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Introduction

In recent years volunteer, grid, and web computing have received consider-
able attention. Since PCs with a good Internet connection have become afford-
able for everybody, the world’s computing power is distributed in — mean-
while — hundreds of millions of PCs all over the world. Most of these PCs
are only partially utilized, so that the world-wide unused computing power
easily sums up to hundreds of PetaFLOPs, whereas the fastest supercomputer
currently has less than two PetaFLOPs. Even if only a few percent of the PC
owners all over the world can be convinced to donate their unused computing
power, this will already be competitive to the computing power of the top su-
percomputers. The idea of volunteer computing is utilize this immense amount
of unused computing power for computing-intense applications. Famous ex-
amples are the Great Internet Mersenne Prime Search (GIMPS) [gim], the Inter-
net’s first general-purpose distributed computing project distributed.net [dis], or
Search for Extraterrestrial Intelligence (SETI@home) [ACK™02,set]. Some years ago
the Berkeley Open Infrastructure for Network Computing (BOINC) [boi, And04] was
invented to provide a unified framework which greatly eases the implemen-
tation, software distribution to volunteers, and maintenance of such projects.
BOINC currently has more than 300,000 volunteers who participate with more
than 600,000 computers and donate more than five PetaFLOPs of computing
power, which is more than 2.5 times the power of the fastest supercomputer.
Grid computing is another kind of distributed computing: Many trusted, net-
worked computers are used to build a virtual supercomputer. These comput-
ers may be both supercomputers or large-scale clusters themselves, or ordinary
desktop computers. In the latter case, these grid computing systems are referred
to as desktop grids; a prominent example is the general-purpose experimental
platform XtremWeb [xtr, FGNCO01]]. Though grids are usually also managed by
a central master node, they are — in contrast to many volunteer computing sys-
tems — not dedicated to one special application, but they process various kinds



1 Introduction

of applications of different users in batch mode.

Web computing combines aspects of both volunteer computing and grid com-
puting: Like in the volunteer computing approach, web computing means to
utilize the idle times on lots of PCs connected via the Internet to a virtual super-
computer. And like in the grid computing approach, web computing means to
provide a general purpose middleware, where multiple users can run various
kinds of applications.

Over time, many prominent distributed computing projects have added fea-
tures to expand their application areas. Meanwhile, the terms “volunteer com-
puting”, “desktop grid”, and “web computing” cover so many aspects and
overlap so much, that some communities already use them synonymically. In
the following, we use the term “web computing”.

This thesis is about the web computing approach with two important con-
straints: First, we support the execution of coupled, massively parallel algo-
rithms (rather than distributed data processing). And second, we organize the
system in peer-to-peer (P2P) fashion.

1.1 Our Contribution

We present the Paderborn University BSP-based Web Computing (PUB-Web) li-
brary, which supports the execution of parallel programs in the bulk-synchro-
nous style (BSP) on networked computers, utilizing only their idle times. This
computer network is organized in P2P fashion and is dynamic not only with
respect to the set of active peers, but also concerning the idle times continually
changing on the particular machines in an unpredictable way. Since its first pro-
totype implementation presented in [BGMO5b|, BGM06], PUB-Web has become
a stable and mature system with several new features. In this thesis, we will
focus on the following major building blocks:

e As the donated computing power on the particular host continually chan-
ges in an unpredictable fashion, we need to migrate threads to other (fa-
ster) hosts at runtime. And because computing nodes may crash or leave
the network suddenly at any time, we need to create process state back-
ups at regular times, which we can use to restore crashed processes. As
JavaGo — the most promising, existing thread migration and checkpoint-
ing library for Java — only was a prototype implementation not suitable
for production use and could not be extended to Java 5 or later versions,
we designed a new language specification and developed a new library
(PadMig) and compiler. In particular, using annotations instead of addi-
tional keywords, our new specification sticks to the Java standard instead
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of deriving a new programming language. As a side effect, this allows
developers to keep using their favorite IDEs without any drawbacks. Fur-
thermore, we were able to design PadMig such that developers do not
need to maintain two versions if they like to have a non-migratable and a
migratable version of their code — they can now simply skip the interme-
diate compilation step with our compiler to obtain a non-migratable ver-
sion of their code. Finally, we based our implementation solely on tools in
Java for portability reasons, so that PadMig is available for all important
platforms.

Once we were able to migrate threads, the key challenge was to find a
suitable distributed load balancing technique. For this, we adapted a well-
established decentralized data distribution method using distributed het-
erogeneous hash-tables from the storage community to our setting. This
new load balancer is able to fairly assign the processes of parallel pro-
grams to computing nodes and to balance the load on changes in the
available computing power. The nodes running this distributed algorithm
need to continually exchange information about the available computing
nodes, but not about the running processes, i.e., each process can be sched-
uled without the knowledge of other processes. This additionally guaran-
tees that, in case of a crash, the schedule can be reconstructed by an arbi-
trary node, which did not collect any information in advance. Although
not all features are implemented, our implementation is stable and suit-
able for production use. In order to adequately judge the quality of the
schedules produced by our load balancer, we performed extensive exper-
iments. At first, we collected the utilization data of more than 250 PCs
for a period of several months in order to both feed our load balancer
with realistic input data and conduct reproducible experiments. We then
performed different kinds of experiments to separate the influences of the
external work load and the stream of parallel jobs to execute, and we com-
pared several variants of our load balancer with the well-established Work
Stealing algorithm.

Despite the fact that the available computing power is the most impor-
tant resource to fairly share among all parallel processes, there are also
other criteria to consider such as the network bandwidth, for example,
as BSP programs communicate a lot. If a BSP program would be sched-
uled entirely on a fast connected component of the network although
there would be a few faster processors available outside this component,
it will run faster due to the reduced networking delays than it would have
run when just scheduled according to processing power. Thus, another
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challenge was to cluster the PUB-Web network according to bandwidth.
For this, we employed a novel, fault-tolerant, adaptive, and scaling dis-
tributed clustering algorithm called DiDiC. Although DiDiC is not yet in-
tegrated into PUB-Web, we experimentally compared DiDiC to the well-
established MCL algorithm using a simulator.

1.2 Bibliographic Notes

Most of the results in this thesis have been presented and published in a pre-
liminary version in conference proceedings, journals, or as technical reports.
In particular, the first (hybrid peer-to-peer) version of PUB-Web has been pub-
lished in:

[BGMO5b] Olaf Bonorden, Joachim Gehweiler, and Friedhelm Meyer auf der
Heide. A web computing environment for parallel algorithms in
Java. In Proceeedings of International Conference on Parallel Process-
ing and Applied Mathematics (PPAM), pages 801-808, Poznan, Poland,
2005.

[BGMO6] Olaf Bonorden, Joachim Gehweiler, and Friedhelm Meyer auf der
Heide. A web computing environment for parallel algorithms in
Java. Scalable Computing: Practice and Experience, 7(2):1-14, 2006.

The new thread migration and checkpointing library and its compiler have been
presented in:

[GT10] Joachim Gehweiler and Michael Thies. Thread migration and check-
pointing in Java. Technical Report tr-ri-10-315, Heinz-Nixdorf-
Institute, June 2010.

The architecture of the load balancer has been proposed in:

[GSO06] Joachim Gehweiler and Gunnar Schomaker. Distributed load bal-
ancing in heterogeneous peer-to-peer networks for web computing
libraries. In Proceeedings of 10th IEEE/ACM International Symposium
on Distributed Simulation and Real Time Applications (DS-RT), pages
51-58, Torremolinos, Malaga, Spain, 2006.

An experimental comparison of different load balancing strategies is currently
under submission:
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[GM11] Joachim Gehweiler and Friedhelm Meyer auf der Heide. An experi-
mental comparison of load balancing strategies in a web computing
environment. In SPAA "11: Proceedings of the 23rd ACM Symposium on
Parallelism in Algorithms and Architectures, under submission, 2011.

The distributed clustering algorithm has been published in:

[GM10]  Joachim Gehweiler and Henning Meyerhenke. A distributed diffu-
sive heuristic for clustering a virtual P2P supercomputer. In Pro-
ceeedings of 24th International Parallel and Distributed Processing Sym-
posium (IPDPS, HPGC), Atlanta, USA, 2010.

Finally, the large-scale distributed environment used for running and debug-
ging PUB-Web has been presented in:

[GMS10] Joachim Gehweiler, Friedhelm Meyer auf der Heide, and Ulf-Peter
Schroeder. A large-scale distributed environment for peer-to-peer
services. Technical Report tr-ri-10-317, Heinz-Nixdorf-Institute,
June 2010.

1.3 Organization of the Thesis

In the next chapter, we discuss the computing model and present the architec-
ture and some basic features of the web computing library. In Chapter 3, we
describe technical aspects of the web computing library and its development,
with a strong focus on the new thread migration and checkpointing library its
compiler. Our load balancing algorithms and their analysis are discussed in
Chapter @} In Chapter [5, we present the clustering algorithm and its evalua-
tion. Concluding remarks and a look ahead are given in Chapter 6| Finally,
the appendix provides detailed results of our extensive experiments in numer-
ous additional figures. Related work on the different topics is discussed in the
particular sections.






2

The Web Computing
Library

In this chapter we discuss architectural aspects of the PUB-Web library. Dis-
tinguishing characteristics of PUB-Web are its ability to support the execution
of coupled, massively parallel algorithms (rather than distributed data process-
ing), and the fact that this web computing system is organized in P2P fashion.
Thus, we first discuss the parallel computing model and compare against re-
lated work. Then we present the architecture, some core features, the appli-
cation programming interface (API), and the interoperability interface of PUB-
Web.

2.1 The Bulk-Synchronous Parallel Model

In order to handle communication, synchronization, and dependencies between
the processes of a parallel program in a very heterogeneous computing environ-
ment, we restrict the parallel applications to a round-based model with comput-
ing, communication, and synchronization phases. Rather than inventing a new
variant, we stick to the well-established Bulk-Synchronous Parallel (BSP) model
[Val90, Bis04], which has been introduced by Leslie G. Valiant in order to sim-
plify the development of parallel algorithms. It forms a bridge between the
hardware to use and the software to develop by giving the developer an abstract
view of the technical structure and the communication features of the hardware
to use (e.g., a supercomputer with shared memory, a cluster of workstations or
PCs connected via the Internet).

A BSP computer is defined as a set of processors with local memory, inter-
connected by a communication mechanism (e.g., a network or shared memory)
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capable of point-to-point communication, and a barrier synchronization mech-
anism.

A BSP program consists of a set of BSP processes and a sequence of supersteps —
time intervals bounded by the barrier synchronization. Within a superstep each
process performs local computations and sends messages to other processes;
afterwards it indicates by calling the sync () method that it is ready for the
barrier synchronization. When all processes have invoked the sync () method
and all messages are delivered, the next superstep begins and the messages
sent during the previous superstep can be accessed by its recipients. Fig.
illustrates this.

$ & 4 ¢ ¢ 4 & ¢
\\w/ \\w/ \\w/ \\4’/ \\4’/ \\d/ \_/ \_/

| sync |

Local
Computations

T~
S N

sync

/

/ \\

Superstep

sync

Figure 2.1: A superstep in a parallel program consisting of 8 processes.

2.2 Related Work

Well-known BSP implementations are the Oxford BSP programming library (BSP-
lib) [HMS™98] and the Paderborn University BSP (PUB) library [pubal, BJ[vOR03].
The Bayanihan BSP implementation [Sar99] is a first attempt to support BSP pro-
grams in a volunteer computing context: The central master node decomposes
the BSP program to be executed into pieces of work, each consisting of one
superstep in one BSP process. The worker nodes download a work package
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consisting of the current process state of one BSP process and its incoming mes-
sages for the current superstep, execute the superstep, and send the resulting
state together with the outgoing messages back to the master. When the master
has received the results of the current superstep for all BSP processes, it moves
the messages to their destination work packages. Then the workers continue
with the next superstep. With this approach all communication between the
BSP processes passes though the server — additionally to the overhead gener-
ated by starting / stopping the processes and saving / restoring their process
states.

Our approach removes this bottle-neck at the master node: Organized as a
P2P network, all computing nodes communicate directly with each other; su-
pernodes are only involved when a computing node has to look up another
computing node before their first interaction, or when an error occurs. In order
to handle varying donations of computing power in a dynamic P2P environ-
ment, we have developed novel approaches to distributed load balancing and
clustering.

2.3 The Architecture of PUB-Web

Distinguishing architectural aspects of our Paderborn University BSP-based Web
Computing (PUB-Web) library are its support for parallel programs in the BSP
style and its P2P structure. Though PUB-Web was only a hybrid P2P network
in its first prototype version [BGMO05b, BGMO06], using a central server for load
balancing, user management, etc., it is now designed as a pure P2P system, con-
sisting of a dynamically changing set of maybe worldwide distributed comput-
ers temporarily donated to be used for web computing; in addition, a few su-
pernodes are employed for the management of the system (cf. Fig.[2.2). Though
PUB-Web is a stable and mature system, ready for production use, not all fea-
tures discussed in this thesis are fully implemented yet.

PUB-Web only utilizes the left-over computing power on the donated com-
puters, in order not to disturb other activities on these machines. The donated
computers may be very different (e.g., desktop PCs, notebooks, etc.), both with
respect to their computing power and the dynamics of their availability, i.e.,
their left-over computing power. Note that the availability depends on the way
the computers are used by other activities of their users. This might be very dif-
ferent for different computers. For the remainder of this thesis we refer to these
other activities as external workload. PUB-Web does not require any guaranties
on the availability of the peers, i.e., the donated computers may be switched on
and off at arbitrary times, may crash, and may be subject to an arbitrary external
workload changing in an unpredictable fashion.
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Basically, everybody can join the PUB-Web network with his computers: In
order to just donate the unused computing power, it is sufficient to download
and install the peer software available at [pubb]; in order to also run your own
BSP programs, a login for the PUB-Web network is required.

When logging in to the PUB-Web network, a peer searches for an arbitrary
trusted supernode and sends a login request. As the network is dynamic and
peers may leave the network without signing off (e.g., in case a computer cra-
shes), the login requests are granted on a lease base, i.e., in order to stay valid,
a login has to be renewed at regular intervals. There is no upper bound on the
lifetime of such a lease.

Figure 2.2: The network architecture of PUB-Web.

2.3.1 Running Parallel Programs

When a user wants to run a BSP program, it has to be copied into a special
directory specified in the configuration file. After the user has provided the re-
quired information, e.g., the name of the program and the requested number n
of parallel processes, his peer contacts a supernode in order to request a set of
up to n peers, where to run the program (cf. Fig. 2.3). The supernode then se-
lects an appropriate subset of the P2P network; it may return less then n peers
because the P2P network is very heterogeneous with respect to the available
computing power and there may exist peers that are more than twice as fast as
other peers. From now on, the execution of the parallel program is supervised

10
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by the user’s peer. On each of the assigned peers a PUB-Web runtime environ-
ment is started and the user’s parallel program is obtained via dynamic code
downloading. The output of the parallel program and, possibly, error messages
including stack traces are forwarded to the user’s peer.

(S
1) request ] e
elS
-\ ned pe
oy st of 2558
4) executing the BSP program
Q on assigned peers
3) Uplog
User d8sp Program,
Peer 5) outpyt
fthe ]
BSP program

Arbitrary
Supernode

Figure 2.3: Executing a parallel program in PUB-Web.

2.3.2 Core Features

Since the computing power available on the assigned peers continually changes
depending on how intensively the people, who donate their unused computing
power, currently utilize their computers, the supernode’s prediction where to
optimally schedule the BSP processes may appear to be wrong after some time.
Fig.2.4illustrates that the whole BSP program is delayed if only one peer does
not provide the expected amount of computing power. Thus, we migrate such
a BSP process to another, faster peer.

As not only the available computing power is dynamic, but also the P2P net-
work itself, i.e., peers may disappear out of a sudden, PUB-Web creates backup
copies of the process states during each synchronization phase and stores them
at different nodes across the network. Thus, we are able to restore processes of
a BSP program on-the-fly.

Because the computers in our scenario are not only highly heterogeneous
with respect to its hardware, but also run various types and versions of op-
erating systems, PUB-Web needs to be platform independent. The choice of
Java does not only fulfil this requirement, but also provides a basic security

11
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Figure 2.4: BSP program delayed by one slow process.

model out of the box: The Java Sandbox allows to grant code specific permis-
sions depending on its origin. For example, access to (part of) the file system or
network can be denied. In order to guarantee a high level of security, we grant
user programs only read access to a few Java properties which are needed to
write completely platform independent code (e.g., 1ine.separator etc.).

2.3.3 The PUB-Web API

User programs intended to run on PUB-Web have to be BSP programs ([Bis04]
is an excellent guide to parallel scientific computation using BSP). Thereto the
interface BSPProgram must be implemented, i.e., the program must have a
method with this signature:

public void bspMain (BSP bspLib, Serializable args)
throws AbortedException

Its first parameter is a reference to the PUB-Web runtime environment in order
access BSP API methods; the second parameter holds the arguments passed to
the BSP program, which is a String[] if the BSP program is started from a
command prompt, or any serializable Java object in case the interoperability
API (cf. Section is used.

12
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In order to enable BSP programs to be migrated at runtime by the load bal-
ancer, they need to be compiled using the PadMig compiler (cf. Section
and need to implement the BSPMigratableProgram interface instead, which
means that the main method has this different signature:

@Migratory public void bspMain (BSPMigratable bspLib,
Serializable args) throws AbortedException

In the following, we discuss the BSP library functions which can be accessed via
the BSP and BSPMigratable interface, respectively, which is implemented by
the PUB-Web runtime environment. In non-migratory programs, the barrier
synchronization is entered by calling;:

public void sync ()

The migratory version additionally creates a backup copy of the execution state
and performs migrations if suggested by the load balancer:

@Migratory public void syncMig()

A message, which can be any serializable Java object, can be sent with these
methods; thereby the latter two methods are for broadcasting a message to an
interval and an arbitrary subset of the BSP processes, respectively:

public void send(int to, Serializable msq)
throws IntegrityException

public void send(int pidLow, int pidHigh,
Serializable msg) throws IntegrityException

public void send(int[] pids, Serializable msq)
throws IntegrityException

Messages sent in the previous superstep can be accessed with these methods,
where the find methods are for accessing messages of a specific sender:

public int getNumberOfMessages ()

public Message getMessage (int index)
throws IntegrityException

public Message[] getAllMessages ()

public Message findMessage (int src, int index)
throws IntegrityException

public Message[] findAllMessages (int src)
throws IntegrityException

When receiving a message, it is encapsulated in a Me s sage object. The message
itself as well as the sender ID can get obtained with these methods:

13
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public Serializable getContent ()
public int getSource()

In order to terminate all the processes of a BSP program, e.g. in case of an
error, the following method has to be called; the Throwable parameter will be
transmitted to the PUB-Web user who has started the program:

public void abort (Throwable cause)
throws AbortedException

Any output to stdout or stderr should be printed using the following methods
as they display it on the command prompt of the user who has started the BSP
program rather than on the computer where the processes are actually running:

public void printStdOut (String line)
public void printStdErr (String line)

Beside writing to stdout and stderr, BSP programs can output any serializable
Java object, which is especially useful when a BSP program is started using the
interoperability API (cf. Section 2.3.4):

public void writeRawData (Serializable data)

By default the output is sent back to the user asynchronously in the background
so that these methods immediately return, even if delivering the output takes
some time due to network delays. However, in some cases it might be nec-
essary to ensure that the output is delivered before proceeding, e.g., before a
program is terminated using the abort () method. This can be achieved using
this method:

public void flush ()

To access data from files, the following method should be used. In particular,
any file in the BSP program folder of the PUB-Web user’s peer can be read with
it:

public InputStream getResourceAsStream(String name)
throws IOException, MalformedURLException

In migratable programs there is also a method available which may be called to
mark additional points inside long supersteps where a migration is safe (i. e. no
open files etc.):

@Migratory public boolean mayMigrate ()

14
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Furthermore, there are some service functions to obtain the number of processes
of the BSP program, the own process ID, and so on.

Listing shows an example program which demonstrates the basic BSP
features, especially how to send and receive messages.

Listing 2.1: Example program demonstrating message passing.

import pubweb. x;
import pubweb.bsp.x;

public class MessagePassing implements BSPProgram {

public void bspMain (BSP bsp, Serializable args) throws
AbortedException {
// calculate neighbours
int pid = bsp.getProcessId();
int n = bsp.getNumberOfProcessors();

int left = (pid - 1 + n) % n;
int right = (pid + 1) % n;
try {

bsp.send(left, new Integer(l));
bsp.send(right, new Integer(2));

} catch (IntegrityException ie) {
bsp.printStdErr ("sending failed: " + ie.getMessage());

bsp.sync();

// get all my messages, method 1
n = bsp.getNumberOfMessages|() ;
for (int i = 0; 1 < n; i++) {
try {
Message msg = bsp.getMessage (i) ;
bsp.printStdout ("got " + msg.getContent () + " from pid " +
msg.getSource () + " in superstep " + msg.getSuperstep());
} catch (IntegrityException ie) {
bsp.printStdErr ("receiving failed:

+ ie.getMessage());

// get all my messages, method 2
Message[] msgs = bsp.getAllMessages();
bsp.printStdOut ("got in total " + msgs.length + " messages");

// get messages from some specified pid, method 1
try {

int i = 0;

Message msg;

15
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while ((msg = bsp.findMessage (0, i++)) != null) ({
bsp.printStdOut ("received " + msg.getContent () + " from pid 0
in superstep " + msg.getSuperstep());
}
} catch (IntegrityException ie) {
bsp.printStdErr ("receiving failed: " + ie.getMessage());

}

// get messages from some specified pid, method 2
try {

msgs = bsp.findAllMessages (0);

bsp.printStdout ("got " + msgs.length + " messages from pid 0");
} catch (IntegrityException ie) {

bsp.printStdErr ("receiving failed: " + ie.getMessage());

2.3.4 The Interoperability Interface

A BSP program needs not necessarily be launched by a user. Using the in-
teroperability interface, BSP programs can be started out of other stand-alone
software just like an (asynchronous) function call: the PUB-Web peer software
can be embedded in GUI-less mode into other applications using the interoper-
ability API. Amongst others, the API provides a function to start a BSP program
and an interface for callback-functions to receive the output and, possibly, error
messages of the parallel program. Parameters passed to the BSP program as
well as the output sent back are not restricted to strings, but can be any (serial-
izable) object.

