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Zusammenfassung

Wir untersuchen auf kompakten reell-hyperbolischen Rdumen den Zusammen-
hang zwischen gewissen Distributionen auf dem Phasenraum, sog. Patterson-
Sullivan Distributionen, und dynamischen Zetafunktionen, die mithilfe von Daten
des geodétischen Flusses definiert werden und die bekannte logarithmische Ableitung
der Selbergschen Zetafunktion verallgemeinern. Fiir den Fliachenfall wurde dies
zuerst in [AZO07] getan, wir konzentrieren uns auf den hoher-dimensionalen Fall.






Summary

Given a compact real hyperbolic space we study the connection between certain
phase space distributions, so called Patterson-Sullivan distributions, and dynamical
zeta functions. These zeta functions generalize logarithmic derivatives of classical
Selberg zeta functions which are defined by closed geodesics which is data from the
geodesic flow on phase space. Patterson-Sullivan distributions are asymptotically
equivalent to Wigner distributions which play a key role in quantum ergodicity but
they are also invariant under the geodesic flow.

The surface case was studied before in [AZ07] and thus the emphasis in this
work lies on the higher dimensional case.
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CHAPTER 1

Statement of results

This work is mainly based on the articles [AZO07] by N. Anantharaman and S.
Zelditch and [Zel89] by the latter author. We will shortly summarize the results
from [AZO07] and [Zel89], which we want to examine.

Let Xt be a compact hyperbolic surface which can be written as

Xr :=T\G/K.

Here G = PSLy(R), K = PSO(2) and I' C PSLy(R) is a cocompact, discrete and
torsionfree subgroup of G. We also consider the right-regular representation mr of
G on L?(I'\G) defined by

g- f(x) = f(xg).

Since I' is cocompact, this unitary representation decomposes into a discrete
sum

(1.1) L*(1\G) = @ maVa,

WG@

where m, € N. We call the irreducible component V. spherical, if it possesses a
K-fixed vector. These K-fixed vectors are unique up to constants, smooth and give
an orthogonal basis of L?(Xt) of Laplace eigenfunctions. We fix such a normalized
basis {p,}, with eigenvalues — (p% + /\fb) It can be shown that one can either
assume A, € iR or \,, € R". In the former case, we say that ), is in the comple-
mentary series, else we say that A, is in the principal series. There are only finitely
many A, in the complementary series. Associated to {¢y}, there are some specific
distributions on phase space. They are called Wigner distributions and are given
by

Wy (o) == <Op(a)@m§0n>L2(Xp)

for o € C*°(S*Xr). Here one needs a calculus for pseudodifferential operators, i.e.
an assignment

C>(S*Xr) = B(L*(Xr)) , a Op(a).

This is the data from the quantum side we need.

On the side of classical dynamics, we consider the geodesic flow on T* Xp. Since
the geodesic flow preserves the metric on 7% X, it can be considered as a mapping
on phase space S*Xr = SXr, which can also be identified with T\G. Under this
identification the geodesic flow is given by right translation with exptH,, where
a = RH, = Lie(A) comes from an Iwasawa decomposition of G = AN K. Periodic
orbits of the geodesic flow are called closed geodesics and it can be shown that
there is a bijection between closed geodesics and nontrivial conjugacy classes [v]
in I'. The smallest possible period is called the length of [7] and denoted by L.
Finally, a closed geodesic [] is called prime, if there is no v € T and n € N, n > 1,
such that

(1.2) ="

11



12 1. STATEMENT OF RESULTS

With this data from classical mechanics, in [AZ07] a dynamical zeta function

o—kLy
[v]#1 o
for k € C, Re(k) > 1, is defined. Here [yp] is the unique prime closed geodesic
belonging to [v] and o is a test function on phase space, that is o € C>°(T'\G).
For ¢ = 1 constant, Z(-;0) just equals the logarithmic derivative of the dy-
namical Selberg zeta function Zg
d e~ kL
%lnzs(k) = Z m . L'YO'
[v#1
In this context Anantharaman and Zelditch show the following theorem, see
[AZ07, Th.1.3]:

THEOREM 1.0.1. If 0 is a real analytic function on SXr, then Z(-;0) admits
a meromorphic continuation to C. The poles in the critical strip 0 < Re(k) < 1
appear at s = % + i\, where — (% + )\2) is an eigenvalue of the Laplacian. The

residue at k = % + 19X is given by
> (0,PS,),

where this finite sum runs over all (normalized) Patterson-Sullivan distributions
PS, associated with an eigenfunction ¢ for the eigenvalue — (% + /\2).

Here, (normalized) Patterson-Sullivan distributions P/’\S¢ are certain other kind
of phase space distributions which one can associate to the eigenfunctions {¢p }n,
but in contrast to Wigner distributions they are invariant under the geodesic flow.
They were first defined in [AZ07] using the same calculus which was used to con-
struct Wigner distributions. See [HHS12| for an extension of this calculus and
a definition of Patterson-Sullivan distributions by this calculus for arbitrary com-
pact locally symmetric spaces. Patterson-Sullivan distributions also play a role
in quantum unique ergodicity, since they are asymptotically equivalent to Wigner
distributions, see [AZ07], [HHS12].

Note that if the spectrum is simple, i.e. if m, = 1 for all spherical components
V., this theorem yields a definition of Patterson-Sullivan distributions, which only
uses knowledge of the length spectrum {L, : [y] conjugacy class in I'}. See for
example the survey article [Sar11] for more information on simple spectra of the
Laplacian.

[AZO07] presents two kinds of proofs for Theorem 1.0.1. The first one uses ther-
modynamic formalism, the second one is of representation theoretical nature and
uses a generalized Selberg trace formula, which can be found in [Zel89]. We will
pursue the second proof as this seems to be more feasible in generalizing 1.0.1 to
higher dimensional spaces. It has the disadvantage as it so far only works for test
functions o, which have only finitely many nontrivial components in the decompo-
sition (1.1). On the other hand this approach makes it possible also to determine
poles/residues of Z(o) outside the strip 0 < Re(k) < 1. Furthermore, a generalized
Selberg trace formula could be of independent interest, as it connects periodic orbit
measures to Wigner distributions.

We will now come to the content of our work. X := I'\G/K will be a compact
locally symmetric space of (real) rank one. Here G is a real semisimple, noncompact
Lie group with finite center, K C G a maximal compact subgroup and I' C G a
discrete, cocompact and torsionfree subgroup. We also fix an Iwasawa decomposi-
tion G = ANK and set M = Z (A) for the centralizer of A in K. In the course of
this work, we will specialize Xt to be a compact real hyperbolic locally symmetric
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space, this means G = SO(1,n). We restrict to real rank one symmetric spaces,
as this ensures the absence of non trivial elliptic elements in the uniform lattice I'.
The major reason for specializing further to real hyperbolic spaces is that in this
case M acts on N with a one dimensional slice and the differential equation which
will occur during this work can be solved on this simple slice.

The representation theoretic proof of Theorem 1.0.1 relies mainly on three re-
sults, which we will now explain. The first one is an observation using the fact
that Patterson-Sullivan distributions are invariant under the geodesic flow. Then
one uses the result that the representation of A on irreducible components V, of
L?(I'\G), which we obtain by restricting the right-regular representation of G, is
particularly simple. More precisely, if G = PSLy(R) and V; is a spherical compo-
nent of (1.1), the representation of A on V, has exactly two invariant subspaces,
one of which is generated by the K-fixed vector in V. If V. is not spherical, then
it has already a cyclic vector, see [AZ07, Prop. 2.2.]. This yields that in the proof
instead of considering all possible o € C*°(SXT) one can restrict to o coming from
three basic series. For Xt a real hyperbolic space we can generalize the result on
the action of A on the spherical spectrum. It will turn out that if Xr is of dimension
at least 3, the action of A on any spherical component V is already irreducible,
the K-fixed vector being cyclic, see Theorem 8.1.3. Here we use the fact that the
set of M-invariants in the universal enveloping algebra U(n) is generated by the
(euclidean) Laplacian on n. If V. is not spherical, we state a result, but we will not
use it, see Proposition 8.1.2.

The procedure for defining Z(¢) is computing the (geometric) trace of a suit-
able trace class operator o - mr(f), which depends on ¢ and a suitable function
f € C=(G). Here mr(f) is just the Fourier transform of f with respect to the
representation mr and o is viewed as a multiplication operator. The trace can be
computed in two ways, the first one is the so-called geometric, the latter one is
called the spectral trace. We start by computing the geometric trace and thus,
the next ingredient is a generalization of Selberg’s trace formula depending on o
coming from the three series. We first mention that the computation of the trace
formula heavily depends on the rank one assumption. Namely, if X is a locally
symmetric compact space of (real) rank one, then all nontrivial elements in T' are
hyperbolic which means they are conjugate to some element ma € M A. We state a
trace formula for general compact locally symmetric spaces of rank one in Theorem
5.2.4.

We further specialize o to be a function in C(SXr), which is only allowed
to have finitely many nontrivial components in the spherical spectrum and no
components in the nonspherical spectrum. Hence in the case of a real hyperbolic
space, Lemma 8.1.1 allows us now to reduce to the case where o equals some
eigenfunction ¢ on Xr. The obstacle that occurs in computing a satisfactory trace
formula now, is a factor we call the weight function I,(c). It is a real valued
function on N and depends on the element v in I and the function ¢.' Basically,
for n € N, I,(0)(n) is the integral of the n-translation of o over the prime closed
geodesic belonging to [y]. For ¢ = o = 1 this weight function is constant and just
equals L., but for non constant eigenfunctions the evaluation of the weight function
is more complicated. Since ¢ is a Laplace eigenfunction by assumption, we obtain
a differential equation using an expression for the Casimir Q from Chapter 2.1.
But this differential equation is a priori an equation on N and thus it is not clear
how I,(¢), which is as mentioned above a real valued function on N, depends in
higher dimensions on its value at the neutral element, which is just f,m @ from the

n [AZO07] this weight function is called orbital integral but this seems to not quite compat-
ible with the terminology of the classical Selberg trace formula.
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definition of Z. We circumvent this problem by decomposing I, () into a sum

I(p) = Z drXr * 1y(),
WEM

see Theorem 5.3.1. Here M consists of all irreducible representations (m, V) of M,
d is the dimension of V., x = Tr(w) the character of m and * denotes convolution.
Then drx~ * I,(p) is the projection of I,(¢) in the space of M-finite functions of
type 7, 7 the contragradient representation to m. Furthermore, each x. * I,(¢)
is also a Casimir eigenfunction with the same eigenvalue as ¢. The observation
which helps us now is the fact that in real hyperbolic spaces, the subgroup M acts
transitively on spheres in N if the dimension of the real hyperbolic space is at least
3, i.e. slices for this action of M on N are one dimensional. For any slice S we
can now restrict the equation for each x. * I,(¢) to S and the results of Chapter 3
and 4 allow us to determine x. * I, (¢)|s as a product of a hypergeometric function
with a monomial and a scalar which is connected to I,(y) at the neutral element,
see equations (5.18) and (5.19).
The resulting trace formula is now sufficient to define a zeta function

(1.4) Z(ko) = Y. Y ely,om k)elFreoltby

1#[ylecT TFEM

which converges at least on the half plane {k € C : Re(k) > 2pp} and generalizes
the one from [AZO07]. Here pg is a number depending only on the dimension and
o is as above and the coefficients ¢(v, o, 7, k) depends on k, the test function o, 7
in M and the period length L.,, of the prime geodesic [yo].

The meromorphic continuation now follows from the computation of the spec-
tral trace by using the basis of eigenfunctions {¢,},. The preliminary result of
the trace, for an eigenfunction ¢, is given in Proposition 6.1.3. It uses a calculus
for pseudodifferential operators from [Sch10], see also [HS], which is adapted to
the rank one setting. Proposition 6.1.3 is valid for any locally symmetric compact
space of rank one, but it only involves Wigner distributions. To connect it with
Patterson-Sullivan distributions we have to perform computations similar to the
ones on the geometric side. In particular, we again encounter a differential equa-
tion, which we can only solve when the underlying space is real hyperbolic. The
final result for the spectral trace can be found in Theorem 6.2.18.

The meromorphic continuation now follows by standard arguments, we only
mention that we have to make some explicit computations for functions on hyper-
bolic space. These calculations also seem to be possible in other rank one spaces
by the classification results but we have not tried to do so.

The main result is as follows, see Proposition 8.1.2.

THEOREM 1.0.2. Let Xt be a compact, locally symmetric real hyperbolic space
and o a function in C*°(SXr) with only finitely many nontrivial components in
the spherical spectrum and no components in the non-spherical spectrum. The as-
sociated zeta function Z(c) defines a meromorphic function on C. In the strip
po — 3 < Re(k) < po + 5 the poles of Z(o) are at k = po + i), where —(p3 + A\?)
is an eigenvalue of the Laplacian, and k = po. Their residues are determined
by Patterson-Sullivan distributions. If A\ comes from the principal series, then the
residue at k = po+1iX is given (up to a non-zero constant) by normalized Patterson-
Sullivan distributions P/’SW

(1.5) Z<Uaf/)gap>a

where the sum runs over all eigenfunctions ¢ with eigenvalue — ()\2 + pg),
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REMARK 1.0.3. Let 0 = ¢ be a Laplace eigenfunction. There are two state-
ments in Theorem 1.3 from [AZ07] which we cannot verify in Theorem 1.0.2 in the
case of a compact surface.

The first one is about the form of the zeta function Z(o) from (1.3). It seems to
come from an incomplete integral substitution in [AZ07] which is used to get from
equation (9.8) to (9.9). Our definition (1.4) differs in the surface case by a constant
which depends on k € C, the geodesic [y] and the eigenvalues from the K-fixed
vectors in the spherical components of o, see Section 8.2 for the definition. This
constant is furthermore holomorphic in k on {k € C: Re(k) > 0} and approaches
1, as L. goes to infinity. After normalizing Z (o) this constant is

cosh L k=1/2 1 r 1 ar cosh L
_— o (k- —-—k—-+— k1 —"T
<coshL7—1) 2t 4 2’ 4+ 277 coshL,—1)"’

where f%(rz + %) is the eigenvalue of ¢, see Section 8.2. We can only deduce
from (1.4) that (1.3) has a meromorphic continuation to the half plane {k € C :
Re(k) > 0} with the same poles and residues as (1.4). In particular, in the strip
0 < Re(k) < 1 the residues of (1.4) are given by (normalized) Patterson-Sullivan
distributions.

The second difference is about the location and the residues of the poles of
the continuation of Z(o) in the strip 0 < Re(k) < 1. Here the problem seems to
be that the constant g(s) in [AZ07] which relates Wigner- to Patterson-Sullivan
distributions could have poles at values s = 1/2+ir, if —(1/4+17?) is an eigenvalue
from the complementary series, which are not considered in [AZ07]. We can only
recover the result on the poles/residues from Theorem 1.3 in [AZO07] in the case
where the pole k = %Jri)\ corresponds to an eigenvalue *(i +A2) from the principal
series.

In the complementary series case, the poles/residue are more complicated. Es-
pecially, it makes a difference if —pZ is an eigenvalue or not.






CHAPTER 2

Preliminaries

In this chapter we collect some facts about the geometry of semisimple Lie
groups G and locally symmetric spaces. In Section 2.1 we compute a formula
for the Casimir operator {2 which becomes useful if we apply  to functions in
C(A\G/K) for a fixed Iwasawa decomposition G = ANK. In Section 2.2 we
discuss the geometry and dynamics of locally symmetric spaces I'\G/K. In Section
2.3 we discuss a model for real hyperbolic spaces G/K which makes it possible
to do some concrete computations in Section 2.5 where we compute the spherical
transform S(f) of a certain bi-K-invariant function f.

2.1. Some computations on the Casimir element

In [Zel89, p.40] a decomposition of the Casimir operator in SLs(R) is given,
which we want to generalize to arbitrary semisimple Lie algebras. The result is
formula (2.3), see also the example at the end of the section.

In what follows let G be a connected, noncompact and semisimple Lie group
with finite center and g be its Lie algebra with fixed Cartan decomposition

g=toyp

and Cartan involution #. Let K be the analytic subgroup of G corresponding to
£. Then K is compact. Let a C p be a maximal abelian subspace and A = exp a.

Further, let m and M be the centralizers of a in € resp. K. Then we have the
Twasawa decomposition

g=ndadt
which gives the decompositions
G =NAK = ANK = KAN,

where n is a nilpotent Lie subalgebra and N = expn. By slight abuse of notation,
we will call all these decompositions Iwasawa decomposition of G. If we fix K, the
Iwasawa decomposition is unique up to conjugation in K, that is, if

G=KAN = KA Ny,
then there is an element k € K such that
(2.1) Ay = kAk™! and Ny = kNE™!,

also a* := Ad(k)a = a; and n* := Ad(k)n = ny, [GV8S, (2.2.12)].
Let B(:,-) be the Killing form of g, then

Be(.’ ) — fB(.’ 9.)
defines an inner product on g. We also have the root space decomposition

9=00D @ Jas

a€A(g,a)
where
9o ={X €g:ad(H)X = a(H)X for all H € a}

17



18 2. PRELIMINARIES

for a # 0 is called the root space of g with respect to o and

Ag,a) = {a e a” = {0} : go # {0}}.
We temporarily assume that the rank n = dimga of g is arbitrary. We need
some lemmata:

LEMMA 2.1.1. For each o € A(g,a) U {0} we have 0gy = g—q-
Proor. [HN12, 12.3.2] O
LEMMA 2.1.2. Ifa, 8 € a* with o+ B # 0, then B(ga,95) = 0.
Proor. [HN12, 12.3.4] O

Let Xi,...,X,, be any basis of orthonormal elements of n with respect to
By(+,+) and set
Z;=—-0X;
fori=1,...,m. Then
B(X;,Z;) = —B(X;,0X;) = 4;;.

Further, let Hy,...,H, and Mj,..., My be any orthonormal bases of a resp. m
with respect to By(-,-). !
Then
Hy, ... Hy My, ... My, X1, Xons Z1se oo Zom
is a basis of g. We denote the dual basis with respect to By(-,-) with

HY, .. H" M' ... MF X' ... X™Z'.. .. Z™.

Since
go=a+m,
while m C € and a C p, we see by Lemma 2.1.2 that
H' = H;
and
M= —M;.
Furthermore, by Lemma 2.1.2,
Xt =2z,
and
7t = X,.

There is an object of special interest, the Casimir operator 2, which is an
element of U(g), the universal enveloping algebra of g. More precisely, € lies in
Z(g), that means it commutes with every element in U(g). If Q; is any basis of g
and @’ the dual basis with By(Q;, Q7) = 9,5, then Q is defined by

(22) Q:= ZQij.

This is independent of the choice of @Q;, [GV88, (2.6.58)]. Consequently, we
can write the Casimir operator as

n k m
Q= ;HE - ;ME + Z;(Xizi + Z; X;).

INote that B(,6-) = —B(-,-) on a while B(-,0-) = B(-,-) on m.
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We work on the last sum:

i=1 i=1
= D Xi(Xi—0X;) = Y (Xi +6Xi)X
i=1 i=1
= ) Xi(2X; — (X +6X5)) = ) (X +0X) X = (%).
i=1 i=1
Set
then
W,cet=modm-t =mao (1+0)n.
Thus,
= 22){2 > (XiW; + WiX5).
=1
Now

’ Wi, Xi] = [X; + 0X,, Xi] = [0X,, X} € a
More precisely, a direct computation shows that
[0X;, X;] = Hq,
if X; € go, see [GV88, (4.2.1)], where H,, € a is defined by
a(H) = B(H,, H)
for all H € a. Therefore,

%) = 227”:)(3 - QiXiWi —2H,
i=1 i=1

and
n k m m

(2.3) Q= H =Y M}+2> X?-2> X;W;—2H
i=1 =1 i=1 =1

if

2p = Z dim(gq)a.
acA(g,a)t
This decomposition (2.3) is the central result of this section, as it will suffices
for our purpose, see Chapter 4.

REMARK 2.1.3. The homogeneous space X = G/K is a symmetric space, in
particular, it is a Riemannian space (X,g) with metric g. Using this metric one
can define a special differential operator A called Laplace- or Laplace-Beltrami-
operator, see [Hel01, Ch. II §2.4]. The Laplace operator equals —{2 on C*°(X),
see for example [Sch10, p.97]. This means, if we let elements X in g act on functions
f € C=(G/K) by

d
X flg) = a\tzof(g exptX)
as left invariant differential operators and extend this definition to U(g), then

Af=—Qf.

That is, we have shown in this section, that

Ain+2HPQZm;Xf,
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see also [AJ99, (4.4.2)],

Now we apply the computation to the case of SLy(R).

EXAMPLE 2.1.4. Let g = sla(R) with the standard basis H = ( (1) _01 ),

V= < (1) é >7 W = < _01 (1) ) Then the Cartan-Killing form B is defined by
the matriz
1 0 0
81 0 1 O ,
0 0 -1
in particular
B(H,H)=8=-B(W,W).
1
Let X = v 4+ 1w = 8 :

We see that Z = —20X satisfies

. We want to express ) in terms of H, X and W.

B(X,Z) =8
since OV = =V and OW = W. Thus,
8Q = H? +4X* —4AXW —2H
is (eight times) the operator from above, see also [Zel89, p.40].

REMARK 2.1.5. This example shows a difference between [AZ07] and our work.
For the formula (2.3) we have worked with an orthonormal basis of n with respect
to By, while in [AZO07] the vector X from Example 2.1.4 is used to identify N with
R, exptX — t. But By(X,X) = 4 not 1. The difference comes from the fact that
in [AZ07] the invariant form B(X,Y) = 2 - tr(XY) is implicitly used. This is off
by the factor 2 from our definition B(X,Y) =4 - tr(XY).

2.2. Geometry and dynamics of (locally) symmetric spaces

We summarize some notions and facts on the geometry of the (locally) sym-
metric spaces X and Xr. We will mainly cite from the articles [Gan77b] and
[GanT77a].

Let G be a semisimple, noncompact connected Lie group of real rank one with
finite center, maximal compact subgroup K and Lie algebra g. We fix a Cartan
decomposition g = ¢®p. Let X = G/K be the associated (Riemannian) symmetric
space and I' C G a discrete co-compact and torsionfree subgroup. For short we call
T a uniform lattice in G. Then T" acts freely (by isometries) on X and the locally
symmetric space X := I'\X is a compact (Riemannian) manifold with simply
connected covering X, in particular the fundamental group 71 (X) is isomorphic to
I". Further for any Z € g we put

|Z| .= —-B(Z,07),

where B denotes the Killing form on g and 6 the Cartan involution. We fix an
Iwasawa decomposition G = ANK and set M resp. M’ to be the centralizer resp.
normalizer of A in K. Then M is normal in M’ and the quotient group M'/M is
called the Weyl group W. Since the rank of G is one, W is isomorphic to the group
with two elements and we denote the nontrivial element in W by w. On G we fix
a Haar measure dg such that

/ f(g)dg = / f(lank)dkdnda
G ANK
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for integrable function f on G, where da and dn are defined by the euclidean
structure on A and N coming from the inner product By(.,.). The Haar measure
dk is assumed to give K unit mass. Then we fix also a G-invariant measure dz on

I'\G such that
/G flos = | oG

yel
for all f € C.(G).

We call x € G elliptic, if it is conjugated to some element in K, which implies
in particular that every elliptic element is semisimple, i.e. Ad(z) € End(g) is
semisimple. If 2 € G is semisimple but not elliptic, we call it hyperbolic.? It is
known that v € I is elliptic iff it is of finite order, which is again equivalent to
having a fixedpoint in X. Since I is torsionfree, every nontrivial element v in I" is
hyperbolic. Finally, we note:

PROPOSITION 2.2.1. Every v € I' — {e} is conjugated to some element apay, in
the Cartan subgroup AgA. Here Ag is a subgroup contained in K. Even more, by
possibly conjugating aga, with the nontrivial Weyl group element w one can assume
that v € T — {e} is conjugated to some 6., = mya, € MA™.

PROOF. See [Wil91, Cor.11.5]. O

Note that a. is uniquely determined in A" by ~ while m., is determined up to
conjugacy in M, see [Wal76, Lem.6.6]. In particular, a, and a, generate the same
(cyclic) subgroup of A and |loga,| = |logay|, see the proof of [Wil91, Prop.11.4].
By Gy and I'y =Ty NT" we denote the centralizer of v in G and T'.

PROPOSITION 2.2.2. I'y is co-compact in G~ which is reductive and unimodular.
Furthermore, the centralizer ', of any v in I'—{e} is always an infinite cyclic group.

PROOF. See [GanT77a, p. 407] for the claim on G, and [Gan77a, Lem. 4.1.]
for the claim on I',. O

Then we call v primitive if I',, is generated by . Since I' is torsionfree, every
v € I' — {e} is the unique positive power of a primitive element ~g.

A geodesic loop in Xt is the image of closed path in X under the orbit map
X — Xr. We call it a closed geodesic if it is a geodesic when viewed as a subset
of X. It is well-known that there is a one-to-one correspondence between closed
geodesics and nontrivial conjugacy classes in I', [Gan77a, p. 404]. We call a closed
geodesic a prime geodesic, if the corresponding conjugacy class contains a primitive
element. By CT' we denote the set of conjugacy classes in I'. For [y] € CT let
L, := |log a,|, then

(2.4) b = inf o 1yal,

see [Gan7Ta, p. 413]. Here for g € G , |g] := |X]|, if g = kexp X with k € K
and X € p. We fix a Haar measure dz, on G, analogous to the Haar measure
on G, following the Iwasawa decomposition of G, = A,K,N, such that K, has
unit measure. We also have a Haar measure dz. on the quotient I',\G.. and we
set [T \G,| = fF’Y\G’Y dz. We can make this more precise, if we consider the
centralizer of ayyayt = 6,. Then Gs, = A(Gs, NK) = A(Gs, N M), see [Gan77a,

5
p. 414]. As before we fix Haar measures drs, = dadks  on G5 following the Iwasawa

decomposition of G such that K5 := (K NGs,) = (M NGs ) =: Ms, has unit

2In all other cases, we call z parabolic. Since I'\G is compact, I' does not contain any
parabolic elements.
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measure with respect to dks,. We set [[,\G,| = [, \G dz., etc.. The number [,
v vy
can now be related to I',\G,.

PROPOSITION 2.2.3. Fory €T let 0, = a,ya;t € MAT and H, := a,Tya;t.
Furthermore, let K5 and Gs be the centralizer of 6, in K resp. G. If we identify
A with G5, /Ms., then

IPANGS| = [H\Gs, | = [H\Gs, /K5 | = [A/(aq0)] = [log asy| =15y =155

Here |.| always denotes the volume with respect to the invariant measure on
quotient space, i.e. I, \G,| = wa\Gw dz, |[H\Gs, | = wa\Gév ds., etc.

PROOF. See also [Gan77a, (4.5) pp. 414]. Assume that v is conjugated to
6y = myay, € MA*, ie. ayyoa,-1 = 6, for some a, € G. The centralizer G5,
of ¢, in G equals now M,, A, where M,, is the centralizer of m, in M, see
[Wil91, p.185]. Let v = 7 with 7o primitive and j € N. If ¢ is conjugated to
My Gy, € MAT, then it follows by the uniqueness of a, that a, = a%' Then

H, = oz,yf,yoz,;l = ay{Y)ay-1 C Gs, = My AC MA.
If ' =m'a’ € H,, where o/ € A and m’ € M, it follows that
m' € me = G(Sw NnNM = M(;A/ = K(;W.
Therefore, the action of H., on G5, /K5, equals the action of {a': ¢’ = m'a" € H,}
by left translation on A, where we identified
Gs,/Ks, = My, A/Mj,

with A. Now {a’ : 6’ = m’a’ € H,} = (a), where a € A such that a,yo,-1 =
am € AM. Since 7 is also conjugated to a,,m., € ATM, we deduce by possibly
replacing o, with ayw, that @ € {a,,,a;'}, ie. (@) = (a,,). If we fix a Haar
measure on G5 = K5 A as we did for G, with normalized measure on Kj_, then
we get by unimodularity

|F’Y\G’Y| = |H7\G67| = |H7\G67/K67| = |A/<a,m>| = |log a%| =ly = lﬂ/jil-

O
One can show the following.
PRrRoOPOSITION 2.2.4. The set
{l,:1# ) e cT}
is bounded away from zero and has no upper bound.
PROOF. See [Gan77a, Th. 4.4.]. O

We denote its infimum by liys. The geodesic flow Gy on the tangent bundle
TX is given by
Gi(V) =y (1),
see [Hil05, Ex. 1.1] where V € T, X and 7y : R — X is the (unique) geodesic
with 7{,(0) = V and y(0) = 2.® G, preserves the Riemannian metric on TX, in
particular G; maps the spherical bundle SX into itself.

LEMMA 2.2.5. The bundle SX can be identified with G/M. Also in the same
vein

SXr = T\G/M.

3More precisely, vy (t) = gexp(tX)K for V = d(zK — gzK)oX € Ty(G/K), see [Hil05,
p.14].
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PROOF. See [Hil05, p.15]. We have the identification
TX =T(G/K) =G xk (g/t) = G Xk p.

The bundle SX gets identified with G/M, since K acts transitively on the
spheres in p, i.e. the unit sphere in p can be written as K/M. Thus SX =
G/K x K/M = G/M. For SXr we project from X to I'\ X. O

The geodesic flow on the spherical bundle SX = G/M is then given by right-
translation with A, i.e. by
(gM,exp(tHy)) — Gi(gM) = gexp(—tH,) M,
where H; is the unique unit vector in a™, see [BO95, p.89]. It also projects to a
flow on I'\G/M via
(TgM,exp(tHy)) — G¢(TgM) = T'gexp(—tHy) M.

We already remarked that a closed geodesic corresponds to a closed orbit of
the geodesic flow. We want to make this more precise. Let v # e be conjugated to
m~a~ via a. Then the corresponding orbit is given by

¢y :={Tay-1exp(—tH)M : t e R} C I'\G/M,
see [BO95, p.90]. Note that indeed G(T'ay-1 M) = ', 1 M for t = [, and that v
is primitive iff ¢ = [, is the smallest ¢ > 0 with G¢(F'o.,-1 M) = T, -1 M.

