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Abstract

The analysis of transport phenomena – such as the detection and tracking

of coherent structures – plays a crucial role in many applications, e. g. in

the investigation of gyres and eddies in the ocean. In order to treat coherent

structures of dynamical systems so-called transfer operator methods have been

developed during the last years and extended in order to approximate transport

phenomena in non-autonomous dynamical systems and related applications.

These methods all have in common that they involve long-term simulations

of trajectories on the whole state space which are computationally expensive.

In this thesis, we develop efficient algorithms for the detection of coherent

structures and present theoretical results in this context.

Transfer operators naturally fulfill the so-called cocycle property which does

not generally hold for transition matrices which are the corresponding finite-

dimensional representations of transfer operators. However, we use products of

transition matrices to approximate single transfer operators. We successfully

elaborate this approach and prove that the cocycle property holds under certain

conditions.

In non-autonomous dynamical systems so-called coherent pairs are slowly

mixing time-dependent structures in state space. In principle, for the detection

of coherent pairs it is sufficient to focus on a region of the state space containing

a coherent pair as opposed to the whole state space which in comparison

considerably decreases the numerical effort. A priori it is not obvious in which

part a coherent pair is contained. We formulate an algorithm that preselects

a part of the state space as a candidate set containing a coherent pair and

thereby significantly reduces the related numerical effort. In detail, we prove

that if the transport process is slow enough transport phenomena over a fixed

(long) time horizon imply the existence of almost invariant sets over shorter

time intervals.



The novel results and algorithms obtained in this thesis allows one to analyze

transport phenomena in oceanic fluid flow. As an application, we present the

first three-dimensional study of a single Agulhas ring over a sufficiently long

time interval. From a superior point of view, these results give rise to a new

perspective on the analysis of oceanic structures.
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Zusammenfassung

Die Analyse von Transportphänomenen – wie etwa die Identifikation kohärenter

Strukturen – spielt eine wichtige Rolle in vielen Anwendungen, zum Beispiel

bei der Untersuchung von Ozeanwirbeln. Um kohärente Strukturen im Kontext

dynamischer Systeme zu behandeln, wurden in den letzten Jahren sogenannte

Transferoperator-Methoden entwickelt. Diese sind unter anderem für die Appro-

ximation von Transportphänomenen in nicht-autonomen dynamischen Systemen

erweitert worden. All diesen Methoden liegen rechenintensive Simulationen von

Trajektorien im gesamten Phasenraum zugrunde. In dieser Arbeit werden so-

wohl effiziente Algorithmen zur Identifikation kohärenter Strukturen entwickelt

als auch theoretische Ergebnisse in diesem Zusammenhang präsentiert.

Transferoperatoren erfüllen auf natürliche Weise die sogenannte Kozykel-Ei-

genschaft. In dieser Arbeit werden deshalb Produkte von Übergangsmatrizen

verwendet um Transferoperatoren zu approximieren. Dieser Ansatz wird ausge-

arbeitet und erfolgreich angewendet. Zudem wird bewiesen, dass die Kozykel-

Eigenschaft unter bestimmten Umständen auch für Übergangsmatrizen gilt.

Kohärente Paare im Kontext nicht-autonomer dynamischer Systeme sind Struk-

turen, die sich nur langsam mit dem übrigen Phasenraum durchmischen.

Grundsätzlich ist es sinnvoll, sich für die Approximation kohärenter Paare

auf einen Teil des Phasenraumes zu beschränken, um den numerischen Aufwand

zu verringern. A priori ist es jedoch nicht offensichtlich, in welchen Bereichen

des Phasenraumes sich ein kohärentes Paar befindet. In dieser Arbeit wird ein

Algorithmus formuliert, welcher Bereiche identifiziert, die ein kohärentes Paar

enthalten und damit signifikant den numerischen Aufwand reduziert. Es wird ge-

zeigt, dass hinreichend langsame Transportprozesse über einen festen Zeitraum

die Existenz fast-invarianter Mengen über kurze Zeitintervalle implizieren.

Diese neuartigen Ergebnisse und Algorithmen erlauben die Analyse von Trans-

portphänomenen im Ozean. Als Anwendung wird die erste drei-dimensionale



Untersuchung eines Agulhas-Ringes dargestellt. Aus diesem Blickwinkel her-

aus zeigen diese Ergebnisse eine neue Perspektive für die Analyse von Trans-

portphänomenen im Ozean auf.
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CHAPTER 1

Introduction

In nature, we are faced with countlessly many complex processes that change

their behavior over time: the wind blowing on the earth – for instance – or the

currents flowing in the ocean. In many situations, the related transport of mass

is significant. The climate, for example, is directly affected by the transport

of heat by the wind and the currents in the ocean. Both the atmosphere and

the ocean consist of different thermal zones, which are subject to temporal

variation as the seasons change. In fact, the transport of heat between these

thermal zones is little. The study of such zones or – more generally – structures

interacting weakly with their environment is relevant in many applications.

Similar phenomena also arise in the ocean in form of eddies – for instance –

capturing pollutant over long periods of time.

In this thesis, we focus on such types of structures induced by various kinds of

processes and develop numerical tools for their efficient approximation. In nature

and sciences the underlying processes are generally driven by deterministic

principles: Scientific experiments are subject to physical laws, particles in the

ocean move according to the oceanic fluid flow.

In the following, we outline the thesis by introducing the main concepts our

subsequent considerations are based on.
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Chapter 1 Introduction

Dynamical Systems

The notion of dynamical systems provides a formal framework for the mathe-

matical modeling of various kinds of processes. They formally consist of a set

T representing time, a set X of states and an evolution law

φ : X × T× T→ X

describing the behavior of the system in time. Mathematically, φ is required to

fulfill certain fundamental conditions. The evolution law maps a state x ∈ X
at time t ∈ T to the state φ(x, t, τ) ∈ X after τ ∈ T time-units. Time can be

modeled in a general way by an arbitrary driving system on T. However, in

this thesis we restrict to the time shift στ (t) = t+ τ which is a natural choice

when dealing with real-world applications, i. e. t + τ is the point in time we

arrive at when starting at time t ∈ T and passing τ time-units.

In mathematics, dynamical systems are treated in divers settings. We dis-

tinguish between autonomous and non-autonomous dynamical systems. Au-

tonomous dynamical systems only depend on a state x and the duration τ , but

not on the time instant t the process starts at: this translates to the fact that

the evolution law φ does not explicitly depend on time. However, real world

processes are often subject to time-dependence, thus in many cases autonomous

dynamical systems are not suitable to describe the dynamical phenomena ade-

quately. Such systems can be modeled as so-called non-autonomous dynamical

systems which explicitly depend on time in contrast to autonomous dynamical

systems. For an overview on dynamical system theory we refer to the textbooks

[ASY00, BS02, Den05, KH97].

Coherent Structures in Dynamical Systems

Transport in dynamical systems is characterized by coherent structures which

are minimally mixing structures in state space. There mainly exist two distinct

approaches to the numerical approximation of coherent structures, the proba-
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bilistic approach and the geometric approach. A first comparison of both can

be found in [FP09].

In the geometric approach, barriers of transport are identified. In autonomous

systems, invariant objects such as invariant manifolds directly form transport

barriers which cannot be crossed by trajectories, whereas in the non-autonomous

case, hyperbolic structures, so-called Lagrangian coherent structures, which can

be thought of as time-dependent invariant material curves or surfaces, act as

time-dependent barriers of transport. For a detailed introduction, we refer to

[Hal00] and [HY00]. To analyze transport in the special but important situation

of periodically driven non-autonomous dynamical systems, the concept of lobe

dynamics of invariant manifolds can be used [MW98]. Recently, a more general

concept has been developed characterizing transport barriers as time-dependent

curves experiencing minimal stretching in state space [HB12]. The geometric

approach has been followed for a variety of applications, e. g. the investigation

of blood-flow [ST08] or the analysis of the particle dynamics in a hurricane

[dM10].

In this thesis, we focus on the probabilistic approach, which is developed to

directly detect slowly mixing structures. These structures are characterized

by the probability that trajectories leave the structure within a certain time

horizon. Instead of studying the evolution of single states we study the evolution

of distributions of particles in state space and the corresponding evolution of

the whole distribution with respect to the underlying dynamics. This approach

is successfully applied in a variety of situations, e. g. for the identification of

slowly mixing structures in the stratospheric polar vortex [FSM10, SFM10] or in

the oceanic fluid flow [DFH+09, FHR+12, FPET07, FSPD08]. An overview of

the probabilistic approach for the autonomous case can be found in [DFHP09]

and for the non-autonomous case in [Fro13].
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Chapter 1 Introduction

Coherence Ratio

In particular, our interest focuses on the statistical long-term behavior of

dynamical systems. We are especially interested in regions in the ocean in

which plankton remains over a sufficiently long time. From the dynamical

systems point of view, we aim to uncover subsets A1, A2 of the set X of states

for which the probability is high that a state of the set A1 will be in A2 after

a fixed time. To identify such sets we analyze the probability of ending up in

A2 after starting in A1 at time t and flowing τ time-units. More precisely, we

define the coherence ratio

ρτt (A1, A2) =
m(A1 ∩ φ(A2, t+ τ ,−τ))

m(A1)

of two subsets A1 and A2 of the state space, where m denotes the Lebesgue

measure on X. This notion of coherence is used to define coherent pairs in

non-autonomous systems [FSM10] and goes back to the definition of almost

invariant sets in autonomous systems [DJ99].

Since the flow of particles within the oceanic domain can be described by a

dynamical system, the search for subsets A1 and A2 with coherence ratio close

to one can be interpreted as follows: Water particles released in A1 at a specific

time end up in the set A2 with a high probability after flowing over a fixed

time. Consequently, this concept can be used to describe oceanic structures

like eddies and gyres (cf. e. g. [DFH+09, FHR+12, FPET07, FSPD08]). Other

examples for applications are hurricanes which also transport particles over a

specific period of time through the atmosphere (cf. for instance [dM10]).

Transfer Operators

The distribution of particles in the state space X at time t ∈ T can be

mathematically described by a measure µt : B(X)→ R on the Borel-σ algebra

B(X) of X or, if it exists, by its corresponding density. Figure 1.1a shows

the density of a measure on a state space X. The coloring describes the
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concentration of mass where the red region indicates a high concentration of

mass, while the blue region represents a comparatively low concentration.

The main tool we make use of in this thesis is the so-called transfer operator

Pτt :M(X)→M(X) of a dynamical system for t, τ ∈ T, whereM(X) denotes

the space of signed measures on the state space X. This operator describes the

evolution of measures or densities on X with respect to the evolution law φ.

Let µt be a measure describing the distribution of mass at time t ∈ T, then the

measure

Pτt µt = µt+τ ,

describes the distribution of mass at time t+ τ . This operator is used in the

autonomous as well as in the non-autonomous case for the study of transport

phenomena and it naturally induces a dynamical system on the set of measures.

A measure µ that satisfies Pτt µ = µ for all t, τ ∈ T is called an invariant

measure of the underlying dynamical system. Such measures, if they exist, give

rise to physically meaningful distributions of states in state space. These are

studied in [BP02, LY73], for instance. However, we are interested in measures

which are not strictly fixed but very persistent under the application of the

transfer operator. Let us consider the density shown in Figure 1.1a: if we apply

the transfer operator Pτt to the corresponding measure for fixed t, τ ∈ T, we

obtain a distribution of mass at time t + τ described by a density which is

shown in Figure 1.1b. It is easily seen that the initial concentration of mass on

the left side of the state space at time t is transported to a final concentration

of mass on the right side of the state space at time t + τ . In this thesis, we

aim at the numerical identification of measures exhibiting a slow decay and,

therefore, as will be seen later, indicate by their level-sets the presence of

persistent structures.
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Figure 1.1: Densities of measures on the state space X describing
the distribution of mass on X at time t (a) and time
t + τ (b). The coloring relates to the concentration
of mass where red indicates a high concentration and
dark blue a vanishing concentration of mass.
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Transition Matrix

For the numerical treatment of the transfer operator Pτt , the computation of a

finite-dimensional representation is necessary. This is realized by projecting the

infinite-dimensional space of measures to a suitable finite-dimensional space and

we then numerically obtain the matrix representation of Pτt on the according

projected space which also works in the non-autonomous case. This ansatz

goes back to Ulam [Ula60]. For instance, in [JK09], a certain Haar basis is

considered. However, the most common way is to project the space of measures

to the space of piecewise constant functions on a partition of X and to calculate

the matrix representation which we refer to as the transition matrix P t,τ (cf.

e. g. [DJ99]). The entries of the matrix P t,τ represent the probability for

ending up in one partition element when starting in another partition element.

In the autonomous case, it is also possible to approximate the corresponding

finite-dimensional generator [FJK13].

Numerical Analysis of Transport

The interpretation of the evolution of a dynamical system in the context

of measures and their corresponding transfer operators with respect to the

dynamics has led to the development of a variety of methods to analyze transport

phenomena. In the autonomous case almost invariant sets can be identified

which are subsets of the state space with a coherence ratio close to one. It

is shown by Dellnitz et al. [DJ99] that a closed level-set of an eigenmeasure

corresponding to an eigenvalue close to one of the transfer operator Pτ defines

an almost invariant set. This approach has been successfully used to identify

almost invariant sets in engineering applications like Chua’s circuit (cf. [DJ97])

as well as in real world applications like the solar system (cf. [DJL+05]).

The transition matrix corresponding to a transfer operator induces a finite

Markov chain in a natural way and therefore we can apply methods developed

for the analysis of Markov chains to analyze transport phenomena in the

underlying dynamical system. With this notion, it is also possible to obtain

7



Chapter 1 Introduction

results on the eigenvectors of eigenvalues close to one of the transition matrix

(cf. [FD03]). Based on the transition matrix one can also calculate rates of

transport between two different regions in the state space. This has been used

for example in [DJL+05] to analyze transport rates of asteroids in the solar

system. In that contribution, also graph partitioning algorithms are utilized to

analyze the graph induced by the transition matrix to identify regions in state

space which are characterized by relatively little mixing with their surrounding.

The results obtained in the autonomous case have been extended to the approx-

imation of transport phenomena in non-autonomous dynamical systems in the

last years. As an example, spatially fixed structures can be identified as almost

invariant sets in non-autonomous dynamical systems. A fully three-dimensional

study of the subpolar gyres can be found in [DFH+09] which is based on the

methods presented in this thesis. Furthermore, coherent pairs have been intro-

duced by Froyland et al. [FSM10] which have to be viewed as a generalization

of almost invariant sets in a non-autonomous framework. Such pairs of sets are

characterized by a large coherence ratio. It is shown that the corresponding

structures can be uncovered by singular vectors of singular values close to one

of the normalized transition matrix. However, these structures often appear

over large time horizons and therefore the transition matrix over a long time

horizon has to be calculated which is numerically very expensive.

Outline and Contribution

The purpose of this thesis is to obtain theoretical results as well as to design effi-

cient methods for the approximation of transport phenomena in non-autonomous

dynamical systems based on transfer operators. There is a definitive need for

such methods, since state-of-the-art methods rely on long-term simulations

of the dynamical system which are numerically extremely costly. We exploit

certain properties of the transfer operator and deal with products of transition

matrices for the accurate approximation of transport phenomena. In this

context, we obtain an error bound. Additionally, this approach can be used to

visualize the pathways of transport. Also, we combine the concept of almost

8



invariant sets and coherent pairs to efficiently calculate coherent structures in

non-autonomous dynamical systems. A theoretical result is presented describing

this relation as well as a successful application of the developed techniques to

the oceanic fluid flow to identify slowly mixing structures like eddies and gyres.

This application is the first three-dimensional study of oceanic structures and

gives a new perspective for the analysis of oceanic processes. Thereby, this

thesis yields a relevant contribution to the efficient numerical approximation

of coherent structures in non-autonomous dynamical systems as well as their

application to the oceanic fluid flow.

The outline of this thesis is as follows: In Chapter 2 we begin by formally

introducing autonomous and non-autonomous dynamical systems and present

some basic ergodic theoretic concepts. In particular, we introduce the concept of

transfer operators for dynamical systems and describe a relevant approximation

method.

The concepts we apply in this thesis in order to analyze transport in dynamical

systems are formally described in Chapter 3. After we have introduced the

coherence ratio of two subsets in the state space of a dynamical system, we

embed almost invariant sets in the non-autonomous setting and discuss the

definition of coherent pairs and corresponding state-of-the-art methods for their

detection.

It is the purpose of Chapter 4 to introduce a novel method for the approxima-

tion of transport phenomena over a sufficiently long time interval. We make use

of the cocycle property of transfer operators in order to approximate a transfer

operator by a product of transition matrices over even shorter time intervals.

The single transition matrices can be calculated very efficiently and we avoid

the explicit calculation of the product for the calculation of eigenvalues and

singular values. It is shown that under certain assumptions a single transition

matrix can be considered as a product of transition matrices. We conclude the

chapter by introducing a novel algorithm to achieve this splitting automatically

and show the effectiveness of the method by an example.

9
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We prove in Chapter 5 that coherent pairs in non-autonomous dynamical

systems imply the existence of almost invariant sets over short time intervals

under some weak assumptions. Based on this theoretic result a novel algorithm is

proposed that firstly approximates almost invariant sets and secondly identifies

coherent pairs within these almost invariant sets. The efficiency of this method

is demonstrated by an example where we can reduce the computational effort

significantly. The results of this chapter have already been published in [DH12].

The theoretical results of the previous chapters and the developed algorithms

enable us to analyze transport phenomena within the oceanic fluid flow. This

is presented in Chapter 6. Here, we document two successful applications of

our results: The first one is the first fully three-dimensional investigation of

the subpolar gyres and the second one is the first three-dimensional study of a

single Agulhas ring over a sufficiently long time interval.

We conclude the thesis with Chapter 7 by summarizing the results and

discussing further directions of research.

10



CHAPTER 2

Dynamical System Theory - Basic

Concepts

In this chapter, we set up the notation and terminology of dynamical system

theory used in this thesis. For a comprehensive overview of dynamical system

theory, we refer to [ASY00, BS02, Den05, KH97]. In Sections 2.1 and 2.2 we

begin with a brief exposition of autonomous and non-autonomous dynamical

systems, following [Arn98, Den05, KKS99, KS97]. For the treatment of non-

autonomous dynamical systems, we introduce the general concept of cocycles

which allows us to study both continuous and discrete systems. Beside math-

ematical notation, we discuss how cocycles can be generated using ordinary

differential equations and difference equations. Section 2.3 provides a short

exposition of ergodic theory. Here, we define basic measure-theoretic concepts

and present their relation to the long-term behavior of dynamical systems.

In the last section, we introduce transfer operators on a measure space and

discuss some properties which will be important in Chapter 3 for the analysis

of transport. Moreover, we provide a finite-dimensional approximation for the

numerical treatment.