In particular, one first needs to create an instance of a PUB-Web peer in con-
sumer mode:

Consumer consumer = new Consumer (
"/path-to/config-file.conf")

BSP programs are started using the following method, where desc is the
description of the BSP program appearing in the process list, nProcs is the
number of requested BSP processes, mainClass is the fully qualified name of
the BSP program’s main class, and progArgs can any serializable Java object
to pass as argument to the BSP program:

public Job newJob (String desc, int nProcs,
String mainClass, Serializable progArgs)
throws ClassNotFoundException, IntegrityException,
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InternalException, MalformedURLException,
NotConnectedException, NotEnoughWorkersException,
PpException

In order to asynchronously receive the output and status updates of the BSP
program, an event listener is required, which can be added / removed using
these methods:

public void addConsumerEventListener (
ConsumerEventListener cel)

public void removeConsumerEventListener (
ConsumerEventListener cel)

The event handler interface contains methods to receive output and status
messages of BSP programs:

public void printToStdOut (Job job, int pid,
String line)

public void printToStdErr (Job Jjob, int pid,
String line)

public void writeRawData (Job job, int pid,
Serializable data)

public void printStatusLine (Job job, int pid,
String line)

public void processExited(Job job, int pid)

public void JjobExited (Job job)

public void processRolledBack (Job job, int pid,
int superstep)

public void jobDiedOnError (Job job, int pid,
Throwable cause)

public void jobAborted(Job job, int pid,
Throwable cause)

public void jobListChanged()

To keep track of pending, running, and finished jobs and to kill running or
dispose finished jobs, the following methods of a Consumer instance be can
used:

public synchronized Job[] getWaitingJobs ()
public synchronized Job[] getActivedJobs ()
public synchronized Job[] getFinishedJobs ()
public synchronized void updateJobList ()
throws PpException, NotConnectedException
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public synchronized void killJob (Job Jjob)
throws PpException, IntegrityException,
InternalException, NotConnectedException

public synchronized void disposeJdob (Job job)
throws IntegrityException

Listing [2.2| shows a minimalistic example how to run a BSP program using
the interoperability interface.

Listing 2.2: Running a BSP program using the interoperability interface.

import padrmi.*;
import pubweb. x;
import pubweb.user.x;

public class IopExample implements ConsumerEventListener {
private Consumer consumer;

public IopExample () {
try |
consumer = new Consumer ("/path-to/config-file.conf");
consumer .addConsumerEventListener (this) ;
consumer.newJob ("Example", 16, "myPackage.MyBspProgram", null);
} catch (ClassNotFoundException e) {
System.err.println ("BSP program not found: " + e.getMessage());
} catch (IntegrityException e) {
System.err.println("integrity violated: " + e.getMessage());
} catch (NotConnectedException e) {
System.err.println("no supernode connection available: " + e.
getMessage ());
} catch (NotEnoughWorkersException e) {
System.err.println ("not enough peers available: " + e.
getMessage ());
} catch (PpAuthorizationException e) {
System.err.println ("authentication failed: " + e.getMessage());
} catch (Exception e) {
System.err.println ("operation failed:");
e.printStackTrace () ;

public void printToStdOut (Job job, int pid, String line) {
System.out.println(job + "[" + pid + "]: " + line);

public void printToStdErr (Job job, int pid, String line) {
System.err.println(job + "[" + pid + "]: " + line);
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public void writeRawData (Job job, int pid, Serializable data) {
System.out.println(job + "[" + pid + "]: data: " + data);

public void printStatuslLine (Job job, int pid, String line) {
System.out.println(job + "[" + pid + "]: status: " + line);

public void processExited(Job job, int pid) {
System.out.println("process " + job + "[" + pid + "] completed");

public void jobExited(Job job) {
System.out.println("job " + Job + " completed");

public void processRolledBack (Job job, int pid, int superstep) {
System.out.println ("process " + job + "[" + pid + "] restored in
superstep " + superstep);

public void jobDiedOnError (Job job, int pid, Throwable cause) {
System.err.println("job " + Jjob + " crashed at pid " + pid + "
because of:" + cause.getMessage());
try { consumer.killJob (job); } catch (Exception any) {}

public void jobAborted(Job job, int pid, Throwable cause) {
System.err.println("job " + Jjob + " aborted at pid " + pid + "
because of:" + cause.getMessage());
try { consumer.killJob (job); } catch (Exception any) {}

public void jobListChanged () {
}
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Technical Aspects

In this chapter, we discuss essential technical aspects of PUB-Web: In the first
section, we present our communication library PadRMI, which is a lightweight
replacement for Java RML. Its development became necessary due to drawbacks
of Java RMI. Though PadRMI is tailored to the needs of PUB-Web, we designed
it in the form of a stand-alone module as a general purpose communication li-
brary. In Section 3.2, we present our thread migration and checkpointing library
PadMig including its compiler, describing its architecture, language specifica-
tion, technical background, and internals. Like PadRMI, PadMig is a stand-
alone general purpose library. In Section we briefly discuss security and
trust mechanisms. Finally, we present our large-scale distributed environment
used for running and debugging PUB-Web in Section This distributed en-
vironment is a general purpose large-scale testbed for P2P software written in
Java using the JXTA framework.

3.1 The Communication Library

To enable computers in a P2P network to locate each other and to communicate
with each other is a non-trivial task. In order to comply with established stan-
dards (and for interoperability reasons within the EU FP6-IST project “Algo-
rithmic Principles for Building Efficient Overlay Computers” (AEOLUS)), PUB-
Web uses JXTA [jxt, (Gon01] to locate peers and establish the first contact be-
tween two peers. Once two peers know each other, they continue their commu-
nication for efficiency reasons using direct TCP connections.

As PUB-Web spawns a special runtime environment in a separate process for
each BSP process due to security and fairness reasons, one server socket is nec-
essary per runtime environment. But since PUB-Web must be able to run behind
firewalls and routers, possibly using network address translation (NAT), with
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a reasonably amount of (network) resources, a PUB-Web peer cannot request
one open TCP port per BSP process; instead, it has to act as a proxy for its child
runtime environments.

In the first prototype implementation of PUB-Web, we employed standard
Java RMI for remote method invocations. Unfortunately, Java RMI does not
support high-level routing. Thus, in order to “route” a remote method invoca-
tion in a peer to its correct child runtime environment, the peer must provide a
corresponding remotely invokable method that passes the request on to the par-
ticular child runtime environment. In addition to the implementation overhead,
this involves a deserialization and re-serialization overhead for each remote
method call. In order to overcome this drawback, we invented a lightweight
replacement for Java RMI that supports port forwarding: the Paderborn Remote
Method Invocation (PadRMI) library [padb].

During the following description of PadRMI, we refer to a peer invoking a
remote method as client, and to the peer whose method is remotely invoked as
server.

PadRMI communicates using TCP connections and its own text-based pro-
tocol: the PadRMI Protocol (pp://). In order for this to work, the Java VM
property java.protocol.handler.pkgs has to be set to the value padrmi.
Internally, PadRMI uses asynchronous messages for communication; for this,
an instance of the PadRMI server has to run at both the server and client side.

Like in Java RMI, the server’s remotely invokable methods must be defined
in a special interface: it has to extend the padrmi . PpRemote interface, and all
its methods must declare the padrmi.PpException (cf. Listing 3.1).

Listing 3.1: Example for a PadRMI remote interface.

import padrmi.x;
import padrmi.exception.x*;

public interface MyRemoteService extends PpRemote {
public Object computeSomething (Object input) throws PpException;

}

In contrast to Java RMI, PadRMI does not support remote objects, so the im-
plementation of the server only requires the implementation of the remote in-
terface and its registration at the PadRMI server (cf. Listing [3.2). The descrip-
tion “MyRemoteService” needs to be a locally unique identifier. Username and
password are optional and may be null in order to be disabled.
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Listing 3.2: Example for a PadRMI remote interface implementation.

import padrmi.x*;
import padrmi.exception.x*;

public class MyRemoteServiceImpl implements MyRemoteService {
public Object computeSomething (Object input) throws PpException; {
//

/7

public static void main(String[] args) {
Server.startDefaultServer () ;
MyRemoteServiceImpl impl = new MyRemoteServiceImpl () ;
Server.getDefaultServer () .addObject ("MyRemoteService", impl,
MyRemoteServiceImpl.class, "user", "password");

The PadRMI server needs a few properties to be set correctly in order to start:
padrmi.guid must be a globally unique identifier (GUID) string. padrmi.
bind.address and padrmi.bind.port are the IP address and TCP port to
be used, respectively. When using NAT, the router’s IP address and its forward-
ing port can be specified as padrmi . address and padrmi.port, respectively.

In contrast to Java RMI, no stubs and skeletons need to be generated. Instead,
PadRMl internally uses java.lang.reflect.Proxy to create local proxy ob-
jects at the client side. Listing[3.3]illustrates an invocation of the method defined

in Listing
Listing 3.3: Example for a PadRMI remote interface.

import java.net.x;
import padrmi.x;
import padrmi.exception.x*;

public class MyRemoteMethodInvocation {
public static void main(String[] args) {

Server.startDefaultServer () ;

URL url = new URL ("pp://user:password@there:1234/itsguid/
MyRemoteService");

MyRemoteService service = (MyRemoteService) Server.
getDefaultServer () .getProxyFactory () .createProxy (url,
MyRemoteService.class) ;

Object result = service.computeSomething(args[0]);
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A distinguishing feature of PadRMI is its support for routing; all messages
(i.e., serialized remote method invocations or requested resources) are routed
using their GUIDs according to the routes defined. Listing [3.4/shows how to set
a route for GUID “myguid” to there:1234.

Listing 3.4: Example for setting a PadRMI route.

import padrmi.*;
VA

Server.getDefaultServer () .addRoute ("myguid", "there", 1234);

The PadRMI server can also be used to host class files and other resources
for downloading (e.g., as a remote codebase). The base directory, where the
resources are located, needs to be specified via the padrmi . path property; also
multiple directories can be supplied, separated by the platform-specific path
separator character. The files can be accessed on the client side for dynamic
code downloading or as shown in Listing

Listing 3.5: Example for resource downloading in PadRMI.

import java.net.x;
import padrmi.*;

V2R

Server.startDefaultServer () ;
URL url = new URL ("pp://there:1234/itsguid/subdirectory/file.txt");
url.openStream() ;

Further features and limitations of PadRMI include: only serializable argu-
ments and results are allowed; for these, standard Java serialization is em-
ployed. Passing references as arguments or results is not supported. Meth-
ods are matched only by their names and number of arguments, but not by
their argument and return types. PadRMI is compatible with the standard Java
classloader. The remote method calls are in a different protection domain with
restricted privileges and can be timeouted using annotations.

3.2 Thread Migration and Checkpointing in Java

As already pointed out in Chapter[2) it is necessary to migrate threads of lengthy
calculations at runtime to other hosts because the donated computing power
continually changes in an unpredictable fashion and hosts may even become
unavailable. Furthermore, it is desirable to regularly create checkpoints of the
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execution state, so that a certain state of a thread can be restored in case of a
system crash rather than restarting all the calculations from the beginning.

There are three ways to migrate threads in Java: modification of the Java Vir-
tual Machine (VM) [MWLQ0], bytecode transformations [SSY00, TRV*00], and
sourcecode transformations [jav, [Fiin98]. Modifying the Java VM is out of the
question because everybody would have to replace his installation of the origi-
nal Java VM with one from a third party, just to run a migratable Java program.
Approaches of this kind do not only have limited success due to their installa-
tion overhead, but also because of trust matters: people would need to trust that
a third party VM does not have any security defects. Additionally, from the de-
velopers’ point of view, this approach would result in a lot of maintenance work
to adapt all future releases and updates of Sun’s VM. An obvious alternative to
modifying Sun’s VM is of course to develop an own VM, but this results in even
more implementation work. A quite well-known approach of this kind is the
Jikes Research VM, which provides — among other features — thread migra-
tion techniques [[CLQO6]; but although a lot of man-power has been spent into
this project, it is not suitable for production use.

The bytecode transformation approach is also less suitable in our case because
we would need to re-synthesize high-level constructs such as loops or try-
catch-finally blocks for our translation approach. Additionally, a bytecode
transformer should be able to deal with all possible bytecode constructs, not
only those found in well-shaped javac output, which means additional effort
for the development of such a compiler.

Thus, we use the sourcecode transformation approach inside PUB-Web. There
are two ways to accomplish this: using code unfolding [SMY99] or an artifi-
cial program counter [Fiin98]. Using the former approach, nested loops and
branches have to be unfolded, whereas additional code fragments have to be
inserted for each statement to check whether or not the statement has to be
skipped in the latter approach. Obviously, unfolding needs only be done if there
are migratory sub-statements; similarly, successive statements to be skipped can
be grouped in case there are no migratory statements in between. We started
using a very promising prototype implementation [jav] of the unfolding tech-
nique, called JavaGo, which extends the Java programming language with three
keywords: migrations are performed using the keyword go (passing a filename
instead of a hostname as parameter creates a backup copy of the execution
state). All methods, inside which a migration may take place, have to be de-
clared migratory. The depth, up to which the call stack will be migrated, can
be bounded using the undock statement.

The translation of this extended language into Java sourcecode is done using
the JavaGo compiler jgoc. Migratable programs have a special main method
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and are launched via a wrapper class. In order to continue the execution of a
migratable program, an instance of a migration server has to run on the desti-
nation host.

But, unfortunately, this prototype implementation was not only incompatible
with PadRMI, but could also not be extended to support Java 5 due to design
issues. Thus and because of the following two more reasons, we decided to start
from scratch with our own implementation, the Paderborn Thread Migration and
Checkpointing (PadMig) library [pada) |GT10]:

¢ Using annotations instead of additional keywords, we can stick to the Java
standard instead of deriving a new programming language. As a side
effect, this allows developers to keep using their favorite IDEs without
any drawbacks. Furthermore, we are able to design PadMig such that
developers do not need to maintain two versions if they like to have a
non-migratable and a migratable version of their code — they can simply
skip the intermediate compilation step with our migc compiler to obtain a
non-migratable version of their code.

e The prototype implementation of the JavaGo compiler was more or less
a quick-hack written in Objective Caml [cam], which was terribly slow,
did not produce useful error messages, was hard to debug and not avail-
able for all important platforms. For portability reasons we based our
new implementation solely on tools in Java; in particular, we use the Java
transformation framework Spoon [spo, [Paw(05], which provides a com-
plete model of the abstract syntax tree where any element can be accessed
both for reading and modification.

The PadMig API consists of special functions to initiate a migration to an-
other machine or to save a checkpoint into a file. All methods, inside which
a migration can occur or a checkpoint is created, need to be annotated. The
PadMig compiler then transforms this code into migratable code. As our im-
plementation does not modify the Java language, the original, non-migratable
code is fully functional Java code, which just produces a warning rather than
actually migrating.

In the following sections we describe our language specification, provide the
technical background, give insight into the translation concepts, and finally
evaluate our new approach.

3.2.1 The PadMig Language Specification

In order to migrate the calling thread or to create a checkpoint, migration points
have to be inserted into a program. Only there — at statements consisting of a

26



3.2 Thread Migration and Checkpointing in Java

call to themigrate () or checkpoint () method of the library class padmig.
PadMig — the calling thread is migrated to a remote host or a checkpoint of the
calling thread is created, respectively. In particular, the two methods have the
following signatures:

public static void migrate(
java.net .URL migrationServer)
throws padmig.MigrationException;
public static void checkpoint (
java.io.File backupFile)
throws padmig.MigrationException;

When a checkpoint is generated, the execution continues locally. In case the
migration or checkpointing fails, a MigrationException will be thrown.

In order to allow migrations or checkpoints inside a method, either directly
by calling themigrate () or checkpoint () method, or transitively by calling
some other migratable method, the particular method has to be annotated with
padmig.Migratory. In some cases, it is desirable to migrate only a part of the
call stack; in PUB-Web, for example, only the user program, but not the PUB-
Web VM should be migated. The method, which forms the bottom element of
the call stack to be migrated has to be annotated with padmig. Undock instead
of Migratory (cf. Fig. B.I). According integrity checks are performed at com-
pile time: migc stops with an error if a migratable method is called from an or-
dinary method, i.e., a method which is neither migratable nor undockable. migc
also ensures that migratory annotations are consistent when inheriting from a
(possibly abstract) class or when implementing or inheriting interfaces.

We distinguish two kinds of migrations: if
@Migratory z() _— a method annota.ted With Undock has a return
e oo value, we call migrations on this call stack syn-
stack  chronous as the local execution has to wait for
the undocked method to return; otherwise, if the
@Migratory y() Undock method has no return value, we call mi-
@Undock x() grations on that call stack asynchronous because
the local execution can already continue with
the next statement after the call to the Undock
main() method directly after the Undock method has mi-
grated.
As all local variables are migrated by default,
Figure 3.1: Illustration of it is necessary to mark the locals which cannot
the migratory part of a call be migrated (because they are not serializable) or
stack. should not be migrated (as they generate an un-
necessary overhead). This can be done using the
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padmig.DontMigrate Annotation. The PadMig compiler does not explicitly
check for all possible kinds of side effects; however, the most prominent issues,
such as open files or sockets, are often implicitly detected, e.g., because file or
socket handles are not serializable. Note: In order to support, e.g., open socket
connections in a transparent way with respect to inheritance etc., it is neces-
sary to adapt the runtime environment appropriately by rewriting the accord-
ing classes using proxies, which is out of the scope of this work. User programs
inside PUB-Web are only allowed to open files for read access or to write output
back to the user’s peer via the PUB-Web API. Such open files or socket connec-
tions are not migrated but reside in the PUB-Web VM,; after a migration, the user
program needs to re-open files for read access or can continue to write output
to the user’s peer via the PUB-Web API

The object whose method is to be migrated has to be serializable of course,
i.e., it must implement the java.io.Serializable interface. The main class
of an application is also required to implement a special main method defined
in the padmig.Migratable interface:

public java.io.Serializable migratableMain (
java.io.Serializable[] args);

For interoperability reasons (see next chapter), the parameters and return
value of the main method can be any serializable object. Listing [3.6/shows an
example for a migratable program, which demonstrates all the languages fea-
tures.

Listing 3.6: Example for a migratable program.

import java.io.x;
import java.net.x;
import padmig.x;

public class Example implements Migratable, Serializable {
public boolean migrationNecessary () {
// evaluate situation here ...

return true;

}

public URL getMigrationTarget () {

try |
return new URL ("pp://some.host:1234/migration_server_name") ;
} catch (MalformedURLException mue) { /# ... %/ }
}
@Migratory

public int someMethod (int n) throws MigrationException {
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for (int i=n; i>=0; i--) {
// some complicated calculation here
@DontMigrate

File someFileHandle;
// complicated calculation continued
if (i % 10 == 0) {
PadMig.checkpoint (new File ("/path/checkpoint-"+n+".bak"));
}
if (migrationNecessary()) {
PadMig.migrate (getMigrationTarget ());

@Undock
public int syncUndockMethod (int n) throws MigrationException {
return 2 * someMethod(n);

@Undock
public void asyncUndockMethod (int n) throws MigrationException {
// remote result output

System.out.println("the result is " + (2 x someMethod(n)));
}
public Serializable migratableMain (Serializable[] args) {
try {

asyncUndockMethod (21) ;

System.out .println ("thread has undocked");

// local result output

System.out.println ("the result is " + syncUndockMethod (23));
} catch (MigrationException e) {

System.out.println("migration has failed");

e.printStackTrace();
}

return null;

3.2.2 Technical Background

In this section we give technical insight in how the PadMig compiler transforms
the annotated Java code into migratable standard Java code.

When migrating the calling thread, we need to save its current call stack and
an abstract representation of its program counter, transfer both to the remote
side, reconstruct the stack, and jump back into the code to the equivalent posi-
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tion. To provide the functionality of a program counter, the PadMig compiler
surrounds the original body of a migratory method with a switch statement,
whose cases are used as entry points to reenter the code after a migration; thus,
before every migratory invocation, the code generated by PadMig increases
program counter and the migratory invocation is put into a new case statement
(cf. Listing [8.7). If migratory expressions occur in loops or conditionals, an
unfolding technique needs to be applied, as described in detail in Section 3.2.3]

For each migratory method a method-specific subclass of padmig.lib.
StackFrame is generated, which stores all migratory locals and a symbolic
program counter. When the current call stack is to be saved, it is represented
as a list of instances of these stack frame classes. This list is created on demand
by throwing a special java.lang.Throwable, namely padmig.lib.Save
Stack, which holds the growing saved stack and has to be caught by every
method and passed on after adding its own stack frame. To restore the call stack
on the remote side, the corresponding stack frame is passed to each method on
the stack via anon-null additional parameter called __parentState (this pa-
rameter is null during ordinary method invocations). The locals as well as the
program counter are then restored by generated code inserted at the beginning
of each method. A simplified example is provided in Listing

Listing 3.7: Simplified example of a generated method.

public void foo(String paraml, StackFrame _ parentState) throws
SaveStack, MigrationException {

FooStackFrame _ state = null;

int __ _entryPoint = 0;

// locals declarations here...

if (__parentState != null) ({
_ _state = ((FooStackFrame) (_ parentState.child));
__entryPoint = __ state.entryPoint;

// restore locals here...
}
try {
switch (__entryPoint) {
case 0
// original method body before migration here...
__entryPoint = 1;
throw new DoMigration (getMigrationDst ());
case 1
// original method body after migration here...
V2R
// original method body before checkpointing here...
__entryPoint = 2;
throw new DoCheckpoint (getBackupFile());
case 2
// original method body after checkpointing here...
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}

} catech (SaveStack _ stack) {
__state = new FooStackFrame () ;
__state.self = this;

__state.entryPoint = __entryPoint;

// save locals here...

_ state.child = __ stack.bottomOfStack;
__stack.bottomOfStack = __ state;

throw _ stack;

Once you have compiled both your migratable program with the PadMig
compiler migc and and the resulting code with the Java compiler javac, you are
ready to run your migratable program — either standalone or as part of another
application.

In order to execute a migratable program stand-alone, you need to run a
migration server padmig.standalone.Server on every possible migration
target and start the migratable program via padmig.standalone.Client,
which is a wrapper around the migratable main method. As the internal com-
munication of PadMig is performed via the Paderborn Remote Method Invoca-
tion (PadRMI) library [padb], the library padrmi . jar has to be included in the
classpath. Java properties specify the IP address, port, etc. of the local machine
and the codebase: either on a web server or file server as a http: or file:
protocol URL or a pp: protocol URL pointing to one of the migration servers.
Note that multiple cooperating migration servers must all point to the same
codebase. Handlers for the PadRMI protocol (denoted by pp: in URLs) have
to be installed into all participating JVMs as well via the Java Protocol Handler
mechanism.

Instead of running your migratable application standalone, you can also inte-
grate it into other Java applications — like we integrated it into PUB-Web — us-
ing the PadMig interoperability interface. In order to enable your application to
accept incoming thread migrations, you need to start the PadRMI daemon and
register a padmig.iop.Service, for example padmig.iop.DefaultSer
viceImpl:

padrmi.Server.startDefaultServer () ;

padrmi.Server.getDefaultServer () .addObject (
padmig.lib.PadMigLib.PADRMI_SERVICE_NAME,
new padmig.iop.DefaultServiceImpl (),
padmig.iop.Service.class, null, null);

Furthermore, you will probably want to implement the padmig.iop.
MigrationListener interface and register it with the DefaultService
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Impl.addMigrationListener () method in order to obtain references to in-
coming migratable objects and to be notified about migration failures; the code
snippet in Listing 3.8 illustrates this.

