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Testing is the process of checking a system under consideration whether it behaves as 
intended by the user. Model-based testing employs models for generation of test cases. 
Model-based mutation testing (MBMT) additionally involves fault models, called mutants, 
which are generated from the original model by applying mutation operators. A problem 
encountered in MBMT is caused by mutants that are equivalent to the original model 
(equivalent mutants) and multiple mutants that model the same faults. These mutants should 
be eliminated, because they lead to unnecessary test cases and thus increase the costs. 
Another problem of MBMT is the need to compare a mutant to the original model for test 
generation. Furthermore, using a single fixed model out of a set of various structurally, that is, 
morphologically, different models that describe a given system can also be considered as a 
problem of MBMT. This work proposes an event-based approach to MBMT that is not fixed 
on single events and a single model but rather operates on sequences of events of length 
k≥1 and invokes a sequence of models that are derived from the original one by varying its 
morphology based on the sequence length k. The approach employs formal grammars, 
introduces related mutation operators, and constructs algorithms, which enable the following 
and thus avoid the aforementioned drawbacks of MBMT: (1) the exclusion of mutants that are 
equivalent to the original model and multiple mutants that model the same faults; (2) the 
generation of a test case in linear time to kill a selected mutant without the necessity of 
comparing it to the original model; (3) the analysis of morphologically different models 
enabling the systematic generation of mutants, thereby extending the set of fault models 
under consideration or studied in related literature. Three case studies validate the approach,  
analyze its characteristics and compare it to two other MBMT approaches and random 
testing. A discussion about the adaptation of the proposed MBMT approach using various 
models, its weaknesses and limitations, and further research potential in the field concludes 
the work. 
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Testen ist der Prozess zur Überprüfung eines betrachteten Systems, ob dieses sich wie 
durch den Benutzer vorgesehen verhält. Modell-basiertes Testen wendet Modelle zur 
Generierung von Testfällen an. Zur Testfall-Generierung benutzt modell-basiertes Mutation 
Testen (MBMT) zusätzlich Fehlermodelle, sogenannte Mutanten, welche durch die 
Anwendung der Mutationsoperatoren auf dem ursprünglichen Modell erzeugt werden. Ein 
Problem mit MBMT entsteht durch Mutanten, die äquivalent zu dem ursprünglichen Modell 
sind (äquivalente Mutanten) und mehrfache Mutanten, welche die gleichen Fehler 
modellieren. Diese Mutanten müssen eliminiert werden, sie verursachen unnötige Tests und 
erhöhen damit die Kosten. Ein weiteres Problem des MBMT ist die Notwendigkeit für die 
Testgenerierung, ein Mutant mit dem ursprünglichen Modell zu vergleichen. Außerdem kann 
die Verwendung eines einzigen festen Modells aus einem Menge von verschiedenen 
strukturell, d.h. morphologisch, unterschiedlichen Modellen, welche ein gegebenes System 
beschreiben, auch als ein Problem mit MBMT betrachtet werden. Diese Arbeit schlägt einen 
ereignis-basierten Ansatz für MBMT vor, der nicht auf einzelne Ereignisse und ein einziges 
Modell fixiert ist, sondern auf Sequenzen von Ereignissen der Länge k≥1 arbeitet. Dabei wird 
eine Sequenz von Modellen hergeleitet, die von dem ursprünglichen Modell durch Variation 
ihrer Morphologie basierend auf die Sequenzlänge k abgeleitet sind. Der Ansatz verwendet 
formalen Grammatiken, führt entsprechende Mutationsoperatoren ein und konstruiert 
Algorithmen, welche folgendes leisten und damit die o.g. Nachteile des MBMT vermeiden: (1) 
der Ausschluss der Mutanten, die äquivalent zu dem ursprünglichen Modell sind und der 
merhrfachen Mutanten, die die gleichen Fehler modellieren; (2) die Erzeugung eines Testfalls 
in linearer Zeit zum Eliminieren eines ausgewählten Mutanten ohne die Notwendigkeit eines 
Vergleichs mit dem ursprünglichen Modell; (3) die Analyse der morphologisch 
unterschiedlichen Modelle zur systematischen Erzeugung von Mutanten, wodurch die Menge 
der in der einschlägigen Literatur bekannten Fehlermodelle erweitert wird. Drei Fallstudien 
exemplifizieren den Ansatz, analysieren seine Eigenschaften und vergleichen ihn mit zwei
anderen MBMT Ansätze sowie dem Zufallstesten.  
Eine Diskussion über die Anpassung des vorgestellten MBMT-Ansatzes an verschiedene 
Modelle, seine Schwächen und Grenzen und weiteres Forschungspotential auf dem Gebiet 
schließt die Arbeit ab. 
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Symbols and Notation 

Set Theory 

{x1, x2, …, xn} set of elements x1, x2, …, xn 

∅ or {} the empty set 

x ∈ X x is an element of set X 

x ∉ X x is not an element of set X 

|X| cardinality of set X 

X ∩ Y intersection of set X and set Y 

X ∪ Y union of set X and set Y 

X ⊆ Y set X is a subset of set Y 

X \ Y or X - Y difference of set X from set Y 

X' complement of set X 

X.Y or XY concatenation of set X and set Y 

X
n n-times concatenation of set X 

X
*
 closure of set X 

Miscellaneous 

Q → R production; Q can be replaced by R 

Q | R selection; Q or R 

ε the empty string 

|s| length of string/sequence s 

Q ⇒G
*
 R or Q ⇒

*
 G derivation; Q can be derived from R using one or 

more productions of grammar G (in the latter, G is 
implicit) 

Q ⇒G R or Q ⇒ R derivation step; Q can be derived from R using one 
production of grammar G (in the latter, G is implicit) 



 

 

iv 

L(X) language defined by abstraction X 

r = r1 r2 … rk k-sequence r 

c(r) context of k-sequence r 

[ start node 

] end node 

(q, r) arc; from q to r 

d(s) corresponding basis sequence of sequence s; 
decontexted version of s 

d(X) corresponding set of basis sequence of set of 
sequences X 

u
1
 … u

m sequence of m k-sequences; sometimes, m-derived 
sequence in a k-Reg 

TP(G) set of all positive test cases of grammar G 

TCES(G) set of all complete event sequences of grammar G 

TN(G) set of all negative test cases of grammar G 

TFCES(G) set of all faulty complete event sequences of 
grammar G 

TS(s, k) sequence transformation of s based on integer k 

TS
-1

(s, k) inverse sequence transformation of s based on 
integer k 

R+P R or P; union of regular expressions R and P 

R.P or RP concatenation of regular expressions R and P 

R
*
 (star) closure of regular expressions R 

R
+
 R.R

* 

⊑ risk ordering relation 

⊑h holistic risk ordering relation 

rl(s) risk level of state s 

T(p, a, X) PDA transition function 

δ quiescence 

θ time 

p(x) push 

q() or q(x) pop 

r() or r(x) read 
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Mutation Operators 

Ms mark start (for a k-Reg) 

Mf mark finish (for a k-Reg) 

Mns mark nonstart (for a k-Reg) 

Mnf mark nonfinish (for a k-Reg) 

Is insert sequence (for a k-Reg) 

It insert terminal (for a k-Reg) 

Os omit sequence (for a k-Reg) 

Ot omit terminal (for a k-Reg) 

Msti mark state initial (for a PDA) 

Mstf mark state final (for a PDA) 

Mstnf mark state nonfinal (for a PDA) 

Msyi mark stack symbol initial (for a PDA) 

Itr insert transition (for a PDA) 

Ist insert state (for a PDA) 

Otr omit transition (for a PDA) 

Ost omit state (for a PDA) 

Rw write replacement (for transition of a PDA) 

Rw-read replace with read (for transition of a PDA) 

Rw-push replace with push (for transition of a PDA) 

Rw-pop replace with pop (for transition of a PDA) 

Rw-poppush replace with pop-push (for transition of a PDA) 

Rr read replacement (for transition of a PDA) 

Rr-init replace with initial stack symbol (for transition of a 
PDA) 

Rr-top replace with new stack top (for transition of a PDA) 

Rr-another replace with another stack symbol (for transition of a 
PDA) 

Re event replacement (for transition of a PDA) 

Rs source replacement (for transition of a PDA) 

Rd destination replacement (for transition of a PDA) 

Ito insert token (for a PN) 

Ia insert arc (for a PN) 

Itr insert transition (for a PN) 



 

 

vi 

Ip insert place (for a PN) 

Oto omit token ( for a PN) 

Oa omit arc ( for a PN) 

Otr omit transition (for a PN) 

Op omit place ( for a PN) 

Abbreviations 

CES complete event sequence 

CFG context-free grammar 

EIG event interaction graphs 

ESG event sequence graph 

ESG4WSC event sequence graphs for web-service compositions 

ESIG event semantic interaction graphs 

ESOR expected state omission ratio 

EFG event flow graph 

FCES faulty complete event sequence 

FSCR fault state coverage ratio 

FSIR fault state inclusion ratio 

FSA finite state automaton / finite state automata 

FSM finite state machine 

GUI graphical user interface 

k-Reg k-sequence right regular grammar 

MBT model-based testing 

MBMT model-based mutation testing 

PDA pushdown automata 

PEFG probabilistic event flow graph 

RE regular expression 

RG regular grammar 

SUC system under consideration 

SUT system under test 

USIR unexpectd state insertion ratio 

UML unified modeling language 
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1 Introduction 

 

Testing is a user-centric quality assurance technique based on test cases that 
consist of test inputs and expected test behaviors (commonly characterized by test 

outputs). A test invokes the execution or training of the system under 

consideration (SUC) using a test case; that is, a test path is exercised in the test 

object using a test case. SUC passes the test if, upon a test input, the expected 
behavior is produced; otherwise, the SUC fails the test. This entails the tough 
oracle problem [85] for deriving the expected behavior to determine the 
correctness of the observed behavior. A set of test cases, also called test set/suite, 
is generated and executed in the target environment of SUC or an environment 
closely resembling the target environment. Commonly, a coverage criterion (also 
called coverage metric) [178] is used as a stopping condition for testing and 
providing a measure of the quality of a test set. This work prefers the term SUC to 
“system under test (SUT)” because the approach introduced applies both to a 
model and an implementation, whereas SUT applies to an implementation. 

Model-based testing (MBT) is based on creating an abstraction called a model, 
viewing the SUC as a black-box and operating on this model for testing from a 
behavioral aspect [24]. In positive testing, one tests whether the SUC is doing 
what it is supposed to do; whereas, in negative testing, the SUC is tested to 
determine whether it is not doing what it is not supposed to do [25]. The use of 
models has various advantages, such as increasing effectiveness and efficiency in 
terms of fault detection and costs [93]. Formal models additionally help to avoid 
the oracle problem in the sense that the expected test outputs can automatically be 
generated [93][165]. Also, contrary to the common belief, model-based 
approaches are not that hard to learn and apply [179]. 

To adopt an MBT approach, a model with a proper expressiveness should be 
selected based on the SUC and the testing goals. Expressiveness (also, expressive 

power) of a model is defined as the breadth of ideas that can be represented and 
communicated in that model [76]. Therefore, expressiveness is a major factor 
which influences effectiveness of a testing approach in terms of fault detection 
and costs. In general, as expressiveness increases, analyzability decreases [80]. 
Hence, the use of models with insufficient expressiveness may cause a decrease in 
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the fault detection effectiveness; whereas, the use of models with excessive 
expressive power may cause an unnecessary decrease in the cost effectiveness. 

Some models have the same expressiveness; classical examples are finite state 
automata (FSA), regular expressions (REs), and regular grammars (RGs) [100], as 
they relate to the same class of formal languages, that is, type-3 languages [54]. A 
substantial amount of work in practice relies on the use of such models. Also, 
finite state machines [123][128] and pushdown automata (PDA) [100] are 
examples of test models which are more expressive than FSA; whereas event 
sequence graphs (ESGs) [25] are less expressive. Statecharts [87] and UML 
diagrams [133][70], on the other hand, do not have formally defined semantics 
[88][23][56]; that is, they are not completely formalized. Depending on how the 
semantics are defined, they may possess more expressiveness than FSA models. 
Generally, all these models are used in MBT. However, models which have 
similar expressiveness to FSA are especially preffered for MBMT; because such 
models possess better analyzability; for example, the equivalence problem is 
decidable. 

A selected model commonly puts the primary focus on different elements. For 
example, FSA are state-based; events label the transitions. ESGs and event flow 
graphs (EFGs) [171], on the other hand, are event-based [39][35]; they refrain 
from states and distinguish events from each other by using their contexts. Formal 
grammars are generally referred to as rule-based models. However, they can be 
used for both state-based and event-based modeling. 

The approach introduced in this work is event-based. In the context of this 
work, the term event is used to mean a discrete action, message, signal, etc. Thus, 
events are externally perceptible, contrary to states, which are internal to the SUC 
and thus not necessarily observable [35]. This is one of the reasons why this work 
chooses formal grammars, the elements of which refer to events that are 
perceivable to the tester and thus enable him or her to unambiguously decide 
whether or not the SUC passes the test; that is, the test object behaves correctly. 
Event-based testing operates on sequences of events of increasing length. 

Most of the MBT approaches operate on the given model in a fixed way; that 
is, the model is viewed from only one relevant aspect. However, it is possible to 
view the same model in different ways to explore morphological differences; for 
example, an SUC might behave differently to the same input in different contexts, 
because a different test path is exercised in the test object. Morphology is a Greek 
word meaning “the study of form or structure.” Several disciplines, such as 
linguistics, chemistry, and astronomy, study the form, structure, or shape of the 
particular objects of interest. Over the years, the term is also used to refer to 
structure. (This work does not use the term “structure” to avoid a possible 
confusion with the term “structural testing” [132].) In MBT, the differences in 
morphology may cause the associated fault models and the generated test sets to 
be different. 
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The model morphology this work exploits is characterized by the length and 
the contextual relation of the event sequences. By varying the sequence length, the 
scalability of the approach is also adjusted by algorithmically generating a 
corresponding sequence of models from the original one. These models describe 
the same SUC but are morphologically different; therefore, they can be used to 
exercise different test paths in the test object by generating test cases possessing 
different characteristics. This way of model exploitation differs principally from 
the existing ones; for example, the one used by Unified Modeling Language 
(UML), which creates different kinds of models (diagrams) for different views 
[149]. 

Model-based mutation testing (MBMT) [52][8][40] is an approach that, in 
addition to the model given, uses fault models for test generation. Thus, MBMT 
enables both positive and negative testing. Fault models are also called mutants 
because they are generated using mutation operators that modify the original 
model. By using mutants, MBT approaches aim to generate test cases which 
distinguish the mutants from the original model; that is, they kill or discriminate 
the mutants. When such a test case is executed, the SUC can be tested as to 
whether or not it contains the fault modeled by the mutant; that is, the test case 
aims to check whether or not a specific fault exists on a certain test path in the test 
object. Evidence demonstrates that using such model-based mutants is effective at 
detecting both code-based mutants and real-world faults [10][19]. 

MBMT has problems similar to those of (code-based) mutation testing 
[59][86][4] and MBT, because it can be considered as an adaptation of mutation 
testing using models. For one thing, some mutants can be equivalent to the 

original model or different mutants can describe the same faults. This causes a 
major problem because such mutants lead to the wasting of test resources [5]. 
Grün, Schuler, and Zeller, among other authors, [84] report that 40% of the 
generated mutants can be equivalent. Furthermore, each mutant needs to be 

analyzed against the original model to detect equivalence or to generate a test 
case that kills the mutant. However, such an analysis is not always easy (or even 
possible), because certain models are harder to analyze. In addition, since a fixed 
model is utilized, the set of fault models is limited. This causes certain important 
faults to be missed. 

Formal grammars have already been proposed for MBMT [134][26][29]. This 
work introduces a new approach based on regular grammars for modeling event 
sequences of length k≥1 (k-sequences), a transformation algorithm to vary model 
morphology by changing k, and related mutation operators to generate 
corresponding fault models to achieve the following. 

• The generation of only useful mutants. Existing approaches generate 
sets of mutants that can include equivalent mutants and multiple mutants 
that model the same faults. To increase the test efficiency, the attempt is 
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then made to eliminate these mutants. The present approach excludes the 
generation of such mutants and thus avoids elimination. Thus, one does 
not generate multiple test cases that check existence of the same fault on a 
certain test path in the test object. 

• The generation of a test case in linear time to kill a mutant. Existing 
approaches compare each mutant to the original model for test generation. 
The new approach generates a unique test case to distinguish a selected 
mutant in linear time without comparing the mutant against the original 
model. Hence, one can efficiently check whether or not there exists a 
certain fault on a specific path in the test object. 

• The extension of the set of fault models. Existing approaches employ a 
fixed model and, accordingly, generate a set of associated fault models that 
simply enables the study of the relation between single events. The new 
approach analyzes the relation between k-sequences and events, enabling 
the generation of additional fault models, which, in general, represent 
different or more subtle faults as the sequence length k increases. In this 
way, one can incrementally model different or more subtle faults that are 
located on different test paths in the test object. Existing approaches do not 
consider such fault models. 

As mentioned above, the approach proposed in this work provides significant 
improvements to the existing event-based MBMT approaches [40][26][99]. These 
improvements are not based on system-specific semantics because such semantics 
generally requires an access to the internals of the system and limits the generality 
of the approach. Therefore, the proposed approach can be applied to all systems 
for which an event-based model is feasible to use. For example, event-based 
approaches are often used for testing of desktop applications [39][27], embedded 
systems [40], web-based systems [43][26][46][28][30] and graphical user 
interfaces [124]. This work uses web-based and embedded systems that possess 
different characteristics to demonstrate the improvements of the proposed 
approach. 

It is also possible to use the proposed approach for both verification and 
validation purposes, considering the fact that testing (more specifically, model-
based or functional testing) is regarded as an activity in both verification and 
validation [103]. For verification, one can construct a model from a given system 
specification to determine whether the system behaves as described in this 
specification. For validation, a model needs to be constructed to describe the user 
requirements or functionality so that one can evaluate whether the system behaves 
as intended by the user or the customer. In this work, the models used in case 
studies are constructed from (informal) system specifications that are prepared for 
development purposes. Therefore, MBT is performed as a verification activity, 
assuming the correctness of the system specifications. 
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The work is organized in three parts. Part I serves for an introductory purpose; 
Chapter 2 explains the basic idea behind the main approach presented in this work 
by way of an example and Chapter 3 discusses the related work. 

In Part II, the approach is introduced and evaluated in detail. The basic notions 
related to the approach are given in Chapter 4. Chapter 5 introduces the concepts 
related to variation of model morphology to extend the set of faults models and to 
generate test cases, and Chapter 6 defines and discusses event-based mutation 
operators to generate mutants from the morphologically different models. Chapter 
7 discusses strategies for mutant selection from the obtained morphologically 
different models for the purpose of test generation and outlines mutant-based test 
generation aspects. Chapter 8 performs three case studies to analyze the 
characteristics of the approach in comparison to random testing approach, ESG-
based MBMT approach (which employs coverage-based test generation from 
mutants), and mutate-and-kill-based (MK-based) MBMT approach (which is 
based on the idea of generating discriminating test cases by analyzing or 
comparing mutants against the original model). 

Part III concludes the work. Chapter 9 discusses some further perspectives 
related to the application of the proposed approach for vulnerability testing, the 
adaptation of the MBMT approach using different models and the extension of the 
event-based models. Chapter 10 concludes the work and outlines some future 
research. 
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2 Basic Idea Demonstrated by an 

Example 

 

This chapter sketches the approach by means of a simple example. The next three 
sections explain usage of formal grammars for modeling, mutant generation, and 
grammar transformation for varying the model morphology. Novelties are 
exemplified in the last section. 

 

Example 2.1 (Running Example). Consider three events 

c: copy, x: cut and p: paste. 

For simplicity, events to select and deselect system objects or locations are 
ignored, assuming that these events are performed properly before any events 
from {c, x, p}. 

• At the beginning, one can perform either c or x. 

• c can be followed by either c, x or p. 

• x can be followed by either c, x or p. 

• If p is performed after c, it can be followed by either c, x or p. 

• If p is performed after x, it can only be followed by either c or x; that is, 
after cutting and pasting an object, it is not possible to paste it again. 

• One can stop after performing a p. 

 

2.1 Event-Based Modeling Using Grammars 

Figure 2.1a represents an event-based directed graph model to illustrate Example 
2.1. Such models are popular in the testing community [35] and have the same 
expressiveness as FSA (or FSA with outputs, if output events are also included). 
Since events are the observable entities in model-based testing and states 
generally represent the internals of the system, the proposed model focuses on 
events and refrains from visualizing states. Therefore, events are placed at the 
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nodes, and the follows relation between the events is described using arcs. Pseudo-
events [ and ] are used to mark, respectively, the start and finish events [25]. 

 

x

c

][

p

p

 

x1

c1

][

p2

p1

 

(a) A model containing ambiguity. 
(b) A model with contexted events (Ambiguity 

is removed by indexing/contexting). 

Figure 2.1. Event-based models for Example 2.1. 

 

The model in Figure 2.1a has a severe drawback. By “event p,” one cannot 
differentiate to which p event is referred. The present approach suggests 
distinguishing such events from each other by indexing that considers the contexts 
in which they reside, leading to contexted events, such as {c1, x1, p1, p2} (Figure 
2.1b). Their counterparts, basis events, such as {c, x, p}, represent the events as 
they are visible to the user. Note that contexted events are not necessarily caused 
by cycles or loops in the model. 

Fault models associated with the models like the one in Figure 2.1b are 
primarily based on modifying the follows relation between single events. This 
modification needs to be generalized by analyzing occurrences of single events 
with respect to event sequences of length k≥1 (k-sequences) for systematic 
extension of event-based fault modeling. In this way, one can incrementally model 
different or more subtle faults that are on different test paths in the test object. 

Grammars are suitable for representing event-based abstractions based on k-
sequences. They allow multiple occurrences of events in productions, which 
enable to represent the follows relation between k-sequences and events. This 
practice is common in compiler construction and testing [100]; related techniques 
are exploited here. 

In light of the discussion above, the grammar model is composed of a set of 
(contexted) events, a set of basis events, a set of k-sequences (terminals), a set of 
contexts (nonterminals) including a start context and a set of productions. A 
context relation determines the right unique context of a k-sequence in 
productions. 
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S → c1 c(c1) | x1 c(x1) 

c(c1) → c1 c(c1) | x1 c(x1) | p1 c(p1) 

c(x1) → c1 c(c1) | x1 c(x1) | p2 c(p2) 

c(p1) → c1 c(c1) | x1 c(x1) | p1 c(p1) | ε 

c(p2) → c1 c(c1) | x1 c(x1) | ε 

Figure 2.2. A grammar model for Example 2.1 which makes use of 1-sequences. 

 

Example 2.2 (Grammar Model). Figure 2.1b shows the indexed version of 
Figure 2.1a where the contextual ambiguity of p is eliminated. For a unified 
representation, unambiguous events are also indexed. Based on Figure 2.1b, 
Figure 2.2 represents the grammar that precisely models Example 2.1. The 
productions have the following semantics. 

• c(a) → b c(b) means that b follows a and a b is a 2-sequence. 

• S → a c(a) means that a is a start event. 

• c(a) → ε means that a is a finish event. 

Also, c(a) denotes the (right) context of event a. 

The productions of Figure 2.2 form a regular grammar. The terminals therein 
are events that can be viewed as 1-sequences, and the nonterminals are contexts. 
Therefore, this model is called “1-Reg.” 

 

2.2 Generating Mutants 

The new approach refines the elementary mutation operators insertion and 
omission [40] to modify sequences of events by also considering the start and 
finish events. The iterative and combinatorial deployment of these operations 
enables further mutation operators such as duplication, deletion, or replacement 
[134][18]. 

 

Example 2.3 (Mutants). Figure 2.3 contains some mutants of Example 2.1. The 
mutant in Figure 2.3a is generated using an event-based mutation [40] by inserting 
event/terminal p3. Furthermore, the mutant in Figure 2.3b is generated using a 
grammar-based mutation [134][18] by replacing terminal p1 by x1. 

These mutants are different; the modeled faults are on different test paths in 
the test object. The mutant in Figure 2.3a is a 1-Reg; it models a single fault: “p is 
extra after x p.” In contrast, the mutant in Figure 2.3b is not a 1-Reg but an RG; it 
models multiple faults: “p is missing after c,” and “p is extra after c x p.” 
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x1

c1

][

p2

p1

p3

 

S → c1 c(c1) | x1 c(x1) 

c(c1) → c1 c(c1) | x1 c(x1) | x1 c(p1) 

c(x1) → c1 c(c1) | x1 c(x1) | p2 c(p2) 

c(p1) → c1 c(c1) | x1 c(x1) | p1 c(p1) | ε 

c(p2) → c1 c(c1) | x1 c(x1) | ε 

(a) An insert event mutant. (b) A terminal replacement mutant. 

Figure 2.3. Some mutants of the model in Figure 2.2 (Mutations are shown in boldface or 
underlined). 

 

S → c1 c1 c(c1 c1) | c1 x1 c(c1 x1) | c1 p1 c(c1 p1) | x1 c1 c(x1 c1) |  
 x1 x1 c(x1 x1) | x1 p2 c(x1 p2) 

c(c1 c1) → c1 c1 c(c1 c1) | c1 x1 c(c1 x1) | c1 p1 c(c1 p1) 

c(c1 x1) → x1 c1 c(x1 c1) | x1 x1 c(x1 x1) | x1 p2 c(x1 p2) 

c(c1 p1) → p1 c1 c(p1 c1) | p1 x1 c(p1 x1) | p1 p1 c(p1 p1) | ε 

c(x1 c1) → c1 c1 c(c1 c1) | c1 x1 c(c1 x1) | c1 p1 c(c1 p1) 

c(x1 x1) → x1 c1 c(x1 c1) | x1 x1 c(x1 x1) | x1 p2 c(x1 p2) 

c(x1 p2) → p2 c1 c(p2 c1) | p2 x1 c(p2 x1) | ε 

c(p1 c1) → c1 c1 c(c1 c1) | c1 x1 c(c1 x1) | c1 p1 c(c1 p1) 

c(p1 x1) → x1 c1 c(x1 c1) | x1 x1 c(x1 x1) | x1 p2 c(x1 p2) 

c(p1 p1) → p1 c1 c(p1 c1) | p1 x1 c(p1 x1) | p1 p1 c(p1 p1) | ε 

c(p2 c1) → c1 c1 c(c1 c1) | c1 x1 c(c1 x1) | c1 p1 c(c1 p1) 

c(p2 x1) → x1 c1 c(x1 c1) | x1 x1 c(x1 x1) | x1 p2 c(x1 p2) 

(a) Productions. 

c1 x1

p2 x1

]

c1 c1

c1 p1

x1 x1

x1 c1

x1 p2

p1 x1

p1 c1

p1 p1

p2 c1

[

 

(b) Directed graph visualization. 

Figure 2.4. A grammar model for Example 2.1 which makes use of 2-sequences (Transformed 
from Figure 2.2). 
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2.3 Grammar Transformation to Vary Morphology 

The introduced event-based grammar model enables the generation of 
morphologically different models by a transformation to vary k. 

 

Example 2.4 (Transformed Model). The model in Figure 2.2 and its 
transformation shown in Figure 2.4 describe the same system behavior, but 
productions in Figure 2.4 utilize 2-sequences; therefore, it is a “2-Reg.” A 2-Reg 
is morphologically different from its 1-Reg, for example, production of the form 

c(a e) → e b c(e b) means that b follows a e and a e b is a 3-sequence. 

 

2.4 Novelties 

The set of fault models is extended. To see how morphologically different 
models, generated using grammar transformation, extend the set of possible fault 
models, consider a mutant of Figure 2.4 generated by omitting sequence (p1 c1, 

c1 p1) as shown in Figure 2.5b. This mutant models the fault that 

p1 is missing after p1 c1; 

that is, paste fails after performing a paste and a copy. It is not possible to create 
such a mutant from the model in Figure 2.2 by a simple omission. For example, 
one can omit sequence (c1, p1) (See Figure 2.5a). However, in this mutant, paste 
fails immediately after performing a copy. Hence, the mutant in Figure 2.5b 
models a different and more subtle fault than the mutant in Figure 2.5a. Thus, the 
set of fault models can be extended by generating mutants modeling different or 
more subtle faults; that is, one can incrementally model different or more subtle 
faults that are located on different test paths in the test object. 

To the knowledge of the authors, no other existing approach directly considers 
such a fault. 

Only useful mutants are generated. Most of the MBMT approaches, such as 
[17][8], compare each mutant against the original model to check if they are 
equivalent. In contrast, the proposed approach excludes equivalent mutants and 
multiple mutants modeling the same faults. 

Each selected mutant has the following properties. (1) It does not violate the 
type-3ness of the given grammar; that is, the mutated grammar is of the same type 
as the original one (Also, see the discussion in Section 3.4). (2) It models a small 
number of faults. (3) The faults are located at the mutation point; that is, the faults 
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are directly related to the mutation parameter. Doing so, one avoids modeling the 
same fault that is located on a certain test path in the test object multiple times. 

The mutant in Figure 2.3a is selected because it is a 1-Reg (the type is 
preserved), it models a single fault where p is extra after p2 (or after x p), and the 
fault is located at the mutation point because the inserted event is itself faulty. 

The mutant in Figure 2.3b is excluded because it models multiple faults which 
can be modeled separately. p is missing after c, and p is extra after c x p. 

A test case is generated in linear time to kill a mutant. Since the location of the 
faults modeled by each selected mutant can be determined from the actual 
mutation parameter, a unique test case to kill the mutant can be generated in linear 
time, without comparing it against the original model. Hence, one can efficiently 
check whether or not there exists a specific fault on a certain path in the test object 
or not. For example, breadth-first search can be used to generate x1 p2 p3 to kill 
the mutant in Figure 2.3a. 

 

x1

c1

][

p2

p1

 

c1 x1

p2 x1

]

c1 c1

c1 p1

x1 x1

x1 c1

x1 p2

p1 x1

p1 c1

p1 p1

p2 c1

[

 

(a) A mutant of the model in Figure 2.2. (b) A mutant of the model in Figure 2.4. 

Figure 2.5. Two mutants for Example 2.1 (Mutations are shown in boldface dashed lines). 
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3 Related Work 

 

Related work is discussed in the relevant categories as follows. 

3.1 “Transformation” and “Mutation” 

The grammar transformation is used in this work for varying the morphology of a 
given model. This should not be confused with similar notions used in other 
approaches, such as model transformation [125], input/output transformation in 
metamorphic testing [177], and model composition [113] in aspect oriented 
modeling. 

In model transformation, the goal is to produce a certain set of models 
possessing different syntax (or even semantics) and to ensure that they describe 
the same phenomena in a consistent way by defining relationships between these 
models. The grammar transformation also defines the relationship between certain 
types of event-based models, that is, between a particular RG model describing a 
given system behavior using k-sequences and another one describing it using 
(k+1)-sequences. However, its main purpose is to generate models of the same 
type with different morphological properties. 

In metamorphic testing, a relation is used to reflect the changes in the input to 
the changes in the output so that the program can be tested, starting with a set of 
initial test cases, by checking the relations among several executions rather than 
individual outputs. In this way, no further involvement of a test oracle is needed. 
Hence, the way this work varies morphology is different. Also, the proposed 
event-based model optionally enables to embed the test oracle into the sequence; 
one can decide whether a system fails or passes a test case by simply executing it 
[25]. 

In aspect-oriented modeling [113], the base model and its aspects are 
constructed separately. Later, these aspects are woven onto the based model; that 
is, the base model is transformed by applying the aspects and using certain 
morphisms defined between aspect elements and the base model. The goal is to 
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simplify the design process by modularizing the crosscutting concerns; it does not 
aim to vary the model morphology as in this work. 

The concept of mutation is also often used in different areas of testing. For 
example, in metamorphic testing, it is sometimes said that a test case input is 
mutated to obtain another test case input. Genetic algorithms use mutation as a 
genetic operator (along with crossover) to produce a new generation of test cases 
from the existing one [127]. In this work, mutation is used to generate fault 
models from an original model. Later, test generation was performed to obtain test 
cases that seek to reveal certain faults determined by the morphology of the model 
and the test generation method. 

3.2 Model-Based Mutation Testing 

Mutation testing (or mutation analysis) is a method to test a given system by 
making use of systematically generated mutants, which represent faulty versions 
of the system. It was originally introduced as a code-based approach based on 
certain assumptions about the developer and the faults [59][86][4][3]. However, it 
can also be applied to different formalisms, that is, models (or specifications) 
[52][81]. 

Basically, mutation testing can be regarded both as an evaluation technique (to 
assess the fault detection adequacy of a given test set by measuring its ability to 
detect the faults seeded into the mutants) [6] and as a testing technique (to 
improve the testing process by using the mutants) [175][89]. A major problem is 
the generation of equivalent mutants, that is, mutants which are equivalent to the 
original system. Although it is generally not possible to decide whether or not a 
given mutant is equivalent to the original system, certain equivalent mutants can 
be detected [136] and specific techniques such as program slicing can help to 
reduce the effort involved in equivalent mutant detection [94]. However, the 
problem of generating multiple mutants which are equivalent to each other is not 
considered. Furthermore, only a fixed program and its mutants are utilized in 
mutation testing, limiting the set of faults especially while using mutation testing 
as a testing technique. 

In classical sense, mutation testing is performed on an implementation to test 
the implementation itself [6][58][107]. Similarly, it is also applied to a model to 
test the model itself [158][71][73]. In a non-classical sense, mutation testing is 
used to test an implementation based on its model [52][81][8][40], which is 
referred to as model-based mutation testing (MBMT). (For a detailed survey of 
mutation testing, reader can refer to [104].) 

In MBMT, mutants of a model have morphological differences; however, the 
primary purpose is to model faults drawn from practice [52][81][8][40]. This 
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work systematically generates mutants over morphologically different models. 
This enables the extending of the set of fault models by producing mutants not 
necessarily considered by other approaches that are relatively closer to the line of 
research considered in this work. 

Stocks [156] discusses MBMT for Z specifications. He discusses different 
types of mutations for Z and defines criteria to choose test cases to distinguish 
certain types of mutants from the original model. 

Amman, Black, and Majurski [17], and Black, Okun, and Yesha [47][48] 
make use of model-checking to check for (bounded) state equivalence between 
two deterministic models. In case of non-equivalence, a counterexample is 
obtained and used as a test case. Nondeterministic models are also used for similar 
purposes [137][49][79]. 

Kovács, Pap, Viet, Wu-Hen-Chang and Csopaki [112] apply MBMT using 
SDL. They define six mutation operators and two algorithms for test selection 
using mutants to automate the process. Only the first algorithm is actually related 
to MBMT, where a mutant is compared to the original model using a state space 
exploration algorithm and a test case revealing the inconsistency between the two 
models is generated. The second algorithm is used to select an optimal subset of a 
given test set so that the achieved mutation score does not change. 

Aichernig [8], and Aichernig and He [11] develop a theory based on the 
notion of refinement, which is applied using different types of abstractions in 
practice, such as language of temporal ordering specification for testing protocols 
[167] and action systems for testing embedded systems [9], some of which may 
contain nondeterminism. The idea is similar to the above. However, since an 
equivalence check is too strong and results in too many test cases, a refinement 
check is used for conformance, such as input output conformance [163]. In this 
way, mutants that are not equivalent but conform to the original model are also 
discarded. Improvements to the refinement checking are performed 
[12][13][14][15]. 

Belli, Budnik, and Wong [40] also use event-based models (ESGs) to adapt 
MBMT. Basic mutation operators are defined and coverage-based test generation 
is performed. The proposed concepts are also refined or extended in different 
ways [26][36][37][161][99]. In these works, equivalent mutants are not really 
excluded and used in coverage-based test generation to populate the test set, 
because test cases generated from them can still reveal additional faults even if 
they do not contribute to the intended coverage [77][99]. Also, although some 
works [40][26][99] adopt the transformation defined by Belli and Budnik 
[38][39], it is used as an intermediate step for test generation. The emerging 
abstraction is not exploited for the purpose of extending the set of possible fault 
models. 
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The approach proposed in this work does not operate using a fixed model and, 
thus, is not limited to a fixed set of fault models. A transformation to vary model 
morphology is outlined for the purpose of extending the set of fault models and 
generating test sets achieving different coverage to reveal additional faults. In 
comparison to [134][18], the proposed mutation operators are more suitable for 
event-based testing and for generating mutants that contain a small number of 
faults. Furthermore, with the help of the mutant generation strategies devised by 
exploiting the simple semantics of the model, it can be guaranteed that, when a 
mutant is selected, the fault is located at the mutation point. Thus, in contrast to 
works related to [17][8], there is no need to compare the original model to the 
mutant to check for (bounded) equivalence or conformance or to generate a test 
case that kills the mutant; one can simply use the mutation operation to do so. 
Furthermore, generation of equivalent mutants and multiple mutants modeling the 
same faults can be avoided. This helps to reduce the number of mutants 
significantly and eliminate masked negative test cases, which do not exercise any 
faulty behavior, when compared to [40][26][99]. 

3.3 Fault Domain-Based Testing 

Fault domain-based testing is based on defining a fault domain, that is, a set of 
faults that can be inserted into the model (or the specification) and are intended to 
be discovered. In general, finite state machines (FSMs) are used. Under certain 
conditions, test sets generated using these approaches are proved to reveal of all 
possible faults from the defined domain. The proofs are based on the relationship 
between the specification and the implementation. In other words, if the required 
conditions are satisfied, then the generated test set is capable of proving the 
equivalence or trace inclusion (depending on the chosen conformance relation) 
between specification and implementation. 

Most of the well-known fault-based testing methods generally require a subset 
of the following assumptions to hold. 

• Fault domain: Only certain types of faults are considered. 

• Reliable reset: There exists a reliable operation that brings the 
implementation to its initial state. 

• FSM implementation: The implementation can be represented/abstracted 
by an FSM model. 

• Number of states in the implementation: Prior to generating the tests, an 
upper bound on the number of states in the implementation is known by 
the tester. 

• Connectedness: FSM is strongly connected or initially connected. 
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• Determinism: FSM is deterministic or non-deterministic. 

• Reducedness: (Deterministic) FSM is reduced or non-reduced. 

• Completeness: (Deterministic) FSM is complete or partial. 

Fault domain-based method can be classified into two categories [141]: (1) 
Method which yields a single test case; also called checking sequence 
[83][91][95]. (2) Methods which yields multiple test cases such as W [55][166], 
Wp [78], HSI [118], SC [142], H [61], SPY [153] and P [154]. 

For example, all the methods in (2) above assume that an upper bound on the 
number of states in the implementation is known, and the specification is initially 
connected and deterministic. W, Wp and SPY methods additionally assume that 
FSM is reduced and complete; whereas, HSI, H and P methods assume that it is 
reduced but can be partial. SC is the only method that can also work with non-
reduced and partial specifications. Another fundamental difference among these 
methods is the total length of the genetrated test cases. Researchers investigate to 
reduce the test set size, while keeping the same test properties. Experimental 
studies comparing these methods are also performed [60][68][69]. 

While employing fault domain-based testing methods in practice, problems 
may arise. The required assumptions may be hard to satisfy or handle for testing 
of certain real-world systems. For example, it is not very usual for one to 
approximate a good upper bound on the number of implementation states in 
model-based testing, because system internals are not available. However, when 
the approximation is not well enough, the size of generated test set increases and 
the testing efficieny decreases. Even if the required assumptions are feasible, 
fault-based testing methods tend to generate test sets having relatively much larger 
sizes, when compared to, for example, coverage-based test generation methods. 
Also, the methods which rely on weaker assumptions, such as SC, are quite 
impractical and do not scale well (even when compared to other fault domain-
based methods). Furthermore, the fault domains assumed by these methods 
contain only the faults that can be revealed using some positive test cases; that is, 
the extra event faults considered in this work are not considered by fault domain-
based approaches. 

Note that the above discussion primarily focuses on the fault domain-based 
testing methods which assumes deterministic FSMs, similar arguments holds for 
the methods that work with nondeterministic FSMs, such as the ones proposed by 
Yevtushenko et al. [172][173], Aboelfotoh et al.[1], Kloosterman [110], Petrenko 
et al. [144][143][141], Tripathy et al. [164], Alur et al. [16], Hierons [92], and 
Hwang et al. [101]. Due to the nature of the work, the required assumptions tend 
to become harder to satisfy for increasing number and more varied type of real-
life systems. 
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3.4 Grammars in Testing 

Software testing practice contains a substantial amount of work based on 
grammars for generating well-formed inputs [146][122], testing interpreters [155], 
and, in general, testing software termed as grammarware, such as compilers, 
debuggers, code generators, and documentation generators [109] using different 
grammar-based formalisms, for instance, definite clause grammars [139], attribute 
grammars [138] and graphs grammars [67]. Their use in modeling behavioral 
aspects of software systems has been rare because models such as FSA are 
preferred due to their state-based nature. Therefore, grammar-based testing 
generally refers to the use of grammar-based formalisms for testing grammarware. 

 

S → deposit ACC0 | debit ACC0 

ACC0 → digit ACC1 

ACC1 → digit ACC2 

ACC3 → digit AMM0 

AMM0 → $ AMM1 

AMM1 → digit AMM2 

AMM2 → digit AMM2 

AMM2 → . AMM3 

AMM3 → digit AMM4 

AMM4 → digit ACT | digit S 

ACT → ε 

S → deposit ACC0 | debit ACC0 

ACC0 → digit ACC1 

ACC1 → digit ACC2 

ACC3 → digit AMM0 

AMM0 → $ AMM1 

AMM1 → digit AMM2 AMM2 

AMM2 → digit AMM2 

AMM2 → . AMM3 

AMM3 → digit AMM4 

AMM4 → digit ACT | digit S 

ACT → ε 

(a) RG. (b) CFG. 

Figure 3.1. An RG and its nonterminal duplication mutant (drawn from [18]). 

 

In this respect, the approach in this work contains similarities with an existing 
approach [134][18] that also uses grammar-based models and mutation operators. 
However, the present work avoids the use of nonterminal and terminal 

duplication, deletion, and replacement operators introduced by Offutt, Ammann, 
and Liu. First, all of the operators, except nonterminal duplication, can be realized 
by using the combinations of the event-based operators. Second, and more 
critically, nonterminal duplication is not type-preserving. Consequently, if this 
operator is applied to an RG, the mutant becomes a CFG; that is, the type of the 
original model is injured. This has severe impacts on decidability features relative 
to the undecidability of the equivalence of generated CFG-type mutants [100]. 
This drawback is exemplified using the regular grammar in Figure 3.1a that is 
drawn from an example used by Amman and Offutt [18], and slightly, 
nevertheless equivalently, reformatted for saving space. The nonterminal 
duplication mutant in Figure 3.1b is a CFG. 
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3.5 An Overview of Different Test Models 

There are plenty of models used in practice which have various degrees of 
expressive power and possess different semantics. 

Finite state machines [123][128] and timed input/output automata [106] are 
extended versions of FSA and include explicit system outputs (timed input/output 
automata also include time parameter). These formalisms have been used, for 
example, for modeling role-based [120] and timed role-based [121] access control 
policies and to generate test cases. 

Pushdown automata [100] can also be considered as FSA with additional stack 
components to store some elements during the computation. Thus, they have more 
expressive power than FSA. These models are also used for modeling and testing 
of specific software functions [159][36][37]. 

Statecharts [87] are an extended form of finite state machines designed to 
capture hierarchy and concurrency. There are a variety of statecharts with varying 
execution semantics [23]. 

Process algebras such as communicating sequential processes [98][57] and 
calculus of communicating systems [126] are developed to model, study, and test 
the systems of concurrent, communicating components. 

Petri nets [148] are formal models that can be considered as an extension of 
FSA where the notions of “transitions” and “states” are made explicitly disjoint. 
They are used, for instance, to model the behavior of concurrent systems, 
including synchronization of processes. 

Unified modeling language (UML) [133][70] enables the designer to describe 
a system at different levels of abstraction by means of a set of diagrams. In order 
to specify a system in an easier way, UML is composed of less precisely defined 
visual formalisms called UML diagrams, such as state machine diagrams and 
sequence (or event) diagrams. These diagrams have no exact semantics [56]; by 
defining the semantics properly, they can still be used in testing [108][50]. 

This work employs an MBMT approach which makes use of an event-based 
RG model. The reasons for selecting this model for MBMT, not the models 
discussed above, are outlined in the following. 

As explained in Section 2.1, the proposed approach aims to use an event-based 
model which makes use of event sequences of length k and the relation between 
these sequences and events. RGs seem to be the most appropriate choice, because 
they allow multiple occurrences of events in productions and equivalence of two 
RGs is decidable [100]. Furthermore, the expressiveness of this grammar model is 
as strong as the most of the models that are often used in MBT (and MBMT), 
such as FSA and FSMs (if outputs are included). 
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One can also consider event diagrams (or sequence diagrams) of UML as an 
appropriate choice for event-based modeling. These diagrams are generally used 
to model certain scenarios in the form of interactions between different system 
processes or objects. Therefore, they also contain events which are not visible at 
user level. Thus, one needs internal information regarding the system to construct 
event diagrams properly. Furthermore, these diagrams contain no mechanism to 
model using event sequences of length k. 

In addition, there are two major reasons that this work avoids from using 
models such as timed automata, pushdown automata, statecharts, process algebras 
and Petri nets. First, the approach proposed in this work does not include aspects 
like time, memory, communication and concurrency; it concentrates on other but 
novel aspects: varying the model morphology, exploiting the morphological 
differences and developing mutant selection strategies. Still, the proposed event-
based model is informally extended in Section 9.3 to include additional aspects 
and lay some ground for further future research. 

Second and more importantly, MBMT approach, which is adapted and used in 
this work, relies on the comparison of each generated mutant to the original model 
to check for equivalence. In general, the equivalence is not decidable for models 
such as Petri nets [97] and pushdown automata [100]. This decreases the 
performance of MBMT significantly. Furthermore, it causes the proposed 
approach to lose its major benefits discussed in Section 2.4. Still, the use of 
models like pushdown automata and Petri nets for MBMT is considered as a 
further aspect in Section 9.2 and some initial steps are taken for an adaptation. 
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4 Notions Used 

 

The goal of this chapter is to show how formal grammars can be used to perform 
event-based modeling and give the related terminology. 

 

Definition 4.1 (Grammar). A formal grammar (or just grammar) is a 4-tuple G 

= (N, E, P, S) where 

• N is a finite set of nonterminal symbols (or nonterminals), 

• E is a finite set of terminal symbols (or terminals), 

• P is a finite set of production rules (or productions) of the form 

Q → R 

where Q ∈ (N∪E)
*
N(N∪E)

* is the head of the production, → is the 

production symbol and R ∈ (N∪E)
* is the body or tail of the production, 

and 

• S ∈ N is a distinguished nonterminal start symbol. 

 

Working with grammars, the following notions are used. Given a grammar G 

= (N, E, P, S). Productions are used in generation or derivation of strings. A 

derivation, denoted by ⇒G
* is a sequence of derivation steps each of which is of 

the form xQy ⇒G xRy where x,y ∈ (N∪E)* and Q → R ∈ P (⇒* and ⇒ are used 
when there is no confusion). The number of derivation steps in a derivation is 
called the length of the derivation. Since a grammar is used to generate a 
language, the language defined by grammar G is the set of strings L(G) = {w| S 

⇒
*
 w (w ∈ E

*
)} and each string in L(G) is called a sentence of G. 

Most of the model-based approaches make use abstractions which are based 
on FSA (or FSA with outputs). From the Theory of Automata and Formal 
Languages, FSA accept type-3 languages that are generated by regular grammars 
(RGs). Hence, FSA are recognizing devices while RGs are generative. Following, 
RGs are introduced with the goal to transfer the model in Figure 2.1 into an 
equivalent grammar and define an event-based RG model. 
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Definition 4.2 (Regular Grammar (RG)). Given a grammar G = (N, E, P, S). G 
is said to be a left regular grammar if its productions are in one of the following 
forms: 

Q → ε, Q → x, or Q → Rx, 

and it is said to be a right regular grammar if its prodcutions are in one of the 
following forms: 

Q → ε, Q → x, or Q → xR, 

where x ∈ E, and Q,R,S ∈ N, and ε is the empty string. A regular grammar (RG) 
is a formal grammar which is either left regular or right regular. If x is allowed to 

be a (possibly empty) sequence of terminals (x ∈ E
*) then the grammar is said to 

be an extended (left or right) regular grammar. 

 

Example 4.1 (An RG and an FSA). Figure 4.1 shows an RG model for Example 
2.1 which is equivalent to the event-based model in Figure 2.2 can be transferred 
into an equivalent RG as shown in Figure 4.1. 

 

S → c A | x B 

A → c A | x B | p C | p 

B → c A | x B | p D | p 

C → c A | x B | p C | p 

D → c A | x B 

s2

s1 s3

s4

s0

x

c

c

x

p

p

c

x

p

x

c

x

c

 

(a) RG. (b) FSA visualization. 

Figure 4.1. An RG model for Example 2.1. 

 

FSA and RGs are not purely event-based. Furthermore, FSA do not capture 
the system behavior using event-sequences of certain length. Thus, in the light of 
the discussion in Section 2.1 (and above), the following event-based RG model is 
proposed for event-based modeling. 

 

Definition 4.3 (k-Sequence Right Regular Grammar (k-Reg)). A k-sequence 

right RG (k-Reg) (integer k ≥ 1) is a 6-tuple G = (E, B, K, C, S, P) where: 

• E is a finite set of events (or contexted events). 

• B is a finite set of basis events, which is the set of all visible events under 

consideration. For each event e ∈ E, d(e) ∈ B is the corresponding basis 
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event, which is the noncontexted version of e, and d(.) is the decontexting 

function. 

• K ⊆ E
k is a finite set of k-sequences (or terminals). For each k-sequence r 

∈ K, r = r1 … rk and d(r) = d(r1) … d(rk) ∈ B
k is the corresponding basis 

k-sequence. 

• C is a finite set of contexts (or nonterminals) S ∈ C is the start context (or 

start symbol). 

• P is a finite set of productions of the form 

Q → ε or Q → r c(r) 

where Q ∈ C is a context, r ∈ K is a k-sequence, c(r) ∈ C\{S} is the unique 

context of r, and ε is the empty string. If k ≥ 2, for each c(q) → r c(r) ∈ P, 
where q = q1 … qk and r = r1 … rk, 

q2 … qk = r1 … rk-1, 

that is, ending (k-1)-sequence of q is the beginning (k-1)-sequence of r. 

 

Note that k-sequences are defined as terminals, and they have different, 
therefore, unique contexts. The semantics of the productions of a k-Reg G is as 
follows. 

• For each c(q) → r c(r) ∈ P, where q = q1 … qk and r = r1 … rk, r follows q 

in grammar G, and rk follows q in the system modeled by grammar G; that 
is, q1 … qk rk is a (k+1)-sequence in the system. 

• For each S → r c(r) ∈ P, r is a start k-sequence. 

• For each c(q) → ε ∈ P, q is a finish k-sequence. 

These productions allow only right linearity, ensuring type-3 preservation. 

Using such semantics allows one to encode (k+1)-sequences using the 

productions of k-Regs. To see this, for a given k-Reg G, let c(q) → r c(r) ∈ P, 
where q = q1 … qk and r = r1 … rk, then: 

• If G is a 1-Reg, the production represents a 2-sequence 

q r = q1 r1 

in the system modeled by G. 

• If G is a 2-Reg, the production represents a 3-sequence 

q r2 = q1 q2 r2 = q1 r1 r2 = q1 r 

in the system modeled by G (because q2 = r1). 

• If G is a 3-Reg, the production represents a 4-sequence 

q r3 = q1 q2 q3 r3 = q1 r1 r2 r3 = q1 r 

in the system modeled by G (because q2 q3 = r1 r2). 
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Thus, in general, if G is a k-Reg, the production represents a (k+1)-sequence 

q rk = q1 … qk rk 

in the system modeled by G (because q2 … qk = r1 … rk-1 for k ≥ 2). Such 
sequences are also supposed to be in the SUC or the test object. 

Usually, a grammar (Definition 4.1) is a 4-tuple: A set of nonterminals, a set 
of terminals, a set of productions and a start symbol. Also, events are generally 
treated as the terminals. However, in the case of k-Regs (Definition 4.3), terminals 
are defined to be k-sequences and events are included additionally to focus on the 
relation between the k-sequences (and the events). Events are included, because 
they are the building blocks of the k-sequences and the relation between the k-
sequences is affected by these events. Since events of a k-Reg are contexted, a set 
of basis events is also included to preserve the association between contexted 
events and basis events, because, for example, one needs to replace contexted 
events in a set of test cases by the basis events for test execution. 

Productions of a k-Reg can be visualized using directed graphs (which can be 
considered as a variant of ESGs). 

• Nodes are labeled using the k-sequences in K, and [ and ]. 

• Arcs correspond to the productions in P. 

o Arcs of the form ([, r) correspond to the productions of the form S 

→ r c(r). 

o Arcs of the form (r, ]) correspond to the productions of the form 

c(r) → ε. 

o Arcs of the form “(q, r) correspond to the productions of the form 

c(q) → r c(r). 

Such visual representations are helpful in understanding. Therefore, they are often 
used to graphically represent the productions of the k-Reg models in the rest of 
the discussion. 

The example that is informally given in Section 2.1 can be formalized as 
follows. 

 

Example 4.2 (A 1-Reg). The following 6-tuple is a 1-Reg which describes 
Example 2.1 using 1-sequences. 

• E = {c1, x1, p1, p2}. 

• B = {c, x, p} where c = d(c1), x = d(x1) and p = d(p1) = d(p2). 

• K = E, because k = 1. 

• C = {S, c(c1), c(x1), c(p1), c(p2)}. 

• S is the start context. 
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• P contains 15 productions (See Figure 2.2 or Figure 2.1b). 

In Figure 2.2, c1 and x1 are start 1-sequences (or events) which are marked by the 

productions of the form S → e c(e) (or arcs of the form ([, e)). Also, p1 and p2 are 

finish 1-sequences which are marked by the productions of the form c(e) → ε (or 

arcs of the form (e, ])). The remaining productions of the form c(a) → b c(b) (or 
arcs of the form (a, b)) shows the follows relation between the 1-sequences. 

 

Example 4.3 (A 2-Reg). The following 6-tuple is a 2-Reg model for Example 2.1. 

• E = {c1, x1, p1, p2}. 

• B = {c, x, p} where c = d(c1), x = d(x1) and p = d(p1) = d(p2). 

• K = {c1 c1, c1 x1, c1 p1, x1 c1, x1 x1, x1 p2, p1 c1, p1 x1, p1 p1, p2 c1, p2 

x1}. 

• C = {S, c(c1 c1), c(c1 x1), c(c1 p1), c(x1 c1), c(x1 x1), c(x1 p2), c(p1 c1), 

c(p1 x1), c(p1 p1), c(p2 c1), c(p2 x1)}. 

• S is the start context. 

• P contains 41 productions (See Figure 2.4). 

Thus, the 2-Reg above models the same system modeled by the 1-Reg in Example 
4.2 by using the same set of events. However, the semantics of the productions is 

different. For example, consider production c(x1 p2) → p2 x1 c(p2 x1) in Figure 
2.4: 

• p2 x1 follows x1 p2 in the 2-Reg. 

• x1 follows x1 p2 in the system modeled by the 2-Reg. 

• However, p2 x1 does not follow x1 p2 in the system modeled by the 2-
Reg, because p2 does not follow p2 in the system, which can also be seen 
in Figure 2.2. 

 

The event sequences generated using a k-Reg are contexted, whereas the 
sequences generated using an RG are not, because an RG generally uses basis 
events as terminals. Thus, decontexting function d(.) given in Definition 4.3 is 
extended from k-sequences to event sequences and to set of event sequences, in 
order to define and discuss the equivalence of k-Regs and RGs properly by 
associating (contexted) event sequences with basis event sequences. 

 

Definition 4.4 (Decontexting Function). Given a k-Reg G = (E, B, K, C, S, P). 

Let s = s1 s2 … ∈ E
* be an event sequence and X be a set of event sequences. The 

corresponding basis event sequence of s is defined as 

d(s) = d(s1) d(s2) … ∈ B
* if s ≠ ε, and d(ε) = ε. 
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The corresponding set of basis event sequences of X is defined as 

d(X) = {d(s)| s ∈ X}. 

 

Example 4.4 (Decontexted Event Sequences). Consider the 1-Reg in Figure 2.2. 

• For event sequence s = c1 x1 p2 c1 p1 p1, d(s) = c x p c p p. 

• For set of event sequences X = {c1, c1 p1, c1 x1 p2}, d(X) = {c, c p, c x p}. 

Theorem 4.1 shows that the use of k-Regs does not cause any loss of 
generality with respect to RGs; that is, k-Regs and RGs are equivalent in the sense 
that they can both be used to represent same set of (noncontexted or basis) strings. 

 

Theorem 4.1 (Equivalence of k-Regs and RGs). RGs and k-Regs are equivalent 
to each other. 

Proof: To prove this, one needs to show that for each k-Reg G, there is an RG G’ 
such that d(L(G)) = L(G’), and vice versa. 

(From k-Reg to RG) Let G = (E, B, K, C, S, P) be a k-Reg. To demonstrate 
how to convert a given k-Reg to an RG such that d(L(G)) = L(G’), the productions 
in P can be rewritten as follows: 

P’ = {Q → d(r) c(r)| Q → r c(r) ∈ P} ∪ {Q → ε| Q → ε ∈ P}. 

This replaces each contexted event by its corresponding basis event, because 
terminals of an RG are noncontexted events. Consequently, G’ = (C, E, P’, S) is 
an extended right RG (see Definition 4.2) where L(G’) = d(L(G)). 

(From RG to 1-Reg) Without loss of generality, assume that G = (N, E, P, S) 
is a right RG (see Definition 4.2). E corresponds to the set of basis events. 
Furthermore, the basis events and the nonterminals in the productions in P, and 

the empty string symbol ε are utilized to build a set of contexted events 
corresponding to these basis events. Each basis event in a production is paired up 

with the nonterminal that appears after it in this production, and with ε if no 
nonterminal appears after it. Thus, the set of contexted events (and also the set of 
1-sequences) is given by 

E’ = K = {e| Q → x R ∈ P and e = (x, R)} ∪ {e| Q → x ∈ P and e = (x, ε)}. 