11



Chapter 2 Dynamical System Theory - Basic Concepts

2.1 Autonomous Dynamical Systems

In this section, we introduce the terminology of time-independent (autonomous)

dynamical systems following [Den05] even though it is not the purpose of this

thesis to study autonomous systems. However, as we will see later, results

from the autonomous case can be used for the efficient treatment of transport

phenomena in non-autonomous dynamical systems. We start with a basic

definition:

2.1 Definition (Autonomous Dynamical System): A family of mappings σ =

{σt : X → X}t∈T on a non-empty set X, where (T,+) is a (semi)group, is

called an autonomous dynamical system if

1. σ0 = idX and

2. σt1+t2 = σt1 ◦ σt2 ∀t1, t2 ∈ T

are satisfied.

In the following, we will represent an autonomous dynamical system by the

tuple (σ,X,T), where X denotes the state space, T the time and σ is called

the evolution of the autonomous dynamical system. Throughout this thesis,

the time T will be additive and either continuous, (R,+), or discrete, (Z,+).

Furthermore, by T+ we denote the positive elements of R or Z, respectively.

2.2 Remark (Continuous Autonomous Dynamical Systems): Consider an

ordinary differential equation

ẋ = f(x), (2.1)

where f : X → Rm is a vector field on an m-dimensional vector space X.

Assume that for every initial condition x(0) = x0, x0 ∈ X, there exists a

unique solution x : R→ X of Equation (2.1). Then ({σt : X → X}t∈R, X,R),

12



2.1 Autonomous Dynamical Systems

with σtx0 = x(t) represents a continuous autonomous dynamical system. By

σtx0 we denote the endpoint of a trajectory starting in x0 after flowing for t

time-units. The autonomous dynamical system ({σt : X → X}t∈R, X,R) reflects

the dynamics induced by the ordinary differential equation (2.1).

2.3 Remark (Discrete Autonomous Dynamical Systems): Let T : X → X be

a mapping on a non-empty set X. Then ({σt : X → X}t∈Z+ , X,Z+) with

σt : X → X, σtx = T t(x)

represents a discrete autonomous dynamical system.

The following simple example of a continuous dynamical system will be repeat-

edly revisited throughout this thesis – in particular in Chapter 5 to illustrate

an efficient algorithm for the approximation of transport.

2.4 Example: Let us consider the following ordinary differential equation on

the state space X = [0, 2π]× [0, π]:

ẋ = A sin(x− νt) cos(y) + ε sin(2t)G(g(x, y, t)),

ẏ = cos(x− νt) sin(y)
(2.2)

where G(z) = 1
(z2+1)2

and g(x, y, t) = −2 sin(x− νt) sin(y)− π
4

+ y
2
.

Let us fix the parameters ν = 0, A = −2 and ε = 0. Then, the system (2.2)

becomes autonomous and generates a simple double-gyre flow. Figure 2.1 shows

the vector field of the ordinary differential equation (2.2). As described in

Remark 2.2, the ordinary differential equation defines a continuous autonomous

dynamical system.

This system is a slight modification of a differential equation which has been

studied in [FLS10] with a nonzero parameter ν ∈ R. A similar system has also

been considered in [SLM05], for instance, as a simplification of a double-gyre

13
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Figure 2.1: Vector field of the autonomous dynamical system de-
fined by the ordinary differential equation (2.2) in
Example 2.4.

pattern that often occurs in geophysical flows.

There are a variety of techniques for the analysis of autonomous dynamical

systems. However, their detailed discussion will exceed the scope of this thesis,

where our interest – in fact – mainly focusses on non-autonomous dynamical

systems.

2.2 Non-Autonomous Dynamical Systems

In many applications, the evolution of the underlying dynamical system itself

is subject to temporal changes. For example, the oceanic fluid flow explicitly

depends on time. Such systems can be modeled as so-called non-autonomous

dynamical systems which depend – in contrast to autonomous systems – on

14
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an additional temporal parameter. In a more general setting, this dependence

can also be interpreted as a random behavior of the underlying dynamics and

thus, from that point of view, non-autonomous dynamical systems are closely

related to random dynamical systems (cf. [Arn98]). In the following, we provide

a formal definition of a non-autonomous dynamical system which follows the

ones in [KS97, KKS99].

2.5 Definition (Non-Autonomous Dynamical System): A non-autonomous

dynamical system on a non-empty state space X is given by an autonomous

dynamical system (σ,Ω,T) and a map φ : T+ × Ω×X → X which satisfies the

cocycle property, i. e.

1. φ(0, ω, ·) = idX , and

2. φ(t+ t′, ω, ·) = φ(t, σt′ω, φ(t′, ω, ·)),

for all t, t′ ∈ T+, ω ∈ Ω, and x ∈ X.

For the simplicity of notation, we write φtω(x) instead of φ(t, ω, x). Note that

the cocycle is only defined on T+. If the cocycle is invertible, i. e. the map

φ(−t, ω, ·) exists for all t ∈ T+ and ω ∈ Ω, then φ can be defined for all t ∈ T.

According to the preceding definition, a non-autonomous dynamical system

is given by the tuple (φ,X, (σ,Ω,T)), where time is controlled in terms of

an autonomous dynamical system (σ,Ω,T) which is often referred to as the

so-called driving system. This construction has technical reasons and is of

principal importance in the context of the Multiplicative Ergodic Theorem (cf.

[Arn98] and [FLQ09]). However, in many real world examples, e. g. the oceanic

fluid flow (cf. Chapter 6), the autonomous dynamical system which keeps track

of the time is given by (σ,T,T), with T = R for the continuous case or T = Z
for the discrete case and with σts = t + s for all t, s ∈ T. All applications

studied in the following fall into this category and thus, for the remainder of this

thesis, we will always assume that the underlying driving system is of such a

15



Chapter 2 Dynamical System Theory - Basic Concepts

simple form. Therefore, unless stated otherwise, we identify a non-autonomous

dynamical system with the triple (φ,X,T), where φ denotes the cocycle, X the

state space and T = R or T = Z the time set.

In an analogous manner as in Remarks 2.2 and 2.3, non-autonomous dynamical

systems are generated for example by ordinary differential equations or difference

equations.

2.6 Remark (Continuous Non-Autonomous Dynamical Systems): Consider a

non-autonomous ordinary differential equation

ẋ = f(x, t), (2.3)

where

f : X × R→ Rm

is a time-dependent vector field on a m-dimensional vector space X. Let f

be sufficiently smooth such that for every initial condition x(t0) = x0, x0 ∈
X, t0 ∈ R, there exists a unique solution x : R→ X. Then, the triple (φ,X,R)

with φ : R× R×X → X defined by φτt0(x0) = x(τ) represents a (continuous)

non-autonomous dynamical system which satisfies the cocycle property (cf.

[Arn98]).

2.7 Remark (Discrete Non-Autonomous Dynamical Systems): Let

xn+1 = fn(xn),

where fn : Rm → Rm (n ∈ Z) are invertible continuous mappings. Then
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(φ,Rm,Z) with

φ : Z× Z× Rm → Rm, φrl (x) =


(fl+r−1 ◦ . . . ◦ fl+1 ◦ fl)(x) for r ≥ 1,

x for r = 0

(f−1
l−(r+1) ◦ . . . ◦ f

−1
l−1 ◦ f

−1
l )(x) for r ≤ −1

represents a (discrete) non-autonomous dynamical system which again satisfies

the cocycle property.

2.3 Ergodic Theory

The tools we make use of in this thesis for the treatment of transport phenomena

have in common that they consider distributions of trajectories on the state

space rather than single trajectories. Therefore, these techniques are suitable

for the study of mass transport in state space. In this section, we introduce the

relevant ergodic theoretical background which allows us to study the long-term

behavior of dynamical systems. For an overview of classical ergodic theory, we

refer to [BS02], [KH97] and [Nad98]. Additionally we refer to [Doo94] for an

overview of measure theory. The relevance of these concepts for the treatment of

transport phenomena is emphazised – for instance – by a series of publications

[DJ99, DJK+05, FD03, FLQ09, FPET07, FSM10, HS05, SHD01]. We discuss

the corresponding techniques in Chapter 3.

For a quantitative study of the evolution of mass in a dynamical system, it is

sufficient to provide a framework for the statistical distribution of trajectories in

the state space. The remainder of this section relies on a given non-autonomous

dynamical system (φ,X, (σ,Ω,T)), where (σ,Ω,T) is an autonomous dynamical

system. Furthermore, we assume that X and Ω are metric spaces and we

denote by B(X) or B(Ω) the Borel-σ algebra of X and Ω, respectively. We call

a function µ : B(X),B(Ω)→ R a measure on B(X) and B(Ω), respectively, if

it is countably additive, i. e. µ(∪i∈IEi) =
∑

i∈I µ(Ei) holds for all countable
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collections {Ei}i∈I of pairwise disjoint sets in B(X) and B(Ω). We denote by

MB(X) and MB(Ω) the set of measures on B(X) and B(Ω), respectively.

Moreover, by

M(X) = {µ|µ ∈MB(X), µ(X) <∞},

we denote the set of bounded signed measures on X. The setM(X) is a linear

space and can be equipped with the variational norm which is given by

‖µ‖V = sup
n∑
k=1

|µ(Ei)|, (2.4)

for a measure µ ∈M(X), where the supremum is taken over all finite decompo-

sitions {E1, . . . , En} into pairwise disjoint measurable subsets of the state space

X. The norm properties are proven in [Rud87], for example. Later, we define

an operator on M(X) which describes the temporal development of measures

on the state space of a dynamical system.

Descriptively speaking, a measure describes the statistical distribution of tra-

jectories in the state space of the according dynamical system. For an under-

standing of the long-term behavior of the system, it is important to identify

the distribution of trajectories as time goes to infinity. Let us first consider the

autonomous case. The measure µ given by

µ(A) = lim
τ→∞

#{σt(x) ∈ A : 0 ≤ t < τ}
τ

for Lebesgue almost all x ∈ X, is called physical invariant measure and appears

in the Ergodic Theorem of Birkhoff (cf. [Nad98]). If it exists, it is left invariant

under the evolution of the dynamical system.

2.8 Definition (Invariant Measure for Autonomous Dynamical Systems): We

call µ ∈ MB(Ω) an invariant measure of an autonomous dynamical system

(σ,Ω,T) if µ ◦ σ−τ = µ for all τ ∈ T.
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The existences of invariant measures for continuous στ is summarized in the

Krylov-Bogolubov theorem (cf. [BS02]) and a proof for the existence of piecewise

continuous στ can be found in [LY73]. The numerical approximation of invariant

measures has been the subject of several publications (cf. e. g. [Hun94, DJ99]).

These measures can be identified, for instance, as fixed points of the so-called

transfer operator which will be introduced in the next section.

For the more general non-autonomous case (cf. [Arn98]), the definition of an

invariant measure can be extended as follows:

2.9 Definition (Invariant Measure for Non-Autonomous Dynamical Systems):

We call a measure µ on X × Ω an invariant measure of a non-autonomous

dynamical system (φ,X, (σ,Ω,T)), if the map

Θ(τ) : X × Ω→ X × Ω, (x, t) 7→ (φτt (x), στ t)

preserves the measure µ, i. e. µ ◦Θ(−τ) = µ for all τ ∈ T.

In general, the measure µ explicitly depends on time. However, in many

examples, especially the oceanic fluid flow (cf. Chapter 6), the three-dimensional

volume measure is preserved all the time. Thus, in the following we restrict

to measures in M(X) which are independent of time. The map Θ(τ) for

a τ ∈ T is also called the skew-product of the non-autonomous dynamical

system (φ,X, (σ,Ω,T)). A discussion of the existence of invariant measures of

a non-autonomous dynamical system as well as a discussion of skew-products

can be found in [Arn98].

2.4 Transfer Operators

In this section we introduce the concept of transfer operators which provide

a powerful tool for the approximation of transport phenomena in dynamical
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systems (cf. for instance [DJ99, Fro05] and the references therein). The transfer

operator can be defined on the space of bounded signed measures M(X)

and it can be used to describe the temporal development of a distribution of

trajectories in the state space of a dynamical system. In the remainder of this

section, we consider the case that the underlying non-autonomous dynamical

system is given by (φ,X,T) and that the map x 7→ φτt (x) is continuous.

2.10 Definition (Transfer Operator): The transfer operator Pτt : M(X) →
M(X) of a non-autonomous dynamical system (φ,X,T) is given by

Pτt µ(A) = µ(φ−τt+τ (A)) ∀A ∈ B(X), t ∈ T, τ > 0.

For an arbitrary non-autonomous dynamical system, the cocycle is not necessar-

ily invertible and thus, we denote by φ−τt+τ (A) the pre-image of a set A ⊂ X. We

also note that, therefore, the transfer operator itself is not necessarily invertible

in general. It is also possible to define the transfer operator Pτt on the space of

Lebesgue-integrable functions L1(X) on the state space X by∫
A

Pτt fdm =

∫
φ−τt+τ (A)

fdm ∀A ∈ B(X).

If f ∈ L1(X) is the density of a measure µ, then the two definitions are

equivalent. Furthermore, if f describes the distribution of mass at time t in

the state space X, then the image Pτt f describes the distribution of the initial

mass after applying the cocycle of the dynamical system over time τ .

Some basic properties of the transfer operator are summarized in the following

lemma:

2.11 Lemma (Properties of Transfer Operators): Let (φ,X,T) be a non-

autonomous dynamical system and Pτt for t, τ ∈ T the corresponding transfer

operator. Then the following holds:
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1. Pτt is linear.

2. A measure ν ∈M(X) is a fixed point of Pτt , i. e. Pτt ν = ν, if and only

if ν is an invariant measure.

3. For an eigenmeasure1 ν ∈M(X) with corresponding eigenvalue λ 6= 1 of

Pτt , one has ν(X) = 0 because

λν(X) = (Pτt ν)(X) = ν(φ−τt+τ (X)) = ν(X), ∀t, τ ∈ T. (2.5)

Moreover, the transfer operator naturally inherits the properties of the one-sided

cocycle of the dynamical system (cf. [FLQ09]).

2.12 Proposition (Transfer Operator Cocycle): For a given non-autonomous

dynamical system (φ,X,T), the transfer operator satisfies the one-sided cocycle

property.

Proof.

P0
t µ(A) = µ(φ0

t (A)) = µ(A), ∀µ ∈M(X), A ∈ B(X), t ∈ T,

and

Pτ1+τ2
t µ(A) = µ(φ

−(τ1+τ2)
t+τ1+τ2 (A))

= µ(φ−τ1t+τ1(φ
−τ2
t+τ1+τ2(A)))

= Pτ1t µ(φ−τ2t+τ1+τ2(A))

= Pτ2t+τ1(P
τ1
t µ(A)) ∀µ ∈M(X), A ∈ B(X),∀t ∈ T, τ1, τ2 ∈ T+

1For an eigenvalue λ of a transfer operator Pτt , we call µ the corresponding eigenmeasure if
Pτt µ = λµ holds.

21



Chapter 2 Dynamical System Theory - Basic Concepts

Therefore, the tuple (φ̃,M(X),T) with φ̃τt (ν) = Pτt ν for all t, τ ∈ T defines a

non-autonomous dynamical system which can be analyzed using dynamical

system theory.

Finite-Dimensional Approximation

In this thesis, we focus on the approximation of transport phenomena. However,

we will see later that the information on spectral properties is crucial for

the understanding of transport processes. In order to extract such spectral

properties of the transfer operator Pτt of a non-autonomous dynamical system,

we have to approximate Pτt by a finite-dimensional representation.

There are several approaches to obtain a finite-dimensional representation. They

all rely on the same ansatz which goes back to Ulam [Ula60]. The most common

one is to calculate the finite-dimensional representation of a transfer operator

on a space of piecewise constant functions (cf. e. g. [DJ99]). Here, one has to

numerically compute transition probabilities between disjoint subsets of the

state space which can be carried out either by a Monte-Carlo approach [Hun94]

or by an exhaustion technique if the map x 7→ φτt (x) is locally Lipschitz [DFJ01].

Instead of piecewise constant functions, one can consider a certain Haar basis

for the finite-dimensional representation of the transfer operator (cf. [JK09]).

Alternatively, for autonomous dynamical systems, instead of approximating

the transfer operators Pτ for each fixed τ individually, one can approximate

the so-called generator of the semi-group induced by the transfer operators

{Pτ}τ∈T (cf. [FJK13]).

In the following we give a brief overview of the most natural approximation

method, which we use for the algorithms in this thesis following [DJ99]. The

starting point is a partition of the state space X into N ∈ N disjoint subsets

B = {B1, . . . , BN}. For simplicity, we assume that the subsets in B are n-

dimensional boxes with n = dim(X). The partition into boxes can be efficiently

carried out with the software package GAIO [DFJ01] which successively bisects
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the state space into boxes using a binary tree for the storage. The partition

is the discrete structure in which we look for coherent structures, e. g. unions

of subsets A = ∪i∈IBi which have little mixing with their surrounding. To

obtain a good approximation, the sets in the partition have to be chosen

sufficiently small. Then, we define for each i ∈ {1, . . . , N} indicator functions

χBi : X → R, with χBi(x) = 1 if x ∈ Bi and χBi(x) = 0 otherwise. The space

N = span{ 1
m(B1)

χB1 , . . . ,
1

m(BN )
χBN} spanned by the indicator functions of a

partition can be interpreted as a finite-dimensional space of densities on the

state space. Furthermore, we calculate the finite-dimensional representation of

Pτt on N using the projection π : L1(X)→ N with

πf =
N∑
i=1

1

m(Bi)
χBi

∫
Bi

fdm,

where m denotes the Lebesgue measure on X. The entries of the representation

matrix P t,τ ∈ RN,N of Pτt are given by

P t,τ
ij =

m(φ−τt+τ (Bi) ∩Bj)

m(Bj)
. (2.6)

These can be interpreted as the probability that a trajectory which starts in

box Bj at time t ends in box Bi after flowing τ time-units. Therefore, we

call the matrix P t,τ a transition matrix. This matrix is the finite-dimensional

representation of the transfer operator Pτt .

2.13 Remark (Markov Chain Interpretation): Consider an autonomous dy-

namical system with discrete time T = Z. If we denote the partition B as the set

of states, then P 1 defines a transition matrix of a discrete time Markov chain

(cf. [Bré99]). Additionally, such a transition matrix defines a transition graph

where the nodes are the states in B. Hence, many of the concepts described in

this thesis are inspired by results in Markov chain theory and graph theory.
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Numerical Realization

For a numerical realization of Equation (2.6), the calculation of the Lebesgue

measure of φ−τt+τ (Bi)∩Bj for each combination of two boxes in the present parti-

tion has to be performed. To this end, we apply a Monte Carlo approach as sug-

gested in [DHJR97] and approximate m(φ−τt+τ (Bi) ∩Bj) by
∑K

k=1 χBi(φ
τ
t (pj,k)),

where pj,k ∈ Bj are the so-called K ∈ N test points which are chosen on the

basis of a uniform distribution in Bj. In more detail, we form the numerical

realization

P̃ t,τ
ij =

∑K
k=1 χBi(φ

τ
t (pj,k))

K
(2.7)

of P τ
t . A crucial point in the computation of P̃ t,τ

ij is the number of test points

representing the box Bj and, therefore, the image φ(t, τ, Bi) after flowing τ

time-units. The appropriate amount of test points directly depends on the

flow time τ and therefore influences the computational effort significantly. In

Chapter 4, we develop an approach aiming at the reduction of the number

of test points without loosing accuracy in the approximation. The binary

tree representing the box partition within the software package GAIO [DFJ01]

allows a very efficient search for the box which contains a fixed state x ∈ X.

