will be as in the following:

1 1
E(y;) = ! 1

This represents a multi-objective optimization problem with M objective functions.

Each objective function is associated with one of the tasks and aims to minimize
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the costs associated with executing that task after its deadline is exceeded. This

optimization is performed under the constraint of the limited swarm size.

E(¢]) = f(N1, M)
E(v5) = f(Na, Ag)

minimize
Ni,\;

E(¢ar) = f(Nar Am)

M
subject to: ZNi <N
i=1

Each of the above optimization problems represents a mixed-integer non-linear op-
timization one where J\; is the rate parameter of the exponential distribution of the
robots’ activity times and the integer number N; is the number of robots which
should be assigned to task 7;. N; belongs to the range [0, min(Nypy, N)], where Ny
represents the optimal number of robots that produces the maximum performance
on task 7; under the influence of spatial interferences. For simplicity, N, is assumed
to be the same over all tasks. N; and the parameter \; should be selected such that
the time missed to be dedicated to the task within its deadline, is minimized. The
output of this optimization is the assignment probability associated to the different

tasks and which is calculated as in the following;:

and the parameters );, of robots’ activity time distribution.
The above multi-objective optimization problem is solved off-line. It is solved
through building a single optimization problem by constructing the cumulative
weighted objective function. We sum the M objective functions, where each is
weighted by the priority of its task as in the following:

M
minimize ZBZE(Q/J;)

i=1

Ni,Aq
M
subject to: ZNi <N
i=1

After obtaining the above output, the robots can start to assign themselves au-

tonomously to the tasks and each robot samples its own activity time under the
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consideration of the task deadline. Figure 5.20 illustrates the steps of the allocation
strategy developed for soft-deadline tasks under static allocation with the inputs
marked in red and the outputs marked in blue. The calculated steps are performed,
as mentioned above, off-line and the output to use by the robots is marked with

blue arrows.

Swarm Size

> Minimize
Deadlines .| E(¥ ') =1f(Ni, Ai)
Sizes

— Subject to:

Swarm performance under spatial
interferences

u, =f(N) ZN<=N

v

Figure 5.20 — The task allocation strategy for hard deadlines under static allocation.

The following is the pseudo-code of the allocation strategy for soft-deadline tasks

under static allocation:
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Algorithm 4 The allocation strategy for soft-deadline tasks under static allocation.

Input: S;, D; \N, p; = f(N;)
Output: solution NN; and solution A;

1: M <« tasks
2: B = MZ—Z > % calculate the task priorities%
> i=15i/D;
3: fori=1to M do
4: Nopt (1) = min%\[mum L > % calculate the optimal robots number%
Z 1
5 E(¢) = max(0, Sipi(N;) — )\_)

end for
: minimize le\il BiE(Y;)

e

subject to: S N; < N

5.3.1.1 Scenario and Evaluation

Let us consider an example of three tasks which can be characterized with their
sizes {500, 700, 1000} parts and their soft deadlines D; = {50,200,600} time units.
We use a homogeneous swarm of an increasing size to execute this set of tasks.
The swarm size varies over the range [5 — 150] robots, with an increment-step of 10
robots.

The time required to accomplish one part by the swarm is assumed to be the same
for the three tasks. Figure 5.5 (a) (page 93) shows how the mean of this time changes
with increasing the number of robots working on the task. On the other hand, the
mean of the time required by a single robot to accomplish one part is calculated and
depicted 5.5 (b). It shows how the mean time increases by increasing the number
of robots working on the task.

Figure 5.21 depicts the task priorities calculated using Equation (5.1).
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Figure 5.21 — The priorities of the three tasks.

The optimal number of robots which is associated with the maximum swarm perfor-
mance is NV, = 50 for the three tasks as we can see in Figure 5.5 (a). N, is applied
as an upper-bound for the number of robots which could be assigned to any of the
tasks. Since the mean time required to accomplish one part on any of the considered
tasks, varies while changing the number of robots, hence it is calculated after the
number of robots to assign is determined. This mean is used later to obtain the
threshold of the total time that should be dedicated to the task up to its deadline.
The number of robots which should be assigned to each of the considered tasks
in addition to the rate parameter of the activity times distribution are calculated.
Figures 5.22 (a-c-e) show how the number of robots assigned to the different tasks
increases by increasing the size of the swarm. The increment on the different tasks
occurs according to their priorities. This is why the number of the robots starts
to increase first on task 77 and then on tasks 75 and T3 sequentially. In Figures
5.22 (b-d-f), we can see how the time missed to be dedicated to the tasks within
their deadlines, is decreasing with increasing the number of robots assigned to that
task. The number of robots increases on each task up to the optimal number of
robots N,, = 50 specified under spatial interferences. The same figure shows a
comparison between the expected value of the missed time to be dedicated calculated
and averaged over 100 runs of Monte-Carlo simulation for all the examined swarm

sizes.
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Figure 5.22 - Fuvaluation of the task allocation strategy developed for the soft deadlines under
the technique of static allocation. Figures (a), (¢) and (e) show the number of robots assigned
to each of the considered tasks by increasing the swarm size over the range [5 : 10 : 150].
Figures (b), (d) and (f) show the performance variance associated with the used size of the
swarm. A comparison is performed between the calculated and the simulated performance

variance over 100 runs of Monte-Carlo simulation.
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5.3.2 Task Allocation Strategy for Soft-deadline Tasks under

Dynamic Allocation

Under dynamic allocation, the time between the start of the tasks execution and the
largest deadlines is divided into activation periods, as illustrated in Section 5.2.2.2,
Figure 5.14. In the case of hard deadlines, the robots are stopping the work on the
task as soon as it becomes inactive. i.e. either when the required size is accomplished
on the task or when its deadline is reached. However, when the deadlines are soft,
the robots will consider the task as active until the planned amount of work is
accomplished on the task.

The expected value of the swarm performance whose progress is modeled as a Poisson
process, under dynamic allocation, is given as in Chapter 4, Section 4.5.3, Equation
(4.50). The expected variance in the swarm performance E(v);), which is defined
as the difference between the size of the task and the expected amount of work to

achieve at its deadline, is given by Equation (4.51):

Si — )‘z D; for )‘z D; < Sz
E(y) =

where S; is the size of task T;, D; is its deadline, and \; is the rate associated with
the Poisson process that models the progress of the swarm performance on task 7.
Based on the definition of the activation periods and on Equation (5.14) in Section
5.2.2.3, the rate \; of the progress of the swarm performance on task 7; is calculated

as in the following:
XN Di=)Y X Vie{l,..., M}
k=1

By substituting it in Equation (4.51) for calculating the expected value of the swarm

performance variance, we have:

Si — 22:1 ik Tk for 22:1 Ak < S;

E(;) = .
() { 0 for > Nk = S;

The rate \;; of the Poisson process during the j-th activation period of task T;, can

be written in terms of the transition probabilities based on Equation (5.15), Section
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0.2.2.3:

7Tij
ZM A
c=j 7Tcg He

So, the expected value of the swam performance variance can be written in terms

)\ij: N VZE{l,,M},VJE{l,,M}

of the transition probabilities, as in the following:

i Tij i Tij
Si— > 1 —r J — N1y, for >, %NW < S,
S S
E(i) =
. ﬂ'iA
0 for >, ﬁ]\”}k > S;
c:j c) C

where ¢ € {1,..., M}.

