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Abstract

The analysis of transport phenomena — such as the detection and tracking
of coherent structures — plays a crucial role in many applications, e. g. in
the investigation of gyres and eddies in the ocean. In order to treat coherent
structures of dynamical systems so-called transfer operator methods have been
developed during the last years and extended in order to approximate transport
phenomena in non-autonomous dynamical systems and related applications.
These methods all have in common that they involve long-term simulations
of trajectories on the whole state space which are computationally expensive.
In this thesis, we develop efficient algorithms for the detection of coherent

structures and present theoretical results in this context.

Transfer operators naturally fulfill the so-called cocycle property which does
not generally hold for transition matrices which are the corresponding finite-
dimensional representations of transfer operators. However, we use products of
transition matrices to approximate single transfer operators. We successfully
elaborate this approach and prove that the cocycle property holds under certain

conditions.

In non-autonomous dynamical systems so-called coherent pairs are slowly
mixing time-dependent structures in state space. In principle, for the detection
of coherent pairs it is sufficient to focus on a region of the state space containing
a coherent pair as opposed to the whole state space which in comparison
considerably decreases the numerical effort. A priori it is not obvious in which
part a coherent pair is contained. We formulate an algorithm that preselects
a part of the state space as a candidate set containing a coherent pair and
thereby significantly reduces the related numerical effort. In detail, we prove
that if the transport process is slow enough transport phenomena over a fixed
(long) time horizon imply the existence of almost invariant sets over shorter

time intervals.



The novel results and algorithms obtained in this thesis allows one to analyze
transport phenomena in oceanic fluid flow. As an application, we present the
first three-dimensional study of a single Agulhas ring over a sufficiently long
time interval. From a superior point of view, these results give rise to a new

perspective on the analysis of oceanic structures.




Zusammenfassung

Die Analyse von Transportphédnomenen — wie etwa die Identifikation kohédrenter
Strukturen — spielt eine wichtige Rolle in vielen Anwendungen, zum Beispiel
bei der Untersuchung von Ozeanwirbeln. Um kohérente Strukturen im Kontext
dynamischer Systeme zu behandeln, wurden in den letzten Jahren sogenannte
Transferoperator-Methoden entwickelt. Diese sind unter anderem fiir die Appro-
ximation von Transportphénomenen in nicht-autonomen dynamischen Systemen
erweitert worden. All diesen Methoden liegen rechenintensive Simulationen von
Trajektorien im gesamten Phasenraum zugrunde. In dieser Arbeit werden so-
wohl effiziente Algorithmen zur Identifikation kohédrenter Strukturen entwickelt

als auch theoretische Ergebnisse in diesem Zusammenhang présentiert.

Transferoperatoren erfiillen auf natiirliche Weise die sogenannte Kozykel-Ei-
genschaft. In dieser Arbeit werden deshalb Produkte von Ubergangsmatrizen
verwendet um Transferoperatoren zu approximieren. Dieser Ansatz wird ausge-
arbeitet und erfolgreich angewendet. Zudem wird bewiesen, dass die Kozykel-

Eigenschaft unter bestimmten Umstinden auch fiir Ubergangsmatrizen gilt.

Kohérente Paare im Kontext nicht-autonomer dynamischer Systeme sind Struk-
turen, die sich nur langsam mit dem iibrigen Phasenraum durchmischen.
Grundsatzlich ist es sinnvoll, sich fiir die Approximation kohérenter Paare
auf einen Teil des Phasenraumes zu beschrianken, um den numerischen Aufwand
zu verringern. A priori ist es jedoch nicht offensichtlich, in welchen Bereichen
des Phasenraumes sich ein kohérentes Paar befindet. In dieser Arbeit wird ein
Algorithmus formuliert, welcher Bereiche identifiziert, die ein kohédrentes Paar
enthalten und damit signifikant den numerischen Aufwand reduziert. Es wird ge-
zeigt, dass hinreichend langsame Transportprozesse iiber einen festen Zeitraum

die Existenz fast-invarianter Mengen iiber kurze Zeitintervalle implizieren.

Diese neuartigen Ergebnisse und Algorithmen erlauben die Analyse von Trans-

portphédnomenen im Ozean. Als Anwendung wird die erste drei-dimensionale



Untersuchung eines Agulhas-Ringes dargestellt. Aus diesem Blickwinkel her-
aus zeigen diese FErgebnisse eine neue Perspektive fiir die Analyse von Trans-

portphéanomenen im Ozean auf.
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CHAPTER 1

Introduction

In nature, we are faced with countlessly many complex processes that change
their behavior over time: the wind blowing on the earth — for instance — or the
currents flowing in the ocean. In many situations, the related transport of mass
is significant. The climate, for example, is directly affected by the transport
of heat by the wind and the currents in the ocean. Both the atmosphere and
the ocean consist of different thermal zones, which are subject to temporal
variation as the seasons change. In fact, the transport of heat between these
thermal zones is little. The study of such zones or — more generally — structures
interacting weakly with their environment is relevant in many applications.
Similar phenomena also arise in the ocean in form of eddies — for instance —

capturing pollutant over long periods of time.

In this thesis, we focus on such types of structures induced by various kinds of
processes and develop numerical tools for their efficient approximation. In nature
and sciences the underlying processes are generally driven by deterministic
principles: Scientific experiments are subject to physical laws, particles in the

ocean move according to the oceanic fluid flow.

In the following, we outline the thesis by introducing the main concepts our

subsequent considerations are based on.




Chapter 1 Introduction

Dynamical Systems

The notion of dynamical systems provides a formal framework for the mathe-
matical modeling of various kinds of processes. They formally consist of a set

T representing time, a set X of states and an evolution law
O X XTXxT—X

describing the behavior of the system in time. Mathematically, ¢ is required to
fulfill certain fundamental conditions. The evolution law maps a state x € X
at time t € T to the state ¢(x,t,7) € X after 7 € T time-units. Time can be
modeled in a general way by an arbitrary driving system on T. However, in
this thesis we restrict to the time shift o, (t) = ¢ + 7 which is a natural choice
when dealing with real-world applications, i. e. t + 7 is the point in time we

arrive at when starting at time ¢ € T and passing 7 time-units.

In mathematics, dynamical systems are treated in divers settings. We dis-
tinguish between autonomous and non-autonomous dynamical systems. Au-
tonomous dynamical systems only depend on a state x and the duration 7, but
not on the time instant ¢ the process starts at: this translates to the fact that
the evolution law ¢ does not explicitly depend on time. However, real world
processes are often subject to time-dependence, thus in many cases autonomous
dynamical systems are not suitable to describe the dynamical phenomena ade-
quately. Such systems can be modeled as so-called non-autonomous dynamical
systems which explicitly depend on time in contrast to autonomous dynamical
systems. For an overview on dynamical system theory we refer to the textbooks
[ASY00, BS02l, Den05l, KHI7].

Coherent Structures in Dynamical Systems

Transport in dynamical systems is characterized by coherent structures which
are minimally mixing structures in state space. There mainly exist two distinct

approaches to the numerical approximation of coherent structures, the proba-




bilistic approach and the geometric approach. A first comparison of both can

be found in [FP09.

In the geometric approach, barriers of transport are identified. In autonomous
systems, invariant objects such as invariant manifolds directly form transport
barriers which cannot be crossed by trajectories, whereas in the non-autonomous
case, hyperbolic structures, so-called Lagrangian coherent structures, which can
be thought of as time-dependent invariant material curves or surfaces, act as
time-dependent barriers of transport. For a detailed introduction, we refer to
[Hal00] and [HY00]. To analyze transport in the special but important situation
of periodically driven non-autonomous dynamical systems, the concept of lobe
dynamics of invariant manifolds can be used [MW9§|. Recently, a more general
concept has been developed characterizing transport barriers as time-dependent
curves experiencing minimal stretching in state space [HB12]. The geometric
approach has been followed for a variety of applications, e. g. the investigation
of blood-flow [ST08] or the analysis of the particle dynamics in a hurricane
[dM10].

In this thesis, we focus on the probabilistic approach, which is developed to
directly detect slowly mixing structures. These structures are characterized
by the probability that trajectories leave the structure within a certain time
horizon. Instead of studying the evolution of single states we study the evolution
of distributions of particles in state space and the corresponding evolution of
the whole distribution with respect to the underlying dynamics. This approach
is successfully applied in a variety of situations, e. g. for the identification of
slowly mixing structures in the stratospheric polar vortex [FSM10, [SEM10] or in
the oceanic fluid flow [DFH™09, [FHR 12, [FPETO07, [FSPDO0§|. An overview of
the probabilistic approach for the autonomous case can be found in [DEHPQ9]

and for the non-autonomous case in [Frol3].
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Coherence Ratio

In particular, our interest focuses on the statistical long-term behavior of
dynamical systems. We are especially interested in regions in the ocean in
which plankton remains over a sufficiently long time. From the dynamical
systems point of view, we aim to uncover subsets A;, A5 of the set X of states
for which the probability is high that a state of the set A; will be in Ay after
a fixed time. To identify such sets we analyze the probability of ending up in
A, after starting in Ay at time ¢ and flowing 7 time-units. More precisely, we

define the coherence ratio

m(A; No(Ag, t+7,—7))

pz(A1’A2> - m(Al)

of two subsets A; and A, of the state space, where m denotes the Lebesgue
measure on X. This notion of coherence is used to define coherent pairs in
non-autonomous systems [FSM10] and goes back to the definition of almost

invariant sets in autonomous systems [D.J99].

Since the flow of particles within the oceanic domain can be described by a
dynamical system, the search for subsets A; and As with coherence ratio close
to one can be interpreted as follows: Water particles released in A; at a specific
time end up in the set A, with a high probability after flowing over a fixed
time. Consequently, this concept can be used to describe oceanic structures
like eddies and gyres (cf. e. g. [DFHT09, FHR™12, FPET07, [FSPDO0S]). Other
examples for applications are hurricanes which also transport particles over a

specific period of time through the atmosphere (cf. for instance [dM10]).

Transfer Operators

The distribution of particles in the state space X at time ¢t € T can be
mathematically described by a measure p; : B(X) — R on the Borel-o algebra
B(X) of X or, if it exists, by its corresponding density. Figure shows

the density of a measure on a state space X. The coloring describes the




concentration of mass where the red region indicates a high concentration of

mass, while the blue region represents a comparatively low concentration.

The main tool we make use of in this thesis is the so-called transfer operator
P;: M(X) - M(X) of a dynamical system for ¢, 7 € T, where M(X) denotes
the space of signed measures on the state space X. This operator describes the
evolution of measures or densities on X with respect to the evolution law ¢.
Let u; be a measure describing the distribution of mass at time ¢ € T, then the

measure

P s = pigyrs

describes the distribution of mass at time ¢ + 7. This operator is used in the
autonomous as well as in the non-autonomous case for the study of transport

phenomena and it naturally induces a dynamical system on the set of measures.

A measure p that satisfies P/ = p for all ¢t,7 € T is called an invariant
measure of the underlying dynamical system. Such measures, if they exist, give
rise to physically meaningful distributions of states in state space. These are
studied in [BP02, [LY73], for instance. However, we are interested in measures
which are not strictly fixed but very persistent under the application of the
transfer operator. Let us consider the density shown in Figure [I.1a} if we apply
the transfer operator P; to the corresponding measure for fixed ¢t,7 € T, we
obtain a distribution of mass at time ¢ + 7 described by a density which is
shown in Figure It is easily seen that the initial concentration of mass on
the left side of the state space at time ¢ is transported to a final concentration
of mass on the right side of the state space at time ¢ + 7. In this thesis, we
aim at the numerical identification of measures exhibiting a slow decay and,
therefore, as will be seen later, indicate by their level-sets the presence of

persistent structures.
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(b)

FIGURE 1.1: Densities of measures on the state space X describing
the distribution of mass on X at time ¢ (a) and time
t+ 7 (b). The coloring relates to the concentration
of mass where red indicates a high concentration and
dark blue a vanishing concentration of mass.




Transition Matrix

For the numerical treatment of the transfer operator P/, the computation of a
finite-dimensional representation is necessary. This is realized by projecting the
infinite-dimensional space of measures to a suitable finite-dimensional space and
we then numerically obtain the matrix representation of P/ on the according
projected space which also works in the non-autonomous case. This ansatz
goes back to Ulam [Ula60]. For instance, in [JK09], a certain Haar basis is
considered. However, the most common way is to project the space of measures
to the space of piecewise constant functions on a partition of X and to calculate
the matrix representation which we refer to as the transition matriz P*™ (cf.
e. g. [DJ99]). The entries of the matrix P“" represent the probability for
ending up in one partition element when starting in another partition element.
In the autonomous case, it is also possible to approximate the corresponding

finite-dimensional generator [EJK13].

Numerical Analysis of Transport

The interpretation of the evolution of a dynamical system in the context
of measures and their corresponding transfer operators with respect to the
dynamics has led to the development of a variety of methods to analyze transport
phenomena. In the autonomous case almost invariant sets can be identified
which are subsets of the state space with a coherence ratio close to one. It
is shown by Dellnitz et al. [DJ99] that a closed level-set of an eigenmeasure
corresponding to an eigenvalue close to one of the transfer operator P7 defines
an almost invariant set. This approach has been successfully used to identify
almost invariant sets in engineering applications like Chua’s circuit (cf. [DJ97])

as well as in real world applications like the solar system (cf. [DJLT05]).

The transition matrix corresponding to a transfer operator induces a finite
Markov chain in a natural way and therefore we can apply methods developed
for the analysis of Markov chains to analyze transport phenomena in the

underlying dynamical system. With this notion, it is also possible to obtain
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results on the eigenvectors of eigenvalues close to one of the transition matrix
(cf. [FDO3]). Based on the transition matrix one can also calculate rates of
transport between two different regions in the state space. This has been used
for example in [DJLT05] to analyze transport rates of asteroids in the solar
system. In that contribution, also graph partitioning algorithms are utilized to
analyze the graph induced by the transition matrix to identify regions in state

space which are characterized by relatively little mixing with their surrounding.

The results obtained in the autonomous case have been extended to the approx-
imation of transport phenomena in non-autonomous dynamical systems in the
last years. As an example, spatially fixed structures can be identified as almost
invariant sets in non-autonomous dynamical systems. A fully three-dimensional
study of the subpolar gyres can be found in [DEHT09] which is based on the
methods presented in this thesis. Furthermore, coherent pairs have been intro-
duced by Froyland et al. [FSM10] which have to be viewed as a generalization
of almost invariant sets in a non-autonomous framework. Such pairs of sets are
characterized by a large coherence ratio. It is shown that the corresponding
structures can be uncovered by singular vectors of singular values close to one
of the normalized transition matrix. However, these structures often appear
over large time horizons and therefore the transition matrix over a long time

horizon has to be calculated which is numerically very expensive.

Outline and Contribution

The purpose of this thesis is to obtain theoretical results as well as to design effi-
cient methods for the approximation of transport phenomena in non-autonomous
dynamical systems based on transfer operators. There is a definitive need for
such methods, since state-of-the-art methods rely on long-term simulations
of the dynamical system which are numerically extremely costly. We exploit
certain properties of the transfer operator and deal with products of transition
matrices for the accurate approximation of transport phenomena. In this
context, we obtain an error bound. Additionally, this approach can be used to

visualize the pathways of transport. Also, we combine the concept of almost




invariant sets and coherent pairs to efficiently calculate coherent structures in
non-autonomous dynamical systems. A theoretical result is presented describing
this relation as well as a successful application of the developed techniques to
the oceanic fluid flow to identify slowly mixing structures like eddies and gyres.
This application is the first three-dimensional study of oceanic structures and
gives a new perspective for the analysis of oceanic processes. Thereby, this
thesis yields a relevant contribution to the efficient numerical approximation
of coherent structures in non-autonomous dynamical systems as well as their

application to the oceanic fluid flow.

The outline of this thesis is as follows: In Chapter [2| we begin by formally
introducing autonomous and non-autonomous dynamical systems and present
some basic ergodic theoretic concepts. In particular, we introduce the concept of
transfer operators for dynamical systems and describe a relevant approximation
method.

The concepts we apply in this thesis in order to analyze transport in dynamical
systems are formally described in Chapter [3] After we have introduced the
coherence ratio of two subsets in the state space of a dynamical system, we
embed almost invariant sets in the non-autonomous setting and discuss the
definition of coherent pairs and corresponding state-of-the-art methods for their

detection.

It is the purpose of Chapter [4]to introduce a novel method for the approxima-
tion of transport phenomena over a sufficiently long time interval. We make use
of the cocycle property of transfer operators in order to approximate a transfer
operator by a product of transition matrices over even shorter time intervals.
The single transition matrices can be calculated very efficiently and we avoid
the explicit calculation of the product for the calculation of eigenvalues and
singular values. It is shown that under certain assumptions a single transition
matrix can be considered as a product of transition matrices. We conclude the
chapter by introducing a novel algorithm to achieve this splitting automatically

and show the effectiveness of the method by an example.
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We prove in Chapter [5 that coherent pairs in non-autonomous dynamical
systems imply the existence of almost invariant sets over short time intervals
under some weak assumptions. Based on this theoretic result a novel algorithm is
proposed that firstly approximates almost invariant sets and secondly identifies
coherent pairs within these almost invariant sets. The efficiency of this method
is demonstrated by an example where we can reduce the computational effort

significantly. The results of this chapter have already been published in [DH12].