Assume now that a continuous, left-I'- and right- K-invariant function o is given.

By the the same arguments as in the proof of 2.2.3 we get

/ olayx)dr = / o(oy-1x)dx
H\\Gs,, H\\Gs., /Ks.,

= / o(ay-1z)dz
A/(“’m)

o
C.

Y0
where
(2.5) Cyo = {lay-1exp(—tH )M : 0 <t <1}
is the prime, closed orbit in SXp belonging to 7. Furthermore, we note an easy
observation:
PROPOSITION 2.2.6. The mapping G — C, g wa\Gaw ooy -1xg)dzx is in-
variant under left translation by elements of € Gs.,. That is, for all z € G,

/ o(ay-1w2g)dr = / o(ay-12g)dr.
H,\Gs, H,\Gs,

PROOF. This follows, because H., which is discrete, and G5, = M, A are uni-
modular. By [Wil91, p. 5] the measure dz on H,\Gs, is invariant under left trans-
lation by elements in Gs_, that is wa\Gé7 ooy -1xzg)ds = wa\GM o(oy-1zg)ds
for all z € G, and continuous functions o. O

2.3. Real hyperbolic spaces

We collect some facts concerning real hyperbolic symmetric spaces. We follow
[Koo084] and [Qui06].

The real hyperbolic symmetric spaces X form one of the three main series for
real symmetric spaces of noncompact type of rank one. If X is a real hyperbolic
space of dimension [, it can be described as a quotient X = @/f(, where G = 0(1,1)
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and K C G is a maximal compact subgroup in G isomorphic to O(l). Here O(1,1)
is the group of real (I + 1) x (I + 1) matrices which preserve the quadratic form

[$,y] =ToYo — T1Y1r — .- - 1Y1

on R

Furthermore K = {£1} x SO(I). Real hyperbolic spaces can also be written as
X = G/K, where G = SO,(1,1) is the connected component of identity in SO(1,1)
and SO(1,1) € O(1,1) is the subgroup of elements with determinant 1. Further, K
equals {1} x SO(I). This group G has the advantage of being semisimple while G
is only reductive.

We denote the Lie algebras of G and K by g resp. £. Then we have the Cartan
decomposition g = ¢ @ p with Cartan involution 6 defined by

0(X) = JXJ,

(-1 0

o o I )’
I; the identity matrix in SO(l). The Iwasawa decomposition reads G = NAK,
where A = expa = R, a C p is maximal abelian and N = expn =2 R~ n C g is
an abelian Lie subalgebra. We will make the identification of A resp. a with R and

of N resp. n with R'~! more precise below, see (2.6) and (2.8). The root space
decomposition is simply

where

9=0-aDgo D ga-

Here « is the unique positive root of the pair (g, a) with n = g,

go={X€g:[H X]=«aH)X for all H € a}.

It follows that p = Z_Tla. We can also decompose gy into gg = a @ m, where
m C ¢ is the Lie algebra of the centraliser M of A in K. In our setting M is just
{1} x SO(l — 1) x {1}. The subgroup A is given by the set of all matrices of the
form
cosht 0  sinht
ag = 0 I 0 ,
sinht 0  cosht

t e Rand I;_; € SO(l — 1) the identity matrix. The Lie algebra a of A is spanned
by

0 0 1
Ho = 0 01_1 0 5
1 0 O

where 0;_; is the null matrix in so(l — 1). One computes a(Hy) = 1, B(Hy, Hy) =
2(1 — 1)a(Ho)? = 2(1 — 1) and py := p(Hp) = 5%, see [GV88, p.135]. Here

B(X,)Y)=(-1)Tr(XY) = Tr (adXadY)
for X,Y € g denotes the Cartan-Killing form. We identify A resp. a with R via

(26) R—)ﬂ—)A,t'—)tHoHBXptHo.
The subgroup N is given by
1—|—%|u|2 ul —%|u|2
Ny 1= U I —u )

Yl w1 P
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u € RI71. Tts Lie algebra n consists of all matrices X,, , u € R!™1, of the form

0 u” 0
X, = u 01 —u
0 «¥ 0
with 0;_1 the zero matrix in R=D>U=1 Tt follows that
(27) BG(XemXel) = 7B(Xe130X61) = 4(Z - 1)7
where e; = (1,0,...,0)T € RI=L. Similar to (2.6) the identification here is
(2.8) R 5 n— N, u— X, exp X,

Conjugation by A resp. M on N can now be described as

-1

ANy A = Nty TESP. MNGM ™ = Ny«
Furthermore,
NNy = Nypr!s
while
Ad(a)) Xy = €' Xy = Xety
and
(2.9) Ad(m) X, = X

fora; € A, m € M =2 SO( —1) and X,, € n = R'"!. We further recall that
the Weyl group W = Nk (A)/M, where Nk (A) is the normalizer of A in K, is
isomorphic to the symmetric group of two elements.
The space X = G/K can be described as the image of the open set
{z e R [z, 2] > 0}

under the mapping from R'*! to the unit ball B(R!) in R! given by
Ty, yi:xixo_l.

The group G acts then on B(R') by fractional linear transformation, that is if
g € G is given by

(2.10) g= < ‘é b; >

with a € R, b,¢ € R and d € R, then

(2.11) g-y=(dy+c)((by) +a)".

Here (.,.) denotes the standard inner product on R!. One can show that, see
[vDH97, p.111],

2 1—|y?
(2.12) 1—|g-y|"= 7|2
(b y) + al
where |.| means the euclidean norm derived from (.,.) on R'. Hence,
(2.13) 1—g- 0" = |a|™>.

LEMMA 2.3.1. The mapping
g 1-]g-0F
from SO,(1,1) — R is bi-K -invariant.
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PROOF. Since K equals the stabilizer of 0 in G, the right- K-invariance is clear.
¢
For the left- K-invariance we note that the product of g = < (2 Z ) as in (2.10)

1 0

andkz(o f

), f € SO(l), is of the form

a bt

it follows from (2.13) that for k € K
1—|kg-02=1—1g-0].
]

For later purpose let us make two computations. For n, € N and a; € A resp.

m € M we have by (2.13)
Lo Lo -
cosht 1+ §|u| + §|u| sinht

ul? 4 -
(2.15) = |cosht+ e .

(2.14) 1 — |agn, - 0

For the next computation we identify M with SO(l — 1) and m with the (I —

1) x (I — 1)-matrix (m)i_]l:1 in SO(l —1). Let (m)11 be the first entry on the

diagonal. Then by (2.13)

1 —|n_yarmn,, - 0|2 = 1—|n_y@Nmy - O|2

[uf? [uf? - o (e 2~ ))
((1+ 5 cosht + 5 ¢ (u,m - u) + 5 sinh ¢ 5 €

= (=(uym-u) + (1 + |uf?) cosht) >

In particular, for u =7 -e; = (r,0,...,0)T € RI=1 r € R.
(2.16) L= |n_pe,agmnge, - 0> = (=(m)117° + (1 + 1) cosht) .

Finally, let H : SO,(1,1) — a be the Iwasawa projection to SO,(1,l) = KAN
defined by
H(kayn) = H(kexptHyn) := tHy,
where Hy € a with a(Hp) = 1. From [Koo84, (5.9)] we cite that for g = (g)f;l:l
in SO,(1,1)

(2.17) H(g) =1In|gi1 + go,+1l-
Then let
L, 0 0
w = 0 —]. 0 5
0 0 -1

be a representative for the nontrivial Weyl group element in K = {1} x SO(I).
From (2.17) we conclude that

H(n,w) =tHy
with ¢ = In (1 4 |u|?). Also
(218) H(n_uw) = H(nuw) =In (1 + |u|2) Hy.
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2.4. Spherical Transforms

In this section we recall some facts about spherical transforms on semisimple
Lie groups. We start by the general definition of a spherical function and spherical
transform. In the next section we explicitly calculate the spherical transform of a
function fj depending on some complex parameter k when G/ K is a real hyperbolic
space.

Let G = NAK be a semisimple, noncompact Lie group, A : G — a the corre-
sponding projection such that

g =n(g) exp A(g)k(g)
and
(2.19) (gK, kM) := A(k™'g)
is the so-called horocycle bracket where X = G/K and boundary B = K/M.
DEFINITION 2.4.1. [HelO1]
For f € C°(G/K) we define its Fourier transform by

(2.20) F(fi\b) = / F(gR)e =K 4(g ),
G/K

where (-, ) is the horocycle bracket.

DEFINITION 2.4.2. We call a function in C*°(G//K) (elementary) spherical, if
it is an eigenfunction of U(gc)¥, the subset of K-invariants in U(gc).

The following theorem gives the integral formula for spherical functions. It
describes spherical functions as integral transforms of the wave e(At2)A()

THEOREM 2.4.3. Every spherical function is given by

oalg) = / el FPAk g,
K
where A € a* and py = s\ for s e W.
Proor. [Hel01, p.418] O

Note that A(.) is bi-M-invariant, hence the domain of integration can be
changed to K/M if dkp; corresponds to the (normalized) measures dk and dm.
We state some useful formulae for spherical functions.

REMARK 2.4.4. If the real rank of G is one and H : G — a, H(kna) := loga,
where exploga = a, corresponds to the Iwasawa decomposition G = K AN, then
H(g7'k) = —A(k"'g) and

ox(g) = e(iAtp)Akg) 4.

eA+PAK™"9) gp by unimodularity

e(—iIA=P)H (9™ K) 1.

(A=) H(a™"k) g by Weyl group invariance

TSN TSI TSR

= / eA=PHR) g1 see [Sch84, p.89)].
K

With this preparation we can define the spherical transform on bi- K-invariant
functions.
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DEFINITION 2.4.5. See [Hel01, p.457]
Let f € C*(G//K) and X € ac-. We define define the spherical transform of f by

(2.21) S(f, ) = /G F(9)o-x(g)dg,

whenever the integral is finite and where ¢, (g) = [, e*+?)4*9) dk is an elementary
spherical function.

From Remark 2.4.4 one can deduce that the spherical transform can be factor-
ized into a product of the euclidean Fourier transform on A

F) = [ e onda

and the Abel transform, see Remark 5.4.2 for the definition of the Abel transform
Fy.

PROPOSITION 2.4.6. The spherical transform can be factorized as

S(f.0) = FrO
= // f(an)el=A+PIloga gy dq,
AJN
Proor. [Hel01, Ch.IT §5 (37)] or [GV 88, Prop.3.3.1.] O

THEOREM 2.4.7. (Harish-Chandra’s c-function)
Let G be semisimple, noncompact of real rank one. For X\ € a* with Re(i)\) € a¥
the integral
c(N) = / e~ AP H() g
N

converges absolutely and admits a meromorphic extension in the parameter X\ to
at = C. Here the measure dn on N := 0N is normalized such that fN e~ 2P(H() dp =
1.

ProoF. [Hel01, p.436] O

2.5. The spherical transform of fj

In this section we specialize to G = SO,(1,1). We want to compute the spherical
transform of the bi- K-invariant function, see Lemma 2.3.1,

fo:G—=R, g~ (1—|g~0|2)k/2
depending on k € C. We will use f; to obtain the zeta function R(k;¢,), see
Section 5.4. The spherical transform of f; will in turn produce the meromorphic
continuation of R(k; ¢, ) to C via the spectral trace of the operator ¢, - mr(fx) in
Chapter 7.

The spherical transform of fj is given by Proposition 2.4.6 by

S(fk»/i):// fr(an)elmirFPI1o8adn dq,
AJN

Now we identify A with R by a; = exptHy +— t, a(Hy) = 1, and N with R~
exp X, — u, see (2.8). From (2.14ff) it follows that

9\ —k
(2.22) frlarexp Xy) = (Cosht + |u2|€t> .
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The spherical transform of f; is hence given by

S(frsp) = / / fr(exp tHon)e ~#HPot dndt

(2:22) / / (cosht+ |u|2 t) e(THEPo)t oy it

/ / (cosht + 2|u|2e_t) (=Pt it

_ L
/ / (cosht + = 2 t) elth=ro)t gt

an [ oy et [ (1 214 )
. 0

where we used polar coordinates, namely we identify N 2 R'=1 u — X, see (2.8),

[ s = [ plexpxdu
N

RI-1

= / / fdSds
o JoB.(0)
= wl,l/ 572 f(exp s X, )ds
0

for radial functions f, i.e. f(n) = [,, f(m-n)dm for alln € N. Here B1(0) = {z €
Rz <1} and wy g = |8Bl( )| with respect to the Lebesgue measure in R!~2
for I > 3. For [ = 2 we set w; := 2. Next we substitute s — (1 + ¢**)'/2s to get

wl_l'/ (cosht)™ (1+€2t) 7 elin— pf’)tdt/ 721+ s%)"kds

—00 0

oo
= w27 / (cosht)~* +H . e(iu—po)tdt/ S72(1 4 52) R ds.
A 0

Now we remember that py = I’Tl to find that we have to compute the integral

i—1 ° pal=l k —k+5E
27 / (cosht) Ft = ettt = 272 / k=5 (v+v7h) 2 v o
—00
zu 1
= 2k/ 71161%
0 ('u2+1 ) k=5~
by the substitution e = v. Then we substitute v — v'/2 to obtain
ko1 [0 krimmeo g —k+po
(2.23) 2 / v 2 (v+1) dv.
0
Next we use the integral formula for the Beta function
e o1 I'(x)l
(2.24) Bla,y) = / 4 du = E@LW)
o (L+wu)rty I(z +y)

to obtain that (2.23) equals

2k1B<k‘+iM—P0 k—iﬂ—ﬂo>
2 ’ 2 ’

We recall the following facts on the Gamma function:
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REMARK 2.5.1. The Gamma function I'(z) = [;°t*~'e~"dt converges abso-
lutely for Re(z) > 0 and defines there an entire function. It can be continued
analytically to C—{0,—1,—2,...}. The poles in —n, n € Ny, are of first order with
residues Res(T'; —n) = # The Gamma function has no zeros, [FB06, Ch. IV

! Furthermore, for z and y real we have
(2.25) lim [D(z + iy)| e |y[2~" = V2r,
ly|—o0
see [GR65, 8.328].
That is, B(z,y) is defined for
Re(z),Re(y) #0,—1,-2,...

in our case

k£ potip,po—2+Liu,....
To sum up:

PROPOSITION 2.5.2. The spherical transform of fi is given by

o] k 1] — k—iu—
S(fesp) = wzq/ s (s 4+ 1) Fds-257'B ( = po H po)
0

2 ’ 2
- W ,2k71r(k—ﬂo)r(po)B k+iu—po k—ip— po
20 (k) 2 T 3
_ k+ip— k— iy —
(2.26) = wi_1-22B(k — po, po)B ( g Po’ ;L po> .

As we will later see in Section 5.4 this function fj; leads to an operator of

trace class and its trace in turn will produce the (auxiliary) zeta function R(y), see
(5.29).



CHAPTER 3

Polar decomposition and radial parts

In this chapter G will always come from a real hyperbolic symmetric space,
which is at least 3 dimensional. That is, G = SO,(1,1) with [ > 3, see Chapter
2.3. We fix an Iwasawa decomposition G = ANK resp. g = a®n @ ¢t. Then
M = Zkg(A) =2 SO(l —1). For | =2, M is hence trivial and we exclude this case.

In Section 3.1 we discuss the action of M on N which is essentially described by
the natural action of SO(I—1) on R'~!. In the next Section 3.2 we develop a theory
of polar decomposition for differential operators D on G for a certain decomposition
of G which is similar to the polar decomposition G = KAK. This also leads to
the definition of radial parts of differential operators for M-invariant functions. For
the succeeding chapters, in particular Chapter 4, Section 3.3 is crucial where we
apply the theory of polar decomposition from Section 3.1 to the Casimir operator 2.
While Section 3.2 suggests formula (3.4) for €2, see Theorem 3.2.4, the calculations
of Section 3.3 which lead to (3.4) only depend on Section 2.1 and 3.1.

3.1. The action of M on n

We assume that the dimension of n = Lie(V) is | — 1 and we consider the
adjoint action of M on n. It is content of Kostant’s double transitivity theorem,
see [Wal73, Th. 8.11.3], that the generic orbits are spheres, i.e. if 0 # X € n, then

M-X={X"en:|X'| =|X|}.
It follows that the tangent space m - X to the M-orbit through X is | — 2
dimensional and thus
(m-X)" :={X'en: By(X',m-X) =0}
is 1-dimensional. Now it is a general fact that for any compact group H and real,
finite dimensional representation of H on some vector space V', the space (H - v)J‘
meets every H-orbit in V, see [dad85, Lem. 1]. We call a linear subspace of n a

section, if it intersects every M-orbit. A slice is then a subset of a section which
intersects every regular orbit exactly once.

LEMMA 3.1.1. Let 0 # X € n. Then (m- X)™" meets every orbit orthogonally,
i.e
Bo(Z-X,X') =0
forall Z em and X' € (m- X)*™" 1

PrOOF. The claim will follow as soon as we show (m - X)J‘“ = RX. For this
we compute for arbitrary Z € m

By(Z-X,X) = -B(ZX,],0X)
= -B(Z,[X,0X])
= 0,

since [X,0X] € a which is orthogonal to ¢ with respect to By. (]

Ln

IThe Lemma would still be true if the dimension of (m - X)®" is two. In particular for any

semisimple g of real rank one, M acts polarly on n.

31
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In other words M acts polarly on n, that is, there is a section which intersects
every M-orbit orthogonally. See also [Mic08, Chap.VI 30] for more information
on polar actions.

We note the following;:

LEMMA 3.1.2. Let s1 and s9 be 1-dimensional sections for M acting on N. If
g = tDa ds; @51“1
= tDaydsy @5;"2,
with 51 C ny, §o C ng, then there is some k € K such that
a¥ = ay and st = s,.
In particular, if € and a1 = ag are fized, then there is some m € M such that
570 = §g.
Proor. This follows since by (2.1) in Chapter 2.1 there is some k € K such
that
a’f = ay and 5’f + (51L"1>k = 59 +5;"2.
But 5’f is a one dimensional subspace of ng, hence a section for My := Zk (As)
acting on ny, and consequently there is some m € My with

(s)™ = 8.

Still of course,
(a})™ = a5 = ag.

We fix X; # 0 of length 1 with respect to By(.,.) and
s:=(m- X)) =RX;.

We denote by
s :=RX;\ {0}
the set of reqular elements, i.e. the set of elements with maximal orbit dimension.
The first aim of this section is to find a decomposition of g resp. G according to
the section s. Later we will study differential equations of invariant functions on s.
Let
im(s) ={Zem:[Z,X'] =0 for all X’ € s}.
be the centralizer of s in m and let
sm(s)t = {Wem:B(ZW)=0forall Z € j3un(s)}.
be its orthogonal complement with respect to the Killing form. Finally,
str:={Y €n:By(X',Y) =0 for all X' € s}.
We start by a lemma showing that 3, ()%™ is isomorphic to s-n.

LEMMA 3.1.3. The map adX’ : 3u(s)*™ — stn, Z s [Z, X'] is an isomorphism
forall X' € 5.

PRrROOF. Let X’ € s'. Since the action is polar, this implies
Zu(X') = Zy(s),
[Mic08, 30.23]. Also by polarity of the action we get the orthogonal decomposition
n=[m, X' ®s,
i.e. [m, X'] = str. Furthermore,

[va/] = [ m(X/) @3m(X/)Lm’X/] = [3m(X/)Lm’X/]a
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where 3, (X') is the Lie algebra of Zy;(X') = Zy(s). That is, ad X’ maps jm(s)*™
onto s and both spaces have the same dimension, since
M- X' = M/Zy(X)).
O

The proof shows that lemma is also true for any subgroup M’ C M acting
polarly on n, if we replace s with a section for M’ acting on n.

Lemma 3.1.3 allows us now to write g as a direct sum involving s and 3(s). This
decomposition is analogous to the one derived from K acting on p for a semisimple
Lie algebra g, see for example [GV88, Chap.4].

PROPOSITION 3.1.4. Let g =so0(1,]) =t @ adn, m = z(a) and s any section
for M = expm acting on n. We have the following direct decompositions for any
X' es':

8 = Gue)) M oaosot
exp — X’

= (m(e) @ (1+0)s) DsDE.

PrOOF. Let s = RX; for some 0 # X; € n. Since the sum a®nd t is direct, it
suffices to show that (3m(s)5)® X" is not contained in a @ s @ £. The first claim
then follows by dimension counting, see Lemma 3.1.3.

So let Z&P =X € (3,(s)+m) Y Na®sot Then
zoP X" — Ad(exp—X')Z

e d— X' l
S (ad - X)
{!
1=0
X', [Z, X'
— Z+[Z,X’]7[ ?[2’ ]]
= Z+(2,X,
as n is abelian and [Z, X'] € n. That is, Z2 X e m@ st~ for all Z € m. So if we
assume ,
7P X = 74 Z X =H+rX1+WeEadsadt,
we see that
[Z,X'|=rX, €5 " Ns=0
But by Lemma 3.1.3 this is true for Z € 3 (s5)-™ precisely iff Z = 0. For the
second claim, we note that dims =1, i.e. s =R - X’ for all X’ € s’. Hence,
(1+0)5)™ Y @toa
for all X' € ¢, O
The next lemma is an easy consequence of the fact that spheres are the generic
orbits of M in n.

LEMMA 3.1.5. Let Y € s*~, then there is an analytic function f on s’ and a
(unique) Z = Zy € jm(s)t™ such that

Y = flexp X)) 2P X — flexp X')Z
for all X' € &'
PRrROOF. If the dimension of n is one, then s = n, i.e. s'+ is trivial and we set
f=o.
If dimn > 1 we define
flespX’) =
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for X’ = rX; € ¢'. By Lemma 3.1.3 there is a unique Z = Zy € 3 (s)™ such that
[Zy,X1] =Y. Now
270X = 74 (2,X') = Z + (2, X1]

and thus )
flexp X)ZgP ™Y — flexp X') Zy = [Z, X1] = V.

3.2. Polar decompositions and radial parts for G = M(Aexps)K

We denote by U(g) the universal enveloping algebra of g and by S(g) the
symmetric algebra symmetric algebra. There is a linear bijection

A:S(g) = Ulg)

called symmetrization, see [War72a, p.161].

From the decomposition G = M(Aexps)K we want to obtain a theory of
radial parts for differential operators on functions, which are left-M- and right K-
invariant. That is, we construct for given D € U(g) some differential operator §(D)
on Aexps’ such that

D¢ =6(D)¢
on Aexps’ for all ¢ € C°(M\G/K). This theory is developed in analogy with the
theory for G = KAK, see for example [War72b, Chap.9] or [GV88, Chap.4].

PROPOSITION 3.2.1. The mapping ¢ : Mx Aexpsx K — G, (m,ax, k) — mazxk
is surjective and a submersion on M x Aexps’ x K.

PrROOF. For Z e m,R € a® s, W € ¢, the differential (di))m, qq,k computes to
(dw>m7aw,k(za R7 W) = (d’(/})m@w,k(za 07 0) + (dw)m,ax7k(0a R7 0) + (dw)m,aw,k(07 07 W)

d d
= a\t:mﬁ(m exptZ,ax, k) + £|t:o1/1(m, axexptR, k)

d
|0t (m, az, kexp W)

=z LR LW
= 26N LR 4w,
since %|t:0w(g,exp tL,h) = L" forall L € g, g,h € G and since M centralizes
A. Thus,
(Ad(k) © (d)m,aci) (2, R W) = 27 + R+ WH

and because Ad(k) is an isomorphism of g, the surjectivity of di,, 4k follows from
the decomposition

g=m™ X Latstt
which is valid for all X’ € ¢’ O
The decomposition of g and the Poincaré-Birkhoff- Witt-Theorem together yield

a decomposition of the universal enveloping algebra which we view as the algebra
of differential operators on C*°(G) with constant coefficients.

LEMMA 3.2.2. We have the following decompositions
U(g) Ula®s)U(E) @ ((s7)U(g))
Ula®s) o ((s"")U(g) + U(g)t) -

with projections
m:U(g) > Ula®s)U(P)



3.2. POLAR DECOMPOSITIONS AND RADIAL PARTS FOR G = M(Aexps)K 35

and
m:U(g) = U(a @ s).
Furthermore,
m1 = 7o mod (U(a ® s)U(€)E).

PrOOF. We modify the proof of [GV88, Lemma 2.6.6.]. For the second de-
composition we use the direct decomposition of g

g=a®sDs " DL
It follows by the Poincaré-Birkhoff-Witt-Theorem, see [HN12, Th.7.1.9], that
the mapping

Ua@s)@U@™)@UE) - Ug) ,a®b®c— abe

Ln

defines a linear isomorphism. Because n is abelian, s and s form indeed subalge-

bras of g. Furthermore,
U@ = Ulaes)U()U(E)

= U(a®s)U(s ) aU(a@s)U(s )U(t)e

= Ula®s)®sU(s™)U(a®s) @ U(g)t,
since if g is the direct sum of two subalgebras g; and gs, then

Ulg) = Ul(g1) ® g2U(g) = U(g1) ® U(9)g2,
see [Var84, Cor. 3.2.7.]. If we apply this to
s U(g) C U(g),

we get

st U(g) C st U (st ) U(a®s) @ U(g)t,
i.e.
st U(g) + U(g)t = st U(s™ ) U(a®s) ® U(g)t.
For the first decomposition we proceed as before by using
Ug)=U(a®s)@U(E) @U(s™)
from which we derive this time
Ulg) = U®s)UE) s U(a@s)UE)U(s™)
= U(a®s)U(E) ®stU(g).
The last claim
m1(D) = m2(D) mod U(a @ s)U(€)E
follows since
Uds)UE)=U(ads) dU(ads)U()E
and since U(a @ s)U(8) C U(g). O
For the definition of a radial part we need to express any D € U(g) in polar

coordinates adapted to the decomposition of G = M(Aexps)K. The following
theorem is the major ingredient for this.

PROPOSITION 3.2.3. Let g =s0(1,l) =a®dndt, m = 3(a) and s a section for
M = expm acting on n. The map

Toexpxr : ASGm(s)'™)@U(a®s)®U(E) — Ug),
E@u® ¢y £xPEX )yl

defines a linear isomorphism for all X' in s'.
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ProoF. The bijectivity of I'g exp x# follows from the decomposition
8= (n(s)™)* M o (seaot,

see Proposition 3.1.4, which is valid for all X’ € &', and the Poincaré-Birkhoff-
Witt-Theorem. O

(e}
We denote the inverse of I'gexp X7 by La@s,aexp x and interpret it as the local

o
expression of D in polar coordinates | qq5 of D around the point a - exp X’ for the
decomposition of the dense, open subset in G

G' = M(Aexps')K.
Then we define F to be the algebra with unit of functions generated by the function

f from Lemma 3.1.5 and let 7 be the linear span of monomials of positive degree
in this generator f.

THEOREM 3.2.4. Let g = s0(1,l) = a ® n @ ¢ with universal enveloping U(g),
m = 3¢(a) and s a section for M = expm acting on n. Let D be in U(g). There
are A, e Um)@U(s®a) @ U(E) and Ao € U(a® s5) @ U(E), p; € FT analytic on
s such that 5
J—aéBs,aexp X’ (D) = A0 =+ Z Pj (exp X/)Aj
J
forall X' €.

ProOF. By Proposition 3.2.3 it is equivalent to prove that for any D € U(g)
there are Dy € U(a@s)U(£), & € A(S(3m(s)'™)), u; € U(ad®s) and & € U(#) such
that

D= Do+ 3 0" Vg,
J
where p; € FT.
For D € U(g) we set Ag := w1 (D). Next if D € U(s@®a)U(¥), then the theorem

is clear, since
D= 7T1(D) + Faepr’(O ® 0 ® 0) - Faepr’(ﬂ—l(D))

by the definition of I'g exp x7-

Now we continue with an induction on the degree of D € U(g) and note that
the claim is true for constants. If the degree is one and D is an element of s =,
then there is by Lemma 3.1.5 a unique Z € 3y, (5)™ such that

D f(eXpX/)Paepr’(Z & 1 ® 1) - f(epr’)l"anpX,(l X 1 X Z)
= f(eXpX/)racpr’(Z®1®l*1®1®Z)

proving the claim for D € st.

Since U(g) = U(s @ a) ® (s7")U(g) by Lemma 3.2.2, we only have to consider
D € (st)U(g) of degree m+1 assuming the theorem is true for degree m. Without
loss we can assume that D = Y Dy, where Y is an element of st and D; of U(g)
of degree m. Again by Lemma 3.1.5

Y = flexp X" ) 2P ~X' _ f(exp X')Z
for some Z € 3m(s)t™ and we find for X € s that
YD, = flexpX")Z" XDy — flexp X')ZD
= f(eXpX')ZCXp_XIDl — flexp X")\D1Z — f(exp X")[Z, D4].
But Dy and [Z, Dq] are of degree < m, so we can apply the induction hypothesis

J_uEBs,aepr’ (Dl) - AO"‘Z ij(eXpX/)Aj ) J_a@5,aepr’ ([27 Dl]) = A0""2: @j(epr/)Aj

J J
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resp.

Dy =Taexpx: AO—'—Z@j(eXpX/)Aj(Dl) :FanPX’(AOH_Z@j(eXpX/)FanpX’(Aj)

J J

and

[Zle] - Faepr/ AO“”ZWj(eXpX/)Aj([ZaDl]) :Faepr/(AO)+Z¢l(epr/)raepr’(Al)
J l

= Ao+ pi(exp X )Taexpxr(A)
l

with D;, ¢;, Dy, ¢; as claimed in the theorem. That is,
7eXP —X/l)1 —  gexp _XFanpX'(AO) + Z‘Pj(eXp X/)Zexp _Xraepr’<Aj)

J
= 27PN+ 0i(exp X)ZOP TN Ty e x(4),
J
DZ = Faepr’(AO)Z+ Z@j(eXle)FanP—X'(Aj)Z
J

= AoZ+ Z @j(eXpX/>Faexp —X’(Aj)27
J
It follows that

YD1 = flexpX)Z% X Ng+ Y flexpX)pj(exp X) Z%P =X Tyexp x(A)) — flexp X') Ao Z
J

> Flexp X')g;(exp X )Vaexp x(A;)Z — flexp X)Ag — Y flexp X')i(exp X')T(Aj)
J l

= —f(expX)AoZ — flexp X')A; + flexp X') 22PN Ay +
Z flexp X')g;(exp X') (Zexp—X’Faepr/(Aj) + Faepr,(Aj>Z>
J

+ Z fexp X" )i (exp X’)F(Al).
l

Then we are done, since m1 (Y D) = 0 which implies

0= —f(expX")AoZ — fexp X")A.