2.14 Remark: In some applications, the relevant information for the identi-

fication of transport phenomena is captured by a subset S of the state space

X and its image φτt (S). Therefore, it is not necessary to discretize the entire

state space X. In such situations, the subset S is covered by an initial partition

B = {B1, . . . , BM1} and its image under φ is covered by a second partition

C = {C1, . . . , CM2}. Consequently, the entries of the transition matrix restrict

to the probabilities that a trajectory starts within a set of the partition B and

ends within a set of the partition C. Later, we present an algorithm that prese-

lects a subset S which contains all relevant dynamical information. The benefit

is that the approximation of the transfer operator can be performed with less

computational effort on a smaller subset S than on the whole state space.
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CHAPTER 3

Transport in Dynamical Systems

The main contribution of this thesis is the development of an efficient ap-

proximation method for transport phenomena in dynamical systems and the

application of the presented algorithms. To this aim, we provide concepts for

the treatment of transport phenomena in dynamical systems in this chapter.

There mainly exist two branches, the probabilistic approach, which we are going

to make use of in this thesis and the geometric approach. An overview and a

first comparison of both can be found in [FP09].

In the geometric approach, barriers of transport are identified, e. g. by approxi-

mating finite-time hyperbolic structures which separate certain regions in state

space. In the autonomous setting, invariant manifolds directly form transport

barriers which cannot be crossed by trajectories, whereas in the non-autonomous

case, hyperbolic structures, so-called Lagrangian coherent structures, have been

identified as transport barriers. For more details, we refer to [Hal00] for the

two-dimensional and to [HY00] for the three-dimensional case. Numerically,

such structures can be approximated, in the autonomous as well as in the

non-autonomous case, by the expansion rate approach [Pad05], for example. To

analyze transport in periodically driven non-autonomous dynamical systems,

for instance, lobe dynamics of invariant manifolds can be used [MW98]. A
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more general concept consists in the identification of time dependent curves

experiencing minimal stretching in state space acting as transport barriers

[HB12].

The geometric approach has been used for a variety of applications, e. g. the

investigation of blood-flow [ST08] or the analysis of the particle dynamics in a

hurricane [dM10].

The probabilistic approach – on the contrary – focuses on the approximation of

coherent structures which are structures in state space mixing slowly with their

neighborhood. In the autonomous setting, so-called almost invariant sets can be

identified by the analysis of the transfer operator of the dynamical system. This

approach goes back to Dellnitz and Junge [DJ99] and has been successfully ap-

plied to a variety of problems e. g. to analyze transport in dynamical astronomy

[DJK+05, DJL+05]. In the time-dependent setting, the so-called coherent pairs

serve as a time-dependent analog to almost invariant sets. Similarly, the analysis

of a time-dependent transfer operator and its corresponding finite-dimensional

representation leads to the approximation of coherent pairs, which are character-

ized by the property that most of the mass is transported from one set into the

other over a fixed finite time. This approach was developed by Froyland et al.

[FSM10, SFM10]. Another concept is the approximation of the so-called Os-

eledets subspaces occurring in the Multiplicative Ergodic Theorem (cf. [Arn98]).

In more detail, Lyapunov exponents of the corresponding time-dependent trans-

fer operator cocycle are related to coherent structures in the state space of the

underlying dynamical system, cf. [FLQ09, FLS10]. Transfer operator methods

in the non-autonomous case have been successfully applied to the stratospheric

polar vortex [FSM10, SFM10] or to identify slowly mixing oceanic structures

in the oceanic fluid flow [DFH+09, FHR+12, FPET07, FSPD08].

For the analysis of transport, we make the following assumption throughout

this chapter:
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3.1 Assumption: We consider a non-autonomous dynamical system (φ,X,T)

and fix the initial time t ∈ T as well as the length of the duration τ ∈ T over

which we analyze transport phenomena.

Within this setting, we begin in Section 3.1 by introducing the coherence ratio

of two sets and use it to define and analyze autonomous coherent structures in

Section 3.2. These are minimally mixing structures which are spatially fixed

in the state space of the underlying non-autonomous dynamical system. We

proceed in Section 3.3 with the definition and identification of minimally mixing

structures which are mobile in state space. Later, in Chapters 4 and 5, we

provide an efficient approximation method for these non-autonomous coherent

structures and apply these techniques to the oceanic fluid flow in Chapter 6.

3.1 Coherence Ratio

In the autonomous as well as in the non-autonomous case, it is essential to

quantify the amount of mass transported from one structure into another. This

can be specified with respect to the physical reference measure µ ∈M(X) on

the state space X by the so-called coherence ratio.

3.2 Definition (Coherence Ratio): Let µ ∈ M(X) be a probability measure

on X. For two sets A1, A2 ⊂ X with µ(A1) > 0, the coherence ratio over the

time interval [t, t+ τ ] is defined as

ρτt (A1, A2) :=
µ(A1 ∩ φ−τt+τ (A2))

µ(A1)
.

The coherence ratio ρτt (A1, A2) for sets A1, A2 ⊂ X is bounded from above by

one. If ρτt (A1, A2) = 1 holds, all of the mass of A1 flows into the set A2 over

time τ . If ρτt (A1, A2) = 0 no mass flows from A1 to A2. The reference measure

µ is often chosen such that it is preserved by the cocycle, i. e. µ ◦ φτt (A) = µ(A)
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holds for every t, τ ∈ T and A ∈ B(X). However, the choice of the reference

measure µ depends on the underlying application: In several applications, the

Lebesgue measure is selected or the physical invariant measure (cf. Section 2.3)

of the underlying dynamical system (cf. [DJ99]) – in case it exists.

In the situations where µ is the physical invariant measure, we can numerically

approximate the coherence ratio.

3.3 Remark (Numerical Calculation of the Coherence Ratio): Let X be parti-

tioned into N ∈ N disjoint subsets BN = {B1, ..., BN}. To numerically evaluate

the coherence ratio with respect to the physical reference measure µ ∈M(X),

we follow [FD03] and define an approximation of µ by

µN(A) =
N∑
i=1

m(A ∩Bi)

m(Bi)
pi, (3.1)

where p ∈ RN is the eigenvector of the eigenvalue 1 of the transition matrix P t,τ

on BN = {B1, ..., BN} and m the Lebesgue measure. The entries of P t,τ are

given by Equation (2.6). For instance, it is shown that, if the dynamical system

is subject to small random perturbations, µN converges to the physical invariant

measure µ if N tends to infinity and the diameter of the boxes approaches zero

(cf. [DJ99, Fro95]). In this setting, it is straightforward to show that for two

sets A1 =
⋃
i∈I Bi and A2 = ∪j∈JBj, with I, J ⊂ {1, ..., N}, the coherence ratio

ρτt (A1, A2) with t, τ ∈ T can be calculated by

ρτt (A1, A2) =

∑
i∈I,j∈J P

t,τ
ji pi∑

i∈I pi
,

with respect to µN (cf. [FD03] in case of A1 = A2).

28



3.2 Autonomous Coherent Structures

3.2 Autonomous Coherent Structures

In this section, we are going to approximate subsets A of X for which

φτt (A) ≈ A,

holds. These so-called almost invariant sets can be identified in a completely

autonomous setting by the analysis of the transfer operator (cf. [DJ99]). Here,

we embed the corresponding theory of (autonomous) almost invariant sets in

the context of a non-autonomous dynamical system. In the time-dependent

case, almost invariant sets appear as slowly mixing structures that are fixed in

state space.

3.2.1 Invariant Sets

The simplest case of an autonomous coherent structure in a non-autonomous

dynamical system (φ,X,T) is a subset S of the state space X with closed

dynamical behavior on it, i. e. (φ|S, S,T), where φ|S is the restriction of φ on

S, defines a dynamical system itself because φ(t, τ, S) = S for all t, τ ∈ T. In

terms of the coherence ratio, we can define:

3.4 Definition (Invariant Set): Let A ⊂ X be a non-empty set. We call the

set A a (t, τ)-invariant set if

ρτt (A,A) = 1,

where ρτt is the coherence ratio.

Let µA ∈ M(X) be the measure with density χA for a measurable subset A

of X, i. e. µA(B) =
∫
B
χAdµ for all B ∈ B(X). It is easy to check that A is a

(t, τ)-invariant set if the measure µA is invariant under the action of the transfer
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operator Pτt . In that case, the state space X can be subdivided into the sets A

and X \ A with independent dynamics in each part.

3.2.2 Almost Invariant Sets

In many dynamical systems, the only existing (t, τ)-invariant set is the whole

state space X itself. However, we can still observe parts of the state space

which are almost invariant (cf. [DJ99]).

3.5 Definition ((ρ, t, τ)-Almost Invariant Set): Let A ⊂ X be a non-empty

set, ρ ∈ [0, 1] and µ ∈ M(X) a probability measure such that the cocycle φ

preserves µ. We call the set A a (ρ, t, τ)-almost invariant set if

ρτt (A,A) = ρ.

In real world applications (ρ, t, τ)-almost invariant sets in the state space with

ρ close to 1 appear for example as metastable configurations of molecules (cf.

[DHFS00, SHD01]) or, as we will see in Section 6, as so-called gyres and eddies

within the oceanic fluid flow [FPET07, FSPD08, DFH+09].

The main approach for the detection of almost invariant sets was introduced by

Dellnitz and Junge in [DJ99], where a connection between spectral properties of

the transfer operator Pτt and the existence of (ρ, t, τ )-almost invariant sets with

ρ close to 1 is uncovered. More precisely, in the situation where the underlying

dynamical system is subject to small random perturbations, the following result

has been proved:

3.6 Theorem ([DJ99]): Suppose that the eigenmeasure µ of Pτt corresponding

to a real eigenvalue λ 6= 1 is scaled such that |µ| is a probability measure, and
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let A ⊂ X be a set with µ(A) = 1
2
. Then

ρt,τ (A,A) + ρt,τ (X \ A,X \ A) = λ+ 1, (3.2)

where ρt,τ is measured with respect to |µ|.

The measure |µ| is the total variation of the measure µ and given for real-valued

measures by |µ| = µ+ + µ− with

µ+(B) = sup
A⊂B

µ(A) and µ−(B) = − inf
A⊂B

µ(A).

For such measures, there exists the so-called Hahn decomposition of X into two

measurable sets A+, A− ⊂ X with A+ ∪ A− = X, µ(A+) ≥ 0 and µ(A−) ≤ 0

(cf. [Doo94]). By Lemma 2.11, for the eigenmeasure µ, the identity µ(X) = 0

holds true. Combining this with the fact that |µ|(X) = 1, we conclude that

there exists a set A with µ(A) = 1
2
. In more detail, if λ is close to 1, using

Equation (3.2), we can deduce that there exist two almost invariant sets A+

and its complement A− = X \ A+ given by the Hahn decomposition with a

coherence ratio close to 1 and µ(B) ≥ 0 for all B ⊂ A+ and µ(B) < 0 for all

B ⊂ A−. Thus, the sign-structure of the eigenmeasure µ splits the state space

X into two almost invariant sets A+ and A− if the corresponding eigenvalue is

close to 1.

Consider a partition B = {B1, ..., BN} of the state space X by N ∈ N boxes and

the corresponding finite-dimensional matrix representation P τ
t of the transfer

operator Pτt for fixed t, τ ∈ T (cf. Equation (2.6)). Within this setting, we can

formulate the following approach for the approximation of almost invariant

sets (see e. g. [DJ99, FD03]). Let v be the eigenvector corresponding to a real

eigenvalue of P t,τ near 1. Then, the corresponding almost invariant sets A+

and A− can be approximated by

A+
c =

⋃
vi≥c

Bi and A−c =
⋃
vi<c

Bi, (3.3)
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Chapter 3 Transport in Dynamical Systems

Algorithm 1 AlmostInvariantSet(t, τ, N, µ)

1: Cover the state space X by N boxes {B1, ..., BN}.
2: Approximate Pτt by P t,τ .

3: Calculate the eigenvector v of P t,τ corresponding to the second largest real

eigenvalue.

4: Choose c ∈ R such that µ(A+
c ) ≤ 1

2
, µ(A−c ) ≤ 1

2
and

min{ρτt (A+
c , A

+
c ), ρτt (A

−
c , A

−
c )} is maximized, where A+

c =
⋃
vi≥cBi and

A−c =
⋃
vi<c

Bi.

5: Return A = argminA+
c ,A

−
c
{ρτt (A+

c , A
+
c ), ρτt (A

−
c , A

−
c )}.

where c is equal to 0. To allow almost invariant sets with measure not equal

to 1
2
, we can choose the value c in Equation (3.3) freely. Heuristically we can

select a c ∈ R+ in such a way that

min
{
ρτt (A

+
c , A

+
c ), ρτt (A

−
c , A

−
c )
}

(3.4)

is maximized in order to obtain a maximized coherence ratio of the almost

invariant set.

Indeed, Equation (3.4) is an optimization problem which cannot be solved

easily. In the above setting, we can only define finitely many sets A+
c =⋃

vi≥cBi since the vector v has finitely many entries. Therefore, we can easily

solve the optimization problem in Equation (3.4) by checking finitely many

c ∈ {vi}i=1,...,N . This procedure can be summarized in Algorithm 1 for the

approximation of a (ρ, t, τ)-almost invariant sets.

3.7 Remark: Algorithm 1 makes use of the eigenvector of the second largest

eigenvalue of the transition matrix P t,τ . It has been shown that also subsequent

eigenvalues close to 1 and their corresponding eigenvectors can be used instead

of v to reveal other almost invariant sets. For a more detailed discussion on

this we refer to [DJ99] and [FD03].
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3.2 Autonomous Coherent Structures

3.8 Remark: The transition matrix P t,τ ∈ RN,N induces a finite Markov chain

(cf. Remark 2.13) which is not necessarily reversible, i. e. piP
t,τ
ji 6= pjP

t,τ
ij for

i, j ∈ {1, ..., N}, where p is the fixed eigenvector of P t,τ . Hence, for further

analysis, we transform the transition matrix P t,τ into a “time symmetric”

transition matrix Rt,τ by

Rt,τ
ij =

1

2

(
P t,τ
ij +

piP
t,τ
ji

pj

)
, (3.5)

which induces a reversible Markov chain. The matrix Rt,τ is stochastic and

possesses real eigenvalues throughout [Bré99]. Consider again the measure µN

given by Equation (3.1) and let A = {A ⊂ X : µN (A) ≤ 1
2
, A =

⋃
i∈I Bi} be the

set of all possible combinations of boxes in B with measure smaller than 1
2
. By

denoting λ2 as the second largest eigenvalue of Rt,τ , it is shown in [Fro05] that

1−
√

2(1− λ2) ≤ max
A∈A

ρτt (A,A) ≤ 1 + λ2

2
,

holds. In principle, instead of calculating the eigenvalues and eigenvectors of

P t,τ in Algorithm 1, we can make use of the eigenvalues and eigenvectors of

the matrix Rt,τ . This would lead to structures that are almost invariant under

the forward and backward dynamics.

In the following example, we apply Algorithm 1 to the non-autonomous dy-

namical system generated by the ordinary differential equation (2.2) with a

non-zero parameter value ε. The identification of autonomous structures in

non-autonomous dynamical system plays an important role in various applica-

tions, for example in the identification of large spatially fixed structures in the

oceanic fluid flow [DFH+09, FPET07, FSPD08].

3.9 Example: Reconsider the ordinary differential equation (2.2) from Ex-

ample 2.4 and let ε = 1, A = −2 and ν = 0 such that (2.2) generates a

non-autonomous dynamical system (φ,X,R). The application of Algorithm 1
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Figure 3.1: Covering of a (0.98, 0, π)-almost invariant set within
the state space X of the non-autonomous dynamical
system discussed in Example 3.9. The red dots indi-
cate the endpoints of sample trajectories leaving the
covering of the almost invariant set.

with N = 16 384, t = 0 and τ = π uncovers a (0.98, 0, π)-almost invariant set

A. The box collection covering this almost invariant set is shown in Figure 3.1.

Additionally, the end points of test point trajectories which start in A and end

up in X \ A are indicated by red dots.

In the following, we illustrate the strength and variability of the transfer

operator method concerning the analysis of almost invariant sets in a non-

autonomous dynamical system (φ,X,T), as we introduced in the previous

section. Consider a transfer operator Pτt and its corresponding transition

matrix P t,τ with respect to the partition B = {B1, ..., BN} for fixed t, τ ∈ T.

Furthermore, we assume that A1 and A2 are two sets each of written as a union

of sets of B i. e. A1 =
⋃
i∈I Bi and A2 =

⋃
j∈J Bj, I, J ⊂ {1, ..., N}. The sets

A1 and A2 themselves can be assumed to be almost invariant sets; however,

this is not necessary for the subsequent calculations. In this section we are
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3.2 Autonomous Coherent Structures

interested in two quantities. The first one is the mean residence time which

is the average time a particle originating from different parts in A1 remains

within the set A1 (cf. [Fro01]). The second one is the transport rate between

two sets A1 and A2 (cf. [DJK+05]).

Mean Residence Time

The coherence ratio ρτt (A1, A1) of the almost invariant set A1 =
⋃
i∈I Bi reflects

the probability that a trajectory which starts at time t in A1 ends up in

A1 after flowing τ time-units. For a further analysis, we calculate how long

the trajectory starting in A1 remains in A1. For this end, we assume that

I = {1, . . . , k}, for a fixed k ∈ {1, . . . , N}. This is not a restriction and can

be easily obtained by reordering the elements of the box-covering. In case the

underlying dynamical system is autonomous and discrete, i. e. T = N or Z, we

can assume that P t,1 is the same transition matrix for each t ∈ T and we can

drop the t-dependence. To calculate the mean residence time we only consider

the restriction P 1|A1 ∈ Rk,k of the transition matrix to the set A1 and assume

that it satisfies limτ→∞ P
τ |A1 = 0. It is shown in [FA01] and [Fro01] that the

average time ai required for a particle originating in Bi, for an i ∈ I, to leave

the set A1 is given by the solution of the linear system of equations

(Id− P 1|A1)a = (1, 1, ..., 1)T ,

where Id denotes the (k × k)-identity matrix. An exemplary calculation of the

mean residence time can be found in Section 6.2.2.