The theoretical results of the previous chapters and the developed algorithms
enable us to analyze transport phenomena within the oceanic fluid flow. This
is presented in Chapter [6] Here, we document two successful applications of
our results: The first one is the first fully three-dimensional investigation of
the subpolar gyres and the second one is the first three-dimensional study of a

single Agulhas ring over a sufficiently long time interval.

We conclude the thesis with Chapter [7] by summarizing the results and

discussing further directions of research.

10



CHAPTER 2

Dynamical System Theory - Basic

Concepts

In this chapter, we set up the notation and terminology of dynamical system
theory used in this thesis. For a comprehensive overview of dynamical system
theory, we refer to [ASY00), BS02|, Den05, [KHI97]. In Sections and we
begin with a brief exposition of autonomous and non-autonomous dynamical
systems, following [Arn98, [Den05, [KKS99, [KS97|. For the treatment of non-
autonomous dynamical systems, we introduce the general concept of cocycles
which allows us to study both continuous and discrete systems. Beside math-
ematical notation, we discuss how cocycles can be generated using ordinary
differential equations and difference equations. Section provides a short
exposition of ergodic theory. Here, we define basic measure-theoretic concepts
and present their relation to the long-term behavior of dynamical systems.
In the last section, we introduce transfer operators on a measure space and
discuss some properties which will be important in Chapter |3| for the analysis
of transport. Moreover, we provide a finite-dimensional approximation for the

numerical treatment.

11



Chapter 2 Dynamical System Theory - Basic Concepts

2.1 Autonomous Dynamical Systems

In this section, we introduce the terminology of time-independent (autonomous)
dynamical systems following [Den05] even though it is not the purpose of this
thesis to study autonomous systems. However, as we will see later, results
from the autonomous case can be used for the efficient treatment of transport
phenomena in non-autonomous dynamical systems. We start with a basic

definition:

2.1 Definition (Autonomous Dynamical System): A family of mappings o =
{ov: X = Xtier on a non-empty set X, where (T,+) is a (semi)group, is

called an autonomous dynamical system if
1. 09 =1dx and
2. Ot14ty = Oty OOy th, tg eT

are satisfied.

In the following, we will represent an autonomous dynamical system by the
tuple (o, X, T), where X denotes the state space, T the time and o is called
the evolution of the autonomous dynamical system. Throughout this thesis,
the time T will be additive and either continuous, (R, +), or discrete, (Z,+).

Furthermore, by T* we denote the positive elements of R or Z, respectively.

2.2 Remark (Continuous Autonomous Dynamical Systems): Consider an

ordinary differential equation

i= f(a), (2.1)

where f: X — R™ s a vector field on an m-dimensional vector space X.
Assume that for every initial condition x(0) = xg, zo € X, there exists a
unique solution x: R — X of Equation (2.1). Then ({oy: X — X }ier, X, R),

12
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with oyxg = x(t) represents a continuous autonomous dynamical system. By
oixg we denote the endpoint of a trajectory starting in xq after flowing for t
time-units. The autonomous dynamical system ({o;: X — X hier, X, R) reflects
the dynamics induced by the ordinary differential equation .

2.3 Remark (Discrete Autonomous Dynamical Systems): Let T': X — X be
a mapping on a non-empty set X. Then ({0, : X — X hez+, X, Z7) with

o X - X, ow=T(x)

represents a discrete autonomous dynamical system.

The following simple example of a continuous dynamical system will be repeat-
edly revisited throughout this thesis — in particular in Chapter [5]to illustrate

an efficient algorithm for the approximation of transport.

2.4 Example: Let us consider the following ordinary differential equation on
the state space X = [0,2n] x [0, 7]:

& = Asin(xz — vt) cos(y) + esin(2t)G(g(x, y, 1)), (2.2)
y = cos(x — vt)sin(y)

where G(z) = m and g(x,y,t) = —2sin(z — vt)sin(y) — 7 + 3.
Let us fix the parameters v =0, A = —2 and € = 0. Then, the system (2.2))
becomes autonomous and generates a simple double-gyre flow. Figure [2.1] shows
the vector field of the ordinary differential equation (2.2). As described in
Remark(2.2, the ordinary differential equation defines a continuous autonomous

dynamical system.

This system is a slight modification of a differential equation which has been
studied in [FLS10] with a nonzero parameter v € R. A similar system has also

been considered in [SLMOS], for instance, as a simplification of a double-gyre

13
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FiGURE 2.1: Vector field of the autonomous dynamical system de-
fined by the ordinary differential equation (2.2]) in

Example

pattern that often occurs in geophysical flows.

There are a variety of techniques for the analysis of autonomous dynamical
systems. However, their detailed discussion will exceed the scope of this thesis,
where our interest — in fact — mainly focusses on non-autonomous dynamical

systems.

2.2 Non-Autonomous Dynamical Systems

In many applications, the evolution of the underlying dynamical system itself
is subject to temporal changes. For example, the oceanic fluid flow explicitly
depends on time. Such systems can be modeled as so-called non-autonomous

dynamaical systems which depend — in contrast to autonomous systems — on

14



2.2 Non-Autonomous Dynamical Systems

an additional temporal parameter. In a more general setting, this dependence
can also be interpreted as a random behavior of the underlying dynamics and
thus, from that point of view, non-autonomous dynamical systems are closely
related to random dynamical systems (cf. [Arn98]). In the following, we provide
a formal definition of a non-autonomous dynamical system which follows the
ones in [KS97, KKS99).

2.5 Definition (Non-Autonomous Dynamical System): A non-autonomous
dynamical system on a non-empty state space X is given by an autonomous
dynamical system (0,0, T) and a map ¢ : Tt x Q x X — X which satisfies the

cocycle property, 1. e.
1. (0,w,-) =idx, and

2. ¢<t + t/7 W, ) = ¢<t7 Oy W, ¢(t/, W, ))7

forallt,t' €e TT, weQ, andx € X.

For the simplicity of notation, we write ¢! (x) instead of ¢(¢,w, z). Note that
the cocycle is only defined on T*. If the cocycle is invertible, i. e. the map
d(—t,w,-) exists for all t € TT and w € 2, then ¢ can be defined for all ¢ € T.

According to the preceding definition, a non-autonomous dynamical system
is given by the tuple (¢, X, (0,2, T)), where time is controlled in terms of
an autonomous dynamical system (o, €2, T) which is often referred to as the
so-called driving system. This construction has technical reasons and is of
principal importance in the context of the Multiplicative Ergodic Theorem (cf.
[Arn98] and [FLQO9]). However, in many real world examples, e. g. the oceanic
fluid flow (cf. Chapter @, the autonomous dynamical system which keeps track
of the time is given by (o, T, T), with T = R for the continuous case or T = Z
for the discrete case and with o, = t 4+ s for all t,s € T. All applications
studied in the following fall into this category and thus, for the remainder of this

thesis, we will always assume that the underlying driving system is of such a

15
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simple form. Therefore, unless stated otherwise, we identify a non-autonomous
dynamical system with the triple (¢, X, T), where ¢ denotes the cocycle, X the
state space and T = R or T = Z the time set.

In an analogous manner as in Remarks [2.2] and non-autonomous dynamical
systems are generated for example by ordinary differential equations or difference

equations.

2.6 Remark (Continuous Non-Autonomous Dynamical Systems): Consider a

non-autonomous ordinary differential equation
T = f(x,t), (2.3)
where
f:r X xXR—R™

1 a time-dependent vector field on a m-dimensional vector space X. Let f
be sufficiently smooth such that for every initial condition x(ty) = o, Ty €
X, to € R, there exists a unique solution x: R — X. Then, the triple (¢, X,R)
with ¢: R x R x X — X defined by ¢} (o) = x(7) represents a (continuous)
non-autonomous dynamical system which satisfies the cocycle property (cf.
[Arn98j).

2.7 Remark (Discrete Non-Autonomous Dynamical Systems): Let

Tpy1 = fn(xn)y

where f, : R™ — R™ (n € 7Z) are invertible continuous mappings. Then
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(¢, R™ Z) with

(firr—10...0 fizr 0 fi) () forr >1,
¢2ZXZXRm—>Rm, qb;(x): T forr:(]

(il oo fiho fi)@)  forr< -1

represents a (discrete) non-autonomous dynamical system which again satisfies

the cocycle property.

2.3 Ergodic Theory

The tools we make use of in this thesis for the treatment of transport phenomena
have in common that they consider distributions of trajectories on the state
space rather than single trajectories. Therefore, these techniques are suitable
for the study of mass transport in state space. In this section, we introduce the
relevant ergodic theoretical background which allows us to study the long-term
behavior of dynamical systems. For an overview of classical ergodic theory, we
refer to [BS02], [KH97] and [Nad98]. Additionally we refer to [Do094] for an
overview of measure theory. The relevance of these concepts for the treatment of
transport phenomena is emphazised — for instance — by a series of publications
[DJ99, DJKT05, [FD03) [FLQO9, FPET07, [FSM10, HS05, SHDO1]. We discuss
the corresponding techniques in Chapter [3|

For a quantitative study of the evolution of mass in a dynamical system, it is
sufficient to provide a framework for the statistical distribution of trajectories in
the state space. The remainder of this section relies on a given non-autonomous
dynamical system (¢, X, (0,2, T)), where (0,2, T) is an autonomous dynamical
system. Furthermore, we assume that X and {2 are metric spaces and we
denote by B(X) or B(Q2) the Borel-o algebra of X and €, respectively. We call
a function p: B(X), B(2) — R a measure on B(X) and B(f2), respectively, if
it is countably additive, i. e. u(UjerE;) = >, c; p(E;) holds for all countable
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Chapter 2 Dynamical System Theory - Basic Concepts

collections {E;};er of pairwise disjoint sets in B(X) and B(£2). We denote by
Mpx) and Mp) the set of measures on B(X) and B(f2), respectively.

Moreover, by

we denote the set of bounded signed measures on X. The set M(X) is a linear

space and can be equipped with the variational norm which is given by
lully = sup Y (B, (2.4)
k=1

for a measure p € M(X), where the supremum is taken over all finite decompo-
sitions {F1, ..., E,} into pairwise disjoint measurable subsets of the state space
X. The norm properties are proven in [Rud87], for example. Later, we define
an operator on M (X) which describes the temporal development of measures

on the state space of a dynamical system.

Descriptively speaking, a measure describes the statistical distribution of tra-
jectories in the state space of the according dynamical system. For an under-
standing of the long-term behavior of the system, it is important to identify
the distribution of trajectories as time goes to infinity. Let us first consider the

autonomous case. The measure p given by

p1(A) = lim #ior) e A:0<t <7}

T—00 T

for Lebesgue almost all x € X, is called physical invariant measure and appears
in the Ergodic Theorem of Birkhoff (cf. [Nad98]). If it exists, it is left invariant

under the evolution of the dynamical system.

2.8 Definition (Invariant Measure for Autonomous Dynamical Systems): We

call € Mpq) an invariant measure of an autonomous dynamical system
(0,0 T) if poo_r = for all T € T.
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The existences of invariant measures for continuous o, is summarized in the
Krylov-Bogolubov theorem (cf. [BS02]) and a proof for the existence of piecewise
continuous o, can be found in [LY73]. The numerical approximation of invariant
measures has been the subject of several publications (cf. e. g. [Hun94, [D.J99]).
These measures can be identified, for instance, as fixed points of the so-called

transfer operator which will be introduced in the next section.

For the more general non-autonomous case (cf. [Arn98]), the definition of an

invariant measure can be extended as follows:

2.9 Definition (Invariant Measure for Non-Autonomous Dynamical Systems):
We call a measure p on X x € an invariant measure of a non-autonomous
dynamical system (¢, X, (0,Q,T)), if the map

O(T) : X x Q= X xQ, (x,t) = (¢ (x),0.t)

preserves the measure i, i. e. 1o O(—71) = p for all T € T.

In general, the measure p explicitly depends on time. However, in many
examples, especially the oceanic fluid flow (cf. Chapter@, the three-dimensional
volume measure is preserved all the time. Thus, in the following we restrict
to measures in M(X) which are independent of time. The map ©(7) for
a7 € T is also called the skew-product of the non-autonomous dynamical
system (¢, X, (0,8, T)). A discussion of the existence of invariant measures of
a non-autonomous dynamical system as well as a discussion of skew-products
can be found in [Arn98].

2.4 Transfer Operators

In this section we introduce the concept of transfer operators which provide

a powerful tool for the approximation of transport phenomena in dynamical
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systems (cf. for instance [D.J99, [Fro05] and the references therein). The transfer
operator can be defined on the space of bounded signed measures M(X)
and it can be used to describe the temporal development of a distribution of
trajectories in the state space of a dynamical system. In the remainder of this
section, we consider the case that the underlying non-autonomous dynamical

system is given by (¢, X, T) and that the map x — ¢](x) is continuous.

2.10 Definition (Transfer Operator): The transfer operator P{ : M(X) —
M(X) of a non-autonomous dynamical system (¢, X, T) is given by

Fu(A) = (0 (A)) VA€ B(X),t€T,7>0.

For an arbitrary non-autonomous dynamical system, the cocycle is not necessar-
ily invertible and thus, we denote by ¢, .(A) the pre-image of a set A C X. We
also note that, therefore, the transfer operator itself is not necessarily invertible
in general. It is also possible to define the transfer operator P; on the space of

Lebesgue-integrable functions L!'(X) on the state space X by
/ P/ fdm = fdm VA e B(X).
A b4+ (A)

If f € LY(X) is the density of a measure p, then the two definitions are
equivalent. Furthermore, if f describes the distribution of mass at time ¢ in
the state space X, then the image P; f describes the distribution of the initial

mass after applying the cocycle of the dynamical system over time 7.

Some basic properties of the transfer operator are summarized in the following

lemma:

2.11 Lemma (Properties of Transfer Operators): Let (¢, X, T) be a non-
autonomous dynamical system and P] for t,7 € T the corresponding transfer

operator. Then the following holds:
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2.4 Transfer Operators

1. P{ is linear.

2. A measure v € M(X) is a fixved point of P{, i. e. Plv = v, if and only

if v 1s an invariant measure.

3. For an 6ig€nmeasunﬂ v € M(X) with corresponding eigenvalue A # 1 of
P, one has v(X) = 0 because

MAX) = (PIo)(X) = w6 (X)) = v(X), Vir € T (25)

Moreover, the transfer operator naturally inherits the properties of the one-sided

cocycle of the dynamical system (cf. [FLQO9]).

2.12 Proposition (Transfer Operator Cocycle): For a given non-autonomous

dynamical system (¢, X, T), the transfer operator satisfies the one-sided cocycle

property.

Proof.

Pu(A) = p(¢f(A) = u(A), Vue M(X),AeB(X),teT,
and
Prmp(A) = p(einin (4)

= /’L< t*{}j( tl‘l2'1+T2(A)))
= PtTl:u( t+7‘1+T2(A))
= Pi,(PIu(A)) Ype M(X),AeB(X),vteT,n,mneTr

]

IFor an eigenvalue \ of a transfer operator P;, we call u the corresponding eigenmeasure if
Pl = Ap holds.
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Chapter 2 Dynamical System Theory - Basic Concepts

Therefore, the tuple (¢, M(X),T) with ¢7(v) = P7v for all t,7 € T defines a
non-autonomous dynamical system which can be analyzed using dynamical

system theory.

Finite-Dimensional Approximation

In this thesis, we focus on the approximation of transport phenomena. However,
we will see later that the information on spectral properties is crucial for
the understanding of transport processes. In order to extract such spectral
properties of the transfer operator P; of a non-autonomous dynamical system,

we have to approximate P/ by a finite-dimensional representation.

There are several approaches to obtain a finite-dimensional representation. They
all rely on the same ansatz which goes back to Ulam [Ula60]. The most common
one is to calculate the finite-dimensional representation of a transfer operator
on a space of piecewise constant functions (cf. e. g. [DJ99]). Here, one has to
numerically compute transition probabilities between disjoint subsets of the
state space which can be carried out either by a Monte-Carlo approach [Hun94]
or by an exhaustion technique if the map z +— ¢ () is locally Lipschitz [DEJ01].
Instead of piecewise constant functions, one can consider a certain Haar basis
for the finite-dimensional representation of the transfer operator (cf. [JK09]).
Alternatively, for autonomous dynamical systems, instead of approximating
the transfer operators P7 for each fixed 7 individually, one can approximate

the so-called generator of the semi-group induced by the transfer operators
{P7"}rer (cf. [ETKI3]).