A unique context is assigned to each event in E’ and the start context is included 
to obtain 

C = {c(e)| e ∈ E’} ∪ {S}. 

Later, the set of productions is constructed by considering all the productions of 
the right RG as 

P’ = {c(a) → e c(e)| Q → x R ∈ P, T → y Q ∈ P, e = (x, R) and a = (y, Q)} ∪ 

{c(a) → e c(e), c(e) → ε| Q → x ∈ P, T → y Q ∈ P, e = (x, ε) and a = (y, Q)} ∪ 
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{c(a) → ε| Q → ε ∈ P, T → y Q ∈ P and a = (y, Q)} ∪ 

{S → e c(e)| S → x R ∈ P and e = (x, R)} ∪ 

{S → e c(e), c(e) → ε| S → x ∈ P and e = (x, ε)} ∪ 

{S → ε| S → ε ∈ P}. 

In this way, it is guaranteed that each (basis) sequence derived using productions 
in P can also be derived using productions in P’ and applying decontexting 
function d(.). Consequently, G’ = (E’, E, K, C, S, P’) is a 1-Reg (Definition 4.3) 
where d(L(G)) = L(G’).■ 

 

Since k-Regs are designed for event-based modeling and testing, event 
sequences that can and cannot be derived using k-Reg productions are 
distinguished for testing. 

 

Definition 4.5 (Event Sequences in a k-Reg). Given a k-Reg G = (E, B, K, C, S, 

P). Event sequence s is in grammar G, if there is a derivation of the form Q ⇒
*
 

xsy for some Q ∈ C and x,y ∈ (C∪E)
*. A nonempty event sequence s in G is a 

start sequence, if there is a derivation of the form S ⇒
*
 s Q (Q ∈ C), and it is a 

finish sequence if there is a derivation o the form Q ⇒
*
 s (Q ∈ C). A start (or 

finish) 1-sequence is also a start (or finish) event. 

 

An event sequence in G can be used to exercise some desirable or correct 
behavior, that is, a test path that is supposed to exist in the test object. An event 
sequence which is not in G and which can be used to exercise some undesirable or 
faulty behavior is also called a faulty event sequence. Thus, a faulty event 
sequence can be used to exercise a test path that is not supposed to exist in the test 
object. 

 

Example 4.5 (Event Sequences in a 1-Reg). For the 1-Reg in Figure 2.2, 

• set of some 2-sequences in the grammar is {c1 x1, c1 p1, x1 p2, p1 p1}. 

• set of some 2-sequences not in the grammar is {c1 p2, x1 p1, p2 p2}. 

• set of some start sequences is {c1, x1, c1 c1, x1 x1 p2, c1 p1 c1, x1 p2 c1 

p1}. 

• set of some finish sequences is {p1, p2, p1 p1, c1 p1, x1 p2, c1 c1 x1 c1 

p1}. 

• set of start events and set of finish events are {c1, x1} and {p1, p2}, 
respectively. 

By Definition 4.3, given a k-Reg G = (E, B, K, C, S, P), one can use 

• a production of the form Q → r c(r) to obtain a k-sequence r = r1 … rk. 
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• two productions the form Q → q c(q) and c(q) → r c(r) to obtain a (2k)-
sequence q r = q1 … qk r1 … rk. 

 

In general, using a derivation of length m ≥ 1, one can obtain a (k×m)-

sequence s such that s ∈ K
* and s is in G. Each sequence (of arbitrary length) in G 

appears in one of such sequences. These sequences are important, for example, for 
test generation purposes. Definition 4.6 formally introduces them. 

 

Definition 4.6 (m-derived Sequence). Given a k-Reg G = (E, B, K, C, S, P). A 

(k×m)-sequence s such that s ∈ K
* and s in G is called an m-derived sequence in 

grammar G, and integer m ≥ 1 is the length of a derivation which yields s. 

 

Example 4.6 (1-derived, 2-derived and 3-derived Sequences in a 2-Reg). For 
the 2-Reg in Figure 2.4 

• c1 c1 is a 1-derived sequence which can be obtained using production c(c1 

c1) → c1 c1 c(c1 c1). 

• x1 x1 x1 p2 is a 2-derived sequence which can be obtained using 

productions c(x1 x1) → x1 x1 c(x1 x1) and c(x1 x1) → x1 p2 c(x1 p2) (in 
the given order). 

• p1 x1 x1 p2 p2 c1 is a 3-derived sequence which can be obtained using 

productions c(c1 p1) → p1 x1 c(p1 x1), c(p1 x1) → x1 p2 c(x1 p2) and 

c(x1 p2) → p2 c1 c(p2 c1) (in the given order). 

 

Lemma 4.1 and Lemma 4.2 outline some basic properties of m-derived 
sequences in a given k-Reg. These lemmas are used to prove certain results in the 
following discussion. 

 

Lemma 4.1 (“k-blocks” Property of an m-derived Sequence). Given a k-Reg G 

= (E, B, K, C, S, P). If s is an m-derived sequence in G, then 

s = u
1
 … u

m 

where m ≥ 1 and ui
 ∈ K for i = 1, …, m, and |s| = k × m. 

Proof: Since s is an m-derived sequence in G, s can be obtained using a derivation 
of length m ≥ 1 using the following productions 

Q → u
1
 c(u

1
), c(u

1
) → u

2
 c(u

2
), …, c(u

m-1
) → u

m
 c(u

m
) 

in P in the given order (by Definition 4.6). Consequently, 

Q ⇒
*
 s c(u

m
) with s = u

1
 … u

m 

where m ≥ 1 and ui
 ∈ K for i = 1, …, m (by Definition 4.3), and |s| = k × m.■ 
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Lemma 4.2 (“Repetition” Property of an m-derived Sequence). Given a k-Reg 
G = (E, B, K, C, S, P) and an m-derived sequence in G, s = u

1
 … u

m where ui
 = u

i
1 

… u
i
k for i = 1,…, m. If k ≥ 2 and m ≥ 2, 

u
i
2 … u

i
k = u

i+1
1 … u

i+1
k-1 

for i = 1, …, m-1. 

Proof: Since s is an m-derived sequence in G, s = u
1
 … u

m where m ≥ 1 and ui
 ∈ 

K for i = 1, …, m (by Lemma 4.1). It can be obtained using the following 
productions 

Q → u
1
 c(u

1
), c(u

1
) → u

2
 c(u

2
), …, c(u

m-1
) → u

m
 c(u

m
) 

in P in the given order, where ui
 = u

i
1 … u

i
k for i = 1, …, m (by Definition 4.6). If 

k ≥ 2 and m ≥ 2, for each production c(u
i
) → u

i+1
 c(u

i+1
), 

u
i
2 … u

i
k = u

i+1
1 … u

i+1
k-1 

for i = 1, …, m-1 (by Definition 4.3).■ 

 

Example 4.7 (Properties of a 3-derived Sequence in a 2-Reg). s = p1 x1 x1 p2 

p2 c1 can be derived using productions c(c1 p1) → p1 x1 c(p1 x1), c(p1 x1) → x1 

p2 c(x1 p2) and c(x1 p2) → p2 c1 c(p2 c1) in the 2-Reg in Figure 2.4 (in the given 
order). Hence, s is a 3-derived sequence in a 2-Reg where |s| = 3×2 = 6. Also, u1

 

= p1 x2, u2
 = x1 p2 and u3

 = p2 c1, and u1
2 = u

2
1 = x1 and u2

2 = u
3

1 = p2. 

 

In event-based testing, k-Regs and their mutants are used to generate positive 
and negative test cases. The aim is to reveal missing event faults where an event 
cannot occur after or before a (possibly empty) sequence of events and extra event 

faults where an event can occur after or before a (possibly empty) sequence of 
events. This is carried out by exercising test paths which are or are not supposed 
to be in the test object using positive and negative test cases, respectively. 

 

Definition 4.7 (Positive and Negative Test Cases). Given a k-Reg G = (E, B, K, 

C, S, P). 

• An event sequence is a positive test case, if it is a start sequence in G, or it 

is ε. TP(G) denotes the set of all positive test cases. 

• A complete event sequence (CES) is a positive test case which is both a 

start and a finish sequence in G, or it is ε if ε ∈ L(G). TCES(G) = L(G) ⊆ 

TP(G) denotes the set of all CESs. 

• An event sequence is a negative test case, if the starts with a nonstart event 
or it contains at least one 2-sequence which is not in G. TN(G) denotes the 
set of all negative test cases. 
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• A faulty complete event sequence (FCES) is a negative test case which 
either is composed of only a nonstart event, or contains only a single 2-

sequence which is not in G and it ends with this 2-sequence. TFCES(G) ⊆ 

TN(G) denotes the set of all FCESs. 

• A set of test cases is also called a test set. 

 

Example 4.8 (Test Cases of a 1-Reg). For the 1-Reg in Figure 2.2, 

• set of some positive test cases is {x1, x1 x1, c1 p1, c1 p1 p1 x1}. 

• set of some CESs is {x1 p2, x1 x1 p2, c1 p1, c1 p1 p1}. 

• set of some negative test cases is {p1, c1 x1 p2 p2 c1, x1 c1 p1 c1 p2 p1}. 

• set of some FCESs is {x1 p2 p2, x1 p2 p1, c1 x1 p2 p2}. 

 

Each event in a given k-Reg is contexted. However, different occurrences of 
system behavior are based on basis events since they correspond to system events 
visible to the user (Definition 4.3). Thus, the equivalence of two k-Regs is defined 
by making use of decontexting function (Definition 4.4) and the set of all CESs 
(Definition 4.7) as follows. 

 

Definition 4.8 (Equivalence). Two k-Regs G and H are equivalent, if d(TCES(G)) 

= d(TCES(H)). 

 

Example 4.9 (Equivalence of Two 1-Regs). The following is another 1-Reg 
model for Example 2.1, where contexted events corresponding to basis event c are 
obtained differently. 

• E = {c1, c2, x1, p1, p2}. 

• B = {c, x, p}. 

• K = E, because k = 1. 

• C = {S, c(c1), c(c2), c(x1), c(p1), c(p2)}. 

• S is the start context. 

• P contains 18 productions (See Figure 4.2). 

Let G be the 1-Reg in Figure 2.2 and H be the 1-Reg in Figure 4.2. G and H 
are equivalent. The only difference is that, in H, c is distinguished in two ways, c1 
and c2 by assigning two different contexts to c depending on whether it is 
performed after p1 or not. Clearly, TCES(G) ≠ TCES(H), because G and H are not 
identical (c2 is not an event in G but only in H). For this reason, one needs to use 
d(TCES(G)) = d(TCES(H)) to discuss their equivalence. 
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S → c1 c(c1) | S → x1 c(x1) 

c(c1) → c1 c(c1) | x1 c(x1) | p1 c(p1) 

c(c2) → c1 c(c1) | x1 c(x1) | p1 c(p1) 

c(x1) → c1 c(c1) | x1 c(x1) | p2 c(p2) 

c(p1) → c2 c(c2) | x1 c(x1) | p1 c(p1) | ε 

c(p2) → c1 c(c1) | x1 c(x1) | ε 

x1

c1

][

p2

p1
c2

 

(c) 1-Reg. (d) Directed graph visualization. 

Figure 4.2. Another 1-Reg model for Example 2.1. 

 

Theorem 4.2 shows that k-Reg equivalence (Definition 4.8) is compatible to 
RG equivalence. 

 

Theorem 4.2 (Compatibility of k-Reg Equivalence to RG Equivalence). Given 
two k-Regs G and H, and two RGs G’ and H’ which are equivalent to G and H, 
respectively. G and H are equivalent if and only if G’ and H’ are equivalent. 

Proof: Since G is equivalent to G’ and H is equivalent to H’, 

d(L(G)) = L(G’) and d(L(H)) = L(H’) 

(by Theorem 4.1). Also, TCES(G) = L(G) (by Definition 4.7). 

(Only if part) If G and H are equivalent, 

(d(TCES(G)) = d(TCES(H))) = (d(L(G)) = d(L(H))) = (L(G’) = L(H’)). 

This shows that G’ and H’ are equivalent. 

(If part) If G’ and H’ are equivalent, 

(L(G’) = L(H’)) = (d(L(G)) = d(L(H))) = (d(TCES(G)) = d(TCES(H))), 

which shows that G and H are equivalent.■ 

 

In practice, it is important to make sure that a model and its elements are 
utilized completely. Otherwise, some elements may turn out to be irrelevant and 
they may not be used in testing process; correct functioning of the test object 
cannot be checked for certain behaviors because certain test paths are excluded. 
For this reason, usefulness is defined as follows. 

 

Definition 4.9 (Usefulness). Given a k-Reg G = (E, B, K, C, S, P). A string z ∈ 

(C∪E)
* is useful in grammar G, if S ⇒

*
 xzy ⇒

*
 w for some x,y ∈ (C∪E)

* and w ∈ 

E
*. G is useful, if all k-sequences in K are useful in G. 
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Example 4.10 (Useful and Nonuseful k-Regs). k-Regs given in Figure 2.2, 
Figure 2.4 and Figure 4.2 are all useful. To obtain a nonuseful 1-Reg from Figure 

2.2, one can remove prodcutions c(p1) → ε and c(p2) → ε from the grammar. The 
resulting grammar does not have any finish events anymore. Therefore, TCES(G) is 
empty, but the follows relation between events is still described correctly. 

 

As demonstrated in Example 4.10, in the absence of finish k-sequences in a k-
Reg, the set of all positive test cases does not change. However, the set of all 
CESs becomes empty, because all k-sequences lose usefulness. For this reason, 
the presence of finish k-sequences is important to be able to generate CESs. 
Although it depends on the system, one can even select the finish events 
arbitrarily to obtain a useful model. 

Due to the form of a k-Reg (Definition 4.3), by ensuring the usefulness of 
each k-sequence, it is guaranteed that all the contexts and the productions can be 
utilized. Thus, each event sequence in G can be contained in a test case in 
TCES(G). Theorem 4.3 demonstrates this result. 

 

Theorem 4.3 (Sequences in a Useful k-Reg). Given a k-Reg G = (E, B, K, C, S, 

P). If G is useful, then each nonempty sequence s in G is contained in a CES in G. 

Proof: If all k-sequences in K are useful, then all nonempty sequences in G are 

useful. Thus, given a nonempty sequence s is in G, S ⇒
*
 xsy ⇒

*
 w for some x,y ∈ 

(C∪E)
* and w ∈ E

*. Thus, s is contained in a CES in G.■ 

 

Theorem 4.3 implies that, if G is a useful k-Reg, each nonempty positive test 
G can be contained in a CES in G. Hence, the following is a corollary to Theorem 
4.3. 

 

Corollary 4.1 (Positive Test Cases of a Useful k-Reg). Given a k-Reg G = (E, 

B, K, C, S, P). If G is useful, then each nonempty test case in TP(G) is contained in 
a test case in TCES(G). 

Proof: The proof follows from Theorem 4.3, because each nonempty positive test 
case is a nonempty sequence in G.■ 

 

Using Corollary 4.1, one can make use of the generative nature of grammars 
to obtain CESs and use them for testing purposes. 

Another property of the system model that is considered as helpful is 
determinism. Deterministic system models help to exclude redundant event 
sequences from the model. Thus, testing process becomes more efficient, because 
multiple test cases that exercise the same test paths in the test object are excluded. 
A deterministic k-Reg is defined as follows. 
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Definition 4.10 (Determinism). A k-Reg G = (E, B, K, C, S, P) is deterministic, 

if, for each Q ∈ C, there are no two productions Q → q c(q) ∈ P and Q → r c(r) ∈ 

P such that r ≠ q and d(r) = d(q). 

 

By using a deterministic k-Reg G, one can guarantee that each m-derived start 
sequence in the grammar has a unique basis sequence. Theorem 4.4 proves this 
statement. 

 

Theorem 4.4 (m-derived Start Sequences in a Deterministic k-Reg). Given a 
k-Reg G = (E, B, K, C, S, P). If G is deterministic, there exist no two m-derived 
start sequence s and t such that s ≠ t and d(s) = d(t). 

Proof: This can be proved by contradiction. Assume that G is deterministic, and 
let s and t be two m-derived start sequences in G such that s ≠ t and d(s) = d(t). s 
and t can be written as 

s = u
1
 … u

m 

where u
i
 ∈ K for i = 1, …, m, and 

t = v
1
 … v

m 

where vi
 ∈ K for i = 1, …, m (by Lemma 4.1). Since s ≠ t and d(s) = d(t), let j be 

the smallest index such that 

u
j
 ≠ v

j and d(u
j
) = d(v

j
). 

Let Q = S, if j = 1; Q = c(u
j-1

) = c(v
j-1

), otherwise. Since ui
 = v

i for i = 1, …, j-1, 

Q → u
j
 c(u

j
)∈ P and Q → v

j
 c(v

j
)∈ P 

where uj
 ≠ v

j and d(u
j
) = d(v

j
). This contradicts the fact that G is deterministic.■ 

 

As an implication of Theorem 4.4, the use of redundant positive test cases or 
CESs is avoided by utilization of deterministic models. Thus, the following is a 
corollary to Theorem 4.4. 

 

Corollary 4.2 (m-derived Positive Test Cases of a Deterministic k-Reg). Given 
a k-Reg G = (E, B, K, C, S, P). If G is deterministic, each m-derived positive test 
case in TP(G) and each nonempty test case in TCES(G) has a unique basis. 

Proof: The proof follows from Theorem 4.4, because each m-derived positive test 
case in G is an m-derived start sequence in G, and so is each CES in G.■ 

 

Corollary 4.2 suggests that, a benefit of using a deterministic k-Reg G is to 
have a unique basis d(s) for each positive test case s such that s is an m-derived 
sequence in G. Another benefit is to avoid generation of masked negative test 
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cases which are negative test cases that do not exercise any faulty behavior; that 
is, they exercise test paths which are supposed to exist in the test object like 
positive test cases. Example 4.11 demonstrates these two benefits. 

 

Example 4.11 (Test Cases of Deterministic and Nondeterministic 1-Regs). Let 
G be the deterministic 1-Reg in Figure 2.2 and H be the nondeterministic 1-Reg 

which is obtained by including production c(p1) → p2 c(p2) in G. Furthermore, 
let s = c1 p1 p1 and t = c1 p1 p2 two test cases. 

• With respect to H: s and t are positive test cases. However, they are 
redundant, because d(s) = d(t) = c p p. 

• With respect to G: s is a positive test case and t is a negative test case. 
However, t does not exercise a faulty behavior because there is a positive 
test case s in G such that d(s) = d(t). Therefore, t is actually a masked 
negative test case. 

 

Unless noted otherwise, all grammars under consideration are assumed to be 
useful and deterministic k-Regs. 
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5 Varying Morphology 

 

Based on Definition 4.3, a (k+1)-Reg model is morphologically different from a 
k-Reg model, and it can be used to model or reveal different or more subtle faults, 
that is, faults that are located on different test paths in the test object (as discussed 
in Section 2.4). For this purpose, this chapter outlines a transformation to vary k 
and generate models with morphological differences and also discusses coverage-
based test generation from these models. 

5.1 Grammar Transformation to Vary Morphology 

In this section, a transformation of a given k-Reg to its corresponding (k+1)-Reg 
is given; this transformation can also be used to transform a given 1-Reg model to 
its corresponding k-Reg model. Furthermore, relations between m-derived 
sequences in morphologically different models that describe the same system are 
studied; these relations are important mainly for test generation. 

Before giving the definition of k-Reg transformation, the following 
observations are made using the 1-Reg in Figure 2.2 and its corresponding 2-Reg 
in Figure 2.4. 

• For each production of the form c(q1 q2) → r1 r2 c(r1 r2) in Figure 2.4, q2 = 

r1 (by Definition 4.3). Thus, each such production can be obtained by 

combining two productions c(q1) → q2 c(q2) and c(q2) → r2 c(r2) in Figure 
2.2. 

• Each production of the form S → r1 r2 c(r1 r2) in Figure 2.4 can be 

obtained by combining two productions S → r1 c(r1) and c(r1) → r2 c(r2) in 
Figure 2.2. 

• Each production of the form c(r1 r2) → ε in Figure 2.4 can be obtained by 

combining two productions c(r1) → r2 c(r2) and c(r2) → ε in Figure 2.2. 

k-Reg transformation is given in Definition 5.1 by generalizing these 
observations. 
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Definition 5.1 (k-Reg Transformation). Given a 1-Reg G1 = (E, B, K1, C1, S, 

P1). 

• The corresponding 1-Reg of G1 is defined as itself: 

G1 = (E, B, K1, C1, S, P1). 

• Let Gk = (E, B, Kk, Ck, S, Pk) be the corresponding k-Reg of G1. The 

corresponding (k+1)-Reg of G1 (or Gk) is defined as 

Gk+1 = (E, B, Kk+1, Ck+1, S, Pk+1) where 

o Kk+1 = {q1 … qk rk| c(q) → r c(r) ∈ Pk where q = q1 … qk and r = r1 

… rk} is the set of all (k+1)-sequences in G1. 

o Ck+1 = {c(r)| r ∈ Kk+1} is the set of contexts. 

o Pk+1 = {S → r e c(r e)| S → r c(r) ∈ Pk and c(rk) → e c(e) ∈ P1} ∪  

{c(q rk) → ε| c(q) → r c(r) ∈ Pk and c(rk) → ε ∈ P1} ∪  

{c(q rk) → r e c(r e)| c(q) → r c(r) ∈ Pk and c(rk) → e c(e) ∈ P1} is 
the set of productions. 

 

Based on Definition 5.1, Algorithm 5.1 outlines the steps to perform k-Reg 
transformation. 

 

Algorithm 5.1. k-Reg Transformation 

 Input: Gk = (E, B, Kk, Ck, S, Pk) – the input k-Reg (the corresponding k-Reg of G1) 
   G1 = (E, B, K1, C1, S, P1) – the input 1-Reg 
 Output: Gk+1 = (E, B, Kk+1, Ck+1, S, P k+1) – the corresponding (k+1)-Reg 

  Kk+1 =∅, Ck+1 = {S}, Pk+1 = ∅ 

  for each Q → r c(r) ∈ Pk where r = r1 … rk do 

   if Q = c(q) where q = q1 … qk then 

    Kk+1 = Kk+1 ∪ {q rk} 

    Ck+1 = Ck+1 ∪ {c(q rk)} 

   endif 

   for each c(rk) → R ∈ P1 do 

    if R = e c(e) then 
     if Q = S then 

      Pk+1 = P k+1 ∪ {S → r e c(r e)} 

     else if Q = c(q) then 

      Pk+1 = P k+1 ∪ {c(q rk) → r e c(r e)} 

     endif 

    else if R = ε then 

      Pk+1 = Pk+1 ∪ {c(q rk) → ε} 

    endif 

   endfor 

  endfor 
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Algorithm 5.1 runs in O(k |P1| |Pk|) = O(k |P1| |P1|
k
) = O(k |P1|

k+1
) worst case 

time due to the following. 

• |Pk| = O(|P1|
k
). 

• All set union operations can be performed in O(1) time as append 
operations, because a different element is added to the each set during each 
union operation. 

• Construction of a (k+1)-sequence in G1 can be performed in O(k) steps by 
merging a k-sequence in G1 extracted from Gk with a 1-sequence in G1 
extracted from G1. 

This time complexity is expected, because the number of k-sequences increases 
exponentially in k. In practice, however, |Pk| is generally much smaller than |P1|

k 
and k is almost always bounded. Hence, transformation can be performed quite 
fast for properly selected k values. 

Also, transformation of a k-Reg to its corresponding (k+1)-Reg can be 
performed by only using the given k-Reg, by extracting both k-sequences and 1-
sequences from the productions of this k-Reg. However, this causes the 
complexity to increase to O(k |Pk| |Pk|)= O(k |P1|

2k
). Therefore, the details are 

skipped. 

 

Example 5.1 (A Corresponding 2-Reg). The 2-Reg in Figure 2.4 is the 
corresponding 2-Reg of the 1-Reg in Figure 2.2. 

As Definition 5.1 suggests (Also see Algorithm 5.1): 

• A new (k+1)-sequence q1 … qk rk in G1 is extracted from c(q1 … qk) → r1 

… rk c(r1 … rk) ∈ Pk using the fact that q1 … qk is a k-sequence in G1 and 

qk rk is a 2-sequence in G1 (that is, c(qk) → rk c(rk) ∈ P1). In this way, all 
(k+1)-sequences in G1 are obtained. 

• To determine the contexts to be used in a new production properly, a 
production from Gk and a production from G1 are selected and used in 
such a way that (k+1)-sequences that are not in G1 does not emerge, and 
all (k+1)-sequences in G1 are included in new productions together with 
their contexts without invalidating the definition of a k-Reg. 

• k-sequences in G1 which cannot be included in some (k+1)-sequences in 

G1 are left out; that is, r ∈ Kk is excluded if and only if S → r c(r) ∈ Pk and 

c(r) → ε ∈ Pk is the only production of the form “c(r) → …” in Pk is 

(implying that c(rk) → ε ∈ P1). 

• S → ε is not included in Pk+1. 
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There are also some special cases which follow from Definition 5.1. Let G1 = 

(E, B, K1, C1, S, P1) be a 1-Reg, Gk = (E, B, Kk, Ck, S, Pk) be its corresponding k-
Reg and Gk+1 = (E, B, Kk+1, Ck+1, S, Pk+1) be its corresponding (k+1)-Reg. 

• Pk = {S → q c(q), c(q) → ε} implies that there is no production of the form 

c(qk) → e c(e) ∈ P1; otherwise, there would be other productions using k-

sequence q2 … qk e in Pk. Consequently, Kk+1 = ∅ and Pk+1 = ∅. 

• Similarly, Pk = {S → q c(q), c(q) → r c(r), c(r) → ε} implies that Kk+1 = 

{q rk} and Pk+1 = {S → q rk c(q rk), c(q rk) → ε}. 

Some important properties of m-derived sequences in a corresponding k-Reg 
of a given 1-Reg are discussed in Lemma 5.1. 

 

Lemma 5.1 (m-derived Sequences in a Corresponding k-Reg). Given a 1-Reg 
G1 = (E, B, K1, C1, S, P1) and its corresponding k-Reg Gk = (E, B, Kk, Ck, S, Pk) 

where k ≥ 2 and Kk ≠ ∅ . If s = u
1
 … u

m is an m-derived sequence where ui
 = u

i
1 

… u
i
k ∈ Kk for i = 1, …, m, then 

u
i
j u

i
j+1 is a 2-sequence in G1 for j = 1, …, k-1 and i = 1, …, m, and, 

if m ≥ 2, ui
k u

i+1
k is a 2-sequence in G1 for i = 1, …, m-1. 

Proof: Since s = u
1
 … u

m is an m-derived sequence, 

u
i
 ∈ Kk, 

for i = 1, …, m (by Definition 5.1); that is, each u
i is a k-sequence in G1. 

Therefore, each ui
j u

i
j+1, that is, each 2-sequence in ui, is a 2-sequence in G1 for j = 

1, …, k-1 and i = 1, …, m. 

In addition, if m ≥ 2, 

c(u
i
) → u

i+1
 c(u

i+1
) ∈ Pk 

for i = 1, …, m-1 (by Definition 4.6). Consequently, 

c(u
i
k) → u

i+1
k c(u

i+1
k) ∈ P1 

for i = 1, …, m-1 (by Definition 5.1). Hence, ui
k u

i+1
k is a 2-sequence in G1 for i = 

1, …, m-1.■ 

 

Example 5.2 (An m-derived Sequence in a Corresponding 2-Reg). s = p1 x1 

x1 p2 p2 c1 is in the 2-Reg given in Figure 2.4. Thus, 2-sequences p1 x1, x1 p2 
and p2 c1 are in the 1-Reg given in Figure 2.2. 

 

Note that s in Example 5.2 is not in the 1-Reg given in Figure 2.2, because p2 

p2 is not in this 1-Reg. Nevertheless, one can extract a sequence in the 1-Reg t = 

p1 x1 p2 c1 from s by deleting 1-sequence from the beginning of each 2-sequence 
in s, except for the first one. Thus, in general, a sequence which is in the 
corresponding k-Reg of a given 1-Reg need not be a sequence in this 1-Reg. 



5.1 Grammar Transformation to Vary Morphology 

 

43 

However, it is possible to transform a sequence in the k-reg and obtain a sequence 
in the 1-Reg. For this purpose, sequence transformations are defined as follows. 

 

Definition 5.2 (Sequence Transformations). Given a (k+m-1)-sequence s where 
k ≥ 1 and m ≥ 1. Sequence transformation of s based on integer k is defined as a 
(k×m)-sequence 

TS(s, k) = u
1
 … u

m 

where ui
 = u

i
1 … u

i
k = si … si+k-1 for i = 1, …, m. 

Given a (k×m)-sequence s = u
1
 … u

m where k ≥ 1, m ≥ 1 and ui
 = u

i
1 … u

i
k for 

i = 1, …, m. Inverse sequence transformation of s based on integer k is defined as 
a (k+m-1)-sequence 

TS
-1

(s, k) = u
1
 u

2
k u

3
k … u

m
k 

where u1
 = s1 … sk and each ui

k = si×k for i = 2, …, m. 

 

For a (k+m-1)-sequence s where k ≥ 1 and m ≥ 1, Algorithm 5.2 can be 
applied to transform s into TS(s, k). Computation of TS(s, k) can be performed in 
O(k m) time. 

 

Algorithm 5.2. TS(s, k) – Sequence Transformation 

 Input: s – the (k+m-1)-sequence where k ≥ 1 and m ≥  1 

   k ≥ 1 – the integer based on which transformation is performed 
 Output: t – the transformed (k×m)-sequence 
  t is a sequence of length k×m 

  for i=1 to m 
   d = (i-1)×k 

   td+1 … td+k = si … si+k-1 

  endfor 

 

 

Algorithm 5.3. TS
-1

(s, k) – Inverse Sequence Transformation 

 Input: s – the (k×m)-sequence where k ≥ 1 and m ≥ 1 
   k ≥ 1 – the integer based on which transformation is performed 
 Output: t – the transformed (k+m-1)-sequence 
  t is a sequence of length (k+m-1) 
  t1 … tk = s1 … sk 

  for i=1 to m-1 
   tk+i = sk×(i+1) 

  endfor 
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In addition, Algorithm 5.3 shows the steps to perform inverse sequence 
transformation on a (k×m)-sequence s where k ≥ 1 and m ≥ 1. Computation of TS

-

1
(s, k) has the worst case time complexity of O(k + m-1)) = O(k + m). 

Theorem 5.1 establishes relations between (k+m-1)-derived sequences in a 1-
Reg and m-derived sequences in its corresponding k-Reg. More precisely, an m-
derived sequence in a corresponding k-Reg can be used to obtain to a (k+m-1)-
derived sequences in its 1-Reg, and vice versa. 

 

Theorem 5.1 (Relation between (k+m-1)-derived Sequences in 1-Reg and m-

derived Sequences in Its Corresponding k-Reg). Given a 1-Reg G1 = (E, B, K1, 

C1, S, P1) and it corresponding k-Reg Gk = (E, B, Kk, Ck, S, Pk) where k ≥ 2 and Kk 

≠ ∅. Let s and t be two sequences such that t = TS
-1

(s, k) and s = TS(t, k). s is an 
m-derived sequence in Gk if and only if t is a (k+m-1)-derived sequence in G1. 

Proof: Only if part and if part can be proved separately as follows. 

(Only if part) If s is an m-derived sequence in Gk, 

s = u
1
 … u

m 

where m ≥ 1 and ui
 = u

i
1 … u

i
k ∈ Kk for i = 1, …, m (by Lemma 4.1). Also, 

t = TS
-1

(s, k) = u
1
 u

2
k … u

m
k. 

(by Definition 5.2). Hence, only if part follows from the fact that 

u
1 is a k-sequence in G1 

(by Definition 5.1) and that 

u
i
k u

i+1
k is a 2-sequence in G1 

for i = 1, …, m-1, when m ≥ 2 (by Lemma 5.1). 

(If part) If t is a (k+m-1)-derived sequence in G1 where k ≥ 1 and m ≥ 1, 

t = t1 … tk+m-1 

(by Lemma 4.1). Let 

u
i
 = u

i
1 … u

i
k = ti … ti+k-1 

for i = 1, …, m, then 

s = TS(t, k) = u
1
 … u

m. 

(by Definition 5.2). Thus, if part follows from the fact that 

u
i
 ∈ Kk 

for i = 1, …, m and that 

u
i
2 … u

i
k = u

i+1
1 … u

i+1
k-1 

for i = 1, …, m-1 when m ≥ 2.■ 

 

Example 5.3 (Sequence Transformations). Let G be the 1-Reg in Figure 2.2 and 
H be its corresponding 2-Reg in Figure 2.4. By Theorem 5.1: 
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• For a 4-derived sequence s = c1 c1 c1 x1 x1 x1 x1 p2 in H, TS
-1

(s, 2) = c1 

c1 x1 x1 p2 is a 5-derived sequence in G. 

• For a 3-derived sequence s = x1 p2 x1 in G, TS(s, 2) = x1 p2 p2 x1 is a 2-
derived sequence in H. 

 

The following corollary to Theorem 5.1 can be used to to employ this result in 
test generation. 

 

Corollary 5.1 (Relation between (k+m-1)-derived Positive Test Cases in a 1-

Reg and m-derived Positive Test Cases in Its Corresponding k-Reg). Given a 
1-Reg G1 = (E, B, K1, C1, S, P1) and it corresponding k-Reg Gk = (E, B, Kk, Ck, S, 

Pk) where k ≥ 2 and Kk ≠ ∅. Let s and t be two sequences such that t = TS
-1

(s, k) 
and s = TS(t, k). s is an m-derived sequence in Gk if and only if t is a (k+m-1)-

derived sequence in G1. For each m-derived sequence s ∈ TP(Gk) (or s ∈ 

TCES(Gk)), there is an (m+k-1)-derived sequence t ∈ TP(G1) (or t ∈ TCES(G1)) such 
that t = TS

-1
(s, k), and vice versa. 

Proof: The proof follows from Theorem 5.1, since all start and finish events of Gk 
is a subset of all the start and finish events of G1, respectively (by Definition 
5.1).■ 

 

By Corollary 5.1, each test case which is an m-derived sequence in the 
corresponding k-Reg of a given 1-Reg can be used to build a test case for the 1-
Reg. 

As mentioned in Chapter 4, usefulness and determinism properties are 
important. The following theorem gives the sufficient conditions for usefulness 
and determinism of the corresponding k-Reg of a given 1-Reg, showing that k-
Reg transformation (See Definition 5.1) preserves both of these properties. 

 

Theorem 5.2 (Usefulness and Determinism of a Corresponding k-Reg). Given 
a 1-Reg G1 = (E, B, K1, C1, S, P1) and its corresponding k-Reg Gk = (E, B, Kk, Ck, 

S, Pk) where k ≥ 2 and Kk ≠ ∅. 

1. If G1 is useful, then Gk is also useful. 

2. If G1 is deterministic, then Gk is also deterministic. 

Proof: Each case can be proved by contrapositive as follows. 

1. If Gk is not useful, then there exists a k-sequence 

r = r1 … rk ∈ Kk in Gk 

such that r is not included in any CES in Gk (by Definition 4.9). In this 
case, 
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r = r1 … rk = TS
-1

(r, k) in G1 

is not included in any CES in G1 either (by Corollary 5.1). Hence, at least 
the last event of r, that is, rk, is not useful in G1. Therefore, G1 is not 
useful, which completes the proof of 1. 

2. If Gk is not deterministic, then there exist two productions 

Q → q c(q) ∈ Pk and Q → r c(r) ∈ Pk 

such that 

r ≠ q and d(r) = d(q) 

(by Definition 4.10). Now, let j be the smallest index such that 

rj ≠ qj and d(rj) = d(qj). 

In this case, since rj ∈ K1 and qj ∈ K1 are in G1, there exists R ∈ C1 such 
that 

R → rj c(rj) ∈ P1 and R → qj c(qj) ∈ P1 

where 

R = S if j = 1 and Q = S, 

R = c(s1) if j=1 and Q = c(s1 … sk), and 

R = c(rj-1) if j > 1 

(by Definition 5.1). Thus, G1 is not deterministic, which completes the 
proof of 2.■ 

 

5.2 Test Generation from Morphologically 

Different Models 

Morphologically different k-Reg models which are obtained by varying k can be 
used to generate positive test cases that intend to reveal different or more subtle 
faults. Positive test cases derived from a (k+1)-Reg exercise different test paths 
that are supposed to exist in the test object than those derived from a k-Reg. In the 
following, some coverage criteria are discussed for event-based testing (using k-
Regs) to systematize the test process, to judge the efficiency of the test cases and 
to determine when to stop testing. Furthermore, related results and test generation 
methods are also given to demonstrate that the approach is sound. 

Two immediate coverage criteria which are inherited from grammar-based 
testing are terminal coverage and production coverage. 

 

Definition 5.3 (Terminal Coverage). Given a k-Reg G = (E, B, K, C, S, P) and a 

set of sequences X ⊆ TP(G). X is said to cover a terminal e ∈ K, if e appears at 
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least in one of the sequences in X. If X covers all terminals in K, it is said to 
achieve terminal coverage. 

 

Definition 5.4 (Production Coverage). Given a k-Reg G = (E, B, K, C, S, P) and 

a set of sequences X ⊆ TP(G). X is said to cover a production p∈ P, if p is used at 
least once in a derivation of a sequence in X. If X covers all productions in P, it is 
said to achieve production coverage. 

 

For a given k-Reg, achieving production coverage is sufficient condition for 
covering all pairs of terminals, because productions form a “follows” relation 
between terminals (See Definition 4.3). Thus, production coverage subsumes 
terminal pair coverage, and, so, terminal coverage. 

Note that Definition 5.3 uses the term “terminal” instead of “k-sequence” (See 
Definition 4.3), because the term “k-sequence coverage” is reserved for only 1-
Regs. This point is not elaborated further by define coverage of terminal 
sequences of some fixed length because production coverage of a corresponding 
k-Reg of a given 1-Reg is used as sufficient condition to cover all (k+1)-
sequences in the given 1-Reg (or in a system which is modeled by the 1-Reg). 
Therefore, the following is defined. 

 

Definition 5.5 (k-sequence Coverage). Given a 1-Reg G = (E, B, K, C, S, P) and 

a set of sequences X ⊆ TP(G). X is said to cover a k-sequence r in G, if r appears 
in a sequence in X. If X covers all k-sequences in G, it is said to achieve k-

sequence coverage. 

 

k-sequence coverage is used to reveal missing event faults where an event 
does not follow or precede a (possibly empty) sequence of events. It is based on 
contexted events; therefore, it subsumes basis k-sequence coverage. Although, k-
sequence coverage can be used to reveal different or more subtle faults as k is 
increased, it is not stronger for increasing value of k; that is, (k+1)-sequence 
coverage does not subsume k-sequence coverage for k ≥ 1. As discussed in 
Section 5.1, it is possible that a k-sequence is not included in any (k+1)-
sequences. In this case, a sequence set achieving m-sequence coverage for m ≥ 

k+1 fails to cover such k-sequences. If a complete subsumption is intended, such 
sequences should be singled out and included separately. 

In order to generate test cases achieving (k+1)-sequence coverage from a 
given 1-Reg, its corresponding k-Reg can be used. Before giving the complete test 
generation algorithm, the sufficient and necessary conditions to check if (k+1)-
sequence coverage is achievable for a given 1-Reg are outlined in Lemma 5.2. 
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Lemma 5.2 (Achievability of (k+1)-sequence Coverage). Given a 1-Reg G1 = 

(E, B, K1, C1, S, P1) and its corresponding k-Reg Gk = (E, B, Kk, Ck, S, Pk) where k 

≥ 1 and Kk ≠ ∅. (k+1)-sequence coverage for G1 is achievable if and only if there 
exists at least one m-derived sequence s in Gk such that |s| = k m for m ≥ 2. 

Proof: If part and only if part can be proved separately as follows. 

(If part) Let s be an m-derived sequence in Gk such that |s| = k m for m ≥ 2. 
Then TS

-1
(s, k) is a (k+m-1)-sequence in G1 (by Theorem 5.1), which implies that 

there exists a (k+1)-sequence in G1, and thus (k+1)-sequence coverage for G1 is 
achievable. 

(Only if part) Let s be a (k+1)-sequence in G1. Then t = TS(s, k) is a (2k)-
sequence or 2-derived sequence in Gk (by Theorem 5.1).■ 

 

Unless noted otherwise, (k+1)-sequence coverage is assumed to be achievable 
for all 1-Regs under consideration. Below, sufficient and necessary conditions to 
achieve (k+1)-sequence coverage for a given 1-Reg are given. 

 

Theorem 5.3 (Achieving (k+1)-sequence Coverage). Given a 1-Reg G1 = (E, B, 

K1, C1, S, P1), its corresponding k-Reg Gk = (E, B, Kk, Ck, S, Pk) where k ≥ 1 and 

Kk ≠ ∅, a set of sequences X ⊆ TP(G1) and a set of transformed sequence TS(X, k) 

= {TS(s, k)| s ∈ X} ⊆ TP(Gk). X achieves (k+1)-sequence coverage for G1 if and 
only if TS(X, k) achieves terminal pair coverage for Gk; that is, TS(X, k) covers all 

pairs of k-sequences rq in Gk such that r,q ∈ Kk. 

Proof: If part and only if part can be proved separately as follows. 

(If part) For each terminal pair pq in Gk, TS
-1

(pq, k) = pqk is a (k+1)-sequence 
in G1 (by Theorem 5.1). Since TS(X, k) covers all terminal pairs in Gk, TS

-1
(TS(X, 

k), k) = {TS
-1

(s, k)| s ∈ TS(X, k)}} = X covers all (k+1)-sequences in G1 (by 
Definition 5.1). 

(Only if part) For each (k+1)-sequence s in G1, TS(s, k) is a (2k)-sequence such 

that s ∈ Kk
* (by Theorem 5.1); that is, s is a terminal pair. Since X achieves (k+1)-

sequence coverage for G1, TS(X, k) achieves terminal pair coverage for Gk (by 
Definition 5.1).■ 

 

Theorem 5.3 is a strong result. It entails coverage of only a certain subset of 
productions, because coverage of some productions may not lead to coverage of 
additional (k+1)-sequences. However, the selection of this specific subset of 
productions requires additional effort, and, thus, this result is relatively harder to 
use. For this reason, the following corollary to Theorem 5.3 can be used to 
construct an algorithm for generation of test cases achieving (k+1)-sequence 
coverage for a given 1-Reg. 
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Corollary 5.2 (Achieving (k+1)-sequence Coverage - Weaker). Given a 1-Reg 
G1 = (E, B, K1, C1, S, P1), its corresponding k-Reg Gk = (E, B, Kk, Ck, S, Pk) where 

k ≥ 1 and Kk ≠ ∅, a set of sequences X ⊆ TP(G1) and a set of transformed sequence 

TS(X, k) = {TS(s, k)| s ∈ X} ⊆ TP(Gk). X achieves (k+1)-sequence coverage for G1, 
if TS (X, k) achieves production coverage for Gk. 

Proof: The proof follows from Theorem 5.3 and the fact that production coverage 
subsumes terminal pair coverage for a given k-Reg (See the discussion that 
follows Definition 5.4).■ 

 

Based on Corollary 5.2, Algorithm 5.4 can be used to generate a test set that 
achieves (k+1)-sequence coverage for the given 1-Reg. In this way, one can reveal 
missing event faults where an event does not follow or precede a certain k-
sequence by using the generated test cases to exercise test paths which are 
supposed to exist in the test object and check whether the test object functions 
correctly. Note that Algorithm 5.4 uses Algorithm 5.1 to transform k-Reg, an 
external production-covering algorithm to generate a set of sequences, and 
Algorithm 5.3 to perform inverse sequence transformations on the generated 
sequences. 

 

Algorithm 5.4. Test Generation to Achieve (k+1)-sequence Coverage 

 Input: G = (E, B, K, C, S, P) – the input 1-Reg 
   k – an integer ≥ 1 
 Output: X – a set of sequences which achieves (k+1)-sequence coverage for G 
  X = ∅ 

  Gk = transform G to its corresponding k-Reg //See Algorithm 5.1 
  Y = generate a sequence set achieving production coverage for Gk 

  for each s ∈ Y such that |s| ≥ 2k do 

   X = X ∪ TS
-1

(s, k) //See Algorithm 5.3 
  endfor 

 

The test cases generated by Algorithm 5.4 are CESs in the given grammar G. 
It is possible to perform some optimizations. For example, algorithms to solve 
Chinese Postman Problem over directed graphs, like [114][65][7], can be adapted 
to cover each production a minimum number of times, resulting in a reduced set 
of test cases. However, one should note that optimization algorithms tend to 
require more resources in terms of both time and space, and there is no guarantee 
of reduced test execution costs [32][33]. Thus, algorithms such as those in 
[146][119][176] can also be used to generate relatively short but generally 
nonoptimized sequences from a given grammar, while using less resources. 
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Due to the nature of (k+1)-sequence coverage, no matter which type of 
method is used to cover productions in the given grammar, performance of 
Algorithm 5.4 quickly declines with increasing k. The worst-case running time 
complexity is given by 

O((k-1)|P|
k-1

 + CP(|E|, |P|, k) + CT(|E|, |P|, k)), 

where 

• O((k-1)|P|
k-1

) is the worst-case running time complexity of performing k-1 
consecutive grammar transformations, 

• CP(|E|, |P|, k) is the worst-case running time complexity of generating a 
set of sequences achieving production coverage for Gk, and 

• CT(|E|, |P|, k) is the worst-case running time complexity of inverse 
transforming these sequences to obtain test cases. 

Generally, CP(|E|, |P|, k) is the dominant term. Although there is no detailed time 
complexity analysis for fast grammar-based test generation algorithms 
[146][119][176], the performance is generally polynomial in |P|

k, that is, O(|P|
ck

) 
for some c ≥ 1, where the number of productions in the corresponding k-Reg is 
O(|P|

k
) (See Section 5.1). For example, even if each production is covered a 

minimum number of times, the complexity becomes O(|K|
3k

) = O(|P|
3k

) [38]. 

 

Example 5.4 (Test Sets Generated Using Algorithm 5.4). When Algorithm 5.4 
is executed on the 1-Reg in Figure 2.2 for k = 1, no transformation of the 
grammar is necessary. One can obtain the following set of test cases 

{c1 c1 x1 c1 p1 c1 p1 x1 x1 p2 c1 p1 p1, x1 p2 x1 p2, c1 p1} 

which achieves 2-sequence coverage. Furthermore, if k = 2 is used, the given 1-
Reg is transformed once to obtain the 2-Reg in Figure 2.4, this 2-Reg is used to 
generate a sequence set and the elements of this set are inverse transformed to 
obtain test cases achieving 3-sequence coverage. The following is an example of 
test cases achieving 3-sequence coverage: 

{c1 c1 c1 x1 c1 c1 p1 c1 c1 p1 x1 c1 x1 x1 c1 p1 p1 c1 x1 p2 c1 c1 p1,  

c1 x1 p2 x1 c1 p1 c1 p1 x1 x1 x1 p2,  

c1 p1 x1 p2 c1 x1 p2 c1 p1 p1 x1 p2 x1 x1 p2 x1 p2,  

x1 c1 p1 p1 p1, x1 x1 p2, c1 p1 p1}. 

Naturally, during test execution, the corresponding basis event is used for each 
event, because the basis events represent the events as they are visible to user (See 
Definition 5.1). 
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6 Mutation Operators for 

Morphologically Different Models 

 

Mutation operators are generally used to generate system models which are called 
mutants. Mutants contribute to testing process by serving as fault models; they 
can also be used in test evaluation or test generation. This chapter defines 
mutation operators for k-Regs for event-based testing and analyzes their 
properties based on [26][29][30][31]. Furthermore, the defined mutation operators 
are discussed in comparison to the grammar-based mutation operators [134][18]. 

In general, a mutant can be one of the following. 

• A model where some behavior is missing 

• A model where some behavior is extra 

• A model where some behavior is missing and some behavior is extra 

• A model which is equivalent to the original model 

The fault types for event-based testing can be classified as missing event and 
extra event. In a missing event fault, an event cannot occur after or before 
performing a (possibly empty) sequence of events whereas it should; that is, the 
event is missing in some context. In an extra event fault, an event can occur after 
or before performing a (possibly empty) sequence of events whereas it should not; 
that is, the event is extra in some context. 

Considering the elements of a k-Reg, the following mutation operators can be 
defined to model missing event and extra event faults. (Note that the term 
“terminal” instead of the term “k-sequence” to avoid a possible confusion between 
“insert sequence” and “insert k-sequence,” and “omit sequence” and “omit k-
sequence.”) 

• Marking: Mark start (Ms), mark non-start (Mns), mark finish (Mf) and 
mark non-finish (Mnf). 

• Insertion: Insert sequence (Is) and insert terminal (It). 

• Omission: Omit sequence (Os) and omit terminal (Ot). 
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One can use mark nonstart, mark nonfinish, omit sequence and omit terminal 
operators to generate mutants modeling missing event faults; and mark start, mark 
finish, insert sequence and insert terminal operators can be used to generate 
mutants modeling extra event faults. These operators, except for insert terminal 
and omit terminal, inject small numbers of missing event or extra event faults. 
Although insert terminal and omit terminal may induce relatively large number of 
faults, these faults are local to specific parts of the model and therefore mostly 
different from the faults in another mutant of the same type. Also, each missing 
event fault modeled by an omit terminal mutant can be separately modeled by an 
omit sequence mutant and each extra event fault modeled by an insert terminal 
mutant can be separately modeled by an insert terminal mutants for which the 
mutation parameter size is properly limited. 

Given a k-Reg G where k ≥ 2, a k-Reg mutant G’ = (E’, B’, K’, C’, S, P’) 
generated using one of the mutation operators defined in this chapter may not be a 

k-Reg by Definition 4.3. It may contain a production of the form c(q) → r c(r) ∈ 

P’ where q = q1 … qk and r = r1 … rk such that 

q2 … qk ≠ r1 … rk-1, 

that is, ending (k-1)-sequence of q is not equal to the beginning (k-1)-sequence of 
r. This happens when new productions representing sequences that do not exist in 
the original model are inserted to perform the mutation. Fortunately, this mutant 
can still be treated as a k-Reg by ignoring r1 … rk-1 (which would be left out from 
sequences in the grammar during inverse sequence transformation (See Definition 
5.2)), because the primary interest lies in the relation between q1 … qk and rk; that 
is, rk follows q1 … qk. For this reason, the definition of a k-Reg is relaxed while 
referring to mutants. Thus, the discussed mutation operators preserve the form (k-
Reg) and the type (or regularity) of the grammar. 

In the next three sections (Section 6.1 - Section 6.3), the following are 
discussed for each event-based mutation operator. 

• Definition 

• Algorithmic complexity 

• Number of possible mutants 

• Set of all CESs of each mutant 

• Conditions for generation of useful, deterministic and non-equivalent 
mutants 

In Section 6.4, event-based mutation operators defined for k-Regs are 
compared to grammar-based mutation operators [134][18]. 
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6.1 Marking Operators 

Marking operators are used to change the type of certain elements in the model. 
More precisely, they are defined to mark k-sequences as start, nonstart, finish, and 
nonfinish. Mark start and mark finish operators preserve usefulness of the given 
grammar, whereas mark nonstart and mark nonfinish operators may fail to do so. 
For the latter two, it is possible to outline usefulness preserving measures. 
However, they are skipped, because they involve performing additional marking 
operations on k-sequences in the grammar. For example, while marking a k-
sequence e as a nonstart, one may have to mark e or a k-sequence other than e as a 
start k-sequence. 

6.1.1 Mark Start 

Mark start operator turns a given k-sequence into a start k-sequence. In this way, 
mutant models which have extra start start k-sequences can be constructed. The 
operator is defined as follows. 

 

Definition 6.1 (Mark Start). Given a k-Reg G = (E, B, K, C, S, P) and a k-

sequence e ∈ K such that S → e c(e) ∉ P, mark start (Ms) operator is defined as 

Ms(G, e) = G’ = (E, B, K, C, S, P’) 

where P’ = P ∪ {S → e c(e)}. 

 

As Definition 6.1 suggests, the operator assumes that k-sequence e to be 
marked as start is not already a start k-sequence. Therefore, it can be performed in 

O(1) time by adding a single production S → e c(e). Checking whether k-
sequence e is a start k-sequence can be performed in O(|P|) steps by checking 

whether production S → e c(e) is in P. 

In addition, a mark start mutant is also a k-Reg, and one can perform 

|K| - s 

mark start operations, where s is the number of start k-sequences. 

A mark start mutant introduces new sequences to the set of all CESs. This is 
shown by Lemma 6.1 as follows. 

 

Lemma 6.1 (Set of All CESs of a Mark Start Mutant). Given a k-Reg G = (E, 

B, K, C, S, P) and G’ = Ms(G, e). The set of all CESs of G’ is given by 

TCES(G’) = TCES(G) ∪ {e x| c(e) ⇒G
*
 x (x ∈ E

*
)}. 

Proof: The proof follows from Definition 6.1.■ 
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Using Lemma 6.1, Lemma 6.2 given below discusses the equivalence of a 
mark start mutant. 

 

Lemma 6.2 (Equivalence of a Mark Start Mutant). Given a k-Reg G = (E, B, 

K, C, S, P) and G’ = Ms(G, e). Let 

• X = {e x| c(e) ⇒G
*
 x (x ∈ E

*
)} and 

• Y = {e’ y| S ⇒G
*
 e’ y (e’ ∈ K, y ∈ E

*
) where e’ ≠ e and d(e’) = d(e)} ⊆ 

TCES(G). 

G’ is not equivalent to G if and only if d(X) \ d(Y) ≠ ∅. 

Proof: TCES(G’) = TCES(G) ∪ X (by Lemma 6.1). Hence, using Definition 4.8, 

d(TCES(G’)) = d(TCES(G)) if and only if d(X) ⊆ d(Y) ⊆ d(TCES(G)), which 
completes the proof.■ 

 

Sufficient conditions for usefulness, determinism and nonequivalence of a 
mark start mutant are outlined in the following. 

 

Theorem 6.1 (Usefulness of a Mark Start Mutant). Given a k-Reg G = (E, B, 

K, C, S, P) and G’ = Ms(G, e). G’ is useful, if G is useful. 

Proof: The proof follows from Definition 4.9 and Definition 6.1.■ 

 

Theorem 6.2 (Determinism of a Mark Start Mutant). Given a k-Reg G = (E, B, 

K, C, S, P) and G’ = Ms(G, e). G’ is deterministic, if G is deterministic and there 

exists no S → e’ c(e’) ∈ P such that e’ ≠ e and d(e’) = d(e). 

Proof: The proof follows from Definition 4.10 and Definition 6.1.■ 

 

Theorem 6.3 (Nonequivalence of a Mark Start Mutant). Given a k-Reg G = 

(E, B, K, C, S, P) and G’ = Ms(G, e). G’ is not equivalent to G, if G is useful and 

there exists no S → e’ c(e’) ∈ P such that e’ ≠ e and d(e’) = d(e). 

Proof: Let X and Y be the sets defined in Lemma 6.2. 

• TCES(G) ≠ ∅ and X ≠ ∅, since G is useful. 

• Y = ∅, since there exists no S → e’ c(e’) ∈ P such that e’ ≠ e and d(e’) = 

d(e). 

Thus, d(X) ∩ d(Y) = ∅ and G’ is not equivalent to G (Lemma 6.2).■ 
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6.1.2 Mark Finish 

Mark finish operator turns a given k-sequence into a finish k-sequence. Using this 
operator, mutant models which have extra finish k-sequences can be constructed. 
The operator is defined as follows. 

 

Definition 6.2 (Mark Finish). Given a k-Reg G = (E, B, K, C, S, P) and a k-

sequence e ∈ K such that c(e) → ε ∉ P, mark finish (Mf) operator is defined as 

Mf(G, e) = G’ = (E, B, K, C, S, P’) 

where P’ = P ∪ {c(e) → ε}. 

 

By Definition 6.2, the operator can be performed in O(1) time assuming that 

k-sequence e is not already a finish k-sequence. One can check whether c(e) → ε 
is already in P in O(|P|) time. 

Note that a mark finish mutant is also a k-Reg. In addition, one can perform 

|K| - f 

mark finish operations, where f is the number of finish k-sequences. 

The set of all CESs of the original model is a subset of the set of all CESs of a 
mark finish mutant, which is given by Lemma 6.3. 

 

Lemma 6.3 (Set of All CESs of a Mark Finish Mutant). Given a k-Reg G = (E, 

B, K, C, S, P) and G’ = Mf(G, e). The set of all CESs of G’ is given by 

TCES(G’) = TCES(G) ∪ {x e| S ⇒G
*
 x e c(e) (x ∈ E

*
)}. 

Proof: The proof follows from Definition 6.2.■ 

 

With the help of Lemma 6.3, the equivalence of a mark finish mutant can be 
discussed as follows. 

 

Lemma 6.4 (Equivalence of a Mark Finish Mutant). Given a k-Reg G = (E, B, 

K, C, S, P) and G’ = Mf(G, e). Let 

• X = {x e| S ⇒G
*
 x e c(e) (x ∈ E

*
)} and 

• Y = {y e’| S ⇒G
*
 y e’ (e’ ∈ K, y ∈ E

*
) where e’ ≠ e and d(e’) = d(e)} ⊆ 

TCES(G). 

G’ is not equivalent to G if and only if d(X) \ d(Y) ≠ ∅. 

Proof: TCES(G’) = TCES(G) ∪ X (by Lemma 6.3). Thus, using Definition 4.8, 

d(TCES(G’)) = d(TCES(G)) if and only if d(X) ⊆ d(Y) ⊆ d(TCES(G)). This completes 
the proof.■ 
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The following give sufficient conditions for usefulness, determinism and 
nonequivalence of a mark finish mutant. 