It follows that for functions ¢ € C°°(G’) and D € U(g)

(DQﬁ)(QGXpX’) = (Faepr/ (J_aEBs,aepr’ (D>> ¢> (anp X/)
valid for all a € A, X' € ¢'.
For certain D € U(g), the expression of | qgs,qexp x’ (D) is simpler.

COROLLARY 3.2.5. With the notation of Theorem 3.2.4 we have

La@ﬁ,acpr’ (’/Tl(D)) = AO'
Further, if

Lagsaepx (D) =80+ > ¢i(expX)A; = Ao+ > @i(X)A,
j=1 =1
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for all X" € s', where Aj, A, ©;, @1 as in Theorem 3.2.4 and n < m, then Ag = A
and after a possible permutation of j,
Ar=Ar . Ar=7y, pr=¢1,. ., 00 = Pr.
andAkH :...:Amzo.
PROOF. The first claim, | ams.aexpx’ (11(D)) = Ao, follows by the proof of

Theorem 3.2.4. For the second claim we note that ¢;(exptX’) — 0, t — oo, for all
X' € and ¢; € F. So if we assume

Mo+ @ilexpX)A; = Aj+ Y ghexp X')A} resp.
J k
Ag—Ay = D ¢f(expX')Dy,
l

for some Ag, A € U(s@a)U(t), A;, AL, D] e Um)U(ZDa)U(E), 0;, 0k, 0] € F
and all X’ € s, then replacing exp X’ by exptX’ and letting ¢ — oo gives the
claim.

The last claim, follows since Aj,Al are independent of X' € s and since
¢j~¢k) S F+. U

We state now a lemma which tells us more about the nature of the projection
o from U(g) onto U(s @ a).
LEMMA 3.2.6. The mapping 7 is a homomorphism from U(g)X into U(s D a).
PrOOF. Let D, D’ € U(g)¥. Then
DD’ — 13(D)ma(D’) = ma(D) (D' — m2(D")) + (D — m2(D))D’.

By definition D — 73(D), D’ — m3(D’) are elements of (s-»)U(g) + U(g)€ and since
D' is in U(g)¥, it follows that

WD'=D'W
for W € ¢. Hence,
(D —m(D))D" € (s7)U(g) + U(g)t.
Since [s @ a,s17] C s it also follows that
ma(D)(D' —m2(D")) € (s7)U(g) + Ulg)t.

Thus,
T2 (DD/) = T2 (D)7T2 (D/)
g

Now we explain how I'y exp x/ (D) transforms if we apply it to invariant functions
€ . 1s will lead us to the definition of the radial part of D. We
¢ € C>°(MA\G/K). This will lead he definition of the radial part of D. Wi
therefore compute for Z € 3 (s)*™,u € U(a®s),£ € U(E), aexp X' € Aexps’ and
¢ € C=(G)
Faepx (Z@u@€dlaexp X') = (299 X'ug) p(aexp X')
d
= %hzou&b(aepr’eprd(exp—X’)tZ)
d
3.1 = —|imouéd(aexp X' exp—X'exptZexp X’
dt
d
= $|t:0u§¢(aexptZeXpX’)

d
= %h:oufﬁb(exp tZaexp X'),



3.3. EXAMPLE: POLAR DECOMPOSITION OF 39

as exptZ € M. In particular it is clear that
(32) Faepr’(§®U®€l)¢(a€XpX/) =0

if € C*(M\G/K), £ € U(m), & € U(t) and £ or & is not a constant. If u = H
is in a and ¢ is left- A-invariant, then a similar computation gives

4L
dty "0 dty

d d L
- dTl|t1=0d72|t2=o€¢(eXptlZexpe t2 (H)X/).

7eXp *X'H&;S(a exp X) lt,—0€p(expt1 Z exp X' exptoH)

Let ¢ : U(¥) — C be the trivial one dimensional representation of U(¢). The
map Z — ¢(Z)1 can be regarded as the projection U(£) — C - 1 which belongs to
the decomposition

U(t) =t ®ker(c),
see also [GV88, p.129]. Then for all D € U(g) and ¢ € C*(M\G/K), x =
aexp X' € Aexps/,

o

qu)(ﬂ?) = Faepr/ (J_u@s,aepr' (D)) (]S(Qf)

== Facpr’ A0 +Z@](x)AJ (p(x)
J

- Fu,exp X’ (AO)@(x) + Z (10.7' (eXp X/)Faexp X’ (A])QO('/I:)

= Fu,exp X’ (7T1 (D)) (p(l‘) + Z Pj (exp X/)Faepr’(Aj)@(x) by the definition of A0
J

= m(D)p(z)+ Z ©0;(exp X" )Tqexp x' (Aj)p(x) by the definition of I's exp x-
J

= m(D)p(x) + Y @i(exp X ) o exp x7(A))p(2),
J
as ¢ is right- K-invariant and m = 7, mod (U(a & s)U (£)¢

= m(D)p(z) + Z @i (x)c(€)e(€ ujo(x)

by (3.1) and (3.2), where Ay, Aj, ¢, are as in Theorem 3.2.4, i.e. ¢; € F© and
uj € U(a®s). Thus we may define a differential operator 6(D) on Aexps’ by

(3.3) §(D) := (D) + Z Vjuy,

where 9; = c(&;)c(£)p; and
D¢ =46(D)¢
on Aexps’ for all ¢ € C°(M\G/K). We call 6(D) the radial part of D.

3.3. Example: Polar decomposition of ()

In this section we apply the theory developed above to the Casimir operator 2.

o
We start with the computation of the polar decomposition | s aexpx7 (€2) of Q.
We recall that we fixed some X; € n of unit length. We want to complete X3
to an orthonormal basis of n. Therefore, we remark:
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LEMMA 3.3.1. We can complete X, to an orthonormal basis {X1,Y2,..., Y1}
of n such that for all j
[Zyv;, X1] =Y
always implies
[X1.0)] = 22y,
and
Y;, Zv;] = X1

Here Zy, € jm(s)m is uniquely determined by the relation [Zy,, X1] =Y, see

Lemma 3.1.5.

PrROOF. In [JuhO1, Chap.2 (2.9)] we find a special orthonormal basis {L;}; of
n which satisfies the requirements of this lemma. Because M acts transitively on
the sphere in n, we can find some m € M such that X1 = m-L;. Weset Y, :=m-L;
which implies Zy;, = m - Z . But then
[Xl,QYt]] =m:- [Ll,GLJ] =m- 2ZLj = 2ZYJ
and
[}G,Zﬁg]::[Wl'Lj,WL-ZLj}ZiﬂQ-lAVZZJ(L
O

We take the orthonormal basis {X;,Y;}; of st from Lemma 3.3.1. Then we
know from Chapter 2.1, equation (2.3), that

k -1 -1
O = H} =) M?+2X7+2> Y7 -2X,Wy -2 Y;W; —2H,
i=1 j=2 j=2
k -1
= H}—2H,- Y M?+2(X7-X,W)+2) (Y - Y;W,),
i=1 j=2

where M; € m, H; € a, H, € a and W = W, W, € mtt, see Chapter 2.1 for the
details.

Let X’ = rX; € ¢, then there exists by Lemma 3.1.5 for any Y; € n some
Zy, € 3m(s)t™ such that

Yj = f(epr’)Zle%_(p_X/ — flexp X') Zy,,
where Zy, - X1 =Y. Hence,
> V7 = fledX)?PY (PN - Zy) (29T - Zyy)
J J
= fexp X2 (Zy, 2y, )X = 29PN Ly — 2y, 290 + 2y, 2y,
i
= flexp X)) (Zy, 20N =229 N 2y — (2y,, 25PN |+ 2y, 2y,

J
= flexp X' (Zy, 2y, N =225 N 2y, — 2y, Zy, + 2y, X'|| + Zy, Zy,

J

= Flexp X')2 > (Zy, Zy, )™ X =229 =% 2y, — [Zy,, flexp X') " 2y, X1]] + Zv, 2y,
J

exp — X' xp — X' —

= f(epr’)QZ(Zyjzyj) PN 27200 Zy, — flexp X') N2y, Y] + Dy, Zy,

J
Lem. 3.3.1 f(exp X/)2 Z(ZYJ' Zy, )oxP -X" ZZ;?p —X’Zyj + f(exp X/)—le + Zy, Zy,.

J
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For ) we obtain

O = Toexp x7 (L@syaexpx/ (Q)) = H - M2 2H,+2X7 +2(1— 2)f(exp X)Xy — 2X,W

+2f(exp X')2 > (2, 2y, )" X 2297 X 2y, + Zy, Zy,
J
(3.4) —flexp X')"HZTP ™Y — Zy, )W

From this we can easily derive the radial part of by dropping all terms
involving elements from m. Note that (Zy,Zy,)™P =X operates from the left, i.e.
it vanishes if the function is left-M-invariant. Thus,

(3.5) §(Q) = Hf —2H, +2X7 +2(n—2)f - X1,
where f(expX') =1 for X' =rX; €.

3.4. Restrictions of bi-M-invariant functions

Here we want to settle the question what happens if we restrict functions which
are bi-M-invariant to the section s.

LEMMA 3.4.1. Lets be a section for M acting onn, F' a fundamental domain for
W = N(s)/Zn(s) acting on s. Then one can choose a slice F' C F consisting of
regular elements which intersects every regular orbit. The mapping ¢ : M/ Zp1(s) ¥
F' — 0/, where ' is the subset of regular points in n (always relative to the action

of M), is a diffeomorphism.

PROOF. By definition the map is bijective. For mg € M and Xy € F’ the
differential computes to

d¢(m07xo)(d7(m0)2, T) = Ad(mo)([Z, Xo] + T),

where Z is an element of the orthogonal complement of 3 (s) in m, T € s and 7(x)
is the mapping mZy(s) — xmZy(s) from M/Zy;(s) onto itself.
Now
<Z : X07 T> = 0)
since the action is polar. Hence, the differential vanishes iff [Z, Xo] = T = 0. But
[Z, Xo] = 0 implies that
Z € 3m(Ho)) = 3m(s),
since X is regular. Thus, Z = 0. t

COROLLARY 3.4.2. The restriction map from C=(n")M — C>(s")W is an iso-
morphism.

REMARK 3.4.3. Due to the structure of (non exceptional) rank one symmetric
spaces most of the theory of this chapter is also applicable to any semisimple, rank
one group G coming from the 3 non exceptional series and a subgroup M’ of M
acting polarly on n. Examples for M’ are centralizer M,,,, m € M. The only case
when such centralizers do not act polarly on n, is when G = SU(1,n) and M, is a
maximal torus in SU(1,n).






CHAPTER 4

Some differential equations of hypergeometric type

In this chapter we consider a special differential equation coming from the
Casimir operator. We make use of the theory of radial parts for the decomposi-
tion SO,(1,1) = G = M(Aexps)K from Chapter 3 and consider only functions
satisfying a certain equivariance property. We show then that the differential equa-
tion resembles a hypergeometric equation and we determine the space of solutions
thereof.

4.1. Differential equations for M-equivariant functions on a slice

Let (m, V) be an irreducible representation of M on V; and F € C* (X X End(V7)),
where

C* (X xp End(Vy)) :={F € C*(X,End(V;)) : F(m-z) = n(m)F(z) fa. m € M and z € X}.

Here we define the action of M on X = G/K by m -z = mx. We can also
identify X with AN, 2K = anK — an-o~ an, o = K € G/K, via the Iwasawa
decomposition. The action of M on X is then given by

m-x =mz =manK = amnK = a(mnm 1)K
for x = an = anK. We can also define an action of M on G via left translation
m* g :=mg.

Let pr: G - X = G/K = AN be the canonical projection associated to the
Iwasawa decomposition G = AN K which maps g = ank to anK = an. Then we
have the following commutative diagram

G ik G

X =G/K=AN ——> X =G/K = AN

because
pr(mxg) = pr(mxank) = pr(mank) = pr(amnm ™ mk) = amnm 'K = m-anK = m-pr(g).

Furthermore, we fix a slice S C N for the action of M on N. We can assume
that S = expR* X, where X; € n = R!"! is of unit length with respect to By(.,.).
We set 5 := RX;. We fix an orthonormal basis {X1,Y>,...,Y;_1} of n according to
Lemma 3.3.1. Then we compute for a differential operator Z € m, X’ = sX; and
for any F': G — End(V;) smooth with F(mg) = n(m)F(g) forallme M, g€ G

! d
7P~ X PlexpsX;) = §|t:OF(exp sX exp tZ°xP ~sX1)
d
= |t=o F'(exptZ exp sX71)
d
= $|t:07r(exp tZ)F(expsXq)

(4.1) =: w(Z)F(expsXy).

43
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We assume in addition that F' solves the differential equation
(4.2) QF +uF =0

for some p € C. Then we use the expression for Q from equation (3.4)

Q = H}—2H,+2X7 +2(—2)f(exp X)X1 +2f(exp X')? Y ((Zyjzyj)cxp —X/)
J
—2 Xy W =3 ME =229 N 4 2y Zy, — flexp X) TN Zg N = Zy, )W,
i J
which is valid for any X' = sXi, s # 0. Here f(expX') = f(expsX;) = 1,
W,W; € m*t and Zy, € jm(s)™™ as in Lemma 3.3.1. Hence, Q can be written
modulo U(g)t for any X' = sX1, s # 0, in the form

1—2 2 ,
2 2 xp —X
(4.3) HY —2H, +2X} +2—=X1 + 5 % (Zy, Zy, )X,

We call this the polar coordinate form of €2. Let F be the restriction of F' to
S -0 C X, where o = K and F the lift of F to a function F' : G — End (V). Then
it follows from (4.3) that for s > 0

(QF)(exp sX1-0) = [(Hl —2H, +2X? + 20 S_ 2) Xl) F} (exp sX1 - 0)

2 -
+ S—QAd(eXp —sX1) ZZ%J F| (expsXy).
J

It follows from (4.1) that

Ad(exp —le)ZZ}%j F(exp sX1) = ZT( F (exp sX7).
J J

Hence, the restriction F of F to S - o satisfies

-2 2 —
(4.4) H12—2Hp+2X2+2TX1+?Z7T(Z§j)+u F =0,
J
s € RT. Let
Zy(S):={me M :m-expsX; =expsX; for all s € R}.

Since pr : G — X = AN is the identity when restricted to S C N and by the
commutative diagram from above, it follows that

Zu(S) = {meM:m-expsX; =expsX; for all s € R}
= {meM:expsXim=mexpsX; for all s € R}.
That is, Zys(S) also equals the centralizer of exp X in M.

LEMMA 4.1.1. For any (m,Vy) € M we have that dim(Vy Zn (S )) is either 0 or

PRrROOF. This follows since (M, Zps(S)), M =2 SOl — 1), Zy(S) = SO(1 — 2),
is a Gelfand pair. Hence for any irreducible 7, the space of vectors fixed under
Zp(S) is at most one dimensional. O



4.1. DIFFERENTIAL EQUATIONS FOR M-EQUIVARIANT FUNCTIONS ON A SLICE 45

LEMMA 4.1.2. Assume V24 s spanned by v. The restriction F of F to S -0

maps Vi to VﬂZM(S)

PRrROOF. This is a consequence of F(m-x) = w(m)F(x) foranym € M, z € X.
Then for any v € V;;

m(m)F(expsXi)v = F(m-expsXi)v
= F(expsXi)v
for all s € R and m € Zp(S). This means that F(expsX;)v is Zp(S)-invariant.

O

LEMMA 4.1.3. 37, Z%j is Zu(S)-invariant and 3 w(Z%j)\VzM@) is negative
semidefinite for any (7,Vy) € M.

By Lemma 4.1.1 we can hence identify the operator ), 7T(Z}2/j )Ny 7 € End(VWZM(S))
with a nonnegative number.

PROOF. For the first claim we use the orthogonal decomposition
M = §(S) @ jm(S) ™.
Recall the relations from Lemma 3.3.1 on X1, Y}, Zy,. We compute for Y # Y]
from {Y;1};
O: _BQ(Yk7)/l) = B([ZYk7X1}79}/l)
= B(Zy,, [X1,0Y1])

Lem. 3.3.1
= 2B(Zy,, Zy,).

By the same computation B(Zy,, Zy,) = 1/2. That is, {Zy, }; is an orthogonal
set and |Zy,|* = 1/2. Since the dimension of 3, (S)*™ equals the dimension of s*,
see Lemma 3.1.3, it follows that the set {v/2Zy,}; forms an orthonormal basis for
3m(S) 1. If {K;}; is an orthonormal basis of 3, (S), then 2 > Z;Q,j can be written

as the difference
2Y % =00 - YK
j i

of two Zp;(S)-invariant operators, where €y, is the Casimir of U(m).
The second claim is clear, if V2 (%) — 0. Otherwise we fix some representation
(m, V) with VE ) £ 0. Since > le/j is Zpr(S)-invariant, this implies that

> 7T(Z)2/j ) maps V2 5) into itself. Further, 7 defines also a representation of m
by differentiating. Since 7 is unitary, i.e. there is some preserved inner product on
Va, the mapping m(7) is skew-symmetric for any Z in m. Thus,

spec(m(Z)) C iR resp. spec(n(Z?)) C R™
for any Z in m. (]

Thus, we see that 7T(Z12/j), just as F(exp sX;) for s € R, maps V2 into
itself. Next, we define the action of X; resp. for H € a on C*°(X x s V). While
the action of X; on exp RX; is standard, i.e. by translation, we define an action of

Aon N by a-n = a 'na. This really defines an action, since A4 is commutative.

Indeed,

-1 -1
@102 - N = agaq - N = aj 1a2 nasa; = aj - (az - n).

Furthermore,

a ' exp(X1)a = exp(—tH)exp(X1)exp(tH) = exp(e_m(H)Xl) cexpRX;.
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Thus, we see that the action of A on N restricts to an action on exp RX;. The
reason for defining the action of A in this non-standard way is that we consider
functions on G which are right-K- and left- A-invariant, i.e. we will consider func-
tions on N using the Iwasawa decomposition G = ANK. In this way the action
of A on N is compatible with the action of vectorfields V € g on C*°(G), i.e. for
ne€N,Heaand f e C®(A\G/K)

Hf(n)= %\tzof(n exptH) = %h:of(exp —tHnexptH) = %h:of(exptH -n).

Next we determine how the vector fields occurring in (4.4) act on functions of
C>*(X,End(Vz)).

LEMMA 4.1.4. Identifying exp RX, with R, the vectorfield X1 corresponds to

% while H, is —a(HP)S% and H? acts as a(H;p)? (SQddez + s%).

PRrROOF. Let F' € C*(X xps Vy). We have for any H € a and s € R
d
HF)(exp sX; = — |40 F'(exp —tH exp s X7 exptH
dt
d
= LloF(expaxer )
d
= — |i=0 F'(exp(Ad(exp —tH)sX1))
dt
d
= %\tZOF(exp(exp —tad(H)sX1))
d
= @\tzoF(exp e g X))

Identification @ a
e t:cato a‘t:OF(e (H)ts)

= —a(H)sF'(s).
Similarly,
d2
(H?F)(exp sX1) = ﬁh:OF(exp —tHexpsXiexptH)
d? —ta(H)
= ﬁh:OF(expe sXq)
dentification d2 —to
I t: t ﬁh:OF(e t (H)S)
d
= %\t:o — a(H)sF'(e7te(H)g)
= a(H)? (sF'(s) + s°F"(s))
where F'(s) := F(exp sXy). O

We apply equation (4.4) to v and get

1—2 2
H? —2H,+2X?% + X1+ 5 ZW(Z%)MZM(S) +p | FexpsXy)v =0.
J
i.e.
2

((a(H1)282+2)552+ ((Q(H1)2+2a(Hp))s+2l;2> d%

2
(4.5) +57227T(Z52@)|VWZM(S) +p | F(expsXi)v =0.
J
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Let ;74 (9 # {0}. As F(exp sXi)|, 2y and 3, TI'(Z%/J_”VZM(S) are elements
of End (V7™ (S)) which we identify with C we deduce that

2 J—
((a(H1)252 + 2)% + <(a(H1)2 +2a(H,)) s + 2l82> %

2
(4.6) +872 ZW(Z%”VWZM(S) +p | F(s)=0
J

with the convention F(exp sX;)v =: F(s)v. We view (4.6) as an ordinary differen-
tial equation for a scalar valued function.

LEMMA 4.1.5. Let F € C*(G xp; V). Then
Tr(F(s)) = (F(s)v,v)v,,

where v € V spans VWZM(S).
PROOF. Let v,vs,...,vq, be an orthonormal basis of V; w.r.t. the inner prod-
uct (.,, )y, . Then
dr
Tr(F(expsX1)) = (F(exp sXi)v,v)y, + Z(F(exp sX1)vi, vi)v.
i=2

By Lemma 4.1.2, F(exp sX1)v; € V2" %) = Cu, hence (F(exp sX1)vs, vi)v, =
0 for all ¢.
(]

Let M act on C*°(X) by the left regular representation, i.e. m-f(x) = f(m™1z)
form € M and x € X. We call f € C®°(X) M-finite of type 7 € Z/W\, if the left
regular representation of M restricted to span{M - f} decomposes into finitely many
copies of . We set for 7w € M

C®(X)r :={f € C*°(X) : f M-finite of type 7}.
For 7 € M we denote its contragradient representation by 7.

LEMMA 4.1.6. For any M-finite function f € C*(X) of type 7t € M we define

/(@) = dy /M f(m - )w(m~)dm,

where dr = dim(Vy). Then
a) fT e C®(X xp V),
b) f(z) =Tre(f"(x)) for allz € X,
¢) flexpsXy) = (F(expsX1)v,v)v,, in particular f|s =0, if VM) = {0}.
d) There exist finitely many slices S; for M acting on N such that the re-
striction to N of f|n vanishes iff all its restrictions f|s, vanish. !

PRrROOF. Claim a) follows from the computation
[T (m'-z) = dﬂ/ f(mm/-z)r(m™)dm = dﬂ/ f(m-z)m(m'm™ ) dm = w(m) f™(z).
M M

From [Hel01, Ch. IV Lem. 1.7] it follows that the mapping from C(X) to
C(X)# given by convolution with drx, := dTr(m)

C(X) - C(X)fr ) f '_>d7TX7T *fa

ILater in Section 5.3 we will see that this is equivalent to the existence of certain p; € %No

such that (Xfpi f) (e) = 0 for all 4, where S; = expRT X;, X; of unit length.
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where xr * f(z) := [, f(m - z)xz(m~")dm, is a continuous projection. If f is
already M- ﬁnlte of type 7, then

f(l‘) = TI'XTF * f )

= Trf“

Claim ¢) is a direct consequence of b) and Lemma 4.1.5. For d) let n € N.
Then there is some m € M and s > 0 such that n = m - s. This implies

f(n) = f(m-s) =m="- f(s).

We fix a basis fi, fo,..., fq of span{M - f}. We can assume that f; = f
and f; = m; - f for some m; € M, j = 2,...,d. We set S; := m;l-S, then
fi(s) =my- f(s) = f(m;'s), ie. fj|ls = fs,. Since {M - f} Cspan{fi,..., fa} the

claim follows. O

We go back to equation (4.6). The application we have in mind is the fol-
lowing. Let f € C*°(X)z, then f™ € C®(X xp Vi) and with the convention
fm(expsXi)v =: fT(s)v, s > 0, it follows that

[T(s) = ([T (exp sX1)v, v)v, = Tr (fT(exp sX1)) = f(exp sX1).

Thus, if f satisfies Qf = uf, then by dominated convergence Qf™ = pf™ and
the restriction f|g satisfies equation (4. 6)

We note that if >, (ZY i zy(s) = 0, in particular for 1 = 1 the trivial
representation, this can be transformed to a well-known hypergeometric differential
operator, i.e. F': R — R is given by some hypergeometric function as we will see
later. More precisely, we will solve equation (4.6) in the next section.

Let us summarize the results of this section.

THEOREM 4.1.7. Let G = SO,(1,1) and (m, V) € M. Furthermore, let F €
C™®(X X p1 Vi) with QF = uF and expRXy a section for M acting on N. We can

Zm(S) - = Cu, where v € V. is of unit length or 0.

a) If we define F : R — R by F(s)v := F(expsXi)v forv#0 or F(s):=0
for all s € R otherwise, then F : R — R satisfies equation (4.6) on RT.

b) For s € R:

assume that Vi

F(s) = (F(s)v,v)v,
(F(expsX1)v,v)y,
= Tr(F(expsXiy)).

If F(z) = f™(2) = dx [y, f(m - z)m(m~")dm for some f € C~(X),

then also

F(s) = dg /Mf(m - $)xa(m~)dm

= dr(xr* f)(expsXy)
dZ (xr * (xr * f)) (exp sX71).
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4.2. Differential equations of hypergeometric type

We continue with working on equation (4.6) and make the substitution s = u.
The differentials transform according to

d d 1 d d d> d? d
sds udu resp- sds du at ds? udu2 + du

Thus, we obtain the new equation

2

1 ((4a(H))? + 4a(H,)) u+ 4(1 - 1)) %

<(4a(H1) + 8u) dd 5 +

2
-‘ra ZW(Z%”VWZM(S) +u | F(w)=0.
J

Then we divide by the positive scalar 4a(H;)? to obtain

d’ d |k
wlu+ kr) o+ (L k)u+ks) o+ 25D m(Z8)]zarcs) + ks | Fw) =0,

J

where we set k1 = 05(131)27 ko = a(Hl)Z , k3 = (l;hl)Q, ky 2a(H PG and k5 = 4a(H1)

Then obviously ki,ks and k3 € RT but also ko is positive, since H, lies in
the positive Weyl chamber a* of a. The (regular) singularities of this ordinary
differential equation are 0, —k; and oo.

Now we substitute u — w = —k ,l.e. u=—-kw,
d 1 d d? 1 d?
— =———and — = 5 —.
du ki dw du?  k? dw?

We get the new equation

((—k:lw) ((kw) + k1) kl%dd; + (L + k2)(—k1w) + ks3) ( L d

7]{1) dw

k
k'l;fu] ;W(Z}%j)"/ﬂ_zjvj(s) + ks F(w) = 0.

After multiplying with (—1) we arrive at
(4.7)

a2 ks d kg
(w(l 710)@ -+ (k‘l (]. +k2) > df + mz (Z%)|VWZNI(S) - k5> F(’u)) = O

We call this is an ordinary differential equation of hypergeometric type

d?y dy d
4. 1-2)%Y e - N ) Fx) =
@ (el -0Fh e (bt Vel — byt S ) Flo) =0
with (regular) singularities at 0, 1 and oco. Here ¢ = Z—f = 1771, at+b=ky=— ;((Pip))%

ab=ks and d = 2—‘1‘ Zj W(Z%i)|V7zM(s> <0.
We recall that the dimension of N is [ — 1. Then p = Z_Tla and the Cartan-
Killing on a form is given by, see [GV 88, (4.2.10)]

B(H,H) =2(l — 1)a(H)?.
We also defined Hy € a™ such that Hj satisfies
(4.9) a(Hy) = 1.
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It follows that
B(Ho, Ho) =2(l - 1)

and
1

Hy= —

2(1-1)

Furthermore, we can assume that H; with B(Hy, H;) = 1 lies in the positive
Weyl chamber at. That is,

Hy.

1

H=——— H
VT
and
1
HP - ZHO.
For all these facts see [GV 88, p.135].
Now ()
a(H,) sa(Hy (i-1)
a + b=Fky = Pl — 4 = =
PTa(m? T phpatH)? 2
wnd (-1 -1
1 pu(l — p(l —
. b = kj = = = — = .
“ 1T da(H)?  2a(H)? 2 fipo

Let us assume that the eigenvalue is given by

()
B=Z\Po+t —
4\ Po

for some r € C. Then a = 3(po +ir) and b = 1(py — ir) solves the equations for

a+band a-b, where py = p(Hp) = 5*.

4.3. Solutions to (:c(l — z)fl%’ +lc—(a+b+ l)x]% —aby + %) f(z)=0

Motivated by the chapter in [Yos97, II1,2,3] on solutions to the hypergeometric

equation we define D = x%. Then it can be shown that the differential operator
d*y dy
E(a,b,c) := (x(l - m)@ +c—(a+b+ 1)1‘]% — aby

can be factorized as
1
E(a,b,c) = ((c +D)(1+ D); —(a+ D)+ D)) ,

see [Yos97, p.61]. Thus we define

d?y dy d

F(a,b,c,d) = z(l—az)w—k[c— (a+b+1)x]@ —aby—|—;
d
= E _—
(@,b.0) + 1

= (4 D)1+ D)+d) 1 ~(a+D)b+D)
Now it is easy to show that
(4.10) D(zPu(x)) = 2P (p+ D)u(x) , i.e. DzP = 2P(p+ D),
if we view 2P as an operator u — xPu for functions u = u(x). Hence also
D?2P = zP(p + D)?.
We now claim that

2P 9P (a+p1,b+p1,14+p1 —p2; )
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and
P25 Fy(a+ p2,b+p2, 14+ p2 — p1:2)

both solve
F(a,b,c,d)f(x) =0,

where in turn p; » solve the indicial equation
(4.11) p?+(c—1p+d=0.