In the following we give a brief overview of the most natural approximation
method, which we use for the algorithms in this thesis following [D.J99]. The
starting point is a partition of the state space X into N € N disjoint subsets
B = {By,...,By}. For simplicity, we assume that the subsets in B are n-
dimensional boxes with n = dim(X'). The partition into boxes can be efficiently

carried out with the software package GAIO [DFJ0I] which successively bisects
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2.4 Transfer Operators

the state space into boxes using a binary tree for the storage. The partition
is the discrete structure in which we look for coherent structures, e. g. unions
of subsets A = U, B; which have little mixing with their surrounding. To
obtain a good approximation, the sets in the partition have to be chosen
sufficiently small. Then, we define for each i € {1,..., N} indicator functions
x5, : X — R, with yp,(z) = 1if 2 € B; and xp,(z) = 0 otherwise. The space
N = Span{m)@l, o mXBN} spanned by the indicator functions of a
partition can be interpreted as a finite-dimensional space of densities on the
state space. Furthermore, we calculate the finite-dimensional representation of
P; on N using the projection 7 : L'(X) — N with

N
1
™= 2y /B fam:

where m denotes the Lebesgue measure on X. The entries of the representation

matrix Pt7 € RN of PI are given by

P.th =
Y m(B;)

(2.6)
These can be interpreted as the probability that a trajectory which starts in
box Bj; at time ¢ ends in box B; after flowing 7 time-units. Therefore, we
call the matrix P%™ a transition matriz. This matrix is the finite-dimensional

representation of the transfer operator Py .

2.13 Remark (Markov Chain Interpretation): Consider an autonomous dy-
namical system with discrete time T = Z. If we denote the partition B as the set
of states, then P! defines a transition matriz of a discrete time Markov chain
(cf. [Bréd9]). Additionally, such a transition matriz defines a transition graph
where the nodes are the states in B. Hence, many of the concepts described in

this thesis are inspired by results in Markov chain theory and graph theory.
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Numerical Realization

For a numerical realization of Equation , the calculation of the Lebesgue
measure of ¢, " (B;) N B; for each combination of two boxes in the present parti-
tion has to be performed. To this end, we apply a Monte Carlo approach as sug-
gested in [DHIRI7] and approximate m(¢;;7(B;) N B;) by S, x5,(¢7 (k)
where p; € B; are the so-called K € N test points which are chosen on the
basis of a uniform distribution in B;. In more detail, we form the numerical

realization «
ﬁit]ZT _ Zk:l XB}‘(('QSt (p%k’)) (27)

of P7. A crucial point in the computation of }Njff is the number of test points
representing the box B; and, therefore, the image ¢(t, 7, B;) after flowing 7
time-units. The appropriate amount of test points directly depends on the
flow time 7 and therefore influences the computational effort significantly. In
Chapter [4, we develop an approach aiming at the reduction of the number
of test points without loosing accuracy in the approximation. The binary
tree representing the box partition within the software package GAIO [DEJ01]

allows a very efficient search for the box which contains a fixed state z € X.

2.14 Remark: In some applications, the relevant information for the identi-
fication of transport phenomena is captured by a subset S of the state space
X and its image ¢7(S). Therefore, it is not necessary to discretize the entire
state space X . In such situations, the subset S is covered by an initial partition
B = {By,...,By,} and its image under ¢ is covered by a second partition
C={Cy,...,Ch,}. Consequently, the entries of the transition matrix restrict
to the probabilities that a trajectory starts within a set of the partition B and
ends within a set of the partition C. Later, we present an algorithm that prese-
lects a subset S which contains all relevant dynamical information. The benefit
1s that the approximation of the transfer operator can be performed with less

computational effort on a smaller subset S than on the whole state space.
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CHAPTER 3

Transport in Dynamical Systems

The main contribution of this thesis is the development of an efficient ap-
proximation method for transport phenomena in dynamical systems and the
application of the presented algorithms. To this aim, we provide concepts for
the treatment of transport phenomena in dynamical systems in this chapter.
There mainly exist two branches, the probabilistic approach, which we are going
to make use of in this thesis and the geometric approach. An overview and a

first comparison of both can be found in [FP09).

In the geometric approach, barriers of transport are identified, e. g. by approxi-
mating finite-time hyperbolic structures which separate certain regions in state
space. In the autonomous setting, invariant manifolds directly form transport
barriers which cannot be crossed by trajectories, whereas in the non-autonomous
case, hyperbolic structures, so-called Lagrangian coherent structures, have been
identified as transport barriers. For more details, we refer to [Hal00] for the
two-dimensional and to [HY00] for the three-dimensional case. Numerically,
such structures can be approximated, in the autonomous as well as in the
non-autonomous case, by the expansion rate approach [Pad05], for example. To
analyze transport in periodically driven non-autonomous dynamical systems,

for instance, lobe dynamics of invariant manifolds can be used [MW9§]. A
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more general concept consists in the identification of time dependent curves
experiencing minimal stretching in state space acting as transport barriers
[HB12].

The geometric approach has been used for a variety of applications, e. g. the
investigation of blood-flow [STO8] or the analysis of the particle dynamics in a
hurricane [dM10].

The probabilistic approach — on the contrary — focuses on the approximation of
coherent structures which are structures in state space mixing slowly with their
neighborhood. In the autonomous setting, so-called almost invariant sets can be
identified by the analysis of the transfer operator of the dynamical system. This
approach goes back to Dellnitz and Junge [DJ99] and has been successfully ap-
plied to a variety of problems e. g. to analyze transport in dynamical astronomy
[DJKT05, [DJLT05]. In the time-dependent setting, the so-called coherent pairs
serve as a time-dependent analog to almost invariant sets. Similarly, the analysis
of a time-dependent transfer operator and its corresponding finite-dimensional
representation leads to the approximation of coherent pairs, which are character-
ized by the property that most of the mass is transported from one set into the
other over a fixed finite time. This approach was developed by Froyland et al.
[ESM10), SEM10]. Another concept is the approximation of the so-called Os-
eledets subspaces occurring in the Multiplicative Ergodic Theorem (cf. [Arn9g]).
In more detail, Lyapunov exponents of the corresponding time-dependent trans-
fer operator cocycle are related to coherent structures in the state space of the
underlying dynamical system, cf. [FLQO9, [FLS10]. Transfer operator methods
in the non-autonomous case have been successfully applied to the stratospheric
polar vortex [FSM10, [SEM10] or to identify slowly mixing oceanic structures
in the oceanic fluid flow [DFHT09, [FHR™ 12, [FPET07, [FSPDOS].

For the analysis of transport, we make the following assumption throughout

this chapter:
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3.1 Assumption: We consider a non-autonomous dynamical system (¢, X, T)
and fix the initial time t € T as well as the length of the duration 7 € T over

which we analyze transport phenomena.

Within this setting, we begin in Section by introducing the coherence ratio
of two sets and use it to define and analyze autonomous coherent structures in
Section [3.2] These are minimally mixing structures which are spatially fixed
in the state space of the underlying non-autonomous dynamical system. We
proceed in Section [3.3| with the definition and identification of minimally mixing
structures which are mobile in state space. Later, in Chapters [4] and [, we
provide an efficient approximation method for these non-autonomous coherent

structures and apply these techniques to the oceanic fluid flow in Chapter [0}

3.1 Coherence Ratio

In the autonomous as well as in the non-autonomous case, it is essential to
quantify the amount of mass transported from one structure into another. This
can be specified with respect to the physical reference measure € M(X) on

the state space X by the so-called coherence ratio.

3.2 Definition (Coherence Ratio): Let u € M(X) be a probability measure
on X. For two sets Ay, Ay C X with u(A;) > 0, the coherence ratio over the

time interval [t,t + 7] is defined as

(AL N @7 (Ag))
f1(Ay) .

pi(Ar, Ag) :=

The coherence ratio pj (A;, Ay) for sets Ay, Ay C X is bounded from above by
one. If p[(A;, A2) = 1 holds, all of the mass of A; flows into the set Ay over
time 7. If p] (A1, A2) = 0 no mass flows from A; to As. The reference measure

p is often chosen such that it is preserved by the cocycle, i. e. po ¢7 (A) = p(A)
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holds for every ¢t,7 € T and A € B(X). However, the choice of the reference
measure i depends on the underlying application: In several applications, the
Lebesgue measure is selected or the physical invariant measure (cf. Section

of the underlying dynamical system (cf. [D.J99]) — in case it exists.

In the situations where p is the physical invariant measure, we can numerically

approximate the coherence ratio.

3.3 Remark (Numerical Calculation of the Coherence Ratio): Let X be parti-
tioned into N € N disjoint subsets By = { By, ..., By}. To numerically evaluate
the coherence ratio with respect to the physical reference measure p € M(X),

we follow [FD0O3] and define an approxzimation of p by

N

un(A) = Z %pm (3.1)

where p € RY is the eigenvector of the eigenvalue 1 of the transition matriz Pb™
on By = {Bi,..., By} and m the Lebesgue measure. The entries of P“T are
given by Equation . For instance, it is shown that, if the dynamical system
15 subject to small random perturbations, iy converges to the physical invariant
measure 1 if N tends to infinity and the diameter of the boxes approaches zero
(cf. [DJ99, [Fro95]). In this setting, it is straightforward to show that for two
sets Ay = J,c; Bi and Ay = Uje;B;, with I, J C {1,..., N}, the coherence ratio
p7 (A1, Ag) with t,7 € T can be calculated by

6,7
Zz’el,jeJ Pyz Di

Zie[ Di 7

with respect to un (cf. [FDO3] in case of Ay = Ay).

pi (A1, Az) =
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3.2 Autonomous Coherent Structures

In this section, we are going to approximate subsets A of X for which
¢ (A) = A,

holds. These so-called almost invariant sets can be identified in a completely
autonomous setting by the analysis of the transfer operator (cf. [DJ99]). Here,
we embed the corresponding theory of (autonomous) almost invariant sets in
the context of a non-autonomous dynamical system. In the time-dependent
case, almost invariant sets appear as slowly mixing structures that are fixed in

state space.

3.2.1 Invariant Sets

The simplest case of an autonomous coherent structure in a non-autonomous
dynamical system (¢, X, T) is a subset S of the state space X with closed
dynamical behavior on it, i. e. (¢|g, S, T), where ¢|s is the restriction of ¢ on
S, defines a dynamical system itself because ¢(t,7,5) = S for all t,7 € T. In

terms of the coherence ratio, we can define:

3.4 Definition (Invariant Set): Let A C X be a non-empty set. We call the

set A a (t,7)-invariant set if
pi(A,A) =1,

where p; is the coherence ratio.

Let pa € M(X) be the measure with density x4 for a measurable subset A
of X, 1. e. ppa(B) = [z xadp for all B € B(X). It is easy to check that A is a

(t, T)-invariant set if the measure j1 4 is invariant under the action of the transfer
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operator P/. In that case, the state space X can be subdivided into the sets A
and X \ A with independent dynamics in each part.

3.2.2 Almost Invariant Sets

In many dynamical systems, the only existing (¢, 7)-invariant set is the whole
state space X itself. However, we can still observe parts of the state space

which are almost invariant (cf. [D.J99]).

3.5 Definition ((p,t,7)-Almost Invariant Set): Let A C X be a non-empty
set, p € [0,1] and p € M(X) a probability measure such that the cocycle ¢

preserves . We call the set A a (p,t,T)-almost invariant set if

pi (A, A) = p.

In real world applications (p, t, 7)-almost invariant sets in the state space with
p close to 1 appear for example as metastable configurations of molecules (cf.
[DHES00, [SHDO1]) or, as we will see in Section [6] as so-called gyres and eddies
within the oceanic fluid flow [FPET07, [FSPDOS, DFH*09].

The main approach for the detection of almost invariant sets was introduced by
Dellnitz and Junge in [DJ99], where a connection between spectral properties of
the transfer operator P/ and the existence of (p, t, 7)-almost invariant sets with
p close to 1 is uncovered. More precisely, in the situation where the underlying
dynamical system is subject to small random perturbations, the following result

has been proved:

3.6 Theorem ([DJ99]): Suppose that the eigenmeasure pn of P} corresponding

to a real eigenvalue \ # 1 is scaled such that |u| is a probability measure, and
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let A C X be a set with u(A) = 5. Then

prr(AA) + pe (X \NAX\NA) =A+1, (3.2)

where py; is measured with respect to |pu.

The measure |p| is the total variation of the measure p and given for real-valued

measures by |u| = uT 4+ p~ with

p'(B)=suppu(A)  and  p (B) =— inf u(A).
ACB ACB

For such measures, there exists the so-called Hahn decomposition of X into two
measurable sets AT, A~ C X with ATUA™ = X, u(A") > 0and pu(A7) <0
(cf. [Doo94]). By Lemma for the eigenmeasure pu, the identity pu(X) =0
holds true. Combining this with the fact that |u|(X) = 1, we conclude that
there exists a set A with p(A) = 3. In more detail, if X is close to 1, using
Equation (3.2)), we can deduce that there exist two almost invariant sets A™*
and its complement A~ = X \ AT given by the Hahn decomposition with a
coherence ratio close to 1 and u(B) > 0 for all B C AT and u(B) < 0 for all
B C A™. Thus, the sign-structure of the eigenmeasure u splits the state space
X into two almost invariant sets AT and A~ if the corresponding eigenvalue is

close to 1.

Consider a partition B = { By, ..., By} of the state space X by N € N boxes and
the corresponding finite-dimensional matrix representation P, of the transfer
operator P; for fixed t,7 € T (cf. Equation (2.6])). Within this setting, we can
formulate the following approach for the approximation of almost invariant
sets (see e. g. [DJ99, [FDO3|). Let v be the eigenvector corresponding to a real
eigenvalue of Pb™ near 1. Then, the corresponding almost invariant sets A"

and A~ can be approximated by

Af=|JB  and A7 =] B, (3.3)

vi>cC v;<c
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Algorithm 1 AlmostInvariantSet (¢, 7, NV, )

1. Cover the state space X by N boxes {Bi,..., By }.

2: Approximate P; by P"".

3: Calculate the eigenvector v of P%" corresponding to the second largest real
eigenvalue.

4: Choose ¢ € R such that p(AY) < L pu(4;) < i and

min{pj (AT, A7), pf (A7, A7)} is maximized, where AT = |J, .. B; and

Ac_ - Uvi<c BZ
5: Return A = argmin ¢ ,—{p] (Al A7), p[(A;, AJ)}.

where c is equal to 0. To allow almost invariant sets with measure not equal
to 1, we can choose the value ¢ in Equation (3.3)) freely. Heuristically we can

select a ¢ € R™ in such a way that
min { pj (AL, A7), p{ (A7, A) } (3-4)

is maximized in order to obtain a maximized coherence ratio of the almost

invariant set.

Indeed, Equation is an optimization problem which cannot be solved
easily. In the above setting, we can only define finitely many sets Af =
Uvi>c B; since the vector v has finitely many entries. Therefore, we can easily
solv_e the optimization problem in Equation by checking finitely many
¢ € {v;}iz1,.. n. This procedure can be summarized in Algorithm [1] for the

approximation of a (p, t, 7)-almost invariant sets.

3.7 Remark: Algorithm 1] makes use of the eigenvector of the second largest
etgenvalue of the transition matriz P". It has been shown that also subsequent
ergenvalues close to 1 and their corresponding eigenvectors can be used instead
of v to reveal other almost invariant sets. For a more detailed discussion on
this we refer to [DJ99] and [FD03].
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3.8 Remark: The transition matriz P4™ € RYN induces a finite Markov chain
(cf. Remark which is not necessarily reversible, i. e. pl-Png #+ p]-Pf]?T for
i,j € {1,..., N}, where p is the fived eigenvector of P*". Hence, for further
analysis, we transform the transition matriz P" into a “time symmetric”

transition matriz RY™ by

1 plPt’T
Rt7T = — P.t7T J? 35
iJ 2 ( iJ + D ) ) ( )

which induces a reversible Markov chain. The matriz R is stochastic and
possesses real eigenvalues throughout [Bré9d]. Consider again the measure py
given by Equation and let A={AC X : un(A) <3, A=,c;Bi} be the
set of all possible combinations of boxes in B with measure smaller than % By

denoting Ao as the second largest eigenvalue of RYT, it is shown in [Fro0d] that

1+
1—\/2(1—/\2)§r£a;l<p2(14,z4)§ z 2
S

holds. In principle, instead of calculating the eigenvalues and eigenvectors of

Pt in Algom'thm we can make use of the eigenvalues and eigenvectors of
the matriz RY™. This would lead to structures that are almost invariant under

the forward and backward dynamics.

In the following example, we apply Algorithm [I| to the non-autonomous dy-
namical system generated by the ordinary differential equation with a
non-zero parameter value €. The identification of autonomous structures in
non-autonomous dynamical system plays an important role in various applica-
tions, for example in the identification of large spatially fixed structures in the
oceanic fluid flow [DFHT09, [FPET07, [FSPDOS].

3.9 Example: Reconsider the ordinary differential equation (2.2)) from Ez-
ample and let e = 1, A = =2 and v = 0 such that (2.2) generates a
non-autonomous dynamical system (¢, X,R). The application of Algom'thm
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2.5

~15

0.5

FIGURE 3.1: Covering of a (0.98, 0, 7)-almost invariant set within
the state space X of the non-autonomous dynamical
system discussed in Example The red dots indi-
cate the endpoints of sample trajectories leaving the
covering of the almost invariant set.

with N =16384, t =0 and 7 = m uncovers a (0.98,0, )-almost invariant set
A. The box collection covering this almost invariant set is shown in Figure[3.]].
Additionally, the end points of test point trajectories which start in A and end
up in X \ A are indicated by red dots.