Listing 3.8: Example for a migration listener implementation.

public void migratableObjectArrived (MigrationEvent e) {
System.out.println("incoming migration associated with object " + e
.getObject ());
}

public void migratableObjectContinuationFailed (MigrationEvent e) {

System.out.println("migration associated with object " + e.
getObject () + " failed:");
e.getError () .printStackTrace();

}

Supposed you have correctly set the PadRMI related properties like in the
standalone case and your migratable program HelloWorld is located at the
path specified in the padrmi . path property, you can start your program from
an enclosing Java application like this:

Object returnValue = padmig.Launcher.launch (new URL (
padrmi.Server.getDefaultServer () .getURL() + "/"),
HelloWorld.class.getName (),
new Serializable[] { "hi", "there!" });

3.2.3 Translation Concepts

Before translating migratory methods, the PadMig compiler first checks if the
provided code is syntactically correct Java code and obtains its abstract syn-
tax tree using the Java transformation framework Spoon [spo, Paw(05]. Then
it performs some integrity checks on the code, in particular if every class (or
interface) containing migratory methods implements (or extends, respectively)
the java.io.Serializable interface, and if none of the reserved variable
names ___state, tmpState, _ _parentState, entryPoint, stack,
t,__gen,__ tryNestingDepth,__ cFlowBreakLevel is used inside mi-
gratory methods. When overriding methods, either all or none of them can be
migratory due to the additional stack frame parameter; thus the PadMig com-
piler verifies that a @Migratory or @Undock annotation of a method is com-
patible with all possibly existing overridden methods. Finally, it ensures that
there are no migratory methods inside anonymous classes because stack frame
containers can only be created for named classes.

Then every migratory method is translated (other code passes through un-
changed). First, the signature of the method is changed in order to allow the
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special throwable padmig.lib.SaveStack to be thrown on a migration, and
to get the transmitted call stack passed in as a parameter on the remote side. In
particular, a parameter __parentState of type padmig.lib.StackFrame
is added to the parameter list and padmig.lib.SaveStack to the throws
clause.

Before explaining the actual translation of a migratory method body in de-
tail, we have to regard two special cases: First, if the method to be translated is
an @Undock method, a helper method with the original signature is addition-
ally required, which invokes the translated migratory method and handles the
padmig.lib.SaveStack throwable (see listings[3.9and for an example).
Second, if the method to be translated is abstract or declared inside an inter-
face, or if the body of an ordinary @Migratory method contains no migratory
invocation, no further processing of the method body is required.

Next, an inner class extending padmig.lib.StackFrame is created for each
migratory method, which contains a field for each parameter of the method and
for each local variable that is not excluded from migration (see Listing [3.10).

Each translated method is structured as follows (see Listing [3.10): at the be-
ginning some PadMig specific variables and locals of the original method are
declared. In case the __parentState parameter is not null, the method call
is a continuation of the execution after a migration, which means that the val-
ues of the locals have to be restored from the saved call stack, and that the
entry point, from where on to resume the execution, has to be set. The original
method body is enclosed in a t ry statement, whose catcher creates a new stack
frame and saves all the locals in case of a migration. The purpose of the endless
while (true) loop around the original method body will be explained later
together with the unfolding technique. Finally, the swit ch statement is used to
jump back into the original code at the correct entry point.

Listing 3.9: A simple example (Java code with PadMig annotations)

import java.io.x;
import padmig.x;

public class Example implements Serializable {

@Undock

public int foo (Object bar) throws MigrationException ({
double myDoublelLocal;
@ontMigrate
long myLongLocal;
// method body
return 42;
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Listing 3.10: Output of the PadMig compiler for the example in Listing[3.9)

import java.io.x;
import padmig.x;
import padmig.lib.x;

public class Example implements Serializable {
public int foo (Object bar) throws MigrationException {
try {
return foo (bar, null);
} ecatch (SaveStack stack) {
return ((Integer) (padmig.lib.PadMigLib.syncTransmit (stack)));

public class FooStackFrame extends StackFrame ({
public Object bar;
public double myDoubleLocal;

public Object continueExecution() throws Exception, SaveStack {
StackFrame frame = new EmptyStackFrame();
frame.child = this;
return ((Example) (self)).foo(null , frame);

public int foo (Object bar, StackFrame _ parentState) throws

SaveStack, MigrationException ({
FooStackFrame _ state = null;
FooStackFrame __ tmpState;
int _ _entryPoint = 0;
int _ cFlowBreakLevel;
double myDoubleLocal = 0;
long myLongLocal = O0;
if (__parentState != null) ({

__state = ((FooStackFrame) (__parentState.child));

__entryPoint = __ state.entryPoint;

bar = _ state.bar;

myDoubleLocal = __state.myDoubleLocal;
}
try {

while (true) {

_ cFlowBreakLevel = -1;
switch (__entryPoint) {
case 0:
// method body
return 42;
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} catch (SaveStack _ stack) {

_ _state = new FooStackFrame();
__state.self = this;
__state.entryPoint = __entryPoint;

_ _state.bar = bar;
__state.myDoublelLocal = myDoublelocal;
_ _state.child = __ stack.bottomOfStack;
__stack.bottomOfStack = _ state;
throw _ stack;

Now we are ready to have a look at the actual translation of a migratable
method. It is organized in two traversals of the syntax tree. During the first
pass, the following tasks are done:

e If migratable code occurs in places where it is not allowed or not sup-

ported, the compilation is aborted. In particular, no migratable code is al-
lowed inside assert statements, as the left-hand side of an assignment,
in looping expressions, in synchronized sections, in catchers, and in fi-
nalization blocks.

Local variable declarations are moved to the beginning of the method, i.e.,
their scope is widened to the whole method. This is necessary because we
need to access them when saving their values in a stack frame upon a
migration and when restoring their values from the stack frame on the
remote side (see Listing [3.10). Java ensures disjoint life ranges for local
variables with the same name of the same type; so such variables can be
unified. However, variables of different types must be disambiguated just
to ensure static type safety; thus if two or more variables with the same
name but different types exist, we will distinguish these variables by dif-
ferent appendices to their name, uniquely identifying their types as well
as their type arguments and array dimensions if applicable.

The only variable declarations not moved are those declared as parame-
ters in catchers. On the one hand, it is not possible to move them due to
the Java language specification; on the other hand, it is also not necessary
to do so because catchers are not allowed to contain migratable code.

Ordinary for loops are converted into while loops by moving the initial
assignment(s) before the loop and the increment operation(s) to the end of
the loop.

Enhanced for loops (also known as foreach loops) are handled similarly: If
the looping expression is a subtype of java.lang.Iterable,acompiler
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generated variable of type java.util.Iterator parameterized with
the appropriate type element is initialized before the loop; the hasNext ()
operation is used as the new looping expression, and the value obtained
via the next () operation is assigned to the respective local variable in a
new first statement of the loop’s body.

Else, if the looping expressing has an array type, a compiler generated
variable to hold a reference to the array and a second variable of type
int to iterate through the array are initialized before the loop; this iter-
ation variable is compared to the length of the array in the new looping
expression; as a new first statement of the loop’s body the particular ar-
ray element is assigned to the respective local variable, and as a new last
statement the iteration variable is increased.

All three cases are illustrated in Listings and

e Loops, if-, switch-, and try-statements containing migratory invoca-
tions are marked for unfolding during the second traversal of the syntax
tree.

e Statements containing one or more migratory invocations are expanded.
This is illustrated in Listings and If such statements would not
be expanded, this could lead to redundant execution of already executed
code. In the example, the call to foo () would be executed a second time
at the migration destination, if a migration occurs and the statement were
not expanded using temporary variables.

Listing 3.11: A simple example of for loops to convert into while loops

for (i = 0, j = 42; i < 3; i++, j-= 2) {
// loop body
}

Set<String> set;

VYR

for (String s : set) {
// loop body

}

Stringl[] array;

/S

for (String t : array) {
// loop body

}
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Listing 3.12: Converted loops from Listing|3.11

i = 0;

J = 42;

while (i < 3) {
// loop body
i++;
J =2

Set<String> set;

//

String s;

Iterator<String> _ _gen_java_util_TIterator_java_lang_String = set.
iterator();

while (__gen_java_util_Tterator_java_lang_String.hasNext ()) {
s = __gen_java_util_TIterator_java_lang_String.next();

// loop body

String[] array;

VYR

String t;

String[] __gen_java_lang_String_array = array;

int _ _gen_int = 0;

while (__gen_int < __gen_java_lang_String_array.length) {
t = __gen_java_lang_String_array[__gen_int];
// loop body
__gen_int++;

Listing 3.13: A simple example for expansion of a statement

result = foo() + bar (myMigratoryMethod());

Listing 3.14: Expanded statement from Listing|3.13

tmpl foo();
tmp2 = myMigratoryMethod();
result = tmpl + bar (tmp2);

During the second traversal of the syntax tree, marked control structures are
unfolded. The idea behind unfolding is to reduce the control flow to basic
blocks with migratory invocations and then convert it into a finite automaton
implemented as a Java switch statement surrounded by an endless loop; the
state of the automaton, implemented as an int, serves as a symbolic program
counter during migration.
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The loops, if-, switch-, and t ry-statements identified to contain migratory
invocations during the first syntax tree traversal are now rewritten as follows:

In order not to duplicate all code fragments of a loop body before, between,
and after migratory invocations or nested statements to be unfolded, the loop is
moved to the top level, and a switch statement is used to jump to the correct
entry point. At the end of a do loop, the looping condition is checked using
an if statement, and if the looping condition is still fulfilled, we jump back
to the top of the loop’s body by setting the correct entry point and using the
continue statement. In case loops subject to unfolding are nested, the hierar-
chy is flattened this way, i.e., we only have one outer while (true) loop and
switch statement.

When unfolding a while loop, the negated looping condition is additionally
checked in the beginning to skip over the loop body in case the looping con-
dition is already initially false. Unfolding of both loop types is illustrated in

Listings and
Listing 3.15: A simple example for loop unfolding

while (i < 3) {
// while loop body
}

do {
// do loop body
} while (j < 5);

Listing 3.16: Unfolded code from Listing|3.15]

__entryPoint = 0;
while (true) {
switch (__entryPoint) {
case 0:
if (!'(1 < 3)) {
__entryPoint = 2;
continue;
}
case 1:
// while loop body
if (1 < 3) {
__entryPoint = 1;
continue;
}
case 2:
// code between while and do loop
case 3:
// do loop body
if (j < 5) |
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__entryPoint = 3;
continue;
}
case 4:
return;

}

if statements are handled by inverting the conditional expression to jump
into the e1se part (if present) in case the condition is not fulfilled. An Example

is provided in Listings and

Listing 3.17: A simple example for unfolding an i f statement

if (1 == 0) {
// if body
} else {
// else body
}

Listing 3.18: Unfolded code from Listing[3.17

__entryPoint = 0;
while (true) {
switch (__entryPoint) {
case 0:
if (1 (1 == 0)) |
__entryPoint = 2;
continue;
}
case 1:
// 1f body
__entryPoint = 3;
continue;
case 2:
// else body
case 3:
return;

}

When processing a switch statement, a separate entry point is generated for

each case label (see Listings and (3.20).

Listing 3.19: A simple example for unfolding a switch statement

switch (i) {
case 0O:
// case 0 body
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break;
case 1:

// case 1 body

// fall-trough into case 2
case 2:

// case 2 body

break;
default:

// default case

Listing 3.20: Unfolded code from Listing|3.19

__entryPoint = 0;
while (true) ({
switch (__entryPoint) {
case 0:
switch (i) {
case 0:
__entryPoint = 1;
continue;
case 1:
__entryPoint = 2;
continue;
case 2:
__entryPoint = 3;
continue;
default:
__entryPoint = 4;
continue;
}
case 1:
// case 0 body
__entryPoint = 5;
continue;
case 2:
// case 1 body
case 3:
// case 2 body
__entryPoint = 5;
continue;
case 4:
// default case body
case 5:
return;
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If there are migratory invocations inside a t ry block, the block has to be split
before each migratory invocation. Each such code fragment is surrounded by
its own copy of the original t ry block. The exception handling code can simply
be copied for each of the new t ry statements, but finalization blocks and labels
require special treatment (cf. Listings [3.21) and [3.22). The finalization code is
only to be executed when the whole t ry block is executed to completion with-
out errors, when an exception occurs, or when the control flow is diverted using
return, break, or continue. For this purpose, the nesting-depth of each t ry
statement is determined, and the special local variables __tryNestingDepth
and __ cFlowBreakLevel are introduced to indicate whether or not to run the
finalization code when leaving a copy of a split t ry statement. __tryNesting
Depth is increased at the beginning of a copy of a split t ry statement and de-
creased at its end (except for the last copy) or when a SaveStack throwable is
caught as a result of a migration. ___cFlowBreakLevel is set to —1 by default
and to the number of the outer-most finalization block to run if the control flow
is diverted. The finalization code is eventually surrounded by an i f statement
to ensure that it is only executed if the _tryNestingDepth has not been de-
creased or the ___cFlowBreakLevel has been set accordingly.

Each copy (except the last one) of a split t ry statement is succeeded by code
to skip over the remaining copies in case of an abnormal termination, i.e., when
the _ tryNestingDepth has not been decreased.

Finally, we need to remove unused catchers as not all the catchers might be
necessary in every copy of the t ry statement.

Listing 3.21: A simple example for unfolding a t ry statement

myLabel: try {

foo();

if (x == 1) {

break myLabel;

}

myMigratoryMethod() ;
} catch (MyException e) {

// exception handling code
} finally {

// finalization code

Listing 3.22: Unfolded code from Listing|3.21

__entryPoint = 0;
while (true) {

_ cFlowBreaklLevel = -1;
_ tryNestingDepth = -1;
switch (__entryPoint) {
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case 0:
try |
__tryNestingDepth = 1;
foo();
if (x == 1) {
_ cFlowBreakLevel = 0;
__entryPoint = 2;
continue;

__entryPoint = 1;
__tryNestingDepth = 0;
} catch (MyException e) {
// exception handling code
} finally {
if ((__cFlowBreakLevel == -1 && __tryNestingDepth >= 1) || (
_ cFlowBreaklLevel >= 0 && __ cFlowBreakLevel < 1)) {
// finalization code

}

if (__tryNestingDepth > 0) {
__entryPoint = 2;
continue;
}
case 1:
try {

__tryNestingDepth = 1;
myMigratoryMethod (__state);
_ _state = null;
// __tryNestingDepth NOT decreased here because this 1is the
last part of a split try block
} catch (MyException e) {
// exception handling code
} catch (SaveStack t) {

_ tryNestingDepth 0;
throw _ t;
} finally {
if ((__cFlowBreakLevel == -1 && __tryNestingDepth >= 1) || (
_ cFlowBreakLevel >= 0 && __ cFlowBreakLevel < 1)) {

// finalization code

}
case 2:
return;

After the second traversal of the syntax tree we finally have to determine
and link the correct entry points for the structured non-local jumps caused by
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break and cont inue statements. This completes the translation of a migratory
method.

3.2.4 Evaluation

In this section, we will discuss the impact of our translation approach in terms
of code growth and increased running time. The basic structure of an unfolded
method causes a small constant overhead by

e an additional method parameter,

e a few additional local variables (ints and references), including their ini-
tial assignment,

e an if statement, whose body is only executed in case of a migration,

e a try statement, whose catcher will only be triggered in case of a migra-
tion,

e awhile loop, which will be iterated more than once only if the translated
method contains at least one unfolded element or migration, and

e a switch statement, which will be evaluated once per iteration of the
main loop and which contains more than one case label only if the trans-
lated method contains at least one unfolded element or migration.

The methods subject to unfolding are usually the big, central ones in a software
library; however, there are typically only a few of them, so that only a small part

of the total amount of code is concerned.
Only in case of a migration

e an exception is thrown, caught, and passed on,
e astack frame object is instantiated, consisting of a few basic member vari-
ables (ints and references) and additional members corresponding to all

locals on the stack that are not excluded from migration,

¢ all members of the stack frame object are initialized using flat copies of the
locals on the stack, and

o the stack frame object is inserted into a linked list.
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When the execution continues after a migration, all members of the stack frame
object are copied back into the local variables using flat copies.

Altogether, this overhead is negligible for an ordinary execution of a method
and minimal for a migration. In the following we will discuss the additional
code growth and running time increase caused by unfolding.

When if or switch statements are unfolded, no overhead is generated for
the if block or the first case block, respectively, and little constant overhead
(increase of symbolic program counter, one iteration of the main loop, and one
evaluation of the main switch statement) for the e1se block or all subsequent
case blocks, respectively.

In unfolded loops the loop condition is checked using an i f statement at the
end of the loop body, so we have the same little constant overhead as for an
i f statement per loop iteration (except the last iteration, where we fall through
into the code below the loop without overhead).

Only when unfolding t ry statements, we experience a notable overhead be-
cause the catchers and finalization code are copied (and transformed causing a
small constant overhead) once for every migratory invocation in the t ry block.
However, this affects typically only quite short portions of error handling code;
in particular, only about 3% of the code is usually enclosed by try statements
according to [ThiO1]. Furthermore, the running time does not increase because
at most one of the copied catchers is actually executed.

Nesting of unfolded elements does not cause any additional overhead. Alto-
gether, the overhead caused by unfolding is acceptable in terms of code growth
and negligible in terms of the running time. For Example, the total size of the
bytecode of PUB-Web grows from 413 KB to 423 KB, which is an increase of
2.4%.

The data transferred during a migration consists of the instance of the class,
whose method is subject to migration, all serialization dependencies, and the
contents of the stack from the topmost element up to the @Undock bound-
ary. Recall, that the developer can exclude stack elements from migration using
@DontMigrate and thus reduce the volume of the transferred stack contents
to the minimum. The absolute data volume transferred depends on the effi-
ciency of serialization. Beside manual fine tuning using the Externalizable
interface, Java’s default serialization mechanism can be substituted by more
efficient drop-in replacements. The “UKA-serialization” [PH99], for example,
reduces the serialization overhead for objects, which are similar to our stack
frame objects, notably by 81% to 97% compared to JDK.
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3.3 Security and Trust Mechanisms

In a system like PUB-Web there are several challenges concerning security and
trust. First, the people donating their unused computing power have to be pro-
tected: As already pointed out in Section[2.3.2} we use the Java Sandbox to restrict
the permissions of parallel programs, such that they are only allowed to access
the absolutely necessary Java properties for writing platform independent code
(e.g. line.separator etc.). Especially the file system and the network cannot
be accessed. BSP programs can only communicate, read files from the user’s
peer, or write output back to the user’s peer via the PUB-Web API methods.

Second, the PUB-Web network should be protected against malicious peers
— both untrustworthy computing nodes and supernodes. A way to achieve
this is to build a web of trust and isolate the remaining peers. Supernodes only
accept properly authenticated connections from peers, and peers only connect
to supernodes which they trust. As trust mechanism are not our primary re-
search goal, peers are authenticated by a username and password by default,
but we also made PUB-Web ready to plug-in suitable trust mechanisms; ex-
emplarily, the SybilGuard [YKGFO06] protocol has been implemented during a
cooperation in the scope of the EU FP6-IST project “Algorithmic Principles for
Building Efficient Overlay Computers” (AEOLUS).

Finally, users may wish to protect their data processed by their BSP programs.
Although there recently are already some first promising theoretical results in
this direction [Gen10], this approach currently is not yet practical as it generates
an overhead which is much larger than the benefit of parallel computing.

3.4 A Large-Scale Distributed Environment

Running and debugging P2P software such as PUB-Web on a large number
of computers generates an immense overhead of copying files, launching pro-
cesses, and collecting output. In order to almost completely automate this work
and, at the same time, create a large-scale distributed testing network across
several universities, we developed a general purpose large-scale distributed en-
vironment for P2P software written in Java, which became part of the EU FP6-
IST project “Algorithmic Principles for Building Efficient Overlay Computers”
(AEOLUS). Beside supporting the development of PUB-Web, it has been used
for testing an overlay computing platform within this project.

The current setup of our testing environment within the AEOLUS project at
http://aeolus.cs.uni—-paderborn.de/ consists of more than 100 com-
puters (and 1000 virtual nodes) located at 13 different European universities
and research institutes. Its architecture is kept so general and simple that it is
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suitable for running and debugging any (P2P) services implemented in Java us-
ing the JXTA framework with minimal effort. Developers can request a login for
the existing installation or easily setup an own installation. Via a web frontend
they can upload their code and (possibly parameterized) configuration files,
which are then automatically deployed to a (large) number of computers (at
possibly different physical locations), which are configured as a JXTA P2P net-
work. Via the web interface the developers can easily control their software and
view its output for debugging purposes. Also, they can easily connect further
computers to the environment, which, e.g., act as a frontend to their software,
as an interface to other software, are equipped with special hardware, or work
as a bridge to other hardware such as wireless sensor networks, for example.

Our approach differs from PlanetLab [pla, CCR™03] in that it provides an en-
vironment for P2P software written in Java using the JXTA framework, whereas
PlanetLab simply provides a network of virtual machines to the developer, i.e.,
PlanetLab is a more general tool, allowing to run and debug almost any kind
of distributed software; but, at the same time, such a general approach involves
quite some work to setup and configure everything properly. For the purpose
of developing P2P software in Java we provide a comfortable ready-to-use tool,
i.e., our approach significantly simplifies and speeds up the developers” work.
Furthermore, our environment can be installed on existing Windows and Linux
computers, where it runs with lowered priority in order not to disturb other
users / processes, whereas PlanetLab must be installed on additional hardware
dedicated solely for this purpose.

3.4.1 Architecture

The architecture of our system is depicted in Fig. Its main components are:

e the server which includes a web server, management software, and a data-
base with the system configuration;

e edge peers: these are essentially the computing nodes donated to the sys-
tem by several different partners;

e rendezvous peers: these nodes support special functionalities of JXTA,
which enable the edge peers to locate each other and communicate;

e user nodes: through these nodes, developers access the system. Beside
using it through the web interface and JXTA shell, specialized edge peers
can be employed as user frontends or interfaces to other software outside
the system.
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Figure 3.2: The System / Network Architecture.