Therefore we compute what happens if we apply F(a, b, ¢,d) to functions of the
form zPg(x). Again we omit the function g(x) viewing a? as the operator g — zPg
to keep formulas simple. We compute

F(a,b,c,d)z? = [(c+D)(1+D)+d]%f(a+D)(b+D) P
= [e+d+(c+1)D+D?*| 2P~ — [(ab+ (a + b)D + D?)] 2?
e? M etd+ (c+1)(p—1+D)+ (p—1+D)*| —a” [ab+ (a+b)(p+ D) + (p+ D?)]
= 2’ [z7 ' (c+d+(c+1)(p—1+D)+(p—1+D)*)] —a”[(a+p+ D)(b+p+ D)
= 2?27 ' (pP+(c—Dp+d+(c—1+2p)D+ D?*)] —2”[(a+p+ D)(b+p+ D)]
= (x).
To get this into the desired form we must therefore have

P+ (c—1)p+d=0,

_Ll-ey 1_02—dand —py =2 1_62703
P12 = D) B) b1 —p2 = 5 .

It follows that

i.e.

1—c¢c

2
c—1+2p1o==%2 ( ) —d=%(p1 —p2)

and
a”! (p%,z +(c—1)p1a+d+(c—1+2p12)D+ DQ)
7' (£(p1 — p2)D + D?)

= x_l(—1+1ﬂ:(p1—p2)D+D2)
-
-

YA £ (pr —p2) — (2% (p1 —p2)) + (2:|:(p1—p2))D+1—2D+D2)
"1+ (pr—p2)+ (2% (pr —p2))(=1+ D) + (-1+ D)?)

U2V (1% (- p2) + 2% (1 —p2))D + D)
(1+D)(1 £ (p1 — p2) + D)%,

that is,

() = am |14+ D)1 % (pr ~p2) + D)1 — (a+p+ D)(b+p+ D)

= gPi2[F (a + D12, b+ P1,2, 1+ (p1 - pz)) .
Thus we have shown

F<a‘a ba C, d) [xm,zg(x)] = xplﬂE (G, +p1727 b +p1727 1+ (pl - p?)) g<x)a
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hence
F(aa b> c, d) I:'TPLZQFI ((L +p1/27b+p1/27 1+ (pl _p2))}

a2 E (a+p12,b+pr2, 1+ (p1 — p2)) 2F1 (a + p1ja. b+ pij2, 1 & (p1 — p2))
0

as we claimed.

Another point is which solutions are smooth at the origin. We are only in-
terested in solutions which are smooth everywhere, in particular at the origin.
While zP1oFi(a + p1,b + pa2, 1 + p1 — pa) is always defined as p; > 0, the sec-
ond solution P25 Fi(a + p1,b + pa, 1 — p1 + p2) is only defined even for x # 0
if po —p1 # —1,—-2,-3,.... Finally, 2P125F) (a +pij2,b+pie, 1 £ (01 —pg)) is
smooth at the origin iff p; » € Ny.

It remains to consider when the two solutions are linearly independent, i.e.
span the space of solution to F'(a,b,c,d)f = 0. We will come to this in the next
section.

4.3.1. Application of Frobenius method. Since the second solution
x5 (a + p1,b+p2, 1 — p1 + p2)

is not defined for special py we shortly explain another method for finding two
linearly independent solutions of (4.6) which has the advantage of covering all cases
but is less explicit. It is called the Frobenius method and we follow Chapter 6 in
[Mil]. Let us consider the second order differential equation

d*y dy
4.12 P =0
(1.12) T PO Qe
on the punctured disc D* = {z € C: 0 < |z| < 1}, where P has a pole of at most

order 1 at 0 and @ of order 2. Let

zP(z) = Z arz"
r=0
and

22Q(z) = Z bs2®
s=0

be the Taylor series in D. Then we make the ansatz for a formal solution
o0
y(p, z) = 2P thzt.
t=0

The coefficients can now be determined by putting y(p, z) into (4.12). If
(4.13) f(p) == p(p—1) + pao + bo

denotes the indicial equation, one can show that

e (= K+ p)ag + by) coi
flp+1) '

Let now r and s, s < r, be the roots of (4.13). Since r + N does not contain
another root the succeeding coeflicients can be calculated recursively starting with
co = 1. Thus we obtain a first solution to (4.12) y(r,z) = 2" > o gzt I r—s'is
not an integer we also find a second solution y(s, z) which is linearly independent
from the first. If on the other hand r — s € N, then one can construct another
solution independent from y(r, z) but having a logarithmic singularity at z = 0.

(4.14) ¢
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Going back to equation (4.6) we divide by a(H;1)?s? + 2 to find

2
(4.15) (;;2 + P(s)% + Q(s)) F(s) =0,

where
P(s) := (a(H1)? + 2a(H,)) s + 252
2= a(Hy)?s2 + 2

has a pole of order 1 at s = 0 and

3% Z_j 77(212/]-)|Vf}u(5) + <Aa )‘> + <pa ,0,>

a(Hyp)?s? +2
has a pole of order 2, i.e. the method of Frobenius is applicable. We find that
ap =1 — 2, bp = 4d in accordance with (4.11). We already know by Lemma 4.1.3

that d < 0 and we distinguish the two cases d =0 and d < 0.
If d < 0, then p; > 0, while po < 0. The first solution

Q(s) :=

2P 9P (a+p1,b+p1, 14+ p1 — poix)

is always defined and smooth at the origin for p; € Ny, the second solution is only
defined even for = #£ 0 if po — p; # —1,—2, -3, ..., as we have seen above. By the
Frobenius method one can construct another solution which has a singularity at
the origin, i.e. there is only one solution which is smooth at = = 0.

If d =0, then p; =0 and po =1 —¢, i.e. F(a,b,c,0) reduces to E(a,b,c). The
two solutions simplify to

2P 9 F1(a+p1,b+p1, 14+ p1 —poyx) = 2Fi(a, b, ¢; )
and

P29 Fy(a + p2, b+ p2, 1 + p2 — p1;x) = xlfczFl(a—k l—eb+1—1¢2-c¢u).

In our case where G = SO,(1,1) this implies ¢ = py = I_Tl, ie. c= %, 1, %, e
1

Thus, except for ¢ = 5 or ¢ = 1 there is at most one solution which is smooth at
the origin, namely 2 Fi(a, b, ¢; x).
Let us discuss the two cases ¢ = % and ¢ = 1, i.e. the cases G = SO,(1,2)

and G = SO,(1,3). We start with ¢ = 1. For ¢ =, 2!7¢ = x'/2. Since we made
the substitution s> = —u to get from equation (4.6) to the hypergeometric type
equation (4.8) there is a second smooth solution to (4.6) for d = 0 and ¢ = 3, i.e.

G = 50,(1,2). This solution is - up to constants -

, 1 13 s
is -2k <a+2,b—|— 272§—4)7

which is an odd function.
For ¢ =1, i.e. G = SO,(1,3), the solutions 2 F(a,b, c;z) and 21~ Fy(a + 1 —
¢,b+1—1¢,2—¢;x) coincide. Then
d
d—\czlxl_CQFl(a +1—-cb+1—¢2—cx)
c
is another solution of (4.8) having a singularity at = 0, see [Y0s97, p.64].
In any case there is for d = 0 - up to constants - only one even, everywhere
smooth solution to (4.6).

We make the resubstitution s2

=u = —kjw = —kyx, where k1 = ﬁ =
2

P1,2
and P12 = ( —£ ) . Finally let us state

4(1 = 1). Tt follows that x = —4(%:) 0-1)

the results of this chapter in summarized form:
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THEOREM 4.3.1. Forl > 3 the equation (4.6) has up to constants at most one
solution which is smooth at the origin s = 0. This solution is up to a constant given

by
Bt N PPN I el Lo
4(1_ 1) 2471 a D, D, 2 74(l — 1)

Here a :2%(;)0 +ir), b= %(po —ir) depend only on the e/z‘\genvalue i given by
nw= %(po + ;7)} while d < 0 depends only on the K-type m € K and the section S.

Here
2
1-— 1—
p=—"+ <p0> —d>0

2

solves the indicial equation (4.11). For the solution to be smooth at the origin it is

necessary and sufficient that 2p € Ng. This implies also 1 + 2 (17%)2 —deqQ.
Further, if d = 0, then p = 0.
For | = 2 the space of solution to (4.6) is 2-dimensional and spanned by

o (a,b, %; %2) and is - o F} (a—!— %,b—&— %, %; —%).

REMARK 4.3.2. Let S = expRtX; be a slice. If

FlexpsXy) = (—1)? s pF Fpbtpy1 42y (12 Zfd-i
XpSsAq - 4(l—1) 241 a D, Db, 9 74(l_1) )

then it follows that

2
1—
F(exp2Vl—1sX;) = (=1)?s* -y, Fy | a+p,b+p,1+2 <2p0> —d;—s

In particular, if X is proportional to X,, see Section 2.3 for the definition of
Xe, , this implies 2¢/1 — 1X; = X, see (2.7), and

2
1—
F(expsX,,) = (=1)s*? -y Fy [a+p,b+p,1+2 ( 2p0> —d;—s?



CHAPTER 5

The zeta function on {Re(k) > 2p,}

In this chapter we want to compute the trace of a certain convolution operator
o-mr(f) in order to obtain the (logarithmic derivative of an) auxiliary zeta function
R(o) = R(-;0) in a half plane of C. We show that this operator is of trace class
and has a kernel. Then we compute its trace by integrating the kernel over the
diagonal. For o = 1 this procedure yields Selberg’s trace formula which is used
to derive the classical dynamical zeta function. We generalize this approach to
nontrivial eigenfunctions o = ¢ of the Laplacian. From the auxiliary zeta function
R(p) = R(-;¢) we derive the zeta function Z(¢) = Z(-;¢) as a superposition of
shifted R(p). This idea was first used in [AZ07] for G = SLy(R).

The theory of this chapter is developed for real hyperbolic spaces X as discussed
in Section 2.3. In particular, X = G/K with G = SO,(1,1) and K = SO(I),
where [ € N, [ > 2. We identify X with AN by using the Iwasawa decomposition
G=ANK ,A=R, N =Rt and M = Zg(A) = SO(l — 1). Finally, I' denotes a
uniform lattice, that is, I' C G is a discrete, torsion-free and cocompact subgroup.
Every nontrivial v € T’ can be conjugate to some a,m., € AT M, see Proposition
2.2.1.

5.1. A generalized trace formula

We let G = SO,(1,1). Recall the identification of R with A, t — exptHy and of
R~ with N via u ~ exp X,, from Section 2.3. Let da and dn be the left-invariant
Haar measures on A and N obtained from this identification.! Further we fix a
Haar measure dk on K by requiring K to have unit measure, then it follows from
[Hel01, Ch.I Prop. 5.1] and [HelO1, Ch. I Cor. 5.3] that there is a Haar measure
dg on G such that

/ f(g)dg = / f(ank)dadndk
G ANK

for all integrable functions f. We fix a Haar measures on X, I'\G and on X =
I"\G/K such that for all integrable functions on G

/Gf(g)dg = /F\G > f(vg)d(Ty)

yel’

and

/G f(g)dg = /X /K F(gh)dkd(gK)

resp. for all integrable functions on T'\G

[Tt = /X F /K F(Tghk)dkd(TgK).

Let C°(G//K) be the set of smooth functions with compact support that are
bi-K-invariant. Denote the right-regular representation of G' on L?(T'\G) by 7r

1For the integral definition of Harish-Chandra’s c-function one normally requires
Jon exp (—2p (H(0n))) don = 1, see [Hel01l, Ch. IV Th. 6.14]. We discuss this in Remark
6.2.16.

55
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and let p,0 € C®°(T\G) and f € C°(G). The Fourier transform of f is defined as
an operator on L?(T'\G) by

(51)  mr(f)e) /f (a9 dg—/f (zg)dg = () (z 1),

where ¢(z) := ¢(x~") and convolution is defined by (pxf)(z = [ o(h)f(h~tz)dh.
Note that mg(f)p is trivially square integrable as IT'\G is compact

We now combine 7 (f) with the multiplication operator on L?(Xr) which sends
f+— o- f. By the compact support of f and an application of Fubini’s theorem

o 7r(f)l¢Cz) = oz / F(9)p(Tzg)d
(5.2) — () /G o(Tg) f(z~ g)dg

= o(Tx) /F \G %w(l“vg)f(w‘lvg)d(l“g)

= o(Tz) /F\G p(T9)Y_ f@~79)d(Tg).

~yel

So, if we define K, (z,g) := o(z) Y. f(z71vg), then K,(yz,9) = K,(z,vg) =
vel
K, (z,g) defines a smooth function K, : T\G x I'\G — C satisfying

o 7r(f)] p(z) = /  PITOKo (e L)L)

From [GW75] we adopt the following definition. We call f € C*(G//K)
admissible, if
e the operator mx(f) is of trace class on L*(T'\G) and
e the series ) . f(axyy~1) converges to a continuous function of (x,y).

PROPOSITION 5.1.1. Foro € C*(T\G/K) and f € C*(G//K) admissible the
operator o -mR(f) is an integral operator with kernel K, (-,-) as from above. It maps
L?(Xt) into itself and is a trace class operator on L?(Xt).

PROOF. Standard theory implies that mr(f) is of trace class on L?(T'\G), see
[Wal76, p.172], and hence also on L?(Xr) as soon as we check that wr(f) resp.
o-mr(f) leave L?(Xr) invariant. Note that mg(f) being of trace class implies that
o - wr(f) is of trace class as well, since ¢ is bounded. So we only have to check
invariance. Since by assumption o is right- K-invariant and f is also bi- K-invariant,
we get for k € K

[0 -mr(Plp(zk) = o(zk)mr(f)el(zk)

- / f(9)e(zkg)d
- a(:c)/Gf(k* 9)¢(zg)dy

= o) /G f@elag)dg = [0 mr(f)]o(),

where we applied the transformation g ~ k~'g and used the unimodularity of
G. O

From now on we assume that o € C*°(I'\G/K) and f € C*°(G//K) is admis-
sible. We can now compute the trace by
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Tomelf) = [ o)X S )

yel’

1) [ o+ ¥ [ oo

1#~el’

where FT C X is some fundamental domain for I" in X, i.e. Fr is measurable and
up to a possible set of measure zero it contains exactly one element of every orbit
I'z, z € X. In particular, any fundamental domain Fr satisfies fr\  flx)de =
fFr fopr(g)dg, pr : X — I'\X canonical projection, for any integrable function
f:I\X —C.

We recall notations from Chapter 2.2, in particular that CT" denotes the set of
conjugacy classes [7] in I and I',, is the centralizer of v € I' . Then we continue our
computation with

Z /FF o(z)f(z™ ya)d

1#~vel

Z Z /F o(x) fla™ v z)dx

1#[Y]€CT v’ €yl

> > /F o(y'x) f(x™1y "ty x)dx

1£[]€CT Ty €0, \T

In Proposition 2.2.2 it was mentioned that for any nontrivial «v € T its central-
izer I', is cyclic and infinite as I' is torsion-free. Furthermore, there is a unique
primitive element vy € T such that v = ;" for some n., € N. It follows T, =< 79 >
and

>y /F o(vz)f(a™ 'y "y x)de =

1#£[y]eCT Iy’ el \T

/ o(2)f (& ") dz,
Foy

1#[y]eCr

where
Fy, = L+J ~Frc X
I,/ €rL\T

is a fundamental domain for I'y, =< 7y >. Here |4/ means the disjoint union. Then
<y>\I'y =<v>\ <y >=Z/nyZ,ie. | <vy>\I'y| =ny and

/F o(x)f(z ya)de = S Z /F o(hz) f(x7 ' h~ yhx)dx

n
R0 7 <y>he<y>\T,

as f(x7*h~'yhx) = f(z~'yz) for h € T',. Applying now the transformation z —
hz and using the unimodularity of X, we get

Z L Z o(hx) f(z  h ™ yhar)da

1#0jecr Y <y>hey>\I, Y Fo
1
= Z — Z / o(x)f(z y)de
1£( Ty hF,
~]eCT <y>he<y>\T, 0

Now we change to a fundamental domain F,, C X for < v > to obtain

(5.3)
E L E o(x)f(z™ya)de = E L o(x)f(z™ ya)de
/h . (@) f( ) (@) f( )

n7 nv F
1#[y]eCT <y>he<y>\TI'y 1#[y]eCr v
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But v is conjugated to mya, € MAY, ie.

(5.4) a,yfya,;l = Gy My

for some o, € G, and a fundamental domain for a,m. can be stated explicitly.
LEMMA 5.1.2. (See [BO94, Lemma 3.1])

Let may; € MAT, where A = expRHy, a; = exptHy, and identify X with AN.
A fundamental domain for the cyclic subgroup generated by a;m is given by

Fopm :={asn:n € N,0<s <t}
PRrROOF. Note that a;m acts on = a;n by aym - = a;.smnm~!. Further,
< aym >={a,m*:z € L}.

We fix an arbitrary apn € X = AN with h=c-t+ s, where c € Z and 0 < s < t.
That is,
<agm > -apn = {a(qopprsm nm” 7 sz € L},
in particular asm™“nm¢ is contained in the orbit of apn and Fy, .
Finally, h = s mod Z, if ayn is contained in the orbit of asn’. This shows that
F,,m contains at most one point from any orbit (up to a set of measure zero). O

LEMMA 5.1.3. Let G be a group acting on a manifold M, H C G a subgroup

and Fg a fundamental domain for H. Then gFy is a fundamental domain for
L for all g € G.

PRrROOF. The proof is simple. Fix g € G and m € M. If y € Hm N Fy, then
for some h € H
9y = ghm = ghg™'gx € gHg ™' (g2).
Since left translation by ¢ is a bijection on G, the claim follows. O

~1
iy My Oty

Thus, a fundamental domain for the cyclic subgroup generated by v =

see (5.4), is given by
F, = {a;lx 12 € Foym, } = a;lFaW.

Next we rewrite the integral from the right side of (5.3) as an integral over
a subset of AN. Note that the identification X = AN implies dx = dadn, see
[Hel01, Ch.I 5 Cor. 5.3]

1
- o(x)fla " yr)de = / / f(n"ta"'a,m,an)dnda
1£[yjecr Y /Y w]ecr Ny JA/<ay>

/ / an)f(nilaflavm,yan)dadn
Al <ay,>

/ /A/<% an)daf(n™" aymyn)dn

In the last but one equation we used again Lemma 5.1.3 for a fundamental
domain of < a,m., > and the fact a, = a~y , see the proof of Proposition 2.2.3. We
call I, (o) defined by

#[v]eCT

1#[y]eCT

(5.5) I(o)(z) = / a(a;lax)da

A/ <ay,
for x € X = AN the weight function of the (weighted) orbital integral
(5.6) 0,() = [ fn~ o)1 (o) ).

Thus,
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/N /A /<%>J(Oéilan)daf(n‘lawmvn)dn = Y /N F(n~Laymm) L, (o) (n)dn

1#[H]ecT

> 04

1#[y]eCT

1#[]eCT

5.2. The weight I, (o)

In this section we want to examine the weight I,(c) more closely. The next
theorem will us show how we can decompose I, (o). We make use of the following
fact which can be found in Helgason’s book [Hel01].

THEOREM 5.2.1. ([HelO1, Ch. V Cor. 3.4])
Let X be a manifold with countable base and H a compact, connected Lie trans-
formation group, then for any f € C*(X)

F=> dsxsxf = dsxs*f

scH sef

with absolute convergence, where (¢ * f)(x) := [, ¢(h)f(h~ x)dh. Here ds is the
dimension of § and xs := Tr() its character.

For the second equality we use that Y5 = xs+, if 6* is the dual of . Absolute
convergence of a series > . Va, {Vataca C C°°(X) means that > ., v(v,) is
absolute convergent for every continuous seminorm v on C*°(X).

We apply this to M acting on X = AN by conjugation to obtain a decomposi-
tion of the weight I, (o). A useful guiding for the theory presented in the remainder
of this section is the theory of generalized spherical functions (Eisenstein integrals)
for a rank one symmetric space which can be found in [Hel94, Ch.IIT §2 and §11].
Roughly speaking we replace K acting on p with section a by M acting on n with
section s. .

For a unitary representation (m,V;) € M of dimension d, and f € C*°(X) we
define its m-projection by

(5.7) (@) = (P (a) = dr [ fam- )t

for x € X = AN, where m - ¢ :== mz. We recall the function space for (m, V) € M
C* (X xp (V) :={F € C®°(X,End(Vy)) : F(m-z) =7n(m)F(z) for all z € X,m € M}.
Then for f € C®°(X),z € X and m' € M

ff(m' -z) = dr [ flm-(m'-z))x(m Hdm
M

— 4 /Mf(mm’ )m(m™)dm

(5.8) d. /M F(m - 2yr(mm~Ydm = w(m) £~ ()

by unimodularity of M. Hence, f™ € C®(X X Vy).

REMARK 5.2.2. We recall the definition of the action of M on G via left trans-
lation

m* g := mg.

In Section 4.1 we showed that the following diagram is commutative:
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m*

G G

X=G/K=AN ——> X =G/K = AN

We can also extend the definition of the w-projection to functions f € C*°(G)
for (m,Vz) € M, dim(V;) = d,

(59) £7(0) =dr [ flm s gyt aim.
M
It follows again that f™ is in
C*®(G,Endp (Vy) :={F € C*(G,End(V,)) : F(mx*g) = m(m)F(g) for all m € M, g € G}.
PROPOSITION 5.2.3. For any f € C*(X)
f= Z dr (Xr * [) (z) = Z Te(f").

‘n'e]T/f Treﬁ

PROOF. By the preceding Theorem 5.2.1 we have for x € X

flz) = Y de(xn* f) (@)

weﬂ
= > de (Tr(m) * ) ()
7\'6]/\/7
- %d / Xem) £ a)dm
= Z de [ Tr(z(m™1))f(m-z)dm
WGM /M
= Z Tr (dﬂ/ ﬂ(m_l)f(m-x)dm) = Z Tr(f™)
el M ne
by unimodularity of M and the linearity of the trace. O

Let us summarize the preliminary result of this chapter.

THEOREM 5.2.4. Let G = SO,(1,]) = ANK, M = Zg(A) and T C G a
uniform lattice. Denote by mr the right reqular representation of G on L*(I'\G)
and fiz 0 € C°(Xr) and f € C*(G//K) admissible. Then the operator o - wr(f),
given by (5.2), maps L*(Xr) into itself and is of trace class. Its trace can be
computed to

Te(o-7a(f) = f(e) /F o+ Y /N Fnaymyn) 3 Te(E, (o) (n))dn

1#£[H]ecT reM
= f(e) o(x)dx + f(nfla m~n) dr (Xx * I,(0)) (n)dn,

where 1 # vy is conjugate to aym., Fr C X a fundamental domain for T and I,(o)™
is defined by (5.7).

REMARK 5.2.5. Let us examine I,(c)™ more closely. We slightly generalize
Lemma 4.1.2 in Chapter 4.

LEMMA 5.2.6. IfaexpsX; € AexpRX and F € C(X, x pVz), then F(aexp sX7)

maps Vi into yZm(S)
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PRrROOF. The same proof as before applies. We use F'(m - z) = w(m)F(x) for
any m € M, z € X. But then for v € V

m(m)F(aexpsXi)v = F(m-aexpsXi)v=F(am-expsXi)v
= F(aexpsXy)v
for all aexpsX; € AexpRXy, m € Zp(S5). O

We recall that 74, [, denote right- resp. left-translation on G. Let v # 1 be in
I' with primitive 7. We assume that 7o is conjugated to a,,m., € AT M, where

—1
@y = ©xp Ly, Ho. This implies Ly, = (y20—1)) by, where Ly, is defined by
a, = €xply, Hy. By definition (5.7)

(Xr *Iy(0)) (expsXy) = /M L, (o) (m - exp sX1)Xx(m™')dm

/ / a(a,;lmaexstl)da Xx(m™Hdm
M JA/<ay,>
L'YU
= / / O’(Oz,;l exp tHom exp s X1 )dax,(m ™ )dm
M Jo
l"f
\/2(l—1)/ / OU(CQIexptHlmexple)daxﬂ(m_l)dm
M Jo
l'YO
\/Q(Z_l)/ / gol, orm.expsxldaxﬁ(m_l)dm
M Jo K
NCTE / /
M Cy,

2(1-1) <X7r * (m — / o om)) (expsX7)

where we used the definition of the m-projection from (5.7) and for functions f on
I\ X the integral over the (prime) closed geodesic belonging to primitive o

0 O T'm.exp SX1> Xw(m_l)dm
0

(5.10)

Cyo = {Tay-rexp(—tH )M : 0 <t <1},

see (2.5), is given by

l'YO
/ f= / fo la;1(exptH1)dt.
Cyg 0

Finally, we remark that

2([—1)/ o = / o(az)dx
c A <ay,>

(5.11) = L(0)(e)
~ | Li@)m)dm,
M
since for any nontrivial 7
(Xr * Iy (o)) (e) =0,

where e € G is the neutral element, as I, (o) is right- K-invariant and [, xx(m)dm =
0.
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5.3. The case of ¢ = ¢ an automorphic eigenfunction

Now we specify o to be an automorphic eigenfunction of the Laplacian Ar on
the compact manifold Xp. So let ¢ be some fixed Laplace eigenfunction, i.e.
App = Qo = pp

for some eigenvalue p. More specifically, there are r € af = C such that

1 7"2) 1 9 9
=—(po+—)=——(p3+17).
=t (po D) g ()

By the ellipticity of Ar we know that ¢ is smooth and we can apply the theory
of the last section to ¢ = ¢. Then we consider I, (¢) defined in (5.5), so that

L(p)(x) = / ga(a;lax)da.
Af<aqy,>
Since  lies in the center Z(g) of U(g) it commutes with the right-translation
T4 and the left-translation I,

Q(poly) = (Qp)oly =ppol,

for all g in G, in particular for g = a;la, a € A.
If we apply now €2 to I,(¢) we can use, as A/ < a,, > is compact, the theorem

of dominated convergence and exchange differentiation with integration to see that

L, () is also a Q-eigenfunction, i.e.
QL () = ply ().

Since also the action of M and Q commute, even for any (w, V) € M , by the
same reasoning

(5.12) QL ()" = ply ()",
where, according to (5.7)
(5.13) L) @) = dr [ 1) m - a)n(m " dm.

Equations of the form (5.12) have been discussed in Chapter 4. We fix a slice
S C N for M acting on N and assume that S = expRT Xy, where X; € nis of unit
length. We recall that if F is an element of C*°(X x s V), then F|g maps V, onto
VWZM(S), see Lemma 4.1.2, where VZMS) — €.y for some v € Vi

In Section 4.1 we have shown that the equation

QF —puF =0

leads to an equation on S

2

(5.14) <(a(H1)2t2 w2 Ly ((a(H1)2 T 2a(H,) t+ z“f) 4

2
+t7 ZW(Z}%]‘”VWZNI(S) —u | F(t)=0,
J

for the scalar valued function F(t) defined by F(t)v := F(exptX;)v, see Theorem
4.1.7. Here « is the unique positive root, Hy, H, € a the unique unit vector resp.
the defining vector for p, {Zy,}; the orthogonal set of 3m(s)=™ which corresponds

to the orthonormal basis {Y;}; of {X1}** via [Zy,, X1] = Y;. By Lemma 4.1.3 we

know that 3, 7T(Z12/J_)|VZZM(S) € End( WZM(S)) can be identified with a scalar < 0.
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We note that F(t) = dr (xx * f) (exptXy), if F = f™ for some f € C*(X), see
Theorem 4.1.7.

The results of Theorem 4.3.1 now imply that there are constants a, b, d, p, where
a = pg + ir and b = pg — ir only depend on the eigenvalue, 2p € Ny and d < 0
depend only on 7 and S, such that for some other constant C and for [ > 3 any
solution F' to (5.14), which is smooth at ¢ = 0, can be expressed as

(5.15)
- 1— )2
F(t):= F2V1—1t) = (=1)PC - 1?? - , F} (a +0L,b+1,1+2 A =po)? 4p0) —d; —t2>
for t > 0, see Remark 4.3.2. By the Leibniz rule
(1= o) (2p)
F®P)() = (-1)PC <t2p B (a +pb+p, 142 74”0 —d; t2>>

2p 2\ 1 TErNE (2p—1)
. (_1\P L 2p—i M TP g g2
( 1)Ci§_0(i>z‘!t 2F1<a+p,b+p,l+2 2 d; t)

1— 2
= (71)pC'2Fl <a+p,b+p,l+2 (4pO)d,tz>

2p—1

(2p—1)
2 1— po)?
Pcz<p> 2Pl By <a+p7b+p,1+2 (4p0)—d;—t2>

1— 2
= (71)pC'2Fl <a+p,b+p,l+2 (4p0)d,t2>

2p—1 oo\ 1 {a )2 (2p—1i)
+(-1)PC - tz (p>zt2p Ny o <a+p,b+p,l+2 4’%—d;—t2>

Hence,

4

because o F} (a +p,b+p, 1424/ % — d; 0) = 1 by the definition of hyperge-

ometric functions.