In the following, we illustrate the strength and variability of the transfer
operator method concerning the analysis of almost invariant sets in a non-
autonomous dynamical system (¢, X, T), as we introduced in the previous
section. Consider a transfer operator P/ and its corresponding transition
matrix P%" with respect to the partition B = {Bj, ..., By} for fixed t,7 € T.
Furthermore, we assume that A; and A, are two sets each of written as a union
of sets of Bi. e. Aj = U,; Bi and Ay = U, By, I,J C {1,..., N}. The sets
A; and A, themselves can be assumed to be almost invariant sets; however,

this is not necessary for the subsequent calculations. In this section we are
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3.2 Autonomous Coherent Structures

interested in two quantities. The first one is the mean residence time which
is the average time a particle originating from different parts in A; remains
within the set A; (cf. [Fro01]). The second one is the transport rate between
two sets Ay and As (cf. [DJKT05]).

Mean Residence Time

The coherence ratio pj (A, Ay) of the almost invariant set A; = |J,.; B; reflects
the probability that a trajectory which starts at time ¢ in A; ends up in
A; after flowing 7 time-units. For a further analysis, we calculate how long
the trajectory starting in A; remains in A;. For this end, we assume that

={1,...,k}, for a fixed k € {1,..., N}. This is not a restriction and can
be easily obtained by reordering the elements of the box-covering. In case the
underlying dynamical system is autonomous and discrete, i. e. T = N or Z, we
can assume that P! is the same transition matrix for each t € T and we can
drop the t-dependence. To calculate the mean residence time we only consider
the restriction P!|4, € R®* of the transition matrix to the set A; and assume
that it satisfies lim, o P7|4, = 0. It is shown in [FAOI] and [Fro01] that the
average time a; required for a particle originating in B;, for an i € I, to leave

the set A; is given by the solution of the linear system of equations
(Id — PYa)a = (1,1,..,1)T,
where Id denotes the (k X k)-identity matrix. An exemplary calculation of the

mean residence time can be found in Section [6.2.2]

Transport Rates

The transport rate between two sets indicates the magnitude of transport with
respect to a certain reference measure. For autonomous dynamical systems,

transport rates have been introduced in [DJK™05] and extended to the non-
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autonomous case in [Pad05]. We fix a point ¢ € T in time and define the
transport rate between A; and Ay over the time interval [t, ¢ + 7] with respect

to the Lebesgue measure by

Tay 4,4(T) = m(AL N ¢ (Az)),

for 7 € T. The following calculations are true for arbitrary probability measures;
we choose the Lebesgue measure for simplicity. The transport rate can be
written in terms of the transfer operator as T, 4,+(7) = (P{ma,)(As) with

ma, (Az) = m(A; N Ag) and approximated by
Tay n,4(T) = €4, PP un,, (3.6)

where (e4,); = 1 if B; C Ay and 0 otherwise and (ug4,); = m(B;) if B; C A;
and 0 otherwise. If we have a sequence of partitions (By)nen such that the
diameters of the boxes in By approach 0 for increasing N, we obtain equality
in Equation in the limit (cf. [DJKT05] and [Pad03]).

3.3 Non-Autonomous Coherent Structures

In this section, we introduce mathematical concepts for the description of
non-autonomous coherent structures, which are based on the notion of almost
invariant sets in autonomous systems as introduced in Section [3.2.2] Non-
autonomous coherent structures are time-dependent and particles starting in
such a structure at a certain time stay within this structure over time with a

high probability.

The geometric theory for analyzing transport in dynamical systems can be
naturally extended for the treatment of non-autonomous transport phenomena
[HY00]. Nevertheless, in this thesis, we focus on the probabilistic approach
developed in a series of publications by Froyland et al. [FLS10, [FSM10, [SEM10].

Two concepts are suggested for a transfer operator based analysis. The first
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3.3 Non-Autonomous Coherent Structures

one relies on ergodic theory and uses so-called Oseledets subspaces occurring
in the Multiplicative Ergodic Theorem. The main result of [FLS10] relates
Lyapunov exponents of the corresponding transfer operator cocycle to coherent
structures in the underlying dynamical system. The theory of Lyapunov
exponents deals with an infinite time horizon and a basic assumption of the
Multiplicative Ergodic Theorem is an ergodic measure-preserving driving system
in a probability space. However, such technical construction cannot be fulfilled
in many applications. Also, transport phenomena only appear over finite time.
Therefore, we will focus on another approach that is designed to identify pairs
of sets which are characterized by the fact that most of the mass is transported
from one set into the other over a fixed finite time [FSM10, SEM10].

3.3.1 Coherent Pairs

Coherent pairs can be defined analogously to almost invariant sets by taking
into account a second set (cf. [ESM10]).

3.10 Definition ((p,t,7)-Coherent Pair): Let o and v be probability measures
on X and Ay, Ay C X with u(Ay) > 0. For fired t,7 € T the pair (A1, Ay) is
called a (p,t,T)-coherent pair if

pi (A1, As) =p (3.7)

and u(Ay) = v(A,).

The measures p and v are reference measures for measuring the coherence
at initial time ¢ and final time ¢ + 7, respectively. This differs slightly from
the definition given in [FSM10], where u(A;) = p(Az) is required. In many
applications, the measure 4 is chosen according to a certain physical meaning
in which case v is given by P/ and can be interpreted as the so-called push

forward of the measure p under the dynamics. In the following, we will only
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choose the initial reference measure depending on the underlying application

and assume that the measure at final time is given by its push forward.

3.11 Remark: In case p is an invariant measure for ¢, we observe that the
construction of trivial (1,t, 7)-coherent pairs (Ay, As) is possible. More precisely,
we can select an arbitrary A C X with positive p-measure, set v = p and simply
define Ay = A and Ay = ¢](A). These trivially constructed (1,t,T)-coherent
pairs are of no dynamical interest. In turbulent dynamical systems, such sets
are subject to high stretching and folding and, therefore, geometrically irreqular.
Hence, by adding a small amount of diffusion to the underlying dynamics, these
trivially constructed pairs will disappear. In fact, numerical methods based
on the transfer operator approximation described in Section naturally add
diffusion to the dynamics. This natural diffusion allows the identification of
nontrivial (p,t,T)-coherent pairs with a large value of p. A detailed discussion
of this topic and a theoretical interpretation of diffusion in the transfer operator

setting can be found in [Frold].

The numerical method for the identification of (p, t, 7)-coherent pairs with large
p was proposed by Froyland et al. [FSM10] and is characterized by the fact that
it has the ability to work only on subparts of the state space. In fact, one only
needs a subset S of the state space X which — together with ¢7(S) — already

captures all the relevant information for the identification of a coherent pair.

Let (¢, X, T) be a non-autonomous dynamical system. Furthermore, let S be a
subset of the state space and ¢] (.S) its image. We calculate the transition matrix
P'T between a partition B = {Bjy, ..., By} of S and a partition C = {C4, ..., Cys}
of ¢7(S) (cf. Remark [2.14)). Moreover, we consider two reference probability
measures p and v = P on S and ¢; (S). In the following, we work exclusively
with the finite-dimensional approximation of the transition matrix. However, a

more formal transfer operator setting can be found in [Frol3].

The main idea of this approach is the formulation of an optimization problem

38



3.3 Non-Autonomous Coherent Structures

which partitions the set S and its image into two sets of equal volume. It is
solved by thresholding the left and right singular vectors corresponding to the
second largest singular value of the normalized (with respect to a certain inner
product) transition matrix P%7. We first define vectors p € RY and ¢ € RM,
with p; = u(B;), i =1,..., N and ¢ = P""p, which are the discretized versions
of the reference measures p and v = P/ . The coherence ratio between two
sets A1 = U;c; Bi and Ay = J;; €, where I C {1,..., N} and J C {1,..., M},
is given by

t
Z’LEI,]EJ P T
DierPi

cf. Remark [3.3] Therefore, coherent pairs with large p can be obtained by
finding index sets I, J such that Equation is maximized. We encode the
index sets I and J by vectors x € {—1,1}", y € {—1,1}* such that x; = 1
if and only if ¢ € I and y; = 1 if and only if j € J, therefore 4; = |, B;

;=1
and Ay = ji,—1 C- Additionally, we introduce the inner products (w1, 22)p =

pi (A1, Ag) = (3-8)

Zi]il x1,;%,;p; and (Y1, Y2)y = Z;‘il Y1,;Y2,;¢; and formulate the constraint that
|(x,1),| and |[(y,1),| are minimized. This guarantees that p(A4;) and v(As)
are approximately 3 1 each. For technical reasons, we normalize the transition
matrix and form L;; = p]PtT/qi. Considering the setting in Remark , we

can calculate:

(Lx,y)q = Z Lijqi + Z Lijqi | — Z Lijqi + Z Lijq;

jelied jelig¢J jeligJ j¢lied
t,7 t, T t,T t,T
= Z P pj + Z Pipi | — Z Pij pj + Z Py pi
jelied jeligJ jeli¢J jelied

= p; (A1, Ag)un (Ar) + pf (S\ A1, 7 (S) \ A2)un(S\ Ar)
— pi (A1, 97 (S) \ Ag)un (A1) — pi (S\ Ax, Ag)pun (S Av),

where the coherence ratio is measured with respect to p . This calculation shows
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that maximizing (Lx,y), will lead to coherent pairs with large p (cf. [FSM10]).
Therefore, to obtain a (p, t, 7)-coherent pair with p close to 1, we can formulate

the following maximization problem:

max (L, y)q = [{z, pls [(y; Lol <€ (3.9)

xe{flrl}Nrye{flvl}]w

for a small € € R. For e = 0 it cannot be expected that a solution of the problem
exists since it is not possible to form a finite set of boxes with a measure of

exactly %, in general.

However, the optimization problem in Equation (3.9) is a large-scale combi-
natorial problem and therefore, finding a solution is a difficult task. Froyland
et al. proposed to relax this problem and instead of finding binary vectors
v e {-1,1},y € {-1,1}M they may taken on continuous values. Thereby,
the optimization problem given in Equation (3.9)) is relaxed. This also allows
to set € = 0 such that the constraints become |(x,1),| = |[(x,1),| = 0. Finally,

we can formulate the relaxed problem as:

<L$,y>q

ma 1)y = (y, 1) = 0} 7 (3.10)
PeRN eRt { Iz [l, 11l ’ !

1 1
where ||z||, = (z,x); and ||y||, = (y,v)¢. The normalization terms are due to

the fact that in Equation (3.9) we implicitly stipulate that |||, = S, p; = 1

and ||y|l, = Z]]Vil ¢; = 1 since p and v are probability measures.

The solution of the corresponding relaxed optimization problem in Equa-
tion is given by =z = H;l/% and y = Hq_l/z?j, where z and g are the
right and left singular vectors corresponding to the second largest singular
value of H;1/2Pt’TH,1J/2. Here II, = diag(p) and II, = diag(q) are diagonal
matrices. Finally, we summarize this approach in Algorithm 2 Furthermore,
the algorithm relaxes the condition that the set S has to be subdivided into
two sets with equal measure in the same manner as Algorithm [T Therefore, it

allows to approximate coherent pairs with a flexible size.
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3.3 Non-Autonomous Coherent Structures

Algorithm 2 CoherentPair(t, 7, N, M, S, 1)

1: Cover S C X by N boxes {By, ..., By} and ¢](S) by M boxes {C4, ..., Cir }.

2: Discretize P by P*" on S and ¢7(S5).

3: Calculate p; = u(B;),i=1,..., N and ¢ = P""p.

4: Calculate the left and right singular vectors ¢! and v" of II; Y 2P“H,l,/ 2
corresponding to the second largest singular value.

5: Choose ¢ € R such that p](A., Ay)) is maximized, where

UB and Abc)— U C

l>c vy >b(c)

with b(c) = argminy,,, ngchi - Zv:zb(c) -
6: Return A; = A, and Ay = Ay

3.12 Remark: Algorithm [] makes use of the left and right singular vectors
corresponding to the second largest singular values. In the same manner as
discussed in Remark [3.7 for the identification of almost invariant sets, we can
use subsequent singular values close to 1 and their corresponding left and right

singular vectors.
3.13 Example: We reconsider the ordinary differential equation

& = Asin(z — vt) cos(y) + esin(2t)G(g(x, y, 1)),
y = cos(x — vt) sin(y),

where G(z) = 2+1 > and g(v,y,t) = —2sin(x — vt)sin(y) — § + 4. In Evam-
ple we ﬁxed the parameters v =0, A = —2 and ¢ = 1 and identified an
almost invariant set using Algorithm . Now, we set v = i which tmplies that
the coherent structure identified in Example[2.4) starts to move through the state
space. We apply Algorithm [ to the whole state space of the non-autonomous
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dynamical system by using the same partition at initial and final time. There-
fore, with N =M =16384, S = X, t =0 and 7 = 4n, the computation leads
to a (0.9874,0,4m)-coherent pair (A1, As) which is shown in Figure 3.3, In
Figure we illustrate the vectors x = H;lﬂj and y = H;WQ, where T and
U are the left and right singular vectors corresponding to the second largest
singular value of H;1/2P0’4”H;,/2. Observe that by construction the changing
from red to yellow in these vectors coincide with the sets Ay and As of the

related coherent pair.

From the numerical point of view, the most expensive part in Algorithm [2] is
the numerical approximation of the transfer operator P/ in the second step. A
sufficiently high amount of K € N test points has to be integrated to form the
transition matrix Pij ~ ZkK:lXB}'<(¢tT(pj’k)) (cf. Equation (2.7))). The total number

of sample trajectory integrations directly depends on the number of boxes

covering the initial domain S. Thus, the identification of an appropriate (i. e.
as small as possible) subset S C X is crucial for the efficiency of this approach.
In Chapter [5, we present an appropriate numerical approach which preselects a

set S and allows us to reduce the related numerical effort significantly.
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3.3 Non-Autonomous Coherent Structures

FIGURE 3.2: A (0.9874,0, 47)-coherent pair (A1, Ag) calculated by
Algorithm [2]
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FIGURE 3.3: Normalized left (top) and right (bottom) singular vec-
tors corresponding to the second largest singular value
of the matrix Il Y 2P0’4“H]13/ 2, (Color scale represents

the magnitude of the entries of the singular vectors.)
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CHAPTER 4

Analysis of Transport over Long Time

Intervals

For analyzing transport phenomena by the concepts introduced in Chapter [3]
spectral properties of transfer operators play a central role. The transfer
operator captures the relevant dynamics of a dynamical system (¢, X, T) over
a fixed given time horizon (e. g. from time ¢ € T to time t + 7 € T). The
numerical analysis of spectral properties requires the calculation of the transition
matrix P%" (cf. Equation in Section [2.4), which is a finite-dimensional

representation of the transfer operator Py .

In many applications, the numerical realization of the finite-dimensional repre-
sentation P of the transfer operator P/ is based on a Monte Carlo approach
(cf. Equation in Section . More precisely, the state space X is par-
titioned into boxes B = {By,..., By} with B; C X and B; N B; = () for all
i,7=1,..., N with ¢ # j. Furthermore, each box B; is represented by K € N
test points p;r € B;, k =1,..., K. Then the finite sum

> X (7 (i) (4.1)
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approximates the mass m(¢, " (B;) N B;) which occurs in the definition of
the transition matrix. However, we cannot compute expression exactly,
because, in general, there is no analytic formulation for the cocycle ¢ and
thus we have to approximate it numerically by means of a map 5 In case the
underlying dynamical system is chaotic and exhibits very turbulent dynamics,
the numerical approximation of ¢ is costly. Additionaly, if the time 7 is large,
due to numerical errors, the image of the box B; under the cocycle will not
be represented very well by the points {$Z(pj,k) :k=1,...,K}. In these
situations, physical properties of the underlying dynamical system cannot be
represented by the numerical realization of P%". For example, in case ¢]
preserves the Lebesgue measure m for each ¢,7 € T, m is a fixed point of P/
and therefore, the vector p € RY with p; = m(B;), i = 1,..., N, is a fixed
point of the corresponding transition matrix P%7. This may be violated in the

presence of numerical errors.

In order to reduce the error in the numerical approximation of ¢, in this section
we propose a heuristic for the approximation of P based on the numerical
realization of transition matrices on intermediate time intervals. We utilize
the fact that the underlying transfer operator satisfies the cocycle property
(cf. Proposition 2.12)). In more detail, we partition the time interval [t, ¢ + 7]
into subintervals and approximate the transition matrices on each subinterval,
respectively. The product of these matrices serves as an approximation of the
transfer operator on the whole time interval we focus on. This is beneficial since
the calculation of transition matrices on shorter subintervals is numerically
more applicable than on the whole time interval. This idea has already been
used for the calculation of transport rates in [Pad05]. However, we extend this
ansatz in Section [4.1] to calculate eigenvalues by avoiding the explicit calculation
of the matrix product, follow an eigenvalue product approach to efficiently
compute eigenvalues, and eigenvectors and discuss an error bound in Section [4.2]
Finally, we formulate an algorithm for the determination of the intermediate

subintervals in Section [4.3]
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4.1 Product Approach

Let (¢, X, T) be a non-autonomous dynamical system with T =R or R* and
t,7 € T with 7 > 0. We define a finite series (7;);=1,.., C T of length L € N
denoting the length of the intermediate intervals with Zle m=71and 7, >0
for each i € {1,..., L}. By Proposition the cocycle property

P =Pinytr, ©---0Pi, 0P (4.2)

holds.