Transport Rates

The transport rate between two sets indicates the magnitude of transport with

respect to a certain reference measure. For autonomous dynamical systems,

transport rates have been introduced in [DJK+05] and extended to the non-
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Chapter 3 Transport in Dynamical Systems

autonomous case in [Pad05]. We fix a point t ∈ T in time and define the

transport rate between A1 and A2 over the time interval [t, t+ τ ] with respect

to the Lebesgue measure by

TA1,A2,t(τ) = m(A1 ∩ φ−τt+τ (A2)),

for τ ∈ T. The following calculations are true for arbitrary probability measures;

we choose the Lebesgue measure for simplicity. The transport rate can be

written in terms of the transfer operator as TA1,A2,t(τ) = (Pτt mA1)(A2) with

mA1(A2) = m(A1 ∩ A2) and approximated by

TA1,A2,t(τ) ≈ eTA2
P t,τuA1 , (3.6)

where (eA2)j = 1 if Bj ⊂ A2 and 0 otherwise and (uA1)j = m(Bj) if Bj ⊂ A1

and 0 otherwise. If we have a sequence of partitions (BN)N∈N such that the

diameters of the boxes in BN approach 0 for increasing N , we obtain equality

in Equation (3.6) in the limit (cf. [DJK+05] and [Pad05]).

3.3 Non-Autonomous Coherent Structures

In this section, we introduce mathematical concepts for the description of

non-autonomous coherent structures, which are based on the notion of almost

invariant sets in autonomous systems as introduced in Section 3.2.2. Non-

autonomous coherent structures are time-dependent and particles starting in

such a structure at a certain time stay within this structure over time with a

high probability.

The geometric theory for analyzing transport in dynamical systems can be

naturally extended for the treatment of non-autonomous transport phenomena

[HY00]. Nevertheless, in this thesis, we focus on the probabilistic approach

developed in a series of publications by Froyland et al. [FLS10, FSM10, SFM10].

Two concepts are suggested for a transfer operator based analysis. The first
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3.3 Non-Autonomous Coherent Structures

one relies on ergodic theory and uses so-called Oseledets subspaces occurring

in the Multiplicative Ergodic Theorem. The main result of [FLS10] relates

Lyapunov exponents of the corresponding transfer operator cocycle to coherent

structures in the underlying dynamical system. The theory of Lyapunov

exponents deals with an infinite time horizon and a basic assumption of the

Multiplicative Ergodic Theorem is an ergodic measure-preserving driving system

in a probability space. However, such technical construction cannot be fulfilled

in many applications. Also, transport phenomena only appear over finite time.

Therefore, we will focus on another approach that is designed to identify pairs

of sets which are characterized by the fact that most of the mass is transported

from one set into the other over a fixed finite time [FSM10, SFM10].

3.3.1 Coherent Pairs

Coherent pairs can be defined analogously to almost invariant sets by taking

into account a second set (cf. [FSM10]).

3.10 Definition ((ρ, t, τ )-Coherent Pair): Let µ and ν be probability measures

on X and A1, A2 ⊂ X with µ(A1) > 0. For fixed t, τ ∈ T the pair (A1, A2) is

called a (ρ, t, τ)-coherent pair if

ρτt (A1, A2) = ρ (3.7)

and µ(A1) = ν(A2).

The measures µ and ν are reference measures for measuring the coherence

at initial time t and final time t + τ , respectively. This differs slightly from

the definition given in [FSM10], where µ(A1) = µ(A2) is required. In many

applications, the measure µ is chosen according to a certain physical meaning

in which case ν is given by Pτt µ and can be interpreted as the so-called push

forward of the measure µ under the dynamics. In the following, we will only
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Chapter 3 Transport in Dynamical Systems

choose the initial reference measure depending on the underlying application

and assume that the measure at final time is given by its push forward.

3.11 Remark: In case µ is an invariant measure for φ, we observe that the

construction of trivial (1, t, τ )-coherent pairs (A1, A2) is possible. More precisely,

we can select an arbitrary A ⊂ X with positive µ-measure, set ν = µ and simply

define A1 = A and A2 = φτt (A). These trivially constructed (1, t, τ)-coherent

pairs are of no dynamical interest. In turbulent dynamical systems, such sets

are subject to high stretching and folding and, therefore, geometrically irregular.

Hence, by adding a small amount of diffusion to the underlying dynamics, these

trivially constructed pairs will disappear. In fact, numerical methods based

on the transfer operator approximation described in Section 2.4 naturally add

diffusion to the dynamics. This natural diffusion allows the identification of

nontrivial (ρ, t, τ)-coherent pairs with a large value of ρ. A detailed discussion

of this topic and a theoretical interpretation of diffusion in the transfer operator

setting can be found in [Fro13].

The numerical method for the identification of (ρ, t, τ )-coherent pairs with large

ρ was proposed by Froyland et al. [FSM10] and is characterized by the fact that

it has the ability to work only on subparts of the state space. In fact, one only

needs a subset S of the state space X which – together with φτt (S) – already

captures all the relevant information for the identification of a coherent pair.

Let (φ,X,T) be a non-autonomous dynamical system. Furthermore, let S be a

subset of the state space and φτt (S) its image. We calculate the transition matrix

P t,τ between a partition B = {B1, ..., BN} of S and a partition C = {C1, ..., CM}
of φτt (S) (cf. Remark 2.14). Moreover, we consider two reference probability

measures µ and ν = Pτt µ on S and φτt (S). In the following, we work exclusively

with the finite-dimensional approximation of the transition matrix. However, a

more formal transfer operator setting can be found in [Fro13].

The main idea of this approach is the formulation of an optimization problem
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3.3 Non-Autonomous Coherent Structures

which partitions the set S and its image into two sets of equal volume. It is

solved by thresholding the left and right singular vectors corresponding to the

second largest singular value of the normalized (with respect to a certain inner

product) transition matrix P t,τ . We first define vectors p ∈ RN and q ∈ RM ,

with pi = µ(Bi), i = 1, ..., N and q = P t,τp, which are the discretized versions

of the reference measures µ and ν = Pτt µ. The coherence ratio between two

sets A1 =
⋃
i∈I Bi and A2 =

⋃
j∈J Cj , where I ⊂ {1, ..., N} and J ⊂ {1, ...,M},

is given by

ρτt (A1, A2) =

∑
i∈I,j∈J P

t,τ
ji pi∑

i∈I pi
, (3.8)

cf. Remark 3.3. Therefore, coherent pairs with large ρ can be obtained by

finding index sets I, J such that Equation (3.8) is maximized. We encode the

index sets I and J by vectors x ∈ {−1, 1}N , y ∈ {−1, 1}M such that xi = 1

if and only if i ∈ I and yj = 1 if and only if j ∈ J , therefore A1 =
⋃
i:xi=1Bi

and A2 =
⋃
j:yj=1 Cj . Additionally, we introduce the inner products 〈x1, x2〉p =∑N

i=1 x1,ix2,ipi and 〈y1, y2〉q =
∑M

j=1 y1,jy2,jqj and formulate the constraint that

|〈x,1〉p| and |〈y,1〉q| are minimized. This guarantees that µ(A1) and ν(A2)

are approximately 1
2

each. For technical reasons, we normalize the transition

matrix and form Lij = pjP
t,τ
ij /qi. Considering the setting in Remark 3.3, we

can calculate:

〈Lx, y〉q =

 ∑
j∈I,i∈J

Lijqi +
∑

j /∈I,i/∈J

Lijqi

−
 ∑
j∈I,i/∈J

Lijqi +
∑

j /∈I,i∈J

Lijqi


=

 ∑
j∈I,i∈J

P t,τ
ij pj +

∑
j /∈I,i/∈J

P t,τ
ij pj

−
 ∑
j∈I,i/∈J

P t,τ
ij pj +

∑
j /∈I,i∈J

P t,τ
ij pj


= ρτt (A1, A2)µN(A1) + ρτt (S \ A1, φ

τ
t (S) \ A2)µN(S \ A1)

− ρτt (A1, φ
τ
t (S) \ A2)µN(A1)− ρτt (S \ A1, A2)µN(S \ A1),

where the coherence ratio is measured with respect to µN . This calculation shows
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that maximizing 〈Lx, y〉q will lead to coherent pairs with large ρ (cf. [FSM10]).

Therefore, to obtain a (ρ, t, τ )-coherent pair with ρ close to 1, we can formulate

the following maximization problem:

max
x∈{−1,1}N ,y∈{−1,1}M

{〈Lx, y〉q : |〈x,1〉p|, |〈y,1〉q| ≤ ε} , (3.9)

for a small ε ∈ R. For ε = 0 it cannot be expected that a solution of the problem

exists since it is not possible to form a finite set of boxes with a measure of

exactly 1
2
, in general.

However, the optimization problem in Equation (3.9) is a large-scale combi-

natorial problem and therefore, finding a solution is a difficult task. Froyland

et al. proposed to relax this problem and instead of finding binary vectors

x ∈ {−1, 1}N , y ∈ {−1, 1}M , they may taken on continuous values. Thereby,

the optimization problem given in Equation (3.9) is relaxed. This also allows

to set ε = 0 such that the constraints become |〈x,1〉p| = |〈x,1〉q| = 0. Finally,

we can formulate the relaxed problem as:

max
x∈RN ,y∈RM

{
〈Lx, y〉q
‖x‖p‖y‖q

: 〈x,1〉p = 〈y,1〉q = 0

}
, (3.10)

where ‖x‖p = 〈x, x〉
1
2
p and ‖y‖q = 〈y, y〉

1
2
q . The normalization terms are due to

the fact that in Equation (3.9) we implicitly stipulate that ‖x‖p =
∑N

i=1 pi = 1

and ‖y‖q =
∑M

j=1 qi = 1 since µ and ν are probability measures.

The solution of the corresponding relaxed optimization problem in Equa-

tion (3.10) is given by x = Π
−1/2
p x̂ and y = Π

−1/2
q ŷ, where x̂ and ŷ are the

right and left singular vectors corresponding to the second largest singular

value of Π
−1/2
q P t,τΠ

1/2
p . Here Πp = diag(p) and Πq = diag(q) are diagonal

matrices. Finally, we summarize this approach in Algorithm 2. Furthermore,

the algorithm relaxes the condition that the set S has to be subdivided into

two sets with equal measure in the same manner as Algorithm 1. Therefore, it

allows to approximate coherent pairs with a flexible size.
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3.3 Non-Autonomous Coherent Structures

Algorithm 2 CoherentPair(t, τ, N,M, S, µ)

1: Cover S ⊂ X by N boxes {B1, ..., BN} and φτt (S) by M boxes {C1, ..., CM}.

2: Discretize Pτt by P t,τ on S and φτt (S).

3: Calculate pi = µ(Bi), i = 1, ..., N and q = P t,τp.

4: Calculate the left and right singular vectors vl and vr of Π
−1/2
q P t,τΠ

1/2
p

corresponding to the second largest singular value.

5: Choose c ∈ R such that ρτt (Ac, Ab(c)) is maximized, where

Ac =
⋃
vli≥c

Bi and Ab(c) =
⋃

vri≥b(c)

Ci

with b(c) = argminb(c)

∣∣∣∑vli≥c
pi −

∑
vri≥b(c)

qi

∣∣∣.
6: Return A1 = Ac and A2 = Ab(c).

3.12 Remark: Algorithm 2 makes use of the left and right singular vectors

corresponding to the second largest singular values. In the same manner as

discussed in Remark 3.7 for the identification of almost invariant sets, we can

use subsequent singular values close to 1 and their corresponding left and right

singular vectors.

3.13 Example: We reconsider the ordinary differential equation

ẋ = A sin(x− νt) cos(y) + ε sin(2t)G(g(x, y, t)),

ẏ = cos(x− νt) sin(y),

where G(z) = 1
(z2+1)2

and g(x, y, t) = −2 sin(x− νt) sin(y)− π
4

+ y
2
. In Exam-

ple 3.9, we fixed the parameters ν = 0, A = −2 and ε = 1 and identified an

almost invariant set using Algorithm 1. Now, we set ν = 1
4

which implies that

the coherent structure identified in Example 2.4 starts to move through the state

space. We apply Algorithm 2 to the whole state space of the non-autonomous
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dynamical system by using the same partition at initial and final time. There-

fore, with N = M = 16 384, S = X, t = 0 and τ = 4π, the computation leads

to a (0.9874, 0, 4π)-coherent pair (A1, A2) which is shown in Figure 3.2. In

Figure 3.3 we illustrate the vectors x = Π
−1/2
p x̂ and y = Π

−1/2
q ŷ, where x̂ and

ŷ are the left and right singular vectors corresponding to the second largest

singular value of Π
−1/2
q P 0,4πΠ

1/2
p . Observe that by construction the changing

from red to yellow in these vectors coincide with the sets A1 and A2 of the

related coherent pair.

From the numerical point of view, the most expensive part in Algorithm 2 is

the numerical approximation of the transfer operator Pτt in the second step. A

sufficiently high amount of K ∈ N test points has to be integrated to form the

transition matrix P t,τ
ij ≈

∑K
k=1 χBi (φ

τ
t (pj,k))

K
(cf. Equation (2.7)). The total number

of sample trajectory integrations directly depends on the number of boxes

covering the initial domain S. Thus, the identification of an appropriate (i. e.

as small as possible) subset S ⊂ X is crucial for the efficiency of this approach.

In Chapter 5, we present an appropriate numerical approach which preselects a

set S and allows us to reduce the related numerical effort significantly.
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Figure 3.2: A (0.9874, 0, 4π)-coherent pair (A1, A2) calculated by
Algorithm 2.
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Figure 3.3: Normalized left (top) and right (bottom) singular vec-
tors corresponding to the second largest singular value

of the matrix Π
−1/2
q P 0,4πΠ

1/2
p . (Color scale represents

the magnitude of the entries of the singular vectors.)
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CHAPTER 4

Analysis of Transport over Long Time

Intervals

For analyzing transport phenomena by the concepts introduced in Chapter 3,

spectral properties of transfer operators play a central role. The transfer

operator captures the relevant dynamics of a dynamical system (φ,X,T) over

a fixed given time horizon (e. g. from time t ∈ T to time t + τ ∈ T). The

numerical analysis of spectral properties requires the calculation of the transition

matrix P t,τ (cf. Equation (2.6) in Section 2.4), which is a finite-dimensional

representation of the transfer operator Pτt .

In many applications, the numerical realization of the finite-dimensional repre-

sentation P t,τ of the transfer operator Pτt is based on a Monte Carlo approach

(cf. Equation (2.7) in Section 2.4). More precisely, the state space X is par-

titioned into boxes B = {B1, . . . , BN} with Bi ⊂ X and Bi ∩ Bj = ∅ for all

i, j = 1, . . . , N with i 6= j. Furthermore, each box Bj is represented by K ∈ N
test points pj,k ∈ Bj, k = 1, . . . , K. Then the finite sum

K∑
k=1

χBi(φ
τ
t (pj,k)) (4.1)
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approximates the mass m(φ−τt+τ (Bi) ∩ Bj) which occurs in the definition of

the transition matrix. However, we cannot compute expression (4.1) exactly,

because, in general, there is no analytic formulation for the cocycle φ and

thus we have to approximate it numerically by means of a map φ̃. In case the

underlying dynamical system is chaotic and exhibits very turbulent dynamics,

the numerical approximation of φ is costly. Additionaly, if the time τ is large,

due to numerical errors, the image of the box Bj under the cocycle will not

be represented very well by the points {φ̃τt (pj,k) : k = 1, . . . , K}. In these

situations, physical properties of the underlying dynamical system cannot be

represented by the numerical realization of P t,τ . For example, in case φτt

preserves the Lebesgue measure m for each t, τ ∈ T, m is a fixed point of Pτt
and therefore, the vector p ∈ RN with pi = m(Bi), i = 1, . . . , N , is a fixed

point of the corresponding transition matrix P t,τ . This may be violated in the

presence of numerical errors.

In order to reduce the error in the numerical approximation of φ, in this section

we propose a heuristic for the approximation of Pτt based on the numerical

realization of transition matrices on intermediate time intervals. We utilize

the fact that the underlying transfer operator satisfies the cocycle property

(cf. Proposition 2.12). In more detail, we partition the time interval [t, t+ τ ]

into subintervals and approximate the transition matrices on each subinterval,

respectively. The product of these matrices serves as an approximation of the

transfer operator on the whole time interval we focus on. This is beneficial since

the calculation of transition matrices on shorter subintervals is numerically

more applicable than on the whole time interval. This idea has already been

used for the calculation of transport rates in [Pad05]. However, we extend this

ansatz in Section 4.1 to calculate eigenvalues by avoiding the explicit calculation

of the matrix product, follow an eigenvalue product approach to efficiently

compute eigenvalues, and eigenvectors and discuss an error bound in Section 4.2.

Finally, we formulate an algorithm for the determination of the intermediate

subintervals in Section 4.3.
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4.1 Product Approach

4.1 Product Approach

Let (φ,X,T) be a non-autonomous dynamical system with T = R or R+ and

t, τ ∈ T with τ > 0. We define a finite series (τi)i=1,...,L ⊂ T of length L ∈ N
denoting the length of the intermediate intervals with

∑L
i=1 τi = τ and τi > 0

for each i ∈ {1, . . . , L}. By Proposition 2.12 the cocycle property

Pτt = PτLt+τ1+...+τL−1
◦ . . . ◦ Pτ2t+τ1 ◦ P

τ1
t (4.2)

holds.

Up to now, to calculate e. g. eigenvalues and eigenvectors of Pτt numerically we

have partitioned the state space into a collection of boxes B = {B1, . . . , BN}
and computed the finite-dimensional approximation P t,τ . Then, the eigenvalues

and eigenvectors of P t,τ approximate those of Pτt . For simplicity, in the

following we consider the case that all boxes Bi have equal Lebesgue measure.

Since the transfer operator satisfies Equation (4.2) one could expect that the

corresponding transition matrices also satisfy the cocycle property. However,

this is not true in general, which is discussed in detail in Section 4.2.

Nevertheless, to avoid problems given by the numerical approximation of the

matrix entries P t,τ
ij for large τ as described in the beginning of this chapter

and to reduce the number of test points involved we approximate the transfer

operator Pτt by

L∏
i=1

P t+
∑i−1
j=1 τj ,τi , (4.3)

for L ∈ N. A discussion on the error can be found in Section 4.2. The

approximation of the transfer operator Pτt by the product (4.3) has already

been successfully used for the calculation of transport probabilities between

two different regions in the state space (cf. [Pad05]).
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To obtain the spectral properties of the term (4.3) we avoid to explicitly

calculate the product, but apply a product eigenvalue approach instead which

goes back to [Var62] and has been used in a variety of settings, e. g. for the

computation of singular values and singular vectors of matrices (cf. [Wat07]).

To be more precise, we use the following result:

4.1 Theorem ([Wat07]): The nonzero complex number λ is an eigenvalue of

Q̂L · Q̂L−1 · . . . · Q̂1 ∈ CN,N , N ∈ N

if and only if all of the values λ1/L, λ1/Lψ, λ1/Lψ2, . . . , λ1/LψL−1 are eigenvalues

of the cyclic matrix

C =



Q̂L

Q̂1

Q̂2

. . .