For [ = 2 the space of solutions to (5.14) is spanned by o F} (a b, ;,

FOD(0) = (41— 1) FO)™ = (-1)'C2Fy <a+p,b+p,1+z “‘”)Q—d;o)=<—1>pc

Tt2> and
it oFy (a+ 3.0+ 3.3

general solution in this case has thus the form

*ﬁ), where a = pg + ir and b = pg — ir as before. The

(5.16)
1, . 113
F(2t) .= F(exp2tX,) = F(0)-2F} ( a,b, 2’ —t° |+2F'(0)it-2 Fy [ a + §,b—|— 35 —t7 ).
Now we consider F':= I, (o)™ : R — C defined by I, ()™ (s)v = I, (¢)™ (exp s X1)v,
then also
L (9)"(s) = dx (Xx * I, (1)) (exp sX1),
see Theorem 4.1.7. Under the map exptX; — t, X; is identified with -2 o> thus

(5.17) N
(L)) (0) = de i (e * Ly (9)) (exp 1) = e (X3P 2 1, (9)) (o),
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where e € N is the neutral element. For I, (¢)™ : RT — C, we get from (5.15) for
1>3

de (r # 1,(9) (exp2VT—1sX)) = L(o)"(2VT— 1s)

(5£5) ———(2p)

(=DPL(p)  (0)-

1— )2
S By <a+p,b—|—p,1—|—2 (po)—d;—32>

= (=17 - 1) (I ()" (0) -

1— 2
5% Fy <a+p,b+p,1+2 % _d;_82>

(5.17) dzr

(=1)P (41 — 1))? dr iy |t=0 (xr * I (0) (

_ 2
WP <a+p,b—|—p,1+2 % —d;—52>
(5.18) = (A= D)) de (X0 5 1 () (€) - 57
_ 2
oI <a+p,b+p,1+2 w d;52> )

For | = 2 we see from (5.16) that the weight of the orbital integral is given by

L, ()(2s) Ly () (exp 25 X1)

1
(/ 80> . 2F1 (aaba = _82>
. 2
Y0
1 13
2i Xip|-s-2F — b+, =87
+7I</C;O 1@)821(04""27"_2727 S)

From Lemma 4.1.6, Theorem 4.3.1 and Proposition 5.2.3 we get:

(5.19)

THEOREM 5.3.1. Let X = G/K be a real hyperbolic space of dimensionl, I C G
a uniform lattice, 1 # v € T’ and ¢ be an automorphic eigenfunction (on Xt ) with
eigenvalue pi. The weight I.,(¢) can be decomposed as

Iy(p) = Z dr (Xn * Iy () -

71'61/\/[\

Here d (xr * I,(¢)) = Tr (I,(p)™) € C®(X)z is a Casimir eigenfunction. On
each slice S = expRT Xy, |X1| = 1, for M acting on N, dr (xx * I,(p)) satisfies
equation (5.14) and is given by (5.18) for 1 > 3 resp. (5.19) forl=2.

REMARK 5.3.2. We digress to examine X>* I7 () more closely. Using the def-
inition of I,(y)”, see (5.13), and the computations made at the end of the last
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section, see Remark 5.2.5, as exptX; € S for all ¢t > 0,

dzr _
XP (e L)) () = il | L@ m - exptspxntmam
= amexth dax(m™"dm
W G Ddos(m™)

5.10 dzr
(:) Q(Z_l)ﬁ\t:o <Xw* <$'—>/ <porz>> (exptX1).
070

On the other hand,
(Xﬂ * (gp o la;1>> (z) = dﬂ/ po la;1(m )X (m ™) dm
M

and
2p d2p 1
X" (Xr x 1y () (e) = dt2p|t 0 Ly(cp)(m exptX1)x-(m~)dm
= @ |t o/ / Sltamexp tXy)dax.(m™")dm
dt?p Af<any>
= Taplt= I~ tX1)dax-(m™1)d
dt2p|t_0 /M /A/<a~r0 7e awl(ameXp 1)dax~(m™")dm
d
= T|t:0/ / pol,—1(m-aexptX1)x-(m ")dmda
dt?p AJ<ag M v
d*
- dtTph:O /z;/<a70> (Xﬂ' ¥ <gp ° la"?l)) (aexp tXl)da
d2
= [ e (xe (pot)) trespexias
= 2
(5.20) = /A/<a X (X * (@Ola;ﬁ)) (a)da

For m =1 trivial, (5.20) simplifies to

A/<a70 (X2p( ‘Pol —i(m- x)dm>) (a)da
A/<% <X2P ({ <p(m : x)dm} o l%1>> (a)da

/A/<a70> ((ng {x ~ /M wlm: x)de 01%1) (a)da

D[ (52l s ]

5.4. An auxiliary zeta function R(y)

We choose now f from a special family of bi-K-invariant functions fr. We
consider on G the function

(5.21) feigm (1—1g-0P)
for k € C, where we recall the action of G on B;(R™) given by (2.11) in Chapter
2.3. While this function is bi-K-invariant on G, see Lemma 2.3.1, in particular it
is a function on X = G/K, it does not have compact support and we have to show
that mr(f) is indeed of trace class for suitable k € C.

k/2
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Recall that we fixed Hy, H; € a* where a(Hy) = 1 and |Hy| = 1. It follows
that |Ho|? = 2(1 — 1), see [GV88, (4.2.10)] and thus Hy = 1/2(1 — 1)H;. Let now
v € T be conjugated to aym., € MAT. By definition of I, ay, = expl,H; =

Iy
exp 2(l—1)H0' Let us set

l"/
(5.22) Ly := N

Then by definition ay = exp Ly Hy and we call L, the length of the closed
geodesic [y]. Further, we call the set

(L, 14} ecT}
the length spectrum of I'. It follows from Proposition 2.2.4 that {L, : 1 # [y] € CT'}
has an infimum L, > 0.

REMARK 5.4.1. Let [y] € CT. The definition of the length of [y] from (5.22)
—1
differs from [, in [Gan77a], see also Section 2.2, by the factor <\/2(l - 1)) .

That is I, = y/2({ = 1)L,. If G = SO,(1,2), then our definition of L, agrees with
the one which is used in [AZ07]. In this case V2L, = [,.

The computations made at the end of Chapter 2.3, especially equation (2.16ff),
give
(5.23)

-1 1 —k
T ((exp —5Xe,)a,my" (exp SXel)) = (—(mT 1187+ (1+ 52)coshL7> ,
where a, = expl,H; = exp L, Hy = ar_ and
-1

(5.24) (m" )i = (m_lmvm)l,l
is the first entry in the first row of mfy”_l as we identified m~'m.m with the
(I —1) x (I = 1)-matrix (771_1mvm)ﬁ’_jl:1 in SO(l — 1). In other words, (m$71)171

is just the matrix coefficient belonging to the defining representation of M and the
first basis vector evaluated at mzfl. Also, see equation (2.22),

2 N —k
(5.25) fr(exptHpexp X,,) = fr(arexp X,) = <cosht + |U26t> .

for X,, in n, i.e. u € R,
In [Gan77b] on page 8 we find the following useful remark for determining
whether a function f € C*°(G//K) is admissible.

REMARK 5.4.2. For a function f € C*°(G//K) we consider its Abel transform.
Here, we use the formula for the Abel transform given in [W1il91, (9.37)]. We define

Fr(ay) = Fy(t) = ef! /N flagnm)dn,

whenever this integral is finite.

The transform FY, if defined, is a smooth function on A resp. R. As a function
on R it is even by the bi- K-invariance which translates to a Weyl group invariance
on A. If Fy also satisfies for some € > 0

(5.26) sup(exp(po + &)[t]) | F ()] < oo,
teR

then wr(f) is admissible.
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PROPOSITION 5.4.3. Let G = SO,(1,1), mr the right-reqular representation of
G on T\G, where T is a uniform lattice, and let fr as defined in (5.21). The

function fy, is admissible for Re(k) > 2pg. In particular, the operator wr(fr) is of
trace class for Re(k) > 2pp.

PROOF. We make use of the criterion from [Gan77b] recalled in Remark 5.4.2.
Thus we have to compute the Abel transform Fy, and check (5.26).

Fp (t) = epot/ fr(agn)dn
N

9 —k
(5.25) epot/ (COSht+,LL|6t> du
Rl,—l 2
2.t \ F
pot h*kt/ 1 |’LL| €
e RI-1 +2cosht

= 2P0 cosh™Ftro t/ (1+ |u|2)_lC du

RI-1

where we applied for the last equation the coordinate transform u — e~*/2y/2 cosh'/? ¢
u. Thus e”!l|F, (t)| behaves as e(2ro~Re(®lt] for large |¢]. O

Let us then assume that the automorphic eigenfunction ¢ on X with eigenvalue
p=—5(po+ ;%), r € at = C, is not trivial, so fF\G w(x)dx = 0. Then the first
summand in the formula for ¢ - mr(fx) in Theorem 5.2.4 vanishes and the trace
computes for [ > 3 by (5.23) to

T mr(fe) = 3 / fenayman) 3 de (xa * Ly (9)) (n)dn

1#[y]eCT reM

Z Zd // l2fk eXp —sXe,m” mn,mexstl)

1#[7161“ reM
“(Xr * Ly(p)) (m - exp s X, )dsdm,

where we used polar coordinates to obtain the second equality. We recall that
if we identify N = R!=! 4+ X, see (2.8), then

/ f(n)dn F(exp X, )du
N RI-1

= / / fdSds
0o JoB,(0)

— wl_l/ slfzf(exstel)ds
0

for radial functions f, i.e. f(n) = [,, f(m-n)dm for all n € N. Here B1(0) = {z €
R 2] < 1) and wy_q = |8Bl( )| with respect to the Lebesgue measure in R!~2
for [ > 3. For | = 2 we set wy := 2.

Now we plug in equation (5.23) to get
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Tr (¢ - mr(fr))

- Z Z // lsz eXp sXe,m™ m,ymexstl)

1#[716F ﬂ'EM
“(Xr * Ly()) (m - exp s X, )dsdm

(5.23) Z Z/ / s 2 m;n_l)1’152+(1+32)coshL,y>

175[7161“ reM
“(Xr * Iy () (m - exp s X, )dsdm

1 —k
oo hL.— m
= E E d, cosh™ L// 2 2 oS By (m,y )1’1 +1
cosh L,

175[7]€F neM
“(Xr * Iy () (m - exp s X, )dsdm

_k‘-+l*71 ].
= w_ cosh 2 L d,r/ -
1 Z v Z (COShL’y_(m:,Yn—l) -1

—— M 2
1#[y]er €M 1.1)

A —k cosh L
./0 512 (32 +1) " (xx * Iy (9)) (m - exp \/coshLV — (m’kil)l,l sX51> dsdm,

~

—k

cosh L,
cosh Ln,f(mfynfl)lyl

where we applied the transformation s +— \/ s to obtain the last

equality.
We define for the automorphic eigenfunction 1 # ¢, v # 1 and m# € M

1 b —k
C((,O,’Y,’IT, k) = wl*ldﬂ / — / Sl_2 82 +1
M (cosh L, — (7712”“1)171)1?1 0 ( )

cosh L
5.27 (xxx L . il X, | dsdm,
(5.27) (X * Iy () <m exp \/COSh L, — (mm_1)1,15 41) sam

Y

L,=/2(- 1)_117 > 0. Thus we can write for Re(k) > 2po the trace of ¢ - mr(f)
for any nontrivial automorphic eigenfunction ¢ as

(5.28) Tr (¢ - 7r(fr)) = Z Z c(<p77,7r,k)(coshL7)_k+”°.
1#[7]€CFWEJ/\-/[\

For this special choice of fi we call this trace (5.28) the auziliary zeta function
for k € C, Re(k) > 2po,

(5:29)  Rikig)i=Te(o-mr(fi)) = S S clp,ym k)(cosh L)+,
1#€CT reif
where py = p(Ho) = 5.
We will often omit the argument of the (auxiliary) zeta function and write R(y)
(resp. Z(p), see the next section) instead of R(k;p) (resp. Z(k;¢)).

REMARK 5.4.4. In (2.7) we have shown that | X, |? = 4(1 — 1), i.e. 5 LlXel
has unit length. On the slice

Sm 1= m - exp R+Xe1 =expRTm - X, =exp RTm

€1

oi—1
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the function d (xr * I,(p)) satisfies for [ > 3, see (5.18),

e (e % Iy (9)) (exp s (- X)) = e (o % T3 () (exp%/ms (2@%))

(=1)7 (41 = 1)) dx ((2\/ﬁ> X *H(@)) ORE

1 — pn)2
o F <a+p,b+p71+2 (f(’)—d;—ﬁ)

= (1%l ((m- Xe)™ X % 1)) (€) - 5
1— 2
ol (a +p,b+p,1+2 % —d;—52>

for some constants a, b, d, p depending on the eigenvalue p, m and the slice .S,,. For
[ =2, see (5.19)

Xe
L@ewsXa) = 1) (ews’y)
1
= (/ 80> '2F1 (a,b,;—52>
. 2
Y0
1 13
2i Xip|-s-2F — b+, =87
+7I</C;O 1@)821<a+27+2727 S)

REMARK 5.4.5. For the case of G = SO,(1,2) we note that N = {expuXe, :
u € R}. It follows thus from (5.6), as M is trivial,

O, (fi) = /N fe(n~ayn) L, (9;) (n)dn

/jo fr(exp(—uXe,)ay exp(uXe,)) I, (p;)(expuX)du

(/

Y0

° 1 1
+2i </ Xelcpj> / fr(exp —uXayexpuX) - -u-oF; (a+2,b+ 2,2;u2) du.
C’YO — 00

The restriction f|y for any f € C(G//K) is even, see Corollary 3.4.2. Hence

> 1
<pj> / fu(exp(—uXe,)ay exp(uXe,))2 F1 (a7 b, 5; —u2> du

- 277 2'2 4

& 1 cosh L
_ . 2 —k T2 Y
Oy(fr) = (/ go]> /_Oo(u +1)7"Fy (a,b, 5 U ,/rh%_ 1) du.

We will now come to the theorem which shows that the auxiliary zeta function
is defined at least for all k € C with Re(k) > 2pp.

i 1 13
uf(exp(—uXe,)ayexp(uXe,)) - oF1 (a+ 2,0+ j—— | du=0

and

THEOREM 5.4.6. Let X = G/K be a real hyperbolic space and T C G a uniform
lattice. Let ¢ be a non trivial automorphic eigenfunction and k € C. The auxiliary
zeta function R(k; @) converges for Re(k) > 2pg.
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PRrROOF. From Proposition 5.4.3 it follows that ¢ - mg(f) is of trace class for
Re(k) > 2pg, because if mr(fx) of trace class then also ¢ - mr(f) as ¢ is bounded.
But then also Tr (¢ - mr(fx)) converges for Re(k) > 2pq.

5.5. From R(p) to Z(y)

From the auxiliary zeta function R(p) we can also derive the zeta function
Z(p) via the following lemma, which can be found in [AZ07, Lemma 9.3].

LEMMA 5.5.1. Let k € C and y € (1,00) then there exist coefficients B(k;m),
which tend to zero for m — oo, such that

k 0o

1 — —-m

<1— 1—> =y * > Blkm)y™™
Yy m=0

Further, B(k;0) = 27% and k — B(k;m) is holomorphic for any m € Ny.

PRrOOF. Let y € (1,00). For k € C we find by the binomial theorem

(-

Il
/N
—

I

[~]e
o
RS
3 (SIS
N———
I
N
3
|
3
N———
=

|
<
=
~—
(]
N N
3
+ N|—=
—_
SN——
I
Naw
3
@\
3
N——
e

Now we assume temporarily & € Ng. Then by induction and Cauchy’s product
formula we find coefficients S(k; m) such that

o0 k o0
(5.30) (Z(m 1)(—1>my-m> =3 Btk
m=0

m=0

_|_ (SIS

where
z 1
e £ (1)(4)
rid...+rr=m,r; €Ny m+1 re+1

In particular, 8(k;0) = 27%. Let now z € (0,00) and k € C arbitrary. Once
again the binomial theorem gives

& = (1+(z—-1))

(5.31) = i i (’;) (7;)(1)“"2’”.
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1

Solet k € C again be arbitrary. We take for z in (5.31) the series Y7 (,,.2 ) (=1)"y ™™ (=

y—+/y%? —y). Then by (5.30)

(S,

_|_l\.’)\>—t

—_
N~
=
3

|

3
~—
ol

I
Mg I8
i~
—~
~—
TN
V)
N

|

=
T
/N
(]2
ey

3
_|_l\.'>\>—t

—_
N~

=

3

|

3
~—

o m=0
£ iz_; (’;) @,B(s,m)(—l)”) v
= mf:oﬁ(k;m)y_m

In particular,

B(k;0)

I
WK
WK

P

N

-2 () () -()

Finally, k — S(k;m) is holomorphic as k > (¥) = w is holomor-
phic for [ € Ny.
O

Now we come to the definition of the zeta function

(5:32) Z(kig)i= Y Y elpy,m ke B,

1#[YECT nef
PROPOSITION 5.5.2. The zeta function Z(k; @) converges for Re(k) > 2pq.
PRrOOF. This will follow by the next lemma.

LEMMA 5.5.3. Let k € C with Re(k) > 2pg. For any v # 1 there exists a
constant C() > 0 only depending on ¢ such that

> elpv,m k)| < Clp) - Lye ok,

T(EJ/\T

Here L, > 0 is the length of the closed geodesic [y] # 1.



72 5. THE ZETA FUNCTION ON {Re(k) > 2po}

We start with the orbital integral O, (fi) for v # 1 which equals by (5.6)
0.() = [ fln™aymm)E () n)dn
Lo (ol 1 ) cosh L) 1 ) exp X
, where (m)1,1 as in (5.24)

_ m—1 u 2 -k
= cosh™* L, /Rl <(m.y )1’1C0|sh|L (1+ u|2)> L, (p)(exp Xy )du
-1 -

_ —k
_ (m2 1)1,1
= cosh L, /lel <|u|2 (1 - CJST +1 L,(¢)(exp Xy)du

—k my )i 2 | 1\—k
= cosh™" L, (1 cosh 5 ) - (Jul* + 1)1, (p)(exp Xp(u))du

= cosh” ¥ L (cosh L., — (m7' 1) 1)~ P0 /L 1(|u\2—|—1)*’“I,Y(gp)(expXT(u))du
RI—

= (%),

where T'(u) = ((1—(m21_1)1,1 cosh™ L)~V 2uy, ..., (1—(mfyn_l)1,1 cosh™' L)~y )T,

By comparing the right side of the definition of R(k; @), (5.29), with the last equa-
tion (x) for O, (fi) = cosh~F+ro Ly cqiclp, v, m k) we see that
S clprrvm k) = cosh ™ £,:0, (5) @ feosh Ly~ 1) [ (a1 ML (9)fexp X
WGJ\/\/I B
Now |(m,’;’fl)171\ < 1 and ¢ is bounded as a continuous function on compact
I'X, so
L@ epXra)| < [ lelay aexp Xrg)lda
A/ <aq,

< C —CL,

A/ <aqg>
for C := maxex . {|p(x)|}. For k € C with Re(k) > 2pg let

(5.33) Clp; k) :=C (Ju|? +1)"Re® gy > 0.
RI-1

The integral
/ (Jul? + 1)~ F®dy
lel
surely converges for all k € C with Re(k) > 2py and
_ _ wi—
[P0 ® < [ (1) mda = 252 B, o)
RI-1 RI-1

for all k € C with Re(k) > 2py. Hence,

3" clp,,mk) (cosh L, — (m )y ,1) "0
71'61/\/[\

[ + )7L (o) exp X

IN

el /RH (Jul® + 1) 7R WL () (exp X (uy ) du

< Cly)- Lve_pOLw
with C(¢) := C(¢;2po), see (5.33). O
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We continue with the proof of Proposition 5.5.2. By Lemma 5.5.3 we know
that for Re(k) > 2pg

1Z(k;0)| < Clp) Y Lye oo
1;&['y lecr

But for any 1 # v € CT we can find some natural number n such that
n—1< L, <n. Hence Lve_"oLW < pe~ro(n=1) — egrope=ron Tt follows that
Zl;&h}ecr Lve_"oLW is convergent as it is bounded from above by

0o
ePo E ne_Pom
n=1

which is convergent as py > 0.
O

REMARK 5.5.4. We follow Anantharaman and Zelditch in calling R(o) and
Z(0) zeta functions, instead of logarithmic derivatives of zeta functions, which
would be more correct in view of the classical Selberg Zeta function

CTIIT (1 e o).

[ 5=0

Normally one would pass from % In Zg to Zg by showing that d% In Zg has
simple poles with integer residue. As we will see in Chapter 7, Z(o) still has simple
poles in some cases, but we can not guarantee that its residues are integers.

THEOREM 5.5.5. Let X = G /K be a real hyperbolic space and ' C G a uniform
lattice. Let ¢ be a non trivial automorphic eigenfunction and k € C. We have

= > B(k — po;m)R(k + 2m; )
m=0

for k € C with Re(k) > 2pg, where the coefficients B(k — po;m) are determined by
Lemma 5.5.1.

PROOF. A slight modification of the proof of [AZ07, Lemma 9.3.] works also
here. We have e~ - cosht = £(1+ e~2") for t € R. Hence,

1 k—po .
(e h)rro = <2) (cosh )~ (F=ro) (1+e2) po
1\ F—po . o
= (2) (COSh t)_( —po) (1 + (COSht — ginh t)Q)

k—po

= () et (1s (- viEn) )

where y = cosht and using cosh® t — sinh® ¢ = 1. We continue with

1 e k—po
(e7)F P = () (cosh t)~(k=ro) (1 + (7 -2V P - 14y - 1))

2
1 k=po k—po
= (2> (cosh t)~(k=ro) (2y2 —2y%/1 — y—2>

k—p() —
= (;) (COSht)_(k_pO k o (1 )k ro
k—
= (Cosht)f(kfpf))( k— PO( / ) po
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We assume now t # 0, so that cosht > 1. By the preceding Lemma 5.5.1 there
are coefficients 8(k — po;m) such that

(1= VI 2) " = ) S Bk o))

m=0

Hence,

(cosht)_(k_po)(yg)k_po( —(k=po) Z Bk — po;m)(y Z Bk — po;m (COSht>_(k+2m_p0).
m=0

m=0

Thus, we have shown for any t # 0
e ) k=po — Z Bk — po;m (cosht)_(k+2m_p°)

and it follows

Z Z c(@m%mk)e*(kfpo)h = Z Z c(@n, vy, T, k) i Bk — Po;m)(COShLW)f(kJ&m*pD)

1#Y reM 1#Y reM m=0
oo
= > Blk—poim) D> Y c(pn,, 7 k)(cosh L)~ FF2mro),
m=0 LY el
where L, = /20 — 1) ‘1, > 0 for 7 # 1. O

5.6. Simplifications - the zeta function for SO,(1,2) and SO,(1,3)

In this section we want to explain how the zeta function

R(kio) =Y > clp,7,m k)(cosh L)~
175[7]€CF7T€I/\/[\

resp. c(p,7,m, k) simplify if " satisfies a special property. Namely, we have seen
before that every v € I' is conjugated in G to some aym., € AM. The assumption
we make is that m. is always central in M.

This assumption is satisfied for any uniform lattice, if G = SO,(1,2) or SO,(1, 3).
In this case M is trivial resp. isomorphic to SO(2), i.e. abelian. Unfortunately, we
do not know of any examples in SO, (1,1), for I > 3. The case SO,(1,2) has also
been considered in [AZO07].

Let 1 denote the trivial representation of M on C and @ # 1 a non trivial

automorphic eigenfunction with eigenvalue p = ff(poJr po) Further, let us assume
mi = m for all m € M and v € I'. We now look at the definition (5.27) of

c(p,y,m k)

1 > _k
C((pv v, T, k) = wl—ldﬂ/ — / 5172 82 +1
M (cosh L, — (ml/"’l)m)% 0 ( )
cosh L
: i I . 1 Xe dsd 5
(e * Iy () (m exp \/COShL7 — (mzﬂ)ms 1> sdm

= (%).
In Proposition 2.2.6 we observed that for o0 € C(I'\G), n € N and z € M,, A

/ a(a,;lazn)da = / U(a,;lxzn)dx = / a(a,;lxn)d:c.
A/ <aqy> a,Tya;'\G a

—1
anmay yTyasy \Gaym.,
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In particular this is true for z € M,, = M by assumption. It follows that the
weight function

L= [ e ada= [ ey ten)ds
A<y, > ayyai " \G

any My

is also left-M-invariant since M,, = M, i.e. Go, m, = MA for every v € I'. Thus,
Xx*1,(¢) = 0forall m # 1 and c(y, v, 1, k) = 0 for any non trivial 7. Then R(k;¢)
simplifies to

(5.34) R(k;ip)= Y clp,7,1,k)(cosh L) ~FFro,
1#[y]eCr

But # = 1 implies p = d = 0, see Theorem 4.3.1, hence we get the following
proposition.

PROPOSITION 5.6.1. For ¢ # 1, v # 1 and k € C with Re(k) > 2pgy the
coefficient ¢(p,v,1,k) can be computed to

cosh Ly — (mn)1,1)P0

oy 1k) = wl_lm(/ ¢>( |

o hL
5.35 . 22+ 1) F (a7 b, po; —s> COSH My ) ds,
(53) /0 ( )b po cosh L, — (my)11

where

1 2P0

(cosh L, — (my)a,1y)?°  erolvdet (1 — Ad(myay)~tn)’

For [ =2 and | = 3 we thus get

R(k;p) = Z c(¢,7,1,k)(cosh L,)~F+1/2 1 =2

1#[y]eCr
resp.
R(kio)= Y el L k)(cosh L)1 1=3
1#[v]eCr
where
2([ <p) oo 1 cosh L
1Lk)= 0’/ 20 1) R (a5 st ) d
C(@v’% 9 ) SthL‘y/2/0v (S + ) 21| 4@ 72’ 5 COSery—l N
for [ = 2 resp.

2 (.., ¢)

cosh L,

0
1Lk) = 240 1) 7R (a,h, 15 -5
C(%% ) ) cosh L’y — (m’y)Ll /0 s (S + ) 241 (a7 y 1y =S

for | = 3.

cosh L, — (m,

s
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PrOOF. First, by the assumptions on m., and as I, (y) is left-M-invariant we
get

1 o Lk
clp, 7, 1,k) = wz_l/ — / 72 (s +1
M (cosh L, — (m;"‘l)l,l)l71 0 ( )
cosh L
I . 7 X.. | dsdm,
’7(90) <m exp \/COSh L'y . (m?71)1,1 s 1) sam

1

° —k
= w1 1;1/ =2 (52+1)

(cosh Ly — (my)11) 2 Jo

cosh L
I at X, | d
M) <exp \/605th iy ey 1) 5

= ()

The equality in (5.35) of Proposition 5.6.1 then follows directly from (+) and
the following observations

cosh L, — (my)1,1

cosh Ly — (my)1,1

cosh L cosh L
L,(p) <exp\/ il 3X61> = IL,(¢)(e)2F1 (a,b, po; —s2 il >

2(1-1) (/ <P> 2 (Chb, po; —s°

see equations (5.19) for | = 2 resp. (5.18), [ > 3, with p = d = 0 and also (5.11)
and Remark 5.4.4. To get the second equality about (cosh L, — (my)1,1)) 7" we
use two observations.

LEMMA 5.6.2. Leta € A* andm € M. The map h(ma) : n — m~ta " n"tamn

is a diffeomorphism of N and the Haar measure dn transforms to
dh(ma)(n) = det (1 — Ad(ma)~'|s) dn.
PROOF. See [Hel94, Ch. I Lem.5.4.] or [Wil91, Th.11.24.]. O
COROLLARY 5.6.3. For integrable functions f on N, a € AT and m € M
/N f(n)dn = det (1 — Ad(ma)"|,) /N f(m™ta"'n"ramn)dn
resp. if f is also bi-K -invariant, then
/N f(an)dn = det (1 — Ad(ma)~'[s) /N f(n"tamn)dn.
We already know that for s € R

Jr ((exp —sXe, )aym(exp sX,,)) = (f(my)17152 + (14 5?) coshLﬂ,)_k ,
see (5.23). Also for t € R

9 N —k
fr(exptHpexp sXe,) = fr(arexpsXe,) = (cosht + Zet) ,
see (5.25). We finally recall the polar coordinates formula

/ f(n)dn = w1 /OO 572 f(exp s X, )ds
N 0

for bi-M-invariant, integrable functions f on N. Thus for f = fi, a = a, =
exp L, Hy and m = m, we get that

cosh L,

cosh Ly, — (my)11

).
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1
det (1 — Ad(m~a-)~1]y) /ka(ayn)dn

Wi—1 o B
B X
det (1 — Ad(m~a,)~1|n) / / fi (aymexp sXe,m™") dmds

Wi—1

= Xe
det (1 — Ad(m~a,)~ / / fi(ay exp sXe, ) dmds

Wi—1 1—2 -
— v h L d
det(l—Ad(mwan—lm/o ’ <2 eos ) §

oo 2,L —k
w1 k 1o [ sPet
= h™ L — 41 d
det (1 — Ad(m~a,)~1]a) o8 ’Y/o y <2003hLV + > s
Wi—1 —k ERESY S R -k
= h™ L 2 “v(2cosh L) 2 1)7"d
det (1 — Ad(m~yay)~1a) cos " (2cosh L) /0 s 1) s

Wi—1 1l —k+i5t a2 —k
- 2% e~ F Ly cosh T L 1)"*d
et (1= Ad(moa) ) e cos 7/0 sTA(s* 4+ 1)""ds
= (%)

equals

/fk(nflm,ya,yn)dn = wz_1/ 5172/ fx exp—sXel(mgnfl)aﬁ,eXstel)dmds
N

= w_ 1// l2 m?71)17182+(1+52)coshL7) dsdm,

(77”[,,Y )1 1= (m lmm)m

—k
= w_1cosh™® LW/ / si=2 (82 <1 - (m)) + 1> dsdm/
amJo cosht

71

_ (m!
= w_1cosh™ L 1— (m3 s —k
Wj_1 COS ’Y/M < coshi L, dm/ ds
— 1
- w_jcosh™* =T / d / 2(1
Wj—1 COS y ' \cosh o, — (m;’fl m + 52

= (*x).

Therefore, Corollary 5.6.3 and comparing (x) to (xx) gives

-1

/ 1 : d 1 2151 Y
m = e v,
a \cosh Ly — (m7~ ")y det (1 — Ad(m~ay)~1n)

_1)(171) = (m)1,1 is actually independent

In particular if m., is central then (m
of mand as [,, =1

m
v

-1

- - dm = =1
ar \cosht — (my)11 (cosht — (my)11) =

1 -1 11

det (1 — Ad(m-a,)~1,)

kds
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Hence, we can replace

1 1
(cosh Ly — (my)1,1))P° (cosh Ly — (m)(1,1)) =

(5.36) =

in the first equality of (5.35).