Up to now, to calculate e. g. eigenvalues and eigenvectors of P; numerically we
have partitioned the state space into a collection of boxes B = {B;,..., By}
and computed the finite-dimensional approximation P“". Then, the eigenvalues
and eigenvectors of P»" approximate those of P;. For simplicity, in the
following we consider the case that all boxes B; have equal Lebesgue measure.
Since the transfer operator satisfies Equation one could expect that the
corresponding transition matrices also satisfy the cocycle property. However,
this is not true in general, which is discussed in detail in Section [£.2]

Nevertheless, to avoid problems given by the numerical approximation of the
matrix entries PZtJT for large 7 as described in the beginning of this chapter
and to reduce the number of test points involved we approximate the transfer

operator P; by

L
H Pzl i (4.3)
i=1

for L € N. A discussion on the error can be found in Section The

approximation of the transfer operator P; by the product (4.3) has already

been successfully used for the calculation of transport probabilities between

two different regions in the state space (cf. [Pad03]).
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To obtain the spectral properties of the term (4.3) we avoid to explicitly
calculate the product, but apply a product eigenvalue approach instead which
goes back to [Var62] and has been used in a variety of settings, e. g. for the
computation of singular values and singular vectors of matrices (cf. [Wat07]).

To be more precise, we use the following result:
4.1 Theorem ([Wat(7]): The nonzero complex number X is an eigenvalue of
@L'@L—l'---'@l eCYV NeN

if and only if all of the values N/E XNV Eap ANV Ep2 - XNV EpL=1 gre eigenvalues

of the cyclic matrix

~

QL

C = Q2 € CNENE, (4.4)

Qr—

Here, ¥ = e T and \YL denotes one of the Lth roots of .

Moreover, if A% is an eigenvalue of C' with the corresponding eigenvector
r = (z1,20,...,20)7, z; € RN, then y = x; is an eigenvector with eigenvalue \

Of@L'@L—r---'@L

When approximating almost invariant sets, we can directly form the cyclic
matrix C' with @, — pHEiaT i =1,...,L and calculate the corresponding
eigenvectors and eigenvalues. Here, the product @ Lo @1 is the approx-
imation of the transition matrix over the time interval [t,¢ + 7| as in Equa-
tion . For the approximation of coherent pairs we have to calculate the
singular values and singular vectors of A= I, 1/2 (Hle P TJ"”) Hll,/ 2

(cf. Section which is equivalent to the calculation of the eigenvalues
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and eigenvectors of the products A - A7 and AT - A (cf. [Wai07]). Along
the lines of Theorem [£.1I, we can form the cyclic matrix C' for the product
AT A = 11/? (HLL (PHZ?Z? TM)T) 1! (H.L_ pPHYia Tﬂi) 11> and for
i= q i=1 P

A AT respectively.

Another advantage of the product approach is that one obtains knowledge of the
dynamics on the intermediate time intervals without any further effort. This
can be used for example to visualize the evolution of mass. Consider an almost
invariant set A within the state space X. To analyze the leakage of mass of
A, we define a vector v € RV, which has uniform non-zero entries v; if B; C A
and v; = 0 otherwise. The vectors v! given by v! = (Hizl P T) v, for
1 <1 < L, represent the distribution of mass at time ¢ + Z;Zl 7; starting at

time t in A. This is used, for example, for the detection of pathways of water

in Section [6.2.3]

4.2 Error Estimate

In the following, using an appropriate norm || - ||, we discuss the error

L
H Pt+2§;11 T _ phT

=1

(4.5)

in more detail and make the following assumption throughout this section:

4.2 Assumption: Let t,7 € T be two points in time and (7;)i=1,..1 a finite
series of length L € N denoting the length of the intermediate intervals with
St o= 7 and 7, > 0 for each i € {1,...,L}. Furthermore, let B =
{Bi1,..., By} be a partition of the state space X with m(B;) = m(B;) for every
i,7 €{1,...,N}. We assume that ¢ preserves the Lebesgue measure m and

o7 (X) = X holds for all t,7 € T.
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To begin with, we consider the case L = 2 and study Equation (4.5)) using two
intermediate intervals in time and we estimate the matrix entries of the product

of two transition matrices.
4.3 Lemma: Fort € T and 7,7 € T" fized, we have

m] (_PZ;T1+TQ i Fi;‘mz) (Prmm phm) < M (Pt AT | Fn 72) (4.6)
for each i,j € {1,..., N} with

e GBI L (e (B) N B)

T s m(B;) sel;! m(B;)

and

F-T~1772 . (qbt—‘:’il -:71'2( ) BTl)
Y m(B;) 7

with B} = Um 67 (BI\ By and IT' = {s € {1, N} : ;74 (B) N B, #
o).

Proof. Fix 1,5 € {1,...,N}. Since the preimage of an intersection is equal to
the intersection of the preimages and the sets in B all have the same Lebesgue

measure, we obtain for each s € {1,..., N}

(Pt-&-n;r?) = m(qs;:72'1+72(Bi) n BS) (qbtff'lﬂ;l'?( ) N ¢t+71( ))
is m(Bs) B m(B]) '

Therefore,

(Pt+T1,TQ Pt,n) =

v

(Pt+7'1 77'2) (Ptﬂ'l)

WE

1S sj

m(eiriir (Bi) 0 67 (Bs)) m(é7, (Bs) N Bj)
m(B;) m(B;) '

1

S

I
WE

w
Il
—
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Considering the set I;* = {s € {1,..., N} : ¢, 7 (B,) N B; # 0} we perform

the following estimation

Pt+T1,T2Pt,T1 < ma
( )iy < s m(B;)

sel]! m(Bj) sel’!
J

. (@717, (Bi) N Usern 00 (Bs))

! m(B;)

_ MTlm( i (Bi) N Bj) +m(é 210, (Bi) N BJY)
! m(B;) ’

m(‘f’;:}l (Bs)NB;)

3 [
with M;' = MaX e 71 ()

and E;-l = UseI;1 Gy (Bs) \ Bj, since

~ m(b 2771 B; §T1 S
User 1405 (Bs) = B;UBJ". Replacing ( t”l;z’%(j) ) by F;;"™ we conclude
J

that

(Pt—i—n,fzpt,n)ij < Mjn (Pitjzn—i-m + Fvi’;1772) )
Similarly we obtain
m}'l (Pi?ﬂ-‘rTz + _FZ;LTQ) S (Pt-i-’rl,Tth,Tl)ij

m(¢7 72 (B)NB;)

m(B,) which completes the proof. O

. o
with mj' = min . I

Now, we can estimate the error between the matrix entries (P*™17),; and
(pt+Tl,T2 Pt’n)ij-

4.4 Theorem: Fort e T and 7,7 € Tt fized, we have
‘<Pt+n,rgpt,‘rl)ij . Pz'tjﬂerl S PitjnJrTz (M]Tl - 2m;’1 + 1) + M;'-l Fi?,rz (47)

foreachi,j € {1,..., N} with M*, m3" and F;"™ as in Lemma .

J
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Proof. We have

‘<Pt+r1,‘rzpt,71)ij _ P7371+T2‘ < ’(PtJrTl,TgPt,n)” _ m?(P{?TIm i Fi?,rz)’
+ ]m“( Pt T2 | Fi?,rz) _ Pitjnw
_ (Pt+n,rgpt,n)ij _ m;'l(_Pi?T1+T2 + Fi?,m)
+ |y = VP 4 mp 7,

because m ' (Plt 1T Fl.?’m) (Pt ph). Since 0 < mjt < 1 we obtain

(m} — 1)131-';»71”2 <0 and m}' F}"™ > 0. Thus, it can be estimated
|(Pt+7'1,72 Pt,ﬁ)ij . Pt 7’1+’T2| < (Pt+7'1 T2 Pt Tl) o m? (E?TI+T2 + F;]"l,m)

1 t,T1+72 T1 171,72
— (mj' = 1)P; +my

Furthermore, using (P77 Pbm);; < M (Pt AT F'™) we estimate

t+11,72 pt,71y . ptTi+T T1 t,T1+72 T2\ 71 pt,T1+T2 t, 71472
(P PY)y Pz'j | < Mj (Pz] "‘Fz'j ) 2m; Pij +Pz‘j

S ]31'15]271+T2(M;1 _ Qm? + 1) + MJIFZ‘LTQ-

In the next step, we use this result to show that P72 PL™ is equal to PH1H™

under certain assumptions.

4.5 Corollary: Consider that B; is exactly the preimage ¢,\ (B;) of B; for
fized i, j € {1,...,N}. Then, the identity

(PtJrTl,TQ Pt,‘rl)ij — Pitjzn+7'2 (48)

holds.

Proof. Let i,j € {1,...,N}. In case B, is exactly the preimage ¢, (B;) of B;
we obtain I7' = {i}, M;' =m}' =1 and F}"™ = 0, since E;l = (). Therefore,

52



4.2 FError Estimate

we obtain equality in Equation (4.6]). O

We proceed by considering the more general case L > 2. For simplicity, we

write
Op = PHXisimm for k=1,..., L,

in the following. These matrices can be interpreted as the one-step transi-
: : . : o k-1 k
tion matrices over each intermediate time interval [t + > i) 75,0+ > 5 7.

Furthermore, we define
Qp = P21 fork=1,.... L

which are the transition matrices on the interval [t,t + Y ¢ | 7;]. Using this

notation we estimate the error

L

L
10— .| - [Pt —pie). (49)
i=1 =1
for an appropriate matrix norm || - ||. We begin by proving a formula for @,
based on the matrices @j, for y=1,..., L and on the error

Ap = Qr1Qr — Qpya, for k€ {0,...,L—1}
which we obtain at each intermediate time interval.

4.6 Lemma: For L € N, the identity

L L L
o -T[0-3 (H@) NN (w10)
=1

i=3 \j=i

holds with A, = Qui1Qr — Qi for k € {0,..., L —1}.

Proof. We prove Equation (4.10) by induction and therefore begin to verify the
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Chapter 4 Analysis of Transport over Long Time Intervals

statement for L = 1:
Q1= @1 AY
= @1 — C51@0 + Q1.

This identity holds since )y = id. We proceed by showing that Equation (4.10]
holds for L + 1 under the assumption that the statement is true for L: With

Qr+1 = Qr1Qr — Ap we obtain

L L L
ot — O (H G-y (H @j) N AL1> A
=1

i=3 \j=i

since the statement holds for L. Furthermore,

L+1 R L L+1 N R
Q= J]@: -] (H Qj> Aio = Qraldp1 — A
=1

i=3 \ j=i
L+l L4l /L4l
[6-3 (H @j> N
i=1 i=3 \ j=i
which is the formula for L + 1. (]

Using this formula for Q7 we estimate Equation (4.9)) in terms of the matrices

4.7 Theorem: Let L € N. Furthermore, let || - || be a matriz norm with
H@z” <1,Vie{l,...,L}, then

L

[1@ -a:

i=1

L—-1

<> ladl, (4.11)
i=1

with Ax = Qr1Qk — Qrsn for k€ {0,... L —1}.

Proof. Using Lemma for L € N, the following estimation holds
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4.2 FError Estimate

L

=1 =3 Jj=t
L L
<> <H Qj) Aig| + 1ALl
=3 || \j=i
Since | - || is a matrix norm with [|Q;|| < 1 for each i = 1,..., L we further
estimate
L L
1@ —Qc| <D Al + 1ALl
i=1 =3
L+1 L-1
= Al =) (A,
i=3 i=1
which completes the proof. O]

This result is used to obtain a more rigorous error bound in the matrix norm
|| - |1 given by the maximum absolute column sum. We begin by estimating
the norm of each A; fori=1,...,L — 1.

4.8 Lemma: Let L € N. Then, the inequality

m <§;1(k)>
|Ak|l1 < max <Mﬁs1(k) - Qmjl(k) + 1) + Mjl(k)—]
j=1,...,.N

: (5] (4.12)

.....

holds for each k € {1,...,L — 1} with s;(k) = S.*_, .. Here, m‘;l(k), M;l(k),
and Ejl(k) are defined as in Lemma .
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Chapter 4 Analysis of Transport over Long Time Intervals

Proof. We begin with an inspection of the entries

(Ak)ij = (QkJrle — Qk+1>ij
— (Pt‘i’Zf:l TryTk+1 Pt:Z’::1 Tr __ Ptvzfi% T")

ij

of the matrix Ay, for a fixed k € {1,...,L}. By defining s,(k) = 3.*_, 7, and
So(k) = 741 we can apply Theorem and estimate

o -

s2(k) ptosi(k) _ Pt,S1(k)+sa(k))

ij

t,s1(k)+s2(k) s1(k) s1(k) s1(k) s1(k),s2(k)
< pihte (M? —om? +1) + M B Ee®),

J )

The obtained inequality can be used for all k, thus, we can proceed by estimating

Akl = max >7 (A,

J

< max - (PEe® (Ap® — o ® 1) vy
= X j i

(k)aSZ(k)>
J
< max ((Mjsl(k) B sl(k i 1) ZPt s1(k)+sa(k) | M (k) ZFsl(k),SQ(k > '

m(é?l(’“))

It holds Zz ) Pt sk Fs2(k) _ 1 and Zz X Fs1 (k),s2(k) _ m(JBV)
J

serves the Lebesgue measure and ¢(X) = X. Therefore, we have

, since ¢ pre-

1AL < max (M‘?l(k) —oms®) 4 1) + Mfsl("?)m(—]
=1,..N J J j m(B,) ,
which completes the proof. 0

Similar to Corollary [£.5] we can show that the error vanishes under certain

assumptions.
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4.2 FError Estimate

4.9 Corollary: Let L € N. If B; is ezactly the preimage ¢, (B;) of B; for
alli,je{l,...,N} and all k € {1,..., L} it follows that

L
H Pt+z;;11 TiTi Pt,T

i=1
Proof. Let 4,5 € {1,...,N} and k € {1,. — 1}. In case B; is exactly
the preimage ¢, (B;) of B we obtain ]S1 = {i}, M} ®) = = m}' alk) _
and E‘;l(k)’”(k) 0, since B = (), with sl(k) = SF 7 and sy(k) = Ty

Therefore, we obtain ||Ag||; = 0 by Lemma [4.§ for each k € {1,...,L — 1} and
thus

L+1

< Z HAZ 2”1

L
H PtJrZ;;ll TjTi Ptﬂ'

=1

H Qz QL

Then, HiL:1 PHEI T g equal to PV". ]

The situation considered in Corollary corresponds to the case that the
box covering of the state space X exactly matches the preimages of the single
boxes and demonstrates the sharpness of the estimate given in Equation (4.12)).
However, this special situation cannot generally be expected in real world
applications. In the considerably different case, when the jth column of the
matrix P41 contains g € {1,..., N} non-zero entries, the value of msl(k)
is bounded from above by le. For m}' k) % fixed, it follows that M]‘.”(k) =

é since Zl 1Pt 1(F) | polds. Consequently, for increasing g the value

J J m(B;)
hand side of Equation -, tends to one. Also the value mjl(k) is obviously

not depending continuously on s;(k). Nevertheless, we use the fact, that the

81( )
(M.Sl(k) — 2msil(k) 1) + Msl(k)g which is a lower bound of the right

error (4.9) is bounded from above by the sum of the errors which we obtain
at each intermediate time step and formulate in the next section an algorithm

which successively generates a series of intermediate points in time.
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Chapter 4 Analysis of Transport over Long Time Intervals

4.3 Algorithmic Realization

In the algorithmic realization, the question arises how to select the finite series
(7;)i=1,...r, of intermediate points in time with Zle 7; = 7T to calculate the
family of transition matrices (PHE;‘;11 7,21, . The purpose of the product
approach is to force the numerical approximation of P“" to conserve physical
properties of the underlying dynamical system, e. g. volume preservation. In
this section we formulate an algorithm which successively generates a series of
transition matrices such that each of the matrices guarantees that a certain
property of the underlying system is fulfilled up to a maximal error. Based on
this series of transition matrices one can apply the product eigenvalue approach
described in Section to approximate the eigenvalues and eigenvectors of the

transfer operator P; for fixed t,7 € T.

Let us assume that we can measure the deviation of the physical property
over the time interval [t,t + 7] by a function £ : RN — R. For example, if
the system preserves the Lebesgue measure at all time instances we can chose
E(PY7) = ||P"p — pl||1 for p € RY with p; = m(B;),i=1,...,N. Using this
function we formulate Algorithm [3| which checks at fixed points in time if the
error is larger than a value € and restarts the approximation of the transition

matrix if necessary.

The algorithm calculates for a given starting time ¢ and duration 7 a series
of transition matrices between L intermediate points (7;);—1,. 1 in time. The
procedure depends on the error function E, the maximal error € and a step size
h which has to be chosen such that 7 = k - h for one k € Z. In case h is chosen
too large, the error E(PT") at time T' € T over one step h is larger than ¢ and

the algorithm terminates with an error.