The server stores the configuration of the whole system in its database; the con-
figuration does not only include setup parameters of all the edge peers, but also
the software and all testing parameters of all registered developers. This en-
sures that the system is able to automatically recover the configuration of edge
and rendezvous peers after crashes, reboots, or even reinstallations of the opera-
tion system. Additionally, it eases developers’ lives as they only have to upload
and configure their software once through the web interface of the server; the
server then automatically deploys the software to edge peers, configures, and
controls it, and collects the output (stdout + stderr) on demand. The communi-
cation between the server and the edge / rendezvous peers is secured by SSH
for the Linux peers; on Windows peers, a user-defined protocol is employed in
order to circumvent security issues related to retrofitting SSH into Windows.
Peers, which are part of the same testing scenario, communicate using JXTA (or
a user-defined communication library); beside the peers assigned to the devel-
oper’s test case, he / she can also add one or more own edge peers — either a
JXTA shell or specialized edge peers which work as a user frontend or interface
to other software outside the system.
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The rendezvous peers are a subset automatically selected out of the edge
peers by the server. The edge peers are computers running Windows or Linux,
donated by different project partners; these computers need not be exclusively
dedicated to our system as the software to test is executed on them with lowered
priority in order not to disturb the owner of the computer in his activities.

An Example for specialized edge peers is given by gateways to special hard-
ware. In the AEOLUS project, e.g., 289 wireless sensors of heterogeneous types
located at 11 different sites have been connected to the system via gateway edge
peers.

3.4.2 Requirements

For the server a Linux machine is required. In the particular case of our setup,
a multiprocessor machine with a gigabit backbone connection and a soft-RAID
system running the Ubuntu Server Edition is used, hosted at the Heinz Nixdorf
Institute.

In order to setup an own installation, the main required software components
(which are usually part of every modern Linux distribution) are the follow-
ing: ssh, cron, bash, perl, gcc, libc, Java (Sun JDK version 6.0 or later), MySQL
database, Apache web server, Apache PHP plugin. Instructions on how to prop-
erly configure these software components are usually shipped together with
them and can additionally be found on the distributors’ particular web pages.
Specific instructions on how to install the server are included in the distribution.

Once the server is setup, edge peers can be added to the system. These can be
either Windows or Linux computers. In order to comply with the strict security
regulations of different networks, the requirements for integrating computers
into the system are kept as low as possible. In particular, the requirements for
Windows nodes are as follows: Windows 2000/XP/2003/Vista/7, a public IP
address, open TCP port 2022 for system management and ports 9700-9799 for
JXTA (these default values can be changed in case these ports are already oc-
cupied by other software). The installation procedure using the Windows in-
staller is very simple: during the setup you are asked to enter your login and
password, and you may change the default values for the TCP ports; the rest is
done automatically.

For Linux nodes, the requirements are as follows: Kernel 2.6.x, ssh, bash, perl,
tar, gzip (typically present on every distribution), a public IP address (or a gate-
way), open TCP port 22 (SSH) for system management and ports 9700-9799 for
JXTA. Since an automated installer is not yet available, the installation proce-
dure involves the manual setup of a dedicated ordinary user account (without
root privileges); you need to provide the IP address, ports (when deviating from
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the default values), and the login to the testbed administrator and install an SSH
key for automated login.

We remark that there is no need to install Java since our software comes with
its own Java installation in order to assure that all edge peers are running the
same Java version and have all required libraries installed.

3.4.3 Security Aspects

The testing environment is secured against different types of attacks. On the
one hand, to prevent outside attackers from gaining unauthorized access, a
multilevel security model is applied. First, all management / installation / con-
figuration traffic with the Linux nodes is tunneled using SSH with DSA keys
(or RSA keys if DSA is not supported) of a reasonable strength; second, our
software completely runs in user space, i.e., even if a connection would be hi-
jacked, nothing outside this dedicated user account could be damaged. For the
Windows nodes, all connections to the management port from another IP ad-
dress than the server are dropped; second, a fixed set of reactive commands is
defined, i.e., a command can only be triggered from outside without any pa-
rameters and the local process then collects the required options itself (thus, no
invalid options can be used).

On the other hand, the system is also secured against internal attacks. In
case, for example, a user does not properly protect his password, an attacker
can neither hack other user accounts nor hijack any computers of the system.
This is due to the security policy of the Java Sandbox which is configured in
such a way that the uploaded code can only access files in the local folder and
only open network sockets on ports above 1024 (thus, computers “infected” by
malicious uploaded code can only produce a high CPU and network load in the
worst case).

3.4.4 Testing P2P Software

As already mentioned at the beginning of Section 3.4} P2P software to be tested
has to be written in Java using the JXTA library. In order to both provide a
uniform interface to our system and simplify developer’s lives, the API of our
testing environment already includes basic implementations of JXTA P2P ser-
vices and service discoveries.

To execute and test a particular piece of software, a developer needs to per-
form the following steps:

1. Allocate a number of computing nodes;
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2. configure them as edge peers of a (JXTA) P2P network;
3. upload his / her code to test;
4. run / debug the software.

To ease this procedure as much as possible, most of these tasks are done au-
tomatically. The server holds the complete configuration of all test setups of
all users and automatically installs and configures the computing nodes. More-
over, it automatically recovers computers which were temporarily unavailable
or even suffered a loss of data.

Computing nodes are allocated via the web interface of the server, and af-
terwards the software to test (and all its configuration files) are uploaded. The
server then automatically delivers all components of the software to the allo-
cated computing nodes, configures them properly, and runs the software. For
debugging purposes, the output of all peers can be viewed via the web inter-
face.

In order to allow scalability tests with respect to the number of computing
entities, our system is able to simulate up to 10 virtual nodes per physical com-
puting node; the number of requested virtual nodes has to be specified during
the allocation step.

In order not to interfere with other users when reconfiguring or restarting the
P2P network (or when your software to test appears to be buggy), a separate
P2P network is setup for each test case.

As not all P2P applications consist of totally homogeneous peers, the code
and configuration files to be uploaded to the edge peers can be individually
configured on a peer basis. Furthermore, there is a set of scripted constants
supported, e.g., __IP__ which is automatically replaced by the edge peer’s IP
address in all configuration files.

Some applications require peers outside our system, e.g., as a user frontend or
interface to other software outside our system. Our API provides a framework
to implement a specialized edge peer for such a case. To connect these peers to
a JXTA network in our system, the location and port of the rendezvous peer is
displayed in the web interface.

While developing PUB-Web, our testing environment greatly simplified the
process of distributed remote running and debugging: After uploading the code
and the configuration files, we can easily configure a P2P network, start / reset
the PUB-Web network, and view the debug output through the web interface
of our environment. In order to actually run a parallel program, a specialized
edge peer is required because we need access to the graphical user interface at
one of the peers in the PUB-Web network. As a very simple example think of a
parallel program rendering the Mandelbrot image: A user behind a PUB-Web
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Figure 3.3: Example for a Use Case.

peer simulated on a specialized edge peer enters the parameters of the Mandel-
brot image to draw (cf. Fig.[3.3). The PUB-Web software then requests a number
of computing nodes from a PUB-Web supernode discovered through a lookup
in our JXTA network. Then the PUB-Web software on the specialized edge peer
uploads the parallel Mandelbrot code and the parameters to the assigned sub-
set of our P2P network, where the Mandelbrot code is executed, and finally
composes the image out of the output sent back from the peers.

Setting up such a testing scenario in a distributed environment without our
system would require a lot of manual (remote) configuration work. But via the
web interface of our environment it is just one click to upload code or to start /
stop / reset the testing scenario, which significantly improves the workflow of
a developer.
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4

Load Balancing

Since the scheduling approach from the former, centralized version of PUB-Web
[BGMO05a] was no longer applicable to a P2P scenario, a novel distributed load
balancer has been proposed in [GS06], which provides scheduling, migration,
and fault tolerance for processes using Distributed Heterogeneous Hash-Tables
(DHHT). In the first section of this chapter we give a description of the schedul-
ing problem. In Section we describe the DHHT-based load balancer and
discuss some improved variants as well as two Work Stealing variants for com-
parison. In sections 4.3|and we experimentally compare the different load
balancers; as a precondition for this evaluation, we analyze the external work-
load on several hundred computers in order to obtain realistic load profiles for
reproducible experiments.

4.1 Problem Description

Our scheduling problem can be formulated as follows: We are given a stream de-
scribing the availability of the peers and a stream of jobs consisting of independent
processes. For a time ¢, the availability of a peer is described by a value in [0; 1]
indicating the fraction of its computing power currently available. This value
reflects removal / addition of peers (value changes to 0 / from 0 to something
greater 0) or the power left over beside the current external workload. This
stream may show an unpredictably changing behaviour. In order to reflect the
heterogeneity of the hardware, we associate a static weight factor from (0; o0)
describing the processor speed. This value is derived by a benchmark being
part of PUB-Web. Thus, at any time, the currently available computing power of a
peer can be expressed as the product of the peer’s weight and its availability in
a globally uniform way.
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In a superstep of a BSP program (i.e., a job), all processes require approxi-
mately the same amount of computing power. By definition, the supersteps
are subsequent, disjoint time intervals. Thus, scheduling a BSP program with
¢ supersteps is equivalent to scheduling ¢ successive BSP programs with one
superstep each, where the release time of the second program is identical to the
finishing time of the first program, and so on. As a consequence, each job in
our stream of jobs is described by a release time, the number of its processes,
and their lengths. These lengths are assumed to be identical within one job. We
consider all processes of all jobs to be equally important, independently of their
length and job-parallelism. Thus, the processes to be executed at a given time
may belong to different jobs and may therefore have different lengths.

Our optimization goal is, at any time, to (re-) assign all currently running
processes to peers such that

(i) all processes receive approximately the same amount of com-
puting power, and

(ii) the total processor utilization is maximized without violating
condition (i).

4.2 The Load Balancing Algorithms

In the following, we first describe two Work Stealing variants, adapted to the
needs of our BSP-scenario, which we later use for comparison in our experi-
mental evaluation. Then we focus on the new DHHT-based load balancer, de-
scribing the algorithm and some improved variants.

4.2.1 Work Stealing

The Work Stealing idea has been well studied over the past decades. In [RSAU91]
for example, a Work Stealing strategy is presented for balancing the load of in-
dependent processes on a parallel computer, i.e., a set of homogeneous, fully
available processors. In [BL94], a Work Stealing algorithm for well-structured,
multi-threaded computations is presented. We have examined the following
variants: Consider a randomized, distributed setting, where each computing
node maintains a FIFO queue. Whenever a processor becomes idle, it removes
the first process from its queue and executes it. In case its queue is empty, the
processor “steals” a process from the queue of another, randomly chosen pro-
cessor. When a job with parallelism k is released, its processes are added to
the queues of up to k distinct, randomly chosen processors, with probabilities
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inverse-proportional to the current queue-sizes. This, and the fact that a pro-
cessor only steals a process when its queue has run empty, helps to prevent
unnecessary migrations. Using a queue instead of a stack is useful for our BSP-
scenario, because it makes sure that no jobs are disadvantaged. We belief that
stealing processes from the head instead of the tail of the queues is also benefi-
cial in our BSP-scenario, because this prevents BSP processes from starving; to
verity this assumption, we consider both variants in our evaluation. In the re-
mainder of this thesis, we refer to them as “WS (Head)” and “WS (Tail)”, respec-
tively. Work Stealing can be implemented in an efficient and fully distributed
fashion.

4.2.2 Distributed Heterogeneous Hash-Tables

The new load balancer, proposed in joint work with Gunnar Schomaker [GS06],
is based on Distributed Heterogeneous Hash-Tables (DHHTs) [SS05]. DHHTs are
a heterogeneous generalization of the consistent hashing introduced by Karger
et. al. [KLL™97]. In order to map all running processes to the active peers, first
all peers are hashed uniformly and independently at random into the [0;1)-
interval, which is interpreted as a unit ring (cf. Fig. . There is a linear func-
tion associated with each node, whose gradient is the inverse of the currently
available (globally normalized) computing power. The lower envelope for the
[0; 1)-interval is defined, at any point x, as the peer whose linear function has the
minimum value at point x; this way we assign sub-ranges of the [0; 1)-interval
to the peers. Finally, all processes are also hashed uniformly and independently
at random into the [0; 1)-interval and are assigned to the peers associated with
them through the lower envelope.

We performed the experimental evaluation presented in Section 4.4/ using a
non-distributed implementation of the DHHT load balancer. However, an ex-
actly equivalent, distributed implementation can achieved as follows: when
running multiple supernodes that trust each other and thus form one common
(sub-)network, each supernode will hold a copy of the DHHT model. In order
to guarantee that the lower envelope is consistent in all copies, each supernode
communicates leaving or joined peers as well as changes in the available com-
puting power of the peers. However, the assignment of a process to a peer
does not depend on the presence or assignment of other processes. Thus, using
pseudo-random or deterministic hash functions, the supernodes need not share
information about the scheduled BSP processes; moreover, each supernode can
schedule the BSP processes, which it is responsible for, without the knowledge
of the other BSP processes in the system. Furthermore, if a supernode crashes,
schedules can be easily reconstructed by any supernode.
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Figure 4.1: Load balancing using DHHT.

Our implementation uses SHA-1 as a pseudo-random uniform hash function.
We refer to this DHHT variant as “DHHT (Rnd., Rnd.)” in the remainder of this

paper.

4.2.3 Multiple Hashing

In [SS05] several possible improvements are discussed, among them a multiple
hashing technique. With this approach, no lower envelope is used any more; in-
stead, multiple hash functions are employed. When transferring this approach
to our setting, an individual hash function is associated with every peer. In or-
der to map a process x to a peer, first for each peer i the hash value r; , € [0;1)
of process x is calculated using the individual hash functions of the peers. Then
x is assigned to the peer, for which ZL—Z‘ is minimal.

It is shown in [SS05] that a the probability that a process is assigned to peer
i improves to (1 — v/€) - i < p; < (1+¢€) - % with this approach. An obvious
drawback of this approach is a running time linear in the number of peers for
assigning a process.

We also implemented this variant and refer to it as “DHHT (Multi)” in the
following.
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4.2.4 Deterministic Hashing

It is well-known that when hashing peers uniformly and independently at ran-
dom, the longest interval has length @(logn) with high probability, and the
shortest one has length @(#) with constant probability. Thus, the ratio of the
longest interval to the shortest one, called smoothness, is ®(n - log n) with high

probability.

In order to overcome this drawback, we implemented other, deterministic
DHHT variants based on multiplicative hashing: Let ¢ := % (14 +/5) ~ 1.618
denote the golden ratio, and ® := ¢! = 1-(v/5-1) = ¢ — 1 ~ 0.618 its
inverse. Furthermore, let {x} denote the fractional part of x (namely x — | x|, or
x mod 1). Then the points {®}, {2}, {3®}, ..., {nd}, consecutively added
to [0,1), stay very well separated from each other; as proven in [Swi58], only
three different interval lengths are produced and a smoothness of $? ~ 2.618 is
obtained for any n € IN.

Unfortunately, these properties only hold as long as all consecutively added
points are present. Thus, whenever a process finishes or a peer leaves, its hash-
value has to be reused. A way to accomplish this, would be to swap such an
unused hash-value with the one of the latest released process or joined peer,
respectively, and to migrate the processes accordingly. But since we consider
a large system with a big amount of peers and running processes, new pro-
cesses are released and peers join quite frequently; thus, we simply reuse such
unused hash-values for them, suffering short periods of slight imbalance, but
saving a lot of migration overhead. In the following, we refer to our DHHT im-
plementation with deterministic hashing for peers as “DHHT (Det., Rnd.)”, for
processes as “DHHT (Rnd., Det.)”, and for both peers and processes as “DHHT
(Det., Det.)”. In contrast to purely pseudo-random based DHHT variants, a dis-
tributed, crash-persistent implementation using this deterministic hash func-
tion is not trivial.

4.3 Experimental Setup

In order to perform a meaningful experimental evaluation of the load balanc-
ing, we need realistic information about the dynamics of the external workload
on the peers, about the capabilities of the simulated hardware, and about the
parallel programs to run.
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4.3.1 Dynamics of the External Workload

In order to collect real usage data for the evaluation of our load balancers, we
did a detailed, long-term analysis of the availability of several hundred com-
puters. Beside using the collected data as input for our experiments, it will also
help to understand the dynamic behaviour of the external work load — and
thus the remaining computing power available to PUB-Web — as well as inter-
vals, in which computers are not available at all (e.g., because they are switched
off).

In total we have analyzed the CPU usage on more than 250 PCs for several
months. Among these PCs there are different sets of office computers, PCs in
computer pools available to students, notebooks of employees, and both home
PCs and notebooks of individuals. The examined computers are very hetero-
geneous with respect to their hardware (old and recent machines, single and
multi-core CPUs) and operating system (Windows 2000 / XP / Vista, Mac OS X
10.x, and different Linux distributions with 2.6.x kernel).

The data has been collected the following way: Every 30 seconds the av-
erage CPU idle percentage over the past 30 seconds is saved together with
a timestamp. On Windows, the idle time values are obtained using the Mi-
crosoft Performance Data Helper (PDH) API; on Linux, the values are read out of
the proc-filesystem; on Mac OS X, the host_processor_info () function is
used. Once a day or at the next time when the computer is switched on and
connected to the Internet again, the collected data is uploaded to our database.
In order to respect the privacy of the computer users and owners, all data is
collected in a completely anonymous way: when a computer uploads data for
the first time, it requests a unique random string. Using this identifier all suc-
cessive uploads are combined to a data series. The only information associated
with the identifier is the operating system and the type of computer (notebook
or PC; office, home, or shared use).

In the following, we analyze the collected data with respect to these criteria:

Availability How often a computer is switched on, and how much idle time
is available, affects the total amount of computing power available in
the PUB-Web network. This parameter describes how much computing
power is available on a computer on average.

Diversity If all computers in the PUB-Web network would be switched on and
off at the same time, and would have the same loss or gain of computing
power at the same times, load balancing would be trivial because all run-
ning processes would experience the same slowdown or speedup. How-
ever, that is usually not the fact. The diversity parameter describes, how
different the availability curves of the computers behave.

58



4.3 Experimental Setup

Uniformity If the availability of a computer is rather stable (at any level) for
long time intervals, the load balancer rarely has to rebalance the assigned
processes. This parameter describes how often the availability of a com-
puter significantly changes (high uniformity = rare changes).

Cumulative Pattern When averaging over a big amount of computers, the ag-
gregated data may show a certain pattern even if the diversity is high and
the uniformity is low. Typical patterns are daytime / nighttime or work-
day / weekend differences, and may help to improve the load balancing.

Analyzing the collected data, we identify distinguishing parameters for three
types of computers: office PCs, notebooks, and pool PCs used by students

(cf. Table 4.1).

Table 4.1: characterization of the availability of the peers
| | Office PCs | Notebooks | Pool PCs |

Availability high low medium
Diversity low high medium
Uniformity high low low
Daytime Pattern || significant | significant weak
Weekend Pattern || significant | significant no

When the computers are switched on, the availability is very high: above 90%
with a probability of approximately 90% for office PCs and pool PCs; and above
80% with a probability of approximately 75% for notebooks. If additionally
taking into account the times, when the computers are switched off, we have an
average availability of approximately 70% for office PCs, 45% for pool PCs, and
30% for notebooks.

Not surprisingly, the office PCs are used in a quite homogeneous way with
respect to both time of usage and kind of usage, leading to a low diversity, a
high uniformity, and clear daytime and workday patterns. Notebooks are often
used in a mixed fashion for different purposes, leading to a high diversity and
low uniformity; however, they still show clear daytime and workday patterns
on average. The pool PCs are used by lots of different students for very het-
erogeneous tasks. Despite this fact, they show only a medium diversity; but as
expected, they have a low uniformity and not even a clear daytime pattern.

For our evaluation of the load balancers, the diversity property will be most
interesting as a high diversity generates a lot of imbalance. In order to cover
different levels of diversity, we will use the collected data of all three types of
computers (office PCs, notebooks, and pool PCs) as realistic inputs for repro-
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ducible experiments. In the following, we call a group of computers of one of
these three types a profile group.

4.3.2 Capabilities of the Processors

In order to preserve the anonymity of the people who allowed us to analyze
their CPU availability, the collected availability data does not contain any other
information about the computer where is has been collected except the fact
whether is was a notebook, an office PC, or a computer pool PC. Thus, we es-
pecially do not have specific information about the CPU such as its speed or
number of cores. In order to also take this kind of heterogeneity of the hard-
ware into account using realistic values, we have independently collected in-
formation about all CPUs in the AEOLUS testbed (cf. Table[4.2), and randomly
choose one of these factors for each simulated peer, where the probability that
a factor is chosen is weighted by the number of its occurrancies (cf. column
“count”). Of course, we guarantee this random assignment to be the same for
all experiments, using a fixed seed.

4.3.3 Properties of the Job Stream Model

Beside the parameters for the hardware capabilities and the external workload,
where we will use collected data as input for our experiments, we will create
synthetic job input streams because we do not have access to traces of com-
parable Web Computing systems. As already outlined in Section a job
stream consists of a sequence of jobs with certain release times, parallelism, and
lengths.

The release times of the jobs are chosen uniformly and independently at ran-
dom within the total simulation duration, except for a short warm-up phase at
the beginning of the experiments.

Realistic values for the length of a superstep in a coarse-grained BSP program
are lower bounded by a couple of minutes (otherwise the synchronization over-
head becomes unreasonably large) and upper bounded by roughly one hour
(otherwise communication would occur unrealistically rarely). Remember from
Section 4.1| that a BSP program consisting of ¢ supersteps is split into £ succes-
sive jobs. Thus, our jobs have lengths of 5, 10, 15, 20, 30, 45, or 60 minutes
(on a CPU with weight factor 1 and 100% availability). For each job, one of
these lengths is randomly chosen, where we use probability distributions de-
rived from traces of supercomputers available through the Parallel Workloads
Archive [wor]; we adapt these probability distributions for our scenario keep-
ing the quantitative balance between short, medium, and long jobs. The total
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Table 4.2: CPUs on the AEOLUS testbed.

Speed | # Cores | Factor | Count
667 MHz 1| 0.667 1
733 MHz 1| 0.733 2
800 MHz 1 0.8 1
866 MHz 1| 0.866 1
900 MHz 1 0.9 1
933 MHz 1| 0933 2
1.3 GHz 1 1.3 3
1.33 GHz 1 1.33 1
1.4 GHz 1 1.4 1
1.7 GHz 1 1.7 7
1.8 GHz 1 1.8 1
2GHz 1 2 3

1 GHz 2 2 2

2.4 GHz 1 24 2
2.53 GHz 1 2.53 2
2.6 GHz 1 2.6 2
2.8 GHz 1 2.8 4
700 MHz 4 2.8 1
3 GHz 1 3 2
3.2 GHz 1 3.2 2
1.67 GHz 2 3.34 1

2GHz 2 4 11
2.13 GHz 2 4.26 1
2.66 GHz 2 5.32 32

2.8 GHz 2 5.6 2
2.83 GHz 4 5.66 5
3.1 GHz 2 6.2 1
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number of jobs is chosen such that there are sufficiently many processes ready
to run in all of our experiments. While we only use the probability distribution
of the job lengths to derive realistic values for our model, we directly copy the
probability distribution of the parallelism; all parallelism values occurring are
powers of 2, up to 1024.