The costs associated with the potential part of the task which will be unprocessed
at the task deadline, are generally higher for tasks with tighter time constraints.
The allocation strategy aims to design a decision matrix which minimizes the costs
associated with missing the deadlines of all the tasks based on their priorities. This is
achieved by minimizing the expected value of the swarm performance variance, given
above. This represents a multi-objective optimization problem with M objective
functions. Each objective function is associated with the cost of one of the M

considered tasks.

E(@/)l) = f(7T11)
. E(19) = f(ma1, T22)
minimize _

E(@/)M) = f(WMlﬂTMQ, e ,WMM)

The above multi-objective optimization is solved off-line. It is solved through build-
ing a single optimization problem by constructing the cumulative weighted objective
function. We sum the M objective functions, where each is weighted by the priority

of its task as in the following:

M
minimize Z GiE(¢y)
i=1

After obtaining the above output, the robots can start to assign themselves au-

tonomously to the tasks and switch among them each time they finish executing
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an individual part of their current task. The initial robots’ assignment to the exe-
cutable tasks and the later decision of their next task is performed by each robot,
independently, using the decision matrix (one matrix per activation period). Figure
5.23 illustrates the steps of the strategy, with the inputs marked in red and the out-
puts marked in blue. The calculated steps are performed off-line and the necessary

part of the output to use by the robots is marked with blue arrows.

Swarm Size -
Deadlines .

- " Minimize
Sizes »| E(¥)=f0O,.,0N)

Average time required by the
robot to execute one part

\

Figure 5.23 — The task allocation strategy for soft deadlines under dynamic allocation.

The following is the pseudo-code of the allocation strategy developed for soft-

deadline tasks under dynamic allocation:
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Algorithm 5 Strategy developed for soft-deadline tasks under dynamic allocation.

Input: S;, D; N, f; = f(IV;)

Output: solution Py

1: M < tasks

7 [

2 6= = > % calculate the task priorities%
> i=15i/D;
cn; =Dy — Dy Vied{2,...,M} > % task activation periods%
4: for 1 =1 to M do
E(¢;) = max(0,S; — %Nnj)

c=j Tejle

w

end for
: minimize le\il BiE(v;)

e

5.3.2.1 Scenario and Evaluation

Let us consider an example of three tasks which are characterized with their soft
deadlines {500, 1000, 1500} time units and their sizes {1500, 1000,500} parts. A
homogeneous swarms with different sizes is used to execute these tasks. The swarm
size varies over the range [10 — 100] robots, with an increment step of 5 robots.

Figure 5.24 shows the tasks priorities calculated using Equation (5.1).
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Figure 5.24 — The priorities of the 3 tasks.

Figure 5.25 shows the expected amount of work (parts) left unprocessed on each task
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at its deadline, calculated as explained in Chapter 4, Section 4.5.3. In addition, in
the same figure the performance variance is averaged over 100 runs of Monte-Carlo

simulation.
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Figure 5.25 — Fuvaluation of the task allocation strategy developed for the soft deadlines under
the technique of dynamic allocation. The figure shows the expected difference between the
amount of work accomplished (in parts) and the task size. This difference is calculated and
simulated over 100 runs of Monte-Carlo simulation.

As we can notice, both calculated and simulated swarm performance variances de-
crease with increasing swarm size. In Figure 5.25 (a), we see how the performance
variance on task 77 decreases slower as the task size is larger than the sizes of tasks

T, and T3. The same remark applies for task T3 in Figure 5.25 (b) in comparison to
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5.4 Conclusions

task T3 in Figure 5.25 (c).

5.4 Conclusions

This chapter was dedicated to present the task allocation strategies developed for
swarm robotics systems to execute a set of time-constrained tasks.

The deadlines were categorized into: Hard deadlines where continuing to execute
the task after its deadline has no benefit and Soft deadlines where continuing to
execute the task after its deadline is associated with specific costs. The allocation
strategies were developed under the two techniques of static allocation and dynamic
allocation, presented in Chapter 4. They were proposed to handle both kinds of
scenarios, namely, when the switching costs among tasks are high or when they are
negligible. For hard deadlines, the focus was on studying the possibility of the sys-
tem to execute the task within its deadline. This possibility was defined in terms of
the task execution probability, which is the probability of finishing the task within
its deadline. For hard deadlines, the goal was to allow the robots to perform an
independent allocation, that maximizes the number of executable tasks. The task
is categorized as executable when its execution probability is acceptable (near to
one). On the other hand, for soft-deadline tasks, the focus was on studying quanti-
tively the difference between the required swarm performance and the expected one
to achieve at the task deadline, this difference represents the cost associated with
missing the task deadline. The goal of the allocation strategies under both static
and dynamic allocation was to design a self-organized allocation that minimizes the
costs associated with missing the task deadlines.

All allocation strategies were designed so that the robots can allocate themselves
statically or dynamically to the tasks independently and under the respect of the

task deadlines.
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Chapter 6
Applications: Bio-Inspired Foraging

Swarming robots could have important
roles to play in the future of micro-
medicine, as 'nanobots’ are developed
for non-invasive treatment of humans.
On a larger scale, they could play a
part in military, or search and rescue
operations, acting together in areas where
it would be too dangerous or impractical
for humans to go. In industry too, robot
swarms could be put to use, improving
manufacturing processes and workplace
safety.