Q̂L−1


∈ CNL,NL. (4.4)

Here, ψ = e
2πi
L and λ1/L denotes one of the Lth roots of λ.

Moreover, if λ1/L is an eigenvalue of C with the corresponding eigenvector

x = (x1, x2, . . . , xL)T , xi ∈ RN , then y = x1 is an eigenvector with eigenvalue λ

of Q̂L · Q̂L−1 · . . . · Q̂1.

When approximating almost invariant sets, we can directly form the cyclic

matrix C with Q̂i = P t+
∑i−1
j=1 τj ,τi , i = 1, . . . , L and calculate the corresponding

eigenvectors and eigenvalues. Here, the product Q̂L · . . . · Q̂1 is the approx-

imation of the transition matrix over the time interval [t, t + τ ] as in Equa-

tion (4.3). For the approximation of coherent pairs we have to calculate the

singular values and singular vectors of Ã = Π
−1/2
q

(∏L
i=1 P

t+
∑i−1
j=1 τj ,τi

)
Π

1/2
p

(cf. Section 3.3) which is equivalent to the calculation of the eigenvalues
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and eigenvectors of the products Ã · ÃT and ÃT · Ã (cf. [Wat07]). Along

the lines of Theorem 4.1, we can form the cyclic matrix C for the product

ÃT · Ã = Π
1/2
p

(∏1
i=L

(
P t+

∑i−1
j=1 τj ,τi

)T)
Π−1
q

(∏L
i=1 P

t+
∑i−1
j=1 τj ,τi

)
Π

1/2
p and for

Ã · ÃT , respectively.

Another advantage of the product approach is that one obtains knowledge of the

dynamics on the intermediate time intervals without any further effort. This

can be used for example to visualize the evolution of mass. Consider an almost

invariant set A within the state space X. To analyze the leakage of mass of

A, we define a vector v ∈ RN , which has uniform non-zero entries vi if Bi ⊂ A

and vi = 0 otherwise. The vectors vl given by vl =
(∏l

i=1 P
t+
∑i−1
j=1 τj ,τi

)
v, for

1 ≤ l ≤ L, represent the distribution of mass at time t +
∑l

j=1 τj starting at

time t in A. This is used, for example, for the detection of pathways of water

in Section 6.2.3.

4.2 Error Estimate

In the following, using an appropriate norm ‖ · ‖, we discuss the error∥∥∥∥∥
L∏
i=1

P t+
∑i−1
j=1 τj ,τi − P t,τ

∥∥∥∥∥ (4.5)

in more detail and make the following assumption throughout this section:

4.2 Assumption: Let t, τ ∈ T be two points in time and (τi)i=1,...,L a finite

series of length L ∈ N denoting the length of the intermediate intervals with∑L
i=1 τi = τ and τi > 0 for each i ∈ {1, . . . , L}. Furthermore, let B =

{B1, . . . , BN} be a partition of the state space X with m(Bi) = m(Bj) for every

i, j ∈ {1, . . . , N}. We assume that φ preserves the Lebesgue measure m and

φτt (X) = X holds for all t, τ ∈ T.

49



Chapter 4 Analysis of Transport over Long Time Intervals

To begin with, we consider the case L = 2 and study Equation (4.5) using two

intermediate intervals in time and we estimate the matrix entries of the product

of two transition matrices.

4.3 Lemma: For t ∈ T and τ1, τ2 ∈ T+ fixed, we have

mτ1
j

(
P t,τ1+τ2
ij + F τ1,τ2

ij

)
≤ (P t+τ1,τ2P t,τ1)ij ≤M τ1

j

(
P t,τ1+τ2
ij + F τ1,τ2

ij

)
(4.6)

for each i, j ∈ {1, . . . , N} with

M τ1
j = max

s∈Iτ1j

m(φ−τ1t+τ1(Bs) ∩Bj)

m(Bj)
, mτ1

j = min
s∈Iτ1j

m(φ−τ1t+τ1(Bs) ∩Bj)

m(Bj)

and

F τ1,τ2
ij =

m(φ−τ2−τ1t+τ1+τ2(Bi) ∩ B̃τ1
j )

m(Bj)
,

with B̃τ1
j =

⋃
s∈Iτ1j

φ−τ1t+τ1(Bs) \Bj and Iτ1j = {s ∈ {1, . . . , N} : φ−τ1t+τ1(Bs) ∩Bj 6=
∅}.

Proof. Fix i, j ∈ {1, . . . , N}. Since the preimage of an intersection is equal to

the intersection of the preimages and the sets in B all have the same Lebesgue

measure, we obtain for each s ∈ {1, . . . , N}

(
P t+τ1,τ2

)
is

=
m(φ−τ2t+τ1+τ2(Bi) ∩Bs)

m(Bs)
=
m(φ−τ2−τ1t+τ1+τ2(Bi) ∩ φ−τ1t+τ1(Bs))

m(Bj)
.

Therefore,

(
P t+τ1,τ2P t,τ1

)
ij

=
N∑
s=1

(
P t+τ1,τ2

)
is

(
P t,τ1

)
sj

=
N∑
s=1

m(φ−τ2−τ1t+τ1+τ2(Bi) ∩ φ−τ1t+τ1(Bs))

m(Bj)

m(φ−τ1t+τ1(Bs) ∩Bj)

m(Bj)
.
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4.2 Error Estimate

Considering the set Iτ1j = {s ∈ {1, . . . , N} : φ−τ1t+τ1(Bs) ∩ Bj 6= ∅} we perform

the following estimation

(
P t+τ1,τ2P t,τ1

)
ij
≤ max

s∈Iτ1j

m(φ−τ1t+τ1(Bs) ∩Bj)

m(Bj)

∑
s∈Iτ1j

m(φ−τ2−τ1t+τ1+τ2(Bi) ∩ φ−τ1t+τ1(Bs))

m(Bj)

= M τ1
j

m(φ−τ2−τ1t+τ1+τ2(Bi) ∩
⋃
s∈Iτ1j

φ−τ1t+τ1(Bs))

m(Bj)

= M τ1
j

m(φ−τ2−τ1t+τ1+τ2(Bi) ∩Bj) +m(φ−τ2−τ1t+τ1+τ2(Bi) ∩ B̃τ1
j )

m(Bj)
,

with M τ1
j = maxs∈Iτ1j

m(φ
−τ1
t+τ1

(Bs)∩Bj)
m(Bj)

and B̃τ1
j =

⋃
s∈Iτ1j

φ−τ1t+τ1(Bs) \ Bj, since⋃
s∈Iτ1j

φ−τ1t+τ1(Bs) = Bj∪ B̃τ1
j . Replacing

m(φ
−τ2−τ1
t+τ1+τ2

(Bi)∩B̃
τ1
j )

m(Bj)
by F τ1,τ2

ij we conclude

that

(P t+τ1,τ2P t,τ1)ij ≤M τ1
j

(
P t,τ1+τ2
ij + F τ1,τ2

ij

)
.

Similarly we obtain

mτ1
j

(
P t,τ1+τ2
ij + F τ1,τ2

ij

)
≤ (P t+τ1,τ2P t,τ1)ij

with mτ1
j = mins∈Iτ1j

m(φ
−τ1
t+τ1

(Bs)∩Bj)
m(Bj)

which completes the proof.

Now, we can estimate the error between the matrix entries (P t,τ1+τ2)ij and

(P t+τ1,τ2P t,τ1)ij.

4.4 Theorem: For t ∈ T and τ1, τ2 ∈ T+ fixed, we have

|(P t+τ1,τ2P t,τ1)ij − P t,τ1+τ2
ij | ≤ P t,τ1+τ2

ij

(
M τ1

j − 2mτ1
j + 1

)
+M τ1

j F
τ1,τ2
ij (4.7)

for each i, j ∈ {1, . . . , N} with M τ1
j , mτ1

j and F τ1,τ2
ij as in Lemma 4.3.
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Chapter 4 Analysis of Transport over Long Time Intervals

Proof. We have

|(P t+τ1,τ2P t,τ1)ij − P t,τ1+τ2
ij | ≤ |(P t+τ1,τ2P t,τ1)ij −mτ1

j (P t,τ1+τ2
ij + F τ1,τ2

ij )|

+ |mτ1
j (P t,τ1+τ2

ij + F τ1,τ2
ij )− P t,τ1+τ2

ij |

= (P t+τ1,τ2P t,τ1)ij −mτ1
j (P t,τ1+τ2

ij + F τ1,τ2
ij )

+ |(mτ1
j − 1)P t,τ1+τ2

ij +mτ1
j F

τ1,τ2
ij |,

because mτ1
j

(
P t,τ1+τ2
ij + F τ1,τ2

ij

)
≤ (P t+τ1,τ2P t,τ1)ij . Since 0 < mτ1

j ≤ 1 we obtain

(mτ1
j − 1)P t,τ1+τ2

ij ≤ 0 and mτ1
j F

τ1,τ2
ij ≥ 0. Thus, it can be estimated

|(P t+τ1,τ2P t,τ1)ij − P t,τ1+τ2
ij | ≤ (P t+τ1,τ2P t,τ1)ij −mτ1

j (P t,τ1+τ2
ij + F τ1,τ2

ij )

− (mτ1
j − 1)P t,τ1+τ2

ij +mτ1
j F

τ1,τ2
ij .

Furthermore, using (P t+τ1,τ2P t,τ1)ij ≤M τ1
j

(
P t,τ1+τ2
ij + F τ1,τ2

ij

)
we estimate

|(P t+τ1,τ2P t,τ1)ij − P t,τ1+τ2
ij | ≤M τ1

j (P t,τ1+τ2
ij + F τ1,τ2

ij )− 2mτ1
j P

t,τ1+τ2
ij + P t,τ1+τ2

ij

≤ P t,τ1+τ2
ij (M τ1

j − 2mτ1
j + 1) +M τ1

j F
τ1,τ2
ij .

In the next step, we use this result to show that P t+τ1,τ2P t,τ1 is equal to P t,τ1+τ2

under certain assumptions.

4.5 Corollary: Consider that Bj is exactly the preimage φ−τ1t+τ1(Bi) of Bi for

fixed i, j ∈ {1, . . . , N}. Then, the identity

(P t+τ1,τ2P t,τ1)ij = P t,τ1+τ2
ij (4.8)

holds.

Proof. Let i, j ∈ {1, . . . , N}. In case Bj is exactly the preimage φ−τ1t+τ1(Bi) of Bi

we obtain Iτ1j = {i}, M τ1
j = mτ1

j = 1 and F τ1,τ2
ij = 0, since B̃τ1

j = ∅. Therefore,
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4.2 Error Estimate

we obtain equality in Equation (4.6).

We proceed by considering the more general case L > 2. For simplicity, we

write

Q̂k = P t+
∑k−1
j=1 τj ,τk , for k = 1, . . . , L,

in the following. These matrices can be interpreted as the one-step transi-

tion matrices over each intermediate time interval [t +
∑k−1

j=1 τj, t +
∑k

j=1 τj].

Furthermore, we define

Qk = P t,
∑k
i=1 τi , for k = 1, . . . , L

which are the transition matrices on the interval [t, t +
∑k

i=1 τi]. Using this

notation we estimate the error∥∥∥∥∥
L∏
i=1

Q̂i −QL

∥∥∥∥∥ =

∥∥∥∥∥
L∏
i=1

P t+
∑i−1
j=1 τj ,τi − P t,τ

∥∥∥∥∥ , (4.9)

for an appropriate matrix norm ‖ · ‖. We begin by proving a formula for QL

based on the matrices Q̂j, for j = 1, . . . , L and on the error

∆k = Q̂k+1Qk −Qk+1, for k ∈ {0, . . . , L− 1}

which we obtain at each intermediate time interval.

4.6 Lemma: For L ∈ N, the identity

QL =
L∏
i=1

Q̂i −
L∑
i=3

(
L∏
j=i

Q̂j

)
∆i−2 −∆L−1, (4.10)

holds with ∆k = Q̂k+1Qk −Qk+1 for k ∈ {0, . . . , L− 1}.

Proof. We prove Equation (4.10) by induction and therefore begin to verify the
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statement for L = 1:

Q1 = Q̂1 −∆0

= Q̂1 − Q̂1Q0 +Q1.

This identity holds since Q0 = id. We proceed by showing that Equation (4.10)

holds for L+ 1 under the assumption that the statement is true for L: With

QL+1 = Q̂L+1QL −∆L we obtain

QL+1 = Q̂L+1

(
L∏
i=1

Q̂i −
L∑
i=3

(
L∏
j=i

Q̂j

)
∆i−2 −∆L−1

)
−∆L,

since the statement holds for L. Furthermore,

QL+1 =
L+1∏
i=1

Q̂i −
L∑
i=3

(
L+1∏
j=i

Q̂j

)
∆i−2 − Q̂L+1∆L−1 −∆L

=
L+1∏
i=1

Q̂i −
L+1∑
i=3

(
L+1∏
j=i

Q̂j

)
∆i−2 −∆L,

which is the formula for L+ 1.

Using this formula for QL we estimate Equation (4.9) in terms of the matrices

(∆k)k=1,...,L−1.

4.7 Theorem: Let L ∈ N. Furthermore, let ‖ · ‖ be a matrix norm with

‖Q̂i‖ ≤ 1, ∀i ∈ {1, . . . , L}, then∥∥∥∥∥
L∏
i=1

Q̂i −QL

∥∥∥∥∥ ≤
L−1∑
i=1

‖∆i‖ , (4.11)

with ∆k = Q̂k+1Qk −Qk+1 for k ∈ {0, . . . , L− 1}.

Proof. Using Lemma 4.6 for L ∈ N, the following estimation holds

54



4.2 Error Estimate

∥∥∥∥∥
L∏
i=1

Q̂i −QL

∥∥∥∥∥ =

∥∥∥∥∥
L∑
i=3

(
L∏
j=i

Q̂j

)
∆i−2 + ∆L−1

∥∥∥∥∥
≤

L∑
i=3

∥∥∥∥∥
(

L∏
j=i

Q̂j

)
∆i−2

∥∥∥∥∥+ ‖∆L−1‖ .

Since ‖ · ‖ is a matrix norm with ‖Q̂i‖ ≤ 1 for each i = 1, . . . , L we further

estimate ∥∥∥∥∥
L∏
i=1

Q̂i −QL

∥∥∥∥∥ ≤
L∑
i=3

‖∆i−2‖+ ‖∆L−1‖

=
L+1∑
i=3

‖∆i−2‖ =
L−1∑
i=1

‖∆i‖ ,

which completes the proof.

This result is used to obtain a more rigorous error bound in the matrix norm

‖ · ‖1 given by the maximum absolute column sum. We begin by estimating

the norm of each ∆i for i = 1, . . . , L− 1.

4.8 Lemma: Let L ∈ N. Then, the inequality

‖∆k‖1 ≤ max
j=1,...,N

(M s1(k)
j − 2m

s1(k)
j + 1

)
+M

s1(k)
j

m
(
B̃
s1(k)
j

)
m(Bj)

 (4.12)

holds for each k ∈ {1, . . . , L− 1} with s1(k) =
∑k

r=1 τr. Here, m
s1(k)
j , M

s1(k)
j ,

and B̃
s1(k)
j are defined as in Lemma 4.3.
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Proof. We begin with an inspection of the entries

(∆k)ij =
(
Q̂k+1Qk −Qk+1

)
ij

=
(
P t+

∑k
r=1 τr,τk+1P t,

∑k
r=1 τr − P t,

∑k+1
r=1 τr

)
ij

of the matrix ∆k for a fixed k ∈ {1, . . . , L}. By defining s1(k) =
∑k

r=1 τr and

s2(k) = τk+1 we can apply Theorem 4.4 and estimate∣∣∣(∆k)ij

∣∣∣ =
∣∣∣(P t+s1(k),s2(k)P t,s1(k) − P t,s1(k)+s2(k)

)
ij

∣∣∣
≤ P

t,s1(k)+s2(k)
ij

(
M

s1(k)
j − 2m

s1(k)
j + 1

)
+M

s1(k)
j F

s1(k),s2(k)
ij .

The obtained inequality can be used for all k, thus, we can proceed by estimating

‖∆k‖1 = max
j=1,...,N

N∑
i=1

∣∣∣(∆k)ij

∣∣∣
≤ max

j=1,...,N

N∑
i=1

(
P
t,s1(k)+s2(k)
ij

(
M

s1(k)
j − 2m

s1(k)
j + 1

)
+M

s1(k)
j F

s1(k),s2(k)
ij

)
≤ max

j=1,...,N

((
M

s1(k)
j − 2m

s1(k)
j + 1

) N∑
i=1

P
t,s1(k)+s2(k)
ij +M

s1(k)
j

N∑
i=1

F
s1(k),s2(k)
ij

)
.

It holds
∑N

i=1 P
t,s1(k)+s2(k)
ij = 1 and

∑N
i=1 F

s1(k),s2(k)
ij =

m(B̃
s1(k)
j )

m(Bj)
, since φ pre-

serves the Lebesgue measure and φ(X) = X. Therefore, we have

‖∆k‖1 ≤ max
j=1,...,N

(M s1(k)
j − 2m

s1(k)
j + 1

)
+M

s1(k)
j

m
(
B̃
s1(k)
j

)
m(Bj)

 ,

which completes the proof.

Similar to Corollary 4.5, we can show that the error vanishes under certain

assumptions.
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4.9 Corollary: Let L ∈ N. If Bj is exactly the preimage φ−τkt+τk
(Bi) of Bi for

all i, j ∈ {1, . . . , N} and all k ∈ {1, . . . , L} it follows that

L∏
i=1

P t+
∑i−1
j=1 τj ,τi = P t,τ .

Proof. Let i, j ∈ {1, . . . , N} and k ∈ {1, . . . , L − 1}. In case Bj is exactly

the preimage φ−τkt+τk
(Bi) of Bi we obtain I

s1(k)
j = {i}, M s1(k)

j = m
s1(k)
j = 1,

and F
s1(k),s2(k)
ij = 0, since B̃

s1(k)
j = ∅, with s1(k) =

∑k
r=1 τr and s2(k) = τk+1.

Therefore, we obtain ‖∆k‖1 = 0 by Lemma 4.8 for each k ∈ {1, . . . , L− 1} and

thus ∥∥∥∥∥
L∏
i=1

P t+
∑i−1
j=1 τj ,τi − P t,τ

∥∥∥∥∥
1

=

∥∥∥∥∥
L∏
i=1

Q̂i −QL

∥∥∥∥∥
1

≤
L+1∑
i=3

‖∆i−2‖1 = 0.

Then,
∏L

i=1 P
t+
∑i−1
j=1 τj ,τi is equal to P t,τ .

The situation considered in Corollary 4.9 corresponds to the case that the

box covering of the state space X exactly matches the preimages of the single

boxes and demonstrates the sharpness of the estimate given in Equation (4.12).