Theorem 6.4 (Usefulness of a Mark Finish Mutant). Given a k-Reg G = (E, B, 

K, C, S, P) and G’ = Mf(G, e). G’ is useful, if G is useful. 

Proof: The proof follows from Definition 4.9 and Definition 6.2.■ 

 

Theorem 6.5 (Determinism of a Mark Finish Mutant). Given a k-Reg G = (E, 

B, K, C, S, P) and G’ = Mf(G, e). G’ is deterministic, if G is deterministic. 

Proof: The proof follows from Definition 4.10 and Definition 6.2.■ 

 

Theorem 6.6 (Nonequivalence of a Mark Finish Mutant). Given a k-Reg G = 

(E, B, K, C, S, P) and G’ = Mf(G, e). G’ is not equivalent to G, if G is useful and 
deterministic. 

Proof: Let X and Y be the sets defined in Lemma 6.4. 

• TCES(G) ≠ ∅ and X ≠ ∅, since G is useful. 

• d(X) ∩ d(Y) = ∅, since each m-derived start sequence in deterministic G 
has a unique basis (Theorem 4.4). 

Hence, G’ is not equivalent to G (Lemma 6.4).■ 

 

6.1.3 Mark Nonstart 

Mark nonstart operator turns a given k-sequence into nonstart k-sequence, in order 
to obtain mutant models which have missing start k-sequences. The definition of 
the operator is given as follows. 

 

Definition 6.3 (Mark Nonstart). Given a k-Reg G = (E, B, K, C, S, P) and a k-

sequence e ∈ K such that S → e c(e) ∈ P, mark nonstart (Mns) operator is defined 
as 

Mns(G, e) = G’ = (E, B, K, C, S, P’) 

where P’ = P \ {S → e c(e)}. 

 

As Definition 6.3 suggests, the operator assumes that k-sequence e is already a 
start k-sequence. Regardless, the operator can be performed in O(|P|) time by 

searching for production S → e c(e) in P, and removing it if it exists. 

Furthermore, a mark nonstart mutant is also a k-Reg, and one can perform 

s = |{e| S → e c(e) ∈ P}| 
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mark nonstart operations. 

The set of all CESs of a mark nonstart is a subset of the set of all CESs of the 
original model. This is shown by Lemma 6.5 as follows. 

 

Lemma 6.5 (Set of All CESs of a Mark Nonstart Mutant). Given a k-Reg G = 

(E, B, K, C, S, P) and G’ = Mns(G, e). The set of all CESs of G’ is given by 

TCES(G’) = TCES(G) \ {e x| c(e) ⇒G
*
 x (x ∈ E

*
)}. 

Proof: The proof follows from Definition 6.3.■ 

 

Lemma 6.5 shows that the mutant grammar may not be useful anymore. For 

example, if there exists no S → a c(a) ∈ P for some a ≠ e, none of the k-
sequences in the mutant grammar are useful; that is, TCES(G’) is empty if all CESs 
in TCES(G) begins with e. 

Using Lemma 6.5, Lemma 6.6 states the equivalence of a mark nonstart 
mutant as follows. 

 

Lemma 6.6 (Equivalence of a Mark Nonstart Mutant). Given a k-Reg G = (E, 

B, K, C, S, P) and G’ = Mns(G, e). Let 

• X = {e x| S ⇒G
*
 e x (x ∈ E

*
)} ⊆ TCES(G) and 

• Y = {e’ y| S ⇒G
*
 e’ y (e’ ∈ K, y ∈ E

*
) where e’ ≠ e and d(e’) = d(e)} ⊆ 

(TCES(G) \ X). 

G’ is not equivalent to G if and only if d(X) \ d(Y) ≠ ∅. 

Proof: TCES(G’) = TCES(G) \ X (by Lemma 6.5). Hence, using Definition 4.8, 

d(TCES(G’)) = d(TCES(G)) if and only if d(X) ⊆ d(Y) ⊆ d(TCES(G) \ X), which 
proves the theorem.■ 

 

Sufficient conditions of usefulness, determinism and nonequivalence of a 
mark nonstart mutant are given in the following. 

 

Theorem 6.7 (Usefulness of a Mark Nonstart Mutant). Given a k-Reg G = (E, 

B, K, C, S, P) and G’ = Mns(G, e). G’ is useful, if G is useful and there exists a 

start k-sequence a ≠ e such that S ⇒G a c(a) ⇒G
*
 a x e c(e) (x ∈ E

*
). 

Proof: The proof follows from Definition 4.9 and Definition 6.3.■ 

 

Theorem 6.8 (Determinism of a Mark Nonstart Mutant). Given a k-Reg G = 

(E, B, K, C, S, P) and G’ = Mns(G, e). G’ is deterministic, if G is deterministic. 

Proof: The proof follows from Definition 4.10 and Definition 6.3.■ 
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Theorem 6.9 (Nonequivalence of Mark Nonstart Mutant). Given a k-Reg G = 

(E, B, K, C, S, P) and G’ = Mns(G, e). G’ is not equivalent to G, if G is useful and 
deterministic. 

Proof: Let X and Y be the sets defined in Lemma 6.6. 

• TCES(G) ≠ ∅ and X ≠ ∅, since G is useful. 

• Y = ∅, since G is deterministic. 

Hence, d(X) ∩ d(Y) = ∅ and G’ is not equivalent to G (Lemma 6.6).■ 

 

6.1.4 Mark Nonfinish 

Mark nonfinish operator turns a given k-sequence into a nonfinish k-sequence. 
This enables to construct mutant models which has missing finish k-sequences. 
The operator definition is given below. 

 

Definition 6.4 (Mark Nonfinish). Given a k-Reg G = (E, B, K, C, S, P) and a k-

sequence e ∈ K such that c(e) → ε ∈ P, mark nonfinish (Mnf) operator is defined 
as 

Mnf(G, e) = G’ = (E, B, K, C, S, P’) 

where P’ = P \ {c(e) → ε}. 

 

According to Definition 6.4, the operator assumes that k-sequence e is a finish 
k-sequence. Regardless of this assumption, the operator can be carried out in 

O(|P|) time by searching for production c(e) → ε  in P, and removing it, if it 
exists. 

In addition, a mark nonfinish mutant is a k-Reg, and one can perform 

f = |{e| c(e) → ε ∈ P}| 

mark nonfinish operations. 

A mark nonfinish mutant removes some sequences from the set of all CESs. 
This is discussed by Lemma 6.7. 

 

Lemma 6.7 (Set of All CESs of a Mark Nonfinish Mutant). Given a k-Reg G = 

(E, B, K, C, S, P) and G’ = Mnf(G, e). The set of all CESs of G’ is given by 

TCES(G’) = TCES(G) \ {x e| S ⇒G
*
 x e (x ∈ E

*
)}. 

Proof: The proof follows from Definition 6.4.■ 
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Lemma 6.7 shows that the mutant grammar may not be useful anymore. For 

example, if there exists no c(a) → ε ∈ P for some a ≠ e, none of the k-sequences 
in the mutant grammar are useful; that is, TCES(G’) is empty if all CESs in TCES(G) 
ends with e. 

Using Lemma 6.7, Lemma 6.8 discusses the equivalence of a mark nonfinish 
mutant. 

 

Lemma 6.8 (Equivalence of a Mark Nonfinish Mutant). Given a k-Reg G = (E, 

B, K, C, S, P) and G’ = Mnf(G, e). Let 

• X = {x e| S ⇒G
*
 x e (x ∈ E

*
)} ⊆ TCES(G) and 

• Y = {y e’| S ⇒G
*
 y e’ (e’ ∈ K, y ∈ E

*
) where e’ ≠ e and d(e’) = d(e)} ⊆ 

(TCES(G) \ X). 

G’ is not equivalent to G if and only if d(X) \ d(Y) ≠ ∅. 

Proof: TCES(G’) = TCES(G) \ X (by Lemma 6.7). Thus, using Definition 4.8, 

d(TCES(G’)) = d(TCES(G)) if and only if d(X) ⊆ d(Y) ⊆ d(TCES(G) \ X). This proves 
the theorem.■ 

 

The following outline sufficient conditions for usefulness, determinism and 
nonequivalence of a mark nonstart mutant. 

 

Theorem 6.10 (Usefulness of a Mark Nonfinish Mutant). Let G = (E, B, K, C, 

S, P) be a k-Reg and G’ = Mnf(G, e). G’ is useful, if G is useful and there exists a 

finish k-sequence a ≠ e such that c(e) ⇒G
*
 x a (x ∈ E

*
). 

Proof: The proof follows from Definition 4.9 and Definition 6.4.■ 

 

Theorem 6.11 (Determinism of a Mark Nonfinish Mutant). Let G = (E, B, K, 

C, S, P) be a k-Reg and G’ = Mnf(G, e). G’ is deterministic, if G is deterministic. 

Proof: The proof follows from Definition 4.10 and Definition 6.4.■ 

 

Theorem 6.12 (Nonequivalence of a Mark Nonfinish Mutant). Let G = (E, B, 

K, C, S, P) be a k-Reg and G’ = Mnf(G, e). G’ is not equivalent to G, G is useful 
and deterministic. 

Proof: Let X and Y be the sets defined in Lemma 6.8. 

• TCES(G) ≠ ∅ and X ≠ ∅, since G is useful. 

• d(X) ∩ d(Y) = ∅, since each m-derived start sequence in deterministic G 
has a unique basis (Theorem 4.4). 

Hence, G’ is not equivalent to G (Lemma 6.8).■ 
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6.2 Insertion Operators 

Insertion operators are used to generate models that have additional functionality 
when compared to the original model; that is, the original model is a correct (sub) 
model of the mutant. This section outlines operators to add new sequences (of k-
sequences) and terminals (k-sequences) to a given k-Reg model. 

6.2.1 Insert Sequence 

Insert sequence operator introduces a new terminal (or k-sequence) sequence to a 
given grammar by establishing a connection between two existing k-sequences. In 
this way, mutant models which contain different terminal sequences can be 
constructed. The operator is defined as follows. 

 

Definition 6.5 (Insert Sequence). Given a k-Reg G = (E, B, K, C, S, P) and a 

sequence (a, b) such that a,b ∈ K and c(a) → b c(b) ∉ P, insert sequence (Is) 
operator is defined as 

Is(G, (a, b)) = G’ = (E, B, K, C, S, P’) 

where P’ = P ∪ {c(a) → b c(b)}. 

 

No usefulness preserving measures are given in Definition 6.5, because the 
operator does not violate usefulness, if the given grammar is already useful. Thus, 
it suffices to update the given grammar with a new production in order to include 
the intended sequence. Algorithm 6.1 outlines steps to perform the operator given 
in Definition 6.5. 

 

Algorithm 6.1. Insert Sequence 

 Input: G = (E, B, K, C, S, P) – the input grammar 

   (a, b) where a,b ∈ K and c(a) → b c(b) ∉ P – the sequence to be inserted 
 Output: G’ = (E’, B’, K’, C’, S’, P’) – the updated grammar 
  G’ = G 

  P’ = P’ ∪ {c(a) → b c(b)}  //Add the production for sequence (a, b) 

 

Algorithm 6.1 has O(1) worst case time complexity, since it is assumed that 
sequence to be inserted is not already in the given grammar. Checking whether a 
sequence is already in a given grammar can be performed in O(|P|) time. 

 

Example 6.1 (An Insert Sequence Mutant). Figure 6.1 shows the 1-Reg 
resulting from the insertion of sequence (p2, p1) into the 1-Reg in Figure 2.2. 
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S → c1 c(c1) | x1 c(x1) 

c(c1) → c1 c(c1) | x1 c(x1) | p1 c(p1) 

c(x1) → c1 c(c1) | x1 c(x1) | p2 c(p2) 

c(p1) → c1 c(c1) | x1 c(x1) | p1 c(p1) | ε 

c(p2) → c1 c(c1) | x1 c(x1) | ε | p1 c(p1) 

x1

c1

][

p2

p1

 

(a) 1-Reg. (b) Directed graph visualization. 

Figure 6.1. Insertion of sequence (p2, p1) to the 1-Reg in Figure 2.2. 

 

Given a k-Reg, an insert sequence mutant is also a k-Reg, and one can 
perform 

|K|
2
 - |P| + (s+f) 

insert sequence operations, where s is the number of start k-sequences and f is the 
number finish k-sequences. Note that |K|

2 is the number of all possible terminal 
sequences, and (|P| - (s+f)) is the number of existing terminal sequences. 

The set of all CESs of an insert sequence mutant contains new sequences. 
Lemma 6.9 shows this considering different cases. 

 

Lemma 6.9 (Set of All CESs of an Insert Sequence Mutant). Given a k-Reg G 

= (E, B, K, C, S, P) and G’ = Is(G, (a, b)). Let 

• M = {x| S ⇒G
*
 x a c(a) (x ∈ E

*
)}, 

• N = {y| c(b) ⇒G
*
 y (y ∈ E

*
)} and 

• O = {z| c(b) ⇒G
*
 z a c(a) (z ∈ E

*
)}. 

The set of all CESs of G’ is given by 

TCES(G’) = TCES(G) ∪ Mab(Oab)
*
N, if a ≠ b, and 

TCES(G’) = TCES(G) ∪ Maa(a+Oa)
*
N, if a = b. 

Proof: The proof follows from Definition 6.5 considering the cases a ≠ b and a = 

b.■ 

Making use of Lemma 6.9, the equivalence of an insert sequence mutant is 
discussed in Lemma 6.10. 

 

Lemma 6.10 (Equivalence of an Insert Sequence Mutant). Given a k-Reg G = 

(E, B, K, C, S, P) and G’ = Is(G, (a, b)). Let 

• X = Mab(Oab)
*
N, if a ≠ b; X = Maa(a+Oa)

*
N, if a = b, and 
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• Y = {w| w ∈ TCES(G) and w contains a’b’ such that a’,b’ ∈ K, a’ ≠ a and 

d(a’) = d(a), and b’ ≠ b and d(b’) = d(b)} ⊆ TCES(G), 

where M, N and O are the sets defined in Lemma 6.9. G’ is not equivalent to G if 

and only if d(X) \ d(Y) ≠ ∅. 

Proof: TCES(G’) = TCES(G) ∪ X (by Lemma 6.9). Thus, using Definition 4.8, 

d(TCES(G’)) = d(TCES(G)) if and only if d(X) ⊆ d(Y) ⊆ d(TCES(G)). This completes 
the proof.■ 

 

In the following, sufficient conditions for usefulness, determinism and 
nonequivalence of an insert sequence mutant are given. 

 

Theorem 6.13 (Usefulness of an Insert Sequence Mutant). Given a k-Reg G = 

(E, B, K, C, S, P) and G’ = Is(G, (a, b)). G’ is useful, if G is useful. 

Proof: The proof follows from Definition 4.9 and Definition 6.5.■ 

 

Theorem 6.14 (Determinism of an Insert Sequence Mutant). Given a k-Reg G 

= (E, B, K, C, S, P) and G’ = Is(G, (a, b)). G’ is deterministic, if the following 
conditions hold: 

1. G is deterministic. 

2. There exists no c(a) → b’ c(b’) ∈ P such that b’ ≠ b and d(b’) = d(b). 

Proof: The proof follows from Definition 4.10 and Definition 6.5.■ 

 

Theorem 6.15 (Nonequivalence of an Insert Sequence Mutant). Given a k-Reg 
G = (E, B, K, C, S, P) and G’ = Is(G, (a, b)). G’ is not equivalent to G, if the 
following conditions hold. 

1. G is useful. 

2. G is deterministic. 

3. There exists no c(a) → b’ c(b’) ∈ P such that b’ ≠ b and d(b’) = d(b). 

Proof: Let X and Y be the sets defined in Lemma 6.10. 

• TCES(G) ≠ ∅ and X ≠ ∅, since G is useful. 

• d(X) ∩ d(Y) = ∅, since each m-derived start sequence in deterministic G 
has a unique basis (Theorem 4.4). 

Hence, G’ is not equivalent to G (Lemma 6.10).■ 
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6.2.2 Insert Terminal 

Insert terminal operator adds a new k-sequence to a given grammar, possibly 
establishing its connections to the existing k-sequences. In this way, mutant 
models which contain k-sequences with different contexts can be created. The 
operator is defined as follows. 

 

Definition 6.6 (Insert Terminal). Given a k-Reg G = (E, B, K, C, S, P), a k-

sequence e such that e ∉ K and d(e) ∈ B
k, a set of ingoing sequences U = {(a, e)| 

a ∈ {a1, …, am} ⊆ K} and a set of outgoing sequences V = {(e, b)| b ∈ {b1, …, bn} 

⊆ K∪{e}}, insert terminal (It) operator is defined as 

It(G, e, U, V) = G’ = (E, B, K’,C’, S, P’), 

where K’ = K ∪ {e}, C’ = C ∪ {c(e)}, and, for Q = P ∪ {c(e) → a c(a)| (a, e) ∈ 

U} ∪ {c(b) → e c(e)| (e, b) ∈ V}: 

• If usefulness preservation is not required, 

o P’ = Q. 

• If usefulness preservation is required, let U’ = {c(e) → ε| V = ∅ or V = 

{(e, e)}} and V’ = {S → e c(e)| U = ∅}, 

o P’ = Q ∪ (U’ ∪ V’). 

 

As Definition 6.6 suggests, insertion of a new k-sequence requires adding a 
new k-sequence, a new context, and new productions for the sequences. 
Nevertheless, if usefulness of the new k-sequence cannot be established, insertion 
of additional productions may be required. The steps to update the given grammar 
with the insertion of a k-sequence are given in Algorithm 6.2 including usefulness 
preserving measures. 

Algorithm 6.2 assumes that e ∉ K, which can be checked in O(|K|) time. 
Therefore, running time complexity of Algorithm 6.2 is given by O(m+n) = 

O(|K|), where m is the number of sequences of the form “(…, e)”, that is, ingoing 
sequences, and n is the number of sequences of the form “(e, …)”, that is, 
outgoing sequences, to be inserted. Note that (e, e), that is, the looping sequence, 
is considered to be an outgoing sequence and, therefore, (m+n) ≤ 2|K|+1 = 2(|C|-

1)+1. 

Briefly, Algorithm 6.2 adds a new k-sequence and its corresponding context. 
Later, for each sequence to be inserted, a new production is added. To be sure that 
the resulting grammar is useful, one needs to check two cases. 
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Algorithm 6.2. Insert Terminal 

 Input: G = (E, B, K, C, S, P) – the input grammar 

   e ∉ K where d(e) ∈ B
k – the k-sequence to be inserted 

   U = {(a, e)| a ∈ {a1, …, am} ⊆ K} – the ingoing sequences to be inserted 

   V = {(e, b)| b ∈ {b1, …, bn} ⊆ K∪{e}} – the outgoing sequences to be inserted 
 Output: G’ = (E’, B’, K’, C’, S’, P’) – the updated grammar 
  G’ = G 

  K’ = K’ ∪ {e} //Add the new k-sequence e 

  C’ = C’ ∪ {c(e)}   //Add new context c(e) 

  for each (a, e) ∈ U do 

   P’ = P’ ∪ {c(a) → e(e)} //Add the production for sequence (a, e) 

  endfor 

  for each (e, b) ∈ V do 

   P’ = P’ ∪ {c(e) → b c(b)} //Add the production for sequence (e, b) 

  endfor 
  if m < 1 then 

   P’ = P’ ∪ {S → e c(e)} //Usefulness of e (Part 1: Mark e as start) 
  endif 

  if n < 1 or (n = 1 and b1 = e) then 

   P’ = P’ ∪ {c(e) → ε} //Usefulness of e (Part 2: Mark e as finish) 
  endif 

 

Let G be a useful k-Reg. After insertion of a new k-sequence e, the resulting 
grammar G’ may not be useful due to the following. 

1. If the set of ingoing sequences is empty (that is, U = ∅), no derivations of 

the form S ⇒G’
*
 x e c(e) (x ∈ E

*
) exist; that is, derivations starting from S 

do not go through c(e). Therefore, production S → e c(e) should be added 
for usefulness. 

2. If the set of outgoing sequences is empty or contains only the looping 

sequence (that is, V = ∅ or V = {(e, e)}), a derivation of the form c(e) 

⇒G’
*
 x (x ∈ E

*
) does not exist; that is, derivations starting from c(e) do not 

terminate. Thus, production c(e) → ε should be added for usefulness. 

In addition, if the given grammar G is not useful, (1) or (2) are not guaranteed 
to preserve the usefulness of the resulting grammar, but they still make inserted k-
sequence e useful. 

 

Example 6.2 (An Insert Terminal Mutant). Figure 6.2 shows the 1-Reg 
resulting from the insertion of 1-sequence p3 together with {(p2, p3)} into the 1-

Reg in Figure 2.2 where c(p3) → ε is also inserted to preserve usefulness. 
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S → c1 c(c1) | x1 c(x1) 

c(c1) → c1 c(c1) | x1 c(x1) | p1 c(p1) 

c(x1) → c1 c(c1) | x1 c(x1) | p2 c(p2) 

c(p1) → c1 c(c1) | x1 c(x1) | p1 c(p1) | ε 

c(p2) → c1 c(c1) | x1 c(x1) | ε | p3 c(p3) 

c(p3) →→→→ εεεε 

x1

c1

][

p2

p1

p3

 

(a) 1-Reg. (b) Directed graph visualization. 

Figure 6.2. Insertion of p3 together with {(p2, p3)} to the 1-Reg in Figure 2.2. 

 

Given a k-Reg, an insert terminal mutant is also a k-Reg. Furthermore, 
insertion of a single terminal can be performed in 

2
2|K|+1 

ways by selecting the sets of ingoing and outgoing sequences differently. Thus, 
without some limitation, the operator may produce quite a large number of 
mutants in general. For example, by creating a mutant using a new contexted 
version of each basis k-sequence in B

k with one ingoing sequence and one 
outgoing sequence, one can generate 

|K| |B|
k
 (|K|+1) 

mutants. Using such limitations allows one to obtain insert terminal mutants 
which have fewer and separate changes, and tend to be more beneficial for test 
generation. 

The set of all CESs of an insert terminal mutant may change depending on 
whether usefulness preserving measures are performed or not, which is given in 
Lemma 6.11. 

 

Lemma 6.11 (Set of All CESs of an Insert Terminal Mutant). Given a k-Reg G 

= (E, B, K, C, S, P) and G’ = It(G, e, U, V) where U = {(a, e)| a ∈ {a1, …, am} ⊆ 

K} and V = {(e, b)| b ∈ {b1, …, bn} ⊆ K∪{e}}. Let 

• M = {x| S ⇒G
*
 x c(a) (x ∈ E

*
) for a = a1, …, am}, if U ≠ ∅, 

M = {ε}, if U = ∅ and S → e c(e) is inserted to for usefulness of e, and 

M = ∅, if U = ∅ and S → e c(e) is not inserted to for usefulness of e. 

• N = {y| b c(b) ⇒G
*
 y (y ∈ E

*
) for b = b1, …, bn (b ≠ e)}, if V ≠ ∅ and V ≠ 

{(e, e)}, 

N = {ε}, if V = ∅ or V = {(e, e)}, and c(e) → ε is inserted for usefulness of 
e, and 
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N = ∅, if V = ∅ or V = {(e, e)}, and c(e) → ε is not inserted for usefulness 
of e. 

• O = {z| b c(b) ⇒G
*
 z c(a) (z ∈ E

*
) for a = a1, …, am and b = b1, …, bn}. 

The set of all CESs of G’ is given by 

TCES(G’) = TCES(G) ∪ Me(Oe)
*
N, if (e, e) ∉ V, and 

TCES(G’) = TCES(G) ∪ Me(e+Oe)
*
N, if (e, e) ∈ V. 

Proof: The proof follows from Definition 6.6 considering the conditions for 
performing measures for usefulness of e, if they are required.■ 

 

Making use of Lemma 6.11, equivalence of an insert terminal mutant can be 
discussed as in Lemma 6.12. 

 

Lemma 6.12 (Equivalence of an Insert Terminal Mutant). Given a k-Reg G = 

(E, B, K, C, S, P) and G’ = It(G, e, U, V) where U = {(a, e)| a ∈ {a1, …, am} ⊆ K} 

and V = {(e, b)| b ∈ {b1, …, bn} ⊆ K∪{e}}. Let 

• X = Me(Oe)
*
N, if (e, e) ∉ V, and X = Me(e+Oe)

*
N, if (e, e) ∈ V, and 

• Y = {w| w ∈ TCES(G) and w contains e’ where e’∈ K, e’ ≠ e and d(e’) = 

d(e)} ⊆ TCES(G), 

where M, N and O are the sets defined in Lemma 6.11. G’ is not equivalent to G if 

and only if d(X) \ d(Y) ≠ ∅. 

Proof: TCES(G’) = TCES(G) ∪ X (by Lemma 6.11). Thus, using Definition 4.8, 

d(TCES(G’)) = d(TCES(G)) if and only if d(X) ⊆ d(Y) ⊆ d(TCES(G)). This completes 
the proof.■ 

 

The following give sufficient conditions for usefulness, determinism and 
nonequivalence of an insert terminal mutant. 

 

Theorem 6.16 (Usefulness of an Insert Terminal Mutant). Given a k-Reg G = 

(E, B, K, C, S, P) and G’ = It(G, e, U, V) where U = {(a, e)| a ∈ {a1, …, am} ⊆ K} 

and V = {(e, b)| b ∈ {b1, …, bn} ⊆ K∪{e}}. G’ is useful, if the following 
conditions hold. 

1. G is useful. 

2. S → e c(e) is inserted for usefulness of e, if U = ∅. 

3. c(e) → ε is inserted for usefulness of e, if V = ∅ or V = {(e, e)}. 

Proof: The proof follows from Definition 4.9 and Definition 6.6.■ 
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Theorem 6.17 (Determinism of an Insert Terminal Mutant). Given a k-Reg G 

= (E, B, K, C, S, P) and G’ = It(G, e, U, V) where U = {(a, e)| a ∈ {a1, …, am} ⊆ 

K} and V = {(e, b)| b ∈ {b1, …, bn} ⊆ K∪{e}}. G’ is deterministic, if the following 
conditions hold. 

1. G is deterministic. 

2. There exists no c(a) → e’ c(e’) ∈ P such that e’ ≠ e and d(e’) = d(e) for a 

= a1, …, am. 

3. There exist no bi, bj such that bi ≠ bj and d(bi) = d(bj), for some i, j ∈ {1, 

…, n}. 

4. S → e c(e) is not inserted for usefulness of e, if there exists S → e’ c(e’) ∈ 

P such that e’ ≠ e and d(e’) = d(e). 

Proof: The proof follows from Definition 4.10 and Definition 6.6.■ 

 

Theorem 6.18 (Nonequivalence of an Insert Terminal Mutant). Given a k-Reg 

G = (E, B, K, C, S, P) and G’ = It(G, e, U, V) where U = {(a, e)| a ∈ {a1, …, am} 

⊆ K} and V = {(e, b)| b ∈ {b1, …, bn} ⊆ K∪{e}}. G’ is not equivalent to G, if the 
following conditions hold. 

1. G is useful. 

2. G is deterministic. 

3. c(e) → ε is inserted for usefulness of e, if V = ∅ or V = {(e, e)}. 

4. S → e c(e) is inserted for usefulness of e, if U = ∅. 

5. U ≠ ∅, if there exists S → e’ c(e’) ∈ P such that e’ ≠ e and d(e’) = d(e). 

6. There exists no c(a) → e’ c(e’) ∈ P such that e’ ≠ e and d(e’) = d(e) for a 

= a1, …, am. 

Proof: Let X and Y be the sets defined in Lemma 6.12. 

• TCES(G) ≠ ∅, since G is useful. 

• X ≠ ∅, since G is useful, U ≠ ∅, if there exists S → e’ c(e’) ∈ P such that 

e’ ≠ e and d(e’) = d(e), S → e c(e) is inserted for usefulness of e, if U = ∅, 

and c(e) → ε is inserted for usefulness of e, if V = ∅ or V = {(e, e)}. 

• d(X) ∩ d(Y) = ∅, since each m-derived start sequence in deterministic G 

has a unique basis (Theorem 4.4) and there exists no c(a) → e’ c(e’) ∈ P 
such that e’ ≠ e and d(e’) = d(e) for a = a1, …, am. 

Hence, G’ is not equivalent to G (Lemma 6.12).■ 
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6.3 Omission Operators 

Application of an omission operator almost always yields a model that is sub 
model of the original model. This section outlines operators to remove existing 
sequences (of k-sequences) and terminals (k-sequences) from a given k-Reg 
model. 

6.3.1 Omit Sequence 

Omit sequence operator removes an existing connection between two terminals 
(or k-sequences) in a given grammar. Doing so, mutants with missing sequence 
can be created. The operator is defined as follows. 

 

Definition 6.7 (Omit Sequence). Given a k-Reg G = (E, B, K, C, S, P) and a 

sequence (a, b) such that a, b ∈ K and c(a) → b c(b) ∈ P, omit sequence (Os) 
operator is defined as 

Os(G, (a, b)) = G’ = (E, B, K, C, S, P’) 

where, for Q = P \ {c(a) → b c(b)}: 

• If usefulness preservation is not required, 

o P’ = Q. 

• If usefulness preservation is required, let H = (E, B, K, C, S, Q), U’ = 

{c(a) → ε| a is not useful in H} and V’ = {S → b c(b)| b is not useful in H}, 

o P’ = Q ∪ (U’ ∪ V’). 

 

Definition 6.7 includes optional usefulness preserving measures, because, after 
removing the production corresponding to the sequence to be omitted, the 
resulting grammar may not be useful. Note that these measures aim to preserve 
usefulness of a and b, if they are already useful in the given grammar. Therefore, 
they preserve usefulness of the resulting grammar, if the given grammar is already 
useful. Algorithm 6.3 outlines the steps for omit sequence operator where 
measures to preserve usefulness are performed by default. 

Algorithm 6.3 runs in O(|K|+|P|) time because removal and testing 
membership of a production can both be performed in O(|P|) steps and checking 

the existence of derivations of the form c(a) ⇒G’
*
 y (y ∈ E

*
) and S ⇒G’

*
 x b c(b) 

(x ∈ E
*
) can be performed in O(|K|+|P|) time. 
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Algorithm 6.3. Omit Sequence 

 Input: G = (E, B, K, C, S, P) – the input grammar 

   (a, b) where a,b ∈ K and c(a) → b c(b) ∈ P – the sequence to be omitted 
 Output: G’ = (E’, B, K’, C’, S’, P’) – the updated grammar 
  G’ = G 

  P’ = P \ {c(a) → b c(b)}  //Remove the production for sequence (a, b) 

  if there exists no c(a) ⇒G’
*
 y (y ∈ E

*
) then 

   P’ = P’ ∪ {c(a) → ε } //Usefulness of a (Part 1: Mark a as finish) 
  endif 

  if there exists no S ⇒G’
*
 x b c(b) (x ∈ E

*
) then 

   P’ = P’ ∪ {S → b c(b)} //Usefulness of b (Part 2: Mark b as start) 
  endif 

 

Let G be a useful k-Reg. If a ≠ b, after the removal of production c(a) → b 

c(b), the resulting grammar G’ may not be useful due to the following. 

1. a is not useful in G’. In this case, although there exists S ⇒G’
*
 x a c(a) (x ∈ 

E
*
), c(a) ⇒G’

*
 y (y ∈ E

*
) does not exist; that is, derivations starting from S 

and going through c(a) do not terminate. To preserve the usefulness, a new 

production c(a) → ε can be added to the grammar. 

2. b is not useful in G’. More precisely, although there exists c(b) ⇒G’
*
 y (y 

∈ E
*
), S ⇒G’

*
 xbc(b) (x ∈ E

*
) does not exist; that is, derivations starting 

from S do not go through c(b), though derivations starting from c(b) 

terminate. In this case, to preserve the usefulness, a new production S → b 

c(b) can be added. 

Consequently, if the given grammar G is not useful, or a or b are not useful in 
G, (1) or (2) are not guaranteed to preserve the usefulness of the resulting 
grammar, or the usefulness of a or b. 

 

S → c1 c(c1) | x1 c(x1) 

c(c1) → c1 c(c1) | x1 c(x1) | p1 c(p1) 

c(x1) → c1 c(c1) | x1 c(x1) | p2 c(p2) 

c(p1) → c1 c(c1) | x1 c(x1) | p1 c(p1) | ε 

c(p2) → c1 c(c1) | x1 c(x1) | ε 

x1

c1

][

p2

p1

 

(a) 1-Reg. (b) Directed graph visualization. 

Figure 6.3. Omission of sequence (p1, c1) from the 1-Reg in Figure 2.2. 
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Example 6.3 (An Omit Sequence Mutant). Figure 6.3 shows the 1-Reg resulting 
from the omission of sequence (p1, c1) from the 1-Reg in Figure 2.2. 

 

Given a k-Reg, an omit sequence mutant is also a k-Reg. Furthermore, one can 
perform 

|P| - (s+f) 

omit sequence operations, where s is the number of start k-sequences and f is the 
number of finish k-sequences. 

The set of all CESs of an omit sequence mutant may change depending on 
whether usefulness preserving measures are performed or not, which is given in 
Lemma 6.13. 

 

Lemma 6.13 (Set of All CESs of an Omit Sequence Mutant). Given a k-Reg G 

= (E, B, K, C, S, P) and G’ = Os(G, (a, b)). Let 

• X = {w| S ⇒G
*
 x a b c(b) ⇒G

*
 w (x,w ∈ E

*
)}, 

• M = {x a| S ⇒G
*
 x a c(a) (x ∈ E

*
) where x does not contain ab}, if c(a) → 

ε is inserted for usefulness of a, and M = ∅, otherwise, and 

• N = {b y| c(b) ⇒G
*
 y (y ∈ E

*
) where y does not contain ab}, if S → b c(b) 

is inserted for usefulness of b, and N = ∅, otherwise. 

The set of all CESs of G’ is given by 

TCES(G’) = (TCES(G) \ X) ∪ (M ∪ N). 

Proof: The proof follows from Definition 6.7 considering the measures for 
usefulness of a and b.■ 

 

Using Lemma 6.13, Lemma 6.14 discusses the equivalence of an omit 
sequence mutant as follows. 

 

Lemma 6.14 (Equivalence of an Omit Sequence Mutant). Given a k-Reg G = 

(E, B, K, C, S, P) and G’ = Os(G, (a, b)). Let 

• Y = {w| w ∈ TCES(G) such that w does not contain ab but it contains a’b’ 

where a’ ≠ a and d(a’) = d(a), and b’ ≠ b and d(b’) = d(b)} ⊆ (TCES(G) \ X) 
and 

• Z = {w| w ∈ TCES(G) such that w does not contain ab, and either w ends 
with a’ ≠ a where d(a’) = d(a) or w begins with b’ ≠ b where d(b’) = d(b) 

or both} ⊆ (TCES(G) \ X), 

where X, M and N are the sets defined in Lemma 6.13. G’ is not equivalent to G if 

and only if d(M ∪ N) \ d(Z) ≠ ∅ or (d(X) \ d(Y)) \ d(M ∪ N) ≠ ∅. 
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Proof: TCES(G’) = (TCES(G) \ X) ∪ (M ∪ N) (by Lemma 6.13). Thus, by 

Definition 4.8, d(TCES(G’)) = d(TCES(G)) if and only if d(M ∪ N) ⊆ d(Z) ⊆ 

d(TCES(G)) and d(X) \ d(Y) ⊆ d(M ∪ N). This completes the proof.■ 

 

Sufficient conditions for usefulness, determinism and nonequivalence of an 
omit sequence mutant are given in the following. 

 

Theorem 6.19 (Usefulness of an Omit Sequence Mutant). Given a k-Reg G = 

(E, B, K, C, S, P) and G’ = Os(G, (a, b)). G’ is useful, if the following conditions 
hold. 

1. G is useful. 

2. c(a) → ε is inserted for usefulness of a, if there exists no derivation of the 

form c(a) ⇒G
*
 x (x ∈ E

*
) where x does not begin with b. 

3. S → b c(b) is inserted for usefulness of b, if there exists no derivation of 

the form S ⇒G
*
 x b c(b) (x ∈ E

*
) where x does not end with a. 

Proof: The proof follows from Definition 4.9 and Definition 6.7.■ 

 

Theorem 6.20 (Determinism of an Omit Sequence Mutant). Given a k-Reg G 

= (E, B, K, C, S, P) and G’ = Os(G, (a, b)). G’ is deterministic, if the following 
conditions hold. 

1. G is deterministic. 

2. S → b c(b) is not inserted for usefulness of b, if there exists S → b’ c(b’) ∈ 

P such that b’ ≠ b and d(b’) = d(b). 

Proof: The proof follows from Definition 4.10 and Definition 6.7.■ 

 

Theorem 6.21 (Nonequivalence of an Omit Sequence Mutant). Given a k-Reg 
G = (E, B, K, C, S, P) and G’ = Os(G, (a, b)). G’ is not equivalent to G, if the 
following conditions hold. 

1. G is useful. 

2. G is deterministic. 

3. S → b c(b) is not inserted for usefulness of b, if there exists S → b’ c(b’) ∈ 

P such that b’ ≠ b and d(b’) = d(b). 

Proof: Let X, M and N be the sets defined in Lemma 6.13, and Y and Z be the sets 
defined in Lemma 6.14. 

• TCES(G) ≠ ∅ and X ≠ ∅, since G is useful. 

• d(X) ∩ d(Y) =∅, since each CES in deterministic G has a unique basis 
(Corollary 4.2). 
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• d(M ∪ N) ∩ d(Z) = ∅, because 

o d(M) ∩ d(Z) = ∅, since each m-derived start sequence in 
deterministic G has a unique basis (Theorem 4.4), and 

o d(N) ∩ d(Z) = ∅, since S → b c(b) is not inserted for usefulness of 

b, if there exists S → b’ c(b’) ∈ P such that b’ ≠ b and d(b’) = d(b). 

Since d(X) ∩ d(Y) =∅, d(X) ∩ d(Z) =∅. This leads to d(X) ∩ d(M ∪ N) = ∅, 

because d(M ∪ N) ∩ d(Z) = ∅. Hence, G’ is not equivalent to G (Lemma 6.14).■ 

 

6.3.2 Omit Terminal 

Omit terminal operator removes an existing k-sequence from the given grammar 
by severing its connections to the other k-sequences. Thus, the mutant grammar 
does not contain this k-sequence. The operator defined as follows. 

 

Definition 6.8 (Omit Terminal). Given a k-Reg G = (E, B, K, C, S, P) and a k-

sequence e ∈ K, omit terminal (Ot) operator is defined as 

Ot(G, e) = G’ = (E, B, K’, C’, S, P’) 

where K’ = K \ {e}, C’ = C \ {c(e)}, and, for Q = P \ ({c(e) → b c(b) ∈ P| b ∈ K} 

∪ {c(a) → e c(e) ∈ P| a ∈ K\{e}} ∪ {S → e c(e), c(e) → ε}): 

• If usefulness preservation is not required, 

o P’ = Q. 

• If usefulness preservation is required, let H = (E’, B, K’, C’, S, Q), U’ = 

{c(a) → ε| c(a) → e c(e) ∈ P and a is not useful in H} and V’ = {S → b 

c(b)| c(e) → b c(b) ∈ P and b is not useful in H}, 

o P’ = Q ∪ (U’ ∪ V’). 

 

Omission of an existing k-sequence requires removing all the productions 
related to this k-sequence, the context related to this k-sequence and the k-
sequence itself. In Definition 6.8, additional measures are carried out to preserve 
usefulness of other k-sequences, which may be affected by the removed 
productions. As usual, these measures aim to preserve usefulness of such k-
sequences, if they are already useful in the given grammar. Therefore, the 
usefulness of the resulting grammar is preserved, if the given grammar is already 
useful. Algorithm 6.4 outlines the steps for omit terminal operator where 
measures to preserve usefulness are performed by default. 
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Algorithm 6.4. Omit Terminal 

 Input: G = (E, B, K, C, S, P) – the input grammar 

   e ∈ K – the k-sequence to be omitted 
 Output: G’ = (E’, B’, K’, C’, S’, P’) – the updated grammar 
  G’ = G 

  P’ = P’ \ {S → e c(e), c(e) → ε} //Remove productions (Mark e as nonstart and nonfinish) 

  U’ = ∅, V’ = ∅ 

  for each c(a) → e c(e) ∈ P’ and a ∈ K’\{e} do 

   P’ = P’ \ {c(a) → e c(e)} //Remove the production for sequence (a, e) 
  endfor 

  for each c(e) → b c(b) ∈ P’ and b ∈ K’ do 

   P’ = P’ \ {c(e) → b c(b)} //Remove the production for sequence (e, b) 
  endfor 

  for each c(a) → e c(e) ∈ P and a ∈ K\{e} do 

   if there exists no c(a) ⇒G’
*
 y (y ∈ E

*
) then 

    U’ = U’ ∪ {c(a) → ε } //Usefulness of a (Mark a as finish) 
   endif 

  endfor 

  for each c(e) → b c(b) ∈ P and b ∈ K do 

   if b ≠ e and there exists no S ⇒G’
*
 x b c(b) (x ∈ E

*
) then 

    V’ = V’ ∪ {S → b c(b)} //Usefulness of b (Mark b as start) 
   endif 
  endfor 

  P’ = P’∪ (U’ ∪ V’)  //Productions for usefulness 
  C’ = C’ \ {c(e)}   //Remove context c(e) 
  K’ = K’ \ {e}    //Remove k-sequence e 

 

Algorithm 6.4 assumes e ∈ K, which can be checked in O(|K|) time. 
Therefore, the algorithm terminates in O((m+n) (|K|+|P|)) = O(|K| (|K|+|P|)) 
number of steps, where m is the number of sequences of the form “(…, e)”, that is, 
ingoing sequences, and n is the number of sequences of the form “(e, …)”, that is, 
outgoing sequences. Note that (e, e), that is the looping sequence, is considered to 
be an outgoing sequence and, thus, (m+n) ≤ 2|K|-1 = 2(|C|-1)-1. 

Algorithm 6.4 first removes productions S → e c(e) and c(e) → ε from P, if 
they exist. Later, it removes productions related to the sequences ingoing to and 
outgoing from e, and then performs operations to preserve usefulness. Finally, 
context c(e), and k-sequence e are removed from C and K, respectively. 

 

Example 6.4 (An Omit Terminal Mutant). Figure 6.4 shows the 1-Reg resulting 
from the omission of 1-sequence p2 from the 1-Reg in Figure 2.2. 
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S → c1 c(c1) | x1 c(x1) 

c(c1) → c1 c(c1) | x1 c(x1) | p1 c(p1) 

c(x1) → c1 c(c1) | x1 c(x1) | p2 c(p2) 

c(p1) → c1 c(c1) | x1 c(x1) | p1 c(p1) | ε 

c(p2) → c1 c(c1) | x1 c(x1) | ε 

x1

c1

][

p2

p1

 

(a) 1-Reg. (b) Directed graph visualization. 

Figure 6.4. Omission of p2 from the 1-Reg in Figure 2.2. 

 

Given a k-Reg, an omit terminal mutant is also a k-Reg. Furthermore, one can 
perform 

|K| = |C| - 1 

omit terminal operations. 

The set of all CESs of an omit sequence mutant may change depending on 
whether usefulness preserving measures are performed or not, which is given in 
Lemma 6.15. 

 

Lemma 6.15 (Set of All CESs of an Omit Treminal Mutant). Given a k-Reg G 

= (E, B, K, C, S, P) and G’ = Ot(G, e). Let 

• X = {w| S ⇒G
*
 x e c(e) ⇒G

*
 w (x,w ∈ E

*
)}, 

• M = {x a| S ⇒G
*
 x a c(a) (x ∈ E

*
) where x does not contain e, c(a) → e 

c(e) ∈ P and c(a) → ε is inserted for usefulness of a}, and 

• N = {b y| c(b) ⇒G
*
 y (y ∈ E

*
) where y does not contain e, c(e) → b c(b) ∈ 

P and S → b c(b) is inserted for usefulness of b}. 

The set of all CESs of G’ is given by 

TCES(G’) = (TCES(G) \ X) ∪ (M ∪ N). 

Proof: The proof follows from Definition 6.8 considering measures for 
usefulness, if they are required.■ 

 

Using Lemma 6.15, Lemma 6.16 discusses the equivalence of an omit 
terminal mutant as follows. 

 

Lemma 6.16 (Equivalence of an Omit Terminal Mutant). Given a k-Reg G = 

(E, B, K, C, S, P) and G’ = Ot(G, e). Let 

• Y = {w| w ∈ TCES(G) such that w does not contain e but it contains e’ 

where e’ ≠ e and d(e’) = d(e)} ⊆ (TCES(G) \ X) and 
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• Z = {w| w ∈ TCES(G) such that w does not contain e, and either w ends 

with a’ ≠ a where d(a’) = d(a) and c(a) → ε is inserted for usefulness of a 

or w begins with b’ ≠ b where d(b’) = d(b) and S → b c(b) is inserted for 

usefulness of b or both} ⊆ (TCES(G) \ X), 

where X, M and N are the sets defined in Lemma 6.15. G’ is not equivalent to G if 

and only if d(M ∪ N) \ d(Z) ≠ ∅ or (d(X) \ d(Y)) \ d(M ∪ N) ≠ ∅. 

Proof: TCES(G’) = (TCES(G) \ X) ∪ (M ∪ N) (by Lemma 6.15). Thus, using 

Definition 4.8, d(TCES(G’)) = d(TCES(G)) if and only if d(M ∪ N) ⊆ d(Z) ⊆ 

d(TCES(G)) and d(X) \ d(Y) ⊆ d(M ∪ N). This completes the proof.■ 

 

Sufficient conditions for usefulness, determinism and nonequivalence of an 
omit terminal mutant are given in the following. 

 

Theorem 6.22 (Usefulness of an Omit Terminal Mutant). Given a k-Reg G = 

(E, B, K, C, S, P) and G’ = Ot(G, e) = (E’, B, K’, C’, S, P’). Let U’ and V’ be the 
sets defined in Definition 6.8. G’ is useful, if the following conditions hold. 

1. G is useful. 

2. U’ is included in P’; that is, U’ ⊆ P’. 

3. V’ is included in P’; that is, V’ ⊆ P’. 

Proof: The proof follows from Definition 4.9 and Definition 6.8.■ 

 

Theorem 6.23 (Determinism of an Omit Terminal Mutant). Given a k-Reg G 

= (E, B, K, C, S, P) and G’ = Ot(G, e). G’ is deterministic, if the following 
conditions hold. 

1. G is deterministic. 

2. For each b ∈ K such that c(e) → b c(b) ∈ P, S → b c(b) is not inserted for 

usefulness of b, if there exists S → b’ c(b’) ∈ P such that b’ ≠ b and d(b’) 

= d(b). 

Proof: The proof follows from Definition 4.10 and Definition 6.8.■ 

 

Theorem 6.24 (Nonequivalence of an Omit Terminal Mutant). Given a k-Reg 
G = (E, B, K, C, S, P) and G’ = Ot(G, e). G’ is not equivalent to G, if the 
following conditions hold. 

1. G is useful. 

2. G is deterministic. 
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3. For each b ∈ K such that c(e) → b c(b) ∈ P, S → b c(b) is not inserted for 

usefulness of b, if there exists S → b’ c(b’) ∈ P such that b’ ≠ b and d(b’) 

= d(b). 

Proof: Let X, M and N be the sets defined in Lemma 6.15, and Y and Z be the sets 
defined in Lemma 6.16. 

• TCES(G) ≠ ∅ and X ≠ ∅, since G is useful. 

• d(X) ∩ d(Y) =∅, since each CES in deterministic G has a unique basis 
(Corollary 4.2). 

• d(M ∪ N) ∩ d(Z) = ∅, because 

o d(M) ∩ d(Z) = ∅, since each m-derived start sequence in 
deterministic G has a unique basis (Theorem 4.4), and 

o d(N) ∩ d(Z) = ∅, for each b ∈ K such that c(e) → b c(b) ∈ P, S → 

b c(b) is not inserted for usefulness of b, if there exists S → b’ c(b’) 

∈ P such that b’ ≠ b and d(b’) = d(b). 

Since d(X) ∩ d(Y) =∅, d(X) ∩ d(Z) =∅. This leads to d(X) ∩ d(M ∪ N) = ∅, 

because d(M ∪ N) ∩ d(Z) = ∅. Hence, G’ is not equivalent to G (Lemma 6.15).■ 

 

6.4 Comparison to Grammar-Based Mutation 

Operators 

In this section, the grammar-based mutation operators which are defined in 
[134][18] are discussed and the reasons to avoid using these operators are 
demonstrated. 

• It is possible to realize these operators except for nonterminal duplication 
as combinations of the event-based mutation operators. 

• Mutants generated using these operators generally tend to model multiple 
missing event or extra event faults. 

• Some sets of event-based faults are modeled in different mutants again and 
again. 

• Direct application of these operators except for nonterminal duplication 
results in RGs, not k-Regs. More critically, nonterminal duplication yields 
a CFG. 

One should note that any set of mutation operators may have issues similar to 
the above. However, for event-based mutation operators defined in this work, 
such issues can be avoided quite easily due to their proximity to the event-based 
fault types. 
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6.4.1 Nonterminal Replacement 

When a nonterminal replacement is performed on a production of a k-Reg, the 
context of the k-sequence in the tail part is replaced by the context of another k-
sequence, but only in this production. Thus, the resulting model is an RG, but it is 
no longer a k-Reg. Still, one can use the combinations of the event-based mutation 
operators to realize the nonterminal replacement so that the resulting models are 
k-Regs (See Table 6.1). 

 

Table 6.1. Nonterminal Replacement in Terms of Event-Based Mutations 

Original Production S → r c(r) c(s) → r c(r) 

Mutated Production S → r Q c(s) → r Q 

Event-Based Mutations 1. Mark Nonstart: r 
2. Insert Terminal: r’, where r’ 
is a new k-sequence having the 
same basis with r 
3. Mark Start: r’ 
4. Insert Sequences: (r’, t), for 

each existing Q → t c(t) 

5. Mark Finish: r’, if Q → ε 
exists 

1. Omit Sequence: (s, r) 
2. Insert Terminal: r’, where r’ 
is a new k-sequence having the 
same basis with r 
3. Insert Sequence: (s, r’) 
4. Insert Sequence: (r’, t), for 

each existing Q → t c(t) 

5. Mark Finish: r’, if Q → ε 
exists 

 

As demonstrated in Table 6.1, although the change incurred by a nonterminal 
replacement is very small, the number of missing event or extra event faults 
modeled by the resulting mutant tends to be relatively large. 

 

S → c1 c(c1) | x1 c(x1) 

c(c1) → c1 c(c1) | x1 c(x1) | p1 c(p1) 
  | x2 c(x2) 

c(x1) → c1 c(c1) | x1 c(x1) | p2 c(p2) 

c(p1) → c1 c(c1) | x1 c(x1) | p1 c(p1) | ε 

c(p2) → c1 c(c1) | x1 c(x1) | ε 

c(x2) →→→→ c1 c(c1) | x2 c(x2) | p1 c(p1) 

x1

c1

][

p2

p1

x2

 

(a) 1-Reg. (b) Directed graph visualization. 

Figure 6.5. A nonterminal replacement mutant of the 1-Reg in Figure 2.2. 

 

Example 6.5 (A Nonterminal Replacement Mutant). Figure 6.5 shows an 
example nonterminal replacement mutant of the 1-Reg in Figure 2.2 where 
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nonterminal c(x1) in production c(c1) → x1 c(x1) is replaced by nonterminal 
c(c1). Note that the same mutant is obtained when nonterminal c(x1) is replaced 
by nonterminal c(p1). 

 

6.4.2 Terminal Replacement 

When a terminal replacement is performed on a production of a k-Reg, the context 
of the replacing k-sequence in the tail of this production is replaced by the context 
of replaced k-sequence, but only in this production. This results in an RG, not a k-
Reg. However, one can use the event-based mutation operators to realize the 
terminal replacement and assure that the resulting models are k-Regs (See Table 
6.2). 

 

Table 6.2. Terminal Replacement in Terms of Event-Based Mutations 

Original Production S → r c(r) c(s) → r c(r) 

Mutated Production S → q c(r) c(s) → q c(r) 

Event-Based Mutations 1. Mark Nonstart: r 
2. Insert Terminal: q’, where 
q’ is a new k-sequence having 
the same basis with q 
3. Mark Start: q’ 
4. Insert Sequence: (q’, t), for 

each existing c(r) → t c(t) 

5. Mark Finish: q’, if c(r) → ε 
exists 

1. Omit Sequence: (s, r) 
2. Insert Terminal: q’, where 
q’ is a new k-sequence having 
the same basis with q 
3. Insert Sequence: (s, q’) 
4. Insert Sequence: (q’, t), for 

each existing c(r) → t c(t) 

5. Mark Finish: q’, if c(r) → ε 
exists 

 

As shown in Table 6.2, a terminal replacement performs a small change. 
However, the resulting mutant mutant tends to model various missing event or 
extra event faults at the same time. 

 

Example 6.6 (A Terminal Replacement Mutant). Figure 6.6 demonstrates a 
mutant of the 1-Reg model in Figure 2.2 which is obtained by performing terminal 

replacement in production c(c1) → p1 c(p1), where p1 is replaced by x1. Note that 
the 1-Reg models in Figure 6.6 and Figure 6.5 have several common changes. 

More radically, if terminal replacement is performed on production c(c1) → c1 

c(c1) by replacing c1 with x1, exactly the same mutant in Figure 6.5 is obtained. 
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S → c1 c(c1) | x1 c(x1) 

c(c1) → c1 c(c1) | x1 c(x1) | p1 c(p1) 
  | x2 c(x2) 

c(x1) → c1 c(c1) | x1 c(x1) | p2 c(p2) 

c(p1) → c1 c(c1) | x1 c(x1) | p1 c(p1) | ε 

c(p2) → c1 c(c1) | x1 c(x1) | ε 

c(x2) →→→→ c1 c(c1) | x1 c(x1) | p1 c(p1) | εεεε 

x1

c1

][

p2

p1

x2

 

(a) 1-Reg. (b) Directed graph visualization. 

Figure 6.6. A terminal replacement mutant of the 1-Reg in Figure 2.2. 

 

6.4.3 Nonterminal Deletion 

When a nonterminal deletion is performed on a production of a k-Reg, the k-
sequence in the tail part is marked as finish, but only in this production. Thus, the 
resulting model is no longer a k-Reg, but an RG. The nonterminal deletion can be 
realized in terms of the event-based mutation operators (See Table 6.3). Thus, one 
can guarantee that the resulting mutants are k-Regs. 

 

Table 6.3. Nonterminal Deletion in Terms of Event-Based Mutations 

Original Production S → r c(r) c(s) → r c(r) 

Mutated Production S → r c(s) → r 

Event-Based Mutations 1. Mark Nonstart: r 
2. Insert Terminal: r’, where r’ 
is a new k-sequence having the 
same basis with r 
3. Mark Start: r’ 
4. Mark Finish: r’ 

1. Omit Sequences: (s, r) 
2. Insert Terminal: r’, where r’ 
is a new k-sequence having the 
same basis with r 
3. Insert Sequence: (s, r’) 
4. Mark Finish: r’ 

 

Although the change performed by a nonterminal deletion is very small, the 
number of missing event or extra event faults modeled by the resulting mutant 
tends to be relatively large as shown in Table 6.3, especially if the other k-
sequences in the models become unreachable due to the mutation. 

 

Example 6.7 (A Nonterminal Deletion Mutant). Figure 6.7 demonstrates a 
nonterminal deletion mutant of the 1-Reg in Figure 2.2, where nonterminal c(x1) 

in production c(c1) → x1 c(x1) is deleted. Note that most of the event-based faults 
modeled by this mutant are already modeled by the mutant in Figure 6.6. 
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S → c1 c(c1) | x1 c(x1) 

c(c1) → c1 c(c1) | x1 c(x1) | p1 c(p1) 
  | x2 c(x2) 

c(x1) → c1 c(c1) | x1 c(x1) | p2 c(p2) 

c(p1) → c1 c(c1) | x1 c(x1) | p1 c(p1) | ε 

c(p2) → c1 c(c1) | x1 c(x1) | ε 

c(x2) →→→→ εεεε 

x1

c1

][

p2

p1

x2

 

(a) 1-Reg. (b) Directed graph visualization. 

Figure 6.7. A nonterminal deletion mutant of the 1-Reg in Figure 2.2. 

 

6.4.4 Terminal Deletion 

When a terminal deletion is performed on a production of a k-Reg, the context of 
the k-sequence in the tail of this production is included in the context in the head 
of the production, but only in this production. The resulting mutant is an RG, but 
not a k-Reg. Nevetheless, the event-based mutation operators can be used to 
realize the terminal deletion while assuring the resulting models to be k-Regs (See 
Table 6.4). 

 

Table 6.4. Terminal Deletion in Terms of Event-Based Mutations 

Original Production S → r c(r) c(s) → r c(r) 

Mutated Production S → c(r) c(s) → c(r) 

Event-Based Mutations 1. Mark Nonstart: r 
2. Mark Start: t, for each 

existing c(r) → t c(t) 

1. Omit Sequence: (s, r) 
2. Insert Sequence: (s, t) for 

each existing c(r) → t c(t) 

3. Mark Finish: s, if c(r) → ε 
exists 

 

As shown in Table 6.4, the change incurred by a terminal deletion is very 
small. However, the resulting mutant tends to model several extra event faults 
(and a missing event fault). 

 

Example 6.8 (A Terminal Deletion Mutant). Figure 6.8 demonstrates a terminal 
deletion mutant of the 1-Reg in model in Figure 2.2 obtained by deleting terminal 

p1 in production c(c1) → p1 c(p1). Note that the 1-Reg model in Figure 6.8 is 
exactly the same as the original 1-Reg model in Figure 2.2. 
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S → c1 c(c1) | x1 c(x1) 

c(c1) → c1 c(c1) | x1 c(x1) | p1 c(p1) 
  | p1 c(p1) 

c(x1) → c1 c(c1) | x1 c(x1) | p2 c(p2) 

c(p1) → c1 c(c1) | x1 c(x1) | p1 c(p1) | ε 

c(p2) → c1 c(c1) | x1 c(x1) | ε 

x1

c1

][

p2

p1

 

(a) 1-Reg. (b) Directed graph visualization. 