- Roderich Gross

|
In this chapter, we present a biologically inspired task which is well-studied in swarm
robotics systems, namely, foraging. We consider a special case of this task referred
to as multi-foraging, where different types of items should be retrieved by robots back
to the home area. In our multi-foraging scenario, each type of the considered items
represents a specific task where a specific number of parts should be retrieved within a

specified deadline. Hence, the multi-foraging tasks represent a set of time-constraint
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tasks.
In this chapter, we aim to verify the task allocation strategies developed in Chapter

5 for hard and soft deadlines under both static and dynamic allocations through a

set of physics-based simulations.
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6.1 Foraging

Foraging is a task which can be observed in a large number of social insect colonies
and animal societies. It plays a main role in the survival and the reproduction of the
group members (Danchin et al., 2008). Foraging in its simple form consists of a set
of sub-tasks including the exploration of the environment of interest to search for
food items and the transportation of the food items found in addition to navigating
with the food items back to some safe area referred to as the nest or the home.
Foraging can be categorized as solitary foraging where the individuals perform the
searching, finding, capturing and consuming the prey alone (Reidman, 1990). This
biological foraging does not represent an interesting source of inspiration by systems
such as swarm robotics which are characterized by their large number of robots. The
other kind of biological foraging is known as the group foraging (Stephens et al.,
2007). It is a cooperative task whose success depends on the collective behavior of
the individuals which are performing the foraging for the benefit of all.

Foraging was inspired from nature and studied intensively in the context of swarm

robotics systems under different concepts, including;:

e A complete robot-foraging study: starting from the solitary foraging with
one robot and scaling to the group foraging with multi-robot systems such as

swarm robotics. A full taxonomy is provided (Winfield, 2009).

e Mathematical analysis: A few mathematical studies were conducted in the
domain of swarm robotics. Some of them were focusing on foraging as a
verification task (Lerman & Galstyan, 2002; Liu et al., 2009).

e Spatial interferences influence on foraging of large scale multi-robot systems:
spatial interference among robots play a significant role on the performance
of single robot and swarm. Some studies have focused on this concept for
foraging tasks as in Ostergaard et al. (2001); Shell & Mataric (2006).

e Learning: explore different learning methodologies such as the reward func-
tions for improving the foraging task in multi-robot systems (Balch, 1999b),
or considering the learning in challenging noisy and dynamic environments for

multi-robot foraging tasks (Matari¢, 1997)
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Foraging can be mapped to a large spectrum of real applications where swarm
robotics provide a promising solution. Some examples of these applications are
listed below:

e Data mules: this task is a relatively new approach applied in large-scale sensors
or spare networks for collecting nodes’ storage and transferring it to some base
station. This technique was first proposed in the context of wireless sensor
networks by Shah et al. (2003). It aims mainly to extend the life-time of the
sensor nodes by preserving their energy through applying the data transfer
using an one-hop approach between the mobile node and the sensor node
instead of the multi-hop routing to transfer the data to the base station (Jain
et al., 2006; Jea et al., 2005). Some works focus on even determining the
movements of the mobile node and the times it sojourns at certain network
nodes so that network lifetime is maximized (Wang et al., 2005). Other works,
as in Somasundara et al. (2004), concentrate on providing a schedule for the
visits to the sensor nodes based on the sizes of their buffers and consequently
on the length of the time periods through which they can keep the data before

losing it.

Let us consider a large-scale network where a swarm of robots is employed in
collecting and transferring data to the base station. If we divide the network
in areas based on the time intervals during which the nodes can hold the
measured data before to lose it, then each area can be characterized by its

specific deadline.

e A recycling system in a factory: Let us consider a factory which consists of
several sections and each section produces periodically a particular amount
of items for recycling. The recycling task can be executed using a swarm of
robots which travel among the different sections to retrieve the materials for
recycling. In case of, the different sections of the factory are generating the
materials to recycle at different rates, each section will represent a task with

its deadline. Otherwise, all the tasks will share a common deadline.

e Pollution cleaning or de-mining: Let us consider the scenario of having different

pollution spots, which needs to be cleaned within a specific deadline or a field
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of mines that needs to be removed (deactivated) also within a specific deadline.
Being generally considered as dangerous for humans, they can be performed
using a swarm of robots. Such tasks can be mapped to biological foraging,
where the robots need to explore the operation area searching for particular
items to remove them (retrieving stage is not included, in this case). These
represent, normally, time-constrained tasks, based on the criticality of the time

within which these items should be removed.

There are other real-world applications whose execution can be mapped to the bi-
ological foraging behavior, where swarm robotics systems provide an appropriate
solution for them.

The task allocation developed in this thesis is a non-communicative approach. There-
fore, no communications is applied among the robots while performing the foraging
tasks presented in this chapter. Consequently, no optimization concerning the an-
nouncement of the richest food source or the shortest path to the food source, is
practiced. Such kind of optimization plays no role in the performance of our system

as we assume a uniform distribution of the task parts over the arena.

6.2 Simulations

6.2.1 The ARGoS Simulator

ARGoOS is a state-of-the-art, open source 3D robot simulator. Its design allows the
simulation of large heterogeneous swarms of robots (Pinciroli et al., 2012). ARGoS
was developed initially within the context of the Swarmanoid project. It is currently
the main robot simulation tool used in the following European projects: ASCENS!,
H2SWARM?, E-SWARM? and Swarmix®*. In addition, it is used by several univer-
sities and research laboratories across the world. Figure 6.1 shows two snapshots
from simulations by ARGoS. It is considered as the first multi-robot simulator that

offers both flexibility and efficiency. Flexibility refers to the ability of simulating

'http://ascens-ist.eu/
2http://www.esf.org/
Shttp://www.e-swarm.org/
‘http://www.swarmix.org/
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Figure 6.1 — Snapshots taken from the multi-robot simulator ARGoS.

different kinds of experiments and to add new features. Efficiency refers to the abil-
ity of running experiments with thousands of robots in the shortest time possible.
These two features, namely the flexibility and the efficiency are at odds. ARGoS
has solved this trade-off by introducing a set of novel techniques. One of the main
design features provided by ARGoS and which plays a significant role in flexibility,
is modularity. Modularity allows the user to modify any aspect in the simulation or
even add new features: such as robots, sensors, actuators and others. Another fea-
ture which is behind the efficiency provided by ARGoS, is space partitioning. Space
partitioning is considered as the most distinctive feature of ARGoS. It represents the
possibility of partitioning the simulated 3D space into non-overlapping portions of
arbitrary size and managing those portions separately in parallel. This feature plays
the main role in producing short time simulations. In addition, ARGoS architecture
is designed to exploit modern CPU architectures by using multiple threads, which
in turn maximizes the simulation speed.

The robot’s control code is written using C++. In addition, XML files are used to
define and configure the different modules of the environment which is referred to
generally as the world. A set of robots’ models are already supported by ARGoS
including: the epuck, the Foot-bot!, the Eye-bot! and the Hand-bot!. However, the

user can model any other required robot. Additionally, a large set of sensors and

lyww . swarmanoid.org/swarmanoid_hardware.php
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6.2 Simulations

actuators are available in ARGoS, again with the ability of modeling any new one
required. ARGoS can be used mainly on the operating systems Linux and MacOS
and has been tested on several of their versions.