However, this special situation cannot generally be expected in real world

applications. In the considerably different case, when the jth column of the

matrix P t,s1(k) contains g ∈ {1, ..., N} non-zero entries, the value of m
s1(k)
j

is bounded from above by 1
g
. For m

s1(k)
j = 1

g
fixed, it follows that M

s1(k)
j =

1
g

since
∑N

i=1 P
t,s1(k)
ij = 1 holds. Consequently, for increasing g the value(

M
s1(k)
j − 2m

s1(k)
j + 1

)
+M

s1(k)
j

m
(
B̃
s1(k)
j

)
m(Bj)

, which is a lower bound of the right

hand side of Equation (4.12), tends to one. Also the value m
s1(k)
j is obviously

not depending continuously on s1(k). Nevertheless, we use the fact, that the

error (4.9) is bounded from above by the sum of the errors which we obtain

at each intermediate time step and formulate in the next section an algorithm

which successively generates a series of intermediate points in time.
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4.3 Algorithmic Realization

In the algorithmic realization, the question arises how to select the finite series

(τi)i=1,...,L of intermediate points in time with
∑L

i=1 τi = τ to calculate the

family of transition matrices (P t+
∑i−1
j=1 τj ,τi)i=1,...,L. The purpose of the product

approach is to force the numerical approximation of P t,τ to conserve physical

properties of the underlying dynamical system, e. g. volume preservation. In

this section we formulate an algorithm which successively generates a series of

transition matrices such that each of the matrices guarantees that a certain

property of the underlying system is fulfilled up to a maximal error. Based on

this series of transition matrices one can apply the product eigenvalue approach

described in Section 4.1 to approximate the eigenvalues and eigenvectors of the

transfer operator Pτt for fixed t, τ ∈ T.

Let us assume that we can measure the deviation of the physical property

over the time interval [t, t + τ ] by a function E : RN,N → R. For example, if

the system preserves the Lebesgue measure at all time instances we can chose

E(P t,τ ) = ‖P t,τp− p‖1 for p ∈ RN with pi = m(Bi), i = 1, . . . , N . Using this

function we formulate Algorithm 3, which checks at fixed points in time if the

error is larger than a value ε and restarts the approximation of the transition

matrix if necessary.

The algorithm calculates for a given starting time t and duration τ a series

of transition matrices between L intermediate points (τi)i=1,...,L in time. The

procedure depends on the error function E, the maximal error ε and a step size

h which has to be chosen such that τ = k · h for one k ∈ Z. In case h is chosen

too large, the error E(P T,h) at time T ∈ T over one step h is larger than ε and

the algorithm terminates with an error.

For the numerical realization of P T,k·h with k > 1, a set GT of test points has to

be integrated to obtain a set GT+k·h of terminal points after flowing k · h time-

units. However, we can reuse the set of terminal points GT+(k−1)·h computed
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4.3 Algorithmic Realization

Algorithm 3 ProductApproach(E,t,τ ,h,ε)

1: Set T = t

2: Set L = 1

3: Set k = 1

4: Set τ1 = T

5: while T + k · h ≤ t+ τ do

6: Approximate the transfer operator Pk·hT by P T,k·h.

7: if E(P T,k·h) < ε then

8: Set P(L) = P T,k·h

9: Set k = k + 1

10: else

11: if k = 1 then

12: return Computation not possible.

13: end if

14: Set L = L+ 1

15: Set τL = (k − 1) · h
16: Set T = T + τL

17: Set k = 1

18: end if

19: end while

20: return P and (τi)i=1,...,L

within the approximation of P T,(k−1)·h and integrate them h time-units further

to obtain GT+k·h. In total, Algorithm 3 has the same effort for the integration

of test points as for the numerical realization of P t,τ directly, plus the effort for

the integration over one step h at each intermediate point in time. However,

this effort is small for small h and few intermediate points in time.

4.10 Remark: The product approach and the corresponding Algorithm 3 can

be easily extended to consider non-square transition matrices which appear if we

restrict to a subpart of the state space (cf. Remark 2.14). In such cases, we have
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Chapter 4 Analysis of Transport over Long Time Intervals

to approximate a series of transition matrices between a series of box-collections

covering the sets S, φτ1t (S), . . . , φτt (S) in the state space.

To show the effectiveness of Algorithm 3 we reconsider the ordinary differential

equation (2.2) from Example 2.4.

4.11 Example: In the ordinary differential equation (2.2) from Example 2.4

let ε = 0 and ν = 0.25. For A = −1, the ODE generates a non-autonomous

dynamical system (φ,X,R) which preserves the Lebesgue measure m at all time

instances. We define a partition B = {B1, . . . , BN} of N = 16 384 boxes of

the state space X on which we calculate the transition matrices involved in

Algorithm 3 and choose a step size of 0.1 for the integration of the ODE to

deliberately induce numerical errors in the approximation of the cocycle φ.

We apply Algorithm 3 with t = 0, τ = 12.5, h = 0.5, ε = 0.01 and define

E : RN,N → R, E(P ) = ‖P · p− p‖1,

where p ∈ RN and pi = m(Bi)
m(X)

is the discrete version of the normalized Lebesgue

measure, to stipulate that the approximation on Pτt preserves the Lebesgue

measure up to a fixed error. We obtain a series of seven transition matrices

(P t+
∑i−1
j=1 τj ,τi)i=1,...,7 with τ1 = τ2 = τ4 = τ5 = 2 and τ3 = τ6 = τ7 = 1.5. Then,

for the error we have

E

(
7∏
i=1

P t+
∑i−1
j=1 τj ,τi

)
= 0.0114

and, in comparison, we obtain

E(P t,τ ) = 0.0167

using the transition matrix over the whole time span, which is significantly

larger. The normalized right singular vector corresponding to the second largest

60



4.3 Algorithmic Realization

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

x

y

 

 

0

0.2

0.4

0.6

0.8

1

Figure 4.1: Normalized right singular vector of the product ap-
proach indicating coherent structures.

singular value of Π
−1/2
q

(∏L
i=1 P

t+
∑i−1
j=1 τj ,τi

)
Π

1/2
p is shown in Figure 4.1, which

is almost the same as the one of Π
−1/2
q P t,τΠ

1/2
p shown in Figure 4.2.

Another example illustrating the effectiveness of the product approach is given in

Chapter 5 where a variant of Algorithm 3 is used to analyze coherent structures

in the oceanic fluid flow in a turbulent region close to South Africa, the so-called

Agulhas rings. Additionally, one can find in Section 6.3.2 a sensitivity analysis

on the selection of the points in time where we split the approximation of the

transfer operator.
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Figure 4.2: Normalized right singular vector of the direct approach
indicating coherent structures.
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CHAPTER 5

Efficient Numerical Approximation of

Coherent Structures in Dynamical

Systems

In this chapter, we review the results of [DH12] and reconsider the method

for the approximation of coherent pairs over the time interval [t, t + τ ] ⊂ T
for a non-autonomous dynamical system (φ,X,T), which has been introduced

in Section 3.3 and first proposed by Froyland et al. [FSM10]. The method

is summarized in Algorithm 2 which approximates coherent pairs of a non-

autonomous dynamical system based on a partition B = {B1, ..., BN} of the

state space X. The runtime of the algorithm directly depends on the number

of test points in each element of the partition B which are involved in the

approximation of the entries of the transition matrix P t,τ . In consequence, if

each partition element is assigned the same number of test points, the smaller

the domain S ⊂ X in which we seek coherent pairs is, the fewer test points are

needed to achieve sufficiently fine results and the faster the coherent structure

can be approximated. The question directly arising is how the subpart S of the

state space can be chosen as small as possible, but still large enough to find the

coherent pair. For dynamical systems where we have no knowledge about the
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Chapter 5 Efficient Numerical Approximation of Coherent Structures

location of a coherent pair in advance, we have to choose the whole state space

X as the starting point of our investigation, which is the worst option from

a computational point of view. As an answer of this question, we introduce

a novel method which allows us to locate a subset in state space which is a

candidate for containing a part of a coherent pair and is generally smaller than

the whole state space. In the main result of this chapter (cf. Section 5.1), we

show that transport phenomena over a fixed (long) time horizon imply the

existence of almost invariant sets over shorter time intervals if the transport

process is slow enough. The approximation of such a subset can be viewed as a

preselection process for the computation of coherent pairs and is algorithmically

formulated in Section 5.2.

5.1 Connecting Almost Invariant Sets and

Coherent Pairs

The main idea for the preselection process is based on the fact that in many real

world applications the coherent structures we are interested in are transported

relatively slowly in comparison to the velocity of single particles in the system.

On the ground of this observation, we identify an almost invariant set S over

a short time interval which contains the first part of a coherent pair and can

then be used as an input for Algorithm 2. Later, in Chapter 6, we analyze the

movement of eddies in a very turbulent region of the ocean which naturally

fulfills all assumptions made in this section. Concretely, it is shown in [Fli81]

that water mass can only be advected by a rotating coherent structure if the

rotational component of the velocity is larger than the translational component

of the velocity (cf. [dvD04]). Therefore, in such systems we can distinguish

between two time scales. On the one hand, there is the large time scale

which exhibits non-autonomous coherent structures such as coherent pairs

and on the other hand, the small time scale in which the coherent pairs leave

their fingerprints as almost invariant sets. In this section, we consider a non-
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5.1 Connecting Almost Invariant Sets and Coherent Pairs

autonomous dynamical system (φ,X,T) which is subject to these two different

time scales and contains a (ρ, t, τ)-coherent pair (A1, A2). Furthermore, by

τ ∈ T and s ∈ T we denote the long and the small time scale, respectively.

We begin with an elementary observation with regard to the coherence ratio of

two arbitrary subsets A,B ⊂ X:

5.1 Lemma ([DH12]): Let µ be a probability measure on X and t, τ ∈ T. For

two sets A,B ⊂ X, with µ(A) = µ(φ−τ+s
t+τ (B)) > 0, s ∈ [0, τ ] fixed, we have

µ(φ−τ+s
t+τ (B) ∪ A)

µ(A)
+ ρτ−st+s (A,B) = 2.

Proof. First we compute

µ(φ−τ+s
t+τ (B) ∪ A) + µ(φ−τ+s

t+τ (B) ∩ A) = µ(φ−τ+s
t+τ (B)) + µ(A)

= 2µ(A).

Dividing the equation by µ(A) and replacing
µ(φ−τ+st+τ (B)∩A)

µ(A)
by ρτ−st+s (A,B) com-

pletes the proof.

In other words, the more coherent the sets A and B are over the interval

[t+ s, t+ τ ], the closer the fraction
µ(φ−τ+st+τ (B)∪A)

µ(A)
is to 1. In this case, most of

the volume of φ−τ+s
t+τ (B) is contained in A.

Based on this observation, we can directly state the following theorem which

relates the coherence of a (ρ, t, τ)-coherent pair on the large time scale to the

coherence of an almost invariant set on the small time scale.

5.2 Theorem ([DH12]): Let µ be a probability measure, (A1, A2) a (ρ, t, τ)-

coherent pair and s ∈ [0, τ ] with µ(A1) = µ(φ−τ+s
t+τ (A2)) > 0. Then, for the set

S defined by

S = A1 ∪ φ−τ+s
t+τ (A2),
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Chapter 5 Efficient Numerical Approximation of Coherent Structures

we have the following estimate:

ρst(S, S) ≥ 1

2− c(t, τ, s)
ρτt (A1, A2) =

1

2− c(t, τ, s)
ρ, (5.1)

where c(t, τ, s) = ρτ−st+s (A1, A2).

Proof. By definition of ρst and S, we can write

ρst(S, S) =
µ(S ∩ φ−st+s(S))

µ(S)

=
µ
(
[A1 ∪ φ−τ+s

t+τ (A2)] ∩ φ−st+s(A1 ∪ φ−τ+s
t+τ (A2))

)
µ
(
A1 ∪ φ−τ+s

t+τ (A2)
) .

Since φ−st+s(φ
−τ+s
t+τ (A2)) = φ−τt+τ (A2), we obtain by elementary facts from set

calculus

ρst(S, S) =
µ
(
[A1 ∪ φ−τ+s

t+τ (A2)] ∩ [φ−st+s(A1) ∪ φ−τt+τ (A2)]
)

µ
(
A1 ∪ φ−τ+s

t+τ (A2)
)

≥
µ
(
A1 ∩ φ−τt+τ (A2)

)
µ
(
A1 ∪ φ−τ+s

t+τ (A2)
) (∗)

=
µ(A1)

µ
(
A1 ∪ φ−τ+s

t+τ (A2)
) µ (A1 ∩ φ−τt+τ (A2)

)
µ(A1)

=
µ(A1)

µ
(
A1 ∪ φ−τ+s

t+τ (A2)
)ρτt (A1, A2).

By Lemma 5.1, we have

µ(A1)

µ(φ−τ+s
t+τ (A2) ∪ A1)

=
1

2− ρτ−st+s (A1, A2)
.
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5.1 Connecting Almost Invariant Sets and Coherent Pairs

Therefore,

ρst(S, S) ≥ 1

2− ρτ−st+s (A1, A2)
ρτt (A1, A2),

=
1

2− c(t, τ, s)
ρτt (A1, A2)

=
1

2− c(t, τ, s)
ρ,

since (A1, A2) is a (ρ, t, τ)-coherent pair and c(t, τ, s) := ρτ−st+s (A1, A2).

We have c(t, τ, s) ∈ [0, 1] and suppose that the (ρ1, t, τ)-coherent pair (A1, A2)

has the property that both ρ1 and c(t, τ, s) are near 1 for a fixed s ∈ [0, τ ].

Then the estimate in Equation (5.1) implies that there exists a (ρ2, t, s)-almost

invariant set S with ρ2 ≈ 1 and S contains the set A1. We summarize this fact

in the following corollary.

5.3 Corollary ([DH12]): Let (A1, A2) be a (ρ1, t, τ )-coherent pair and s ∈ [0, τ ]

with µ(A1) = µ(φ−τ+s
t+τ (A2)) > 0 and c(t, τ, s) = ρτ−st+s (A2, A1) ≈ 1. Then there

exists a (ρ2, t, s)-almost invariant set S with S = A1 ∪ φ−τ+s
t+τ (A2) and ρ2 close

to one.

Figure 5.1 illustrates the statement of Theorem 5.2. In detail, the interval X on

the horizontal axis represents the state space of a non-autonomous dynamical

system and the time is measured on the vertical axis. The two sets A1 and

A2 of a coherent pair are shown at times t and t + τ , respectively. We can

see that the estimate provided by Theorem 5.2 is particularly useful in the

case where the coherent structure is transported relatively slowly, i. e. A1 is

close to φ−τ+s
t+τ (A2) in comparison to the movement of other structures, e. g. the

movement of B into φst (B). The choice of the small time scale s is not canonical

and strongly depends on the specific application. Later in Section 5.2.3, we

discuss how the small time scale can be chosen automatically.
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X
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Ást (B)

A2t+ ¿

Á− ¿+s
t+¿ (A2)

Á− ¿
t+¿ (A2)

t+ s

t
A1
S

Figure 5.1: On the left, a (ρ, t, τ)-coherent pair (A1, A2) with ρ
close to one is illustrated. The preimage φ−τ+s

t+τ (A2) of
A2 is almost identical to the set A1. Therefore S =
φ−τ+s
t+τ (A2)∪A2 denotes a (ρ2, t, s)-almost invariant set

with ρ2 ≈ 1 as shown in Theorem 5.2. On the right,
an arbitrary set B is chosen and the image φst (B)
indicates that most of the mass of B leaves B after s
time-units.

The choice of the set S has no direct dynamical interpretation but can be

motivated by considering that c(t, τ, s) = ρτ−st+s (A1, A2) is close to one. In

that case, most of the mass of φ−τ+s
t+τ (A2) is contained in A1 and thus S is

approximately the set A1 itself as in Figure 5.1.

In the proof of Theorem 5.2, the estimate (∗) appears to be very rough at first

glance. However, equality can be obtained in Equation (5.1) by considering

the specific situation where the set A1 is invariant, i. e. A1 is equal to φ−st+s(A1)

and µ is an invariant measure of the underlying dynamical system. We can
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compute

c(t, τ, s) =
µ(A1 ∩ φ−τ+s

t+τ (A2))

µ(A1)

=
µ(φ−st+s(A1) ∩ φ−st+s(φ−τ+s

t+τ (A2)))

µ(A1)

=
µ(A1 ∩ φ−τt+τ (A2))

µ(A1)
= ρ.

Then the lower bound of ρst (S, S) in Theorem 5.2 is given by 1
2−ρρ which tends

to 1 for ρ→ 1. In that case, we obtain equality in Equation (5.1).

5.2 Algorithm for the Efficient Approximation of

Coherent Pairs

The result of the previous section revealing that coherent pairs imply the

existence of almost invariant sets allows us to directly design an algorithm for

the efficient approximation of coherent pairs: Firstly, S is approximated and

afterwards, Algorithm 2 is applied to S in order to approximate A1.

If there is no separation of time scales as discussed in the previous section, then

we cannot guarantee that the value c(t, τ, s) is large. Consequently, we will

not be able to identify a (ρ, t, τ)-coherent pair in step 2 of Algorithm 4 with

ρ close to one. In such situations, we can reuse the trajectory simulations of

step 2 for the computation of the transfer matrix on S and combine them with

trajectory simulations starting in X \ S to compute the transition matrix on

the whole state space X. As the trajectory calculations are the computationally

most expensive task, the efficiency of the algorithm is mainly improved by

seducing the number of trajectory calculations involved. In case, the value

c(t, τ, s) is small, the number of trajectory calculations is the same as applying

Algorithm 2 directly.
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Algorithm 4 EfficientCoherentPairApproximation(t, τ, s,N, µ)

1: Apply Algorithm 1 to obtain S = AlmostInvariantSet(t, s,N, µ).

2: Apply Algorithm 2 to obtain (A1, A2) = CoherentPair(t, τ, N,M, S, µ).

3: Return (A1, A2).

5.2.1 Numerical Effort

Now, we discuss the numerical effort of Algorithm 4 in more detail. It has

been designed to avoid the calculation of the transition matrix over the whole

interval [t, t+ τ ]. Obviously, in step 2 of the algorithm the transition matrix

P t,τ needs to be approximated. However, for this computation, we can reuse

test points already integrated over time s in step 1 which are located in S and

integrate them further over the time interval [t+s, t+τ ]. In summary, the main

computational effort of Algorithm 4 consists in the integration of test points

distributed over the whole state space X over time s plus the integration of test

points on the smaller set S over the rest of the time from t+ s to t+ τ . For a

more detailed comparison of Algorithms 2 and 4, we assume that the boxes

involved are filled with the same number of test points in each case. Then, we

measure the runtime of an algorithm by the sum of the lengths of the integration

intervals for each test point involved in the algorithms. In detail, the runtime of

Algorithm 2 without the preselection step is dominated by N · τ where N ∈ N
is the number of boxes covering the whole state space X. On the other hand,

the runtime of Algorithm 4 is dominated by E(N,N ′, τ, s) = N · s+N ′ · (τ − s),
where N ′ ∈ N is the number of boxes covering the subset S ⊂ X. It is clear

that N ≥ N ′ holds if we cover the state space X and the subset S by boxes of

the same size. Then, we have N · τ ≥ N · s+N ′ · (τ − s).
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Table 5.1: Numerical effort of the integration process involved in
the approximation of a coherent pair.

selection of S numerical effort E coherence ratio
of the coherent pair

S = X 205 887 0.9874
S thresholded 150 580 0.9874

by −0.006
S = maximal 105 003 0.9865

almost invariant set
S thresholded 60 454 0.9862

by 0.006

5.2.2 Example

Now, we discuss an example which applies this novel algorithm for the approxi-

mation of coherent pairs to the non-autonomous dynamical system given by

the ordinary differential equation (2.2) considered in Example 3.9.