We can even get rid off the integrals in the formula (5.35) for ¢(p, v, 1). Putting
cosh L, (5.36) 2P0 cosh L,
(cosh Ly—(mm ™ )11)  — det(l—Ad(myay) =t a)eP0lv

compute for Re(k) > 2pp the integral

we have to

for the moment z :=

22 —k 2 cosh L,
1 F b, po; — d
/0 s (8 + ) 2471 (a, yPO; —S COShL,\/ — (m'y)l,l S

(oo}
= / si=2 (32 + 1)71C 2 Fi(a,b, po; —28%)ds.
0

By the transformation s — /s this turns into

1 s
(5.37) 5/ P s (s 1+ 1) 0 F (a, b, po; —28)ds.
0

Noting that py = 1—71 the transformation s — 2 yields

8

1—2

s 53 (s +1)"*3F 1 (a,b, po; —2zs)ds

(=)

Ead
|
b}
S

/ 5P Y(s + 2) "%y Fy(a, b, po; —s)ds
0

L'(po)I'(a — po + k)I'(b — po + k)
T(k)T(a+b—po+ k)

oF 1 (a—po+k,b—po+kat+b—po+kl—2z)

lzk_PO T(po)I'(a—c+K)I'(b— po + k)

2 (k)2

oF1(a—po+kb—po+kat+b—po+kl—z)

Uiy Dlpo)C(k— )T (kD)

2 (k)2

oF1(a—po+k,b—po+k,k;l—2),

k—po .

z

Il
N = N = N =
I

where we used an integral transform for hypergeometric functions, see [Bat54,

20.2 (10)] which is valid for Re(a — pg + k) = Re(k — b) = Re(k — 2 + ) > 0,

Re(b — po + k) = Re(k — a) = Re(k — 2 — &) > 0 for k € C with Re(k) > 2po.
From (5.35) we thus get
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cosh L, — (mn)1,1)P0

C(@?Vvluk) = wl,lm </ SD) ( 1

1 cosh L, "7 T (po)T (=3 (po — i) + K)T (=3 (po + ir) + k)
2 \cosh L, — (m)11 (k)2

1 1 cosh L
oFy (=2 (o0 —ir) + K, —= i)+ k k1 — :
241 ( 9 (o —ir) +k, 2('00 +ir) + &, k; cosh L, — (mfy)l,l)
wi—14/2(1 — 1) (fcm ‘P) ( cosh L., )k_on
= 2 cosh Ly, — (m)(1,1)
.F(pO)F(—%(PO —ir) + k)L(=%(po +ir) + k)
(k)2
1 1 cosh L
5.38) 2Py (=5 (o0 —ir) +k,—5(po +ir) + ki ki 1 - :
( ) oFy ( 5 (po —ir) + k, 2(p0 +ir) +k ks cosh L, — (ma,)m)
h 2P0 cosh L, _ cosh L,
where det(1—Ad(m~as)=1|n)eP0ly T cosh Ly—(my)1,1°

REMARK 5.6.4. Recall the definition (5.27) for ¢(y, v, 7, k). For G = S0,(1,1)
with [ > 4 the definition of ¢(p,~,m, k) can be simplified at least one more step by
using a computer algebra program like MATHEMATICA in order to carry out the

. . hL
ds-integration. Let z := co =y , then
coshL,y—(mL{" )(1,1>

0o 2
/ sSITH? 4 1) TRy Py (a +p,b+p, 142 (pz) - d; —zs2> ds
0
1 Zk*pO*pFO + 33/ (1= 3)2 = 16d)T'(k — a)I'(k — b)'(p — k + po)
2 D(14+k—po—p+ 2/ —3)2—16d)(a+p)'(b+p)
1
3k ({k,k—a,k—b},{’”l_p—po,1+2\/(1—3)2 —16d + k — po —p};Z)

T'(k — py — p)T 1
( por(i)) (p0+p)3Fz({a+p,b+p7po+p}7{1+2 (53)216d,pok+p};2>)~

+

Here

. S (@)k(@2)r(as)r 2
o anadd (R .7;;) (B1)k(B2)k k!

denotes the generalized hypergeometric function, see for example [Olv74, §11].

5.7. 0 =1 - the classical Selberg zeta function

In this section we want to compare the (classical) Selberg zeta function as one
can find in the book [BO95] with our zeta function Z(1) derived from R(1). So
we recall that we have considered the auxiliary zeta function from (5.29)

R(kio) =Y > clp,7,m k)(cosh Ly)~F+e
1£[v]€CT nehf
and the zeta function from (5.32)

Zkio)= Y Y clpy,m k)em B0ty

1#[y]eCT we]\//f
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From now on we fix ¢ = 1 and go back to Theorem 5.2.4 with 0 = ¢ = 1. Then
we note that in this case the weight I, (o), see (5.5), is a constant which equals

Lo L !
/ da:/ R R R S
Af<an,> 0 Ny 2(1-1)

see Proposition 2.2.3, where [, is the length of the prime closed geodesic belonging
to the conjugacy class of . In particular, the weight is M-invariant and hence
X * Iy(0) = 0 for any m # 1. Hence,

(5.39) Tr(o-7r(f)) = Te(mr(f)) = f(OI\G] + w/ f(n™aymyn)dn

1#[y]eCT
for any f € C*°(G//K) such that mr(f) is of trace-class. We note that
=B(k—po, k) = / w2+ 1) e = %/ y"T_("yfé(Hy)*’“dy
0 0
_ Tk = po)l'(po)
21 (k) ’

see (2.24). Furthermore, w;_1 is positive by definition. Now we modify the function
fx from (5.21) by dividing it by the non-zero number, see (6.15),

2p°wl_1 / $l72(52 + 1)7kd5 = 2p“71wl_1B(k — po,po).
0

Then replacing fx by
fr
290—1wl_1B(/<; — po.po)

in mr(fk) gives still a trace class operator and in the proof of Proposition 5.6.1 we
have computed

1 —
/ka(n aymyn)dn = det(l—Ad Meyly) ™ /fk @)

1 —
_ 9p0—1, poth—lB(k*POaPO) cosh—k+Po L,
det (1 — Ad(myay)~1]a)

Hence,
1 _ e b —k+po
270 oo 1Bk — po.po) / fe(n taymyn)dn = dot (1= Ad(moa) 1) cosh L,.
We define for Re(k) > 2pg

R(k;1) :=R(k) := E L"’Oe_pOLW (cosh L )(—k+po)Lv
’ det (1 — Ad(myay)~1]a) v
1#[y]eCT

resp.

L’YoeipolnY
— Ad(mya,)~ta)

e(*lﬂ”PO)Lv

(5.40) Z(ki1) = 2(k) = ) det (1

1#[y]eCr
It follows immediately from (5.39) that

fr N Jr(e) .
ﬂ(”R (wlﬂﬂolB(k—po,po))) w20 Bk —porpa) T\

fr 1
Tr — - D\G
(WR (wz—12p°13(kpovpo) wi—12°P0~1B(k — po, po) T\

R(k)
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Hence, R(k) is well-defined at least for Re(k) > 2py. Also, the proof of 5.5.5
works as before to get

oo

Z(k) = Z B(k — po; m)R(k + 2m)

m=0

for k € C with Re(k) > 2po.
We compare now Z to the logarithmic derivative Lg (s, o) of the zeta function

Zsa(k,1) =[] T det (1 — (8" (Ad(mya-)]) e—<k+90>lw)
1#[y]eCr r=0
from [BO95, Def. 3.2], when x = 1 is the trivial character of ', 0 = 1 the trivial
representation of M and S” denotes the r** symmetric power of an endomorphism.
By Lemma 3.3. in [BO95] Zg1(s,0) converges for Re(k) > po and Lg1(s,1) is
given by
(5.41)

d ! (=n* — k)l
LSJ(’C, 1) = - ln ZS,l k‘7 1)=2. R e(l)() ) v,
dk (k1) 1;&[72]6201“ ny det (1 — Ad(myay)|n)

Recall that v,” = v, that is I,/n, = l,,. If we compare (5.40) with (5.41) we
see using

det (1 — Ad(ay)]n) = €*°tdet (1 — Ad(a_;)|w)
that up to the constant 2(—1)!"1, Z(k) equals
(5.42) Zsa(k = po, 1),

in the special case that for all v € I', m, is trivial. In particular for [ = 2, i.e.
G = S0q(1,2). More general let us define

l’Yo

= det (1 — Ad(ayms) )
We recall that for v € T', I, = y/2(l — 1)l,, thus

20 =(V20-1)" Y elaymy)e

1#£[y]eCcT

claym.) :

and
Zsa(k+po, 1) =2(-1)"" > claytmy e M
1#[y]eCT






CHAPTER 6

The spectral trace

In this chapter we want to compute the spectral trace of the trace class operator
¢ - mr(fx) from Chapter 5. We obtain a general formula involving Wigner distri-
butions which is valid for all rank one symmetric spaces, see Theorem 6.1.3 and a
refined version thereof which involves Patterson-Sullivan distributions in Theorem
6.2.18. A careful analysis of this refined trace formula will show that we can define
a meromorphic continuation of R(¢) and Z(¢) by Theorem 6.2.18. This will be
done in the next chapter.

6.1. First computations on the spectral trace

Let X = G/K be a symmetric space of noncompact type of rank one, G =
NAK, M = Zkg(A), T C G a uniform lattice and B = K/M the boundary of
X = G/K. We denote by SXr the unit sphere bundle of Xp = I'\X. It can
be identified with I'\G/M, see Lemma 2.2.5. We also identify the dual af of the
complexification ac = a®C with C by sending a linear functional A on a¢ to A(Hy),
where Hj is defined in (4.9). By Q we denote the Casimir operator as in (2.2).

Further, let {¢;};en be an orthonormal basis of L?(Xr) of automorphic eigen-
functions, in particular

Qpj = —(\] +p3)w; » 7 €No
for A; € C and ¢;(vg) = ¢,(g) for v € I'. Then one can assume that
0=A\+p5 <A +p5 <,

see [Wil91, (12.12)]. Hence, there are the two cases A; € R or A\; € iR and there
are only finitely many A; in the latter case, see [Wil91, Cor. 12.10]. Thus, when
we consider asymptotics, we can assume that A; € R. If ¢; is an eigenfunction
with A; € R, we say that ¢; or A; lies in the principal series, otherwise we say that
@ resp. A; is in the complementary series. Let jo € N be such that ¢; is in the
complementary series iff j < jo. We make the assumption that A;, possibly equals
0, while A; # 0 for all j # jo.
We recall that we defined the horocycle bracket by

(9K, kM) = A(k™'g),

see (2.19), where A : G — a is the projection belonging to G = NAK. One can
show that there is for any automorphic eigenfunction ¢ with eigenvalue —(A\2 + p3)
some T, in the dual D'(B) of C*>°(B), such that for z € Xp

(6.1) P = (PP T ) = [ DT ),
B
see [HS] or [Hel01, Ch.II §4 C(iii)]. T, is unique up to Weyl group action. That is,
if we assume Re(\) > 0, then T, is unique. We will always assume that Re(\;) > 0
for all eigenvalues u; and call Ty, boundary value of .
We state an analogue of Proposition 2.10 in [Zel89] for the special case of an
automorphic eigenfunction. It shows that the operator mr(f), defined in (5.1), is

83
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diagonalized by the orthonormal basis {¢;};en. Finally, we recall the definitions of
the spherical transform S(f,-) in (2.21).

PROPOSITION 6.1.1. 7r(f)p; = S(f, —\;)¢;, where f € LY(G//K).

PRrROOF. [Gan72, Th.7,Cor.8 and following remark]
O

By the invariance of the spherical transform under the Weyl group we also have
S(f,—Aj) =S(f, A;) for all j.

Let us fix an automorphic eigenfunction ¢j, from the orthonormal basis {¢;}
as we did in Section 5.3. We suppose in addition that f € C°°(G//K) is such that
mr(f) is of trace class, for example f = fi from Section 5.4. We then conclude
that, as for Proposition 5.1.1, since ¢y, is bounded, that ¢y - mr(f) is also of trace
class and maps L?(I'\X) into itself.

In contrast to Chapter 5, where we computed the trace by integrating a kernel
for ¢k, - mr(f) over I'\ X to get the trace, we now sum matrix coefficients which we
build from pairing ¢, - Tr(f) with the orthonormal basis {y;}. Explicitly,

Tr(px - Tr(S)) = Z(sﬁk Tr(f)@j, 05 L2(xr)
Z(s@ké‘(f, —X\j)Pi, P L2 (Xr)

(6.2) = > (okpis 0 L2y S(f, = Ag).
i

Prop;G.l.l

Next we define a map Op from C(Xr) into the bounded operators on L?(Xt)
by
(6.3) Op(a)p; = a- ¢;.

Then we can infer from (6.2)

Te(on-wr(f) = Y _(0eei i) r2xnSF:—X)).

J

> (Op(er)2;, ) 12(x0)S(f, =2y).

J

REMARK 6.1.2. This definition of Op is a special instance of a 1 DO-calculus for
symbols from [Sch10, Def. 4.14.], that is, a map Op from symbols a € C*°(X x B)
into continuous operators from

C7(X)e = CF(X),
resp. from the dual of C*°(X)
&'(X) = (C*(X)) = D'(X) = (C (X))
into the dual of C2°(X), see [Sch10, Th. 4.15.]. For a € C°(X x B), Op(a) is
given by
(6.4) Op(a)u(z) = 1 / / (AP0 F(y X bYa(x, b)dble(N)|~2dA,
2 at JK/M

where F(u, A, b) is Helgason’s non-euclidean Fouriertransform, see (2.20), ¢()) is
Harish-Chandra’s e-function and we identified G/M = X x K/M, i.e. a(z) = a(z,b)
for z € G/M, x € X, b € K/M. Note that this integral is finite, as F(u, A, b) is
rapidly decreasing in A, see [Hel94, Ch.III Th.5.1.]. Furthermore, it satisfies

(6.5) Op(a)e(“\'ﬂ))(ZJ)) = a(z, b)e(i/\+p)(2,b)



6.2. FROM WIGNER TO PATTERSON-SULLIVAN DISTRIBUTIONS 85

for a € C(G/M), see [HS, (4.2)] or [Sch10, (4.18)].

The linear map a — (Op(a)g;,v;)r2(x;) is called the Wigner distribution
associated with ¢; on C*°(SXr).

With (6.5) we also see that the definition of Op from [Sch10, Def. 4.14.]
extends (6.3), since

Op(pr)pj(z) = Op(pk) /B e(“‘ﬂ’)@’b)dTw(b) , T,,, € D'(B) boundary value, see (6.1)

/ Op(pr)e A0 GT, (), see [HS, (4.7)]
B

| evtaretroear, o
with Op(a)e @) = q(z, \,b)eAHP@0) - see [Sch10, (4.18)]

= o) [ DT (1) = (0, (o)
for z € X.

To sum up, we have the following.

PROPOSITION 6.1.3. Let X = G/K be a noncompact symmetric space of rank
one and I' C G a uniform lattice. Further, we fix a orthonormal basis {p;}; of
L3(T\X) of automorphic Laplace-eigenfunctions with eigenvalues

— (A2 +1})

and choose oy, in {@;};. Finally, let f € C°(G//K) be such that mr(f) is of trace
class, where TR is the right-regular representation of G on L*(I'\G). For example
f€CX(G//K) suffices. Then gy, - wr(f) is also of trace class with trace given by

(6.6) Tr(pw - 7r(f)) = Y _(OD(2r)es: 05) L2 (sx0)S(f2 ).
J
See (6.3) for the definition of Op(pg).

We call (6.6) also the spectral trace of the operator ¢y, - mr(f).

6.2. From Wigner to Patterson-Sullivan distributions

In this section G/K is at first an arbitrary noncompact symmetric space of
rank one. From Theorem 6.2.7 on we will specialize to real hyperbolic spaces. The
next step then is to relate (Op(¢r)g;, ¢;) to the Patterson-Sullivan distributions.

Recall that B = K/M. We consider the diagonal action of of G on

B® .= (B x B) — A(B),

where A(B) is the diagonal in B x B. One can show that this action is transitive
and that the stabilizer of (M, wM), where w is the non-trivial Weyl group element,
is M A, [HS, Prop. 2.4.]. Then we identify B with G/M A and write g(b, ') for
an element in G with g(b,b') - (M,wM) = (g(b,b") - M, g(b, V') - wM) = (b, V).

We now recall some definitions from [HHS12], [HS] and [Sch10]. For a func-
tion f on G/M the Radon transform on G/M is given by

RE(M,Y) = /A F(g(b,V)aM)da,

see [HHS12, Def. 4.3]. This is well-defined by the unimodularity of A and maps
C*®(G/M) into C*(G/M A), see [ HHS12, Lem. 4.4]. Next we define the so-called
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intertwining operators. For A € ag and a € C(G) we set
Lya(g) := / e*(i)\JrP)H(n—lw)a(gn)dn,
N

see [HS, (1.3)], [Sch10, (6.35)], whenever the integral exists, where H(g k) =
—A(k™'g) and w is the non-trivial Weyl group element. One can show that Ly
maps C°(G/M) into C*(G/M), [Sch10, Lem. 6.30.].

We continue with the notion of intermediate values. For A € af we define the
intermediate value on G/M A

dy(gMA) := elPA+P)H(g)+H(gw))

see [HHS12, Def. 4.1]. Then we are in the position to define Patterson-Sullivan
distributions. We start with distributions on G/M.

DEFINITION 6.2.1. [HHS12, Def. 4.8], [Sch10, Def. 6.12]
For an automorphic Laplace-eigenfunction ¢ with eigenvalue

— (N +p})

the Patterson-Sullivan distribution PS, on G/M is given by

/ a(gM)dPS, (¢M) = (a,PS,) = |  Ra(b,b')dx(b, ¥)dT, (b)dT, V'),
G/M B®)

where T, is the boundary value of ¢.

We call x € C°(G/M) a smooth fundamental domain cut-off, if

> xlvg) =1

yel

for all g € G. Smooth fundamental domain cut-off functions exist. If for example

f € C*(G/M) is such that f equals 1 on a fundamental domain for T', then

x(g) = % is a smooth cut-off.
~yeD

We have the following two Theorems, 6.2.2 and 6.2.10, which are generalizations
of Theorem 1.1 and Lemma 6.4 in [AZO07].

THEOREM 6.2.2. [AZO07, Theorem 1.1], [HS, Theorem 1.1], [Sch10, Theorem
6.40.]
Let a € C*°(SXr). Then

(Op(a)prs pa)r2(xr) = (La(xa), PSy) /s
where x is an arbitrary smooth fundamental domain cut-off.

We will use this theorem to extend Patterson-Sullivan distributions PS,, to the
range L)(C®(G/M)) of the intertwiner Ly. The next lemma allows us to define
Patterson-Sullivan distributions on I'\G/M.

LEMMA 6.2.3. [HHS12, 4.12], [AZ07, 3.5]
LetT € D'(T\G/M), a € C°(T\G/M) and a1,az € CX(G/M) with > a;(ygM) =
yer
a(gM) fori=1,2. Then (a1,T)c/m = (a2, T)q/m-
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PrOOF. We have

(ai, T)G/m = /G/M ai(gM)dT (gM)

= /G . %X(WM Jai(gM)dT (gM)

My~ tgM _ _
e / > x(gM)ai(y~'gM)dT (v~ gM)
G/AlweF

= /G/M X(gM);Fai(v’lgM)dT(gM)

— /G/M X(gM);ai(ng)dT(gM)

— / x(gM)a(gM)dT (gM)
G/M
[

Let now x1,x2 € CX(G/M) with > xi(ygM) = 1 for all ¢ € G and a in
yel
C>(I'\G/M). Set a; = axs, (i =1,2). Then

D ai(vgM) = alygM)xi(vgM) = a(gM) Y _xi(vgM) = a(gM)
~yeD yel’ yel’

and hence, see also [AZ07, Lemma 3.5],

(6.7) (ax1, T)a/m = (ax2, T)aym-
One can show that the Patterson-Sullivan distributions are I'-invariant on
G/M, i.e.
(fov,PSy)a/m = (f,PSp)a/m
forally e T'and f € C*(G/M), [HHS12, Prop.4.10] or [Sch10, Prop.6.13.]. Here

for(g) = f(yg) for all g € G. Thus they descend to the quotient T\G/M and
define there elements of D'(I'\G/M), see [HHS12, Prop.4.9].

DEFINITION 6.2.4. [HHS12, Def.4.13], [Sch10, Def.6.19.]
Let ¢ be an automorphic eigenfunction. On SXr = I'\G/M the Patterson-Sullivan
distributions PS, are given by

/ a(TgM)dPS,(TgM) := (a,PS,)sxy := (xa,PSy)a/nm,
\G/M

where x is some smooth fundamental domain cut-off.

By (6.7) this definition is independent of the choice of x.

REMARK 6.2.5. In [HHS12, Prop. 4.9] it is shown that the Patterson-Sullivan
distributions are continuous distributions on C*°(G/M) resp. C*°(I'\G/M). That

is, there exist a constant C' > 0 depending only on ¢ and a seminorm ||.|| indepen-
dent of ¢ such that

‘<XfaPSLP>SXF| < CHXfH
for all f € C>*(G/M).

We state now a lemma which connects the Patterson-Sullivan distributions on
G /M with those on T\G/M.
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LEMMA 6.2.6. Let f € C°(G/M), then

~yer

(f,PSe)a/m = <Z fo v,Ps¢> :
\G/M

Proor. This follows since PS,, is I'-invariant. By Definition 6.2.4 we have for
any smooth fundamental domain cut-off x and any f € C°(G/M)

<Zf0%PS> <x-Zf°%PSw>

~yer "G/M vel G/M

<Zx (f 07)7PS¢>
a/M

yel’

I'—invariance Z _
= <f ' X ° ’Y 1’ PS¢>
G/M

yel’

= (f,PSe)a/ms

as Z’yEF xo~y~! =1, since x is a fundamental domain cut-off. O

Let a € C*°(I'\G/M) and let m); denote the projection from C(G) — C(G/M)
given by

i (f)(g) = /Mf(gm)dm.

Further, we write f™ := for, for n € N for functions f, i.e. f*(g) = f(gn)
for g € G. Putting a = ¢} and applying the theory of Chapter 4 we obtain:

THEOREM 6.2.7. Let G = SO,(1,1) = ANK, M = Zk(A), X., € n as for
(2.7) and T C G a uniform lattice. Further, let @i be an automorphic Laplace
eigenfunction on '\G/K, then n v (mar(97), PSy,)sxy is bi-M-invariant and a
solution to

Qf == (F+08) f = -+
Po

on N. On the slice expR" X, it satisfies for any j and k for | > 2

exp sXe,

<7TM(90]¢ ) )’PS¢j>SXr = <50k7PSL,0j>SXr : 2F1 (aab7p0; 732) )

where a = (po +iry) and b= %(po — iry) as in Section 4.2. Forl=2 it is given
by

exp sXe 1
(mv(on ), PSp ) sxr = (0w, PSy,)sxr - 214 (a,b,2;—52>

1 13
+2i<X1<PkaPSij>SXF -s-9I <a+ §,b+ > 5; —82) .

PROOF. As  and translations commute
1
Q no_ _ 2 2 n
Pk 1 (Po + 1) Pk

for all n € N. If we express ¢} in local charts of the compact manifold SXr =
I\G/M as ¢} (x;), then all partial derivatives of %@Z(ml) in these local coordi-
nates x; are simultaneously continuous in x; and n. Thus, we can interchange the
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distribution with differentiation using [Sch57, Ch.IV Th.II] to get

Q (n r—>/ / @i (Tgm)dmPS,, (FgM))
nG/MJ M

[ o pwgm) anps,, wo)
nNG/MJM

1 n
n— —f(pg + 7‘,%) / / ¢ (Lgm)dmPS,, (T'gM).
4po N\G/M JM

Obviously, for all my,me € M

/ /(p',;nlnmg(l-\gm)dmpsw(I‘gM) = / /gpk(I‘gmmlnmg)deSW(FgM)
mna/m Jm N\G/M I M

/ /(pk(Fgmn)deSW(FgM)
N\G/M J M

by unimodularity of M and right- K-invariance of ¢j. Hence,

F(n) = / / o (Lgm)dmPS, (LgM) = / or(Tgmn)dmPS,,, (L'gM)
ne/M J M M

I\G/M
is a bi-M-invariant solution on N, in particular at the origin n = e, to
(6.8) QF + up F =0,

where p, = ﬁ(pg + r?) and we can restrict F' to the slice S = expRTX; =
expRT X,,. By Theorem 4.1.7 we know that on the slice S equation (6.8) reads for
bi- M-invariant functions F', see equation (4.6),
9 9 d? 9 -2\ d
(a(Hp)?s” + 2)@ + (a(Hl) + 2a(Hp)) s+ ZT T + i ) F(s) =0.

For [ > 3, by Theorem 4.3.1, the restriction of the function F(n) to the slice is
then given by

— g2
F(s):=FlexpsX1) = F(0)-2F (a’b"’%(z—n>

2
def.of F ex -5
o= <89k pOXI’PSw>SXr ok (aabv Po5; 4(_1)>

— 52
= PS,. <o F} b, po; ————
(or; PSy, )sxp - 2F1 (av 7,00,4@_1))
resp.
F(eXp SX61) = <80]€aPSLPj>SXr : 2F1 (a7ba Lo, _52) .

The claim for [ = 2 follows similarly. O

LEMMA 6.2.8. For a € C*(I'\G/M) and any fundamental domain cut-off x
we have

(mm(xa)",PSy)a/m = (ma(a™), PSy)r\a/nr-
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PROOF.
(mar(xa)™), PS ) ardn. = /G y /M<xa><gmn>des¢<gM>

/ > / (xa)(ygmn)dmPS,(TgM), as / - / 3.
M\G/M yer /M G/M \G/M

yel’

see Lemma 6.2.6

/ / a(gmn) Z X (ygmn)dmPS,(T'gM), as a is I'-invariant
nNG/M J M s

/ / a(gmn)dmPS,(T'gM) , as x is a fundamental domain cut-off
N\G/M J M

_ / i (a™)(9)PS,(TgM)
\G/M

= (mm(a"),PSy)sxr-

PROPOSITION 6.2.9. Let ¢; be an automorphic eigenfunction in the principal
series and @y any automorphic eigenfunction with eigenvalues — (,0% + )\f) resp.

—ﬁ (pg + r,%) Then

/ e~ (X +p) H(n ™ w) (mm(or)"™, PSy; ) sxrdn
N

converges absolutely.

PROOF. We recall that G = SO,(1,1) and M = SO(l — 1). First we note that
the integrand n —» e~ (AFDHM W) (2 (1) PS Yoy of (6.12) is bi-M-invariant.
We find then on the slice S = {exp sX,, : s > 0} that

e~ (IXj+p)H(exp —sXejw) _ (1 + 82)—(Mj+p0) 7

see (2.18). Further, by Theorem 6.2.7 for [ > 3

xp s Xe
<7TM((;OZ Peta )7PS§DJ->SXF = <901€7PS<P]'>SXF : 2F1 (CL, b7 P0; _82)

on the slice S. Hence, we can use for [ > 3 polar coordinates and we get the
following

/ e~ A HT ) (0 (o1, PS,;)sxpdn
N

o0

_ —(iN;+ xp s Xe
= wi—1 st 2(1+52) (iA5+p0) <7TM((prs 1), PSy;)sxrds

oo
Prop. 6.2.7
= wl—l

J
J

_ — (X
Sl 2 (1 + 82) (Ratpo) 2 b (a7b7 P05 _82) ds - <<)0k‘7PSg0j>SXF = (*)
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For | = 2 we know that N = {expsX,, : s € R} and by Theorem 6.2.7 with
a = @ we get

[ eI ). S, s
N

o — (i <p sX.
= / (1+5%) (ste0) ((pr® * '), PS,;)sxrds

Prop. 6.2.7 e —(ix+
T (o P8, s [ (145%) R (b i =) ds
> —(ix 1 1
+2i<Xe1§0k,PS¢j>SXF / (1 + 82) (A5po) s-oF) [a+ §,b+ ok g; 52) ds

o0
= (¢r: PSy; ) sxr / (14 %)~ 420, By (a,b, po; —5°) ds =: (xx).

—00

Here a = %(po + irg) and b = % (po — iry). We want to use Lemma 6.2.19 from
the appendix to this chapter to investigate the convergence of (x) resp. (*x). Thus,
we have to check whether

(6.9) 2Re(po +1Aj) > po + Re(irg).
As ¢; is in the principal series 2Re(pg + 1A;) = 2po. Because
1
0< —(pg+rh
4po (15 i)

either 1, € R or 1, € iR. In any case Re(iry) < 0 and (6.9) is true. The integrals
in (*) resp. (%) now converge absolutely by Theorem 6.2.19. O

From now on we will always assume that G = SO,(1,1). In order to explain
the connection between Wigner- and Patterson-Sullivan distributions we need the
following continuity property of the latter ones.

PROPOSITION 6.2.10. Let a € C*°(T'\G/M). Then

<L)\(Xa), PSL,D>G/M = / e*(i)\JrP)H(n*lw) <'/TJV[ ((X(L)n) ’ PS<p>G/Mdna
N
where x € CX(G/M) is a smooth fundamental domain cut-off and ¢ an automor-
phic eigenfunction with eigenvalue —(\* + p3).
PROOF. By Theorem 6.2.2 we know that (Lx(xa), PSy)q/ar is finite. Thus,

(Lx(xa). PS,) < | RAG@) (B, H) (0,6 )T, ()T, ()

pemme fan i S /B 2 /X xa(z, )OI g2 g T (b)d T, (1)

= (+)

We then identify G/M = X x B = G/K x K/M and assume that x(z,b) = x()
is independent of b, i.e. x € C°(G/K). Further we assume that T, equals Dj'F,
for some differential operator D on B and some F,, € C'(B) in the distributional
sense, see [GOO05, Th. 1.3.]. That is,

(. Tohs = /B (DS £) (b) F (b)db

for all f € C°°(B). Then we also identify X = AN, dz = dnda. Thus,
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(%) / / x(an) Dy Db,( (an,b)e““f))<<a"vb>+<‘m’b’>>) E,(b)F,(b')dndadbdl/
B2 JAN

Fubini / /
N

/ / x(an)Dg D (a ( (an,b)e(M+p)(<‘m’b>+<a"’b’>)) F,(b)F, (') dadbdb' dn
B(®2) JA

= // /X(an)a(an,b)e(i)‘er)(<‘m’b>+<a"’b,>)dadTw(b)dTw(b')dn =: (#x)
B2 JA

/ x(an)D{DE (a (an,b)e(Mer)(<a"’b>+<‘m’b/>)) F,(b)F,(b)dadbdb' dn
2JA

s}

I
o

We write ya as a function on G/M, compare [HS, (6.15ff)]. For any g € G
with (g M,g-wM) = (b,b') we have

xa(gan - 0,b) = xa(gan - 0,9 - M) = xa(gan - o, gan - M) = xa(ganM).