The simulator defines multiple kinds of physics engines to perform the calculations
of the physical kinematics in addition to the collisions happening among the physical
entities in the simulation arena. The presence of multiple physics engines allows to
model the different robots and their physical interaction according to the required
level of precision and to available computational resources. A single simulation
can include one or more physics engines. Each subspace managed by a specific
physics engine, can be a 1D, 2D, or 3D subspace. All simulated entities have
access to the full 3D representation of the environment through a special geometrical
transformation system. This allows to communicate with and sense other robots and
entities in the environment.

Using multiple physics engines is a unique feature of ARGoS that allows selection
among different levels of physical precision. On the other hand, it allows to optimize
the usage of the computational resources. All physical interactions on the ground
can be managed by a physics engine based on a 2D geometry that considers only

the simulation of the kinematics.

6.2.2 Setup Foraging Experiment

We use homogeneous swarms to perform our foraging tasks. The robot used in our

foraging experiments is the Foot-bot robot, see Figure 6.2.
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Range and Bearing sensors

» Light

Wheels

(a) Foot-bot. (b) Foot-bots using the color

display to communicate.

Figure 6.2 — Foot-bot robots re-printed from the Swarmanoid project web-page.

Foot-bot is a wheeled robot which can be used only on the ground. It is 17 cm
diameter x 29 cm hight and weights 1.8 kg. It possesses a powerful treel mobility
system which is composed of wheels and tracks. A lithium polymer battery which is
used by foot-bot provides it with the ability to participate in long-period experiments
(up to 2.5 hours of continuous use without recharging). In addition, the feature of
hot-swapping available in foot-bot(s), where a capacitor keeps the robot alive while
the battery is swapped, allows theoretically for unlimited long experiments.

The foot-bot is equipped with a set of sensors and actuators. Its sensor set includes
two 2.0 mega-pixels cameras with image on-board pre-processing. The first camera
provides the foot-bot with an omni-directional vision while the second one is used for
the eye-bot vision as it looks towards the ceiling. Obstacle avoidance is performed
by the Foot-bot using a set of 24 short range (up to 10 cm) proximity sensors, in
addition to long-range (up to 150 cm) infra-red scanner. A foot-bot is quipped with
many other sensors. Robots are able to grip objects and to connect themselves to
other robots using their grippers. Other actuators are laser beam actuator, rotor
blades actuator, and the robot’s wheels.

The foot-bot robot is supported by an on-board CPU with a high computational

power including floating-point processing. It can self-assemble and can communicate
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with other robots in several ways including a color display which is one of the most
important communication methods.

In the considered foraging tasks, the working arena is divided into items-arena, where
large numbers of parts belong to different types of items are uniformly scattered. In
addition, the working arena includes a nest (home), where the robots should retrieve
the harvested parts. The nest is generally marked with a set of lights to be sensed
by the working robots. Each time a part is retrieved another part is generated.
The foraging behavior we consider throughout this chapter can be described by the
following stages: the robots are, initially, in a resting state at a special area referred
to as the robot-repository. As soon as the experiment starts, the robots move to
the exploring state. In the exploring state, the robots use the diffusion behavior to
explore the items-arena while applying obstacle avoidance. The diffusion behavior
offers the maximum coverage of the items-arena while avoiding other robots and
obstacles. The diffusion behavior is governed by a light-repulsion behavior, in which
the robot moves away from the light of the nest towards the items-arena. As soon
as the robot finds some part of the item it is currently working on, it picks that part
and switches to the return to the nest state. In the return to the nest, it starts to
apply a combined behavior of light attraction and obstacle avoidance heading back
to the nest. When the robot arrives to the nest, it tries to drop the harvested part

before it switches directly back to the exploring state.

start Item found
Return
to nest
finish Item retrieved

finish

Figure 6.3 — Robot’s controller.
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6.3 Static Allocation

Based on the definition of static allocation in Chapter 4, Section 4.4, robots are
assigned to the tasks at the beginning of the execution and no switching among the
tasks, is performed later. This kind of allocation is applied when the switching costs
among the tasks are high.

For static allocation, we consider three foraging tasks where the parts to retrieve
are scattered over three separated arenas. FEach arena holds one type of items
and consists of two sub-areas: One 9 x 4 meters item-arena where the item parts
are scattered and One 3 X 4 meters nest-arena to where the item parts should be
retrieved. The robots are located first at a 3 x 14 meters robots-repository, see figure
6.4. As soon as the robots are assigned to the tasks, they start to move towards
their working arenas. The arenas are separated from each other and the switching
costs are high for the robots to travel from one to another arena.

The mean time required to retrieve one part is the same for the three items, as
the same number of parts of each item is scattered uniformly at its item-arena and
the three item-arenas have the same area. This mean is measured over short-term
simulations using the following swarm sizes {10, 15,20, 25,30,35,40}. The results
are averaged over 25 simulation runs. After that, a polynomial estimation of the
degree 3 is performed to obtain the performance function. Figure 6.5(a) shows the
average time required to retrieve one part of each of the items, when the swarm
size varies. In this figure we see how the average time required to retrieve one
part by a swarm of robots decreases by increasing the size of the swarm as a result
of parallelizing the work on the task. However, as soon as the effect of the spatial
interferences among the robots starts to overcome the benefit gained by parallelizing
the work, the average time of retrieving a single part starts to increase again. Figure
6.5(b) shows the average time required to retrieve one part by a single robot. This
time increases continuously by increasing the size of the swarm, influenced by spatial
interferences.

The robots’ activity times are sampled, independently, from the exponential distri-
bution and the robots batteries are assumed to be full recharged at the beginning

of the execution.
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Figure 6.4 — Foraging under static allocation.
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Figure 6.5 — Swarm and single robot performance under spatial interferences.
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6.3.1 Hard-deadline Foraging under Static Allocation

In this section, the deadlines of the three tasks are considered to be hard. Hence,
missing the deadline of the task is critical. The deadlines are {720,1080, 1800}
seconds and the foot-bot swarm used to execute the tasks consists of 50 robots. The
probability of interest, in this study, is per task the probability of finish executing
the task within its deadline, it is referred to as the task execution probability. The

following sizes of the three tasks are examined:

Sizes T Ty, T3
St: (30 30 30
S2: 1200 30 30
S3: | 30 400 30
S4: 1 30 30 500
S5: 1 300 100 100
S6: | 100 400 100
S7: \ 100 100 500

where each line represents a variant of the task sizes.