Figure 6.8. A terminal deletion mutant of the 1-Reg in Figure 2.2. 

 

6.4.5 Nonterminal Duplication 

When a nonterminal duplication is performed on a production of a k-Reg, the 
resulting mutant is neither a k-Reg nor an RG; it is a CFG. Hence, in general, it 
cannot be converted to a k-Reg. Therefore, it is not possible to realize the 
nonterminal duplication in terms of the event-based mutation operation operators. 

Unfortunately, there are several major problems with the use of CFGs. For 
example, the equivelence is not decidable; in general, one cannot know for sure 
whether two CFGs are equivalent to each other. Furthermore, one cannot decide 
whether a given CFG describes a regular language, that is, whether it can be 
converted to an RG. Such undecidability results for CFGs [100] make them 
infeasible to use. 

Table 6.5 shows how terminal duplication is performed on the productions of 
a given k-Reg. 

 

Table 6.5. Nonterminal Duplication 

Original Production S → r c(r) c(s) → r c(r) 

Mutated Production S → r c(r) c(r) c(s) → r c(r) c(r) 

 

Example 6.9 (A Nonterminal Duplication Mutant). Figure 6.9 demonstrates a 
nonterminal duplication mutant of the 1-Reg in Figure 2.2, where nonterminal 

c(p1) in production c(c1) → p1 c(p1) is duplicated. 
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S → c1 c(c1) | x1 c(x1) 

c(c1) → c1 c(c1) | x1 c(x1) | p1 c(p1) c(p1) 

c(x1) → c1 c(c1) | x1 c(x1) | p2 c(p2) 

c(p1) → c1 c(c1) | x1 c(x1) | p1 c(p1) | ε 

c(p2) → c1 c(c1) | x1 c(x1) | ε 

Figure 6.9. A nonterminal duplication mutant of the 1-Reg in Figure 2.2 (a CFG). 

 

6.4.6 Terminal Duplication 

When a terminal duplication is performed on a production of a k-Reg, the k-
sequence in the tail of this production is repeated before itself to be followed by 
only itself, but only in this production. This results in an RG, not a k-Reg. 
However, the terminal duplication can be prformed in terms of the event-based 
mutation operators so that the resulting models are k-Regs (See Table 6.6). 

 

Table 6.6. Terminal Duplication in Terms of Event-Based Mutations 

Original Production S → r c(r) c(s) → r c(r) 

Mutated Production S → r r c(r) c(s) → r r c(r) 

Event-Based Mutations 1. Mark Nonstart: r 
2. Insert Terminal: r’, where r’ is a 
new k-sequence having the same basis 
with r 
3. Mark Start: r’ 
4. Insert Sequence: (r’, r) 

5. Mark Finish: q’, if c(r) → ε exists 

1. Omit Sequence: (s, r) 
2. Insert Terminal: r’, where r’ is a 
new k-sequence having the same basis 
with r 
3. Insert Sequence: (s, r’) 
4. Insert Sequence: (r’, r) 

5. Mark Finish: q’, if c(r) → ε exists 

 

As implied by Table 6.6, the resulting mutant tends to model various missing 
event faults and may model an extra event fault, although only a small change is 
performed by a terminal duplication. 

 

Example 6.10 (A Terminal Duplication Mutant). Figure 6.10 demonstrates a 
mutant of the 1-Reg model in Figure 2.2 which is obtained by performing terminal 

duplication in production c(c1) → p1 c(p1), where p1 is duplicated. 
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S → c1 c(c1) | x1 c(x1) 

c(c1) → c1 c(c1) | x1 c(x1) | p1 c(p1) 
  | p3 c(p3) 

c(x1) → c1 c(c1) | x1 c(x1) | p2 c(p2) 

c(p1) → c1 c(c1) | x1 c(x1) | p1 c(p1) | ε 

c(p2) → c1 c(c1) | x1 c(x1) | ε 

c(p3) →→→→ p1 c(p1) 

x1

c1

][

p2

p1
p3

 

(a) 1-Reg. (b) Directed graph visualization. 

Figure 6.10. A terminal duplication mutant of the 1-Reg in Figure 2.2. 
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7 Mutant Selection for Test Generation 

 

In general, one can create infinitely many mutants modeling multiple missing 
event or extra event faults. Generation of mutants with relatively large number of 
faults or with large number of common faults tends to increase the number of 
mutants, and also the likelihood of a fault making another fault undetectable. 
Furthermore, it becomes harder to avoid mutants which are equivalent to or a 
submodel of the original model, or multiple mutants which model the same faults. 

Even if mutants which model a small number of faults are generated, it is not a 
good practice to use all of these mutants for test generation (or MBMT) without 
considering whether a mutant models a fault which is modeled by another mutant 
or whether it is equivalent to or submodel of the original model. Such mutants can 
be used to generate test cases which are not previously generated. However, they 
increase the total number of test cases significantly and decrease the efficiency of 
the testing process. Also, these test cases are not guaranteed to contribute to the 
testing process (other than increasing the number of test cases), because, for 
example, if a coverage criterion is used, most of the test cases generated from 
mutants do not improve the intended coverage. 

For this reason, this chapter discusses different ways to determine and use 
mutation operators with certain set of parameters for test generation based on 
[30][31]. More precisely, different mutant selection strategies are proposed for 
test generation considering the nature of event-based testing process. The 
proposed mutant selection strategies have briefly the following properties. 

• Each selected mutant models a small number of faults which are located at 
the mutation points so that one modeled fault does not interfere with 
another. 

• There is no need to compare each mutant to the original model to check 
for equivalence or to generate distinguishing test cases. 

• The generation of equivalent mutants and multiple mutants modeling the 
same faults are avoided. Thus, correct functioning of the test object with 
respect to the modeled faults can be checked by exercising different, 
nonredundant test paths. 
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• A test case to kill the mutant, that is, a test case to check whether the fault 
modeled by the mutant exists on a specific path in the test object, can be 
generated in linear time. 

The following assumptions/observations are made on the event-based testing 
process to propose the mutant selection strategies. 

A1. Events in a test case are executed in the given order; therefore, execution 
of a test case stops when a failure is observed. 

A2. The last event of a test case can be any event; a test case needs not to end 
with a finish event. 

Consequently, for a given k-Reg, the following can be stated considering the 
discussion in Chapter 6. 

P1. Missing and extra event faults are limited by considering the k-sequences 
which precede the missing or extra events while ignoring the succeeding 
k-sequences. Thus, by exercising all (k+1)-sequences in the k-Reg, one 
can test whether an event is missing after some k-sequence, and, by 
exercising all relevant faulty k-sequences, one can test whether an event is 
extra after some k-sequence. (by A1) 

P2. Mark nonstart, mark nonfinish, omit sequence and omit terminal mutants 
are discarded because they are always submodels of the k-Reg. Hence, 
they do not contain any k-sequence that is not contained in the k-Reg; 
whereas, the k-Reg may contain k-sequences that are not contained in 
these mutants. (by P1) 

P3. Mark finish and mark nonfinish mutants do not really correspond to fault 
models, because every event can be considered as a finish or nonfinish 
event during the testing process. (by A2) 

P4. Insert sequence mutants are discarded because extra event faults modeled 
using insert sequence mutants can be modeled using insert terminal 
mutants. (by Definition 6.5 and Definition 6.6) 

P5. Nonterminal and terminal duplication, deletion and replacement mutants 
are discarded because they contain multiple missing event or extra event 
faults. Also, nonterminal replacement is not type-preserving. (By 
definition [134][18]; also see Section 6.4) 

P6. There is no need to continue execution of a negative test case beyond the 
first faulty sequence. Thus, all negative test cases used in testing process 
are FCES. (by A1) 

In the light of the discussion above, one can perform MBMT by using (k+1)-
sequences, faulty 1-sequences and faults (k+1)-sequences as coverage objects or 
test targets. The original k-Reg can be used to cover (k+1)-sequences for missing 
event faults (as discussed in Section 5.2), and mark start and insert terminal 
mutants can be used to cover faulty 1-sequences and faulty (k+1)-sequences for 
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extra event faults. In this way, one can generate test cases that check the existence 
of the aforementioned missing and extra event faults on different test paths in the 
test object. Consequently, only mark start and insert terminal operators are utilized 
to propose mutant selection strategies and develop test generation methods. 

7.1 Mark Start Mutant Selection 

Mark start mutant selection strategy can be devised as follows. 

 

Mark Start Mutant Selection. Given a k-Reg G = (E, B, K, C, S, P). For each 
mark start mutant Ms(G, e) of G, k-sequence e is selected as a mutation parameter 
if the following conditions hold: 

1. There exists no start k-sequence x such that d(x1) = d(e1). 

2. There exists no previously selected mutation parameter y such that d(y1) = 

d(e1). 

 

Let G be a useful and deterministic k-Reg. By Theorem 6.1, Theorem 6.2 and 
Theorem 6.3, mutants generated from G using the above strategy are useful, 
deterministic and nonequivalent to G. Furthermore, each of these mutants models 
a different fault located at the mutation point where the mutation; that is, the 
modeled fault is an extra start event fault where e1 (also d(e1)) is the extra start 
event for each Ms(G, e). 

To discuss the number of mutants generated using the above strategy, let 

• I = {r∈ K| there exist no S → x c(x) ∈ P such that d(x1) = d(r1)}, and 

• A be the number of partitions of I such that, in each partition, k-sequences 
start with 1-sequences having the same basis. 

The above strategy relies on marking a single k-sequence from each partition as 
start. Therefore, the number of generated mutants is given by 

A ≤ |B| and A ≤ |K| - s 

where |K| - s is the maximum number of mark start mutans (See Section 6.1.1). 
Each of these mutants Ms(G, e) can be generated in O(|P|+|K|) = O(|P|) time by 
checking whether there exists no start k-sequence x such that d(x1) = d(e1) and 
checking whether there exists a previously selected mutation parameter y such that 
d(y1) = d(e1). Also, from each selected mutant, a unique test case that kills it can 
be generated in O(1) time by simply taking e1. 

The leftout mark start mutants are useful. However, they are either 
nondeterministic or model previously modeled faults. Some of the 
nondeterministic mutants do not model any faults at all. In case they do, these 
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faults are not located at the mutation points; that is, they are not extra start event 
faults. Therefore, they can be modeled using insert terminal mutants. 

Algorithm 7.1 selects mark start mutants using the above strategy. The worst-
case runtime complexity is given by O(|B||P|). 

• The number of mutants generated is bounded by |B| because each mutant 
represents a different extra start event fault. 

• Each mutant Ms(G, e) can be generated in O(|P|+|B|) = O(|P|) time by 
checking if there are no start k-sequence x such that d(x1) = d(e1) and 
previously selected mutation parameter y such that d(y1) = d(e1), and 
copying G to modify it. 

 

Algorithm 7.1. Mark Start Mutant Selection 

 Input: G = (E, B, K, C, S, P) – the input grammar 
 Output: M – the set of selected mark start mutants 

  M =∅, N = ∅ 

  for each b ∈ B do 

   if there is no S → x c(x) ∈ P such that d(x1) = b and 

      there is no y∈ N such that d(y1) = b then 

    Select a k-sequence e ∈ K such that d(e1) = b 

    G’ = G 

    M = M ∪ {Ms(G’, e)} 

    N = N∪ {e} 

   endif 

  endfor 

 

Example 7.1 (Mark Start Mutant Selection). Let G be the 1-Reg in Figure 2.2. 
The only selected mark start mutant is Ms(G, p1). Ms(G, c1) and Ms(G, x1)are 
excluded because c1 and x1 are already start events. Furthermore, Ms(G, p2) is 
excluded because it models the same fault as Ms(G, p1). 

 

7.2 Insert Terminal Mutant Selection 

The strategy to select insert terminal mutants is given as follows. 

 

Insert Terminal Mutant Selection. Given a k-Reg G = (E, B, K, C, S, P). For 

each insert terminal mutant It(G, e, U, V) of G where U = {(a, e)| a ∈ {a1, …, am} 

⊆ K} and V = {(e, b)| b ∈ {b1, …, bn} ⊆ K∪{e}}, k-sequence e and sets U and V 
are selected as a mutation parameter if the following conditions hold: 
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1. U = {(a, e)} for some a ∈ K, and, thus, S → e c(e) is not inserted for 
usefulness of e. 

2. V = ∅ and c(e) → ε is inserted for usefulness of e. 

3. There exists no c(a) → x c(x) ∈ P such that d(xk) = d(ek). 

4. There exists no previously selected mutation parameter (y, {(a, y)}, {}) 
such that d(yk) = d(ek). 

 

Let G be a useful and deterministic k-Reg. By Theorem 6.16, Theorem 6.17 
and Theorem 6.18, mutants generated from G using the above strategy are useful, 
deterministic and not equivalent to G. Furthermore, each of these mutants models 
a different fault located at the mutation point; that is, the modeled fault is an extra 
event fault where ek (also d(ek)) is an extra event after k-sequence a for each It(G, 

e, U, V). Note that each of these mutants models a single fault because the sizes of 
incoming and outgoing sequence sets are limited. 

To discuss the number of mutants generated using the above strategy, let 

• K = {s1, s2,…, s|K|}, 

• I(si) = {r| r is a k-sequence, r ∉ K, d(r) ∈ B
k and there exist no c(si) → x 

c(x) ∈ P such that d(xk) = d(rk)} for i = 1, …, |K|, and 

• Ai be the number of partitions of set I(si) such that, in each partition, k-
sequences end with 1-sequences having the same basis. 

Consequently, the number of mutants generated using the above strategy is 

A1 + A2 + … + A|K| ≤ |K| |B| ≤ |K| |B|
k, 

where |K| |B|
k is the maximum number of insert sequence mutants generated using 

one ingoing and no outgoing sequences. Each of these mutants It(G, e, {(a, e)}, {}) 
can be generated in O(|P|+|K|) = O(|P|) time by checking whether there exists no 

c(a) → x c(x) ∈ P such that d(xk) = d(ek), and by checking whether there exists no 
previously selected mutation parameter (y, {(a, y)}, {}) such that d(yk) = d(ek). 
Also, from each selected mutant, a unique test case that kills the mutant can be 
generated in O(|P|) time by using breadth-first search to reach a e. 

The excluded insert terminal mutants are useful. However, they are either 
nondeterministic or model previously modeled faults. Furthermore, 
nondeterministic mutants may not model any faults at all. In case they do, these 
faults are not located at the mutation points. Nevertheless, such faults are not 
discarded because they are modeled using other insert terminal mutants by 
selecting the mutation parameters differently (or applying the mutation to the 
proper point in the model). 

Algorithm 7.2 generates all insert terminal mutants using the above strategy. 
The worst-case runtime complexity is given by O(|K| |B| |P|). 
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• The number of mutants generated is bounded by |K| |B| because each 
mutant represents a different extra event fault following a k-sequence. 

• Each mutant It(G, e, {(a, e)}, ∅) can be generated in O(|P|+|B|+k) = 

O(|P|) time by checking whether there are no c(a) → x c(x) ∈ P so that 

d(xk) = d(ek) and previously selected mutation parameter (y, {(a, y)}, ∅) so 
that d(yk) = d(ek), preparing e by copying a2 … ak to append b’, and 
copying G to modify it. 

 

Algorithm 7.2. Insert Terminal Mutant Selection 

 Input: G = (E, B, K, C, S, P) – the input grammar 
 Output: M – the set of selected insert terminal mutants 

  M =∅, N = ∅ 

  for each b ∈ B do 

   if there is no S → x c(x) ∈ P such that d(x1) = b and 

      there is no y∈ N such that d(y1) = b then 

    Select a k-sequence e ∈ K such that d(e1) = b 

    G’ = G 

    M = M ∪ {Ms(G’, e)} 

    N = N∪ {e} 

   endif 

  endfor 

 

Example 7.2 (Insert Terminal Mutant Selection). Let G be the 1-Reg in Figure 
2.2. One can only use basis terminal p, because c and x can follow all events. The 
only elected insert terminal mutant is It(G, p3,{(p2,p3}, {}), because only p2 is not 
followed by a p event. 

 

7.3 Test Generation from Mutants 

The following is defined as a countepart to the k-sequence coverage (See 
Definition 5.5) for generation of negative test cases. 

 

Definition 7.1 (Faulty k-sequence Coverage). Given a 1-Reg G = (E, B, K, C, S, 

P) and a set of sequences X ⊆ TN(G). X is said to cover a faulty k-sequence r 
which is not in G, if r appears in a sequence in X. If X covers all k-sequences not 
in G, it is said to achieve faulty k-sequence coverage. 

 

Note that faulty 1-sequence coverage is different from faulty k-sequence 
coverage for k ≥ 2 because the faultiness of an event depends on its preceding and 
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following events. Faulty 1-sequences actually correspond to faulty start events 
and, therefore, they should be covered at the beginning of the sequences. 

In general, faulty k-sequence coverage is used to reveal extra event faults 
where an event follows or precedes a (possibly empty) sequence of events 
(although it should not). However, in the light of the discussion in the beginning 
of Chapter 7, the faulty k-sequences whose last event is faulty are considered here. 

Let G be a 1-Reg and Gk be its corresponding k-Reg. Each mark start mutant 
of Gk selected using the strategy in Section 7.1 contains a different faulty 1-
sequence, and it can be used to reveal an extra start event fault. Furthermore, each 
insert terminal mutant of Gk selected using the strategy in Section 7.2 contains a 
different faulty (k+1)-sequence, and it can be used to reveal an extra event faults 
where an event follows a certain k-sequence. Also, since positive test cases can 
not cover such sequences, they can not reveal extra event faults. Thus, the inserted 
productions in these mutants can be covered to generate FCESs covering the 
mentioned faulty sequences and a unique test can be generated case for each 
faulty sequence to obtain a reduced test set (Algorithm 7.3). These generated test 
cases are used to exercise test paths which are not supposed to exist in the test 
object and to check whether the test object functions correctly with respect to the 
considered faults. 

 

Algorithm 7.3. Test Generation to Achieve Faulty (k+1)-sequence Coverage 

 Input: G = (E, B, K, C, S, P) – the input 1-Reg 
   k – an integer ≥ 1 
 Output: X – a set of sequences which achieves single-end faulty (k+1)-sequence coverage 
for G 
  X = ∅, Y = ∅ 

  Gk = transform G to its corresponding k-Reg //See Algorithm 5.1 

  for each G’ = Ms(Gk, e) selected using the strategy in Section 7.1 do 

   X = X ∪ {e1} 

  endfor 

  for each G’ = It(Gk, e, {(a, e)}, ∅) selected using the strategy in Section 7.1 do 

   s = generate a sequence ending with e by covering production c(a) → e c(e) from G’ 

   X = X ∪ T
-1

(s, k) //See Algorithm 5.3 

  endfor 

 

Let MMs be the set of all mark start mutants of Gk selected using the strategy in 
Section 7.1, and MIt be the set of all insert terminal mutants of Gk selected using 
the strategy in Section 7.2. For each mutant, the mutation parameter can be used 
to identify the fault, because, each mutant models a fault located at the mutation 
point. 
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• Using mark start mutants, FCESs of length 1 can be generated to cover 

faulty 1-sequences. Each mark start mutant G’ = Ms(G, e) ∈ MMs models a 
single extra start event fault; to generate a sequence exercising this fault, 
one needs to cover the production of G’ of the form 

S → e c(e) 

where e1 is both the faulty 1-sequence to be covered and the FCES to be 
generated. 

• Using insert terminal mutants, FCESs of length (k+1) or more can be 
generated to cover faulty (k+1)-sequences. Each insert terminal mutant G’ 

= It(G, e, {(a, e)}, ∅) ∈ MIt models a single extra event fault; to generate a 
sequence exercising this fault, one needs to cover the production of G’ of 
the form 

c(a) → e c(e) 

where a ek = a1 … ak ek is the faulty (k+1)-sequence to be covered. 

Since faulty 1-sequence coverage is a special case of (and different from) 
faulty (k+1)-sequence coverage for k ≥ 1, when test cases are generated to cover 
faulty (k+1)-sequences using a k-Reg model, the generation of test cases covering 
faulty 1-sequences from this k-Reg model is also included. 

The worst-case running time complexity of Algorithm 7.3 is given by 

O((k-1)|P|
k-1

 + |B| |P|
k
 + |K|

k
 |B| |P|

2k
), 

where 

• O((k-1)|P|
k-1

) is the running time complexity of performing k-1 
consecutive grammar transformations. 

• O(|B| |P|
k
) is the worst-case running time complexity of iterating through 

all mark start mutants of Gk using the strategy in Section 7.1; a 
distinguishing test case can be generated from each mark start mutant in 
O(1) time. 

• O(|K|
k
 |B| |P|

k
) is the worst-case running time complexity of iterating 

through all insert terminal mutants of Gk using the strategy in Section 7.1; 
a distinguishing test case can be generated from each insert terminal 
mutant in O(|P|

k
) time. 

 

Example 7.3 (Test Sets Generated Using Algorithm 7.3). When Algorithm 7.3 
is executed on the 1-Reg in Figure 2.2 for k = 1, one can obtain the following test 
set. 

{p1, x1 p2 p3} 
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Furthermore, if k = 3 is used, the given 1-Reg is transformed twice to obtain the 
corresponding 3-Reg, the mutants of this 3-Reg is used to obtain test cases. The 
following is an example test set. 

{p1, c1 x1 p2 p3, x1 x1 p2 p3, c1 p1 x1 p2 p3, x1 p2 x1 p2 p3} 

As usual, the corresponding basis event is used for each event during test 
execution. 
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8 Case Studies 

 

Three case studies are performed over nontrivial commercial systems to validate 
the approach, to analyze its characteristics, and to compare the k-Reg-based 
testing method to random testing [64], to ESG-based MBMT approach (which 
employs coverage-based test generation from mutants) [40][99], and to mutate-
and-kill-based (MK-based) MBMT approach (which is based on the idea of 
generating discriminating test cases by comparing mutants against the original 
model) [17][47][48][8][11]. Note that the k-Reg-based testing method is not 
compared to the fault domain-based testing methods using FSMs, because they 
consider only the faults that can be detected using positive testing (See Section 
3.3). Thus, the comparison would be reduced to comparing a coverage-based 
testing method to a fault domain-based testing method, which is not the subject of 
this work. 

While performing the case studies, the following are carefully considered. (1) 
The SUCs (or the test objects) are not toy systems so that the results will be 
nontrivial. (2) The SUCs are not immensely large so that the time spent for the 
case study will be convenient and the process tractable. (3) The developed models 
display different characteristics in the sense that the number of test targets 
increases in various fashions as the sequence length k increases. This allows 
considering diametrically different systems. (4) Assumptions made in Chapter 7 
remain valid. 

The case studies seek to answer the following questions to demonstrate the 
improvements of the proposed k-Reg-based MBMT approach. 

Q1. Which approach is more effective at revealing faults? 

Q2. Which approach is more cost-effective? 

Q3. Which approach is more efficient at fault detection? 

Q4. Which approach is more effective at revealing faults which are not really 
targeted by the approach? 

Q5. How is the test execution trend associated with each approach? 

Several metrics exist for generic software processes [62][63]; however, 
relatively very few are proposed for test processes [75][74]. In this work, the 
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following metrics are utilized to perform quantitative evaluations and 
comparisons, and to answer the questions above. 

• Number of revealed faults; an indicator of fault detection effectiveness 

• Test generation time and total number of executed events; indicators of 
cost effectiveness or testing costs 

• Fault detection rate; an indicator of fault detection efficieny (or test 
efficiency) 

• Number of faults revealed as events are executed; an indicator of test 
execution trends demonstrating how fault detection effectiveness changes 
as tests are executed 

Furthermore, total number of mutants is used to demonstrate the effectiveness 
of the mutant selection strategies of the proposed approach when compared to the 
other MBMT approaches. 

8.1 Experimental Design and Parameters 

To make appropriate comparisons, test targets [22] are defined as (k+1)-
sequences and faulty (k+1)-sequences (k=1,2,3). The test process, the test sets 
generated, and the data collected using these test sets are defined as follows. 

8.1.1 k-Reg 

The k-Reg approach makes use of only the corresponding k-Reg in order to 
generate test cases. More specifically, positive test cases (or, more precisely, 
CESs) achieving (k+1)-sequence coverage and negative test cases (or, more 
precisely, FCESs) achieving faulty (k+1)-sequence coverage are generated from 
the given k-Reg and mutants of this k-Reg using Algorithm 5.4 and Algorithm 
7.3, respectively. Note that by choosing k values appropriately, the testing cost 
can be adjusted to make the approach scalable for larger applications. 

8.1.2 Mixed k-Reg (M-k-Reg) 

The mixed k-Reg (M-k-Reg) approach is used to show how k-Reg can be carried a 
‘half-step’ forward if the budget is sufficient. Positive test cases (or, more 
precisely, CESs) are generated from the given (k+1)-Reg for achieving (k+2)-
sequence coverage (Algorithm 5.4), and negative test cases (or, more precisely, 
FCESs) are generated from the mutants of the given k-Reg for achieving faulty 
(k+1)-sequence coverage (Algorithm 7.3). Therefore, it can also be considered as a 
half way between the k-Reg and the (k+1)-Reg approaches. 
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8.1.3 Random(k+1) 

The Random(k+1) approach represents the random counterpart of the k-Reg and 
the M-k-Reg approaches where (k+1)-sequences and faulty (k+1)-sequences are 
covered using the given 1-Reg model. To collect the data for Random(k+1) in an 
appropriate manner, multiple random test sets need to be generated. Thus, 
Random(k+1,maxlen) is defined as the random testing approach where maximum 
length of a test case is bounded by maxlen. 

In Random(k+1,maxlen), positive test cases (or, more precisely, start 
sequences (SS)) achieving (k+1)-sequence coverage and negative test cases (or, 
more precisely, FCESs) achieving faulty (k+1)-sequence coverage are generated 
from the given 1-Reg, adapting the approach defined in [22] as follows. 

• Random SSs are sampled as positive test cases. To do this, a random test 
case length len where 1 ≤ len ≤ maxlen is selected first. Later, a random SS 
of the selected length is sampled using the given 1-Reg. If this sequence 
covers a remaining (k+1)-sequence, it is added to the test set and the 
covered (k+1)-sequence is removed from the remaining (k+1)-sequences. 
This process is repeated until no more (k+1)-sequences remain to cover. 

• Random FCESs as negative test cases. First, a random prefix length len 
where 0 ≤ len ≤ maxlen is selected. Later, a random prefix of the selected 
length, which is either an empty sequence or a SS, is selected using the 
given 1-Reg. If possible, the selected prefix is completed with a related 
faulty event. If the resulting FCES sequence covers a remaining faulty 
(k+1)-sequence, it is added to the test set and the covered faulty (k+1)-
sequence is removed from the remaining faulty (k+1)-sequences. This 
process is repeated until no more faulty (k+1)-sequences remain to cover. 

In this work, four different maxlen values are selected, depending on the SUC, 
to guarantee the coverage of the intended test targets and to avoid relatively high 
test generation and test execution times. Furthermore, N=30 random test sets are 
generated for each (k+1, maxlen) pair [20]. 

Consequently, the data collected using 30 random test sets are averaged to 
obtain the data for Random(k+1,maxlen), and the data collected for 
Random(k+1,maxlen) using four different maxlen values are averaged to obtain 
the data for Random(k+1). 

Researches suggest that random testing performs better than a large class of 
testing strategies [20][21]. Also, unlike most other random testing adaptations 
which do not use any information about the program or the specification [53], the 
approach adapted in this work uses information on the test targets [22] derived 
using k-Reg models. Thus, this adaptation can be considered to quite competitive. 
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8.1.4 ESG(k+1) 

The ESG(k+1) represent the ESG-based MBMT counterpart of the k-Reg and the 
M-k-Reg approaches. An ESG is equivalent to a 1-Reg model without a set of 
basis events and a set of 1-sequences. In ESG(k+1), no test targets are defined; 
instead, the given ESG model is mutated using mutation operators and test cases 
are generated from each mutant by achieving (k+1)-sequence coverage [40][99]. 
No mutant selection or morphology variation is carried out. Hence, mutants which 
are sub models of or equivalent to the original model, and multiple mutants 
modeling the same faults are also used in test generation. 

Since too many mutants can be generated (See Table 8.1), the test generation 
time tends to be too long and the size of the generated test tends to be quite large. 
For this reason, the approach is modified to limit the executable size of the 
generated test set, that is, the total number of events in the test set that can be 
executed on the system. 

• For each ESG(k+1), a corresponding size is selected as the executable size 
of the test set generated using either k-Reg or M-k-Reg. 

• ESG mutants are randomly selected and test cases are generated from 
these mutants as long as the executable test set size does not exceed the 
selected size. 

ESG(k+1,k) is used to refer to the ESG-based counterpart of k-Reg, and 
ESG(k+1,M-k) is used to refer to that of M-k-Reg. Thus, the modification is used 
to balance ESG-based approach separately with k-Reg and M-k-Reg in terms of 
the test execution effort. 

8.1.5 MK (Mutate and Kill) 

The MK represents the mutate-and-kill-based (MK-based) MBMT approach 
which is based on generating discriminating test cases [17][47][48][8][11] by 
comparing each mutant against the original model. If the mutant is not equivalent, 
a set of discriminating test cases is generated using the differences between the 
mutant and the original model. The approach does not perform any morphology 
variation. Furthermore, although equivalent mutants are left out, multiple mutants 
modeling the same faults are used in test generation. 

Similar to ESG(k+1), due to the large number of possible mutants (See Table 
8.1), MK approach is modified to limit the executable size of the generated test 
set. 

• The executable sizes of the test sets generated using k-Reg and M-k-Reg 
approaches are selected as the limits. 
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• 1-Reg mutants are randomly selected and test cases are generated from 
these mutants as long as the executable test set size does not exceed the 
corresponding limit. 

The modification is used to balance MK-based approach separately with k-Reg 
and M-k-Reg in terms of the test execution effort; MK(k) is used to refer to the 
MK-based counterpart of k-Reg, and MK(M-k) is used to refer to that of M-k-Reg. 

 

  

(a) SFH. (b) ShearBar. 

Figure 8.1. SFH of CLAAS. 

 

8.2 Systems Under Consideration (SUCs) 

For the case studies, three nontrivial SUCs are selected from two commercial 
systems: (1) SFH (Self-propelled Forage Harvester) of CLAAS 
(http://www.claas.com) and (2) ISELTA (Isik’s System for Enterprise-Level Web 
Centric Tourist Applications) of Isik Touristik (http://www.isik.de). 

SFH (Figure 8.1a) is a farm implement that harvests forage plants to make 
silage; it picks up the plants like grass or corn, chops them into small pieces and 
loads them into a wagon in one working process. It is one of the most powerful 
machines used for farming, having engines generating up to 820 kW and 
producing an output exceeding 400 tons of silage per hour. The electronic control 

unit for the adjustment process of SFH shear bar (ShearBar) is selected (Figure 

8.1b) as the first case study. The ShearBar is controlled by signals coming from 
various external sources; its function is very critical for safety and financial 
reasons. 
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(a) ISELTA 

(a)Specials. (b) Additionals. 

Figure 8.2. ISELTA of Isik Touristik. 

 

ISELTA (Figure 8.2a) is a commercial web portal for marketing tourist 
services. It enables travel and tourism enterprises, such as hotel owners and 
agencies, to create their own individual search and service masks. These masks 
can be embedded in the existing homepage of the enterprises as an interface 
between the customers and the system. Potential customers can then use these 
masks to select and book rooms and benefit from various other services. Two 
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nontrivial facilities offered by ISELTA are selected as the second and the third 

case studies: Specials (Figure 8.2b) and Additionals (Figure 8.2c). 

 

Table 8.1. k-Reg Models 

ShearBar 

k 
k-Reg  

Productions 

k-Reg  

Mutants 

Total  

Mutants 
k-sequences 

Faulty  

k-sequences 

1 422 32364 31058682 314 103 

2 558 40653 - 395 32261 

3 698 52077 - 506 40574 

4 856 - - 626 51998 
 

Specials 

k 
k-Reg  

Productions 

k-Reg  

Mutants 

Total  

Mutants 
k-sequences 

Faulty  

k-sequences 

1 429 755 737370 90 12 

2 2191 3378 - 427 743 

3 11205 17732 - 2184 3367 

4 58019 - - 11171 17221 
 

Additonals 

k 
k-Reg  

Productions 

k-Reg  

Mutants 

Total  

Mutants 
k-sequences 

Faulty  

k-sequences 

1 513 804 813285 93 13 

2 2984 4189 - 511 791 

3 17271 24454 - 2977 4177 

4 100869 - - 17236 24442 

 

8.3 Models of the SUCs 

A 1-Reg model is created for each SUC from the system specification, and k-Reg 
models for k≥2 are obtained using k-Reg transformation (Algorithm 5.1). The size 
and complexity of k-Reg models for each SUC are included in Table 8.1 to assure 
that they are not trivial (Refer to Appendix A for the 1-Reg models). 

In addition, Table 8.1 gives the numbers of mutants that are selected using the 
k-Reg-based approach and that can be generated using the existing event-based 
mutation operators or event-base MBMT approaches, which employ no mutant 
selection strategies. Since other MBMT approaches do not vary model 
morphology, mutant numbers are counted using the initial system models. 

As can be seen in Table 8.1, the total numbers of mutants selected using 
different k-Reg models are ~0.40%, ~2.97% and ~3.62% of the total numbers of 
mutants that can be generated. This shows the effectiveness of the mutant 
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selection strategies discussed in Section 7. Also, it demonstrates why the ESG-
based and the MK-based MBMT approaches are modified using a size parameter 
as described in Section 8.1.4 and Section 8.1.5. 

Note that computing the exact numbers of equivalent mutants and the exact 
number of multiple mutants modeling the same faults is not feasible, because 
mutants need to be compared to the original model and to the other mutants. The 
proposed strategies avoid such mutants without distinguishing them from each 
other as described in Section 7. 

Furthermore, Table 8.1 demonstrates that the relation between k and the 
number of test targets is different for each SUC. 

8.4 Fault Seeding 

Due to large number of possible mutants for each SUC, a fixed number of event-
based faults are randomly generated and seeded [135][90][171] to compare the 
testing processes in a realistic manner while gaining insight into test execution. 
Such an insight is not provided by mutation analysis since the faults are 
considered separately. 

From an event-based MBT view, a user makes observations based on 
(sequences of) events. Therefore, faults can be characterized as missing event and 
extra event faults, because a fault in the system is observed in the form of an event 
that is either missing or extra at some point. m-Regs for m=1,2,3,4 are used to 
model the faults and vary the fault domain, assuming that the faults modeled using 
an m-Reg generally become more subtle as m increases because the length of and 
the number of k-sequences that need to be covered increase and a stronger 
coverage is generally required to systematically uncover the related faults. 

k-Reg, M-k-Reg, Random(k+1), ESG(k+1,k) and ESG(k+1,M-k) aim to 
uncover the faults modeled using k-Reg mutants. However, it is also possible that 
they reveal faults modeled using m-Reg mutants for some m≠k, though such faults 
are not targeted by them. For each case study, 50 faults are randomly seeded for 
each m where half of these faults are missing event faults and the other half are 
extra event faults. In total, 200 random faults are seeded for each SUC. 

Note that using model-based faults for evaluations is relevant for real-world 
faults. There is evidence supporting the fact that a test set that detects more model 
model-based mutants also detects more code-based mutants [10] and that a test set 
that detects more code-based mutants also detects more real-world faults [19]. 
Thus, one can conclude that a test set that detects more model-based mutants also 
detects more real-world faults. 
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8.5 Test Generation and Execution Results 

Lower bounds for maxlen are selected to guarantee that the intended test targets 
can be covered and in reasonable time, and the upper bounds are selected to avoid 
excessive test generation and execution times. Thus, maxlen is limited to 

• 60,63,67,70 for ShearBar and 

• 20,30,40,50 for Specials and Additionals. 

Also, to collect precise data on test execution process, test cases are executed 
in the following way. 

• Each test case is executed until a failure is observed or until its 
completion. 

• Upon observing a failure, the corresponding fault is corrected and the 
sequence revealing this fault is re-executed. 

• If a test case reveals no faults and runs until completion, it is not executed 
again. 

• This process continues until all test cases are executed to completion. 

Appendix B contains the test generation and execution results. 

• Table B.1, Table B.2 and Table B.3, and Table B.4, Table B.5 and Table 
B.6 present summarized data on test set generation and test execution 
processes. 

• Table B.7, Table B.8 and Table B.9 outline the data on the number of 
revealed faults (See Section 8.4 for m). 

• Figure B.1, Figure B.2 and Figure B.3 demonstrate how the revealed 
number of faults changes with respect to the number of events executed. 

8.6 Interpretation of Results 

Questions Q1 - Q5, which are posed at the beginning of Chapter 8, can be now 
answered in order. 

8.6.1 Q1: Fault Detection Effectiveness 

The revealed fault numbers are rounded to the nearest integers for comparison of 
fault detection effectiveness, and Table 8.2, Table 8.3 and Table 8.4 are 
constructed by rewriting the data for k-Reg and M-k-Reg from Table B.4, Table 
B.5 and Table B.6 with respect to Random(k+1), ESG(k+1) and MK, respectively. 
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Table 8.2. Fault Detection Effectiveness w.r.t. Random(k+1) 

  Faults Revealed w.r.t. Random(k+1) 

  k=1 k=2 k=3 

k-Reg 5.58% (10) fewer 0.55% (1) fewer same ShearBar 

M-k-Reg 0.43% (1) fewer 0.55% (1) more 0.52% (1) more 

k-Reg 24.41% (23) fewer 9.80% (13) fewer 3.79% (7) fewer Specials 

M-k-Reg 0.79% (1) more 8.69% (12) more 3.19% (5) more 

k-Reg 25.07% (22) fewer 11.80% (15) fewer 6.53% (11) fewer Additionals 

M-k-Reg 6.05% (5) more 7.54% (10) more 2.76% (5) more 

 

 

Table 8.3. Fault Detection Effectiveness w.r.t. ESG(k+1) 

  Faults Revealed w.r.t. ESG(k+1) 

  k=1 k=2 k=3 

k-Reg 23.13% (31) more 38.93% (51) more 40.58% (56) more ShearBar 

M-k-Reg 28.89% (39) more 40.46% (53) more 41.30% (57) more 

k-Reg 56.52% (26) more 64.86% (48) more 71.13% (69) more Specials 

M-k-Reg 77.78% (42) more 77.11% (64) more 66.36% (71) more 

k-Reg 71.05% (27) more 78.13% (50) more 73.12% (68) more Additionals 

M-k-Reg 84.00% (42) more 78.21% (61) more 60.91% (67) more 

 

 

Table 8.4. Fault Detection Effectiveness w.r.t. MK 

  Faults Revealed w.r.t. MK 

  k=1 k=2 k=3 

k-Reg 60.19% (62) more 76.70% (79) more 79.63% (86) more ShearBar 

M-k-Reg 68.93% (71) more 78.64% (81) more 80.56% (87) more 

k-Reg 80.00% (32) more 134.62% (70) more 100.00% (83) more Specials 

M-k-Reg 123.26% (53) more 113.04% (78) more 81.63% (80) more 

k-Reg 71.05% (27) more 100.00% (57) more 98.77% (80) more Additionals 

M-k-Reg 124.39% (51) more 107.46% (72) more 77.00% (77) more 

 

Table 8.2 demonstrates that, in general, k-Reg reveals fewer faults than 
Random(k+1), up to ~25.07%. However, M-k-Reg almost always performs better 
than Random(k+1) by revealing up to ~8.69% more faults. Furthermore, Table 8.3 
shows that both k-Reg and M-k-Reg always reveal more faults than their 
corresponding ESG(k+1) counterparts, respectively, up to ~78.13% and ~84.00%, 
and Table 8.4 shows that they also always reveal more faults than their 
corresponding MK counterparts, respectively, up to ~134.62% and ~124.39%. 
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When the change in the number of faults revealed is considered with respect to 
k (Table B.4, Table B.5 and Table B.6), k-Reg shows the overall fastest increasing 
trend for each case study, being up to ~1.06 times faster than Random(k+1) and it 
is followed by M-k-Reg, being up to ~27.5% faster. Furthermore, ESG(k+1) and 
MK may sometimes even show decreasing trends. When the increasing trends are 
considered, k-Reg and M-k-Reg are up to ~91.30% and ~75.86% faster than 
ESG(k+1,k) and ESG(k+1,M-k), respectively, and, they are up to ~3.2 times and 
~1.2 times faster than MK(k) and MK(M-k), respectively. 

8.6.2 Q2: Cost Effectiveness 

Test execution time can be measured by assuming that the execution of each event 
takes approximately the same amount of time on the average and taking one time 
unit to be the average time to execute a single event. . Note that using the number 
of executed events in this way as an indicator of the test execution effort is more 
realistic than using other common indicators such as the number of test cases 
[170][32][33]. Thus, Table 8.5 is constructed using the data in Table B.1, Table 
B.2 and Table B.3 by rounding test generation times appropriately and calculating 
how much fewer events are executed with respect to random testing. The numbers 
of events executed by k-Reg-based approaches are not discussed with respect to 
the ESG-based and the MK-based approaches because the approaches are 
balanced in terms of the test execution effort (See Section 8.1.4 and Section 
8.1.5). 

Table 8.5 shows the effects of linear-time test generation from the mutants in 
the k-Reg-based testing approach. In general, test generation times are quite 
smaller for k-Reg and M-k-Reg when compared to Random(k+1), ESG(k+1,k), 
ESG(k+1,M-k), MK(k) and MK(M-k), up to ~99.99%. However, in some cases, 
test generation times for M-k-Reg are greater when compared to MK(M-k), up to 
~4.5 times, because M-k-Reg uses the corresponding (k+1)-Reg (instead of the k-
Reg) for positive test case generation. Also, k-Reg and M-k-Reg require, 
respectively, up to ~70.65% and ~33.62% less test execution efforts than 
Random(k+1). 

In addition, Table B.1, Table B.2 and Table B.3 suggest that as k increases, 
test generation time increases,respectively, up to ~99.99% to ~99.98% less for k-

Reg and M-k-Reg when compared to Random(k+1). Furthermore, it increases, 
respectively, up to ~99.92% and ~99.90% less when compared to ESG(k+1,k) and 
ESG(k+1,M-k). Also, although the increase is generally up to ~99.96% less for k-

Reg and M-k-Reg respectively when compared to MK(k) and MK(M-k), it is 
sometimes greater for M-k-Reg when compared to MK(M-k), up to 12.4 times. As 
for the change in test execution effort with increasing k, k-Reg and M-k-Reg show, 
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respectively, up to ~67.09% and ~17.26% less increase when compared to 
Random(k+1). 

 

Table 8.5. Test Generation and Test Execution Costs 

 
 Test Generation Time 

Fewer Events Executed w.r.t. 

Random(k+1) 

  k=1 k=2 k=3 k=1 k=2 k=3 

k-Reg 6 s 12 s 19 s 13.89% 13.62% 12.91% 

M-k-Reg 6 s 12 s 20 s 13.73% 13.57% 12.82% 

Random(k+1) 13.8 h 15.2 h 26.6 h - - - 

ESG(k+1,k) 24.9 h 22.2 h 24.6 h - - - 

ESG(k+1,M-k) 24.9 h 22.3 h 24.5 h - - - 

MK(k) 11.9 h 15.8 h 20.7 h - - - 

ShearBar 

MK(M-k) 12.0 h 15.8 h 20.8 h - - - 

k-Reg 1 s 4 s 58 s 68.94% 66.46% 62.77% 

M-k-Reg 3 s 49 s 1.09 h 33.62% 20.73% 14.81% 

Random(k+1) 12.5 m 3.4 h 46.1 h - - - 

ESG(k+1,k) 10 s 44 s 22 m - - - 

ESG(k+1,M-k) 24 s 148 s 1.4 h - - - 

MK(k) 12 s 44 s 272 s - - - 

Specials 

MK(M-k) 18 s 99 s 12.0 m - - - 

k-Reg 1 s 6 s 170 s 70.65% 67.74% 63.82% 

M-k-Reg 5 s 150 s 3.6 h 26.55% 11.34% 5.13% 

Random(k+1) 1.1 h 20.0 h 12 d - - - 

ESG(k+1,k) 13 s 67 s 52.8 m - - - 

ESG(k+1,M-k) 50 s 5.7 m 5.5 h - - - 

MK(k) 9 s 55 s 5.9 m - - - 

Additionals 

MK(M-k) 23 s 131 s 18.1 m - - - 
* s=seconds, m=minutes, h=hours, d=days 

 

8.6.3 Q3: Fault Detection Efficiency 

The fault detection rate (FDR) (the ratio of the number of revealed faults to the 
number of executed events) can be used to compare fault detection efficiency. 
Since test execution time is measured by the number of executed events in Section 
8.6.2, FDR is also formulated as the inverse of cost per detected fault (CPF); that 
is, FDR = 1 / CPF. 

Using the data in Table B.4, Table B.5 and Table B.6, the differences in FDRs 
with respect to Random(k+1), ESG(k+1) and MK are given in Table 8.6, Table 
8.7 and Table 8.8, respectively. 

According to Table 8.6, FDRs of k-Reg and M-k-Reg are always higher than 
Random(k+1), up to ~158.06% and ~43.62%, respectively. Furthermore, they are 
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also always higher than ESG(k+1,k) and ESG(k+1,M-k), respectively, up to 
~79.37% and ~81.29% (as shown in Table 8.7), and than MK(k) and MK(M-k), 
respectively, up to ~153.21% and ~144.12% (as shown in Table 8.8). 

 

Table 8.6. Fault Detection Efficiency w.r.t Random(k+1) 

  Fault Detection Rate w.r.t. Random(k+1) 

  k=1 k=2 k=3 

k-Reg 9.61% higher 15.08% higher 14.77% higher ShearBar 

M-k-Reg 15.37% higher 16.29% higher 15.24% higher 

k-Reg 130.20% higher 154.53% higher 143.69% higher Specials 

M-k-Reg 43.62% higher 29.77% higher 14.19% higher 

k-Reg 140.66% higher 158.06% higher 143.27% higher Additionals 

M-k-Reg 36.11% higher 14.48% higher 1.99% higher 

 

 

Table 8.7. Fault Detection Efficiency w.r.t ESG(k+1) 

  Fault Detection Rate w.r.t. ESG(k+1) 

  k=1 k=2 k=3 

k-Reg 23.13% higher 38.85% higher 40.46% higher ShearBar 

M-k-Reg 28.78% higher 40.31% higher 41.15% higher 

k-Reg 54.49% higher 69.73% higher 72.56% higher Specials 

M-k-Reg 70.49% higher 81.29% higher 67.67% higher 

k-Reg 78.88% higher 79.31% higher 79.37% higher Additionals 

M-k-Reg 80.51% higher 78.37% higher 61.16% higher 

 

 

Table 8.8. Fault Detection Efficiency w.r.t MK 

  Fault Detection Rate w.r.t. MK 

  k=1 k=2 k=3 

k-Reg 59.92% higher 76.76% higher 79.26% higher ShearBar 

M-k-Reg 68.87% higher 78.61% higher 80.65% higher 

k-Reg 153.21% higher 147.39% higher 102.04% higher Specials 

M-k-Reg 144.12% higher 117.98% higher 82.09% higher 

k-Reg 105.70% higher 108.35% higher 99.81% higher Additionals 

M-k-Reg 123.28% higher 107.38% higher 77.65% higher 

 

As for the change in FDR as k increases (Table B.4, Table B.5 and Table B.6), 
all approaches show decreasing trends. k-Reg shows, respectively, up to 
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~162.35%, ~79.29% and ~165.74% faster decreasing trend than Random(k+1), 
ESG(k+1,k) and MK(k), and M-k-Reg shows, respectively, up to ~49.59%, 
~85.45% and ~155.57% faster decreasing trend than Random(k+1), ESG(k+1,M-

k) and MK(M-k). Nevertheless, as mentioned above, FDRs of k-Reg and M-k-Reg 
always remain greater than Random(k+1), ESG(k+1) and MK. 

8.6.4 Q4. Effectiveness of detecting Non-targeted Faults 

As already mentioned in Section 8.4, k-Reg, M-k-Reg and Random(k+1) 
approaches aim to detect faults modeled using a k-Reg. Table B.7, Table B.8 and 
Table B.9 suggest that, as k is increased, k-Reg-based testing reveals significantly 
more of the faults generated from an m-Reg with higher m. This is achieved by 
using morphologically different models to extend the set of fault models. Random 
testing also shows a similar trend because the test targets are derived from the k-
Reg models with different k. However, such a trend is not observed for ESG-
based MBMT and MK-based MBMT approaches since each of these approaches 
uses a single fixed model. 

 

Table 8.9. Fault Detection Effectiveness w.r.t. Random(k+1) - Detailed 

  Percentage of Faults Revealed w.r.t. Random(k+1) for m=1,2,3,4 

  k=1 k=2 k=3 

k-Reg 

0.00, -0.53,  
-11.84, -12.00 

(Overall: -7.59) 

0.00, 0.00,  
1.34, -3.60 

(Overall: -0.63) 

0.00, 0.00,  
0.00, -100.00 

(Overall: -0.06) 

ShearBar 

M-k-Reg 

0.00, -0.53,  
-1.76, 1.33 

(Overall: -0.36) 

0.00, 0.00,  
3.64, -1.07 

(Overall: 0.87) 

0.00, 0.00,  
0.00, 2.09 

(Overall: 0.64) 

k-Reg 

0.00, -45.98,  
-46.86, -100.00 

(Overall: -51.23) 

0.00, 0.00,  
-23.27, -66.16 

(Overall: -15.57) 

0.00, 0.00,  
0.00, -26.38 

(Overall: -6.27) 

Specials 

M-k-Reg 

0.00, 8.04,  
6.29, -52.38 

(Overall: 1.97) 

0.00, 0.00,  
40.67, 18.44 

(Overall: 13.74) 

0.00, 0.00,  
0.00, 22.70 

(Overall: 4.53) 

k-Reg 

0.00, -46.79,  
-77.25, -100.00 

(Overall: -59.17) 

0.00, 0.00,  
-36.47, -72.63 

(Overall: -18.83) 

0.00, 0.00,  
0.00, -46.04 

(Overall: -9.08) 

Additionals 

M-k-Reg 

0.00, 30.98,  
-8.99, -43.18 

(Overall: 14.32) 

0.00, 0.00,  
58.81, -8.76 

(Overall: 12.87) 

0.00, 0.00,  
0.00, 20.38 

(Overall: 4.02) 
* A positive value means more; a negative value means fewer. 
+ Overall values are calculated considering only the nontargeted faults. 
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Using the data in Table B.7, Table B.8 and Table B.9, Table 8.9, Table 8.10 
and Table 8.11 are constructed to compare the effectiveness of the approaches at 
detecting faults that are not targeted by them. The percentage of more (or fewer) 
faults revealed by k-Reg and M-k-Reg are given with respect to Random(k+1), 
ESG(k+1) and MK for m=1,2,3,4 (See Section 8.4 for m). 

Table 8.9 shows that k-Reg is overall up to ~59.17% less effective at detecting 
non-targeted faults than Random (k+1). On the other hand, M-k-Reg is always 
more effective than Random(k+1) at detecting non-targeted faults, overall up to 
~14.32%. In addition, Table 8.10 shows that k-Reg and M-k-Reg are overall up to 
~68.42% and ~133.33% more effective than ESG(k+1,k) and ESG(k+1,M-k), 
respectively, and Table 8.11 show that they are also overall up to ~94.59% and 
~180.00% more effective than MK(k) and MK(M-k), respectively. 

 

 

Table 8.10. Fault Detection Effectiveness w.r.t. ESG(k+1) - Detailed 

  Percentage of Faults Revealed w.r.t. ESG(k+1) for m=1,2,3,4 

  k=1 k=2 k=3 

k-Reg 

47.06, 30.56,  
16.67, -2.94 

(Overall: 15.00) 

51.52, 38.89,  
37.50, 26.67 

(Overall: 38.95) 

51.52, 38.89,  
42.86, 29.41 

(Overall: 39.81) 

ShearBar 

M-k-Reg 

47.06, 27.03,  
30.00, 11.76 

(Overall: 22.77) 

51.52, 38.89,  
40.63, 30.00 

(Overall: 41.05) 

51.52, 38.89,  
42.86, 32.35 

(Overall: 40.78) 

k-Reg 

72.41, 60.00,  
20.00, -100.00 

(Overall: 29.41) 

78.57, 100.00,  
20.00, -33.33 

(Overall: 46.94) 

75.00, 81.48,  
85.19, 20.00 

(Overall: 65.71) 

Specials 

M-k-Reg 

61.29, 128.57,  
71.43, 0.00 

(Overall: 100.00) 

47.06, 92.31,  
94.12, 133.33 

(Overall: 70.18) 

40.00, 63.33,  
85.19, 100.00 

(Overall: 60.00) 

k-Reg 

85.19, 44.44,  
0.00, n/a 

(Overall: 36.36) 

88.46, 92.31,  
20.00, 50.00 

(Overall: 68.42) 

77.78, 85.19,  
100.00, -7.14 

(Overall: 63.24) 

Additionals 

M-k-Reg 

56.25, 113.33,  
166.67, n/a 

(Overall: 133.33) 

63.33, 56.25,  
130.77, 233.33 
(Overall: 93.48) 

50.00, 51.52,  
85.19, 61.11 

(Overall: 53.01) 
* A positive value means more; a negative value means fewer. 
+ Overall values are calculated considering only the nontargeted faults. 

 

 

 



8 Case Studies 
 

 

110 

Table 8.11. Fault Detection Effectiveness w.r.t. MK - Detailed 

  Percentage of Faults Revealed w.r.t. MK for m=1,2,3,4 

  k=1 k=2 k=3 

k-Reg 

78.57, 88.00,  
34.62, 37.50 

(Overall: 53.33) 

78.57, 100.00,  
69.23, 58.33 

(Overall: 69.23) 

78.57, 85.19,  
78.57, 76.00 

(Overall: 80.00) 

ShearBar 

M-k-Reg 

78.57, 100.00,  
69.23, 58.33 

(Overall: 65.33) 

78.57, 100.00,  
73.08, 62.50 

(Overall: 71.79) 

78.57, 85.19,  
78.57, 80.00 

(Overall: 81.25) 

k-Reg 

100.00, 60.00,  
200.00, -100.00 
(Overall: 46.67) 

72.41, 233.33,  
350.00, 0.00 

(Overall: 94.59) 

36.11, 75.00,  
316.67, 157.14 
(Overall: 63.38) 

Specials 

M-k-Reg 

92.31, 190.91,  
500.00, -50.00 

(Overall: 170.59) 

47.06, 127.27,  
312.50, 180.00 

(Overall: 106.38) 

22.50, 44.12,  
212.50, 275.00 
(Overall: 56.10) 

k-Reg 

100.00, 18.18,  
0.00, 0.00 

(Overall: 15.38) 

58.06, 150.00,  
300.00, 0.00 

(Overall: 72.97) 

37.14, 61.29,  
525.00, 85.71 

(Overall: 52.05) 

Additionals 

M-k-Reg 

92.31, 166.67,  
166.67, n/a 

(Overall: 180.00) 

48.48, 100.00,  
650.00, 100.33 

(Overall: 111.90) 

26.32, 38.39,  
233.33, 163.64 
(Overall: 49.41) 

* A positive value means more; a negative value means fewer. 
+ Overall values are calculated considering only the nontargeted faults. 

 

8.6.5 Q5. Test Execution Trends 

ShearBar. The overall execution trends of k-Reg and M-k-Reg for ShearBar 
(Figure B.1) are very similar to each other, especially as k increases. All the 
approaches reveal faults very quickly at the beginning of the test execution. Half 
of all the revealed faults are discovered by performing ~0.5% of the test execution 
for k-Reg and M-k-Reg, ~1% for Random(k+1), ~0.3% for ESG(k+1) and ~0.5% 
for MK. 

For Random(k+1), ESG(k+1) and MK the rate of change in FDR almost 
always decreases steadily until the end. For k-Reg and M-k-Reg, there are two 
points during test execution where the rate of change in the FDR shows a 
significant and sudden increase. The first point resides between ~5% and ~7% of 
the test execution and the second point resides around ~95%. 

In general, k-Reg and M-k-Reg show better FDRs than Random(k+1) until the 
end stages of their respective test execution processes where the number of faults 
revealed by them may, for a short while, remain up to ~4.52% lower than that of 
Random(k+1). This starts at some point after ~68% to ~78% of the test execution 
is completed. After a while, the rates of change in FDRs of k-Reg and M-k-Reg 
increase significantly by detecting, respectively, up to ~9.70% and ~8.05% of the 
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revealed faults for the last ~5% of the execution. In addition, k-Reg and M-k-Reg 
achieves better FDRs than ESG(k+1) and MK, except for the first ~1% to ~7% of 
the test execution depending on the value of k, where they all show similar trends 
and achieve similar FDRs. 

When the points where k-Reg and M-k-Reg run out of events to execute are 
considered as the stopping points for random testing, both k-Reg and M-k-Reg 
manage to detect, respectively, up to ~2.48% and ~8.07% more faults than 
Random(k+1). Random(k+1) increases the number of revealed faults by detecting 
up to ~7.87% of the revealed faults and executing up to ~13.89% of all the 
executed events after the test execution ends for k-Reg and M-k-Reg. In addition, 
k-Reg and M-k-Reg detect, respectively, up to ~40.58% and ~41.30% more faults 
than their ESG(k+1) counterparts, and, respectively, up to ~79.63% and ~80.56% 
more faults than their MK counterparts. 

Specials. The shapes of k-Reg, M-k-Reg, Random (k+1), ESG(k+1) and MK 

test execution curves for Specials (Figure B.2) are quite different from each 
other, except for the fact that k-Reg, ESG(k+1,k) and ESG(k+1,M-k) show similar 
trends for the first up to ~46% of the k-Reg test execution, ESG(k+1,M-k) is an 
extension of ESG(k+1,k) and MK(M-k) is an extension of MK(k). 