5.4 Example: Again, we consider the non-autonomous ordinary differential

equation of Example 2.4 with ν = 1
4
, A = −2 and ε = 1. Now, we apply

Algorithm 4 with t = 0, τ = 4π, s = π
10

and N = 16 384 boxes. The result is a

(0.9865, 0, 4π)-coherent pair (B1, B2), where the set B1 is located in a preselected

superset S ⊂ X, which is covered by 8 150 boxes. The superset S and the set

B1 are shown in Figure 5.2.

The first obvious observation is that we have roughly halved the number of boxes

used for the computation of the coherent pair in comparison to Example 3.13,

whereas the coherence ratio is almost identical (see Table 5.1).
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Figure 5.2: A (0.9865, 0, 4π)-coherent pair (B1, B2) and the set S
covered by 8 150 boxes returned by the preselection
process in Algorithm 4.
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5.2.3 Parameter Adaption

Parameter s An adequate choice of the parameter s for the computation

of the preselection S is not obvious in the example. Consider that we have

chosen a fixed box-discretization of the state space on which we calculate the

transition matrix. Therefore, the selection of s such that φst(Bi) ⊂ Bi for all

i = 1, ..., N will result in a transition matrix that is equal to the identity matrix.

In consequence, we cannot identify any almost invariant set since all boxes

themselves seem to be invariant. To avoid this, in Example 5.4, we have chosen

a sufficiently large s such that most of the test points are mapped from one

box into another. In contrast, the smaller the parameter s is the smaller is the

numerical effort E(N,N ′, τ, s). However, finding an a priori upper bound of s

depends on the underlying application and, therefore, a theoretical statement

cannot generally be expected to exist. Nevertheless, heuristically, we can start

with a small value s and increase it successively while observing the eigenvalues

of P t,s. We stop if we obtain isolated eigenvalues close to one. They indicate

the existence of the slowly decaying structure we seek for (cf. [DFS00]). In this

procedure, we can reuse all the trajectory integrations used in the calculation

of P t,s for the computation of P t,s′ for an s′ > s. Therefore, this is a suitable

heuristic for choosing the parameter s.

Size of S Another parameter we can adjust is the size of the almost invariant

set S. In step 1 of Algorithm 4, the almost invariant set S is computed based

on the thresholding of the eigenvector v corresponding to the second largest

eigenvalue of P t,τ . In this procedure, the threshold value is chosen in such a way

that the coherence of the set S is maximized. Obviously, the requirement that

the set S itself is maximally coherent is not necessary. Therefore, the choice of

the set S can even be improved by selecting more appropriate level-sets of the

eigenvector v.

In Figure 5.3, the eigenvector from Example 3.13 is shown together with the
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resulting set A1. For comparison, we have chosen the set S to be the level-

set thresholded by the condition that the components of the eigenvector in

Figure 5.3 are greater or equal to 0.006. This leads to a preselected set where the

number of boxes covering it is again almost halved in comparison to the set S in

Example 5.4. The result is a coherent pair (C1, C2) with a coherence ratio still

acceptable (cf. Table 5.1). The preselected set S and the coherent pair (C1, C2)

are illustrated in Figure 5.4. In contrast, we choose the set S to be the level-set

determined by the components of the eigenvector in Figure 5.3 that are greater

or equal to −0.006. In this case, the number of boxes covering the preselected

set is equal to 11 870 in comparison to 16 384 boxes covering the whole state

space X and the resulting (D1, D2) coherent pair has the same coherence ratio

as the coherent pair (A1, A2) even though the according computational effort

is reduced. The set D1 and the corresponding preselection S are shown in

Figure 5.5. The comparison of the numerical effort dominating the runtime of

the algorithms for different choices of the size of the set S is given in Table 5.1.

For the automated (adapted) choice of the set S, it is possible to apply Algo-

rithm 2 on every feasible level-set which are given by level-sets of an eigenvector

of the transition matrix P t,s. More precisely, we define an ascending series of

level-sets starting with the smallest possible non-empty one and successively

calculate – beginning with the smallest one – a coherent pair and stop if the

coherence ratio is no longer rising. However, this procedure assumes monotony

in the coherence ratio for the series of level-sets.
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Figure 5.3: Eigenvector corresponding to the second largest eigen-
value of P 0, π

10 which is used by Algorithm 4 in Ex-
ample 5.4 and the set A1 calculated in Example 3.13.
(Color scale represents the magnitude of the entries of
the eigenvector.)
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Figure 5.4: A (0.9862, 0, 4π)-coherent pair (C1, C2) returned by
Algorithm 2 on a set S covered by 4 514 boxes which is
given by a threshold on the entries of the eigenvector
shown in Figure 5.3.
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Figure 5.5: The set D1 of a (0.9874, 0, 4π)-coherent pair (D1, D2)
returned by Algorithm 2 on a set S covered by 11 870
boxes which is given by a threshold on the entries of
the eigenvector shown in Figure 5.3.
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CHAPTER 6

Detection of Coherent Structures in the

Ocean

The purpose of this chapter is to demonstrate the successful application of

the techniques developed in Chapters 4 and 5 for the treatment of transport

phenomena in dynamical systems such as the oceanic fluid flow. Within

the oceanic domain, many large and small scale transport processes have

considerable impact on the movement of thermal energy around the planet. For

example, the so-called global oceanic overturning, which is a complex network

of currents at and underneath the sea surface, transports warm and cold water

through the entire oceanic domain. This network can be interpreted as the

heating system of our planet and, therefore, it directly effects the planet Earth’s

climate (cf. e. g. [MS12, WRSD02]). Induced by this network of currents in

the oceanic fluid flow are large and small scale coherent structures, e. g. the

subpolar gyres in the southern hemisphere or the so-called Agulhas rings in the

North Atlantic. The subpolar gyres are also crucial for physical and biochemical

processes in the Southern Ocean. The Weddell gyre, for example, exports a

large quantity of carbon dioxide, which is formed by the remineralization of

falling organic material into the deep ocean. The Agulhas rings are mobile

ocean eddies which influence the transport of water mass from the Indian Ocean
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Figure 6.1: Surface view of the region around South Africa indi-
cating the Agulhas current close to South Africa and
an exemplary path of a single Agulhas ring (blue).

into the upper Atlantic Ocean. Agulhas rings originate periodically from the

retroflection zone of the Agulhas current which sources in the Indian Ocean

and flows along the east coast of Africa towards the southern tip. In Figure 6.1,

the part of the Agulhas current close to South Africa is illustrated and the

blue discs sketch the path of an exemplary Agulhas ring. For a review of the

influence of the Agulhas current on the climate we refer to [BDBZ11].

Several approaches in ocean sciences have been developed for the observation

of coherent oceanic structures. They often rely on two-dimensional satellite

altimetry such as the sea surface height (SSH) or the surface velocity field and,

in consequence, they only allow a study of gyres and eddies at the surface of

the ocean. For an overview of recent two-dimensional approaches we refer to

[CSS11]. However, for a comprehensive study of mass transported by these

oceanic structures, a three-dimensional characterization method is required. In

this chapter, we apply the mathematical methods developed in the previous

chapters to the fully three-dimensional oceanic domain. The study is only
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based on three-dimensional velocity fields which are an output of a global

oceanic model but on no other information. For a comparison of the results, we

discuss in Section 6.3 an extension of the two-dimensional velocity field based

techniques to three-dimensions.

In dynamical systems theory, as already mentioned in Chapter 3, there mainly

exist two approaches for the analysis of transport in dynamical systems. On

the one hand, there is the geometric approach discussed in Chapter 3 which is

designed to detect barriers of transport such as finite-time invariant manifolds

via finite-time Lyapunov exponents (cf. [HY00, Hal01]). This approach has

been successfully employed for the analysis of transport in many applications

(cf. [SLM05]). However, Froyland et al. showed in [FPET07] that the approach

performs poorly in the context of the investigation of the subpolar gyres. On

the other hand, there is the probabilistic approach based on transfer operator

techniques which has been successfully applied to identify oceanic structures at

the surface and up to a depth of 500 m (cf. [FPET07, FSPD08]). In the following

chapter, we apply the transfer operator techniques described in this thesis to

the fully three-dimensional oceanic domain. This enables us to investigate the

seasonal variability of the subpolar gyres and to study an Agulhas ring in three

dimensions ([DFH+09, FHR+12]).

6.1 Transfer Operator Methods for the Oceanic

Fluid Flow

In this section, we consider the oceanic fluid flow as a dynamical system as

defined in Chapter 2. Then, we can apply the transfer operator machinery

described in this thesis.

Let us denote the oceanic domain by X ⊂ [−180◦, 180◦] × [−90◦, 90◦] ×
[−11 034 m, 0 m], where the landmass consisting of parts of the continents

and islands is removed. The position of a particle x0 ∈ X is given by its
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Figure 6.2: Part of the surface of the oceanic domain X . The value
φ(x0, t, τ) denotes the position of a particle starting
at position x0 at time t after flowing τ time-units.
Furthermore, two coverings by boxes B1, . . . , BN and
C1, . . . , CM of parts of the surface are illustrated.

longitude, latitude and depth coordinates and its flow through the oceanic

domain is described by a time-dependent ordinary differential equation

ẋ = f(x, t), (6.1)

with f : X ×T→ R3, where T = R denotes the time in months. For this reason,

as described in Remark 2.6, we can define the non-autonomous dynamical

system (φ,X ,R) generated by the ordinary differential equation (6.1). Hence,

we can interpret the oceanic fluid flow as follows: Let x0 ∈ X be the position

of a particle at time t ∈ R. Then, the final position of the particle after

flowing time τ ∈ R is given by φ(x0, t, τ) (cf. Figure 6.2 for an example on the

surface). Note that the generated non-autonomous dynamical system preserves

the three-dimensional volume measure which we denote by V in the following.

The final position φ(x0, t, τ ) of a particle x0 can be obtained from the output of

a global ocean model. However, we have to be careful with the approximation

of the cocycle or the discretization of the oceanic state space to guarantee

reliable results. In the remainder of this chapter, we use the output of the

global ORCA025 model (cf. [BMP+06]). It provides five-day averaged velocities

on a grid with 0.25◦ resolution in longitude and latitude direction and with
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46 non-uniform levels of depth. In the model, the year is considered to have

360 days and a month 30 days. The velocity field f(x, t) for non-grid points is

approximated by linear interpolation independently in each direction (spatially

and temporally). To obtain the terminal point φ(x0, t, τ), we use a standard

Runge-Kutta approach with a step size of several hours.

Additionally, water particles close to the surface of the oceanic domain are

subject to strong mixing affected by the wind, the waves, and surface cooling.

This part underneath the surface is called the mixed layer. The information

about the depth of the mixed layer is also provided by the ORCA025 model and

the mixing between the surface and the mixed layer is simulated by a random

uniform redistribution of the particles in depth direction after the integration

over one month.

For an application of the techniques described in Chapter 3 and 5, we have to

approximate a transfer operator Pτt for a specific starting time t and duration

τ . In the remainder of this chapter we choose as the starting time the first day

of a specific month and we specify the flow duration τ in month, e. g. P1
May,2000

denotes the transfer operator beginning at May 1st, 2000 over 1 month. To

approximate a transfer operator Pτt we have to calculate a transition matrix

P t,τ on a box-covering of a subdomain X of X on which we seek coherent

structures. Let B = {B1, . . . , BN} denote the initial covering of X by N ∈ N
boxes and C = {C1, . . . , CM} the final covering of the image φ(X, t, τ) of X.

The numbers N,M ∈ N of boxes are chosen with respect to the according

application. Figure 6.2 shows the box-covering of an oceanic domain X and its

image on the surface. The numerical realization of P t,τ is calculated as follows:

Select for each box Bj in B, K ∈ N water particles (test points) pj,k ∈ Bj,

integrate them over time τ beginning at time t and compute the transition

matrix

P t,τ
ij =

∑K
k=1 χCi(φ(pj,k, t, τ))

K
. (6.2)

The entry P t,τ
ij can be interpreted as the probability that a water particle
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selected uniformly at random in Bj at time t will be in Ci at time t+ τ . For

further technical details we refer to Section 2.4.

The dynamical system defined above and the corresponding transition matrix

are the starting point for the transfer operator based analysis of the oceanic

fluid flow. Two applications will be shown, the first one is an investigation

of the subpolar gyres and the second one is a three-dimensional study of an

Agulhas ring.

6.2 Seasonal Variability of the Subpolar Gyres in

the Southern Ocean

The first one of the two applications we describe in this chapter is the in-

vestigation of the seasonal variability of the subpolar gyres in the South-

ern Ocean. As already mentioned, these gyres are crucial for physical and

biochemical processes in this region. In particular, to identify the coher-

ent structures in the Weddell and Ross Seas, we focus on a part X = X ∩
([−180◦, 180◦]× [−76◦,−48◦]× [−5 570 m, 0 m]) of the oceanic domain X .

The subpolar gyres are spatially almost fixed structures and, thus, we are able

to identify them as almost invariant sets in the non-autonomous dynamical

system induced by the oceanic fluid flow. Nevertheless, these structures slowly

change their shape between the seasons. Therefore, we identify almost invariant

sets over each season in the southern hemisphere. To investigate the seasonal

variability, Algorithm 1 is applied to the domain X with τ = 3 months and t

equal to the first day of November, 2003, February, 2004, May 2004 and August,

2004, for each season in the southern hemisphere. For our computations we

concentrate on trajectories for which the initial and terminal points are in X.

Therefore, the initial and final box-covering is the same for the computation

of the transition matrix. However, some of these may pass into X \ X and

reenter X. The four transition matrices for each season are PNovember,2003;3,

84



6.2 Seasonal Variability of the Subpolar Gyres in the Southern Ocean

P February,2004;3, PMay,2004;3 and PAugust,2004;3. The Algorithm is adapted in such

a way that the eigenvalues and eigenvectors of the reversible version of the

transition matrix are calculated (cf. Remark 3.8). Also, for the identification of

the Weddell and Ross gyres we take into account more eigenvalues than those

discussed in Remark 3.7.

The computations reveal almost invariant sets in the Weddell and Ross Sea for

each season, respectively, which are shown in Figure 6.3. The coherence ratio

and the volume of each structure is given in Table 6.1. Significant differences

over the four seasons can be identified to lie in the volume of the gyres in each

season. During spring and summer, the Weddell gyre extends from the surface

to depths exceeding 4 000 m, while in autumn and winter the main structures

of the gyres are subsurface and extend to much shallower depths. We remark

that a robustness analysis of such results would require an investigation of

the Weddell and Ross gyre over multiple years. However, the results show the

successful application of transfer operator methods for the detection of oceanic

coherent structures in principle.

In the following, we present further methods for the analysis of coherent

structures based on the transition matrix. We study the flux of water through

the boundary of the identified gyres as well as the mean residence time of water

within the Weddell gyre for each season.

6.2.1 Water Flux of the Subpolar Gyres

The flux of water through a boundary box of a coherent structure A = ∪i∈IBi ⊂
X can be calculated as follows: We call a box B a boundary box if it has at

least one neighbor box outside the structure. Let J ⊂ I be the index set of the

boundary boxes of A and P the transition matrix of the season for which we

calculate the flux of water and V the three-dimensional volume measure. We
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Table 6.1: Coherence ratios of the coherent structures in the Wed-
dell and Ross Sea for each season.

Weddell Gyre

Season Coherence Ratio Volume

Summer 0.9265 1 484 272 km3

Autumn 0.9112 856 851 km3

Winter 0.9106 986 105 km3

Spring 0.9190 1 049 534 km3

Ross Gyre

Season Coherence Ratio Volume

Summer 0.9235 1 279 044 km3

Autumn 0.9179 1 645 748 km3

Winter 0.8865 1 286 165 km3

Spring 0.9042 1 800 793 km3
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define the flux through a boundary box Bj, j ∈ J , out of A by

fluxout(Bj) = V (Bj)
∑

k∈{1,...,N}\I

Pkj,

where the indices {1, . . . , N}\I denote all the outside of the structure A. Recall

that Pkj denotes the probability that a trajectory starts at random in Bj ends

up in Bk and that the domain X is covered by N ∈ N boxes. Furthermore, we

denote the flux through the boundary box Bj from outside A by

fluxin(Bj) =
∑

k∈{1,...,N}\I

V (Bk)Pjk.

Then the total flux(Bj) trough a boundary box Bj, j ∈ J , is the difference

between the flux through a boundary box out of A and the flux into Bj from

outside A:

flux(Bj) = fluxout(Bj)− fluxin(Bj).

The boundaries of the structures in Figure 6.3 are colored according to the flux

of water through a boundary box and indicates in which region water enters or

escapes from the gyre.

6.2.2 Mean Residence Time

For a further analysis of transport phenomena the transfer operators can also

be used to calculate the mean residence time of water within gyres as described

in Section 3.2.2. For the moment, in order to describe the computation of

the mean residence time, we focus on the coherent structure AW =
⋃
i∈I Bi

identified in the Weddell Sea in the summer season, for example. Beginning
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(a)

(b)

(c)

(d)

Figure 6.3: Coherent structures in the Weddell and Ross Sea in
(a) summer, (b) autumn, (c) winter, and (d) spring.
The coloring of the boxes shows the volume flux of
water through boundary boxes over each season.
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with this season we define a transition matrix

P = PAugust,2004;3 · PMay,2004;3 · P February,2004;3 · PNovember,2003;3,

which represents the dynamics over one year from the start of summer. To

calculate the mean residence time of water originating from AW with respect to

P as described in Section 3.2.2 the technical assumption limk→∞(P |AW )k = 0 for

the restriction P |AW of the transition matrix P to the set AW has to be satisfied.

This can be interpreted as follows: water mass originating from the coherent

structure AW will eventually leave the structure. Following Section 3.2.2, the

average time ti required for a particle originating in Bi, for an i ∈ I, to leave

the set AW is given by the solution of the linear equation

(Id− P |AW )t = (1, 1, . . . , 1)T ,

where Id denotes the identity matrix.

This procedure is repeated for the other seasons. The mean residence time is

plotted in Figure 6.4 which shows zonal sections along −64◦S latitude. The

coloring indicates the average time that a particle originating within the box

will remain in the gyre for each season, respectively.