First, we select the same size for the three tasks. So, the priority of the task depends
only on the tightness of its deadline. This is what we see in the first column in Figure
6.6. The task with the highest priority is 77 which has the shortest deadline, then
task T» and the lowest priority is the one of task 73. In the size variants {Ss, S3, S4},
we assign a larger size to the tasks T3, T, and T3 sequentially while keeping the size
of the other two tasks equal to 30. In this step, the priority of the tasks is influenced
not only by their deadlines but also by their sizes. This is why the priority of task T}
is the highest in S5 and in S5, Figure 6.6. Whereas, the priority of task 7, becomes
the highest in S3 and in Sg and the priority of task 75 is the highest in S; and in
Sy
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Figure 6.6 — Tasks priorities calculated based on Equation (5.1) for the different variants of
task sizes.

In Chapter 5, two allocation strategies were developed for tasks with hard deadlines
under static allocation: the Energy-aware strategy and the robots-aware strategy.
The energy-aware strategy is developed to cope with the limited battery life of the
robots. It cares, in addition to execute the task within its deadline, to speed up its
execution. Therefore, it maximizes the number of robots assigned to the tasks. On
the other hand, the robots-aware strategy attempts to preserve the robotic resources
by assigning the necessary number of robots to each task under the consideration
of its temporal constraint. Both allocation strategies assign no robots to the task
when no acceptable (near to one) execution probability is possible to be obtained
for that task. Figure 6.7 shows the number of robots assigned to each of the three
tasks over all the examined variants of the task sizes under both energy-aware and
robots-aware strategies. This figure shows how the number of robots assigned to the

different tasks is smaller when the robots-aware strategy is applied.
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Figure 6.7 — The number of robots assigned to each of the three tasks.

Figure 6.8 (a) shows how the energy-aware strategy outperforms the robots-aware
strategy, concerning the average time required to finish the complete set of exe-
cutable tasks and to have the whole swarm again available. In addition, Figure 6.8
(b) shows how the robots-aware strategy outperforms the energy-aware one, con-
cerning the number of free robots available continuously and ready for any new

demand.
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Figure 6.8 — A comparison between energy-aware and robots-aware allocation strategies.

Figure 6.9 illustrates the execution probability (the probability to finish the task

within its deadline) of the three tasks over the different variants of the task sizes.
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6.3 Static Allocation

It depicts the probabilities calculated as explained in Chapter 5 Sections 5.2.1.1
and 5.2.1.2. In the same figure, the empirical probabilities obtained over repeated
ARGoS simulations (10 runs for each variant of the task sizes) are also shown.
Figures 6.9(a,c,e) show the execution probability of each of the three tasks, when the
energy-aware strategy is followed, while Figures 6.9(b,d,f) show the same execution

probabilities, however when the robots-aware strategy is applied.
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Figure 6.9 — The theoretical and empirical execution probabilities of the three tasks under

energy-aware and robots-aware strategies.
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6.3.2 Soft-deadline Foraging under Static Allocation

In this section, the three tasks are characterized by the following soft deadlines
{720, 1080, 1800} seconds. Missing any of the soft deadlines is associated with a
specific cost, however, it is not considered to be catastrophic. The sizes of the tasks
are set to be equal, where 500 part has to be retrieved from each item within its
specified deadline. The expected value of the performance variance is defined, in
Chapter 5 Section 5.3.1, as the difference between the total time that has to be
dedicated to the task within its deadline and the expected time to be dedicated to
the task at its deadline. The allocation technique is designed to minimize the costs
associated with the time which was not dedicated the task within its deadline.

A homogeneous swarm of an increasing size over the range [10 — 50] robots with an
increment step of 5 robots, is used to execute the set of tasks. The expected perfor-
mance variance is calculated first using Equation (4.37) in Section 4.4.3, Chapter 4.
After that, the performance variance is averaged over repeated ARGoS simulations
(10 runs for each of the examined swarm sizes), see Figure 6.10.

Figures 6.10 (a-c-e) show how the number of robots assigned to the different tasks
increases by increasing the size of the swarm according to the task priorities. The
number of assigned robots is upper-bounded with the optimal number of robots N,
associated with the maximum swarm performance under spatial interferences, here
Nyt = 20 robots for all tasks, see Figure 6.5. Figures 6.10 (b-d-f), show the missed
time to be dedicated to the three tasks each within its deadline. This was referred
to as the expected value of the performance variance. It decreases with increasing
the number of robots assigned to the tasks. The same figure shows a comparison
between the expected value of the performance variance calculated using Equation
(4.37) and the averaged value over 10 ARGoS simulation for each of the examined

swarm size.
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Figure 6.10 - Evaluation of the task allocation strateqy developed for the soft-deadlines under
the technique of static allocation. Figures (a), (¢) and (e) show the number of robots assigned
to each of the considered tasks by increasing the swarm size over the range [10 : 5 : 50]. Figures
(b), (d) and (f) show the performance variance associated with the used size of the swarm. A

comparison is performed between the calculated and the simulated performance variance over

10 simulations for each swarm size.
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6.3 Static Allocation

The number of retrieved parts on each of the considered tasks increases while in-
creasing number of robots assigned to the task. Figures 6.11 (a-c-¢) show how the
number of retrieved parts increases towards the size required to be achieved on each
of the tasks within its deadline (500 parts). Figures 6.11 (b-d-f) show the ratio of
the total time dedicated to the task by the robots and the minimum threshold of
time required to be dedicated to the task. By comparing the Figures 6.11 (a-c-e)
with the Figures 6.11 (b-d-f), we can see that the ratios depicted in Figures 6.11
(b-d-f) can be used to approximate the mean of retrieved parts depicted in Figures
6.11 (a~c-e). This can be performed by multiplying the size of any of the three tasks
(500 parts) with the corresponding ratio associated with the used swarm size. This
rule gives a fair approximation only if the number of assigned robots to the task is

large enough.
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Figure 6.11 — The number of retrieved parts on each of the tasks in Figures (a), (¢) and (e).
Figures (b), (d) and (f) show the ratio between the total time dedicated to the tasks and the
minimum threshold of the time needs to be dedicated.
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6.4 Dynamic Allocation

Dynamic allocation is defined in Chapter 4, Section 4.5 as the allocation which is
applied when the switching costs among tasks are negligible, therefore robots are
allowed to change their tasks continuously during the execution time.

For dynamic allocation, we consider three foraging tasks where the parts to retrieve
are scattered over the same arena. The arena consists of two sub-arenas: An item-
arena of 7 x 10 meters, where three types of items are scattered and A nest-arena of
3 x 10 meters, to where the parts should be retrieved, see Figure 6.12 (a). Since the
three types of items are located on the same arena, the switching costs among the
tasks are negligible. A specific number of parts, referred to as the task size, should
be retrieved on each of the three tasks within it deadline.