For Random(k+1), the rate of change in FDR decreases as the test execution 
proceeds. After ~40% of the test execution is completed, a sudden increase in the 
rate of change in FDR occurs. This also happens for ESG(k+1,k) and ESG(k+1,M-

k), respectively, after around ~18% and ~8% of the test execution. Such increases 
are more frequent for k-Reg and M-k-Reg, but the most significant ones happen, 
respectively, around ~60% to ~70% and ~80% to ~85% of the test execution. 
MK(k) and MK(M-k) also show frequent increases, but they are not restricted to 
specific intervals. These increases become more apparent as k gets larger for k-

Reg, M-k-Reg and Random(k+1), less apparent for ESG(k+1,k) and ESG(k+1,M-

k), and less apparent but more frequent for MK(k) and MK(M-k). 

If the point where k-Reg test execution ends is considered as the stopping 
point for all approaches, k-Reg and M-k-Reg are, respectively, up to ~85.99% and 
~8.96% more effective than Random(k+1) at fault detection at the end. 
Furthermore, except for the fact that M-3-Reg is ~9.28% less effective than 
ESG(4,M-3), k-Reg and M-k-Reg are more effective than ESG(k+1,k) and 
ESG(k+1,M-k), respectively, up to ~71.13% and ~4.35%, and they are more 
effective than MK(k) and MK(M-k), respectively, up to ~134.62% and ~46.15%. 
In this period, k-Reg is always more effective than Random(k+1) at any point and 
M-k-Reg is more effective than Random(k+1) except until the end stages where 
they sometimes reach similar values. In addition, ESG(k+1) is more or equally 
effective as all the other approaches for the first ~27.84% (for k=1), ~46.44% (for 
k=2) and ~38.13% (for k=3) of the test execution, and MK is almost always less 
effective than other approaches except for some short intervals (from ~45.54% to 
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~58.54% for k=1, from ~8.18% to ~15.19% for k=2, and from 0% to ~3.05% and 
from ~21.82% to ~27.13% for k=3) where it becomes slightly more effective than 
Random(k+1) for all k and M-k-Reg for k=2. 

Setting the end of M-k-Reg test execution as the stopping point, M-k-Reg is, 
respectively, up to ~30.17%, ~77.78% and ~123.26% more effective than 
Random(k+1), ESG(k+1,M-k) and MK(M-k) at fault detection at the end. The 
FDR of M-k-Reg becomes similar to Random(k+1) from ~42% to ~53% of test 
execution for k=1. Also, M-k-Reg becomes up to ~29.66% less effective for k=2,3 
at some interval during the test execution. The length of this interval increases for 
larger k (from ~54% to ~86% for k=2 and from ~43% to ~88% for k=3). In 
addition, the FDR of M-k-Reg is less than ESG(k+1,M-k) for the first ~19.50% 
(for k=1), ~17.19% (for k=2) and ~56.13% (for k=3) of the test execution; and it 
is similar to ESG(k+1,M-k) from ~19.50% to ~46.73% (for k=1), from ~17.19% 
to ~52.75% (for k=2), and from ~56.13% to ~76.36% (for k=3) of the test 
execution. Also, the FDR of M-k-Reg is always greater than MK(M-k) except for 
the very beginnings (up to the first ~5.53%) of the test execution where it is 
similar to MK(M-k). 

Additionals. The shapes of test execution curves for Additionals 

(Figure B.3) are relatively similar to those of Specials. k-Reg, ESG(k+1,k) and 
ESG(k+1,M-k) show similar trends for the first up to ~55.38% of the k-Reg test 
execution, ESG(k+1,M-k) is an extension of ESG(k+1,k), and MK(M-k) is an 
extension of MK(k). 

In general, Random(k+1) shows a decreasing rate of change in FDR as the test 

execution proceeds. However, as in Specials, just after ~40% of the test 
execution, the rate of change in FDR shows an increase. For ESG(k+1,k), 
ESG(k+1,M-k), M(k) and MK(M-k), even if such increases happen, they are not 
very significant; whereas, for M-k-Reg and k-Reg, they are more frequent and 
sudden, and they becomes more apparent as k gets larger. For M-k-Reg, the most 
significant increase happens around ~82% to ~87% of the test execution, and for 
k-Reg around ~55% to ~68%. 

k-Reg and M-k-Reg are respectively up to ~90.80% and ~13.81% more 
effective than Random(k+1) at fault detection at the end, when the point where k-

Reg test execution ends is set as the stopping point for all approaches. At this 
point, they are also more effective than ESG(k+1,k), ESG(k+1,M-k), MK(k) and 
MK(M-k), respectively, up to ~78.13%, ~62.50%, ~100.00% and ~19.30%, except 
for the fact that M-3-Reg is ~7.58% less effective than ESG(4,M-3). In this period, 
k-Reg is always more effective than Random(k+1) at any point, and a similar 
argument holds for M-k-Reg except for the end stages of test execution for k=3 
where M-k-Reg and Random(k+1) reach similar FDRs. Also, ESG(k+1) is more 
or equally effective as all the other approaches for the first ~34.58% (for k=1), 
~27.26% (for k=2) and ~55.38% (for k=3) of the test execution, and MK is more 
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or equally effective as all the other approaches for the first ~34.58% (for k=1), 
~12.69% (for k=2) and ~3.03% (for k=3) of the test execution. 

If the end of M-k-Reg test execution is considered as the stopping point, M-k-

Reg is always and, respectively, up to ~24.32%, ~84.00% and ~124.39% more 
effective than Random(k+1), ESG(K+1,M-k) and MK(M-k) at the end. In certain 
intervals, M-k-Reg becomes less or equally effective as Random(k+1). The 
lengths of these intervals increase with k. For k=1, M-k-Reg becomes similar to 
Random(k+1) from ~55% to ~90% of the test execution; for k=2, M-k-Reg 
becomes up to ~21.74% less effective from ~48% to ~86% of the test execution; 
and, for k=3, it becomes up to ~34.78% less effective from ~37% to ~96% of the 
test execution. In addition, the FDR of M-k-Reg is less than ESG(k+1,M-k) for the 
first ~28.27% (for k=1), ~28.84% (for k=2) and ~60.75% (for k=3) of the test 
execution, and, for k=3, M-k-Reg and ESG(k+1,M-k) show quite similar trends 
from ~60.75% to ~83.62%. Furthermore, the FDR of M-k-Reg is less than MK(M-

k) for the first ~28.27% (for k=1), ~6.80% (for k=2) and ~2.80% (for k=3) of the 
test execution, and it is greater in the rest. 

8.7 A Brief Summary of Results 

The new k-Reg approach detects on the average, 

• for ShearBar, 

o ~2% fewer faults while making ~13% less test execution effort, that is, 
~13% more faults per executed event, when compared to the random 
testing approach, 

o ~34% more faults and ~34% more faults per executed event, when 
compared to the ESG-based MBMT approach by balancing the test 
execution effort, and 

o ~72% more faults and ~72% more faults per executed event, when 
compared to the MK-based MBMT approach by balancing the test 
execution effort; 

• for Specials, 

o ~13% fewer faults while making ~66% less test execution effort, that 
is, ~143% more faults per executed event, when compared to the 
random testing approach, 

o ~64% more faults and ~66% more faults per executed event, when 
compared to the ESG-based MBMT approach by balancing the test 
execution effort, and 
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o ~105% more faults while and ~134% more faults per executed event, 
when compared to the MK-based MBMT approach by balancing the 
test execution effort; and 

• for Additionals, 

o ~14% fewer faults while making ~67% less test execution effort, that 
is, ~147% more faults per executed event, when compared to the 
random testing approach, 

o ~74% more faults and ~79% more faults per executed event, when 
compared to the ESG-based MBMT approach by balancing the test 
execution effort, and 

o ~90% more faults and ~105% more faults per executed event, when 
compared to the MK-based MBMT approach by balancing the test 
execution effort. 

Also, the new M-k-Reg approach detects on the average, 

• for ShearBar, 

o the same number of faults while making ~13% less test execution 
effort, that is, ~16% more faults per executed event, when compared to 
the random testing approach, 

o ~37% more faults and ~37% more faults per executed event, when 
compared to the ESG-based MBMT approach by balancing the test 
execution effort, and 

o ~76% more faults and ~76% more faults per executed event, when 
compared to the MK-based MBMT approach by balancing the test 
execution effort; 

• for Specials, 

o ~4% more faults while making ~23% less test execution effort, that is, 
~29% more faults per executed event, when compared to the random 
testing approach, 

o ~74% more faults and ~73% more faults per executed event, when 
compared to the ESG-based MBMT approach by balancing the test 
execution effort, and 

o ~106% more faults and ~115% more faults per executed event, when 
compared to the MK-based MBMT approach by balancing the test 
execution effort; and 

• for Additionals, 

o ~5% more faults while making ~14% less test execution effort, that is, 
~18% more faults per executed event, when compared to the random 
testing approach, 
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o ~74% more faults and ~73% more faults per executed event, when 
compared to the ESG-based MBMT approach by balancing the test 
execution effort, and 

o ~103% more faults and ~103% more faults per executed event, when 
compared to the MK-based MBMT approach by balancing the test 
execution effort. 

Using the number of executed events as an indicator of the test execution 
effort and assuming that the average effort required executing each event is 
approximately the same, the above data suggest that k-Reg-based testing reveals 
either most of the faults with generally considerable less effort or even more faults 
with yet significantly less effort, when compared to random testing. However, it 
always remains superior to random testing in terms of efficiency which is 
quantified by fault detection rate. Also, when compared to ESG-based and MK-
based testing by balancing the test execution efforts, k-Reg-based testing is 
always more effective and efficient. 

In addition, although morphologically different models are used, k-Reg-based 
testing approach decreases the mutant numbers significantly. The numbers of 
mutants selected using different k-Reg models (k=1,2,3) are ~0.40% (for 

ShearBar), ~2.97% (for Specials) and ~3.62% (for Additionals) of the 
numbers of mutants required by MBMT approaches with no mutant selection 
strategies. 

As mentioned in Section 8.2, the SUCs used in the case studies have different 

characteristics. The number of test targets in ShearBar increases linear in k; 

whereas, the numbers of test targets in Specials and Additionals increase 

exponential in k, with Additionals displaying an increase which is 

~1.32e
0.1497k as fast as Specials (See Table 8.1 for trends). The results suggest 

that the differences between k-Reg/M-k-Reg and Random(k+1), k-Reg/M-k-Reg 
and ESG(k+1) and k-Reg/M-k-Reg and MK are relatively less apparent for 

ShearBar when compared to Specials and Additionals. 

Thus, the relation between the number of test targets and k seems to affect the 
difference between the results observed using different approaches. 

8.8 Threats to Validity 

Case studies can be applied as a comparative research strategy as used in this 
work. However, a case study is more of an observational method that is conducted 
to investigate a single entity or phenomenon. Therefore, case studies sample from 
the variables representing the typical situation. This makes them easier to plan but 
the results become difficult to generalize. Such properties make case studies prone 
to several threats to validity. [169] 
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Threats to external validity. Due to the nature of case studies, different results 
may be obtained using different SUCs and setups. To minimize this threat, three 
diametrically different SUCs representing different typical situations are selected 
and used. More precisely, since an event-based approach is used, k-sequences and 
faulty k-sequences of events are considered as test targets, and the approaches are 
compared in terms of their effectiveness and efficiency of covering these test 
targets and detecting faults that are intended to be revealed by these targets. 
Hence, the characteristics of a system are defined by the relation between k and 
the number of test targets. Different SUCs are selected and used where this 
relation is either (1) linear, or (2) exponential, or (3) again exponential; however, 
with a faster increasing trend. 

Furthermore, to minimize the threat that the random testing approach is not 
properly adapted, the existing algorithm [22] is used and 30 test sets [20] are 
generated for each Random(k+1, maxlen) and 4 different maxlen values are 
selected. Therefore, in total, 120 test sets are used to collect data for each 
Random(k+1). The adaptation used in this work can be considered as an over-
adaption, because it uses information on the test targets derived from k-Reg 
models; whereas, most random testing approaches do not use any information 
about the program or the specification [53]. 

In addition, the ESG-based and the MK-based MBMT approaches are 
modified by balancing them against the k-Reg-based testing approach in terms of 
the test execution effort as described in Section 8.1.4 and Section 8.1.5. This is 
likely to reduce the fault detection effectiveness of the approaches for the sake of 
completing the case studies in a feasible time as discussed in Section 8.1.4, 
Section 8.1.5 and Section 8.3. 

Threats to internal validity. There is no prior work on which type of event-based 
faults are more common than the others in practice. To mitigate this threat, faults 
are generated and seeded randomly, avoiding any bias. To avoid a very large 
number of faults, a fixed number is selected, with half of the faults missing event 
faults and the other half with extra event faults. Also, different m-Reg models for 
m=1,2,3,4 (See Section 8.4) are used to generate faults that are not really targeted 
by a specific approach and that generally become more subtle as m increases. 

During generation of random test sets for each Random(k+1, maxlen), maxlen 
values are bounded from below to guarantee that the related test targets can be 
covered and in reasonable time. Furthermore, there is also an upper bound to 
avoid relatively high test generation and execution efforts. One can argue that the 
upper bound can be increased further. However, the trend observed shows that 
this increase would be mostly in favor of k-Reg-based testing approaches because 
the increase in the number of revealed faults does not seem to compensate for the 
increase in the test execution effort for greater maxlen values. 
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Threats to construct validity. For the sake of being more realistic while discussing 
the effectiveness at fault detection (See Section 8.6.1), the discussion was 
formulated as if the total numbers of faults in the SUCs were not known. 
Therefore, although the conclusions still apply, the calculated values would be 
different if the discussion were held with respect to the number of seeded faults; 
for example, by using the ratio of the number of revealed faults to the number of 
seeded faults. 

Also, only the fault detection rate was used in the comparison of fault 
detection efficiency (See Section 8.6.3), and the effect of the test generation time 
was ignored. This is not a major threat because, unless the system model does not 
change, test sets are generated only once using a specific method. Also, even if 
test generation times were included, the results would be more in favor of k-Reg-
based testing approaches, as suggested by the trends in Table B.1, Table B.2 and 
Table B.3. 
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9 Further Perspectives 

 

In this chapter, further steps are taken along three different directions to broaden 
the research perspectives. These three directions are 

• application of the approach for modeling, testing and analysis of system 
vulnerabilities (based on [34]), 

• application of MBMT using models which are not purely event-based but 
have stronger expressiveness (based on [36][37] and [161]), and 

• extension of the event-based models in different ways (based on [35]). 

For the sake of simplicity and brevity, the discussion in this chapter is mostly 
semi-formal. 

9.1 Modeling, Testing and Analysis of System 

Vulnerabilities 

When observing an interactive human-machine system, desirable and undesirable 
behaviors, or events, are differentiated depending on the expectations of the user 
concerning the system behavior. Desirable events include those related to global 
critical system properties such as reliability, safety, and security. Any deviation 
from the expected behavior defines an undesirable state; the fact that the system 
can be transferred into such a state might be viewed as a vulnerability of the 
system. A vulnerability is often accompanied by threats. Therefore, a 
complementary view of the desirable system behavior is necessary for a holistic 
modeling, analysis, and testing of the system. 

This work uses the term “vulnerability” to refer to any behavior where the 
violation of the requirements of a system attribute, such as safety or security, may 
lead to a significant penalty in terms of cost, damage, or harm. In the case of 
safety, the threat originates from within the system due to potential failures and its 
spillover effects causing potentially extensive damage to its environment. In the 
face of such failures, the environment could be a helpless, passive victim. The 
goal of the system design in this case is to prevent faults that could potentially 
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lead to such failures or, in worst cases, to mitigate the consequences of run-time 
failures should they ever occur. In the case of security, the system is exposed to 
external threats originating from the environment, causing losses to the owner of 
the system. In this case, the environment, typically the user, maybe unauthorized, 
can be malicious or deliberately aggressive. The goal of system design then is to 
ensure that it can protect the system itself against such malicious attacks. 
Although, in this work, the outlined approach is used to test safety aspects, it is 
applicable to other vulnerability attributes like security, etc. 

In the face of such vulnerabilities, testing forms an important part of the 
system development process in revealing and eliminating faults in the system. In 
addition, it continues to play an essential role during the maintenance phase. Due 
to the substantial costs involved in testing, both testability and the choice of tests 
to be conducted become important design considerations. Due to the conflicting 
demands of minimizing the extent of tests and maximizing the coverage of faults, 
it is therefore critically important to follow a systematic approach to identifying 
the test sets that focus on safety, as well as tests that address specific safety 
requirements [117][157]. 

With the above in view, this work proposes an approach where the test design 
can progress hand in hand with the design process, paying particular attention to 
safety. It is based on a formal (rule-based, graphic, or algebraic) representation of 
the system and its environment, potentially including the user. User actions and 
system events in the representation, referred to here as “events” for simplicity, are 
ordered according to the threats posed by the resulting system states. This 
ordering is an integral aspect of the finite state representation, making it possible 
to directly identify the risks associated with each and every functionally desirable, 
and undesirable, event relative to one another. Tests that target safety 
requirements are devised by examining possible traces (sequences) of these events 
exhibiting particular risk patterns. These patterns are represented by regular 
expressions (REs). The undesirable events in them represent human error and 
system failures, while the desirable events include, in addition to functional ones, 
various recovery measures to be undertaken following undesirable events. 

The approach is model-based. It enables an incremental refinement of the 
model and specification, which at the beginning may be rough and rudimentary, 
or even nonexistent. However, the approach can also be deployed in 
implementation-oriented analysis and test in a refined format, for example, using 
the implementation (source code) as a concise description of the system under 
consideration (SUC), that is, as the ultimate specification, and its control flow 
diagram as a state transition diagram (STD) (see also [82][145]). To sum up, the 
approach can be used not only for requirements analysis and validation before 
implementation, but also for analysis and testing of an existing implementation, 
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detecting input/output faults, erroneous internal states, etc., at low levels of 
abstraction. 

A broader objective of this research is to develop a single framework for 
dealing with different system vulnerability attributes, carrying risks of different 
nature and degrees of severity, that is, safety and security, broadly in a similar 
manner, while capturing their fundamental differences by an appropriate 
characterization of the risks involved. This work is a formal, detailed and, 
hopefully, an intuitive introduction to the approach. 

An early version of the proposed approach was introduced in [44][45]. The 
work in [66][42] addresses different vulnerability aspects like user-friendliness 
and safety that have different implications due to potential human error. 
Furthermore, the work also discusses certain concepts related to test generation 
based on event sequence graphs (ESGs). This work uses a special form of regular 
grammars (RGs) (more precisely, k-Regs - Section 4) to discuss and extend the 
concepts and outline concrete algorithms, while using directed graph 
visualizations (or ESGs) and REs as alternative respresentations. Furthermore, it 
focuses on the testability of event-based systems against vulnerabilities (based on, 
for example, safety), and it demonstrates test design that targets vulnerability 
aspects as part of an integrated system development process. 

The remainder of this section is organized as follows. Section 9.1.1 introduces 
different models of the SUC that are equivalent to each other and to a finite state 
automaton (FSA). Section 9.1.2 discusses modeling system functions and 
vulnerability threats, and model-based testing and analysis. The concept of risk 
ordering, introduced in Section 9.1.3 in relation to attributes such as safety, is 
another fundamental concept of the approach and is applicable to other 
vulnerability system attributes as well. In Section 9.1.4, a real-life example is 
given to illustrate the use of risk ordering as the means of: (a) modeling safety 
aspects and (b) designing tests for verifying these properties. 

9.1.1 Models of the SUC 

This work focuses on event-based modeling using k-Regs for representation of the 
user and system behavior. The set of input/output signals (or events) E of a SUC 
can be partitioned into two subsets Eenv and Esys such that 

E = Eenv ∪ Esys and Eenv ∩ Esys=∅, (1)  

where Eenv is the set of environmental events (for example, user inputs) while Esys 
is the set of system signals (for example, responses). The distinction between the 
sets Eenv and Esys is important because the events in the latter are controllable from 
within the system, whereas the events in the former are not subject to such 
control. 
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As already discussed in Section 4, k-Regs are equivalent to RGs. Therefore, 
they are also comparable with finite state automata (FSA) or Myhill graphs [130] 
that are used as computation schemes [102], or as syntax diagrams, for example, 
as used in [105][162] to define the syntax of Pascal; see also event sequence 

concept as introduced in [111]. The difference between the Myhill graphs and k-
Regs is that the symbols, which label the nodes of directed graph visualizations, 
are interpreted not merely as symbols and metasymbols of a language, but as 
operations, or even a sequence of operations, of an event set. 

k-Regs are also comparable to regular expressions (REs) [150]. However, REs 
are more of a declarative nature. This work uses REs for describing the patterns of 
interactivity between the system and its environment, and for identifying system 
states if required. 

A regular expression (RE) R over alphabet (of basis events) d(E) is 
inductively defined as follows (letting L(R) be the language defined by RE R): 

• Base case: Let ∅ be the empty language, ε be the empty string and a be 
any symbol in the alphabet, then 

o The constants ∅ and ε are REs denoting the languages L(∅) = ∅ 

and L(ε) = {ε} respectively. 

o a is an RE denoting the language L(a) = {a}. 

• Inductive case: If R and P are two REs, denoting the languages L(R) and 
L(P) respectively, then 

o R+P, the union of R and P, is an RE denoting the language L(R+P) 

= L(R)∪L(P). 

o R.P, the concatenation of R and P, is an RE denoting the language 
L(R.P) = L(R).L(P). 

o R
*, the closure of R, is an RE denoting the language L(R

*
) = L(R)

* 
and R+

 = R.R
*. 

o (R), is an RE denoting the language L((R)) = L(R). 

Intuitively, an RE can be assumed to be a sequence of symbols a, b, c, ... of an 
alphabet that can be connected by operations 

• sequence (“.” (usually omitted), for example, “ab” means “b follows a”), 

• selection (“+,” for example, “a+b” means “a or b”), and 

• iteration (“*,” Kleene’s Star Operation, for example, 

o “a
*” means “zero or more occurrences of a”; 

o “a
+” means “at least one occurrence of a”). 

For example, RE 

R = (ab(a+c)
+
)
*
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indicates that a is followed by b, leading to ab, which is followed by at least one 
occurrence of either a or c. The entire sequence can be repeated an arbitrary 
number of times. Examples of the generated sequences are: aba, abc, abaaba, 

abaabc but also ε for 0 (zero) occurrence in the sequence. 

9.1.2 Behavioral Patterns of the SUC 

System functions, as well as the threats to a chosen system vulnerability attribute, 
may each be described using two disjoint subsets of strings, 

• one belonging to the language d(L(M)) and 

• another not belonging to d(L(M)), respectively, 

where M = (E, B, K, C, P, S) is a k-Reg. 

Legal state transitions are brought about by desirable events, leading to 
symbol sequences belonging to d(L(M)) and specifying system functions. Illegal 
transitions represent the undesirable events, leading to faulty symbol sequences 
not belonging to d(L(M)), signifying breaches to vulnerabilities. 

Let F to denote the system functions and V the vulnerability threats such that' 

F ⊆ d(L(M)) and V ⊆ d(L(M)) (2)  

where d(L(M))' is the complement of d(L(M)). For testing of event-based systems 
satisfying the assumptions in Section 7, mark start and insert terminal mutants 
discussed in Section 7.1 and Section 7.2 can be used for formulation of V with 
some slight changes. 

Let MMs be the set of all marks start mutants of M selected using the strategy 
defined in Section 7.1 such that the following are additionally performed on each 

Ms(M, e) ∈ MMs. 

• e is marked as finish. 

• All finish terminals except e are marked as nonfinish. 

• All terminals from which e is not reachable are omitted. 

Furthermore, let MIt be the set of all insert terminal mutants of M selected 
using the strategy defined in Section 7.2, such that the following are additionally 

performed on each It(M, e, {(a, e)}, {}) ∈ MIt. 

• All finish terminals except e are marked as nonfinish. 

• All terminals from which e is not reachable are omitted. 

Then vulnerability threats can be formulated as 

V ⊆ (d(L(MMs)) ∪ d(L(MIt))). (3)  

It is important to note that several vulnerability attributes may simultaneously 
apply to a given application. In this case, F will remain the same in the study of 
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every vulnerability attribute, but V will vary from one vulnerability attribute to 
another. To avoid mismatching, the relevant threats to each attribute att will be 
identified as Vatt. 

Depending on the chosen system vulnerability attribute, the strings 
corresponding to vulnerability threats can be grouped in accordance with their 
length n. This assumes that all threats can be unequivocally identified by patterns 
of n consecutive symbols, that is, strings, of E. It is obvious that the grammar M 
can be utilized to test whether the system functions are fulfilled, and/or 
vulnerability threats occur by generating CESs and FCESs, respectively (See 
Section 5.2 and Section 7.3 for more details). 

9.1.3 Ordering the Vulnerability Risks, Countermeasures 

The vulnerability threats constitute only a part of the specification of system 
vulnerability. Such threats are often related to the system state. When a 
representation based on purely events is used, it becomes necessary to refer to 
states indirectly in terms of a subset of the words in L(M), for example, using REs. 
However, contexts (or nonterminals) of the grammar can also be utilized to refer 
to states. Note that a single context corresponds to a single state whereas a single 
state may correspond to multiple contexts. 

Thus, for a given M = (E, B, K, C, P, S), a vulnerability risk ordering relation 

⊑ is defined on C × C as 

⊑ = {(s1, s2)| s1, s2 ∈ C and rl(s1) ≤ rl(s2)} ⊆ C × C (4)  

where rl(s) is the risk level associated with state s. In other words, given two 

states s1 and s2, s1 ⊑ s2 is true if and only if risk level of s1 with respect to the 
chosen system vulnerability is known to be less than or equal to the risk level of s2 
[131]. In this context, risk level quantifies the “degree of the unacceptability” of 
an event on the grounds of hazardousness, that is, exposure to breaches of safety. 

The risk ordering relation ⊑ is intended as a guide to decision making upon 
the detection of a threat, whether internal or external, and on how to react to it. 
The required response to breaches of vulnerability needs to be specified in terms 

of a defense matrix D, which is a partial function from C × V to C. The defense 
matrix utilizes the risk ordering relation to revert the system state from its current 
one to a less, or the least, risky state. In this sense, D is defined as 

D: C × V → C where 

∀ s1, s2, v   (s1, v) ∈ domain(D) and if D(s1, v) = s2 then s2 ⊑ s1. 
(5)  

The above definition expresses the requirement that, should it encounter the 
vulnerability v in the state s1, the system must be brought down to a state s2 which 
is of a lower risk level than s1. The means by which this is brought about is called 
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an exception handler, or a defensive action, which is an appropriate enforced 
sequence of events. If x is a defense action appropriate for the scenario implicit in 
(5) above, then D(s1, x) = s2. The actual definition of the defense matrix and the 
appropriate set X of exception handlers is the responsibility of a domain expert 
specializing in the risks to a given vulnerability. 

In order to ease the construction of the defense matrix, it is possible to make 
use of risk graphs that partially associate risk levels of functional and vulnerability 
states. 

Given M = (E, B, K, C, P, S), and MMs and MIt as defined in Section 9.1.2, The 

risk graph of M is a tuple (Ch, ⊑h), where Ch is the set of holistic states (or 

contexts) and ⊑h is the holistic risk ordering relation defined as follows. 

Ch = C ∪ {c(e)| e is a finish terminal in some G ∈ (MMs ∪ MIt)} and 

⊑h = {(s1, s2)| s1,s2 ∈ Ch and rl(s1) ≤ rl(s2)} ⊆ Ch × Ch. 
(6)  

By making use of the risk graph, one can build and use the defense matrix 
more easily and determine more efficient exception handlers. Of course, while 
creating the risk graph, the defense matrix and the exception handlers, one should 
always consider the underlying semantics of the SUC. 

Finally, the model of an application defended against vulnerabilities is defined 
as 

Md = (M, V, ⊑, D, X), (7)  

where M = (E, B, K, C, P, S) is a k-Reg, V is the set of vulnerability threats, ⊑ is 
the risk ordering relation, D is the defense matrix and X is the set of exception 
handlers. 

A specific benefit of risk ordering in the above framework is that it allows a 
more systematic approach to selection of test cases by focusing on (one or more) 
particular vulnerability attributes. 

9.1.4 Case Study: Railway Crossing 

This case study illustrates the use of the approach in the area of safety critical 
systems, using an example that considers a railway level crossing (Figure 9.1). 

9.1.4.1 SUC 

Railway crossings, found across minor roads outside towns, normally consist of a 
pair of gates and two traffic lights: red and green, and also a railway signaling 
system to control the train movement in the proximity of the crossing, though the 
latter is ignored here as a simplification. Note that in this model the human is a 
part of the system environment, for example, as driver, gate controller, etc. Our 
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holistic approach enables the consideration of the driver’s expected, that is, 
correct, as well as the faulty behavior. Despite its simplicity, the example is 
sufficiently expressive for our purpose. Note, however, that our discussion is 
based on an ordinary familiarity of the application and, therefore, our 
representation may not be quite accurate from a specialist’s point of view. 

 

 

Figure 9.1. Simplified railway crossing. 

 

A 1-Reg model of such a crossing is shown in Figure 9.2. The set of input 
signals (or signal 1-sequences) E is partitioned into the subsets 

• Esys = {r, g, c, o} as system signals and 

• Eenv = {v, t} as environmental events as detected by a system that monitors 
the crossing. 

Here r denotes the event of turning traffic signals to red, g the turning of 
traffic signals to green, c the closing the gate barring vehicle traffic, as well as 
other road users, from using the crossing, o the opening the gate allowing vehicle 
traffic through, t a train passing the crossing, and v for a vehicle using the 
crossing. These events bring about hazardous states posing different risks to road 
users and rail users alike. The nature of these hazards varies from state to state, 
some posing greater threats than others. For example, compared to the safest 
possible state c(r) (traffic lights being red), the state c(o) (an opened gate) carries 
a greater risk since the road users are now free to cross the junction, exposing 
themselves to danger from a passing-by train. Likewise, the state c(t) (a train 
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actually crossing the junction) poses a greater risk than the state c(c) (a closed 
gate), since the latter includes also cases when there is no train within the 
crossing. 

 

S → r c(r) 

c(r) → g c(g) |c c(c) | ε 

c(g) → v c(v) 

c(c) → o c(o) | t c(t) 

c(o) → g c(g) 

c(v) → r c(r) | v c(v) 

c(t) → o c(o) | t c(t) 
 

(a) 1-Reg. (b) Directed graph visualization. 

Figure 9.2. A 1-Reg model of a railway level crossing. 

 

Figure 9.2 also indicates the relative risk levels brought about by the 
occurrence of the respective events. In the diagram, the states posing greater 
threats to the users of the system are placed horizontally to the right of those 
posing relatively lower risks. Note also that, as a simplification, the above 
representation does not include any means to control the movement of trains. It is 
assumes that the system is initialized with a sequence of signals rc. 

9.1.4.2 System Functions and Vulnerability Threats 

As implied by the productions of the 1-Reg in Figure 9.2, the 2-sequences in this 
example are 

rg, rc, gv, co, ct, og, vr, vv, to, tt. (8)  

Also, the complete event sequences (CESs) in any complete cycle of system 
operation can be represented by the following RE 

(rgv
+
)
*
r+((rgv

+
)
*
rct

*
ogv

+
)
*
r = ((rgv

+
)
*
 (ε + rct

*
ogv

+
))

*
r, (9)  

which describes the same behavior as the 1-Reg in in Figure 9.2. The difference in 
the two descriptions lies in the fact that REs are of a declarative nature whereas k-
Regs are of an imperative nature. Thus, sometimes it is beneficial to use REs for 
inline or brief descriptions. 

The faulty 2-sequences are in this case 

rr, ro, rv, rt, gr, gg, go, gc, gt, or, oo, oc, ov,  

ot, cr, cg, cc, cv, vg, vo, vc, vt, tr, tg, tc, tv, (10)  
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which can be obtained using the insert terminal mutants. Note that mark start 
mutants are ignored for this example, because it does not make sense to perform a 
faulty event without properly initializing the system by performing r c (See 
Section 9.1.4.1). 

The 1-Reg in Figure 9.2 (or the RE in (9)) describes the system function F, 
while faulty 2-sequences given above are the system vulnerability threats V posed 
at the junctures corresponding to any matching sub-sequences among event 
sequences that can be generated by the 1-Reg presented in Figure 9.2, for 
example, 

(rgv
+
)
*
r. (11)  

Each faulty 2-sequence in (10) represents the leading pair of signals of an 
emerging faulty behavioral pattern, with the first event being an acceptable one 
and the second one an unacceptable one. Should the first event of any of the faulty 
2-sequence, such as rv in (10), happen to match the last event in any of the event 
sequences that can be generated by such a subexpression, such as (rgv

+
)
*
r in (11), 

then the corresponding pair of the event sequence and the faulty 2-sequence, such 
as 

(rgv
+
)
*
rv, (12)  

which describes, or signifies the occurrence of, a specific form of a faulty 
behavioral pattern. 

Of course, such sequences can easily be generated by creating a mutant for 
each faulty 2-sequenceas described in Section 9.1.2, and by selecting words from 
the languages described by these mutants. Intuitively, this corresponds to the 
concatenation of the corresponding pairs of event sequences and faulty 2-
sequences in the appropriate manner. 

Note that it is easy to represent all event sequences ending with terminal r (as 
partially intended in (11) above) using a 1-Reg. Since derivations of the form S 

⇒
*
 xr c(r) (x ∈ K

*
) generate all such sequencess, it makes sense to simply refer to 

the set of all such sequences using context c(r). Furthermore, the required CFESs 
can be formulated by mutants in an easier and a more precise way. For example, 
an insert terminal mutant of the 1-Reg in Figure 9.2 is shown in Figure 9.3; it 
contains all forms of faulty behavior patterns induced by the use of faulty 2-
sequence rv. 

Naturally, the words in the language described by such a mutant do not belong 
to the language described by the original 1-Reg. More precisely, a insert terminal 
mutant selected as discussed in Section 9.1.2 describes all possible FCESs ending 
with a specific faulty 2-sequence. Furthermore, one can also use unique contexts 
of such mutants for representation of vulnerability states. 
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S → r c(r) 

c(r) → g c(g) |c c(c) | ε | v2 c(v2) 

c(g) → v c(v) 

c(c) → o c(o) | t c(t) 

c(o) → g c(g) 

c(v) → r c(r) | v c(v) 

c(t) → o c(o) | t c(t) 

c(v2) →→→→ ε 

g

t

[

]

v

r o

c

 

(a) Insert terminal mutant. (b) Directed graph visualization. 

Figure 9.3. An insert terminal mutant of the 1-Reg in Figure 9.2. 

 

Table 9.1 presents the vulnerabilities relevant to the model given in Figure 9.2. 
In spite of its simplicity, the interpretations of the conjunctions of the appropriate 
pairs (event sequence, faulty 2-sequence) demonstrate the effectiveness of the 
approach in revealing the safety-critical cases. For completeness, and the sake of 
clarity, to represent event sequences, both contexts and REs that lead to these 
contexts in the1-Reg are included. 

9.1.4.3 Risk Graph and Defense Mechanism 

A graph of the form given in Figure 9.4 may be more informative about the 
relative risk levels. Each node in this risk graph is a context that represents any 
state belonging to the complete state space which includes the functional states 
(contexts of the 1-Reg model) and the vulnerability states (additional contexts of 
the mutant models). Each context can be used to signify a state unambiguously; 
however, a state may correspond to multiple contexts. A directed arc running from 

a node s1 to another node s2 in Figure 9.4 suggests that to s1 ⊑ s2; that is, the risks 
posed by s2 is known to be not lower than the risks posed by s1 (the risks posed by 
s2 can be at the same level as, or exceed, the risks by s1). Note that the use of 
upward running arcs in Figure 9.4 is to signify that the state lying above (in the 
vertical direction) poses a greater risk than the one lying below. 

As mentioned above, arcs and nodes drawn in solid lines refer to the normal 
functional behavior and functional states, while those in dashed lines refer to 
undesired behavior and vulnerability states. To avoid drawing a spacious graph, 
some vulnerability states are merged in Figure 9.4; that is, each dashed node in the 
risk graph corresponds to a subset of vulnerability states. Therefore, the dashed 
states are not named explicitly. Instead, REs are given to identify them. 
Furthermore, as indicated by Table 9.1, there can be some FCESs that cause no 
effective change in the state, for example, in issuing a signal to close the gate 
when it is already closed. Such transitions have been termed as futile transitions in 
Figure 9.4 and are not considered any further. 
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Table 9.1. Level Crossing Vulnerabilities, Threat Levels, and Possible Defense Actions 

Event Sequence 

(Column 1) 

Faulty  

2-sequence 

(Column 2) 

Interpretation 

(Column 3) 

Comment 

(Column 4) 

Defense 

Action 

(Column 5) 

ro Gate opens while lights are set to 
red (No effective state change is 
possible except immediately after 
initialization when the gate was 
closed). 

Ignored – 

rt A train arrives prematurely. Danger rc 

((rgv
+
)

*
+ 

(rgv
+
)

*
rct

*
ogv

+
))

*
r 

 

c(r) 

rv Vehicle traffic passes through red 
lights. 

Danger * 

cr Lights to revert to red, though 
already red. 

Ignored – 

cv Vehicle traffic is attempting to 
cross the closed gate and the red 
lights. 

Danger * 

(rgv
+
)

*
rc 

 

c(c) 

cg Lights turn green from red while 
the gate is closed. 

Danger * 

tr Lights to revert to red while 
already in red. 

Ignored – 

tc Gates to close while already 
closed. 

Ignored – 

tv Vehicle traffic crosses as trains 
pass. 

Potential 
accident 

None 

(rgv
+
)

*
rct

+ 
 

c(t) 

tg Lights turn green as trains pass. Danger  

or Lights to revert to red while 
already in red. 

Ignored – 

oc Gates to close while already 
closed. 

Ignored – 

ot A train arrives after the gate 
opened. 

Danger rc 

(rgv
+
)

*
rct

*
o 

 

c(o) 

ov Vehicle traffic crosses as soon as 
the gate opened but before the 
lights change to green. 

Danger * 

go Gates to open though already 
opened. 

Ignored – 

gc Gates to close after the lights turn 
green. 

Annoyance  

(rgv
+
)

*
rct

*
og +  

rg  
 

c(g) 
gt A train arrives soon after the 

lights turn green. 
Danger rc 

vo Gates to open though already 
opened. 

Ignored – 

vc Gates to close while vehicle 
traffic moving. 

Danger vr 

vt A train arrives amidst vehicle 
traffic. 

Potential 
accident 

rc 

(rgv
+
)

*
rct

*
ogv

+
 +  

rgv
+ 

 

c(v) 

vg Lights to turn green though 
already green. 

Ignored – 

* Any defense action is outside the scope of the current model due to lack of features for controlling train movements. 
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c(r)

c(g)

c(o)

c(c)

c(v) c(t)

(rgv+)*rct*og
(lights in green; gate opened)

(rgv+)*rct*ogo
(futile transition)

(rgv+)vc
(early gate closure)

(rgv+)*rct*ov
(early vehicle

traffic crossing)

(rgv+)*
(rgv+)*r
(vehicles crossing

red light)

cv
rv,

rgv+o, rgv+g
(futile transition)

(rgv+)*rct*ogv
(gate closure from

open; light in green)

rgv+
(lights in green; gate opened;

vehicles passing)

(rgv+)*rvt+
(lights in red; gate closed;

train passing)

(rgv+)*rct*o
(lights in red; gate opened;

trains, if any, passed)

(rgv+)*r
(lights in red)

(belated train crossing)
(rgv+)*rctot

(rgv+)*rc
(lights in red; gate opened;

trains, if any, passed)

(futile transition)
(rgv+)*ro

(rgv+)*r
(futile transition)

cr

(potential accident)
rgv+t,(rgv+)*rct*ogt

(dangerous train crossing)
(rgv+)*rct*ogt

(premature train crossing)
(rgv+)*rt

(rgv+)*rcg
(lights turning green

from red; gate closed)

(rgv+)*rc
(rgv+)*rc

(futile transition)
t+c
t+r,

(rgv+)*rct*
(rgv+)*rct*
(futile transition)

oc
or,

 

Figure 9.4. Risk graph of the railway crossing, covering both the functional and the vulnerability 
states. 

 

Having identified potential vulnerabilities of safety concerns, it is possible to 
provide measures that counteract them. This is intended by the concept of defense 

matrix and exception handlers introduced in Section 9.1.3. In this connection, an 
attempt has been made in Table 9.1 to propose the defensive actions that may be 
taken, although due to the limited scope of our model these actions address only 
partially the potential vulnerabilities. This is because all defensive actions at the 
disposal of the current model are limited to closing the gate or turning the traffic 
lights to red, thus affecting only the vehicle traffic. A richer model with features 
for modeling signaling mechanisms would have allowed means to address other 
vulnerabilities, namely, those that can be avoided or mitigated by controlling the 
train movements. In a complete Table 9.1 in these respects, the event sequences 
listed under Column 5 would be equivalent to the set of the exception handlers X, 
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while Columns 1, 2, and 5 would amount to a definition of the required defense 
matrix implicitly, provided that the data in these columns satisfies the condition in 
(5). Note that Column 5 lists the exception handlers, and Columns 1 and 2 give 
the domain of the defense matrix (function); that is, a context c(a) in Column 1 

represents set of all possible sequences of the form xa such that S ⇒
*
 xa c(a) (x ∈ 

E
*
) and an ab in Column 2 is a faulty 2-sequence. Furthermore, the concatenation 

of Columns 1, 2, and 5 in the appropriate manner (that is, by dropping common 
signals as appropriate) leads to the context representing the safe state aimed by the 
defense matrix as a result of invoking the corresponding exception handler [116]. 

9.1.4.4 Testing Safety Issues 

The testing can now be worked out as defined in Section 5.2 and Section 7.3; the 
CES and the FCES can be systematically constructed ans used to test the system 
for desirable and undesirable behaviors. 

As for the railway level crossing, actual testing of the application in real life 
for safety issues cannot be undertaken; firstly, it places human life at risk, 
secondly, it is impractical on the grounds of costs and, thirdly, it is unnecessary. It 
is quite hard to run the system with all the test inputs and observe what happens. 
As an example, the test input (12) represents the event that the vehicle traffic 
passes through the red lights, which cannot be realized as a real-life experiment. 
Furthermore, in order to generate a complete test case, a meaningfully reactive 
controlling system is needed, which is outside the scope of our current model, 
given the 1-Reg in Figure 9.2. Nevertheless, even this simple approach is useful in 
that it makes such dangerous behaviors explicit (visible) and highlights the 
reactions required of the controlling system in response to such inputs. Thus, it is 
evident that 1-Reg model in Figure 9.2 can be used to simulate all potential test 
scenarios. All what is required is the proper use of the concepts defined in 
Sections 9.1.1, 9.1.2 and 9.1.3 by following the identical steps outlined above. 

To avoid unnecessary details, the results of the analysis to systematically 
cover all faulty 2-sequences using the mutants of the 1-Reg in Figure 9.2 are 
summarized. It appears that following REs are of particular interest when dealing 
with system vulnerabilities: 

(rgv
+
)
*
r, (rgv

+
)
*
rc, (rgv

+
)
*
rct

+
, (rgv

+
)
*
rct

*
o, 

(rgv
+
)
*
rct

*
og, (rgv

+
)
*
rct

*
ogv

+
, (rgv)

*
rct

*
ogv

+
r (13)  

These REs represent the event sequences which are possible prefixes that can 
be constructed by analyzing the expression (9). The test inputs can now be 
constructed as described in the last section, for example, rgvrv which can be 
generated as an instance of RE (rgv

+
)
*
rv (11), which is extended from the sub RE 

in (11) of the RE in (9). 
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9.1.5 Conclusion 

This section aims to extend, refine, and formalize event-based testing approaches 
based on the previous works [66][25][42][44][45] for modeling, testing and 
analysis of system vulnerabilities. The approach takes not only the desired, but 
also the undesired behaviors into account. Thus, a holistic view concerning the 
complete behavior of the system is preserved, which includes not only functional 
behavior but also a range of system vulnerabilities addressed by the attributes like 
safety, security, usability, etc. Incorporation of both the desired and undesired 
features of the system in the model allows a practical way to realize the “design 
for testability” in software design – a concept initially introduced in the seventies 
[168] for hardware. The degree of undesirability is represented in the form of a 
risk ordering relation – an expression of relative levels of risks posed by 
hazardous states. This allows targeting the design of tests at specific system 
attributes. 

The key aspects of this work are (a) the extension of the previous approach by 
the use of mutant models which enable more precise and thorough handling of the 
faults, (b) the use of mutant selection strategies that increase the efficiency by 
reducing the number of generated mutants and test cases, and (c) the formalization 
of the concepts using a notation which is better suited for event-based testing. 

The complete framework can be based on the concept of k-Regs. Since the 
approach relies on simple event-based modeling, it can be adapted in other 
software modeling approaches and tools such as statecharts [87][88] and UML 
[133][70]. This may require further research into modification or extension of the 
algorithms based on formal definitions of the new models. For example, one may 
need to consider particularly the problems related to state explosion, hierarchy, 
and concurrency [152][147], as well as the semantics of these new models. A 
major benefit of using models which have simple semantics is that they have a 
greater degree of analyzability. 

However, keeping the model simple is also a limitation, because it limits the 
expressiveness. Therefore, the presented model can only make an approximation 
to the actual behavior of the system in some cases. Although, this can be 
considered as a simplification to reduce the testing costs in practice, the extension 
of the introduced concepts to more expressive models is a possible future 
research. 



9 Further Perspectives 

 

136 

9.2 Model-Based Mutation Testing Using Different 

Types of Models 

It is possible to adapt MBMT approach using different models. This section 
demonstrates two such exemplary adaptations using pushdown automata (PDA) 
and place/transition nets (PNs). 

9.2.1 Model-Based Mutation Testing Using Pushdown 

Automata 

Most of work on MBMT makes use of regular models such as FSMs, ESGs and 
RGs, which represent regular (type-3) languages in Chomsky hierarchy. However, 
such models can hardly represent the features whose behavior depends on 
previous states of the software, as exemplified in the following. 

• Some software features save interim results and invoke other features. 
After completing the invoked features, they determine their subsequent 
behavior based on not only the results returned from the invoked features 
but also the interim results. 

• Most software includes the feature to cancel recent operations and 
subsequently go back to the previous state, which is generally known as 
undo [159][36][37]. 

This section proposes an alternative MBMT framework using PDA that relate 
to context-free (type-2) languages. The main difference of a PDA from a 1-Reg 
(or an FSA) is that it contains a stack as the memory to keep the track of certain 
information related to the computation and, thus, PDA are more expressive. 

9.2.1.1 Basic Notions 

A pushdown automata (PDA) is a tuple M = (S, E, G, T, S0, Z0, F) where 

• S is a finite set of states (or state alphabet), 

• E is a finite set of events (or event alphabet), 

• G is a finite set of stack symbols (or stack alphabet), 

• T: S × E∪{ε} × G → U (U ⊆ S × G
* is finite) is the transition function (ε is 

the empty string), 

• S0 ∈ S is the initial state, 

• Z0 ∈ G is the initial stack symbol, and 

• F ⊆ S is the set of final states. 
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Transition function T receives as input a triple (p, a, X), where p is the current 
state, a is the event received in the current state, and X is the topmost stack 
symbol. The output of T is a finite set of pairs (q, w), where q is the new state and 
w is the string of stack symbols which replaces X at the top of the stack. Thus a 
transition can be represented by 5-tuple (p, a, X, q, w). A read operation occurs if 

w = X, a pop operation is performed if w = ε and Y is pushed onto the stack if w = 

YX. Also, a PDA is deterministic, if it satisfies the following properties. 

• |T(p, a, X)| = 1 for each p ∈ S, a ∈ E∪{ε} and X ∈ G. 

• For each p ∈ S and X ∈ G, if T(p, ε, X) ≠ ∅ then T(p, a, X) = ∅ for every 

a ∈ E. 

In this section, the PDA models used satisfy the following properties. (1) They 

are deterministic (with no ε-transitions). (2) G-{Z0} ⊆ S. (3) Every state is 
reachable from S0 and a final state is reachable from each state. 

Figure 9.5 shows an example PDA where S = {1, 2, 3, 4}, E = {a, b, c, d}, 
there are ten transitions, G = {0, 2, 3}, S0 = 1, Z0 = 0 and F = {4}. For example, 
when the PDA receives event b in State 3, it performs transition labeled by 2/3:2, 

2, that is, (3, b, 2, 2, 3:2). 

 

1
a, 0/0

2

b, 0/2:0
b, 2/2:2
b, 3/2:3
d, 3/ε

c, 2/2
d, 2/ε c, 3/3

b, 2/3:2
c, 2/2

3

4
 

Figure 9.5. An example PDA. 

 

A PDA has a stronger expressive power when compared to many other formal 
models. For example, a model which represents a regular (type-3) language in 
Chomsky hierarchy, results in an infinite state space while modeling a behavior 
represented by a PDA, unless the stack size is restricted (Since the states need to 

be defined as elements in S × G
* in order to represent the equivalent behavior). 

Even if the stack size is strictly restricted, the model may become too large to 
work with. Of course, models like UML state machine diagrams and UML 
profiles with action languages also have stronger representational powers [133]. 
However, they include informal representations or specific issues of programming 
languages, and thus need further formalizations or abstractions, respectively. 
More importantly, in their informal representation, they do not enable to use 
results of automata theory, which are very useful for test generation. 
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MBT aims to use simple models and increase the efficiency of the test 
process. PDA models are indeed simple in structure. Nevertheless, they can be 
applied to complex, real-life systems. This is feasible, because some of the real-
life features are simplified; that is, measures are taken to abstract irrelevant to 
focus on relevant. This is common in MBT and explains the success of the widely 
accepted MBT techniques using simple, easy-to-understand approaches to be 
applied to practical systems. Here, more intrinsic features are captured using 
stronger, context-free PDA models, making the approach even more powerful 
than and, in certain cases, preferable to the use of regular models of simpler 
structure which are already applied to actual software system. 

9.2.1.2 Mutation Operators 

Similar to the discussion in Chapter 6, marking, insertion and omission mutation 
operators are defined for PDA. The combined and repeated applications of these 
operators can be used to transform a given PDA to any other PDA with the same 
event and stack alphabets. 

Marking Operators. Given a PDA M = (S, E, G, T, S0, Z0, F). 

• Mark state initial (Msti) operator marks an existing state in M as the start 
state and the old start as a non-start. 

• Mark state final (Mstf) operator marks an existing state in M as a final 
state. 

• Mark state nonfinal (Mstnf) operator marks an existing final state in M as 
a non-final state. 

• Mark stack symbol initial (Msyi) operator marks an existing stack symbol 
in M as the initial stack symbol. Old initial symbol is marked as non-
initial. 

Insertion Operators. Given a PDA M = (S, E, G, T, S0, Z0, F). 

• Insert transition (Itr) operator adds a new transition t to M. If t = (q, a, X, 

p, w). It is assumed that q,p ∈ S, a ∈ E∪{ε}, X ∈ G, w ∈ G
* and (p, w) ∉ 

T(q, a, X). An insertion may also generate a non-deterministic PDA. 

• Insert state (Ist) operator adds a new state q to M together with transitions 

t1, …, tk. State q is not reachable from another state in M if no incoming 
non-loop transition to q is inserted. Furthermore, no state in M is reachable 
from state q if no outgoing non-loop transition from q is inserted. 

Omission Operators. Given a PDA M = (S, E, G, T, S0, Z0, F). 

• Omit transition (Otr) operator deletes an existing transition t from M. If t 

= (q, a, X, p, w), it is assumed that q,p ∈ S, a ∈ E∪{ε}, X ∈ G, w ∈ G
* and 



9.2 Model-Based Mutation Testing Using Different Types of Models 

 

139 

(p, w) ∈ T(q, a, X). It is possible that an omission may leave some states 
with no incoming or outgoing transitions. 

• Omit state (Ost) operator deletes an existing state q together with all the 
transition ingoing to and outgoing from q. After the deletion, some states 
in M may lose all their incoming or outgoing transitions. 

Sometimes the mutation operators discussed above are too vague to use. To 
generate some specific faulty behavior, one needs only to modify or corrupt the 
existing transitions. In this way, the use of higher order mutations, which results 
in a huge number of mutants, can also be avoided. Thus, mutation operators that 
are relatively more precise and more suitable for PDA-based mutation testing or 
negative testing are defined as replacement mutation operators. The operators can 
also be seen as the controlled combinations of marking, insertion and omission 
mutation operators. They introduce specific faults into PDA models by corrupting 
the transitions without modifying the sets of states, events and stack symbols. 

Write Replacement Operators. Given a PDA M = (S, E, G, T, S0, Z0, F), write 

replacement (Rw) operator replaces the string to be put into the stack by the given 

string w’; that is, for t = (p, a, X, q, w), Rw(t, w’) = (p, a, X, q, w’) where w’∈ G
*
-

{w}. This operator can be performed in 4 different ways. 

• Replace with read (Rw-read) operator replaces the stack operation 
associated to transition t with a read operation; that is, for t = (p, a, X, q, 

w), Rw-read(t) = (p, a, X, q, X). Note that the operator has no effect if w = 

X; that is, the operation is already a read operation. Therefore, this operator 
should only be performed on transitions where a non-read operation 
occurs. 

• Replace with push (Rw-push) operator replaces the stack operation 
associated to transition t with a push operation. If the operation is already a 
push operation, a different string is pushed onto the stack. In other words, 

if t = (p, a, X, q, wX) and w ∈ G
*
-{ε}, Rw-push(t, w’) = (p, a, X, q, w’X) 

for some given w’ ∈ G
*
-{ε, w}. Otherwise, Rw-push(t, w’) = (p, a, X, q, 

w’X) for some given w’ ∈ G
*
-{ε}. 

• Replace with pop (Rw-pop) operator replaces the stack operation 
associated to transition t with a pop operation; that is, for t = (p, a, X, q, 

w), Rw-pop(t) = (p, a, X, q, ε). Note that this operator has no effect if w = 

ε; that is, the operation is already a pop operation. 

• Replace with pop-push (Rw-poppush) operator replaces the stack 
operation associated to transition t with a pop followed by a push 
operation. More precisely, for t = (p, a, X, q, w), Rw-poppush(t, w’) = (p, 

a, X, q, w’) for some given w’∈ G
*, where w’ ∉ {ε, w’’X} for some w’’ ∈ 

G
*. Note that if w’ = ε, only a pop operation is performed, and if w’ = 

w’’X for some w’’ ∈ G
*, either a read or a push operation is performed. 
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Read Replacement Operators. Given a PDA M = (S, E, G, T, S0, Z0, F), read 

replacement (Rr) operator replaces the symbol on the top of the stack by the 
given symbol X’; that is, for t = (p, a, X, q, w), Rr(t, X’) = (p, a, X’, q, w) where 

X’∈ G-{X}. This operator can also be performed in different ways. 

• Replace with initial stack symbol (Rr-init) operator replaces the symbol 
read from stack in transition t with the initial stack symbol Z0; that is, for t 
= (p, a, X, q, w), Rr-init(t) = (p, a, Z0, q, w). Note that the operator has no 
effect if X = Z0; that is, top symbol is already initial stack symbol. 

• Replace with new stack top (Rr-top) operator replaces the symbol read 
from stack in transition t with the new stack top; that is, for t = (p, a, X, q, 

w), where w = Yw’, w’ ∈ G
* and Y ∈ G, Rr-top(t) = (p, a, Y, q, w). This 

operator converts the operation in transition t to a push operation. 

Therefore, it is not applicable when a pop operation occurs; that is, w = ε, 
and has no effect if a push operation is performed; that is, Y = X. 

• Replace with another stack symbol (Rr-another) operator replaces the 
symbol read from stack in transition t with a stack symbol other than initial 
stack symbol or the new stack top. More precisely, let t = (p, a, X, q, w): If 

w = ε, Rr-another(t, X’) = (p, a, X’, q, ε) for some given X’ ∈ G-{Z0}. 

Otherwise, w = Yw’ for some w’ ∈ G
* and Y ∈ G, Rr-another(t, X’) = (p, 

a, X’, q, w’Y) for some given X’ ∈ G-({Z0}∪{Y}). 

Event Replacement Operator. Given a PDA M = (S, E, G, T, S0, Z0, F), event 

replacement (Re) operator replaces the event in a transition by another event; that 

is, for t = (p, a, X, q, w), Re(t, b) = (p, b, X, q, w) where b∈ E∪{ε}-{a}. 

Source Replacement Operator. Given a PDA M = (S, E, G, T, S0, Z0, F), 
source replacement (Rs) operator replaces the source state in a transition by 

another state; that is, for t = (p, a, X, q, w), Rs(t, s) = (s, a, X, q, w) where s∈ S-

{p}. 

Destination Replacement Operator. Given a PDA M = (S, E, G, T, S0, Z0, F), 
destination replacement (Rd) operator replaces the destination state in a transition 

by another state; that is, for t = (p, a, X, q, w), Rd(t, s) = (p, a, X, s, w) where s∈ 

S-{q}. 

Figure 9.6 shows an example mutant of the PDA given in Figure 9.5, where 
transition (3, c, 2, 4, 2) is inserted. 

9.2.1.3 Test Generation 

N-switch transition coverage (fixed N≥0), which is developed based on the 
coverage for finite state machines [55], can be used to generate positive test cases 
from a given PDA. Its measuring object is a sequence of N+1 successive 



9.2 Model-Based Mutation Testing Using Different Types of Models 

 

141 

transitions containing stack top part (that is, some symbols on the top of the 
stack). More precisely: 

A. The length of the transition sequences to be covered is N+1 (or less if the 
transition sequences start from an initial state). 

B. The length of the stack top part to be covered is N. 

If the following condition is used in addition to A and B, the coverage 
criterion is called N-switch faulty transition coverage (fixed N≥0). 

C. At least one faulty transition appears in each transition sequence. 

 

1
a, 0/0

2

b, 0/2:0
b, 2/2:2
b, 3/2:3
d, 3/ε

c, 2/2
d, 2/ε c, 3/3

b, 2/3:2

3

4

c, 2/2

 

Figure 9.6. An example mutant of the PDA in Figure 9.5. 