Since dx = dadn is G-invariant, (xx) equals

/ / /Xa(gcmM)e(i’\’Lp)(<ga"'0’g‘M>+<g‘m"”g'wM>)dadTg, ® dT,(gM A)dn.
G/MA
Then (gan - 0,9 - M) = (gan - o,gan - M) = H(gan) = H(ga), since g- M =b
and P = M AN, in particular AN fixes M. Further,

(gan-o0,g-wM) = —H(n ‘a 'w)+ H(gw)
= —H(n 'w)+ H(a) + H(gw)
= —H(n™'w)+ H(gaw),

since (g - x,g-b) = (x,b) + (90,9 -b), H(ga) = H(g )+ H(a), see [Hel94, Ch.II
(46)], for all a € A and g € G. Also H(waw™!) = H(a™!) for all a € A. Hence,

// /Xa(ganM)e(Mﬂ’)“g”"'o’g'M>+<g“"'°"g'wM>)dadT¢®dT¢(gMA)dn
G/MA

// /Xa(gcmM)e(iM"’)(H(g“)+H(gaw))e_(i’\+”)H(7flw)dadT¢®dT@(gMA)dn
G/MA

/ / / Xa(ganM)e_(i/\er)H(”lw)dA(gMA)ddea®dT¢(gMA)dnda
G/MA

= / e*(“‘“)H(”_l“’)/ dA(gMA)/(Xa)”(gaM)dadTw®dT¢(gMA)dn
N G/MA A

/ e*(Mer)H(n*l“’)/ Xa(Q”M)dpscp(gM)'
N G/M

Now H is the projection belonging to G = K AN, which is bi-M-invariant, and
w normalizes M. Hence, for any m € M

H(n 'w) = Hn 'ww™'mw) = H(n 'mw) = Hm ™ 'n"tmuw).
Furthermore, xa € C°(G/M) and [,, =1, so
/ / e_(i’\+p)H(”7lw)Xa(gn)dPSV,(gM)dn
G/M

/ / / e*(i/\“)H(m_l”_1mw)xa(gnm)dmdPS¢(gM)dn.
G/M
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1

For every m € M the mapping n — mnm™" is an automorphism of N fixing

dn, thus

// /e_(i’\+”)H(m71"71mw)Xa(gnm)dmdPSW(gM)dn
NJG/M IMm

= // /e*(i’\Jr”)H("_lw)Xa(gmn)dmdPS@(gM)dn
NJa/m M

= /67(i)‘+p)H(”_1w)/ /Xa(gmn)dmdPsw(gM)dn
N G/M Jm

= [ IOy (30)") P8 an
N

We note that mp((xa)™) is indeed in C°(G/M) as M is compact. O

In view of Lemma 6.2.8 we also get the following corollary.

COROLLARY 6.2.11. Let a € C*°(I'\G/M). Then
(La(xa), PSy)am = / e~ (AFOHTI0) (70 (™), PS,) g xp .
N

Hence, combining this theorem, Corollary 6.2.11 and Theorem 6.2.2 we get
an exact relation between Wigner- and Patterson-Sullivan distributions from the
principal series on the level of non-constant automorphic eigenfunctions. For k € C
with Re(k) > po let us set

(6.10) I(a,b, po, k) := / STH1+ %) 7R E (a,b, £0; —32) ds,

0
which depends on %k and the eigenfunction ¢; with eigenvalue p; = fﬁ(p% + 7']2»),
a= %(po +ir;), b= %(PO —ir;).

THEOREM 6.2.12. Let G = SO,(1,1), ¢; be an automorphic eigenfunction in
the principal series and i be any non-constant automorphic eigenfunctions, then

(Op(pr)pss @il re(xr) = Wit /OOO 72 (14 82) "B (a,b, po; =) ds - (0x, PSy, ) s
(6.11) = wi—11(a,b,po,iN; + po) - (0r, PSy; ) sxr
with I(a,b, po,iX; + po) as in (6.10).
PRroOOF. For any ¢ we have
(Op(er)esr o) =° (La, (xor) PSe,)aym
(6.12) 6211 /N e~ NFOHET ) (1 (o) PS, Vs dn.

As in the proof of Proposition 6.2.9 we find that for [ > 3

/e_(ixj+p)H(n’1w)<ﬂM(¢g),PS¢j>sxpdn
N

> _ — (X +
= wl,l/ si=2 (1 + 52) (i25+p0) o (a,b, po;—s2) ds - {pr, PSy, ) sxp-
0
For | = 2 we have

/ e—(i/\j—&-p)H(n*lw) <7TM(SDZ)7 PS<Pj >Sern
N

= <‘pk7 PSLPj>SX1" : / (1 + 82)_(i>\j+p0)2F1 (av b7 P05 _82) ds.

—0o0
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The last equality of (6.11) follows from the definition of I(a, b, po, k), see (6.10),
and the convergence of the integral I(a, b, po, iA; + po) follows from Theorem 6.2.19.
[l

We excluded the case where ¢, is a complementary series eigenfunctions, as we
do not know whether the integral

(oo}
_ —(ix+ 1 . 1 .
/ 5172 (1+ 52) (e 2F1 (2(po +irg), 5(00 — %), po; —82) ds
0
converges in this case. It surely converges absolutely if ¢; is in the principal series
as Theorem 6.2.19 shows.
But we can still say something about the relation between Wigner- and Patterson-

Sullivan distributions in the case of the complementary series. Let us define

{ (Op(er)®5:25) L2 (xp)

{1, PSe, ) sxr » (o, PSp;)sx # 0
, else

Ck,j =

THEOREM 6.2.13. For any automorphic eigenfunctions yy, and ¢; we have

(Op(¢r)wj, Pi) L2 (xr) = Ck,j - (¢, PSy; ) sxp-

Proor. It suffices to consider the case of (¢, PS,,)sx = 0 and show that it
implies (Op(vr)w), ¥j)r2(xp) = 0. If we assume (@, PSy;)sx = 0, it follows by
Theorem 6.2.7 that for any smooth fundamental domain cut-off x

n = {(mar(xer)™s PSy; ) a/m

vanishes identically. Thus,

/ e NFPHOT ) (0 (v )7, PS,.)a/mdn = 0.
N

But then it follows by Proposition 6.2.10 and Theorem 6.2.2 that

—(iX; nlw n Prop. 6.2.10
/6 (82;+p) H{ )<7TM(XSOk) aPSij>G/Mdn b=
N

(Lx; (xer); PSy; ) a/m

Thm. 6.2.2
= (Op(wr)@js vi)L2(xr) = 0.

O

Note that by Proposition 6.2.21 from the appendix to this chapter we will know
how C} ; decays, if ¢; is in the principal series.

DEFINITION 6.2.14. For an automorphic eigenfunction ¢ with eigenvalue —(\2+
p2) from the principal series we define the normalized Patterson-Sullivan distribu-
tion by
<0“’ PS¢>SXF
<1’ PSLP>SXF .

It will follow from the next proposition that (1,PS,)sx. # 0, if ¢ is in the
principal series. For the normalization of Patterson-Sullivan distributions we have:

(a,PSy)sxy ==

PROPOSITION 6.2.15. Let ¢ be an automorphic eigenfunction with eigenvalue
14 p 9 g
— (N2 4+ pd) such that Re(\) € a%, i.e. such that @; is in the principal series. Then

(La(x1), PSy)a/m = (1, PSp)ra/nr - C(A).

Here C(\) = [y em AT HM ™ w) gy — oy Joos2(1+ 82)_(i)\+p0) ds.
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Proor. It is
(La(x1),PSp)a/m = 6_(M+’))H("71w)<7rM(X")7PS:p)Gdn
e_(i>‘+”)H("71w)/ / X" (gm)dmPS,(gM)dn

G/M JIM

e—(iM-p)H(nlw)// mar (X" )(gM)PS, (gM)dn
G/M

TSI

e—(i/\+p)H(n71w)<17 PS¢>F\G/MdTL = C()\)<1, PSQ0>1"\G/M‘

O
REMARK 6.2.16. We recall Harish-Chandra’s c-function which is given by
C()\) :/ e_(l)‘+p)H(ﬁ)dﬁ’
N
where the measure dn on N is normalized such that fﬁe’zp(H(ﬁ))dﬁ = 1, see

Theorem 2.4.7. Now with our normalization of dn via N =2 N = R=! X,
06X, — u, we compute

/ o—20(Hm) g / o= 20(H(n_w)) g,
N N

= wl_l/ (14 s%)7%P0ds
0

Wi—1
= —5 Blo. po).

Together with Theorem 6.2.2 we get:

COROLLARY 6.2.17. If ¢; is an automorphic eigenfunction in the principal
series with eigenvalue —()\? + p2), then

(1,PS,,)sxr - C(Nj) =1
resp.
(a, PS4, )sxe = C(A;)(a, PS,, ) 5x¢
for a € C*(SXr).

Finally, let us state the refinement of Proposition 6.1.3, we obtained in this
section by Theorems 6.2.12 and 6.2.13.

THEOREM 6.2.18. Let G = SO,(1,1) = NAK, M = Zg(A), T C G a uni-
form lattice and SXr = T\G/M the unit sphere bundle. We fix an orthonormal
basis {p;}; of L*(I'\X) of automorphic Laplace-eigenfunctions with eigenvalues
— (M +p3) = —ﬁ (r3 + p) and choose a non-constant ¢y in {@;};. Finally, let
f e C®(G//K) such that mr(f) is of trace class, where wr is the right-regular
representation of G on L*(T\X). For example f € C*(G//K) suffices. Then

o - Tr(f) is also of trace class with trace given by
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Tr(er - mr(f)) = Z<Op(<ﬂk)<ﬁjv<Pj>L2(SXF)3(f,>\j)
= Z<OP(<Pk)<Pj7<Pj>L2(XF)S(f,)\j)

j>0

Fwi—1 Z I(a7 b, po, Po + Z)\J)S(fv )‘j) : <§0nﬂ PS)\j>SXF
J>Jjo

Jo

= D CrsS(f:2) (o PSp, ) s

3>0

Fwi—1 Z I(a, b, £0, Po + ’L)\])S(f, )\]) . <<pn, PS/\j>SX1~
J>Jjo

where a = (po +iry), b = 1(po — irk), po = 5% and S(f) denotes the spherical

transform.

6.2.1. Convergence and asymptotics of I(a,b, po, z). In this appendix to
Section 6.2 we want to discuss the convergence and asymptotic behaviour of the
integrals

(6.13) I(a,b, po, 2) = / ST+ %) TRy (a, b, po; —52) ds,
0

we needed in Proposition 6.2.9. The next theorem determines z € C for which
(6.13) converges absolutely.

LEMMA 6.2.19. Let i be an automorphic Laplace eigenfunction with eigenvalue
e = fﬁ(pg +12), s0 a = %(po +iry), b= %(po — iry). The integral

/ sl_2(1 + 82)_ZQF1 (a7 b, po; —52) ds
0
converges absolutely for po + Re(iry) < 2Re(z), more precisely
[ 120 ) e Fia b =) [ ds < C [ (s 4 1) 2R bR gy
0 0

for some constant C independent of z and ry,.

PrOOF. The proof in [AZO7, Prop. 5.2.] generalizes almost verbatim. First
we note that s'=2(s? + 1)~* is asymptotically s??0~172Re(2) where py = 5. The
hypergeometric factor can be controlled by a formula for hypergeometric functions,
see for example [GV88, (4.7.23)],

I(NT(B - )

2 Fi(a, B,7;8) = WBV%FNO&J—V-FO&J—5+0<;8_1)
Pl (a—=8), 5 -
(6.14) +m|5| BB, 1=+ B,1—a+Bsh).

Since o F (o, 3,7;0) = 1 it follows that asymptotically o F(a, b, po; —s%) equals

T'(po F(firk) .|S|—(po+i7"k) + F<p0)r(?rk) .‘8‘—(Po—i7“k).
r(g - 52 Mg + 52
Now T'(x + iy) ~ v2me 21¥|y|*=2 for |y| — oo, see (2.25). Hence the ratios
L(po)T(—irk) T(po)L (irk)
D5 —E)2 D5 +5)2

C > 0 independent of r; and for all s >0

and are uniformly bounded in r;. Thus, for some constant
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|21 (a,b, po; —s?)| < C(1 + )~ PotRelrs),
Multiplying the two terms together we find that the integrand
s (s* + 1) " 2Fi(a,b, po; —s%)
is asymptotically bounded by
C(l _’_s)poflJrRe(irk)fQRe(z)

which is integrable on [0, co) iff
po — 1 + Re(iry) — 2Re(z) < —1,
ie. iff
po + Re(iry) < 2Re(z).
]

In particular I(a,b, po, i) + po) converges if —(A\? + p2) is an eigenvalue from
the principal series, that is, A € R. Next, we want to show that k — I(a,b, po, k)
for fixed a and b can be meromorphically extended to C.

LEMMA 6.2.20. Let ¢ be a Laplacian eigenfunction with eigenvalue fﬁ(ﬂ +
) s a=5(po+ir), b= 3(po —ir).

1T(po)I'(@ — po +2)I'(b—po + 2)

I(a,b,po,z) = 5 Er
(6.15) _ ;F(po)l“(zr(—zgzz)r(z—b)

defines a meromorphic continuation to C with poles exactly in a,a—1,a—2,... and
b,b—1,b—2,.... Furthermore, I(a,b, po,k) does not vanish for Re(k) > 0.

PROOF. Let z € C with Re(z) > py. By Lemma 6.2.19
I(CL, b7 Lo, Z) = / Sl72(82 + 1)722F1(a7b7 P05 752)d5
0

converges absolutely. We use now an integral transform from [Bat54, 20.2 (9)] to
get

oo sy 1 [
/ sl72(52 + 1)7z2F1 (a’, bv P05, _32)d3 '_>:\[ 2 _/ Spo*l(s + 1)7k2F1 (a’ b’ Po; —s)ds
0 0

2
_ 1T(p)T'(z+a—=po)T'(z+b—po)
2 I'(z)?
1T (po)T(z — D)z — a)
6.16 = — .
(6.16) 2 I'(z)?
The remaining claims now follow from properties of the Gamma function, see
Remark 2.5.1. O

Now we want to examine how
o0
/ 31_2(1 + 82)_”‘)“’\1 o Fy(a, b, po; —32)d8,
0

grows as A; tends to co. In (6.16) we showed that

(6.17) / §'72(1 + $2) "Xy By (a,b, po; —s?)ds
0

equals
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10(p)l (5 +i(A + 5))T(5 +i(h — 5))
2 T(i); + po)? '
Then we make use of the asymptotic formula for the I'-function
T(z +iy) ~ V2me T |y[*=2 |y — oo,
see (2.25). It follows that

/ 51_2(1 + 32)_(i/\1+po)2F1(a, b, po; —s%)ds
0

asymptotically equals, as A\; — oo,

—T (N4 Tk } [ U W ] 7 201
e~z 2)()\j_|_ 2) e 2\ 2)()\J_ 2) 2 PO
TR

(6.18) o= (2P0 1
J

We just have proved the following proposition which will be useful for the
meromorphic continuation in Chapter 7.

PROPOSITION 6.2.21. Let A; be in the principal series, i.e. Aj > 0. The integral

/ §=2 (32 =+ 1)(_i/\j+po) oy (a, b, po; —32) ds
0

decays asymptotically as )\j_po for Aj = o0.



CHAPTER 7

The meromorphic continuation of R(y) and Z(p)

In this chapter we will at first give meromorphic continuations of R(y) and
Z(p) which were defined in (5.29) resp. (5.32) on the complex half plane {k € C :
Re(k) > 2po} to all of C. This is done in Section 7.1 and Section 7.2. For the
loaction of possible poles and residues of R(y) and Z(p) the focus is on a certain
strip S in C and the (main) results are summarized in Section 7.3.

In Section 7.4 we will shortly explain how to normalize Z(¢p) in order to obtain
a simple formula for its residue in the strip S. The last Section 8.2 compares our
results on the zeta function Z(¢) in the surface case with the ones from [AZ07],
see also Theorem 1.0.1 and (1.3).

7.1. The meromorphic continuation of R(y)

In this section we will discuss the meromorphic continuation which we obtain by
using the formula for the spectral trace from Chapter 6. The case of G = SO,(1,2)
was dealt with before in [AZO07, Th. 9.1.]. Let us recall that G = SO,(1,]) = KAN
and we fixed a uniform lattice I' with an orthonormal basis of automorphic Laplace

eigenfunctions {¢;} in L?(I'\G/K) with eigenvalues —()\? +p3) = —ﬁ(r? + p3).
Here ¢, ..., @j, are in the complementary series, i.e. A, )\?D € [-p3,0], and ©j

is in the principal series, i.e. A3 € (0, 00) for j > jo.
By the results of Chapter 5, see Theorem 5.4.6, we know that the geometric
trace of
Pn ° TR (k)
for any eigenfunction ¢,, € {¢;} which is orthogonal to constants, is given by the
auxiliary zeta function, see (5.29),

(7.1) R(k; on) = Z Z (¢n, 7, T, k)(cosh L.,)~k+ro,
1¢[W]€CFWEI/\Z
for Re(k) > 2py. On the other hand, by Theorem 6.1.3 the spectral trace of
©n o mr(fx) is given for Re(k) > 2pg by
Z<OP(%)%‘,sﬁj>L2(xr)5(fk,/\j)
j=0

which equals
o0

> _(0p(en)@s, 01) L2(xe)S(fis Ay)

j=1
as @, is orthogonal to the constant function by assumption. From Theorem 6.2.18
we then infer that the spectral trace of @,,-mr(fx) equals, if we replace (Op(¢n)w;, ¥;) L2 (xr)
by Cp,j(on,PSy,)sxr and keep in mind that C, ; = wi—11(a,b, po, po + iX;), see
Theorems 6.2.12 and 6.2.13,

o0

Jo
> Co i Sy i) (0ms PSy ) sxptwio > I(a,b, po, po+id))S(fa Aj)-(pn, PSy, ) sxp =t (+).
Jj=1 Jj=Jjo+1

99
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Then we use the formula for the spherical transform of S(fx.)\;), see (2.26), to
see that (+) equals

Jo . .
_ k—iX; —po k+1iXN; — po
2""2B(k — po, po)wi—1 ; Cn;B ( 2] ) 2J (pn: PSy, ) sxr +
B > k—i\; — k+i\; —
2"=2wi  B(k — po, po) Z B( 2] po’ 2] po) (on, PSe,; ) sxr

j=jot1
I(a,b, po, po +iX;)
= (x).
Since the operator ¢, - Tr(fx) is of trace class for Re(k) > 2py we know that

(%) coincides with (7.1) for Re(k) > 2pg. To obtain the meromorphic continuation
we want to show that (x) converges for any k in C except from the set

P o= {potiXj,po—2Fi\;,...: —(A? + p?) eigenvalue of the Laplacian}
(72) U{ﬁOvPO _LPO _27}
It is clear that

Jo . .
_ k—1iXj —po k+1iX\j— po
ks 272B(k — po, po)wi_1 Z Cn ;B ( 23 ) 2]

Jj=1

) {¥n, Pstpj )Sxr

defines a meromorphic function on C. The poles correspond to the poles of the Beta

functions B(k — po, po) and B (’““21—%’07 k+ik2j—po

k= po £iXj,po —2EiAj,. .., where — ()\32 + pg) is an eigenvalue of the Laplacian.
Thus, for the convergence of (x) we only have to consider the infinite series

), ie. k= pg,po—1,... resp.

> E—iX\j—po k+i\j —
(73) > <son,PSw>sxr-I<a7b,po,p0+z‘xj>~3( Do XY p°>
J=jo+1 2 2

outside (7.2). Let us check each of the three terms in this series separately. At first,
we know that

I(a/a b7 P05 Po + Z)\]) = / 8l_2(1 + 82)_(i)\j+p0)2F1 (a’7 ba Po; _52) ds
0
behaves for j — oo as )\;po, see Proposition 6.2.21, because ¢; is in the principal

series. For the term (p,, PS,;)sx, we claim the following:

LEMMA 7.1.1. For any automorphic eigenfunction ¢, <<pn,15§>\j>sxr s uni-
formly bounded , i.e. there is some constant C' > 0 independent of j such that

<s0n,f’\S,\j>sxr <C
for all j.
Proor. In [HS, Th. 1.3.] it is shown that
<90n715§,\,->sxr

behaves asymptotically for j — oo like

(OD(n)05, 05 2205y = /X o ()05 () 2.

T

But Xr is compact so that

(Op(en) oy 01) 2| < /X lon(@) |0y (2) Pdz < C,
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where C' := max{p,(z) : € Xr}. Hence, (Op(¢n)®;, ©;) 12 (xy) and also (@, IS\S,\j>SXF
are bounded uniformly in j. O

Now by definition (¢, PSx,)sxr = C(A;)(¢n, PS,)sx, and

Wi— . wi—1 I'(eA; F(p )
C(\) = =3~ Blidj,po) = =5 F((poj)ﬂA;)

which by (2.25) for A\; — oo equals

V2me— /21l |)\;1/2|
Varme=m/2xl x0T

Corollary 6.2.17 implies then:

= [Ai[77

COROLLARY 7.1.2. For fized n, (pn,PSy,)sxr ~ Aj° as j — oc.
Finally, we see:

LEMMA 7.1.3. Letk € C—{po+il\;, po—2=+iN;,...: — ()\3 + p3) eigenvalue of the Laplacian}.

Then B (kii)‘fpo, kﬂ)‘Qj*pO) behaves asymptotically for j — oo like

2

Re(k)—pg—1 Re(k)—pg—1
2

e~ T UmR)+A [+ Im () =5 ) | 1y () + ANl 7 [Im(k) — )
PROOF. Let us write out
p(Eye i) (=t p ()
2 7 2 L'(k = po)
T (RC(k)—po+;(Im(k)—>\j)> r (RC(k)—Po+;'(1m(k)+)\j))

' (Re(k) — po + ilm(k))

Using the asymptotic formula for the Gamma function, see (2.25) in Remark
2.5.1,

(7.4) T(z+iy) ~V 2me 5 1Yl \y|$_% , Y — 00,

we find that B (k_i’\zj_po, k+i/\2j _po) behaves for j — oo as

Re(k)—pg—1 Re(k)—pg—1
2

e~ FImE A H I =X D I (k) + 0,17 2 [Im(k) — A

Since the term e~ & (IMF)+X;[+Im(k)=Ai) qominates the other terms

Re(k)—pg—1 Re(k)—pg—1
Mm(k)+ X, 2 m(k) =X =

and since the series ) _yne
that the series

is absolutely convergent for every a > 0, we see

S e FUmME I N0 |1 () + AT k) - A
Jj=jo+1

is absolute convergent for any & € C. Thus, by Proposition 6.2.21, Lemma 7.1.1
and Lemma 7.1.3 we find the following proposition,

PROPOSITION 7.1.4. The infinite series (7.3) converges absolutely for k in C
outside the set P, see (7.2), and defines there a holomorphic function.
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Hence, we define the meromorphic continuation of R(k; ¢,,) by (). Let us now
focus on a certain strip in C and describe the poles and residues of R(k; ¢,,) more
precisely. It follows from Proposition 7.1.4 that in the strip

S::{kEC:po—%<Re(k’)<po+%}
the poles are at
Ps :={po,po £ i\; : — ()\f + pg) eigenvalue of the Laplacian} N S.
For computing the residue we make use of the following facts.

LEMMA 7.1.5. See [FB06, Kap.III]

(1) If f is holomorphic in zy, then Res,—.,f =0
(2) The residue is linear, i.e. for all functions f,g and a, f € C

Resy—z, (af + Bg) = aResy=, f + BRes =4, 9.

(3) If g is holomorphic and bijective on C, then Res.—g(.,) = Res.—,g"-(fog).
(4) If f has a pole of order m at zy, then

dmfl _ m
Res.—z, f = W|Z:ZO <((inj()1))!f(2)> ‘

(5) If f is holomorphic in zy and g has a pole of order 1 at zy, then

Res.—z f - g = f(z0)Res.—zy 9.
From (4) and (5) we can deduce:
(6) If f is holomorphic in zo and g has a pole of order 2 at zy, g(z) = Y pe o ar(z—
zo)k in a neighbourhood of zy, then

a_
Res.—.,f - 9= f'(20) - 72 + f(z0)Res.=z,9-

Let us now compute the residue at k € Ps, i.e. k= pg or k = pg+1i); and there
is an eigenfunction @; with eigenvalue —(\? + pg). If @; is now in the principal
series, then \; # 0 and [ u/=2(1 + u?)~ (ot du = L B(i);, po) is defined. The
residue Resgp—p,1ix; R(K; on) at k = pg + i); then equals

200410202 B(i);, po) Z@n, PSy, ) 1(a,b, po, po + iA;)

)\j—p() k'f"i)\j—po
2 ’ 2 ’

k—1
Resk:po_,_i)\j B <

where the (finite) sum runs over all eigenfunctions ¢, with eigenvalue — (A% + pf).

) k—ixi—po ktidj—po :
Now the residue Resp—p,+ir, B ( g—po, sl - po) is given by

k— i) k4 i) r (’“—W—po) r (k"‘i/\j—Po)
WA Po A — Po 2 2
—po+ix; B J J - v
Resk‘—P0+ Aj ( 2 ) 2 ) ReSk_poJr Xj F(k, — pO)
L(iA;) k—i\; — po
= Ty Resemi T <5
= Resp—oIl'(k)

1
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Consequently, the residue at k = po 4 7A; in the principal series is

Resp—pytir, R(k;0n) = QPotir;—2 Z(gpn, PSS(,T)le_lB(i)\j, po) - I(a,b, po, po + iA;)

T

- 2p0+i>\j_1wl—ll(a7ba P05 Lo +7/)\]) Z“pﬂmpsg{h)

= (D),
by Remark 2.5.1 and Corollary 6.2.17, since 27 w;—1 B(i)j, po) = C(\;) for A; > 0.
If ; is in the complementary series and j < jo, then A; # 0 and B(i);, po) is
defined. The residue Resy—,,yix, R(k;@n) at k = po +1); is

2p0+i/\j_2B(i>\j7 Po)wl—l Z Cn,r<30nv PS(p’V‘>SXF
T

k—iXj—po k+i\ —
Resk—pg-‘ri)\jB( 22J Po, +Z2] Po)l

As before Resg=p,+ix, B (kii)‘gfp", kH)‘Qf’”“) = 1 and hence the residue at
k= po+il\j, j <jo,is

ReSk:p0+i)\j R(k, QOn) = 2p0+i>\j72B(i)\j, PO)Wlfl Z Cn,'r‘ <§0n; PS@T>SXF = (II),

where we again sum over all eigenfunctions ¢, with eigenvalue — ()\? + pg).
The same formula (II) is valid for j = jo and A;, # 0. If A;; =0, then
L'(k = po)T'(po)
B(k — =
( L0, pO) F(k’)

has a pole of order 1 at k = pg, while

. . T (@)2
B(k:—Mjo—po k+z)\j0—p0>:B<k—po k—p0>: 2
2 ’ 2 2 72 T'(k — po)
has also a pole of order 1 at k = pg. The product of both has thus a pole of
order 2 at k = py and the Laurent series around k = pg of the product starts with
(k—po)~2. Using Lemma 7.1.5(6) the residue Resy—,, R(k; on) at k = \j, +po = po
computes to

Resg—p, R(k; on)
- Reskzpo 2k72B(k — Po, pO)Wé—l Z Cn,sB (k—i)\;—po 5 k+i>\25—po ) <§0na PS(Ps>SXF

+Resk:p02k_2B(k — PO, PO)Wé—l Z Cn,rB (kii)\gripo ) k:+7,'/\2,«7po ) <<Pn7 PSCPr>SX1-

+2p0_2w§71Resk:poB(kﬁ — Po; ,00) Z B (k_i/\zj_po’ k+i)\2j_po><90”’PSW>SXF
Jj=Jjo+1
'I(a7 ba P05 Po + Z)\J)

= Wit Z C"vSB (ng ) 71‘2)\S ) <90m PS«PS>SX1“ 20072 Resk:PoB(k — Po; PO)

+wio1 Y Cor (0, PSy, Ysxp - Resp=p, 2" B(k — po, po) B (k_MQj_po7 k+iA2'7_p°)

oo
_~_<2P0—2w?_1 Z B (%7 _7‘2>\j ) <‘Pn7 PS(,D]‘>SXI‘ : I(CL, ba L0, PO + i)‘j))ReSk:poB(k — Po, PO)a

Jj=jo+1
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where > _ runs over all eigenfunctions ¢, with eigenvalue ps = —(A2 + p3) > —p3
and Y, runs over all eigenfunctions ¢, with eigenvalue p, = —(A\2 + p3) = —pg.
Then B(k — po, po) = % has a pole of order 1 at k = pg, while

T (kfﬂ())
B(k—D\jo—l)o k+i>‘jo_p0) — B (k*PO k*PO) — 2
o 7o) T T m)
has also a pole of order 1 at k = pg. The product of both has thus a pole of order
2 at k = pg and the Laurent series around k = pgy of of the product starts with
(k — po)~2. Using Lemma 7.1.5(6) it follows that

Resk:pOQkizB(k — Po, pO)B (k—U\QT—po ) k+iA2T_p0)

= In(2)27°7% 27072 Resy—y, Bk — po, po) B (£ =00, btidp=eo )

= In(2)27°73 + 27072 . Resy—,, B(k — po, po) B (k_”‘;o —Po. k+“;0—po)
= In(2)27% + 272 Resy—,, B(k — po, po) B (%7 %)

and

ReSk:poB(k - P07PO)B (k3p07 kgpo)

_ r(t0)* T(k—po)l(po)  T(po) r(fpe)®
= Rest—p, Tpey - T'(k) ~ T(po) Resip Ty Tk = p0)

k—po 2 k 2 2
= Resk:poF( 5 ) = Resp—ol' (5) = 2Resp—ol'(k)
d. KT+ 1) ,
2oy = =

where C,, is the Euler-Mascheroni constant, see [FB06, Kap.IV]. Also

-2C,,
Resi—p, B(k — po, po) = Resg—o = 1.
Thus,

Resk:poR(k; 9071)
= w1y CnaB (% 75%) (0n, PSy, ) 5x, 277

e Z Crnr(Pn, Py, ) sxr - (ln(2)2p0*3 _ 2;)07107)

T
o0
+2P0*2w3_1 Z B (%’ _12)\]‘ ) <<)07L7 PSLPJ‘>SX1“ : I(a7 b, po, po + 7,/\])
Jj=jo+1
= Wr— Z Cn,sB (1§§ > _Z;\S ) <<Pn; PSAPS>SXF 2r0=2
S

Fwe—1 (]n(2)2p0_3 — 2”0_10"{) Z Cn,r<§0n7 PSQDr>SXF)

1207202 S B (%75 (0ns PS,, dsxe - 1(a,b, po, po + i)
j=jo+1
—. (I1D).
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Finally, if \;, # 0, then R(k; ¢,) has still a pole at k = py coming from the
term B(k — po, po). The residue Resy—,, R(k; pp) is

Resk=p, R(K; ¢n)

Jo
= 2p072WZ_1(ZCn,jB (%’ 712)\]‘)<907L7PSLP9‘>SX1-'

j=1
twer . B 5 ) (0w PSg, bsxe I(a, b, po, po + X)) Resk—p, Bk = po, po)
Jj=jo+1
Jo N N
= 2’)0_200@71(207;,;'3 (17”, — j)<<p’ﬂ7PS<pj>SXF
j=1
Fwe—1 Z B (%7 _izkj)<(p’n7PSgaj>SXrI<a7bap07p0 +Z)\]))
Jj=jo+1

= (IV),
since Resy=,, B(k — po, po) = 1.