The mean time required to retrieve one part by a single robot, is measured for the
three items (red, black and white) each over 25 runs of ARGoS simulation for the
time period of 500 seconds and depicted in Figure 6.12 (b). The difference in the
mean time between the three types is caused by the difference in the number of the
parts scattered from each of the three items. The number of parts from the red item
is 500 part, the number of parts from the black item is 300 part, and the number of
parts from the white item is 150 part.

The estimation of the mean time required to retrieve a single part of each type is

performed using a homogeneous swarm of 50 robots.

150



6.4 Dynamic Allocation

(a) Foraging under Dynamic Allo- (b) Mean time required by a single robot to

cation. retrieve one part of each item type.

Figure 6.12 — Multi foraging under dynamic location technique.

6.4.1 Hard-deadline Foraging under Dynamic Allocation

In this section, the deadlines of the three tasks are considered to be hard. Hence,
missing the deadline is critical. The deadlines are {500, 1500, 3000} seconds and the
foot-bot swarm used to execute the tasks consists of 50 robots. The probability of
interest, in this study, is per task the probability of finish executing the task within
its deadline, it is referred to as the task execution probability. The following sizes

of the three tasks are examined:

Sizes 11 Ty, T3
S1: (10 100 150
S2: 1 30 150 300
S3: 1 50 200 400
S4: 1 70 250 500
S5: \ 100 300 600

where each line represents a variant of the task sizes.
Figure 6.13 shows the priorities of the three tasks over the examined variants of the

task sizes.

151


Applications/Applications_Figs/EPS/dynamic_foraging.eps
Applications/Applications_Figs/EPS/single_robot_performance_dynamic_allocation.eps

6.4 Dynamic Allocation

[

© o o
N © «©
T

0.6

Tasks priorities

S1 S2 S3 S4 S5
Simulations over all examined variants of task sizes

Figure 6.13 — Tasks priorities calculated based on Equation (5.1) for the different variants

of task sizes.

In Chapter 5, Section 5.2.2, the allocation strategy developed for hard-deadline tasks
under dynamic allocation defines first the set of executable tasks where tasks have
an acceptable execution probability (near to one). After that, it finds the decision
matrices which hold the transition probabilities and are used by the robots to assign
themselves to the different tasks over the different activation periods. In our scenario,
there are three activation periods defined using Equation (5.11) in Section 5.2.2.2,
Chapter 5. During the first period, all tasks are active. During the second period,
the first task which is associated with retrieving the red item parts becomes inactive
and in the third period the second task which is associated with retrieving the black
item parts becomes inactive. Figure 6.14 shows the decision matrices calculated as
explained in Chapter 5 , Section 5.2.2. As we can see in the figure, during the first
period, robots are assigned to the three tasks. In the second period, the first task
with the shortest deadline becomes inactive, therefore, no robots are assigned to it.
The same applies to the second task in the third period, where it becomes inactive.
In addition, when the sizes of the tasks increase gradually, the whole swarm becomes
required to work on the first task during the first period and no robot is left free
to be assigned to the second or the third task. This case can be be observed when

considering the variants S; and S; of the task sizes.
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Figure 6.14 — The transition probabilities of the three tasks over their activation periods.

After the decision matrices are calculated for the different activation periods, the
number of robots is minimized on each of the executable tasks, under the constraint
of keeping the execution probability within the acceptable limits. Figure 6.15 shows
the number of robots requires to perform the set of executable tasks over the different
variants of task sizes. In the figure, we can notice how the number of the required
robots increases by increasing the task sizes up to the point where some of the tasks
become un-executable, hence, less robots are required to execute the remaining

tasks. This is reason why the number of required robots decreases after increasing.
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6.4 Dynamic Allocation
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Figure 6.15 — The swarm size optimized to be used for each set of the examined task sizes.

Figure 6.16 illustrates the execution probability (the probability to finish the task
within its deadline) of the three tasks over the different variants of the task sizes. It
depicts the probabilities calculated as explained in Chapter 5 Section 5.2.2. In the
same figure, the empirical probabilities obtained over repeated ARGoS simulations
(10 runs for each variant of the task sizes) are also shown, where we can see the

consistency between the calculated and the simulated probabilities.
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6.4 Dynamic Allocation

6.4.2 Soft-deadline Foraging under Dynamic Allocation

In this section, the three tasks are characterized by the following soft deadlines
{500, 1500, 3000} seconds. Missing any of these soft deadlines is associated with
a specific cost. The task sizes are {150,300,500} parts, i.e. 150 parts should be
retrieved within 500 seconds on the first task, 300 parts within 1500 seconds on the
second task and 500 parts within 3000 seconds on the third task. The expected
value of the performance variance is defined in Chapter 5, Section 5.3.2, as the
difference between the task size which should be executed within the task deadline
and the expected number of parts to be performed up to the task deadline. The
allocation technique is designed to minimize the costs associated with the number
of unprocessed parts at the task deadline.

A homogeneous swarm of an increasing size over the range [5 — 50| robots with an
increment step of 5 robots, is used to execute the set of the three tasks. The expected
performance variance is calculated first using Equation (4.42) in Section 4.5, Chapter
4, Section 5.3.2. After that, it is averaged over repeated ARGoS simulations (10 runs
for each of the examined swarm sizes), see Figure 6.17.

In the figure, the difference between the task size and the calculated/simulated
number of retrieved parts decreases while increasing the swarm size. The swarm
performance measured in terms of the number of retrieved parts keeps improving
while increasing the swarm size up to the maximum before it starts to decrease
affected by the spatial interferences among the robots.

The difference between the calculated and the simulated performance variance,
which can be noticed on tasks T, and T3 for large numbers of assigned robots has
the following reason: the mean time, ji;, required by a single robot to retrieve one
part on task T, is measured using a swarm of 50 robots on each of the three tasks,
Figure 6.12 (b). As we have seen in Chapter 4, Section 4.3, the mean time, /i;, in-
creases by increasing the swarm size influenced by the spatial interferences between
robots. Therefore, having 30 robots working on a task is associated with a smaller
mean time /i;, than in the case of having 50 robots. Consequently, the simulated
performance variance is smaller than the calculated performance variance when less
robots are working on the task than the swarm size used in estimating ;. This

difference is always on the safe side, as the number of robots working on any task
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will be smaller than the total swarm size used in estimating the mean time ;. As
a part of the future work, the mean time, fi;, can be estimated as a function of the

number of robots working on the task.
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Figure 6.17 — FEvaluation of the task allocation strategy developed for soft-deadline tasks
under the technique of dynamic allocation. The figure shows the expected difference between the
task size and the accomplished amount of work (retrieved parts), theoretically and empirically
averaged over ARGoS repeated simulations.