6.2.3 Pathway of Water

To investigate the pathway of water exiting or entering the gyre we define a

vector v ∈ RN , which has uniform non-zero entries vi if Bi is in the gyre or

in a specified subregion and vi = 0 otherwise, and multiply it sequentially

by the transition matrix for each season (cf. Section 4.1). By repeating this

procedure multiple times we can simulate the spreading out of water from any

given region over multiple years. Of course, this repeated application neglects

the year-to-year variations on the flow field. However, this approach has the

advantage of being numerically efficient for the detection of such pathways,
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Figure 6.4: Zonal section of Weddell gyre during (a) summer, (b)
autumn, (c) winter, and (d) spring along−64◦S. Boxes
are colored according to the mean residence time of
water in the Weddell gyre in years.
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Figure 6.5: Horizontal surface section of the final state of an initial
density after 50 years of evolution by 50 iterations of
the one year transition matrix. Boxes are colored
according to the logarithm of the normalized density.

since the transition matrices have been already calculated. Therefore, the time-

stepping of a large number of Lagrangian particles can be efficiently achieved

through a number of matrix-vector calculations. Figure 6.5 shows a horizontal

surface section of the final state of such an initial density after 50 years of

evolution by 50 iterations of the one year transition matrix.

This application shows the suitability of the transfer operator methods for the

analysis of the oceanic fluid flow. It is shown that we are able to identify almost

invariant sets in the fully three-dimensional domain of the Southern Ocean.

In contrast, common oceanography techniques are restricted to the ocean’s

surface and cannot be used for a three-dimensional analysis. Additionally,

we demonstrated that we can further analyze the almost invariant sets by

calculating the flux and the mean residence times of water. In the next section

we apply the transfer operator techniques to another region in the oceanic

domain and we extend the two-dimensional oceanography techniques to the

vertical direction for comparison.
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6.3 Three-dimensional Characterization and

Tracking of an Agulhas Ring

Transport induced by eddies is another important aspect of the analysis of mass

transported by the global oceanic overturning as described in the beginning of

this chapter. In this section we study an Agulhas ring using transfer operator

techniques and compare the result with standard oceanographic approaches (cf.

[FHR+12]). Agulhas rings transport warm saline water form the Indian Ocean

into the upper Atlantic Ocean (cf. Figure 6.1). The amount of heat and salt

an Agulhas ring transports sensitively depends on the time the water remains

within a ring as well as on its path (cf. [TBBM03]). Hence, the dynamical

system approaches seeking maximally coherent structures are suitable for the

study of single Agulhas rings. In comparison to the previous section, we search

for coherent pairs rather than almost invariant sets, because the Agulhas rings

are highly mobile within the oceanic domain.

6.3.1 Domain Preselection

Since the oceanic domain is large, a crucial part of the investigation is the

preselection of a domain where we expect the occurrence of a single Agulhas

ring. We developed a novel approach in Chapter 5 for the preselection of

regions in the state space of a dynamical system containing a coherent pair.

For the preselection of a domain containing a single Agulhas ring, we apply

Corollary 5.3 and calculate eigenvalues and vectors of the transition matrix P t,s

on a domain around the Agulhas retroflection zone, with s equal to one week

and t equal to May, 1st, 2000. In Figure 6.6a an eigenvector of the transition

matrix is shown indicating a region on the oceanic surface which contains a

single Agulhas ring.

In ocean dynamics we can alternatively use satellite altimetry for a precise
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(a) (b)

Figure 6.6: Indication of the location of an Agulhas ring by (a)
the peaks in the eigenvector of a transition matrix P
and by (b) the peaks in the sea surface height (SSH)
field.

localization of a domain containing a single ring-like structure. Namely, peaks

in the sea surface height (SSH) indicate the existence of an ocean eddy. For

a comparison to the dynamical system approach the SSH field around the

Agulhas retroflection zone is shown in Figure 6.6b and we mention that the

peak in the eigenvector in Figure 6.6a coincides with a peak in the SSH field.

From now on, we focus on a part of the ocean, specificallyX = X∩[8.5◦E, 13◦E]×
[36◦S, 32.5◦S]× [0 m,−5 126 m], which contains a single ring-like structure. The

domain is subdivided into 13 359 boxes such that each box has a side-length of

0.1758◦ longitude and 0.2246◦ latitude. The ratio between the longitude and

latitude side-length of the boxes is chosen in such a way that the boxes are

approximately square on the surface of the ocean and the vertical extension

is chosen in correspondence with the 46 non-uniform depth layers of the un-

derlying ORCA025 model. We investigate the single Agulhas ring lying in the

initial region over the time period from the beginning of May to the beginning

of November. This time period has been chosen such that the computational

effort is acceptable and that the Agulhas ring undergoes substantial decay, i. e.

a substantial portion of water mass leaves the structure. In addition, the chosen

period is very close to the average lifetime of mesoscale eddies in the global
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ocean (cf. [CSS11]).

6.3.2 Application of the Product Approach

Due to the very turbulent Agulhas retroflection zone (cf. Figure 6.1), the

calculation of a transition matrix over six months is a computationally difficult

task. We must be careful about the integration step size and the number of test

points for the approximation of Equation (6.2). If we choose too few test points

over the integration time of 6 months, the final points do not represent the

image of the initial boxes well. To avoid this problem, we apply Algorithm 3

which ensures that the box-covering of the image of the initial domain is still

connected. Hence, the transition matrix PMay,2000;6 over the whole period is

approximated by a product of transition matrices over one month each:

PMay,2000;6 ≈ POctober,2000;1 · P September,2000;1 · . . . · PMay,2000;1.

A flow duration of one month is sufficiently short such that the initial test

points in each box flow to a collection of boxes that represent the true one-

month-image of the box very well. Finally, the singular values and vectors were

calculated to obtain a coherent pair (AMay,2000, ANovember,2000) as described in

Algorithm 2.

The coherent pair (AMay,2000, ANovember,2000) is illustrated in Figure 6.7. The

coherence ratio is 0.7631, which means that over 6 months 76, 31% of the water

mass from AMay,2000 flows into the set ANovember,2000.

The sensitivity of the previous results with respect to changes of some parameters

of the used technique is discussed in the following. Therefore, we calculate

singular values and vectors of PMay,2000;3 and P July,2000;1 ·P June,2000;1 ·PMay,2000;1

to check the robustness of the choice of the parameter τ , for τ = 1 and τ = 3 in

Algorithm 2. The result of the analysis of one month is displayed in Figure 6.8a

and Figure 6.8b, where Figure 6.8a shows the surface slice of the normalized
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Figure 6.7: The initial AMay,2000 and final ANovember,2000 set of
the detected coherent pair. 76.31% of the water mass
from AMay,2000 flows into the set ANovember,2000 over
6 months.
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Figure 6.8: (a) Surface slice of the normalized left singular vec-
tor of the one month analysis indicating the Agulhas
ring at May 2000. (b) The initial set of the detected
coherent pair over one month. (c) Surface slice of
the normalized left singular vector of the three month
analysis indicating the Agulhas ring at May 2000. (d)
The initial set of the detected coherent pair over three
months.

left singular vector indicating the Agulhas ring at the surface and Figure 6.8b

shows the corresponding Agulhas ring. Figure 6.8c and 6.8d indicate similar

results for the investigation over three months. These two comparative studies

identify initial coherent structures that are similar to the study over 6 months.

Hence, the transfer operator approach is reasonably robust with respect to flow

time.

Additionally, the sensitivity of the product approach (cf. Algorithm 3) has

been investigated using different temporal subdivisions. For a comparative

study we define 12 transition matrices each over a half month and two matrices
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over three months each. The singular vectors indicate very similar structures

attesting the robustness of the product approach developed in this thesis.

6.3.3 Comparison with Other Techniques

In the introduction of this chapter we mentioned that several methods exist for

the investigation of eddies in the ocean surface. These techniques are based

on sea surface height (SSH), the relative vorticity criterion (RV), and the

Okubo-Weiss parameter (OW). In the investigation discussed in this section we

analyze the three-dimensional shape of an Agulhas ring with transfer operator

techniques. Therefore, we extend the surface techniques along the vertical

direction for comparison.

Consider u(x, y) and v(x, y) as the velocity of a particle (x, y) on the surface in

longitude and latitude direction, respectively. Then, the relative vorticity (RV)

is given by

RV(x, y) =
∂v

∂x
− ∂u

∂y

and the Okubo-Weiss (OW) parameter by

OW(x, y) =

(
∂u

∂x
− ∂v

∂y

)2

+

(
∂v

∂x
+
∂u

∂y

)2

+ RV(x, y)2.

The interpolation of the RV and OW is performed based on the same grid

on the surface as it is used for the approximation of the transfer operators,

where the derivatives are calculated numerically. Coherent oceanic structures

identified via the RV or the OW parameter are obtained by selecting regions

where the RV or the OW parameter is above a certain threshold. We use a

common threshold coefficient to define the edge of the Agulhas ring that we

are investigating. For the RV we chose 0.2 times the maximum RV value at

the surface and for the OW we select 0.2 times the standard deviation of OW
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Figure 6.9: Surface extension of the sets AMay,2000 and
ANovember,2000 (blue) and the boundary of the cor-
responding structures given by the maximal SSH gra-
dient (green), Okubo-Weiss parameter thresholded by
0.2 times the standard deviation (red) and relative vor-
ticity thresholded by 0.2 times the maximum relative
vorticity (black).

at the surface (cf. [CGG08]). Also, the maximum SSH gradient defines the

edge of an Agulhas ring. Figure 6.9 demonstrates that the different techniques

identify similar surface structures.

For a comparison of the coherence ratio of the three-dimensional structure

defined by the transfer operator approach we extend the surface shape given by

the techniques based on RV and OW up to the depth where the set AMay,2000

ends. In more detail, we calculate the OW and RV field for May and November

2000 at each depth level within the box discretization used for the approximation

of the transfer operator. The threshold at the final time is chosen in such a way

that the initial and final structures have equal volume. This is sufficient for

the calculation of the coherence ratio. For the threshold of the initial structure

we point out two options:

1. We firstly fix the threshold of the RV and OW at the surface and secondly

use the same threshold on each depth level (layer by surface).
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2. We threshold on each depth level separately (layer by layer).

These two options give almost identical coherence ratios. Therefore, we report

only on the layer by surface results which are shown in row two and three of

Table 6.2. Compared to the transfer operator results, we gain an improvement

in the coherence ratio by 15%−24% for the transfer operator method. However,

the structures given by the OW and the RV approach are of quite different

volumes (Table 6.2). The suggestion is that the transfer operator method

identifies the core region of the Agulhas ring which is more coherent than the

larger structures. Therefore, we adjust the threshold for the two approaches

such that the volumes of the structures are almost identical to the ones identified

by the transfer operator approach. Nevertheless, the transfer operator approach

still represents an improvement of approximately 15% over the other methods

(row four and five of Table 6.2). As a last step we thresholded both RV and OW

by maximizing the coherence ratio which leads to almost the same coherence

ratios (row six and seven of Table 6.2) as using the fitted volume approach.

Finally, we can state that the transfer operator approach discussed in this

thesis defines three-dimensional structures within the oceanic fluid flow that

have higher coherence than the corresponding objects identified by RV and

OW. The reason for this improvement in coherence is that the RV and the

OW are essentially two-dimensional techniques extended to three-dimensions.

Furthermore, the transfer operator method is designed to directly capture

regions of maximal coherence.

It is shown that we capture the coherence of a single Agulhas ring more

accurately than other common techniques based on two-dimensional velocity

information. To substantiate the results, the application of the transfer operator

techniques to other Agulhas rings and over longer time intervals has to be

addressed in future research.
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Table 6.2: Coherence ratios and volume of three-dimensional Agul-
has ring characterization given by the transfer operator
approach in comparison to the thresholding of the rel-
ative vorticity (RV) and the Okubo-Weiss criterium
(OW).

Method Volume Coherence Ratio

1 Transfer Operator Approach 5 481km3 76.31%

2 OW (0.2 threshold) 7 752km3 52.17%

3 RV (0.2 threshold) 9 547km3 61.23%

4 OW (fitted volume) 5 495km3 60.87%

5 RV (fitted volume) 5 492km3 61.65%

6 OW (optimized threshold) 5 527km3 60.98%

7 RV (optimized threshold) 5 693km3 62.30%
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CHAPTER 7

Conclusion

This work contains a wide range of aspects from dynamical systems theory to

ocean dynamics. It is, therefore, necessary to take a look at the “big picture”

of this thesis by summarizing the obtained results, discussing further directions

of research as well as sketching ideas for possible future research. This is the

task of this final chapter.

Autonomous Coherent Structures

In the autonomous case, almost invariant sets provide an established concept for

the analysis of transport phenomena. We consider these autonomous structures

in the more general context of time-dependent systems. Such structures are

spatially fixed in state space and, therefore, can be used to determine fixed

structures like large gyres in the oceanic domain. In this work, we use the notion

of almost invariant sets to study the seasonal variability of the subpolar gyres

in the fully three-dimensional domain of the Southern Ocean. Furthermore,

there is a variety of dynamical system techniques which we present in the

time-dependent setting and apply to the oceanic fluid flow in order to study

the water flux and the mean residence time of water in the gyres as well as the

pathways of water leaving the gyres.
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For these investigations, we calculate a transition matrix for each season by

considering time-t maps of the oceanic fluid flow over each season. By consid-

ering the product of these matrices, we approximate the one-year transition

matrix of the oceanic fluid flow in the Southern Ocean and used this matrix

e. g. to study the pathway of water or the mean residence time.

Non-Autonomous Coherent Structures

Coherent pairs are the time-dependent analog of almost invariant sets. For the

efficient approximation of coherent pairs, we extend the current methods for

the analysis of transport phenomena in non-autonomous dynamical systems

by transfer operator techniques. In particular, we utilize a product eigenvalue

approach to formulate a method for the efficient approximation of coherent

pairs over long time intervals. In more detail, instead of calculating a transition

matrix for a long time interval, we split up the time interval and approximate the

transition matrix by a product of transition matrices over shorter time intervals.

This procedure allows us to take into account certain physical properties of the

underlying dynamical systems such as volume preservation. Furthermore, we

prove a suitable error bound for this type of approximation and, in addition,

we develop Algorithm 3 which automatically calculates the splitting based on

a predefined error function. To demonstrate the capacity of this method, we

apply it to an idealized example as well as to the oceanic fluid flow as a real

world application, where an Agulhas ring in three dimensions over six months is

investigated. This is the first fully three-dimensional investigation of an ocean

eddy.

Furthermore, we design a method for the efficient approximation of coherent

pairs. More precisely, for this task, it is necessary to run a high number of

different simulations of the underlying process on the whole state space. We

achieve the theoretical result that coherent pairs induce almost invariant sets

over certain small time intervals (cf. Theorem 5.2). This fact is used to formulate

Algorithm 4 for the preselection of domains as candidates containing one part

of a coherent pair. Thereby, we can reduce the number of different simulations

102



considerably by only performing the ones on the existing almost invariant set.

Thus, by this method, we can significantly reduce the computational effort for

the approximation of coherent pairs. Additionally, we discuss the behavior

of the algorithm under several parameter variations and make suggestions for

the (automated) selection of the parameters of the algorithm. We show that

this method can be used to identify regions in the oceanic domain containing

a single Agulhas ring as opposed to the identification of such regions by the

inspection of the sea surface height.

The methods developed here are utilized to analyze transport phenomena in the

oceanic fluid flow. It is a fact that the climate system is substantially effected

by the transport of warm and cold water in the ocean. However, the purpose

of this thesis is not to obtain answers in the context of the complex climate

system but to provide methods for the investigation of transport in the oceanic

fluid flow by dynamical system techniques. Hence, this thesis provides a new

perspective for the analysis of oceanic structures.

Future Research Directions

There still exist several challenging problems and directions for further research,

as we discuss in the following.

For a given time span, Algorithm 3 is capable of calculating a series of transition

matrices whose product approximates the transfer operator. We illustrate the

effectiveness of the product approach by means of Example 4.11 and provide

a heuristic based on an error function for the automated choice of a series of

transition matrices (cf. Section 4.3). Also the study of a single Agulhas ring in

Chapter 6 has only been possible by making use of this approach. Furthermore,

we have proved that under certain conditions the error vanishes. However,

to obtain suitable error functions, there is a need for further bounds on the

approximation error with regard to spectral properties. In case, we approximate

the transfer operator by a single transition matrix, there are bounds concerning

the approximation quality of the fixed point or the corresponding Lyapunov
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spectrum. Such bounds are discussed in the autonomous as well as in the non-

autonomous case in the context of piecewise expanding maps (cf. [FLQ09, Li76]).

To the author’s best knowledge, there do not exist any practical results in the

literature for the very general case as it is considered in this thesis. In order to

obtain results in the context of products of transition matrices, one certainly

has to restrict to certain classes of dynamical systems.

We show that coherent pairs can be captured by almost invariant sets on a small

time scale under some weak restrictions, which is summarized in Algorithm 4

based on Theorem 5.2. In more detail, the theorem only gives a statement

concerning the coherence ratio of a constructed set containing a part of the

coherent pair. The length of the small time scale influences the runtime of

Algorithm 4. Although we provide a heuristic in Section 5.2.3 for the automated

choice of the small time scale during runtime, it would be even more suitable

to choose it a priori. However, the results one can expect depend on the

underlying application, and thus, one will have to restrict on certain subclasses

of dynamical systems.

An important parameter of Algorithm 4 is the size of the almost invariant

set. As for the choice of the small time scale, we provide a heuristic for the

automated choice of size. The proposed method assumes monotony on the

coherence ratio for a series of level-sets. However, we cannot be sure that

the selected almost invariant set completely contains a part of the coherent

pair. A possible heuristic would be to start with a single almost invariant set

and calculate the singular values and singular vectors of the corresponding

normalized transition matrix. The coherent pairs we seek are defined by level-

sets of the singular vectors. If we select the maximal coherent level-set, it is

either fully contained in the set we start with or the level-set intersects the

boundary of the initial set. In the latter case, we cannot be sure that the set

we started with is large enough, but we can extend the set successively and

stop as soon as the maximal coherent level-set is completely contained.

Even though we show the applicability of the results to the oceanic fluid flow
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by means of several examples, we cannot claim that the current research is

capable of answering all the open questions in earth sciences. Nonetheless, we

successfully provide methods for the investigation of specific oceanic structures

and research should be continued by applying these methods to a wider range

of applications. To reliably study the impact of the Agulhas rings, for instance,

it is not enough to study single ones, but we have to investigate a series of

them. For this task, an automated method has to be developed. The problem

arising here is the selection of the time spans during which they exist. In order

to obtain these time spans a possible approach might be to apply Algorithm 4

developed in Chapter 5 and to calculate a coherent pair for each almost invariant

set. This successive exploration of a large oceanic domain is numerically very

expensive, and consequently, there is a need for efficient data structures in which

we can store already calculated trajectories to avoid redundant calculations.

In this context, one will have to make use of massive parallel systems, since

the trajectories involved for the approximation of the transition matrix can be

calculated independently.
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