In particular, we use the logs of these five parallel machines to derive our in-
put profiles: HPC2N refers to a 120 node Linux cluster with two AMD Athlon
MP2000+ processors per node, located at the High-Performance Computing
Center North in Sweden. LLNL Atlas is a 1152 node Linux cluster with eight
AMD Opteron processors per node, located at the Lawrence Livermore Na-
tional Lab in California, US, and LLNL Thunder consists of 1024 nodes with four
Intel Itanium processors per node. SDSC BLUE is a 144 node IBM-SP system
with 8 processors per node, located at the San Diego Supercomputer Center in
California, US, and SDSC DataStar is a 184 node IBM eServer pSeries system,
consisting of 176 8-way SMP and 8 32-way SMP nodes. Table 4.3/ shows the
probability distributions of the parallelism and the number of jobs of the partic-
ular lengths for the five input profiles.

Table 4.3: Parameters of the input profiles.
Profile LLNL | LLNL SDSC | SDSC

Name HPC2N Atlas | Thunder | BLUE | DataStar
1 42
T 2 18
E 4 14 5
2 8 10 33 13 5 4
& 16 8 10 15 16 7.5
g 32 7 7 5 12 28
A~ 64 1 15 1 14 17
b 128 13 5 4 25
_g' 256 11 1 3.5 25
£ 512 7 0.2 0.5 2
1024 4 0.8 0.5
<= | 5min 3040 | 550 3550 | 2900 2600
‘go 10 min 3040 | 500 3050 | 2500 2200
3 | 15min 3040 | 450 2550 | 2100 1800
% | 20 min 6080 | 400 2050 | 1700 1400
2 [ 30 min 6080 | 350 1550 | 1300 1000
© [ 45 min 6080 | 300 1050 900 600
* 1h 9120 | 250 550 500 200
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Since all of our experiments are performed under a fully loaded or slightly
overloaded system, and because we need to control the load as the system
would collapse at some time under very heavy overload, we keep all released
processes in a ready queue if the total system load exceeds a certain limit. This
limit is given by the number of peers in the PUB-Web network times a so-called
overload factor. This procedure allows for a fair comparison of the load balancers
because each load balancer has to deal with the same total system load, inde-
pendently of its throughput, and gets exactly the same sequence of jobs as input
stream.

Though the job streams are generated in a randomized fashion according to
the probability distributions of the parallelism and job lengths, we ensure, by
using fixed seeds, that exactly the same job stream is used in a series of experi-
ments for comparison of the particular load balancers.

4.4 Evaluation of the Load Balancers

Using the collected data and the job stream model described in the previous
section, we are now able to conduct reproducible experiments: From each of
the three profile groups (office computers, PCs in computer pools, notebooks)
we use an interval of two weeks of collected data as input for our simulations.
In total we simulate more than 108 processes in more than 700 experiments. In
order to separate the influences of the external work load from potential draw-
backs of the load balancers, we perform three types of experiments:

A: To focus on the dynamics of the external workload, we feed the load bal-
ancers with the measured availability in the different profile groups, but
do not generate additional load imbalances by a changing number of pro-
cesses in the system; instead, we consider x = 1,2, 4 times as many pro-
cesses as processors, which are simultaneously released at the beginning
of the experiment and run throughout the whole duration of the exper-
iment. Thus, we measure with our experiments how well processes are
distributed among the available peers, and how often migrations occur.

B: In order to focus on the processing of the jobs, we fix the availability of
all peers to 100% throughout the whole experiment and feed the load bal-
ancers with the different synthetic job streams. Thus, we measure how
fast and how fair the processes are executed.

C: We run the experiments of type B again, but now apply the same pro-
files of the external workload as in the experiments of type A. Thus, we
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measure the quality of the load balancers under dynamically changing
availabilities of the processors and for realistic job streams.

4.4.1 Experiments of Type A

Since we run a fixed number of processes throughout the whole duration of the
experiment, this setup is not suitable for Work Stealing. Thus, we only compare
the different DHHT variants.

Because, on the one hand, the performance of a peer is most efficient if it
is running only one process at a time (no overhead due to context switching
and swapping), but on the other hand, the overall balancing quality typically
improves with an increasing number of processes (due to a reduced fragmenta-
tion overhead), we run experiments with x, 2x, and 4x processes, where x = 100
is the number of peers. Tables 4.5|-4.7| show the aggregated results of our ex-
periments: the CPU time is the running time of a process, weighted by the
availability and the weight factor of the CPUs where it was running and the
number of other BSP processes concurrently running on the same CPU.

Table 4.4: The available CPU time in the particular profile groups.

14-day CPU Time [s
Profile Group in y a0g [ 311 I
Notebooks 6048 | 790228 | 5452258
Office PCs 197 | 4132389 | 6740009
Pool PCs 390170 | 3005205 | 6334383

As we ran all processes throughout the whole duration of the experiment, the
following criteria are good indicators for how well a load balancer works:

e The closer the utilized average CPU time is to the available average CPU
time (cf. Table [4.4), the better a load balancer utilizes the available com-
puting power. The average utilization percentage is shown in column 4 of

tables [4.5 - 4.7

e The factor between the minimum and maximum CPU time a process re-
ceives (cf. column 7 in tables .5 - [4.7) should be as low as possible. A
value of 1 would mean a perfectly balanced schedule.

e The number of migrations needed should be as low as possible.

The results using the notebooks availability profile (cf. Table show that
the average utilization significantly improves when running 2x or 4x processes.
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Table 4.6: Results of experiments of type A on office PCs (Windows).

CPU Time # Migs. (Def.) # Migrations (Bulk)

) B —_ —_ —_

H &0 vaa Lo | .8 M &0 ° R ° M °

Load Balancer | avg [s] S min[s] | max[s] | & R | & £ R || s|2| & | &
DHHT (R/R) x | 2601920 | 63 | 1108057 | 6682838 | 6.0 |27 | 0 252126 | 96 || O 252 | 100
DHHT (R/R) | 2x | 1672058 | 81 | 599578 | 6606004 | 11.0 | 37 | O 348 | 35| 95| O 339 | 97
DHHT (R/R) | 4x | 924323 | 89 | 306667 | 6255070 | 20.4 | 36 | O 449 1 35| 97| 0O 443 | 99
DHHT (R/D) x | 2886232 | 70 | 925479 | 6681205 | 72139 | 0 247 138 | 97| O 246 | 100
DHHT (R/D) | 2x | 1783931 | 86 | 459220 | 6287462 | 13.6 | 41 | O 425139 | 95| O 413 | 97
DHHT (R/D) | 4x | 936947 | 91 | 278870 | 5118833 | 183 |40 | O 425138 | 951 O 413 | 97
DHHT (D/R) x | 2969277 | 72 | 846060 | 6683676 | 79129 | 0 243 128 | 97| 0O 241 | 99
DHHT (D/R) | 2x | 1886265 | 91 | 533219 | 6391941 | 119 |29 | O 376 | 28| 97 || O 354 | 94
DHHT (D/R) | 4x | 1012264 | 98 | 275388 | 6264394 | 22.7 | 23 | O 376 | 22| 96 || O 354 | 94
DHHT (D/D) x | 4132389 | 100 | 849089 | 6682840 | 7.8 4| O 86| 41001 O 86 | 100
DHHT (D/D) | 2x | 2066194 | 100 | 522795 | 6284854 | 12.0 | 14 | O 272 114 | 100 || O 242 | 89
DHHT (D/D) | 4x | 1033097 | 100 | 345819 | 3092967 | 89|17 | O 272 117 | 100 || O 242 | 89
DHHT (Multi) | x | 2931728 | 71 | 685161 | 6501076 | 9.4 | 31 | O 283129 | 94 0O 275 | 97
DHHT (Multi) | 2x | 1754360 | 85| 513264 | 6091513 | 11.8 | 34 | O 731133 97| 0O 703 | 96
DHHT (Multi) | 4x | 996401 | 96 | 407639 | 3619062 | 88 | 32 | O 731131 97| O 703 | 96
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The DHHT (Det., Det.) variant achieves full and DHHT (Multi) almost full uti-
lization. The smoothness of the employed hash functions noticeably effects the
balancing quality: Using a standard hash function with 7 - log n smoothness, the
initial situation worsens with an increasing number of processes, whereas using
the deterministic hash function with ¢? smoothness is balancing is not only ini-
tially better but also further improves with an increasing number of processes.
By far the best balancing however is achieved using the DHHT (Multi) load
balancer. With respect to the average number of migrations per process there
is not much difference between the particular algorithms, and with respect to
the running time of 14 days the values are at a good low level of less than one
migration per hour.

The bulk migration mode is defined as follows: When the load of a peer
changes and the load balancer asks a process to migrate as a consequence, it
may happen that the load of the peer at the migration target also changes very
soon or even before the migration is completed. In such a case, the process has
to migrate again within a very short time interval. Theoretically, this can even
happen several times in succession. In reality however, it usually takes a bit of
time until the next possible migration point of a process reached; when then ac-
tually migrating, intermediate migration targets can be skipped. As our simula-
tion is clocked, the peers simultaneously update their load and thus, sometimes
intermediate migration targets are produced. In the bulk migration mode, we
skip these intermediate migration targets in order to identify artifacts caused by
the clocked simulation and to resemble reality as close as possible. The results
in Table 4.5/show that, independently of the load balancing algorithm, approxi-
mately 10-15% of the migrations can be saved.

The results of our experiments using the office and pool PCs availability pro-
files (cf. tables [4.6] and £.7) show also a positive, but even heavier impact on
the utilization percentage with an increasing number of processes. Again the
DHHT (Det., Det.) variant achieves full utilization and — in terms of balancing
quality — it is on roughly the same level as the DHHT (Multi) load balancer,
which performs worse. In the office PCs availability profile, the number of mi-
grations ranges approximately from one migration every 8 to 18 hours. These
really good values confirm our assumption that the availability factor in the
particular computers is quite stable for reasonably long time intervals. At this
low level, not much can be saved any more in the bulk migration mode. In the
pool PCs availability profile, the number of migrations ranges approximately
from one migration every 3 to 12 hours, depending on the load balancer. Like
in the notebooks case, approximately 10-15% of the migrations can be saved in
the bulk mode. Altogether, the DHHT (Det., Det.) variant clearly performs best
in both the office and pool PC scenarios.

68



4.4 Evaluation of the Load Balancers

4.4.2 Experiments of Type B

In this set of experiments we fix the availability of all peers to 100% and feed
the load balancers with the synthetic job stream inputs described previously.
We perform two runs of this set of experiments, one with overload factor 1 (i.e.,
with an ideal total system load) and one with factor 4.

In the following, we call the factor between the actual average running time
and the length of the processes the process stretch factor; analogously, we define
the job stretch factor.

For the HPC2N input profile (experiment 10), figures 4.2 and [4.3| depict the
average and maximum actual duration, respectively, of the processes, grouped
by their length, i.e., the duration they would have at 100% availability and a
processor performance factor of 1. As one can see, both Work Stealing variants
perform best (and almost the same), and the processes have to wait in the de-
ques only for a very short time, independently of their length. The DHHT load
balancer performs second best when using deterministic hashing both peers
and processes, and it performs worst with a significantly bad slowdown when
using a default hash function with n - log n smoothness. The DHHT (Multi) load
balancer yields a medium quality result.

The maximum duration of the processes, shown in Fig. is important as the
duration of a superstep is determined by the slowest process in a BSP program.
The least possible deviation from the average value is desired. We clearly miss
this goal using a default hash function, and — interestingly — the situation
even worsens when applying the deterministic method only to the peers but
not to the processes. As a result, the average duration of the jobs (cf. Fig.
increases only slightly compared to the average duration of the processes for
Work Stealing, DHHT (Det., Det.), and DHHT (Rnd., Det.), whereas it increases
by a factor of approximately 2-3 in the other cases. Table 4.8 shows the process
and job stretch factors for all load balancers and all input profiles. Note that
stretch factors of less than 1 are possible because the vast majority of the peers
has a processor performance factor of more than 1. We see that, with the best
of our candidates, DHHT (Det., Det.), we are able to keep up with the Work
Stealing algorithms up to a factor of approximately 1.25.

Fig. 4.5/ shows how long, depending on their release time, the jobs had to re-
main in the ready queue until the overall system load was sufficiently low so
that they could be started. Thus, low curves mean a high overall throughput.
The curves end where the release time and the pending time plus the job dura-
tion sum up to the duration of the experiment (2 weeks). The factors between
these curves mainly depend on and correspond to the stretch factors of the par-
ticular load balancer.

To sum up, we are not able to keep up with the Work Stealing algorithms in
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Figure 4.2: Actual average duration of processes in experiment 10.
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Figure 4.3: Actual maximum duration of processes in experiment 10.
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Figure 4.4: Actual average duration of jobs in experiment 10.
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Table 4.8: Results of experiments of type B on with ideal load.
E‘ Input Profile Load Balancer I?:zif:h Faﬁ:ﬁz
DHHT (Rnd., Rnd.) | 1.157 | 3.100
DHHT (Rnd., Det.) | 0.469 | 0.684
DHHT (Det., Rnd.) | 0.834 | 2.168
10 | HPC2N DHHT (Det., Det.) 0.351 | 0.502
DHHT (Multi) 0.574 | 1.003
WS (Head) 0.313 | 0.407
WS (Tail) 0.313 | 0.405
DHHT (Rnd., Rnd.) | 3.203 | 11.823
DHHT (Rnd., Det.) | 2293 | 3.373
DHHT (Det., Rnd.) | 2.348 | 13.305
11 | LLNL Atlas DHHT (Det., Det.) 1.726 | 2.368
DHHT (Multi) 1.796 | 3.682
WS (Head) 1.055 | 1.126
WS (Tail) 1.056 | 1.120
DHHT (Rnd., Rnd.) | 2.381 | 6.284
DHHT (Rnd., Det.) | 1.700 | 1.591
DHHT (Det., Rnd.) | 1.765| 5.435
12 | LLNL Thunder | DHHT (Det., Det.) 1.329 | 1.109
DHHT (Multi) 1.438 | 1.920
WS (Head) 0.808 | 0.604
WS (Tail) 0.808 | 0.608
DHHT (Rnd., Rnd.) | 1.687 | 8.035
DHHT (Rnd., Det.) | 0.919 | 1.619
DHHT (Det., Rnd.) | 1.202 | 6.419
13 | SDSC BLUE DHHT (Det., Det.) 0.673 | 1.167
DHHT (Multi) 0.864 | 2.273
WS (Head) 0.512 | 0.699
WS (Tail) 0.512 | 0.700
DHHT (Rnd., Rnd.) | 2.137 | 8.981
DHHT (Rnd., Det.) | 1.497 | 1.953
DHHT (Det., Rnd.) | 1.584 | 6.939
14 | SDSC DataStar | DHHT (Det., Det.) 1.088 | 1.396
DHHT (Multi) 1.197 | 2.458
WS (Head) 0.713 | 0.773
WS (Tail) 0.713 | 0.773
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this setting; DHHT (Det., Det.) is the best of our candidates, which only suffers
a performance drawback of a factor of approximately 1.25.

The main difference of the other four input profiles is the parallelism ranging
from 4-1024 (instead of 1-64). The results are similar, but the factors are higher.
The corresponding graphs for these experiments (11-14) can be found in Ap-
pendix From Table one can see that the performance loss of DHHT
(Det., Det.) against Work Stealing is a factor of approximately 2 in terms of the
job stretch factor. Note that it is possible to have a lower job stretch factor than
process stretch factor when a few jobs with very high parallelism perform badly
and lots of jobs with very low parallelism perform well.

As a second step, we repeated experiments 10-14 under the overloaded con-
ditions. Figures — 4.9 show the aggregated results for the scenario corre-
sponding to Figures[4.2]-[4.5, and Table #.9|sums up the results for all five input
profiles, corresponding to Table

The most noticeable difference in Fig. 4.6|is that the Work Stealing curves still
are the ones that grow least, but are notably shifted upwards. At first glance,
this may appear strange; but when looking at the Work Stealing sleeping curves,
we notice that all processes wait in the deques approximately for the same time,
independently of their length. As a consequence 5-minute-jobs take more than
5 times as long as when executed using DHHT (Det., Det.), and 1-hour-jobs
are less than 1.5 times faster, leading to an overall performance loss for Work
Stealing on average.

Concerning the maximum process execution duration (cf. Fig. £.7), we do
not only revisit this effect, but we also see a big difference between the two
Work Stealing variants: when stealing processes from the tail of the queues, the
worst case is almost five times as worse as compared to WS (Head). DHHT
(Det., Det.) outperforms all other algorithms, and also does so concerning the
average actual job duration (cf. Fig. and with respect to the overall system
throughput (cf. Fig. [4.9).

Note: From Table4.9|one can see that WS (Head) is very close to — and in one
case even better then — DHHT (Det., Det.) with respect to the process stretch
factor. The corresponding graphs for the experiments 16-19 in Appendix
seem to suggest that WS (Head) did even perform much better concerning the
average actual process duration; but though a loss of WS (Head) is only appar-
ent for short processes and a gain is present in many cases, we have to take into
account the factors of the loss and the gain as well as the number of samples for
the particular values (from Table [4.3| we see, for example, that the vast majority
of processes is short in the input profiles of experiments 17-19); this leads to the
average values in Table

However, with respect to the job stretch factor, DHHT (Det., Det.) performs
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Figure 4.6: Actual average duration of processes in experiment 15.
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Figure 4.7: Actual maximum duration of processes in experiment 15.
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with overload.

Table 4.9: Results of experiments of type B on

E‘ Input Profile Load Balancer I?:zif:h Faﬁ:ﬁz
DHHT (Rnd., Rnd.) | 4.220 | 14.834
DHHT (Rnd., Det.) | 1.273 | 1.964
DHHT (Det., Rnd.) | 2.759 | 10.703
15 | HPC2N DHHT (Det., Det.) 1.102 | 1.454
DHHT (Multi) 1.369 | 2.657
WS (Head) 1.717 | 4.737
WS (Tail) 1.676 | 5.760
DHHT (Rnd., Rnd.) | 6.119 | 46.178
DHHT (Rnd., Det.) | 2959 | 6.272
DHHT (Det., Rnd.) | 4.120 | 56.115
16 | LLNL Atlas DHHT (Det., Det.) 2359 | 4.264
DHHT (Multi) 2.469 | 7.757
WS (Head) 2.469 | 21.393
WS (Tail) 2.266 | 44.587
DHHT (Rnd., Rnd.) | 5.425 | 30.816
DHHT (Rnd., Det.) | 2.496 | 3.668
DHHT (Det., Rnd.) | 3.664 | 26.385
17 | LLNL Thunder | DHHT (Det., Det.) 1.957 | 2.530
DHHT (Multi) 2127 | 4.640
WS (Head) 2.149 | 11.382
WS (Tail) 2.042 | 16.123
DHHT (Rnd., Rnd.) | 4.729 | 38.136
DHHT (Rnd., Det.) | 1.662 | 3.926
DHHT (Det., Rnd.) | 3.063 | 31.851
18 | SDSC BLUE DHHT (Det., Det.) 1.366 | 2.633
DHHT (Multi) 1.626 | 5.704
WS (Head) 1.870 | 14.464
WS (Tail) 1.802 | 21.098
DHHT (Rnd., Rnd.) | 5.193 | 43.326
DHHT (Rnd., Det.) | 2.190 | 4.668
DHHT (Det., Rnd.) | 3.481 | 37.111
19 | SDSC DataStar | DHHT (Det., Det.) 1.759 | 3.156
DHHT (Multi) 1.956 | 6.039
WS (Head) 1.995 | 15.309
WS (Tail) 1.889 | 22.900
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best in all cases, and WS (Head) suffers a performance loss against DHHT (Det.,
Det.) of a factor of approximately 3-6.

4.4.3 Experiments of Type C

Now we repeat the experiments of type B again, but apply the three external
workload profiles in order to obtain completely realistic circumstances.

The results for the ideal job load case using the notebook load profile are sum-
marized in Table Detailed results are available via figures - in
Appendix[A.3.1] As one can see, WS (Head) performs best concerning both pro-
cess and job stretch factors for all input profiles. For the HPC2N input profile,
the DHHT (Rnd., Det.), DHHT (Det., Det.), and DHHT (Multi) load balancers
yield roughly the same quality at the second-best level; for all other input pro-
files, however, solely the DHHT (Multi) load balancer performs best among the
DHHT variants concerning both process and job stretch factors. In all cases,
the DHHT (Multi) load balancer needs roughly twice the time than WS (Head).
So, the DHHT (Multi) load balancer obviously is able to handle the high di-
versity of the external workload in the notebook profile better the other DHHT
load balancer variants. From the figures it can also be seen that Work Stealing
achieves the best and DHHT (Multi) the second-best throughput. Concerning
the number of migrations per hour, all DHHT-based algorithms are roughly at
the same level, whereas Work Stealing produces approximately 3—4 times as
many migrations (except for the LLNL Atlas input profile, where it causes only
slightly more). In the bulk migration mode, we can save approximately 10-15%
of the migrations.

The results of our experiments for the ideal job load case using the office
PC load profile are very similar to the results obtained for our experiments
with 100% availability, which is not very surprising since we found out in Sec-
tion that the availability is very high and the diversity low in this load
profile. Table shows that Work Stealing performs best again and DHHT
(Det., Det.) second-best with a performance drawback of a factor of approxi-
mately 1.25 (for the HPC2N input profile) and approximately 2 (for the other
input profiles), respectively. Detailed results are available via figures -
in Appendix Concerning the number of migrations, DHHT (Det.,
Det.) performs best with only 0.016-0.052 migrations per hour, whereas Work
Stealing needs 2.7-7.8 migrations per hour, which is 50-400 times as much in
the particular cases. In the bulk migration mode, no noteworthy savings can be
observed.