6.5 Conclusions

This chapter was dedicated to verifying the task allocation strategies developed in

Chapter 5 using physics-based simulations. The simulator ARGoS was used for
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6.5 Conclusions

performing repetitive high-level simulations. ARGoS is an efficient fast simulator
for heterogeneous robots. It possesses a set of unique features such as: The modular
architecture where all system units including: robots, physics engines, visualizations,
and controllers are plug-ins. In addition, ARGoS has the possibility to run multiple
physics engines simultaneously. In our simulations, we have used the foot-bot robot
to build up our swarms.

The simulation scenarios were presented under both static and dynamic allocation
techniques and for both types of deadlines: Hard and Soft deadlines. For hard-
deadline tasks, the main focus was on the execution probability of the tasks, where
the calculated and simulated probabilities were consistent. For soft-deadline tasks,
the main interest was related to reduce the costs associated with missing the task
deadlines. These costs were expressed in terms of the difference between the required
performance to obtain and the expected performance to achieve at the task deadline.
The swarm performance was calculated using the corresponding equations from
Chapter 5. After that, it was compared with the performance averaged over repeated
ARGoS simulations. The results have shown the consistency between the calculated

and the simulated performances.
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Chapter 7

Conclusion

To succeed, jump as quickly at opportu-

nities as you do at conclusions.

- Benjamin Franklin

This chapter concludes the thesis by giving a summary of the main contributions
and the directions of possible future work.
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7.1 Summary of Contributions

7.1 Summary of Contributions

In this thesis, we have presented original research work to discuss the problem of
assigning robot swarms to tasks with specific time constraints. Task allocation
strategies have been developed to allow the robots to assign themselves to a set of
tasks autonomously and independently under the temporal constraints of the tasks,
namely, the deadlines.

Our approach focuses on a special kind of collective tasks, where each task is built
up of discrete sub-tasks, referred to as parts. The part requires one robot to execute
it and the task is characterized by its size and its deadline. The task size refers
to the number of parts that should be accomplished on the task and the deadline
represents the time point up to which the task should have been executed. Two
main types of deadlines are discussed: Hard deadlines and Soft deadlines. Tasks
where missing the deadline can lead to critical results or to a kind of an execution
failure are characterized by their hard deadlines. Tasks where missing the deadline
reduces the quality of the performance and this is associated with specific costs, are
characterized by their soft deadlines.

For the development of efficient task allocation strategies, an important parameter
was taken into account which plays a main role when temporal constraint are con-
sidered. This parameter is the switching costs between tasks which represent the
time spent by the robot to stop the execution of its task and travel to start the exe-
cution of another task. These costs may be high or negligible based on the physical
representation of the tasks and on the relativity between the switching time and
the execution time of the task. For tasks with high switching costs static allocation
was developed, where the robots select their tasks at the beginning of the execu-
tion and each robot decides independently the random time it will dedicate to the
task. As soon as the robots select their tasks, they do not switch among the tasks
during the execution time. On the other hand, for tasks with negligible switching
costs, dynamic allocation was developed, where robots are allowed to switch be-
tween the tasks each time the robot finishes executing one part of its current task.
A set of decision matrices which hold the switching probabilities between the tasks
were designed to be exploited by the robots, independently, for the purposes of task

switching.
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7.1 Summary of Contributions

This thesis includes the following main contributions:

e Mathematical modeling of swarm performance: swarm performance has been
defined in Chapter 4, Section 4.4 under static allocation as the total time
dedicated to the task, by the robots working on it, up to its deadline. On
the other hand, swarm performance under dynamic allocation was defined in
Chapter 4, Section 4.5, as the total number of parts accomplished on the task
up to its deadline. Different mathematical techniques were proposed to model

the swarm performance according to its particular definition.

Under static allocation, the concept of robots’ activity times was introduced as
a set of continuous random durations sampled by the robots, independently, to
be dedicated to the task. Different probability distributions were proposed for
the random variable associated with the robot’s activity time and the execution
probability of the task was analyzed under the proposed distributions. The
execution probability, here, was defined as the probability of dedicating the
minimum threshold of time to the task (time required to finish executing the
task) within its deadline.

Under dynamic allocation, the evolution of the work on the task over time
was modeled using the Poisson process, with different rates for each task over
its activation periods. The behavior of the single robot was modeled as a
Semi-Markov process. The execution probability was analyzed in association
with the specific rate of the Poisson process that models the work progress
on the task. The execution probability, here, was defined as the probability
of executing a number of parts up to the task deadline which is equal to or

greater than task size.

In addition to the probabilistic analysis, the expected value of the variance in
the swarm performance from the required performance was studied analytically
and defined as the cost function associated with missing the soft deadlines,

under both static and dynamic allocation techniques.

The probability analysis performed under static and dynamic allocations was
exploited in planning the execution of hard-deadline tasks by swarm robotics.
Whereas the analytical study of the swarm performance variance was used to

plan the execution of soft-deadline tasks.

161



7.2 Future Work

e Task allocation strategies: developed under static and dynamic allocation tech-
niques for tasks with hard and soft deadlines. The allocation strategies were
designed based on the mathematical models developed for both static and dy-
namic allocations. They allow an autonomous allocation of the robots among

the time-constrained tasks.

For hard-deadline tasks, the developed strategies attempt to maximize the
number of executable tasks with an acceptable execution probability (near
to one). In the case of soft-deadline tasks, the goal is to minimize the costs

associated with the missed deadlines.

e Additional contributions: including a set of simulated experiments and scenar-
ios where the developed allocation strategies were verified successfully. Monte-
Carlo simulations were performed using the Matlab platform. After that, the
allocation strategies were verified through repetitive high-level physics-based

simulations using the robots simulator ARGoS.

To conclude, the proposed strategies can be used for autonomous task allocation
of a swarm of homogeneous robots to execute time-constrained tasks. The time
constraints can be soft or hard and the tasks can have high or negligible switching

costs.