 

When N-switch faulty transition coverage criterion is satisfied, a test engineer 
can have the confidence that not only a suspicious operation is itself working 
correctly but also it is working correctly in the contexts induced by transition 
sequences where previous and following operations are also included. As the 
value of N gets larger, test engineers tend to have higher confidence in software 
quality, but then the size of the measuring objects (that is, the size of the test 
cases) also becomes larger. 

Algorithm 9.1 outlines the steps to systematically generate test cases to satisfy 
N-switch faulty transition coverage for a given mutant PDA, which contains at 
least one faulty transition. 

Algorithm 9.1 is developed based on depth-first search in directed graphs. It is 
obvious that a set of measuring objects is a subset of search objects. When a 
search object includes a faulty transition, it is identified as a measuring object. 
Covering all the search objects is indispensable for finding all the measuring 
objects since some measuring objects do not become executable unless specific 
search objects are previously executed. Consequently, it runs in O(|S| 

(|T|/|S|)
(N+1)

) worst-case time, where |S| is the number of states, |T| is the number 
of transitions and N is from N-switch coverage. Also, it has a space complexity of 
O(|S| (|T|/|S|)

N
). 
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Note that one can obtain positive test cases that satisfy N-switch transition 
coverage when Algorithm 9.1 is applied without Step 6 to an original PDA model. 

 

Algorithm 9.1. PDA-Based Negative Test Generation 

  Step 1. Set the initial state as the current state, and begin to search the PDA. 
  Step 2. Select an executable outgoing transition in the current state. 
   If the execution of the selected transition results in the execution of a new search 

object, it is executed and is added to the test case under construction. Here a search 
object is a sequence of successive transitions with the stack top part that satisfies A 
and B given in Section 9.2.1.3. 

   If the selected transition does not result in a new search object, select another 
transition. 

  Step 3. Repeat step 2 until no new search object can be found. 
  Step 4. If there is a transition that is not selected in Step 2 (that is, a transition that has a 

possibility of deriving a new search object), backtrack to a previous state that has such a 
transition. 

  Step 5. Repeat from Step 2 to Step 5 similarly. 
  Step 6. If there is a test case that includes no measuring object, or there is a test case in 

which all the measuring objects are included in another test case, eliminate such a test case 
in order to derive a final set of test cases. 

 

 

Test case under constructionSearch path

(1, a, 0, 2, 0)

with the stack top 0

(1, a, 0, 2, 0)→(2, b, 0, 3, 2:0)

with the stack top 2

(2, b, 0, 3, 2:0)→(3, c, 2, 4, 2)

with the stack top 2

select (2, b, 0, 3, 2:0)

select (3, c, 2, 4, 2)

(3)

(3)(4)

(5)

(3)

(3)

(4)

(2, b, 0, 3, 2:0)→(3, b, 2, 2, 3:2)

with the stack top 3

backtrack 

select (3, b, 2, 2, 3:2)

(1, a, 0, 2, 0)

(2, b, 0, 3, 2:0)

(3, c, 2, 4, 2)

→
→

Test case No.1 Test case No.2

(5)

(1, a, 0, 2, 0)

(2, b, 0, 3, 2:0)

(3, b, 2, 2, 3:2)

→
→

→

copy
select (1, a, 0, 2, 0)(2)

start from the initial state 1 (1)

(5)

(2)

→

(5)

→

 

Figure 9.7. Example test case generation from the mutant PDA in Figure 9.6. 

 

An example of test case generation from Figure 9.6 is shown in Figure 9.7. 
The nodes of the search path are search objects. Also, (1), (2), (3), (4) and (5) 
correspond to Steps 1, 2, 3, 4 and 5 of Algorithm 9.1, respectively. 
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Table 9.2. Overview of Test Generation from the PDA in Figure 9.5 and Figure 9.6 

Number of 

Search/Measuring Objects 
Number of Test Cases 

Average Length of Test 

Cases N 

Positive Negative Positive Negative Positive Negative 

0 10 / 10 7 / 1 3 1 7.3 5.0 

1 29 / 29 11 / 3 10 3 11.0 5.0 

2 99 / 99 18 / 4 37 4 25.8 6.0 

3 412 /421 29 / 8 171 8 85.7 7.3 

4 1708 / 1708 44 / 10 714 10 364.3 8.2 

 

Table 9.2 shows the overview of positive and negative test case generation 
from Figure 9.5 and Figure 9.6, respectively. As N becomes larger, the number of 
test cases increases significantly. For positive test cases, this increase is in general 
exponential. Therefore, in testing practice, N-switch based coverage criteria are 
used by selecting relatively small values for N to keep the overall testing process 
efficient and scalable. 

9.2.2 Model-Based Mutation Testing Using 

Place/Transition Nets 

PNs are also alternative models which can be used for MBMT. A PN is a kind of 
Petri net [140]; it is suitable to formally represent the behavior of concurrent 
software. PNs are already used for generation of positive test cases; they tend to 
yield too many test cases due to the large state space [160]. 

Alternatively, it is possible to adapt MBMT approach by defining fault states 
and generate negative test cases to cover these states. In this way, test generation 
over large state space can be avoided and discriminating test cases can be 
generated focusing on only specific fault states rather than covering the whole 
state space. To make this approach useful, a meaningful selection of mutants is 
quite important Thus, in addition to coverage criteria for adequacy of test cases, 
metrics for evaluating the mutant characteristics are also considered. 

The approach introduced in this section differs from the one introduced by 
Fabbri et al. [72] in which the mutation operators are based on the fault model and 
fault classes introduced by Chow [55] for finite state machines. The approach 
discussed here makes use of the mutation operators that are based on two basic 
operators: insertion and omission as introduced by Belli et al. [40]. Furthermore, 
mutants are used to generate test cases for testing of the SUC, not for adequacy 
evaluation of given test sets. 
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9.2.2.1 Basic Notions 

The structural elements of a PN are places, tokens, arcs and transitions. A place 
corresponds to a state of a component. A token corresponds to some kind of 
resource necessary for execution. An arc and a transition correspond to execution 
of a function. A state is represented as a marking, which is an array of the 
numbers of tokens each place contains. Figure 9.8 shows a simple example of a 
PN, which is a model of the producer-consumer problem. The PN contains six 
places (p1, p2, …, p6) and four transitions (t1, t2, t3, t4). p2, p4 and p6 contain a token 
individually, and therefore the initial marking is described as [0,1,0,1,0,1]. 

 

p1

p6

p3

p2

p5

p4

t1 t2 t3 t4

Producer

Buffer

Consumer

full

empty

produced

ready to produce

ready to consume

consumed

 

Figure 9.8. A PN of the producer-consumer problem. 

 

A fault state in a PN is a principal fault and corresponds to a state that should 
not be reached in actual use. All fault states do not need to be defined 
comprehensively; only the principal ones should be defined. In Figure 9.8, fault 
states are determined as [0,1,1,1,0,1], [0,1,1,1,1,0], [1,0,1,1,0,1] and [1,0,1,1,1,0], 
since an incorrect state of the buffer can cause over-production or over-
consumption. 

 

p1

p6

p3

p2

p5

p4

t1 t2 t3 t4

full

empty

produced

ready to produce

ready to consume

consumed
 

Figure 9.9. An effective mutant of the PN in Figure 9.8. 
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Mutation operators are applied to PN models to inject faults and to create 
mutants. However, not all mutants are useful during testing. Therefore, one needs 
to use some additional methods to select effective mutants that are, for example, 
not equivalent to another mutant PN or to the original PN and include at least one 
fault state. An effective mutant of Figure 9.8 is given in Figure 9.9. Also, Figure 
9.10 shows a non-effective mutant. Evaluation of effectiveness is performed using 
reachability graphs generated from mutant PNs. 

 

p1

p6

p3

p2

p5

p4

t1 t2 t3 t4

full

empty

produced

ready to produce

ready to consume

consumedt5
 

Figure 9.10. A noneffective mutant of the PN in Figure 9.8. 
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Figure 9.11. Reachability graph of the mutant in Figure 9.9. 
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A finite state machine which contains all the reachable markings in a PN is 
called a reachability graph. If the number of tokens increases infinitely, it is 
expressed by a symbol in the related markings in order to make the state space 
finite. As shown in Figure 9.11 and Figure 9.12, the mutant PNs in Figure 9.9 and 
Figure 9.10 are transformed into reachability graphs, respectively. The mutant in 
Figure 9.11 is called effective since its reachability graph includes all the fault 
states determined above. The effectiveness of mutants is evaluated based on the 
metrics introduced in Section 9.2.2.3. 
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Figure 9.12. Reachability graph of the mutant in Figure 9.10. 

 

A negative test case is called effective if it exercises a faulty behavior. The 
effectiveness of negative test cases is evaluated based on the metrics introduced in 
Section 9.2.2.4. 

Based on the notions defined above, MBMT approach introduced in this study 
consists of the following five steps. 

1. Construct a PN that represents the correct behavior of the SUT based on 
system specification. 

2. Define fault states of SUT as markings in the PN. 

3. Generate mutant PNs. 

4. Generate the reachability graphs. 

5. Select effective mutants and generate negative test cases. 
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9.2.2.2 Mutation Operators 

Insertion and omission mutation operators are used for generation of PN mutants. 
They are are briefly described as follows. 

Since a PN consists of tokens, arcs, transitions and places, one can define 
insertion operators as follows. 

• Insert token (Ito) operator adds a token onto a place. An example is shown 
in Figure 9.8. 

• Insert arc (Ia) operator adds an arc. 

• Insert transition (Itr) operator adds a transition and arcs that connect this 
transition to existing places. Thus, insert arc operator is also used during a 
transition insertion. An example is given in Figure 9.9. 

• Insert place (Ip) operator adds a place and arcs that connect this place to 
existing transitions. Thus, arc insertions are also performed during a place 
insertion. 

Similarly, in a PN, one can omit tokens, arcs, transitions or places. Thus, 
omission operators are defined as follows. 

• Omit token (Oto) operator deletes a token from a place 

• Omit arc (Oa) operator deletes an arc. 

• Omit transition (Otr) operator deletes a transition and arcs connected to 
this transition. Thus, arc omission operations are performed. 

• Omit place (Op) operator deletes a place and arcs connected to this place. 
If the place initially has some tokens, they are also are omitted. Thus, a 
place omission includes the use of omit arc and omit operators. 

9.2.2.3 Mutant Evaluation Metrics 

Various mutants can arbitrarily be generated by using the mutation operators in 
Section 9.2.2.2. However, not all the generated mutants are effective. Thus, in 
order to generate effective negative test cases in MBMT, one needs to distinguish 
effective mutants from the ineffective ones. In the following, some metrics are 
introduced to evaluate the characteristics of mutants to ease the selection of 
effective mutants. 

Fault state inclusion ratio (FSIR) indicates the percentage of fault states 
included in a mutant. With increasing FSIR, the mutant becomes more effective, 
since its ability to generate negative test cases increases. For example, the FSIR of 
the mutant whose reachability graph is shown in Figure 9.11 is 100% (4/4), since 
it contains all the fault states defined in Section 9.2.2.1, whereas, the FSIR of the 
mutant whose reachability graph is shown in Figure 9.12 is 0% (0/4), since it 
contains no fault states. 
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Unexpected state insertion ratio (USIR) indicates the ratio of unexpected 
states (that is, states that are not included in the original PN) to the total number of 
states in the original PN. With increasing USIR, the generated mutant contains 
more fault states including the ones that have possibly not been considered. Thus, 
mutants with such high ratio are preferred when various fault states are to be 
verified. Also, mutants with low ratio are preferred when the focus is only on the 
only the fault states that are explicitly defined. In Figure 9.8 and Figure 9.9, 
unexpected states are described as gray boxes. There are eight states in the 
original PN, described as white boxes in Figure 9.8. Thus, the USIR of the 
mutants in Figure 9.8 and Figure 9.9 are 150% (12/8) and 75% (6/8), respectively. 

Expected state omission ratio (ESOR) indicates the ratio of expected states 
(that is, states in the original PN) that are omitted in a mutant to the total number 
of states in the original PN. With increasing ESOR, the mutant excludes more 
states from test generation. Thus, mutants with such low ratio are preferred when 
test engineers want to verify the relations between expected states and fault states. 
In addition, mutants with such high ratio are preferred when test engineers want to 
concentrate on faults that have great impacts. For example, the ESOR of the 
mutants in Figure 9.8 and Figure 9.9 are 100% (8/8) and 0% (0/8) respectively. 

9.2.2.4 Coverage Criteria 

Test coverage criteria or metrics to systematically generate effective negative 
test cases from the mutants are discussed below. 

Fault state coverage ratio (FSCR) indicates the ratio of fault states included in 
the mutant and executed by negative test cases. With increasing FSCR, more fault 
states can be verified by executing the negative test cases. For example, assume 

that a negative test case t1→t2→t1→t2 that executes fault states [0,1,1,1,0,1] and 
[1,0,1,1,0,1] is generated from the graph in Figure 9.8. The graph contains four 
fault states. Therefore, the FSCR of the negative test case is 50% (2/4). 

N-switch fault transition coverage ratio (N≥0) indicates the ratio of N+1 fault 
transition sequences (that is, sequences of successive transitions of length N+1 
executing one or more fault states) in the mutant which are executed by negative 
test cases to all the maximum number of N+1 fault transition sequences. Note that 
N-switch fault transition coverage criterion subsumes fault state coverage. For 

example, in case of N=0, a negative test case t1→t2→t1→t2 generated from the 
graph in Figure 9.8 executes three 1-fault transition sequences 

[1,0,0,2,0,1]→t2→[0,1,1,1,0,1], [0,1,1,1,0,1]→t1→[1,0,1,1,0,1] and 

[1,0,1,1,0,1]→t2→[0,1,2,0,0,1]. The graph contains twelve 1-fault transition 
sequences. Therefore, the N-switch fault transition coverage ratio of the negative 
test case is 25% (3/12). 
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9.3 Extended Event-Based Models 

In model-based testing, most of the recognized research work is based on state-
based models [133][55][78][115][96][129]. However, the key features of 
systematic testing (predictability, controllability and observability) [2][151] are 
fulfilled by events. Thus, such models operate on “outputs” that are externally 
perceptible events and considered as semantic augmentation of the arcs that 
connect states. “States” cannot be observed and controlled directly from outside of 
the SUT, as they are controlled indirectly via event sequences. Therefore, state-
based models function not due to their state orientation, but thanks to their 
proximity to event orientation. 

One can argue to use state-based models and perform model-to-model 
transformations to obtain an event-based model. However, in practice, one tends 
to make different simplifications based on the selected representation and 
limitations. Various factors, like individual preferences, time/budget constraints 
and system characteristics, also affect these simplifications. Thus, an event-based 
model obtained using model-to-model transformations is expected to be different 
from another one built completely using event-centric approach in practice. 
Therefore, in many cases, the different focuses of the representations are rather 
more important than their equivalence. 

This section discusses two types of extensions to the basic event-based model 
defined in Section 4: (1) One-sorted extensions and (2) many-sorted extensions. 
For the sake of simplicity, the discussion is carried out using visual 
representations. Furthermore, examples are outlined in order to demonstrate the 
use of the discussed extensions and their characteristics, and a list of aspects and 
ideas are given to speculate for further re-casting event-based modeling. 

9.3.1 Extensions 

One-sorted extensions use a single, uniform syntax for the events; whereas. many-

sorted extensions include events of different types using additional syntax for 
representing different meanings. 

9.3.1.1 One-Sorted Extensions 

Over the years, needs for various systematic facilities have arisen to increase the 
expressive power of the models used in system/software engineering. The new 
facilities have sometimes come as extensions to the existing models (e.g., similar 
to derivation of timed automata from finite state automata), but in general, 
completely new representations have been introduced to meet these spontaneous 
needs (e.g., process algebra, or UML). 
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Thus, it is possible to extend k-Regs in different ways by considering the 
aforementioned formal representations introduced over the years. In the following, 
the basic k-Reg notion is extended following the traits below. 

• Structure: Structured k-Regs 

• Input-Output Labeling: Input-Output k-Regs 

• Communication: Communicating k-Regs 

• Quiescence: Quiescent k-Regs 

• Time: Timed k-Regs 

• Stack Component (Memory): Pushdown k-Regs 

 

a b[ ]

x z[ ]y
 

(a) A structured 1-Reg. 

?a !b[ ]
 

(b) An input-output 1-Reg. 

?a ?d[ ]!b ?c

?x ?y[ ]?b !c
 

(c) A communicating 1-Reg. 

?a ?c[ ]δ !b δ

 

(d) A quiescent 1-Reg. 

?a !b[ 2θ

?a ?c ](0,2]θ

]

[
 

(e) A timed 1-Reg 

a ; p(a) b ; r(a)[ ]c ; q(),p(c)
 

(f) A pushdown 1-Reg. 

Figure 9.13. One-sorted k-Reg extensions. 
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Note that one can combine these traits to derive and use models such as 
“structured timed input-output k-Regs”. 

Structured k-Regs. Structured k-Regs enable further refinement of the events so 
that an event can represent a composite behavior that requires presence of 
multiple events; that is, the event is a composite event. For example, in Figure 
9.13a, event b is a composite event representing another (sub) 1-Reg. 

Naturally, it is possible to make other types of structuring as long as the 
elements of the structured node are compatible with the notion of event. An 
example of such structuring is the integration of decision tables [43]. 

Input-Output k-Regs. The basic k-Regs do not differ between different types of 
events; that is, user inputs and system outputs are represented by the same kind of 
nodes. In case the domain needs a differentiation between inputs and outputs, one 
can augment the semantics by additional symbols, for example, by “!” for inputs 
and “?” for outputs, leading to input-output k-Regs. 

Communicating k-Regs. Communicating k-Regs combine k-Regs with sender-
receiver structure. This is important for representation of synchronization of 
parallel behavioral k-Reg models. In Figure 9.13c, the dashed arcs represent the 
communications. 

Quiescent k-Regs. A quiescent k-Reg includes the event δ for representation of no 
actions. Quiescence is important for continuation of the user actions after 
determining that there is no output from the system. An example is given in 
Figure 9.13d. 

Timed k-Regs. Timed k-Regs are used to define an event-based model with respect 
to time; that is, a timed behavior is defined so that execution of an event is also 
dependent on time. Time is quantified using θ as the tick for time period, and 
intervals for time limits. 

Pushdown k-Regs. In pushdown k-Regs, the model comes with a stack 
component. A sequence of stack operations is performed when an event is 
executed. The execution of the event is successful if and only if the related 
sequence of stack operations is also successful. For the sake of simplicity, only 
three stack operations are defined. 

• push – p(x): Writes symbol x to the top of the stack. This operation is 
always successful. 

• pop – q() or q(x): Reads and deletes the peek element x from the stack. q() 
fails if the stack is empty, and q(x) fails if the stack is empty or the peek 
element is not x. 
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• peek – r() or r(x): Reads the peek element from the stack. r() fails if the 
stack is empty, and r(x) fails if the stack is empty or the peek element is 
not x. 

9.3.1.2 Many-Sorted Extensions 

Many sorted extensions employ some traits which are quite different from the 
ones used for one-sorted extensions. Generally, these traits are very application-
specific. 

The best examples of many-sorted extensions are event flow graphs (EFGs), 
where the events have different syntax and semantics for modeling of graphical 
user interfaces (GUIs). For example, in the EFG in Figure 9.14, the diamond-node 
is a menu-open event, the double-circle-node is a restricted-focus event, rectangle-
nodes are termination events and circle-nodes are system-interaction events. 

For more sophisticated event-centric modeling, several variations of EFGs 
have been created in recent work: (1) Event Interaction Graphs (EIGs) [124] that 
represent a subset of events in the system, and hence, are more compact and 
scalable, (2) Event Semantic Interaction Graphs (ESIGs) [174] that model a 
subset of “follows” relations – between events that are shown to interact at a 
semantic level, and (3) Probabilistic EFGs (PEFGs) [51] that form Bayesian 
networks and n-gram Markov models. 

 

Edit Copy

PasteGo To...Line Number

Cancel (GoTo)

OK

 

Figure 9.14. A many-sorted k-Reg extension (an EFG). 

 

9.3.2 Examples 

In this section, a simplified online conference initiation example is used to relay 
the ideas and to demonstrate how the aforementioned extensions can be used in 
practice. 
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In the online conference initiation, there is a user entity which would like to 
participate in a specific conference. Each user logs in the system, makes a join 
request and waits for the acceptance. After the acceptance is received, the user 
becomes a participant in the conference. Of course, a request can also be declined 
during initiation. In this case the user is allowed make another request. There is 
also an administrator entity which accepts or declines the participation requests 
and determines which users are allowed to take part in the conference. 

 

o1[

u1

p1

p2

u2

]s1

Legend:
 -o: Open login interface
 -u: Enter user id
 -p: Enter password
 -s: Perform sign in

 

Figure 9.15. A basic 1-Reg for Login interface. 

 

During modeling, the abstraction level is quite important and allows the tester 
to create different models to test for different purposes. For example, one can 
create and use the (basic) 1-Reg in Figure 9.15 to model the events and their 
sequences in user login scenario. 

During login process, a user enters user id and password pair in any order. The 
sign in is activated, if only both user id and password are entered. Furthermore, 
after sign in is executed, it can either succeed or fail. In case of failure, if 
password is wrong then user only needs to enter a new password. However, if user 
id is wrong both user id and password need to be entered again. 

In Figure 9.15, event o opens the login interface, where events u and p are for 
entering the user id and password, respectively. Also, event s corresponds to sign 
in event. Note that multiple instances of u and p events are used as contexted 
events to leave out infeasible event sequences. For example, u1 cannot be 
followed by s1, where as u2 can be. 

9.3.2.1 One-Sorted Extension Examples 

This section gives examples for some of the one-sorted extensions introduced in 
Section 9.3.1.1. 

9.3.2.1.1 A Structured 1-Reg using a Decision Table 

Note that the 1-Reg in Figure 9.15 takes the order of entering u and p events into 
account while modeling. However, if there are too many of such events in a 
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system, the number of orderings grows very fast. Therefore, one may choose to 
ignore the order that the data is entered. In such cases, decision tables can be used 
to structure and simplify the model. Figure 9.16 demonstrates such a model for 
the 1-Reg in Figure 9.15. 

In Figure 9.16, up represents the event for entering user id and password. The 
decision table suggests that event s follows up if and only if both u and p are 
performed. 

 

o1[ ]s1up1

u is entered
p is entered

f   t   f   t
f   f   t   t

s1 -   -   -   X

Legend:
 -o: Open login interface
 -up: Enter user id and password
 -s: Perform sign in

 

Figure 9.16. A structured 1-Reg for Login interface. 

 

9.3.2.1.2 An Input-Ouput 1-Reg 

It is clear that the 1-Reg in Figure 9.15 contains no information on system 
outputs; the events are contexted based on the set of following input events. 
Therefore, it can only be used to generate test cases and in combination with non-
output based test oracles, such as sequence-based or language-based test oracles, 
without any additional information. 

When outputs are also included, the number of existing events may grow and 
further contexted events may emerge. Figure 9.17 demonstrates the input-output 
1-Reg for the login interface. 

 

?o1 !l(00,00)

!l(10,00)

!l(01,00)

!l(11,00)

!l(10,10)

!l(11,10)

!l(10,01)

!j(i)

[ ?u1

?p1

?p2

?u2

?s1

?p3

?u3 ]

Legend:
 -?o: Open login interface
 -?u: Enter user id
 -?p: Enter password
 -!l(..,..): Login page with
   different characterizations
 -?s: Perform sign in
 -!j(i): Initial join page

 

Figure 9.17. An input-output 1-Reg for Login interface. 
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In Figure 9.17, “?” are used to label input events and “!” are used to label 
output events. Most of the output events are of the form !l(UePe,UwPw). Here, l 
signifies login interface, U signifies user id and P signifies password. Also, UePe 
signifies whether user id and password are entered or not. It can take the values of 
00, 01, 10 and 11 (for example, UePe=00 means that both user id and password are 
empty, whereas UePe=11 shows that they are entered). Furthermore, UwPw can 
only take the values of 00, 10 and 01, and shows if there is a warning message on 
user id or password, or not (for example, if UwPw=10, there is a warning message 
on user id, and if UwPw=01, an incorrect password is used). There is also a single 
output called !j(i) which signifies that the login is successful and initial join 
interface is displayed. 

Figure 9.17 demonstrates that explicit inclusion of outputs tends to increase 
the complexity of the model (however provides a more precise and complete 
picture). Therefore, one can use the 1-Reg in Figure 9.15 to generate test cases 
and the 1-Reg in Figure 9.17 to derive the expected outputs for these sequences. 
Of course, one can also choose not include the outputs explicitly in the model but 
instead associate (or embed) them to (or into) each event in the model. In this 
case, the (basic) 1-Reg in Figure 9.18 can be used. 

 

o1[

u1

p1

p2

u2

s2 p3

u3

]

s3

s1

Legend:
 -o: Open login interface
 -u: Enter user id
 -p: Enter password
 -s: Perform sign in

 

Figure 9.18. Another basic 1-Reg for Login interface. 

 

Note that, since outputs are also considered in addition to event-sequences 
during contexting, the 1-Reg in Figure 9.18 is quite different from the 1-REG in 
Figure 9.15. For example, s is indexed 3 times (s1, s2 and s3), because each of 
them has a different output and can be followed by different set of events. For 
similar reasons, events u3 and p3 are also included in this model. 

9.3.2.1.3 A Structured 1-Reg using a Sub Model 

Using one of the login 1-Regs presented above as a sub model, a conference 
initiation 1-Reg can be constructed. Figure 9.19 demonstrates the corresponding 
structured input-output 1-Reg. 

In Figure 9.19, l refers to the IO 1-Reg for login interface (Figure 9.17). 
Therefore, it is a composite event. Furthermore,?r is the event for making the 
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request for participating in a conference. There are two possible outputs: !j(d) for 
a declined and !j(a) for an accepted request. Upon acceptance, the initiation of a 
user ends. 

 

[ l1 ?r1 !j(d) ]!j(a)

Legend:
 -l: Perform login
 -?r: Perform join request
 -!j(d): Join page - declined
 -!j(a): Join page - accepted

 

Figure 9.19. A structured input-output 1-Reg for user initiation. 

 

As demonstrated by the 1-Reg in Figure 9.19, not only basic 1-Regs but also 
input-output 1-Regs (and other types of 1-Regs) can be structured. 

9.3.2.1.4 A Communicating 1-Reg 

Note that the initiation of a user does not solely depend on what a user does; it 
also depends on the response of the conference administrator. Thus, one may need 
to consider the user and the administrator together. For this purpose, 
communicating input-output 1-Regs can be used. Figure 9.20 demonstrates such a 
1-Reg. 

 

[ l1 ?r1 !w1 !j(d)?x1 ?y1 !j(a) ]

[ l2 ?p1 !d1 !a1 ]

Legend:
 -l: Perform login
 -?r: Perform join request
 -!w: Request message
 -?x: Acceptance
 -!j(d): Join page - declined
 -?y: Declination
 -!j(a): Join page - accepted
 -?p: Process request
 -!d: Declination message
 -!a: Acceptance message

 

Figure 9.20. A communicating input-output 1-Reg for user initiation. 

 

In Figure 9.20, the top 1-Reg is for the user side and the bottom 1-Reg is for 
the administrator side. An administrator logs in like a user by performing event l2 
(Figure 9.17). However, after logging in, the administrator processes the 
conference participation requests (?p), and accepts (!a) or declines (!d) them. 
Therefore, inputs to the user initiation are not only controlled by the user but also 
by the administrator. Furthermore, some outputs of user initiation are observed by 
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the administrator. For this reason, some input and output events, which are 
internal from a user’s perspective, are made explicit. 

In Figure 9.20, the output event which is not directly observable by the user is 
!w. It represents a request message sent by user to the administrator. Furthermore, 
the input events which are controlled by the administrator are ?x and ?y. These 
events are activated after receiving, respectively, a declination or an acceptance 
from the administrator. 

9.3.2.1.5 A Quiescent 1-Reg 

Note that Figure 9.20 also shows us that in absence of a functioning administrator, 
there is no response. Therefore, events ?x or ?y cannot commence. In such cases, 
to specify the lack of actions or outputs, one can use quiescent 1-Regs. Figure 
9.21 shows such a 1-Reg. For simplicity, it outlines the lack of response from user 
perspective without including the administrator. Therefore, it is derived from the 
1-Reg in Figure 9.19 (not Figure 9.20). 

 

[ l1 ?r1 !j(d) ]!j(a)

δ1 Legend:
 -l: Perform login
 -?r: Perform join request
 -δ: Quiescence
 -!j(d): Join page - declined
 -!j(a): Join page - accepted

 

Figure 9.21. A quiescent input-output 1-Reg for user initiation. 

 

In Figure 9.21, event δ signifies that “r is a quiescent event; that is, after a join 
request is performed, there might be a lack of response (input or output events). In 
this case, user is required to log in and try to make a join request once again. 

9.3.2.1.6 A Timed 1-Reg 

In practice quiescence can be realized or handled using time-outs. For example, 
after performing a join request, one can wait for a specified time and then either 
perform another join request or continue with the next step if there is a response 
from the administrator. 

In Figure 9.22, after performing a join request, a time-out event is executed. 
After 2θ time, if there is no response from the administrator, ?r is performed 
again. Otherwise, depending on the type of response (declination or acceptance), 
either !j(d) or !j(a) follows. 

 



9 Further Perspectives 

 

158 

[ l1 ?r1 !j(d) ]!j(a)

(2θ)1 Legend:
 -l: Perform login
 -?r: Perform join request
 -2θ: Time-out
 -!j(d): Join page - declined
 -!j(a): Join page - accepted

 

Figure 9.22. A timed input-output 1-Reg for user initiation. 

 

9.3.2.1.7 A Pushdown 1-Reg 

Assume that the login interface whose basic 1-Reg model is given in Figure 9.15 
contains go-back-events using which the user is allowed to take back previously 
performed events, and so go-back. The 1-Reg extensions mentioned so far are not 
strong enough to fully capture such behaviors, because an additional component, 
that is, a stack, is required to keep the track of previous events. Figure 9.23 
demonstrates a pushdown 1-Reg model where together with each event a 
sequence of operations is performed on the stack in order to keep or restore 
previous events. 

 

o1 ; p(o1)

[

u1 ; p(u1)

p1 ; p(p1)

p2 ; p(p2)

u2 ; p(u2)

]

s1 ; r(s1)b1 ; q(),q(o1)

b3 ; q(),q(p1) b5 ; q(),q(u2)

b6 ; q(),q(s)

b2 ; q(),q(u1) b4 ; q(),q(p2)

Legend:
 -o: Open login interface
 -u: Enter user id
 -p: Enter password
 -s: Perform sign in
 -b: Go-back

 

Figure 9.23. A pushdown 1-Reg for Login interface. 

 

In Figure 9.23, there are additional b events which are called as go-back 
events. Each non go-back event except performs a push operation to keep track of 
events, and each go-back event performs two subsequent pop operations to cancel 
the previously performed event. For example, assume that event u2 is executed 
after event p1. In this case, the peek element in the stack is u1 and the second one 
is u2. Thus, one can only execute b3 to return back to the non go-back event 
which comes before the last non go-back event u2. b4 and b5 cannot be executed 
because their related stack operations fail, and b1, b2 and b6 cannot be executed 
because there are no edges from u2 to these go-back events. 
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9.3.2.1.8 A Combined Extension 1-Reg 

Finally, in order to demonstrate how the set of traits discussed in Section 9.3.1.1 
can be combined (and extended) to build a new model that meets the needs of a 
specific type of application, an administrator model is constructed assuming that it 
is a web-service (composition). Figure 9.24 demonstrates the corresponding 1-
Reg model for the administrator; it is similar to ESG4WSC [41]. 

In Figure 9.24, an event can be either public or private, depending on whether 
it can be performed or observed by the user directly. Therefore, “?” and “:” are 
used to label public and private input events, and “!” and “.” are used to label 
public and private outputs events, respectively. Here, first, the user makes a 
request to the administrator web service (?r). Later, if the user id format is valid, 
the service verifies the user (:v), e.g., it can call another web service to do this. If 
the verification is successful (.s), the service returns an acceptance response (!a). 
If it fails (.f), the service returns declination response (!d). Also, the service 
returns invalid user id response (!i) upon a request with invalid user id. 

 

[ ?r1 :v1

.f1

.s1

!d1

!a1

]

!i1

id is valid f   t

-   X
X   -

Legend:
 -?r: Perform join request
 -!i: Invalid user id
 -:v: Validate user
 -.f: Failure
 -!d: Declination
 -.s: Success
 -!a: Acceptance

:v1
!i1

 

Figure 9.24. A combined extension 1-Reg for administrator web service. 

 

9.3.2.2 Many-Sorted Extension Examples 

This section demonstrates examples for some of the many-sorted extensions 
introduced in Section 9.3.1.2. 

9.3.2.2.1 An Event Flow Graph 

Assume that the login interface is a GUI where o opens the interface and s closes 
it. Also, while entering a user id or a password the underlying system makes 
checks in order to enable or disable event s, and performing s closes the login 
interface interacting with the system. In this case, the model in Figure 9.15 gets 
some syntactical changes depending on the semantics of each event residing in it, 
and Figure 9.25 is constructed. 

In Figure 9.25, o is a menu open event, and thus represented using a diamond-
shaped node. The remaining events are all system interaction events and they are 
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represented using circle nodes. Note that s is given in a circle node, although it is 
also a termination event. 

 

o1[

u1

p1

p2

u2

]s1

Legend:
 -o: Open login interface
 -u: Enter user id
 -p: Enter password
 -s: Perform sign in

 

Figure 9.25. An EFG for Login interface. 

 

9.3.2.2.2 An Event Interaction Graph 

In GUI testing, one often chooses to focus on system interaction and termination 
events (assuming that other events are not fault-prone), and interactions between 
them. For this purpose, EIGs can be used. Figure 9.26 shows the EIG of the EFG 
in Figure 9.25. 

 

[

u1

p1

p2

u2

]s1

Legend:
 -u: Enter user id
 -p: Enter password
 -s: Perform sign in

 

Figure 9.26. An EIG for Login interface. 

 

In Figure 9.26, arcs do not form a follows relation anymore. They simply show 
that an event is reachable from one another. For example, arc (p1, s1) does not 
exist in the EFG (Figure 9.25). However, since there is a path from p1 to s1, it is 
included in the EIG (Figure 9.26). 

9.3.3 Conclusion 

Based on sound results of research and experience, this section aims to promote 
event-centric models, and takes a step to enable their use in testing of various 
different types of systems and establish a classification. To do this, the model 
introduced in Chapter 4 is employed as the basis model allowing the use of 
mathematical, sound methods introduced in Chapters 4, 5, 6 and 7. 
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Note that the traditional flow graph model of computer programs can also be 
considered as an event model, where the events are the executions of the 
statements or linear blocks of statements. Therefore, the traditional adequacy 
criteria (including control flow coverage and data flow coverage criteria) can be 
easily adapted for more general context of software testing. In addition, further 
research could be directed to more complicated situations of event-driven systems, 
such as distributed testing architectures and testing concurrent and non-
deterministic systems. In such situations, it may be possible to regard othey types 
of models as event-based models. Thus, adequacy criteria can be defined for such 
models and techniques for generation of test cases can be adapted for them. 
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10 Conclusion and Outlook 

 

MBT operates on models by abstracting from irrelevant details of the system. This 
makes MBT an attractive approach because it helps to increase fault detection and 
costs effectiveness and efficiency. MBMT introduces the use fault models or 
mutants in test generation for the purpose of detecting certain faults modeled by 
the mutants. 

The MBMT approach proposed in this work is event-based. It uses a new 
event-based grammar model which is equivalent to RGs, FSA and REs. As 
opposed to the existing MBT or MBMT approaches which use fixed models, the 
proposed approach systematically transforms a given model to generate 
morphologically different models. This enables the generation of test cases 
covering longer event sequences so that one can exercise different test paths to 
check the correct functioning of the test object with respect to the expected 
behavior. Also, with the use of event-based mutation operators, the set of faults 
under consideration needs not be finite anymore; more precisely, by varying the 
model morphology, one can extend the set of fault models and, thus, 
incrementally select finite subsets of this possibly infinite set of faults in a 
systematic way. Since mutants are used for test generation, the approach makes 
use of certain mutant selection strategies to cut back the immense number of 
mutants that can be generated, without disregarding any relevant faults. 

The major novelties of the approach can be outlined as follows. 

• Equivalent mutants and multiple mutants modeling the same faults are 
excluded without even being generated; the existing approaches either do 
not care about these mutants or exclude only the equivalent mutants after 
generating and comparing them to the original model. 

• Any mutant can be killed by a unique, dedicated test case that is generated 
in linear time without comparing the mutant against the original model; the 
existing approaches either use the whole mutant for coverage-based test 
generation or compare the mutant against the original models to generate a 
discriminating test case. 
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• The associated set of fault models can systematically be extended to 
consider different, subtle faults; the existing approaches use fixed models 
and the number of mutants considered is finite. 

These benefits enable to comply with quality and budgetary requirements and 
are accomplished by a series of nontrivial steps. First, a grammar model called k-

sequence right regular grammar (k-Reg) (k≥1) is introduced to represent the 
relation between events sequences of length k (k-sequences) and single events. 
Second, a grammar transformation is defined to vary k for generating 
morphologically different models and generating corresponding test cases 
covering (k+1)-sequences. Third, appropriate event-based mutation operators are 
defined to extend the set of fault models and develop efficient mutant and test 
selection strategies to increase the efficiency of the test process. Thus, the project 
budgetary costs can be adjusted by varying k. To the authors’ knowledge, no other 
approach combines these advantages. 

The characteristics of the approach are analyzed, and comparisons against 
random testing and ESG-based testing approaches are performed over three case 
studies based on industrial and commercial applications with different domains. 
An alternative of the approach is derived to perform further improvements: mixed 
k-Reg. The results are summarized as follows. 

• When compared to ESG-based and MK-based MBMT in terms of the 
number of generated mutants, k-Reg-based testing approach (for k=1,2,3) 
generates and use only 0.40% to 3.62% of the mutants generated by the 
ESG-based and the MK-based approaches. 

• On the average, when compared to random testing where same test targets 
are covered, 

o k-Reg detected 2% to 14% fewer faults than random testing while 
saving 13% to 67% of the effort (that is, it detected 13% to 147% more 
faults per executed event); M-k-Reg detected 0% to 5% more faults 
than random testing while saving 13% to 23% of the effort (that is, it 
detected 16% to 29% more faults per executed event). 

o for k-Reg, the increase in the number of revealed faults is up to ~1.06 
times higher and, for M-k-Reg, up to 28%. 

o for both k-Reg and M-k-Reg, the increase in the test generation times is 
around 99% less. 

o for k-Reg, the increase in the number of executed events is up to 67% 
less and, for M-k-Reg, up to 17%. 

• On the average, when compared to ESG-based MBMT by balancing the 
test execution effort, 

o k-Reg detected 34% to 74% more faults than ESG-based MBMT (and 
it detected 34% to 79% more faults per executed event); M-k-Reg 
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detected 37% to 74% more faults than ESG-based MBMT (and it 
detected 37% to 73% more faults per executed event). 

o for k-Reg, the increase in the number of revealed faults is up to 91% 
higher and, for M-k-Reg, up to 76%. 

o for k-Reg and M-k-Reg, the increase in the test generation times is up 
to 99.9% less. 

• On the average, when compared to MK-based by balancing the test 
execution effort, 

o k-Reg detected 72% to 105% more faults than MK-based MBMT (and 
it detected 73% to 134% more faults per executed event); M-k-Reg 
detected 76% to 106% more faults than MK-based MBMT (and it 
detected 76% to 115% more faults per executed event). 

o for k-Reg, the increase in the number of revealed faults is up to 3.2 
times higher and, for M-k-Reg, up to 1.2 times. 

o for k-Reg and M-k-Reg, the increase in the test generation times is up 
to 99.96% less. 

Further perspectives are also considered by 

• applying the approach for modeling, testing and analysis of system 
vulnerabilities, 

• proposing novel MBMT approaches based on pushdown automata and 
place/transition nets, which are not purely event-oriented, and 

• extending the event-based models to prepare a basis for further 
improvements to the event-based MBMT approaches. 

Further work on the subject can be carried out to extend the morphology 
variation, mutant generation and test generation aspects to these extended event-
based models. This can also be performed for the testing approaches which use 
models that are not purely event-oriented, because such models are still used in 
practice. Furthermore, state-based or other features of these models may come in 
handy, especially when a certain level of internal information about the system 
can be integrated into the model and used in testing. 
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A Models for Case Studies 

 

A.1 Productions of ShearBar 1-Reg Model 

1. S → eventInitialization c(eventInitialization) 

2. c(eventAAdjustment) → eventTimeoutLeft_A1 c(eventTimeoutLeft_A1) | 
eventKnockingRight_A1 c(eventKnockingRight_A1) 

3. c(eventTimeoutLeft_A1) → ε 

4. c(eventTimeoutRight_A1) → ε 

5. c(eventALeftEngineDeparted200_3) → 
eventARightEngineDeparted200AndRightDistanceLess 
c(eventARightEngineDeparted200AndRightDistanceLess) | eventARightEngineDe-
parted200AndLeftDistanceLess c(eventARightEngineDeparted200AndLeftDistanceLess) 

6. c(eventARightEngineDeparted200AndRightDistanceLess) → 
eventARightEngineApproached324_1 c(eventARightEngineApproached324_1) 

7. c(eventARightEngineDeparted200AndLeftDistanceLess) → 
eventALeftEngineApproached324_1 c(eventALeftEngineApproached324_1) 

8. c(eventALeftEngineApproached324_1) → eventALeftEngineApproached324_2 
c(eventALeftEngineApproached324_2) 

9. c(eventARightEngineApproached324_1) → eventARightEngineApproached324_2 
c(eventARightEngineApproached324_2) 

10. c(eventALeftEngineDeparted162_1) → eventARightEngineApproached324_3 
c(eventARightEngineApproached324_3) 

11. c(eventARightEngineDeparted162_1) → eventALeftEngineApproached324_3 
c(eventALeftEngineApproached324_3) 

12. c(eventALeftEngineDepartedRef01) → eventARightEngineDepartedRef01AndNoKnocking 
c(eventARightEngineDepartedRef01AndNoKnocking) | 
eventARightEngineDepartedRef01AndKnocking 
c(eventARightEngineDepartedRef01AndKnocking) 

13. c(eventARightEngineDepartedRef01AndNoKnocking) → ε 

14. c(eventKnockingLeft_A1) → eventTimeoutRight_A1 c(eventTimeoutRight_A1) | 
eventALeftEngineDe-parted200_1 c(eventALeftEngineDeparted200_1) 

15. c(eventKnockingRight_A1) → eventTimeoutRight_A1 c(eventTimeoutRight_A1) | 
eventKnockingLeft_A1 c(eventKnockingLeft_A1) 
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16. c(eventARightEngineDepartedRef01AndKnocking) → 
eventARightEngineDeparted50AndKnocking_1 
c(eventARightEngineDeparted50AndKnocking_1) | 
eventARightEngineDeparted50AndNoKnocking 
c(eventARightEngineDeparted50AndNoKnocking) 

17. c(eventALeftEngineDeparted50AndKnocking_1) → 
eventARightEngineDeparted50AndNoKnocking 
c(eventARightEngineDeparted50AndNoKnocking) | 
eventARightEngineDeparted50AndKnocking_2 
c(eventARightEngineDeparted50AndKnocking_2) 

18. c(eventARightEngineDeparted50AndKnocking_1) → 
eventALeftEngineDeparted50AndKnocking_1 
c(eventALeftEngineDeparted50AndKnocking_1) | 
eventALeftEngineDeparted50AndNoKnocking 
c(eventALeftEngineDeparted50AndNoKnocking) 

19. c(eventALeftEngineDeparted50AndNoKnocking) → ε 

20. c(eventARightEngineDeparted50AndNoKnocking) → ε 

21. c(eventInitialization) → eventAAdjustment c(eventAAdjustment) 

22. c(eventALeftEngineApproached324_2) → eventALeftEngineDeparted162_1 
c(eventALeftEngineDeparted162_1) 

23. c(eventARightEngineApproached324_2) → eventARightEngineDeparted162_1 
c(eventARightEngineDeparted162_1) 

24. c(eventALeftEngineApproached50AndKnockingAndRef01Chosen) → 
eventALeftEngineDepartedRef01 c(eventALeftEngineDepartedRef01) 

25. c(eventALeftEngineApproached50AndNoKnocking_8) → eventARightEngineAp-
proached50AndNoKnocking_8 c(eventARightEngineApproached50AndNoKnocking_8) | 
eventARightEngi-neApproached50AndKnockingAndRef01Chosen 
c(eventARightEngineApproached50AndKnockingAndRef01Chosen) | 
eventARightEngineAp-proached50AndKnockingAndRef02Chosen 
c(eventARightEngineApproached50AndKnockingAndRef02Chosen) | 
eventARightEngineAp-proached50AndKnockingAndRef03Chosen 
c(eventARightEngineApproached50AndKnockingAndRef03Chosen) | 
eventARightEngineAp-proached50AndKnockingAndRef04Chosen 
c(eventARightEngineApproached50AndKnockingAndRef04Chosen) | 
eventARightEngineAp-proached50AndKnockingAndRef05Chosen 
c(eventARightEngineApproached50AndKnockingAndRef05Chosen) | 
eventARightEngineAp-proached50AndKnockingAndRef06Chosen 
c(eventARightEngineApproached50AndKnockingAndRef06Chosen) | 
eventARightEngineAp-proached50AndKnockingAndRef07Chosen 
c(eventARightEngineApproached50AndKnockingAndRef07Chosen) | 
eventARightEngineAp-proached50AndKnockingAndRef08Chosen 
c(eventARightEngineApproached50AndKnockingAndRef08Chosen) | 
eventARightEngineAp-proached50AndKnockingAndRef09Chosen 
c(eventARightEngineApproached50AndKnockingAndRef09Chosen) | 
eventARightEngineAp-proached50AndKnockingAndRef10Chosen 
c(eventARightEngineApproached50AndKnockingAndRef10Chosen) 

26. c(eventARightEngineApproached50AndNoKnocking_8) → eventALeftEngineAp-
proached50AndKnockingAndRef01Chosen 
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c(eventALeftEngineApproached50AndKnockingAndRef01Chosen) | eventALeftEngineAp-
proached50AndNoKnocking_8 c(eventALeftEngineApproached50AndNoKnocking_8) | 
eventALeftEngine-Approached50AndKnockingAndRef02Chosen 
c(eventALeftEngineApproached50AndKnockingAndRef02Chosen) | eventALeftEngineAp-
proached50AndKnockingAndRef03Chosen 
c(eventALeftEngineApproached50AndKnockingAndRef03Chosen) | eventALeftEngineAp-
proached50AndKnockingAndRef04Chosen 
c(eventALeftEngineApproached50AndKnockingAndRef04Chosen) | eventALeftEngineAp-
proached50AndKnockingAndRef05Chosen 
c(eventALeftEngineApproached50AndKnockingAndRef05Chosen) | eventALeftEngineAp-
proached50AndKnockingAndRef06Chosen 
c(eventALeftEngineApproached50AndKnockingAndRef06Chosen) | eventALeftEngineAp-
proached50AndKnockingAndRef07Chosen 
c(eventALeftEngineApproached50AndKnockingAndRef07Chosen) | eventALeftEngineAp-
proached50AndKnockingAndRef08Chosen 
c(eventALeftEngineApproached50AndKnockingAndRef08Chosen) | eventALeftEngineAp-
proached50AndKnockingAndRef09Chosen 
c(eventALeftEngineApproached50AndKnockingAndRef09Chosen) | eventALeftEngineAp-
proached50AndKnockingAndRef10Chosen 
c(eventALeftEngineApproached50AndKnockingAndRef10Chosen) 

27. c(eventARightEngineDepartedRef01) → eventALeftEngineDepartedRef01AndNoKnocking 
c(eventALeftEngineDepartedRef01AndNoKnocking) | 
eventALeftEngineDepartedRef01AndKnocking 
c(eventALeftEngineDepartedRef01AndKnocking) 

28. c(eventALeftEngineDepartedRef01AndNoKnocking) → ε 

29. c(eventALeftEngineDepartedRef01AndKnocking) → 
eventARightEngineDeparted50AndKnocking_1 
c(eventARightEngineDeparted50AndKnocking_1) | 
eventARightEngineDeparted50AndNoKnocking 
c(eventARightEngineDeparted50AndNoKnocking) 

30. c(eventARightEngineApproached50AndKnockingAndRef01Chosen) → 
eventARightEngineDepartedRef01 c(eventARightEngineDepartedRef01) 

31. c(eventALeftEngineDepartedRef02) → eventARightEngineDepartedRef02AndNoKnocking 
c(eventARightEngineDepartedRef02AndNoKnocking) | 
eventARightEngineDepartedRef02AndKnocking 
c(eventARightEngineDepartedRef02AndKnocking) 

32. c(eventARightEngineDepartedRef02AndNoKnocking) → ε 

33. c(eventARightEngineDepartedRef02AndKnocking) → 
eventARightEngineDeparted50AndKnocking_1 
c(eventARightEngineDeparted50AndKnocking_1) | 
eventARightEngineDeparted50AndNoKnocking 
c(eventARightEngineDeparted50AndNoKnocking) 

34. c(eventALeftEngineApproached50AndKnockingAndRef02Chosen) → 
eventALeftEngineDepartedRef02 c(eventALeftEngineDepartedRef02) 

35. c(eventARightEngineDepartedRef02) → eventALeftEngineDepartedRef02AndNoKnocking 
c(eventALeftEngineDepartedRef02AndNoKnocking) | 
eventALeftEngineDepartedRef02AndKnocking 
c(eventALeftEngineDepartedRef02AndKnocking) 
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36. c(eventALeftEngineDepartedRef02AndNoKnocking) → ε 

37. c(eventALeftEngineDepartedRef02AndKnocking) → 
eventARightEngineDeparted50AndKnocking_1 
c(eventARightEngineDeparted50AndKnocking_1) | 
eventARightEngineDeparted50AndNoKnocking 
c(eventARightEngineDeparted50AndNoKnocking) 

38. c(eventARightEngineApproached50AndKnockingAndRef02Chosen) → 
eventARightEngineDepartedRef02 c(eventARightEngineDepartedRef02) 

39. c(eventALeftEngineDepartedRef03) → eventARightEngineDepartedRef03AndNoKnocking 
c(eventARightEngineDepartedRef03AndNoKnocking) | 
eventARightEngineDepartedRef03AndKnocking 
c(eventARightEngineDepartedRef03AndKnocking) 

40. c(eventARightEngineDepartedRef03AndNoKnocking) → ε 

41. c(eventARightEngineDepartedRef03AndKnocking) → ε | eventARightEngineDe-
parted50AndKnocking_1 c(eventARightEngineDeparted50AndKnocking_1) | 
eventARightEngineDe-parted50AndNoKnocking 
c(eventARightEngineDeparted50AndNoKnocking) 

42. c(eventALeftEngineApproached50AndKnockingAndRef03Chosen) → 
eventALeftEngineDepartedRef03 c(eventALeftEngineDepartedRef03) 

43. c(eventARightEngineDepartedRef03) → eventALeftEngineDepartedRef03AndNoKnocking 
c(eventALeftEngineDepartedRef03AndNoKnocking) | 
eventALeftEngineDepartedRef03AndKnocking 
c(eventALeftEngineDepartedRef03AndKnocking) 

44. c(eventALeftEngineDepartedRef03AndNoKnocking) → ε 

45. c(eventALeftEngineDepartedRef03AndKnocking) → 
eventARightEngineDeparted50AndKnocking_1 
c(eventARightEngineDeparted50AndKnocking_1) | 
eventARightEngineDeparted50AndNoKnocking 
c(eventARightEngineDeparted50AndNoKnocking) 

46. c(eventARightEngineApproached50AndKnockingAndRef03Chosen) → 
eventARightEngineDepartedRef03 c(eventARightEngineDepartedRef03) 

47. c(eventALeftEngineDepartedRef04) → eventARightEngineDepartedRef04AndNoKnocking 
c(eventARightEngineDepartedRef04AndNoKnocking) | 
eventARightEngineDepartedRef04AndKnocking 
c(eventARightEngineDepartedRef04AndKnocking) 

48. c(eventARightEngineDepartedRef04AndNoKnocking) → ε 

49. c(eventARightEngineDepartedRef04AndKnocking) → 
eventARightEngineDeparted50AndKnocking_1 
c(eventARightEngineDeparted50AndKnocking_1) | 
eventARightEngineDeparted50AndNoKnocking 
c(eventARightEngineDeparted50AndNoKnocking) 

50. c(eventALeftEngineApproached50AndKnockingAndRef04Chosen) → 
eventALeftEngineDepartedRef04 c(eventALeftEngineDepartedRef04) 

51. c(eventARightEngineDepartedRef04) → eventALeftEngineDepartedRef04AndNoKnocking 
c(eventALeftEngineDepartedRef04AndNoKnocking) | 
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eventALeftEngineDepartedRef04AndKnocking 
c(eventALeftEngineDepartedRef04AndKnocking) 

52. c(eventALeftEngineDepartedRef04AndNoKnocking) → ε 

53. c(eventALeftEngineDepartedRef04AndKnocking) → 
eventARightEngineDeparted50AndKnocking_1 
c(eventARightEngineDeparted50AndKnocking_1) | 
eventARightEngineDeparted50AndNoKnocking 
c(eventARightEngineDeparted50AndNoKnocking) 

54. c(eventARightEngineApproached50AndKnockingAndRef04Chosen) → 
eventARightEngineDepartedRef04 c(eventARightEngineDepartedRef04) 

55. c(eventALeftEngineDepartedRef05) → eventARightEngineDepartedRef05AndNoKnocking 
c(eventARightEngineDepartedRef05AndNoKnocking) | 
eventARightEngineDepartedRef05AndKnocking 
c(eventARightEngineDepartedRef05AndKnocking) 

56. c(eventARightEngineDepartedRef05AndNoKnocking) → ε 

57. c(eventARightEngineDepartedRef05AndKnocking) → 
eventARightEngineDeparted50AndKnocking_1 
c(eventARightEngineDeparted50AndKnocking_1) | 
eventARightEngineDeparted50AndNoKnocking 
c(eventARightEngineDeparted50AndNoKnocking) 

58. c(eventALeftEngineApproached50AndKnockingAndRef05Chosen) → 
eventALeftEngineDepartedRef05 c(eventALeftEngineDepartedRef05) 

59. c(eventARightEngineDepartedRef05) → eventALeftEngineDepartedRef05AndNoKnocking 
c(eventALeftEngineDepartedRef05AndNoKnocking) | 
eventALeftEngineDepartedRef05AndKnocking 
c(eventALeftEngineDepartedRef05AndKnocking) 

60. c(eventALeftEngineDepartedRef05AndNoKnocking) → ε 

61. c(eventALeftEngineDepartedRef05AndKnocking) → 
eventARightEngineDeparted50AndKnocking_1 
c(eventARightEngineDeparted50AndKnocking_1) | 
eventARightEngineDeparted50AndNoKnocking 
c(eventARightEngineDeparted50AndNoKnocking) 

62. c(eventARightEngineApproached50AndKnockingAndRef05Chosen) → 
eventARightEngineDepartedRef05 c(eventARightEngineDepartedRef05) 

63. c(eventALeftEngineDepartedRef06) → eventARightEngineDepartedRef06AndNoKnocking 
c(eventARightEngineDepartedRef06AndNoKnocking) | 
eventARightEngineDepartedRef06AndKnocking 
c(eventARightEngineDepartedRef06AndKnocking) 

64. c(eventARightEngineDepartedRef06AndNoKnocking) → ε 

65. c(eventARightEngineDepartedRef06AndKnocking) → 
eventARightEngineDeparted50AndKnocking_1 
c(eventARightEngineDeparted50AndKnocking_1) | 
eventARightEngineDeparted50AndNoKnocking 
c(eventARightEngineDeparted50AndNoKnocking) 

66. c(eventALeftEngineApproached50AndKnockingAndRef06Chosen) → 
eventALeftEngineDepartedRef06 c(eventALeftEngineDepartedRef06) 
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67. c(eventARightEngineDepartedRef06) → eventALeftEngineDepartedRef06AndNoKnocking 
c(eventALeftEngineDepartedRef06AndNoKnocking) | 
eventALeftEngineDepartedRef06AndKnocking 
c(eventALeftEngineDepartedRef06AndKnocking) 

68. c(eventALeftEngineDepartedRef06AndNoKnocking) → ε 

69. c(eventALeftEngineDepartedRef06AndKnocking) → 
eventARightEngineDeparted50AndKnocking_1 
c(eventARightEngineDeparted50AndKnocking_1) | 
eventARightEngineDeparted50AndNoKnocking 
c(eventARightEngineDeparted50AndNoKnocking) 

70. c(eventARightEngineApproached50AndKnockingAndRef06Chosen) → 
eventARightEngineDepartedRef06 c(eventARightEngineDepartedRef06) 

71. c(eventALeftEngineDepartedRef07) → eventARightEngineDepartedRef07AndNoKnocking 
c(eventARightEngineDepartedRef07AndNoKnocking) | 
eventARightEngineDepartedRef07AndKnocking 
c(eventARightEngineDepartedRef07AndKnocking) 

72. c(eventARightEngineDepartedRef07AndNoKnocking) → ε 

73. c(eventARightEngineDepartedRef07AndKnocking) → 
eventARightEngineDeparted50AndKnocking_1 
c(eventARightEngineDeparted50AndKnocking_1) | 
eventARightEngineDeparted50AndNoKnocking 
c(eventARightEngineDeparted50AndNoKnocking) 

74. c(eventALeftEngineApproached50AndKnockingAndRef07Chosen) → 
eventALeftEngineDepartedRef07 c(eventALeftEngineDepartedRef07) 

75. c(eventARightEngineDepartedRef07) → eventALeftEngineDepartedRef07AndNoKnocking 
c(eventALeftEngineDepartedRef07AndNoKnocking) | 
eventALeftEngineDepartedRef07AndKnocking 
c(eventALeftEngineDepartedRef07AndKnocking) 