For the numerical realization of PT*" with k > 1, a set G of test points has to
be integrated to obtain a set Gy, of terminal points after flowing k - h time-

units. However, we can reuse the set of terminal points G4 (,—1)., computed
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4.3 Algorithmic Realization

Algorithm 3 ProductApproach(F t,7,h,e)

1: Set T'=1¢

2: Set L =1

3: Set k=1

4: Set m =T

5. while T+ k-h <t+ 71 do

6:  Approximate the transfer operator Py by PT*",
7. if E(PT*") < ¢ then

8: Set SB(L) = pPTkh

9: Set k=Fk+1

10: else

11: if k=1 then

12: return Computation not possible.
13: end if

14: Set L =L+1

15: Set 7, =(k—1)-h

16: Set T'=T + 71,

17: Set k=1

18:  end if

19: end while
20: return P and (7)1,

within the approximation of PT*~1"" and integrate them A time-units further
to obtain G- In total, Algorithm [3| has the same effort for the integration
of test points as for the numerical realization of P»" directly, plus the effort for
the integration over one step h at each intermediate point in time. However,

this effort is small for small h and few intermediate points in time.

4.10 Remark: The product approach and the corresponding Algorithm[3 can
be easily extended to consider non-square transition matrices which appear if we
restrict to a subpart of the state space (cf. Remark . In such cases, we have
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Chapter 4 Analysis of Transport over Long Time Intervals

to approximate a series of transition matrices between a series of box-collections
covering the sets S, ;*(S), ..., ¢7(S) in the state space.

To show the effectiveness of Algorithm (3| we reconsider the ordinary differential
equation ([2.2) from Example [2.4

4.11 Example: In the ordinary differential equation from Example
let e =0 and v = 0.25. For A = —1, the ODFE generates a non-autonomous
dynamical system (¢, X, R) which preserves the Lebesgue measure m at all time
instances. We define a partition B = {By,...,Byx} of N = 16384 boxes of
the state space X on which we calculate the transition matrices involved in
Algorithm [3 and choose a step size of 0.1 for the integration of the ODE to

deliberately induce numerical errors in the approximation of the cocycle ¢.

We apply Algorithm [ with t =0, 7 = 12.5, h = 0.5, € = 0.01 and define

E:RVYN R, E(P)=|P-p—pl|,

m(Bi)
m(X)

measure, to stipulate that the approximation on P] preserves the Lebesque

where p € RN and p; = is the discrete version of the normalized Lebesque

measure up to a fived error. We obtain a series of seven transition matrices

i—=1 __ . .
(P2 m) Ly s with Ty =Ty =74 =75 = 2 and 73 = 74 = 77 = 1.5. Then,

for the error we have

7
B (H P W) — 0.0114

=1

and, in comparison, we obtain
E(P"") = 0.0167

using the transition matriz over the whole time span, which is significantly

larger. The normalized right singular vector corresponding to the second largest
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4.3 Algorithmic Realization

FI1GURE 4.1: Normalized right singular vector of the product ap-
proach indicating coherent structures.

singular value of H;l/Q (HiL:1 eI R H;,/Q 1s shown in Figure

which
4.4

15 almost the same as the one of H;l/QPt’TH}/Q shown in Figure

Another example illustrating the effectiveness of the product approach is given in
Chapter [5| where a variant of Algorithm [3|is used to analyze coherent structures
in the oceanic fluid flow in a turbulent region close to South Africa, the so-called
Agulhas rings. Additionally, one can find in Section a sensitivity analysis
on the selection of the points in time where we split the approximation of the

transfer operator.

61



Chapter 4 Analysis of Transport over Long Time Intervals

FI1GURE 4.2: Normalized right singular vector of the direct approach
indicating coherent structures.
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CHAPTER 5

Efficient Numerical Approximation of
Coherent Structures in Dynamical

Systems

In this chapter, we review the results of [DH12] and reconsider the method
for the approximation of coherent pairs over the time interval [¢t,t + 7] C T
for a non-autonomous dynamical system (¢, X, T), which has been introduced
in Section and first proposed by Froyland et al. [FSM10]. The method
is summarized in Algorithm [2] which approximates coherent pairs of a non-
autonomous dynamical system based on a partition B = { By, ..., By} of the
state space X. The runtime of the algorithm directly depends on the number
of test points in each element of the partition B which are involved in the
approximation of the entries of the transition matrix P>". In consequence, if
each partition element is assigned the same number of test points, the smaller
the domain S C X in which we seek coherent pairs is, the fewer test points are
needed to achieve sufficiently fine results and the faster the coherent structure
can be approximated. The question directly arising is how the subpart S of the
state space can be chosen as small as possible, but still large enough to find the

coherent pair. For dynamical systems where we have no knowledge about the
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Chapter 5 Efficient Numerical Approximation of Coherent Structures

location of a coherent pair in advance, we have to choose the whole state space
X as the starting point of our investigation, which is the worst option from
a computational point of view. As an answer of this question, we introduce
a novel method which allows us to locate a subset in state space which is a
candidate for containing a part of a coherent pair and is generally smaller than
the whole state space. In the main result of this chapter (cf. Section [5.1), we
show that transport phenomena over a fixed (long) time horizon imply the
existence of almost invariant sets over shorter time intervals if the transport
process is slow enough. The approximation of such a subset can be viewed as a
preselection process for the computation of coherent pairs and is algorithmically
formulated in Section 5.2l

5.1 Connecting Almost Invariant Sets and

Coherent Pairs

The main idea for the preselection process is based on the fact that in many real
world applications the coherent structures we are interested in are transported
relatively slowly in comparison to the velocity of single particles in the system.
On the ground of this observation, we identify an almost invariant set S over
a short time interval which contains the first part of a coherent pair and can
then be used as an input for Algorithm [2] Later, in Chapter [0, we analyze the
movement of eddies in a very turbulent region of the ocean which naturally
fulfills all assumptions made in this section. Concretely, it is shown in [F1i81]
that water mass can only be advected by a rotating coherent structure if the
rotational component of the velocity is larger than the translational component
of the velocity (cf. [dvD04]). Therefore, in such systems we can distinguish
between two time scales. On the one hand, there is the large time scale
which exhibits non-autonomous coherent structures such as coherent pairs
and on the other hand, the small time scale in which the coherent pairs leave

their fingerprints as almost invariant sets. In this section, we consider a non-
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5.1 Connecting Almost Invariant Sets and Coherent Pairs

autonomous dynamical system (¢, X, T) which is subject to these two different
time scales and contains a (p,t, 7)-coherent pair (A;, As). Furthermore, by

7€ T and s € T we denote the long and the small time scale, respectively.

We begin with an elementary observation with regard to the coherence ratio of
two arbitrary subsets A, B C X:

5.1 Lemma (|[DHI2]): Let pu be a probability measure on X and t,7 € T. For
two sets A, B C X, with u(A) = u(¢;7*(B)) > 0, s € [0,7] fized, we have

(o (B) U A)
1(A)

+ pis (A, B) =2.
Proof. First we compute

o (B) U A) + u(6r 7 (B) N A) = (7 (B)) + n(A)
= 2u(A).

—T+s
Dividing the equation by u(A) and replacing W by p;rs (A, B) com-

pletes the proof. n

In other words, the more coherent the sets A and B are over the interval

—T+s
[t + s,t + 7], the closer the fraction W

the volume of ¢;7**(B) is contained in A.

is to 1. In this case, most of

Based on this observation, we can directly state the following theorem which
relates the coherence of a (p, t, 7)-coherent pair on the large time scale to the

coherence of an almost invariant set on the small time scale.

5.2 Theorem ([DHI2]): Let pu be a probability measure, (A, As) a (p,t,7)-
coherent pair and s € [0, 7] with u(A1) = u(¢°(Az)) > 0. Then, for the set
S defined by

S =AU (4),
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we have the following estimate:

5i(5.5) > Pr(AL Ag) = —— . (5.1)

—2—c(t,T,s) 2 —c(t,T,s

where c(t, T,s) = p{rs(A1, Az).

Proof. By definition of pj and S, we can write

(SN ¢ 5 (5))
1(S)
1 ([Ar U @ (A2)] N o5 (AL U 6,715 (As)))
1 (A1 U@ (A)) '

pi(S,5) =

Since ¢, (6, 7(A2)) = ¢;7-(Az2), we obtain by elementary facts from set

calculus

p([Ar U @7 (A2)] N [0 (A1) U 67 (As)])
(A1 U ¢ (Ar))
(Al N ¢t+T(A2))

p;(S,S) =

b (A o (42)) -
11( A1) (AN (As))

(AU (Ag)) p(Ar)
N(Al) ,OtT(Al,Az)-

(AU 7 (Ar))

By Lemma 5.1, we have
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Therefore,
1(5.5) (A )
PO = (A Ay R
1
2—c(t,7,3)pt( 1 Az)
B 1
2 —c(t, T, s)p’
since (Ay, Az) is a (p,t, 7)-coherent pair and c(t, 7, s) := p{ . (A1, A2). O

We have c(t, 7, s) € [0,1] and suppose that the (p1,t, 7)-coherent pair (A, Ay)
has the property that both p; and c(t,7,s) are near 1 for a fixed s € [0, 7].
Then the estimate in Equation implies that there exists a (ps,t, s)-almost
invariant set S with py &~ 1 and S contains the set A;. We summarize this fact

in the following corollary.

5.3 Corollary ([DHI12]): Let (Ay, As) be a (p1,t, T)-coherent pair and s € [0, 7]
with p(Ay) = u(d77°(A2)) > 0 and c(t, 7,s) = pj12(As, A1) = 1. Then there
exists a (pa, t, s)-almost invariant set S with S = A; U ¢,7*(Az) and py close

to one.

Figure [5.1]illustrates the statement of Theorem In detail, the interval X on
the horizontal axis represents the state space of a non-autonomous dynamical
system and the time is measured on the vertical axis. The two sets A; and
A of a coherent pair are shown at times ¢ and ¢t + 7, respectively. We can
see that the estimate provided by Theorem is particularly useful in the
case where the coherent structure is transported relatively slowly, i. e. A; is
close to ¢, *(As) in comparison to the movement of other structures, e. g. the
movement of B into ¢5(B). The choice of the small time scale s is not canonical
and strongly depends on the specific application. Later in Section [5.2.3] we

discuss how the small time scale can be chosen automatically.
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t4T —Az
iy (A2) i (B)
t+s I i
t LL QS?IT(AQ) Ll [ B [
| ) | ﬁ : | } 1 X
S
FIGURE 5.1: On the left, a (p,t,7)-coherent pair (A4, A2) with p

close to one is illustrated. The preimage ¢, _:TJF %(Az) of

As is almost identical to the set A;. Therefore S =

¢, (A2) UA, denotes a (po, t, s)-almost invariant set

with p2 =~ 1 as shown in Theorem On the right,
an arbitrary set B is chosen and the image ¢;(B)
indicates that most of the mass of B leaves B after s
time-units.

The choice of the set S has no direct dynamical interpretation but can be

motivated by considering that c(t,7,s) = p/ (A1, As) is close to one. In
that case, most of the mass of ¢,/ °(A4y) is contained in A; and thus S is

approximately the set A; itself as in Figure [5.1

In the proof of Theorem the estimate appears to be very rough at first
glance. However, equality can be obtained in Equation (5.1) by considering
the specific situation where the set A, is invariant, i. e. A; is equal to ¢, ;% (A1)

and p is an invariant measure of the underlying dynamical system. We can
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compute

(A N g7 (Az))
(A1)
(o (A1) N o (31 (As)))
p(Ar)
(AN G (Ay)
p(Ar)

c(t,r,s) =

Then the lower bound of p§(S,S) in Theorem |5.2|is given by 1p p which tends

75
to 1 for p — 1. In that case, we obtain equality in Equation (5.1]).

5.2 Algorithm for the Efficient Approximation of

Coherent Pairs

The result of the previous section revealing that coherent pairs imply the
existence of almost invariant sets allows us to directly design an algorithm for
the efficient approximation of coherent pairs: Firstly, S is approximated and

afterwards, Algorithm [2]is applied to S in order to approximate A;.

If there is no separation of time scales as discussed in the previous section, then
we cannot guarantee that the value c(t, 7, s) is large. Consequently, we will
not be able to identify a (p, t, 7)-coherent pair in step 2 of Algorithm {4| with
p close to one. In such situations, we can reuse the trajectory simulations of
step 2 for the computation of the transfer matrix on .S and combine them with
trajectory simulations starting in X \ S to compute the transition matrix on
the whole state space X. As the trajectory calculations are the computationally
most expensive task, the efficiency of the algorithm is mainly improved by
seducing the number of trajectory calculations involved. In case, the value

c(t, 7, s) is small, the number of trajectory calculations is the same as applying
Algorithm [2] directly.
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Algorithm 4 EfficientCoherentPairApproximation(t, 7, s, N, j1)

1: Apply Algorithm |1 to obtain S = AlmostInvariantSet(t,s, N, j).
2: Apply Algorithm [2| to obtain (A;, Ay) = CoherentPair(t, 7, N, M, S, i).
3: Return (Al,AQ).

5.2.1 Numerical Effort

Now, we discuss the numerical effort of Algorithm [4] in more detail. It has
been designed to avoid the calculation of the transition matrix over the whole
interval [t,t + 7]. Obviously, in step 2 of the algorithm the transition matrix
PU needs to be approximated. However, for this computation, we can reuse
test points already integrated over time s in step 1 which are located in S and
integrate them further over the time interval [t +s,¢+7]. In summary, the main
computational effort of Algorithm 4] consists in the integration of test points
distributed over the whole state space X over time s plus the integration of test
points on the smaller set S over the rest of the time from ¢t + s to t + 7. For a
more detailed comparison of Algorithms [2] and 4] we assume that the boxes
involved are filled with the same number of test points in each case. Then, we
measure the runtime of an algorithm by the sum of the lengths of the integration
intervals for each test point involved in the algorithms. In detail, the runtime of
Algorithm [2] without the preselection step is dominated by N - 7 where N € N
is the number of boxes covering the whole state space X. On the other hand,
the runtime of Algorithm {4|is dominated by E(N, N, 7,s) = N-s+ N'- (1 —s),
where N’ € N is the number of boxes covering the subset S C X. It is clear
that N > N’ holds if we cover the state space X and the subset S by boxes of
the same size. Then, we have N -7 > N -s+ N’ (1 — s).
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TABLE 5.1: Numerical effort of the integration process involved in
the approximation of a coherent pair.

selection of S numerical effort E coherence ratio
of the coherent pair
S=X 205 887 0.9874
S thresholded 150 580 0.9874
by —0.006
S = maximal 105003 0.9865
almost invariant set
S thresholded 60454 0.9862
by 0.006
5.2.2 Example

Now, we discuss an example which applies this novel algorithm for the approxi-
mation of coherent pairs to the non-autonomous dynamical system given by
the ordinary differential equation (2.2)) considered in Example

5.4 Example: Again, we consider the non-autonomous ordinary differential
equation of Fxample with v = %, A= -2 and e = 1. Now, we apply
Algorithm [4) with t = 0, 7 = 4w, s = {5 and N = 16 384 bozes. The result is a
(0.9865, 0, 47)-coherent pair (B, By), where the set By is located in a preselected
superset S C X, which is covered by 8 150 boxes. The superset S and the set

By are shown in Figure[5.2,

The first obvious observation is that we have roughly halved the number of boxes
used for the computation of the coherent pair in comparison to Example [3.13]
whereas the coherence ratio is almost identical (see Table [5.1]).
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FIGURE 5.2: A (0.9865, 0, 47)-coherent pair (Bj, Bz) and the set S
covered by 8150 boxes returned by the preselection
process in Algorithm 4]
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5.2.3 Parameter Adaption

Parameter s An adequate choice of the parameter s for the computation
of the preselection S is not obvious in the example. Consider that we have
chosen a fixed box-discretization of the state space on which we calculate the
transition matrix. Therefore, the selection of s such that ¢ (B;) C B; for all
t =1,..., N will result in a transition matrix that is equal to the identity matrix.
In consequence, we cannot identify any almost invariant set since all boxes
themselves seem to be invariant. To avoid this, in Example [5.4] we have chosen
a sufficiently large s such that most of the test points are mapped from one
box into another. In contrast, the smaller the parameter s is the smaller is the
numerical effort E(N, N’, 7, s). However, finding an a priori upper bound of s
depends on the underlying application and, therefore, a theoretical statement
cannot generally be expected to exist. Nevertheless, heuristically, we can start
with a small value s and increase it successively while observing the eigenvalues
of P*. We stop if we obtain isolated eigenvalues close to one. They indicate
the existence of the slowly decaying structure we seck for (cf. [DFS00]). In this
procedure, we can reuse all the trajectory integrations used in the calculation
of Pb* for the computation of P4 for an s’ > s. Therefore, this is a suitable

heuristic for choosing the parameter s.

Size of S Another parameter we can adjust is the size of the almost invariant
set S. In step 1 of Algorithm [4, the almost invariant set S is computed based
on the thresholding of the eigenvector v corresponding to the second largest
eigenvalue of P57, In this procedure, the threshold value is chosen in such a way
that the coherence of the set S is maximized. Obviously, the requirement that
the set S itself is maximally coherent is not necessary. Therefore, the choice of
the set S can even be improved by selecting more appropriate level-sets of the

eigenvector v.