7.2. The meromorphic continuation of Z(y)

In this short section we show how the meromorphic continuation of Z(k; ) is
deduced from the one of R(k; ¢,,).

For the zeta function Z(k; p,) we note that the poles of R(k + 2m; ¢,,) are the
—2m-shifted poles of R(k;¢y,). Now

(7.5)
Z(kion) = Y Blk—po; m)R(k+2m; n) = Bk—po; OR(k; o)+ D Blk—po; m)R(k+2m; o),
m=0 m=1

see Theorem 5.5.5.
We also know from Lemma 5.5.1 that S(k — po;m) — 0 for m — oo and that
k +— B(k — po;m) is holomorphic for any m € Ny. Furthermore,

R(kson) = > > clpn,v,m k)(cosh Ly)~FHro
1#[7]601_‘71'6]17

and by Lemma 5.5.3 we know that
> clpn, 7, k)
reM
is absolutely bounded by
Clpn) - Lye~t,
where L, is the length of the closed geodesic [y] and

_ wi—1 maxxp{|enl}

C((P") = 9 B(p07p0)

it Re(k) > 2pg. It follows that for Re(k) > 2po

R(Esen)l < Y | elpn,v,m k)| (cosh Ly)~etk)teo
176[7]€CF Trej\_/f\

< Clpn) Y, e PlLy(cosh L) Rektro
1#[y]eCT
< C(@n)(cosh Ling) ReMFro N " gmpola,

1#[y]eCT
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for the constant C(¢,) depending only on ,,. Here Liys = 1/2( — 1) lint, where
ling > 0 is the infimum of the set {l, : 1 # [y] € CT'}, see Proposition 2.2.4. Thus

IR(K;¢n)| < C - (cosh Linf)—Re(k)

for some constant C' > 0, since

C(¢n)(cosh Liyg )P0 Z e~ Polp,
1#[y]eCT

is bounded.

As a consequence, R(k;p,) = O(e RF)) for Re(k) > 2py. In particular,
R(k + 2m; ¢,) decays like e Re(®)+2m for ;m € N and m — oo. Hence, (7.5)
converges for k away from the poles and defines there a meromorphic continuation
of the zeta function Z(k; ¢, ). Since in the strip

1 1
S=p0—§<Re(/€)<po+§

the only poles of R(k; p,,) are at
{po, po £iX; : —(\j + p3) eigenvalue of the Laplacian} N S,

only the m = 0-term contributes to poles of Z(k; ¢, ) in S. The residues/poles in the
strip S of Z(k; py,) are hence the same as the ones of R(k; ¢,) modulo S(k — po; 0)
which equals 2°°~% by Lemma 5.5.1. More precisely, we have to distinguish again
the 4 cases from (I) to (IV) and to note that

Res.—xZ(z; pn) = B(k — po; 0)Res,—x R(2; on) = 2"0_kReSZ:kR(z; ©n)
for k € C with pg — 3 < Re(k) < po + 3.
7.3. Summary
We collect the results of the previous sections:

THEOREM 7.3.1. Let ¢, be a non-constant automorphic eigenfunction. The
zeta functions R(k; @n) and Z(k; ¢,) can be extended meromorphically to C by ()
resp. (7.5). In the strip po — % < Re(k) < po + % the only possible poles are
at k € {po,po £iN; : — ()\3 + pg) eigenvalue of the Laplacian}. If the eigenvalue
— ()\f + pg) lies in the principal series and (I) # 0, there is a pole of order 1 at
k = po £ iXj, the residue of R(k;y,) is then given by (I). If the eigenvalue comes
from the complementary series, \; # 0 and (II) # 0, then there is also a pole
of order 1 at k = po £iX\; and residue (II). If \; = 0, there is a pole of order
2 and residue determined by (I1I). If (I) or (II) vanishes, then R(p,) can be
holomorphically extended to k = po £ iX;. The residues of Z(p,) are the same
modulo B(k — pg; 0) = 2P0k,

7.4. Normalization of Z(y)

In this chapter we have shown so far that Z(¢,,) is a meromorphic function on
C. Let kg := po + i), where —(\? + pg) is an eigenvalue of the Laplacian from the
principal series. Then Z(¢,) has a simple pole at ko with residue given - up to a
non-zero constant - by normalized Patterson-Sullivan distributions, see Equation
(I) in Section 7.1. This constant equals

wi—11(a,b, po, po + iN).

To be consistent with [AZ07] we can divide Z(¢,) by this constant, i.e. we
consider the function

Z(pn, k)

(76) e wlfll(a7b72717k)'
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Now

Lem.:6.2.20 2F(k)2
wi—11(a, b, po, k) wi—1I'(k — a)L'(k — b)L'(po)
is a meromorphic function on C with poles exactly in {0, —1,—2,...}. Hence (7.6)
defines also a meromorphic function on C. In the strip po — 3 < Re(k) < po+ % the

poles of (7.6) equal the poles of Z(¢y,). The residue at ko, po+5 < Re(ko) < po— 3,
is

k—

Z(pn, k) 1
Resp—i = Resg—i, Z(0on, k).
Owl—ll(a7ba p07k) wl—ll(avb; p07k0) ’ (80 )
In particular, if kg = pg + i\ comes from the principal series, we deduce from

equation (I) that

Z(pn, k)

Resi_; — —\Pns®)
Ph=ko LUl_ll(Cl, ba P05, k)

— 2P0—1 Z(‘an 15§<Pr>7

where as before the finite sum runs over all eigenfunctions ¢, with eigenvalue —(\2+
p2). We can of course also normalize R (¢, ) by the same constant (w;_11(a, b, po, k)) "

7.5. Comparison with the zeta function from [AZ07]

Let G = S0,(1,2). In this section we want to discuss a difference between
the zeta function [AZO07, (1.9ii)] and our zeta function, see (5.32), in the case of a
compact hyperbolic surface Xp = I'\SO,(1,2)/SO(2). In [AZ07, (1.9ii)] we find
as a definition

eIy e~ (k=D)L
A= ¥ smem (L) s 2 S (L
1#£[ylecr vo 1#£[r]ecr <SM0 5 Cro

After normalizing our zeta function Z(k; ¢;) = 3214y jecr ¢(#),7, 1, k)e=(k=1/2)Ly
from Proposition 5.6.1 by (41(a, b, 1/2, k:))_1 the term (21 (a,b,1/2, ]f))_1 c(ej,v,1, k)
takes the form, see equation (5.38),

(41(a,b0,1/2,k)) " - c(pj,7,1, k)

Lem. 6.2.20 2F(k)2 . ;
T TG et Ve, =1’ </ w”)

1#[]eCT
k—1
cosh L, cosh L
| —= Filk—ak—bk1l— ———
(coshLyl) ? 1( @ o coshL,Yl)
F(%)F(l{ —a)l'(k=10)
(k)2
- S s (L)
= - L n
1#£[y]ecr 2v/2sinh 5+ \ /e,
k—1
cosh L, cosh L
| —— Flk—ak—-bkl-—_).
(coshLy—l) ? 1( @ Y coshLv—l)
Hence,
]_ ef(kfé)L‘Y
—————Z(k; op = T — / ©n
4](a7b31/27k) ( ) 17&%01—‘ QSlnh% Cyo

k—1

cosh L, cosh L

| —T Blk—ak—-0bkl-———T |,
(costh,—1> 2 1( . Y coshLW—l)
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Here a = £ (po+iry,) and b = % (po—iry), if the eigenvalue of ¢, is —ﬁ(pg—l—r%).
The difference 2 (k; ¢,) — mZ(lﬂ; ¢n) thus equals on {k € C : Re(k) > 1}

—(k—3)Ly

e 2

D(kipn) = > T </ %)
1#[y]eCT 2sinh 2 S0

cosh L et cosh L
- —— Flk—ak—-bkl-—2—)].
( (coshLV—1> ? 1< @ o coshL7—1)>
On {k € C: Re(k) > 1}, the function D(¢,,) is holomorphic as it is the differ-
ence of two holomorphic functions. Furthermore, it is also holomorphic on the half

k—1
plane {k € C : Re(k) > 0}, because (i) o Fy (k —a k= bkl e

cosh L, —1
tends to 1 as Ly — 0o, the argument 1— C(fsoﬁhﬁ lies always in the interval (—oo, 1)

and k — oF 1 (k — a,k — b, k; x) is holomorphic on {k € C: k # 0,—1,-2,...} for
fixed x € (—o00,1), see [Olv74, Th. 9.1]. It follows that the term

cosh L kbl cosh L
11— — Flk—ak—-0bkl1l-—
( <coshL7—1) 2 1( @ o coshL7—1>>

is bounded for all L,. Also C'- )y %e‘k” is a summable upper bound to
—(k—HL ( / ) —kL,
e 2 )y e
o sinh L on|= > @ / Pn
1#fjecr 28inh 5 ey 1pgecr F T ey,

for a suitable constant C' > 0.
Thus,
1
— Z(k:pn) + Dk o
1(a,b,1/2, ) > ki #n) - Dkien)
defines a meromorphic continuation of Z1(k; ¢,,) to the half plane {k € C : Re(k) >
0} with the same poles and residues as mZ(k; ©n)-

)



CHAPTER 8

The zeta function on the spherical spectrum

Let G = SO,(1,1) = ANK as before. Also let I' C G be a uniform lattice.
We will use a decomposition of the right-regular representation 7z on L*(T\G)
in order to extend the definition to zeta function Z(o), where ¢ is more general
than an automorphic eigenfunction of the Laplacian. More precisely, ¢ will be
an element of phase space C*°(I'\G/M), M = Zi(A), which satisfies a certain
finiteness conditions explained in Section 8.1. In Section 8.2 we indicate an approach
for general o € C*°(SXr).

The case of SO,(1,2) is dealt with in [AZ07] and we will basically omit this
case as In this chapter we want to show how one can pass in Theorem 5.5.5 and
5.4.6, resp. Theorem 6.2.18 and 7.3.1 from automorphic eigenfunctions ¢, to
o € C*(I'\G/M) lying in the class 1 spectrum with only finitely many nontrivial
components.

8.1. Extension to the spherical spectrum

To give a dynamical interpretation of Patterson-Sullivan distributions, one
needs to pass from automorphic eigenfunctions ¢,, to arbitrary ¢ € C(I'\G/M).
We make use of the decomposition of the (right-)regular representation 7z of G on
L*(T\G). So let G = SO,(1,1), I > 2, and T' a uniform lattice. Since I is assumed
to be co-compact, the representation decomposes discretely into a direct sum of at
most 2 different types, see [Wil91, Th. 2.7],

(8.1) e = @ ve H w

spherical non-spherical

The spherical part is called the spherical spectrum or also class 1 spectrum.
Here we call a representation spherical, if it possesses a non-trivial K-invariant
vector.

Therefore,

(8.2) roeM=rmem= FH vMe fH wH

spherical non-spherical

In this section we want to show how one can pass in Theorem 5.5.5 and
5.4.6, resp. Theorem 6.2.18 and 7.3.1 from automorphic eigenfunctions ¢, to
o € C*(I'\G/M) lying in the class 1 spectrum with only finitely many nontrivial
components. That is,

finite

where each o, lies in some irreducible spherical (principal series) component V and
is right- M-invariant.

We show now that the subspace of M-invariant functions in each spherical
principal series representation is generated by the spherical vector if we restrict the
representation from G to A.

109
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LEMMA 8.1.1. Let G = SO,(1,1), I > 2, and V be an irreducible spherical
representation with spherical vector ¢. Then A acts on VM with cyclic vector ¢,
i.e. U(a)g is dense in VM. If G = SO,(1,2), then

U@ @ U(a)Xe
is dense in VM =V, where n = RX.
PROOF. Since V is assumed to be irreducible we have (up to completion)
vV = (U(g)e)" = Ul)Ve,

since we can average over the compact group M, i.e. for X € g we can define the
M-average X by

Xf(6) = [ Giheof(gexp Adm)ex)aim.

Then X f is M-invariant, if f is. Now
Uy = UlemMy
= U(a)Um)Me.

Since [ > 2, M is not trivial and it follows that U(n) is generated by the
Laplacian >, X? on n, see [Hel01, Prop. 4.11.]. Further, we know by Chapter 2.1

-

Because the space of K-invariant elements in V' is one dimensional and because
Qe is also K-invariant, we deduce that ¢ is a Casimir eigenfunction, let us assume
Qp = pp. Hence, the effect of applying Y, X? to ¢ can be expressed by elements
in U(a), i.e.

(=Q — H? +2H,) mod £U(g) .

| =

1
(o hn s

where p is the eigenvalue of .
If | = 2, i.e. M is trivial, we just note that U(n)™ = U(n) is generated by X,
since n = RX. O

If we assume [ > 2 and V is some irreducible representation in the class 1
spectrum in (8.1), the lemma shows that restricting the irreducible G-representation
g on V from G to A yields an A-representation on VM with cyclic vector ¢, if ¢
is the (normalized) K-fixed vector in V. It follows that the induced representation
of LY(A) on VM is also cyclic with cyclic vector ¢, [Dix77, 13.3.5].

Thus, if 0, is an M-invariant element of the irreducible spherical component
V with (normalized) K-fixed vector ¢, then there is some «,, € L'(A) such that

(8.3) On = / ap(a)Tr(a)pnda.
A
By invariance under the geodesic flow for any a € A and any PS,,

<7TR(a)SOn7 PSgaJ >SXr = <90na PSgoj>SXr-
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Hence, as PS,,; is a continuous functional on C*°(SXr), see Remark 6.2.5, and
as SXr is compact

<O’n,PS¢j>SXF = </ anﬂR(a)cpnda,PS¢j>
A SXr
(8.4) - / o (@) (T r(0)n, PS,, ) s da
A
= [ an(@(e. P8, )sxedo
A

= /an(a)da~<g0n7PSw>SXF.
A

That is for any PS,, the value (¢,,PS,,;)sx, essentially determines PS,, on
the whole M-invariant part VM of the irreducible spherical component V associated
with ¢,,. We also remark that (8.4) remains true if we replace PS,, by f’éw.

For G = S0O,(1,2) see [AZO07, Th. 9.6.]. Here, for spherical irreducible compo-
nents V of L*(T'\SO,(1,2)) one basically needs knowledge of PS,, on ¢,, and X¢,,
if ¢y, is the (normalized) spherical vector of V. If V' is not spherical, in other words,
if V is a discrete series representation, then PS, on V is determined by its value
on the lowest weight vector.

Going back to G = SO,(1,1), 1 > 2, we define for ¢ = Y M€ 5 — yfinite J4an(a)mr

n

see (8.3),

finite

(8:5) Z / an(@da-Z(pa) = 3. Y elr.o,m k)e meo)lose

1#£[]eCcT WE]T/T

if ¢,, is the normalized K-fixed vector of the component of o, in L?(T'\G), see (8.1).

Here
finite

c(y,o,m k) : Z/an Yda - (v, on, k).

Now the analogue of Theorem 7.3.1 holds.

PROPOSITION 8.1.2. Let o be a function in C°(T'\G/M) with only finitely
many nontrivial components in the spherical spectrum (8.1) and no component in
the non spherical spectrum. The zeta function Z(o) defined by (8.5) is a meromor-
phic function on C. In the strip S ={k € C: pg — % < Re(k) < po+ %}, the poles
are at

{po, po £ i) : —(po + \?) eigenvalue of the Laplacian} N S.

If —(\2 + p2) is an eigenvalue of the Laplacian from the principal series, the

residue at k = po + i\ is up to the non-zero constant wi—11(a,b, po, po + i\)

(8.6) > (0, PSy),

finite
where this finite sum ranges over all normalized Patterson-Sullivan distributions
PS, associated to Laplace eigenfunctions with eigenvalue —(N\* + p3).

PrROOF. The meromorphic continuation of Z(o) follows directly from Theorem
7.3.1 and the fact that ¢ has only finitely many nontrivial components. In order to
compute the residue at k = p+ i\ € S we recall that we can assume that there are
ay, € LY(A) such that

finite finite

O'_ZO'H—Z/O(TL a)rr(a)pnda,

(a)pnda,
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see (8.3). This implies, see (8.4),
finite

(8.7) @ P )sxe = 3 [ an(a)dalin, PS,)sx;.

For the residue at kg € S we have
finite

Resp—k, Z(k;0) = Z/an(a)daReskszZ(k;wn).
— Ja

In particular, if k = pg + i\ € S, —(A2 + p2) an eigenvalue from the principal
series, it follows from Theorem 7.3.1 that
finite finite e
Resp—po+irZ(k;0) = Z /Aozn(a)dawl_ll(a, b, po, po + iA) Z (on PS¢, ) sxr
n riAZ=\2
finite finite -
= wi—11(a,b, po, po + i) Z Z / an(a)dalpn, PSy,. ) sxr
ra2=x2 n 74
(8.7) ‘ finite e
=" wi—11(a,b, po, po + i) Z (0,PS,, ) sxr-
rIAZ=A2

O

For the general case of a K-finite Casimir eigenfunction of type 8, § € K we
just state the following.

LEMMA 8.1.3. Letl > 2 and V be any irreducible representation of G with K-
finite Q-eigenfunction v of type 0, (6,Vs) € K, i.e. span{K-v} = span{vy,...,vg; } =
Vs and Qu = pv for some u € C. Then @fil U(a)v; contains VM.

PROOF. We use the Cartan decomposition g = p @ €. Then by irreducibility
V =U(g)v = S(p)U(8)v, where S(p) is the symmetric algebra of p. Since v is
K-finite of type 0, we have that U(¥)v is contained in span{vy, ..., vq, }, where the
v; are K-translates which are K-finite of type § and Q-eigenfunctions, Qu; = p;v;,
since € lies in the center of U(g). Thus,

VM Sp)Mus.

But S(p)M = U(a)S(p)¥, as | > 2, where U(p)X is generated by >, 17 Ty
forming an orthonormal basis of p. Now € can be expressed as Q = > T7 =, W7,
where the W, form an orthonormal base of £. Hence for any ¢,

Z T]»QUi = Qu; + Z Wiv; = pivi + Z Wiv; € span{vy, ..., vg,}-
j 1 1
It follows that

VM c P U(a:.

8.2. Outlook

It remains an open problem what are good choices for ¢ coming from the M-
invariant part V™ of a non-spherical representation V in the decomposition (8.2),
it G = SO,(1,1) with I > 2. Lemma 8.1.3 shows that if V' has a K-finite Q-
eigenfunction v then PS, is basically determined by its value on finitely many
K-translates v; of v. Thus, one would like to associate a zeta function Z(v;) to
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v; as one did in the case of an automorphic eigenfunction ¢. Here for example
the problem occurs how to associate an operator with v; which maps L?(Xr) into
itself and how to compute its trace. For G = SO,(1,2), [AZO07] gives a solution to
these problems, at least if ¢ has only finitely many nontrivial components in the
decomposition (8.1).

An approach would be to consider instead of 0 € C*°(Xr) and f, € C*(G//K)
sections of vector bundles ¥ € C°(Xr x g Vs) and Fj, € C®°(X x g Vs+) for K-types
5, k € C, so that ¥ - mr(F}) maps L?(Xr) into itself and is an operator of trace
class on L?(Xr).
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ak, a conjugated by k € K, 17
nF n conjugated by k € K, 17
()™, m-projection, 60
()™, m-projection, 59

-1
(mZ* )11, first entry in first row of
-1

ml' 66

0;_1, null matrix, 24

A : G — a, projection, 27

A, abelian part of Iwasawa dec. of
SO0,(1,1), 24

A, abelian subgroup of G, 17

B, boundary of X, 83

B(-,-), Killing form, 17

B(R!), unit ball in R!, 25

B(z,y), beta function, 29

B=K/M,27

B®, B®) = (B x B) — A(B), 85

B1(0), unit ball, 29

By(+,-), inner product on g induced by B
and 6, 17

C(p), constant depending on ¢, 71

CT, conjugacy classes in I', 21

C*> (G, X Vr), space of sections, 60

C°°(X)x, space of M-finite fucntions of
type m, 47

C*>® (X xp; End(Vy)), 59

C (X x pr End(Vx)), space of sections, 43

C*(G//K), space of bi-K-invariant
functions of compact support, 55

C,;, constant associated to eigenfunctions
i and @j, 94

A(g, a), restricted root system of g, 18

Ag, element of U(a @ s) @ U(t), 36

A, Laplacian on G/K, 19

Fr, fundamental domain for T', 57

F,, fundamental domain for < v >, 57

Fy, Abel transform of f, 66

FE,,, fundamental domain for I'~, 57

Fy,m, fundamental domain for < agm >,
58

G't, geodesic flow, 22

Iy exp x> map from
A(S(Gm(s)t ™) @ U(a® s) @ U(P) to
U(g), 35

H : G — a, projection, 27

H : SO,(1,1l) — a, Iwasawa projection, 26

HY,... ,H"™, dual basis to Hy,...,Hp, 18

Hy, unit vector in at, 23
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H,, defining vector for root a in at, 19

H.,, centralizer of §, in G, 22

H,, defining vector for p in a™, 19

H;, part of ONB in a, 18

I(a,b, po, k), normalizing constant, 93

I,(c), weight function, 58

I; 1, identity matrix, 24

J, matrix in Rt defining 6, 24

K, max. compact in G, 17

K, max. compact in SO,(1,1), 24

Ko (z,g), intgeral kernel of o - 7 (f), 56

L., lenght of [v], 66

Ly, intertwiner, 86

Ling, 106

Lins, infimum of length spectrum, 66

M, centralizer of A in K, 17

M-finite of type m, 47

M?Y, ..., M¥, dual basis to My, ..

M;, part of ONB in m, 18

N, nilpotent part of Iwasawa dec. of
S0,(1,1), 24

N, nilpotent subgroup of G, 17

), Casimir operator, 18

S(g), symmetric algebra of g, 34

S0,(1,1), identity component of SO(1,1),
24

Sm, slice in N, 68

T,, boundary value, 83

U(g), universal enveloping of g, 18

VM M-invariant vectors in V, 109

Vi, representation space of m, 43

W, Weyl group, 20

W;, Wy = X; +60X;, 19

Whn(o), 11

X, (real hyperbolic) symmetric space, 23

X1, ..., X™ dual basis to X1,...,Xm, 18

X1, unit vector in n, 32

Xr, 12, 20

Xr, Xr =T\X, 11

X;, part of ONB in n, 18

X, element of n, 25

Xe, , element of n to unit vector e, 25

Y;, 40

Y;, Y; =m- Lj, 40

Z(g), center of U(g), 18

Z1,...,Z™, dual basis to Z1,..., Zm, 18

zexp —X' | gexp—X' — Ad(—X")Z, 33

Zn(S), centralizer of S in M, 44

., My, 18
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Zg, 12

Zy , element of 3m(s)+™, 33

Zi, Zi = —0X;, 18

[v], 11

[z, 3], quadratic form on R!*1 24

T'y, centralizer of v in G, 21

X, character of 7, 47

f , euclidean Fourier transform, 28

(.,.), inner product, 25

log a, element of a, 27

C(A), constant depending on X € ag, 94

D' (B), distributions on B, 83

D(k; ¥n), holomorphic function on
{Re(k) > 0}, 108

&' (X), dual of C*°(X), 84

F, algebra of functions, 36

F+, subset of F, 36

P, set of poles, 100

Ps, intersection of P and S, 102

S, strip in C, 102

S(f,A), spherical transform, 28

Z(0), zeta function ass. with o, 111

D' (X), distributions on X, 84

F, Fourier transform, 27

O~(f), (weighted) orbital integral, 58

R(k) = R(k; 1), auxiliary zeta function to
p=1,80

R(k; @), R(p), auxiliary zeta function, 68

Z(k) = Z(k; 1), zeta function to ¢ =1, 80

Z(k; ), Z(p), zeta function, 71

a™, positive Weyl chamber, 49

ag, complex dual of a, 83

p, part of Cartan dec. of g, 17

a, Lie algebra of A, 17

t, Lie algebra of K, 17

m, 17

n, Lie algebra of N, 17

s, section in n, 32

s, regular elements in s, 32

3m(s), Lie algebra of Z/(s), 32

3m(s)T ™, orthognal complement to m(s),
32

Op(a), 11

PS,, 87

PS,, Patterson-Sullivan distributions, 86

N, N =N, 28

Jo_a@s,aexpx/, inverse of I'y oy x7, 36

PS,, 94

a= %(po +ir), 50

a~, element of AT, 66

at, element of A, 24

ag, element of Ag, 21

ap, element in A, 21

«, positive root, 24

am, coefficient function in L(A), 110

Qry, ayya;l = a,m-, 58

oy, element in G conjugating v into 0, 22

b= 1(po —ir), 50

B(k;m), coefficient, 70

¢(A\), Harish-Chandra’s c-function, 28

c(p,v, 7, k), coefficient in zeta function
Z(p), 68

INDEX

c(aym~), coefficient, 81

% = po, 49

Cyq, Prime, closed geodesic to vy, 23
X, cut-off, 86

Xs, character of §, 59

Za (S
d= 5, m(22), VM Fag

c=

dz~, Haar measure on I'y\G-, 21
dg, dimension of §, 59
dx(gMA), intermediate value, 86
dr, 59
dr, dimension of Vi, 47
da, Haar measure on A, 55
(D), 39
4(D), radial part, 34
8y, 6y = myay € MAT, 21
dg, Haar measure on G, 55
dk, Haar measure on K, 55
dn, Haar measure on N, 55
dz~, Haar measure on G, 21
e, neutral element, 64
f™, m-projection of f, 59
fi, bi-K-invariant function, 28, 65
©x, spherical function to A\ € a;:ﬂ 27
&, ¢(z) = ¢p(z~1), 56
Y0, primitive element to -y, 21
h(ma), diffeomorphism on N, 76
jo, index seperating principal and
complementary series, 83
lg, left-translation with g, 62
ling, infimum of {ly : 1 # [y] € CT}, 22
X: S(g) = U(g), symmetrizer, 34
Ny, vy = 'yg v, 57
Ny, element of N, 24
0,0=K, 43
wj_1, volume of unit ball, 29
1—c

pp="1 +1/<17%)27d,54

p1,2, roots of indicial equation, 51

@ * f, convolution, 56

m-projection, 59, 60

w(Z), derived operator from 7(exp Z), 43

w1, projection from U(g) to U(a @ s)U(¥),
34

w2, projection from U(g) to U(a @ s), 35

T, projection C(G) — C(G/M), 88

TR, right-regular representation of G, 55

7r(f), Fourier transform w.r.t. g, 56

7, contragradient representation of m, 47

rop=-%(n+L2), 62

rg, right-translation with g, 62

Py, P = I_Tla7 24

p, half-sum of positive roots times
dimension, 19

po, po = p(Ho), 24

6, Cartan involution, 17

w, 26
w, nontrivial weyl element, 20
" ft=forn, 88

(elementary) spherical, 27

admissible, 56
automorphic eigenfunction, 62



auxiliary zeta function, 68

Beta function, 29
boundary value, 83

Cartan decomposition, 17
Cartan involution, 17
Casimir operator, 18
class 1 spectrum, 109
closed geodesic, 21
complementary series, 83

elliptic, 21

Fourier transform, 27
Frobenius method, 52
fundamental domain, 57

geodesic flow, 22
geodesic loop, 21

Harish-Chandra’s c-function, 28

horocycle bracket, 27
hyperbolic, 21

infimum of the length spectrum, 66

intermediate value, 86
intertwining operators, 86
Iwasawa decomposition, 17
Iwasawa projection, 26

Killing form, 17

Laplace operator, 19

length of a closed geodesic, 66

length spectrum, 66

normalized Patterson-Sullivan distribution,

94

orbital integral, 58

Patterson-Sullivan distributions, 86
polar coordinate form of Q, 44

polar coordinates, 29, 67
positive Weyl chamber, 49
prime geodesic, 21
primitive, 21

principal series, 83

radial part, 39
Radon transform, 85
regular element, 32

root space decomposition, 17

section, 31
slice, 31

smooth fundamental domain cut-off, 86

spectral trace, 85
spherical function, 27

spherical representation, 109

spherical spectrum, 109
spherical transform, 28

uniform lattice, 20

universal enveloping algebra, 18

weight function, 58

INDEX

Weyl group, 20
Wigner distribution, 85

zeta function, 70
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