When now applying the pool PC load profile, Work Stealing again perform

best (cf. Table[d.12). However, figures - in Appendix show that
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Table 4.10: Results of experiments of type C with ideal load on notebooks (Windows).
Stretch Factor | # Migs. / Hour

Input Profile Load Balancer Procs. | Jobs | Def. | Bulk
DHHT (Rnd., Rnd.) | 1.345 | 1.881 | 1.007 || 0.898 | 89
DHHT (Rnd., Det.) 0.864 | 0.987 | 0.902 || 0.807 | 89
DHHT (Det., Rnd.) 1.286 | 1.912 1 0.961 || 0.83 | 86

HPC2N DHHT (Det., Det.) | 0.836 | 1.006 | 0.807 || 0.688 | 85
DHHT (Multi) 0.84 | 1.091 [ 0.994 || 0.864 | 87
WS (Head) 0.525 | 0.596 | 4.104
WS (Tail) 0.525 | 0.59 | 4.046

DHHT (Rnd., Rnd.) | 12.233 | 10.026 | 0.934 || 0.842 | 90
DHHT (Rnd., Det.) | 10.978 | 7.887 | 0.967 || 0.862 | 89
DHHT (Det., Rnd.) | 14.118 | 9.923 ] 0.919 || 0.781 | 85
LLNL Atlas DHHT (Det., Det.) 9.854 8.11 | 0.828 || 0.707 | 85

DHHT (Multi) 9.848 | 5.639 | 0.947 | 0.824 | 87
WS (Head) 1836 | 3.402 | 1.039
WS (Tail) 1838 | 3913 | 1.036

DHHT (Rnd., Rnd.) | 9.927 | 4.47 | 0.953 || 0.857 | 90
DHHT (Rnd., Det)) | 6.866 | 297 | 1.02 || 0.905 | 89
DHHT (Det,, Rnd.) | 7.676 | 5.101 | 0.958 || 0.829 | 87
LLNL Thunder | DHHT (Det., Det) | 7.217 | 2.989 | 0.885 || 0.762 | 86

DHHT (Multi) 6.335 | 2.615 | 1.014 | 0.884 | 87
WS (Head) 3159 | 1.235 | 3.259
WS (Tail) 3172 | 1.277 | 3.247

DHHT (Rnd., Rnd.) | 4.188 | 4.821 ]| 1.036 || 0.927 | 89
DHHT (Rnd., Det.) 3.508 | 2.946 | 0.928 || 0.831 | 89
DHHT (Det., Rnd.) 4.296 5.13 | 1.014 || 0.875 | 86
SDSC BLUE DHHT (Det., Det.) 3.521 3.23 | 0.858 || 0.741 | 86

DHHT (Multi) 2.815 | 2.671 | 1.002 | 0.876 | 87
WS (Head) 1511 | 148 [3.974
WS (Tail) 151 | 1542 | 3.971

DHHT (Rnd., Rnd.) | 6.377 | 5.725] 0.955 || 0.851 | 89
DHHT (Rnd., Det.) 5.936 3.71 1 0.999 || 0.903 | 90
DHHT (Det., Rnd.) 7.076 | 6.467 ] 0.931 || 0.798 | 86
SDSC DataStar | DHHT (Det., Det.) 6.381 | 3.792 ] 0.878 || 0.761 | 87

DHHT (Multi) 504 | 3247 | 1.002 || 0.876 | 87
WS (Head) 2665 | 1.782 | 3.285
WS (Tail) 2.665 | 1.829 | 3.246
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Table 4.11: Results of experiments of type C with ideal load on office PCs (Windows).
Stretch Factor # Migs. / Hour

Input Profile Load Balancer Procs. | Jobs | Def. || Bulk
DHHT (Rnd., Rnd.) | 1.084 | 2.65| 0.119 || 0.115
DHHT (Rnd., Det.) | 0.479 | 0.686 | 0.11 | 0.106 | 97
DHHT (Det., Rnd.) | 0.813 | 1.943 | 0.071 || 0.069 | 97

ol [% Def.]

HPC2N DHHT (Det., Det.) | 0.372 | 0.538 | 0.016 || 0.016 | 100
DHHT (Multi) 0586 | 1.012 [ 0.114 || 0.11| 96
WS (Head) 0.323 | 0.421 | 6.545
WS (Tail) 0.324 | 0.421 | 6.526

DHHT (Rnd., Rnd.) | 3.229 | 9.769 | 0.109 || 0.107 | 97
DHHT (Rnd., Det.) 2462 | 3.431 ] 0.122 || 0.118 | 96
DHHT (Det., Rnd.) 2454 | 11.64 | 0.074 || 0.072 | 97
LLNL Atlas DHHT (Det., Det.) 1.883 | 251 )10.052 | 0.05| 97

DHHT (Multi) 1.892 | 3.653 | 0.115 || 0.112 | 97
WS (Head) 1.13 | 1.237 | 2.738
WS (Tail) 1.13 | 1.234 | 2.731

DHHT (Rnd., Rnd.) | 2.363 | 5.488 | 0.116 || 0.111 | 96
DHHT (Rnd., Det.) 1.791 | 1.566 | 0.12 || 0.117 | 97
DHHT (Det., Rnd.) 1.826 | 4.826 | 0.074 || 0.072 | 97
LLNL Thunder | DHHT (Det., Det.) 1.481 | 1.206 | 0.045 || 0.043 | 97

DHHT (Multi) 1512 | 1.949 [ 0.111 || 0.108 | 97
WS (Head) 0.843 | 0.66 | 6.291
WS (Tail) 0.842 | 0.658 | 6.306

DHHT (Rnd.,Rnd.) | 1.639 | 6.815| 0.114 | 0.11 | 97
DHHT (Rnd., Det.) 0967 | 1.658 | 0.112 || 0.108 | 97
DHHT (Det., Rnd.) 1.217 | 5423 | 0.074 || 0.072 | 97
SDSC BLUE DHHT (Det., Det.) 0.733 | 1.271 1 0.033 || 0.032 | 97

DHHT (Multi) 0.907 | 2.233 | 0.111 || 0.108 | 97
WS (Head) 0.537 | 0.768 | 7.823
WS (Tail) 0.537 | 0.77 | 7.806

DHHT (Rnd., Rnd.) | 2.117 | 7.77 | 0.123 || 0.118 | 97
DHHT (Rnd., Det.) 1.557 | 1.971 | 0.115 || 0.112 | 98
DHHT (Det., Rnd.) 1.636 | 6.278 | 0.076 || 0.074 | 97
SDSC DataStar | DHHT (Det., Det.) 1.183 | 1.479 | 0.04 || 0.039 | 97

DHHT (Multi) 1258 | 2.415 [ 0.112 [ 0.109 | 97
WS (Head) 0.758 | 0.852 | 7.152
WS (Tail) 0.757 | 0.854 | 7.149
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Table 4.12: Results of experiments of type C with ideal load on pool PCs (Linux).

Stretch Factor | # Migs. / Hour

Input Profile Load Balancer Procs. | Jobs | Def. | Bulk

DHHT (Rnd., Rnd.) | 1.404 | 3.825 | 0.225 || 0.197

DHHT (Rnd., Det.) 0.611 | 0.864 | 0.169 || 0.145 | 86

DHHT (Det., Rnd.) 1.099 | 24731 0.192 || 0.171 | 89

HPC2N DHHT (Det., Det.) | 0.501 | 0.819 | 0.047 | 0.04 | 86
DHHT (Mult) 0.748 | 1.339 | 0.216 || 0.193 | 89
WS (Head) 0422 | 0.661 | 4.944
WS (Tail) 0423 | 0.667 | 4.966

DHHT (Rnd., Rnd.) 4.57 | 24976 | 0.205 || 0.178 | 87

DHHT (Rnd., Det.) 3337 | 4918 1 0.195| 0.17 | 87

DHHT (Det., Rnd.) 3.557 | 14.515 | 0.194 || 0.166 | 85

LLNL Atlas DHHT (Det., Det.) 2.687 | 7.076 | 0.126 || 0.115 | 91

DHHT (Multi) 2511 | 59821 0.229 || 0.197 | 86
WS (Head) 1.497 | 3.254 | 2.296
WS (Tail) 1.492 | 2.887 | 2.293

DHHT (Rnd., Rnd.) | 3.233 | 10.163 | 0.219 || 0.188 | 86

DHHT (Rnd., Det) | 2.357 | 2.024 | 0.199 || 0.175 | 88

DHHT (Det., Rnd.) 2.553 | 6.309 | 0.188 || 0.167 | 89

LLNL Thunder | DHHT (Det., Det.) 1.973 | 2227 0.1 { 0.089 | 89

DHHT (Mult) 191 | 2716 | 0.232 [ 0.204 | 88
WS (Head) 1.139 | 1.204 | 4.858
WS (Tail) 1.137 | 1.147 | 4.892

DHHT (Rnd., Rnd.) | 2.186 | 12.966 | 0.202 || 0.179 | 89

DHHT (Rnd., Det.) 1.264 | 2.029 | 0.196 || 0.171 | 87

DHHT (Det., Rnd.) 1.773 | 7.654 | 0.184 || 0.164 | 89

SDSC BLUE DHHT (Det., Det.) 1.066 | 2.621 | 0.088 || 0.08 | 90

DHHT (Mult) 1.191 | 3.229 [ 0.219 |[ 0.191 | 87
WS (Head) 0.705 | 1.579 | 6.188
WS (Tail) 0.706 | 1.565 | 6.164

DHHT (Rnd., Rnd.) | 2.949 | 14.353 | 0.219 || 0.187 | 85

DHHT (Rnd., Det) | 2.008 | 2.68|0.201 || 0.177 | 88

DHHT (Det., Rnd.) 2301 | 9.768 | 0.18 || 0.161 | 89

SDSC DataStar | DHHT (Det., Det.) 1.703 | 3.481 0.1 { 0.089 | 89

DHHT (Multi) 1.708 | 3.761 | 0.228 || 0.201 | 88
WS (Head) 0988 | 1.74 | 5.759
WS (Tail) 0.989 | 1.827 | 5.783
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DHHT (Rnd., Det.) is the only DHHT variant that does not suffer from heavy
outliers in the process duration (cf. maximum process duration figures). As
a consequence, DHHT (Rnd., Det.) mostly outperforms our best DHHT can-
didates DHHT (Det., Det.) and DHHT (Multi) in this case. Its performance
drawback in terms of the job stretch factor against Work Stealing ranges from
approximately 1.25 to 2. Work Stealing again produces significantly more mi-
grations, in particular approximately 10-30 times more than the second-best
load balancer. Like in the notebook load profile, we can save around 10-15% of
the migrations in the bulk migration mode.

Eventually, we repeat these experiments under overload conditions. For the
notebook load profile, Table shows that Work Stealing still performs best in
terms of the process stretch factor (except for the HPC2N input profile, where
the DHHT (Multi) algorithm is best), but like in the second series of the type
B experiments, Work Stealing is significantly outperformed concerning the job
stretch factor: for all input profiles, jobs scheduled using the DHHT (Multi)
algorithm only need approximately half the time compared to Work Stealing.
Though DHHT (Det., Det.) does not keep up with the DHHT (Multi) algorithm,
it is anyway still better then Work Stealing in this case. Compared to the type
B experiments, the gain of the best DHHT-based algorithm against Work Steal-
ing is lower, and there are already single cases where Work Stealing performs
best (cf. figures -~ in Appendix [A.4.1). Concerning the number of
migrations, all DHHT-based algorithms produce roughly the same result than
in the ideal load case, whereas Work Stealing now only needs less than half the
number of migrations compared to the ideal load case; anyway, Work Stealing
still requires more migrations than the DHHT-based algorithms (except for the
LLNL Atlas input profile).

Using the office PC load profile, the results of our experiments for the over-
load case are again very similar to the results obtained for the same experiments
with 100% availability: Table shows that DHHT (Det., Det.) performs best
not only with respect to the job stretch factor, but also even in most cases con-
cerning the process stretch factor. WS (First) suffers a performance drawback of
a factor of approximately 3-7 in terms of the job stretch factor (and the WS (Last)
variant is even much worse). Detailed results are available via figures -
in Appendix In terms of the number of migrations, all DHHT-
based algorithms again produce roughly the same result than in the ideal load
case; and again Work Stealing now only needs less than half the number of
migrations compared to the ideal load case, which still is approximately 25-65
times as many migrations as the DHHT-based algorithms require.

For the pool PC load profile, Table shows that DHHT (Det., Det.) per-
forms best with respect to the process stretch factor for three input profiles,

81



4 Load Balancing

Table 4.13: Results of experiments of type C with overload on notebooks (Windows).
Stretch Factor | # Migs. / Hour

Input Profile Load Balancer Procs. | Jobs | Def. | Bulk
DHHT (Rnd., Rnd.) | 3.205 | 5.460 | 0.968 || 0.865 | 89
DHHT (Rnd., Det.) 1.883 | 2.573 ] 0.842 || 0.754 | 90
DHHT (Det., Rnd.) 3.050 | 5.617 | 0.961 || 0.818 | 85

HPC2N DHHT (Det, Det.) | 1.738 | 2.458 | 0.738 || 0.631 | 85
DHHT (Multi) 1.706 | 2.407 | 0.967 || 0.847 | 87
WS (Head) 2231 | 4.765 | 1.193
WS (Tail) 2155 | 5538 | 1.785

DHHT (Rnd., Rnd.) | 12.193 | 19.005 | 0.970 || 0.861 | 89
DHHT (Rnd., Det.) | 12.139 | 12.544 | 0.939 || 0.831 | 89
DHHT (Det., Rnd.) | 11.008 | 19.382 | 0.969 || 0.836 | 86
LLNL Atlas DHHT (Det., Det.) | 10.442 | 13.135 | 0.909 || 0.784 | 86

DHHT (Multi) 9.167 | 8.408 | 0.974 || 0.852 | 87
WS (Head) 6.421 | 17.961 | 0.529
WS (Tail) 6.339 | 30.248 0.7

DHHT (Rnd., Rnd.) | 9.086 | 11.976 | 0.980 || 0.872 | 89
DHHT (Rnd., Det.) 8.446 | 6.179 ] 0.927 | 0.825 | 89
DHHT (Det., Rnd.) 8.756 | 12.541 | 1.006 || 0.852 | 85
LLNL Thunder | DHHT (Det., Det.) 7739 | 5.843 | 0.853 || 0.725 | 85

DHHT (Multi) 7442 | 4712 | 0.960 || 0.840 | 87
WS (Head) 4740 | 8.889 | 1.149
WS (Tail) 4.644 | 13.343 | 1.747

DHHT (Rnd., Rnd.) | 5.652 | 12.031 | 0.984 || 0.885 | 90
DHHT (Rnd., Det.) 4.224 | 5909 | 0918 || 0.820 | 89
DHHT (Det., Rnd.) 5.569 | 12.898 | 1.001 || 0.852 | 85
SDSC BLUE DHHT (Det., Det.) 4331 | 6.108 | 0.798 || 0.684 | 86

DHHT (Multi) 3.309 | 4.887 | 0.998 || 0.868 | 86
WS (Head) 3.125 [ 11.950 | 1.417
WS (Tail) 3.048 | 16.266 | 2.193

DHHT (Rnd., Rnd.) | 8.247 | 14.349 | 0.966 || 0.864 | 89
DHHT (Rnd., Det.) 6.680 | 7.649 ] 0.909 || 0.811 | 89
DHHT (Det., Rnd.) 7.349 | 14.693 | 1.009 || 0.863 | 86
SDSC DataStar | DHHT (Det., Det.) 7.867 | 7.615 | 0.861 || 0.739 | 86

DHHT (Multi) 5.682 | 5.360 | 0.967 || 0.847 | 87
WS (Head) 4259 [ 11.851 | 1.223
WS (Tail) 4141 [ 17.201 | 1.857
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Table 4.14: Results of experiments of type C with overload on office PCs (Windows).

Stretch Factor | # Migs. / Hour
‘g
A
Input Profile Load Balancer Procs. | Jobs | Def. | Bulk )
DHHT (Rnd., Rnd.) | 3.851 | 13.390 | 0.119 || 0.116 | 97
DHHT (Rnd., Det.) 1.279 | 1.973 | 0.107 || 0.103 | 96
DHHT (Det., Rnd.) | 2.495 | 8.844 | 0.067 || 0.064 | 95
HPC2N DHHT (Det., Det.) 1.132 | 1.524 ] 0.039 || 0.038 | 96
DHHT (Multi) 1.384 | 2.551 | 0.108 || 0.104 | 96
WS (Head) 1.755 | 5.143 | 1.909
WS (Tail) 1.751 | 6.203 | 2.832
DHHT (Rnd., Rnd.) | 5.866 | 42.188 | 0.113 || 0.108 | 96
DHHT (Rnd., Det.) | 3.068 | 6.320 | 0.118 || 0.113 | 96
DHHT (Det., Rnd.) | 4.023 | 38.987 | 0.071 || 0.069 | 97
LLNL Atlas DHHT (Det., Det.) 2491 | 4.407 | 0.056 || 0.054 | 96
DHHT (Multi) 2579 | 7.719 | 0.115 || 0.112 | 96
WS (Head) 2.602 | 27.249 | 1.363
WS (Tail) 2.399 | 45.886 | 1.905
DHHT (Rnd., Rnd.) | 5.148 | 28.178 | 0.119 || 0.115 | 97
DHHT (Rnd., Det.) | 2.657 | 3.744 | 0.112 || 0.108 | 96
DHHT (Det., Rnd.) | 3.551 | 21.788 | 0.075 || 0.073 | 97
LLNL Thunder | DHHT (Det., Det.) 2.092 | 2.638 | 0.048 || 0.047 | 97
DHHT (Multi) 2238 | 4.548 | 0.115 || 0.111 | 96
WS (Head) 2.216 | 11.680 | 2.484
WS (Tail) 2.121 | 16.899 | 3.560
DHHT (Rnd., Rnd.) | 4.390 | 34.714 | 0.117 || 0.112 | 95
DHHT (Rnd., Det.) 1.692 | 3.922 1 0.109 || 0.105 | 96
DHHT (Det., Rnd.) | 2.910 | 28.603 | 0.075 || 0.072 | 96
SDSC BLUE DHHT (Det., Det.) 1.427 | 2.739 | 0.046 || 0.044 | 97
DHHT (Multi) 1.667 | 5.357 | 0.114 || 0.110 | 96
WS (Head) 1.918 | 18.211 | 2.979
WS (Tail) 1.843 | 21.763 | 4.187
DHHT (Rnd., Rnd.) | 4.912 | 39.536 | 0.115 || 0.111 | 97
DHHT (Rnd., Det.) | 2238 | 4.620 | 0.109 || 0.105 | 97
DHHT (Det., Rnd.) | 3.371 | 34.204 | 0.072 || 0.070 | 97
SDSC DataStar | DHHT (Det., Det.) 1.862 | 3.241 | 0.050 || 0.048 | 97
DHHT (Multi) 2.035 | 5.853|0.114 || 0.109 | 96
WS (Head) 2.069 | 17177 | 2.740
WS (Tail) 1.965 | 22.846 | 3.818
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Table 4.15: Results of experiments of type C with overload on pool PCs (Linux).

Stretch Factor | # Migs. / Hour

Input Profile Load Balancer Procs. | Jobs | Def. | Bulk

2| [% Def.]

DHHT (Rnd., Rnd.) | 4.310 | 13.216 | 0.212 || 0.187

DHHT (Rnd., Det.) 1.648 | 2.553 | 0.183 || 0.164 | 90

DHHT (Det,, Rnd.) | 3.347 | 9.857 | 0.180 || 0.156 | 87

HPC2N DHHT (Det., Det.) | 1.467 | 2.133 | 0.105 || 0.094 | 90
DHHT (Mult) 1.765 | 3.168 | 0.210 || 0.187 | 88
WS (Head) 2280 | 5.987 | 1.646
WS (Tail) 2233 | 7.826 | 2.554

DHHT (Rnd., Rnd.) | 7.191 | 49.230 | 0.229 || 0.190 | 83

DHHT (Rnd., Det.) 4.046 | 8.627 | 0.212 || 0.182 | 86

DHHT (Det., Rnd.) 5.654 | 38.526 | 0.173 || 0.153 | 89

LLNL Atlas DHHT (Det., Det.) 3.439 | 8.831 ] 0.159 || 0.138 | 87

DHHT (Mult) 3.387 | 10.601 | 0.212 || 0.189 | 89
WS (Head) 3363 | 25.112 | 1.142
WS (Tail) 3.191 | 60.710 | 1.628

DHHT (Rnd., Rnd.) | 6.008 | 28.087 | 0.213 || 0.187 | 88

DHHT (Rnd., Det.) 3313 | 4.860 | 0.176 || 0.157 | 89

DHHT (Det., Rnd.) 4.832 | 21.690 | 0.196 || 0.174 | 89

LLNL Thunder | DHHT (Det., Det.) 2946 | 4.402 ] 0.139 || 0.124 | 89

DHHT (Mult) 2942 | 5788 | 0.212 || 0.183 | 88
WS (Head) 2.933 | 14.104 | 2.099
WS (Tail) 2.841 | 21.745 | 3.033

DHHT (Rnd., Rnd.) | 5.164 | 38.889 | 0.203 || 0.181 | 89

DHHT (Rnd., Det.) 2268 | 5.198 | 0.194 || 0.172 | 89

DHHT (Det., Rnd.) 4.032 | 28.895 | 0.197 || 0.172 | 88

SDSC BLUE DHHT (Det., Det.) 1915 | 4.453 | 0.127 || 0.112 | 89

DHHT (Multi) 2.162 | 6.561 | 0.222 || 0.198 | 89
WS (Head) 2.512 | 16.475 | 2.452
WS (Tail) 2.408 | 26.093 | 3.605

DHHT (Rnd., Rnd.) | 5.873 | 43.737 | 0.228 || 0.194 | 85

DHHT (Rnd., Det.) 3.054 | 6.242 ] 0.190 || 0.167 | 88

DHHT (Det., Rnd.) 4.672 | 34.879 | 0.192 || 0.172 | 89

SDSC DataStar | DHHT (Det., Det.) 2.522 | 5.595 ] 0.125 || 0.112 | 90

DHHT (Multi) 2623 | 7.860 | 0.222 || 0.196 | 88
WS (Head) 2.692 | 19.479 | 2.386
WS (Tail) 2612 | 32.419 | 3413
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whereas in two cases it is slightly outperformed by Work Stealing and the DHHT
(Multi) algorithm. Concerning the job stretch factor, DHHT (Det., Det.) nearly
always performs best and has a performance gain of a factor of approximately
3—4 compared to Work Stealing (only for the LLNL Atlas input profile, the
DHHT (Rnd., Det.) variant is best and slightly better than DHHT (Det., Det.)).
For detailed results please see figures |A.133|-|A.152|in Appendix Con-
cerning the number of migrations, we again notice that all DHHT-based algo-
rithms produce roughly the same result than in the ideal load case, whereas
Work Stealing now needs only approximately half the number of migrations as
in the ideal load case, which anyway still means a loss of a factor of approxi-
mately 7-20 compared to the DHHT-based algorithms.

4.5 Summary

The evaluation of the load balancers reveals: as long as the total load of the jobs
in the system almost ideally matches the number of available processors (cf. Ta-
ble [4.16), the Work Stealing algorithm performs best. When the external work-
load has a high diversity, the DHHT load balancer with multiple hashing is able
to keep up with the Work Stealing algorithm up to a factor of approximately 2.
On medium or low diversity, the DHHT load balancer using deterministic hash-
ing suffers a performance drawback of a factor of only approximately 1.25-2
against Work Stealing. On overloaded systems however (4 times as many pro-
cesses as processors, cf. Table 4.17), the DHHT-based algorithms perform best;
on high diversity, DHHT with multiple hashing is most efficient, outperform-
ing Work Stealing by a factor of approximately 2; on medium or low diversity,
DHHT using deterministic hashing works best with a performance gain by a
factor of approximately 3-7 compared to Work Stealing. Thus, as future work, a
distributed monitoring algorithm is conceivable which appropriately switches
between the different load balancers according to the current overall job load
and the diversity of the external workload.