7.2 Future Work

The research developed in this thesis is based on a set of assumptions related to the
environment of operation and the kind of tasks we are considering. This is feasible
since we are dealing with a relatively new field of research, namely swarm robotics,
and we are performing a completely new kind of combination between this field and

the field of real-time planning. The following are directions for possible future work:

e Methodology: the proposed allocation strategies are non-communicative strate-
gies. Introducing robot-to-robot communication in the design of the allocation
strategies may improve, considerably, the performance of the system and con-

sequently the consideration of the task time constraints.
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7.2 Future Work

e Tasks: a set of assumptions were made about the category of tasks we are
considering, including the uniform distribution of the task parts and the re-
generation of the parts. Albeit these assumptions are verified in a set of real-
world tasks, being able to relax some or all of these assumptions may allow

the allocation approach to cover a larger set of tasks.

e Robots: the thesis assumes a homogeneous swarm of robots to execute the
tasks. However, using a heterogeneous swarm of robots may offer a special
kind of cooperation among the different types of robots which in turn may
improve the performance of the system. In addition to the cooperation, spe-
cialization on the different tasks is another aspect which can be efficiently
exploited in heterogeneous swarms and which may improve the system perfor-

mance considerably.
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Appendix A

The Probability Functions of n

Truncated Exponentially Distributed

Variables

e From Probability Density Function (PDF) to Characteristic Func-
tion
We start with the characteristic function of a random variable (z) following
the truncated exponential distribution and try to find the characteristic func-
tion of the sum of n random variables, each of them is following the truncated
exponential distribution.
In principle the characteristic function is the Fourier transformation of the

probability density function (PDF) and is given by:

o(t) = / " f(a)da (A1)

o0
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where f(x) is the probability density function of the random variable x.

o(t+1i\) = / TN £ (1) dge

(e o]

_ / " et f(2)da

(e o]

So if ¢(t) is the characteristic function of f(z), then ¢(t + ¢\) is the charac-
teristic function of e~ f(z).
It is well known that the characteristic function of the sum of n independent

variables, where each of them has the characteristic faction ¢(t) is given by:
[o(t)]™ - Kendall (Kendall & Stuart, 1977).

Now back to the truncated exponential distribution, if z is a random variable
which obeys the truncated exponential distribution with the parameter A\ and

the truncation points al and b1, it will have the following probability density

function:

)\67)‘2

fT<Z) = e—Aa1 _ o—Aby a; < T < by
0 Otherwise

Let us substitute z = Az , a = Aal and b = A\bl, thus we can write it as in the
following;:

e * el

fT(Jj‘) = m 0xTx
0 Otherwise

The characteristic function of x in this case is defined based on the probability
density function of z as in the following:

A iy
o(t) = 7_11/ e dx

e v —e

A "
D= — 1t— J:d
o)== [

Thus, the characteristic function of a random variable follows the truncated
exponential distribution is given by:
Aelit=1b _ olit=1)a]

A= (o ey - 1)

(A.2)
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Consequently, the characteristic function of the sum of n independent random
variables, each of them is following the truncated exponential distribution is,
according to Kendall (Kendall & Stuart, 1977), given by:

[)\[(e(it—l)b _ e(it—l)a)] n

p(t) = (e (i 1) (A.3)

From Characteristic Function to Probability Density Function (PDF)
After finding out the characteristic function of the sum of n independent ran-
dom variables which are following the truncated exponential distribution, we
need now to find back the probability density function (PDF) of their distri-
bution based on the obtained characteristic function.

Let us consider the rectangular distribution of the random variable z. The

probability density function is given by:

1
a<x<b
fREC(«T) = b —a (A4)
0 Otherwise

The characteristic function of the rectangular distribution is as in the following:

6itb _ eita
Preell) =G0

If s is the sum of n independent variables, each has the probability density

(A.5)

function frpc(x), then according to Cramer (Cramer, 1946), the probability

density function of the sum s will be given by:

g(s) _ (b N a)fn Z(_l)k (Z) [3 — na(; ﬁ(i)T a)]ni (A6)

m
k=0

where na +m(b—a) <s <na+ (m+1)(b—a) and m=0,1,..,n — 1.
As i(t +1i) =it — 1, we can write:

pi(tHDb _ gi(t+i)a

prec(t +1) = (b—a)(i(t +1))

elit=1)b _ (it—1)a

el

(b—a)(it —1)

= Yrec(t+1i) =
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The characteristic function of the truncated exponential distribution is given

by:

Afe=Db _ glit=1)a]

ppxp(t) = e — e =) (A.8)
From (A.7) and (A.8) =
prxplt) = [ ennolt + 1) (A9
And as : o(t +1) = p(t)e ™ =
prxrlt) = 2y eneclte™ (A10)

So for s the sum of n independent random variables obey the truncated expo-
nential distribution and based on the calculated probability density function
of the rectangular distribution, the probability density function of the sum of

n random variables follow the truncated exponential distribution is given by:

Ab—a)

fr(s) =( 5)"g(s)e” (A.11)

e 4 —e

where g(s) is calculated in (A.6). Thus, the final form of the probability

density function is as in the following:

N A L o (m [s—na—k(b—a)]"‘le_s
1109 = e 0 (1) (A12)

0

where na +m(b—a) <s <na+ (m+1)(b—a) and m=0,1,..,n — 1.

To find mg which is the upper bound of the sum s we have:

na+mo(b—a) < s <na+ (mo+1)(b—a) (A.13)
s —na
:>m0<m<mo+1

Which can be written as:
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s —na
(b—a)
Now to find the cumulative density function (CDF) associated with the prob-

So my is the largest integer less than or equal to

ability density function in (A.12), we must integrate fr(s) for all m values

from 0 to my:

na+(b—a)
Form:O::>/ fr(s)

na+2(b—a)
Form=1:= fr(s)
na+(b—a)
na+3(b—a)
Form=2:= fr(s)
na+2(b—a)
na+s(b—a)
For m = mg : = fr(s)
na+mgo(b—a)

Since fr(s) is a sum of my + 1 terms, the first term for £k = 0 to k = my
will occur in all segments, and hence must be integrated from na to s. The
second term occurs for k = 1 to kK = mg and hence must be integrated from
na + (b — a) to s. Finally the last term occurs for K = my only, and hence
must be integrated from na+my(b—a) to s. According to this the cumulative

distribution function can be written as in the following:

Let us have y = s — na — k(b — a) = s = y + na + k(b — a) then: o
Fr(o) = [ g}—”k (1) [ g eteoay
Fr(s) = 6‘"”[@]" ?;(—1)’“ (Z) (enkibl?! /0 "yrlevay
i) = g‘gmk (1)ereo ety [y
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a) can be written as:

)\ ]n B )\ne—na<€na)
(efa _ efb) - (efa _ efb)n<€a)n
)\n
(]_ _ ea—b)n

So Fr(s) becomes:

)= e 0 () g

]C:O J/ 7/

-~ -~

b c

b) can be written as function of k:

= (1) P

where: \n
ay = —————
(1 _ €a7b>n
1
c) is O Oy y"le Ydy which is the cumulative distribution function of the
n

Gamma Distribution with the shape n and parameter A referred to as G(y, n, \).
Comnsequently, The cumulative distribution function (CDF) of the sum of n in-
dependent random variables obey the truncated exponential distribution is

given by:
Fr(s) = aG(y.n,\) (A.15)
k=0

)\n

Where a;, = (—l)k(") [e**kay and ag = ﬁ
P eaf n

k
and G(y,n, \) is the cumulative distribution function of the Gamma distribu-

tion with shape n and parameter \.
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