In Figure [5.3] the eigenvector from Example [3.13]is shown together with the
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resulting set A;. For comparison, we have chosen the set S to be the level-
set thresholded by the condition that the components of the eigenvector in
Figure|.3| are greater or equal to 0.006. This leads to a preselected set where the
number of boxes covering it is again almost halved in comparison to the set .S in
Example The result is a coherent pair (Cy, Cs) with a coherence ratio still
acceptable (cf. Table[5.1). The preselected set S and the coherent pair (Cy, Cy)
are illustrated in Figure[5.4] In contrast, we choose the set S to be the level-set
determined by the components of the eigenvector in Figure that are greater
or equal to —0.006. In this case, the number of boxes covering the preselected
set is equal to 11870 in comparison to 16 384 boxes covering the whole state
space X and the resulting (D, Dy) coherent pair has the same coherence ratio
as the coherent pair (A, Ay) even though the according computational effort
is reduced. The set D; and the corresponding preselection S are shown in
Figure 5.5 The comparison of the numerical effort dominating the runtime of
the algorithms for different choices of the size of the set S is given in Table [5.1]

For the automated (adapted) choice of the set S, it is possible to apply Algo-
rithm [2/ on every feasible level-set which are given by level-sets of an eigenvector
of the transition matrix P"*. More precisely, we define an ascending series of
level-sets starting with the smallest possible non-empty one and successively
calculate — beginning with the smallest one — a coherent pair and stop if the
coherence ratio is no longer rising. However, this procedure assumes monotony

in the coherence ratio for the series of level-sets.
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0.01

0.005

—-0.005

-0.01

FI1GURE 5.3: Eigenvector corresponding to the second largest eigen-
value of P*16 which is used by Algorithm 4] in Ex-
ample [5.4 and the set A; calculated in Example [3.13]
(Color scale represents the magnitude of the entries of
the eigenvector.)
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FIGURE 5.4: A (0.9862, 0, 47)-coherent pair (Cy,Cs) returned by
Algorithm 2] on a set S covered by 4 514 boxes which is
given by a threshold on the entries of the eigenvector

shown in Figure
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FIGURE 5.5: The set Dy of a (0.9874,0, 4 )-coherent pair (D1, Ds)
returned by Algorithm [2 on a set S covered by 11870
boxes which is given by a threshold on the entries of
the eigenvector shown in Figure
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CHAPTER 6

Detection of Coherent Structures in the

Ocean

The purpose of this chapter is to demonstrate the successful application of
the techniques developed in Chapters [4] and [5| for the treatment of transport
phenomena in dynamical systems such as the oceanic fluid flow. Within
the oceanic domain, many large and small scale transport processes have
considerable impact on the movement of thermal energy around the planet. For
example, the so-called global oceanic overturning, which is a complex network
of currents at and underneath the sea surface, transports warm and cold water
through the entire oceanic domain. This network can be interpreted as the
heating system of our planet and, therefore, it directly effects the planet Earth’s
climate (cf. e. g. [MS12, WRSD02]). Induced by this network of currents in
the oceanic fluid flow are large and small scale coherent structures, e. g. the
subpolar gyres in the southern hemisphere or the so-called Agulhas rings in the
North Atlantic. The subpolar gyres are also crucial for physical and biochemical
processes in the Southern Ocean. The Weddell gyre, for example, exports a
large quantity of carbon dioxide, which is formed by the remineralization of
falling organic material into the deep ocean. The Agulhas rings are mobile

ocean eddies which influence the transport of water mass from the Indian Ocean
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Africa

O Agulhas
N~ ,
B, current
Agulhas
ring

FIGURE 6.1: Surface view of the region around South Africa indi-
cating the Agulhas current close to South Africa and
an exemplary path of a single Agulhas ring (blue).

into the upper Atlantic Ocean. Agulhas rings originate periodically from the
retroflection zone of the Agulhas current which sources in the Indian Ocean
and flows along the east coast of Africa towards the southern tip. In Figure [6.1
the part of the Agulhas current close to South Africa is illustrated and the
blue discs sketch the path of an exemplary Agulhas ring. For a review of the

influence of the Agulhas current on the climate we refer to [BDBZ11].

Several approaches in ocean sciences have been developed for the observation
of coherent oceanic structures. They often rely on two-dimensional satellite
altimetry such as the sea surface height (SSH) or the surface velocity field and,
in consequence, they only allow a study of gyres and eddies at the surface of
the ocean. For an overview of recent two-dimensional approaches we refer to
[CSST11]. However, for a comprehensive study of mass transported by these
oceanic structures, a three-dimensional characterization method is required. In
this chapter, we apply the mathematical methods developed in the previous

chapters to the fully three-dimensional oceanic domain. The study is only
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based on three-dimensional velocity fields which are an output of a global
oceanic model but on no other information. For a comparison of the results, we
discuss in Section an extension of the two-dimensional velocity field based

techniques to three-dimensions.

In dynamical systems theory, as already mentioned in Chapter [3| there mainly
exist two approaches for the analysis of transport in dynamical systems. On
the one hand, there is the geometric approach discussed in Chapter [3| which is
designed to detect barriers of transport such as finite-time invariant manifolds
via finite-time Lyapunov exponents (cf. [HY00, [Hal01]). This approach has
been successfully employed for the analysis of transport in many applications
(cf. [SLMO5]). However, Froyland et al. showed in [FPETQT7] that the approach
performs poorly in the context of the investigation of the subpolar gyres. On
the other hand, there is the probabilistic approach based on transfer operator
techniques which has been successfully applied to identify oceanic structures at
the surface and up to a depth of 500 m (cf. [FPET07, [FSPDO0S]). In the following
chapter, we apply the transfer operator techniques described in this thesis to
the fully three-dimensional oceanic domain. This enables us to investigate the
seasonal variability of the subpolar gyres and to study an Agulhas ring in three
dimensions (|[DFHT09, FHR™12]).

6.1 Transfer Operator Methods for the Oceanic
Fluid Flow

In this section, we consider the oceanic fluid flow as a dynamical system as
defined in Chapter Then, we can apply the transfer operator machinery
described in this thesis.

Let us denote the oceanic domain by X C [—180°,180°] x [—90°,90°] x
[—11034 m,0m]|, where the landmass consisting of parts of the continents

and islands is removed. The position of a particle ro € X is given by its
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Africa

M 1 o).

Zo

FIGURE 6.2: Part of the surface of the oceanic domain X'. The value
¢(xo,t,7) denotes the position of a particle starting
at position zg at time t after flowing 7 time-units.
Furthermore, two coverings by boxes Bi, ..., By and
C4,...,Cy of parts of the surface are illustrated.

longitude, latitude and depth coordinates and its flow through the oceanic

domain is described by a time-dependent ordinary differential equation

T = f(x,t), (6.1)

with f : X x T — R?, where T = R denotes the time in months. For this reason,
as described in Remark [2.6], we can define the non-autonomous dynamical
system (¢, X', R) generated by the ordinary differential equation . Hence,
we can interpret the oceanic fluid flow as follows: Let xq € X be the position
of a particle at time t € R. Then, the final position of the particle after
flowing time 7 € R is given by ¢(xz¢,t,7) (cf. Figure for an example on the
surface). Note that the generated non-autonomous dynamical system preserves

the three-dimensional volume measure which we denote by V' in the following.

The final position ¢(zo,t, ) of a particle o can be obtained from the output of
a global ocean model. However, we have to be careful with the approximation
of the cocycle or the discretization of the oceanic state space to guarantee
reliable results. In the remainder of this chapter, we use the output of the
global ORCA025 model (cf. [BMPT06]). It provides five-day averaged velocities

on a grid with 0.25° resolution in longitude and latitude direction and with
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46 non-uniform levels of depth. In the model, the year is considered to have
360 days and a month 30 days. The velocity field f(z,t) for non-grid points is
approximated by linear interpolation independently in each direction (spatially
and temporally). To obtain the terminal point ¢(z¢,¢,7), we use a standard

Runge-Kutta approach with a step size of several hours.

Additionally, water particles close to the surface of the oceanic domain are
subject to strong mixing affected by the wind, the waves, and surface cooling.
This part underneath the surface is called the mized layer. The information
about the depth of the mixed layer is also provided by the ORCA025 model and
the mixing between the surface and the mixed layer is simulated by a random
uniform redistribution of the particles in depth direction after the integration

over one month.

For an application of the techniques described in Chapter [3] and [5 we have to
approximate a transfer operator P; for a specific starting time ¢ and duration
7. In the remainder of this chapter we choose as the starting time the first day
of a specific month and we specify the flow duration 7 in month, e. g. Py, 9000
denotes the transfer operator beginning at May 1st, 2000 over 1 month. To
approximate a transfer operator P/ we have to calculate a transition matrix
PY™ on a box-covering of a subdomain X of X on which we seek coherent
structures. Let B = {Bjy,..., By} denote the initial covering of X by N € N
boxes and C = {C,...,Cy} the final covering of the image ¢(X,t,7) of X.
The numbers N, M € N of boxes are chosen with respect to the according
application. Figure [6.2] shows the box-covering of an oceanic domain X and its
image on the surface. The numerical realization of P“" is calculated as follows:
Select for each box B; in B, K € N water particles (test points) p;, € Bj,
integrate them over time 7 beginning at time ¢t and compute the transition

matrix

Pitf _ Zf:l XCi((b(ka? t, T)) . (62)

K

The entry PfJT can be interpreted as the probability that a water particle
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selected uniformly at random in B; at time ¢ will be in C; at time ¢ 4 7. For

further technical details we refer to Section 2.4

The dynamical system defined above and the corresponding transition matrix
are the starting point for the transfer operator based analysis of the oceanic
fluid flow. Two applications will be shown, the first one is an investigation
of the subpolar gyres and the second one is a three-dimensional study of an

Agulhas ring.

6.2 Seasonal Variability of the Subpolar Gyres in

the Southern Ocean

The first one of the two applications we describe in this chapter is the in-
vestigation of the seasonal variability of the subpolar gyres in the South-
ern Ocean. As already mentioned, these gyres are crucial for physical and
biochemical processes in this region. In particular, to identify the coher-
ent structures in the Weddell and Ross Seas, we focus on a part X = X' N
([—180°,180°] x [—76°, —48°] x [-5570m, 0 m]) of the oceanic domain X

The subpolar gyres are spatially almost fixed structures and, thus, we are able
to identify them as almost invariant sets in the non-autonomous dynamical
system induced by the oceanic fluid flow. Nevertheless, these structures slowly
change their shape between the seasons. Therefore, we identify almost invariant
sets over each season in the southern hemisphere. To investigate the seasonal
variability, Algorithm [I]is applied to the domain X with 7 = 3 months and ¢
equal to the first day of November, 2003, February, 2004, May 2004 and August,
2004, for each season in the southern hemisphere. For our computations we
concentrate on trajectories for which the initial and terminal points are in X.
Therefore, the initial and final box-covering is the same for the computation
of the transition matrix. However, some of these may pass into X \ X and

reenter X. The four transition matrices for each season are PNovember,2003:3
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plebruary,2004;3 - pMay, 20043 gy pAugust 20043 The Algorithm is adapted in such
a way that the eigenvalues and eigenvectors of the reversible version of the
transition matrix are calculated (cf. Remark [3.8). Also, for the identification of
the Weddell and Ross gyres we take into account more eigenvalues than those
discussed in Remark 3.7

The computations reveal almost invariant sets in the Weddell and Ross Sea for
each season, respectively, which are shown in Figure[6.3] The coherence ratio
and the volume of each structure is given in Table [6.1] Significant differences
over the four seasons can be identified to lie in the volume of the gyres in each
season. During spring and summer, the Weddell gyre extends from the surface
to depths exceeding 4 000 m, while in autumn and winter the main structures
of the gyres are subsurface and extend to much shallower depths. We remark
that a robustness analysis of such results would require an investigation of
the Weddell and Ross gyre over multiple years. However, the results show the
successful application of transfer operator methods for the detection of oceanic

coherent structures in principle.

In the following, we present further methods for the analysis of coherent
structures based on the transition matrix. We study the flux of water through
the boundary of the identified gyres as well as the mean residence time of water

within the Weddell gyre for each season.

6.2.1 Water Flux of the Subpolar Gyres

The flux of water through a boundary box of a coherent structure A = U;c;B; C
X can be calculated as follows: We call a box B a boundary box if it has at
least one neighbor box outside the structure. Let J C I be the index set of the
boundary boxes of A and P the transition matrix of the season for which we

calculate the flux of water and V the three-dimensional volume measure. We
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TABLE 6.1: Coherence ratios of the coherent structures in the Wed-

dell and Ross Sea for each season.

Weddell Gyre

Season  Coherence Ratio Volume
Summer 0.9265 1484272 km?
Autumn 0.9112 856 851 km?

Winter 0.9106 986 105 km®

Spring 0.9190 1049 534 km?

Ross Gyre

Season  Coherence Ratio Volume
Summer 0.9235 1279 044 km?
Autumn 0.9179 1645 748 km?

Winter 0.8865 1286 165 km?®

Spring 0.9042 1800 793 km?
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define the flux through a boundary box B;, j € J, out of A by

fuxou(B;) = V(B;) Y. Pu,
ke{l,..N\I

where the indices {1,..., N}\ I denote all the outside of the structure A. Recall
that Pj; denotes the probability that a trajectory starts at random in B; ends
up in By and that the domain X is covered by N € N boxes. Furthermore, we
denote the flux through the boundary box B; from outside A by

fluxin(B;) = Y V(Bi) P
ke{l,..NW\I

Then the total flux(B;) trough a boundary box B;, j € J, is the difference
between the flux through a boundary box out of A and the flux into B; from
outside A:

flux(B;) = fluxeu(B;) — fluxi, (B;).

The boundaries of the structures in Figure [6.3] are colored according to the flux
of water through a boundary box and indicates in which region water enters or

escapes from the gyre.

6.2.2 Mean Residence Time

For a further analysis of transport phenomena the transfer operators can also
be used to calculate the mean residence time of water within gyres as described
in Section [3.2.2] For the moment, in order to describe the computation of
the mean residence time, we focus on the coherent structure A" = J,.; B;

identified in the Weddell Sea in the summer season, for example. Beginning
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FIGURE 6.3: Coherent structures in the Weddell and Ross Sea in
(a) summer, (b) autumn, (c¢) winter, and (d) spring.
The coloring of the boxes shows the volume flux of
water through boundary boxes over each season.
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with this season we define a transition matrix

__ pAugust,2004;3 May,2004;3 February,2004;3 November,2003;3
P=P iy P P ,

which represents the dynamics over one year from the start of summer. To
calculate the mean residence time of water originating from A" with respect to
P as described in Section [3.2.2]the technical assumption limy oo (P| 4w )* = 0 for
the restriction P|,w of the transition matrix P to the set A" has to be satisfied.
This can be interpreted as follows: water mass originating from the coherent
structure A" will eventually leave the structure. Following Section , the
average time t; required for a particle originating in B;, for an i € I, to leave

the set AV is given by the solution of the linear equation
(Id — Plaw)t = (1,1,..., )T,

where Id denotes the identity matrix.

This procedure is repeated for the other seasons. The mean residence time is
plotted in Figure [6.4] which shows zonal sections along —64°S latitude. The
coloring indicates the average time that a particle originating within the box

will remain in the gyre for each season, respectively.

6.2.3 Pathway of Water

To investigate the pathway of water exiting or entering the gyre we define a
vector v € RY, which has uniform non-zero entries v; if B; is in the gyre or
in a specified subregion and v; = 0 otherwise, and multiply it sequentially
by the transition matrix for each season (cf. Section [4.1]). By repeating this
procedure multiple times we can simulate the spreading out of water from any
given region over multiple years. Of course, this repeated application neglects
the year-to-year variations on the flow field. However, this approach has the

advantage of being numerically efficient for the detection of such pathways,
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FIGURE 6.4: Zonal section of Weddell gyre during (a) summer, (b)
autumn, (c) winter, and (d) spring along —64°S. Boxes
are colored according to the mean residence time of
water in the Weddell gyre in years.
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initial density

FIGURE 6.5: Horizontal surface section of the final state of an initial
density after 50 years of evolution by 50 iterations of
the one year transition matrix. Boxes are colored
according to the logarithm of the normalized density.

since the transition matrices have been already calculated. Therefore, the time-
stepping of a large number of Lagrangian particles can be efficiently achieved
through a number of matrix-vector calculations. Figure [6.5 shows a horizontal
surface section of the final state of such an initial density after 50 years of

evolution by 50 iterations of the one year transition matrix.