Table 4.16: Load balancer evaluation summary for ideal system load.

. . . . Loss against
Ext. Load Profile | Diversity | Best DHHT Variant Work Stealing
Full Availability | none DHHT (Det., Det.) 1.25-2
Office PCs low DHHT (Det., Det.) 1.25-2
Pool PCs medium | DHHT (Rnd., Det.) 1.25-2
Notebooks high DHHT (Multi) ~2
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Table 4.17: Load balancer evaluation summary for overload factor 4.

Gain against

Ext. Load Profile | Diversity | Best DHHT Variant | v 4 Gtealin g
Full Availability | none DHHT (Det., Det.) 3-6
Office PCs low DHHT (Det., Det.) 3-7
Pool PCs medium | DHHT (Det., Det.) 34
Notebooks high DHHT (Multi) ~2




Clustering

Although the continually changing available computing power is the most im-
portant resource to fairly share among all parallel processes, there are also other
criteria to consider such as the network bandwidth, for example, as the pro-
cesses in BSP programs communicate with each other. If a BSP program would
be scheduled entirely on a fast connected component of the network although
there would be a few faster processors available outside this component, it will
run faster due to the reduced networking delays than it would have run when
just scheduled according to processing power.

Thus, it is convincing to cluster the PUB-Web network according to band-
width. In the next section, we first describe the clustering problem, before we
formalize it in Section In Section we explain the algorithm DiDiC. The
experiments in Section 5.4 reveal that the clusterings computed by DiDiC con-
verge to meaningful clusters; the results are comparable to or even slightly bet-
ter than those computed by MCL [van00], an established non-distributed algo-
rithm.

5.1 Problem Description

Taking a snapshot of the dynamic PUB-Web network structure, we notice: Typ-
ically, computers in the network either form a fast connected subnet (or a hier-
archical structure of subnets), which in turn is connected to the Internet via a
less powerful link, or they are isolated machines directly connected to the In-
ternet. In either case, the link to the Internet is the component with the least
bandwidth of a network path. The backbone of the Internet has such a high
bandwidth that we model it as a single central node, to which all local subnets
of computers and isolated machines are connected with an edge whose weight
correlates to the bandwidth of their Internet links (cf. Fig.5.T).
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Figure 5.1: Clustering the PUB-Web network.

The goal now is to cluster the PUB-Web network such that all local subnets,
whose size is above a suitable threshold, form its own cluster, and all other small
subnets and isolated computers build a number of clusters such that, within
each cluster, the bandwidth is as homogeneous as possible and that the cluster
size fits between suitable upper and lower bounds. Since PUB-Web is a highly
dynamic peer-to-peer network, it is not an option to just pick one of the existing
centralized clustering algorithms; rather, we need a fault-tolerant, adaptive, and
scaling distributed algorithm.

We model the machines in the PUB-Web network as vertices in a graph and
choose the bandwidth as our similarity measure (or the inverse of the band-
width as our distance measure), i.e., high edge weights correspond to high
bandwidths and vice versa.

The algorithm must be able to start from an arbitrary initial configuration.
Thus, we will use a random configuration if no initial configuration is provided.
Using a random configuration is not only natural and easy to implement. Also,
having in mind that a random cluster assignment is an extremely bad initial
configuration, we can suppose that an algorithm will perform well on any con-
figuration if it does so on a random one.
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5.2 Problem Formalization

Let G := UL,Gi = (V,, E;,w;) be a dynamic undirected and edge-weighted
graph, i.e., a collection of static graphs G; with vertex set V;, edge set E;, and
corresponding edge weight set w;. The graph G, is constructed from G; by
inserting and deleting certain vertices and/or edges. A k-way clustering of a
graphis a function I'l; : V; — {1,...,k}. Such a clustering divides the vertex set
V; into k disjoint subsets V; = 71,1 Ui U... U ;.

For an undirected, edge-weighted graph G = (V, E, w) with n vertices and its
k-way clustering I1 (as from now we omit the index i for ease of presentation),

let
deg(v):= )  wle)
e={-,v}€E

be the weighted degree of vertex v and
N(v) :={u | {u,v} € E}

its neighbourhood. Note: In order to keep the neighbourhood reasonably small
for a local algorithm, only a certain number of the nearest vertices should be
connected with an edge.

The popular clustering quality measure modularity [NG04] is defined as

k Ze:{u v}€E|u verrcw(e) (Zven deg(l)))z
Mod(I1) := . : — ‘
od(ID 21< Tecrw(e) 2 Lecp l©)

This version of the modularity definition is derived from Brandes et. al. [BDG"08],
who consider the unweighted case. They point out that maximizing modular-
ity involves a trade-off between producing many intra-cluster edges (first part
of the main sum) and producing a large number of clusters with small degree
(second part), yielding more cut-cluster edges. It is N"P-hard to optimize mod-
ularity [BDG08] and nearly all interesting clustering metrics [SS06] for general
graphs.

Each connected component of the subgraph induced by the vertices of cluster
7t is called a cluster-connected component of .. The set of all cluster-connected
components of 7. is denoted by CCC(7t.). The nearly connected value of 7. is
then defined as
maXxseccec(r,) |S|

| 72|

NCV(r.) :=
A good clustering for the PUB-Web application is preferably connected and

groups vertices with a high mutual bandwidth. Hence, our clusterings should
have a high modularity and clusters with high NCV. In our dynamic setting, a
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high-quality clustering should be obtained and maintained from a certain time
step on. Moreover, local changes in the graph structure should entail also only
local changes in the clustering.

5.3 The lterative Process DiDiC

We now present a distributed, iterative diffusive algorithm, called DiDiC, which
we will later compare against a well-known, established (but non-distributed)
algorithm. DiDiC and its evaluation is joint work with Henning Meyerhenke,
published in [GM10]. It is based on the framework in [MMS09], using addi-
tional techniques to make the algorithm work in a distributed setting. In parti-
cluar, we employ a secondary diffusion system inside DiDiC in order to make
the algorithm work without global knowledge.

The algorithm uses the concept of disturbed diffusion to identify dense re-
gions in the network graph weighted by bandwidth. The use of diffusion for
graph clustering is motivated by its close relation to random walks [Lov93]. The
intuitive idea both concepts have in common is that a random walk (or the re-
lated diffusion process) is likely to stay a very long time in a dense graph region
before leaving it via one of the few outgoing edges.

Since diffusion on graphs can be realized as an inherently distributed process,
the vertices executing the DiDiC algorithm need to communicate only with their
direct neighbours. Moreover, the algorithm requires only a small amount of ad-
ditional memory. In a very broad sense it can be regarded as self-stabilizing
since the initial random clustering is transferred into a clustering with continu-
ously high quality, also on dynamically changing graphs.

The general or first order diffusion scheme (FOS) [Cyb89] belongs to the
class of local iterative algorithms for load balancing. Given a graph and a load
for each vertex, these algorithms distribute the total amount of load stepwise
among the vertices of the graph. Finally, in the convergence state of these al-
gorithms, each vertex has the same average amount of load. However, in order
to use this approach for clustering, some modifications are necessary: First, the
diffusive method must result in an unbalanced load distribution. To achieve
this goal, we send some load back to the source vertices in every step by sub-
tracting it from the remaining vertices (this may lead to a negative load for some
vertices) and we disturb the process by stopping it after very few iterations in-
stead of iterating until all vertices have the same amount of load. Second, we
need to assign the vertices to clusters. For this, we consider k distinct diffusion
systems, i.e., we associate k diffusion load values with each vertex, and assign
each vertex v to the cluster with the highest diffusion load on v.

Given the first snapshot Gy of a dynamic graph G, we initialize the load val-
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5.3 The Iterative Process DiDiC

ues appropriately. Then we run ¢ diffusion iterations and compute the k-way
clustering I'ly. For each time step i, 1 < i < T, we again run ¢ diffusion it-
erations on the current graph structure G; and compute an updated clustering
IT;. In order to calculate the load drain for redirecting some load back to the
source vertices in a fully distributed fashion, we employ a second, nested diffu-
sion system, i.e. for each one of the ¢ primary diffusion iterations, p diffusion
iterations of the secondary system are performed.

We now formally describe the algorithm: Subsequently, let w, and I, denote
two load vectors of length k, in which vertex v € V stores its load values for the
k primary and secondary diffusion systems. By wz(,t) (c) we denote the load of v
in the primary diffusion system c at time step t. The notation for the secondary
load vector I is analogous. Then the primary diffusion system is defined as
follows:

Definition 5.1 Given a graph G = (V,E, w), the cluster number c, and the load vec-
tors w(©),10) € R”. Then the truncated first order diffusion scheme (FOS/T) with
suitably chosen constants a(e) for each edge e € E (flow scale) performs the following
operations on G in each iteration 0 < s < y:

D (0) = w(e) -ale) (wh ) (e) — wl TV (0)),
o) () =0l )+~ ¥ V).

UEN(v)

Note that in the definition of the flow x(, ,, between vertices u and v, the
edge {u, v} is directed implicitly (the flow changes its sign when viewed from
the other direction). Also note that references to I(*) apply to the corresponding
FOS/B time step s - p (see below).

Remember that the purpose of the secondary diffusion system is to redirect
some load back to the source vertices. More precisely, in diffusion system c,
vertices u ¢ 71, send most of their load to neighbouring vertices v € 7. using
appropriate weights, while the load is balanced both among neighbouring ver-
tices u,v € 7, and u,v ¢ .. We call these weights benefits to express their
purpose: A vertex of the corresponding cluster benefits from the secondary sys-
tem. Now the second diffusion system is defined as follows:

Definition 5.2 Given a graph G = (V,E,w), its k-way clustering I1, the cluster
number ¢, and the initial load vector 1©0) € R". Then the first order diffusion scheme
disturbed by vertex benefits (FOS/B) with suitable a(e) for edge e € E (flow scale)
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and B (benefit) performs the following operations on G in each iteration 0 < r < p:

(r=1) (r=1)
yﬁl’{lﬁ,@}(c) — wle) - ale) (Zu HONE (c)> ,

by(c) by (c)

E,r:) (1o} denotes the load exchange via edge e in iteration r and b, (c) denotes the

benefit of vertex u in cluster 7., which is defined as

bu(c) = {1 u & m,

where y

B >>1 otherwise.

Putting everything together, the DiDiC algorithm looks like shown in List-
ing It is executed in a distributed way, parametrized by the respective ver-
texve V.

Listing 5.1: The Distributed Diffusive Clustering (DiDiC) Algorithm

piDiC(v, N(v), =n, k, T, ¢, p) — =
if (7t is undefined)
7T := RandomValue (1, k);
Wy := SetInitialload(m); I, := wy;
for time step t := 1 to T do
for each cluster system c do
for s := 1 to ¢ do (% FOS/T *)
Wy(c) := wy(c);
for r := 1 to p do (+ FOS/B *)
I(c) :=1y(c);
for each u € N(v)
To(c) = To(c) — a(e) - w(e) - (2 — 115 )
for each u € N(v)

Wo(€) := Wy(c) —ale) - w(e) - (wo(c) —wu(c));
wy(c) :=Wy(c) +1y(c); Io(c) :==1lv(c);
TTi=argmax,_q i wy(c);
N(v) := adaptToGraphChanges (v, N(v));

If the initial cluster affiliation of a vertex is undefined, the only information a
vertex has in our distributed scenario (besides its neighbourhood structure and
the loop durations) is the maximum number of clusters k. Thus, a vertex’s ini-
tial affiliation is chosen as a random number between 1 and k. Note: While the
possibility exists to assign an initial clustering, we assume that in our scenario
it is usually not used and 7t is undefined until it is initialized randomly. Recall
that the algorithm is expected to work with arbitrary initial clusterings. Even
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5.3 The Iterative Process DiDiC

with the simple strategy of random initialization DiDiC performs well in the
experiments (if the number of time steps T is reasonably large), although it is
difficult to derive meaningful clusters from such a configuration. While better
initial settings would not raise the quality of the solution produced by the algo-
rithm automatically, they can be expected to improve the speed of convergence
to a good clustering.

After the clustering has been initialized, each vertex v sets its entries of the
initial load vectors wS,O) (c),c=1,...,k to 0 with one exception. The load value
corresponding to the own cluster is set to a high constant value, e.g., 100. The
load vectors I of the secondary diffusion system are initialized in the same way.

Then the actual diffusive clustering process is started by the outermost loop,
which runs for T time steps. At the end of each time step, the graph may be
modified by local changes. Such changes include the addition or deletion of
vertices and/or edges. In case of the deletion of a vertex v, the execution of the
algorithm on v is stopped and its current load is distributed evenly among its
neighbours. This simple strategy is why our diffusive method works well on
dynamic graphs. Local changes in the graph affect the distribution of the diffu-
sion loads only slightly. Thus DiDiC recovers quickly from small alterations of
G and adapts the former clustering accordingly.

Within each time step the clustering is performed by calculating the diffusion
systems for each cluster as explained before, i.e., by an outer FOS/T loop, into
which an inner FOS/B loop is embedded. We set the flow scale constant to
a(e) := 1/ max{deg(u),deg(v)} for an edge e = {u,v} € E. This choice avoids
large amounts of load being swapped back and forth.

A straightforward upper bound for the resulting time complexity per time
step for each vertex vis O(k- ¢ -p - |[N(v)|). Reasonable values for the param-
eters appearing in this expression can be found in the upcoming experimental
section.

Note that DiDiC is not designed to deliver good clusterings from early time
steps on. Instead, the random initial clustering needs to be refined from time
step to time step. How long it takes to obtain reasonably good results, will be
discussed during the experimental evaluation.

Improvements

After each time step the new cluster affiliation of each vertex v can be chosen
generically as argmax _; _; wy(c) (asin line 19 of Listing . In the implemen-
tation of the algorithm, however, we use additional techniques to accelerate the
clustering process. More precisely, after 10 time steps we enforce that a vertex
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is assigned to the cluster with the number

argmaXe .y kIN(v)Nm.£2} wo(c),

which ensures that isolated vertices (those without neighbours in the same clus-
ter) vanish promptly and convergence to a good clustering is reached faster.
Note that the order of cluster number updates is not fixed and queries to neigh-
bours can yield data from different time steps. Yet, the final results are hardly
affected by this behavior.

To eliminate isolated vertices, we migrate a vertex from one cluster to another
not only based on the load in the primary diffusion system but also on the time
step t. As an example, v € 7. changes only to 7. (¢ # (') if v receives the
highest amount of load from system ¢’ and this amount is at least 1 + 0.0001 * ¢
times higher than the load of system c. This way areas are only flooded by a
new cluster if the diffusion process shows a really strong desire for this.

5.4 Experimental Evaluation

In this section we present experimental results on DiDiC. In order to perform re-
producible experiments, we use a simulator that resembles a P2P environment
occurring in PUB-Web. Except for the running time, the simulator computes
the same results as if a real distributed system were executing DiDiC (under
the assumption of precise floating point calculations). For generating the test
graphs, the vertices are embedded into the two-dimensional unit square with
wrap-around boundaries (i.e., into a torus). Such an embedding with the assign-
ment to coordinates is not strictly necessary, but the generation of graphs with
certain properties is simplified. Moreover, vertex coordinates do not affect the
clustering results since the algorithm does not use the coordinates. Concerning
the edges, remember that we assume the bandwidth (= edge weight) to be the
inverse of the distance between two vertices. As a PUB-Web network graph is
a complete graph, but DiDiC shall only operate within a local neighbourhood,
we need to prune the network graph appropriately. Thus, we employ a slight
variation of the disc graph model (e.g., [ALW03]): It uses a uniform communi-
cation radius rad for all vertices; a vertex is connected to up to maxNeigh nearest
neighbours within its communication radius, where maxNeigh is a user-defined
parameter.

Recall from the problem description that we identify mainly two types of
computers in the PUB-Web network (which is a subset of the Internet): home
users with single computers and companies participating with lots of comput-
ers. In the latter case, the computers within a company are typically well con-
nected, whereas the Internet connection is slower; additionally, there might be
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medium speed connections between subnets or partner companies. Our goal is
to identify subsets of the PUB-Web network that allow efficient communication
and synchronization.

Evaluation criteria are modularity and the NCV value (the latter is averaged
over all clusters). Note that empty clusters are seen as non-existing when com-
puting these measures. The clusterings computed by DiDiC are compared with
those computed by the graph clustering library [van00], which implements the
well-known algorithm MCL [EvDOO02]. As MCL is not a distributed algorithm,
it should not be seen as a competitor. We use MCL only to validate DiDiC and
it is not apparent that other algorithms are more suitable for this purpose. The
inflation parameter of MCL strongly affects the granularity of clusters, which
we set to 1.2. This choice avoids an extremely large number of small clusters
and allows for a better comparison.

As a proof-of-concept we have started with experiments on graphs that have
a well-separated cluster structure, i.e., we idealized the PUB-Web network by
omitting the single home computers and by choosing quite high bandwidths for
intra-company connections compared to inter-company links. The unit-torus is
partitioned into T x T quadratic tiles, where 72 is the smallest square number
greater than or equal to x, the number of dense regions to construct. Out of these
72 tiles x are randomly selected and filled with vertices, whose number is cho-
sen randomly within certain limits for each tile, preventing extremely large or
small clusters, which are not desired in our scenario. In each tile the vertices are
distributed within a circle that is centered at the tile center and whose diameter
is 95% of the tile side length. Fig.|5.2| (top) shows one of the graphs constructed
this way with its initial clustering. The colors signify the cluster affiliation, grey
edges are cut-edges. At the bottom and in Fig. 5.3| one can see the clusterings
determined by DiDiC (after time step 209, which is the first one with NCV =1.0)
and MCL, respectively. The fact that DiDiC has determined fewer clusters than
MCL is not at the expense of the quality as the modularity of DiDiC’s solution
(0.969) is better than MCL's (0.953). The results for the whole (seemingly easy)
graph class can be summarized as:

e With the benefit parameter one can control somewhat how easily small
clusters are dissolved. The higher the benefit is, the more resistant are
small clusters against disappearance.

e Most importantly: The parameter k should be chosen larger than the num-
ber of clusters desired in the final solution. Then a reasonable number of
clusters is determined by DiDiC since some colors vanish over time. Small
values of k often result in disconnected clusters (and hence inferior qual-
ity) due to the random start and the strong separation of dense areas.
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Figure 5.2: Initial situation (top) and clustering computed by DiDiC after time step
209 (bottom) of a graph with twelve occupied tiles. Parameters: n = 1400, k = 20,
maxNeigh = 16, rad = 0.25, no movement, =12, p = 8, B = 10.
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Figure 5.3: The clustering computed by the non-distributed algorithm MCL for the
same graph as in Fig.

To finally resemble the real PUB-Web network closely, we have built the fol-
lowing test scenario: The well connected subnets in companies etc. are repre-
sented by circular dense areas of nodes. The fact that the nodes, which are
equally spread over the circular region, do not have a pairwise equal distance
to each other, is a realistic assumption because big networks are usually orga-
nized hierarchically. Thus, computers connected to the same switch can simul-
taneously communicate with each other at full speed, whereas the bandwidth
decreases when they have to share the same up- and downlinks while commu-
nicating over several hops with computers connected to another switch. The
dense areas may overlap, which corresponds to different company divisions; or
a small dense area may be situated inside a bigger one, which resembles a high-
speed cluster within a company network. The coordinates of the x dense areas
are chosen uniformly at random within [0,1]? and their radii range from 0.01
to 0.36 with an anti-quadratic probability distribution (small radii have higher
probability).

In addition to these dense areas, single vertices representing private home
computers are randomly spread over the unit-square. This is realistic as well:
Not only world-wide but also within several major countries there are differ-
ent Internet providers; customers of the same provider share a much higher
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bandwidth than customers of different providers. To represent the single com-
puters, X%Lz - n vertices are inserted uniformly at random into the unit-square.
The remaining vertices are spread over all dense areas such that each area re-
ceives a fraction of 1°/ (¥ r}), where r; is the radius of dense area i, i.e

i j€0,..x i Jr 1 7 1y

smaller areas have a slightly higher density. Inside each dense area the vertices
are placed uniformly at random. Fig. (top) shows such a graph with 800
vertices and 10 dense areas.

We did extensive tests with varying parameters and dozens of graphs with,
e.g., 1600, 2400, and 3200 vertices. In order to simulate the dynamics of a P2P
network, we randomly deleted and inserted 1%, 2%, or 5% of the vertices each,
every second, or every fifth time step, respectively. We are aware that the
real PUB-Web network may be magnitudes larger than just a few thousands
of nodes, but it is not appearing out of a sudden with a random configuration.
Rather, it will be dynamically growing or shrinking over time. Thus, we assume
that it is sufficient to perform tests for initial instances with a few thousands of
vertices.

In order to reduce the complexity of the illustration, the graph in the example
in figures 5.4/ - 5.8| consists of only 800 vertices; in particular, we constructed
the graph and ran DiDiC using these parameters: n = 800, k = 20, maxNeigh
=16, rad =033, ¢ = 11, p = 11, B = 10, x = 10, 2% dynamics. Remem-
ber that the unit-square has wrap-around boundaries. Cut-edges are shown in
grey. One can see from the clustering process illustrated in figures[5.4/-[5.7 how
the solution computed by DiDiC converges quickly from an initially random
situation; already after a few iterations a meaningful clustering emerges. In this
particular example, all clusters are finally connected and the solution stabilizes
around time step 60. Fig.|5.8/shows the clustering obtained using the MCL al-
gorithm for the same graph (at time step 60). Both DiDiC and MCL produce a
clustering consisting of 11 clusters. The modularity of the solution computed
by DiDiC is 0.9044, which is of comparable quality to the result obtained using
MCL (modularity 0.9078).

The plots in figures [5.9] - are based on aggregated data of three experi-
ment series and show how modularity and NCV evolve over time for graphs
of the same class with 1600, 2400, and 3200 nodes, respectively. For validation
purposes, we ran MCL every 50-th time step on the dynamic graphs and added
its modularity and NCV values to the plots as single points in the same colors as
the corresponding lines. As one can see, once DiDiC’s clusterings stabilize, they
have a modularity comparable to MCL’s. Bigger instances take a bit longer to
stabilize than smaller ones, but once the clustering stabilizes, DiDiC even yields
a slightly better modularity than MCL in these cases. After the clusterings are
rather stable, the quality in terms of connectedness is still increasing over time
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Figure 5.4: Generated PUB-Web P2P graph with 800 nodes (top) and clustering
computed with DiDiC after 5 time steps (bottom).
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Figure 5.6: Clusterings for the graph in Fig. after 31 (top) and 41 (bottom) time
steps.
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Figure 5.7: Clusterings for the graph in Fig. after 51 (top) and 61 (bottom) time
steps.
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Figure 5.8: The clustering computed by the non-distributed algorithm MCL for the
same graph as in Fig.[5.7) (bottom).
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Figure 5.9: Aggqregated results (x-axis: time step, y-axis: modularity, NCV) for
graphs with 1600 vertices.
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Figure 5.10: Aggregated results (x-axis: time step, y-axis: modularity, NCV) for
graphs with 2400 vertices.
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Figure 5.11: Aggreqated results (x-axis: time step, y-axis: modularity, NCV) for
graphs with 3200 vertices.
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until a perfectly cluster-connected solution is reached.