76. c(eventALeftEngineDepartedRef07AndNoKnocking) → ε 

77. c(eventALeftEngineDepartedRef07AndKnocking) → 
eventARightEngineDeparted50AndKnocking_1 
c(eventARightEngineDeparted50AndKnocking_1) | 
eventARightEngineDeparted50AndNoKnocking 
c(eventARightEngineDeparted50AndNoKnocking) 

78. c(eventARightEngineApproached50AndKnockingAndRef07Chosen) → 
eventARightEngineDepartedRef07 c(eventARightEngineDepartedRef07) 

79. c(eventALeftEngineDepartedRef08) → eventARightEngineDepartedRef08AndNoKnocking 
c(eventARightEngineDepartedRef08AndNoKnocking) | 
eventARightEngineDepartedRef08AndKnocking 
c(eventARightEngineDepartedRef08AndKnocking) 

80. c(eventARightEngineDepartedRef08AndNoKnocking) → ε 

81. c(eventARightEngineDepartedRef08AndKnocking) → 
eventARightEngineDeparted50AndKnocking_1 
c(eventARightEngineDeparted50AndKnocking_1) | 
eventARightEngineDeparted50AndNoKnocking 
c(eventARightEngineDeparted50AndNoKnocking) 
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82. c(eventALeftEngineApproached50AndKnockingAndRef08Chosen) → 
eventALeftEngineDepartedRef08 c(eventALeftEngineDepartedRef08) 

83. c(eventARightEngineDepartedRef08) → eventALeftEngineDepartedRef08AndNoKnocking 
c(eventALeftEngineDepartedRef08AndNoKnocking) | 
eventALeftEngineDepartedRef08AndKnocking 
c(eventALeftEngineDepartedRef08AndKnocking) 

84. c(eventALeftEngineDepartedRef08AndNoKnocking) → ε 

85. c(eventALeftEngineDepartedRef08AndKnocking) → 
eventARightEngineDeparted50AndKnocking_1 
c(eventARightEngineDeparted50AndKnocking_1) | 
eventARightEngineDeparted50AndNoKnocking 
c(eventARightEngineDeparted50AndNoKnocking) 

86. c(eventARightEngineApproached50AndKnockingAndRef08Chosen) → 
eventARightEngineDepartedRef08 c(eventARightEngineDepartedRef08) 

87. c(eventALeftEngineDepartedRef09) → eventARightEngineDepartedRef09AndNoKnocking 
c(eventARightEngineDepartedRef09AndNoKnocking) | 
eventARightEngineDepartedRef09AndKnocking 
c(eventARightEngineDepartedRef09AndKnocking) 

88. c(eventARightEngineDepartedRef09AndNoKnocking) → ε 

89. c(eventARightEngineDepartedRef09AndKnocking) → 
eventARightEngineDeparted50AndKnocking_1 
c(eventARightEngineDeparted50AndKnocking_1) | 
eventARightEngineDeparted50AndNoKnocking 
c(eventARightEngineDeparted50AndNoKnocking) 

90. c(eventALeftEngineApproached50AndKnockingAndRef09Chosen) → 
eventALeftEngineDepartedRef09 c(eventALeftEngineDepartedRef09) 

91. c(eventARightEngineDepartedRef09) → eventALeftEngineDepartedRef09AndNoKnocking 
c(eventALeftEngineDepartedRef09AndNoKnocking) | 
eventALeftEngineDepartedRef09AndKnocking 
c(eventALeftEngineDepartedRef09AndKnocking) 

92. c(eventALeftEngineDepartedRef09AndNoKnocking) → ε 

93. c(eventALeftEngineDepartedRef09AndKnocking) → 
eventARightEngineDeparted50AndKnocking_1 
c(eventARightEngineDeparted50AndKnocking_1) | 
eventARightEngineDeparted50AndNoKnocking 
c(eventARightEngineDeparted50AndNoKnocking) 

94. c(eventARightEngineApproached50AndKnockingAndRef09Chosen) → 
eventARightEngineDepartedRef09 c(eventARightEngineDepartedRef09) 

95. c(eventALeftEngineDepartedRef10) → eventARightEngineDepartedRef10AndNoKnocking 
c(eventARightEngineDepartedRef10AndNoKnocking) | 
eventARightEngineDepartedRef10AndKnocking 
c(eventARightEngineDepartedRef10AndKnocking) 

96. c(eventARightEngineDepartedRef10AndNoKnocking) → ε 

97. c(eventARightEngineDepartedRef10AndKnocking) → 
eventARightEngineDeparted50AndKnocking_1 
c(eventARightEngineDeparted50AndKnocking_1) | 
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eventARightEngineDeparted50AndNoKnocking 
c(eventARightEngineDeparted50AndNoKnocking) 

98. c(eventALeftEngineApproached50AndKnockingAndRef10Chosen) → 
eventALeftEngineDepartedRef10 c(eventALeftEngineDepartedRef10) 

99. c(eventARightEngineDepartedRef10) → eventALeftEngineDepartedRef10AndNoKnocking 
c(eventALeftEngineDepartedRef10AndNoKnocking) | 
eventALeftEngineDepartedRef10AndKnocking 
c(eventALeftEngineDepartedRef10AndKnocking) 

100. c(eventALeftEngineDepartedRef10AndNoKnocking) → ε 

101. c(eventALeftEngineDepartedRef10AndKnocking) → 
eventARightEngineDeparted50AndKnocking_1 
c(eventARightEngineDeparted50AndKnocking_1) | 
eventARightEngineDeparted50AndNoKnocking 
c(eventARightEngineDeparted50AndNoKnocking) 

102. c(eventARightEngineApproached50AndKnockingAndRef10Chosen) → 
eventARightEngineDepartedRef10 c(eventARightEngineDepartedRef10) 

103. c(eventALeftEngineApproached324_3) → eventALeftEngineApproached324_4 
c(eventALeftEngineApproached324_4) 

104. c(eventARightEngineApproached324_3) → eventARightEngineApproached324_4 
c(eventARightEngineApproached324_4) 

105. c(eventALeftEngineDeparted162_2) → eventARightEngineApproached324_5 
c(eventARightEngineApproached324_5) 

106. c(eventARightEngineDeparted162_2) → eventALeftEngineApproached324_5 
c(eventALeftEngineApproached324_5) 

107. c(eventALeftEngineApproached324_4) → eventALeftEngineDeparted162_2 
c(eventALeftEngineDeparted162_2) 

108. c(eventARightEngineApproached324_4) → eventARightEngineDeparted162_2 
c(eventARightEngineDeparted162_2) 

109. c(eventALeftEngineApproached324AndKnocking_1) → eventALeftEngineDeparted375_1 
c(eventALeftEngineDeparted375_1) 

110. c(eventALeftEngineApproached324_5) → eventALeftEngineApproached324AndKnocking_1 
c(eventALeftEngineApproached324AndKnocking_1) | eventALeftEngineApproached324_6 
c(eventALeftEngineApproached324_6) 

111. c(eventARightEngineApproached324_5) → eventARightEngineApproached324_6 
c(eventARightEngineApproached324_6) | 
eventARightEngineApproached324AndKnocking_1 
c(eventARightEngineApproached324AndKnocking_1) 

112. c(eventALeftEngineDeparted375_1) → eventARightEngineApproached324_25 
c(eventARightEngineApproached324_25) 

113. c(eventALeftEngineDeparted162_3) → eventARightEngineApproached324_7 
c(eventARightEngineApproached324_7) 

114. c(eventARightEngineDeparted162_3) → eventALeftEngineApproached324_7 
c(eventALeftEngineApproached324_7) 

115. c(eventALeftEngineApproached324_6) → eventALeftEngineDeparted162_3 
c(eventALeftEngineDeparted162_3) 
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116. c(eventARightEngineApproached324_6) → eventARightEngineDeparted162_3 
c(eventARightEngineDeparted162_3) 

117. c(eventARightEngineApproached324AndKnocking_1) → eventARightEngineDeparted375_1 
c(eventARightEngineDeparted375_1) 

118. c(eventARightEngineDeparted375_1) → eventALeftEngineApproached324_25 
c(eventALeftEngineApproached324_25) 

119. c(eventALeftEngineApproached324AndKnocking_7) → eventALeftEngineDeparted375_7 
c(eventALeftEngineDeparted375_7) 

120. c(eventALeftEngineApproached324_17) → 
eventALeftEngineApproached324AndKnocking_7 
c(eventALeftEngineApproached324AndKnocking_7) | eventALeftEngineApproached324_18 
c(eventALeftEngineApproached324_18) 

121. c(eventARightEngineApproached324_17) → eventARightEngineApproached324_18 
c(eventARightEngineApproached324_18) | 
eventARightEngineApproached324AndKnocking_7 
c(eventARightEngineApproached324AndKnocking_7) 

122. c(eventALeftEngineDeparted375_7) → eventARightEngineApproached324_31 
c(eventARightEngineApproached324_31) 

123. c(eventALeftEngineDeparted162_9) → eventARightEngineApproached324_19 
c(eventARightEngineApproached324_19) 

124. c(eventARightEngineDeparted162_9) → eventALeftEngineApproached324_19 
c(eventALeftEngineApproached324_19) 

125. c(eventALeftEngineApproached324_18) → eventALeftEngineDeparted162_9 
c(eventALeftEngineDeparted162_9) 

126. c(eventARightEngineApproached324_18) → eventARightEngineDeparted162_9 
c(eventARightEngineDeparted162_9) 

127. c(eventARightEngineApproached324AndKnocking_7) → eventARightEngineDeparted375_7 
c(eventARightEngineDeparted375_7) 

128. c(eventARightEngineDeparted375_7) → eventALeftEngineApproached324_31 
c(eventALeftEngineApproached324_31) 

129. c(eventALeftEngineApproached324AndKnocking_12) → eventALeftEngineDeparted375_12 
c(eventALeftEngineDeparted375_12) 

130. c(eventALeftEngineApproached324_35) → 
eventALeftEngineApproached324AndKnocking_12 
c(eventALeftEngineApproached324AndKnocking_12) | 
eventALeftEngineApproached324_36 c(eventALeftEngineApproached324_36) 

131. c(eventARightEngineApproached324_35) → eventARightEngineApproached324_36 
c(eventARightEngineApproached324_36) | 
eventARightEngineApproached324AndKnocking_12 
c(eventARightEngineApproached324AndKnocking_12) 

132. c(eventALeftEngineDeparted375_12) → eventALeftEngineDeparted200_4 
c(eventALeftEngineDeparted200_4) 

133. c(eventALeftEngineDeparted162_18) → eventALeftEngineApproached324_35 
c(eventALeftEngineApproached324_35) 

134. c(eventARightEngineDeparted162_18) → eventARightEngineApproached324_35 
c(eventARightEngineApproached324_35) 
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135. c(eventALeftEngineApproached324_36) → eventALeftEngineDeparted162_18 
c(eventALeftEngineDeparted162_18) 

136. c(eventARightEngineApproached324_36) → eventARightEngineDeparted162_18 
c(eventARightEngineDeparted162_18) 

137. c(eventARightEngineApproached324AndKnocking_12) → 
eventARightEngineDeparted375_12 c(eventARightEngineDeparted375_12) 

138. c(eventARightEngineDeparted375_12) → eventARightEngineDeparted200_6 
c(eventARightEngineDeparted200_6) 

139. c(eventALeftEngineApproached50AndNoKnocking_1) → eventARightEngineAp-
proached50AndNoKnocking_1 c(eventARightEngineApproached50AndNoKnocking_1) 

140. c(eventALeftEngineApproached324_7) → eventALeftEngineApproached324_8 
c(eventALeftEngineApproached324_8) | eventALeftEngineApproached324AndKnocking_2 
c(eventALeftEngineApproached324AndKnocking_2) 

141. c(eventARightEngineApproached324_7) → eventARightEngineApproached324_8 
c(eventARightEngineApproached324_8) | 
eventARightEngineApproached324AndKnocking_2 
c(eventARightEngineApproached324AndKnocking_2) 

142. c(eventALeftEngineDeparted162_4) → eventARightEngineApproached324_9 
c(eventARightEngineApproached324_9) 

143. c(eventARightEngineDeparted162_4) → eventALeftEngineApproached324_9 
c(eventALeftEngineApproached324_9) 

144. c(eventALeftEngineApproached324_8) → eventALeftEngineDeparted162_4 
c(eventALeftEngineDeparted162_4) 

145. c(eventARightEngineApproached324_8) → eventARightEngineDeparted162_4 
c(eventARightEngineDeparted162_4) 

146. c(eventALeftEngineApproached324_9) → eventALeftEngineApproached324_10 
c(eventALeftEngineApproached324_10) | eventALeftEngineApproached324AndKnocking_3 
c(eventALeftEngineApproached324AndKnocking_3) 

147. c(eventARightEngineApproached324_9) → eventARightEngineApproached324_10 
c(eventARightEngineApproached324_10) | 
eventARightEngineApproached324AndKnocking_3 
c(eventARightEngineApproached324AndKnocking_3) 

148. c(eventALeftEngineDeparted162_5) → eventARightEngineApproached324_11 
c(eventARightEngineApproached324_11) 

149. c(eventARightEngineDeparted162_5) → eventALeftEngineApproached324_11 
c(eventALeftEngineApproached324_11) 

150. c(eventALeftEngineApproached324_10) → eventALeftEngineDeparted162_5 
c(eventALeftEngineDeparted162_5) 

151. c(eventARightEngineApproached324_10) → eventARightEngineDeparted162_5 
c(eventARightEngineDeparted162_5) 

152. c(eventALeftEngineApproached324_11) → eventALeftEngineApproached324_12 
c(eventALeftEngineApproached324_12) | eventALeftEngineApproached324AndKnocking_4 
c(eventALeftEngineApproached324AndKnocking_4) 

153. c(eventARightEngineApproached324_11) → eventARightEngineApproached324_12 
c(eventARightEngineApproached324_12) | 
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eventARightEngineApproached324AndKnocking_4 
c(eventARightEngineApproached324AndKnocking_4) 

154. c(eventALeftEngineDeparted162_6) → eventARightEngineApproached324_13 
c(eventARightEngineApproached324_13) 

155. c(eventARightEngineDeparted162_6) → eventALeftEngineApproached324_13 
c(eventALeftEngineApproached324_13) 

156. c(eventALeftEngineApproached324_12) → eventALeftEngineDeparted162_6 
c(eventALeftEngineDeparted162_6) 

157. c(eventARightEngineApproached324_12) → eventARightEngineDeparted162_6 
c(eventARightEngineDeparted162_6) 

158. c(eventALeftEngineApproached324_13) → eventALeftEngineApproached324_14 
c(eventALeftEngineApproached324_14) | eventALeftEngineApproached324AndKnocking_5 
c(eventALeftEngineApproached324AndKnocking_5) 

159. c(eventARightEngineApproached324_13) → eventARightEngineApproached324_14 
c(eventARightEngineApproached324_14) | 
eventARightEngineApproached324AndKnocking_5 
c(eventARightEngineApproached324AndKnocking_5) 

160. c(eventALeftEngineDeparted162_7) → eventARightEngineApproached324_15 
c(eventARightEngineApproached324_15) 

161. c(eventARightEngineDeparted162_7) → eventALeftEngineApproached324_15 
c(eventALeftEngineApproached324_15) 

162. c(eventALeftEngineApproached324_14) → eventALeftEngineDeparted162_7 
c(eventALeftEngineDeparted162_7) 

163. c(eventARightEngineApproached324_14) → eventARightEngineDeparted162_7 
c(eventARightEngineDeparted162_7) 

164. c(eventARightEngineApproached324AndKnocking_2) → eventARightEngineDeparted375_2 
c(eventARightEngineDeparted375_2) 

165. c(eventARightEngineDeparted375_2) → eventALeftEngineApproached324_27 
c(eventALeftEngineApproached324_27) 

166. c(eventARightEngineApproached324AndKnocking_3) → eventARightEngineDeparted375_3 
c(eventARightEngineDeparted375_3) 

167. c(eventARightEngineDeparted375_3) → eventALeftEngineApproached324_27 
c(eventALeftEngineApproached324_27) 

168. c(eventARightEngineApproached324AndKnocking_4) → eventARightEngineDeparted375_4 
c(eventARightEngineDeparted375_4) 

169. c(eventARightEngineDeparted375_4) → eventALeftEngineApproached324_29 
c(eventALeftEngineApproached324_29) 

170. c(eventARightEngineApproached324AndKnocking_5) → eventARightEngineDeparted375_5 
c(eventARightEngineDeparted375_5) 

171. c(eventARightEngineDeparted375_5) → eventALeftEngineApproached324_29 
c(eventALeftEngineApproached324_29) 

172. c(eventALeftEngineApproached324_23) → eventALeftEngineApproached324_24 
c(eventALeftEngineApproached324_24) | 
eventALeftEngineApproached324AndKnocking_10 
c(eventALeftEngineApproached324AndKnocking_10) 
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173. c(eventARightEngineApproached324_23) → eventARightEngineApproached324_24 
c(eventARightEngineApproached324_24) | 
eventARightEngineApproached324AndKnocking_10 
c(eventARightEngineApproached324AndKnocking_10) 

174. c(eventALeftEngineDeparted162_12) → eventARightEngineApproached324_23 
c(eventARightEngineApproached324_23) 

175. c(eventARightEngineDeparted162_12) → eventALeftEngineApproached324_23 
c(eventALeftEngineApproached324_23) 

176. c(eventALeftEngineApproached324_24) → eventALeftEngineDeparted162_12 
c(eventALeftEngineDeparted162_12) 

177. c(eventARightEngineApproached324_24) → eventARightEngineDeparted162_12 
c(eventARightEngineDeparted162_12) 

178. c(eventARightEngineApproached324AndKnocking_10) → 
eventARightEngineDeparted375_10 c(eventARightEngineDeparted375_10) 

179. c(eventARightEngineDeparted375_10) → eventALeftEngineApproached324_35 
c(eventALeftEngineApproached324_35) 

180. c(eventALeftEngineApproached324AndKnocking_10) → eventALeftEngineDeparted375_10 
c(eventALeftEngineDeparted375_10) 

181. c(eventALeftEngineDeparted375_10) → eventARightEngineApproached324_35 
c(eventARightEngineApproached324_35) 

182. c(eventALeftEngineApproached324AndKnocking_5) → eventALeftEngineDeparted375_5 
c(eventALeftEngineDeparted375_5) 

183. c(eventALeftEngineDeparted375_5) → eventARightEngineApproached324_29 
c(eventARightEngineApproached324_29) 

184. c(eventALeftEngineApproached324AndKnocking_4) → eventALeftEngineDeparted375_4 
c(eventALeftEngineDeparted375_4) 

185. c(eventALeftEngineDeparted375_4) → eventARightEngineApproached324_29 
c(eventARightEngineApproached324_29) 

186. c(eventALeftEngineApproached324AndKnocking_3) → eventALeftEngineDeparted375_3 
c(eventALeftEngineDeparted375_3) 

187. c(eventALeftEngineDeparted375_3) → eventARightEngineApproached324_27 
c(eventARightEngineApproached324_27) 

188. c(eventALeftEngineApproached324AndKnocking_2) → eventALeftEngineDeparted375_2 
c(eventALeftEngineDeparted375_2) 

189. c(eventALeftEngineDeparted375_2) → eventARightEngineApproached324_27 
c(eventARightEngineApproached324_27) 

190. c(eventALeftEngineApproached324_15) → eventALeftEngineApproached324_16 
c(eventALeftEngineApproached324_16) | eventALeftEngineApproached324AndKnocking_6 
c(eventALeftEngineApproached324AndKnocking_6) 

191. c(eventARightEngineApproached324_15) → eventARightEngineApproached324_16 
c(eventARightEngineApproached324_16) | 
eventARightEngineApproached324AndKnocking_6 
c(eventARightEngineApproached324AndKnocking_6) 

192. c(eventALeftEngineDeparted162_8) → eventARightEngineApproached324_17 
c(eventARightEngineApproached324_17) 
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193. c(eventARightEngineDeparted162_8) → eventALeftEngineApproached324_17 
c(eventALeftEngineApproached324_17) 

194. c(eventALeftEngineApproached324_16) → eventALeftEngineDeparted162_8 
c(eventALeftEngineDeparted162_8) 

195. c(eventARightEngineApproached324_16) → eventARightEngineDeparted162_8 
c(eventARightEngineDeparted162_8) 

196. c(eventARightEngineApproached324AndKnocking_6) → eventARightEngineDeparted375_6 
c(eventARightEngineDeparted375_6) 

197. c(eventARightEngineDeparted375_6) → eventALeftEngineApproached324_31 
c(eventALeftEngineApproached324_31) 

198. c(eventALeftEngineApproached324AndKnocking_6) → eventALeftEngineDeparted375_6 
c(eventALeftEngineDeparted375_6) 

199. c(eventALeftEngineDeparted375_6) → eventARightEngineApproached324_31 
c(eventARightEngineApproached324_31) 

200. c(eventALeftEngineDeparted200_4) → eventARightEngineDeparted200_3 
c(eventARightEngineDeparted200_3) 

201. c(eventARightEngineDeparted200_3) → eventALeftEngineDeparted200_5 
c(eventALeftEngineDeparted200_5) 

202. c(eventALeftEngineDeparted200_5) → eventARightEngineDeparted200_4 
c(eventARightEngineDeparted200_4) 

203. c(eventARightEngineDeparted200_4) → eventALeftEngineDeparted200_6 
c(eventALeftEngineDeparted200_6) 

204. c(eventALeftEngineDeparted200_6) → eventARightEngineDeparted200_5 
c(eventARightEngineDeparted200_5) 

205. c(eventALeftEngineApproached324_37) → eventALeftEngineApproached324_38 
c(eventALeftEngineApproached324_38) 

206. c(eventARightEngineApproached324_37) → eventARightEngineApproached324_38 
c(eventARightEngineApproached324_38) 

207. c(eventALeftEngineDeparted162_19) → eventARightEngineApproached324_39 
c(eventARightEngineApproached324_39) 

208. c(eventARightEngineDeparted162_19) → eventALeftEngineApproached324_39 
c(eventALeftEngineApproached324_39) 

209. c(eventALeftEngineApproached324_38) → eventALeftEngineDeparted162_19 
c(eventALeftEngineDeparted162_19) 

210. c(eventARightEngineApproached324_38) → eventARightEngineDeparted162_19 
c(eventARightEngineDeparted162_19) 

211. c(eventALeftEngineApproached324_39) → eventALeftEngineApproached324_40 
c(eventALeftEngineApproached324_40) 

212. c(eventARightEngineApproached324_39) → eventARightEngineApproached324_40 
c(eventARightEngineApproached324_40) 

213. c(eventALeftEngineDeparted162_20) → eventARightEngineApproached324_41 
c(eventARightEngineApproached324_41) 

214. c(eventARightEngineDeparted162_20) → eventALeftEngineApproached324_41 
c(eventALeftEngineApproached324_41) 
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215. c(eventALeftEngineApproached324_40) → eventALeftEngineDeparted162_20 
c(eventALeftEngineDeparted162_20) 

216. c(eventARightEngineApproached324_40) → eventARightEngineDeparted162_20 
c(eventARightEngineDeparted162_20) 

217. c(eventALeftEngineApproached324AndKnocking_13) → eventALeftEngineDeparted375_13 
c(eventALeftEngineDeparted375_13) 

218. c(eventALeftEngineApproached324_41) → 
eventALeftEngineApproached324AndKnocking_13 
c(eventALeftEngineApproached324AndKnocking_13) | 
eventALeftEngineApproached324_42 c(eventALeftEngineApproached324_42) 

219. c(eventARightEngineApproached324_41) → eventARightEngineApproached324_42 
c(eventARightEngineApproached324_42) | 
eventARightEngineApproached324AndKnocking_13 
c(eventARightEngineApproached324AndKnocking_13) 

220. c(eventALeftEngineDeparted375_13) → eventARightEngineApproached324_43 
c(eventARightEngineApproached324_43) 

221. c(eventALeftEngineDeparted162_21) → eventARightEngineApproached324_41 
c(eventARightEngineApproached324_41) 

222. c(eventARightEngineDeparted162_21) → eventALeftEngineApproached324_41 
c(eventALeftEngineApproached324_41) 

223. c(eventALeftEngineApproached324_42) → eventALeftEngineDeparted162_21 
c(eventALeftEngineDeparted162_21) 

224. c(eventARightEngineApproached324_42) → eventARightEngineDeparted162_21 
c(eventARightEngineDeparted162_21) 

225. c(eventARightEngineApproached324AndKnocking_13) → 
eventARightEngineDeparted375_13 c(eventARightEngineDeparted375_13) 

226. c(eventARightEngineDeparted375_13) → eventALeftEngineApproached324_43 
c(eventALeftEngineApproached324_43) 

227. c(eventALeftEngineApproached324_43) → eventALeftEngineApproached324_44 
c(eventALeftEngineApproached324_44) | 
eventALeftEngineApproached324AndKnocking_11 
c(eventALeftEngineApproached324AndKnocking_11) 

228. c(eventARightEngineApproached324_43) → eventARightEngineApproached324_44 
c(eventARightEngineApproached324_44) | 
eventARightEngineApproached324AndKnocking_11 
c(eventARightEngineApproached324AndKnocking_11) 

229. c(eventALeftEngineDeparted162_22) → eventALeftEngineApproached324_43 
c(eventALeftEngineApproached324_43) 

230. c(eventARightEngineDeparted162_22) → eventARightEngineApproached324_43 
c(eventARightEngineApproached324_43) 

231. c(eventALeftEngineApproached324_44) → eventALeftEngineDeparted162_22 
c(eventALeftEngineDeparted162_22) 

232. c(eventARightEngineApproached324_44) → eventARightEngineDeparted162_22 
c(eventARightEngineDeparted162_22) 

233. c(eventALeftEngineDeparted200_7) → eventARightEngineDeparted200_7 
c(eventARightEngineDeparted200_7) 
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234. c(eventARightEngineDeparted200_7) → eventALeftEngineDeparted200_8 
c(eventALeftEngineDeparted200_8) 

235. c(eventALeftEngineDeparted200_8) → eventARightEngineDeparted200_8 
c(eventARightEngineDeparted200_8) 

236. c(eventARightEngineDeparted200_8) → eventALeftEngineDeparted200_9 
c(eventALeftEngineDeparted200_9) 

237. c(eventALeftEngineDeparted200_9) → eventARightEngineApproached324_37 
c(eventARightEngineApproached324_37) 

238. c(eventALeftEngineDeparted50AndKnocking_2) → 
eventARightEngineDeparted50AndNoKnocking 
c(eventARightEngineDeparted50AndNoKnocking) | 
eventARightEngineDeparted50AndKnocking_3 
c(eventARightEngineDeparted50AndKnocking_3) 

239. c(eventARightEngineDeparted50AndKnocking_2) → 
eventALeftEngineDeparted50AndNoKnocking 
c(eventALeftEngineDeparted50AndNoKnocking) | 
eventALeftEngineDeparted50AndKnocking_2 
c(eventALeftEngineDeparted50AndKnocking_2) 

240. c(eventALeftEngineDeparted50AndKnocking_3) → 
eventARightEngineDeparted50AndNoKnocking 
c(eventARightEngineDeparted50AndNoKnocking) | 
eventARightEngineDeparted50AndKnocking_4 
c(eventARightEngineDeparted50AndKnocking_4) 

241. c(eventARightEngineDeparted50AndKnocking_3) → 
eventALeftEngineDeparted50AndNoKnocking 
c(eventALeftEngineDeparted50AndNoKnocking) | 
eventALeftEngineDeparted50AndKnocking_3 
c(eventALeftEngineDeparted50AndKnocking_3) 

242. c(eventARightEngineDeparted50AndKnocking_4) → ε 

243. c(eventARightEngineDeparted200_5) → eventALeftEngineApproached324_37 
c(eventALeftEngineApproached324_37) 

244. c(eventARightEngineDeparted200_6) → eventALeftEngineDeparted200_7 
c(eventALeftEngineDeparted200_7) 

245. c(eventALeftEngineApproached324_29) → eventALeftEngineApproached324_30 
c(eventALeftEngineApproached324_30) | 
eventALeftEngineApproached324AndKnocking_11 
c(eventALeftEngineApproached324AndKnocking_11) 

246. c(eventARightEngineApproached324_29) → eventARightEngineApproached324_30 
c(eventARightEngineApproached324_30) | 
eventARightEngineApproached324AndKnocking_11 
c(eventARightEngineApproached324AndKnocking_11) 

247. c(eventALeftEngineDeparted162_15) → eventALeftEngineApproached324_31 
c(eventALeftEngineApproached324_31) 

248. c(eventARightEngineDeparted162_15) → eventARightEngineApproached324_31 
c(eventARightEngineApproached324_31) 

249. c(eventALeftEngineApproached324_30) → eventALeftEngineDeparted162_15 
c(eventALeftEngineDeparted162_15) 
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250. c(eventARightEngineApproached324_30) → eventARightEngineDeparted162_15 
c(eventARightEngineDeparted162_15) 

251. c(eventALeftEngineApproached324_31) → eventALeftEngineApproached324_32 
c(eventALeftEngineApproached324_32) | 
eventALeftEngineApproached324AndKnocking_11 
c(eventALeftEngineApproached324AndKnocking_11) 

252. c(eventARightEngineApproached324_31) → eventARightEngineApproached324_32 
c(eventARightEngineApproached324_32) | 
eventARightEngineApproached324AndKnocking_11 
c(eventARightEngineApproached324AndKnocking_11) 

253. c(eventALeftEngineDeparted162_16) → eventALeftEngineApproached324_33 
c(eventALeftEngineApproached324_33) 

254. c(eventARightEngineDeparted162_16) → eventARightEngineApproached324_33 
c(eventARightEngineApproached324_33) 

255. c(eventALeftEngineApproached324_32) → eventALeftEngineDeparted162_16 
c(eventALeftEngineDeparted162_16) 

256. c(eventARightEngineApproached324_32) → eventARightEngineDeparted162_16 
c(eventARightEngineDeparted162_16) 

257. c(eventALeftEngineApproached324_33) → eventALeftEngineApproached324_34 
c(eventALeftEngineApproached324_34) | 
eventALeftEngineApproached324AndKnocking_11 
c(eventALeftEngineApproached324AndKnocking_11) 

258. c(eventARightEngineApproached324_33) → eventARightEngineApproached324_34 
c(eventARightEngineApproached324_34) | 
eventARightEngineApproached324AndKnocking_11 
c(eventARightEngineApproached324AndKnocking_11) 

259. c(eventALeftEngineDeparted162_17) → eventALeftEngineApproached324_35 
c(eventALeftEngineApproached324_35) 

260. c(eventARightEngineDeparted162_17) → eventARightEngineApproached324_35 
c(eventARightEngineApproached324_35) 

261. c(eventALeftEngineApproached324_34) → eventALeftEngineDeparted162_17 
c(eventALeftEngineDeparted162_17) 

262. c(eventARightEngineApproached324_34) → eventARightEngineDeparted162_17 
c(eventARightEngineDeparted162_17) 

263. c(eventARightEngineApproached324AndKnocking_11) → 
eventARightEngineDeparted375_11 c(eventARightEngineDeparted375_11) 

264. c(eventARightEngineDeparted375_11) → 
eventALeftEngineApproached50AndNoKnocking_1 
c(eventALeftEngineApproached50AndNoKnocking_1) 

265. c(eventALeftEngineApproached324AndKnocking_11) → eventALeftEngineDeparted375_11 
c(eventALeftEngineDeparted375_11) 

266. c(eventALeftEngineDeparted375_11) → eventALeftEngineApproached50AndNoKnocking_1 
c(eventALeftEngineApproached50AndNoKnocking_1) 

267. c(eventALeftEngineApproached324AndKnocking_9) → eventALeftEngineDeparted375_9 
c(eventALeftEngineDeparted375_9) 
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268. c(eventALeftEngineApproached324_21) → 
eventALeftEngineApproached324AndKnocking_9 
c(eventALeftEngineApproached324AndKnocking_9) | eventALeftEngineApproached324_22 
c(eventALeftEngineApproached324_22) 

269. c(eventARightEngineApproached324_21) → eventARightEngineApproached324_22 
c(eventARightEngineApproached324_22) | 
eventARightEngineApproached324AndKnocking_9 
c(eventARightEngineApproached324AndKnocking_9) 

270. c(eventALeftEngineDeparted375_9) → eventARightEngineApproached324_33 
c(eventARightEngineApproached324_33) 

271. c(eventALeftEngineDeparted162_11) → eventARightEngineApproached324_23 
c(eventARightEngineApproached324_23) 

272. c(eventARightEngineDeparted162_11) → eventALeftEngineApproached324_23 
c(eventALeftEngineApproached324_23) 

273. c(eventALeftEngineApproached324_22) → eventALeftEngineDeparted162_11 
c(eventALeftEngineDeparted162_11) 

274. c(eventARightEngineApproached324_22) → eventARightEngineDeparted162_11 
c(eventARightEngineDeparted162_11) 

275. c(eventARightEngineApproached324AndKnocking_9) → eventARightEngineDeparted375_9 
c(eventARightEngineDeparted375_9) 

276. c(eventARightEngineDeparted375_9) → eventALeftEngineApproached324_33 
c(eventALeftEngineApproached324_33) 

277. c(eventALeftEngineApproached324AndKnocking_8) → eventALeftEngineDeparted375_8 
c(eventALeftEngineDeparted375_8) 

278. c(eventALeftEngineApproached324_19) → 
eventALeftEngineApproached324AndKnocking_8 
c(eventALeftEngineApproached324AndKnocking_8) | eventALeftEngineApproached324_20 
c(eventALeftEngineApproached324_20) 

279. c(eventARightEngineApproached324_19) → eventARightEngineApproached324_20 
c(eventARightEngineApproached324_20) | 
eventARightEngineApproached324AndKnocking_8 
c(eventARightEngineApproached324AndKnocking_8) 

280. c(eventALeftEngineDeparted375_8) → eventARightEngineApproached324_33 
c(eventARightEngineApproached324_33) 

281. c(eventALeftEngineDeparted162_10) → eventARightEngineApproached324_21 
c(eventARightEngineApproached324_21) 

282. c(eventARightEngineDeparted162_10) → eventALeftEngineApproached324_21 
c(eventALeftEngineApproached324_21) 

283. c(eventALeftEngineApproached324_20) → eventALeftEngineDeparted162_10 
c(eventALeftEngineDeparted162_10) 

284. c(eventARightEngineApproached324_20) → eventARightEngineDeparted162_10 
c(eventARightEngineDeparted162_10) 

285. c(eventARightEngineApproached324AndKnocking_8) → eventARightEngineDeparted375_8 
c(eventARightEngineDeparted375_8) 

286. c(eventARightEngineDeparted375_8) → eventALeftEngineApproached324_33 
c(eventALeftEngineApproached324_33) 
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287. c(eventALeftEngineApproached324_25) → 
eventALeftEngineApproached324AndKnocking_11 
c(eventALeftEngineApproached324AndKnocking_11) | 
eventALeftEngineApproached324_26 c(eventALeftEngineApproached324_26) 

288. c(eventARightEngineApproached324_25) → 
eventARightEngineApproached324AndKnocking_11 
c(eventARightEngineApproached324AndKnocking_11) | 
eventARightEngineApproached324_26 c(eventARightEngineApproached324_26) 

289. c(eventALeftEngineDeparted162_13) → eventALeftEngineApproached324_27 
c(eventALeftEngineApproached324_27) 

290. c(eventARightEngineDeparted162_13) → eventARightEngineApproached324_27 
c(eventARightEngineApproached324_27) 

291. c(eventALeftEngineApproached324_26) → eventALeftEngineDeparted162_13 
c(eventALeftEngineDeparted162_13) 

292. c(eventARightEngineApproached324_26) → eventARightEngineDeparted162_13 
c(eventARightEngineDeparted162_13) 

293. c(eventALeftEngineApproached324_27) → 
eventALeftEngineApproached324AndKnocking_11 
c(eventALeftEngineApproached324AndKnocking_11) | 
eventALeftEngineApproached324_28 c(eventALeftEngineApproached324_28) 

294. c(eventARightEngineApproached324_27) → 
eventARightEngineApproached324AndKnocking_11 
c(eventARightEngineApproached324AndKnocking_11) | 
eventARightEngineApproached324_28 c(eventARightEngineApproached324_28) 

295. c(eventALeftEngineDeparted162_14) → eventALeftEngineApproached324_29 
c(eventALeftEngineApproached324_29) 

296. c(eventARightEngineDeparted162_14) → eventARightEngineApproached324_29 
c(eventARightEngineApproached324_29) 

297. c(eventALeftEngineApproached324_28) → eventALeftEngineDeparted162_14 
c(eventALeftEngineDeparted162_14) 

298. c(eventARightEngineApproached324_28) → eventARightEngineDeparted162_14 
c(eventARightEngineDeparted162_14) 

299. c(eventALeftEngineDeparted200_1) → eventARightEngineDeparted200_1 
c(eventARightEngineDeparted200_1) 

300. c(eventARightEngineDeparted200_1) → eventALeftEngineDeparted200_2 
c(eventALeftEngineDeparted200_2) 

301. c(eventALeftEngineDeparted200_2) → eventARightEngineDeparted200_2 
c(eventARightEngineDeparted200_2) 

302. c(eventARightEngineDeparted200_2) → eventALeftEngineDeparted200_3 
c(eventALeftEngineDeparted200_3) 

303. c(eventARightEngineApproached50AndNoKnocking_1) → eventALeftEngineAp-
proached50AndNoKnocking_2 c(eventALeftEngineApproached50AndNoKnocking_2) 

304. c(eventALeftEngineApproached50AndNoKnocking_2) → eventARightEngineAp-
proached50AndNoKnocking_2 c(eventARightEngineApproached50AndNoKnocking_2) 

305. c(eventARightEngineApproached50AndNoKnocking_2) → eventALeftEngineAp-
proached50AndNoKnocking_3 c(eventALeftEngineApproached50AndNoKnocking_3) 
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306. c(eventALeftEngineApproached50AndNoKnocking_3) → eventARightEngineAp-
proached50AndNoKnocking_3 c(eventARightEngineApproached50AndNoKnocking_3) 

307. c(eventARightEngineApproached50AndNoKnocking_3) → eventALeftEngineAp-
proached50AndNoKnocking_4 c(eventALeftEngineApproached50AndNoKnocking_4) 

308. c(eventALeftEngineApproached50AndNoKnocking_4) → eventARightEngineAp-
proached50AndNoKnocking_4 c(eventARightEngineApproached50AndNoKnocking_4) 

309. c(eventARightEngineApproached50AndNoKnocking_4) → eventALeftEngineAp-
proached50AndNoKnocking_5 c(eventALeftEngineApproached50AndNoKnocking_5) 

310. c(eventALeftEngineApproached50AndNoKnocking_5) → eventARightEngineAp-
proached50AndNoKnocking_5 c(eventARightEngineApproached50AndNoKnocking_5) 

311. c(eventARightEngineApproached50AndNoKnocking_5) → eventALeftEngineAp-
proached50AndNoKnocking_6 c(eventALeftEngineApproached50AndNoKnocking_6) 

312. c(eventALeftEngineApproached50AndNoKnocking_6) → eventARightEngineAp-
proached50AndNoKnocking_6 c(eventARightEngineApproached50AndNoKnocking_6) 

313. c(eventARightEngineApproached50AndNoKnocking_6) → eventALeftEngineAp-
proached50AndNoKnocking_7 c(eventALeftEngineApproached50AndNoKnocking_7) 

314. c(eventALeftEngineApproached50AndNoKnocking_7) → eventARightEngineAp-
proached50AndNoKnocking_7 c(eventARightEngineApproached50AndNoKnocking_7) 

315. c(eventARightEngineApproached50AndNoKnocking_7) → eventALeftEngineAp-
proached50AndNoKnocking_8 c(eventALeftEngineApproached50AndNoKnocking_8) 

A.2 Productions of Specials 1-Reg Model 

1. S → [___0 c([___0) 

2. c([___0) → OpenSpecials_0___89 c(OpenSpecials_0___89) 

3. c(Add_C_2+___1) → DataC_N_2+___3 c(DataC_N_2+___3) | DataI_N_2+___4 
c(DataI_N_2+___4) | Edit_2+___6 c(Edit_2+___6) | ]___19 c(]___19) | Add_E_2+___21 
c(Add_E_2+___21) | DataE_N_2+___24 c(DataE_N_2+___24) | Delete_E_N_2+___28 
c(Delete_E_N_2+___28) 

4. c(Add_I_2+___2) → Add_I_2+___2 c(Add_I_2+___2) | Edit_2+___6 c(Edit_2+___6) | 
DataC_W_2+___22 c(DataC_W_2+___22) | DataI_W_2+___23 c(DataI_W_2+___23) | 
DataE_W_2+___25 c(DataE_W_2+___25) | Delete_I_W_2+___26 c(Delete_I_W_2+___26) 

5. c(DataC_N_2+___3) → Add_C_2+___1 c(Add_C_2+___1) | DataI_N_2+___4 
c(DataI_N_2+___4) | Edit_2+___6 c(Edit_2+___6) | Delete_C_N_2+___8 
c(Delete_C_N_2+___8) | DataE_N_2+___24 c(DataE_N_2+___24) 

6. c(DataI_N_2+___4) → Add_I_2+___2 c(Add_I_2+___2) | DataC_N_2+___3 
c(DataC_N_2+___3) | De-lete_I_N_2+___5 c(Delete_I_N_2+___5) | Edit_2+___6 
c(Edit_2+___6) | DataE_N_2+___24 c(DataE_N_2+___24) 

7. c(Delete_I_N_2+___5) → DCancel_I_N_2+___7 c(DCancel_I_N_2+___7) | 
DOK_2+_1___20 c(DOK_2+_1___20) 

8. c(Edit_2+___6) → Edit_2+___6 c(Edit_2+___6) | DataC_E_N_2+___10 
c(DataC_E_N_2+___10) | DataI_E_N_2+___11 c(DataI_E_N_2+___11) | 
Cancel_E_2+___12 c(Cancel_E_2+___12) | Save_C_E_2+___13 c(Save_C_E_2+___13) | 
Delete_C_E_N_2+___15 c(Delete_C_E_N_2+___15) | DataE_E_N_2+___36 
c(DataE_E_N_2+___36) 
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9. c(DCancel_I_N_2+___7) → Add_I_2+___2 c(Add_I_2+___2) | DataC_N_2+___3 
c(DataC_N_2+___3) | DataI_N_2+___4 c(DataI_N_2+___4) | Delete_I_N_2+___5 
c(Delete_I_N_2+___5) | Edit_2+___6 c(Edit_2+___6) | DataE_N_2+___24 
c(DataE_N_2+___24) 

10. c(Delete_C_N_2+___8) → DCancel_C_N_2+___9 c(DCancel_C_N_2+___9) | 
DOK_2+_1___20 c(DOK_2+_1___20) 

11. c(DCancel_C_N_2+___9) → Add_C_2+___1 c(Add_C_2+___1) | DataC_N_2+___3 
c(DataC_N_2+___3) | DataI_N_2+___4 c(DataI_N_2+___4) | Edit_2+___6 c(Edit_2+___6) | 
Delete_C_N_2+___8 c(Delete_C_N_2+___8) | DataE_N_2+___24 c(DataE_N_2+___24) 

12. c(DataC_E_N_2+___10) → Edit_2+___6 c(Edit_2+___6) | DataI_E_N_2+___11 
c(DataI_E_N_2+___11) | Can-cel_E_2+___12 c(Cancel_E_2+___12) | Save_C_E_2+___13 
c(Save_C_E_2+___13) | Delete_C_E_N_2+___15 c(Delete_C_E_N_2+___15) | 
DataE_E_N_2+___36 c(DataE_E_N_2+___36) 

13. c(DataI_E_N_2+___11) → Edit_2+___6 c(Edit_2+___6) | DataC_E_N_2+___10 
c(DataC_E_N_2+___10) | Cancel_E_2+___12 c(Cancel_E_2+___12) | Save_I_E_2+___14 
c(Save_I_E_2+___14) | Delete_I_E_N_2+___16 c(Delete_I_E_N_2+___16) | 
DataE_E_N_2+___36 c(DataE_E_N_2+___36) 

14. c(Cancel_E_2+___12) → DataC_N_2+___3 c(DataC_N_2+___3) | DataI_N_2+___4 
c(DataI_N_2+___4) | Edit_2+___6 c(Edit_2+___6) | Add_E_2+___21 c(Add_E_2+___21) | 
DataE_N_2+___24 c(DataE_N_2+___24) | Delete_E_N_2+___28 c(Delete_E_N_2+___28) 

15. c(Save_C_E_2+___13) → DataC_N_2+___3 c(DataC_N_2+___3) | DataI_N_2+___4 
c(DataI_N_2+___4) | Edit_2+___6 c(Edit_2+___6) | Add_E_2+___21 c(Add_E_2+___21) | 
DataE_N_2+___24 c(DataE_N_2+___24) | Delete_E_N_2+___28 c(Delete_E_N_2+___28) 

16. c(Save_I_E_2+___14) → Edit_2+___6 c(Edit_2+___6) | Cancel_E_2+___12 
c(Cancel_E_2+___12) | Save_I_E_2+___14 c(Save_I_E_2+___14) | DataC_E_W_2+___34 
c(DataC_E_W_2+___34) | DataI_E_W_2+___35 c(DataI_E_W_2+___35) | 
DataE_E_W_2+___37 c(DataE_E_W_2+___37) | De-lete_I_E_W_2+___38 
c(Delete_I_E_W_2+___38) 

17. c(Delete_C_E_N_2+___15) → DCancel_C_E_N_2+___17 c(DCancel_C_E_N_2+___17) | 
DOK_2+_1___20 c(DOK_2+_1___20) 

18. c(Delete_I_E_N_2+___16) → DCancel_I_E_N_2+___18 c(DCancel_I_E_N_2+___18) | 
DOK_2+_1___20 c(DOK_2+_1___20) 

19. c(DCancel_C_E_N_2+___17) → Edit_2+___6 c(Edit_2+___6) | DataC_E_N_2+___10 
c(DataC_E_N_2+___10) | DataI_E_N_2+___11 c(DataI_E_N_2+___11) | 
Cancel_E_2+___12 c(Cancel_E_2+___12) | Save_C_E_2+___13 c(Save_C_E_2+___13) | 
Delete_C_E_N_2+___15 c(Delete_C_E_N_2+___15) | DataE_E_N_2+___36 
c(DataE_E_N_2+___36) 

20. c(DCancel_I_E_N_2+___18) → Edit_2+___6 c(Edit_2+___6) | DataC_E_N_2+___10 
c(DataC_E_N_2+___10) | DataI_E_N_2+___11 c(DataI_E_N_2+___11) | 
Cancel_E_2+___12 c(Cancel_E_2+___12) | Save_I_E_2+___14 c(Save_I_E_2+___14) | 
Delete_I_E_N_2+___16 c(Delete_I_E_N_2+___16) | DataE_E_N_2+___36 
c(DataE_E_N_2+___36) 

21. c(]___19) → ε 

22. c(DOK_2+_1___20) → ]___19 c(]___19) | DataC_N_1___49 c(DataC_N_1___49) | 
DataI_N_1___50 c(DataI_N_1___50) | Edit_1___52 c(Edit_1___52) | Add_E_1___62 
c(Add_E_1___62) | DataE_N_1___65 c(DataE_N_1___65) | Delete_E_N_1___69 
c(Delete_E_N_1___69) 
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23. c(Add_E_2+___21) → Edit_2+___6 c(Edit_2+___6) | Add_E_2+___21 c(Add_E_2+___21) | 
DataC_W_2+___22 c(DataC_W_2+___22) | DataI_W_2+___23 c(DataI_W_2+___23) | 
DataE_W_2+___25 c(DataE_W_2+___25) | Delete_E_W_2+___29 c(Delete_E_W_2+___29) 

24. c(DataC_W_2+___22) → Add_C_2+___1 c(Add_C_2+___1) | Edit_2+___6 c(Edit_2+___6) 
| DataI_W_2+___23 c(DataI_W_2+___23) | DataE_W_2+___25 c(DataE_W_2+___25) | 
Delete_C_W_2+___27 c(Delete_C_W_2+___27) 

25. c(DataI_W_2+___23) → Add_I_2+___2 c(Add_I_2+___2) | Edit_2+___6 c(Edit_2+___6) | 
DataC_W_2+___22 c(DataC_W_2+___22) | DataE_W_2+___25 c(DataE_W_2+___25) | 
Delete_I_W_2+___26 c(Delete_I_W_2+___26) 

26. c(DataE_N_2+___24) → DataC_N_2+___3 c(DataC_N_2+___3) | DataI_N_2+___4 
c(DataI_N_2+___4) | Edit_2+___6 c(Edit_2+___6) | Add_E_2+___21 c(Add_E_2+___21) | 
DataE_N_2+___24 c(DataE_N_2+___24) | Delete_E_N_2+___28 c(Delete_E_N_2+___28) 

27. c(DataE_W_2+___25) → Edit_2+___6 c(Edit_2+___6) | Add_E_2+___21 
c(Add_E_2+___21) | DataC_W_2+___22 c(DataC_W_2+___22) | DataI_W_2+___23 
c(DataI_W_2+___23) | DataE_W_2+___25 c(DataE_W_2+___25) | Delete_E_W_2+___29 
c(Delete_E_W_2+___29) 

28. c(Delete_I_W_2+___26) → DOK_2+_1___20 c(DOK_2+_1___20) | 
DCancel_I_W_2+___30 c(DCancel_I_W_2+___30) 

29. c(Delete_C_W_2+___27) → DOK_2+_1___20 c(DOK_2+_1___20) | 
DCancel_C_W_2+___31 c(DCancel_C_W_2+___31) 

30. c(Delete_E_N_2+___28) → DOK_2+_1___20 c(DOK_2+_1___20) | 
DCancel_E_N_2+___32 c(DCancel_E_N_2+___32) 

31. c(Delete_E_W_2+___29) → DOK_2+_1___20 c(DOK_2+_1___20) | 
DCancel_E_W_2+___33 c(DCancel_E_W_2+___33) 

32. c(DCancel_I_W_2+___30) → Add_I_2+___2 c(Add_I_2+___2) | Edit_2+___6 
c(Edit_2+___6) | DataC_W_2+___22 c(DataC_W_2+___22) | DataI_W_2+___23 
c(DataI_W_2+___23) | DataE_W_2+___25 c(DataE_W_2+___25) | Delete_I_W_2+___26 
c(Delete_I_W_2+___26) 

33. c(DCancel_C_W_2+___31) → Add_C_2+___1 c(Add_C_2+___1) | Edit_2+___6 
c(Edit_2+___6) | DataC_W_2+___22 c(DataC_W_2+___22) | DataI_W_2+___23 
c(DataI_W_2+___23) | DataE_W_2+___25 c(DataE_W_2+___25) | Delete_C_W_2+___27 
c(Delete_C_W_2+___27) 

34. c(DCancel_E_N_2+___32) → DataC_N_2+___3 c(DataC_N_2+___3) | DataI_N_2+___4 
c(DataI_N_2+___4) | Edit_2+___6 c(Edit_2+___6) | Add_E_2+___21 c(Add_E_2+___21) | 
DataE_N_2+___24 c(DataE_N_2+___24) | Delete_E_N_2+___28 c(Delete_E_N_2+___28) 

35. c(DCancel_E_W_2+___33) → Edit_2+___6 c(Edit_2+___6) | Add_E_2+___21 
c(Add_E_2+___21) | DataC_W_2+___22 c(DataC_W_2+___22) | DataI_W_2+___23 
c(DataI_W_2+___23) | DataE_W_2+___25 c(DataE_W_2+___25) | Delete_E_W_2+___29 
c(Delete_E_W_2+___29) 

36. c(DataC_E_W_2+___34) → Edit_2+___6 c(Edit_2+___6) | Cancel_E_2+___12 
c(Cancel_E_2+___12) | Save_C_E_2+___13 c(Save_C_E_2+___13) | DataI_E_W_2+___35 
c(DataI_E_W_2+___35) | DataE_E_W_2+___37 c(DataE_E_W_2+___37) | 
Delete_C_E_W_2+___39 c(Delete_C_E_W_2+___39) 

37. c(DataI_E_W_2+___35) → Edit_2+___6 c(Edit_2+___6) | Cancel_E_2+___12 
c(Cancel_E_2+___12) | Save_I_E_2+___14 c(Save_I_E_2+___14) | DataC_E_W_2+___34 
c(DataC_E_W_2+___34) | DataE_E_W_2+___37 c(DataE_E_W_2+___37) | 
Delete_I_E_W_2+___38 c(Delete_I_E_W_2+___38) 
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38. c(DataE_E_N_2+___36) → Edit_2+___6 c(Edit_2+___6) | DataC_E_N_2+___10 
c(DataC_E_N_2+___10) | DataI_E_N_2+___11 c(DataI_E_N_2+___11) | 
Cancel_E_2+___12 c(Cancel_E_2+___12) | DataE_E_N_2+___36 c(DataE_E_N_2+___36) | 
Delete_E_E_N_2+___40 c(Delete_E_E_N_2+___40) | Save_E_E_2+___46 
c(Save_E_E_2+___46) 

39. c(DataE_E_W_2+___37) → Edit_2+___6 c(Edit_2+___6) | Cancel_E_2+___12 
c(Cancel_E_2+___12) | DataC_E_W_2+___34 c(DataC_E_W_2+___34) | 
DataI_E_W_2+___35 c(DataI_E_W_2+___35) | DataE_E_W_2+___37 
c(DataE_E_W_2+___37) | Delete_E_E_W_2+___41 c(Delete_E_E_W_2+___41) | 
Save_E_E_2+___46 c(Save_E_E_2+___46) 

40. c(Delete_I_E_W_2+___38) → DOK_2+_1___20 c(DOK_2+_1___20) | 
DCancel_I_E_W_2+___42 c(DCancel_I_E_W_2+___42) 

41. c(Delete_C_E_W_2+___39) → DOK_2+_1___20 c(DOK_2+_1___20) | 
DCancel_C_E_W_2+___43 c(DCancel_C_E_W_2+___43) 

42. c(Delete_E_E_N_2+___40) → DOK_2+_1___20 c(DOK_2+_1___20) | 
DCancel_E_E_N_2+___44 c(DCancel_E_E_N_2+___44) 

43. c(Delete_E_E_W_2+___41) → DOK_2+_1___20 c(DOK_2+_1___20) | 
DCancel_E_E_W_2+___45 c(DCancel_E_E_W_2+___45) 

44. c(DCancel_I_E_W_2+___42) → Edit_2+___6 c(Edit_2+___6) | Cancel_E_2+___12 
c(Cancel_E_2+___12) | Save_I_E_2+___14 c(Save_I_E_2+___14) | DataC_E_W_2+___34 
c(DataC_E_W_2+___34) | DataI_E_W_2+___35 c(DataI_E_W_2+___35) | 
DataE_E_W_2+___37 c(DataE_E_W_2+___37) | De-lete_I_E_W_2+___38 
c(Delete_I_E_W_2+___38) 

45. c(DCancel_C_E_W_2+___43) → Edit_2+___6 c(Edit_2+___6) | Cancel_E_2+___12 
c(Cancel_E_2+___12) | Save_C_E_2+___13 c(Save_C_E_2+___13) | DataC_E_W_2+___34 
c(DataC_E_W_2+___34) | DataI_E_W_2+___35 c(DataI_E_W_2+___35) | 
DataE_E_W_2+___37 c(DataE_E_W_2+___37) | De-lete_C_E_W_2+___39 
c(Delete_C_E_W_2+___39) 

46. c(DCancel_E_E_N_2+___44) → Edit_2+___6 c(Edit_2+___6) | DataC_E_N_2+___10 
c(DataC_E_N_2+___10) | DataI_E_N_2+___11 c(DataI_E_N_2+___11) | 
Cancel_E_2+___12 c(Cancel_E_2+___12) | DataE_E_N_2+___36 c(DataE_E_N_2+___36) | 
Delete_E_E_N_2+___40 c(Delete_E_E_N_2+___40) | Save_E_E_2+___46 
c(Save_E_E_2+___46) 

47. c(DCancel_E_E_W_2+___45) → Edit_2+___6 c(Edit_2+___6) | Cancel_E_2+___12 
c(Cancel_E_2+___12) | DataC_E_W_2+___34 c(DataC_E_W_2+___34) | 
DataI_E_W_2+___35 c(DataI_E_W_2+___35) | DataE_E_W_2+___37 
c(DataE_E_W_2+___37) | Delete_E_E_W_2+___41 c(Delete_E_E_W_2+___41) | 
Save_E_E_2+___46 c(Save_E_E_2+___46) 

48. c(Save_E_E_2+___46) → Edit_2+___6 c(Edit_2+___6) | DataC_E_W_2+___34 
c(DataC_E_W_2+___34) | DataI_E_W_2+___35 c(DataI_E_W_2+___35) | 
DataE_E_W_2+___37 c(DataE_E_W_2+___37) | De-lete_E_E_W_2+___41 
c(Delete_E_E_W_2+___41) | Save_E_E_2+___46 c(Save_E_E_2+___46) 

49. c(Add_C_1___47) → DataC_N_2+___3 c(DataC_N_2+___3) | DataI_N_2+___4 
c(DataI_N_2+___4) | Edit_2+___6 c(Edit_2+___6) | ]___19 c(]___19) | Add_E_2+___21 
c(Add_E_2+___21) | DataE_N_2+___24 c(DataE_N_2+___24) | Delete_E_N_2+___28 
c(Delete_E_N_2+___28) 
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50. c(Add_I_1___48) → Add_I_1___48 c(Add_I_1___48) | Edit_1___52 c(Edit_1___52) | 
DataC_W_1___63 c(DataC_W_1___63) | DataI_W_1___64 c(DataI_W_1___64) | 
DataE_W_1___66 c(DataE_W_1___66) | De-lete_I_W_1___67 c(Delete_I_W_1___67) 

51. c(DataC_N_1___49) → Add_C_1___47 c(Add_C_1___47) | DataI_N_1___50 
c(DataI_N_1___50) | Edit_1___52 c(Edit_1___52) | Delete_C_N_1___54 
c(Delete_C_N_1___54) | DataE_N_1___65 c(DataE_N_1___65) 