This application shows the suitability of the transfer operator methods for the
analysis of the oceanic fluid flow. It is shown that we are able to identify almost
invariant sets in the fully three-dimensional domain of the Southern Ocean.
In contrast, common oceanography techniques are restricted to the ocean’s
surface and cannot be used for a three-dimensional analysis. Additionally,
we demonstrated that we can further analyze the almost invariant sets by
calculating the flux and the mean residence times of water. In the next section
we apply the transfer operator techniques to another region in the oceanic
domain and we extend the two-dimensional oceanography techniques to the

vertical direction for comparison.
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6.3 Three-dimensional Characterization and

Tracking of an Agulhas Ring

Transport induced by eddies is another important aspect of the analysis of mass
transported by the global oceanic overturning as described in the beginning of
this chapter. In this section we study an Agulhas ring using transfer operator
techniques and compare the result with standard oceanographic approaches (cf.
[FHRT12]). Agulhas rings transport warm saline water form the Indian Ocean
into the upper Atlantic Ocean (cf. Figure . The amount of heat and salt
an Agulhas ring transports sensitively depends on the time the water remains
within a ring as well as on its path (cf. [TBBMO03]). Hence, the dynamical
system approaches seeking maximally coherent structures are suitable for the
study of single Agulhas rings. In comparison to the previous section, we search
for coherent pairs rather than almost invariant sets, because the Agulhas rings

are highly mobile within the oceanic domain.

6.3.1 Domain Preselection

Since the oceanic domain is large, a crucial part of the investigation is the
preselection of a domain where we expect the occurrence of a single Agulhas
ring. We developed a novel approach in Chapter 5] for the preselection of
regions in the state space of a dynamical system containing a coherent pair.
For the preselection of a domain containing a single Agulhas ring, we apply
Corollary and calculate eigenvalues and vectors of the transition matrix P»*
on a domain around the Agulhas retroflection zone, with s equal to one week
and t equal to May, 1st, 2000. In Figure an eigenvector of the transition
matrix is shown indicating a region on the oceanic surface which contains a

single Agulhas ring.

In ocean dynamics we can alternatively use satellite altimetry for a precise
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FIGURE 6.6: Indication of the location of an Agulhas ring by (a)
the peaks in the eigenvector of a transition matrix P
and by (b) the peaks in the sea surface height (SSH)
field.

localization of a domain containing a single ring-like structure. Namely, peaks
in the sea surface height (SSH) indicate the existence of an ocean eddy. For
a comparison to the dynamical system approach the SSH field around the
Agulhas retroflection zone is shown in Figure and we mention that the
peak in the eigenvector in Figure coincides with a peak in the SSH field.

From now on, we focus on a part of the ocean, specifically X = XN[8.5°F, 13°E]x
[36°S,32.5°5] x [0m, —5 126 m|, which contains a single ring-like structure. The
domain is subdivided into 13359 boxes such that each box has a side-length of
0.1758° longitude and 0.2246° latitude. The ratio between the longitude and
latitude side-length of the boxes is chosen in such a way that the boxes are
approximately square on the surface of the ocean and the vertical extension
is chosen in correspondence with the 46 non-uniform depth layers of the un-
derlying ORCA025 model. We investigate the single Agulhas ring lying in the
initial region over the time period from the beginning of May to the beginning
of November. This time period has been chosen such that the computational
effort is acceptable and that the Agulhas ring undergoes substantial decay, i. e.
a substantial portion of water mass leaves the structure. In addition, the chosen

period is very close to the average lifetime of mesoscale eddies in the global
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ocean (cf. [CSST1]).

6.3.2 Application of the Product Approach

Due to the very turbulent Agulhas retroflection zone (cf. Figure , the
calculation of a transition matrix over six months is a computationally difficult
task. We must be careful about the integration step size and the number of test
points for the approximation of Equation . If we choose too few test points
over the integration time of 6 months, the final points do not represent the
image of the initial boxes well. To avoid this problem, we apply Algorithm
which ensures that the box-covering of the image of the initial domain is still

PMay,QOOO;G

connected. Hence, the transition matrix over the whole period is

approximated by a product of transition matrices over one month each:

PMay,2000;6 ~ POctober,2000;1 . PSeptember,2000;1 .. PMay,2000;1'

A flow duration of one month is sufficiently short such that the initial test
points in each box flow to a collection of boxes that represent the true one-
month-image of the box very well. Finally, the singular values and vectors were

calculated to obtain a coherent pair (Aasay,2000, ANovemper,2000) as described in

Algorithm [2]

The coherent pair (Anray.2000, ANovember,2000) 18 illustrated in Figure . The
coherence ratio is 0.7631, which means that over 6 months 76, 31% of the water

mass from Apzay 2000 flows into the set Anovember,2000-

The sensitivity of the previous results with respect to changes of some parameters
of the used technique is discussed in the following. Therefore, we calculate

PMay,QOOO;B and PJuly,2000;l . PJune,QOOO;l . PMay,?OOO;l

singular values and vectors of
to check the robustness of the choice of the parameter 7, for 7 =1 and 7 = 3 in
Algorithm [2] The result of the analysis of one month is displayed in Figure

and Figure [6.8b] where Figure shows the surface slice of the normalized
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FIGURE 6.7: The initial Apzay,2000 and final Anopember,2000 set of
the detected coherent pair. 76.31% of the water mass

from Anrqay,2000 flows into the set Anovember,2000 OVer
6 months.
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FIGURE 6.8: (a) Surface slice of the normalized left singular vec-
tor of the one month analysis indicating the Agulhas
ring at May 2000. (b) The initial set of the detected
coherent pair over one month. (c) Surface slice of
the normalized left singular vector of the three month
analysis indicating the Agulhas ring at May 2000. (d)
The initial set of the detected coherent pair over three
months.

left singular vector indicating the Agulhas ring at the surface and Figure
shows the corresponding Agulhas ring. Figure and indicate similar
results for the investigation over three months. These two comparative studies
identify initial coherent structures that are similar to the study over 6 months.
Hence, the transfer operator approach is reasonably robust with respect to flow

time.

Additionally, the sensitivity of the product approach (cf. Algorithm [3)) has
been investigated using different temporal subdivisions. For a comparative

study we define 12 transition matrices each over a half month and two matrices
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6.3 Three-dimensional Characterization and Tracking of an Agulhas Ring

over three months each. The singular vectors indicate very similar structures

attesting the robustness of the product approach developed in this thesis.

6.3.3 Comparison with Other Techniques

In the introduction of this chapter we mentioned that several methods exist for
the investigation of eddies in the ocean surface. These techniques are based
on sea surface height (SSH), the relative vorticity criterion (RV), and the
Okubo-Weiss parameter (OW). In the investigation discussed in this section we
analyze the three-dimensional shape of an Agulhas ring with transfer operator
techniques. Therefore, we extend the surface techniques along the vertical

direction for comparison.

Consider u(z,y) and v(x,y) as the velocity of a particle (z,y) on the surface in
longitude and latitude direction, respectively. Then, the relative vorticity (RV)
is given by

ov  Ou

RV(z,y) = 5 - o

and the Okubo-Weiss (OW) parameter by

2 2

OW(z,y) = (% — g—;) (% + %) + RV (z,y)%
The interpolation of the RV and OW is performed based on the same grid
on the surface as it is used for the approximation of the transfer operators,
where the derivatives are calculated numerically. Coherent oceanic structures
identified via the RV or the OW parameter are obtained by selecting regions
where the RV or the OW parameter is above a certain threshold. We use a
common threshold coefficient to define the edge of the Agulhas ring that we

are investigating. For the RV we chose 0.2 times the maximum RV value at
the surface and for the OW we select 0.2 times the standard deviation of OW
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FIGURE 6.9: Surface extension of the sets Aprqy2000 and
AnNovemper,2000 (blue) and the boundary of the cor-
responding structures given by the maximal SSH gra-
dient (green), Okubo-Weiss parameter thresholded by
0.2 times the standard deviation (red) and relative vor-
ticity thresholded by 0.2 times the maximum relative
vorticity (black).

at the surface (cf. [CGGO§|). Also, the maximum SSH gradient defines the
edge of an Agulhas ring. Figure demonstrates that the different techniques

identify similar surface structures.

For a comparison of the coherence ratio of the three-dimensional structure
defined by the transfer operator approach we extend the surface shape given by
the techniques based on RV and OW up to the depth where the set Apay 2000
ends. In more detail, we calculate the OW and RV field for May and November
2000 at each depth level within the box discretization used for the approximation
of the transfer operator. The threshold at the final time is chosen in such a way
that the initial and final structures have equal volume. This is sufficient for
the calculation of the coherence ratio. For the threshold of the initial structure

we point out two options:

1. We firstly fix the threshold of the RV and OW at the surface and secondly

use the same threshold on each depth level (layer by surface).
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6.3 Three-dimensional Characterization and Tracking of an Agulhas Ring

2. We threshold on each depth level separately (layer by layer).

These two options give almost identical coherence ratios. Therefore, we report
only on the layer by surface results which are shown in row two and three of
Table [6.2 Compared to the transfer operator results, we gain an improvement
in the coherence ratio by 15% — 24% for the transfer operator method. However,
the structures given by the OW and the RV approach are of quite different
volumes (Table . The suggestion is that the transfer operator method
identifies the core region of the Agulhas ring which is more coherent than the
larger structures. Therefore, we adjust the threshold for the two approaches
such that the volumes of the structures are almost identical to the ones identified
by the transfer operator approach. Nevertheless, the transfer operator approach
still represents an improvement of approximately 15% over the other methods
(row four and five of Table[6.2)). As a last step we thresholded both RV and OW
by maximizing the coherence ratio which leads to almost the same coherence
ratios (row six and seven of Table as using the fitted volume approach.
Finally, we can state that the transfer operator approach discussed in this
thesis defines three-dimensional structures within the oceanic fluid flow that
have higher coherence than the corresponding objects identified by RV and
OW. The reason for this improvement in coherence is that the RV and the
OW are essentially two-dimensional techniques extended to three-dimensions.
Furthermore, the transfer operator method is designed to directly capture

regions of maximal coherence.

It is shown that we capture the coherence of a single Agulhas ring more
accurately than other common techniques based on two-dimensional velocity
information. To substantiate the results, the application of the transfer operator
techniques to other Agulhas rings and over longer time intervals has to be

addressed in future research.

99



Chapter 6 Detection of Coherent Structures in the Ocean

TABLE 6.2: Coherence ratios and volume of three-dimensional Agul-
has ring characterization given by the transfer operator
approach in comparison to the thresholding of the rel-
ative vorticity (RV) and the Okubo-Weiss criterium

(OW).
Method Volume Coherence Ratio
1 Transfer Operator Approach 5481km? 76.31%
2 OW (0.2 threshold) 7 752km? 52.17%
3 RV (0.2 threshold) 9 547km? 61.23%
4 OW (fitted volume) 5495km* 60.87%
5 RV (fitted volume) 5492km® 61.65%
6 OW (optimized threshold)  5527km?® 60.98%
7 RV (optimized threshold) 5693km” 62.30%
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CHAPTER 7

Conclusion

This work contains a wide range of aspects from dynamical systems theory to
ocean dynamics. It is, therefore, necessary to take a look at the “big picture”
of this thesis by summarizing the obtained results, discussing further directions
of research as well as sketching ideas for possible future research. This is the
task of this final chapter.

Autonomous Coherent Structures

In the autonomous case, almost invariant sets provide an established concept for
the analysis of transport phenomena. We consider these autonomous structures
in the more general context of time-dependent systems. Such structures are
spatially fixed in state space and, therefore, can be used to determine fixed
structures like large gyres in the oceanic domain. In this work, we use the notion
of almost invariant sets to study the seasonal variability of the subpolar gyres
in the fully three-dimensional domain of the Southern Ocean. Furthermore,
there is a variety of dynamical system techniques which we present in the
time-dependent setting and apply to the oceanic flurd flow in order to study
the water flux and the mean residence time of water in the gyres as well as the

pathways of water leaving the gyres.
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For these investigations, we calculate a transition matrix for each season by
considering time-t maps of the oceanic fluid flow over each season. By consid-
ering the product of these matrices, we approximate the one-year transition
matrix of the oceanic fluid flow in the Southern Ocean and used this matrix

e. g. to study the pathway of water or the mean residence time.

Non-Autonomous Coherent Structures

Coherent pairs are the time-dependent analog of almost invariant sets. For the
efficient approximation of coherent pairs, we extend the current methods for
the analysis of transport phenomena in non-autonomous dynamical systems
by transfer operator techniques. In particular, we utilize a product eigenvalue
approach to formulate a method for the efficient approximation of coherent
pairs over long time intervals. In more detail, instead of calculating a transition
matrix for a long time interval, we split up the time interval and approximate the
transition matrix by a product of transition matrices over shorter time intervals.
This procedure allows us to take into account certain physical properties of the
underlying dynamical systems such as volume preservation. Furthermore, we
prove a suitable error bound for this type of approximation and, in addition,
we develop Algorithm [3| which automatically calculates the splitting based on
a predefined error function. To demonstrate the capacity of this method, we
apply it to an idealized example as well as to the oceanic fluid flow as a real
world application, where an Agulhas ring in three dimensions over six months is
investigated. This is the first fully three-dimensional investigation of an ocean
eddy.

Furthermore, we design a method for the efficient approximation of coherent
pairs. More precisely, for this task, it is necessary to run a high number of
different simulations of the underlying process on the whole state space. We
achieve the theoretical result that coherent pairs induce almost invariant sets
over certain small time intervals (cf. Theorem[5.2)). This fact is used to formulate
Algorithm {] for the preselection of domains as candidates containing one part

of a coherent pair. Thereby, we can reduce the number of different simulations
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considerably by only performing the ones on the existing almost invariant set.
Thus, by this method, we can significantly reduce the computational effort for
the approximation of coherent pairs. Additionally, we discuss the behavior
of the algorithm under several parameter variations and make suggestions for
the (automated) selection of the parameters of the algorithm. We show that
this method can be used to identify regions in the oceanic domain containing
a single Agulhas ring as opposed to the identification of such regions by the

inspection of the sea surface height.

The methods developed here are utilized to analyze transport phenomena in the
oceanic fluid flow. It is a fact that the climate system is substantially effected
by the transport of warm and cold water in the ocean. However, the purpose
of this thesis is not to obtain answers in the context of the complex climate
system but to provide methods for the investigation of transport in the oceanic
fluid flow by dynamical system techniques. Hence, this thesis provides a new

perspective for the analysis of oceanic structures.

Future Research Directions

There still exist several challenging problems and directions for further research,

as we discuss in the following.

For a given time span, Algorithm |3|is capable of calculating a series of transition
matrices whose product approximates the transfer operator. We illustrate the
effectiveness of the product approach by means of Example |4.11| and provide
a heuristic based on an error function for the automated choice of a series of
transition matrices (cf. Section [£.3). Also the study of a single Agulhas ring in
Chapter [0 has only been possible by making use of this approach. Furthermore,
we have proved that under certain conditions the error vanishes. However,
to obtain suitable error functions, there is a need for further bounds on the
approximation error with regard to spectral properties. In case, we approximate
the transfer operator by a single transition matrix, there are bounds concerning

the approximation quality of the fixed point or the corresponding Lyapunov
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spectrum. Such bounds are discussed in the autonomous as well as in the non-
autonomous case in the context of piecewise expanding maps (cf. [FLQO09, [Li76]).
To the author’s best knowledge, there do not exist any practical results in the
literature for the very general case as it is considered in this thesis. In order to
obtain results in the context of products of transition matrices, one certainly

has to restrict to certain classes of dynamical systems.

We show that coherent pairs can be captured by almost invariant sets on a small
time scale under some weak restrictions, which is summarized in Algorithm
based on Theorem [5.2] In more detail, the theorem only gives a statement
concerning the coherence ratio of a constructed set containing a part of the
coherent pair. The length of the small time scale influences the runtime of
Algorithm [l Although we provide a heuristic in Section for the automated
choice of the small time scale during runtime, it would be even more suitable
to choose it a priori. However, the results one can expect depend on the
underlying application, and thus, one will have to restrict on certain subclasses

of dynamical systems.

An important parameter of Algorithm 4] is the size of the almost invariant
set. As for the choice of the small time scale, we provide a heuristic for the
automated choice of size. The proposed method assumes monotony on the
coherence ratio for a series of level-sets. However, we cannot be sure that
the selected almost invariant set completely contains a part of the coherent
pair. A possible heuristic would be to start with a single almost invariant set
and calculate the singular values and singular vectors of the corresponding
normalized transition matrix. The coherent pairs we seek are defined by level-
sets of the singular vectors. If we select the maximal coherent level-set, it is
either fully contained in the set we start with or the level-set intersects the
boundary of the initial set. In the latter case, we cannot be sure that the set
we started with is large enough, but we can extend the set successively and

stop as soon as the maximal coherent level-set is completely contained.

Even though we show the applicability of the results to the oceanic fluid flow

104



by means of several examples, we cannot claim that the current research is
capable of answering all the open questions in earth sciences. Nonetheless, we
successfully provide methods for the investigation of specific oceanic structures
and research should be continued by applying these methods to a wider range
of applications. To reliably study the impact of the Agulhas rings, for instance,
it is not enough to study single ones, but we have to investigate a series of
them. For this task, an automated method has to be developed. The problem
arising here is the selection of the time spans during which they exist. In order
to obtain these time spans a possible approach might be to apply Algorithm
developed in Chapter |5|and to calculate a coherent pair for each almost invariant
set. This successive exploration of a large oceanic domain is numerically very
expensive, and consequently, there is a need for efficient data structures in which
we can store already calculated trajectories to avoid redundant calculations.
In this context, one will have to make use of massive parallel systems, since
the trajectories involved for the approximation of the transition matrix can be

calculated independently.
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