Considering that each node sends roughly 100-150 very small messages in its
local neighbourhood per time step, a time step would take a couple of seconds
to complete in a real world scenario. Thus, a clustering would stabilize after a
couple of minutes.

Experiments with smaller values of ¢ and p made DiDiC faster, but often the
quality worsened. Experiments using instances with the same parameters but
with 1% or 5% (instead of 2%) dynamics in the graph led to similar results.

5.5 Summary

The experimental evaluation reveals that the iterative process DiDiC computes
clusterings that are of comparable or even slightly better quality (in terms of
the modularity measure) than the results obtained by the established non-dis-
tributed algorithm MCL, which is an excellent result. Since the PUB-Web graph
permanently exists once the PUB-Web network has been set up, DiDiC’s con-
vergence speed is only of secondary importance — anyhow, it is a nice result
that DiDiC’s clusterings stabilize quite fast.

Thus, DiDiC is a perfect candidate for a clustering algorithm to integrate into
PUB-Web. Note: When integrating DiDiC into PUB-Web, it has to be taken into
account that the PUB-Web network is not only dynamically changing over time,
which is handled well by DiDiC, but it is also expected to grow — and occasion-
ally also to shrink. While a shrinking network is implicitly handled by DiDiC
by completely dropping cluster colors once clusters become to small, there is
no automatism for a growing network. However, a quite easy and natural ap-
proach is to split one of the largest clusters once the ratio of the network size
and the number of clusters becomes to small.
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Conclusion

We have presented the Paderborn University BSP-based Web Computing (PUB-
Web) library — a middleware that supports the execution of parallel programs
in the BSP style on a dynamic P2P network of computers, utilizing only their
idle times. Since its first prototype implementation, PUB-Web has become a sta-
ble and mature system. In this thesis, we have focused on important technical
and algorithmic aspects, in particular: In order to schedule processes with re-
spect to the currently available computing power, which continually changes
in an unpredictable fashion, we need intelligent load balancing algorithms and,
as a basic precondition, the technical ability to migrate threads at runtime. To
achieve the latter in a way suitable for production use, compatible with recent
Java versions, available for all important platforms, and easy-to-use for devel-
opers, we have developed the PadMig thread migration and checkpointing li-
brary. Our implementation is stable, efficient, and user-friendly especially with
respect to IDE integration and error reporting.

In order to tackle the distributed load balancing problem, we have adapted
a decentralized data distribution method from the storage community to our
setting. This new DHHT-based load balancer is able to fairly assign the pro-
cesses of parallel programs to computing nodes and to balance the load on
changes in the available computing power. In order to judge the quality of
the schedules produced, we have performed extensive experiments, using real-
istic input data obtained by profiling the utilization of several hundred PCs for
a period of several months. The comparison of several variants of the DHHT-
based load balancer with the well-established Work Stealing algorithm reveals:
as long as the total load of the jobs in the system almost ideally matches the
number of available processors, the Work Stealing algorithm performs best and
the best DHHT variant suffers a performance drawback of a factor of approx-
imately 1.25-2. On overloaded systems however (4 times as many processes
as processors, the DHHT-based algorithm performs best: on a high diversity
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in the available computing power, DHHT with multiple hashing is most effi-
cient, outperforming Work Stealing by a factor of approximately 2; on medium
or low diversity, DHHT using deterministic hashing works best with a perfor-
mance gain by a factor of approximately 3-7 compared to Work Stealing. Thus,
as future work, a distributed monitoring algorithm is conceivable which appro-
priately switches between the different load balancers according to the current
overall job load, the diversity of the external workload, and maybe other criteria
such as the desired fairness level (Work Stealing delays all jobs approximately
equally, whereas DHHT delays the jobs proportionally to their length); since
the exchange of a load balancer at runtime involves a certain initialization and
migration overhead, these costs need to be modeled adequately.

Beside the available computing power, we have also considered the network
bandwidth as a secondary criterion for load balancing. As BSP programs com-
municate a lot, they should be scheduled entirely on fast connected components
of the network. We have addressed this challenge by clustering the PUB-Web
network according to bandwidth, employing a novel, fault-tolerant, adaptive,
and scaling distributed clustering algorithm called DiDiC. Our experimental
evaluation using a simulator reveals that DiDiC computes clusterings that are
of comparable or even slightly better quality than the results obtained by the
established non-distributed algorithm MCL, which is an excellent result. Fur-
thermore, DiDiC’s clusterings stabilize quite fast. Thus, DiDiC is a perfect can-
didate for a clustering algorithm to integrate into PUB-Web.

Now that we are able to cluster the PUB-Web network, promising future work
could include a two-level load balancer (cf. Fig.[6.I): On the top level, one load
balancer assigns BSP programs (i.e., groups of processes) to fast connected clus-
ters of the PUB-Web network. On the lower level, one load balancer per cluster
schedules the BSP processes on the particular peers within the clusters. As men-
tioned above, a distributed monitoring algorithm could keep track of the job
load and the external workload — within each cluster and also globally on the
top level. Using this monitoring information, not only a sophisticated choice of
the load balancing algorithm variant is possible, but it can be also used to man-
age a global, distributed ready-queue that buffers BSP programs induced into
the PUB-Web network in order to avoid an arbitrarily high job overload. For
this, it is also conceivable to derive suitable availability prediction strategies
from the cumulative pattern observed in our evaluation of the external work-

load in Section
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Figure 6.1: Two-level load balancing.
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A

Detailed Results of the
Evaluation of the Load
Balancers

In Section the results of the experimental evaluation of the load balancers
have been presented in a compact way as aggregated data. In this appendix, we
show the results of the particular experiment series in detail.

A.1 Type B, Ideal Load

This section contains the plots for the input profiles LLNL Atlas (figures -

A.4), LLNL Thunder (figures[A.5]-[A.8), SDSC BLUE (figures[A.9]- , and
SDSC DataStar (figures —|A.16) for the experiments of type B with ideal

total system load.
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Figure A.2: Actual maximum duration of processes in experiment 11.
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Figure A.4: Pending time of jobs in experiment 11.
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Figure A.5: Actual average duration of processes in experiment 12.
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Figure A.6: Actual maximum duration of processes in experiment 12.
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Figure A.10: Actual maximum duration of processes in experiment 13.
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Figure A.11: Actual average duration of jobs in experiment 13.
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Figure A.12: Pending time of jobs in experiment 13.
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Figure A.13: Actual average duration of processes in experiment 14.
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Figure A.14: Actual maximum duration of processes in experiment 14.
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Figure A.15: Actual average duration of jobs in experiment 14.

1000000

900000

800000

700000

600000

500000

400000

300000

200000

100000 |+

200000

DHHT (Rnd., Rnd.)
DHHT (Rnd., Det.)
DHHT (Det., Rnd.)

400000

600000
Release Time [s]

DHHT (Det., Det.)
DHHT (Multi)
WS (Head)

800000

1000000 1200000

WS (Tail) -

Figure A.16: Pending time of jobs in experiment 14.
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A.2 Type B, Overload

This section contains the plots for the input profiles LLNL Atlas (figures [A.17]—

A.20), LLNL Thunder (figures -|A.24), SDSC BLUE (figures ~[A29),
and SDSC DataStar (figures —|A.32) for the experiments of type B with an

overload of factor 4.
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Figure A.17: Actual average duration of processes in experiment 16.
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Figure A.18: Actual maximum duration of processes in experiment 16.
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Figure A.19: Actual average duration of jobs in experiment 16.
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Figure A.20: Pending time of jobs in experiment 16.
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Figure A.21: Actual average duration of processes in experiment 17.
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Figure A.22: Actual maximum duration of processes in experiment 17.
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Figure A.24: Pending time of jobs in experiment 17.
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Figure A.25: Actual average duration of processes in experiment 18.
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Figure A.26: Actual maximum duration of processes in experiment 18.
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Figure A.27: Actual average duration of jobs in experiment 18.
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Figure A.28: Pending time of jobs in experiment 18.
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Figure A.29: Actual average duration of processes in experiment 19.
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Figure A.30: Actual maximum duration of processes in experiment 19.
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Figure A.31: Actual average duration of jobs in experiment 19.
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Figure A.32: Pending time of jobs in experiment 19.



A.3 Type C, Ideal Load

A.3 Type C, Ideal Load

In this section, we present the plots for the experiments of type C with ideal
total system load.

A.3.1 Notebooks

This subsection contains the plots for the input profiles HPC2N (figures [A.33|-
[A.36), LLNL Atlas (figures [A.37—[A.40), LLNL Thunder (figures [A.41]-[A.44),
SDSC BLUE (figures [A.45/—[A.48), and SDSC DataStar (figures [A.49-[A.52) for
the experiments of type C with ideal total system load and using the notebook
load profile.
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Figure A.33: Actual average duration of processes in experiment 20.
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Figure A.34: Actual maximum duration of processes in experiment 20.
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Figure A.35: Actual average duration of jobs in experiment 20.
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Figure A.37: Actual average duration of processes in experiment 21.
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Figure A.38: Actual maximum duration of processes in experiment 21.
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Figure A.39: Actual average duration of jobs in experiment 21.
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Figure A.40: Pending time of jobs in experiment 21.
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Figure A.41: Actual average duration of processes in experiment 22.
140000 ! ! ! ! ! ! !
0 i k e .
. 100000 |-
%]
= =}
> =
©
E 80000 |-
c
S
g
a2 60000 |-
&
=]
g
40000 |-
20000 |
O 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
Duration at 100% Availability [s]
DHHT (Rnd., Rnd.) —+— DHHT (Det., Det.) & dito, sleeping -- -o-- -
DHHT (Rnd., Det.) DHHT (Multi) WS (Tail) —~ -
DHHT (Det., Rnd.) ------ WS (Head) dito, sleeping -+~

Figure A.42: Actual maximum duration of processes in experiment 22.
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Figure A.45: Actual average duration of processes in experiment 23.
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Figure A.46: Actual maximum duration of processes in experiment 23.
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Figure A.48: Pending time of jobs in experiment 23.
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Figure A.49: Actual average duration of processes in experiment 24.
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Figure A.50: Actual maximum duration of processes in experiment 24.
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Figure A.51: Actual average duration of jobs in experiment 24.
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Figure A.52: Pending time of jobs in experiment 24.
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A.3.2 Office PCs

This subsection contains the plots for the input profiles HPC2N (figures [A.53]—
[A.56), LLNL Atlas (figures [A.57]—-[A.60), LLNL Thunder (figures [A.61]-[A.64),
SDSC BLUE (figures[A.65/-[A.68), and SDSC DataStar (figures [A.69-[A.72) for
the experiments of type C with ideal total system load and using the office PC
load profile.
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Figure A.53: Actual average duration of processes in experiment 25.
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Figure A.54: Actual maximum duration of processes in experiment 25.
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Figure A.55: Actual average duration of jobs in experiment 25.
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Figure A.57: Actual average duration of processes in experiment 26.
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Figure A.58: Actual maximum duration of processes in experiment 26.
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Figure A.59: Actual average duration of jobs in experiment 26.
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Figure A.60: Pending time of jobs in experiment 26.
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Figure A.61: Actual average duration of processes in experiment 27.
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Figure A.62: Actual maximum duration of processes in experiment 27.
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Figure A.64: Pending time of jobs in experiment 27.
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Figure A.65: Actual average duration of processes in experiment 28.
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Figure A.66: Actual maximum duration of processes in experiment 28.
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Figure A.67: Actual average duration of jobs in experiment 28.
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Figure A.68: Pending time of jobs in experiment 28.
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Figure A.69: Actual average duration of processes in experiment 29.
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Figure A.70: Actual maximum duration of processes in experiment 29.
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Figure A.71: Actual average duration of jobs in experiment 29.
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A.3 Type C, Ideal Load

A.3.3 Pool PCs

This subsection contains the plots for the input profiles HPC2N (figures[A.73|—

[A.76), LLNL Atlas (flgures - [A.80), LLNL Thunder (figures —[A-84),

SDSC BLUE (figures A.88), and SDSC DataStar (figures m A.92) for
the experiments of type C w1th ideal total system load and using the pool PC

load profile.
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Figure A.73: Actual average duration of processes in experiment 30.
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Figure A.74: Actual maximum duration of processes in experiment 30.
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Figure A.75: Actual average duration of jobs in experiment 30.
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Figure A.76: Pending time of jobs in experiment 30.
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Figure A.77: Actual average duration of processes in experiment 31.
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Figure A.78: Actual maximum duration of processes in experiment 31.
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Figure A.79: Actual average duration of jobs in experiment 31.
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Figure A.80: Pending time of jobs in experiment 31.

155



A Detailed Results of the Evaluation of the Load Balancers

12000 T T T T T T T
; ; ; ; ; ; L o¥
L0000 [ LA S— .
/\ 8]
2 8000 - o _
o
E K
c e
2 6000 [ o S R B e .
3 Sy
= - .
8 4000 |- / RTa - S I I S i
< P pes
/ ' - e
= T e
2000 |- K e R -
i N PR -
& e
—
0 1 1 1 1 1 1
0 1000 1500 2000 2500 3000 3500 4000
Duration at 100% Availability [s]
DHHT (Rnd., Rnd.) —+— DHHT (Det., Det.) B dito, sleeping -- -e-- -
DHHT (Rnd., Det.) DHHT (Multi) WS (Tail) —-2-—
DHHT (Det., Rnd.) ------ WS (Head) dito, sleeping -~
Figure A.81: Actual average duration of processes in experiment 32.
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Figure A.82: Actual maximum duration of processes in experiment 32.
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Figure A.83: Actual average duration of jobs in experiment 32.
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Figure A.84: Pending time of jobs in experiment 32.
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Figure A.85: Actual average duration of processes in experiment 33.
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Figure A.86: Actual maximum duration of processes in experiment 33.
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Figure A.87: Actual average duration of jobs in experiment 33.
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Figure A.88: Pending time of jobs in experiment 33.
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Figure A.89: Actual average duration of processes in experiment 34.
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Figure A.90: Actual maximum duration of processes in experiment 34.
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Figure A.91: Actual average duration of jobs in experiment 34.
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Figure A.92: Pending time of jobs in experiment 34.
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A.4 Type C, Overload

In this section, we present the plots for the experiments of type C with an over-
load of factor 4.

A.4.1 Notebooks

This subsection contains the plots for the input profiles HPC2N (figures [A.93]-
[A.96), LLNL Atlas (figures —[A.100), LLNL Thunder (figures[A.101]-[A.104),
SDSC BLUE (figures[A.105/-[A.108), and SDSC DataStar (figures[A.109-[A.112)
for the experiments of type C with an overload of factor 4 and using the note-
book load profile.
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Figure A.93: Actual average duration of processes in experiment 35.

160000 ! ! ! ! ! ! !
4 N
140000 [+ 2
120000 [+
o)
% 100000 -
S /
= N » )
c N K
2 80000 [ A / «
g ) b -
5 &
€ 60000 |- 3 et S
B ‘ i -
< . .- — . e
. e
40000 - -
. PR
. B =
¥ -
A
20000 - e .
o iA =]
U = : : ; : ; :
0 Il Il Il Il Il Il Il
0 500 1000 1500 2000 2500 3000 3500 4000
Duration at 100% Availability [s]
DHHT (Rnd., Rnd.) —+— DHHT (Det., Det.) & dito, sleeping -- -e-- -
DHHT (Rnd., Det.) DHHT (Multi) WS (Tail) —=—
DHHT (Det., Rnd.) ---%--- WS (Head) dito, sleeping -+~

Figure A.94: Actual maximum duration of processes in experiment 35.
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Figure A.95: Actual average duration of jobs in experiment 35.
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Figure A.96: Pending time of jobs in experiment 35.
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Figure A.97: Actual average duration of processes in experiment 36.
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Figure A.98: Actual maximum duration of processes in experiment 36.
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Figure A.99: Actual average duration of jobs in experiment 36.
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Figure A.100: Pending time of jobs in experiment 36.
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Figure A.101: Actual average duration of processes in experiment 37.
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Figure A.102: Actual maximum duration of processes in experiment 37.
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Figure A.103: Actual average duration of jobs in experiment 37.
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Figure A.104: Pending time of jobs in experiment 37.
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Figure A.105: Actual average duration of processes in experiment 38.
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Figure A.106: Actual maximum duration of processes in experiment 38.
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Figure A.107: Actual average duration of jobs in experiment 38.
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Figure A.109: Actual average duration of processes in experiment 39.
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Figure A.110: Actual maximum duration of processes in experiment 39.
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Figure A.111: Actual average duration of jobs in experiment 39.
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A.4 Type C, Overload

A.4.2 Office PCs

This subsection contains the plots for the input profiles HPC2N (figures -
A.116), LLNL Atlas (figures [A.117] - [A.120), LLNL Thunder (figures -
A.124), SDSC BLUE (figures[A.125/-[A.128), and SDSC DataStar (figures[A.129)—
A.132) for the experiments of type C with an overload of factor 4 and using the
office PC load profile.
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Figure A.113: Actual average duration of processes in experiment 40.
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Figure A.114: Actual maximum duration of processes in experiment 40.
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Figure A.115: Actual average duration of jobs in experiment 40.

900000

800000

700000

600000

500000

400000

300000

200000

100000

200000

DHHT (Rnd., Rnd.) ——
DHHT (Rnd., Det.)
DHHT (Det., Rnd.)

400000

600000
Release Time [s]

DHHT (Det., Det.)
DHHT (Multi)
WS (Head)

800000

1000000

1200000

WS (Tail) -

Figure A.116: Pending time of jobs in experiment 40.
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Figure A.117: Actual average duration of processes in experiment 41.
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Figure A.118: Actual maximum duration of processes in experiment 41.
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Figure A.119: Actual average duration of jobs in experiment 41.
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Figure A.120: Pending time of jobs in experiment 41.
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Figure A.121: Actual average duration of processes in experiment 42.
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Figure A.122: Actual maximum duration of processes in experiment 42.
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Figure A.123: Actual average duration of jobs in experiment 42.
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Figure A.124: Pending time of jobs in experiment 42.
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Figure A.125: Actual average duration of processes in experiment 43.
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Figure A.126: Actual maximum duration of processes in experiment 43.
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Figure A.127: Actual average duration of jobs in experiment 43.
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Figure A.128: Pending time of jobs in experiment 43.
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Figure A.129: Actual average duration of processes in experiment 44.
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Figure A.130: Actual maximum duration of processes in experiment 44.
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Figure A.131: Actual average duration of jobs in experiment 44.
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Figure A.132: Pending time of jobs in experiment 44.

183



A Detailed Results of the Evaluation of the Load Balancers

A.4.3 Pool PCs

This subsection contains the plots for the input profiles HPC2N (figures[A.133]—
A.136), LLNL Atlas (figures [A.137] - [A.140), LLNL Thunder (figures [A.141] -
A.144), SDSC BLUE (figures|A.145-[A.148), and SDSC DataStar (figures[A.149)—
A.152) for the experiments of type C with an overload of factor 4 and using the
pool PC load profile.
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Figure A.133: Actual average duration of processes in experiment 45.
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Figure A.134: Actual maximum duration of processes in experiment 45.
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Figure A.137: Actual average duration of processes in experiment 46.

550000 T T T T T T

500000 |- g ‘ : ‘ N

450000 |- i

400000 |-

350000 |- § L O S

300000 -

250000 |- T B

200000 [ | K

Actual Duration (max.) [s]

150000 f--

100000 f--

50000 |-

0 ; ; ; ; ; ;

0 500 1000 1500 2000 2500 3000
Duration at 100% Availability [s]
DHHT (Det., Det.) -~

DHHT (Multi)
WS (Head)

DHHT (Rnd., Rnd.) —+—
DHHT (Rnd., Det.)
DHHT (Det., Rnd.) - ---

dito, sleeping -- -®

3500 4000

WS (Tail)

dito, sleeping -+~

Figure A.138: Actual maximum duration of processes in experiment 46.
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Figure A.139: Actual average duration of jobs in experiment 46.
1000000 . T . T T
/‘IJ ; ; ;
900000 [--rvrvrvrtorr S ——
Vs
800000 |- v e T T
/J
700000 |- ]
o
600000 |- L S WO S S AU, ——8
!
500000 |- e S T
400000 T B e
!/J
0 T L P
/
200000 -pa{f rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
100000 O O SO AT SO OUNS AT
0 | | | | |
0 100000 200000 300000 400000 500000 600000 700000
Release Time [s]
DHHT (Rnd., Rnd.) —— DHHT (Det., Det.) WS (Tail) - - - -

DHHT (Rnd., Det.)

DHHT (Det, Rnd.)

DHHT (Multi)
WS (Head)

Figure A.140: Pending time of jobs in experiment 46.



A.4 Type C, Overload
20000 T T T T T T T x
; o
18000 -
16000 ///ﬁ -
= 14000 1
\%, 12000 1
o
o =]
5 L0000 [ 1
S
° 8000 |- 1
S B
Q
< 6000 - = 1
4000 S SR 4
e
2000 -
0 i i i i i i i
0 500 1000 1500 2000 2500 3000 3500 4000
Duration at 100% Availability [s]
DHHT (Rnd., Rnd.) —+— DHHT (Det., Det.) & dito, sleeping -- -®
DHHT (Rnd., Det.) DHHT (Multi) WS (Tail) —=—
DHHT (Det., Rnd.) ------ WS (Head) dito, sleeping - +-

Figure A.141: Actual average duration of processes in experiment 47.
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Figure A.142: Actual maximum duration of processes in experiment 47.
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Figure A.143: Actual average duration of jobs in experiment 47.
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Figure A.144: Pending time of jobs in experiment 47.
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Figure A.145: Actual average duration of processes in experiment 48.
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Figure A.146: Actual maximum duration of processes in experiment 48.
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Figure A.147: Actual average duration of jobs in experiment 48.
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Figure A.148: Pending time of jobs in experiment 48.
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Figure A.149: Actual average duration of processes in experiment 49.
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Figure A.150: Actual maximum duration of processes in experiment 49.
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Figure A.151: Actual average duration of jobs in experiment 49.
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Figure A.152: Pending time of jobs in experiment 49.
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