52. c(DataI_N_1___50) → Add_I_1___48 c(Add_I_1___48) | DataC_N_1___49 
c(DataC_N_1___49) | De-lete_I_N_1___51 c(Delete_I_N_1___51) | Edit_1___52 
c(Edit_1___52) | DataE_N_1___65 c(DataE_N_1___65) 

53. c(Delete_I_N_1___51) → DCancel_I_N_1___53 c(DCancel_I_N_1___53) | DOK_1_0___61 
c(DOK_1_0___61) 

54. c(Edit_1___52) → DataC_E_N_1___56 c(DataC_E_N_1___56) | DataI_E_N_1___57 
c(DataI_E_N_1___57) | Cancel_E_1___58 c(Cancel_E_1___58) | Save_C_E_1___59 
c(Save_C_E_1___59) | DataE_E_N_1___77 c(DataE_E_N_1___77) 

55. c(DCancel_I_N_1___53) → Add_I_1___48 c(Add_I_1___48) | DataC_N_1___49 
c(DataC_N_1___49) | DataI_N_1___50 c(DataI_N_1___50) | Delete_I_N_1___51 
c(Delete_I_N_1___51) | Edit_1___52 c(Edit_1___52) | DataE_N_1___65 
c(DataE_N_1___65) 

56. c(Delete_C_N_1___54) → DCancel_C_N_1___55 c(DCancel_C_N_1___55) | 
DOK_1_0___61 c(DOK_1_0___61) 

57. c(DCancel_C_N_1___55) → Add_C_1___47 c(Add_C_1___47) | DataC_N_1___49 
c(DataC_N_1___49) | DataI_N_1___50 c(DataI_N_1___50) | Edit_1___52 c(Edit_1___52) | 
Delete_C_N_1___54 c(Delete_C_N_1___54) | DataE_N_1___65 c(DataE_N_1___65) 

58. c(DataC_E_N_1___56) → DataI_E_N_1___57 c(DataI_E_N_1___57) | Cancel_E_1___58 
c(Cancel_E_1___58) | Save_C_E_1___59 c(Save_C_E_1___59) | DataE_E_N_1___77 
c(DataE_E_N_1___77) 

59. c(DataI_E_N_1___57) → DataC_E_N_1___56 c(DataC_E_N_1___56) | Cancel_E_1___58 
c(Cancel_E_1___58) | Save_I_E_1___60 c(Save_I_E_1___60) | DataE_E_N_1___77 
c(DataE_E_N_1___77) 

60. c(Cancel_E_1___58) → DataC_N_1___49 c(DataC_N_1___49) | DataI_N_1___50 
c(DataI_N_1___50) | Edit_1___52 c(Edit_1___52) | Add_E_1___62 c(Add_E_1___62) | 
DataE_N_1___65 c(DataE_N_1___65) | De-lete_E_N_1___69 c(Delete_E_N_1___69) 

61. c(Save_C_E_1___59) → DataC_N_1___49 c(DataC_N_1___49) | DataI_N_1___50 
c(DataI_N_1___50) | Edit_1___52 c(Edit_1___52) | Add_E_1___62 c(Add_E_1___62) | 
DataE_N_1___65 c(DataE_N_1___65) | De-lete_E_N_1___69 c(Delete_E_N_1___69) 

62. c(Save_I_E_1___60) → Cancel_E_1___58 c(Cancel_E_1___58) | Save_I_E_1___60 
c(Save_I_E_1___60) | DataC_E_W_1___75 c(DataC_E_W_1___75) | DataI_E_W_1___76 
c(DataI_E_W_1___76) | DataE_E_W_1___78 c(DataE_E_W_1___78) 

63. c(DOK_1_0___61) → ]___19 c(]___19) | DataC_N_0___82 c(DataC_N_0___82) | 
DataI_N_0___83 c(DataI_N_0___83) | Add_E_0___84 c(Add_E_0___84) | DataE_N_0___87 
c(DataE_N_0___87) 

64. c(Add_E_1___62) → Edit_1___52 c(Edit_1___52) | Add_E_1___62 c(Add_E_1___62) | 
DataC_W_1___63 c(DataC_W_1___63) | DataI_W_1___64 c(DataI_W_1___64) | 
DataE_W_1___66 c(DataE_W_1___66) | De-lete_E_W_1___70 c(Delete_E_W_1___70) 

65. c(DataC_W_1___63) → Add_C_1___47 c(Add_C_1___47) | Edit_1___52 c(Edit_1___52) | 
DataI_W_1___64 c(DataI_W_1___64) | DataE_W_1___66 c(DataE_W_1___66) | 
Delete_C_W_1___68 c(Delete_C_W_1___68) 
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66. c(DataI_W_1___64) → Add_I_1___48 c(Add_I_1___48) | Edit_1___52 c(Edit_1___52) | 
DataC_W_1___63 c(DataC_W_1___63) | DataE_W_1___66 c(DataE_W_1___66) | 
Delete_I_W_1___67 c(Delete_I_W_1___67) 

67. c(DataE_N_1___65) → DataC_N_1___49 c(DataC_N_1___49) | DataI_N_1___50 
c(DataI_N_1___50) | Edit_1___52 c(Edit_1___52) | Add_E_1___62 c(Add_E_1___62) | 
DataE_N_1___65 c(DataE_N_1___65) | De-lete_E_N_1___69 c(Delete_E_N_1___69) 

68. c(DataE_W_1___66) → Edit_1___52 c(Edit_1___52) | Add_E_1___62 c(Add_E_1___62) | 
DataC_W_1___63 c(DataC_W_1___63) | DataI_W_1___64 c(DataI_W_1___64) | 
DataE_W_1___66 c(DataE_W_1___66) | De-lete_E_W_1___70 c(Delete_E_W_1___70) 

69. c(Delete_I_W_1___67) → DOK_1_0___61 c(DOK_1_0___61) | DCancel_I_W_1___71 
c(DCancel_I_W_1___71) 

70. c(Delete_C_W_1___68) → DOK_1_0___61 c(DOK_1_0___61) | DCancel_C_W_1___72 
c(DCancel_C_W_1___72) 

71. c(Delete_E_N_1___69) → DOK_1_0___61 c(DOK_1_0___61) | DCancel_E_N_1___73 
c(DCancel_E_N_1___73) 

72. c(Delete_E_W_1___70) → DOK_1_0___61 c(DOK_1_0___61) | DCancel_E_W_1___74 
c(DCancel_E_W_1___74) 

73. c(DCancel_I_W_1___71) → Add_I_1___48 c(Add_I_1___48) | Edit_1___52 c(Edit_1___52) 
| DataC_W_1___63 c(DataC_W_1___63) | DataI_W_1___64 c(DataI_W_1___64) | 
DataE_W_1___66 c(DataE_W_1___66) | Delete_I_W_1___67 c(Delete_I_W_1___67) 

74. c(DCancel_C_W_1___72) → Add_C_1___47 c(Add_C_1___47) | Edit_1___52 
c(Edit_1___52) | DataC_W_1___63 c(DataC_W_1___63) | DataI_W_1___64 
c(DataI_W_1___64) | DataE_W_1___66 c(DataE_W_1___66) | Delete_C_W_1___68 
c(Delete_C_W_1___68) 

75. c(DCancel_E_N_1___73) → DataC_N_1___49 c(DataC_N_1___49) | DataI_N_1___50 
c(DataI_N_1___50) | Edit_1___52 c(Edit_1___52) | Add_E_1___62 c(Add_E_1___62) | 
DataE_N_1___65 c(DataE_N_1___65) | De-lete_E_N_1___69 c(Delete_E_N_1___69) 

76. c(DCancel_E_W_1___74) → Edit_1___52 c(Edit_1___52) | Add_E_1___62 
c(Add_E_1___62) | DataC_W_1___63 c(DataC_W_1___63) | DataI_W_1___64 
c(DataI_W_1___64) | DataE_W_1___66 c(DataE_W_1___66) | Delete_E_W_1___70 
c(Delete_E_W_1___70) 

77. c(DataC_E_W_1___75) → Cancel_E_1___58 c(Cancel_E_1___58) | Save_C_E_1___59 
c(Save_C_E_1___59) | DataI_E_W_1___76 c(DataI_E_W_1___76) | DataE_E_W_1___78 
c(DataE_E_W_1___78) 

78. c(DataI_E_W_1___76) → Cancel_E_1___58 c(Cancel_E_1___58) | Save_I_E_1___60 
c(Save_I_E_1___60) | DataC_E_W_1___75 c(DataC_E_W_1___75) | DataE_E_W_1___78 
c(DataE_E_W_1___78) 

79. c(DataE_E_N_1___77) → DataC_E_N_1___56 c(DataC_E_N_1___56) | DataI_E_N_1___57 
c(DataI_E_N_1___57) | Cancel_E_1___58 c(Cancel_E_1___58) | DataE_E_N_1___77 
c(DataE_E_N_1___77) | Save_E_E_1___79 c(Save_E_E_1___79) 

80. c(DataE_E_W_1___78) → Cancel_E_1___58 c(Cancel_E_1___58) | DataC_E_W_1___75 
c(DataC_E_W_1___75) | DataI_E_W_1___76 c(DataI_E_W_1___76) | DataE_E_W_1___78 
c(DataE_E_W_1___78) | Save_E_E_1___79 c(Save_E_E_1___79) 

81. c(Save_E_E_1___79) → DataC_E_W_1___75 c(DataC_E_W_1___75) | DataI_E_W_1___76 
c(DataI_E_W_1___76) | DataE_E_W_1___78 c(DataE_E_W_1___78) | Save_E_E_1___79 
c(Save_E_E_1___79) 
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82. c(Add_C_0___80) → ]___19 c(]___19) | DataC_N_1___49 c(DataC_N_1___49) | 
DataI_N_1___50 c(DataI_N_1___50) | Edit_1___52 c(Edit_1___52) | Add_E_1___62 
c(Add_E_1___62) | DataE_N_1___65 c(DataE_N_1___65) | Delete_E_N_1___69 
c(Delete_E_N_1___69) 

83. c(Add_I_0___81) → Add_I_0___81 c(Add_I_0___81) | DataC_W_0___85 
c(DataC_W_0___85) | DataI_W_0___86 c(DataI_W_0___86) | DataE_W_0___88 
c(DataE_W_0___88) 

84. c(DataC_N_0___82) → Add_C_0___80 c(Add_C_0___80) | DataI_N_0___83 
c(DataI_N_0___83) | DataE_N_0___87 c(DataE_N_0___87) 

85. c(DataI_N_0___83) → Add_I_0___81 c(Add_I_0___81) | DataC_N_0___82 
c(DataC_N_0___82) | DataE_N_0___87 c(DataE_N_0___87) 

86. c(Add_E_0___84) → Add_E_0___84 c(Add_E_0___84) | DataC_W_0___85 
c(DataC_W_0___85) | DataI_W_0___86 c(DataI_W_0___86) | DataE_W_0___88 
c(DataE_W_0___88) 

87. c(DataC_W_0___85) → Add_C_0___80 c(Add_C_0___80) | DataI_W_0___86 
c(DataI_W_0___86) | DataE_W_0___88 c(DataE_W_0___88) 

88. c(DataI_W_0___86) → Add_I_0___81 c(Add_I_0___81) | DataC_W_0___85 
c(DataC_W_0___85) | DataE_W_0___88 c(DataE_W_0___88) 

89. c(DataE_N_0___87) → DataC_N_0___82 c(DataC_N_0___82) | DataI_N_0___83 
c(DataI_N_0___83) | Add_E_0___84 c(Add_E_0___84) | DataE_N_0___87 
c(DataE_N_0___87) 

90. c(DataE_W_0___88) → Add_E_0___84 c(Add_E_0___84) | DataC_W_0___85 
c(DataC_W_0___85) | DataI_W_0___86 c(DataI_W_0___86) | DataE_W_0___88 
c(DataE_W_0___88) 

91. c(OpenSpecials_0___89) → ]___19 c(]___19) | DataC_N_0___82 c(DataC_N_0___82) | 
DataI_N_0___83 c(DataI_N_0___83) | Add_E_0___84 c(Add_E_0___84) | DataE_N_0___87 
c(DataE_N_0___87) 

A.3 Productions of Additionals 1-Reg Model 

1. S → [___0 c([___0) 

2. c([___0) → OpenAdditionals_0___92 c(OpenAdditionals_0___92) 

3. c(Add_C_2+___1) → DataC_N_2+___3 c(DataC_N_2+___3) | DataI_N_2+___4 
c(DataI_N_2+___4) | Edit_2+___6 c(Edit_2+___6) | ]___19 c(]___19) | Add_E_2+___21 
c(Add_E_2+___21) | DataE_N_2+___24 c(DataE_N_2+___24) | Delete_E_N_2+___28 
c(Delete_E_N_2+___28) | AddEdit_2+___47 c(AddEdit_2+___47) 

4. c(Add_I_2+___2) → Add_I_2+___2 c(Add_I_2+___2) | Edit_2+___6 c(Edit_2+___6) | 
DataC_W_2+___22 c(DataC_W_2+___22) | DataI_W_2+___23 c(DataI_W_2+___23) | 
DataE_W_2+___25 c(DataE_W_2+___25) | Delete_I_W_2+___26 c(Delete_I_W_2+___26) | 
AddEdit_2+___47 c(AddEdit_2+___47) 

5. c(DataC_N_2+___3) → Add_C_2+___1 c(Add_C_2+___1) | DataI_N_2+___4 
c(DataI_N_2+___4) | Edit_2+___6 c(Edit_2+___6) | Delete_C_N_2+___8 
c(Delete_C_N_2+___8) | DataE_N_2+___24 c(DataE_N_2+___24) | AddEdit_2+___47 
c(AddEdit_2+___47) 
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6. c(DataI_N_2+___4) → Add_I_2+___2 c(Add_I_2+___2) | DataC_N_2+___3 
c(DataC_N_2+___3) | De-lete_I_N_2+___5 c(Delete_I_N_2+___5) | Edit_2+___6 
c(Edit_2+___6) | DataE_N_2+___24 c(DataE_N_2+___24) | AddEdit_2+___47 
c(AddEdit_2+___47) 

7. c(Delete_I_N_2+___5) → DCancel_I_N_2+___7 c(DCancel_I_N_2+___7) | 
DOK_2+_1___20 c(DOK_2+_1___20) 

8. c(Edit_2+___6) → Edit_2+___6 c(Edit_2+___6) | DataC_E_N_2+___10 
c(DataC_E_N_2+___10) | DataI_E_N_2+___11 c(DataI_E_N_2+___11) | 
Cancel_E_2+___12 c(Cancel_E_2+___12) | Save_C_E_2+___13 c(Save_C_E_2+___13) | 
Delete_C_E_N_2+___15 c(Delete_C_E_N_2+___15) | DataE_E_N_2+___36 
c(DataE_E_N_2+___36) 

9. c(DCancel_I_N_2+___7) → Add_I_2+___2 c(Add_I_2+___2) | DataC_N_2+___3 
c(DataC_N_2+___3) | DataI_N_2+___4 c(DataI_N_2+___4) | Delete_I_N_2+___5 
c(Delete_I_N_2+___5) | Edit_2+___6 c(Edit_2+___6) | DataE_N_2+___24 
c(DataE_N_2+___24) | AddEdit_2+___47 c(AddEdit_2+___47) 

10. c(Delete_C_N_2+___8) → DCancel_C_N_2+___9 c(DCancel_C_N_2+___9) | 
DOK_2+_1___20 c(DOK_2+_1___20) 

11. c(DCancel_C_N_2+___9) → Add_C_2+___1 c(Add_C_2+___1) | DataC_N_2+___3 
c(DataC_N_2+___3) | DataI_N_2+___4 c(DataI_N_2+___4) | Edit_2+___6 c(Edit_2+___6) | 
Delete_C_N_2+___8 c(Delete_C_N_2+___8) | DataE_N_2+___24 c(DataE_N_2+___24) | 
AddEdit_2+___47 c(AddEdit_2+___47) 

12. c(DataC_E_N_2+___10) → Edit_2+___6 c(Edit_2+___6) | DataI_E_N_2+___11 
c(DataI_E_N_2+___11) | Can-cel_E_2+___12 c(Cancel_E_2+___12) | Save_C_E_2+___13 
c(Save_C_E_2+___13) | Delete_C_E_N_2+___15 c(Delete_C_E_N_2+___15) | 
DataE_E_N_2+___36 c(DataE_E_N_2+___36) | AddEdit_2+___47 c(AddEdit_2+___47) 

13. c(DataI_E_N_2+___11) → Edit_2+___6 c(Edit_2+___6) | DataC_E_N_2+___10 
c(DataC_E_N_2+___10) | Cancel_E_2+___12 c(Cancel_E_2+___12) | Save_I_E_2+___14 
c(Save_I_E_2+___14) | Delete_I_E_N_2+___16 c(Delete_I_E_N_2+___16) | 
DataE_E_N_2+___36 c(DataE_E_N_2+___36) | AddEdit_2+___47 c(AddEdit_2+___47) 

14. c(Cancel_E_2+___12) → DataC_N_2+___3 c(DataC_N_2+___3) | DataI_N_2+___4 
c(DataI_N_2+___4) | Edit_2+___6 c(Edit_2+___6) | Add_E_2+___21 c(Add_E_2+___21) | 
DataE_N_2+___24 c(DataE_N_2+___24) | Delete_E_N_2+___28 c(Delete_E_N_2+___28) | 
AddEdit_2+___47 c(AddEdit_2+___47) 

15. c(Save_C_E_2+___13) → DataC_N_2+___3 c(DataC_N_2+___3) | DataI_N_2+___4 
c(DataI_N_2+___4) | Edit_2+___6 c(Edit_2+___6) | Add_E_2+___21 c(Add_E_2+___21) | 
DataE_N_2+___24 c(DataE_N_2+___24) | Delete_E_N_2+___28 c(Delete_E_N_2+___28) | 
AddEdit_2+___47 c(AddEdit_2+___47) 

16. c(Save_I_E_2+___14) → Edit_2+___6 c(Edit_2+___6) | Cancel_E_2+___12 
c(Cancel_E_2+___12) | Save_I_E_2+___14 c(Save_I_E_2+___14) | DataC_E_W_2+___34 
c(DataC_E_W_2+___34) | DataI_E_W_2+___35 c(DataI_E_W_2+___35) | 
DataE_E_W_2+___37 c(DataE_E_W_2+___37) | De-lete_I_E_W_2+___38 
c(Delete_I_E_W_2+___38) | AddEdit_2+___47 c(AddEdit_2+___47) 

17. c(Delete_C_E_N_2+___15) → DCancel_C_E_N_2+___17 c(DCancel_C_E_N_2+___17) | 
DOK_2+_1___20 c(DOK_2+_1___20) 

18. c(Delete_I_E_N_2+___16) → DCancel_I_E_N_2+___18 c(DCancel_I_E_N_2+___18) | 
DOK_2+_1___20 c(DOK_2+_1___20) 
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19. c(DCancel_C_E_N_2+___17) → Edit_2+___6 c(Edit_2+___6) | DataC_E_N_2+___10 
c(DataC_E_N_2+___10) | DataI_E_N_2+___11 c(DataI_E_N_2+___11) | 
Cancel_E_2+___12 c(Cancel_E_2+___12) | Save_C_E_2+___13 c(Save_C_E_2+___13) | 
Delete_C_E_N_2+___15 c(Delete_C_E_N_2+___15) | DataE_E_N_2+___36 
c(DataE_E_N_2+___36) | AddEdit_2+___47 c(AddEdit_2+___47) 

20. c(DCancel_I_E_N_2+___18) → Edit_2+___6 c(Edit_2+___6) | DataC_E_N_2+___10 
c(DataC_E_N_2+___10) | DataI_E_N_2+___11 c(DataI_E_N_2+___11) | 
Cancel_E_2+___12 c(Cancel_E_2+___12) | Save_I_E_2+___14 c(Save_I_E_2+___14) | 
Delete_I_E_N_2+___16 c(Delete_I_E_N_2+___16) | DataE_E_N_2+___36 
c(DataE_E_N_2+___36) | AddEdit_2+___47 c(AddEdit_2+___47) 

21. c(]___19) → ε 

22. c(DOK_2+_1___20) → ]___19 c(]___19) | DataC_N_1___50 c(DataC_N_1___50) | 
DataI_N_1___51 c(DataI_N_1___51) | Edit_1___53 c(Edit_1___53) | Add_E_1___63 
c(Add_E_1___63) | DataE_N_1___66 c(DataE_N_1___66) | Delete_E_N_1___70 
c(Delete_E_N_1___70) | AddEdit_1___81 c(AddEdit_1___81) 

23. c(Add_E_2+___21) → Edit_2+___6 c(Edit_2+___6) | Add_E_2+___21 c(Add_E_2+___21) | 
DataC_W_2+___22 c(DataC_W_2+___22) | DataI_W_2+___23 c(DataI_W_2+___23) | 
DataE_W_2+___25 c(DataE_W_2+___25) | Delete_E_W_2+___29 c(Delete_E_W_2+___29) 
| AddEdit_2+___47 c(AddEdit_2+___47) 

24. c(DataC_W_2+___22) → Add_C_2+___1 c(Add_C_2+___1) | Edit_2+___6 c(Edit_2+___6) 
| DataI_W_2+___23 c(DataI_W_2+___23) | DataE_W_2+___25 c(DataE_W_2+___25) | 
Delete_C_W_2+___27 c(Delete_C_W_2+___27) | AddEdit_2+___47 c(AddEdit_2+___47) 

25. c(DataI_W_2+___23) → Add_I_2+___2 c(Add_I_2+___2) | Edit_2+___6 c(Edit_2+___6) | 
DataC_W_2+___22 c(DataC_W_2+___22) | DataE_W_2+___25 c(DataE_W_2+___25) | 
Delete_I_W_2+___26 c(Delete_I_W_2+___26) | AddEdit_2+___47 c(AddEdit_2+___47) 

26. c(DataE_N_2+___24) → DataC_N_2+___3 c(DataC_N_2+___3) | DataI_N_2+___4 
c(DataI_N_2+___4) | Edit_2+___6 c(Edit_2+___6) | Add_E_2+___21 c(Add_E_2+___21) | 
DataE_N_2+___24 c(DataE_N_2+___24) | Delete_E_N_2+___28 c(Delete_E_N_2+___28) | 
AddEdit_2+___47 c(AddEdit_2+___47) 

27. c(DataE_W_2+___25) → Edit_2+___6 c(Edit_2+___6) | Add_E_2+___21 
c(Add_E_2+___21) | DataC_W_2+___22 c(DataC_W_2+___22) | DataI_W_2+___23 
c(DataI_W_2+___23) | DataE_W_2+___25 c(DataE_W_2+___25) | Delete_E_W_2+___29 
c(Delete_E_W_2+___29) | AddEdit_2+___47 c(AddEdit_2+___47) 

28. c(Delete_I_W_2+___26) → DOK_2+_1___20 c(DOK_2+_1___20) | 
DCancel_I_W_2+___30 c(DCancel_I_W_2+___30) 

29. c(Delete_C_W_2+___27) → DOK_2+_1___20 c(DOK_2+_1___20) | 
DCancel_C_W_2+___31 c(DCancel_C_W_2+___31) 

30. c(Delete_E_N_2+___28) → DOK_2+_1___20 c(DOK_2+_1___20) | 
DCancel_E_N_2+___32 c(DCancel_E_N_2+___32) 

31. c(Delete_E_W_2+___29) → DOK_2+_1___20 c(DOK_2+_1___20) | 
DCancel_E_W_2+___33 c(DCancel_E_W_2+___33) 

32. c(DCancel_I_W_2+___30) → Add_I_2+___2 c(Add_I_2+___2) | Edit_2+___6 
c(Edit_2+___6) | DataC_W_2+___22 c(DataC_W_2+___22) | DataI_W_2+___23 
c(DataI_W_2+___23) | DataE_W_2+___25 c(DataE_W_2+___25) | Delete_I_W_2+___26 
c(Delete_I_W_2+___26) | AddEdit_2+___47 c(AddEdit_2+___47) 

33. c(DCancel_C_W_2+___31) → Add_C_2+___1 c(Add_C_2+___1) | Edit_2+___6 
c(Edit_2+___6) | DataC_W_2+___22 c(DataC_W_2+___22) | DataI_W_2+___23 
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c(DataI_W_2+___23) | DataE_W_2+___25 c(DataE_W_2+___25) | Delete_C_W_2+___27 
c(Delete_C_W_2+___27) | AddEdit_2+___47 c(AddEdit_2+___47) 

34. c(DCancel_E_N_2+___32) → DataC_N_2+___3 c(DataC_N_2+___3) | DataI_N_2+___4 
c(DataI_N_2+___4) | Edit_2+___6 c(Edit_2+___6) | Add_E_2+___21 c(Add_E_2+___21) | 
DataE_N_2+___24 c(DataE_N_2+___24) | Delete_E_N_2+___28 c(Delete_E_N_2+___28) | 
AddEdit_2+___47 c(AddEdit_2+___47) 

35. c(DCancel_E_W_2+___33) → Edit_2+___6 c(Edit_2+___6) | Add_E_2+___21 
c(Add_E_2+___21) | DataC_W_2+___22 c(DataC_W_2+___22) | DataI_W_2+___23 
c(DataI_W_2+___23) | DataE_W_2+___25 c(DataE_W_2+___25) | Delete_E_W_2+___29 
c(Delete_E_W_2+___29) | AddEdit_2+___47 c(AddEdit_2+___47) 

36. c(DataC_E_W_2+___34) → Edit_2+___6 c(Edit_2+___6) | Cancel_E_2+___12 
c(Cancel_E_2+___12) | Save_C_E_2+___13 c(Save_C_E_2+___13) | DataI_E_W_2+___35 
c(DataI_E_W_2+___35) | DataE_E_W_2+___37 c(DataE_E_W_2+___37) | 
Delete_C_E_W_2+___39 c(Delete_C_E_W_2+___39) | Add-Edit_2+___47 
c(AddEdit_2+___47) 

37. c(DataI_E_W_2+___35) → Edit_2+___6 c(Edit_2+___6) | Cancel_E_2+___12 
c(Cancel_E_2+___12) | Save_I_E_2+___14 c(Save_I_E_2+___14) | DataC_E_W_2+___34 
c(DataC_E_W_2+___34) | DataE_E_W_2+___37 c(DataE_E_W_2+___37) | 
Delete_I_E_W_2+___38 c(Delete_I_E_W_2+___38) | Add-Edit_2+___47 
c(AddEdit_2+___47) 

38. c(DataE_E_N_2+___36) → Edit_2+___6 c(Edit_2+___6) | DataC_E_N_2+___10 
c(DataC_E_N_2+___10) | DataI_E_N_2+___11 c(DataI_E_N_2+___11) | 
Cancel_E_2+___12 c(Cancel_E_2+___12) | DataE_E_N_2+___36 c(DataE_E_N_2+___36) | 
Delete_E_E_N_2+___40 c(Delete_E_E_N_2+___40) | Save_E_E_2+___46 
c(Save_E_E_2+___46) | AddEdit_2+___47 c(AddEdit_2+___47) 

39. c(DataE_E_W_2+___37) → Edit_2+___6 c(Edit_2+___6) | Cancel_E_2+___12 
c(Cancel_E_2+___12) | DataC_E_W_2+___34 c(DataC_E_W_2+___34) | 
DataI_E_W_2+___35 c(DataI_E_W_2+___35) | DataE_E_W_2+___37 
c(DataE_E_W_2+___37) | Delete_E_E_W_2+___41 c(Delete_E_E_W_2+___41) | 
Save_E_E_2+___46 c(Save_E_E_2+___46) | AddEdit_2+___47 c(AddEdit_2+___47) 

40. c(Delete_I_E_W_2+___38) → DOK_2+_1___20 c(DOK_2+_1___20) | 
DCancel_I_E_W_2+___42 c(DCancel_I_E_W_2+___42) 

41. c(Delete_C_E_W_2+___39) → DOK_2+_1___20 c(DOK_2+_1___20) | 
DCancel_C_E_W_2+___43 c(DCancel_C_E_W_2+___43) 

42. c(Delete_E_E_N_2+___40) → DOK_2+_1___20 c(DOK_2+_1___20) | 
DCancel_E_E_N_2+___44 c(DCancel_E_E_N_2+___44) 

43. c(Delete_E_E_W_2+___41) → DOK_2+_1___20 c(DOK_2+_1___20) | 
DCancel_E_E_W_2+___45 c(DCancel_E_E_W_2+___45) 

44. c(DCancel_I_E_W_2+___42) → Edit_2+___6 c(Edit_2+___6) | Cancel_E_2+___12 
c(Cancel_E_2+___12) | Save_I_E_2+___14 c(Save_I_E_2+___14) | DataC_E_W_2+___34 
c(DataC_E_W_2+___34) | DataI_E_W_2+___35 c(DataI_E_W_2+___35) | 
DataE_E_W_2+___37 c(DataE_E_W_2+___37) | De-lete_I_E_W_2+___38 
c(Delete_I_E_W_2+___38) | AddEdit_2+___47 c(AddEdit_2+___47) 

45. c(DCancel_C_E_W_2+___43) → Edit_2+___6 c(Edit_2+___6) | Cancel_E_2+___12 
c(Cancel_E_2+___12) | Save_C_E_2+___13 c(Save_C_E_2+___13) | DataC_E_W_2+___34 
c(DataC_E_W_2+___34) | DataI_E_W_2+___35 c(DataI_E_W_2+___35) | 
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DataE_E_W_2+___37 c(DataE_E_W_2+___37) | De-lete_C_E_W_2+___39 
c(Delete_C_E_W_2+___39) | AddEdit_2+___47 c(AddEdit_2+___47) 

46. c(DCancel_E_E_N_2+___44) → Edit_2+___6 c(Edit_2+___6) | DataC_E_N_2+___10 
c(DataC_E_N_2+___10) | DataI_E_N_2+___11 c(DataI_E_N_2+___11) | 
Cancel_E_2+___12 c(Cancel_E_2+___12) | DataE_E_N_2+___36 c(DataE_E_N_2+___36) | 
Delete_E_E_N_2+___40 c(Delete_E_E_N_2+___40) | Save_E_E_2+___46 
c(Save_E_E_2+___46) | AddEdit_2+___47 c(AddEdit_2+___47) 

47. c(DCancel_E_E_W_2+___45) → Edit_2+___6 c(Edit_2+___6) | Cancel_E_2+___12 
c(Cancel_E_2+___12) | DataC_E_W_2+___34 c(DataC_E_W_2+___34) | 
DataI_E_W_2+___35 c(DataI_E_W_2+___35) | DataE_E_W_2+___37 
c(DataE_E_W_2+___37) | Delete_E_E_W_2+___41 c(Delete_E_E_W_2+___41) | 
Save_E_E_2+___46 c(Save_E_E_2+___46) | AddEdit_2+___47 c(AddEdit_2+___47) 

48. c(Save_E_E_2+___46) → Edit_2+___6 c(Edit_2+___6) | DataC_E_W_2+___34 
c(DataC_E_W_2+___34) | DataI_E_W_2+___35 c(DataI_E_W_2+___35) | 
DataE_E_W_2+___37 c(DataE_E_W_2+___37) | De-lete_E_E_W_2+___41 
c(Delete_E_E_W_2+___41) | Save_E_E_2+___46 c(Save_E_E_2+___46) | Add-
Edit_2+___47 c(AddEdit_2+___47) 

49. c(AddEdit_2+___47) → DataC_N_2+___3 c(DataC_N_2+___3) | DataI_N_2+___4 
c(DataI_N_2+___4) | Edit_2+___6 c(Edit_2+___6) | Add_E_2+___21 c(Add_E_2+___21) | 
DataE_N_2+___24 c(DataE_N_2+___24) | Delete_E_N_2+___28 c(Delete_E_N_2+___28) 

50. c(Add_C_1___48) → DataC_N_2+___3 c(DataC_N_2+___3) | DataI_N_2+___4 
c(DataI_N_2+___4) | Edit_2+___6 c(Edit_2+___6) | ]___19 c(]___19) | Add_E_2+___21 
c(Add_E_2+___21) | DataE_N_2+___24 c(DataE_N_2+___24) | Delete_E_N_2+___28 
c(Delete_E_N_2+___28) | AddEdit_2+___47 c(AddEdit_2+___47) 

51. c(Add_I_1___49) → Add_I_1___49 c(Add_I_1___49) | Edit_1___53 c(Edit_1___53) | 
DataC_W_1___64 c(DataC_W_1___64) | DataI_W_1___65 c(DataI_W_1___65) | 
DataE_W_1___67 c(DataE_W_1___67) | De-lete_I_W_1___68 c(Delete_I_W_1___68) | 
AddEdit_1___81 c(AddEdit_1___81) 

52. c(DataC_N_1___50) → Add_C_1___48 c(Add_C_1___48) | DataI_N_1___51 
c(DataI_N_1___51) | Edit_1___53 c(Edit_1___53) | Delete_C_N_1___55 
c(Delete_C_N_1___55) | DataE_N_1___66 c(DataE_N_1___66) | AddEdit_1___81 
c(AddEdit_1___81) 

53. c(DataI_N_1___51) → Add_I_1___49 c(Add_I_1___49) | DataC_N_1___50 
c(DataC_N_1___50) | De-lete_I_N_1___52 c(Delete_I_N_1___52) | Edit_1___53 
c(Edit_1___53) | DataE_N_1___66 c(DataE_N_1___66) | AddEdit_1___81 
c(AddEdit_1___81) 

54. c(Delete_I_N_1___52) → DCancel_I_N_1___54 c(DCancel_I_N_1___54) | DOK_1_0___62 
c(DOK_1_0___62) 

55. c(Edit_1___53) → DataC_E_N_1___57 c(DataC_E_N_1___57) | DataI_E_N_1___58 
c(DataI_E_N_1___58) | Cancel_E_1___59 c(Cancel_E_1___59) | Save_C_E_1___60 
c(Save_C_E_1___60) | DataE_E_N_1___78 c(DataE_E_N_1___78) 

56. c(DCancel_I_N_1___54) → Add_I_1___49 c(Add_I_1___49) | DataC_N_1___50 
c(DataC_N_1___50) | DataI_N_1___51 c(DataI_N_1___51) | Delete_I_N_1___52 
c(Delete_I_N_1___52) | Edit_1___53 c(Edit_1___53) | DataE_N_1___66 
c(DataE_N_1___66) | AddEdit_1___81 c(AddEdit_1___81) 

57. c(Delete_C_N_1___55) → DCancel_C_N_1___56 c(DCancel_C_N_1___56) | 
DOK_1_0___62 c(DOK_1_0___62) 
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58. c(DCancel_C_N_1___56) → Add_C_1___48 c(Add_C_1___48) | DataC_N_1___50 
c(DataC_N_1___50) | DataI_N_1___51 c(DataI_N_1___51) | Edit_1___53 c(Edit_1___53) | 
Delete_C_N_1___55 c(Delete_C_N_1___55) | DataE_N_1___66 c(DataE_N_1___66) | 
AddEdit_1___81 c(AddEdit_1___81) 

59. c(DataC_E_N_1___57) → DataI_E_N_1___58 c(DataI_E_N_1___58) | Cancel_E_1___59 
c(Cancel_E_1___59) | Save_C_E_1___60 c(Save_C_E_1___60) | DataE_E_N_1___78 
c(DataE_E_N_1___78) | AddEdit_1___81 c(AddEdit_1___81) 

60. c(DataI_E_N_1___58) → DataC_E_N_1___57 c(DataC_E_N_1___57) | Cancel_E_1___59 
c(Cancel_E_1___59) | Save_I_E_1___61 c(Save_I_E_1___61) | DataE_E_N_1___78 
c(DataE_E_N_1___78) | AddEdit_1___81 c(AddEdit_1___81) 

61. c(Cancel_E_1___59) → DataC_N_1___50 c(DataC_N_1___50) | DataI_N_1___51 
c(DataI_N_1___51) | Edit_1___53 c(Edit_1___53) | Add_E_1___63 c(Add_E_1___63) | 
DataE_N_1___66 c(DataE_N_1___66) | De-lete_E_N_1___70 c(Delete_E_N_1___70) | 
AddEdit_1___81 c(AddEdit_1___81) 

62. c(Save_C_E_1___60) → DataC_N_1___50 c(DataC_N_1___50) | DataI_N_1___51 
c(DataI_N_1___51) | Edit_1___53 c(Edit_1___53) | Add_E_1___63 c(Add_E_1___63) | 
DataE_N_1___66 c(DataE_N_1___66) | De-lete_E_N_1___70 c(Delete_E_N_1___70) | 
AddEdit_1___81 c(AddEdit_1___81) 

63. c(Save_I_E_1___61) → Cancel_E_1___59 c(Cancel_E_1___59) | Save_I_E_1___61 
c(Save_I_E_1___61) | DataC_E_W_1___76 c(DataC_E_W_1___76) | DataI_E_W_1___77 
c(DataI_E_W_1___77) | DataE_E_W_1___79 c(DataE_E_W_1___79) | AddEdit_1___81 
c(AddEdit_1___81) 

64. c(DOK_1_0___62) → ]___19 c(]___19) | DataC_N_0___84 c(DataC_N_0___84) | 
DataI_N_0___85 c(DataI_N_0___85) | Add_E_0___86 c(Add_E_0___86) | DataE_N_0___89 
c(DataE_N_0___89) | Add-Edit_0___91 c(AddEdit_0___91) 

65. c(Add_E_1___63) → Edit_1___53 c(Edit_1___53) | Add_E_1___63 c(Add_E_1___63) | 
DataC_W_1___64 c(DataC_W_1___64) | DataI_W_1___65 c(DataI_W_1___65) | 
DataE_W_1___67 c(DataE_W_1___67) | De-lete_E_W_1___71 c(Delete_E_W_1___71) | 
AddEdit_1___81 c(AddEdit_1___81) 

66. c(DataC_W_1___64) → Add_C_1___48 c(Add_C_1___48) | Edit_1___53 c(Edit_1___53) | 
DataI_W_1___65 c(DataI_W_1___65) | DataE_W_1___67 c(DataE_W_1___67) | 
Delete_C_W_1___69 c(Delete_C_W_1___69) | AddEdit_1___81 c(AddEdit_1___81) 

67. c(DataI_W_1___65) → Add_I_1___49 c(Add_I_1___49) | Edit_1___53 c(Edit_1___53) | 
DataC_W_1___64 c(DataC_W_1___64) | DataE_W_1___67 c(DataE_W_1___67) | 
Delete_I_W_1___68 c(Delete_I_W_1___68) | AddEdit_1___81 c(AddEdit_1___81) 

68. c(DataE_N_1___66) → DataC_N_1___50 c(DataC_N_1___50) | DataI_N_1___51 
c(DataI_N_1___51) | Edit_1___53 c(Edit_1___53) | Add_E_1___63 c(Add_E_1___63) | 
DataE_N_1___66 c(DataE_N_1___66) | De-lete_E_N_1___70 c(Delete_E_N_1___70) | 
AddEdit_1___81 c(AddEdit_1___81) 

69. c(DataE_W_1___67) → Edit_1___53 c(Edit_1___53) | Add_E_1___63 c(Add_E_1___63) | 
DataC_W_1___64 c(DataC_W_1___64) | DataI_W_1___65 c(DataI_W_1___65) | 
DataE_W_1___67 c(DataE_W_1___67) | De-lete_E_W_1___71 c(Delete_E_W_1___71) | 
AddEdit_1___81 c(AddEdit_1___81) 

70. c(Delete_I_W_1___68) → DOK_1_0___62 c(DOK_1_0___62) | DCancel_I_W_1___72 
c(DCancel_I_W_1___72) 

71. c(Delete_C_W_1___69) → DOK_1_0___62 c(DOK_1_0___62) | DCancel_C_W_1___73 
c(DCancel_C_W_1___73) 
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72. c(Delete_E_N_1___70) → DOK_1_0___62 c(DOK_1_0___62) | DCancel_E_N_1___74 
c(DCancel_E_N_1___74) 

73. c(Delete_E_W_1___71) → DOK_1_0___62 c(DOK_1_0___62) | DCancel_E_W_1___75 
c(DCancel_E_W_1___75) 

74. c(DCancel_I_W_1___72) → Add_I_1___49 c(Add_I_1___49) | Edit_1___53 c(Edit_1___53) 
| DataC_W_1___64 c(DataC_W_1___64) | DataI_W_1___65 c(DataI_W_1___65) | 
DataE_W_1___67 c(DataE_W_1___67) | Delete_I_W_1___68 c(Delete_I_W_1___68) | 
AddEdit_1___81 c(AddEdit_1___81) 

75. c(DCancel_C_W_1___73) → Add_C_1___48 c(Add_C_1___48) | Edit_1___53 
c(Edit_1___53) | DataC_W_1___64 c(DataC_W_1___64) | DataI_W_1___65 
c(DataI_W_1___65) | DataE_W_1___67 c(DataE_W_1___67) | Delete_C_W_1___69 
c(Delete_C_W_1___69) | AddEdit_1___81 c(AddEdit_1___81) 

76. c(DCancel_E_N_1___74) → DataC_N_1___50 c(DataC_N_1___50) | DataI_N_1___51 
c(DataI_N_1___51) | Edit_1___53 c(Edit_1___53) | Add_E_1___63 c(Add_E_1___63) | 
DataE_N_1___66 c(DataE_N_1___66) | De-lete_E_N_1___70 c(Delete_E_N_1___70) | 
AddEdit_1___81 c(AddEdit_1___81) 

77. c(DCancel_E_W_1___75) → Edit_1___53 c(Edit_1___53) | Add_E_1___63 
c(Add_E_1___63) | DataC_W_1___64 c(DataC_W_1___64) | DataI_W_1___65 
c(DataI_W_1___65) | DataE_W_1___67 c(DataE_W_1___67) | Delete_E_W_1___71 
c(Delete_E_W_1___71) | AddEdit_1___81 c(AddEdit_1___81) 

78. c(DataC_E_W_1___76) → Cancel_E_1___59 c(Cancel_E_1___59) | Save_C_E_1___60 
c(Save_C_E_1___60) | DataI_E_W_1___77 c(DataI_E_W_1___77) | DataE_E_W_1___79 
c(DataE_E_W_1___79) | AddEdit_1___81 c(AddEdit_1___81) 

79. c(DataI_E_W_1___77) → Cancel_E_1___59 c(Cancel_E_1___59) | Save_I_E_1___61 
c(Save_I_E_1___61) | DataC_E_W_1___76 c(DataC_E_W_1___76) | DataE_E_W_1___79 
c(DataE_E_W_1___79) | AddEdit_1___81 c(AddEdit_1___81) 

80. c(DataE_E_N_1___78) → DataC_E_N_1___57 c(DataC_E_N_1___57) | DataI_E_N_1___58 
c(DataI_E_N_1___58) | Cancel_E_1___59 c(Cancel_E_1___59) | DataE_E_N_1___78 
c(DataE_E_N_1___78) | Save_E_E_1___80 c(Save_E_E_1___80) | AddEdit_1___81 
c(AddEdit_1___81) 

81. c(DataE_E_W_1___79) → Cancel_E_1___59 c(Cancel_E_1___59) | DataC_E_W_1___76 
c(DataC_E_W_1___76) | DataI_E_W_1___77 c(DataI_E_W_1___77) | DataE_E_W_1___79 
c(DataE_E_W_1___79) | Save_E_E_1___80 c(Save_E_E_1___80) | AddEdit_1___81 
c(AddEdit_1___81) 

82. c(Save_E_E_1___80) → DataC_E_W_1___76 c(DataC_E_W_1___76) | DataI_E_W_1___77 
c(DataI_E_W_1___77) | DataE_E_W_1___79 c(DataE_E_W_1___79) | Save_E_E_1___80 
c(Save_E_E_1___80) | AddEdit_1___81 c(AddEdit_1___81) 

83. c(AddEdit_1___81) → DataC_N_1___50 c(DataC_N_1___50) | DataI_N_1___51 
c(DataI_N_1___51) | Edit_1___53 c(Edit_1___53) | Add_E_1___63 c(Add_E_1___63) | 
DataE_N_1___66 c(DataE_N_1___66) | De-lete_E_N_1___70 c(Delete_E_N_1___70) 

84. c(Add_C_0___82) → ]___19 c(]___19) | DataC_N_1___50 c(DataC_N_1___50) | 
DataI_N_1___51 c(DataI_N_1___51) | Edit_1___53 c(Edit_1___53) | Add_E_1___63 
c(Add_E_1___63) | DataE_N_1___66 c(DataE_N_1___66) | Delete_E_N_1___70 
c(Delete_E_N_1___70) | AddEdit_1___81 c(AddEdit_1___81) 

85. c(Add_I_0___83) → Add_I_0___83 c(Add_I_0___83) | DataC_W_0___87 
c(DataC_W_0___87) | DataI_W_0___88 c(DataI_W_0___88) | DataE_W_0___90 
c(DataE_W_0___90) | AddEdit_0___91 c(AddEdit_0___91) 
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86. c(DataC_N_0___84) → Add_C_0___82 c(Add_C_0___82) | DataI_N_0___85 
c(DataI_N_0___85) | DataE_N_0___89 c(DataE_N_0___89) | AddEdit_0___91 
c(AddEdit_0___91) 

87. c(DataI_N_0___85) → Add_I_0___83 c(Add_I_0___83) | DataC_N_0___84 
c(DataC_N_0___84) | DataE_N_0___89 c(DataE_N_0___89) | AddEdit_0___91 
c(AddEdit_0___91) 

88. c(Add_E_0___86) → Add_E_0___86 c(Add_E_0___86) | DataC_W_0___87 
c(DataC_W_0___87) | DataI_W_0___88 c(DataI_W_0___88) | DataE_W_0___90 
c(DataE_W_0___90) | AddEdit_0___91 c(AddEdit_0___91) 

89. c(DataC_W_0___87) → Add_C_0___82 c(Add_C_0___82) | DataI_W_0___88 
c(DataI_W_0___88) | DataE_W_0___90 c(DataE_W_0___90) | AddEdit_0___91 
c(AddEdit_0___91) 

90. c(DataI_W_0___88) → Add_I_0___83 c(Add_I_0___83) | DataC_W_0___87 
c(DataC_W_0___87) | DataE_W_0___90 c(DataE_W_0___90) | AddEdit_0___91 
c(AddEdit_0___91) 

91. c(DataE_N_0___89) → DataC_N_0___84 c(DataC_N_0___84) | DataI_N_0___85 
c(DataI_N_0___85) | Add_E_0___86 c(Add_E_0___86) | DataE_N_0___89 
c(DataE_N_0___89) | AddEdit_0___91 c(AddEdit_0___91) 

92. c(DataE_W_0___90) → Add_E_0___86 c(Add_E_0___86) | DataC_W_0___87 
c(DataC_W_0___87) | DataI_W_0___88 c(DataI_W_0___88) | DataE_W_0___90 
c(DataE_W_0___90) | AddEdit_0___91 c(AddEdit_0___91) 

93. c(AddEdit_0___91) → DataC_N_0___84 c(DataC_N_0___84) | DataI_N_0___85 
c(DataI_N_0___85) | Add_E_0___86 c(Add_E_0___86) | DataE_N_0___89 
c(DataE_N_0___89) 

94. c(OpenAdditionals_0___92) → ]___19 c(]___19) | DataC_N_0___84 c(DataC_N_0___84) | 
DataI_N_0___85 c(DataI_N_0___85) | Add_E_0___86 c(Add_E_0___86) | DataE_N_0___89 
c(DataE_N_0___89) | Add-Edit_0___91 c(AddEdit_0___91) 
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Table B.1. Test Generation Data for ShearBar 

ShearBar 

Test Set Sequence Number Total Length Average Length 
Test Generation 

Time (s) 

1-Reg 32439 1125004 34.68 6 

M-1-Reg 32465 1126621 34.70 6 

Random(2) 32759 1306973 39.90 49756 

ESG(2,1) 42948 1125580 26.21 89645 

ESG(2,M-1) 43039 1126818 26.18 89958 

MK(1) 30780 1924440 62.52 42927 

MK(M-1) 30934 1932476 62.47 43174 
     

2-Reg 40754 1465701 35.96 12 

M-2-Reg 40764 1466319 37.22 12 

Random(3) 41183 1697887 41.23 54756 

ESG(3,2) 46292 1466650 31.68 80061 

ESG(3,M-2) 46292 1466650 31.68 80189 

MK(2) 40035 2514171 62.8 56819 

MK(M-2) 40035 2514171 62.8 56706 
     

3-Reg 52188 1942081 37.21 19 

M-3-Reg 52232 1944064 35.97 20 

Random(4) 52727 2231070 42.31 95606 

ESG(4,3) 62400 1942553 31.13 88687 

ESG(4,M-3) 62481 1944104 31.12 88159 

MK(3) 52377 3323226 63.45 74683 

MK(M-3) 52512 3330828 63.43 74856 
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Table B.2. Test Generation Data for Specials 

Specials 

Test Set Sequence Number Total Length Average Length 
Test Generation 

Time (s) 

1-Reg 832 7387 8.88 1 

M-1-Reg 1349 16358 12.13 3 

Random(2) 1182 25852 21.87 746 

ESG(2,1) 372 7419 19.94 10 

ESG(2,M-1) 871 16406 18.84 24 

MK(1) 513 13094 25.52 12 

MK(M-1) 995 25327 25.45 18 
     

2-Reg 3972 41548 10.46 4 

M-2-Reg 7584 100593 13.26 49 

Random(3) 5563 127968 23.00 12211 

ESG(3,2) 2187 42910 19.62 44 

ESG(3,M-2) 5187 103678 19.99 148 

MK(2) 2684 65775 24.51 44 

MK(M-2) 6268 153337 24.46 99 
     

3-Reg 21438 250383 11.68 58 

M-3-Reg 39878 576675 14.46 3928 

Random(4) 28404 677718 23.86 166003 

ESG(4,3) 15313 253109 16.53 1322 

ESG(4,M-3) 39506 582182 14.74 5022 

MK(3) 16324 395166 24.21 272 

MK(M-3) 38829 928670 23.92 722 

 



B Data for Case Studies 
 

 

221 

 

Table B.3. Test Generation Data for Additionals 

Additionals 

Test Set Sequence Number Total Length Average Length 
Test Generation 

Time (s) 

1-Reg 910 8154 8.96 1 

M-1-Reg 1684 21217 12.60 5 

Random(2) 1315 29462 22.40 3967 

ESG(2,1) 680 8786 12.92 13 

ESG(2,M-1) 1749 21280 12.17 50 

MK(1) 737 15776 21.41 9 

MK(M-1) 1519 33982 22.37 23 
     

2-Reg 5069 53172 10.49 6 

M-2-Reg 11019 148652 13.49 150 

Random(3) 7167 167999 23.44 71991 

ESG(3,2) 3491 53984 15.46 67 

ESG(3,M-2) 10022 149850 14.95 344 

MK(2) 3803 83448 21.94 55 

MK(M-2) 9587 219853 22.93 131 
     

3-Reg 31284 364059 11.64 170 

M-3-Reg 65644 959294 14.61 12930 

Random(4) 41691 1010872 24.25 1034561 

ESG(4,3) 28665 377967 13.19 3168 

ESG(4,M-3) 89023 961452 10.80 19091 

MK(3) 23654 542688 22.94 351 

MK(M-3) 62794 1434617 22.85 1087 
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Table B.4. Test Execution Data for ShearBar 

ShearBar 

Test Set Events Executed Faults Revealed Fault Detection Rate 

1-Reg 1131355 165 0.000145843 

M-1-Reg 1133560 174 0.000153499 

Random(2) 1313915 174.75 0.000133051 

ESG(2,1) 1131290 134 0.000118449 

ESG(2,M-1) 1132573 135 0.000119198 

MK(1) 1129508 103 0.000091190 

MK(M-1) 1132958 103 0.000090912 
    

2-Reg 1473026 182 0.000123555 

M-2-Reg 1473765 184 0.000124850 

Random(3) 1705243.25 183 0.000107362 

ESG(3,2) 1472199 131 0.000088983 

ESG(3,M-2) 1472199 131 0.000088983 

MK(2) 1472884 103 0.000069931 

MK(M-2) 1472884 103 0.000069931 
    

3-Reg 1949959 194 0.000099489 

M-3-Reg 1951997 195 0.000099898 

Random(4) 2238921 194 0.000086684 

ESG(4,3) 1948306 138 0.000070831 

ESG(4,M-3) 1949857 138 0.000070774 

MK(3) 1947314 108 0.000055461 

MK(M-3) 1951490 108 0.000055342 
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Table B.5. Test Execution Data for Specials 

Specials 

Test Set Events Executed Faults Revealed Fault Detection Rate 

1-Reg 8613 72 0.008359457 

M-1-Reg 18407 96 0.005215407 

Random(2) 27729.5 95.25 0.003631357 

ESG(2,1) 8501 46 0.005411128 

ESG(2,M-1) 17652 54 0.003059143 

MK(1) 12116 40 0.003301420 

MK(M-1) 20127 43 0.002136434 
    

2-Reg 43851 122 0.002782149 

M-2-Reg 103638 147 0.001418399 

Random(3) 130738 135.25 0.001093049 

ESG(3,2) 45146 74 0.001639126 

ESG(3,M-2) 106085 83 0.000782391 

MK(2) 46237 52 0.001124640 

MK(M-2) 106033 69 0.000650741 
    

3-Reg 253668 166 0.000654399 

M-3-Reg 580495 178 0.000306635 

Random(4) 681379.75 172.5 0.000268535 

ESG(4,3) 255789 97 0.000379219 

ESG(4,M-3) 585078 107 0.000182882 

MK(3) 256265 83 0.000323883 

MK(M-3) 581852 98 0.000168428 
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Table B.6. Test Execution Data for Additionals 

Additionals 

Test Set Events Executed Faults Revealed Fault Detection Rate 

1-Reg 9154 65 0.007100721 

M-1-Reg 22909 92 0.004015889 

Random(2) 31191.75 86.75 0.002950497 

ESG(2,1) 9573 38 0.003969498 

ESG(2,M-1) 22474 50 0.002224793 

MK(1) 11008 38 0.003452035 

MK(M-1) 22796 41 0.001798561 
    

2-Reg 55086 114 0.002069491 

M-2-Reg 151403 139 0.000918080 

Random(3) 170767.5 129.25 0.000801930 

ESG(3,2) 55452 64 0.001154151 

ESG(3,M-2) 151544 78 0.000514702 

MK(2) 57384 57 0.000993308 

MK(M-2) 151339 67 0.000442715 
    

3-Reg 367094 161 0.000438580 

M-3-Reg 962656 177 0.000183866 

Random(4) 1014664.5 172.25 0.000180284 

ESG(4,3) 380353 93 0.000244510 

ESG(4,M-3) 964173 110 0.000114087 

MK(3) 369004 81 0.000219510 

MK(M-3) 965881 100 0.000103532 
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Table B.7. Faults Revealed for ShearBar 

ShearBar 

Test Set m=1 m=2 m=3 m=4 

1-Reg 50 47 35 33 

M-1-Reg 50 47 39 38 

Random(2) 50.00 47.25 39.70 37.50 

ESG(2,1) 34 36 30 34 

ESG(2,M-1) 34 37 30 34 

MK(1) 28 25 26 24 

MK(M-1) 28 25 26 24 
     

2-Reg 50 50 44 38 

M-2-Reg 50 50 45 39 

Random(3) 50.00 50.00 43.42 39.42 

ESG(3,2) 33 36 32 30 

ESG(3,M-2) 33 36 32 30 

MK(2) 28 25 26 24 

MK(M-2) 28 25 26 24 
     

3-Reg 50 50 50 44 

M-3-Reg 50 50 50 45 

Random(4) 50.00 50.00 50.00 44.08 

ESG(4,3) 33 36 35 34 

ESG(4,M-3) 33 36 35 34 

MK(3) 28 27 28 25 

MK(M-3) 28 27 28 25 
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Table B.8. Faults Revealed for Specials 

Specials 

Test Set m=1 m=2 m=3 m=4 

1-Reg 50 16 6 0 

M-1-Reg 50 32 12 2 

Random(2) 50.00 29.62 11.29 4.20 

ESG(2,1) 29 10 5 2 

ESG(2,M-1) 31 14 7 2 

MK(1) 25 10 2 3 

MK(M-1) 26 11 2 4 
     

2-Reg 50 50 18 4 

M-2-Reg 50 50 33 14 

Random(3) 50.00 50.00 23.46 11.82 

ESG(3,2) 28 25 15 6 

ESG(3,M-2) 34 26 17 6 

MK(2) 29 15 4 4 

MK(M-2) 34 22 8 5 
     

3-Reg 49 49 50 18 

M-3-Reg 49 49 50 30 

Random(4) 49.00 49.00 50.00 24.45 

ESG(4,3) 28 27 27 15 

ESG(4,M-3) 35 30 27 15 

MK(3) 36 28 12 7 

MK(M-3) 40 34 16 8 
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Table B.9. Faults Revealed for Additionals 

Additionals 

Test Set m=1 m=2 m=3 m=4 

1-Reg 50 13 2 0 

M-1-Reg 50 32 8 2 

Random(2) 50.00 24.43 8.79 3.52 

ESG(2,1) 27 9 2 0 

ESG(2,M-1) 32 15 3 0 

MK(1) 25 11 2 0 

MK(M-1) 26 12 3 0 
     

2-Reg 49 50 12 3 

M-2-Reg 49 50 30 10 

Random(3) 49.00 50.00 18.89 10.96 

ESG(3,2) 26 26 10 2 

ESG(3,M-2) 30 32 13 3 

MK(2) 31 20 3 3 

MK(M-2) 33 25 4 5 
     

3-Reg 48 50 50 13 

M-3-Reg 48 50 50 29 

Random(4) 48.00 50.00 50.00 24.09 

ESG(4,3) 27 27 25 14 

ESG(4,M-3) 32 33 27 18 

MK(3) 35 31 8 7 

MK(M-3) 38 36 15 11 
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Figure B.1. Test execution curves for ShearBar. 
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Figure B.2. Test execution curves for Specials. 
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Figure B.3. Test execution curves for Additionals. 

 

 


